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Mark David Garfinkel 
Abstract of Dissertation: 

Structural and Functional Studies of the 68C 
Glue Protein Gene Cluster of Drosophila melanogaster 

The 68C locus of the Drosophila melanogaster polytene chromosomes contains the 

structural genes for three glue polypeptides (sgs-3, sgs-7, and sgs-8) synthesized in the 

third instar larval salivary glands. The three 68C glue mRNAs are coded in a gene 

cluster of less than 5000 base-pairs, and are expressed coordinately under the control of 

the steroid hormone ecdysterone. Neither amplification nor DNA rearrangement of the 

locus occurs in the salivary gland. The nucleotide sequence of genomic DNA that 

includes the entire gene cluster was determined, as were the structures of each of the 

three glue protein mRNAs. Analysis of the sequences revealed that the three glue 

proteins form a diverged gene family. Each member of the gene family contains an 

amino-terminal hydrophobic block of amino acids, which is absent in the mature, 

secreted glue proteins, and a cysteine-rich carboxyl terminal module. sgs-3 differs from 

sgs-7 and sgs-8 by containing a third module between the other two, comprised largely 

of tandem repeats of the five amino acids Pro-Thr-Thr-Thr-Lys. 

Two of the genes Sgs-7 and Sgs-8 are divergently transcribed with 475 base-pairs 

separating the two 5' ends. A transcriptional fusion gene was constructed by joining the 

5' untranslated region of Sgs-7 to the 5' untranslated region of the D. melanogaster 

Adh gene. A translational fusion gene was constructed by joining the Sgs-8 gene to the 

Escherichia coli lacZ gene. When the fusion genes are placed in their normal 

divergently transcribed arrangement and reintroduced into D. melanogaster using P 

element gene transfer, third instar larval salivary gland expression of both alcohol 

dehydrogenase activity and ~-galactosidase activity was observed. Expression of the 

two fusion genes requires the l( 1 )npr-J+ gene product, which is known to regulate the 
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68C glue protein genes, supporting the proposal that this trans-acting factor affects glue 

protein gene transcription. Normal tissue, stage, and quantity of Sgs-7- Adh fusion 

gene expression is observed when 211 bp of the 5' flanking sequence is present. An 

Sgs-7-Adh fusion gene with 92 base-pairs upstream is non-functional. Third instar 

larval salivary gland expression of the Sgs-8-lacZ fusion gene is observed when 432 

base-pairs of the intergenic region are present, while 415 base-pairs of 5' flanking 

sequence permits normal tissue and stage of expression at levels at least twentyfold 

reduced. The experiments suggest that a single region functioning bidirectionally, 

located closer to the Sgs-7 gene, is required for expression of both genes. 
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Chapter 1: 

General Introduction 
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The question of how organisms grow and develop from egg to embryo to 

maturity to senescence has fascinated people for thousands of years. But only in the last 

century have biologists gained information about development sufficient for paradigms 

to be proposed to answer this question. Two theories guide much of the research work 

in developmental biology: the concept of differential gene activity, and the concept that 

differential gene activity arises from the selective binding of proteins to specific DNA 

sequences. 

The origin of the differential gene activity concept can be traced to the 

integration by Sutton and by Boveri in the early years of the 20th-Century of Mendel's 

laws of inheritance with late 19th-Century cytological studies of mitosis, meiosis, and 

fertilization (reviewed by Davidson, 1986). The realization that cells of different tissues 

contained identical chromosome sets eventually led to T.H. Morgan's statement in 1934 

that " ... different batteries of genes come into action as development proceeds ... " 

(quotation from Davidson, 1986). Additional evidence that the nuclear genomes of 

different cell types are generally equivalent came from measurements of nuclear DNA 

content, from transplantation of nuclei into embryos to test for developmental potential, 

and from hybridization of specific cloned genes to gel blot filters of genomic DNAs 

from tissues that do or do not express these specific genes. 

Incorporating the so-called "central dogma" of molecular biology with the 

concept of differential gene activity, the most elemental formulation of the differential 

gene activity concept states that the diverse tissues of a multicellular organism differ in 

the sets of DNA segments, genes, that are used as templates for the synthesis of RNA 

molecules. Messenger RNA is used as a template for the synthesis of protein 

molecules. These disparate subsets of protein molecules, some of which serve as 
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enzyme catalysts of metabolic reactions, others as components of macromolecular 

assemblies, are the sources of the disparate properties that distinguish the diverse 

tissues. By extension, differential gene activity also accounts for the differences within 

a tissue type that arise as a function of the organism's age. 

A vast array of empirical data supports this version of the concept of differential 

gene activity. Numerous examples are known in a wide variety of organisms of a 

specific tissue type that contains protein products unique to that tissue type. In some 

cases, these are abundant amounts of protein components of intracellular structures, for 

example, the myofibrillar protein isoforms that assemble into the contractile apparatus 

in muscle cells. In other cases, these are enzymes that catalyze a particular metabolic 

pathway: various neurotransmitter biosynthetic enzymes in various specific subtypes of 

neurons. In still other cases, these are secreted proteins serving structural roles outside 

the cells that synthesize them: fibroin and sericin in the silk glands of moths. The 

specificity of protein synthesis and accumulation, as revealed by methods that allow for 

the identification of particular proteins, is paralleled by a corresponding specificity of 

RNA synthesis and accumulation, as revealed by nucleic acid hybridization methods. 

Thus, a variety of tissues express particular sets of genes at particular times during 

development. 

Given the fact of differential gene activity, a question of paramount importance 

is: What is the mechanism by which gene activity is regulated? This question can be 

divided into three parts. First, if we adhere to the strictest definition of differential gene 

activity, we want to learn how different genes become available for transcription in 

different tissues. Second, if we accept the possibility that differential gene activity may 

be accomplished by means other than, or in addition to, the regulation of transcription, 



4 

we want to learn about these processes as well. Third, we want to learn the mechanism 

of differential gene set activity-how several genes are subjected together to a particular 

sort of developmental regulation. 

One of the specific biochemical mechanisms for differential gene activity is the 

selective binding of protein molecules to specific DNA sequences in proximity to a gene 

to control mRNA transcription. This was first observed in the regulation of lactose 

catabolic enzyme biosynthesis in Escherichia coli by the biochemical-genetic 

experiments of Jacob and Monod and their colleagues, and by the protein-biochemical 

studies of Gilbert and his colleagues. In bacteria, coordination of the synthesis of a set 

of enzymes that comprise a particular metabolic pathway is generally accomplished by 

the "operon" organization, in which a single set of cis-acting DNA sequences regulate 

the transcription of several enzyme-coding regions, forming a polycistronic mRNA that 

is translated to each enzyme of the pathway. In contrast, eukaryotic transcription units 

that code for protein products are monocistronic, and coordinately regulated genes may 

be dispersed in the genome. 

Different operons are subject to different regulatory strategies. These involve 

either positive control or negative control combined with either repression or induction, 

for a total of four kinds of control circuit (reviewed by Lewin, 1974). Several operons 

make use of regulatory mechanisms that affect processes other than transcription 

initiation. Despite the diversity of bacterial operons, the features common to all the 

regulatory schemes are: (i) the step subject to the most important quantitative control is 

transcription initiation; (ii) trans-regulatory proteins exert their effects by binding to (iii) 

specific targets, cis-acting DNA sequences; and (iv) allosteric regulation of the capacity 

of a trans-regulatory protein to bind its target is often mediated by relatively small 
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molecules, the intracellular concentrations of which serve as indicators of the cell's 

physiological state. The regulatory logic and the two macromolecular entities are the 

conceptual elements from bacterial gene systems almost universally applied to the 

problem of differential gene activity in metazoans. 

A metazoan organism particularly well-suited for studying developmental gene 

regulation is the laboratory fly, Drosophila melanogaster. The organism is small, has a 

short generation time and is extremely prolific in laboratory culture conditions. 

Powerful methods of genetic analysis exist, including methods for testing in vitro

modified DNA segments for function by genetic transformation (Rubin and Spradling, 

1982). The relatively small genome provides operational convenience in nucleic acids 

experiments and in mutational screens, and provides limits on the complexity of the 

problem. Drosophila has anatomically distinct larval and adult morphologies, which are 

separated by a complete metamorphosis, and which provide a rich diversity of tissues 

for study. At 25°C in laboratory culture conditions, embryogenesis requires 24 hours. 

The larval period is punctuated by two molts into three larval instars. Transient 

increases in the hemolymph concentration of the steroid hormone ecdysterone during 

the organism's life regulate numerous processes, including molting. The first and 

second larval instars each last about a day, during which the animal feeds and grows. 

The third larval instar lasts approximately two days, most of which time is also spent 

feeding and growing. During the final several hours of the third instar, the animal 

leaves the food in order to find a dry surface for pupal development. Eventually, the 

animal becomes immobile and molts without leaving the cuticle. This brief period may 

be considered a sessile fourth instar, and is followed by another molt. Inside these two 

layers of shed cuticle, metamorphosis takes place. Some larval tissues are histolyzed, 

others are remodeled for continued use during adulthood. The adult precursor tissues, 
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imaginal discs and abdominal histoblasts, undifferentiated since their formation during 

embryogenesis, are reorganized and differentiate into the adult exoskeleton. 

Metamorphosis takes four days, at the end of which the adult fly breaks open the pupal 

case and emerges. Within a day, sexual maturity is achieved, and the next generation 

soon begins. 

Ecdysterone, which as stated triggers each cuticle molt, is synthesized by the 

ring gland under neuroendocrine control and secreted into the hemolymph that bathes 

the animal's tissues. Ecdysterone stimulates a variety of physiological changes. In vivo 

and in vitro, disparate tissues including the fat body, the salivary gland, the hypoderm, 

and the imaginal discs, respond to ecdysterone with tissue-specific changes in gene 

expression. Additionally, imaginal discs respond to ecdysterone exposure by 

undergoing disc eversion, beginning the process of metamorphosis. The classical view 

of insect endocrinology is that the relative concentrations of ecdysterone and the 

isoprenoid juvenile hormone together determine whether a molt is larval-to-larval, 

larval-to-pupal, or pupal-to-adult. In D. melanogaster, however, there is evidence that 

the hormonal control of development does not follow the classical view (see, for 

examples, Postlethwait, 1974; Richards, 1978). 

The tissues that will eventually respond to ecdysterone in their characteristic 

manners arise very early during embryogenesis. Following fertilization and pronuclear 

fusion, the initial step of Drosophila development is a series of rapid, synchronous 

nuclear divisions in the absence of cytokinesis. Most of the nuclei migrate to the egg 

periphery, forming an orderly array beneath the egg plasma membrane. The first dozen 

or so nuclei to reach the extreme posterior pole of the embryo bud out with the posterior 

polar plasm and cleave away from the embryo to produce "pole cells"; this occurs 90 
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minutes after fertilization. The remaining peripheral nuclei undergo three or four further 

rounds of synchronous division before cell membranes surround them to form the 

cellular blastoderm. With gastrulation, which begins around three and a half hours after 

fertilization, the cellular blastoderm becomes organized into three germ layers. 

Following this, tissue and organ primordia become recognizable. In only a few hours, 

the Drosophila embryo is transformed from a single zygote nucleus to thousands of 

cells that are elaborating specific developmental fates. 

The determination of cell fate in the early Drosophila embryo is a consequence 

of the interaction between cleavage nuclei and the particular regions of the egg 

cytoplasm they associate with during cellularization. Perhaps the most dramatic 

example of this is the determination of the germline. The posterior pole of the egg 

cytoplasm contains polar granules, particles that are seen by electron microscopy only 

in this region of the egg (Mahowald, 1962, 1968, 1971a, b). When the nuclei that 

occupy the posterior pole form pole cells they bud out with the polar granules. 

Embryos that lack polar granules, as a result of mutations in any one of a set of five 

genes that function during oogenesis, fail to form pole cells and develop into sterile, 

agametic, adults (Boswell and Mahowald, 1985; Lehmann and Niisslein-Volhard, 

1986; SchUpbach and Wieschaus, 1986). Conversely, when the posterior polar plasm 

including the polar granules is transplanted to ectopic locations, the nuclei at the 

transplantation site form cells that are determined for the germline fate (lllmensee and 

Mahowald, 1974; Niki, 1986). Thus, when the posterior pole plasm is experimentally 

situated at an ectopic location, germline-determined cells will form at the ectopic 

location, and when the posterior pole plasm is mutationally perturbed, germline

determined cells fail to form. The posterior polar plasm contains the determinant of the 

germline cell fate in Drosophila. 
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Other regions of the cellular blastoderm have been assigned characteristic cell 

fates with some precision by a number of techniques. These include observation of 

living embryos and of histological preparations (Poulson, 1950; Campos-Ortega and 

Hartenstein, 1985); selective destruction of cells using an ultraviolet laser microbeam 

(Lohs-Schardin et al., 1979); statistical analysis of clone boundaries in genetic mosaics 

that arise from chromosome loss (Sturtevant, 1929; Garcia-Bellido and Merriam, 1969) 

or mitotic recombination; and transplantation of cells that are marked by microinjection 

with histochemical reagents such as horseradish peroxidase (Technau and Campos

Ortega, 1985; Hartenstein et al., 1985). 

One of the results of blastoderm fate mapping experiments is that eighty cells in 

the third cephalic segment are known to be committed to become the salivary glands: 

forty cells on each side of the embryo (Hartenstein et al., 1985). As embryogenesis 

proceeds, the gland assumes its final form: it has two lobes formed by a single cell 

layer epithelium, the posterior ends of the lobes are closed off as simple sacks, and the 

anterior ends of the lobes are joined by a Y-shaped duct, the base of which empties into 

the pharynx. 

The salivary gland is an organ specialized for the secretion of proteins, a 

specialization that first becomes apparent in ten-hour-old embryos. The cytoplasm of 

the salivary gland cells at this age can be seen in both the light microscope and in the 

electron microscope to be filled with secretion granules (Campos-Ortega and 

Hartenstein, 1985). During the third larval instar, the salivary gland, approximately 130 

secretory cells in each lobe, is again engaged in the synthesis of secretory proteins that 

are first packaged into secretion granules (Korge, 1975, 1977; Zhimulev and 

Kolesnikov, 1975; Beckendorf and Kafatos, 1976). Late in the third larval instar, these 
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granules fuse with the salivary gland cell plasma membranes, resulting in the deposition 

of the proteins in the lumen of the gland. At the time of puparium formation, the 

contents of the lumen are expelled from the animal. As the prepupal period progresses, 

the salivary gland produces a third set of proteins that are secreted into the hemolymph 

of the sessile animal (Korge, 1977; Sarmiento and Mitchell, 1982). Of these three 

documented times of secretory protein synthesis, only the third larval instar secretion 

has a known function. This mixture of secreted proteins and glycoproteins, after 

expulsion from the larva, hardens to form a sticky mass that causes the animal to adhere 

to the surface it has crawled onto for the duration of pupal development (Fraenkel and 

Brooks, 1953; Lane et al., 1972). 

The Salivary gland secretion (Sgs), or glue protein, genes expressed in the 

salivary glands of D. melanogaster third instar larvae are an especially intriguing 

example of the developmental control of gene set activity. The set codes for proteins 

that are synthesized in only one tissue and at only one time in development (Korge, 

1975, 1977; Beckendorf and Kafatos, 1976). The activation and the repression of gene 

set expression are under the control of ecdysterone. Salivary gland chromosomes 

undergo ecdysterone-regulated changes in chromosomal morphology whose 

relationship to ecdysterone-regulated changes in gene expression can be investigated. 

The protein components of the third larval instar salivary gland secretion were 

identified by electrophoresis of total salivary gland proteins and of secretion masses 

isolated free of salivary gland tissue. Korge (1975) identified four protein components, 

and later showed that two of the components are glycosylated (Korge, 1977). Using a 

different separation method, Beckendorf and Kafatos (1976) resolved six protein 

components, four of which were glycosylated. Both of these prove to be 



10 

underestimates of the number of glue components. The glue proteins are synthesized 

only in the salivary gland and only during the latter half of the third instar (Korge, 

1975, 1977; Beckendorf and Kafatos, 1976). Each glue protein is synthesized and 

accumulated during the third instar period to a prodigious amount: just before 

pupariation, one-third of the protein content of each salivary gland is present in the 

secretion mass in the lumen (Korge, 1977). 

The structural genes for seven members of the glue protein gene set were 

identified by a combination of genetic means and nucleic acid molecular-biological 

means. The genetic approach exploited naturally occurring null alleles or electrophoretic 

variant alleles, meiotic recombination mapping of the variant alleles, and gene dosage 

studies using chromosome rearrangements. In this way, the Sgs-1 gene was mapped to 

the left arm of the second chromosome, to the site 25B (Velissariou and Ashburner, 

1980), the Sgs-3 gene was mapped to the 68C site on the left arm of the third 

chromosome (Korge, 1975, 1977; Akam et al., 1978), the Sgs-4 gene was mapped to 

the X-chromosome location 3C (Korge, 1975, 1977), and Sgs-6 was mapped to 71C, 

also on the left arm of chromosome three (Velissariou and Ashburner, 1981). 

Over ten years ago, the then-new molecular cloning techniques were applied to 

the isolation of nucleic acid clones homologous with salivary gland-specific RNAs 

(Wolfner, 1980). Five homology classes of complementary DNA clone hybridized with 

salivary gland RNAs specific to the time of glue protein synthesis. Two of the five 

correspond to the genetically identified structural genes for Sgs-4 (Muskavitch and 

Hogness, 1980) and Sgs-3 (Meyerowitz and Hogness, 1982; Crowley et at., 1983). 

Analysis of the other three homology classes led to the identification of the structural 

genes for Sgs-5 (Guild and Shore, 1984), which is located at the third-chromosome 
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site 90BC, and those for Sgs-7 and Sgs-8 (Crowley eta!., 1983). The latter two glue 

protein genes form with Sgs-3 a cluster of evolutionarily related genes, which occupies 

less than five thousand base-pairs of genomic DNA at the third-chromosome site 68C 

(Meyerowitz and Rogness, 1982; Garfinkel eta!., 1983). By both genetic and 

molecular criteria, the glue protein gene set exhibits both a dispersed and a clustered 

gene organization. 

The facts about the glue protein gene set already mentioned-both dispersed 

and clustered gene organization, yet common tissue and time of expression-are 

sufficient to make the set an important tool for studying the basis of differential gene set 

activity. The biology of Drosophila makes these genes even more interesting. The 

salivary glands, like most other larval tissues, grow during larval life by increasing cell 

size. As the cell volume increases, nuclear DNA synthesis continues without mitosis. 

The result in the salivary gland is polytene chromosomes, chromosomes in which an 

average of 1000 chromatids per salivary gland cell nucleus come to be tightly apposed 

in register (reviewed by Berendes and Ashburner, 1978; Korge, 1987). Polytenized 

chromosome arms are marked by a pattern of alternating bands and interbands 

perpendicular to the axis of the chromosome. The banding pattern is characteristic of all 

polytene tissues in which the chromosome copy number is great enough to be analyzed 

with the light microscope. Upon this essentially invariant pattern of bands and 

interbands are superimposed local decondensations of chromatin, chromosome puffs, 

that are tissue-specific and developmental stage-specific (reviewed by Korge, 1987). 

Incubation of salivary glands with tritium-labelled ribonucleosides causes nascent RNA 

transcripts to become radioactive, and autoradiography of chromosome squash 

preparations of the treated tissue reveals the chromosome puffs to be sites at which 

transcription occurs (Pelling, 1964; Zhimulev and Belyaeva, 1975; Belyaeva and 
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Zhimulev, 1976). Chromosome puffing is taken to be a cytological manifestation of 

gene expression (Heermann, 1956). 

Becker (1959) and Ashburner (1967, 1969) devised systems of nomenclature 

for the changing patterns of chromosome puffs in the D. melanogaster salivary glands. 

The Ashburner system recognizes twenty-one "puff stages" during the third instar and 

the prepupal period. Puff stage 1 involves a set of approximately ten puffs that can first 

be observed in the middle of the third larval instar, while the animal is still feeding, 

when the polytene chromosomes first become amenable to microscopic examination. 

The largest of these "intermolt puffs" are the five chromosomal sites (3C, 25B, 68C, 

71C, and 90BC) that contain the glue protein structural genes already mentioned; glue 

protein synthesis occurs during a stage of salivary gland development when the 

corresponding chromosomal loci are in the puffed state. In puff stage 2, the intermolt 

puffs begin to regress, and several new puffs, among these 2B5 on the X-chromosome 

and 74EF and 75B on the left arm of the third chromosome, are induced. Subsequent 

puff stages are defined by characteristic sets of newly induced puffs and of regressing 

old puffs. The changes in the pattern of chromosome puffs are followed by changes in 

the pattern of protein synthesis (Tissieres et al., 1974; Zhimulev et al., 1981; Poeting et 

al., 1982). In addition to the question of how differential coordinate regulation of gene 

activity occurs, the glue protein gene set (and other uncharacterized salivary gland gene 

sets) present the question of the relationship between gene activity and chromosome 

morphology. 

Several lines of evidence demonstrate that ecdysterone is the agent that regulates 

the puffing sequence in the larval and prepupal salivary glands. First, mutations have 

been isolated that are temperature-sensitive for the production of ecdysterone. Among 
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these mutations is lethal( 1 )suppressor of forkedts67g (Dudick eta/., 1974). When 

larvae hemizygous for I( 1 )su(jyts67g are shifted to restrictive temperature late in the 

second instar or early in the third instar, chromosome puffing in the salivary glands is 

arrested at the intermolt stage (Hansson et a/., 1981). Second, the increase in 

hemolymph concentration of ecdysterone at the end of the third in star occurs at the time 

when the intermolt puffs begin to regress and the set of ecdysterone-induced early puffs 

are induced. After several hours, the ecdysterone-induced early puffs regress and are 

replaced by a complex series of ecdysterone-induced late puffs (Ashburner, 1967, 

1969). Third, the temporal changes in chromosome puffs associated with the increase 

in ecdysterone concentration can be reproduced in explanted salivary glands that are 

cultured in the presence of the hormone (Ashburner, 1973). Finally, indirect 

immunofluorescence experiments that detect the location of ecdysterone, following 

photochemical activation of the hormone for crosslinking, show the hormone to be 

associated with several of the intermolt puffs when they are regressing, with early puffs 

when they are induced, and then with late puffs as they are induced and the early puffs 

regress (Gronemeyer and Pongs, 1980; Dworniczak eta/., 1983). Ecdysterone thus 

plays an important role in the regulation of salivary gland gene expression and 

chromosome activity, apparently by direct action on the genome, and presumably 

through the agency of a receptor protein specific for the hormone (Maroy eta/., 1978; 

Yund eta/., 1978). 

Intermolt puff regression and the induction of the early puffs are "primary 

responses" to the application of the steroid. If inhibitors of protein synthesis are added 

to the culture medium along with ecdysterone, intermolt puff regression and early puff 

induction proceed. Therefore, the capacity of salivary glands to respond to the steroid 

in these ways already exists and does not require new gene expression (Ashburner, 
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1974). Drug inhibitor studies also showed that the regression of the early puffs and the 

induction of the late puffs both require ongoing RNA and protein synthesis; the 

inference is that early puff regression and late puff induction require a minimum of one 

early-puff gene product. 

Additional evidence that early-induced gene products serve regulatory functions 

was obtained from segmental aneuploidy studies of the ecdysterone-induced early 

chromosome puffs at 74EF and 75B. Increased gene dosage resulted in an acceleration 

of early-puff regression and of late-puff induction; decreased gene dosage resulted in a 

delay of these changes in chromosome puffing (Walker and Ashburner, 1981). 

Genomic DNAs encompassing both puffs have been cloned, and the corresponding 

ecdysterone-induced transcription units identified and analyzed (K. Burtis, C.W. 

Jones, W. Segraves, C. Thummel and D.S. Rogness, unpublished). It has been 

suggested that protein products from both loci may be DNA-binding proteins that 

function in gene regulation by ecdysterone. 

Ecdysterone-regulated gene expression requires the product of an X

chromosome locus as welL This conclusion comes from the study of the lethal( 1 )non

pupariating-1 mutation (Kiss eta!., 1976, 1978) and other alleles of the overlapping 

complementation complex that maps to the ecdysterone-induced early puff at cytological 

location 2B5 (Belyaeva eta!., 1980). Animals carrying such mutations have salivary 

gland polytene chromosomes arrested in the intermolt puff stage, like l( 1 )su(j)ts67g 

(Belyaeva eta!., 1981). 

Aside from the intermolt puffs that harbor glue protein genes, and the heat

shock-induced puffs that contain genes coding for proteins synthesized in response to 

environmental stress (reviewed by Ashburner and Bonner, 1979), the apparent 
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regulatory functions of the 2B5, 74EF, and 75B loci are the only examples of genetic 

functions assigned to specific chromosome puffs. 

The cytological evidence described above shows that ecdysterone is required for 

the regression of the intermolt puffs. That the hormone is also required for a 

concomitant cessation of glue protein gene transcription has been shown for the 68C 

intermolt puff. Salivary glands may be cultured in vitro in the presence of ecdysterone 

and 3H-labelled ribonucleosides, and the newly synthesized radioactively labelled RNA 

recovered. The hormone-induced regression of the 68C intermolt puff is correlated with 

the rapid significant reduction of 3H-ribonucleoside incorporation into 68C

homologous RNAs (Crowley and Meyerowitz, 1984). Beermann's view of changing 

polytene chromosome cytology as a manifestation of changing gene activity is 

supported by this experiment, as is the role of ecdysterone in the regulation of gene 

expression in the larval salivary gland. 

That ecdysterone is required for the activation of glue protein gene expression 

was indicated by the phenotype of I( 1 )su(j)ts67g larvae made hormone-deficient by 

growth at the restrictive temperature. These mutant larvae fail to make glue proteins 

even though the corresponding intermolt puffs are visible (Hansson et al., 1981). In the 

salivary glands of I( 1 )su(j)ts67g larvae at the restrictive temperature, RNA transcripts of 

Sgs-3, Sgs-4, Sgs-7 and Sgs-8 fail to accumulate, and glue protein gene transcription 

can be restored in these animals by feeding them ecdysterone (Hansson and 

Lambertsson, 1983). 

A second agent required for glue protein gene activation is defined by the 

I( 1 )npr-1 mutation. One aspect of the I( 1 )npr-1 mutant phenotype is that intermolt puffs 

are present in the salivary gland chromosomes, but that expression of the three 68C 
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intermolt puff genes is blocked: neither RNA accumulation nor RNA synthesis assayed 

by radiolabelled nucleoside incorporation could be detected (Crowley eta/., 1984). 

Both Sgs-4 and Sgs-5 are expressed in I( 1 )npr-1 larvae (Crowley eta/., 1984). 

Published reports indicate that ecdysterone is required for the activation of expression 

of all the glue protein genes tested, but only the 68C glue protein gene cluster is known 

to require the second regulatory factor coded by the 1(1 )npr-1+ allele. Both the 

/(1 )su(j)ts67g and the 1(1 )npr-1 phenotypes involve a dissociation of intermolt puff 

formation from glue protein gene transcription, and therefore the Beermann view of the 

relationship between chromosome puffing and gene expression is incomplete. 

Two features of the 68C intermolt puff make it particularly interesting: the 

clustering of the three glue protein genes found there, and the dependence of their 

expression on the I( 1 )npr-1+ gene product. The experiments reported in this 

dissertation address questions concerning the origin and functional significance of the 

clustering, the locations of the cis-acting sequences required for expression of two of 

the 68C glue protein genes, Sgs-7 and Sgs-8, and indirectly address the mechanism of 

action of the !( 1 )npr-1+ gene product required for expression of these genes. 

Chapter 2 describes structural studies of the glue protein gene cluster in the 68C 

intermolt puff. The purposes of these studies were to obtain a comprehensive 

description of the genes and gene products of the cluster, and to try to identify potential 

cis-acting regulatory sequences that could account for the coordinated expression of 

these genes. 

The sequence of 6751 base-pairs of genomic DNA that contain the three glue 

protein genes was determined. The RNA products were mapped by a combination of 

nuclease protection, primer extension sequence determination, and eDNA clone 
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sequence determination. The experiments precisely positioned the three transcription 

units on the genomic DNA sequence. Sgs-8 is transcribed leftward, with a 69-

nucleotide intervening sequence removed from the 422-nucleotide-long primary 

transcript. Sgs-7 is transcribed rightward, with a 66-nucleotide intervening sequence 

removed from the 385-nucleotide-long transcript. Sgs-3 is transcribed rightward, with 

a 73-nucleotide-long intervening sequence removed from the 1193-nucleotide-long 

primary transcript. The Sgs-8 5' end is separated from the Sgs-7 5' end by 475 base

pairs of non-transcribed intergenic DNA. The 3' end of Sgs-7 is separated from the 5' 

end of Sgs-3 by 1958 base-pairs of non-transcribed genomic DNA. 

