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ABSTRACT 

The focus of this thesis is the use of symmetrized hyperspherical coordinate 

techniques in the accurate calculation of differential cross sections for the reactive 

collision of an atom with a diatomic molecule in three-dimensional space. A single 

set of symmetrized hyperspherical coordinates treats all regions of configuration 

space in an equivalent manner and thereby reduces the reactive scattering 

problem to an equivalent inelastic scattering problem which is conceptually and 

computationally easier to handle. 

The work described here represents the first successful application of 

any accurate hyperspherical coordinate methodology to atom-diatom reactive 

scattering in three-dimensional space. This methodology has permitted the 

calculation of zero total angular momentum (J = 0) partial wave transition 

probabilities and associated phases over a significantly larger range of collision 

energies (up to 1.6 e V total energy) than previously possible for the system 

H + H 2 • The numerical stability of the treatment is sufficiently high to permit 

the first lifetime matrix analysis of the resonance structure of H + H 2 based on 

scattering matrices from our accurate calculations. This analysis reveals a series 

of 6 resonance states in the J = 0 partial wave, some of which have not been seen 

before. The symmetrized hyperspherical coordinate methodology is presented in 

detail. A selection of surface functions and scattering results for J = 0 H + H2 

using the LSTH potential energy surface are presented and discussed. In addition, 

a small number of results from the Porter-Karplus potential energy surface are 

also given. 
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Introduction 

This thesis is composed of a senes of papers in which different aspects of 

the computational methodology and results are presented. Some of these papers 

are already in the literature and some are not. Since they are papers, they can 

be read more or less independently. Motivational and background discussions 

are a component of the introduction in each chapter so this type of exposition 

is omitted from this introduction. Instead, an overview of each chapter is given 

below, in order to bring a measure of coherence to the thesis as a whole. 

Chapter two contains a detailed exposition of the symmetrized hyperspherical 

coordinate approach to reactive atom-diatom scattering calculations using body

fixed coordinates and the necessary asymptotic analysis which transforms the 

numerical solutions into scattering matrices. The formal expansion in a basis 

set, the surface functions, and the resulting coupled set of ordinary differential 

equations are discussed. One novel feature of this chapter is that we have made 

full use of the permutation symmetry for the case where all three particles are 

identical. Such symmetry reduces the numerical effort required to solve the 

scattering problem. A second topic of interest in this chapter is the asymptotic 

analysis based on the hypersphericallogarithmic derivative matrix at a single value 

of the hyperradius. 

Chapter three presents the details of the finite element method of calculating 

surface functions. The use of permutation symmetry to find boundary conditions 

for the surface functions on a subdomain of the complete domain of definition of 

these functions is novel and reduces the numerical effort needed to calculate the 

surface functions. Contour plots of some surface functions are used to explain 

the efficiency of the surface functions as a basis set for expanding the scattering 

wave function. The structure of the surface functions and their evolution with the 

hyperradius are discussed in detail. 
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Chapter four is a reprint of the publication presenting results from the first 

successful use of symmetrized hyperspherical coordinates to calculate results for 

three-dimensional reactive atom-diatom scattering. The calculations are for J = 0 

H + H2 on the Porter-Karplus potential energy surface II. Probability curves for 

several reactive transitions are shown along with results of previous independent 

calculations on the same system. The purpose of this communication is to validate 

the new symmetrized hyperspherical coordinate methodology. 

Chapter five is a reprint of a publication which explores the resonance 

structure in H + H2 and contains the results of extensive calculations on J = 0 

H + H2 using the Porter-Karplus potential energy surface II. The range of 

collision energies presented in this paper is considerably greater than any previous 

calculations. 

Chapter s1x contains a large sample of scattering results for the J = 0 

partial wave of H + H2 on the LSTH potential energy surface. Included are 

transition probabilities, partial wave cross sections, and lifetime matrix analyses 

for all three irreducible representations of the P3 permutation group. This chapter 

represents the most extensive set of three-dimensional atom-diatom reactive 

scattering results available. A unique feature of this chapter is the presentation 

of irreducible representation labeled results instead of the usual distinguishable 

particle representation results. One advantage to the former is that they are 

closely related to the Pauli antisymmetrized results. 

The appendix is composed of two sections which describe work related to 

the topic of three-dimensional reactive scattering. In the first section, the Gauss

Jordan matrix inversion algorithm for the Cal tech Hypercube is discussed. Matrix 

inversion is a necessary part of an algorithm for propagating the coupled ordinary 

differential equations which results from the expansion of the scattering wave 

function in a surface function basis set. The implementation of matrix inversion 
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on the hypercube is a first step in assembling the complete propagator. Detailed 

tests of the performance of the parallel matrix inverter are provided in this section. 

In section two of the appendix, a reprint of a collinear atom-diatom reactive 

scattering paper is presented. The reaction modeled is hydrogen atom transfer 

between two methyl radicals which are represented as mass points. The accurate 

numerical solutions to this problem were obtained using hyperspherical coordinates 

as applied to collinear reactive scattering. The purpose of this paper is to assess the 

accuracy of the vibrationally adiabatic model of light atom transfers in collinear 

reactive systems proposed by Babamov and Marcus. Their model is based on 

their recognition that hyperspherical coordinates are ideal for treating collinear 

light atom transfer. In this paper, the Babamov-Marcus model is shown to be 

very accurate. 

The common theme of this thesis is easily seen to be the application of 

hyperspherical coordinates to reactive scattering problems. Their use is a decisive 

advance in the area of reactive scattering; however, accurate three-dimensional 

reactive scattering calculations remain very difficult to perform. The work found 

in these chapters is a first step towards the goal of accurate ab initio differential 

cross section calculations. 
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Three-dimensional Atom-Diatom Reactive Scattering Calculations 

Using Symmetrized Hyperspherical Coordinates 

I. Reactive Scattering Formalism t 

Paul G. Hipes ~ and Aron Kuppermann 

Arthur AmoJ Noye" Laboratory of Chemical PhyJicJ, 

DiviJion of ChemiJtry and Chemical Engineering, + 
California lnJtitute of Technology, 

PaJadena, California 911f5 

(Received ) 

A b., tract 

This paper describes an application of the symmetrized hyperspherical coor

dinate formalism to quantum mechanical atom-diatom reactive scattering. The 

implications of permutation symmetry, when it exists in a system, are investi

gated extensively because such symmetry implies significant savings in numerical 

applications. In addition, a simple, constant-hyperradius projection technique for 

obtaining the scattering matrix from the hypersphericallogarithmic derivative is 

presented. 
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1. Introduction 

Accurate quantum mechanical solutions for reactive atom-diatom scattering 

have proved to be difficult and computationally expensive to obtain.1 In fact, only 

three groups to date have published exact differential or integral cross sections, 

and all three calculations are based on the system H + H 2 • In the last year, 

four groups have published preliminary results for several reactive atom-diatom 

systems, which is an exciting developement . Accurate numerical reactive cross 

sections would allow an interplay between theory and experiment which is vital to 

a healthy physical science. Perhaps more importantly, the existence of accurate 

benchmark calculations provides validation of approximate theories which in turn 

provides physical insights into the chemistry. 

The first calculations of accurate quantum mechanical cross sections for H + 
H 2 are those of Schatz and Kuppermann2a,c and Elkowitz and Wyatt.3 Both 

groups used the Porter Karplus potential energy surface PKII.4 The collision en

ergies are limited to those below the opening of v = 1. Integral cross sections for 

both LSTH5 - 7 and PKII surfaces over the same energy range have been calculated 

using a third method by Walker, Stechel, and Light.8 The methods used in these 

calculations have proven difficult to extend to higher energies. 

One obstacle to the numerical treatment of the atom-diatom scattering prob

lem has been the need for matching solutions which are based on the Jacobi 

coordinates in different arrangement channels. 2 " One technique to overcome the 

need for matching is the use of a set of coordinates which is appropriate for all 

arrangement channels. Hyperspherical coordinates are such a set of coordinates. 

Hyperspherical coordinates have been extensively tested in collinear calcu

lations on a large number of systems.9 •10 Matching of solutions is not a diffi

culty in collinear calculations; however, hyperspherical coordinates have made it 

possible to treat heavy-light-heavy mass combinations11 •
12 and collision-induced 

dissociation13,l4 which are time consuming or very difficult by other methods. 

Furthermore, hyperspherical coordinate methodology in collinear calculations has 
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proven to be more efficient than the older propagation methods.15 In addition, 

they have been used for a qualitative16
•
17 and quantitative18 understanding of 

dynamic resonances19 -
21 in collinear scattering, and they are appropriate for the 

modeling of light atom transfer in these systems.22 These kinds of coordinates 

have been used in other areas of atomic physics for over 50 years. 

Hyperspherical coordinate methodologies have been applied to a variety of 

problems in atomic23 and nuclear24 physics. They are first discussed by Gronwall25 

and Bartlett26 for the electronic structure of He and are used for electronic struc

ture problems by Wannier27 and Fock.28 Macek29 used hyperspherical coordinates 

to correctly model the doubly excited states inferred from the autoionization Ryd

berg series of He. 30 This success led to renewed interest in hyperspherical coordi

nates for electronic motion in two-electron systems.23 •31 - 35 The principal idea used 

in these systems is to consider the hyperradial motion (slow) as adiabatically de

coupled from the hyperangular degrees of freedom (fast). Some of the quasi bound 

excited states which result correspond to doubly excited states of the atomic sys

tem which may autoionize or autodetach or represent resonances in electron atom 

scattering. The adiabatic approach provides quantum numbers to associate with 

such states and the quantum numbers are in good accord with experimental infor

mation. The adiabatic states incorporate correlation of the hyperangular motion 

of the electrons, and such correlation is important for a understanding of doubly 

excited states of two-electron systems. In nuclear scattering theory,24 hyperspher

ical coordinates are first discussed by Clapp36 and later by Delves37 as a technique 

for incorporating break-up collisions. 

There are a number of different systems of hyperspherical coordinates in the 

literature and they have one important characteristic in common. All of the sys

tems of hyperspherical coordinates use a coordinate which measures the size or 

extension of the system and is not specialized to one arrangement channel. It 

is called the hyperradius and is singled-out as the generalized collision (propa

gation) coordinate in scattering calculations and as the adiabatic coordinate in 
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bound and quasi-bound problems. The hyperspherical coordinates introduced by 

GronwalP5 and Bartlett26 and those used by Delves37 are similar; the only differ

ence is Delves' use of mass scaling. Another set of hyperspherical coordinates were 

introduced by Whitten and Smith.38 One feature of the potential energy contours 

for three particle systems is that they do not reflect the symmetry of the potential 

energy function for identical particles. This happens because the three internal 

coordinates on which the potential depends do not undergo an orthogonal trans

formation when a different set of arrangement channel Jacobi coordinates is used. 

Kuppermann39 introduced a symmetrized version of Delves' hyperspherical coor

dinates whose internal coordinate subset does undergo orthogonal transformations 

and suggested for the first time that they would be useful for the study of reactive 

scattering problems. 40 Other versions of symmetrized hyperspherical coordinates 

have subsequently been proposed by Johnson, 41 •4 l (based on the Smith-Whitten 

coordinates) by Mead,43 and Pack.44 

The application of hyperspherical coordinates to atom-diatom scattering in 

three-dimensional space has met with more difficulty than was the case for two 

electron systems. The main source of difficulty is the existence of three bound 

arrangement channels instead of two (as is the case in two electron systems). As 

a result, the numerical task for reactive atom-diatom scattering is significantly 

larger, even for the highly symmetric system H + H2. It should be emphasized 

that the hyperspherical formalism is not more difficult in atom-diatom scattering 

than in other systems; rather, the numerical algorithms are simply more expensive 

to implement . 

Two groups are employing hyperspherical coordinates for 3D atom-diatom 

reactive scattering and have very recently published scattering calculations on 

J = 0 H + H 2 • We have calculated reaction probabilities over an energy range 

which extends beyond the opening of v = 2 and have found that the hyperspherical 

methodology is effective enough to allow us to calculate lifetime matrices over the 

entire energy range.45 Parker, Pack, Archer, and Walker46 have published reaction 
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probabilities over a slightly smaller energy range. Parker et. al. have also done the 

even parity component of J = 1 for H +H2 for a smaller energy range and also some 

low energy J = 0 H + D2 calculations. In addition to these scattering calculations, 

Linderberg and coworkers47 are developing a hyperspherical coordinate approach. 

Two groups have reported scattering probabilities in the last year for the low

est total angular momentum partial wave ( J = 0) of H + H2 and D + H 2 for an ex

tensive range of collision energies using non-hyperspherical coordinate techniques . 

Webster and Light48 have published reaction probabilities for the several isotopic 

analogues of H + H 2 using an extension of the methodology of Walker, Stechel, 

and Light and have shown that their approximate matching method can be ex

tended beyond the earlier calculations. Haug, Schwenke, Shima, Truhlar, Zhang, 

and Kouri have used a L2 method49 to study the J = 0 partial wave scattering of 

D+H2
50 and O+H2 •51 Although Haug et. al. have not used a hyperspherical co

ordinate technique, they have nevertheless surmounted the matching problem and 

produced an innovative computational method for reactive scattering. The ap

pearance of successfully implemented new methods for treating reactive scattering 

problems may indicate that differential cross sections for atom diatom reactions 

will soon be available for a wider class of reactions and over a substantially larger 

energy range than possible before. 

The prospect for accurate calculations of differential and integral cross sec

tions over a large energy range for H + H2 and its isotopic analogues is especially 

exciting in view of the number of new experiments on this system. 52 -
57 Because 

only J = 0, 1 results have been calculated at the energies of these experiments, no 

direct comparisons have yet been possible between accurate quantum results and 

experiment. 

Models for calculating reactive cross sections58 - 65 are very important be

cause they provide important physical insights in addition to requiring less nu

merical effort. This is not the place to review the variety of approximate quantum 

theories, but it would be a disservice to leave the impression that the field of 
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theoretical chemical dynamics is static due to the immaturity of accurate method

ologies. An accurate (and expensive) approximate theory is the coupled states 

appoximation58
•59 (CS). This method ignores only the Coriolis-coupling in the 

body-fixed Hamiltonian.2
b Bowman60 and Walker and Hayes61 have developed 

the collinear exact quantum bending corrected (CEQB) methodology which con

sists of incorporating an adiabatic bend approximation into the rotating linear 

theory of Wyatt62 and of Connor and Child.63 Several of the most important 

approximate theories are discussed in the excellent series of books edited by M . 

Baer. 65 The methods discussed there in detail include the quasi classical trajec

tory method, the variational transition state technique, the reactive infinite order 

sudden approximation, and the T matrix based approximations. 

Which of the approximate theories works best and in what circumstances? In 

order to answer this question, it is vital to have accurate benchmark treatments of 

several atom-diatom systems over an extended energy range. Since only for H +H2 

have such accurate solutions been obtained and those solutions are restricted to a 

limited range of collision energies, the validity of approximate theories is difficult 

to evaluate. Hopefully, these issues can be resolved for three particle reactive 

systems in the next few years. 

This paper is arranged as follows. Section 2 presents the various Jacobi co

ordinates and the corresponding Schrodinger equation. Section 3 introduces the 

symmetry group of the Hamiltonian. Section 4 describes the symmetrized hyper

spherical coordinates and associated surface functions. Section 5 has a discussion 

of the diabatic coupled channel expansion. Section 6 presents the Wigner rota

tion matrix expansion of the surface functions. Section 7 introduces the asymp

totic scattering conditions. Section 8 describes the partial wave expansion of the 

scattering asymptotic boundary conditions. Section 9 introduces the constant p 

projection technique. Section 10 discusses the separable basis set used for in

termediate values of the hyperradius. Section 11 presents the construction of 
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antisymmetrized cross sections from irreducible representation (of P3 ) scattering 

amplitudes. In section 12, our main points are summarized. 

2. Schrodinger's Equation 

In this section, the Schrodinger equation m Jacobi coordinates and in the 

mass-scaled coordinates of Delves for a three particle system is examined. This 

discussion is entirely general with regard to the nature of the particles. All of this 

material can be found in other sources2 b and is presented here for the convenience 

of the reader and to establish the notation used in this paper. 

Given a system of three atoms A~, A 11 , and A" with masses m~, m 11 , and 

m", respectively, the usual Jacobi coordinates are (R~, r~) where R~ is the vector 

from the center of mass of the diatomic molecule AvA" to the atom A~ and r~ 

is the vector from the atom Av to the atom A". The Hamiltonian for the three 

particles in this Jacobi, center of mass coordinate system is 

(1) 

where 

(2) 

m"m" (3) 

are the reduced masses corresponding to the vectors R'~ and r'~· v'~(R~,r~,.,~) 

is the potential energy function describing the interactions of the three particles 

and >.vK. is a cyclic permutation of a.f31. The coordinate~~ is the angle between the 

vectors R' ~ and r' ~ and the symbols R~ ,r~ are the lengths of the vectors R' ~ and 

r'~· In the case of three atoms, v'~(R~,r~,/~) is the single Born-Oppenheimer 

electronic potential energy surface governing the interaction of the three nuclei. 

The ). superscript on this function indicates that it is expressed in the >. Jacobi 

coordinates. 
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The Hamiltonian can be put in a simpler form by the introduction of mass

scaled coordinates,2b•37 defined as 

R~ = a~R'~ 

-1 , 
r~ =a~ r ~ 

( 
1-"~,rnc) ~ 

a~= --
1-"vtc 

The Schrodinger equation in mass-scaled, center of mass coordinates is 

where 

J.L= 

1 

( 
m~mvmtc ) 2 

m~ +mv +mtc 

(4) 

(5) 

(6) 

(7) 

(8) 

is the single reduced mass for the system of particles and E is the total energy 

in the center of mass coordinate system. A change of coordinates, ,\ -+ v, is 

a simple orthogonal transformation in the six dimensional configuration space 

spanned by (R~,r~) when the mass scaled coordinates are used.15 The mass

scaled Schrodinger equation has the same form as that for a single particle of mass 

J.L in a six dimensional Euclidean space. Unless explicitly stated otherwise, all 

coordinates are mass scaled. 

We now turn to the characterization of solutions to the Schrodinger equation 

when the particles are identical. These solutions will be chosen to belong to the 

irreducible representations of the symmetry group of the Hamiltonian. Although 

our main topic is the significance of the group of permutations of three identical 

particles in scattering, we will treat all of the symmetries of the Hamiltonian at 

once. 

3. Symmetry Group of the Hamiltonian 

In this paper, except for Section 11, we will consider only the spatial coordi

nate part of configuration space. The spin degrees of freedom associated with the 

particles will be treated in Section 11 where the Pauli principle is considered. 
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The complete symmetry group of the Hamiltonian is the set of all operators 

which commute with the Hamiltonian and is organized into operator subgroups 

which follow naturally from the character of the symmetry operations. The op

erators do not all commute among themselves and so a wave function cannot be 

chosen to be a simultaneous eigenfunction of all of the operators. Instead, the wave 

function can be chosen to transform according to an irreducible representation of 

each subgroup of operators. We will discuss each of these subgroups of operators 

beginning with the rotation group. 

Rotational invariance of the Hamiltonian permits us to choose the spatial 

wave function to belong to an irreducible representation of the subgroup 50(3) 

of the complete symmetry group of the Hamiltonian. Because we are considering 

only the spatial part of the wave functions, only the single-valued representations 

of 50(3) need be considered. The labelling of these representations follows from 

the their behavior under J 2 , the operator for the square of the total spatial angu

lar momentum. The spectrum for this operator consists of the values J(J + 1)1i2
, 

where J = O, 1, 2, ... ; hence, the quantum number J is a convenient label for the 

irreducible representations. The J irreducible representation has dimensionality 

2J + 1. A basis for the invariant subspace corresponding to an irreducible repre

sentation is fixed by choosing each function to be an eigenfunction of the operator 

j z, the operator for the space-fixed Z component of the total angular momentum, 

with eigenvalues Mh where M = O, ±1, ±2, ... , ±J. That the wave function can 

be chosen to transform as an irreducible representation of 50(3) and that it is a 

simultaneous eigenfunction of 12 and J z are equivalent statements. The language 

of irreducible representations of groups of operators is chosen because it is natural 

for the case of discrete symmetry operations. 

The discrete symmetry subgroups of the symmetry group of the Hamiltonian 

are the inversion group, the time-reversal group, and the group of permutations 

of the identical particles among themselves. The inversion group is denoted ~ 

and consists of the two operators i and E, where E denotes the identity and 
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f inverts the spatial coordinates of all the particles through the center of mass. 

~ has two irreducible representations labelled by II = ±. The second discrete 

subgroup is composed of the identity operator and the time reversal operator 

which reverses the direction of time, The time reversal subgroup permits us to 

chose the time-independent wave function to be a real function which leads to 

a symmetric scattering matrix. The final group of discrete symmetry operations 

is the set of all possible permutations of three identical particles and is denoted 

as P 3
66 (more recently S 3

61a). It has irreducible representations labelled by r E 

( A1, A2, E). It will be recognized that these are the labels commonly used for the 

irreducible represenations of the point group C3., which is isomorphic with the 

group P3. We employ these irreducible representation labels because they have 

familiar meanings. The E representation is doubly degenerate while A1 and A 2 

are nondegenerate. In the asymptotic regions of configuration space, the spatial 

solutions which transform as A1 (A2) are composed of even (odd) rotational states 

of the diatomic molecules. Those that transform as E contain both even and odd 

rotational diatomic states. These facts will be discussed in much more detail in 

later sections. 

The existence of symmetry in a physical system leads to the ability to con

struct solutions to the Schrodinger equation which transform under the symmetry 

operations as irreducible representations ofthe operator groups. The irreducibility 

means that a solution is uniquely specified by its representation labels. Solutions 

which do not transform as irreducible representations are found by taking linear 

combinations of the irreducible solutions. Let us assemble together the labels 

which identify the irreducible representations to which the spatial wave function 

belongs and affix them as superscripts to the solution: 'ltJ,M,rr,r,i. J = 0, 1, 2, ... 

is the total angular momentum quantum number and M = 0, ±1, ±2, ... , ±J is 

the quantum number associated with the projection of the total angular momen

tum onto a space-fixed axis. II = ± is the parity label. r E (A1, A2, E) is the 

irreducible representation of the permutation group P3. The superscript i denotes 
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the row within this irreducible represenation. To proceed with the construction of 

solutions with these irreducible representation labels, we next discuss the choice of 

internal coordinates (i.e., those three parameters on which the interaction energy 

depends). 

4. Symmetrized Hyperspherical Coordinates and Surface Functions 

It has been proposed39•40 and validated45 for J = 0 that symmetrized hyper

spherical coordinates which are derived from the R)., r)., /). coordinates are well 

suited for 3D reactive atom-diatom scattering. They have the attribute of treating 

all arrangement channels equivalently and are defined as39 

1 

p = ( Ri + r~) 
2

; (9) 

W). = 2arctan(~:); (10) 

and the corresponding Hamiltonian is 

(11) 

where 

(12) 

and j). is the angular momentum operator corresponding to r.\ and h is that corre

sponding toR).. The parameter pis independent of,\ E (a.,f3,/) and i.5 invariant 

under all of the .5ymmetry operation.! of the Hamiltonian. This characteristic of 

the hyperradius is an indication of its special nature. We leave unspecified the 

system of axes needed to resolve the vectors ii.). and r.\ for the moment. 

Any set of coordinates can be used to express the wave function; however, 

the coordinate choice becomes important when the wave function is expanded in a 

basis set where the basis functions depend on a subset of the coordinates. In order 

for such an expansion to converge in a small number of terms, the Schrodinger 



- 15 -

equation must be nearly separable in the coordinates chosen. This property exists 

in the hyperspherical coordinates: p is nearly separable from the remaining five 

coordinates. Hyperspherical coordinate methods have been extensively tested and 

validated in collinear quantum reactive scattering calculations where coupled chan

nel expansions converge rapidly.9
•
10 As the expansion basis set, we define surface 

functions40 for 3D scattering by ~~,M,II,r ,i( (A; p) by 

(13) 

and 

J ~·J' ,M',II' ,r' ,i(( . p)~J,M,rr,r,;(( . p)dr = hJ' ,M' hrr' hr' ,_i bn' 
n' A' n A' 1 J,M II r ,J n (14) 

with dr1 = sin2 wAdwAdl RAdlrA as the correct volume element. We have used 

the symbol (A for the five hyperangles (wA, h, RA), where RA and fA stand for 

the pairs of angles necessary to specify the direction of the vectors rA and RA, 

respectively in a coordinate system which we leave completely general, at present. 

In Section 6, we will define the body-fixed set of coordinates which we used in our 

calculations. 

The surface functions are labeled with J, M, TI, r, i because they are defined 

to transform as irreducible representations of the groups 50(3), S<, and P3 • This 

is possible since the operator A 2 is invariant under all of the symmetry operations 

of the Hamiltonian. The subscript n on ~~,M,II,r ,i and fn provides a labelling for 

the infinite discrete surface function spectrum. The surface function eigenvalues 

are discrete because of the bounded nature of their domain: they depend on a set 

of five angles. 

The recent papers of Pack and Parker46 and of Wolniewicz and Hinze42 ana

lyze the differences in some of the common hyperspherical systems of coordinates 

and both papers raise a criticism of the present hyperspherical coordinates: the 

points wA = 0, 1r are singular points in the canonical angular momentum operator 

(12). The wA = 1r point appears especially troubling because it cuts though one 

of the saddle points in a collinearly dominated reaction. However, we will see in 
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Section 6 that the volume element vanishes at these singular points as sin2 w>. , 

so the second order zero in the volume element removes the second order pole in 

the equation (12). In other words, the singular points have measure zero. For 

this reason, they do not represent a pathology in the symmetrized hyperspherical 

coordinates, and no difficulty is expected by their use, contrary to the statements 

in the literature. To elaborate on this point, we note that the singular points in 

the variable W>. can be removed from equation (13) by an appropriate change of 

dependent variables as 

(15) 

The new dependent variables vanish at the points W>. = 0, 1r. In paper II, the vari

ational principle for the surface functions is discussed and the variational integrals 

will be shown to exist in spite of the singular points, due to the presence of the 

appropriate volume element. The same conclusion holds for the interaction and 

overlap matrices. 

