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Abstract 

This thesis consists of four papers on the general subject of atmospheric chemistry 

in the outer solar system. Although all are reducing environments, the atmospheres differ 

widely in the ranges of temperature and pressure they encompass. Individual abstracts are 

given below. 

Photochemistry of the Atmosphere and Ionosphere of Triton 

A one-dimensional photochemical model of the atmosphere and ionosphere of 

Triton was constructed to evaluate the significance of CO and C02, detected as surface 

ices (Cruikshank et al. 1993), to the gas phase chemistry. For a CO mixing ratio of 104
, 

consistent with the observed fraction of CO ice, the model yields several interesting 

results. Gas phase production of C02 is slow, but may, with the help of heterogeneous 

reactions on aerosols, be capable of producing a detectable layer of C02 ice over the age 

of the solar system; however, we consider this unlikely. Atomic nitrogen, produced in the 

ionosphere, diffuses to the lower atmosphere and recombines to form N2 in a cycle in 

which C acts as a catalyst. In a model with solar radiation only, the model predicts N 

densities a factor of two smaller than reported by Krasnopolsky et al. (1993). Atomic 

carbon is produced in the ionosphere primarily by dissociative recombination of co+. For 

an assumed rate coefficient for charge exchange from N2+ and co+ to C of lxl0- 10 cm3 

sec-1
, Triton 's ionosphere is dominated by c+ and can be accounted for entirely by solar 

radiation. For a rate coefficient 10 times smaller, magnetospheric electron precipitation 

is needed to account for the observed electron density, but c+ is still the principal ion. 

Electron precipitation is necessary to explain the observed N abundances. Measurements 

of the rate coefficients for ion-molecule reactions involving neutral C are needed. 
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Metal Ions in the Atmosphere of Neptune 

Microwave propagation experiments performed with Voyager 2 at Neptune 

revealed sharp layers of electrons with densities- 104 cm·3 in Neptune' s lower ionosphere. 

These layers are reminiscent of terrestrial sporadic-£ layers, and , when taken together 

with data from the other giant planets, confirm the importance of the magnetic field in 

layer formation. A photochemical model which incorporates species produced by 

meteoroid ablation predicts that Mg+ is the most likely metal comprising the layers, 

although laboratory data on the kinetics of metallic atoms and ions in reducing 

environments are lacking. The metal chemistry discussed here is directly relevant to the 

abundant metals observed at the impact site of the G fragment of Comet Shoemaker-Levy 

9 on Jupiter. 

Meteoroidal Influx into the Upper Atmospheres of Uranus and Neptune 

Results from a recent analysis of meteoroid ablation rates in the atmosphere of 

Neptune have been coupled with photochemical models of the upper atmospheres of 

Neptune and Uranus to yield estimates of stratospheric water profiles as a function of 

meteoroid influx. Because water has never been detected in the upper atmospheres of the 

giant planets, the tangential column opacities of the model water profiles were compared 

with UV absorption measurements made by Voyager to determine maximum water 

influxes. For Uranus an upper limit is obtained which is consistent with an Oort-family 

particle population, but not with a large population of planet-family dust particles. For 

Neptune the model water profile is strongly dependent on the still uncertain eddy 

coefficient, making it difficult to rule out a large planet-family of IDP's. However, an IDP 

population sufficiently large to account for the CO observed in Neptune's atmosphere can 

be ruled out. 
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A Chemical Kinetics Model for the Comet Impact with Jupiter 

A chemical kinetics code was developed for gas phase species comprised of the 

elements H,C,N,O,S and Si. The code is valid at high temperatures and for H-dominated 

compositions. The kinetics model was tested by running it to steady state equilibrium and 

comparing the results with a thermochemical model. Model runs for pressure-temperature 

histories relevant to the comet Shoemaker-Levy 9 impacts with Jupiter were made for 

C>O and C<O compositions and for a variety of temperatures. Results indicate that the 

plume gas must have C>O, in agreement with Zahnle et al. ( 1995), implying a greater 

than 50:1 mix of Jupiter gas to vaporized comet. 
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Abstract 

The recent detection (Cruikshank et al. , 1993) of CO and C02 ices on the surface 

of Triton has important implications for the photochemistry of Triton' s atmosphere. 

Results of a detailed photochemical model of Triton's atmosphere and ionosphere are 

presented for a CO mixing ratio of 10-4. The model is one-dimensional, has 55 neutral and 

ion species and 211 reactions, and includes molecular, eddy, and ambipolar diffusion. 

Specific model calculations include the condensation rates of supersaturated species, 

atomic nitrogen profiles, and ion and electron profiles. As with earlier models, our model 

predicts that in the lower atmosphere the condensation of C2H4 and other hydrocarbons 

should produce a detectable layer of ice in about 106 years, for present Triton conditions. 

The lack of detection of any hydrocarbon ices suggests that either the ices are rapidly 

modified by radiation, or that our understanding of the photochemistry at these low 

temperatures is incomplete. Gas-phase production of C02 is slow but may be able to 

produce a detectable layer of C02 ice over the age of the solar system. Heterogeneous 

reactions on the surface of aerosol particles may contribute to the formation of C02 and 

scavenging of H may contribute to the hydrogenation of hydrocarbons on the aerosols. 

Atomic nitrogen, produced in the ionosphere, diffuses to the lower atmosphere where 

three-body reactions become important. The recombination of nitrogen atoms is found to 

occur principally via a cycle in which C acts as a catalyst, forming the species CNN 

during three-body reaction with N2• The model predicts N densities about a factor of two 

lower than determined by Krasnopolsky et al. ( 1993). Atomic carbon is produced in the 
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ionosphere primarily by the dissociative recombination of co+. For an assumed rate 

coefficient for charge exchange from N2 + and co+ to c of 1 X w-IO cm·3sec"1
' Triton 's 

ionosphere is dominated by c+ and can be accounted for entirely by solar radiation. Thus, 

a large flux of precipitating magnetospheric electrons to Triton 's upper atmosphere is not 

necessary to explain Triton's ionosphere. Much of the neutral and ion chemistry involving 

atomic carbon is very uncertain. Measurement of the rates of several key ion reactions 

would place an important constraint on the ratio of solar to magnetospheric energy input 

to Triton' s upper atmosphere. 
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1. Introduction 

There are only a few measurements of Triton's atmosphere available. The Voyager 

ultraviolet spectrometer (UVS) obtained data (Broadfoot et al., 1989) on both EUV 

emissions and on EUV absorption during Voyager's encounter with Triton. Evidence for 

H Lyman a and N2 and N+ emissions was seen in the airglow data. The EUV absorption 

measurments, obtained during a solar occultation experiment, yielded the scale height and 

N2 number density in the upper atmosphere and the CH4 scale height and number density 

in the lower atmosphere. A radio propagation experiment employing the spacecraft 

telemetry system made measurements (Tyler et al. , 1989) of the electron and neutral 

number densities at two points along Triton's limb as Voyager was occulted by Triton as 

seen from Earth. The electron data provide an important constraint on ionospheric 

chemistry and on the energy input to the upper atmosphere, while the number density 

yields an estimate of the atmospheric number density at the ground. Voyager' s infrared 

spectrometer (Conrath et al. , 1989) was unable to measure IR emissions from the 

atmosphere because of the low temperature and pressure, but was able to determine that 

the surface temperature was about 38 K, confirming the suggestion of Trafton (1984) that 

Triton's atmosphere would be in vapor pressure equilibrium with surface ices. The most 

recent additional data on Triton 's atmosphere has come from ground-based reflectance 

measurements by Cruikshank et al. ( 1991 , 1993) of Triton's surface. Their results confirm 

that N2 is the principal ice constituent on the surface and that CH4 is present in trace 

quantities, but they also show that CO and C02 are present on the surface. The low 
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volatility of C02 precludes it from having a significant atmospheric mixing ratio, but CO 

is nearly as volatile as N2 and so is likely to be an important constituent in the 

atmosphere. Voyager measurements (Broadfoot et al., 1989) were only able to place an 

upper limit of 1% on the CO mixing ratio in the upper atmosphere. Recently, more 

complete analyses of the Voyager UVS data have revealed new information about Triton's 

atmosphere. Herbert and Sandel (1991) showed that CH4 is probably saturated in the 

atmosphere, whereas earlier measurements had indicated undersaturated CH4. This may 

have important implications for the nature of the ice mixture on Triton's surface. 

Krasnopolsky et al. (1993) were able to extract densities for atomic nitrogen from the 

UVS occultation data by noting the absorption change due to the N ionization continuum. 

These data provide a much needed constraint on the chemistry and physics of the upper 

atmosphere. 

Several groups have developed one-dimensional photochemical models of Triton's 

atmosphere. Strobel et al. ( 1991 a) discussed the photochemical processing of CH4 to 

produce higher hydrocarbons which then condense out contributing to the formation of 

a photochemical haze. In modeling the ionosphere, Strobel et al. (1991 b), Majeed et al. 

(1991), Ip (1991), Delitsky et al. (1991 ), and Yung and Lyons (1991) all proposed N+ as 

the principal ion present, formed as a result of electron impact ionization resulting from 

precipitating magnetospheric electrons. The electrons encounter Triton 's atmosphere as 

a result of curvature drift as they travel along the curved field lines of Neptune's 

magnetic field draped over Triton (Strobel et al. , 1991 b). Lyons et al. (1992) developed 

a photochemical model that included carbon and odd-N chemistry. This model predicted 
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the existence of atomic carbon in the atmosphere and c + as the principal ion in the 

ionosphere, the latter formed as a result of solar ionization only. However, this model 

pushed the (unknown) rate constants to their maximum possible values; it also did not 

include CO. Delitsky et al. (1992) pointed out the importance of ion chemistry involving 

CO as a source of C to the upper atmosphere, and hence the formation of c +. This is also 

discussed by Summers and Strobel ( 1992). A key difference among the models is whether 

the ionosphere results from solar radiation, in which case c + is the dominant ion, or 

whether the ionosphere is formed by electron impact processes, for which N+ is the 

dominant ion. In the latter scenario, Triton' s ionosphere would peak as Triton passed 

through Neptune's magnetic equatorial plane and then rapidly decay before the next 

equatorial crossing eight hours later. 

Several papers have discussed the thermal structure of Triton 's atmosphere. Yelle 

et al. (1991 ) showed that the temperature gradient in Triton' s atmosphere implies a 

downward energy flux from the ionosphere of 1.1 x 1 o·3 erg cm·2 sec·'. Stevens et al. 

( 1992) determined the heating efficiencies of solar EUV and electron impact and 

estimated that an orbitally-averaged energy flux of electrons of about twice the solar EUV 

energy flux was necessary to explain Triton's thermospheric temperature. They also 

considered rotational cooling by CO and placed an upper limit of 2x 104 on the CO 

mixing ratio. Krasnopolsky ( 1993) found that rotational cooling does not imply an upper 

limit to the CO abundance. 

This paper will concentrate exclusively on neutral and ion atmospheric chemistry, 

with particular emphasis on evaluating the role of CO. No attempt is made to explain 



7 

Triton's somewhat elevated thermospheric temperature. Rather, we will identify the key 

photochemical processes present in Triton's atmosphere and try to determine which 

ldnetics measurements are most needed to clarify the chemistry. In this vein, the neutral 

and ion chemistry of atomic carbon will be shown below to be especially important. The 

paper is organized as follows: section 2 gives details of the photochemical model; section 

3 describes the formation and loss of condensible species; section 4 describes factors 

affecting the atomic nitrogen profile; section 5 presents important ionospheric species and 

reactions; section 6 gives a summary and conclusions and suggests key chemical reactions 

for further laboratory study. 

2. The photochemical model 

The photochemical model developed for Triton's atmosphere is one-dimensional 

and includes the effects of molecular, ambipolar and eddy diffusion in the vertical 

direction. The model includes 55 neutral and ion species and 211 reactions. The equation 

of mass continuity, coupled with diffusive transport, was solved for each species, with 

chemical loss and production providing the coupling between species (Allen et al., 1981 ). 

Boundary conditions were applied at the top of the atmosphere to simulate thermal 

escape. Mixing ratios for the parent species CH4 and CO were defined at the surface; the 

N2 profile was held constant. Table 1 lists the boundary conditions for selected species 

in the model. The escape altitude was taken to be 870 km; the model has 58 vertical 

levels with a spacing of Ya of a scale height. Because the rates of several important 
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TABLE 1 

BOUNDARY CONDmONS FOR SELEcrED SPECIES IN TIIE 
PHOTOCHEMICAL MODEL 

Species Lower Boundary& Upper Boundary c 

H v = -.075b v = 3.0 x l<f 

H2 • =0.0 V = 1.4 X l<f 

c v = -.075 v = 9.8 

CH4 f = 1.7 X Io-4 v = 0.0 

~H4 v = -.075 v =0.0 

N 

CN 

CNN 

co 

0 

C+ 

N+ 

v = -.075 v = 2.1 

v = -.075 v=O.O 

v = -.075 v =0.0 

f = 1.0 X Io-4 V = 5.8 X 10·S 

v = -.075 v = 0.50 

f= 0.0 v = 9.8 

f= 0.0 v = 2.1 

• The symbols f, • and v refer to mixing ratio, flux (cm-2 s-1) and velocity (em s"1), 
respectively. The sign convention for • and v is positive for upward flow. 

b This boundary condition accounts for flow to the ground at a velocity = K/H, where 
K is the eddy diffusion coefficient at the ground (1 x Ifri cm2 s-1) and H is the 
scale height for a given species. 

c 
Jeans escape velocity. 
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reactions are not known, we will define a "standard" model , the results of which will 

then be compared with results from variations of the standard case. In the standard model, 

only solar radiation is incident on Triton, and the mixing ratio of CO at the ground is 

assumed to be 104
. The solar flux used in the model is from Woods and Rottman (1990) 

for A.~ 1030A, and from Mount and Rottman (1983) for ~ 1172.5A, with interpolated 

values used for wavelengths in between. 

Several chemical rate constants for reactions involving C and c+ are unknown; in 

particular, the rate constants for reactions Rl91 and R205 (see Table 4) are assumed to 

be lxl0·10 cm\ ec·1 in the standard model. Tables 2, 3, and 4 list the chemical reactions 

for the standard model only; this set of reactions is condensed from a more complete set 

of reactions (about 350) available from the authors. 

3. Photochemical formation of condensible species 

Although Voyager did not detect IR emissions from any molecules in Triton's 

atmosphere, the photochemical formation of higher hydrocarbons, nitriles and C02 is 

nevertheless of interest. Triton 's low temperature results in many of these species being 

supersaturated and susceptible to condensation. Condensible species may accumulate 

(Strobel et al. , 1990a) in quantities sufficient to be detected from ground-based IR 

measurements, or may be polymerized by solar radiation and contribute to the coloration 

of Triton's surface (Thompson and Sagan). 

Figure 1 presents in the form of a schematic diagram an overview of the principal 
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TABLE 2 

PHOTOABSORPTION, PHOTODISSOCIATION, AND PHOTOIONIZATION REACTIONS 

# Reaction Referen~ 

Rl N,+ bv absorption Kirby et al.(l979); Wu et al.(l984) 
R2 H,+ bv a 
R3 CH4+ bv a 
R4 C,H,+ bv a 
R5 C,H4+ bv a 
R6 C4H, + bv a 
R7 CO+ hv Thompson et al.(l963); Wright et al.(l976); 

Lee and Guest(l981); Letzelter et al.(l987) ; 
Samson and Haddad(l988); Stark et al.(l991) 

R8 HCN + bv West(l975); Nutb and Glicker(l982) 
R9 H<;N + bv Connors et al.(l974); Bruston et al.(l989) 
RIO CH+ hv ~c +H van Disboeck(l987) 
Rll CH4 + bv ~ C('D) +28, Rebbert and Ansloos(l972) 
R12 HCN + hv ~u +CN West(l975); Nutb and Glicker(l982) 
Rl3 HC,N + bv ~H +c,N Okabe and Dibeler(l973) 
Rl4 HC,N + hv ~C,H +CN 
Rl5 N, + bv ~2N Kirby et al. (1979) 
Rl6 N, + bv +e,. =N + N('D) assume 0.3*Rl5 
Rl7 H, + hv ~2H a 
Rl8 'CH, + hv ~ cu +H a 
Rl9 CH3 + bv ~ 'CH, +H a 
R20 CH4 + hv ~ 'CH, + H, a 
R21 CH4 + hv ~'CH, +2H a 
R22 CH4 + hv ~CH +H + H, a 
R23 C,H, + hv ~c,H +H a 
R24 C,H, + hv ~c, + H, a 
R25 C,H. + hv ~C,H, + H, a 
R26 C,H4 + hv ~C,H, +2H a 
R27 C,H4 + hv ~ C,H, +H a 
R28 CH1CCH1 +hv~ C,H3 +H a 
R29 CH1CCH1 +hv~ C,H1 + H, a 
R30 C4H1 + bv ~ c.u +H a 
R31 C4H1 + hv ~c,u, +C, a 
R32 CO+ hv ~c +0 Huber and Herzberg(l979) 
R33 H1CO + hv ~HCO +H Mentall et al.(l971); Okabe(l978) 
R34 H1CO + hv ~H, +co 
R35 H,CO + hv ~2H + c o 
R36 CO,+ hv ~co + O('D) Slanger and Black(l978); Okabe(l978) 
R37 CO, + hv ~co + O('S) 
R38 CNN + hv ~eN +N 

,. 
R39 ceo+ hv ~c +co 

,. 
R40 C,H,CN + hv~ C,H3 + CN * 
R41 N, + hv ~ N,· + e Kirby et al.(l979); Morioka et al.(l984) 
R42 N, + hv ~N· +N +e 
R43 N, + hv + e,. ~N, +e assume 0.2•R41 



# 

R44 
R45 
R46 
R47 
R48 
R49 
RSO 
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TABLE 2 

PHOTOABSORPTION, PHOTODISSOCIATION, AND PHOTOIONIZATION REACTIONS 

Reaction Reference 

N1 + hv + e,. ~ N• +N +e assume 0.2*R42 
N+ hv ~N· +e Le Doumeuf et a1.(1979} 
C+ hv ~~ +e Cantu et al.(l981} 
CH3 + hv ~en,· +e Prasad and Tan(l974} 
~H1 + hv ~ ~H/ +e Hayaishi et al. (1982} 
CO+ hv ~co· +e Wright et al.(l976};Musuoka and Samson(l981} 
NO+ hv ~NO' +e • 

• Gladstone,G. R.,M. AJlen,Y. L. Yung, Hydrocarbon photochemistry in the upper atmosphere of Jupiter, 
in press, Icarus. 

assumed value. 
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Triton•s Atmosphere 

