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Abstract

In this thesis, we study the behavior of viscous flow past bodies of different shapes.
In Chapter 2, we construct a boundary-fitted, numerical grid around a rigid spheroid
of various aspect ratios and solve numerically the Navier-Stokes equations in steady,
axisymmetric form at various Reynolds numbers. In addition, we use these steady
solutions as a base flow and perform a linear stability analysis to determine the
critical Reynolds numbers above which the base flow becomes unstable. We are
able to confirm the results of Natarajan and Acrivos [26] and extend them to more
generalized body shapes.

In Chapter 3, we solve the Navier-Stokes equations to investigate flows past an
oblate ellipsoidal bubble of fixed shape, which is characterized by a free-slip boundary
condition. We then compare our results with previous results by Dandy and Leal [6]
and Blanco and Magnaudet [4] and use the computed steady solutions as the base flow
to perform a linear stability analysis. We show that even with a free-slip boundary
condition, if the body is sufficiently oblate, the flow can become unstable in a manner
similar to that of flows past rigid bodies.

In Chapter 4, we develop an alternative numerical method to compute steady
flows past a deforming, axisymmetric bubble. A newly developed conformal grid
generation method is applied. We show that our results are in good agreement with
those of Ryskin and Leal [34], [35] and then extend some of their results to higher
Reynolds number.

In Chapter 5, we modify the method developed in Chapter 4 to compute steady
flows past a symmetric, two-dimensional bubble. We show that the bubble deforms
to an elliptical shape and that a wake can develop if the deformation of the bubble

is sufficiently large.
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Chapter 1 Introduction

In the case of uniform external flow past bodies of axisymmetric and two-dimensional
shape, a standing eddy develops behind the body at a certain Reynolds number,
a parameter that relates the geometry of the body and the properties of the outer
flow. As the Reynolds number increases, the eddy increases in size, and the flow
eventually loses symmetry and becomes unstable. Clift, Grace, and Weber [5] give a
good summary of various investigations carried out in this field.

There exist many papers [23], [42], [45], [50], [31] & [49] that study the flow past
a solid sphere experimentally. Each of those papers observed transition in the flow at
some critical Reynolds numbers. Achenbach [1] studied experimentally vortex shed-
ding of flow past a solid sphere for the Reynolds numbers higher than 400. According
to the numerical investigations in which the Navier-Stokes equations are solved to ap-
proximate fluid flow, there are two conflicting results in terms of the critical Reynolds
number at which the flow becomes unstable. Kim and Pearlstein [17] used a linear
stability analysis to determine that the critical Reynolds number is around 175.1
and concluded that the transition in the flow occurs as the axisymmetric, steady
flow becomes oscillatory. On the other hand, Natarajan and Acrivos [26] determined
the critical Reynolds number to be around 210 and concluded that the transition in
the flow occurs as the axisymmetric, steady flow becomes nonaxisymmetric, but still
steady. Full simulation of the flow past a solid sphere by Tomboulides, Orszag, and
Karniadakis [44] and the linear stability analysis of the flow past a sphere in a pipe
of finite width by Tavener [43] support the results by Natarajan and Acrivos [26].

One of the more interesting areas in the study of uniform flow past axisymmet-
ric bodies is that of a rising gas bubble. Saffman [36] studied rising air bubbles in
distilled water and observed that under certain conditions, the bubbles oscillate and
sometimes spiral as they rise. Several papers including [14], [46], [9], & [3] also inves-

tigated flow past bubbles experimentally and noticed that the bubbles deform to an
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oblate ellipsoidal shape. Using this fact, Moore [24] used boundary layer perturbation

| analysis to study distorted gas bubbles of oblate ellipsoidal shape rising in a fluid of
small viscosity. Dandy and Leal [6] and later Blanco and Magnaudet [4] investigated
this further by solving the Navier-Stokes equations numerically. They assumed the
bubble to be an oblate ellipsoid with a free-slip boundary condition on the interface
and numerically computed the flow field around it for various values of the Reynolds
numbers. They both observed that with the aspect ratio of the ellipsoidal bubble
fixed, a wake develops behind the bubble, grows to a maximal shape, shrinks back,
and eventually disappears as the Reynolds number increases. However, they differed
greatly in terms of the specific numerical results.

Of course, in order to study the full bubble problem numerically, the method has
to account for the deformation of the bubble to satisfy the balance of the pressure,
the viscous forces, and the surface tension of the bubble. Ryskin and Leal [34] & [35]
used a boundary-fitted, curvilinear, orthogonal grid generation method to numerically
compute the steady flow past a rising, deforming bubble for various values of the
Reynolds number and the Weber number, a dimensionless measure of surface tension.
Expanding on this, Takagi, Matsumoto, and Huang [40] used a similar approach
to investigate the unsteady, axisymmetric flow past a deforming bubble. In terms
of stability results, Meiron [22] performed a linear stability analysis of an inviscid,
irrotational flow past a deforming axisymmetric bubble and showed that it is stable.

There exist also numerous papers [48], [21], & [32] that deal with two-dimensional
bubbles experimentally. This is done using the Hele-Shaw cell set up which is basically
a flattened gas bubble rising through a thin layer of fluid trapped between a pair of
plates. More recently, Kelley and Wu [16] performed experiments in which they
studied rising gas bubbles in such a set up and observed nearly circular bubbles
zigzagging as they moved upward. Shankar [38] analytically studied two-dimensional
bubbles in an inviscid flow and showed that the bubble deforms to an oblate elliptical
shape. Nie and Tanveer [28] expanded on this and performed a linear stability analysis
on an inviscid flow past a two-dimensional bubble to show that the flow is stable.

In this thesis, we attempt to expand on some the above investigations. In Chapter
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2, we use the boundary-fitted, curvilinear, numerical grid generation method devel-
oped by Ryskin and Leal [33] to compute the steady flow past oblate and prolate
spheroids. We also perform a linear stability analysis on the flow to determine the
critical Reynolds numbers above which the axisymmetric flow past spheroids become
unstable. In the case of the solid sphere, our results agree well with Natarajan and
Acrivos’ result [26]. We are then able to expand the result to a more general body
shape of oblate and prolate spheroids and observe a relation between the critical
Reynolds numbers and the aspect ratios of the body.

In Chapter 3, we try to reconcile the differences in the results of Dandy and Leal
[6] and Blanco and Magnaudet [4] in the computation of steady flow past an ellipsoidal
bubble of fixed shape by using basically the same numerical method used by Dandy
and Leal [6]. The results that we obtain differ substantially from Dandy and Leal [6]
and agrees reasonably well with that of Blanco and Magnaudet [4]. However, it is not
a perfect agreement in that our numerical results tend to have smaller wakes over a
shorter range of Reynolds numbers. Blanco and Magnaudet [4] suggest at the end of
their paper that it would be interesting to carry out a linear stability analysis similar
to [26] and [17] to study the dynamics of bubbles, even though the fixed shape of the
bubble makes the problem very simplified compared to the actual bubble problem. We
carry out this linear stability analysis and show that the dynamics of the ellipsoidal
bubble of fixed shape is similar to that of the rigid, oblate spheroids determined in
Chapter 2.

In Chapter 4, we develop an alternative method in computing steady flows past an
axisymmetric, deforming bubble. While Ryskin and Leal [34] used a grid generation
method that involves iteration, we use Symm’s method [39] to generate a conformal
map which allows the grid around the bubble to be computed directly without itera-
tion. In addition, we develop a bubble shape prediction step which uses minimization,
and this also differs from the Ryskin and Leal [34] approach. The steady flows past
an axisymmetric bubble that are computed using our method agree well with Ryskin
and Leal’s results.

In Chapter 5, we modify the method discussed in Chapter 4 to compute steady,
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viscous flow past a symmetric, two-dimensional bubble. We show that the two-
dimensional bubble deforms to an oblate, elliptical shape and that a standing wake

can develop if the deformation of the bubble is sufficiently large.



Chapter 2 The Behavior of Viscous Flow

Past Axisymmetric Spheroids

2.1 Introduction

Fluid flow past solid bodies has been studied extensively for many years. Generally,
it is observed that if the flow is moving slowly, then it is attached to the body and
is steady. As the velocity of the flow increases, a separation of the fluid occurs on
the surface of the body; and a standing wake forms on the rear of the body. When
the velocity of the flow is large enough, the flow becomes unstable and eventually
turbulent [5].

In studying flows past solid bodies, a parameter called the Reynolds number is
usually used to relate the geometry of the body and the properties of the outer flow.

In our studies, it is defined as
_ 2dpU

7
where d is the characteristic length of the body, p is the density of the fluid, U is the

Ry

velocity of the free stream flow, and p is the viscosity of the fluid.

There exist numerous papers that investigate fluid flow past a solid sphere ex-
perimentally. Moller [23] vertically towed spheres with dye ports through water and
observed low-frequency oscillatory motion in the wake behind the sphere occurring
somewhere between a Reynolds number of 170 and 200. Taneda [42] suspended a
sphere using a piano wire and horizontally dragged it through water and reported
observing unsteadiness when the Reynolds number was around 130. Toulcova and
Podzimek [45] and Zikmundova [50] dropped aluminum spheres through a mixture
of water and glycerol and reported transition in the flow to unsteadiness around a

Reynolds number of between 130 and 150. A somewhat different result is reported
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by Goldburg and Florsheim [13]. They observed that around a Reynolds number of

210, the wake behind a falling solid sphere became nonaxisymmetric and eventually
unsteady around Reynolds number 270. Also, Roos and Willmarth [31] reported that
when they towed a sphere in water, they observed side forces around a Reynolds
number of between 215 and 290. More recently, Wu and Faeth [49] towed spheres in
a tank full of water and glycerin mixture and reported that for a Reynolds number
lower than 200, the wake behind the sphere was steady, became nonaxisymmetric and
steady up to Reynolds number 280, and then became unsteady for Reynolds number
higher than 280. Achenbach [1] carried out experiments for flow past a sphere at
Reynolds numbers as high as 5x10¢ and studied vortex shedding in the flow. These
differing results in experiments indicate the importance of the experimental set up.
There is also an extensive series of papers that seeks to study fluid flow past solid
bodies using numerical computation. In these investigations, an attempt is made
to solve the Navier-Stokes equations numerically to simulate the fluid flow past a
solid sphere. More recently, Fornberg [12] calculated steady, axisymmetric flows past
a sphere for Reynolds numbers as large as 5000. Magnaudet, Rivero, and Fabre
[19] computed steady, axisymmetric flows past a sphere and accelerated flow past
a sphere using a finite volume method. Kim and Pearlstein [17] were the first to
use a linear stability analysis to compute the critical Reynolds number at which the
steady, axisymmetric flow past a solid sphere becomes unstable. A spectral method
was used in all directions to solve for the steady, axisymmetric flow. The computed
steady, axisymmetric flow was then used as the base flow about which the unknowns
of the full Navier-Stokes equations were perturbed, and the resulting equations were
linearized to derive a set of perturbation equations. The perturbations are further
simplified by expanding them as a Fourier series in the azimuthal direction of the
sphere. Because the equations are linear, the perturbations can be expressed as a
linear combination of the eigenfunctions associated with the system so that, with @

defined as a perturbation variable and ¢ indicating time,

U~ Cleo”t'ﬁl + Cg@aﬁ?}g =+ 026a3t773 “+ ...
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where @1, s, ... are the eigenvalues, and 71, ¥, ... are the corresponding eigenfunctions.

The eigenvalues are defined so that
Re(al) Z Re(ag) Z

Clearly, as Re(;) goes from negative to positive, the perturbation becomes unsta-
ble. They computed these eigenvalues as a function of the Reynolds number and
attempted to determine the critical value of the Reynolds number at which the real
part of the leading eigenvalue becomes positive. They reported this critical Reynolds
number to be 175.1 and determined that this transition occurs as the real part of the
leading eigenvalue a;, which is complex, of the n = 1 Fourier mode of the perturba-
tion becomes positive. This result appears to agree with some of the experiments.
However, several years later, Natarajan and Acrivos [26], using conformal mapping
and the finite-element method, also computed the critical Reynolds numbers for in-
stability for flows past a solid sphere and a flat disk and came up with a result that
contradicted the results of Kim and Pearlstein [17]. They reported that while it is the
n = 1 Fourier mode of the perturbation that becomes unstable, the critical Reynolds
number is 210. Furthermore, in the work of Natarajan and Acrivos [26] the lead-
ing eigenvalue of the perturbation is purely real. They also indicated that around a
Reynolds number of 277.5, time dependent, oscillatory transition occurs as the real
part of the secondary eigenvalue ay becomes positive. Tomboulides, Orszag, and Kar-
niadakis [44], using the spectral element-Fourier method, performed a full numerical
simulation of viscous flow past a solid sphere; they reported that the flow goes from
axisymmetric and steady to nonaxisymmetric and steady at a Reynolds number of
212. They also observed the appearance of time-periodic flow between a Reynolds
number of 270 and 285. Further bolstering the results of Natarajan and Acrivos [26],
Tavener [43] performed a linear stability analysis of viscous flow past a solid sphere in
a pipe of finite width and determined that the initial instability occurs as the n =1
Fourier mode of the perturbation becomes unstable and that the leading eigenvalue

of the perturbation is also purely real.
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In the case of more general body shapes, the results are not as numerous. Masliyah
and Epstein [20] numerically calculated flows past oblate and prolate spheroids of
various aspect ratios in steady and axisymmetric form for Reynolds numbers up to
100. In terms of stability analysis, there appears to be no published results. While
the behavior should be similar to that of the solid sphere, it is not clear how the
aspect ratio of the spheroids can influence the instability of the flow.

In this chapter, the viscous flow past solid bodies is studied numerically using
a numerical grid generation and a linear stability analysis. We use the numerical
grid generation method developed by Ryskin and Leal [33] who used this method to
numerically solve for steady axisymmetric flow past a rising, deformable air bubble.
We use their numerical grid generation method to solve for steady, axisymmetric flow
past oblate and prolate spheroids of various aspect ratios and Reynolds numbers and
then apply a numerical, linear stability analysis to determine the critical Reynolds

numbers around which the flows become unstable.

2.2 Numerical Grid Generation

2.2.1 Equations for orthogonal grid system

In order to solve the fluid equations for flow past spheroids, the numerical grid gener-
ation method developed by Ryskin and Leal [33] is used to construct an orthogonal,
curvilinear, boundary fitted coordinate system.

Figure 2.1 shows the setup of the physical problem being studied. Since the body

1s axisymmetric, the physical space can be denoted by

z = z(£,7),
y = o(§,n)cos(¢),
z = 0o(&mn)sin (o),

where ¢ is the azimuthal angle ranging from 0 to 27. £ and 7 are the coordinates in
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Figure 2.1: Model of flow past an axisymmetric spheroid.

the orthogonal space to which x and ¢ are mapped. The problem essentially becomes
two-dimensional as seen in Figure 2.2. The region D exterior to the curve r(8) is to
be mapped to the unit square as seen in Figure 2.4.

Since D extends out to infinity, an inversion map is used so that « and ¢ are first
mapped to an auxiliary space whose coordinates are z* and ¢* as seen in Figure 2.3.

That is,

T R 21
el — (2.2)

(2)? + (0)?
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A
(¢
D
r(0)
X
Y
Figure 2.2: Physical space (z (£,71),0 (&,7)).
A
O
&=l
\l: r*(0)
D*
&=0
Y

Figure 2.3: Auxiliary space (z* (§,71),0* (€,7)).
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D**

- =

OW 1 &

Figure 2.4: Orthogonal, curvilinear space (§,7).

Let D* be the image of D, and r*(6) be the image of 7() under this mapping. It is
clear from Figure 2.3 that this mapping changes the problem to finding a mapping
from an interior of a curve to a unit square.

The functions z* and ¢* are orthogonal maps and therefore satisfy the covariant

Laplace equations:

0 oz* 0 1 oz

a_£<f €m) af>+55(f(£,n) 6n> =0 (23)
2(]‘(6 )@)_}_i(_l _E) _

e\ " ) Tam\Femon)

These equations are derived from curvilinear, orthogonal mapping as discussed by
Morse and Feshbach [25]. The existence of these types of mappings is fully discussed
by Duraiswami and Prosperetti [10]. The coordinates £ and 7 are such that they
range from zero to one. The point (£,7) = (0,0) corresponds to the origin of the

auxiliary space. The curves = 0 and = 1 correspond to the axis of symmetry,
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and the curve £ = 1 corresponds to the curve r*. The function f (£,7) is called the
distortion function and controls how equally spaced (€,7) points are mapped to the

auxiliary space. It is defined as f(£,7n) = %Z:L, where
¢
ox* o\ ?
"= \/(5€>+<8€)’ 24
. Oox* do*\?
s () ()

Ryskin and Leal’s strong constraint method, where f(£,7) is prescribed to solve for

the numerical grid, is used in this case. Letting f(£,n) = 7€ gives an evenly spaced

polar coordinate system. In practice, Ryskin and Leal [34] used

f&n) = w¢[l— acos(mn)],
a = 05

in their computation of steady flow past deforming bubbles. The grid system asso-
ciated with this distortion function is such that the mesh is more dense on the right
side of the o-axis. Setting « close to zero results in grids that are more evenly spaced,
and setting o close to one results in grids that are more dense to the right of the
o-axis. Figures 2.5 and 2.6 show the grids computed with different values of c.

We next address the boundary conditions. From inspection of the mapping and

the symmetry conditions, it is clear that

20, = 0, (2.5)
560 = 0,
€1 = 0,
and .
9 ortm =52 01, ). 26)

e h; On
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Similarly for o*,

o*(0,n) = 0O, (2.7)
c*(&€,0) = 0,
o"(§,1) = 0,
and .
9 . _ ko,
57 (L) =~ (1.0 (2.8)

The term ﬁg has to be determined iteratively so that £ = 1 gets mapped orthogonally
to r*. The boundary conditions (2.6) and (2.8) come from having the orthogonality
condition imposed on the mapping (z*(&,7),0*(&,7)), which is

ox* Ox* + dg* Oo* 0
o on 8 oy

and the definition of the scale factors A and h; as defined in (2.4).

2.2.2 Numerical formulation

With the appropriate equations and the boundary conditions, z*(£,71) and o*(&,7)
can be determined numerically. We use the ADI method of Peaceman and Rachford
to solve the grid equations (2.3). The ADI method involves adding artificial time to
the equations (2.3) and splitting them so that the derivatives in the spatial directions
are alternatively treated implicitly at one half-step time and explicitly at the next
half-step [30].

Letting Az = mLH allows us to set £ = 1Az, and n = jAz fori,7 =0,....m+ 1.

The auxiliary coordinates then can be denoted by

z'(&,n) = 2'(iAz,jAz) =2";;,
a*"(&,n) = o"(iAz, jAz) =0, ;.
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Applying second order, finite differencing to the covariant Laplace equations and

applying the ADI splitting produce

*N+1 * *N+1 *N+1 *N+2
Tig DT _ FEm) Tivy — 2% T 29)
-;-At ’ Az? '
(&) Az?
*N+% *N+-§-
(€.n) Tiv1,5 — Li-1,5
f 2Ax
*N *IN
+ 1 (£ ) 7.7+1 :L'.,j_]-
[f(&,m)]* 0 2Ar
and
*N+1 | *N+% ‘ sN+3 *N+- *N+1
i i e | ik 2 F 4Ty (2.10)
A A:E2
L1 (e
f(€777) A(Ez
*N+1 *N+1
0 $i+1,j2 - zi—l,jz
+8_§ (&) SAs

-1 *N+1

T; i1 x:évjll
b an(a,)( i >

The equations for * can be found by replacing z* in the above equations (2.9) and

(2.10) with o*. At is some small parameter that can be used to control convergence,
and N is the iteration index denoting the artificial time used in the ADI method.
The derivatives of the distortion f(£,7) are easily calculated from differentiating
f(&,n) =7€[1 — acos (7)] analytically.

The boundary conditions (2.5) and (2.7) are rewritten in discretized notation to

give

o, = 0, | (2.11)



oo; = 0,
$Z__1 = x:,b
$2m+2 = mev

g0 = 0,

U:,m+1 = 0

These are to be satisfied at time levels N + 1 and N + 1.
Now, at ¢ = m + 1 where £ = 1 the boundary conditions (2.6) and (2.8) are

discretized to give

E*N+%
*N+% *N—l—--é- *N *N
Tmi2; ~ Tmg = = i (0141 — Trm1g-1) (2.12)
n
- 1
h*N+§
O_*N+% _ O_*N-i-% — (3 (.’E*N _ C(,'*N )
m+27.7 myj - h*N m+11.7+1 m+17.7_1 .
n

Here is the summary of the steps involved in solving the above discretized equa-

tions using the ADI method.

1. At time N, x;*]]V and O'Z’]]\-J are known. The radial boundary shape at time N is

then

PV OY) =\ (@5,) + (03,)

G.*N 1
N _ -1 m+1,5
91‘ = tan ——:C*N - -
m-+1,5

Now, r} = r* (9?’ ) is the desired physical shape at 6?’ . In the case of an ellipse

where

of aspect ratio A = a/b,

\/ b2 cos? 9§V + a2 sin? 9?]
*
Ty = )

J ab

~wN+1 .
The term h£N+"’ has to be modified so that r;?N gets closer to r}. So, the normal
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scale factor at £ = 1 is, in a sense, stretched or shrunk by letting

'“*N+-%-

he P=hN4B(r; - (6))).

B is a small parameter that can be used to control convergence, and its typical
value is 0.01. This completes the boundary conditions (2.12), and they can be
placed in equations (2.9) at i =m + 1.