5. Locally Diabatic Surface Function Expansion 

The surface functions, in addition to being discrete, span the three arrange

ment channels and provide an effective basis set in which to expand the scattering 

wave function. We expand the scattering wave function as 

n 

where the surface functions are calculated at p. This is an efficient expansion 

when pis near p. In this sense we say that the surface function basis set is a local 

basis set. As a result of the isotropicity of space and the indistinguishability of the 

particles, it can be shown that the coefficients in the expansion are independent 

of the labels M and i, so these labels do not appear in the differential equation 

for the coefficients. Since the parameter pis considered to be fixed in any given 

expansion, the surface function basis set is diabatic in p. 
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The expansion in surface functions yields the following set of coupled ordinary 

differential equations in the variable p: 

d2 
-GJ,rr.,r(p· -p) + "'UJ,rr.,r(p· -)GJ,rr.,r( · -) = 0 
d 2 n ' L...J n,n' 'P n' p, P 

p n' 
(17) 

where 

(18) 

with 

~ v:,~·r(p, p) = ~ J ~~J,M,rr,r,i [ (~) 2 V(p,w.\,1'.\)- V(p,w.\,')'.\)] ~~:M,II,r,idrl 
(19) 

In the next section we will see that the integral over five angles can be reduced 

analytically to an integral over the two angles W.\ and 1'.\ on which the potential 

energy depends. 

With a given set of surface functions at p, the interaction matrix U J,rr.,r (p; p) is 

calculated as a function of p and the system of ordinary differential equations (17) 

is integrated by any of a number of standard algorithm.s.68 We have used Johnson's 

logarithmic derivative integrator69 in our numerical work. One important point 

to be emphasized is the independence of the surface functions (13) and numerical 

integrals (19) of the collision energy E. The surface functions and their integrals 

are calculated only once and the ordinary differential equations (17) are propagated 

for each collision energy using the same surface function set. Such propagation is a 

well developed tool and the collision energy independence of the surface functions 

allows a large number of collision energies to be calculated. 

Surface functions at a single p are not efficient for expanding the wave function 

for all values of p. The strategy is to calculate a set of surface functions at each of 

a family of values of the hyperradius Pi, i = O, 1, 2, .... For each value of Pi' the 

system of ordinary differential equations is integrated as an initial value problem. 

The range of p over which a single surface function set is used is called a sector. 
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With the exception of the very first sector beginning at p0 , the initial conditions 

follow from continuity of the wave function and its p derivative between sectors. 

This information is carried in overlap matrices which are calculated for surface 

function sets at adjoining values of the hyperradius: Pi and pi+1. The overlap 

matrices ar e 

OJ,II,I'(-p · -p·) = J ~·J,M,II,I',i( l' . -p- )~J,M,II,I',i(l' . --)d 
n,n' t+ll l n ~~, t+1 n' ~~' p, 1"1 (20) 

These overlap matrices provide a means of calculating the G~·rr,r (p; Pi+ 1 ) from the 

G~;II,I'(PiPi)· The transformation from the G~:rr,r(PiPi) to the G~,II,I'(p;pi+ 1 ) is 

accomplished by 

G~·rr,r (p; Pi+1) = L o~:~:r (Pi+1, Pi)G~:r ,rr(p; Pi) (21) 
n' 

The p derivative of G~;I' ,II(p; Pi) is transformed by the same equation (21) because 

the surface functions are used as a diabatic basis set. 

The overlap matrices (20) are unitary if the surface function sets at the two 

values of Pi are complete. Completeness of the surface function sets requires that 

the expansion in (16) include an infinite number of terms. In applications, this 

is not the case, and the overlap matrices are only approximately unitary. The 

lack of unitarity leads to loss of particle flux when changing surface function sets. 

Fortunately, it is possible to determine the total loss of flux in the final results of 

the scattering calculation. The loss of flux is determined by the lack of unitarity of 

the scattering matrix. In addition, it is possible to reduce the particle flux loss in 

basis set changes by including more terms in the expansion (16) or by decreasing 

the distance /::ipi = pi+1 - Pi between successive diabatic basis sets. Therefore, 

the flux losses are easily determined and can be made as small as desired. 

The initial conditions for the very first sector are the only missing pieces of 

information in the formal algorithm (given the surface functions). The second 

order ordinary differential equations (17) require a choice of the values of the 

functions G~·rr,r (p, p) and their p derivative at the initial value Po of p. The first 
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datum is simple; for sufficiently small p, the three particles are very close spatially 

and the potential energy is large and positive. Under this condition, the initial 

scattering wave functions can be set to zero. This leaves the p derivative to be 

specified. 

It would be ideal if a judicious choice of the first derivative in p could be made 

so that a specific asymptotic behavior in pis obtained. However, it is not known 

how to accomplish this. Instead, the well known S matrix method70 is used. In 

this method, a set of linearly independent solutions to the initial value problem 

are calculated by choosing arbitrary, but distinct, values for the p derivatives of 

. G~;r ,n(p; Pi)· Linear combinations of these integrated solutions then approximate 

the scattering boundary conditions. In Section 9, a method will be described for 

linearly combining the integrated solutions in order to construct a desired set of 

asymptotic boundary conditions. 

The superscripts J, II, ron G~,rr,r(p; p) denote the irreducible representation 

of the associated surface functions and not the transformation properties of the 

G~,rr,r(p; p) themselves. As remarked earlier, the hyperradius is invariant under all 

of the symmetry operations of the Hamiltonian. Any function of the hyperradius 

alone is likewise invariant under all of the symmetry operations, so the G~,rr,r (p; p) 

are invariant under all symmetry operations. The conclusion is that the transfor

mation properties of the surface functions determine the transformation properties 

of the entire solutions. 

6. Surface Functions in the Wigner Rotation Matrix Representation 

The surface functions are defined to belong to the irreducible representations 

of 50(3). To fulfill this requirement, it is useful to remember that the poten

tial energy depends on only three "internal" variables p, W>.., (>..· Three remaining 

"external" variables describe the overall orientation of the instantaneous trian

gle defined by the three particles. A set of Cartesian a.xes fixed with respect to 

the instantaneous triangle and independent of p, w >.., (>.. is called the body-fixed 
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frame. 71
-

73 The external variables are the three Euler angles needed to relate the 

body-fixed axes to the center of mass non-rotating axes.74 

There are, of course, an infinity of possible body-fixed axes. Our choice2b is to 

make the positive direction of the body-fixed z axis be in the same direction as R,>.. 

Then the first two Euler angles are r.p>.,ih, the spherical polar angles of the vector 

R>. with respect to a non-rotating, center of mass system of axes. This specifies 

the body-fixed axes to within a rotation about the body-fixed z axis which is given 

by the third and last Euler angle 1/J>. . We choose 1/J>. to make the final body-fixed 

y axis fall along R>. x r>. (in direction and orientation). With this choice, the 

body-fixed y axis is normal to the plane of the three particles. A .X subscript on 

the Euler angles reminds us that the body-fixed z axis is in the direction of R>.. 

It is easily seen that Ya = Y/3 = y"'; the same body-fixed y axis results from each 

of the Jacobi coordinate systems. An implication is that the transformation from 

one set of body-fixed coordinates, say .X, to another, say v, consists of a single 

rotation about the common body-fixed y axis. 

The complete set of symmetrized hyperspherical body-fixed coordinates are 

(p,w>.,"'/>.,iJ>. , r.p>.,1/J>.)· The final set of body-fixed axes are denoted by X>.,Y>.,Z>. 

and the center of mass, nonrotating axes by X, Y, Z. We will use the term space

fixed axes for center of mass axes that are not rotating with respect to the lab

oratory. The volume element in these body-fixed symmetrized hyperspherical 

coordinates is 

1 
dr = S p5 dpdr1 

d-r1 =sin~ W>. sin"'/>. sin iJ>.dw>.d'Y>.diJ>.dC(J>.d1/J>. 

(22) 

(23) 

Equation (23) is the explicit form of the volume element with the body-fixed angles 

that was defined after equation (14) with four of the angles unspecified. 

The behavior of the system under rigid rotations is represented by the depen

dence of its wave function on the Euler angles. If the surface functions belong to 
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an irreducible representation of 50(3), then their dependence on the Euler angles 

must be identical with that of the Wigner rotation matrices.74 

The irreducible representations of the group 50(3) are commonly called the 

Wigner rotation functions and are denoted by Dfvt 0 ( r.p~, -a~, 1/;~)74 where r.p ~,-a~, 'lj;~ 
' 

are the Euler angles corresponding to our choice of body-fixed axes. J is the 

quantum number corresponding to the operator } 2 , M is that corresponding to 

J z, and n is that corresponding to J:z,.. In other words, these functions satisfy 

i2Dfvt,0 (r.p~,ih,1f;~) = J(J + 1)n2 Dfvt,0 (r.p~,-a~,1f;~) 
A J J 

J zDM,n( r.p~, -rJ~, 1/;~) = MnDM,n( r.p~, -rJ~, 1/;~) 

A J J 
J:z,. DM,n( r.p~, -a~, 1/;~) = nnDM,n( r.p~, -a~, 1/;~) 

as well as the orthogonality relationship 

(24) 

(25) 

(26) 

For the present application, the labels J and M are conserved quantum numbers. 

n is the projection quantum number of the total spatial angular momentum onto 

the body-fixed z~ axis and is not conserved quantum number because Jz,. does 

not commute with the canonical angular momentum operator (12) . Therefore, 

using the Wigner rotation functions to express the dependence of the surface 

functions on the Euler angles requires that we take a linear combination of the 

Dfvt 0 (r.p~,-rJ~,'Ij;~) with different values of n. The coefficients of the expansion 
' 

depend on the variables w~, '"Y~ and parametrically on p. This permits us to write 

J 

q;~,M,II,r ,i( w~, -y~, 1/;~, -a~, r.p ~; P) = L Dk,n ( r.p ~,-a~, 1/;~)¢~·,-:;rr,r ,i( w~, '"Y~i P) 
0=-J 

(28) 

The set of 2J + 1 coupled partial differential equations which the two-angle 

surface functions, ¢~·,-:;rr,r ,i(w~, '"Y~i p ), must satisify follows from insertion of the 

expansion (28) into the partial differential equation for the surface functions (13) 
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and the orthogonality of the Wigner rotation matrices. The >. superscript on 

the </J~~~~rr~r~i(w>.)'/>,jP) is a reminder that the >. body-fixed axes are used. We 

discuss the construction of the surface functions via a finite element discretization 

in paper II. Here we simply wish to introduce the body-fixed coordinates and the 

usual expansion in Wigner rotation matrices. The existence of body-fixed surface 

functions is assumed. 

The orthonormality of the five angle surface functions and the orthogonality 

of the Df..t 0 lead to the following orthogonality relation for the two angle surface 
I 

functions. 

J """ j >. JIT. r · >. JIT.' r' · LJ <P~~~ I I •'(w>.,/'>.iP)<Po~~,.:, I l'(w>.,")'>.;p)dr2 = 
0=-J 

( 
2J + 1 ) en ciT. cr ci 

87r2 an,urr, ur,u; 

(29) 
>. J,II r . 

with dr2 = sin2 w>.dw>.sin")'>.dl'>.· The <Po1

1
n 

1 11(w>.,/'>.iP) are orthogonal in n,n' 

only if the sum over n is included along with integration over the continuous 

variables. 

Since the potential energy function does not depend on the Euler angles, the 

integration over (rh, r.p>., '1/J>.) which appears in {19) can be performed analytically, 

giVIng 

A v:,;;;~r (p, p) = 

CJ t j <P~~~J,II,r~i[ (~) 2V(p,w>.,/'>.)- V(p,w>.,/'>.)]<P~~~~~r~•dr2 (30) 
0=-J 

where CJ = ~( 2~~1 ) and the arguments of the </J~~~~rr~r~i(w>.,")'>.iP) have been 

omitted for brevity. Similarly, the overlap matrix integrals in {20) can be rewritten 

as 

o~~.~:r (Pi+t, /i;) = 

J 

( 
87r ) """ j ,~..>.,J,rr.lrli(w• "'~~•. -p · ),~.>.,Jirr.lr,i(w>. "'~~>.. -p -)dr2 (31) 

2J + 1 LJ 'f'O,n "' '"' •+1 'f'0 1n 1 
1 1 1 1 

0=-J 
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Notice that there is no explicit n label on the interaction and overlap matrices 

because of the summation over n. This agrees with the original construction of 

the propagation equations (17) through (19) where no n exists. 

All 2J + 1 components of the two-angle surface functions are associated with 

a single surface function energy. In other words, the two-angle surface functions 
' 

with different values of n are not to be considered as different surface functions. 

Instead, they are the components of a single surface function for each energy fn. 

7. Asymptotic Forms 

In this section, the asymptotic boundary conditions are considered. The nu

merical solutions to the Schrodinger equation are labelled by J, II, and r whereas 

the asymptotic boundary conditions which represent a scattering experiment have 

no such labels. In this section, we expand the asymptotic boundary conditions as 

linear combinations of terms which carry the labels J, II, r. This analysis moti

vates the definition and construction of the P3 irreducible representation scattering 

and reactance matrices. The P3 irreducible representation helicity scattering wave 

function is most easily derived by first constructing the P 3 irreducible representa

tion space-fixed scattering wave function and transforming it to the helicity form. 

Such a procedure avoids the difficulty of operating on the wave function with per

mutation operators when the coordinates themselves depend on the particle labels. 

The space-fixed coordinates are independent of the particle labels. 

A. Distinguishable Particle Representation 

The goal of a scattering calculation is to find accurate solutions to Schrodinger's 

equation which correspond to a scattering experiment. An asymptotic form which 

describes a scattering experiment has an incident plane wave multiplying the ini

tial state wave function of the diatomic molecule and outgoing spherical waves 

multiplying each energetically accessible diatom state. One possible form for the 

asymptotic scattering spatial wave function arises if the identical particles are 
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assumed to be distinguishable. This assumption is artificial in a quantum me

chanical world since the free diatom spectra are identical; however, this asymp

totic form corresponds to a classical mechanical world where particle trajectories 

make even identical particles distinguishable and has been used in other quantum 

calculations. The coordinates and diatom rotational angular momentum projec

tion quantum numbers are refered to the space-fixed system of axes. For energies 

significantly below the dissociation energy into three separated atoms, these dis

tinguishable atom boundary conditions are 

I a ~ I e'k.R.,. 
'lta,t ,..... e'k•1 ·R..,.¢t'(ra) + L.....tf~: (11a,'Pa) R <Pt(ra) 

t a 

13 eiA:. R.11 

"' Lf$:'(11f3,<pf3) R <Pt(r/3) (32) 
t {3 

where the first line holds when Ra "' oo and ra is small, the second line holds 

when R13 ,..... oo and r13 is small, and the third line holds when R.y ,..... oo and r-y is 

small. The functions <Pt(r~) are the isolated diatom bound state wave functions 

with energy et and satisfy 

- h2 
[-V~~ + v(r~)- et] <Pt(r.\) = 0 

2j.£ 

1rr•• I<Pt(r~)l2d3r~ = 1 

(33) 

(34) 

The function v(r~) is the interaction potential of the isolated diatom. The single 

quantum number t denotes the three diatomic molecule quantum numbers vjm. 

The quantum number v labels the vibrational levels for a given j where j(j + l)h2 

is the square of the diatom rotational angular momentum. The projection of the 

diatom rotational angular momentum onto the space-fixed Z axis is mh. There is 

no arrangement channel subscript on these quantum numbers since the diatoms 

are identical by assumption. The incident wave vector is defined by 

(35) 
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where Z is a unit vector along the positive space-fixed Z axis . The direction of 

initial wave vector is the same for all arrangement channels. The magnitude of 

the open (E > et) scattering wave number vectors is given by 

(36) 

and for closed states (E < et) by 

(37) 

so that the closed state terms in (32) consist of decaying exponentials only. 

The superscipts a, t' on ~a,t' and on the scattering amplitudes f'tt.t' (>. = , 
a,{3,-y) in equation (32) denote the arrangement channel and diatom state for 

the incident particles. The subscripts >., t denote the final arrangement channel 

and diatom state. (In reference 2b, superscripts on scattering amplitudes denoted 

final states and the subscripts denoted initial states, which pratice is the opposite 

of that used here.) Since the quantum numbers t 1 refer to the initial state of 

the diatomic molecule in the a arrangement channel, they must refer to an open 

state. The summations over the quantum numbers t in equation (32) extend over 

all open and closed states of the diatomic molecule in each arrangement channel. 

This form of the asymptotic waye function (32) is known as the distinguishable 

atom representation because the incident plane wave appears in the a arrangement 

channel only. Other distinguishable atom asymptotic forms are found by placing 

the incident plane wave in other diatom states t 1 or in other arrangement channels. 

A compact notation for this general asymptotic form is 

~~·.t• (38) 

The sum over ,\ is permissible because the <Pt(r~) are nonvanishing in the ,\ ar

rangement channel only, so the contribution to the spatial asymptotic form from 

the other arrangement channels v and "' vanishes in the ,\ channel. 
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If the three particles are identical, then there are only two independent scat-
tl I 

tering amplitudes (e.g., J;,'t and r;,·: ) for each value oft and t'. The Hamiltonian 

commutes with all of the permutation operators, so applying a permutation opera

tor to the asymptotic form (32) produces another solution to the Schrodinger equa

tion. Uniqueness of the solutions permits us to relate all the remaining scattering 

amplitudes to the J:,{ and 1;,{. For example, applying the 3-cycle permutation 

operator to a asymptotic form (32), 

a[ ( ~ a 
; ) ] ~a,t1 I lktlty 

e'kt• ·B...,<Pt~(r,.) + 'LJ:: {~,.,cp,.)e R <Pt(r,.) 
t "Y 

e•kt R"' L f$:' (~a, C,Oa) R cPt(ra) 
t a 

(39) 

, e•kt R~ L f;tt ( ~ f3 , cp f3) R <Pt ( r f3) 
t f3 

where ktl, the incident wave vector for the -y arrangement channel, points in the 

direction of the same space-fixed Z as did the incident wave vector for the a 

arrangement channel. Comparing this solution with equation (38), with A' = -y, 

we conclude 

f -y,t1 
_ fa,t 1 

-y,t - a,t 

f -y,t' _ fa,t 1 

a,t - {3 ,t 

f -y,t1 
_ fa,t 1 

{3,t - -y,t 

(40) 

(41) 

(42) 

If we apply instead a two-cycle operator to the asymptotic form (32), we find 

(43) 
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Comparing equation ( 43) with equation (38) with A'= (3 , we conclude 

J{3,t' = (-l)tl.j fa,t' 
{3 ,t a ,t 

f {3 ,t' = (-l)tl..jfa,t' 
a,t {3,t 

f{3,t' = (-l)tl..jfa,t' 
-y,t -y,t 

(44) 

( 45) 

(46) 

where we have the symbols t = (v,j,m), t' = (v' ,j',m'), and tl.j = (j-j') and have 

used the property of the diatomic wave function <Pv,j,na( -r>.,. ) = ( -l)i¢v.;,na(r>..)· 

Using this technique, it is possible to relate all of the distinguishable part icle 

scattering amplitudes to the independent ones. These relationships are listed in 

reference 2b. 

B. Irreducible Representations of P3 

The distinguishable atom representation asymptotic form, 'It>.' ,t', does not 

transform according to any irreducible representation of P 3 • To find spatial asymp

totic forms that do transform as irreducible representations of P3 , the distinguish

able atom asymptotic form (38) is multiplied by the appropriate group theoretic 

projection operator. This projection operator is given by67b 

Ar lr L r• A A p . . , = - M· ., (R)R .,. h .,. (47) 
fl. 

where r is the irreducible representation, i, i' are the row and column of the repre

sentation, lr is the dimensionality ofthe representation, his the order ( i.e.,number 

of operators) of the group and Mfi, ( R) is the i , i' element of the matrix represent-
• 

ing the operator R for the r irreducible representation. The sum in equation ( 4 7) 

is over all of the operators in the group. 

We want a scattering wave function corresponding to equation (38) which 

transforms as an irreducible representation of P3. Such an irreducible asymptotic 

wave function is denoted by 'ltr,i,v';'na' and is derived by applying the projection 

operator ( 47) to the asymptotic form (38) followed by normalization of the re

sulting wave function. The superscript r E (A1 , A2 , E) indicates the irreducible 
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representation and the superscript i indicates the row of this representation. The 

irreducible asymptotic form is 

h £ . h ri w ere or J even, t e cA;j are 

and, for j odd are 

CAl.= O· 
a,] ' 

CA2. = + /!. 
a,J V l' 
CE,~ = O· 
a,] ' 

CE,~ =- fi.. 
a,] V l' 

cA1_ = + /!. 
{3,] v l' 
CA2 0· 12 • = , 

1-'t] 

CE,~ =- /!. 
{3,] v il 
CE,~ = + !!. 

{3,] v 2' 

CAl 0· 
{3 • = , ,, 

CA2. = + /!. 
{3,] v l' 

CE,~ = + /!. 
{3,] v 2' 

CE,~ = + /!. 
{3,] vi' 

(48) 

(49) 

(50) 

These scattering wave functions ( 48) are constructed to transform according 

to the following representation of the group Pa: 

(: {3 ~) - (~ ~) {3 

(: {3 J) - (~ ~1) "( 

(~ {3 "() 1 ( -1 -Vi) 
{3 a ._. 2 -Vi +1 

(p {3 "() 1 ( -1 +v'a) 
a "( - 2 +v'a +1 

(~ {3 "() 1 ( -1 +_~) a {3 -2 -Vi 

(~ {3 "() 1 ( -1 -v'a) (51) 
"( a ._. 2 +v'a -1 
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The irreducible representation matrices for At and A2 are one dimensional: in At, 

every operator is represented by unity; and, in A 2 , the two-cycle operators are 

represented by -1 while the three-cycle operators are represented by +1. 

The irreducible representation asymptotic form ( 48) has some interesting 

characteristics. The plane wave appears in all arrangement channels and the scat

tering amplitude has the same functional form in all arrangement channels. The 

At (A2) spatial asymptotic form is composed of only even (odd) diatomic rota

tional states. Neither of these nondegenerate asympotic forms contains transitions 

which change the diatom parity. TheE asymptotic form contains transitions be

tween all possible states of the diatomic molecule including those that change the 

diatom parity. 

The group theoretic projection also leads to expressions for the irreducible 

representation scattering amplitudes in terms of the independent space-fixed dis

tinguishable atom scattering amplitudes: 

f A 1 ,v'j'm'(-a ) _ ~a,v'j'm' (-a ) + 21a,v'i'm'(-a )· 
vjm ~,cp~ - Ja,vjm ~,cp~ {3,vjm ~,cp~ 1 

! A 2 ,v'i'm'(-a ) _ ~a,v'i'm'(-a ) + 21a,v'i'm'(-a )· 
vjm ~~cp~ - Ja,vjm ~~cp~ {3

1
vjm ~,cp~ ' 

f E,v'i'm'(-a ) _ 1a,v'i'm'(-a ) _ 
1

a ,v'i'm'(-a )· 
vjm AI 'P~ - a,vjm ~, 'PA {3,vjm AI 'PA 1 

! E,v'i'm'(-a ) _ 1a,v'i'm'(-a ) 1a,v'i'm'(-a )· 
vjm AI 'P~ - a,vjm ~~ 'PA - {3,vjm AI 'P~ 1 

E v' i' m' ) r.; a v' j' m' ( ) 1 
fv;'m. (-rJA,Cf'A = +v3/{3,'v;m -rJA,cpA ; j E even, 

j' ,j E even (52) 

j',j E odd (53) 

j' ,j E even (54) 

j',j E odd (55) 

j E odd (56) 

E,v'i'm'(-a ) rn1a ,v'i'm'(-a )· 
fvjm AI 'PA = -V 3 {3,vjm AI 'PA ' j' E odd, j E even (57) 

Expressions for the distinguishable particle scattering amplitudes, f;,:~j~'m', 
r I •I I 

m terms of the irreducible representation scattering amplitudes, fv];,.1 
m , are 

found by taking the linear combinations of the 'i"A1 •"' i'm', 'i"A2,v' i'm', and 'i"E,i,v' i'm' 

that leave the incident plane wave in the >.' arrangement channel only. The ex-
. A1 •·•m• 

pressions for the fA,~j~ are 

, · I , 1 A I •I I 2 E I •I I 

f a,v 1m (-rJ ) _ -J 1 111 1m (-rJ ) + -J .'v 1m (-rJ )· a,vjm ~~ 'PA - 3 vjm AI 'PA 3 113m AI 'PA 1 j' ,j E ever( 58) 

a,v'j'm'( ) _ 1fA2 ,v'j'm'(-rJ ) 2/E,v'j'm'(iJ ) · 
fa,vjm iJ>..,'PA - 3 vjm A!V'A + 3 vjm A!V'A ' j' ,j E odd (59) 
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f a,v'j'm'({} ) _ 1JA1 ,v'j'm'({} ) 1/E,v'i'm'( ) 
f3,vjm >.,Cfl>. - 3 vjm >.,If'>. - 3 vjm iJ>.,Cfl>. i 

f a,v'j'm'({} ) _ 1JA2,v'j'm'(iJ ) 1JE,v'j'm'(iJ ) 
f3,vjm >.,If'>. - 3 vjm >.,If'>. -3 vjm >.,If'>. i 

f a,v'j'm'({} ) _ + 1 JE,v'j'm'({} )· 
f3,vjm >.,Cfl>. - v'3 vjm >.,If'>. 1 j' E even, 

j' ,j E ever(60) 

j',j E odd(61) 

j E odd (62) 

f a,v'j'm'({} ) _ 1 JE,v'j'm'({} ) 
f3,vjm >.,If'>. - - v'3 vjm ..\,If'>. j j' E odd, j E even (63) 

f a,v' j' m' (iJ ) _ • 
a,vjm >.,If'>. - 0, 

J:;:~::. m' ( {} ..\ 1 If'>.) = 0; 

j' E even, j E odd 

j' E odd, j E even 

(64) 

(65) 

Expressions (58) through (65) can obviously also be obtained by inverting equa

tions (52) through (57). 