~ solar, LISM 

1 hv 
-----

I mag ,-

+ + + ---- - - - _c_._N ~2 , • • • --- -- ---

~~~·-\t-- -n--------17- --
=~--v --c. ~ -----v-=~ 

N u H2, H, C, 0 N 

Fig. 1. A schematic diagram showing the important physical and chemical processes in 

Triton's atmosphere. 
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photocherrtical processes occurring in Triton's atmosphere. Ices of N2 , CH4 and CO are 

shown condensing and sublimating from the surface; C02 has a negligible vapor pressure 

at such low temperatures. Hot spots may exist on the surface, as evidenced by the lower 

albedo regions described by Stansberry et al. ( 1992). Such hot spots may represent 

regions devoid of N2 frosts , perhaps exposing patches of pure CH4, CO or C02 . If the 

regions are raised in temperature by a few kelvin as suggested by Stansberry et al. (1992), 

and CH4 and/or CO are present, then these volatile species could be saturated in the 

atmosphere even if they are present only in trace quantities in the N2 ice. Methane 

undergoes photodissociation by solar and local interstellar medium (LISM) H Lyman a, 

which reduces the CH4 scale height and leads to the production of an aerosol haze 

(Strobel et al. , 1990a). H and H2 , derived from CH4 dissociation, diffuse to the upper 

atmosphere where they either escape or participate in ion-molecule cherrtistry. The ion 

cherrtistry is driven by the production of N+ and N2 + by solar EUV and possibly electron 

impact. Charge exchange from N+ and N2 + to CO produces CO+, the dissociative 

recombination of which results in an ionosphere dorrtinated by c+. A downward flux of 

N atoms from the ionosphere contributes to the formation of nitriles in the lower 

atmosphere. Figure 2 shows the temperature and N2 number density profiles used in the 

model calculations. 
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TABLE 3 

REACfiONS BETWEEN NEUTRAL SPECIES 

# Reaction Rate Constant' Reference' 

RSt 28 +M ~H, +M 1.5 x ur" 1'.3 a 
R52 H + 3CH, ~ CH +H 4.7 x ur'" e·3'101T a 
R53 H + 3CH, +M ~ CH3 +M same as R68 a 
R54 H + CH3 +M ~co. +M 3.8 X t()""' e·•'.vr a 
R55 H + C,H, ~C,H, + H, 6.0 X tlr12 a 
R56 H + C,H, +M ~ C3H3 +M t0*R54 a 
R57 H + c , u , + M ~ CH3C,H +M t0*R54 a 
R58 c +C ~ c , + hv 1.0 X 10"11 * 
R59 c +N ~eN + hv t .O X 10"11 * 
R60 c +N +M ~eN +M 2.8 X t()""' 1 1.0 Fisher et al. {t985) 
R6t c +0 ~ co + bv 1.0 X tlr11 * 
R62 c + H, +M ~3CH, +M 2.t x to·" 1,_. Husain and Kirsch {t971) 
R63 c + N, +M ~CNN +M 2.8 X 10·"' 11.1 

R64 c +CO +M ~ceo +M 1.9 X t()"" 1 ,_. 

R65 C{'D) + H, ~co +H 3.7 X }()"10 Rebbert and Ausloos {t972) 
R66 C{'D) +cu. ~ C,H, +H, 3.2 X tlr11 

R67 C{'D) + N, ~c + N, 2.5 X J()"" Braun et al. (t969) 
R68 CH + H, +M ~CH3 +M t0*R54 a 
R69 CH +co. ~ c,u. +H 3.0 X t0"11 e""" a 
R70 CH + C,H, ~ C3H, +H 3.5 X t()"10 e•m a 
R71 CH + C,H. ~ CH2CCH2 +H 2.2 X tlr10 e'7YT a 
R72 CH +H ~ H, +C t.4 X tlr11 Becker et al. (1989) 
R73 CH +N ~eN +H 2.t X t0"11 Messing et al. {t98t) 
R74 ' CH, +M ~ 3CH, +M 7.9 x to·" Yung et al. (t984) 
R75 ' CH, + H, ~ 3CH2 + H, t.3 X t()"11 a 
R76 ' CH, + H, ~CH, +H 9.2 X t()"11 a 
R77 1CH2 +co. ~3CH2 +co. 1.2 X 1()"11 a 
R78 1CH2 +co. ~2CH3 5.9 x to·" a 
R79 3CH, + 3CH2 ~ C,H, +2H 2.t X tlr10 e.-.r a 
R80 3CH2 + C03 ~ c,o. +0 7.0 X t()"11 a 
R8t 2CH3 +M ~ c,u. +M 1.0 x to·ll Laufer et al (t983) 
R82 c, +cu. ~c,o + C03 5.t X to-" e-mrr a 
R83 c, +N ~eN +C 5.0 x to·" * 
R84 c, +0 ~co +C 1.0 x to·'• e·z.wr a 
R86 C,H + C,H, ~c.o, +H 1.5 X tlr10 a 
R87 C,O + C,H. ~c.o. +H 2.0 X 1()"11 a 
R88 C,H + c.o, ~ C,H, +H same as R86 a 
R89 C,H +N ~ eN + CH t.O X t0"11 * 
R90 C,H +0 ~co + CH 3.0 X 10"11 Tsang and Hampson (t986) 
R9t C,H) +0 ~ CH,CO +H 4.5 X tO·" Heinemann et al. (1988) 
R92 C,H) +N ~ H2C,N +H 1.0 X 10"10 * 
R93 C,H, + C,H, ~ c.o, + 3CH2 5.0 X tlr13 a 
R94 CN +N ~c + N, 1.0 X 10"10 Whyte and Phillips (t983) 
R95 CN + C,H, ~HC,N +H 1.0 X tlr10 Licbtin and Lin (t986) 
R96 CN + C,H. ~ C,H3CN +H 1.0 X }()"

10 
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TABLE 3 

REACTIONS BETWEEN NEUTRAL SPECIES 

# Reaction Rate Constant' Reference' 

R97 CNN +N ~eN + N, 1.0 X 10"11 * 
R98 CNN +H ~co + N, 5.0 X 10"11 * 
R99 CNN +C ~eN +CN 1.0 X 10"10 * 
RlOO CNN +n ~CN +NH 5.0 X 10"11 * 
RlOl CNN +0 ~eN +co 5.0 X 10"11 • 
R102 CNN + c,n, ~ HC3N +NH 1.0 X 10"10 * 
R103 CNN + C,H, ~ C,n3CN +NH 1.0 X 10"11 • 
R104 C,N + c,n, ~PROD 1.0 X 10"11 * 
R105 C3N + c,n, ~PROD 1.0 X 10"10 • 
R106 2N +M ~M 6.5 X 10"28 Tu Yamashita (1979) 
R107 N +n ~NH 1.0 X 10"11 * 
Rl08 N +n +M ~Nn +M 4.5 X lit" Tu Brown (1973) 
Rl09 N +Nn ~n 1.1 X 10"11 T".so Yung et al. (1984) 
RHO N + 3Cn, ~ nCN +n 4.3 X 10"10 e..,.,. • 
Rlll N +en, ~n,CN +n 4.3 X 10"10 e..,.,. Marston et a1.(1989) 
Rll2 N +NO ~o 3.4 X 10"11 DeMore et al. (1992) 
Rll3 N +On ~NO +n 5.1 X 1()"11 Atkinson et aJ (1989) 
Rll4 N +0 ~No 1.0 X 10"11 • 
R115 N('D) +U ~N +U 2.3 X lo-e' Yung et al. (1984) 
Rll6 N('D) + n , ~NH +n 5.0 x lltu Black et al. (1969) 
Rll7 N('D) + N, ~N + N, 6.0 X 10"15 

Rll8 N('D) +co ~N +co 6.0 X 10·U 
R119 Nn +0 ~NO +n 1.2 X 10"10 Cohen and Westberg (1991) 
Rl20 NH +0 ~on +N 1.2 X 10"11 

Rl21 Nn +NO ~N, +08 4.5 X 10"11 Yamasaki et al. (1991) 
R122 NH + ' Cn, ~PROD 2.0 X 10"11 • 
R123 Nn + Cn3 ~PROD 2.0 X 10"11 • 
R124 Nn +C ~eN +n 5.0 X 10"11 • 
Rl25 NO +Cn ~co +NH 2.5 X 10"10 Lichtin et al. (1984) 
R126 NO +nco ~HNO +co 1.2 X J(t10 T""" Veyret and Lesclans (1981) 
Rl27 NO + 3C8, ~PROD 3.7 X 10"11 Seidler et al. (1989) 
R128 NO +C ~eN +0 1.6 X 10"11 Becker et al. ( 1988) 
Rl29 0 +'en, ~nco +n 2.0 X J(t11 Tsang and Hampson (1986) 
R130 0 + Cn3 ~n,CO +n 1.1 X 10"10 DeMore et al. (1992) 
Rl31 0 +N +M ~NO +M 5.5 X l(tD etssrr Campbell and Gray (1973) 
R132 0 +n +M ~on +M 1.3 X lit" T'·oo Tsang and Bampson(1986) 
Rl33 0 +CN ~co +N 1.7 X 10"11 Baulch et al. (1981) 
Rl34 0 + CH ~co +n 6.6 X 10"11 Warnatz (1984) 
R135 on +C ~co +n 1.0 X 10"11 • 
Rl36 co +on ~co, +n 1.4 X 10"13 e.JIIT DeMore et al. (1992) 
R137 HCO +0 ~co, +n 5.0 X 10"11 Tsang and Hampson (1986) 
Rl38 nco +n ~co + H, 2.0 X 10"11 

Rl39 HCO +0 ~co + 08 5.0 X 10"11 

Rl40 ceo +n ~en +CO 2.2 X 10"11 Bauer et al. (1985) 
Rl41 ceo +0 ~co +co 8.6 X 10"11 

R142 ceo +N ~ eN +CO 5.0 X 10"11 • 
R143 ceo +C ~c, +co 5.0 X 10"11 • 
Rl44 C,H, condensation onto aerosols see text 
Rl45 c,n, 
Rl46 c,n. 
Rl47 C,8, 
Rl48 HCN 
R149 Hc,N 
R150 C,83CN 
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TABLE 3 

REACTIONS BETWEEN NEUTRAL SPECIES 

# 

RlSl H 1CO 
R152 C01 

Reaction 

Rl53 C scavenging by aerosols 
Rl54 N 
RISS H 
Rl56 0 

Rate Constant' 

1 Units are cm1 sec·' for bimolecular reactions; em' sec·' for termolecular reactions. 

Reference* 

• Gladstone,G. R.,M. AJlen,Y. L. Yung, Hydrocarbon photochemistry in the upper atmosphere of Jupiter, in 
press, Icarus. 

' assumed value 

' For additional refe.rences see F. Westley et. at., NIST Chemical Kinetics Database, version 4.0, 1992. 
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0 

Fig. 2. The temperature and N2 density profiles used in the model. For comparison, 

several values of the N2 density profiles of Krasnolpolsky et al. (1993) (open circles) and 

Summers and Strobel (1992) (crosses) are shown. 
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The dissociation production rates for the three parent gases in the photochemical 

model are shown in Figure 3. Methane photolysis proceeds by the reactions (Strobel et 

al., 1991; Yung et al., 1984) 

CH
4 

+ hv ~ 1CH
2 

~ 3CH2 
~ CH 

(R20) 
(R21) 
(R22) 

with peak production rates occurring at about 20 km. (Recent measurements of CH4 

photodissociation products (Mordaunt et al., 1993) suggest that R20-R22 may not be 

correct; however we have not yet incorporated these results into the model presented 

here.) CO photolysis, 

(R32) 

co+ hv ~c + o 

also peaks in the lower atmosphere but with a much smaller rate; for larger CO mixing 

ratios the altitude of peak dissociation will increase but the rate increases only slightly. 

The production of nitrogen atoms occurs both by the direct dissociation of N2 by photons 

and electrons and by ion reactions, in particular the recombination of N2+. Figure 3 shows 

the total production rate of nitrogen atoms due to both solar and photoelectron impact 
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Fig. 3. Column dissociation rates for N2, CH4, CO. 
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processes. A discussion of the specific chemistry leading to N production will be given 

in the next section. The downward flux of N (normalized to the ground to account for the 

sphericity of the atmosphere) for the standard model is about I xI 08 cm·2 sec·1 at the 

bottom of the ionosphere. 

An estimate of the eddy diffusion coefficient can be made by comparing the 

photolysis rate of CH4 to the observed CH4 scale height. Preliminary estimates (Strobel 

et al., 1990a) yielded eddy coefficients - 6000 cm2 sec·1
• A more recent analysis (Summers 

and Strobel, 1992) incorporating the revised CH4 profile of Herbert and Sandel ( I991 ) 

yields eddy coefficients - 300 cm2 sec·1
, the value predicted by Yelle et al. (1991 ). Figure 

4 shows the methane profile obtained for an eddy coefficient K = 300 cm2 sec·1 above 9 

km, and K = 1 05cm2 sec·1 below 9 km. The methane densities obtained by Herbert and 

Sandel (1991) are also shown. As can be seen from the figure, the model profile is 

intermediate between the measured summer and winter profiles. Ion chemistry rapidly 

consumes CH4 above 200 km. 

The density profiles of parent species and some of their dissociation products are 

shown in Figure 5. The small falloff with height of CO results from weak 

photodissociation, so CO has nearly the same scale height as N2. H2 is escaping at the 

diffusive limit and therefore also has a scale height comparable to N2 • Atomic nitrogen 

peaks at about I35 km, below which recombination and scavenging by aerosols rapidly 

consume it. The profiles of 0 and C are qualitatively similar to N except that their 

densities are much lower. Atomic hydrogen, which is involved in many reactions and is 

rapidly scavenged by aerosol particels (Table 4), peaks closer to the ground due to the 
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Fig. 4. Methane profile with summer and winter data points as determined by Herbert and 

Sandel (1991 ). 
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TABLE4. 

ION-MOLECULE AND ION RECOMBINATION REACTIONS 

I Reactioo Rate Coostant~ Refermce 

lllS7 H+ +0 .. o+ +H 3.8 X 10-IO • 
Ill 58 c+ + Cl4 - C2H2+ + H2 4.5 X 10-IO • 
lllS9 c+ +CJ4 - C2H3+ +H 9.5 X 10-IO • 
lll60 c+ +~H2 C3H+ +H 2.6 X 10"9 • 
Rl61 c+ +HCN ~N+ +H 2.9 X 10-9 • 
Rl62 c+ + C2l4 ., C3H.fl + +H 1.5 X 10-9 • 
Rl63 c+ +NO NO +C 1.5 X 10-IO • 
Rl64 c+ +N2 +M -= CNN+ +M 6.0 X 10"30 • 
Rl6S c+ + H2 ., CH+ +H 1.2x 10"16 • 
Rl66 c+ +e c + h~ 5.0 X 10"12 • 
RI67 CNN+ +e .. CN +N 3.0 X J0"7 • 
Rl68 ~H2+ +H2 .. ~H + +H 1.0 X JO"ll • 
Rl69 ~H2+ +N 

+3 
+ HCN + C 2.5 x to-ll H • 

Rl70 ~H + +N ., C2N+ + H2 1.5 X 10-ll • 2+ 
1.5 x to-10 lll71 C2H2 +N CHCN+ +H • 

Rl72 ~H3+ + CH4 C3Hm + + H2 1.9 X 10-lO • 
Rl73 ~=~: +N = CHCN+ + H2 2.2 x 10-lO • 
lll74 +e -= C2H2 +H 7.8 X J0"7 c 
Rl75 C2N+ +e -= CN +C 5.0 X 10"7 • 
Rl76 ~N+ + CH4 -= C2H3+ +HCN 7.0 X 10-IO • 
Rl77 CHCN+ +e ., CH +CN 2.0 x to-7 • 
Rl78 CHCN+ +e ., c +HCN 2.0x 10"7 • 
Rl79 N + + H2 ., NJI+ +H 2.4 x to-10 b 

RIBO N+ +C -= c+ +N 1.0 X 10"12 • 
RlBl N+ +CO ., co+ +N 9.4 X 10-IO b 

RI82 N+ +co -= No+ +C 1.6 X 10-lO • 
Rl83 N+ +0 o+ +N 1.0 X 10"12 • 
Rl84 N+ +e N + h~ 5.0 X J0"12 • 
RIBS NH+ + N2 ., N2H+ +N 6.5 X 10-IO • 
Rl86 NH+ +e ., N +H 1.5 X 10"8 c 

Rl87 NO+ +e = N +0 6.5 X 10"7 c 

Rl88 N + + H2 N H+ +H 2.0 X 10-9 • 
lll89 

2+ 
+H H~ + N2 l.Ox to-ll N2 • 

Rl90 N + +N = N+ + N2 1.0 X 10-ll • 
Rl91 

2+ 
+C -= c+ + N2 1.0 x to-10 • N2 

Rl92 N2+ +0 .. No+ +N 1.3 X 10-IO • 
Rl93 N2+ +0 o+ + N2 0.1 X 10-IO • 
Rl94 N + +e -= N(2D) +N 5.7 X 10"8 c 

Rl9S 
2+ 

+co co+ + N2 7.4 X 10-ll N2 • 
Rl96 N2H+ +co .. Hco+ + N2 8.8 X 10- IO • 
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TABLE4. 

ION-MOLECULE AND ION RECOMBINATION REACTIONS 

I Reaction Rate~t .Ref= 

R.l97 N2H+ +0 N2H+ +0 1.4 x to-10 • 
R.198 N2H+ +e H + N2 6.5 X 10-7 c 
R.l99 H2CN+ + HC3N H2C3N+ +HCN 3.4 X 10-9 • 
R.200 H CN+ +e HCN +H 6. 1 X 10-7 c 
R.201 

2 + 
+ N2 No+ +N 1.2 x to-12 0 • 

R.202 o+ + H2 N2H+ +0 1.7 X 10-9 • 
ll203 co+ + H2 N H+ +CO 1.0 x 10-10 • 
R.204 co+ +0 0~ +CO 1.4 x 1o-10 • 
R.205 co+ +C c+ +CO 1.0 x to-10 • 
R.206 co+ + H2 Hco+ +H 7.0 X 10-10 • 
R.207 co+ +H H+ +CO 7.5 X 10"10 • 
ll208 co+ +e c +0 1.7 X 10-7 c 
ll209 Hco+ + C2H2 ~H3+ +CO 1.4 X 10-9 • 
R.210 Hco+ +HCN H2CN+ +co 3.5 X 10-9 a 

R.211 Hco+ +e co +H 5.1 X 10-7 c 

tunits arc cm3 , -1 for bimolecular reactions; cm6 ,-1 for tcrmolecular reactions. 

• V. G. Anicich, Evaluated bimolecular ion-molecule gas phase lcinctics of positive ions, submitted J. Phys. 
OIDn.. Rtf. DtJJa, 1992. 

b V. G. Anicich, A survey of bimolecular ion-molecule reactions for use in modeling the chemistry of 
planetary atmospheres, comeW)' comae, and interstellar clouds: 1992 supplement, submitted Ap. 1. Supp!. 
Series, 1992. 

c I . B. A. Mitchell, The dissociative recombination of molecular ions, Physics Repons 186, No. 5, 215-248, 
1990. 

•assumed value 
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relatively large methane dissociation rate. 

Many condensible chemical species are produced in Triton's atmosphere via 

pathways very similar to those proposed for Titan (Yung et al. , 1984). Strobel et al. 

( 1990a) first described the production of C2 and C4 hydrocarbons for Triton. Lyons et al. 

( 1992) and Summers and Strobel ( 1992) described some of the nitriles produced. Here, 

we will simply outline the principal chemical pathways forming various species. The most 

produced condensible compound is ~H4 via the reactions 

CH + CH
4 

---7 C
2
H

4 
+ H 

CH
3 

+ 3 CH
2 

---?C
2
H4 + H 

Acetylene, with the next highest production rate, is produced by 

and by photolysis of ~H4• The compound CH2CCH2 results from 

R69 

R80 

R79 

R71 

which has a reaction rate more than two orders of magnitude below that of R69. Other 

expected due to reaction of N with CH4 photodissociation products. Hydrogen cyanide is 

produced by the reaction 
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TABLES. 

CONDENSATION AND SCAVENGING COLUMN REACTION RATES 

I Species Column Rate I Species Column Rate 
(cm-2 eec:-1) (cm-2 eec:-1) 

R144 ~H2 
7 RISI ~co 6.7 X 1~ 1.5 X 10
8 R145 ~ll.4 1.7x10
4 

R152 1.3 X 1 
R146 Cz~ 1.3 X 10

4 
R153 c 2.6 X 1~ 

R147 ~~ 4.0 X 10
4 

R154 N 1.4 X 1 
8 R148 1.2 X 1~ R ISS H 2.7 X 10
4 R149 HCnN 1.3 x 1

05 
R156 0 7.2 X 10 

RISO Cz 3CN 4.8 X 1 
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TABLE6. 

ESCAPE FLUXES FROM TOP OF ATMOSPHERE 

Speci~ Flux Speci~ Flux 
(cm-2 sec-1) (cm-2 sec-1) 

H 7 0 4 1.7 X 10
8 

5.8 X 10
4 

H2 2.6 X 10
6 ~ 1.3 X 10 

c 2.5 X 10
7 

1.7 X 1~ (thermal) 
N 1.1 X 1gs 4.8 x 1~ (aoathermal) 
N(2D) 2.3 X 1 N+ 1.4 X 10 
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RllO 

and also by dissociative recombination of H2CN+ in the ionosphere. The cyanide radical 

is involved in the formation of HC3N and C2H3CN via the reactions 

R96 

R95 

Other condensible species are formed by the reaction of oxygen atoms, produced during 

photolysis of CO, with CH4 dissociation products. Formaldehyde is generated by 

R130 

and C02 is generated by 

CO + OH ~C02 + H Rl36 

In the standard model the rates of these reactions are about four orders of magnitude 

below that of R69 producing C2H4, so the formation of H2CO and C02 is negligible 

compared to some of the species already discussed. Note that, in contrast to Titan (Yung 

et al., 1984), the production of C2H6 is negligible compared to acetylene and ethylene, 

although the rate constants estimated for the recombination of methyl radicals (Laufer et 

al., 1983; Macpherson et al., 1985; Slagle et al., 1988) vary by nearly ten orders of 

magnitude at 50 K. 
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Fig. 5. Model density profiles for parent species, atomics, and H2 . 
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The principal loss process for all these species is condensation. A unimolecular 

condensation rate coefficient is defined as (Yung et al., 1984; Summers and Strobel, 

1992) 

k . = 
n.-n. 

I I.SUI 

I 
'! 

c 

where n; is the number density of the ith supersaturated species and ni,sat is the saturation 

number density for the ith species. '!c is the condensation time constant which describes 

the time between collisions of the supersaturated species with aerosol particles, and which 

varies with height according to 

where Hhaze = I 0 km is the scale height of the photochemical haze, (Krasnopolsky et 

al., 1992), and Zo is the tropopause height. '!0 is determined from the observed haze opacity 

and is about lOS seconds for Triton's atmosphere (Summers and Strobel, 1992). Table 5 

contains a list of the column condensation rates for the supersaturated species 

photochemically produced in the model, and includes the column scavenging rates of 

atomic species by aerosols. Figure 6 plots the number density profiles for several of the 

species in Table 5. Scavenging of key radical species, in particular CH2 , has not been 

included in the model but could significantly modify the gas-phase production of higher 

hydrocarbons. 

The recent detection of C02 ice in IR reflectance measurements (Cruikshank et al. , 

1991 ), poses an interesting challenge to photochemical modelers. Surprisingly, C02 
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TABLE7. 

RECOMMENDED LIST OF FUI1JRE CHEMICAL KINETICS EXPERIMENTS RELEVANT TO 
TRITON 

I Rcactioo Commc:Dt 

R191 N + + c- c+ + N Key i~ reaction 
R20S c6+ + c .. c+ + cb 
R214 N~H+ + C "' CH+ + ~ May t:e important 
R21S H o1 +c .. 91.+ + 
R218 CN + N- C + Nz 

R66 C~+Ma CNN+M At low temp 
R97 + N • CN + Nz At any temp 
R94 CN + N-= C + Nz At low temp 
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tce covers as much as 10 % of the surface (Cruikshank et al., 1993). The model 

condensation rate of C02 (Table 5), assumed to be constant over the age of the solar 

system, corresponds to about one centimeter of ice. Because of the relatively large 

absorption coefficient of C02 ice, the IR measurements are sensitive to only the top one 

millimeter of ice (R. H. Brown, private communication). Hence, R136 may be able to 

account for the observed C02• Heterogeneous recombination of 0 and CO on the surface 

of aerosol particles could provide an additional C02 formation pathway. The column 

photolysis rate of CO in the standard model is about 1x106 cm·2sec·1
• However, the rate 

of 0 scavenging (Table 5) is only about one half of the gas-phase C02 condensation rate 

(also in Table 5), suggesting that heterogeneous reactions may be an important but not 

dominant means of forming C02 • It is also possible that the C02 was formed during 

Triton's capture as a result of tidal heating, although we do not consider this here. 

Irradiation of CO ice can convert CO ice to C02 ice (Anicich et al. , 1988), especially 

during periods of very low atmospheric opacity. The nondetection of C02 ice on Pluto 

(Owen et al., 1992) may support the tidal heating hypothesis for Triton, or may simply be 

the result of a lower CO mixing ratio or a higher atmospheric opacity on Pluto. 

Contrasting the condensation rates of C02 and ~H4 raises an apparent 

inconsistency (Cruikshank et al. , 1993) between the predictions of the photochemical 

models and the results of the IR measurements. The condensation rate of C2H4 

corresponds to roughly a 1 micron layer being deposited each Triton season. In about 106 

years enough C2H4 ice will have accumulated to be detectable, and over the age of the 
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solar system meters of ice should accumulate (Strobel and Summers, 1990). Yet ~H4 is 

not detected in IR measurements. There are several possible reasons C2H4 is not seen. The 

~H4 ice may be rapidly polymerized by UV radiation, especially if the surface HLya 

opacity drops below unity due to orbital variations (Trafton, 1984). (The vertical HLya 

opacity in the model is 7.5 with an uncertainty of about 50%.) It is also possible that 

~H4 is modified by heterogeneous chemistry on aerosol particles. In particular, because 

the scavenging rate of H (Table 5) is comparable to the condensation rate of ~H4, 

hydrogenation of ethylene, yielding perhaps C2H5, ~H6 or other more complex 

hydrocarbons, could occur. On the other hand, it may simply be argued that the 

photochemical models are incorrect in predicting substantial c2 hydrocarbon production 

and condensation. The fair agreement obtained between measurements and photochemical 

model predictions for Titan's atmosphere (Yung et al., 1984) may not be a good indicator 

for Triton given the significantly lower temperature of Triton's atmosphere. 

4. The abundance of atomic nitrogen 

The determination of the atomic nitrogen profile in Triton 's upper atmosphere by 

K.rasnopolsky et al. (1993) provides a key test of model predictions. Atomic nitrogen is 

produced by N2 photodissociation in the reaction 

N
2 

+ hv (A.<800A) -7N + N R15 

and also by photoelectron impact according to 
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Rl6 

R16 is assumed to proceed at 30% of the rate of R15. Precipitating electrons from the 

magnetosphere will contribute to N2 dissociation but are not included in the standard 

model. The production of Ne D) occurs by R16 and also by the recombination of N/, 

R194. NeD) returns to the ground state by collisions with N2, 

Rill 

and by spontaneous emission, 

R109 

N is also produced by ion-molecule reactions, most notably R185 and R194. The total 

column production rate of ground stateN in the standard model is l.lxl08 cm·2sec· 1
, with 

peak production from 200 to 500 km as shown in Figure 3. 

N produced in the ionosphere diffuses to lower altitudes where 3-body 

recombination occurs, resulting in a N peak at about 135 km. In the standard model the 

principal recombination pathway involves atomic C, CN and CNN. As discussed in a 

footnote in Lyons et al. (1992) and by Summers and Strobel (1992), C can form the 

compound CNN through the reaction 

c T N2 + M --7 CNN + M R63 

The rate coefficient of this reaction has been measured (Husain, 1971) at 300 K; we 

assume a T 2 temperature dependence in the standard model. CNN has been studied very 

little in the laboratory, but it is believed to have a triplet ground state (Milligan and 
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Jacox, 1966). There have been no laboratory studies of CNN in reaction with other 

species, so we must assume both the reactions that occur and their rates. By analogy with 

CN we assume that the reaction of CNN with CH4 and H2 occurs very slowly due to large 

