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Abstract 

T he main theme of this thesis is t he construction and analysis of low dimensional dynam­

ical models of El Nino-Southern Oscillation (E SO). Low dimensional models of ENSO 

have been constructed [Val86. WF96, Jin97b] but all the models were built on ad hoc as­

sumptions and simplifications. The low dimensional models in this thesis were const ructed 

from a higher dimensional intermediate coupled model (ICl\1) by Galerkin projection on 
.J 

truncated basis sets of empirical orthogonal functions (EOFs), a method that has previ­

ously been applied to atmospheric models and models of turbulence [Sel95. HLB96] . This 

method makes no simplicat ions to t he physics of the ICM but instead projects it into 

a lower dimensiona l subspace of its full state space that has been empirically shown to 

contain t he maximum amount of variance of any subspace of the same dimension. 

Analysis of the reduced models shows that the variability of t he full model can be 

expla ined by three types of mode; I. self-sustaining. II. linearly stable but nonlinearly 

coupled to a self-sustaining mode, III. linearly stable and excited by noise. When driven 

by noise the stable modes can couple to t he primary modes. and t his provides an additional 

pathway for noise to pert urb these leading modes. 

T he implication is that the behavior of the model without stochastic forc~ng can be 

well reproduced by t he low dimensional models obtained by projection onto the leading 

EOFs but that many more EOFs are required to properly model the response to stochastic 

forcing. 

Experiments with the full model a lso indicate that the model is not efficient at t rans-

v 
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ferring power from high (intraseasonal) frequencies to low {interannual) frequencies. In 

particular the impact of a l\1adden-J ulian type oscillation in the 30-60 day frequency 

range on the interannual ENSO variability is negligble compared to the impact of the 

interannual component of atmospheric variability. 
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Chapter 1 

Introduction 

1.1 Historical Background 

The El Nino-Southern Oscillation (ENSO) is the single largest perturbation to the Earth ·s 

climate on interannual timescales. The first clue to the existence of ENSO was the ob­

servation of an abnormally warm counter current off t he coast of Peru once every few 

years. Thi was brought to the attent ion of science by Peruvian geographer Luis Car­

ranza in 1 91 [Phi 9]. The atmospheric component of ENSO. the Southern Oscillation. 

was d iscovered by Sir Gilbert ·walker earlier this century as a result of his work on cor­

relations in global weather patterns [Wal23. Wal24. Wal2 . \VB32. Wal37]. It was not 

unt il the extensive observing campaign of International Geophysical Year in 1957. which 

coincided with an El Nino event. that the connection between the anomalous sea surface 

temperature (SST) patterns in the tropical Pacific and the the Southern Oscillation was 

established. In the late 1960s Jacob Bjerknes outlined a theory for ENSO which relied on 

positive feed back between the tropical Pacific ocean and atmosphere to maintain an El 

Nino tate [Bje66. Bje69]. In brief. the zonal SST gradient across the Pacific is maintained 

by easterly trade winds which lead to a deep thermocline off Indonesia and a very shallow 

thermocline off Peru. Over the warm water off Indonesia moist convection occurs. The 

1 



2 CHAPTER 1. I TRODUCTIO 

rising air t ravels east aloft before sinking over the colder waters off Peru. The air then 

returns west along the surface completing what Bjerknes named the Walker Circulation 

in honor of Sir Gilbert Walker. Hence the zonal SST gradient drives the zonal atmo­

spheric circulation and the surface winds of this circulation maintain the SST gradient. 

Should the winds weaken then the SST gradient will decrease and this will lead to a 

further weakening of the winds. An El ino state may then ensue, characterized by a 

nearly horizontal thermocline across t he Pacific and a very weak, or even reversed Walker 

Circulation. Although this picture due to Bjerknes is still accepted. it fails to explain why 

the tropical Pacific should come out of such a state once it enters it. Clearly the system 

bas some sort of "memory." 

The devastating El Nino of 1982 stimulated a considerable amount of research activ­

ity both in the creation of observing systems and in modeling [Gla96]. Numerical models 

of the Pacific Ocean were created [CP84] and since a simple, linear model of the t ropi­

cal atmosphere already existed [Gil80]. the first coupled models of the ocean-atmosphere 

system were constructed [PYP84, Al\185, Hir86]. These models were used to study the 

nature of unstable modes in the coupled system. They were not intended to be used 

for forecasting El Nino events. The first attempt to produce a dynamical model of the 

tropical Pacific ocean-atmosphere system capable of forecasting warm events was that 

of Cane and Zebiak [Zeb84, CZ85. CZD86. ZC87] (hereafter t he CZ model). This model 

exhibited an oscillation with a t imescale of about 3 years. It has also been used with some 

success to forecast warm events. Versions of this model are still used extensively both 

for making operational forecasts and to try to increase our fundamental understanding of 

EKSO [BZC95a, BZC95b, CZBC95. PD96, DP96, CZC97]. A similar model was created 

by Schopf and Suarez [SS88a]. This model also showed ENSO type vacillations. T hrough 

studying their model Suarez and Schopf proposed what became known as the delayed 

oscillator model of ENSO [SS88b]. A similar model was proposed by Battisti and Hirst 

[BH89]. In the delayed oscillator model. a weakening of the trade winds in the central 
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Pacific creates a westward propagating, upwelling Rossby wave and an eastward propa­

gating. downwelling Kelvin wave. The arrival of the Kelvin wave in the eastern basin 

causes an increase in SST there which reinforces the weakening of the zonal wind and 

an El Nino state develops. Meanwhile. the Rossby wave undergoes a phase preserving 

reflection off the western boundary and returns east as an upwelling Kelvin wave which 

causes a decrease in SST and begins moving the system towards a La Nina phase. The 

delayed oscillator model has since been elaborated upon in an attempt to show that ENSO 

may be a chaotic system [TSCJ94]. Recently satellite measurements of sea surface height 

have provided observational evidence supporting the delayed oscillator model [BM99]. 

However, the delayed oscillator model assumes the coupling between the ocean and the 

atmosphere. More generally ENSO is thought to be a modified scattering mode of the 

ocean destabilized by coupled processes [J~93a, NJ93, JN93b]. 

While efforts have been underway to improve our understanding of ENSO physics, the 

skill of operational forecasts has also been improved. motivated by an increased appreci­

ation of the socio-economic benefits of good ENSO predictions [Gla96]. For example. it 

has been estimated that even modest skill at forecasting the phase of ENSO could save 

U.S. agriculture $240 million a year [SAB-t- 98]. 

1. 2 Outstanding Issues 

While much progress has been made in the past two decades in understanding ENSO, 

there are still several important issues that have not been resolved. Two of these issues. 

which are related to each other. are outlined below: 

• Is the ENSO system above t he bifurcation at which it becomes unstable and capable 

of self-sustained interannual oscillations or is it below the bifurcation and essentially 

a noise excited oscillator? 
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• Is the irregularity t he result of low dimensional processes intrinsic to the tropical 

Pacific ocean-atmosphere system (chaotic hypothesis) or high dimensional processes 

some of which are extrinsic to the tropical Pacific (stochastic hypothesis)? 

1.2.1 Oscillations: Limit Cycle or Noise? 

It has been established that as the coupling between the ocean and atmosphere is increased 

in models of the tropical Pacific. the system passes through a Hopf bifurcation [Nee89, 

Nee90]. Below the bifurcation the mean state of the system is a stable fixed point. 

above the bifurcation the meanstate is unstable and there is a limit cycle. If the system 

is below the bifurcation. it can still produce interannual variability if it is excited by 

stochastic forcing. Whether the real tropical Pacific is above or below the bifurcat ion is 

difficult to determine. Some have suggested that E rso can be modeled as a stable, linear 

system [PM93, CS95 , Pen96, Bur99] which implies the system is below the bifurcation. 

However, most modeling efforts have assumed that t he system is above t he bifurcation 

and possesses an intrinsic amplitude determined by the coupled dynamics [ZC87. SS88a, 

JN93a] . Observationa l studies also imply that E ISO does not have statistics consistent 

with a linear process driven by Gaussian noise [BS99]. 

The question of whether the mean state is stable or whether t he system has a limit 

cycle essent ially determines what sets the amplitude of ENSO. If t he system is noise 

excited, then the amplit ude of t he noise is a major influence on the amplitude. If t he 

system has a limit cycle, then this provides an intrinsic amplitude to ENSO independent 

of stochastic forcing. Since the amplitude of most of the ENSO variability found in many 

global climate models is too small [ROB+96. KMG97], the question of what processes 

determine this amplit ude is very significant. 
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1.2.2 Irregularity: Chaos or Noise? 

The observed E rso cycle is aperiodic. There is a broad peak in its power spectrum that 

extends over frequencies corresponding to periods of 3 to 7 years. One of t he keys to 

understanding ENSO is knowing the source of this irregularity. One possibility is that 

ENSO is a low dimensiona l. chaotic system, i .e .. it can be described by a small number of 

deterministic equations but the sensitivity of t hese equations to initial conditions makes 

their behavior intrinsically unpredictable. This hypothesis was summed up by Zebiak and 

Cane after t hey successfully produced aperiodic behavior in t heir deterministic model: 

·'We need not appeal to random forcing of unknown origin in ordeT to account for the 

aperiodicity of ENSO; i t can Tesult from strictly deteTminisitic processes" (ZC87). This 

hypothesis can be called intrinsic irregularity. 

An alternative hypothesis is that t he coupled ocean and atmosphere form a low d i­

mensional non-chaotic system that in the absence of noise would oscillate periodically. 

·· · oise:· in the form of synopt ic scale atmospheric t ransients, effectively provides a 

stochastic forcing to the oscillator causing it to oscillate irregularly. "The chances of 

[ENSO} being in an inherently oscillatory, ratheT than an intrinsically chaotic regime, 

are substantial." (JNG96}. This hypothesis can be described as extrinsic irregularity. 

Of course it is possible that the Pacific ocean-atmosphere system would behave chaoti­

cally in t he absence of atmospheric transients. but in addition is forced by t he effectively 

stochastic synoptic weather patterns. An important source of atmospheric variability in 

the Pacific is the 30 to 60 day rvladden-J ulian oscillation responsible for westerly wind 

bursts that have been implicated in start ing El iiio events. 

Both the intrinsic and extrinsic irregularity scenarios have been explored. With strong 

coupling the Tziperman model behaves chaotically, but it also behaves irregularly in the 

periodic region of parameter space when a stochastic forcing is added [SSHP98]. Another 

study explored the parameter space of an ICM and found that periodic regimes were 



6 CHAPTER 1. INTRODUCTION 

more common than chaotic ones [JNG96]. Studies of a stochastically forced ocean GCM 

have found that realistic atmospheric transients can produce a marked broadening of the 

ENSO spectral peak in a model which is periodic when such forcing is absent [Bla97]. 

1.3 The Model Hierarchy 

l\Iodels of ENSO can be placed into fom categories. Following loosely t he classifica­

t ion system used by Neelin et al. [ BH+98]. these categories are. in decreasing order 

of complexity, ocean-atmosphere genera l circula tion models (OAGCMs), ocean general 

circulation models (OGCMs) . intermediate coupled models (IC:rvis) and low dimensional 

models (LDMs). 

1.3.1 Ocean-Atmosphere GCMs 

These are the most complex of all ENSO models. They consist of a fully nonlinear 

ocean circulation model coupled to a fully nonlinear atmospheric circulation model. Their 

primary use is in studying global climate change over decada l timescales, but as part of 

these studies t hey have been used to try to reproduce ENSO type behavior in the t ropical 

Pacific [SHGP87. PLPN89, Mee90 .. MB92] . T he reason for trying to simulate an internally 

generated ENSO in these global coupled models is twofold. Firstly the presence of ENSO 

helps to validate the model. Any global climate model that fails to produce an interannual 

oscillation in the tropical Pacific is failing to produce one of t he most important modes of 

internal climate variability. Secondly the models have been used to address the question 

of whether long term changes in globa l climate. particularly those induced by an increase 

in C02 • will affect t he frequency or amplit ude of future El Nino events. OAGCMs are very 

high dimensional. To estimat e t he dimension of the state spa{;e of such models consider 

the lowest resolut ion model used in an EI SO study [PLPN89]. This consisted of an R15 

atmospheric model [Lau85] which has 256 variables per field . per vertical level. and the 
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model had 9 vertical levels. Thus the atmospheric model has a state space wit h more 

than 9000 dimensions. This was then coupled to an ocean GCNI with a resolution of 

approximately 4.5° in latit ude and 3.8° in longit ude and 12 vertical levels, giving over 

10.000 dimensions. 

1.3.2 Ocean GCMs 

On the next rung down the ladder of complexity is the ocean GCM coupled to a sim­

ple atmosphere. These models consist of an ocean general circulation model similar to 

those of OAGCMs, a lthough in some cases only the tropical Pa~ific is included. Cou­

pled to these are simple atmospheric models . Because of the combination of a complex 

ocean with a simple atmosphere. these models are sometimes called hybrid coupled models 

(HC Is) . Some of t he atmospheric models are based on the Gill model [Gil80] while oth­

ers use statistical atmospheric models created by finding empirical relationships between 

sea surface temperature and surface windstress. The atmospheric models are referred to 

as slave atmospher·es or steady-state atmospheres because they contain no dynamics and 

respond instantaneously to SST forcing. This can be justified because the timescale for 

atmospheric adjustment is short compared to the typical timescales of the ocean dynam­

ics. Even t hough they do not contain dynamical atmospheres, OGCMs are still very high 

dimensional. An example is that developed at UCLA [Nee89]. The ocean GCM compo­

nent is a 10 level model of the tropical Pacific. The mesh is variable but there are on 

the order of 1000 grid-points per level, giving a state space of more than 40,000 dimen­

sions. The steady-state atmospheric model does not contribute any degrees of freedom to 

t he dynamical system. levertheless t he ocean model alone makes such models very high 

d imensional. 
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1.3.3 Intermediate Coupled Models 

The most famous example of an ICl\1 is the previously mentioned Cane-Zebiak model. 

The ocean component of t his model covers the tropical Pacific (124°E to 80°W and 30°8 

to 30°N) with 2° latitude and 5.625° longitude grid, giving approximately 400 grid points. 

The model has four fields on this grid: the two components of horizonta l curtents, ther­

mocline depth and temperature. Thus even this model has a state space of well over 

1000 dimensions. The atmosphere used in the CZ model is a steady-state atmosphere 

based on t he Gill model although some ICMs have been run with empirical. steady-state 

atmospheric models. 

1.3.4 Low Dimensional Models 

In an attempt to understand ENSO as a dynamical system, some researchers have cre­

ated very low dimensional models of ENSO. Typically these models consist of a handful 

of independent variables. One of the earliest examples was that of Vallis [Val86] who at­

tempted to model ENSO using the well known Lorenz system of equations [Lor63]. This 

model did not contain any elements of the delayed oscillator model and did not produce 

the preferred frequency that is observed in ENSO. l\ Iore recent attempts have been based 

on the delayed oscillator model [TSCJ94] while others have approached the problem by 

stripping down 1Cl\1s [WF96. J in97b, Jin97a]. The dimensionality of these models is very 

low. The Vallis model consisted of three coupled ODEs. The Tziperman model consisted 

of just one delay-differential equation. the trajectory of which can be embedded in three 

dimensions. The Wang model reduces to two coupled nonlinear ODEs while the Jin ocean 

recharge model consists of two coupled linear ODEs. 
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1.4 Reduced Dynamical Models 

As was discussed above intermediate models have had some success at modeling ENSO, 

even to the point of operational forecasting. The low dimensional models of ENSO which 

have been studied to date have been created by making ad hoc assumptions. It would 

be desirable to construct a low dimensional model of ENSO dynamics which is more 
I 

rigorously related to intermediate level models. One method for reducing a spatia lly 

extended system to its essential degrees of freedom is the method of empirical orthogonal 

functions (EOFs). 1 This method has been applied to the general problem of turbulence 

[HLB96] as well as to atmospheric models [RK75, Sel95. Zhu96, Sel97a]. In the method 

a spectral dynamical model is reprojected onto a new set of orthogonal basis functions 

(EOFs) which are determined either from runs of the model in its convent ional form or 

from observational data . 

