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Abstract 

The RNA virus families Togaviridae and Flaviviridae were considered one 

family as recently as 1983. These two families contain more than 100 members, 

many of which are important pathogens for humans and domestic animals. Studies 

on members of both families which were undertaken to increase our understanding 

of the functions of the virus structural proteins and of RNA sequence elements 

that interact with virus proteins, and of the evolution of these two families of 

RNA viruses, are presented in this thesis. These investigations include two on the 

nature and function of a virus-encoded self-protease that functions in the 

processing of the struc tural proteins, several studies on the role of the virus 

structural glycoproteins in assembly of progeny virions and viral virulence, and 

studies on the evolution of these viruses, including the demonstration that 

recombination has occurred in the Togaviridae to produce an important new 

pathogen, and that RNA sequence elements have been conserved dur ing the 

evolution of the Flavivir idae. 

Alphavirus structural proteins are translated from a subgenomic messenger 

RNA as a polyprotein, which is cleaved to the final products by proteolytic 

processing. This processing was studied by comparative sequence analysis of three 

temperature sensitive mutants of Sindbis virus (the type alphavirus) which have a 

defect in processing of the polyprotein at the nonpermissive temperature. These 

mutations were localized in the C-terminal region of the capsid protein. From the 

position of these mutations and from sequence similarities between the alphavirus 

capsid proteins and animal serine proteses, we hypothesized that the capsid 

protein was a serine autoprotease whose active site is formed by His-141, Asp- 147 

and Ser-215. To study this capsid protein protease activity in more detail, we 

have altered the proposed catalytic triad of the protease by site-directed 

mutagenesis. We have assayed the protease activity in the mutagenized capsid 
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proteins by in vitro transcription and translation, and attempted to rescue virus 

from mutagenized full-length "infectious" c lones. The results supported our 

hypothesis. 

Sindbis virus matures when preformed nucleocapsids acquire their 

envelopes by budding through virus-modified areas of the cell surface membrane. 

tsl03 is a mutant of Sindbis virus which has a defect in this late maturation step 

such that it generates multicored particles, and it has provided a good system for 

studying structure-function relationships during viral assembly and maturation. 

Hybrid genomes were constructed that were formed from a full-length eDNA 

clone of wild type Sindbis in which restriction fragments were replaced with 

eDNA from tsl03. Virus rescued from these constructs were used to determine 

the protein responsible for the multicored phenotype and to map the mutation. 

tsl03 was found to have a sing le amino acid substitution in glycoprotein E2. The 

implications of this mutation for our understanding of virus assembly are 

discussed. 

Virus surface glycoproteins are believed to be important determinants of 

virulence and tissue tropism. Ne urovirulence of Sindbis virus for mice has been 

used as an animal model system in which to explore the effects of each individual 

protein or of a particular domain of a given protein, or even of a single amino acid 

residue, on neurovirulence. By constructing hybrid genomes among various strains 

of Sindbis virus at the eDNA level and rescuing virus in vitro using in vitro 

transcription and transfection, it was possible to evaluate the effect of each 

protein on neurovirulence. From these studies, we concluded that Sindbis virus 

glycoproteins are important determinants of neurovirulence, but not the sole 

determinants. The virulence phenotypes of various recombinant viruses in both 

weanling mice and suckling mice are discussed, with reference to the role of 

particular residues in producing the neurovirulent phenotype. 
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We have also undertaken a study of virulence in flaviviruses. The 170 

vaccine strain of yellow fever virus, the type flavivirus, is one of the most reliable 

and stable live virus vaccines ever developed. By comparison of the nucleotide 

sequences of the 170 vaccine strain and its parental virulent Asibi virus we have 

located all of the changes which occurred during the attentuation of yellow fever 

to produce the 170 vaccine. This comparison led us to the conclusion that 

changes in the viral envelope protein play an important role in attenuation. 

The 25 members of the genus Alphavirus have for the most part diverged by 

linear descent from a common ancestor. We have now found that Western equine 

encephalitis virus is an exception to this. Western equine encephalitis virus is a 

close relative of Sindbis virus as determined by immunological cross-reaction, but 

it is a New World virus that causes encephalitis in humans and horses, whereas 

Sindbis virus is an Old World virus not normally associated with encephalitis. The 

nucleotide sequence and deduced amino acid sequence of the structural proteins of 

Western equine encephalitis virus reveal that it arose by recombination between 

Eastern equine encephalitis virus (or a recent ancestor of it) and a virus closely 

related to Sindbis virus. The importance of recombination in the evolution of 

RNA viruses and in the generation of new potentially pathogenic virus strains, as 

well as the implications of the amino acid changes which have occurred in Western 

equine encephalitis virus (subsequent to the initial recombination event) for our 

understanding of the interaction between the structural proteins of alphaviruses, 

are discussed. 

To study evolution in flaviviruses, sequences at the 5' and 3' ends of several 

flaviviruses have been compared. Conserved structures or sequence elements 

have been identified, one pair of which could result in cyclization of flavivirus 

RNA. The significance of these sequences is discussed. 
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In rece nt years, the re have been rapid deve lopments in the methods used for 

the dete rmination of primary nucleotide sequences and deduced protein sequences 

(Sange r et al . , 1977; Zimmern and Kaesberg, 1978; Maxam and Gilbert, 1980). In 

addition, for many plus stranded RNA viruses, including Sindbis virus (Rice et a l., 

1987), it is now possible to resurrect infectious virus from eDNA clones. These 

advances have made it possib le to explore at the molecu lar leve l the structure­

function relationships of prote ins and/ or nucleic acids. 

The family Togaviridae and family Flaviviridae (which was considered a 

genus within the family Togaviridae as late as 1983) together contain some 100 

species of RNA viruses, many of which are pathogenic for man a nd domestic 

animals (Strauss and Strauss, 1977; Chamberlain, 1980; Matthews, 1982; Westaway 

et a l., l985a ,b; Brown, 1986; Griffin, 1986). There a re more than 25 members in 

the genus Alphavirus of the family Togaviridae. Sindbis virus, the type alphavirus, 

has been studied extensively, in part because it is one of the least virulent 

members; most Sindbis isolates are asymptomatic in man (Griffin, 1986). Sindbis 

virus has a sing le strand RNA genome of 1 1,703 nucleotides, excluding the 3' 

poly(A) tail (Strauss e t al., 1984; Strauss and Strauss, 1986). The viral RNA itself 

can act as an mRNA upon infection to generate large po lypeptide precursors 

which are processed to four nonstructural proteins: nsP 1, nsP2, nsP3 and nsP4. 

Since there is an opal termination codon at the junction be tween nsP3 and nsP4, 

translation of nsP4 can occur only by read- through (Strauss et a!., 1983; Strauss et 

a l. , 1984; Hardy and Strauss, 1988; Strauss et al. , 1988). 

Synthesis and processing of a lphavirus struct ura l proteins 

Alphavirus structural proteins are translat ed as a large polypeptide 

precursor from a subgenomic messenger, 26S RNA, which is the 3' terminal one­

third of the genomic 49S RNA (Simmons and Strauss, 1972). The capsid protein is 

located at the amino terminus of the precursor and is followed by an envelope 
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protein precursor (PE2) and the second envelope protein (E1) (Ga roff et al., 

1980a,b; Rice and Strauss, 1981a,b). A number of proteolytic cleavages occur 

during processing of this polyprotein (Schlesinger and Kaariainen, 1980; Strauss 

and Strauss 1987a,b). Several lines of evidence suggest that t he first cleavage, 

which re leases the capsid protein from the polyprotein, occurs by autoproteolysis 

(Simmons and Strauss, 1974; Scupham e t a l. , 1977; Aliperti and Schlesinger, 1978; 

Hahn et a l. , 1985; Melancon and Garoff, 1987). The remaining portion of the 

nascent polypeptide is then inserted into the rough e ndoplasmic reticulum of the 

cell . During insertion or shortly thereafter, the polyprotein is glycosy lated with 

mannose-rich o ligosaccha rides and c leaved to form PE2 and E1 (Sefton, 1977). 

Late in maturation the final cleavage occurs, wh ic h converts PE2 to 

glycoproteins E2 and E3 (Fig. 1). 

The re a re three complementation groups of tempe rature sensitive mutants 

t hat affect the structura l proteins of the virus (Burge and Pfefferkorn , l966a,b, 

1967, 1968; Strauss and Strauss, 1980). Complementation groups D and E have 

defects in glycoprotein E1 (Arias et a l. 1983) a nd E2 (Lindqvist et al. 1986) 

respectively. Sequence studies of comple ment ation group C mutants have shown 

that the mutations a re located in the capsid protein (see Part l, Chapter l; Hahn 

et al. 1985). Furthermore t here is sequence similarity between the active sites of 

animal and insect serine proteases and the C-terminal ha lf of t he alphavirus 

capsid protein (Boege et a l. , 1981; Hahn et a l., 1985). Site-directed mutagenesis 

of the proposed catalytic triad of the capsid protein autoprotease will be 

discussed in Chapter 2. 
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Fig. 1 Synthesis and processing of alphavirus structural proteins. Untranslated 

regions of both genomic and subgenomic RNAs are shown as single lines and open 

reading frames for the nonstructural proteins and structural proteins are shown as 

open boxes (in genomic 495 RNA and subgenomic 265 RNA respectively). 

Translation products from the subgenomic 265 RNA and processing intermediates 

are indicated, and the final structural protein products are shown as bold lines. 
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The role of alphavirus glycoproteins in assembly and virulence 

It has been known for a number of years that glycoproteins E 1 and E2 are 

found c losely associated as a heterodimer soon after their synthesis (Bracha and 

Schlesinger, 1976; Rice and Strauss, 1982). The two proteins are transported to 

the cell surface as a dimer and incorporated together into the budding virion. 

Although care must be taken in assigning individual functions to El and E2, since 

each protein in the dimer affects the conformation and availability of sites on the 

other, in general glycoprotein E2 plays a primary role in the initial interactions 

with the host cell and glycoprotein E 1 contains the hemagglutinin and a fusion 

activity (E. G. Strauss and J. H. Strauss, 1985; J. H. Strauss and E. G. Strauss, 

1985; Dalrymple et al. 1976; Chanas et al., 1982). In addition, interactions 

between the glycoproteins and the nucleocapsid play a c rucial role in the assembly 

of virions (Fuller, 1987; Rice et al. 1982). 

Sindbis virus mutant ts103, which was isolated by nitrous acid mutagenesis a 

decade ago (Strauss et al. 1976), is a minute plaque former which grows very 

slowly at any temperature and produces, under optimal conditions, 3- 10% of t he 

virus yield of the parental HR strain. It has been shown that ts103 has a defect in 

a late maturation stage and forms multi-cored particles. (Strauss et al. 1977). 

Unlike wildtype alphaviruses, whose virion particles have one nucleocapsid in a 

close fitting envelope that consists of a lipid bilayer in which are embedded 

trimeric spikes of the two viral glycoproteins El and E2 in an icosahedral array, 

tsl03 does not have a fixed form and from one to several nucleocapsids a re 

engulfe d in a s ingle envelope during budding. This is presumably due to a 

weakened inte ract ion between the nucleocapsid and the cytoplasmic domains of 

the envelope proteins, caused by a defect in E l -E2 dimer formation and/or a 

conformational c hange in the trimeric spike which is the basic unit of the 

icosahedral structure (Fuller, 1987). The nature and location of the ts 103 mutation 

wi ll be discussed in Chapter 3. 
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Another approach to studying structure-function relationships in the 

alphavirus structural proteins has been to characterize viruses which have been 

selected for altered neurovirulence in animal systems. Changes in either replicase 

proteins or in structural proteins might affect tissue tropism and virulence. 

Alterations in replication enzymes leading to a slower rate of replication could 

attenuate the virus, as a more rapidly replicating virus is often more pathogenic 

since infection can become established before the host immune defenses are 

activated. In addition, alterations in the replication enzymes which change their 

interaction with host factor(s) (which factors may differ depending upon the type 

of tissue infected) could cause differential tissue tropism, since the efficiency of 

replication might be different in different tissues. Changes in the surface 

membrane protein(s), on the other hand, can change their affinity for certain 

tissue-specific receptors, which could lead to differential tissue tropism and 

alteration of the virulence phenotype. Changes in structural proteins can also 

alter virulence by affecting the kinetics of assembly of progeny virus. 

For viruses with segmented genomes, elegant studies have localized the 

protein(s) responsible for temperature sensitivity and tissue tropism by genome 

reassortment. Such experiments have been performed, for example, for reoviruses 

(Ahmed and Fields, 1981) and arenaviruses (Ahmed and Oldstone, 1988), among 

others. However, for alpha viruses or flaviviruses, which have one long RNA 

molecule as their genome, such an approach is impossible. With the recent 

development of an "infectious" eDNA clone of Sindbis virus, from which infectious 

RNA can be transcribed in vitro, mapping of such genetic markers becomes 

possible (Rice et al. ,1987). By making hybrid genomes between two strains 

which differ in either tissue tropism or virulence, one can determine which 

protein is important for a given phenotype. Furthermore it is also possible by site 

directed mutagenesis to test the effect of changes in a particular protein domain 

or even at a single amino acid residue. 
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Sindbis virus infection in mice has been studied as an experimental model 

of acute viral encephalitis (Johnson, 1965; Griffin, 1976; Olmsted et al., 1984, 

1986). Wild-type Sindbis virus (AR339 strain) causes a fatal encephalitis in 

suckling mice and a nonfatal encephalitis in four-week-old weanling mice (Johnson 

et al., 1972). A strain of Sindbis virus that is highly lethal for weanling and adult 

mice was isolated after six intracerebral (IC) passages of wild-type Sindbis strain 

AR339(SV) alternating between suckling and weanling mice (Griffin and Johnson, 

1977). This neuroadapted strain of Sindbis (NSV) has been genetically stable for 

many passages in cell culture. NSV replicates 5 to 10-fold more efficiently in the 

mouse brain than SV and its IC 50% lethal dose is 2-20 pfu in weanling mice. After 

IC inoculation with NSV weanling mice become ruffled, develop kyphoscoliosis and 

hind limb paralysis and have a high mortality (Griffin, 1986). There is a 

poliomyelitis, particularly involving the ventral horns, in the thoracic and lumbar 

spinal cord (Jackson et al. , 1987, 1988; Griffin et al ., 1988). Stanley et al. ( 1985, 

1986) demonstrated t hat some anti-Sindbis virus E1 and E2 monoclonal antibodies 

can discriminate between NSV and SV, suggesting that changes in the surface 

glycoproteins may be associated with changes in virulence. In another approach, 

Olmsted et al. (1984,1986) have selected Sindbis virus variants in vitro that are 

attenuated in suckling mice (Polo et al., 1988). Thus, strains of Sindbis virus can 

be essentially avirulent for mice of all ages, or virulent for suckling mice but 

avirulent for weanling mice, or virulent for mice of all ages. Moreover, two 

different laboratory strains of Sindbis virus (our laboratory isolate HRSP and 

Totoll01, a recombinant virus between our HRSP and Dr. Schlesinger's HR strain) 

were a lso avirulent for mice of all ages. Recombinants among these four strains 

(NSV, SV, HRSP, and Toto1101) showed a gradient of virulence for mice of all ages 

(Lustig et a1., 1988). These constructs and their biological properties will be 

discussed in Chapter 4. 
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Studies on Flavivirus virulence 

Yellow fever virus, the type flavivirus, is a good system in which to study 

protein changes associated with altered virulence and tissue tropism. Yellow fever 

is an arthropod-borne virus, transmitted by mosquitos of the genera Aedes and 

Haemagogus. Its natural vertebrate host range is limited to primates in which it is 

both viscerotropic and neurotropic. In man, the virus causes a serious, often fatal, 

illness marked by liver and kidney involvement and hemorrhage. For several 

hundred years the virus caused epidemics in the Americas, Europe, and Africa that 

led to widespread human suffering. With the control of its urban vector, Aedes 

aegypti, beginning in the early 1900s, epidemic urban yellow fever disappeared. 

However the virus remains present m an enzootic cycle in the forests of South 

America and Africa and causes periodic outbreaks in neighboring human 

populations (Strode, 1951). 

Reed (1901) first proved that yellow fever is transmitted by mosquitos and 

shortly thereafter, that the disease agent was filterable. The Asibi strain of 

yellow fever virus was isolated from a young Ghanian of that name in 1927 by the 

Rockefeller Foundation's West Africa Yellow Fever Commission (Stokes eta!., 

1928). This virus, which was maintained by monkey- monkey passage, causes an 

invariably fatal disease when inoculated into rhesus monkeys. From Asibi yellow 

fever virus Theiler and colleagues (Theiler, 1930; Theiler and Smith, 1937a,b) 

developed a live attenuated vaccine strain referred to as 170. Starting with the 

Asibi strain, which had been passed 53 times in monkeys interspersed with 

passages in A . aegypti, the virus was propagated serially in cultures of embryonic 

mouse tissue ( 18 passages), minced whole chicken embryos (50 passages), and 

finally minced chicken embryos without brain and central nerve system tissue (152 

passages). Between the 89th and 114th in vitro passage (from the start of the 

experiment, that is including the passages in embryonic mouse tissue and whole 
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chicken embryos), a marked change in virulence of the virus occurred. The reason 

for the c hange is not clear and attempts to repeat the experiment to develop 

additional avirulent strains by virus passage have failed. The 170 strain has been 

widely used as a human vaccine, being safe and highly effective. It causes a mild, 

generalized infection in humans (or other primates) with involvement of lymphoid 

tissue and minimal quantities of virus circulation in the blood, a nd the 

viscerotropism and neurotropism of the strain are less than that of wild type 

strains of yellow fever. By comparing the sequence of the entire genome of the 

parental Asibi virus and the vaccine strain 170-204 which was derived from it, it 

was possible to determine the total number of nucleotide and amino acid 

substitutions that occurred during the derivation of the 170 strain, and to develop 

hypotheses as to which amino acid substitutions are primarily responsible for the 

altered tissue tropism and reduction in virulence of 170 (Rice et al., 1985; Hahn 

et al., 1987a,c; see Chapter 5). 

Evolution of alphaviruses and flaviviruses 

The alphavirus genus contains about 25 members, many of which have 

geographic variants (Porterfie ld, 1980). The vertebrate host range of this group of 

viruses is quite wide, and alphaviruses have been isolated from numerous species 

of birds and mammals as well as some reptiles and amphibians (Chamberlain, 

1980). Alphaviruses have been divided into three to six serological subgroups or 

complexes, which are clearly separable on the basis of cross-neutralization tests 

(Porterfield, 1961; Karabatsos, 1975; Chanas et al., 1976). A classification of 

alphaviruses based on cross-neutralization but modified to take into account 

sequencing data and geographic range (discussed in more detail below) is given in 

Table 1. 

Eastern equine encephalitis (EEE) virus is a New World virus capable, as its 

name implies, of causing encephalitis in man and horses. It forms a distinct 
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subgroup with at least two grographic variants (North American and South 

American). The Western Equine encephalitis (WEE) virus complex is also a New 

World complex containing several viruses (Table 1). WEE is also capable of 

causing encephalitis in man. The Old World viruses grouped with Sindbis virus in 

Table 1 have also been included in the WEE subgroup to the present, on the basis 

of neutralization cross react ion. Our recent sequence data (Hahn et al., 1988 and 

Chapter 6), however, demonstrate the WEE is a recombinant virus with part of its 

genome derived from an EEE- like virus and the structural proteins (which possess 

the neutralization epitopes) derived from a Sindbis-like virus. Thus it seems best 

to classify WEE in a subgroup distinct from the Sindbis group. Within the New 

World viruses, Highlands J and WEE are very similar antigenically (Calisher et al., 

1980; Hayes and Wallis, 1977) and limited sequence data (Ou et al., 1982b, 1983) 

also suggests that Highlands J, which replaces WEE in the eastern United States, 

is very similar to WEE (i.e., was also derived from the ancestral recombinant virus 

that gave rise to WEE). 

The Venezuelan equine encephalitis (VEE) virus subgroup consists of at 

least 6 New World viruses. The Semliki Forest (SF) virus subgroup, which has both 

New World and Old World members, was formerly considered as part of the VEE 

complex, but more recent sequencing data suggest that the SF group should be 

treated as a distinct subgroup. The SF group is unusual in having representatives 

in both the New World and the Old World. Although sequence data have been 

obtained for 4 of the Old World representatives, no sequence data for the New 

World members exist to determine exactly how closely related they are to the Old 

World viruses. 
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Table 1. Classification of Alphaviruses 

Geographic range Subgroup Virus Disease symptoms 

New World EEE EEE Encephalitis 

WEE WEE Fever, Encephalitis 
Aura 
Highlands J 
Fort Morgan 

VEE VEE Fever, Encephalitis 
Bijou Bridge 
Cabassou 
Everglades Encephalitis 
Mucambo Fever 
Pixuna 

SF Mayaro Fever, Arthritis, Rash 
Una 

Old World SIN(WEE) Sindbis Fever 
Kyzylagach 
Whataroa 

MID Mid del burg 

Ndumu Ndumu 

SF Semliki Forest Fever, Encephalitis 
Bebaru 
Chikungunya Fever, Arthritis, Rash 
Getah 
Ross River Rash, Polyarthritis 
O'Nyong-nyong Fever, Arthritis, Rash 
Sagiyama 

? Barmah Forest 
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Finally, three alphaviruses, Middelburg (MID), Ndumu, and Barmah Forest 

(BF) are Old World viruses that are best treated as separate subgroups, although 

MID and Ndumu have sometimes been classified in the WEE/SIN subgroup. 

Sequence data for MID and BF support their classification as distinct subgroups, 

and, in fact, MID is more closely related to SF on the basis of sequence than to 

Sindbis. 

It is of interest that a number of New World alphaviruses are capable of 

causing encephalitis, whereas the Old World viruses typically cause a disease 

characterized by fever, rash, and, often, arthritis. The reasons for this are not 

clear at present. 

Comparison of the complete and partial nucleotide sequences and deduced 

amino acid sequences available for alphaviruses demonstrated that they have all 

diverged from a common ancestor during evolution (Bell et al ., 1984; Strauss and 

Strauss 1986). As indicated above, the relationships among the alphaviruses 

derived from the sequencing studies are compatible, for the most part, with those 

from serological cross-reactivity, which examine only the viral structural 

proteins. One exception has been the case of WEE. It is a New World virus with a 

wide geographic distribution, being found from western Canada to Mexico and, 

discontinuously, to Argentina, that is capable of causing encephalitis, although 

serologically it is most closely related to SIN, an Old World alphavirus which is 

not normally associated with encephalitis. SIN is widely distributed, being found 

in Europe, India, southeast Asia, Australia, and Africa. SIN has been implicated in 

only mild febrile illnesses in man, although close relatives of SIN such as Ockelbo 

virus in Europe (Niklasson et a l., 1984) and Babanki virus in Africa cause a typical 

Old World alpha virus disease in man characterized by fever, rash, and arthritis. 

We have recently discovered the basis for the close serological relationship 

between these otherwise disparate a lphaviruses. We have cloned and sequenced 
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the 3' terminal 4288 nucleot ides of the BFS 1703 strain of WEE. Close examination 

of the nucleotide sequence and the deduced amino acid sequence encoded therein 

clearly shows that WEE is a recombinant virus between EEE and a Sindbis-like 

progenitor (See Chapter 6). In this recombinant, only the surface glycoproteins 

appear to be derived from the Sindbis-like parent. 

There has been a great deal of speculation about the importance of 

recombination for RNA virus evolution (Strauss and Strauss, 1988; Hodgman and 

Zimmern, 1988). In segmented RNA viruses, reassortment of individual genome 

segments during mixed infection, a form of recombinat ion equivalent to the 

shuffling of chromosomes in diploid creatures, is readily demonstrable in cell 

culture. Also reassortment has been well documented as a major mechanism for 

generating new pandemic strains of influenza virus (Desselberger et a l., 1978; 

Webster et al., 1982) Among the nonsegmented RNA viruses recombination has 

been in general more difficult to demonstrate, but it has been shown to occur in 

the picornaviruses (Cooper, 1977; Emini et al. 1984; Kew and Nottay 1984; 

Kirkegaard amd Baltimore, 1986), the coronaviruses (Makino et al., 1986), and 

bromoviruses (Bujarski and Kaesberg, 1986). Although well established in 

principle, evidence for the importance of such recombination in nature as a 

mechanism for generating successful new strains of virus is limited. WEE, a virus 

with a wide geographic range, provides a clear example of a successful 

recombinant that arose naturally, and lends support to the hypothesis that RNA 

recombination is an important force in the evolution of RNA viruses in general 

(Hahn et al., 1988; Chapter 6). 

During divergent evolution, the rate of change is decidedly dependent on the 

functions of the proteins or RNA sequences. For example, replicase molecules are 

more highly conserved than structural prote ins (Ahlquist et a1. 1985; Argos et al., 

1984; Franssen et al. 1984; Goldbach, 1987; Haseloff et al. 1984; Kamer and 
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Argos, 1984). Similarly, RNA sequence elements that serve as binding sites for 

virus proteins are more highly conserved. In the case of such elements, either the 

primary sequence or a secondary structure may be conserved. In alphaviruses, 

there are three conserved RNA sequences, one near the 5' end of the genome, the 

second in the junction region near the start of the subgenomic 26S RNA, and the 

third at the 3' end just before the poly(A) tail (Ou et al., 1982a,b, 1983). In 

addition, the 5' end of the 49S RNA has a conserved secondary structure in which 

the primary nucleotide sequence is not conserved (Ou et al., 1983). One of the 

elements is also conserved in rubella virus, which is in a different genus of the 

Togaviridae (Frey and Marr, 1988). Many plant viruses have a tRNA-like structure 

at the 3' end of the genome which may serve an important function in replication 

(Hall, 1979). Conserved sequences 12 to 15 nucleotides in length are found at the 

ends of the genome segments of influenza virus and of bunyaviruses (Strauss and 

Strauss, 1983). 

In the case of flaviviruses, Rice et al. (1985) proposed that the 3'-terminal 

87 nucleotides of yellow fever (YF) virus RNA form a stable secondary structure. 

Subsequently, West Nile (WN) virus (Brinton et al . 1986; Wengler and Castle, 

1986), Japanese encephalitis (JE) virus (Takegami et a l., 1986), and Dengue 4 (DEN 

4) virus (Zhao et al. 1986) were proposed t o have secondary structures very similar 

to that of YF RNA. Conservation of this structure supports the hypothesis that it 

is important for viral RNA replication (Rice et a l., 1986), but direct evidence for 

its existence has been limited. Brinton et al. ( 1986) found that nucleotides within 

the putative hydrogen-bonded regions of the stem were partially resistant to 

ribonuclease suggesting that the structure was present in WN RNA in solution. In 

case of YF, no direct evidence of this conformation had been presented, and in 

fact Grange et al. (1985) proposed an a lternative structure involving the 

3'-terminal 120 nucleotides. In this thesis we present evidence for the existence 
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in solution of the 87 nucleotide structure in YF RNA (Chapter 7). In addition to 

the 3'-terminal conserved secondary structure there are two other conserved 

RNA sequences in the 3' noncoding region of flaviviruses and a third conserved 

sequence at 5' end of the genome near the start of translation. One of the 3' 

conserved sequences, which is ad jacent to the secondary structure, is 

complementary to the 5' conserved e lement so t hat it can form a panhandle 

structure (Hahn et al., 1987b). These e lements and their significance will be 

further discussed in Chapter 7. 
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Te me rat ure-sens it ive in the Caps id Prot e in Autoprotease 
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Sequence analysis of three Sindbis virus mutants 
temperature-sensitive in the capsid protein autoprotease 

(alpb•vin&s/ Mril>< proteu</ RNA Yinls n-olutloo) 

CHANG s. HAHN . ELLEN G. STRAUSS. AND JAMES H . STRAUSS 

OIYOS>OO or StOioc) . CaW'onua lnsutute or Tecbnolocy. Paudena. CA 91125 

Commumcar~d by Giuupp~ Allardi. March 15, /985 

ABSTRACT W~ lulve dooed and ~equeoc:ed the eDNA 
mad~ to the rqion of RJiiA ~ncoding th~ structural proc~ins of 
thr~ compl~menution group C muUnts or Sindbls virus. ts2, 
tsS, and tslJ, and or th~ir ~vertants. 1'beK mutants pouess 
dd~U ill the posttranslallonal processing of their stnlctural 
proteilu at th~ non~rmissln t~m~r.turr. Comparison or the 
~udd 8111ino ~~eld wque~ or the muUnts with those of the 
rnert.llnts and with the pa.~ntal H.R strain or virus show~ all 
thrH muunts to have single amino ~~eid substitutions in the 
highJy c:ooserv~ COOH·terminal half or tM capsid protein 
that give ri~ to tem~rature ~nsitlvlt) . tsl and uS were found 
to have the same ~ion and thus represent inde~ndent 

Isolations or the same muunt, whereas ul3 possessed a 
dilferent change. Reversion to tem~rature in~nsltivity in aU 
thrH muunts occurnd by reversion of the muUted nucleotide 
to the parenUJ nucleotide , restoring the original 8111illo ~~eid . It 
bas ~n previously postulat~ tlult th~ capsid protein possesses 
an autoproteolytic activity that ~av~ tM capsid protein from 
the nascent polyproteiD during tr.nslatlon. Comparison of the 
amino ~~eld ~uence or the capsid protein with that or ~ri.ne 
proteases leads us to hypothesiu that histidine-141, asparUte-
147, and serine-215 of the Slndbis capsid protein form the 
catalytic triad of a ser!M protease. This hypothesis is support~ 
by the finding that all thr~ tem~rature-sensltive ~ions 

map~ occur near these residues: tsl and tsS change proline· 
218 to serine and in tslJ lysiM·I38 bas ~n ~plac~ by 
lsoleucille. 