activation energies, but that reaction with CzH2 and C2H4 proceeds rapidly to produce 

nitriles.( The reaction of CNN with these hydrocarbon species is assumed to proceed at 

the gas-kinetic rate of lxl0-10 cm-3sec-1
, by analogy with CN.) CNN is also assumed to 

react with atomic species, of which reaction with N occurs as 

CNN + N -7 CN + N2 
R97 

Again by analogy with CN, we assume that this reaction proceeds at the gas-kinetic rate. 

The corresponding reaction for CN is 

CN + N --7C + N
2 

R94 

The three reactions, R63, R94 and R97, constitute a recombination cycle for nitrogen 

atoms in which C acts as a catalyst. In the standard model, this reaction sequence 

accounts for 96% of the recombination of N to N2, while the reaction 

NH + N --7N
2 

+ H R212 

accounts for only a few percent. In Titan 's upper atmosphere (Yung et al., 1984) NH is 

produced by NCZD) attacking CH4 and H2, and R212 is the principal mechanism for 

recombining N; it seems likely that this will be true for Pluto as well if the CH4 

abundance is substantial (Yelle and Lunine, 1989). In the Earth's atmosphere, NCZD) 

attacks 0 2 to produce NO, and the latter reacts with N to yield N2 and 0 . 
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Figure 7a shows number density profiles for the key species involved in the C-N 

cycle leading to recombination of nitrogen atoms in the standard model. The values 

determined by Krasnopolsky et al. (1993) are shown for altitudes from 200 to 500 km. 

The model values are low by about a factor of two. The model profile could be brought 

into agreement by adding magnetospheric electron impact; however, the uncertainties in 

the model result are likely to be larger than the discrepancy. The model N profile is 

affected by many parameters, including the rates of R94 and R97 and the temperature 

dependence of R63, the carbon atom profile, and, as just mentioned, a flux of 

precipitating electrons. Because of the uncertainty in these parameters, it is unlikely that 

the observed N densities will add sufficient information to allow the ratios of solar to 

magnetospheric energy input to be unambiguously determined. Figure 7b shows the same 

profiles as Figure 7a, except that the CNN formation reaction, R63, is turned off. In this 

case the model N profile is nearly in agreement with the measured values. However, as 

is apparent from Figure 5, the model N2 density is higher by about a factor of two than 

the N2 densities determined by Krasnopolsky et al. (1993), which would yield an even 

lower N abundance. Thus, the measured N profiles seem to require either smaller N loss 

rates than in the standard model , or higher production rates. The latter could be evidence 

for electron precipitation with an orbitally-averaged energy flux comparable to the solar 

EUV energy flux. Note that when CNN is not included in the model the principal N 

recombination pathway is direct recombination, 

N + N + M --?N2 + M R106 
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In the standard model production and loss of C is dominated by R94 and R63, 

respectively, with peak rates at about 100 km. The original sources of Care the parent 

species CO and CH4 and their products. In the bottom of the atmosphere, direct photolysis 

of these species produces C by reactions R32 and 

R11 

where CCD) is rapidly quenched to the ground state by collisions with N2• Photolysis of 

HCN, yielding CN, also produces C by R94. However, the largest sources of carbon 

atoms are the dissociative recombination of co+ in the ionosphere and the photolysis of 

CO in the lower atmosphere. co+ is formed by charge exchange between N+ and CO 

(Delitsky et al.,l992; Summers and Strobel, 1992). Below about 150 km, the main loss 

of Cis R63, but in the ionosphere the principal loss of Cis by charge exchange with N2+, 

reaction R191. In the model of Lyons et al. (1992), C was produced primarily by R94 in 

the lower atmosphere and then diffused up to the ionosphere. 

5. Ion chemistry 

The inclusion of CO in Triton's atmosphere results in ionospheric chemistry that 

is both complex and interesting. The ion chemistry is driven by the formation of N2+ and 

N+ by solar photons (R41 and R42) and by photoelectron impact (R43 and R44). The 

production rates for these two species in the standard model are shown in Figure 8a. As 

has been discussed by many authors (see section I), N/ and N+ have relatively short 
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chemical lifetimes in Triton's atmosphere. N/ is lost by reaction with H2 (R188), by 

charge exchange with N (R 190) and by dissociative recombination (R 194 ). N+ is lost 

mainly by the reactions 

R179 

R181 

The relatively large electron densities observed in Triton 's ionosphere suggest an atomic 

ion as the principal species present. An N+ ionosphere would require a magnetospheric 

electron flux ::::30 times the solar EUV flux to be ionizing Triton's atmosphere within 

about one hour of the time Voyager' s measurements of Triton's ionosphere were made 

(Strobel et al. , 1990b ). Protons, formed by 

CO . + H ~H • + CO R207 

are lost via rapid charge exchange between H+ and 0 , 

R l57 

Because o + reacts with both N2 and H2 to form molecular ions, this pathway precludes 

the possibility of a significant quantity of either o + or H+ in the ionosphere. Lyons et al. 

(1992) proposed that c+, formed in the reaction 
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R191 

was a likely candidate for the dominant ion, since c• does not react with either H2 or N2. 

Neither reaction R19 1 nor any other ion reaction involving neutral carbon has been 

studied in the laboratory, so Lyons et al. had to assume a rate coefficient. For a rate 

coefficient of 1 x 1 o·9 cm3sec·1
, which is rapid for a charge exchange reaction, the result 

was a solar-maintained ionosphere with c• as the dominant ion. However, their model did 

not include CO photochemistry. The inclusion of CO even at a mixing ratio as low as 104 

greatly strengthens the case for a solar-maintained c• ionosphere. In the standard model 

presented here, we assume a rate for R 191 of 1 x 10"10 cm·3sec·1
, an order of magnitude 

lower than assumed in Lyons et al. (1992). In addition to Rl91, c• is formed by solar 

ionization of C, R46, and by the reaction 

co · + c ~c · + co R205 

Figure 8b shows the production rates for c• in the standard model. As mentioned above, 

the principal source of C in the ionosphere is dissociative recombination of co•, where 

the latter is produced by R 181 (Delitsky et al., 1992; Summers and Strobel, 1992). 

The density profiles of the ion species computed in the standard model are shown 

in Figure 9a. The agreement between the modelled and observed electron densities is 

fairly good, although the peak model density is about 20 km too low. The model electron 

density above 600 km suggests that nonthermal escape may be an important loss process 

for c•. Carbon ions are lost primarily by reaction with HCN and CH4 in reactions R161, 



42 

R158 and R159 in the lower ionosphere and by radiative recombination, R166, at and 

above the peak. We also assume that the species CNN+ is formed by three-body reaction 

of c + with N2• The ion product of Rl61 is C2N+, which we assume dissociatively 

recombines to produce C and CN. (Actually, it is not clear from the laboratory data 

whether CCN+ or CNC+ is formed in R 161; the subsequent ion-molecule chemistry is 

different for these two species (Anicich, 1992)). Reactions R158 and R159 yield C2H2+ and 

~H3 +. These ions react rapidly with N to produce mainly the species CHCN+, which then 

dissociatively recombines to produce C and HCN. Thus, the principal loss pathways for 

c+ actually recycle C back to the ionosphere. However, it must be emphasized that the 

species C2N+ and CHCN+ have not been studied extensively, so there could be ionospheric 

pathways that are true sinks of C. 

Figure 9b shows the ion profiles for the standard model except that the rates of 

R 191 and R205 are 1 x 1 o- 11 cm·3 sec·1
, an order of magnitude slower than the standard 

model. If the charge exchange reactions are this slow, then magnetospheric electron 

impact is necessary to provide the additional ionization. The required electron flux would 

be about twice the solar EUV flux. Figure 9c shows the ion profiles for the standard 

model with the CNN formation reaction, R63, turned off. This case would require a 

relatively small flux of precipitating electrons to form the bottom side ionosphere. Figure 

9d shows the effect of nonthermal (i.e., faster than Jeans) escape of c+ on the electron 

profile of the standard model. Electron impact would be needed to fill in the observed 

electron bulge at 500 km. It should be noted that several authors (Stevens et al. , 1992; 

Krasnopolsky et al. , 1993) have proposed that heating by electron impact is necessary to 
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explain Triton's thermospheric temperature. We do not address this issue here, except to 

say that heating by electron impact would be consistent with low rates for R 191 and 

R205. Table 6 gives the thermal escape fluxes of various species for the standard model, 

including the (imposed) nonthermal escape flux of c+ corresponding to Figure 9d. 

Comparing our results with those of Summers and Strobel ( 1992) points out the 

key difference between the various photochemical models. Summers and Strobel obtain 

a c+ ionosphere for a CO mixing ratio of 3x I 0-4, but only when an instantaneous (i.e., not 

orbitally averaged) electron impact energy flux of about five times the solar EUV flux is 

included. They also obtain a large H+ abundance, primarily because they have neglected 

R 157, but also because their rate constant for charge exchange between N2 + is too high. 

It is not entirely clear why the results of the two models differ so greatly with regard to 

c+ densities, but it would appear to be in part due to the column abundance of neutral 

carbon. In the present model C densities are higher, with the result that photoionization 

of C produces c+ at a rate capable of consuming CH4 in the bottomside ionosphere. 

Other shorter-lived molecular ions that appear in the lower ionosphere in the 

standard model include Hco+, H2CN+, and NO+. Hco+ is formed in the reactions 

N
2
H • + CO _,HCO . + N

2 

and (Krasnopolsky et al. , 1993; Summers and Strobel, 1992) 

Rl96 
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R206 

and is lost by dissociative recombination. (In R206 the isomer Hoc+ is also produced, 

but reacts rapidly with N2 to produce N2H+.) Because the proton affinity of HCN is larger 

than that of N2 and CO (Huntress, 1977), H2CN+is formed via the reactions 

HCO. + HCN ~H2CN . + CO 

N
2
H• + HCN ~H2CN . + N

2 

R210 

R213 

although the latter is slow in the standard model. The ultimate fate of H2CN+ is 

dissociative recombination yielding HCN and H. NO+ is formed by reactions Rl82, R192, 

and R201, and is also lost by dissociative recombination. 

Comparing the proton affinities (Huntress, 1977) of C with CO and N2 suggests 

two other ion-molecule reactions of potential importance in Triton's ionosphere: 

R214 

and 

R215 

These reactions have not been measured for the same reason that R 191 and R205 have 

not been measured: the difficulty of generating C efficiently in rate coefficient 

measurement systems (V. Anicich, private communication). In fact, to the best of our 

knowledge, the rate coefficient of an ion-molecule reaction in which atomic carbon is the 

neutral reactant has never been measured for any ion! Given the potential importance of 
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e in Triton's atmosphere, this represents a significant limitation to our abiltity to 

detennine the governing chemical processes. eH+, however, has been well studied 

(Anicich and Huntress, 1986; Anicich, 1992), so we can determine its fate in Triton' s 

ionosphere. eH+ reacts rapidly with N and H2 according to 

CH. + N --7 CN . + H R216 

R217 

Similarly, eH2+ reacts with N to yield eN+ and HeN+ and with H2 to yield eH3+; eH3+ 

is lost via reaction with N. The fate of eN+ is less certain because the reaction with N 

has never been studied. We propose the reaction 

CN • + N --7 C . + N 
2 

R218 

This is the most exothermic branch, but others are possible: charge exchange from eN+to 

N may occur, since the ionization potentials of eN and N are similar, and the formation 

of Nt and e is exothermic by about 0.7 eV. eN+ will also react with H2 to form HeN+ 

and HNe+. The above sequence of reactions, starting with R214 and R215 , has not been 

included in the model presented here, but shows that if R214 and R215 do occur then e 

is likely to be recycled back to either e or e +. 

6. Summary and conclusions 

We have developed a one-dimensional photochemical model of Triton's 

atmosphere and ionosphere. The model has 55 neutral and ion species and 211 reactions. 
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We define a "standard" model as having N2 and CH4 at saturation pressure at the ground, 

and CO subsaturated with a mixing ratio of 104 at the ground as suggested by Cruikshank 

et al. (1993). In the standard model only solar EUV radiation is included (i.e., there is no 

magnetospheric electron impact). The rate coefficients of R191 and R205 are assumed to 

be 1x10-10cm3sec·1• 

The condensation rates of supersaturated hydrocarbons and nitriJes have been 

computed assuming heterogeneous nucleation on aerosol haze particles (Strobel and 

Summers,1991). The IR observations of Cruikshank et aL (1991 ) pose two questions 

regarding condensation. First, the detection of C02 ice on Triton' s surface raises the 

question of whether the C02 is deposited as a result of photochemical processing of gas­

phase CO. We find that for present Triton conditions, gas-phase chemical reactions 

(R136) are able to produce detectable amounts of C02, assuming a constant rate over the 

age of the solar system (which is likely to be an incorrect assumption). Heterogeneous 

recombination of 0 and CO on aerosol particle surfaces may also produce detectable 

quantities of C02• We note also that conversion of CO ice to C02 ice may occur when 

the former is exposed to Lyman alpha radiation (Anicich et al. , 1989). We have not 

considered the photochemical implications of variations in surface pressure, as predicted 

to occur as Triton' s obliquity changes (Trafton, 1984). Recent IR measurements of Pluto 

(Owen et al, 1992) do not indicate the presence of C02 ice. Why the same photochemical 

processes would not also produce detectable quantities of C02 ice on Pluto is not obvious 

but may simply be the result of a lower CO mixing ratio or a lower CO photolysis rate 

higher (due to a higher optical depth) than on Triton. We have not considered the 
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possibility that Triton's C02 is a result of chemical processing that occurred during 

capture by Neptune. The second question posed by the IR data concerns the Jack of 

detection of ~H4 ice on Triton, even though photochemical models predict that detectable 

quantities of ethylene should accumulate in about 106 years. We propose that ~H4 ice is 

either easily polymerized to more complex hydrocarbons by UV radiation, is difficult to 

distinguish from CH4 ice, or is modified by heterogeneous reactions on aerosol particles. 

Dissly (1995) demonstrated that ~H4 ice is readily dissociated to C2H2 ice at wavelengths 

< 1849 A at a rate sufficiently fast to prevent the accumulation of a detectable layer of 

~H4 ice on Triton. The color of Triton's surface (Thompson and Sagan, 1991 ) may be 

a result of the polymerization of ethylene or acetylene. Alternatively, the photochemical 

models may simply be incorrect in their predictions for some species, especially at such 

low temperatures. 

The determination of N densities in the upper atmosphere of Triton (Krasnopolsky 

et al., 1993) places an important constraint on the models. We find that N produced in 

the ionosphere by dissociation and ion recombination was lost primarily by 3-body 

recombination catalyzed by carbon atoms. The species CNN is formed by reaction R63, 

and we propose that CN is produced by reaction of CNN with N (R97). The nitrogen 

atom recombination step is then CN + N ~ C + N2 • The reaction NH + N ~ H + N2 

accounts for only a few percent of the recombination of nitrogen atoms. This results in 

model N densities about a factor of two lower than the measured values, suggesting that 

additional production of N may be occurring, possibly as a result of electron impact. 

Turning off the reaction forming CNN (R63) raises the nitrogen atom densities by about 
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a factor of two, in better agreement with the measured N profile. The C-N cycle 

mentioned above is also important in determining the C density profile. 

In the ionosphere, CO charge exchanges with N+ to form co+ (Delitsky et al. , 

1992; Summers and Strobel, 1992), and the latter dissociatively recombines becoming a 

source of 0 and C. In the standard model c+, produced by charge exchange with N2+ and 

co+, is the dominant ion. Thus the addition of CO reinforces the suggestion (Lyons et 

al. , 1992) of a solar-controlled atmosphere with c + as the dominant ion. We have not 

explored the sensitivity of the model to the mixing ratio of CO, but a larger abundance 

of CO will result in faster rates of C production in the ionosphere. A mixing ratio of 104 

is probably a reasonable lower limit to the CO abundance given an ice mass fraction of 

about 0.1% (Cruikshank et al. , 1993). Depending on the rates of R 191 and R205 and the 

ultimate fate of CNN, some magnetospheric electron precipitation may be necessary, but 

the precipitating electron energy flux is far less than earlier models were predicting. The 

importance of H+ in our model is minimal due to rapid charge exchange between H+ and 

0 . Ions formed in the lower ionosphere include HCO+, H2CN+, CHCN+ and NO+; the 

ultimate fate of these ions is apparently dissociative recombination. Comparing the model 

and observed topside electron densities suggests that nonthermal escape of c + may occur. 

Hence, c + may have been detected in Neptunes' s magnetosphere (Richardson et al , 1990). 

We have identified several species and reactions, listed in Table 7, of importance 

in Triton' s atmosphere for which there is either no or very little laboratory data available. 

Most notably, ion-neutral reactions in which carbon atoms are the neutral reactant have 

apparantly never been studied in the laboratory for the purpose of determining a rate 
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coefficient. This significantly limits our ability to accurately model chemical processes 

in Triton's ionosphere. In particular, the ion reactions R 191 and R205 are important on 

Triton. Depending on the rates of R191 and R205, reactions R214, R215 and R218 may 

also be important. With regard to neutral chemistry, the species CNN is most in need of 

laboratory study. The reaction R97 and the temperature dependence of R63 are especially 

relevant. Until some of these reactions have been studied in the laboratory, it will not be 

possible to definitively state whether Triton's upper atmosphere is solar or magnetosphere 

controlled. 
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Abstract 

Microwave propagation experiments performed with Voyager 2 at Neptune revealed sharp 

layers of electrons with densities - 104 cm-3 in Neptune' s lower ionosphere. These layers 

are reminiscent of terrestrial sporadic-E layers, and, when taken together with data from 

the other giant planets, confirm the importance of the magnetic field in layer formation. 

A photochemical model which incorporates species produced by meteoroid ablation 

predicts that Mg+ is the most likely metal comprising the layers, although laboratory data 

on the kinetics of metallic atoms and ions in a reducing environment are lacking. The 

metal chemistry discussed here is directly relevant to the abundant metals observed at 

the impact site of the G fragment of Comet Shoemaker Levy 9 on Jupiter. 
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1. Introduction 

With the completion of the planetary component of the Voyager mission (Stone 

and Miner 1989), we now have spacecraft data for nine ionospheres in the solar system. 

These data, taken together with the wealth of information on Earth' s ionosphere, provide 

an excellent opportunity for comparative planetology. Seven of the ionospheres studied 

reside in the outer solar system (Jupiter, Io, Saturn, Titan, Uranus, Neptune, Triton), and 

have been investigated with the radio occultation technique pioneered by Lindal and 

colleagues (e.g.,Lindal et al. 1987;Lindal 1992;Tyler et al . 1989). The ionospheres of 

Venus and Mars have been probed by both the radio occultation technique and by in situ 

plasma instruments (Brace and Kliore 1991 ;Barth et al. 1992). Earth's ionosphere has 

been studied in great detail by in situ and ground-based radar techniques (Kelley 1989), 

but has only recently been probed in detail by radio occultations (Hajj et al. 1994). Here, 

I focus on the lower ionosphere of Neptune, although much of the chemistry should be 

applicable to the upper atmospheres of the giant planets in general. Each of the giant 

planets exhibits sharp, high density layers of electrons in its lower ionosphere (Atreya 

1986). The absence of such layers in the ionospheres of the non-magnetic planets 

demonstrates the key role played by the magnetic field in layer formation. On Earth, these 

layers are known to consist primarily of metallic ions, produced during meteoroid 

ablation, and gathered together by wind shears in the presence of Earth's magnetic field 

(Kelley 1989). Substantial modeling of terrestrial sporadic-E has been performed (Kelley 

1989), but only the influx of material from Io to Jupiter has been studied for the giant 
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planets (Chen 1981 ). 

2. Voyager 2 radio occultation data 

The radio occultation experiment at Neptune (Tyler et al. 1989) was performed as 

Voyager 2 passed behind the planet as seen from Earth. Propagation effects along 

tangents through Neptune's atmosphere induced variations in the phases of the S-band 

(2.3 GHz) and X-band (8.4 GHz) spacecraft carriers. For a frequency w >> w P' the plasma 

frequency, the change in phase relative to a vacuum is (Fjeldbo et al. 1965) (G. Lindal 

is known as G. Fjeldbo in earlier publications) 

2 
e J N ds 

2€ m .Aw2 palh e 
0 e 

(1) 

where e is the electron charge, me is the electron mass, Eo is the permitivity of free space, 

A. is the wavelength, and Ne is the electron number density. Contributions to L1<1> come 