One of the results of this work was the discovery that the three glue protein 

genes at 68C are evolutionarily related to each other by gene duplication and subsequent 

sequence divergence, and form a diverged gene family. Each gene's single intervening 

sequence interrupts codon 10. All three predicted protein products share two structural 

features: a 23-amino-acid-long hydrophobic secretory leader peptide that is absent from 

each mature protein, and an approximately 50-amino-acid-long cysteine-rich carboxy

terminal region. These cysteine-rich segments are the mature sgs-7 and sgs-8 

polypeptides. The Sgs-3 gene differs from the other two in that it has a tandem

repetitious nucleotide region separating the hydrophobic-leader-coding region from the 

cysteine-rich-C-terminal-coding region. The tandem-repetitious nucleotides are 

translated to a tandem-repetitious peptide that is threonine-rich. The sgs-3 protein is 

known to be glycosylated (Korge, 1977), and the threonine residues are presumed to 

be the sugar attachment points. 

One consequence of the evolutionary history of the Sgs-3, -7, -8 gene family 

might be that each gene was duplicated along with its own set of cis-acting regulatory 
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sequences, and that such elements might retain sufficient sequence identity to be readily 

identified by inspection. The only readily recognizable sequence element upstream of all 

three 68C glue protein genes is the T-A-T-A box element located at approximately -30 

base-pairs (Goldberg, 1979), an element that is found upstream of nearly all eukaryotic 

RNA polymerase II transcription units. Between the -44 and -91 base-pair positions 

relative to Sgs-7 are sequences homologous to those located between -48 base-pairs 

and - 93 base-pairs upstream of Sgs-8. 

In Chapter 3, I describe experiments designed to identify cis-acting DNA 

sequences required for expression of the Sgs-7 and Sgs-8 genes. It had already been 

shown that the cis-acting sequences required for the expression of the Sgs-3 gene do 

not include the Sgs-7 and Sgs-8 genes (Bourouis and Richards, 1985; Crosby and 

Meyerowitz, 1986; Vijay Raghavan et al., 1986), supporting the view that the 

clustering of the three glue protein genes at 68C is a consequence of their evolutionary 

history only. By assaying fragments of the 68C cluster for Sgs-7 and Sgs-8 function, I 

determined whether or not these genes are regulated by separate cis-acting regulatory 

sequences. The specific hypothesis tested is whether or not the homologous sequences 

located within the first 100 base-pairs upstream of each of these genes represent 

conserved cis-acting regulatory elements that will allow each gene to be expressed 

independently of the other. The experiments show that this is not so. The interdigitated 

arrangement of cis-acting regulatory sequences observed suggests that the divergent 

transcription arrangement of the Sgs-7, Sgs-8 gene pair is not simply an evolutionary 

vestige, but is functionally important for the regulation of these genes. In addition, the 

dependence of Sgs-7 expression on the l(l )npr-J+ gene product does not require 

sequences from the bulk of the Sgs-7 transcription unit, a result that constrains the 

possible mechanism of action for the l( 1 )npr-J+ gene product. 
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The 68C locus of the Drosophila melanogaster polytene chromosomes contains 

the structural genes for three glue polypeptides (sgs-3, sgs-7, and sgs-8) 

synthesized in the larval salivary glands during the third larval instar. When the 

messenger RNAs for the glue polypeptides are being synthesized, the locus is 

puffed; the puff regresses in response to the steroid hormone ecdysterone. The 

three 68C glue mRNAs are coded in a gene cluster of less than 5000 base-pairs, 

and are expressed coordinately. In the experiments described here we show that 

the coordinate expression of these RNAs does not result from amplification of 

the puff DNA, nor is it associated with puff DNA rearrangement. We also 

report the nucleotide sequence of 6751 base-pairs of genomic DNA that 

includes the entire gene cluster, and describe coding and non-coding sequences 

with possible regulatory roles. In addition, we deduce the amino acid sequences 

of the primary translation products of the glue mRNAs, and show that the glue 

proteins form a diverged gene family. The members of the family all contain an 

amino-terminal hydrophobic block of amino acids, which is absent in the 

mature, secreted glue proteins, and a cysteine-rich carboxyl terminal module. 

sgs-3 differs from sgs-7 and sgs-8 by containing a third module between the 

other two, comprised largely of tandem repeats of the five amino acids Pro-Thr

Thr-Thr-Lys. 
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1. Introduction 

During the third larval instar, the major function of the Drosophila melanogaster 

salivary glands is the production of a set of secreted polypeptides (Zhimulev and 

Kolesnikov, 1975). There are at least eight of these (Crowley et al., 1983), synthesized 

in the cytoplasm of the salivary gland cells throughout the ins tar and secreted into the 

lumen of the gland near the end of the larval stage. At the time of puparium formation 

the luminal contents are expelled, and they set to form a glue that fixes the puparium to 

its substrate for the duration of the pupal period (Lane et al., 1972). A group of about 

ten puffs, or sites of highly active transcription, are present on the giant polytene 

chromosomes of the salivary gland cells when glue proteins are being synthesized; they 

disappear toward the end of the third larval instar, when glue synthesis terminates. 

These are known as the intermolt puffs (Ashbumer, 1972). Genetic, cytogenetic and 

molecular mapping experiments have shown that at least four of these puffs contain 

structural genes for at least six of the glue polypeptides (Korge, 1975, 1977; Akam et 

al., 1978; Velissariou and Ashbumer, 1980, 1981; Crowley et al., 1983). Other 

experiments have shown that the regression of the intermolt puffs is a consequence of 

an increase in the titer of the steroid hormone ecdysterone in the larval hemolymph 

several hours before pupariation (Ashburner, 1973). The regression of one of these 

puffs, that at 68C on the left arm of the third chromosome, appears to result directly 

from binding of the hormone (presumably through the mediation of a steroid receptor 

protein) to the puff (Gronemeyer and Pongs, 1980). 

The molecular cloning of the 68C puff genomic DNA and of DNA 

complementary to the puff-encoded RNAs has been accomplished. Analysis using the 

cloned DNA has shown that one 5000 base-pair region of the puff DNA codes for three 
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different polyadenylated messenger RNAs, all found only in third larval instar salivary 

glands, and appearing and disappearing coordinately (Meyerowitz and Rogness, 

1982). Each of the 68C RNAs, designated the group II, group Til and group IV RNAs, 

is translated to a different salivary gland glue polypeptide, sgs-8, sgs-7 and sgs-3, 

respectively (Crowley eta!., 1983). 

There are at least two features of the regulation of the 68C puff gene cluster that 

must be understood: the coordinate control of the three different RNAs, and the action 

of ecdysterone in puff regression. In the experiments described here, we test several 

hypotheses for the mechanism of coordinate regulation of the 68C glue RNAs, and in 

so doing find that the 68C glue proteins are evolutionarily related to each other in an 

unusual way. In addition, DNA sequence information obtained in these experiments 

constrains the possible types of regulatory DNA sequences that can be considered as 

important in coordinate regulation of the puff RNAs. 
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2. Materials and Methods 

(a) Insect culture 

Adult flies of the D. melanogaster third chromosome homozygous strain OR16f 

(Meyerowitz and Rogness, 1982) were reared in milk bottles or in population cages 

similar to the design of Elgin and Miller (1978) at 22°C. They were fed standard 

cornmeal-agar food that was supplemented with live yeast paste. Eggs were laid on 

food coated with yeast in plastic trays. The trays were covered with tight-fitting plastic 

boxes. Larvae were refed live yeast and were watered daily. Late third instar larvae 

were collected on days 5 and 6 after egg deposition. 

(b) Isolation of third instar salivary gland nucleic acids 

Third instar larvae were washed from the trays and boxes with cold distilled 

water. Food particles were removed by floating the larvae in 20% (w/v) sucrose. The 

clean larvae were then washed in Robb's (1969) PBS (phosphate-buffered saline), and 

crushed between metal rollers. Salivary glands and carcasses were collected on a fine

mesh Nitex (Tetko, Inc.) screen. Glands were separated from carcasses by filtration 

through a coarse-mesh Nitex screen. Salivary glands were collected in a plastic beaker. 

Fat bodies were removed from the glands by repeatedly allowing them to sediment at 

unit gravity. Gut, Malpighian tubules, and other tissues were removed from the glands 

by centrifugation through 32% Ficoll (Sigma) in Robb's PBS. Ficoll was removed by 

washing the glands with Robb's PBS. They were judged to be greater than 70% pure 

salivary glands. 
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RNA was extracted from the glands by dissolving the tissue in 0.1 M Tris-HCl 

(pH 8.0), 0.2 M NaCl, 0.1 M EDTA, 0.5% (w/v) sodium dodecyl sulfate. Repeated 

phenol, phenoVchloroform, and ether extractions were performed. The nucleic acids 

were precipitated with ethanol, washed and precipitated with ethanol again. Several mg 

of RNA were recovered from several hundred mg of tissue. RNA was stored in 10 mM 

sodium acetate (pH 5.0) at - 80°C. 

Poly (A)+ RNA was obtained from salivary gland RNA by oligo(dT)-cellulose 

chromatography as described by Meyerowitz and Rogness (1982). 

DNA was prepared from the glands by a modification of the procedure used by 

Meyerowitz and Rogness (1982) to obtain adult fly DNA. About 100 mg salivary gland 

tissue in Robb's PBS was treated with 1 ml 15% sucrose, 50 mM Tris-HCl (pH 8.0), 

50 mM EDT A. The tissue was spun briefly in a hand-driven centrifuge and the 

supernatant discarded. One ml of 0.12 M sucrose, 150 mM Tris-HCl (pH 8.5), 75 mM 

EDTA, 0.75% sodium dodecyl sulfate was added to the tissue. Five Jll 25% (v/v) 

diethyl pyrocarbonate in ethanol were added and the glands were lysed in a 2 ml Ten

Broeck homogenizer. The mixture was transferred to a 1.5 ml capped plastic tube, 65 

Jll 8 M potassium acetate were added, and the mixture allowed to stand in ice for 15 

min. Precipitated debris and potassium dodecyl sulfate were removed by a 10-min. spin 

in a microcentrifuge. The supernatant was transferred to two 1.5 ml tubes and 1.1 m1 

ethanol were added to each tube. Nucleic acids were pelleted in the hand-driven 

centrifuge, rinsed twice with 70% (v/v) ethanol, and air-dried. Each pellet was 

resuspended in 20 Jll 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, and 100 ng pancreatic 

RNase A (a gift of D. Ridge) were added. 
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(c) General DNA and recombinant DNA techniques 

Plasmids were grown in Escherichia coli HB101 using M9-Casamino acids 

supplemented with uridine as medium (Norgard et at., 1979). Chloramphenicol 

amplification was sometimes used. Plasmid purification by CsCl/ethidium bromide 

gradient centrifugation was performed as described (Meyerowitz and Rogness, 1982). 

Recombinant 'A phage were propagated on E. coli K802 and were purified by 

standard methods (Maniatis et at., 1978; Meyerowitz and Rogness, 1982). Phage DNA 

was extracted by the rapid formamide method "A" of Davis et at. (1980). 

National Institutes of Health guidelines were followed for the P1-EK1 level 

containment of recombinant DNA-bearing organisms. 

Preparation of Drosophila genome blot filters, nick-translation, and filter 

hybridization were performed as described by Meyerowitz and Rogness (1982). 

(d) DNA sequence determination by partial chemical cleavage 

(i) End-labelling DNA 

After restriction enzyme digestion of plasmid DNA, one of three methods was 

used: for 5' protruding restriction site termini the 5' ends were labelled by 

dephosphorylation with calf intestinal alkaline phosphatase and subsequent 

rephosphorylation with [y-32P]ATP and T4 polynucleotide kinase (Maxam and Gilbert, 

1980); 3' ends were labelled by incubating the DNA in 20 j.l.M each of three unlabelled 

deoxynucleoside triphosphates, one [a.-32p] deoxynucleoside triphosphate, and E. coli 

DNA polymerase I Klenow fragment. For 3' protruding restriction sites the 3' ends 
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were labelled with [a-32P]CTP and terminal deoxynucleotidyl transferase as described 

by Roychoudury and Wu (1980). 

Fragments labelled at one end were obtained by digestion with a second 

restriction enzyme. 

(ii) Gel purification of labelled DNA 

The 32P-labelled DNAs were resolved on polyacrylamide gels crosslinked with 

N,N'-bis-acrylyl-cystamine (Bio-Rad). Fragments were located by autoradiography, 

excised from the gel, and were released from the gel matrix by adding 2-

mercaptoethanol to a concentration of 50% (v/v). The disulfide crosslinks are reduced 

after 0.5 to 2 hat room temperature. Nine ml of 0.1 M Tris-HCl (pH 7 .5), 0.1 M NaCl 

were added and each gel slice was homogenized by thorough vortex mixing. The 

viscous mixes were incubated with 0.2 ml Whatman DE52 DEAE-cellulose resin, 

which was kept suspended by constant agitation. After several hours at room 

temperature, the radioactive resins were pelleted in a table top centrifuge, washed twice 

with 10 rnl 0.1 M Tris-HCl (pH 7.5), 0.1 M NaCl to remove acrylamide residue, and 

were packed into small columns. DNA was eluted from the resin with three 1 rn1 

volumes of 0.1 M Tris-HCl (pH 7 .5), 1 M N aCl. Fine resin particles were pelleted by 

centrifugation, and the DNA precipitated from the supernatant by adding 10 j.lg yeast 

transfer RNA and 9 ml ethanol, followed by incubation overnight at -20°C. Recoveries 

generally exceeded 90%. 

(iii) Limited modification of bases 

The Maxam and Gilbert (1977, 1980) procedure modified by Smith and Calvo 

(1980) forms the basis of our sequence determination protocol. Base modification 
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conditions were chosen to enable us to read up to 650 nucleotides from a labelled end. 

The G+A reaction used only 2 j..tl 1 M pyridinium formate in a 22 j..tl volume at 37oc for 

5 min. Hydrazine reactions (C, C+ T) were performed in an ice water bath for 15 min. 

The dimethyl sulfate G reaction was done for 12 to 15 min. in an ice water bath using 

0.125% (v/v) dimethyl sulfate. Stop solution, ethanol precipitation, and ethanol rinse 

steps were done as described (Maxam and Gilbert, 1980). 

(iv) Gel electrophoresis and autoradiography 

Sequence gels were 0.36 mm thick, and contained 100 mM-Tris/borate/EDTA 

(Maxam and Gilbert, 1980) and 50% (v/v) urea. To read nucleotides 1 to 50, a 40-cm 

long 20% polyacrylamide gel was run at 40 W constant power until the xylene cyanol 

marker had migrated 12 em. To read nucleotides 35 to 650, multiple staggered runs on 

80-cm long 5% polyacrylamide gels were performed. The gels were run at 2400 to 

2800 V constant potential. Repeated loadings on one gel, or several gels run for 

different times, were used such that the xylene cyanol marker was allowed to migrate 

30 em, 90 em, 150 em, or 210 em. This pattern of electrophoresis allowed for facile 

alignment of overlapping contiguous sequence. 

Gels were transferred from the glass plates to sheets of Whatman 3MM paper or 

scrap X-ray film, covered with plastic wrap, and autoradiographed. Kodak XR-5 or 

XAR-5 film was used. Duplicate exposures of the 150 em run and 210 em run gels 

were done with or without DuPont Cronex Lightning-Plus intensifier screens. All 

autoradiographs were read independently by two persons. Discrepancies were resolved 

by reference to the original films, and by additional sequence determinations. Except 

for the leftmost 70 nucleotides, which were determined once, every position was 
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assigned on the basis of at least two independent experiments. See Fig. 3 for additional 

details. 

(e) Nuclease mapping ofmRNAs 

32P-labelled restriction fragments (about 50,000 cts/min.) were mixed with 20 

~g yeast tRNA for mock hybridizations, or with 20 ~g yeast tRNA and 2 ~g salivary 

gland poly(A)+ RNA. The nucleic acids were precipitated with ethanol, rinsed, and 

dried. Hybridizations were carried out by dissolving the nucleic acids in 100 Ill of 70% 

deionized formamide, 10 mM PIPES (pH 6.4), 0.4 M NaCl, 0.1 mM EDTA (Casey 

and Davidson, 1977), heating to 70oc and annealing at 50.ooc for several hours. While 

leaving the hybridizations at 50.0°C, 15-~1 portions were removed and diluted into 200-

~1 portions of nuclease assay buffer. The assay buffer tubes were pre-chilled in ice 

water baths, and enzyme was already added to the appropriate tubes. Rapid transfer of 

the hybridization portions, forceful pipetting, rapid vortex mixing, and immediate 

transfer to the digestion temperature all ensured that strand displacement was 

minimized. 

The nuclease S1 reaction was 0.3 M sodium acetate (pH 4.5), 0.4 M NaCl, 0.1 

mM zinc acetate, 30 ~g heat-denatured salmon sperm DNA/ml at 37oC for 15 min. The 

reaction was terminated by adding 600 ~1 ethanol and freezing on solid C02. The 

precipitated nucleic acids were pelleted, washed with 70% ethanol, dried and 

resuspended in Maxam and Gilbert (1980) sequence gel sample buffer. Aspergillus 

oryzae nuclease S1 was obtained from Sigma Chemical Co. 

Exonuclease VII digestions were carried out in 10 mM Tris-HCl (pH 7.5), 20 

mM KCl, 10 mM EDTA (Berk and Sharp, 1978) at 4SOC for 45 min. The reaction was 
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terminated by adding 20 111 3M sodium acetate (pH 5.0) and 600 111 ethanol. Nucleic 

acids were precipitated, washed, and resuspended as described for the nuclease S 1 

samples. E. coli exonuclease Vll was obtained from Bethesda Research Laboratories. 

Portions of the initial 32P-labelled restriction fragments were subjected to the 

partial chemical degradation sequence reactions. The nuclease digests were run 

alongside the sequence size standards on 5% polyacrylamide/urea gels which were 80 

em long. 

(f) Primer extension sequence determination 

These experiments were done according to the Ghosh eta/. (1980) method as 

modified by Snyder eta/. (1982). 32P-labelled restriction fragment was mixed with 0.5 

to 0.8 mg salivary gland RNA, precipitated with ethanol, rinsed, dried and hybridized 

in 200 111 of 70% formamide as described for nuclease mapping. The hybridization mix 

was then diluted by adding 1.5 ml oligo(dT) binding buffer. [32P]DNA-poly(A)+ RNA 

hybrids were recovered using oligo(dT)-cellulose chromatography. The hybrids were 

eluted, precipitated with ethanol, rinsed, dried and resuspended in reverse transcriptase 

buffer. Avian myeloblastosis virus reverse transcriptase (a gift from J. Beard) was 

added and the reaction incubated at 3rC for 3 h. NaOH was added to 0.1 M, and RNA 

hydrolyzed for 1 h at 37°C. The reaction was neutralized, extracted with phenol, 

extracted with chloroform, and precipitated twice with ethanol. The complementary 

DNA was rinsed with ethanol, dried and resuspended in water. The complementary 

DNA was divided into five batches, four for the sequence determination reactions and 

one as a standard. 
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(g) Bal31 deletion construction 

Two J.lg of aDm2023 plasmid DNA were linearized by complete digestion with 

X hoi in a 20-f.ll reaction. After digestion, 12 f.ll water and 8 J.ll 5X Ba/31 buffer (IX = 

20 mM Tris-HCl, pH 8.1, 12 mM CaCl2, 12 mM MgCl2, 0.6 M NaCl, 1 mM EDTA) 

were added. 0.41 unit of nuclease Ba/31 (Bethesda Research Laboratories) was added 

and allowed to react at 30°C for 10 min. The reaction was terminated by adding 13 J.ll 

200 mM EGTA, followed by extractions with phenol and chloroform. The DNA was 

precipitated with ethanol and resuspended in 10 mM Tris-HCl (pH 7.5), 10 mM 

MgCl2, 100 mM NaCl, 6 mM 2-mercaptoethanol, 100 J.lg gelatin/mi. Each 

deoxynucleoside triphosphate was added to 1 mM, 1.4 units E. coli DNA polymerase I 

Klenow fragment were added, and the reaction incubated at room temperature for 15 

min. The enzyme was heat-inactivated, and the reaction diluted to 200 f.ll which 

included 10 mM dithiothreitol, 1 mM ATP, 550 ng EcoRI linkers (a gift from C. K. 

ltakura) and T4 DNA ligase (a gift from S. Scherer). The ligation reaction proceeded at 

room temperature overnight, and was then used to transform E. coli HB101 to 

ampicillin resistance. Transformants were colony purified, and retested for drug 

resistance. Small overnight cultures were grown and rapid plasmid isolations carried 

out. The resulting plasmid DNAs were digested with EcoRI and fractionated on a 1.2% 

agarose gel. The clone designated aDm2023..123 had about 950 base-pairs of 

Drosophila DNA, centered on the original Xhol site, removed. A large-scale 

preparation of this plasmid DNA was used for sequence determination. 
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3. Results 

(a) Three ways the 68C cluster is not regulated 

It is clear from the transcription map of the 68C gene cluster that the three 

mRNAs cannot derive from a common precursor, and thus that the tight coordination of 

expression of these RNAs does not result from their sharing a single promoter 

(Meyerowitz and Rogness, 1982). 

A second way in which coordinate regulation of clustered genes can be 

accomplished is by amplification of the chromosomal region containing the genes at the 

time of their expression (Spradling and Mahowald, 1980; Spradling, 1981). A third 

mechanism by which coordinate expression might be triggered is by a DNA 

rearrangement in the chromosomal DNA of the expressing tissue (Bracket a/., 1978; 

Zieg eta/., 1978; Seidman et al., 1979). To determine if the 68C glue gene cluster has 

undergone differential amplification or DNA rearrangement in the tissue of its 

expression in third instar larvae, high molecular weight DNA was isolated from adult 

flies and from third instar larval salivary glands. Equivalent amounts of each DNA 

preparation were digested with the restriction endonucleases EcoRI, Hindlll and San, 

subjected to electrophoresis in an agarose gel, and blotted to a nitrocellulose filter 

(Southern, 1975). The filter was hybridized with 32P-labelled A.aDm1501-10 DNA 

(Meyerowitz and Rogness, 1982); this phage contains 18.2 kbl of contiguous genomic 

DNA, including the 68C glue gene cluster (Fig. 1). The pattern of restriction fragment 

sizes and the autoradiographic intensities of hybridization of each fragment were 

identical in the adult and salivary gland lanes (Fig. 2); and the sizes of restriction 

1 Abbreviations used: kb, 1Q3 base-pairs; eDNA, complementary DNA. 
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fragments found were the same as those measured in clones such as A.aDm1501-10 that 

are derived from embryonic DNA. The same filter was washed of 32P-labelled probe 

and sequentially rehybridized with two other 32P-labelled probes: aDm2026, a plasmid 

containing the 1.65 kb Hindiii fragment that includes the coding DNA for the two 

small, divergently transcribed RNAs II and III, and aDm2023, a plasmid with the 2.4 

kb Sall fragment that contains the coding DNA for the large RNA IV (Fig. 1). These 

hybridizations also showed no differences between adult DNA, either in restriction 

fragment size or extent of probe hybridization. 

(b) DNA sequence of the 68C cluster region 

One possible mechanism for the coordinate regulation of the three 68C RNAs is 

that each RNA has its own equivalent of a bacterial operator, and that the operators are 

identical, or nearly so, and therefore respond identically to the cellular signals that 

control puff transcription. To seek such DNA regions, the sequence of 6751 

contiguous nucleotides of the D. melanogaster genomic DNA clone A.bDm2002, 

containing the coding sequences of all three of the 68C glue RNAs, was determined. 

Figure 3 shows a restriction map of the sequenced DNA, the relative positions of the 

three glue RNAs in it, and the sequencing strategy used. All but the leftmost 70 

nucleotides of the sequence were determined on each of the complementary DNA 

strands, and complementarity was observed everywhere, although at 11 EcoRII sites 

[C-C-(A!f)-0-G], in which methylation occurs at the inner cytosine residue in dcm+ E. 

coli, there was a gap rather than a band in the C and C+ T lanes of the sequencing gel 

(Ohmori eta/., 1978). Agreement between the sequence and the experimentally 

determined sites of digestion by 11 hexanucleotide-recognizing restriction 

endonucleases was perfect, except that three C/ai sites indicated by the sequence were 
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not cleaved by this enzyme. Each of the resistant sites overlaps the sequence G-A-T-C, 

where the Clal site is A-T-C-0-A-T. 0-A-T-C is a site for adenine methylation 

mediated by the E. coli dam+ methylase (Geier and Modrich, 1979). Methylation of 

adenine in the Clal recognition site appears to be sufficient to prevent the restriction 

activity of the enzyme, as predicted by Backman (1980). The 68C nucleotide sequence 

is presented in Figure 4. Analysis of chromosomal rearrangements with breakpoints 

near the sequenced DNA indicates that the sequence is presented in telomeric to 

centromeric order (E. M. Meyerowitz and M.A. Crosby, unpublished results). 

The beginning of the sequence, nucleotides 1 through 463, is a sequence of a 

part of a transposable element of the repetitive roo family, that is present in our D. 

melanogaster Oregon-R strain just to the left of the glue-coding gene cluster 

(Meyerowitz and Rogness, 1982). That these nucleotides are in the transposable 

element was determined by comparison of the sequence of a clone from our 68C roo

containing strain (aDm2024, Fig. 1) to a homologous genomic clone (aDm2003, Fig.1, 

sequence not presented) from a wild-type chromosome which does not have a roo 

element adjacent to the 68C glue puff. The roo sequence presented here differs in only 

five positions from the similar sequence determined by Scherer et al. (1982) for their 

Bl04 transposable element family which, as demonstrated in their paper, is equivalent 

to the roo family. 

The nucleotides in positions 464 through 874 are DNA that is unique to the 68C 

puff region. Following this is one element of an inverted repeat sequence, from 

nucleotides 875 to 1159. The complementary element extends from positions 2853 to 

2569. This pair of elements has been observed as a stem and loop structure in electron 

microscopic analysis of melted and reannealed DNA from A.bDm2002 (Meyerowitz and 
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Hogness, 1982); the elements flank the 3' ends of the group II (sgs-8) and group III 

(sgs-7) RNAs. The sequence shows that each element is 285 base-pairs in length, and 

that the two elements are complementary at 93% (266) of their nucleotide positions 

(Fig. 5). The boundaries of the elements are distinct. Since no similar element appears 

adjacent to the 3' end of the third 68C RNA, the group IV sgs-3 RNA, it seems 

unlikely that this sequence is responsible for the coordinate expression of all three 

RNAs. This conclusion is supported by further observations on the inverted repeat 

elements: when DNA containing one or both of them is 32P-labelled and used to probe 

plaque filters or colony filters containing DNA of A or cosmid libraries of D . 

melanogaster genomic fragments, clones containing one region of the fly genome in 

addition to the 68C puff are obtained. This region contains three additional copies of the 

repeat element in 6 kb of contiguous sequence. The three copies are direct repeats, all in 

the same relative orientation. When clones containing this region are 3H-labelled by 

nick-translation and hybridized to salivary gland polytene chromosomes (Pardue et al., 

1970), autoradiography shows the origin of the three additional elements to be in the 

68C region, but clearly proximal to the 68C 3 to 5 position of the glue puff, and in a 

chromosomal area that is not puffed when the glue puff is present. 32P-labelled probes 

containing the three proximal elements and the adjacent sequences do not give 

detectable signals when hybridized to RNA gel blots containing third larval instar 

salivary gland RNA. Likewise, 32P-labelled eDNA made from third instar salivary 

gland polyadenylated RNA does not hybridize strongly to the DNA of the clones 

containing these elements in DNA gel blot experiments. Thus, not only does one 68C 

glue gene lack an adjacent repeat element, but three repeat elements exist in a 

chromosomal region that is unpuffed in third instar salivary glands, and that does not 
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contain coding sequences for any abundantly expressed third instar salivary gland RNA 

species. 

The sequenced DNA between the two puff inverted repeat elements contains the 

coding DNA for the divergently transcribed sgs-8 and sgs-7 protein mRNAs. The 

region to the right of the repeat pair includes sequences 5' to, including, and 3' to the 

third puff mRNA, that coding for sgs-3 protein. 

(c) Localization of RNA-coding DNA sequences 

To analyze the functional relevance of the sequences found in the glue gene 

cluster, the 5' and 3' limits of mRNA coding regions, and the exact positions of any 

intervening sequences found within the RNAs were determined. These experiments 

began with the sequencing of eDNA clones representing each of the 68C puff mRNAs 

(the group II, group III, and group IV eDNA clones of Meyerowitz and Rogness, 

1982). These sequences are presented in Figure 6. Nuclease protection experiments 

(Berk and Sharp, 1977, 1978) were then performed on the group II (sgs-8) and group 

III (sgs-7) mRNAs, to confirm and extend the sequence observations; while primer 

extension experiments (Ghosh eta/., 1980) were performed with the group IV, sgs-3 

mRNA for the same purpose. The results for each of the mRNAs are presented in turn, 

starting with the leftmost. 

