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ABSTRACT 

I have investigated the effect of variation of 

meteorological variables, cloudiness, and surface variables 

(such as albedo and continentality) on the reflected solar 

and emitted terrestrial radiation leaving the top of the 

atmosphere. The investigation was empirical and used the 
I 

radiometric data from the scanner channels of the Earth 

Radiation Budget (ERB) instrument on Nimbus 7, cloudiness 

variables from analyses done by L.Stowe et al. on data from 

the Temperature and Humidity Infrared Radiometer (THIR) on 

Nimbus 7, and meteorological data from the FGGE (First GARP 

Global Experiment) Level III-b global weather analyses. The 

data were analysed on time scales of one day and spatial 

scales of about 450 km. 

This investigation had three main goals. The first goal 

was to determine the effect of cloudiness on the net 

radiation for various surface and atmospheric conditions 

during the period investigated ( 12 June to 18 June 1979). 

The second goal was to determine whether or not this type of 

linear analysis on a data set of synoptic time and space 

scales could be used for a reasonable and empirically 

accurate parameterization of radiation to be used in simple 

energy balance climate models (which are valid at vastly 

larger time and space scales than this data set) . The third 

goal was to compare the regressions determined from this 

data set between radiation, cloudiness , and weather with the 



internal statistics developed in a Global Circulation Mode l 

(GCM) , with the idea that eventually this type of linear 

analysis could be used as a constraint on GCMs used by the 

atmospheric science community. 
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Chapter 1 

INTRODUCTION AND GOALS 

What is the effect on the Earth's surface climate 

(especially annually-averaged surface temperature and 

rainfall) of 

concentration? 

a doubling of the atmosphere's 

What is the effect of a changing solar 
i 

''constant' ' or a changing Earth orbit on these climatic 

parameters? These and other questions related to the 

Earth's climate are not as easily answered as they are 

posed. One of the main reasons for the difficulty of their 

solution is that the atmospheric radiation budget, and 

therefore the surface climate, is heavily influenced by the 

distribution of various types of cloudiness, at least on 

time scales of less than a year . Webster and Stephens 

( 1984) , for example, estimate that a mere 10% increase in 

the amount of low-altitude cloud cover around the globe 

would wipe out the expected increase in surface temperature 

associated with the doubling of atmospheric co2 . 

Even the most sophisticated atmospheric models of our 

time are not notorious for their ability to simulate the 

present day distribution and characteristics of clouds 

around the Earth ( see Liou and Curran (1984) for a 

discussion). Moreover, cloud amount and height are not the 

only important parameters. Somerville and Remer (1984) have 

found that any variation of liquid water content in clouds 

with temperature might have substantial consequences for the 



global albedo. Many of 

physical characteristics 

2 

the 

of 

processes influencing the 

clouds are only poorly 

understood or else very difficult to model . Most models of 

the Earth's atmosphere are computed on large spatial scales 

(typically about 500 km to 1000 km between grid points), but 

the processes influencing cloudiness often take place on 

smaller scales. Another problem is that the effects of 

certain types of clouds (especially laterally he~erogeneous 

clouds like those associated with boundary layer convection) 

on the atmospheric radiation field are not that well known 

(see Harshvardhan, 1982). 

Although the theoretical situation is still muddled, 

recently two observational data sets have become available 

that can help solve the question of the effect of various 

amounts and types of clouds on the Earth's radiation budget. 

One data set consists of the spatially and angularly 

resolved measurements of radiation leaving the top of the 

atmosphere determined by the scanner channels of the Earth 

Radiation Budget (ERB) instrument on the Nimbus 7 

spacecraft. Between November 1978 and June 1980 these 

channels returned spectrally integrated visible ( 0. 2 urn to 

4. 5 um) and infrared ( 4. 5 urn to >50 urn) radiances for all 

regions of the Earth on a four day cycle (usually three days 

on and one day off). The radiances were measured at angular 

resolutions of 0.25° by 5.12° and spatial resolutions of 

4 km by 85 km at the nadir and 350 km by 320 km at the 

horizon (limb as seen from the spacecraft). Since the 
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satellite was in a sun synchronous orbit , with equator 

crossings at noon and midnight, al l measurements outside of 

high latitudes were made near local noon and l ocal midnight. 

In support of ERB and other experiments on Nimbus 7 , an 

infrared camera, THIR (Temperature Humidity Infrared 

Radiometer ) , was carried onboard to determine the extent and 

type of cloudiness in the regions of the Earth being viewed 

by the Nimbus experiments . The other data set is the vast 

trove of meteorological measurements taken in association 

with the First GARP Global Experiment 

Weather Experiment. For the year from 

(FGGE) or Global 

December 1978 to 

December 1979, a large array of meteorological platforms 

(satellites, ships, airplanes, balloons, and surface 

stations), many of them specially designed for FGGE, 

returned conventional and some unconventional weather data. 

Particular concern was paid to filling in data gaps in ocean 

areas and the southern hemisphere. The entire data set was 

binned, averaged, 

circulation model 

and interpolated using a general 

(GCM) that the European Center for Medium 

Range Forecasting (ECMWF) uses operationally for weather 

forecasting. 

I had three goals in mind in analyzing these data. The 

first goal was to determine how the distribution of clouds 

(as they occur now) in the Earth's atmosphere affects the 

radiation budget of the surface and atmosphere . The second 

goal was to develop equations that could be used to predict 

top-of-the-atmosphere radiation fields for simple climate 
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models. Since these are simple models, involving only a few 

meteorological variables, I did not want to explicitly 

include cloudiness. So I looked for equations in simple 

parameters (e.g., surface temperature, surface albedo, etc.) 

to predict the radiation field that bypassed cloud cover 

prediction. The third goal was to develop empirical 

relations between top- of-the-atmosphere radiation and 

various meteorological parameters of • I Importance for 

predicting cloudiness and radiation in general circulation 

models ( GCMs) . I hope, in the future, to compare these 

relations with the internal statistics of various GCMs. 

This is not the first time that someone has attempted to 

solve the three problems outlined above. Ohring and Gruber 

(1983) provide a good review of past work on the first two 

goals. Linder et al. (1981) and Jensenius et al. (1978) are 

good examples of work toward the third goal. The data sets 

I used, however, allow a more sophisticated analysis of 

cloudiness, radiation, and weather than has been possible in 

the past. 

The technique I used to accomplish these goals involved 

analyzing the statistics (averages, variances, and 

covariances) of ERB radiance measurements. These statistics 

were then corrected for possible systematic errors involved 

in the poor diurnal coverage provided by the sun-synchronous 

Nimbus 7. The diurnally corrected statistics of the 

radiances were then combined (as described in Chapter 3) to 

provide statistics involving the top-of-the-atmosphere 



5 

emerging visible f l ux , infrared flux , and planetary albedo . 

The resulting statistics relating the fluxes and albedo with 

all the other parameters were used for various single and 

multiple parameter regressions. The technique, in itself, 

provided what might be said to be the zeroth goal of this 

thesis, in that much time and effort was spent in 

determining whether the results of this work were sensitive 

to changes in various specifics of the analysis. 

The results of this investigation are as follows . I 

have determined that the distribution of clouds on Earth as 

it occurs in our present climate (at least for 28 November 

1978 and 12-18 June 1979) has no great net effect on the 

Earth's radiation budget as a whole. This is in contrast to 

a number of previous studies that have shown measurable and 

important effects of cloudiness on the global net radiation 

in the annual average. For example, Hartmann and Short 

{1980) found that increased cloud cover would tend to cool 

the Earth, due to the effect on albedo being larger than the 

effect on outgoing terrestrial infrared radiation. However, 

my results indicate that cloudiness does have a significant 

impact on the seasonal radiation budgets. Increased cloud 

cover acts to buffer seasonal excursions in the net 

radiation (decreasing net radiative intake in summer and 

increasing it in winter). 

Equations were developed that I feel might be usable for 

estimation of the top- of-the-atmosphere radiation field in 

simple energy balance climate models. These equations have 
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coefficients for predicting the emission of longwave 

radiation from the surface temperature that are noticeably 

larger than those derived from most previous studies. 

However, they are similar to the results of a more recent 

study by Simmonds and Chidzey ( 1982), that used seasonal 

rather than annual average data. 

Finally, empirical relations between various 

meteorological parameters (on the shorter time ~nd smaller 

spatial scales of GCMs) and top-of-the-atmosphere radiation 

have been determined. When eventually compared with the 

internal statistics of GCMs these can serve as an empirical 

check on the validity of these models and thus help to fine 

tune them. In at least one comparison with previous work 

(that of Linder, et al., 1981) a multiple regression was 

able to explain a much larger fraction of the variance in 

the planetary albedo than was possible before. 



7 

Chapter 2 

ORIGIN OF THE DATA 

In this chapter I explain where the data that I used 

originated. My most important data came from the Nimbus 7 

spacecraft. Nimbus 7 was placed in a circular sun 

synchronous polar orbit about the earth in mid-November 
I 

1978. This spacecraft orbits about the Earth every 104 

minutes at 955 km altitude, crossing the equator at 

longitudinal separations of 26° at local noon and midnight. 

II . A) Nimbus 7 ERB and radiation data 

The scanning channels of the Nimbus 7 ERB instrument 

were designed primarily to help determine the outgoing 

visible and infrared fluxes from the top of the Earth's 

atmosphere on a horizontal scale of about 150 km. On any 

given day, the instrument would measure the radiance leaving 

a given region of the Earth from only a few angles . Thus to 

retrieve the flux (irradiance) leaving any region, an 

angular distribution model appropriate to the target would 

have to be employed. This provided the second major purpose 

of the scanning channels : to develop angular distribution 

models for outgoing visible and infrared radiation for a 

suitably diverse range of targets. The scanners operated 

successfully from November 16, 1978 through June 22, 1980 . 

Some earth radiation budget results for this time period 

(Jacobowitz, et al., 1984a) and early developments of 
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angular distribution models (Taylor and Stowe, 1984) have 

been published . 

I will now briefly describe the ERB scanner instrument. 

For detai l ed descriptions of the ERB hardware and data 

acquisition see Jacobowitz, et al. (1978) or Jacobowitz, et 

al. ( 1984b). The ERB scanners consist of 4 small coplanar 

telescopes (i n a fan-shaped array), each possessing both 

infrared and visible optical systems . The instantaneous 

field of view (IFOV) of each scanner is 0.25° by 5.12°. 

Pyroelectric detectors (with nearly flat spectral 

---sensitivity and linear reponse) were used for both the 

visible and infrared . The visible channels covered 0.2 um 

to 4.8 um and the infrared channels covered 4.5 um to 50 um. 

Noise equivalent radiance for the shortwave channels was 

0.37 w -2 m and 0.18 w -2 m for the longwav e 

channels . Sensitivity variations throughout the duration of 

the experiment were about ±1%. 

The scanners were gimbal mounted and thus could be 

rotated around two axes. They were scanned vertically by a 

stepper motor in steps of 0.25° and horizontally in steps of 

0.5°. Data was recorded at ~ second intervals (integrating 

the measurements during each ~ sec scan) . The scan pattern 

of a single vertical scan is shown in Figure 2 . 1 . Both 

short and long scans were used in various combinations. The 

long scan goes beyond the Earth's horizon (at 60.4° from the 

nadir). Five different scan modes (combinations of forward, 

backward, and side scans of long or short lengths) were used 
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(see Figure 2 . 2) . Scan modes 1 through 4 optimized the 

angular coverage of those geographical targets (regions of 

the earth's surface and atmosphere) that were viewed at the 

expense of geographical coverage. Scan mode 5 optimized 

geographical coverage at the expense of the angular coverage 

of the targets measured. In one of the first four modes the 

scan pattern is repeated every 112 s (or 700 km on the sub­
' 

spacecraft track) and in mode 5 the pattern repeats every 

224 s (or 1400 km along track) . Mode 5 was the standard 

mode of operat·on. 

In this investigation I used the ERB scanner data on the 

Sub Target Radiance Tapes (STRT). These tapes are described 

more fully in Stowe, et al. (1980). Each tape contains all 

the ERB scanner measurements for each of the 18,630 sub 

target areas on the earth for a given day (defined in GMT). 

A sub target area (STA) is roughly a square region of the 

earth's surface 1.5° in latitude (167 km) by about 167 km in 

longitude (varying from 1.5° at the equator to 40° at the 

poles). The record for each STA includes (for each 

measurement) the infrared radiance (W m-2 sr-1 ), visible 

radiance (W m- 2 sr-1 ), time (GMT), observer zenith angle, 

azimuth angle between sun and observer, and fraction (in 

gths) of the scanner IFOV that fell inside the STA. The 

measurements are grouped by the orbital pass on which they 

were taken. For each orbital pass the range and mean of the 

solar zenith angle for the STA are listed. One should note 

that the theoretical maximum range for the solar zenith 
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angle for a given STA during a single orbital pass is 4.3o. 

In practice the range is much less. 

II.B) Nimbus 7 THIR and cloud cover 

The Temperature Humidity Infrared Radiometer (THIR) on 

board Nimbus 7 is a two channel scanning radiometer whose 

output is useful for the determination of cloud cover, 

emitting surface temperature, and atmospheric water. 

Although on earlier Nimbus satellites THIR served a research 

purpose, on Nimbus 7 it was included to support the other 

experiments. ~R consists of an optical scanner whose beam 

is divided into two channels, a 10.5 um to 12.5 um window 

channel and a 6 . 5 um to 7. 0 um water vapor channel. The 

ground resolution (IFOV) at the nadir for the 11.5 urn 

channel is 7 km and for the 6.7 um channel it is 20 km. A 

more detailed description of the instrument is in Cherrix 

(1978). 

The group led by Larry L. Stowe of NOAA/NESDIS has taken 

the THIR data for the time in which the ERB scanner was 

working and determined fractional area cloud coverages (for 

high clouds, medium altitude clouds, low clouds , and clear 

areas) and various statistical flags and included all this 

data on the STRTs (Stowe, et al., 1978 and Chen, et al., 

1980). The brightness temperature in each IFOV was 

converted into a physical temperature (by correcting for 

atmospheric attenuation) . Fractional cloud coverage in each 

STA was determined by allocating all IFOVs in a sub target 
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area to each of four categories : surface , low cloud (cloud 

with tops below 2 km altitude), mid level cloud (cloud tops 

2 km to 7 km in the tropics, 2 km to 6 km in mid-latitudes, 

and 2 km to 4 km in polar regions) , and high cloud (cloud 

tops above the mid level cloud limits). Monthly mean 

atmospheric temperature profiles from NCAR (Jenne, et al., 

1974 and Crutcher and Meserve, 1970) were used to establish 

the boundaries between these categories in terms of 

temperature. 

In addition to the fractional area cloud coverages, 
--.. 

various binary flags were included in the STRT records. 

Some flags indicated possible ambiguities in cloud level 

identification. These flags were ignored in this 

investigation because I wished to use as much data as 

possible. Other flags indicated (based on statistical 

analysis of the THIR data) the presence of cumulus clouds 

and of broken stratus. I ignored these flags because none 

of these flags indicated anything physically meaningful ( L. 

Stowe, personal communication, 1982). One flag was included 

to indicate that measured temperatures in the high cloud 

category were so low as to indicate that the high clouds 

were made of ice , rather than liquid water. I used this 

flag in my analysis . 
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II.C) The FGGE Level III-b data set from ECMWF and weather 

variables 

One of the major reasons the ERB scanner data set is so 

important for weather-radiation-climate studies is the 

existence of the contemporary FGGE data set. From December 

1978 to December 1979 the nations of the world cooperated in 

the First GARP Global Experiment (FGGE). An expanded 

network of surface and upper air weather station1s provided 

more numerous, accurate, and standardized conventional 

weather data than had been available before. A global 

----network of five geostationary satellites provided cloud 

track winds. A new generation of American polar orbiting 

weather satellites ( TIROS-N and NOAA-6) provided more and 

better temperature and humidity soundings. Finally, a large 

number of special platforms (including long-lived ballons, 

weather ships, weather instruments on commercial airliners, 

dropwindsondes, and weather buoys at sea) were deployed to 

gather conventional weather data in sparsely populated 

regions (especially over southern and tropical oceans). The 

most intensive and extensive coverage occurred during two 

Special Observing Periods (SOP), each lasting two months . 

Most of the data I analyzed covered a period of time during 

the second SOP (during mid-June). 

The various data sets were averaged and interpolated by 

4-dimensional assimilation into global weather prediction 

models to produce global weather analyses. The resulting 

global analyses are called the FGGE Level III-b data set· 
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Two versions were produced, one at the European Center for 

Medium-range Weather Forecasting (ECMWF) and the other in 

the United States . I used the ECMWF version because the 

other was yet not available when I began this project. 

The ECMWF Level III-b FGGE data set is described in 

Bengtsson, et al. (1982b). The ECMWF model predicts 

temperature, horizontal winds, absolute humidity, and 

surface pressure on a regular ( 1 . 875° latitude ' by 1. 875 o 

longitude) grid at 15 (non-uniformly spaced) vertical levels 

in sigma ( <Y = p / psurface> coordinates . Data were 
-........, 

assimilated every 6 hours (±3 hour windows). The 6 hour 

prediction based on the previous analysis was used as the 

first-guess starting point for a given analysis. The 

analyses were produced in pressure coordinates and the winds 

were analyzed on the same gridpoints as the other variables. 

The model predicted u and v at gridpoints midway between the 

gridpoints for T, p
5

, and q. Moreover analyses used heights 

and thicknesses rather than temperatures as variables. 

Thus, in order to produce each first guess analysis, the 

prediction needed to be converted to analysis variables and 

coordinates, using interpolation by cubic splines. 

Observations were then used to correct the variables at the 

gridpoints through optimum interpolation. Weights were 

assigned to various types of observations and predictions 

based on their error characteristics. These weights were 

then used, along with data taken during the 6 hour window, 

to determine the corrections to the first-guess (predicted ) 
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variables. In order to assimilate the new data in a 

meteorologically realistic way, the weighting factors cause 

the correction factors to be locally non-divergent and 

approximately geostrophic at high latitudes . In order to 

eliminate contamination of the data by gravity waves, a non-

linear normal mode initialization is used. In this 

technique, the initial change of gravity wave modes is set 

equal to zero. Supposedly, all this creates no problems 

except to partially suppress Hadley circulation and create 

some errors in the vertical profiles in the tropics. A far 
-........ 

more detailed description of the analysis scheme is found in 

Lorenc (1981). 

In the ECMWF scheme, an analysis is produced for every 6 

hours. Throughout FGGE, every other analysis is stored on 

tape (an analysis at 00 GMT and 12 GMT every day). During 

each SOP, every analysis was archived. The data archived 

for each horizontal gridpoint in each analysis is listed in 

Table 2.1. 

II . D) Geographic data on the STR and RAND / SIO tapes 

The STR tapes include data on the nature of the earth's 

surface in each target area and each sub-target area (in 

addition to the ERB and THIR data). There is one so-called 

"topography" record per TA and one "geography" record per 

STA on each STRT. Each topography record (see Stowe , et 

al., 1980) specifies the fraction of each TA containing: 
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1 ) water and permanent ice for each of four seasons 

2) six other surface configurations: 

plains 

hilly uplands and plateaus 

mountains 

hamada desert 

erg desert 

mountain and bolson desert 

3) nine vegetation classifications: 

mountain vegetation 
-........._ 

selva (rain forest) 

scrub forest 

taiga (high latitude coniferous forest) 

mixed mid-latitude forest 

savannah (tropical grassland) 

prairie (mid-latitude grassland or steppe) 

tundra 

desert. 

These data were obtained by hand analysis of maps from an 

ordinary atlas (James, 1951) . Each geography record 

contains the fraction of land, water, snow, and ice in each 

STA within 24 hours of the ERB measurements (Stowe, et al., 

1980) . In addition, data on snow depth and age of snow and 

ice are given. These were obtained from Air Force 

nephanalysis tapes, which archive data on snow and ice 

(including sea ice) each day (at 00 hours GMT) on a global 

grid with 40 km resolution. 
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In addition to the data on the STRTs, I used surface 

elevation data off the Topographic Data tape from the 

National Geophysical and Solar-Terrestrial Data Center. 

This tape includes (along with other topographic data sets) 

the RAND / SIO Global Topography, a file of surface elevations 

over the entire Earth at a resolution of 1° of latitude and 

longitude. W. L . Gates and A. B. Nelson (both of Rand 
I 

Corporation at that time) published this as a topographic 

report for the Defense Advanced Research Projects Agency in 

1973. Depths (below sea level) for ocean areas were 

----obtained from measurements made at Scripps Institution of 

Oceanography. Elevations above sea level (for land areas, 

ice caps, and regions of sea ice) were determined by visual 

estimations of contour charts. For ocean areas not covered 

by sea ice, I used an elevation of 0 meters above sea level. 
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Chapter 3 

METHOD OF DATA ANALYSIS 

In this chapter I explain how I took radiance (not flux) 

data, standard meteorological data, cloudiness data, and 

information about the Earth's surface geography and derived 

linear analyses of flux, weather variables of physical 

relevance to cloud-radiation 

surface albedo . 

studies, cloudiness, and 

III.A) Turning an analysis of radiances into an analysis of 

flux 

I am not the first to attempt to determine the 

relationship between out going radiative flux , cloudiness, 

and weather. A fine example of a cloud-radiation study is 

Hartmann and Short ( 1980), and two excellent studies of 

radiation-weather relationships are Jensenius, et al. (1978) 

and Linder et al. (1981) . I believe my analysis is superior 

to these and other old analyses in three main ways. First , 

I have global weather data of relatively high quality due to 

my use of ERB data during a FGGE SOP. Previous analyses 

have been restricted in their geographic scope and had to 

suffer less reliable weather data. Second, the ERB scanner 

data have resolution sufficient to resolve synoptic scale 

weather (and cloud) systems (just as data from the cloud 

imaging systems on our conventional weather satellites do), 

yet they retain the broad spectral coverage and high 
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accuracy of the traditional low resolution ERB instruments. 

Third , and most important in the development of this thesis, 

my analyses include resolved radiance data from all portions 

of the hemisphere of upward going flux . 

For any given target (on the Earth) at any given time, I 

have available only a limited set of radiance data. These 

data do not cover all of the upper hemisphere for the 

target. Therefore, I used larger (and fewer) angular bins . 

Figure 3. 1 gives an idea of the distribution of radiance 

data (in the upward hemisphere) acquired during daylight 

hours (solar Z'eni th angle less than 85 degrees) by the 

Nimbus 7 satellite for several typical target areas (regions 

500 km on a side). Note that in these diagrams the upward 

hemisphere has been folded about the plane including the 

sun. This has been done for reasons of symmetry which will 

be explained below. For any target outside the higher 

latitudes, Nimbus 7 acquires daylight ERB data on, at most, 

two overflights a day. In the figure, each overflight 

acquires an arc of data (part of which may be reflected at 

the lower boundary of the plot). Where there are two arcs 

of data, there were two overflights of Nimbus 7 which 

acquired data for the target area during that day. Even in 

those cases having two arcs, the upward hemisphere is 

clearly not completely sampled. However, I can take 

analyses of radiance data of this sort and correlative 

(cloud and weather) data and derive relationships between 
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the full hemispheric flux and the correlative data while 

making very few assumptions as follows. 

Let R( e , ~, e ( t)] be the radiance (reflected visible or 
0 

emitted infrared) leaving a portion of the Earth, at a 

zenith angle of e, a relative azimuth angle (between the sun 

and the emission direction) of ~, when the solar zenith 

angle is e
0

, at a time t. See Figure 3.2 for an explanation 

of the coordinates . Then the flux is given by 

F(t) 
TT/ 2 2TT 

= J J R(e,~,e.(t)] cos e sine de d~. 
e=o ~=O 0 

( 3. 1) 

---
If we divide the upward hemisphere into a series of angular 

bins, we can descretize this equation. We get 

F(t) = 2: Ri(e0 (t)) ui 6Qi' ( 3. 2) 

i 

where x. is the value of X in the angular bin i (defined by 
~ 

the angles ei, ~i), ui = cos ei, and 6Qi = sin ei 66i 6~i. 

Now let a 2 be the variance of x, let a be the covariance x xy 

of x and y, and let <x> be the ensemble average of x. Then 

axF = <x F> - <x> <F> 

= <2: x Ri(e0 (t)) ui 6Qi> 
i 

- <x> <I Ri(e
0

(t)) ui 6Qi> 

i 

=I ui 6Qi [<x Ri(e
0
(t)}>- <x> <Ri(e0 (t))>] 

i 

= I 
i 

u. 6Q. a R. 
~ ~ X i 

( 3 . 3 ) 

The various scalar variables I used in this investigation , 

which are represented in equation 3.3 as x, are listed in 
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Explanation of the angular coordinates. 
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Table 4.1 and described in Chapter 4. Furthermore, it is 

simple to show that 

u; = L L ( 3 . 4 ) 

i j 

and that 

= I I ( 3. 5) 

k i 

where italics in equation 3.5 are used for infrar~d flux and 

radiances and normal letters are used for visible data, and 

i and k are indices for visible and infrared radiances, 

respectively . ~oreover, 

<F> = L <Ri> ui 6Qi. 
i 

In order to use equations 3.3 

( 3. 6) 

3.6 to estimate the 

statistical characteristics of radiative flux, one needs a 

data set having a large random sample of radiances from all 

angular bins, including many pairs of measurements from each 

combination of angular bins. In other words, for any bin i, 

one needs many measurements of the radiance emerging from 

bin j that were taken at the same time that a measurement of 

the radiance from bin i was taken, for all bins j (covering 

the entire upward hemisphere) . Although I did not have 

available radiance data covering the entire upward 

hemisphere for any one target (of reasonable size and 

duration), I did have available enough data of different 

distributions about the upward hemisphere that I could 

estimate the characteristics of the entire outgoing flux 

(both infrared and visible) in a statistical sense. 
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Previous empirica l studies of cloud-radiation 

relationships, when using data of high spatial resolution , 

have generally taken individual radiance measurements and 

immediately converted them into values of the emerging flux 

at the top of the atmosphere. A number of biases can creep 

into the analysis this way. Even when Nimbus 7 ERB scanner 

data are being used this is not necessarily a wise 

technique. Arking and Vemury ( 1984) and Vemu'ry et al. 

( 1984) have analyzed and discussed the problems with just 

such types of analysis . By determining the statistics of 

individual radiances and only then turning these statistics 

into flux statistics, I avoid these problems entirely. 

III . B) Dividing the upward hemisphere into discrete bins 

Radiances on the STR tapes are classified as emanating 

from one of 419 angular bins in the upward hemisphere. If I 

were to use these bins in order I would be unable to 

determine the covariances of each radiance with all other 

radiances (other angular bins) . Therefore , I used larger 

(and fewer) angular bins . In Figure 3.3, I show the 

boundaries of some of the angular bin patterns that I used . 

The first modification I made in the STRT bin "map" was 

to reflect the upward hemisphere about a vertical plane that 

includes the vector to the sun. Thus any spot in the upward 

hemisphere fell into the same angular bin as that spot on 

the opposite side of this plane. For one thing, most 

reflection surface types in their pure form (e . g., total 



(a.) 49 visible bin map 
Stowe-Taylor pattern 

(c.) 32 visible bin map 
my alternate pattern 
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(b.) 19 visible bin map 
collapsed version of (a.) 

(d.) 14 infrared bin map 

Figure 3.3 Maps of the angular bins used 
analyses explained in the text. 
~ = 0 at the top. 

in the various 
In each map, 
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cloud cover at medium altitudes or tropical lowland rain 

forests with completely clear skies) have no preferred 

azimuth except that pointing toward their source of 

illumination (in this case, the sun). The most complicated 

surfaces (e.g., scattered clouds at various altitudes over 

mountainous, forested islands in the ocean) also have no 

preferred azimuth in the absence of illumination. For such 

surfaces (the simplest and the most complicated) using only 

one half of the upward hemisphere is quite reasonable, on 

theoretical g~unds. There do exist reflector types, 

however, which do have a preferred azimuth other than the 

sun direction. Two obvious examples are linear mountain 

chains and cloud "streets'' (lines of convective clouds 

separated by lines with no cloud cover, which are parallel 

to the wind in the lower troposphere, commonly found in the 

trade wind latitudes and in the lee of polar fronts). 

However, in order to model the effect of the innate 

anisotropies of such reflectors successfully, I would need 

to know the orientation of these reflectors relative to the 

satellite, data which is difficult to find even when 

available. Furthermore, I would have to use separate 

angular bins, not only for observer zenith angle and azimuth 

relative to the sun, but also for the relative azimuth 

between the reflector anisotropy and the observer (or else 

the sun). This is a much too difficult task for the scope 

of this investigation, especially for a condition which is 

far from ubiquitous and does not have an overwhelming impact 
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on the reflection of sunlight from the Earth (the way that 

the solar zenith angle or observer zenith angle do, for 

example). 