. First, the discretized equation (2.9) is rearranged to give

=|<]\H'-2

*N
CLa; 1; +Clx ,J“ + CHaley (2.13)
= (03,1 T - 0243 :]JV"'CsJ zJ+1)
and
CotE + Cloly ™ 4 ot
= (0231 O35 0141 :13V+05J ZJ+1)
where
o _ __f  129f
Cij = (Ax)2+2A$(9§ ’
2 2f
1 — — ————
G = mt (Az)*
o2 - S 19f
J (Ag;)2 2Azx OE’
SO S S
Mo (Az)’f 28zf?on’
2 2
VT T )y
s 1 1 _3_f
Cij = (Az)® f + 20z f20n

The equations (2.13) for i = 1,...,m + 1 are then rearranged as a vector, and
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the boundary conditions (2.11) and (2.12) are applied to get

where

(B

[N

N

M_l_S_l_ =Vi
2 2 2
C’llyj C%,j 0 0 0 0
ng C'%,j C2] 0 0 0
0 0 0
2
0 0 Co C}] C; O
0 0 0 .
0 0 0 0 C’O,] C’l’]
0 0 0 0 0
*N+5 ]
1,5
ANad
J"ii\’;,rj2
|
*N+1
Tip1j
*N+-%
| Tm415 |
_(C xlj +C§’Jx;1}]+1)
"(C 5”2] 1‘*‘051 * C§]$2J+1)

(C3 04 *N + C5 z+1 ]+1)

3 *N 4

- (Cm+1,j‘”m+1,j—1 + Cm+1,j93m+11
~*x N+
h % *N

o o o o o

™m,j

0 2 1
C +13+Cm+lj G m+1,5

5
C +1_7 z+1,g+1)

2 «N
N C +1_7( m+15+1 Um+1,j—1)
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o . . . 1 . . .
A similar linear system is solved for *¥*2 as well. Since the linear systems in-

volve tridiagonal matrices, they can be solved easily using a standard tridiagonal

LU solver.

. Now that z* and ¢* at time N + % are known, they can be used to solve the

equation (2.10) which is rearranged to get

,_71-

*N+1 4 *N+ *N+5
= (C’?j 21_72 (Czly_—E) 2+02_7 Z+1]>

% 4 * *
G+ (Cy+ A7) S+ Ol (2.14)

and
4
3 *N+l 4 *N+1 5 *N+1
Cz] i,5— (C Z—t_) 1,5 +CJ 4,541
*N+— 4 *N+1 9 *N+3
(0"1 Tim1s (Cl At) o;; °+Clo ,HJ) :

The equations (2.14) for j = 0,...,m + 1 are then rearranged as a vector, and

the appropriate boundary conditions at § = 0 and 7 = m + 1 are applied to get

a linear system

M1$1 =Vi
where

C{fo + 347: C'5 + C30 0 0 0 0

0 0 0
0 C'f:j C'4 K4£ ij 0 0

M, = 0 0 . . . 0 ;
0 0 0 Cn Clnt+a Con
0 0 0 0 C3m+1 C'4'm+1
L +sz+1 +:§t— |




19

5 = xi ; )

*N+1
xi,m—{-l |

F 0 *N+2 1 4 *N+2 2 *N+2 i
(C 0Ti—1,0 (Ci,O_—) + Cio%ii10

0 *N+2 1 *N+2 2 *N+
(Cl T, 1,1 (Ci,l At) +Czl z+11

2,7 z-—l]

vl = * * *
—(CO N+3 +(cl __) N+2 +C’23 Zf;rj)

>1=N+2 4 >0<N+2 9 *N+—
- ( Com+1xz 1me1 T (Cz m+1 'A'Z) Time1 T+ C; m+1Ti41, 1

*N+1

Again, a similar linear system of equations for o is generated. These are

solved using a standard tridiagonal LU solver.

* *N (gIV -6
4. Steps 1), 2), and 3) are repeated until x| (r; —rV (6V)) < 1076,

In practice, it takes about 4000 ADI iterations to achieve a reasonable 80x80 grid.
The functions z* and ¢* are then inverted to get the physical grid (z(&€,n),0(&,n)) .

2.2.3 Numerical grids generated

Shown below are some of the grids that are generated using the Ryskin and Leal
grid generation method in the case of a sphere, where r(6) = 1. Different types of
distortion functions are used here to determine their influence on grid density. Figures
2.5 a), b) and Figures 2.6 a), b) show the numerical grids fitted around a sphere of

radius one generated using different distortion functions.



b)

(o]

AT LUT

Al TXT U T

WA

20

Figure 2.5: a)f = 7€, b)f = 7€ [1 — 0.3 cos(mn)].
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Figure 2.7: a) f = m{[1 - 0.5cos ()], a = 0.5,b = 1; b)f = n¢ [1—0.5cos(mn)],
a=1b=0.5.
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It is clear from the figures that using different values for the distortion coefficient
a of f = 7&[1 — acos(mn)] shifts mesh points to the right of the body. This is
important in that when the fluid equations are solved, the wake that can occur on
the back of the body needs to be well resolved. In each case, the number of points
used to generate the grids is 80x80.

Figures 2.7 a) and b) are generated with the distortion function set to f =
7€ [1 — 0.5cos(7n)]. They show grids that fit around an ellipse with aspect ratio
denoted by A = a/b. Given @ and b, the boundary shape r(6) can be determined by

_ ab
Vb2 cos20 + a?sin’ 0

r(6)

Figure 2.7 a) shows a grid fitted around an oblate spheroid, and Figure 2.7 b)
shows a grid fitted around a prolate spheroid. Again, the number of points used to

generate the grids is 80x80.

2.3 Steady Flow Past Spheroids

2.3.1 Flow equations in axisymmetric form

Given an orthogonal, boundary-fitted, curvilinear, numerical grid system around an
ellipse, the Navier-Stokes equations can now be solved numerically to study viscous
flows past spheroids of various aspect ratios at various Reynolds numbers. The Navier-

Stokes equations in a nondimensionalized form are

1 2
w+u-Viu = —=Vp+—=—V?u, (2.15)
2 Ry

V-u 0.

u = éu§ + fu, + q?)uqs is the velocity vector, and p is the pressure. Here, d is the

characteristic length of the body, and U is velocity of outer flow in the z -axis direction.
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Ry is the Reynolds number defined by

2pdU
Rua= 2=
i

The base flow which is axisymmetric and steady around the body needs to be
calculated. To do this, the Navier-Stokes equations need to be written in the curvi-
linear (£,7n, ) space. Such eqﬁations can be found in several books including those
by Morse and Feshbach [25] and by Batchelor [2]. S;ince the flow is axisymmetric and
steady, us = 0. Furthermore, in curvilinear coordinates, the two remaining velocity

components are

1 oy

Ug = —-5-};;-55, (216)
_ Lo
un h Uhg 8&7

as determined by the divergence free condition. The vorticity is defined by setting

-1 [0 5}
= hehn [gg(hnun) - 3—77(%“5)} :

This gives the Navier-Stokes equations in axisymmetric, steady, stream function-

vorticity form:

(2022

hehy, 55877 o on 0
_2 1 foih O 9 1he 0 _
Rdhghn{af {hgoaf (‘”")]+an [h,,oan (“’”)]}_O’

—1 [0 (Pl O, O ([ he O _

o L2t Gics3e) * 7 (s )| = 219

To solve the above equations, we need the proper boundary conditions for ¥ (€,7)

and w(€,n) along £ = 0,1 and n = 0,1. Since we have a solid rigid body, both u,



and u, on the body are zero. So,

¥(1,m) =0,

and

0

As £ — 0, the flow becomes further away from the body. The stream function

can, therefore, be approximated by a free stream flow: -
~ 1, 3

This allows % to have a homogeneous boundary condition for all sides of our curvi-
linear grid. This also sets

w(0,n) = 0.

By examining Oseen type solutions as discussed in Ryskin and Leal [34], it is clear
that 1 is bounded at infinity, and £ = 0 is a regular singular point of equations (2.17)
and (2.18).

The boundary conditions imposed on % (&,71) and w (€, ) by enforcing the flow to

be axisymmetric along n = 0 and 1 are

$(E,0) =
B(€,1)
w(£,0) =
w(E,1) =

o o o o

Rewriting the no-slip condition in terms of {D gives

—(1,n) — 20> =0 (2:20)
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2.3.2 Numerical formulation

The flow equations (2.17) and (2.18) must be solved numerically, and the formulation
suggested by Dandy and Leal [8] is used. They used second-order finite differencing
to discretize the flow equations, rearranged them as a vector of difference equations,
and solved them using Newton’s method. Newton’s method requires the computation
of an LU decomposition of a large sparse matrix. In our case, it is used to solve for
fluid flow past a body of a fixed shape.

Rewriting the equations (2.17) and (2.18) in a more manageable form gives

Ow O*w Ow Ow

» 2 » o wsw = 0 2.21
ge T dagg + g +lug T et (2.21)
where
. 21
qOJ]- - Rdhg’
_ 21
42 = Rdh27

2 (10he 180 1 Ohy\ 00/ & 1\ 1 8¢
W8 = Ry \1R O ohZOE  Zh, B | T 0 \nhe hnhe)  hmheo 07
2 (~10h 100 10m
Yt = Ra\heh2on ~ ohZon B on

Do € 308 1 %
6{ h"f)h'§ h,,’hg 2 h§h"l7 hnhga 867

2 @_1_2_3_0 __1 0k, 1 0k 301
dos = B heo) " B€ \ hyhto O ' hio BE an hoo

2 @ 1 Ohy 1 Ohe B 0% 1 A% 1 _3_ o
Ry |On \h3c On  heh2o On on? h%a o¢* hia 2 3

L1 sosh 1 a00)
hoheo? 08 On  hyheo? On 8¢’

and ~
2 2
82 &%) o o (2.29)

+ =0
Q1 oe2 +q1p26 5 +q¢38§ %4877 +w + gys



where

gy1

Gy2

qys3

Gy

Qys

27

|Hm%|H
Q

)

1 Ohe 1 6h, 1 8o
“hlo 8¢ ' ohZh, B  hZ o2 OE

1 Ohg 1 Oh, 1 0o
hehZa On B oh3 On B h2 02 on’
30€20h; 9¢8c 3 o€® Bh, 30€
2h: 86 2h2OE  2hZh, OE  hI

>
SN
Q

Let Az = —= to get £ = iAz,n = jAz for ¢,j = 0,...,m + 1. This allows us to

+1
set

and

w(&,n) = w(iAz, jAz) = w;;

@(f,n) = @(iAﬂ?,jAfC) = '(Zi,j'

Using second-order finite differencing to approximate equations (2.21) and (2.22) gives

_ A0 1 2 . 3 . 4 . .
Ho,; = Aj jwi-1; + A jwii-1 + A jwi + A5 jwijn + Ay jwina,j

where

A — T1%s G

“t 2 Az (Az)¥’

1 G2 14w
Ay = (Az)? 2AZ’

2 qu2 guwi

.7 -2 -2 wH»
Az,y (Az)? (Az)? T Qus
A3, G2 1w

e (Az)?2  2Az’

1 quw3 Qw1

4 .

AL v

2Az ' (Az)?
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and
_ Ro 7 17 2 7 37 4 7 5 6
Hy,; = B, jbi_ 15+ B s j-1 + Bijij + Bijije1 + Bijbigr; + Bijwii + By j,

where

—1qys Gy1
BY., = —Z2*
I 2 Az * (Az)?’
Bl = T2 _ 1y
b (Az)?2  2Azx’
dy2 Q1
B = -2 -2
"7 (Az)2 (Az)*
Q2 1 gya
B, = == 4 2
w7 (Az)? * 2 Az’
lg q
4 _ U8 ¥l
Bii = 35z TR
5
‘B'i,j = 1,
ng = Qys-

So, for each (i,7), a pair of unknowns w;; and @i’j is assoclated with a pair of
difference equations Hy, ; and Hy, ;. The vorticity w; ; is also unknown along £ = 1 and
can be accounted for by the no-slip boundary condition (2.20). Properly discretizing
it using second-order, one-sided finite differencing gives

Hp, = D}t 15+ D}m,; + D5

YR

where

1
DO —
I oAz’
2
1 — —_——
b; = Az’
3
2 2
Dj = —50'

Now, it is possible to organize the difference equations in ¢ and j. However, in

order to minimize computation time, it is a good idea to organize the equations in
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such a way that the band of the diagonal of the sparse matrix generated is as narrow
as possible. So, the organization scheme suggested by Dandy and Leal [§] is used to
set up the equations this way.

Let G be the vector that is formed by rearranging the difference equations, and
let Gy be its components. First, set Gy = Ho, ,; with ¢ = 1 fixed, increment j until
G, = Ho,,,- Then, set G411 = Hy,, and increment j until Gpym = Hi,,,. Now,
increment 7 by one and repeat the whole process until ¢ = m. Then, set Gyp2y; =
Hp, for j=1,..,m.

Now, let U be the vector of unknowns and let Uy, be its components. First, set
U, = 12)1,1; with 7 = 1 fixed, increment j until U, = 1,~b1,m. Then, set U411 = wy,; and
increment j until Upypm = wym. Now, increment ¢ by one and repeat the whole
process until i = m. Then, set Uyp2y; = wWmy1; for j=1,....m.

In other words, the components of G and U are such that

G?m(i—1)+em+j = {Hei,j €= 07 1}a i = 17 '"7m7j = 17 ey TN,

G2m2+j = HBj; .7 = 1)"'7m;

and

(% e=0 | .
Usm(i-1)+em+i = si=1,...,mj=1,...,m,
Wi, j e=1
Upm24; = Wmirg; J=1,...,m.

Now, we need to solve for U such that G (U) = 0, and Newton’s method is used
to achieve this. In order to use Newton’s method, we need to calculate the Jacobian

matrix

6G
ou
associated with G by differentiating each component of G with respect to each com-

ponent of U. Suppose some initial vector UY is given. After we compute the Jacobian
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matrix £&, we iterate for UV+! by solving

UN+1 — UN + <6G6(I[JJ )>_ G-(UN),
5G(UN) N+1 Ny _ N
=5 (UM - UY) = gUuM). (2.23)

The whole process is repeated until G (U) = 0. The difficulty comes from solving the
linear system (2.23) in that it involves computing the LU decomposition of a large
sparse matrix %. So, a sparse matrix solver developed by Kundert and Sangiovanni-
Vincentelli [18] is used in computing the LU decomposition of the matrix. Figure
2.8 shows the structure of the sparse matrix %% used. Their solver allows the user to
enter the nonzero elements of the sparse matrix and uses partial pivoting to compute
the LU decomposition. In practice, one LU decomposition in the beginning of the
iteration is sufficient; a new LU is not needed at every iteration. So, a secant method

is generally used.

2.3.3 Numerical results of steady flow past a solid sphere

Here, we present the results of our computations of steady, axisymmetric flows past
a solid sphere. As mentioned previously, there are several numerical results for flows
past a sphere, and we compare our results with previous work. The nondimensional-
ization is such that d = a = b, and we define the Reynolds number as R = R;. The
grid shown in Figure 2.6 a) is used as the numerical grid in order to compute the
steady solutions for various values of R.

The drag coefficient Cp of the flow is computed by numerically integrating

1 oo 2 h,o 0 8 oo
2 n 4
- —_—_— e —_—— —— —— d .
CD = 2/(; |:U,n0 S 2 he 55 (OQJ) + d@gg() n (2 2 )

£=1
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) (Dm+1 )

H
Bj

Figure 2.8: The banded structure of the spa.rse matrix used in the outer flow solver
of flow past spheroids with the no-slip boundary condition.
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Sphere = 100 R= 200
Cp Wake length | Cp Wake length
60x60 1.078 2.77 0.755 4.01
70x70 1.081 2.76 0.760 3.97
80x80 1.082 2.76 0.760 3.95

Table 2.1: Convergence study for steady, axisymmetric flow past a solid sphere. The
wake length is measured from the center of the sphere.

R 000 01 1 5 10 |

Oseen’s 24044 2441 276 15.5 286
This work, 80x80 grid | 2420.9 2454 274 7.14 430

Table 2.2: Drag coefficients of flow past a solid sphere at low Reynolds numbers using
grid of resolution 80x80 compared with Oseen’s results.

where

j._a’U,E ’U;n 8h§
he OE | hehy On

oo = _Tm O [un) _ he O [uc
T 2heBE \hy) 2h,0n \he)

This equation is also used to calculate the drag coefficients for spheroids as well.

€ee

According to asymptotic results by Oseen and others as reported in Masliyah Epstein

[20], for Ry small,

24 3KR; 9K® , (Rq
Cp~ 7K |1+ +160Rdln<2>].

The values of K are tabulated in Happel and Brenner [15]. This equation is also valid
for spheroids as well.

Table 2.1 shows the drag coefficients and wake lengths of steady solutions com-
puted at Reynolds numbers of 100 and 200 under different resolutions. The results
are in good agreement for all three mesh sizes, and this indicates that our results are
convergent. Table 2.2 compares the drag coefficients at low Reynolds numbers with
Oseen’s asymptotic results. They also appear to agree well for R = 1 and lower.

Table 2.3 compares our results with some of the previous results of others who



Sphere = 100 R= 200

Cp Wake length | Cp  Wake length
Fornberg [12] 1.085 2.74 0.768 3.867
Natarajan and Acrivos [26] 1.092 0.79 3.86
Magnaudet, Rivero, and Fabre [19] 0.765
This work, 80x80 grid 1.082 2.76 0.760 3.95

Table 2.3: Comparison of the drag coefficients and the wake lengths of flow past a
solid sphere as determined by others. The wake length is measured from the center
of the sphere.

R 50 100 200 300 400 500 550
Cp| 1571 1.081 0.760 0.616 0.528 0.465 0.442

Table 2.4: Drag coefficients of flow past a solid sphere at various Reynolds numbers
using grid of resolution 80x8&0.

used different types of numerical methods. Fornberg [12] used conformal mapping to
compute steady, axisymmetric flow past a rigid sphere for Reynolds number up to
5000, and Natarajan and Acrivos [26] also computed some steady solutions in their
perturbation analysis. In addition, Magnaudet, Rivero, and Fabre [19] used a finite
volume method to extensively study steady and accelerated flows. The results all
appear to agree reasonably well with one another.

Figures 2.10 and 2.11 show the contour lines of vorticity and stream function
computed for R = 1, 50, 100, 200, 300, 400, 500, and 550. A standing wake begins
to form around R = 20 and becomes quite large around R = 200. Figure 2.9 shows
the length and the separation angle of the wake behind a sphere as a function of the
Reynolds number. It appears that the wake increases in size as the Reynolds number

increases.

2.3.4 Numerical results of steady flow past an oblate spher-
oid
In this section, we present the computations of steady flow past an oblate spheroid

of aspect ratio A = a/b. The nondimensionalization is such that d = b so that the
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Figure 2.9: a) Length of the wake as measured from the back of a sphere using a grid
of resolution 80x80 and o = 0.5. b) Separation angle of the wake as measured from
the front of a sphere using a grid of resolution 80x80 and o = 0.5.
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R=1

Figure 2.10: Steady solutions of flow past a sphere are shown for R = 1, 50, 100, and
200. In each case top is the stream function, and the bottom is the vorticity.
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Figure 2.11: Steady solutions of flow past a sphere are shown for R = 300, 400, 500,
and 550. In each case the top is the stream function, and the bottom is the vorticity.



37

Oblate spheroid | Oseen’s | This work 70x70 | This work 80x80
A=0.31]2129 217.1 216.4
0.4 | 216.6 218.9 218.5
0.5 | 220.7 222.2 222.0
0.6 | 225.0 226.2 226.1
0.7 | 229.6 230.8 230.6
0.8 | 234.3 235.6 235.4
0.9 | 239.2 240.5 240.3

Table 2.5: Drag coefficients of flow past an oblate spheroid at low Reynolds number.

Oblate spheroid | This work 70x70 This work 80x80
R, =100 Ry, =200 | R, =100 Ry, =200
A=0311.191 0.896 | 1.187 0.888
0.4 ]1.151 0.855 | 1.150 0.851
0.511.124 0.826 | 1.124 0.824
0.6 | 1.105 0.804 | 1.106 0.804
0.7 | 1.092 0.78 | 1.094 0.788
0.8 ] 1.084 0.773 | 1.086 0.776
0.9 | 1.080 0.764 | 1.082 0.766

Table 2.6: Drag coefficients of flow past an oblate spheroid using grids of resolution
of 70x70 and 80x80.

Reynolds number is defined by

_ 2pbU
P

Ry = Rq

Grids similar to Figure 2.7 a) are used to compute the steady solutions for various
values of Ry, given A = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Results for A smaller than
0.3 were not calculated due to the limitations of our method; the numerical grids
computed for such values of Awere too distorted for our steady solution solver to
obtain a converged solution.

Table 2.5 shows the comparison of the drag coefficient for flows past an oblate
spheroid at low Reynolds number. Our results seem to agree well with the asymptotic
results under different resolutions.

Table 2.6 shows our results for moderate Reynolds numbers R, = 100 and 200.

They appear to agree well under different resolutions.
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Oblate spheroid | B, 50 100 200 300 400 500
A=0.3 1.592 1.187 0.888 0.746 0.661 0.603
0.4 1.565 1.150 0.851 0.709 0.622 0.564
0.5 1.551 1.124 0.824 0.682 0.594 0.535
0.6 1.545 1.106 0.804 0.661 0.573 0.513
0.7 1.545 1.094 0.788 0.646 0.557 0.497
0.8 1.550 1.086 0.776 0.633 0.545 0.483
0.9 1.560 1.082 0.766 0.624 0.535 0.473

Table 2.7: Drag coefficients of flow past an oblate spheroid. 80x80 grid.
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Figure 2.12: Drag coefficients of flow past an oblate spheroid for various values of Rj.



39

Prolate spheroid | Oseen’s | Our results 70x70 | Our results 80x80
R,=01 | R,=0.1 R,=0.1
A=1.1]226.2 227.5 227.3
1.2 | 211.3 212.5 212.3
1.3 ] 198.8 199.9 199.7
1.4 | 187.9 189.1 188.9
1.5 | 178.8 179.7 179.5
1.6 | 170.6 171.5 171.3
1.7 ] 163.4 164.2 164.0

Table 2.8: Drag coefficients of flow past a prolate spheroid at low Reynolds number.

Figures 2.14 and 2.15 show the steady solutions that we computed using the
80x80 grid for A = 0.3 at various values of R,. Figures 2.16 and 2.17 show the steady
solutions that we computed using the 80x80 grid for A = 0.7 at various values of R;.

