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Abstract

The Zn-Sb binary phase system has been of interest for many years in the search

for efficient and low-cost thermoelectric materials. Of primary interest has been the

Zn4Sb3 phase which exhibits a thermoelectric figure of merit, zT, in excess of 1 in an

intermediate temperature range. In this study, Zn4Sb3 is shown to be entropically

stabilized with respect to decomposition to Zn and ZnSb through the effects of con-

figurational disorder and phonon free energy. Single-phase stability is predicted for a

range of compositions and temperatures. Retrograde solubility of Zn is predicted on

the two-phase boundary region between Zn4Sb3 and Zn. The complex temperature-

dependent solubility can be used to explain the variety of nanoparticle formation

observed in the system: formation of ZnSb on the Sb-rich side, Zn on the far Zn-

rich side, and nano-void formation due to Zn precipitates being reabsorbed at lower

temperatures.

A new binary compound, Zn8Sb7, known only in nanoparticulate form, is also

studied using density functional calculations. The free energies of formation, including

effects from vibrations and configurational disorder, are calculated to compare with

the relevant phases ZnSb, Zn, and Zn4Sb3, yielding insight into the phase stability of

Zn8Sb7. Band structure calculations predict Zn8Sb7, much like ZnSb and Zn4Sb3, to

be an intermetallic semiconductor with similar thermoelectric properties. If sufficient

entropy or surface energy exists to stabilize the bulk material, it would be stable in

a limited temperature window at high temperature.

In the AZn2Sb2 series of materials—A = Ca, Sr, Yb, and Eu—I show that a large

concentration of thermodynamically stable cation vacancies leads to high extrinsic

carrier concentrations. The stable defect level depends on the choice of A, and is
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consistent with experimentally observed carrier concentrations in these materials.

These results demonstrate that point defects are the primary mechanism by which

the covalency of the cation bond can influence carrier concentration in nominally

valence-precise AZn2Sb2 compounds. This mechanism may be generally applicable

to other Zintl phases, perhaps explaining similar trends seen in A14MSb11, A2MSb2

(A=2+ cation, M = 2+ or 3+ metal), and similar materials.
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Chapter 1

Introduction

Materials Science can be described as the study of the relationship between material

processing, structure and properties. Experiments can be designed to synthesize a

material under certain conditions, observe its structure in various ways and measure

its physical properties. The experimental results may validate or refute theories

of how the processing affects the structure and how its structure determines the

properties. In many applications, a set of desired properties may be known, but the

optimal structure and processing to achieve the properties are unknown. This is the

“inverse design” problem in materials science. Computational advances have enabled

the theoretical study of materials to ever increasing accuracy and capability from the

atomic to the continuum scale. Computational tools are now an integral component

in understanding the processing-structure-property relationships necessary for the

design of functional materials. In this thesis, I present a computational study of

Zn-Sb-based compounds of interest for thermoelectric power generation applications.

The leading character in this work is a thermodynamic function—the grand canon-

ical potential (GCP). The GCP is capable of describing a physical system with a

varying composition or number of particles. It is the natural potential to describe

material systems from multi-component alloys to stoichiometric compounds that—

even in their purest forms—contain defects and impurities. In the main chapters

of this work, I utilize the GCP to understand the phase behavior of two complex

binary Zn-Sb phases: Zn4Sb3 (Chapter 2) and Zn8Sb7 (Chapter 3). I also describe

the intrinsic defect behavior in a series of ternary Zn-Sb-based compounds, AZn2Sb2
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(Chapter 4). Specific findings of these studies are highlighted below in Figure 1.1.

In a broader computational effort, the Appendix contains a summary of a cluster

expansion model that expands the capability of sampling large phase space alloys

for use in the GCP. Additional results not included in this thesis can be found in

the bibliography for thermoelectric compounds ZnSb [14], PbTe [15], Ca5M2Sb6 [16],

Ca3AlSb3 [16], Sr3GaSb3 [17] and Cu2Zn1−xFexGeSb4 [18].

In a general form, the GCP can be expressed as a function of temperature (T)

and chemical potential (µ):

Φ (T,µ) = −kBT ln

(∑
s

e−(Es−µ·Ns)/kBT

)

with kB as Boltzmann’s constant. The partition function inside the logarithm is

a sum over states with energy, Es, and vectors of the chemical potential, µ, and

the number of atoms of each species, N s. For the purpose of calculating the GCP

using atomistic simulations—especially with computationally intensive quantum me-

chanical calculations—it is useful to coarse-grain the partition function. For solid,

crystalline materials, a lattice model is usually the first valid approximation. That is

to say that any given atom in the system has an overwhelming likelihood to occupy

a well-defined lattice site. For a phase with interstitial defects—as is the case with

Zn4Sb3—the interstitial locations can be included as sites of the parent lattice. For

a given lattice, the partition function can be further course-grained [19]:

Z =
∑
σ∈L

∑
ν∈σ

∑
e∈ν

exp

[
1

kBT
E (σ, ν, e)

]

where σ represents a configuration of atoms on the parents lattice, ν accounts for

small displacements from the lattice sites (such as due to phonons), and e repre-

sents electronic excitations. A natural interpretation of this factorization comes from

considering the respective time scales of each sum. An ensemble average is presum-

ably achieved much quicker for each successive sum in the factorization of states.

Specifically, for a given atomic configuration, phononic modes are readily excited and
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sampled. Similarly—as in the Born–Oppenheimer approximation—for a given atomic

perturbation, we consider the electronic states to be well-sampled. This assumption is

not valid, of course, in materials that exhibit strong electron-phonon coupling. In the

case that each configuration, σ, has a local potential energy minimum, the harmonic

or quasi-harmonic approximation can be employed to calculate the configurational

energy [19]:

E(σ) −→ min
ν,e
{E(σ, ν, e)}} = fvib(σ) + felec(σ)

The vibrational and electronic contributions are not always significant in determining

thermodynamic stability, but in many cases it is an important effect [20]. In this work,

I find the vibrational contribution to the free energy to have a significant stabilizing

effect for Zn4Sb3.

A further simplification to the GCP is the low-temperature expansion [21] where

the system primarily occupies the ground state. This state is factored out of the

partition function

φ (T, µ) =
E0

N
− µ · x0 −

kBT

N
ln

(
m0 +

∑
s

ms exp

[
−∆Es − µ ·∆Ns

kBT

])

with a ground state energy, E0, and composition, x0. A finite unit cell size, N , should

be large enough to describe its full configurational space. Under the “independent

cells” approximation, the configurations in the system are assumed to behave inde-

pendently from neighboring cells. This assumption is validated by comparing the

energetics of larger supercells with that of the constituent unit cells. The sum in-

side the logarithm includes excited states with respective excitation energies, ∆Es,

and relative change in each species of atoms, ∆Ns. The multiplicative factor, ms,

corresponds to the number of symmetrically equivalent states are in the cell. In this

approximation, excited states are sampled independently from one another at finite

temperature. In the dilute limit of point defects, there may only be a single likely

defect state in the system. In this case, the defect can also produce localized elec-

tronic states. Electrons occupying these states are in equilibrium with the electronic
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Figure 1.1: Summary of significant results for Zn4Sb3, Zn8Sb7, and AZn2Sb2 phases.
(Left) Single-phase stability region for Zn4Sb3, with a predicted region of retrograde
Zn solubility [1]. (Center) Free energy curves for Zn4Sb3 and Zn8Sb7 with respect
to Zn and ZnSb phases [2]. Zn8Sb7 is only predicted to be stable in a small high-
temperature window. (Right) Stable cation vacancy concentration in AZn2Sb2 for A
= Ca, Sr, Yb, and Eu. Boundary lines correspond to the equilibrium condition with
ZnSb.

chemical potential (or Fermi level), EF . In this limit, for a single defect state, D,

φ (T, µ) =
E0

N
− µ · x0 −

kBT

N
ln

(
1 +

∑
D,q

mD exp

[
−∆ED,q + qEF − µ ·∆ND

kBT

])

where q is the local charge of the defect state. In this way—for a semiconducting

material—the defect concentration is strongly coupled to the Fermi level and hole and

electron carrier concentrations. In this work, I explain the defect-driven electronic

trends in AZn2Sb2 for A = Ca, Sr, Yb and Eu.

When the low-temperature expansion or the dilute limit of the GCP is not valid,

the lattice cluster expansion (CE) can be an efficient means to sample the large

configurational space of an alloy [22]. The cluster expansion is a generalized Ising

model [23, 24] where the site interaction terms are fit to a database of configurational

energies—known, for instance, from density functional calculations. The computa-

tionally intractable total energy functional of atomic coordinates is simplified to a

polynomial expansion of site occupation variables, σ:

E(r1, r2...rN) −→ E(σ1, σ2...σN) =
∑
α

Jασα

where Jα is the effective cluster interaction (ECI) and σα is a product of occupation
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variables included for a given cluster motif, α. An expansion can include cluster mo-

tifs of single sites, pairs, triplets and so on. The CE Hamiltonian can be utilized on

systems of thousands of atoms for statistically accurate Monte Carlo simulations. To

fit a CE, known configurational energies are typically added to the database while

the ECIs are fit using an increasing number of cluster motifs. A fit may be consid-

ered converged if the strength of ECIs decays close to zero with longer range cluster

motifs and the predictive power of the CE can quantified with cross-validation tech-

niques. Achieving a converged CE is increasingly difficult for large multi-component

alloy systems where the configurational phase space becomes exponentially larger. In

Chapter A, I summarize work to fit a 6-component CE for a III–V alloy system (Al,

Ga, In cations and N, P, As anions).

An additional aspect of this work was to extend the CE beyond scalar quantities

to include tensorial quantities such as lattice strain and elastic constants. In this way,

the GCP can include various stress and strain conditions such as might be present in

epitaxial materials and hetero-structures:

φ(T,µ, ε) = −kBT
N

ln

∑
s

exp

−Es − µ ·Ns +
∑
i,j

σs,ijεij + 1
2

∑
i,j,k,l

Cs,ijklεijεkl

kT




where ε is the 2-dimensional strain tensor, C, is the 4-dimensional elastic tensor,

and σ is the 2-dimensional stress tensor. These tensor properties are fit to a cluster

expansion using an additional tensor basis, β, coupled with each cluster motif [25, 26]:

Q(σ) =
∑ ∑

β∈C(α)

Jα,ββσα

Appendix A includes work to fit CEs for the lattice strain and elastic tensors for the

same III–V alloy system above.
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Chapter 2

Retrograde Solubility and Entropic
Stabilization in Zn4Sb3

Reproduced with permission from Phys. Rev. B 83, 094106 (2011).