The second modification I made in the angular bin map 

was to enlarge the size of the bins . You may note that in 

the bin maps in Figure 3 . 3 there are far fewer than the 225 

you might expect in half the upward hemisphere. For 
I 

analysis of infrared radiation, relative azimuth between the 

observer and the sun, was deemed to be unimportant . Thus in 

Fig. 3 . 3. a one finds that there are only 14 angular bins, 

divided by zenith angle only. For analysis of visible 

radiation, the relative azimuth was obviously important. 

However, the importance of different specific angular bin 

patterns on my analysis of the radiation was unknown when I 

began this project. Therefore, I used three different bin 

maps for my analyses. These are presented in Figs. 3.3.b-

3.3.d. 

III.C) The diurnal coverage problem and its solution 

The method of statistical analysis that I presented in 

the first section of this chapter would be of interest to 

climate studies if the radiation measurements I was dealing 

with were either diurnal averages of the emitted (or 

reflected) radiance or if they were instantaneous radiances 

that were distributed randomly over the day. Unfortunately, 

neither possibility proves to be the case. The Nimbus 7 

satellite travelled in a sun-synchronous orbit with noon and 
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midnight equator crossings . For the infrared measurements, 

the situation is not so bad. The data set included 

measurements which were near to the extrema of the diurnal 

radiative emission cycle (which usually peaks in the early 

afternoon and reaches its nadir just before dawn ) . The 

result of using all the infrared data should give nearly 

diurnal averages of the radiance ensemble averages and 

covariances. Things are much worse for the visible data. 

Not only were the measurements unevenly distributed over the 

daylight hours, but they were concentrated at an extremum, 

-the maximum solar zenith angle, for most targets on earth. 

For this reason, I converted the visible radiance data from 

the STRTs into diurnally averaged radiances by applying 

various diurnal corrections. 

In order to convert the STRT data by applying diurnal 

corrections, I need to assume that the nature of the surface 

atmosphere ensemble (the "scene" observed by the Nimbus 7 

ERB scanner) does not change during the hours of daylight. 

In other words, the albedo does not change due to a change 

in cloudiness or sea ice or snow cover during the daylight 

hours of a single day. Thus, the only reason that a 

noontime measurement of albedo would not be representative 

of the diurnal average i s due to the change of albedo of a 

scene associated with the change in solar zenith angle . My 

analysis should also work if I have a big enough sample and 

there is no systematic change in scene with time (during the 

daylight hours) for the various targets in my sample. 
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Except for the development of convectiv e storms (and t heir 

associated clouds) during the afternoon over the Midwestern 

U.S. in the summer, I know of no systematic changes in scene 

type over the daylight hours which occurs in a large region 

of the Earth . 

To derive the diurnal correction factor we first define 

the bidirectional reflectance (a function telling the albedo 

in a given direction for i llumination from another given 

direction) . The BDRF (bidirectional reflectance function ), 

A, is defined by 
--... 

R ( e.~.u0 (t)) = u0 (t) A(e.~.u0 (t) ) F0 

or 

Then if x is the diurnal average of x, we have, 

and 

:r = L ~ ui .6Qi. 
i 

( 3. 7) 

( 3. 8) 

( 3.9 ) 

(3.10 ) 

If we have some idea of how A1 varies with u
0 

we should be 

able to determine the diurnal averages given only the 

instantaneous measurements of radiance and the solar zenith 

angle at the time of each measurement. 

Larry Stowe and V. Ray Taylor , using the information 

archived on the STRTs that they helped write , developed 

"angular distribution models " (ADMs) , actually discretized 

bidirectional reflectance func tions, for various surface-

atmosphere ensembles (see Tay lor and Stowe, 1984 ) . Models 

were developed for pure surfaces ( clear atmosphere over 
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ocean, land, snow, and ice), for pure forms of clouds (total 

cover of low, mid-altitude, high ice, and high water 

clouds), for mixed clouds (total cover of mixed clouds over 

land and over ocean}, and for partial cover of mixed clouds 

(40% - 60% cover of mixed clouds over land and over ocean). 

These 12 models were derived from data on STRTs for 66 days 

in 1978 and 1979. For each of the 12 models, data were 

averaged in 49 angular bins of the upward hemisphere 

(defined by observer zenith angle and relative azimuth) and 

10 bins of solar zenith angle (each bin 0.1 wide in cosine 

---of s.z.a.). Taylor and Stowe classified observations by 

the cloudiness observed and the type of surface known to be 

underneath, and they chose only the best data (in terms of 

the amount and quality of cloudiness data, especially). 

Thus they were able to average together data from vastly 

different regions (and most importantly, latitudes) of the 

Earth. The result was to cover most of the range of solar 

zenith angles for the various models . Some of the data from 

these models are presented in Figure 3 . 4 . In each part of 

Figure 3.4 the albedo of each of the 12 surface-atmosphere 

ensembles (models) in one angular bin is plotted versus 

cosine of the solar zenith angle. The purpose of this 

figure is to convince you that the way in which the 

reflectivities of the various surface-atmosphere ensembles 

behave versus solar zenith angle are, to a certain extent, 

independent of the sort of surface-atmosphere ensemble being 

observed. Therefore, I feel that the effect of solar zenith 
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angle on albedo can be separated from the effect of the sort 

of ensemble being observed. In short, we can perform a 

separation of variables in our bidirectional reflectance 

functions. I have modeled these functions (the Taylor-Stowe 

models) in three ways: (a . ) the constant albedo model, (b.) 

the additive albedo model, and (c.) the multiplicative 

albedo model. Note that each of the three models ,is used to 

model the albedo in each of the 49 angular bins separately. 

These models are explained in the following three 

subsections. ---.. 

(a.) The constant albedo model 

In this model, I assume that the albedo in a given bin 

is independent of the solar zenith angle (obviously wrong 

from a perusal of Figure 3.4, but a good place to start the 

investigation) . Therefore, the albedo depends only on the 

sort of scene (surface-atmosphere ensemble) being observed. 

Thus, 

Ai(t) = Ai(u
0

(t),s) 

= gi(s), ( 3 . 11) 

where s signifies a suite of variables specifying scene 

type. From equations 3.8, 3 . 9, and 3 . 11 we get, 

Ri(t) = u0 (t) gi(s) F0 

and 

(3.12) 

(3.13) 

where we have assumed (as explained above) that the scene 

type does not change during the daylight hours of a single 
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day. From equation 3 . 12 it is clear that we can express 

g 1 (s) in terms of the instantaneous radiance measurement, 

( 3.14) 

We can now express the diurnally averaged radiance in terms 

of the instantaneous (measured) radiance and other known 

quantities, 

(3 . 15) 

Note that, using equation 3. 15, one can determine the -diurnally averaged radiance from a target from knowledge of 

the instantaneous radiance and geometry (the location of the 

sun, the latitude, and the time of year). No a priori 

knowledge of the sort of scene being observed is needed. It 

was one of my primary goals in this thesis to do 1 inear 

analyses of radiance without using special knowledge, 

thereby allowing me to use all of the available ERB data. 

(b.) The additive albedo model 

In this model, I assume that the bidirectional 

reflectance function can be separated into two functions, 

one dependant on the cosine of the solar zenith angle, and 

the other dependant on the scene type. The sum of these 

functions is the BDRF. Thus, 

Ai(t) = Ai(u
0

(t),s) 

= gi(s) + hi(ue). (3.16) 
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In a manner similar to that used for the constant albedo 

model, using equations 3.8 , 3.9, and 3.16 , we can show that, 

tr.'=R .( t) 
~ ~ 

u 
0 

u
0

(t) 

+ F u hi. 0 0 
(3.17) 

Beyond the instantaneous radiance measurement and 

geometric data, the only information we need to determine 

the diurnally averaged radiance is knowledge of how 

reflectance varies with solar zenith angle, in general. 

This knowledge is embodied in the model function hi(u (t)). 
0 

I present the method I used to determine these h functions 

from the Stowe-Taylor data ("models") later in this chapter . 

(c.) The multiplicative albedo model 

In the multiplicative model, I assume much the same as 

with the additive model, except that the separable functions 

are multiplied to determine the bidirectional reflectance. 

Therefore, we use, 

Ai(t) = Ai(u0 (t),s) 

= f i ( u0) g i ( s) . (3.18) 

Once again, using equations 3.8, 3 . 9, and 3.18, we can show 

that, 

u f. 
0 ~ (3.19) 

To determine the diurnally averaged radiance using this 

model requires no more information than using the additive 

model. The only difference is the sort of model used to 
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simulate the effect of varying solar zeni th angles 

throughout the day . 

III . D) Calculation of the diurnal correction factors 

(a.) Determining the diurnal average of u 
0 

If we let A be the latitude of a point on Earth , -r be 

the time angle (angle in longitude from the midnight 
I 

meridian) of the same point, and A
0 

be the declination of 

the sun (latitude of the sub-solar point on the Earth), then 

the cosine of the solar zenith angle is given by -u0 = sin A0 sin A cos T cos A
0 

cos A. ( 3. 20) 

I skip the proof of this because it is long and involved but 

not particularly difficult. From equation 3 . 20, we can 

derive the time of day for sunup and sundown, 

l u 

and 

-1 = cos (tan A
0 

tan A) 

cos-1 (tan A tan A), 
0 

( 3 . 2 1 ) 

( 3 . 22) 

where we constrain cos-1 x to lie between 0 and n, for all 

x. Then the diurnal average of the cosine of the solar 

zenith angle is given by 

1 
2n 

+ 

+ 

0 dT 

2n 

JT=T 0 dT ] 
d 

cos T cos A
0 

cos A) d-r 
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cos T cos A cos A) d -r 
0 

+ sin T cos A cos A] I n. u 0 (3.23) 

Note that for regions of midnight sun (polar summer) , rather 

than using equation 3.21 for Tu, we simply use the value o 

(since the sun is up at midnight) . For regions Qf noontime 

darkness (polar winter) we simply use n for the value of -ru 

( since the sun is down at noon). 

-
(b.) Determining the g and h factors of the additive model 

I used a linear least squares fit of the additive model 

to the Stowe-Taylor ADMs to determine the model parameters, 

g and h. If we suppress the subscript i (for angular bin 

number) equation 3.16 gives us 

or 

Ajk = hj + gk' (3.24) 

where j £ {1,2, .. . ,12} designates the scene type number and 

k £ {1,2, ... ,10} designates the cosine of the solar zenith 

angle bin number. Our model fit minimizes the sum , 

10 12 
S = ~ l ~ J. k xj Yk (AJ·k - hJ· - gk ) 2, 

Lj=1 k=1 
(3.25) 

where the xj are weighting factors for the solar zenith 

angle bins, the yk are weighting factors for the different 

scene types , and the ~jk are zero for those combinations of 

scene type and solar zenith angle for which Stowe and Taylor 
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had no models and are one for those combinations where they 

did have models . By minimizing S we get 

12 
-1 

12 
hj = <l: \)jk yk) <l: \)jk yk Ajk 

k=1 k=1 

12 

~ k=1\)jk yk gk) ( 3. 26) 

and 

10 10 

<l:j=1\)jk 
-1 

(~. \)jk gk = xj) xj Ajk 
J=1 

10 
--...._ L \) 'k X . hj). 

j=1 J J 
( 3. 27) 

We have a degree of freedom in this model which we can use 

by requiring that 

Remembering the definition of \)jk' this means that 

12 12 
l: \) y g = -l: ( 1 - \).k) yk gk. 

k=1 jk k k k=1 J 
( 3. 28) 

In order to simplify the solution of equations 3 . 26 and 

3 . 27, we now define a vector z where zi = gi (for i ~ 12) 

and zi = hi_ 12 (fori> 12). Then from equations 3.26-3.28, 

for 1 ~ i ~ 12, we get 

10 10 

<l:j=1 
-1 

<~. \)ji Aji zi = \) .. Xj) xj J~ J=1 

10 
l: \) . . 

j=1 J~ 
xj zj+12) (3.29) 

and for 13 ~ i ~ 22 , 
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12 
L <1 - ~i-12,k) Yk zk] · 

k=1 
(3.30) 

Equations 3.29 and 3.30 are, in fact, a set of 22 

equations , which can be put in vector and matrix form as 

~ = ~ + § z . {3.31) 

I will not write out the values of the elements of the 

constant vector C, or the elements of the coefficient matrix 

B, as these can-be determined by comparison of equation 3.31 

with equations 3.29 and 3.30. The solution for the zi (and 

therefore the gk and hj) is then given by 

-1 
~ = (~ - ~) 9· ( 3. 32) 

I display the results for a few latitudes, angular bins, and 

scene types in Figure 3.5, along with the Stowe-Taylor data 

and the results of the constant and multiplicative models. 

Even for those angular bins and scene types with the most 

difficult phase curves, the additive model seems to make a 

pretty good fit to the data. 

(c.) Determining the f and g factors of the multiplicative 

model 

If we suppress the subscript i (for angular bin number) 

equation 3.18 gives us 

or 

(3.33) 
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where the subscripts j and k mean the same things as they 

did for the additive model. We just define new functions , 

Ljk = ln Ajk = ln ( f j gk) = ln fj + ln gk 

= d. 
J 

+ ek, ( 3.34) 

where the definitions of Ljk' dj' and ek are obvious. We 

solve for dj and ek in exactly the same way as we did for hj 

and gk in the additive model. I even used the same values 

for the weighting factors. Then I simply converted the d. 
J 

and ek into the fj and gk for the multiplicative model. 

The results_are not strictly a linear least squares fit 

to the Taylor-Stowe data. Rather, they are a sort of log-

linear least squares fit. There are two reasons for doing 

things this way. First, it seemed to me to be a more 

reasonable way of fitting a multiplicative model to the 

data. After all, the errors will be multiplicative not 

additive. Secondly, I was unable to derive a nonlinear 

least squares fit to the Stowe-Taylor data for this model 

which would converge with successive approximations. 

Some of the results of this multiplicative model are 

displayed in Figure 3.5. Although this model does not fit 

the Stowe-Taylor data as well and as often as the additive 

model, it does a far better job than the constant model . 

(d.) Determining the diurnal averages of u times the f and 
0 

h factors of the additive and multiplicative models 

In order to determine the diurnal averages of u times 
0 

the solar zenith angle (s.z.a.) functions (f and h), I 
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divided the integrals into steps of 0. 1 in This was 

done because the Stowe-Taylor data (and therefore the s.z.a. 

functions) were available only in discrete steps of 0.1 in 

u0 . We let u0 k = 0 . 1 k and let Tk be the value of -r at 

which we reach u k . From equation 3.20, we get 
0 

Tk = cos-1 (tan A
0 

tan A - u0 k sec A0 sec A). (3 . 35) 

Now we let q = f or h (the s . z . a . function we are dealing 

with; note that we have suppressed the index for the angular 

bin), qk = q(u
0
(t)) where tk_ 1 < t < tk' and n = 10 u0 (noon) 

rounded up to the nearest integer (i.e., the number of steps -of 0.1 in u during the hours between sunrise and noon in a 
0 

target area) . The diurnal corrections we need are then 

given by 

1 TT 

u0 q = I (sin A0 sin A 
TT -r=-r u 

- cos l cos A.0 

1 n lk 
= 

l:k=1 I qk (sin A.
0 TT 

lk-1 

- cos l cos A. 
0 

1 n 
= ~k=1qk [sin A.0 sin A. 

TT 

Note that Tn = TT and ~ - ~ ' 0 - 'u· 

cos A.) q(u0 (-r)) d-r 

sin A. 

cos A.) d-r 

( lk - lk-1) 

(3.36) 

The factors from equation 

3.36 are then used in equations 3.17 and 3.19 (where q = h 

and q = f, respectively) for the additive and multiplicative 

diurnal correction techniques. 
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(e . ) The weighting factors, xj and yk, used in determining 

the f and h factors of the diurnal correction models 

In order to obtain useful diurnal correction models 

(both additive and multiplicative) it is necessary to use 

most, or all, of the Stowe-Taylor ADMs available for a given 

angular bin. However, it is not necessary to overemphasize 

data that are irrelevant for a given use. For example, 

although we want to use a lot of ADMs in order ' to get a 

useful model for tropical regions, it is not necessary to 

weight the effect on the model of ice surfaces covered by -clear skies too much, since such a scene is rarely, if ever, 

encountered in the tropics. In much the same vein, we don't 

want to weight overly much the ADMs for low solar zenith 

angles (large cosine of the s.z.a., or large sun elevations) 

for high latitude regions, where the sun never gets · very 

high. 

I determined what fraction of the target areas and days 

in the data I dealt with (6 days in June 1979) in each 

latitude band could be classified in each scene type. I 

then used a weighted mean of the constant weight (for each 

of the 12 scene types) weighting factors and the observation 

frequency weighting factors to get my scene type weighting 

factors. If f is the fraction by which I weighted the 

constant weighting factor in the calculation of my actual 

weighting factor, and tk is the fraction of the time that 

the kth scene type occurs in the latitude band being 

investigated, then 
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+ ( 3.37) 

In my calculations, I used f = 0 . 025 . 

I also determined what fraction of the sunlit portion of 

the day fell in each of the 10 solar zenith angle bins, for 

each latitude band . If f fulfills a similar role here as in 

the determination of the yk ' and the Tj is defined as in the 

last section, then 

+ 
Tj- T · l 
.....;... _ ____;;,J_-_ ( 1 - f) . ( 3 . 38) 

-.._ Tn - To 

Note that for j > n, only the first part of equation 3.38 

applies . In my calculations, I used f = 0 . 33 . 
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Chapter 4 

EXPLANATION OF THE PARAMETERS INVESTIGATED AND THE 

TECHNIQUES USED IN THE CALCULATIONS 

In most of this chapter I explain which cloudiness and 

meteorological variables I analyzed and how I derived them 

from the data sets described in Chapter 2. In Table 4 . 1 , I 

have listed all of the parameters I used in my analysis. 

The first column of this table lists the number for each 

parameter. I n-- the next column, I list the mathematical 

symbol used to describe each parameter . In the third 

column, I give the shortened name which I use for each 

parameter in the tables in the appendices and the next 

chapter. In the last column I give a verbal explanation of 

each parameter . At the end of this chapter I describe how I 

took these parameters and performed the calculations 

described in chapter 3 on them. 

IV.A) Reasons for choosing the variables listed in Table 4.1 

for this investigation 

My reasons for choosing the variables I did are 

intimately tied to the three goals I pursued in the course 

of this research (as explained in Chapter 1) . The first 

purpose was to determine the effect of clouds (as they occur 

presently in the Earth's atmosphere) on the outgoing 

radiation from the Earth. This was the main reason for 

including the simple cloud cover fractions from THIR 
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TABLE 4 . 1 

THE VARIABLES INVESTIGATED IN THIS THESIS AND THE SYMBOLS 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

u 
0 

F . 
V1S 

f low 

USED FOR THEM 

AVG MUSUN 

FLUX UP V 

FLUX UP I 

F CL TOTL 

F CL LOW 

F CL MID 

F CL HIGH 

F CL HI I 

F CL HI W 

FCL**2 

FCL*ASURF 

FCL*TSURF 

FCL*TS**4 

diurnal average of the cosine of 
the solar zenith angle 

upwelling visible flux 
(irradiance) at the top of the 
atmosphere 

upwelling infrared flux 
(irradiance) at the top of the 
atmosphere 

areal fraction covered by clouds 
of all types 

areal fraction covered by low­
altitude clouds 

areal fraction covered by medium­
altitude clouds 

areal fraction covered by all 
high-altitude clouds 

areal fraction covered by high­
altitude ice clouds 

areal fraction covered by high­
altitude liquid clouds 

square of total cloud fraction 

total cloud fraction times surface 
albedo 

total cloud fraction times surface 
air temperature 

total cloud fraction times surface 
air temperature to the 4th power 

total cloud fraction times 1000 
mbar temperature 
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16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

49 

total cloud fraction times 
temperature of highest saturated 
layer 

ftot•u 0 FCL*MUSUN total cloud fraction times diurnal 
average of cosine of the s.z.a. 

ft t•a .u- FCL*AS*MU 
0 s 0 

total cloud fraction times surface 
albedo times diurnal average of 
cos ( s . z . a . ) 

T s 
T2 

s 
T3 

s 
T4 

s 

z500 

T5oo 

T1000 

Ps 

o-H20 

ncld 

zcld 

Tcld 

dS/dz 

* dH / dz 

* H -H 
a s 

z -z a s 

T SURFACE surface air temperature 

TSURF**2 surface air temperature ' squared 

TSURF**3 surface air temperature cubed 

TSURF**4 surface air temperature to the 4th 
power 

2500 geopotential height of the 500 
mbar level 

T500 temperature of the 500 mbar level 

TlOOO temperature of the 1000 mbar level 

P SURFACE pressure at mean sea level 

SIGMA W V column water vapor density 

N CLD LYR number of saturated layers in the 
FGGE analysis 

Z CLD TOP geopotential height of the highest 
saturated FGGE level 

T CLD TOP temperature of the highest 
saturated FGGE level 

DS/DZ vertical dry static energy 
gradient in the lower atmosphere 

DH* / DZ 

DH-AV/ DZ 

vertical saturated moist static 
energy gradient in the lower 
atmosphere 

moist static energy at the surface 
minus saturated moist static 
energy in the middle troposphere 
divided by the vertical separation 
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33 f(oH) •8(W) FLAG ST W a nonlinear flag to indicate a 
positive DH-AV/ DZ times a 
nonlinear flag to indicate a 
negative lower troposphere 
pressure vertical velocity 

34 r 
s 

35 u500 

36 v500 

37 P1 (sin A.) 

38 P2 (sin A.) 

39 (X 
s 

40 (X2 
s 

41 (X s·ue 

42 z s 

R SURFACE surface air relative humidity 

U500 eastward zonal wind speed at 500 
mbar 

V500 northward meridional wind speed at 
500 mbar 

Pl LATITU sine of the latitude 

P2 LATITU 1 / 4 minus 3 / 4 times the cosine of 
twice the latitude 

/;;- SURFACE diurnal average of surface albedo 

ASURF**2 diurnal average of surface albedo 
squared 

AS*MUSUN diurnal average of surface albedo 
times diurnal average of 
cos ( s . z . a. ) 

z SURFACE altitude of the surface 
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(variables 4- 10). To obtain a better understanding of the 

real effect of clouds on the radiation budget, I also 

included variables involving surfac e albedo, surface 

temperat ure, cloud top temperature, and diurnally averaged 

incident flux (actually diurnally averaged cosine of the 

solar zenith angle) . These are variables number 1 , 11 - 17, 

18, 21, 24, 29, and 39 - 41. Multiparameter regressions of 
I 

all these variables give a fairly good idea of the effect 

clouds have on the Earth's radiation budget. 

The second_goal of this research was to elucidate simple 

predictive equations for the outgoing irradiance (both 

visible and infrared) from simple meteorological variables 

of the sort predicted by simple climate models. In order to 

get these equations I did multiparameter regressions on such 

variables. These variables include surface temperature, 

temperature in the middle-to-upper troposphere, surface 

albedo, incident solar flux, latitude, and sometimes 

fractional cloud cover (at all altitudes). This helps 

explain my inclusion of variables number 1, 4, 10 - 21, 23, 

24, and 37 - 42. 

My third goal in this thesis was to determine empirical 

relations (i.e.' covariances) between meteorological 

variables of possible importance to radiation prediction 

(especially those variables associated with cloudiness) and 

top-of-the-atmosphere outgoing solar (reflected) and 

terrestrial (emitted) flux, so that these relations could 

later be compared with relations derived from the internal 
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statistics of general circulation models. For this goal I 

chose variables that I felt might make good cloudiness 

predictors, and those that should be associated with albedo 

or emission temperature. I also included some standard 

variables predicted by most GCMs. This goal justifies my 

inclusion of those variables listed in Table 4.1 not already 

justified by the previous two goals. I included 4 

parameters (26 - 29) that I felt should be associated with 

large scale cloudiness (like that associated with mid-

latitude baroclinic weather systems). Moreover, variables -30 33 were those I felt might be associated with 

convective scale cloud systems (for example, mid-latitude 

mesoscale convective complexes, trade wind cumulus, and 

clouds in the ITCZ). I might have wanted to include 

parameters involving differences of various variables 

between grid points, especially for convective cloudiness 

predictors. However, this is a first attempt at this sort 

of thing, the calculations were involved enough, and I am 

only developing empirical relationships to be compared with 

their theoretical counterparts (not developing definitive 

cloudiness predictors for general circulation models). Thus 

all the FGGE variables I investigated were derived from FGGE 

data at single horizontal gridpoints. 
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IV.B) Conversion of FGGE Level II!b data into the variables 

listed in Table 4.1 

The data on the ECMWF FGGE Level 3-b tapes ( from here on 

referred to as EFL3Ts) consisted of only the most basic of 

meteorological variables. Deriving some of the more 

physically relevant variables from these origins required a 

fair amount of processing. The variables numbered 18 

through 36 are derived from the EFL3T data . After their 

calculation, these variables were stored on disk for every 

six hours in the (six days in mid-June 1979) study period, 

-----at every sub-target area on the Earth. Because the FGGE 

horizontal grid did not correspond exactly with the grid of 

ERB sub-target areas, I used data from the FGGE gridpoint 

closest to the center of each sub-target area . Some FGGE 

derived variables were used in combination with THIR 

cloudiness data in variables 12 through 15. 

(a.) Simple variables at standard pressure levels 

Certain of the weather variables were simply taken 

directly from the EFL3Ts as is . These are the values of 

simple parameters at specific tropospheric pressure levels, 

variables 22, 23, 24, 35 , and 36 . In combination with THIR 

data, this is the origin of variable number 14 . These 

variables should be useful in comparisons with the results 

of GCMs and might perhaps be useful in radiation predictive 

equations in the more complicated of the "simple" climate 

models. 
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(b.) Variables computed at the surface 

Many of the variables I used involved values of FGGE 

variables computed at the Earth's surface. The FGGE 

variables were interpolated and extrapolated onto standard 

pressure levels, from the sigma levels (including the 

surface) on which they were computed, by cubic splines in 

all three spatial dimensions. However, it was sufficient 
I 

for this investigation (in terms of accuracy, etc.) to use 

linear interpolation (or extrapolation) in the vertical 

dimension in order to determine the values of FGGE variables 

---at the surface (A. Hollingsworth, personal communication, 

1984). .Surface pressure was computed using linear 

interpolation of the logarithm of pressure in the vertical . 

In order to do the linear interpolation, I used the 

geopotential heights (z) listed on the EFL3Ts for each FGGE 

level and the height of the surface listed in the RAND/SIO 

elevation data set. In the troposphere, the di f terence 

between geopotential and actual geometric height is less 

than 1% just about everywhere on the globe. I chose the two 

levels bracketing the surface or (for those regions in which 

the surface lay beneath the lowermost level-the 1000 mbar 

surface) the two levels just above the surface. I then used 

the values at these levels, the geopotential heights at 

these levels, and the surface elevation to do the linear 

interpolation (or extrapolation) . The variables computed 

this way were 18 - 21, 25, and 34. Variables 19 - 21 were 

derived from variable 18 . By combining this type of data 
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with THIR data I got variables 12 and 13. All of these data 

should be useful in comparisons with GCM results, but the 

primary purpose of variables 18 21 was to derive 

predictive equations for radiation in simple climate models. 

( c . ) Large scale cloudiness variables 

The major purpose of these variables was to determine 

the amount of water vapor and amount of saturated atmosphere 

available for making clouds. In terms of the goals of this 

thesis, these variables were designed to be compared with 

the results of GCMs and perhaps to indicate the value of 

various parameters as diagnostic indicators of cloudiness. 

Variables 28 (zcld) and 29 (Tcld) were determined by finding 

the highest level on the EFL3T for which relative humidity 

equalled or exceeded 93% at each sub-target area and then 

tabulating the temperature and geopotential height for that 

level. Variable 27 (ncld) is the summation of nonlinear 

flags related to relative humidity for each FGGE level above 

the surface at each sub-target area. 

ci, was calculated as 

t ci = (ri / 100) , 

Each nonlinear flag, 

( 4. 1) 

where i designates the vertical FGGE level number, r is 

relative humidity (in percent), and t is an exponent chosen 

so that c = 0.5 when r = 93%. Thus, ncld is determined by 

ncld = L ci. ( 4 · 2 > 

i 

Although no clouds should be visible (in a perfect model) 

unless r = 100%, in a real model , we are dealing with 
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average values of parameters over large areas (defined by 

the size of the grid used in the model) and there are 

uncertainties in the model. Thus, I chose a lower threshold 

value for relative humidity for the production of clouds. 

The choice of 93% is somewhat arbitrary, however , in various 

existing GCMs, values less than 100% are chosen as threshold 

values for cloud production (see for example Hansen , et al ., 

1980). In later work I hope to investigate the effect of 

varying the value of this threshold on the efficacy of 

cloudiness (and radiation) prediction. In the meantime, 

however, ncld should be useful both as a predictor of the 

existence of large scale clouds and as an indication of the 

thickness of these clouds. 