Figure 2.12 and Table 2.7 show the drag coefficients of steady flow past an oblate
spheroid of various aspect ratios at various values of R,. It appears that the drag
coefficient becomes smaller as the body becomes more spherical if R, is large. Figure
2.13 shows the wake length and the separation angle of the wake behind an oblate
spheroid of various aspect ratios. It appears that for a very oblate spheroid, as the

Reynolds number increases, the wake shrinks back a little.

2.3.5 Numerical results of steady flow past a prolate spheroid

In this section, we present the computations of steady flows past a prolate spheroid
of aspect ratio A = a/b. The nondimensionalization is such that d = @, and the

Reynolds number is defined by

R, = R, = 2PV
7

Numerical grids similar to Figure 2.7 b) are used for our computations. Steady
solutions are computed for A = 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.7.

Table 2.8 shows the comparison of the drag coefficient results obtained for creeping
flows. Our results appear to agree well with Oseen’s asymptotic results.

Table 2.10 compares our results computed using two different grid resolutions for
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0=0.5 80x80 grid

Wake length

o L [ L L L | L L ) . | B L ! L L L ) L
100

T
=

Separation angle

100 200 300 [ 400 500
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Figure 2.13: a) Length of the wake as measured from the back of an oblate spheroid
using a grid of 80x80 resolution with o = 0.5. b) Separation angle of the wake as

measured from the front of an oblate spheroid using a grid of 80x80 resolution with
a = 0.5.



41

e

b)

R,=50

2 |

e

/
9

S

R,=200 .

Figure 2.14: Steady solutions of flow past an oblate spheroid with A = 0.3 are shown

for Ry = 1, 50, 100, and 200. In each case the top is the stream function, and the
bottom is the vorticity.



42

Figure 2.15: Steady solutions of flow past an oblate spheroid with A = 0.3 are shown
for R, = 300, 400, 500, and 550. In each case the top is the stream function, and the
bottom is the vorticity.
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Figure 2.16: Steady solutions of flow past an oblate spheroid with A = 0.7 for R, = 1,
50, 100, and 200. In each case the top is the stream function, and the bottom is the
vorticity.



Figure 2.17: Steady solutions of flow past an oblate spheroid with A = 0.7 are shown
for R, = 300, 400, 500, and 550. In each case the top is the stream function, and the
bottom is the vorticity.
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Prolate spheroid | R, 50 100 200 300 400 500 600
A=1.1 1.384 0.942 0.656 0.531 0.455 0.401 0.344
1.2 1.238 0.834 0.576 0.465 0.398 0.351 0.320
1.3 1.120 0.749 0.512 0.413 0.353 0.312 0.282
1.4 1.024 0.679 0462 0.371 0.317 0.280 0.252
1.5 0.945 0.622 0.420 0.336 0.287 0.253 0.228
1.6 0.877 0.574 0.385 0.307 0.262 0.231 0.208
1.7 0.820 0.534 0.356 0.283 0.241 0.213 0.191

Table 2.9: Drag coefficients of flow past a prolate spheroid. 80x80 grid.

Prolate spheroid | Our results 70x70 Our results 80x80
R, =100 R, =200 | R, =100 R, = 200

A=1.110.941 0.654 | 0.942 0.656

1.2 1 0.833 0.574 | 0.834 0.576

1.3 0.748 0.511 0.749 0.512

1.4 1 0.679 0.461 0.679 0.462

1.5 0.622 0.419 | 0.622 0.420

1.6 | 0.574 0.385 0.574 0.385

1.7 1 0.533 0.356 | 0.533 0.356

Table 2.10: Drag coefficients of flow past a prolate spheroid computed using 70x70
grid and 80x80 grid.

moderate Reynolds numbers R, = 100 and 200. They appear to agree well indicating
that our results are convergent.

Figures 2.20 and 2.21 show the steady solutions computed using the 80x80 grid
for A = 1.3 at various values of R,. Figures 2.22 and 2.23 show the steady solutions
computed using the 80x80 grid for A = 1.7 at various values of R,. Figure 2.19 and
Table 2.9 show the drag coefficients for steady flow past a prolate spheroid of various
aspect ratios at various values of R,. It appears that the drag coefficient becomes
smaller as the body becomes more prolate. Figure 2.18 compares the wake length
and the separation angle of the wake behind a prolate spheroid of various aspect
ratios. It appears that as the Reynolds number increases, the wake increases in size

as well.
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Figure 2.18: a) Length of the wake as measured from the back of a prolate spheroid
using a grid of 80x80 resolution with a = 0.5. b) Separation angle of the wake as
measured from the front of a prolate spheroid using a grid of 80x80 resolution with
a = 0.5.
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Figure 2.19: Drag coefficients of flow past a prolate spheroid for various values of R,.
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b)

R =50

R,=200 . @

Figure 2.20: Steady solutions of flow past a prolate spheroid with A = 1.3 are shown
for R, = 1, 50, 100, and 200. In each case the top is the stream function, and the
bottom is the vorticity.
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b)

R =400 . @

R,=500" %7
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Figure 2.21: Steady solutions of flow past a prolate spheroid with A = 1.3 are shown
for R, = 300, 400, 500, and 600. In each case the top is the stream function, and the
bottom is the vorticity.
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Figure 2.22: Steady solutions of flow past a prolate spheroid with A\ = 1.7 are shown
for R, = 1, 50, 100,and 200. In each case the top is the stream function, and the
bottom is the vorticity.
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Figure 2.23: Steady solutions of flow past a prolate spheroid with A = 1.7 are shown

for R, = 300, 400, 500, and 600. In each case the top is the stream function, and the
bottom is the vorticity.
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2.4 Linear Stability Analysis

2.4.1 Perturbation equations

With the steady, axisymmetric solutions determined for a reasonable range of aspect
ratios and Reynolds numbers, a linear stability analysis is performed to investigate
perturbations that may deviate from the steady, axisymmetric base flow. The main
focus of this linear stability analysis is to determine the critical Reynolds numbers at
which the flow may become unstable. It is of interest to determine also the nature
of the instability. First, the perturbations to the pressure p and the three velocity

components are expanded as a Fourier series in the azimuthal ¢ direction:

U = Ues(§:"fl)+5 Z emgbaﬁn(é.?n?t)) (225)
uy = Upe(&m) +e Z ey, (€, 1, 1),
Uy = € Z em¢'&¢n(fana t):

oo
p = Ps(&m)+e Y €™pa(&,n,1).
n=—00

Ue, and U, are the radial and polar components of the steady, axisymmetric base flow
velocity vector and are calculated using (2.16). The variable € is a small parameter
of perturbation, and ¢ is the imaginary number v/—1. Expanding the perturbation in
the azimuthal direction as a Fourier series reduces the problem to our original, two-
dimensional grid. The perturbed variables are physical quantities and are expected
to be real. So, %, = @*,,. This allows us to restrict our computations to n > 0.

The equations (2.25) are plugged into the Navier Stokes equations (2.15), and a

set of O(g) perturbation equations is derived:

0 . 0 . . - -
qgggugn + Q?%Unn + qguﬁn + qgunn + nguqﬁn =0



where

where
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(2

2

o2 o}
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Next, we address the boundary conditions that need to be imposed on the per-
turbations to solve the above perturbation equations. Clearly for £ = 0, which corre-

sponds to the point at infinity, we set

pn(0,m,t) = 0,
Uen(0,m,) = 0,
U (0,m,t) = 0,
Ugn(0,m,8) = 0.

Since we impose the no-slip boundary condition at £ = 1, we have

’llgn(l,?'],t) = 0,
ﬂ"fm(lanat) = 07

ﬁm(l,’f},t) = 0

For p,,, the perturbed divergence condition is imposed at £ = 1 to give

ﬁ’&gn = 0.

23

The difficulty comes from imposing boundary conditions along the axis of symmetry
at n = 0 and n = 1. Because of the % terms, care must be taken in the limit ¢ —
0. Quarterpelle and Verri [29] encounter similar problems in their discussions of
solving the Navier-Stokes equations in primitive variables in spherical and cylindrical
coordinate system using spectral methods. They deal with such coordinate singularity
problems occurring in their equations by imposing differentiability of vectors and

scalars at the origin by employing L’Hopital’s rule. They show that for each Fourier
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mode, the boundary conditions are determined to be

0
a—np()(g’o’t) - 01

0 .

- ) =

anp()(é.:]-v ) 07

0 .
a_nugo(§70’t) = 07
(5’17t) = 07
0(77 0,t) = 0,
ﬁno(n,l,t) = 0,
'Z‘¢0(77,0:t) = 07
’&,d,()(’(],].,t) = 0,

for n = 0;

p1(£,0,1
pl(ga 17t

ufl (77; 0 t

{]’771(777 07t) + l/&'tﬁl(n’ 7t
ﬂ/ﬂl(n7 1t) - [’atﬁ](na 7t

0 .

)
)
)
te1(n,1,1)
)
)
3—77%1(77,0,0 0535%1(77:0 t)

0 . 0 .
%uﬂl (77; 17 t) + L%udﬂ (777 17 t)

for n = 1; and
Pn(€,0,1) = 0,

ﬁﬂ(£71’t) = 07
{l’fn(n707t) = 07

o o o o

-
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ten(n,1,t) = 0,
’&nn(n,O,t) = 0,
Ugn(n,1,1) = O,
Ugn(n,0,8) = 0,

ﬁdm(n; 17t) = 0

for n > 2.

The perturbation equations along with the boundary conditions can be solved for
each Fourier mode in several ways. One way is by letting & = €**0 and solving them
as a generalized eigenvalue problem. Let o; oy ... be the eigenvalues, and 7 U5, U5, be
the eigenfunctions associated with them. Rearrange the eigenvalues so that Re(a;) >

Re(as) > Re(as)... Since the equations are linear,

U ~ Clealtf)l + 626&2t{)2 + C3e°‘2t'[)3 + ...

If Re(a;) is negative, @ decays exponentially, and the base flow is stable. On the
other hand, if Re(a) is positive, % blows up exponentially and denotes instability. By
tracking the leading eigenvalues generated for each Ry, the critical Reynolds number
for which Re(a) is zero can be determined.

In our case, instead of solving the system of equations as a generalized eigenvalue
problem, we evolve the perturbations in time. When ¢t is large, the term e*'%;
dominates %. Taking the logarithm of % as ¢ becomes large should result in a linear
growth curve whose slope, i.e., the growth rate, is equal to the real part of a; If o, is
complex, the logarithmic growth curve is such that the peaks of the oscillations line
up linearly. The real and the imaginary part of a; can then be determined from
taking the slope of the peaks and measuring the distance between them.

It is also of interest to determine the secondary eigenvalue a5 as well. The results
of Natarajan and Acrivos [26] and Tomboulides, Orszag, and Karniadakis [44] indicate
that when Re(as) goes from negative to positive, the flow may become oscillatory.

It is, therefore, important to determine the critical Reynolds number around which



59
this secondary transition may occur. Even though our method does not employ the
generalized eigenvalue method, it is still possible to determine o . When ¢ is large,
4 ~ CU;, where C is some constant. Since the eigenfunction 77 is now known, a
Gram-Schmidt orthogonalization method can be used to determine s and s.

To further simplify the computation, we write the perturbations as

@ = Re(@) + ¢ Im(%).

Rearranging the perturbation equations gives

© (Re(ﬁn): Re(’&gn), R‘e(’&ﬂn)a - Im(ﬂ’qm)) +:© (Im(ﬁn): Im(ﬂ&n): Im(’&nn)v Re(ﬁ“%)) =0

where © is a vector of functions with components @y, k = 0, 1, 2, 3 defined this way.

Let

2 = Re(p,) = Im(p,),

IL = Re(fg,) = Im(den),
2 = Re(fyn) = Im(iym),
B = —Im(@g) = Re(lgn)-

These quantities satisfy the following equations:

0 0O
© = ¢} (%ll + )= o —12+ g + g% + ¢J13; (2.26)
o 8

where

8 ) )
o+ Gmsh + q%a—gli + a5l

82
Fl(grth) = qg—-ﬁ‘ 82 a

o€
o . 0
+q; 8512 —~ %a 2+ qlt + g7l + al2;
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5 )
0, = gt— + 5——l0 + Fg(f,?],t), (228>

where

Beny = 2852“%8212+q23—§l1+q§3—l;

0 )
+q43—€l2+q5—l2+ 2 + 22 + @I,

and

0o
@3 = gl:; — q7l0 + F3(€ 7]’ ) (229)
where

82 8 a a
Bl&nt) = digph +agah +aggh + dg .

—glr — 12 + 312,

The boundary conditions become

0 0
an = 2.
anl0(€707t) 0, ( 30>
0
-é_lg(€7]—7t) = 0,
0 B
'-a—,’]-l0(§7 07 t) = 0,
0 B
—8——77—ZO(§’17t) - 0,
lg(nﬂoyt) = 0,
l(2)(n71vt) = 0,
lg(nnoat) = 0,
lg(na 17 t) = 0,

for n = 0;

1§(,0,t) = 0, (2.31)
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2 1,t) = 0,
11(n,0,t) = 0,
L(n,1,¢) = 0,

2(n,0,t) + 3(n,0,t) = 0
l?(nal,t) Bn,1,t) = 0,
3z2< 0,1) - 1(n,0t> = 0

8 8
a_-ll(n71t)+ ls(n717t) = 07

for n = 1; and

Ia(£,0,t) = (2.32)

(1t

)
li(n,O,t)

~ ~ ~ ~

I
© o0 O o o o o o

for n > 2.
This tells us that determining the behavior of (I2,1},12,12) in time gives the be-

havior of both the real and the imaginary part of the perturbations.

2.4.2 Numerical formulation

The perturbation equations are solved numerically using the Crank-Nicolson method
in time and second order finite differencing in space. Let ¢ = NAt, and denote, for

now,

(& m,t) = 15 (€,n, NAL) = 15V,
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Applying the Crank-Nicolson integration in time gives

al1N+1+Q188 l2N+1+ qgl1N+1+q0l2N+1+q0l3N+1 — 0,

(s 8§
LN N
(ln 1 lflz ) +qg 8lON—i—l_*_ 1(§7n*(N+1)At)+F1(£7777NAt) — 0’
At ot™ 2
(N1 g2 2 , 0 9 e, Fy(€,n, (N + 1)At) + Fy(€,n, NAt) — 0
At San™ 2 ’
(lg’N+1 - lgN) _ q3Z°’N+1 + F3(§: 1, (N + 1)At) + F3(€a TI,NAt) = 0
At o 2 '
At each (4, j), there are four equations coupled with four unknowns.
Let Ax = m, and let { =iAz, n = jAz,¢,5 =0,...,m + 1. The perturbations
can be discretized such that for £ = 0,1,2, and 3,
15 (6,m,) = I} (A2, jAz, NAY) = 15V
Discretizing the perturbation equations (2.26),(2.27),(2.28), and (2.29) gives
Lo, = Co, i} +CL BN +C) I+ 4 Cf 12N+ (2.33)
0 BN+l 4 A0 2N+ 0 LN+
+C4i,j Zni,j+ CSzjln”_: + C 6;.j n1+1+.., )
where
0 _ g0
0:.g 2Az’
0
0 _ 51
G, = " 2Az’
%, = @
%, = 9
v, = 4
0
o _ 4
051',1' T 2Ax
CO _ qg

6ii T 9Agx’



where

I, =

N
gl,;,j -

1
0;,5

1
1:5

1
25

1
3i.g

1 —
C]Oi,j -
1 —
C]l,‘,’j -

1 —
Cl?i,j -
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Cé ,lO’N+1 +Ci:’.l1’N+1 +01 .l2’N+1 +C§i,jl1’N+1

5,5 Mi-1,j J Mi—1,5 2:,5"Mi-1,5 N4,5-1

_‘_Ciz’ l2’N+1+Cg, ll,N+1+Cl l2’N+1+C%, l3,N+1

G Mi,G-1 RN 6:,5 Ni,5 .5 Mg
+C}
8

1L,N+1 1 72,N+1 1 J0,N+1 1 J1,N+1
i,jlni,jﬂ + C9i,jlni,j+1 + Cloz',jlm+1,j + Ollz‘,jln’iﬂ,j

1 2,N+1 N
+012—;, l ; + gli,j )

J Titl,j

+ Cvl ll,N

1 0N
Coi, z Bij Mij-1

J Mi-1,5

+ 05w

J -1,

+ <C§i,j - i) i O N o

+ 02

J Ti—1,5

1 2N
+C4i,jlﬂi,j—1 At ) i 65 ni s i i,

1 0N 1 J1,N
+ Cloi,jln’iﬂ,j + Clli,jl :

1 1N 1 72,N
+Cs,-,,- lni,j+1 + C9i,jl Mi+1,5

Ni,5+1
1 2,N

G Mit1,50
%
20z’
% g
2Az2 4Azx’
1
9
4AZ’
a @
20z 4AZ’
1
_ 9
4Ax’
.1 _» _ 4
2 At Azx?  Azx?’
1
%
2 )
%
2 b
q a3
2Az2  4Ax’
1
ds
4Az’
%
2Az’
% %
2Azx2  4AZ’
1
o

(2.34)
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— (2 JL,N+1 2 2,N+1 2 jO,N+1 2 71,N+1
Iay = Coi,jlni—l,j +Clz',jln’i—1,j + C2i,jlni,j—1 + C3i,jlni,j—1 (2:35)
2 72,N+1 2 J1,N+1 2 j2,N+1 2 13,N+1
+C4i,jlni,j—1 + G5i,jlni,j - Cei,j lnz',j + C7i,jln’i,j
2 70,N+1 2 J1,N+1 2 J2,N+1 2 JLN+1
+Csi,jlni,j+1 + Cgi,jln;,j+1 + Cloi,jlni,j+1 + Clli,jlni-!—l,j
2 72,N+1 N
+012i,jlm+1,a‘ T 92:0
where
N o _ 2 71N 2 j2,N 2 0N 2 1N
92.; = Ooz',jlni—l,j + Cli,j lﬂi—l,j + C2i,jlni,j—1 + C3i,jln,i,j—1
2 2N 2 LN 2 _i 2,N 2 i3,N
+C4i,jlni,j—1 + C5i,jlni,j + (Cﬁi,j At lni,j + C7i,j ln’i,j
2 0N 2 JL,N 2 72,N 2 LN 2 J2,N
+08i,j lﬂi,j+1 + CQi,j lﬂz‘,j+1 + Cloi,j ln’i,j+1 + Clli,j ln’i+1,j + Gl?i,j lni+1,j’
2
02 = Q2
0:j 4Ax’
2 2
2 _ _ _ %
Lig 242  4Azx’
2
C2. = _ %
2 20z’
2
2 = _ B
Bij 4Ax’
2 2
o2 = .
4ig 2Ar  4Az’
2
2 _ %
5. T 97
2 2 2
c? - % + i _ % O
6ij 2 At Az Ax?
2
2 _ B
7,,:,_7' - 2 ’
2
C2 — ds
8ig 2Azx’
2
9irj 4Az’
2 2
10:.5 2012 4Azx’
2
02 _ qs
Mg 7 4Ag
2 2
o2 _ % + 94 .
12:5 2Az2  4AZ’
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and
_ 3 13,N+1 3 13,N+1 3 jO,N+1 3 J1,N+1
Is; = COi,jlm—l,a‘ + Cli,jlni,j—l + Czi,jl"i,j + C3i,jln’i,j
3 12,N+1 3 73,N+1 3 13,N+1
+C'4Z,’jlm’j + C5i,jlnz‘,j + Cei,jlni,j+1
3 13, N+1 N
+C7i,jln;+1,j +g3i,j’
where

g, = C3 BN + C} BN +C3 %N 4 c3 iy

.7 Ti—1,5 1;;"ns,5-1 34,5 M5
2
3 j2,N 3 _ 4% \;N 3 I3,N
+C5 12N + (Gsi,j At) BN o3 BN
+C£/5i,j lgﬁll R
s _ @ _ B
% T 2Az?2  4AZ’
C3 - q% _ qg
Lig 2Az2 4AZ’
Si,j = _Q‘?:
3
¢, = _.qzé,
3
G, = ._‘12_5,
3 — .qﬁ?i + _}_ — i — _q_i’__
Sig 2 At Azz  Ax¥’
6ij 2Azr?2  4Azx’
Tig 2Az2  4Az

(2.36)

We next discretize the boundary conditions. As stated before, at £ = 1, the

perturbed velocities are set to zero due to the no-slip condition on the body. For

the perturbed pressure at £ = 1, a one-sided derivative is used on the perturbed

divergence free condition. This gives

Om+1,5 " Nm—1,5 m+1,5 Tm,j

rBj — GO .ll’N+1 + C:(lJ _ll’N+1
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where
o L
Om+15 — IAT’
0 _ .2
lmia,; Ax :

Along the axis of symmetry where j = 0 and j = m + 1, different boundary
conditions are needed for each Fourier mode. It is clear from the boundary conditions
(2.32) that, for modes n > 2, all the unknowns are set to zero at j = 0 and j = m+1.
For n = 0, which corresponds to a symmetric perturbation, a one-sided second-order

finite differencing can be used on the equations (2.30) to give

lO é 0 1 ZO
0;,0 3 0. 3 0;,2°
0 _ 4y 1,
O;m+1 3 Oim 3 0;,m—-17
4 1
lfl)i,o = § (11 1 E);léi,z’
4 1
1 — 1 1
Oim+1 gloi,m - §l0i,m—1'

The other unknowns can be set to zero.
For the n = 1 mode, the boundary conditions as indicated by (2.31) along j = 0
and j = m + 1 are somewhat tricky to implement. Clearly,

lO

Lo

0
1i,m+1

1 —
lli,O -

o o o o

1
li,m+1

For li_j and li—j’ one-sided second order finite differencing and some reshuffling give

2 1 2 1
li’,o = §li,l - -G_Zi:,? - §li',1 + gli:,w
l3 _ 2 3 _ll3 _ZZZ +ll2

Lo — § i gliz glin T gtliao
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and
2 1 2 1
2 2 3 3
lli,m+1 = gl - g Lim-1 + §l im glli,m—l’
2 2 1
3 _ 3 3 2 2
lli,m+1 - 3llz m 6llz m—1 + glli, - -é-llzm 1’

Now, the difference equations (2.33), (2.34), (2.35), and (2.36) are linear and
can be represented as a product of a matrix and a vector. Let UV be the vector
that is formed by rearranging the unknowns (lON NN ) , and let UY be its
components. First, set UV = l° N , and increment j with 7 = 1 fixed until Uj = I3V .
Then, let UL, = I} and 1ncrement j until UR = IpN . Then, let Uy, = 12N
and increment j untll U om = lg’f,v Then, put UY ., lf;lN; and increment j
until U . = l3’N . Now, increment ¢ by one and repeat the whole process until
i = m. Then, let U4m2+J =N for j=1,..,m. This makes U" a vector of length
4m?® + m.

