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ABSTRACT 

PART 1 

A new strategy for the complementary-addressed modification 

of nucleic acids was investigated involving the enzymatic incorpora­

tion of a modified 2'-deoxynucleotide 5'-triphosphate molecule into 

oligonucleotide strands. These modified 2'-deoxynucleotide 5'-

triphosphate compounds (and hence the strands into which they 

were incorporated) carried a latent reactive group in the form of a 

methylthioether function . The methylthioether function was activat­

ed by treatment with cyanogen bromide to enable alkylation of a 

complementary nucleic acid strand. The alkylation was shown to in­

volve methyl group transfer and upon piperidine treatment resulted 

in the cleavage of the DNA at essentially a single residue on the tar­

get strand. The system was found to be capable of cleaving oligonu­

cleotides as well as long pieces (5386 bases) of single-stranded DNA 

to nucleotide resolution. 

PART 2 

Two novel base specific DNA cleavage reactions were discovered 

and investigated. The first is an A specific reaction caused by 

K2PdCl4 at low pH. The second is a photochemical reaction with "GG" 

specificity caused by some nitroaromatic and Co(III) compounds . 

Reaction of DNA with K2PdCl4 at low pH followed by a piperidine 

workup produces specific cleavage at adenine residues. Product 

analysis revealed the K2PdCl4 reaction involves selec tive depurina-
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tion at adenine, affording a gapping reaction analogous to the other 

chemical DNA sequencing reactions . Adenine residues methylated at 

the exocyclic amine (N6) react with lower efficiency than unmethy­

lated adenine in an identical sequence. This simple protocol specific 

for A may be a useful addition to current chemical sequencing reac­

tions. Photolysis of DNA in the presence of 4-nitroveratrole, 3-ni­

troanisole or Co(III) compounds such as Co(III)(NH3 )6 followed by a 

piperidine workup produces cleavage of the DNA with "GG" speci­

ficity, that is the 5'-G of 5'-GG-3' sequences is preferentially attacked. 

Product analysis revealed that the aromatic guanine base is decom­

posed into numerous fragments, and the nitroaromatic compound is 

apparently not consumed in the reaction. An electron transfer 

mechanism is proposed to account for the photochemical reaction at 

5'-GG-3' sequences. 
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PART 1 

NONENZYMATIC CLEAVAGE OF SINGLE-STRANDED DNA 
TO NUCLEOTIDE RESOLUTION 
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INTRODUCTION 

A system capable of selective, programmed modification, espe­

cially cleavage, of single-stranded DNA could have many important 

applications in molecular biology. For example, such a system might 

greatly facilitate the in vitro manipulations of large pieces of DNA 

which are unavoidably encountered in the analysis of eukaryotic 

genomes . Although eukaryotic DNA is double-stranded, techniques 

are commonly employed which allow the transfer of these eukaryotic 

sequences into single-stranded vectors such as M13, a phage which 

can be grown in bacterial hosts.l These single-stranded vector sys-

terns are convenient because they enable certain site-directed muta­

genesis techniques2 as well as sequencing with the Sanger method.3 

The single-stranded DNA (and double-stranded DNA for that 

matter) manipulation systems currently used are somewhat limited 

because they depend on restriction enzymes for DNA cleavage. The 

recognition sequences of these enzymes are quite specific and are not 

always present in a particular DNA sequence of interest. Conversely, 

an investigator might need to cleave a very long piece of DNA in a 

single location and there might be no restriction enzyme with the 

appropriate specificity. It would therefore be useful to produce a 

system in which the specificity of cleavage was programmed by the 

investigator. 

Ideally, a sequence specific single-stranded DNA cleavage sys­

tem should satisfy at least four criteria. 1) The single-stranded DNA 

cleavage system must be capable of producing cleavage to nucleotide 
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resolution smce genetic manipulation techniques require precise cut­

ting and ligation of DNA.4 2) The cleavage reaction must produce 

termini on the DNA fragments which are useful for ligation or other 

enzymatic manipulations. Useful termini would be 3' and 5' hydrox­

yl and/or phosphate,4 because no sugar or base fragments are toler­

ated by the phosphatase and ligase enzymes. 3) The system must be 

relatively easy to use and quick. Time-consuming synthesis or pro­

longed procedures should be avoided, and in general the system 

should utilize techniques similar to those already in current practice. 

4) The cleavage efficiency must be high enough to allow for the iso­

lation of relatively large amounts of cleaved product. The first part 

of this thesis deals with the design, synthesis and reactions of a sys­

tem intended to meet the above criteria. 

An extensive survey of pertinent literature is presented in the 

following section which covers what has been done in the general 

area of complementary-addressed modification of nucleic acids. To 

date, no complementary-addressed system has been demonstrated to 

meet all four of the above criteria for general use as in vitro single­

stranded DNA cleaving agents. 

We chose to pursue a new strategy of producing nucleic acid 

strands capable of complementary-addressed modification involving 

the enzymatic incorporation of modified 2' -deoxynucleotide 5'­

triphosphate molecules into oligonucleotide strands. 5 These modi­

fied 2' -deoxynucleotide 5' -triphosphate compounds (and hence the 

strands into which they were incorporated) carried a latent reactive 
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group in the form of a methylthioether function. The methylth-

ioether function was activated (by treatment with cyanogen bro­

mide) to enable alkylation of a complementary (or "target") nucleic 

acid strand. The alkylation reaction was shown to involve methyl 

group transfer and upon piperidine treatment resulted in the cleav­

age of the DNA at the site of alkylation. Importantly, cleavage was 

observed at essentially a single residue on the target strand. DNA 

fragments with electrophoretic mobilities consistent with 3' and 5' 

phosphate termini were exclusively generated by the cleavage reac­

tion. The system was shown to be capable of cleaving short oligonu­

cleotides as well as long pieces (>5000 bases) of single-stranded DNA 

to nucleotide resolution. 

It is hoped that some of the lessons learned from these studies 

might someday be applied to methylation and cleavage of double­

stranded DNA as well. 
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BACKGROUND 

DNA Structure And Properties A fundamental property of 

strands of nucleic acids is their ability to recognize and form stable 

complexes with complementary strands. Such recognition and bind­

ing is the result of the specific hydrogen bonds described by Watson 

and Crick. 6 Adenine forms two hydrogen bonds with thymine (or 

uracil) and guanine forms three hydrogen bonds with cytosine (see 

Figure 1). Furthermore, strands of nucleic acids, whether DNA or 

RNA, can have defined secondary structures built around this specific 

base pairing. 

Double-stranded DNA usually adopts the highly ordered right-

handed B form (see Figure 2).7 This type of DNA structure has 10.5 

residues per turn of the helix with a 3.4 A distance between adjacent 

stacked bases. The bases in a base pair of B form DNA are not rigor­

ously planar but exhibit some propeller twist, usually around 11 o -

1 7 ° in magnitude. 6 There is a narrow minor groove and wider major 

groove running along the B form helix with each groove having dif­

ferent and characteristic functional groups placed there by the base 

and sugar moieties of the residues. The two DNA strands are an­

tiparallel in B form DNA since one strand has the deoxyribose sugars 

oriented in the 3'-5' direction while in the complementary strand 

they are oriented in the 5'-3' direction. 

RNA molecules can have more complex, yet highly ordered 

structures such as those observed with tRNA molecules. 8 As with 

DNA, the RNA structures are primarily built around specific base 
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bonds responsible for the sequence recognition properties 
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major grooves of right-handed B form DNA is also 
indicated. 
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Figure 2 The B form DNA helix illustrating the location of the 
minor and major grooves . 
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pairing, however much of the RNA base pairing is of the intrastrand 

variety. 

The kinetics of the process by which a nucleic acid double helix 

is formed from two isolated strands have been studied. A generally 

accepted model explains the hybridization process as being analogous 

to the closing of a zipper. 9 There is a relatively slow step of forming 

a nucleation site, followed by rapid elongation to give the completed 

double helix. Kinetic analysis has indicated that the nucleation site 

consists of a relatively unstable complex of around three base pairs 

and subsequent base pairing greatly stabilizes the duplex formation 

in a rapid and cooperative process. 9 The process is cooperative be­

cause the presence of stacked bases in the growing double helix 

makes the formation of new stacked bases more energetically favor­

able, thus the double helix, once started, is rapidly elongated. 

Complementary-Addressed Modification Of Nucleic 

Acids The unique recognition, folding and hybridization properties 

of nucleic acids just described are largely responsible for their 

prominent role in the chemistry of living systems. On the other 

hand, these same properties can be exploited in the designs of syn­

thetic reagents capable of reacting with nucleic acids in important 

ways. The placing of reactive groups on nucleic acids for the purpose 

of modifying complementary strands was first described in 1967.10 

Since then, many different derivatized nucleic acid strands have 

been prepared, each designed to deliver a reactive group to a specific 

location of a complementary nucleic acid structure. Such comple-
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mentary-addressed sequence specific modification has been used to 

attempt the elucidation of tRNA and rRNA structure, mutate specific 

genes in vitro, affect cellular processes in vivo and modify and/or 

cleave single-stranded oligonucleotides or DNA.11 

Oligonucleotides are ideal molecules for the selective delivery of 

reactive groups because of the fast and cooperative nature of the hy­

bridization process, the profound accuracy in recognition and the 

expected defined secondary structure of two complementary strands. 

Because of the kinetics and fidelity of the hybridization reaction, 

oligonucleotides with complementary DNA sequences can be simply 

mixed, heated slightly if needed, and duplexes will be formed in 

virtually quantitative yield and with the complementary sequences 

exactly lined up. Furthermore, the highly ordered secondary 

structure presumably produced upon hybridization (B form DNA 

helix for example) can be exploited to promote reactions simply by 

placing any reactive groups in predictable close proximity to each 

other. 

Two Different Approaches Until now, two different ap-

proaches have been taken to produce the derivatized strands of nu­

cleic acids used for complementary-addressed modification reactions. 

The most widely used approach involves the reactions of heterobi­

functional reagents.l 0 One function of the reagent covalently links it 

to an existing nucleic acid strand (creating a so-called "hunter 

strand"), while the other function is used as the group which modi­

fies the complementary (or "target") strand. Reagents have been at­

tached to the 3' and 5' ends of DNA and RNA, to random or specific 



10 

sites along a strand and to unusual bases such as 4-thiouridine at 

specific sites in an RNA molecule) I Clearly, the functional groups on 

the heterobifunctional reagent must be chosen and positioned care­

fully or premature reaction or inactivation can take place. The ideal 

reagent contains a highly reactive first group which quantitatively 

attaches the reagent to the hunter strand and a latent second reac­

tive group which is activated only after the hunter strand has hy­

bridized to the target strand. These heterobifunctional reagents are 

limited in terms of their general application; different strategies are 

required to attach the reagent to the 3' or 5' end of an oligonu­

cleotide, and mixtures of modified oligonucleotides have usually re­

sulted when the reagents were attached to bases in the middle of the 

hunter strand. 

A second approach to the synthesis of hunter strands involves 

the covalent attachment of a latent reactive functional group onto a 

base followed by chemical incorporation of the modified nucleoside 

into a synthetic nucleic acid strand.12 This approach has the consid­

erable advantage of being able to control the exact placement of the 

modified base(s) anywhere along the nucleic acid strand. Further-

more, if the modified base can be used in automated oligonucleotide 

synthesis, the production of hunter strands can be greatly facilitated. 

However, the conditions used during chemical oligonucleotide syn­

thesis, deprotection and purification are harsh enough to place limi­

tations on the nature of the latent reactive functions.13 -16 In order 

to be used with this chemical synthesis approach, the reactive func­

tion must be chemically stable (in at least protected form) to oxidiz-
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ing, acidic and basic conditions as well as electrophilic and nucle­

ophilic reagents . 

Functional Groups Used The functional groups that have 

been used most often for complementary-addressed modification of 

nucleic acids are alkylating agents. Of these, the nitrogen mustard 

derivatives (chloroethyl amines) have been the most thoroughly in­

vestigated. Reagents have also been prepared which utilize photo­

chemical, inorganic and redox functions.l1 

The first heterobifunctional reagent reported and the one stud­

ied in the most detail is an aromatic nitrogen mustard linked to the 

3' end of a ribonucleic acid strand via an acetal linkage to the 2' and 

3' position of the 3 I terminal residue.1 0 This type of linkage insured 

0-

t-o-~-OHBASE 
II 
0 

0 0 

that only a single functional group was attached per hunter strand 

and only at the 3 I end. These modified nucleic acid strands were 

synthesized from the oligonucleotide and benzaldehyde derivative of 

the reagent in a quantitative condensation reaction.11 The hunter 

strands thus produced were quickly purified by gel filtration chro­

matography and used before the chloroethyl amine moiety hy-
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drolyzed or reacted with other hunter strands. Fortunately, once hy­

bridized to the target strand, the interstrand alkylation reaction was 

apparently highly favored and occurred with remarkable rates rela­

tive to less desirable types of reaction.1 7 • 1 8 Reaction on the target 

strand with guanine, cytosine and adenine residues was reported.1 9 

Nucleic acid strands carrying this reagent have been reported to 

help elucidate tRNA20-22 and rRNA19,23 structure, alkylate mRNA 

in vivo,24 as well as cleave single stranded oligo-1 7 • 18 and polynu­

cleotides. 25 Gel electrophoresis of the products obtained upon reac­

tion with single-stranded DNA revealed that >80% of the target 

strands were modified when a large excess of the hunter strand was 

used. Several adjacent bases were modified on the target strand, up 

to four residues on either side of the location of the center of 

modification. 25 

A similar nitrogen mustard derivative was attached to the 5' 

end of a nucleic acid strand.26 An oligonucleotide modified with this 

~ 
N 

Cl~ Q~ Cli.3 
I 0· 

~ N,, 
P, 

tf 0---v BASE 

group reacted with and caused the cleavage of a 365 base single­

stranded DNA fragment.27 The cleavage was centered around the 

location of the reactive group in the sequence of the 365 base target 

that was complementary to the sequence of the hunter strand. The 
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cleavage occurred to an equal extent at three adjacent guanine 

residues. 

More sophisticated versions of the aromatic nitrogen mustard 

derivatives were reported.28 These functional groups were designed 

0 

H~N~N,......._OH 
\ ~ 

Nucleophilic Sites 
On Hunter Strand 

to allow activation of the alkylating moiety after the hunter strand 

was hybridized to the target. The formyl group at the para position 

on the ring served to deactivate the 2-chloroethylamine function. 

Once the hunter strand bearing this group was hybridized to the tar­

get strand, treatment of the system with sodium borohydride appar­

ently reduced the formyl group which had the effect of activating the 

chloroethyl amine function enabling alkylation of the target strand. 

A heterobifunctional reagent bearing this group was attached at ran­

dom to nucleophilic sites on mRNA early transcripts (at a loading of 

3-5% reagent per transcript nucleotide) of the phage T7 .2 8 These 

modified transcripts were hybridized to T7 DNA and incubated fol­

lowing sodium borohydride treatment. The targeted DNA was used 

to transfect E. coli and 3 out of the 24 plaques produced contained 

mutations in the targeted gene. 

The same functional group was attached to the 3' end of an 

oligonucleotide via a thiophosphate linkage. 29 This oligonucleotide 
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H~ 
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II o 
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BASE 

was shown to be capable of efficiently alkylating a complementary 

target strand once the system was treated with sodium borohydride. 

Another alkylating group capable of activation was reported 

prior to the nitrogen mustard reagents just discussed. The latent re-

H N 
HN"' ~Br A ~ cH3o-""ocH 3 

l .. ~N NAO 

~OH 
active group consisted of an a-bromo ketal30 which was attached to 

the C4 position of random cytosine residues in the hunter strands via 

an acylhydrazide linkage_31 After hybridization to the target strand, 

treatment of the system with acid (pH 2.5) apparently hydrolyzed 

the ketal unmasking the reactive a-bromo ketone alkylating function. 

Using a filter binding assay, RNA transcript hunter strands carrying 
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25% of the cytosines derivatized were found to form stable crosslinks 

to T7 DNA with a 20% efficiency.31 

An interesting alkylating function was attached to the 3' end of 

an oligonucleotide via a 2' amido linkage. The alkylating function 

H 

0 

consisted of a phenylglyoxal moiety and the system was used to 

study the 16 S RNA of the 30 S ribosome subunit.32 An mRNA mod­

el oligonucleotide carrying the alkylating function was observed to 

covalently attach to the 16 S RNA in a highly specific reaction. 

Highly specific hunter strands have been produced by taking 

advantage of the presence of unique bases at certain positions of 

RNA molecules. For example, a phenylazide function was attached 

specifically to a single 4-thiouridine residue at position 8 of 

tRN A 1 Val molecules.3 3 These modified tRNA molecules were 1r-
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radiated (350 nm light) in the presence of ribosomes and the 16 S 

RNA of the 30 S ribosome subunit was specifically crosslinked with 

an efficiency of 20%. 

A methylating reagent was reported, based on a methyl phenyl­

sulfonate.34 The reagent was attached to the 5' end of a short 

0 11---G--- 0 O-S II 
""',.... g ~ # o-r-o)_n 

0- ~BASE 

oligonucleotide (solubility considerations during the synthesis made 

it difficult to use long oligonucleotides) and the product was purified 

by gel chromatography just prior to use. The modified oligonu-

cleotide was incubated with rRNA at low temperature and significant 

methyl transfer onto the rRNA was observed. The methylated RNA 

was not analyzed to determine where the modification was occurring. 
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A reagent has been described based on the binding of plat­

inum(II) complexes to the N7 position of guanine residues.3 5 The 

reagent was bound to the hunter strand presumably at the only G 

residue. This modified strand was then incubated with a comple-

mentary oligonucleotide and a crosslinked product was apparently 

obtained. 

EDTA-Fe(II) in the presence of 02 and a reducing agent has 

been shown to be an effective method of causing the cleavage of 

DNA, probably through the formation of hydroxyl radicals which at­

tack nearby sugar groups on the DNA backbone.36 Two similar sys­

tems have been reported m which oligonucleotides were post-syn-

H 0-
HO~~N ~I 

II N II '<CH:z)n x-1~-o)Y 
0 J 0 0 0 BASE 

0 ( 0 

II N II n = 2, X = 0 
HO~ ~OH or 

n= 1,X= NH 

thetically modified with an EDT A reagent and then used for comple-

mentary-addressed modification of target strands. In both cases, 

EDTA anhydride was reacted with oligonucleotides carrying a prima-

ry amine on the 5' end. In the first report, an octathymadilate 

strand carrying the EDT A group was observed to specifically degrade 

poly(dA), but in curiously low yield.3 7 In the second report, the 

EDTA-carrying hunter strand (with a heterogeneous base sequence) 

was hybridized to a complementary oligonucleotide, and the target 

was degraded specifically at the location of the EDTA with about 15% 
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efficiency .3 8 A total of 8-10 residues were attacked revealing the 

nonselective nature of the cleavage reaction. 

A similar system based on the phenanthroline ligand attached 

to the 5' end of an oligonucleotide has been reported.3 9 The cleav-

0 0-
H I 

N N-r,-o~o~/ 
H 0 .t-J BASE 

age reaction utilized cupric ion and thiol, and just like with EDTA­

Fe(II), several bases on the target strand were attacked. 

Photochemical reagents offer the advantage of being inert until 

0 

photolyzed, so the modification reaction can be timed to occur only 

after the hunter strand has hybridized to the target. For example, 

rRNA was photolyzed in the presence of 4'-aminomethyl-4,5' ,8-

trimethylpsoralen to produce monoadducts on the rRNA strand at a 

frequency of about four psoralen molecules per strand.40 This mod­

ified strand was then incubated with a large supercoiled plasmid car­

rying the rRNA gene and efficient hybridization was observed. Upon 
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further irradiation, the psoralen molecules created covalent inter­

strand crosslinks selectively in the region of the genome comple­

mentary to the rRNA with around 50% efficiency. A dansyl group 

O=S=O 
I 0 
~ II 
~0-P-0 

~ )yBASE 
covalently linked to the 5' end of an oligonucleotide probe has also 

been reported to modify a complimentary strand upon irradiation.41 

In this laboratory, the Fe(II)-EDTA group has been used in a 

0 0 
H 

~~NY'N~OH 
0 J 0 

0 ( 0 

HO~N~OH 

system which illustrates the feasibility of the second approach of 

producing hunter strands through chemical synthesis with a mod­

ified base. A protected EDT A group was covalently attached to the 5 

position of uridine and used to produce modified oligonucleotides via 
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the phosphoramidite method .12 A 167 base pair double-stranded 

DNA fragment was heat-denatured then quickly cooled in the pres­

ence of oligonucleotide carrying EDT A. Upon incubation with Fe(II) 

and dithiothreitol (DTT), cleavage was observed on the fragment only 

in the region complementary to the oligonucleotide, centered around 

the location of the EDTA moiety. Several bases on either side of the 

EDT A group were attacked. 

This work has more recently been expanded to include au­

tomated synthesis of oligonucleotides carrying the EDTA group. 

These modified probes have now been used to specifically cleave 

large pieces (7000 base pair) of single-stranded phage DNA 42 as well 

as investigate triple-stranded formation among oligonucleotides and 

restriction fragments.43 The observed cleavage of double-stranded 

DNA through triple-strand formation has brought complementary­

addressed modification into a whole new arena, wherein single­

stranded nucleic acid strands are not the only possible targets. 

A variation of the chemical synthesis with a modified base ap­

, proach was reported to produce an oligonucleotide carrying an aziri-
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dine group attached to the 4 position of a 5-methylcytosine 

residue.44 The oligonucleotide was chemically synthesized wi th a 

modified 5-methylcytosine base substituted in the 4 position with 

triazole. After synthesis of the oligonucleotide by the solid phase 

method, the triazole was exchanged with ethylenimine. The oligonu­

cleotide now carrying the aziridine was removed from the solid sup­

port, deprotected, purified and hybridized to a complementary target 

strand. When the target strand contained a normal cytosine residue 

opposite the base carrying the ethylenimine, a covalent interstrand 

crosslink was obtained after a 4 day incubation. 

The preceding examination of the literature has illustrated sev­

eral important points about complementary-addressed modification 

of nucleic acid strands. First, oligonucleotides carrying reactive 

groups were shown to be capable of specific and efficient modifica­

tion of complementary strands. Second, it was advantageous to use 

latent groups which were activated after hybridization, thus avoiding 

premature deactivation or reaction with other hunter strands. A 

very robust latent reactive group (EDTA) also allowed for production 

of modified bases which were conveniently placed anywhere along 

oligonucleotide strands by chemical synthesis, not just at the ends or 

randomly distributed among the various bases. Finally, although im­

portant applications have been demonstrated and more will un­

doubtedly be found, to date no reactive oligonucleotide system has 

been proven capable of reaction with and cleavage of a complemen­

tary strand to nucleotide resolution while satisfying all four of the 

criteria listed in the introduction. 
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DESIGN OF SYSTEM 

New Approaches To The Synthesis Of Hunter Strands 

The work described in the preceding literature review illustrated 

how heterobifunctional reagents were limited when it came to 

providing a universal approach to the production of nucleic acid 

strands carrying reactive groups at precise positions along the 

strand. Different strategies were required for attaching the reagents 

to the 3' or 5' ends. Furthermore, placing the reactive groups at the 

ends of the hunter strands did not produce modification of the target 

strands to nucleotide resolution. These terminal linkages placed the 

reactive group close to conformationally labile, single-stranded re­

gions of DNA target strands possibly explaining the observed modi­

fication and cleavage of several adjacent bases. 

The second approach of using modified bases in chemical syn­

thesis has the considerable advantages which derive from precise 

control over placement of the latent reactive group(s) along an 

oligonucleotide strand. However, some of the latent reactive groups 

we wished to investigate might not be robust enough to quantita­

tively withstand the chemical oligonucleotide synthesis procedures . 

An approach described here, utilizing an enzyme reaction to 

place a modified nucleotide triphosphate molecule into specific posi­

tions of a hunter strand,5 retains several of the advantages inherent 

in the chemical synthesis approach while hopefully allowing the use 

of some relatively sensitive latent cleavage functions. The enzymatic 

approach could be used to specifically place the modified base at 

different but discrete positions along an oligonucleotide strand , so 
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just like with the chemical synthesis approach, the modified base 

could be precisely placed in the middle of the hunter strand. The re­

active group would therefore be in a presumably double-helical re­

gion of DNA when the hunter strand was hybridized to the target 

strand. This expected secondary structure could be exploited to 

specifically align the reactive group with a single residue on the tar­

get strand, thus increasing the specificity of the modification reac­

tion. The enzyme reaction would be carried out under mild condi­

tions, namely room temperature and neutral pH, allowing use of 

relatively sensitive latent reactive functional groups. The enzymatic 

techniques that would be used to produce the hunter strands (vida 

infra) are similar to those currently employed for Sanger-sequenc­

ing3 or 3' end-labelling of restriction fragments,4 thus criterion 3) 

listed in the introduction should be satisfied by such procedures. 

For the above reasons, using modified 2'-deoxynucleotide 5'­

triphosphate molecules enzymatically incorporated into oligonu­

cleotide strands was chosen as the primary approach to producing 

hunter strands in order to explore different complementary-ad­

dressed cleavage strategies as described in the following sections of 

this thesis. 

The enzyme most capable of producing hunter strands is the 

Klenow fragment of DNA polymerase 1. The Klenow fragment of DNA 

polymerase 1 or so-called Klenow enzyme is produced by limited 

proteolysis (using subtilisin) of DNA polymerase 1.45 The Klenow 

enzyme catalyzes a "fill-in" reaction in which 2'-deoxynucleotide 5'­

triphosphate molecules are incorporated in the 5'-3' direction into a 
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DNA strand. 45 The enzyme places the new base opposite its com­

plement (A to T, G to C, etc.) with virtually perfect accuracy. Bases 

5'- GATCGATCTTCAGGTACTGTGCGTATGGA -3' 
3'- AAGTCCATGACACGCATACCT -5' 

2'-Deoxynucleotlde 
5'-Trlphosphates 

and 
Klenow Enzyme 

5'- GATCGATCTTCAGGTACTGTGCGTATGGA -3' 
3'- CTAGCTAGAAGTCCATGACACGCATACCT -5' 

are added along the growing strand until the 5' end of the comple­

mentary (or so-called "template") strand has been reached, thus DNA 

duplexes with 5' overhang ends are required for the reaction. The 

enzymatic reaction also requires a "primer" oligonucleotide contain­

ing a 3'-0H group onto which 2'-deoxynucleotide 5'-triphosphate 

molecules are placed as the strand is filled-in . The Klenow enzyme 

contains a 3'-5' editing function which apparently assists in provid­

ing the observed high fidelity of base incorporation. 

The feasibility of the using the Klenow enzyme for the synthesis 

of nucleic acid strands capable of complementary-addressed modifi­

cation was indicated in the literature by the successful enzymatic 

synthesis of oligonucleotides carrying biotin groups.46 The biotiny­

lated oligonucleotide probes have been used in non-radioactive al­

ternatives to 32p end-labelling procedures during electrophoretic 

analysis of nucleic acids. According to the procedures, modified 2'-
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deoxyuridine 5' -triphosphate molecules (carrying the biotin moiety 

0 

0 0 0 
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OH 

covalently attached at the 5 position of the uridine ring) were enzy­

matically incorporated into the DNA probe by the Klenow fragment 

of DNA polymerase I. The modified 2'-deoxyuridine 5'-triphosphate 

molecule carrying the rather bulky biotin group was placed opposite 

only A residues in a template strand by the Klenow enzyme, so it is 

reasonable to assume the enzyme will be able to place 2'-deoxyuri­

dine 5'-triphosphate molecules carrying other groups of similar size 

at the 5 position of the uridine opposite A residues in a template 

strand. 

Using the Klenow enzyme approach of incorporating modified 

2'-deoxyuridine 5'-triphosphate molecules into hunter strands has at 

least one apparent limitation; it is impossible to place a modified 

base on or near the 5' end of a strand. To overcome this limitation, a 

fourth type of approach (conceptually analogous to the preparation 

of aziridine oligonucleotides44 discussed earlier) was investigated 

whereby a modified base was synthesized carrying a pnmary amine 

function in protected form. The modified base was placed in an 

oligonucleotide strand via automated chemical synthesis . Once 
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deprotected, the amine function was used as a specific target for a 

heterobifunctional reagent. This approach offers absolute flexibility 

and control over the placement of the reactive group on the hunter 

strand as well as the convenience of automated synthesis without the 

limitations on reactive groups usually encountered with chemical 

synthesis procedures. 

Reasons Behind Choosing An Alkylation Type Cleavage 

Reaction Of all the possible types of DNA modification reactions, we 

have concentrated on alkylation reactions because they have several 

useful properties. 

The key criterion mentioned in the introduction is 1), the re ­

quirement of cleavage to nucleotide resolution. Such specificity could 

be achieved by placing a nonspecific reactive group in a precise ge­

ometry next to a single site on a target strand or by placing a reac­

tive group with specificity close to several sites, only one of which 

can lead to reaction. The latter approach is simpler to achieve thanks 

to the inherent specificity of alkylation reactions on DNA. 

Alkylation reactions are highly specific when it comes to where 

on the different bases alkylation occurs.4 7 For example, Figure 3 

lists the percent obtained of each of the different products resulting 

from reaction of [14c]methyl methanesulfonate with double-strand­

ed DNA.48 The most striking feature of the data is the high reactiv­

ity of the N7 position of guanine relative to other sites in double-

stranded DNA. The N7 position of guanine resides in the major 

groove of B form DNA while the next most reactive site, N3 of ade­

nine, is in the minor groove. The second most reactive site in the 
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Figure 3 Alkylated products obtained upon reaction of 
[14c]methyl methanesulfonate with double-stranded DNA. 
Data is from reference 48. 
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major groove 1s N7 of adenine, but that site is almost two orders of 

magnitude less reactive than N7 of guanine. Therefore, placing a 

methylating group in the major groove of double-stranded DNA 

should have an inherent base specificity of almost two orders of 

magnitude! 

Treatment of DNA containing N7-methylguanine residues with 

piperidine causes DNA strand scission at the site of the methylated 

base. 49 The DNA strands produced contain exclusively 3' and 5' 

phosphate ends at the site of cleavage. Therefore, criterion 2) in the 

introduction could be satisfied by cleavage of DNA resulting from 

complementary-addressed methylation at N7 of guanine followed by 

a piperidine treatment. 

The complementary-addressed alkylation of nucleic acids11 was 

proven to be quite facile and occurred with relatively high yields. We 

can therefore expect that criterion 4) mentioned m the introduction 

can also be satisfied by using alkylating reagents. 

Reasons For Choosing A Methylthioether Group As The 

Latent Alkylating Function; SAM The choice of a methylth-

ioether group as a latent alkylating function was inspired by the 

pathways used for in vivo methylation of DNA. 

Specifically methylated DNA has been found in both prokary-

otes and eukaryotes. Methylated bases are found in prokaryotes 

such as E . coli to the extent of 1% 5-methylcytosine (relative to all 

cytosine) and 2.1% N6-methyladenine (relative to all adenine).50 In 
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5-Methylcytosine N6-Methyladeni ne 

eukaryotes, 5-methylcytosine is the only methylated base detected 

and it can comprise up to 9% or more of all cytosine. 5 1 

In prokaryotic systems, the methylated bases are an essential 

component of the restriction endonuclease-methylase system used to 

prevent invasion by foreign DNA.52 Bacterial chromosomal DNA has 

certain sequences methylated. The bacterial cell also contains a re­

striction endonuclease which recognizes and cleaves that same DNA 

sequence, but the bacteria's own DNA is not attacked because of the 

methylation. Invading DNA (from a phage for example) will most 

likely not be methylated in the proper sequence so the phage DNA IS 

cleaved by the restriction endonuclease and the DNA invasion IS 

thwarted. 