(i) sgs-8 

The DNA sequence of the group II eDNA clone is homologous with the 

genomic DNA sequence from positions 1215 at the 3' end of the RNA transcript, to 

position 1605 at the 5' end. Genomic nucleotides 1510 through 1578 are absent from 
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the eDNA clone, indicating a 69 nucleotide intervening sequence near the 5' end of the 

RNA transcript. The 3' end of the gene can only be localized to bases 1215 to 1218; the 

eDNA sequence is polydeoxyadenylate beginning at 1217 and the genomic positions 

1215, 1216 and 1217 are A residues. Thus, RNA termination and poly(A) addition 

could occur after any of positions 1218 through 1215. 

To confirm the presence of an intervening sequence in the sgs-8 rnRNA, and to 

establish an approximate location for the 5' start of transcription, nuclease protection 

experiments were performed. The 404 base-pair Xbai-EcoRI fragment that includes 

nucleotides 1310 through 1713, and that extends from the middle of the Sgs-8 gene to 

upstream of the 5' end, was labelled at the Xbal site on the strand complementary to the 

sgs-8 mRNA using [y-32P]A TP and T4 polynucleotide kinase, then annealed to total 

poly(A)+ RNA from third instar larval salivary glands. The hybrid was treated with 

either the single strand-specific nuclease S1, or with E. coli exonuclease VII (Fig. 7). 

After nuclease S 1 digestion, the labelled fragments that remained extended to positions 

1510 to 1513, as determined by polyacrylamide gel electrophoresis adjacent to size 

standards made by performing sequencing reactions on the intact labelled Xbai-EcoRI 

fragment. After correcting for the different 3'-terminal moieties in the reaction products 

in the experimental and size-standard lanes (Sollner-Webb and Reeder, 1979), the 3' 

end of one of the major nuclease S1 truncation products was seen to coincide with 

position 1510, thus confirming the presence of an intervening sequence. Exonuclease 

VII digests single-stranded DNA processively from 5' and 3' termini (Chase and 

Richardson, 1974). Treatment of the RNA-DNA hybrids with this nuclease reduces the 

labelled DNA fragment to lengths of 336, 337, and 338 nucleotides, the 3' ends of 

these fragments aligning with genomic sequence positions 1645 to 164 7. Since 

exonuclease VII leaves undigested approximately five unpaired nucleotides extending 
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from RNA-DNA hybrids (Donahue et al., 1982; Contreras eta/., 1982) the 5' terminus 

of the sgs-8 mRNA is very near position 1640. Controls for the nuclease digestion 

experiments included omitting salivary gland RNA from the hybridization reaction, in 

which case no labelled DNA fragment was protected from digestion, and omitting 

nuclease treatments, in which case the 404 base-pair starting DNA fragment was 

recovered intact. 

(ii) sgs-7 

The DNA sequence of the group III eDNA clone includes nucleotide positions 

2164 to 2498 in the genomic clone sequence, with positions 2175 to 2240 missing. The 

absent sequence indicates that the sgs-7 mRNA contains a 66 nucleotide intervening 

sequence near its 5' end. There is no poly(A) tract at the end of the eDNA insert that 

represents the 3' end of the mRNA, but the genomic sequence from positions 2499 to 

2516 is a tract of 18 consecutive A residues. It thus seems likely that the 

polyadenylation site of the RNA is coded between bases 2498 and 2516 of the DNA 

sequence, and the possibility exists that up to 18 residues of the poly(A) tail on this 

RNA are added transcriptionally, rather than post-transcriptionally. 

Confirmation of the intervening sequence position, and establishment of the 5' 

end of the RNA were done in experiments similar to those used for the sgs-8 RNA. In 

this case a 683 base-pair M spi -EcoRI fragment (positions 2400 to 1718), labelled at the 

Mspi site by use of [y-32P]ATP and T4 polynucleotide kinase, was used in 

hybridization to poly(A)+ third instar larval salivary gland RNA. The results of the 

nuclease S 1 digestion experiments confirmed the intervening sequence location derived 

from the eDNA clone sequence; the exonuclease VII experiments placed the nucleotide 

coding for the 5' end of the RNA very near the Kpn I site at position 2112. It is worth 
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noting that all of the sequences between the 5' ends of the divergently transcribed Sgs-8 

and Sgs-7 genes total less than 500 base-pairs. 

(iii) sgs-3 

The group IV eDNA clone, representing the sgs-3 RNA, was only partially 

sequenced. The sequence of the end derived from the 3' terminus of the RNA contained 

a poly(A) tract adjacent to genomic nucleotide position 5646, indicating that this is the 

poly(A) addition site of the RNA. The 5' end of the RNA is not represented in the 

eDNA clone. Nuclease protection experiments performed by K. Burtis and D. Rogness 

(personal communication) suggested that a small intervening sequence exists in the sgs-

3 RNA near position 4550. To confirm this result, and to determine the precise size and 

location of this sequence, a primer extension experiment was done. An 111 base-pair 

Haeiii-Hhai genomic DNA fragment, containing nucleotide positions 4725 through 

4835 and 32P-labelled at the Haeiii site (4385) using T4 polynucleotide kinase, was 

prepared. This labelled DNA was melted and annealed to total third instar salivary gland 

RNA, and the poly(A)+ RNA-primer DNA hybrids collected by oligo(dT)-cellulose 

column chromatography. The primed RNA was then incubated in a reaction mixture 

containing deoxynucleoside triphosphates and reverse transcriptase, and the sequence 

of the resulting end-labelled eDNA determined. The sequence showed, first, that there 

is an intervening sequence present in genomic DNA but absent from sgs-3 mRNA, 

including 73 genomic nucleotides (positions 4514 to 4586). In addition, the strongest 

site of primer extension termination was genomic nucleotide position 4457, indicating 

that the 5'-terminal nucleotide of the mRNA is coded at or near this position. 
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(d) Search for potential coordinate control sequences 

With the positions of mRNA coding sequences established, a search for 

duplicated sequences found in the same position relative to each of the RNAs was 

made. The only such sequences are found near and including the 5' ends of, and 

extending into the three genes. They are shown in Figure 8. Three alignment points are 

used in the Figure: the intervening sequence 5' boundary, the 3' boundary of this 

sequence, and the sequences near the 5' termini of the three RNA coding regions. In 

the vicinity of the transcription initiation region of each of the three genes is a conserved 

oligonucleotide (Ctr)-A-T-C-(T/A)-0-(G!f) which has been observed at the 5' ends of 

other Drosophila genes (Snyder et al., 1982). Approximately 30 nucleotides upstream 

of the 5' end of each gene is a T-A-T-A sequence (Goldberg, 1979), which has been 

shown to be required for correct initiation site selection by RNA polymerase II in other 

eukaryotic genes (Grosschedl and Birnstiel, 1980; Benoist and Chambon, 1981; 

McKnight eta/., 1981). In addition, the Sgs-8 and Sgs-7 gene regions share homology 

at two upstream locations, underlined in Figure 8, and extending almost 100 base-pairs 

5' of the transcription initiation points. The Sgs-3 gene region does not have either of 

these sequences. Within the RNA coding regions of the three genes there are 

considerable homologies. The 5' untranslated regions are all similar in their DNA 

sequence, as are the nucleotides flanking the translation initiation codons, and those 

coding for the first ten amino acids. The consensus splicing donor sequences (Lerner et 

al., 1980; Sharp 1981) following the first ten codons are also homologous. The 

intervening sequences that follow show no detectable homology, until five nucleotides 

upstream of their 3' ends, where the 3' ends of these sequences and the consensus 

splicing acceptor signals are again similar. The Sgs-8 and Sgs-7 genes show about 40 

additional nucleotides of sequence similarity downstream of their intervening 
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sequences; the Sgs-3 gene is homologous to the other two for only the first 19 

nucleotides of this region. The next substantial homology is in the 3' untranslated 

region, where about 20 nucleotides upstream of their 3' termini each of the genes 

possesses the A-A-T-A-A-A sequence implicated in polyadenylation or transcription 

termination in many eukaryotic sequences (Proudfoot and Brownlee, 1976). The 

inverted repeat elements begin 58 base-pairs downstream of the sgs-8 mRNA 3' end, 

and 70 base-pairs 3' of the sgs-7 mRNA terminus. It is clear that the Sgs-8 and Sgs-7 

genes are partly homologous throughout much of their lengths, and that, along with 

some 5' sequences and their 3' inverted repeat elements, they comprise a large, inexact 

inverted repetition. 

(e) Protein products of the 68C glue genes 

The amino acid sequences of the proteins coded at the 68C glue puff have been 

determined from the mRNA coding sequences described above (Fig. 9). Translation of 

eukaryotic mRNAs usually begins at the methionine codon nearest the 5' end (Kozak, 

1978); following this codon each of the 68C mRNAs has a long open reading frame. In 

all three cases, the intervening sequence occurs between the first and second 

nucleotides of codon ten. The first 23 amino acids of each reading frame contain a high 

proportion of hydrophobic residues; these are a signal peptide removed from the 

primary translation products before their secretion as glue proteins (Crowley eta!., 

1983). The sgs-8 reading frame continues for another 52 amino acids, that of sgs-7 for 

51 more residues. The sgs-3 protein contains 284 amino acids following the signal 

sequence, the carboxy-terminal 50 of which are similar in sequence to the secreted sgs-

8 and sgs-7 proteins, which are quite similar to each other. In the region at the carboxy 

end of the proteins eight cysteine residues and 11 other amino acid positions are 
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identical in all three proteins. sgs-3 is different from the two small proteins by the 

presence of a 234 amino acid long segment between the leader peptide and the 

carboxyl-terminal amino acids. This extra segment contains an amino-terminal 49 

amino acids of threonine-rich sequence, followed by 185 amino acids that are 

composed entirely of 37 tandem repeats of minor variants of a five amino acid unit 

(Fig. 1 0). The basic unit is Pro-Thr-Thr-Thr-Lys. The variations on this sequence, the 

different 15 base-pair sequences that code for the five amino acid repeats, and the 

higher-order repeats made of these 15 base-pair sequences are also shown in Figure 10. 
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4. Discussion 

(a) Possible regulatory sequences 

It is clear from the experiments described that the basis of coordinate control of 

the three 68C RNAs does not lie in the processing of the RNAs from a common 

precursor, or in DNA amplification. It is also clear that large-scale DNA rearrangements 

are unlikely to be associated with the coordinate expression of the 68C glue RNAs. 

DNA sequencing of the 68C puff was initiated as a means of testing the hypothesis that 

three coordinately regulated genes of similar function achieve their coordination through 

possession of identical stretches of regulatory sequences. The only sequences found to 

be shared by the three glue protein genes and their surrounding sequences are T-A-T-A 

sequences and regions of protein coding sequence within the genes. T-A-T-A regions 

are not candidates for specific control sequences, since they are a common feature of 

many eukaryotic genes transcribed by RNA polymerase II. It is possible that the highly 

conserved 5' translated regions of the three genes, which include the nucleotides 

surrounding each intervening sequence, are involved in coordinating the levels of the 

three glue protein RNAs. In particular, mechanisms of coordination involving common 

pathways of RNA splicing mediated by proteins that recognize shared sequences can be 

envisioned. It seems just as likely, though, that the nucleic acid sequence conservation 

in this region of the RNAs is a result of selection for the amino acid sequence of the 

hydrophobic signal peptide. No experiments have been done to differentiate between 

these two hypotheses. 

No sequences were found which present themselves as obvious candidates for 

mediators of coordinate transcription. There are three possible reasons for this. One is 
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that the three genes are not truly coordinately expressed, but are regulated by different 

mechanisms that operate only in salivary glands, and at similar enough times that their 

activities have not yet been distinguished. A model in which Sgs-8 and Sgs-7 are 

controlled by nearly identical regulatory sequences, but Sgs-3 by different sequences, 

would be consistent with our sequence observations, and would implicate the common 

upstream elements of the two small genes as regulatory sequences. The second 

possibility is that the three genes are controlled identically by control sequences of 

identical function, but that we cannot recognize these sequences. This failure of 

recognition could occur because control sequences of identical function do not 

necessarily have the same DNA sequence, because the regions are too small to appear 

significant to us, or because the DNA sequence that comprises the regions is not 

composed of contiguous nucleotides, but consists of required bases separated by other, 

inconsequential nucleotides. The final possible reason for our failure to find identical 

control sequences associated with each of the 68C glue genes is that all three genes are 

controlled by a single set of sequences in or near the gene cluster, that affects the 

transcribability of the entire region, perhaps by initiating puffing as a precondition to 

transcription. All of these possibilities are currently being tested in this laboratory, 

using DNA-mediated transformation of Drosophila embryos (Rubin and Spradling, 

1982) to assay the function of various separate fragments of the 68C gene cluster. 

(b) Protein structure and evolution 

The sequence of the DNA coding for each of the three 68C mRNAs has allowed 

us to predict the amino acid sequences expected of the 68C protein products. These 

amino acid sequences have already enabled purification and identification of the 68C 

proteins, and the demonstration that they are all secreted glue polypeptides (Crowley et 
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al., 1983). The amino acid sequences show that the three 68C proteins are related to 

each other as a clustered gene family. The members of this family show modular 

construction: each member has a 23 amino acid amino-terminal portion composed 

largely of amino acids with hydrophobic side-chains, that is not present in the mature, 

secreted form of the protein. Each also has a cysteine-rich carboxy-terminal set of about 

50 amino acids which show considerable sequence homology between the proteins, 

there being 19 positions in which all three have the same residue. The sgs-8 and sgs-7 

polypeptides have only these two modules. sgs-3 contains a third module positioned 

between the other two, and consisting of 234 amino acids. A total of 128 of these are 

threonine, with much of the modules (185 residues) consisting of tandem repeats of the 

sequence Pro-Thr-Thr-Thr-Lys, or of sequences slightly diverged from this canonical 

one. The amino-terminal module probably serves as a signal peptide for protein 

secretion (Crowley eta/., 1983). The function of the carboxy-terminal module is 

unknown. One function of the threonine-rich module of the sgs-3 protein may be to 

provide a site for attachment of sugars. sgs-3 is extensively glycosylated in vivo 

(Beckendorf and Kafatos, 1976; Korge, 1977). It is unlikely that the site of 

carbohydrate attachment is asparagine, since the target sequence for asparagine 

glycosylation via the dolichol phosphate pathway is Asn-X-Thr or Asn-X-Ser 

(Staneloni and Leloir, 1982), and neither of these sequences appears in sgs-3. This 

leaves serine and threonine as possible sites of sugar attachment. There are only three 

serine residues in the processed sgs-3 polypeptide, while there are 128 threonine 

residues, all in the central module. An example of a protein extensively glycosylated by 

virtue of sugar attachment to numerous threonine residues is an antifreeze serum protein 

found in Antarctic fish (Feeney and Yeh, 1978), which is modified at almost every 

threonine by addition of a disaccharide to the threonine hydroxyl group. 
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The only other Drosophila glue polypeptide for which sequence information is 

published is sgs-4, transcribed from a locus found at 3C on the polytene chromosomes 

(Muskavitch and Rogness, 1982). Comparison of sgs-4 amino acid or nucleic acid 

sequences reveals no homology between this glue polypeptide and those coded at 68C. 

In one respect the sgs-4 protein is similar to sgs-3: both contain substantial regions 

comprised of tandem repeats of a small number of amino acids. In the case of sgs-4, 

the repeat unit contains the seven residues Thr-Cys-Lys-Thr-Glu-Pro-Pro. Similar 

periodic repeats are found in a number of proteins from different sources, including silk 

fibroin from the moth Bombyx mori (Sprague eta/., 1979; Gage and Manning, 1980; 

Manning and Gage, 1980), eggshell proteins of another moth, Antherea polyphemus 

(Jones eta!., 1979), and zein, the seed storage protein of maize (Geraghty eta!., 1981; 

Pedersen eta!., 1982). 

The similarities in amino acid sequence between the three 68C gene products 

reflect similarities in the nucleotide sequences of the genes. Since the divergence at the 

DNA level is substantial enough to preclude cross-hybridization under our relatively 

non-stringent conditions of filter hybridization and washing, nucleotide sequencing 

experiments were necessary to discover the relation of the three glue genes. In fact, the 

three members of the the 68C glue gene family are so dissimilar that the order of the 

gene duplication events that presumably gave rise to the family cannot be deduced. As 

can be seen from Table 1, sgs-8 and sgs-7 appear more closely related to each other 

than either is to sgs-3 when the hydrophobic amino-terminal module is considered, but 

sgs-7 and sgs-3 are more closely related to each other than to sgs-8 when the carboxy

terminal cysteine-rich modules are compared. 
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The most striking feature of the evolution of this gene family is the appearance 

of the threonine-rich central module in sgs-3 (or its disappearance from sgs-7 and sgs-

8). The gain (or loss) of this module is not mediated by intervening sequences at its 

termini, since the intervening sequences in the 68C genes are all in the middle of the 

amino-terminal module. Appearance (or disappearance) of the sgs-3 central module is 

also not due to tandem duplication, or deletion of tandem duplications: the module is 

unrelated to any of the other sequences of the gene. The possible importance of 

appearance and disappearance of modules in the evolution of structural proteins is 

pointed out by the employment of modular evolution in at least one other gene family, 

the A. polyphemus egg chorion proteins (Jones eta!., 1979). In this instance, two 

modules found in the middle, and at the carboxy-terminal end of the B class of chorion 

proteins are also found in members of the A chorion protein class. The sequences 

surrounding these modules are not shared between the two protein classes. In these 

proteins the shared regions are partly composed of tandem repeats of oligopeptides, 

exactly as is the threonine-rich central region of sgs-3. Studies of the 68C puff proteins 

in species of Drosophila other than melanogaster may help to answer some of the 

questions relating to evolutionary mechanisms raised by modular evolution of the 68C 

glue polypeptides. 
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Table 1 

Nucleotide and amino acid sequence homologies in the 68C glue polypeptide genes 

Pairwise Comparison Nucleotide Amino acid Amino acid 
identities I identities I similarity2 

A. Hydrophobic amino termini 

sgs-8-sgs-7 53/69 (77%) 15/23 (65%) 20/23 (87%) 

sgs-8-sgs-3 45/69 (65%) 11/23 (48%) 17/23 (74%) 

sgs-7-sgs-3 44/69 (64%) 11/23 (48%) 17/23 (74%) 

B. Cysteine-rich carboxy termini 

sgs-8-sgs-7 

sgs-8-sgs-3 

sgs-7-sgs-3 

81/150 (54%) 20/50 (40%) 27/50 (54%) 

88/150 (59%) 27/50 (54%) 38/50 (76%) 

101/150 (67%) 28/50 (56%) 38/50 (76%) 

I No gaps were introduced into either sets of alignments. 

2Amino acid similarity includes both amino acid identities and "conservative" 
substitutions of amino acids with functionally similar side-chains (Lehninger, 1975). 
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Figure 1. A. clones and plasmid subclones used in this study. A restriction map of the 

studied region of the 68C puff is given, showing the position of the roo transposable 

element found in the OR16f chromosome. Genes II, III, and IV are indicated as filled 

boxes. Cleavage sites for the restriction enzymes EcoRI (R), Hindiii (H) and Sall (S) 

are shown. Extents of the genomic DNA clones are indicated. A.aDm1501-10 and 

aDm2003 have been described (Meyerowitz and Rogness, 1982). aDm2023 contains 

the 2.4 kb Sall fragment homologous to the Sgs-3 gene inserted into the pBR322 Sall 

site. aDm2024 contains the 5.7 kb Sall fragment adjacent to that cloned in aDm2023. 

aDm2026 contains the 1.65 kb Hindlll fragment that includes Sgs-7 and Sgs-8 inserted 

into the pBR322 Hindlll site. aDm2027 contains the 0.53 kb Hindiii fragment adjacent 

to that present in aDm2026. fDm9014 contains the 1.6 kb Pvul fragment that includes 

Sgs-3 inserted into the Pvul site of pBR325. These five plasmid subclones were 

prepared from A.bDm2002 (Meyerowitz and Rogness, 1982) by routine subcloning 

procedures. 
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Figure 2. 68C cluster region DNA is neither amplified nor rearranged in third instar 

larval salivary glands. High molecular weight DNAs from D. melanogaster strain 

OR16f adult flies (lanes 1, 3 and 5) or third instar larval salivary glands from the same 

strain (lanes 2, 4 and 6) were digested with EcoRl (lanes 1 and 2), Sall (lanes 3 and 4), 

or Hindiii (lanes 5 and 6). The digested DNAs were subjected to electrophoresis 

through a 0.9% agarose gel, blotted to nitrocellulose, and hybridized with 32P-labelled 

A.aDm1501-10 DNA. The size standard used was A.cl857 S7 DNA digested with 

Hindiii. Autoradiographs of the genome blot filter were scanned with a Joyce-Loeb! 

rnicrodensitometer. Peaks from the EcoRI digest lanes were cut out and weighed. The 

ratio of adult fly DNA peaks to the corresponding salivary gland DNA peaks ranged 

from 0.9 to 1.1. To control for the preferential polytenization of euchromatic DNA in 

the salivary gland, the genome blot filter was washed and rehybridized with 32p_ 

labelled aDm2040 (E. M. Meyerowitz, unpublished results). This genomic clone 

derives from near 68C 10-11, is unique in the genome and is not detectably transcribed 

in third instar larval salivary glands. Microdensitometry of the resulting autoradiograph 

gave a ratio of adult fly DNA to salivary gland DNA of 0.8. 
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Figure 3: Sequence determination strategy. Restriction enzyme cleavage sites are 

abbreviated as follows: B, Bglll; C, Clal; Hindlll; K, Kpnl; P, Pstl; Pv, Pvul; R, 

EcoRI; S, Sali; Sc, Sacl; X, Xbal; Xh, Xhol. The two triangles indicate the extents of 

the inverted repeat elements. Close-parenthesis marks the right-hand boundary of the 

roo transposable element (Meyerowitz and Rogness, 1982) inserted at 68C in the fly 

stock used in these experiments. Below the map are indicated the directions and extents 

of transcription of the three 68C genes expressed in third instar larval salivary glands 

(Meyerowitz and Rogness, 1982). The small downward-pointing carats indicate the 

locations of the intervening sequences present in the genes. Below this is a summary of 

the sequence determination experiments. Arrowheads point in the directions sequence 

data were read. The base of each arrow is aligned with the labelled restriction site. Plain 

arrows are sequences read 3' to 5' using DNA polymerase I Klenow fragment-labelled 

DNA. Circles represent restriction sites labelled with T4 polynucleotide kinase; these 

sequences were read 5' to 3'. The arrow labelled 2003 indicates a sequence determined 

from the genomic subclone aDm2003 used to establish the point of insertion of the roo 

transposable element. The arrow labelled ~23 represents sequence data obtained from 

the deletion clone aDm2023.123 (see Materials and Methods). The Xhol site was read 

across by sequence determination from a nearby Haelll site. The left Sall site was read 

across from the adjacent Pvul site. All restriction sites used as origins of sequence data 

were thus read across. Determinations were done on both strands everywhere except 

the leftmost 70 nucleotides of the roo transposable element. The scale is in base-pairs. 
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Figure 4. The complete DNA sequence of the 68C cluster region. The sequence is 

written 5' to 3' left to right. The strand shown is the template for gene II transcription 

(positions from approximately 1645 to 1218), and is congruent with RNA III (approx. 

positions 2112 to 2498) and RNA IV (approx. positions 4457 to 5646). Protein-coding 

nucleotides are capitalized. The restriction sites shown are identical to the map in Fig. 

3, with three additions: Mspi at 2399, Hhai at 4726, and Haeiii at 4835. The roo 

transposable element begins at position 463 and continues leftward. The inverted repeat 

elements occupy positions 875 to 1159 and 2853 to 2569. 
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1 Pst I I 
c t g c agagtcgattaaaggctcagattagaccaaatgtaaaatcccagataagaagac t ttact c gttgnctttttgtaagaaactgattttatttggaa 

atatcttcggtttaaatagg t gac atgagaatcgcatcttaaagtaaatggcctacgcagaggc ctaagtaaatagt c cccgccttatcgaggtcccacg 

ctcgggcacatctgcctatcttgagcggcgaggaccttatctgtggtctcccactaagggac tattttaggaggcggggaacgatctcaagtgactgact 

catgtagtgtgcacttaaa t tacatgtttttgagcaatgcacccatgtcgccttagataac aaaatcctaaatataatt t atcg c tctcgattcattta c 

ataagatatgaacgg agcccaaaattgtaagtctttaaatatattcgtgttcatgtgtgaacaaaatgtgaacaaatttaatgtgtttttttcttc tggg 
IHind ml Xba I I 

taatattcttccaaaagcttctagaatattttgaaatattttttatttctgttgcagtgttttgacattgaaatacaatc gtcgtgggtaaacettettg 

catactttttagggaatttttttaggaatagtaacccatttaattgttgatattacaaatatgtcaacaaaaccgtctttgcttac tgttcaaacatttg 

attattaaatgcttttgctattgtactcgctttttatgtgcttatgcgttatgggaagcaaaeacatagtaaagcgaatgcggaaatctgcttgttttgc 

tataaaagcagtgggtatgattttaattaatcecaacacctgatcgttceattccagtcgtatcgaaaaatctaatcttatttc aaaatgaegtetcttt 
I Pst I I 

tcgtggttgcccttattgccctggccattcaggttgcgtcatctgctagtaccacaacaaccacggatgccaccaccacaac aacaaccactac t gcagc 
I Hind m l 

atcaaccacaacaacaacaacggccgcttccactcacaaaaagc tttgttggaggggcaacaattggtgccacacccgcattcccaagcggaagtgcaao 

aa t c caaagaggtgccacaagaccatcgtgattgtgacacacagaaaagactagttctgacactttttaagcaatacatctgaaaataaataattaaaaa 

ecaaagaaaaggagtttgggtcgtgcaggaatgataatagttttattagacagcagttttaaatgccagcagataaaaggtcagtgccgattaggttgag 
I X ba I I I Bgl ll I 

ggcac8tctctaGAACAGCCAAACCTGCTCTCCGCAGGCGCACTGACGCACCTGCCGCTCAAGACCCTCCATAATGTTGATCAGATCTTTGCAGACGGGA 

ACCCGTGCGGAACACCCAGGACACGGCTCGCCACCAGGTCCACAAATCACGCATGAACAATCCTTGCAGCCCGAGGCAGGATCGGCGAATCCGATGAGCA 

TGATGCACGctgggtC8Q88tQ88cgg8tggct•agtgg8tttgggtc8c8t8aaaa•t•gt8ctttttggcacttacCAATGACGGCGACAACGAGCAG 

CTTCATggttgttgctttaacaaattaactttaccagatggtaaccgtttatgaacacc ctacc c cttttatagcaaaacaaatgtgttataggatcaat 
IEco RI I 

ggaaatttcattgaattcatccaaaaataaaatatataaccatttgtgcttaagcaaatagaaacacgatatteaacttcgccc tttgttctcac cattt 

tctgtgtcatcgttcatactaatataatataacattttacatgccctttttactaaagaaagta ttactca taaaatgaaatctaaattatatctgagta 

acaaatatattaaattaataagtatctataaaaagttaattctataaataaagcgcctgccgtataaaaagcc aagtgtttggtgttttatttattttaa 

tacaattggtttgtccagtact ttttatttttggat gtgctcactgaaattttccattgat ccagctaactttttgcgctatataaaggtgttgctttcc 
I Kpn I I I Xba I I I Bgl II I 

ttgagttggtaccatctggtaaagtagtctcaatc tagatagaaccATGAAACTGATCGCAGTCACCATCATCGgtaectacetaataagatctttaatc 

cocaacc••cttc ••t•tct c gc•tcctc••t•tcccc•gCT TGCATCCTGC TCA TTGGATTCTCCGATCTAGCCCTGGGTGGTGCCTGTGAGTGCCAAC 
I Msp 