Now, let G be the vector that is formed by ordering the difference equations
(I‘oi,j,l"li’j,I‘gi’j,I‘gid) , and let Gy be its components. First, set G; = I'g,,, and
increment j,with ¢ = 1 fixed, until Gy, =Ty, ,,. Then, let Gp,4; = I'y; , and increment
J until Gryym =Ty, .. Then, let Gopy1 =T 2,, and increment j until Gomim = Ty, .
Then, let Gspny1 = I's,, and increment j until Gamym = I3, .- Now, increment 7 by
one and repeat the whole process until < = m. Then, let Gyp24; = I'p; for j =1,

m. This makes G a vector of length 4m? + m.

In other words, the components of G and U are such that

G’4m(i—1)+em+j = {Fei,j €= 07 17273} ) 1= 1, '."vm:j =1,..,m,

G'4’m2+j = 1-.‘B_-,'; .7 = 17"'7m



and

U4m(i— 1)+em+; =

N+1
U4m2+j

68

.
[(gra e—g
BN e=1
ENH =2
T e=3 |
il i=1,..,m.

G can now be written as a product of a matrix M and the vector UY*! with a

forcing vector FVV. That is

where

UN+1

MUN+1 — FN

[O.N+1
n1,1

lO’N +1
Ni,m

ll,N+1
n1,1

ll,N+1

N1,m

0,N+1
NMm+1,m-1

0,N+1

Nm+1,m

(2.37)

M is a sparse matrix in that its elements are mostly zero except for a few bands

that are composed of the coefficients CZJ. Figure 2.24 shows the banded structure of

the sparse matrix M. The sparse matrix solver used in the steady solution calcula-

tion is used here as well. Since the elements of M do not depend on time, the LU

decomposition needs to be done only once in the beginning of our computation. Still,

it is a very large matrix; and for a typical run for m = 80, it takes about two hours

to obtain an LU decomposition of M on a Sun Ultra workstation.

Here is the summary of the steps in solving the perturbation equations.

1. A guess for initial perturbed values U is given. The steady velocity values are



69

NN
NN
N
A
AN

Figure 2.24: The banded structure of the sparse matrix used in the perturbation
analysis of flow past spheroids with the no-slip boundary condition.
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calculated from 1 and w previously obtained, and M and F° are determined.

We use At =~ 0.1.

. After LU decomposition on the sparse matrix is performed, the linear system
(2.37) is solved to calculate U'. F! then can be calculated and used as the
forcing vector to solve for UZ. Since M is constant in time, only backsolving

needs to be performed to get UZ.

. The whole process is then repeated until N = N; where Ny = 2500. The
resulting UNE gives the eigenfunctions corresponding to the leading ’eigenvalue
01, and the slope and the distance between the peaks of the growth curve should

give the eigenvalue ;.

. To obtain the secondary eigenvalue az, UM is set to be the leading eigenfunction
EZ. Then, the computation is repeated from the beginning except this time the
data to be collected is

< UVt EL >

N+1 _ piN+1 _
vir=vu < EL EL >

EL.

. As N becomes large, V¥ is dominated by the secondary eigenfunction. So, the
log growth curve of V¥ gives the value of the secondary eigenvalue oy, and VV
becomes proportional to the corresponding eigenfunction ES. In this case, the

iteration is done until N = N, where N, ~ 1300.

2.4.3 Numerical results of the linear stability analysis of flow

past a solid sphere

In this section, we present the linear stability analysis results for flow past a solid

sphere using the grid of resolution of 80x80 with distortion coefficient o = 0.5. The

nondimensionalization is such that d = a = b, and the Reynolds number is defined as

Ro 2apU.
@
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Previous results indicate that the n = 1 Fourier mode of the perturbation is the one
that becomes unstable, and this is indeed the case in our calculations as well.

Figure 2.25 shows how log (|| UV ||) of the n = 1 Fourier mode of the perturbation
grows in time at various values of R. It is clear that the curves grow linearly and
that the slope of each curve varies with respect to R. This shows that the leading
eigenvalue oy is purely real. If the slope is negative, the flow is stable. If the slope
is positive, the flow is unstable. The slope is calculated using a least squares fit to
determine the growth rate, i.e., the leading eigenvalue, and is plotted with respect to
the corresponding Reynolds number R in Figure 2.26.

Figure 2.26 shows that the leading eigenvalue increases as R increases. It also
shows that convergence test using a 60x60 grid and 80x80 grid give similar results.
Linear interpolation is performed on the curve of the leading eigenvalues to determine
the value of the critical Reynolds number R* corresponding to a zero eigenvalue,
and the critical Reynolds number turns out to be RY = 212.8. This agrees well with
Natarajan and Acrivos’s result [26] of 210 and Tomboulidis, Orszag, and Karniadakis’s
result [44] of 212. We also compare the leading eigenvalues that we computed with
Natarajan and Acrivos’s results in Figure 2.27. Our curve is slightly lower than
Natarajan’s. This may be due to the different types of numerical methods used. In
addition, the growth rates computed by Tomboulides, Orszag, and Karniadakis [44]
in their direct, full, numerical simulation of flow past a solid sphere are also slightly
below the values computed by Natarajan and Acrivos [26] indicating that our linear
stability results are quite reasonable. Since our results appear to be convergent,
the differences in the results may not be due to convergence. Figure 2.28 shows
UMt at the critical Reynolds number of 212.8. They are basically the eigenfunctions
corresponding to the leading eigenvalue such that the leading eigenvalue is zero. They
agree well with those in Natarajan and Acrivos [26]. |

Figure 2.29 shows how log (|| V¥ ||) of the n = 1 Fourier mode of the perturbation
of flow past a solid sphere grows in time at various values of R. The curves grow as
a series of peaks, and the peaks grow linearly. This indicates that the secondary

eigenvalue ay is complex. Once again, a least squares fit is used on the peaks to
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Figure 2.25: Log (|| UV ||) of the n = 1 Fourier mode of the perturbation of flow past
a solid sphere versus time ¢ at various Reynolds numbers.
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s —a—— 80x80

1 | ] ! | | | | | | ] |

|
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R (Reynolds number)

Leading eigenvalues ¢, i.e., the growth rates, of the n = 1 Fourier mode

of the perturbation of flow past a solid sphere versus R using 60x60 grid and 80x80

grid.
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Figure 2.27: Comparison of the leading eigenvalues of the n = 1 Fourier mode of the
perturbation of flow past a solid sphere between this work and Natarajan and Acrivos

[26].
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/ A=1 R=212.8 s
a) -0.0136984 ——————————

-0.0538957:

-0.13429
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0.00380968
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0.012161
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Figure 2.28: Eigenfunctions corresponding to the leading eigenvalue oy of the n =
1 Fourier mode of the perturbation of flow past a solid sphere at RL = 212.8. a)
Re (fiz,), b) Re (&o, ), ¢) Im (g, ).

determine the real part of asg, and the distance between the peaks is measured to
determine the imaginary part of as.

Figure 2.30 shows the secondary eigenvalues plotted with respect to R. Good
agreement under different resolutions indicates convergence. Once again, linear inter-
polation is used to determine the critical Reynolds number R® corresponding to zero
growth; and it turns out to be RS = 281.4. In terms of periodicity, at the critical
Reynolds number, the imaginary part of the secondary eigenvalue ap in our case is
determined to be 0.342. This agrees reasonably well with Natarajan and Acrivos’s
result [26] of 277.5 and 0.355. The slight differences in the results may come from the
numerical methods used and the uncertainty of the Gram-Schmidt orthogonalization
method. Tomboulidis, Orszag, and Karniadakis’s result [44] indicates the importance
of this critical Reynolds number, as their full numerical simulation showed time de-
pendent, periodic oscillation beginning to be induced around R = 270 and 285. Our

result falls well within their range. The pictures of eigenfunctions shown in Figure
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Figure 2.29: Log (|| V¥ ||) of the n = 1 Fourier mode of the perturbation of flow past

a solid sphere versus time t at various Reynolds numbers.
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Figure 2.30: Secondary eigenvalues ay of the n = 1 Fourier mode of the perturbation
of flow past a solid sphere versus R using 60x60 grid and 80x80 grid.
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Figure 2.31: Eigenfunctions corresponding to the secondary eigenvalue s of the
n = 1 Fourier mode of the perturbation of flow past a solid sphere at RS = 281.4. a)
Re(is, ), b) Re(il, ), ¢) Im(dy, ).

2.31 also agree well with those of Natarajan and Acrivos [26]. The figures show that
the value of eigenfunctions is large near the body where the wake is located and
decays to zero quickly away from the body.

In conclusion, our numerical results of the critical Reynolds numbers of 212.8 and
281.4 agree well with Natarajan and Acrivos [26] and with Tomboulides, Orszag, and
Karniadakis [44] and disagrees with Kim and Pearlstein [17]. This indicates that our
numerical method works well in determining flow instability.

Figure 2.32 shows the Fourier modes n = 0, n = 2, and n = 3 of the perturbations
evolving in time at R = 280. It is clear that they are all stable even when the flow
is beyond the critical Reynolds number at which the n = 1 Fourier mode is already
unstable. This indicates that the n = 1 Fourier mode is the dominant mode of the

instability of the perturbation for the range of the Reynolds numbers that we studied.
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A=1 R=280

Figure 2.32: Log (||[UY||)of the n = 0, n = 2, and n = 3 Fourier modes of the
perturbation of flow past a solid sphere versus time ¢ at R = 280.
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2.4.4 Numerical results of the linear stability analysis of flow

past an oblate spheroid

We discuss here the linear stability analysis results obtained for flow past an oblate
spheroid with A = 0.3, ...,0.9 using grids of resolution of 80x80 with distortion coef-
ficient o = 0.5. For A small, the spheroid is flat along the axis of symmetry; and for
A near one, the spheroid is nearly spherical. The nondimensionalization is such that

d = b, and the Reynolds number is defined as

-
7
Again, the n = 1 Fourier mode of the perturbation turns out to be the mode that
becomes unstable. |

Figure 2.33 shows the leading eigenvalues for the n = 1 Fourier mode of the
perturbation determined for A = 0.5 under different resolutions. The two curves more
or less lie on top of each other, and this indicates that the results are convergent. Our
method is therefore consistent when computing the stability for flow past an oblate
spheroid. Figure 2.34 shows the leading eigenvalues ¢; associated with the n = 1
Fourier mode of the perturbation of flow past an oblate spheroid for A = 0.3, ...,0.9.
As the body becomes more oblate, the critical Reynolds numbers become smaller.
Similar to the case of sphere, the leading eigenvalues are purely real. Figure 2.35
shows the secondary eigenvalues obtained for A = 0.3,...,0.9. Similar to the case of
sphere, they are complex.

Figure 2.36 shows the critical Reynolds numbers RY at which the leading eigen-
value oy of the n = 1 Fourier mode of the perturbation is zero and the critical Reynolds
numbers Rf at which the real part of the secondary eigenvalue ay is zero versus the
aspect ratio A\. The two curves converge as A gets émaller. This indicates that the
more oblate the body is, the lower the critical Reynolds number above which the flow
may become unstable.

Figure 2.37 shows a relation between the imaginary part of the secondary eigenval-
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Figure 2.33: Comparison of the leading eigenvalues ¢, i.e., the growth rates, for the
n = 1 Fourier mode of the perturbation of flow past an oblate spheroid with A = 0.5
versus R, using 60x60 grid and 80x&80 grid.

A=0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Ry

134.2 1431 1523 1624 173.5 185.6 198.7 212.8

Table 2.11: Critical Reynolds numbers at which the leading eigenvalues of the n =1
Fourier mode of the perturbation of flow past an oblate spheroid are zero.
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Figure 2.34: Leading eigenvalues a; of the n = 1 Fourier mode of the perturbation of
flow past an oblate spheroid of various aspect ratios versus R;.

A=03 04 05 06 07 08 09 10]

RS 151.3 1622 1757 191.6 210.2 2315 2555 2814
apat RS | 0.388 0.381. 0.375. 0.369. 0.363: 0.356r 0.349. 0.342c

Table 2.12: Critical Reynolds numbers and the secondary eigenvalues of the n = 1
Fourier mode of the perturbation of flow past an oblate spheroid.
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Figure 2.35: Secondary eigenvalues as of the n = 1 Fourier mode of the perturbation
of flow past an oblate spheroid of various aspect ratios versus Rp.
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Fourier mode of the perturbation of flow past an oblate spheroid.
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Figure 2.37: Secondary eigenvalues o at the critical Reynolds numbers R; versus
aspect ratio A for the n = 1 Fourier mode of the perturbation of flow past an oblate
spheroid.
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Figure 2.38: Eigenfunctions corresponding to the leading eigenvalue o of the n =1
Fourier mode of the perturbation of flow past an oblate spheroid with A = 0.3 at
RE =134.2. a) Re(@y,), b) Re(%y, ), ¢) Im(iy, ).
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Figure 2.39: Eigenfunctions corresponding to the secondary eigenvalue as of the
n = 1 Fourier mode of the perturbation of flow past an oblate spheroid with A = 0.3
at Ry = 151.3. a) Re(dy,), b) Re(y,), ¢) Im(iy, ).
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Figure 2.40: Eigenfunctions corresponding to the leading eigenvalue a; of then =1
Fourier mode of the perturbation of flow past an oblate spheroid with A = 0.8 at
RE =185.6. a) Re (@), b) Re (dy,), ¢) Im (ﬁ¢1).
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Figure 2.41: Eigenfunctions corresponding to the secondary eigenvalue oy of the
n = 1 Fourier mode of the perturbation of flow past an oblate spheroid with A = 0.8
at RS = 231.5. a) Re (4, ), b) Re (&, ), c) Im (i, ).
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ues at the critical Reynolds number RS and the aspect ratio of the oblate spheroids.
The curve appears to be linear and increasing as A gets smaller.

The Figures 2.38 and 2.40 show the eigenfunctions corresponding to the leading
eigenvalue for A = 0.3 and 0.8. They appear to be similar to each other and are similar
to the eigenfunctions corresponding to the leading eigenvalue for the sphere.

Figures 2.39 and 2.41 show the eigenfunctions corresponding to the secondary
eigenvalue for A = 0.3 and 0.8. They also appear to be similar to each other and
are similar to the eigenfunctions corresponding to the secondary eigenvalue for the
sphere. In addition, the figures show that the value of eigenfunctions is large near the
body where the wake is located and decays to zero quickly away from the body.

Figure 2.42 shows the Fourier modes n = 0, n = 2, and n = 3 of the perturbations
of flow past an oblate spheroid with A = 0.5 evolving in time at R, = 200. It is clear
that they are all stable even when the flow is beyond the critical Reynolds number
at which the n = 1 Fourier mode is already unstable. This indicates that the n =1
Fourier mode is the dominant mode of the instability of the perturbation of flow past

oblate spheroids for the range of the Reynolds numbers that we studied.

2.4.5 Numerical results of the linear stability analysis of flow

past a prolate spheroid

We discuss here the linear stability analysis results obtained for flow past a prolate
spheroid with A = 1.1,...,1.7 using grids of resolution of 80x80 with distortion coef-
ficient a = 0.5. For ) near one, the spheroid is nearly spherical; and for A large, the
spheroid is elongated along the axis of symmetry. The nondimensionalization is such

that d = a, and the Reynolds number is defined as

R, = 2a.pU'
7

Again, the n = 1 Fourier mode of the perturbation turns out to be the mode that

becomes unstable.
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o 0.5 Rp, =200

Figure 2.42: Log (HUNH) of the n = 0, n = 2, and n = 3 Fourier modes of the
perturbation of flow past an oblate spheroid with A = 0.5 versus time ¢ at R = 200.
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Figure 2.43: Comparison of the leading eigenvalues oy, i.e., the growth rates, for the
n = 1 Fourier mode of the perturbation of flow past a prolate spheroid with A = 1.2
using 60x60 grid and 80x80 grid.



91

A=1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
RL 212.8 250.6 292.5 338.6 389.1 444.2 504 568.3

a

Table 2.13: Critical Reynolds numbers at which the leading eigenvalues of the n =1
Fourier mode of the perturbation of flow past a prolate spheroid are zero.

A=1.0 1.1 1.2 1.3 14 1.5

& 2814 343 4135 4034 5336 6342
ag at RS | 0342, 0.367. 0.392. 0.414. 0.435. 0.455.

Table 2.14: Critical Reynolds numbers and the secondary eigenvalues of the n = 1
Fourier mode of the perturbation of flow past a prolate spheroid.

Figure 2.43 shows the leading eigenvalues of the n = 1 Fourier mode of the per-
turbation determined for A = 1.2 under different resolutions. The two curves more
or less lie on top of each other, and this indicates that the results are convergent.
Figure 2.44 shows the leading eigenvalues associated with the n = 1 Fourier mode
of the perturbation of flow past prolate spheroids for A = 1.1,...,1.7. As the body
becomes more prolate, the critical Reynolds numbers become larger. Similar to the
case of sphere, the leading eigenvalues are purely real. Figure 2.45 shows the sec-
ondary eigenvalues obtained for A = 1.1,...,1.5. Similar to the case of sphere, they
are complex.

Figure 2.46 shows the critical Reynolds numbers RZ at which the leading eigen-
value a; of the n = 1 Fourier mode of the perturbation is zero and the critical
Reynolds numbers RS at which the real part of the secondary eigenvalue dz is zero
versus the aspect ratio A\. The two curves diverge quickly as A gets bigger. This in-
dicates that the more prolate the body is, the higher the critical Reynolds number
above which the flow may become unstable.

Figure 2.47 shows a relation between the imaginary part of the secondary eigen-
value at the critical Reynolds number RS and the aspect ratio of the prolate spheroids.
The curve appears to be linear and increasing as A gets larger.

Figures 2.49 and 2.51 show the eigenfunctions corresponding to the leading eigen-
value a; for A = 1.2 and 1.5. They appear to be similar to each other and are similar

to the eigenfunctions corresponding to the leading eigenvalue for the sphere.
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Figure 2.44: Leading eigenvalues o of the n = 1 Fourier mode of the perturbation of
flow past a prolate spheroid of various aspect ratios versus R,.
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Figure 2.45: Secondary eigenvalues as of the n = 1 Fourier mode of the perturbation
of flow past a prolate spheroid of various aspect ratios versus R,.
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Figure 2.47: Secondary eigenvalues oy at the critical Reynolds numbers RS versus
aspect ratio A for the n = 1 Fourier mode of the perturbation of flow past a prolate

spheroid.



96

Figures 2.50 and 2.52 show the eigenfunctions corresponding to the secondary
eigenvalue oy for A = 1.2 and 1.5. They also appear to be similar to each other and
are similar to the eigenfunctions corresponding to the secondary eigenvalue for the
sphere. In addition, the figures show that the value of eigenfunctions is large near the
body where the wake is located and decays to zero quickly away from the body.

Figure 2.48 shows the Fourier modes n = 0, n = 2, and n = 3 of the perturbations
of flow past a prolate spheroid with A = 1.2 evolving in time at R, = 400. It is clear
that they are all stable even when the flow is beyond the critical Reynolds number
at which the n = 1 Fourier mode is already unstable. This indicates that the n =1
Fourier mode is the dominant mode of the instability of the perturbation of flow past
prolate spheroids for the range of the Reynolds numbers that we studied.

Figure 2.53 shows the results for the oblate spheroids, the sphere, and the prolate
spheroids combined to form a pair of curves that show the relation between the
critical Reynolds numbers R} and R; and the aspect ratio A. The results for the
prolate spheroids are rescaled so that the cross sectional area of the prolate spheroid
is same as that of oblate spheroid by setting R, = Rg/A.

It turns out that both RL and R; seen in Figure 2.53 are fit well by a quadratic
curve. This is shown by letting R, = cgA? + ¢\ + ¢; and employing least squares

using the given data above to obtain the coeflicients cg, ¢;, and ce. Doing so gives
RY = 44.1)\* + 55.4) + 113.5, (2.38)

Ry =134.8)% +11.8)\ + 135.8. (2.39)

This tells us that when A = 0, i.e., a flat disk, the critical Reynolds numbers are
113.5 and 135.8. This agrees reasonably well with Natarajan and Acrivos’s result [26]
of 116.5 and 125.6. The critical Reynolds number for the secondary eigenvalue is not in
as good agreement because we probably need to compute instability results for A < 0.3
to achieve a better fit on the secondary curve (2.39). Also, we evaluate the critical
Reynolds numbers from interpolating data points, and that may introduce additional

uncertainties. Notice that if the spheroid is more oblate, the critical Reynolds numbers
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appear to converge; and if the spheroid is more prolate, they tend to diverge rather
dramatically.
In this chapter, we use a numerical grid generation method and a linear stability
analysis to study the behavior of viscous flow past spheroids of various aspect ratios.
Our results indicate that the mechanism for instability of flow past an axisymmetric

spheroid is similar for all cases that we investigated.
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A=1.2 R, =400

Figure 2.48: Log (||[UV||) of the n = 0, n = 2, and n = 3 Fourier modes of the
perturbation of flow past a prolate spheroid with A = 1.2 versus time ¢ at B, = 400.
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Figure 2.49: Eigenfunctions corresponding to the leading eigenvalue o; of the n =1
Fourier mode of the perturbation of flow past a prolate spheroid with A = 1.2 at
RL =2902.5. a) Re (4, ), b) Re (4,), ¢) Im ('L"L¢1).
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Figure 2.50: Eigenfunctions corresponding to the secondary eigenvalue ag of the
n = 1 Fourier mode of the perturbation of flow past a prolate spheroid with A = 1.2

at RS = 413.5. a) Re (@iz,), b) Re (fis,), ¢) Im (i, ).
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Figure 2.52: Eigenfunctions corresponding to the secondary eigenvalue g of the
n = 1 Fourier mode of the perturbation of flow past a prolate spheroid with A = 1.5
at RS = 684.2. a) Re (i, ), b) Re (&,), ¢) Im (@, ).
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Chapter 3 The Behavior of Viscous Flow
Past an Ellipsoidal Bubble of Fixed Shape

3.1 Introduction

In Chapter 2, we considered viscous flows past bodies while applying the no-slip
boundary condition. Here, we consider flows past bodies with a free-slip boundary
condition, which is characterized by zero tangential stress on the surface of the body.
It is known experimentally that as a gas bubble rises in a fluid, it deforms to a
shape that resembles an oblate ellipsoid [3] & [9]. Using this fact, Moore [24] used
boundary layer perturbation analysis to study distorted gas bubbles rising in a fluid
of small viscosity. His analysis facilitated computation of drag coefficients of flow past
oblate ellipsoidal bubbles of fixed shape with free-slip boundary conditions at high
Reynolds number. Moore’s analysis determined the drag coefficient Cp, which is the

nondimensionalized form of the drag induced on the body by the fluid flow, to be

1
2

Co ~ G () (1 + H () R7).