Sindbis virus is a small envelo~d RNA virus that belongs to 
the genus Alpha virus of the family Togaviridae. It consists of 
a nucleocapsid containing the single-stranded virus RNA 
complexed with a basic capsid protein . surrounded by a lipid 
bilayer contaming the viru s-encoded integral membrane 
glvcoprotems E1 and E2 (1 ). 

~e vtral structural proteins are translated a s a single large 
precursor poly~ptide from a subgenomic messenger. 26S 
RNA. that is the 3' terminal one-third of the genomic 49S 
RNA (2- 6) . In this precursor the NH2-terminal capsid protein 
is followed by the envelope protein precursor PE2 and the 
second enve lope protem. E l. Proteolytic cleavages occur 
seve ral t imes during processmg of this polyprotem precursor. 
The firsl cleavage releases the capsid protein from the 
polyprotein . and the rcmaomng portion of the nascent poly­
peptide is then inserted into the rough endo plasmic reticulum 
of the cell . During their insertion , or shortly after. the 
glycoproteins are glycosylated with mannosc-rich oligosac­
charides and clea ved into the proteins PE2 and E1 (7 . 8). A 
final proteolytic cleavage converts the PE2 iJycoprotcon to 
protems E2 and E3 . A fallure in any of these cleavage and/ o r 
insertional steps inhibits virion format ion and abnormal 
polypeptide precursors accumulate in the infected cell. 

The pubhcatoon costs or tiU> anode were defrayed on pan by paae cha rs• 
payment Thas art1clc mus' therefore be hereby marked ··ad' ~nu~mntt .. 
on accordance w11h 18 U.S C 11734 solely to ondocate tlus ract 
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There are three complementation groups of temperature­
sensitive (ts) mutants of Sindbis virus that affect the s truc­
tural proteins of the virus (9). Mutants in groups D and E arc 
located in glycoproteins El (10) and E2 (unpublished data). 
respectively. Mutants in group C are thought to be in the 
capsid protein since at the nonpermissive temperature the 
polypeptide precursor is not cleaved and accumulates in the 
cytoplasm (11 ). No capsid protein is formed and little 
envelo~ protein is produced . It is thought that failu re to 
remove the capstd protein causes the signal seque nces for 
insertion o f the glycoproteins to fail to function; the result is 
that the glycoprotein portions are not inserted o r glycosylated 
or further processed , and the complete polyprotean results. 

Several investigators have suggested that the cleavage of 
the capsid protein from the polyprotcin precursor could occur 
by autoprotcolytic activity of the capsid protein itself (3. 12. 
13). In this model autoproteolysis ordinarily results from 1he 
nascent polypeptade acting upon itself, rather than from a 
diffusible protease , because pro teolysis is rapid and complete 
even during in vitro translation where very small amounts of 
produc ts are made (3) . 

The complete nucleotide sequences of Sindbis virus 
genomic RNA and of 26S messenger RNA have been pub­
lished (14. 15). This has made possible the analysos of ts 
mutants of Sindbis virus (10). Here we report the clomng of 
eDNA from three group C mutants. rs2. rs5. and ts l3. and of 
their revertants and the determination of the nucleotide 
sequences of the regions of 26S RNA that encode the capsid 
proteins and parts of the glycoproteins. Mapping of these rs 
mutations together with comparison of the amino acid se­
quences of alphavirus capsid proteins with those of serine 
proteascs leads us to postulate that. the alphavirus capsid 
protein is a serine protease whose catalytic triad ts formed by 
histidine-141. aspartate-147. and senne-215 in Smdbis virus. 

MATERIALS AND METHODS 

Virus Straills. The mutants rs2. rs5. and rsl3 isolated from 
the heat-resistant HR strain were kindly provided by B. W. 
Burge. We used the oldest stocks in our possession. which 
had not been passed since 1971. as seed stocks in thas work. 
All strains were plaque purified at Jo•c immediately before 
usc. 

Isolation of R~v~rtants. Mutant stocks were assayed for 
revertanls by plaque titration at 40"C and Jo•c. and the 
reversion frequency is expressed a s the ratio of plaques at 
40•c to plaques at 3o•c. Single virus clones of u · revertants 
were picked from the 40"C plate and the virus was eluted into 
1 ml of Eagle' s medium/ 5% fetal calf serum (16). These 
revertant plaque picks were used to infect a Petn plate of 
primary chicken embryo fibroblast cells at 40•c and the 
resulting stocks were plaque assayed a1 3o•c and 40•c and 
used a s the infecting stocks for RNA preparal ion. 

Virus Purtncatloo and RNA Isolation. Viruses were grown 
in primary or se condary chtcken embryo fibroblast cells and 
harvested 10- 20 hr after infecuon, dependmg on the mutant. 
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All mutants and revenants were mcubated at 3o•c or 40•c, 
respectively . Viruses were punfied and RNA was rsolated as 
described 117). 

Cloning and Sequencing of DNA. The methods used for 
obtammg clones of eDNA made to the entire structural 
protein region will be descnbed elsewhere !unpublished 
data) . Bnelly. a plasmid vector origrnally derived from 
pBR322 was cut with Sma I. thymidine-tailed with terminal 
nucleotidyltransferase, and then cut with Sa/Ito remove one 
of the tarl s. The resultrng tailed vector was used as a primer 
wrth 49S RNA from purified vrnons to synthesize double­
stranded eDNA. Conditions for first-strand synthesis were 
essentially as described by Strauss eta/. (14) and those for 
second-strand synthesis were as described by Okayama and 
Berg (18). The resulting product was cut with Hind Ill. ligated 
with Escherichia coli ligase, and cloned. Most of the plasmids 
that contain inserts have a 5 .5-kilobase insert containing 
eDNA from the 3' terminal poly! A) tract of 49S RNA to the 
Hindlll site at nucleotides 6266-6271 in the genomic RNA 
and thus contain the entire structural protein region . Plasmid 
DNA was isolated from these clones and sequenced by the 
chemical sequencing methods of Maxam and Gilbert (19), as 
modified by Smith and Calvo (20). as descnbed (14). 

RESULTS 

Sequencing ol Compkmeollllioo Group C Mutants. Clones 
contarnrng the entire structural protein regJon of three group 
C mutants . ts2. ts5 . and rsl3. and of revenants of these 
mutants were obtained by using a poly!dTHailed vector as a 
primer for eDNA synthesis with purified virion RNA. The 
cloned eDNA extended from the 3' terminal poly! A) tract to 
the Hindlll site at position 6267 m the genomtc RNA 
sequence. DNA from these clones was sequenced. using the 
methods of chemical sequencing of Maxam and Gilbert ! 19), 
from the first nuc leotide of 26S RNA (nucleotide 7598 of the 
genomic RNA) to nucleotide 1237 of 26S RNA (nucleotide 
8835 of the genome) . This region encompasses the 5' 
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untranslated region of 26S RNA. the entire caps1d protein 
region. all of the E3 protein . and the first 68 amino ac1ds of 
the E2 protein. In each case at least three independent clones 
were sequenced to ensure that any changes found were 
charactenstic of the RNA population and d1d not represent 
minor variants in the population or reverse transcnptase 
errors . This proved to be necessary in some cases because 
revenants in the population or other minor variants were 
sequenced. The results presented in Fig. 1 in all cases 
represent at least three clones that agree as to sequence . 

Sequentt Aoalysls ol u2 and Its Revertant. ts2 was pro­
duced by nitrous acid mutagenesis of the HR strarn of Srndb1s 
virus (21. 22). The sequences obtained for this mutant and its 
revenant are illustrated in Fig. 1. Comparing the ts2 sequence 
with that of the parental HR strain (14). we found three 
nucleotide substitutions in ts2 within the region sequenced. 
Two of these changes do not revert in the revertant and 
presumably have nothing to do with temperature sensitivity. 
probably arising during the onginal mutagenesis even though 
the changes observed are not those expected for nitrous acid. 
The first of these nonrevening changes is a u-c substitution 
at nucleotide 67. which is a silent change in the codon for 
phenylalanine-6 (UUU-UUC>. The second nonrevening 
change observed is a G-U change at nucleotide 1043. wh1ch 
leads to a change of aspanate-4 to tyrosrne (GAC-UAC) in 
gJ ycoprotein E2. 

We conclude that the mutation responsible for temperature 
sensit1v11y in rs2 is a change ofC-U at nucleotide 701. which 
leads to the replacement of proline-218 by serine 
(CCG-UCG). In the revenant the changed nucleotide re­
verts to the original nucleotide . restoring the parental amino 
acid. It is of interest that this is the only change found in the 
sequenced region that has the expected charactensucs of 
nitrous ac1d mutagenesis. 

Sequence Analysis or tsS and Its Revertant. ts5 was pro­
duced by ethyl methanesulfo nate mutagenesis of the HR 
strarn !21 . 22). We found that th1s mutant had only one change 
throughout the sequenced region. a c-u change at nucle-
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FIG. I. SchematiC representation of the nucleotide sequence of 1he first one-thord of 16S RNA. wh1ch encodes the caps1d proteon. the EJ 
protem. and pan of the E1 glycoproteon . for se veral straons of Smdbos vorus. The top lone represents the sequence of the ancestral HR straon 
1101. Th< r<maming Iones represent ts11d<nved from HR by mutagenesos ""h HNO:I and ots reven ant u~R : uj (denved from HR by mutagenesiS 
woth ~lh>l methanesulfonatel and ots revertant u5R. and ul3 idenved from HR by notrososuanidine mutagenesiS) and ots rovenant rsl3R. 
Nucleotodes a re numbered from the S' <nd of 26S RNA !which begms al nucleotode 7598 in the 495 R NA). A mono acids are numbered from the 
N H: 1ermonus of each protem. All nucleotodes or ammo acods chan&ed from the ancestral sequence in any of the straons shown are ondocated 
on the represenlatoon of the ancestral •equence In 1he ooher strams shown. any change from 1he ancestral sequence os ondocated. of no change 
as -shown. then the sequence as the same as the ancestral sequence nt . Nucleotide . 
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otidc 701 of26S RNA that leads to replacement ofprollne-218 
of the caps1d protein b) scnne tCCG-L1CG) ff1g. 1). In the 
rs5 revenant th1s change rcvens to the onginaJ nucleotide 
(fig. 1). Thus despite the fact thai different mutagens were 
used to produce them. 1s2 and ts5 represent independent 
isolatiOns of the same mutation The1r mdcpendent h1story IS 
confirmed by the fact that ts5 lacks the t" o extraneous 
changes found in 1.12 . 

Sequence Analysis of ts 13 and Its Revertant . 1.113 was 
produced by nnrosoguantdme mutagenesis of the HR strain 
(21. 22). ts13 also has a smgle base substitUtiOn m the region 
sequenced. The change is A-U at nucleotide 462. resulting 
in the change of lysinc-138 to isoleucine CAAA-AUA) in the 
capsid protem. In the tsl3 revenant. this nucleotide revcns 
to the ongmal nucleotide CF1g. 1). 

DISCUSSION 

Natu~ of the Mutational Events. The three temperature· 
sensttlve mutants of the C complementation group isolated by 
Burge and Pfefferkorn (21. 221 have been widely studied . All 
mutants in this group stud1cd to date accumulate the large 
pol} peptide precursor called the ts2 protem or NVP130 at the 
nonperm1ss1ve temperature (9. 11. 23) . eDNA sequence 
anal) sis of the structural protein region of these three 
mutant s shows that amino ac1d substitutions in the COOH· 
termmal half of the caps1d protein cause this 1s2 protein 
accumulation . It has long been thought that group C mutants 
arc defective m the caps1d protem. but no firm evidence for 
this has extsted . 

In each case. reversion to temperature insensitivity oc· 
currcd by same-site reversion . which is consistent With our 
work on IS mutant s m protems El (10) and E2 (unpublished 
data 1. Th1s has greatly simplified the task of identifying the 
cha nges responsible for temperature sensitivity. It is not 
completely clear why second-site pseudorevenants have not 
been seen. Either the} do not occur or the) do not accumu­
late tn the virus population. In most cases the IS mutant grows 
more slowly than the wild type even at the permissive 
temperature . the wild type being h1ghl y evol ved for rapid 
growth . Once true revenants anse the} arc qu1ckly amplified 
in the population. and 11 IS poss1ble that second-site 
pseudore' enants. even if the} arose. mtght not possess such 
a selec11ve advantage a nd might not be amplified in the virus 
population. 

All three mutants were reponed by Burge and Pfefferkorn 
(211 to have a reversion frequency of0.5-1 x 10-'. We found 
the same reversion frequency for 1s2 and ts5 but a consider­
ably h1gher reversion frequency . 4 x 10- 3 • for rs13. which 
suggest s that the tsl3 revenant may have arisen early 1n this 
expenment. In any event the reversion frequency of all three 
mutants ts consistent with thc1r being single mutants as 
determined from nucleot1de sequencing. 

As we had pre viOusly observed wtth S tndbis Is mutants 
(10). the changes found in th1s study were often not those 
most commonly produced by the mutagcns uscd f24 ) In thc 
case of 1s.S . wh1ch was derived by ethyl methancsulfonate 
mutagenesis. the C-. U tranSitiOn found is o ne of the changes 
expected from the action of the alkylating agent. For 1s2 . 
wh1ch "as derived by HNO~ mutagenesis. the major changes 
expected arc c ..... u or A-G transitions produced by deam­
inatlon . The mutational event g1ving rise to temperature 
sensitlvl! ) was a c-u transition . but a U-.C transition and 
a G-U transvcrs1on were also found. although m the last two 
cases 11 cannot be ,hown that the changes occurred during 
HNO: mutagenesis. Fmally. for tslJ. wh1ch was derived by 
nitrosoguamdme mutageneSIS. the A-U change found is not 
one predicted for thts agent. but th1s agent has previously 
been found to cause man} d1fferent changes 1 10). 
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Autoproteol~·sis by the C.psld Protein. Several investiga­
tors have proposed that the formation of capsid protem could 
be accomplished by autoproteolysis. This was first suggested 
by the findmg that cleavage occurred normally dunng in •·itro 
translation in lysates of rabbit reticulocytes {3). It has also 
been found that group C mutants can be complemented by 
other mutants (22) and that during complementation the 1s2 
polyprotein is apparently cleaved by a diffusible factor (12). 
Finally. during in vitro translation with amino acid analogues 
the cleavage of capsid protem from the polyprotem is 
inhibited (13). The ts lesions at lysine-138 and prollne-218 of 
the capsid protein. which result tn failure of the cleavage to 
occur at the nonpermissive temperature. provide funher 
evidence for autoproteolys1s by the capsid protein and 
presumably implicate these regions in proteolysis. I n •·irro 
translation experiments (25) have shown that cleavage occurs 
when fewer than 100 amino acids of the PE2 protein have 
been translated. indicating that translation of the E2 protein 
is not required for proteolysis. The fact that aspanate-4 of E2 
can be replaced by another amino acid without apparent 
effect on the proteolytic activity (in the Is mutant studied 
here) and aspanate-5 of E2 can similarly be replaced (our 
large-plaque strain ofHR has aspanate-5 replaced by glycine) 
(10) ts cons1stent with this conclusion. Whether sequences 
within the E3 region are involved in any way in the 
proteolysis step is still open. 

Cleavage of the capsid protein occurs after a tryptophan 
res1due. tryptophan-264 of the poly protein precursor. and is 
therefore a chymotryptic-like cleavage. Furthermore, Pfef. 
ferkorn and Boyle (26) have reported that the chymotrypsin 
inhibitor 1-tosylamido·2-phenylethyl chloromethyl ketone 
inhibits this cleavage in infected cells. Because this cleavage 
speclfic1ty is characteristic of serine proteases. we searched 
for possible homology between the highl y conserved COOH­
terminal half of the alphavirus capsid protein and active sites 
of mammalian and insect serine proteases. The results are 
given in Fig. 2 and show that a suggestive homology exists 
between animal serine proteases and alphavirus capsid pro­
teins. The spacings between the components of senne 
proteases that form the active site and the corresponding 
homologous regions of alpha virus capsid proteins are differ­
ent. but the three amino acids that constitute the catalytic 
tnad fhistidine-.57. aspanate-102. and senne-195) and their 
surroundmg amino acids show some homology wtth regions 
in the COOH-terminal half of the capsid proteins. In panlc· 
ular. serine-215 in Sindbis capsid protein is found in the 
sequence Gly-Asp-Ser-Giy. wh1ch is conserved in all the 
serine proteases. as has been previously noted (33) . Although 
the sequence homology is limited. we suggest that histidine-
141. aspanate-147. and serine-215 of the Sindbis capsid 
protein perform the same function during autoprotcolysis as 
histidine-57. aspanate-102. and serine-195. respectively . of 
anima l serine proteases. Funhermore. all three mutants have 
amino acid substitutions within the homologous regions 
between serine proteases and alphavirus capsid proteins 
around these three key residues. rs13 has a change of 
lysme-138 to isoleucine . wh1ch is near the possible charge 
transmitter. histidme-141. ts2 and rs.S have a change of 
proline-218 to serine. which is j usi next to the possible 
catalytic scrine-215. The sites of these mutations suppon the 
hypothesiS that the capsid protein possesses proteolytic 
activity a nd lend suppon to the hypothesis that htstidine-141. 
aspanate-147 . and scrine-215 are active in this proteolysis . 
The hypothesis that these three residues form the catalytiC 
triad of a serine protease should be testable in a number of 
ways: 1n panicular the imponance of these residues for 
proteolysis can be directly tested by site -specific mutagene· 
sis . 

Fig. 3 shows the percentage homology as a moving average 
between the caps1d protems and the E3 protetns of S1ndb1s 
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FtG. 2. Homoloay between the hiahly conserved COOH-tenninal half of the alphavirus capstd proteon and mammalian and insect senne 
protease acuve Sttes. L'pper three Iones . patttal ammo acod sequences of Sindbts virus tSINJ. Semltki Forest vorus tSFl. and Ross R1ver v1rus 
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virus and Ross River virus, which are widely separated 
alphaviruses (34). These two viruses share up to 95% se­
quence homology in 20 amino acid strings in the COOH­
terminal half of the capsid proteins. and overall the COOH­
terminal half of the capsid protetns share 74% amino acid 
sequence homology . The shaded reg10ns indicate the regtons 
of homology with serine proteases and the solid arrows 
indicate the sites of mutation in tsl3 and in ts2 and ts5, 
respectivel y. The very high homology in amino acid sequence 
together with the fact that two of the capsid protein mutants 
represent independent isolates of the same mutation suggests 
that the target wmdow for mutation to temperature sensitivity 
in the capsid protein might be quite narrow. 

Virus-encoded proteases have been described in a number 
of systems. The best studied example is in picomavtruses 
(35), in which a protease acts both as an autoprotease, 
cleavmg itself from a nascent polyprotein. and as a diffusible 

protease. cleaving the precursor of the capsid proteins . 
Proteases have also been described in retroviruses (36) and tn 
adenoviruses (37). and evidence has been presented that 
protein VPl of polyoma virus is a serine protease (38). It ts 
probable that proteases are produced by other virus groups 
as well and that some viruses produce more than one 
protease . Organelle-bound cellular proteases s uch as 
signalase (which appears to be active only within the lumen 
of the endoplasmic reticulum) or a Golgi-associated protease 
that cleaves after double basic amino acids (which appears to 
be active within vesicles transporting proteins to the cell 
surface) appear to be involved in processing many virus 
proteins associated with membranes. such as the Sindbis 
glycoprotetns or other virus glycoproteins (reviewed in ref. 
39). However, we have postulated that in general cleavage of 
viral protein precursors in tht! cy tosol requires virus-encoded 
proteases (15). since no compelling evidence for cellular 
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prohne-206 and asparagtne-222. whoch contaJns the Gly" ' ·Asp-Ser-Giy',. conserved sequence. Arrows ondocate the locauons of the mutations 
on ts2. rs5 . and rs 13. 
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proteases that might perform such a function has been 
reponed. whereas several vtrus-encoded prot eases active in 
the cytosol have been descnbed. as noted above. It seems 
intuitively unlikely that so man)' viruses would have evolved 
their 0 "' n protease acttvities if cellular proteases were readi ly 
available to perform such functions. although more evidence 
is clearly needed to resolve this issue . Finally. the question 
arises as to the evolutionary origin of these viral enzymatic 
activities . The similantles in the capsid protease and the 
animal serine proteases reponed here suggest that these 
proteases may share a common ancestral origm. although 
convergent evolution cannot be ruled out in view of the 
limtted extent of homology found. It has previously been 
found that alphaviruses and cenain plant viruses appear to be 
evoluttonanly related (40. 4 1 ). Smce these plant vtruses 
appear to lack proteases. one possibility is that a proto­
alphavtrus acquired the protease activity after d1vergmg from 
the plant virus line and that the enzyme could have been 
captured from the host cell. 
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Abstract 

The struc tural proteins of Sindbis virus, consist ing of a capsid protein a nd 

two envelope glycoproteins, are translated as a polyprotein precursor that is 

cleaved posttranslationally. The first cleavage event releases the capsid protein 

f rom the N-terminus of this polyprotein in a process believed to be 

aut oproteolytic, and we have previous ly postulated that His-141, Asp- 147 and 

Ser -2 15 of the caps id protein for m a catalytic t riad similar to that found in ser ine 

proteases. To test this hypothes is each of t hese amino acids has been replaced 

with other amino acids using oligonucleotide directed site specific mutagensis . 

Ser -215 has been c hanged to Thr, Ile or Cys; His-141 has been changed to Pro; and 

Asp-147 has been c ha nged to His or Tyr. The effects of these changes were tested 

by placing each of the mutations into a plasmid containing a eDNA copy of the 

Sindbis mRNA encoding the struc tural proteins. RNA was transcribed in vitro 

using T7 RNA polymerase, the RNA translat ed in vitro in a rabbit reticulocyte 

translation system, a nd the extent of cleavage of capsid protein was monitored. 

The c hange of His- 141 to Pro led to complete loss of proteolytic activity . The 

two c hanges at Asp-147 had no detectable e ffect on proteolytic activity in t his 

system, with 100% of the capsid protein be ing released. The c ha nges at Ser-2 15 

had effects that differed with the mutation induced. The change to Cys resulted 

in a loss of only 20% of the protease activity in t his system (that is 20% of the 

polyprote in molecules were not cleaved to produce caps id protein). The c ha nge to 

Thr resulted in the loss of 90% of the activity, whe reas t he change to Ile resulted 

in total loss of proteolytic activity. In a second test for the e ffect of these 

mutations, they were placed in a full- length e DNA copy of Sindbis virus RNA from 

which infectious RNA can be transcribed in vitro. The result ing RNA was found 

to be nonviable , that is no virus could be recovered after RNA transcription, 

indicating t hat a ll of the changes are lethal. This indicates t hat eithe r production 
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of infectious virus is a more sensitive measure of proteolytic activity than the 

in vitro cleavage assay, or that these residues have necessary functions in addition 

to their role in proteolysis. 

INTRODUCTION 

Sindbis virus is a small enveloped RNA vtrus belonging to the genus 

Alphavirus of the family Togaviridae. It consists of a nucleocapsid containing the 

single-stranded viral RNA of positive polarity complexed with a basic capsid 

protein C, surrounded by a lipid bilayer containing the virus-encoded membrane 

glycoproteins E 1 and E2 (Strauss and Strauss, 1976, 1986). The virion structural 

proteins are translated as a single, large precursor polyprotein from a subgenomic 

mRNA, 26S RNA, which forms the 3' terminal one-third of the genomic 49S RNA 

(Simmons and Strauss, 1972; Clegg, 1975). In this precursor polyprotein the capsid 

protein is amino terminal and is followed by glycoprotein precursor PE2, a small 

hydrophobic peptide referred to as 6K, and the second glycoprotein E 1 (Garoff 

et al., 1980a,b; Rice and Strauss, 1981; Strauss et al., 1984). Proteolytic 

processing occurs several times during the processing of this polyprotein precursor 

(Schlesinger and Kaariainen, 1980; Strauss et al., 1987a,b). The first cleavage 

releases the capsid protein from the nascent polyprotein. The remaining 

cleavages occur during insertion of the protein into the endoplasmic reticulum, 

subsequent processing, and transport to the cell membrane. These latter events 

are postulated to be effected by cellular proteases active in subcellular 

organelles. Under conditions in which the glycoprotein precursor is not inserted 

into the endoplasmic reticulum, such as situations in which capsid protein 

cleavage does not occur, or those in which theN-terminal signal sequence fails to 

function, the glycoprotein portion is not further processed. In these cases either a 

complete structural polyprotein (pl38) or the complete envelope protein precursor 
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(p107), r espectively, accumulates in t he cyt oplasm (Strauss a nd Strauss, 1980). 

The c leavage of the capsid protein from the precursor has long been 

postulated to be a n a utoproteolytic event (Simmons and and Strauss, 1974; 

Scupham et al., 1977; Aliperti a nd Schlesinger, 1978; Boege et al., 1981; Hahn 

et al., 1985; Me lancon and Garoff, 1987). We have previously postulated that the 

capsid a utoprotease is a serine a utoprotease whose catalytic t r iad is for med by 

His-141, Asp- 147 and Ser- 2 15 (Hahn et al., 1985), based in part on the location of 

mutations that cause the capsid protein autoprotease to be nonfunctional at the 

nonpermissive temperature, and in part upon amino acid seque nce similarities 

between the sequences a round these three residues and those surrounding the 

amino acids of t he catalytic triads of mammalian and insect serine proteases. To 

t est this hypothesis, we have developed an in vit ro system in which to assay the 

effects of site specif ic mutations introduced into this catalytic tr iad upon 

protease activity. The results are consistent with our original hypothesis that 

these three residues in the caps id protein do in fact form the catalytic t riad of a 

ser ine autoprotease. 

MATERIALS AND METHODS 

General recombinant DNA techniques. Restriction endonucleases a nd 

DNA-modifying enzymes were purchased from commercial sources and used 

essentially as recommended by the manufacturers. P lasmids and phages were 

grown, purified a nd analyzed using standard methods with minor modifications 

(Mania tis et al., 1982). 

Construction of Ml3 recombinant phage. A recombinant phage M13 

containing an Ncol fragment of Sindbis virus e DNA (genomic coordinates 8040 to 

8867, covering t he C- terminal 133 a mino acids of t he capsid protein a nd the N­

terminat 144 amino acids of PE2) was constructed for use as a sit e-specific 
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mutagenesis vehicle. A plasmid containing Sindbis eDNA from the Hindiii site at 

nt 6267 to the 3' poly (A) termed SIN3' and derived from strain HRsp by the 

method described in Lindqvist et al. (1986) and Hahn et al. ( 1985), was digested 

with Ncoi, the resulting fragments were flush-ended by reaction with the Klenow 

fragment of E. coli polymerase 1 and dNTPs, and ligated into Smal digested, 

alkaline phosphatase-treated Ml3 mp19 RF. This results in the regeneration of 

the Ncoi site at both ends of the insert so that this same enzyme can be used to 

remove the insert from the recombinant phage M 13. 

Site-specific mutagenesis. Oligonucleotide-directed site specific 

mutagensis was performed using recombinant phage Ml3 single-stranded DNA as a 

template and synthetic oligonucleotides as a primer essentially as described 

(Shortie et al., 1981; Dalbadie-McFarland et al. 1982; Zoller and Smith, 1984). 

The His-141 to Pro c hange was effected by using as primer 

TCCTTTCACGGGCAGAGGTT, the Asp-147 to His or Tyr was effected using as 

primer ACAGGGTGGT(G,A)GATGGGTTCC, the changes of Ser-215 to Thr or Ile 

effected with GGACGACCG(G,T)TGTCTCCTCT, and the Ser-215 to Cys change 

with GGACGACCGCAGTCTCCTCT. Following mutagenesis the result ing virus 

plaques were screened by plaque lift hybridization with sequentially higher 

stringency washes, using the same primers as were used in the mutagenesis 

reactions as a radiolabelled probe. Mutant plaques were sequenced by the dideoxy 

method using synthetic oligonucleotides as primers (Sanger et al., 1977; Strauss 

et al. 1986). 