In eukaryotes, specific methylation is a field of intense investi­

gation, and is currently thought to be a mechanism by which gene 

expression is regulated, especially during embryonic development. 53 

For example, methylation of one of the two X chromosomes during 

early development has been indicated as a mechanism by which X 

inactivation occurs in female mammalian cells.54 

All DNA methylation enzyme systems studied so far use the 

same cofactor as the source of the methyl group transferred, (-)S-
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adenosyl-L-methionine (SAM).55 SAM is synthesized through an en­

zymatic reaction of the stoichiometry shown below.56 The enzyme 

L-Methionine + ATP (-)S-Adenosyi-L-methionine + PP1 + P1 

responsible IS called S-adenosyl-L-methionine synthetase (EC 

2.5.1.6).57 The chiral sulfonium of SAM is produced exclusively as 

the (-) or S isomer, but it racemizes in aqueous solution (krace. = 8 x 

10-6 s-1 at pH 7.5 and 37°C)58 and the(+) orR isomer is inactive in 

enzymatic methyl transfer reactions. SAM also hydrolyzes at neutral 

pH to yield homoserine and 5'-deoxy-5'-(methylthio )adenosine5 9 

(khyd. = 6 x 10-6 s-1 at pH 7.5 and 37°C).58 These spontaneous de-

activation processes (racemization and hydrolysis) require that the 

SAM produced be used quickly in methylation reactions. This is an 

important consideration because of the extremely high energy cost to 

the cell of synthesizing SAM. 60 

The enzymatic DNA methylation reaction follows the general 

stoichiometry outlined below. In the case of cytosine methylation, a 
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covalent enzyme-cytosine intermediate has been proposed. 61 The 

reaction is expected to follow an SN 2 pathway with inversion of the 

methyl group in analogy to other enzymatic methylations using 

SAM.62 

Interestingly, free SAM has been found to methylate DNA in 

small but detectable amounts under physiologically relevant condi­

tions (I x Io-5 M SAM, 4 h, 37°C) in the absence of any methylase.63 

Not surprisingly, N7-methylguanine was found to be the primary 

product of the nonenzymatic reaction. 

The CNBr Peptide Cleavage Reaction The methylthioether 

group of methionine can be thought of as a latent alkylating group in 

another well known reaction, namely the cyanogen bromide (CNBr) 

cleavage of peptides or proteins .64,65 Treatment of a methionine 

containing peptide or protein with CNBr under acidic conditions caus­

es specific peptide cleavage at the site of the methionine. The prod­

ucts of the reaction are methylthiocyanate, aminoacylpeptide and 

peptidyl homoserine lactone. A mechanism of cleavage has been 
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Figure 4 The mechanism proposed in reference 65 for the cleavage 
of peptides at methionine residues by CNBr. 
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proposed (see Figure 4 ). The proposed cyanosulfonium bromide 

intermediate has not been isolated or characterized. The CNBr cleav­

age reaction at methionine has been an important tool in the specific 

fragmentation of proteins to facilitate sequence determination. 

The CNBr peptide cleavage reaction was in fact based upon the 

much older (first reported in 1877) reaction of dialkylthioethers with 

CNBr. 66,67 The CNBr treatment cleaves the dialkylthioethers pro-

CNBr + R-S-R' R-SCN + Br-R' 

ducing an alkylthiocyanate and an alkyl bromide. 

It is reasonable to assume that under the proper conditions, the 

cyanosulfonium bromide intermediate produced upon reaction with 

CNBr and a methylthioether could lead to a methyl transfer reaction 

in analogy to SAM. Of course undesirable reaction pathways such as 

the intramolecular lactonization observed with the methionine reac-

tion must be accounted for and hopefully circumvented. 

The preceding discussions of DNA alkylation, SAM and the CNBr 

peptide cleavage reactions have indicated the reasons behind our 

choosing a methylthioether as a latent alkylating (methyl transfer) 

group to be used for complementary-addressed modification of DNA. 

The original scheme I devised for activating the methylthioether 

function on a hunter strand involved enzymatic activation to the 

methyl -adenosyl sulfonium with S-adenosyl-L-methionine syn­

thetase in the presence of ATP. The enzyme's substrate specificity 

has been thoroughly investigated and it appears as though an ester 
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linkage from the carboxyl group of methionine to an alcohol function 

on the hunter strand would be acceptable as substrate to the en­

zyme. 68 Unfortunately, this enzymatic activation was never at­

tempted because of the difficulty encountered in obtaining a pure 

sample of S-adenosyl-L-methionine synthetase. CNBr treatment was 

therefore used as the activation method as described in the following 

section of this thesis. 

Design Of The Modified 2'-Deoxyuridine 5'-Triphos­

phate Compounds Carrying A Methylthioether Function 5-

allylamino-2'-deoxyuridine 5'-triphosphate was chosen as the pre­

cursor to all of the modified bases which were enzymatically incor­

porated into hunter strands and investigated for cleavage activity 

because the synthesis has been described,46 and the Klenow enzyme 

is known to accept as substrate molecules of this form.46 The side 

chain of compound 2 (vida infra) was designed using a CPK model of 

right-handed B form DNA assuming a methyl transfer reaction to the 

N7 position of guanine(s) on the target strand. A side chain with two 

methylene units between the carbonyl group and the sulfur atom 

was chosen because this length appeared to allow facile methyl 

transfer reaction on the DNA while not providing the proposed five­

membered ring transition state required for the unwanted peptide 

bond cleavage reaction. 
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RESULTS AND DISCUSSION 

Synthesis 

Modified 2'-Deoxyuridine 5'-Triphosphate Compounds 

Carrying A Methylthioether Function The modified 2'-de­

oxyuridine 5'-triphosphate (dUTP) compounds (2, 4 and 5) were 

synthesized using strategies analogous to methods in the literature46 

(see Figures 5 and 6). dUTP was treated with mercuric acetate at pH 

6 and 60°C. The product 5-mercurinucleotide 5'-triphosphate was 

collected as a flocculent white solid that was precipitated from aque­

ous solution by the addition of cold ethanol. The isolated yield was 

observed to increase when the ethanolic mixture was allowed to 

precipitate at 4°C overnight. The key intermediate 1 was produced 

by reacting the 5-mercurinucleotide 5'-triphosphate with allylamine 

in the presence of K2PdCl4 at pH 5.4. The product 1 was isolated as 

the ninhydrin-positive fraction eluted between .4 M and .5 M 

triethylammonium bicarbonate (pH 7 .6) on a DEAE Sephadex column. 

The methylthioether derivatives 2, 4 and 5 were produced by re­

acting the N -hydroxysuccinimide esters of the appropriate 

methylthioether acid compounds with 1 at pH 8.85. The reaction 

was monitored by subjecting small aliquots of the reaction to a 

quantitative ninhydrin test. 69 The reaction was stopped when the 

ninhydrin test revealed the absence of any primary amine groups 

which would have indicated unreacted 1. 

The crude product 2, 4 or 5 was initially isolated as the short 

wave UV absorbing fraction that eluted between .7 M and .9 M tri­

ethylammonium bicarbonate (pH 7 .6) on a DEAE Sephadex column. 
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The pure 2, 4 or 5 was obtained by chromatographing the crude 

product on an analytical anion exchange HPLC column eluted with a 

linear gradient of 0-.3 M ammonium bicarbonate (pH 7 .6) buffer. To 

prevent the volatile ammonium bicarbonate from bubbling out of 

solution and thereby crippling the HPLC pumps and/or detector, the 

ammonium bicarbonate buffer was placed in an ice bucket and kept 

at 0° C during the chromatography. The purified 2, 4 or 5 was 

lyophilized for several days to remove water and buffer. The 

lyophilized material was always stored under vacuum to prevent air 

oxidation of the methylthioether function. 

UV-Vis, IR and 1 H NMR spectroscopy were used to confirm the 

structures of the modified dUTP compounds. As additional proof of 

structure, 2 was dephosphorylated by the enzyme calf alkaline 

phosphatase. High resolution mass spectral analysis proved the re­

sulting nucleoside (3) had a molecular formula that was identical to 

that predicted for 3. 

The key to the synthesis of 2, 4 or 5 was the HPLC purification 

procedures designed to remove even traces of contaminating dUTP 

derivatives. It was feared that compounds with less steric bulk at 

the 5 position such as 2'-deoxyuridine 5'-triphosphate ( dUTP) or 1 

might be preferred substrates of the Klenow enzyme, so that these 

compounds would have to be eliminated before 2, 4 or 5 would be 

accepted as substrate by the enzyme. 

The purity of 2, 4 and 5 was confirmed by reinjection into the 

HPLC (see Figure 7). These HPLC conditions would have cleanly sep-
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arated dUTP and 1 from 2, 4 or 5. Furthermore, the fact that the 

HPLC peak maxima were always at exactly the same retention time 

when the analysis was simultaneously monitored at two different 

wavelengths (260 nm and 290 nm) indicated that the material under 

the peak was homogeneous. 

The 1 H NMR spectra were also diagnostic as to the purity of 2, 4 

and 5 (see Figure 46 in the Experimental section). Of particular m­

terest in the spectrum is the sharp singlet at -8 ppm arising from the 

C6 proton . The chemical shift of this proton was found to be very 

sensitive to the nature of the constituent at C5. As such, a sharp sin­

glet -8 ppm with no nearby signals was taken as a first indication of 

relatively pure material. 

Klenow Enzyme Incorporation Reactions 

It has been previously reported in the literature that dUTP com­

pounds modified in the 5 position with a biotin moiety were accepted 

as substrate by the Klenow fragment of the DNA polymerase 1 en­

zyme. 46 These modified dUTP compounds were placed exclusively 

opposite A residues during the 5'-3' DNA fill -in reaction catalyzed by 

the enzyme. 

The ability of compound 2 to act as substrate for the Klenow en-

zyme was thoroughly investigated. Oligonucleotides 1 and 2 (see 

Figure 8) were used to study the reaction. Oligonucleotides 1 and 2 

were always annealed to each other by placing them in a 60° C water 

bath which was immediately removed from heat and allowed to cool 

slowly to room temperature over one hour. Note that the sequences 
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5'-CTGTCTGGGG AGTCTCAGCAGT AGTCGTCA TCAG-3' 
Oligonucleotide 1 

5'-CTGATGACGACTACTGCTGA-3' 
Oligonucleotide 2 

5'-TTTTTCTCTCTCTC-3' 
Oligonucleotide 3 

5'-AGAGAGAGAGAAAAACCCCCC-3' 
Oligonucleotide 4 

5'-CTGTCGGG AG AGTCTCAGCAGT AGTCGTCA TCAG-3' 
Oligonucleotide 5 

5'-TTTGT AGTTGT AGAT -3' 
Oligonucleotide 6 

5'-CATCT ACAAC-3' 
Oligonucleotide 7 

5'-CTGTGTTCGT AGTCTCAGCAGT AGTCGTCA-3' 
Oligonucleotide 8 

s~GACGACTACTGCTGAGA~ 
Oligonucleotide 9 

5' -GCAAAG T AAG AGCTTCTCG AGCTGCGCAAGG AT AGGTCG-3' 
Oligonucleotide 10 

5'-ATT AAGCCACTTCTCCTC-3' 
Oligonucleotide 11 

5'-AA GCCACTTCN CCTCA TCCAA-3' 
Oligonucleotide 12 

N = 5 -(3 -amino-trans-1-propenyl)deoxyuridine 

Figure 8 Sequences of synthetic oligonucleotides. 
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of oligonucleotides 1 and 2 were specifically designed to preclude the 

two strands from annealing in any way different from the desired 

duplex. 

Non-denaturing 15% polyacrylamide gels were found to sepa­

rate filled-in from incompletely filled-in duplexes to nucleotide res­

olution . The DNA was visualized in the gels either by staining with 

ethidium bromide or simply by looking for UV -absorbing bands (the 

DNA appeared dark) when irradiated with short wave UV light above 

a fluorescent TLC plate. 

Conditions were sought wherein the Klenow enzyme would 

place no base opposite the single A in the overhang region of the 

oligonucleotide 1 and 2 duplex unless a modified dUTP compound or 

thymidine 5'-triphosphate (TTP) was added to the reaction. It was 

surprising to me that high . concentrations of Klenow enzyme were 

found to place a base opposite this A even when only dA TP (2' -de­

oxyadenosine 5' -triphosphate), dCTP (2' -deoxycytidine 5' -triphos­

phate) and dGTP (2'-deoxyguanosine 5'-triphosphate) were added to 

the reaction (see lane 2 in Figure 9). This misincorporation was 

found to be independent of all reactant concentrations ( dCTP, dA TP, 

dGTP and buffers) except that of the enzyme. Therefore, assuming 

the enzyme was 100% accurate in placing appropriate bases opposite 

the A, the enzyme preparation apparently had the unexpected ability 

of producing TTP-like molecules from the reaction mixture. Klenow 

enzyme is known to have a 3'-5' exonuclease activity45 so it is 

reasonable to assume that at high enzyme concentrations some 
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Figure 9 

Klenow enzyme fill-in reactions using high and low concentrations of 
Klenow enzyme. 2 mm x 160 mm x 160 mm 15% nondenaturing 
polyacrylamide gel stained with ethidium bromide. In each reaction 
the oligonucleotide 1,2 duplex was formed by heating .1 nmol of 
oligonucleotide 1 and .12 nmol oligonucleotide 2 to 60°C then slowly 
cooling in a water bath. The Klenow enzyme reactions were carried 
out at room temperature for 1.5 h. Lane 1 Oligonucleotide 1,2 
duplex. Lane 2 Oligonucleotide 1,2 duplex filled-in with .8 mM 
each of dCTP, dATP and dGTP with 12.5 units of Klenow enzyme. 
Lane 3 Oligonucleotide 1,2 duplex filled-in with .8 mM each of 
dCTP, dA TP and dGTP with 5 units of Klenow enzyme. Lane 4 
Oligonucleotide 1,2 duplex filled-in with .8 mM each of dCTP, dATP, 
dGTP and TIP with 5 units of Klenow enzyme. 
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thymidine residues were being removed along with the other 2 1
-

deoxynucleotide residues from the 3 I ends of oligonucleotides 1 and 

2. How could the liberated T residues be used by the Klenow 

fragment in the fill -in reactions?4 

When there is not the appropriate dNTP in the reaction mixture 

to allow the usual fill-in reaction, an "idling turnover" activity has 

been observed with the Klenow enzyme which produces 21 -deoxynu­

cleotide 5 1 -triphosphate molecules from pyrophosphate (liberated in 

the usual Klenow incorporation reaction) and a 3 I -terminal 

0 
DNA t-o- ·P· o 

0- ~0~ase+ 
J----1 PP1 

OH 

Klenow 
Enzyme 

0 0 0 
-0-P·O·P·O·P·O 

0- 0- 0- p•se 
OH 

residue on the template DNA.70 Therefore, the misincorporation I 

observed opposite the A at high Klenow enzyme concentrations was 

apparently caused by this type of "idling turnover" synthesis of TTP 

from the T residues already on the probes. The misincorporation 

reaction was avoided in my fill-in reactions by using low Klenow 

enzyme concentrations and shorter reaction times. 

Figure 10 shows how using the low concentrations of Klenow, no 

base was incorporated opposite the single A in the overhang region 

(lane 2) of the oligonucleotide 1,2 duplex unless a modified 2~-de­

oxyuridine 5 1 -triphosphate (lane 3) or TTP (lane 4) was present. 

Lane 1 is a control that was run with Klenow enzyme but no 2 1 -de­

oxynucleotide 5 1 -triphosphate molecules added and lane 5 is another 
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Figure 10 

Klenow enzyme fill-in reactions using 2 and low Klenow concentra­
tions. 2 mm x 160 mm x 160 mm 15% nondenaturing polyacry­
lamide gel stained with ethidium bromide. In each reaction the 
oligonucleotide 1,2 duplex was formed by heating .1 nmol oligonu­
cleotide 1 and .1 nmol oligonucleotide 2 to 60°C then slowly cooling 
in a water bath. The Klenow reactions were carried out using 3 units 
of enzyme each at 37°C for 20 minutes. Lane 1 Oligonucleotide 1,2 
duplex. Lane 2 Oligonucleotide 1,2 duplex filled-in with .8 mM 
each of dCTP, dATP and dGTP. Lane 3 Oligonucleotide 1,2 duplex 
filled-in with .8 mM each of dCTP, dATP, dGTP and 2. Lane 4 
Oligonucleotide 1,2 duplex filled-in with .8 mM each of dCTP, dATP, 
dGTP and TIP. Lane 5 Oligonucleotide 1. 
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control that contains only oligonucleotide 1. Gels of this type were 

taken as indirect evidence that the modified 2' -deoxynucleotide 5' ­

triphosphate was specifically incorporated opposite the A in the 

overhang region of the oligonucleotide 1,2 duplex. 

Direct evidence was obtained for Klenow enzyme incorporation 

of 2 into oligonucleotide strands by using oligonucleotides 3 and 4. 

The experiment is described in Figure 11. The oligonucleotide 3,4 

duplex contained only a single base 5' overhang, namely the 5' ter­

minal A residue of oligonucleotide 4. The Klenow enzyme was 

therefore able to place a single residue of 2 or thymidine (T) onto the 

3' end of oligonucleotide 3 when 2 or TTP were present respectively. 

Since oligonucleotide 4 was six bases longer than oligonucleotide 3, 

the two oligonucleotides were easily separated on a denaturing 20% 

polyacrylamide gel (see Figure 12). Furthermore, since the 2 or T 

residue was placed at the end of the oligonucleotide 3 , this residue 

had a relatively large effect on the electrophoretic mobility of the 

oligonucleotide. Lane 1 of Figure 12 was the result of reaction of the 

oligonucleotide 3,4 duplex with Klenow enzyme in the presence of 

TIP. Lane 2 is the same as lane 1 except 2 was used in place of TTP. 

Lane 3 contains unreacted oligonucleotide 3. The change in elec­

trophoretic mobility of the band corresponding to the filled -in 

oligonucleotide 3 in lanes 1 and 2 was taken as direct evidence for 

the enzymatic incorporation of 2 by the Klenow enzyme. 
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5'-AGAGAGAGAGAAAAACCCCCC-3' 
Oligonucleotide 4 

+ 

5'-T T T T T C T C T C T C T C -3' 
Oligonucleotide 3 

J 

Heat to sooc 
Cool Slowly 

5'-AGAGAGAGAGAAAAAC CCC C C-3' 
3'-C T C T C T C T C T T T T T -5' 

J 

2 orTTPand 
Klenow Enzyme 

5'-AGAGAGAGAGAAAAACCCCCC-3' 
~XCTCTCTCTCTTTTT~ 

3'-XCTCTCTCTCTTTTT -5' 

X= 2orT 

J 

Denaturing 
Polyacrylamide Gel 

+ 5'-AGAGAGAGAGAAAAACCCCCC -3' 

Figure 11 Scheme for the method used to produce an 
oligonucleotide 3 carrying a single residue of 2 on the 3' 
end. 
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Figure 12 

Klenow enzyme fill-in reactions revealing direct evidence for 
incorporation of 2 into oligonucleotide 3. 2 mm x 160 mm x 160 mm 
15% denaturing polyacrylamide gel visualized by short wave UV 
light. In each reaction the oligonucleotide 3,4 duplex was formed by 
heating 1 nmol oligonucleotide 3 and 1 nmol oligonucleotide 4 to 
60°C then slowly cooling in a water bath. The Klenow enzyme 
reactions were carried out using 18 units of enzyme at 25° C for 20 
minutes . The reactions were ethanol precipitated then dissolved in 
formamide loading buffer, heated to 90°C for 3 min, chilled in ice for 
5 min then loaded onto the gel. Lane 1 Oligonucleotide 3,4 duplex 
filled-in in the presence of 1 mM dTTP. Lane 2 Oligonucleotide 3,4 
duplex filled-in in the presence of 1 mM 2. Lane 3 Oligonucleotide 
3. 
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The CNBr Cleavage Reaction 

Optimum Conditions And Specificity The specificity and 

optimum conditions of the complementary-addressed cleavage reac­

tion using 2 and CNBr were initially investigated using the oligonu­

cleotide 1,2 duplex (see Figure 13). The sequences of oligonu­

cleotides 1 and 2 were designed to prevent improper annealing re­

actions as well as allow analysis of the specificity of the cleavage re­

action. Five potentially reactive guanine residues were placed on 

oligonucleotide 1 adjacent to where the single residue of 2 was In­

corporated on oligonucleotide 2. Four of these guanine residues were 

to the 5' side of 2 because assuming a right-handed B form helix, 7 

the latent reactive methylthioether group attached to 2 should be lo­

cated in the major groove adjacent to the reactive N7 positions of the 

guanine residues only to the 5' side. The helix structure should pre­

vent reaction to the 3' side or intrastrand cleavage (see computer 

modeling section). 

Oligonucleotide 1 · was labelled with 3 2 P at the 5' end by the 

standard enzymatic reaction catalyzed by T4 polynucleotide kinase.4 

The labelled oligonucleotide 1 was annealed to oligonucleotide 2 as 

usual. A Klenow enzyme fill-in reaction (using a low enzyme con­

centration) was carried out in the presence of dATP, dCTP, dGTP and 

2 or TTP. The filled-in, radioactively labelled duplexes were isolated 

as the uppermost band on a non-denaturing 15% polyacrylamide gel 

such as that in Figure 10. The bands were excised from the gel, the 

oligonucleotide duplexes were eluted out of the gel slices with .2 M 
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Oligonucleotide 1 

~P~CTGTCTGGGGAGTCTCAGCAGTAGTCGTCATCAG~' 
3'-AGTCGTCATCAGCAGTAGTC-5' 

Oligonucleotide 2 

dATP, dCTP, dGTP, 
2 or TTP 

Klenow Enzyme 

32P5'-CTGTCTGGGGAGTCTCAGCAGTAGTCGTCATCAG-3' 
~GACAGACCCCOCAGAGTCGTCATCAGCAGTAGTC~ 

I 

H3 CS 

ICNBr 

~P~CTGTCTGGGGAGTCTCAGCAGTAGTCGTCATCAG~ 

3~ GACAGACCCCOCAGAGTCGTCATCAGCAGTAGTC~' 
I 

H3CS + 
c 
N 

I H3C 
I 

32ps'-CTGTCTGGGGAGTCTCAGCAGTAGTCGTCATCAG-3' 
~GACAGACCCCOCAGAGTCGTCATCAGCAGTAGTC~ 

I 

32ps·-CTGTCTGG -3' 

s 
c 
N I Piperidine 

~GAGTCTCAGCAGTAGTCGTCATCAG~ 

Figure 13 Scheme for the complementary-addressed cleavage of 
oligonucleotide 1 using an enzymatically incorporated 
residue of 2 and CNBr. 
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NaCl solution at room temperature and the resulting solutions were 

dialyzed against sodium phosphate buffer (.25 mM, pH 7 .5). 

Isolating the duplexes by the above method insured a 1:1 stoi­

chiometry of oligonucleotide 1 to filled-in oligonucleotide 2. Fur­

thermore, smce the duplexes were never denatured after the fill-in 

reaction, every strand of oligonucleotide 1 used in the subsequent 

CNBr cleavage reactions was hybridized to a filled-in oligonucleotide 

2 strand carrying a single residue of 2. These duplexes could there­

fore be used to assign the absolute cleavage efficiency of 2 in the 

complementary-addressed cleavage reaction using CNBr. To date, 

every other complementary-addressed system has been investigated 

using an excess of hunter strand, so an absolute cleavage efficiency 

has never before been unambiguously reported. 

The isolated oligonucleotide duplexes, containing a single 

residue of 2 or T in the filled-in region, were exposed to CNBr under 

various conditions and then treated with piperidine at 90° C. The 

samples were loaded onto denaturing 20% polyacrylamide sequenc­

ing-type gels. The gels were autoradiographed and the results ana­

lyzed (see Figures 14 and 15). The following general conclusions 

were drawn from the data produced on several gels. 

CNBr concentrations of up to 40 mM could be used with no de­

tectable nonspecific reaction with the DNA bases. As was anticipated, 

the "soft" CN electrophile apparently prefers "soft" nucleophiles such 

as the methylthioether of 2 over the "harder" nucleophiles of DNA 

such as the aromatic amines. Of course this profound specificity of 
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Figure 14 

CNBr cleavage reactions of the oligonucleotide 1,2 duplex using an 
enzymatically incorporated residue of 2. Autoradiogram of a 20% 
denaturing polyacrylamide gel. Radioactively-labelled, filled-in 
oligonucleotide 1,2 duplexes containing a single residue of 2 or T 
were prepared and isolated according to procedures detailed in the 
experimental section. The cleavage reactions were run by placing 2 
mR/h of the duplex along with 1 Jlg of CT DNA in 10 J.l.l of a solution 
containing 5 mM NaCl, 30 mM buffer (sodium phosphate pH 5.5 or 
7 .5 or potassium phthalate pH 4.5) and 30 mM CNBr. The reactions 
were incubated at the specified temperature for the specified 
amount of time then 2 J.l.l of 50% aqueous piperidine was added and 
the solutions were heated at 90° C for 20 min. The samples were 
then lyophilized to dryness, the residue redissolved in formamide 
loading buffer and .2 mR/h was loaded onto each lane of the gel. The 
reactions run in lanes 1 ,4, 7 and 10 used oligonucleotide 1 ,2 duplexes 
filled-in with a regular T residue, the reactions run in all other lanes 
used duplexes containing a residue of 2. G Maxam-Gilbert G reaction. 
Lane 1 pH 7.5, 37°C, 48 h. Lane 2 pH 7.5, 37°C, 24 h. Lane 3 pH 
7 .5, 37°C, 48 h. Lane 4 pH 5.5, 25°C, 48 h. Lane 5 pH 5.5, 25°C, 24 
h. Lane 6 pH 5.5, 25°C, 48 h. Lane 7 pH 5.5, 37°C, 48 h. Lane 8 
pH 5.5, 37°C, 24 h. Lane 9 pH 5.5, 37°C, 48 h. Lane 10 pH 4.5, 
37 °C, 48 h. Lane 11 pH 4.5, 37°C, 24 h. Lane 12 pH 4.5, 37°C, 48 h. 
Lane 13 pH 7.6, no CNBr, 37°C, 48 h. Lane 14 pH 7.5, no CNBr, 
3 7 ° C, 48 h, no piperidine treatment. The histogram shows the 
location of the 3 2p label as well as the positions filled-in by the 
Klenow enzyme (outlined bases). The position of the residue of 2 
(H3 CS-U) in relation to the observed guanine cleavage site (arrow) is 

also indicated. 
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Figure 15 

CNBr cleavage reactions of the oligonucleotide 1,2 duplex using an 
enzymatically incorporated residue of 2. Autoradiogram of a 20% 
denaturing polyacrylamide gel. Radioactively-labelled, filled-in 
oligonucleotide 1,2 duplexes containing a single residue of 2 or T 
were prepared and isolated according to procedures detailed in the 
experimental section. The cleavage reactions were run by placing 2 
mR/h of the duplex along with 1 J..lg of CT DNA in 10 Ill of a solution 
containing 5 mM NaCl, 25 mM NaOAc pH 5.5 with or without 20 mM 
CNBr. The reactions were incubated at room temperature (25°C) for 
5.5 h then 2 J..ll of neat piperidine was added and the solutions were 
heated at 90° C for 20 min. The samples were then lyophilized to 
dryness, the residue redissolved in formamide loading buffer and .2 
mR/h was loaded onto each lane of the gel. G Maxam-Gilbert G 
reaction. Lane 1 Oligonucleotide 1,2 duplexes filled-in with a regular 
T residue, reacted with 20 mM CNBr. Lane 2 Oligonucleotide 1,2 
duplexes filled-in with a residue of 2 , reacted with 20 mM CNBr. 
Lane 3 Oligonucleotide 1,2 duplexes filled-in with a residue of 2 , no 
CNBr added during reaction. The histogram shows the location of the 
3 2 P label as well as the positions filled-in by the Klenow enzyme 
(outlined bases). The position of the residue of 2 (H3 CS-U) in 
relation to the observed guanine cleavage site (arrow) is also 
indicated. 
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the CNBr reaction was a fundamental requirement of the CNBr acti­

vated methylthioether alkylation strategy. 

A single G on the complementary strand two base pairs to the 5' 

side of the single residue of 2 was the primary site of cleavage re­

vealing unprecedented specificity. The adjacent G residues were 

cleaved with an efficiency which was 0.08 as high. This pronounced 

specificity is the most significant result of the study and could pave 

the way for similar systems to be developed for use in molecular 

biological manipulations . Some possible reasons for the observed 

high degree of reaction specificity will be discussed in the computer 

modeling section. 

No specific cleavage was observed when the oligonucleotide du­

plex contained a T residue in place of the single residue of 2 or when 

the CNBr treatment was omitted (see lanes 1 and 3 in Figure 15). 

These controls demonstrate that the methylthioether is activated by 

CNBr to form a species (presumably a cyanosulfonium intermediate) 

capable of specifically reacting with the base(s) of a complement 

strand. 

The efficiency of the cleavage produced by 2 increased with de­

creasing pH. This finding was not surprising because of the nature of 

the expected cyanosulfonium intermediate formed during the reac­

tion. Such an intermediate should be highly susceptible to attack by 

-OH so that lowering the pH should decrease the rate of this proposed 

hydrolysis side reaction by lowering the concentration of -OH. 



60 

The oligonucleotide duplexes could withstand a pH as low as 5.5 

without noticeable depurination. In acid solution it is well known 

that DNA is depurinated because protonating the purine aromatic 

nitrogen atoms weakens the glycosidic bond, facilitating hydrolysis 

and thus depurination.49 The depurinated sites in DNA are cleaved 

by a piperidine treatment49 (such as that used in the CNBr cleavage 

reaction), so the acid depurination caused an unwanted nonspecific 

cleavage reaction when the reactions were run at a pH below 5.5. 

With a CNBr concentration of 25 mM, the reaction was complete 

m 8-12 hours. During the reaction, it was important to keep the re­

action vessels tightly sealed, otherwise the volatile CNBr quickly 

evaporated, greatly slowing the rate of reaction. 

A 10% aqueous piperidine treatment of 20 minutes at 90°C was 

sufficient to produce maximal specific cleavage with minimal back­

ground cleavage. Since heating is known to cause the spontaneous 

depurination of DNA, the length of time for the piperidine-heat 

treatment was shortened as much as possible. Also to prevent 

depurination, the oligonucleotides and oligonucleotide duplexes were 

always eluted from gel slices at room temperature even though lit­

erature procedures called for elution from gels with prolonged heat 

treatments. 

The maximal cleavage efficiency (determined by scintillation 

counting and/or densitometry) was -12%. The reasons for this low 

cleavage efficiency remain unclear. The flexibility of the linker 

between the methylthioether and the uridine base might allow other 
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unreactive conformations, facilitating the proposed hydrolysis side 

reaction. The expected cyanosulfonium intermediate would have a 

full positive charge so it might be attracted to the negatively charged 

DNA phosphate backbone, away from the desired N7-guanine site 

agam facilitating the possible hydrolysis reaction. Another 

possibility is that the side chain of 2 can not adopt the optimum ge­

ometry required for facile reaction with the N7 -guanine position 

(these issues are addressed in the computer modeling section). 

The CNBr-methylthioether cleavage reaction produced oligo­

nucleotide fragments that migrated on a high resolution gel 

consistent with having 3'-phosphate termini indicating an alkylation 

type of reaction mechanism. The observed specific cleavage always 

resulted in a band which exactly comigrated with a band in the ref­

erence G lane. The G lane was produced by the standard dimethyl 

sulfate reaction known to produce fragments with 3'- and 5'-phos­

phate termini .49 Oligonucleotide fragments with 3'-hydroxyl termini 

and 3'-sugar or base fragment termini would have run noticeably 

different on these denaturing 20% gels. 71 

Base Specificity Of The Cleavage Reaction The base 

specificity of the CNBr-methylthioether cleavage reaction was inves­

tigated by using an oligonucleotide duplex produced by annealing 5'-

32P-end-labelled oligonucleotide 5 with oligonucleotide 2. Two 2 or 

T residues were enzymatically incorporated into the overhang region 

and the completely filled-in duplexes were gel purified as usual. The 

gel used to analyze the CNBr reaction showed that A was not at-
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tacked in a manner analogous to G (see Figure 16) during the com­

plementary-addressed reaction using 2 and CNBr. 

This preference for reaction at the N7 position of guanine rela­

tive to the N7 position of adenine is consistent with the known pref­

erences of SN 2 type alkylating agents at these sites (see Figure 3) 

and therefore implies an SN 2 alkylation mechanism. Interestingly, 

the guanine residues adjacent to the target A residue were cleaved 

with a higher efficiency than observed with analogous guanine 

residues on oligonucleotide 1. This suggests that the proposed reac­

tive cyanosulfonium species was sufficiently long-lived to enable 

increased reaction at less favorable sites. 

Linker Length Dependence Compounds 4 and 5 were syn-

thesized to determine the optimum linker length between the uri­

dine and methylthioether functions. Both 4 and 5 were enzymati-

cally incorporated into an oligonucleotide 1 ,2 duplex. The CNBr 

cleavage reaction revealed that 2 appears to possess the optimum 

linker length (see Figure 17). Interestingly, 5 with one methylene 

unit longer than 2 demonstrated the same specificity but approxi­

mately 60% less cleavage efficiency than 2. 