Here, R, is the Reynolds number such that the volume of the ellipsoidal bubble is
equivalent to that of a sphere of radius r = (bza)% ; G (1) and H (p) are functions
whose values are computed in Moore’s paper. The variable p = b/a is the aspect
ratio of the ellipsoid. Here, b is the length of the axis of the ellipsoid orthogonal to
the flow, and a is the length of the axis of the ellipsoid parallel to the flow. Figure
3.1 shows the setup of the problem.

In previous numerical work, Dandy and Leal [6] used the numerical grid generation
method discussed in Chapter 2 to solve for steady, axisymmetric, viscous flow around

oblate ellipsoidal bubbles of fixed shape. They showed, given an ellipsoidal bubble
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b Separation angle
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Figure 3.1: Setup of the problem.

of fixed shape with a given aspect ratio, that as the Reynolds number increases,
a wake develops at the back of the ellipsoid, grows to a maximal shape, and then
shrinks in size and ultimately disappears. They then concluded that even with a
free-slip boundary condition, if the body is sufficiently distorted, a sufficient amount
of vorticity can be generated to induce a standing wake in the flow. They also
concluded that there exists a critical aspect ratio p =~ 1.55 above which a wake
develops. This is achieved when the maximum value of vorticity on the surface
of the body reaches a critical value of 5.25, independent of the value of p. Later,
Blanco and Magnaudet [4] revisited this problem and used their own finite-volume
method to compute steady, axisymmetric, viscous flows past ellipsoidal bubbles of
fixed shape. While their conclusion about wake generation was the same as Dandy
and Leal [6], the specific numerical results that they obtained differed greatly. For
example, Dandy and Leal [6] claimed that a standing wake exists between Reynolds
number 50 and 210 when the aspect ratio of the ellipsoidal bubble is © = 1.65.
Blanco and Magnaudet [4], on the other hand, did not observe a wake at any value
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of the Reynolds number for all aspect ratios less than pu = 1.65; according to their
computations, a wake develops when the value of i is above 1.65. Furthermore, the
critical maximum vorticity required on the surface of the ellipsoidal bubble so that a
wake develops is about 6.55. They attributed this discrepancy in the results to the
fact that their finite-volume method somehow advects vorticity better than Dandy
and Leal’s method [6]. They also suggested that it would be interesting to carry out
a linear stability analysis on the flows past ellipsoidal bubbles of fixed shape to see if
it could provide any insight into the behavior of a rising bubble.

Dandy and Leal [6] used a grid of resolution 60x60 for their calculations, and this
limited their flow computations to Reynolds numbers of around 300. In this Chapter,
we revisit the problem of flow past ellipsoidal bubble of fixed shape using basically
the same numerical method that Dandy and Leal [6] used with higher resolution and
try to reconcile their results with Blanco and Magnaudet’s [4]. In addition, a linear
stability analysis is carried out using basically the same method used in Chapter 2
for rigid spheroids to see if flows past an ellipsoidal bubble of fixed shape can become

unstable.

3.2 Numerical method for steady flow

The numerical method used here is basically the same method as that described in
Chapter 2. Since it is extensively discussed there, the main parts of the method are
only summarized here.

First, Ryskin and Leal’s [33] orthogonal, curvilinear grid generation method is
used to construct a numerical grid that maps the upper half of the ellipsoid of a
given aspect ratio g to a unit square. Once the grid is determined, we associate
the physical coordinate (z,y,z) and the numerical, curvilinear coordinate (£,7,¢)

through the relations

r = x(£n),
y = o(£,m)cos(9),
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z = o(&n)sin(g).

One feature of the Ryskin and Leal [33] grid is that the grid density in the tangential
direction is controlled by using different types of distortion functions. The distortion

function

f(&m) =€ 1 — acos (mn)]

is used most often by Ryskin and Leal [34], [35]. Setting a small gives an evenly
spaced grid, and setting o near one gives a grid that is denser toward the back of
the ellipsoid. In practice, we use a = 0.5 as it gives a grid that is reasonably dense
toward the back of the body. This distortion function with e = 0.5 is also used by
Dandy and Leal [6] in their calculations.

Using this mesh, the Navier-Stokes equations are then solved in this new coordi-
nate system to simulate the flow. We assume that the flow is Newtonian, incompress-
ible, steady, and axisymmetric. This allows us to rewrite the equations in stream

function-vorticity form:

1 [OY 0 rw oY 0 rw
o [ () - 2 () @
21 ]9 (Mo 9 | he O _

ey (B L1 )|+ 7 s )|} =0

L (2 (ha00)
hfh"r] 66 th' 8§ 67]

The Reynolds number is defined by

+
|
VN
o
2@
N’
| I

I

€

(3.2)

R, = 2bpU .
v

As before, U is the velocity of the outer flow, p is the density of the fluid, and vis
the viscosity of the fluid. We wish to solve for ¥ (§,71) and w (£,n) with the velocity
of the flow determined by

1 o
U'E = —;h—n—é;, (33)
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o Jhg 8{

The functions k¢ and h,, are scale factors and are determined by

@)@
SEEHG

To account for the boundary condition at infinity, we write ¢ (£,7) as the sum of a

free stream flow plus a correction:
I P 3
1,/1='§/J+§0' (1-¢). (3.4)

The correction ¥ then has homogeneous boundary conditions on all sides of our

curvilinear grid. This also allows us to set
w(0,m7) =0.

As before, second-order, finite differencing is used to solve for ¥ (&,n) andw (§,m) by
- _ 1 . — - a . .
letting Az = —= and setting £ = iAz,n = jAz for 4,5 = 1..m+ 1 to get

b(En) = ¥@Az,jAT) =y,
w,n) = w(iAz,jAz)=w;;.

The equations (3.1) and (3.2) are discretized and then rearranged to give a system
of difference equations and solved using Newton’s method. Again, the setup of this
method is extensively covered in Chapter 2.

The boundary conditions on {bw and w; ; are discussed next. Along n = 0 and

n = 1, we impose that the flow is axisymmetric to obtain

$(£,0) = 0,
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$(1) = 0,
and

w(&0) = 0,

w(§1) = 0

Along £ = 0, we use (3.4) to obtain
% (0,7) =0

and

w (0,n) = 0.

Along ¢ = 1, however, we need to impose a free-slip condition on the surface of the
ellipsoidal bubble. This obviously differs from the boundary condition in Chapter 2
where a no-slip boundary condition is imposed. A free-slip condition implies that the

shear stress on the surface of the ellipsoidal bubble is zero and is expressed by

. h’ﬁ 0 Uy hg 0 Uge _
1= " oh, O€ (h,,) 2h, O \ he =0 (3:5)
Discretizing (3.5) gives

Hp, = D;')’{/}m—z_j + Djl"lz)m-—l,j + D]Z,J)m,j + D?

where
-1
D = ——
! (heAz)?o”
Dl - 4 B 1 0o 1  Ohe 1 Ohy,
T (heAz)20  2(heo)?Az OE 2h}oAx O 2hZh,olx O
b b 2 80 2 Ohe 2 on,

I (heAxz)20 * (heo )2 Az O + hiocAx O¢ + hZhaoAz O’
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R,=50 100 200 300 400 500 600 700
60x60 | 1.06 0.672 0.409 0.301 0.242

70x70 | 1.06 0.673 0.408 0.298 0.239 0.201 0.176 0.160
80x80 | 1.06 0.666 0.405 0.297 0.238 0.201 0.176 0.158

Table 3.1: Drag coefficients of flow past an ellipsoidal bubble of fixed shape with
p = 1.95 using grids of resolution 60x60, 70x70, and 80x80 with distortion coefficient
a=0.5.

D - 3c0he 3¢ 9100 3 o Oh,

P T W oE  h 2RO 2Rtk OE

With this numerical method, steady flows past ellipsoidal bubbles are calculated
for p = 1.75, 1.84, 1.95, 2.1, and 2.5 using a grid of resolution 80x80 with distortion
function a = 0.5 for Reynolds number up to 700. It takes about 15 minutes on a Sun

Ultra workstation for each R, given u.

3.3 Results of steady flow calculation

First, we need to establish that our steady ﬁow solver displays the requisite conver-
gence and consistency properties. Therefore, as a test case, we compute the steady
solutions for various values of R, for flow past an ellipsoidal bubble with p = 1.95
using grids of different resolutions and with different distortion functions.

Table 3.1 and Figure 3.2 show the drag coefficients computed for steady flow past
an ellipsoidal bubble of fixed shape using grids of resolutions of 60x60, 70x70, and
80x80 and with distortion function coefficient of @ = 0.5. Using a grid of resolution of
60x60 limits the steady solutions computed to about R, = 400. The drag coefficients
appear to agree well with one another. Figure 3.3 shows the vorticity distribution
on the surface of the ellipsoidal bubble with g = 1.95 at R, = 300. Again, the
distributions appear to agree well under different resolutions.

Figure 3.4 a) shows the length of the wake that forms on the back of the ellipsoidal
bubble as the Reynolds number R, is increased. The wake length is computed by
determining the point along 7 = 0 at which u, = 0. It is clear that the three curves

are in good agreement. In addition, Figure 3.4 b) shows the separation angle of the
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Figure 3.2: Drag coefficients of flow past an ellipsoidal bubble of fixed shape with
p = 1.95 as a function of Reynolds number R, using grids of resolution 60x60, 70x70,
and 80x80 with distortion function coefficient oo = 0.5.



111

-
\}

IIIIIIIIIIIIlllllll'lIIIIIIIIIIlIIIIIlllIIIIIIIIIlIIlIIIIIII

Ry, =300

N
—h

60x60

-
o

70x70

80x80

Vorticity distribution on the body
N w B (3] (o)) ~ (00} (o]

b

o

0 50 100 150
Angle as measured from the front of the body

Figure 3.3: Vorticity distribution on the surface of an ellipsoidal bubble of fixed
shape with p = 1.95 using grids of resolution 60x60, 70x70, and 80x80 with distortion
function coefficient o = 0.5.
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Figure 3.4: a) Length of the wake as measured from the back of an ellipsoidal bubble
with g = 1.95 using grids of resolution 60x60, 70x70, and 80x80 with = 0.5. b)
Separation angle of the wake as measured from the front of an ellipsoidal bubble with
p = 1.95 using grids of resolution 60x60, 70x70, and 80x&0 with o = 0.5.
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R,=50 100 200 300 400 500 600 700
a=0.3]1.05 0.668 0.405 0.297 0.238

a=0.5]1.06 0.666 0.405 0.297 0.233 0.201 0.176 0.158
a=0.7]1.06 0.663 0.404 0.297 0.238 0.201 0.177 0.159

Table 3.2: Drag coefficients of flow past an ellipsoidal bubble of fixed shape with u=
1.95 using grids of resolution of 80x80 with distortion coefficients a = 0.3, o = 0.5,
and o = 0.7.

wake as measured from the front of the ellipsoidal bubble, and they also appear to be
in good agreement under different resolutions. The separation angle on the surface
of the ellipsoidal bubble is computed by determining the point along £ = 1 at which
u, = 0. This indicates that in terms of grid resolution our results are reasonably
convergent.

Next, the resolution is set to be 80x80, and the distortion function is varied. As
discussed before, a distortion function with @ = 0.3 gives a grid that is more evenly
spaced, while a value of o = 0.7 gives a grid that is more dense in the back of the
ellipsoidal bubble, as compared to the grid with a = 0.5. Table 3.2 and Figure 3.5
show the drag coefficients computed for steady flow past an ellipsoidal bubble of
fixed shape with resolution of the grid fixed to 80x80 and using distortion function
coefficients o = 0.3, 0.5, and 0.7. Using the distortion coefficient of a = 0.3 produces
a more evenly spaced grid, and this limits the steady solutions computed to about
R, = 400. This is likely due to the fact that more mesh points are needed on the
back of the ellipsoidal bubble to properly resolve the wake. The drag coefficients
appear to agree well with one another. Figure 3.6 shows the vorticity distribution
on the surface of the ellipsoidal bubble with g = 1.95 at R, = 300 using distortion
coefficients & = 0.3, @ = 0.5, and a = 0.7. Again, the distributions appear to agree
well.

Figure 3.7 a) shows the length of the wake that forms on the back of the ellipsoidal
bubble as the Reynolds number R, is increased. The figure shows that using the
distortion coefficient oo = 0.3, i.e., a more evenly spaced grid, results in wakes that
are slightly larger as compared to the results with @ = 0.5 and o = 0.7. On the other
hand, Figure 3.7 b) shows the separation angle of the wake, and this appears to be
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Figure 3.5: Drag coefficients of flow past an ellipsoidal bubble of fixed shape with
1 = 1.95 using grids of resolution 80x80 with distortion coefficients oo = 0.3, o = 0.5,
and a = 0.7.
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Figure 3.6: Vorticity distribution on the surface of an ellipsoidal bubble of fixed shape
with 4 = 1.95using grids of resolution 80x80 with distortion coefficients o = 0.3,
a = 0.5, and o = 0.7.
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with 4 = 1.95 using grids of resolution of 80x80 with distortion coefficients a =
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front of an ellipsoidal bubble with g = 1.95 using grids of resolution of 80x80 with
distortion coefficients a = 0.3, « = 0.5, and o = 0.7.
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nearly identical under different distortion functions. This indicates that there is a
trade-off in our numerical method in terms of using different values of «. Using grids
with smaller values of « results in wakes that are slightly larger, but we are limited
to lower Reynolds numbers in computing the steady solutions.

From the above results, it is clear that our flow solver gives reasonably consistent
results in computing steady flow past ellipsoidal bubbles of fixed shape. There are
some minor fluctuations in the size of the wake when using grids with different dis-
tortion functions. For the rest of this chapter, in our computing of steady flows for
the ellipsoidal bubbles of various aspect ratios, we use grids of resolution of 80x80
with distortion coeflicient of oo = 0.5.

Since our numerical method is more or less identical to Dandy and Leal’s method
[6], our results are compared against theirs. To begin, a flow past an ellipsoidal bubble
with g = 1.65 is calculated. According to Dandy and Leal [6], a wake forms at the
back of the bubble around R, = 40, reaches its maximum size around R, = 120, and
disappears around R, = 240. Figure 3.8 shows the stream function for u = 1.65 and
R, = 60, 120, 180, and 240. Clearly, there is no visible wake at any of the Reynolds
numbers. This differs from Dandy and Leal’s results as shown in Figure 3.9 and agrees
with Blanco and Magnaudet’s conclusion [4] that there is no wake present. The drag
coefficient, which can be calculated by using the drag coefficient formula in Chapter
2, 1s computed to be 2.94 at R, = 240; this agrees well with Moore’s asymptotic
result [24] of 2.93. Dandy and Leal [6] determined it to be 2.98 which is also in good
agreement. So, even though we are using Dandy and Leal’s method [6] & [8], the
result that we obtain differs from Dandy and Leal’s and appears to agree better with
that of Blanco and Magnaudet.

We next compare our results with those of Blanco and Magnaudet [4] in more
detail. Figure 3.10 a) shows the wake lengths, and Figure 3.10 b) shows the wake
separation angles at various Reynolds numbers for flow past ellipsoidal bubbles with
aspect ratios p = 1.75, 1.84, 1.95, 2.1, and 2.5. At p = 1.75, a wake develops
around [t ~ 65, attains its maximum size around R, =~ 130, and disappears around

Ry =~ 280. This range somewhat differs from Blanco and Magnaudet’s result in that
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Figure 3.8: Stream lines of flow past an ellipsoidal bubble with y = 1.65 determined
using our numerical method. A grid of resolution of 80x80 with distortion function
coefficient o = 0.5 is used.
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Figure 3.9: Stream lines of flow past an ellipsoidal bubble with p = 1.65 determined
by Dandy and Leal [6].
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Figure 3.10: a) Length of the wake as measured from the back of the ellipsoidal
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Figure 3.13: Drag coefficient as a function of Reynolds number for p = 1.75.
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Figure 3.14: Drag coefficient as a function of Reynolds number for p = 1.84.
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Figure 3.16: Drag coefficient as function of Reynolds number for p = 2.1.
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Figure 3.17: Drag coefficient as function of Reynolds number for p = 2.5.

they found the range to be from R, ~ 62 to R, ~ 360. For p = 1.84, our results are
such that the wake persists from R, ~ 48 to R, =~ 445, while Blanco and Magnaudet
found the range to be from R, ~ 40 to R, ~ 600. For p = 1.95, the range comes out
to be R, =~ 36 to R, =~ 696, while Blanco and Magnaudet determined them to be
from R, = 36 to R, =~ 960. Furthermore, carefully comparing Figures 3.12 and 3.10
b) shows that the critical maximum value of vorticity on the surface of the ellipsoidal
bubble associated with the development of the wake is about 6.3 for p = 1.75, 1.84,
and 1.95. This agrees well with Blanco and Magnaudet’s value of 6.55 and differs from
Dandy and Leal’s value of 5.25. Basically, it appears that the onset of the wake is
similar in both of the numerical methods. On the other hand, our calculations show
the range of Reynolds number in which the wake exists to be smaller than Blanco and
Magnaudet’s calculations. Also, Figures 3.13, 3.14, 3.15, 3.16, and 3.17 show that in
terms of drag coefficients our calculations agree well with Moore’s asymptotic results.

Blanco and Magnaudet’s results also agree well with Moore’s results.
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Figure 3.18: Steady flow past an ellipsoidal bubble with u = 1.84. In each case the
left side is the stream function, and the right side is the vorticity.
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Figure 3.19: Steady flow past an ellipsoidal bubble with = 2.1. In each case the
left side is the stream function, and the right side is the vorticity.
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Figure 3.20: Surface vorticity distribution for an ellipsoidal bubble of fixed shape
with ¢ = 1.95 at R, = 60 and R, = 300.
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Figure 3.21: Blanco and Magnaudet’s result [4] for vorticity distribution on the surface
of an ellipsoidal bubble with p = 1.95, R, = 60, 300, 1000.
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Figure 3.22: Comparison of vorticity and 2k,u, on the surface of an ellipsoidal bubble
of fixed shape with p = 1.95 and R, = 300 as a check for consistency.
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7 R 100 200 300 400 500 600 700
1.75 Moore 0.787 0.409 0.277 0.210 0.169 0.142 0.122
Blanco&Magnaudet 0.609 0.357 0.251 0.195 0.132

Our result 0.610 0.361 0.263 0.209 0.177 0.155 0.139
1.84 Moore 0.859 0.443 0.299 0.226 0.182 0.152 0.131

Blanco&Magnaudet 0.594 0.359 0.259 0.202 0.141

Our result 0.635 0.381 0.278 0.222 0.188 0.164 0.147
1.95 Moore 0.954 0.487 0.327 0.247 0.198 0.166 0.142

Blanco&Magnaudet 0.627 0.386 0.277 0.220 0.152

Our result 0.666 0.405 0.297 0.238 0.201 0.176 0.158
2.1 Moore 1.10 0.554 0.370 0.278 0.225 0.186 0.159

Our result 0.704 0436 0.322 0.259 0.219 0.192 0.172
2.5 Moore 1.60 0.773 0.508 0.377 0.3 0.250 0.212

Our result 0.780 0.505 0.381 0.308 0.261 0.228 0.205

Table 3.3: Drag coeflicients of flow past ellipsoidal bubbles of fixed shape.

Figure 3.20 shows the vorticity distribution on the surface of the ellipsoidal bubble
with g = 1.95 at R, = 60 and 300. Figure 3.21 shows the result obtained by Blanco
and Magnaudet using the same values for 4 and R,. Comparing the two figures may
give some hint as to why our results differ from Blanco and Magnaudet’s results.
According to our calculations, the maximum vorticity values on the surface of the
ellipsoidal bubble at R, = 60 and R, = 300 are about 7.4 and 11.3, respectively.
These values agree well with Blanco and Magnaudet’s value of 7.8 and 11.6. However,
the width of the peak in our case is narrower compared to Blanco and Magnaudet’s.
For example, at R, = 60, Blanco and Magnaudet determine the vorticity at 30° to be
about 1.9, while according to our calculations it is about 0.3. So, it appears that the
discrepancy in the results between Blanco and Magnaudet’s and our approach may
come from differences in imposing the free-slip boundary condition along the surface
of the ellipsoidal bubble.

The free-slip condition can be rewritten as

w(1,7m) — 267Uy |e=1=0,
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where &, is the normal curvature of the ellipsoidal bubble. The curvature &, is defined

by
o = L O
T hehy O

To double check our results, we compare w (1,7) and 2k,u, in Figure 3.22 for p = 1.95
and R, = 300. They appear to be in good agreement. This indicates that the free-slip
condition is well satisfied on the surface.