Copyright © 2011 American Physical Society.

2.1 Introduction

The Zn-Sb binary phase system has been of interest for many years in the search

for efficient and low-cost thermoelectric materials. Of primary interest has been the

Zn4Sb3 phase which exhibits a thermoelectric figure of merit, zT , in excess of 1 in

intermediate temperature ranges [27]. This phase, being composed of environmentally

benign and relatively earth abundant elements, continues to draw active research.

Zn4Sb3 exhibits exceptionally low lattice thermal conductivity [27], due in part to

its high configurational disorder. The room temperature structure of Zn4Sb3 (R3̄c,

Figure 2.1), denoted ‘β-Zn4Sb3’ here [27] (or sometimes ‘ε-Zn4Sb3’ [28]), contains an

anionic framework composed of 30 Sb, divided between 6 Sb4−
2 dimers and 18 isolated

Sb3−. With 39 Zn2+ a charge balanced composition is obtained at Zn13Sb10. Of these

Zn cations, at most, 36 can fit on Zn framework sites and 3 must be distributed among

3 crystallographically distinct interstitial sites [29]. For clarity, we will always refer

to the entire phase as ‘Zn4Sb3’ and write ‘ZnXSb10’ only when referring to a specific

configurational composition within ‘Zn4Sb3’.

Previous ab initio studies of Zn4Sb3 have included the electronic density of states
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Figure 2.1: Conventional hexagonal unit cell of Zn4Sb3. The Sb sub-lattice (orange) is
composed of isolated Sb and Sb dimers. The Zn ‘A’ sub-lattice (blue) is 90% occupied.
The ‘B’ (green), ‘C’ (brown), and ‘D’ (pink) Zn sub-lattices are 5% occupied. The
primitive rhombohedral cell is 1/3 the volume of the conventional cell.
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and formation energy of various atomic configurations ranging in composition from

Zn12Sb10 to Zn14Sb10 [30, 31, 32, 33]. These results confirm the expectation from

charge counting that Zn13Sb10 has a Fermi level in the band gap, Zn-deficient Zn12Sb10

has a Fermi level in the valence band and Zn-rich Zn14Sb10 has a Fermi level in the

conduction band. All reports of formation energy [31, 32, 33] also show agreement that

all Zn4Sb3 configurations have a positive formation enthalpy at 0K with respect to

Zn and ZnSb. Yet Zn4Sb3 is observed below 700K. Furthermore, at low temperature,

a reversible transition to a low symmetry, meta-stable, ordered ‘α’ (and α′) phase is

observed [34, 35].

Synthetically, Zn4Sb3 is usually prepared with excess Zn: Zn13.3Sb10. As Zn has a

high vapor pressure even at the relatively low synthesis and operation temperature,

as well as the tendency to readily oxidize [36], it is not very surprising that excess Zn

helps form the phase. Zn4Sb3 is always a heavily doped p-type semiconductor with

room temperature (Hall) carrier concentration between 6−9x1019/cm3. [3] According

to the simple charge counting and ab initio calculations, this would be best explained

by a slight Zn deficiency, Zn13−δSb10, where δ should be between 0.016 and 0.024. If

n/nHall is 2 as predicted by Singh [30], then δ should be between 0.008 and 0.012. It

is perhaps surprising that with all the interstitial Zn sites, synthesis with excess Zn

does not produce n-type material.

In this work, we expand on previous ab initio results to consider a thorough

thermodynamic investigation of Zn4Sb3. A thermodynamic ensemble approach is

necessary because no single configuration (or even small number of configurations) can

adequately describe the phase. By assembling a Grand Canonical Partition Function

we are able to quantitatively prove entropic stabilization. We also predict a region

of single-phase stability on a temperature versus composition diagram that exhibits

retrograde solubility of Zn with δ > 0 that would always produce p-type Zn4Sb3 in

intermediate temperatures.
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2.2 Computational Methods

The natural thermodynamic function to account for a range of possible compositions

is the grand canonical potential [21] (GCP):

φ (T, µ) = −kBT
N

ln

(∑
s

e−(Es−µ·Ns)/kBT

)
(2.1)

where k is Boltzmann’s constant, T is temperature, N is the total number of atoms

in the system, while, for a given state s, Es is the total energy of state, Ns is a vector

containing the number of atoms for each chemical species (with elements summing to

N) and µ is a vector containing the chemical potential of each species. This greatly

simplifies for both Zn and ZnSb, which do not exhibit configurational disorder:

φ (T, µ) =
ε0

n
− µ · x0 (2.2)

where ε0 is the energy per unit cell, n is the number of atoms per unit cell, and x0 is

a vector of the atomic fraction of each species.

For Zn4Sb3, we consider the GCP within an “independent cells” approximation.

We assume that each primitive unit cell of 23 ± 2 atoms is non-interacting with

neighboring cells, in the sense that the defect configuration present in one cell does

not affect the energies of defect configurations in a nearby cell. (All our ab initio

calculations are nevertheless performed on infinite periodic systems with suitable

k-point sampling.) This approach is useful in this system because the unit cell is

rather large. This assumption is validated by computing the energy of supercells with

different configurations in each primitive unit cell and comparing it to that predicted

by summing the energies of the constituent primitive cells. Under the independent

cells approximation:

φ (T, µ) =
ε0

n
− µ · x− kBT

n
ln

(
1 +

∑
i>0

mie
−(∆εi−µ·∆ni)/kBT

)
(2.3)

where ε0 is the ground state energy per unit cell, n is the number of atoms per unit
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cell and x0 is the ground state composition. For each configuration, i, mi is the

symmetric multiplicity, ∆εi is the change in energy from the ground state and ∆ni

is the change in the number of atoms from the ground state.

The energy for each configuration is calculated under the generalized gradient

approximation (GGA) using the projector augmented wave (PAW) method with

Perdew-Burke-Ernzerhof (PBE) potentials as implemented in VASP 4.6, neglecting

spin-orbit coupling. All unit cell parameters and atomic positions were allowed to re-

lax to find the lowest energy configuration to within 10−4 eV. A final static calculation

was performed for an accurate total energy.

Defect configurations were systematically generated by enumerating defect combi-

nations deviating from the undefected Zn12Sb10 structure (‘A’ sub-lattice fully occu-

pied and ‘B’,‘C and ‘D’ sub-lattices fully unoccupied). Defect clusters were composed

of a combination of vacancies on the ‘A’ sub-lattice, and occupation of an interstitial

site on the ‘B’, ‘C’ or ‘D’ sub-lattices. Clusters of up to 6 defects were enumerated,

excluding some structures because the defects were too close (nearest neighbor A and

C sites both occupied). After allowing the atomic configuration to relax, the result-

ing atomic positions were projected onto the closest unrelaxed configuration and any

duplicate configurations were excluded in order to avoid over-counting states.

Phonon density of states and vibrational free energies were calculated using the

‘supercell’ method as implemented in the Alloy Theoretic Automated Toolkit (ATAT)

[37, 38, 39]. Since the computational resources needed to compute phonon modes for

all Zn4Sb3 configurations are prohibitive, representative configurations were selected

at four compositions between Zn12Sb10 and Zn15Sb10 configurations. The lowest en-

ergy configuration for each composition was selected as well as a second Zn13Sb10

configuration to assess the error in our approximation. For each of these configu-

rations and the end-members Zn and ZnSb, phonon modes were calculated at 0%,

1% and 2% strain to account for the effects of thermal expansion, under the quasi-

harmonic approximation.

The vibrational contribution to the free energy is incorporated into the GCP

through a nested sum in the partition function [19]. For each distinct configura-
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tion, phonon occupation accounts for small displacements around the local energy

minimum, resulting in a temperature dependent free energy correction.

GCPs were assembled for Zn, Zn4Sb3 and ZnSb. Phase equilibrium is determined

by equality of two respective GCPs. The equilibrium composition of each phase can

be determined by:

∇µφ (T,µ) = −x (2.4)

2.3 Results and Discussion

Over 100 unique, stable configurations were enumerated in the β−Zn4Sb3 primitive

rhombohedral unit cell with between 21 and 25 atoms per cell (the number of Sb was

held constant at 10). The 0K formation enthalpy of these configurations with respect

to Zn and ZnSb is shown in Figure 2.2.

Consistent with previous theoretical studies [31, 32, 33], all configurations have a

positive formation enthalpy with respect to Zn and ZnSb. The “convex hull” is plot-

ted in solid black and connects the ground state configurations (for Zn4Sb3 phase) at

each composition. The composition Zn14Sb10 does not have a configuration touching

the convex hull. This means that for an ensemble of atoms of composition Zn14Sb10

constrained to remain in the Zn4Sb3 lattice, it would be more energetically favorable

to form a mixture of cells of composition Zn13Sb10 and Zn15Sb10. If the system is al-

lowed to adopt any lattice, then, at 0K, it would be even more energetically favorable

to separate into Zn and ZnSb crystals. Figure 2.2 also allows us to test the indepen-

dent cells approximation. The data points marked “supercells” are all made up of 3

primitive cells of different compositions to yield the intermediate compositions shown.

Between Zn12Sb10 and Zn13Sb10, we see that the supercells produce a slightly lower

energy by about 3meV/atom than predicted by the independent cells approximation.

Between Zn13Sb10 and Zn14Sb10, the energies from the supercells are either very close

or slightly higher than predicted by the independent cells approximation (the dashed

line). The small energy difference of a few meV/atom justifies the use of the inde-

pendent cells approximation, although a consideration of a possible systematic error
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Figure 2.2: Formation enthalpy at 0K for Zn4Sb3 configurations with respect to Zn
and ZnSb. The solid black line represents the convex hull of structures confined to the
Zn4Sb3 lattice. Supercell calculations in green were done using the conventional unit
cell, each composed of three primitive unit cells. The dashed line shows the predicted
energy for supercells following the independent cells approximation.
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Figure 2.3: Formation free energy due to phonons with respect to Zn and ZnSb of the
lowest energy Zn4Sb3 configurations at each composition. There is a more favorable
contribution to the formation energy for the more disordered Zn-rich configurations,
evidenced by a steeper slope with temperature. Two configurations of Zn13Sb10 are
in good agreement to 1meV/atom.

is discussed later.