The column water vapor density was determined by adding 

the water vapor abundances in each FGGE level above the 

surface. Thus, 

* uH20 = L (ri/100) P (Ti) AZi, (4.3) 

i 

where the thickness of each layer, i, is given by 

AZi = (zi+1 - zi-1) / 2, 

for layers above the surface, and 

az1 = (zi+1 + z 1 ) /2 - zs ' 

for the layer just above the surface. Note that the 

saturation water vapor density is given by 

* where uH20 is the molecular weight of water, p ( T . ) 
l 

is the 

vapor pressure of water over the liquid surface at a 

temperature T1 (the saturation vapor pressure of water), R 
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is the universal gas constant , and Ti is the temperature in 

the ith FGGE level. 

(d.) Convective cloudiness variables 

I chose four variables as possible predictors of 

convective cloudiness and included them in my analysis. All 

four of these involved vertical energy gradients. One would 

expect convection and production of clouds whenever the 

lower atmosphere is unstable, has sufficient moisture for 

cloud production, and temperature decreases with height . 
...____ 

Rather than actual instability, it is sufficient to have a 

conditional instability in the lower atmosphere, as long as 

there is sufficient motive force to raise low altitude air 

to its level of instability. I follow now with a derivation 

of the four parameters and their importance for prediction 

of dry and moist convection. The discussion follows much of 

the thinking in Sarachik (1981) and Lindzen (1981) in that I 

deal with energy gradients rather than such more traditional 

(and, to me, less intuitive) variables as static stability. 

To sustain vertical motion of an air parcel, we require 

that air parcel to have a density less than that of its 

surroundings, 

p(i) < pi' 

where the subscript i refers to the ith level in the 

atmosphere, and when it is in parentheses refers to a parcel 

moved to the ith level from below . Since both the air in 

the parcel and that in the environment are at the same 
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pressure and c ontain gasses with (very nearly) the same 

average molecular weight, the inequality i n densities is 

equivalent to an inequality in temperatures, 

( 4 . 4 ) 

If the parcel of air carne up from below with any reasonable 

speed and a minimum of mixing with its environment on the 

way , its temperature should be governed by the relations 

assoc i ated with adiabatic expansion. Thus , during ascent 

(as we change pressure}, we have, 

p dV + cv d~ 0, ( 4. 5) 

where p is pressure, V is specific volume, cv is specific 

heat at constant volume, and T is temperature. 

Incorporating the ideal gas law, the hydrostatic 

approximation, and the relation between constant volume and 

constant pressure specific heats, into equation 4.5, we get 

c dT + g dz = 0, p (4.6) 

for the relationship between between temperature and height 

in the rising parcel of air (where g is gravitational 

acceleration and z is height). Thus, if the original 

temperature of the parcel (at level j) was then 

(assuming that cp remains relatively constant) inequality 

4 . 4 gives us 

or 

( 4. 7) 

Note that this is the minimum requirement for convection (in 

the absence of condensation) since we have not included the 
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effects of mixing of the air parcel with its environment 

during ascent. If we define the dry static energy, s, as 

S = c T + g Z, p 

then the requirement for dry convection is 

~s < 0. 
~z 

For those used to static stability, we can show 

= c 2 T g f) u, 
p 

(4.8) 

( 4 . 9 ) 

where u is the static stability as defined in Holton (1972). -
Although inequality 4. 9 holds (on the large scales we are 

dealing with) only in the rarest of circumstances, I felt 

that a measure of the dry static energy gradient in the 

lower troposphere was a useful measure of how close to 

instability the atmosphere was at any given sub-target area. 

If the parcel is saturated with water vapor then the 

situation is different. Equation 4. 5 must be modified to 

yield 

* p dV + c dT + L dq = 0, v ( 4. 10) 

where L is the heat of condensation of water and q is the 

mass mixing ratio of water vapor in the air parcel. Any 

variable followed with an asterisk superscript is the value 

of that variable at saturation. If we make the same 

assumptions as in the dry case (plus the assumption that L 

does not change strongly with temperature) and we neglect 

the minor effect of the varying average molecular weight of 
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the air in the parcel associated with the removal of a 

portion of the water vapor, then inequality 4.4 reduces to 

* * cp Tj + g zj + L qj > cp Ti + g zi + L qi. (4.11) 

Now we can define the moist static energy, H, as 

H = c T + g z + L q. (4.12) p 

Thus moist convection results when 

* ~H 

CIZ 
< 0 and * q = q (i.e., r = 100%). (4.13) 

Again, these results can be slightly modified by the effect 

of entrainment of environmental air in a rising air parcel. 

However, the relationships in 4.13 certainly hold in 

actively forming cumulus clouds. 

It is possible to initiate and sustain moist convection 

even if not all of the relationships in 4.13 hold. If there 

is a region of the atmosphere which is unstable with respect 

to moist convection but this region contains no saturated 

air, convection can be initiated if the underlying air is 

moist enough and this lower air can be raised to a high and 

cold enough level that it begins condensing. This situation 

is called a conditional instability. Then if 

* 
CIH I < 0 
CIZ i 

and (4.14) 

we can initiate convection by raising air from level j up to 

level i. Because moist static energy is conserved in both 

dry and moist ascent, the inequalities in 4.14 reduce to 

(4 . 15) 
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If inequality 4.15 holds and the vertical wind between 

levels i and j is positive (and therefore the vertical 

pressure velocity is negative), moist convection should take 

place and cumulus clouds should form . 

Because most of the solar energy that is absorbed by the 

Earth is absorbed at the surface, steep vertical temperature 

gradients (and therefore any possibility of nega~ive static 

energy gradients) occur mainly in the lower troposphere. 

Moreover, the sources of water (mainly the oceans) are at 

the surface . ~erefore, the best place to look for regions 

which satisfy relations 4. 9, 4. 13, and 4.15 is near the 

surface. * I calculated the values of S, H, and H at the 

* surface and S and H at a level in the middle troposphere. 

I used the relations 

* q = r q 

and 

* * q = UH20 p (T) / u . p, 
a~r 

(4.16) 

where r, T, and p are the ambient relative humidity, 

temperature, and pressure, respectively, and is the 

average molecular weight of dry air. Thus, I could 

calculate the static energies of interest from the data on 

the EFL3Ts and the surface variables which I had calculated 

(as described in subsection IV.B.c). 

I used the energies at the 500 mbar level for middle 

atmosphere values everywhere except where the surface of the 

Earth lay above the 700 mbar surface. For these unusually 

high elevation (or low pressure) regions I used the 400 mbar 
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level for middle atmosphere variables. Since the 

differences in height between the middle troposphere level 

and the surface varies significantly for different sub-

target areas and different times, rather than simply looking 

at the differences in energies between the two altitudes , I 

divided these energy differences by the difference in 

altitudes between the mid-troposphere level and the surface. 
I 

If we define xs as the value of x at the surface and xa as 

the value of x in the middle troposphere, then the variables 

30 - 32 were calculated as --......._ 

~s sa - ss 
= 

~z z zs a -
(4.17) 

* * * Ha - Hs ~H = 
~z z zs a -

(4.18) 

and 

(4.19) 

I refer to SH as the available moist static energy gradient 

since it gives the amount of energy actually necessary (the 

negative of that available for release) to raise an air 

parcel per unit height raised. A lower value of the dry 

static energy indicates a higher probability of convection, 

with the possibility of cloud production if there is enough 

moisture. A lower value of the saturated moist energy 

gradient indicates a higher probability of moist convection 

and cloud production. A low (i.e., negative) value of the 

available moist static energy gradient indicates the 
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probability of moist convection and cloud production 

provided there exists a motive force for lifting the low 

altitude air to its level of condensation (either large 

scale convergence at low altitudes and its attendant 

vertical winds or dry convection at low altitudes). 

As a way of pulling together the importance of the 

available moist static energy gradient (AMSEG,) and the 

vertical wind in a single variable, I invented variable 33 

(see Table 4.1). I used the vertical pressure velocity (w) 

at the 850 mb~level everywhere except in those sub-target 

areas in which the surface lay above this level. For these 

higher elevation areas, I used the vertical pressure 

velocity at the FGGE level which lay above but closest to 

the surface. I wanted a variable that grows with increasing 

negative AMSEG and with increasing negative vertical 

pressure velocity. Therefore, I chose a function which 

approaches zero for increasing negative AMSEG or increasing 

positive w and which approaches one for increasing positive 

AMSEG and increasing negative w. The function I chose was 

the product of the two non-linear flag functions 

f(SH) = 

and 

S (w) 1 = 2 

where 

1 1 -t 
2 + tan 

fT 

+ 1 
fT 

tan- 1 

4 (1.49-10 ) 

(-2 0H/ us), 

(-2 w/ uw), 

is the standard deviation 

(4.20) 

(4.21) 

of for 

those areas of the Earth in which the AMSEG most often 
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favors cumulus convection (the equatorial areas from 18o s 
-4 to 18° N) and u (6.12·10 ) is the standard deviation of w w 

for all areas of the Earth. I chose these particular flag 

functions because they satisfied my requirements as stated 

above, they are easy to calculate, and (although they go 

from zero to one relatively rapidly for values of oH or w 

near zero) they are not step functions and so do not 

overemphasize the significance of near zero values of oH or 

w. 

IV.C) The development of an albedo table from the published 

literature 

Using published data, I determined the diurnal average 

albedoes for the three non-land surface classifications in 

the STRT "geography" files and for the nine vegetation 

classifications in the STRT "topography" files. The data 

sets I used included angularly resolved and angularly 

integrated radiometric data taken from airplanes, towers, 

and small platforms. Because I wanted to pull out the 

effect of surface albedo separate from the various effects 

of the atmosphere and clouds above the surface, I utilized 

data sets taken from inside the atmosphere (rather than from 

space) whenever possible. 

Davis and Cox (1981) measured solar radiation reflected 

from a variety of surfaces with two different instruments 

mounted on a high flying airplane. The two instruments were 

a "bugeye" instrument which measured angularly resolved 
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radiances simultaneously from a variety of angles and a flat 

plate Eppley pyranometer which measured an angularly 

integrated flux. It is noteworthy that the pyranometer has 

a response that is dependant on the angle from its normal. 

Since I was dealing with an angularly resolved data set (the 

ERB scanner data} , and I trust data in which the angular 

dependence of reflected radiation is explicitly s~ecified, I 

used data from instruments like the Davis and Cox "bugeye" 

whenever such data was available. Davis and Cox ( 1981} 

published a r~ression equation for relating instantaneous 

albedoes (directional reflectances} measured by their Eppley 

pyranometer to those measured by their bugeye . Most of the 

data sets that I utilized that were not angularly resolved 

utilized measurements made by Eppley pyranometers or similar 

instruments. Therefore, I used the Davis and Cox regression 

equation to convert the directional ref lectances in these 

data sets to what might have been measured by an angularly 

resolved radiance measuring device like the bugeye. 

Most of the data sets I used had directional 

reflectances for several solar zenith angles. However, it 

was unusual to find one that covered the full range of solar 

zenith angles (from 0° to 90°} and the different data sets 

used different values of solar zenith angles in those ranges 

in which they overlapped. Thus I had three steps to develop 

a standard set of albedoes (directional reflectances} as a 

function of solar zenith angle for each of the twelve 

surface categories. First, I converted albedoes derived 
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from flat plate radiometers using the Davis and Cox 

regression. Then , I interpolated each data set onto a 

standard set of solar zenith angles (10 of them, 

corresponding to steps of 0. 1 in the cosine of the solar 

zenith angle , u
0

, from 0.05 to 0 . 95). Lastly, I averaged 

the various data sets for each surface type together . 

When I had a set of directional reflectances for the ten 
I 

standard solar zenith angles for all twelve surfaces, I made 

diurnal average albedoes for the twelve surfaces for all 

forty latitude__ bands. The diurnal average albedoes were 

weighted by the cosine of the solar zenith angle, in order 

to emphasize those times of day in which the most solar flux 

was incident on the Earth. The equation for conversion into 

diurnally averaged albedo is similar to equation 3.36. Thus 

the diurnally averaged albedo of a surface type is given by 

(X = 
1 n 

L ak [sin ~0 sin ~ (Tk u; k=1 

-cos ~0 cos~ (sin Tk- sin Tk_ 1 )], (4.22) 

where most of the variables are defined as they are in 

equation 3.36, the diurnal average of u
0 

is given in 

equation 3. 23 , and ak is the albedo of the surface being 

investigated in the kth solar zenith angle bin. I put the 

diurnally averaged surface albedoes for the twelve different 

surface types for all 40 latitude bands down on disk, where 

I could use them when running the programs that analyzed the 

ERB scanner data. 
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In Appendix A, I giv e a thumbnail sketch description o f 

each data set ( in t erms of the instruments and platforms 

used) , a reference to the publication in which I found the 

data , and a brief summary of the data. For a more complete 

explanation of the data, the reader should refer to the 

original publications . 

IV . D) The determination of average values for all the 

visible and infrared radiances and other variables for each 

target area for each day .......__ 

The STR tapes were organized as follows . Data were 

presented in separate records binned by sub-target area 

(STA) and by the orbital pass on which they were obtained . 

The records were written on the tape in order of ascending 

target area ( TA) number, within each TA by ascending STA 

number, and wi thin each STA by ascending time of day of the 

orbital pass. TA numbers increase going south to north, and 

within each latitude band going east to west. The same is 

true of the order of STA numbers within each TA . For any 

TA, for which there was any ERB scanner data on a given day , 

the first record written on the STRT was the "Topography" 

record. This record gave the fraction of the surface of the 

TA coming up which was covered with the various vegetation 

categories (along with other surface cover data of little 

use to my investigations). I used this data (along with the 

surface albedo table on disk) to determine the average 

surface albedo for the land regions in the TA. The 
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"Topography" record was followed with the records for t he 

STAs falling in the target area. The first record for each 

STA was the "Geography" record. This record gave the 

fraction of the surface of the STA which was covered by 

land, water, snow, and ice. From this information (along 

with the surface albedo table on disk and the information 

from the "Topography" record for the TA) I determined the 

average surface albedo for the sub-target area under 

investigation . Following each "Geography" record were the 

"Radiance" records for the STA . Each "Radiance" record 

contained the ERB scanner radiance data for an orbital pass 

of the STA along with the THIR parameters determined by 

Stowe's group at NOAA/ NESDIS (if there were THIR data 

available for t he STA during that flyover by Nimbus 7 ) . 

I collected the appropriate data and averaged them for 

each target area for each day ( 24 hours) . The data were 

averaged in a vector of length equal to the number of 

visible angular bins I was using plus 54 (40 for the non ERB 

radiance data and 14 for the infrared angular bins) . In 

each radiance record, there was written the number of 

angular bins (out of the 419 bins in the upward hemisphere) 

for which data was available , and for each angular bin there 

was a separate listing of each of the measurements of 

visible radiance and infrared radiance measured from the STA 

during that orbital pass , along with the fraction (in gths ) 

of the IFOV of the ERB scanner which fell in the STA for 

that measurement . I determined into which of my angular 
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bin any given ERB data fell and added that data to the 

vector of averages, weighted by the number of gths of the 

scanner IFOV corresponding to each measurement. I utilized 

all infrared radiances, but I used only those visible 

radiances taken when the solar zenith angle over the STA was 

less than or equal to 87 o (to avoid using pointless noisy 

nightime data). Each visible radiance I used was corrected 

with the appropriate diurnal correction (as discussed in 

Chapter 3, section C) before being added to the average 

vector. 

For every radiance record, I looked up the value of all 

the FGGE derived parameters for the appropriate STA and time 

of day (to the nearest 6 hours) from tables on disk and 

looked up the diurnal average of the cosine of the solar 

zenith angle and the surface elevation from their tables on 

disk. Furthermore, I calculated the latitude of the STA 

(and therefore variables 37 and 38) and I already had the 

diurnal average surface albedo. All these parameters were 

added to the average vector, weighted by the number of (the 

original 419) ERB angular bins that were represented in the 

record. 

If any THIR data were available, I added the cloudiness 

fractions to the vector of averages, weighted the same way 

that the FGGE and other (always available) data were 

weighted. If the THIR flag was on indicating that the high 

clouds were ice, I let the fraction of high ice clouds be 

equal to the fraction of high clouds listed in the record 
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and I let the fraction of high liquid water clouds be zero . 

The opposite held true in cases where this flag was off . 

These fractional cloudinesses were also added to the vector 

of averages weighted the same as the other THIR data. Some 

of the THIR data was multiplied by some FGGE (or other non­

radiance data) to get the mixed variables (like variables 11 

- 17 in table 4.1) . These mixed data were treated the same 

as the other THIR data. 

After having read all the records for a target area on 

the STRT, the vector containing the averages of all the data 

for that TAwas stored, along with the weighting for each of 

the variables for that TA. The only data not stored was 

radiance data for which the weighting was less than or equal 

to 3. This kept the average radiances from being dominated 

by data coming from other target areas (since a weighting 

less than 3 indicated the only data for that angular bin had 

less than 3/9 of an ERB scanner IFOV lying in the TA under 

investigation). Such data were zeroed out in the average 

vector, as were the corresponding weights in the weighting 

vector. The resulting average vectors (which I will refer 

to as the target area or TA vectors) for each target area 

during each 24 hour period became my basic data set . 

IV.E) The determination of the summation matrices 

I used the basic TA vectors for statistical analyses of 

various subsets of the complete data set (2070 target areas 

over the six days in June 1979 and the one day in November 
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1978). Since the primary purpose of this thesis was to do 

linear regressions of visible flux and infrared flux against 

each other and against all of the other previously mentioned 

variables, I needed the averages and variances of the fluxes 

and the other variables and the covariances of all of the 

variables (including fluxes) with each other, for each 

subset of the total that I investigated. As explained in 

chapter 3 section A, to determine the averages of the 

outgoing fluxes, we need to know the averages of all of 

their constituent radiances . To determine the variances of 
....__ 

these fluxes (and the covariance of visible and infrared 

fluxes), we need to know the covariances of all their 

constituent radiances with each other (including 

themse 1 ves) . To determine the covariances of the fluxes 

with the various other variables, we need to know the 

covariances of their constituent radiances with each of the 

other variables. Thus, for each subset of the data, I 

determined the vector of averages for all 40 + 14 + N . 
v~s 

variables, and I determined the matrix of covar lances for 

all these variables with each other (including themselves -

i.e., their variances). 

For each variable in the average vector, we need the sum 

of all the measurements contained in the TA vectors and the 

number of measurements contained in those TA vectors. For 

the covariance of two variables, we need the sum of each, 

the population of each, and the sum of their products. This 

is to say, 
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E xi 
<x.> = --, l (4 . 23) 

n . 
l 

and 

E X. xj l 
uij = 

nij 

E X. x . 
l J = (4 . 24) 

nij ni nj 

Since I was dealing with data sets of less than infinite 

size, any estimate of the average of a variable I made 

contained some~rror. Therefore, if I used the estimates of 

averages from equation 4.23 in order to determine the 

covariance as shown in equation 4.24, I included an 

unnecessary element of error in my analysis. It is even 

possible to show that if one determines covariances this 

way, it is possible to calculate (erroneously, of course ) 

correlation coefficients greater than one or less than 

negative one. Thus , to determine the covar lance, I 

calculated 

--, (4.25) 

where s1 j is the sum of all measurements of variable i when 

variable j was also measured (in the same TA vector ), Sij is 

the sum of all measurements of variable j when variable i 

was also measured, P .. 
lJ is the sum of all the products of 

variables i and j when both were measured, and ni j is the 

number of times (i.e., the number of TA vectors) in which 

both variables i and j were measured. Thus, it was 
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necessary in the analyses of any subset of the data to 

collect summation matrices of three types : the population 

matrix nij' the sum matrix Sij' and the product matrix pij• 

The sun azimuth relative to the Nimbus 7 spacecraft as 

seen from the ground was dependant upon the latitude of the 

ground target (due to Nimbus 7 being in a sun synchronous 

orbit) . Because of this and because of the fixed (and 
. 

somewhat inflexible) nature of the ERB scan patterns, the 

ability of Nimbus 7 to measure the radiance from a target 

area for a given angular bin during the same day as it 

measured the radiance (from the same target) in a given 

other bin was dependent on the latitude of the target under 

consideration. Thus the population of any element of the 

summation matrices that involved radiance (especially 

visible radiance) measurements was heavily influenced by the 

latitudes measured in the subset of the data that the 

summation matrices covered. Some of the subsets I 

investigated involved data from many different latitudes 

(sometimes the entire earth) being combined, but I didn't 

want to give undue weight to those regions of the earth that 

were much better sampled than the others. Therefore, I used 

weighting factors in summing the elements of the summation 

matrices that depended on the latitude of the measurement 

being summed. Thus, 

s . . = ~ wij()..(k)) xik), 
l.J k(i,j) 

(4.26) 

P
1
.J. = \ w .. (>.. (k)) x~k) x~k), 

Lk(i,j) l.J 1 J 
(4.27) 
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and 

n . . = ~ w . . ( A. (k)), 
~J k(i,j) ~J 

(4.28) 

where Wij(A.) is the latitude dependent weighting factor for 

the i,j element of the summation matrices, y(k) is the kth 

measurement of y, and the summations occur over k(i,j) 

meaning that one sums only those measurements where both i 

and j were measured. These (equations 4. 26 - 4 . 28) then 

were the relations used to determine the necessary data to 

calculate the elements of the covariance matrix (as shown in 

equation 4. 25) --and of the average vector, for each subset 

that I investigated . 

IV.F) Filling in blanks in the summation matrices 

As I explained at the end of section A of chapter 3, it 

is necessary to work with a data set including at least a 

few measurements of radiance for each angular bin taken at 

the same time as measurements from any given other angular 

bin (for each angular bin) in order to determine the 

statistics of the flux being investigated. For some regions 

of the Earth, not all combinations of angular bins were 

sampled (i.e. , there were zero elements in the population 

summation matrix for such a region). When such a situation 

arose, I dealt with it by making a slight change in the 

angular bin pattern I used. Any bin which had a lot of 

empty elements in the population matrix, I combined with an 

adjoining angular bin (preferably not combining bins from an 

azimuth of 180°, and not combining bins from different 
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zenith angles). I added the elements in the row and column 

of the combined bins together . The sums were placed in the 

elements of the matrices corresponding to one of the small 

bins being combined. The elements of the summation matrices 

corresponding to the other small bins being combined were 

then ignored for the rest of the analysis (and in fact 

zeroed out for safety) . The result is similar to having 

used the new angular bin pattern to begin with, with the new 

matrices corresponding to the summation matrices that would 

have been calculated with that bin pattern (with the --
addition of a few null rows and columns). Then in order to 

convert the statistics of the radiances into flux statistics 

(as described in section A of chapter 3), I used bin 

characteristics (solid angular size and cosine of the zenith 

angle) of the larger combined bins rather than the original 

small bins. In some instances (especially where the 

geographical subsets were quite small) it was necessary to 

combine so many bins that it was worthwhile to convert the 

summation matrices for the 49 visible angular bins into the 

corresponding matrices for the 19 visible angular bin 

pattern. This was done in the same way as the less drastic 

conversions discussed above. The covariance matrix and 

average vector were then calculated using the 

characteristics of the 19 angular bin pattern. 
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IV.G) Which summation matrices were calculated 

In addition to the aforementioned three goals of this 

thesis, a major thrust of my research was to determine if 

the techniques I outlined in Chapter 3 (for the analysis of 

top-of-the-atmosphere radiative flux and its variance using 

the statistics of top-of-the-atmosphere radiances and for 

the corrections for diurnal coverage) were sensitive to the 

various specifics of my analysis (i.e., I investigated the 

systematic errors of this research). Therefore, summation 

matrices were calculated using different 

----
angular bin 

patterns for the visible radiances, different diurnal 

corrections for the visible radiances, and using other 

different specifics of the calculation. The different 

techniques used in my calculations are enumerated and 

described in Table 4.2. 

For most of my calculations, I determined the three 

summation matrices for 80 different regions on earth. These 

regions consisted of the land areas and the ocean areas in 

each of 40 latitude bands 4.5° wide . To investigate the 

characteristics of any larger region, the summation matrices 

of the land or ocean areas or both from the appropriate 

latitudes were added and the resulting summation matrices 

were used to determine the covariances and averages 

appropriate to the region in question. In order to compare 

the results from different sorts of calculations, covariance 

matrices and average vectors were determined for various 

standard regions of the earth. These regions are easily 
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TABLE 4.2 

ANALYSIS TECHNIQUES, GEOGRAPHIC GROUPINGS, AND WAVELENGTH 

CATEGORIES USED IN THIS THESIS AND THE HEADINGS FOR THEM AS 

32BIN NOV 

32BIN JUN 

49BIN CON 

49BIN MUL 

49BIN ADD 

19BIN ADD 

6DAY 49BA 

USED IN TABLES 

The analysis techniques 

data from 28 November 1978 were analyzed using 
the angular bin pattern in Figure 3.3b for the 
visible radiances, diurnal correction factors 
from the constant model were used; no FGGE data 
was analyzed along with the ERB data here 

data from 12 June 1979 were analyzed using the 
angular bin pattern in Figure 3 . 3b for the 
~ visible radiances, diurnal correction factors 

from the constant model were used 

data from 12 June 1979 were analyzed using the 
angular bin pattern in Figure 3.3c for the 
visible radiances, diurnal correction factors 
from the constant model were used 

data from 12 June 1979 were analyzed using the 
angular bin pattern in Figure 3.3c for the 
visible radiances, diurnal correction factors 
from the multiplicative model were used 

data from 12 June 1979 were analyzed using the 
angular bin pattern in Figure 3.3c for the 
visible radiances, diurnal correction factors 
from the additive model were used 

data from 12 June 1979 were analyzed using the 
angular bin pattern in Figure 3. 3d (see the 
text for caveats) for the visible radiances, 
diurnal correction factors from the additive 
model were used 

data from 12 - 18 June 1979 were analyzed using 
the angular bin pattern in Figure 3 .3c for the 
visible radiances , diurnal correction factors 
from the additive model were used; this is the 
data set from which I derived most of my 
conclusions 
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78 

data from 12 - 18 June 1979 were analyzed using 
the angular bin pattern in Figure 3.3d ( see the 
text for caveats) for the visible radiances, 
diurnal correction factors from the additive 
model were used 

data from 12 - 18 June 1979 were analyzed using 
the angular bin pattern in Figure 3.3c for the 
visible radiances, diurnal correction factors 
from the additive model were used; rather than 
averaging data for 500 km squares over 24 
periods as the basic data, I used data averaged 
over entire 4.5° latitude bands for 3 day 
periods 

The geographic groupings 

20 LATITUDE the earth was divided by latitude into 20 
bands, each go wide, all data were used -

8 LATITUDES the earth was divided by latitude into 8 bands, 
each 22 . 5° wide, all data were used 

CONTINENTAL the earth was divided by latitude into 5 bands, 
of width 40.5°, 36°, 27°, 36°, and 40.5° (going 
from south to north), only data from target 
areas with surfaces covered mostly by land (or 
land ice) were used 

10 CONTINEN the earth was divided by latitude into 10 
bands, each 18 o wide, only data from target 
areas with surfaces covered mostly by land ( or 
land ice) were used 

OCEANIC the same latitude bands as in the "CONTINENTAL" 
grouping were used, only data from target areas 
with surfaces covered mostly by water (or sea 
ice) were used 

10 OCEANIC the earth was divided by latitude into 10 
bands, each 18° wide, only data from target 
areas with surfaces covered mostly by water (or 
sea ice) were used 

HEMISPHERIC the earth was divided into the northern and 
southern hemispheres, all data were used 

WHOLE EARTH the entire earth was used as a single grouping, 
all data were used 

VISIBLE 

The wavelength categories 

statistical variables pertaining to outgoing 
visible flux 



ALBEDO 

INFRARED 

NET GAIN 
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statistical variables pertaining to visible 
albedo 

statistical variables pertaining to outgoing 
infrared flux 

statistical variables pertaining to the net 
(top-of-the-atmosphere) incoming flux; this 
involves the negative sum of the results under 
the VISIBLE and INFRARED headings 

-
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grouped into sets based on the way they are distributed 

about the earth. These geographic groupings are listed and 

described in Table 4.2. 

IV.H) How the covariance matrices and average vectors were 

used 

The values for the covariances of visible ' flux and 

infrared flux each with all 42 variables are not 

particularly interesting, except for comparing with the -internal statistics of powerful climate models such as GCMs. 

Their real utility lies in their use for determining 

correlation coefficients and linear regression coefficients 

(for both single and multiple parameter regressions) . The 

correlation coefficients are useful for determining the 

power of various variables as diagnostics for the presence, 

amount, and type of cloudiness (or at least, those aspects 

of cloudiness that are important for changing amounts of 

infrared and visible radiation). The linear regressions are 

useful both for determining the net effect of clouds on the 

radiation balance of the Earth (under various conditions) 

and as diagnostic equations for radiative flux in simple 

climate models (especially energy balance climate models). 

The correlation coefficient of two variables, x and y, 

is simply 

r = xy 
uxy 

(4.29) 
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For a linear regression of the form y- <y> = a (x- <x> ), 

the linear regression coefficient, a, is 

(4.30) 

Discussions of linear regression of this sort can be found 

in Bevington (1969) and Lindgren, et al. (1978). 