Another reason for the differences in the results may be the differences in the nu-
merical methods used. Blanco and Magnaudet solved the flow equations in primitive
variables on a truncated rectangular grid. For the boundary conditions far away from
the body, different types of conditions were imposed on the velocity and the pressure
for the upstream and the downstream of the flow. It is possible that the differences
in types of the grids and the boundary conditions used for flow far away from the
body may contribute to the differences in the results as well.

Somehow, the finite-volume method used by Blanco and Magnaudet generates
somewhat more vorticity on the surface of the body compared to our second-order
finite differencing method. This then explains why their results indicate a somewhat
larger wake for a wider range of Reynolds numbers compared to our results for the
flow past the same ellipsoidal bubble. Of course, it is still not clear why both of our
results differ so much from Dandy and Leal’s results, especially since our approach is

basically the same as Dandy and Leal’s.

3.4 Numerical method for the linear stability analy-
sis

Blanco and Magnaudet [4] suggest at the end of their paper that, given these steady,

axisymmetric solutions, it would be interesting to carry out a linear stability analy-

sis similar to Kim and Pearlstein [17] and Natarajan and Acrivos [26] to study the

dynamics of bubbles, even though the fixed shape of the bubble makes the problem

very simplified compared to the actual bubble problem. Since we are successful in
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replicating and expanding on Natarajan and Acrivos’s result as shown in Chapter
2, we attempt to follow up on Blanco and Magnaudet’s suggestion to carry out this
linear stability analysis.

Again, the details of the numerical linear stability analysis are in Chapter 2. We
summarize the main points of the method. The method of linear stability analysis
is used to investigate perturbations that may deviate from the steady, axisymmetric
base flow past an ellipsoidal bubble of fixed shape. The main focus of this method is
to determine the critical Reynolds numbers at which the low may become unstable.

The Navier-Stokes equation in primitive variable form is

1 bg

u+ (u-Viu = -—-§Vp+

V-u = 0.

2 2
sz + EV u, (36)

The perturbations to the pressure p and the three velocity components ug, u,, and u,

are expanded in Fourier series in the azimuthal ¢ direction:

+co

ug = U (&m)+e D e™iign(E,n, 1), (3.7)
oo

uTI = Uﬂs(&;n)_*—s Z ebn(ﬁﬂnn(gvn:t)’

. - =

Up = € Z ebn¢&¢n(€:n7t)7

- +o0
p = Ps(&n)+e Y e™pa(E,n,1).

The terms Ug, and Uy, are the radial and polar components of the steady, axisym-
metric base flow velocity field and are calculated using (3.3). The variable ¢ is a small
parameter of perturbation, and ¢ is the imaginary number 1/—1. The perturbed vari-
ables are physical quantities and are expected to be real. So, @, = @*,. Expanding
the perturbation in the azimuthal direction as a Fourier series reduces the problem

to our original, two-dimensional grid. The expressions (3.7) are substituted into the
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Navier-Stokes equations (3.6), and a set of O (&) perturbation equations is derived.
We next address the boundary conditions. First, we account for Pn along £ =1
by imposing the divergence free condition. The variables @y, &g, are also unknown

along £ = 1. This gives

10. 10. 1 8k 1 b0
e BE n n (L) + h_,,a_n“”"(l’") (hgh n * oh oy )unn(l 77)+L—U¢m(1 77)—0

Also, the free-slip condition is imposed on the perturbations:
0 . Ohy, .
hn'ggunn (L,m) - _8277“7711 (Ln) = 0,

0 . 30

This accounts for all the unknowns f,, iy, and g, on the surface of the ellipsoidal
bubble. Since the surface of the ellipsoidal bubble is fixed, @, =0 at £ =1 . Along
¢ =0,7 =0, and n = 1, the same boundary conditions used in Chapter 2 are applied.

The equations are then processed the same way as described in Chapter 2, dis-
cretized using second-order, finite differencing, and then rearranged in proper order
with the appropriate boundary conditions to form a large linear system of discretized
equations. The linear system is then solved using the sparse matrix LU decomposition
solver used in Chapter 2, and this allows us to evolve the perturbations pn,ler, tyn,

and 4gp in time. Since the system is linear, the perturbations can be represented by

@ ~ 1P + coeP?t Dy + 3P s + ...,

Re(8;) = Re(B;) > Re(B;) >

The terms ;, 0, ... are the eigenvalues associated with the linear system, and 9y, Uy, ...
are their corresponding eigenfunctions. Clearly when f, is positive, & becomes un-
stable. When ¢ is large, c;e®1*; dominates @, and taking the logarithm of @ gives a
linear curve in time whose slope gives the value of ;. The value of 8, can be deter-

mined applying the Gram-Schmidt orthogonalization method. Again, this is covered
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L |24 25 26 27 28 29 30
R [ 271.3 2354 2152 20L9 103.2 1869 1826

Table 3.4: Critical Reynolds numbers at which the leading eigenvalue of the n = 1
Fourier mode of the perturbation is zero.

in more detail in Chapter 2.

3.5 Linear stability analysis results

If the body is spherical, the free-slip condition is such that no wake forms on the
back of the bubble for any Reynolds number. So, it is expected that the instability
in the flow would occur if the aspect ratio p = b/a of the ellipsoidal bubble is large
enough to generate enough vorticity that can cause instability in the flow. The linear
stability analysis is carried out for p = 2.4, ..., 3.0. A grid of resolution 70x70 with
distortion function o = 0.5 is used in solving the perturbation equations. For the
sake of convenience, we let RL be the critical Reynolds number at which the growth
rate, i.e., the leading eigenvalue 3;, of the perturbation is zero. We then let RS be
the critical Reynolds number at which the secondary eigenvalue 3,, or at least its real
part, is zero.

Similar to the results of Chapter 2, it is the Fourier mode n = 1 of the perturbation
that becomes unstable. Figure 3.23 shows the leading eigenvalues, i.e., the growth
rates, of the n = 1 Fourier mode of the perturbations at various Reynolds numbers
R, for p = 2.4, ..., 3.0. It is clear that as p becomes larger, the curves of leading
eigenvalues become more steep. It also turns out that, similar to the case of rigid
spheroids, the leading eigenvalues are purely real.

Figure 3.24 shows the secondary eigenvalues of the perturbations at various Reynolds
numbers R, for pp = 2.6, ..., 3.0. They turn out to be complex, and once again this is
similar to the results obtained in the case of rigid spheroids.

Figure 3.25, Table 3.4, and Table 3.5 show the critical Reynolds numbers RY and
R} at which the leading eigenvalue 3, and the real part of the secondary eigenvalue

(35 of the n = 1 Fourier mode of the perturbation are zero with respect to the various
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Figure 3.23: Leading eigenvalues, i.e., the growth rates, of the n = 1 Fourier mode
of the perturbation of flow past an ellipsoidal bubble of fixed shape versus Reynolds
number R, for p = 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 3.0.

7 2.6 2.7 2.8 2.9 3.0
RY 208 257.1 235.7 222.7 2147
B, at Ry | 0.471c 0.471. 0.469. 0.469. 0.469:

Table 3.5: Critical Reynolds numbers at which the real part of secondary eigenvalue
of the n = 1 Fourier mode of the perturbation is zero and the imaginary part of the
secondary eigenvalues at the critical Reynolds numbers are shown.
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values of 1. As p becomes larger, the critical Reynolds numbers become smaller.
Figure 3.28 shows the eigenfunctions associated with the leading eigenvalue of the
perturbation at Rf = 193.2 for the ellipsoidal bubble with u = 2.8, and Figure 3.29
shows the eigenfunctions associated with the secondary eigenvalue of the perturbation
at RS = 235.7 for the ellipsoidal bubble with p = 2.8. The eigenfunctions appear to
be very similar qualitatively when compared to the eigenfunctions determined for the
rigid, oblate spheroids as shown in Chapter 2.

Figure 3.27 shows the Fourier modes n = 2, and n = 3 of the perturbations of flow
past an ellipsoidal bubble of fixed shape with 1 = 2.8 evolving in time at R, = 250.
It is clear that they are all stable even when the flow is beyond the critical Reynolds
number at which the n = 1 Fourier mode is already unstable. This indicates that
the n = 1 Fourier mode is the dominant nonaxisymmetric mode of the instability of
the perturbation of flow past an ellipsoidal bubble of fixed shape for the range of the
Reynolds numbers that we studied.

So, according to our results, the instability of the perturbations of flow past el-
lipsoidal bubbles of fixed shape is very similar to the case of rigid, no-slip, oblate
spheroids. It is the n = 1 Fourier mode of the perturbation that becomes unstable,
and the leading eigenvalue of the perturbation is purely real. Since it is observed
experimentally that gas bubbles become unstable via oscillatory motion, our results

do not give much insight into such behavior.
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Figure 3.27: Log (||[U"||) of the n = 2 and n = 3 Fourier modes of the perturbation of
flow past an ellipsoidal bubble of fixed shape with u = 2.8 versus time ¢ at R, = 250.



142

a)
b) °
1.66858E-05.
r\\-7.248855_05
R I a— .
c)
-1.12156E-05:
= eEee—
TR e —— S —

Figure 3.28: Eigenfunctions of the leading eigenvalue of the n = 1 Fourier mode of
the perturbation at RL = 193.2 for flow past an ellipsoidal bubble of fixed shape with
p=28. a) Re(iy,), b) Re (is,), ¢) Im (Gg, ).
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Figure 3.29: Eigenfunctions of the secondary eigenvalue of the n = 1 Fourier mode
of the perturbation at Rf = 235.7 for flow past an ellipsoidal bubble of fixed shape
with p = 2.8. a) Re (&g, ), b) Re (@, ), ¢) Im (&, ).
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Chapter 4 Steady Flow Past an
Axisymmetric Bubble

4.1 Introduction

Chapter 2 deals with flows past a solid, rigid body whose surface does not move
in relation to the surrounding flow. In this chapter we consider flows past a body
with a deformable free surface. Such problems are characterized by an interface
between two or more fluids whose motion is governed by pressure, surface tension, and
viscous forces along the interface. This movement of the interface makes computation
difficult, especially when multiple fluids are involved. One of the simpler cases that
are studied is the case of a rising gas bubble in a quiescent fluid.

There are many papers that deal with rising bubbles experimentally. One of the
earliest is the results by P. G. Saffman [36]. He studied rising air bubbles in distilled
water and noticed that, under certain conditions, the bubbles oscillate and sometimes
spiral as they rise. He concluded that the interaction of the wake and the free surface
may cause such behavior. Other researchers include Tsuge and Hibino [46], Bhaga
and Weber [3], and Haberman and Morton [14] who obser;/ed path instabilities of
bubbles rising in various types of fluids.

Numerical calculations have been attempted by a number of authors. Ryskin
and Leal [34] used a numerical, orthogonal grid generation method to solve for the
steady flow past a rising axisymmetric bubble for various values of fluid viscosity and
surface tension. Unverdi and Tryggvason [47] used an interface tracking method to
compute three-dimensional, rising bubbles. More recently, Takagi, Matsumoto, and
Huang [40] used their own orthogonal grid generation method to study axisymmetric
bubbles. They assumed the flow to be axisymmetric and evolved the velocity field and

pressure of the flow around the bubble in time and showed that at certain Reynolds
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numbers and Weber numbers, a dimensionless measure of surface tension, the surface
of the bubble oscillates in an axisymmetric manner as the bubble rises. Though this
does not indicate path instability of a rising bubble, they noted that comparing their
results with experiments showed that the occurrence of axisymmetric oscillation of
the bubble coincides with path instabilities observed in experiments.

In this chapter, we revisit Ryskin and Leal’s approach [34] and duplicate and
thus verify some of their results in computing steady, axisymmetric flow past a rising
bubble. We have developed an alternative method of grid generation which in contrast
to that developed by Ryskin and Leal [34] does not involve iterations in solving for
the numerical grids. While they computed solutions up to a Reynolds number of 200
and a Weber number of 10, in our case, we have been able to obtain results up to a

Reynolds number of 400 and a Weber number of 5.

4.2 Numerical grid generation

In this section, we describe the use of Symm’s conformal mapping method to construct
a boundary fitted grid to compute the flow about the deformable bubble. In his paper,
Symm [39] uses conformal mapping to map the exterior of a two-dimensional region as
shown in Figure 4.1 to the exterior of a unit circle as shown in Figure 4.2. The region
D is mapped to D,, and the curve L is mapped to the unit circle L.. Symm’s method
is such that this mapping is computed directly without any iteration as occurs for
example in Chapter 2.
We present a brief description of this method. Let

2=z +10=re?

be a point in physical z space as shown in Figure 4.1, and let
0c

W =L, + L0, =Tc€E

be its corresponding point in conformal w space as shown in Figure 4.2. We want the
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Figure 4.1: Physical z space (z,0).

Ao,

Figure 4.2: Conformal w space (z.,0.).

>
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conformal map w (2) to be such that

I‘ID(Z) lzeL =1

and

w (2) = oo for z = 0.

It is known that
1
im ———— =¢
2= Ju' (2))]
where c is called the transfinite diameter of the interior region of the curve L [27].

This allows us to impose

w'(z)——réasz-—)oo (4.1)

o (2) = log (ﬂi—zl) .

on w(z). Now, let

Solving for w (2) gives

,w(z) — elogz+a(z).

As z — o0, from (4.1),
a(z) — log <%> = —logec.

Now, let
a(z)=¢(z) +7

where

v = —logec.

The function ¢ (z) then is analytic in D and

#(z) — 0 asz — oo. (4.2)



147

This allows us to represent ¢ (z) as

¢(2) = 9(2) +¢h (2)

where g (z) and h (z) are conjugate harmonic functions in D. The function g (2) can

therefore be presented as single-layer logarithmic potential

o(z) = / log |2 — ¢] 5(¢) Jdc] (43)

where s (¢) is a source density on L. Also,

h(z) = / Arg (2 - ¢)s(0) d¢]

This reduces the problem to determining the source function s(z) and 7.

Applying
|w(z)lz€L =1
gives
1 2, .2
| loglz =l (Q)|dd] +7 = —3log (* +47) (44)
where
z=z+wy € L.

Also, using (4.2) gives
[ s =o. @)

Let z; = z; + 104, 7 =0, ..,2m + 1 be the discretized nodal points of the curve L,
and let I; denote the intervals z; < 2 < 2;43. To simplify the integral (4.4) further,

the function s(z) is approximated to be constant at each interval I;. So,

s(z)=sj,2z€ 1.
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This allows the integral equations (4.4) and (4.5) to be approximated as

2m+1
1
> s [ logle = 1dd| +7 = ~3 g (a7 + ) (46)
=0 I
and 2m+1
> s [ laci=0 (47)
=0 I

for z € L. The equation (4.6) is then evaluated at

Zp; = Ty, + LOp,

where

NN =

ZThy; = (z; + Ti11),

(0 + 0it1)

7

to obtain
2m+1

1
> o [ loglan, —l1dc| + =~ log (2, + o).
=0 L |

Let ¢ = zj41t + (1 — t) z; to give

[ toglan — ¢llac]

I;

Z5+1
[ 0glan = Gt + (= ) 5)|dzzaat + (1 - 1)
’ 1
— Jasa— ] [ logl(an — 25— ¢ (21 — )t
0
1

bi;
= 3% (1 - Zz?) log (as; + cij — 2by;)

1 - — by
+=se; [222 arctan GiZ ) g
2 Cij sq

1 bs; sq (bij )]
+—se; |—loga;; + 2— arctan { —
2" [c,-j € % Cij sq



where
Q5 =
bij =
cij
se; =
sq =
Ifi =4,

[ 10glan; = ¢l 1ac

I;
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2 2
(zn; — 5)" + (on, — 035)7,

(@, — ;) (@41 — z5) + (On, — 0;) (0441 — 75),

(Tj41 — 93j)2 + (041 — %‘)2,

Vas,

2
Q;5Ci5 — bz'j'

Zh Zj+1 ’
[0l = <l1acl+ [ 1ogan, = €] b
zj Zh;
1
/ log | 2n; — (2n;t + (1 — t) 2;) | d|znt + (1 —2) 24
0
1
+/ log lzhj - (Zj_Ht + (1 - t) Zhj) | d le.*_]t + (1 — t) Zh.j|
0

1
25¢i (loga;; —2).

The discretized equations (4.6) and (4.7) are solved easily as a linear system to de-

termine s;, j = 0, ..., 2m + 1 and y. With these values determined, given a point

z =z + i0, its corresponding (., 0.) can now be determined using

where

z. = |z| et cos(Arg(z) + h),
o, = |z|e9"sin(Arg(z) + h)

2m+1

g = Y 5 [ logl—qlladl,
=0 I
2m—+1

ho= Y s | Arg(z—¢)ld(].

7=0 I



150

Furthermore, for each of the node points
2=z;+10;= 'rje‘af
for 7 =0,...,2m+1 on the curve L in physical space, a corresponding conformal point
W= T, + 10 = e'es

on the curve of unit circle L, can be found using the above equations.
For our purposes though, we need to determine the mapping that associates the
point 2z in physical space as shown in Figure 4.1 as a function of the point w in

conformal space as shown in Figure 4.2. To determine this mapping, 2 is set to be

z = z+1i0 A (4.8)
— elogw+ﬁ
where
oo
o= Sow
k=0
o0
— Z (ch + LCIk) ’I‘c_ke—"koc.
k=0

This expression comes from the fact that the inverse of a conformal map is also
conformal and that an analytic function over an annulus can be written as a Laurent
series. To get the coefficients ¢; = cg, + tcr,, the equation (4.8) is evaluated at

z=re?¥ € L and w =¥ € L, to get

oo

logr = cg, + Z [er, cos (k6.) + ¢;, sin (k6.)],
k=1

-6, = c,+ Z [cr, cos (k8.) — cg, sin (k6.)].

k=1
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Applying the appropriate orthogonality conditions give

1 2w
Cr, = %‘/0 logrdé.,

2
ch = 5%‘['_ /0 [10g’l" CcOSs (k@c) - (0 - ec) sin (kec)] dem

and
1 27
¢, = % A (9 - Oc) dﬁc,
1 27
cn = 5 A [logrsin (k6,.) + (6 — 6.) cos (k6.)] db..

For numerical purposes, the Laurent series (3 is truncated at some finite M, and the
trapezoidal rule is used to evaluate the integrals. Given a point w = z.+t0, = 7. in

conformal w space, we can find a point z = z + o in physical z space using:

r = Tceal COS(Gc -+ O£2), (49)
o = re®sin(f, + o),
where
M1
o = cgp, + Z s [cr, cos (KB.) + cg, sin (k6.)] (4.10)
k=1 ¢
oy = cp, + E [z, cos (kB.) — cr, sin (k6,)] .
k=1 C

Since we intend to solve for steady, axisymmetric flow past a bubble, the physical
domain of the problem can be restricted to the upper half plane. In addition, we
need to truncate the physical domain sufficiently far away from the bubble so that
the velocity field of the flow can be approximated by the free stream flow. Figure
4.3 shows the truncated physical domain of the problem, and Figure 4.4 shows the
corresponding truncated conformal domain of the problem. The outer limit curve L,

is determined by using the equations (4.9) to map a semicircle of radius I'; to L.
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n=1 =0 X

Figure 4.3: Truncated physical domain of z space.

Figure 4.4: Truncated conformal w space.
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0.5

Figure 4.5: Auxiliary curvilinear space (£*,7*).

0.5

Figure 4.6: Curvilinear space (£,7).
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Typically, we use I'; &~ 70. Under the mapping of (4.9), the curve L, is a nearly
semicircular curve far away from the curve L, which corresponds the surface of the
bubble. The equations (4.9) also map the semicircle of radius one in w space to curve
L, in zspace and maps the region D, to D,,.
To further simplify the solution of the flow equations, the region D,, in conformal

w space is mapped to the unit square shown in Figure 4.5 by

z, = T cos(mn*), (4.11)

o. = T8 sin(7n*).

These relations map the unit square shown in Figure 4.5 defined by 0 < £*,7* < 1
to the region D,, shown in Figure 4.4 . The upper half of the annulus 1 < |w| < T,
is mapped to the unit square such that n* = 0and n* = 1 correspond to segments
1<w<T.and —-T, < w < —1. The segment £* = 0 corresponds to the semicircle
of radius I';, and £* = 1 corresponds to the unit semicircle. The functions (4.11) are
not conformal since they are obtained by scaling the coordinates 7. and 8, by log (T',)
and 7 so that the resulting auxiliary curvilinear domain shown in Figure 4.5 is a unit
square.

It is desirable to control the grid density so that more of the mesh points are
placed near and to the right of the body. To accomplish this, one more mapping is

carried out:

& = A8+ A, (4.12)

n* = Bi—+/By+ Bsn.

The coefficients A,, Ay, By, By, and Bj; are chosen so that

£(0) = 0,
&) = 1,
n"(0) = 0,
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and
n'(1) =1
After some trial and error, we use
3
A = —E
8
A2 = _5')
and
3
Bl - 57
9
BZ = Z)
B; = -2.

These two monotonic functions allow evenly spaced grid points in the unit square
(&,7) as shown in Figure 4.6 to be allocated nearer to ¢ =1 and n* = 0. This can
be seen by comparing Figure 4.5 and Figure 4.6.