The formation free energy due to phonons (relative to Zn and ZnSb) is shown

in Figure 2.3 for the 5 representative configurations (the lowest energy structure at

each composition). In all cases, the phonon contribution to the free energy favors the

Zn4Sb3 phase over Zn and ZnSb as evidenced by a negative trend with temperature.

This is likely a result of the softer phonon modes in the more complex and open

crystal structure. Increasing Zn concentration and thereby increasing the Zn-disorder

results in a more favorable contribution to the free energy. There is good agreement

between the two configurations of composition Zn13Sb10, differing by 1meV/atom

at 1000K. It then seems reasonable to assume that the vibrational free energy of the

representative structures may be applied to all the configurations at that composition
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when we compute the GCP of Zn4Sb3.

The computed region of single-phase stability for Zn4Sb3 is shown in Figure 2.4.

Including configurational and vibrational effects to the free energy, Zn4Sb3 is found

to stabilize at around 700K at a composition of Zn12.992Sb10. As the temperature

increases, the range of stable single-phase compositions increases, more broadly on

the Zn-deficient side. (Eventually, the solid melts, but our analysis focuses on the

solid-state portion of the phase diagram.) Interestingly, on the Zn-rich side, we ob-

serve retrograde solubility of Zn. That is, the highest stable concentration of Zn in

Zn4Sb3 decreases with increasing temperature. This unusual finding is a result of

the composition-dependent relationship between the enthalpy and entropy of mixing.

Typically defects of all kinds entropically stabilize stoichiometric variations on both

sides of a valence-precise composition. In the case of Zn4Sb3, the valence-precise

composition is already ‘defected’ with interstitial Zn. A miscibility gap arises for

compositions above Zn13Sb10 due to the large jump in formation enthalpy compared

to the Zn-deficient compositions. The effect is lessened by the counteractive effects

of higher vibrational entropy for the Zn-rich compositions. If the vibrational effects

were neglected, the Zn-rich boundary would not curve to the right until a much higher

temperature.

The region of single-phase stability shown in Figure 2.4 has readily observable

consequences. The black vertical line at composition Zn13Sb10 represents the valence-

precise structure with a Fermi level inside the band gap. At any Zn-deficient compo-

sition from Zn13Sb10, we expect a partially filled valence band resulting in a p-type

semiconductor. (Surprisingly, there is a recent report of a Zn13Sb10 configuration be-

ing slightly p-type [40]. Our electronic density of states results are in agreement with

previous studies [30, 31, 32, 33].) All stable compositions below 1000K in Figure 2.4

result in a p-type semiconductor. Attempting to dope Zn4Sb3 with excess Zn will

not result in an n-type semiconductor but a two-phase equilibrium between Zn metal

and p-type Zn4Sb3. Furthermore, with the consideration of retrograde solubility, if

Zn-saturated single-phase Zn4Sb3 is heated up, it passes through a region where it

becomes thermodynamically more stable to precipitate Zn metal. With more heating,
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the Zn is reabsorbed as more Zn-rich compositions are stable. Upon cooling, the same

precipitation and absorption should occur if held in thermodynamic equilibrium.

On the Zn-deficient side of the stable phase region the usual temperature de-

pendent solubility is observed. Here one would expect ZnSb to precipitate as the

temperature is reduced. Because this would occur at low temperature in the solid

state, small nanometer sized precipitates would be expected. Such particles are indeed

observed in Sb-rich samples [3].

The high-temperature phase boundary on the Zn-rich side could explain the for-

mation of Zn nanoparticles observed in some Zn4Sb3 samples [41]. Cooling a Zn-rich

composition above Zn13Sb10 would precipitate Zn (possibly nano-particles if cooled

fast enough [42]). Upon further cooling through the retrograde region, some of the

Zn would be reabsorbed into the β−phase. The absorption of nanoparticle Zn may

explain the nano-voids observed in some samples [3]. The precipitation of Zn from

the Zn4Sb3 structure and then subsequent re-absorption also explains the increase in

volume (leading to breakage of the glass ampoule) in some samples, that at room

temperature appear to be single-phase.

Experimental carrier concentration measurements from Toberer [3] from single-

phase β−Zn4Sb3 samples range from 6 − 9x1019/cm3. This corresponds to a com-

position range of 0.002% atomic Zn between Zn12.988Sb10 and Zn12.992Sb10 assuming

n/nHall = 2 [30]. This concentration range, corresponding to the orange band in the

inset of Figure 2.4, is in close agreement with the predicted stable compositions near

the stabilization temperature. This composition range is much smaller than the 0.2%

atomic Zn observed by microprobe analysis. This discrepancy is not surprising since

the composition range is basically the limit of the microprobe resolution.

There is some expected uncertainty in our predicted temperature of stabilization

of Zn4Sb3. Our predicted temperature of 700K is much higher than might be ex-

pected. There are several possible explanations for this. One simple possibility is the

uncertainty inherent in first principles calculations using the GGA-PBE functional.

There could also be a deficiency in our methodology to fully account for the sources

of entropy in such a complex disordered structure. Our enumeration method may un-
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derestimate the number of Zn4Sb3 configurations by comparing the relaxed structures

to the fixed lattice in Figure 2.1, which represents, in a sense, a measured average over

many possible configurations. The vibrational contribution to the free energy has a

significant effect in lowering the stabilization temperature. Assuming a representative

structure for each composition might be an underestimate for the more disordered

configurations and the effect could be even more pronounced. Lastly, we noted earlier

that the supercells on the Zn-deficient side of Zn13Sb10 had slightly lower formation

energy than expected under the independent cells approximation. This neglected cell-

to-cell interaction ( 2meV/atom) could lower the stabilization temperature by several

hundred degrees. In either case, we expect the retrograde solubility to remain, and

possibly intensify, because the supercells on the Zn-rich side of Zn13Sb10 are in good

agreement with the independent cells approximation.

To ensure that our finding of a single-phase region for the β-Zn4Sb3 lattice is not

an artifact of the independent cell approximation, we have conducted separate Monte

Carlo simulations based on a cluster expansion Hamiltonian fitted to our database of

structural energies. These simulations confirm the presence of a single-phase region

over the temperature range where β-Zn4Sb3 is stable. Hence, the independent cell

approximation was deemed reliable and was used throughout this work. It provides a

convenient explicit expression for the free energy and is immune to the fitting errors

inherent to the Hamiltonian construction procedure.

Finally, we consider how Zn4Sb3 might interact with other nearby phases, namely,

α−Zn4Sb3 and Zn8Sb7. First principles calculation of α−Zn4Sb3 yields positive for-

mation energy of 19meV/atom with respect to Zn and ZnSb. This is 3meV/atom

below the lowest energy β−Zn4Sb3 configuration of composition Zn13Sb10. Assuming

no configurational disorder in α−Zn4Sb3 we predict β−Zn4Sb3 to become energeti-

cally favorable compared to α−Zn4Sb3 at 300K (although both are still meta-stable

with respect to Zn and ZnSb at this temperature). It seems possible that there is

a temperature range in which meta-stable β−Zn4Sb3 is observed before becoming

thermodynamically stable with respect to Zn and ZnSb at some higher temperature.

Another phase of recent interest is Zn8Sb7, which has been characterized experi-
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mentally and studied through first principles calculations [43, 2]. These calculations

reveal that, even though Zn8Sb7 is unstable in bulk form, it could be stabilized in

nanocrystalline form if surface stress or energy contributions result in a free energy

decrease of 5meV/atom (relative to ZnSb and Zn4Sb3). Taking these assumptions

into effect, the resulting phase diagram is shown in Figure 2.5. We see that Zn8Sb7

would stabilize at a temperature higher than Zn4Sb3 and a two-phase region results.

This also reduces the stable Zn-deficient Zn4Sb3 composition range predicted in the

absence of Zn8Sb7 (dashed line in Figure 2.5). Other unidentified phases as reported

in some phase diagrams [44] could have a similar effect.
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2.4 Conclusions

From our first principles investigation, we have shown that Zn4Sb3 is entropically

stabilized with the help of configurational and vibrational entropy. Under the inde-

pendent cells approximation of the grand canonical potential we predict a region of

single-phase stability near Zn12.992Sb10, which results in a nominally p-type semicon-

ductor. Additionally, we predict a temperature range with retrograde Zn solubility.

The temperature dependent solubility can be used to explain the variety of nanopar-

ticle formation observed in the system: formation of ZnSb on the Sb-rich side, Zn on

the far Zn-rich side and nano-void formation due to Zn precipitates being reabsorbed

at lower temperatures.
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Chapter 3

Predicted Thermodynamic and
Electronic Properties of a Newly
Discovered Binary Zn8Sb7 Compound

Reproduced with permission from J. Am. Chem. Soc., 2011, 133 (29), pp 11255–11261.

Copyright © 2011 American Chemical Society.

3.1 Introduction

Intermetallic compounds are fascinating due to the diversity of their crystal structures

and resulting properties. For thermoelectric applications, ZnSb and Zn4Sb3 are two

intermetallic compounds which exhibit good thermoelectric efficiencies. In particular,

Zn4Sb3 has a thermoelectric figure of merit (zT ) in excess of unity [27, 3] due to

its low thermal conductivity, which arises in part due to its complex, defect-ridden

structure. Both of these materials have band gaps at or near the Fermi level which

can be rationalized from valence charge counting [29].