For multiple linear regression, we consider a linear 

function for y in terms of the variables, xi, 

(4.31) 

Then the first-!erm, a 0 , is given by 

(4.32) 

A linear least squares analysis of equation 4 . 31 gives the 

regression coefficients, aj, in terms of a matrix equation. 

We let 

a . 
J = the jth element of the vector ~' 

<Tjk = covariance of xj and xk 

= the element in the jth row and kth column 

of the matrix ~' 

<Tyk = covariance of y and xk 

= the kth element of the vector [Y , 

where j = 1 , ... , n and k = 1 , . . . , n. Then the vector of 

regression coefficients for this mul tiparameter regression 

is given by 

A = ~-1 ~Y. (4.33) 

The variables, xj, in these multiple regressions do not need 

to be simple. For example, a polynomial regression of y in 

terms of some variable z can be accomplished by simply 
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letting x - zj in the discussion above. j - This requires, of 

course, collecting statistics on all the powers of z in 

which one is interested . I have done this in this research 

for the surface temperature. Obviously, the statistical 

parameters referred to above, that I used in the various 

regressions I performed, were selected from the appropriate 

covariance matrices and average vectors that I had 

calculated. 

How does one compare the results of different multiple 

regressions w·th each other and with single parameter 

regressions, in terms of goodness of fit? Analogous with 

the linear-correlation coefficient there is the multiple-

correlation coefficient R. It is calculated as 

n 
R2 = L aj 

j=l 

By comparing 

(4.34) 

different multiple regressions with each 

other and with the absolute value of r for single 

regressions, one can determine which regression fits the 

data better . The presentation I have made above for 

multiple linear regression is similar (but not identical) to 

that found in Bevington (1969). 
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Chapter 5 

RESULTS 

This chapter is the presentation of the results of my 

thesis. In the first part of the chapter, I describe how I 

calculated the best version of my results, explain why I 

analyzed the data the way I did to arrive at thes'e results, 

and discuss the sources and magnitudes of error in my 

results. Explaining the reasons for analyzing the data the 
...___ 

way I did consists of describing the effects of changing the 

number of angular bins for the analysis of the visible data, 

the effects of changing the diurnal variation model used to 

correct the visible data (to get diurnallly averaged visible 

radiances), and the differences in the results for different 

time and space scales of averaging. In the second part of 

this chapter (sections C and D), I discuss what my results 

imply for the effect of clouds on the Earth • s radiation 

budget and what sort of simple predictive equations for top-

of-the-atmosphere radiation can be derived from my results . 

This chapter's third part (section E) is a presentation of 

some results of my single and multiple parameter regressions 

of flux and the use of these regressions for comparison with 

the results of general circulation models of the Earth • s 

atmosphere, the results of simple climate models, and 

earlier analyses of top-of-the-atmosphere radiation. 
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V.A) What sort of results were best and why 

I analyzed ERB scanner data from 7 days - 12, 13, 14, 

16 , 17, and 18 June 1979 and 28 November 1978. The November 

results are not emphasized in this chapter because I did not 

have correlative FGGE data for that time period, and because 

the radiative data that I used were of slightly lower 

quality than the data from June. Most of my results are the 

results of analysis of the June data for one set of analysis 

techniques. I used three different patterns of angular bins 

for the visible radiances, three different schemes for 
........... 

converting instantaneous visible data into diurnal averages, 

two different spatial and time scales for averaging data to 

get my statistics, and I combined data in different 

groupings of latitudes and longitudes for analysis. Of 

those techniques I used, the best way in which to analyze 

the data was to use the angular bin pattern containing 49 

bins for the visible radiances, the additive diurnal 

variation model to derive the diurnal correction factors for 

the visible data, and to use all 6 days worth of data (from 

June 1979) to get good statistics. The two different 

spatial and time scales for averaging data to get my 

statistics were both valid and the results of both are 

presented here, for the various groupings of latitude and 

longitude that I found useful. 
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( a.) How changes in the pattern of angular bins for t he 

visible radiances affected the analysis of variance 

I used three different patterns of angular bins for the 

visible radiances. Rather than print out all the 

covariances and correlation coefficients I derived with the 

various (and most 1 y inferior) analysis techniques, I have 

determined the statistical relationships between the 

' averages, covariances, and correlation coefficients for the 

good technique (that described above) and the other 

techniques. The relationships are tabulated in Appendices B -and C. The exact form of the statistical relationships 

investigated in these appendices are explained in the 

appendices themselves. 

Appendix B presents the results of changing the number 

and pattern of angular bins for the visible radiances on the 

results of my analysis . The first two tables in Appendix B 

present a comparison of the 49BIN CON and 32BIN JUN data 

sets. The only difference between these data sets is the 

angular bin pattern used for analysis of visible radiances. 

The same sort of diurnal corrections were used (those based 

on the constant diurnal model) and the exact same ERB , FGGE , 

and THIR data were analyzed. Two major results are apparent 

from a quick appraisal of these two tables. The first is 

that the effect of changing the pattern of angular bins 

(used in the analysis of visible radiance) on the averages 

of the visible flux and the covariances and correlation 

coefficients of the visible flux with the 42 variables is 
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quite small. For nearly all the variables and geograph i c 

regions, the effect is less than 10% , and for the majority 

the ef feet is less than 5% . The second result shows that 

using the 49 bin angular pattern is better than using the 32 

bin angular pattern. The reason for saying this is that the 

correlation coefficients (of the visible flux with the other 

variables) for the 49 bin analysis are usually higher than 

those for the 32 bin analysis. I can think of two possible 

reasons for this . In general , using more bins samples the 

radiation fiel <i___ better . Secondly, as a quick perusal of 

figure 3. 3 shows, the 32 bin pattern I employed combined 

radiances from too broad a range of zenith angles in most 

areas and from too broad a range of azimuths in sensitive 

regions (specifically, near the 

reflection) to be completely safe. 

region of specular 

The last two tables in Appendix B present a comparison 

of the 6DAY 49BA and 6DAY 19BA data sets. The same ERB, 

FGGE, and THIR data were analyzed for both analyses. The 

only difference is that after calculating the summation 

matrices for the 6DAY 49BA data set, various elements of the 

matrices were added together to yield the summation matrices 

that would be expected for the 19 visible angular bin 

pattern shown in figure 3 . 3b . The point of this comparison 

is to test how much combining bins in this way impacts the 

results. It was often necessary to combine a few bins in 

order to eliminate zero population matrix elements . The 

results are similar to the comparison in the first half of 
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the appendix . There are very few cases in which the effect 

is greater than 10% and for the majority of variables and 

geographic groupings the effect on the averages, 

covariances, and correlation coefficients is less than 5% . 

Moreover, the correlation coefficients for the 49 bin 

analysis are generally higher than for the 19 bin analysis, 

although not by much. Presumably, this is simply due to not 

mixing too large a range of azimuths in the bins of the 49 

bin analysis . 

......_ 

(b.) How changes in the diurnal correction techniques 

affected the analysis of variance 

Appendix C presents the results of changing the sort of 

diurnal corrections used on the visible radiances on the 

results of my analysis. Three data sets are compared: 49BIN 

CON, 49BIN ADD, and 49BIN MUL. Again, the exact same basic 

data were analyzed in all three cases. Only the diurnal 

correction factors 

were changed. The 

(as discussed in Chapter 3, Section C) 

effect of changing from the constant 

diurnal model to either the additive or the multiplicative 

models is both noticeable and somewhat variable . However, 

certain things are clear. First, using either non-constant 

model causes increases in the calculated average visible 

fluxes and covariances of the visible fluxes with other 

variables. The reason for this, I believe, is that at high 

solar zenith angles, for most sorts of surface-atmosphere 

ensembles, the albedo is higher than at low solar zenith 
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angles. For example, in regions of a dark surface overlain 

by patchy clouds of finite thickness , at high zenith angles 

the sun is illuminating more high albedo clouds and less of 

the dark underlying surface (due to shadowing between the 

clouds} than at low zenith angles . 

A comparison of the correlation coefficients indicates 

that effect of the different diurnal corrections exceeds 25% 

for only a very small portion of the different variables and 

geographic regions and for the most part the effect is less 

than 15% . A~arently, the choice of diurnal correction 

factors is important but not overwhelming. Interestingly, 

the correlation coefficients of the additive data set are 

slightly higher than for the constant or multiplicative data 

sets. Perhaps this is due to the better fit to the change 

in albedo with solar zenith angle provided by the additive 

model (as seen in Figure 3.5}. Another interesting point is 

that the effect of using different diurnal correction 

techniques depends on the region of the globe and the 

variables being investigated. 

V.B} Sources and magnitudes of error 

There are three main sources of error to consider in 

this research. The first source consists of the systematic 

and random errors in the measurements used as the basic data 

set in this thesis. The probable sizes of these errors were 

discussed in chapter 2. These errors are generally smaller 

than the errors from the other two sources. The second type 
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of error is the systemati c errors introduced by the 

techniques as discussed in the previous section. The third 

type of error is simply the random statistical error 

inherent in estimating such parameters as covariances, 

correlation coefficients, regression coefficients, etc. from 

a limited data set. It is this last source of error that, 

in the main , provides the main topic of this section. 

(a.) An example of the effects of random statistical error 

Before going into the math of estimating the uncertainty 
--.;;__ 

of my results due to statistical error, I will present an 

example of its effects. In appendix D, I present a 

statistical analysis (similar to those of appendices B and 

C) of the differences between the 6DAY 49BA and 49BIN ADD 

data sets. The only difference between these two data sets 

is that for the 49BIN ADD data set I analyzed only the data 

for 12 June 1979, whereas, for the 6DAY 49BA data set I 

analyzed all 6 days of data from June 1979 (including , of 

course, 12 June). The techniques used in the analyses 

(angular bin patterns, diurnal correction techniques, scale 

of time and space averaging, etc.) were all the same. Since 

there should be no particularly big difference between the 

large scale climate on 12 June and the other 5 days (through 

18 June), any difference between the results should indicate 

the sort of errors (especially in the 49BIN ADD data set) 

associated with the comparatively poor sampling of the Earth 

available in only one day, and the comparatively poor 
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sampling (and availability for sampling) of the weather 

patterns responsible for the variation in the top-of-the-

atmosphere radiative fluxes in that single day relative to a 

larger data base. Although problems involving the size of 

the data set analyzed are important for all variables, I 

examine here the effects on the statistical parameters for 

the visible flux, because I had the software already running 

and the visible flux {along with infrared flux) was the main 

topic of this research. It is noteworthy that although, on 

the average , t~ statistical results are the same for the 

two data sets, there are significant variations between 

them. A more careful analysis of the statistics (than that 

presented in Appendix D) shows that the most dramatic 

variations occur in those areas which were poorly sampled 

for visible radiances like southern high latitudes in the 8 

LATITUDES geographic grouping or the 13.5° to 49.5° latitude 

band (which is primarily oceanic) in the CONTINENTAL 

geographic grouping. 

(b.) Standard errors for means and regression coefficients 

and the statistical significance of correlation coefficients 

For a data set with a normal distribution, the standard 

error for the mean is s(<x>) = J2 o-x/ N ' where <x> is the 

estimated mean of X, o-x is the measured standard deviation 

of X, and N is the number of observations of X used in the 

computations. One can also show that the standard error o f 

a (where a is defined in equation 4.30) is 
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s(a) = ([(u / u ) 2 - a 2 ] / (N- 2)} ~ . y X ( 5. 1) 

The expression in equation 5.1 can be found (albeit in 

slightly different form) in both Bevington (1969) and 

Lindgren, et a1 . ( 1978). A more convenient way to express 

the uncertainty in the regression coefficient is in 

fractional form 

s(a) / a = [(r-2 - 1) / (N- 2)] ~ . ( 5 . 2) 

The probability that the absolute value of a measurement of 

the correlation coefficient of two uncorrelated variables 

---would exceed the absolute value of the correlation 

coefficient, r, that was measured for some data set of size 

N, is given by 

1 r [ ( N - 1)/2] 1 
p c(r,N) = I (1 _ x2)~(N - 4) dx, ( 5. 3) ;JI r [ (N - 2) / 2] I rl 

where r('J) is the gamma function evaluated at \) (see 

Bevington, 1969, p. 310). If a measured correlation 

coefficient has an absolute value exceeding p for the c 

appropriate N, it is probable (at a level of 1-P c> that the 

variables being compared are not uncorrelated. 

One major problem in utilizing the statistics discussed 

above is that I determined the covariances of the radiative 

fluxes with the various variables by using a linear 

combination of the covariances of the radiances . There is 

no specific number of observations, N, of the flux that can 

be easily used in determining the random errors and 

statistical significance of the results. One possibility is 

to use the number of observations of the radiances to 
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determine the random errors of the covariances of the 

radiances and then to use these errors to determine the 

random error of the flux covariance (and, therefore, 

regression coefficient, etc.) in question . If we have some 

variable x, which is a function of a series of other 

variables, u, v, • • • I then the variance of x is given in 

terms of the variances and covariances of the independent 

variables , u, v, . .. , as 

+ • • • I ( 5. 4) 

(see Bevington, 1969, p. 59). Thus, it should be possible 

to determine the variance (and so the standard error) of the 

flux variances and covariances by simply replacing x with 

uyF and replacing the u, v, etc. with uyRi (for the various 

bins i) in equation 5.4 . However, the variance of a 

covariance and the covariance of two covariances are pretty 

nebulous concepts (and perhaps demand too many assumptions 

about the nature of the parent population of the basic 

data). Thus I have used a much simpler (and more heuristic) 

technique. The outgoing flux is very highly correlated with 

the radiance from a given angular bin, for most angular 

bins. In a sense, then, every time I take a measurement of 

the radiance in some bin, I have taken a measurement of the 

flux. What I have done, then, is to estimate the number of 

flux measurements by determining the number of measurements 

of each radiance and multiplying it by the contribution of 

that radiance to the flux (i.e., u i t.S2 i for bin i) , then 
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adding the results for all the angular bins to get an 

effective number of flux measurements. I can then use this 

number as the effective number of measurements for the flux 

in equations 5 . 1 - 5.3. 

(c.) Displays of some of the basic data 

In order to better visualize the relationships between 

radiative flux and the other variables, it would be nice to 

make scatter plots of flux (visible or infrared) vs. any 

other measured~riable or plots of predicted flux (for some 

multi-variable regression) vs. measured flux. However, 

there are no measurements of top-of-the-atmosphere radiative 

flux (at least of the sort and scale dealt with here). To 

get around this lack, what I have done is to make estimates 

of the flux using measured radiances from angular bins whose 

radiances are very highly correlated with the total flux. 

Using the techniques outlined in Chapter 3, section A, I 

determined the covariances between infrared flux and all the 

constituent infrared radiances (equation 3. 3, with x 

replaced by Rk for the kth bin). I used these covariances 

along with the averages of the flux and the radiances to 

determine which angular bins had radiances which were most 

highly correlated with the infrared flux and then determined 

linear regressions for the infrared flux as a function of 

each of those infrared radiances which were highly 

correlated and which were measured often enough to be 

useful. The same thing was done with the visible flux and 
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visible radiances. Using the average radiances in the 

t arget area vectors, I estimated the i nfrared flux and 

visible flux leaving each target area, each day by taking an 

average of the estimate of each flux from the various highly 

correlated radiances that had been measured for that TA 

dur i ng that day . These are the "measured " fluxes plotted in 

the latter part of this chapter. 

(d . ) The true number of independant samples of radiative and 

meteorological data and the autocorrelation function 

The number of data samples, N, used in the determination 

of statistics is useful in applications such as equations 

5.1 5.3 if the samples of the data were actually 

independant of each other . In order to accurately measure 

the statistics of the atmosphere, we need a large number of 

samples describing the full range of variability inherent in 

that portion of the atmosphere being reviewed . To es t imate 

how well the atmosphere has been sampled, we use some 

number, N, indicating the number of samples of the 

atmosphere that were far enough separated in time and space 

from all the other samples so that none of the samples was 

simply a near repeat of some previous measurement. The time 

scale over which my samples were taken was 24 hours, and the 

space scale was about 500 km ( in both horizontal 

directions). As it turns out, the diurnal average radiative 

flux leaving some region 500 km on a side (and , presumably , 

the meteorological variables that determine the fl ux ) 
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doesn't vary very much on a time scale of just one day or on 

a spatial scale of only 500 km. In order to determine the 

number of independent measurements which I had in my data 

set (rather than the number of partially overlapping 

measurements), it was necessary to determine the approximate 

time and space scales of variability of the atmospheric 

radiation. 

My only reason for determining these natural scales of 

var iabi 1 i ty was to determine the number of measurements I 

had used in my analysis, so that I could assign values for 
.....__ 

the random errors and the statistical significance of my 

results. Therefore, I used a fair 1 y easy technique. I 

calculated something similar to an autocorrelation function 

for the "measured" flux estimate (both visible and infrared; 

as discussed in the previous section) in both space (the 

East-West direction) and time . What I did was simply to 

determine the correlation coefficients between the flux 

measured at a point in space and time and that measured at 

the same place a while later, for various lag times. I then 

determined the correlation coefficients between the flux 

measured at a point in space and time and that measured 

simultaneously a distance away, for various displacements. 

I then used these correlation coefficients to determine at 

what lag time and what distance the correlation coefficients 

have decreased sufficiently to declare the measurements 

independent of each other. 
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To determine the timescale (or spatial scale in 

longitude) of variability , we need to look at the 

correlation coefficients for various lag times and spatial 

separations. We define f as , 

x i - <x> x(t) - <x> 
f . = and f ( t ) = ( 5. 5) 
~ 

crx crx 

where X is some arbitrary variable, and t is time or some 

other independent variable (such as distance in longitude). 

We can then define a variable S for any limited sample of N 

i ndependent measurements, 

N --.... s = '\' f L..i=l i• 

After a near infinite number of measurements of S, it should 

be possible to define a variance for the quantity , 

N 
[ < f~> = 

l:i=l 
+ l: <f. fj>] 

~ j*i ~ 

N N 2 

<f~> 
ax 

= l:. = --2- = N. ( 5 . 6 ) 
~ 

~=1 ax 

In general, however, we have a nearly continuous set of 

measurements that may or may not be truly independent of 

each other from some interval of time (or any independent 

variable, t) of length T. Therefore, rather than dealing 

with the sum , S, of the independent measurements, we deal 

with an integral, I, of effectively independent 

measurements, 
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I = I f ( t ) dt , 

~t 0 
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where ~t is the natural scale of variability of x (and 

therefore f ) . If the measurements we are making are to be 

of any use for statistics, then T ( the s i ze of each sampling 

interval ) is much larger than ~t , the natural scale o f 

variability. From a near infinite sample, we shoul d be abl e 

to define the variance of I, 

1 T T 
~ 2 = <I 2> = <I I <f(t) f(t 1 ) > dt dt 1 

I ~t ) 2 t=O t 1 =0 

1 T T ~[x(t) , x(t 1
}] 

= ( ~t } 2 <It=O Jt 1 =0 
dt dt'. ( 5 . 7 } 

The expression in the integral is simply a correlation 

coefficient. Since the correlation coefficient of a 

variable measured at any given time, t , and that variable at 

any other time , t 1
, should depend only on the difference in 

these two times and not on their actual values , we can 

simply use the expression, r(t - t 1
) for this expression. 

If we make the change of variables T = t - t 1
, then equat i on 

5 . 7 becomes, 

1 T T 

I [I r(t- t 1
) d TJ dt . 

( ~t ) 2 t=O T=t-T 
( 5. 8 ) 

For the scale of variability, ~t, to mean anything, 

r ( t - t 1
) should rapidly approach zero for I t - t 1 I >> ~t . 

Therefore , since T >> ~t , for the vast majority of the range 

of t in the outer integral of equation 5.8, the limits on 

the inner integral are effectively T = -ao to +ao. Taki ng 
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into a ccount tha t r( t - t 1
) does not d epend on the a ctual 

value of t (only i t s s e para t i on fr om t') , t he var i anc e 

becomes 

1 T +oo 
2 = 

It=O 
[I r ( t - t I ) d -r ] dt o-I 

(At) 2 T=-oo 

T +oo 
= I r ( t - t I ) d ( t - t I ) • ( 5.9 ) 

(At ) 2 -oo 

If we have c hosen our variabil i ty scale (At) well, then the 

integral I is analogous to the sum S used in the case of a 

finite number of independent measurements. Therefore, the 

result for the-variance of I should be the same as for the 

variance of S. Then the number of independent measurements 

in a finite time span T should be T/ At. Equating this with 

the result in equation 5.9 we get 

+oo 
At= I r ( t- t 1

) d(t- t 1
). ( 5 . 10) 

-oo 

In my investigations, the result in equation 5 . 10 is not 

immediately useful. The measured autocorrelation functions 

are far too noisy to integrate out to infinity. In general, 

a useful technique is to fit a Gaussian to the 

autocorrelation function and integrate that. If we can 

approximate r ( -r ) as 

then 

( 5.11 ) 

I used this method to estimate At (for t being both time 

and East-West distance) as described in equation 5.11 . If 
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the data I dealt with in my analysis were sampled at 

intervals greater than ~t in both space and time, then the 

number of independent samples in my data set is equal to the 

number I counted while analyzing the data. However, if the 

sampling interval was, in general, smaller, then the maximum 

number of independent measurements in a single latitude band 

of length L, in a time T is 

L T 
N = max (5.12) 

For purposes of error analysis, I use the smaller of two 

numbers for t~ number of measurements in any given subset 

of the data: the number measured during analysis as 

discussed near the end of subsection (b.) above, and the 

number given by the sum of N (as in equation 5.12) in max 

each of the latitude bands in the subset. The resulting 

number of independent samples in the 6 days (over a time 

span of 7 days) of sampling for each latitude band for both 

land and sea is listed in Table 5.1. 

V.C) How cloudiness affects the planetary albedo and fluxes 

at the top of the atmosphere 

The first purpose of this thesis was to determine the 

effect of clouds, as they presently occur in the earth's 

atmosphere, on the net radiative flux at the top of the 

atmosphere. As tabulated in Table 5. 2 and illustrated in 

Figure 5. 1, increased total cloudiness is associated, in 

general, with increased albedo and visible flux and 
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TABLE 5.1 

NUMBER OF INDEPENDENT OBSERVATIONS OF VISIBLE AND INFRARED 

FLUX FOR 4 . 5° LATITUDE BANDS 

LAT OCEAN CONTINENT 
VIS INFR VIS INFR 

1 0.00 0.00 9.48 1. 40 
2 0.00 0.00 51.05 3.57 
3 5.50 0.30 85.22 4.56 
4 40.46 1. 68 74.80 3 • 12 I 

5 106.76 4.32 61.74 2 . 50 
6 5.65 13.12 0.34 0.37 
7 96.98 23 .00 0.00 0.00 
8 101.55 24 . 71 0.00 0.00 
9 96.07 48.12 2.04 1. 02 

10 
..........._ 

110 .05 110.75 1. 87 1. 88 
11 107.04 90.00 1. 81 1. 53 
12 91.02 59 . 58 3.14 2.05 
13 83.40 36.96 10.43 4.62 
14 62.18 20.64 16.36 5.43 
15 54.44 20.62 15.55 5.89 
16 54.34 28.65 16 .80 8.86 
17 56.97 24.10 15.37 6.50 
18 47.21 14.11 10.90 3.26 
19 30.07 12 .01 8.73 3.49 
20 20.25 11.95 5.47 3.22 
21 22.64 13.72 5.66 3.43 
22 25.48 17 . 25 7.40 5.01 
23 16.85 14.20 3.89 3.28 
24 12.32 10.54 4.67 4.00 
25 13.66 8.69 6.01 3.82 
26 12.44 7 . 43 7.92 4.73 
27 12.64 7.41 9.56 5.61 
28 24.99 10.26 16 . 85 6.92 
29 36.30 20.57 21.02 11.91 
30 27.33 23 . 41 23.91 20 . 48 
31 23.82 21.41 31.15 28.00 
32 24.99 21 .60 38.14 32.97 
33 31.50 28.46 36.00 32 . 53 
34 13.91 18.79 25.83 34.90 
35 5.09 10.23 15.27 30.69 
36 4.22 7.49 7.30 12.94 
37 7.23 8.02 1. 81 2.00 
38 7.02 7.97 1. 62 1. 84 
39 6.81 6 . 54 0.85 0.82 
40 2.78 2.51 0.00 0.00 
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decreased infrared flux at the top of the atmosphere . Its 

association with the net flux {into the atmosphere) depends 

on the region of the earth being observed and the season in 

that region. {The visible and albedo results at -67.5° in 

the 20 LATITUDE grouping, at -63° in the 10 CONTINEN 

grouping , and at -81° in the 10 OCEANIC grouping should be 

ignored due to the lack of data in these categories.) The 
I 

parameters tabulated and graphed here are not simple 

regression coefficients but rather the regression 

coefficients ~ltiplied by the appropriate standard 

deviation of the parameter being regressed. This allows 

direct comparisons between the effects of different 

parameters on a given flux, it allows comparisons between 

the results of single parameter and multiple parameter 

regressions involving more than one term in a single 

parameter, and it simplifies the elucidation of the 

importance of the results for different regions of the Earth 

on the Earth as a whole (since in some regions there might 

be very large, negative or positive, coefficients but only 

very small actual variations in cloudiness, for example). 

In Figure 5 . 2, I have graphed the "measured" (as described 

in section V.B.b above) outgoing fluxes versus total 

cloudiness for some selected regions of the globe in order 

to give a better idea what the data used to determine the 

results {Table 5. 2 and Figure 5. 1) looked 1 ike. Clearly, 

the data is well distributed and fits the regressions fairly 

well for most regions. 
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TABLE 5.2 

EFFECT OF TOTAL CLOUD FRACTION ON TOP-OF-THE-ATMOSPHERE 

ALBEDO AND FLUXES FOR VARIOUS REGIONS OF THE EARTH 

20 LATITUDE 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-85.50 0.00 0.0000 -2.93 2.93 
-76.50 0.00 0.0000 -4.17 4.17 
-67.50 0. 18 0.0362 0.23 -0.41 
-58.50 0.97 0.0287 -9.28 8.30 
-49.50 3.78 0.0509 -11.83 8.05 
-40.50 10.71 0.0778 -18.80 8.08 
-31.50 15.63 0.0737 -19.98 4.36 
-22.50 15.38 0.0583 -19.18 3.80 
-13.50- 13.47 0.0400 -16.46 2.99 
-4.50 18.99 0.0485 -21.21 2.22 

4.50 19.57 0.0458 -20.44 0.87 
13.50 13.50 0.0311 -21.93 8.44 
22 . 50 12.04 0.0252 -26.81 14.77 
31.50 17.94 0.0363 -28.25 10.31 
40.50 29.38 0.0586 -21.96 -7.42 
49.50 32.84 0.0657 -17.15 -15.69 
58.50 32.06 0.0650 -10.26 -21.80 
67.50 28.06 0.0566 -9.46 -18.60 
76.50 10.08 0.0194 -5.27 -4.80 
85 . 50 7.81 0.0147 -2.82 -4.99 

8 LATITUDES 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-78.75 0.00 0.0000 4.07 -4.07 
-56.25 1. 65 0.0456 -10.56 8.91 
-33.75 12.71 0.0804 -22.39 9.68 
-11 . 25 19.26 0.0484 -19.27 0.01 

11.25 15.70 0.0412 -24.61 8.90 
33.75 21.99 0.0443 -26.76 4.77 
56.25 33.39 0.0677 -14.66 -18.74 
78.75 18.11 0.0343 -6.42 -11.69 

CONTINENTAL 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-69.75 0 . 42 0.0177 -0.78 0.35 
-31.50 10.61 0.0461 -18.49 7.88 

0.00 30.51 0.0633 -19.81 -10.70 
31.50 26.17 0.0534 -32.79 6.61 
69.75 40.45 0.0807 -13.52 -26.93 
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OCEANIC 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-69.75 2.66 0.0329 -6.36 3.71 
-31.50 11.23 0.0861 -24.25 13.02 

0.00 24.46 0 . 0529 -25.74 1.28 
31.50 22.68 0.0473 -17.65 -5.03 
69.75 14.16 0.0277 -5.62 -8.54 

HEMISPHERIC 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-45.00 8.98 0.0865 -19.46 10.48 

45.00 24.21 0.0549 -24.40 0.20 

WHOLE EARTH 

LATITUDE... VISIBLE ALBEDO INFRARED NET GAIN 
0.00 22.38 0.0686 -21.02 -1.36 

10 CONTINEN 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-81.00 0.00 0.0000 -3.99 3.99 
-63.00 0.02 0.0026 -0.78 0.75 
-45.00 8.29 0.0784 -26.71 18.42 
-27.00 10.23 0.0430 -18.12 7.89 

-9.00 22.58 0.0530 -15.94 -6. 6 4 
9.00 13.45 0.0371 -19.48 6.03 

27.00 23.35 0.0482 -32.05 8.70 
45 .00 32.53 0.0651 -24.76 -7.77 
63.00 38.56 0.0776 -11.53 -27.03 
81.00 22.17 0.0428 -6.62 -15.55 

10 OCEANIC 

LATITUDE VISIBLE ALBEDO INFRARED NET GAIN 
-81.00 0.00 0.0000 -5.75 5.75 
-63.00 0.16 0.0413 -8.16 7.99 
-45.00 6.06 0.0750 -17.00 10.93 
-27.00 16.31 0.0729 -20.81 4.50 
-9.00 17.45 0.0451 -20.99 3.54 
9.00 19.70 0.0471 -22.64 2.94 

27.00 21.42 0.0446 -18.61 -2 .81 
45.00 31.49 0.0629 -15.08 -16.41 
63.00 18.50 0.0375 -5.94 -12 .56 
81.00 9.26 0.0168 -4.63 -4.63 
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One noteworthy aspect of Figure 5.1 is the size of the 

standard errors relative to the results. This is the 

unavoidable consequence of having used six days spaced over 

only one week in June 1979. It turns out that the 

autocorrelation time for visible and infrared flux in most 

regions of the Earth is several days. If I had used six 

days spaced more widely over the month of June, I would have 

been able to estimate the statistical parameters of interest 

with greater accuracy. 