CGTGTGGTCCTGGTGGAAAGGCCTGCACGGGCTGTCCCGAAAAGCCCCAACTTTGT CAGCAGCTCATTAGCGATATTCGCAAT CTCCAGCAGAAGATCCG 
I I 
GAAATGCGTCTGCGGAGAACCACAATGGATGATTtagacaccaatcacttttaaagatcacaaaaattcttccttaataaaattgttatta ctgcttcaa 

aaaaaaaaaaaaaaaatgtttoagttcttttttatcatttatttcagtatatatcg t ccagaaaaga acaaaactagttt ttcctgtgggtcacaatcac 
1 Hindilll 

gatggtcttgtggcacctcttgggattcttgcacttccgc ttgggaatg cgggtgtggcaccagttgttgccc c tccaacaaagctttttgtgegtggaa 
I Pst 1 I 

gcggccottottgttgttgtggttg•toctgc•gtggtggttgttgttgtggtggtggc•tc•gttottgttgtgttact•gc•g•gg••gcc•tctgg• 

tggccagggcaataagggcaaccacgaaaaggtatttcattttgaaatttgatggaatttatctaagaagtccgcagtgaeataatcgaatttgctagat 

gc tgtgttctgattt tct ggagt t g caatt aag tctttt atagtggaatttctcttctgt t tagttcctcgttttgtgct a t cgagtacatt t gcc aaat 
I Pst 1 I 

aataatt c ca c aatgatttccttcctg c agacaaaataagtct c a t gaactatattaaatatttgct atcaataaacgc c gatccattgggttac c ga c g 

acactaagac agctgtataaaggtttatgatattcatagcaatgtaccaaatcaaac a tgataggaaaaataagcc gagatcacaaataaaattgat a a a 

aaatagcttaagtatttatgtt c ggattagattttttgttctacttttattatattcatatttgaacttataagagaatcggattatttcgagaaagtc g 

tagcaaatgcttocaatgcattcttaoaaottttccgtgagttttottttataatctocc attttgaattatcactcaattatattoctttacatgttgt 
I Cia I I I X ba I I 

tattactttttatttatattaaaatataattttgatatacaat c gattttttaaaaoc aattgt c aatataattctaoatgatttgtgattataaac ctt 
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tggttttcgtttataatgcaaatctaattataagtatatagtagtacgtctaatacatttcgtactaaacaattaaaaccttatcgtgaaatactgaagc 

aataaagaaccaagaaaatgttattgcctttgagtggtttggaattacatttagctagaggttggtgtatcggctaacaagtaaagaaggctgtatgtaa 

attcgttgaatcaatgtcaaattgcctgtcaaagtgcaaacgaagcccaaaatgtctatcctaattcgaacctaaaaatatatattttttgaatatgcaa 

tactataagataattgaatagttttatggggcttatttgtaaagctaaattaagctaaatttaactgtccttatttatattattatatttactcagccta 

tattaaagacctattatttatagaatttaacgcagtttgtctgcaaaacatctctacacctttttctacccgttactcgtagagtaaaagggtatactcg 

tttcgctgagaagtaacaggcagaatataaagcatatatattcttgattagggtcaatagccgagtcgatctggccatgtccgtctgat tctgtttgcca 

ctcccacatttttgaaaaatgttttataattttttcatatttttattatctaaatctatcccttccacaccttagagcattaaatttaatttctttcccc 

caatttttaccgatattcgtgaaaaatgttatacattttccatttcacttgaactagctaagtaacgggtatctgttagtctcgttagcgttctctcttg 
I Pvu I I I Sol I I 

ttttaaaataaagtctaggcgatcgagtcgacccaaaagtatcaaacaaaggggagaaggcttgtgtttgcataatcgaaatactgactccatttttaga 

a ttgcagtttcagtgaaagcgtacctataaaaaggtgaggtatccgcaagaaaagtatcagtttgtggagaattaag taaaaaacATGAAGCTGACCATT 

GCTACCGCCCTAGgtaggtttcaccgaatgctcttgttttcggtatttgagccactgatatattcatccgtttgccttctccacagCGAGCATCCTGCTT 

ATTGGCTCCGCTAATGTTGCCAACTGTTGCGATTGTGGATGCCCCACAACTACAACTACTTGTGCGCCACG TACCACGCAACCTCCGTGCACAACTACGA 
IHhoi i 

CAACAACAACCACAACTACTTGTGCGCCACCCACACAACAATCTACCACGCAACCTCCATGCACGACATCTAAGCCCACCACACCTAAGCAAACTACCAC 
IHaeml 

GCAACTTCCGTGCACAACACCCACCACCACTAAGGCCACCACCACGAAGCCCACCACCACTAAAGCCACCACCACTAAGGCCACCACCACTAAGCCCACC 

ACCACTAAGCAAACTACCACGCAACTTCCGTGCACAACACCCACCACCACTAAGCAAACTACCACGCAACTTCCGTGCACAACACCCACCACCACTAAGC 

CCACCACCACGAAGCCCACCACCACGAAGCCCACCACCACTAAGCCCACCACCACGAAGCCCACCACCACCAAGCCCACCACCACGAAGCCCACCACCAC 

TA AGC CCACCACCACG AAGCCCACCACCAC TAAGCCCACCACCACGAAGCCC ACCACC ACGAAG CCCACCACCACTAAGCCCACCACCACGAAGCCCACC 

ACCACTAAGCCCACCACCA CGAAGCCCAC CACCACTAAGCCCACCACCACGAAGCC CACCACCACTAAGCCCACCACCACGA AGCCCACC ACCACGAA GC 

CCACCACCACTAAGCCCACCACACCTAAGCCGTGCGGTTGCAAGAGCTGCGGTCCTGGAGGAGAGCCATGCAATGGATGTGCTAAGAGGGATGCACTGTG 

CCAGGATCTTAACGGCGTACTCCGCAATCTGGAGCGCAAGATCCGTCAATGCGTCTGCGGTGAACCGCAATGGTTGCTGtg•agcgtcgoaggagcgtct 
I Soc I I 

aatccactcccgtactgatcgatgtgactgcacccctgcgaaatatattctgtgggggagctcggccaggactttgactacgctttgtttttgttatcat 

caa ttgattttacgtgtaagaattaataaaattagttaoactgcataaa ttttaaaagcatttattattattttact tgtattatttatgacaaattatt 

atttatctgttgggttttcgaaaatgttggttctaaattaagtttggccatcatttgatcgactttttcgaatgtatctgttacttttaccaatgcgttg 
I Soc I I 

gctttggctcctagttctatgcgaagtcttaactatccgagctcttatgacttggtcaacttgtctcagctaactactgttggctcgggttcgaacttcg 
I Pvu I I I Xho I I 

gtttgggcccgactcgaatcggcggcttttacgatccgatcgccactcgagtgccgttgcttgtcgccggtggacgcgtttcgttggatatcaattgaaa 

tacctacatatgttgaaccggcggcgttttcttcgacccaacataagtgacaaataagtgcaectaaagacgtgaacatatttacaggatataaaacaaa 

cgtccgctatgtgcgatttataattggtgggtgatgccatataaacagcgggaatctactataatggctataactttaccgagtatctgtgcgcttgtgt 

gtgcgtgtgtgtgtgtgtgtacctgatgtcgagataaatctgcttgccttcaaattgtcaattgctggctteatggctggtgcaatctcaagaatcggct 

cttttgttttgggctccttggcagtgagcagtgagtgcaatcgaattgaattgaataatatggatatggatgctaaatgactaaaaacgctctctcatgt 

agatgtctatcgcggagttgggcaaggcatt tagtttccaggtgcactaatcgccggcagaceatcgtcggc ggctaaggaacttcaggtcctcttaatt 

ggtgggaccccccccattcaggcaaaccctttgacaacaaccacaacgaagcattgtacttgtttgcctggcacgggggatcgatccacttatatgcccc 

ttgggtaagcggagttgccacagatttcgccactaetccagttggeatctctcggggaattgacagtgccaccgcetgctcgcatgcaaaatatcgatcc 
I Sol I I 

ctatcgaatcatatgcagcacatgtatgcaaagtgtt cca g cgaagtcgac 
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Figure 5. Comparison of the inverted repeat elements. The sequence labelled left is 

positions 791 to 1290, inclusive. The sequence labelled right is complementary to 

positions 2937 to 2438, inclusive. Both sequences are written 5' to 3'. Only 

nucleotides different from the left element are indicated for the right element. Brackets 

indicate the boundaries of the repeated elements. 
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Figure 6. Nucleotide sequences of eDNA clones homologous to the 68C genes. Each 

sequence is written 5' to 3' left to right and represents the RNA strand. Oligo(dG) and 

oligo(dC) joints created during cloning are not shown. For clones II and clones III, the 

locations of the intervening sequences are indicated by vertical lines. For clones II and 

IV, 3' polydeoxyadenylate is indicated by a subscript. Single base differences between 

the eDNA sequences and the corresponding genomic sequences are indicated by 

asterisks. The eDNA clones were isolated from a Drosophila strain heterozygous at the 

68C locus (Meyerowitz and Rogness, 1982). The differences between the eDNA and 

genomic sequences are thus possibly genetic polymorphisms, though they may also 

represent errors in reverse transcription. 



G
ro

up
 T

I 
eD

N
A

 
C

lo
ne

 

TG
A

A
G

C
TG

C
TC

G
TT

G
TC

G
C

C
G

TC
A

TT
G

\C
G

TG
C

A
TC

A
TG

C
TC

A
TC

G
G

A
TT

C
G

C
C

G
A

TC
C

TG
C

C
TC

G
G

G
C

TG
C

A
A

G
G

A
T

TG
TT

C
A

TG
C

G
TG

A
T

TT
G

TG
G

A
C

C
 

TG
G

TG
G

C
G

A
G

C
C

G
TG

TC
C

TG
G

G
TG

TT
C

C
G

C
A

C
G

G
G

TT
C

C
C

G
TC

TG
C

A
A

A
G

A
TC

TG
A

TC
A

A
C

A
TT

A
T

G
G

TG
G

G
TC

TT
G

A
G

C
G

G
C

A
G

G
TG

C
G

T
C

A
G

TG
C

G
C

C
 

* 
* 

TG
C

G
G

G
G

A
G

C
A

G
G

TT
TG

G
C

TG
TT

C
TA

G
A

G
A

TG
TG

C
C

C
TC

A
A

C
C

TA
A

TC
G

G
C

A
C

TG
A

C
C

TT
TT

A
TC

T
G

C
TG

G
C

C
TT

TA
A

A
A

C
TG

C
TG

TC
TA

A
TA

A
A

A
C

T
A

T
 

TA
TC

A
TT

C
C

TG
C

A
C

G
A

C
C

C
A

31
 

G
ro

up
 i

ll
 

eD
N

A
 

C
lo

ne
 I 

* 
* 

* 
C

A
C

C
A

TC
A

TC
G

C
TT

G
C

A
TC

C
TG

C
TC

A
TT

G
G

A
TT

C
TC

C
G

A
TC

TA
G

C
C

TT
G

G
G

TG
G

TA
C

C
TG

TG
A

G
TA

C
C

A
A

C
C

G
TG

TG
G

TC
C

TG
G

TG
G

A
A

A
G

G
C

C
TG

CA
CG

 
~
 

G
G

C
TG

TC
C

C
G

A
A

A
A

G
C

C
C

C
A

A
C

TT
TG

TC
A

G
C

A
G

C
TC

A
TT

A
G

C
G

A
TA

TT
C

G
C

A
A

TC
TC

C
A

G
C

A
G

A
A

G
A

TC
C

G
G

A
A

A
T

G
C

G
TC

TG
C

G
G

A
G

A
A

C
C

A
C

A
A

TG
G

A
 

TG
A

TT
TA

G
A

C
A

C
C

A
A

TC
A

C
TT

TT
A

A
A

G
A

TC
A

C
A

A
A

A
A

TT
C

TT
C

C
TT

A
A

TA
A

A
A

TT
G

TT
A

TT
A

C
TG

C
TT

C
 

G
ro

up
 T

il 
eD

N
A

 
C

lo
ne

 * 
* 

TT
TG

TT
TT

TG
TC

A
TC

A
TC

A
A

TT
G

A
TT

C
TA

C
G

TG
TA

A
G

A
A

TT
A

A
TA

A
A

A
TT

A
G

TT
A

G
A

C
TG

C
A

TA
18

 



69 

Figure 7. Mapping of the gene II intervening sequence and 5' end. aDm2026 DNA was 

Xbal-cut, dephosphorylated, and labelled with [y_32P]ATP and T4 polynucleotide 

kinase. After EcoRI digestion and polyacrylamide gel electrophoresis, the purified 404 

base-pair Xbai-EcoRI fragment (positions 1310 to 1713) was hybridized to third instar 

larval salivary gland poly(A)+ RNA (lanes 1 to 6) or mock hybridized to yeast tRNA. 

Portions of the hybridization mixes were diluted into nuclease S 1 assay buffer (lanes 1 

to 3) or into exonuclease VII assay buffer (lanes 4 to 6). Mock digestions without 

added enzyme: lanes 1 and 4. Nuclease S 1 at 350 units/ml: lane 2. Nuclease S 1 at 680 

units/ml: lane 3. Exonuclease VII 4.4 units/ml: lane 5. Exonuclease VII 8.8 units/ml: 

lane 6. Portions of the 404 base-pair Xbai-EcoRI fragment were subjected to sequence 

reactions to make size standards (lanes C, C+T, G+A, G). The fragments were 

separated by electrophoresis through 0.36 mm-thick 5% polyacrylamide/50% urea gels 

and autoradiographed. This Figure is a composite of two gels that were run for 

different times in order to resolve both sets of protected fragments. The numbers at the 

left show the nucleotide positions of the bands indicated. 
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Figure 8. Comparison of the DNA sequences flanking the intervening sequences and 5' 

ends of the 68C genes. The 5' termini have been aligned by the common 

oligonucleotide observed around other Drosophila initiation points (Snyder eta!., 

1982). Exonuclease VII protection points are marked by downward pointing arrows, 

eDNA extension endpoints are marked by upward pointing arrows. The T-A-T-A box 

sequences are marked by overlines and Gs. Highly conserved nucleotides flanking the 

splicing sites are boxed. Additional vertical lines mark the exon/intervening sequence 

(IVS) and intervening sequence/exon boundaries. Translation initiation codons are 

marked Met. Sequence homologies upstream of genes II and III are underlined. 
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Figure 9. Complete amino acid sequences of the predicted protein products of the 68C 

genes. Each amino acid sequence is written in the standard three-letter code above the 

corresponding mRNA-congruent DNA strand. The sequences of genes II and III, and 

of their protein products sgs-8 and sgs-7, are interrupted so that the amino-terminal 

leaders of all three gene products may be aligned separately from the carboxy-terminal 

cysteine-rich modules. Nucleotides in Sgs-7 and Sgs-3 that are identical to those in 

Sgs-8 are indicated by horizontal lines. The intervening sequence locations are indicated 

(IVS). 



sg
s-

8
 

II
 

sg
s-

7
 

II
I 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3
 

IV
 

sg
s-

3 
IV

 

sg
s-

8
 

I
I
 

sg
s-

7
 

II
I 

sg
s-

3 
IV

 

sg
s-

8
 

I
I
 

sg
s-

7
 

II
I 

s
gs

-3
 

IV
 

M
e
t
l
y
s
l
e
u
l
e
u
V
a
l
V
a

l
A

l
a
V
a
l
i
l
e
~
l
a
C
y
s
i
l
e
M
e
t
l
e
u
i

l
e
G
l
y
P
h
e
A
l
a
A
s
p
P
r
o
A
l
a
S
e
r
G
ly

 
AT

GA
AG

CT
GC

TC
G

TT
G

TC
G

CC
G

TC
A

TT
G

tG
TG

CA
TC

A
TG

CT
CA

TC
G

G
A

TT
CG

CC
G

A
TC

CT
G

CC
TC

G
G

G
C 

M
e
t
l
y
s
l
e
u
i
l
e
A
l
a
V
a
l
T
h
r
i
l
e
l
l
e
~
l
a
C
y
s
i
l
e
l
e
u
l
e
u
i
l
e
G
l
y
P
h
e
S
e
r
A
s
p
l
e
u
A
l
a
l
e
u
G
l
y 

--
--

A
--

A
--

-{
;A

--
A

-A
--

--
<

:+
T

 -
-
-
-
-
<

:
-
--

T
-
-
-
T

-
-
-
T

 A
--

--
<

:T
-T

 

M
et

ly
sl

eu
T

h
rl

le
A

la
T

h
rA

la
le

u
4

la
;e

ri
le

le
u

le
u

il
eG

ly
S

er
A

la
A

sn
V

al
A

la
A

sn
C

y
s 

-
-

--
A

C
-A

--
-<

:T
 A

--
-{

;--
{;

-A
 

-
-
-
c
-
-
T

 -
T

 --
<

::
--

C
-T

 A
--

G
 T

 -
-
A

 AC
T -

T
 

C
ys

A
sp

C
ys

G
ly

C
ys

Pr
oT

h
rT

hr
T

hr
T

hr
T

hr
C

ys
A

la
P

ro
A

rg
T

hr
T

hr
G

ln
P

ro
P

ro
C

ys
T

hr
T

hr
T

hr
T

hr
Th

rT
hr

T
hr

T
hr

Th
rT

hr
C

y
sA

la
P

ro
P

ro
 

TG
CG

AT
TG

TG
GA

TG
CC

CC
AC

AA
CT

AC
AA

CT
AC

TT
GT

GC
GC

CA
CG

TA
CC

AC
GC

AA
CC

TC
CG

TG
CA

CA
AC

TA
CG

AC
AA

CA
AC

AA
CC

AC
AA

CT
AC

TT
GT

GC
GC

CA
CC

C 
~
 

Th
rG

ln
G

ln
S

er
T

hr
T

hr
G

ln
P

ro
P

ro
C

ys
T

hr
Th

rS
er

ly
sP

ro
T

h
rT

h
rP

ro
ly

sG
ln

T
h

rT
h

rT
h

rG
ln

L
eu

Pr
oC

y
sT

hr
T

hr
P

ro
Th

rT
hr

T
h

rl
y

sA
la

 
AC

AC
AA

CA
AT

CT
AC

CA
CG

CA
AC

CT
CC

AT
GC

AC
GA

CA
TC

TA
AG

CC
CA

CC
AC

AC
CT

AA
G

CA
AA

CT
AC

CA
CG

CA
A

C
TT

CC
GT

GC
AC

AA
CA

CC
CA

CC
AC

CA
CT

AA
GG

CC
 

T
hr

T
hr

T
hr

L
ys

P
ro

T
hr

Th
rT

h
rL

y
sA

la
T

h
rT

h
rT

h
rl

y
sA

la
T

h
rT

h
rT

h
rl

y
sP

ro
T

h
rT

h
rT

h
rl

y
sG

ln
T

h
rT

hr
Th

rG
ln

le
uP

ro
C

ys
T

h
r

T
hr

P
ro

 
AC

CA
CC

AC
GA

AG
CC

CA
CC

AC
CA

CT
AA

AG
CC

AC
CA

CC
AC

TA
AG

GC
CA

CC
AC

CA
CT

AA
GC

CC
AC

CA
CC

AC
T

AA
GC

AA
AC

TA
CC

AC
GC

AA
CT

TC
CG

TG
CA

CA
AC

AC
CC

 

T
hr

T
hr

T
hr

ly
sG

ln
T

hr
T

hr
T

hr
G

ln
le

uP
ro

C
ys

T
hr

T
hr

P
ro

T
hr

T
hr

T
hr

L
ys

P
ro

T
hr

T
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

 
AC

CA
CC

AC
TA

AG
CA

AA
CT

AC
CA

CG
CA

AC
TT

CC
GT

GC
AC

AA
CA

CC
CA

CC
AC

CA
CT

AA
GC

CC
AC

CA
CC

AC
GA

AG
CC

CA
CC

AC
CA

CG
AA

GC
CC

AC
CA

CC
AC

TA
AG

CC
C 

T
hr

T
h

rT
h

rl
ys

P
ro

T
hr

T
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

 
AC

CA
CC

AC
GA

AG
CC

CA
CC

AC
CA

CC
AA

GC
CC

AC
CA

CC
AC

GA
AG

CC
CA

CC
AC

CA
CT

AA
GC

CC
AC

CA
CC

AC
GA

AG
CC

CA
CC

AC
CA

CT
AA

GC
CC

AC
CA

CC
AC

GA
AG

CC
C 

T
hr

T
hr

T
hr

ly
sP

ro
T

hr
T

hr
Th

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
y

sP
ro

T
h

rT
h

rT
h

rl
ys

P
ro

T
h

r
Th

rT
h

rl
y

sP
ro

T
hr

Th
rT

hr
ly

sP
ro

 
AC

CA
CC

AC
GA

AG
CC

CA
CC

AC
CA

CT
AA

GC
CC

AC
CA

CC
AC

GA
AG

CC
CA

CC
AC

CA
CT

AA
GC

CC
AC

CA
CC

AC
G

AA
GC

CC
AC

C
AC

CA
CT

AA
GC

CC
AC

CA
CC

A
CG

AA
G

CC
C 

T
hr

T
hr

T
h

rl
y

sP
ro

Th
rT

h
rT

h
rl

y
sP

ro
Th

rT
hr

T
h

rl
ys

P
ro

Th
rT

h
rT

hr
l

ys
P

ro
T

hr
T

hr
P

ro
ly

s 
AC

CA
CC

AC
TA

AG
CC

C
AC

CA
C

CA
CG

AA
GC

C
CA

CC
AC

CA
CG

AA
G

CC
CA

CC
A

CC
AC

TA
AG

C
CC

AC
CA

C
AC

C
TA

AG
 

C
ys

ly
sA

sp
C

ys
S

er
C

ys
V

al
ll

eC
ys

G
ly

P
ro

G
ly

G
ly

G
lu

P
ro

C
ys

P
ro

G
ly

C
y

sS
er

A
la

A
rg

V
al

P
ro

V
al

C
y

sl
y

sA
sp

le
u

ll
eA

sn
il

eM
et

 
TG

CA
AG

GA
TT

GT
TC

AT
GC

GT
GA

TT
TG

TG
G

A
CC

TG
G

TG
G

CG
A

G
CC

G
TG

TC
CT

G
G

G
TG

TT
CC

G
CA

CG
G

G
TT

CC
CG

TC
TG

CA
AA

GA
TC

TG
AT

CA
AC

AT
TA

TG
 

G
ly

A
la

C
ys

G
lu

C
ys

G
ln

P
ro

C
ys

G
ly

P
ro

G
ly

G
ly

l
ys

A
la

C
ys

T
hr

G
ly

C
ys

P
ro

G
lu

ly
sP

ro
G

ln
le

uC
ys

G
ln

G
ln

le
u

i
le

S
er

A
sp

il
e 

GG
 T

 --{
;C

 --
--

-{
;A

G
--

-<
:A

A
C

C
G

--
T

 
A

 --
G

--
{;

 -{
;A

 --
G

--
{;

--
--

<:
 -
-A

-A
 A

 --<
:C

C -
A

A
C 

-T
 -

TC
 --G

C 
--

G
--

{;
 -
T

 --G
--G

A
-
T

 

P
ro

C
ys

G
ly

C
ys

ly
sS

er
C

ys
G

ly
P

ro
G

ly
G

ly
G

lu
P

ro
C

ys
A

sn
G

ly
C

ys
A

la
ly

sA
rg

A
sp

A
la

le
uC

ys
G

ln
A

sp
L

eu
A

sn
G

ly
V

a
ll

e
u 

C
C

G
--{

;G
G

T 
--

A
 A

 --
G

C
--

-{
; -

T
 --

--
A

 -
A

-
-
-
A

 --
{;

A
A

 -
-A

 --
--

-{
;-T

 A
AG

A 
--

A
--

G
-A

C
 --
G

--
--

<:
 -
-
G

-
-T

 -A
 --

G
G

--G
-A

C
--{

; 

G
lu

G
ly

le
uG

lu
A

rg
G

ln
V

al
A

rg
G

ln
C

ys
A

la
C

ys
G

ly
G

lu
G

ln
V

a
lT

rp
L

eu
P

he
 

GA
GG

GT
CT

TG
AG

CG
GC

AG
GT

GC
GT

CA
GT

GC
GC

CT
GC

GG
AG

AG
CA

G
G

TT
TG

G
CT

G
TT

CT
A

G
 

A
rg

A
sn

le
uG

ln
G

ln
L

ys
il

eA
rg

L
ys

C
ys

V
al

C
y

sG
ly

G
lu

P
ro

G
ln

T
rp

M
et

ll
e 

C
G

C
A

A
--

-<
:C

--
A

-A
-A

--
{;

--
G

A
-A

--
T

 
--

{;
A

C
A

A
--

A
-A

-T
-

A
rg

A
sn

le
uG

lu
A

rg
ly

sl
le

A
rg

G
!n

C
ys

V
a!

C
ys

G
!y

G
!u

P
ro

G
ln

T
rp

le
ul

e
u

 
C

G
C

A
A

--
--

-{
;-

--
c
A

-A
--

{
;-

--
-A

--
T

--
-T

 -A
--

{;
--

{;
A

A
-T

 --
{;

--G
--G

A
 

--.
...)

 ""' 



75 

Figure 10. Sgs-3 contains a set of imperfect tandem repeats. The overall organization of 

the predicted Sgs-3 protein product is indicated by the box diagram. The numbers in 

each box are the numbers of amino acids found in each segment of the protein. The 

central tandem repetitious region has been classified into several types of 15 nucleotide 

repeat units. Their order is shown under the box diagram. DNA sequences and 

corresponding amino acid sequences of the repeat unit types are shown. 
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Chapter 3: 

Cis-Acting Sequences Required for Expression of 

the Divergently Transcribed Drosophila melanogaster 

Sgs-7 and Sgs-8 Glue Protein Genes 
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The 68C locus of the Drosophila melanogaster polytene chromosomes contains 

three glue protein structural genes (Sgs-3, Sgs-7, and Sgs-8) transcribed in the 

third larval instar salivary glands. Activation and repression of 68C glue gene 

expression requires the steroid hormone ecdysterone, while activation also 

requires the product of the unlinked gene l(l )npr-J+. The Sgs-7 and Sgs-8 

genes are divergently transcribed with 475 base-pairs separating the two 5' 

ends. A transcriptional fusion gene was constructed by joining the 5' 

untranslated region of Sgs-7 to the 5' untranslated region of the D. 

melanogaster Adh gene. A translational fusion gene was constructed by joining 

the Sgs-8 gene to the Escherichia coli lacZ gene. When the fusion genes are 

placed in their normal divergently transcribed arrangement and reintroduced into 

D. melanogaster using P element gene transfer, third instar larval salivary gland 

expression of both alcohol dehydrogenase activity and 13-galactosidase activity 

was observed. Normal tissue, stage, and quantity of Sgs-7-Adh fusion gene 

expression is observed when 211 base-pairs of 5' flanking sequence are 

present. An Sgs-7-Adh fusion gene with 92 bp upstream is not functional. 

Normal tissue and stage of Sgs-8-lacZ fusion gene expression is observed 

when 432 bp of 5' flanking sequence are present, when 415 bp of 5' flanking 

sequence are present expression is reduced at least twentyfold. Expression of 

the fusion genes in the divergent arrangement requires the l(l )npr-J+ gene 

product, supporting the proposal that this trans-acting factor affects glue protein 

gene transcription. The results are consistent with the hypothesis that a single 

region functioning bidirectionally, located closer to the Sgs-7 gene, is required 

for expression of both genes. 
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1. Introduction 

The salivary gland of Drosophila melanogaster is a tissue specialized for the 

secretion of proteins. Ten hours after fertilization, midway through embryogenesis, the 

salivary gland cells have secretory granules visible in their cytoplasm (Campos-Ortega 

and Hartenstein, 1985). During the third larval instar, about five days later, secretory 

granules again appear in the cytoplasm of the salivary gland cells. At the end of the 

third instar period, these proteins are exported to the lumen of the gland and then 

expelled from the animal (Korge, 1975, 1977; Zhimulev and Kolesnikov, 1975). 

During the prepupal period that immediately follows the third larval instar, the salivary 

glands are again active in the synthesis of secretory proteins (Korge, 1977; Sarmiento 

and Mitchell, 1982). Of the three documented times of secretory protein synthesis, only 

the third larval instar secretion has a known function. This mixture of secreted proteins 

and glycoproteins, after expulsion from the larva, hardens to form a sticky glue mass 

that affixes the animal to its substrate during metamorphosis (Fraenkel and Brooks, 

1953; Lane et al., 1972). 

The Salivary gland secretion (Sgs), or glue protein, genes expressed in the 

salivary glands of D. melanogaster third instar larvae represent an intriguing example of 

the developmental control of gene set activity. The set codes for proteins that are 

synthesized in only one tissue and at only one time in development (Korge, 1975, 

1977; Beckendorf and Kafatos, 1976). The activation and the repression of gene set 

expression are under the control of the steroid hormone ecdysterone. In the salivary 

gland cell nuclei are polytene chromosomes (reviewed by Korge, 1987) that have three 

types of cytologically visible structures. Bands and interbands are essentially constant 

features shared by the polytene chromosomes of every polytene tissue. Chromosome 
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puffs are localized regions of chromatin decondensation that vary with time in a single 

tissue and that differ between tissues. Expression of the glue protein gene set is 

correlated with the presence of chromosome puffs at the corresponding genetic loci, 

allowing the relationship between chromosomal morphology and gene expression to be 

investigated. 