Recently, a new binary Zn-Sb phase between ZnSb and Zn4Sb3 was discovered

and characterized at room temperature by Birkel et al. [43] Binary nanoparticles

were synthesized in solution through the controlled reaction of elemental Zn and Sb

nanoparticles. The small particle size of the reactants ensures minimum diffusion

paths, low activation barriers, and low reaction temperatures, thereby eliminating

solid-solid diffusion as the rate-limiting step as found in conventional bulk-scale solid-
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Zn8Sb7  [001]

Zn8Sb7  [100]

Figure 3.1: Structures of the known room temperature zinc antimonide phases, shown
with zinc in blue, Sb4−

2 dimers and isolated Sb3− in orange. The anionic structure of
ZnSb is exclusively Sb4−

2 dimers, while Zn4Sb3, and Zn8Sb7 contain both Sb3− and
Sb4−

2 moieties.

state synthesis [43]. In the present work, the authors denote this new phase as Zn8Sb7,

based on the idealized crystal structure, rather than Zn1+δSb (with δ = 0.068) as used

in by Birkel et al. [43]

Determination of the Zn8Sb7 structure was a tour de force of automated electron

diffraction tomography (ADT) combined with precession electron diffraction (PED)

on individual nanoparticle grains. This work yielded the structure in Figure 3.1,

shown along the [001] and [100] directions in the distorted hexagonal cell (P 1̄). Much

like Zn4Sb3, Zn8Sb7 contains both Sb4−
2 dimers and isolated Sb3−, however, the long-

range atomic arrangement is completely distinct.

The Zn8Sb7 phase enters into an interesting region of the binary phase diagram
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[44] between ZnSb and Zn4Sb3. Since the three phases are so close in composition, the

competition for thermodynamic stability will be fierce. Below ∼250K, Zn4Sb3 trans-

forms to a variant (the α or α′ phase) where the interstitial atoms form an ordered

arrangement [34, 35]. The disordered β phase is stable from ∼250K (to 700K) while

no compounds have been characterized in the bulk at compositions between Zn4Sb3

and ZnSb. Several phase diagrams have been reported that include a phase between

Zn4Sb3 and ZnSb stable only at high temperature [44, 45, 46], sometimes denoted as

γ, but no crystal structures have been determined for these high temperature phases.

Ab initio calculations have considered various interstitial configurations of Zn4Sb3

at 0K and found that they should decompose to ZnSb and Zn when considering the

enthalpy of formation alone [30, 31, 32, 33]. Additional theoretical work has recently

shown Zn4Sb3 to be entropically stabilized due to the high configurational disorder

with the three interstitial Zn sites and the effects of lattice vibrations [1]. The narrow

stable composition range is near Zn3.898Sb3 as inferred from Hall carrier measurements

and valence charge counting [3, 1], which is off from the valence balanced composition

of Zn3.9Sb3. We will continue to use the conventional Zn4Sb3 terminology.

In this work, we explore the electronic and thermodynamic properties of a theo-

retical bulk Zn8Sb7 phase. Electronic structure calculations probe the band structure

and valence band edge character of Zn8Sb7 to compare with known bulk thermo-

electrics ZnSb and Zn4Sb3. Since the formation of Zn8Sb7 is not readily observed in

practice, a thermodynamic investigation determines if the phase might be thermody-

namically stable or meta-stable with respect to competing Zn-Sb phases. A thorough

thermodynamic treatment considers the bonding enthalpy as well as possible sources

of entropy such as configurational disorder and atomic vibrations. The results will

guide future experiments to synthesize bulk Zn8Sb7.

3.2 Computational Methods

To account for the configurational disorder present in many Zn-Sb phases, a thermo-

dynamic ensemble approach is employed using data from first principles calculations.
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A grand canonical potential [21] (GCP) is formulated for each phase according to:

φ (T, µ) = −kBT
N

ln

(∑
s

e−(Es−µµµ·NsNsNs)/kBT

)
(3.1)

where kB is Boltzmann’s constant, T is temperature, N is the total number of atoms

in the system, while, for a given state s, Es is the total energy of state, Ns is a vector

containing the number of atoms for each chemical species (with elements summing

to N) and µ is a vector containing the chemical potential of each species. Since

ZnSb and Zn phases exhibit relatively low configurational disorder, the GCP greatly

simplifies:

φ (T, µ) =
ε0

n
− µµµ · x0x0x0 (3.2)

where ε0 is the energy per unit cell, n is the number of atoms per unit cell, and x0x0x0 is

a vector of the atomic fraction of each species.

For Zn8Sb7 and Zn4Sb3, we factor the GCP according to an “independent cells”

approximation. We assume that each primitive unit cell is non-interacting with neigh-

boring cells, in the sense that the defect configuration present in one cell does not

affect the energies of defect configurations in a nearby cell. (All our ab initio calcu-

lations are nevertheless performed on infinite periodic systems with suitable k-point

sampling.) This approach is useful in these systems because the unit cells is rather

large. This assumption is validated by computing the energy of supercells with dif-

ferent configurations in each primitive unit cell and comparing it to that predicted by

summing the energies of the constituent primitive cells. Under the independent cells

approximation:

φ (T, µ) =
ε0

n
− µµµ · x0x0x0 −

kBT

n
ln

(
1 +

∑
i>0

mie
−(∆εi−µµµ·∆ninini)/kBT

)
(3.3)

where ε0 is the ground state energy per unit cell, n is the number of atoms per unit

cell and x0 is the ground state composition. For each configuration, i, mi is the

symmetric multiplicity, ∆εi is the change in energy from the ground state and ∆ninini
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is the change in the number of atoms from the ground state.

The total energy of each atomic configuration was calculated using Density Func-

tional Theory (DFT) with the PBE exchange-correlation functional [47]. Calcula-

tions utilized the projector augmented wave (PAW) method [48] as implemented in

VASP[49] neglecting spin-orbit coupling. All unit cell parameters and atomic posi-

tions were allowed to relax to find the lowest energy arrangement to within 10−4eV

per primitive unit cell. A final static calculation was performed for an accurate total

energy. Energy convergence with respect to k-points was achieved with a Γ-centered

grid with 14 k-points in the irreducible Brillouin zone.

Configurational arrangements for Zn4Sb3 were enumerated by considering all pos-

sible interstitial combinations on known Zn interstitial sites [29, 1]. Configurational

arrangements of Zn8Sb7 are much more difficult to enumerate appropriately without

guidance from experimentally known defect lattice sites. The configurational disorder

then was probed by a systematic enumeration of new possible configurations on the

Zn sub-lattice. The specific enumeration process is described later in the discussion

section. Configurations with Zn vacancies and interstitials deviating from the Zn8Sb7

composition are also considered. DFT calculations were performed on select Zn8Sb7

configurations since it would be computationally prohibitive to calculate all possibil-

ities. Atomic positions were allowed to relax to a local minimum and were verified

to not have settled into identical configurations. While this method is by no means

exhaustive in gauging the configurational disorder in Zn8Sb7, it does provide a basis

for making certain assumptions to be discussed in the results section to follow.

Phonon density of states and vibrational free energies were calculated using the

‘supercell’ method as implemented in the Alloy Theoretic Automated Toolkit (ATAT)

[37, 38, 39]. The computational resources needed to compute phonon modes for all

Zn8Sb7 configurations are prohibitive (360 perturbation structures per configuration

per volume), so the phonon modes were only calculated for the nominal configuration.

In all, phonon modes were calculated for one Zn8Sb7 configuration, several Zn4Sb3

configurations as well as end-members Zn and ZnSb at 0%, 1% and 2% strain to

account for the effects of thermal expansion, under the quasi-harmonic approximation.
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The vibrational contribution to the free energy is incorporated into the GCP

through a nested sum in the partition function [19]. For each distinct configura-

tion, phonon occupation accounts for small displacements around the local energy

minimum, resulting in a temperature dependent free energy correction.

GCPs were assembled for Zn, Zn4Sb3, Zn8Sb7 and ZnSb. Phase equilibrium is

determined by equality of two respective GCPs. The equilibrium composition of each

phase can be determined by:

∇µµµφ (T,µµµ) = −xxx (3.4)

and the free energy is calculated as:

f (T, x) = φ (T,µxµxµx) + µxµxµx · xxx (3.5)

where µxµxµx is the chemical potential that stabilizes the phase at composition xxx.

The Seebeck coefficient is calculated for the ground state structures using the

Boltzmann transport equation within the constant relaxation time approximation

as implemented in the BoltzTraP code [50]. A dense k-point mesh is required to

evaluate the Fermi-integrals over the entire Brillouin zone. Convergence of the See-

beck coefficient with respect to carrier concentration is achieved in Zn8Sb7 with a

14x14x14Γ-centered k-point grid. For Zn4Sb3 and ZnSb structures, 16x16x16 and

40x32x32 k-point grids are used, respectively.

3.3 Results and Discussion

Crystal Structure and Charge Counting

The Zn-Sb structures in Figure 3.1 can all be described using the Zintl-Klemm for-

malism [51], in which Zn cations donate electrons to Sb anions which may then form

covalent bonds with other Sb to complete their valence shells. A molecular orbital

(MO) approach, which includes interactions between Zn and Sb can also successfully

rationalize the electron count [33]. In ZnSb (Pbca), all the respective Zn and Sb atoms
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are symmetrically equivalent. The Zn cations each donate 2 electrons to an Sb anion

and the Sb atoms form Sb4−
2 dimers. A valence-precise structure results with 8 Zn2+

and 4 Sb4−
2 per unit cell. One then can rationalize why ZnSb behaves electronically

as an intrinsic semiconductor with a band gap between the valence band (dominated

by Sb p-states) and the conduction band (composed primarily of Zn s-states).

The Zn4Sb3 (R3̄c) framework structure is composed of 30 Sb (orange sites in

Figure 3.1) and 36 Zn (blue sites) in the conventional unit cell. The anionic frame-

work is divided between 6 Sb4−
2 dimers and 18 isolated Sb3−. A fully occupied cation

framework of 36 Zn2+ is insufficient to satisfy a valence charge balance. Three ad-

ditional Zn2+ are needed to satisfy the charge balance at a composition of Zn13Sb10.

These additional Zn atoms can occupy any of three symmetrically distinct regions for

interstitial sites (pink, green and brown sites), introducing configurational disorder

not present in ZnSb. Thermodynamically, Zn4Sb3 is only stable in a narrow range of

composition near Zn12.992Sb10, which is slightly valence deficient. This explains the

persistent p-type doping observed experimentally in Zn4Sb3.

Examining the Zn8Sb7 (P 1̄) structure reveals some similarities to Zn4Sb3. The

anionic Sb framework is only slightly distorted from a high symmetry structure that

can be described with a P6/m space group. There are 10 Sb4−
2 dimers and 8 isolated

Sb3−, all sitting close to points of symmetry. The cation Zn framework exhibits low

symmetry with 32 Zn2+. This satisfies a precise valence condition, suggesting that

Zn8Sb7, like ZnSb and Zn13Sb10, should behave as an intrinsic semiconductor.