Although the asymptotic scattering wave function in ( 48) transforms as an 

irreducible representation of the group P3, it is not an eigenfunction of } 2 or 6i. 
In contrast, it is desirable that the numerical solutions to be constructed have 

definite total angular momentum and parity. We will next express the asymp

totic forms as a partial wave expansion in body-fixed coordinates. In this way, 

the connection between the numerical partial wave solutions and the irreducible 

scattering amplitudes can be obtained. 

8. Partial Wave Expansion of the Asymptotic Forms 

A. Helicity Asymptotic Form 

The r irreducible representation, space-fixed, asymptotic form discussed in 

Section 7.B will now be transformed into the corresponding helicity asymptotic 

form.75 •2b In this way, we can identify the helicity scattering wave function and 

scattering amplitude which belong to the r irreducible representation of the per

mutation group P 3 • The helicity asymptotic form is convenient when body-fixed 

coordinates are used to express the scattering wave function and permit a simple 

expansion of the latter into a total angular momentum partial wave series. In the 
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helicity asymptotic form, the axis of quantization of the final diatom rotational 

states is the final wave vector direction (i.e., the body-fixed z~ axis), and that of 

the initial rotational state is the direction of the initial wave vector. For simplicity, 

the space-fixed Z axis is in the direction of the initial wave vector (35). 

We have introduced two different sets of projection quantum numbers for the 

diatom rotational state. The helicity projection quantum numbers are denoted by 

k for final states and k' for initial states. In Section 7, the axis of quantization 

of the diatom rotational states is the single space-fixed Z axis and the symbols m 

and m' are used for the space-fixed final and initial diatom angular momentum 

projection quantum numbers. The special choice of space-fixed Z axis given by 

equation (35) reveals that the projection quantum numbers m' and k' both refer to 

the component of the diatom rotational angular momentum along the space-fixed 

Z axis. The quantum numbers k and m are the projection quantum numbers for 

the body-fixed z~ and space-fixed Z axes, respectively. 

The isolated space-fixed diatom wave functions (33) and (34) have the sepa

rable form 

(66) 

where ( '11r:~., 'Pr:~.) are the spherical polar angles of the vector r~ with respect to 

space-fixed system of axes X, Y, Z, and the Y;,na are the usual spherical harmonics, 

with m being the quantum number associated with the projection of the diatom 

rotational angular momentum along the space-fixed Z axis. 

The transformation of the final diatom projection quantum number to the 

corresponding helicity quantum number is accomplished by using the definition of 

the Wigner rotation matrices:74 

i 
Y;,na('11r:~.,<t'r:~.) = L D!,,ll(<p~,'l1~,0)Y;,A:('Y~,,P~) 

k=-i 

(67) 
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Combining equations ( 48), (66), and (67), we find 

j 

{ c~;~h,,j(r~) L D!n,~c(IP~,-a~,O)Yj,k('Y~,1/I~)} (68) 
k=-j 

The asymptotic form (68) can be rewritten as 

r · , ., , ~~[r· ] '¥ •'•" ,, ,1'71 "'L- L- c~;jh,,i(r~)Yi, k(·n,1/l~) 
~ v,j,k 

(69) 

where we have introduced a scattering amplitude which belongs to the P 3 Irre

ducible representation I' and is given by 

j 

f!',;~~·j' ,1'71' (-a~ , !p ~) = L !;,{~' ,1'71' (-a~, !p ~)D!n,lc< !p ~,-a~, 0) (70) 
nl=-i 

The correspondence of equation (69) in this paper with the distinguishable parti

cle helicity scattering wave function appearing in equation (5.24) of reference 2b 

permits us to identify the irreducible representation (of P 3 ) helicity amplitude as 

the left hand side of equation (70) in this paper, where we identify the indices 

k' = m'. With this change in indices, the I' irreducible representation helicity 

scattering wave function is 

'P"r,i,v' ,j',k' "'L L [c~;~htt,;(r~)Y;,~c(1'~,1/l~)] 
~ tt,j,lc 

{ 
e'kw,j ·B.~ o"' ,_i' Dj (en~ 19 ~ 0) + ,-r ~"· ,j' ,k' (19 >. 111 >.) e•lc,,j R~ } 

"•' lc' ,k T ' ' tt,,,lc 'T R~ 

(71) 

In the symbol jr '·"~c' ,j' ,lc', the superscript k' is the component of the diatom's initial 
"''' 

rotational angular momentum along the space-fixed Z axis and k is the component 
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of the final diatom's rotational angular momentum along the corresponding body

fixed axis Z>., so we see that this scattering amplitude agrees with the discussion 

preceeding equation (5.24) in reference 2b. 

B. Partial Wave Expansion of the Helicity Asymptotic Form 

The next step is to transform equation (71) into the total angular momentum 

representation. The Hamiltonian commutes with the operators of 50(3), so any 

solutions to the Schrodinger equation can be written as a linear combination of 

solutions which separately transform as irreducible representations of 50(3). If 

the decomposition is done using body-fixed coordinates, then the partial wave 

series is given in terms of the Wigner rotation matrices. The plane wave term 

and the helicity scattering amplitude are expanded in a series of total angular 

momentum partial waves as 73 

e'k,. ,;-R;,.Di, ~:(tf'>.,'l1>.,0),...... 
I 

(2kvl·R>.) f: { Df,l~:(tf'>.,'l1>.,0)(2J + l)(~)J+i+l 
11 J=n~az(IA:' I~IA:D 

The corresponding expansion of the helicity scattering amplitude is 

-r I •I A:' 
f ~tl 1J 1 {11>._ ~>._) = 

t7 1]
1
lc ) T 

00 I •I lc' 
"""' ( r J) v 11 ' J LJ a ' . Dlc,

1
Tc(tf'>..,'l1>..,0) 

v,],lc 
J=n~az( lie' j 1 jlc I) 

(72) 

(73) 

( ) 

v' ,j' ,lc' 
where the ar 1 J . are constant coefficients which are determined by solving 

t7 1] 1lc 

the Schrodinger equation for the scattering wave function. They are related to the 

elements of the scattering matrix as will be discussed below. 

The particular choice of subscripts for the Wigner rotation matrices in the 

the expansion of the helicity scattering amplitude requires some explanation. The 

second subscript, k, on the Wigner function in equation (73) must agree with 

the projection quantum number of the diatom's rotational angular momentum in 
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equation (71) in order for that expansion to solve Schrodinger's equation term by 

term. Recall that the projection of the total (3-particle) spatial angular momen

tum onto the space-fixed Z axis is a constant of the motion. This total angular 

momentum Z component is also equal to the projection of the rotational angular 

momentum of the initial diatomic molecule onto that axis, because the incident 

wave vector is parallel to that axis, by definition, and contributes nothing to that 

component of the total angular momentum. Since the total angular momentum 

projection quantum number is determined by the first subscript on the Wigner 

rotation matrix, it must be k', the initial diatom projection quantum number. 

Substituting the expansion of the plane wave (72) and that of the scattering 

amplitude (73) into equation (71) we find, after some straightforward rearrange-

ments: 

(74) 

where 

- (sJ,r) vi.;~.~~~ ( e•(lc.,,;~.lt. -_(J+iHl)} 
• L e "•·' R]l. "•'•"' 

(75) 

with 

( Jr) v
1
,j

1
,k

1 
1 ·I 111 2(1.)i-i

1

-
1
Jkvl ;1k11 i ( Jr)" 1 ,i1

,1c
1 

S ' = h" '·' ' - ' ' a ' 
v,j,k v,,,lc (2J + 1) v,j,lc 

(76) 

The left hand side of equation (76) represents the elements of the body-fixed scat

tering matrix for partial wave J and irreducible representation r. This equation 

( )

11
1 i 1 k 1 

shows their relationship to the expansion coefficients aJ,r '. ' . Note from 
v,,,k 

equation (76) that in the absence of any interaction, the scattering amplitude van-
v1 ,j1 ,k1 

ishes, so its expansion coefficients (aJ,r) . vanish and the scattering matrix 
v,,,k 

becomes the identity matrix as desired. 
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The upper (lower) line in equation (75) represents the open (closed) channel 

terms. The closed channels in the first term on the right of equation (75) vanish 

because the incident plane wave multiplies only open channels since it represents 

the initial state part of the scattering wave function. In other words, the initial 

state cannot be a closed state in a wave function which represents a scatt ering 

experiment. 

Given the body-fixed scattering matrices for each J and r, the coefficients 
v 1 j 1 lc1 

(aJ,r) '. ' are determined by inverting equation (76) and the irreducible repre-
v,1,1c 

sentation helicity scattering amplitudes can be expressed in terms of the irreducible 

representation body-fixed scattering matrix elements as 

( ) 

.! ( ) •I "+1 I •I I 
- I •I I v. 1 "I 2 l ] -] V 11 ,/c 
fr~v,,,lc = ....!!.....2!.. '"'(2J+l)DJI (r.p>. iJ>. o)(TJ,r) 

v,],lc V. . 2k I "I L-t /c ,lc ' ' . /c 
V 1] V 1J J=O V 1J 1 

(77) 

where 
( TJ,r) vi •. i' ,lei -

v,J,Ic [
svl ·/,lei - (sJ,r) VI .i' ,lei] 

v,J,/c . /c V,J , 
(78) 

Equation (77) is the irreducible representation helicity amplitude partial wave 

expansion which corresponds to the distinguishable particle one given by Schatz 

and Kuppermann2b and is identical to their equation (5.31) except for the presence 

of r in equation (77) of the present paper which associates the helicity amplitude 

with the scattering wave function which transforms as the r irreducible represen

tation of the group P3. 

We have previously restricted the initial state to be an open diatomic molecule 

state while final states can be open or closed. Equations (74) and (75) derive from 

an analysis of a physically meaningful scattering asymptotic form. As such, they 

will not include any exponentially diverging terms. For this reason, there is a zero 

in the closed channel part of the first term of equation (75). It should be pointed 

out that the general definition of the scattering matrix includes exponentially 

diverging terms; however, these are not needed for the construction of differential 

cross sections and do not arise naturally from asymptotic boundary conditions like 
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equation ( 48). To distinguish the open-open parts of the scattering matrix, we will 

use the notation osJ,r. The transformation to matrix notation is accomplished 

by regarding superscripts as a single column index and subscripts as a single row 

index. 

C. Parity Decomposition of the Helicity Asymptotic Form 

There is one remaining symmetry decomposition of the asymptotic form. The 

parity label has not appeared in the foregoing analysis but is a label for the 

numerical solutions, so it is desirable to have the asymptotic form expanded in the 

corresponding parity components. The parity labeled components have a simple 

phase change when the sign of the final state k index changes sign. 

Multiplying by the parity projection operators, which are special cases of 

equation {47), we can find the parity components of the asymptotic form and 

express the asymptotic form as an expansion in the parity components. Writing 

P< +) and P<-) for the projection operators for the positive and negative three

particle parity: 

(79) 

we can define asymptotic forms which carry the parity label II 

n r • I •I I ~ (fi) r • I •I I q, , ,1,11 ,, ,m = p q, ,1,11 ,, ,m • (80) 

To recover the original function from the parity labelled functions we simply sum 

over the parity label 
r • I •I Ll ~ n r • I •I Ll 'lf ,a,'V ,J ,,.. = .L-J W ' ,I,V rJ rllli (81) 

n 

The parity labelled r representation asymptotic form is 

(82) 
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where 

(83) 

I •I /cl 

Observe that with the addition· of parity labels, the ( b;•n,r)" '.' ' (R.x) with k < 0 
v,],lc 

are not linearly independent of those with k > 0: 

(84) 

I •I /cl 

( Jnr)" •1 ' The explicit form for b5 • ' . (R.x) is 
v,,,lc 

(85) 

where we have defined 

( ) 

V

1 

.i
1 

,/c' 1 [ I ] I •I EJ,n = _ ~-lc + II(-1)J ~lc1 

~v '·' 
. 1c 2 1c 1c v,, v,,, (86) 

(SJ,n,r) V

1 

•• ;' ,Jc' 1 ( ( J;:') v ' ,;' ,lc
1 J ( Jr) v 1 

,j
1 ,lc'] = - S +II( -1) S • 

v,,,lc 2 v,j,lc v,j,-lc 
(87) 

v 1 j 1 lc1 v 1 
,;' ,lc1 

Both (EJ,n) '. ' and (sJ,n,r) . have the symmetry properties 
v,,,lc v,,,lc 

( Jn r) v
1 

,j
1 
,lc

1 
J ( Jn r) V

1 

,j
1 
,lc

1 

S • • = II( -1) S • • . 
v,j,-lc v,,,lc 

(88) 

(EJ,n) v' •. i' ,lc
1 

J ( J n) V 1 
,j' ,lc

1 

=II( -1) E • . 
v,J,-Ic v ,,,lc 

(89) 

so if the parity labelled scattering matrix elements with k :;:::: 0 are calculated, then 

the elements with k < 0 are known by equation (88) and the non-parity labelled 

elements are found from the inverse of relationship (87): 

(sJ,r) "I .. ;' ,lc' = L ( sJ,n,r) v' ,;' ,lc' 
v,,,lc n v,j,lc 

(90) 
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In addition, from the fact that the scattering matrix is a symmetric matrix 

in the usual linear algebra sense, we can derive relationships similar to equations 

(88) and (89) for the superscripts in place of the subscripts. 

(91) 

(92) 

The utility of equations (88) and (91) is that only part of the parity labelled 

scattering matrix must be calculated. If the elements of the scattering matrix 

with k ~ 0 and k' ~ 0 are known, then the remaining parts are expressible in 

terms of these elements by equations (88) and (91). 

D. Reactance (R) Matrix Asymptotic Form 

The preceding scattering asymptotic boundary conditions involve plane waves 

and spherical waves because these are familiar boundary conditions for a scat

tering wave function; however, it is most convenient for numerical purposes to 

calculate solutions to the Schrodinger equation which are real functions of R>. cor

responding to equations (82) and (85). These are the well known reactance matrix 

solutions70 •76 with the addition of the appropriate II and r labels: 

IV,.; I-t { (EJ,rr,r)v' .. i' ,lc' (sin [k,,jR>.- (J + j)f)) 
R>. ,,,,lc 0 

+ (RJ,II,r)v',.i',lc' (cos [k,,jR>.- (J + j)f])} 
e-K. .. .J R~ ,,,,lc 

(93) 

R J,rr,r is called the reactance matrix. The relationship between the open-channel 

parts of the scattering and reactance matrices is also well known.70 •76 For a fixed 

collision energy, the number of open initial states and final states is equal. By 

choosing an ordered set of the three initial state quantum numbers v' ,j', k' as 
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a column index and likewise a similarly chosen ordered set for the final state 

quantum numbers v,j, k as a row index, it is simple to show that 

(94) 

where the left hand superscript o indicates that we are referring to the open parts of 

the corresponding matrices. Once 0 R.J ,n,r is obtained, we calculate og.J ,n,r from 

(94), og.J,r from the open channel part of (90), the corresponding 0 T.J,r from (78) 

and the helicity amplitude from (77). These will then be used to calculate cross 

sections, as shown in Section 7.E and 11. 

E. P3 Irreducible Representation Helicity Differential Cross Sections 

In this chapter, the expression for P3 irreducible representation differential 

cross section is given. For transitions from odd initial rotational states of the 

diatomic molecule, these are not yet physically observerable differential cross sec

tions, but are related to them in a simple manner as shown in Section 11. For 

transitions from even initial rotational states of the diatomic molecule, these are 

the physically observable differential cross sections. This is all discussed at some 

length in Section 10 and is mentioned here for clarity. The differential cross sec

tion is defined as the outgoing flux into a unit solid angle for some final state of 

the diatomic molecule divided by the total incident flux. Before writing down this 

expression in terms of the helicity scattering amplitude, it is necessary to undo 

the effects of mass-scaling on the latter. 

The use of mass scaled coordinates affects the normalization of the diatomic 

molecule wave functions, the wave vectors, and the spherical wave terms of the 

asymptotic form. First, consider the diatomic molecule normalization. 

(95) 
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If the diatomic molecule wave functions in unsealed Jacobi coordinates </>' t(r' >..) 

are defined to have the normalization 

(96) 

then the following relationship exists between the mass-scaled and unsealed di-

atomic wave functions: 

Also, the wave vector corresponding to unsealed coordinates is 

k l -lk v,; = a>. v,; 

which implies that 

k' v,j · R' >.. = kv,; • R>.. 

(97) 

(98) 

(99) 

(100) 

a 
To transform equation (71) to unsealed coordinates, multiply (71) by a I . 

Because the particles are identical, the mass scaling factors are the same for each 

arrangement channel, and the diatomic molecule wave functions become those 

appropriate for the unsealed coordinates. R>.. in the denominator of the spherical 

wave terms can be replaced by R~, if the unsealed helicity scattering amplitude is 

defined by 
-lr I •I Jcl l -r I •I Jcl 
f .'" '' ' (1'J>.. .....,>..) = (a>.)- f ~" '' ' (1'J>.. '"'>..) 11 ,1 ,1c lT v,],lc lT 

(101) 

The last equation is essentially equation (5.27) in Schatz and Kuppermann2b when 

the particles are identical. From the unsealed helicity scattering amplitude, the 

irreducible representation differential cross section can be defined: 

O'r,~1 ,j1 ,1c1 (1'J '"' ) = ( v~,; )1!- 1~,v1 ,;',1c'({}>.. .....,>..)12 
v,],lc >.' T >.. V' v,J,Ic ' T 

vi ,jl 
(102) 

where V' . = hlt:~ .i is the unsealed relative speed. This is the usual helicity scat-
"•' ~-'"·""' 

tering differential cross section with the addition of a label for the irreducible 
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representation r of the group p3 indicating the transformation properties of the 

corresponding scattering wave function . In section 11, the construction of the 

properly antisymmetrized differential cross sections from the irreducible represen

tation ones will be presented. 

9. Asymptotic Projection of Numerical Solutions 

A. General Jacobi Asymptotic Wave Function 

The goal is to construct numerical solutions to the Schrodinger equation for 

each partial wave, parity, and P3 irreducible representation that have a similar 

asymptotic form as equations (82) and (93) in order to obtain from them 0 RJ ,II,r. 

Unfortunately, it is not known how to pick directly the initial conditions such 

that the asymptotic form of the integrated solutions is a scattering matrix (85) or 

reactance matrix (93) form. One method for constructing scattering (reactance) 

matrix solutions is to integrate the system of ODEs in the variable pas an initial 

value problem without trying to achieve any special asymptotic form. The scat

tering (reactance) matrix asymptotic form is then obtained by linearly combining 

a complete set of linearly independent solutions to the initial value problem. One 

technique for doing this is reviewed in this section. 70 

Arbitrary intitial conditions, denoted by p', lead to wave functions which are 

composed of both open and closed channels, as p becomes large, so the asymptotic 

behavior of the integrated solutions will include diverging waves. The general 

body-fixed solution labelled with J, M, IT, r, i, p1 has the asymptotic form 

>. v,;,n 
(103) 
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where we define 

(104) 

where the summation over n includes only nonnegative values because of the 

enforcement of parity. The p' superscript on the coefficients CJ;r:n,r,p' and DJ•f!-
0
•r ,p' 

v , ] , v ,], 

is an integer index which distinguishes the solutions obtained from different initial 

conditions to the initial value problem. The upper (lower) terms in the equation 

(104) are for open (closed) states. The superscript i which appears on the left hand 

side of (103) denotes the particular row within the irreducible representation r to 

which a solution belongs. This index does not appear in the term BJ•f!-0•r,p'(R>.) 
V , ] , 

because that would imply that the G~,rr,r(p; p;) depend on this index which, we 

argued in section 5, is not the case. In principle, the sum over v , j, n in equation 

(103) must include all asymptotic states both open and closed. In practice, the sum 

includes all open states and some closed states. The number of states included is 

an adjustable parameter in the numerical treatment and its finite value represents 

an approximation. It is usually found that the error from the finite number of 

asymptotic states included can be made as small as desired by increasing their 

number. If the number of initial conditions is equal to the number of asymptotic 

states in the expansion, then the c;;fcf•p' and n::fcf•p' form square matrices with 

row indices v,j,n and column index p'. If c;;fcf·P is nonsingular, then we can 

form 

(105) 

where we have moved to matrix notation. We have implicitly assumed an arbitrary, 

but fixed, mapping from the triplet of indices v,j, n to a single integer index used 

to label the row the matrices. This is not quite the reactance matrix defined in 

equation (93) but is closely related to it as we will see momentarily. 
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The inverse matrix (CJ,II,r)-1 can be used to transform equation (103) into 

a form very similar to the terms in the partial wave expansion (82) 

We now have 

- • I •I 1 [ ] V
1 
,j' ,0' . I 'lfJ,M,II,r,a,v ,1 ,0 = L (CJ,II,r)-1 p' 'lfJ,M,II,r,a,p 

p' 

(106) 

- J M rr r · ' ·• o' ~ ~ r · J 1 
'lf ' ' ' ,a,v '1 ' ""'LJ LJ c,x;jDM,o(cp,x,'l1,x,O)hv,j(r.x)Y;,o(;.x,'t/J.x) R IV. ·li 

.\ v,j,O .\ v,] 

{
a"' .. i' ,o' ( sin[kv,jR.x - ( J + j)~]) + (RJ,II,r)v' ,_;' ,o' ( cos[k,,;R.x - ( J + j)~] )} 

v,],O elf., ,jR). v,],O e-lf. .. ,jR). 

(107) 

Using the numerical solutions represented in equation (107), we can expand 

the r irreducible representation helicity scattering wave function (82). 

( ) 

v 1 ,j' ,lc' 
'lfrr,r ,i,v' j' lc' L A J,M,II ~J,M ,rr,r ,i,v" ,j" ,o" 

J,M,v 11 ,j" ,011 v" ,j" ,011 

(108) 

Comparing equation (108) with equations (82) and (93), the expansion coefficients 

needed for equation (108) to become (82) are 

(AJ,M,II)v',j',lc' -ale' {jv' [ji' clc' ((2J + 1)v'n(~)J+j"+l) II(-1)J 
- M v" j 11 v -011 

_ J 2 
v" ,j" ,0" 2 V p.k,, ,j" 

(109) 

and we can now relate the calculated reactance matrix in equation (105) with that 

defined in equation (93) 

(RJ,II,r)v' ,_;' ,lc' = (RJ,II,r)v' ,j' , -lc' 
v,],lc v,],lc {110) 

We have related the linearly independent numerical solutions to Schrodinger's 

equation to the body-fixed reactance matrix solutions. The uniqueness of the 

reactance matrix70 permits us to use equation (110) without worrying about which 

reactance matrix is found. The matrix ftJ,II ,r is labelled with nonnegative values 

of k and k' only. Equation (110) permits this matrix to be related to a part of the 
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body-fixed reactance matrix R J,II,r . This part of the body-fixed reactance matrix 

can be used to construct the rest of the reactance matrix using equations (88) and 

(91) with the reactance matrix substituted for the scattering matrix. In the next 

section, the direct construction of the open part of the reactance matrix from the 

integrated solutions will be discussed. 

B. Coriolis-Coupled General Asymptotic Wave Function 

The asymptotic solutions written down so far are valid for R>.. large enough 

to allow the neglect of both the atom-diatom interaction and Coriolis coupling 

resulting from the use of a body-fixed Hamiltonian. The Coriolis coupling varies 

as R):2 and is rather long range. In constrast, the interaction between an atom and 

a diatomic molecule vanishes as R):6 if neither has a permanent electric charge. 

The Coriolis coupling has not appeared explicitly in this paper because it manifests 

itself entirely in the partial differential equations defining the two-angle surface 

function which is discussed in paper II. 

It is possible to write down the analytic form of solutions to the Schrodinger 

equation valid at values of R>.. which are sufficiently small for the Coriolis coupling 

to be nonnegligible, and at the same time sufficiently large for the interaction 

between the atom and the diatomic molecule to be negligible. The object in 

writing down the functional form which holds for the corresponding smaller values 

of the hyperradius is to minimize the range over which the ordinary differential 

equations (17) must be integrated numerically. 

The body-fixed functions of R>. which hold when the interaction between the 

atom and the diatomic molecule is negligible, but the Coriolis coupling need not 

be, are given by Schatz and Kuppermann.2 " (We have used a slightly different 

notation than that used in reference 2b.) 