Seven genes are known to code for components of the glue (Sgs-1, Velissariou 

and Ashburner, 1980; Sgs-3, Korge, 1975, 1977, Akam et al., 1978; Sgs-4, Korge, 

1975, 1977; Sgs-5, Guild and Shore, 1984; Sgs-6, Velissariou and Ashburner, 1981; 

Sgs-7 and Sgs-8, Crowley et al., 1983). Five of the genes have been cloned (Sgs-3, 

Sgs-7, Sgs-8, Meyerowitz and Rogness, 1982, Crowley et al., 1983; Sgs-4, 

Muskavitch and Rogness, 1980; and Sgs-5, Guild and Shore, 1984). The Sgs-3, Sgs-

7, and Sgs-8 genes are clustered within a five-thousand base-pair segment of the left 

arm of chromosome three at the site 68C, while the Sgs-1, Sgs-4, Sgs-5, and Sgs-6 

genes reside at dispersed locations in the genome. All of these chromosomal sites 

correspond to large intermolt chromosome puffs during the time of glue protein 

synthesis. 

Late in the third instar, in response to rising hemolymph concentrations of the 

insect steroid hormone ecdysterone, the intermolt chromosome puffs regress and are 

replaced by a sequence of ecdysterone-induced puffs (Ashbumer, 1973). When 

salivary glands are removed from third instar larvae prior to exposure to ecdysterone, 

and cultured in vitro in the presence of the steroid and protein synthesis inhibitors, 

regression of the intermolt puffs at 3C (Sgs-4), 25B (Sgs-1), and 68C (Sgs-3, -7, -8), 

and induction of the so-called early puffs will occur. Therefore, these cytological 

changes are primary responses to the hormone (Ashbumer, 1972, 1974). The 
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regression of the 68C intermolt puff in salivary glands cultured in the presence of 

ecdysterone is associated with a rapid significant reduction in the incorporation of 3H

ribonucleosides into 68C-homologous RNAs (Crowley and Meyerowitz, 1984). Both 

the intermolt puffs, at the time they are regressing, and the early puffs, as they are 

being induced, can be labelled by ecdysterone following photochemical activation 

(Gronemeyer and Pongs, 1980; Dworniczak et al., 1983). Ecdysterone thus plays an 

important role in the cessation of glue protein gene expression at the end of larval life, 

apparently by direct action on the genes, presumably through the agency of a receptor 

protein specific for the hormone. 

The existing evidence suggests that different glue protein genes are activated in 

different ways. Larvae hemizygous for the temperature-sensitive ecdysterone-deficient 

mutation lethal(l)suppressor of forkedf.s67g fail to express Sgs-3 , Sgs-4, Sgs-7 and 

Sgs-8 when shifted to non-permissive temperature early in the third instar. 

Transcription of the genes can be induced at restrictive temperature by feeding the 

mutant larvae ecdysterone (Hansson and Lambertsson, 1983). In contrast, the function 

eliminated by the lethal( 1 )non-pupariating-1 mutation is required for expression of the 

three 68C genes Sgs-3, Sgs-7 and Sgs-8, but not for expression of the Sgs-4 and Sgs-

5 genes (Crowley et al., 1984). 

The 68C intermolt puff is particularly interesting because of the clustering of the 

three genes found there, and because of the dependence of their expression on the 

l(l)npr-1+ gene product. The order of the genes is telomere, Sgs-8, Sgs-7, Sgs-3, 

centromere with respect to the left arm of the third chromosome (Crosby and 

Meyerowitz, 1986). Transcription of Sgs-8 proceeds leftward, transcription of Sgs-7 

proceeds rightward, and transcription of Sgs-3 proceeds rightward (Meyerowitz and 
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Rogness, 1982; Garfinkel eta/., 1983). The 5' end of Sgs-8 is separated from the 5' 

end of Sgs-7 by 475 base-pairs of non-transcribed intergenic spacer (Garfinkel et al., 

1983), and the two genes are surrounded by two 285-base-pair elements that form an 

inverted repeat (Meyerowitz and Rogness, 1982; Garfinkel et al., 1983). The 3' end of 

Sgs-7 is separated from the 5' end of Sgs-3 by 1958 base-pairs. 

The basis for the coordinate regulation of the 68C glue protein genes was 

sought in a structural study of the cluster (Garfinkel et al., 1983). The sequence of 

6751 base-pairs of genomic DNA was determined, as were sequences of 

complementary DNA clones representing each gene. Analysis of the sequences revealed 

unexpectedly that Sgs-3, Sgs-7, and Sgs-8 are related to each other by gene duplication 

and divergence events. One consequence of their evolutionary history might be that 

each gene was duplicated along with its own set of cis-acting regulatory sequences, and 

that such elements might retain sufficient sequence identity to be identified by 

inspection. The only readily recognizable sequence element upstream of all three 68C 

glue protein genes is theT-A-T-A box element located at approximately -30 base-pairs 

(Goldberg, 1979), an element that is found upstream of nearly all eukaryotic RNA 

polymerase II transcription units. Between the -44 and -91 base-pair positions relative 

to Sgs-7 are sequences homologous to those located between -48 base-pairs and -93 

base-pairs upstream of Sgs-8. These conserved sequences will be referred to as the 

"right copy" and the "left copy," respectively, and contain at their cores sequences that 

are homologous to the ecdysterone regulatory element identified by Mestril et al. (1986) 

in their study of the Hsp23 gene. 

Various segments of the 68C gene cluster have been tested for function using 

Drosophila gene transfer methods. Vijay Raghavan et al. (1986), using P element-
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mediated germline transformation (Rubin and Spradling, 1982), showed that the tissue 

and time of Sgs-3 expression were regulated by DNA sequences within 130 base-pairs 

upstream of the 5' end of the gene, but that gene product abundance was substantially 

reduced compared to wild-type. Bourouis and Richards (1985) and Crosby and 

Meyerowitz (1986) showed that the cis-acting sequences required for full-level of Sgs-

3 expression requires more than 2 kb of additional 5' flanking sequences. Expression 

of the Sgs-3 gene transferred via the P factor method retains the requirement for the 

1(1 )npr+ gene product (Crowley et al., 1984). In these experiments, the Sgs-3 gene 

functions normally in the absence of adjacent functional Sgs-7 and Sgs-8 genes; the 

clustering observed at 68C therefore appears to be a vestige of the evolutionary origin 

of the cluster, without consequence for gene expression. 

The experiments described in this paper are the start of a similar analysis of the 

the Sgs-7, Sgs-8 gene pair. The general question is to determine the arrangement of cis

acting sequences required for each gene to function. The specific question is whether 

the sequence elements conserved in the 5' flanking sequences adjacent to Sgs-7 and 

Sgs-8 are cis-acting regulatory sequences that are functionally conserved. In order to 

distinguish the gene products of newly introduced glue protein genes from the 

background of expression due to the chromosomal genes, we made two gene fusions. 

The protein-coding region of the Sgs-8 gene was joined in the correct reading frame to 

the E. coli lacZ gene, resulting in a translational fusion gene that codes for a hybrid 

secretory protein with f3-galactosidase enzyme activity. The 5' untranslated region of 

the Sgs-7 gene was fused to the 5' untranslated region of the D . melanogaster Adh 

gene, creating a transcriptional fusion gene that directs the synthesis of a hybrid 

messenger RNA coding for alcohol dehydrogenase enzyme activity. These reporter 

gene choices were motivated by several considerations: first, to exploit sensitive 
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histochemical reactions for the in situ detection of the protein products coded by 

introduced glue gene constructions; second, to exploit sensitive quantitative enzyme 

activity assays for measurement of gene function; third, to enable us to test plasmid 

constructions simultaneously for Sgs-7 gene function and for Sgs-8 gene function; and 

fourth, to lay the foundation for efforts to use chemical selections on salivary gland

restricted alcohol dehydrogenase as a means of recovering mutations in trans-acting 

regulatory loci that affect glue protein gene expression. 

The "somatic transformation" procedure (Martinet al., 1986) provides a rapid 

means of qualitatively testing plasmid constructions. We used it as a prelude to P 

element-mediated germline transformation (Rubin and Spradling, 1982), which permits 

extended quantitative experimentation. The locations of cis-acting regulatory sequences 

revealed by the experiments suggest that the divergent transcription arrangement of the 

Sgs-7, Sgs-8 gene pair is not simply an evolutionary vestige, but is functionally 

important for the expression of these genes. 
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2. Materials and Methods 

(a) Drosophila strains and methods 

(i) Strains 

J.W Posakony (University of California, San Diego) provided flies of the 

genotype Adhfn6 en; ry502. Stocks were cultivated in half-pint bottles, or in shell vials, 

on standard medium at 22°C. The balancer chromosome, ln(3LR)TM3, Sb ryRK Ser, 

was kindly provided by B.T. Wakimoto (University of Washington, Seattle) and was 

first described by Karess and Rubin (1984). T(2,3)Ata/Cy0; TM3, Sb ryRK Ser was 

constructed by, and obtained from, M.A. Crosby. Markers and balancers are described 

by Lindsley and Grell (1968) and by Lindsley and Zimm (1985, 1986, 1987). 

(ii) Embryo manipulation 

For egg collections, adults that emerged over a one- or two-day period were 

collected and raised on standard medium supplemented with yeast paste. They were 

allowed to feed on the yeast for an additional two days before being transferred to 

containers suitable for egg collection. Eggs were recovered as per Crosby and 

Meyerowitz (1986), and were dechorionated, desiccated and microinjected essentially 

as described by Spradling and Rubin (1982). 

(iii) Germline transformation 

Carnegie 20 (Rubin and Spradling, 1983), which contains the rosy+ (ry+) eye 

color marker, was used as the P element vector for transposition of glue protein gene 

constructions. For microinjection, Carnegie 20-derived constructions were present at 

500 J.l.g/ml in 5 mM KCl, 0.1 mM sodium phosphate (pH 6.8) injection buffer 

(Spradling and Rubin, 1982). The injection buffer contained 100 J.lg/ml of the 
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transposase-producing, transposition-defective, P factor plasmid phs1t (H. Steller and 

V. Pirrotta, unpublished; provided by B. Butler and V. Pirrotta, Baylor College of 

Medicine, Houston, TX) that was used as the helper. Larvae that survived the injection 

procedure were cultivated singly in fly vials at 22°C; newly emerged adults were 

individually mated to virgin flies from the Adhfn6 en; ry502 stock. 

Progeny of the injected flies were surveyed for the presence of individuals 

carrying ry+ transformation events. Sublines were established by mating each of these 

animals to virgin flies of the appropriate sex from the Adhfn6 en; ry502 stock. The 

frequency with which ry+ animals appeared in their progeny was noted, and virgin ry+ 

siblings from each subline were mated inter se. The sex-linked insertion event 

Tf( 1 )GLAX1 .0-11 was made homozygous by repeated brother-sister matings. 

Standard genetic techniques using the balancer strain T(2,3)Ata /CyO; TM3, Sb ryRK 

Ser were applied to map, balance, and make homozygous the autosomal insertion 

events. When homozygous-lethal, a transformation event was made into a stock by 

selection of virgin flies possessing only the dominant visible marker necessary. 

lCrosby and Meyerowitz (1986) first coined this nomenclature. Tf() refers to 
Transformation event on chromosome () in a manner analogous to the naming of other 
kinds of Drosophila chromosome rearrangement. GLAXl.O indicates the transformed 
segment: in this case, a composite P element that has Glue protein promoters driving 
the expression of the bacterial LacZ gene and the Drosophila Alcohol dehydrogenase 
gene, along with the Drosophila Xanthine dehydrogenase gene (rosy+) as selectable 
marker, and a total of 1.0 kilobase-pairs of 68C DNA. Different insertion events are 
distinguished by the hyphen-numeral that follows. The name of the transformed DNA 
segment is the same as that of the parental plasmid DNA which donated the segment. 
Such plasmids are designated with the generic "p" for plasmid. Therefore, pGLAXl.O 
is the plasmid source of the composite P element that was incorporated into the X 
chromosome in the Drosophila strain Tf( 1 )GLAX1.0-1. 
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(iv) Enzyme assays 

The glutaraldehyde-fixation method of Ursprung et al. (1970) was used to 

determine the tissue distribution of alcohol dehydrogenase activity. Alcohol 

dehydrogenase activity in soluble extracts of Drosophila salivary glands was measured 

using the method of Sofer and Ursprung (1968). Third instar larvae were dissected in 

chilled Ringer's solution, and the salivary glands were placed in 10 mM sodium 

phosphate (pH 6.8) inside a 500-~1 centrifuge tube stored on ice (two salivary gland 

lobes from one animal per 10 ~1 sodium phosphate). Each centrifuge tube also 

contained 50-100 ~1 of packed 0.5-mm-diameter zirconium oxide beads (BioSpec 

Products, Bartlesville, OK). When all the salivary glands had been collected, the 

tissues were homogenized by one minute of vortex mixing. A 26-gauge needle hole 

was punched in the bottom of each 500 ~1 tube, and the extract collected in a 1.5-ml 

tube by a 1-min. spin in a 4°C microcentrifuge. If necessary, a second collection tube 

and spin were used to recover all the homogenate. Tissue debris was removed from 

each homogenate by a 5-min. centrifugation, followed by careful transfer of the 

homogenate into fresh tubes. The spectrophotometer cuvette contained 800 ~1 of assay 

buffer [50 mM sodium carbonate (pH 9.6), 1.5 mM NAD+, 3% (v/v) 2-butanol], and 

the Hewlett-Packard Model 8451A spectrophotometer was blanked. Fifty microliters 

(five animal-equivalents of salivary gland tissue extract) were pipetted into the assay 

buffer, the reaction mixed by gently filling and emptying a Pasteur pipette, and 

automated one-second measurements taken every 30 seconds for fifteen minutes. The 

measurements were printed out and entered into the Cricket Graph software for the 

Apple Macintosh computer. Least-squares linear regression lines were calculated, using 

those initial values that were clearly linear with time, and the slope values converted 
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into Units of ADH2 enzyme activity per animal-equivalent [One Unit is that amount of 

ADH enzyme that causes a change in absorbance at 340 nm of 0.001 per min. (Sofer 

and Ursprung, 1968)]. The first eleven measurements typically fell on a straight line 

that lacked any sign of saturation or other anomaly. 

Controls for the soluble extract assay of ADH included the omission of any 

Drosophila tissue extract, which revealed that the rate of spontaneous reduction of 

N AD+ was small; the addition of Adhfn6 en; ry502 salivary gland extract, which 

showed a rate of reduction ofNAD+ equal to 0.07 ± 0.12 Units per animal-equivalent 

of extract (n = 13); and the omission of 2-butanol from Tf( )GLAXJ.O salivary gland 

extract reactions, which showed that the major NAD+ reduction reaction was dependent 

upon the addition of a known ADH substrate. Our measurements therefore reflect the 

enzymatic activity of authentic alcohol dehydrogenase. 

Histochemical determination of p-galactosidase activity made use of the 

chromogenic substrate X-Gal according to the method of Singh and Knox (1984), as 

modified by Vijay Raghavan et al. (1986). Soluble extract measurements made use of a 

hybrid of three procedures. First, we found that the same soluble extracts prepared for 

ADH activity measurements could be assayed for P-galactosidase activity. Second, we 

used the p-galactosidase assay buffer described by Miller (1972). Third, we used the 

fluorogenic substrate 4MUGal, and reaction and detection conditions similar to those 

2Abbreviations used: ADH, alcohol dehydrogenase enzyme; P-gal, p-galactosidase 

enzyme; X-Gal, 4-bromo-5-chloro-3-indolyl-P-D-galactopyranoside; bp, base-pairs of 

DNA; 4MU, 4-methylumbelliferone; 4MUGal, 4-methylumbelliferyl-P-D
galactopyranoside; EDTA, ethylene diamine tetraacetic acid; kb, 103 base-pairs of 
double-stranded nucleic acid or 103 bases of single-stranded nucleic acid; EGTA, 
ethyleneglycol-bis <P-aminoethyl ether) N, N'-tetraacetic acid; SDS, sodium dodecyl 
sulfate. 
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used by Jefferson et al. (1987). Fifty microliters of extract were added to 550 J.ll "Z 

buffer" (Miller, 1972) adjusted to pH 7.5 and supplemented with 0.5 mM 4MUGal. A 

100 J.ll portion of each reaction was removed at time zero and placed into 900 J.ll 

0.2 M Na2C03. The reactions were incubated at 37°C; 100 J.ll portions were removed 

every hour for four hours and stopped by adding them to 900 J.ll 0.2 M Na2C03. The 

fluorescence of the reaction product, 4MU, was detected using an SLM8000C 

spectrofluorimeter. Slit widths were set at 4 nm, excitation wavelength was 365 nm, 

and emission wavelength was 455 nm. A standard curve was constructed using the 

above solutions containing four known concentrations of 4MU (0 J.lM, 0.01 J.lM, 

0.1 J.lM, and 1 J.lM), and was used to convert the raw fluorescence counts-per-second 

into picomoles of 4MU. Since each timepoint represents one-sixth of the original 

reaction, each picomole value was multiplied by six. Cricket Graph was again used to 

calculate linear regression lines from the data. The slope values were converted into 

Units of sgs-8-~-galactosidase activity per animal-equivalent; we define one Unit of 

hybrid sgs-8-~-galactosidase enzyme as that amount of enzyme which releases one 

picomole 4MU per hour. 

Controls for the soluble extract assay for ~-galactosidase included these mock 

reactions: one to which no Drosophila tissue extract was added and 10 mM sodium 

phosphate was substituted, in which no increase in fluorescence was recorded; and one 

to which a salivary gland extract from the non-transformed Adhfn6 en; ry502 strain was 

added, in which a rate of increase corresponding to 12.2 ± 7.1 pmol4MU liberated per 

hour per animal-equivalent of extract (n = 6). One possible explanation for the increase 

in fluorescence in extracts that have no ~-galactosidase demonstrated in histochemical 

reactions is that the 4MUGal substrate undergoes a conversion to a different form 

which is hydrolyzable by another enzyme (c.f., Jefferson et al., 1987). 



91 

(v) "Transient expression" assay 

Supercoiled plasmid DNA containing Sgs genes fused to histochemically 

assayable marker genes, lacking P factor sequences, were microinjected into the 

anterior end of syncytial cleavage stage embryos, rather than the posterior poleplasm, 

using the method of Spradling and Rubin (1982). The DNA concentrations were in the 

range of 400-600 Jlg/ml in the injection buffer described above. Survivors of the 

injection were retrieved, and were placed in apple juice agar plates (Niisslein-Volhard et 

a!., 1984) supplemented with drops of live yeast paste. Third instar larvae were 

dissected and their salivary glands removed for histochemical staining. 

(b) General nucleic acids metlwds 

Chapter 2 contains the descriptions of, or gives references for, the following 

methods: preparation of genomic DNA from whole adult flies and of RNA from third 

instar larval salivary glands, cesium chloride gradient purification of plasmid DNA 

from Escherichia coli, nick translation labelling of DNA, whole genome Southern 

(1975) blot filters, and RNA gel blot filters. 

(c) Plasmid constructions 

(i) General plasmid construction metlwds 

DNA fragments for clone constructions were isolated following agarose gel 

electrophoresis using Whatman DE81 paper. 

The E. coli strains HB101 (Boyer and Roullard-Dussoix, 1969) and Bozo2.7 

(R.E. Pruitt, unpublished experiments) were most frequently used as hosts for plasmid 

constructions. Bacterial cells were rendered competent to take up DNA using CaCl2. 
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Plasmid DNAs were isolated using a slight modification of R. E. Pruitt's unpublished 

method. 0.5 m1 of 0.2 M Tris-HCl (pH 8.0), 0.1 M EDTA, 0.1% (w/v) sodium N-

lauroyl sarcosinate, 100 J.lg/ml proteinase K were added to the cell pellets. Cells were 

resuspended by vortex mixing and were incubated at 50°C for 15 minutes. Lysed-cell 

debris was sedimented by 15-minute centrifugation in a microcentrifuge. The top 400-

450 J.!l of the supernatant were transferred to fresh tubes containing 5-J.!l portions of 

100 mM phenylmethylsulfonyl fluoride in ethanol, and 800-900 J.!l ethanol were 

added to precipitate nucleic acids. After 15 minutes at room temperature the nucleic 

acids were recovered by a 15-minute centrifugation. The pellets were washed with 75% 

ethanol, dried, and resuspended in 50 J.!l of 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 

10 ng/ml pancreatic RNase A. For restriction enzyme digest analysis of the miniprep 

DNA, 5-10 J.!l portions of DNA were digested in 15-20 J.!l reactions with around 10 

Units of the appropriate enzyme for several hours at 3rC. 

(ii) Construction of the Sgs-7-Adhfusion gene 

The plasmid pHAP (Bonner et a/., 1984) was used as the source of the 

promoterless D. melanogaster Adh gene for fusion to Sgs-7 promoter sequences. This 

plasmid contains a D. melanogaster Adh gene modified by the addition of a Hindlll 

linker in the 5' untranslated region. The 1.8 kb Xbal-Hindlll fragment encompassing 

the Adh gene was purified and ligated to H indiiT and Xbal -digested pUC 18 DNA. One 

transformant clone, designated nDm90353, possessing a single copy of the Adh 

3Plasmid vectors are identified by a single letter: a is for pBR322 (Bolivar et al., 1977), 
k is for pSP65 (Melton et al., 1984), n is for pUC18 (Yanisch-Perron et al., 1985), sis 
for DOA-3.8 (C. Chang, unpublished experiment). Clones designated Dm typically 
contain segments of D. melanogaster genomic DNA. When the vector backbone has a 
complicated and/or specialized history, the generic "p" for plasmid designation is used. 
pGAO refers to a plasmid containing a "glue promoter driving alcohol dehydrogenase 
only"; pGAZ refers to a plasmid containing "glue promoters driving alcohol 
dehydrogenase and lacZ," etc. 



93 

fragment, excisable only by double digestion with Xbal and Hindlll, was picked for 

further work. 

nDm9035 DNA was linearized with Hindlll, and the restriction site termini 

were partially filled with the Klenow fragment of E. coli DNA polymerase I, dATP, 

and dGTP. The DNA was purified by adding EDT A, ammonium acetate and 

isopropanol. Likewise, aDm2026 DNA was digested with Xbal, and the termini 

partially filled by adding Klenow fragment, dCTP, and dTTP. This reaction was 

terminated by adding EDTA and SDS and heating the mixture for 10 minutes at 70°C. 

After agarose gel electrophoresis, the 824-base-pair fragment containing the Sgs-7, 

Sgs-8 intergenic region and portions of the Sgs-8 and Sgs-7 transcription units, was 

purified. The partially filled nDm9035 DNA was mixed with the partially filled Sgs-7, 

Sgs-8 fragment and their now-complementary two-nucleotide 5' extensions (Hung and 

Wensink, 1984) were allowed to anneal and ligate at 4°C. Several colonies were 

recovered, whose plasmid DNA showed a single copy of each fragment joined together 

in the desired orientation. Four of these colonies, designated pGA0-1 (shown in 

Figure 1) through pGA0-4, were purified by CsCl gradient centrifugation, and the 

sequences of the joints between Sgs-7 and Adh were determined (Maxam and Gilbert, 

1977; 1980). All four clones were identical, based on restriction mapping and partial

fill joint sequence; the partial-fill joint had the nucleotide sequence predicted, and the 

Hindlll linker was precisely positioned with respect to the Adh sequence. The sequence 

is shown in Figure 2. The junction between the two genes is in their 5' untranslated 

regions. The Sgs-7 contribution begins in the 5' flanking sequence and ends at +25 bp 

in the 5' untranslated region, while the Adh contribution begins in the 3' flanking 

sequence and ends at + 13 bp in the 5' untranslated region [relative to the proximal 
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promoter (Benyajati et al., 1983)]. Five nucleotides probably from the synthetic 

Hindlii linker are sandwiched between the two Drosophila gene segments. 

(iii) Construction of pGLAX.l.O 

Purified DNA of the plasmid pGA0-1 was digested to completion with Xbal. 

Two synthetic deoxytetradecamers (5'C-T-A-G-G-G-T-C-G-A-C-G-G-G3' and 5'A

A-T-T -C-C-C-0-T -C-G-A-C-C3 ') were obtained from the Microchemical Facility of 

the Division of Biology, California Institute of Technology, and were purified using 

acrylamide gel electrophoresis. The deoxytetradecamers were phosphorylated using 

A TP and T4 polynucleotide kinase, then mixed together with, and ligated to, the Xbal

digested pGA0-1. After heat-inactivation of the T4 DNA ligase, the material was 

digested exhaustively with EcoRI. The 2.2 kb fragment that contains the altered Sgs-

7-Adh gene was purified and then ligated to £caRl-digested p0X4 (E.M. 

Meyerowitz, unpublished experiment). The plasmid pOX4 contains Sgs-8 sequences 

beginning in the 5' flanking sequence and ending at the Bglll site at +245 bp joined to 

the E. coli lacZ gene. The first 51 codons of the Sgs-8 protein-coding region are joined 

to a synthetic-linker-derived codon, followed by the E. coli 13-galactosidase-coding 

region beginning at the ninth codon. 

One E. coli HB101 transformant clone, designated pGAZ-1 (shown in Figure 

1), was recovered with the modified Sgs-7-Adh fusion gene inserted in the correct 

orientation with respect to the Sgs-8-lacZ fusion gene present in the pOX4 vector 

fragment. The plasmid pGAZ-1 contains two non-contiguous regions of the 68C gene 

cluster. The first is the 755-base-pair Bg/11-Xbal restriction fragment spanning the 5' 

ends of the Sgs-8 gene and of the Sgs-7 gene, which have been fused to E. coli lacZ 

and to D. melanogaster Adh, respectively. The second is the 268-base-pair Xbal-
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Hindlll restriction fragment that contains the Sgs-8 3' untranslated region and 

polyadenylation site, which is located downstream of the Sgs-8-lacZ fusion gene and 

oriented in the direction of Sgs-8--lacZ transcription. 

The transformation vector pGLAXl.O was constructed by digesting pGAZ-1 

with Sail and gel-isolating the 9.2 kb Sail fragment that contained the Sgs-7-Adh and 

Sgs-8-lacZ fusion genes. Carnegie 20 (Rubin and Spradling, 1983) was digested 

with Sail and ligated to the fusion gene material. Four apparently identical clones were 

isolated following transformation of E. coli HB101, and one was chosen for 

subsequent work. The composite P element contained within the plasmid is 

diagrammed in Figure 1. 

(iv) Sgs-8-lacZ Bal31 deletion construction 

The 4.2 kb Xbai-Kpnl fragment containing the entire Sgs-8--lacZ fusion gene 

was gel-isolated from pGLAXl.O and ligated to similarly digested pUC18 DNA. The 

resulting clone was called nDm9800A. 

In order to remove DNA upstream of the 5' end of the Sgs-8-lacZ gene, 

nuclease Ba/31 was used. nDm9800A DNA was linearized with Kpnl, and appropriate 

conditions of Ba/31 digestion were determined by setting up replica reactions that 

varied either the time of reaction or the concentration of Ba/31. The amount of DNA 

removed by Ba/31 was determined by digesting the reactions with Aval, followed by 

electrophoresis through a 2.5% agarose gel. 

Ba/31 reactions in which the DNA had been digested to the desired extent were 

pooled. The termini were end-filled using the Klenow fragment of E. coli DNA 

polymerase I. Phosphorylated deoxydodecamer linkers containing the Bgill cleavage 
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site (sequence 5'G-G-A-A-G-A-T-C-T-T-C-C3'; New England Biolabs, Beverly, MA) 

were ligated overnight at room temperature to the Ba/31-treated DNA. NaCl was added 

to 0.1 M, Xbai and Bg!II were added and the excess linkers were released by 

exhaustive digestion. After gel electrophoresis and DE81 paper purification, the 

modified Sgs-8--lacZ gene fragments were ligated to the Xbai-Bglii vector fragment 

of pGA0-1. Following transformation of calcium-treated E. coli HB101, miniprep 

DNAs from 121 clones were analyzed. The amount of DNA removed from the 5' 

flanking sequence was estimated by digesting the miniprep DNAs with Bgill and A val, 

followed by electrophoresis through 2.5% agarose. Hinfi fragments of pBR322 and 

Hindiii-EcoRI double-digest fragments of A. c/857 S7 were used as the size standards. 

Twenty-two clones were chosen for colony purification and are designated pDm9801 

through 9822. 

(v) Sgs-7-Adh Bal31 deletion construction 

The 2.2 kb EcoRI fragment containing the Sgs-7-Adh gene was gel-isolated 

from pGAZ-1 and recloned in the 3.1 kb EcoRI vector fragment of pGA0-1. The 

resulting clone was called pGA0-5. 