The seasonal .........._ dependence of the cloud-radiation 

relationships are perhaps their most interesting properties. 

In winter, when there is little visible flux to change with 

variations in cloudiness, the effect on the infrared flux 

dominates, and increased cloudiness is associated with 

increases in the net flux. In summer, there is a lot of 

visible flux to be varied and , thus , increases in cloudiness 

are sometimes associated with decreases in net flux (i.e., 

the albedo effect dominates). Keeping in mind that the data 

come from near the northern summer solstice, this is 

obvious in Table 5.2 and Figure 5.1 . This seasonal 

dependence is especially well demonstrated by the contrast 

between the cloudiness effects on flux in one day in June 

1979 with the same statistics from one day in November 1979 

(see Table 5.3 and Figure 5.3). For the Earth as a whole, 

increased cloudiness is associated with only very small 

changes in the top-of-the-atmophere net flux, although given 

the accuracy of the results, these results are consistent 



108 

TABLE 5 . 3 

THE AVERAGE OF THE TOTAL CLOUD FRACTION AND ITS EFFECT ON 

TOP-OF-THE-ATMOSPHERE ALBEDO AND FLUXES FOR ONE DAY IN JUNE 

1 
2 
3 
4 
5 
6 
7 
8 

1 
2 

1 

1979 AND ONE DAY IN NOVEMBER 1978 

Land and sea - 8 latitudes 
June November 

<ftot > oFn(f) <ftot> oFn(f) 

5.41E-01 1.91E-01 5.25E-01 1 . 01E+OO 
8.22E-01 8.01E+OO 8 . 89E-01 -4.97E+OO 
6.44E-01 1.08E+01 7.18E-01 -8 . 61E+OO 
6.54E-Ol 6.06E-01 7.54E-01 1.39E-02 
8.57E-01 1.06E+01 7.06E-01 1.22E+Ol 
6.46E"=='Ol 9.17E+OO 6.68E-Ol 3.68E+OO 
7.66E-01 -2 . 61E+01 7.61E-01 6.68E+OO 
9.09E-Ol -1.58E+Ol 6.10E-Ol 4.59E+OO 

Southern and northern hemispheres 
June November 

<ftot > oFn(f) <ftot> oFn(f) 

6 . 78E-01 1.12E+01 
7.73E-01 -2.36E+OO 

Whole earth 
June 

<ftot > oFn(f) 

7.25E-01 -1.58E+OO 

7.54E-01 -2.54E+OO 
6.98E-01 9.64E+OO 

November 
<ftot > oFn(f) 

7.26E-01 -1.22E-01 
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with a zero net effect of clouds over the Earth as a whole. 

In Table 5 • 4 t I have listed the linear regression 

coefficients for the various fluxes (and planetary albedo) 

as functions of total fractional cloud cover . Because the 

statistical relationship between clouds and outgoing flux, 

on this scale, could be dominated by the dependence of both 

on latitude, I have included the coefficients for cloudiness 

from multiple parameter regressions in which latitude 

(actually the first and second order Legendre polynomials in 

the sine of the latitude) was included as an independent 
---

variable. For each geographic region in Table 5.4 (NH for 

northern hemisphere, SH for southern hemisphere, and WE for 

whole Earth), the first row gives the cloudiness coefficient 

for the single parameter regression (these are the total 

derivatives of flux with respect to cloudiness). The second 

row, in each section, gives the coefficient for regressions 

involving ftot' P1 (sin ~), and P2 (sin ~), and the third row 

(where it exists) gives the ftot coefficient for regressions 

It is 

noteworthy that for each geographic region (and for each 

analysis - six days in June, one day in June, and one day in 

November) the inclusion of latitude variables did not have 

much effect on the derivative of the fluxes with respect to 

total cloudiness. However, since the greenhouse and albedo 

effects are near 1 y balanced (outside of the winter 

hemispheres) the new coefficients for the net flux were 

often of opposite sign to the original. In general, for all 
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TABLE 5 . 4 

REGRESSION COEFFICIENTS FOR FLUX VS. TOTAL CLOUD FRACTION 

6DAY 49BA 

VISIBLE ALBEDO INFRARED NET GAIN 
SH 33.314 0.32064 -72.176 38.863 

43.180 0.28815 -56.838 13.659 
42.898 0.27462 -57.919 15.021 

NH 93.286 0.21172 -94.044 0.758 
89.102 0.18497 -91.046 1.944 
78.443 0.16526 -92.417 13.974 

WE 83 . 838 0 . 25687 -78.734 -5 . 104 
70.412 0.25464 -79.549 9.138 
69.202 0.25608 -78.288 9.086 .......__ 

32BIN JUN 

VISIBLE ALBEDO INFRARED NET GAIN 
SH 32.354 0.39277 -73.747 41.393 

41.872 0.34361 -57.498 15.626 
NH 115.587 0.24814 -106.479 -9.109 

108.120 0.22307 -103.180 -4.939 
WE 89 . 909 0.29767 -84.026 -5.883 

69.261 0.30257 -86.349 17.089 

32BIN NOV 

VISIBLE ALBEDO INFRARED NET GAIN 
SH 75.035 0.16942 -65.701 -9.334 

73.193 0.16495 -65.053 -8.140 
NH 43.418 0.22859 -73.697 30.279 

45.350 0.24304 -71.008 25.658 
WE 69.060 0.19177 -68.651 -0.409 

53.852 0.19679 -70.278 16 . 427 
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these analyses, it is possible to say that the effect of 

cloudiness on the net flux balance at the top of the Earth ' s 

atmosphere, averaged over the Earth, lies somewhere between 

-10 W m- 2 and 20 W -2 m for a unit change in cloudiness. 

This is a quite small result, especially when compared with 

the results for some of the regions listed in Tables 5.2 and 

5.3 ( keep in mind that, in Tables 5 . 2 and 5.3, the changes 

in flux correspond to changes in cloudiness of less than 

unity). 

As a quick perusal of Table 5.2 reveals, the flux 

effects of cloudiness are more pronounced for continental 

areas than for oceanic ones. This is illustrated in Figure 

5.4, where I have compared the results of oceanic and 

continental regions with the results of Figure 5.1. 

One problem with these regressions is that they rely on 

estimates of cloud cover using only infrared THIR data. In 

the absence of two channel estimates of cloud cover, several 

systematic errors are possible. Perhaps the most serious 

problem with these estimates is confusion between regions of 

clear surface and regions of low-altitude clouds ( L. Stowe, 

personal communication 1982). Low clouds have an especially 

lopsided effect on the net radiation. Since the temperature 

of a low cloud is nearly that of the underlying surface , its 

effect on the emitted longwave flux is small. However, its 

effect on the albedo is not substantially diminished by 

being low altitude. For this reason, I have performed 

multiple regressions on the fluxes for the three altitude 
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classifications of cloud c over. The regression coefficients 

(alow' amid' and ahigh) for planetary albedo, emerging 

shortwave and longwave flux, and the net (gain) flux for the 

8 LATITUDE geographic grouping are presented in Table 5.5. 

Clearly, there are some problems with the low cloud 

statistics. There should not be increases in emitted 

longwave flux with increasing amounts of low altitude 

cloudiness, when the amounts of mid and high altitude cloud 

cover are held constant. Furthermore, there should be 

greater positi~ changes in planetary albedo with increases 

in low cloud cover (when the other two cloudinesses are held 

constant) . 

To what extent are the associations between top-of-the­

atmosphere fluxes and total cloudiness non-causal, but due 

to the association of each of these parameters with other 

variables? To illustrate this , I have performed multiple 

parameter regressions on the visible flux, albedo, and 

infrared flux . The parameters I chose for these regressions 

were the simplest I could think of for a nearly complete 

explanation of the flux leaving any given area . If the 

cloudiness measured is closely related to the actual 

cloudiness existing in a given area, if surface temperature 

is closely related to the entire vertical temperature 

structure in the same area, and if the surface albedo 

measured is the real surface albedo, then these three 

parameters should define the top-of-the-atmosphere albedo 

and infrared flux for the area. I did multiple regression 
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TABLE 5 . 5 

REGRESSION COEFFICIENTS FOR TOP-OF-THE-ATMOSPHERE RADIATION 

FOR THREE CLOUD TYPE MULTIPLE REGRESSION FOR THE 8 LATITUDES 

GEOGRAPHIC GROUPING 

a low amid ahigh 

1 a O.OOOE+OO O.OOOE+OO 0. OOOE+OO I 

v. O.OOOE+OO O.OOOE+OO O.OOOE+OO 
i 4 . 953E+Ol 6.292E+Ol -1.484E+01 
n -4.953E+Ol -6.292E+Ol 1.484E+01 

2 a 
---

1.878E-02 1.991E-01 3.327E-01 
v 2 . 614E+Ol 1.129E+Ol 1.869E+01 
i 3.844E+OO -3.977E+Ol -8.739E+Ol 
n -2.998E+Ol 2.848E+Ol 6.870E+Ol 

3 a 1.955E-01 2.473E-01 4.189E-01 
v 1 . 707E+Ol 4.804E+Ol 5.697E+Ol 
i -3 . 987E+Ol -5.290E+Ol -1.405E+02 
n 2.280E+Ol 4.860E+OO 8.353E+Ol 

4 a 2.699E-02 1.730E-01 2.915E-01 
v 2.200E+01 6.120E+Ol 1.209E+02 
i -2.260E+Ol -4.603E+01 -1.547E+02 
n 6.000E-01 -1.517E+Ol 3.380E+Ol 

5 a -8.056E-03 1.078E-01 2.893E-01 
v -1.497E+Ol 3 . 611E+Ol 1.162E+02 
i -3.560E+Ol -6.214E+Ol -1.701E+02 
n 5.057E+Ol 2 . 603E+Ol 5.390E+Ol 

6 a -1.690E-02 1.221E-01 2.604E-01 
v -8.881E+OO 6.059E+Ol 1.296E+02 
i -4.936E+Ol -6.759E+Ol -1.386E+02 
n 5.824E+Ol 7.000E+OO 9.000E+OO 

7 a 2.046E-01 2.741E-01 3 . 741E-01 
v 9.995E+Ol 1.356E+02 1.841E+02 
i -2.441E+Ol -4 . 968E+Ol -9.336E+Ol 
n -7.554E+Ol -8.592E+Ol -9 . 074E+Ol 

8 a -4 . 408E-02 1.824E-01 1.763E-01 
v -2.789E+Ol 9.980E+Ol 8.369E+Ol 
i -4.035E+OO -2.726E+Ol -5.078E+Ol 
n 3.192E+01 -7.254E+Ol -3.291E+Ol 
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analysis for albedo (and for visible flux) versus surface 

albedo, total cloudiness , and the product of these two . I 

did multiple regression analysis for infrared flux versus 

surface temperature, total cloudiness, and the product of 

these two . I then determined the effect on the net flux of 

a one standard deviation change in the total cloudiness 

given average conditions in the other variables . I used the 

the regressions, 

F = co + cl ftot + c2 as + c3 as ftot' v 

and ---
F . 
~ = do + dl ftot + d2 Ts + d3 Ts ftot · 

Therefore , 

(5.13) 

These results are compared with the comparable results for 

the single parameter regression (as illustrated in Figure 

5.1d ) in Figure 5.5. Interestingly, the effects of changes 

in total cloudiness on the top-of-the-atmosphere fluxes did 

not differ much, for most regions of the world, between the 

single parameter regressions and the multiple regressions. 

It is probably safe to assume , then, that the relationships 

between top-of-the- atmosphere albedo and infrared flux and 

total fractional cloudiness are causal. 

These relationships are quite interesting in terms of 

their effect on climate prediction . If cloudiness does not 

vary too much between summer and winter, then the major 

effect of clouds on the climate should be to dampen seasonal 

climatic excursions. If there are usually more clouds in 
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SINGLE VS. MULTIPLE REGRESSION 
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the winter than in the summer , then clouds should be warming 

the globe by the greenhouse effect. However, if there are 

usually more clouds in the summer than in the winter, then 

clouds should be cooling the globe by their effect on the 

albedo. In the limited data set I analyzed, there seems to 

be only a slight increase of total cloudiness in summer over 

that in winter. The lack of a clear correlation between the 
I 

average cloudiness in an area and the effect of increasing 

cloudiness on the net flux in that area (a function of the 

local season fQ_r the most part) is illustrated in Figure 

5 . 6 . Another interesting possibility is that with clouds 

influencing the radiation balance in a region, the radiation 

balance influencing the temperature structure, and the 

temperature influencing the cloudiness , potentially feedback 

loops could be set up. In Figure 5. 7, I plot the total 

derivative of net flux with respect to total cloudiness 

against the total derivative of cloudiness with respect to 

surface temperature. Several interesting features are 

apparent. First, in the tropics (18° S to 18° N) the 

potential for cloudiness - temperature feedback is clear. 

Increases in surface temperature are associated with 

increases in cloud cover (not surprising in a region in 

which the dominant form of cloud depends on a warm moist 

boundary layer to initiate moist convection). The increase 

in cloudiness results in (or is associated with) an increase 

in the net flux retained by the cloudy region (the 

penetrative moist convection common to tropical cloud 
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clusters results in very high cold cloud tops). This , then, 

can result in the raising o f the surface temperature which 

in its turn can increase cloud cover still further. The 

high latitudes in the northern (summer ) hemisphere (36° N to 

90° N) have the potential for a feedback loop of the 

opposite sign . Here, decreases in temperature are 

associated with increases in cloudiness ( perhap.s due to 

greater cloud cover in polar air masses or simply the result 

of the condensation, by cooling, of moisture in the 

atmosphere) . - The increase in cloud cover leads to a 

decrease in the net f 1 ux absorbed in the reg ion. This 

decreased absorption could lead to further decreases in 

temperature and increases in cloudiness. The middle and 

high latitudes in the southern (winter) hemisphere ( 81° S to 

18° S) show evidence of radiation - cloudiness - temperature 

relationships that should stabilize all three. Here a 

decrease in temperature would be associated with an increase 

in cloudiness (with the same sort of rationale as in the 

northern high latitudes). The increase in cloudiness should 

be associated with an increase in the net flux (as expected 

in the winter when sunlight is less important) which should 

offset the decrease in temperature that began it all. 

Clearly, this has to be investigated further. 
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V.D) Simple diagnostic equations for albedo and outgoing 

infrared flux at the top of the atmosphere 

One of the basic assumptions of simple energy balance 

c limate models is that one can calculate (to within the 

error budgeted for the model) the planetary albedo of an 

area and the radiation of terrestrial (infrared) energy to 

space from such an area given some simple meteorological and 

climatic data for that area. The sort of data commonly used 

for calculating the top-of-the-atmosphere radiation in such 

models includes the surface temperature and surface albedo . 

In some -more complex models in this class, more 

sophisticated data, such as mid-level atmospheric 

temperature and height and the nature (continent or ocean) 

of the surface, are used. 

I investigated several different regressions that might 

be of use in simple climate models. The first and most 

obvious is of the form 

Fi = ao + a1 Ts 

<X = bo + b1 Ts. (5.14) 

More complicated regressions include 

Fi = ao + al Ts + a2 T2 + + a Tn 
s n s 

bo + bl Ts b2 T2 + + b n (5.15) <X = + Ts ' s n 

Fi = ao + a1 Ts + a2 ftot 

<X = bo + b1 Ts + b2 ftot' (5.16) 

and 

Fi = ao + al Ts + + an Tn + a n+1 <Xs s 

<X = bo + bl Ts + + bn Tn + b n+1 as. ( 5.17 ) s 
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The regressions described in equations 5.14 and 5 . 16 are not 

original with this study. Moreover, the 5. 16 regressions 

are of dubious value in simple climate models (since 

predicting cloudiness generally requires more sophisticated 

models} . The primary purpose of these regressions is for 

comparison with previous studies by other investigators. 

However, the regressions 5.15 and 5.17 are new, explain a 

larger fraction of the variance than regressions 5 . 14, and 

may prove to be useful in simple climate models carried on 

time and space scales similar to those used in this study. -In Table 5 . 6, I list the results for the infrared 

regression coefficient a 1 and for the albedo regression 

coefficient b 1 (in equations 5. 14 and 5.16} for various 

single and multiple parameter regressions, for the whole 

globe and both hemispheres, for both time and space scales 

investigated. Table 5.7 consists of the results of previous 

studies for comparison. The format of Table 5.7 owes much 

to the tables in Ohring and Gruber (1983} and in Warren and 

Schneider (1979). The most obvious comparison is that my 

global infrared regression coefficients are larger than most 

of the corresponding coefficients from other studies. The 

results of others that come closest to my values include 

those of Warren and Schneider ( 1979) for all of the Earth 

excluding latitudes south of 70° S, the coefficient of 

Oerlemans and Van den Dool ( 1978} in which Antarctic data 

were specially treated to simulate the sort of temperatures 

one would expect without the severe low level inversion 
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TABLE 5.6 

REGRESSION COEFFICIENTS FOR TOP-OF-THE-ATMOSPHERE ALBEDO AND 

EMITTED LONGWAVE FLUX IN TERMS OF SURFACE TEMPERATURE 

Albedo coefficients: 
T global 
Ts 

ftot s~ 

T I ').. 
Ts 

ftot 1 
').. s I 

T Northern hemisphere 
Ts 

f tot--Sl 
T I ').. 
Ts 

ftot 1 ').. Sl 
T Southern hemisphere 
Ts 

ftot S I 

Tsl ">.. 

T I f1ettl ').. 
exclu~ing n artica: 

T global 
Ts 

ftot sl 
T Southern hemisphere 
Ts 

ftot sl 

Longwave flux coefficients: 
Ts global 
T I ft t 
Ts ">.. o 
sl 

T I ftotl ">.. 
Ts Northern hemisphere 
Ts 
sl 

T I 

Ts 
Sl 

T 

ftot 
').. 

ftotl ">.. 
Southern 

T:~ ftot 
T I ').. 

T: I f tot I ">.. 
exclud~ng Antartica: 

T
5 

global 

hemisphere 

TS 1 ftot 
T 
T

5 
f 

Southern hemisphere 

s I tot 

3 day 
zonal 

targets 

-.00637 
- . 00642 

-.00867 
-.00856 

-.00672 
- . 00594 

-.01046 
-.00954 
-.01285 
-.01087 

2.50 
2.51 

1.42 
1. 37 

3.02 
2.96 

2.36 
2.05 
3.21 
2.69 

1 day 
500km 

targets 

-.00603 
-.00585 
-.00024 

.00097 
-.00845 
-.00775 
-.00789 
-.00540 
-.00618 
-.00584 

.00753 

.00537 

-.00932 
-.00851 
-.01097 
- . 00961 

2.27 
2.21 
1. 23 
0.86 
1. 41 
1.07 
1. 02 

-0.38 
2.69 
2.62 

-0.03 
0.43 

2.01 
1.71 
2.57 
2.17 
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TABLE 5.7 

REGRESSION COEFFICIENTS FOR OUTGOING INFRARED FLUX IN TERMS 

OF SURFACE TEMPERATURE FROM EARLIER STUDIES 

Budyko (1975 ) 
Ts zonal means, global 

Cess (1976) 
Ts, ftot annual zonal means, N. hem. 

Warren and Schneider (1979) 
Ts annual zonal means, global 

same, excluding 70° - 90° S 
monthly means, global, 

varying latitudes 

Oerlemans and Van den Dool (1978) 
T annual zonal means, global s 

Ohring and Clapp (1980) 
Ts, ftot seasonal means , N. hem., 

varying latitudes 

Simmonds and Chidzey (1982) 
(using data from Winston et al. , 1979) 
annual average data : 

T global 
Ts 

ftot global s' T , ftot' Ts ftot global 
Ts 

ftot' Ts ftot Northern hemisphere S' 
Ts, ft~t· Ts ftot Southern hemisphere 

seasonal da a : 
T global 
Ts 

ftot global S' T , ftot' Ts ftot global 
Ts 

ftot • Ts ftot Northern hemisphere S' 
TS ' ftot • Ts ftot Southern hemisphere 

Chen and Ohring (1983) 
zonal 

1. 67 

,1.57 

1. 78 
2.17 

1. 83 

2.23 

1.8 

1. 56 
1. 49 
1. 98 
2.96 
1. 60 

1. 59 
1. 55 
2.06 
2.42 
1. 85 

90 km 
average target 

T 4 / 17 / 79 N. hem. 3.08 
Ts 7 / 30 / 79 N. hem. 3.24 
Ts 

ftot 4 / 17 / 79 N. hem. 1.69 1.79 s' T , ftot 7 / 30/ 79 N. hem. 0 . 71 0.76 
Ts 4 / 17 / 79 s . hem . 2.93 
Ts 7 / 30/ 79 s. hem. 1. 68 
Ts 

ftot 4 / 17/ 79 s. hem. 2.31 2 . 12 
s ' 

Ts , ftot 7 / 30 / 79 s. hem. 2.47 2.43 
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typical of Antarctica, the results of Simmonds and Chidzey 

(1982) , and those of Chen and Ohring (1983) for the two 

parameter regression (the single parameter regression 

coefficients were derived from a data set in which 

ftot < 5%) • As a quick perusal of Figure 5. 8 indicates, 

eliminating the 10 data points from south of 67 . 5° s (what 

was done in the "excluding Antartica" calculations of Table 
I 

5.5) lowers the infrared regression coefficient for the 

global regression of the 3 day zonal average data, thus 

bringing it closer to the other global estimates. 
---

Another 

indication of the unusual nature of the southern data is the 

fact that the regression coefficients from this study for 

the Northern hemisphere (3 day zonal averages) agree quite 

well with Northern hemisphere coefficients from other 

studies. The Southern hemisphere relation is steeper than 

that for the Northern hemisphere, and the relations for the 

3 day zonal average data are slightly steeper than those for 

the 500 km target area daily averaged data. If we compare 

the results of a more detailed regression between outgoing 

infrared flux, surface temperature, and cloudiness, we see a 

similar relationship. Budyko (1969) utilized average 

monthly meteorological data and calculations of outgoing 

radiation for 260 stations distributed uniformly about the 

Earth to derive 

Finf = -386 + 387 ftot + 2.23 Ts (1- 7.13 ftot>' 

where F inf is expressed in W m - 2 f tot is expressed in 

fractions of a unit, and T is expressed in K. s 
This 
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compares to my regression (using daily a veraged target area 

data) 

Finf = -687 + 406 ftot + 3 . 40 Ts (1- 0 .491 ftot> ' 

using the same units. Note that both the partial derivative 

of F inf with respect to Ts and the total derivative is 

larger in my regression than in Budyko ' s. Perhaps as we 

deal with a smaller range of time over which we ayerage the 

data , and as we use data from an increasing range of 

environments, we are dealing with greater extremes of 

temperature and_the true relation (to the extent that there 

is just one definable relation) between temperature and 

emitted longwave flux steepens with increasing temperature 

deviation. My data came from a single week (and a week near 

one of the solstices, at that) and the data were not 

averaged over such a long time span that large temperature 

deviations would be overwhelmed by all the other data . 

Simmonds and Chidzey utilized a data set ( from Winston et 

al. , 1979 ) that included data believable over a broader 

range of latitudes (including the poles) than had been used 

for most of the earlier studies . Chen and Ohring utilized 

data from only a couple of days, averaged over less than a 

day , thus accentuating the importance of any possible small 

temperature excursions on the results . 

Before using a linear relationship between surface 

temperature and outgoing infrared flux derived from this 

data set, I would like to examine the effect of including 

data from the rest of the year on the regression 
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coefficients and on the differences between regressions 

carried out for different sca l es of time and space 

averaging. However, it might be argued that using data from 

the winter hemisphere near the solstice i s best for 

determining diagnostic radiation equations applicable to 

times such as i c e ages , in which latitudinal temperature 

gradients are enhanced. In this case, the large infrared 

flux vs. temperature regression coefficients would indicate 

a significantly less sensitiv e and more stable Earth climate 

in conditions of reduced insolation or less equable climate 

-for Budyko-Sellers type models than most investigations of 

that sort usually investigate. The reader is referred to 

the discussion in Warren and Schneider ( 1979), especially 

their figure 6 (p. 1390). This brings up the second 

comparison possible in Tables 5 . 6 and 5 . 7 . That is that the 

Northern hemisphere (in northern summer) is probably less 

stable (more sensitive to temperature perturbations ) than 

the Southern hemisphere. The reason is the decreased 

infrared flux buffering of surface temperature in the 

Northern hemisphere relative to the Southern . The values 

for the albedo - temperature regression coefficient in the 

Southern hemisphere (and for the entire Earth ) are greater 

when including Antartic data than when not doing so. I 

would claim that using the Antarctic data is useful here 

though. The point is that in mid-winter, the effect of any 

variable in a region including the pole , on the top-of- the-

atmosphere albedo should be reduced because some part of the 
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region has an unvarying (and undefined) albedo due to the 

lack of insolation . Then the Southern hemisphere is also 

more stable relative to temperature perturbations in the 

albedo effect of the temperature as well as the infrared 

flux effect. 

Whether or not the simple regressions are useful, I 

believe that the data set I utilized in this study is 

adequate for determining more detailed relationships between 

surface temperature and surface albedo (easily predicted 

variables in energy balance climate models) and outgoing -infrared flux and top-of-the-atmosphere albedo. 

Specifically, I have derived polynomial descriptions of this 

relationship for the smaller spatial and time scale. 

Although I may not have enough data to define how to weight 

data from different temperature and radiation regimes so as 

to derive the correct average linear relationship, I do hav e 

data from a broad enough range of temperatures to define a 

polynomial in surface temperature that should be usable for 

most temperatures found on the Earth. The following are 

examples of these regressions along wi th their multiple 

correlation coefficients. 

Global (1 day, 500 km) data set : 

F . = 1090 - 54.4 Ts + .341 T2 
~ s 

-4 T3 186 - 5.63-10 + a s s (R = .714) 

1. 77 .107 T - 4 T2 a = - + 7.28·10 s s 

1.30·10 - 6 T3 
s + .230 a s (R = .631 ). 

Northern hemisphere ( 1 day, 500 km) data set: 
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Fi = -1490 + -3 2 5 3 3.25 Ts + 9 .81·10 T + 7.74·10- T s s 

- 2.74·10-7 T4 + 119 a s s ( R = .417) 

a = 6.12 - .0117 T - 3 . 13·10-5 T2 
s s 

+ 9.09·10-10 T4 + . 147 
s a s ( R = . 632). 

Southern hemisphere ( 1 day, 500 km) data set : 

F. = 260 - 4.19 T - 6 . 52·10-4 T2 + 1.20·10-4 T3 
l s s s 

- 2.36·10-7 T4 + 14.1 a 
s s (R = , . 800) 

a = -.0776 - .0161 Ts + 1 . 72·10-4 T! 

- 1.48·10-10 T4 + .445 a 
s s (R= .719). 

For comparison ~ith the regressions above single parameter 

regressions (in Ts) and two parameter regressions (in Ts and 

a ) s have the following correlation coefficients : 

Fi a 

Global r : 0 . 632 -0 . 538 
R: 0.632 0 . 548 

N. hem. r : 0.318 -0.601 
R: 0.398 0.618 

s . hem. r : 0.779 -0.551 
R: 0.782 0. 631. 

V. E) Statistics of use in testing general circulation models 

and synoptic scale variables diagnostic of cloudiness 

Probably a better way of simulating climate and climatic 

change than using simple en.ergy balance climate models is 

the use of general circulation models, in which the 

atmosphere (and increasingly in recent years, the oceans and 

the land surface) is modeled on a much finer scale using the 

momentum, energy, and continuity equations derived from 

first principles. However, in order to calculate what is 
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happening in the atmosphere i n a finite amount o f time , 

various approximations are made . Two major problems are 

associated with the calculations of atmospheric radiation in 

GCMs. First , there are the approximations used to determine 

the radiation field given various meteorological parameters 

(including cloudiness). The second major problem in GCMs 

involves predicting the amount and form of cloudiness 
. 