Constroction of an in vitro transcription/ translation vector. Plasmid SIN3' 

was partially digested with Avail and the recessed ends filled in with the Klenow 

fragment of E. coli DNA polymerase l and all four dNTPs. The linearized plasmid 

was isolate d following electrophoresis in a low- melting temperature agarose gel, 

t reated with restriction enzyme EcoRl to cut just following the poly(A) tract in 
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the eDNA insert, and the fragme nt of 4811 nucleotides isolated by electrophoresis 

in a low melting temperature agarose gel. This fragment was ligated into vector 

pGEM4 (Promega Biotech), which had been prepared by digestion with restriction 

enzyme Sall, the recessed ends filled in with the Klenow fragment, followed by 

digestion with EcoRI and dephosphorylation with calf intestinal alkaline 

phosphatase. The resulting plasmid was called T7SVSP and was determined to be 

correct by both restriction enzyme analysis and by sequencing the regions where 

the vector and the Sindbis eDNA inse rt were joined. 

Construction of mutagenized pla3mids. The 847 nucleotide Nco! fragment 

of T7SVSP was replaced with the corresponding fragments from mutagenized 

recombinant phage Ml3 mp19 RF. The orientation of the Nco! insert in the 

substituted T7SVSP was analyzed by restriction enzyme analysis. 

In vitro transcription and translation. Large-scale preparations of plasmid 

T7SVSP and its mutagenized derivatives were purified by isopycnic centrifugation 

twice in CsCl. The purified plasmids were linearized by digestion with EcoRI, 

which cuts just past the poly(A) tail of the Sindbis eDNA insert, and the linearized 

plasmids used as templates for run-off transcription with T7 RNA polymerase. 

The reaction mixture contained 40 mM Tris-Cl (pH 8.0), 8 mM MgCl, 25 mM NaCl, 

2 mM spermidine-HCl, 5 mM dithiothreitol, 1 mM each of the four NTPs, and 

10-50 llg/ml of linearized DNA template. To increase the efficiency of the 

trans lation, a cap analog was present at 1 mM during transcription. The RNA was 

isolate d from the transcription mixture by phe nol-chloroform extraction followed 

by ethanol precipitation, and translated in vitro in a rabbit retic ulocyte 

trans lation system (Promega Biotech) for 1 hr at 30°C as described by the 

manufacture r, in the presence of [35s]methionine. The resulting trans lated 

polypeptides were analyzed by e lectrophoresis in 1596 50S-containing 

polyacrylamide gels. 
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Test of the effects of the mutations on RNA infectivity. The 827 

nucleotide Ncoi fragment from mutagenized recombinant MlJ mp19 RF was 

excised by Ncoi digestion a nd inserted into Neal-digested SIN3'. The orientation 

of the insert was checked by restriction an1aysis and plasmids containing an insert 

in the correct orientation were cleaved with restriction endonucleases Hpal and 

BssHII, which cleave unique sites in the Sindbis virus genome. The corresponding 

region of a full- length eDNA clone of Sindbis, Totoll01 (Rice et al., 1987), from 

which infect ious RNA can be transcribed in vitro with SP6 RNA polymerase, was 

replaced with this mutagenized Hpal- BssHII fragment. The resulting clones were 

checked by dideoxy sequencing for the presence of the predicted mutation. RNA 

was transcribed in vitro and used in trans fect ion assays as previously describe d 

(Rice et al., 1987; Lustig et al., 1988). 

RESULTS 

Processing of the structural protei.n3 in vitro. The process ing of the Sindbis 

struc tural proteins in vitro was s tudied using in vitro transcription and translation 

systems. The Sindbis structural proteins are trans lated in vivo from a 265 

subge nomic mRNA which is 4106 nucleotides in length exclusive of the 3' t e rminal 

poly(A) tract. Translation of this mRNA in vitro has been shown to result in 

production of capsid protein and of other structural proteins (Simmons and 

Strauss, 1974; Garoff et al., 1978). We constructed a plasmid expression vector 

which contained the 26S RNA region of Sindbis virus inserted next to a T7 RNA 

polymerase promoter (Fig. 1a). Transcription in vitro of the resulting plasmid, 

named T7SVSP, produces an RNA transcript which has 40 nuc1eotides extra at the 

5' end (derived from the plasmid vector) and 3 nucleotides extra fo llowing the 

poly(A) tract, but which is otherwise identical to 26S mRNA (Fig. lb). Translation 

of this in vitro transc ribed RNA in a rabbit reticulocyte system gives a pattern of 
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Fig. 1. Constructs and procedures for t ranscription and translation 

in vitro. A) Construction of the vector for in vitro transcription with T7 RNA 

polymerase of the structural protein genes (T7SVSP). B) Outline of the procedure 

for in vitro transcription and translation. Abbreviations: C lAP, calf intestinal 

a lkaline phospha t ase. 
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proteins synthesized which is indistinguishable from that translated from 26S 

mRNA isolated from infected cells (data not shown). Proteins produced in vitro 

include the capsid protein (32,000 daltons) and polypeptide pl08 which contains 

the sequences of the envelope protein region (PE2, 6K, and E 1) (data not shown, 

but see below and Simmons and Strauss, 1974). This in vitro system does not 

contain membranes and thus the p108 polypeptide cannot be inserted or processed 

and accumulates after translation. Besides these two proteins there are a few 

minor bands present which are probably premature termination products, perhaps 

due to termination in the hydrophobic domains in the C-terminus of E2 and the 

internal signal sequence in the 6K protein region. 

In vitro translation of mutagenized RNA. We have previously identified 

three amino acid changes in the Sindbis virus capsid protein that result in a 

nonfunctional capsid autoprotease at 40°C (Hahn et al., 1985; Strauss et al., 

1987a). From the position of these mutations and sequence similarities between 

alphavirus capsid proteins and serine proteases from mammals and insects, we 

proposed that the capsid protein autoprotease possessed a catalytic triad similar 

to serine proteases (Hahn et al., 1985). The three amino acids of the catalytic 

triad are diagrammed schematically in Fig. 2 together with changes that we 

effected in the sequence by oligonucleotide directed site specific mutagenesis. 

These changes were inserted into the expression vector T7SVSP, and mutant 

mRNA produced by in vitro transcription (Fig. 1b). This RNA was then translated 

in vitro, using the same amount of RNA in each reaction, in a rabbit reticulocyte 

translation system, and the resulting polypeptides were analyzed by SDS­

polyacrylamide gel electrophoresis. The results are shown in Fig. 3. The 

translation products from wild-type RNA show complete cleavage of the 

polyprotein precursor to capsid protein and p108, as do those from the two 

mutations introduced at Asp-147. The change introduced at His-141 abolishes all 
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Fig. 2. Summary of alterations made by site-directed mutagenesis. Both 

amino acid and nucleotide changes are shown on a map of the capsid protein drawn 

to scale. The locations of His-141, Asp-147, and Ser-215 are indicated by vertical 

bars. Domains of the capsid protein which share amino acid sequence similarity 

with cellular serine proteases are shaded. The cleavage site between the capsid 

protein and glycoprotein PE2 is also shown. The location of four ts mutants which 

fail to cleave the capsid protein at the non-permissive temperature are also 

indicated (Hahn et al., 1985; Strauss et al., 1987a). 
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Fig. 3. SDS polyacrylamide gel analysis of in vitro translation products 

from in vitro transcripts of T7SVSP and its mutants. Outside lanes (Co) contain 

the products of in vitro translation of total brome mosaic virus RNA, and their 

molecular weights are indicated at the left. Lane 1 contains transcripts from 

T7SVSP (wild type HRSP). In lanes 2, 3, and 4, Ser-215 (S) has been changed to Ile 

(1), Thr (T), or Cys (C), respectively, in the plasmids used for transcription and 

translation. Similarly, in lane 5 His-141 (H) has been replaced with Pro (P), and in 

lanes 6 and 7 Asp-147 (D) is replaced with His (H) and Tyr (Y). The amount of 

RNA used was normalized before in vitro translation. The positions of capsid (C), 

p108 (the polypeptide containing the sequences of E3, E2, 6K, and E1), and p137 

(the complete translation product containing C and p108 sequences) are indicated 

at the right. The extra bands located between capsid and p108 are probably due to 

premature termination occurring at the stretch of hydrophobic amino acids 

located at the C-terminus of glycoprotein E2 and within the 6K protein. 



P110-
P97 -

P35-

P20-

49 

S H D 

----1....--* * _j_ 
Co Wt I T C P H Y Co 

- P137 

- P108 

-C 



50 

protease activity in this reaction. The changes introduced at Ser-215 lead from 0 

to 80% cleavage. These results are summarized in Fig. 4. The effects of changing 

His-141 and Ser-215 are clearly consistent with the hypothesis that these residues 

are part of the active site of the protease. The results at Asp-147 are 

ambiguous. Either this amino acid is not important for proteolysis, or if it is, the 

residual protease activity is sufficient to lead to complete cleavage under the 

assay conditions used (see also below). This latter possibility seems quite possible 

in view of the fact that substitution of Ser-215 by Cys results in reduced but 

detectable proteolytic activity in this system (Fig. 4). 

Effect of the mutations on virus infectivity. The four ammo acid 

substitutions for which at least some proteolytic activity was detectable in vitro, 

namely Asp-147 to His or Tyr, and Ser-215 to Cys or Thr, were tested for their 

effect upon viability of virus. A restriction fragment containing the changed 

nucleotide was used to replace the corresponding restriction fragment in a full­

length eDNA clone of Sindbis virus, TotollOl, from which infectious RNA can be 

transcribed in vitro (Rice et al., 1987). RNA was transcribed from the plasmids 

and tested for its infectivity in secondary chicken embryo fibroblast cells at both 

30°C and 40°C. No infectious virus could be recovered after transfection with 

RNA from any of these mutants (Fig. 4), although controls in the same experiment 

using RNA from TotollOl were positive. Thus these mutations, although retaining 

all or some proteolytic activity as assayed in vitro, a re lethal for the virus. 

DISCUSSION 

We have tested the hypothesis that His-141, Asp-147 and Ser-215 of the 

Sindbis virus capsid protein form the catalytic triad of a serine autoprotease by 

substituting other amino acids for these residues. The results strongly support the 

hypothesis that His-141 and Ser-215 are important for proteolysis. In the case of 
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Fig. 4. Summary of protease activity and viability of capsid mutants. 

Percent cleavage is defined as the amount of capsid protein cleavage that occurs 

during in vitro translation. Quantitation was performed by densitometry of 

autoradiographs such as in Figure 3, and the amount of radioactivity in capsid 

protein for the various mutants was compared with that for wild type RNA (taken 

as 100% cleavage). Each mutant with demonstrable capsid cleavage was inserted 

into a eDNA clone of Sindbis virus, TotollOl, from which infectious RNA can be 

transcribed in vitro, RNA was transcribed, and an attempt was made to rescue 

virus by RNA transfection. All of these attempts were negative (-). NT (not 

tested) indicates that virus rescue was not attempted from mutants in which no 

cleavage could be detected. 
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these two amino acids any substitution led to decreased proteolytic activity 

in vitro and were lethal for the virus. We have previously shown that a change of 

Lys-138 to Ile, three residues removed from His-141, or a change of Pro-218 to 

Ser, three residues removed from Ser-215, results in a temperature sensitive 

protease (Fig. 2 and Hahn et al., 1985), and Melancon and Garoff (1987) have 

shown that insertion of Arg adjacent to Ser-215 results in an inactive protease. 

There is also sequence similarity between animal serine proteases and alphavirus 

capsid proteins around Ser-215 (Boege et al., 1981) as well as around His-141 

(Hahn et al., 1985). Thus there is evidence from many sources that His-141 and 

Ser-215 form in fact part of the active site of the capsid protein. 

The results at Asp-147 were less clear cut. Changes at this residue were 

lethal to the virus, but proteolytic activity assayed in vitro appeared unchanged. 

However, the cleavage event in this polyprotein precursor is different from other 

systems that have been studied in the past, in that the cleavage event is self­

cleavage. The nascent protein takes up a conformation as it is being synthesized 

that presumably brings together the active site and the bond to be cleaved, and 

cleavage is thought to be virtually instantaneous. Thus even if the cleavage rate 

were slowed by several orders of magnitude proteolysis might still occur in the 

in vitro system at some time during translation. On the other hand, a reduced 

catalytic rate could lead to abortive processing of the structural polyprotein 

precursor. If the capsid moiety were not removed rapidly enough, the signal 

sequence at the N-terminus of PE2 could fail to function to insert the 

glycoprotein precursor into the endoplasmic reticulum, and if so the glycoproteins 

would not be modified, cleaved or transported to the site of virus budding, with 

the result that no virus would be produced. It is, of course, also possible that 

these mutations are lethal for reasons other than their effect on autoproteolysis. 

The capsid protein does have other essential functions in virus replication and 
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assembly which may be adversely affected. Further studies on the effects of 

these mutations in vivo will be useful to decide among these alternative 

explanations for the lethal phenotype. 

There are two families of serine proteases known that have a catalytic 

triad consisting of an aspartic acid, a histidine and a serine; the first is 

represented by mammalian and insect serine proteases and the second by bacterial 

subtilisin. Studies of these enzymes using chemical (Neet and Koshland, 1966) or 

site-specific mutagenesis (Craik et al., 1987; Carter and Wells, 1987, 1988) has 

shown that changes at any of these three amino acids have dramatic effects upon 

proteolytic activity. Craik et al. (1987) found that when the active site Asp-102 

of rat trypsin was replaced by Asn, the catalytic activity decreased to 10-4 to 

6x 1 o-2 of the wild type rate, depending upon the pH. More extensive studies of 

the amino acids in the catalytic triad of subtilisin were reported by Carter and 

Wells (1988). A change of Asp-32 to Ala led to a decrease in the activity to 

4xl0-5 of the wild type rate, whereas changing either Ser-221 to Ala or His-64 to 

Ala resulted in a decrease in activity to 6x10-7• Even in the latter cases, 

however, the catalytic rate was some three orders of magnitude faster than 

proteolysis in buffer alone, suggesting that the mutant protein lacking a functional 

catalytic triad had activity analogous to that of catalytic antibodies (Tramontano 

et al., 1986; Pollack et al., 1986) in which the binding of the protein to the 

substrate enhances proteolysis in aqueous solution by stabilizing transition state 

complexes. 

These results suggest that a change at the Asp in the catalytic triad 

produces a less severe inhibition of activity than do changes at either the Ser or 

His. In the case of the Sindbis capsid autoprotease, if the model is correct, the 

changes induced at Asp-147 could lead to inhibition of catalytic proteolysis by 

several orders of magnitude, but self-cleavage by the molecule could still go to 
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completion during the in vitro translation reaction. In contrast, changes in the Ser 

residue or His residue, which lead to a more extensive inhibition of activity, would 

result in incomplete proteolysis in vitro. The results with Ser-215 are of 

particular interest. Substitution of Cys for Ser resulted in 80% cleavage, and it 

seems reasonable to assume that the sulfhydryl group of the Cys residue is 

functioning in proteolysis in the same way that the hydroxyl of the Ser functions. 

Substitution of Ser by Cys in other serine proteases has given rise to an enzyme 

which retains some esterase activity but in which the protease activity has been 

lost (Neet and Koshland, 1966). In these assay systems, however, a proteolytic 

rate of less than 10-3 or 10-4 of the activity of the wild type protease would not 

have been detected. Similarly the residual activity from substitution of Ser by 

Thr also suggests that the hydroxyl group of Thr might serve in the nucleophilic 

attack during proteolysis as does the hydroxyl group of Ser, but at a greatly 

reduced rate because of the extra methyl group on the carbon containing the 

hydroxyl group. 
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We have determined that a mutation in glycoprotein E2 of Sindbis virus 

tsl03 is the change that leads to defects in the late stages of maturation and to 

formation of multi-cored particles. The mutant phenotype was mapped to 

glycoprotein E2 by constructing recombinant viruses between the parental strain 

of Sindbis virus and the mutant. To accomplish this, we replaced restriction 

fragments in a full-length eDNA clone of Sindbis virus, from which infectious 

RNA can be transcribed in vitro, with the corresponding fragments from eDNA 

clones of tsl03. Viruses were rescued from these recombinant clones and only 

recombinant viruses containing glycoprotein E2 of tsl03 were phenotypically 

tsl03, forming minute plaques at 30° or 40°, growing slowly to low yield, and 

forming multi-cored particles. Sequence analysis of tsl03 and of its parent (HR) 

showed that there was only one difference in glycoprotein E2 between the two 

strains: a change of alanine to valine at position 344. A partial revertant of 

tsl03, called tsl03R, was also mapped and sequenced. These studies clearly 

showed that tsl03R is a second site revertant in which a change in glycoprotein El 

from lysine to methionine at position 227 partially suppresses the phenotypic 

effects of the change at E2 position 344. The assembly defect in tsl03 appears to 

result from a weakened interaction between the virus membrane glycoproteins and 

the nucleocapsid during budding. Both the E2 mutation leading to the defect in 

virus assembly and the suppressor mutation in glycoprotein El are in the domains 

external to the lipid bilayer, and thus in domains that cannot interact directly 

with the nucleocapsid. This suggests that in tsl03, either the El-E2 heterodimers 

or the trimeric spikes (consisting of three El-E2 hetero--dimers) have an aberrant 

conformation, and thus cannot interact properly with the nucleocapsid. 
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INTRODUCTION 

Sindbis v1rus is a small enveloped RNA virus that belongs to the genus 

Alphavirus of the family Togaviridae. The nucleocapsid of the virus is an 

icosahedral structure (T =3) that contains the single stranded RNA of 11.7 kb 

complexed with 180 copies of a 30,000 dalton capsid protein. During the final 

stages of virus assembly, the nucleocapsid, assembled in the cytoplasm, buds 

through the plasma membrane to acquire an envelope consisting of a lipid bilayer 

containing two virus encoded integral membrane glycoproteins, E2 and E 1. In the 

final virion structure, 240 copies of E 1 and E2 are present in the membrane in an 

icosahedral array (T =4). Each external spike of the virus consists of a trimer of 

E1-E2 heterodimers, and these spikes and the nucleocapsid fit together in a 

precise fashion (Fuller, 1987). The precision of virus assembly and rigid exclusion 

of nonviral proteins from the virus (Strauss, 1978) has led us and others to 

hypothesize that there is a specific interaction between the glycoproteins and the 

nucleocapsid that furnishes the free energy required to drive virus budding. 

Mutant tsl03 was isolated more than a decade ago following mutagenesis 

with nitrous acid (Strauss et al., 1976). It is a minute plaque former which grows 

slowly at any temperature and produces, under optimal conditions, virus yields of 

3-10% of those of the parental HRSP strain of Sindbis virus (Strauss et al., 1977). 

Following tsl03 infection, RNA synthesis and protein synthesis as well as 

nucleocapsid formation are virtually indistinguishable from those following 

infection by the parental strain of virus, and the very slow rate of tsl03 virus 

production appears to be due to a defect in the final stages of virus maturation, 

the budding of nucleocapsids through the capsid membrane to produce the 

infectious virus. Electron microscopy of ts 103 infected cells reveals the presence 

of large numbers of nucleocapsids apparently in the process of budding. Yet the 

release of mature virus is delayed and the final yield of virus is reduced. 
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Examination of the released virions by sedimentation velocity centrifugation or by 

electron microscopy showed that many virus particles contain from 2 to 5 or more 

nucleocapsids in a single envelope (Strauss et al., 1977). Thus the interactions of 

the nucleocapsids with the glycoproteins appear to be weak, leading to a slow rate 

of virus assembly and to the formation of aberrant virions. 

Here we report the sequence of the entire structural protein regton of 

ts103 and of a partial revertant tsl03R, and a comparison of these sequences with 

that of the parental HRSP strain. In addition we have mapped the location of the 

mutation resulting in the ts 103 phenotype by constructing recombinant viruses 

between ts103 and HRSP, using a eDNA clone of the HR strain of Sindbis virus 

from which infectious RNA can be transcribed in vitro (Rice et al., 1987), and in 

this way shown that the ts103 phenotype maps to a change in glycoprotein E2. 

MATERIALS AND METHODS 

Cells and viruses 

Culturing of chicken embryo fibroblast cells, infection with Sindbis virus, 

and plaque assay were as previously described (Pierce et al., 1974; Strauss et al., 

1976), with the exception that in all experiments, 1 to 1.2% agarose was used for 

overlay during plaque formtion (Strauss et al., 1977; Rice et al., 1987). Isolation 

of mutant tsl03 and of the revertant tsl03R have been previously described 

(Strauss et al., 1976, 1977). 

Virus purification and isolation of RNA 

ts 103 and ts 1 03R were grown in primary chick embryo fibroblast cells in 

hypotonic saline for 10 to 20 hours and virus was harvested in hypertonic saline as 

described (Pierce et al., 1974; Strauss et al., 1977). Virus was purified and RNA 

extracted as previously described (Rice and Strauss, 1981). 
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Isolation of eDNA clones 

Clones containing the 3' terminal 5438 nucleotides [plus a variable length of 

poly(A)] of the genomes of ts103 and of ts103R were obtained by using aT-tailed 

plasmid vector for first strand synthesis as previously described (Lindqvist et al., 

1986; Hahn et al., 1985). A library of eDNA clones representing the rest of the 

genome was obtained by using calf thymus random primers for first strand 

synthesis and EcoRI linkers to clone the double-stranded eDNA into a plasmid 

vector essentially as described (Okayama and Berg, 1982; Rice et al., 1988). To 

identify clones containing inserts representing the 5' end of the genomes, colonies 

were probed with a radiolabeled RNA consisting of the 5' terminal 500 nucleotides 

of Sindbis virus HRSP, derived by transcribing RNA in vitro from clone Toto1101 

(Rice et al., 1987). 

Sequence analysis 

Sequence of ts103 and of ts103R was obtained by the chemical sequencing 

methods of Maxam and Gilbert (1980) as modified by Smith and Calvo (1980). 

Most of the sequence of the structural region of tsl03 and ts103R was obtained 

from sequencing of single stranded eDNA restriction fragments produced by Haeiii 

digestion (Rice and Strauss, 1981; Arias et al., 1983). This method has the 

advantage that a consensus sequence is immediately obtained. These results were 

confirmed and extended by sequencing of eDNA derived from plasmid clones as 

previously described (Strauss et al., 1984). To confirm the nature of recombinant 

viruses produced from construction of hybrid genomes, certain regions of the 

recombinant virus genomes were sequenced by direct RNA sequencing, using 

reverse transcriptase, synthetic primers, and RNA templates as described 

(Zimmern and Kaesberg, 1978). 
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General recombinant DNA techniques 

Restriction endonucleases and DNA modifying enzymes were purchased 

from commercial sources and used essentially as recommended by the 

manufacturers. Plasmids were grown, purified, and analyzed using standard 

methods with minor modifications (Maniatis et al., 1982). 

Construction of recombinant viruses 

Hybrid genomes were constructed by replacing restriction fragments in 

Sindbis eDNA clone TotollOl or Toto50 (Rice et al., 1987) with the corresponding 

regions from eDNA clones derived from either tsl03 or tsl03R. Details of the 

restriction sites used are given in the figure legends. Virus was rescued from 

these recombinant clones essentially as described (Lustig et al., 1988) and the 

virus tested for its biological properties. 

Analysis of virus stocks for multi-cored particles 

Viral RNA was labeled with [3H] uridine during replication, and 1 to 4 ml of 

the high salt harvest from a 100 mm tissue culture plate was layered on to a 10 ml 

sucrose gradient (15 to 30% w/v sucrose in 200 mM sodium chloride, 50 mM tris 

pH 7.4, 1 mM EDTA). Centrifugation was at 5°C for 80 to 90 min at 27,000 RPM 

or 50 to 60 min at 36,000 RPM in a Beckman SW40 or SW41 rotor. The gradients 

were fractionated and assayed for radioactivity in a liquid scintillation counter. 

RESULTS 

Sequence analysis of the structural proteins of tsl03 and tsl03R. 

Since tsl03 has a defect in the assembly of virions, it seemed probable that 

the mutation would lie in one of the structural proteins. To start, the entire 

structural protein region of the genomes of tsl03 and of tsl03R were sequenced 

and compared to the sequence of the parental HRSP strain. Most of the sequence 
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was obtained by direct sequencing of first strand eDNA after digestion with Haem 

(Rice and Strauss, 1981) which gives directly the consensus sequence in the RNA 

population. These sequencing results were confirmed and extended by sequencing 

of eDNA clones of tslOJ and tsl03R. The results are shown in Fig. 1. 

There were no changes in the 5' or 3' nontranslated regions flanking the 

structural protein region, and there were no coding differences in the capsid 

proteins of the viruses (although there was a silent change in the second codon of 

the capsid protein, AAU + AAC, in tsl03 and tsl03R). In the remainder of the 

structural region, there was only a single change between HRSP and tsl03, a C to 

U change at position 9661 leading to the substitution of Ala-344 in the E2 

glycoprotein in HRSP by Val in tsl03 (GCC + GUC). tsl03R was found to contain 

Val-344, as did tsl03, but contained one additional change in E2 and two 

differences in the El region from both tsl03 and HRSP. These were changes of 

nt9330 from A to U (leading to the substitution of Thr-234 in E2 by Ser), of 

ntl0744 from A to U (leading to the substitution of Lys-227 in El by Met) and of 

ntl0848 from G to U (leading to the substitution of Ala-262 in El by Ser). These 

data indicated that if, in fact, the assembly defect of tsl03 was due to a change 

within the structural protein region, that change must be the Ala to Val change at 

position 344 of E2, and that the partial revertant isolated was a second site 

revertant, presumably involving one or more of the changes in either glycoprotein 

E2 or El. 

Localization of the mutation responsible for the tsl03 phenotype 

In order to map the location of the change responsible for the tsl03 

phenotype, recombinant viruses were constructed. Sindbis virus eDNA clones 

TotollOl and Toto50 contain complete eDNA copies of Sindbis virus inserted 

downstream from an SP6 RNA polymerase promoter, and infectious RNA can be 

transcribed from these clones in vitro (Rice et al., 1987). Hybrid eDNA clones 
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Fig. 1. Sequence differences between HRSP, ts103, and ts103R in the 

glycoprotein region. A schematic diagram of the glycoprotein region of the 

Sindbis genome is shown with the location of certain restriction enzymes sites. 

Nucleotide coordinates are numbered from the 5' end of the RNA according to 

Strauss et al. (1984). Below are shown sequencing schematics of HRSP (Strauss et 

al., 1984), ts 103, and ts 1 03R. Where differences in any of the strains occur, 

nucleotides are shown above the line together with the nucleotide coordinate, and 

the encoded amino acids are shown below the line, using the single letter code, 

together with amino acid position numbered from the amino terminus of 

glycoprotein E2 or of glycoprotein E 1. 
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were constructed by replacing restrictio fragments within one of these clones 

with the corresponding sequences from eDNA clones of ts103 or ts103R. RNA was 

transcribed from the recombinant clones and transfected onto secondary chick 

embryo fibroblast cells. Monolayers were incubated at 30°C and virus was 

harvested when the cells showed a full cytopathic effect. The parental HR strain 

or phenotypically wild-type recombinants required about 72 hr for this, whereas 

ts103 took up to 6 days. Monolayers were also incubated at 30°C or 40°C under 1 

to 1.2% agarose for plaque assay. The constructs tested are diagrammed in Fig. 2, 

which also includes the coordinates of the restriction sites used to make the 

hybrid genomes. Note that in each case most of the viral sequences are derived 

from clone Toto1101 with small, contiguous elements derived from ts103. For 

simplicity these various constructs and the viruses rescued from them will be 

referred to as 103A through 103F as indicated in Fig. 2. 

The phenotypes of each of the six recombinants illustrated in Fig. 2 are 

shown in Fig. 3. The plaque size of 103A at 30°C and of 103B and 103C at both 

30° and 40° were indistinguishable from that of Toto1101 virus. Recombinants 

1030, 103E, and 103F showed minute plaques at both 30°C and 40°C, as does 

ts103. Furthermore, the size of virus plaques correlates with the kinetics of virus 

release and with the formation of multi-cored particles. Virus from 103A, 103B 

and 103C have the same growth rate as that from Toto1101, whereas ts103 and 

recombinants 1030, 103E, and 103F have a very slow kinetics of virus release. 

Similarly, tests for the production of multi-cored particles by sucrose gradient 

sedimentation showed that virus from Toto1101 or from 103A, 103B, and 103C 

gave a single sharp virus peak sedimenting at 280 S. In contrast, ts1 03 and 

recombinant 1030 showed multiple peaks of virus sedimenting between 280 S and 

700 S (recombinants 103E and 103F were not tested). Since recombinants 1030, 

103E, and 103F share only the E2 region of ts103, we conclude that glycoprotein 
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Fig. 2. Construction of Sindbis virus genomes recombinant between HR 

virus and tsl03. Restriction fragments in Sindbis virus eDNA clone TotollOl 

(Rice et al., 1987) were replaced with the corresponding fragments from eDNA 

clones of tsl03 (indicated by the diagonal hatching). The restriction sites used for 

these constructs and their coordinates in the viral genome are indicated. These 

constructs were named 1 03A, 1 03B, etc. in the approximate order, from 5' to 3' in 

the genome, in which sequence was derived from tsl03, as indicated. 
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Fig. 3. Functional assay of recombinant viruses. The recombinant viruses 

rescued from the constructs shown in Fig. 2, together with virus rescued from 

clone TotollOl and virus tsl03, were tested for plaque size at 40°C and at 30°C, 

for the growth kinetics of the virus, and for the formation of multi-cored particles 

by sucrose gradient velocity sedimentation (NT = not tested). 
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E2 from ts103 is necessary and sufficient to obtain the ts103 phenotype, and that 

the plaque-size, growth pattern, and production of multi-cored particles are all 

due to the same mutation, namely the substitution of Ala-344 in E2 by Val (Fig. 1). 