It should be pointed out that both 4 and 5 could have different 

reactivities than 2, so that the observed cleavage efficiency might 

not simply reflect linker length. Compound 4 could be less reactive 

due to the methylthioether group being a to the carbonyl, and com­

pound 5 could be deactivated through an intramolecular lactoniza­

tion pathway analogous to the CNBr peptide cleavage mechanism. In 
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Figure 16 

CNBr cleavage reactions of the oligonucleotide 5,2 duplex using an 
enzymatically incorporated residue of 2. Autoradiogram of a 20% 
denaturing polyacrylamide gel. Radioactively-labelled, filled-in 
oligonucleotide 5,2 duplexes containing two residues of 2 or T were 
prepared and isolated according to procedures detailed in the 
experimental section. The cleavage reactions were run by placing 2 
mR/h of the duplex along with I ~g of CT DNA in 10 ~1 of a solution 
containing 5 mM NaCl, 25 mM sodium phosphate pH 5.5 with or 
without 20 mM CNBr. The reactions were incubated at room 
temperature (25°C) for 5.5 h then 2 ~1 of neat piperidine was added 
and the solutions were heated at 90°C for 20 min. The samples were 
then lyophilized to dryness, the residue redissolved in formamide 
loading buffer and .2 mR/h was loaded onto each lane of the gel. G 
Maxam-Gilbert G reaction. Lane 1 Oligonucleotide 5,2 duplexes 
filled-in with two regular T residues, reacted with 20 mM CNBr. 
Lane 2 Oligonucleotide 5,2 duplexes filled-in with two residues of 2, 
reacted with 20 mM CNBr. Lane 3 Oligonucleotide 5,2 duplexes 
filled-in with two residues of 2, no CNBr added during reaction. The 
histogram shows the location of the 32p label as well as the positions 
filled-in by the Klenow enzyme (outlined bases). The positions of the 
residues of 2 (H3 CS-U) in relation to the observed guanine cleavage 
sites (arrows) are also indicated. Adenine did not react in a manor 
analogous to guanine in the reaction. 
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Figure 17 

CNBr cleavage reactions of the oligonucleotide 1,2 duplex usmg an 
enzymatically incorporated residue of 2,4 or 5. Autoradiogram of a 
20% denaturing polyacrylamide gel. Radioactively-labelled, filled-in 
oligonucleotide 1,2 duplexes containing a single residue of 2,4 ,5 or T 
were prepared and isolated according to procedures detailed in the 
experimental section. The cleavage reactions were run by placing 2 
mR/h of the duplex along with 1 ~g of CT DNA in 10 ~1 of a solution 
containing 5 mM NaCl, 25 mM NaOAc pH 5.5 with or without 10 mM 
CNBr. The reactions were incubated at room temperature (25°C) for 
5.5 h then 2 ~1 of neat piperidine was added and the solutions were 
heated at 90° C for 20 min. The samples were then lyophilized to 
dryness, the residue redissolved in formamide loading buffer and .2 
mR/h was loaded onto each lane of the gel. G Maxam-Gilbert G 
reaction. Lane 1 Oligonucleotide 1,2 duplexes filled-in with a regular 
T residue, reacted with 10 mM CNBr. Lane 2 Oligonucleotide 1,2 
duplexes filled-in with a residue of 4, reacted with 10 mM CNBr. 
Lane 3 Oligonucleotide 1,2 duplexes filled-in with a residue of 2, 
reacted with 10 mM CNBr. Lane 4 Oligonucleotide 1,2 duplexes 
filled-in with a residue of 5, reacted with 10 mM CNBr. Lane 5 
Oligonucleotide 1,2 duplexes filled-in with a residue of 2, no CNBr 
added during the reaction. The histogram shows the location of the 
3 2 P label as well as the positions filled-in by the Klenow enzyme 
(outlined bases). The position of the residue of 2,4 or 5 (H3CS-U) in 
relation to the observed guanine cleavage site (arrow) is also 
indicated. 



5' 3' 

CG 
TA 
GC 
AT 
TA 
GC 
AT 
CG 
GC 
AT 
CG 
TA 
AT 
CG 
TA 
GC 
CG 
TA 
GC 
AT 
@C 
~ T 
©G 

H3CS- UJJ A 
©G 
©G---­
©G 
©G 
~ T 
@C 
~ T 
©G 
~ T 
@C 

32p 

3' 5' 

66 

G 1 2 3 4 5 ----

-
-

-



67 

any case, 2 appeared to be the molecule most efficient at causing 

specific cleavage. 

Nature Of The 5' Termini Produced In The Cleavage 

Reaction The nature of the 5' termini produced in the complemen­

tary-addressed cleavage reaction using 2 and CNBr was investigated 

with oligonucleotides 6 and 7. These oligonucleotides were annealed 

together as usual then filled-in with Klenow enzyme in the presence 

of dATP, dCTP, a-3 2P-dGTP and 2 (see Figure 18). Since there was 

only one C residue in a 5' overhang region, the filled-in duplex con­

tained a single 3 2 P located at the 3' terminus of oligonucleotide 6, 

while a single residue of 2 was incorporated into oligonucleotide 7 . 

The duplex was purified on a non-denaturing 15% polyacrylamide 

gel and isolated as usual. The CNBr cleavage reaction showed the 

predicted single cleavage at the G residue on oligonucleotide 6 two 

bases to the 5' side of the residue of 2. On the high resolution dena­

turing 20% polyacrylamide gel, the mobility of the resulting fragment 

was identical to the same fragment produced by the dimethyl sulfate 

G reaction known to produce 5' -phosphate termini49 (see Figure 19) 

again consistent with an alkylation mechanism of the CNBr­

methylthioether reaction. 



68 

5'-TTTGTAGTTGTAGAT-3' 
Oligonucleotide 6 
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Figure 18 Scheme for the method used to produce the oligo­
nucleotide 6,7 duplex labelled with 32p at the 3' end of 
oligonucleotide 6 carrying a single residue of 2 filled-into 
oligonucleotide 7. 
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Figure 19 

CNBr cleavage reactions of the oligonucleotide 6, 7 duplex using an 
enzymatically incorporated residue of 2. Autoradiogram of a 20% 
denaturing polyacrylamide gel. Oligonucleotide 6,7 duplexes, la-
belled with 32p at the 3' end of oligonucleotide 6, containing a single 
residue of 2 or T were prepared and isolated according to procedures 
detailed in the experimental section (see Figure 18 for scheme). The 
cleavage reactions were run by placing 2 mR/h of the duplex along 
with 1 Jlg of CT DNA in 10 Jll of a solution containing 5 mM NaCl, 25 
mM N aOAc pH 5.5 with or without 20 mM CNBr. The reactions were 
incubated at room temperature (25°C) for 12 h then 2 Jll of neat 
piperidine was added and the solutions were heated at 90°C for 20 
min. The samples were then lyophilized to dryness, the residue re­
dissolved in formamide loading buffer and .2 mR/h was loaded onto 
each lane of the gel. G Maxam-Gilbert G reaction. Lane 1 Oligonu­
cleotide 6, 7 duplexes filled-in with a regular T residue, reacted with 
20 mM CNBr. Lane 2 Oligonucleotide 6,7 duplexes filled-in with a 
residue of 2, reacted with 20 mM CNBr. Lane 3 Oligonucleotide 6,7 
duplexes filled-in with a residue of 2, no CNBr added during reaction. 
The histogram shows the location of the 3 2 P label as well as the po­
sitions filled-in by the Klenow enzyme (outlined bases). The positiOn 
of the residue of 2 (H3 CS-U) in relation to the observed guanine 
cleavage site (arrow) is also indicated. 
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Nature Of The Guanine Species Produced In The Cleav­

age Reaction The nature of the guanine species produced in the 

complementary-addressed cleavage reaction usmg CNBr and 2 was 

investigated by carrying out a large scale enzyme fill-in reaction us­

ing 2 and oligonucleotides 8 and 9. A scheme was designed and op­

timized to recover and identify any methylated G residues which 

might result from the large scale CNBr reaction (see Figure 20). 

10 nmol each of oligonucleotide 8 and 9 were annealed together 

as usual. 10 mR/h of 5'_32P-end-labelled oligonucleotide 8 was used 

to allow for a gel analysis of the large scale cleavage reaction. 1 j.lmol 

each of dATP, dGTP, dCTP and 2 or TTP were added to a solution 

containing the oligonucleotide 8,9 duplex followed by 250 units of 

Klenow enzyme. After the Klenow reaction was completed, the 

filled-in duplexes were purified on a non-denaturing 15% polyacry­

lamide gel and the uppermost band was excised from the gel. The 

oligonucleotide duplexes were eluted from the gel with .2 M NaCl and 

dialyzed to remove the salt. In all, 4.04 nmol of filled-in duplex was 

recovered (based on an extinction coefficient for completely double­

stranded DNA of E260 = 6700/phosphate 7 2) containing a single 

residue of 2 incorporated into oligonucleotide 8. The volume of the 

sample was reduced in vacuo to 50 j..!l then sodium acetate pH 5 .5 

and CNBr were added to a final concentration of 25 mM each and a 

final volume of 100 j.ll. The reaction was allowed to proceed for 36 

hours at room temperature then the solvent and CNBr were removed 

in vacuo and the residue was redissolved in 100 j..!l water. 
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Figure 20 Scheme for the method used to isolate and identify any 
methylated guanine produced in the complementary­
addressed CNBr-methylthioether reaction. 
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The key to this product isolation scheme was removing any 

methylated G from the oligonucleotide duplexes, and this was accom­

plished by heating the sample at 90°C for 70 minutes.48 Notice that 

the sodium acetate pH 5.5 was still present. This heat treatment at 

pH 5.5 was shown to quantitatively liberate N7-methylguanine from 

oligonucleotide strands methylated with dimethyl sulfate (data not 

shown). 

The sample was then cooled to room temperature and 300 ~1 of 

ethanol was added. In model reactions, 85% of N7-methylguanine 

remained in solution while the oligonucleotide duplexes were pre­

cipitated when a similar ethanol precipitation was performed on so­

lutions containing known amounts of commercially prepared N7-

methylguanine and 5 nmol of oligonucleotide 8,9 duplex. This 85% 

yield could not be increased by adjusting conditions and was very 

reproducible. The ethanol precipitation step was necessary to sepa­

rate the oligonucleotide from any reaction product so it was conduct­

ed despite the non-quantitative yield. 

The supernatant from the ethanol precipitation was dried in 

vacuo then the residue was redissolved in 28 ~I of 10 mM ammoni­

um acetate pH 5.5. 25 ~1 of this was injected onto a reverse phase 

HPLC column and diode array detection was used to monitor the re­

sults. As a control, the above reaction scheme was repeated using 

TIP instead of 2. 

Figures 21 and 22 are the HPLC chromatograms of the ethanol 

precipitation supernatants obtained in the large scale CNBr cleavage 
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Figure 21 

HPLC chromatogram (monitored at 270 ±30 nm) of the ethanol 
precipitation supernatant obtained in the large scale CNBr cleavage 
reaction using oligonucleotide 8,9 duplexes containing a single 
residue of 2 in the filled-in region. The filled-in oligonucleotide 8,9 
duplexes were prepared and the CNBr reaction was conducted as 
described in the experimental section (see Figure 20). The sample 
was eluted on a Vydac 201HS5415 4.6 mm x 15 em reverse phase 
column with a 30 min linear gradient of 0-2% acetonitrile in 10 mM 
ammonium acetate pH 5.5 at a flow rate of .5 ml/min. The UV-Vis 
spectra of the different peaks are recorded in the upper left panel. 
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Figure 22 

HPLC chromatogram (monitored at 270 ±30 nm) of the ethanol 
precipitation supernatant obtained in a control of the large scale 
CNBr cleavage reaction using oligonucleotide 8,9 duplexes containing 
a single residue of T in the filled-in region (no 2 ). The filled-in 
oligonucleotide 8,9 duplexes were prepared and the CNBr reaction 
was conducted as described in the experimental section (see Figure 
20). The sample was eluted on a Vydac 201HS5415 4.6 mm x 15 em 
reverse phase column with a 30 min linear gradient of 0-2% 
acetonitrile in 10 mM ammonium acetate pH 5.5 at a flow rate of .5 
ml/min. The UV-Vis spectra of the different peaks are recorded in 
the upper left panel. 
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reactions using oligonucleotide 8,9 duplexes containing 2 and TIP re­

spectively. The ultraviolet-visible absorption (UV-Vis) spectra of the 

different peaks are recorded in the upper left panel of the figures. 

The two chromatograms are virtually identical except for the 

presence of peak 6 in Figure 21 which is not present in Figure 22. 

Therefore, this peak represents the only observed reaction product 

of the complementary-addressed cleavage reaction using CNBr and 2 . 

Figure 23 is the HPLC chromatogram produced by injecting a mixture 

of commercially prepared guanine, adenine and N7 -methylguanine. 

By comparing the retention times and UV-Vis spectra of the 

commercial standards with those of the peaks in Figures 21 and 22 

the following unambiguous assignments were made. Peaks 2 and 5 

in Figures 21 and 22 are guanine and adenine respectively. These 

purines were probably released during the heat treatment. Peak 1 is 

probably residual buffer and peaks 3 and 4 have not been identified. 

Peak 6 in Figure 21 is N7-methylguanine! Therefore, the only 

unique, isolated product of the complementary-addressed cleavage 

reaction using CNBr and 2 is N7 -methylguanine. 

Figures 24 and 25 are the 13-23 minute portions of Figures 21 

and 22 respectively. Figure 26 confirms the identity of peak 6 in 

Figure 21 as N7 -methylguanine by superimposing the UV-Vis spec­

trum of a commercial sample of N7-methylguanine with that from 

peak 6. Figure 27 confirms the identity of peak 5 in Figure 22 (and 

Figure 21 for that matter) as adenine by superimposing the UV-Vis 

spectrum of a commercial sample of adenine with that from peak 5. 
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Figure 28 can be used for comparison with Figures 24-27 and is the 

13 to 23 minute portion of a chromatogram produced by injection of 

commercially prepared adenine and N7 -methylguanine. 

Known amounts of commercially prepared N7 -methylguanine 

were injected in calibration runs and the integrations of those peaks 

were used to quantitate the amount of N7 -methylguanine in peak 6 

of Figure 21. The integration of peak 6 in Figure 21 indicated that it 

represents .295 nmol N7 -methylguanine. Correcting for the expected 

15% loss during the ethanol precipitation and the 3 J..Ll of solution not 

injected into the HPLC, .39 nmol of N7 -methylguanine was produced 

during the CNBr reaction. 

The precipitated oligonucleotides from the large scale reactions 

were loaded onto a denaturing 20% polyacrylamide gel (see Figure 

29). Densitometry performed on the autoradiograph of the gel re­

vealed that the single G residue on the complementary strand two 

bases to the 5' side of the residue of 2 was cleaved with 12% effi-

ciency. 

Proposed Reaction Mechanism Methyl transfer is clearly 

the predominant mechanism of complementary-addressed reaction 

by CNBr and 2 since the .39 nmol of N7-methylguanine calculated to 

have been produced in the reaction accounts for 82% of the expected 

reaction product (based on the 12% cleavage efficiency observed on 

the gel, Figure 29). This 82% rate could actually be higher owing to 

the way the concentration of the purified 8,9 duplex was calculated. 

An E2 6 0 = 6700/phosphate was used to compute the purified 
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Figure 29 

Large scale CNBr cleavage reactions of the oligonucleotide 8,9 duplex. 
Autoradiogram of a 20% denaturing polyacrylamide gel. The 
precipitated oligonucleotide 8,9 duplexes from the large scale CNBr 
reaction were dissolved in 10% aqueous piperidine and heated to 
90°C for 30 minutes. The samples were lyophilized to dryness, the 
residue redissolved in formamide loading buffer and .2 mR/h was 
loaded onto each lane of the gel. G Maxam-Gilbert G reaction. Lane 
1 Oligonucleotide 8,9 duplex filled-in with a residue of 2. Lane 2 
Oligonucleotide 8,9 duplex filled-in with a regular T residue. The 
histogram shows the location of the 3 2 P label as well as the positions 
filled-in by the Klenow enzyme (outlined bases). The position of the 
residue of 2 (H3 CS-U) in relation to the observed guanine cleavage 

site (arrow) is also indicated. Densitometry revealed that the 
absolute cleavage efficiency of the reaction was 12%. 
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oligonucleotide duplex concentration, but this number was derived 

from long pieces of double-stranded DNA exposed to normal salt con­

centrations.72 The isolated oligonucleotide 8,9 duplex absorption 

was measured under low salt conditions which might have caused 

partial denaturing of the strands, thus increasing the observed ab­

sorbance at 260 nm. 3 If this was the case, less than 4 .04 nmol of 

filled-in duplex was actually recovered from the fill-in reaction and 

the percentage of N7 -methylguanine produced relative to expected 

would be higher than reported. 

The apparent production of 3'- and 5'-phosphate termini after 

piperidine treatment is consistent with the methyl transfer mecha­

nism. A detailed mechanism can be proposed for the complemen­

tary-addressed methylation and cleavage reaction caused by 2, CNBr 

and a piperidine workup (see Figure 30). The proposed scheme ac­

counts for all of the observed reaction products and was based on the 

previously proposed scheme for piperidine promoted cleavage at 

methylated guanine· residues of DNA.49 

Computer Modeling An oligonucleotide duplex was built us ­

ing the DNA builder in Biograf version 1.32. The sequence corre­

sponded to the 17 base pairs in the filled-in oligonucleotide 1,2 du­

plex centered around the location of the single residue of 2. The du­

plex was constructed with a regular T residue in place of the residue 

of 2 and the structure was subjected to 5000 steps of energy 

minimization followed by a dynamics run (1 0,000 steps, initial 

temperature 1 ,000°C and final temperature 300°C). 
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The resulting duplex was modified by building the side chain 

from 2 onto the appropriate T residue. In order to approximate a 

linear trajectory of attack, the sulfur atom of the side chain of 2 was 

covalently linked to the N7 position of the reactive guanine residue. 

The covalent linkage was accomplished via a S-C-C-N series of bonds 

wherein the two carbon atoms were sp1 hybridized. Using the C-C 

triple bond insured a linear geometry of the linkage as well as a rel­

atively close S-N distance ( 4.1 A). The geometry of the side chain 

was optimized by fixing the positions of all the atoms on the oligonu­

cleotide duplex and only allowing the side chain atoms to move dur­

ing energy minimization using the Dreiding default parameters. The 

optimized geometry contained reasonable bond angles and distances. 

The sp 1 carbon bonded to the N7 position of guanine was removed 

and the sp1 carbon bonded to sulfur was exchanged for a methyl 

group. The S-C bond length for the methyl group was not readjusted. 

Figure 31 shows the oligonucleotide duplex with the attached 

side chain from the residue of 2. Figure 32 is a close-up shot of the 

same duplex showing the details around the side chain. Figure 33 is 

the same view as Figure 32 except only the residue of 2 and the re­

active guanine are depicted. Figure 34 is the same as Figure 33, but 

viewed from a 90° rotated perspective. Figure 35 is the same as Fig­

ure 32 but only adjacent guanine residues are included. These fig­

ures serve to illustrate a possible linear geometry of the N7-guanine, 

methyl group and sulfur atom as well as the normal bond angles and 

distances of the entire side chain which are possible in such a confor-
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Figure 31 Computer generated illustration of the filled-in oligo-
nucleotide 1 ,2 duplex containing a single residue of 2. 
The side chain of 2 is visible in the major groove of the 
duplex in the center of the figure. The picture was 
generated as described in the text. 
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Figure 32 Closeup view of the same computer generated 
illustration shown in Figure 31. A possible orientation of 
the side chain of 2 just prior to a methylation reaction is 
depicted. 
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Figure 33 Closeup view of the same computer generated 
illustration shown in Figures 31 and 32. Only the 
residue of 2 and the guanine residue observed to react 
are drawn . The linear N7 of guanine-methyl group­
sulfur atom geometry is evident. 
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Figure 34 Same illustration as Figure 33, but viewed from a 
perspective rotated 90°. 



95 

----2 s 

~-.J.--

Figure 35 Closeup view of the same computer generated 
illustration shown in Figure 31 . Only the residue of 2 
and adjacent guanine residues are drawn. 
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mation. Furthermore, since figures 31-35 were intended to depict a 

possible geometry exhibited just prior to a methyl transfer event, 

several observations about the structure should be relevant to the 

observed reaction. 

Analysis of the geometry of the bases in the computer generat­

ed model of the oligonucleotide duplex revealed how the methyl 

transfer reaction might be facilitated by the propeller twist of the 

bases. As is most clearly seen in Figure 34, the 5 position of the 

residue of 2 is predicted to point downward toward the N7 of gua- · 

nine with which it reacts, and similarly the reactive N7 position of 

guanine is predicted to point upward toward the residue of 2. This 

geometry reduces the severity of the angle the side chain of 2 must 

accommodate to allow the methyl transfer reaction. 

The differences in distances and geometries (relative to 2) pre­

dicted for the adjacent guanine residues helps to explain the single 

base reaction specificity observed with the oligonucleotide 1 ,2 duplex 

(see Figure 15). Figure 36 contains a simplified depiction of the 

residue of 2 and a guanine residue which is meant to represent any 

of the guanine residues adjacent to 2 in the computer generated du­

plex. The table in Figure 36 lists relevant distances and geometries 

derived from Figure 35. Of course these angles and distances should 

be thought of as merely probable averages because the duplex is 

certainly flexible and can attain altered conformations in solution. 

Nevertheless, it is informative to compare the distances and angles 

for guanine residues 8,9 and 10; all of which were observed to react 
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CN 

G Residue Position B - C Distance (A) A-B-C Angle 
Relative 
Reactivity 

12 10.1 35° -
10 a.5 66° o.oa 

g a.7 a2° 1.0 

a 10.7 ago o.oa 

7 13.a ago -

1 a g 10 12 Oligonucleotide 1 
~P~CTGTCTGGGGAGTCTCAGCAGTAGTCGTCATCAG~' 

3'-GACAGACCCCUCAGAGTCGTCATCAGCAGTAGTC-5' 
HsCS Oligonucleotide 2 

Figure 36 Some relevant distances and angles derived from the 
computer generated model depicted in Figures 31-35. 
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to some extent. The distances from the atom labelled as "B" on 2 to 

the atoms labelled "C" on the guanines (the N7 position) are 10.7 A, 
8.7 A and 8.5 A respectively for residues 8,9 and 10. The angles 

made by the atoms labelled "A" "B" and "C" are 89°, 82° and 66° re­

spectively for 8,9 and 10. These angles and distances represent the 

angles and distances the side chain would have to span during the 

methyl transfer reaction. The distances for guanine residues 9 and 

10 are similar but the angle is substantially smaller for 10. Con­

versely, the angles for residues 8 and 9 are similar, but the distance 

to residue 8 is longer. Therefore, the single base specificity for reac­

tion at residue 9 observed in the methyl transfer reaction derives 

from angular as well as distance considerations. 

The severe angle (35°) and large distance (10.1 A) that would 

be required for a methyl transfer reaction to residue 12 in the model 

probably explain why the reaction occurs exclusively to the 5' side of 

2 . The observed reaction to the 5' side could therefore be thought of 

as direct evidence for the right-handed nature of the 1,2 duplex in 

solution. 

A similar analysis revealed that intrastrand cleavage is also un­

likely because of the angles involved. This agrees with the observed 

lack of any intrastrand cleavage (data not shown). 

The side chain was constrained in the computer modeling stud­

ies to provide a linear approach of the H3 C-S- to the N7 of guanine 

residue 9. This constraint was based on the known preference of a 

tetrahedral carbon for backside attack 7 3 and the rigorous angular 
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requirements of the methyl transfer reaction using sulfonium com-

pounds. A series of compounds has been reported capable of in-

tramolecular methyl transfer from sulfonium species to nucleophiles 

held m defined geometries. 7 4 In these studies, intramolecular 

methyl transfer was observed only when the nucleophile-H3 C-S- ge-

ometry allowed a linear transition state and even a 20° deviation 

from the desired 180° precluded reaction. 

The computer model building studies failed to produce a rea­

sonable structure that would allow backside attack from the reactive 

N7 of guanine onto the methylene carbon atom a to the sulfonium 

group on the side chain of 2. The analogous a methylene carbon 

atom is known to react during the CNBr-methionine peptide cleavage 

reaction. 65 Thus the model building studies were consistent with 

the observed methyl transfer mode of reaction. 

Studying the side chain of 2 in Figures 32-35 could help to 

explain the observed 12% cleavage efficiency seen m the methyl 

transfer reaction. The side chain appears fairly rigid due to the 

double bond and rigid peptide linkage, but the three methylene 

groups still allow a wide variety of different conformations, only a 

small percentage of which could satisfy the geometrical requirements 

of the methyl transfer reaction. Furthermore, the positive charge on 

the presumed sulfonium intermediate should tend to pull the 

sulfonium group towards the negatively charged DNA phosphate 

backbone and therefore away from the reactive guanine residue. All 

of these "undesirable" conformations should increase the rate of 
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deactivation via hydrolysis of the sulfonium group and thereby help 

to lower the cleavage efficiency to the observed 12%. 

Covalently constraining the methylthioether side chain into a 

conformation conducive to the methyl transfer reaction should dra­

matically increase the efficiency of the reaction. A possible approach 

would involve linking the allylamine and methylthioether functions 

to ortho positions of an aromatic ring. Positively charged groups 

could be attached at other locations on the aromatic ring to help 

position the ring close to the DNA phosphate backbone and thereby 

place the methylthioether function close to the N7 position of a 

targeted guanine residue. 

Another approach to increasing the efficiency of the comple­

mentary-addressed methylation reaction might be to decrease the 

reactivity of the sulfonium species, thereby slowing the hydrolysis 

deactivation reaction. An enzymatically prepared S-adenosylmethyl 

sulfonium or an aromatic cyanomethyl sulfonium species should 

have the desired decrease in reactivity. 

Cleavage Of <t>X174 Single-Stranded DNA 

The application of the complementary-addressed CNBr reaction 

using 2 to methylate and cleave large pieces of single-stranded DNA 

was investigated using linearized, single-stranded <1> X174 DNA. A 

method was developed for enzymatic incorporation of a single 

residue of 2 into an oligonucleotide capable of causing the cleavage 

of <l>X174 DNA to nucleotide resolution. 
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<I> X174 virion DNA is a single-stranded circular DNA of 5386 

bases .7 5 The DNA was linearized at the unique Xho 1 restriction site 

using oligonucleotide 10. Oligonucleotide 10 was annealed to the 

<l>X174 DNA using the usual gentle heat treatment then the DNA was 

digested with Xho 1 restriction endonuclease. The linearized <I> X 1 7 4 

DNA was end-labelled with 32p at the 5' end using the standard T4 

polynucleotide kinase enzyme reaction.4 This DNA was purified by a 

denaturing 5% polyacrylamide gel. 

A single residue of 2 was enzymatically incorporated into 

oligonucleotide 11 which was complementary to a sequence in the 

<I> X174 DNA seventy bases from the 5' end (see Figure 37). 

Oligonucleotide 11 was annealed to the <I> X174 DNA then a Klenow 

enzyme fill-in reaction was conducted in the presence of dATP, dCTP, 

2',3'-dideoxyguanosine 5'-triphosphate (ddGTP) and 2 or TTP. Using 

the ddGTP as a chain terminator3 insured that the Klenow reaction 

stopped precisely after adding eight residues so that only a single 

residue of 2 was incorporated into the filled-in oligonucleotide 11. 

Sodium acetate (pH 5.5) and CNBr were added to final concen­

trations of 25 mM and 16 mM respectively. The reactions were incu­

bated at room temperature for 18 hours then 10% by volume of neat 

piperidine was added and the reactions were heated at 90° C for 20 

minutes. The site-specific cleavage was analyzed on a denaturing 8% 

polyacrylamide gel (see Figure 38). 

Cleavage was observed on the <I> X 17 4 DNA at the expected single 

G residue two bases to the 5' side of where the single residue of 2 
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5386 bp -------1 
---------------------------------------------- 3' 

... ACTGACGCGTTGGATGAGGAGAAGTGGCTTAATAT . .. 

3'CTCCTCTTCACCGAATTA5' 
Oligonucleotide 11 

. . . ACTGACGCGTTGGATGAGGAGAAGTGGCTTAATAT ... 
CTCCTCTTCACCGAATTA 

dATP, dCTP, ddGTP 
and2 

Klenow Enzyme 

. . . ACTGACGCGTTGGATGAGGAGAAGTGGCTTAATAT .. . 
ddGCAACCOACTCCTCTTCACCGAATTA 

I 
~ -~--~H=3cs~------------~ 

32ps· ---------------------------------------------------3' .,.. 
H3CS 

1) CNBr 

2) Piperidine 

32ps· ---- ----------------------------------------------3· 
-165bp 1---

Figure 37 Scheme for the complementary-addressed methy lation 
and cleavage of single-stranded <l>Xl74 DNA using an 
enzymatically incorporated residue of 2 and CNBr. 
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Figure 38 

Cleavage of single-stranded <I> X174 DNA using an enzymatically 
incorporated residue of 2 and CNBr. Autoradiogram of a dried, 
denaturing 8% polyacrylamide gel. <I> X174 was linearized and 

labelled with 3 2p at the unique Xho 1 restriction site as described in 
the experimental section. Oligonucleotide 11 was annealed to 5 
mR/h of the <l>X174 DNA in a 10 J..Ll solution then a Klenow enzyme 
fill-in reaction was conducted in the presence of 4 units Klenow 
fragment, dATP, dCTP, ddGTP (used as a chain terminator) and 2 or 
TTP. After the Klenow enzyme reactions, NaCl and NaOAc pH 5.5 
solutions were added to final concentrations of 5 mM and 25 mM 
respectively. 1 Jl g CT DNA was added and the reactions were 
incubated at room temperature for 18 h with or without 15 mM 
CNBr. 3 J..Ll of neat piperidine was then added and the samples were 
heated at 90°C for 20 min. The samples were lyophilized to dryness, 
the residue redissolved in formamide loading buffer and .5 mR/h 
was loaded onto each lane of the gel. G Maxam-Gilbert G reaction. 
Lane 1 TTP was used in the Klenow enzyme fill-in reaction, the 
resulting solution was reacted with 15 mM CNBr. Lane 2 2 was 
used in the Klenow enzyme fill-in reaction, the resulting solution was 
reacted with 15 mM CNBr. Lane 3 2 was used in the Klenow 
enzyme fill-in reaction, the resulting solution was reacted without 
CNBr. The histogram shows the positions filled-in by the Klenow 
enzyme (outlined bases). The position of the residue of 2 (H3 CS-U) 
in relation to the observed guanine cleavage site (arrow) is also 
indicated. Densitometry revealed that the absolute cleavage 
efficiency of the reaction was 9%. 
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was placed. The observed cleavage efficiency was 9%. Cleavage was 

also observed at an adjacent G residue, but with 0.08 the cleavage 

efficiency observed at the main site of cleavage. 

This methylation and cleavage of <I> X 174 DNA at essentially a 

single nucleotide using an enzymatically incorporated residue of 2 

and a chain terminating 2',3'-dideoxynucleotide 5'-triphosphate rep­

resents a relatively simple and general approach to the programmed 

cleavage of large pieces of single-stranded DNA. The protocol is 

similar to and no more difficult than the Klenow enzyme procedures 

in routine use for Sanger sequencing3 and 3'-end-labelling during 

Maxam-Gilbert sequencing.49 The CNBr and piperidine procedures 

are less involved than the Maxam-Gilbert base specific cleavage 

protocols .49 The CNBr reaction using 2 requires a target sequence of 

the form 3'-AN1GN2-5' where N1 and N2 could be any base (N1,N2 = 

A should be avoided if possible) and the G residue is the predicted 

site of cleavage. As demonstrated in Figure 38, this reaction speci­

ficity coupled to the sequence specificity inherent in oligonucleotide 

delivery give this system potential for use in the programmed 

cleavage of even large pieces of single-stranded DNA to nucleotide 

resolution. 

Ideally, one could design reagents which have different tether 

"reaches". Altering the distance and geometry between the uri dine 

base and the methylthioether function could produce reagents capa­

ble of specific cleavage of sequences of the form 3'-AG-5' or 3'­

AN 1 N 2G-5 '. Such reagents would allow consideration of more poten-
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tial sites of cleavage along a DNA strand, thus adding flexibility to the 

system. 