BJ,f!.,r,p'(R ) = k ·IV. ·i-t ""{cJ,f!.,~·P' SJ,IJ. ,(R>..) + DJ,f!.,~·P' CJ,f!. ,(R>..)} 
11 ,3,0 >. v,J v,J L..J v,J,O v,,,O,O v,J,O 11 1J 10,0 

0' 
(111) 
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where 

J,n _ o+o' """" 1 +II( -1 J- . • {( ). l) 
s,,;,o,o•(R>.)-(-1) Lt 2 C(J,J,l,n,-n,o) 

C(J,j, l; n', -n', 0) ( cos[(J + j -£)~ ]]L(k,,;R>.) + sin[(J + j -l)~]Yt(k,,;R>.))} 
(112) 

and 

J,n _ _ O+O' 1 +II -1)'- . . {( ( . l) 
c,,;,o,o•(R>.)-( 1) ~ 2 C(J,J,£,n,-n,o) 

C(J,j,l; n', -n', 0) ( sin[(J + j -l)~])L(k,,;R>.)- cos[(J + j -l)~]Yt(k,,;R>.))} 
(113) 

for open states and 

s;;f0 ,0 ,(R>.) = 2(-1)0 +0
' 2:c(J,j,£;n,-n,o)c(J,j,£;n',-n',o) 

l 

(114) 

c;·]~o 0 ,(R>.) = ~( -1)0 +0
' ""c(J,j,l; n, -n, o)C(J,j,£; n', -n', o) 

''' 7r ~ 
l 

(
1 + II(-1);-t)k ( ·R ) 

2 l tt,,] >. (115) 

for closed states. The symbols ]L(k,,;R>.) and Yt(k,,;R>.) stand for the spher

ical Bessel and Neumann functions, respectively. In addition, it(tt,,;R>.) and 

kt(tt,,;R>.) are the modified spherical Bessel functions of the first and third kind, 

respectively. 77 C(j11 )2, )3; m 1 , m 2 , m 3 ) are the Clebsch-Gordan coefficients using 

the notation of Rose.78 As R>. "' oo, equations (111)-(115) become equations 

(103)-(104). 
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The asymptotic projection of the numerical solutions of the initial value prob

lem in hyperspherical coordinates onto the Coriolis-coupled asymptotic Jacobi so

lutions is found by equating the numerical solutions (16) with the general asymp

totic form (103) and (110) through (115): 

P-~"""'GJ,rr,r,p'(p·p-)~J,M,rr,r,i(w -v ~'· _a u'J · p-)L...J n ' n >., ,>., 'r'>.,v>.,-r>., -
n 

L L ci;~D.it,n ( c.p >., il>., O)hv,;( r>,)Y;,n (/>., 7/J>.)B:;Y,cf ,p' (R>.) 
>. v,j,O 

(116) 

Both sides of (116) are evaluated at the same point in configuration space and p 

must be large enough that the corresponding asymptotic form given in equation 

(110) is valid. p indicates the hyperradial position of the associated surface func

tion set. Multiplying through by ( ~~,M,rr,r ·•(w>., />., 7/J>., il>., c.p >.i p)) •, integrating 

over the variables (w>.,/>.,7/J>.,il>.,c.p>.), and recalling that the surface functions are 

expanded in Wigner rotation matrices, we find 

where 

gJ,rr,r (p; p) = aJ,rr,r (p, p)CJ,rr,r + {3J,rr,r (p, p)DJ,rr,r 

(aJ,rr,r);:•j,O'(p,p) = p~IVv,;l-i LL j sin2 w>,sinl>.dw>.d/>. 
), 0 

A. .>.,J,rr,r ·•( _) r ,i h ( )Po ( )SJ,n (R ) '+'O,n W>, 1 />, 1 p c>.,j v,j r>, j COS/>. v,j,O,O' >. 

({3J,rr,r);:•;,n' (p,p) = pliVv,;l-t L L j sin2 w>,sinl>.dw>.d/>. 
), 0 

A..*>.,J,rr,r ,i( _) r ,i h ( )Po ( )CJ,rr (R ) '+'O,n W>,, />., p c>.,j v,j r>, i cos/>. v,j,O,O' >. 

(117) 

(118) 

(119) 

The subscript n corresponds to an arbitrary labelling of the two-angle surface 

functions and is the row index on the gJ,rr,r, aJ,rr,r, and {3J,rr,r matrices. The 

superscripts v,j, O' on the latter two matrices are interpreted as a set of column 

indices and correspond to the row indices on the integration constants CJ,rr,r and 

DJ,rr,r. The columns of gJ,rr,r, CJ,rr,r and DJ,rr,r are labelled by p', the initial 

condition index. 
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In practice, the logarithmic derivative matrix69 contains all of the information 

necessary to construct the reactance matrix as we will show in this paragraph. Let 

a dot denote differentiation with respect to p. The logarithmic derivative matrix 

associated with the propagation equation {17) is defined as 

{120) 

Omitting the arguments p and p, we find 

ii J,n,r = [ yJ,n,r {3J,n,r _ /3J,n,r] -l [ &J,n,r _ yJ,n,r aJ,n,r] {121) 

Equation {121) shows explicitly that the hypersphericallogarithmic derivative 

matrix, the two-angle surface functions, and the isolated diatomic molecule wave 

function are all that is necessary to construct the R matrix. 

In summary, a logarithmic matrix with a set of arbitrary, but linearly inde

pendent initial conditions, whose number is equal to the number of asymptotic 

diatomic molecule states included in the projection, is propagated from small 

p, where the wave function vanishes, to a range of p where the atom-diatomic 

molecule interaction vanishes. Matrices, whose elements represent the projection 

of the two-angle surface functions onto the Coriolis-coupled asymptotic Jacobi 

wave functions, provide the means for converting the logarithmic derivative ma

trix into a reactance matrix. From the open-channel part of the reactance matrix, 

the open-channel part of the scattering matrix, the PJ irreducible representa

tion helicity scattering amplitude, and corresponding differential cross sections 

are calculable. Different collision energies produce different logarithmic derivative 

matrices from the propagation equations {17). 

10. Separable Basis Set 

In this section, we define a basis set which is more efficient than the finite 

element surface functions for moderate to large values of p. This new basis set is 

composed of products of associated Legendre functions of "'(>. and hyperspherical 
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vibrational functions of W>.. We describe how the transformation into this basis 

set is accomplished, the associated set of coupled ordinary differential equations, 

and the projection integrals for asymptotic analysis. 

The separable basis set is much less expensive to calculate than the surface 

functions because the separable basis set is constructed of one dimensional nu

merical functions and analytic functions while the finite element surface functions 

exist on a two dimensional domain. For sufficiently large values of p, the scattering 

wave function is vanishingly small in the regions of configuration space between 

the arrangement channels and the separable basis set is efficient for expanding it . 

For these values of p, the surface functions are localized in the arrangement chan

nels, since they have negligible amplitude between arrangement channels, and are 

well approximated by the separable functions described below. The sole reason 

for using a separable basis set is because the finite element calculation of surface 

functions is expensive and unnecessary in the weak interaction region of configu

ration space. In fact, the separable basis set provides an effective variational basis 

set for calculating surface functions at all values of p. 

The separable basis set is defined by 

F/•M,n,r ,i( (>.; p) = L ci;;nii,nC c,o.>., '17.>., 1/J>.)P;0 ( cos r>.)f/ (w>.; p) 
>. 

where i = ( s, j, n) and 

with the definition 

(122) 

(123) 

(124) 
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defines a set of one dimensional numerical functions. Since they are one dimen

sional, they are inexpensive to calculate. To complete their definition, the following 

boundary conditions are enforced: 

(125) 

w,raz is large enough that the potential energy is very large, but not so large that 

the other arrangement channels are approached. 

Next, we expand the scattering wave function in the separable basis set in a 

manner analagous to that of equation (16): 

'l'J,M,n,r,i ,p' (p, (.\) = p-l L 9f;rr,r,p' (p; p)F/•M,n,r,i((.\; p) 

i 

The differential equation for the gf;rr,r ,p' (p; p) is 

d
2 

Jn r ' "' JIT r J;ri r ' dp2 gi ' ' ,p (p; p) + ~ ui,1t' ' (p; p)gi, ' ,p (p; P) = 0 
t 

where 

(126) 

(127) 

A2 

uf.£r;'r(p;p) = j F/•M,n ,r,i((.\;p) [;2~2 - ~V(p, w.\, 'YA)] F(,•M;rr,r,i((.\;p)dTt 

(128) 

The initial conditions for the propagation of the coupled set of ordinary differ

ential equations (127) follows from the requirement that the wave function and its 

p derivative be continuous and this requirement is satisfied by the use of overlap 

matrices. Overlap matrices must be calculated between the final set of surface 

functions and the first set of separable functions in order to transform the hyper

spherical logarithmic derivative from the surface function set to the separable set. 

This integrals are 

_J,n ,rc- _) _ j p•J,M,n,r ,i(~" . -P· )«<»J,M;rr ,r,i (~" . -p-)dT 
0 t,n' Pi+l' Pi - i ~.\, a+l n' ~.\, a 1 (129) 
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and the p dependent coefficients in the separable basis set expansion (126) become 

J1II 1r 1p'(p·- ) _ L-J~rr~rc- - )GJir lrr lp'( . -) 
9i , Pi+l - 0 i n' Pi+t' Pi n' p, Pi 

I 

(130) 
n' 

Many sets of separable basis functions at different values of p are needed in 

a scattering calculation just as is the case for the surface function basis set . The 

separable basis set is effective for expanding the scattering wave function only for 

values of p near p. The overlap matrices for transforming the gf,1111r 1p' (Pi Pi) into 

J 1II1r 1p' ( _ ) • 
gi, Pi Pi+t ls 

Jlrrlrlp'( _ ) ~ Jlrrlr(- _ ) Jlrlrrlp'( _) 
9t, Pi Pi+t = L..J 0 t,

1
i,• Pi+t' Pi 9t,, Pi Pi (131) 

t' 

where 

Jlrrlr(- -) _ j F*JIMirrlrli(r . - )FJIMirrlrli(r . - )d oi i• Pi+ll Pi - i o.,>., Pi+t t' o.,>. , Pi Tt 
I 

(132) 

Since the wave function in the asymptotic region is expanded in the sepa

rable basis set, we need to write down the projection integrals corresponding to 

equations (118) and (119). To make clear the distinction between the projection 

of the separable basis functions onto the asymptotic states and the corresponding 

projection of the surface functions, we will place bars over the symbols used for 

the projection integrals of the separable functions. 

(133) 

(134) 

In equation (121 ), which gives the formation of the ii J 1II1r matrix from the hyper

spherical logarithmic derivative and the projection integrals, the unbarred a and 

{3 are replaced by their barred counterpoints given by equations (133) and (134). 
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11. Nuclear Spin and the Pauli Principle 

At this point it is convenient to recognize the possibility that the particles 

have intrinsic spin and that the complete wave function has spin components. The 

Hamiltonian considered here does not include spin dependent terms; therefore, 

the complete wave function can be written as a direct product of a spatial wave 

function, which satisfies the Schrodinger equation, and a spin wave function for the 

three particles. In earlier sections we have discussed the explicit construction of the 

spatial part of the scattering wave function. From the direct product of the spatial 

and spin functions, differential cross sections for appropriately antisymmetrized 

scattering wave functions can be extracted. The existence of nuclear spin does not 

affect the previous sections and becomes important here in connection with the 

Pauli principle. 

Rotational invariance implies conservation of the spin total angular momenta 

squared and one of its space-fixed components. The spin functions that we will 

use are chosen to be eigenfunctions of S2 , the square of the total spin angular 

momentum operator and Sz , its space-fixed Z component. 

The permutation operators also affect the spin functions. Since the operators 

of P3 all commute with those of 50(3), the spin functions just chosen form irre

ducible representations of P3. For example, if the three nuclei are spin h then the 

possible spin states are quartet S = ~ and doublet S = ! . There are four quar

tet spin states distinguished by different space-fixed Z spin component quantum 

numbers: S z = ± i, ± ~, each of which transforms independently as A1. There are 

two doublet spin functions for each value of Sz = ±l that transform as partners 

inanE irreducible representation. The explicit spin functions are not important 

for extracting the spin-averaged antisymmetrized cross sections. 

The term antisymmetrized is a brief way of saying that the total scattering 

wave function (spatial times spin) transforms as the A2 irreducible representation 

of P3 • Since the spatial and spin wave functions separately form irreducible repre

sentations of P3 , then the product of these yields a direct product representation 
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of P3 which is reducible. The irreducible decompositions of the direct products 

are (spin ® spatial) 

At® At= At (135) 

At® A2 = A2 (136) 

At ®E = E (137) 

E®At = E (138) 

E®A2 = E (139) 

E ® E = At E9 A2 E9 E (140) 

It is seen that in the case of fermions the only irreducible representation spatial 

solutions that contribute to nature are A2 and E. When the Pauli principle is 

satisfied, we associate the quartet nuclear spin state with the A2 spatial scattering 

amplitude and the doublet nuclear spin state with the E spatial scattering ampli

tude for spin l nuclei like hydrogen. It is easily seen that bosons require spatial 

solutions that transform as At and E. 

If the initial rotational state of the diatomic j is even (para hydrogen), then 

the corresponding spatial wave function must belong to the E irreducible repre

sentation because A2 solutions contain no even rotational states. By implication, 

the total nuclear spin state is doublet for experiments with even j initial diatom 

rotational states. Since the nuclear spin state is known and is a constant of the 

motion, no spin state average need be taken and the antisymmetrized cross section 

is entirely composed of E spatial scattering amplitudes 

( v;,;) I!E •. v',j',lc'(il <p)l2 = <TE,~',;',Ic'(iJ <p) 
V' v,],lc ' v,,,lc ' 

v' ,;• 

~ara,v' •. i' ,lc' (iJ 1/J) = 
para,v,,,lc '.,.. (141) 

( v;,;) lfE,.v',j',lc'(iJ <p)l2 = <TE,.v',j',lc'(iJ <p) 
V' v,J,Ic ' v,,,lc ' 

v',j' 

ql'ara,v' ,j' ,lc' (iJ ) _ 
ortho,v,j,lc '<p - (142) 

The para and ortho indices indicate para and ortho hydrogen, respectively. If 

the initial rotational state of the diatomic molecule j is odd (ortho hydrogen), 

then the spatial solution can be either E or A2. If the initial diatomic molecule 
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preparation and final state measurement are insensitive to the nuclear spin states , 

then the three particles have a ~ chance to be in the doublet spin configurations 

and a ~ chance to be in the quartet spin configurations. This follows because there 

are 4 A 1 spin states and 2 E spin states accessible for a total of 6 possible spin 

states. The antisymmetrized cross sections are the weighted average of the E and 

A 2 scattering amplitudes, where the weights are those implied by the number of 

accessible spin states. 

I •I lei 1 ( V' . ) E I •I lei 1 E I • I lei ortho,v .•1 , (iJ ) = _ _..!!.Jl_ If •." ,] • (iJ )J2 = _ ·~ ,] ' (iJ ) 
U para,v ,],lc 'cp 3 V' . v,],lc 'cp 3 U v,],lc 'cp 

vi,J' 
(143) 

ortho,v',.i
1

,1c
1

(iJ ) = ~( V~,j) [lfE ,.v
1

,j
1

,lc
1

(iJ )12 +2lfA~,v',j',lc'(iJ )12] 
U ortho,v,],lc 'cp 3 V' v,],lc 'cp v,],lc 'cp 

vl,j' 

1 E I • I lc' 2 A I ·I lc' 
= -u ·~ '1 ' (iJ cp) + -u '.•" '1 ' (iJ cp) 3 v,,,lc ' 3 v,,,lc ' (144) 

The ortho to para differential cross section includes only the E irreducible rep

resentation scattering amplitude because there is no corresponding A 2 scattering 

amplitude. Summing up, all differential cross sections are composed solely of E 

differential cross sections except the ortho to ortho ones which are a simple linear 

combination of the E and A2 differential cross sections. Even in the ortho to or

tho transitions, there is no interference between theE and A2 contributions. This 

contrasts with the interference terms obtained when Pauli antisymmetrized cross 

sections are expressed in terms of reactive and nonreactive cross sections. As a con

sistency check, if the irreducible representation scattering amplitudes are written 

in terms of the distinguishable scattering amplitudes, then the antisymmetrized 

differential cross sections agree with those given in Schatz and Kuppermann2 b and 

by Doll, George, and Miller. 79 

F inally, we note that for experiments which state select the nuclear spin states, 

it is possible to study independently the quartet nuclear spin system and the 

doublet spin system. The measured cross sections would then be interpreted as 

arising from the A 2 and E spatial scattering amplitude, respectively. Of course, 

such nuclear spin selection is probably not feasible, but it violates no principles to 



- 54-

consider such a gedanken experiment for the purposes of interpretation of our P3 

labeled results. 

12. Summary 

We have presented m detail a methodology for performing accurate quan

tum mechanical reactive scattering calculations based on symmetrized body-fixed 

hyperspherical coordinates. In this approach, the emphasis is on the surface func

tions, their effectiveness as an expansion basis set simultaneously in all arrange

ment channels, and their evolution with p from the strong interaction region to the 

asymptotic region. By making use of the highly developed methods for integrating 

coupled sets of ordinary differential equation, the propagation phase of the cal

culation is efficient and well understood. A new constant hyperradius projection 

technique allows the conversion of integrated solutions into partial wave reactance 

matrices from which all other quantities of experimental interest are calculable. 

The most important attribute of scattering calculations based on hyperspher

ical coordinate techniques and the associated expansion in local surface functions 

is that nowhere in the paper did we need to consider matching between arrange

ment channels or the bifurcation problem. In effect, this method reduces multi

arrangement channel reactive scattering to the same form as a nonreactive inelastic 

scattering problem. The only catch is that the surface function basis set is cur

rently expensive to calculate; however, they provide rapidly converging coupled 

channel expansions and their cost simply reflects the reluctance of nature to part 

easily with her secrets. 
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In this paper, the mathematical definition and properties of surface functions 

are considered for the general case of a three particle system. Because the surface 

function differential equation includes the potential energy surface, the surface 

functions are parametrized by the hyperradius. Their evolution with hyperradius 

makes these surface functions efficient as the expansion basis set for the scatt ering 

wave function expressed in hyperspherical coordinates. The calculation of surface 

functions using the finite element method is outlined. Results for the H3 system are 

presented and discussed. The use of boundary conditions to control the symmetry 

characteristics of the numerical solutions is discussed in detail. 
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1. Introduction 

It is our purpose to discuss the definition, properties, and numerical construc

tion of surface functions, i.e., a hyperangular basis set which appears naturally in 

the application to atom-diatom reactive scattering of symmetrized hyperspherical 

coordinate techniques.1 - 5 These coordinates1 consist of a hyperradius and a set 

of five hyperangles. The basis set2 depends explicitly on the five hyperangles and 

parametrically on the hyperradius, and so the functions are defined on the surface 

of a hypersphere and span all three arrangement channels, thereby eliminating the 

necessity of matching6 solutions from different arrangement channels. Recently, 

surface functions have been shown in numerical applications to constitute a good 

basis set for expanding accurate solutions to the atom-diatom reactive scattering 

problem.3 •4 The use of hyperspherical coordinate techniques in atom-diatom re

active scattering is recent;1 •
7

•8 however, they have a long history in other areas of 

physics. 

Hyperspherical coordinates are first discussed by Gronwall9 and Bartlett10 in 

connection with the electronic structure of the He atom. Their application to two

electron dynamics of He and H- has been extensively developed by Wannier,11 

Fock 12 Macek 13 Klar 14 Lin 15 Fano 16 Greene 17 Starace 18 and Hood 19 Clapp20 
' ' ' ' ' ' ' . 

and Delves2 1 have pioneered their use in nuclear physics,22 and the mathematical 

properties of the eigenfunctions of the generalized angular momentum operator or 

canonical angular momentum operator are developed by Smith,23 Zickendraht,24 

Efros,25 Arribas,26 Simonov,27 Smorodinskii,28 Knirk,29 and Smirnov.30 Hyper

spherical coordinates have also found extensive use in the calculation of reactive 

atom-diatom collinear scattering probabilities. 31 •32 

In both the electronic structure problems13
-

17 and the collinear scattering 

problems,33•34 these coordinates, coupled with the adiabatic approximation,13 are 

important in modeling of metastable states (resonances, autodetaching states, 

and autoionizing states) . In the adiabatic approximation, the hyperradial mo

tion (slow) is decoupled from the remaining angular degrees of freedom (fast), 
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resulting in an effective one dimensional hyperradial problem. The usefulness of 

the adiabatic approximation indicates that the surface function basis set is effective 

for expanding the accurate solutions to the atom-diatom scattering problems. 

Three groups are employing hyperspherical coordinates and an associated 

surface functions basis set for accurate reactive 3D atom-diatom scattering calcu

lations. Pack, Parker, Archer, and Walker4 using Pack's APH coordinates,35 have 

published reaction probabilities for J = 0,1 H + H 2 up to 1.5 eV and for J = 0 

H + D 2 over a lower collision energy range. Mishra, Linderberg, and coworkers,5 

using the Mead's hyperspherical coordinates,36 have published surface functions 

and the associated adiabatic curves for J = 0 H + H2. We have presented re

active and nonreactive probabilities and the associated time delay and lifetime 

analysis for J = 0 H + H2 for energies up to 1.6 eV3 using Kuppermann's sym

metrized hyperspherical coordinates.1 Wolneiwicz and Hinze37 have considered the 

relative merits of the symmetrized hyperspherical coordinates of Johnson38 and of 

Kuppermann.1 

This paper, along with the preceding paper in the series provides complete 

documentation of one approach using one system of body-fixed symmetrized hy

perspherical coordinates to atom-diatom reactive scattering. In section 2, the 

surface functions are defined. In section 3, body-fixed coordinates are introduced. 

In section 4, the surface functions in the Wigner rotation matrix representation are 

given. In section 5, a variational principle for the surface functions in the Wigner 

rotation matrix representation is presented. In section 6, the finite element method 

is discussed. In section 7, the boundary conditions for collinear configurations is 

given. In section 8, the permutation group appropriate for a system of 3 identical 

particles in introduced. In section 9, the boundary conditions imposed on the sur

face functions are derived from the transformation laws governing the behavior of 

the surface functions. In section 10, contour plots of numerical surface functions 

are presented for J = 0 H + H2. Section 11 is a summary. 
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2. Definition of Surface Functions 

Given the mass-scaled Jacobi coordinates1 R>. and r>., where R>. is the mass

scaled vector from the center of mass of the diatomic molecule A11 A" to the atom 

A>. and r >. is the mass-scaled vector from atom A 11 to atom A", symmetrized 

hyperspherical coordinates1 are defined by the hyperradius given by 

(1) 

which is a measure of the overall size of the three particle system and five angles: 

the two internal angles, "(>. and W>. given by 

'Y>. =arccos (R;>.~:>.); 

W>. = 2arctan(~:); 

(2) 

(3) 

and to fix the overall orientation of the system, the three Euler angles ( cp >., {} >., 1/J >.) 

which will be defined in section 3. 

The corresponding three particle Hamiltonian is 

(4) 

where 

(5) 

and 
2 2 ~2 

~ 2 2 ( a a ) i>. z>. 
A = -4/i -a 2 + 2 cot W>. -a + . 2 + 2 ~ 

w >. w >. s1n '!!f cos 2 

(6) 

]>. is the angular momentum operator corresponding to r>. and h is that corre

sponding to R>.. J.L is the reduced mass appropriate for the mass-scaled coordinates. 

A2 is referred to as the grand angular momentum operator.23 It commutes 

with three operators in general: J 2 , the square of the total angular momentum; 

j z, the space-fixed component ofthe total angular momentum; and C)[, the three

particle inversion operator. These facts are justified by the following argument. 
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The three-particle Hamiltonian commutes with the operators } 2 , J z, and Ch. The 

hyperradius is invariant under each of the three operators, so the first term in the 

Hamiltonian ( 4) is also invariant. The potential energy function commutes with 

12 , J z, and 6 I. Since the first and third terms in the Hamiltonian ( 4) commute 

with each of the operators, the grand canonical angular momentum operator must 

also commute with each. 

The form of the Hamiltonian m hyperspherical coordinates motivates the 

definition of surface functions,2 cp~,M,II(r,o~,11>.,1/1~,w~,-y~;p) by 

[h(r,o~,'l1~,1j1~,w~,')'~jp)- E~(p)] cp~,M,II(r,o>.,11~,1j1~,w~,')'~jp) = 0 (7) 

j2cp~,M,II(r,o~,'l1~,1j1~,w~,')'~jp) = J(J + 1 )1i.2cp~,M,II(r,o~,11~,1j1~,w~,')'~jp) (S) 

j z«P~·M,IT( r,o ~, 11~, 1/1~, w~, 'Y~i p) = M1i«P~·M;n( r,o ~, 11~' 1/1~' w~, 'Y~i p) (9) 

6 r«P~·M,II( r,o ~, 11~, 1/1~, w~, 'Y~i p) = II«P~,M,II( r,o ~, 11~, 1/1~, w~, 'Y~i p) (10) 

The surface functions are single-valued and bounded. They are labeled with 

J, M, II and n because they are chosen to be eigenfunctions of the operators } 2 , 

A A A 2 
Jz, Or, and h with eigenvalues 1i J(J + 1), 1i.M, II, and En(P), respectively. The 

subscript n on «P~,M,II and En provides a labelling for the discrete surface function 

spectrum. The surface function eigenvalues are discrete because of the bounded 

nature of their domain: they depend on a set of five angles. In addition, the surface 

functions and their energies depend on p parametrically, and constitute an effective 

basis set for expanding the solutions to the Schrodinger equation corresponding to 

the Hamiltonian in equation ( 4) around p. Because the full atom-diatom potential 

appears in (7), the surface functions have a built in structure which is appropriate 

for the system. Finally, they span all three arrangement channels and avoid the 

need of matching. The use of surface functions in reactive scattering calculations 

is the topic of the first paper in this series. 

It is convenient to normalize the surface functions over the 5D hyperangular 

space according to 

(11) 
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sin'!?,x sin2 w,x sin{,xdr.p,xd'I?,xd'l/;_xdw_xd{,x as the necessary volume ele-

ment. 

3. Body-Fixed Coordinates 

In paper I, a set of body-fixed axes6 •39 is defined. Because of its importance 

in the present paper, we repeat its definition. The body-fixed z axis is chosen 

to point in the direction R,x. This is accomplished by setting the first two Euler 

angles40 to be the spherical polar angles of the vector R.x: ( '!? ,x, <p ,x) . The final 

Euler angle 1/;_x, is a rotation about the body-fixed z axis and is defined to bring 

the final body-fixed y axis into the direction of R_x X r,x. In other words, the final 

body-fixed y axis is perpendicular to the plane defined by the three particles. The 

body-fixed axes are denoted by z_x, y,x, Z>. and rotate as the particles move in space. 

The A subscript is a reminder that the body-fixed axes are based on the R>., r,x 

coordinates. The non-rotating center of mass axes are denoted by X, Y, Z. 
The rotational properties of the surface functions are determined by t heir 

dependence on the three Euler angles, and they will automatically be eigenfunc

tions of } 2 and J z, when they are expanded39 in the W igner rotation matrices4 0 

according to 

J 

~J,M,n(r.p,x,'I?>.,'I/J>.,W>.,I>.iP) = L Df..t,n(r.p.x,'I?.x,'I/J>.)</>~',~n(w>.,l.xiP) (12) 
0=-J 

The sum over n in (12) is necessary because it is not a conserved quantum number: 

n is the component of the total angular momentum along the body-fixed Z>. axis .4 0 

The rotational properties of a surface function of the form (12) is the same as those 

of Wigner rotation matrices40 which are irreducible representations of the rot ation 

group. The surface function's dependence on the Euler angles has been factored 

away and multiple solution components, identified by the index n which takes on 

2J + 1 values, have been introduced. 
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The coefficients in (12), </J~'~'IT(w>.,l>.iP), are referred to in the rest of this 
' 

paper as two-angle surface functions or more precisely as surface functions in the 

Wigner rotation matrix representation. 