Second site reversion in ts103R 

The partial revertant ts103R was found to be intermediate in phenotype 

between tsl03 and HR, in terms of virus release, production of multi-cored 

particles and plaque morphology. Since tsl03R possesses Val-344 in E2, as does 

ts103, the altered phenotype must be due to partial suppression of this mutation 

by a second site mutation. To confirm this, a recombinant virus between 

Toto1101 and ts103R was made corresponding to construct 1030 of Fig. 2. This 

recombinant virus was tested for its biological properties and found to possesses 

the ts103 phenotype, showing that the original ts103 mutation was in fact still 

present and that the suppressing mutation must lie outside the region defined by 

construct 1030, that is, outside the coordinates 6919 to 9804 in the viral RNA 

(Fig. 4). 

The location of the suppressor mutation was defined by a second 

recombinant virus tested, recombinant 1 03RF, illustrated in Fig. 4. Recombinant 

103RF had the same phenotype as ts103R, namely it made small plaques (as 

opposed to minute plaques made by ts103) at 40°C and 30°C, released virus more 

rapidly than ts103 (but still more slowly than HR), and and made a smaller 

proportion of multi-cored particles. This result shows that the suppressor 

mutation must lie between coordinates 9804 and 10770 (Fig. 4), and thus that the 

suppressor mutation must be the Lys-227 to Met change in glycoprotein E1 

(Fig. 1 ). Note, however, that 1 03RF contains Ser-234 of E2 and, although this 

change alone will not suppress the ts103 mutation (construct 1030), we cannot 

rule out an effect of this change upon suppression, acting in concert with Met-227 

in E1. 
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Fig. 4. Construction of Sindbis virus genomes recombinant between ts103R 

and TotollOl. Restriction fragments in clone Totoll01 (Rice et al., 1987) were 

replaced by the corresponding fragments from eDNA clones of ts103R (indicated 

by the diagonal cross hatching). The restriction sites used and their coordinates in 

the viral genome are indicated. Constructs were named as indicated to the right 

of the figure. Not e that in construct 1 03RD, the same Hpal to BssHII restriction 

fragment of Toto 1101 is substituted from tsl03R eDNA as was used to form 

construct 103D from clones of tsl03, and that the similar case holds for clone 

103RF, which uses a Stu! to Stul restriction fragment. 
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A third recombinant virus, 1 03RE 1, was also constructed and tested. This 

virus contains the E1 region from ts103R with the rest of the genome derived 

from Toto 1101. This recombinant virus formed large plaques (larger than the 

plaques formed by Toto1101 virus), had a normal growth pattern, and did not lead 

to the formation of multi-cored particles. Thus, the suppressor mutation, when 

separated from the ts103 mutation, leads to the formation of large plaques, and 

may be a generalized suppressor that increases the efficiency of virus assembly 

and release in some way. 

Revertant ts103RR 

At the time of the isolat ion of ts103R, since it seemed to be only a partial 

revertant, we attempted to isolate a complete revertant from the tsl03R 

population. One such isolate made large (rather than intermediate) plaques and 

produced no multi-cored particles; this was called tsl03RR. Limited sequence 

analysis of ts103RR has showed that it has Ala-344 at E2 (like HR) so that it is a 

true (same site) revertant. The analysis of ts 1 03RR is not yet complete and it is 

unknown whether it retains the E1 change of ts103R as well. 

Reversion frequency of tslOJ 

During the isolation of revertants from ts103, the reversion frequency was 

found to be less than 10-7 (Strauss et al., 1977). This reversion frequency is quite 

low in view of the fact that the ts103 phenotype is obtained with a single 

nucleotide change in the E2 coding region and partial suppression of this mutant 

can be accomplished by a single nucleotide change in the E 1 region of ts 1 03R. 

Because ts103 was originally isolated following nitrous acid mutagenesis of HRSP, 

it seemed possible that other unmapped changes in the genome might contribute 

to the difficulties in obtaining revertants. We have reexamined the reversion 

frequency of ts 103 by using recombinant 1030 which differs from Toto 1101 by 

only l coding difference, the change in position 344 of glycoprotein E2. Construct 
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Fig. 5. Functional assay of viruses recombinant between TotollOl and 

tsl03R. Assays included plaque size at 30°C and 40°C, growth kinetics, and the 

formation of multi-cored particles as assayed by sucrose gradient velocity 

sedimentation. (NT = not tested.) 
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1030 was plaque purified once and passed at low multiplicity in chick cells. This 

stock was plaqued at 40°C. More than 40,000 plaques were screened and three 

large plaques were obtained, a reversion frequency of 7 X 10-5. This reversion 

frequency is consistent with a single nucleotide change being responsible for 

reversion. These three new revertant viruses, however, all differed in plaque size 

and titer produced from virus from Toto 1101, suggesting that they may all be 

second site revertants and that in each case the suppressor mutation is different. 

From this and from the original reversion frequency found for tsl 03, it appears 

that the tsl03 mutation is very stable and that reversion to the wild- type 

nucleotide occurs at very low frequency. 

DISCUSSION 

We have shown here that the tsl03 phenotype is due to a C-+ U change at 

position 9661 of Sindbis RNA, leading to the substitution of alanine by valine at 

position 344 of glycoprotein E2. A C -+ U transition is consistent with the action 

of nitrous acid, in which C in the viral RNA is deaminated to produce U. A 

substitution of alanine by valine is normally considered to be conservative but in 

this case it leads to dramatic effects upon the function of glycoprotein E2 during 

virus assembly. 

We had originally postulated (Strauss et al., 1977) that the defect in tsl03 

might lie in the nucleocapsid protein because it was found that many 

nucleocapsids isolated from tsl03-infected cells or from multi-cored virions 

sedimented more slowly that did those isolated from wild-type virions or from 

wild-type infected cells. More recent results from another laboratory, however, 

have shown that there is an immature form of the nucleocapsid that sediments 

more slowly, which upon maturation becomes a more rapidly sedimenting form 

(Coombs et al., 1984). Thus, the finding here that the nucleocapsid protein of 
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ts103 is identical to that of wild-type virus suggests that the nucleocapsids in 

tsl03 infected cells, or many of the nucleocapsids in multi-cored particles, are, in 

fact, immature forms that are not triggered to assume the mature form because 

of deficiencies in virus assembly. 

It is believed that during virus assembly the cytoplasmic domains of the 

glycoprotein interact with the nucleocapsid to drive virus budding and to produce 

the precisely assembled virion. The fact that the tsl03 mutation is in a domain of 

glycoprotein E2 external to the lipid bilayer means that the weakened interactions 

between the glycoproteins and the nucleocapsid proteins are not the results of 

changes in the domains of these two proteins that interact directly. Instead, it 

suggests that the El-E2 heterodimer forms improperly in tsl03, due either to a 

change in the conformation of E2 itself induced by the amino acid substitution at 

position 344 or due to steric hindrance, if this altered amino acid is a contact 

residue essential for heterodimerization. In either case, the changed 

conformation could affect assembly of the spikes (each made up of 3 dimers) 

rather than the assembly of the El-E2 dimer itself. In any event, the mutant 

spike unit has a suboptimal geometry and fails to interact properly with the 

nucleocapsid, leading to defective assembly of virions. 

We have also shown here that the mutation in tsl03 can be partially 

suppressed by a change of Lys-227 to Met in glycoprotein El. In some way this 

change in El can compensate in part for the change in E2. One possibility is that 

Ala-344 of E2 and Lys-227 of El are contact residues in El-E2 dimer formation, 

and that the two changes partially compensate for one another. A second 

possibility is that the altered conformation of E2 induced by Val-344 is partially 

compensated by an altered conformation of El induced by the Met-227. A third 

possibility is that the change in El increases the stability of glycoprotein El-E2 

interactions or the affinity of the spike for the nucleocapsid during budding. We 
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favor this third possibility because of the finding that the change in El, when 

separated from the tsl03 mutation, leads to an increase in plaque size of the 

virus, suggesting that the change in El has a generalized effect rather than being 

specific for the tsl03 mutation. Moreover, the tsl03R mutation only moderates 

the tsl03 phenotype rather than specifically suppressing it, suggesting a general 

effect. 
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Chapter 4 

Molecular Basis of Sindbis Virus Neurovirulence in Mice 

This chapter is in press in the Journal of Virology. 
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Abstract 

We have examined a variety of strains of Sindbis virus for the genetic 

changes responsible for differences in neurovirulence for mice. A low passage of 

the AR339 strain of Sindbis virus (SV), a neuroadapted Sindbis virus (NSV), and two 

laboratory strains of Sindbis virus (HRSP and TotollOl) were examined. NSV 

causes a severe encephalomyelitis with hind limb paralysis and high mortality 

after intracerebral inoculation in weanling mice. In contrast, SV causes only mild, 

nonfatal, disease in weanling mice; however, in suckling mice SV causes a fatal 

encephalomyelitis after either intracerebral or subcutaneous inoculation. The two 

laboratory strains used have greatly reduced neurovirulence for suckling mice and 

are avirulent for weanling mice. The nucleotide sequences and encoded amino 

acid sequences of the structural glycoproteins of these four strains were 

compared. Hybrid genomes were constructed by replacing restriction fragments 

in a full-length eDNA clone of Sindbis virus, from which infectious RNA can be 

transcribed in vitro, with fragments from eDNA clones of the various strains. 

These recombinant viruses allowed us to test the importance of each amino acid 

difference between the various strains for neurovirulence in weanling mice and 

suckling mice. Glycoproteins E2 and El were of paramount importance for 

neurovirulence in adult mice. Recombinant viruses containing the nonstructural 

protein region and the capsid protein region from an avirulent strain and the E1 

and E2 glycoprotein regions from NSV were virulent, although less virulent than 

NSV. Furthermore, changes in either E2 (His 55 in NSV to Gln in SV) or in E 1 (Ala 

72 in NSV to Val in SV and/or Asp 313 in NSV to Gly in SV) would reduce 

virulence. For virulence in suckling mice we have found that a number of changes 

in E2 and E1 can lead to decreased virulence and, in fact, a gradient of virulence 

exists. 
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Introduction 

Sindbis virus ts the type species of the genus Alphavirus in the family 

Togaviridae. It is among the least pathogenic of the alphaviruses, which include 

such important pathogens as Eastern, Western, and Venezuelan equine encephalitis 

viruses (10). In nature, Sindbis virus is transmitted by mosquitoes and its 

vertebrate hosts are usually birds or mammals (41). The viral genome is a plus 

stranded RNA of 11,703 nucleotides. In the virion it is complexed with a capsid 

protein C to form an icosahedral nucleocapsid that is surrounded by a lipid bilayer 

in which two integral membrane glycoproteins, E2 and El, are embedded 

(reviewed in 40). Both El and E2 are anchored in the membrane by a conventional 

C-terminal hydrophobic anchor, and are closely associated with each another as a 

heterodimer that probably forms during synthesis of the glycoproteins (28,31 ). 

This heterodimer is believed to be the functional subunit, and three heterodimers 

are associated to form a trimeric spike in the virus (8). The spike is the structure 

that binds to susceptible cells to initiate infection, and also possesses neutralizing 

epitopes. 

Sindbis virus infection of mice has been studied as an experimental model 

of acute viral encephalitis (9,14). Wild-type Sindbis virus (AR339 strain) causes a 

fatal encephalitis in suckling mice and a nonfatal encephalitis in 4 week old 

weanling mice (15). A strain of Sindbis virus that is highly lethal for weanling and 

adult mice was isolated after six intracerebral (IC) passages of wild-type Sindbis 

strain AR339 (SV) alternating between suckling and weanling mice (11). This 

neuroadapted strain of Sindbis (NSV) has been genetically stable after many 

passages in cell culture. NSV replicates 10-50 fold more efficiently in the brain of 

mice than SV and its IC 50% lethal dose is 2-20 pfu in weanling mice. After IC 

inoculation with NSV weanling mice become ruffled, develop kyphoscoliosis and 

hind limb paralysis and have a high mortality (11,12). There is a poliomyelitis, 
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particularly involving the ventral horns, in the thoracic and lumbar spinal cord 

(12). Stanley et al. (36) demonstrated that some anti-Sindbis virus E 1 and E2 

monoclonal antibodies discriminate between NSV and SV, suggesting that changes 

in the surface glycoproteins may be associated with changes in virulence. 

Olmsted et al. (21,22) have selected Sindbis virus variants in vitro that are 

attenuated in suckling mice. Thus, strains of Sindbis virus can be essentially 

avirulent for mice of all ages, or virulent for suckling mice but avirulent for 

weanling mice, or virulent for mice of all ages. 

Recently a complete eDNA clone of Sindbis virus has been constructed 

from which infectious RNA can be transcribed in vitro with SP6 RNA polymerase 

(29). This has made it possible to map changes between the various strains of 

Sindbis virus which lead to differences in virulence in mice, an approach similar to 

that used by Kohara et al. (16) to map virulence determinants in poliovirus. 

MATERIALS AND METHODS 

Virus stocks, preparation of virus and viral RNA. Sindbis virus wild-type 

AR339 strain (a low passage stock obtained from the American Type Culture 

Collection and referred to herein as SV) and neuroadapted Sindbis virus (NSV) were 

grown and titred on monolayers of primary and secondary chick embryo fibroblasts 

(CEF) as previously described (37). Virus was precipitated from the culture fluid 

with polyethylene glycol and purified by successive velocity sedimentation and 

equilbrium density centrifugation (24). The isolation of viral RNA was as 

described (30). 

eDNA cloning. eDNA synthesis followed essentially the procedure of 

Okayama and Berg (20) as modified by Lindqvist et al. ( 17). A plasmid vector 

referred to as proteus 1 was tailed with dT (40-60 residues) and used as primer for 

first strand eDNA synthesis. Second strand synthesis then used E. coli DNA 
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polymerase I, E. coli RNase H and E. coli DNA ligase. After second strand 

synthesis the double stranded DNA was cut with Hindiii and ligated intra­

molecularly. The resulting clones have an insert of 5438 nucleotides [plus a 

variable length of poly(A)] and contain the entire structural protein coding region 

of Sindbis virus. 

General recombinant DNA techniques. Restriction endonucleases and DNA 

modifying enzymes were purchased from commercial sources and used essentially 

as recommended by the manufacturer. Plasmids were grown, purified and 

analyzed using standard methods with minor modifications (18). 

Construction of hybrid genomes. Hybrid genomes were produced by 

replacing restriction fragments in Sindbis clone Toto1101 or Toto50 (29) with the 

corresponding regions from eDNA clones derived from NSV, with eDNA from 

strain SV, or with eDNA from a clone of Sindbis virus HRSP strain. Details of the 

restriction sites used are included in the figure legends. Virus was rescued from 

these recombinant clones and tested for its biological properties. 

In vitro transcription and RNA transfection. RNA transcripts were 

synthesized as described (29). Briefly, either supercoiled plasmid templates or 

plasmid DNAs which had been digested with an appropriate restriction 

endonuclease to produce a run-off transcript were transcribed in vitro by SP6 

RNA polymerase in 40 mM Tris-Cl, pH 7 .6, 6 mM MgCl, 2 mM spermidine, 1 mM 

ATP, CTP, GTP, UTP, 100 JJg/ml nuclease-free bovine serum albumin, 5 mM DTT, 

1 mM m7 G(5')ppp(5')G cap analogue, 500 U/ml human placental RNase inhibitor, 

400 U/ml SP6 polymerase, and 10-100 JJg/ml template DNA. Quantitation of the 

RNA transcript was effected by including a trace amount of [32P] CTP in the 

reaction and counting an aliquot of the product after adsorption to Whatman DE81 

paper. Confluent monolayers of secondary CEF in 35 mm tissue culture plates 

(about 106 cells) were transfected with the resulting RNA. After washing once 
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with Eagle's minimal essential medium (7) containing Earles salts but without 

serum, the cells were incubated with 1.5 ml Eagle's medium containing 50 mM 

Tris-Cl, pH 7.3 at 25°C, and 200 J.lg/ml DEAE dextran (500,000 average molecular 

weight from Sigma) for 60 min at 3JOC. This medium was removed and 200 J.ll of 

in vitro-transcribed RNA diluted in phosphate buffered saline was added to the 

cells and incubated at room temperature for 60 min with occasional rocking. 

Plaque-forming units were quantitated by overlaying the monolayer with 3 ml of 

1.2% agarose (SeaKem ME from FMC) in Eagle's medium containing 2% fetal calf 

serum, followed by incubation at 30°C or 40°C for 3 days or 2 days, respectively. 

Plaques were visualized by staining with neutral red. Virus stocks were produced 

by removing the transfection mix and incubating the cells in 3 ml of Eagle's 

medium containing 3% fetal calf serum for 48 hr or longer at 30°C. 

Sequence determination of SV and NSV eDNA. DNA sequencing was 

carried out on cloned eDNA using the methods of Maxam and Gilbert (19) as 

modified by Smith and Calvo (35), using restriction fragments 3' end labeled with 

the Klenow fragment of E. coli DNA polymerase (Bethesda Research 

Laboratories). NSV clones NSV5-37 and NSV5-44 and SV clones SVlA-3 and 

SV lA-21 were analyzed. Chain termination sequencing of RNA with reverse 

transcriptase as described by Ou et al. (23) and Zimmern and Kaesberg (42), using 

intracellular viral RNA as template and synthetic oligonucleotides as primers, was 

also used to obtain part of the sequence. To test that virus derived from hybrid 

cDNAs had the predicted sequence, certain regions of the RNA genome sequence 

were confirmed by chain termination sequencing in the same way. All of the 

sequencing was obtained on two clones, or checked by the dideoxy sequencing of 

an RNA template (which gives the majority nucleotide at any position), in order to 

rule out cloning artifacts or sequencing of minor variants. 
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Animal tests. Viruses for animal inoculation were grown and assayed by 

plaque formation on BHK-21 cells. Three- to four-week old BALB/cJ weanling 

mice of either sex (Jackson Laboratories, Bar Harbor, ME) were inoculated 

intracerebrally (IC) with 1000 pfu of virus in 0.03 ml Hanks balanced salt solution 

containing 1% fetal calf serum. One- to three-day old CD-1 (ICR) suckling mice 

(Charles River Breeding Laboratories, Wilmington, MA) were inoculated 

subcutaneously with 500 pfu of virus in each hindlimb (footpad). Mice were 

observed for 25 days. The percent mortality was determined for weanling mice 

and the percent mortality and mean day of death determined for suckling mice. 

At least 10 weanling mice and two litters of suckling mice were inoculated with 

each virus strain. For recombinant strains, viruses grown from 2-4 different 

plaques were tested separately. These data have been pooled for presentation. 

For viruses which ki lled weanling mice at 1000 pfu, the intracerebral dose for 50% 

mortality (ICLD50) was determined by the method of Reed and Muench (26) using 

groups of 10 mice at serial 10-fold dilutions. 

RESULTS 

Sindbis virus strains. Four strains of Sindbis virus were used in these 

studies as well as recombinants between various strains (Table 1). The passage 

history of these strains significantly affects the interpretation of the results. The 

AR339 strain of Sindbis, here designated as SV, is a low passage stock (7-9 

passages in suckling mouse brain) received from the American Type Culture 

Collection and subsequently passaged five times in BHK cells (including three 

sequential plaque purifications) and twice in CEF. The AR339 strain that served 

as the parent for NSV had a more extensive passage history. It was obtained 

originally from Dr. H. Hineberg (Cleveland Metropolitan General Hospital) after 

an unknown passage history, and subsequently passed ten times in mouse brain, 



TABLE 1 Sindbis virus strainsa 

Virus Strain 

sv 

NSV 

TotollOl 

HRSP 

Passage Historyb 

9SMB 

5 BHK 

2 CEF 

Unknown passages in 

cell culture 

10MB 

1 BHK 

10 CEF 

3 + 3 SMB + MB 

2 CEF 

Extensive passage in 

cell culture 

Extensive passage in 

cell culture 

96 

Virulence 

Suckling 

Mice 

+ 

+ 

+ 

+ 

Weanling 

Mice 

+ 

aAll strains were derived by passage of the AR339 strain, isolated originally from 

a pool of Culex univittatus in August, 1952 in Sindbis, Egypt by inoculation into 

suckling mouse brain (41). 

bSMB = suckling mouse brain; MB = mouse brain; BHK = BHK21 cells; CEF = Chick 

embryo fibroblasts. 
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once in BHK cells, and more than ten times in CEF prior to neuroadaption (15). 

NSV was obtained from this AR339 strain by serial transmission six times by IC 

inoculation alternately in suckling and weanling mice (11). This virus was 

subsequently passed twice in CEF in order to isolate viral RNA for sequence 

analysis. 

In addition, two laboratory strains of Sindbis virus derived from infectious 

RNA rescued from eDNA clones (29) were used; both were derived from the 

AR339 strain. The first of these laboratory variants was rescued from eDNA 

clone TotollOl and contains nucleotides 1-2713 and 9805-11703 from the HRSP 

strain described below, and nucleotides 2714-9804 from a strain of uncertain 

passage history prior to cloning as TotollOl. The second strain, from clone 

Toto50, was derived from eDNA made to the HRSP strain of Sindbis virus (heat 

resistant small plaque strain). The HR strain was obtained by Burge and 

Pfefferkorn (5) from AR339 by selecting variants able to survive heating to 

56°C. It had been subsequently passaged multiple times in both CEF and BHK 

cells before isolation of the small plaque variant (39). HRSP was then passaged 

several times in CEF prior to cloning as Toto50. The sequence of the HRSP strain 

has been published (29,38). 

Sequence analysis of the glycoproteins of NSV and of SV. Because 

monoclonal antibodies discriminate between NSV and SV (36) and attenuating 

mutations have been found in E2 (6,22), it seemed likely that the glycoproteins 

would be important for neurovirulence in Sindbis virus. We therefore obtained the 

nucleotide sequence of the region encoding the glycoproteins, and from this the 

deduced amino acid sequence of glycoproteins E3, E2 and El, for both SV and NSV, 

and compared this sequence with that previously published for HRSP (Fig. 1). 

In the glycoprotein E3 region sequenced there were no nucleotide 

differences among the various strains, SV, NSV, or HRSP. In glycoprotein E2, 
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Fig. 1. Sequence differences between SV, NSV, and HRSP. Above is shown 

a schematic of the structural region of the Sindbis virus genome. The positions of 

a number of restriction enzyme sites are shown, as well as the boundaries between 

the different proteins encoded, together with their coordinates numbered from the 

5' end of the RNA according to Strauss et al. (38). Below are shown sequencing 

schematics of three Sindbis strains. Where differences between any of the strains 

occur, nucleotides are shown above the line (numbered from the 5' end as before) 

and encoded amino acids (if a change in coding is involved) are shown below the 

line, using the single letter amino acid code. The amino acid numbers refer to the 

position within the glycoprotein; thus Q55 is residue 55 of glycoprotein E2, etc. 

The sequence from nucleotide 8571 in E3 to the end of the RNA was determined 

for SV and for NSV, as described in the Materials and Methods. The sequence for 

HRSP is taken from Strauss et al. (38). 
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however, there were two nucleotide changes between SV and NSV, both of which 

led to amino acid substitutions. Nucleotide 8795 is A in SV and U in NSV, 

resulting in a Gln to His change at position 55 of E2. Nucleotide 9255 is G in SV 

and A in NSV, leading to the replacement of Arg in SV by Gly in NSV at 

position 209 of E2. Amino acid 55 is Gln in the HRSP strain (as is found in SV), 

while amino acid 209 is Gly in HRSP (as is the case for NSV). 

NSV and SV differ from HRSP in three additional ammo acids of E2. 

Position 3 of NSV and SV is Thr, whereas HRSP has Ile at this position. 

Position 23 of SV and NSV is Glu and is Val in HRSP [Glu 23 was previously shown 

to be the ancestral amino acid in HR (1)]. Finally, position 172 of E2 is Gly in SV 

and NSV and is Arg in HRSP. The changes at positions 3 and 172 may have arisen 

during selection of the HR strain. 

In glycoprotein El there were six nucleotide differences between SV and 

NSV leading to two amino acid changes. Silent changes were found at positions 

10392 (C in SV-+ U in NSV), 10571 (A-+ G), 10748 (C-+ U), and 10815 (C-+ U). The 

coding changes were at position l 0279 (U in SV -+ C in NSV) leading to substitution 

of Val in SV by Ala in NSV at position 72 of El, and nucleotide 11002 (G -+ A) 

leading to the substitution of Gly by Asp at position 313. Position 72 is Ala in 

HRSP (as in NSV), whereas amino acid 313 is Gly in HRSP (as in SV). In addition 

to these changes SV and NSV also differ at position 237 (Ala) from HRSP (Ser); 

this change may also have arisen during selection of the HR strain. 

Of the eight nucleotide differences between SV and NSV seven were 

transitions (three C -+ U, three G -+ A, and one U -+ C). The transversion was the A 

-+ U change leading to the substitution of Gln by His. 

There were no changes between SV and NSV in the 3' noncoding region. 

Construction of recombinant viruses. In order to examine the effect of the 

different amino acid substitutions on neurovirulence of Sindbis virus, a number of 
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Fig. 2. Construction of Sindbis virus genomes recombinant in the 

glycoprotein region. Restriction fragments in clone Toto1101 (29) were replaced 

by the corresponding fragments from three other strains of virus, NSV, SV, or 

HRSP (derived from Toto50), as indicated in the diagram. The restriction sites 

used and their coordinates in the viral genome are indicated. 
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recombinant viruses were constructed. To accomplish this, restriction fragments 

from clones of SV, NSV, or HRSP eDNA were used to replace the corresponding 

restriction fragments in clone Toto 1101 or, in one case, Toto50. These clones 

contain a complete eDNA copy of Sindbis virus inserted downstream from an SP6 

RNA polymerase promoter from which infectious RNA can be transcribed in vitro 

(29). RNA was transcribed from the recombinant clones and transfected onto CEF 

cells. Monolayers were incubated at 30°C under liquid medium in order to rescue 

infectious virus or under agarose at 30°C and 40°C for plaque assays. None of the 

recombinant viruses were temperature sensitive. The titres of the rescued viruses 

were between 108 and 109 pfu/ml. They were passaged once in BHK cells and 

then examined for their biological properties. 

The constructs tested are illustrated schematically in Fig. 2. The 

restriction sites used to construct the hybrid genomes and their coordinates 

numbered from the 5' end of the RNA (38) are also shown. The Stul site at 10770 

is not present in all of the virus strains. Those with Ser at position 237 of El 

possess this site, whereas those that have Ala at this site do not. In all cases the 

recombinants possess the nonstructural protein region and the capsid protein 

region from TotollOl or from Toto50 and only the glycoprotein region or portions 

of the glycoprotein region are derived from other strains. 

Neurovirulence of recombinant viruses for weanling mice. The 

neurovirulence of each of the recombinant viruses, the parental viruses NSV, SV, 

HRSP, and viruses rescued from Toto50 and TotollOl, were tested in 3-4 week old 

weanling mice, using 1000 pfu of each virus by IC inoculation. In each case two or 

more independent virus stocks were tested. The results were pooled and the 

relevant data are summarized in Table 2. 

Only NSV and the recombinant TE12 were virulent for weanling mice. 

TE12 has the nucleotide sequence from 8571 to 11552 of NSV and nucleotides 1 to 
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TABLE 2 Neurovirulence of Sindbis strains in weanling micea 

Virus Strain Dead/Total % Mortality 

NSV 21/21 100 

TE12 15/35 44 

TE 2/55 4 

TES 0/20 0 

TE2 0/20 0 

TE2S 0/30 0 

TEl 0/21 0 

sv 0/20 0 

TotollO 1 0/10 0 

Toto50 0/20 0 

aChallenged with 1000 pfu by IC inoculation. 
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8570 and 11553 to 11703 from TotollOl, that is, glycoproteins E2 and El from 

NSV and the remainder of the genome from TotollOl (Fig. 2). TotollOl is 

avirulent for weanling mice whereas TE12 is virulent, demonstrating that the 

envelope proteins alone are sufficient to confer virulence to an otherwise 

avirulent strain. However TE12 has a higher LD50 (50 versus 3, calculated by the 

method of Reed and Muench [26]), than NSV and the overall mortality is reduced 

(Table 2), suggesting that nucleotide sequences outside the envelope protein region 

are also important for neurovirulence. These sequences are presumably in the 

region encoding the replicase proteins, thereby affecting the efficiency of virus 

replication, although changes in the capsid protein or in noncoding regulatory 

sequences cannot be ruled out. 