Cleavage Of <I> X174 Single-Stranded DNA Using An Allyl­

amine Oligonucleotide Post-Synthetically Modified With 

M ethylthioether. 

Synthesis Of 9 The synthesis of 9 was accomplished using 

methods analogous to those for the synthesis of a 2'-deoxyuridine 

derivative carrying a covalently attached EDTA moietyl2 (see Figure 

39). The mercurinucleoside 6 was prepared by treating 2'-deoxyuri­

dine with mercuric acetate.7 6 The production of the N­

trifluoroacetylallylamino derivative 7 turned out to be more difficult 

than expected (see Figure 40). 

Reacting 6, N -trifluoroacetylallylamine and K2PdC l4 in 

methanol/water for 6 hours produced an inseparable mixture of 70% 

7, 30% impurity which was identified by 1 H NMR as the methanol 

addition product known to occur in this type of reaction.76 Synthe­

sis of pure 7 was finally accomplished by conducting the reaction m 

isopropanol/water and stirring for 3 days instead of 6 hours. The fi­

nal purification consisted of vapor diffusion recrystallization with 

hexane from a concentrated ethyl acetate solution. 

The 5' hydroxyl group of 7 was protected by treatment with 

4,4' -dimethoxytriphenylmethyl chloride in pyridine. The product 8 

was purified by flash chromatography then used to prepare 9 by 

treatment with N,N-diisopropylmethylphosphonamidic chloride. 
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Figure 39 Synthetic scheme for preparation of compounds 6-9 . 
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9 was used in automated oligonucleotide synthesis to produce 

oligonucleotide 12. Based on the reactions of model compounds (data 

not shown), it was assumed that the trifluoroacetyl group was re­

moved during the prolonged ammonia treatment (24 hours at 55°C) 

used during the standard oligonucleotide deprotection procedures . 

Cleavage Of <I> X174 Single-Stranded DNA Using Oligonu-

cleotide 12 Purified oligonucleotide 12 was treated with the N -hy­

droxysuccinimide ester of 3-methylthiopropionic acid for 11 hours at 

room temperature. The resulting oligonucleotide was annealed to 

linearized single-stranded <I>X174 DNA 5' end-labelled with 32p as 

before at the Xho 1 site (see Fig 41). Sodium acetate (pH 5.5) and 

CNBr were added to final concentrations of 30 mM and 16 mM re-

spectively. The reactions were incubated for 18 hours at room tern-

perature and treated with piperidine as usual. A denaturing 8% 

polyacrylamide gel revealed specific cleavage at the expected G 

residue 2 bases to the 5' side of the position of the single residue of 9 

(see lane 4 Figure 42) . The observed cleavage efficiency was well 

below that observed using an enzymatically incorporated residue of 

2 (see lane 2 Figure 42). 
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I Automated Oligonucleotide 
Synthesis Using 9 

8-AACCTACTCC~CTTCACCGAA -5' 

HN""'f" CF1 

0 I NH,OH Deprotectlon 

3 '- AACCTACTCCljiCTTCACCGAA -5' 
NH1 

3 '- AACCTACTCCOCTT CACCGAA -5' 
I 

H,C'S~NH 
0 

!
Anneal To cl>X174 DNA 
End-labelled at 5' End 
Of Xho 1 Site 

••. ACTGACGCGTTGGATGAGGAGAAGTGGCTTAATAT ••• 
AACCTACTCCOCTTCACCGAA 

I 
H,C'S~NH 

0 

~ 
32p s·-----------------------------------------------------3· .,.. 

s 
H,C' 

1} CNBr 

2} Piperidine 

32 p 5' - -----------------------------------------------3' -171bpl-

Figure 41 Scheme for the complementary-addressed methylation 
and cleavage of single-stranded <l>X174 DNA using oligo­
nucleotide 12 post-synthetically modified with methyl­
thioether. 
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Figure 42 

Cleavage of single-stranded <I> X 174 DNA using oligonucleotide 12 
post-synthetically modified with methylthioether. Autoradiogram of 
a dried, denaturing 8% polyacrylamide gel. <I> X 17 4 was linearized 

and labelled with 3 2 P at the unique Xho 1 restriction site as 
described in the experimental section. Oligonucleotide 12 was 
treated with the N -hydroxysuccinimide ester of 3-methyl thio­
propionic acid for 11 h at room temperature. The resulting oligo­
nucleotide (Lane 4) or oligonucleotide 11 (Lane 3) was annealed to 
the <I>X174 DNA and NaCl and NaOAc pH 5.5 solutions were added to 
final concentrations of 5 mM and 25 mM respectively. 1 J..Lg CT DNA 
was added and the reactions were incubated at room temperature 
for 18 h with 15 mM CNBr. 2 J..Ll of neat piperidine was then added 
and the samples were heated at 90°C for 20 min. The samples were 
lyophilized to dryness, the residue redissolved in formamide loading 
buffer and .5 mR/h was loaded onto each lane of the gel. G Maxam­
Gilbert G reaction. Lane 1 Same as Lane 1 of Figure 38. Lane 2 
Same as Lane 2 of Figure 38. Lane 3 Oligonucleotide 11 was 
annealed to the <I>X174 DNA prior to the CNBr reaction. Lane 4 
Oligonucleotide 12 that had reacted with the N-hydroxysuccinimide 
ester of 3-methylthiopropionic acid was annealed to the <I>X174 DNA 
prior to the CNBr reaction The histogram shows the position of the 
residue hopefully modified with methylthioether (H3 CS-U) in 
relation to the observed guanine cleavage site (arrow). 
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Attempted Cleavage Of A Double-Stranded Sequence 

Through Formation Of A Triple-Strand 

Oligonucleotide 3 carrying a single residue of 2 on the 3' end 

was prepared as described in Figure 11 and isolated from a dena­

turing 20% gel like that in Figure 12. 

A 628 base pair restriction fragment was prepared and 5' end­

labelled which contained a region known to allow triple-strand for­

mation with oligonucleotides of the same sequence as oligonucleotide 

3. 43 It was expected from CPK model building studies that triple­

strand formation with the oligonucleotide 3 carrying the residue of 2 

on the 3' end would place the methylthioether function in position to 

alkyl ate a G residue adjacent to the triple-strand site (see Figure 43 ) . 

Unfortunately, using various conditions known to promote triple­

strand formation43 • 77, no specific cleavage was observed at the ex­

pected position on the 628 base pair fragment. 

Attempted Complementary-Addressed Modification of Nu­

cleic Acids Using 1,10~Phenanthroline Derivatives 

In an attempt to increase the yield of a complementary-ad­

dressed alkylation reaction, compounds 10 and 12 were synthesized. 

These 1,1 0-phenanthroline derivatives could potentially be used for 

cleavage of DNA through the action of cupric ion and thiol, cobalt(III) 

and UV light or directed alkylation using a cofactor. It was this last 

possibility of directed alkylation using a cofactor that especially mo­

tivated the synthesis of compounds 10 and 12. 
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Oligonucleotide 4 
5'-AGAGAGAGAGAAAAACCCCCC -.3' 

3'-CTCTCTCTCTTTTT -5' 
Oligonucleotide 3 

IKienow Reaction 
Using 2 

5'-AGAGAGAGAGAAAAACCCCCC -3' 
3'-0CTCTCTCTCTTTTT -5' 

I 

H.iCS 

H.iCS 
I I Denaturing 20% 

Polyacrylamide Gel 

3'- 0CTCTCTCTCTTTTT -5' 

H.!CS 
I 

I Formation Of 
Triple-strand With 
628 bp Fragment 

3'- OCTCTCTCTCTTTTT ·5' 
~ •••• • CTATCGATCTCTCTCTCTTTTTATATATA ..••• ~ 
3'- .•.• • GATAGCTAGAGAGAGAGAAAAATATATAT .•••. ·5' 

H.!C 
I 

SCN 

ICNBr 

I 
OCTCTCTCTCTTTTT~ 

~ . . .•. CTATCGATCTCTCTCTCTTTTTATATATA • ••• • ~ 

3'- • . •• • GATAGCTAGAGAGAGAGAAAAATAT:T .•. 7 
5'-=====================~===·=5·===·3'32p ~ ~ I p;peridlne 

5·--------------------- -------·3'32p 

Figure 43 Scheme for the attempted complementary-addressed 
methylation and cleavage of double-stranded DNA 
through formation of a triple-stranded structure. 
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Compound 10 was synthesized by coupling 1 ,10-phenanthro­

line-2-carboxylic acid to compound 1 (see Figure 44). As usual , the 

reaction was monitored using the quantitative ninhydrin reaction. 

After intitial purification on a DEAE Sephadex column, pure 10 was 

isolated using ion exchange HPLC. 

Compound 12 was prepared from reaction of 5-isothiocyanato-

1,10-phenanthroline (compound 11) with compound 1. The product 

was purified by a combination of DEAE Sephadex chromatography 

and reverse phase HPLC. 

Both compounds 10 and 12 were accepted as substrate by the 

Klenow enzyme judging from gels similar to that shown in Figure 10. 

As before, the enzyme fill-in reactions were carried out with the 

oligonucleotide 1,2 duplex, thus the 1,1 0-phenanthroline group was 

incorporated into the duplexes near several guanine residues in the 

major groove of a presumed B form helix. 

Copper-Thiol Cleavage Reactions The oligonucleotide 1 ,2 

duplex containing a single enzymatically incorporated residue of 12 

was incubated with cupric sulfate (2-10 mM) and 3-thiopropionic 

acid (1-5 mM). A small but reproducible amount of cleavage on the 

complementary strand was observed, with the cleavage spread over 

several residues. This cleavage was consistent with that previously 

reported for an oligonucleotide carrying a 1,1 0-phenanthroline group 

on the 5' end. 3 9 

Cobalt(III) Photochemistry The oligonucleotide 1,2 duplex 

containing 12 was incubated with various concentrations of cis-13-
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Co(III)(trien)(H20)(0H)2+ in hopes of forming the 13-Co(trien) chelate 

with the residue of 12. The cis-I3-Co(III)(trien)(H20)(0H) was pre­

pared by stirring 13-Co(III)(trien)(carbonate) with 1 N HCL then neu­

tralizing to pH 7 following the cessation of C02 evolution) 8 It was 

anticipated that a compound 12-13-Co(III)(trien) complex would be 

capable of site specific cleavage of DNA upon photolysis similar to 

other Co(III) complexes of 1,10-phenanthroline derivatives reported 

to cleave DNA in the presence of UV light.79 Various combinations 

of incubation and photolysis protocols failed to produce complemen­

tary-addressed DNA cleavage reproducibly. However, it was discov­

ered that cis-I3-Co(III)(trien)(H20)(0H) and Co(III)(NH3)6 by them-

selves efficiently cleave DNA with "GG" specificity upon photolysis 

(vida infra). 

Attempted Directed Alkylation Using A Cofactor The 

main motivation for synthesizing compounds 10 and 12 was to at-

tempt directed alkylation reactions using cofactors. The proposed 

scheme involved binding of a four-coordinate metal such as cupric 

ion to the 1,1 0-phenanthroline group of 10 or 12 on a hunter strand. 

Subsequent coordination of an alkylating agent cofactor to the vacant 

site(s) on the metal atom would hopefully precisely position as well 

as activate the alkylating agent (see Figure 45). Although not 

catalytic in a formal sense, the 1,1 0-phenanthroline-metal complexes 

should be kinetically labile enough to allow several different 

alkylating agent molecules to coordinate and thereby potentially 

react with the target sequence during the course of the reaction. 
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This alkylating agent "turnover" should allow for a high alkylation 

efficiency in spite of a low inherent efficiency of the individual 

alkylating molecules. 

Oligonucleotide duplexes containing an enzymatically mcorpo­

rated residue of 10 or 12 were used to investigate the difected 

alkylation reaction using cofactors. Several different metals were 

tried as well as a number of potentially coordinating alkylating agent 

cofactors . Aziridine, N-(2-hydroxyethyl)aziridine and ethylene sui-

fide were all examined for alkylating ability in the reaction. It was 

hoped that these cofactor alkylating agents would bind to the metal 

atom (which was coordinated to the 1,10-phenanthroline group of 10 

or 12) and thereby be held in position to be attacked by nucleophilic 

sites on the target strand. Furthermore, binding to the positively 

charged metal atom was expected to enhance the electrophilic prop­

erties of the alkylating agents so that the metal..:alkylating agent co­

ordination could be viewed as an activation event. No combination of 

metal atom, coordinating alkylating agent cofactor and pH was found 

to be capable of site-specific alkylation and cleavage of any of the 

adjacent guanine residues of the oligonucleotide 1,2 duplex with 

either 1 0 or 12 . 

A different strategy was tried involving methionine and CNBr. 

Amino acids are known to coordinate metal ions such as cupric ion 

with high affinity (Kd = 1o- 12 M80) so it was hoped that methionine 

would bind to a metal atom coordinated to a residue of 1 0 or 12. 

Addition of CNBr would then activate the methylthioether group to-
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ward alkylation of the target strand. This strategy also failed to 

produce any site specific alkylation activity with the oligonucleotide 

1,2 duplex. 

The absence of any observed alkylation m the proposed direct­

ed alkylation reaction using 10 or 12 could be explained in a num­

ber of ways. The metal atom may not have been complexing the 

1,1 0 -phenanthroline group and/or alkylating agent cofactors . 1,10-

phenanthroline-metal-DNA phosphate backbone complexation is a 

likely competing reaction. It is also possible that the side chains of 

10 and/or 12 might not have been flexible enough to allow the ge­

ometry required for an alkylation reaction . 

Despite the disappointing results, this directed alkylation using 

cofactors could potentially be turned into a powerful method of 

highly efficient and specific alkylation once proper adjustments in 

system design have been made. 



121 

CONCLUSION 

The studies discussed in the preceding section of this thesis 

have served to illustrate the capabilities of some new strategies for 

complementary-addressed modification of single-stranded DNA. 

First and most important, complementary-addressed methyla­

tion and cleavage to nucleotide resolution was accomplished using as 

the reactive group a methylthioether function activated with CNBr. 

The specificity inherent in the CNBr activated methylthioether 

methylation reaction coupled to the specificity of oligonucleotide de­

livery produced a system capable of cleaving the 5,386 base <1> X 17 4 

genome at essentially a single residue! 

Cleavage was always observed at a guanine residue 2 bases to 

the 5' side of the modified residue carrying the methylthioether 

group. Adjacent guanine residues reacted with an efficiency only 

0.08 as high as that of the primary guanine reaction site. A similar 

reaction at N7 of adenine did not occur. Computer modeling studies 

explained the observed single-base specificity of the reaction m 

terms of the distance and angle the reactive side chain is required to 

span m order to allow reaction. This unprecedented specificity 

serves to illustrate the possible importance of placing a reactive 

group in the center of a hunter strand, so that when it is hybridized 

to a target strand the resulting secondary structure can be exploited 

to promote a highly specific reaction . 

HPLC analysis of the product of the reaction proved that methyl 

transfer was the predominant pathway of reaction and that N7 of 

guanine was the site of methylation on the target strand. High 
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resolution gel electrophoresis showed that a piperidine treatment of 

the specifically methylated target strand produced oligonucleotide 

fragments that migrated consistent with having 3' and 5' phosphate 

termini in analogy to the dimethyl sulfate reaction used for Maxam­

Gilbert chemical DNA sequencing. 

The enzymatic approach to the incorporation of modified bases 

carrying latent reactive groups such as methylthioether proved to be 

a convenient and reliable method of producing hunter strands. 

Modified 2' -deoxynucleotide 5' -triphosphate molecules carrying 

methylthioether groups or even functions as large as 1,10-phenan­

throline were accepted as substrate by the Klenow enzyme. The 

modified bases were selectively incorporated into the middle or 3' 

end of hunter strands opposite A residues on a template (or target) 

strand. The protocol developed for the enzymatic fill-in reaction of 

modified bases is similar to (and no more difficult than) the protocols 

already in routine use for Sanger-sequencing and 3'-end-labelling. 

This enzymatic approach was proven flexible enough to allow for 

strategies which produced hunter strands capable of specifically 

methylating and cleaving single-stranded oligonucleotides as well as 

very long (5386 bases) pieces of single-stranded DNA. 

The absolute efficiency of the complementary -addressed 

cleavage reaction using a CNBr activated methylthioether function 

was ~12%. Hopefully, future side chain designs will be able to 

increase the absolute efficiency of the reaction. 
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In conclusion, the Klenow enzyme-CNBr-methylthioether system 

described in this thesis for complementary-addressed methylation 

and cleavage of single-stranded DNA satisfied the first three of the 

four criteria mentioned in the introduction for general use as a 

single-stranded DNA cleavage strategy. These studies should serve 

as a foundation upon which future work will build a more efficient 

system capable of programmed specific cleavage of single-stranded 

DNA. 
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EXPERIMENTAL PROCEDURES 

1 H nuclear magnetic resonance (NMR) spectra were recorded on 

a JEOL JNM-GX400 FT 400 MHz spectrometer and are reported in 

parts per million (ppm) from tetramethylsilane. 1 9F nuclear mag­

netic resonance spectra were recorded on a JEOL FX 90Q FT spec­

trometer and are reported in ppm from CCl3 F. Ultraviolet-visible 

(UV-Vis) spectra were recorded on a Cary 219 Spectrophotometer or 

a Beckman model 25 Spectrophotometer. Infrared spectra (IR) were 

recorded on a Shimadzu model IR-435 infrared spectrometer. Mass 

spectral determinations (high resolution positive ion fast atom 

bombardment (FAB)) were performed at the Midwest Center for 

Mass Spectrometry at Lincoln, Nebraska; a National Science 

Foundation Regional Instrumentation Facility (Grant No. CHE 

8211164). 

Preparative high pressure liquid chromatography (HPLC) was 

performed with two Altex 110A pumps, an Altex model 420 con­

troller, a Beckman model 165 variable wavelength two channel de­

tector and two Hewlett-Packard 3390A integrators. Analytical HPLC 

was performed with a Hewlett-Packard 1090 liquid chromatograph 

with diode array detection and a Hewlett-Packard 79994A analytical 

work station with a Colorpro 8 pen plotter. Preparative ion-exchange 

HPLC was performed on a Synchrom Inc. Synchropak Q300 4.6 mm x 

25 em anion exchange column using an Upchurch Uptight precolumn 

packed with Q300 material. Preparative reverse phase HPLC was 

performed on an Altex Ultrasphere ODS (5 micron) c18 4.6 mm X 25 
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em column using an Uptight precolumn packed with Beckman ODS 

pellicular material. Analytical reverse phase HPLC was performed on 

a Vydac 201HS5415 4.6 mm x 15 em C18 column using no precol-

umn. Fast protein liquid chromatography (FPLC) of synthetic 

oligonucleotides was performed with two Pharmacia P-500 pumps, 

an LCC-500 controller, UV -2 dual path monitor and Frac-100 fraction 

collector. 

Densitometry was performed by an LKB Ultroscan XL laser den­

sitometer and scintillation counting was performed by a Beckman LS 

3801 scintillation counter. Lyophilization was performed on a Lab­

conco lyophilizer fitted with a liquid nitrogen trap or a Savant 

Speedvac Concentrator. 8% polyacrylamide gels were dried on a Bio-

Rad model 483 slab dryer and all autoradiography was performed 

with Kodak X-Omat AR film. Photographs of preparative 

polyacrylamide gels were taken with Polaroid type 667 film. 

Computer modeling studies were carried out using an Evans and 

Sutherland PS340E/~ Vax II system using Biograf version 1.32 

software . Geometry optimization was performed by running energy 

minimization using the Biograf Dreiding default parameters. 

Polyacrylamide gels were run in IX TBE electrophoresis buffer 

(89 mM Tris-borate pH 8.3, 2mM EDTA). The lyophilized samples 

were redissolved in I X Form amide loading buffer (80% v :v for­

mamide in water, 50 mM Tris-borate pH 8.3, 1 mM EDTA, .1% w:v 

bromophenol blue) before loading onto all denaturing polyacry­

lamide gels and 1/8 volume of lOX glycerol loading buffer (30% v:v 
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glycerol in water, .1% w:v bromophenol blue) was added to each 

sample to be loaded onto a non-denaturing polyacrylamide gel. 

All chemicals were the best available grade and used without 

further purification unless stated otherwise. All water was pretreat­

ed with an organic removal cartridge (Corning) and doubly distilled. 

For the reactions involving oligonucleotides or natural DNA; all 

buffers, reaction vessels and pipette tips (Rainin) were autoclaved 

just prior to use. 

5 • ( 3- amino-trans -1-propenyl)-2 1 -d eoxyuridine 5 1 -tri-

phosphate (1) Prepared essentially according to literature 

methods.46 2'-Deoxyuridine 5'-triphosphate (300 mg, .54 mmol; 

Sigma) and Hg(OAc)2 ( .9 g, 2.7 mmol; Aldrich) were placed in 60 ml 

.1N NaOAc pH 6.0. and the mixture was stirred under argon at 60°C 

for four hours. After cooling on ice, LiCl (228 mg, .54 mmol) was 

added and the solution was extracted 6X 75 ml ethyl acetate to 

remove excess HgCl2. The 5-mercurinucleotide 5'-triphosphate was 

precipitated by the addition of 120 ml cold ethanol and the mixture 

was placed at 4°C overnight. The next morning, the flocculent white 

precipitate was collected by centrifugation into a pellet. The pellet 

was washed 2X 50 ml cold ethanol then dried in vacuo. The 5-

mercurinucleotide 5'-triphosphate was used without further 

purification. The 5-mercurinucleotide 5'-triphosphate was dissolved 

in 40 ml .IN NaOAc pH 5.4 and 4.5 ml of freshly prepared 2 M 

allylammonium acetate pH 5.4 The allylammonium acetate solution 

was made just prior to use by slowly adding .75 ml redistilled allyl 
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amine (13.3 M; Aldrich Gold Label) to 4.25 ml ice cold 4.0 M acetic 

acid. K2PdCl4 (140 mg, .43 mmol: Aldrich) was added to the 

nucleoside-allylammonium acetate solution under argon producing a 

black solution and black precipitate. After 18 hours at room 

temperature, the mixture was filtered ( 45 micron, Millipore) and the 

filtrate was diluted to 185 ml with water. The solution was loaded 

onto an 18 x 200 mm chromatography column packed with DEAE­

Sephadex A-25-120 (Pharmacia) pre-equilibrated with .05 M 

triethylammonium bicarbonate buffer (TEAB) pH 7 .6. The column 

was eluted under slight air pressure with 60 ml each of .1 M, .2 M, .3 

M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, and 1.0 M TEAB pH 7.6. The 

product 1 was identified as the only ninhydrin positive compound 

eluting between .4 M and .5 M triethylammonium bicarbonate. The 

product (188 mg, 42%) was used without further purification. NMR 

(D20) 8 8.05 (lH, s, H6), 6.42 (lH, d, 1=15.9 Hz, -HC=), 6.22 (2H, m, 

=CH-, Ht'), 4.48 (lH, m, H3'), 4.15 (2H, m, H5') 4.02 (1H, m, H4'), 3.52 

(2H, d, J=6 Hz, CH2), 2.22 (2H, m, H2'). 

5- [3- [[3- (Methylthio )propionyl]amino] -tra ns-1-

propenyl]-2' -deoxyuridine 5' -triphosphate (2) 3-Methyl th io­

propionic acid (26.4 mg, .22 mmol; Tokyo Kasei) was placed in 5.0 ml 

DMF (freshly distilled over CaH at reduced pressure) under argon 

along with 1 ,3-dicyclohexylcarbodiimide (DCC) ( 49 mg, .24 mmol; 

Aldrich) and N-hydroxysuccinimide (NHS) (38 mg, .32 mmol; Aldrich, 

recrystallized from ethyl acetate). The solution was stirred at room 

temperature for 12 h then filtered. To the filtrate was added a solu-
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tion of 1 (50 mg, .06 mmol) in 5 ml .1 M sodium borate buffer pH 

8.85. Aliquots ( 40 J.ll) were periodically removed and subjected to a 

quantitative ninhydrin test. 6 9 The reaction was stopped when the 

ninhydrin test detected no more 1 (3-6 h) as evidenced by an ab­

sorbance with Amax= 570 nm. The reaction was diluted with 100 ml 

water and placed upon an 18 x 200 mm DEAE-Sephadex A-25-120 

column pre-equilibrated with .05 M TEAB pH 7 .6. The column was 

eluted under slight air pressure with 40 ml each of .1 M, .2 M, .3 M, 

.4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 1.2 M TEAB. The crude 

product 2 was eluted between .7 M and .8 M TEAB as the last UV ab­

sorbing compound and the pooled fractions were lyophilized to dry­

ness. The crude 2 was redissolved in water and purified by prepar­

ative ion exchange HPLC on a Synchropak Q300 anion exchange 

column monitored at 260 and 290 nm. Compound 2 was the major 

component eluted with a 30 minute linear gradient of 0-0.3 M 

ammomum bicarbonate (AMB) pH 7.6 and a flow rate of .75 ml/min 

(see Figure 7). To avoid bubbles forming in the HPLC pump piston 

chambers, the AMB buffer was chilled in ice during the chromatog­

raphy. The appropriate fractions were pooled and lyophilized to 

dryness to yield the ammonium salt of pure 2 (23 mg, 55%). NMR 

(D20) 8 7.8 (1H, s, H6), 6.28-6.35 (1H, m, =CH-), 6.18-6.23 (2H, m, -

HC=, H 1 '), 4.53-4.55 (lH, m, H3'), 4.08-4.12 (3H, m, H5', H4'), 3.8 (2H, 

d, 1=5 Hz, CH2), 2.66 (2H, t, 1=7 Hz, -CH2-S), 2.49 (2H, t, 1=7 Hz, CH2), 

2.25-2.28 (2H, m, H2') 1.99 (3H, s, S-CH3). UV-Vis (H20) A-max = 239 

nm (E= 10,600), Amin= 267 nm (E= 4100), Amax= 289 nm (E= 7000). 
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IR (KBr) 1650, 1260, 1090, 1040, 800. 

5- [3- [ [3- (M ethylthio )prop ionyl]amino] -trans-1-

propenyl]-2'-deoxyuridine (3) 2 (4 mg, 6 J..lmol) was precipi-

tated from 50 J..ll .4 M NaOAc pH 8.0 by the addition of 150 J..ll ethanol. 

The precipitate was collected by centrifugation and redissolved in 

135 J..ll water. 15 J.J.l lOX CAP buffer (.5 M Tris-HCI pH 9.0, 10 mM 

MgCl2, 1 mM ZnCl2) and 15 J..ll calf alkaline phosphatase (CAP) (10 

units/J..ll, Boehringer Mannheim Biochemicals) were added. The 

reaction was incubated at 37°C for 3 h. The product was isolated by 

preparative reverse phase HPLC as the major component absorbing 

at 290 nm when eluted with a 30 minute linear gradient of 0-15% 

acetonitrile in water. The appropriate fractions were pooled and 

lyophilized to yield pure 3. NMR (D20) 8 7.74 (1H, s, H6), 6.12-6.17 

(3H, m, -HC=, =CH-, H 1 '), 4.32 (1H, m, H3 '), 3.88 (IH, m, H4'), 3.77 (2H, 

d, J=3 Hz, CH2), 3.63-3.69 (2H, m, H5'), 2.66 (2H, t, J= 6.8 Hz, -CH2-S), 

2.46 (2H, t, J= 6.8 Hz, CH2), 2.25 (2H, m, H2'), 1.97 (3H, s, S-CH3). MS 

(high resolution positive ion F AB) calculated for C 16 H 23 N 3 0 6 S 

m/z= 385.1309; found M+H= 386.138586. 

5- [3- [ [2- (M ethylthio )acetyl] amino] -trans-1- propenyl]-

2' -deoxyuridine 5' -triphosphate ( 4) 2 -Methyl thioaceti c acid 

(12.7 mg, .12 mmol; Fluka) was placed in 5.0 ml DMF (freshly 

distilled over CaH at reduced pressure) under argon along with DCC 

(25 mg, .13 mmol) and NHS (19 mg, .16 mmol, recrystallized from 

ethyl acetate). The solution was stirred at room temperature for 12 

h then filtered. To the filtrate was added a solution of 1 (50 mg, .06 
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mmol) in 5 ml .1 M sodium borate buffer pH 8.85. Aliquots (40 ).d) 

were periodically removed and subjected to the quantitative 

ninhydrin test. The reaction was stopped after 3.5 h since there was 

no more detectable 1. The reaction was diluted with 100 ml water 

and placed upon an 18 x 160 mm DEAE-Sephadex A-25-120 column 

pre-equilibrated with .05 M TEAB pH 7 .6. The column was eluted 

under slight air pressure with 40 ml each of .1 M, .2 M, .3 M, .4 M, .5 

M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 1.2 M TEAB. The crude product 4 

was eluted between .7 M and .8 M TEAB as the last UV absorbing 

compound and the pooled fractions were lyophilized to dryness. The 

crude 4 was redissolved in water and purified by preparative ion 

exchange HPLC on a Synchropak Q300 column monitored at 260 nm 

and 290 nm. Compound 4 was the major component eluted with a 

30 minute linear gradient of 0-0.3 M AMB pH 7.6 and a flow rate of 

.75 ml/min. To avoid bubbles forming in the HPLC pump piston 

chambers, the AMB buffer was chilled in Ice during the 

chromatography. The appropriate fractions were pooled and lyo-

philized to dryness to yield the ammonium salt of pure 4. NMR 

(D20) 8 7.82 (1H, s, H6), 6.29-6.38 (1H, m, =CH), 6.18-6.27 (2H, m, -

HC=, H 1 '), 4.53-4.56 (1H, m, H3'), 4.04-4.18 (3H, m, H5', H4'), 3 .82 

(2H, d, CH2), 3.16 (2H, s, -CH2-S), 2.23-2.26 (2H, m, H2') 1.99 (3H, s, 

S-CH3). 

5- [3- [ [ 4- (Methyl thio) bu tanyl] amino] -tra ns-1-

propenyl] -2 1 -deoxyuridine 5 1 -triphosphate (5) 4-Bromo-

butyric acid (500 mg, 3 mmol; Aldrich) was dissolved in 20 ml dry 
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ether and cooled to 0°C. Diazomethane (produced from Diazald and 

the Aldrich diazomethane kit) was added dropwise until the yellow 

color of the diazomethane persisted. The solvent was removed to 

yield pure methyl-4-bromobutyrate. NMR (CDCl3) 8 3.68 (3H, s, 

CH3), 3.47 (2H, t, 1= 6.7 Hz, CH2), 2.52 (2H, t, 1= 7.1 Hz, CH2), 2.18 (2H, 

m, -CH2-). Methyl-4-bromobutyrate (250 mg, 1.4 mmol) and sodium 

thiomethoxide (98.1 mg, 1.4 mmol; Fluka) were placed in 30 ml dry 

acetonitrile under argon. The mixture was stirred for 2 h then fil­

tered and the solvent was removed in vacuo. The product was puri­

fied by flash chromatography on a 3 em x 18 em silica gel column 

eluted with 35% hexane in chloroform to yield pure methyl-4-

(methylthio)butyrate (195 mg, 94%). Thin layer chromatography 

(TLC) ( 40% hexane in chloroform) Rf= .25 visualized as a yellow spot 

by KMn04. NMR (CDCl3) 8 3.68 (3H, s, CH3), 2.54 (2H, t, 1= 7 Hz, 

CH2), 2.45 (2H, t, 1= 7.3 Hz, CH2), 2.09 (3H, s, S-CH3), 1.93 (2H, m, -

CH2-). Methyl-4-(methylthio)butyrate (70 mg, .47 mmol) was placed 

in 5 ml water, I ml methanol and .70 ml 10 N HCl. The reaction was 

heated at 60°C under argon for 36 h. The methanol was removed in 

vacuo, the solution was extracted 4X 10 ml chloroform, the organic 

layer was dried over sodium sulfate and the solvent was removed in 

vacuo to yield pure 4-(methylthio)butyric acid. NMR (CDCl3) 8 2.56 

(2H, t, 1= 6.8 Hz, CH2), 2.51 (2H, t, 1= 7.2 Hz, CH2), 2.09 (3H, s, S-CH3), 

1.94 (2H, m, -CH2-). 4-(Methylthio)butyric acid ( 40 mg, .3 mmol) 

was placed in 5.0 ml DMF (freshly distilled over CaH at reduced pres­

sure) under argon along with DCC (62 mg, .3 mmol) and NHS (40 mg, 
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.35 mmol, recrystallized from ethyl acetate). The solution was 

stirred at room temperature for 12 h then filtered. To the filtrate 

was added a solution of 1 (50 mg, .06 mmol) in 5 ml .1 M sodium 

borate buffer pH 8.85. Aliquots (40 ~1) were periodically removed 

and subjected to the quantitative ninhydrin test. The reaction was 

stopped after 3.5 h since there was no more detectable 1. The reac­

tion was diluted with 100 ml water and placed upon an 18 x 160 mm 

DEAE-Sephadex A-25-120 column pre-equilibrated with .05 M TEAB 

pH 7 .6. The column was eluted under slight air pressure with 40 ml 

each of .1 M, .2 M, .3 M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 

1.2 M TEAB. The crude product 5 was eluted between .8 M and .9 M 

TEAB as the last UV absorbing compound and the pooled fractions 

were lyophilized to dryness. The crude 5 was redissolved in water 

and purified by preparative ion exchange HPLC on a Synchropak 

Q300 column monitored at 260 nm and 290 nm. Compound 5 was 

the major component eluted with a 30 minute linear gradient of 0-

0.3 M AMB pH 7.6 and a flow rate of .75 ml/min. To avoid bubbles 

forming in the HPLC pump piston chambers, the AMB buffer was 

chilled in ice during the chromatography. The appropriate fractions 

were pooled and lyophilized to dryness to yield the ammonium salt 

of pure 5. NMR (D20) 8 7.81 (1H, s, H6), 6.29-6.34 (1H, m, =CH-), 

6.16-6.22 (2H, m, -HC=, H 1'), 4.55-4.57 (1H, m, H3'), 4.08-4.14 (3H, m, 

H 5 ', H4 '), 3.79 (2H, d, CH2), 2.42 (2H, t, CH2), 2.23-2.26 (4H, m, H2 ', 

CH2) 1.96 (3H, s, S-CH3), 1.77 (2H, m, -CH2-). 
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5-mercuri-2'-deoxyuridine (6) The 5 -mercurinucleoside 

was prepared according to literature methods.? 6 2'-Deoxyuridine 

(2.28 g, 10 mmol; Sigma) was placed in 13 ml water along with 

Hg(OAc)2 (3.38 g, 10.6 mmol). The solution was stirred at 50°C for 

16 h then NaCl (1.5 g, 25 mmol) in 10 ml water was added and the 

water was removed in vacuo. The flocculent white powder was 

rinsed 5X methanol , IX ether then dried in vacuo to yield the 5-

mercurinucleoside 6 (4.083 g, 92%) which was used without further 

purification. 