1. 5 This Thesis 

T he cent ral theme of this thesis is the construction of a low dimensiona l ENSO model 

from a high dimensional IC~1I by using Empirical Orthogonal Functions as a basis set 

and without making any ad hoc simplifications of the equations of the original ICM. In 

Chapter 2 the IC!vi which was ultimately reduced is described. The genera l form of the 

model will be recognizable to those familiar with the Cane-Zebiak or Jin-Neelin ICMs. It 

is to be hoped that by choosing such a well known and much used type of model as the 

starting point, insights obtained from the reduced model can be applied to understand 

a large number of model studies. In Chapter 3 the general behavior of the full ICM is 

described both in its uncoupled and coupled configurations. In Chapter 4 t he response 

1 This method goes by a multit ude of names. It is also known as Proper Orthogonal Decomposi­

tion. Karhunen Loeve Decomposition, P rincipal Component Analysis. Singular Value Decomposit ion and 

Singular System Analysis. 
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of the full model to various forms of stochastic forcing is described. In this chapter it is 

shovn1 that stochastic forcing at intraseasonal frequencies is not very effective at perturb­

ing the interannual oscillations of the model. In Chapter 5 algorithms for estimating the 

dimensionality of the ENSO model are presented with their resulting estimates of dimen­

sion. Chapter 6 outlines the method by which the model was reduced by projecting it 

onto truncated basis sets of its EOFs. In Chapter 7 t he result ing low dimensidnal models 

are analyzed. The processes which destabilize the dominant interannual mode and modify 

its frequency are elucidated. It is also demonstrated that secondary. linearly stable modes 

manifest themselves through nonlinear coupling to t he dominant mode and that it is the 

effectiveness of that coupling rather than how close they are to instability that governs 

their strength. It. is also shown t hat the coupling between modes provides a pathway for 

wind noise to perturb t he leading modes. 



Chapter 2 

A Description of the Model 

2.1 The Oceanic Component 

The ocean model used was similar to the oceanic component of previous intermediate 

models . in particular , the CZ model [Zeb84. ZC87]. and the ICM developed by Jin et al. 

[J 93a]. The primary difference between the model described in this chapter and CZ-type 

models is not in the equations themselves but in the method of their solut ion. The CZ 

model is a finite difference model whereas in this work a spectral approach is adopted. 1 

Figure 2.1 shows a schematic of the model in its coupled configuration. 

The equatorial ocean model consists of two layers. The upper layer is t he mixed layer 

and has a thickness HM. The temperature in the mixed layer is constant with depth and 

will be written as T(x , y, t). Below the mixed layer is the thermocline layer with a mean 

thickness Hr . The t hermocline itself forms the lower boundary of t he thermocline layer . 

The mean depth of the t hermocline is H = H!lf + Hr. The temperature in the thermocline 

layer is a given function of distance from the thermocline interface. The perturbation in 

the thickness of the thermocline layer is h(x. y, t). The ocean above t he thermocline will 

1 The CZ model in common with many ICMs employs a long-wave approximation. Also an expansion 

in hermite functions is used in the meridional direction. 

11 
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b<' referred to as the upper- ocean. The depth averaged zonal and meridional currents 

in the upper ocean will be written as u(x, y . t ) and v(x . y, t) respectively. The zonal 

and nwridional current in the mixed layer will be written as ( uu, v.u) and similarly the 

currents in the thermocline layer will be written as (ur, vr). From the above definitions 

it follows that 

H v - H,,(Vl\f + Hrvr 

(2.1) 

(2.2) 

If the shear velocity is defined as (us,vs) = (uM,vllf)- (ur,vr) then Eqs. 2.1 and 2.2 

U ,\1 

Hr 
v 111 - v + H vs 

(2.3) 

(2.4) 

The:' dynamical part of the model consists of the linearized shallow-water equat ions on an 

equatorial beta-plane. These equations describe thE' evolution of u(x. y. t). v(x. y. t) and 

h(x. y, t). 

8u 
8t 
8v 
8t 
8h 
8t 

,8h Tx 
{Jyv - 9 - + - - TU 

8x pH 
,8h Ty 

- ,Byu - g - + - - rt• 
8y pH 

-H -+- - rh (
8u 8v ) 
8x 8y 

(2.5) 

(2.6) 

(2.7) 

In the above equations {3 is the gradient of the Coriolis parameter. g' is t he reduced 

graYity. p is the mean density of the upper ocean. T is the coefficient of damping by 

Rayleigh friction and (T.r. Ty) is the windstress vector at the surface. It is assumed that 

the shear currents are in equilibrium with the windstress and therefore the following 

steady state equations for the shear current may be written down 

qus- f3yl' 
pH 111 

(2.8) 
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Ty 
qvs + {Jyus = - H 

p AI 
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(2.9) 

where q is the coefficient of friction between the mixed and thermocline layers. Equations 

2.8 and 2.9 can be readily solved to give 

(2.10) 

(2.11 ) 

The upwelling velocity. w. in the mixed layer is given by 

w = wr+ws (2.12) 

where wr and ws are given by 

H i\1 - +-(
&u &v ) 
&x &y 

(2.13) 

ws = H Hr ( &us &vs) 
i\1- - + -

H &x &y 
(2.14) 

The equation for the mixed layer temperature is 

(2.15) 

where 1£ is the heaviside step function. T8 is the temperature at the base of the mixed 

layer and 1 is the fraction of upwelling water entrained in the mixed layer. The first 

two terms in Eq. 2.15 describe the horizontal advection of temperature. The third term 

Lo;; a parameterization of the effect of upwelling on the temperature of the mixed layer. 

The heaviside step function means that this term is only non-zero if water is entering the 

mi..xed layer from below. This is because since the mixed layer temperature is con tant 

with depth when water leaves t he mixed layer (negative w) there is no effect on t he 

temperature of the remaining water. However. when water enters the mixed layer from 

below (positive u'). this water is at temperature T8 and thus when it is mixed throughout 
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the mixed layer the temperature will change at a rate proportional to w(Ta - T). ote 

that the Eq. 2.15 contains all the nonlinear terms of the model. The ocean dynamics are 

linear. 

The temperature at the base of the mixed layer. Ta , is parameterized as a function of 

h. It is assumed that the subsurface temperature structure below the mixed layer is fixed 

to the thermocline. The following function was used for T8 , in degrees Celsius. 

(
h- ho ) 

Ta=T0 tanh H * - To (2.16) 

This parameterization function is shown in Fig. 2.2. Note that for convenience the zero in 

temperature has been moved. The temperature at the center of the thermocline is about 

2.2 The Atmospheric Component 

The Gill model for tropical atmospheric dynamics has been used extensively in intermedi­

ate coupled models of the tropical ocean-atmosphere system [Gil80, Gil82]. It is a linear 

model but it models the response of the tropical atmosphere to SST forcing reasonably 

well and nonlinear models do not produce substantia l improvements [AD93]. The model 

consists of the linearized shallow-water equations on a beta-plane. 

ad> 
(2.17) -f3yV + - · + RU 0 

ox 
8¢ 

f3yU + oy + RV 0 (2.18) 

2 ( aU 8V) 
Ca ox + oy + Rd> -Q (2.19) 

In the above equations R is the atmospheric damping coefficient, Ca is the atmospheric 

Kelvin wave speed, U and V are the zonal and meridional components of lower tropo­

spheric wind respectively and <P is the lower tropospher ic geopotential height. The variable 
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Q is the middle tropospheric heating which is taken to be mainly due to latent heat and 

is thus a function of SST. The atmospheric model is a '·slave'· atmosphere. It adjusts 

instantaneously to changes in Q. Using such a steady-state atmospheric model is justi­

fied if Q depends only on SST which changes on a timescale associated with the ocean 

dynamics of weeks to months whereas the atmosphere adjusts on a timescale of days. 

2.3 Coupling the Ocean and Atmosphere 

The ocean and atmosphere are coupled in both directions. The heating term in the 

atmospheric model is a function of SST and the windstresses that force the ocean model 

are functions of the wind velocity obtained from the atmospheric model. 

The actual functional dependence of t he windstress on the wind velocity was assumed 

to be linear. The equat ions are as follows: 

(2.20) 

(2 .21) 

where Pa is the atmospheric density, Cn the coefficient of surface drag and W is a char­

acteristic windspeed. The parameters Pa and CD were combined into a single parameter, 

Ks. 

The atmospheric heating term, Q. was assumed to be a linear function of SST. 

(2.22) 

where K Q has units of m 2 s-3 oc-1 . 

2.4 Estimating the External Windstress 

The windstress can be separated into two components, an internal windstress, which is 

the result of SST forcing within the tropical Pacific. and an external windstress which is 
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caused by processes outside the tropical Pacific. The coupled model should be able to 

generate the internal component itself but it must be forced with the external windstress. 

The observed windstress is the sum of the internal and external components. The external 

component can be estimated by using the observed SST and the atmospheric model to 

estimate the internal component and then subtracting this from the observed windstress. 

If the observed, external and internal windstresses are represented by Tabs, T'ext and Tint 

respectively, then 

Text = Tabs - Tint (2.23) 

If Tabs is t he observed SST then Tint can be estimated by 

(2.24) 

where A is the atmospheric model. 

The windstress forcing used was the Florida State University (FSU) pseudo-windstress 

product covering the period from 1961 to 1994 [G081]. This dataset consists of the 

monthly mean components of magnit ude of the wind velocity at the surface on a 2° grid 

covering the area 124°E to 80°W and 30°S to 30°N. The dataset consists of the vectors 

S = V IV I (2.25) 

where Vis the wind velocity. The vectorS is converted into an actual surface stress using 

a parameterization similar to the one used for the internal windstress. 

(2.26) 

The observed SST used was actually t he SST database from 1950-1991 reconstructed 

from ship records and satellite observations for t he period after 1981 [SRLS96]. The SST 

reconstructions were used with the atmospheric model described above to estimate Tint· 

Since t he atmospheric model is linear, the product of the two parameters in which there 
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is most uncertainty, K Q and vll , can be treated as single parameter. The value of K Q vV 

was chosen so as to minimize the mean square error between the internal zonal windstress 

anomaly and the observed zonal windstress anomaly. The optimal value was found to be 

KQ = 0.013 m 3 s-4 oc-1 (see Fig. 2.3). With this value 58% of the observed windstress 

variance can be explained as the internal windstress correlated with tropical Pacific SST. 

Figure 2.4 shows the zonally averaged observed zonal windstress. The annual component 

of the the external windstress was then calculated by subtracting the estimated internal 

\Yindstress from the observed windstress. The zonally averaged seasonal cycle in the 

estimated external zonal windstress is shown in Fig. 2.5. 

Subtraction of the seasonal external windstress from t he total external windstress 

leaves the anomalous external windstress. This component of the external windstre~ is 

sometimes referred to as wind noise since it has a broadband spectrum and is generated 

by processes outside of the model domain. This component of the windstress can be 

modeled stochastically. Figure 2.6 shows the amplitude spectrum of the residual external 

windstress averaged over the INO 4 region (150°\V-90°vV. 5°S-5°N). The spectrum is red. 

This is probably largely due to the ocean acting as a low-pass filter to white atmospheric 

noise. The white component of the atmospheric noise was estimated by first projecting the 

anomalous external windstress onto its leading EOFs. The time series of the coefficients 

of these EOFs had red power spectra. T he average power at frequencies above 4 year-1 

was used as an estimate of the "floor'· of t he atmospheric white noise. \i\lhite noise time 

series with this power were constructed for each EOF coefficient. The resulting wind field 

was then projected back onto the original basis. The atmospheric noise was constructed 

in its EOF domain because the coefficients of the EOFs are linearly uncorrelated by 

construction. In the standard basis there are linear correlations between coefficients of 

the basis functions. These correlations would be destroyed if the t ime series of each 

coefficient were simply replaced by a white noise t ime series. 
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2.5 The Spectral Representation 

Equations 2.5. 2.6. 2.7 and 2.15 are partial differential equations. They may be solved 

using finite difference methods. However. since the aim is ultimately to reduce the system 

to its essential degrees of freedom a spectral approach was adopted. In this method each 

of the fields, u. v , h and T was expressed as a weighted sum of basis functions. The 
I 

basis functions vary in space t he weighting coefficients vary in time. To be as general as 

possible, the ith basis function for the fields u , v, h and Twill be written as Ft . Ft, Fih 

and F[ respectively. The weighting coefficients for the ith basis function of the fields will 

be written as ui , V1 , hi and~. Furthermore, let the number of basis functions for each of 

the fields be written as Nu, N'L. , Nh and Nr . Thus u. v . hand T can be written as 

Nu 

u(x, y , t ) = L ui(t )Fiu(x, y ) 
i=l 

N v 

v(x, y , t) = L vi(t )Fit'(x, y) (2 .28) 
i=l 

Nh 

h(x, y, t) = L hi(t)F/l(x, y) (2.29) 
i= l 

Nr 

T (x, y, t) = L ~(t)FF(x, y) (2.30) 
i= l 

\Vith an infinite number of basis functions, t he basis sets can be complete and any field 

can be synthesized. The Eqs. 2.5, 2.6 and 2.7 and 2.15 are PDEs and in principle have an 

infinite number of degrees of freedom. Substitution of the sums in Eqs. 2.27-2.30 when 

]\.ru, Nv. Nh, Nr--+ oo into the model equations leads to a countable infinity of ODEs. The 

aim was to reduce the number of ODEs and thus the number of degrees of freedom to t he 

minimum number required to accurately model t he system. This was done by a judicious 

choice of the basis sets. 
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The model can be written in the spectral representation as 

u -rT. f3Y -g'Dx J-LAx u u 

d v - f3Y -rT. -g'Dy J-LAy v v 
+N + F (t) (2.31 ) 

dt h - HDx -HDy - rT. 0 h h 

T 0 0 0 -aT T T 
I 

where J-L = KsKQ/ pH. In Eq. 2.31 T. is the identity operator. Y represents mult iplication 

by the y coordinate and Dx and Dy represent the spatial derivative operators. The 

operators A x and Ay represent the atmospheric model. They are obtained by invert ing 

the system of equations. Eq. 2.17-2.19. The atmospheric model can be written as 

KI -f3Y Dx u 0 

f3Y KI Dy v 0 (2.32) 

c~Dx ~Dy KI <I> Q 

Inversion of the matrix in Eq. 2.32 leads to 

A x 0 u 
Ay 0 v (2.33) 

Q <I> 

T he operators A x and Ay can thus be ext racted from the inverted mat rix. 

The nonlinear terms in Eq. 2.31 are represented by the function Nand F (t) represents 

time dependent forcing. 

A characteristic timescale for the model is given by VlT/fC where c is the Kelvin wave 

speed given by c = vgrH. The model state variables u, v . hand T can be nondimension­

alized using the following characteristic scales. 

(2.34) 

h = H (2.35) 
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(2.36) 

where I lAx II is the norm of the atmospheric model matrix. The windstress forcing can 

also be nondimensionalized using the characteristic windstress given by 

i = pH cV/fC (2.37) 

Let x be the nondimensionalized model state vector given by 

[
u v h Tl 

X = -;;-,-;;-, H ' t (2.38) 

The model equations can now be written in the following nondimensional form 

dx 
dt = Mx + N (x) + F(t) (2.39) 

where M is t he nondimensionalized model matrix, N is the nondimensionalized nonlinear 

part of the model and F(t ) is the nondimensionalized time dependent forcing. 

2.6 The Standard Basis Sets 

For the initial runs of the model. a basis set of conventiona l functions was used. The 

standard basis sets used for the fields u. v, h were products of fourier functions in the 

zonal direction and hermite functions in the meridional direction. These functions are 

solutions to the free dynamical equations. Eqs. 2.5. 2.6 and 2. 7. The boundary condition 

is t hat u = 0 at x = 0 and at x = L where L is the zonal extent of the ocean basin. The 

hermite functions decay to zero as IYI --+ oo. For the SST field fourier functions were used 

in both the zonal and the meridional directions. If the bas is set contains the m lowest 

fourier functions and n lowest hermite functions, t hen the functions in Eqs. 2.27. 2.28. 
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2.29 and 2.30 are 

DV 
r lm+k 

Fl'!:+k = 

. (k7rx) ( y ) sm L Dt ~ 

(k1rx) ( y ) cos L Dt ~ 

cos c~x) D1 (h ) 
(k7rx) (l1ry) 

cos £ cos w 
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(k = 1, ... , m l = 0, ... , n- 1) 

(k= O ... ,m l=O .... ,n- 1) 

(k = 0, ... , m l = 1, ... n - 1) 1 

(k=O, ... m- 1 l=O, ... ,n-1) 

where D1 is the hermite function of order l. The number of functions in each basis set is 

Nu = Nr = mn, Nv = Nh = (m + l )n (2.40) 

The dimension of the model state space is thus Nu + Nv + Nh + Nr = 4mn + 2n. 

2.7 Numerical Methods 

The model described by Eq. 2.39 was integrated using a fourth order Runge Kutta 

scheme. The linear operators, .C. 'Dx, 'Dy, and Y were constructed numerically on a grid 

1 o in longitude and latitude covering the area from 124°E to 80°W and 15°8 to 15° . The 

nonlinear terms were evaluated pseudo-spectrally on a coarser grid with a resolution of 

6° in longit ude and 3° in latitude. 