In order to remove DNA upstream of the 5' end of the Sgs-7-Adh gene, 

nuclease Ba/31 was again used. pGA0-5 DNA was linearized with Bg!II. Ba/31 

calibration reactions were performed in parallel with the reactions for nDm9800A, 

except that the second enzyme used for the deletion length measurement was Kpni 

rather than A val. Following the Klenow reaction on the pooled DNA and Bgill linker 

ligation, excess digestion was performed with Sail and Bg!II, and the insert fragments 

were isolated as a broad band ""2.3 kb long. The material was ligated to the Bg!II-Sall 

vector fragment ofpGA0-5 DNA. Following transformation of calcium-treated E. coli 
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lffilOl, miniprep DNAs from 60 clones were analyzed. The amounts of DNA removed 

from each clone's 5' flanking sequence was estimated by digesting each miniprep DNA 

with Bglll and Kpnl, followed by electrophoresis through 2.5% agarose. The same 

size standards were used as for the Sgs-8--lacZ deletion measurements. Thirty clones 

were chosen for colony purification and are designated pDm9701 through 9730. 

The directional cloning strategy placed both the Sgs-8---lacZ promoter deletion 

molecules and the Sgs-7-Adh promoter deletion molecules in a single orientation 

within the same vector backbone. This helps to ensure that differences in function 

between clones can be ascribed to the amount of glue protein gene 5' flanking sequence 

present. 

(vi) Sequence determination ofBal31 deletion breakpoints 

The endpoints of five pDm9700-series and four pDm9800-series Ba/31 deletion 

molecules were determined. Relevant double-digest restriction fragments were isolated 

following gel electrophoresis, ligated to pUC118 (Vieria and Messing, 1987), and 

transformed into E. coli TB1 (T. Baldwin, personal communication). After 

determination of the structures of mini prep DNAs, suitable molecules were transformed 

into the host strain E. coli MV1193 (Vieria and Messing, 1987). Individual MV1193 

transformants were used to inoculate small cultures. Following superinfection with 

bacteriophage M13K07, single-stranded DNAs were purified by standard procedures 

prior to use as templates in dideoxy sequence determination reactions (Sanger et al., 

1977; Vieria and Messing, 1987). [ a-35 S]dA TP was used to label the reaction 

products. Acrylamide gel electrophoresis followed typical procedures; the gels were 

fixed and dried before autoradiography. The positions of the Ba/31 deletion endpoints 

were assigned by comparing the newly determined junction sequences with the 
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published sequence of the Sgs-7, Sgs-8 intergenic region (Garfinkel et al., 1983). The 

Drosophila sequences present in the pDm9700-series clones begin at the following 

positions in the published sequence and continue rightward: pDm9718, position 1781; 

pDm9730, position 1878; pDm9721, position 1903; pDm9719, position 197 5; 

pDm9729, position 2022. These correspond to the following positions relative to the 5' 

end of the Sgs-7-Adh fusion gene: pDm9718, -333 base-pairs; pDm9730, -236 

base-pairs; pDm9721, -211 base-pairs; pDm9719, -139 base-pairs; pDm9729, -92 

base-pairs. The sequences present in the pDm9800-series clones begin at the following 

positions in the published sequence and continue leftward: pDm9812, position 2071 ; 

pDm9803, position 2054; pDm9802, position 1937; pDm9804, position 1865. These 

correspond to the following positions relative to the 5' end of the Sgs-8-lacZ fusion 

gene: pDm9812, -432 base-pairs; pDm9803, -415 base-pairs; pDm9802, -298 base

pairs; pDm9804, -226 base-pairs. 

(vii) Construction ofpDm9800E 

A Sgs-8----/acZ fusion gene with the entire Sgs-7, Sgs-8 intergenic region was 

placed into the same orientation as the Sgs-8-lacZ promoter deletion clones in the 

following way. Plasmid DNA from nDm9800A was digested with Asp718 and end

filled. The DNA was prepared for directional cloning by ligating deoxyoctamer Bg/11 

linkers (sequence 5'C-A-G-A-T-C-T-03 ', obtained from New England Biolabs, 

Beverly, MA) to the flush ends of the Asp718 site, heat-inactivating the ligase, 

redigesting with a mixture of Bg/II and Xbal, and gel-isolating the fragment that 

contains all the 68C-derived DNA sequences and the E. coli lacZ coding region. The 

same Bglii-Xbal vector fragment from pGA0-1 used for the Sgs-8----lacZ Ba/31 

deletion cloning was ligated to the gel-isolated Sgs-8----lacZ fragment. After E. coli 

HB101 was transformed with the ligation mixture, one clone with the desired structure 
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was isolated and named pDm9800E. As expected from the sequences of the Bg/II 

linker and the filled-in overhang due to Asp718 cleavage, the G-G-T-A-C-C site 

recognized by both Asp718 and Kpnl was reconstructed. 

(viii) Construction of additional germline transformation plasmids 

Selected Sgs-7-Adh Ba/31 promoter deletion molecules and Sgs-8-lacZ 

Ba/31 promoter deletion molecules were recloned into Sail-digested Carnegie 20 for 

use in germline transformation. The pDm9700-series plasmids were linearized with 

Bg/11, the termini made flush, and ligated to Sail deoxyoctamer linkers. Exhaustive 

digestion with Sail removed the excess linkers and cleaved a second restriction site 

present in each clone, releasing the Sgs-7-Adh gene fragments, which were purified 

following agarose gel electrophoresis. The pDm9800-series plasmids were completely 

digested with Bgill and Asp718 before Klenow treatment; the subsequent treatments to 

recover the approximately 4-kb insert fragments were identical to the pDm9700-series 

treatments. After ligation and bacterial transformation, vector-insert ligation products 

were identified by colony filter hybridization (Grunstein and Rogness, 1975). They 

were colony purified, grown in small cultures from which miniprep DNAs were 

isolated and characterized. The pDm9700-series P element transformation vector 

derivatives used in this report are called pGAX0.26, pGAX0.24, and pGAX0.12, in 

recognition of their sequence content. The pDm9800-series P element transformation 

vector derivatives used in this report are called pGLX0.68 and pGLX0.66, in 

recognition of their sequence content. The composite P elements contained in these 

plasmids are diagrammed in Figure 1. 
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3. Results 

(a) Recovery of germline transformants that express both alcohol dehydrogenase 

and {3-galactosidase in third larval instar salivary glands 

A mixture of phs1t and pGLAXl.O (shown in Figure 1) plasmid DNAs was 

injected into syncytial-cleavage-stage embryos of the strain Adhfn6 en; ry502. Out of the 

fifteen fertile adults recovered, two adults produced ry+ progeny. One adult produced 

six ry+ individuals; the other produced fifteen. Genetic analysis of the twenty-one 

sublines revealed a total of six distinct insertion events. The sublines derived from the 

first injected fly contain five different insertion events, based on both genetic and 

whole-genome Southern (1975) analyses. These are: (i) one line with an insertion 

located on the X-chromosome; (ii) one line with an insertion located on the second 

chromosome; (iii) one line that has a complex homozygous phenotype and has an 

insertion into chromosome 2; (iv) one line that has a homozygous-lethal insertion into 

the third chromosome; and (v) one insertion located on chromosome 3, which was 

isolated twice. The fifteen sublines descended from the second injection survivor were 

analyzed similarly. All of them mapped to the third chromosome and one subline had a 

homozygous-lethal third chromosome. The homozygous-lethal subline and one of the 

viable sublines were analyzed further by genomic DNA gel blot hybridization-both 

had exactly the same insertion event as defined by the junction fragments. We infer that 

all of these fifteen transformed lines represented a premeiotic cluster of P element 

insertion, and that the lethality in the one subline is of separate origin. These insertion 

events are designated Tf()GLAXJ .O, following the convention of Crosby and 

Meyerowitz (1986), and are summarized in Table 1. 
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(i) Histochemical assay oftransformant third instar larvae 

Third instar larvae from each strain were dissected and processed for 

histochemical staining. Both ADH and i)-gal enzyme activities were seen in the salivary 

glands. Glands from the Tf(l )GLAX.l.0-1 strain are shown in Figures 3A and 3B. In 

Figure 3A, one salivary gland lobe from a transformed animal was stained for alcohol 

dehydrogenase activity. The staining is purple-black, which is reproduced here as 

black. Two salivary gland lobes from another animal are stained for i)-galactosidase 

activity in Figure 3B. The natural color of the staining is deep blue and is reproduced 

here as black as well. Evidence that the two fusion genes are transcribed and translated 

with tissue-specificity is shown by the absence of staining in the strip of fat body that 

adheres to each salivary gland, and by the absence of staining in the most-anterior cells 

of each salivary gland, cells that do not synthesize and secrete glue proteins as 

determined by ultrastructural examination (see Berendes and Ashburner, 1978). When 

third instar larval carcasses of the transformant strains are incubated with the alcohol 

dehydrogenase activity stain, no enzyme activity can be detected in any other tissue. 

Figures 3C and 3D show that the Adhfn6 en; ry502 host strain fails to make either 

enzyme activity in the third instar salivary gland under our assay conditions; the ADH 

histochemical reagent reacts in no larval tissue, while a i)-galactosidase presumed to be 

coded for in the Drosophila genome is apparent only in the midgut (data not shown; see 

also Farnogli eta/., 1987). In Adh+ larvae, the normal distribution of ADH enzyme 

includes a variety oftissues such as the fat body, Malpighian tubules, and midgut, most 

prominently (Ursprung et al., 1970). 

The salivary gland pattern of uniform, intense histochemical staining described 

for Tf( 1 )GLAX1.0-1 is also seen in third instar larvae from four of the other insertion 
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events: Tf(2)GLAX1.0-2, Tf(3)GLAX1.0-3, Tf(3)GLAX1.0-4/TM3, Sb ryRK Ser, 

and Tf( 3 )GLAX 1.0-7. 

A somewhat different result is observed with the sixth insertion, that present in 

the Tf(2)GLAX1.0-5/Cy0 strain: salivary gland histochemical staining reactions for 

both ADH and f3-gal enzyme activities are weak and variegated. This insertion-bearing 

chromosome is essentially lethal, with occasional homozygous escapers that are 

apparently sterile. 

(ii) Enzyme activity assay oftransformant third instar larval salivary glands 

Quantitative measurements of Sgs-7-Adh fusion gene expression in the 

homozygous-viable insertion strains were obtained by use of a soluble extract assay 

(Sofer and Ursprung, 1968). Late third instar larvae were dissected, and salivary 

glands that met the morphological criterion of approximately puff stage 4 (large glands 

with thin lumens along their length) were generally chosen. For the X-chromosome 

strain Tf( 1 )GLAX1.0-1, third ins tar larvae were not separated by sex before extirpation 

of the salivary glands and homogenization; we do not know if X-chromosome dosage 

compensation had been acquired by this insertion event. Portions of each extract were 

placed in a spectrophotometer cuvette that contained assay buffer (Sofer and Ursprung, 

1968). Reduction ofNAD+ was monitored by absorbance at 340 nanometers. The rates 

of the change in absorbance were converted into Units of enzyme activity. Individual 

measurements of the reduction of NAD+ in salivary gland extracts from the four 

homozygous-viable transformant lines ranged from 13 Units per animal-equivalent to 

about 60 Units per animal-equivalent (Table 2A). Each line was measured six 

independent times, and the average of the measurements is 32.2 Units per animal

equivalent, with a standard deviation of 11.3. Certain measurements might be 
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underestimates: if a given extract was prepared from a mixture of salivary glands that 

included younger stages, the accumulation of ADH activity would be expected to be 

less. 

A representative of the ADH soluble extract assay procedure is shown in Figure 

4A. Salivary gland extracts were prepared from Tf(2 )GLAXJ.0-2 third instar larvae, 

and from Adhfn6 en; ry502 third instar larvae. Each was reacted for 15 minutes, with the 

A340 measured automatically every 30 seconds. In the Tf(2 )GLAXJ .0-2 reaction, 

partial saturation is evident, and the first eleven data points were used for the calculation 

of the line drawn in the figure. 

We can estimate how much ADH protein was synthesized in the salivary glands 

of these transformant strains. Sofer and Ursprung (1968) purified Drosophila 

melanogaster ADH, assaying the activity using 2-butanol as the alcohol substrate, and 

obtained a value of 94,000 Units/mg protein. Lee (1982), using two purification 

schemes that each differ from the Sofer and Ursprung (1968) method, reported 

additional values of 225,000 Units/mg protein and 347,000 Units/mg protein for ADH 

enzyme assayed with 2-propanol. The variation among the three values may be partly 

due to the fact that 2-propanol is a better substrate that 2-butanol (Sofer and Ursprung, 

1968). The mass of ADH protein present in each transformed animal's salivary gland 

tissue can be estimated to range from 13 Units divided by 94,000 U/mg protein 

(roughly 140 ng ADH protein) up to 60 Units divided by 94,000 U/ mg protein 

(roughly 640 ng ADH protein), with the average measurement of 32 Units converting 

to 340 ng ADH protein. Korge (1977) showed that the average salivary gland lobe 

contains about 1 IJ.g of secreted protein in the lumen. There are two lobes per animal, 

or about 2 IJ.g of salivary gland secretion protein. The sgs-3 protein has been estimated 
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to be about one-quarter to one-third of this mass, or about 600 ng per animal. This 

value cannot be simply compared to our estimates of ADH protein mass, because 

Korge (1977) measured the protein accumulation at the very end of third instar, using 

immobile larvae that were on the verge of pupariating, wheras we used animals that 

were several hours younger. Even so, these calculations serve to support our proposal 

that factors such as diminished RNA stability, diminished protein stability, or reduced 

promoter function as a consequence of the gene fusion breakpoints, are not large. 

Quantitative measurement of Sgs-8-lacZ gene activity was obtained 

spectrofluorometrically. We were able to measure f3-galactosidase activity in soluble 

extracts prepared in exactly the same way as for the Sgs-7-Adh measurements. Of the 

six independent extract preparations, only three were also used in the f3-galactosidase 

assay. Figure 4B shows the results when 50 j.ll of the same Tf(2)GLAX1.0-2 and 

Adhfn6 en; ry502 salivary gland extracts used in Figure 4A were subjected to the 

fluorescence assay. From the slopes of the regression lines, we calculated unit activities 

in each extract. The f3-galactosidase determinations are recorded in Table 2B. The 

average of the twelve measurements is 330 Units per animal-equivalent, with a standard 

deviation of 169. 

Unlike the measurements for salivary gland ADH, the measurements of salivary 

gland sgs-8-f3-galactosidase enzyme activity cannot be used to estimate the amount of 

hybrid protein product accumulated. Since the sgs-8-f3-galactosidase fusion protein has 

not been purified, its kinetic properties for cleavage of any of the commonly used 

galactoside substrates are unknown. The standard f3-galactosidase unit is defined in 

terms of micromoles of o-nitrophenol released per minute by cleavage of o-nitrophenyl

f3-D-galactopyranoside (see Miller, 1972, for example), and it is known that different 
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substrates are recognized and cleaved by the native E. coli enzyme with different 

kinetics (Wallenfels, 1962). Extrapolating from our 4-methylumbelliferone release 

measurements of sgs-8-13-galactosidase activity to the o-nitrophenol release units of the 

natural E. coli enzyme would require too many assumptions. 

In Figure 4C, we plot 13-galactosidase activity versus alcohol dehydrogenase 

activity in the extracts that were subjected to both kinds of measurement. There is, as 

expected, a positive correlation between the two enzyme activities: extracts that 

contained more ADH contained more 13-gal as well. 

(iii) RNA gel blot analysis of transfonnant third ins tar larvae 

As described above, histochemical reactions for 13-gal and ADH showed that 

third instar larvae of the transformant strains express these enzymatic activities only in 

the salivary gland. In the case of 13-galactosidase activity, this can be due only to the 

correct removal of the Sgs-8 intervening sequence from the Sgs-8--lacZ fusion gene 

primary transcript, export of the transcript from the nucleus, and translation in salivary 

gland cells' cytoplasm. In the case of alcohol dehydrogenase activity, this requires the 

correct removal of both of the Adh intervening sequences from the Sgs-7-Adh fusion 

gene primary transcript, export of the resulting RNA species from the nucleus, and 

translation of the RNA in the cytoplasm of salivary gland cells. 

RNA gel blots were performed using nucleic acids derived from third instar 

larval salivary glands and from the carcasses remaining following dissection. Figure 5 

shows the results when salivary gland RNA from the third instar larvae of the 

Tf(l )GLAXJ.0-1 strain are compared with salivary gland RNA from Adhfn6 en; ry502; 

similar results were obtained with the other Tf( )GLAXJ.O strains. A nick-translated 

32P-labelled E . coli 13-galactosidase gene hybridized with two transcripts of 
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approximately 3.6 kb length present in Tf(l )GLAXJ.0-1 transformant salivary gland 

RNA (Figure 5A). Figure 5B shows that the radiolabelled Adh gene probe hybridizes 

with a 1.1 kb RNA in the transformant salivary gland RNA. The Sgs-7 probe 

hybridized only with the normal Sgs-7 mRNA; apparently, the 25 nucleotides of 

homology present in the 5' untranslated region of the Sgs-7-Adh fusion transcript are 

too few to be detected (Figure 5C). Finally, an Sgs-8 probe hybridizes with three 

transformant salivary gland transcripts, the normal Sgs-8 mRNA and the two 

transcripts homologous with the lacZ probe, although the RNA gel blot in Figure 5D 

shows only the hybridization with the Sgs-8 mRNA. In addition, the tissue specificity 

of enzyme accumulation revealed by the histochemical staining assay was verified by 

the tissue specificity of RNA accumulation revealed by RNA gel blot hybridization. 

RNA prepared from the carcasses of third instar larvae after the removal of the salivary 

glands did not hybridize with any of the radiolabelled DNA probes (data not shown). 

(iv) Appearance and disappearance of salivary gland enzyme activities 

The time of fusion gene expression in Tf( )GLAXJ .O salivary glands was 

inferred from observations of the protein products. Third instar larvae were dissected, 

and the salivary glands were removed and sorted into classes that roughly correspond 

to feeding early-to-mid third instar (glands small to medium in size, with spheroidal cell 

morphology, inferred to be puff stage 1); wandering third instar (glands large but with 

no or small lumens, inferred to be puff stages 2-4); and very late third instar (glands 

very large, with swollen, glue-filled, lumens, inferred to be approximately puff stage 

8). Histochemical reactions of first category salivary glands revealed that ADH and 13-

gal activities were variable, ranging from uniform and darkly staining to nonuniform 

and lightly staining. Histochemical staining of second category salivary glands revealed 

greater amounts of enzymes that were uniformly distributed in the secretory cells of the 
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gland. In the oldest category, 13-galactosidase activity was found inside the lumens and 

the ducts of the salivary glands, but not within the cells of the glands themselves. In 

contrast, the cells of very late salivary glands continue to stain for alcohol 

dehydrogenase, but at apparently reduced levels. 

(v) Analysis of integrated DNA 

DNA was isolated from adult flies of the transformed strains. The DNAs were 

digested with either BamHI, EcoRl, Pvul, or Sacl and whole-genome Southern (1975) 

blot filters were prepared. The filters were hybridized in succession with five 32p_ 

labelled cloned plasmid DNA probes (two from the rosy locus, one from the Adh 

locus, one from the Sgs-7, Sgs-8 locus, and one of the E. coli lacZ protein-coding 

region), showing that all the transformant lines possess a single, unrearranged, 

insertion of the composite P element comprised of ry+, Sgs-7-Adh, and Sgs-8-lacZ. 

Figure 6 shows representative results of this kind of experiment. Adult fly DNAs from 

all eight Tf( )GLAX1.0 strains and from Adhfn6 en; ry502 were digested with BamHI or 

with Sacl, separated by size using agarose gel electrophoresis, blotted to nitrocellulose 

filters, and hybridized with a 32P-labelled genomic DNA subclone that detects the 

endogenous rosy locus and one junction fragment from each transformant strain. Data 

of this sort prove that the Tf( 3 )GLAX1.0-3 insertion is identical to that present in 

Tf(3)GLAX1 .0-6 and that the insertions present in Tf(3)GLAX1 .0-7 and 

Tf(3 )GLAX1.0-81TM3 are identical. 

(vi) Interaction with the trans-regulatory mutation, 1(1)npr-1 

The lethal( 1 )non-pupariating-1 mutation, l( 1 )npr-1, is a late-larval lethal 

mutation that fails to pupariate (Kiss eta!., 1976, 1978). It is one of the so-called 

"long" alleles of the overlapping complementation complex that maps to the X-
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chromosome region 2B5 (Belyaeva eta/., 1980). In salivary glands of hemizygous 

mutant third instar larvae, several phenotypes are seen: (i) failure of intermolt puff 

regression and of ecdysterone-inducible puff formation (Belyaeva et al., 1981); 

(ii) absence of accumulation of 68C glue protein gene transcripts (Crowley et al., 

1984); and (iii) absence of 68C glue gene RNA synthesis (Crowley et al., 1984). We 

tested the effect this mutation has on the expression of the introduced glue protein 

fusion genes present in three autosomal, homozygous-viable transposition events. 

Virgin females of the strain y 1(1 )npr-1 w mal!Binsn were mated to four 

different kinds of males: the non-transformed host strain Adhfn6 en; ry502, 

Tf(2)GLAX1.0-2, Tf(3)GLAX1.0-3, and Tf(3)GLAX1.0-7. Third-instar larval 

progeny from these crosses fall into three classes: (i) all females are ignored because 

they are heterozygous for a wild-type X chromosome derived from their fathers and 

one of the X-chromosomes from their mothers; (ii) males hemizygous for the I( 1 )npr-

1+ Binsn-balancer chromosome, which are recognizable by their white+ Malpighian 

tubules and yellow+ jaw hooks; and (iii) males hemizygous for they I( 1 )npr-1 w mal 

chromosome, which are recognizable by their white Malpighian tubules and yellow jaw 

hooks. The class ii males constitute the wild-type control, and the class iii males 

constitute the I( 1 )npr-1 mutant experimental. 

The third instar larvae from these crosses were sorted by sex, and the males 

were sorted by the colors of the Malpighian tubules and of the mouth parts. Males were 

dissected, the salivary glands were removed with segments of fat body tissue and the 

mouth parts attached, and the tissue processed for histochemical staining. In Figure 7, 

panels Band F, experimental male larvae that carried one copy of the Tf(2)GLAX1.0-2 

chromosome and were hemizygous for I( 1 )npr-1 showed no histochemical staining for 
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either 13-galactosidase or alcohol dehydrogenase in their salivary glands, while salivary 

glands from control males that were hemizygous l(l)npr-1+ and heterozygous for the 

T/(2 )GLAX1.0-2 chromosome stained for both enzymes (Figure 7, panels A and 

E). Therefore, expression of both histochemically assayable Sgs fusion genes requires 

the 1(1 )npr-1+ gene product. Salivary glands dissected from males descended from the 

non-transformed host strain cross of both X-chromosome genotypes failed to react with 

histochemical reagents (Figure 7, panels C, D, G, and H). No effect of hemizygosity 

for the I( 1 )npr-1 mutation could be seen on the Adh+ allele that is made heterozygous 

and that contributes ADH histochemical reaction in the fat body (shown in Figure 7B, 

D), the anterior midgut and the gastric caecae (data not shown). 

(b) A "transient expression" assay system 

The germline transformants of the Tf()GLAX1.0 series showed that the 755 

base-pairs of 68C DNA sequence residing between the Bglll site of Sgs-8, inside that 

gene's protein-coding region, and the Xbal site of Sgs-7, inside that gene's 5' 

untranslated region, contain the cis-acting regulatory information necessary to direct 

bidirectional transcription with spatial and temporal specificity. 

We set out to determine the functional organization of this interval. Our 

experimental design made use of the histochemical markers joined to the glue protein 

gene transcription units, Ba/31 deletion derivatives that removed portions of the 

intergenic DNA sequences, the "transient expression" assay first described by Martinet 

al. (1986) for the rapid test of these deletion derivatives, and then used germline gene 

transfer to verify the transient expression assay results. 
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To establish a baseline of Sgs-7-Adh and Sgs-8-lacZ gene function in the 

transient expression assay, plasmid pGAZ-1 DNA was injected into the anterior regions 

of syncytial-cleavage-stage embryos of the Adhfn6 en; ry502 strain. Third-instar larvae 

that had developed from the surviving embryos were dissected and their salivary glands 

were subjected to either the histochemical procedure that detects alcohol dehydrogenase 

enzyme activity, or that which detects 13-galactosidase enzyme activity. As shown in 

Figure 8, mosaic patches of enzyme activity stain appear. A large fraction of the 

animals tested showed at least some expression; these varied in the number of cells that 

reacted and were often bilaterally asymmetric. Table 3 contains the data from these 

experiments. Both the fraction of salivary gland lobes that were scored as positive and 

the subjective estimation of patch size were used to assign the degree of gene function 

in these experiments. The application of the transient assay, and the verification of 

those results by germline gene transfer of the Bal31 deletion derivatives, will be 

described for both glue protein gene fusions, beginning with Sgs-7-Adh. 

(c) Deletion analysis of the Sgs-1-Adhfusion gene 

(i) Transient expression assay ofSgs-1-Adhfusion gene deletions 

Five Sgs-7-Adh promoter deletion plasmids were tested in the transient 

expression assay. These are pDm9718, pDm9730, pDm9721, pDm9719, and 

pDm9729, possessing 333 base-pairs, 236 base-pairs, 211 base-pairs, 139 base-pairs, 

and 92 base-pairs, respectively, of the 5' flanking DNA sequence. The first two 

plasmids gave high levels of ADH enzymatic activity, that is, the injected animals that 

were mosaic had large patches of intensely-staining cells, while pDm9721 and 

pDm9719 apparently produced less ADH enzyme, based upon both the fraction of 

salivary glands that stained with the ADH histochemical reagent (Table 4), and the 
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subjective estimation of mosaic patch sizes and staining intensities. Thus, sequences 

between -211 bp and -236 bp, or perhaps spanning -211 bp, are the most distal 

boundary of a region that seems to elevate Sgs-7 promoter function in this assay. The 

staining results with pDm9729 were negative, suggesting that sequences between 92 

base-pairs and 139 base-pairs upstream of the Sgs-7 start site (or perhaps spanning the 

-92 base-pair deletion endpoint) define a distal boundary for promoter function in the 

transient expression assay. 

(ii) Germline gene transfer assay of Sgs-7-Adhfusion gene deletions 

Based on these results, we transferred the Sgs-7-Adh gene segments from 

pDm9730, pDm9721, and pDm9729 into the Carnegie 20 P element vector. The 

resulting germline transformation vectors were all screened for the relative orientation 

of the Sgs-7-Adh gene, and a set of vectors with the same orientation was used. The 

resulting transformation vectors were called pGAX0.26, pGAX0.24, and pGAX0.12, 

respectively, in recognition of the content of each plasmid: glue protein gene fused to 

alcohol dehydrogenase with xanthine dehydrogenase as the selectable marker, and the 

total of 68C DNA in kb present (recalling that the Sgs-7-Adh fusion gene has 25 bp 

of Sgs-7 5' untranslated sequences). 

Adhfn6 en; ry502 syncytial-cleavage stage embryos were microinjected with a 

mixture of each transformation vector and the non-transposing helper plasmid phsn. 

Germline transformants were recovered, genetically mapped by outcrossing to 

T(2,3)Ata/Cy0; TM3 and backcrossing the Cy Sb ry+ progeny, and autosomal 

insertion events made homozygous by self-crossing sibling Cy Sb ry+ individuals. For 

the -92 base-pair and the -211 base-pair Sgs-7-Adh fusion gene molecules, five 

autosomal homozygous-viable, homozygous-fertile transformant insertion lines were 
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chosen for subsequent experiments. These are called Tf()GAXO.l2 and Tf()GAX0.24, 

respectively. For the -236 base-pair Sgs-7-Adh fusion gene molecule, three 

autosomal homozygous-viable, homozygous-fertile transformant lines were obtained 

and used in subsequent experiments, and these are called Tf()GAX0.26. 

In order to test for the copy number and integrity of the inserted sequences, 

adult fly DNA was prepared from each of these thirteen transformed lines. After 

digestion with either Bamm or EcoRI, two-microgram portions were placed into wells 

of five different 0.5% agarose gels, separated by size, and each gel blotted to 

nitrocellulose. Each filter was hybridized with a single 32P-labelled cloned plasmid 

DNA. These were two from the rosy locus, one from the Adh locus, one from the Sgs-

7, Sgs-8 locus, and the prototype P element plasmid p7t25.1 (Spradling and Rubin, 

1982). Twelve of the lines possessed a single, unrearranged insertion event of the 

composite P element containing the ry+ marker and the Sgs-7-Adh fusion gene; the 

thirteenth line, Tf(3)GAX0.24-3, showed clear evidence for a second insertion event 

that was either homozygous, or segregating in a fairly large fraction of the adult flies 

that contributed the DNA. 

To test for tissue specificity and to derive a semiquantitative estimation of ADH 

activity, third instar larval salivary glands with adhering tissue were dissected, fixed in 

glutaraldehyde, washed extensively, and reacted with the ADH histochemical reagent. 