5- [3- [ (trifluoroacetyl)amino] -trans-1-propenyl] -2 '-de­

oxyuridine (7) Allylamine (3.0 ml, 40 mmol) and trifluoroacetic 

anhydride (7.5 ml, 53 mmol; Aldrich) were placed in 40 ml dry ether 

at 0°C under argon. After stirring for 1 h, 10 ml water and 50 ml 

ether were added. The organic layer was washed with saturated 

sodium bicarbonate solution until a neutral pH was obtained. The 

aqueous layers were combined and the solvent was removed in vac­

uo. The pure N-trifluoroacetyl allylamine (5.76 g, 95%) was obtained 

by distillation at reduced pressure. N-trifluoroacetyl allylamine (1 g, 

6.75 mmol) and 6 (500 mg, 1.08 mmol) were placed in 10 ml water 

and 10 ml isopropanol. K2PdCl4 (355 mg, 1.1 mmol) was added and 

the mixture was stirred for three days at room temperature. The 

solution was dried in vacuo then chromatographed on a 3.5 em x 20 

em silica column eluted with 15% methanol in methylene chloride. 

The pooled fractions containing the crude product were dried in vac­

uo then the white brittle foam was redissolved in 12 ml ethyl acetate 
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and crystallized by vapor diffusion with hexane for five days at -

20°C. White crystals of pure 7 (103 mg, 25%) were obtained. Melt­

ing point 167-169°C. TLC (15% methanol in methylene chloride) Rf= 

.45 visualized with short wave UV. IH NMR (d6-DMSO) 8 11.45 

(IH, s, N3), 9.67 (IH, t, NH), 8.06 (IH, s, C6), 6.43- 6.50 (IH, m, =CH-), 

6.14-6.22 (2H, m, H1 ', -HC=), 5.24 (IH, d, J= 4.3 Hz, OH3'), 5.11 (IH, t, 

J= 5.5 Hz, OH s'), 4.23-4.26 (IH, m, H3'), 3.88 (2H, t, J= 5.5 Hz, Hs'), 

3.79 (IH, m, H4'), 3.54-3.65 (2H, m, CH2), 2.08-2.18 (2H, m, H2'). MS 

(high resolution positive ion FAB) calculated for C14H16N306F3 m/z= 

379.0992, found M+H 380.106952. 

5- [3- [ (trifl uoroacetyl)amino] -tra ns-1-prop enyl] -2 '-de-

oxyuridine 5'-[ 4,4'-(dimethoxy)triphenylmethyl] (8) 7 (227 

mg, .64 mmol) was placed in 1.0 ml pyridine (freshly distilled over 

CaH). 4,4'-dimethoxytriphenylmethyl chloride (238 mg, .70 mmol; 

Aldrich) was added and after 5 h methanol (.5 ml) was added. After 

30 min the mixture was concentrated to a gum in vacuo and 

redissolved in methylene chloride. Pure 8 (245 mg, 56%) was ob­

tained as a white brittle foam after chromatography on a silica col­

umn eluted with 4% methanol in methylene chloride. TLC (8% 

methanol in methylene chloride) Rf= .4 visualized by short wave UV. 

1H NMR (CDCl3) 8 10.05 (lH, s, N3), 7.83 (lH, s, C6), 6 .87-7.41 

(13H, m, phenyl) 6.42 (IH, t, H1 '), 6.30 (lH, m, =CH-), 5.38 (IH, d, J= 

15 Hz, -HC=), 4.57-4.63 (IH, m, H3 '), 4.09 (IH, m, H4'), 3.75 (6H, s, 

OCH 3), 3.30- 3.52 (4H, t, m, H5', CH2), 2.30-2.55 (2H, m, H2 '). l9p 

NMR (CDC13) 8 75.72 (s, CF3). MS (high resolution positive ion FAB) 
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calculated for C3 5 H 3 4N 3 0 8 F 3 m/z= 681.2299, found M+Li= 

688.245919. 

S- [3- [ (trifl uoroac etyl)am ino] -trans-1-prop enyl]- 2 1
- de­

oxyurid ine S 1 - [ 4,4 1
- ( dimethoxy)triphenylmethyl] 3 1 -N, N- d i­

isopropylmethoxyphosphoramidite (9) 8 (242 mg, .35 mmol) 

was placed in 7.75 ml methylene chloride (freshly distilled over CaH) 

along with diisopropylethylamine (187 J.d, 1.07 mmol). N,N-Diiso­

propylmethylphosphonamidic chloride (140 J.tl, .7 mmol; Aldrich) was 

added and the reaction was stirred for 2.5 h under argon. The reac­

tion was quenched with 3.5 ml dry methanol then 20 min later 7 ml 

ethyl acetate was added and the solution was washed 2X 10 ml satu­

rated sodium bicarbonate and 1X 10 ml saturated NaCl. The organic 

layer was dried over sodium sulfate and placed on high vacuum 

overnight. The resulting white brittle foam was placed in 3.5 ml dry 

acetonitrile and used for automated oligonucleotide synthesis using 

the standard reaction program. TLC (5% methanol, 1% triethylamine, 

94% methylene chloride) Rf= .2 visualized by short wave UV. 

S- [3- [ [2 -carboxy -1,10- p henan throline] amino]- trans-1-

propenyl]-2 1 -deoxyuridine S 1 -triphosphate (10) 2 -c arb ox y-

1,10-phenanthroline (67.2 mg, .3 mmol; prepared by Rick Ikeda), DCC 

(61.8 mg, .3 mmol) and NHS (40 mg, .35 mmol) were stirred in 23 ml 

DMF under argon overnight at room temperature. The next morning, 

1 (50 mg, .06 mmol) dissolved in 5 ml .1 M sodium borate buffer pH 

8.85 was added to the mixture and the reaction was monitored with 

the quantitative ninhydrin test as usual. After three hours the 
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reaction was complete so the mixture was diluted with 100 ml water 

and placed upon an 18 x 200 mm DEAE-Sephadex A-25-120 column 

pre-equilibrated with .05 M TEAB pH 7 .6. The column was eluted 

under slight air pressure with 40 ml each of .I M, .2 M, .3 M, .4 M, .5 

M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 1.2 M TEAB. The crude product 

10 was eluted between 1.0 M and 1.2 M TEAB as the last UV ab-

sorbing compound and the pooled fractions were lyophilized to dry­

ness. The crude 10 was redissolved in water and purified by 

preparative ion exchange HPLC on a Synchropak Q300 anion 

exchange column monitored at 260 and 290 nm. Compound 10 was 

the major component eluted with a 30 minute linear gradient of 0-

0.3 M ammonium bicarbonate (AMB) pH 7.6 and a flow rate of .75 

ml/min. To avoid bubbles forming in the HPLC pump piston 

chambers, the AMB buffer was chilled in ice during the chromatog­

raphy . The appropriate fractions were pooled and lyophilized to 

dryness to yield the ammonium salt of pure 10. NMR (D20) 8 8.98 

(IH, s, Ar), 8.43 (IH, d, J=8.2 Hz, Ar), 8.38 (IH, d, J=8.5 Hz, Ar), 8.17 

(IH, d, 1=8.2 Hz, Ar), 7.8 (4H, m, H6, Ar), 6.58 (IH, m, =CH-), 6.38 (IH, 

d, 1=16 Hz, -HC=), 6.18 (IH, t, 1=6.9 Hz, Ht'), 4.53-4.58 (IH, m, H3'), 

4.15-4.19 (5H, m, H 4', H5 ', -CH2 -), 2.25-2.28 (IH, m, H2'). UV-vis 

(H20) A-max = 232, A.min = 257, A-max = 279. IR (KBr) 3400, 1700, 

1380, 1260, 1100, 800. 

5- [3- [[5 -thiouryl-1, 10-phenan throlin e] amino- trans -1-

propenyl] -2 1 -deoxyuridine 5 1 -triphosphate (12) 5-amino-

phenanthroline (100 mg, .52 mmol, Polysciences, Inc.) and calcium 
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carbonate (68 mg, .68 mmol) were placed in 10 ml acetonitrile and 

heated to 60°C. Thiophosgene (50 J..tl, .63 mmol, Aldrich) was added 

and the solution was stirred under argon for 4 h. The solvent was 

removed in vacuo then the residue was redissolved m 4 ml DMF and 

filtered. To the filtrate was added 150 ml ether and the precipitated 

11 (69 mg, 56%) was isolated by centrifugation. NMR (d6-DMSO) o 
9.37 (1H, s), 9.29 (1H, s), 8.94 (lH, d, 1=7.7 Hz), 8.87 (1H, d, J=8.0 Hz), 

8.53 (lH, s) 8.19 (2H, m). IR (KBr) 3400, 2800, 2080, 1725, 1590, 

1530, 1495, 1455, 1385, 1230, 900, 720. MS (HREI) calculated for 

C13H7N3S m/z = 237.03621, found m/z = 237.0359. 11 (45 mg, .19 

mmol) and 1 (50 mg, .06 mmol) were dissolved in 7 ml DMF and 5 

ml .1 M sodium borate buffer pH 8.85 and the solution was heated to 

60°C. The reaction was monitored with the quantitative ninhydrin 

test as usual. After 30 min the reaction was complete so the mixture 

was diluted with 100 ml water and placed upon an 18 x 200 mm 

DEAE-Sephadex A-25-120 column pre-equilibrated with .05 M TEAB 

pH 7 .6. The column was eluted under slight air pressure with 40 ml 

each of .1 M, .2M, .3 M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 

1.2 M TEAB. The crude product 12 was eluted between 1.1 M and 

1.2 M TEAB as the last UV absorbing compound and the pooled 

fractions were lyophilized to dryness. The crude 12 was redissolved 

in water and purified by reverse phase HPLC using an Altex 

Ultrasphere ODS column eluted with a 20 min linear gradient of 0-

20% acetonitrile in 8 mM ammonium bicarbonate pH 7.8 . The 

appropriate fractions were pooled and lyophilized to yield the 
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ammonium salt of pure 12. NMR (D20) o 9.05 (2H, m, Ar), 8.7 (2H, 

m, Ar), 8.05 (IH, s, Ar), 7 .85-8.00 (3H, m, H6, Ar), 6.4 (IH, m, =CH-), 

6.2-6.3 (2H, m, -HC=, H1'), 4.53-4.58 (1H, m, H3'), 4.2 (2H, m, -CH2-), 

4.1 (2H, m, H4', H5'), 2.25-2.28 (IH, m, H2') IR (KBr) 3200, 1690, 

1540, 1460, 1420, 1235, 1070, 900, 800, 530. 

Automated Oligonucleotide Synthesis Oligonucleotides (1 

~mol scale) were synthesized by solid phase methods on a Beckman 

System 1 Plus DNA Synthesizer using the standard reaction program, 

phosphoramidite bases and all other reagents supplied by the man­

ufacturer. The synthesis was monitored by following the amount of 

dimethoxytrityl group released after each deprotection cycle. Aver­

age yields per coupling exceeded 98%. 

The oligonucleotides were removed from the resin deprotected 

using the manufacturer's protocol. Following the synthesis, the 

reaction column was dried in vacuo then the resin was removed from 

the column and placed in a 4 ml vial containing 1.5 ml 1:2:2 

thiophenol:triethylamine:dioxane or the Beckman demethylation 

reagent. After 24 h at room temperature, the liquid was carefully 

removed and the resin was washed 3X 1.5 ml methanol and 3X 1.5 

ml ether. The resin was dried in vacuo then 1.5 ml concentrated 

ammonia was added. After 2 h at room temperature, the ammonia 

solution was removed (not discarded) and another 1.5 ml 

concentrated ammonia was added. After 2 h more at room temper­

ature, this second ammonia solution was removed from the resin and 

placed with the first. The combined solutions were dried under a 
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stream of argon and the residue was redissolved in 1.5 ml concen­

trated ammonia. The 4 ml vial was sealed and the solution was 

heated at 55° C for 24 h. The liquid was then dried by an argon 

stream and the residue was redissolved in 1.5 ml water and extract-

ed 3X 1 ml ether. The aqueous layer was concentrated on the 

Speedvac in preparation for purification. 

Purification And Isolation Of Synthetic Oligonucleotides 

.25 Jlmole of oligonucleotide per injection was purified by FPLC on a 

Mono-Q 5 mm x 10 em column eluted at .5 ml per minute with a 90 

minute linear gradient of 10-90% solvent B in solvent A (A= 50 mM 

Tris-HCl pH 7 .0, 20% Acetonitrile; B= 1.0 M KCl, 50 mM Tris-HCl pH 

7 .0, 20% Acetonitrile). 

Alternatively, .25 mmole of deprotected oligonucleotide was 

purified by loading (in formamide loading buffer) onto two lanes of a 

2 mm x 20 em x 38 em 15% polyacrylamide gel (1:20 crosslinked, 

42% urea). The gel was run at 750 volts for 6-12 h. The 

oligonucleotide bands were visualized with a hand held UV light 

(short wave) and the desired band excised from the gel. The gel slice 

was crushed then placed in the minimum amount of .2 M NaCl and 

eluted overnight at room temperature. The mixture was filtered and 

the supernatant containing the oligonucleotide was collected. 

In either case (FPLC or gel isolation), the purified oligonu­

cleotide was dialyzed at 4 °C in Spectropore 7, 7.6 mm diameter 2000 

molecular weight cutoff (MWCO) dialysis tubing (Spectrum Medical 

Industries) against 3X 4000 ml of .25 mM NaPhosphate pH 7.6, .02 
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mM EDTA. The concentrations of the purified oligonucleotides were 

determined by measuring their UV absorbance at 260 nm in a 1 em 

path length cell and using the equation: 

[Oligonucleotide] = Absorbance at 260 nm 
(lO,OOO)(number of bases in oligonucleotide) 

Oligonucleotides were checked for purity by determining their UV 

absorbance at 280 nm and were only used if the A260/ A280 > 1.8.4 

5' -End-labelling Of Oligonucleotides Purified oligonucleo-

tide (.30 nmol) was placed in 34 Jll water and 5 Jll lOX kinase buffer 

(.7 M Tris-HCl pH 7.6, .1 M MgCl2). 5 111 of 50 mM dithiothreitol 

(DTT) was added followed by 3 111 of y-32P-adenosine 5'-triphosphate 

(y-32P-ATP) (> 7,000 Ci./mmol, New England Nuclear) and 2 Jll of 

polynucleotide kinase (10 unitS/Jll, New England Biolabs). The re­

action was incubated for 45 min at 37°C, then another 2 Jll of the 

polynucleotide kinase was added. After another 45 min at 37°C, the 

reaction was ethanol precipitated by adding 5 Jll (10% volume) of 4 

M sodium acetate then 150 111 (3X volume) ethanol. The reaction was 

chilled in dry ice for 5 min then spun in a mini-centrifuge 

(Eppendorf model 5412, Brinkman) at 12,000 revolutions per min for 

8 min at 4°C. The supernatant was removed and the resulting 

radioactive pellet was washed with 50 Jll 70% aqueous ethanol then 

dried briefly (2 min) in vacuo. 

Annealing of Oligonucleotides The newly 5'-3 2P-labelled 

oligonucleotide pellet was redissolved in 50 Jll water and 18 Jll 1 OX 
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Klenow buffer (60 mM Tris-HCl pH 7.4, 500 mM NaCl, 60 mM MgCl2) . 

The complementary oligonucleotide (.30 nmol) was added followed 

by enough water to make a final volume of 120 ).d. The solution was 

placed in a water bath (80 ml of water in a beaker) which was pre­

heated to 60° C. The water bath was removed from heat and the 

oligonucleotides were incubated in the water bath long enough for 

the temperature to fall to room temperature (1 h) . 

Analytical Scale Klenow Fragment Fill-in Reaction On 

Annealed Oligonucleotides; Enzymatic Incorporation Of 2, 4 

And 5 1/3 of the newly annealed oligonucleotide solution was used 

for each fill-in reaction. To the 40 ).11 of oligonucleotide duplex 

solution was added 6 ).ll of 50 mM DTT followed by 15 ).ll of a solution 

containing 3 mM each of 2'-deoxyguanosine 5'-triphosphate (dGTP), 

2'-deoxyadenosine 5'-triphosphate ( dA TP) and 2'-deoxycytidine 5'­

triphosphate (dCTP). Depending on the product desired, 5 ).ll of a 10 

mM solution of 2 (or 4 or 5) or thymidine 5'-triphosphate (TTP) was 

added followed by 3 ).ll of the Klenow fragment of DNA polymerase 1 

(1 unit/).ll, Boehringer Mannheim Biochemicals). The reaction was 

incubated at 37°C for 20 min and quenched by the addition of 8 ).ll of 

glycerol loading buffer. 

Purification And Isolation Of Filled-in Oligonucleotide 

Duplexes. The quenched Klenow fragment reaction was loaded onto 

two 1 em wide lanes of a 2 mm x 160 mm x 160 mm 15% non-de­

naturing polyacrylamide gel (1-20 crosslink, no urea). The gel was 
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electrophoresed at 240 volts until the bromophenol blue dye had 

reached 2 em from the bottom of the gel ( 4-5 h). 

The oligonucleotide duplexes were visualized by staining with 

ethidium bromide. To stain the oligonucleotide duplexes in the gel, 

the glass plates were removed and the gel was gently shaken in 200 

ml of a 5 J.l.g/ml ethidium bromide solution for 20 min. The gel was 

rinsed with water and placed on a short wave UV transilluminator 

(Fotodyne Model 3-3000). The uppermost band corresponded to the 

completely filled-in duplexes so this band was excised from the gel, 

crushed and placed in a 1.5 ml bullet vial. 

Alternatively, the oligonucleotide duplexes could be visualized 

m the gel simply be removing the glass plates and placing the gel 

upon a fluorescent TLC plate. The duplexes appeared as dark bands 

when illuminated with a hand-held short wave UV light. The up­

permost band was excised from the gel, crushed and placed in a 1.5 

ml bullet vial. 

To the crushed gel slices containing the filled-in oligonucleotide 

duplexes was added the minimum amount of .2 M NaCl solution re­

quired to cover the material (300-750 ~-tl). This was incubated at 

room temperature under argon for 8 h. The mixture was filtered and 

the filtrate was placed in 2000 MWCO dialysis tubing and dialyzed 

against 2X 4000 ml .25 mM NaPhosphate pH 7.5, .02 mM EDTA at 4°C 

under a blanket of argon. The DNA solutions derived from gels that 

were stained with ethidium bromide were extracted 2x 200 J.!l n-
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butanol (to remove the ethidium bromide) before being placed in the 

dialysis tubing. 

Cyanogen Bromide (CNBr) Cleavage Reactions Using 

Oligonucleotide Duplexes Containing 2, 4 or 5 2 mR/h of the 

radioactively-labelled, filled-in duplex was placed in a .5 ml bullet 

vial along with 1 Jll 50 mM NaCl, 2.5 Jll 100 mM sodium acetate 

(NaOAc) pH 5 .5 and 1 Jll of a 1 mg/ml solution of sonicated calf 

thymus DNA (CT DNA)(Sigma). The total volume was adjusted to 8 Jll 

with water then 2 Ill of 100 mM CNBr was added. The reaction was 

incubated in the sealed vial (usually 6-24 h) at room temperature 

then 2 Ill of 50% aqueous piperidine (Sigma) was added. The reaction 

was heated at 90°C for 20 min then frozen in dry ice and lyophilized 

to dryness. The residue was dissolved in 20 J.tl formamide loading 

buffer. The formamide solution was heated at 90°C for 3 min then 

chilled in an ice bath for 5 min. 2 Ill of the chilled formamide 

solution (approximately .2 mR/h) was loaded per lane of a .4 mm x 

32 em x 38 em 20% denaturing polyacrylamide gel (1 :20 crosslinked, 

42% urea). The gel was electrophoresed at 1400 volts until the 

bromophenol blue reached the desired location (the bromophenol 

blue runs with an oligonucleotide of 8 base pairs in length). After 

electrophoresis, one glass plate was removed, the gel was covered 

with plastic film (Saran Wrap) and autoradiographed. 

The cleavage efficiency of the reaction was determined both by 

densitometry of the autoradiograms and by scintillation counting. 

The scintillation counting was performed by running a gel with 2 
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mR/h total radioactivity in each lane. The area of the gel containing 

the cleaved band was excised as was the area of the gel representing 

uncleaved oligonucleotide or background reaction. The gel pieces 

were crushed then placed in 2 ml 15% hydrogen peroxide solution 

and heated at 55°C for 12 h. This treatment was used to break up 

the polyacrylamide and allow the radioactivity to get into solution. 

18 ml of Safety Solve (Research Products International, 

Incorporated) was added and the samples were counted. The 

scintillation counting results agreed with the densitometry results 

suggesting the accuracy of each method. 

Large Scale Klenow Fragment Fill-in Reaction Using 

Oligonucleotides 8 and 9. 150 J.ll of 68 J.lM oligo 8 and 75 J.ll of 

138 J.lM oligo 9 were placed in a 1.5 ml bullet vial along with 10 

mR/h of s·-32P-end-labelled oligonucleotide 8. 75 Ill of lOX Klenow 

buffer was added and the solution was placed in an 80 ml water bath 

at 60°C and allowed to cool to room temperature over 1 h. 300 J.ll of 

a solution with 3 mM each of dATP, dGTP, dCTP was added followed 

by 100 J.ll of 10 mM 2 or 100 J.ll of 10 mM TIP. 50 J.ll of 5 units/J.ll 

Klenow fragment was added and the reaction was incubated at 37°C 

for 25 min. 85 ~-tl of glycerol loading buffer was added to quench the 

reaction and the entire sample was loaded onto seven continuous 

(the lane teeth were removed) 1 em wide lanes of a 2 mm x 160 mm 

x 160 mm 15% non-denaturing polyacrylamide gel (1-20 crosslink, 

no urea). The gel was electrophoresed at 240 volts for 3 h. The 

oligonucleotide was visualized with a hand held short wave UV light 
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and the uppermost band corresponding to the completely filled-in 

duplex was excised from the gel and crushed. 

500 J.Ll of .2 M N aCl was added to the crushed gel slices and the 

mixture was incubated at room temperature under argon for 6 h. 

The supernatant was removed and 600 J . .d .2 M NaCl was added to the 

gel fragments. After 8 h the supernatant was again removed and the 

combined supernatants were dialyzed against 4000 ml water for 10 

h under a blanket of argon at 4°C. 4.04 nmol of duplex filled-in with 

2 and 2.67 nmol of duplex filled-in with TTP was recovered (based 

on £260 = 6700/phosphate for double-stranded DNA 7 2) . 

Large Scale CNBr Cleavage Reaction And Isolation Of 

N7- Methylguanine. The filled-in oligonucleotide duplex solution 

was lyophilized to 50 ~1 then 25 ~1 of 100 mM NaOAc pH 5.5 and 25 

~1 of 100 mM CNBr were added. The solution was incubated for 36 h 

at room temperature. The solvent was evaporated with a stream of 

argon then the sample was placed under high vacuum for 3 h. The 

pellet was then redissolved in 100 ~1 water and heated at 90°C for 70 

min to liberate any N7 -methylguanine from the oligonucleotide 

d up 1 ex. 4 8 300 ~ 1 ethanol was added and after 15 min at room 

temperature, the mixture was spun at 12,000 rpm for 10 min. The 

supernatant was removed and evaporated to dryness. The residue 

was redissolved in 28 ~1 10 mM ammonium acetate pH 5.5 and 

injected onto the HPLC. 

Analytical HPLC Of Reaction Products 25 ~1 of the solution 

containing the residue from the ethanol supernatant was loaded onto 
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a Vydac 201HS5415 4.6 mm x 15 em C1 8 column using no 

precolumn. The sample was eluted with a .5 ml/min flow rate and a 

30 min linear gradient of 0-2% acetonitrile in 10 mM ammonium 

acetate pH 5.5. The amount of N7-methylguanine observed in the 

reaction was quantified by comparing the integrated peak area with 

the peak areas of standard samples of commercially prepared N7-

methylguanine (Sigma) of known amount. 

Gel Analysis Of Reaction Products The oligonucleotide 

pellet obtained in the ethanol precipitation step of the large scale 

CNBr cleavage reaction and product isolation was redissolved in 60 ~1 

water. 30 j..ll (2 mR/h) of this solution was placed in a .5 ml bullet 

vial and 3 ~1 neat piperidine was added. The reaction was heated at 

90 oc for 20 min then frozen, lyophilized to dryness and the residue 

was redissolved in 20 ~1 formamide loading buffer. The loading 

buffer solution was heated at 90°C for 3 min then cooled in ice for 5 

min and 2 ~ 1 was loaded onto a .4 mm x 32 em x 38 em 20% 

denaturing polyacrylamide gel (1 :20 crosslinked, 42% urea). The gel 

was autoradiographed at -70°C (with no intensifier screen) and the 

amount of site specific cleavage (12%) was determined by 

densitometry. 

Linearization And 5'-End-labelling Of <I> X174 At The 

Xho 1 Site 10 ~g of single-stranded <I> X174 virion DNA (New 

England Biolabs) was ethanol precipitated then redissolved in 70 ~I 

water and 10 ~1 lOX Xho 1 buffer (1.5 M NaCI, 100 mM Tris-HCI pH 

8.0, 100 mM MgCI2). 10 ~I of oligonucleotide 10 (10 j.l.M) was added 
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and the solution was placed in an 80 ml water bath preheated to 

60°C. The solution was allowed to cool to room temperature in the 

water bath ( 1 h) then 10 IJ.l of 50 mM DTT and 7 IJ.l of Xho 1 

restriction endonuclease (15 units/IJ.l, New England Biolabs) were 

added. After 4 h at 37°C, the DNA was ethanol precipitated then 

redissolved in 80 J.!l water and 10 !J.l lOX CAP buffer. 3.5 IJ.l of CAP 

(19 units/IJ.l) was added and the reaction was incubated at 37°C for 

45 min . The solution was extracted 2X 100 IJ.l phenol (freshly 

equilibrated with Tris base to a final pH of 7 .0), IX 100 IJ.l chloroform 

(1 :24 chloroform: isoamyl alcohol) and 3X 900 J.!l ether. The DNA was 

then ethanol precipitated and dissolved in 70 J.!l water and 10 IJ.l lOX 

kinase buffer (700 mM Tris-HCl pH 7.6, 10 mM MgCl2). The pellet 

was allowed to dissolve at 4°C for 10 h. 3 IJ.l of y-32P-ATP, 10 IJ.l of 

50 mM DTT and 7 !J.l polynucleotide kinase (10 units/IJ.l) were added 

and the solution was incubated at 37°C for 45 min. 10 IJ.l neat 

piperidine was added and the solution was -heated at 90°C for 30 min 

(this piperidine treatment was used to remove any depurinated DNA 

strands from the DNA so the cleavage gels would have less unwanted 

background cleavage). The DNA was ethanol precipitated then redis­

solved in 30 IJ.l formamide loading buffer, heated at 90°C for 2 min, 

cooled in ice for 5 min and loaded onto a 2 mm x 160 mm x 160 mm 

5% denaturing polyacrylamide gel (1 :20 crosslinked, 50% urea) and 

electrophoresed at 240 volts for 5 h. The DNA in the gel was stained 

with ethidium bromide by removing both glass plates and gently 

shaking the gel in 200 ml of a 5 IJ.g/ml ethidium bromide solution for 
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20 mm. The gel was rinsed with water and placed on a short wave 

UV transilluminator. The uppermost band corresponded to the 

linearized, 5'-end-labelled DNA so this band was excised from the gel 

and placed in an Elutrap (Schleicher and Schuell). The DNA was 

eluted from the gel slice for 5 h at 100 volts. The isolated DNA 

solution was extracted 2x 200 J.ll n-butanol then placed in 2000 

MWCO dialysis tubing and dialyzed against 2x 4000 ml .25 mM 

NaPhosphate pH 7.5, .02 mM EDTA at 4°C. 

Klenow Fragment Fill-in And CNBr Cleavage Reactions 

Using <l> X174 DNA And 2 2 mR/h of the 5'-end-labelled <l> X 1 7 4 

DNA linearized at the Xho 1 site was placed in a .5 ml bullet vial 

along with 1 111 of lOX Klenow buffer and 1 111 of oligonucleotide 11 

(10 11M). The solution was placed in an 80 ml water bath that was 

preheated to 60°C and allowed to cool to room temperature in the 

water bath (1 h). 1 111 of 50 mM DTT was added along with 3 111 of a 

solution containing 3 mM each of dATP, dCTP and 2',3'-dideoxy­

guanosine 5'-triphosphate (ddGTP) (Boehringer Mannheim Biochem­

icals). 1 111 of 10 mM 2 (or TTP for the control reaction) was added 

followed by 2 111 of 2 units/Ill Klenow fragment and the reaction was 

incubated at room temperature for 1 h. 

7.5 111 of 100 mM NaOAc pH 5.5, 20 mM NaCl was then added 

along with 1 111 of 1 mg/ml CT DNA and 9 111 of 50 mM CNBr. The 

reaction was incubated in the sealed vial at room temperature for 18 

h then 3 111 of neat piperidine was added and the solution was heated 

at 90°C for 20 min. The sample was frozen, lyophilized to dryness 
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and the residue was redissolved m 20 J.ll formamide loading buffer. 

The loading buffer solution was heated at 90°C for 3 min then cooled 

in ice for 5 min and 2 J.ll was loaded onto a .4 mm x 32 em x 38 em 

8% denaturing polyacrylamide gel (1 :20 crosslinked, 50% urea) . The 

gel was transferred to a piece of filter paper (3MM Chr, Whatman), 

dried by heating to 80°C in vacuo (model 438 slab dryer, Bio-Rad) 

for 45 min and autoradiographed. The site specific cleavage 

efficiency was determined by densitometry. 