(especially those forms that are controlled on scales finer 

than the spatial scale used in the model). Any statistics 

obtained from the real atmosphere, involving measurements of -the radiation field (including upwelling radiation to 

space), should be of use in testing the parameterizations 

and approximations used in a GCM. In the past, GCMs have 

been tuned in order to match the average values of various 

meteorological variables for large regions over long times . 

However, to my knowledge this is the first attempt to gather 

statistics (i.e., covariances) of more than one variable at 

a time (including top-of-the-atmosphere radiation) at a 

synoptic scale for eventual use in comparisons with the 

internal statistics generated by GCMs . 

Averages of the variables listed in Table 4. 1 and the 

covariances of these variables with each other have been 

calculated for the various regions of the earth described in 

Table 4.2. As yet, no comparisons of these statistics have 

been made with any GCM results. The results are available , 

however, to anyone wishing to do such a comparison. Another 

use of the sort of study that I have made, is to determine 
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the degree to which different meteorological variables (that 

various models use as diagnostics for cloudiness and the 

radiation field) are correlated with upwelling radiation and 

to determine how such correlations depend on the region of 

the earth and time of year being observed. 

(a.) The success and failure of various cloudiness and 

radiation diagnostics 

Variables 26 through 33 were included in this study 

specifically because they should be fairly highly correlated 

with cloudiness. Variables 26 through 29 were chosen to be 

diagnostic of synoptic scale (resolved at the spatial scale 

of the FGGE Level III-b analyses) cloudiness and variables 

30 through 33 were chosen to be diagnostic of convective and 

mesoscale cloudiness (of smaller horizontal extent than the 

resolution of the FGGE Level III-b analyses). Although the 

use of these variables as diagnostic of cloudiness is a 

simpler scheme than the sort of techniques used in most 

general circulation models, the choice of variables was 

influenced by discussions in Sarachik ( 1981) and Lindzen 

(1981) on the generation and parameterization of clouds in 

atmospheric models. One of the more interesting points in 

Lindzen's review of convective cloud generation schemes is 

that simple convective adjustment schemes seem to work 

better than more complicated schemes such as that developed 

by Arakawa and Schubert ( 1974), at least for simulating 

vertical heat and moisture budgets in the tropical marine 
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atmosphere (the most important environment for radiatively 

important convective and mesoscale cloudiness). Thus , 

although the parameters I used in this study are relatively 

simple, there is no reason to believe that they are useless 

in the prediction of cloud and radiation fields. 

In Figure 5.9, I have plotted the variation with 

latitude of the correlation coefficients for planetary 

albedo and emerging infrared flux with four of these eight 

variables (chosen for their larger correlation) for all 

regions, continents only, and oceans only. - The first point 

about these correlations is that, excluding infrared flux in 

the Antartic, nowhere do any of these variables explain as 

much as 50% of the variance of the radiation. Clearly, for 

these parameterizations to be useful, they must be used in 

concert . Note that large scale cloudiness predictors do a 

better job in the higher latitudes and convective cloudiness 

predictors do a better job in the low latitudes. This is 

especially over the oceans. Moreover, it is encouraging 

that the flag type cloudiness diagnostic variables (ncld and 

are generally better correlated with the 

radiation than physical quantity variables (such as zcld, 

uH20 , or oH) . This is especially encouraging when one takes 

into account that no tuning of the cutoff points or 

curvature of the flag functions (as described in Chapter 4 ) 

was done. 

The correlation coefficients for mul tip1e regressions 

using some of these cloudiness predictors are presented in 
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Figure 5.10. The multiple regression coefficients for four 

different sorts of regressions are plotted. The first 

regression serves as a sort of upper limit to how well one 

can hope to simulate the planetary albedo and the emerging 

infrared flux. This regression uses f f f d low' mid' hi' an 

as and ftot'as for albedo, and Ts and ftot'Ts for infrared 

flux as the independent variables. The second reg,ression is 

a mindless application of FGGE Level III-b variables along 

with some surface information to determine how much better 

intentional cloudiness diagnostic parameters work than the 

basic data from which they are derived. This regression 

uses z500' T500' T1000' Ps' rs, u500' v500' as, and zs as 

independent variables. The third regression includes 

physical predictors for large scale cloudiness and for 

convective cloudiness along with basic surface parameters . 

The independent variables are T
5

, a-H20 , oH, and as here. 

The fourth regression includes flag type predictors for 

large scale cloudiness and for convective cloudiness along 

with basic surface parameters. The independent variables 

here are Ts, ncld' f(oH)•S(W), and as. 

A number of interesting features can be seen in Figure 

5.10. There are regions of the Earth in which the 

meteorological parameter regressions explain fairly large 

fractions (often more than half) of the variance of the 

radiation (unlike the case for single parameter 

regressions) . The correlations are better in the northern 

mid latitudes, over continents, and for infrared flux. 
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Although the flag type regression is generally slightly 

better than the regression using physical cloud diagnostic 

variables, it is not demonstrably better than the mindless 

weather parameter regression. The only region in which the 

flag regression did significantly better than the mindless 

regression is over continents between 18° N and 36° N, a 

region which has very 1 i ttle cloudiness (an ins'pection of 

Tiros-N photomosaics shows significant cloudiness only over 

India and Southeast Asia associated with the summer 

monsoon). However, the flag regression does not do 

demonstrably worse than the mindless regression. Clearly, 

this regression contains significant information. Perhaps, 

better choices for the turning points and curvatures of the 

flag functions, or use of better data for their calculation 

might improve the correlation of flag type diagnostic 

variables. 

The general superiority of regressions using various 

sorts of FGGE derived data in continental and mid latitude 

regions over oceanic and low latitude regions may be due to 

the increased amount of real data available from over the 

continents in mid latitudes. Those grid points lacking good 

conventional data in the FGGE analysis used satellite 

derived data and interpolations and extrapolations. This 

could introduce errors leading to poor correlation with 

observed planetary albedo and emerging infrared flux. The 

superiority of the regressions using the fractional 

cloudinesses as independent variables for predicting 
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infrared flux over predicting planetary albedo could be due 

to the fact that the fractional cloudinesses used in this 

regression were derived from measurements by THIR, an 

infrared scanner instrument having no visible channel. 

(b.) A short comparison with some work by Linder, et al. 

( 1981) 

In order to see how well my multi-parameter regressions 

of outgoing flux compared with previous measurements by 

others, I made calculations of the covariance matrix and 

average vector for the land areas in the region of North 

America between the latitudes of 27° Nand 54° N (i.e., the 

United States and its immediate surroundings) . This was 

compared with a regression derived by Linder et al. (1981). 

Linder et al. used scanning radiometer (SR) data from NOAA 

polar orbiting satellites along with the short range weather 

prediction output of the National Meteorological Center 

Limited Fine Mesh (LFM 1) model from the summer of 1976 for 

the United States. 

Linder et al. analyzed their data at a horizontal scale 

of roughly 190 km. They derived the following diagnostic 

equation for the planetary albedo over North America: 

= .3967 + 8.367·10-3 r -mod 
-4 4. 45-10 z 850 

-5 -3 + 8.8·10 c500 + 1.198·10 v 200 , 

where r d is the modified mean (from 1000 mb to 500 mb) mo 

relative humidity (in%, where values< 55% are set to 55%), 

z 850 is the 850 mb height (m), c500 is the relative 
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vorticity at 500mb (s- 1 ), and v200 is the meridional wind 

at 200mb (m s- 1 ). The reduction of variance provided by 

this regression is 0.487 (corresponding to a multiple 

correlation coefficient of 0.698). 

I have two regressions for the summertime planetary 

albedo over North America. The first is the mindless 

regression: 

= 6.5 - 9.94·10-6 z 500 + 7.51·10- 4 T500 
-3 -3 -3 - 4.9·10 T1000 4.93·10 Ps + 2 . 76·10 

-3 -3 - 3.21·10 u500 + 1.04·10 v 500 - 0 . 406 as 

- -5 + 4.67·10 

r s 

which has a multiple correlation coefficient of 0. 803 (a 

reduction of variance by 0. 645). The second regression 

utilizes my flag type variables: 

-3 = 0.944- 2.32·10 Ts + 0.189 ncld + 0.192 f(oH).g(w) 

- 0.0855 a , 
s 

and has a multiple correlation coefficient of 0.854 (which 

corresponds to a reduction of the variance by 0.729) . 

Because they use very different independent variables, a 

comparison of the regression coefficients between my 

regressions and that of Linder et al. is difficult and of 

dubious value. However, it is interesting to no te that the 

regression coefficients for the near surface humidity terms 

in my "mindless" regression and that of Linder et al. are 

within a factor of 3 of each other and that the coefficients 

for the upper air meridional velocity terms differ by only 

16%. More important, is the contrast in the ability to 
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explain the variance in the planetary albedo. My 

regressions (especially the "flag" regression) explain a 

noticeably larger fraction of the variance . There are 

several possibile reasons. One reason is that I have used 

better visible radiances (broader spectral coverage and a 

greater range of viewing geometries). Another possibility 

is that I have treated the radiance data in a more 

sophisticated fashion as befits the better data. The third 

possible reason is that the FGGE data are far superior to 

the 1976 LFM 1 data. The FGGE data consisted of analyses 

---updated every 6 hours and were acquired during a period of 

the most intense atmospheric observation in human history. 

The LFM 1 data were short range predictions. Thus they were 

made up entirely of extrapolations from observational data 

(acquired during a normal period of atmospheric 

observation), while the FGGE data were dominated by actual 

observations (especially in such a well observed region as 

the continental United States) . Another fact of note is 

that the correlation coefficients for the regressions I made 

for the United States were quite a bit larger than those for 

regressions of most other parts of the world. I believe 

that this is due to the higher quality of the FGGE data in 

this area. 
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Chapter 6 

CONCLUSIONS 

What did this thesis accomplish? First, I have shown 

that it is possible to take the statistics of angularly 

resolved radiances and determine the relationships between 

diurnally averaged reflected shortwave flux and emitted 

longwave flux (above the atmosphere) and various other 

parameters (including cloud cover). The techniques I used 

have been shown to be robust against changes in various 

specifics of the analysis. Second, it has been shown that, 

although variation in the total cloudiness across the entire 

Earth may have no great net effect on the net flux absorbed 

by the Earth, the variation of cloud cover is important on 

seasonal and regional scales. Moreover, there is evidence 

for the relationship between clouds and radiation leading t o 

both positive and negative feedback loops that may have a 

noticable effect on the Earth • s cl i mate. Third , the data 

sets I used have been shown to be usable for deriv ing 

empirical diagnostic equations for the emitted longwave flux 

and the planetary albedo in terms of simple predictable 

parameters (such as surface air temperature ) . However, 

l inear equations of this sort may well depend on time of 

year and region of the globe and may be a poor 

representation of the atmosphere. Fourth, it is clear that , 

given meteorologi cal data of high quality , jt is possible to 

ex plain a l arge fraction of the variance in the planetary 
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albedo and emitted longwave flux. The relationships that do 

so can be used to indicate the ability of certain variables 

to parameterize various quantities related to cloudiness 

and/ or atmospheric radiation . Such relationships can also 

serve to fine tune general circulation models of the 

atmosphere, since the statistics they express represent the 

real world and the internal statistics of any realistic GCM 

should match them. 

VI.A) The implications of these results for the Earth's 

climate 

The influence of clouds on the Earth's radiation budget 

is quite complicated. It depends on fractional areal 

coverage of the clouds, cloud height, cloud thickness, 

distribution of clouds over the diurnal and seasonal cycles, 

geographic (especially latitudinal) distribution of clouds, 

and albedo and temperature of the underlying surface. Since 

all these are determined by any number of features of the 

atmospheric dynamics, it would be fortuitous indeed if there 

were a permanent answer to the question of whether clouds 

cool the planet (by their effect on the albedo) more or less 

than they warm the planet (by their greenhouse effect) . 

Probably, the best we can hope for is to elucidate under 

which conditions clouds have what effect and to determine 

how these cloud radiation effects change other 

characteristics of the atmosphere and surface. 



145 

How do my results for the cloud - radiation relationship 

compare with the results of others? Cess (1976), using 

zonal mean data from both hemispheres, estimated a near zero 

net effect of clouds on the net radiation across the globe. 

Ohring and Clapp (1980) and Ohring et al. (1981), using 

monthly mean radiation data at a resolution of 2.5° latitude 

by 2.5° longitude (including the radiation data from NOAA 

satellites Scanning Radiometers) found, for all the regions 

investigated, a consistent and significant preponderance of 

the albedo ef feet over the greenhouse (corresponding to a 

net effect of -65 W m - 2 / unit averaged over the globe). 

Hartmann and Short (1980) found, using day to day variation 

of NOAA Scanning Radiometer data, a global effect of between 

about - 35 W m- 2/ unit and - 100 W m- 2/ unit. As pointed out 

by Hartmann and Short, Cess did not really derive a partial 

derivative of net flux with respect to cloud cover, since he 

combined data from many different cloud regimes (including 

varying cloud top height, thickness, patchiness, etc.) 

without accounting for these variations in the statistical 

analysis. On the other hand, both Ohring and Clapp (1980) 

and Hartmann and Short (1980) utilized data from small 

geographic regions, using temporal variation in cloud cover 

to determine the statistics of cloudiness and radiation. My 

analysis, which agreed more closely with the results of Cess 

(1976) in terms of a global average, involved combining data 

from different longitudes in zones go wide (in latitude), or 

combining data from larger parts of the globe but taking 
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into account, in a statistical sense, the variation of 

cloudiness, flux, and the other variables with latitude. 

Although, the hope was that important cloud parameters 

(other than areal coverage) would be constant in narrow 

zones, this may not be strictly true . Therefore, my 

estimate of the global effect of clouds on net flux may be 

more akin to a total derivative than the estimates of Ohring 

and Clapp or Hartmann and Short. There are potentially 

other reasons, however, for the difference. First of all, 

both of the other studies, did not explicitly use 

measurements of areal cloud coverage. Rather, they assumed 

a linear relationship between cloud amount and planetary 

albedo to utilize the relationship between visible radiances 

and infrared radiances (along with a priori assumptions 

about the albedoes of clouds and their underlying surfaces 

or about the variation of infrared flux with cloudiness) as 

a proxy for the relationship between either of the two and 

areal cloud coverage . Another possibility is that THIR was 

unable to distinguish between low clouds and clear skies 

often enough, that the relationship between low cloud cover 

and the net flux was substantially lost. This would be a 

major disappointment, since it is these clouds (especially 

the marine stratocumulus seen off the western coasts of 

continents in the low mid-latitudes ; check the maps in 

Hartmann and Short, 1980 and in Ohring et al., 1981) that 

have the most albedo dominated relationship between areal 

coverage and net flux. 
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ERB data and correlative cloudiness and meteorological 

data sets can be used with the techniques of this study to 

determine empirically what sort of cloud radiation 

feedback loops exist in the atmosphere. The example of the 

positive feedback loop involving tropical cloudiness, 

radiation, and surface temperature is encouraging. Just 

this sort of cloud radiation interaction has been 

predicted by Liou and Zheng ( 1984) to maintain an intense 

Hadley circulation in the tropics. 

I have d~onstrated the possibility of determining 

empirical relationships between simple climate parameters 

such as surface temperature and top-of-the-atmosphere 

radiative flux, using the Nimbus 7 ERB radiances and the 

FGGE Level IIIb data set and my own techniques of analysis. 

However, it is worth remembering that there may be no such 

parameterization that is good for predicting the net flux 

over a broad enough range of the climate parameters to be 

useful in answering such questions as the effects of major 

decreases in the solar flux, or how ice-albedo feedback 

worked in the presence of clouds in the Pleistocene. As 

argued by Stephens and Webster (1981), simple energy balance 

climate models are useless without an understanding of how 

cloudiness relates to surface temperature, and (so they 

claim) a usable relationship of that sort probably does not 

exist. Certainly, the visual relation between three day 

zonal averages of emitted infrared flux and surface 
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temperature (Figure 5.8) does not inspire confidence in the 

veracity of single valued linear functions . 

It can be argued, however, that such simple climate 

models, although not providing the best simulation of the 

Earth's climate system, can provide insight into the 

important physical processes involved in the climate. For 

this reason, it is still worthwhile determining more 

realistic parameterizations, based on the best data, 

analyzed in the most careful way. There are arguments for 

using data of the sort I have used here for such 

parameterizations (see Chapter 5). 

It is especially encouraging that using relatively 

easily determined meteorological variables, it is possible 

to explain a large portion of the variance of the planetary 

albedo. Although this was not possible in all the regions 

investigated, it worked best in just those areas with the 

best meteorological data. This lends hope to the belief 

that the sort of statistical relations between top-of-the­

atmosphere radiation and the state of the weather, 

investigated in this thesis, can be used in fine tuning 

general circulation models of the Earth's atmosphere. 

VI.B) Future directions in this research 

A number of problems and opportunities were exposed in 

this study that suggest future possibilities for research. 

One problem is that, due to the long time scale for changes 

in radiation, the accuracy of my results is not as high as 
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the number of measurements might suggest . Clearly , data 

should be analyzed from a wider span of time than just one 

week. Furthermore, it would be nice to investigate further 

the seasonal variation in such things as cloud - radiation 

interactions. Given enough data, 

to combine data from different 

it would not be necessary 

locations (even if only 

different longitudes in the same zone) in order to build up 

the accuracy of the statistics under investigation. By 

using data from only one small region at a time, it should 

be possible to - have a better idea of what is producing the 

variations 

variables. 

in cloudiness, radiative flux, and other 

Furthermore, it would then be possible to map 

various statistical parameters and see how they relate to 

the atmospheric and surface characteristics of the planet. 

The quality of the areal fractional cloud cover 

estimates derived from THIR is not as high as it could have 

been if THIR had had a visible channel. It might be 

possible to use cloudiness data sets from the same time 

frame as the Nimbus 7 ERB data from different satellites. 

In this case, the time of retrieval of the data might vary 

from that of the ERB data by up to 6 hours (although, since 

most NOAA satellites are put in 0900 - 2100 or 0300 - 1500 

orbits, hopefully the time differential would be much less). 

One example of such a data set is that developed by Chahine 

et al. ( 1983) and Susskind et al. ( 1983) , using the HIRS2 

and MSU instruments on the Tires N/ NOAA 6 - 9 satellite 

series . The data retrieved include temperature profiles, 
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humidity profiles, surface temperature, snow and ice c over, 

sea surface winds , cloud amount, and cloud top height and 

temperature. In addition to helping to solve the problems 

in the lack of accurate cloud amounts, these data might be 

useful in lieu of FGGE data in regions of sparse 

conventional data coverage. 

Another possibility for improving the data used in this 

sort of analysis, is to stick to the FGGE Level IIb data 

set. This is the actual data taken by the vast variety of 

platforms dep~yed during FGGE. It hasn't been 

interpolated, extrapolated , or averaged . Although such data 

would probably leave holes in the coverage of the globe, by 

using a large enough data set (presumably the entire FGGE 

year) and appropriate weighting, such problems could be 

overcome. Another data set that might be useful is that 

taken by the Nimbus 7 SMMR (Scanning Multichannel Microwave 

Radiometer). This instrument collected data on column water 

vapor abundance, column liquid water abundance ( in clouds), 

sea surface temperature, sea surface wind speed, and sea ice 

coverage (see Gloersen et al., 1984). Furthermore , being on 

the same platform as ERB (just as THIR is) there should be 

no problem in the time delay between SMMR and ERB data. 

Another way of improving the analysis would be to use 

the less massaged ERB data, in the form of the Master 

Archival Tapes. These data have not been divided up into 

various angular bins and sub-fields of view, the way the 

data on the STRTs were. Although the STRTs were remarkably 
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easy to use , their structure really was designed in order to 

carry out studies of the angular distribution models of 

various reflecting and emitting surface-atmosphere 

ensembles. 

In terms of opportunities, it is 

ERB scanner data in conjunction 

clear that the use of 

with high quality 

meteorological and cloudiness data has 

elucidating 

radiation, 

many complicated interactions 

and dynamics. Moreover, the 

certainly be used for GCM tuning. 

potential in 

between clouds, 

same data can 
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Appendix A 

BRIEF DESCRIPTION OF THE DATA SETS USED TO DETERMINE SURFACE 

ALBEDOES 

A.1) Quality of the data sets in each of the twelve surface 

categories 

GEOGRAPHY categories from GEOGRAPHY files 
LAND see Vegetation categories 
WATER 1 great, 3 good 
SNOW 1 good, 1 fair 
ICE 1 poor 

VEGETATION categories from TOPOGRAPHY files 
MOUNTAIN 1 fair, 2 poor 
SELVA 1 good 
TIAGA 2 good, 1 fair 
SCRUB 1 poor 
MIXED 1 good, 1 poor 
SAVANNAH 1 good 
PRAIRIE 1 good, 3 fair, 2 poor 
TUNDRA 1 poor 
DESERT 1 good, 2 poor 

A. 2) Description of the data sets 

For those data sets with many measurements of albedo at 
different solar zenith angles , I list the angles on the 
first line and the albedoes on the next line. All angles 
are in degrees and all albedoes are in percent. 

Mountains Davis and Cox (1981) 
Himalayas 
measured by bugeye from airplane 

15.0 25.0 
22.0 26 . 0 

Mountains Brennan and Sandeen (1970) 
De Soto National Forest 

solar zenith angles of 51.6 - 68.6 
albedo of around 18% 
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Forest (Mountains?) Moore (1976) 

Selva 

Mt . Gambier, South Australia - 10 yr. old forest 
measured by radiometers from 2m above tallest trees 

18.0 25.2 35.3 47.5 59.0 71.0 82.6 
10 . 5 10.8 12.1 12 . 4 13.2 13.9 13.1 

Pinker, et al. (1980) 
Thai rain forest 
measured by Eppley pyranometers from height of 16m 

above forest canopy 
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 
11. 1 11.3 11.8 12.4 13.6 14.9 16.5 18 . 7 

Taiga Mukammal (1971) 
pine forest in Ontario in September 
measured by Eppley pyrheliometers and CSIRO 

pyrradiometers from 18m above canopy, 36m above 
ground -41 . 7 42.4 45.0 46 . 8 51.4 54.1 59.9 63.0 69.6 

10.1 10.1 10.5 10.8 11.3 12.1 12 . 5 14.1 14 . 0 
72 . 9 
17.6 

Taiga Mukammal (1971) 
spruce forest in Ontario in September 
measured by Eppley pyrheliometers and CSIRO 

pyrradiometers from 36m? above ground 
47.5 48.1 50.5 52.2 56 . 5 59.0 64.6 
14.0 14.0 14.4 14.5 15.8 15.8 18.4 

77.2 87.4 
21.5 26.6 

Taiga Kondrat•ev (1973) 

67.5 
17.8 

73.9 
22.0 

measurements of leafy, coniferous forests in USSR and 
around the world 

Kondrat•ev uses monthly average albedo of 14% for 
the months of May through September 

June solar zenith angles of 35 - 51 
albedoes of 14% - 17% 

August solar zenith angles of 49 - 60 
albedoes of 12% - 16% 

September solar zenith angles of 52 - 64 
albedoes of 19% - 20% 

Sc rub Otterman and Fraser (1976) 
measured from Landsat 
overgrazed region of Sahel in winter had albedo of 34%, 

should use this for Scrub albedo (but adjust it 
down somehow for not being bugeye measurement and 
being measured at max solar zenith angle) 
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Mixed Land Area 
India 

Davis and Cox ( 1981 ) 

measured by bugeye from aircraft 
5.0 15.0 25.0 35 . 0 

15.0 13.0 13.0 12.0 

Mixed Land Area Kondrat'ev (1973) 
large regions of European USSR with seasonal snowcover 
monthly average albedoes for the months May through 

October are all 18% 

Savannah Kriebel (1974) 
Namibian savannah 
measured by bugeye from airplane 

10 . 0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 
17.0 16.8 16.4 16.0 15.6 15.7 16 . 0 17 . 8 

Prairie Monteith and Szeicz (1961) 
~ 

Hertfordshire, UK 
measured by radiometer at height of 1.5m 
short grass solar zenith angles 31 to 71 

albedoes of 25% or 27% 
long grass solar zenith angles 42 to 71 

albedo of 26% 

Prairie Idso, et al. (1969) 
University of Minnesota 
measured by Eppley pyranometer at 0.75m above ground 
short grass sod on clear day 

diurnal mean albedo 26% - 27% 
bare soil on clear day 

diurnal mean albedo 28% - 29% 

Prairie Nkemdirim (1972) 
Calgary, Alberta 
measured by pyranometer from 0.45m above ground 
prairie grass (cut to 5cm height) in the summer 

diurnal mean albedoes of 21% - 23% 

Prairie Moore (1976) 
near Mt. Gambier, S. Australia 
measured by radiometers at 2m height in the summer 
grazed pasture of rye grass and 2 kinds of clover 

mean summer albedo = 24% 
15.1 24 . 8 35.2 47.2 59.0 70.7 83.5 
22.8 23 . 7 24.4 25.6 28.3 29.5 34 . 3 
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Crops Monteith and Szeicz (1961) 

Crops 

Hertfordshire, UK 
measured at height of 1.5m 
bare soil solar zenith angles 31 to 71 

albedo of 17% 
kale solar zenith angles 31 to 71 

albedo of 19% or 28% or 25% 

Idso, et al. (1969) 
southwest US 
measurements on irrigated fields 
daily mean albedoes of alfalfa 

barley 
wheat 
oats 
cotton 
sorghum 
all crops 

24% 
23% 
21% 
23% 
22% 
21% 
22% 

Tundra Kondrat'ev (1973) 
Soviet Union 
measured from airplane 
solar zenith angles of roughly 54.0 - 66.0 

albedoes of 11% - 23%; should use about 18% 

Desert Davis and Cox (1981) 
Saudi Arabia Empty Quarter - sand 
measured by bugeye from airplane 

Desert 

5.0 15.0 25.0 35.0 45.0 55.0 
26.0 26.0 24.0 26.0 27.0 30.0 

Kondrat'ev (1973) 
Soviet Union 
measured from airplane 

65.0 75.0 
30.0 34.0 

yellow-gray sand (August) solar zenith angle about 34 
albedo = 25% 

light yellow sand (August) solar zenith angle about 40 
albedo = 37% 

gray sand (September) solar zenith angle about 45 - 54 
albedo = 20% - 28% 

monthly average albedoes for May thru November = 28% 

Desert Otterman and Fraser (1976) 
Sinai (several times of year), Thar desert, 

N.W. Mexico, Sahel, Afghanistan, 
W. coast of Africa 

measured from Landsat 
albedoes of 34% - 52% including regions of scrub 
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Davis and Cox (1981) 
Indian Ocean 
measured by bugeye 

5.0 15.0 25.0 
4.0 4.0 6.0 

from airplane 
35.0 45.0 55.0 
5.0 6.0 10.0 

Water Simpson and Paulson (1979) 
Pacific Ocean 
measured by pyranometer from height of 11m 

48.0 50.0 52.0 54.0 56.0 58.0 60.0 
6.0 5.5 6.1 6.4 6.7 7.3 8.0 

66.0 68.0 70.0 72.0 74.0 76 . 0 
10.4 11.6 13.6 14.8 18.8 16.0 

82.0 84.0 86.0 
33.2 19.7 26.3 

Water Kondrat'ev (1973) 
Black Sea - deep water --30.0 40.0 50 . 0 60.0 

4.0 5.0 6.0 10 . 0 

Water 

70.0 
12.0 

80.0 
36 . 0 

62.0 
8.5 

78.0 
26.0 

64 . 0 
9.2 

80.0 
30.0 

Norwegian Sea 
50.0 60.0 
4.0 7.0 

Kondrat'ev (1973) 
- moderately windy 
70.0 75.0 

and turbulent surface 

Snow 

11.0 18.0 

Carroll and Fitch (1981) 
South Pole 
measured by Eppley pyranometers at lm height 

for cloud cover <25% 
67.6 71.9 75 . 9 79.8 84.6 
82.9 84.2 89 . 6 88.6 93.5 

Snow Kondrat'ev (1973) 
near Moscow, Soviet Union 

in regions of fields and forests 
snow condition field 
freshly fallen, dry or wet 82% 
fine-grained, wet 73% 
mid-grained, wet 64% 
large-grained, wet 55% 
mottled region 47% 
distinct spots of snow 36% 

forest 
82% 
65% 
56% 
47% 
39% 
31% 
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Ice Kondrat'ev (1973) 
Arctic Region (of USSR?) 

Surface Type 
ice floe w/ out snow 
melting ice floe 
melting packed type 

ice w/ out snow 
frozen snowflakes 
(naslud, fresh 
pool ice) 

Surface Color 
green, dry 
gray, moist 
gray, moist 

(knobby) 

gray 

Albedo 
Mean Max. Min. 