By combining the equations (4.9), (4.11), and (4.12), we have an effective way to
map the upper half of the exterior of an arbitrary closed curve shown in Figure 4.3
to the unit square shown in Figure 4.6. Figures 4.7 a) and b) show some of the grids
generated by this method. They show that the grids are indeed dense nearer and to
the right of the body. Because it involves no iteration and only one LU decomposition
of a matrix whose size is the number of nodes on the curve L, grid generation takes
very little computation time. It also cuts down on the number of degrees of freedom.
It is especially useful in our case in trying to find a grid that fits around a body whose

shape is determined as part of the flow solution.
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Figure 4.7: a) Grid fitted around an ellipsoid. b) Grid fitted around a bubble.
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4.3 Flow equations

We next formulate the flow problem as a solution to the Navier-Stokes equations.
The flow is assumed to be incompressible, Newtonian, steady, and axisymmetric.
Also, the bubble is assumed to be such that pressure inside the bubble is constant
and that the surface tension coefficient is constant. Writing the equations in stream

function-vorticity form in (£,7) coordinates gives

L [2006 (wy 20 (v
hehy, [ ¢ on <a) on 0¢ (a)} : (4.13)
2100 -h—n-(zwa) +.§ izi.iwa) -0
R hehy | 08 | heo 06 on | hyo On -
1[0 (o), 0 (heoe)]
hehy, [35 (hsa 35) T (h,,a )| =Y (4.14)
with the velocity vector u = uc€ + u,f) defined by
- 1%
U = hno O (4.15)
_ 1
U = hEU' 8&
Here
R= 2r.pU
7

is the Reynolds number derived from nondimensionalization. p is the density of the
outer fluid, and U is the velocity of the free stream flow. y is the viscosity, and 7 is
the effective radius of the bubble such that the volume of the bubble is 77

We next address the boundary conditions. At £ = 0, the flow along the curve L, as
shown in Figure 4.3 is far away from the bubble and can be approximated as a free

stream flow by imposing

Ugle—o = (R - u)ep = 1.

Using the definition of the velocity components (4.15), we can see that this is equiv-
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alent to imposing ¢ = 102 at £ = 0. So, we set 1 as
5 1 3
b=y+50°(1-¢)

so that ¥ = %02 at £ = 0,and ¥ = 0 at £ = 1. This then allows us to impose
homogeneous boundary conditions on {b for all sides of our curvilinear computational

grid. It also allows us to set

w(0,m) = 0.

Along n = 0 and 7 = 1, we impose the flow to be axisymmetric to get

$(£,0) = 0
¥(E,1) = 0,
0
0

-

w(£,0) =
w(£7 1) =

-

Along £ = 1 which corresponds to the interface of the bubble, since the flow is
steady,
¥(1,m) = 0.
In addition, the condition of continuity of stress is imposed [7]. This boundary con-
dition is
ﬁ-T=%(V-ﬂ)ﬁ (4.16)

where fi is a unit vector normal to the surface of the bubble, T is the stress tensor

associated with the flow, and W is the Weber number defined by

_ 2pUr,
==

w

Here, 7 is the surface tension coefficient. Rewriting (4.16) in (§,7) coordinates gives
two boundary conditions that need to be satisfied, assuming steady and axisymmetric

flow.
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The first of these is the free-slip, or zero shear stress condition, which is imposed

o= e () - () -0 o

The second is the normal stress condition which accounts for the balancing of pressure

along £ = 1:

and viscous forces of the outer flow with the surface tension coupled to the curvature

of the bubble. In our curvilinear coordinates, this condition takes the form

8 4 1 6h, 1 8o
—p+ —ee+ K =—=|- 1 — ——) 4.18
( P R ) et W( hehy O heo OE ), (4.18)

where

p = —CDJ? ( ——/ hE BE (ow)dn

e ia’d§+ ’LL.,] Bhg
€ - h’E 85 hgh 8"’]’

1 00 2h, { 0w 80 8 8o
Cr = 2/ [ u? ___’7( +w ) J dn.
D o |""8n  Rh \ € o) TR an) ., ""

The term K is a constant of integration associated with the pressure and is determined

by enforcing the volume of the bubble to remain §-7r. In (£,7n) coordinates, the volume

of the bubble is given by

1 o
Vol = —7r/ (02—) dn. 4.19
" an) ., n (4.19)

4.4 Numerical method

Now that all the equations for the flow are given, we formulate the method to solve
them numerically. The flow equations (4.13) and (4.14) have to be solved subject to
the constraint of (4.17), (4.18), and (4.19). We next describe the general steps that

are taken to solve them.
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1. We want to compute the stream function v and vorticity w for a given R and
W. We use a previously computed solution, for example a flow past a spherical

bubble, as the initial condition.

2. Given ¥ and w,a new boundary shape is determined in order to satisfy the
normal stress condition (4.18). This is done by using a linear perturbation and

minimization technique and is covered in detail in a later section.

3. Given the new boundary shape, a new grid that fits around the new shape has
to be computed. This new grid is determined using the grid generation method

developed in the previous section.

4. Over the new grid, the flow equations (4.13) and (4.14) are solved along with
the free-slip boundary condition (4.17). This is done using Newton’s method
and is similar in approach to the computation of the steady solutions for flow

past an ellipsoidal bubble of fixed shape described in Chapter 2.

5. With the new ¢ and w, steps (2)-(4) are repeated until they all converge to some
steady state. In practice, the normal stress condition (4.18) ends up minimized
to be around O(10~2) for grid of 70x70 resolution. In a later section, we show

that this can be improved with higher resolution.

4.4.1 Prediction of new boundary shape

Here the method of predicting a new boundary shape is discussed. First, the current
iteration values of ¥ and w do not satisfy the normal stress condition (4.18). So, the
shape of the bubble has to deform in such a way that the normal stress deviation
from zero can be minimized. In other words, the boundary condition (4.18) has to be

satisfied at some curve £ = 1+ §(n) such that

= 0.

(_p+§e> +K__f1_(_13h,7_1@>
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It is assumed that |6(n)] << 1 which implies that the new shape of the bubble is a

small perturbation away from the current bubble shape. Linearizing the equations

gives, at £ =1,
82 )
on? on
where
8 4 1 8h, 1 Ba)
To = (—p+—=e —= (- ==
0 (p R ff)§=l W( hehy 06 heo O€ ),
_ 4 (he
Tl - W(h,2,>’
I, = A (220h _ he 90 hedh
> W\Rr2 oy h2odn R on)’
_— —@+§ u [ =1 Ohedhe 1 OheOhy 1 &he
7 T8 "R| "\ h,h28n 8  heh2 By OE ' heh, 0E0Y

8 [ —=10ug Ohe L1 Ouy, Ohg + 1 Pue
R\ hl 06 8¢  hehy 8 On ' he B€?
41 & 180 1 8h,,3h§J

"W |hehy 68 " heo 0%  Rh, O€ O
4
W

1 Ohedo 1 (100\° 1 (10m\’
i hio 06 O  he \o 8¢ he \ h2 O¢ )
The volume equation (4.19) is also linearized to give
1 Bm) 4 ! &z 9o 8z
o’=1) d +—+/ 6 (2 +2 ———) dn = 0. 4.21
J ( 57) ™37 Jy 20\ aeen 2o B ), )

In addition, the new shape of the bubble has to be constrained so that it stays fixed

relative to the origin. To accomplish this, the centroid condition is imposed to give

! ox ! 0%z 9o Or .\ Oz
20T 2 00 | 0% 5\ 0% _
/0 (xa a7])£=1d7)+/0 6(n) [ma 3§8n+ (2:60(% +a§a> 877L=lal77 .
(4.22)

Second-order, centered, finite differencing is applied to approximate the derivatives
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of §(n). Let n = jAz,j =0,..,m+1 with Az = —L= to get 6(n) = 6(jAz) = §;. This

m+1
gives
Hy;, =To+ Ty 61 + Te,6;5 + Teg6 541 (4.23)
where
T T
Ta = Ax?2  2Az’
2Ty
Tcz = A(L'2 +T37
Ty Ty
T = Azx? + 20z

We then use the trapezoidal integration rule on the equations (4.21) and (4.22) to

obtain
% = ’UO + Z 6:,7.1_7
Jj=1
where
1 6:0) 4
0 ~/0 ( a’r] £=1 1 3
8%z 0o Oz
v; = Azxl|o? +20’-——-—> ;
J ( 3587] a€ 377 e=1,n=jAz
and m
CP = CO + Z 6jc_’]
G=1
where

3"7j| e=1n=jAz .

1 3:1;)
co = zol= dn,
° /0 ( on e=1 7
do Oz 2) Oz

&z
. — 2 — —
C; Ax [ma 3§8n+<2$03§+3§0

We also define the term ) by

m+1

Q= ;0 (HNJ')2 .
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The unknowns are 6;, j = 0,...,m + 1 and K, and we want to minimize Q) subject to
the constraints of V, = 0 and C, = 0. To do this, we apply the method of Lagrange
multipliers. Let
II=Q4+ XV, +XC,.

Then, define a system of equations G composed of

This system is then solved using Newton’s method. In practice, it usually takes just
one iteration to obtain a converged solution. With 6, determined, the new, predicted

boundary shape is determined by

0
" (1L,n) = $°ld(1,n)+5aggm°’d(1,n),

0" (Ln) = 0% (1,n)+ 80

old
.’la& (1) 7’) *

4.4.2 Outer flow solver

Given a grid system fitted around an axisymmetric body, the Navier-Stokes equations
need to be solved along with the free-slip boundary condition (4.17). The numeri-
cal approach taken is the same as that used to solve for the steady solutions for
flow past an ellipsoidal bubble of fixed shape in Chapter 3. That is, the unknowns,
w(€,n) = w(iAz, jAz) = w;; and ¥ (§,1) = ¥ (iAz, jAT) = P, ; with Az = 5
, are discretized using second-order, centered, finite differencing; and the discretized

equations are solved as a system of equations using Newton’s method. One major

change in the discretized equations is the boundary condition imposed on £ =
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Cp R=50W=1 R=50W=2 R=100W=1 R=100W =2
40x40 | 0.787 0.910 0.468 0.564
60x60 | 0.776 0.900 0.453 0.545
70x70 | 0.773 0.893 0.449 0.539
80x80 | 0.772 0.891 0.446 0.535

Table 4.1: Comparison of the drag coefficients of steady flow past an axisymmetric
bubble with grids of different resolution.

Discretizing (4.17) gives

Hp; = D 3 + Djm_1; + D}t ; + D}

where
0 -1
b; = (heAz)20’
o 4 1 9o 1 Ok 1 oM
I (heAz)?0  2(heo)?Az O¢  2h}0lAz B¢ 2hh oAz O’
. 5 2 0. 2 he 2 O
I (heAz)?o  (heo)2Dx 08 hicAz 8§ hihnolx 08’
Dd - 300hg 30 9100 3 o Oh,

: ——— T

J 2 hg‘ o€ hg 2h§ o€ 2h§h,7 o€
Once again, the outer flow solver takes up most of the computation time as it
involves finding an LU decomposition of a large sparse matrix. In practice, this LU
decomposition only has to be done once in the beginning of the whole computational

loop as long as the initial w and v are such that the deformation of the bubble shape

is not too large.

4.5 Numerical results

First, we compute steady solutions using the above method for B = 50, 100 and
W =1, 2 using grids of different resolutions to check the convergence of our method.
Table 4.1 compares the drag coefficient of the flows under grids of different resolution,

and they appear to be in good agreement.
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Cp - Ryskin and Leal [34] This work
R=20W=2 174 1.74
R=20W =4 |216 2.15
R=20W =6 |256 2.57
R=100W =2 | 0.54 0.54
R=100W =40.81 0.82
R=100W =6 |1.23 1.20
R=200W =2|0.33 0.33
R=200W =410.59 0.59
R=200W =6 |0.95 0.90

Table 4.2: Comparison of the drag coefficients of steady flow past an axisymmetric
bubble computed by our method and Ryskin and Leal’s method.

Because our method uses minimization of the normal stress condition (4.18) in
determining the shape of the bubble, our computed solutions are such that the normal
stress condition is not quite fully zeroed out.

Figure 4.8 shows how well our computed steady solutions satisfy the normal stress

condition (4.18), as the resolution of the grid used is increased. Let

1 m+1
RavN = m Z IRst (77)] ’
7=0

where

Ra(n)=|-p+ %ess +K — % (— h&lhn 6;? - h:ffg%)L:l :

Figure 4.8 compares Rg,n,which is basically the average of the absolute value of the
residual normal stress condition, with respect to the resolution of the grids used in
computing the steady solutions for the cases of R = 50, 100 and W =1, 2. It is clear
that the value of R, gets smaller in all four cases as the resolution is increased. This
implies that the results will get better if we can increase the resolution of the grid.
Of course, increasing the resolution also increases the computation time. Therefore,
for the rest this chapter, we use the grid with 70x70 resolution to compute our steady
flows past a deforming bubble.

Next, we compare our results with the results of Ryskin and Leal [34]. Our

approach to solving this problem is similar, but there are a couple of differences. One
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Figure 4.8: Comparison of how well our computed steady solutions satisfy the normal
stress condition on the surface of the bubble under different resolutions.
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Cp W=1 2 3 4 5 6 7 8
R=20 1.56 1.74 194 215 2.57 2.75 2.90
100 045 0.54 0.66 0.82 1.01 1.20
200 0.26 0.33 044 0.59 0.76 0.90
300 0.20 0.25 036 051 0.68 0.80
400 0.16 0.22 032 049 0.67

Table 4.3: Drag coefficients of flow past an axisymmetric bubble at various Reynolds
numbers and Weber numbers.

major difference is that our numerical grid generation does not involve iteration. In
addition, the boundary shape prediction step differs from their approach. Table 4.2
compares the drag coeflicients of the numerical solutions computed by our method
and Ryskin and Leal’s method. They appear to agree well with one another. Figures
4.10, 4.12, and 4.14 show the stream lines of flow past a bubble computed by Ryskin
and Leal [34], and Figures 4.11, 4.13, and 4.15 show the stream lines of flow past a
bubble computed using our method. Again, they all appear to agree with one another
well.

Still, our method is not necessarily better than Ryskin and Leal’s. They were able
to compute steady solutions for W up to 10, while our method does not seem to work
well for W larger than 5 for R large. In addition, our bubble shape prediction step
only manages to minimize rather than zero out the normal stress condition. It is not
clear how well Ryskin and Leal’s'method satisfies the normal stress condition, since
their paper does not discuss convergence.

Solutions are computed for R up to 400 and W up to about 5. It takes about 50
minutes on a Sun Ultra workstation to compute each solution. Table 4.3 and Figure
4.9 show the drag coefficients computed for various Reynolds numbers and Weber
numbers. It is clear that increasing the Weber number increases the drag coefficient.
As the Weber number increases, the corresponding curvilinear grid becomes more
distorted, making the computation of the outer flow more difficult. So, our method
does not work well for W larger than 5 if R is large.

Figures 4.16-4.20 show the steady solutions computed by our method. For low

Reynolds number, the bubble leans toward the back as the Weber number increases.
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Figure 4.9: Drag coefficients of flow past an axisymmetric bubble for various R and

W.
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Figure.4.10: Stream lines of flow past an axisymmetric bubble at B = 20,W = 8 as
‘determined by Ryskin and Leal.

Figure 4.11: Stream lines of flow past an axisymmetric bubble at B = 20, W = 8
determined using our method.
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Figure 4.12: Stream lines of flow past an axisymmetric bubble at R = 100, W = 5
determined by Ryskin and Leal.

Figure 4.13: Stream lines of flow past an axisymmetric bubble at B = 100, W = 5
determined using our method.
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Figure 4.14: Stream lines of flow past an axisymmetric bubble at R = 200, W =5
determined by Ryskin and Leal.

Figure 4.15: Stream lines of flow past an axisymmetric bubble at R = 200, W = 5
determined using our method.



172
For Reynolds number large, the bubble leans forward as the Weber number increases.
In conclusion, we have developed an alternative method in computing steady flow
past an axisymmetric bubble. A resolution study and comparison with Ryskin and
Leal’s results indicate that our method is reasonably successful in computing the flow

fields.



173

R=20 W=6
R=20 W=8

R=20 W=4

R=20 W=2
R=20 W=3

Figure 4.16: Steady flow past an axisymmetric bubble at R =20, W =2, ..., 8. In
each case the left side is the stream function, and the right side is the vorticity.
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Figure 4.17: Steady flow past an axisymmetric bubble at R = 100, W =1, ..., 6. In
each case the left side is the stream function, and the right side is the vorticity.
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R=200 W=6

R=200 W=4
R=200 W=5

=1

R=200
R=200 W=2
R=200 W=3

J_

Figure 4.18: Steady flow past an axisymmetric bubble at R = 200, W =1,..., 6. In
- each case the left side is the stream function, and the right side is the vorticity.



176

R=300 W=4
R=300 W=5

=1

R=300

R=300 W=2
R=300 W=3

Figure 4.19: Steady flow past an axisymmetric bubble at R =300, W =1,..., 6. In
each case the left side is the stream function, and the right side is the vorticity.
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Figure 4.20: Steady flow past an axisymmetric bubble at R =400, W =1, ..., 5. In
each case the left side is the stream function, and the right side is the vorticity.
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Chapter 5 Steady Flow Past a

Symmetric, Two-dimensional Bubble

5.1 Introduction

The previous chapters have dealt with flows past an axisymmetric, three-dimensional
body. In this chapter we consider flows past a symmetric, two-dimensional body with
a free surface. Such flows are studied experimentally by placing a gas bubble between
a pair of plates filled with a thin layer of fluid. This is the so called Hele-Shaw cell set
up. Many authors including Walter and Davidson [48], Rowe and Partridge [32], and
Maxworthy [21] performed such experiments and observed flattened bubbles steadily
rising in various deformed shapes. More recently, Kelley and Wu [16] performed
experiments with a similar setup and observed nearly circular bubbles zigzagging as
they moved upward. They also observed wakes at the back of the bubbles as well.

In terms of analytical results, Saffman [37] gives a good summary in the study of
viscous fingering in Hele-Shaw cells. Shankar [38] solved the fluid equations around
a symmetric, two-dimensional bubble assuming an inviscid flow and showed that
it deforms to an oblate, elliptical shape. Expanding on Shankar’s results, Nie and
Tanveer [28] used similar methods to study instability of a two-dimensional bubble
rising through an inviscid flow and showed, via a linear stability analysis, that it is
stable.

In this chapter, we apply the techniques developed in Chapter 4 in which flows
past an axisymmetric bubble are calculated to that of viscous incompressible flows
past a symmetric, two-dimensional bubble. We are able to obtain steady flows for
Reynolds number R up to 120 and the Weber number W up to 4.5. It is shown that
a rising two-dimensional bubble deforms to an elliptical shape, and a standing wake

develops behind the bubble. The size of the wake increases dramatically as the Weber
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number is increased.

5.2 Flow equations

To determine the flow past a two-dimensional body, the Navier-Stokes equations are
again solved. The flow is assumed to be incompressible, Newtonian, steady, symmet-
ric, and two-dimensional. Figure 5.1 shows the setup of the problem to be solved, and
Figure 5.2 shows the curvilinear coordinate system in which the Navier-Stokes equa-
tions are solved. To rewrite the flow equations in our curvilinear coordinate system,

the velocity vector u is set as
u = ueé + upf) + u, 2,

with components

_ 1o
_ 1%
U = h e

u, = 0,

where 1 is the stream function. Writing the equations in stream function-vorticity

form in curvilinear (£,7) coordinates gives

1 (pow pow
hehm (35 n o a&) (5:2)

e [7¢ (i) * 3 (o)) =

L [0 (m28) 0 (hed)]_
hehy [55 (h_g as) "o (h,, an)] =w. (5.3)

The term
_ 2r.pU

7

R
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n=1 n=0 X

Figure 5.1: Set up of the two-dimensional bubble problem.

0.5

0 0.5 1 1.5

Figure 5.2: Curvilinear space (£,7).
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is the Reynolds number derived from nondimensionalization. p is the density of the
outer fluid, U is the velocity of the free stream, p is the viscosity, and 7, is the effective
radius of the bubble so that the area of the bubble is equal to 7r2. The scale factors

he and h, associated with our curvilinear coordinate system are

- @) (®).
= (@) (2

We next address the boundary conditions. At & = 0, the flow along the outer

boundary L, as shown in Figure 5.1 is far away from the bubble and can, therefore,

be approximated by the free-stream flow. This is done by imposing
’u,a,-|§=o = (f( . u)§=0 = 1.

Using the definition of the velocity components (5.1), we can see that this is equivalent
to imposing

Y=o

at £ = 0. So, we let
Y=9+0(1-¢)

so that ¢y =0 at £ =0 and ¥ = 0 at £ = 1. This also allows us to set
w(0,n) = 0.

We also require that the flow is symmetric about the x—axis. Therefore, along

n=0andn =1,

P(€,0) = 0,
P(E,1) = 0,
w(£,0) = 0,



182
w(,1) = 0.

Along £ = 1 which corresponds to the interface of the bubble, since the flow is

steady,
%(1,7) =0.

In addition, the continuity of stress condition is imposed [7]. This boundary condition

is expressed by

A-T=—(V-h)h (5.4)

where fi is a unit vector normal to the surface of the bubble, T is the stress tensor

associated with the flow, and W is the Weber number defined by

_ pU?%2r,
T

w

where T is the surface tension coefficient. Rewriting (5.4) in (£,7) coordinates gives
two boundary conditions that must to be satisfied, assuming steady and symmetric
flow.

The first is the free-slip, or zero shear stress, condition which is imposed along

¢ =1 via the expression

_ | 8 (ug\ _ he O (u _ |
ef"’f=1“[ 2h € (hn) 2hy 51 (hs e (55)

The second boundary condition is the normal stress condition which accounts for the
balance of the pressure and viscous forces of the outer flow with the surface tension
forces along the interface of the bubble. In our curvilinear coordinates, the condition

takes the form
8 4 1 O8h
—p+ K+ —e ) =— (—————") 5.6)
( R * €=1 w hEhn 2 £=1 (

where
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_ 1 3’&5 u,, ahg
e = h,g 8{ + hﬁhn 87] ’
1 80 4oh, 8w 8 Oo
— 27 Tz Z, 2
o = / (“"an R I as+Resfan)§=1d"'

Here, K is a constant of integration associated with the pressure and is determined

by enforcing the volume of the bubble to remain 7. In (£,7) coordinates, the volume

of the bubble is determined by

Vol = —2/01 (a-g%) o dn. | | (5.7)

5.3 Numerical method

Given the problem as defined above, we next discuss our approach to numerically
solving the equations (5.2) and (5.3) with the boundary conditions (5.5), (5.6), and
(5.7). We list below the algorithm applied here.

1. We want to compute the stream function % and vorticity w for a given R and
W. We use a previously computed solution, for example a flow past a circular

bubble, as the initial condition.