All of the other strains are avirulent in weanling mice. Thus strains 

containing only glycoprotein El or only E2 from NSV are avirulent, demonstrating 

that changes in both El and E2 were necessary for the transition in neurovirulence 

from SV to NSV. The significance of these findings in terms of amino acid 

substitutions will be discussed below. 

Neurovirulence of recombinant viruses for suckling mice. Our major 

interest in these studies was to define the changes that led to attenuation in 

weanling mice. Sindbis virus has also been used as a model system for the study of 

neurovirulence in suckling mice, however (6,21,22,25), and it seemed of interest to 

compare the virulence of these constructs in suckling mice as well (Table 3). 

Strains NSV and TE12 were essentially indistinguishable in their neurovirulence 

(although the mean day of death may be slightly extended in TE12). Thus although 

TotollOl is much less virulent for suckling mice than NSV, possession of the 

glycoproteins from NSV is sufficient to render TotollOl virus fully virulent for 

suckling mice. Strains that contain E2 from NSV and El from NSV, SV, or 

TotollOl were also neurovirulent in suckling mice, causing 100% mortality after 
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TABLE 3 N eurovirulence of Sindbis strains in suckling micea 

Virus Strainb Dead/Total %Mortality MDODc 

NSV 31/31 100 3.3 

TE 77/77 100 3.6 

TE12 20/20 100 3.9 

sv 20/20 100 4.5 

TES 47/47 100 4.8 

TE2 20/20 100 . 5.2 

TE2S 31/36 86 8.3 

TEllO! d 31/44 70 9.4 

TEl 27/40 68 9.9 

Toto1101 33/66 50 8.1 

Toto50(HRSP) 21/49 41 10.8 

TE50d 4/21 19 12.8 

aChallenged with 1000 pfu by SC inoculation at 1-3 days of age. 

boescribed in Fig. 2. At least two independent stocks were tested and the results 

averaged. 

cMDOD is mean day of death after subcutaneous injection of 1000 pfu. 

dThe neurovirulence of these constructs is dependent on the exact age of the mice 

and drops from 100% mortality in 1-2 day old mice to 20% in 3-4 day old mice (see 

text). 
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Fig. 3. Amino acid differences among Sindbis strains. Amino acid 

differences in the E2 and El glycoprotein region among the parental strains and 

various recombinant strains of Sindbis virus are indicated using the one letter 

amino acid code. The amino acid position in E2 or in E 1, respectively, is shown. 

Strains are listed in order of decreasing virulence. The sources of the sequences 

are described in the text. 



E2
 

S
T

R
A

IN
 

3 
23

 
55

 
17

2 
20

9 

N
SV

 
T

 
E

 
H

 
G

 
G

 

T
E

12
 

T
 

E
 

H
 

G
 

G
 

'IE
 

T
 

E
 

H
 

G
 

G
 

S
V

 
T

 
E

 
Q

 
G

 
R

 

T
E

S 
T

 
E

 
H

 
R

 
G

 

T
E

2 
T

 
F. 

H
 

G
 

G
 

T
E

2S
 

T
 

E
 

H
 

R
 

G
 

T
E

l 
lO

t 
I 

E
 

Q
 

G
 

G
 

T
E

l 
I 

E
 

Q
 

G
 

G
 

T
O

T
0

1
1

0
1

 
I 

E
 

Q
 

G
 

G
 

T
O

T
O

 SO
 

I 
v 

Q
 

R
 

G
 

T
E

SO
 

I 
v 

Q
 

R
 

G
 

25
1 

72
 

75
 

A
 

A
 

D
 

A
 

A
 

D
 

A
 

v 
D

 

A
 

v 
D

 

A
 

v 
D

 

A
 

A
 

G
 

A
 

A
 

D
 

v 
A

 
G

 

v 
A

 
D

 

v 
A

 
G

 

A
 

A
 

D
 

A
 

A
 

D
 E

l 

23
7 A
 

A
 

A
 

A
 

A
 s s A
 

A
 s s A
 

31
3 D
 

D
 

G
 

G
 

G
 

G
 

G
 

. 
G

 

D
 

G
 

G
 

G
 

I-
' 

0 <X
> 



109 

subcutaneous inoculation, as did a construct containing only the N-terminal 

domain of E2 from NSV with the remainder of E2 from HRSP and El from SV 

(construct TES). The survival time of the animals varied from 3 to 5 days 

depending upon the construct tested. When E2 was derived from TotollOl 

(construct TEl or virus from TotollOl) or Toto50 (virus HRSP) the resultant virus 

was less virulent. With these strains 30 to 60% of the inoculated mice survived, 

and those that died had an extended survival time. The construct TE50 will be 

discussed below. Thus there is a gradient of neurovirulence extending from a 

mortality of 100% in suckling mice with a survival time of 3 days to a mortality of 

20-40% with a 12 day survival time. The significance of these findings with 

regard to individual amino acid substitutions is described in the following section. 

Correlation of amino acid changes with neurovirulence. The amino acid 

changes among the various strains of Sindbis virus in the E2 and El glycoproteins 

that have been assayed for neurovirulence have been summarized in Fig. 3, with 

the strains being listed in descending order of neurovirulence. Sequence data for 

NSV and SV or for constructs containing sequence from these viruses are from 

Fig. 1, the Toto50 sequence is the HRSP sequence of Strauss et al. (38), while the 

data for TotollOl are from Polo et al. (25) and R. E. Johnston (personal 

communication). 

For weanling mice, as noted above, changes in both E2 and E 1 contribute to 

the differences seen between SV and NSV. In E2 the change at position 55 from 

His (in NSV) to Gln (in SV) appears to be primarily responsible for attenuation 

(compare NSV and construct TE12 with SV and construct TEl) although the 

changes from Thr to Ile at position 3 and Gly to Arg at position 209 cannot be 

independently evaluated from these constructs. In glycoprotein El either the 

change Ala to Val at position 72 or the change Asp to Gly at 313, or both, appear 

to attenuate the virus (compare NSV and construct TE12 with SV and construct 

TE). 
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The situation for neurovirulence in suckling mice is more complex. For 

one, as noted above, the different strains do not exhibit an all or none effect. For 

another, it is difficult to exclude cooperative interactions between the different 

changes found. With these provisos we can draw a number of conclusions, 

however. Firstly, as pointed out earlier, only changes in glycoproteins El and E2 

lead to attenuation in the constructs tested. Secondly, in glycoprotein E2 Gln 55 

appears to be required for attenuation, but is not sufficient. Attenuated E2's also 

have Ile 3, Arg 172, and/or Gly 209. The Gly to Arg change at 172 does lead to a 

slight increase in survival time when combined with His 55 (compare TE with TES 

and TE2 with TE2S) and could be involved in attenuation. The Thr to Ile at 

position 3 could also be attenuating from the data presented here, although Polo 

et al. ( 1988) have argued that it is not involved in attenuation. The change at 

position 209 (as well as the changes at positions 23 and 251) do not appear to be 

involved in attenuation. Thirdly, in glycoprotein El two changes appear to be 

important in this group of constructs, the Ala to Val change at position 72 and the 

Ala to Ser at 237. Comparing TE to TE2 or TES to TE2S, it is clear that the two 

changes together lead to decreased mortality and extended survival. 

In order to separate the two changes in E 1, the constructs TE 1101 and TE50 

were made. In initial experiments TEllOl demonstrated an intermediate 

virulence, with 70% of the suckling mice dying and mean day of death 9.4 days 

(Table 3). However, the results were variable from litter to litter, in contrast to 

the results obtained with other constructs, and it appeared that this virus might be 

more age dependent. Further experiments to test this revealed that results with 

TE 1101 were, in fact, strongly age-dependent. In 1-2 day old mice the mortality 

was 100% (two litters tested, mean day of death 5.7 days). In slightly older mice, 

3-4 days old, mortality was 20% (2 of 10 mice in two litters died with mean day of 

death 14.5 days). Similarly, results with construct TE50 were age dependent in 
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the same way. In 1-2 day old mice 10/10 mice died (two litters) with mean day of 

death 10.2 days, in 3-4 da old mice 2/10 died (mean day of death 10 days). Similar 

experiments with Toto50 and TotollOl exhibited no age dependence between 1-2 

day old mice and 3-4 day old mice. These results taken together suggest that the 

Ala to Ser change at 237 is somewhat -attenuating in .suckling mice, but that the 

Ala to Val change at 72 may also contribute. The Asp to Gly at 75 does not 

appear to make a significant contribution to attenuation in this system and the 

effect of the Asp to Gly at 75 is unclear. 

DISCUSSION 

The AR339 strain of Sindbis virus demonstrates age-dependent virulence in 

mice. Mice up to 8 days of age develop an acute encephalitis that is fatal; older 

mice also develop encephalitis, but the infection is not fatal (15,27). The virus 

grows to higher titer in the brain and other tissues of suckling mice than in older 

mice. The AR339 strain was originally isolated by inoculation of suckling mice 

and passaged several times in this host (41), which may have been partially 

responsible for the neurovirulence characteristics of the strain. Starting from 

AR339, more virulent strains have been isolated which are neurovirulent in 

weanling mice by alternate passage IC in suckling and weanling mice (11); 

presumably the passage in weanling mice selected for virus able to replicate 

better in the central nervous system of older mice. More attenuated strains of 

Sindbis virus have also been obtained from the AR339 strain. Olmsted et al. 

(21 ,22) have used several selection procedures, including selection for rapid 

penetration and growth in vitro, to isolate variants that were attenuated in 

suckling mice (see also 25). Barrett and Atkins (2) have shown that temperature­

sensitive mutants are often attenuated. In this paper and in Polo et al. (25) it is 

also shown that laboratory strains represented by HRSP (and Toto50) and TotollOl 
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are attenuated for suckling mice. These strains have been maintained by 

extensive passage in cell culture, usually chick cells or BHK cells (and the HR 

strains had been selected for the ability to tolerate high temperatures). Passage 

of virus in cell culture is a classical way to select attenuated virus for use as 

vaccines, and appears in this case also to have selected variants which are reduced 

in virulence for mice. We should note, however, that the virulence properties of 

NSV and of SV have been maintained upon passage in cell culture, although an 

extensive series of passages has not been tested for its effects. 

By constructing recombinant viruses among strains that differ in virulence 

we have mapped a number of virulence determinants. The situation in weanling 

mice seems clearcut. There are determinants in both glycoproteins E2 and El 

that lead to attenuation, and determinants in the non-glycoprotein regions as 

well. In glycoprotein E2 change of His to Gln at position 55 is attenuating, and in 

glycoprotein El change of Ala 72 to Val and/or change of Asp 313 to Gly lead to 

attenuation. The results with suckling mice were more confusing. As noted, it 

appears that a spectrum of neurovirulence exists with different virus strains, and 

in at least some cases the virulence is sharply age dependent. In addition, changes 

at multiple sites appear to have unpredictable effects, and thus the genetic 

background of the virus is important. Finally, in comparing our results to those of 

Johnston and colleagues (6,21,22,25), it also appears that there may be differences 

that depend upon the strain of mouse. Although we have tested a large number of 

constructs, it would require testing many more, comparing the changes in 

different combinations, to completely resolve the ambiguities. However, our 

results implicate His 55 and Gly 172 (and possibly Thr 3) in E2 and Ala 72 and Ala 

237 (and possibly Asp 313) in El as involved in neurovirulence in suckling mice (the 

situation with El is peculiar; one interpretation of the results is that forms of El 

virulent for weanling mice are less virulent for suckling mice and vice versa). 
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Davis et al. (6) have previously shown the change of Ser to Arg at position 114 of 

E2 is attenuating. The fact that changes in the glycoproteins can attenuate the 

virus is consistent with studies of several other virus systems in which structural · 

proteins have been implicated as determinants of virulence (3,4,32,33). 

The concept of neurovirulence is complex. The efficiency of replication of 

the virus in peripheral tissues, the efficiency of crossing the. blood-brain barrier,. 

and the efficiency of replication in the central nervous system once the virus 

invades, are all of importance. There appear to be many ways to change a 

virulent virus so that it becomes less virulent. Changes in the replicase so that 

the virus replicates less rapidly may do so. Changes in the glycoproteins may 

affect speed of virus penetration or maturation, thus affecting the growth rate, or 

may affect tissue tropism and thus the ability of the virus to invade certain 

tissues such as the central nervous system. 

One simple hypothesis to explain the results here is that the changes in the 

surface glycoproteins that lead to attenuation result in changes in the affinity of 

the virus for receptors on uninfected cells, thus altering its cell tropism. The 

effect need not be all or none. If altered virus bound to receptors in certain cells 

or tissues with reduced affinity, or if the alteration produced virus that bound to a 

different class of receptors with variable expression in different tissues, the 

alteration in tissue tropism or cell type preferences could be a relative one 

affecting the kinetics of virus replication in different organs, allowing host 

defenses to clear the infection and prevent death. 

It is not known whether the changes in the Sindbis glycoproteins leading to 

differences in neurovirulence for mice lead to differences in attachment to 

cellular receptors. Smith and Tignor (34) compared the binding of two different 

field isolates of Sindbis virus differing in virulence and found that neuroblastoma 

cells (N-18) as well as non-neural cells (CER) had increased numbers of receptors 
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for the virulent AR86 strain compared to the avirulent AR339 strain. There were 

postulated to be distinct receptors for the two strains based on sensitivity to 

enzymatic degradation. Whether the same would be true for the more closely 

related strains used in this study (both derived from AR339) is not known. 

Comparative studies of the replication of NSV and SV in the brains and spinal 

cords of intracerebrally inoculated weanling mice have shown that both viruses 

infect the central nervous system and that the target cells for replication are the 

same, primarily neurons and ependymal cells ( 13). However, more virus is 

produced and neurons show greater injury after infection with NSV than SV. 

Whether this is due to a decrease in the effective concentration of receptors for 

SV, leading to slower spread of virus, or whether both SV and NSV recognize the 

same receptors on the same cells but subsequent steps in NSV replication are more 

efficient, requires further study. The surface glycoproteins of alphaviruses are 

also important in other steps of virus replication such as penetration, fusion with 

lysosome or phagosome membranes to release the RNA, and for interaction with 

the capsid protein during virion maturation. Many of these steps involve 

conformational changes in the El-E2 heterodimer which might be affected by 

changes in the amino acid structure of these glycoproteins. 

The fact that there are a variety of changes in El and E2 that affect 

neurovirulence, and that the effects of each change are different, has obvious 

implications for vaccine development. Classically one of the problems 

encountered during virus passage to develop attenuated strains has been 

overattenuation such that the vaccine strain is no longer efficacious. On the 

other hand multiple attenuating mutations are desirable so that the frequency of 

reversion to virulence is negligible. The ability to test the effect of individual 

attenuating changes and to mix them at will in recombinant strains in the 

approach used here could be of great value if applied to other viruses for which a 

vaccine is desired. 
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Chapter 5 

Comparison of the Virulent Asibi Strain of Yellow Fever Virus 

with the 170 Vaccine Strain Derived ,from It. 

This chapter was published in Proc. Natl. Acad. Sci. USA 
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ABSTRACT We bave ~equeuced tbe rinaleat Alibi strain 
ol yellow fever virus aDd compared this ~equmc:e to that ol tbe 
17D vaccine strain, which was derived from it. Tbele two 
strains of viruses dill'er by more thau l40 pusages. We fOWid 
that the two RNAs, 10,862 nudeotides loq, dill'er at 68 
nucleotide positions; these dwlges result ID 32 amino add 
dill'ereoces. Overall, this corresponds to 0.63% nucleotide 
~equence divergence, aDd the dwlges an ac:attered tbrougbout 
tbe genome. The overall divergence at tbe level ol amino add 
substitution Is 0.94% , but these c:baoges are DOt rudomly 
distributed amoq the virus proteins. The capsid protein is 
unchanged, while proteins NSJ, NS3, aDd NSS contain O.S'li> 
amino acid substitutions, aud proteins os4a aud os4b average 
0.8% substitutions. In contnast, proteins ns2a aDd ns2b bave 
3.0 aud 2.3% amino add divergence, respectively. Tbe eave­
lope proteiD also bas a relatively high rate ol amino add dwlge 
of 2.4'li> (a total of 12 amino add substitutions). Tbe 1arJe 
number of dwlges ID os2a aDd os2b, wbk:b an largely 
COilServative ID nature, may result from lowered ~elective 
pressure against alteration ID this region; among flaviviruses, 
these polypeptides an much less highly c:ouserved thau NSJ, 
NS3, aud NSS. However, many of the amino acid substitutions 
ID the E protein are not conservative. It seems likely that at least 
10me of tbe dill'erence ID virulence between the two stnin5 of 
yeUow fever virus resuiU from dwlges in tbe envelope proteiD 
that affect virus binding to host receptors. Such dill'erences ID 
receptor binding could result ID tbe reduced neurotropism aud 
vicerotroplsm exb.iblted by tbe vaccine strain. 

Yell ow fever virus belongs to the F/avivirus genus of the 
famil y Flaviviridae. a group of some 70 closely related 
viruses many of which cause serious human illness (1) . 
Yellow fever is anhropod-bome , transmitted by mosquitos of 
the genera Aedes and Haemagogus . Its natural vertebrate 
host range is limited to primates in which it is viscerotropic 
and neurotropic . In man, the virus causes a serious, often 
fatal , illness marked by liver and kidney involvement and 
hemorrhage . For several hundred years the virus caused 
epidemics in the Americas, Europe, and Africa that led to 
widespread human suffering . With the control of the urban 
vector of yellow fever A~d~s a~gypti beginning in the early 
1900s, epidemic urban yellow fever disappeared. However, 
the virus remains present in an enzootic cycle in the forests 
of South America and Africa and causes periodic outbreaks 
in neighboring human populations. 

Reed (2) first proved that yellow fever is transmitted by 
mosquitos and, shortly thereafter , that the disease agent was 
filterable . Because there was no recognized , susceptible 
laboratory host , many years elapsed before the virus respon· 
sible was isolated by the Rockefeller Foundation 's West 
Africa yellow fever commission . In 1927, these workers 
succeeded in isolating a virus from the blood of a young 
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Ghanian named Asibi by monkey/ monkey passage (3). This 
Asibi strain of yellow fever causes an invariably fatal disease 
when inoculated into rhesus monkeys . 

Theiler (4) developed a live, attenuated vaccine strain, 
which he referred to as 170, from the Asibi strain . Staning 
with the Asibi strain that had been passaged 53 times in 
monkeys, with intermittent passages in A . a~gypti, the virus 
was propagated serially in cultures of embryonic mouse 
tissue (18 passages), minced whole chicken embryo (50 
passages), and fmaUy minced chicken embryos without 
nervous tissue (152 passages). Between the 89th and 114th in 
vitro passage (from the stan of the experiment , that is 
including the passages in embryonic mouse tissue and whole 
chicken embryos) a marked change in virulence of the virus 
occurred. The reason for the change in virulence is unknown 
and attempts to repeat these experiments by virus passage 
have failed to develop additional avirulent strains. The 170 
strain has been widely used as a human vaccine , being safe 
and highly effective . It causes a mild , generalized infection in 
humans (or other primates) with involvement of lymphoid 
tissue and minimal quantities of virus circulating in the blood . 
and both the viscerotropism and neurotropism of the parental 
Asibi virus are markedly reduced. 

We have sequenced the genome of a plaque-purified virus 
derived from the 170.204 vaccine strain of yellow fever (5) . 
The 170.204 strain, supplied by the American Type Culture 
Collection. had been passed an additional14 times in chicken 
embryo tissue culture, for a total of 234 in vitro passages. To 
obtain RNA for cloning and sequencing , the virus was passed 
twice in chicken embryo fibroblasts in our laboratory, 
plaque-purified in Vero cells , and passed twice in BHK cells: 
virus for RNA preparation was then grown in SW-13 cells (5). 
Thus, the 170 strain sequenced by us had been passed 240 
times in vitro. · 

We now report the sequence ofvirtuaUy the entire genome 
of the Asibi strain of yellow fever and compare the sequences 
of the 170 and Asibi strains at both the nucleotide level and 
the amino acid level. In addition to defining the changes that 
have occurred during 240 serial passages , this work repre· 
sents a necessary prelude for studying the biological signif­
icance of these changes as related to the different virulence 
of the two strains. 

MATERIALS AND METHODS 

ARbl StraiD Propqatioa aDd RNA bolatlon. The Asibi 
strain of yellow fever virus was obtained from the Yale 
Arbovirus Research Unit reference collection as viremic 
monkey serum (supplied by R. Shope). This virus was 
originally isolated in rhesus monkeys (3) and had undergone 
-45 serial monkey passages consistently producing a fatal 
illness (6) ; it is unknown how many of these 45 passages 
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correspond to the monkey passages of the laboratory strain 
of Asibi used as the starting virus for in vitro passages that led 
to 17D. The virulence of this Asibi strain was demonstrated 
by inoculation of additional rhesus monkeys, all of which 
suffered a lethal infection with yellow fever pathology. Virus 
was isolated in LLC-MK2 cell culture by direct inoculation of 
viremic plasma from one of these monkeys, and the infec­
tious cell culture fluids were used to infect cultures of Vero 
cells . This Vero cell-passaged Asibi strain virus was titered 
at 7.8 x 107 plaque-forming units/ ml and was used as 
inoculum for all subsequent virus production. 

Confluent monolayers of Vero cells in 150-cm2 flasks were 
infected at a multiplicity of -0.1, and the cultures were 
incubated at 36°C in Eagle's medium supplemented with 5% 
(vol/vol) heated fetal bovine serum and antibiotics. Virus­
containing culture medium was harvested 4-5 days after 
infection (depending upon the first evidence of virus induced 
cytopathology) and concentrated by polyethylene glycol 
precipitation . Virus was purified by density-gradient centrif­
ugation on potassium tartrate/glycerol gradients followed by 
rate-zonal centrifugation on linear sucrose gradients , and the 
RNA was extracted from NaDodS04-disrupted virions using 
a phenol / cresol / 8-hydroxyquinoline/ chloroform mixture 
(7). 

Cloning or Aslbl eDNA. A eDNA library from Asibi 
genomic RNA was constructed as described (5, 8) . Ampicil­
lin-resistant colonies from this library were screened by 
colony hybridization using nick-translated restriction frag­
ments derived from the library of 17D yellow fever clones as 
probes, as described (9) . Colonies with larger inserts (ob­
tained using eDNA size class of 2 kilobases or larger) were 
screened with a 5' probe of 2280 base pairs that extends from 
the 5' end of 17D yellow fever to the first EcoRI site and with 
a 3' probe of2580 base pairs, which extends from nucleotide 
8280 in 17D to the 3' end. or with probes derived from other 
regions of the 17D genome. To obtain clones containing the 
extreme 3' end of the RNA -4000 clones from the smaller 
insert class (derived from Asibi double-stranded eDNA of 
0.8-2 kilobases long) were screened with a fragment derived 
from the e)(treme 3' end of 17D. This fragment, 150 nucleo­
tides long , extends from the Xba I site at nucleotide 10,708 to 
the 3' end of 170 yellow fever. We found three positive 
clones with this probe , two of which were identical. One of 
these clones had an unusual structure and probably arose by 
self-priming; it was used to obtain the Asibi sequence through 
to the 3'-terminal nucleotide . 

Sequence Analysis or Aslbl eDNA. Plasmid DNA from 
selected Asibi clones was sequenced using the chemical 
method (10, 11) as described (12). 

RESULTS 

Sequence or Aslbl Yellow Fever. The sequencing strategy 
used to obtain the nucleotide sequence of Asibi yellow fever 
is diagramed in Fig. 1. The sequence obtained was complete­
ly overlapped and was determined for at least two indepen­
dent clones throughout virtually the entire genome . This 
allowed the detection of heterogeneity in the cloned eDNA 
population (either due to heterogeneity in the RNA genomes 
cloned or due to errors introduced during reverse transcrip­
tion and subsequent cloning) . Since the RNA templates that 
were used for cloning were not derived from plaque-purified 
virus. such clonal differences might be expected, and we 
found six nucleotides that differed between two clones . The 
sequence obtained totaled 10,848 nucleotides and represents 
the entire Asibi genomic RNA sequence with the exception 
of the 5'-terminal 14 nucleotides . 

Comparison or Nucleotide Sequence or 17D and Aslbl 
Yellow Fever. All of the nucleotide differences found between 
Asibi and 17D yellow fever are shown in Fig. 2. Clonal 
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FtG. 1. Sequencing strateay used to obtain Asibi yellow fever 
sequence from eDNA clones. A representation of the yellow fever 
aenome is shown with the coding region indicated as a box. Below 
are shown various eDNA clones drawn to scale. The regions of each 
clone sequenced are indicated. All sequencing was 3' to 5' on the 
eDNA. and the direction of the arrow indicates whether the plus 
strand (+-)or the complementary minus strand <-) was sequenced. 
Clones 3 and S start with the 15th and 17th nucleotide, respectively, 
from the S' end of the yellow fever genome. The 3'-tenninal 111 
nucleotides were present in only one clone , 3'-1 . whose structure is 
complex and which probably arose by self-priming. In all other 
regions at least two independent clones were sequenced. 

differences found among the Asibi clones are also presented . 
A total of 68 nucleotide differences were found between the 
two strains that had been ftxed and an additional 6 nucleo­
tides that differed in two different clones of Asibi yellow 
fever. In each clonal difference detected, one of the nucle­
otides found at a given position was the same as that found 
in 170 yellow fever . The sequence of 17D yellow fever that 
has been reported is a consensus sequence derived from 
sequencing more than one clone throughout the entire region 
(5) . With a total of 68 changes (0.63% of the genome) there 
was an average of about 0.27 change fued per passage. 
Assuming an effective multiplication of 210 at each passage, 
this would represent 2 x IQ-6 change fixed per nucleotide per 
generation. Changes presumably occur more frequently than 
this but do not survive selection pressure during continued 
passage . 

The nucleotide changes are summarized as to transitions 
and transversions in Fig. 3. Transitions are ftve times more 
common than transversions, as expected if most of the 
changes occur by mispairing during RNA replication. 

Nucleotide changes are scattered throughout the genome 
but occurred more frequently in the envelope protein region 
(1.0% nucleotide sequence difference), in the ns2a region 
(1.6% difference), in the ns2b region (1.0% difference) , and in 
the 3' -noncoding region (1.2% difference) (Fig. 4) . Changes in 
the untranslated region may be more frequent because of a 
relative lack of selective pressure against changes that occur 
in these regions , although it is of interest that no changes were 
found in the 5'-untranslated region. Within the coding region, 
selection against deleterious changes in protein sequence 
would be expected, and it is notable that approximately half 
of the nucleotide changes (36 of 68 changes) do not result in 
a change in a coding assignment. Outside the envelope 
protein region and the ns2a regions, in which a dispropor­
tionate number of the nucleotide changes lead to coding 
changes, 32 of 47 nucleotide changes do not result in an amino 
acid substitution. 

Changes in Amino Acid Sequence. Amino acid differences 
between 17D and Asibi yellow fever are given in Fig. 2 and 
summarized in Fig. 4. Overall. there are 32 amino acid 
changes (0.94% difference) between the two strains and an 
additional three clonal differences in the Asibi strain. Thus, 
there has been an average of 0.12 change fixed per passage, 
or 4 x 10- 6 change per amino acid per generation. As is clear 
from Fig. 4, these changes are not randomly distributed. 
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No ~ AA No ~ AA No 

Caps.d 3o- A G 3817 GG.A 6448 
370 c u 3860 G A V M 6529 

3915 U U.A ns4a 6758 
ns2a 4007 G A A T 6829 

M 854 u c F L 40 13 u c F L 6876 
883 G A 4022 G A AT 7171 

4054 u c 
4056 u c F S ns4b 7571 

1127 A G R G 7580 
1140 u c V A 
1482 u c V A 7642 
1491 u c I T 4289 C A L I no1 
1572 C A T K ns2b 4387 G A 7945 
1750 u c 4505 g ~) L I 8008 
1819 u c 4507 8629 

e:r-tope 1870 A G IM N55 ~05 
1887 u c F S 10075 
1946 u c s p 10142 
1965 G A R K 10243 
2112 G C R T 4612 c u 10285 
2142 A C H p 41164 GG.A 10312 
2219 A G T A 4873 G U 10316 
2356 u c 5131 G G.U M M.l 10338 

5153 G A v I 
NS3 5194 c u 10367 

2687 u c F L 5431 u c 3'Non· 1o-18 
2704 G A 5473 u c COding 1 o-54 

NS1 3274 A G 564 1 A G 10550 
3371 G A v I 60 13 u c 10800 
3613 A G 6023 A G N 0 10847 

Proteins E , ns2a , and ns2b exhibit a disproportionately high 
rate of change, 2.4% forE , 3% for ns2a , and 2.3% for ns2b . 
Only 13 changes , or less than half of the total changes found 
between Asibi and 170, are found in other regions , an amino 
acid sequence divergence of only 0.5%. 