We further investigate the structure of Zn8Sb7 with the help of electron density

difference (EDD) plots. The EDD compares the calculated electron charge density

with the charge density resulting from the overlap of non-interacting single atom

electronic wave functions. EDD plots thus reveal where charge accumulation and

depletion occur as atomic wave functions interact. Charge accumulation between

atoms suggests the presence of a covalent bond.

Figure 3.2 shows the EDD around a diamond moiety in ZnSb, which clearly re-

veals charge accumulation lobes in a tetrahedral arrangement around each Sb atom.

In agreement with a previous molecular orbital study [33], one lobe of each Sb is
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shared between two closely spaced Zn atoms, forming a repeated diamond unit. This

same diamond moiety is also apparent in Zn4Sb3. Figure 3.2 shows the EDD for a

configuration of composition Zn12Sb10 (no interstitial Zn). In this case, each lone

Sb atom shares a lobe with each of two pairs of Zn atoms, forming zigzag chains

of diamond moieties [33]. The Sb-dimers form a separate linear chain from the dia-

monds. The presence of interstitial Zn, such as in Zn13Sb10 configurations, breaks up

the chain and creates local disorder in the diamond network. High configurational

entropy results because there are many possible ways for the interstitial Zn to distort

and rearrange the diamond network, all with similar energetic consequences.

In Zn8Sb7, we again see the diamond moiety but with added complexity. Non-

linear chains of diamond moieties incorporate both Sb-dimers (as in ZnSb) as well as

lone Sb (as in Zn4Sb3). All the diamonds are distorted out of plane, as is shown for

two of the diamonds in Figure 3.2. The crystal structure is frustrated in the sense

that it cannot settle into a single preferred ordered state, such as in ZnSb, but like

Zn4Sb3, there are many configurational possibilities that result in similar energetics.

One way to enumerate the possible configurational states is to consider the mis-

match of symmetry between the Sb and Zn sub-lattices. There are 6 symmetrically

equivalent ways to combine the higher symmetry P6/m Sb sub-lattice with the lower

symmetry P 1̄ Zn sub-lattice. By combining these 6 arrangements into a single lat-

tice, one can discover possible interstitial sites on the Zn sub-lattice. The combined

lattice is shown in Figure 3.3. All the orange Sb sites map closely to existing sites

as expected. However, the blue Zn sites reveal many new locations. Nearly equiva-

lent sites are combined to form an idealized lattice with 66 new possible Zn sites in

pink as shown at the bottom of Figure 3.3. These sites provide a basis to probe the

configurational disorder. Configurational arrangements involving Zn vacancies on the

highly occupied blue sites and Zn interstitials on partially occupied pink sites can

be enumerated and the energies calculated from first principles calculations. This

configurational disorder could likely be undetected by electron diffraction analysis

due to the low occupation of certain sites. The experimentally predicted [43] partial

occupancy results in a composition of Zn29.9Sb28, which could be explained as an



28

ZnSb

Zn12Sb10

Zn13Sb10

Zn8Sb7

Figure 3.2: Electron density difference plots showing networked structures of diamond
moieties of ZnSb, Zn4Sb3 and Zn8Sb7. Yellow isosurfaces show regions of electron
accumulation with respect to unperturbed overlapping atomic wave functions. In
all structures, Sb atoms share a local maximum “banana” with two closely spaced
Zn atoms, forming diamond-shaped moieties. The network of diamonds becomes
increasingly complex in Zn4Sb3 and Zn8Sb7, providing a rich source of entropy.
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average of 2.1 Zn atoms per unit cell occupying various interstitial sites. The entropy

associated with this disorder will be addressed in the phase stability section.

Electronic Structure

The calculated electronic density of states of Zn8Sb7 is shown in Figure 3.4 along

with ZnSb and Zn4Sb3. As expected from the Zintl-Klemm charge counting, Zn8Sb7

is found to be an intrinsic semiconductor like ZnSb and Zn4Sb3. The calculated

band gap is comparable to that of ZnSb but slightly smaller than that of Zn4Sb3.

The similar shape and magnitude of the valence band edges of Zn8Sb7 and Zn4Sb3

suggest a similar hole carrier effective mass. This result alone suggests that Zn8Sb7

might have similar electronic properties to that of Zn4Sb3. The valence band edge is

composed primarily of electronic states localized around the non-bonded Sb atoms.

The projected density of states in Figure 3.4 shows that the valence band is composed

primarily of Sb p-orbital character, which is similar to previous studies of Zn4Sb3 and

ZnSb [33].

The calculated Seebeck coefficient, S, as a function of (hole) carrier concentra-

tion is shown in Figure 3.5 for 700K. This assumes a rigid band model with a carrier

concentration controlled by shifting the electronic chemical potential away from the

intrinsic Fermi energy. For reference, dashed lines show trends derived from a sin-

gle parabolic band approximation for an effective carrier mass, m∗. The Seebeck

coefficient of Zn8Sb7 approaches that of Zn4Sb3 at higher carrier concentration for

similar doping levels. An optimum carrier concentration can be chosen to maximize

the power factor, σS2, with electrical conductivity, σ, calculated under the constant

relaxation time approximation. An approximate relaxation time is found by fitting

to experimental resistivity data for ZnSb [14] and Zn4Sb3 [3] and assuming a similar

value for Zn8Sb7. The constant carrier concentration Seebeck as a function of tem-

perature is shown in Figure 3.6. Both Zn4Sb3 and Zn8Sb7 have a maximum power

factor for a hole concentration of around 5 × 1020 cm−3 and ZnSb for a concentra-

tion of 7.5 × 1019 cm−3. It should be noted that in ZnSb it has proven difficult to
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Figure 3.3: Top: Zn8Sb7 lattice sites after applying all 12 symmetry operations of the
P6/m space group. The orange Sb sites map relatively closely to the original sites.
Many of the blue Zn sites map to new sites, while a few map to nearly symmetrically
equivalent sites. Bottom: Idealized lattice sites after removing nearly equivalent
sites. The original 28 Sb sites and 32 Zn sites are in orange and blue, respectively.
An additional 66 unique Zn interstitial sites are shown in pink.



31

0

0.5

1

0

0.5

1

St
at

es
/A

to
m

 e
V

−10 −5 0 5
0

0.5

1

Energy (eV)

−2 −1.5 −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

St
at

es
/A

to
m

 e
V

Energy (eV)

−2 −1.5 −1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

St
at

es
/A

to
m

 e
V

Energy (eV)

 

 

Sb−p
Zn−p
Zn−d
Zn−s
Sb−s
Sb−d

ZnSb

Zn4Sb3

Zn8Sb7

a)

b)

c)

Figure 3.4: (a) Calculated density of states for of ZnSb, Zn4Sb3 and Zn8Sb7, (b)
comparison near the Fermi level and, (c) atomic orbital projected density of states
for Zn8Sb7 .
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Figure 3.5: Calculated Seebeck coefficient as a function of (hole) carrier concentration
assuming a rigid band model for ZnSb, Zn4Sb3, and Zn8Sb7. (Dashed lines correspond
to calculations from a single parabolic band model with effective carrier mass m∗
under the constant relaxation time approximation.)

achieve hole concentrations above 1019 cm−3. In Zn4Sb3 single-phase material, the

Hall carrier concentration ranges between 6− 9× 1019 cm−3.

Phase Stability

Finally, we consider the thermodynamic phase stability of this new Zn8Sb7 phase. We

note that for Zn8Sb7 to be thermodynamically stable, the free energy must fall below

the tie-line between ZnSb and Zn4Sb3. This will prove difficult for Zn8Sb7 as Zn4Sb3

has high entropy even at room temperature. We start by considering the formation

enthalpy at 0K and then include entropic contributions at finite temperature.

Figure 3.7 shows the calculated formation enthalpy of Zn8Sb7 configurations (red)

alongside those of Zn4Sb3 (blue). We readily observe that Zn8Sb7 configurations have

positive formation enthalpy with respect to decomposition into ZnSb and Zn. This

is perhaps not unexpected due to similarities with Zn4Sb3, which also has positive

formation enthalpy at 0K. However, Zn4Sb3 is known to be thermodynamically

stable at higher temperatures [1] due to both configurational and vibrational entropic
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Figure 3.7: Formation enthalpy with respect to Zn and ZnSb at 0K for Zn8Sb7 (red)
and Zn4Sb3 (blue) configurations. The lines connect the respective lowest energy
configurations at each composition.

contributions to the free energy. These sources might have significant contributions

for Zn8Sb7 as well.

Entropy arises in an ensemble when many configurations are energetically acces-

sible. It is apparent from Figure 3.7 that we will expect some configurational entropy

in Zn8Sb7 at finite temperature from the several configurations with similar forma-

tion energy. Due to computational limitations on the large unit cell, we have only

calculated 30 different configurations at the Zn32Sb28 composition as well as 30 off-

stoichiometric configurations. These known configurations represent only a small

subset of the possible arrangements of atoms that can be enumerated based on the

idealized lattice in Figure 3.3. Each of our known configurations is likely representa-

tive of many other configurations of similar energy. To estimate this, we consider the

‘mean field’ entropy based on the average fractional occupancy, xi of each site, i:
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Smf [kB/cell] = −kB
∑
i

[xiln(xi) + (1− xi)ln(1− xi)] (3.6)

We can correct this value by assuming that Zn8Sb7 deviates from the mean field

value similarly to Zn4Sb3. For Zn4Sb3, considering 90% occupancy on the framework

sites and 5% occupancy on each of 3 interstitial sites gives an average mean field

entropy of 0.48 kB/atom. This is almost twice as high as the configurational entropy

calculated from the grand canonical ensemble, 0.21 kB/atom. For Zn8Sb7, we consider

a Zn framework site occupancy of 93% based on the experimentally determined partial

occupancy. The remaining Zn is interspersed over 66 possible interstitial sites. This

results in a mean field entropy of 0.28 kB/atom, which we reduce by the correction

factor for Zn4Sb3 to estimate the configurational entropy for Zn8Sb7 as 0.12 kB/atom.

The grand canonical potential (Equation 3.3) for Zn8Sb7 is tuned by increasing the

multiplicative constants, mi, so that, in the high-temperature limit, S = − ∂φ
∂T

=

0.12 kB/atom (the adjusted mean field entropy). In essence, this procedure combines

enthalpy obtained from the ab initio calculations with an entropy estimate based on

structural similarities with the Zn4Sb3 phase.