2.8 Parameter Values 

The parameters /3 . p. Pa and L have unambiguous physical interpretations and the values 

used were 2 x 10- 11 m- 1 s-1 , 1000 kg m-3 • 1.3 kg m-3 and 1.74 x 107m respectively. The 

value of L corresponds to 156° of longitude. The value of H was taken to be 150m as 

in the CZ model. Other parameters used were r = (2 .5years)-1
• HAl= 50m. / = 0.5 
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and a = (125days)- 1
• The reduced gravity was set at g' = 0.0486ms- 2 to give a 

Kelvin wave speed of 2. 7 ms-1
. The value of a corresponds to a coupling sensit ivity 

of 19 wm-2 K - 1
. The windstress coefficient, C0 , was set at 1.5 x 10-3 [G081]. The 

parameters are summarized in Table 2.1. 
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Table 2.1: The parameters of the standard model. 

m zonal functions 8 

n meridional functions 7 

(J planetary vorticity gradient 2 x 10- 11 m- 1 s - 1 

p mean density of upper ocean lOOOkg m-3 

Pa surface density of atmosphere 1.2 kgm-3 

L zonal extent of basin 1.74 x 107 m 

g' reduced gravity 0.0486ms-2 

H mean thermocline depth 150m 

c Kelvin wavespeed (#H) 2.7ms-1 

Lo oceanic Rossby radius ( ...fC/fi) 3.7 x 105 m 

r upper ocean Rayleigh friction (2.5years)- 1 

Co windstress coefficient 1.5 X 10-3 

H u thickness of mixed layer 50m 

q mixed layer Rayleigh friction (2days)- 1 

cr oceanic Newtonian cooling coefficient (125 days)-1 

'Y entrainment fraction 0.50 

To temperature contrast across thermocline/2 10oC 

ho temperature structure asymmetry parameter 40m 

H * vertical scale of thermoclinemetry parameter 50m 

R atmospheric Rayleigh friction (2.3days)-1 

Ca atmospheric Kelvin wavespeed 60ms- 1 



24 CHAPTER 2. A DESCRIPTIO T OF THE MODEL 

EXTERNAL l'loNDSTR£SS 

ATMOSPHERIC MODEL, (U,V,<1>) 

COOUNG = oT 
AHAOSPriERiC HEAT'NG=K0T WINDSTRESS=K5(U,V) 

M XED LAYER, T(x,y), (uw(x,y),vw(x,y)J 

TEMPERATt..RE AT BASE OF MIXED LAYER =T9 (h) 

UPWELLING=w 
H 

TnERMOCUNE LAYER, (u, (x,y),v,(x,y) ) 

_________ l _________ j 

h(x,y) 

Figure 2.1: A schematic of t he model in its coupled configuration. 
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PARAMETERIZATION OF ~8 
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Figure 2.2: The temperature a t the base of the thermocline. T8 as a function of ther­

mocline depth anomaly. h. T he relationship is that of Eq. 2.16 for the parameter values 

T0 = 10°C . h0 = 40 m and H * = 50 m . 
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NINO 4 ZONAL WINDSTRESS 
0 .0 8 

K0W = (0 .0 1.3 ± 0 .002) m 3 s - 4°C- 1 
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Figure 2.3: The observed NINO 4 zonal windstress anomaly plotted against the windstress 

produced by driving the atmospheric model with observed SST. 

The implied value of K Q W is (0.013 ± 0.002) m3 s- 4 oc-1
. To estimate the uncertainty the 

number of degrees of freedom must be known. Because both time series have high serial 

correlations, the number of degrees of freedom is less than the number of points. The 

number of degrees of freedom was estimated by calculating the autocorrelation functions 

of the series. The first zero was at 8 months for both series. The estimated number of 

degrees of freedom is thus 384 months/ 8 months = 48. 
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ZONALLY AVERAGED OBSERVED ZONAL WINDSTRESS / 1 o-2 Nm-2 
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Figure 2.4: Observed windstress. 

Zonally averaged seasonal cycle in the observed (FSU) zonal windstress. Units are 

10- 2 N m - 2 and positive indicates an easterly windstress. A value of Ks = 0.0019 kgm-3 

was assumed. This is the windstress dataset that was used to estimate the external 

component of the windstress. 
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Figure 2.5: Zonally averaged seasonal cycle in t he estimated external zonal windstress. 

units are 10- 2 N m-2 and positive indicates an easterly windstress. T his is the seasonal 

component of the observed windstress (F ig. 2.4) t hat cannot be explained as a linear 

response to SST in the tropical Pacific. 
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NINO 4 ANOMALOUS EXTERNAL WIND STRESS 
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Figure 2.6: Amplitude spectrum of the residual component of the estimated external zonal 

windstrr s averaged over the NINO 4 region. This is t he nonseasonal component of the 

observed windstress t hat cannot be explained as a linear response to SST in the tropical 

Pacific. 
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Chapter 3 

Behavior of the Model 

3.1 Uncoupled Model 

Before any attempt was made to run the model in its coupled mode, it was run uncoupled, 

driven by the FSU pseudo-windstress for the period 1961 to 1994. The parameter values 

used were those listed in Table 2.1. 

Figure 3.1ab shows the time series of SST anomaly in the NINO 3 and NINO 4 regions. 

The NINO 3 region is in the Eastern Pacfic, covering the region 150°W-90°W and 5°S-

50N. NINO 4 lies in the mid to western Pacific and covers 15oo·W-160°E and 5°S-5°N. The 

red line shows the model SST anomalies. The blue line shows observed SST anomalies 

which were obtained from t he SST reconstructions [SRLS96]. 

Figure 3.1cd shows the model thermocline depth anomalies on the equator at 165°E 

and 120°W (red lines). The blue lines which begin in 1987 are objective analyses of the 

depth anomalies of the 20°C isotherm at 165°E and 120°\V obtained using the TAO buoy 

array [Kl\195b. KM95a]. 

From Fig. 3.1 it can be seen that the forced model reproduces the equatorial thermo­

cline displacements well over the period for which observations are available. Furthermore; 

the relative amplitudes of the SST anomalies in the TINO 4 and NINO 3 regions are re-

31 
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produced. 

Figure 3.2 shows the mean and standard deviations in t he equatorial profiles of SST, 

thermocline depth and upwelling produced by the forced model. The SST gradient along 

the equator is consistent with observations. The largest changes in SST are found in t he 

Eastern Pacific, as is t he case in reality. This is not because t here is more t hermocline 

depth variability there. The RMS variation in t hermocline depth is about tl~e same in 

the western and eastern parts of t he basin. The reason for t he greater SST variability in 

the east is part ly due to the much larger upwelling t here and also because the gradient in 

the parameterizat ion of Ts is greater at h = - 50 m than at h =+10m. 

F igure 3.3 shows longit ude-time plots of the observed and modeled SST anomaly along 

the equator and the amplit ude spectra of . ·I 0 3 SST. Note that t he modeled SST field 

displays more high frequency variability than t he observed field. 

F igure 3.4 compares t he seasonal cycle in SST of t he forced model with t he observed 

seasonal cycle. The agreement in the NINO 3 region is good although the coldest SST 

occurs a couple of months later than in t he observations. In the NINO 4 region the model 

does a poor job of reproducing the observed SST. This disparity can be explained by 

recognizing that in t he NINO 3 region upwelling is important in determining the SST 

whereas in NINO 4 surface heat flux is more important [SZC88]. The model includes 

upwelling and thus does reasonably well in NINO 3 but does not include seasonal changes 

in surface heat flux leading to poor agreement further west. Since the SST variability 

in the western Pacific is relatively small. failure to reproduce the annual cycle in t hese 

regions does not represent a major deficiency in t he model. 

The forced model run output was used to make another estimate of the coupling 

coefficient. Figure 3.5 shows a plot of t he observed zona l windstress anomaly in t he NINO 

4 region versus the windstress produced by t he model divided by the coupling coefficient. 

KQW· From this plot a value of K Ql.-F = 0.012 ± 0.002m3 s-4 oc-1 was inferred. This 

is consistent with t he value of K Q {lli inferred using the atmospheric model driven by the 



3.2. COUPLED ;MODEL 33 

observed SST. 

To test the atmospheric model. the SST produced by the forced model was used to 

drive the atmospheric model. Figure 3.6 shows the result ing windstresses in the NINO 

3 and NINO 4 regions and also the observed windstresses. 1 The model reproduces the 

obserw.d windstresses reasonably well indicating that there should be self-consistency in 

the coupled model. 

3.2 Coupled Model 

3. 2.1 Constant Windstress 

Before the coupled model was forced with a seasonally varying windstress it was forced 
OJ 

with a constant windstress. The spatial pattern of this windstress was the estimated 

external windstress for t he month of April. April was chosen because the estimated 

external windstress is most strongly easterly during this month (see Fig. 2.5). A coupling 

of KQ w· = 0.0097 m 3 s-4 oc-1 was chosen as this coupling placed the system just above 

the bifurcation at which sustained interannual oscillations appear. Figure 3.7 shows a 

plot of equatorial SST as a function of time. The ii 0 3 SST oscillates with a period of 

about 4.5 years and a peak-to-peak amplitude of about 2°C. The longitude-time plot in 

Fig. 3. 7b shows the spatial pattern of oscillation typical of ENSO with the SST variance 

confined to the Eastern Pacific although the NINO 3 region and the region closest to the 

eastern boundary are out of phase. This phase difference is not present in observations. 

The amplitude spectrum of NINO 3 SST shows a dominant peak corresponding to a period 

of about 4.5 years and a smaller peak corresponding to about 2.1 years. It is interesting 

to note that analysis of observed equatorial Pacific SST has found a quasi-quadrennial 

1The ·'observed'' windstresses are obtained from the FSU pseudo-wi.ndstresses by assuming that Ks = 

0.0019 kgm- 3 . 
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(QQ) mode with a period of 53 months and a quasi-biennial (QB) mode with a period of 

2 months [JNG95] . Analysis of the southern o cillation index also found a low frequency 

component with a period of 4-6 years and a high frequency component with a period of 

2-3 years [KDG92]. In Chapter 6 it will be shown that these two modes of oscillation in 

the model can be separated by EOF analysis. 

3.2.2 Seasonal Windstress 

The model was run in its coupled configuration for a range of values of l\·Qvt·. Figure 3. 

shows the NINO 3 SST anomaly for these runs. The model shows interannua l variability 

for values of K QHr of0.0136m3 s-4 oC-1 and higher . As KQ~l./ is increased the behavior 

of the model becomes more irregular. There appears to be a bias towards strong La 

Niiia events over El Nino events which is not seen in the observed time series of NINO 

3 SST. This may be due to problems with the parameterization of subsurface tempera­

ture. The original CZ model uses a more detailed parameterization with spatially varying 

parameters. 

The estimates of the coupling parameter calculated using Figs. 2.3 and 3.5 are both 

very close to the bifurcation above which the seasonally forced model is capable of self­

sustained interannual oscillations. This highlights the difficulty in determining whether 

the system is strictly noise excited or whether it possesses a limit cycle and hence an 

intrinsic amplitude. 

Figure 3.9 shows the behavior of the model with a coupling strength of K Q ~V = 

0.0136 m3 s-4 oc-1. The behavior is clearly more complicated than the case with no 

seasonal cycle. but there is still a sharp interannual peak. The period of the interannual 

oscillation is now 5.3 years. The peak-to-peak amplitude of the interannual o cillation is 

approximately 1 °C. Figure 3.9b shows that the general spatial pattern of ENSO remains 

although there is more SST variability in t he we, t than in the non-seasonal case. Also 
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visible in the amplitude spectrum is the annual cycle as well as several smaller peaks. 

Figure 3.10 shows the behavior of the model with a coupling of K Q W = 0.0140 m 3 s-4 oc-1
. 

The peak representing the annual cycle remains and has a similar amplit ude to the case 

with lower coupling, but in the more strongly coupled run the interannual behavior be­

comes far more complicated with a marked broadening of the interannual peak at around 

a period of 5 years. The amplit ude of the interannual oscillations becomes higHly variable 

with peak-to-peak amplitudes ranging from less than 3°C to more than 8°C. However , the 

spatial pattern of the SST changes remains ENSO-like with \Varming and cooling events 

confined to the east of the basin. 

Both the coupled runs shown in Figs. 3.9 and 3.10 capture many of the key aspects 

of E SO. The primary interannual peak is at a lower frequency than the peak in the 

spectrum of observed NINO 3 SST which is closer to 3 years (Fig. 3.4). but t he spatia l 

pattern of SST variation is very similar to the pattern observed. In both coupled runs 

the amplit ude of the interannual variability is higher relative to t he annual cycle than in 

the observations. 

Hereafter the case of K QW = 0.0136 m3 s-4 oc-1 will be called the regular regime and 

the case K Q W = 0.0140 m3 s-4 oc-1 will be referred to as t he irregular regime. 

Figure 3.11 shows the equatoria l profiles of mean SST, thermocline depth anomaly and 

upwelling along with the RMS variation of these quantit ies. It should be compared with 

Fig. 3.2 for t he forced model case. The agreement is reasonably good. The temperature 

contrast across the basin is a couple of degrees higher in t he forced case t han t he coupled 

case. This is due to a slightly deeper eastern thermocline in t he coupled model. There 

is also more variation in thermocline depth in the middle of the basin in the forced case 

than in the coupled case. The main features of the equatorial profiles are reproduced. 

T he seasonal cycles in SST of t he coupled models are shown in Figs. 3.12 and 3.13. As 

in t he forced case t he model reproduces t he SST cycle considerably better in t he NINO 3 

region than in the NINO 4 region. In the NINO 3 region the amplitude is in agreement 
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with observations. but the warmest SST occurs three months prematurely in the model. 

In the INO 4 region the amplitude agreement is good. but the moders seasonal cycle is 

6 months out of phase. 

3.3 Stochastically Forced Model 

The model in the regular regime was forced with t he stochastic wind forcing with a white 

spectrum described in Chapter 2. The result is shown in Fig . 3.14. It should be compared 

with Fig. 3.9. The ENso· peak has been substantially broadened as have the peaks at 

0.8 and 1.2 year-1. The pattern of SST change remains ENSO-like, with most variability 

in the east, but from Fig. 3. 14a and 3.14b it can been seen to be more irregular t han in 

the case without ·wind noise. 

If the model lies below the bifurcation. it can still exhibit interannual variability 

if excited by noise. F igure 3.15 shows the behavior of the model with a coupling of 

KqW = 0.0134 m3 s-4 oc-1 which places it just below the bifurcation when forced with 

the seasonal external ·windstress and t he stochastic forcing. _ otice the similarities be­

tween Fig. 3.15 and Fig. 3. 14. The interannual peak is somewhat sharper in the model 

above the bifurcation, but in general both the spatial and temporal behavior of the models 

is similar. This indicates t he difficulty in determining whether t he noise driven system 

would exhibit interannual variability in the absence of noise. 

A more detailed analysis of the moder s response to stochastic forcing can be found in 

the following chapter. 

3.4 Phase Synchronization 

An important feature of t he ENSO cycle is its phase synchronization with the seasonal 

cycle. El Nino events appear to have a preference for peaking during Northern winter 
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(hence the name). Figure 3.16a shows the record of the Southern Oscillation Index (SOI) 

with the peaks of 30 El Nino events (characterized by negative SOl) marked with squares. 

Figure 3.16b and 3.16c show the annual distribution of t he event peaks binned by month 

and season respectively. Note the tendency for event peaks to occur between September 

and March. The significance of this tendency was determined by splitting the year into 

the periods September-February and March-August containing 20 and 10 warm events 

respectively. The entropy of this distribution is 0.918 bits or 0.636 nats. 2 A test statistic 

for entropy can be defined as [Rou97] 

ZH = {B (2N(lnB- H ) _ 1) 
V2 B - 1 

(3.1) 

where N is the number of events and B is the number of bins. For H = 0.636 nats the 

value of the statistic is ZH = 2.4 implying a 99% significance to the deviation of this 

distribution from uniformity. 

For comparison. Figs. 3.17, 3.18, 3.19 and 3.20 show the annual distribution of warm 

events in the coupled models in the regular and irregular regimes without wind noise. in 

the regular regime when wind noise is added and below the bifurcation when wind noise 

is added. All the distributions were constructed by identifying peaks in the NINO 3 SST 

anomaly in 200 year runs of the model. In all the cases the model has a strong tendency 

towards warm events in the JJA season, in contrast to the observations which suggest a 

preference for the SON season. This discrepancy might be explained by t he approximate 

three month phase difference between the model 's seasonal cycle in NINO 3 SST and the 

observed cycle (Figs. 3.12 and 3.13). Both the model results and observations suggest a 

preference for peaks in the NINO 3 SST anomaly during the part of the year when the 

seasonal SST in t he region is below average. 