from all plasma along the ray path, including the solar wind and terrestrial ionosphere, 

but are principally from Neptune's ionosphere. Figure I shows the S-band L1<1> (versus 

time) measured at the egress occultation point when Voyager 2 was about 76,000 km 

behind the limb of Neptune. The integration time for each phase point is 0.1024 seconds, 

which for a spacecraft velocity perpendicular to Neptune's limb of 12.8 km sec· ', 

corresponds to a vertical resolution of ::::: 1.3 km. The size of the Fresnel zone, which 

characterizes the scale at which diffraction effects become important, is 3.1 km at S-band 

and 1.6 km at X-band for egress. The sharpest layers are 7 to 10 km in width, and are 



U) 
Cl) -(,) 
~ 

0 

(,) -1 .. 
Cl) 
U) 
ca 
.c 
c. 

-2 

67 

32260 32280 32300 32320 

Earth Received Time 

Fig. 1 Observed S-band phase perturbation due to passage of the spacecraft signal 

through Neptune's ionosphere at the egress occultation point. The phase, in cycles, is 

plotted against Earth received time in seconds past midnight (spm). The time scale can 

be converted to a distance scale by multiplying by the spacecraft velocity (perpendicular 

to the limb) of 12.8 km sec-'. Note the four sharp layers between 32260 and 32280 spm. 
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therefore well sampled and not expected to produce significant diffraction. 

Assuming local spheroidal symmetry in the horizontal distribution of electrons, 

Lindal ( 1992) inverted the phase data, obtaining the electron number density profiles for 

the ingress and egress locations. Figure 2 shows an expanded view of the lower 

ionosphere for egress; ingress data are shown in (Lindal 1992). The narrow structures 

seen in the phase (Fig. 1) correspond to the sharp layers seen in Ne at altitudes from - 650 

to 750 km in Fig. 2. The high noise-level of the electron number density in the layer 

region is most likely due to deviations from local spheroidal symmetry of Ne (Lindal 

1992). In addition, it is possible that the signal variations were not fully resolved (1 0). 

S-band spectra showed some broadening in the layer region; therefore, only X-band data 

were used for the approximately 20 second section of phase containing the sharp layers. 

These data were then converted to S-band and merged with the remaining S-band data. 

The net result is that the electron number densities of the four main layers are uncertain 

by as much as a factor of two, but the altitude of the layers is well determined. 

Another potential source of error, multipath propagation, can be shown to be 

unimportant everywhere in the ionosphere. Sharp gradients in phase produce focussing 

and defocussing of rays, and can, if the gradients are sharp enough or the spacecraft far 

enough behind the planet, result in multipath propagation. The condition for multipath 

propagation is given by Fjeldbo ( 1965) in terms of the refractive gain, Gr = -1 Olog1011 + 

Dda/dpl, where D is the distance from the limb to the spacecraft, a is the bending angle 

given by a = ~<j>/dp , and p is the height of the ray periapse relative to the center of 

the planet. At a caustic, rays cross, and in the geometric optics limit Gr ~ oo. Multipath 
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Fig. 2. Electron number density profile obtained (Linda] 1992) from inversion of the 

phase data in Fig. 1. The noise level above 1100 km is - 1000 cm·3; below 1100 km, the 

noise level is significantly higher (- 5000-10000 cm·3). Although the uncertainty in the 

electron abundance is high in the lower ionosphere, the altitude of the layers is well 

determined from the phase. 
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propagation occurs when Dda/dp < -1. From the phase variations (Fig. 1 ), it can be 

shown that this condition is not met at any time at either S or X-band. However, the 

layers produce detectable defocussing of- 2 db at S-band and - 0.2 db at X-band. 

3. Interpretation of the radio data 

The simplest assumption regarding the origin of the layers is that, by analogy with 

Earth, they are long-lived metallic ions caught in a horizontal wind with a vertical shear 

(see below). However, the terrestrial ionosphere has also revealed that a richness of 

plasma structures can exist, due both to particle precipitation and plasma instabilities. The 

latitude and longitude of the Neptune egress occultation point is 44°S, 229°W, which 

according to the magnetic model of Connerney et al . (1991) corresponds to a field 

magnitude of B = .65 gauss, an inclination (or dip) angle of I = 65°, and a declination 

angle of D = -65°. Because egress occurred near the auroral zone, particle precipitation 

must be considered. To form a layer at 700 km would require electrons with energy - 1 

MeV, about 100 times more energetic than terrestrial auroral electrons; protons are 

incapable of reaching such depths before undergoing charge exchange or ionizing the 

background gas. Plasma instabilities (Kelley 1989) may contribute to the observed 

structure, but given that the topside ion densities are only - 1 x 103 cm·3, instabilities 

probably are not responsible for the sharp layers in the lower ionosphere. Another 

potential source of plasma structure is plasma drift across the terminator. Because of the 

distance of Neptune, the occultation points are necessarily both near the (morning) 
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terminator; i.e., the solar zenith angle is nearly 90°. Although diurnal variation due to 

radiative recombination of atomic ions is negligible, the low electron densities observed 

suggest that a faster loss process may be occurring, so that plasma flow may important. 

4. Chemical modeling of the lower ionosphere 

To determine whether or not metallic ions could be responsible for the sharp 

layers observed in Neptune's lower ionosphere, a comprehensive one-dimensional model 

of Neptune's upper atmosphere was developed. The model extends from 1 mbar to 10-10 

mbar, accounts for eddy and molecular diffusion (Allen et al. 1981 ), and includes ion and 

neutral chemistry of hydrocarbons, water and related species, and "metals" (i.e., non­

CHON species). Metals are produced in the model by meteoroid ablation, with volume 

production rates as computed by Moses (1992) for Neptune. The meteoroids are assumed 

to be of cometary composition (Jessberger and Kissel 1991), with 30% by mass water 

ice. The specific metal species considered are S, Si, Mg, Fe, and Na; in computing 

ablation production rates, no attempt was made to account for the differing volatilities of 

mineral grains that these species may occur in. The flux of meteorids was taken to be 10 

times the Oort cloud particle flux defined by Moses (1992), which is roughly the 

geometric mean of the two fluxes considered in (Moses 1992). Ablation is assumed to 

occur between 10 and 0.1 microbar, midway between the pure water ice and pure silicate 

ablation profiles of Moses ( 1992). In the model, the eddy diffusion coefficient of Romani 

et al. (1994) was employed, with a CH4 mixing ratio of 10-4 at 1 millibar. 
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Figure 3 shows the number density profiles predicted by the model for several 

neutral species, including four of the atomic metals. Neutral silicon, although comparable 

to Fe and Mg in cosmic abundance, is rapidly consumed in reactions with C2H4 and other 

hydrocarbons, and therefore does not accumulate in the atmosphere. The column 

production rate of Fe, Mg, and Si is 3.0 x 105 cm·2 sec·1
, with peak production occurring 

from 425 to 500 km. Loss is primarily by recondensation onto dust particles (Hunten et 

al. 1980), with a column rate of 2.7 x 105 cm·2 sec·1 from 300 to 400 krn. The 

condensation timescale in the model is - 3 x 105 seconds at z - 400 km, corresponding to 

a haze particle number density of - 300 cm·3 for 3 nanometer particles (Moses 1992). At 

a rate about 10 times lower than condensation, loss of neutral metals also occurs by 

charge exchange with molecular ions. There have been very few laboratory studies of the 

kinetics of metal atom reactions with hydrocarbons. Defining 'M' as one of Mg, Fe, Si , 

Na, or S, it is possible that species such as MH and MCH3 are produced during reactions 

of M with higher hydrocarbons. MH and MCH3 are likely to react with H to yield M and 

H2 or CH4 , thus returning atomic metals to the system. Bond strengths have been 

measured for some metal hydrides (CRC 1986), yielding values - 2 e V, so that reactions 

with H and CH3 would indeed be exothermic for the metals considered here. Except for 

Si and S, reactions of M with hydrocarbons are not included in the model. The model 

column abundances of Mg and Fe are- 6 x 10 11 cm·2, and for Nathe column density is 

- 3 x 1010 cm·2• These column densities were not large enough to be detected by the 

Voyager spacecraft. 

Ion profiles predicted by the model are shown in Fig. 4. The topside ionosphere 
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Fig. 3. Model number density profiles for several metal species, water, carbon and 

hydrogen. The calculations are for a meteoroid flux- ten times the Oort cloud particle flux 

at Neptune (Moses, 1992). The meteoroid composition is assumed to be cometary with 30 

% water ice by mass. 
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is dominated by H+. Using recent measurements of the rate coefficient for dissociative 

recombination (Canosa et al. 1992), H3 + is more than an order of magnitude Jess abundant 

than H+. Water produced during meteoroid ablation reacts with H+ to eventually produce 

H30+ by a sequence of reactions described previously (Connemey and Waite 1984;Atreya 

1986). The model topside electron density is - 5 times larger than the observed electron 

density (Fig. 2). There are several possible reasons for the discrepancy, which have been 

discussed elsewhere (Strobel et al. 1991) but will only be listed here. They are as follows: 

l) reaction of H+ with Hiv~4) to form H2+(v), which further reacts with molecular 

hydrogen; 2) influx of water at a high enough altitude to consume H+; in the present 

model the topside density is reduced by almost a factor of two due to water influx, but 

larger reductions have been predicted; 3) transport of H+ to the northern hemisphere by 

meridional winds; 4) vertical winds and/or enhanced escape of H+. 

The lower ionosphere is predicted to be dominated by the metallic ions Mg+ and 

Na+ (Fig. 4). Metal ions are formed primarily by charge exchange with hydrocarbon ions 

and H30+; solar ionization of neutral metals contributes < 10 % to the metal ion 

production rate in the model. The formation of hydrocarbon ions is driven by solar 

ionization of CH4 and C2 hydrocarbons, and proceeds along a complex path (see e.g., 

Atreya 1986;Kim and Fox 1991 ) that leads to the formation of C3 and C4 hydrocarbon 

ions, here denoted as C3Hm + and C4H/. The kinetics of hydrocarbon ion-molecule 

reactions have been well studied in the laboratory, with the result that most rate 

coefficients are known (Anicich 1993). The principal formation pathway for metal ions 
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is 

(R1) 

The rate coefficient of this reaction is assumed to be 1 x 10·9 cm3 sec·•, by analogy with 

the reaction CH5+ + Mg ---7 Mg+ + CH4 + H (Anicich 1993). Because most of the metal 

species have high proton affinity (Huntress 1977), species such as MH+ are also likely 

products. The large abundance of H ensures that MH+ will be converted to M+ via the 

reaction 

(R2) 

analogous to the reaction MO+ + 0 ---7 M+ + 0 2 in the terrestrial ionosphere (Ferguson and 

Fehsenfeld 1968). Theoretical estimates (Ohanessian and Goddard 1990; Bauschlicher and 

Langhoff 1990) of bond strengths in metal hydride ions shows that reaction R2 will be 

exothermic for the metals considered here. In the model, charge exchange to form M+ is 

assumed to form MH+ with equal probability, and the rate for R2 is assumed to be 1 x 

10·10 cm3 sec·1
• Fe+, s+, and c+ are not present in Fig. 4 due to reactions with CH4 , C2 

hydrocarbons, and water. Similar reactions with C3 and higher hydrocarbons may occur 

for Mg+ and Na+, but apparently these have not been studied in the laboratory. 

5. Modeling of the sharp ionization layers 

Clearly, the model lower ionosphere shown in Fig. 4 does not account for the 

observed electron layers. However, there is sufficient Mg+ abundance predicted that the 
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magnesium ions could be compressed into sharp layers. The short chemical lifetime of 

molecular ions makes them unsuitable as candidates for layer formation . According to the 

mechanism proposed to explain sporadic E in the terrestrial ionosphere (Whitehead 1961 ), 

compression of ions into layers can result from a horizontal wind with a vertical shear 

acting on the ions in the presence of a magnetic field. Such wind shears are usually 

produced by atmospheric gravity waves and tides. The motions of ions and neutrals are 

coupled through ion-neutral collisions. However, in the presence of a magnetic field, ion 

motion is further influenced by the Lorentz force. 

By balancing the Lorentz force with the rate of momentum exchange due to 

collisions with neutrals, an expression may be derived for the vertical ion velocity, w;, in 

terms of the neutral wind components. The ratio of the ion-neutral collision frequency to 

ion gyro frequency , 11;=V;jn;. characterizes the dominant influence on ion motion. 

Expressions for these two frequencies are given by Atreya (1986), and are 

V;n=27t( a;ne2/fl;nl 2n and n ;=eB/111;. Following earlier work (e.g., Kirkwood and Collis 1989; 

Bristow and Watkins 1991 ), balancing the Lorentz force and the rate of ion-neutral 

collisions, ev;xB=m;V;0 ( V;-V0 ), where V; and V0 are the ion and neutral velocity vectors. 

Solving for the vertical component of ion velocity yields W;=ucoslcosD/11; for u>>v,w, the 

meridional and vertical components of the neutral wind, and for 11;>> 1. Thus, at an 

altitude for which 11;>> 1 (valid for z < 800 krn), and assuming the zonal wind, u, is the 

dominant neutral wind component, W; ex: u/11;. demonstrating that changes in the horizontal 

neutral wind are translated into changes in the vertical ion velocity. 

Compression of the ions requires a convergent vertical ion wind, "dw/CJz < 0, where 
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Fig. 5. Magnesium ions in the lower ionosphere are compressed into sharp layers by a 

sinusoidal vertical ion wind. The wind was applied from 630 to 770 km for a total of 

5000 seconds, in steps of 500 seconds. The vertical resolution of the model has been 

enhanced to 2 km over this altitude range; elsewhere the resolution is one third of a scale 

height. Note that the lower ionosphere was first raised - 150 km by an upward ion wind 

of 1m sec-•, applied from 400 to 1000 km for- lOS seconds. The upward wind is assumed 

to result from ExB drift, and requires an electric field - 0.1 m V /m. 
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z is the altitude. Differentiation of wi with respect to z yields the expression dw/dz = 

coslcosD(duldz + u/H,Yrli, relating the divergence of the vertical ion wind to the vertical 

shear in the zonal neutral wind. Figure 5 shows the result of applying an alternately 

convergent and divergent ion wind to the lower ionosphere shown in Fig. 4 . The lower 

ionosphere was first raised- 150 km, bringing the model profile into better agreement with 

the observations. The upward wind is usually (e.g., Majeed and McConnell 1991) 

attributed to E x B drift; in this case, the magnitude of the electric field component 

perpendicular to B and z is EJ._ ""' wiB/cosl = 0.1 millivolt m·' . Such an electric field may 

be generated by a dynamo associated with upper atmospheric winds driven by Triton or 

solar tides. The prescribed wind was a sinusoid, wi = w ' sin[m(z-Zo)], where m=21t/d for 

a layer spacing d::=33 km, Zo=633 km, and w ' =3 m sec·' . This form of wi results in the 

four layers seen in the lower portion of Fig. 5. The maximum vertical gradient of the ion 

wind is dw/dz ""' 0.6 m sec· ' km·', which at an altitude - 700 km corresponds to a 

maximum duldz - 30 m sec·' 1cm·', a substantial but not implausible wind shear. 

The choice of a sinusoidal ion wind field was motivated both by the occurrence 

of multiple ion layers in the lower ionosphere and by the likelihood of vertically stratified 

zones of wind shear associated with atmospheric gravity waves. Earth-based stellar 

occultation data (Sicardy et al. 1992; Roques et al. 1994) of Neptune's upper atmosphere 

suggest the presence of convectively unstable waves at pressures as low as 0.1 to 0.03 

microbar, with vertical wavelengths comparable to the ion layer spacing (- 20 to 30 km). 

Assuming waves with m >> k (horizontal wavenumber), the time required for a wave to 

propagate h, one ionospheric layer height, is hlvg - hm2/Nk. For mlk- 10, the buoyancy 
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frequency N- 7xl0·3 s·1
, and a layer vertical thickness h- 10 km, h/vg - 3000 to 3xl04 

seconds. Thus, the wave can form a single layer before significant smearing of the layer 

occurs, consistent with the results shown in Fig. 5. The value of the wave vertical velocity 

perturbation, w ' , given above corresponds to a temperature perturbation of T ' -

(mw ' /kcs)(y-1 )~0 - 5 K for mlk- 10, consistent with the occultation data ofRoques et aL 

(1994 ). Calculations of viscous dissipation of gravity waves with m >> k suggests that 

the waves must have mlk << I 00 if they are to have significant amplitudes at pressures 

- 1 o-2 Jlbar. A detailed discussion of gravity waves, including chemical calculations with 

a time-dependent (i.e., propagating) wind field, will be given elsewhere. 

Laboratory data on the kinetics of neutral and ionized atomic metals, particularly 

Mg, in two-body, three-body and cluster reactions with hydrocarbons and H2 are crucial 

to a more complete understanding of the lower ionospheres of Neptune and the other 

giant planets. The detection (Noll et aL 1994) of abundant Mg and Mg+ at the impact site 

of the G fragment of Comet Shoemaker Levy 9 makes clear the need for further study 

of metals in reducing environments. 
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Abstract 

Results from a recent analysis of meteoroid ablation rates in the atmosphere of 

Neptune have been coupled with photochemical models of the upper atmospheres of 

Neptune and Uranus to yield estimates of stratospheric water profiles as a function of 

meteoroid influx. Because water has never been detected in the upper atmospheres of the 

giant planets, the tangential column opacities of the model water profiles were compared 

with ultraviolet absorption measurements made by Voyager to determine maximum water 

influxes. For Uranus an upper limit of 4x 106 water molecules cm·2 sec·1 is obtained. For 

a Triton-like meteoroid composition (30% water ice by mass), this flux is consistent with 

an Oort-family particle population, but is not consistent with a large population of planet­

family dust particles. For Neptune the model water profile is strongly dependent on the 

still uncertain eddy diffusion coefficient, making it difficult to rule out a large planet­

family population of IDP' s. However, an IDP population sufficiently large to account for 

the CO observed in Neptune' s atmosphere can be ruled out. 
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1. Introduction 

Little is known about the abundance and composition of interplanetary dust 

particles (IDP's) in the outer solar system. In situ spacecraft measurements made by 

Pioneer I 0 and 11 (Humes 1980) suggested a constant spatial particle density from 1 to 

18 AU for particles in the mass range of 10-8 to 10-9 g. The flux of IDP's is believed to 

be a key factor in determining the lifetime of ring systems (Cuzzi and Durisen 1990) and 

in producing dust (Bums et al. 1980) and other ring features (Goertz and Morfill 1983). 

Meteoroidal and ring particle influx have been proposed as the principal sources of 

oxygen species to the upper atmospheres of Jupiter (Prather et al. 1978), Saturn 

(Connemey and Waite 1984) and Titan (lp 1990), and it has been suggested (Moses 1992) 

that meteoroidal deposition of water could be the source of CO recently observed 

(Rosenqvist et al. 1992, Marten et al. 1993) in Neptune' s stratosphere. High yield 

excavation of ring particles and satellite surfaces by meteoroidal impact has been 

proposed as the source of dust in portions of the Uranian and Neptunian ring systems 

(Smith et al. 1989, Smith et al. 1986), and in the magnetosphere of Neptune (Gumett et 

al. 1991 ). 

On the basis of orbital characteristics, two families of projectiles are defined in 

the outer solar system (Cuzzi and Durisen 1990). The Oort cloud family consists of 

particles with large eccentricities and random inclinations, generated by volatile emission 

from Oort cloud objects. The planet family IDP's have low eccentricities and small 

inclinations, and are thought to be derived from collisions among Kuiper belt objects. 
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These two comet families will produce IDP' s with very different velocity distributions in 

the outer solar system. The result is a significant difference in the gravitational focusing 

of particles by the planet, with the planet-family particles being slower and therefore more 

focused. At Neptune and Uranus the focusing factors differ by about a factor of 20 for 

the two populations (Moses 1992), suggesting the possibility of large atmospheric 

meteoroid fluxes associated with planet-family IDP's. However, the spatial density of 

IDP' s at the orbits of Uranus and Neptune is unknown. Smith et al ( 1989) claim that an 

impact flux - 100 times that at Jupiter and Saturn is needed to explain the dustiness of 

Neptune's rings. Cratering rates of the Uranian and Neptunian satellites may require a 

large number of planet family impactors (Smith et al. 1989). Given that collisions among 

Kuiper belt objects should occur infrequently (compared to objects in the asteroid belt), 

it seems reasonable to expect low IDP abundances in the outer solar system. Recent 

estimates (Flynn 1994) of the rate of dust production, P, due collisions in the Kuiper belt 

yield values of P - 104 to 108 g/sec. This corresponds to a mass flux at the orbit of 

Neptune- aPN, where a:::::: 30 AU is the distance to Neptune's orbit, and Vis the volume 

of the dust production region in the Kuiper belt. Assuming that the dust production region 

is a torus extending from 30 to 40 AU, 2 AU in thickness, the mass flux corresponding 

to the maximum estimated dust production rate is 3 x 10-21 g cm-2 sec-1