CNBr Cleavage Of <I> X174 DNA Using An Allylamine­

Oligonucleotide Post-synthetically Modified With Methyl­

thioether 3-Methylthiopropionic acid (26.4 mg, .22 mmol) was 

placed in 5.0 ml dry acetonitrile under argon along with DCC (49 mg, 

.24 mmol) and NHS (38 mg, .32 mmol, recrystallized from ethyl ac­

etate). The solution was stirred at room temperature for 12 h then 

filtered. The solvent was removed from the filtrate in vacuo. The 

residue was redissolved in 5.0 ml DMF and 10 J.ll of this solution was 

added to 50 J.ll of .1M sodium borate buffer pH 8.85, containing 1 

nmol of oligonucleotide 12 (the oligonucleotide contained a single al­

lylamine group on the 11th residue from the 5' end). This reaction 

was incubated at room temperature for 11 h under argon. The 

oligonucleotide was then ethanol precipitated and the pellet was 

redissolved in 400 J.ll water. 

1 J.ll of the 400 J.ll solution containing the modified oligonu­

cleotide 12 was added to 2 mR/h of 5'_32P-end-labelled <l>X174 DNA 

linearized at the Xho 1 site. The volume of the reaction was adjusted 
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to 5 ~1 with water and 1 ~1 lOX Klenow buffer (to maintain pH during 

annealing) was added. The solution was placed in an 80 ml water 

bath preheated to 60°C. The annealing reaction was allowed to cool 

to room temperature in the water bath (1 h) and 1 ~I of 1 mg/ml CT 

DNA, 1 ~1 of .1M NaCl, 7.5 ~I 100 mM NaOAc pH 5.5 and 6 ~1 50 mM 

CNBr were added. The reaction was incubated in the sealed vial at 

room temperature for 18 h then 3 ~I of neat piperidine was added 

and the solution was heated at 90°C for 20 min. The sample was 

frozen, lyophilized to dryness and the residue was redissolved in 20 

~1 formamide loading buffer. The loading buffer solution was heated 

at 90°C for 3 min then cooled in ice for 5 min and 2 ~1 was loaded 

onto a .4 mm x 32 em x 38 em 8% denaturing polyacrylamide gel 

(1 :20 crosslinked, 50% urea). The gel was transferred to a piece of 

filter paper (3MM Chr, Whatman), dried by heating to 80°C in vacuo 

for 45 min and autoradiographed. The site specific cleavage efficien­

cy was determined by densitometry. 

Preparation Of Oligonucleotide 3 Carrying A Terminal 

Methylthioether Residue For Attempted Triple-Stranded 

Cleavage Reaction 20 ~1 of 48 ~M oligonucleotide 3 and 20 ~1 of 

48 ~M oligonucleotide 4 were added to 30 ~1 water and 10 ~1 lOX 

Klenow buffer in a .5 ml bullet vial. The solution was placed in an 80 

ml water bath preheated to 60°C. The annealing reaction was al­

lowed to cool to room temperature in the water bath (1 h) then 10 ~I 

10 mM 2 was added followed by 9 ~1 of 2 units/~1 Klenow fragment. 

The reaction was incubated at room temperature for 20 min then 
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ethanol precipitated. The oligonucleotide pellet was redissolved in 

20 J.ll formamide loading buffer, heated at 90°C for 2 minutes, cooled 

in ice for 5 min then loaded onto a 2 mm x 20 em x 20 em 15% 

denaturing polyacrylamide gel (1 :20 crosslinked, 50% urea) 

electrophoresed at 320 volts for 3 h. The DNA on the gel was 

visualized with a hand-held short wave UV light and the band 

corresponding to the filled-in oligonucleotide 3 (middle band on gel) 

was excised from the gel. The gel slice was crushed, 500 J.ll of .2 M 

NaCl was added and the mixture was incubated at room temperature 

for 8 h under argon. The mixture was filtered, the filtrate placed in 

1000 MWCO dialysis tubing (Spectropore 7, Spectrum Medical 

Industries) and dialyzed against 2X 4000 ml .25 mM NaPhosphate pH 

7.5, .02 mM EDTA. 

Attempted Cleavage Of Double-Stranded DNA Through 

Formation Of A Triple-Stranded Structure 11 J.1 g of plasmid 

pDMAGlO (prepared by Dave Mendel) in 90 J.ll water was placed in a 

1.5 ml bullet vial along with 10 1.11 lOX EcoR1 buffer (1 M Tris-HCl pH 

7.5, .5 M NaCl, .1M MgCl2) and 2 J.ll 20 units/J.ll EcoRl restriction 

endonuclease (New England Biolabs) was added. The reaction was 

incubated at 37°C for 3 h then ethanol precipitated. The DNA pellet 

was redissolved in 40 J.Ll water and 5 J.ll lOX Klenow buffer then 2 J.ll 

10 mM TTP, 2 J.ll a-32p_2'-deoxyadenosine 5'-triphosphate (>3000 

Ci/mmol, Amersham) and 2 J.ll of 5 units/J.1l Klenow fragment were 

added. The reaction was incubated at 37°C for 20 min then ethanol 

precipitated. The pellet was redissolved in 40 J.!l water and 5 J.ll lOX 
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Bgl I buffer (.66 M NaCl, .I M Tris-HCl pH 7.4). 3 ~1 of 8 units/~1 of 

Bgl I restriction endonuclease (New England Biolabs) was added and 

the solution was incubated at 37°C for 5 h. 8 ~1 of glycerol loading 

buffer was added to quench the reaction and the sample was loaded 

onto a I em wide lane of a 2 mm x I60 mm x I60 mm 5% non­

denaturing polyacrylamide gel (I-20 crosslink, no urea). The gel was 

electrophoresed at 240 volts for 3 h. The band corresponding to the 

628 base pair fragment was excised from the gel, the DNA was 

isolated with the Elutrap then placed in 2000 MWCO dialysis tubing 

and dialyzed against 2X 4000 ml .25 mM NaPhosphate pH 7 .5, .02 

mMEDTA. 

2 mR/h of the 628 base pair DNA fragment and I ~I of IO ~M 

oligonucleotide 3 containing a single residue of 2 (on the 3' end) 

were placed in each of several .5 ml bullet vials. 1.5 ~I of 200 mM 

NaOAc pH 5.5 or 6.5 was added along with I ~I of I M NaCl and vari­

ous combinations of spermidine, Co(III)(NH6)Cl3, ethylene glycol, 

ethanol, tetrahydrofuran, MgCl2, and CuCl2 (all are reagents known 

to promote triple helix formation43, 77 ). 2.5 ~1 of I 00 mM CNBr was 

added and the sealed reactions were incubated at 0°C for 24 h. 2 ~1 

of 50% aqueous piperidine was then added and the solutions were 

heated at 90°C for 20 min, frozen in dry ice, lyophilized to dryness 

and the residue redissolved in 20 ~I formamide loading buffer. The 

loading buffer solution was heated at 90°C for 3 min then cooled in 

ice for 5 min and 2 ~1 was loaded onto a .4 mm x 32 em x 38 em 8% 

denaturing polyacrylamide gel (1 :20 crosslinked, 50% urea). The gel 
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was transferred to a piece of filter paper (3MM Chr, Whatman), dried 

by heating to 80°C in vacuo for 45 min and autoradiographed. 

Attempted Complementary-Addressed Cleavage Reac-

tions Using 10 and 12. Oligonucleotide 1,2 duplexes were 

prepared containing a single enzymatically incorporated residue of 

10 or 12 exactly as described for 2. 

The Copper-Thiol Reaction The copper-thiol cleavage 

reactions were run in a 10 J..Ll volume by incubating .2 mR/h of 

oligonucleotide 1,2 duplex containing a residue of 12 with 100 J.lM CT 

DNA, 2-10 J.lM cupric sulfate and 1-5 mM 3-thiopropionic acid for 1 h 

at room temperature. The samples were frozen in dry ice, 

lyophilized to dryness and the residue redissolved in 2 J.ll formamide 

loading buffer. The loading buffer solution was heated at 90°C for 3 

min then cooled in ice for 5 min and the 2 J.ll was loaded onto a .4 

mm x 32 em x 38 em 20% denaturing polyacrylamide gel (1 :20 

crosslinked, 42% urea). The gel was electrophoresed and auto­

radiographed as usual. 1-5 mM DTT and 1-5 mM sodium ascorbate 

were also tried as reducing agents, but 3-thiopropionic acid was the 

only reagent which allowed any cleavage. 

Attempted Photochemical Cleavage Using Co(lll) 

Derivatives Photochemical cleavage using Co(III) complexes of the 

1,1 0-phenanthroline group of 12 in oligonucleotide 1,2 duplexes was 

attempted. Attempts were made to synthesize the Co(III)-12 

complexes by incubating various concentrations of cis -13-
Co(III)(trien)(H20)(0H) ( .01-10 mM) with the oligonucleotide duplex 
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(.5 mR/h) in various buffers (1-10 mM sodium cacodylate pH 7.0, 1-

10 mM borate buffer pH 8-10 and sodium acetate pH 5.5) for various 

lengths of time (16-30 h) at room temperature. These samples were 

dialyzed against 4 1 of .5 mM sodium phosphate pH 7.5 at 4°C for 36 

h. The samples were then photolyzed at room temperature in a 

quartz cuvette for various amounts of time with a focused beam of 

light from a high pressure Hg-Xe photolysis lamp (Oriel model 6140) 

filtered through a pyrex filter (A. ~ 300 nm). After photolysis, 2 ~ 1 

neat piperidine was added to each 20 ~I reaction and the samples 

were heated to 90° C for 20 mm, frozen in dry ice, lyophilized to 

dryness and the residue redissolved in 2 ~I formamide loading 

buffer. The loading buffer solution was heated at 90°C for 3 min 

then cooled in ice for 5 min and the 2 ~1 was loaded onto a .4 mm x 

32 em x 38 em 20% denaturing polyacrylamide gel (1:20 crosslinked, 

50% urea). The gel was electrophoresed and autoradiographed as 

usual. 

The cis-!3-Co(III)(trien)(H2 O)(OH) was prepared just prior to use 

by placing 13-Co(III)(trien)(carbonate) (72 mg, .2 mmol; Sigma) in 5.0 

ml 1.0 N HCl. The solution was stirred for 1 h then the pH was raised 

to 7.0 by the addition of concentrated NaOH.78 

Attempted "Catalytic" Alkylation The "catalytic" alkylation 

reactions were attempted using oligonucleotide 1,2 duplexes 

containing a single enzymatically incorporated residue of 10 or 12 . 

. 5mR/h samples of duplex were placed in .5 ml reaction vials 

containing 1-10 mM sodium cacodylate or borate buffer pH 7.0-10.0 
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and 100 ~-tM CT DNA. 2 ~-tM-2 mM cupric sulfate, cupric acetate, zinc 

sulfate or nickel sulfate was added and the reactions were incubated 

for 0-1 h. To these solutions were added aziridine (1 ~-tM-2 mM), N­

(2-hydroxyethyl)aziridine (10 ~-tM-1 mM, Aldrich) or ethylene sulfide 

(50 ~-tM-2 mM, Aldrich). The total volume of the reactions was 10 ~-tl. 

The reactions were incubated for 8-24 h at room temperature. 2 ~-tl 

of 50% aqueous piperidine was added to each reaction and the 

samples were heated to 90° C for 20 min, frozen in dry ice, 

lyophilized to dryness and the residue redissolved in 2 ~-tl formamide 

loading buffer. The loading buffer solution was heated at 90°C for 3 

min then cooled in ice for 5 min and the 2 ~-tl was loaded onto a .4 

mm x 32 em x 38 em 20% denaturing polyacrylamide gel (1 :20 

crosslinked, 50% urea) . The gel was electrophoresed and 

autoradiographed as usual. 

The aziridine was prepared just pnor to use by placing j3-

chloroethylamine hydrochloride (1.0 g , 8.7 mmol; Aldrich) in 10 ml 

water. NaOH (.66 gm, 16.5 mmol) in 20 ml water was slowly added. 

The solution was heated in an oil bath and the volatile fraction 

containing aziridine was distilled off of the reaction and collected in 

an ice cooled flask. 

The attempted cleavage reactions using methionine and CNBr 

were run exactly as above except at pH 5.5 in 10 mM sodium 

acetate. 2 ~-tM-2 mM methionine was added in place of the aziridine, 

N -(2-hydroxyethyl)aziridine or ethylene sulfide. 25 mM CNBr was 
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the reactions were incubated at room 

The rest was done the same as above. 
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PART 2 

NOVEL BASE SPECIFIC DNA CLEAVAGE REACTIONS 
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INTRODUCTION 

During the course of the studies on complementary-addressed 

modification of single-stranded DNA, two new base-specific cleavage 

reactions were discovered. The first reaction involves unprecedent­

ed cleavage of DNA at A residues by K2PdCl4 at pH 2.0 followed by a 

piperidine treatment. Product analysis revealed that the reaction is 

the result of adenine specific depurination, thus the K2PdCl4 reaction 

is a "gapping" reaction compatible with the other sequencing reac­

tions currently used with Maxam-Gilbert chemical sequencing meth­

ods.l N6-methyladenine was shown to react with K2PdCl4 35% less 

efficiently than normal adenine in similar sequences. A mechanism 

is proposed for the reaction wherein Pd(II) binds to the N7 position 

of adenine then protonation at Nl results in glycosidic bond hydroly­

sis and thus depurination. This simple K2PdCl4 A specific reaction 

should be a useful addition to current chemical DNA sequencing pro­

cedures and is a strong candidate for use in automated sequenators. 

The second reaction that was discovered is a photochemical re­

action which produces cleavage of double-stranded DNA at the 5'-G. 

of 5'-GG-3' or 5'-GA-3' sequences. Nitroveratrole, m-nitroanisole and 

Co(III)(NH3)6Cl3 were all shown to be capable of the reaction. Pre-

liminary product analysis of the reaction between m-nitroanisole and 

2',3' ,5'-tri-0-acetylguanosine revealed that the mechanism does not 

involve simple alkylation and numerous 2',3',5'-tri-0-acetylguano­

sine decomposition products were observed. The m-nitroanisole was 

apparently not irreversibly altered by the reaction. A mechanism is 

proposed based on an electron transfer pathway leading to oxidative 
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decomposition of the guanine base. Various 2'-deoxynucleotide 

molecules with covalently attached m-nitroanisole or nitroveratrole 

groups were tried in photochemical complementary-addressed 

cleavage reactions, but none produced any site specific cleavage on 

DNA target strands. 
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THE K2PdCI4 REACTION AT ADENINE 

BACKGROUND 

Chemical DNA Sequencing Chemical DNA sequencing ac-

cording to the method of Maxam and Gilbert utilizes base specific 

chemical modification reactions followed by a piperidine workup 

which causes phosphodiester bond cleavage at the site of the modi­

fied base.1 ,2 To date reactions have been reported which are capa­

ble of causing the cleavage of DNA at G,1 ,3 G+A,2 A>G,l A>C,1 c,1 

C+T,1 and T3 residues (see Figure 48). 

For example, treatment of DNA with dimethyl sulfate (DMS) re­

sults in methylation at N7 of guanine and N3 of adenine (see Figure 

3) in about a 7:1 ratio respectively. 4 A piperidine treatment then 

opens the N7 -methylguanine ring (via attack at C8) leading to hy­

drolysis of the glycosidic bond. Subsequent ~-elimination reactions 

produce 3' and 5' ends on the cleaved strand2 (see Figure 30). Since 

the entire base and sugar are removed from the DNA strand, this re­

action (like all the Maxam-Gilbert reactions) is termed a "gapping" 

reaction. Because of the N6-amino group, N3 -methyladenine is 

somewhat less susceptible to base hydrolysis so a relatively short 

piperidine treatment of methylated DNA results in a G specific se­

quencing lane. 

On the other hand, N3-methyladenine is substantially more sus­

ceptible to acid catalyzed glycosidic bond hydrolysis than N7-

methylguanine, so a DMS reaction followed by a quick acid then base 

treatment results in an A>G sequencing lane.! This difference in N3-
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Figure 48 The reactions used for chemical sequencing according to the method of Maxam and Gilbert.2 
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methyladenine versus N7-methylguanine reactivity is the result of 

the different protonation states at the N1 positions of both com­

pounds. The N1 position of guanine is protonated at neutral pH (pKa 

= 9.2)5 and when protonated at N1, the guanine ring is overall neu­

trally charged. Therefore, since there are no other sites which proto­

nate in mild acid,5 the N7-methylguanine ring carries only the posi­

tive charge from the methyl group at N7. In contrast, N1 of adenine 

is protonated at mildly acidic pH (pKa = 3.6),5 and when protonated, 

a net positive charge is added to the aromatic adenine ring. There­

fore, in mild acid the N1 position of N3-methyladenine is protonated 

thereby placing a second positive charge in the adenine ring (one 

from the protonation at N1 and one from the methyl group at N3) 

helping to make the nng a good leaving group thus facilitating the 

hydrolysis of the glycosidic bond. A quick base treatment breaks the 

DNA backbone at the depurinated sites (along with some unavoidable 

C8 hydrolysis of N7 -methylguanine residues) so an A>G lane is pro­

duced. This same difference in reactivity at low pH between adenine 

and guanine will be discussed later in relation to the proposed mech­

anism of the K2PdCl4 reaction. 

The other base specific cleavage reactions use a similar strategy 

of exploiting a unique reactivity to selectively disrupt the aromatic 

ring of certain base(s), then a piperidine treatment leads to strand 

scission and a gapping reaction. 

Metal Ion-DNA Interactions Thanks in part to the success 

of Pt(II) compounds as chemotheraputic agents, 6 • 7 the interactions 
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of DNA with metal ions have been thoroughly investigated. Cis-di­

amminedichloroplatinum(II) (cis -DPP) has shown activity against 

several human malignancies and is particularly effective for treating 

testicular cancer.? Considerable evidence suggests that DNA is the 

primary target of cis-DPP in vivo.? Product isolationS and spectro­

scopic studies9 have shown that cis-DPP binds to DNA strands mainly 

through intrastrand crosslinks made by bridging adjacent N7 posi­

tions of a G-G sequence. Bonds to N7 of adenine have also been de­

tected. 8' 10 Other metals such as ruthenium(IJ)11 have been shown 

to bind at N7 of guanine in DNA and numerous Pd(II) complexes 12-

21 have been shown to interact with DNA or DNA bases. 

Pd(II), like Pt(II), has a dg valence electronic configuration and 

prefers square planar, four-coordinate complexes in aqueous solu­

tion.22 Pd(II) is about 105 times more kinetically labile than 

Pt(II) , 2 3 possibly explaining why Pt(II) complexes are better 

chemotheraputic agents. In aqueous solution, metal-chloride bonds 

in Pd(II)-chloride complexes such as K2PdCl4 are hydrolyzed by 

H 

~ Pd/ o, Pd,./\ 

~ ,0 ........ ':1 
H 

water leading to multimeric bridging hydroxide species. 23 HCl is 

released in the reaction explaining why K2 P d C l4 is an acid. 

Protonation of the bridging OH ligands below pH 5.0 breaks up the 

multimeric structures producing monomeric aquo complexes .23 The 
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H 2 0 in these complexes can be readily exchanged for preferred 

ligands such as amines or thiols. 22 

The interaction of ( ( dieth y lenetriamine )Pd(II)Cl)Cl ( ( dien)Pd(II)) 

('r~ 
1-f'..!-Pd-CI 

Ck 
(dien)Pd(II) 

with punne nucleosides and nucleotides has been studied by 

NMR.5,24-26 Pd(II) bonds to the Nl or N7 positions have been 

identified and the respective stability constants determined (see Fig­

ure 49).5 For example, in the case of adenosine 5'-monophosphate 

(AMP) the stability constants determined for (dien)Pd(II) binding to 

Nl and N7 are about the same. For guanosine 5'-monophosphate 

(GMP) the stability constants for binding to Nl and N7 are also about 

the same, but they are -1 o3 times higher for GMP relative to AMP. 

In contrast, Cu(II) slightly prefers binding at Nl positions and pro­

tons markedly prefer binding at N1.5 The important point is that 

different species have drastically different preferences and metals 

like Pd(II) bind to the imidazole N7 positions just as strongly as they 

bind to the much more basic Nl positions. 

The binding of Pd(II) to the different purine binding sites is pH 

dependent because the Pd(II) must compete with protons for bind­

ing. 5 Therefore at all but basic pH, N7 is essentially the only site of 
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:~ :~ 
N N 
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R R 

Adenine Guanine 

Base Position pK8 (a) 
Stability Constant log 

Cu(ll) (a) dienPd(ll) (b) 

N1 3.6 1.7 5.00 

Adenine 

N7 -1.6 1.3 5.04 

N1 9.2 4.2 7 .86 

Guanine 

N7 2.2 2.8 8.09 

(a) Measured for the nucleoside 
(b) Measured for the nucleotide 5'-monophosphate 

Figure 49 Comparison of the pKa's and stability constants for metal 
binding to the Nl and N7 positions of the purines. 

The data is from reference 5. 
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Pd(II) binding to guamne because the Nl site is protonated. For 

adenine, protonation at Nl only occurs at acidic pH so that Pd(II) 

binding to N7 only predominates below pH -2.5 

Crystallographic studies have served to further illustrate the 

importance of Pd(II) and Pt(II) binding to N7 positions of purines as 

well as indicate the possible presence of ligand to purine hydrogen 

bonds. A crystal structure of Pd(II) with 6-mercapto-9-ben-

zylpurine revealed Pd(II) bonds to the N7 position and sulfur 

atom.27 A Pt(II)(Cl)3 complex with adenine contained a single metal 

to adenine bond at the N7 position.2 8 Interestingly, this crystal 

structure showed a hydrogen bond between a chloride ligand on the 

Pt(II) and a hydrogen atom on the N6 of adenine. Evidence for a 

similar type of hydrogen bond was found for Pd(II) and Pt(II) amine 

complexes of nucleotide 5'-monophosphate compounds m solu­

tion.26,29 A proton on the coordinated amine apparently forms a 

hydrogen bond with an oxygen atom on the phosphate. A ligand to 

base or phosphate hydrogen bond could help stabilize specific metal­

purine complexes on DNA during the K2PdCl4 reaction. 
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RESULTS AND DISCUSSION 

The K2PdCl4 reaction which cleaves DNA at adenine residues 

was discovered serendipitously during studies conducted to investi­

gate the diazo group as a cleaving function for complementary-ad­

dressed modification of DNA. Compound 13 was synthesized using 

the strategy outlined in Figure 50. The structure of 13 was con­

firmed by NMR, UV -vis and JR. 13 was incorporated into oligonu­

cleotide 1,2 duplexes using the standard Klenow enzyme reaction and 

the resulting filled-in duplexes were purified on a 15% nondenatur­

ing polyacrylamide gel. Photolysis (A. = 320 ± 10 nm) of the oligonu­

cleotide 1,2 duplexes containing a residue of 13 failed to produce 

any cleavage on the complementary strand. Therefore, transition 

metals known to decompose diazo compounds were also tried in an 

effort to "activate" the diazo group.30 CuCl2, Cu(OAc)2 and K2PdCl4 

were all examined for activity, but no site specific cleavage was ob-

served. Limited cleavage at adenine residues in the lanes with 

K2PdCl4 was observed. Since specific cleavage of DNA only at ade­

nine was unprecedented, the K2PdCl4 reaction was investigated in 

detail and a reproducible protocol for an A specific sequencing lane 

was developed. 

The Protocol For The K2 P d C l4 Cleavage Reaction At 

Adenine Residues Figure 51 shows the results of reacting a 32p 

end-labelled restriction fragment of DNA with K2PdCl4 at pH 2.0 

followed by heating in aqueous piperidine. Lanes 1 and 4 of gel A 

are DMS G reactions carried out on the DNA fragment that was 5' and 
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Figure 51 

Gel A Comparison of the G, G+A and K2PdCl4 A reaction on a 517 
base pair restriction fragment of DNA. Autoradiogram of a dried 8% 
denaturing polyacrylamide gel. Lanes 1-3 contain reactions on the 
517 base pair fragment labelled with 3 2 P at the 5' end. Lanes 4-6 
contain reactions of the 517 base pair fragment labelled with 3 2 P on 
the 3' end. Lanes 1 and 4 Maxam-Gilbert G reaction . Lanes 2 
and 5 Maxam-Gilbert G+A reaction. Lanes 3 and 6 K 2PdCl4 A 
reaction. 
Gel B The G and K2PdCl4 A reaction on a 517 base pair restnctwn 
fragment of DNA illustrating a straightforward new sequencing 
strategy. The entire DNA sequence of the fragment can be read in 
analogy to a Sanger type sequencing gel. Autoradiogram of a dried 
8% denaturing polyacrylamide gel. Lanes 1 and 2 contain reactions 
on the 517 base pair fragment labelled with 3 2p at the 5' end. Lanes 
3 and 4 contain reactions of the 517 base pair fragment labelled with 
3 2 P on the 3' end. Lanes 1 and 3 Maxam-Gilbert G reaction. 
Lanes 2 and 4 K2PdCl4 A reaction. 
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3'-labelled respectively at the same restriction site. Lanes 2 and 5 

are the standard formic acid catalyzed Maxam-Gilbert G+A lanes2 

and lanes 3 and 6 are K2PdCl4 A lanes. Comparison with the G+A 

and G lanes clearly demonstrates that the K2PdCl4 reaction produces 

uniform cleavage exclusively at all A residues. 

Gel B of Figure 51 illustrates how the K2PdCl4 A reaction can be 

used in conjunction with the DMS G reaction to allow a new straight­

forward sequencing strategy. The DNA fragment is end-labelled with 

3 2 P at the same restriction site on both the 5' and 3' ends. A 

K2PdCl4 A reaction and DMS G reaction are conducted on the frag-

ments and the four reactions are loaded adjacent to each other on a 

sequencing gel. In gels of this type, each base position is represented 

by a cleavage band in only one lane so the complete DNA sequence 

can be quickly and unambiguously read, similar to a sequencing gel 

run according to the Sanger method. 3 1 

The K2PdCl4 reaction protocol consists of incubating the DNA 

fragment in 2 mM K2PdCl4, 20 mM HCl/NaCl pH 2.0 for 30 to 45 

minutes at room temperature. The reaction is stopped with thiol to 

coordinate the Pd(II) which otherwise interferes with electrophoresis 

of the DNA fragments. Standard G stop solution containing 2-mer­

captoethanol can be used.2 The DNA is then ethanol precipitated 

(the bright yellow Pd(II)-thiol complexes stay mostly in the 

supernatant) and the resulting pellet is redissolved in 10% aqueous 

piperidine . The piperidine solution is heated at 90°C for 30 minutes 

then frozen and lyophilized. The residue is redissolved in formamide 
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loading buffer, then the sample is loaded onto a polyacrylamide se­

quencing gel and electrophoresed as usual. Except for the K2PdCl4 

pH 2.0 treatment of the DNA instead of reaction with DMS, the A re­

action protocol is identical to the G reaction protocol so the reactions 

are conveniently run side by side. 

Product Analysis The electrophoretic mobility (on a high 

resolution 20% polyacrylamide gel) of the fragments produced by the 

K2PdCl4 reaction are identical to the A cleavage fragments produced 

by the standard G+A reaction indicating that the K2PdCl4 reaction 

produces 3' and 5' phosphate termini (see Figure 52, gel A). 

Fragments with hydroxyl or sugar fragment termini run noticeably 

different on these gels.32 The K2PdCl4 A reaction can therefore be 

used in conjunction with all of the previously discovered base-spe­

cific reactions used for complete DNA sequence determination. 

An HPLC analysis of the K2PdCl4 reaction on calf thymus DNA is 

shown in Figure 53. Trace 1 is a control G+A depurination reaction 

run by heating calf thymus DNA in .1N HCl at 70°C for 45 minutes . 

Trace 2 is another control showing the products of the K2PdCl4 reac-

tion after 0 minutes (the 2-mercaptoethanol was added to the reac­

tion before the K2PdCl4). Trace 3 is the result of reacting calf thy-

mus DNA with 2.5 mM K2PdCl4 for 3 hours at room temperature. 

Comparison of trace 3 with the other two traces shows that free ade­

nine is the only observed reaction product of the K2PdCl4 reaction. 

The other peaks in the chromatograms can be identified as well and 

the large peaks in traces 2 and 3 at 23 and 39 minutes are 2-mer 
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Figure 52 

Gel A Comparison of the electrophoretic mobilities of the fragments 
produced by the G, G+A and K2PdCl4 A reaction on a high resolution 
gel. Autoradiogram of a 20% denaturing polyacrylamide gel. Lanes 
1-3 contain reactions on the 517 base pair fragment labelled with 
3 2 P at the 3' end. Lanes 4-6 contain reactions of the 517 base pair 
fragment labelled with 32p on the 5' end. Lanes 1 and 4 Maxam­
Gilbert G reaction. Lanes 2 and 5 K2PdCl4 A reaction. Lanes 3 
and 6 Maxam-Gilbert G+A reaction. 
Gel B Comparison of DMS reactions conducted at pH 2.0 in the 
presence and absence of K2PdCl4. Adenine specific cleavage is only 
observed in the lane with K2PdCl4 (lane 1) indicating an "adenine 
enhancement" type of mechanism for the K2Pd C l4 reaction . 
Autoradiogram of a dried, 8% denaturing polyacrylamide gel. The 
reactions were carried out at pH 2.0 on the 517 base pair DNA 
fragment labelled with 32p on the 5' end using the usual K2PdCl4 A 

reaction conditions and piperidine workup, except 1 !J.l DMS was 
added to each reaction and the reactions were stopped (with the 
usual thiol stop solution) after only 5 min at room temperature. 
Lane 1 The DMS reaction at pH 2.0 in the presence of 2 mM 
K2PdCl4. Lane 2 The DMS reaction at pH 2.0 with no K2PdCl4 
present. 
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Figure 53 

HPLC chromatogram (monitored at 254 nm) produced by the 
K 2PdCl4 A reaction on 50 Jlg calf thymus DNA showing that free 
adenine is the only released product of the reaction. In each case the 
reactions were frozen in dry ice, lyophilized to dryness and the 
residue was redissolved in 25 J.Ll of 8 mM ammonium acetate pH 5.5. 
The samples were chromatographed on an Altex Ultrasphere ODS 
HPLC column eluted with a 30 minute linear gradient of 0-15% 
acetonitrile in 8 mM ammonium acetate pH 5.5 followed by 15-75% 
acetonitrile in 15 minutes with a flow rate of .75 ml/min. 
Chromatograph 1 An acid catalyzed G+A reaction produced by 
heating the DNA in .1 N HCl at 70°C for 45 minutes. Chromatograph 
2 A control reaction in which the 2-mercaptoethanol was added to 
the DNA before the K2PdCl4 and the sample was immediately frozen. 
Chromatograph 3 The DNA was reacted with 2 .5 mM K2PdCl4 at 
room temperature for 3 hours then 2-mercaptoethanol was added to 
stop the reaction. 
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captoethanol and Pd(II)-thiol complexes respectively. The broad 

peak -25 minutes in trace 2 is unreacted calf thymus DNA. 

Mechanistic Studies The observed K2PdCl4 reaction which 

causes adenine specific depurination of DNA could be produced by 

suppressing G reaction in the otherwise G+A acid catalyzed 

depurination reaction, by causing an enhanced A specific 

depurination reaction or a combination of both effects. Since Pd(II) 

has been shown to bind primarily at the N7 of GMP at neutral to 

acidic pH (with a higher stability constant than for AMP26 ), it is 

possible that the Pd(II) is binding to the N7 position of G and thereby 

preventing the standard acid catalyzed depurination reaction at G. If 

the Pd(Il) is less efficient at preventing depurination at A, an A 

specific reaction would be produced. Alternatively, the K2PdCl4 

could be causing enhanced depurination at A through a reaction 

which does not occur to the same extent (or at all) at G. 

The "G suppression" mechanism is discounted and the "adenine 

enhancement" mechanism is indicated as the dominant mechanism of 

the K2PdCl4 reaction by the cleavage observed in the reaction of DNA 

with DMS at pH 2.0 in the presence and absence of K2PdCl4 (see 

Figure 52, gel B). The G reaction by DMS (known to involve a 

methylation reaction at the N7 position)4 was at best partially 

inhibited by the K2Pd Cl4 and A cleavage only occurred in the 

K2PdCl4 reaction. Other HPLC and gel results have verified that the 

K 2PdCl4 causes strongly enhanced reaction at adenine residues in 

acidic pH relative to the same pH conditions without K2PdCl4 .3 3 
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Therefore, the pnmary effect of K2PdCl4 during the reaction 1s to 

enhance specific depurination at adenine residues. 

Since the K2PdCl4 is causing enhanced depurination at adenine 

residues, the Pd(II) is apparently binding to the adenine in a manner 

which assists the hydrolysis of the glycosidic bond at low pH. The 

absence of significant neighboring base dependence on the observed 

A cleavage (see Figure 51) indicates that the depurination reaction 

caused by Pd(II) probably does not involve bridging bonds between 

adenine and adjacent bases. In a formal sense, Pd(II) could be 

binding to any of the "exposed" nitrogen lone pairs on adenine, that 

is at N3, N6 or N7. If the Watson-Crick base pairing is disrupted (a 

reasonable assumption at pH 2.0) then binding to Nl is also possible. 