2 A nat is t he unit of entropy when natural logarit hms are used instead of base-2 logarithms. It is 

equal to 1/ In 2 bits. 
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3.5 Comparison of Spectra 

Figure 3.21 and 3.22 show comparisons of the amplitude spectra of the observed INO 

3 SST between 1950 and 1999 and amplitude spectra of 49 year segments of runs of the 

coupled models. In Fig. 3.21 the models were not forced with stochastic wind forcing 

whereas in Fig. 3.22 wind noise with a white spectrum was added. From Fig. 3.21 
I 

it can be seen that ampitude of the interannual variability in both models is close to 

that observed and the amplitude of the seasonal variability in the seasonal model also 

matches observations well. However, the frequency of t he interannual peak is too low in 

the seasoi1al model and neither model has t he broad peak at interannual frequencies seen 

in the observations. Figure 3.22 indicates that the addition of stochastic wind forcing 

broadens the interannual peaks. The peak broadening seen in the nonseasonal model 

does resemble t he observations but the dominant interannual frequency of the seasonal 

model is still too low. ¥/hen looking at these comparisons it should be remembered that 

these spectra have been created using time series just 49 years long. To get an idea of the 

natural variability in the E SO spectrum. t he Southern Oscillation Index (SOl ) was used 

since this time series extends back into the last century. Figure 3.23 shows the amplitude 

spectra of t hree 49 year segments of the SO I. Note that there is variability in the frequency 

of the interannual peak. During t he period 1882 to 1930 the dominant period is close to 

3.3 years whereas between 1915 and 1963 the peak is closer to 5 years. 

3 .6 Normal Modes of the Ocean Model 

Figure 3.24 shows the eigenvalues associated with the normal modes of the uncoupled 

ocean model dynamics (which are linear). Figure 3.24a shows eigenvalues in t he inter­

annual frequency range. It has been nondimensionalized with the basin crossing time of 

a Kelvin wave for comparison to previous results [NJ93]. These interannual modes are 
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discretized version of the cont inuous scattering modes found by I\loore [I\ Ioo68]. Figure 

3.24b shows the eigenvalues of all the normal modes of t he uncoupled ocean model. Notice 

the very high frrquency modes t hat arise because the long wave approximation was not 

made. The interannual modes have decay times between 2 and 2.5 years. This decay time 

is set by the coefficient of Rayleigh friction. r· . It has been established t hat it is scattering 

modes with interannual frequencies that give rise to ENSO through destabilization and 

modification through atmospheric coupling [NJ93]. This is the general origin of ENSO. 

The question of which modes are selected and how they are modified as well as how 

nonlinear processes may couple the modified modes will be addressed in Chapter 7. 
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Figure 3.1: The results of the 34 year forced run in which the ocean model was forced with 

the observed FSU windstress. The red line is the model and the blue line is observations in 

each figure. The observed thermocline is taken to be the 20°C isotherm. (a) NINO 4 SST 

anomaly; (b) NINO 3 SST anomaly: (c) thermocline depth anomaly at (0°N,165°E); (d) 

thermocline depth anomaly at (0° r.120°W ). Note that the thermocline depth observations 

are from the TAO array and begin in 19 7. 
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Figure 3.2: Equatorial profiles of variable mea11 and standard deviations produced by 

the forced model. (a) mean SST along the equator: (b) standard deviation in equatorial 

SST: (c) mean equatorial profile in thermocline depth anomaly: (d) standard deviation 

in thermocline depth: (e) mean equatorial profile of upwelling: (f) standard deviation in 

the equatorial upwelling. Theda heel cun·es in (a) and (b) are for the observed SST. The 

circles in (c) and (d) are for the 20°C isotherm measured by the TAO array. 
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Figure 3.3: Observed SST and the result from the model forced with observed windstress. 
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Figure 3.4: The observed SST seasonal cycle (dashed line) and the seasona l cycle produced 

by the forced model run (solid line). 
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Figure 3.5: The observed II IO 4 zonal windstress anomaly plotted against the windstress 

produced by the atmospheric model driven by the SST produced by the uncoupled model. 

The implied value of KQW is (0.012 ± 0.002) m3 s-4 ac-1. 
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Figure 3.6: A comparison of the observed and modelled zonal windstresses in the NINO 

4 and NI 0 3 regions. The blue lines are the anomalies calculated from the FSU dataset 

while the red lines are the anomalous windstresses generated by the model in its uncoupled 

configuration using a value of K QW = 0.012m3 s-4 oc - •. 
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Figure 3. 7: The results from the coupled model run forced by the estimated external 

windstress for April. The coupling was KQ~V = 0.0097m3 s- 4 oc - 1 . The spectrum in (c) 

was calculated from a 200 year run of the model. 



3. 6. NORJ\IAL MODES OF THE OCEAN MODEL 

~ 5r-
<t .... 

-

~ 0~--------------------------------------------------------------~ 

0 

~ - 5r-

n 
0 
z z 

u 

'-
<{ .... 
[/) 
[/) 

n 
0 
z 
z 

u 

'-
<: 
>-
[/) 
[/) 

n 
0 
z 
z 

0 

5 

0 

- 5 

0 

0 

20 

20 

20 

40 
YEAR 

K0W=O.O 1360 m 3s - 4K-1 

K0W=0.01380 m 3s- 4 K- 1 

.<10 
YEAR 

K0W=0.01420 m 3s-4K- 1 

40 
YEAR 

60 

60 

60 

Figure 3.8: The NINO 3 SST anomaly from coupled runs of the model. 

-

47 



CHAPTER 3. BEHAVIOR OF THE l\!ODEL 

(a) NIN03 SSTA 
2 

p 1 
....._ 

~ 
Vl 
Vl 0 
I') 

0 z z -1 

-2 
0 ·o 20 30 

YEAR 

(b) EQUATORIAL SSTA (c) NINO 3 SST 
0.20 

25 

0.15 

20 
w 
0 

a:: ::J 
<{ 15 f- 0.10 w ::i 
>- a.. 

~ 
<{ 

10 

0.05 

5 

0 0.00 

1 20°E 150°E 180°E 1 50°W 1200W 90°W 0.5 1.0 1.5 2.0 

LONGITUDE FREQUENCY I PER YEAR 

Figure 3.9: The results from a coupled model run forced with t he estimated externa l 

seasonal windstress. The coupling was K Q W = 0.0136 m 3 s-4 oc-1. The spectrum in (c) 

was calculated from a 200 year run of the model. 
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Figure 3.10: As Fig. 3.9 but with K Q W = 0.0140 m3 s-4 oc - 1 . 
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Figure 3.11: Equatorial profiles of variable means and standard deviations for the coupled 

case. The coupling was K QW = 0.0136 m 3 s-4 oc-1 . (a) mean SST along the equator; (b) 

standard deviation in equatorial SST; (c) mean equatorial profile in thermocline depth 

anomaly: (d) standard deviation in thermocline depth: (e) mean equatorial profile of 

upwelling: (f) standard deviation in t he equatorial upwelling. 
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Figure 3.12: The observed seasonal cycle in SST (dashed line) and t he seasonal cycle pro-
~ 

duced by t he coupled model (solid line) . The coupling was K q vV = 0.0136 m 3 s-4 oc-1 . 
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Figure 3.13: As Fig. 3.12 but with K Q Vf! = 0.0140 m 3 s- 4 oc - 1. 



52 CHAPTER 3. BEHAVIOR OF THE .MODEL 

(a) NIN03 SSTA 
4 

2 
p 
......_ 

<( ,_ 
Vl 
Vl 

8 -2 
z 
z 

- 4 

-6 
0 10 20 30 

YEAR 

(b) EQUATORIAL SSTA (c) NINO 3 SST 
0.20 

25 

0.15 

20 
w 
0 

a::: ::::> 
<( 15 1-

0.10 w ::J 
>- 0... 

:::;E 
<( 

10 

0.05 

5 

0 0.00 

120°E 150°E 180°E 1500W 1 20<>w 90°W 0.5 1.0 1.5 2.0 

LONG TUDE FREQUENCY I PER YEAR 

Figure 3.14: As Fig. 3.9 but with stochastic wind forcing. The model is above the 

bifurcation. 
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Figure 3.17: The distribution of El iiio events in the coupled model. The coupling was 

J(Q w = 0.0136 m 3 s-4 oc-1 . 
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Figure 3.19: As Fig. 3.17 but with stochastic wind forcing. 
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Chapter 4 

Response of the Model to Stochastic 

Forcing 

4 .1 Introduction 

In the early stage of ENSO research the main goal was to understand the oscillatory nature 

of the phenomenon. Now that a basic understanding of the mechanism of the oscillation 

has been obtained [ TBH+98], more attention is being paid to the effect t hat stochastic 

forcing has on the system [KP94. MK96. Kl\197. Bla97. SSHP98]. In particular. the effect 

of the 1\ladden-Julian intraseasonal atmospheric oscillation (1\fJO) on the interannual 

ENSO system has been investigated (Zeb 9, l\IK99]. In this chapter it will be argued 

that the ENSO system is not strongly nonlinear enough to effectively channel power from 

high frequency forcings to the low frequency ENSO mode. 1\Iore specifically t he 30-60 day 

component of the I\IJO has little effect on the dominant 3-7 year component of ENSO. 

61 
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4.2 Method 

The investigation was conducted using an intermediate coupled model (IC.tvi) of t he trop­

ical Pacific ocean-atmosphere system based on previous ICMs [ZC87. J 93a]. The model 

is described in Chapters 2 and 3. The ocean model consisted of a linearized shallow-water 

model on a beta-plane and a nonlinear equation for temperature in a fixed depth mixed 

layer. Horizontal and meridional advection of SST was included and vertical entrainment 

into the mixed layer was parameterized. The atmospheric component of the model was a 

linear, steady-state Gill-type model [Gil80]. 

The stochastic component of the atmospheric noise was estimated as follows. The 

reconstructions of SST in the tropical Pacific for the period 1961-1994 [SRLS96] and the 

Florida State University pseudo-windstress data set for the same period [G081] were used 

to estimate the coupling of t he SST to the model 's atmospheric component. That part of 

the windstress variance that could be explained by this linear. atmospheric model was then 

substracted to leave the residual windstress. Figure 4.1 shows the power spectrum of this 

residual windstress field averaged over t he NI ro 4 region (150°W-9oo·w, 5°S-5°N). T he 

spectrum of the residual windstress is red. This reddening is probably due to the ocean 

acting as a lowpass filter to atmospheric noise which has a whiter spectrum. A stochastic 

model of this white atmospheric noise was estimated by projecting the residual noise onto 

its EOFs. The time series of each EOF"s coefficient are uncorrelated by construction so 

each time series can be modeled independently. The power spectrum of each t ime series 

was calculated and the power in higher frequencies ( 4 to 6 year-1) was used as an estimate 

of the '·noise floor. '' New stochastic time series with white spectra defined by this noise 

floor were then constructed. An example of a noise floor estimate is shown in Fig. 4.1 by 

the dashed line. 

Since the purpose of the study was to investigate t he response of the model to stochas­

tic forcing of different frequency ranges, the stochastic forcing was lowpass filtered to re-
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move all frequency components with periods less than 6 months. The white noise was also 

highpass fil tered to remove frequency components with periods greater than 6 months. 

The three noise products that resulted will be referred to as white noise. low frequency 

noise and high frequency noise respectively. 

Three model regimes were studied. The subcritical regime has a coupling strength just 

below the value at which the model displays sustained interannual oscillations when forced 

with a constant easterly windstress. The supercrit ical regime has a coupling strength 

high enough for the model to oscillate without noise excitation. In the supercritical 

seasonal case the model displays sustained oscillations when forced with an annua l cycle 

in windstress. 

4.3 Results 

Each regime of the model was forced with the three noise products. The results are shown 

in Figs. 4.2. 4.3 and 4.4. Figure 4.2 shows the subcritical case. Without noise excitation 

t he model shows no variability (Fig. 4.2b ). ~'hen forced with the white noise product, the 

model displays a spectral peak corresponding to a period of about 4 years although there 

is also power spread across the ent ire interannual range (Fig. 4.2f). The modePs response 

to the low frequency noise is not that different from its response to t he white noise (Fig. 

4.2i) whereas when the model is forced with the high frequency noise t he response is quite 

different (Fig. 4.21). A peak at 4 years does appear but its amplitude is less than 20% of 

the peak's amplit ude for the other two noise driven cases. There is some power at other 

interannual frequencies. but t he amount is negligible compared to the response to white 

noise and low frequency noise. The small amount of power at interannual frequencies 

is evidence of nonlinear processes channeling power from the higher frequencies excited 

by the forcing; however , these processes do not seem to be very efficient leading only 

to a very low amplitude excitation at lower frequencies. Inspection of the time series of 
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NINO 3 SSTA in Fig. 4.2k shows that the high frequency forcing does produce a small 

high frequency response in the model. Such a response can be explained by purely linear 

processes. 

Figure 4.3 shows the results obtained with the model in the supercritical regime. The 

unforced model d isplays a sustained oscillation with a period of about 4 years as well as a 

smaller peak with a period of just over 2 years (Fig. 4.3c). ·when forced by white noise, 

the 4 year peak is broadened and again power appears at all interannual frequencies (Fig. 

4.3f) . As in the subcrit ical case t he response of the model to the low frequency noise is 

similar to its response to the white noise (Fig. 4.3i). However , when the supercritical 

model is forced with only the high frequency components of t he stochastic forcing. there 

is a little difference between its behavior and its behavior when no forcing is present (Fig. 

4.31). The amplitude of the dominant peak is marginally smaller but that peak and the 

secondary peak are no broader than in the noise-free case. 

The experiments described above were conducted in the absence of a seasonal cycle. 

In reality interaction between the seasonal cycle and the interannual ENSO cycle gives 

rise to interesting behavior not observed in the nonseasonal case [JNG94, J NG96]. To 

investigate how the seasonal cycle might affect the response of the model to stochastic 

forcing. the model was run with seasonal forcing in addition to stochastic forcing. The 

coupling was chosen to place t he seasonally forced model just above the bifurcation where 

it is capable of self sustained interannual oscillation. The results of these experiments 

are shown in Fig. 4.4. The spectrum of t he seasonal forcing is shown in F ig. 4.4a. T he 

response of the model is shown in Fig. 4.4c. T he dominant interannual mode has a period 

of slightly more than 5 years. The secondary interannual peak corresponds to a frequency 

of j ust over 2.5 years. The amplit ude of the annual cycle in NINO 3 SST is comparable to 

the amplitude of the interannual oscillation. vVhen forced with t he white noise product 

the annual cycle remains unchanged. but t he primary and secondary interannual peaks 

are broadened (Fig. 4.4f). As in t he nonseasonal cases power is present at all interannual 
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frequencies. When only the low frequency components of the stochastic forcing are used to 

drive t he model. its response is quite similar to its response to the white noise forcing (Fig. 

4.4i). When only the high frequency components of the stochastic forcing are present , the 

response of the model is different to the white noise case. The dominant interannual peak 

is not as broad as it is in the white noise case although it does show more broadening 

than when the high frequency noise forces the model in the absence of a seasbnal cycle. 

Also t here is less power present at other interannual frequencies than in the case of white 

noise forcing. 

One of the most important sources of intraseasonal variability in the tropical Pacific is 

the Madden-Julian oscillation which has a spectral peak corresponding to a period of 30-

60 days [MJ71, MJ72]. The ICI\1 was forced with the high frequency stochastic windstress 

supplemented with a more narrow band stochastic forcing with power in t he 30-60 day 

range. The amplitude spectrum of this MJO-like forcing is shown in Fig. 4.5. 

The result of forcing the supercritical model with this MJO-like forcing in the absence 

of a seasonal cycle is shown in Fig. 4.6. The amplitude of the primary interannual peak 

is reduced but there is little peak broadening although there is some transfer of a small 

amount of power to other interannua l frequencies. The time series of the INO 3 SST 

anomaly shows that the frequency of t he dominant interannual oscillation is largely un­

changed although its amplitude is modulated on a decadal timescale. Figure 4. 7 shows the 

response of the seasonally forced model to the additional MJO-like forcing. Again there 

is little peak broadening of the interannual oscillat ion. Power appears at interdecadal 

frequencies and this has the effect of modulating t he amplitude of t he interannual oscil­

lation. Comparison of Fig. 4.6 and Fig. 4.4k and 4.41 and Fig. 4.7 and Fig. 4.5k and 

4.51 reveals that the additional power in the wind forcing in the 30-60 day range does 

not change the response of the model much from the case of the standard high frequency 

no1se. 
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4 .4 Discussion and Conclusions 

The response of the subcritical model to the different stochastic products indicates that 

there are nonlinear processes operating that transport energy from int raseasonal frequen­

cies to interannua l frequencies. However. the low amplitude of the response to high 

frequency forcing (Fig . 4.21) suggests that these processes are not part icula rly efficient. 

Even with stronger coupling (Fig 4.3) the effect of stochastic forcing at intraseasonal 

frequencies on the interannual variability of the model is not great. In both cases t he 

similarity of the response of the model to the white noise product and the low frequency 

noise product is consistent with the type of respon e that would be expected from a largely 

linear system. 

The presence of a seasonal cycle does appear to increase the effectiveness of high 

frequency noise at modifying the low frequency response of the model. but still it is the 

stochastic forcing at interannual frequencies that has by far the biggest impact on the 

interannual response of the model. 