, more than three 

orders of magnitude smaller than the estimated Oort-family IDP flux at Neptune (see 

below). Such estimates are, of course, extremely uncertain, both in terms of the dust 

production rate and the volume of the torus. Photochemical considerations can provide 

another constraint on the flux of particles coming from the Kuiper belt. 
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2. Meteoroid ablation and photochemical model 

Recently, a thorough analysis of meteor ablation in the atmosphere of Neptune was 

performed by Moses ( 1992). Ablation rate profiles were computed for water ice and 

silicate meteoroids for possible Oort and Neptune families of projectiles. Here, the 

ablation rate profiles computed by Moses ( 1992) are coupled with a comprehensive 

photochemical model of Neptune's upper atmosphere with the objective of computing 

water vapor profiles. Ultraviolet absorption due to the water is then estimated from the 

profiles and can be compared with solar occultation experiments performed with the 

Voyager utraviolet spectrometer (UVS) (Broadfoot et al. 1989). Because water has never 

been detected in the upper atmospheres of the giant planets, only upper limits to the water 

profiles, and hence water influx, can be inferred. The photochemical model assumes 

(following Moses (1992)) a Triton-like composition for the meteoroids (Smith et al. 

1989), with a water ice mass fraction of 30% and the rest as silicates; this corresponds 

to a dust to gas ratio of 2.3. The model is one dimensional, extends from 100 mbar to 

10"10 mbar and includes vertical transport by eddy and molecular diffusion (Allen et al. 

1981 ). The chemical species solved for include H20 , OH, 0 and OCD) , in addition to 

CH4 and other hydrocarbons (Moses et al. 1992). Temperature, eddy coefficient, and 

(measured) hydrocarbon and H2 profiles are from Yelle et. a!. (1993). The photochemical 

model has several hundred reactions (including ion-molecule), a list of which is available 

from the author. Key reactions involving water and its photodissociation products are 

given in Table 1. The solar flux model is for near solar maximum conditions at Neptune 
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(Mount and Rottman 1983, Torr and Torr 1985, Woods and Rottman 1983) and solar 

minimum at Uranus, where the latter flux model is derived from the Solar Mesospheric 

Explorer data of 4 December 1985. The LISM flux measured at Neptune is included for 

both the Uranus and Neptune models. 

The model H20 number density profiles computed for Neptune are very dependent 

on the assumed eddy diffusion coefficient, K. Two eddy diffusion coefficients have been 

suggested for Neptune. The Yelle et al. (1993)/Moses (1992) eddy coefficient, KYM• 

increases monotonically, while the Romani et al. (1994) eddy coefficient, KR, rises very 

sharply in the stratosphere and decreases slightly at lower pressures. In the present work, 

the assumed methane mixing ratios at the tropopause are 10·3 and 104
, respectively, for 

KvM and KR, respectively. 

Water profiles were computed for possible Oort and Neptune families of 

meteoroids as defined by Moses ( 1992). The Oort population is estimated by assuming 

a constant spatial density of IDP's from 1 to 30 AU. Because the velocity of the Oort 

cloud projectiles is proportional to the inverse square root of the heliocentric distance, the 

flux at 30 AU is decreased by a factor of l/[30 relative to the flux at l AU. This 

corresponds to a mass flux of 7.4 x 10·18 g cm·2 sec·1 at 30 AU. The mass flux of IDP's 

at 1 AU is taken from Grtin et al. (1985). Moses (1992) computed the Neptune-family 

mass flux of IDP' s by assuming that the gravitationally focused flux of IDP' s at the inner 

edge of the Neptune ring system is - 100 times the corresponding flux at Saturn, as 

suggested by Voyager measurements (Smith et al . 1989). This corresponds to an 

unfocused mass flux at 30 AU of 8.1 x 10·17 g cm·2 sec·1
, or about twice the flux at 1 AU. 
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Gravitational focusing enhances these fluxes in the vicinity of Neptune by the factor 

(1 +YesJu2
), where the escape velocity is 22.9 km sec·1 and u is the velocity relative to 

Neptune. For the Oort cloud projectiles Moses ( 1992) assumes a monochromatic velocity 

distribution of u = 7.7 km sec·1
, the escape velocity at Neptune's orbit, which corresponds 

to an enhancement factor of I 0. For the Neptune-family population the relative velocity 

of the projectiles is = 30 % or less of Neptune's orbital velocity, or u - 1.6 km sec·1
, 

which corresponds to an enhancement factor of about 200. The mass fluxes of the two 

projectile populations therefore differ by - 200. For pure water ice most of the ablation 

occurs in the 1 o-2 to 1 micro bar region, whereas for pure silicate the ablation rate is a 

maximum from 1 to I 02 micro bars. The total column ablation rates for water ice 

meteoroids are 7 x lOS and 2 x 108 cm·2 sec·1 for Oort and Neptune family populations, 

whereas for silicates the corresponding fluxes are 3 x 105 and 5 x I 07 cm·2 sec·1
, 

respectively (Moses 1992). The H20 production rate profile for ablation of particles of 

Triton-like composition is assumed to have the same altitude dependence as for the pure 

water ice meteoroids considered by Moses ( 1992). 

3. Results - Neptune 

Computed water profiles are shown in Fig. 1 for K vM for both Oort and Neptune 

families of meteoroids. The agreement between modeled and measured abundances of 

CH4 and H is good, whereas C2H6 and ~H2 are too high, the latter by an order of 

magnitude. The water profile for the Neptune-family projectiles has a peak density of 
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Reaction Rate Constant Reference 

R1 H20 + hv --+ OH + H 7.3 x w-9 Slanger and Black (1982) 

--+ 0 + 2H 7.5 x w-10 Stief et al. (1975) 

--+ 0(10) + H2 6.4 x w-10 Haddad and Samson (1986) 

R2 OH + H2 --+ H20 + H 7.7 X 10-12 e·2l00ff Atkinson et al. (1989) 

R3 0 + H2 --+ OH + H 8.5 X w-20 T2.7 e-3160ff Baulch et al. (1992) 

R4 0(10) + H2 --+ OH + H 1.1 x w-10 Atkinson et al. (1992) 

R5 OH + ~H4 --+ prod 2.2 X 10-12 e+41lff Atkinson (1986) 

R6 0 + CH3 --+ CH20 + H 1.4 x w-10 Atkinson et al. (1992) 

Table l . Selected list of reactions involving water and its dissociation products in a 

hydrogen atmosphere. The units for rate coefficients are sec·1 and cm3 sec·1 for 

photodissociation and two-body reactions, respectively . The photodissociation coefficients 

are for globally averaged values of solar flux at 30 AU and during solar maximum 

conditions at 30 AU. 
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1.5x 109 cm·3 at 300 km. Below the peak water vapor is lost by condensation, which is 

assumed to occur with a time constant of I 07 seconds, sufficiently fast to prevent 

supersaturation. The Oort-family water profile has a peak density of 6 x 106 cm·3 at 300 

km. Water is photodissociated yielding primarily OH, but also 0 and OCD). The hydroxyl 

radical reacts with H2 in the reaction (Table I) 

R2 

which is the key pathway in reforming the water molecule. OCD) reacts rapidly with H2 

to produce OH, while 0 also forms OH with H2 but much more slowly. OH and 0 also 

react with hydrocarbons to produce species that are precursors to CO (Prather et al. I978, 

Ip 1990). For the results shown in Fig. I the principal pathway leading to CO formation 

IS 

R5 

where the product is assumed to be a precursor species to CO. However, only about 10 

% of OH contributes to CO formation; the majority proceeds by R2 with the resulting 

water then being lost by condensation. To first order, the column abundance of CO in 

Neptune's atmosphere is related to the water influx by the expression (Strobel and Yung 

I979) 

(1) 

where £ is the efficiency of conversion of H20 to CO, <j>0 is the downward flux of water, 
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Figure 1. Model number density profiles of the key ultraviolet absorbers in the upper 

atmosphere of Neptune for the Yelle-Moses eddy coefficient (see text). Observed values 

are indicated by data points for H2 , CH4 and C2H6 (Yelle et al. (1993)), and for H 

(Broadfoot et aJ. ( 1989)). Computed water profiles for both the Oort-family and Neptune-

family of meteoroids are shown. The model hydrocarbon and H profiles are shown for 

the Oort-family of meteoroids, but do not differ greatly for the two meteoroid families. 
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H3 is the scale height of the background atmosphere, and Ko is the eddy diffusivity at the 

tropopause. For Ko = 103 cm2 sec·1 (Moses et al. 1992), Ha = 17 km and £=0.1 , the 

resulting CO column abundance is 2 x 1017 cm·2• Therefore, the flux of Neptune-family 

meteoroids with the Yelle-Moses eddy profile is about a factor of 100 too small to 

account for the observed abundance (Rosenqvist et al. 1992, Marten et al. 1993) of CO 

of 1.7 x I 0 19 cm·2 on Neptune. However, it must be noted that Ko is not known, and could 

be<< 103 cm2 sec·1
• 

The corresponding water profiles for the Romani eddy profile are shown in Fig. 

2. Although the model overestimates CH4 and underestimates H, the C2H2 and ~H6 

abundances are in much better agreement than for the KvM profile. The H20 abundances 

are reduced from the Yelle-Moses case by about two orders of magnitude at 300 km, 

illustrating the dramatic effect the eddy profile has on the water profiles. The conversion 

efficiency for ablated H20 to form CO is again about 10%. The peaks in the water 

profiles below 200 km result correspond to supersaturated H20, due to the condensation 

time scale exceeding the diffusion time scale. The supersaturation can be removed by 

decreasing the condensation timescale to - 1 OS seconds. 

The UVS solar occultation experiment (Broadfoot et al. 1989) measured absorption 

from 500 to 1650 A and was sensitive down to the 5 to I 0 % level (Yelle et al. 1993). 

The tangential column opacity of the computed water profiles at a given altitude and 

wavelength is given by 't(A,z) = cr(A.)N(z), where cr is the absorption cross section and 

N is the tangential column number density of water molecules. Cross section data for the 

hydrocarbons (Atreya 1986) and for water (Slanger and Black 1982, Stief et al. 1975, 
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Haddad and Samson 1986) are readily available. Observed opacities were calculated from 

the extinction coefficients, k~.. . given in Yelle et al. (1993) by integrating along the 

tangential path, 

(2) 

where ~ is the planet radius at the 1 bar level. At 1600 A, the extinction coefficient was 

approximated by the expression 

__ z_ 

k1(i()()J = 0.060e 39.1 
(3) 

where z is in kilometers. Equation (3) is accurate for a wavelength range of 1585-1620 

A and from about 160 to 300 km (Yelle et al. , 1993), but was assumed to be valid at all 

altitudes for the present calculations. Results of these calculations are shown in Fig. 3. 

Short wavelength (<1000 A) absorption is dominated by H2• At 1350 A absorption 

by methane is the principal source of opacity. At 1450 A C2H6 is the dominant absorber 

and will mask the presence of H20. By 1550 A the Neptune-family water profile of Fig. 

1 would be detectable (i.e., opacity ;:::: 0.1) from below 300 km to about 500 krn. 

According to the profiles of Yelle et. al. (1993), the opacities due to ~H2, C2H4 and C2H6 

are less than 0.1 above 300 km at 1550 A. At 1600 A water would be detectable to nearly 

550 km, as shown in Fig. 3. Yelle et al. (1993) reported that from 1550 to 1600 A weak 

absorption was detected below 250 km, but that no absorption was detected above 300 

km. This clearly demonstrates that the number density of the water profile resulting from 

the Neptune-family meteoroids for the K vM profile is at least a factor of 10 too high from 
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Figure 3. Model tangential column opacities at a wavelength of 1600 A for several 

water profiles and the observed opacity as determined by integration of the - 1600 A 

extinction coefficient of Yelle et al (1993). The water opacity profiles include the Oort 

and Neptune family meteoroid influx models for the Y elle-Moses eddy coefficient, 

labelled H20 A and B, respectively, and the Neptune family meteoroid model for the 

Romani eddy coefficient for two rates of water condensation. H20 curve C is for a 

condensation time of 107 seconds and results in a supersaturated water profile, and curve 

D is for a condensation time of 1 OS seconds, fast enough to prevent supersaturation. The 

Voyager UVS detection limit is - .05 to .1 0, so only curve A corresponds to a detectable 

level of water opacity. 
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300 to 500 km, and suggests that the influx of water can be no more than 2 x 107 

molecules cm·2 sec-'for this eddy profile. This is an order of magnitude smaller than for 

the Neptune-family flux assumed by Moses (1992). Also shown in Fig. 3, the Neptune­

family flux of meteoroids does not produce detectable levels of water for the Romani 

eddy profile. 

Because the altitude range at which ablation occurs and the exact species produced 

by ablation are uncertain, several sensitivity tests were performed with the photochemical 

model. As discussed by Moses ( I992), actual meteoroids will be a mixture of ice and 

rock components, so it may be reasonable to expect the bulk of ice ablation to occur at 

pressures between that of pure water ice and pure silicate meteoroids. Alternatively, a 

fluffy aggregate composition (density << 1 g cm-3) could result in ablation of ices at 

altitudes higher than for icy meteoroids with densities :::: I g cm·3
. Photochemical model 

runs were therefore made with the ablation production rate curves used to generate 

Figures 1 and 2 (arbitrarily) shifted to pressures I 0 times higher and 3 times lower. While 

not significantly affecting the water and hydrocarbon profiles, varying the altitude of H20 

injection modified the ionosphere, reducing the peak ion density by a factor of 2 for the 

case of high-altitude ablation. The effect of water on giant planet ionospheres has been 

described previously (Connemey and Waite I984, Shinagawa and Waite I989, Majeed 

and McConnell, Waite and Cravens 1987). 

Dissociation of ablated H20 molecules will result in a change in the oxygen­

bearing species injected into the atmosphere. H20 molecules traveling at the velocity of 

a meteoroid in Neptune's atmosphere ( about 23 km sec- ') have a kinetic energy of 50 eV 
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relative to the thermal background gas, enough to dissociate and ionize H2 • In the frame 

of a just-ablated H20 molecule, background H2 molecules and He atoms have kinetic 

energies of 5.4 and 10.9 eV, respectively, enough to dissociate H20 and OH molecules 

but not enough to directly ionize them. Unfortunately laboratory data in which H20 is the 

projectile and H2 is the target are not available for these energies. Model runs were 

therefore made in which the ablated species were assumed to be dissociated to H and OH, 

and 2H and 0 instead of remaining as H20 ; oeD) was not considered because it rapidly 

forms OH. Detailed results of these runs will not be given here. The key point, however, 

is that significant conversion of the oxygen-bearing ablation species to CO only occurs 

for oxygen atoms, with near total conversion occurring at higher pressures (lower 

temperatures). The large activation energy of R3 (Table 1) inhibits formation of H20 from 

0, allowing 0 to react with hydrocarbons, principally via (Strobel and Yung 1979) 

R6 

Furthermore, the inhibition of R3 at low temperatures results in a reduction of the water 

profile to number densities that are just below detectable levels. Increasing the ablation 

rate by a factor of 10 yields a CO production rate comparable to that required to explain 

the observations (Rosenqvist et al. 1992, Marten et al. 1993), but also results in detectable 

levels of H20. This does illustrate, however, that penetrative meteoroids producing 

primarily free oxygen at relatively low temperatures can yield significant quantities of 

CO, while simultaneously generating undetectable levels of H20. 
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4. Results - Uranus 

The photochemical model of Neptune' s upper atmosphere was adapted to Uranus 

and water profiles due to meteoroid ablation were computed. The principal difference 

between the upper atmospheres of Uranus and Neptune is the extent of vertical mixing, 

with the former having an eddy diffusivity of only 103 to 104 cm2 sec· ' at the homopause 

(Summers and Strobel 1989, Herbert et al. 1987, Bishop et al. 1990) versus the latter's 

107 to 108 cm2 sec·' (Moses 1992, Yelle et al. 1993, Romani et al. 1994 ). This results in 

the ablation region on Uranus being nearly free of hydrocarbons, thus allowing a stronger 

constraint to be placed on the water influx, and reducing the conversion efficiency of H20 

to CO. Hydrocarbon and water number density profiles for Uranus are shown in Fig. 4 

for an Oort-farnily flux (scaled to Uranus) and for 10 times an Oort flux. The temperature 

profile corresponding to a thermospheric heat source at - I o-5 micro bar was employed 

(Stevens et al. 1993), although similar water profiles are obtained for the temperature 

profile of Herbert et al. (1987). Sensitivity tests of the type described above for Neptune 

produce profiles that do not differ significantly from the profiles in Fig. 4 . The efficiency 

of conversion of H20 and OH to CO is < 10 %, while for 0 influx in the 0.1 to l 0 

microbar range the efficiency is < 20%. The profiles in Fig. 4 imply a maximum water 

influx at Uranus of 4 x 106 cm·2sec· ', corresponding to two times the Oort influx. 

Shinagawa and Waite (1989) suggested an upper limit of 106 cm·2 sec·' , although they 

did not relate this to the meteoroid influx. At 1600 A, hydrocarbon absorption and 

Rayleigh scattering are not important above 300 km. 
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The weak eddy mixing on Uranus renders the water profile sensitive to vertical 

advection velocities > DIH, where D is the molecular diffusion coefficient and H the scale 

height for H20. At the peak in the water profiles (380 krn), the chemical loss and 

diffusion time constants are - 2x107 sec, and D/H-.03 em sec·' . Vertical advection 

velocities > .03 em sec· ' may not be unreasonable to expect above the hydrocarbon 

homopause on Uranus. Advective control of the water profile in Earth' s mesosphere has 

been proposed by Bevilacqua et al. (1990). 

The extended exosphere of Uranus limits the lifetime of dust in the inner rings and 

leads to a significant flux of material to the upper atmosphere of Uranus (Esposito and 

Colwell 1989). Because the ultraviolet solar occultation measurements were made near 

the equator, the expected region of greatest ring particle influx, it may be possible to 

constrain the H20 abundance of the dust-sized ring particles. Esposito and Colwell ( 1989) 

estimate a mass influx of 6 x 1011 g y( 1 due to erosion of ring particles and subsequent 

atmospheric gas drag. Rizk and Hun ten ( 1990) assume the ring particles enter the 

atmosphere in an equatorial strip of width L - 1000 krn. The mass influx in this strip is 

then 1 x 10·14 g cm·2 sec·'. The column production rate of H20 is to first order given by 

fw<l>/11, where fw is the volume fraction of water in the ring particles, <!> is the particle mass 

influx, and 11 is the mean molecular mass of an ablated molecule. An upper limit to fw can 

be determined from the H20 production rate due to ablation, and the lack of water 

detection by the Voyager UVS. The latter places an upper limit on the H20 number 

density of nmax - 108 cm·3. The constraint on fw is then 
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n H 11 K J < max wr- h 

w <I>L 2 
(4) 

where ~ is the horizontal eddy diffusion coefficient, and Hw is the scale height of water. 

For ~ - 1010 cm2 sec·1 (Rizk and Hunten 1990), Hw z 30 km, and 11 z 30 amu, equation 

(3) yields fw < 1, implying that even if the ring particles were pure water ice, the resulting 

water profile would not have been detected. As the albedo of the Uranian ring particles 

is known to be very low (Smith et al. 1986), most likely fw << 1, making the detection 

of water even less likely. 

5. Summary and Conclusions 

At present it is difficult to constrain the influx of water into Neptune's atmosphere 

due to the uncertainty in the eddy diffusion coefficient. The eddy coefficient of Romani 

et al. (1994) yields the best overall agreement between model and observed hydrocarbons, 

and predicts rapid transport of water out of the ablation region to lower altitudes where 

condensation occurs. As a result the water abundance is too low to result in an observable 

opacity even for the Neptune family of meteoroids defined by Moses ( 1992). Larger 

planet-family populations, sufficient to account for the observed CO, result in detectable 

levels of H20, and can therefore be ruled out. These results imply that the stratospheric 

CO seen on Neptune (Rosenqvist et al. 1992, Marten et al. 1993) is not from an 

extraplanetary source, but instead is mixed upward from the troposphere, as suggested 

previously (Atreya et al. 1992, Lodders and Fegley 1993). If the ablated H20 is 
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dissociated to ground state 0 relatively deep (pressure > 10 microbar) in the atmosphere, 

larger influxes of IDP' s are allowed. 

The Yelle-Moses eddy profile yields stronger constraints on the IDP influx. Except 

for the case of ablation occurring at higher pressures and the water being dissociated to 

0 , the model results for the Yelle-Moses eddy profile require that the influx of water to 

Neptune be $ 2 x 107 cm·2 sec-1 to be consistent with the non-detection of H20 by 

Voyager. This value corresponds to a mass flux into Neptune's atmosphere of 2 x 10-15 

g cm-2 sec·1 for meteoroids that are 30% water ice. The upper-limit to the unfocused Oort­

family meteoroid flux at 30 AU (for the velocity distribution described above) is therefore 

2 x 10-16 g cm-2 sec-1
• The Oort-family flux assumed here and by Moses (1992) is always 

less than this value. The upper limit to the unfocused Neptune-family projectile flux is 

1 x 10-17 g cm-2 sec·1 for particles with mean velocity equal to 30% of Neptune' s orbital 

velocity. Therefore, the Neptune-family flux defined by Moses (1992) must be reduced 

by decreasing the spatial density at 30 AU by an order of magnitude if the Yelle-Moses 

eddy profile is correct. This upper limit is more than 103 times the dust mass flux 

estimated above due to collisions among Kuiper belt objects, suggesting that an accurate 