In order to derive the differential equation governing the two-angle surface 

functions, it is necessary to express the grand canonical angular momentum oper

ator (6) in the body-fixed coordinates. The operator Ji in body-fixed coordinates 

is given in reference 6 as 

~.2 2 ( a
2 

a 1 a2 ) 
J>. = -h -a 2 + cotl>.-a + . 2 a~J.2 

I>. I>. Sln 1>. '+'>. 
(13) 

An expression for fi in a form useful for the present purposes is 

fi_ = }2 + )i + 21i
2 a:i -v'21i [a~.\ +cot I>. ( 1 - l a!.x)] J,t 

- v'21i [a~>. +cot 1.x ( 1 +?; a!.x)] J; (14) 

where 

Jt = ~ (l~A ± ?;j!IA) 

The operators } 2 and J"t have the properties40 

}2 D'k,n(Cf'>.,'I1>.,'1/J.x) = J(J + 1)1i2 D'k,n(cp.x,'11>.,'1/J.x) 

Jt Di-I,n( cp .x, '11>., '1/J>.) = Cj;0 D'k,n:r:t ( cp .x, 11.x, '1/J.x) 
1 

cj;0 = ~[(J±n)(J:r=0+1)]
2 

(15) 

(16) 

(17) 

(18) 

The explicit forms for Jz, J!l, and Jz are given by Landau and Lifshitz,41 ,42 but 

they will not be needed. 

4. Surface Function Hamiltonian in Rotation Matrix Representation 

The partial differential equation for the surface functions in the Wigner rota

tion matrix representation is 

J 

"" [h~ .\,J " J,IT( )] -~.>.,J,IT( ) 0 L..J n,n• - un ,n• c:n P '+'n• ,n w.x, I.\, P = (19) 
0'=-J 
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where 

and 

A >..,J 1i.v'2CJ.0 [ 8 ] 
hoo±1 = 2 2 2(~) -8 ±(f1±1)cot-y>.. 

' f-LP cos 2 'Y>.. 
(21) 

All terms in (19) with lfl'l > 101 + 1 vanish. Equations (19)-(21) are derived by us-

ing the expressions for]~ and fi in body-fixed coordinates (13)-(15) in the surface 

function differential equation (7), the relations (16)-(18), and the orthogonality of 

the Wigner rotation matrices.40 

Equation (19) represents a set of 2J + 1 coupled partial differential equations 

in the independent variables W>..,'Y>.. and a continuous parameter p. In the Wigner 

rotation matrix representation, the grand canonical angular momentum operator 

(6) is non-diagonal in n, n'' but the potential energy function is diagonal. 

Some authors have raised concern4 •37 about the second order poles in the 

kinetic energy term of equation (20) at W>.. = 0, 11". The important observation is 

that W>.. = 0, 11" are second order zeros of the volume element and so have measure 

zero. Alternatively, a simple change of dependent variables given by 

J:">..,J,II( ) A.>.. JII( ) · 
'f'O,n W>.,'Y>..iP = 'f'O',~ W>.,'Y>.iP SlnW),. (22) 

removes the singularity from the resulting differential equation for the new depen

dent variables. 

The surface functions are eigenfunctions of the inversion operator 61. i which 

inverts the coordinates of all of the particles through the center of mass, acts only 

on the Euler angles. Since the Wigner rotation matrices are not eigenfunctions of 

61 , the ¢~·.~n(w>..,/>..iP) must satisfy the relationship 

(23) 
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To derive this result, it is necessary to first establish how the D £t ,o ( <p >.., {} >.., 'lj; >..) 

transform under inversion of all coordinates through the center of mass. It is 

an easy matter to show the effect of the inversion operator f on the body-fixed 

coordinates is6 

Using the well known properties of the Wigner rotation matrices, it is straightfor

ward to show that 

We conclude that 

From equations (10) and (26) we have 

J 

L (-1)J+Onfvr,-o(lfJ>.,tJ>.,1/;>..)¢J~·.~·rr(w>.,f'>.iP) = 
0=-J 

J 

II L Dfvr,o, ( <p>., tJ>., 'f/;>.)¢J~~:~rr(w>., l>.i P) 
0'=-J 

(26) 

(27) 

Replacing the summation index n in the first sum in equation (27) by -n and 

employing the orthogonality of the Wigner rotation matrices, we obtain (23). 

The inclusion of a definite parity in the surface functions has several con

sequences. Indeed, equation (23) shows that, for a given parity, II, only those 

¢J~·.~rr(w>., l>..i p) with nonnegative values of n are linearly independent. That 

equation also shows that ¢J~~~n(w>.,/>.iP) is identically zero when II(-1)I = -1. 

In particular, for J = 0 = 0, odd parity wave functions do not exist. In addition, 

inclusion of parity labels decouples the set of 2J + 1 coupled partial differential 

equations (19) into a set of J + 1 coupled equations for n ~ 0 and a set of J 

coupled equations for n > 0. This is verified by replacing the unknowns with 
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n < 0 in the system of 2J + 1 equations (19) by the related functions with n > 0 

using (23) . The result is duplicate equations for all n =/= 0. Therefore, the differ

ential equations, after enforcing parity, are the same as before except that terms 

with n < 0 are omitted. The expressions for the interaction and overlap matri

ces given in paper I can be simplifed by the inclusion of parity: the sums over 

n = -J,-J + 1, ... ,J -1,J can be replaced by sums over n = 0,1,2, ... ,J by 

using equation (23). When this is done, it is important to include all terms with 

n =/= 0 twice and the n = 0 term once. In the following all sums over n will extend 

from -J to +J so that the factor of two is retained. 

5. Minimum Principle for Surface Functions 

In this section, a minimum principle for the surface functions in the Wigner 

rotation matrix representation is presented for a general system of three particles. 

From the usual minimum principle for the <P~·M,n, 

D J cp•J,M,ll (h _ em) cpJ,M,UdT = 0 
n n n 1 (28) 

Using the orthogonality of the Wigner rotation matrices, the minimum principle 

for the cf>~·~n(w>.,"Y>.iP) is found to be . 

S t t 1</>~~;.J,n(w>., "Y>.i p) [ h~·.~, - e~·n(p )Sn,n•] </>~~:;.n(w>., "Y>.i p )dT2 = 0 
0=-JO'=-J D 

(29) 

where D is the domain of integration: 

(30) 

and the surface element is 

(31) 
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Integration by parts results in the following variational principle for the two-angle 

surface functions 

S { fv ( K;,J [ ¢~·.~n] + K!•J [ ¢~·.~n] + K~·J [ ¢~·.~n]) dr2 

+ Ll :Fdl} = 0 (32) 

where 

with 

and 

(35) 

The integrand of the boundary integral J
81 

:Fdl in (32) is defined by 

J a 
:F _ "'"' ,~..~,J,IT( . ) ,~..~,J,IT( . ) 

- L..., "f'O,n w~,/~,p an "f'O,n w~,/~,p 

0=-J 
(36) 

with :n representing the outward normal derivative at the boundary of the domain 

(= ± 8~.\). TheboundaryofthedomainisthecurveB1 = {(w~,"Y~)Ii~ = 0,1r; 0 :S 

w~ ::=; 1r} which refers to collinear configurations of the three particles. The line 

element along B 1 is denoted dl and its explicit form is unnecessary because the 

integrand (36) of the boundary integral in equation (32) vanishes in all cases: either 

the surface function or its normal derivative vanishes on the collinear boundary 

B 1 as will been discussed in section 6. 
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The orthogonality relationship satisfied by the two-angle surface functions is 

obtained from equations {11) and {12) 

J "'""' r -~.•>.,J;n.( ),~..>.,J,n'c )d en en L.....J j, 'f'O,n W>.,"Y>.iP 'f'O,n' W>.,"Y>.iP T2 = un,un'• 
0=-J D 

(37) 

The sum over the index n is necessary. The ofi, follows from (23). 

The geometry of the domain D and its boundary B 1 can be visualized by 

interpreting the coordinates (p,w>.,"Y>.) as the spherical polar coordinates of an 

abstract three dimensional space:1 p is the radius: W>. is the polar angle; and "Y>. 

is the azimuthal angle. The domain D and the boundary B 1 is shown in figure 6. 

The boundary B1 is the outer circle representing the intersection of the hemisphere 

with the Z>. -X>. plane. Since 0 ~ "Y>. ~ 1r, this space is only half of the usual 

spherical polar space. With this interpretation, it has been shown that a change 

of Jacobi coordinates, say A -+ v, is a rotation about the Y>. axis. The domain 

D is the surface of a hemisphere and the boundary B 1 is the circle formed by the 

intersection of the hemisphere with the X>.- Z>. plane. The quotes are used to 

emphasize that the axes refer to the abstract space. 

6. Boundary Conditions Implied by Single-valuedness 

In this section, it is shown that the integrand of the boundary integral vanishes 

(:F = 0) for collinear configurations because either the two-angle surface function 

or its "Y>. derivative vanishes for these configurations. These boundary conditions 

for collinear configurations hold for any system of particles, because they follow 

from the grand canonical angular momentum operator. The two cases, n = 0 and 

n f. 0 are treated separately. 

The boundary condition for ,P~·.~n(w>.,"Y>.iP) with n f. 0 on the curve B1 is 

(38) 

and is deduced from equation (12) and the requirement of single-valuedness of the 

surface functions. For n f. O, the Wigner rotation matrix depends on the Euler 
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angle 7/J>.. as e'0 'PA; therefore, the surface functions have the same dependence on 

1/J >. . When 'Y>. = 0, 1r (three atoms are collinear), then all values of the angle 7/J >. 

refer to the same configuration of the atoms. If the surface functions are non

constant in 7/J>.., then they are multivalued for collinear configurations unless the 

</J~'~II(w>.,'Y>.iP) vanish at 1>. = 0,1r when fl -:j:. 0. As a complementary observa-, 

tion, notice that the effective potential ~~0 (34) has a second order pole at the 

collinear configurations and the volume element (31) has a simple zero. If the 

</J~'~II(w>.,'Y>.iP) with fl =/= 0 did not vanish at the collinear configurations, then , 

the integral {34) would be singular. 

For the case n = 0, the two-angle surface function is not required to vanish on 

B 1 to be single-valued; however, the normal derivative must vanish at 'Y>.. = 0, 1r: 

(39) 

This boundary condition is derived from an analysis of the poles in the operator 

given by equation (20) on B1. These poles are the same· as those in the Legendre 

differential equation. In fact, the part of the surface function operator which has 

poles at B 1 is fundamentally }i (13) and this operator has the same singularities 

in 'Y>.. as the Legendre differential equation. As a result, the boundary conditions 

on the surface functions in the Wigner rotation matrix representation are the 

same as those for the associated Legendre functions P}l( cos 'Y>.) at 'Y>.. = 0, 1r. This 

conclusion is supported by the observation that the 'Y>. dependence of the two

angle surface functions must become that of the associated Legendre functions as 

p becomes large and the boundary conditions at the collinear configurations do 

not depend on p. 

7. Finite Element Procedure 

In the finite element scheme,43 the unknown function is approximated by an 

expansion in a finite basis set (Rayleigh-Ritz). This is in contrast to the more 
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familiar finite difference approach in which the differential operators are approx

imated with finite differences. In the Rayleigh-Ritz scheme, the expansion coef

ficients are variational parameters. The finite element approach differs from the 

usual Rayleigh-Ritz procedure by using basis functions (shape functions in the 

engineering jargon) that are nonzero only over a small subregion of the domain 

(the elements). These basis functions are typically low order polynomials. The 

only restriction on the basis functions is that continuity of the solutions between 

neighboring elements is insured. The finite element method approximates the dif

ferential eigenvalue problem for the surface functions by an algebraic eigenvalue 

problem for the variational parameters. 

The question of whether it is better to use global basis functions (nonzero 

over most of the domain) which have detailed structure similar to that of the true 

solutions, or to use simple local basis functions as in the finite element method is 

answered by the relative costs of these alternatives. If a small number of global 

basis functions span the subspace containing the true solution, then they will be 

cost effective. On the other hand, if a large global basis set is necessary, then the 

finite element method may be superior because a global basis set yields a dense 

algebraic eigenvalue problem while the finite element basis set yields a sparse one. 

The sparse algebraic eigenvalue problem can be treated efficiently with a variety 

of methods (e.g., Bathe's subspace iteration44 or Lanczos' method45 ). 

The first step in transforming the variational equation into an algebraic eigen

value problem is to express the variational integral as a sum of integrals over small 

subregions of the domain. The domain Dis partitioned into subregions De which 

do not overlap (Den De' = 0) and which cover the entire domain (D = UeDe)· 

The De are called the elements. The variational integral (32) I becomes 

I= ~{L. ( x;·J[q)~·.~n]+xt·J[q)~·.~] +K~·J[q)~ .. ~n])d,-2 
+ L. Fdl} (40) 
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where Be is that part of the boundary of D which is also a boundary of element 

e. The l:e denotes a sum over the elements De. Most elements do not have an 

edge at the boundary of D. 

Within each element e, the tjJ~·;;n are approximated by 
' 

(41) 

where (N(w>..!'Y>..)) is a row matrix and {/~;~·nle} is a column matrix. Matrix 

notation is used to avoid the introduction of another index for the finite element 

expansion; the reader will no doubt be thankful. In order to avoid any confusion, 

the finite element expansion will be given once with the sum over basis functions 

explicitly shown. 

(42) 

where l enumerates the terms in the expansion ( 42). (In our applications, l = 

1, 2, 3, 4 because we use bilinear shape functions in each element.) The notation 

fie implies that these quantities are restricted to element e. 

The two-angle surface functions are chosen to be real-valued functions and the 

expansion ( 41) employs real-valued functions and real coefficients. (Time reversal 

invariance of the Schrodinger equation insures that the solutions can be chosen 

to be real-valued as long as no other properties of the solutions are inconsistent 

with their real-valuedness.) The {/~;~'nle} are real constants with respect to 

the variables (w>..!'Y>..) and are the variational parameters which, once determined, 

specify the solution in element e through expansion (41). The (N(w>..7'Y>..)) are 

called shape or basis functions and are predetermined real-valued functions (e .g., 

polynomials). They are the same for all elements and do not carry an element 

label e. 
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The variational integral ( 40) is now approximated as a sum of integrals of 

known functions with unknown coefficients. The kernels (33) and (35) of equation 

( 40) restricted to element e become: 

KQ'•Ji. = JJ [ (a~, N(w,,-y,)) { !~;;?'I•} r 

and 
J 

K~'Jie = o~J \ N(w>.,'Y>.)) { /~;;?1 le} 

[ (~::) h~',~±l] \ N(w>.,~>.)) { f~±'i~nle} (44) 

where we used equation (41). 

With these shape functions (41), the integrations can be done quite accurately 

by numerical quadrature over the domain of each element De. Since the shape 

functions are typically low order polynomials, the necessary number of quadrature 

points per element is small. (In our applications, we use four Gauss-Legendre 

quadrature points per element.) Most of the time needed for the quadrature is 

consumed by the calculation ofthe potential energy functions V><(p, W>., ~>.) at the 

quadrature points. 

The variation 61 = 0 becomes 

(45) 

When the unknowns from each element are assembled into a single column vector, 

omitting all redundant occurrences of an unknown, then the result of the this 

overall procedure is a generalized algebraic eigenvalue problem 

(46) 
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for the variational parameters f~·~·~le and the approximate surface function eigen-
' I 

values, e~·II(p). The HJ,II and MJ,II are banded, symmetric, positive definite ma

trices of large dimension. The elements of the solution vector are labelled with 

n as well as an index which denumerates the variational parameters from each 

element. This latter index is not i because i specifies a variational parameter only 

when the corresponding element is also given. The matrix MJ,II appears in ( 46) 

because of the nonorthogonality of the shape functions and is a collection of over

lap integrals between these functions. The systematic construction of the H J,II 

and MJ,n matrices from equations (40), (43), and (44) is discussed in any finite 

element textbook, for example, see Dhatt and Touzot.43 

The solution of equation ( 46) is demanding on computer resources. Bathe's 

subspace iteration44 has been used in the present calculations and is summarized 

as follows. Begin with a set of initial vectors which are guessed or are the result of a 

previous iteration. This set of vectors defines a subspace. The HJ,n and MJ,n ma

trices are projected onto this subspace. Minimization of H J,II in the subspace leads 

to a dense algebraic eigenvalue problem for the best eigenvectors/values within the 

subspace. Inverse iteration updates the iteration vectors and the corresponding 

subspace. The procedure is repeated until the desired degree of convergence is 

obtained. 

All that remains is to specify the decomposition of the domain into elements 

and the choice of shape functions. In the present application, the domain is de

composed into quadrilateral elements. The precise decomposition characteristices 

are given at the end of section 8 . Within each quadrilateral element, bilinear 

(Lagrange) shape functions are used and are given below. 

1 
Ni = 4c1 + e)(1 + 11) 

1 N2 = 4c1 - e)(1 + 11) 

1 N3 = -c1 - e)C1 - 11> 
4 

N: = ~(1 + e)(1 -11) 
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or in matrix notation 

( 47) 

where the shape functions are defined for a reference (or parent) element . The 

parent element is defined as a square with sides of length 2 and center at (0, 0) in 

the ( e, 11) coordinate system. The four nodes of the parent element are at ( 1 , 1), 

( -1, 1), ( -1, -1), and (1, -1) and are numbered 1,2,3,and 4, respectively. The ith 

shape function in ( 47) has the property that it is unity at node i and vanishes at 

the other three nodes. This property of the Lagrange shape functions permits the 

interpretation of the variational parameters as the unknown function at the nodes 

of the mesh. 

A parent element point (e,17) is mapped onto a point (w>.,'"f>.) of an actual 

element by a simple mapping from (e,77) to (w>.,'"f>.) which is based on the Lagrange 

shape functions: 

w>.le = L Nt(e,17)wile (48) 
L 

'i'>.le = L Nt(e,77hile (49) 
L 

where (w.fle,'i'lle) are the A- symmetrized hyperspherical coordinates of node .f. 

of element e. Notice that the corners of the parent are mapped onto the corners 

of each actual element. Likewise edges of the parent element are mapped onto 

corresponding edges of the actual element. Mapping a parent element onto the 

actual elements is standard in finite element analysis and is discussed here so that 

the actual shape functions can be given. In addition, the quadrature points are 

given in the coordinate system of the parent element. The use of a parent element 

shows that the shape functions are not precisely linear functions of the coordinates 

of the actual element due to the nonlinearity of the mapping. 

In applications, integrals of the surface functions are required. To evaluate 

integrals with the finite element approximations to the continuous solutions, some 
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numerical quadrature scheme is required. In the present applications, all quadra

tures involving surface functions are calculated with the same method as that used 

to evaluate the integrals in equation ( 40) (i.e., Gauss-Legendre quadrature within 

each element). This technique has the advantage of being consistent with the finite 

element approximations to the surface functions. 

8. Configuration Space Mappings Induced by the Operators of P3 

When all three particles are identical, the grand canonical angular momentum 

operator and the potential energy function commute with all of the operators 

which permute the particles. The group of all permutations of three identical 

objects (i.e., the symmetric group) is denoted by P 3 •46 It will be shown that the 

P3 symmetry allows the domain D over which numerical surface functions are 

constructed to be reduced in area by a factor of 6. The effect of the permutation 

operators on the functions themselves will be deferred to section 9. 

In this section, we will examine the effect of the permutation operators on 

the six-dimensional space spanned by (R~, r~) and on the three-dimensional sym

metrized hyperspherical coordinate space of the three spherical polar variables 

p,w~,'Y~· We will not use the Avx: labelling scheme in this section in order to 

avoid confusion. 

An example of a permutation operator is (~ ~ :) . The first row gives the 

original ordering and the second gives the resultant ordering. One interpretation is 

that the particles are labelled with a, {3, or 'Y· The permutation operator prescribes 

that particle a replaces particle 'Y, that particle f3 replaces particle a, and that 

particle 'Y replaces particle {3. 

A matrix representation of the irreducible representations of P3 is provided 

below. The surface functions plotted in section 10 transform according to this 

matrix representation. The matrix representation chosen for the E irreducible 

representation is 

(: f3 
f3 

(50) 
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(~ (3 ;) t-t (~ ~1) (51) I 
(~ (3 1) 1 ( -1 -0) (52) (3 a t-t 2 -0 +1 

(~ (3 I) 1 ( -1 +0) (53) a I t-t 2 +Vl +1 

(~ (3 I) 1 ( -1 +_v?) (54) a (3 t-t 2 -0 

(~ (3 I) 1 ( -1 -0) (55) I a t-t 2 +Vl -1 

The irreducible representation matrices for At and A2 are one dimensional: in At 

every operator is represented by unity; and in A2, the two-particle permutation 

operators are represented by -1 while the remaining operators are represented by 

1. 

The permutation operators map the six-dimensional configuration space onto 

itself. A point in this configuration space can be specified in any of the three 

Jacobi coordinate systems: (Ra,ra), (R,13,r,13), or (R..y,r7 ). Let (RA,rA) be the 

coordinates of a point Q, and let Q, with coordinates (RA, rA), be the image 

point of Q under the transformation induced by a permutation operator. It is 

straightforward to show that 

(Ra,ra) = ( ~ (3 p) Q = (Ra, -ra) (56) 
1 

- (a (3 
:) Q = (Ra,-ra) (57) (R..y, i'-y) = I (3 

(R.B,r.B) = (~ (3 ~) Q = (Ra, -ra) (58) 
a 

- (a f3 J) Q = (Ra,ra) (59) (Roy, ~'-r) = 1 a 
(R.B,r.B) = (~ f3 :) Q = (Ra,ra) (60) 

I 

The configuration space mappings induced by the permutation operators have 

been expressed in terms of the initial configuration space point specified by its a 



- 81 -

Jacobi coordinates. We can also give the image point in terms of the initial point's 

f3 Jacobi coordinates 

(R.,., r.,.) = (: f3 ; ) Q = (R,a, -r,a) (61) 
'Y 

(R,a,r,a) = ( ~ f3 :) Q = (R,a, -r,a) (62) f3 

(Ra,fa) = (p f3 ~) Q = (R,a, -r,a) (63) a 

(Ra,fa) = ( ~ f3 ; ) Q = (R,a, r,a) (64) a 

(R-y,r.,.) = (; f3 
:) Q = (R,a,r,a) (65) 

'Y 

or in terms of the initial point Q in 'Y coordinates 

(R,a,r,a) = (: f3 ; ) Q = (R.,., -r.,.) (66) 
'Y 

- (a f3 :) Q = (R-y, -r.,.) (Ra, fa) = 'Y f3 (67) 

- (a f3 ~) Q = (R-y, -r.,.) (R-y, f-y) = f3 a (68) 

- (a f3 ; ) Q = (R.,.,r.,.) (R,a, r,a) = 'Y a (69) 

- (a f3 :) Q = (R-y,r.,.) (Ra,fa) = {3 
'Y 

(70) 

(Notice that the configuration space mapping induced by the two particle exchange 

operators is most simply expressed in the Jacobi coordinates which are based on 

the particle which is not affected by the operator. In such coordinates, the mapping 

is simply a sign change in the vector r~.) Given a point, Q, in 6-dimensional 

configuration space with the numerical values of its coordinates in any of the three 

coordinate systems, its image point, Q, under the action of any of the permutation 

operators is located by a reinterpretation of the numerical coordinates. 

What about the mapping of the internal coordinates by the permutation op

erators? To address this, a few facts are necessary. Recall that ). --+ v coordinate 
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transformations induce an orthogonal transformation m the space spanned by 

( RA, r A) because of the use of mass-scaled coordinates. 21 Secondly, a A -+ v coor

dinate transformation does not mix the two subspaces spanned by (cpA,'!JA,'~PA) and 

by (p,wA,'YA)· In other words, the space spanned by (p,wA,'YA) is the same space 

as that spanned by (p, Wv, 'Yv) and by (p, w"' 'Y~e) Therefore, the internal subspace 

can be considered separately from the Euler angles. It is a remarkable fact 1 that 

the A -+ v coordinate transformation induces fn orthogonal transformation of the 

(p,wA,'Y>.) subspace. The (R>.,r>.,'YA) coordinates do not possess this property nor 

do the Delves' hyperspherical coordinates. 

The action of the permutation operators is equivalent to a reinterpretation of 

the coordinate labels ( cf., equations (56) through (70)), so they do not mix the 

two subspaces spanned by (cpA,rh,,PA) and by (p,wA,'Y>.) · The orthogonal nature 

of the internal subspace spanned by (p,wA,'Y>.) and the isomorphism between P 3 

and C311 lead to the potential energy contours for identical particles that belong 

to the C311 point group: two particle exchange operators induce reflections in the 

half-planes 'Ya = ~' 1'13 = ~'and 'Y'Y = ~; and cyclic permutation operators induce 

rotations about the Y>. axis in the internal space by 2t. The three reflection 

half-planes are indicated in figure 6. 

It is now possible to show how the domain D of the surface integrals can be 

reduced by a factor of ~ when all three particles are identical. This reduction 

introduces two additional boundary (line) integrals at the boundaries between the 

subdomain and its complement. These new boundary integrals provide the means 

of controlling the symmetry properties of the solutions and are discussed in section 

9. 

The subdomain d of D in the internal space spanned by the spherical po

lar variables p,wA,'Y>. is found by considering the minimal domain which can be 

mapped into all the remaining parts of D by the permutation operations of P3 (or 

the symmetry operations of C311 ). A solution known in this minimal domain and 

which transforms as an irreducible representation of P3 can be mapped into all 
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remaining regions of D . By use of the reflection planes or equivalently the two

particle permutation operators, the minimal subdomain can be easily identified. 

Two permutation operators are sufficient to identify the minimal subdomain. 

The permutation operator (: ~ ; ) induces a reflection in the /a = i" half~ 
plane. The points in the range 0 ~ Ia ~ i" are reflected by this permutation 

operator into the the rest of D. The operator (~ ~ ~) induces a reflection in 

the 1-r = i" half-plane. Again, the region 0 ~ 1-r ~ i" is mapped into the remainder 

of the domain D by this permutation operator. We see that it is sufficient to find 

the irreducible representation solutions in the subdomain 

(71) 

bounded by two half-planes: /a = j- and /-r = f· They are half-planes in the 

3D spherical polar space but if p is fixed, then they become curves where the 

half-planes intersect the spherical surface. Examining the effects of the third two

cycle permutation operator shows that no further reduction in the subdomain is 

possible. Likewise, the three-cycle permutation operators (rotations) add nothing 

new to the discussion. 