Tf()GAX0.26 strains containing the - 236 base-pair Sgs-7- Adh fusion gene gave a 

strong histochemical staining reaction, as predicted from the transient assay result with 

pDm9730; Tf( )GAX0.24 strains containing the -211 base-pair Sgs-7- Adh fusion 

gene also gave a strong histochemical reaction; Tf()GAXO.l2 strains bearing the - 92 

base-pair Sgs-7- Adh fusion gene failed to stain in the histochemical test, as predicted 
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from the transient assay of pDm9729. Histochemical staining of visceral tissue showed 

no ADH activity in the other internal organs of transformant larvae. 

Soluble extract assays of third instar larval salivary glands gave the 

measurements in Table 5. Contrary to the prediction from the transient expression 

assays, the soluble extract measurements failed to reveal a significant difference 

between transformed lines carrying the -236 base-pair-containing Sgs-7-Adh fusion 

gene construction and transformed lines carrying the -211 base-pair containing Sgs-

7- Adh construction. The average of all the measurements of the Tf()GAX0.26 strains 

was 32 Units per animal-equivalent of salivary gland extract, with a standard deviation 

of 11. The average of all the measurements of the Tf()GAX0.24 strains was 43 Units 

per animal-equivalent of salivary gland extract, with a standard deviation of 12. These 

ADH activity measurements are very similar to the values obtained from the 

Tf()GLAXJ .O series. The average of the Tf()GAX0 .12 measurements was 

--4.2 X 10-3 Units per animal-equivalent of salivary gland extract, with a standard 

deviation of 0.5. They were judged to be lacking in alcohol dehydrogenase activity. 

To test whether the absence of ADH enzyme activity in the -92-base-pair Sgs-

7-Adh transformant fly lines was due to an absence of chimeric RNA accumulation, 

the experiment shown in Figure 9 was performed. Total nucleic acids from third instar 

larval salivary glands obtained from the five Tf()GAX0.12 lines homozygous for this 

construction were subjected to RNA gel blot hybridization and failed to reveal any 

salivary gland RNA homologous with the nick-translation-labelled Adh gene probe 

used. 

The results of these experiments show that the Sgs-7 sequences required in cis 

for correct tissue and quantity of expression in the Sgs-7-Adh fusion gene test system 
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reside between -211 base-pairs (possibly -139 base-pairs, depending on the 

interpretation of the pDm9719 transient expression result) and -92 base-pairs relative to 

the start of Sgs-7 gene transcription. 

(d) Deletion analysis of the Sgs-8--lacZjitsion gene 

(i) Transient expression assay ofSgs-8-lacZfusion gene deletions 

The 475 base-pair intergenic region attached to the Sgs-8--lacZ fusion gene, in 

the form of the plasmid pDm9800E, was tested by the transient expression assay. 

Strong staining for (3-galactosidase activity, like that in the pGAZ-1 control, was 

observed in many salivary glands of third instar larvae that survived the 

microinjections. Four deletion derivatives were tested: pDm9812, with 432 base-pairs 

of 5' flanking sequence remaining; pDm9803, with 415 base-pairs remaining; 

pDm9802, with 298 base-pairs remaining; and pDm9804, with only 226 base-pairs 

remaining. The plasmid retaining the most 5' flanking DNA sequence, pDm9812, gave 

(3-galactosidase activity that was comparable to the staining observed with the pGAZ-1 

control plasmid. Neither pDm9803, pDm9802, nor pDm9804 exhibited any ~

galactosidase activity. Like the pDm9700-series of plasmids, the plasmids pDm9800E, 

pDm9812, pDm9803, pDm9802 and pDm9804 are a consistent deletion set in that all 

five plasmid DNAs have the Sgs-8--lacZ fusion gene oriented in the same way, cloned 

between the same restriction sites, of the same vector fragment. These results indicated 

that Sgs-8--lacZ fusion gene expression in the somatic transformation assay requires a 

sequence element either between -432 bp and -415 bp relative to the Sgs-8 

transcription initiation site, or spanning the -415 bp position. The transient expression 

results are summarized in Table 6. 
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(ii) Germline gene transfer assay of S gs-8--lacZ fusion gene deletions 

Based on the pDm9800-series transient expression results, we transferred the 

Sgs-8-/acZ gene segments from pDm9812 and pDm9803 into Carnegie 20. The 

resulting gerrnline transformation vectors were screened for the relative orientation of 

the Sgs-8-lacZ gene, and a pair of vectors with the same orientation was used. These 

plasmids are called pGLX0.68 and pGLX0.66, in recognition of their content and the 

quantity of 68C DNA present in them. Unlike the pGLAXl.O plasmid, these plasmids 

lack the 268-base-pair fragment containing the Sgs-8 3' untranslated region and 

polyadenylation site. 

Gerrnline transformants were recovered and genetically mapped as before. Five 

autosomal homozygous-viable, homozygous-fertile transformant lines of each P 

element transformation vector [Tf()GLX0.68 and Tf()GLX0.66lines] were chosen for 

subsequent experiments. 

Copy number and integrity of the inserted sequences were tested by whole

genome Southern gel blot filter hybridizations of adult fly DNA prepared from the ten 

Tf( )GLX lines. The hybridization probes used were two from the rosy locus, one from 

the Sgs-7, Sgs-8 locus, one containing the E. coli lacZ protein-coding region, and the 

prototype P element plasmid p1t25.1. All ten lines appear to possess a single, 

unrearranged insertion event of the composite P element containing the ry+ marker and 

the Sgs-8--/acZ fusion gene. 

To test for tissue specificity and to derive a qualitative estimate of sgs-8--J3-

galactosidase enzyme activity, third instar larval salivary glands with adhering tissue 

were dissected and incubated in the X-Gal-containing histochemical reagent. 

Tf()GLX0.68-homozygous third instar larval salivary glands accumulated amounts of 
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13 -galactosidase enzyme activity roughly similar to amounts found in the 

Tf( 1 )GLAX1.0-1 third instar larval salivary glands (Figure lOA). This confirmed the 

transient expression result with the pDm9812 plasmid. The -415-base-pair-containing 

Sgs-8-lacZ fusion gene present in Tf()GLX0.66-homozygous transformant stocks 

gave very faint 13-galactosidase staining confined to the third instar larval salivary gland 

(Figure lOB). This is also consistent with the transient expression assay result obtained 

with the pDm9803 plasmid, given that particularly low levels of enzyme activity 

derived from Sgs fusion genes are difficult to detect in the transient assay system (K. 

Vijay Raghavan, M. Roark, C. Mayeda and E.M. Meyerowitz, manuscript in 

preparation). Histochemical staining of visceral tissue showed 13-galactosidase activity 

only in the midgut, which, again, could be attributed to the Drosophila-encoded 

enzyme. 

Soluble extract assays of Sgs-8-lacZ expression in third instar larval salivary 

glands gave the measurements in Table 7. The mean Units per animal-equivalent and 

standard deviation of the fifteen measurements of the Tf()GLX0.68 strains are 364 ± 

280. The large standard deviation arises partially in the following way. Four of the five 

Tf()GLX0.68 strains, measured three times each, gave a mean value of 23513-gal Units 

per animal-equivalent with a standard deviation of73. The fifth strain, Tf(2)GLX0.68-

4, gave a substantially higher figure, 880 ± 142, which may reflect a bonafide example 

of quantitative position effect (Spradling and Rubin, 1983), or may possibly reflect a 

second insertion event that has a junction fragment undetected in the adult fly DNA gel 

blot hybridizations. The Tf()GLX0 .66 strains present a more difficult case of 

quantification. The X-gal staining unequivocally showed salivary gland 13-galactosidase 

enzyme activity (Figure lOB). However, the fifteen soluble extract measurements (five 

lines measured three times each) gave a mean value of 24.7 13-gal Units per animal-
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equivalent with a standard deviation of 9.1. If we subtract the 12.2 Units per animal

equivalent seen in the Adhfn6 en; ry502 host strain, we get 12.5 Units per animal

equivalent for the Tf()GLX0.66 strains, 352 (or 223) Units per animal-equivalent for 

the Tf()GLX0.68 strains, and 318 Units per animal-equivalent for the Tf()GLAX.l.O 

strains. Germline-transformant expression of the three constructions stand in the ratio 

of 100% for the Tf()GLAXJ .O strains, 110% (or 70%) for the Tf()GLX0.68 strains, 

and 4% for the Tf()GLX0.66 strains. What seems certain is that the Sgs-8-lacZ gene 

expression seen in the Tf()GLAXJ.O strains and the Tf()GLX0 .68 strains is at least 

twentyfold greater than the Sgs-8-lacZ expression seen in the Tf()GLX0.66 strains, 

and that this difference is due to the 17 bp difference in the amount of Sgs-8 5' flanking 

sequence. 
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4. Discussion 

(a) Sgs-7 and Sgs-8 are regulated by sequences separate from those controlling Sgs-3 

Germline transformants of the Tf( )GLAX1.0 series demonstrated that the 

sequences required for tissue- and stage-specific expression of the Sgs-~lacZ fusion 

gene and of the Sgs-7-Adh fusion gene reside between the Bglll site in the Sgs-8 

protein-coding region and the Xbal in the Sgs-7 5' untranslated region. This restriction 

fragment of the 68C gene cluster does not overlap the restriction fragment shown by 

Crosby and Meyerowitz (1986) to support full-level of tissue- and stage-specific 

expression of the Sgs-3 gene. Thus, the 68C glue protein gene cluster must contain a 

minimum of two tissue- and stage-specific regulatory elements, two quantitative control 

elements, and three RNA polymerase II transcription initiation elements. 

The fact that the expression of the two glue protein fusion genes in the 

Tf( )GLAX 1.0 transformant lines is dependent upon the l( 1 )npr-1 + gene product 

suggests three conclusions. First, the process 1(1 )npr-1+ regulates (either directly or 

indirectly) is promoter-specific since the Alcohol dehydrogenase gene, with its 

proximal promoter that functions in a variety of larval tissues, directs the accumulation 

of substantial amounts of ADH activity in the fat body, midgut, and gastric caecae of 

l( 1 )npr-1-mutant larvae. [A formal possibility that has not been tested is that the switch 

in Adh transcription from the proximal promoter to the distal promoter which occurs 

during the third larval instar (Benyajati et al., 1983; Savakis et al., 1986) is blocked by 

the l(l)npr-1 mutation.] Second, the process of 68C glue protein gene expression 

controlled (either directly or indirectly) by the l( 1 )npr-J+ gene product is most likely to 

be gene transcription. The expression of the Sgs-7- Adh fusion gene, which contains 
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only 25 nucleotides of the glue protein gene transcription unit, requires the 1(1 )npr-J+ 

gene product. Any model for l( 1 )npr-J+ function that requires a sequence-specific 

interaction with the body of the Sgs-7 glue protein gene or of its primary transcript (the 

intervening sequence, for example) is untenable. Third, at 68C there is a minimum of 

two sites of action for 1(1 )npr-J+, since the non-overlapping segment of the genome 

that allows Sgs-3 expression at high level also retains the requirement for this genetic 

function (Crowley et al., 1984). 

(b) Sgs-7 and Sgs-8 expression may depend upon the same regulatory elements 

The specific hypothesis tested by the experiments reported here is that the 

homologous sequences present in the 100 base-pairs immediately upstream of both the 

Sgs-7 gene and the Sgs-8 gene represented functionally conserved cis-acting regulatory 

elements. Our results refute this hypothesis. A deletion that removes part of the right 

copy causes a substantial reduction in the expression of the Sgs-8--lacZ fusion gene 

when assayed either by transient expression or by germline transformation. Deletions 

that remove the entire left copy have no effect on the expression of the Sgs-7-Adh 

fusion gene when assayed by germline transformation. 

The non-equivalence of the sequence elements upstream of Sgs-8 and Sgs-7 

may be interpreted in light of the sequence motif that Mestril et al. (1986) have 

identified as required for ecdysterone-induced Hsp23 gene expression. The motif they 

observed between -228 bp and -192 bp relative to the start of Hsp23 transcription is 

5'A-T-T-T-T-C-C-A-T3' separated by 19 base-pairs from 5'A-T-G-G-C-A-G-A-T3'. 

The first portion of their sequence motif is an imperfect inverted repeat (seven out of the 

nine positions) of the second portion. Mestril et al. (1986) also noted that related 
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sequences, with a variable number of nucleotides separating the two components, could 

be found upstream of other members of the small heat shock protein gene cluster at 

67B, among other ecdysterone-regulated genes. P.H. Mathers (personal 

communication) first noted that the conserved sequence regions upstream of Sgs-7 and 

Sgs-8 contained homology to the Mestril eta/. motif. The right copy of the conserved 

sequence region upstream of Sgs-7 contains a near-perfect match to the first portion of 

the Mestril et a/. sequence; it is accompanied by an imperfect inverted repetition 

beginning one base-pair away, but the relative order (and therefore the location of the 

twofold symmetry axis) is reversed compared to the Mestril eta/. sequence motif. 

Examination of the left copy, the one nearer to Sgs-8, reveals that the region 

homologous with the Mestril eta/. motif has suffered two changes relative to the right 

copy nearer to Sgs-7. These are a single-base deletion at the proposed axis of symmetry 

and a single-base substitution in the imperfect inverse-repeat component six bases away 

from the deletion. The clustered changes might explain why the right copy elevates 

Sgs-8-lacZ gene function but that the left copy is dispensable for Sgs-7-Adh gene 

function. 

Two new hypotheses are suggested by these results and are represented in 

Figure 11. The first hypothesis is that a bidirectional element resides in the Sgs-7, Sgs-

8 intergenic region to regulate tissue, stage, and quantity of expression of both glue 

protein genes. In this scheme, the left edge of the element is contained between the 

- 92 bp deletion endpoint that inactivates the Sgs-7-Adh fusion gene and the -211 bp 

(or possibly the -139 bp) deletion endpoints that retain Sgs-7- Adh function. The 

deletion endpoint that partially inactivates the Sgs-8---lacZ fusion gene defines the right 

edge of the element. The second hypothesis, which is an elaboration of the first 

hypothesis, is that our experiments have identified two bidirectional elements within the 



121 

Sgs-7, Sgs-8 intergenic region. One element, residing between -211 base-pairs (or 

possibly -139 base-pairs) and -92 base-pairs relative to the Sgs-7 5' end would 

determine the tissue and stage of bidirectional expression. When the Sgs-7-Adh 

fusion gene is deprived of this element, it is inert in both germline transformation and 

transient expression experiments. The second bidirectional element is a quantitative 

control element residing approximately 415 base-pairs upstream of the 5' end of Sgs-8. 

When this element is removed from the Sgs-8-lacZ fusion gene, only a low level of 

salivary gland expression is observed following germline transformation and that 

amount is below the level of detection in the transient expression assay. The two 

hypotheses are distinguished by the predictions they make concerning the effects of 

small interstitial deletions on the expression of the Sgs-8-lacZ fusion gene and on the 

expression of Sgs-7-Adh fusion gene. Three kinds of experiment will help to test the 

predictions. First, Sgs-7-Adh deletion molecules may be linked to Sgs-8-lacZ 

deletion molecules in a way that restores the divergently oriented transcription 

arrangement but with segments of the intergenic region removed. Such molecules could 

be tested simultaneously for the effects of the interstitial deletions on the expression of 

the Sgs-8-lacZ fusion gene and on expression of the Sgs-7-Adh fusion gene. 

Second, the putative cis-acting regulatory region may be tested for its capacity to confer 

the glue protein pattern of gene regulation on a heterologous promoter. In the third type 

of experiment, the putative cis-acting region may be tested for its capacity to restore 

normal quantity of expression on an Sgs-3 gene construction lacking its own 

quantitative control sequences. Plasmid constructions of all three types exist (M.D. 

Garfinkel, unpublished experiments) and should prove useful in the further analysis of 

the Sgs-7, Sgs-8 intergenic region. 
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(c) Enhancements of the somatic transformation procedure 

Earlier experiments with the "somatic transformation" assay were performed by 

Martinet al. (1986) using the D. melanogaster Adh gene under the control of its own 

pair of promoters (Benyajati et al., 1983). They made use of the same histochemical 

staining procedures mentioned earlier and observed mosaic patterns of staining 

consistent with the arrray of tissues that normally express Adh. The conclusions Martin 

et al. ( 1986) drew concerning the distribution of regulatory sequences were similar to 

those of Posakony et al. (1985) based on P factor-mediated gene transfer experiments. 

Shore and Guild (1987) reported transient expression results of promoter deletion 

experiments with the Sgs-5 gene. They used an Sgs-5 RNA-null variant host strain in 

their experiments, and each third instar larva that survived the microinjection procedure 

was subjected to RNA gel blot hybridization to detect salivary gland-specific expression 

of the injected Sgs-5 genes. We believe that using histochemically assayable reporter 

genes reduces considerably the labor involved in the transient expression assay, 

possibly increases the sensitivity of the procedure since even a faint staining reaction 

within a single isolated cell of a salivary gland can be scored (unpublished observations 

of K. Vijay Raghavan, M. Roark, C. Mayeda, T. Todo, M.D. Garfinkel and E.M. 

Meyerowitz), and certainly renders the procedure more generally applicable. 

(d) Limitations of the somatic transformation procedure 

That supercoiled plasmid DNA could function following microinjection into 

Drosophila embryos was shown by the experiments of Spradling and Rubin (1982), in 

which a cloned P factor transposed from the microinjected plasmid molecules into the 

chromosomes of germline cells. Their pioneering work with the P transposable element 
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also showed that plasmid molecules bearing the rosy+ gene could complement ry

mutations in the microinjection survivors independent of the occurrence of gerrnline 

transposition events (Rubin and Spradling, 1982). Although it has not been 

demonstrated, one can reasonably infer that the basis of the eye color phenotype 

complementation in these experiments is the mosaic expression in somatic tissue of the 

microinjected rosy+ gene. Indeed, Drosophila adults that are mosaic for the presence of 

a functional ry+ gene by virtue of post-fertilization replicative repair of meiotic 

recombination heteroduplexes exhibit restoration of ry+ eye color (Carpenter, 1982). 

The speed of the transient expression procedure is obtained at the cost of 

quantitative data. Our results with both the Sgs-7-Adh fusion gene and with the Sgs-

8- lacZ fusion gene illustrate this point. The risk of interpreting the frequencies of 

mosaic larval salivary glands as measures of the strengths of different promoter 

segments is shown by the results of the Sgs-7-Adh fusion gene with 236 base-pairs 

of 5' flanking sequence compared with only 211 base-pairs of 5' flanking sequence. 

Table 4 lists the transient expression results for such constructions: the -236 bp 

construction gave 29% of the tested glands exhibiting some expression, while the -211 

bp construction gave only 5.4% mosaic salivary glands. Third instar larval salivary 

glands of the corresponding Tf()GAX0.26 and Tf()GAX0.24 germline transformant 

lines, when subjected to a quantitative soluble extract assay for ADH expression, gave 

no statistically significant difference in expression between the constructions (Table 5). 

And the possibility that the absence of j3-galactosidase staining in somatically 

transformed salivary glands represents a threshold of detection is shown by the Sgs-

8-lacZ germline transformation results. We tested by gerrnline transformation only 

one Sgs-8--lacZ construction that was negative in the transient expression assay, and 

found it to be expressed to a degree greater than twentyfold reduced compared to 
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constructions with only slightly greater amounts of 5' flanking sequence. We must 

conclude that the detection of any ADH staining in microinjection survivors might 

represent wild-type or near wild-type quantity of expression, while the failure to detect 

j3-gal staining in microinjection survivors does not exclude residual gene function. 

(e) Divergently transcribed gene pairs 

Here we will consider three kinds of divergently transcribed gene pairs, and 

what is known about the ways in which their cis-acting regulatory sequences are 

deployed. The first kind has both genes expressed in a single tissue at a single time 

during development. Our example is the Sgs-7, Sgs-8 gene pair which, as we have 

seen, apparently depends on a single relatively small region that functions 

bidirectionally to specify tissue and stage of gene expression. The second kind has both 

genes expressed in two different tissues at a single time during development. Our 

example will be the Y o/k protein-], Yolk protein-2 (Yp-1, Yp-2) gene pair. The third 

kind has both genes expressed within a single tissue but at different times during 

development. Our example for this will be the Sgs-4, Pig-1 gene pair. 

(i) The Yolk protein-], Yolk protein-2 (Yp-1, Yp-2) gene pair 

These genes are expressed in two tissues of the adult female: the ovarian follicle 

cells and the fat body (Brennan et al., 1982). The Yp-1, Yp-2 gene pair is divergently 

transcribed, with a 1225-base-pair intergenic spacer between the two 5' ends 

(Garabedian eta/., 1985). When the intergenic region is divided into two parts, one 

adjacent to a marked copy of the Yp-1 gene, the other adjacent to a marked copy of the 

Yp-2 gene, and each part tested for function following P element gene transfer, the Yp-

1 gene is expressed only in the fat body of adult females and the Yp-2 gene is 
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expressed only in ovarian follicle cells of adult females (Garabedian et al., 1985). The 

DNA sequence specifying expression in the adult female fat body functions in a 

bidirectional manner: a chimeric Hsp70-lacZ gene placed in varying relationships near 

a 126-bp segment of the 5' flanking sequences near Yp-1 is expressed in female fat 

body following P element gene transfer (Garabedian eta/., 1986). Although the follicle 

cell specificity element has not been similarly localized and tested for function, it is 

reasonable to believe that it will function bidirectionally when positioned in proximity to 

a heterologous test gene. The Sgs-7, Sgs-8 gene pair is a simplified example of the 

regulatory sequence arrangement seen in the Yp-1, Yp-2 gene pair: expression in one 

tissue and one bidirectional regulatory element versus expression in two tissues and 

two bidirectional regulatory elements. 

Yan eta!. (1987), in their analysis of Yp gene sequences, noted that the Mestril 

et al. (1986) ecdysterone responsive element can be found in the female fat body tissue 

specificity element near the Yp-1 gene (Garabedian eta!., 1986), and in the 5' flanking 

region of the Yp-3 gene. The importance of the Mestril et al. sequence motif in the 

regulation of yolk protein gene expression is unclear for several reasons. First, the 

concentrations of ecdysterone in adult females and adult males are equal (Handler, 

1982). Second, conditional mutations in the genetic regulatory hierarchy that governs 

somatic sex determination have conditional, reversible, effects on yolk protein gene 

expression (Belote et al., 1985). Third, injection of ecdysterone into adult females 

induces transient increases in Yp gene expression in their fat body tissues and, when 

very high concentrations of hormone are injected, de novo Yp gene expression in the 

fat body of adult males (Postlethwait eta/., 1980; Bownes et al., 1983). However, the 

Yp-1-Adh fusion gene tested by Shirras and Bownes (1987), which contains the 
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Mestril et al. motif, is not ecdysterone-inducible in the fat bodies of adult males under 

conditions that do induce the endogenous Yp-1, Yp-2, and Yp-3 genes. 

(ii) The Sgs-4, Pig-1 gene pair 

The divergently transcribed Sgs-4, Pig-1 gene pair possesses several interesting 

properties. First, the two genes' 5' ends are 840 base-pairs apart (Hofmann and Korge, 

1987). Second, male larvae with a single X-chromosome accumulate the same amount 

of sgs-4 protein as female larvae with two X-chromosomes (Korge, 1975). Third, the 

disjunct timing of expression: the Pig-1 RNA is present during larval life prior to 

appearance of Sgs-4 RNA, and during the early part of the third instar Pig-1 RNA can 

be demonstrated to be salivary gland-restricted (Hofmann and Korge, 1987; Chen et 

a/., 1987). Fourth, the two genes are located near the 5' end of an eighty-kilobase 

intervening sequence of the dunce transcription unit (Chen et al., 1987). 

Studies directed toward understanding the function of the Sgs-4, Pig-1 

intergenic region have concentrated on the regulation of Sgs-4 expression. This is due 

partly to history (Sgs-4 was discovered first) and partly to operational considerations, 

the large third instar larva being much more amenable to experimentation. Sgs-4 

regulatory sequences located in the 840-base-pair intergenic region were first identified 

by the analysis of naturally occurring variants in Sgs-4 expression. A quantitative 

control region is defined by the hypomorphic Sgs-4 allele present in the Japanese wild

type strain Hikone-R. This strain unde:rproduces Sgs-4 mRNA by around fiftyfold and 

is associated with the replacement of fifty-two base-pairs between positions -356 bp 

and -305 bp upstream of the 5' end by three base-pairs (Muskavitch and Hogness, 

1982). Homology to the Mestril et al. (1986) ecdysterone responsive sequence motif 

appears within the region deleted from Hikone-R (noted by Hofmann and Korge, 
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1987). The Sgs-4 allele in the Samarkand strain exhibits reduced levels of expression 

that are not subject to X-chromosome dosage compensation and is associated with a 

single nucleotide substitution at -344 bp (Hofmann and Korge, 1987), within the 

confines of the Hikone-R deletion, affecting the Mestril et al. homology. P factor 

transformation of in vitro-recombined fragments derived from the Oregon-Rand the 

Samarkand alleles shows that a restoration of quantity of expression and of X

chromosome dosage compensation of Sgs-4 depends upon which base-pair is present 

at the -344 bp location (Hofmann et al., 1987). 

The Sgs-4 tissue and stage specificity element is defined by the Ber-1 allele, a 

null variant in which 92 base-pairs between positions -486 bp and -392 bp have been 

replaced by three base-pairs (Muskavitch and Rogness, 1982). An Sgs-4 gene 

fragment possessing upstream sequences broken at -393 bp, and therefore lacking the 

region deleted from Ber-1 and further upstream sequences, fails to express following 

germline transformation (McNabb and Beckendorf, 1986). Neither the Ber-1 deletion 

nor the Hikone-R deletion has any effect on the expression of the Pig-1 gene (P.H. 

Mathers, personal communication). 

When the DNA sequences encompassing the regions deleted from the Ber-1 and 

Hikone-R alleles (-158 bp to -568 bp relative to the Sgs-4 5' end) are placed at the 

-380 bp position relative to the proximal promoter of the Adh gene, salivary gland 

expression of ADH activity is observed independent of the relative orientation of the 

Sgs-4 fragment. This expression is not limited to the third instar period when Sgs-4 is 

normally expressed; it is first observed in the second instar. Shermoen eta/. (1987) 

attribute this to a combinatorial interaction between the Adh promoter segment (which is 

normally expressed in a number of second instar tissues) and the Sgs-4 element (which 
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provides salivary gland specificity). An alternative view is that the DNA segment tested 

by Shermoen et al. (1987) contains two bidirectional cis-regulatory sequences, one that 

normally supports Pig-1 expression and a second that normally supports Sgs-4 

expression, but the segment lacks sequences that serve to constrain the functions of the 

bidirectional elements to their appropriate transcription initiation sites. Supporting this 

proposal is an unpublished experiment mentioned in the discussion of Shermoen et al. 

(1987). Germline transformants that carry the sequences between -840 bp and +1 bp 

relative to the Sgs-4 5' end juxtaposed to the +2 position relative to the 5' end of the 

proximal Adh RNA, accumulate ADH activity only in the third instar salivary gland. 

Thus, in contrast to the Sgs-7, Sgs-8 case and the Yp-1 , Yp-2 case where common 

patterns of tissue- and stage-specific expression depend upon cis-regulatory elements 

that function bidirectionally, the disjunct expression of the Sgs-4, Pig-1 gene pair may 

depend on sequences that in some way serve to restrain the otherwise bidirectional 

function of cis-regulatory elements. 

(f) More on the Mestril et al. motif 

If we accept provisionally the possibility that the Mestril et al. sequence motif 

is, in fact, a DNA-binding site for the ecdysterone receptor (extrapolating from the 

vertebrate examples of steroid regulation of gene expression), sufficient for 

ecdysterone-regulated gene expression, the problem of how different tissues respond to 

changing ecdysterone concentrations in different ways would remain. This is because 

glue protein genes, yolk protein genes, and the small heat shock protein genes, all of 

which contain the Mestril et al. motif, are expressed in different tissues and at different 

times during development. A partial solution to this problem may lie in tissue-specific 

gene products derived from regulatory loci. The genomic DNA from at least part of the 
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overlapping complementation complex at 2B5, which contains the l( 1 )npr-J+ function 

already implicated in such salivary gland functions as 68C glue protein gene 

transcription, has been cloned (Chao and Guild, 1986). Both radioactive eDNA 

hybridizations to cloned DNA gel blot filters and RNA gel blot filter hybridization gave 

evidence for long transcription units expressed in the salivary gland following 

ecdysterone induction (Chao and Guild, 1986). These long transcription units are 

utilized in tissue-specific ways since radioactive eDNA synthesized from hormone

induced salivary gland RNA and from hormone-induced imaginal disc RNA hybridized 

to unique regions of the chromosome walk (Chao and Guild, 1986). Similar 

complexity appears in the ecdysterone-induced early puffs at 74EF and 75B (K. Burtis, 

C.W. Jones, W. Segraves, C. Thummel and D.S. Rogness, unpublished), whose 

protein products have been suggested to be DNA-binding proteins. 