The function of the various nonstructural proteins in virus 
replication is unknown. However , NS3 and NS5 probably 
form components of the viral replicase responsible for rep­
licating RNA . If these proteins do possess enzymatic func­
tions , then amino acid changes might be expected to be 
deleterious and selected against during continued passage . It 
is of note that most of the changes found in NS5 occur near 
the ends of the molecule , with only one change occurring 
within the central 75% of the protein . It is unknown whether 
NS1 has enzymatic activity , but it has been postulated that 
since it is a glycoprotein . it may be involved in virus 
assembly. The fact that amino acid substitutions in NS1 are 
rare , as was the case for NS3 and NS5 , suggests that 
whatever role it plays in virus replication , it requires a precise 
amino acid sequence for that function . NS1. NS3 , and NS5 
demonstrate a high degree of conservation among different 
flaviviruses (13). 

The small polypeptides ns2a, ns2b , ns4a, and ns4b are 
h:•drophobic in nature and are not highly conserved among 
flaviviru ses (13). Their hydrophobicity proftles are remark­
ably conserved , however , suggesting that as long as the 
hydrophobicity profile is unchanged , a large number of amino 
acid substitutions can be accommodated without affecting 
the normal function of these proteins. The high frequency of 
change observed in the ns2 region may simply be a reflection 
of this; many of the changes that arise may not affect function 

ASIBI 170 No ASIBI 170 No ASIBI 170 No 

G A 11 G c D c G 1 

A G 17 G u 1 c A 2 

c u 20 A c 4 u G 3 

u c 14 A u 1 u A D 

Pu Py • Py Pu 6 
Transition 62 

Tranaverslon 12 

F1 G. 3. Transitions and transversions that have occurred during 
passage of 17D strain . 
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~ AA 

u G 
c u 
G A V I 
c u 
c u A V 
G A Ml 

A c 
c u H y 

c u 
G A R a 
u c 
c u 
u c 
G A 0 N 
G G.U M M.l 

FIG . 2. Summary of differences between Asibi 
yellow fever and 170 yellow fever . The changes are 
IJ'Ouped by nucleotide number into the various 
regions of the genome . Nucleotide number (No) is 
from the S' terminus of 170. To the right is shown 
the nucleotide (NT) in the 170 genome followed by 
the nucleotide in the Asibi genome . Where clonal 
differences were found in Asibi yellow fever , both 
nucleotides as well as both amino acids if appro­
priate are shown . lfthe nucleotide change results in 
an amino acid substitution, the amino acid (AA) in 
170 is shown, followed by the amino acid in Asibi. 
Note that in every case of clonal differences in the 
Asibi strain , one of the nucleotides is the same as 
that found in 170 strain. 

A G K E 
A G 
c u 
G A 
u u.c S S.P 
u c L p 

c 
c 
G 
c 
A 
c 

u 
u 
A 
u 
G 
A 

and are, therefore , not selected against. The amino acid 
changes found in the ns2 region (Fig . 2) would have only 
marginal effects upon the hydrophobicity profile. 

Amino Add Changes Within the Structural Protein Region. 
No changes were found in the capsid protein, and only one 
change was found in prM (this change occurs within M). 
There are , however, a large number of changes in the 
envelope protein (Figs. 2 and 4). Furthermore , 15 nucleotide 
changes in the envelope gene have led to 12 amino acid 
substitutions (in contrast to the rest of the coding region 
where 53 nucleotide changes lead to 20 amino acid substitu­
tions), suggesting that in the E protein, some of the amino 
acid substitutions may have been positively selected for 
during passage , rather than simply being neutral in effect. 
Although it is impossible to predict the effect of any particular 
amino acid alteration without detailed knowledge of the 
three-dimensional structure and function of the protein , five 
nonconservative amino acid substitutions are likely candi­
dates to significantly alter envelope protein structure and 
function. These are Gly-52 to Arg, Thr-173 to lie, Lys-200 to 
Thr , Pro-320 to Ser, Thr-380 to Arg, and Pro-390 to His. It is 
of note that the last two of these changes occur within a 
conserved domain of theE protein. TheE protein sequences 
from flaviviruses representing the three serological sub-

TOTAL CHANGE 'II. CHANGE 
Ft3XN ~IAA ~IAA ~IAA 

5' NonccOng 118 I 0 1 0 I 

GapsiO 363 1 121 2 1 0 0.55'11. 1 0 
ptM (-M) 267 1 89 0 1 0 0 I 0 
M 225 1 75 2 1 1 0 .89% I 1.89% 
~ 1479 / 493 15/12 1.0 1% I 2.43% 

NS1 122.7 / 409 5 1 2 0.41% 10.49% 
ns2a 501 / 167 6 1 5 1..20% J 2 .99'% 
ns2IJ 390 I 130 4 1 2 1.03% 1 2 .3 1% 
NS3 1869 1 623 8 1 2 0.48% 10.32% 
nS4a 861 I 287 6 1 3 0 .70% I 0.7B•t. 
ns4b 336 / 11 2 2 1 1 0.60% I 0.89-1. 
NS5 2715 / 90S 111 • 0.~ / 0.44% 

3' Noncodng 511 / II 1 .17'% I 

TOTAL 10862 / :).(11 68 132 0 .63% I 0.91% 

FIG. 4. Summary of the differences between Asibi and 170 
strains at the nucleotide and the amino acid levels . The number of 
changes and the percent change at both nucleotide and amino acid 
levels are shown for various regions of the genome. 
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groups of the mosquito-borne flaviviruses are aligned in Fig. 
5; the domain from Pro-369 to Gly-448 shows a high degree 
of conservation among flaviviruses . In this region there are 
the foUowing three amino acid changes between Asibi and 
170: Thr-380 to Arg, Pro-390 to His, and Ala-416 to Thr. It 
is remarkable that in aU three cases, 170 changes resulted in 
the same amino acid as in the Murray VaUey encephalitis/ 
West Nile/St. Louis encephalitis subgroup offlaviviruses. In 
one case the amino acid is also present in dengue-2 virus 
(fhr-416), a.hd in a second case (His-390) there is also an 
aromatic amino acid (phenylalanine) at the equivalent posi­
tion in dengue-2 virus. It seems unlikely, therefore, that these 
alterations in the yeUow fever E protein sequence are due to 
random events, and it is tempting to speculate that these 
substitutions alter receptor affinities. In the Murray VaUey 
encephalitis subgroup, birds are an important natural host, 
and 170 was selected for efficient multiplication in chicken 
ceUs. It should also be kept in mind that only a limited number 
of amino acid substitutions might be tolerated. 

Tbe 3' -Untranslated Region. Of the six nucleotide changes 
found in the 3 '-untranslated region, two occur within the 
predicted secondary structure at the 3' end of the RNA. One 
of these would result in an extra A·U base pair in the 
3'-tennina188 nucleotides, while the second results in the loss 
of an A·U base pair; thus these two changes should have only 
a minor effect on the stability of the proposed secondary 
structure. 

There are three repeated-sequence elements in the 3 '­
untranslated region that are 42 nucleotides long, each of 
which differs from the others by 4 or 5 nucleotides. These 
repeats are shown for Asibi RNA in Fig. 6. Note that within 
this repeat, there are 16 contiguous nucleotides that are 
repeated identicaUy. In 170 RNA there has been an adeno­
sine to guanosine transition at nucleotide 10,454 that results 
in a mismatch within one copy of this perfect repeat. The 
significance of this change is unknown. 

DISCUSSION 

The 170 strain of yeUow fever virus is one of the safest and 
most effective live virus vaccines ever developed, especiaUy 
after stabilization of seed lots (for a study of the different seed 
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lots see ref. 17) . In this report we detail the differences in 
nucleotide and amino acid sequence between this vaccine 
strain and the 'PaJ'ental Asibi isolate from which it was 
derived. The change or changes responsible for the altered 
virulence or attenuation of 170 cannot be determined at the 
current time. Indeed, the situation is complicated by the fact 
that the 170 vaccine contains a mixture of variants that differ 
in a number of biological properties (17, 18). It is unclear 
which of these variants was sequenced to obtain the 170 
sequence, since the vaccine strain was plaque-purified before 
amplification and sequencing. It is unknown if this mixture of 
variants is important for the vaccine properties of the 170 . 
strain; however, reversion to virulence has never been 
documented. It is known that a change occurred in the 
virulence ofyeUow fever between the 89th and 114th passage ; 
that this change, once it occurred, was stable: and that 
comparable changes were not obtained when the passage 
history of the 17D strain was repeated. The Asibi strain 
sequenced was not plaque purified and a number of clonal 
differences were found. 

Attenuation of a virus by propagation in tissue culture 
presumably results from selection for variants better adapted 
for replication in tissue culture and, conversely, less-weU 
adapted for replication in their natural hosts , although accu­
mulation and fiXation of nonselected mutations may also be 
important. In particular, variants might be selected that bind 
more readily to receptors on cultured chicken ceUs, leading 
to more rapid attachment and penetration. Such an alteration 
in receptor binding could, as a consequence, lead to less­
efficient binding to receptors found in hepatocytes or neurons 
in primates, and thus to an alteration in tissue tropism and 
reduction in virulence. The large number of changes found in 
the envelope protein is consistent with such an hypothesis . 
Changes elsewhere in the genome may also be important, 
however, particularly if they affect the efficiency of virus 
replication. Because of the stability of the vaccine strain, it 
is likely that more than one change is important for its 
a virulence. lf it becomes possible to rescue infectious virus 
from a cloned eDNA copy ofyeUow fever, as has been done 
for several RNA viruses (19-21), it will be possible to test the 
effect of the individual changes found on the virulence of the 
virus. Such an approach has been used with the Sabin and 
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FIG. S. Envelope protein se­
quences of five flaviviruses . The · 
ali&ned amino acid sequence of 
five flavivirus E proteins arc 
shown in tbe single-letter amino 
acid code. Dots indicate that the 
amino acid is tbe same as in Asibi 
yeUow fever strain. Murray Valley 
encephalitis (MVE) (14) , West 
Nile (WN) (15), and St. Louis 
encepbalitis (SLE) (16) viruses be­
lona to a separate serological sub­
JI"'UP of mosquito-borne flavivi­
ruses . Dengue 2 (DEN 2) virus is a 
member of a third subgroup (Y . S. 
Hahn , R. Galler. J.M.D .. J.H.S .. 
and E. G. Strauss , unpublished 
data) . Cysteine residues are shad­
ed, and potential carbohydrate ad­
dition sites are boxed. 
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AUAA CCGGGAUACAAA CC ACGGGUGGAGAA CCGGA CUCCCC ACA 

g: . , :: ~ u j 0 ~~ :· · u . T 

1041 5 
10 .63 
10519 

FIG. 6. Repeated sequences in the 3'-untranslated region. The 
sequences of three repeats in the 3 · -untranslated region of Asibi RNA 
are aligned . Nucleotide 10,454 is a guanosine in the 170 strain , which 
introduces a mismatch in a 1~nuclcotide perfect repeat. 

Mahoney strains of poliovirus type I, with the finding that 
several changes within the genome are involved in the change 
in virulence between the two strains (22 , 23). 

Studies by Schlesinger et a/. (24) have shown that mono­
clonal antibodies against the envelope protein of 170 yellow 
fever are often able to discriminate between 170 and Asibi 
yellow fever. Interestingly, some of these antibodies neutral­
ize Asibi virus but not 170 virus. This suggests that changes 
in the E proteins are important for determining the structure 
of E and/ or are found in regions important for antibody 
binding . These authors also found that E proteins ofl70 were 
present in both glycosylated and nonglycosylated forms , 
whereas Asibi E protein was present in only one form 
(presumably nonglycosylated from its mobility relative to 
that of 170 E protein , since we show here that the two 
proteins are identical in size). No change in the single 
potential glycosylation site was found between 170 and 
Asibi , although the change of Phe-305 to Ser is found just 
upstream of this site . Presumably this change , or other 
changes upstream that affect the folding of the proteins,leads 
to changes in accessibility of the site to the glycosylation 
enzymes . 

This study is also of interest because it represents a 
detailed study of differences that have arisen during 240 
passages in which the passage history is known with some 
clarity. RNA replicases lack proofreading activity and the 
error frequenc y of these enzymes is estimated to be on the 
order of about 10-• per nucleotide per generation, based upon 
theoretical considerations of the free energy of an A·U or G<: 
base pair, or upon measured mutation frequencies in a 
number of virus systems (25 , 26). However , measurements in 
other systems have yielded lower estimates of mutation 
frequency. Parvin et a/ . (27) found a substitution frequency 
in the NS gene of influenza of 4 x 10- 6 substitution per 
nucleotide per generation and <5 x 10- 7 substitution per 
generation in the poliovirus VP1 gene . We report here that 
yellow fever underwent 2 x 10-6 substitution per nucleotide 
per generation during passage of the 170 strain. The difficulty 
in relating the various mutation rates observed comes in 
estimating the fraction of nucleotide substitutions that are 
capable of survival under the conditions used, which will 
differ with the protein domain under consideration (some 
domains or even entire proteins tolerate changes more than 
others) and with the method of selection [simple ability to 
persist in a population and form a plaque, as was used by 
Parvin et a/ . (27). or ability to compete head to head with 
other viruses in the population , as was the case with yellow 
fever 170) . Domingo eta/. (28) have shown with bacterio­
phage Q/3 that in direct competition, the RNA population 
consists of an average nucleotide sequence that is maintained 
during passage , but in which variants arise at high frequency 
that are subsequently selected against during continued 
passage. Since many nucleotide changes studied were almost 
certainly silent changes , the RNA secondary structure ofQ/3 
appears to be important for rapid growth and even silent 
changes may be selected against , a situation that may well 
prevail with other RNA viruses and especially with plus­
strand RNA viruses . Thus it is unclear whether even the 
incidence of silent change can be used to assay the inherent 
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mistake frequencies of the viral RNA polymerases . In the 
case of 170 yellow fever , those alterations that have been 
fixed presumably represent mutations that are truly neutral 
(or possibly fixed during plaque purification) as well as 
positive changes that lead to more efficient growth in tissue 
culture . 
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Appendix 

Comparison of the Asibi and 

170 Strains of Yellow Fever Virus 

This was published in Vaccines 87, 

Cold Spring Harbor Press, Cold Spring Harbor, N.Y. 

and is reproduced with the permission of the publisher. 
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Comparison of the Asibi and 170 
Strains of Yellow Fever Virus 

Chang S. Hahn, Charles M. Rice,* 
and James H. Strauss 

Division of Biology, California Institute of 
Technology, Pasadena, California 91125 

Joel M. Dalrymple 
Virology Division, United States Army 

Medical Research Institute of Infectious Diseases 
Fort Detrick, Federick, Maryland 21701 

The 170 strain of yellow fever virus is an excellent live-virus vaccine, being highly 
efficacious and having only limited side effects . It is the only effective live-virus 
vaccine obtained to date for any of the flaviviruses, a group of about 70 closely related 
viruses classified as family Flaviviridae, many of which cause serious human illness. 
We were interested in comparing the sequences of the 170 and Asibi strains of yellow 
fever virus in order to define the changes that have occurred during 240 serial 
passages of a virus in culture , as well as to provide a framework for studying the 
biological significance of the changes that have occurred between the two strains . 

170 Strain of Yellow Fever VIrus 

The Asibi strain of yellow fever virus was isolated from a young Ghanian of that name 
in 1927 by the Rockefeller Foundation's West Africa Yellow Fever Commission 
(Stokes et al. 1928). This virus , which was maintained by monkey-monkey passage, 
is neurotropic and viscerotropic in humans and causes an invariably fatal disease 
when inoculated into rhesus monkeys. Beginning with this strain, M. Theiler and 
colleagues (for review, see Strode 1951) developed a live attenuated vaccine strain 
referred to as 170. The passage history of the 170 strain is reviewed in Table 1. 
Somewhere between the 89th and 114th passage in mouse embryo tissue culture and 
chicken embryo t issue culture , a marked change in virulence occurred. . 

The vaccine strain known as 170-204 (provided by the American Type Culture 
Collection) had been through a total of 234 in vitro passages . Subsequently, to obtain 
enough RNA for molecular cloning , we subjected this strain in our laboratory to 
additional passages in chick cells, BHK cells, and SW13 cells , as well as to plaque 
purification in VERO cells, as outlined in Table 1. A eDNA library representing the 
entire nucleotide sequence of yellow fever was obtained from virion RNA after virus 
purification by precipitation with polyethylene glycol, followed by velocity and isopyc­
nic sedimentation in gradients of glycerol and tartrate . The entire sequence of 170 
yellow fever was obtained from this library (Rice et al. 1985, 1986a) and was used to 
deduce the amino acid sequences of all the yellow-fever-encoded proteins . We found 
that the yellow fever genome was translated as a polyprotein and subsequently 

•Present address : Department of Microbiology and Immunology, Washington University of St. 
Louis. St. Louis, Missouri 63110. 

316 ~ccines 8 7. (£) 18117 Cold Spring Harbor Laboratory. o-871N19·302· 11 117 11 .00 • .00 
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Table 1 
Passage History of 1 7D Yellow Fever Virus 

In vivo passages 
53 passages in monkey (with intermittent periods of life in Aedes aegypti) 

In vitro passages to produce 1 7D yellow fever• 
1 8 passages in minced mouse embryo tissue culture 
50 passages in minced whole chicken embryo tissue culture 
152 passages in minced chicken embryo without CNS" 
14 more passages in CE (with or without CNS) = 17D·204 strain, supplied by ATCC 

In vitro passages to produce RNA for eDNA cloning 
2 passages in CEF 
plaque purification in VERO cells 
2 passages in BHK cells 
1 passage in SW1 3 cells 

The passage history of yellow lever to produce the 170 atrain is indicated . See text lor details and 
authors . (CNS) Central nervous system ; (CE) chick embryo; (ATCC) American type-culture collec­
tion : (CEF) chock embryo fibroblast ; (BHK) baby hamster kidney; (SW13) a human cell line derived 
from an adenocarc inoma. 

"Total in vitro passages is 234 
"A marked change in vorulence occurred somewhere between the 89th and 1 14th in vitro paasage 

and was not able to be repeated . 

processed to produce the various structural and nonstructural proteins of the virus. 
The genome organization and the location of the flavivirus-encoded proteins have 
been confirmed by direct amino-terminal sequencing of yellow fever proteins (Bell et 
al. 1985 ; Rice et al. 1986b), as well as by sequencing of proteins of other flaviviruses 
(Bell et al. 1985; Castle et al. 1985, 1986; Wengler et al. 1985; Rice et al. 1986b) . 
Because we are ultimately interested in comparing strains of yellow fever virus, we 
obtained the entire sequence of the 170 strain on at least two independent eDNA 
clones so that strain variation and I or errors occurring during reverse transcription 
and cloning would not affect the sequence obtained . 

Asibi Strain of Yellow Fever Virus 

The Asibi stra in used had been passaged 45 times in rhesus monkeys by blood-to­
blood transfer (Table 2 ). It is not known how many of these monkey-monkey pas­
sages are the same as the passages in the monkey of the 170 strain reported in Table 
1, as the records have been lost in antiquity. At the 46th passage, the virus was still 

Table 2 
Passage History of Asibi Yellow Fever 

In vivo passages 
45 passages in rhesus monkey= YARU" reference virus 
1 additional passage in monkey 

In vitro passage to produce RNA for eDNA cloning 
1 passage in LLC cells 
2 passages in VERO cells 

•vale Arbovirus Research Unit. Virus supplied by A. Shope. 
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virulent and killed the monkey. Blood from this infected monkey was passed once in 
LLC cells and twice in VERO cells to produce virus for purification and RNA extrac­
tion . Cloning of eDNA followed the same procedures used ·for the 170 strain , and 
clones representing different regions of the genome were identified by colony hybridi­
zation using restriction fragments from the 170 library. The entire genome of the Asibi 
strain has now been sequenced , once again using at least two clones to obtain each 
nucleotide position. and the amino acid sequences of the proteins encoded by the 
Asibi strain of yellow fever virus have been deduced. 

The amino acid sequences of the polyproteins specified by Asibi and 170 yellow 
fever are compared in Figure 1. For purposes of comparison, we also included the 
amino acid sequence of the polyprotein encoded by West Nile virus. Ignoring clonal 
differences, the Asibi and 170 polyproteins differ at 32 amino acid positions, a 0.94% 
divergence in the amino acid sequence . These amino acid substitutions are not 
uniformly distributed along the polyprotein. In particular, the envelope protein con­
tains 40% of the total amino acid substitutions (12 of 32) , a sequence divergence of 
2 .4%. Many of these changes are not conservative in nature , such as Arg-52 to 
glycine , lle-173 to threonine, Thr-200 to lysine , Arg-380 to threonine, and His-390 to 
proline . One domain of E is particularly intriguing. The domain from Pro-369 to 
Gly-448 is highly conserved among ftaviviruses, as can be seen by comparing the 
yellow fever and West Nile sequences in Figure 1. In this domain , there are three 
amino acid substitutions between Asibi and 170. Thr-380 in Asibi is arginine in 170, 
Pro-390 is histidine in 170, and Ala-416 is threonine in 170. None of these changes 
are conservative in nature , and it is of interest that in each case during selection in 
tissue culture, the sequence of the virulent Asibi yellow fever has changed in 170 to 
the sequence of West Nile virus . It is tempting to speculate that these changes alter 
receptor affinities ; birds serve as an important reservoir in nature for the West Nile 
subgroup of mosquito-borne flaviviruses , and as noted, 170 yellow fever arose by 
selection for rapid growth in chick embryo tissue culture. In any event, it seems 
unl ikely that these three changes represent random changes in the yellow fever E 
prote in during passage in culture. 

SUMMARY AND CONCLUSIONS 

We have no way of knowing at present which changes are important for the difference 
in virulence between the two strains of yellow fever virus. The changes could arise in 
part from differences in tissue tropism caused by altered affinities of the virus for 
cellular receptors . Viral surface proteins have been shown to be important in other 
systems in determining virulence of strains. However, it is also possible that changes 
in nonstructural proteins could be important determinants of avirulence in this case, 
and it seems likely from the stability of the 170 strain that more than one change was 
involved in the attenuation of Asibi. Now that the amino acid differences between the 
two strains are known , it should be possible to design experimental systems to test 
the effect of the specific changes on virulence. 
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ABSTRACT The alphaviruses are a group of 26 mosquito-borne viruses that cause 

a variety of human diseases. Many of the new world alphaviruses cause 

encephalitis whereas the old world viruses more typically cause fever, rash, and 

arthralgia. The genome is a single-stranded non-segmented RNA molecule of plus 

polarity; it is about 11,700 nucleotides in length. Several alpha virus genomes have 

been sequenced in whole or in part, and these sequences demonstrate that 

alphaviruses have descended from a common ancestor by divergent evolution. We 

have now obtained the sequence of the 3' terminal 4288 nucleotides of the RNA of 

the new world alphavirus Western equine encephalitis virus (WEE). Comparisons 

of the nucleotide and amino acid sequences of WEE with those of other 

alphaviruses clearly show that WEE is recombinant. The sequences of the capsid 

protein and of the (untranslated) 3' terminal 80 nucleotides of WEE are closely 

related to the corresponding sequences of the new world alphavirus Eastern equine 

encephalitis (EEE) virus, whereas the sequences of glycoproteins E2 and El of 

WEE are more closely related to those of an old world virus, Sindbis (SIN) virus. 

Thus, WEE appears to have arisen by recombination between an EEE-like virus and 

a SIN-like virus to give rise to a new virus with the encephalogenic properties of 

EEE but the antigenic specificity of SIN. There has been speculation that 

recombination might play an important role in the evolution of RNA viruses. The 

current finding that a widespread and successful RNA virus is recombinant 

provides support for such an hypothesis. 
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INTRODUCTION 

The 26 members of the alphavirus genus of the family Togaviridae are 

mosquito-borne viruses that form an important group of disease agents (1-3). The 

new world alphaviruses include Western equine encephalitis (WEE) and Eastern 

equine encephalitis (EEE) viruses, both of which are capable, as their names imply, 

of causing encephalitis in man, as well as of causing severe disease in horses. 

WEE has a wide geographic distribution, being found from western Canada to 

Mexico and, discontinuously, to Argentina. WEE is transmitted in the western 

United States by the mosquito Culex tarsalis; birds serve as an important 

vertebrate reservoir. In the eastern United States WEE is replaced by Highlands J 

(HJ) virus, whose primary vector is Culiseta melanura. From serological studies 

(3,4) and from limited sequencing studies (5,6), WEE and HJ are known to be very 

closely related, and HJ can be considered to be a strain of WEE (2). In the eastern 

United States the range of HJ overlaps that of EEE, whose primary vector is also 

Cs. melanura. Other new world alphaviruses include Venezuelan equine 

encephalitis virus (VEE), found in Central and South America; Fort Morgan virus, 

found in Colorado; and Aura virus, found in South America. 

The old world alphaviruses include Sindbis virus (SIN), the prototype 

alphavirus; Semliki Forest virus (SF); Chikungunya virus (CHIK); O'Nyong-nyong 

virus (ONN); and Ross River virus (RR). SIN and SF have been intensively studied 

as models for alphavirus replication (7). SIN is widely distributed, being found in 

Europe, India, southeast Asia, Australia, and Africa. Close relatives of this virus, 

such as Ockelbo virus in Europe (8) and Babanki virus in Africa, cause disease in 

man characterized by fever, rash, and arthritis. CHIK and ONN have caused large 

epidemics in Africa of a dengue-like disease also characterized by fever, rash, and 

arthralgia. RR is the causative agent of epidemic polyarthritis in Australia and 

the South Pacific. 
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The single-stranded RNA genome of the alphaviruses is nonsegmented and 

about 11,700 nucleotides in length. Complete or partial RNA sequences have been 

obtained for SIN (9), SF (10-12), RR (13), EEE (14), and VEE (15). Comparison of 

these nucleotide sequences, and more importantly, their encoded amino acid 

sequences, have demonstrated that the alphaviruses are related by linear descent 

from a common ancestor (7). The relationships among the various alphaviruses 

derived from the sequencing studies are compatible, for the most part, with those 

derived from studies of serological cross-reactivity, which depends only upon 

antigenic epitopes in the structural proteins. In serological studies, however, WEE 

has always been something of a puzzle. It is a new world virus that often causes 

encephalitis, but serologically it is most closely related to SIN, an old world 

alphavirus not normally associated with encephalitis. In order to explore the 

relationship of WEE to other a1phaviruses, we have now obtained the nucleotide 

sequence of the 3' terminal 4,288 nucleotides of the WEE genome. Comparison of 

this sequence and of the encoded amino acid sequences with those from other 

alphaviruses suggests that WEE arose by a recombination event between an EEE­

like virus and a SIN-like virus. 

MATERIALS AND METHODS 

Virus RNA Preparation. WEE RNA (strain BFS1703) was obtained from 

Drs. Mark Stanley and James Hardy of the University of California, Berkeley. The 

BFS1703 strain of WEE was isolated from Culex tarsalis mosquitos in July, 1953 in 

Kern county, California (16). The virus had been passed twice by IC inoculation of 

suckling mice and four times (including three plaque isolations) in Vero cells. For 

RNA preparation, virus was grown in Vero cells and purified by pelleting onto a 

30% sucrose cushion followed by isopycnic banding in Nicodenz. Purified virus 

was pelleted, dissociated in SDS, and the RNA extracted by phenol-chloroform 



140 

treatment. Following ethanol precipitation, the RNA was sedimented in a 

discontinuous sucrose gradient, the RNA band recovered, and the RNA was 

concentrated by ethanol precipitation. 

Cloning and Sequencing. Clones containing the 3' terminal 4288 nucleotides 

of WEE RNA [plus a variable length of poly(A)] were obtained using an oligo(dT)­

tailed vector as a primer as described ( 17). Clones were sequenced using the 

chemical sequencing method (18,19). More than 99% of the nucleotide sequence 

was obtained on two independent clones in order to rule out cloning artifacts (17) 

and to detect possib le clonal variation. 

RESULTS 

Partial Sequence of WEE RNA. The translated sequence of the 3' terminal 

4,170 nucleotides of the WEE genome is shown in Fig. 1. This sequence begins in 

the region encoding the carboxy terminus of nonstructural protein 4, continues 

through the junction region between the nonstructural and structural proteins [this 

region contains the start of the subgenomic mRNA that is translated to give the 

structural proteins and is also believed to contain nucleotide sequence elements 

required for transcription of this subgenomic RNA (20}], progresses through the 

coding sequence of the three structural proteins of the virus (a nucleocapsid 

protein and two envelope glycoproteins E2 and E 1), and finally through the 3' 

terminal untranslated sequence which ends in a poly(A) tract. 