The vibrational contributions to the free energy have also been accounted for

in the quasi-harmonic approximation. Both Zn4Sb3 and Zn8Sb7 have a favorable

contribution to the free energy from phonons with respect to Zn and ZnSb. In the

high-temperature limit above 300K, Zn8Sb7 has an approximate vibrational entropy

of 0.19 kB/atom, which is slightly less than that of Zn4Sb3 with 0.22 kB/atom.

The grand canonical potential for each phase was calculated according to Equation

3.3 and the boundary lines of phase equilibria were determined by equality of two

respective GCPs. Formation free energy curves, as a function of composition, are

shown for Zn8Sb7 and Zn4Sb3 at three different temperatures in Figure 3.8. The set

up blue curves at 650K correspond to the region of phase decomposition into ZnSb and

Zn. At the intermediate temperature in orange, the formation free energy of Zn4Sb3

has dropped below that of Zn and ZnSb. The convex hull connects the lowest energy

phase at each composition and includes the respective common tangent construction
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Figure 3.8: Calculated formation free energy curves for Zn4Sb3 and Zn8Sb7 with
respect to ZnSb and Zn at three temperatures. A convex hull is drawn connecting
the free energy curves of the thermodynamically stable phase at a given temperature.
At 650K, Zn and ZnSb are in equilibrium over the entire composition range shown.
At 900K, Zn4Sb3 has broken the convex hull and has a pure phase stability window
on a narrow composition range. At 1200K, Zn8Sb7 has broken the convex hull and
shows a favorable formation energy with respect to ZnSb and Zn4Sb3 (connected by
the black dashed line).

between Zn4Sb3, ZnSb and Zn. At this temperature, there is no thermodynamic

stability for Zn8Sb7 even though it is more favorable than decomposition to ZnSb

and Zn. At the highest temperature in red, we see that the Zn8Sb7 free energy curve

touches the convex hull indicating a region of phase stability. The black dashed line

indicates the convex hull without the Zn8Sb7 phase. We see that Zn8Sb7 could have

a temperature window of phase stability at high temperature, if there is sufficient

entropy as in our estimation. We note that the calculated temperature scale does not

correspond exactly to the physical Kelvin scale. Our temperatures likely over-predict

the stabilization temperatures for both Zn4Sb3 and Zn8Sb7.
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With our plausible assumptions for configurational entropy we show that Zn8Sb7

can be thermodynamic stable at high temperatures. We also consider two possible

reasons as to why Zn8Sb7 has only been observed experimentally in nanoparticulate

form—lattice strain and surface energy. Ab initio calculations under the generalized

gradient approximation typically overestimate the experimentally observed lattice

parameter. This is indeed the case with ZnSb and Zn4Sb3, for which calculations

predict, respectively, a 1.6% and 2.1% lattice parameter overestimation at 300K (in-

cluding the calculated thermal expansion due to lattice vibrations). We would expect

to see a linear trend with composition between ZnSb and Zn4Sb3. [52] Contrary to

expectation, the calculated lattice parameter of Zn8Sb7 under predicts the experi-

mentally characterized lattice parameter by 1.0% at 300K as is shown in Table 3.1.

This error is likely within the limits of accuracy for the experimentally characterized

lattice constant, but the presence of lattice strain is possible, either due to a surface

stress or other synthetic factors.

Table 3.1: Bulk moduli, B, as fit to the equation of state E(V ) = B
2V0

(V − V0)2 (for
total energy, E, unit cell volume, V, and ground state volume, V0) and the room
temperature unit cell volume (calculated and measured) for three Zn-Sb phases.

Bulk Modulus Unit Cell Volume (Å3)

eV/Å3 GPa DFT (GGA) Experiment Error
Zn4Sb3 0.267 42.7 571 536 2.1%
Zn8Sb7 0.240 38.5 1577 1625 -1.0%
ZnSb 0.248 39.7 410 391 1.6%

Surface effects could explain the more favorable formation of Zn8Sb7 in nanopar-

ticulate form. If the surface energy of Zn8Sb7 was lower than the average surface

energy of ZnSb and Zn4Sb3, then for a fixed number of atoms in a nanoparticle, we

would expect Zn8Sb7 to be more favored for small particle sizes. Calculating the

surface energy for each of these structures would be computationally prohibitive, but

we can consider values that might be plausible. As an example, if Zn8Sb7 has a lower

surface energy than ZnSb and Zn4Sb3 by 0.05 eV/Å2 (0.78 J/m2, which is on the order

of differences reported in some elemental surface energies [53]) then for a 50nm par-
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ticle, Zn8Sb7 would have an energy benefit of 6meV/atom with respect to ZnSb and

Zn4Sb3. At a particle size of 90nm, the surface energy difference would be negligible.

Even if we assume that the surface energy is constant between all phases, we still ob-

serve that Zn8Sb7 has a lower bulk modulus than both ZnSb and Zn4Sb3 (Table 3.1).

In a stressed surface condition, we expect the softer phase, Zn8Sb7, to have a more

significant energy lowering to the surface contribution according to P 2/2B, where P

is pressure and B is the bulk modulus. Thus, Zn8Sb7 would be slightly favored over

ZnSb and Zn4Sb3. At the pressure required to adjust the calculated Zn8Sb7 lattice

parameter to the experimental value (-3.4 GPa), the energy correction is 3meV/atom

in favor of Zn8Sb7. We suggest that through some combination of surface energy and

lattice strain, Zn8Sb7 might be more favorable under certain conditions.

3.4 Conclusions

From our first principles investigation of Zn8Sb7 we expect the theoretical bulk Zn8Sb7

phase to exhibit good thermoelectric properties. We predict Zn8Sb7 to be entropically

stabilized at high temperature if our assumption of configurational entropy holds true.

There are also other mechanisms, such as lattice strain or surface energy, that would

favor the stability of Zn8Sb7 with respect to ZnSb and Zn4Sb3. The stability of Zn8Sb7

at high temperatures could partially explain the complexity observed in this part of

the Zn-Sb phase diagram.
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Chapter 4

Defect-Driven Properties in AZn2Sb2

4.1 Introduction

Zintl compounds have enjoyed a rich history of scientific study since their initial

investigation by Edward Zintl in the 1930s [51]. Intermetallic Zintl compounds are

characterized by electropositive cations donating electrons to support the formation

of anionic polyhedral units. Anion to anion bonds form to fully satisfy the s2p6

configuration of valence electrons. For example, in ZnSb, each Zn atom donates

two electrons to the valence band which is insufficient to satisfy the valence of each

independent Sb atom. Instead, Sb atoms form bonded dimer units which satisfy the

condition for valence balance. Likewise, in Zn4Sb3, Sb dimers as well as lone Sb are

present to satisfy complete valence for a composition of Zn13Sb10,

Zintl compounds have recently emerged as excellent thermoelectric materials due

mainly to their intrinsically low lattice thermal conductivity. Good thermoelectric

materials are generally degenerate semiconductors, with electronic properties opti-

mized between an insulator (high Seebeck coefficient) and a metal (high electrical

conductivity). Achieving the optimal balance between these properties requires con-

trolling the electron (or hole) carrier concentration. Generally, the optimal carrier

concentration, n, is on the order of 1019 to 1020 carriers/cm3.

By definition, Zintl compounds are valence precise, where—if all sites are assumed

to be fully occupied—the Zintl condition (filled octets) is met. As such, in their pure

form, Zintl compounds would be expected to have very few free charge carriers. How-
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a
b

c

Figure 4.1: (left) Layered crystal structure of AZn2Sb2, space group P-3m1. The
cations are shown in green, Zn in blue, and Sb in orange. (right) The experimental
Hall carrier concentration of AZn2Sb2 compounds increased with increasing cation
electronegativity. [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

ever, there are many examples of Zintl compounds, which, despite being nominally

valence precise, are inevitably found to be electron deficient, exhibiting large extrin-

sic carrier concentrations. This is particularly apparent in AZn2Sb2 Zintl compounds

(A=Ca, Sr, Eu, Yb) with the CaAl2Si2 structure type (Figure 4.1 - left). These com-

pounds exhibit persistently high extrinsic p-type carrier concentrations, as illustrated

by the right panel of Figure 4.1. Across multiple studies, including both polycrys-

talline and single crystal samples, there is a clear trend between the electronegativity

of A and the carrier concentration. Although generally less strong, similar trends are

seen in other Zintl systems.

For thermoelectric applications, high n in AZn2Sb2 compounds is extremely use-

ful, as they form naturally with nearly optimized electronic properties. Isoelectronic

substitutions are sufficient to fine-tune the carrier concentration and electronic prop-

erties to optimize thermoelectric efficiency. In contrast, most classic Zintl compounds

(Ca5M2Sb6, Ca3AlSb3, Sr3GaSb3, Yb14AlSb11, Ba8Ga16Ge30), are intrinsic semicon-

ducting materials with low carrier concentration (∼ 1018 cm−3), requiring intentional
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doping with alio-valent elements to increase the carrier concentration to 1019–1020

carriers/cm3.

Despite the advantage conferred by high n in AZn2Sb2 compounds, the origin of

high extrinsic carrier concentration in valence-precise semiconductors, and the depen-

dence of n on electronegativity has not been satisfactorily explained.

Here we show that the persistent p-type behavior observed in AZn2Sb2 Zintl com-

pounds and the dependence on electronegativity can be explained by considering

defect concentrations. Using density functional calculations, we describe the thermo-

dynamic behaviour of point defects in AZn2Sb2. The respective point defect concen-

trations contribute to a finite phase width and slightly off-stoichiometric materials.

We show that the predicted deviation from the nominal stoichiometry can be used to

explain the experimentally observed carrier concentrations in these materials.

4.2 Thermodynamics

The formation and growth of a given crystal phase is governed by thermodynamics

and kinetics, both of which are dependent on temperature and chemical composition.

A phase may be thermodynamically stable over a range of composition, and the

range varies with temperature. The limits of this composition range are determined

by the energetics of configurational disorder and the equilibrium relationships with

other nearby phases. Unless a sample is cooled extremely slowly during synthesis,

the phase at room temperature may also exist outside of its thermodynamic range of

stability, due to kinetic limitations.