It has been stated that two reflection half-planes are sufficient to fix the 

subdomain. It is interesting to note that the existence of two reflection planes 

implies the rest of the symmetry elements of the group C3v· This is easily seen by 

drawing two of the reflection half-planes and considering products of reflections in 

these two half-planes. All other operations from C3v are found to be products of 

two or three reflections in the two original half-planes. 

Figure 6 shows the reduced domain in the abstract 3D symmetrized hyper

spherical coordinate space. The fundamental observation is that solutions which 

are known in the domain, d and which transform according to the irreducible rep

resentations of P 3 can be mapped into all the remaining regions by applying the 

permutation operators to the function. The use of a subregion, d CD, introduces 
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two new boundaries, B2 and B3, in addition to the collinear boundary B 1 • These 

boundaries are: 

B1 = { (wa,1'a)l1'a = 0, 0 ~ Wa ~ i} 
B2 = {(wa,1'a)l1'a = i,O ~ Wa ~ i} 
B3 = { (wa 1 1'a)l1'-, = i' i ~ W-,::;; 7r} 

(72) 

(73) 

(74) 

The actual domain for the finite element construction 1s d and it is now 

possible to describe the domain decomposition into elements. In the present cal

culations, the domain, d, is first divided into constant 1'a cuts. The w 0 range 

of a constant 1'a cut varies with the value of 1'a· If 1'a = 0, then the range is 

0 ::;; Wa ~ f, and if 1'a = f then the range is 0 ::;; Wa ~ f· Each constant 1'a cut is 

further divided into an equal number of intervals. Connecting the i th point along 

each constant 1'a cut yields a partition of the domain into quadrilateral elements. 

As a result, these connecting lines are not lines of constant W,>.. 

9. Boundary Conditions Implied by the P3 Symmetry Group 

When the particles are identical, it is possible to include additional labels on 

the surface functions reflecting their transformation properties under the action 

of the permutation operators. The advantage in doing so is a reduction in the 

numerical effort. It has been shown in the last section that the domain in which 

the surface functions are constructed can be reduced by a factor of 6 because 

of permutation symmetry. This domain reduction from D to d is possible only 

if the surface functions transform as irreducible representation of the group of 

permutations P3. 

Two new labels are added to the surface functions, r and i . r denotes the 

irreducible representation of P3 to which the surface function belongs. The index 

i denotes the row within a degenerate representation. For a nondegenerate irre

ducible representation, the index i is superfluous. The permutation group P3 is 
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isomorphic with the point group C3v and, in fact, the potential energy contours 

has this point group symmetry when the particles are identical. The labels for the 

irreducible representations of C3v are convenient for distinguishing the irreducible 

representation of P3. Therefore, r can take on the values A 1 , A2 , or E. The first 

two are nondegenerate and the last is doubly degenerate. 

The surface functions for a system of three identical particles are written as 

and in the Wigner rotation matrix representation the corresponding two-angle 

surface functions as 

A.a,J,II,r ,i( ) 
'f'On Wa,'YaiP· , 

The irreducible representation labels for the group P3 have been affixed as super

scripts to the surface functions. 

Given the reduced domain for the variational integrals (32) and the accom

panying new boundaries (73) and (74), it is necessary to specify the boundary 

conditions which the ¢~·~·rr,r,i(wa,'YaiP) satisfy. These constraints follow from , 

stipulation that the ~~,M,rr,r,i(wa,'Ya,'l/la,~a,<pa;P) transform as irreducible rep

resentations of P3 and the properties of the Wigner rotation matrices. Of the 

six permutation operators, we shall only require two of the two-particle exchange 

operators: one corresponding to each of the two reflection half-planes 'Ya = ~ and 

'Y"'f = ~· The simplest boundary condition to deduce is that at B2. 

The use oftransformation properties to fix boundary conditions is well known. 

If a function is even at a surface, then the normal derivative of the functions at the 

surface vanishes. If a function is odd at a surface, then the function must vanish 

there. The implications of more general transformation properties of functions is 

not available in the literature to the knowledge of the authors. If a function is 

a member of a set of functions which transform as an irreducible representation 

of the symmetry group, then the operators of the group induce a transformation 

of the function which mixes it with the other members of the set. It is possible 
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to extract from the transformation properties, a set of constraints on the set of 

functions. The constraints are sufficient to fix the irreducible representations to 

which the functions belong. A numerical procedure with these constraints builtin 

leads directly to solutions which have the desired transformation properties. In 

this paper, the emphasis is on three-particle systems in a total angular momentum 

representation; however, the ideas have broad generality and are applicable to any 

system of identical particles. 

A two-cycle permutation operator induces a well-defined transformation of the 

surface functions, and from this, the behavior of the two-angle surface functions 

at the corresponding reflection plane is found. In general, a change of coordinates 

x' = Rx induces a transformation OR of a general scalar function f(x) that is 

given by the law40 

ORf(x') = f(x) where x' = Rx 

so for the present case we have 

a[(: f3 
'Y 

(75) 

(76) 

where 6 [ (: ~ J)] denotes the function transformation operator associated 

with (: ~ J). In words, the transformed function at the image point is equal 

to the original function at the original point. The permutation operators do not 

affect the space-fixed coordinate axes, so the surface functions do indeed transform 

as scalar functions under P3. 

The surface functions are defined to transform as irreducible representations 

of P3 which is expressed as 

o[ (: f3 
'Y 

J)] ~;,M,n,r ,i(wa, 71"- "fa, iJa, '{Ja, 7r + 1/Jai P) = 

~ ~;,M,n,r,;(wa, 71"- 'Ya,iJa, '{Ja, 71" + 1/Jai p)Mf.i [ (: 
1 

~ ;) ] (77) 
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where ML [ (: ~ ; ) ] is element j, i of the r irreducible representation matrix 

for the operator (: ~ J). Notice that both sides of the last equation are 

evaluated at the same configuration space point. Equating the right hand sides of 

equations (76) and (77), we have 

.l'.J,M,II,r,i( _a. ~1 • • ) 
'i."n Wo,/Ot., ·vOI.,cp 0 .,'f'Ot.lP = 
~ .l'.J,M,fi,r,;( _a. + ~1 • • )Mr [(a 
~ 'i."n wOt., 7r- 'YOt., vOt., cpOt., 7r o/Ot.' p j,i a 

1 
~ ;) ] (78) 

Now, moving to the Wigner rotation matrix expansion of the surface functions, 

we have 

J 
~ DJ ( {} ~I. )A.Ot.,J,II,r ,i( ) L..J M,O 'P01., 01.' '1-'01. '1-'0,n wOt., /01.i P = 

0=-J 

(79) 

The Wigner rotation matrix40 satisfies 

(80) 

The orthogonality of the Df.-r,o functions, equations (83) and (82) allow the con

clusion that 

~ ; ) ] (81) 

is the relationship between the two-angle surface functions at image points under 

reflection in the /01. = f half-plane. A glance at the particular representation 

matrix (51) shows that it is diagonal for this permutation operator for all r. We 

conclude that the boundary conditions at B2 are 

(82) 
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if 0 is odd and r E {A1,E(i = 1)} or if S1 is even and r E {A 2 ,E(i 2)}. 

Otherwise, 

(83) 

if S1 is even andrE {A1,E(i = 1)} or if S1 is odd andrE {A2 ,E(i = 2)}. Notice 

that there is no coupling of two-angle surface functions with different values of the 

indices n or i in the boundary conditions on B 2 • 

The boundary conditions on B3 are most simply expressed in the 1 coordinates 

and the corresponding surface functions. Substituting the 1 coordinates for the 

a coordinates and ( ~ ~ ~) for ( ~ ~ ; ) in the preceding discussion, it is 

easily verified that 

,~,.,.,J,II,r ,i(w "V • p) = (-1)n ~ ,~,.,.,J,II,r,;(w 7T' _ "V • p)Mr: . [ (a 
'+'n,n "Y' J"Y' ~ '+'n ,n ,., J"Y' ,,. f3 

1 
a ~)] (84) 
f3 

provides the boundary condition for ¢~·.~rr,r,i(w,.,l,.iP) on the 1,. = f half-plane. 

We now need to relate this boundary condition for two-angle surface functions 

expressed in 1 coordinates to one for the two-angle surface functions defined in a 

coordinates. 

The relationship between the two-angle surface functions defined with differ

ent sets of arrangement channel coordinates follows from the properties of the 

Wigner rotation matrices.40 We begin by relating the Wigner rotation matri

ces appropriate for different sets of body-fixed axes (~a,Ya,.Za), (~f3,Yf3,Zf3), and 

(~,.,y,.,.Z,.). Recall that .Z~ points in the direction of R~. All three systems of 

body-fixed axes have a common Ya = Y/3 = y,. axis which is in the direction of 

R~ x r~ (i.e., perpendicular to the plane of the three particles). Therefore, the 

three systems of body-fixed axes are related by a rotation about this common 

body-fixed y axis. The rotation angles are6 

R~ · Rv 
cos ~~--11(w~e,l~e) = R~Rv (85) 

They depend on the angular coordinates of the internal space (i.e., w~e,l~e), and 

are always assumed to take the .Z~ axis into the Zv axis and be in the positive 
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sense about the RA x rA direction. From the definition, it follows that ~~~ ..... A = 

27r - ~A-+II• The group property of the Wigner rotation matrices takes the form 

46 

Using this relationship between the Wigner rotation matrices appropriate for dif

ferent body-fixed axes and the uniqueness of the surface functions, the two angle 

surface functions are easily seen to be related by 

where all three sets of coordinates (w..,.,-y..,.) and (w,a,-r,a), and (wa,'Ya) refer to the 

same point, q, in the internal configuration space spanned by (p,wA,-yA). Since the 

angle ~..,. ..... a is a function of the variables w,a and -y,a, the linear combination of the 

<1>~:~,n,r ,i(wa, 1'ai p) necessary to form the <f>~·.~n,r ,i(w..,., -y..,.; p) varies from point to 

point in the internal configuration space. 

The boundary condition for <P~:~·n,r,i(wa,')'aiP) at -y..,. = f is found by insert-

. th · £ th "'..,.,J,n,r ,i( ) · t f th ,~,.a , J,II,r ,i( ) 1ng eexpress1on or e'f'O,n w..,.,-y..,.;p 1n ermso e'f'O,n Wa,'YaiP 

into the boundary conditions on the <f>~·~n,r,i(w..,.,-y..,.; p). 
' 

"dJ (A ( )) ,~,.a,J,n,r ,i( ) 
~ 0,0' ~..,. ..... a w,a,'Y,a 'f'O•,n Wa,'YaiP = 

( 1 )0 "" dJ (A c- - >) ,~,.a,J,n,r,j(- - )Mr [(a - ~i;;' 0 ,0" ~..,.-a w,a,')',a 'f'O",n Wa,'YaiP j,i f3 f3 ~)] 
(88) 

We emphasize that the coordinates (wa,')'a), (w,a,-r,a), and (w..,.,-y..,.) all refer to the 

same internal configuration space point q. The point q is the reflection of the point 

q in the-y..,.= f plane. The bars on (wa,'fa), and (w,a,'f,a) denote the configuration 

space p~int q whose -y coordinates are given by (w..,., 1r --y..,.). That is 

- (a q= f3 
f3 (89) 
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(90) 

is a single number: 1( -1). For r = E, it is a real, symmetric, orthogonal matrix 

of dimension 2; hence its eigenvalues are ±1 and there exists a matrix A E such 

that 

In fact its is easily verified that 

Defining 

/3 
/3 

AAt = AA2 = 1 

we conclude that on B3, the linear combination 

(91) 

:) ] (92) 

(93) 

(94) 

is even or odd on B3. More explicitly, expression (94) is even when n is even and 

r E {At,E(i = 1)} or when !lis odd andrE {A2,E(i = 2)} and it is odd when 

!lis even andrE {A2,E(i = 2)} or when !lis odd andrE {A1 ,E(i = 1)}. If 

the linear combination is even, then the normal derivative 
8

8 of (94) vanishes; if 
"t.., 

odd then the linear combination itself vanishes. The boundary conditions provide 

2J + 1 constraints on the unknown two-angle surface functions and their normal 

derivative at the boundary B3. 

This completes the specification of the boundary conditions required to con

struct surface functions which transform as irreducible representations of P 3 on 

the subdomain d of configuration space D. The collinear boundary conditions 

(on B 1 ) are a consequence of the single-valuedness of the surface function and 

its derivatives (and are related to the singularities in the grand canonical angular 

momentum operator); they are valid for any three particle system. If the three 
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particles are identical, then the domain on which the solutions are constructed can 

be reduced in area by a factor of 6 in comparison with the complete domain. This 

introduces two new boundary integrals requiring boundary conditions which are 

derived from the assumed transformation properties of the functions. 

The boundary conditions on B1 and B2 do not couple the different n compo

nents of the unknown functions. In constrast, the boundary conditions on B 3 do 

couple then components in a nontrivial manner. This n coupling in the boundary 

conditions is a consequence of our choice of body-fixed axes. If the body-fixed z 

axis is chosen to point in the R~ x r~ direction, then the boundary conditions do 

not couple the different n components. There is a disadvantage to this new set 

of body-fixed coordinates: the surface functions cannot be chosen to be real and 

be a representation of P3 • We emphasize that then coupling on B 3 is not related 

to the n coupling in the equations of motion. The former can be eliminated by a 

judicious choice of body-fixed axes while the latter cannot. 

10. Results and Discussion 

A. General Discussion 

The numerical procedure outlined above has been implemented successfully 

for a system of three hydrogen atoms in the zero total angular momentum state 

(J = 0) using the LSTH potential energy surface.48 •49 

Related calculations of surface functions for J = 0 H +H2 have been published 

by Mishra, Linder berg, and coworkers5 , by Parker, Pack, and coworkers4 , and by 

Wolniewicz and Hinze.37 The main difference between our methodology and others 

is that we made full use of the permutation symmetry of three identical particles 

to minimize the domain of integration for the finite element scheme and thereby 

minimized the numerical effort. In addition, a different system of hyperspherical 

coordinates is employed. For J > 0, our formulation includes the full Coriolis 

coupling in the surface function differential equation. Parker, Pack, and coworkers 
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omit these Coriolis terms which are then entirely included m the propagation 

stage of the scattering calculations. It will be interesting to see which of these 

approaches is computationally more efficient. At the J = 0 level, the two choices 

are identical because Coriolis coupling is absent. 

The surface functions are parametrized by their P3 irreducible representation, 

hyperradius, and energy, and in this section, the characteristics of the two-angle 

surface functions are discussed with the aid of contour plots. (The word energy 

will be used in this paper as synonomous with eigenvalue of the surface function 

(7).) These plots show graphically how the two-angle surface functions belonging 

to different irreducible representations differ. By examining surface function con

tour plots at relatively large values of the hyperradius (p = 6.0 bohr), where the 

atom and diatomic molecule are only weakly interacting and the surface functions 

are localized within each arrangement channel region, the nodal structure of the 

asymptotic diatomic molecule states is observed. The partial loss of interpretable 

nodal structure at the saddle point (p = 3.270145 bohr) and the extensive over

lap of the surface functions between different arrangement channels is shown. At 

even smaller hyperradii (p = 2.0 bohr), the surface functions are very different in 

structure from the isolated diatomic molecule states. Because the surface func

tion differential equation contains the full potential energy function, the solutions 

evolve as a function of p from ones with complex nodal structure describing the 

strongly interacting particles to ones which have a nodal structure of isolated di

atomic molecules. Lastly, the two-angle E representation surface functions with 

increasing degrees of excitation are plotted to display the interesting growth of 

nodal structure. At p = 6.0 bohr, the nodal structure shows clearly the increase 

in rotational and vibrational excitation. At the smaller hyperradii, the nodal 

structure reveals a mixing of vibrational and rotational excitation character. 

All results shown in this section correspond to the J = 0 total angular mo

mentum states on the LSTH potential energy surface for H3. We shall refer to the 

two-angle surface functions as surface functions in this section for simplicity. For 
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J = 0, the five angle surface functions are independent of the Euler angles. For 

J > 0, this is not the case. Although the surface functions were calculated only 

in the subdomain d, we have used their irreducible representation transformation 

properties to extend them into the entire domain D, so that the symmetry of the 

functions is manifested. 

The numerical parameters used to calculate the two-angle surface functions 

shown in the plots that follow correspond to those used in our most refined scat

tering calculations. The two-angle surface functions are calculated on a domain 

which is covered with quadrilateral elements. Each element supports bilinear shape 

functions. The elements are defined by a grid consisting of 70w~ and 70{~ points 

The finite element approximation gives rise to roughly 5000 equations ( 46) with a 

half-band width of 70 in the A1 and A2 irreducible representations. This becomes 

10,000 equations with a half-band width of 70 in the case of theE irreducible rep

resentation. The variational integral ( 40) is computed using four Gauss-Legendre 

quadrature points per element. The surface function eigenvalues are found with 

Bathe's subspace iteration method.44 The subspace iteration is terminated when 

the relative change in the highest eigenvalue is less than 1 ppm in successive itera

tions. Since the two-angle surface functions are real, all of the arithmetic necessary 

involves real numbers. The calculations were performed on the Cray X-MP /48 at 

the San Diego Supercomputer Center using 64 bit precision. 

The amount of computational effort expended to calculate a set of surface 

functions at a value of p depends on the closeness of the beginning iteration vectors 

to the final solution vectors. As remarked in section 7, Bathe's subspace iteration 

method is used to find the lowest n eigenvalues and corresponding eigenvectors. 

Because Bathe's method is iterative, it is necessary to begin with some set of 

iteration vectors. If these vectors span the same subspace spanned by the surface 

functions, then the iteration converges in one step. Otherwise, the subspace must 

be updated using the inverse power method. The first set of surface functions 

typically requires 50 or more iterations because the initial iteration vectors are 
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chosen to excite every degree of freedom in the system and are not close in character 

to the surface functions . This choice of initial iteration vectors is made to insure 

that the set is not orthogonal to any solution. At subsequent values of p, the 

situation is different: the surface functions from the previous value of p provide 

an excellent set of beginning iteration vectors. Depending on the proximity of 

the successive p values, the method converges in 5 to 10 iterations. This saving 

is very important since 40 to 100 .set.s of surface functions were required in the 

scattering calculations for H + H2. The average time required to calculate a 

single surface function with the parameters given is 6.6 seconds for the A 1 and 

A2 representations and 16.6 seconds for both rows of the E representation on the 

Cray X/MP 48 computer. 

B. Definition of Mapping and LSTH Potential Contours 

In the remainder of this paper, plots of the mesh, LSTH potential energy 

contours, and two-angle surface function contours at fixed p are presented. The 

internal symmetrized hyperspherical coordinate space is defined as follows. 1 The 

angles (w.x, /.X) are interpreted as the spherical polar angles in the abstract internal 

3D space in which a point P has the Cartesion coordinates (X.x, Y.x, Z.x) defined 

by 

X.x = psinw.x cos1.x 

Y.x = psinw.x sin/>. 

Z.x = p cos w_x 

(95) 

(96) 

(97) 

Since 0 :$ w_x :$ 11' and 0 :$ /.X :$ 71', these internal angles parametrize the surface 

of a hemisphere. One important point is that only the half-space of positive Y>. 

coordinates provides a one-to-one correspondence between points in configuration 

space and points in the 3D internal space. In order to visualize the variation of the 

potential energy or surface functions with the internal angles (w.x,/.x), a mapping 

of the hemispherical surface onto a plane is defined. Consider the plane polar 
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radius{! and plane polar angle was parametrizing the plane of the figures. These 

plane polar coordinates are defined from the internal angles (w~,-y~) by 

7T" 
0 < n <

- o:'- 2 

0 ~ w ~ 27T" 

(98) 

(99) 

In words, given a point on a plot, the radial distance from the origin of the figure 

to the point is equal to thew~ coordinate for that point . The plane polar angle 

is equal to the -y~ coordinate of that point. The central point in such a plot is 

the z~ axis. The curve w~ = ~ is a circle in this mapping centered on the Z~ 

axis. We will call this the north pole view because it is a certain projection of the 

spherical surface onto a plane tangent to the sphere at the Z~ axis or north pole. 

In figure 1, the contours of the LSTH potential energy surface at p = 6. bohr are 

shown using the north pole view. (All energies are measured with respect to the 

bottom of the isolated diatomic molecule interaction potential.) For regions near 

the center of figure 1, the potential energy contours are nearly circular, indicating 

their independence of the angle "Y~· By implication, the rotation of the diatomic 

molecule is hardly perturbed by the presence of the atom for hyperradii larger 

than 6 bohr. In this figure, as one moves along a line radiating from the center 

of the figure, the potential energy begins quite large, decreases to a minimum, 

and then increases. This variation of the potential energy with w~ represents 

the quasivibrational potential in the diatomic molecule. Speaking roughly, the 

north pole view is a mapping which looks down one arrangement channel region 

of configuration space. 

The south pole view is defined similarly to the north pole view. Whereas the 

north pole view is a projection onto a plane tangent to the sphere at the north 

pole, the south pole view is the projection onto a plane tangent to the sphere at the 

negative Z>. axis or south pole. The south pole mapping is defined by replacing 

w~ by 7T" - w~ in equations (98) and (99). Figure 2 shows the LSTH potential 

energy contours again at p = 6 bohr in the south pole view. Instead of a single 
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arrangement channel region which is seen in figure 1, the other two arrangement 

channels are easily seen in figure 2. 

We now wish to define a similar mapping of the angles (w..\, 'Y..\) which parametrize 

the surface of a sphere onto a plane tangent to the sphere at the Y..\ axis. This 

axis is the C3 axis of the potential energy surface and a view from this axis shows 

all regions of the internal configuration space simultaneously and also shows the 

symmetry of the functions plotted. It is this equatorial view that we shall adopted 

in all of the remaining figures. The north and south pole views defined in the last 

paragraphs are intuitively defined from the internal angles (w..\,'Y..\) and show the 

arrangement channel regions clearly. 

Let us define a pair of spherical polar angles (w..\,'f..\) which parametrized the 

surface of the sphere and use the positive Y..\ axis as their polar axis. The new 

spherical polar coordinates (w..\,'f..\) are defined from the internal angles (w..\,'Y..\) 

by 

COSW..\ = sinw..\ 

tan 'f..\= tanw..\ cos-y..\ 

(100) 

(101) 

Replacing the unbarred coordinates (w..\,'Y..\) in equations (98) and (99), with the 

barred coordinates (w..\,'f..\) the plane polar coordinates of the figure are defined. 

Figure 3 shows the LSTH potential energy contour at p = 6 bohr in this map

ping. The C 3., symmetry of the contours is evident. Also evident are the three 

arrangement channel regions. 

Figures 4 and 5 show contours of the LSTH potential energy surface at p = 2 

bohr and p = 3.270145 bohr (contains the saddle point). The potential energy 

contours are quite different at different hyperradii. At 6.0 bohr (figure 3), the 

three arrangement channel regions are clearly discernible. In each arrangement 

channel region, the low potential energy contours are nearly independent of 'Y..\ · 

At 2.0 bohr (figure 4), the distinction between arrangement channels is lost and the 

minimum in the potential energy is around theY..\ axis. At 3.270145 bohr (figure 
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5), the arrangement channels regions are again not discernible and the minima in 

the potential occur at the three saddle points which are located at the intersection 

of the symmetry planes 'Y..\ = f, (..\ = a,{3,-y) and the collinear circle ('Y..x = 0, rr) . 

C. Finite Element Mesh 

In figure 6, a course version of the finite element mesh is displayed having 

20 Wa and 20 'Ya points. The courser mesh is shown for clarity. The solutions 

in parts of the domain D where the mesh is absent are fixed by the irreducible 

representation transformation properties of the solutions calculated in the domain 

d where the mesh is shown. The computational effort depends on the cube of 

the number of mesh points so use of only this subdomain yields considerable 

savings. If only two of the three particles are identical, then the minimal domain 

is {(w..x,'Y..x)l 0 ~ w..x ~ 1r,O ~ 'Y..\ ~ ~}. If none of the particles are identical, 

then the entire hemisphere is the minimal domain. Finally, we note that the 

strong classically forbidden region where w..x is nearly zero is excluded from the 

finite element domain because the surface functions are negligible there and it is 

undesirable to waste elements. This exclusion is implemented by setting the two

angle surface functions to zero at a small value of w..x. The particular value of w..x 

is p-dependent. 

D. Surface Function Eigenvalue Curves 

The surface function eigenvalues are parametrized by the generalized collision 

coordinate p. Curves for the A1 , A2 , and E representation surface function eigen

values versus pare shown in figures 7 through 9, respectively. (The zero of energy 

is the bottom of the isolated diatom's internuclear potential energy.) The curves 

have the same general structure for all three representations. Beginning at small 

values of p, they rapidly decrease as p increases. At large values of p, they each 

approach some constant value. This general behavior has a simple physical inter

pretation: at small p, the interaction of the three atoms is strongly repulsive and 
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the kinetic energy is large (varying as p- 2
) leading to high eigenvalues. At large 

p, one of the atoms interacts with the diatomic molecule only weakly or not at all. 

The constant values which the surface function eigenvalues tend to asymptotically 

at large p are the discrete energies of the isolated diatomic molecule indicated 

at the right hand side of the figures. The A 1 surface functions asymptotically 

(p ~ oo) become only the even rotational states of the diatomic molecules. The 

A 2 surface functions become only the odd diatom rotational states. The E sur

face function spectrum includes both even and odd diatomic molecule rotational 

states. These statements follow from the irreducible representation nature of the 

surface functions. The eigenvalue curves in figures 7 through 9 may or may not 

have local minima and maxima near the saddle point depending on the symmetry 

of the surface function and the nature of the interaction potential. Finally, note 

that the. density of states is almost independent of p (i.e., almost the same as that 

for the asymptotic diatom molecules). Of course, the E representation has twice 

the number of states in a given energy range as the A1 or A2 surface functions . 