Although it has been proposed in the literature,34 direct coordina­

tion to N6 is not likely, even in conjunction with binding to Nl or 

N7 . 3 5 Therefore, either Nl , N3 or N7 is most likely to be the site of 

Pd(II) binding during the K2PdCl4 reaction. 

The naturally occurring N6-methyladenine was used to help 

determine where on adenine the Pd(II) is binding during the 

K 2PdCl4 reaction. Sets of analogous DNA restriction fragments, one 

containing N6-methyladenine at a single position and the other 

containing only unmethylated adenine, were produced in two ways . 

In one case, one restriction fragment was prepared from lambda DNA 

amplified in a strain of E. coli which methylates the A in the 

sequences 5'-GATC-3' and the analogous fragment was prepared 

from lambda DNA amplified in a strain of E. coli (dam-, dcm-) which 
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does not methylate the adenines (Figure 54, gel A). Alternatively, in 

vitro methylation using Taq 1 methylase and SAM was used to 

methylate a specific position of a restriction fragment (Figure 54, gel 

B). The K2PdCl4 reaction was run on the restriction fragments and in 

both cases, cleavage efficiency was decreased by 35% at the N6-

methyladenine relative to unmethylated adenine in the analogous 

sequence (see Figure 55). Assuming that a methyl group on the exo­

cyclic N6 amine does not noticeably effect the nucleophilic properties 

of the adenine ring nitrogen atoms, the observed 35% decrease in 

cleavage efficiency at N6-methyladenine probably results from the 

methyl group on N6 creating a steric barrier to binding by Pd(II) at 

N1 or N7 (binding to N3 would not be effected by a steric barrier at 

N6). Therefore, the adenine depurination reaction apparently in­

volves Pd(II) binding to the expected N1 or N7 positions. N1 (pKa = 

3.6) should be largely protonated at pH 2, so N7 emerges as the 

likely site of Pd(II) bindingS during the K2PdCl4 reaction. 

Proposed Mechanism A reasonable mechanism can be 

proposed for the K2PdCl4 A reaction at low pH which is consistent 

with all of the experimental results. Binding of Pd(II) to N7 of 

adenine residues would be expected to introduce significant positive 

charge into the aromatic adenine ring. Simultaneous protonation at 

N1 would place even more positive charge in the adenine ring 

thereby weakening the glycosidic bond enough to allow hydrolysis 

and release of the adenine-Pd(II) complex (see Figure 56). A similar 

depurination reaction is not likely at guanine residues , since even at 
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Figure 54 

Comparison of the K2PdCl4 reaction cleavage efficiency of N6-
methyladenine with unmethylated adenine in analogous sequences 
of DNA. Autoradiograms of dried 8% denaturing polyacrylamide gels . 
Gel A The 254 base pair restriction fragments of lambda DN A 
(labelled with 32p on the 3' end at the Sal 1 site) with or without N6-
methyladenine residues were prepared according to methods d e ­
scribed in the Experimental Procedures section. Lane 1 The 
K 2Pd Cl4 reaction carried out on a 254 base pair fragment of lambda 
DNA containing only unmethylated adenine. Lane 2 The K2PdCl4 
reaction carried out on an analogous 254 base pair fragment of 
lambda DNA containing N6-methyladenine at the location indicated 
by the arrow. 
Gel B A 167 base pair fragment of DNA was prepared with or with­
out a single N6-methyladenine residue. Lane 1 The K2PdCl4 reac-
tion carried out on the 167 base pair fragment containing only un­
methylated adenine. Lane 2 The K2PdCl4 reaction carried out on 
the 167 base pair fragment methylated in vitro using the Taq 1 
methylase. Lane 3 Control showing the Taq 1 restriction endonucle­
ase digestion of the 167 base pair fragment which contains only un­
methylated adenine. Lane 4 Control showing the Taq 1 endonucle­
ase digestion of the 167 base pair fragment methylated in vitro usin g 
the Taq 1 methylase. The location of the N6-methyladenine residue 
is indicated by the arrow. 
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LANE 1 

s· A .. .. A .... .. .... AAA .. AA ..... GATCAAA ... A .. ....... A 3' 

LANE 2 

A .... A ..... .... . AAA .. AA .... . G~TCAAA ... A .... ... .. A 3 ' 
Me 

Figure 55 Densitometry of the middle region of Gel A in Figure 54 
showing that the base position with N6-methyladenine 
(arrow, lane 2) reacts with a 35% lower . efficiency than 
unmethylated adenine (lane 1) located in the same 
sequence. 
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OH 

A 
Figure 56 The proposed mechanistic scheme for the K2PdCl4 

reaction at A vs. G. 
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neutral pH the Nl position is protonated without creating net pos­

itive charge on the guanine ring. Without this extra positive charge, 

the guanine residue glycosidic bond is not weakened enough (even 

with Pd(II) bound at N7) to allow hydrolysis. The difference in 

observed reaction at adenine residues relative to guanine residues 

therefore derives mostly from the difference in the protonation 

states of the Nl positions. 

This proposed mechanism is analogous to the likely mechanism 

of the Maxam-Gilbert A>G reaction which involves an acid treatment 

following DMS alkylation at guanine and adenine residues.l The 

Pd(II) binding can be considered as almost a reversible type of 

"alkylation" of the DNA bases, wherein the Pd(II) can be removed 

from the bases (through coordination to thiol) before the piperidine 

treatment. 
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A NOVEL PHOTOCHEMICAL DNA CLEAVAGE REACTION WITH 
"GG" SPECIFICITY 

BACKGROUND 

Nitroanisole Photochemistry The use of ni troanisole and 4-

nitroveratrole derivatives as photochemically activated DNA cleaving 

agents was suggested by the literature precedent for use of these 

compounds as protein photoaffinity labels and crosslinking agents. 

Cantor et. al. reported a series of bifunctional reagents consisting of a 

maleimide unit (a thiol specific reagent) tethered to a photoactivated 

4-nitroanisole or 4-nitroveratrole group.3 7 Fetal hemoglobin was 

incubated then photolyzed in the presence of the reagent containing 

R=OCH3 and n=3. A protein subunit-subunit crosslink was observed 

with an overall yield of 80%. In our laboratory, a bifunctional 

reagent using a 4-nitroveratrole group was investigated which was 

designed to photochemically crosslink DNA to protein.38 The reagent 

consisted of a psoralen function (a DNA specific photochemical 

reagent) linked via a cleavable diol tether to the 4-nitroveratrole 
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moiety. Photolyzing intact bacteriophage T7 in the presence of the 

reagent apparently caused significant protein-DNA crosslinking, but 

attempted cleavage of the crosslink with periodate failed to release 

enough protein for analysis. 

Both of the above reagents were based on the previously re­

ported nucleophilic aromatic photosubstitution reactions of 4-nitro­

veratrole and nitroanisole compounds.39-50 Upon photolysis in the 

presence of nucleophiles (-OH, -CN, NH3, H2NCH3 etc.) 4-nitrovera-

trole, 3-nitroanisole and 4-nitroanisole exchange a methoxy group 
R R 

o, 
NH3 

Nli:l 

hv 
R:H, OCH3 

N0:2 N0:2 

0/ 

NH3 

hv 

NO:z NO:z 

with nucleophile. In the case of 4-nitroveratrole, the photochemical 

substitution selectively meta to the nitro group is in contrast to the 

observed thermal hydrolysis of the methoxy group para to the nitro 

function.39 This photochemical selectivity has been of great 

theoretical interest.48,49,51 -55 

The mechanism of the reactions between 3-nitroanisole (or 3,5-

dinitroanisole) and nucleophiles such as -OH or triethylamine (TEA) 
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have been studied in detail using flash photolysis techniques.56-58 

The reactions were found to be more complex than a simple nucle­

ophilic attack onto a photoexcited state of the nitroaromatic com-

pound. In the first stage of the reaction, the photoexcited triplet 

state of the nitroaromatic was found to form a charge transfer com­

plex with a nucleophile such as -OH. This charge transfer complex 

led to a a-complex (a Meissenheimer intermediate) which either de­

cayed back to starting materials or to the substitution product. In­

terestingly, when TEA was the nucleophile, the charge transfer com­

plex resulted in efficient electron transfer producing the anion of the 

nitroaromatic and the TEA cation. 

n ~
0

~~ ~~.--h_v __ ~_ 
~N~ Deactivation 

NO:! 

As described in the schematic above, an electron transfer to a 

photoexcited nitroaromatic has also been proposed to explain the 



197 

observed intermediates in the intramolecular photo-Smiles 

rearrangement. 59 

Photochemistry Of Co(III) Complexes And DNA Upon 

photolysis in the charge transfer to metal absorption band (usually 

UV to near UV), the Co(III) atom in Co(III) complexes characteristi­

cally undergoes one electron reduction with the corresponding for­

mation of a cation radical from one electron oxidation of a coordinat­

ed ligand. 60 The Co (II) species thus produced is kinetically labile 

and quickly exchanges ligands. The cation radical fragment of the 

ligand can go on to react with other components of the system.60,61 

Several Co(III) complexes have demonstrated the ability to 

photochemically damage DNA. Such complexes include Co(III)­

bleomycin, 62,63 tris( 4, 7 -diphenyl-1, 1 0-phenanthroline )Co( III), 64 

tris( 1,1 0-phenanthroline)Co(III), 65 tris(ethylenediamine)Co(III)65 

and Co(III)(NH3 )6. 65 Upon photolysis these compounds produced 

single strand breaks in DNA and the cleavage did not require a 

chemical workup (heating in piperidine etc.). As of now, there is not 

a complete understanding of the mechanism(s) by which this damage 

occurs. 
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RESULTS AND DISCUSSION 

The Nitroaromatic "GG" Reaction In hopes of discovering a 

photochemically activated DNA alkylating agent, DNA was photolyzed 

with near UV light in the presence of 4-nitroveratrole (2-10 mM) 

followed by a piperidine workup. Highly efficient and specific 

cleavage was observed at certain G residues (see Figure 57). 

Cleavage occurred primarily at the 5'-G of 5'-GG-3' sequences and to 

a somewhat lesser extent the 5'-G of 5'-GA-3' sequences. Other G 

residues were cleaved with minimal efficiency and no C, T or A 

residues were cleaved. 

The three nitroanisole Isomers were also investigated for cleav­

age activity, and only 3-nitroanisole was able to cause the photo­

chemical "GG" reaction (see Figure 58). The specificity and efficiency 

of the cleavage produced by 3-nitroanisole are apparently identical 

to those of 4-nitroveratrole. The control reactions in lanes 9 and 10 

of Figure 58 demonstrate that both light and nitroaromatic are 

required for the reaction. Other gels revealed that the "GG" reaction 

with 4-nitroveratrole or 3-nitroanisole is completely quenched by as 

little as .5 mM Tris-HCI. Furthermore, the cleavage efficiency of 4-

nitroveratrole was found to be directly proportional to its absorbance 

in the near UV (300 nm - 420 nm). 

In order to better understand the reaction, several nitroanisole 

derivatives were prepared (see Figure 59). Surprisingly, of all the 

derivatives, only compound 19 was able to produce the "GG" 
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Figure 57 

Cleavage of double-stranded DNA with "GG" specificity produced by 
photolysis in the presence of 4-nitroveratrole. Autoradiogram of an 
8% denaturing polyacrylamide gel. Lanes 1-3 contain reactions on 
the 517 base pair DNA fragment labelled with 32p at the 3' end. 
Lanes 4-6 contain reactions on the 517 base pair DNA fragment la-
belled with 32p on the 5' end. G Maxam-Gilbert G reaction. Lanes 
1 and 3 Photolysis (A-=3 55± 10 nm) for 15 min in the presence of 10 
mM 4-nitroveratrole. Lanes 2 and 4 Photolysis (A-=355±10 nm) 
for 30 min in the presence of 10 mM 4-nitroveratrole. The 20 j..tl 
total volume photolysis reactions contained 10% by volume 
acetonitrile (because of the poor solubility of 4-nitroveratrole in pure 
water), 100 j.lg sonicated calf thymus DNA, 2 mM sodium cacodylate 
pH 7.5, 25 mM NaCl and .05 mM EDTA. After photolysis, all the 
reactions were ethanol precipitated then redissolved in 10% aqueous 
piperidine, heated at 90°C for 30 minutes, frozen, lyophilized and 
loaded onto the gel. 
The lengths of the arrows on the histograms indicate the relative 
amount of cleavage observed at the different base locations as de­
termined by densitometry. The preference for cleavage at the 5'-G 
of 5'-GG-3' or 5'-GA-3' sequences is apparent. 
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Figure 58 

Comparison of the cleavages of double-stranded DNA produced by 
photolysis in the presence of 4-nitroveratrole, 4-nitroanisole, 3-ni­
troanisole and 2-nitroanisole. Autoradiogram of an 8% denaturing 
polyacrylamide gel. All of the lanes contain reactions on the 517 
base pair DNA fragment labelled with 32p on the 5' end. G Maxam­
Gilbert G reaction. Lanes 1 and 2 Photolysis (A.=3 3 0± 10 nm) for 
15 and 30 min respectively in the presence of 2 mM 4-nitroverat­
role. Lanes 3 and 4 Photolysis (A.=330±10 nm) for 15 and 30 min 
respectively in the presence of 2 mM 4-nitroanisole. Lanes 5 and 
6 Photolysis (A.=330±10 nm) for 15 and 30 min respectively in the 
presence of 2 mM 3-nitroanisole. Lanes 7 and 8 Photolysis 
(A.=3 3 0± 10 nm) for 15 and 30 min respectively in the presence of 2 
mM 2-nitroanisole. Lane 9 Control with photolysis (A.=3 3 0± 10 nm) 
of DNA for 30 min with no added nitroaromatic. Lane 10 Control 
with incubation of DNA with 2 mM 4-nitroveratrole for 30 min in the 
dark. Lane 11 Control with DNA that was neither photolyzed nor 
incubated in the presence of a nitroaromatic compound. The 20 !J.l 
total volume photolysis reactions contained 10% by volume acetoni­
trile (because of the poor solubility of the nitroaromatics in pure 
water), 100 IJ.g sonicated calf thymus DNA, 2 mM sodium cacodylate 
pH 7.5, 25 mM NaCl and .05 mM EDTA. After photolysis, all the re­
actions were ethanol precipitated then redissolved in 10% aqueous 
piperidine, heated at 90°C for 30 minutes, frozen, lyophilized and 
loaded onto the gel. 
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reaction, and none of the others exhibited photochemical DNA cleav­

age ability of any specificity. 

Product Analysis HPLC analysis was used to help identify the 

product(s) of the "GO" reaction. Calf thymus DNA was photolyzed in 

the presence of 3-nitroanisole or 19. The DNA was then digested 

with nucleases (DNAse 1 and nuclease P1) and phosphatase (alkaline 

phosphatase) to yield the nucleosides quantitatively which were 

analyzed by reverse phase HPLC. Alternatively, the DNA was heated 

in .1 M HCl at 90°C for 45 minutes to liberate guanine and adenine 

which were again examined by HPLC (see Figure 60). Using either 

workup, only the guanine (or guanosine) peak was observed to 

decrease in size upon photolysis of the DNA with 3-nitroanisole or 

19. No new peaks which absorbed at 254 nm were observed in the 

chromatograms except when 19 was used. 

This same new peak absorbing at 254 nm was observed when 

19 was photolyzed by itself (no DNA) and turned out to be demeth­

ylated 19. This structure was confirmed by isolating the material 

under the new peak and comparing its NMR spectrum and HPLC re­

tention time with those of a synthetic sample. 

To investigate further the reaction between the nitroaromatic 

compounds and the guanine bases, 2' ,3' ,5' -tri-0-acetylguanosine 
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Figure 60 HPLC chromatograms (monitored at 254 nm) of reactions 
run on 50 J.l.g calf thymus DNA showing that guanine is selectively 
destroyed upon photolysis (1...=330±10 nm for 8 h) in the presence of 
6.5 mM 3-nitroanisole. The reactions were worked up by heating in 
.1 N HCI at 90°C for 30 min (this treatment quantitatively liberates 
purine residues) followed by neutralization to pH 5.5 with Tris base. 
The samples were chromatographed on a reverse phase C1 8 HPLC 
column eluted with a 20 minute linear gradient of 10-45% methanol 
in 5 mM sodium phosphate pH 5.5 using a flow rate of .75 ml/min . 
Chromatograph A A control reaction which was not photolyzed. 
Chromatograph B The same as chromatograph A except the sample 
was photolyzed. Note, the 3-nitroanisole elutes much later and is not 
shown on these chromatographs . 
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(TAG) was photolyzed in the presence of one equivalent of 3-ni­

troanisole and the products of the reaction were analyzed by HPLC 

(see Figure 61). The TAG peak was greatly diminished upon photoly­

sis, but the amount of 3-nitroanisole was not detectably reduced. 

The photoexcited 3-nitroanisole was apparently catalytically decom­

posing the TAG. 66 Numerous new peaks appeared which must rep­

resent the TAG decomposition products. The great majority of these 

products absorbed 220 nm UV light but not 254 nm UV light indi­

cating that the aromatic guanine ring was decomposed, leaving only 

peptide fragments. This decomposition of the guanine ring leading to 

peptides is reminiscent of the products reported for the electro­

chemical oxidation of guanine.67 ,68 Controls were run wherein TAG 

or 3-nitroanisole were photolyzed (A. ~300 nm) alone. In these con­

trols, the TAG remained unchanged and the 3-nitroanisole photolysis 

produced a small amount of 3-nitrophenol, a product not observed 

during the reaction with TAG. 

The reaction between TAG and 3-nitroanisole was also exam­

ined by placing a 1:1 ratio of the compounds in an NMR tube and 

photolyzing the sample. Upon photolysis, the NMR peaks corre­

sponding to the TAG protons were greatly decreased in size relative 

to the 3-nitroanisole protons. No new large signals were observed, 

but rather numerous uninterpretable small ones appeared. No 

methanol was detected to be a product of the reaction so a nucle­

ophilic displacement of the methoxy group on 3-nitroanisole was ap­

parently not even a preliminary step in the reaction. 
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Figure 61 

HPLC chromatograms (monitored at 220 nm) of reactions run on 
2' ,3' ,5,-tri-0-acetylguanosine (TAG) showing that the aromatic gua­
nine base is decomposed into numerous products (probably peptide 
fragments) upon photolysis (A.=330±10 nm for 8 h) in the presence 
of 1 equivalent of 3-nitroanisole. The 3-nitroanisole is apparently 
not consumed in the reaction. The samples were chromatographed 
on a reverse phase C18 HPLC column eluted with a 20 minute linear 
gradient of 10-45% methanol in 5 mM sodium phosphate pH 5.5 fol­
lowed by a 15 minute linear gradient or 45-75% methanol using a 
flow rate of .75 ml/min. Chromatograph A A control reaction 
which was not photolyzed. Chromatograph 8 The same as chro­
matograph A except the sample was photolyzed. 
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Proposed Mechanism The above experiments have shown 

that the expected nucleophilic aromatic photosubstitution reac­

tion37 ,49 of 3-nitroanisole (and 4-nitroveratrole) is not the mecha­

nism of the "GG" reaction, but rather in analogy to previously 

reported electrochemical results,67 an oxidative decomposition of the 

guanine base is apparently occurring. The oxidative decomposition is 

most likely the result of photoinduced electron transfer from the 

aromatic guanine ring to the nitroaromatic. Electron transfer to 

nitroaromatics has been observed in analogous reactions.56-58 An 

electron transfer pathway would most easily explain the demethyla­

tion side reaction observed with compound 19 in analogy to the en­

zymatic69 • 70, chemical71 and electrochemical72 N -dealkylation re-

actions thought to involve electron transfer. An electron transfer 

pathway could also explain the apparent catalytic role of the ni­

troaromatic, which presumably is acting as a photoactivated electron 

"shuttle", not a simple electrophile. 

The "GG" specificity of the 4-nitroveratrole and 3-nitroanisole 

photoreaction observed on double-stranded DNA can be explained 

with the proposed electron transfer mechanism once a key 

assumption is made (see Figure 62). The key assumption is that 

electron transfer occurs along the 1t system (i .e. between the 1t elec­

trons of adjacent stacked bases) of the chiral DNA structure73,74 

faster m the 5'-3' direction than the 3'-5' direction. 

The "GG" reaction is probably initiated by electron transfer from 

the 3' -guanine base (the ionization potential of guanine is 
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Figure 62 Proposed mechanism of the "GG" reaction. It is assumed 
that k3 > k4. In order to allow "GG" specificity, k2 ~ kt , 
k 3 ~ k2 and k6 ~ k5 . 
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8.0 ± .2 ev7 5) in the 5'-GG-3' sequence to the photoexcited ni­

troaromatic compound producing a 3'-guanine cation radical and the 

radical anion of the photoexcited nitroaromatic. An electron from the 

5'-guanine is then transferred to the 3'-guanine cation radical (5'-3' 

electron transfer is assumed to be very rapid) resulting in a 5'-gua­

nine cation radical and the original 3'-guanine base. The 5'-guanine 

cation radical apparently decomposes in a way which leads to a 

piperidine labile site, and the nitroaromatic anion must somehow 

"shuttle" its "extra" electron to an unknown acceptor. The reaction 

does not work in reverse (initial attack of the 5'-guanine base) caus­

ing the decomposition of the 3'-guanine base because the 3'-5' 

electron transfer is assumed to be not fast enough. 

The reaction can also work when adenine (the ionization poten­

tial of adenine is 8.3 ± .1 ev75) is the 3'-base, but with less frequen­

cy probably because of the higher ionization potential of adenine rel­

ative to guanine. The pyrimidine bases apparently act as "insulators" 

(the ionization potentials of cytosine and thymine are 9.0 ± .1 eV 

and 8.95 ± .1 e V respectively 7 5 ), since a guanine base with a cyto­

sine or thymine base to the 3' side does not react to a significant ex­

tent. 

The "GG" specificity (as opposed to nonspecific reaction at all 

purines) implies that the "charge separation" produced by the 5' -3' 

electron transfer reaction along the DNA facilitates the guanine base 

decomposition reaction. That is, the 5' -guanine cation radical , 

resulting from 5'-3' electron transfer, apparently leads to base de-
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composition much more often than the cation radical of a base (the 

3'-guanine or adenine for example) which serves as the original 

electron donor to the photoexcited nitroaromatic. This is probably 

because the electron back transfer rate from the nitroaromatic anion 

to the original electron donor cation is relatively fast compared to the 

base decomposition rate. On the other hand, the 5'-guanine cation 

radical produced by the 5'-3' electron transfer is relatively far away 

from the nitroaromatic anion, so electron back transfer to the 5'-gua­

nine cation radical is apparently slowed to the point that the guanine 

base decomposition reaction can readily occur. For this scheme to be 

viable, the 5'-3' electron transfer from a 5'-guanine base must be 

fast enough to compete with the electron back transfer to the original 

electron donor cation. 7 6 

The Co(III)(NH3)6 Photochemical "GG" Reaction Much 

detailed mechanistic work (flash photolysis, ESR, guanine decompo­

sition product identification etc.) will be required before the pro­

posed mechanism of specific DNA cleavage illustrated in Figure 62 

can be confirmed. However, strong additional evidence for at least 

the electron transfer component of the mechanism was obtained by 

photolyzing Co(III)(NH3)6 with double-stranded DNA followed by a 

piperidine workup. Co(III)(NH3 )6 has been indicated in the litera-

ture to be a photoacti vated DNA cleaver, 6 5 but the specificity of 

cleavage was not reported. I found that photolyzing (A. 2:: 300 nm) 

Co(III)(NH3)6 (1 mM) in the presence of double-stranded DNA 

followed by a piperidine workup produced a cleavage reaction at 
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Figure 63 

Cleavage of double-stranded DNA with "GG" specificity produced by 
photolysis in the presence of Co(III)(NH3)6. Autoradiogram of an 8% 
denaturing polyacrylamide gel. Lanes 1,2 and 3 Photo 1 y sis 
(A.~300 nm) of the 517 base pair DNA fragment (labelled on the 5' 
end) for 10, 20 and 40 min respectively in the presence of 200 j..t.M 
Co(III)(NH3)6. Lanes 4,5 and 6 Photolysis (A-~300 nm) of the 517 
base pair DNA fragment (labelled on the 3' end) for 10, 20 and 40 
min respectively in the presence of 200 j..t.M Co(III)(NH3)6· The 20 j..tl 

total volume photolysis reactions contained 100 j..tg · sonicated calf 
thymus DNA, 10 mM sodium cacodylate pH 7.0 and 20 mM NaCl. 
After photolysis, all the reactions were ethanol precipitated then 
redissolved in 10% aqueous piperidine, heated at 90° C for 30 
minutes, frozen, lyophilized and loaded onto the gel. 
The lengths of the arrows on the histograms indicate the relative 
amount of cleavage observed at the different base locations as de­
termined by densitometry. The preference for cleavage at the 5'-G 
of 5'-GG-3' or 5'-GA-3' sequences is apparent. 
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guamne residues with specificity markedly similar to the 4-nitrover­

atrole or 3-nitroanisole cleavage (see Figure 63). The only similari­

ties in the structures and/or chemistries of Co(III)(NH3 )6 and the 

nitroaromatics are the characteristic electron transfer pathways of 

their photochemistries,56-60 thus lending support for the electron 

transfer mechanism of the "GG" reaction. Cis-~­

Co(lll)(trien)(H20)(0H) was observed to produce the "GG" reaction as 

well. Other inorganic as well as organic molecules should be capable 

of photoexcited electron transfer involving similar reduction 

potentials, so this "GG" reaction may turn out to be a relatively 

general phenomenon. 

Attempted Complementary-Addressed Cleavage Of Sin­

gle-Stranded DNA Using A Nitroaromatic Group As A 

Cleaving Function The 3-nitroanisole and 4-nitroveratrole groups 

appeared to be ideal candidates for use as photoactivated cleavage 

functions of complementary-addressed reagents. The group is 

chemically inert until photoactivated and appears to be catalytic, so 

extremely high cleavage efficiencies should be possible. 

Furthermore, the observed "GG" cleavage reaction is so specific that 

cleavage to nucleotide resolution should be possible. 

For these reasons, compounds 21-23 were synthesized accord­

ing to the schemes outlined in Figure 64.7 7 All of these compounds 

were accepted as substrate by the Klenow enzyme and incorporated 

into oligonucleotide 1,2 duplexes (see Figure 8 for sequences). Un­

fortunately, upon prolonged photolysis (A. ~ 300 nm) and a pi peri 
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dine workup, no specific cleavage of the target DNA strand was ob­

served with any of the compounds . 

Paul Brown in our laboratory also synthesized several com­

pounds with the 4-nitroveratrole or 3-nitroanisole group in hopes of 

producing site specific cleavage of DNA upon photolysis (see Figure 

65). The modified nucleoside compound was chemically incorporated 

into an oligonucleotide strand that was complementary to oligonu­

cleotide 1, but unfortunately upon photolysis no site specific cleavage 

was observed. The distamycin derivatives were examined for cleav­

age activity on a restriction fragment of double-stranded DNA known 

to have several distamycin binding sites (the 517 base pair fragment 

of pBR322), but again upon photolysis no site specific cleavage was 

observed. 
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Figure 65 Molecules prepared by Paul Brown which carry a 3-
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CONCLUSION 

While working in the general area of complementary-addressed 

modification and cleavage of single-stranded DNA, two new base spe­

cific DNA cleavage reactions were discovered. The first was discov­

ered serendipitously (the K2PdCl4 reaction at adenine), and the sec-

ond (the "GG" reaction) had somewhat more rational origins. Both re­

actions apparently involve novel chemistry on the DNA. 

The reaction of K2PdCl4 with DNA at low pH turned out to be a 

convenient and reliable method for the production of an adenine 

specific chemical sequencing lane. The reaction probably involves 

binding of Pd(II) to N7 and protonation at Nl of adenine which re­

sults in specific depurination of adenine. The DNA is then cleaved at 

the depurinated sites by piperidine and heat. This A specific reac ­

tion may be timely with regard to developing chemistry for auto­

mated sequencing requiring four base specific chemical methods. 

The "GG" reaction caused by a photoexcited nitroaromatic or 

Co(III) compound displays a novel specificity. A preliminary product 

analysis of the reaction between guanine and a nitroaromatic re­

vealed that the reaction apparently does not involve the expected 

aromatic photosubstitution reaction, but rather the nitroaromatic is 

acting in a catalytic manner. Guanine was selectively decomposed 

during the reaction leaving numerous fragments which are probably 

peptides. A mechanism involving electron transfer is proposed to 

explain the "GG" specificity and the apparent catalytic nature of the 

nitroaromatic molecule. Such an electron transfer mechanism is not 
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unreasonable considering what is known about the characteristic 

electron transfer pathways of the photochemistry of both the ni­

troaromatics and the Co(III) compounds. 

The reasons for the failure of compounds 21-2 3 (and the 

molecules prepared by Paul Brown) to produce complementary-ad­

dressed cleavage of DNA remain unclear. The long tether of com­

pounds 2 2 and 23 in particular should have made a wide variety of 

geometries possible between the 4-nitroveratrole or 3-nitroanisole 

group and the target bases. Despite the disappointing results, the 

mechanism of the "GG" reaction should be more thoroughly In­

vestigated, and hopefully what is learned could be applied to the de­

sign of new complementary-addressed reagents which can fully uti­

lize the "cleavage potential" of the photochemical "GG" reaction. 
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EXPERIMENTAL PROCEDURES 

5- [3- [ [3- diazo- 2 -oxopropionyl] amino] -trans-1-

propenyl] -2 1 -deoxyuridine 5 1 -triphosphate (13) 4-nitrophe­

nol (1 g, 6.5 mmol, Aldrich Gold Label) was dissolved in 25 ml 

freshly distilled oxalyl chloride (Aldrich) under Ar and heated at re­

flux overnight. The excess oxalyl chloride was removed in vacuo 

then the residue was placed in 8 ml dry ether and filtered under Ar. 

The solvent was removed from the filtrate. The filtrate residue was 

redissolved in I2 ml ether and ethereal diazomethane (produced 

with the Aldrich diazomethane kit) was added dropwise. After the 

yellow color of diazomethane persisted, the solution was filtered 

(under Ar!) and the precipitate was collected and dried in vacuo to 

yield p -nitrophenyl 3-diazo-2-oxo-propionate (300 mg, 19%) (The 

preceding procedure followed that of Lawton et. al.18 as modified by 

Paul Brown). p -Nitrophenyl 3-diazo-2-oxo-propionate ( 45 mg, .2 

mmol) was placed in 5.0 ml DMF (freshly distilled over CaH at re­

duced pressure) under argon along with 1 (50 mg, .06 mmol) in 5 ml 

.I M sodium borate buffer pH 8.85. Aliquots (40 J.l.l) were per­

iodically removed and subjected to the quantitative ninhydrin test. 

The reaction was stopped after I8 h since there was no more de­

tectable 1. The reaction was diluted with IOO ml water and placed 

upon an I8 x I60 mm DEAE-Sephadex A-25-I20 column pre-equili­

brated with .05 M TEAB pH 7 .6. The column was eluted under slight 

air pressure with 40 ml each of .I M, .2 M, .3 M, .4 M, .5 M, .6 M, .7 

M, .8 M, .9 M, 1.0 M and 1.2 M TEAB. The crude product 13 was 
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eluted between .5 M and .6 M TEAB as the last UV absorbing com­

pound and the pooled fractions were lyophilized to dryness. The 

crude 13 was redissolved in water and purified by preparative ion 

exchange HPLC on a Synchropak Q300 column monitored at 260 nm 

and 290 nm. Compound 13 was the major component eluted (at -19 

min) with a 30 minute linear gradient of 0-0.3 M AMB pH 7.6 and a 

flow rate of .75 ml/min. To avoid bubbles forming in the HPLC pump 

piston chambers, the AMB buffer was chilled in ice during the chro­

matography. The appropriate fractions were pooled and lyophilized 

to dryness to yield the ammonium salt of pure 13. 1 H NMR (D2 0) 8 

7.81 (lH, s, H6), 6.31-6.36 (1H, m, =CH-), 6.19-6.24 (2H, m, -HC=, H1'), 

4.54-4.58 (1H, m, H3'), 4.09-4.14 (3H, m, H5', H4'), 3.89 (2H, d, J= 5 .6 

Hz, CH2), 2.25-2.30 (2H, m, H2'). UV-Vis (H20) Amax= 246 nm, Amin= 

272 nm, Am ax= 298. IR (KBr) 3200, 2100 (characteristic diazo 

stretch), 1690, 1620, 1530, 1420, 1380, 1340, 1080, 900, 800. 