assessment of dust production in the Kuiper belt may provide a much stronger constraint 

on the dust flux at Neptune than the photochemical constraint presented here. 

The upper limit to the Uranian water influx of 4 x 106 molecules cm-2 sec-1 implies 

maximum unfocused mass fluxes of 8 x 10-17 and 4 x 10-18 g cm·2 sec·1 for the Oort and 

Uranus-family meteoroids, respectively, at the orbit of Uranus, consistent with an Oort­

family of IDP's but not with a large population of Uranus-family particles. The ring 
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particle influx at Uranus, for the conditions outlined by Rizk and Hunten (1990), will not 

produce a detectable abundance of H20, even for the assumption of pure water ice 

particles. The IDP results for both Uranus and Neptune assume IDP's of cometary or 

Triton-like composition, and are not consistent with an influx of meteoroids that are 

significantly depleted in water ice ( << 30 % by mass). 

It is interesting to note that models of water influx to Jupiter (Prather et al. 1978) 

have invoked high values of meteoroidal influx (depending on the assumed eddy diffusion 

coefficient) in an effort to explain what was then believed to be stratospheric CO. Later 

measurements (Noll et al. 1988) have shown that the CO is actually in the troposphere, 

strongly implying that the CO is not the result of a present day extraplanetary source of 

water, but rather is from the interior of the planet. Similarly, the oxygen ion source 

invoked by Strobel and Yung (1979) must be reduced, or its resulting chemistry modified 

appropriately, so as to not result in detectable levels of stratospheric CO in their model 

of Jupiter' s stratosphere. 
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Abstract 

A chemical kinetic model is developed for gas phase species containing the 

elements H,C,N,O,S and Si which is valid at high temperatures and for H-dominated 

compositions. The kinetic model is tested by running it to steady state equilibrium and 

then comparing the results with species abundances as determined from a thermochemical 

model for a range of temperatures ( 1000 to 4000 K) and pressures ( 1 Jlbar to 1 bar). By 

such comparison, incorrect reaction rate coefficients, missing species, and missing 

chemical pathways were identified and corrected in the kinetic model. Fairly good 

agreement between kinetics and thermochemistry was obtained for species comprised of 

H,C,N,O but agreement was less satisfactory for species containing S and Si, due to a 

lack of rate coefficient data. Some species, such as S2, were noted to undergo a significant 

transient overshoot in abundance, particularly at low pressures. Such overshoot may have 

contributed to the large observed abundances of some of these species. 

The kinetic model was run for pressure-temperature (P-T) histories likely to be 
/ 

relevant to the Comet Shoemaker-Levy 9 impacts on Jupiter. Model runs were made for 

a variety of fireball and plume reentry temperatures, and for two compositions (C>O and 

C<O). For C>O, S2 and CS2 are favored by low plume temperatures ( -1500 K), whereas 

CS is produced in plumes with temperature > 2500 K. Atomic Si is abundant in hot 

plumes (-3500 K). NH3 >> HCN is favored for lower fireball temperatures (-2000 K), as 

is CO - 1 OxH20 . C>O requires a greater than 50: I mix of Jupiter gas to vaporized comet, 

or Jovian gas from pressures < several bars (assuming C<O below the Jovian water 
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cloud). For C<O, CO and H20 dominate the carbon and oxygen species, and species such 

as SO, NO and SiO became significant; S2 remained abundant. The results suggest that 

the observed atomic and molecular species were produced over a range of temperatures. 

When run with similar P-T histories, our model and the model of Zahnle et al. (1995) 

yield different results for sulfur species. However, we do confirm the importance of 

disequilibrium chemistry during plume reentry. A brief consideration of atomic metals 

suggests that thermal emission up to - 1 hour after a given impact may be due to reentry 

of a non-visible, high velocity plume component. Metal ion number densities may have 

been high enough to yield a significant local enhancement in the Pedersen conductivity, 

particularly if the ions are at pressures < 0.1 ~bar. 
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I . Introduction 

The impact of the fragments of Comet Shoemaker-Levy 9 with Jupiter resulted in 

a wealth of observable physical and chemical processes. A wide variety of chemical 

species were observed, many not previously detected in giant planet atmospheres. In 

addition, an extensive and dark impact debris formed massive scars on Jupiter. The 

composition and origin of this impact debris is as yet unknown. In this paper we focus 

on a kinetic description of the high temperature chemistry of gases of Jovian and mixed, 

Jovian and cometary, composition. Our main goal is to explain the origin of the various 

spectroscopically detected gas phase species. However, we also consider plausible 

compositions and formation mechanisms for the impact debris. 

Impact-generated molecules were observed with several different instruments. Noll 

et al. (1995) reported UV observations made with the Hubble Space Telescope (HST) 

Faint Object Spectrograph (FOS) at the GIS impact sites a few hours and a few days after 

impact. HST detected several sulfur species (S2, CS2, H2S) in absorption, and CS and 

several neutral and ionic atomic metals in emission. Additionally, upper limits were 

placed on H20 , SO, S02 and SiO. In the visible, metal lines were detected for Na, Ca, 

Mg, Fe, K, and Li by Roos-Serote et a!. (1995) and Fitzsimmons et a!. (1995). Many 

spectroscopic observations were made in the near-infrared. Crisp and Meadows ( 1995) 

reported seeing CO and H20 evolve over timescales of tens of minutes at the R impact 

site. Encrenaz et al. (1995) reported detection of CH4 , H/, and H2• In the submillimeter 

wavelength range, Marten et al. (1995) detected HCN. At millimeter wavelengths 
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Lellouch et al. (1995) reported observing CO, OCS and CS at various times from 10 

hours after a given impact to several days later for several individual and complex impact 

sites. Finally, the composition of the impact debris is constrained by two observations. 

First, the imaginary component of the index of refraction of the debris particles has been 

determined from HST observations made at multiple phase angles and at wavelengths 

from the near IR to the near UV. Second, the detection of propagating waves at several 

of the impact sites (Hammel et al. 1995) places a constraint on either the volatility or the 

"stickiness" of the debris particles. 

Initial modeling of the high temperature sulfur chemistry of the impacts has been 

performed by Zahnle et al . (1995). They demonstrated the importance of kinetic (i.e., 

disequilibrium) processes in the formation of S2 and other sulfur species. However, they 

did not compare their chemical kinetics model against thermodynamic predictions by 

running the kinetics to equilibrium. It is, therefore, difficult to evaluate the accuracy of 

their model. On the other hand, they did use a 2-D hydrodynamic code (MacLow and 

Zahnle 1994) to compute the total mass of atmosphere that experienced a given 

temperature-pressure history. We have not done this here, choosing instead to focus on 

the high temperature chemistry. Our results are therefore not directly comparable to the 

spectroscopic observations, except qualitatively. 

2. Comparison of Kinetics with Equilibrium Thermodynamics 

The high temperatures associated with the entry of Comet SL9 into Jupiter's 
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atmosphere suggest that chemical equilibrium will be achieved for some portions of the 

impact, particularly the fireball phase. However, lower temperature regions, and the low 

temperatures associated with plume reentry (Zahnle et al. 1995), will cool before reaching 

chemical equilibrium. Hence, kinetics effects are likely to be important. Compilations 

exist for gas phase kinetic rate coefficients at high temperatures (Baulch et al. 1981 ), with 

specific application to combustion chemistry. The literature is fairly complete with regard 

to H-C-0-N systems, but is Jacking in rate coefficient data for sulfur, silicon, and metals, 

especially under reducing conditions. In order to provide some constraint on the kinetics 

of an H-C-0-N-S-Si system, we have made detailed comparisons of our kinetics code, run 

to equilibrium at a specific temperature and pressure, with thermodynamic values 

predicted by a standard thermochemistry code. The tedious task of adjusting the kinetics 

to obtain agreement with the thermodynamics is perhaps the best way to ensure accurate 

kinetic behavior when experimental data are lacking. 

The kinetics code we used is the one-dimensional photochemical code developed 

by Allen et al. (1981 ), adapted to run as a zero-dimensional box model. At present, the 

kinetics model has over 210 species and 1700 reactions. The species and reactions will 

not be listed here, but are available upon request from the authors. A reduced set of 

species and reactions is shown in Appendix 1, however, this reaction set has not yet been 

fully tested against the full set. Thermodynamic calculations were performed with a code 

developed at the University of Chicago and provided by S. Yoneda (Yoneda and 

Grossman 1994 ). Results of the equilibrium comparison are shown in Figures 1 a-d for an 

H-C-0-N-S system at a pressure of 1 bar. The chemical system is dominated by H, with 



119 

trace species mixing ratios (relative to H2) of 2xl0·3, 1x10-3, 3xl04
, and 1xl04 for C, 0 , 

N, and S respectively. The values for C and N are for Jovian CH4 and NH3 (A trey a, 1986); 

S is an estimate for Jovian gas below the NH4SH cloud. The amount of 0 is that expected 

for a mixture of Jovian gas and cometary material in a ratio of about 200 to 1 by number, 

or from Jovian gas at a pressure of = 2 bars. A significantly higher cometary fraction ( < 

50 to 1) results in O>C, assuming a solar ratio of 0/C for the bulk comet, and results in 

a vastly different set of chemical species at equilibrium; equilibrium results for this case 

are not presented. The parent species in the kinetics code were H2, CH4, NH3, H2S and 

H20. Agreement between the kinetics and thermodynamics codes is considered to be 

acceptable if the mixing ratios of the resulting species are within an order of magnitude 

of each other over the full range of temperatures ( 1000 to 4000 K) considered. Thus, the 

hydrocarbons, nitrogen species, and oxygen species shown in Figures 1 a-c exhibit 

reasonably good agreement. (Discrepancies arise at 1000 K for some species due to 

difficulty in attaining equilibrium with the kinetics code.) The sulfur species, Figure 1d, 

show considerable error at 1500 K and 2000 K. The sulfur kinetics suffers not only from 

unknown rate coefficients, but probably also from missing reaction pathways; clearly 

more work needs to be done on sulfur. Although not shown, agreement between kinetics 

and thermodynamics improves as the pressure is decreased. 

Figure 2 shows the equilibrium time, 'teq• defined here as the time required for a 

species to attain one-half of its equilibrium value, for CH4 as a function of temperature 

and pressure. At 1000 K negligible change occurred in CH4, so a value for the 

equilibrium time is not defined. Loss of CH4 occurs primarily by thermal dissociation and 
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by reaction with hydrogen atoms. The values of 'teq at low pressures greatly exceed 

cooling timescales (see below), and clearly demonstrate that disequilibrium processes are 

inevitible during plume reentry (Zahnle et al. 1995). Although not shown here, the 

equilibrium time is, in general , different for different species, illustrating the fact that a 

single quench temperature is not applicable to most chemical systems. 

The parent species, CH4 , NH3, H2S, and H20, decrease monotonically with time, 

allowing a well-defined value of 'teq to be determined. Secondary species often exhibit 

overshoot or other complex behavior, as shown by S2 in Figure 3. The figure shows the 

S2 abundance versus time as determined by the kinetics code for a temperature of 3000 

K. At 11Jbar a difference of five orders of magnitude exists between the peak S2 mixing 

ratio and the equilibrium value. This kind of overshoot behavior may have contributed to 

the high S2 abundances seen by HST (Noll et al. 1995). 

3. Impact Kinetics Results 

By specifying a pressure-temperature history for the kinetics code (with zero space 

dimensions), an estimate can be made of the chemical evolution of a given parcel of gas 

during the course of an impact. Following Zahnle et al. ( 1995), the time history of the 

impact is broken into three stages: 1) rising fireball phase undergoing adiabatic expansion, 

2) plume phase travelling along a ballistic trajectory, and 3) plume reentry and subsequent 

radiative cooling. Two earlier phases also exist, but are neglected here: 1) entry phase in 

which very high temperatures (> 104 K) result in ionization of Jovian gas and cometary 
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material, and 2) expansion phase in which the fireball expands until achieving ambient 

pressure. Bounces of the reentering plume are also not considered. 

A typical P-T history is shown in Figure 4. The pressure of the rising fireball 

phase is given by 

(I) 

where P0 is the initial fireball pressure, v is the fireball velocity assumed to be constant 

at 3 km sec·1
, t is time in seconds, and H is the atmospheric scale height assumed to be 

constant at 20 km. Temperature is determined from the adiabatic relation, 

T=T0(PIP0ir1lfY, where T0 is the initial fireball temperature and y is the ratio of specific 

heats. y is assumed to be 1.4, but in reality will decrease below 1.4 as additional 

vibrational degrees of freedom contribute to the molecular heat capacities at higher 

temperatures, and will increase above 1.4 at still higher temperatures as H2 dissociation 

occurs. Additionally, H is not constant and v is not likely to be constant with altitude. 

Incorporating more exact representations of v, H, and y is a simple matter, but has not 

been done since we are only trying to illustrate the range of possible chemical kinetic 

behavior; properly done, the kinetics would be computed along a set of P-T histories 

determined from detailed hydrodynamic codes (e.g., Boslough et al. 1994; MacLow and 

Zahnle 1994; Takata et al. 1994). 

During the ballistic phase of the plume, the temperature is assumed to decrease 

to a minimum of 200 K, and the pressure decreases to a minimum of I o·2 J.lbar. Several 

processes have been neglected, including expansion of the plume due to divergent 

gas/particle trajectories, photochemical processing of the plume material, and condensation 
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Fig. 4 . Sample temperature-pressure history, assuming adiabatic expansion during the 

fireball phase. Plume reentry is at 10 J.Jbar. Initial fireball temperature is 3000 K, plume 

shock temperature is 1500 K, and plume reentry occurs at 350 seconds. 
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of supersaturated plume constituents. Since the plume is aloft for only -103 seconds, 

photochemical processing is negligible (Moses et al. 1995). Similarly, many plume 

condensates may be sufficiently volatile that they reevaporate during plume reentry. 

Neglecting the divergence of the plume results in a plume reentry event in which the 

incoming gas is more concentrated than is realistic. The plume reentry event is modeled 

as a single shock event at a pressure of I 0 flbar, and for which no dilution occurs due to 

mixing with Jovian gas. The latter is certainly not true, hence the kinetics model 

overpredicts the mixing ratios of computed species. The value of I 0 flbar is determined 

by assuming the reentering plume penetrates the Jovian atmosphere to a pressure level at 

which the column mass density of Jovian atmosphere and plume are comparable. That is, 

P - gM;LP' where the mass of the plume is assumed to be MP - I 016 g, and the horizontal 

extent at the time of reentry is LP - 20,000 km. 

Again, following Zahnle et al. ( I995), the shocked plume is assumed to cool 

radiatively. An expression for the timescale for radiative cooling by a blackbody is easily 

determined from the equation of heat transfer (Chamberlain and Hunten I987) 

aT 
Ot 

(2) 

where ~=(c:crg/Cl) , E is the emissivity of the hot plume, cr is the Stefan-Boltzman 

constant, and g is the acceleration of gravity on Jupiter. Based on the form of the solution 

of this equation for ~ assumed to be constant with time and temperature, we specify the 
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temperature to vary with time as 

(3) 

where T 1 is the peak shock temperature of the plume during reentry, t1 is the time at 

which plume reentry occurs, and -r· 1 = 3PT1
3 is a parameter determined from fitting to 

observed impact lightcurves. From the R impact lightcurve of Nicholson et aL (1995), we 

estimate 't - 50 sec using the ratio of the flux at the peak to the flux at four ntinutes past 

the peak (ratio = 0.1 0), and assunting E constant. The reentered plume gas is allowed to 

cool to a minimum temperature of 300 K. 

Results of a kinetics calculation along the P-T history of Figure 4 are shown in 

Figures 5a-e for a system with H>>C>O>N>S>Si. The Si mixing ratio was chosen to 

lx10-5
; the ntixing ratios of the other species are as given above. This Si abundance 

corresponds to depletion by a factor of -5 to 10 compared to solar. The choice of Si 

depletion factor is arbitrary, but represents incomplete vaporization of Si relative to more 

volatile cometary elements. Figure 5a shows the evolution of hydrogen atoms and several 

hydrocarbons. These species all reach equilibrium during the fireball phase. ~H2 and CH4 

are only moderately affected by adiabatic cooling and subsequent plume reentry. C2H4 

increase during adiabatic cooling, whereas H and CH3 decrease. The relatively low 

abundance of hydrogen atoms has important implications for several other species. At 104 

seconds after impact, CH4, ~H2, and C2H4 are all present in significant quantities. Figure 

5b shows the conversion of H20 to CO and NH3 to N2 and HCN; all five of these species 

are unaffected by the relatively low temperature plume reentry. 
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Several sulfur species are shown in Figure 5c. The sulfur is assumed to be Jovian, 

all initially in H2S. Rapid production of S2, by the reaction 

(R1) 

occurs during adiabatic cooling of the fireball; growth by another order of magnitude 

occurs during cooling after plume reentry. H2S remains the most abundant sulfur species 

at 104 seconds. According to Moses et al. (1995), the photochemical lifetime of H2S is 

- 2x 1 OS seconds at the 10 IJbar level of Jupiter's atmosphere. Figure 5d shows several 

carbon-containing sulfur molecules. CS2, produced in the reaction 

CS +SH ... CS2 +H (R2) 

during fireball cooling, dominates these species; CS abundance drops with time due to the 

same reaction. Neither OCS nor H2CS are principal sulfur species, but the detection of 

OCS (Lellouch et al. 1995) suggests that perhaps thioformaldehyde is also detectable. Si 

species are shown in Figure 5e. Si, SiS, and SiO dominate the fireball phase, but cooling 

favors conversion of SiS to SiS2 by reaction of SiS with SH; condensation of these will 

occur but has been neglected. By 104 seconds, Si is entirely negligible, suggesting that 

a different scenario must be responsible for the Si seen by the HST FOS (Noll et al. 

1995). Similarly, S2 and CS2 were observed to be more abundant than H2S by HST (Yelle 

and McGrath 1995). 

Different gas parcels will, of course, experience different P-T histories, depending 

on proximity to the path of the impactor. To determine the sensitivity to temperature, we 
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have run the kinetics code for various fireball/plume temperature pairs; in all runs the 

initial fireball pressure was 1 bar, and the plume pressure during reentry was 10 J.lbar. For 

the sake of convenience, the fireball velocity was held constant, regardless of the assumed 

temperatures; since T1 is proportional to the square of the reentry velocity, this 

assumption cannot be correct for a ballistic plume with a distribution of velocities. The 

results, for the same composition as for Figs. 5, and at 104 seconds, are summarized in 

Table 1. The table reveals that several types of solutions exist depending on temperature, 

but that some species are more dependent on the fireball temperature, while others depend 

more on the plume reentry temperature. Hydrogen atoms, which drive much of the 

chemistry, decrease with time after plume reentry for the 1500 K initial plume 

temperature. The loss of H occurs by abstraction of a hydrogen atom from H2S, 

(R3) 

For T 1 :2: 2500 K, H retains a high value throughout plume reentry, regardless of fireball 

temperature. 

Methane is readily converted to ~H2• Acetylene abundances are high for all 

values of T 1, except for the case when T0 = 1000 K, which is too cold for significant 

processing of CH4 to occur in the fireball. Ethylene is abundant except at higher plume 

temperatures. At these mixing ratios, higher hydrocarbons (e.g., C4H2, benzene) are 

formed but not in significant quantities. 

As is readily seen from Table 1, the hydrogen atom abundance has important 

implications for sulfur chemistry. The mixing ratios of SH and H2S differ by many orders 
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of magnitude between the high H (high T1) and low H (low T 1) cases, due to hydrogen 

atom abstraction by H from SHand H2S. A high abundance of SH leads to CS2 > CS via 

reaction R2; low SH implies CS > CS2 . Similarly, S2 abundance is enhanced by high SH 

by reaction Rl. However, S4 is more dramatically affected, due to the hypothetical 

reaction 

R4 

Hence, conversion of S2 to solid sulfur via condensation of S8 may be inhibited by a high 

abundance of hydrogen atoms. This assumes three-body recombination of S4 is the 

principal pathway forming S8. The relatively high values of S4 predicted to occur at 104 

seconds for T 1 = 1500 K suggest that placing an observational upper limit on S4 may be 

useful. OCS and H2CS are both favored by low H, but neither is predicted to be abundant. 

For high values of T 1, sulfur is primarily in S and CS at 104 seconds. 