One form of configurational disorder that is present in all crystal phases is the

point defect—a change in the crystal lattice occurring only at one lattice site. Even

crystals with very precise stoichiometry will invariably contain point defects due to the

disordering tendency of entropy. Point defects can significantly alter the electronic

properties of a material, depending on the ionization of the defect and the defect

energy relative to the valence and conduction bands. For a crystal phase that has a

small concentration of defects, we can consider treat them in the dilute limit, under
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the assumption that the defects are non-interacting and the crystal band structure is

largely unaffected [54, 55]. In this limit, we can calculate the concentration of defects

as a function of the single defect energy (∆H = ED–E0), the Fermi level (EF ) and the

chemical potential of each atomic species (µ). In the case of a single cation vacancy,

the expression becomes

xD,q ≈ x0 exp

(
−∆HD,q

kBT

)
= xA0 exp

(
−ED,q − E0 + qEF + µA

kBT

)
(4.1)

Intuitively, we would expect ED–E0 to correlate with the relative strength of bonds

that may be broken or perturbed through the formation of a defect.

The chemical potential range for the phase is constrained thermodynamically by

equilibrium with nearby phases. In AZn2Sb2 samples, ZnSb precipitates are fre-

quently observed. The chemical potential, µ, can then be chosen for the condition

of equilibrium between AZn2Sb2, ZnSb and Zn. The limits of defect concentrations

occur at the limit of phase stability with these surrounding phases.

A charge neutral condition must also be satisfied between charged defects and

charged carriers:

nh − ne +
∑
D,q

qxD,q = 0 (4.2)

where nh and ne are the respective free carrier concentrations of holes and electrons:

nh =

∫ εV

−∞
D(ε) [1− f(ε; εF , T )] dε

ne =

∫ ∞
εC

D(ε)f(ε; εF , T )dε

where D(ε) is the density of states and f(ε; εF , T ) is the Fermi distribution function

centered at chemical potential, εF . From these relationships, the concentrations of

defects, holes and electrons can be calculated self-consistently at a given tempera-
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ture, presuming complete thermodynamic equilibrium. However, we do not expect

AZn2Sb2 to be in equilibrium through the complete solid-state temperature range. At

some temperature, defect formation and mobility become kinetically limited and the

meta-stable concentrations at lower temperatures reflect the thermodynamic equilib-

rium of a higher temperature.

4.3 Results and Discussion

The calculated electronic structures for AZn2Sb2 compounds are shown along lines of

high symmetry in Figure 4.2. The structure of the valence band is similar across the

series—each consisting of three bands near the valence band maximum. These can

be accurately described, analytically, as ellipsoidal pockets—each with anisotropic

effective carrier mass. These bands are primarily of Sb p-orbital character, similar

to the valence bands of other Sb-derived Zintl phases such as ZnSb [2, 14], Zn4Sb3

[1], Ca5M2Sb6 [16] and Ca3AlSb3 [16]. At zero temperature, the valence band states

are fully occupied, (Fermi energy residing in the band gap) which would result in an

intrinsic semiconducting material. This suggests that, for a perfect AZn2Sb2 crystal,

thermally activated intrinsic carriers should dominate transport. In contrast, experi-

mental transport measurements show large concentrations of extrinsic p-type carriers,

suggesting that in the measured samples, the Fermi level is in the valence band. The

presence of band gaps in AZn2Sb2 compounds is consistent with experimental results,

which suggest band gaps ranging from 0.2 to 0.5 eV. The variation in the calculated

bandgaps is within the range of experimental estimations, but we do not place a

high value on their precision. However, we will show that the magnitude of the gap

does not greatly influence the subsequent results, due to the highly degenerate p-type

behavior.

To understand the defect behavior of AZn2Sb2, we must understand the phase rela-

tionships with the other compounds in the A-Zn-Sb ternary phase diagram. Based on

total energy calculations, AZn2Sb2 is indeed stable at zero temperature with respect

to its elemental constituents as well as to reported surrounding binary compounds.
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Here, we focus on the boundary between AZn2Sb2 and ZnSb, since ZnSb precipitates

are often observed after synthesis.

The total energy of a defect in AZn2Sb2 was calculated after removing or replacing

a single atom from a large supercell. These defect energies (ED in Equation 4.1) were

calculated for vacancies, as well as substitutional, and interstitial point defects. These

include vacancies on the cation, Zn and Sb site (VA, VZn, VSb) substitutions of Zn or

Sb on the cation site (ZnA, SbA), or cations on the Zn site (AZn), as well as cation

interstitials (Ai). The defect formation enthalpy [54, 55], ∆H = ED–E0 + qEF + µ,

is often reported as a function of EF . Figure 4.3 (top) shows ∆H for all calculated

defects in CaZn2Sb2. The slope of the line corresponds to the charged state of the

defect (for clarity, we only show the lowest energy charge segment for each defect). It

is apparent from these results that the cation vacancy (VCa) is the most energetically

favorable point defect. This was found to be true for all AZn2Sb2 compounds—the

cation vacancy is always the predominant defect. It is thus only necessary to consider

cation vacancies when comparing the defect energies across the AZn2Sb2 series. The

bottom panel of Figure 4.3 illustrates the dependence of vacancy energy on our choice

of cation. As expected, the vacancies of the most electronegative cation, Yb, has the

smallest energy cost. Vacancy formation becomes more costly as electronegativity

decreases.

An important implication of these results is that strong n-type behavior in AZn2Sb2

compounds is thermodynamically unattainable. This arises from the fact that the

negatively charged vacancy has a negative formation enthalpy for Fermi levels still in

the middle of the band gap. The formation of a negatively charged defect effectively

reduces the Fermi level to maintain charge balance. Such low formation energies of

these cation vacancies pins the Fermi level closer to the valence band. This explains

the persistent p-type character of AZn2Sb2 compounds. Attempts to increase the

Fermi level through n-type chemical doping would only encourage the formation of

more cation vacancies. This is most dramatically the case in YbZn2Sb2, where the

Fermi level is pinned very closely to the valence band maximum. At higher tempera-

tures, the formation enthalpies of the vacancies are more easily overcome and a higher
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vacancy concentration becomes stable—further reducing the Fermi level.

The thermodynamically stable defect concentrations in AZn2Sb2 determine the

compositional phase width around the pure stoichiometry. This is illustrated for

each AZn2Sb2 compound in Figure 4.4 in the form of a pseudo-binary phase diagram

between AZn2Sb2 and ZnSb. The edge of each respective shaded region corresponds

to the maximum concentration of vacancies in single-phase AZn2Sb2, assuming full

equilibrium with ZnSb at a given temperature. Any composition and temperature

range outside of the respective shaded region would result in ZnSb precipitates.

As discussed above, it is unlikely that samples at room temperature are in thermo-

dynamic equilibrium. Below a threshold temperature, diffusion kinetics become too

slow to equilibrate the system. A reasonable guess for this temperature might be 800

K, but it likely varies depending on the cation species. Below this temperature, the va-

cancy concentration becomes effectively fixed and ZnSb precipitates—if any—would
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have already been formed. The hole and electron carrier concentrations reflect the

charge balance of the frozen vacancy concentration according to Equation 4.2. This

results in the behavior of an extrinsically doped semiconductor due to intrinsically

formed cation vacancies.

Assuming that the defect concentration “freeze” at 800 K during cooling, the

expected defect and hole carrier concentrations can be calculated as described above,

and are listed in Table 4.1. These tabulated results for Hall carrier concentration

show both qualitative and quantitative agreement with all experimental reports in

these compounds.

Table 4.1: Experimental Hall carrier concentration alongside calculated vacancy con-
centration, carrier concentration, and Hall carrier concentration for AZn2Sb2 at 800
K. All values are in units of cm−3.

nh,exp [VA] ncalc nhall,calc

CaZn2Sb2 4.0× 1019 6.3× 1019 6.0× 1019 6.2× 1019

SrZn2Sb2 1.5× 1019 3.6× 1018 5.2× 1018 1.0× 1019

YbZn2Sb2 1.2× 1020 2.2× 1020 1.6× 1020 1.6× 1020

EuZn2Sb2 2.5× 1019 2.0× 1019 2.5× 1019 2.9× 1019

There is a clear trend in these results with the electronegativity of the cation in

Figure 4.1. We have found that the energy of formation for cation defects in AZn2Sb2

compounds scales inversely with electronegativity. This leads to highest vacancy

concentrations in the Yb-based compounds. The trend in defect formation extends

to carrier concentration to maintain charge balance.

4.4 Conclusion

In materials such as AZn2Sb2, we show that a large concentration of thermodynami-

cally stable cation vacancies leads to high extrinsic carrier concentrations. The stable

defect level depends on our choice of A, and is consistent with experimentally ob-

served carrier concentrations in these materials. These results demonstrate that point

defects are the primary mechanism by which the covalency of the cation bond can in-

fluence carrier concentration in nominally valence-precise AZn2Sb2 compounds. This
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mechanism may be generally applicable, perhaps explaining similar trends seen in

A14MSb11, and A2MSb2 (A=2+ cation, M = 2+ or 3+ metal), and similar materials.
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Appendix A

Cluster Expansion of III–V Alloys

The goal here is to create a lattice cluster expansion (CE) Hamiltonian that is capable

of describing the entire phase space of a large alloy system. The CE would include

scalar quantities, like formation energy, as well as tensorial properties, like lattice

strain and elastic constants. The III–V semiconducting system was selected as a

model system due to its order-dependent properties and epitaxial nature of many

applications. The III–V alloys form in one of two primary lattices. The ground state

lattice of the Phosphides and Arsenides—[Al,Ga,In][P,As]—is Zinc-blende [56]. The

Nitride compounds—[Al,Ga,In]N—form a ground state in the wurtzite structure [56].

Many of the pure binary compounds form complete solid solutions with each other

by substitution on the cation or anion site [57]. There are also many ordered hetero-

structures that form in the intermediate composition range due to the large lattice

mismatch in some alloys. It is this problem that the cluster expansion of strain and

elastic properties can help understand.