45% 50% 40% 
50% 55% 45% 

56% 67% 49% 

44% 50% 42% 
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Appendix B 

A STATISTICAL COMPARISON OF THE RESULTS DERIVED FROM 

ANALYSES USING DIFFERENT PATTERNS OF ANGULAR BINS FOR THE 

VISIBLE RADIANCES 

In this appendix I compare statistical results from four 

analyses of the ERB data . The statistical results I 

investigate include the averages of the visible flux, the 

covariances of this variable with the other variables I 

investigated, and the correlation coefficients of the 

visible flux with the other variables. The tables are 

described individually . The first two tables compare the 

results obtained by using the 49 angular bin pattern with 

those obtained using the 32 angular bin pattern (see Figures 

3. 3a and 3. 3c ) . This comparison indicates the importance 

(or lack of it) of the choice of the original angular bin 

pattern for analysis of the visible radiance data. The last 

two tables compare the results obtained by using the 49 

angular bin pattern with those obtained using the same data , 

but collapsed into the 19 angular bin pattern of Figure 

3. 3b. This comparison is indicative of the importance of 

the exact pattern used to collapse the covariance matrices 

in such a way as to have no zero elements in the population 

matrix. 
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TABLE B. l 

In this t able, I compare the results of the 49BIN CON 

and 32BIN JUN analyses to determine the effect of using 

different patterns of angul ar bins in analyzing the vis i ble 

data. I looked at average visible flux and the covariances 

and correlation coefficients of visible flux with non-

radiative variables for the 8 LATITUDES geographic , grouping . 

I took the ratios of the 32BIN JUN results to the 49BIN CON 

results and utilized these ratios in determining average , 

minimum, and maxJmum ratios, and standard deviations of the 

ratios, for each latitude band . At the beginning of each 

latitude band, I present the number of 49BIN CON correlation 

coefficients (out of 40) that were greater than or equal to 

0.15 , since only these cases were investigated for the 

ratios of the covariances and correlation coefficients. 

LATITUDE # 1 NUMBER OF ccs. 0 
AVERAGE 

AVERAGE RATIO 1.000 
RATIO STD DEV O.OOOE+OO 
MINIMUM RATIO 1.000E+OO 
MAXIMUM RATIO 1.000E+OO 

LATITUDE # 2 NUMBER OF ccs . 32 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.994 1 . 014 0.981 
RATIO STD DEV O.OOOE+OO 5. 189E-02 5.024E-02 
MINIMUM RATIO 9.938E-01 8.870E-Ol 8 . 588E-01 
MAXIMUM RATIO 9.938E-01 1.131E+OO 1.095E+00 

LATITUDE # 3 NUMBER OF ccs. 27 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.991 0.961 0.947 
RATIO STD DEV O.OOOE+OO 4 . 528E-02 4.461E-02 
MINIMUM RATIO 9 . 907E-01 8 . 799E-01 8 . 667E-01 
MAXIMUM RATIO 9.907E-01 1.032E+OO 1.017E+00 
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LATITUDE # 4 NUMBER OF ccs. 27 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.998 0 . 994 0.994 
RATIO STD DEV O.OOOE+OO 2.132E-02 2.134E-02 
MINIMUM RATIO 9 . 977E-Ol 9 . 399E-01 9 . 406E-01 
MAXIMUM RATIO 9.977E-01 1.015E+OO 1.016E+OO 

LATITUDE # 5 NUMBER OF ccs . 25 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.997 0 . 999 0.965 
RATIO STD DEV O.OOOE+OO 2 . 192E-02 2 . 117E- 02 
MINIMUM RATIO 9 . 972E-01 9 . 636E-01 9 . 310E-01 
MAXIMUM RATIO 9.972E-01 1.059E+OO 1 . 023E+Oq 

LATITUDE # 6 NUMBER OF ccs. 34 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.005 1 . 021 0.993 
RATIO STD DEV O.OOOE+OO 2.883E-02 2.807E-02 
MINIMUM RATIO -. 1.005E+OO 9 . 816E-01 9.555E-01 
MAXIMUM RATIO 1.005E+OO 1.099E+OO 1.070E+OO 

LATITUDE # 7 NUMBER OF ccs . 33 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1 . 006 1 . 043 0.994 
RATIO STD DEV O.OOOE+OO 2 . 402E-02 2.290E-02 
MINIMUM RATIO 1.006E+OO 9.908E-01 9.445E-01 
MAXIMUM RATIO 1.006E+OO 1.098E+OO 1.047E+OO 

LATITUDE # 8 NUMBER OF ccs. 37 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0 . 997 0 . 915 0.943 
RATIO STD DEV O. OOOE+OO 6 . 834E-02 7.044E-02 
MINIMUM RATIO 9.972E-01 7.164E-01 7.384E-01 
MAXIMUM RATIO 9.972E-01 1.089E+OO 1.122E+OO 
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TABLE 8.2 

In this table (as in table 8.1) , I compare the results 

of the 49BIN CON and 32BIN JUN analyses to determine the 

effect of using different patterns of angular bins in 

analyzing the visible data. I looked at average visible 

flux and the covar iances and correlation coefficients of 

visible flux with all variables for each of the geographic 

groupings. I took the ratios of the 32BIN JUN results to 

the 49BIN CON results and utilized these ratios in 

determining avekage, minimum, and maximum ratios, and 

standard deviations of the ratios, for the average visible 

flux and each of the visible flux covariances and 

correlation coefficients. At the beginning of the table, I 

tabulate the results for the average flux ratios. Then for 

each variable (with which visible flux was correlated) the 

covariance results are tabulated followed by the number of 

49BIN CON correlation coefficients (out of 20) that were 

greater than or equal to 0.15 (since, as in the last table, 

only these cases were investigated for the ratios of the 

covariances and correlation coefficients) followed by the 

ratio results for the correlation coefficients . 

AVERAGE 
STAND DEV 
MINIMUM 
MAXIMUM 

20 
0.9926 
0.0333 
0.8502 
1.0139 
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AVG MUSUN FLUX UP v FLUX UP I F CL TOTL F CL LOW 
AVERAGE 0.9844 1.0277 0 . 9989 0.9871 0.9984 
STAND DEV 0.0688 0. 0 825 0.0368 0.0307 0.0549 
MINIMUM 0.8390 0.7476 0.8673 0.9146 0.8614 
MAXIMUM 1.0536 1 . 1261 1 . 0466 1 .0264 1.0840 

14 19 18 18 15 
AVERAGE 0 . 9792 1 .0000 0 .9858 0.9670 0.9885 
STAND DEV 0.0440 0.0000 0.0155 0.0281 0.0341 
MINIMUM 0 . 8647 1.0000 0.9480 0.8969 0.9269 
MAXIMUM 1 . 0199 1.0000 1 . 0085 1.0142 1.0592 

F CL MID F CL HIGH F CL HI I F CL HI W FCL**2 
AVERAGE 0 . 9756 0.9984 0 . 9921 1. 0097 0.9873 
STAND DEV 0.0806 0.0481 0.0480 0.0407 0 .0322 
MINIMUM 0.7164 0.8551 0.8562 0.9295 0.9144 
MAXIMUM 1.0660 1 . 0584 1.0541 1.0650 1.0289 

17 17 12 18 18 
AVERAGE 0 . 9660 0.9872 0 . 9798 0.9891 0.9672 
STAND DEV 0.0]09 0.0368 0.0231 0.0401 0.0322 
MINIMUM 0 . 7384 0 . 9168 0.9375 0.9289 0.8852 
MAXIMUM 1.0493 1. 0909 1.0250 1.0753 1.0315 

FCL*ASURF FCL*TSURF FCL*TS**4 FCL*T1000 FCL*TCTOP 
AVERAGE 1. 0086 0.9891 0.9840 0 . 9892 0 . 9886 
STAND DEV 0.0356 0.0255 0.0340 0.0258 0 . 0261 
MINIMUM 0.9134 0.9221 0 . 8744 0.9204 0.9133 
MAXIMUM 1.0673 1.0266 1. 0270 1. 0266 1 . 0271 

17 18 18 18 18 
AVERAGE 0.9864 0.9688 0.9731 0.9690 0.9684 
STAND DEV 0.0242 0 . 0218 0.0227 0.0217 0.0217 
MINIMUM 0.9374 0 . 9308 0 . 9331 0.9314 0.9387 
MAXIMUM 1.0333 1 . 0138 1.0128 1. 0138 1.0143 

FCL*MUSUN FCL*AS*MU T SURFACE TSURF**2 TSURF* *3 
AVERAGE 0 . 9859 0 . 9989 0.9885 0.9885 0.9884 
STAND DEV 0 . 0433 0 . 0464 0.0691 0.0688 0.0685 
MINIMUM 0.8605 0.8607 0.8661 0 . 8660 0.8659 
MAXIMUM 1 . 0296 1 . 0449 1 . 1022 1.1021 1.1020 

19 19 16 16 16 
AVERAGE 0.9735 0.9864 0.9783 0.9782 0.9782 
STAND DEV 0.0213 0.0251 0.0485 0.0482 0.0478 
MINIMUM 0 . 9310 0.9377 0.8709 0.8717 0.8726 
MAXIMUM 1.0102 1. 04 76 1.0718 1.0717 1.0716 

TSURF**4 Z500 T500 T1000 p SURFACE 
AVERAGE 0.9884 1.0058 0.9839 0.9868 0.9888 
STAND DEV 0.0682 0.0704 0.0618 0.0688 0.0672 
MINIMUM 0 . 8658 0.8631 0 . 8592 0.8653 0.8599 
MAXIMUM 1 .1 019 1.1242 1.0593 1.1108 1.0994 

16 14 13 16 16 
AVERAGE 0.9781 0.9944 0.9776 0.9767 0.9787 
STAND DEV 0 . 0475 0 . 0424 0 . 0359 0.0497 0 . 0 541 
MINIMUM 0.8734 0.9231 0.8855 0.8730 0.8588 
MAXIMUM 1.0715 1.0681 1 . 0235 1.0802 1.0702 
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SIGMA W V N CLD LYR z CLD TOP T CLD TOP DS / DZ 
AVERAGE 0. 9890 1 . 0005 1. 0055 1 . 0057 1.0044 
STAND DEV 0 . 0570 0.0592 0. 0 576 0 . 0838 0. 0 580 
MINIMUM 0 . 8239 0. 8368 0 .8603 0 .8151 0 . 9254 
MAXIMUM 1. 0471 1.0887 1.0985 1.1795 1.0820 

17 15 14 16 11 
AVERAGE 0.9785 0.9899 0.9940 0.9926 0.9886 
STAND DEV 0 . 038 3 0 . 0448 0 .0377 0 .06 39 0 . 0427 
MINIMUM 0.8492 0.9278 0.9346 0 . 8172 0 . 9119 
MAXIMUM 1.0153 1.1221 1.0471 1 . 1470 1 . 0685 

DH * / DZ DH-AV/ DZ FLAG ST W R SURFACE U50 0 
AVERAGE 1. 0057 1.0019 1.0121 1 . 0161 1 . 0218 
STAND DEV 0.0440 0.0569 0.0594 0 . 0374 I 0 . 0434 
MINIMUM 0.9018 0 . 8799 0 . 9195 0.9431 0 . 9706 
MAXIMUM 1. 0575 1. 0719 1.1092 1. 0914 1.1234 

14 14 14 14 11 
AVERAGE 0.9823 0.9801 0.9871 0 . 9969 1 . 0058 
STAND DEV 0.0316 

----
0 . 0424 0 . 0478 0.0369 0 . 0381 

MINIMUM 0.9124 0.8667 0.9057 0.9402 0.9287 
MAXIMUM 1.0247 1 . 0238 1 . 0664 1. 0942 1.0711 

V500 P1 LATITU P2 LATITU A SURFACE ASURF**2 
AVERAGE 0.9970 0 . 9846 0 . 9841 0 . 9803 0.9695 
STAND DEV 0 . 0702 0.0692 0 . 0739 0.1092 0.1012 
MINIMUM 0.8649 0 . 8382 0 . 8392 0.6857 0 . 71 2 7 
MAXIMUM 1.1310 1.0587 1.0590 1.0952 1.0568 

11 14 13 12 11 
AVERAGE 0.9823 0.9793 0.9780 0.9736 0 . 9650 
STAND DEV 0 . 0525 0.0436 0 . 0469 0.0924 0.0844 
MINIMUM 0.9133 0.8640 0.8649 0.6875 0. 71 45 
MAXIMUM 1.0950 1. 0143 1.0227 1. 0 650 1. 0 28 7 

AS*MUSUN z SURFACE 
AVERAGE 0.9955 0.9648 
STAND DEV 0.0607 0.0567 
MINIMUM 0.8606 0.8546 
MAXIMUM 1.0772 1.0531 

11 12 
AVERAGE 0.9909 0.9585 
STAND DEV 0.0280 0.0415 
MINIMUM 0.9265 0.8808 
MAXIMUM 1 . 0485 1.0090 
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TABLE B.3 

In this table, I compare the results of the 6DAY 49BA 

and 6DAY 19BA analyses to determine the effect of using 

different patterns of angular bins in analyzing the visible 

data. The table is set up the same as Table B.l and 

involves the same sort of data from the 8 LATITUDES 

geographic grouping, analyzed in the same way. I used the 

ratios of the 6DAY 19BA results to the 6DAY 49BA results in 

determining these statistics. Unlike the comparison in 

Table B.1, ho~ver, the 19 angular bin pattern was used by 

averaging the results in the summation matrices for various 

bins in the 49 angular bin pattern together, and thereby 

making summation matrices appropriate for the 19 angular bin 

pattern. The 19 bin summation matrices were not determined 

(as the 32 bin summation matrices were) 

independently of the 49 bin summation matrices. 

LATITUDE # 1 

AVERAGE RATIO 
RATIO STD DEV 
MINIMUM RATIO 
MAXIMUM RATIO 

LATITUDE # 2 

AVERAGE RATIO 
RATIO STD DEV 
MINIMUM RATIO 
MAXIMUM RATIO 

LATITUDE # 3 

AVERAGE RATIO 
RATIO STD DEV 
MINIMUM RATIO 
MAXIMUM RATIO 

NUMBER OF CCS. 0 
AVERAGE 

1.000 
O.OOOE+OO 
l.OOOE+OO 
1.000E+OO 

NUMBER OF CCS. 28 
AVERAGE COVARIANCE 

1.045 
O.OOOE+OO 
1.045E+OO 
1.045E+OO 

1.070 
1.279E-02 
1 . 021E+OO 
1.100E+OO 

NUMBER OF CCS. 31 
AVERAGE COVARIANCE 

1. 0 31 0 . 995 
O.OOOE+OO 
1.031E+OO 
1.031E+OO 

2.711E-02 
9.331E-01 
1.051E+OO 

CORR COEF 
0 . 985 

1.178E-02 
9.404E-01 
1.013E+OO 

CORR COEF 
0.928 

2.528E-02 
8.703E-01 
9.801E-01 

completely 
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LATITUDE # 4 NUMBER OF ccs . 30 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.014 0.988 0.953 
RATIO STD DEV O.OOOE+OO 1.532E-02 1 . 479E-02 
MINIMUM RATIO 1.014E+OO 9.692E-01 9.349E-01 
MAXIMUM RATIO 1.014E+OO 1.041E+OO 1.004E+OO 

LATITUDE # 5 NUMBER OF ccs. 25 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.008 0.995 0.973 
RATIO STD DEV O.OOOE+OO 1.768E-02 1.730E-02 
MINIMUM RATIO 1.008E+OO 9 . 663E-01 9.449E-01 
MAXIMUM RATIO 1.008E+OO 1.028E+OO 1.005E+OO 

LATITUDE # 6 NUMBER OF ccs. 35 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.009 1.008 0.983 
RATIO STD DEV O.OOOE+OO 2.199E-02 2.145E-02 
MINIMUM RATIO -.._ 1.009E+OO 9.695E-01 9 . 455E-01 
MAXIMUM RATIO 1.009E+OO 1.065E+OO 1.038E+OO 

LATITUDE # 7 NUMBER OF ccs. 33 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.016 1.017 0 . 957 
RATIO STD DEV O.OOOE+OO 1.529E-02 1.440E-02 
MINIMUM RATIO 1.016E+OO 9 . 775E-01 9.200E-01 
MAXIMUM RATIO 1 . 016E+OO 1.054E+OO 9.916E-01 

LATITUDE # 8 NUMBER OF ccs . 37 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.020 1.025 0.909 
RATIO STD DEV O.OOOE+OO 2.078E-02 1.843E-02 
MINIMUM RATIO 1 . 020E+OO 9.701E-0 1 8.598E- 01 
MAXIMUM RATIO 1 . 020E+OO 1 . 075E+OO 9.531E-01 
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TABLE B.4 

In this table (as in table B.3), I compare the results 

of the 6DAY 49BA and 6DAY 19BA analyses to determine the 

effect of using different patterns of angular bins in 

analyzing the visible data . The table is set up the same as 

Table B. 2 and involves the same sort of data (from the 8 

LATITUDES, CONTINENTAL, OCEANIC, and HEMISPHERIC geographic 

groupings) analyzed in the same way. I used the ratios of 

the 6DAY 19BA results to the 6DAY 49BA results in 

determining these statistics. Unlike the comparison in 

Table B.2, however, the 19 angular bin pattern was used by 

averaging the results in the summation matrices for various 

bins in the 49 angular bin pattern together, and thereby 

making summation matrices appropriate for the 19 angu~ar bin 

pattern. The 19 bin summation matrices were not determined 

(as the 32 bin summation matrices were) completely 

independently of the 49 bin summation matrices. 

20 
AVERAGE 1.0166 
STAND DEV 0.0138 
MINIMUM 0.9890 
MAXIMUM 1 . 0480 

AVG MUSUN FLUX UP V FLUX UP I F CL TOTL F CL LOW 
AVERAGE 1.0169 1.1033 1.0184 0.9987 1.0190 
STAND DEV 0.0392 0.0651 0.0325 0.0230 0.0223 
MINIMUM 0.9376 0.9958 0.9745 0.9690 0.9913 
MAXIMUM 1.0663 1.2730 1.0995 1.0559 1.0682 

17 19 19 17 16 
AVERAGE 0.9662 1.0000 0.9702 0.9507 0.9717 
STAND DEV 0.0378 0.0000 0.0224 0.0181 0.0277 
MINIMUM 0.8745 1.0000 0.9106 0.9063 0.9021 
MAXIMUM 1.0382 1.0000 1.0124 0.9784 1.0146 



173 

F CL MID F CL HIGH F CL HI I F CL HI W FCL* * 2 
AVERAGE 0.9987 1 . 0059 0.9939 1.0151 0.9975 
STAND DEV 0.0234 0.0205 0.0250 0 . 0248 0.0233 
MINIMUM 0.9532 0 . 9819 0.9636 0.9833 0.9660 
MAXIMUM 1 . 0445 1. 0647 1.0613 1. 0701 1. 0526 

17 15 13 18 17 
AVERAGE 0.9551 0.9592 0.9541 0.9646 0 . 9495 
STAND DEV 0.0197 0 . 0260 0 . 0204 0.0249 0.0179 
MINIMUM 0.9179 0.8719 0.9200 0.8715 0 . 9066 
MAXIMUM 0.9830 0.9865 0.9852 0.9914 0 . 9753 

FCL*ASURF FCL*TSURF FCL*TS**4 FCL*T1000 FCL*TCTOP 
AVERAGE 1. 0134 1.0019 0.9970 1. 0019 1.0020 
STAND DEV 0 . 0273 0 . 0270 0.0288 0.0270 0.0283 
MINIMUM 0.9804 0.9689 0.9564 0.9693 0.9682 
MAXIMUM 1.0766 1.0703 1.0683 1.0704 1.0743 

17 18 18 18 18 
AVERAGE 0.9635 0.9519 0.9520 0.9519 0 . 9519 
STAND DEV 0-;-0229 0.0199 0.0220 0 . 0201 0.0205 
MINIMUM 0.9000 0.9051 0.8963 0.9043 0.9044 
MAXIMUM 0.9913 0.9855 0.9837 0.9857 0.9893 

FCL*MUSUN FCL*AS*MU T SURFACE TSURF**2 TSURF**3 
AVERAGE 1. 0025 1.0077 1.0201 1.0194 1.0191 
STAND DEV 0.0284 0 . 0282 0.0258 0.0261 0.0263 
MINIMUM 0.9616 0.9764 0.9878 0.9859 0.9848 
MAXIMUM 1.0644 1.0686 1.0699 1 . 0695 1.0692 

19 19 16 16 16 
AVERAGE 0.9551 0.9601 0.9690 0.9684 0.9681 
STAND DEV 0.0215 0.0241 0.0239 0.0246 0. 0 249 
MINIMUM 0.9081 0.9008 0.9106 0 . 9109 0 .9111 
MAXIMUM 0.9862 0.9877 1.0004 1.0006 1.0007 

TSURF**4 2500 T500 T1000 p SURFACE 
AVERAGE 1.0190 1.0125 1.0130 1.0149 1.0252 
STAND DEV 0.0264 0.0332 0.0324 0 . 0294 0. 0 336 
MINIMUM 0.9841 0.9529 0.9659 0.9615 0.9851 
MAXIMUM 1.0689 1 . 0741 1. 0720 1.0702 1.1123 

16 17 16 18 14 
AVERAGE 0 .9680 0 . 9633 0.9609 0.9656 0.9752 
STAND DEV 0.0250 0.0303 0.0282 0.0249 0.0227 
MINIMUM 0.9113 0.9005 0.9059 0.9166 0 . 9391 
MAXIMUM 1.0009 1 . 0043 0.9937 1.0060 1.0256 

SIGMA W V N CLD LYR z CLD TOP T CLD TOP DS / DZ 
AVERAGE 1.0133 1.0102 1.0155 1.0212 1.0065 
STAND DEV 0.0320 0.0151 0.0196 0.0321 0.0393 
MINIMUM 0.9668 0.9880 0 . 9897 0.9503 0. 9 376 
MAXIMUM 1.0808 1 . 0396 1.0697 1.0812 1. 0 7 0 1 

16 14 15 14 13 
AVERAGE 0 . 9635 0.9652 0.9738 0.9719 0.95 1 5 
STAND DEV 0.0262 0.0191 0.0326 0.0249 0. 0 3 46 
MINIMUM 0.9015 0.9199 0 . 8772 0.9167 0.88 24 
MAXIMUM 0.9977 1.0011 1.0301 0 . 9956 1.0074 
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DH* / DZ DH- AV / DZ FLAG ST W R SURFACE U500 
AVERAGE 1.0176 1 . 0250 1 . 0279 1.0150 1. 0 140 
STAND DEV 0.0374 0.0335 0.0413 0.0248 0 . 0278 
MINIMUM 0.9275 0.9844 0.9611 0 . 9822 0.9727 
MAXIMUM 1.0801 1.0869 1.0997 1 . 0849 1.0707 

14 12 14 13 11 
AVERAGE 0.9649 0.9686 0.9721 0 . 9654 0.9681 
STAND DEV 0 . 0272 0.0239 0.0220 0.0230 0 . 0176 
MINIMUM 0.8931 0.9265 0.9285 0.9230 0 . 9404 
MAXIMUM 0.9970 1 . 0009 1. 0126 1.0052 0.9946 

V500 P1 LATITU P2 LATITU A SURFACE ASURF**2 
AVERAGE 1.0121 1 . 0160 1.0188 1.0136 1.0150 
STAND DEV 0.0248 0.0394 0.0387 0.0444 0.0470 
MINIMUM 0.9620 0.9331 0.9390 0.9028 0 . 8946 
MAXIMUM 1.0500 1 . 0715 1.0713 1. 0785 1.0863 

11 17 16 12 12 
AVERAGE 0.9696 0.9653 0.9664 0.9608 0.9622 
STAND DEV 0 . ...0251 0.0379 0.0377 0.0404 0.0431 
MINIMUM 0 . 9295 0 . 8703 0.8758 0.8693 0.8615 
MAXIMUM 1.0209 1.0294 1.0276 0.9988 1 . 0054 

AS*MUSUN z SURFACE 
AVERAGE 1.0201 1.0169 
STAND DEV 0.0287 0.0275 
MINIMUM 0.9738 0.9701 
MAXIMUM 1.0714 1.0627 

14 9 
AVERAGE 0.9704 0.9735 
STAND DEV 0.0274 0.0426 
MINIMUM 0 . 9003 0.8598 
MAXIMUM 1.0006 1.0233 
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Appendix c 

A COMPARISON OF THE RESULTS DERIVED FROM ANALYSES USING 

DIFFERENT MODELS FOR THE DIURNAL VARIATION OF BIDIRECTIONAL 

REFLECTANCE AND THEREFORE DIFFERENT DIURNAL CORRECTION 

FACTORS FOR VISIBLE RADIANCES 

In this appendix I compare statistical results from 

three analyses of the ERB data. The statistical results I 

investigate include the averages of the visible flux, the 

covariances of ..__this variable with the other variables I 

investigated, and the correlation coefficients of the 

visible flux with the other variables. The tables are 

described individually . The purpose of the comparison is to 

determine if the choice of the model for the diurnal 

variation of bidirectional reflectance (for regions of the 

earth surface-atmosphere system) is important for the 

outcome of my analysis and, if it is important, whether any 

g·iven model seems to work better than the others . 
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TABLE C . l 

In this table, I compare the results of the 49BIN CON, 

49BIN MUL, and 49BIN ADD analyses to determine the effect of 

us i ng different diurnal correction techniques on the visible 

data. I looked at average visible flux and the covariances 

and correlation coefficients of visible flux with non-

radiative variables for the 8 LATITUDES geographic grouping . 

I took the ratio of the MUL result to the CON result and the 

ratio of the ADD result to the CON result and utilized these 

ratios in determining average, minimum, and maximum ratios, 

and standard deviations of the ratios , for each latitude 

band. In each latitude band, the ratios involving the 49BIN 

MUL analysis are presented first and those of the 49BIN ADD 

analysis are presented second. At the beginning of each 

latitude band , I present the number of 49BIN CON correlation 

coefficients (out of 40) that were greater than or equal to 

0.15, since only these cases were investigated for the 

ratios of the covariances and correlation coefficients. 

LATITUDE # 1 

AVERAGE RATIO 
RATIO STD DEV 
MINIMUM RATIO 
MAXIMUM RATIO 

AVERAGE RATIO 
RATIO STD DEV 
MINIMUM RATIO 
MAXIMUM RATIO 

NUMBER OF CCS. 0 
AVERAGE 

1.000 
O.OOOE+OO 
l . OOOE+OO 
l.OOOE+OO 

AVERAGE 
1.000 

O.OOOE+OO 
1 . 000E+OO 
1.000E+OO 
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LATITUDE # 2 NUMBER OF ccs . 32 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.020 1.036 0.991 
RATIO STD DEV O. OOOE+OO 1.834E-02 1.756E-02 
MINIMUM RATIO 1.020E+OO 9.579E-01 9 . 170E-01 
MAXIMUM RATIO 1 . 020E+OO 1.079E+OO 1.033E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 1.016 1.024 0.993 
RATIO STD DEV O.OOOE+OO 1.838E-02 1.782E-02 
MINIMUM RATIO 1.016E+OO 9.564E-01 9.274E-01 
MAXIMUM RATIO 1.016E+OO 1.069E+OO 1.036E+OO 

LATITUDE # 3 NUMBER OF ccs . 27 
AVERAGE COVARIANCE CORR COEF ' 

AVERAGE RATIO 1.116 1.176 1.042 
RATIO STD DEV O. OOOE+OO 1 . 795E-01 1.591E-01 
MINIMUM RATIO 1.116E+OO 9.374E-01 8.310E-01 
MAXIMUM RATIO 1.116E+OO 1.551E+OO 1.375E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 1.111 1.084 1.066 
RATIO STD DEV O.OOOE+OO 2.566E-01 2 . 522E-01 
MINIMUM RATIO 1 . 111E+OO 7 . 243E-01 7.119E-01 
MAXIMUM RATIO 1.111E+OO 1 . 633E+OO 1 . 605E+OO 

LATITUDE # 4 NUMBER OF ccs. 27 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.286 1.485 1.066 
RATIO STD DEV O.OOOE+OO 1.777E-01 1 . 276E-01 
MINIMUM RATIO 1 . 286E+OO 1.197E+OO 8 . 590E-01 
MAXIMUM RATIO 1.286E+OO 1.832E+OO 1.315E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 1.357 1.344 1.184 
RATIO STD DEV O.OOOE+OO 3 . 296E-01 2 . 904E-01 
MINIMUM RATIO 1.357E+OO 7.920E-01 6.978E-01 
MAXIMUM RATIO 1.357E+OO 1.967E+OO 1.733E+OO 

LATITUDE # 5 NUMBER OF ccs. 25 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.411 1.430 1.015 
RATIO STD DEV O.OOOE+OO 7.742E-02 5.496E-02 
MINIMUM RATIO 1.411E+OO 1.283E+OO 9.111E-01 
MAXIMUM RATIO 1.411E+OO 1.616E+OO 1.147E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 1.449 1. 025 1.022 
RATIO STD DEV O.OOOE+OO 6.026E-02 6 . 007E-02 
MINIMUM RATIO 1.449E+OO 9.268E-01 9.240E-01 
MAXIMUM RATIO 1.449E+OO 1.199E+OO 1 . 196E+OO 
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LATITUDE # 6 NUMBER OF ccs. 34 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1 .301 1 .307 1.008 
RATIO STD DEV O.OOOE+OO 2 . 303E-02 1.776E-02 
MINIMUM RATIO 1 .301E+OO 1.271E+OO 9.800E-01 
MAXIMUM RATIO 1.301E+OO 1.383E+OO 1.067E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 1.315 1.002 0 . 997 
RATIO STD DEV O.OOOE+OO 2.095E-02 2 . 086E-02 
MINIMUM RATIO 1.315E+OO 9.540E-01 9 . 499E-01 
MAXIMUM RATIO 1.315E+OO 1.079E+OO 1.075E+OO 

LATITUDE # 7 NUMBER OF ccs. 33 
AVERAGE COVARIANCE CORR COEF . 