The addition of extra noise power at frequencies corresponding to periods of 30 to 

60 days does not have a major impact on t he response of t he model. This implies that 

the intraseasonal variability associated with the f\ladden-Julian oscillation may not have 

a significant impact on the interannual variability associated wit h E 180. This result is 

consistent with previous work [Zeb89] which found t hat forcing at intraseasona l frequen­

cies had only a marginal effect on the statistics and t he predictability of the Cane-Zebiak 

ICf\1. Based on the results in t his work a more general conclusion can be drawn that only 

interannual forcing is effective at modifying the interannual response of the model. 

The spatial patterns of variability characteristic of ~IJO may project onto the mode 

of t he system with interannual frequencies. but it i the low frequency variability of t hese 

pat terns which will have a significant impact on ENSO. not t he variability in the 30-60 

day range. 
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The results and hence t he conclusions presented above are model dependent. A model 

with stronger nonlinear processes could be more efficient at channeling power from in­

traseasonal to interannual frequencies. However. some studies of the statistics of ENSO 

observations have concluded that EI SO can be described as a stable, linear , noise driven 

system [Pen96. Bur99]. While this modeling study does not address t he issue of whether 

t he real system is in the stable or unstable regime. it does suggest that the 11esponse of 

the system to noise is largely linear in both regimes. 



68 CHAPTER 4. RESPONSE OF THE MODEL TO STOCHASTIC FORCING 

NINO 4 ANOMALOUS EXTERNAL WIND STRESS 
0 .5 

0 .0 

-0.5 
0::: 
w 
5: 
0 
0... - 1.0 
~ 

C) 

0 
....J 

-1.5 

-2 .0 

2 3 4 5 6 
FREQUENCY I PER YEAR 
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Figure 4.2: The response of the coupled model to stochastic forcing when the coupling 

strength put it just below the bifurcation. 
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Figure 4.3: The response of the coupled model to stochastic forcing when the coupling 

strength puts it just above the bifurcation. 



4.4. DISCUSSION A D CO CLUSIONS 

or---~{~o~)~N-'N~0~4_W~I~NO~F~D~RC~I~NG~--~ 

-I 

-5 

I 2 3 
f"R£0UENCY I PER YEAR 

{d) N1N04 WIND FORCING 
or---~T-----~----------~ 

-I 

w 2 -2 
::; 
cs -3 
< 

-5 

0 I 2 3 
FREQUENCY I PER YEAR 

or---~{~g~)_N_IN~0_4_W~'_ND~F~O-RI~C~NG~--~ 

-I 

w g -2 

s 
'S -3 
< 

I 2 3 
I'REOUENCY I PER YEAR 

or----(~j)~N~IN~0~4~W~IN~O~FO~R~C~IN~G~--~ 

-I 

- 5 

1~....-~Jt ...I.e ........ 
' ''T', '''l 

I 2 J 
I'REOUENCY I PER YEAR 

1-' 

' 

{b) NIN03 SSTA 

-2~--------L---~----L---~ 
0 20 40 60 80 100 

YEAR 

(e) NIN03 SSTA 

-6 

-8L---~----L---~----L---~ 
0 20 40 60 80 100 

YEAR 

{h) NIN03 SSTA 

20 40 60 80 100 
YEAR 

{k) N N03 SSTA 

~ 0 ~ 
z 
z -1 

-2 ~--~--_. ___ ._ __ ~--~ 
0 20 40 60 80 100 

YEAR 

w 

" ::> 

71 

0.40 ,---~( c:;.<)C...N~I;_;.N.:;.0~3 ~S:.:;S.:..T ..:;Sc...P.::,EC;:..T~R;.:U,;c:M;__,..., 

O.JO 

0.20 

J 
j 

0.10 

0.00 '..J..f' \'1. J1. 
0.0 0.2 0.<4 0.6 0.8 1.0 1.2 

FREO\JENCY I PER YEAR 

0
_
40 

.----r{-'f)_N_I.,..N0_3___;.S~ST_S_PE;:,C;..T_R..:.U_M,____, 

O.JO 

0.2 0.4 0.6 0.8 1.0 1.2 
I'REO\J£..CY I PER 'I'[AA 

o.
4

or---r(-'i)_N.:..IN.,..0:.;.3:.;..:;S.:,ST:.;_:;S_PE;:,C;...T.:..R;:_U,:_IA,_____, 

O.JO 

s 0.20 
0. 

~ 

o.o 0.2 0 .4 o.6 o .s 1.0 1.2 
FREO\JENCY I PER YUR 

{I) NIN0.3 SST SPECTRUM 
0.4or--..-'-'-------------~---. 

O.JO 

:5 
::> s 0.10 
0. 

~ 

o.o 0.2 o.• 0.6 o.s 1.0 1.2 
FREO\JENCY I PER YEAR 

Figure 4.4: The response of the coupled model to stochastic forcing and seasonal forcing 

when the coupling strength puts it just above the bifurcation. 
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Figure 4.5: The amplitude spectrum of the '·MJo·· stochastic forcing with a spectral peak 

in the 30-60 day period range. 
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the model forced with an MJO-like forcing without a seasonal cycle. 
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Figure 4.7: The NINO 3 SST anomaly and the amplitude spectrum of I 0 3 SST for 

the model forced with an MJO-like forcing with a seasonal cycle. 
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Chapter 5 

D imensionality of ENSO 

5.1 Introduction 

One of the outstanding questions concerning the dynamics of El Kino-Southern 0 cillation 

(ENSO) is whether its irregularity is the result of chaotic dynamics or due to tochas­

tic forcing in the form of atmospheric transients [NBH+98]. The hypothesi of chaotic 

dynamics implies that the unpredictable behavior of the system is actually due to low 

dimensional deterministic dynamics of the coupled ocean-atmosphere system. On the 

other hand, the hypothesis of stochastic forcing holds that the irregularity is due to the 

high dimensional stochastic forcing processes. 

In principle the dimensionality of a dynamical system can be determined from a time 

series of a scalar variable [GP 3. KBA92. Aba95). In practice estimating the dimension 

of a system from observed data is fraught with difficulties. 

In this chapter the ENSO model described in Chapters 2 and 3 will be used to study 

the feasibility of estimating the dimension of the ENSO system from observations. 

75 
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5.2 The Datasets 

The datasets used were the INO 3 SST t ime series from two 1000 year runs of the 

intermediate coupled model. One run came from the model in its '·irregular" regime in 

which it exhibits irregular behavior in the absence of stochastic forcing. The other run 

came from the stochastically forced model. The stochastically forced model was above 
I 

the bifurcation at which it begins to display self-sustaining interannual oscillations but 

was a lso forced with random wind noise with a white spectrum. Figures 5.1 and 5.2 show 

100 year samples of the NINO 3 SST anomaly t ime series and amplitude spectra of II 0 

3 SST for the 1000 year runs. 

Two methods for determining the d imensionality were used; the Grassberger-Procaccia 

algorithm for estimating the correlat ion dimension and the method of false nearest neigh­

bors . for est imating the embedding dimension. 

Both of these methods require a pseudo-state space reconstruction: that is the re­

construction of trajectories in a space which is topologically equivalent to the true state 

space. 

5.3 The Method of Delays and Mutual Information 

The method of delays provides a means to reconstruct the attractor of a system in a multi­

dimensional state space using a time series of a scalar variable. The theoretical foundation 

for the method is the Takens-l\1aiie embedding theorem [Tak81. MnY81]. Suppose that 

s1 is a scalar time series generated by a multidimensional dynamical system. The topo­

logical structure of the multidimensional dynamics can be reconstructed by constructing 

data vectors . Y t· from s. The d-dimensional data vectors are given by 

(5.1) 
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where T is a t ime delay. Note that in terms of t he information contained in t he vector 

this is equivalent to constructing a data vector from t ime derivatives of s. 

[ 
ds d2s dd-ls] 

x*(t) = s, dt' dt2' ... , dtd- 1 t (5.2) 

where all t he derivatives are evaluated at time t. In t his context d will be called the 

unfolding dimension. The reconstruction obtained using Eq. 5.1 will obviously not be 

the same reconstruction obtained using Eq. 5.2 but they will be topologically equivalent. 

Furthermore. they will be topologically equivalent to the true state space for large enough 

d. The reconstructed state space is often called the pseudo-state space. Due to the 

problems associated with calculating derivatives numerically, Eq. 5.1 is usually used. 

This introduces t he problem of how to choose T. 

In the case of an infinite time series of noise free data, any value ofT will lead to a 

faithful pseudo-state space reconstruction. In the absence of this luxury an optimal value 

must be chosen, and unfortunately there is no formal theoretical result that suggests 

one. Instead several approaches have been suggested based on a combination of heuristic 

reasoning and practical experience. The simplest of these approaches is to calculate the 

autocorrelation function of St and choose T to be the lag at t he first zero of the auto­

correlation. The validity of this approach has been questioned because autocorrelation is 

an inherent ly linear measure of dependency and pseudo-state space reconstructions are 

designed to be applied to nonlinear systems. Therefore, another approach which draws 

upon information theory has been suggested [FS86]. In t his approach the first minimum 

of t he mutual information is taken to be the appropriate value forT. Mutual information 

is an information t heoretic functional that is related to information entropy. For a discrete 

variable. X . the ent ropy is defined as 

Bx 

H (X ) =- L Pi ln pi (5.3) 
i= l 

where the sum is over the B x states that X can assume and Pi is t he probability that X 
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will be in state i. T he joint entropy of two discrete variables. X and Y. is defined as 

Bx B\· 

H (X. Y ) =- L L P,i ln pii (5.4) 
1= 1 j = l 

where t he sum is over the B x states tha t X can assume and the By states t hat Y can 

assume and Pii is the probability that X is in state i and Y is in state j. Having defined 

entropy and joint entropy. the mut ual information of two discrete variables. X and Y . 

can be defined as 

! (X ; Y ) = H (X ) + H (Y )- H (X , Y) (5.5) 

i\Iutual information can be thought of as a genera lized correlation analogous to the linear 

correlation coefficient but sensitive to any relationship. not just linear dependence. The 

bias and errors on the mut ual information can be calcula ted using standard error analysis 

(see Appendix A). 

Once an appropriate delay has been chosen the pseudo-state space can be reconstructed 

and the dimension estimates can be made. 

5 .4 Correlation Dimension 

The correlation dimension is defined as 

1 
D2 = lim -

1 
- ln ~ pf 

<-tO 11 E: L 
i 

(5.6) 

where Pi is the probability that a point on the a tt ractor lies in t he ith box which has side 

E. Grassberger and Procaccia [GP 3] presented an a lgorit hm for determining D2 from 

data. They int roduced the correlation integral which they defined as 

(5.7) 
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where x i. i = 1, 2 ..... _1\,r are the vectors created from the t ime series using th<' method 

of delays and 1i is th<' heaviside step function. Notice that C(c) is nothing more than 

th<' probability that two points of the attractor lie within the same hyperdimensional box 

of sidelength £. The value of D2 can be estimated by measuring the gradient of ln C(c) 

plotted against ln E. Since the necessary value of d is initially unknown. the procedure is 

r<'peated for increasing values of d until the estimate of D2 saturates. 

5.5 Embedding Dimension 

The method of false nearest neighbors (F K) was developed as a means to determine 

the minimum embedding dimension. Jo.f. of a dynamical system from a t ime series. s1• 

where t = 1, 2, ... , N [KBA92, Aba95]. The basic principle behind the method is that 

if points in a true, Jo.J-dimensional, state space ar<' projected onto d dimensions. where 

d < !11. then points which are far apart in t he true, !If -dimensional. space will be close 

together in d dimensions. These points are referred to as false nearest neighbors. The aim 

of t he method is to determine the value of d which eliminates false nearest neighbors. To 

determine the number of false neighbors in dimension d. the first step is to project the 

univaria te data onto d-dimensions using the method of delays. Let y 1 be the data vectors. 

Yt = [st. St+T, .... St+(d-l)T] (5. ) 

where T is the delay time. The next step is to locate t he nearest neighbor of Yt in the 

d-dimensional space. This neighbor should not be a point on the same short segment of 

the state spac<' trajectory. that is one that is close to Yt in t ime. This condition is best 

satisified by not considering points occurring in the time interval [t- KT. t + KT] where 

K is an integ<'r of order unity. The nearest neighbor of y 1 v.·ill be designated Yk· If Yk 

is a false neighbor of y 1 then. when the data is projected onto d + 1 dimensions, it may 

move out of the neighborhood of y 1. Let Rd be the Euclidean distance between y 1 and 
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Yk in d dimensions and let Rd+I be the distance between y 1 and y~.- in d + 1 dimensions. 

The criterion for deciding that a neighbor is false is that 

R~+l- R~ 
R2 > ao 

d 

(5.9) 

where a 0 is some threshold value. The value of R~+I is given by 

d+ l 

R~- 1 = I ) st+(i-I)T- sk+(i-l)T? (5.10) 
i=l 

d 

- L (st+(i-I)T- sk+ (i - I )T )
2 + (st+dT - sk+dT )

2 (5.11) 
i=l 

t hat is 

(5.12) 

Thus, the condition for a point to be classed as a false neighbor given by Eq. 5.9 can be 

written 

lst+dT - sk+dTI 
Rd > ao (5.13) 

The value of a 0 mu t be chosen such that false neighbors can be distinguished. Abarbanel 

[Aba95] has found that the ability of the criterion to identify false neighbors is insensit ive 

to the Yalue of a0 but. on the basis of numerical experiments. recommends a value of 

about 15. 

In addit ion to the condition described by Eq. 5.9 there is another criterion for iden­

t ify ing a false neighbor. namely that t he addit ional distance introduced in raising the 

dimension by one is of the order of the diameter of the attractor. This condition is 

e:x."J)ressed as 

lst+dT - sk+dTI ~ 
RA > /JO 

(5.14) 

where RA is t he '·radius" of the attractor. defined as the square root of the variance of 

the t ime series. and {30 is on the order of 2. 
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5.6 Relationship Between Dimensions 

The Fractal Whitney Embedding Prevalance Theorem gives a relationship between the 

box-count ing dimension and the embedding dimension. The box-count ing dimension is 

related to the correlation dimension but is intuitively easier to understand. The theorem 

states that a projection of the at t ractor into a space the dimension of which is more t han 
I 

twice the box-counting dimension of the attractor is almost certain to be an embedding. 

A nonrigorous heuristic derivation of this theorem is as follows [SYC91]. The number 

of boxes, n . of size E required to cover an object of box-counting dimension Do goes. by 

definition, as 

(5 .15) 

T he expression in Eq. 5.15 is clearly true for a plane where n .-v c-2 and for a 3D solid 

where n rv c-3 but Do does not need to be an integer and indeed it is not when the object 

is a frac tal. unlike the embedding dimension which is an integer even for fractal objects. 

The number of boxes, N, of size E required to fill the volume of t he .M-dimensional 

pseudo-state space that t he object is being mapped into goes as 

N -M rvc (5.16) 

T he fraction of boxes t hat t he object will occupy in t he pseudo-state space is t hus n/ N. 

T he probability that part of t he object will be mapped into a box occupied by another 

part of the object is n x n j N . Using Eqs. (5 .15) and (5.16) this probability goes as 

n E-2Do 
n x _ "' __ = cllf-2Do 

N E-M 
(5.17) 

This probability goes to zero with E provided that !I f > 2D0 . 

It should be noted that the box-counting dimension , D0 . is not the same as the cor-

relation dimension, D2 . The correlation dimension is adually a lower bound on the box­

count ing dimension. While the Whitney Embedding t heorem relates Do to the embedding 

dimension in practice, D2 is more easily estimated from data. 
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5. 7 Limits on Dimension Estimates 

Soon after the methods outlined above were introduced there were several claims made 

for the discovery of low dimensionality in t ime series of weather and climate variables. 

one of these claims turned out to be valid. Most were flawed in t he same way, having 

far too little data to be consistent with the dimensionality claimed. Smith showed that to 
' 

determine the correlation dimension of an .i\I-dimensional system to within a fractional 

accuracy of a requires at least Nmin uncorrelated data points where 

IV . (R(1 + a) )M 
1 m m 2: 2a (5.18) 

where R is the range of£ over which the gradient of In C/ In E must be constant. Equation 

5.18 shows that Nmin increases exponentially with t he dimension of t he system (Smi88] . 

To estimate D2 to within an accuracy of 5% Nmin must be at least 42AI. 