A.1 Scalar Cluster Expansion for Energy

The energy of a given configuration, E(σ), using the scalar cluster expansion, is

represented as polynomial of occupation variables, σi. Here, the angled brackets

represent the average product of all distinct clusters of a given motif, α:

E(σ) =
∑
α

mαJα

〈∏
i∈α′

σi

〉
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Figure A.1: Zinc-blende (left) and wurtzite (right) crystal lattices. Blue cations can
be occupied by Al, Ga, and In. Orange anions can be occupied by N, P, and As.

For example, in a large supercell, there could be hundreds of nearest neighbor

interactions. The average is taken over the products of each distinct pair of occupation

variables. For a given cluster motif, α, mα is the symmetric multiplicity and Jα is the

effective cluster interaction (ECI). Select pair and triplet cluster motifs are shown in

FigureA.2.

A 2-component cluster expansion was fit or each of 18 binary alloy systems in

[Al,Ga,In][N,P,As]. The convex hull is shown for each in the Zinc-blende lattice in

FigureA.3. Red points are calculated using density functional (DFT) calculations

and green points are predicted using the fitted CE. All but [Al,Ga]N show only the

pure binary end-members as ground state configurations. In the case of [Al,Ga]N,

the wurtzite structures have slightly lower energy, so the intermediate configuration

is not an absolute ground state. From inspection of these convex hull diagrams, it

becomes clear that some alloys—such as Al[N,As]—will have a strong tendency to

phase separate, while others—such as [Al,Ga]P—have a much smaller energy cost for

form a mixed configurations. Adding to these binary alloy data points, ternary and

quaternary configurations were generated and fit with multi-component CEs—finally

building up to the 6-component CE.
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Figure A.2: Selected pair (left) and triplet (right) cluster motifs on the zinc-blende
lattice.

The multi-component CE is more complicated than its binary counterpart because

the occupation variables cannot simply be ±1. The extra degrees of freedom from

multiple site occupation require more than one cluster function for each cluster motif.

To simplify the interpretation of the occupation variables, we used the following

cluster functions:

• Function 1— A: σi = −1
2
, B: σi = 1, C: σi = −1

2

– This can be interpreted as the effect of a B occupation relative to an

random occupation of [A,B,C] atoms.

• Function 2— A: σi = −1
2
, B: σi = −1

2
, C: σi = 1

– This can be interpreted as the effect of a C occupation relative to an

random occupation of [A,B,C] atoms.

• Redundant Function— A: σi = 1, B: σi = −1
2
, C: σi = −1

2

– Can be calculated from functions 1 and 2 for a symmetric interpretation

of the average occupation variables.
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Figure A.3: Pseudo-binary convex hulls for all [Al,Ga,In][N,P,As] combinations on
the zinc-blende lattice. Green points are predicted configurational energies based on
a 2-component cluster expansion fit to red points.
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The 6-component scalar CE because increasingly difficult to fit. To improve the fit,

two schemes were utilized. First, a weighted least-squares fit was used to reduce the

residual error of the lowest energy structures. The weight of each data point was

constructed from a Boltzmann factor—exp
(
−EF

kT

)
—according to the formation en-

ergy of the configuration with respect to the pure binary end-members. The residual

error of the fit is represented in FigureA.4. There is generally good agreement and

a cross-validation (CV) score of 25 meV/atom. The inset shows an enlarged view of

the configurations with very low formation energy. While the ground state configu-

rations are correctly represented, there is still significant scatter for the low energy

configurations that could adversely affect the Monte Carlo simulations.

As a potential improvement, a Bayesian fitting procedure was used [58]. This

approach has a much different view of the data being fit. It assumes that the configu-

rational energy data is ’precisely known‘, rather than a frequentist view that the data

has a random sampling error. This is appropriate with the use of DFT, which may

have a systematic error for certain quantities, but should be very precise in predicting

the total energy. With a Bayesian approach, there can be more fitting terms than

data points. Using a prior assumption, the most likely set of fitting parameters can

be determined. The prior used for fitting the cluster ECIs is a Gaussian function

about zero:

p0(J) =
∏
α

1

ωα
√

2π
exp

(
− J2

α

2ω2
α

)

ωα = Abnα
∏
{i,j}⊂α

(rij
a

)−p
where the Gaussian width, ωα, of each ECI is decaying function of cluster in-

teraction distance, rij and the number of sites in the cluster, nα. The adjustable

parameters, b and p can be selected according to physical knowledge of the system

and to optimize the predictive power according to the CV score.

This fitting method was successfully applied to the ternary [Al,Ga,In]N wurtzite

system. The known DFT energies are nearly perfectly matched and the fit has a

CV score of 0.4 meV/atom. The ECIs are shown in FigureA.5 on a logarithmic
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Figure A.5: Cluster expansion fit for pseudo-ternary III–N wurtzite compounds using
a Bayesian fitting approach. ECIs are reported for 2000 pair, triplet, and quadruplet
clusters. Lines correspond to the Bayesian prior assumption of ECI magnitude.

scale, along with lines showing the decay of the Bayesian prior with effective cluster

distance. The prior parameters, b = 0.25 and p = −4, yielded the best CV score,

though many other parameter combinations gave similar fitting results. Future study

of this fitting method should include a test of robustness of the fitted ECIs to the

variation in prior parameters.

A.2 Tensorial Cluster Expansion of Strain and Elas-

tic Constants

To extend the scalar cluster expansion to tensorial properties, a tensor basis set is

included in the expansion [25]:
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Table A.1: Basis set for 2-dimensional strain tensor for the zinc-blende lattice up to
2nd-nearest neighbors.

Cluster Symmetrically Allowed Tensor Basis

Null & Point Cluster β = 1√
3

1 0 0
0 1 0
0 0 1


1st NN β = 1√

3

1 0 0
0 1 0
0 0 1

 , 1√
6

0 1 1
1 0 −1
1 −1 0


2nd NN β =

1 0 0
0 0 0
0 0 0

 , 1√
2

0 0 0
0 1 0
0 0 1

 , 1√
2

0 0 0
0 0 1
0 1 0

 , 1
2

0 1 1
1 0 0
1 0 0



Q(σ) =
∑
α

∑
β∈C(α)

mαβJαβ

〈
β′
∏
i∈α′

σi

〉
(α,β)

In this case, each cluster, α, is coupled to a set of tensor bases, β, restricted by the

symmetry of the cluster motif. TableA.1 lists the set of allowed 2-dimensional tensor

bases for the first few cluster motifs on the zinc-blende lattice. TableA.2 shows the

same for 4-dimensional tensors.

Significant work remains to determine the best way to fit the tensorial CE to the

DFT data. A simple least-squares fit was performed for strain and elastic constants

for the full 6-component III–V system, using only pair clusters up to 2nd nearest

neighbors. FigureA.6 shows the fitted ECI results for strain—visualizing the direc-

tional tensor coupling of each cluster mapped onto the unit sphere. FigureA.7 shows

the coupling interactions for the elastic constants. Further work is needed to gauge

the quality and predictive ability of these CE fits. As is, these results can still provide

valuable insight into the coupling of order and directional properties.

One of the ultimate goals of the tensorial cluster expansion is to be able to per-

form lattice Monte Carlo simulations under stressed and strained conditions. The

grand canonical ensemble would include additional terms to account for these applied

conditions:
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Table A.2: Basis set for 4-dimensional elastic tensor for the zinc-blende lattice up to
2nd-nearest neighbors.

Cluster Symmetrically Allowed Tensor Basis

Null & Point Cluster β = 1√
3


1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 , 1√
6


0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

 , 1√
12


0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0



1st NN
β = 1√

3


1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 , 1√
12


0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 −1 0
0 1 0 0 0 −1 0 0 0
0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0
0 0 −1 −1 0 0 0 0 0
0 0 0 1 0 0 0 −1 0
0 −1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0

 ,

1√
6


0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

 , 1√
24


0 0 0 0 0 1 0 1 0
0 0 0 0 0 −1 1 0 −1
0 0 0 1 −1 0 0 −1 0
0 0 1 0 0 0 0 −1 −1
0 0 −1 0 0 0 −1 0 0
1 −1 0 0 0 0 −1 0 0
0 1 0 0 −1 −1 0 0 0
1 0 −1 −1 0 0 0 0 0
0 −1 0 −1 0 0 0 0 0

 ,

1√
12


0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0

 , 1√
24


0 1 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0
0 1 0 1 0 −1 0 −1 0
0 0 0 0 −1 0 0 0 −1
1 0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0 −1
0 0 1 0 0 −1 1 −1 0



2nd NN

β =


1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , 1
2


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0

 ,

1
2


0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , 1
2


0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

1√
2


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

 , 1√
2


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

 ,

1√
8


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0

 , 1√
8


0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

 ,

1√
8


0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , 1√
8


0 1 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

1√
8


0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0

 , 1√
32


0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 2 1
0 0 0 0 1 2 0 1 0
0 0 0 0 0 2 0 1 1
0 0 1 0 0 0 1 0 0
0 1 2 2 0 0 1 0 0
0 0 0 0 1 1 0 2 0
0 2 1 1 0 0 1 0 0
0 1 0 1 0 0 0 0 0

 , 1√
24


0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 1
0 0 0 0 1 −1 0 1 0
0 0 0 0 0 −1 0 1 1
0 0 1 0 0 0 1 0 0
0 1 −1 −1 0 0 1 0 0
0 0 0 0 1 1 0 −1 0
0 −1 1 1 0 0 −1 0 0
0 1 0 1 0 0 0 0 0
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Figure A.6: Coupled tensor-cluster interaction terms for lattice strain mapped onto
the unit sphere. Lighter colors represent strong positive coupling between a particular
cluster and the direction of strain.

Figure A.7: Coupled tensor-cluster interaction terms for elastic constants mapped
onto the unit sphere. Lighter colors represent strong positive coupling between a
given cluster and the directional elastic constants.
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Φ(µ, T, ε) = −kT ln

∑
s

exp

−Es − µ ·Ns +
∑
i,j

σs,ijεij + 1
2

∑
i,j,k,l

Cs,ijklεijεkl

kT




where ε is the 2-dimensional strain tensor, C, is the 4-dimensional elastic tensor,

and σ is the 2-dimensional stress tensor—all of which could be calculated using the

tensor CE. In this way, the large phase space of an alloy system can be explored

in various epitaxial conditions or accounting for strain fields. This effort still holds

promise to be an effective tool, but additional work is required to refine the fitting

approaches to find an accurate and robust CE fit.
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