2. Given ¥ and w, a new boundary shape is determined in order to satisfy the
normal stress condition (5.6). This is done by using linear perturbation and the

minimization technique covered in detail below.

3. Given the new boundary shape, a new grid that fits around the new shape is
then determined. This new grid is determined using the grid generation method

developed in Chapter 4.

4. Over the new grid, the flow equations (5.2) and (5.3) are solved along with the
free-slip boundary condition (5.5). This is done using Newton’s method in a

way similar to that used to compute steady solutions in previous chapters.

5. With the new ¥ and w, steps (2)-(4) are repeated until they all converge to some

steady state. In practice, the normal stress condition (5.6) ends up minimized



184
to be around O(1072) for a grid of 70x70 resolution. In a later section, we show

that this can be improved with higher resolution.

5.3.1 Prediction of new boundary shape

Here the method of predicting a new boundary shape is discussed. First, the current
iteration values of ¢ and w do not satisfy the normal stress condition (5.6). The shape
of the bubble must be deformed in such a way so that the deviation of the normal
stress from zero can be minimized. In other words, (5.6) has to be satisfied on some

curve £ =1+ §(n) such that

8 4 1 0
—-p+ K+ —655) _ — <———h ) = (. (58)
( R £=1+5(n) w hehy O€ ! £=1+5(n)

It is assumed here that |6(n)| << 1 which implies that the new shape of the bubble is
a small perturbation away from the current bubble shape. Linearizing the equation
(5.8) gives, at £ =1,

& F

To + Ty-a?&(n) + T28n(5(7']) + T35(7]) +K=0 (59)

where

%= (o), v ()
° P R& £=1 w hehy 23 g=1’

—4 [ he
Tl - W(%?;):

-2 h
T, = i <___6_h_§._|_g.g_’l)’

W \ hZ On  h3 On
3p 8 -1 3h§ 8h§ 1 ahg Bh,, 1 82h§
T3 = ——== 4= Uy 3 - 3 +
% R hoh? On 0§  hehl On 0§ hehy 080N
N 8 [ —10ug Ohe L 1 Ouydhe | 1 8y
R\ B2 8¢ 8¢ = hchy OE O  he O

4 [—1 Ohy Ohe 1 <i8h,,)2+ 1 a%,,]

+___ [ ——_ —_——
W | hihy, 8¢ 06  he \h2 B¢ hehy OE?
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The volume equation (5.7) is also linearized to give

1 [ 0z ! &z ooz
/ 2 (03_77) dn+m +/0 8(n) (20% + 25'_53—7]>5=1 dn =0. (5.10)

In addition, the new shape of the bubble has to be constrained so that it stays fixed

relative to the origin. To accomplish this, the centroid condition is imposed to give

1 oz 1 8%z doc Oz \ Oz
/0 2<x055>6=1dn+/0 6(n )[2$03§6n+2< 8§+8§ >%]£=ldn—0. (5.11)

Second-order, centered, finite differences are applied to approximate the deriva-

tives of 6(n). Let n = jAz,j =0, ..., m+ 1 with Az = 2= and 6(n) = 6(jAz) = §;.

This gives
Hy, =To+Tc,65-1+ Te,65 + Togbi41 + K (5.12)
where
Te, = Ajiz %,
Te, = ;25;1 + 15,
To, = Ag+pi

We then use the trapezoidal integration rule on the equations (5.10) and (5.11) to

obtain

Vo =vo+ Y 650

=1

1
vg = 20— dn+,
’ /<a> !

v — (20 3256 80@) _
? o€on o€ on §=1,n=jAz,

where
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and
Cp = Cp + Z (SjCj
j=1
where
1
Bx)
co = 2| zo— dn,
o »/0 < 877 £=1 1
c; = [21‘0’—62$ + 2 (x@ + a@) %]
We also define the term {2 by
m+1 5
Q= Z (HNj) .
7=0
The unknowns are 6;, j = 0, ..., m+ 1 and K. We want to minimize Q subject to

the constraints V, = 0 and C, = 0. To do this, we apply the method of Lagrange

multipliers. Let
H = Q + Ao% + )\101,.

Then, define a system of equations G composed of

a%n,j =0,..,m+1
a
=1
o)
oLl

8
vELE

This system is then solved using Newton’s method. In practice it usually takes just
one iteration to obtain a converged solution. With §; determined, the new, predicted
boundary shape of the bubble becomes
new . old . a old .
" (1,jAz) = z7°(1,jAz)+ 51-3—556 (1,j0z),
0
o™ (1,jAz) = o34(1,jAz) + 6,07 (1,jAz).
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5.3.2 OQOuter flow solver

Given a grid system fitted around the upper half of a symmetric body, the Navier-
Stokes equations (5.2) and (5.3) have to be solved along with the free-slip boundary
condition (5.5). First, we rewrite the flow equations (5.2) and (5.3) in a more man-

ageable form to get

Bw B%w Ow Bw

lea—g + Qw23_772 + %3-55— + qw4—6—ﬁ- =0 (5.13)
where
_ 21
w1 = R 5
_ 21
Qw2 = Rh
_ 2 [18h 1 bh, _a—e 1 86 1 8%
s = R\RZa ~ hnl o€ hhe 00 hohe 07
_ 210k 1 Oh\ 1 00
Wt = R\WOn  heh2 Oy AT
1 37,/) 2¢ a'
hyhe 8{ hnhg’
and ) i
8% 8% oY LY,
173 B¢ + Wz o7 + Qyz 5, B¢ + <11p4377 +w+gys =0 (5.14)
where
g 1
Yl = 79
h
1
Qy2 = 7z
n
¢ 1 Oh, 1Ok
Y3 = - =5
hgh,, 10/4 hg‘ o€
1 Oh _}_Bh,,

e T he2on o

= o220 KOhe 2) 400
nZh, 96 ' W2 O€ hI) hIOE

Gys
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The numerical approach taken is the same as the one used to solve for the steady
solutions for flow past an ellipsoidal bubble of fixed shape in Chapter 3. That is,
the unknowns w (£,1) = w (iAz, jAz) = w;; and ¥ = 1 (iAz, jAz) = 17)” with
Az =

Elﬁ are discretized using second-order, centered, finite differences, and the

discretized equations are solved as a system of equations using Newton’s method.

Discretizing the equation (5.13) gives

Ho,; = A wi1;+ A} jwijo1 + AL jwi + A wija1 + Af wity, (5.15)
where
A = “l&s , Gu
Wi = 3 Az T (Ao
Al = e 1w
”’ (Az)?2  2AZ’
2 quw2 w1
Aij oy " ey
1 guq
A3 = L2 | ZGw
Wi = (A2 T 2AT
T — 1 gus qu1 |

W T 2Az " (Az)?

and discretizing the equation (5.14) gives

Hy, = Bl 1;+Bii1+ Bis;+ Biji (5.16)
+B; i1 + Bl jwis + Bij,

where
B = "l | _am
I 2 Az (Az)?¥
Bl — %2 ldwm
I (Az)?2  2AL’
B2 = _9 Qy2 9 Gy1

wio (Az)? (Az)?’
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B, — w2 ldw
I (Az)? " 2AzZ’
1 gys dy1
Bf = 2= 1o
I 5Az T (Az)?’
B?,j = dys-

Discretizing the free-slip boundary condition (5.5) gives

Hp, = D35+ Djthpn 15+ Djtby ; + D (5.17)
where
-1
DY = ————
? (heAz)?
DL 4 1 o 1 om
77 (heAz)?  2h3Ax 8¢ 2hZh,Az O’
-5 2 Oh 2 Oh,
2 __ 3
Di = (b T BRs % T R2hyAz 08

200 400 o Ohg

20 _400 .0 o Oh,
h hZO(  ThE O

hZh, O€

3
D; = +2

&

The equations (5.15), (5.16), and (5.17) are rearranged to form a system of discretized
equations, and Newton’s method is used on the system to solve for w; ; and '(Zi’j.

To check that the outer flow solver works properly in the case of a two-dimensional
flow, the outer flow solver is used to compute steady flows past a rigid cylinder. To

do this, the no-slip boundary condition is imposed at £ = 1, which is expressed by
Hp, = D{Ym_1; + Djthm; + D?

where

2Azx’

I Az’
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Cp This work (70x70) Fornberg [11] Takami & Keller [41
R=1012.82
20 | 2.04 2.0001 2.0027
40 | 1.52 1.4980 1.5359
60 | 1.30 1.3246
80| 1.16
100 | 1.07 1.058

Table 5.1: Drag coeflicients for a range of Reynolds numbers for flow past a rigid
cylinder.

Cp R=40W=1 R=40W=2 R=80W=1 R=80W =2
40x40 | 1.03 1.27 0.70

60x60 | 1.02 1.27 0.68 0.93

70x70 | 1.02 1.27 0.68 0.92

80x80 | 1.02 1.27 0.67 0.92

Table 5.2: Comparison of the drag coefficients of steady flow past a symmetric, two-
dimensional bubble with grids of different resolutions.

D? = -20.

J

Table 5.1 shows the drag coefficients of flows past a rigid cylinder at various
Reynolds numbers computed using our method and also compares them with previous
results. They appear to agree well with one another. Figure 5.3 shows the computed
steady solutions, and they appear to agree well with the results of Fornberg [11]. This
gives us the confidence that the outer flow solver works properly for two-dimensional

flow calculations.

5.4 Numerical results

First, we compute the steady solutions of flow past a symmetric, two-dimensional
bubble for R = 40, 80 and W = 1,2 using grids of different resolutions to check
the convergence of our method. Table 5.2 compares the drag coefficient of the flows
computed using grids of different resolutions, and they appear to be in good agree-
ment. In addition, Figure 5.4 shows the stream lines of the flow past a symmetric,

two-dimensional bubble for R = 40, W = 2 computed using our method with grids
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Figure 5.3: Steady flows past a rigid cylinder at R = 10, 20, 40, 60, 80, 100. In each

case the left side is the stream function, and the right side is the vorticity.
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of different resolution. They appear to be in good agreement. This also appears to
hold true for R = 80, W = 2 as shown in Figure 5.5.

Because our method uses minimization of the normal stress condition (5.6) in
determining the shape of the bubble, the solutions that are computed using our
method are such that the normal stress condition is not fully zeroed out. Figure
5.6 shows how well our computed steady solutions satisfy the normal stress condition

(5.6) as the resolution is increased. Let

m+1

1
RavN - m__'_2 ; let (77)’ 3

where

8 4 1 oh
R, (77)=[—p+K+—-e ——<— ——1” :
¢ R W\ heh, 8¢ -

Figure 5.6 compares Ry, which is basically the average of the absolute value of the

residual normal stress condition, with respect to the resolution of the grids used in
computing the steady solutions for R = 40, 80 and W = 1, 2. It is clear that in
all cases the value of R,y gets smaller as the resolution is increased. This indicates
that increasing the grid resolution will give better results. Of course, increasing the
resolution also increases the computation time. Therefore, as done in the previous
chapter, we use the grid with 70x70 resolution to compute the steady flows past a
symmetric, two-dimensional deforming bubble.

Solutions are computed for R up to 120 and W up to 4.5. It takes about 50
minutes on a Sun Ultra workstation to compute each solution. Because the outer
flow solver involves solving a large sparse matrix, constructing its LU decomposition
takes up most of the computing time. However, the LU decomposition only has to
be done once in the beginning of the whole computational loop.

Table 5.3 and Figure 5.7 show the drag coefficients of the flows past a symmetric,
two-dimensional bubble computed using our method. It is clear that increasing the
Weber number W increases the drag coefficient. This is expected since vorticity on

the bubble is dependent on the curvature of the bubble, and increasing W deforms
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40x40 grid

70x70 grid

b) L2

I

L /Q !
— 80x80 grid

c) | —

2 1
/ 0.5
1 g /—\
poy 0.1
. n . 1
E]

Qy

Figure 5.4: Stream lines of flow past a symmetric, two-dimensional bubble at R = 40,
W = 2 computed using grids of resolution a) 40x40, b) 70x70, and c) 80x&0.
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a) /"’" 60x60 grid

b) | 2/'/’""""’— 70x70 grid

e— 80x80 grid

0.5

Figure 5.5: Stream lines of flow past a symmetric, two-dimensional bubble at R = 80,
W = 2 computed using grids of resolution a) 60x60, b) 70x70, and c) 80x80.
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0.03
0.025

R=80 W=1

0.02

0.015

0.01

I l I IIIIIIII'IIH'HITI

0.005 |—=

Minimized normal stress

oo b o ey e v b e b

40 50 60 70 80
Grid resolution

Figure 5.6: Comparison of how well our computed steady solutions satisfy the normal
stress condition on the surface of the bubble under different resolutions.



196

Cp W=1 2 3 3.5 4 45
R=5|335 3.64 3.88 3938 4.05 4.09
10 || 2.24 250 277 290 3.03 3.14
20 || 1.52 1.77 204 218 231 245
40 | 1.02 1.27 152 165 1.77 1.90
60 || 0.80 1.05 1.29 140 1.51 1.62
80 || 0.68 092 1.15 1.25 135 1.46
100 { 0.59 0.83 1.05 1.15
120 || 0.53 0.77 0.98

Table 5.3: Drag coefficients of flow past a symmetric, two-dimensional bubble.

S
4.5
E R=5
4
3.5
E - R=10
D C
S SF
S - R=20
o 25 =
© -
a -
© 2:— R=40
o R=60
1.5~ R=80
r R=100
E /20
0.5F
O:I!IIl!llllll!Illlllllllllllil!llIIlIIIII|VII|IllIJ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

W (Weber number)

Figure 5.7: Drag coefficients of flow past a symmetric, two-dimensional bubble for
various R and W.
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the bubble more. As W increases, the corresponding curvilinear grid becomes more
distorted, making the computation of outer flow more difficult. So, our steady solu-
tions are limited to R = 120 and W = 4.5. Still, numerical solutions are obtained for
a reasonable range of Reynolds numbers and Weber numbers using our method.

Figures 5.8-5.15 show the steady solutions computed by our method. For low
Reynolds numbers, the bubble leans toward the back as the Weber number increases.
Figure 5.10 indicates that the bubble deforms to an elliptical shape at R = 20. For
higher Reynolds numbers, the bubble leans forward as the Weber number increases.

In conclusion, we have developed a numerical method to compute steady, symmet-
ric flows past a deforming, two-dimensional bubble using numerical grid generation.
Resolution study indicates that our method is reasonably successful in computing the

flow fields.
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Figure 5.8: Steady flow past a symmetric, two-dimensional bubble at R = 5 and
W =1, 2, 3, 3.5, 4, 4.5. In each case the left side is the stream function, and the
right side is the vorticity.
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R=10 W35
R=10 W=4.5

=1

Figure 5.9: Steady flow past a symmetric, two-dimensional bubble at B = 10 and
W =1, 2,3, 3.5, 4, 4.5. In each case the left side is the stream function, and the

right side is the vorticity.
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Figure 5.10: Steady flow past a symmetric, two-dimensional bubble at B = 20 and
W =1, 2,3, 3.5, 4, 4.5. In each case the left side is the stream function, and the
right side is the vorticity.
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Figure 5.11: Steady flow past a symmetric, two-dimensional bubble at R = 40 and
W =1, 2 3,35, 4, 4.5. In each case the left side is the stream function, and the
right side is the vorticity.
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R=60 W=35

R=60 W4
R=60 W=4.5

A0 /1 2345 6 7 8 9

L A I T I R R A

© W T ON - O ©Ww T ON O © T O N~ O

R=60 W=1
R=60 W=3

-36g1234567ééfb“ﬁ“1‘2“1‘3“ﬁ“1‘5“f€‘1'7“m

Figure 5.12: Steady flow past a symmetric, two-dimensional bubble at R = 60 and
W =1, 2, 3, 3.5, 4, 4.5. In each case the left side is the stream function, and the
right side is the vorticity.
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W=35
W=4
R=80 W=4.5

R=80
R=80

N0/ 234506 7 8
O 3 4 5867890

ONOLITON-O ON©OW T O®N -

=1

R=80 W2
-
R=80 W=3

g
@h@lﬂ!r(')ﬂ*-@‘ DI\(DIDQ(’)NPQ' @~ OLTON-O

Figure 5.13: Steady flow past a symmetric, two-dimensional bubble at R = 80 and
W =1, 2, 3, 3.5, 4, 4.5. In each case the left side is the stream function, and the
right side is the vorticity.
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R=100 W=2.5
R=100 W=35

R=100 W=3

B 1 I T S A
B I A R I T A A B

© LT ® N~ O © 1 T ™ N - O

=1

R=100 W=1.5
R=100 W=2

R=100

12 13 14 15 16

S w10 R PN O [ 1 [ VA

-

Figure 5.14: Steady flow past a symmetric, two-dimensional bubble at R = 100 and
W =1, 1.5, 2, 2.5, 3, 3.5. In each case the left side is the stream function, and the

right side is the vorticity.
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R=120 W=25
R=120 W=3

S I S SO S S R A R [V M B (R

w T O N = O

=1

120 W=2

R=120
R=120 W=1.5
R=

Figure 5.15: Steady flow past a symmetric, two-dimensional bubble at R = 120 and
W =1, 1.5, 2, 2.5, 3. In each case the left side is the stream function, and the right

side is the vorticity.
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Chapter 6 Conclusion

In this thesis, we investigated viscous flow past bodies with a no-slip boundary con-
dition and a free-slip boundary condition. We used the numerical grid generation
method developed by Ryskin and Leal [33] to compute steady flows past oblate and
prolate spheroids and determined the critical Reynolds numbers above which the
axisymmetric, steady flow past spheroids become unstable using a linear stability
analysis. We then computed the steady flows past ellipsoidal bubbles of fixed shape
and applied the linear stability analysis to study their instability as well. We also de-
veloped an alternative method in computing viscous, steady flow past axisymmetric,
deforming bubbles and symmetric, two-dimensional bubbles.

One of the more interesting extensions that can be performed based on our work
is the investigation of the path instability of a rising bubble. It is possible to adapt
the linear stability analysis method used in Chapters 2 and 3 with the steady flow
computed for deforming bubble in Chapter 4 to investigate such instability. However,
in addition to perturbing the flow field, the interface of the bubble has to be perturbed

as well. The continuity of stress condition

4

A T=5(V-A)d

needs to be satisfied at some perturbed surface

Let
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The normal vector 1s then

VF
IVE|

i( . n(n,t)ﬂfw

n=0

=}

We also need the two tangent vectors

[ & he O R
t, = |¢ eLnd) <_£—An 7t ) + 7
= ; R, n (mt))| €+
and .
ty = 52@‘"¢ (m-—A (n,t)) + ¢.
. n=0

In addition, the velocity and the pressure of the stress tensor T are also perturbed

and evaluated at £ =1+ o2 /A, (1) e™ and expanded about ¢ = 0 to give
w (1 +ed A1) em,mW) — U,
n=0
+5Ze‘"¢ ) 2.0, (1, + 0 (18|
55

Putting them altogether gives three boundary conditions. First of these is the per-

turbed normal stress condition:

i 5 X 52 b
Qobn + q1 o len T G inn + @3 8_7]2An + qig—n/\n +gA, =0

where
qé = —1:
oo 81
1 Rhg’

g =
Rheh, 01
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G ik
3 Wh%y

“ = w _h_%a_n 71-3’;877 h%a%

1 Oh¢Oh 1 0%h 1 Oh¢ Oh
G = 8§ + Uns ( 3 € 3 _ 3 n)}

- +
hihy, On O  heh, 060n  heh} On O€

1 Ohe D 1 Ohe & 1 8
(hgh N T 2ele T R ek )

il

R

LA |1 OhyOhe 1 (30\® 1 [(dm\’
W | R2hy, 86 9E  heo? \ 0% h2he \ 96

L4 he o 1 aﬁhn+ 1 80 1 00 0he
w hghn 852 h;;'O' 8(52 th’ 86 3{ ’

The second is the perturbed shear stress condition in the 7 direction:

0 . 0 . . . 0
qg%'u&z + Q%ggunn + Q%ugn + Q§unn + qza_nAn + qun =0

where
1
QO = —2_7
— h”'l
QI - 2 E:
_ __10oh
QQ - 2h£ 877 ’
_ _1om
q3 - 2h£ 85 )
e I
U,s O?h h, &2 1 Ohe O 1 67 1 Ohe O
2 _  _Zns m n i - v i S
B = T3 o T on a@ ™ T Th By e T 2 BEan < T 2k, o€ By ¢

The third is the perturbed shear stress condition in the ¢ direction:

. 0 . .
Lqaiien + qi’gwn + @Siign + tgiN, =0
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where

3 n
qO - 2:
3 _ 9
QI - 2}'1,5,
s _ 100
L T Top o
1 Oh he Oo 0
3 i S Tl il
&= Kh,, an h,,aan>U”s+ agUfs] n-

We also have the kinematic condition:

0 . 0
_An + GoUen + q;lé"’r']'An + QgAn =0

ot
where
1
9o = —h_ga
U,
ql - hn )
_ 16,
Q2 - h§ ag £s

We can also impose the boundary conditions along 7 = 0 and n = 1 on A, using

symmetry to get

0
—Aglp=01=10
67] 0}7]_0,1
for n = 0, and
An!n:ﬂ,l =0

forn > 1.

The above boundary conditions along with the perturbation equations in Chap-
ter 2 can be all put together in a manner described in Chapter 2 and solved using
Newton’s method to determine the eigenvalues associated with the linear system of
the perturbations in time.

We have attempted to do this. However, we were not able to obtain a converged
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solution. Our method of computing the steady flow uses minimization to determine
the shape of the bubble and gives results that agrees well with previous results, but it
may not be accurate enough to be used as the base flow in a linear stability analysis.
It is likely that a very accurate base flow past an axisymmetric deforming bubble
is needed to perform the linear stability analysis well. Using a grid of very high
resolution gives more accurate steady flows as shown in Chapter 4; however, that
requires much more memory and computation time. Perhaps a spectral method may
be necessary in computing the steady base flow past a bubble instead of our current
method of second order finite differences. Still, it would be very interesting to expand
on our work and use the linear stability analysis to investigate path instability of a

rising bubble.
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