Unlike hydrocarbons and sulfur species, nitrogen and oxygen species abundances 

are determined primarily by T0 for a gas composition with C>O for plume temperatures 

~ 2500 K. This is especially true for destruction of H20 and NH3 and production of CO. 

Production of N2 and HCN is certainly favored by higher T 0, but also occurs for moderate 

plume reentry temperature. At the highest plume temperature considered, NH3 and H20 

are completely consumed, regardless of T0. Substantial production of NO is predicted for 

T 0 = 2000 K, suggesting that an observational upper limit on this species could be useful. 

Results for silicon species are also included in Table 1. Si, the only observed 

silicon species, occurs in substantial abundance only for the highest value of T 1• For T 1 

= 1500 K, SiS2 predominates, followed by SiS and SiO. At T 1 = 2500 K, the same 
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Species T0 , T1 (Kelvin) 

1000 ' 1500 2000 • 1500 2000 • 2500 2000, 3500 3000 • 1500 3000 • 2500 4000, 3500 
H 2.4E-09 1.7E-07 3.0E-03 4.80E-01 2.0E-08 2.5E-03 4.80E-01 
CH4 2.0E-03 2.7E-04 4.2E-07 2.80E-10 6.6E-05 4.2E-07 2.90E-10 
C2H2 1.7E-08 2.8E-04 8.5E-04 3.30E-04 2.8E-04 4.0E-04 3.50E-04 
C2H4 2.5E-06 4.9E-04 9.7E-06 5.20E-09 1.2E-04 5.3E-06 5.50E-09 
H20 1.0E-03 8.3E-04 8.2E-04 3.80E-17 3 .5E-07 3.5E-07 3.50E-17 
00 9.2E-11 1.7E-04 1.8E-04 1.00E-03 9.9E-04 9.9E-04 1.00E-03 
C02 6.9E-18 1.2E-15 9.1 E-09 2.10E-19 5.7E-14 1.5E-11 2.00E-19 
N2 1.1E-12 1.5E-06 5.3E-05 1.10E-04 8.5E-05 8.5E-05 1.20E-04 
1\l) 2.6E-10 1.6E-07 1.6E-08 9.20E-25 1.9E-16 1.6E-14 1.50E-24 
NH3 3.0E-04 3.0E-04 1.6E-04 2.80E-18 8.0E-07 5.5E-07 3.00E-18 
1-CN 5.2E-11 4.3E-07 3.7E-05 8.00E-05 1.2E-04 1.2E-04 6.60E-05 
s 2.0E-07 1.7E-06 5.2E-05 2.40E-06 6.2E-07 3.3E-05 2.50E-06 
9:) 3.2E-11 2.5E-10 2.8E-1 0 4.60E-23 8.4E-16 2.3E-14 3.60E-23 
S2 2.1 E-06 2.4E-05 5.8E-07 1.60E-13 6.9E-06 3 .5E-07 1.70E-13 
S4 1.9E-08 2.6E-06 2.7E-13 5.00E-25 2.1 E-07 1.2E-13 9.10E-26 
S02 1.3E-14 3.3E-10 3.2E-11 1.1 OE-24 1.5E-15 1.1 E-15 6.80E-25 
H5 1.5E-07 3.2E-07 2.0E-11 1.80E-13 2.3E-07 9.1E-12 1.90E-13 
H2S 8.7E-05 1.8E-05 4.8E-13 1.90E-16 5.0E-05 2.7E-13 2.00E-16 
cs 3.1 E-09 1.7E-08 2.8E-05 9.70E-05 9.8E-08 4.1E-05 9.70E-05 
CS2 8.5E-08 1.4E-06 4.8E-06 3.10E-12 7.2E-06 7.0E-06 3.30E-12 
ccs 5.9E-12 2.9E-09 1.6E-1 0 8.90E-16 2.3E-09 5.2E-12 9.40E-16 
H2CS 1.4E-07 5.3E-08 3.8E-1 0 3.50E-15 7.2E-08 2.2E-10 3.80E-15 
Si 4.6E-13 4.3E-20 6.6E-08 9.50E-06 3.5E-20 2.5E-09 9.60E-06 
SiCH2 6.2E-06 1.5E-12 8.1 E-07 1.80E-08 1.5E-12 4.3E-08 1.80E-08 
SiC2 6.9E-16 1.9E-16 5.9E-09 2.40E-07 1.9E-16 9.8E-11 2.50E-07 
SN 1.7E-11 1.6E-15 1.3E-08 9.00E-15 2.3E-17 2.7E-12 9.80E-15 
SiO 3.9E-1 0 5.1 E-07 5.3E-07 1.90E-22 2 .6E-08 2.6E-08 1.80E-22 
SiS 4.8E-09 1.0E-07 8.3E-06 2.40E-11 2.5E-08 2.5E-08 2.40E-11 
SiS2 3.6E-06 9.2E-06 6.9E-13 5.40E-23 9.5E-06 9.5E-06 5.60E-23 

Table 1. Mixing ratios of major species at 104 seconds after impact. At later times, 

photochemical processes cannot be neglected. T0 is the initial fireball temperature. T 1 is 

the shock temperature for plume reentry. Elemental mixing ratios in the model are 

identical to those of Fig. 1, with a Si mixing ratio of 1 x 10·5; gas mixture has C>O. 
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principal species exist, in different proportions, and SiCH2 is also significant. At 3500 K, 

Si atoms are the principal silicon species from the time of reentry to - 104 seconds. A 

comparison of kinetics and thermodynamics for silicon species is still in progress, so the 

silicon kinetics results in Table 1 should be considered preliminary. 

Table 2 shows kinetics results for the same conditions as for Table 2, except that 

C<O. This qualitatively represents the case of a mixture of cometary material with Jovian 

gas in a proportion > 1 :50, comet to Jupiter. To be quantitatively consistent with such a 

mixture, the elemental abundances of C,N,S, and Si would be slightly different from the 

case considered in Table 1, but we consider here only the affect of an enhanced 

abundance of 0. Several differences from the C>O solutions are immediately obvious. At 

T0 = 3000 K, nearly all Cis converted to CO; the next most abundant C species is OCS, 

five orders of magnitude less abundant. At T0 = 2000 K, C chemistry is still far from 

equilibrium, and C2H2 and CO are of comparable abundance. In fact, the solutions for T0 

= 2000 K are qualitatively similar for C>O and C<O. This may simply be a result of 

specifying the initial oxygen as H20 rather than as 0, thus slowing the rate of CO 

formation (see below). 

Table 2 indicates that at T0 = 3000 K, substantial amounts of SO and SiO are 

produced. Since neither of these species was observed (although a feature in the HST 

FOS spectrum (Noll et al. 1995) lies very close to a SiO line at 2993.2 A.), and because 

of the low CS2 and HCN abundances predicted, this scenario could not have been the 

principal source of many of the species observed at the impact sites. 

At the high entry velocity of the comet fragments, substantial dissociation and 
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Species T0 , T1 (Kelvin) 
1000 ' 1500 2000 ' 1500 2000 ' 2500 2000, 3500 3000 ' 1500 3000 • 2500 4000, 3500 

H 2.40E-09 2.70E-07 3.10E-03 4.80E-01 8.50E-08 2.40E-03 4.80E-01 
CH4 2.00E-03 2.90E-04 3.40E-07 4.90E-22 4.80E-11 8.20E-14 6.60E-22 
C2H2 1. 70E-08 2.20E-04 7.20E-04 7.20E-19 6.70E-15 1.40E-14 3.40E-20 
C2H4 2.50E-06 4.10E-04 8.30E-06 7.60E-24 6.30E-15 2.10E-16 9.50E-24 
H20 3.00E-03 2.60E-03 2.50E-03 8.70E-04 1.00E-03 1.00E-03 8.40E-04 
ro 2.70E-10 4.30E-04 4.60E-04 2.00E-03 2.00E-03 2.00E-03 2.00E-03 

C02 5.70E-17 7.60E-10 7.00E-08 6.90E-06 8.70E-10 6.60E-08 6.80E-06 

N2 1.80E-12 3.60E-06 6.00E-05 1.50E-04 1.50E-04 1.50E-04 1.50E-04 

t-0 7.00E-10 2.60E-07 8.10E-08 4.00E-06 4.50E-09 7.20E-09 9.60E-08 
NH3 3.00E-04 2.90E-04 1.50E-04 3.70E-17 6.10E-08 5.80E-08 1.00E-18 

1-0'1 1. 10E-10 1.00E-06 3.30E-05 3.30E-11 5 .80E-09 5.80E-09 3.30E-13 
s 2.00E-07 1.40E-06 5.80E-05 2.80E-05 1.70E-06 7.30E-05 2.90E-05 

s:::> 9.50E-11 8.80E-10 1.10E-09 5.70E-06 1.00E-07 1.60E-06 5.90E-06 

52 2.10E-06 2.50E-05 9.00E-07 1.20E-09 2.90E-05 1.10E-05 1.40E-09 

S4 1.90E-08 2.90E-06 6.50E-13 8.60E-22 4.00E-06 1.10E-10 1.10E-21 
S02 1.20E-13 2.80E-09 6.00E-10 6.60E-05 3 .00E-08 5.80E-08 6.30E-05 

HS 1.50E-07 4.40E-07 2.70E-11 2.00E-12 2.00E-07 5.60E-12 2.10E-12 
H25 8.70E-05 1.50E-05 6.50E-13 2.20E-15 1.70E-05 1.40E-12 2.40E-15 
cs 3.10E-09 1.60E-08 2.10E-05 1.70E-17 2.60E-13 1.50E-12 1.90E-19 
CS2 8.50E-08 1.70E-06 5.20E-06 2.80E-21 3.50E-11 5.30E-12 3.50E-24 

ccs 1.80E-11 4.60E-09 5.10E-10 2.00E-14 2.90E-08 3.80E-11 2.20E-14 
H2CS 1.40E-07 3.90E-08 3.30E-10 1.60E-26 6.70E-15 1.20E-17 1.50E-26 

s 4.60E-13 4.20E-20 5.90E-08 4.50E-21 9.00E-23 1.50E-15 5.60E-23 
s;cH2 6.20E-06 1.20E-12 5.90E-07 1.40E-23 6.10E-23 1.50E-19 2.00E-23 
s;c2 6.90E-16 1.50E-16 4.30E-09 2.40E-37 3 .90E-30 2.70E-27 4.20E-38 

SN 1.60E-11 1.30E-15 8.10E-09 6.1 OE-27 2.60E-20 1.40E-17 3.40E-29 

so 1.10E-09 1.30E-06 1.50E-06 9.40E-06 9.20E-06 9.20E-06 9.90E-06 

ss 4.80E-09 1.10E-07 7.70E-06 4.70E-07 7.20E-09 6.50E-07 7.00E-08 

SiS2 3.60E-06 8.20E-06 8.40E-13 1.20E-17 6.20E-07 1.80E-14 1.90E-18 

Table 2. Mixing ratios of major species at I 04 seconds after impact. Same conditions as 

in Table I, but oxygen mixing ratio is increased to 3x I o·3 
, resulting in O>C in the gas 

mixture. 
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ionization of ablated cometary material are to be expected. In order to determine the 

affect of dissociation of cometary material on the kinetic chemistry, computer runs were 

made for an initial composition consisting of Jovian gas (H2, CH4 , NH3, H2S), with the 

mixing ratios given above but with no H20 , and with atomic species in solar abundance 

except for H. The elements included were H, 0 , C, N, S, and Si with the mixing ratios 

0.55, 0.25, .15, .015, .0063, and .012, respectively (Krankowsky and Eberhardt 1990); Mg, 

Fe, and perhaps other less abundant elements will be included at a later date. Defining 

the mixing of dry Jovian gas and cometary material by 

X 
fo-fc+fcn4 

(4) 

where fi is the volume mixing ratio for either molecule i in the Jovian atmosphere or 

element i in the dissociated comet. Runs were made for x = .01 , corresponding to C10/0101 

= 1.4, and x = .04, corresponding to C10/0101 = 0.80, where the subscript refers to the total 

elemental abundance from Jupiter plus comet. Results for the higher temperature fireball 

(T0 > 3000 K) indicate that no qualitative difference exists between these runs and those 

which have a purely molecular starting composition and the same pressure and 

temperature history. For T0 = 2000 K and T 1 = 1500 K, CO, HCN and N2 form more 

rapidly due to the presence of the atomics. For T0 = 1000 K, very large differences in the 

final HCN, N2 ,CS2 , and OCS abundances occur (all are several orders of magnitude 

higher); however, it seems unlikely that significant dissociation would be accompanied 

by such low fireball temperatures. More reasonable is to expect very high fireball 

temperatures and partial (if not complete) ionization of vaporized cometary material and 
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adjacent Jovian gas. 

4 . Discussion 

On comparison of our results in Fig. 5 with observations, one immediately sees 

a significant discrepancy in the order of magnitude of the mixing ratios of various species. 

For example, C2H2 has a mixing ratio in the reentering plume of I xI o-3 for most model 

runs with C>O, whereas the observed value is- 3xi0-7 according to HST observations at 

the G impact site (Yelle and McGrath 1995). There are several possible reasons for this 

large difference, a factor of 3000 for acetylene. First, the reentering plume may penetrate 

to deeper than a pressure equivalent to its column mass density, resulting in dilution of 

the plume gas with Jovian gas. Additionally, horizontal expansion of heated atmosphere 

would distribute the plume material over a wider area than the plume occupied during 

reentry. Second, probably only a fraction of the plume contains a given species, even after 

reentry. A given species would then be further diluted by mixing within the plume and 

with Jovian gas during reentry. Third, plume species capable of polymerization may have 

contributed to the formation of the impact debris. Determining which of these mechanisms 

is most significant requires detailed knowledge of the pressure-temperature histories of 

the plume reentry event. 

A comparison of the results in Table I for T0 = 3000 K and T 1 = 2500 K with Fig. 

2 of Zahnle et al. (1995) suggests that differences exist. In particular, at 104 seconds for 

shocked dry Jovian gas Zahnle et al. (1995) obtain S2 > CS2 > CS >> H2S, whereas we 
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obtain CS > CS2 > S2 >> H2S for similar conditions. Part of the difference may be that 

Zahnle et al. (1995) assumed about twice as much sulfur to be in the Jovian atmosphere 

than did we, but it is also likely that differences in chemistry contribute to the disparity. 

Our results at T0 = 2000 and T 1 = 1500 K yield S2 - H2S > CS2 > CS ; at T0 = 3000 K and 

T 1 = 1500 K, we obtain H2S > S2 - CS2 > CS. We have not yet obtained a solution in 

which S2 > CS2 > CS >> H2S. Since we know that our own sulfur results at 1 bar are not 

correct (see Fig. ld), we cannot claim that Zahnle et al. (1995) are in error with regard 

to sulfur species. A more detailed comparison of the chemical models may help to resolve 

the differences. 

Since we have not computed the actual mass of the various species produced 

during shock chemistry, quantitative comparison with observations is not possible at this 

time. However, qualititative comparisons are still useful, and are presented below. We 

plan to obtain pressure/temperature/mixing histories from the Eulerian hydrodynamic code 

of Boslough et al. (1994 )/Crawford et al. (1995) run with tracer particles in order to 

properly model the chemistry of the impacts. 

Data analysis of observations of sulfur species is still ongoing. The most recent 

analysis of the HST FOS data (Yelle and McGrath 1995) suggests that CS2 is found at 

lower pressures than is H2S; the latter may result from slow convective uplift of 

tropospheric air into the stratosphere. An upper limit on H2S above 0.1 mbar was not 

given by Yelle and McGrath (1995). Atreya et al. (1995) did not detect H2S in their 

analysis of the HST FOS data. Earlier reports of extremely high S2 abundances at the G 

impact site (Noll et al. 1995) are under revision. Lellouch et al . (1995) reported the 
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detection of OCS at the K+W impact site several hours after theW impact. None of the 

model runs reported here produce significant quantities of OCS. One low temperature run 

with Jovian gas and dissociated cometary vapor for x = 0.04 (see above) yielded a OCS 

mixing ratio of 10-6. Lellouch et al. (1995) also reported - 103 times as much CS as did 

Noll et al. (1995). Even with the larger aperture size of the mm-wave telescope used by 

Lellouch, there is still a discrepancy in observed CS. This may be consistent with our 

higher shock temperature runs (T 1 = 2500 K). 

The principal oxygen-containing species observed at the impact sites were CO and 

H20 . Using the KAO, Bjoraker et al. (1995) observed hot H20 (T-1000-1200 K) during 

the G and K plume reentry events. At 7.7 11m they detected an H20 column- lxl018 cm·2, 

and a comparable column of CH4 . With the HIFOGS on the KAO, Sprague et al. (1995) 

observed 5.7x1010 g and 2.2xl010g of water at R+l2 min and W+10 min, respectively. 

Lellouch et al. (1995) observed CO to be - 1014 g at G+ 10 hours. Since the mass of H20 

< the mass of CO at the G impact site, we may infer that C>O in the plume, according 

to Table 2, at least for the C/0 ratio represented by these calculations. (The model results 

for 0-containing species at- 103 seconds are similar to those at 104 seconds.) Model runs 

also need to be made for other C to 0 ratios. If the 0 is derived from the G fragment, 

then the cometary 0 is mixed with at least 50 times its mass in dry Jovian atmosphere, 

yielding a minimum plume mass of 3x1015 g. Alternatively, if the 0 is derived from 

Jupiter, it would have to be from Jovian gas for which CH4 > H20, which will be true for 

pressures < 3 bars, assuming a solar (or greater) abundance of 0 on Jupiter. It may be 

possible to use the observed H20 abundance at the G impact site to distinguish between 
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these two scenarios, since cometary 0 is likely to have been heated to much higher 

temperatures than is entrained Jovian air before either entered the plume. However, this 

requires knowing the P-T history of Jovian air entrained in the fireball. For example, 

Table 2 indicates that a fireball temperature between 2000 and 3000 K will yield CO - 10 

times H20 at I bar for a gas of Jovian composition. The observed CO and H20 may, of 

course, be derived from a mixture of Jovian and cometary oxygen. 

The only nitrogen species observed were NH3 and HCN. Noll et al. (1995) 

detected NH3 at the G site in the UV; Yelle and McGrath ( 1995) determined a mixing 

ratio of - 1 x 10·7 at pressures > 5 mbar; Atreya et al. (1995) obtained a value of - I x 1016 

cm·2. NH3 was also detected in the IR by Orton et al (1995), who detected > 50 times 

enhancement in stratospheric ammonia, and by Griffith et al. (1995), who observed 2x1013 

g NH3 at the K impact site. HCN was observed at millimeter wavelengths by Marten et 

al. (1995) and by Bezard et al. (1995) in theIR; the former determined a value of 6x1011 

gat G+2I hours, corresponding to a mixing ratio of 5x10·8 at< 0.5 mbar pressure level; 

the latter observed a column density of- 1016 cm·2 at E+2.6 hours, corresponding to three 

times the amount seen at the G site by Marten et al. ( 1995). The key point of these 

observations is that NH3 exceeds HCN by 1-2 orders of magnitude. In addition, the HCN 

may be at lower pressures that the NH3. According to Table 1, these results are consistent 

with the observed ammonia having remained at fireball temperatures< 3000 K. Given the 

relatively high pressure location of the NH3, it was probably part of a low-velocity plume 

component that formed a parcel sufficiently dense to settle back to - 10 mbar, or that 

simply underwent slow upwelling from the troposphere as suggested by Yelle and 
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McGrath ( 1995). The HCN is probably from Jovain ammonia heated in the higher 

temperature portion of the fireball. However, according to Tables 1 and 2, significant 

HCN is also produced at relatively low fireball temperatures (2000 K) for both C>O and 

C<O Jovian compositions. 

Metal species were seen both by HST FOS (Noll et al. 1995) (Mg, Mg+, Fe, Fe+, 

Si) and by ground based observers (Fitzsimmons et al. 1995; Roos-Serote et al. 1995), 

who saw Mn, Li, Na, K, Ca, Mg and Fe at visible wavelengths. We have only modeled 

Si here, but note that most of the other observed metals are much simpler chemically than 

Si. In particular, they form much weaker bonds with S and 0 , with the result that they 

occur as atomic species at lower temperatures than does Si. Our results for Si are in 

agreement with HST FOS, in that we predict significant quantities of Si to be present for 

- 104 seconds after impact, but only for a high plume temperature (3500 K). However, we 

have neglected the fact that Si reacts with ~H2 at room temperature, mainly because the 

products of this reaction are unkown. A reasonable assumption for this reaction is 

(R5) 

The assumed product (SiC2H) of this reaction may be rapidly converted back to Si by 

reaction with H; alternatively, Si may be formed in a low-C environment during reentry. 

(Other products are possible in R5, such as Si~). A chemical loss timescale for Si of 45 

minutes corresponds to ~H2 - 106 cm-3
. If, on the other hand, Si is scavenged by debris 

particles, the number of 0_15 micron particles (West et al. 1995) at 300 K is - 40 cm-3, 

assuming unity sticking efficiency. It is also possible that the Si emission is not simply 

resonance scattering of solar Si lines, but instead is associated with relaxation of thermally 
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(or chemically) excited Si. Thermal excitation would be consistent with late reentry 

(relative to the observed plumes) of the plume material containing Si; in other words, a 

high-velocity component of the plume would have to exist. A 45 minute delay in reentry 

corresponds to a vertical velocity of about 35 km s·1 and a peak height of 24000 km 

above Jupiter; the visible plumes reported by Hammel et al. (1995) reached heights of 

only 3000 km. As an alternative to a high-velocity plume component, a slow upwelling 

of hot (T -1000 K) material to micro bar levels may provide enough thermally excited metal 

atoms to account for the observed emission rate. A proper assessment of thermal emission 

from metal atoms requires considering the collisional deexcitation rate, which we will not 

attempt here. 

Species such as Mg, Mg+, Fe, and Fe+ are much less reactive m a reducing 

environment than is Si (Lyons 1995), at least at room temperatures. As an example, Mg 

forms very weak bonds with S, H, C, and N. The ions are produced mainly during entry 

of the original fragment, and to a much lesser extent during reentry of plume material. 

It seems unlikely that the UV emission observed by the HST from these metals could be 

due to excited electronic states generated by exothermic chemical reactions long after 

impact has occurred. The bond strengths are not high enough (except for Si) to generate 

highly-populated excited electronic states capable of emitting UV photons, at least at 

temperatures- 300 K. If kinetic temperatures>> 300 K are somehow maintained for- 1 

hour after impact, then electronic states will remain populated. If emission is not 

thermally or chemically generated, then it must be a result of either a high-velocity plume 

component or solar resonance scattering. Scavenging of these atomic metal species by 



144 

impact debris is probably their principal destruction pathway. 

The ions may contribute to the generation of a motion-driven electric current (Hill 

and Dessler 1995) by enhancing the Pedersen conductivity of the lower ionosphere. The 

magnitude of this enhancement depends on the altitude distribution of the ions. For a 

mass 50 ion, we estimate that the ion-neutral collision frequency - ion cyclotron frequency 

at a pressure of - 0.1 microbar. If the column abundances reported by Noll et al. (1995) 

(derived assuming emission by solar flourescence) are distributed vertically over one 

atmospheric scale height (-50 km), then the peak ion number density is - 106 cm-3. If the 

ions are located near 0.1 microbar, then they contribute- 3 mho to the integrated Pedersen 

conductivity. The equatorial conductivity is estimated to be 0 .2 mho (A trey a 1986), so 

this may represent a substantial enhancement. If the ions are distributed much deeper in 

the atmosphere, say 10 rnicrobar, then their conductivity would be negligible. 

The impact debris raises several interesting questions, and although no attempts 

are made here to model it, it is likely that kinetic processes are crucial to debris 

formation. The key questions concerning the debris particles are what is the composition 

of the particles and from where do they come ? Since the particles clearly contain a 

substantial organic component (at the very least as a veneer) (West et al. 1995), and since 

they resemble the particles comprising Jupiter' s polar hazes (Kim et al. 1991 ), it is 

reasonable to suspect that their organic component is from Jovian methane. Ion processes 

are thought to be responsible for Jupiter' s polar haze (Pryor and Hord 1991 ), and could 

provide the principal pathway forming the impact debris. The polar haze is thought to be 
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formed by charged particle precipitation into Jupiter' s auroral zones; ion chemistry then 

proceeds at relatively low temperatures (- 300 K), favoring the formation of C>3 

hydrocarbon ions. These ions probably form clusters with neutral hydrocarbons, or 

recombine dissociatively with electrons forming condensible neutral hydrocarbons, 

initiating the formation of aerosols. In the case of an impact, a large number of ions are 

formed, but at the high temperatures associated with shock heating the chemical kinetics 

may not favor formation of C>3 hydrocarbon ions. Instead, reactions with H2 may 

predominate, at least until the temperatures have lowered substantially. Future kinetics 

work will include an assessment of such gas phase ion processes. 