(g) Comparison with other glue protein genes 

(i) Sgs-5 

Combining the deletion mapping data with the sequence determination of the 

Sgs-5CA2 RNA-null allele, Shore and Guild (1987) proposed that the Sgs-5 cis-acting 

regulatory elements occupy fewer than 109 base-pairs of 5' flanking sequence, and that 

one or more of the three nucleotide substitutions in the upstream region of the CA2 

allele could account for its inactivity. Their proposal should be regarded as a 

provisional assignment of the cis-acting sequences specifying tissue and developmental 

stage of expression only, since the transient expression assay, as we have seen, is a 

qualitative one. As yet undiscovered quantitative control elements may lie upstream of 

this gene. Homology to the Mestril et al. (1986) sequence element can be seen between 

- 96 bp and -118 bp upstream of the Sgs-5 start point (M.D. Garfinkel, unpublished). 
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The homology is comprised of two seven-nucleotide regions that form a perfect 

inverted repetition, a 9-bp spacer separates the two halves of the repetition, and their 

relative order matches the Mestril et al. symmetry. The fact that the -109 bp deletion, 

which removes half of the inverted repeat, is capable of supporting Sgs-5 expression is 

not inconsistent with the Mestril et al. motif playing a functional role, since the pBR322 

sequences juxtaposed to the Sgs-5 sequences at -109 bp partially reconstitute the 

inverted repetition (M.D. Garfinkel, unpublished). 

(ii) Sgs-4 

In addition to the complexities displayed by the Sgs-4, Pig-1 intergenic region 

described above, quantitative control sequences for the Sgs-4 gene appear to be 

distributed over more than 2.6 kb upstream. One quantitative control element is in the 

region deleted from the Hikone-R strain. A second quantitative control element is 

implied by the expression of Sgs-4 constructions containing 840 base-pairs of 5' 

flanking sequence, which accumulate variable amounts of Sgs-4 RNA averaging 50% 

of wild-type (McNabb and Beckendorf, 1986). Krumm eta/. (1985) noted that P 

element transformants with 2.6 kb of 5' flanking sequence also fail to accumulate wild

type quantities of Sgs-4 RNA. 

(iii) Sgs-3 

The available experimental evidence shows that tissue and stage specificity of 

Sgs-3 expression depends on nucleotides located between -130 bp and +12 bp relative 

to the transcription initiation site, and that the quantitative control of Sgs-3 expression is 

distributed among three elements located more than 130 bp upstream but less than 2760 

base-pairs upstream. P.H. Mathers (personal communication) also noted homology to 

the Mestril et al. sequence motif between -90 bp and -76 bp relative to the Sgs-3 
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transcription site, but here, unlike the Sgs-7, Sgs-8 gene pair, the two components of 

the inverted repetition are arranged in the same way as the Mestril et al. prototype. 

The location of the tissue and stage specificity control element for Sgs-3 was 

revealed by three kinds of construction tested by P element germline transformation. 

The first involved an Sgs-3 allele coding for an 1120-nucleotide-long Sgs-3 RNA, 

which was transferred into a strain that synthesizes an 800-nucleotide-long Sgs-3 

RNA. Quantification of salivary gland RNA gel blot filters revealed that the abundance 

of the 1120-nucleotide RNA was less than 10% that of the 800-nucleotide RNA (Vijay 

Raghavan et al., 1986). The second involved a translational fusion joining Sgs-3 to E. 

coli lacZ. Histochemical reaction of the salivary glands from germline transformants 

revealed faint blue X-gal staining (Vijay Raghavan et al., 1986). A further limit on the 

tissue and stage specificity element was recently placed by analyzing germline 

transformants carrying the -130 bp to +12 bp segment of Sgs-3 joined to a promoter

less Adh gene, which synthesize salivary gland-specific ADH enzyme activity (K. 

Vijay Raghavan, M. Roark, C. Mayeda and E.M. Meyerowitz, manuscript in 

preparation). 

Most of the work on the upstream quantitative control elements of Sgs-3 has 

involved the RNA length-variant alleles and quantification of RNA gel blot filters. 

Differences in the details of the methods used make it difficult to compare the results 

obtained by the two research groups studying the region. In spite of these differences, 

essentially wild-type Sgs-3 mRNA abundance derived from test genes occurs in 

germline transformants of composite P elements that contain 68C DNA segments 

bearing the Sgs-3 gene and the Sgs-7 gene, for a total of 2.76 kb of 5' flanking 

sequence (Richards et al., 1983; Bourouis and Richards, 1985; Crosby and 
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Meyerowitz, 1986). When the 68C segment is broken within the Sgs-7 gene, leaving 

2.27 kb of 5' flanking sequence, expression of Sgs-3 is reduced slightly (Crosby and 

Meyerowitz, 1986). Consistent with the Crosby and Meyerowitz (1986) result is an 

experiment reported by Giangrande et al. (1987) that located an Sgs-3 quantitative 

control element between -2.35 kb and -2.1 kb relative to the Sgs-3 5' end, within the 

Sgs-7 gene. Giangrande eta/. (1987) mapped a second quantitative control element to 

the 285-base-pair repeat element (Meyerowitz and Rogness, 1982) located to the right 

of the S g s-7 gene and therefore closer to S g s-3. 

Measurement of salivary gland ADH activity in germline transformants of the 

Sgs-3-Adh fusion gene with varying amounts of 5' flanking sequence provides 

evidence for an Sgs-3 quantitative control element located between -983 bp and -130 

bp (K. Vijay Raghavan, M. Roark, C. Mayeda and E.M. Meyerowitz, manuscript in 

preparation). Probably as a consequence of their methods of RNA preparation and gel 

blot quantification, Bourouis and Richards (1985) failed to detect Sgs-3 RNA 

transcripts from constructions that had 983 bp or 130 bp of 5' flanking sequence. The 

Sgs-3-Adh fusion gene studies indicate another quantitative control element between 

983 bp upstream and 2.76 kb upstream (K. Vijay Raghavan, M. Roark, C. Mayeda 

and E.M. Meyerowitz, manuscript in preparation), but unlike Richards' work has not 

subdivided the fragment further. Therefore, the sum of the available evidence is that 

three quantitative control elements are distributed in the 2.76 kb upstream of the Sgs-3 

gene; all three appear to function at least partially when inverted from their normal 

orientations with respect to Sgs-3, and they appear to act additively to regulate 

expression of this gene. 
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In conclusion, the Drosophila glue protein genes display a diversity of 

distributions of cis-acting regulatory sequences. The number and location of 

quantitative control elements can vary from one element fewer than 450 bp upstream of 

the transcription start site, as is the case of the Sgs-8 region, to three such elements 

scattered over a 2.76 kilobase region upstream as in Sgs-3. Tissue and stage specificity 

control elements may reside between the closest quantitative control element and the 

transcription start point, as in the Sgs-3 gene. The orientation independence, or 

bidirectional functionality, of upstream regulatory elements must be subject to different 

constraints in the different loci: Sgs-7 and Sgs-8 are divergently oriented and expressed 

simultaneously within a single tissue, while Sgs-4 and its neighbor Pig-1 are 

divergently oriented and expressed at disjunct times within a single tissue. 

Further experiments are required to delimit the glue protein genes' cis

regulatory sequences with greater precision, to determine the mechanisms that constrain 

their functions along the chromosomes, and to identify the biochemical agents that 

recognize these sequences to accomplish coordinated gene expression. 
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Table 1 

Summary of the Tf()GLAXl.O insertion events 

Transformation Event Parent Chromosome Lethal? Identical to Other Isolates? 

Tf( I )GLAXI.0-1 no. 7 X No No 

T/(2 )GLAXI.0-2 no. 7 2 No No 

Tf(3 )GLAXI .0-3 no. 7 3 No Yes, to -6 

Tf(3 )GLAXI.0-4 no. 7 3 Yes No 

Tf(2 )GLAXI.0-5 no. 7 2 Yes No 

Tf(3 )GLAXI.0-6 no. 7 3 No Yes, to -3 

Tf(3 )GLAXI .0-7 no. 48 3 No Yes, to -8 

Tf(3)GLAXI.0-8 no. 48 3 Yes Yes, to -7 
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Table 2 

Third instar larval salivary gland enzyme activity measurements 

Strain 

Tf( 1 )GLAX1.0-1 

T/(2 )GLAX1.0-2 

Tf(3 )GLAX1.0-3 

Tf(3 )GLAX1.0-7 

ojTf()GLAXl.O strains 

(A) Measurement of alcohol dehydrogenase activity 

Individual Measurements! 

30.5, 36.5, 39.5, 17.1, 12.6, 14.6 

33.2, 28.9, 23.4, 30.4, 27 .9, 29.7 

18.0, 44.0, 42.0, 24.9, 28.1, 27.0 

60.1, 39.3, 40.1, 50.4, 39.9, 34.2 

Mean±S.D. 

25.1±11.8 

28.9 ± 3.2 

30.7 ± 10.2 

44.0 ± 9.5 

lNumbers are Units ADH activity per animal-equivalent of extract. Unit definition of 
Sofer and Ursprung (1968). 

(b) Measurement of (3-galactosidase activity 

Strain Individual Measurements2 Mean±S.D. 

Tf( 1 )GLAX1 .0-1 156.1, 28.0, 176.5 102.2 ± 75 

T/(2 )GLAX1.0-2 279.8, 274.0, 337.0 296.9 ± 35 

Tf(3 )GLAX1.0-3 418.9, 469.8, 499.1 462.6 ± 40.5 

Tf(3 )GLAX1 .0-7 644.9, 395.7, 278.7 439.7 ± 187 

2Numbers are pmol4MU released per hour per animal-equivalent of extract. 
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Table 3 

Transient expression of Sgs-8-lacZ and Sgs-7-Adh genes in the plasmid pGAZ-1 

Gene Tested 5' Flanking Sequence 

Sgs-7-Adh 721 bp 

Sgs-8-lacZ 499 bp 

(Animals) Lobes Tested 

(80) 160 

(33) 66 

1 Number of animals that stained, out of 80 animals tested. 

Lobes Positive 

271 

24 
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Table 4 

Transient expression of Sgs-7-Adh in various Ba131 deletion plasmids 

Construction 5' Flanking Sequence (Animals) Lobes Tested Lobes Positive 

pDm9718 333 bp (11) 19 7 

pDm9730 (A) 1 236 bp (8) 16 4 

pDm9730 (B) 236 bp (42) 84 25 

pDm9721 (A) 211 bp (20) 35 2 

pDm9721 (B) 211 bp (56) 112 6 

pDm9719 139 bp (6) 12 1 

pDm9729 (A) 92 bp (25) 50 0 

pDm9729 (B) 92 bp (39) 78 0 

I Independent experiments are recorded sequentially and are distinguished by letters A 

and B. 
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Table 5 

Salivary gland alcohol dehydrogenase measurements of germline 

transformants of S gs-7-Adh promoter deletion derivatives 

Strain Amount upstream 

Tf(2)GAX0.26-1 236 bp 

Tf(3)GAX0.26-2 236 bp 

Tf(2)GAX0.26-3 236 bp 

Tf(2)GAX0.24-1 211 bp 

Tf( 3 )GAXO .24-2 211 bp 

Tf(3 )GAX0.24-32 211 bp 

Tf(3 )GAX0.24-4 211 bp 

Tf(2)GAX0.24-5 211 bp 

Tf(2)GAX0.12-1 92 bp 

Tf(2)GAX0.12-2 92 bp 

Tf(3 )GAX0.12-3 92 bp 

Tf(2)GAXO.l2-43 92 bp 

Tf(2)GAXO.l2-5 92 bp 

Individual Measurements! 

25.9, 31.7, 24.0 

42.3, 43.0, 35.5 

16.2, 49.5, 19.9 

46.4, 28.0, 31.5 

39.0, 22.4, 27.3 

62.5, 54.5, 48.6 

51.8, 45.7, 50.8 

37.2, 52.7, 53.8 

-0.2, 0.3, 0.056 

-0.28, -0.34, 0.0035 

-0.62, 0.28, 0.0048 

1.42, 0.36, -0.0073 

-0.88, -0.02, -0.14 

Mean±S.D. 

27.2 ± 4.0 

40.3 ± 4.1 

28.5 ± 18.3 

35.3 ± 9.8 

29.6 ± 8.5 

55.2 ± 7.0 

49.4 ± 3.3 

47.9 ± 9.3 

0.05 ± 0.25 

-0.21 ± 0.18 

-0.11 ± 0.46 

0.59 ± 0.74 

-0.35 ± 0.47 

I Numbers are Units ADH activity per animal-equivalent of extract. Unit definition of 
Sofer and Ursprung (1968). 

2Adult fly DNA gel blot filter hybridization shows a second insertion event segregating. 

3Stock contaminated by Tf(2)GAX0.12-4/In(2LR)Cy0 animals. Balancer-borne Adh+ 
allele expression in a fat body adhering to a salivary gland probably accounts for the 
1.42 U measurement. 
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Table 6 

Transient expression of Sgs-8-lacZ in various Bal31 deletion plasmids 

Construction 5' Flanking Sequence (Animals) Lobes Tested Lobes Positive 

pDm9800E 475 bp (74) 148 38 

pDm9812 432 bp (25) 50 18 

pDm9803 415 bp (22) 44 0 

pDm9802 298 bp (30) 60 0 

pDm9804 226 bp (57) 112 0 
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Table 7 

Salivary gland {3-galactosidase measurements of germline 

transformants of Sgs-8-lacZ promoter deletion derivatives 

Strain Amount upstream Individual Measurements! 

Tf( 3 )GLXO .68-1 432 bp 316.0, 228.7' 258.7 

Tf(2)GLX0 .68-2 432 bp 155.0, 125.7' 109.9 

Tf(2)GLX0 .68-3 432 bp 264.4, 328.5, 298.4 

Tf(2 )GLXO .68-4 432 bp 822.4, 775.4, 1042.0 

Tf(3)GLX0.68-5 432 bp 230.7, 291.6, 209.8 

Tf( 3 )GLX0.66-1 415bp 15.1, 24.7, 35.5 

Tf(2 )GLXO .66-2 415bp 10.2, 10.3, 15.5 

Tf(2)GLX0.66-3 415bp 43.8, 25.5, 33.1 

Tf(3 )GLX0.66-4 415bp 27.5, 27.7, 25.5 

Tf(3 )GLX0.66-5 415bp 25.8, 23.3, 26.7 

I Numbers are pmol4MU released per hour per animal-equivalent of extract. 

Mean± S.D. 

267.8 ± 44.4 

130.2 ± 22.9 

298.5 ± 30.0 

879.9 ± 142 

244.0 ± 42.5 

25.1 ± 10.2 

12.0 ± 3.0 

34.1 ± 9.2 

26.9 ± 1.2 

25.3 ± 1.7 
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Figure 1. Plasmid maps. The first sheet contains circular maps of DNA molecules used 

in the somatic transformation experiments and as precursors for germline 

transformation vectors: pGA0-1 is the original Sgs-7-Adh gene fusion plasmid. The 

symbols (H!Xb) represent the junctions between the 824-bp Xbal fragment of 68C 

DNA that contains the 5' end of Sgs-7 and the Hindlll site of nDm9035. Other 

restriction sites are indicated by: Bg, Bg/11; R, EcoRI; S, Sail; and Xb, Xbal. 

Transcription orientation of the Sgs-7-Adh fusion gene is shown by the arc a with 

clockwise-pointing arrowhead. pDm9700-series is a schematic diagram of the Ba/31 

deletion plasmids that have progressively shorter segments of the 5' flanking sequence 

of the Sgs-7-Adh fusion gene. Restriction site symbols are the same as for the pGA0-

1 map with the addition of (Xb ), which represents a recognition site for Xbal destroyed 

by the use of oligonucleotides. pDm9800-series is a schematic diagram of the Ba/31 

deletion plasmids that have progressively shorter segments of the 5' flanking sequence 

of the Sgs-8-lacZ fusion gene (the EcoRI site located 80 bp upstream of the Sgs-8 5' 

end is omitted for clarity). Transcription orientation of the Sgs-8-lacZ fusion gene is 

shown by the arc with a clockwise-pointing arrowhead. Restriction site symbols are the 

same as for the pGA0-1 map with the addition of (B/Bg), which represents the junction 

between the Bg/11 site of the Sgs-8 protein-coding region and the BamHI site of the 

lacZ gene. The plasmid pGAZ-1 contains the Sgs-7- Adh fusion gene transcribed 

counterclockwise, the Sgs-8-lacZ fusion gene transcribed clockwise, and the Sgs-7, 

Sgs-8 intergenic region reassembled. The 3' untranslated region of the sgs-8 mRNA is 

joined to the Sgs-8-lacZ fusion gene transcript by the presence of the 0.27 kb 

restriction fragment near the 6 o'clock position of the map. Note that the circular 

plasmid maps are drawn to different scales, with their contour lengths indicated. On the 

continuation sheet, the composite P elements contained in the pGLAX1.0 plasmid, the 
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three pGAX series plasmids, and the two pGLX series plasmids are drawn in linear 

form to the same scale. The origins of the various segments are shown, as are the 

transcription directions of the different genes. The overall length of the P element from 

pGLAXl.O is 17.9 kb, while the pGAX P elements are nearer to 10.8 kb in length and 

the pGLX P elements are nearer to 12.7 kb. Restriction sites are indicated as for the 

circular maps, but with the addition of H for Hindlll . 
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Figure 2. DNA sequences of the natural Sgs-7 gene, the natural Adh gene and the Sgs-

7-Adh fusion construction joint. The first forty-eight DNA nucleotides equivalent to 

Sgs-7 mRNA are shown on the top line. The Xbal restriction site present in the DNA 

and the translation initiation codon are identified by overlines and labels (Garfinkel et 

al., 1983). On the second line are shown the first forty nucleotides of the 5' 

untranslated region of Adh, relative to the proximal promoter; the translation initiation 

codon is not shown (Benyajati et al., 1983). On the third line is the sequence of the 

junction between Sgs-7 and the Ba/31-deletion derivative of the Adh gene obtained 

from Bonner et al. (1984). The exact junction point and the origin of its component 

nucleotides are indicated. Note that the predicted RNA transcript of the chimeric gene 

would have the frrst twenty-five nucleotides of the natural sgs-7 messenger RNA and 

five nucleotides of synthetic-DNA origin replacing the frrst twelve nucleotides of the 

natural Adh proximal messenger RNA. 
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Figure 3. Histochemical staining of third-instar larvae. Mature third instar larvae of the 

Tf(l )GLAXJ.0-1 strain were dissected and the salivary glands removed along with 

some of the adjacent tissue. (A) One salivary gland lobe and its accompanying tissue 

were fixed in glutaraldehyde, washed extensively, and then transferred to the staining 

reagent for alcohol dehydrogenase activity, which is confined to the salivary gland. 

(B) Two salivary gland lobes and adhering fat body tissue were transferred to the 

staining reagent for 13-galactosidase activity; such enzyme activity is confined to the 

salivary gland. As controls for the histochemical reactions, mature third instar larvae of 

the non-transformed host strain, Adhfn6 en; ry502, were dissected and the salivary 

glands were removed along with some of the adjacent tissue. (C) One salivary gland 

lobe and adhering tissue were transferred to the staining reagent for alcohol 

dehydrogenase activity; no staining is observed in the salivary gland. (D) Another 

salivary gland lobe and its accompanying tissue were prepared for 13-galactosidase 

activity staining; no enzyme activity is detected. 
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Figure 4. Soluble extract measurements of salivary gland enzyme activities. Fifteen 

third instar larvae from each of the strains Tf(2 )GLAXJ.0-2 and Adhfn6 en; ry502 were 

dissected and extracts prepared from the salivary glands. In panel A, five animal

equivalents, 50 ~1, of each salivary gland extract were assayed for ADH enzyme 

activity. For the Tf(2)GLAXJ.0-2 strain, the linear regression line shown was 

calculated with the first eleven data points-zero through five minutes. The parameters 

of the calculated line are: Y-intercept, 0.0917; slope, 0.1522; correlation coefficient, 

1.00. The ADH Units per animal-equivalent are given by (0.1522 divided by 5, then 

multiplied by 1000); the data shown here correspond to 30.4 Units per animal

equivalent. For the Adhfn6 en; ry502 host strain, the linear regression line parameters 

were calculated from the full set of thirty-one data points: Y-intercept, 0.037; slope, 

2.351 x10-4; correlation coefficient, 0.88. The Adhfn6 en; ry502 background reaction 

corresponds to 0.05 Units per animal-equivalent. In panel B, five animal-equivalents of 

salivary gland extract, 50 ~1, were assayed for J3-galactosidase enzyme activity. For 

the Tf(2 )GLAXJ.0-2 strain, the linear regression line shown was calculated with the 

five data points. The parameters of the calculated line are: Y-intercept, 105.98; slope, 

1398.84; correlation coefficient, 1.00. The J3-galactosidase Units per animal-equivalent 

are given by (1398.84, divided by 5); the data shown here correspond to 279 Units per 

animal-equivalent. For the Adhfn6 en; ry502 host strain, the linear regression line 

parameters calculated are: Y -intercept, -24.4; slope, 33.38; correlation coefficient, 

1.00. The Adhfn6 en; ry502 background reaction corresponds to 6.67 Units per animal

equivalent. In panel C, each datapoint represents one J3-galactosidase measurement and 

one ADH measurement made from an individual Tf()GLAXJ.O salivary gland extract. 

Positive correlation (correlation coefficient 0.79) is seen. 
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Figure 5. Third instar larval salivary gland RNA gel blot hybridization. For each strain, 

ten third instar larvae were dissected and the salivary glands removed. RNA prepared 

using phenol and chloroform was resuspended in 80 Ill of the HCHO- and HCONH2-

containing denaturation cocktail described by Crosby and Meyerowitz (1986). One

and-a-half animal-equivalents of each RNA sample were placed into separate wells of a 

1.5% agarose gel containing :::::6% (v/v) formaldehyde. After electrophoresis, the RNA 

transferred to a nitrocellulose sheet using 20X SSPE (Davis et a/., 1980) as the 

transfer buffer. RNA gel blot filter sections were baked, then prehybridized and 

hybridized at 43oc using 32P-nick-translation-labelled DNA probes. Filters were 

washed and autoradiographed. In each panel, lane 1 is salivary gland RNA from 

Tf( 1 )GLAX1.0-1, and lane 2 is salivary gland RNA from Adhfn6 en; ry502. 

(A) Hybridization with kEcOOl, a plasmid clone of the 13-galactosidase-coding region 

of E. coli lacZ (E.M. Meyerowitz, unpublished experiment); (B) Hybridization with 

nDm9035, a plasmid subclone of D. melanogaster Adh genomic DNA including the 

greater part of the coding region; (C) Hybridization with sDm9039, a genomic DNA 

subclone containing the D. melanogaster Sgs-7 gene as a Psti-EcoRI fragment (M.D. 

Garfinkel, unpublished experiment); (D) Hybridization with sDm9040, a genomic 

DNA subclone containing the D. melanogaster Sgs-8 gene as a Psti-EcoRI fragment 

(M.D. Garfinkel, unpublished experiment). 
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Figure 6. Adult fly DNA gel blot hybridization. Adult fly DNA was digested with either 

BamHI (Panel A) or Sacl (Panel B) and electrophoretically separated by size in 0.6% 

agarose gels. The gel blot filters subsequently prepared were hybridized with 32p_ 

labelled aDm9030 (M.D. Garfinkel, unpublished experiment). This probe detects a 5.2 

kb BamHI fragment common to all the fly strains and two Sacl fragments of length 4.0 

kb and 1.5 kb common to all the fly strains, which represent the centromere-proximal 

portion of the rosy locus at 87D14. Each transformant strain contains a single additional 

hybridizing fragment, which arises from integration of the P[GLAXJ .O] element. Lane 

1 is Tf(l )GLAXJ.0-1; lane 2 is Tf(2)GLAXJ.0-2; lane 3 is T/(3 )GLAXJ .0-3; lane 4 is 

Tf(3)GLAXJ.0-4/TM3; lane 5 is Tf(2)GLAXJ .0-5/Cy0; lane 6 is the non-transformed 

host strain Adhfn6 en; ry502; lane 7 is Tf(3)GLAXJ .0-6; lane 8 is Tf(3)GLAXJ.0-7; 

and lane 9 is Tj( 3 )GLAXJ.0-8/TM3. 
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Figure 7. Effects of l(l)npr-1 upon histochemical reactions. Virgin females from the 

balanced strain y l(l)npr-1 w mal!Binsn were mated to males from the transformant 

strain Tf(2)GLAX1.0-2 and the male progeny dissected for histochemical staining 

(Panels A, B, E, F), or such virgin females were mated to Adhfn6 en; ry502 males and 

their male progeny dissected for histochemical staining (Panels C, D, G, H). The 

salivary glands and adhering tissue in panels A through D were stained for alcohol 

dehydrogenase activity; in panels E through H the tissues were stained for J3-

galactosidase activity. The males in panels B, D, F, and H are hemizygous for y 

l( l)npr-1 w mal; the remaining males are hemizygous for the y+ l(l )npr-1 + w+ maf+ 

Binsn chromosome. 
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Figure 8. Representative mosaic patches due to transient expression of histochemically 

marked glue protein fusion genes. The plasmid pGAZ-1 was microinjected into 

syncytial embryos of the genotype Adhfn6 en; ry502, and third instar larvae that 

survived dissected. Salivary glands and adhering tissues were processed for either 

ADH histochemistry or for 13-gal histochemistry. Panel A shows the alcohol 

dehydrogenase activity in one animal. Panel B shows the 13-galactosidase activity in a 

different animal. 
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Figure 9. Tf()GAX0.12 strains fail to accumulate Sgs-7-Adh RNA. For each strain, 

ten third instar larvae were dissected and salivary gland RNA was extracted. In each 

panel salivary gland RNA was obtained from: lane 1, Tf( 1 )GLAX1.0-1; lane 2, 

Tf(2)GAX0.12-1; lane 3, Tf(2)GAX0.12-2; lane 4, Tf(3)GAX0.12-3; lane 5, 

Tf(2)GAX0.12-4; lane 6, Tf(3 )GAX0.12-5; and lane 7 is Adhfn6 en; ry502. Lanes 1 

and 7 contain one-and-a-half animal-equivalents of RNA each; the rest contain three 

animal-equivalents. (A) Hybridization with the D. melanogaster Adh clone nDm9035; 

(B) Hybridization with the D. melanogaster Sgs-7 subclone sDm9039. 
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Figure 10. Histochemical staining of promoter-deletion derivatives of the Sgs-8-lacZ 

fusion gene. Panel A, salivary gland and adhering tissue from the strain 

Tf(2)GLX0.68-3, containing 432 base-pairs of 5' flanking sequence, were incubated in 

the X-Gal histochemical reaction mixture. Panel B, salivary gland and adhering tissue 

from the strain Tf(2)GLX0.66-3, containing seventeen fewer base-pairs of 5' flanking 

sequence, were incubated in the X-Gal histochemical reaction mixture. 
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Figure 11. Asymmetric location of regulatory elements in the Sgs-7, Sgs-8 intergenic 

region. The divergently transcribed Sgs-7, Sgs-8 gene pair are shown, with features 

within the intergenic region identified as follows: Boxes lightly shaded and labelled "T" 

are the Goldberg (1979) T-A-T-A motifs that precede eukaryotic RNA polymerase II 

transcription units. Boxes more heavily shaded are the left copy and the right copy of 

the conserved sequence elements in the 5' flanking regions identified by Garfinkel eta!. 

(1983). The boxes most heavily shaded and labelled "M" are the segments homologous 

with the ecdysterone-responsive sequence identified by Mestril eta!. (1986). In the first 

model of intergenic region function, tissue and stage specificity (TSS) and quantity of 

expression (Q) for both Sgs-7 and Sgs-8 are controlled by a single element that acts 

bidirectionally. The filled box represents the minimal length of the element as defined 

by the overlap of the sequences required for Sgs-7--Adh expression and those required 

for Sgs-8-lacZ expression. The uncertainty in assigning the left edge of the element is 

shown by broken lines (thick line represents the uncertainty from the transient 

expression results, thin line represents the uncertainty from the germline transformation 

results). The uncertainty in assigning the right edge of the element is shown by the thin 

broken line. In the second model of intergenic region function, tissue and stage 

specificity for both of these glue protein genes are controlled by a bidirectional element 

(striped box labelled TSS, uncertainty from the germline transformation results shown 

by broken line facing leftward) that is separable from a bidirectional element that 

regulates the quantity of expression of both glue protein genes (dotted box labelled Q, 

uncertainty from the germline transformation results shown by broken line facing 

leftward). 



1 7 0 

-~ 
D a . 

I 

I 
C/) :E-

I~ I 

I 