We have previously sequenced the N termini of the three structural 

proteins of the McMillan strain of WEE (isolated in 1941 in Canada from the brain 

of a fatal human case) and thus established the start points of the structural 

proteins (21). Comparison of the amino acid sequence of the McMillan strain with 

that deduced here for the BFS1703 strain (isolated from mosquitos in 1953 in 

California) reveals four amino acid differences in 142 amino acids for which 
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Fig. 1 Sequence of the 3' terminal 4170 nucleotides of WEE RNA (strain 

BFS1703). The start points of the structural proteins are indicated. Astericks 

indicate the termination codons for the nonstructural and structural 

polyproteins. Two independent clones were sequenced and only one clonal 

difference was found: the GAC encoding Asp 72 of E2 was replaced by UAC 

encoding Tyr in the second clone. 
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comparison is possible (1 difference in C, 1 in E2, and 2 in El). However, 

reevaluation of the original data for the McMillan strain suggests that the 

apparent difference in the capsid proteins may result from a misscall in the 

McMillan sequence, and that there are no differences in the capsid proteins of 

these two strains in the region for which comparison is possible. The amino acid 

sequence divergence between the two strains is 2.8% (or 2.1% if the apparent 

difference in the capsid proteins is ignored). We have also reported the sequence 

of the 3' terminal 351 nucleotides of McMillan RNA (6). Comparison of this 

sequence with that for BFS1703 shows three nucleotide substitutions and one 

nucleotide deletion (in McMillan) between these two strains, a nucleotide sequence 

divergence of 1.1 %. These comparisons establish that the widely studied McMillan 

strain (the prototype WEE virus), and the BFS1703 strain are the same virus. 

Since these two strains were isolated 12 years apart in different geographic areas, 

the calculated rate of divergence of WEE in nature is, at most, 0.1-0.2% per year, 

which is low in comparison to rates of divergence that have been established for 

several RNA viruses (22,23). 

WEE is a Recombinant. The amino acid sequences of the WEE structural 

proteins are compared to those of EEE and of SIN in Fig. 2. Inspection of this 

figure clearly reveals that the WEE capsid protein C is most closely related to 

that of EEE whereas the glycoproteins E2 and El are more closely related to the 

corresponding proteins of SIN. 

The relationships among the proteins of these viruses are summarized in 

Table 1. The N terminal and C terminal domains of the capsid protein are 

considered separately because of the fact that the C termini of all alphavirus 

capsid proteins are closely related. The N terminal 132 amino acids of the WEE 

and EEE capsid proteins share 78% amino acid sequence identity whereas the 

corresponding figures for WEE and SIN and for EEE and SIN are 39% and 36%, 



144 

Fig. 2 Comparison of the amino acid sequences of the structural proteins 

of WEE, EEE, and SIN. A dot in the EEE or SIN sequence means that the amino 

acid is the same as that of WEE on the first line. Gaps have been introduced for 

alignment. The sequence for WEE is from Fig. 1, that for EEE is from (14), and 

that for SIN is from (9) Potential glycosylation sites are boxed and cysteines are 

highlighted with dotted overlay. 
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respectively. The C terminal domain of the capsid protein of WEE is also more 

closely related to EEE (91% sequence identity) than it is to SIN (69%). The 

relationships are reversed in the case of the envelope proteins. Overall, WEE and 

SIN share 71% amino acid sequence similarity in the envelope glycoproteins 

compared to only 47% between WEE and EEE or 46% between EEE and SIN. 

Figures for the C terminal domain of nsP4 are also included. Although in general 

this protein is highly conserved among alphaviruses, its C terminal domain is more 

variable and WEE and EEE are much more closely related in this region than are 

WEE and SIN or EEE and SIN. 

Also included in this table are comparisons with another alphavirus, VEE, to 

illustrate that alphaviruses in general differ from one another in a uniform and 

consistent way. Sequence data for SF or RR lead to similar results (not shown). 

WEE is exceptional in that it is closely related to SIN in the region of the genome 

encoding El and E2, but to EEE in other regions. 

Nucleotide sequences in the carboxyterminal region of nsP4 and in the 

junction region between structural and nonstructural proteins, which are believed 

to encode important signals for transcription of a subgenomic RNA (20), are 

compared for the three viruses in Fig. 3a. Note that EEE and WEE nucleotide 

sequences are very similar to one another and that, in particular, the sequences 

flanking the start of the subgenomic 26S RNA are identical. The sequence of SIN 

in this region is similar but not identical. Notice also that the nsP4 proteins of 

EEE and WEE terminate at the same residue whereas the SIN protein terminates 

downstream. 

The sequences at the 3' termini of WEE, EEE, and SIN are shown in 

Fig. 3b. The 3' terminal 19 nucleotides have been proposed to form an important 

element in alphavirus RNA replication because they are highly conserved among 

members of this genus (6), and this sequence element (underlined in Fig. 3b) is 
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Fig. 3 Comparison of the nucleotide sequences in the junction regions of 

EEE, WEE, and SIN (panel a) or at the 3' end of the RNAs (panel b). Asterisks 

denote conserved nucleotides. The heavy underlines denote conserved nucleotide 

sequences in the alphaviruses, 21 nucleotides around the start of the subgenomic 

265 RNA (20) and 19 nucleotides at the 3' end of the RNA (6) which are believed 

to form important regulatory elements for RNA transcription (7). The 

termination codons that end the nonstructural open reading frames are marked 

with black circles. 



WEE 

EEE 

SIN 

14 8 

a. JUNCTION CONSERVED SEQUENCE 

I R G N P I T L Y G • 
CAUAAGAGGGAACCCAAUCACCCUCUACGGCUGACCU 

I R G H P I T L Y G • 
CAUAAGAGGUCACCCCAUAACCCUCUACGGCUGACCU 
********* **** ** ******************* 

I R G E I K H L Y G G P K 
CAUCAGAGGGGAAAUAAAGCAUCUCUACGGUGGUCCU 

26S 

*** ***** * ** ******** * ********* 

b. 3' END CONSERVED SEQUENCE 

WEE UAAUUUUUCUUUU GUUUUUAUUUUGUUUUUAAAAUUUC poly (A) 

EEE UAAUUUUUCUUUUAUGUUUUUAUUUUGUUUUUAAUAUUUC poly (A) 
************* ******************* ***~* 

SIN UUUCUUUUAUUAAUCAACAAAAUUUUGUUUUUAACAUUUC poly (A) 

* **** ** ************* ***** 
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Table 1 Percent Sequence Identity Among WEE, EEE, SIN and VEE Proteins 

WEE WEE 
EEE SIN 

EEE EEE 
SIN VEE 

nsP4 (C-Terminus) 70% 35% 40% 

Capsid 

N-Terminus 1 78 39 

C-Terminus 1 91 69 

Overall 85 53 

Envelope 

E3 50 58 

E2 44 68 

6K 44 67 

El 49 76 

Overall 47 71 

36 

64 

50 

42 

42 

45 

51 

46 

42 

76 

59 

59 

46 

54 

58 

53 

SIN 
VEE 

27 

61 

44 

49 

40 

40 

51 

46 

WEE 
VEE 

49 

77 

63 

56 

41 

40 

50 

46 

1 N-terminus refers to amino acids 1 to 132 of the Sindbis capsid protein or 

the corresponding positions in the aligned files in Figure 2. C-terminus 

includes the remaining amino acids in the capsid proteins in the aligned 

files. 
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invariant among these three viruses with the exception of the sixth 

nucleotide from the end. The nucleotides upstream of this are AU rich and 

not particularly conserved among alphaviruses, but in this domain the 

sequences of WEE and EEE are almost identical whereas that of SIN is more 

variable. 

These results show that within the region examined the WEE 

nucleotide sequence is recombinant, with both the 5' and 3' ends derived 

from an EEE-like virus and the intervening glycoprotein genes derived from 

a SIN-like virus. We presume that the 5' terminal two-thirds of the genome, 

which has not yet been sequenced, is also derived from the EEE-like virus. 

Partial support for this comes from our previous finding that the 5' terminal 

sequence of HJ is similar to that of EEE (5). 

The Recombination Events. Our interpretation of the sequence 

information is shown schematically in Fig. 4. This figure is included in part 

to illustrate the structure of the alphavirus genome, as well as to describe 

the most likely scenario for the origin of WEE. 

In this model, close inspection of the aligned sequences in Fig. 2 

suggests that the 5' crossover occurred in E3. Gaps must be introduced into 

the amino acid sequences to align them and the two gaps of three amino 

acids each in E3 are of particular interest. The first gap, following residue 

1, is shared by WEE and EEE, and upstream of this WEE and EEE are in 

almost perfect alignment (only one gap of one amino acid must be introduced 

into each sequence to maintain alignment), whereas several gaps must be 

introduced to keep the SIN sequence aligned. Conversely, the gap following 

residue 21 of WEE E3 is shared by SIN and WEE, and downstream of this the 

SIN and WEE sequences are in almost perfect register (only one gap of one 

amino acid in E3 is required to maintain alignment), whereas numerous gaps 
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Fig. 4 Schematic representation of the recombination event that 

produced WEE. The genome structures of SIN, EEE, and WEE are 

diagrammed, and the crossover points to produce WEE are indicated. 
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are required to keep the EEE sequence in register. This suggests that the 

recombination event occurred between these two gaps of three amino acids 

each in E3, which is compatible with the sequence similarities exhibited by 

the capsid proteins and the glycoproteins in Table 1. 

The 3' crossover appears to have occurred in the 3' untranslated 

region. The 60 nucleotides of WEE RNA following the structural protein 

stop codon are very similar to the SIN sequence, whereas the last 80 

nucleotides of the RNA are similar to EEE, with no sequence similarity 

detectable in between. Although a double crossover seems inherently less 

likely than a single crossover, the presence of important replication signals 

at the 3' end may require such an event to produce viable (or at least 

efficiently replicating) virus (6,7). 

There is a formal possibility that WEE is one of the parental viruses in 

a cross that resulted in the reciprocal recombinants SIN and EEE. Because 

RNA recombination is believed to occur by a copy choice mechanism, 

however, in which reciprocal recombinants are not produced (24), and 

because of the apparent rarity of viable recombinant viruses, this possibility 

appears remote. 

Interaction of the Nucleocapsid and Glycoproteins During Virus 

Budding. Alphaviruses mature when preassembled nucleocapsids, which are 

icosahedral structures consisting of 180 copies of the nucleocapsid protein 

and one molecule of the virus RNA, acquire an envelope by budding through 

the plasma membrane (25,26). The envelope consists of a lipid bilayer 

derived from the host cell m which are embedded two virus-encoded 

glycoproteins, E2 and E 1. The nucleocapsid and the glycoproteins are 

thought to interact specifically with one another, so as to exclude nonvirus 

proteins from the structure; the free energy for driving virus budding is 
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derived from these specific interactions. During evolution, certain domains 

of the glycoproteins of a particular virus must have been selected for 

maximal specific interaction with the capsid of that virus. In a recombinant 

virus which contains the capsid protein from one virus and the glycoproteins 

from another, the interactions during budding might not be optimal. During 

passage of such a recombinant virus, selection pressure would favor variants 

in which the nucleocapsid and glycoprotein interactions were improved. It is 

thus of considerable interest that there are only seven amino acid 

differences between WEE and EEE in the C terminal 104 amino acids of the 

capsid protein, and for 6 of these WEE has the SIN amino acid (Fig. 2). This 

suggests that this domain of the capsid protein interacts with the 

glycoproteins during virus assembly, and that following the recombination 

event selection pressure has led to some of the EEE capsid amino acids being 

replaced with SIN amino acids to allow more efficient interaction with the 

SIN glycoproteins. Conversely, in the C terminal 16 amino acids of E2 there 

are 6 amino acid differences between WEE and SIN, and for 4 of these WEE 

has the EEE amino acid, suggesting by the same logic that this domain of E2 

interacts with the capsid during budding. Other examples can be found in 

other regions of the structural proteins. The hypothesis that these are m 

fact involved in capsid-glycoprotein interactions can now be tested by site 

specific mutagenesis, using a eDNA clone of Sindbis virus from which 

infectious RNA can be transcribed in vitro (27). We are in the process of 

testing this model by constructing site-specific mutants in the domains 

identified by this analysis. 
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DISCUSSION 

The Origin of WEE Virus. The two parents of WEE and the time of 

the recombination event cannot be determined at the current time. As 

described earlier, the McMillan strain of WEE isolated in 1941 in Canada and 

the BFS1703 strain isolated in 1953 in California are clearly strains of the 

same virus. They have nearly identical capsid proteins, glycoproteins E2 and 

E 1, and 3' terminal sequences. Thus the recombination event could not have 

occurred during passage of the virus in culture, as this would have required 

the identical recombination event to have occurred twice, in different 

laboratories (see, for example, Fig. 4). By the same logic, the recombination 

event must have predated the isolation of the McMillan strain of WEE in 

1941. Furthermore, as noted earlier, all of the sequence information 

obtained so far is compatible with the hypothesis that the recombinant virus 

arose before the separation of WEE and HJ viruses. On the other hand, the 

N terminal portions of the capsid proteins of WEE and EEE are very similar, 

a domain not well conserved among alphaviruses (28). This domain is lysine­

and arginine-rich, has a high proportion of proline, and appears to interact 

electrostatically with the virus RNA to stabilize the capsid structure. Thus 

the similarity in the WEE and EEE sequences, together with the fact that 

RNA viruses diverge rapidly (21), suggests that the recombination event 

must be relatively recent. We propose that one of the parents was EEE 

itself. The sequence similarities with SIN in the envelope protein regions are 

not as pronounced and suggest that the second parent was not SIN itself, but 

a relative of it. Because WEE and EEE are new world viruses, we suggest 

that the recombination event occurred in the new world between EEE, or an 

immediate ancestor of it, and a SIN-like virus that has yet to be identified. 

It seems most likely that the recombination event would take place in the 
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mosquito vector, in which the virus sets up a persistent life-long infection. 

EEE and HJ overlap in geographic ranges and mosquito vector. Thus HJ 

might represent the ancestral recombinant virus which radiated to produce 

WEE. 

Recombination in RNA Virus Evolution. There has been a great deal 

of speculation about the importance of recombination in the evolution of 

RNA viruses (for recent reviews see 29,30). In segmented RNA viruses, 

reassortment of individual genome segments during mixed infection, a form 

of recombination equivalent to the shuffling of chromosomes in diploid 

creatures, is readily demonstrated in cell culture. Reassortment has been 

well documented as a major mechanism for generating new pandemic strains 

of influenza virus (31,32), and it can be argued that the ability to undergo 

ready recombination conveys significant selective advantage on RNA viruses 

with segmented genomes. Among the nonsegmented RNA viruses, 

recombination has been in general more difficult to demonstrate, but it has 

been shown to occur in the picornaviruses (33,34), the coronaviruses (35,36), 

and the bromoviruses (37), although not before now in the alphaviruses. In 

poliovirus, recombination occurs by a copy choice mechanism during RNA 

replication (24), and it is assumed that all RNA recombination (as opposed to 

reassortment) occurs by this mechanism. Although well established in 

principle, evidence for the importance of recombination in nature as a 

mechanism that leads to successful new strains is limited. In the case of 

poliovirus, recombination has been shown to occur in vaccinees who have 

simultaneously received high doses of three attenuated viruses (34), but this 

is a somewhat artificial system. The finding that WEE, a virus with a wide 

geographic range, is a naturally occurring recombinant lends support to the 

hypothesis that RNA recombination is an important force in the evolution of 
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RNA viruses. In this particular case it has given rise to a new virus that 

combines the disease-causing potential of EEE with new antigenic properties 

from a SIN-like virus. 
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We han isolatt-d a cD~A clone aft.t'r re\·erse transcription of the genomic R~A of Asibi 
yellow fenr ,·iru~ whose structure suggests it was formed by self-priming from a 3'-t.t'rminal 
hairpin of 87 nucleotides in the genomic R~A . v.·e han also isolatt'd a clone from cD~A 
madt> t<) Murray \"alley encephalitis virus R~A that also appears to have arisen by self­
priming from a 3'-terminal structure very similar or identical to that of yellow fe,·er . In 
addition , 3'- terminal sequencing of the Sl strain of dengue 2 R~A shows that this R~A is 
also capablt> of forming a 3'-t.t'rminal hairpin of 79 nucleotides. Furthermore , we han' 
identified two 20-nucleotide sequenee elements which are present in the 3' untranslated 
region of all three ,-iruses ; one of these sequence elements is repeated in Murray \'alley 
encephalitis and dengue 2 R~A but not in ~·ellow fever R~A . In all three viruses, which 
represent the thrt>e major serologi cal subgroups of the mosquito-borne fla,·iviruses , the 
3' -proximal consen·ed sequence element . which is found immediately adjacent to the 
pott-ntial 3'-terminal hairpin. is complementary to another consen·ed domain near the 5 ' 
end of the viral R~As. suggesting that fla,-i,·irus R~As can cyclize (calculated 
6G <-I I kcal ; I kcal = 4·184 kJ). 

1. Introduction 

Short nucleotide sequences located near or at the 
3' tt-rmini of numerous viral R:!\As have been 
postulated t.o play important roles in virus R::\A 
replication (for a l"t'view. see Strauss & Strauss, 
1983). These element s may be either elaborate 
seeondary stru<'tures or linear nucleotide sequences. 
and are believed t.o form spe<'ific binding sites 
re<'ognizE'd by the viral encoded replicase, analogous 
t.o promoters in D::\A sequences. The best-studied 
examples of structures with specific roles in 
repli cation are found in plant virus R:!\As (e.g. see 
Hall. 1979; Pleij et al. , 1985: Smith & Jaspers, 
I 980) . A number of linear sequences located at the 
3 ' tt'rmini or animal viruses , which appear t.o be 
essential for R~A replication. ha,·e also been well ­
studied . In the case of alpha,·iruses there is a 
const>rved 19-nucleotide sequence at the 3' t.t'rminus 

t Pre..,nt address: Dt>partment of Mi crobiology and 
lmmuno l oll~· . Box 8093. \\"ashin![( on l ' niversity ~rhool 
of :lledicint- . 66(1 So. Euclid An•nue. St . Louis . .MO 
63110. l ·.s.A. 

0022-2836;21 0033-{)9 $03.00!0 
33 

(Ou et al., 1982) which has been shown by 
truncation experiments using defective interfering 
R~As to be required for replication and tor 
packaging of the R~As (Levis et al.. 1986). 
Consen·ed sequences 12 t.o 15 nucleotides in length 
are found at the 3' ends of the genome segments of 
influenza \-irus and of Bunyaviruses. Bunya,·iruses 
with identical 3' -terminal sequence elements can 
exchange genome segments, gi\·ing riSt' to 
recombinant \-iruses and, in fact , these conserved 
terminal sequences have been used to definp genera 
within the Bunyaviridae (for a re\·iew , see Strauss 
& Strauss, 1983). 

In the case of flaviviruses , Rice d al . (I 985) 
proposed that the 3' -terminal 87 nucleotides of 
yellow fHer (YF)! R:!\A form a stable Bt'condary 
structure. Subsequently , West J.liile (W~) \-irus 
(Brinton et al., 1986; Wengler & Castle , 1986). 

t Abbredations uSPd : YF. yellow fever : \\1'\ . West 
Nile ; JE . Japanese enOI'phalitis: DEN 4 . dengue 4 : DEX 
2. dengue 2; l\1\'E . Murray \'alley enOI'phalitis: kb , 103 

bases or base-pairs . 

(b, I 98i Academir Pre"" Limit<'<l 
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JapanE'!W enl.'t'phalitis (JE) viru~ (Takegami el al. , 
19R6). and d enguP 4 (DE~ 4) virus (Zhao et al ., 
19R6) wPrE' propo!Wd to havE' secondary structures 
very similar to that of YF R~A . The consen·ation 
of thi~ structure support~ thE' hypothesis that it is 
important for viral R~A replication , but so far 
direct evidenl.'t' for its existenct> has been limited. 
Brinton eJ al. (1986) found that nucleotides within 
the putative hydrogen-bonded regions of the stems 
werE' partially resistant to ribonuclease, sug!!esting 
that the structure was present in W~ RNA in 
solution. In the case of YF, no direct evidence of 
thi~ conformation has been presented, and in fact 
Grange et a/ . (1985) proposed an alternative 
structure invoh·ing thE' 3 '-terminal 120 nucleotides. 
WP now report the isolation of a clone for YF 
cD~A whic-h -could easily ha,•e arisen by self­
priming of cD~A synthesis from the 8i -nucleotide 
3 ' -terminal structure pre,·iously proposed , but 
whi ch is otherwist> difficult to explain. We also 
report thE' isolation of a clone from Murray \'alley 
encephalitis (M\'E) RNA which apparently begins 
at tht> samP corresponding nucleotidE' as thi~> YF 
clone. and which thu ~ may also have ariSf'n by self 
priming In addition . :.Ve han obtainE-d. the 
sequenl.'t' of the 3' untranslated region of M\'E 
R::\A . excluding the putatin 3 '-terminal structure , 
as well a s thE' entire 3 ' untranslated sequen<!t' of 
denp:ue 2 (DE::\ 2) R~A . and found consen·ed and 
repeated f'E'quenl.'t's within this R~A domain : one 
conSf'n·ed sequenc-e could be invoh·ed in cyclization 
of fla,-i,· irus R::\A . Models of these structure~ as 
WE'll a s comparisons of these various sequence 
element s with thE' corresponding sequences in \\'::\ 
viru~ (Brinton el al .. 1986: Wenp:ler &: Castle. 1986) , 
DE::\ 4 virus (Zhao el al .. 1986) . and JE virus 
(Takegami el al. , 1986) are presented. 

2. Materials and Methods 

(a) l'irus straiM and clonirl{l of ftar-it·inu cDl'iA 

Tht> preparation of Asibi YF RKA (Hahn d al., 198i) 
and M\'E R:'\A (Dalgarno d al ., 1986) han been 
described and the preparation of DEK 2 R!\A • .-ill be 
dt>•rribed elsewhere. Tht> methods ueed for obtaining a 
cD:'\A library from these genomes have also been 
described (Rice d a/., 198i) . Briefly , first strand cD:'\A 
was synthesized using AMY reverse transcriptasf> and 
d .. gradPd calf thymus D:'\A as random primE'~ in the 
pre•t>nce of human placental RXase inhibi tor and 
actinomvcin D. 8t><'ond lltrand s\·nthesis w·as done 
arrordi~g to the conditions des<'ribed by Okayama & 
Berg (198:? ). In this method EM.herichia coli R:Kal!(' H 
(Betheoda Rt'search Laborat.ories) is ueed to introduce 
ni<'k• into tht> RXA strand of the R!\A-eD:'i:A hvbrid 
duplt>x : primer extension occurs at these nicks. and 
ultimatt>ly the!'t' R:'\A -primed fragments are repaired and 
ligat<'d t.o form th<' sec·ond D:'\A strand . The double­
stranded cD:'\A resulting was mt>thylat<>d at the EcoRI 
site~ . Aftn tr<'atment with phage T4 D:'\A pol~· merase. 
EroRJ linkt>rs were atta!'hed and the cD:'\A was 
fra r·tionated in agaros.. g<'ls . &IPcted siz<' fractions were 
thPn insert<>d into thP EroR I sitE' of vector pGEMI 
(Promega Bint<'ch) (Asibi YF and DE:'\ 2) or p~IT21 
(~1\'E ) . Pla.<mid~ for ampicillin-resistant colonies were 

screened for inll('rt siu and restriction digestion pattern . 
The clone containing the extreme 3' end of Asibi YF 
RXA was identified b~- colony hybridization (Grunstt>in &: 
Hogness. 19i5) using a fragment 150 nucl<'ot idPs in 
length derived from the extreme 3' end of a cion<> of liD 
YF Rl\A (Ri<'E' d a/. , 1985, 1987) as a probe . with the 
librarv obtain<'d from the 0 ·8 to 2 kb doubl .. ·strand<'d 
cD:'\A aizt> ci&SS. Tht' probe fragment extends from tht> 
Xbai site at nucleotidP 10,708 to thP 3' end of 17D YF. 
Of approximately 4000 clones screened •·ith this probe. 3 
colonies were found to be positive. Two of th<'.se clon<'s 
lltarted at the I I 3th nucleotide from the 3' terminus. The 
3rd clone had &equenoes from both plus and minus strand 
R!\A joined together and its lltructure is reported in · 
detail in the main text . The M\'E clone containing 
eequenoes in the 3' untranslated region wa.s identifi<'d 
during characterization of the random MYE library (Ri<'t' 
d al., 1987) . To obtain clones containing tht> 3'-terminal 
11equenre of DE!\ 2, the RNA was polyadenylated with 
poly(A) polymerase (Rie<> el al., 1985) and oligo(dT) was 
ueed to prime first strand cDXA synthesis. After se<'ond 
strand synthesis and in&ertion into plasmid pMT21. 
ampicillin-resistant colonies w·ere ll<'reened by colony 
hybridization. using as a probe a restriction fragment 
derivt>d from a clone of d<'ngue 2 cD:'\A containing 
lll'quences in th<' XS5 region of thP gPnome (Ri('E' d a/.. 
l98i : Y. S. Hahn et al ., unpuhlished res ults). Tweh-.. 
positiH colonies •·ere obtained which all had th<> 88m!' 
restriction pattern : 3 of thesP clones were sequenc-ed in 
th<' 3' untranslated region and all had thP idt>nti<'al 
t~equence terminating in a poly(A) tract . For this reaoon . 
and becaull(' of homologies in stru!'ture and &equenc-e with 
other fla,·ivirus RXAs. Wt' are confidt>nt that thP 3'­
terminal sequenre has been obtained . 

(b) Sequt'JU'e arullysi~ of cDl'I'A 

Plasmid DKAs from cD:'\A clones w·ere t~equ<'nced 
using tht> methods of Maxam & Gilbert (19RO) as modifi<'d 
by Smith & Calvo (1980) . using restriction fragments 3' 
end-labeled ,..;th the Klenow fragmPnt of E. r.oli D:'\A 
polymerase (Bethel!da Research Laboratorit>s). 