The maximum embedding dimension that can be determined using t he method of false 

nearest neighbors can also be estimated. Consider a time series of N random numbers 

uniformly distributed on the interval [0, 1]. If the method of delays is used to construct a 

d dimensional pseudo-state space, then the approximate distance between a point in this 

space and its nearest neighbor, L min, is given by 

1 
Lmin ~ 2Nl/ d (5.19) 

The expectation value of IYd+ J - xd+d if Yd+l and xd+l are both random, uncorrelated 

and uniform on [0, 1] is 1/ 3. Thus the number of times t hat t he first FNN criterion given 

by Eq. 5.9 is satisfied can be expected to fall close to zero when 

Using Eq. 5.19 this condit ion becomes 

1/ 3 
-- < ao 
L min 

(5.20) 

(5.21) 
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Thus for a given - the condition Eq. 5.9 fails to identify false nearest neighbors for 

d > logN 
- log(3ao/ 2) 

(5.22) 

For ao ~ 15 it is found that for the first FN r criterion to be meaningful , N must be 

at least about 20d. In fact, for a '·nearest neighbor" to be a meaningful concept, the 
I 

distance between nearest neighbors must be smaller than some fraction. f, of the size of 

the at tractor , that is 

(5.23) 

Since for the case of a uniformly distributed random series RA ~ 0 (1). then 

1 
2Nl/d < J (5.24) 

thus 

N > (2!)-d (5.25) 

So again it is found that for a dimension estimate of d to be meaningful. the number of 

independent data points must exceed ad where a ~ 0(10). 

In an attempt to avoid spurious dimension estimates from time series, the method of 

surrogate data was introduced [TGL +91]. This method seeks to quantify the probability 

of a null hypothesis being able to e:>..'-plain the time series. One of the most common 

null hypotheses is isospectral noise. This is a random time series which has t he same 

power spectrum as the t ime series being investigated. An isospectral surrogate can be 

constructed by fourier transforming the time series. picking new phases from a distribution 

uniform on [0, 21r], and then performing an inverse fourier transform. An ensemble of such 

surrogates can be used to estima te whether the actual time series is significantly different 

from isospectral noise. 
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5.8 Results 

The dimension estimating algorithms were applied to both the 1000 year time series of 

I 0 3 SST. 

F igures 5.3 and 5.4 show the time lagged mutual information for both the test series. 

The first minimum in the lagged mutual information in both cases is 8 months. The 

peak a t 12 months represents the seasonal cycle. The smaller, broader peaks around 30 

and 40 months are due to the interannual variability. The lagged mutual information of 

the observed NINO 3 SST shows peaks at 6, 18, 24 and 36 months not present in either 

of t he models. These peaks are the result of the seasonal cycle. Their absence in the 

models indicates that the seasonal cycle is relatively weaker in these models than in the 

observations. 

F igure 5.5 shows the results of the correlation dimension estimates for the t ime series 

produced by the model without stochastic forcing along with similar estimates for its 

isospectral surrogate. The curves correspond to unfolding dimensions of 2 to 10. Sa tura­

tion appears to be occurring for a correlation dimension of D 2 ~ 1.5. Note that no such 

saturation occurs for the isospectral surrogate t ime series. 

Figure 5.6 shows the results of the correlation dimension estimates for the t ime series 

generated by the stochastically forced model. There is a hint that saturation might be 

occurring for D2 ~ 2.0. but this is equivocal. 

Figure 5. 7 shows the results of t he false nearest neighbors analysis performed on the 

t ime series produced by the noise free model. The F NN fraction falls close to zero for an 

embedding dimension of about 4. The fall off in F N fraction is significantly faster than 

for any members of the ensemble of isospectral surrogates. The ·whit ney Embedding 

theorem implies that an embedding dimension of 4 is consistent with the correlation 

dimension estimate of 1.5. This result implies that in principle only 4 independent model 

variables are required to capture the dynamics of the model that produced the t ime series. 
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Figure 5.8 shows the results of the F NN ana lysis on the time series from the stochasi­

cally forced model. The FNN fraction falls faster than for the isospectra l surrogates but it 

doesn 't reach zero. even at an unfolding dimension of 10. Beyond an unfolding dimension 

of 6. the F N fraction appears to level off at around 4%. This type of fall off to a residual 

level is seen in low dimensional systems contaminated by noise [Aba95]. 

All the methods employed to estimate the dimension suggest low dimensionality for 

the unforced coupled model. The number of independent data points used to make the 

estimates was 1000years j 8months ~ 1500. This number of data points puts the dimen­

sion estimates at the limit of credibility, but t he comparison with surrogate data sets does 

bolster the case for low dimensionality. 

The results in this chapter should be compared with previous efforts to estimate the 

dimensionality of ENSO models. The correlation dimension of the Cane-Zebiak model 

has been estimated to be D2 ~ 3.5 based on a 1024 year t ime series of monthly averaged 

SST in the Eastern Pacific [TSCJ94]. Chang et al. used both the Grassberger-Procaccia 

algorithm and the method of false nearest neighbors to estimate the dimensiona lity of 

E SO in an Intermediate Coupled Model. a Hybrid GCI\I (Ocean GCM with a st eady­

state atmosphere) and a full Ocean-Atmosphere GCM. They performed nonlinear time 

series analysis on the output of 1000 year runs of each of these models. They found 

evidence of low dimensionality for t he ICM and HGC 11 (D2 ~ 2.5, A1 ~ 5). No evidence 

for low dimensionality was found for the full GCI\1 . This result implies t hat the atmosphere 

is the main source of high dimensionality in the coupled ocean-atmosphere system. 

5.9 Ex tension to Real D ata 

All the results d iscussed above have been based on output generated by models. The 

obvious question is can these methods be applied to real t ime series that describe E.NSO? 

T he main obstacle to doing this has already been stated ; t hese methods require copious 
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amounts of data. All the model studies were performed on time series at least 1000 

years long and even then some of the results are on the threshold of credibility. The 

longest instrumental records describing E -so are the sea level pressure measurements 

from Tahiti and Darwin which begin in 1882, far too short to make even a tentative 

detection of low dimensionality let alone a robust detection. There are historical records of 

ENSO based on indicators such as Nile flooding [Qui92]. North American t ree-ring records 

[LF85. Lou92] and ice cores [T~1TA84 . T~ITB 5]. However. t hese records are probably 

too qualitative or too displaced from the equatorial Pacific to be used for reconstructing 

a low dimensional ··ENSO attractor.'" if such a thing exists. There is one source of 

paleoclimate data though that is ideally located (in the tropical Pacific), has high temporal 

resolution (mont hly or even submonthly) and could provide records long enough to detect 

low dimensionality (millenia of data). This source is tropical corals. The abundance of 

the oxygen-18 isotope in corals is determined by t he temperature of the water in which the 

coral grew as well as the local amount of precipitation [vVW72. Dan64]. Temperature and 

precipitation reconstructions t hat overlap with the modern instrumental records indicate 

a high level of agreement with the observations [CSFM92]. Reconstructions predating 

the modern observations by several centuries have also been obtained [D\VCG94] as well 

as reconstructions several decades long using 100.000 year old coral [KSJH99]. Although 

corals seem to offer the best hope for constructing time series long enough to put a 

reasonable lower bound on the dimensionality of ENSO, there are still several issues to be 

addressed. The biggest problem is probably the finite life of corals which typically live for 

only about 20 years. Continual time series longer than the lifetime of a single coral can 

be reconstructed by finding different corals that overlap. but constructing an unbroken 

coral record stretching over a millenium is a daunting task. However. it is possible that a 

continuous t ime series might not be absolutely necessary to apply the algorithms described 

in this chapter. 

There exists a property, called ergodicity. that is possessed by some dynamical systems. 
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One of the most useful features of an ergodic system is the equivalence of t ime averages 

and ensemble averages. Usually this property is exploited by using long runs of a system 

as a proxy for an ensemble of shorter runs, but in t his case t he corollary may be useful. 

To demonstrate that strictly continuous t ime series are not necessary for t he application 

of these algorithms. the 1000 year time series were cut into 16 segments each 50 years 

long and with random breaks between each segment ranging from zero up to 10 years. 

The method of delays was applied to each segment to construct a pseudo-state space and 

the false nearest neighbor algorithm was applied . The same segmentation and state space 

reconstruction procedure was applied to 10 isospectral surrogates of the original series. 

5 .10 Results for Discontinuous Time Series 

Figures 5.9 and 5.10 show the result of the FNN algorithm for t he discontinuous time 

series. Again the result for the irregular model indicates low dimensionality and that for 

the stochastic model suggests a low dimensional system contaminated by noise. In both 

cases the F_ fraction falls off faster than the ensembles although the significance level 

isn't as high as for the continual case. This difference can be expla ined by the smaller 

amount of data. In the disjoint case only 800 years of data is utilized. Furhermore. when 

using the method of delays, the number of independent pseudo-state space points that 

can be reconstructed from a t ime series of length T with an unfolding dimension of d 

is T/T- d + 1. So if t he data set consists of N time series of duration T, the number 

of points lost is N ( d - 1). So the more fragmented the time series. the fewer points 

ran be reconstructed. Nevertheless. the F algorithm does not utilize any information 

concerning the temporal sequence of the points in pseudo-state space: this is why it can 

be applied to discontinuous data. 
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5. 11 Discussion and Conclusions 

The results presented above indicate t hat the ICM model can be represented by a low 

dimensional dynamical system. The correlation dimens ion estimate and the embedding 

dimension estimate both imply an embedding dimension of about 4. Interestingly, even 

when the model is forced by stochastic noise, it is distinguishable from colored noise. The 
I 

stochastically driven model has an FNN behavior typical of a low dimensional system 

contaminated by noise. 

It has also been demonstrated t hat estimates of the dimensiona lity of the system can 

be made using an ensemble of nonoverlapping. discontinuous t ime series. This can be 

done because although the method of delays does utilize the temporal order of data to 

reconstruct points in pseudo-state space, the dimension estimat ing algorit hms do not make 

reference to how these points connect up in time. This fact may be of importance for the 

applicat ion of these methods to paleoclimate reconstructions where obtaining extended 

and unbroken time series can be very difficult . 

While the methods described in t his chapter indicate low dimensiona l dynamics for 

the forced model. they do not say much about how a low dimensional model can be 

constructed from the PDEs that describe the physics of t he model given in Chapter 2. 

In t he following chapters this question will be addressed using Empirical Orthogonal 

Functions. 
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Figure 5.1: The behavior of NINO 3 SST in the noise free irregular regime. 
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F igure 5.2: The behavior of TJ 0 3 SST in the stochastically forced model. 
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Figure 5.3: Plot of the lagged mutual information for the deterministic model (solid curve) 

compared with the mutual information of the observed NINO 3 SST series for 1950-1997. 
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Figure 5.4: As Fig. 5.3 except for the stochastically forced model. 
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(b) ISOSPECTRAL SURROGATE 
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F igure 5.5: Correlation dimension estimate for the irregular regime without stochastic 

forcing. (a) Plot of log C(c) v. log e for the NINO 3 SST t ime series generated by the 

model. (b) as in (a ) but for an isospectral surrogate of the model time series. (c) t he 

gradient of the curves in (a) . (d ) the gradient of the curves in (b). The curves correspond 

to unfolding dimensions of 2 to 10. 
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Figure 5. 7: FNN estimate for the irregular regime without stochastic forcing. The solid 

line is for the NINO 3 SST time series generated by the model. The dashed lines are for 

an ensemble of 10 isospectral surrogates. 
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Figure 5.8: As for F ig. 5.7 except for the stochastically forced model. 
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Figure 5.9: FNN estimate for the irregular regime without stochastic forcing determined 

from the dataset consisting of disjoint 50 year segments. The dashed lines are for an 

ensemble of 10 isospectral surrogates. 
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Figure 5.10: As for Fig. 5.9 except for the stochastically forced model. 



Chapter 6 

Reduction of the Model Using EOFs 

6.1 Introduction 

T he system in question, the intermediate coupled model of the tropical Pacific ocean­

atmosphere system has a priori a 238 dimensional state space in t he configuration which 

was used for all the numerical experiments described in Chapter 3. The results of t he 

dimension estimates in Chapter 5 all suggest that the dimensionality of the system 's 

attractor is much lower. In fact, these results suggest t hat the model is actually a low 

dimensional dynamical system. 1 A common approach to constructing a low dimensional 

dynamical model from a model with a high dimensiona l state space is to project the model 

onto a truncated set of EOFs. 

6.2 Empirical Orthogonal Functions 

The method of Empirical Orthogonal Function analysis is a lso known as Proper Or­

thogonal Decomposition (POD) or Karhunen Loeve Decomposit ion after its developers 

1 "Low·· in this sense usually implies < 0(10). 

95 
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[Le45. Kar46]. It was first used in meteorology by Lorenz in 1956 [Lor56]. A decade later 

it was introduced into the field of t urbulence modeling [Lum67]. Initially EOF analysis 

was used as an investigative tool to try to extract the salient features of the data set under 

investigation. More recently researchers have attempted to use EOFs as a basis set for 

Galerkin projections of models. This method was first used in a meteorological context 

for a vertical model [Ruk63]. but later it was applied to horizonta l barotropic •models of 

the atmosphere (RK75. Sel93. Sel95]. In addition the method has been used to model 

convection in the atmospheric boundary layer [Zhu96]. The method has more recently 

been applied to a horizontal baroclinic model of the atmosphere [Sel97a]. 

Let x1 = (x 11 , x2t- ... , xmt] be a state vector with m components which describe the 

state of the system at a time t. Let (x) be the mean state vector and let x~ be the 

deviation of the state vector from the mean at time t. The problem is to find a new basis 

which is optimal in some sense. This can be done by maximizing the average projection 

of the data onto the new basis set. Let ei (i = 1, .... m) be unit vectors defining the new 

basis. The aim is to maximize ((ef x!)(ef x!f ) where (.) denotes averaging over the time 

index. The constraint is t hat ef e i = 1. Thus the function to be maximized is 

(6.1) 

where Ai is the undetermined multiplier. Differentiation of Eq. 6.1 with respect to ei 

leads to 

(6.2) 

Thus the new basis vectors are the eigenvectors of the matrix (xlx!r ) . Furthermore. 

(6.3) 

So the data has the largest average projection onto the eigenvector associated with the 

largest eigenvalue of (x!x!T ) . ·ote that (x!x!T) is a real symmetric matrix and thus it has 

orthogonal eigenvectors which can be normalized to form a complete orthonormal basis. 
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Since t he mean state vector has been subtracted from the data, Ai is the variance 

associated with t he ith basis vector. The essent ial point about t his basis set is t hat for 

any value of D more variance is contained in t he subspace spanned by t he leading D basis 

vectors than any other D-dimensional subspace. These basis vectors are t he empirical 

orthogonal functions of the data set. 

t 
The covariance matrix calculated from a finite data set will contain sampling errors 

and t hese errors will propagate to the eigenvalue estimates of the matrix. Nort h et al. 

[NBT+82] estimated t he sampling error in the i th eigenvalue to first order as 

(6.4) 

where N is the number of realizations of the data vector. For the estimate of an eigenvalue 

and its associated eigenvector to be considered robust, t he error in the eigenvalue should 

be significantly smaller than the separation between the eigenvalue and the eigenvalue 

closest to it. If .6..\i is the difference between Ai and t he eigenvalue t hat lies closest to 

Ai, t hen the ratio 6..\d fJ.\i provides a rough measure of the robustness of t he eigenvalue 

estimate. A value greater than unity indica tes the eigenvalue is separated from other 

eigenvalues by more t han the estimated sampling error a value less than unity means t hat 

the eigenvalue is not well separated. Vl hen eigenvalues are not well separated, eigenvector 

mixing can occur leading to a large amount of variablity in the EOFs calculated using 

different samples. 

To apply EOF analysis to t he output of the coupled model. state vectors were con­

structed . The state vectors used were t he nondimensionalized state vectors given by Eq. 

2.38. 



98 CHAPTER 6. REDUCTIO OF THE l\10DEL USING EOFS 

6.3 Results of the EOF Analysis 

EOF analysis was performed on t he output of five runs of the coupled model. The results 

are shown in Figs. 6.1 to 6.10. 

Figures 6.1 and 6.2 show the results from the case without a seasonal cycle or stochastic 

wind noise for a coupling strength that puts the model just above the bifurcabion where 

it displays sustained interannual oscillations. The leading 2 EOFs contain 95% of the 

variance and the leading 4 EOFs contain 99% of t he variance. Figure 6.1b indicates that 

the eigenvalues of the leading 32 EOFs are well separated . 

Figures 6.3 and 6.4 show what happens when the stochastic wind forcing with a white 

spectrum is added. There is clearly more variance contained in the higher EOFs than in 

the case without stochastic forcing. The leading 4 EOFs only contain 62% of the variance 

and 42 EOFs are required to explain 99% of the variance. The spatial patterns of the 

first 2 EOFs in Fig. 6.2 are very similar to the leading 2 EOFs in Fig. 6.4. There is 

less similarity between the higher EOFs. This is not that suprising since in Fig. 6.1 t he 

leading 2 EOFs do contain 95% of the variance. The stochastic forcing contributes to 

most of the variance in the higher EOFs in Fig. 6.3. Due to t he slower falloff in the 

eigenvalue spectrum, only the leading 16 eigenvalues are well separated. 