AVERAGE RATIO 1.126 0.962 0.923 
RATIO STD DEV O.OOOE+OO 1.819E-01 1.745E-01 
MINIMUM RATIO 1 . 126E+OO 5.375E-01 5 .1 55E-01 
MAXIMUM RATIO 1.126E+OO 1.268E+00 1.216E+OO 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO - 1.130 0 . 881 0 . 940 
RATIO STD DEV O.OOOE+OO 1 . 267E-01 1 . 352E-01 
MINIMUM RATIO 1.130E+OO 5.708E-01 6.091E-01 
MAXIMUM RATIO 1.130E+OO 1 . 082E+OO 1.154E+OO 

LATITUDE # 8 NUMBER OF ccs . 37 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.955 0 . 953 0.933 
RATIO STD DEV O.OOOE+OO 2.159E-01 2 .1 15E-01 
MINIMUM RATIO 9.546E-01 4.306E-01 4.218E-01 
MAXIMUM RATIO 9.546E-01 1 . 392E+OO 1.364E+00 

AVERAGE COVARIANCE CORR COEF 
AVERAGE RATIO 0.966 0.995 0.979 
RATIO STD DEV O.OOOE+OO 1.751E-01 1.723E-01 
MINIMUM RATIO 9.656E-01 5.502E-01 5.412E-01 
MAXIMUM RATIO 9 . 656E-01 1.390E+OO 1.367E+OO 
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TABLE C.2 

In this table (as in table C.l), I compare the results 

of the 49BIN CON, 49BIN MUL, and 49BIN ADD analyses to 

determine the effect of using different diurnal correction 

techniques on the visible data. I looked at average visible 

flux and the covariances and correlation coefficients of 

visible flux with all variables for each of the geographic 

groupings. I took the ratio of the MUL result to the CON 

result and the ratio of the ADD result to the CON result and 

utilized these _;:atios in determining average, minimum, and 

maximum ratios, and standard deviations of the ratios, for 

the average visible flux and for each of the visible flux 

covariances and correlation coefficients. The ratios 

involving the 49BIN MUL analysis are presented first and 

those of the 49BIN ADD analysis are presented second. At 

the beginning of each presentation, I tabulate the results 

for the average flux ratios. Then for each variable (with 

which visible flux was correlated) the covariance results 

are tabulated followed by the number of 49BIN CON 

correlation coefficients (out of 20) that were greater than 

or equal to 0.15 (since, as in the last table, only these 

cases were investigated for the ratios of the covariances 

and correlation coefficients) followed by the ratio results 

for the correlation coefficients. 
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20 
AVERAGE 1.1706 
STAND DEV 0. 1446 
MINIMUM 0.9546 
MAXIMUM 1.4108 

AVG MUSUN FLUX UP V FLUX UP I F CL TOTL F CL LOW 
AVERAGE 1 . 1588 1.4176 1 . 1709 1.1676 1.1906 
STAND DEV 0.3769 0.4495 0.2095 0.2039 0.2110 
MINIMUM 0.5375 0.7913 0.8576 0 . 7954 0 . 8406 
MAXIMUM 1 . 8253 2.3572 1.5330 1.4985 1 .6532 

14 19 18 18 15 
AVERAGE 0.9957 1.0000 0.9975 0.9871 1.0257 
STAND DEV 0 . 2076 0.0000 0.0806 0 . 0816 0.0879 
MINIMUM 0.5155 1.0000 0.7777 0.8466 0.8234 
MAXIMUM 1 . 3102 1 .0000 1.1652 1.1676 1.1996 

F CL MID F CL HIGH F CL HI I F CL HI W FCL**2 
AVERAGE 1 . 2-311 1.1432 1.3474 1.1385 1.1670 
STAND DEV 0.1778 0.2585 0 . 2524 0.2590 0.2054 
MINIMUM 0.8787 0.5356 1.0330 0 . 5253 0.7990 
MAXIMUM 1.5072 1.5440 2.0037 1.5133 1.5006 

17 17 12 18 18 
AVERAGE 1 . 0436 0.9682 1.1002 0.9550 0.9866 
STAND DEV 0.1504 0 . 1381 0.2935 0.1196 0 . 0844 
MINIMUM 0 . 8761 0 . 5247 0.9160 0.5146 0 . 8332 
MAXIMUM 1.4278 1.2715 2 . 0554 1. 0678 1. 1756 

FCL*ASURF FCL*TSURF FCL*TS**4 FCL*T1000 FCL*TCTOP 
AVERAGE 1 . 1185 1.1782 1.1848 1.1770 1.1791 
STAND DEV 0.2304 0.2037 0.2131 0 . 2049 0.2053 
MINIMUM 0.7700 0.7967 0.7590 0.7957 0.7878 
MAXIMUM 1 . 4286 1.4999 1.5039 1 . 5001 1.4997 

17 18 18 18 18 
AVERAGE 0.9419 0.9970 0.9986 0.9959 0.9976 
STAND DEV 0.0854 0.0940 0.1048 0.0941 0.0957 
MINIMUM 0.6683 0.8337 0.7435 0.8237 0.8345 
MAXIMUM 1 . 0848 1 . 2443 1.3051 1.2406 1 .2549 

FCL*MUSUN FCL *AS*MU T SURFACE TSURF**2 TSURF**3 
AVERAGE 1.1897 1.1429 1.1470 1.1473 1.1476 
STAND DEV 0.1992 0.2074 0.2751 0 . 2752 0.2754 
MINIMUM 0 . 8053 0.8112 0.7956 0.7957 0.7959 
MAXIMUM 1.5178 1.4588 1.6576 1.6586 1.6597 

19 19 16 16 16 
AVERAGE 1.0112 0.9689 0.9915 0.9917 0.9920 
STAND DEV 0 . 0487 0.0468 0.1381 0.1382 0.1384 
MINIMUM 0.9012 0.8809 0.8162 0.8163 0.8164 
MAXIMUM 1.1074 1.0708 1.3608 1.3603 1.3599 
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TSURF* *4 Z500 T500 T1000 p SURFACE 
AVERAGE 1.1480 1.0637 1.0641 1.1477 1.1850 
STAND DEV 0.2755 0.2939 0.3283 0.2767 0.3443 
MINIMUM 0.7960 0 .7293 0.6110 0.7873 0.6053 
MAXIMUM 1 . 6607 1 . 8154 1.6695 1 . 6982 1.7213 

16 14 13 16 16 
AVERAGE 0.9923 0.9320 0 . 9398 0.9932 0.9907 
STAND DEV 0 . 1386 0.1421 0.1699 0.1443 0.1597 
MINIMUM 0.8166 0 . 6577 0.5861 0 . 7714 0 . 5930 
MAXIMUM 1.3594 1.1824 1.1984 1.3748 1.2355 

SIGMA W V N CLD LYR z CLD TOP T CLD TOP DS / DZ 
AVERAGE 1.2128 1.2333 1. 1715 1.1167 1 . 2489 
STAND DEV 0.3563 0. 1840 0.1928 0 . 2299 0.2735 
MINIMUM 0.6262 0.9852 0.8014 0 . 8280 0.8861 
MAXIMUM 1.7014 1 . 5222 1 . 4945 1.6261 1.8682 

17 15 14 16 11 
AVERAGE 1.0089 1.0488 0 . 9950 0.9689 1 . 0908 
STAND DEV O. J._870 0.1055 0.0816 0.0809 0.0818 
MINIMUM 0 . 6424 0.8551 0 . 7850 0.8310 0 . 9834 
MAXIMUM 1.3727 1.3384 1.0808 1.1815 1.2474 

DH* / DZ DH-AV/ DZ FLAG ST W R SURFACE U500 
AVERAGE 1.2034 1.1554 1.1719 1.1761 1.2157 
STAND DEV 0.2983 0.2728 0 . 3719 0 . 2069 0.4341 
MINIMUM 0.8188 0.7202 0.2544 0.9145 0 . 5462 
MAXIMUM 1.8486 1.6266 1.6821 1 . 5213 2. 1 548 

14 14 14 14 1 1 
AVERAGE 1.0338 0.9936 0.9566 1.0109 1. 0 213 
STAND DEV 0.1396 0.1117 0.2116 0.0579 0.2541 
MINIMUM 0 . 8400 0 . 7389 0 . 2609 0 . 9042 0.6062 
MAXIMUM 1 . 4355 1 . 2018 1.1517 1.1242 1.6515 

V500 P1 LATITU P2 LATITU A SURFACE ASURF**2 
AVERAGE 1.1832 1.1533 1.1062 1.1292 1.0591 
STAND DEV 0.1553 0.3837 0 . 3562 0.2791 0.2135 
MINIMUM 0.9579 0.5662 0.5652 0.7573 0 .7557 
MAXIMUM 1. 5179 1 . 8324 1.7904 1.7282 1.4388 

11 14 13 12 11 
AVERAGE 1.0301 0 . 9884 0.9701 0 . 9862 0.9601 
STAND DEV 0.1003 0.2087 0.2032 0. 1070 0.0977 
MINIMUM 0 . 9070 0 . 5431 0.5422 0 .8360 0.8197 
MAXIMUM 1.2707 1.3153 1.2851 1.2368 1.2045 

AS *MUSUN z SURFACE 
AVERAGE 1. 0537 1.1097 
STAND DEV 0.1920 0 .2819 
MINIMUM 0.7568 0.4306 
MAXIMUM 1. 3 063 1.4980 

11 12 
AVERAGE 0.9430 0.9175 
STAND DEV 0.0707 0 . 16 55 
MINIMUM 0.8272 0.4218 
MAXIMUM 1.0250 1 . 0867 
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20 
AVERAGE 1.1864 
STAND DEV 0.1578 
MINIMUM 0.9656 
MAXIMUM 1 . 4637 

AVG MUSUN FLUX UP V FLUX UP I F CL TOTL F CL LOW 
AVERAGE 1 . 1590 1.0569 1.0196 0.9742 1 . 0091 
STAND DEV 0 . 3991 0.2144 0 . 1931 0.1185 0 .1323 
MINIMUM 0 . 5708 0.7210 0.6358 0.6967 0 .7920 
MAXIMUM 1.9624 1 . 5729 1.6385 1.1850 1.4129 

14 19 18 18 15 
AVERAGE 1 .1 081 1.0000 0.9993 0 . 9593 1. 0102 
STAND DEV 0 . 2915 0.0000 0.1244 0.1215 0 . 1039 
MINIMUM 0.6091 1.0000 0.6124 0.6249 0.6978 
MAXIMUM 1.7289 1.0000 1.3065 1 . 1278 1. 1733 

F CL MID F CL HIGH F CL HI I F CL HI W FCL**2 
AVERAGE 1 . 0_155 0.9613 1.0645 0.9656 0.9716 
STAND DEV 0 . 1422 0.1406 0.1277 0.1431 0.1247 
MINIMUM 0.7583 0.6582 0.8901 0.6489 0.6357 
MAXIMUM 1 . 3896 1.2718 1.3324 1.2203 1.1777 

17 17 12 18 18 
AVERAGE 1 . 0029 0.9544 1.0481 0.9453 0.9570 
STAND DEV 0 . 1677 0.1168 0.1660 0. 1062 0.1285 
MINIMUM 0.6802 0.6476 0.8575 0 . 6384 0.5702 
MAXIMUM 1.3671 1.1412 1.5563 1.0459 1.1295 

FCL*ASURF FCL*TSURF FCL*TS**4 FCL *T1000 FCL *TCTOP 
AVERAGE 0.9669 0.9871 1.0081 0.9860 0 .9883 
STAND DEV 0.1888 0.1136 0.1188 0.1141 0.1147 
MINIMUM 0.4458 0.7313 0.7501 0.7307 0 .7307 
MAXIMUM 1 . 3575 1.1863 1.1912 1 . 1862 1 . 1858 

17 18 18 18 18 
AVERAGE 0.9490 0.9712 0 . 9790 0.9702 0.9722 
STAND DEV 0.1381 0.1147 0. 1028 0.1147 0 .1143 
MINIMUM 0.4294 0.6560 0.7309 0.6554 0.6555 
MAXIMUM 1 . 0824 1.1753 1.2192 1. 1725 1.1825 

FCL*MUSUN FCL*AS*MU T SURFACE TSURF**2 TSURF**3 
AVERAGE 1.0428 1.0035 1 . 0905 1.0911 1.0916 
STAND DEV 0.1282 0.1291 0.2716 0.2725 0.2735 
MINIMUM 0 . 7988 0.8079 0 .7689 0 . 7685 0.7681 
MAXIMUM 1. 3617 1.2554 1. 6417 1.6439 1.6462 

19 19 16 16 16 
AVERAGE 1. 0185 0.9801 1.0633 1.0637 1.0641 
STAND DEV 0.0529 0.0626 0.1918 0.1923 0.1928 
MINIMUM 0.9145 0.7682 0.8892 0.8895 0.8898 
MAXIMUM 1.1039 1.0726 1 . 5671 1.5671 1 .567 1 
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TSURF**4 Z500 T500 T1000 P SURFACE 
AVERAGE 1.0922 1.0292 1.0636 1.0923 1.0902 
STAND DEV 0.2744 0.2435 0.3407 0.2695 0.2848 
MINIMUM 0.7678 0.7628 0.6386 0.7670 0.7350 
MAXIMUM 1.6486 1.4840 1.8653 1.6328 1.7439 

16 14 13 16 16 
AVERAGE 1.0646 1.0056 1.0384 1.0655 1. 0517 
STAND DEV 0.1933 0.1349 0.2367 0.1926 0.1889 
MINIMUM 0.8901 0.8299 0.6814 0.8776 0.7402 
MAXIMUM 1.5672 1.3311 1.6434 1.6050 1.5365 

SIGMA W V N CLD LYR z CLD TOP T CLD TOP DS / DZ 
AVERAGE 1 .1 080 1.0378 1.0319 1. 0226 1.1910 
STAND DEV 0.2902 0. 1330 0.1989 0 . 2212 0.2855 
MINIMUM 0.6581 0.7906 0.7993 0.7243 0.8648 
MAXIMUM 1.7417 1.3941 1.5624 1 . 5561 1.8111 

17 15 14 16 11 
AVERAGE 1.0633 1.0389 1.0134 1.0034 1.1606 
STAND DEV 0.2157 0.1131 0.1209 0.1331 0.1423 
MINIMUM 0.7751 0.7616 0.7700 0 . 7119 0.9966 
MAXIMUM 1.6779 1.2283 1.2458 1 . 3958 1.5040 

DH* / DZ DH-AV/ DZ FLAG ST W R SURFACE U500 
AVERAGE 1.1266 1.0640 1.0292 1.0168 1.1434 
STAND DEV 0.3252 0.2187 0.2440 0.1384 0.5326 
MINIMUM 0.7947 0.7310 0.5018 0 . 8503 0.6316 
MAXIMUM 1.8413 1.4850 1.4651 1.4349 2.5224 

14 14 14 14 11 
AVERAGE 1.1031 1. 0325 0.9903 1. 0129 1.0875 
STAND DEV 0.2329 0.1172 0.1438 0.1074 0.3676 
MINIMUM 0.9324 0.8609 0.5910 0.7627 0.7279 
MAXIMUM 1.7738 1.3084 1.1886 1.2642 2.0112 

V500 P1 LATITU P2 LATITU A SURFACE ASURF**2 
AVERAGE 1 . 0519 1.1574 1.0970 1.0359 1.0160 
STAND DEV 0 . 1839 0.4049 0.3715 0.2178 0.2067 
MINIMUM 0 . 9490 0.5910 0.5908 0.7761 0.7774 
MAXIMUM 1.6125 1.9669 1.9340 1.5989 1.5287 

11 14 13 12 11 
AVERAGE 1.0259 1.1049 1.0541 1.0093 1.0054 
STAND DEV 0.1427 0.2931 0.2664 0.1360 0.1210 
MINIMUM 0.8952 0.6306 0.6304 0.8984 0.9016 
MAXIMUM 1 . 4465 1.7330 1.7040 1.4342 1.3713 

AS*MUSUN z SURFACE 
AVERAGE 0.9812 0 .9843 
STAND DEV 0.1548 0.1901 
MINIMUM 0.7724 0.5502 
MAXIMUM 1.3576 1.3779 

11 12 
AVERAGE 0.9721 0.9392 
STAND DEV 0.0635 0.1528 
MINIMUM 0.8617 0.5412 
MAXIMUM 1. 0825 1.2360 
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Appendix D 

A STATISTICAL COMPARISON OF THE RESULTS DERIVED FROM 

ANALYSES USING DIFFERENT QUANTITIES OF DATA 

In this appendix I compare statistical results from two 

analyses of the ERB data. The statistical results I 

investigate include the averages for the visible ' flux, the 

covar iances of this variable with the other variables I 

investigated, and the correlation coefficients of the -visible fluxes with the other variables. The tables are 

described individually. The purpose of this comparison is 

to determine the magnitude of errors introduced by analyzing 

only a small portion of the available data. 

• 
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TABLE D.1 

In this table, I compare the results of the 6DAY 49BA 

and 49BIN ADD analyses to determine the effect of using 

different amounts of data on the resulting statistics. I 

looked at average visible flux and the covariances and 

correlation coefficients of visible flux with non-radiativ e 

variables for the 8 LATITUDES geographic grouping. I took 

the ratios of the 49BIN ADD results to the 6DAY 49BA results 

and utilized these ratios in determining average , minimum, 

and maximum ratios, and standard deviations of the ratios, 

for each latitude band. At the beginning of each latitude 

band, I present the number of 6DAY 49BA correlation 

coefficients {out of 40) that were greater than or equal to 

0.15, since only these cases were investigated for the 

ratios of the covariances and correlation coefficients. 

LATITUDE # 1 NUMBER OF ccs. 0 
AVERAGE 

AVERAGE RATIO 1.000 
RATIO STD DEV O.OOOE+OO 
MINIMUM RATIO 1.000E+OO 
MAXIMUM RATIO 1 . 000E+OO 

LATITUDE # 2 NUMBER OF ccs. 28 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.954 1 . 121 1.120 
RATIO STD DEV O. OOOE+OO 3 . 209E-01 3.376E-01 
MINIMUM RATIO 9.544E-01 -1 . 193E-01 -1.292E-01 
MAXIMUM RATIO 9 . 544E-01 1 .604E+OO 1 . 985E+OO 

LATITUDE # 3 NUMBER OF ccs . 31 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.007 0 . 862 0.990 
RATIO STD DEV O.OOOE+OO 1.714E-01 2.019E-01 
MINIMUM RATIO 1.007E+OO 2 . 256E-01 2.810E-01 
MAXIMUM RATIO 1.007E+OO 1.113E+OO 1.366E+OO 
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LATITUDE # 4 NUMBER OF ccs . 30 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.996 1 .027 1.141 
RATIO STD DEV O.OOOE+OO 3.110E-01 2.958E-01 
MINIMUM RATIO 9.958E-01 4 . 174E-01 5 . 243E-Ol 
MAXIMUM RATIO 9.958E-01 2.212E+OO 2.193E+OO 

LATITUDE # 5 NUMBER OF ccs . 25 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.995 1.059 1.101 
RATIO STD DEV O.OOOE+OO 1.684E-01 1 . 863E-01 
MINIMUM RATIO 9.953E-01 6.832E-01 5.918E-Ol 
MAXIMUM RATIO 9.953E-01 1.450E+OO 1 . 610E+OO 

LATITUDE # 6 NUMBER OF ccs . 35 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.990 0.832 0.976 
RATIO STD DEV O.OOOE+OO 2 . 071E-01 2 . 344E-01 
MINIMUM RATIO -, 9 . 903E-Ol 3.753E-01 4.609E-01 
MAXIMUM RATIO 9.903E-01 1.319E+OO 1.522E+OO 

LATITUDE # 7 NUMBER OF ccs. 33 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 0.995 1.235 1.104 
RATIO STD DEV O. OOOE+OO 1.858E-01 1.834E-01 
MINIMUM RATIO 9.951E-01 8.293E-01 7.528E-01 
MAXIMUM RATIO 9 . 951E-01 1.929E+OO 1.709E+OO 

LATITUDE # 8 NUMBER OF ccs. 37 
AVERAGE COVARIANCE CORR COEF 

AVERAGE RATIO 1.011 0.953 1.071 
RATIO STD DEV O.OOOE+OO 2.760E-01 2.261E-01 
MINIMUM RATIO 1.011E+OO 4.375E-01 4.600E-01 
MAXIMUM RATIO 1.011E+OO 1.863E+00 1.616E+OO 
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TABLE D. 2 

In this table (as i n table D. 1), I compare the resu l t s 

of the 6DAY 49BA and 49BIN ADD analyses to determine the 

effect of using different amounts of data on the resulting 

statistics . I looked at average visible flux and the 

covariances and correlation coefficients of visible flux 

with all variables for each of the geographic groupings . I 

took the ratios of the 49BIN ADD results to the 6DAY 49BA 

results and utilized these ratios in determining a v erage , 

minimum, and ma~imum rat i os , and standard deviations of the 

ratios, for the average visible flux and each of the visible 

flux covariances and correlation coefficients. At the 

beginning of the table, I tabulate the results for t he 

average f 1 ux ratios. Then for each variable (with whi c h 

v isible flux was correlated) the covariance results are 

tabulated followed by the number of 6DAY 49BA correlation 

coefficients (out of 20 ) that were greater than or equ al t o 

0 . 15 (since, as in the last table, only these c ases wer e 

investigated for the ratios of the covariances and 

correlation coefficients) followed by the ratio results for 

the correlation coefficients. 

AVERAGE 
STAND DEV 
MINIMUM 
MAXIMUM 

20 
0 . 9898 
0.0300 
0.9178 
1. 0527 
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AVG MUSUN FLUX UP V FLUX UP I F CL TOTL F CL LOW 
AVERAGE 0 . 9665 0.9367 1.0251 1.0793 1.0266 
STAND DEV 0.1946 0.1533 0.3180 0.4125 0.3230 
MINIMUM 0 . 3753 0.6145 -0.1660 0.2102 0.6250 
MAXIMUM 1.2750 1.2282 1.4247 2.3444 2.0643 

17 19 19 17 16 
AVERAGE 0 . 9995 1.0000 1.0086 1.1335 1.0556 
STAND DEV 0.1688 0.0000 0 . 3140 0.3892 0.1758 
MINIMUM 0.4609 1.0000 -0.2709 0.3588 0.7449 
MAXIMUM 1 . 2297 1.0000 1.3511 2 . 4621 1.3503 

F CL MID F CL HIGH F CL HI I F CL HI W FCL**2 
AVERAGE 0.9343 0.9711 1. 04 70 0.9907 1.0594 
STAND DEV 0.3390 0.2322 0.2259 0.3341 0.3935 
MINIMUM 0.2619 0.2250 0.5051 0 . 3515 0. 1563 
MAXIMUM 1.6959 1.2575 1 . 4039 1 . 7853 2.2165 

17 15 13 18 17 
AVERAGE 0.9631 1. 0947 1.1432 1.0657 1.1094 
STA.ND DEV 0 . 2848 0.1125 0.2302 0.1534 0.3663 
MINIMUM 0.3337 0.8924 0.8164 0.7797 0.2637 
MAXIMUM 1.4553 1.4013 1.6071 1.3950 2.2736 

FCL*ASURF FCL*TSURF FCL*TS**4 FCL*T1000 FCL*TCTOP 
AVERAGE 0.9411 1.1258 1.0042 1.1265 1.1230 
STAND DEV 0 . 3005 0 . 5021 0.2774 0 . 5032 0.4852 
MINIMUM -0.0839 0.2300 0.2854 0.2283 0.2311 
MAXIMUM 1.1960 2.8805 1.6020 2.8829 2 . 7900 

17 18 18 18 18 
AVERAGE 0.9876 1. 1786 1.0542 1 . 1794 1. 1787 
STAND DEV 0.3154 0.5024 0.1939 0.5033 0.4891 
MINIMUM -0.1390 0.3982 0.5114 0.3938 0.3970 
MAXIMUM 1.3461 3.0795 1.4456 3.0803 3.0195 

FCL*MUSUN FCL*AS*MU T SURFACE TSURF**2 TSURF**3 
AVERAGE 1.0246 0.9531 0.9620 0.9663 0.9669 
STAND DEV 0.2818 0.2080 0.1226 0.1203 0.1212 
MINIMUM 0.3753 0.2585 0.7890 0.7761 0.7634 
MAXIMUM 1.9172 1 . 1876 1.2116 1.2096 1.2109 

19 19 16 16 16 
AVERAGE 1.1084 1.0306 1. 0527 1 . 0260 1.0200 
STAND DEV 0.2332 0.1493 0.1121 0.0784 0.0779 
MINIMUM 0.7036 0.5085 0 . 8674 0.8752 0 . 8789 
MAXIMUM 1.9709 1.2362 1.3659 1.1556 1.1591 

TSURF**4 Z500 T500 T1000 p SURFACE 
AVERAGE 0.9666 0.9407 0.8749 1.0205 1.1612 
STAND DEV 0.1226 0.2208 0.3798 0.2609 0.6286 
MINIMUM 0.7510 0 . 6832 -0.1300 0.6313 0.5343 
MAXIMUM 1.2132 1.4705 1.6969 1.8990 3.1894 

16 17 16 18 14 
AVERAGE 1.0174 0.9669 0.9312 1.1185 1 . 2079 
STAND DEV 0.0792 0.2118 0.3889 0.2904 0.5562 
MINIMUM 0.8800 0.5918 -0.1576 0 . 7406 0.5389 
MAXIMUM 1.1611 1.5435 1 . 8708 2.1637 2.7833 
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SIGMA W V N CLD LYR z CLD TOP T CLD TOP DS / DZ 
AVERAGE 0 .9 511 1.0454 0.9919 0.9944 0 .9599 
STAND DEV 0.2056 0.4058 0.3375 0.1773 0.4251 
MINIMUM 0.6275 0.0501 0 . 4174 0.5827 0.1870 
MAXIMUM 1. 4027 1.8451 1.8625 1 . 3409 1.7246 

16 14 15 14 13 
AVERAGE 1.0150 1 . 1046 1.1059 1.0528 1.0039 
STAND DEV 0 . 2062 0.3317 0 . 2564 0.1298 0.3698 
MINIMUM 0.7555 0. 1580 0.5243 0.8083 0.2393 
MAXIMUM 1.5206 1.6159 1.5116 1.4268 1 . 5098 

DH* / DZ DH-AV/ DZ FLAG ST W R SURFACE U500 
AVERAGE 0 . 9921 1 . 1123 1 . 0609 1 . 0875, 0.7917 
STAND DEV 0.2663 0.3105 0.4373 0.3225 0.7124 
MINIMUM 0.2666 0.7138 -0.0414 0.4330 -0.1902 
MAXIMUM 1.4243 1.9292 1.7703 1.8353 2.2122 

14 12 14 13 11 
AVERAGE 1.0559 1 . 1679 1 . 2155 1.1165 0 . 8097 
STAND DEV o--.' 2102 0.2347 0 . 5201 0.2738 0.7100 
MINIMUM 0.4498 0.8896 -0.0573 0.5168 -0.2005 
MAXIMUM 1 . 3581 1.7087 2.0010 1.5904 2.1932 

V500 P1 LATITU P2 LATITU A SURFACE ASURF**2 
AVERAGE 0.9225 0.9595 1. 0178 0.9898 1.0207 
STAND DEV 0 . 3249 0.1553 0.2537 0.1624 0.1316 
MINIMUM 0.3641 0.4673 0.4780 0.5231 0.6545 
MAXIMUM 1.4981 1.1895 1.7734 1.1538 1 . 1841 

11 17 16 12 12 
AVERAGE 0.9436 0.9868 1.0514 1.0351 1.0644 
STAND DEV 0.3025 0. 1379 0 . 2542 0.1920 0. 1662 
MINIMUM 0.5080 0.5500 0.5623 0.6138 0.7663 
MAXIMUM 1.5199 1.2192 1.8657 1.5134 1. 5178 

AS*MUSUN z SURFACE 
AVERAGE 0.9246 0.9516 
STAND DEV 0. 1727 0.1399 
MINIMUM 0.5190 0.7015 
MAXIMUM 1.1019 1.1543 

14 9 
AVERAGE 0.9449 1.0349 
STAND DEV 0.1350 0 . 1714 
MINIMUM 0 . 6097 0 . 7363 
MAXIMUM 1. 0746 1.3766 