This semiconstant density of surface function states implies that the number of 

surface functions required for a converged scattering calculation will not be greatly 

different from the number of open asymptotic states (within about a factor of 2) 

and is in contrast to the situation in the older collinear methods especially for 

heavy-light-heavy atom-diatom reactions. 5°-52 

In figure 7, the surface function eigenvalues as a function of p are shown for 

lowest 34 states of the A 1 representation between 1.8 and 5.9 bohr. Notice the 

shallow minima in some of these curves (e.g., curve number 5) for values of p near 

the saddle point. Such minima in the corresponding curves in collinear reactive 

triatomic scattering31 - 34 and electron-hydrogen atom scattering13
•
19 have been 

related to resonance structure. Resonance structure also has been demonstrated 

in full scattering calculations for 3D J = 0 H + H2 and in particular for the At 

irreducible representation.3 
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The connection between minima in the surface function eigenvalue curves and 

resonances rests on the adiabatic approximation. If the hyperradial motion (slow) 

is approximately adiabatically decoupled from the fast hyperangular motion, then 

it is meaningful to consider the hyperradial motion on a single eigenvalue curve. 

The presence of a local minimum in such a curve can lead to resonances in the 

corresponding decoupled hyperradial scattering. This model has been used with 

great success in collinear reactive scattering31
•33 •34 and in electron-hydrogen atom 

scattering13 to model resonances and may be similarly useful in the modeling of 

resonances in 3D reactive scattering. The presence of nonadiabatic coupling in 

the correct equations of motion leads to the manifestation of resonance structure 

in transitions other than the one transition represented by the adiabatic approxi

mation. In another paper, we will present the results of applications of this model 

to 3D J = 0 H + H2. 

In figure 8, the lowest 33 A2 eigenvalue curves are displayed. These curves 

are entirely replusive with no discernible minima. The A2 surface functions are 

required by symmetry for J = 0 to have nodal lines on B3 (see equation (74) and 

figure 6) which contains one of the three collinear saddle points. In paper III, 

it will be shown that the A2 scattering probabilities do not reveal any structure 

attributable to resonances. It is very likely that the lack of minima in the surface 

function eigenvalue curves and the lack of resonances in A2, J = 0 is due to the 

presence of the nodal line between the arrangement channels. 

Figure 9 shows the lowest 65 E representation surface function eigenvalues. 

The density of states is higher for the E curves because all asymptotic states 

are present. The E representation curves again show local minima and the cor

responding reaction probabilities show resonance structure as discussed in paper 

III. The boundary conditions on the E representation surface functions do not 

require that they have nodes on B 3 and the contour plots of E surface functions 

do indeed show that they do not have nodes there. 
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E. Low Energy Surface Functions at Three Hyperradii 

Figures 10 through 12 show contour plots of the two-angle surface functions at 

6, 2, and 3.270145 bohr, respectively. All of the figures have the same format, but 

correspond to different values of p. Each figure contains the lowest At (panel (a)) 

arid A2 (panel (d)) surface functions four E surface functions (panels (b), (c), (e), 

and (f)). For each E surface function eigenvalue, there are two orthogonal, degen

erate functions which transform according to different rows of the E irreducible 

representation. Panels (b) and (c) display the degenerate pair with the lowest 

energy where (b) is row one and (c) is row two. Panels (e) and (f) display the 

degenerate E pair with the next lowest energy where (e) is row one and (f) is row 

two. The E surface function pair with the lowest eigenvalue becomes degenerate 

with the lowest At surface function and the first excited E surface function pair 

becomes degenerate with the lowest A2 surface function as p becomes large (see 

figure 10). This is the reason for plotting the two lowest E representation surface 

functions. The surface function contours in figures 10 through 12 correspond to 

the potential energy contours in figures 3 through 5, respectively. 

The first observation upon examining figures 10-12 is that part of the nodal 

structure is due to the transformation properties imposed by the irreducible rep

resentation property of the surface functions and hence is independent of p. Such 

nodal structure takes the form of straight lines in these plots corresponding to 

-y~ = ~ (~ = a.,/3,-y). (They are curves on the surface of a hemisphere in the 

internal symmetrized hyperspherical coordinate space and become straight lines 

on the equatorial projection.) Permutation symmetry imposes no nodes on the At 

irreducible representation J = 0 surface function because it is even under reflec

tions through B 2 and B 3 • In contrast, the J = 0 A2 surface function must have 

nodes at B 2 , B 3 , and "Y/3 = ~· This last node is not explicitly imposed but follows 

from the other two. The surface functions transforming as the two rows of E have 

different behavior. The surface function belonging to row 1 is even at B2 whereas 

that belonging to row 2 vanishes at B2. On B3, the surface functions belonging to 
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the two rows of E are neither even nor odd and are not required to vanish there. 

The boundary conditions which follow from the transformation properties of the 

irreducible representation surface functions are independent of p. If they demand 

the vanishing of the surface function on a curve, then it must vanish there for all 

p. If the boundary conditions demand a function be even at a curve, it will not 

vanish there. 

In order to interpret the nodal structure of the two-angle surface functions at 

2.0, 3 .27, and 6.0 bohr, it is important to understand the nodal structure of the 

surface functions at large values of the hyperradius where the arrangement chan

nels have completely separated, the interaction between the atom and diatomic 

molecule has essentially vanished and the centrifugal potential is also negligible. 

Each surface function is then a linear combination of a separable function in each 

arrangement channel of the form: 

,~..~.J.rr ,r,i "'"" r,i "'"" r,i ""'dJ (A )t ( ) o"( ) 
'~'O,v,j "'L....J c~',v,j L....J ao ,o• L....J 0' ,0" ~~--~· <,v,j W~•iP P; cos-y~ (102) 

~· o• 0" 

where 
1 

O" (U- IO'I)!(2j + 1)) j O" 
fJ; (cos-y~)= 2(j + IO'I)! P; (cos-y~) (103) 

and ~v,;(w~; p) satisfies 

{ -~1i
2 

(
8

82
2 +2cotw~ 88 _ j~j: 1))+v(psin w2~)-ev,;}~v ,;(w~;p) = 0 (104) 

p J.L w~ w~ s1n w~ 

and are normalized 

(105) 

where v(psin¥-) = V(p-+ oo,w~,-y~) is the potential energy function for the 

isolated diatomic molecule. Pjl(cos-y~) is the associated Legendre function. The 

coefficients c~;i . are given by equations ( 49) and (50) in paper I. The coefficients 
" •"•' 

a~·~! are constants which can be determined by first order perturbation theory 
I 

and are necessary in equation (102) because the separable functions are degenerate 
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in n" and the remnant of interaction between three particles mixes the degenerate 

states. Each of the separable functions ev,i(w~;p)p~(cos...,.~) approaches a state 

of the isolated diatomic molecule only as p( T) -+ r~ . For this reason, we do not 

call these separable functions in each arrangement channel, states of the isolated 

diatomic molecule. Within an arrangement channel, the surface function is the 

product of an associated Legendre function in~~ and a one dimensional oscillator

like function in w~. The nodes of such separable functions are along constant ~~ 

and constant w~ curves within an arrangement channel. 

In equation (102) there are three summations. The summation over ).' is 

because the irreducible representation surface functions have amplitude in more 

than one arrangement channel region. The summation over S1" is required because 

the two-angle surface function on the right of equation (102) is associated with 

the Wigner rotation matrix expressed in >. coordinates and the separable functions 

are associated with the .\' coordinates. The summation over S1' is required to the 

degeneracy breaking residual interactions which exist at all finite values of p. 

At 6.0 bohr (figure 10), the contours of the J = 0 surface functions are similar 

to asymptotic diatom states in each arrangement channel region. There is a very 

wide classically forbidden region separating the arrangement channels regions and 

the surface functions are negligible between these channels. Examination of the 

potential energy contours at p = 6 bohr in figure 3 shows that the minima in the 

contours are localized with wide classically forbidden regions in between them. It 

is the regions containing the minima that we refer to as the arrangement channel 

regions. Physically, the low energy regions correspond to the bound diatomic 

molecule configurations and a free atom. The wide classically forbidden regions of 

configuration space correspond to the configurations with the three atoms widely 

separated. Low surface function probability density in this classically forbidden 

region reflects the small likelihood that the atom and diatomic molecule will react 

at large separations. To do so would require tunnelling over large distances. 
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At p = 6 bohr, the structure of the surface functions is simple to understand. 

The A1 function shown in panel (a) of figure 10 is well represented by a j = 

0, v = 0 diatom state in each arrangement channel. The amplitude contours are 

approximately along constant w~ curves in each arrangement channel region. The 

A2 function in panel (d) is well represented by a j = 1,v = 0 diatom state in 

each arrangement channel. In panel (d), the quantum of rotational excitation is 

revealed by the node in each arrangement channel region on 'Y~ = ~ (>. = a, f3, 'Y) 

lines. One degenerate pair of E surface functions is shown in panels (b) and (c) 

where (b) belongs to row one of E and (c) belongs to row two of E. Another 

degenerate pair of E surface functions is shown in panels (e) and (f). The lowest 

E surface function pair is degenerate with the lowest At surface function and 

the first excited E surface function pair is degenerate with the lowest A2 surface 

function. Notice that the E functions in panels (b) and (c) look like a constant 

multiple of the At function in the corresponding arrangement channel regions. 

The same remark holds for the relation between the first excited E functions in 

panels (e) and (f) and the A2 function in panel (d). 

In figure 10, we see that the amplitude of one of the degenerate pair of E 

surface functions vanishes in the a arrangement channel region and this is true 

for all E irreducible representation pairs at large p. Of the degenerate pair in 

panels (b) and (c), it is the function belonging to the second row of E in panel (c) 

that vanishes in the a arrangement channel region. Similarly, the surface function 

belonging to row one of E in panel (e) vanishes in the a arrangement channel 

region. This is a simple consequence of the particular matrix representation of 

E that is used. Any surface function which transforms as the first (second) row 

of E is even (odd) at B 2 • In the .\ = a,f3,-y arrangement channel, the diatom 

states are either even or odd about 'Y~ = j-. In the a arrangement channel, the 

surface functions must become one of the diatom rotational states and this state 

will transform as one or the other of the rows of E. The other row must have a 

vanishing amplitude in that arrangement channel. 
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The vanishing of the E surface function belonging to one row of each E 

degenerate pair in the a arrangement channel occurs only for p large enough 

that the arrangement channels are completely separated and the surface functions 

become multiples of Legendre polynomials Pi( cos!'>.) (for J = 0) and oscillator 

functions in W>. (see equation (102). At smaller p, the arrangement channels regions 

are not isolated by wide classically forbidden regions and the 1'>. behavior of the 

surface functions is no longer that of the simple Legendre polynomials. For these 

regions, surface functions corresponding to baths rows of theE representation are 

nonvanishing in all three arrangement channel regions. 

The asymptotic spectrum of states that a set of surface functions tends to 

as p becomes large is determined by the irreducible representation of the surface 

function in P3. In general, the presence of three symmetry planes at /'>. = f 
(A = a,/3,/') at which the At (A2) surface functions are even (odd) implies that 

the At (A2) surface functions become only even (odd) rotational states of the 

diatomic molecule as p becomes large. The E irreducible representation surface 

functions have less restrictive boundary conditions on B3, and for this reason, both 

even and odd diatom rotational states are included in the asymptotic behavior of 

this representation. 

The surface function contours for p = 2 bohr are shown in figure 11 and the 

potential energy contours for the same hyperradius are shown in figure 4. At p = 

2 bohr, the surface function contours are centered around the Y>. axis for all three 

representations. The region of the internal configuration space around the Y>. axis 

represents configurations of the three particles which are close to an equilateral 

triangle in physical space and is also the low energy region of the potential energy 

surface as shown in figure 4. The At function in panel (a) contains no nodal 

lines. The degenerate E pair of functions in panels (b) and (c) each have one 

node. Any A 2 surface function, such as that shown in panel (d) must vanish along 

all three/'>.= f,(A = a,/3,1') lines because of transformation properties of this 

representation. The degenerate E pair of excited functions in panels (e) and (f) 
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each have two nodal lines. The vertical node in panels (c) and (f) are due to 

symmetry with respect to the B 2 line. It is not obvious from nodal structure of 

the pair of functions in panels (b) and (c) that they are degenerate nor, similarly 

is that obvious for the degenerate pair in panels (e) and (f). 

We next examine the same selection of J = 0 surface functions at the value 

of the hyperradius (p = 3.270145 ,....., 3.27 bohr) which intersects the saddle point 

for H3 in the LSTH potential energy surface. In figure 12, the surface function 

contours are plotted for a hyperradius of 3.27 bohr. Figure 5 shows the correspond

ing potential energy contours. At 3.27 bohr, the maxima in the surface function 

contours have moved toward the collinear configurations following the potential 

energy minima. In the 3D internal space the saddle point becomes the minimum 

potential energy when restricted to a spherical shell as the surface functions are. 

The At surface function in panel (a) is nodeless and the maxima are at the sad

dle points where the symmetry lines ('Y~ = ~' ..\ = a.,{3,-y) intersect the collinear 

configuration circle. The A2 contours shown in panel (d) have nodal lines at the 

symmetry lines because of their symmetry characteristics; however, they are lo

calized near these symmetry lines and are extrema on the collinear configuration 

circle. In a similar way, the E surface functions have moved toward the saddle 

point regions, and in fact, look like their At and A2 counterparts. In fact, not 

only do the E functions look like their At and A 2 counterparts, there have the 

same eigenvalues to 3 significant digits. 

From figure 12, it is interesting to note that theE surface function belonging 

to one row of each of the degenerate pair has a very small amplitude at the 

saddle point which lies on the B2 line. This phenomenon is quite different from 

the large p vanishing of one row of E in the a. arrangement channel. At 3.27 

bohr, the potential energy contours are far from their asymptotic form and the 

surface functions have vanishing amplitude in the regions of configuration space 

corresponding to the asymptotic arrangement channels. The key to understanding 

this behavior of the surface functions is to notice that the surface functions are 
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localized at the saddle points. Examination of the potential energy contours in 

figure 5 shows why the localization occurs. As already remarked, the minima 

in the potential are centered at the saddle points. Separating the saddle point 

regions are small barriers of height less that 1 e V but greater than the surface 

function eigenvalues shown in figure 12. As is the case for large hyperradii where 

the surface function amplitude is localized in the arrangement channel regions and 

vanishing between arrangement channels, so at 3.27 bohr we see localized regions 

of the internal configuration space where the surface function amplitude is located. 

We see from the At surface function in panel (a) what theE surface function with 

which it is degenerate would tend to resemble. When the character of the E 

representation surface function in the localized density regions is in conflict with 

the symmetry requirements on the function, then the amplitude of the surface 

function in the region around the line B2 will vanish. 

The movement of the high probability density regions of the surface func

tions from equilateral triangle configurations at 2 bohr, to symmetric collinear 

configurations at 3.27 bohr, and to nearly separable functions localized in each 

arrangement channel at 6 bohr is simple to follow in figures 10 through 12 for each 

representation. In the case of the lowest At and A2 surface functions (panels (a) 

and (d)), the nodal lines or lack of them are due entirely to the symmetry and 

are independent of p. Hence the movement of the high density regions is almost 

obvious. In the case the E irreducible representation, some of the nodal lines 

are not due to symmetry and evolve with the hyperradius. This evolution of the 

two-angle surface functions with p is a result of the use of the potential energy 

function in the surface function hamiltonian (5) (as compared, for example, with 

the hyperspherical harmonicst4 obtained without including the potential). This 

inclusion is the principal reason why these local surface functions form an efficient 

basis set for expanding the scattering wave functions. 

The p evolution of the nodal lines and high density regions in the lowest E 

two-angle surface functions is seen by comparing figures 10 through 12. The single 
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nodal line in panel (c) of figures 10 through 12 is due to symmetry, so that it is 

invariant with p. Movement of the high density regions of this surface function 

from around the Y.\ axis in figure 10 to the saddle points in figure 11 and to the 

asymptotic arrangement channel regions in figure 12 coincides with the movement 

of the minimum of the potential. The single nodal line in panel (b) of these figures 

is not due to symmetry and changes with p. The node has the same appearance at 

2 bohr (figure 12) and 3.27 bohr (figure 11) although the function contours move 

in response to the potential energy. Between 3.27 and 6 bohr (figure 10), this 

node moves and changes shape. As a final example, consider panel (f) in figures 

10 through 12. One node is a symmetry-generated node (the vertical one along 

'Ya = f) and the other is not. The second node changes shape as a function of p 

while the first does not. 

F. Penetration Into Classically Forbidden Regions 

One theme in discussing the surface functions has been the penetration of the 

surface functions into classically forbidden regions of configuration space and the 

resulting overlap of distinct localized high probability density regions or lack of 

overlap. In figures 13 through 15, we superimpose the probability density of the 

lowest J = 0 A1 surface function with the potential energy contours corresponding 

to the energy of the surface function. In figure 13, the value of pis 2 bohr and the 

surface function energy is 3.199 eV. Figure 14 displays the associated function at 

3.270145 bohr with energy 0.5686 eV. In figure 15, the lowest A1 surface function 

at 6 bohr with energy 0.2666 eV is shown. At all three hyperradii, the surface func

tions penetration far into the classically forbidden region. From figure 14 we see 

that the probability density is less than 0.01 in the classically allowed regions which 

connect the saddle point regions and has significantly larger probability density 

in classically forbidden regions especially along the collinear configuration circle. 

From this same figure we also observe that there is significant probability den

sity away from the collinear configuration circle even into noncollinear geometries 
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which are classically forbidden. Since the scattering wave function is expanded in 

surface functions, these observations carry over to the scattering wave functions. 

Our earlier observation that at 3.270145 bohr the lowest energy surface functions 

are composed of isolated regions of probability density centered around the saddle 

points is even more interesting because the localized regions of density are not even 

separated by a potential energy barrier. In figure 15, the localized high probability 

density regions localized in the arrangement channel regions are clearly seen to be 

separated by a wide classically forbidden regions of configuration space. 

G. Excited Surface Functions at Three Hyperradii 

As the next topic, we display some more highly excited J = 0 E representation 

surface functions at the same three values of pin figures 16 through 19. In each of 

these figures, both rows of the representation are shown at the three hyperradii. 

Different figures correspond to different levels of excitation in the surface functions. 

Figures 16 through 19 display the third, fourth, ninth, and tenth surface functions, 

respectively. It should be emphasized that these are not adiabatic functions of p . 

In other words, the functions at the three p values are not necessarily connected 

in a correlation diagram. Instead, the functions are energy-ordered at each p and, 

therefore, the energy eigenvalue curves are not allowed to cross. Nevertheless, 

an examination of figures 16 through 19, shows how the number of nodal lines 

increases with surface function energy and how the nodal structure at a given 

level of excitation is quite different at the three hyperradii. 

The increasing rotational and vibrational structure in an isolated diatomic 

molecule is evident at p = 6 bohr in panels (c) and (f) of figures 16 through 19. 

Panels (c) and (f) of figure 16 show that in each of the three arrangement channel 

regions, the surface function is proportional to the v = O,j = 2 diatomic molecule 

wave function expressed in hyperspherical coordinates. Similarly, panels (c) and 

(f) of figures 17, 18, and 19 reveal p = 6 bohr surface functions which are propor

tional to the diatom wave functions for v = O,j = 3, v = 1,j = O, and v = 1,j = 1, 
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respectively in each arrangement channel. Specifically, in panels (c) and (f) of fig

ure 17, within each arrangement channel region, three nodal lines corresponding to 

constant 'YA(>' = a, /3 , 'Y) lines are seen and these three nodal lines are interpreted 

as rotational excitation in each arrangement channel. The absence of probability 

density in the a arrangement channel in panel (c) is a consequence of the same 

symmetry properties that were discussed in connection with figures 10 through 12. 

In panels (c) and (f) of figure 18, the single nodal line in the parts of the figure 

which show high probability density is a constant wA(.X = a,/3,-y) line and corre

sponds in each arrangement channel region to diatomic molecule wave functions 

with one quantum of vibrational excitation. The complicated nodal structure in 

the central part of panels (c) and (f) of figure 18 where there are no other contours 

is the result of the very small amplitude of the two-angle surface functions there. 

This structure has no significance and may even be due to small numerical inac

curacies. Finally, in panel (c) and (f) of figure 19, in each arrangement channel 

region, both constant 'YA and wA nodal lines are seen and these nodal lines corre

spond to diatomic molecule wave functions which have one quantum of rotational 

and one quantum of vibrational excitation. 

For some of theE surface functions in figures 16 through 19, the nodal struc

ture at 3.270145 or 2.0 bohr is reminiscent of vibrational or rotational excitation. 

At 3 .27 bohr in panels (b) and (e) of figures 16 through 18, the nodal patterns 

are consistent with rotational excitation. To elaborate, nodal lines can be said to 

be consistent with rotational excitation when they are approximately constant 'YA 

lines in the coordinate system appropriate to the .X arrangement channel. Like

wise, nodal lines which are approximately constant wA lines are consistent with 

vibrational excitation. Of course, such reasoning is heuristic and qualitative and 

is presented in order to provide some sense of the structure of the two-angle sur

face functions . The rotational excitation is most dramatic in panels (b) and (e) 

of figure 18. Panels (b) and (e) of figure 19 show nodal structure which is not 

easily interpreted as corresponding to rotational or vibrational excitation. Before 
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leaving the 3.270145 bohr surface functions, it is interesting to note that the more 

highly excited surface functions shown in figures 16 through 19 are not localized 

as the lower energy ones shown in figure 12. The excited surface functions at 

3.270145 bohr are still centered at the saddle points, but are not composed of iso

lated high probability density regions. Said roughly, the surface functions centered 

at different saddle points overlap. 

At 2.0 bohr, the nodal structure shown in panels (a) and (d) of figures 16 

through 19 is very different from that at 3.27 or 6.0 bohr. It does not resemble 

either rotational or vibrational excitation. The potential energy function at 2 bohr 

(figure 4) is very different from its asymptotic form (figures 1 through 3), and 

the structure of the canonical angular momentum operator becomes increasingly 

important with respect to the potential energy because of the -A which multiplies 
p 

that operator in equations (5) and (7) as already mentioned in section 10.E. One 

feature of interest in the 2.0 bohr surface functions is the presence of closed nodal 

curves in all of the functions in panels (a) and (d) of figures 16 through 19. Such 

closed nodal curves are absent in the corresponding 3.270145 and 6.0 bohr surface 

functions. It would be very interesting to examine the hyperspherical harmonics at 

2 bohr to see if they resemble the surface functions or not. If the surface functions 

do resemble hyperspherical harmonics at 2 bohr, then the nodal structure will not 

be anything like rotational or vibrational structure. 

11. Summary 

In this paper, we have discussed the general definition and characteristics of 

surface functions for systems consisting of three particles. A finite element method 

for constructing surface functions for a general system of three particles is also pre

sented. The potential energy function is used in the surface function hamiltonian 

so they evolve with the hyperradius. This evolution makes the surface functions a 

very effective basis set for expanding the scattering wave functions as is discussed 

in paper I and validated for J = 0 H + H2 in paper Ill. In the present paper, we 
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have shown examples of surface functions for J = 0 H + H2. The character of 

the resulting surface functions is analyzed in some detail. PJ permutation sym

metry of three identical particles is used to obtain the numerical solutions. This 

minimizes the domain over which the surface function differential equation must 

be solved and introduces novel boundary conditions on the boundaries of the do

main. As a result, the numerical effort required is significantly decreased. Some 

of the formalism developed is also valid for other methods of calculating surface 

functions than the fi.ni te element one. 
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Figure Captions 

Figure 1. North pole vtew of the potential energy contours from the LSTH 

potential energy surface at p = 6. bohr. The mapping is defined by equations (99) 

and (100) in section 10.B. The interval between successive contours is 0.5 eV and 

some contours are labeled. The energy units are eV. 

Figure 2. South pole view of the LSTH potential energy surface contours at 

p = 6 bohr. See the caption to figure 1 for details. 

Figure 3. Equatorial view of the LSTH potential energy surface contours at p = 6 

bohr. See the caption to figure 1 for details. 

Figure 4. Equatorial view of the LSTH potential energy surface contours at p = 2 

bohr. See the caption of figure 1 for details. 

Figure 5. Potential energy contours from the LSTH potential energy surface at 

p = 3.270145 bohr. See caption for figure 2 for other details. 

Figure 6. The constant hyperradius hemispherical surface on which the two

angle surface functions depend as seen in the equatorial projection. The domain 

D is the entire hemisphere shown in the figure. The minimal subdomain d is the 

region bounded by the heavy lines. An arbitrary point P with angular coordinates 

(w~,-y~) is indicated in the figure. The meshed part of the minimal subdomain d 

is the finite element decomposition with 20 w~ and 20 "Y~ points. The boundaries 

B1, B2, and B3 represent half-planes. 

Figure 7. J = 0, A 1 surface functions eigenvalues en(P) as a function of p. The 

energies are in e V and the distances are in bohr. The eigenvalues are calculated 

every 0 .1 bohr. 

Figure 8. J = 0, A 2 surface function eigenvalues as a function of p. See figure 5 

for details. 

Figure 9. J = 0, E surface function eigenvalues as a function of p . See figure 5 

for details. 

Figure 10. Contour plots of J = 0 surface function amplitudes at p = 6 bohr. 

Next to each panel the irreducible representation, the surface function energy and 
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contour interval 8 are given for that panel. The contours are given in general by 

0, ±0.1 , ±(0.1 + 8), ±(0.1 + 28) , . . .. The darker contours represent the nodal lines 

or zeros of the function. The solid lines represent positive function values and the 

dashed lines represent negative function values. Separating the solid and dashed 

lines are the bold nodal lines. (a) The lowest energy At surface function. (b) The 

lowest energy surface function which transfroms as row 1 of E which we indicate 

by E( 1). (c) The lowest energy surface function which transforms as row 2 of E 

which we indicate by E(2). (d) The lowest energy A2 surface function. (e) The 

first excited surface function which transforms as row 1 of E. (f) The first excited 

surface function which transforms as row 2 of E. 