Figures 6.5 and 6.6 show the results for a lower value of coupling for which the model 

is below the bifurcation and does not display self-sustaining oscillations. In this case the 

stochastic noise is required to excite the interannua l oscillations. The eigenvalue spectrum 

looks very similar to the noise forced case above the bifurcation and again over 40 EOFs 

are required to capture 99% of the variance. Figure 6.5b indicates that only the leading 

8 eigenva lues are well separated. A comparison of t he leading 8 EOFs in Fig. 6.6 with 

t hose in Fig. 6.4 shows that t he leading 8 EOFs are very similar in both cases. (When 

making such comparisons it should be remembered that the signs of the EOF patterns 

are arbitrary.) The implication is t hat in these stochastically forced cases. which EOFs 
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contain the most variance does not depend greatly on whether the model is above or 

below the bifurcation where self-sustaining oscillations are possible. In t he supercritical 

case the leading 2 EOFs contain almost all the variance associated with the self-sustaining 

oscillation the other EOFs are capturing the behavior of stable, noise-excited oscillators. 

In the subcritical case all the variance is due to stable. noise-excited oscillators but it 

appears that the distinction makes little difference to the EOFs of the noise forced cases. 

Figures 6.7 and 6.8 show the results of the EOF analysis performed on the output of 

the coupled model with a seasonal cycle added. and the coupling strength puts the model 

in the 1·egulaT regime. The leading 2 EOFs contain 91% of the variance, the leading 4 

EOFs contain 96% of the variance and 99% can be explained with the first 8 EOFs. The 

plot of eigenvalue separation in Fig. 6. 7b shows that t he separat ion of about the leading 

25 eigenvalues is larger than the error in these eigenvalues. Figures 6.9 and 6.10 show 

the results when the coupling is increased to put the model in the iTTegular regime. In 

this case the leading 4 EOFs only contain 90% of the variance and 16 EOFs are needed 

to capture 99% of the variability. In this case only about the first 12 eigenvalues a re well 

separated. 

The time series of the coefficients associated with the leading EOFs are shown in Figs. 

6.11 to 6.16. 

In Fig. 6.11 the leading 4 EOFs of the case with no seasonal cycle and no stochastic 

forcing is shown. The spectrum for this case is shown in Fig. 3. 7. The dominant 4.5 year 

oscillation is captured by EOF 1 and EOF 2. The secondary oscillation, with a period of 

about 2.1 years. is contained in EOF 3 and EOF 4. An inspection of the spatial patterns 

of the h-field of the leading 4 EOFs in Fig. 6.2 shows that the 4.5 year oscillation is 

meridionally symmetric whereas the secondary 2.1 year oscillation is asymmetric in the 

north-south direction. The distinction between the SST fields of EOFs 1 and 2 and EOFs 

3 and 4 i. le clear. Jiang et al. found that spatially the SST variability associated 

with the QQ mode is similar to that of the QB mode (J NG95] and they did not have 
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subsurface observations of h. This work suggests that if a similar analysis was performed 

on the thermocline depth field. it would be found that QQ and QB variability in the 

t hermocline depth are associated with meridionally symmetric and asymmetric patterns 

respectively. The patterns of EOF 1 and EOF 2 are similar to the characteristic pattern 

of ENSO variability with the thermocline sloping from east to west and SST varability 

confined to t he eastern basin. 

In Fig. 6.12 the t ime series are for t he leading 4 EOFs of the case when stochastic wind 

forcing wit h a white spectrum is added. The leading 2 EOFs still contain the interannual 

oscillation with a period around 4.5 years although the time series are now affected by 

the noise. However, t he t ime series of EOF 3 and EOF 4 do not bear any resemblence 

to the corresponding time series in Fig. 6.11. The dominant frequency of these two t ime 

series is subannual. The difference isn't suprising since the spat ial forms of EOF 3 and 

EOF 4 in the two cases are quite different (Fig. 6.2 and Fig. 6.4). Projecting the output 

of the noise forced model onto the leading EOFs obtained from the model without noise 

forcing gives the result shown in Fig. 6.13. In this case EOF 3 and EOF 4 still contain 

an oscillation with a period of around 2.1 years, although like the 4.5 year oscillation it is 

affected by noise. F igure 6. 14 shows the output of the model below the bifurcation driven 

with stochastic wind forcing onto the EOFs of the noise-free model above the bifurcation 

(Fig 6.2). The leading 2 EOFs still contain an oscillation with a period of approximately 

4.5 years and EOF 3 and EOF 4 still contain t he oscillation with a period of 2.1 years . In 

this case both of these oscillations must be noise excited because the model is incapable 

of self-sustaining interannual oscillations below the bifurcation. 

The results of the EOF analyses of the noise driven models suggest that the main effect 

that stochastic forcing has on SST variability is by increasing t he variance of higher EOFs 

rather than by increasing the variance of the leading EOFs that contain the self-sustaining 

oscillation. This question will be further investigated in Chapter 7. 

Figure 6. 15 shows t he time series of the coefficients of t he leading 4 EOFs for the 
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case with seasonal forcing but no stochastic forcing. Notice t hat EOF 1 and EOF 2 are 

dominated by the annual cycle while EOF 3 and EOF 4 are dominated by t he interannual 

oscillation with a period of about 5 years. Inspection of the spatia l patterns of these EOFs 

in Fig. 6.8 shows that EOF 3 and EOF 4 do resemble that characteristic pattern of E SO 

variability with zonally asymmetric thermocline and SST variability in the east. ·ote 

also t hat EOF 1 and EOF 2 also have similarities with t his pattern of ENSO variability. 

This highlights the fact t hat E TSO variability and seasonal variability are not orthogonal. 

This can also be seen in the time series. The coefficients of EOF 1 and EOF 2 do contain 

interannual variability and EOF 3 and EOF 4 do contain seasonal variability. 

Figure 6.16 shows the t ime series of the seasonal case with stronger coupling that puts 

the model in t he irregular regime. As in Fig. 6.15 EOF 1 and EOF 2 are dominat ed 

by the annual cycle while EOF 3 and EOF 4 contain most of the interannual variabilLty. 

a lthough in this case this interannual variability is irregular. 

6.4 Comparison with Observations 

The amount of variance captured by t he leading EOFs can be compared with the result 

of performing EOF analyses on t he observed SST fields for t he period 1950-1991 [PS95. 

Pen96]. It was found that the leading 15 EOFs contained 65% of t he SST variance and 

the leading 20 EOFs contained 75% of the variance. The amount of variance contained in 

t he leading EOFs of the SST components of t he model state vectors is comparable to t hat 

contained in t he leading EOFs of the full state vectors. Thus it appears that in reality 

t here is more variance associated with the higher EOFs than in any of t he model runs. 

including those with stochastic forcing. This might be explained by the exclusion of heat 

flux noise which is more difficult to estimate than t he windstress forcing used [KM97]. 

A study using l\Iultivariate Singular Systems Analysis (M-SSA) which ident ified the 

quasi-quadrennial (QQ) and quasi-biennial (QB) oscillations in observed SST found that 
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the QQ oscillation accounted for 39% of the variance and the QB oscillation for 19% of 

the variance [J NG95]. The variance contained in the QQ-like oscillation of EOF 1 and 

EOF 2 in Fig. 6.13 is 50% while the QB-like oscillation of EOF 3 and EOF 4 accounts 

for a further 7% of the variance. Thus if EOF 1 and EOF 2 are identified with the 

QQ oscillation and EOF 3 and EOF 4 with the QB oscillation, then it appears that the 

QQ:QB variance ratio of the model is higher than in reality. 

6.5 Projection and Closure 

Reduced versions of the full model were constructed by Galerkin projection of t he model 

onto truncated sets of the EOFs which span a lower dimensional subspace of t he statespace 

of the full model. 

Let P be the matrix of vectors defining the EOFs. That is [~ 1 , Pi2 , ... PiN ] is t he ith 

EOF, where N is the dimension of the model state space. The nondimensionalized model 

is given by Eq. 2.39 which is repeated here. 

dx 
dt = Mx + N(x) + F (t) (6.5) 

If y is t he reprojected state vector. y = Px, t hen the reprojected model is given by 

(6.6) 

The model given by Eq. 6.6 is exactly equivalent to the model given by Eq. 6.5 since 

the basis set has not been truncated. Let the row vectors of P be ordered in decreasing 

order of their corresponding eigenvalues. Let Nr be the number of EOFs that are to be 

retained and let Nd = N - Nr be the number to be discarded. The projection matrix can 

now be decomposed as follows. 

(6.7) 
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where P r is a Nr x N matrix containing the retained basis vectors and P d is a Nd x N 

matrix containing t he discarded basis vectors. The reprojected state vector. y , can also 

be decomposed. 

(6.8) 

where Yr is the vector of the retained components and Yd is the vector of the discarded 

components. The truncated, reprojected model is t hus given by 

(6.9) 

However, the model given by Eq. 6.9 can be improved by attemping to model the effects 

of the discarded EOFs on the dynamics of the retained EOFs. The model used is known as 

the closure scheme. Most attempts at constructing closure schemes for truncated models 

have been statistical-empirical. In most standard atmospheric and oceanic models, the 

effect of unresolved modes is parameterized by introducing an eddy diffusivity. Essentially 

the same approach has been used in low order EOF models in which extra linear dissipa­

tion is added to prevent model drift [Sel97a] . However, the effects of discarded modes isn't 

always dissipative. Selten attempted to model the effects of discarded modes by finding 

a linear combination and quadratic combinations of the retained coefficients that mini­

mized the error in the tendency equations (time derivatives) of the reduced model. This 

approach was found to improve short range forecasts but led to t he model being unstable 

over longer integration periods [Sel97b]. Later attempts at this kind of closure attempted 

to solve the problem of instability by imposing constraints on the closure scheme to bound 

the tota l energ-y of the model [AS97]. 

In this work a simple closure scheme was adopted. The coefficients of each of the 

discarded EOFs were specified as constants and equal to their mean value in the full 

model. Let y d be the vector of t he mean coefficients of t he discarded EO Fs. The projected 
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model t hus becomes 

(6.10) 

where the terms involving y d are the closure terms. 

The behavior of the truncated models is investigated in Chapter 7. 
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Figure 6.1: Eigenvalues of the covariance matrix of the coupled run with K QW = 

0.0097 m3 s-4 oc-t no seasonal cycle and no stochastic forcing. The model was above 

the bifurcation. 
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Figure 6.2: The leading EOF patterns associated with the eigenvalues in Fig. 6.1. 
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Figure 6.4: The leading EOF pat terns associated with the eigenvalue in Fig. 6.3. 
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0.0090 m3 s-4 oc-1 with no seasona l cycle but with stochastic wind forcing with a white 
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Figure 6.6: The leading EOF pat terns associated with eigenvalues in Fig. 6.5. 
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Figure 6.8: The leading EOF patterns associated with the eigenvalues m Fig. 6. 7. 
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Figure 6.9: Eigenvalues of the covariance matrix of t he coupled run with K Q W 

0.0140 m3 s-4 oc-1 with a seasonal cycle but no stochastic forcing. 
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Figure 6.10: The leading EOF pat terns associated with the eigenvalues m Fig. 6.9. 



6.5. PROJECTI01\- AND CLOSURE 115 

0.0097 m 3 s-4 oc-1
, no seasonal cycle and no stochastic forcing. 
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Figure 6.12: The t ime sen es of the coefficients of the leading 4 EOFs with K Ql-r = 

0.0097 m 3 s- 4 oc-1 and no seasonal cycle but with stochastic wind forcing with a white 

spectrum. 
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Figure 6.13: The case with K QW = 0.0097 m 3 s - 4 oc-1 and no seasonal cycle but with 

stochastic wind forcing projected onto the EOFs of the noise free case (Fig. 6.2). 
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Figure 6.14: The case with K QVl . = 0.0090 m3 s-4 °C-1 and no seasonal cycle but with 

stochastic wind forcing projected onto the EOFs of the noise free case (Fig. 6.2). 
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Figure 6.15: The time series of the coefficients of the leading 4 EOFs with K Q W 

0.0136 m3 s-4 oc-1 with a seasonal cycle but no stochastic forcing. 
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Figure 6.16: The time series of the coefficients of the leading 4 EOFs with K QlV 

0.0140 m3 s- 4 oc-1 with a seasonal cycle but no stochastic forcing. 
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Chapter 7 

The Reduced Models 

7.1 Nonseasonal Model without Noise 

Before any attempt at analysis of the reduced models, their performance will be compared 

to that of t he full models described in Chapter 3. 

The coupled model was projected onto its leading 2 EOFs (see Fig. 6.2) and forced 

with the constant wind forcing. The output of t his reduced model is shown in Fig. 7.1. 

It should be compared with Fig. 3.7. The oscillation in NINO 3 SSTA (panel a in both 

figures) is similar in both cases. However , the peak-to-peak amplit ude in the 2 EOF model 

is about 3°C in comparison with the 2°C of the full model. The oscillation in t he reduced 

model is also more sinusoidal. The patterns of SST variability (panel b) are very similar. 

The most obvious difference between the full and 2 EOF models can be seen in t heir 

amplit ude spectra (panel c). The 2.1 year oscillation of the full model is not present in 

the 2 EOF model. This absence is not suprising given t he t ime series shmvn in Fig. 6.11 

which showed that the leading 2 EOFs contain the 4.5 year '·quasi-quadrennial" (QQ) 

oscillation and that the 2.1 year oscillation is contained in the third and fourth EOFs. 

Inclusion of EOF 3 and EOF 4 is required to retain t he secondary "quasi-biennial" 

peak. The output from the 4 EOF model is shown in Fig. 7.2. The 2.1 year oscillation is 
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retained in this model. t he amplit ude of the NINO 3 SSTA oscillation is closer to the full 

model and it becomes less sinusoidal due to presence of t he second frequency component. 

Figure 7.3 shows the behavior of the reduced model when the leading 8 EOFs are included. 

The additiona l 4 EOFs have litt le effect on the performance of the model. 

The first step in the analysis of the reduced model was to linearize the 4 EpF model 

about its mean state and to find its normal modes and t heir correspond ing eigenvalues. 

These eigenvalues are plotted on t he complex pla in in Fig. 7.4. They were calculated for 

increasing values of coupling. The smallest symbol size represents t he uncoupled model 

projected onto the EOFs of the coupled model while the largest symbol size represents 

t he coupling strength used in the coupled model. From Fig. 7.4 it can be seen that for the 

standard coupling strength one pair of eigenvalues obtains positive real parts. The point 

when this pa ir crosses the imaginary axis represents the Hopf bifurcation above which 

the model exhibits sustained interannual oscillations. Notice t hat for zero coupling the 

real part of the eigenvalues is close to the coefficient of Rayleigh friction. r. This figure 

thus shows how coupled processes turn a somewhat obscure ocean mode into an unstable 

coupled mode. The oscillation period associated with t his pair is about 4.5 years: this 

is the dominant peak in the spectrum of t he model shown in Fig. 7.2c. F igure 7.4 also 

sho" ·s a second pair of eigenvalues which for t he standard coupling correspond to a period 

of about 2.1 years but which have a negative real part indicating that in the linear model 

t his mode of oscillation will be decaying. Howev<'f , Fig. 7.2c does show a peak at t his 

period which does represent a sustained o cillatory component. There must be a transfer 

of energy from the unstable QQ mode to t he stable QB model due to nonlinear coupling. 

To investigate what processes destabilize t he QQ mode, the model was projected onto 

the leading 2 EOFs and linearized about its mean stat<'. 

Let X 1 and X2 be t he coefficients of EOF 1 and EOF 2 respectively. The equations 
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for t heir evolution are 

(rn +an+ f3u + 9u + H u + K11 + Au +au + vVu + wu)XI 

+(rl2 + al2 + !312 + 912 + H l2 + /(12 + Al2 + al2 + vVl2 + WI2)X2 (7.1) 

In the equations the r, a, {3, 9 and H terms have been normalized with respect to t heir 

standard values given in Table 2.1. The J( terms are related to the feedback between SST 

and the dynamical equations. The A terms are the linearized horizontal advection due to 

the mean currents in the upper ocean while the a terms are the linearized advection terms 

due to t he shear component of the currents. The W terms are t he linearized entrainment 

terms due to the mean upwelling in the upper ocean while the w terms are due to the 

upwelling caused by the convergence of the shear currents . 

Table 7. 1 shows the coefficients of the model. The EOF coefficients, X 1 and X 2 , are 

dimensionless. The coefficients in the table are all in units of (year - 1
) . The frequency of 

the oscillation is approximately given by 

(7.3) 

which gives an approximate frequency of w ~ 1.5 year-1 corresponding to a period of 

about 4 years. Eq. 7.3 implies a strong dependence of the frequency of the mode on the 

Kelvin wave speed given by .JiH. An inspection of Table 7.1 indicates that the r . o and 

9 terms tend to stabilize the system whereas the H and J( are the major contributors to 

destabilization. Horizontal advection and vertical entrainment also contribute to destabi­

lization. When interpreting the contribution of advection and entrainment. it should be 

remembered that by projecting the model onto a small set of EOFs that combine t he u . v, 

h and T fields, part of the effects of advection and entrainment , which cause T to correlate 
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with t he dynamics, has already been ··hardwired'' into the model. The cont ribution of K 

to destabilization is to be expected and is the essence of Bjerknes· hypothesis that positive 

feedback between the ocean and atmosphere gives rise to El Nino events [Bje66, Bje69] . 