In addition to ion kinetics, several other mechanisms exist which could account 

for debris formation . The debris is clearly formed along the high temperature entry path 

of the fragments (Hammel et al. 1995). Polymerization of C2H2 with HCN, NH3, and 

sulfur species could occur either in the gas phase or on the surfaces of very small ( << 

lJ.lm) silicate dust grains. The latter would be best studied experimentally (e.g., in a shock 

tube with suspended silicate dust), since little is known about heterogeneous chemistry 

involving hydrocarbons. These processes would not require cometary material (apart from 

dust grains). Other processes which do utilize cometary material can be envisioned. Ion 

chemistry may proceed with ions formed principally from the impactor. Alternatively, 

portions of the comet may have C>O, such as crustal material or portions for which H20 

was removed preferentially relative to C species during entry heating. In this case, C/H 

for the comet material could be >> 2x 1 o-3, the methane mixing ratio for Jupiter, with the 

result that many neutral higher hydrocarbons (e.g., C>3) will form_ Atreya et al. (1995) 
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constrained the column abundance of benzene (C6H6) to be< 3x 1014 cm·2• Combining this 

result with a combustion kinetics models (Cherchneff et al. 1992), and applying the 

acetylene dilution factor of 3000, we determine that C/H <= .01. Previous experimental 

work (Bar Nun et al. 1988; Khare and Sagan 1973) has simulated high C/H ( -0.1) 

conditions in an effort to understand the color of Jovian clouds. Such experiments may 

be relevant to organic particle formation from vaporized (and dry) cometary material, but 

are not likely to be relevant to the case of a Jovian mixture of gases. Wilson and Sagan 

( 1995) have pointed out that the Jovian impact debris has optical constants consistent with 

organic residue from Murchison, suggesting the possibility that the debris is from the 

comet. This may just suggest a similar formation process for the Murchison organics and 

the impact debris organics. Understanding whether the debris is derived from Jupiter or 

from the comet will likely have important implications for the quantity and composition 

of organic material transported to planetary surfaces (including early Earth) via comets, 

and may provide clues to the cause of Jupiter's coloration. 

5. Summary and Conclusions 

We have employed the technique of comparing a gas phase kinetics model, run 

to steady state equilibrium, with a thermodynamics code in an effort to ensure reasonable 

high temperature behavior of the kinetics. This was done for a system composed of the 

elements H,C,O,N,S and Si, and was found to be necessary because of the sparseness of 

rate coefficient data for S and Si species. Thermodynamics and kinetics were compared 
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over a range of temperatures from 1000 to 4000 K and a range of pressures from 1 ~bar 

to 1 bar. Shock temperatures up to - 20000 K and shock pressures up to - I kbar were 

certainly achieved during the actual impact events but were not considered here; such 

high temperatures would lead to nearly complete dissociation and ionization and would 

require the addition of a large number of ion species to both the kinetics and 

thermochemical models. Not surprisingly, hydrocarbon species proved to be the most 

abundant group of compounds. Because of the substantial combustion kinetics literature, 

a fairly accurate and complete description of hydrocarbon kinetics is possible. Similarly, 

H-C-0 and H-C-N compounds showed good agreement between steady state kinetics and 

thermodynamics. Sulfur and silicon compounds proved to be considerably more difficult; 

work still remains to be done on the H-C-Si system. The transient behavior of parent 

molecules and secondary products was seen to be very different. Parent species displayed 

a monotonic behavior during their approach to equilibrium, whereas some secondary 

species exhibited transient overshoots of several orders of magnitude. Such behavior may 

have contributed to the high S2 abundances observed (Noll et al. 1995). 

Model runs were made for a set of pressure-temperature histories thought to be 

relevant to the actual impact events. We simulated fireball rise and plume reentry, roughly 

following the approach of Zahnle et al. (1995). Initial fireball and plume reentry pressures 

of 1 bar and 10 ~bar, respectively, were considered. The model was run for various pairs 

of fireball (T 0) and plume (T 1) shock temperatures. Direct comparison with Zahnle et al. 

( 1995) for a particular P-T history showed that significant differences in sulfur species 

are obtained for the two models. For T0 = 3000 K and T 1 = 2500 K, we obtained for dry 
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Jovian air (i.e., C>O) the relative abundances CS>CS2>S2>>H2S, whereas Zahnle et al. 

( 1995) obtained S2>CS2>CS>>H2S. Such discrepancies must be resolved if we are to 

properly interpret the spectroscopic data taken at the impact sites. 

Other results for gas compositions with C>O include the following: S2 and CS2 

are favored by relatively by plume temperatures- 1500 K; CS is favored at higher values 

of T 1; at still higher plume temperatures, Si is produced, whereas at lower T 1 , SiCH2 and 

SiS2 are dominant; NH3>>HCN, consistent with observations, results from relatively low 

fireball temperatures (T0 - 2000 K); CO- 10xH20, as was observed at some impact sites, 

is also consistent with T0 - 2000 K; ~H2 is the principal product of CH4 pyrolysis. The 

description of species abundances as dependent on only T0 or T 1 is , of course, only 

approximate. A C<O composition yields very different results: CO and H20 dominate the 

carbon and oxygen species at all temperatures high enough to pyrolyse CH4 (thereby 

producing CO); all other carbon containing species (~H2 , HCN, CS2, CS) are present in 

negligble quantities; S2 is often more abundant than in the C>O case due to the 

unavailability of C; SO, NO, S02, and SiO, all (apparantly) unobserved species, become 

significant in the model ; at temperatures too low to completely pyrolyse CH4 , resulting 

abundances can be similar to the C>O case. 

As discussed by Zahnle et al. ( 1995), we find that the observation of CS2 and CS, 

but not SO and S02, is consistent with chemical processing of a gas of elemental 

composition C>O. Additionally, the observation of HCN, rather than NO, and Si rather 

than SiO, the apparant detection of ~H2, and perhaps even the production of the dark 
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impact debris are consistent with the same conclusion. For a mixture of dry Jovian gas 

with vaporized comet of comet Halley composition, C>O requires a mixture of at least 

50 to 1, Jupiter to comet. Alternatively, if the 0 is all from Jupiter (which seems unlikely 

given the detection of metals), then the fireball must contain gas from a depth -few bars, 

but not- 20 bars, assuming O>C at the base of Jupiter's water cloud. The higher H20 to 

CO ratios observed at the G and K impact sites would then be consistent with Jovian gas 

that had not undergone complete conversion of H20 to CO. A low temperature 

entrainment of this type seems unlikely, but is best studied with a hydrodynamic model. 

Several explanations for the observed metal lines are possible. The UV emissions 

from Mg and Mg+ are probably just due to solar resonant scattering as suggested by Noll 

et al. (1995). Exothermic chemical reactions are an unlikely mechanism for exciting 

electronic states - 4 e V above the ground state in Mg and Mg+ given the weak chemical 

bonds Mg and Mg+ form with H,C,N and S species. On the other hand, if CO is formed, 

e.g. in the reaction MgO + C ~ MgCP) + CO, then the heat of the reaction is more than 

sufficient to yield MgCP); if MgO and C are in ground states, then CO must be in a 

triplet state to conserve spin. The chemical lifetimes of MgO and C in an H2 atmosphere 

must be long enough to allow such a reaction to occur. The same is likely true for Fe and 

Fe+, but not necessarily for Si. A high velocity plume component, such that plume 

material reenters up to - 1 hour after a given impact, could lead to thermal excitation of 

metals. A difficulty with this scenario is that the high velocity plume material would have 

to land in a location observed telescopically. Another way to produce emission well after 

an impact would be for a trail of dust particles to extend - 1 05 km behind (but not ahead 
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of ) a given fragment. Regardless of the source of the emission, the metal ion abundances 

implied by the HST observations are sufficient to enhance the Pedersen conductivity 

locally by as much as an order of magnitude, assuming the ions are distributed at 

pressures < 0.1 ~bar. This may have enhanced the amplitude of the current generated by 

the motion of ionized gas across magnetic field lines (Hill and Dessler 1995). 

The chemical modeling results presented here are an exploration of a portion of 

the parameter space, namely fireball and plume temperatures, relevant to the Comet SL9 

impacts on Jupiter. In the near future model runs will be made with pressure-temperature­

mixing histories determined from the Sandia hydrodynamics code (Crawford et al. 1994; 

Boslough et al. 1994). Only by coupling the hydrodynamic and chemical models can a 

proper interpretation of the spectroscopic data be made. 

Acknowledgements 

Discussions with Y. L. Yung on how to modify the 1-D photochemical model for the 

present application are gratefully acknowledged. This work was supported by NASA grant 

NAGW -1509. This is contribution number 5597 from the Division of Geological and 

Planetary Sciences, California Institute of Technology. 

References 

Allen, M.,Y. L. Yung, and J. W. Waters 1981. Vertical transport and photochemistry in 



151 

the terrestrial mesosphere and lower thermosphere. J. Geophys. Res. 86, 

3617-3627. 

Atreya, S.K. 1986. Atmospheres and Ionospheres of the Outer Planets and their Satellites. 

Springer-Verlag, New York. 

Atreya, S.K., S.G. Edginton, L.M. Trafton, J.J. Caldwell, K.S. Noll, and H.A. Weaver 

1995. Abundances of ammonia and carbon disulfide in the Jovian stratosphere 

following the impact of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 

1625-1628. 

Bar Nun, A., I. Kleinfeld, and E. Ganor 1988. Shape and properties of aerosols formed 

by photolysis of acetylene, ethylene and hydrogen cyanide. J. Geophys. Res. 93, 

8383-8387. 

Baulch, D.L., J. Duxbury, S.J. Grant, and D.C. Mantague 1981. Evaluated kinetic data for 

high temperature reactions, vol. 4, Homogeneous gas phase reactions of hydrogen 

and cyanide containing species. J. Phys. Chern. Ref Data I 0. 

Bezard, B. C.A. Griffith, D. Kelly, J. Lacy, T. Greathouse, and G. Orton 1995. Mid-IR 

high-resolution spectroscopy of the SL9 impact sites: temperature and HCN 

retrievals. /AU Colloquium 156: The Collision of comet P/Shoemaker-Levy 9 and 

Jupiter, 9-12 May 1995, abstract book, 7. 

Bjoraker, G.L., T. Herter, G. Gull, S. Stolovy, and B. Pirger 1994. Detection of water 

in the fireball of fragments G and K of comet Shoemaker-Levy 9. Bull. Am. 

Astronom. Soc. 26, 1578. 

Boslough, M.B., D.A. Crawford, A.C. Robinson, and T.G. Trucano 1994. Mass and 



152 

penetration depth of Shoemaker-Levy 9 fragments from time-resolved photometry. 

Geophys. Res. Lett. 21 , 1555. 

Chamberlain, J.W. and D.M. Hunten 1987. Theory of Planetary Atmospheres, Academic 

Press, San Diego. 

Cherchneff, 1., J.R. Barker, A.G.G.M. Tielens 1992. Polycyclic aromatic hydrocarbon 

formation in carbon-rich stellar envelopes. Astrophys. J. 401, 269-287. 

Crawford, D. , M. Boslough, T . Trucano, and A. Robinson 1994. Numerical simulations 

of fireball growth and ejecta distribution during Shoemaker-Levy 9 impacts on 

Jupiter. EOS 75, 404. 

Crisp, D., and V. Meadows 1995. Near-infrared imaging spectroscopy of the impacts of 

SL9 fragments C, D, G, K, N, R, V, and W with Jupiter. /AU Colloquium 156: 

The Collision of comet P/Shoemaker-Levy 9 and Jupiter, 9-12 May 1995, abstract 

book, 25. 

Encrenaz, Th., R. Scuhlz, J.A. Stuwe, G. Wiedemann, P. Drossart, and J. Crovisier 1995. 

Near IR-spectroscopy of Jupiter at the time of comet Shoemaker-Levy 9 impacts: 

emissions of CH4, H3+, and H2. Geophys. Res. Lett. 22, 1577-1580. 

Fitzsimmons, A., J.E. Little, P.J. Andrews, R. Catchpole, N. Walton, and I.P. Williams 

1995. Optical spectroscopy of atomic emission from the L and Q 1 impacts on 

Jupiter. /AU Colloquium 156: The Collision of comet P/Shoemaker-Levy 9 and 

Jupiter, 9-12 May 1995, abstract book, 37. 

Griffith, C.A., B. Bezard, D. Kelly, J. Lacy, T. Greathouse, and G. Orton 1995. Mid-IR 

spectroscopy and NH3 and HCN images of K impact site. /AU Colloquium 156: 

' . 



153 

The Collision of comet P/Shoemaker-Levy 9 and Jupiter, 9-12 May 1995, abstract 

book, 42. 

Hammel, H.B., R.F. Beebe, A.P. Ingersoll, G.S. Orton, J .R. Mills, A.A. Simon, P. Chodas, 

J .T. Clarke, E. DeJong, T.E. Dowling, J. Harrington, L.F. Huber, E. Karkoschka, 

C.M. Santori, A. Toigo, D. Yeomans, R.A. West 1995. HST imaging of 

atmospheric phenomena created by the impact of comet Shoemaker-Levy 9. 

Science 267, 1288-1296. 

Hill, T.W., and A.J. Dessler 1995. Midlatitude Jovian aurora produced by the impact of 

comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 1817-1820. 

Khare, B.N., and C. Sagan 1973. Red clouds in reducing atmospheres. Icarus 20, 

311-321. 

Kim, S.J., D. Goorvitch, P. Drossart, A. Moorwood, J. Caldwell, A. Moneti, J.P. Mailard, 

and J. Lecacheux 1991. The 2-~Jm polar haze of Jupiter. Icarus 91 , 145-153. 

Krankowsky, D., and P. Eberhardt 1990. Evidence for the composition of ices in the 

nucleus of comet Halley, Comet Halley: Investigations, Results, Interpretations, 

vol. 1, Ellis Howood Ltd. 

Lellouch, E., G. Paubert, R. Moreno, M.C. Festou, B. Bezard, D. Bockelee-Morvan, P. 

Celom, J. Crovisier, T. Encrenaz, D. Gautier, A. Marten, D. Despois, D.F. Strobel 

and A. Sievers 1995. Chemical and thermal response of Jupiter to the impact of 

comet Shoemaker-Levy 9. Nature 373, 592-595. 

Lyons, J.R. 1995. Metal ions in the atmosphere of Neptune. Science 267, 648-651. 

Marten, A. , D. Gautier, M.J. Griffin, H.E. Matthews, D.A. Naylor, G.R. Davis, T. Owens, 



154 

G. Orton, D. Bockelee-Morvan, P. Colom, J. Crovisier, E . Lellouch, I. de Pater, 

S. Atreya, D. Strobel, B. Han, and D.B. Sanders 1995. The collison of comet 

Shoemaker-Levy 9 with Jupiter: Detection and evolution of HCN in the 

stratosphere of the planet. Geophys. Res. Lett. 22, 1589-1592. 

Moses, J.I., M. Allen, and G.R. Gladstone 1995. Post-SL9 sulfur photochemistry on 

Jupiter. Geophys. Res. Lett. 22, 1597-1600. 

Nicholson, P.D., P.J. Gierasch, T.L. Hayward, C.A. McGhee, J.E. Moersh, S.W. Squyres, 

J. Van Cleve, K. Matthews, G. Neugubauer, D. Shupe, A. Weinberger, J.W. Miles 

and B.J. Conrath 1995. Palomar observations of the R impact of comet 

Shoemaker-Levy 9: I. Light Curves. Geophys. Res. Lett. 22, 1613-1616. 

Noll, K.S., M.A. McGrath, L.M. Trafton, S.K. Atreya, J.J. Caldwell, H.A. Weaver, R.V. 

Yelle, C. Barnet, S. Edgington 1995. HST spectroscopic observations of Jupiter 

after the collision of comet Shoemaker-Levy 9. Science 267, 1307-1312. 

Orton, G.S., M. A'Heam, K. Baines, D. Demrnig, T. Dowling, J. Goguen, C. Griffith, H. 

Hammel, W. Hoffman, D. Hunten, D. Jewitt, T. Kostiuk, S. Miller, K. Noll, K. 

Zahnle, N. Achilleos, A. Dayal, L. Deustch, F. Espenak, P. Esterle, J. Friedson, 

K. Fast, J. Harrington, J. Hora, R. Joseph, D. Kelly, R. Knacke, J. Lacy, C. Lisse, 

J . Rayner, A. Sprague, M. Shurea, K. Wells, P. Yanamandra-Fisher, D. Zipoy, G. 

Bjoraker, D. Buhl, W. Golisch, D. Griep, C. Kaminski, C. Arden, J. Goldstein, D. 

Gilmore, F. Fazio, T. Kanamori, H. Lam, T. Livengood, M.-M. Maclow, M. 

Marley, T. Momary, D. Robertson, P. Romani, J . Spitale, M. Sykes, J. Tennyson, 

D. Wellnitz, and S.-W. Ying 1995. Collision of comet Shoemaker-levy 9 with 



155 

Jupiter observed by the NASA Infrared Telescope Facility. Science 267, 

1277-1281. 

Pryor, W.R. , and C.W. Hord 1991. A study of photopolarimeter system UV absorption 

data on Jupiter, Saturn, Uranus, and Neptune: implications for auroral haze 

formation. Icarus 91 , 161-172. 

Roos-Serote, M., A. Barussi, J. Crovisier, P. Drossart, M. Fulchignoni, J . Lecacheux, and 

F. Roques 1995. Metallic emission lines during the impacts Land Q1 of comet 

P/Shoemaker-Levy 9 in Jupiter. Geophys. Res. Lett. 22, 1621-1624. 

Sprague, A.L., D.M. Hunten, F.C. Wittebom, R.W.H. Kozlowski, D.H. Wooden, and G. 

Bjoraker 1995. KAO observations of Jupiter during and following the impact of 

comet SL-9 fragments Rand W using HIFOGS (4.9-9.4 and 9.3-14.5 f.lm). Bull. 

Am. Astronom. Soc. 26, 1579. 

Takata, T., J.D. O'Keefe, T.J. Ahrens, and G.S. Orton 1994. Comet Shoemaker-Levy 9: 

Impact on Jupiter and plume evolution. Icarus 109, 3-19. 

West, R.A., E. Karoschka, A.J. Friedson, M. Seymour, K.H. Baines and H.B. Hammel 

1995. Impact debris particles in Jupiter's stratosphere. Science 267, 1296-1301. 

Wilson, P.D. and C. Sagan 1995. Chemistry of the Shoemaker-Levy 9 Jovian impact 

blemishes: indigenous cometary vs. shock-synthesized organic matter. /AU 

Colloquium 156: The Collision of comet ?/Shoemaker-Levy 9 and Jupiter, 9-12 

May 1995, abstract book, 122. 

Yelle, R. V ., and M.A. McGrath 1995. Ultraviolet spectroscopy of the SL9 impact sites, 

I: The 175-230 nm region. Submitted to Icarus. 



156 

Yoneda, S., and L. Grossman, Calculated stability fields and compositions of non-ideal 

condensate liquids in a solar gas 1994. Meteoritics 29, 554-555. 

Zahnle, K. and M.-M. MacLowe 1994. The collision of Jupiter and comet 

Shoemaker-Levy 9. Icarus 108, 1-17. 

Zahnle, K., M.-M. MacLow, K. Lodders, B. Fegley Jr. 1995. Sulfur Chemistry in the 

wake of comet Shoemaker-Levy 9. Geophys. Res. Lett. 22, 1593-1596. 



157 

V. Summary and Future Work 

This thesis has focussed on atmospheric chemistry for a variety of environments 

in the outer solar system, ranging from the unimaginably cold surface of Triton (38 K) 

to the enormously high temperatures (many 1000's of K) generated during the comet 

impact with Jupiter. It should be appreciated that such a range of temperatures is 

somewhat unusual in the arena of planetary atmospheric chemistry. Fate, of course, had 

a hand in this. What follows is a brief description of some of the salient features of the 

work presented here, along with thoughts on directions for future work. 

Triton continues to pose many challenges. Within the context of this thesis, one 

of these puzzles is certainly the extent of magnetospheric electron precipitation. Until 

Lyons et al. (1992) identified the possible role of c+ in Triton's ionosphere, electron 

precipitation was clearly the dominant form of energy input to the top of the atmosphere. 

The discovery of CO ice, and by inference CO gas, greatly strengthens the scenario of 

a c+ ionosphere. Yet, other factors such as the temperature of the thermosphere and the 

abundance of nitrogen atoms seem to suggest that electron precipitation is still an 

important process. Key pieces of missing information are the rate coefficients for N2 + + 

C, and co+ + C, both forming c+. Amazingly, not a single ion-molecule reaction has 

been studied in which C is a reactant. Another area of interest, and accessible to ground­

based study, is the photochemistry of an oscillating atmosphere. Atmospheric collapse and 

subsequent rebirth are predicted to accompany surface temperature variations as Triton' s 

orbital parameters evolve. The timescales for collapse can be very short, tens of years. 

For very low-opacity (in the uv) atmospheric states, surface photochemistry during the 
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collapsed state may be more relevant than atmospheric chemistry in determining issues 

such as surface coloration. 

The ionosphere of Neptune is, as is true for the other giant planets, very poorly 

understood. Identifying the structures in Neptune' s bottomside ipnosphere as metal ions 

shaped by gravity waves is perhaps the most straightforward of the various problems. 

Understanding the topside density is more problematic. My best guess is that either a 

significant antisolar flow of protons exists, or enough water comes in to consume the 

protons. The latter is testable by the methods of Paper III. Failing either of these, the 

proton deficit may be due to reactions with Hiv~4), suggesting that the observed deficit 

can be used to estimate the energy input to the topside ionosphere. This may give some 

clues to the energy cascade that leads to the high thermospheric temperatures observed 

observed on all of the giant planets. Finally, the raising and lowering of the ionosphere 

of Neptune by ExB drift generated in response to gravitational (Triton) and solar tides 

needs to be investigated quantitatively. 

Information on the IDP population and velocity distribution at the distances of 

Uranus and Neptune is not likely to come soon. Careful observations of the vertical 

distribution of oxygen-bearing species (i.e., CO) will provide an important "boundary" 

condition on the photochemical models. A consideration only alluded to in Paper III is 

the rate of sputtering of water ice from IDP's. Obviously dry IDP' s would contribute 

proportionally less water to an atmosphere. The same type of photochemical modeling 

needs to be performed for Titan, in this case coupling CO and C02, with H20 from 

meteoroid ablation. 
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The high temperature kinetics model for an atmosphere of reducing composition 

presented in Paper IV still has a long way to go before it can be considered complete. In 

particular, ion chemistry needs to be added. In light of the sparse free-energy data 

available for ions, this is a big job. However, the immediate next step with the code is 

to run it with P-T histories as determined from hydrodynamics runs performed by 

colleagues at Sandia. Also, heavier hydrocarbons need to be added. This task is made 

possible by the wealth of data from the field of combustion chemistry. Unfortunately, the 

combustion chemists have made little progress in determining rate coefficients for heavier 

H-C-N and H-C-S compounds; it seems likely that such information will be necessary if 

kinetic modeling of the SL9 impact debris is ever to be complete. In the meantime, shock 

tube studies of mixtures of Jovian gases may be the only practical method for identifying 

the composition of the "brown stuff'. If the impact debris can be shown to be derived 

from the comet, the consequences for terrestrial prebiotic chemistry could be profound. 