3. Results 

(a) Asibi yellou· Jet•er clo-ne 3'-J' 

A libran· of cD::\A made to Asibi YF R::\A was 
constru<'ted using random priming. A probe which 
represented the 3 ' -terminal I 50 nucleotides of I iD 
YF R::\A. derived from a restriction fragment 
obtained from the 17D YF cD::\A librarv 
previously constructed and characterized (Ri<"e ~ 
al. , 1985, 198i), was used to acreen the Asibi 
library . A clone designated 3'·1 '1\'as obtained which 
had an unusual structure , illustrated schematically 
in Figure I. This clone has the 3'-terminal 
nucleotides from 10.773 to 10,862 from one strand 
connected to the sequence from the complementary 
strand beginning at nucleotide 10,7i5 and 
proceeding upstream . that is towards the 5' end of 
the genome (nucleotide numbers refer to thE' ,·irion 
plus-strand R::\A) . The simplest interpretation of 
how this clonE' might have arisen is self-priming of 
first strand cD::\A synthesis bv the 3 ' terminus of 
YF genomic R::\.4. . A 3'-terminal secondary 
structure for Asibi YF R::\A. 'Virtually identical t o 



164 

Consert•ed Sequences in Flarit·iru.s RSAs 35 

5' 3' ------------------------,0,773 8276 

~ ~ 
CGGAGTGGTTCT---ACAAAACCACTCCGGT-

10,773 , Q,8621, 0,775 

-Figure I. Structurt> of clone 3'-1. A schema tit· diagram 
of th<' structurt> of this clone in which the 3'-terminal 
IM'quences as plus strand (thick line) al"E' atta.ched to minus 
strand 8<'quences (thin line) is shown . l.liucleotide 
sequences around the joint bet ween plus and minus 
strand ~~equentl<' and at the end of the clone are 
indicated . Arrows indicate polarity of 5' to 3' expreBBe.d as 
the plus sense genomit· R~.-\ . The asterisk denotes the 5'­
terminal nuclt:otide in the insert as indicated , and marks 
the same nudeotidf' as in Figs 2 and 3. 

that propnst-d by Ri ce f'J al. (1985) for YF 17D 
R::\A . is illustrated in Figurt' 2(a) and shows tht> 3'­
terminal uridylic a cid of YF R::\A (nu clt>otide 
10.86:?) hydrOfZt'n-bondt-d into tht> structurt' . Self-

,, , 

pnmmg in which the 3'-t.enninal hydroxyl is 
extended by rt'verse transcriptase would lead to tht> 
3'- terminal R::\A nucleotide (10,862) being attached 
to nucleotide 10,175 of minus-strand cD!'\A . Second 
strand cD!'\A synthesis and repair illustrated in 
Figurt' 3 could then result in the observed clone . For 
second strand cD!'\A synthesis E . roli R!'\ase H was 
used to cleave the RNA strand in Rl\A-D::\A 
duplexes forming new primers that can be extended 
to produce the second strand . This makes it 
possible, given the proper conditions of E . roli 
Rl\ase H concentration and activity of E . coli D!'\A 
polymerase I. to copy bae k part or"the RNA strand 
during second strand cD!'\A synthesis (step 3 of 
Fig . 3) . an acti\·ity that polymerase I is known to 
be capable of (for a re\·iew, aee Kornberg . 1980) . 
(Although we heft' assume that the RNase H and 
E . roli polymerase I added for second strand 
synthesis art' responsible for the copy back , it is 
difficult to rule out the possibility that the RNase 
H activity in AM\' reverse transcriptase might lead 
to copy back by reverse transcriptase itself during 
first strand synthesis). Repair of R!'\A-D!'\A duplex 
in this region could lead to double-stranded cD::\A . 
Presumptively, some R!'\A sequence at the 5' end of 
the R!'\A-DNA duplex could be lost because of tht> 
inability of this RNA to be replared with D!'\A . 
Howe\·er , the resulting clone would ha\·e the 
strurturt' shown in Figure 3 and the key point is the 
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Figure 2. Putatin• seeondary structurt> found at the 3' end of Asibi YF R~A and of DE~ 2 R~A . (a) A pos.<ible 
Sf' Ponda r~· structure at the 3' terminus of Asibi YF R~A is shown . This structurt> is \·irtually identiPal to that propo,;ecl 
bY Ri Pe eta/ . (1985) for the 3' terminus of 17D YF R~A with 2 nudf"Otide chan~tes as shown . ~ote that th t> U !Of' of the 
3;·terminal h~·droxyl group for self.primin!! for reverse transcription would result in the 3'-terminal uridylic acid of the 
R~A ~tenome I>E"ing coYalently att.a ehed to the c·omplement of nucleotidP 10.775 (in the minu' strand <'D~AJ . Tlw 
astNi.:\; indll·att'$ the 5' t>ncl of the clone and has the samP mean in!! as in Figs I and 3. F,...... Pnergi .. s (at 25 ' C) in thi ' and 
othe1 Figurt'> are <"alr-ulatt>d by the method ofTinoeo eJ a/. (1973) . (b) A possibJ .. 8<'eondary structurt> at thf' 3' terminus 
of DE:\ 2 R::\A is shown . nt. nueleotidt> . 
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1. First strand synthesis by self-prlmin& 

~· ------(;=---------------,, 
2. I\Oickin& in R!IOA strand by RNase H 

------~r--------------­
:--11- -- --- -- ---•t t t t t 

3. Second strand synthesis by polymerase I 

~ ------ ---------------~----- ---11-------------
• 

4. Li&ation by DNA li&ase 

• 3' ---- -------------­

----------------11---------------
5. Repair synthesis by RNase H, Poll and li&ase 

+. 3' 

::::::::::::::::~::::::::::::: 

6. Flush end by T4 DNA polymerase 

! _________ 1~---tr---------------
--------------~f----------------

Figure 3. Mod~>l forth~> origin of cion~> 3'-1. Th~> first 
atl'p d~>8crih<>s first strand cDXA (broken lin~>) synthesis 
in which self-priming occurs ont.o th~> 3' tl'rminus of th~> 
g~>nomic RXA (continuous line) . The next 3 stt>ps describe 
second strand cDXA synthesis follo-.·ing nicking of the 
RXA strand with E. coli RXase H (stl'p 2), priming of 
second strand cDXA synth~>sis by th~> Rl\A fragments so 
produet'd such that foldback and copying of tl'mplatl' 
Rl\A occurs during second strand synthesis (stl'p 3). and 
finally (step 4) completion of th~> eecond strand. The 
Rl\ase H acth·ity would be expected to lead to 
replacement of the Rl\A strand in step 4 with the DNA 
strand as in srep 5, which would cover all but an 
undetl'rmined number of nucleotides at the left-hand end 
of this double-stranded eDNA . The asrerisk indicares the 
5' rerminus of the final double-stranded cDl\A as found 
in thf' insert and has the same meaning as in Figs I and 2. 

attachment of nucleotide 10,862 of one sense RXA 
to nucleotide 10,775 of the opposite sense RNA. It 
is difficult to explain the existence of this clone by 
mechanisms other than self-priming by the RNA 
template and this clone provides strong support for 
the existence of a 3'-terminal structure in which the 
terminal r can be paired with nucleotide 10,776 as 
proposed by Rice et al . (1985). 

Clones containing eDNA inserts with both RXA 
senses in one strand have been observed and have 
been ascribed to self-priming and copy back of the 
first strand eDNA during second strand synthesis 
(Fields & ""inter , 1981 ; \"olcka.ert et al .. 198 1). The 
formal mechanism is thus analogous to that 
described in Figure 3 , but in these pre,· ious findings 

the template RNA was removed prior to second 
strand synthesis, and first strand eDNA was 
required to self prime for second strand synthesis. 
TheSt' conditions are quite different from the 
Okayama & Berg (1982) conditions for second 
strand eDNA svnthesis ueed here. 

Although cldne II ' -I provides strong support for 
the occurrence of self priming during eDNA 
synthesis, such self-priming appears to be a rare 
event. We have attempted, without success, to 
demonstrate self priming directly by incorporation 
of radiolabeled nucleotides into first strand cD~A 
in the absence of added primer. However. the 
complexity of the library screened was approxi ­
mately 3000 (that is, following transformation we 
obtained approximately 3000 independent colonies 
containing inserts) , and only one clone of this type 
was found . If self priming occurred at only 1/3000 
the frequency of priming by added primers it would 
have been difficult to detect incorporation under 
our conditions. The analysis is complicat-ed by the 
fact that the double-stranded eDNA used for the 
construction of the library screened was size 
selectt'd (see Materials and Methods), and thus the 
proportion of self-primt'd cDNAs might not be 
representative . In addition , depending upon the 
relative concentrations of reveTSt' transcriptase , 
primer and template, clones in a given size class 
arising by self priming might be depressed in the 
presence of added primer. 

In the screening process. we also found two clones 
with identical inserts which were unremarkable in 
structure , beginning at the I 13th nucleotide from 
the 3' terminus and proceeding upstream to 
nucleotide 8275 of virion RNA . The two inserts 
presumably arose from the same transformation 
event , since the colonies screened with the 
3'-specific probe were obtained by plating a portion 
of the original library and were, therefore, not 
necessarily independent isolates. 

(b) M VE clone 2!2!38 

During characterization of a library of clones 
from double-stranded eDNA made to M\"E RNA a 
clone was obtained which began with a nucleotide 
corresponding to nucleotide IO,i75 of YF, termed 
clone 2/2/38 (Rice et al., 1987). If a 3'-terminal 
structure exists in M\"E that is equivalent to that 
found in YF, then this clone could have arisen by 
self priming in the same way as Asibi YF clone 3'-i. 
In this case, however , second strand svnthesis and 
repair would not have led to copy back of the RNA 
primer. The existence of this clone is quite 
suggestive that in fact it did arise by self priming 
and that the 3' terminus of M\"E RNA has a similar 
structure to that found for YF. 

The existence of this clone as well as other clones 
originating in the 3' untranslated region upstream 
from this has allowed us to obtain the sequence of 
the 3' untranslated region of M\"E RXA (ex cluding 
the sequence in the putative 3'-terminal secondary 
structure) and this sequence is shown in Figure 4. 
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T H V 5 E 0 R V L 
10373 ACUCAUGUGAGUGAAGAUAGGGUCUU~UAACAUUGAUAGAAAAUUUUGUAAAUAU~GUAAUAUAGU~U so•52 

I I I I I I I 

10532 10.53 AAAAUUUUUUGAAAUUAA~A~UAGCAAGACUUGAUAGUCAGGCCAGC~GGUUAGGCUGCACCCGAAGGUUGG 
I I I I I I I 

10533 UAGACGGUGCUGCCUGCGACCAACCCCAGGAGGACUGGGUUACCAAAGCUGAUUCUCCACGGUUGGAAAGCCUCCCAGAA 10612 I I ........ , ...... .. .... 1 ...... .... '1. I I 

10513 CCGUCUCGGAAGAGGAGUCCCUGCCAACAAUGGAGAUGAAGCCCGUGUCAGAGCCGAAAGC~CCACUUCGCCGAGGAGUG 10692 
I I I I I I I 

10693 CAAUCUGUGAGGCCCCAGGAGGACUGGGUAAACAAAGCCGUAAGGCCCCCGCAGCCCGGGCCGGGAGGAGGUGAUGCAAA 10772 I ........ .,. .......... !' ..... . .. .. , I I I 

10773 CCCCGGCGAA88ACUA8A86UUAGA88AGACCCUGCGGAAGAAAUGAGUGGCCCAAGCUCGCCGAAGCUGUAAGGCGGGU 10852 
I I RCS2 I I I I I 

10853 GGAC811ACUAGAII&UUAGA86A6ACCCCACUCUCAAAAGCAUCAAACAACAGCAUAUUIACACCU&IIIIAAA46ACUAG ... 101130 
I CS2 I I I I I CS I I 

Figure 4 . Nucleotide aequence of the 3' untranslated region of MYE RNA . The last few nucleotides of the long open 
reading fram~ are ,;hown u translated aequence. The entire untranslated region is shown except for the put.ath·e 
3 '-terminal aecondary structure which has yet to be determined . The first few in-phase termination oodons are box..d . a 
repeat-ed aequen<'e of 28 nudeotides is indicated by dotted underlining. and aequenoes conl!t'n·ed between MYE and YF 
(and other fla,-i,·iruaes as well) are shaded (see also Figs 5 and 6) . 

Firstly. there are two 20-nudeotide sequences 
which are highly conserved between M\' E and YF. 
A similar obsen·ation has bet-n report-ed by v•engler 
& Castle (1986) for W!\ virus compared to YF. 
These consen·ed nucleotide sequences are shown in 
Figure 5. It is of considerable interest that the first 
of these. which we refer to as CSl, is found 
immediately upstream from the 3'-terminal 
structure hypothesized to exist in YF R!\A. 
&condly , one of these conserved sequences (CS2) is 
repeated identically in MYE approximately 75 
nucleotides upstream. Th is conserved sequence is 
present and also repeated in the 3' untranslated 
region of W!\ R!\A , but is not repeated in YF 
R!\ . .\ . On the other hand , we han• reported 
repeated sequences further upstream in the 3' 
untranslated region of YF (Rice et al., 1985) which 

MVE 
liN 
OEN2 

----ACS2---~ 
_6GCGAA GGACUAGAGGUUAGAGGAGACCCU 
__ ·AGA ·G · · ·· · · ·C 

---·~ ·U ·GU · · · · · · ·C· · · · · · · · · · · · · · · CUCCCWACAG 

MVE GCGGUGAAA UGAGUGGCCCAAGCUC GCCGUGCUGUAAGGC 
liN · · U· · A·· · G· · CAC · · · · CU ·G · ·U· · · ·· ·· · ·· · · 
DEN 2 AU · ·C·GC ·· CAAUG · G· · · ·· · G·GA · AU · · · · · ··· ·GUCU 

MVE 
liN 
YF 
DEN 2 

MVE 
WN 
YF 
DEN 2 

----CS2---~ 
BGGUGGACGGACUAGAGGUUAGAGGAGACCCCACUCUCAUAGCA 
CAAG ·· · A·· · · · · · · · · · · GUG · CA · · · ·CAC 
AAAGACGG · · U· · · ·· · · ·· · ··· ·UC ·AGGG ·· C· AAU 
CAC · ··· A· · · · · · · · · · · · · ·C · C · ·· A· 

IE----css----~ 
UCAAAC UCAGCAUAUUGACACCUGGGAAAAGACUAG..-
CA · · · GA · · · · · · · · · · · · · · U · 
AGUGGG ·C· · · · · · · · ·G· ·A· · · · CG · __ _ 
U ·.. . . ... · G · --- ~~-

Figure S. Comparison of oonaen·ed and repeated 
aequen<'es in the 3' untranslated region of fla"ivirus 
R:\As. Consen•ed sequences found in DE::\ 2 R::\A . in 
MYE R:\A (Fig . 4). in YF R::\A (Ri(-e ei a/ .. 198..~). and in 
\\'::\ R:\A (Wengl<'r & Castle. 1986) are compared . There 
ar!' 2 such conBPrYed nucleotidE' sequPnN>• ({'S1 and CS:I). 
Co nS<'rYed sequenN> 2 io repeat-ed in DE::\ 2. \\'::\ and 
M\' E R::\A (RCS2 ) but not in YF R::\A . 

are not shared with either MYE or W~ R!\A , and 
there are short repeated sequences found in MYE 
and W!\ that are not found in YF. A schematic 
diagram of these conserved andfor repeated 
sequences is shown in Figure 6. 

(c) The 3' v.nlranslated region of DE}; 2 RSA 

The mosquito-borne fla,·h·iruses can be grouped 
into three major 11erologic.al subgroups. The 
subgroups differ in their vertebrate host range and 
in tissue tropism v.-ithin the vertebrate host. YF 
virus , representing one subgroup. is viscerotropic 
and neurotropic and its vertebrate host range is 
limited to primates. The MYEfJEfW!\ subgroup is 
also neurotropic, but has a wider vertebrate host 
range with birds as a major reservoir in nature . The 
four dengue viruses constitute the third subgroup; 
these viruses replicate primarily within cells of 
lymphoid origin in man . their only natural host. To 
compare the features of the 3' untranslated region 
of dengue RKA with those of the R~As of the two 
other subgroups, clones constaining the 3' untrans­
lated sequence of DE!\ 2 R!\A (Sl candidate 
vac.cine strain deri,Ted from the PR159 strain) were 
obtained from polyadenylated R!\A, using 
oligo(dT) to prime first strand synthesis, and 
sequenced . The 3'-terminal 79 nucleotides can be 
folded into a structure that is very similar to that 
postulated for YF R!\A (Fig. 2(bJ) . This structure 
has a calculated thermal stability of -38 kcal jmol 
(1 kcal = 4·184 kJ) and would be expected to exist 
in solution . The fact that all tlaviviruses examined 
to date, including representatives from three 
subgroups, can potentially form a very similar 
structure argues that this structure plays a role in 
virus replication . 

The 3'-terminal dinucleotide in DE!\ 2 is Cl: as 
has been found in all tla\·i,·iruses sequenced to dat e. 
and the 3' terminus may be hydro~en -bonded into a 
secondary structure similar to that postulated for 
other flavi,·iruses (Fig . 2(b)). Howe\·er, the 
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5' 
bp 500 

I 
300 

I 
200 

,.I 
100 

I 

3' 

YF -----+1-+liiC::I::::::Jfc:::J--------iii II ~ 

MVE 
RCS2 

-+-*11----~o~--------~o~-~~ 

WN 
ACS2 

-+1+1~11~--~(]~--------~[3~--~~ 

DEN 2 -+------+---lt----------1- iii~ 
Figure 6. Schematic diagram of the organiution of the 3' untranslated region of fta,·h·irus R:!\As. The location of 

rt>p<>atro nucleotide llt'quenet>s, conllt'n·ed nucleotide sequences and the 3' ·terminal llt'condary structurt> art> indicat<"<l for 
YF R:\A . M\'E R:\A. WK R:!\A and DE:\ 2 RXA . In addition to CSI (fillt>d boxes) and t.o CS:2 and RCS:2 (hat<'ht>d 
boxes) shown in Fig. 5 . tht>Se include a &equenN> element repeated 3 times in YF R:!\A (open boxes) not found in \\'X or 
M\'E . and a shorter ~~equence element (stippiPd boxes) preSt>nt as 2 copies in both Jlf\'E and \\'X but not found in YF or 
DEX 2. The first few in-phase stop oodons that terminate the long open reading frame art> shown as vertical bars. bp. 
ba!*' ·pair,; . 

st>quenC"e AC'ACA found just upstream from the 3' 
terminu~ of YF, W~ and JE , and which is present 
near the 3' terminus of the minus strand as well as 
of the plus strand. is not found in DE!\ 2 
(Fi!!. 2(b) ). nor in DE~ 4 (Zhao el a/ .. 1986). There 
is a related st>quence CAACA, but the complement 
of thi ~ !<equenC"e is not found near the 5' end of 
DE~ 2 R!\A (Deubel el a/ .. 1986) . 

The st>quence element ~ CS I and CS2 are also 
present in DE!\ 2 R~A (Figs 5 and 6). As was the 
case for M\'E . CS2 is present in two copies. with a 
single nucleotide substitution in the second copy 
(Fig . 5) . The consen·ation of these st>quence 
elements is striking and suggests that they are 
important in replication . 

The 3 ' untranslated region of DE~ 2 is somewhat 
shorter than that of other flayi\·iruses examined to 
date. 443 nuC'Ieotides . and the cluster of in -phase 
termination codons that end the long open reading 
frames of YF. M\'E and W:!\ are not found in 
DE!\ 2 (Fig . 6) . 

(d) Possible inl'Oh·emenl of CO'TI8en•ed sequences 
in ftm·it"irus RXA cyc.lizalion 

Conserved nucleotide st>quences located near the 
5' end of the fta,· i,·irus genome (within the coding 
region of the capsid protein) are shown in Figure 7 
for six different fla,·i,·iruses. This sequence. which 
begin s at nucleotide 147 ofYF, demonstrates a high 
degree of conservation . In parti<"ular, eight 
<"ontiguous nucleotides (indicated by the shaded 
overla~· ) are perfectly conserved among these six 
different fla,· iviruses representing three subgroups. 
In the lower panel the consen·ed sequenc-e within 
the 3' untranslated re!!ion labeled CSl in Figures 5 
and 6 is shown fo r fh·e fla,-i,·iruses. again 
reprt-st-nting three serol o!l'ical subgroups. There are 
orwe a gain eight eontiguoub nuc-leotides (indicated 

ConHrwed aequence tn C PfOfein 

5' 10 10 3' 
YF CCCUGGG CGucAAUAUGGUACGACGAGG 

loiVE CCCCGGGUCGIJCAAUAUGCUAAAACGCGG 
WN AACCGGGCUGUCAAUAUGCUAAAACGCGG 
SLE AACCGGGUUGIJCAAUAUGCUAAAACGCGG 
DEN 2 AACACGCCUlJI.ICAAUAUGCUGAAACGCGA 
DEN -4 ACCAC CUUUCAAUAUGCUGAAACGCGA 

•••••••• * 

Conserved MQuence in 3· non-codin; 

5. 10 10 3. 
YF ACCAUAUUGACGCCAGGGAA AGAC 
loiVE AGCAUAUUGACACCUGGGAAAAGAC 
WN AGCAUAWGACACCUGGGA UAGAC 
JE AGCAUAUUGACACCUGGGAAUAGAC 

DEN 2 AGCAUAUUGACGC UGGGAA AGAC 

Figure 7. Consen·t>d nucleotide eequenet> elements in 
fla,·i,·irus R:\As. In tht' top half of the Fi11urt> art> shown 
nucleotide eequences from 6 flaviviruBes found in the 
t"oding l"l.'gion for the capsid prot<"in . This ~~equence be11ins 
at nucleotide 14i ofYF RNA (Ril'f' el a/ .. 1985) . at 128 of 
M\'E RKA (Dalgarno d a/., 1986) . at 128 of DEN 4 R:\A 
(Zhao d aJ .. 1986), at 129 of St Louis encephalitis virus · 
(SLE) RNA (Trent d aJ. . l98i). at an unknown 
nucleotide of WN RNA (since the 5' ·t<"rminal~~t>quenc-e of 
WN is incomplete) (Castle d aJ .. 1985), and at 124 of 
DE:!\ 2 RNA (Y . S. Hahn. unpublished results) . Asterisks 
denote nucleotides that are im·ariant among the 6 
viruses: note that thert> is also a high degree of similarity 
among nucleotides in this region even when they art> not 
im·ariant . The lower panel compares CSI for 5 fte,·i­
viruses (see also Figs 5 and 6). Note that CSI is 
complementary to the nucleotide &equenet> in the uppPr 
panPI beginning -..·ith uridine 20 . and that thl' 8 
contiguous nuclt'otides perfel'tly oonBt'n·ed in the 5' 
r..gion art> complementary to 8 contiguous nu <"leotides 
perfPC"tly ronserYed beginning ,.;th nudeotide 3 of CSI 
(indicated by thP shaded overlays) . The JE sequence is 
from Takegami d aJ . (1986) . 
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YF 

MVE 

WN 

.. , 8 CCCUGGGCGUCAAUAUGGU 
11 1111 II II II 111111 10 Bkb 

GGGACC GCAGUUAUACCA 
ID.706 

129 3 CCCGGGUCGUCAAUAUGCU 
II I· I I I I I I I I I I I I I I 10 ·Bkb 
GGGUCCA CAGUUAUACGA 

101120 

ACCGGGCUGUCAAUAUGCU3 
I I • I I I I I I I I I I I I I I 10 · Bkb 

GGGUCC ACAGUUAUACGA 

CACGCCUUUCAAUAUGCUG 

.O.G
1
•-12 · 3keel 

.OU
2
•-33·7keel 

.OU
1 

• -9 • !keel 
LIG •-25· Skeel 

· 2 

.O.G
1
•-11·3keel 

.o.G
2
•-20 · 5keel 

1211 3 DEN21 I· I 11111111111 S0 ·5kb ,o.a
1
--u · Skeel 

GGGUCGC AGUUAUACGAC 
IGjiiS 

Figure 8. P088ible cyclization figures for tla...-h· irus 
R::\As. The complementary sequences shown in Fig. 7 are 
ali!!nrd for 4 fla,·h·iruses as circular figures . The 
calc-ulated thermal stabilitY of theoe cirf' les is indicate d 
(Tinoco el a/ .. 19i3 ). The 8-nudeotide core that is 
perfN·tly ronsernd io indicated by the shaded overlay . 

by the shaded oYerlay) perfectly consen·ed among 
thP fh·e fla,-i,·iruses shown and thPst> are 
complpmpntary to the eight-nucleotide conserYed 
d omain in the 5 ' region . Thus. it iB possiblE> that 

YF AC~ AAAAA 

A-U G-C 
G-C G-C 

~G1 •-9kcal A-U G-C ,61;2•-14·41<cal 
C-G A-U 
C-G C-G 
A-U U · G 
G-C C-G 

5' 
AACU · GUAAAG -CGUCAAUAUGG 

I 
(106) 

MVE u u 
A U 
G-C 

~=~A u u 
e-

GA -U A G 
G-C A C 
G · U G -C 
U-A G-C 

3' 

~G1,-9 ·41<cal U-A G-C .6.G2•-22·6i<cal 
U-A C-G 
U-A C-G 

5' U-A C-G 3' 
U-A A-U 

. . . AA CAG - CCAGGAGG- CGUCAAUAUGC ... 
I 

(70) 

these sequences could be used to cyclizP the RNA to 
form a panhandle structure. PossiblE> panhandle 
structures are· shown in Figure 8 for four different 
fla,-iYiruses. In each case there are I I t-o 12 
contiguous nucleotides that are perfectly base­
paired , and these • include the eight-nucleotide 
conserved core (indicated by the overlay) . Four to 
six additional hydrogen bonds can be formed from 
adjacent eequences which could contribute to the 
stability of cyclization for all but DEN 2. Two !:J.G 
values are shown. !:J.G 1 is based only upon the I I to 
12 contiguous base-pairs and provides sufficient free 
energy (- 9 to - II kcal at 25 °C) to cyclize the 
RNA . Alphavirus RNAs are known to cyclize 
under physiological conditions (Hsu eJ al., 1973) 
and the free energy of cyclization measured 
thennodynamically is - 13·5 kcal at 25 oc (Frey eJ 
al., 1979). The !:J.G2 value includes the possible 
contribution of the additional four to six base-pairs 
upstream , which lead t-o a much more stable 
structure (!:J.G = -20 to -33 kcal) , but which are 
not present in DEN 2 RNA . 

The RNA sequence upstream from the 5' 
conserved sequence may also form a single or 
double hairpin structure a.s illustrated in Figure 9 
for four viruses . The 5 ' hairpin illustrated cannot be 
fonned in DEN 2 RNA and is variable in structure 
in thP other viruses; lack of conservation suggest s it 
may not play an important role in replication but it 
is interesting that it includes the initiating A l ' G 

WN 

DEN 2 A 
A A 

G C 
A A 
G-C 
C -G .l:IG~·-11· Skeel 
G-C • 
G-C 

5' A-U 3' 
A-U 

••. ~GAAA -UCAAUAUGCU ... 
(110) 

GAU 
A C 
A-U 

~=~c c-
G­
G · U 
U-A 
U-A 
c-G 

~G1 •-15·41<cal ~=! 

A A 
A A 
U-A 
G-C 
G-C 
c-G 
c-G 
c-G 

U-A 

5' G-c;.. 
U-t' G-C 

AGC - G GAG G · UGUCAAUAUGCU 

3' 

Figure 9. Possible hairpin structures in the 5' regions of fla,·ivirus R::\As. The Al'G codon that initiate• the ,·ery long 
OJ*Il reading frame is boxPd and the core c-<msen•pd sequenC<' that might bt> involved in <"yelization is shadPd . Frrt 
enrrgie" were ca lcula ted a.;: for Fig . 2 . 
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and could thus ha,·e an influence upon translation. 
The 3' hairpin , on the other hand, has a high 
calculated thermal stability {flG =- 12 to 
- 23 kral) , is consen·ed in all four viruses and is 
found immediately upstream from the core 
conserved sequence of Figures 7 and 8 {indicated by 
the shaded overlay). Thus, it could compete with 
the upstream portion of the panhandle structure of 
Figure 8 and destabilize cyclization but, as 
discussed abo,·e, the II to 12 contiguous nucleotide 
pairs alone could lead to cyclization (flG 1 of Fig. 8). 

4. Discussion 

The 3'-terminal sequences or structures on the 
end of viral R~As are thought to play an important 
role in viral R~A replication . Sequence analysis of 
several fla,·h·i~s R~As including YF RNA {Riot> et 
al ., 1985) , DE~ 2 R~A {this paper) , WK R~A 
{Brinton et a/. , 1986: Wengler &: Castle. 1986) , JE 
R~A {Takegami et al ., 1986), and DE~ 4 RNA 
{Zhao el al ., 1986) have shown that these all can 
form a 3'-terminal hairpin , suggesting that this 
hairpin is essential for flavi,·irus replication . 
HowHer. to date the onlv direct evidenct- for this 
struc·ture in solution was ~btained bv Brinton et al. 
(1986 ) by R~ase digestion of \\;N RNA. The 
structure of clone 3'-1 from Asibi YF R~A 
prPsented here also pro\·ides strong support for the 
existence of the 3'-terminal structure in solution . 
Thi s YF structure. which invoh·es the 3'-t.erminal 
81 nu cleotides, has a calculated thermal stabilitv of 
- 42 t<> -46 kcal fmol and was first proposed. by 
Ric·e el al . (1985) on the basis of thP sequence data 
alont'. It is of interest that an alternati,·e structure 
for YF R~A was proposed by GrangP el a/. {1985) . 
based upon primary sequence data , in which the 3'­
terminal I 20 nucleotides werE' involved ; that is. the 
predicted structure was one in which thE' 3'-terminal 
l ' was pain•d with A-10i43 rather than with 
A-JO'ii6 . ThP GrangP eJ a/ . (1985) structure has a 
greater calculated stability , -52 kcal fmol , and was 
identified by computer analysis as being the most 
fa,·ored structure. However, the data presented 
here make it seem more likeh· that the Rice el a/. 
(1985) structure is the one that acutally forms in 
solution . 

\Ye han also identified nucleotide sequence 
elemE'nts approximately 20 nucleotides in length 
present in the 3' untranslated region that are highly 
consen·ed among fla,·i,iruses, suggesting that these 
are also important in R~A replication or packaging 
{see also Wengler &: Castle. 1986). One of these 
conserved sequence elements, found immediately 
upstream from thE' 3'-terminal secondary structure , 
could be used to cyclizE' fla,·h·irus R~A . The 
calculated free energy of cyclization is significant , 
suggE>sting that flavivirus R~As do in fact cyclize . 
~o other e,·idence for cyclization of fla,·ivirus 
R~As E'xists , but it should be noted that alpha,·irus 
R~As have long been known to cyclize {Hsu el a/ ., 
1913) as do thE' RNAs of thE' Bunya,·iruses (HE>wlett 
et a/ ., 19ii). ThP fun ction of cyclization in ,·irus 

replication is unknown , but could be used to help 
ensure that virus RNA molecules that are 
repli cated are full-length R~A . if a viral R~A 
repli case we're required to bind to both 5' and 3' 
regions simultaneously in order to initiate RNA 
replication . 

It should be no4ld that the eight-nucleotidE' core 
sequence near the 3' end of the plus-strand genomic 
RNA will also be present near the 3' end of thE' 
minus-strand template {as thE' complement of thE' 5' 
core aequence) and , converaely. the complementary 
aequence will be present near the 5' ends of both . 
plus and minus-strand R~A. Thus, an alternatin 
rolE' to cyclization of such self-complementary 
aequence elements is w serve as signals in 
replication, perhaps as replicase recognition sites , in 
which case thE' same signal may be utilized for 
transcription of both plus and minus strands. 
Electron microscopy or physical studies of the RNA 
in solution "ill be required to establish whethE'r the 
RNA physically cyclizes . 
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