The cont ributions of advection and entrainment to instability also make sense. Divergence 

of atmospheric winds causes divergence of surface water leading to entrainment of colder 

water and cooling of the ocean surface, promoting further subsidence and divergence of 

the winds. Westward horizontal advection enhances the SST gradient which strength­

ens the easterly winds which drive westward advection. Meridional advection also has 

a positive feedback effect t hat may be even stronger t han the effect of zonal advection 

[PZM+97]. Thus Bjerknes' explanation for how the tropical Pacific ocean-atmosphere 

system becomes unstable certainly explains why the QQ mode becomes unstable in t he 

reduced model. However. t he 2 EOF reduced model was constructed with the knowledge 

that the QQ mode of oscillation dominates the variability. The reduced model provides 

some explanations for what processes destabilize the QQ mode and what processes modify 

its frequency, but there remains the question: why does the QQ mode become unstable 

rather than another mode? It has been shown that the QB mode is not linearly unstable 

and is only excited by being nonlinearly coupled to t he QQ mode. What other modes of 

oscillation exist in the coupled system? Figure 7.5 shows the normal modes of the full 

coupled model projected onto its leading 8 EOFs (Fig. 6.2) and linearized about its mean 

state. There is a correspondence between four of the eigenvalues in Fig. 7.5 and the four 

in Fig. 7.4. but notice that t he correspondence is not exact. This is because normal 

modes and EOFs are not the same. If the EOFs exactly coincided with the normal modes 

then addition of EOFs to t he system would merely add normal modes without affecting 

the existing normal modes. The EOFs are not t he same as normal modes. The EOFs 

are orthogonal by construction, and t his is not necessarily true for the normal modes. 

An inspection of Fig. 7.5 and the output of the 8 EOF model shown in Fig. 7.3 reveals 

some interesting points. Clearly the dominant oscillation of the system is t he QQ mode 
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with a period of about 4.5 years. This is to be expected since the mode is unstable when 

the model is fully coupled. However, the other mode of oscillation has a period of about 

2.1 years which corresponds to a pair of eigenvalues with negative real values. As stated 

above this indicates nonlinear coupling between the QB mode and the QQ mode. But 

notice in Fig. 7.5 that there are two pairs of eigenvalues with less negative growth rates 

than the QB mode. These have periods of about 1.2 years and 2.9 years in1 t he fully 

coupled regime. These modes of oscillations do not show up in the amplitude spectrum in 

Fig. 7.3c. The QB mode is more stable than either of these modes. yet it does manifest 

itself in the spectrum, presumably its proximity to a multiple of the frequency of the QQ 

mode means that it couples more effectively to the system's only self-sustaining oscillatory 

mode. The version of the 2 EOF model which includes the quadratic terms which provide 

the nonlinear coupling between modes is given in Appendix B. 

7.2 Seasonal Model without Noise 

From Fig 6.15 it can be seen that the annual cycle and the interannual oscillation are 

contained in the leading 4 EOFs of the seasonally forced model. The model was projected 

onto the leading 4 EOFs (shown in F ig. 6.8) and forced with t he seasonal cycle. The 

resulting behavior is shown in Fig. 7.6. It was found that changing the reduced gravity in 

the reduced model from the 0.0486 m s-2 to 0.0600 m s-2 resulted in the reduced model 

having an interannual frequency closer to the full model. With t he standard value t he 

period of t he interannual oscillation was about 6.3 years. Figure 7.6 should be compared 

with the corresponding full model run shown in Fig. 3.9. The dominant interannual 

oscillation and t he seasonal cycle are reproduced, but the other peaks in the spectrum 

shown in Fig. 3.9c are not present in Fig. 7.6. This is not suprising since these other 

oscillations are contained in the higher EOFs. The effect of increasing t he number of 

EOFs included in the model was investigated. The model was projected onto 8 EOFs 
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and 16 EOFs. The resulting behavior is shown in Figs. 7.7 and 7.8 respectively. The 

parameters of the 8 and 16 EOF models were identical to those of the full model. 

The 8 EOF model exhibits an interannual oscillation and an annual oscillation. There 

is also an additional peak at a period of about 1.2 years. The amplitude of the interannual 

peak is much larger than in the full model case. 

The 16 EOF model shows subsidiary peaks similar to the full model although their 

amplitudes are not exactly the same. The dominant interannual oscillation is at the same 

frequency, but its amplitude is more than twice that of the full model. The QB mode 

is also present although its amplitude is also too large. The secondary peaks on either 

side of the seasona l cycle corresponding to periods of about 1.2 years and 0.8 years are 

reproduced: but there is extra peak at 1.5 years which has negligible amplitude in the full 

model. Although the 16 EOF reduced model does not reproduce the behavior of t he full 

model exactly, it does capture its general dynamics. including relatively minor spectral 

peaks. 

To understand the changes in the spectra of the seasonal model as the number of 

retained EOFs increases, the normal modes of the linearized models were calculated. 

These are shown in Figs. 7.9, 7.10, 7.11 for the 4 EOF. 8 EOF and 16 EOF models 

respectively. Notice that in every case there is only one unstable mode and it has a period 

between 4 and 5 years. In the 4 EOF model the other mode has a period very close 

to 1 year. This mode is excited by t he seasonal forcing. In the 8 EOF model one of 

the extra modes has a period of about 1.25 years; it is still stable but manifests itself 

because it couples to another mode. Since t his mode does not manifest itself in the 

nonseasonal modeL it probably couples to the seasonally driven, 1 year mode, rather than 

the interannual QQ mode. In the 16 EOF model there are several modes with periods of 

more than a year. One can be identified with t he QB mode of the nonseasonal model. 

All t he peaks in the spectrum in Fig. 7.8c can be identified with a normal model in Fig. 

7.11 but all the normal modes remain stable except for the QQ mode. 
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7.3 Stochastically Forced Models 

The response of the reduced models to stochastic windstress was investiga~ed. The 

stochastic wind forcing with a white spectrum was used to force the reduced models. 

Table 7.2 shows how much of the variance of the white noise windstress projects onto the 

leading EOFs of the nonseasonal model shown in Fig 6.2. Notice that less than 6% of 

the noise variance projects onto the EOFs associated with QQ and QB modes. If these 

modes were only affected by the noise that directly projected onto their spatial patterns, 

then the noise forcing would not be very efficient at perturbing their evolution. 

Figure 7.12 shows the amplitude spectra of the reduced models when driven with the 

white wind noise. Note that not until 32 EOFs are included does the reduced model even 

begin to reproduce the response of the full model. If fewer EOFs are included , the model 

spectrum is not broadband enough. It is found that the spectra of the t ime series of the 

coefficients of the leading EOFs follow a trend similar to that of t he NINO 3 SSTA t ime 

series. This implies that in the models that include more EOFs. more noise energy flows 

into the leading modes and that this energy is not the wind noise that projects directly 

onto the those modes. The leading modes must be getting this energy by coupling to 

many other modes which are being excited by noise. Therefore. even if the aim is only to 

understand the impact of noise on the leading modes of the system, many other modes 

should be included since these provide a route for noise power to reach the leading modes. 

An a lternative approach would be to parameterize the effect of coupling to noise driven 

modes on the leading modes. but naively projecting the noise onto the leading modes will 

greatly underestimate its impact on their evolution. 
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7 .4 Discussion and Conclusions 

In this chapter it has been shown that the primary interannual oscillatory behavior of 

t he IC 1 can be captured by low dimensional models . It has been found that the overall 

interannual behavior of the full model is the product of t he oscillations of a range of 

coupled modes with frequencies in the interannual range. The manifestation of a particular 

mode may be for one of t he following three reasons. 

I. The mode is linearly unstable. e.g., the quasi-quadrennial mode in Fig. 7.1 and 7.2. 

Such modes manifest themselves without stochastic forcing and in the absence of other 

modes. 

II. The mode is linearly stable but couples to another mode which is linearly unstable 

or to seasonal forcing, e.g. , the quasi-biennial mode in Fig. 7.2. Such modes manifest 

t hemselves in the absence of noise provided that the unstable mode they couple to is 

present. 

I II. The mode is linearly stable and does not couple particularly well to unstable modes 

but can be excited by stochastic forcing. There are many such modes in the full model 

and it is the superposition of such modes that leads to the broadband response of the 

stochastically forced model. 

In the case of t he model above the bifurcation at which t he leading mode becomes 

unstable, all three types of modes can contribute to t he SST variability if stochastic 

forcing is present. If the model is below the bifurcation, every mode is a type III mode. 

The flow of energy between the modes is summarized in Fig. 7.13. 

T he behavior of the model in t he absence of stochastic forcing can be well reproduced 

by low dimensional models which reproduce the type I and type II modes. However 

the response of the model to stochastic forcing requires higher dimensional models that 

capture the dynamics of many modes because these modes cont ribute a significant amount 

of variability and they also couple to the leading modes thus providing an additional 
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pathway for noise power to influence the primary modes of oscillation. 

The recognition of t he existence of t he different types of modes also provides a way to 

reconcile the forecasting success of models that treat ENSO as a stable. noise driven system 

[Pl\193. PS95, Pen96. Bur99] and those which assume a self-sustaining oscillation. Even 

when the stochastically forced model is above the bifurcation at which the primary mode 

becomes self-sustaining, a large amount of variance is still contained in stable. noise driven 

modes. For example. in the model run described by Fig. 6.13. the unstable mode contains 

50% of the variance, the QB mode contains 6% and 44% of the variance is contained in 

stable. noise excited modes. This means that the even above the bifurcation the amplitude 

of the stochastic wind forcing has a significant impact on variability in the interannual 

frequency range that is identified with ENSO. The implication for models which attempt 

to model both ENSO and general atmospheric variability from basic principles is t hat if 

the amplitude of atmospheric variability is too low. the resulting E rso related variability 

will also be too low even if t he coupling between the ocean and the atmosphere is well 

modeled. 

One final question is why the number of EOFs required to model the seasonal model 

without stochastic forcing is higher than the embedding dimension estimated in Chapter 

5. In that chapter it was estimated that a four dimensional state space would suffice to 

model the noise free seasonal model whereas in this chapter it was found that 8 to 16 EOFs 

are required to capture anything beyond the leading interannual mode and the seasonal 

cycle. One explanation is that projecting t he model onto EOFs is a linear transformation 

whereas the estimate of the embedding dimension does not assume that the coordinate 

transformation is linear. It is quite possible t hat some nonlinear transformation of the 

model variables would lead to an even lower dimensional model although the interpretation 

of the model may be inhibited by t he complexity of the change in state space coordinates. 
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Table 7.1: Coefficients of the linearized 2 EOF model. All coefficients are in units of 

(year- 1 ) . 

rn -0.3926 r12 -0.0087 r21 -0.0087 1'22 -0.3922 

nu -0.0847 Q12 0.0617 0'21 0.0617 0'22 -0.0869 

f3n 0.0000 {31 2 0.0952 fJ21 -0.0952 {322 0.0000 

911 -0.3845 912 -0.3752 921 1.9738 922 -0.1424 

Hu 0.3728 H 12 -2.1188 H 21 0.4480 H22 0.0961 

K u 0.4214 K 12 -0.1169 K 21 -1.5214 K 22 0.3856 

Au 0.0258 A12 -0.0803 A21 -0.0271 A22 0.1120 

au 0.0344 a12 -0.0278 a21 -0.0191 a22 0.0273 

Wu 0.0061 l/V12 -0.0333 W21 -0.0026 l/V22 0.0252 

Wn 0.0058 wl2 -0.0102 W21 0.0063 W22 -0.0035 

Table 7.2: Projection of noise onto the model EOFs. 

NO. OF EOFS CUMULATIVE NOISE VARIANCE 

2 2.6% 

4 5.8% 

8 9.6% 

16 29% 

20 33% 

32 51% 
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Appendix A: Error Estimates on 

Mutual Information 

When the mutual information is determined from a finite amount of data the result will 

be biased with respect to t he result t hat would be obtained if the true probability and 

joint probability distributions were known. The following expressions give estimates for 

what the "true'· mutual informat ion, I ;x;, is based on the mutual information calculated 

from data, l obs [Rou99]. 

I I Bx + B y - Bxy - 1 
~ obs + 2N ± a1 (A.1) 

where 

1 
Bx By 

a1 = N L L:(ln q{ + ln qr - ln qkL + Iobs)2QkL( 1 - QkL) 
k= l l= l 

(A.2) 

where N is the number of data points. Qij is the observed joint distribution of X and Y 

and qx and qY are the observed distribut ions of X and Y respectively. that is 

By 
X ~ qk = ~Qkj 

j = l 

Bx 

qr = L: qil (A.3) 
i = l 

Ex is the number of bins for which qf =f. 0. By is the number of bins for which q{ =f. 0 

and B )cy is the number of bins for which Qij =J 0. For these formulae to give reasonable 

error estimates, the minimum number of data points in the most populated bin of t he 

joint probability distribution should be greater than about 10. 
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Appendix B: Quadratic 2 EOF 

Model 

To reduce the 2 EOF model to analytic form. the entrainment term in the SST equation 

was modified. 

I r ( (dTa ) - - ) HM H(w)w(Ta(h) - T) -t HM H (w)w dh h (h- h) + T8 (h)- T (B.1) 

where an overbar denotes the mean value. In Eq. A1 the linearization of the subsurface 

temperature profile and the relacement of the heaviside function with its mean value leads 

to an equation which is quadratic in the variables u , v . h and T. Note that with only 

terms up to second order there is no bounding nonlinearity. thus the model either decays 

or grows without limit depending on parameter values. 

Let X 1 and X2 be the coefficients of EOF 1 and EOF 2 respectively. The equations 

for their evolution are 

(ru + au + f3u + 9u + H n + Ku )Xl 

+(rl2 + cx12 + fJ12 + 912 + H12 + K12)X2 + c1 + F1 

+(aulX~ + a122Xi + au2X 1X 2 + auX1 + a12X 2 + a1 ) 
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(r21 + o:21 + fJ21 + 921 + H21 + K2I)X1 

+(r22 + 0:22 + fJ22 + 922 + H22 + K22)X2 + c2 + F2 

+(a211X~ + a222Xi + a212X1X2 + a21X1 + a22X2 + a2) 

+(w2u Xf + w222Xi + W2I2xlx2 + w2lxl + W22x 2 + w2) (8.3) 

In the Eqs. 8 .2 and 8 .3 the r. o:. {3, 9 and H terms are proportional to the respective 

parameters in the full equations , i .e .. if r is increased by 10% from its standard value all 

t he r terms get multiplied by 1.1. The K terms are related to the feedback between SST 

and the dynamical equations. The a terms are the horizontal advection terms and the w 

t erms are the vertical entrainment terms. 

The EOF coefficients. X 1 and X 2 , are dimensionless. The coefficients in the tables are 

all in units of (year- 1
) . 
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Table B.1: Coefficients of the dynamical terms of the 2 EOF model. 

ru -0.3926 r12 -0.0087 r21 -0.0087 r22 -0.3922 

au -0.0847 0:12 0.0617 0:21 0.0617 0:22 -0.0869 

f3n 0.0000 {312 0.0952 {321 -0.0952 {322 0.0000 

911 -0.3845 912 -0.3752 9 21 1.973 922 -0.1424 

HII 0.3728 H12 -2.1188 H 21 0.44 0 H 22 0.0961 

K11 0.4214 K12 -0.1169 K21 -1.5214 K22 0.3856 

Table B.2: Constant terms of the 2 EOF model. 

Cl 1.1442 c2 1.0143 

F1 -2.2191 F2 -13.4455 

Table B.3: Coefficients of the advection terms of the 2 EOF model. 

au1 1.4 x w-3 au 0.0171 a2u - 2.4 x w-3 
a21 0.0312 

a122 1.1 x w-3 
a12 -0.0130 a222 -6.6 x w-3 

a22 -0.0499 

au2 -6.3 x w-3 a I -0.008 a212 1.2 x w- 2 
a2 -0.1485 

Table B.4: Coefficients of the entrainment terms of the 2 EOF model. 

Wn1 .ox w-5 wu 0.0093 W211 1.9 x w-4 
'1L'21 -0.0027 

W122 - 1.1 x w-3 
W12 -0.0400 w222 2.5 x w-3 

w22 -0.0428 

Wu2 -2.8 x w-4 
WJ 0.1463 ill212 - 1.3 x w-3 

W2 -0.0947 
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