1 ,X-bis- (3 -n itrop henoxy) -alkane Compounds (14-17) 

3-nitrophenol (500 mg, 3.6 mmol, Aldrich) was placed in 3 ml DMF 

under Ar and cooled to 0°C in an ice bath. NaH (86 mg, 3.6 mmol) 

was added and the mixture was stirred for 2.5 h at 0°C. 1,3-dibro­

mopropane was added and the solution was stirred at room temper­

ature for 2 days. The reaction was quenched with 50 ml water and 

the yellow precipitate was collected and chromatographed on silica 

gel eluted with methylene chloride to yield pure 14 (252 mg, 22%). 

Compounds 15-17 were prepared in the same way with the appro-

priate dibromoalkane substituted for 1 ,3-dibromopropane. Isolated 
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yields ranged from 20-70%. 1,3-bis-(3-nitrophenoxy)propane 

(14) TLC (methylene chloride) Rf = .5 visualized with short wave 

UV. 1 H NMR (CDCI3) o 7.8 (4H, m, Ar), 7.3 (4H, m, Ar), 4.3 (4H, t, 1= 

7.5 Hz, CH2-), 2.3 (2H, m, 1= 7.5 Hz, -CH2-). UV-Vis (H20) A-max= 276 

nm, 335 nm. IR (KBr) 3080, 1620, 1580, 1510, 1400, 1470, 1240, 

1090, 1010, 810, 730. MS (EI) calculated for C15H14N206 m/z= 

318; found 318. 1,4-bis-(3-nitrophenoxy)butane (15) TLC 

(methylene chloride) Rf = .75 visualized with short wave UV. 1 H 

NMR (CDCl3) o 7.8 (4H, m, Ar), 7.3 (4H, m, Ar), 4.15 (4H, m, CH2-), 

2.1 (4H, m, -CH2-). UV-Vis (H20) A-max= 276 nm, 335 nm. IR (KBr) 

3080, 2940, 1615, 1580, 1520, 1470, 1340, 1280, 1240, 1090, 1030, 

1010, 860, 810, 730. MS (EI) calculated for C16H16N206 m/z= 332; 

found 332. 1,5-bis-(3-nitrophenoxy)pentane (16) TLC 

(methylene chloride) Rf = .8 visualized with short wave UV. 1 H NMR 

(CDCI3) o 7.8 (4H, m, Ar), 7.3 (4H, m, Ar), 4.0 (4H, t, J= 5.5 Hz, CH2-), 

1.8 (6H, m, -CH2-). UV-Vis (H20) A-max= 276 nm, 335 nm. IR (KBr) 

3020, 1620, 1580, 1510, 1400, 1470, 1240, 1090, 1010, 810, 730. 

MS (EI) calculated for C17H 18N 206 m/z= 346; found 346. 1,6-bis­

(3-nitrophenoxy)hexane (17) TLC (chloroform) Rf = .7 visualized 

with short wave UV. 1 H NMR (CDCl3) o 7.8 ( 4H, m, Ar), 7.3 ( 4H, m, 

Ar), 4.06 (4H, t, I= 6.3 Hz, CH2-), 1.9 (4H, m, -CH2-), 1.6 (4H, m, -CH2). 

UV-Vis (H20) A-max= 276 nm, 335 nm. IR (KBr) 3010, 2900, 1620, 

1580, 1510, 1470, 1390, 1240, 1090, 1010, 810, 730. MS (EI) 

calculated for C18H20N206 m/z= 360; found 360. 
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N- Methylamino- bis- [3- (3 -nitrophenoxy)propane] (18) 

3-nitrophenol (500 mg, 3.6 mmol) was placed in 3 ml DMF under Ar 

and cooled to 0°C in an ice bath. NaH (86 mg, 3.6 mmol) was added 

and the mixture was stirred for 2.5 h at 0°C. 1,3-dibromopropane (5 

ml, 49 mmol) was added and after 3 days, the solvent was removed 

in vacuo and the 1-bromo-3-(3-nitrophenyloxy)propane was puri­

fied by chromatography on silica gel eluted with 5% methanol in 

methylene chloride to yield a golden oil (200 mg, 24%). 1-bromo-3-

(3-nitrophenyloxy)propane (200 mg, .77 mmol) was dissolved in 2 

ml DMF along with triethylamine (268 J..Ll, 1.92 mmol). Methylamine 

( 40% aqueous solution, 30 J..Ll, .39 mmol) was added and the solution 

was stirred under Ar for 3 days. The product was purified by chro­

matography on silica gel eluted with 10% methanol in methylene 

chloride to yield 18. TLC (10% methanol/methylene chloride) Rf = .5 

visualized with short wave UV. 1 H NMR (CDCl3) o 7.7 (4H, m, Ar), 

7.3 (4H, m, Ar), 4.06 (4H, t, CH2-), 2.58 (4H, t, CH2-), 2.3 (3H, s, CH3 ) 

1.98 (4H, m, -CH2-). UV-Vis (H20) A-max= 376 nm, 335 nm. IR (KBr) 

2990, 1620, 1520, 1350, 1240, 730. MS (EI) calculated for 

C19H23N306 m/z= 389; found 389. 

1- (N ,N -Dimethylamino) -4- (3-nitrophenoxy)butane (19) 

3-nitrophenol (500 mg, 3.6 mmol) was placed in 3 ml DMF under Ar 

and cooled to 0°C in an ice bath. NaH (86 mg, 3.6 mmol) was added 

and the mixture was stirred for 2.5 h at 0°C. 1 ,4-dibromopropane (5 

ml, 42 mmol) was added and after 3 days, the solvent was removed 

in vacuo and the 1-bromo-4-(3-nitrophenoxy)butane was purified 
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by chromatography on silica gel eluted with 1:1 Cyclohexane: 

methylene chloride to yield a golden oil (661 mg, 67%). 1-bromo-4-

(3-nitrophenoxy)butane (300 mg, 1.1 mmol) was placed in 3 ml ace­

tonitrile and dimethylamine ( 40% aqueous solution, 678 ~1, 6 mmol) 

was added. The solution was stirred under Ar for 24 h at room tem­

perature then the product was purified by chromatography on a 2.0 

em x 12 em silica gel column eluted with 30% methanol in methylene 

chloride. Pure 19 was obtained after recrystallization from methanol 

(257 mg, 97%). MP 186-7°C TLC (30% methanol/methylene chlo­

ride) Rf = .6 visualized with short wave UV. 1 H NMR (CDCl3) 8 7.8 

(4H, m, Ar), 7.4_ (4H, m, Ar), 4.1 (2H, t, J= 5.8 Hz, CH2-), 3.16 (2H, t, J= 

8.1 Hz, CH2-), 2.9 (6H, s, CH3) 2.15 (2H, m, -CH2-) 1.97 (2H, m, -CH2-). 

IR (KBr) 2920, 2660, 1530, 1475, 1350, 1280, 1240. MS (Pos Ion 

FAB) calculated for C12H 18N 203 m/z= 238; found M+H= 239. Syn-

thetic 1-(N -methyl amino )-4-(3 -nitrophenoxy)butane was prepared 

exactly as above except methylamine was used in place of dimethy­

lamine and the product was purified by a silica gel column eluted 

with 6% (3% ammonia in water) in methanol. TLC (6% (3% ammonia 

in water) in methanol) Rf = .5 visualized with short wave UV. 1 H 

NMR (CDCl3) 8 7.8 (4H, m, Ar), 7.4 (4H, m, Ar), 4.06 (2H, t, J= 6.3 Hz, 

CH2-), 2.67 (2H, t, J= 7.2 Hz, CH2-), 2.5 (3H, s, CH3), 1.89 (2H, m, CH2), 

1.68 (2H, m, -CH2-). 

1- [3- (N, N -dimethylamino )p ropylamino]- 4- (3 -nitro-

phenoxy)butane (20) 1-bromo-4-(3 -ni trophenoxy)bu tane (300 

mg, 1.1 mmol) was placed in 3 ml acetonitrile and 1-amino-3-N,N-
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dimethylaminopropane (1.4 ml, 950 mmol) was added. The solution 

was stirred under Ar for 24 h at room temperature then the product 

was purified by chromatography on a 2.0 em x 12 em silica gel col­

umn eluted with 6% (3% ammonia in water) in methanol (75 mg, 

23%). TLC (6% (3% ammonia in water) in methanol) Rf = .7 visualized 

with short wave UV. 1 H NMR (CDCl3) 8 7.8 (4H, m, Ar), 7.4 (4H, m, 

Ar), 4.05 (2H, t, J= 6.4 Hz, CH2-), 2.67 (4H, m, CH2-), 2.31 (2H, t, J= 7.2 

Hz, CH2-)2.22 (6H, s, CH3) 1.88 (2H, m, -CH2-) 1.65 (4H, m, -CH2-). IR 

(KBr) 2920, 1530, 1350, 1240. MS (Pos Ion FAB) calculated for 

C13H25N303 m/z= 295; found M+H= 296. 

5- [3- [ [2- (3 -nitroph enoxy) acetyl] amino]- trans-1-pro-

penyl] -2' -deoxyuridine 5' -triphosphate (21) This compound 

was first prepared by Marius Sutter. 3-Nitrophenoxyacetic acid 

(prepared by Marius Sutter, 175 mg, .81 mmol) was placed in 10 ml 

acetonitrile along with NHS (101 mg, .88 mmol) and DCC (181 mg, .88 

mmol) and the solution was stirred overnight. The mixture was then 

filtered and the solvent was removed from the filtrate in vacuo. The 

residue was redissolved in 2 ml DMF. To this DMF solution was 

added a 20 ml solution containing 1 (70 mg, .11 mmol) in .1 N sodi­

um borate buffer pH 8.5. After 6 h at room temperature, the reac­

tion was diluted with 100 ml water and placed upon an 18 x 160 mm 

DEAE-Sephadex A-25-120 column pre-equilibrated with .05 M TEAB 

pH 7 .6. The column was eluted under slight air pressure with 40 ml 

each of .1 M, .2M, .3 M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 

1.2 M TEAB. The crude product 21 was eluted between .7 M and .8 



227 

M TEAB as the last UV absorbing compound and the pooled fractions 

were lyophilized to dryness. The product was purified by prep HPLC 

(eluted at -17 min on a 22 mm x 25 em preparative C18 reverse 

phase HPLC column with a 25 min linear gradient of 0-25% acetoni­

trile in 5 mM ammonium acetate pH 5.5 with a flow rate of 10 

ml/min) to yield the ammonium salt of pure 21 (22 mg, 26%). 1 H 

NMR (D20) 8 7.81 (3H, m, H6, Ar), 7.4 (2H, m, Ar), 6.31-6.36 (2H, m, 

=CH-, -HC=), 6.2 (1H, d, H1'), 4.54-4.58 (lH, m, H3'), 4.1 (3H, m, H5', 

H4'), 3.9 (2H, d, CH2), 2.25-2.30 (2H, m, H2') . IR (KBr) 3200, 1625, 

1545, 1455, 1380, 1290, 1030. 

5- [3- [ [ 6- (3- ni troph enoxy) hexyl] amino] -trans-1- pro-

penyl] -2' -deoxyuridine 5 '-triphosphate (22) . 3-Nitrophenol 

(2.78 gm, 20 mmol) was placed in 20 water along with 6-bromohex­

anoic acid (3.8 gm, 20 mmol). To this was added dropwise 2.0 M KOH 

(20 ml, 40 mmol). The solution was heated at reflux for 6 h then 

brought to pH 2.0 with HCl and extracted 2x 50 ml ether. The ether 

layer was washed lx 50 ml with .5 M sodium bicarbonate solution 

then acidified to pH 2.0 with HCl. Attempts at recrystallization and 

chromatography failed to produce pure material so 1.0 gm of the 

crude acid was placed in 20 ml ether at 0°C. Ethereal diazomethane 

(generated with the Aldrich diazomethane kit) was added until the 

yellow color persisted. Pure methyl 6-(3-nitrophenoxy)hexanoate 

was isolated by chromatography on a 4 x 20 em silica gel column 

eluted with 2% acetonitrile in methylene chloride. TLC (2% acetoni­

trile in methylene chloride) Rf= .75, visualized with short wave UV. 
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1 H NMR (CDCl3) o 7.8 (4H, m, Ar), 7.4 (4H, m, Ar), 4.06 (2H, t, 1= 6.5 

Hz, CH2-), 3.65 (3H, s, CH3), 2.37 (2H, t, 1= 7.4 Hz, CH2-), 1.84 (2H, m, 

-CH2-), 1.7 (2H, m, -CH2-), 1.55 (2H, m, -CH2-) . Methyl 6-(3-nitro-

phenoxy)hexanoate (462 mg, 1.74 mmol) was dissolved in 60 ml 1:1 

acetonitrile: water and 6 m of 1.0 N LiOH was added. The solution 

was heated to 60°C for 20 min then acidified to pH 2.0 with HCl, ex­

tracted 5x 50 ml ether, dried over sodium sulfate and the solvent 

was removed in vacuo to yield pure 6-(3-nitrophenoxy)hexanoic acid 

(432 mg, 98%). 1 H NMR (CDCl3) o 7.8 (4H, m, Ar), 7.4 (4H, m, Ar), 

4.04 (2H, t, J= 6.4 Hz, CH2-), 2.42 (2H, t, J= 7.5 Hz, CH2-), 1.86 (2H, 

m, -CH2-) 1.76 (2H, m, -CH2-), 1.56 (2H, m, -CH2-). 6-(3-nitrophe-

noxy)hexanoic acid (125 mg, .49 mmol) was placed in 15 ml acetoni­

trile along with NHS (63 mg, .55 mmol) and DCC (113 mg, .55 mmol) 

and the solution was stirred overnight. The mixture was then fil­

tered and the solvent was removed from the filtrate in vacuo. The 

residue was redissolved m 2 ml DMF. To this DMF solution was 

added a 20 ml solution containing 1 (70 mg, .11 mmol) in .1 N sodi­

um borate buffer pH 8.5. After 6 h at room temperature, the reac­

tion was diluted with 100 ml water and placed upon an 18 x 160 mm 

DEAE-Sephadex A-25-120 column pre-equilibrated with .05 M TEAB 

pH 7 .6. The column was eluted under slight air pressure with 40 ml 

each of .1 M, .2 M, .3 M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 

1.2 M TEAB. The crude product 22 was eluted between .9 M and 1.0 

M TEAB as the last UV absorbing compound and the pooled fractions 

were lyophilized to dryness. The product was purified by prep HPLC 
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(eluted at -20 mm on a 22 mm x 25 em preparative C18 reverse 

phase HPLC column with a 30 min linear gradient of 0-30% acetoni­

trile in 5 mM ammonium acetate pH 5.5 with a flow rate of 10 

ml/min) to yield the ammonium salt of pure 22 (32 mg, 36%). 1 H 

NMR (d6-DMSO) 8 8.55 (lH, s, NH), 8.07 (lH, s, H6), 7.70-7.85 (2H, 

m, Ar), 7.45-7.60 (2H, m, Ar), 6.50-6.56 (lH, m, -HC=), 6.41 (lH, d, -

HC=), 6.1 (lH, m, HI'), 4.42-4.47 (lH, m, H3'), 4.2 (lH, m), 4.1 (2H, t, 

CH2), 3.97 (lH, m), 3.8-3.85 (2H, m, H5'), 3.65-3.75 (lH, m, H4'), 2.1-

2.17 (2H, m, H2'), 1.73-1.78 (2H, m, CH2), 1.5-1.57 (2H, m, CH2), 1.37-

1.42 (2H, m, CH2). IR (KBr) 3200, 1675, 1545, 1455, 1330, 1070. 

5- [3- [ [ 6- (2 -methoxy-4 -ni trophenoxy) hexyl] amino]-

trans -1- propenyl] -2'- d eoxyurid ine 5'-triphosphate (23) 

Nitroveratrole (5 g, 27 mmol) was dissolved in 100 ml 2.0 N KOH and 

the solution was refluxed for 16 h. Upon cooling, bright orange-red 

crystals formed and these were isolated by filtration, washed with 

ether and dried in vacuo to yield potassium 2-methoxy-4-nitrophe­

noxide (4.1 g, 73%) (The preceding procedure was developed by Paul 

Brown). Meanwhile, 6-bromohexanoic acid (1.0 g, 5.1 mmol) was 

dissolved in 60 ml ether at 0° C and ethereal diazomethane was 

added (generated with the Aldrich diazomethane kit) until the yel­

low diazomethane color persisted. The ether solution was washed 4x 

50 ml 10% sodium bicarbonate solution, dried over sodium sulfate 

and the solvent was removed in vacuo to yield pure methyl 6-bro­

mohexanoate (1.06 g, 98%). 1 H NMR (CDCl3) 8 3.58 (3H, s, CH3), 3.33 

(2H, t, CH2), 2.24 (2H, t, CH2), 1.8 (2H, m, CH2), 1.57 (2H, m, CH2) , 



230 

1.36 (2H, t, CH2). Potassium 2-methoxy-4-nitrophenoxide (240 mg, 

1.12 mmol) was dissolved in 20 ml freshly distilled DMF along with 

methyl 6-bromohexanoate (200 mg, .96 mmol) and the solution was 

stirred under Ar for 72 h. The mixture was filtered and the solvent 

was removed in vacuo. The residue was chromatographed on a 22 

mm x 200 mm silica gel column eluted with 4% methanol in methy­

lene chloride to yield pure methyl 6-(2-methoxy-4-nitrophe-· 

noxy)hexanoate (165 mg, 58%). MP 63-64°C TLC (5% methanol in 

chloroform) Rf= .9 visualized with short wave UV. 1 H NMR (CDC13) 8 

7.9 (1H, m, Ar), 7.73 (1H, d, J= 2.7 Hz, Ar), 6.9 (1H, d, J= 9 Hz, Ar), 

4.11 (2H, t, J= 6.6 Hz, CH2), 3.95 (3H, s, OCH3), 3.68 (3H, s, CH3), 2.37 

(2H, t, J= 7.5 Hz, CH2), 1.91 (2H, m, CH2), 1.74 (2H, m, CH2), 1.54 (2H, 

m, CH2) . Methyl 6-(2-methoxy-4-nitrophenoxy)hexanoate (140 mg, 

.4 7 mmol) was dissolved in 16 ml 1:1 water: acetonitrile and 1. 7 ml 

1.0 N LiOH was added. The solution was heated to 60°C for 20 min 

then the acetonitrile was removed in vacuo and the pH was adjusted 

to 2 with HCI. The pH 2 solution was extracted 5x 20 ml chloroform, 

the organic layer was dried over sodium sulfate and the solvent was 

removed in vacuo to yield 

noxy)hexanoic acid (131 mg, 98%). 

pure 6-(2-methoxy-4-nitrophe-

1 H NMR (CDCl3) o 7.84 (1H, m, 

Ar), 7.68 (1H, d, J= 3 Hz, Ar), 6.81 (1H, d, J= 9.2 Hz, Ar), 4.04 (2H, t, J= 

6.6 Hz, CH2), 3.87 (3H, s, OCH3), 2.36 (2H, t, J= 7.5 Hz, CH2), 1.86 (2H, 

m, CH2), 1.68 (2H, m, CH2), 1.51 (2H, m, CH2). 6-(2-methoxy-4-ni-

trophenoxy)hexanoic acid (35 mg, .11 mmol) was placed in 3 ml DMF 

along with NHS (18 mg, .15 mmol) and DCC (27 mg, .13 mmol) and 
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the solution was stirred under Ar overnight. The mixture was then 

filtered and the solvent was removed from the filtrate in vacuo. The 

residue was redissolved in 2 ml DMF. To this DMF solution was 

added a 20 ml solution containing 1 (50 mg, .08 mmol) in .1 N sodi­

um borate buffer pH 8.5. After 10 h at room temperature, the reac­

tion was diluted with 100 ml water and placed upon an 18 x 160 mm 

DEAE-Sephadex A-25-120 column pre-equilibrated with .05 M TEAB 

pH 7 .6. The column was eluted under slight air pressure with 40 ml 

each of .1 M, .2M, .3 M, .4 M, .5 M, .6 M, .7 M, .8 M, .9 M, 1.0 M and 

1.2 M TEAB. The crude product 23 was eluted between .5 M and .6 

M TEAB as the last UV absorbing compound and the pooled fractions 

were lyophilized to dryness. The crude 23 was redissolved in water 

and purified by preparative ion exchange HPLC on a Synchropak 

Q300 column monitored at 260 nm and 350 nm. Compound 23 was 

the major component eluted (at -23 min) with a 30 minute linear 

gradient of 0-0.3 M AMB pH 7.6 and a flow rate of .75 ml/min. To 

avoid bubbles forming in the HPLC pump piston chambers, the AMB 

buffer was chilled in ice during the chromatography. The appropri­

ate fractions were pooled and lyophilized to dryness to yield the 

ammonium salt of pure 23 (25 mg, 37%). UV-Vis (H20) Amax= 242, 

297, 350(sh). 1 H NMR (d6-DMSO) 8 8.3 (lH, s, NH), 7.9 (lH, s, H6), 

7.89 (lH, m, Ar), 7.81 (lH, d, Ar), 7.11 (lH, d, Ar), 6.42-6.46 (lH, m, -

HC=), 6.27 (lH, d, -HC=), 6.09 (1H, m, HI'), 4.34-4.35 (lH, m, H3'), 4.2 

(lH, m), 4.03 (2H, t, CH2), 3.97 (IH, m), 3.9 (3H, m, OCH3), 3.8-3.85 

(2H, m, H5'), 3.65-3.75 (lH, m, H4'), 2.05-2.09 (2H, m, H2'), 1.66-1.7 
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(2H, m, CH2), 1.44-1.5 (2H, m, CH2), 1.3-1.35 (2H, m, CH2). IR (KBr) 

3200, 1675, 1505, 1455, 1330, 1220, 1070. 

Preparation Of DNA Restriction Fragments The 517 and 

167 base pair DNA fragments from pBR322 were prepared by liter­

ature methods with Eco R I and Rsa I restriction endonucleases.7 9 

15 J.lg of pBR322 was digested with Eco Rl restriction endonuclease 

(New England Biolabs) using the procedure recommended by the 

manufacturer. One half of the DNA was labelled with 32p at the 3' 

ends using a-32 P-dATP in the standard Klenow enzyme (Boehringer 

Mannheim Biochemicals) reaction .2 The other half was labelled with 

3 2 P at the 5' ends using the standard polynucleotide kinase (New 

England Biolabs) reaction.2 The resulting fragments were digested 

with Rsa I using the procedure suggested by the manufacturer. The 

517 base pair fragments were isolated as the second fastest moving 

band on a non-denaturing 5% polyacrylamide gel and the 167 base 

pair fragments were isolated as the fastest moving band. The appro­

priate bands were cut out of the gel, the gel slices were crushed and 

the DNA was eluted with elution buffer (.25% sodium dodecyl sulfate, 

I mM EDTA, 10 mM MgCl2 and 500 mM ammonium acetate) 

overnight at room temperature. The DNA was dialyzed against 2x 

4000 ml 1 mM NaPhosphate pH 7.5 at 4°C. 

The 167 base pair fragments containing a single N6-methylade­

nine were prepared by placing 5'-3 2P-end-labelled 167 base pair 

fragment (5.5 mR/h) in 14 J.ll water followed by 2 J.ll lOX Taq I 

methylase buffer (1.0 M NaCl, 100 mM Tris-HCl pH 8.4, 60 mM 
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MgCl2), 2 f...l.l 60 mM 2-mercaptoethanol, 2 f...l.l 5 mM SAM and 10 units 

Taq 1 methylase (New England Biolabs) . The reaction was heated at 

65 °C for 1 h then 2x ethanol precipitated. 

The 254 base pair fragment of bacteriophage lambda DNA was 

prepared from N6-methyladenine free lambda DNA (A.C1857Sam7 

amplified in dam-, dcm- E. coli, Pharmacia) and lambda DNA 

(A.C1857Sam7, Pharmacia) containing N6-methyladenine at all 5'­

GATC-3' sequences. In either case, 50 J..Lg of the DNA was digested 

with Sal 1 restriction endonuclease (New England Biolabs) using the 

procedure suggested by the manufacturer. The DNA was labelled 

with 32p at the 3' end by incorporating a-32P-dATP and a-32P-TTP 

using the standard Klenow enzyme reaction. The DNA was digested 

with Xho 1 restriction endonuclease (New England) again using the 

manufacturer's suggested procedure. The 254 base pair fragments 

were isolated as the fastest moving radioactive band on a 5% nonde­

naturing polyacrylamide gel. The appropriate bands were cut out of 

the gel and eluted from the gel slices with an Elutrap (Schleicher and 

Schuell). The DNA was dialyzed against 2x 4000 ml 1 mM NaPhos­

phate pH 7.5 at 4°C. 

Cleavage Of DNA At Adenine With K2PdCI4 The 3 2 p la-

belled fragment (5 mR/h) was placed in 160 f.ll of H2 0 along with 1 

f.lg of sonicated calf thymus DNA. 40 f.ll of a solution containing 10 

mM K2PdCl4 (Alfa or Aldrich) and 100 mM HCl/NaCl, pH 2.0 was 

added (this solution was prepared by adjusting the pH of 200 mM 

HCl with 1 N NaOH to pH 2.0 followed by dilution with water to a fi-
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nal concentration of 100 mM HCl/NaCl and addition of the appropri­

ate amount of K2PdCl4). The reaction was incubated at room tem-

perature for 30-45 minutes and stopped by adding 50 J.ll of a thiol 

stop solution containing 1.5 M NaOAc, 1.0 M 2-mercaptoethanol 

(Aldrich) and 20 J.lg/ml of calf thymus DNA. 750 J.ll of ethanol was 

added and the solution was chilled in dry ice for 10 minutes then 

spun at 12,000 rpm for 6-10 minutes. The supernatant was re­

moved, the DNA pellet washed with 70% ethanol and dried briefly in 

vacuo. The pellet was redissolved in 50 J.ll 10% aqueous piperidine, 

heated at 90°C for 30 minutes, frozen in dry ice and lyophilized to 

dryness. The lyophilized DNA was dissolved in formamide loading 

buffer and 0.5 mR/h was loaded onto each lane of a .4 mm x 32 em x 

38 em 8% polyacrylamide gel (1:20 crosslinked, 50% urea). The gel 

was electrophoresed for the desired amount of time then transferred 

to a piece of filter paper and dried (using a Bio-Rad model 483 slab 

dryer) then autoradiographed. Densitometry was performed on the 

autoradiographs using a laser densitometer (LKB Ultroscan XL). 

The DMS reactions run at pH 2.0 with and without K2PdCl4 were 

conducted as above but with a couple of changes. 1 J.ll of DMS was 

added to the reactions with or without the K2PdCl4 and the thiol 
' 

stop solution was added after only 5 min incubation at room 

temperature. 

HPLC Analysis Of K2PdCl4 Reaction Products In each re-

action, 50 J.lg of calf thymus DNA was dissolved in 50 J.ll water. A G+A 

control reaction was run by heating the DNA in .1 N HCl for 45 min-
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utes at 75 °C then the pH was neutralized with .1 M NaOH and the 

sample was frozen in dry ice and lyophilized. The K2PdCl4 reaction 

was run by adding 5 J..tl of 25 mM K2PdCl4 to the DNA and the solu-

tion was incubated at room temperature for 3 h. The reaction was 

stopped by adding 2 J..tl of 2-mercaptoethanol and the sample was 

frozen and lyophilized. In a control reaction the 2-mercaptoethanol 

was added to the DNA before the K2PdCl4 and the solution was im-

mediately frozen and lyophilized. In each case, the lyophilized 

residue was redissolved in 50 J..tl 8 mM ammonium acetate pH 5.5 

and chromatographed on an Altex Ultrasphere ODS column eluted 

with a 30 minute linear gradient of 0-15% acetonitrile in 8 mM am­

monium acetate pH 5.5 followed by a 15 min linear gradient of 15-

85% acetonitrile. 

Photolysis Reactions The photolyses used in the reactions of 

DNA with nitroaromatics (4-nitroveratrole, 3-nitroanisole etc.) or 

Co(III) complexes (Co(III)(NH3)6 etc.) were conducted in one of two 

ways. In some cases, the sample was placed in the beam from a 

monochrometer (Oriel model 240) (the sample was 1.5 em from the 

monochrometer so that the diameter of the beam was 2 em at the 

sample) which was attached to the high pressure Hg-Xe photolysis 

lamp (Oriel model 6140). When more intense illumination was de­

sired, the monochrometer was removed and the beam was filtered 

through 10 em of water to remove IR then filtered with a pyrex filter 

(.5 em pyrex glass) so that only light with A.~ 300 nm was allowed to 
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reach the sample. This light was focused with a lens so again the 

beam diameter was 2.0 em at the sample. 

The sample (20 ~1 total volume) was usually photolyzed by ei­

ther method in a 1 mm x 1 em x 4.5 em quartz cuvette (Fisher Scien­

tific). During photolysis the sample was kept at room temperature 

with a vigorous stream of compressed air. When low temperature 

was desired, the quartz cuvette was not used, but rather the sample 

(20 ~1 total volume) was placed in a quartz NMR tube that had been 

cut off 5 em from the bottom. A small septum was used to seal the 

sample in the tube and the tube was immersed in a quartz photolysis 

finger dewar filled with water at the desired temperature (usually 

0°C). 

HPLC Analysis Of The Photochemical Reaction Between 

Calf Thymus DNA And 3-Nitroanisole Or 19. 1 mg of 19 was 

dissolved in a 1.0 ml solution containing CT DNA (sonicated, depro­

teinized, 4.78 mg/ml). This solution was placed in a pyrex testube 

and photolyzed using the monochrometer at 330 ± 10 nm for 8 h. 

After photolysis, the reactions were worked up in one of two ways. 

To 50 ~1 of the above photolyzed solution lOX DNAse buffer 

(100 mM Tris-HCl pH 7.9, 100 mM MgCl2, 100 mM KCl, 50 mM CaCl2) 

and 50 ~1 water were added followed by 25 units of DNAse (Sigma) . 

After 4 h at 25°C, the pH of the solution was adjusted to 5.5 with HCl 

then 10 ~1 of 50 mM zinc sulfate was added. 5 ~g of Nuclease Pl 

(Boehringer Mannheim Biochemicals) was then added and the reac­

tion was incubated at 37°C for 12 h. 200 mM Tris base was added to 
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a final pH of 8.0 followed by 45 units of alkaline phosphatase 

(Boehringer Mannheim Biochemicals). After 1 h at 37°C, the solution 

was injected onto a 4.6 mm x 25 em C18 reverse phase HPLC column 

(Altex Ultrasphere ODS) eluted with a 20 min linear gradient of 10-

45% methanol in 5 mM sodium phosphate pH 5.5 followed by a 15 

min linear gradient of 45-75% methanol with a flow rate of .75 

ml/min and monitored at 254 nm and 220 nm or 290 nm. 

Alternatively, 50 J.!l of the photolyzed sample was hydrolyzed in 

.1 N HCl for 30 min at 90°C then the pH of the solution was adjusted 

to 5.5 with Tris base and the solution was injected onto the HPLC and 

eluted as described above. 

HPLC Analysis Of The Photochemical Reaction Between 

2 1,3 1,5 1 -tri-0-acetylguanosine And 3-Nitroanisole 2',3',5' -tri-

0-acetylguanosine (4.0 mg, .011 mmol, recrystallized from methanol, 

Sigma) and 3-nitroanisole (1.7 mg, .011 mmol, recrystallized from 

methanol , Aldrich) were dissolved in 1.5 ml of 1:1 acetonitrile: water 

and photlyzed for 6 h with the pyrex filter setup oo up to 16 h with 

the monochrometer set up. In either case, 50 J.!l aliquots were ana­

lyzed by reverse phase HPLC using the same elution conditions de­

scribed above. 

NMR experiments were run with 2' ,3' ,5'-tri-0-acetylguanosine 

( 4 .0 mg, .011 mmol, recrystallized from methanol) and 3-nitroanisole 

(1.7 mg, .011 mmol, recrystallized from methanol) in 1.0 ml d3 -

CH 3 CN. The sample was sealed in an NMR tube and photolyzed as 

usual. NMR spectra were taken before and after the photolysis. 
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