Figure 11. Contour plots of J = 0 surface function amplitudes at p = 2 bohr. 

The innermost two contours have a common value of 1.3. See caption to figure 10 

for other details. 

Figure 12. Contours plots of J = 0 surface function amplitudes at p = 3.270145 

bohr. See caption to figure 10 for details. 

Figure 13. J = O, At surface function probability density contours for the lowest 

energy surface function at p = 2. bohr (solid lines). The potential energy contour 

corresponding to the surface function energy which is 3.199 eV is shown as dashed 

lines. 

Figure 14. J = 0, At surface function probability density contours for the lowest 

energy surface function at p = 3.270145 bohr (solid lines). The potential energy 

contour corresponding to the surface function energy which is 0.5686 e V is shown 

as dashed lines. 

Figure 15. J = 0, At surface function probability density contours for the lowest 

energy surface function at p = 6. bohr (solid lines). The potential energy contour 

corresponding to the surface function energy which is 0.2666 eV is shown as dashed 

lines. 

Figure 16. J = 0, E surface function amplitudes at three values of p for the 

n = 3level. Dashed lines indicate negative amplitudes, solid lines indicate positive 
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amplitudes, and the bold solid lines represent the nodal lines. The contour values 

are given by 0, ±0.1, ±(0.1 +E), ±(0.1 + 215), ... , where theE used in each panel is 

given next to that panel. The left column is the first row of the E representation, 

indicated by E(l). The right column is the second row of E, indicated by E(2). 

E(1) and E(2) are degenerate and one energy is associated with each pair of contour 

plots. This energy being given in the space between the degenerate pairs. Panels 

(a) and (d) show the n = 3 degenerate pair at p = 2. bohr. Panels (b) and (e) 

show then= 3 degenerate pair at p = 3.270145 bohr. Panels (c) and (f) show the 

n = 3 degenerate pair at p = 6. bohr. 

Figure 17. J = 0, E surface function amplitudes at three values of p for the 

n = 4 level. For details, see the caption to figure 16. 

Figure 18. J = O, E surface function amplitudes at three values of p for the 

n = 9 level. For details, see the caption to figure 16. 

Figure 19. J = O, E surface function amplitudes at three values of p for the 

n = 10 level. For details, see the caption to figure 16. 
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p = 3.27 bohr 
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We repon here the first three-dimensional (3D) reac
tive scattering calculations using symmetrized hyperspheri
cal coordinates (SHC). They show that the 3D local hyper· 
spherical surface function basis set leads to a very efficient 
computational scheme which should permit accurate reac
tive scattering calculations to be performed for a significant
ly larger number of systems than has heretofore been possi
ble. 

Approximately ten years ago the first accurate dilferen
tial1 and integral'-> cross section calculations for the 3D 
H + H2 exchange reaction were reponed. One of the meth
ods' involved matching the solutions of the Schrooinger 
equation obtained for each of the three arrangement channel 
regions across half-planes in an internal configuration space 
separating those regions. The application of this method to 
less symmetric systems requires an excessive number of 
channels for satisfactory convergence. There have been no 
accurate 3D reactive scattering cross section calculations, 
involving competition among three arrangement channels, • 
reponed since. 

At about the same time, a system of SHC was devel
oped.> Their usefulness in performing accurate and approxi
mate 3D reactive scattering calculations was suggested,> and 
an appropriate computation methodology was outlined.6 

These coordinates are related to others introduced previous
Jy,7 and are defined as follows. Let A, B, and C be three 
atoms, and R, and r, the mass scaled1 vectors from the 
center of mass of BC to A and from B to C. We now define 
the hyperradius p = (R! + r! ) 112 and the hyperangle 
6J, = 2 tan - 1(r, / R,) in theO to rrrange. The factorof2 in 
this definition is very imponant for symmetrizing the co
ordinates.> The body-fixed SHC are p , 6J,, fJ,. , t/J,., y,., and 
r/1,., where fJ,., t/J,. are the space-fixed polar angles ofR, and 
r", r/1,. the corresponding angles of r, in a body-fixed frame 
whose polar axis is R,. . 

In these SHC, the 6D Hamiltonian H can be written as 
the sum of a h yperradial kinetic energy operator T ( p) and a 

hyperangular Hamiltonian H(w, ; p) which operates on the 
five angles w,. =>(6J,. ,fJ,. ,t/J,. ,y,. ,r/1, ) . The eigenfunctions of 
H, called local hyperspherical surface functions (LHSF) , 
form a complete discrete onhonormal basis set which spans 
the SD hyperangular space defined by w,., for each value of 
p . They sample all regions of configuration space and. as 
p--oe , are related in a simple way to the isolated AB, BC, 
and CA diatom eigenfunctions. As a result, they constitute a 
very appropriate basis set for expanding the scattering wave 
function. Such an expansion leads to a set of coupled ordi
nary diJferential equations in the hyperradius, whose nu
merical solutions, together with a simple asymptotic analy
sis, furnishes the standard scattering matrix. 

The usefulness of these ideas has been extensively tested 
for a variety of collinear systems, including H + H 29-11 and 
I + Hl.12·u They have also been used as a tool for calculat
ing dissociation probabilities, ••.u and energy partitioning 
among the dissociation products 16 in collinear collision-in
duced dissociation. For collinear exchange reactions, an im
ponant feature of the surface function basis set is that it 
requires fewer asymptotically closed channels than do other 
approaches.17- 19 The reason for this high convergence effi. 
ciency with respect to the number of vibrational states is 
that, in the strong interaction region, the hyperangle acts as a 
rapidly changing variable whereas the hyperradius acts as a 
slow one.20 

For 3D reactions, the corresponding LHSF can be ex
panded in the Wigner rotation functions of t/J,., fJ,., r/1,. 2 1 

resulting in a set of coupled panial diJferential eigenfunction 
equations in the variables6J,., y,. . We have employed a finite 
element method22 to solve these equations numerically for 
the H + H2 system and total angular momentum J = 0. This 
approach is similar to a previous one23 which employed a 
different variety of hyperspherical coordinates.24 We then 
solved the associated scattering equations, using a logarith
mic derivative method, 2' over the total energy range O.S-1.0 
e V, for the A 1, A 2 , and E irreducible representations of the P3 

5962 J . Chem. Phys. ~ (10). 15 May 1886 0021 -9606/ 86/ 105962-03$02.10 '£; 1 986 Amencan Institute ol Phys•cs 
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FIG. I. DistincuishableatomJ- Opartial waverQCtion probabilities as a 
function of enerJY for the H + H,(u.j. 0)-H,(u'.j, OJ reaction on the 
Porter- Kuplus potential enerJY surface (Ref. 29) . The probabilities are 
denoced by the symbol P ~jt :~, .0 • The lower .abcissa is the total enerJY and 
the upper abciss& tbe reaaent translational enerJY. The vertic.al arrows on 
the upper abcissa denote the enerJY at which the correspondina H, ( u. jl 
channel opens up. The opm symbols represent the present results and the 
full ones those ora previous calculation <Ref. 1 ). TheP~~ results were 

multiplied by 0.4 prior to plottina. 

symmetric group. 26 All LHSF were calculated for a grid of 
40wa andSOya points. Upto0.9eV,IOA,,IOA2,and20£ 
functions were used. Between 0.9 and 1.0 eV, where a Fesh
bach resonance occurs,27 those numbers were increased to 
14 and 28, respectively. In all these calculations, ftux was 
conserved to I%. With respect to basis set size, transition 
probabilities greater than 0.01 were converged to 5% and 
the corresponding phases to 2• over the entire energy range. 
The corresponding probabilities, within the u = 0 manifold, 
were symmetric to 2% and convergence with respect to the 
grid coarseness was 3% and 3• for those probabilities and 
phases. Including the u = I manifold, the probabilities 
greater than 0.01 were symmetric to II% and convergence 
of those transitions with respect to grid coarseness was I 0% 
and 1s•. 

From the irreducible representation scattering matri
ces, distinguishable atom reaction probabilities were calcu
lated. some of which are displayed in Fig. I, together with 
the results of previous calculations. 1 For energies below 0. 9 
e V the two methods agree to within 12% for the probabilities 
in this figure and 5" for the correspondina phases, which is 
very encouraging. 

Once the LHSF and interaction matrix eletnenu have 
been obtained, the solution of the scatterina equations and 
the calculation of the scattering matrix is very efficient, tak
ing on an FPS 164-VAX 11nso systetn, about 23 s for 10 
channels and about 3 min for 20 channels. This efficiency is 

due in part to the absence of a matching procedure in the 
calculation. Instead, a simple asymptotic projection of the 
surface functions on the isolated diatom states is required. 
The surface functions themselves already span all threi: ar
rangement channels, and are energy independent . 

Our finite element code for calculating the LHSF is ac
curate and efficient. The A 1 and A2 functions (including the 
evaluation of all the interaction potential matrix elements 
needed for the scattering part of the calculation) required an 
average of only 17 s each, and the E functions utilized 34 s 
each. However, they were calculated at 140 values of p, 
which made their evaluation dominate the calculation, for 
the relatively small number of channels discussed here. A 
variational approach promises to be significantly faster. Re
cently, such a method has been developed for thee + H sys
tetn, which takes only about 0 .3 s per surface function even 
for J > 0. 2a It is currently being adapted to triatomic systems 
and preliminary results indicate that it will speed up the cal
culation of the LHSF by one to two orders of magnitude. 

In conclusion, the LHSF approach to 30 reactive scat
tering bas been successfully tested and gives strong indica
tions that it will become a powerful tool for studying the 
quantum dynamics of chemical reactions, which other accu
rate methods have so far not permitted. 

"Work supponed in part by the U. S. Office of Scienllfic Research. Con· 
tract No. AFOSR-12.0341 . Suppon from the U. S. O.panmmt of Ener
IY· Grant No. DE·AS03-83ERIJ 118 os also acknowled&ed. 

• ' Work performed in partial fulfillment of the requirements for the Ph. D. 
degree in Chemistry at the California Institute ofTechnoiOJY. 

u contribution No. 7371. 
' A. Kuppennann and G. C. Scbatz. J . Chem. Phys. 61.2502 ( 1975); 65. 
4642. 4668 ( 1976). 

' A. B. Elkowiu and R. E. Wyatt. J. Chem. Phys. 6l, 2504 ( 1975); 63. 702 
( 1975). 

' R . B. Walker. E. B. Stechel. and J. C. Lipt, J. Chern. Phys. 69. 2922 
( 1978). 

' One w:urate calculation. for the H + BrH-HBr + H exchange reac· 
tion. excludina competition with the H: + Dr abstraction channel, has 
been reported: D. J. Clary. J. Chern. Phys. IJ, 1685 ( 1985). 

'A. Kuppermann. Chem. Phys. Leu. 31,374 ( 1975). 
•R. T. Lina and A. Kuppermann, ln Eltctronic and .<4tomit: Collision.s, edit· 
ed by J. S. Risley and R. Geballe ( Univenity of Washinaton. Seaule. 
1975), Vol. I. p. 353. 

'R. C. Whiuen and F. T . Smith.J. Math. Phys. 9. 1103 ( 1968); B. R. John· 
son. 1. Chern. Phys. 73.5051 ( 1981 ). 

'L. M. Delves, Nucl. Phys. 9. 391 ( 1959); 20.275 ( 1960>. 
• A. Kuppermann. J. A. Kaye. and J. P. Dwyer. Chern. Phys. Leu. 74, 257 
( 1980); J. P . Dwyer, Ph.D . thesis, California Institute of TechnoloJY, 
l9n. 

'
0G. Haulte, J . Manz. and J . Romelt. Chem. Phys. 73. 5040 ( 1980); 1. RO. 
melt. Chern. Phys. Leu. 74. 263 ( 1980). 

"K. D . Bondi and J . N. L. Connor. Chem. Phys. Leu. 91. 570 ( 1982). 
12J. A. Kaye and A. Kupperrn111n. Chem. Phys. Leu. n . 513 (1981) . 
"J. Manz and 1. Romelt. Chem. Phys. Lett. 11. 179 ( 1981 ). 
"1. A. Kaye and A . Kuppermann, .Chem. Phys. Leu. 71. 546 ( 1911 ). 
" 1. Manz and J. Romelt. Chem. Phys. Leu. n . 172 ( 19111. 
••J. A. Kaye and A. Kuppermann, Chem. Phys. Leu. ll5, I 58 ( 1985). 
"C. c. Rankin and J. C. LiJht. J. Chern. Phys. 51. 1701 ( 1969); G. Miller 

andJ. C. Liaht. ibid. 54, 1635, 1643 (1971 ); J . C. Li&ht and R. B. Walker. 
ibid. 65, 4212 ( 1976). 

11 A. Kuppennann. ut PmcHdinp oftltr Co"/',.'"' on Pot,ttiDI E"'"D 
Surfac~ Ill Clt•mistry. edited by w. A. Lester ( Univenity or California. 
Santa Cruz, 1970). p. 121; Proceedinp o( the 7th International Confer· 
mceon Physical and Electronic Atomic Collisions, 1972. p. 3; A. Kupper· 
mann, in Tlt~nticG/ Cllt,iJtry, Thto"' of ScGtttn·,.,: Pa~rs in Honor of 
H•11ry Eyrlnr. edited by D . Hmdenan (Academic. New York. 1981 ). 
Vol. 6A. p. 79. 

J . Chern. Phys .• Vol. 84, No. 10. 15 May 1988 



140-

Leners to the Editor 

"'B. R. Johnson. Chern. Ph ys. utt. 13. 172 ( 1972). 
zoA . Kuppenna.nn and J. P. Owy~r. in El~ctronic and Atomic Collisions. 

AbsrractJ o[Contribut~d Pa/Nf'S. lith lntenrauona/ Confe~nc~ Oft El«
tronic and .~rom;c Co/JisiotU (Society for Atomic Collision Research. To. 
kyo. 1979 ). p. 888. 

2 1 A. S. Davydo"·· Quanru"' .\ltchanics. translated by D. ter haar ( Addison
Wesley. R<.>ding. ~A. 196SJ. p. 1'1-

::G. Ohau and G. Touzot. Tltt Finitt Eltrntnt .\lrthod Disp/a~d. translat· 
ed by G . Cantin (Wiley, New York.. 1984); K. J. Bathe. Finiu Eltmtnt 
Anarvsis in Enginuring PrTxtdurrs ( Pn~nt1ce-HaH, Englewood Cliffs. 
1982). pp. 6 72~95. 

" M. Mishra. J. linderberg. and Y. Ohm. Chem. Phys. utt. Ill, 439 

( 1914): J. linderberJ. Int. J. Quantum Cbem. (in press). 
••c. A. Mead. Cbem. Phys. 49.23 ( 1980); J. Cbem. Phys. 72,3839 ( 1980). 
"B. R. Johnson. J. Compl. Phys. 13, 44' ( 1973); J_ Cbem. Phys. 67.4086 

( 1977 ): NRCC Worluhop, lawrence Berkeley laboratory, Repon No. 
LBL-9501, 1979. 

16E. P. Wigner, Group Tlr«>ry ( Academic, New Yort, 19,9), Chaps. 7 and 
IJ. 

"G. C. Schatz and A. Kupperm&nn, Phys. Rev. lett. 35, 1266 ( 1975) _ 
"D. M. Hood and A. KuppermiLilD, in Tlr«>ry of Clmnica/ Reaction Dy

namics, edited by D . C. Clary <Reidel. Boston, 1986); D. M. Hood, Ph.D. 
thesis. CalifonWI Institute of Technology, 1986. 

'"R.. N. Porter and M. !Utphu, J. Cbcm. Phys. 40, I !0' ( 1964 ). 



141 -

Volume 133. number I CHEMICAL PHYSICS LETTERS 2 January 1987 

LIFETI:\1E ANALYSIS OF HIGH-ENERGY RESONANCES 
IN THREE-DIMENSIONAL REACTIVE SCATIERI:"'IG 

Paul G. HIPES ' and Aron KUPPERMANN 
Arthur Amos Noyes Laboratory of Chemical Physics. Divtsion o.fChemistry and Chemical Engineeflng 2• 

California Ins mute of Technology. Pasadena. CA 91 I 25. USA 

Received 12 November 1986 

Accurate quantum mechanical three-dimensional reactive scattering calculations for the J = 0 partial wave of the H + H, svstem 
for total energies up to 1.6 eV have been perfonned using symmetrized hyperspherical coordinates. Six resonances we;e found 
having collision lifetimes which, interestingly, increase with the amount ofstretchin& excitation and decrease with that of bending 
excitation. 

1. Introduction 

We have recently shown that the methodology 
based on symmetrized hyperspherical coordinates is 
an accurate and efficient technique for performing 
three-dimensional ( 3D) quantum mechanical reac
tive scattering calculations [I] . Using this method
ology, we have now performed 3D reactive scattering 
calculations at total energies up to 1.6 eV, for the zero 
total angular momentum (1 = 0) partial wave of the 
H + H2 system. This energy range exceeds slightly that 
for which 3D results have been reported so far [ 1-6). 
More importantly, the degree of convergence of the 
present calculations and the fineness of the energy 
grid used permits the Eisenbud-Wigner delay time 
[ 7] and Smith's collision lifetime matrix [ 81 anal
yses to be made, even at the highest energies reported. 
These two techniques provide sensitive measures of 
the resonance structure underlying the dynamics. 
Below we present an outline ofthe methodology used, 
followed by the results of our calculations and their 
interpretation. 

' Work perfonned in partial fulfillment of the requirements for 
the Ph.D. degree in Chemistry at the California Institute of 
Technology. 
Contnbution number 7496. 

2. Method 

The PK2 potential energy surface [9] and the 
methodology based on symmetrized hyperspherical 
coordinates ( SHC) [ 1,1 0,11] are used in these cal
culations. The PK2 surface has been used exten
sively for collinear and 3D scattering in the past and 
the present calculations augment the results avail
able for this surface. The scattering wavefunction is 
obtained as a coupled channel expansion involving 
symmetrized hyperspherical coordinates. These 
coordinates are defined by [ 1,10] 

P=(Ri+d)"2
, W;. =2 arctan(r;.IR;.), 

Y;. =arccos(R,. ·r;.lr,.R,.), 

where '• is Delves' mass-scaled diatom internuclear 
vector and R;. Delves' mass-scaled position vector of 
the atom with respect to the center of mass of the 
diatom [I 0,12,131. The corresponding Hamiltonian 
operator has the form 

" 
2 

( a2 
5 a ) ,,p H=-21-' ap2+-pap +2J.tP2+V(p,w,.,y.), 

where 

0 009-2614/87/S 03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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and ]1 and f1 are the angular momentum operators 
associated with r ;. and R;., respectively. The global 
reduced mass J1. is defined by [mAm8m c/(mA + 
m8 +me) ] 1 '~ where the mx are the masses of the three 
atoms A, B, and C [ 13] . Local hyperspherical sur
face functions ( LHSF) rJ> ~.wrn with eigenvalues 
E~rn are defined by 

[ ;F f2.up2 + V(p, w~., Y;. )] rl>~.wrn(C~.;p) 

=f~rn(p) ~.wrn(C~.; p) , 

where ' • stands for the set of coordinates 
(w ~., y,~ , rp,~, tJ~., w~. >. (rp,~, fJ ;. , w~. ) are the Euler 
angles of the instantaneous triangle formed by the 
three atoms [ 2], and n is a discrete quantum num
ber. The labels JMTll describe respectively the sys
tem's total angular momentum, its projection along 
a laboratory-fixed axis, the irreducible representa
tion of the P3 permutation group associated with the 
three identical atoms being considered, and the par
ity for inversion through the system's center of mass. 
Any solution of the Schrodinger equation, labelled 
by JMTll, can be expanded in the LHSF as 

tpJ.wrn(p,{;. )= f g-;,rn(p; p) rJ>~·'-'rn(C,~; p) . 
n- o 

This expansion leads to a matrix initial value prob
lem in the variable p. It converges rapidly for values 
of p near p, which is responsible for the success of the 
LHSF as a local basis set. For a given value of J, the 
LHSF are expanded in the Wigner rotation matrices 
[ 14]: 

rJ> ~Mrn( (;. ; p ) 

DJ. • J 

= L: D-'_._,D.(rp~., fJ;., Ill;. ) IPif/J.(w ., y,~; p). 
a• --J 

The variational equation for the ¢/a;,~·rn(w,~, y,~ ; p) , 
abbreviated by IP ~ is 

15 f[( a¢'.:)
2 

+ (-1 aiP~)2 

aw... sin w,~ ay ... 

2 

+ (~:) ( IP~ ) 2 [ V(p, W ;., y,~ ) 

-E ~(p)] J dr=O, 

where dr =sin }';. sin2w ;. d y;. dw;. and which is then 
d iscretized via the finite element approximation 
[ 15 r using quadrilateral elements with four nodal 
points. This leads to a banded generalized algebraic 
eigenvalue problem which is solved by one of the 
standard methods [ 16] . This finite element approach 
to calculating surface functions is similar to a pre
vious one used by Mishra, Underberg and Ohm [ I 7], 
which employs a different variety of hyperspherical 
coordinates due to Mead ( 18] . 

For the results reported in this paper, the expan
sion in LHSF includes 26 A1 and 44 E irreducible 
representation functions calculated on a hyperangu
lar mesh of 60 w ;. and 60 y;. points. The remaining 
numerical parameters are unchanged [I]. In the 
present calculations, flux is conserved to better than 
I% for all energies below 1.55 eY. Convergence of 
probabilities and phases for transitions within the set 
(u=O, j< 10; U= !, j < 5) is approximately 2% and 2• 
with respect to both the (w;., y,~ ) grid fineness and 
number of surface functions used. As before [I] , for 
hyperradii p ;;, 6 bohr, simple products of a Legendre 
polynomial in cos y • and a quasi-vibrational func
tion of w ;. form the expansion basis set, in lieu of the 
LHSF. This set is suggested by the negligible ampli
tude of the scattering wavefunction in the regions of 
configuration space between different arrangement 
channels in this range of p and at the energies consid
ered, and is much less expensive in computer time 
than the LHSF. The error resulting in the use of such 
a separable basis set for p;;;, 6 bohr is 2% and 2 • . In a 
recent publication [ 19], Wolniewicz and Hinze sug
gest that, for these hyperradii, the (w,~ , y,~ ) coordi
nates lose their high efficiency for finite element 
LHSF calculations, and that a closely related set of 
symmetrized hyperspherical coordinates proposed by 
Johnson [20] becomes more economical. However, 
there is no need for calculating such LHSF since sep
arable functions like the ones described above are 
equally satisfactory beyond 6 bohr. The numerical 
errors associated with the values of the three param
eters mentioned above (number of w,~ and y;. points, 
number ofLHSF, and the hyperradius beyond which 
a separable basis set is used) have been found to 
dominate the errors associated with the remaining 
numerical parameters adopted [ 1] . Finally, before 

' Ref. [ 15 ] is a aood aeneral text on the finite element method. 
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leaving the numerical aspects of the current calcula
tions, it is important to note that no difficulty with 
the methodology has been encountered so far; calcu
lations at higher collision energies simply require 
more LHSF on a finer mesh. 

3. Results and discussion 

From the irreducible representation scattering 
matrices, distinguishable atom transition probabili
ties were calculated, some of which are displayed in 
the top panels of figs. 1-3 and in fig. 4. The high 
accuracy of the calculations permits us to obtain the 
collision lifetime matrix [ 81 from the scattering 
matrices, which is very useful for the interpretation 
of the structure in these transition probability curves. 
In the top curves of fig. I b, we display selected eigen
values of the collision lifetime matrix for the A1 irre
ducible representation. For each resonance, the 
eigenvalue shown is the only one that varies signifi
cantly with energy [ 21 1. The usefulness of the colli
sion lifetime matrix analysis is that a single, 
unambiguous energy is associated with each reso
nance: the position of the maximum in the eigen
value versus energy curve. Another interesting 
quantity is the delay time that a wave packet, ini
tially in state i, spends in the collision region before 
emerging in state f [ 71. The two lowest curves in fig. 
I b depict the delay times associated with the distin-

. guishable atom, J=O, reactive transitions 000-000 
and 000- 120. Figs. 2b and 3b display the delay times 
for the reactive 000-020 and the non-reactive 
000-120 transitions, respectively. Initially, one 
would expect positive delay times in the region of a 
resonance, reflecting the formation of a quasi-bound 
state. The complicated behavior of these delay time 
curves near a resonance reflects the interference 
between the resonant and direct mechanisms at play. 
A decomposition of the delay time into the corre
sponding components has been carried out for col
linnear H + H2 and leads to positive delay times for 
the resonant contribution [ 22 1, as expected. A simi
lar result is also expected for the 30 case. This same 
interference mechanism is responsible for the vari
ety of behaviors of transition probabilities with 
energy in the neighborhood of resonances, leading to 
the different kinds of line shapes displayed in figs. 
1-4. As a result, transition probabilities are not nee-
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Fie. I. Reaction probabilities and lifetimes as a function of energy 
fortheJ=O panial wave of the H+H2(v,j, 0) -H 2(v' ,j' , 0) + H 
reaction on the PK2 potential energy surface. The lower abscissa 
is the total energy and the upper abscissa is the reagent transla
tional enef'iY. The venical arrows on the upper abscissa denote 
the energies at which the correspondin& H, (v. j ) states open up. 
The lenath of those arrows decreases as v spans the values 0, I , 
and 2. The numbers 0, S, and 10 define a labelling for the value 
of j. (a) The probabilities refer to distinguishable atoms and are 
denoted by the symbol P~;,:::.~·o. The open square symbols on the 
P~:&o curve indicate the energies at which the scanering cal
culation was perfonned. They_ are omined from the other two 
curves. but the enef'iY &rid was the same for all. (b) The upper 
curves represent the resonant eigenvalue of the collision lifetime 
matrix for the A , irreducible representation. For visibility, a con
stant value of 20 fs has been added to these eiaenvalues. The two 
lowest curves, labelled by the symbol r~,o~.';.~. 0 , are the distin· 
auishable atom delay times for the H+ H 2 (v. j. 0)-H, (v' , j'. 
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Fig. 2. Distinguishable atom reactive 000-020 transition prob
abilities (a) and the correspondin& delay times (b). The energy 
grid and the Iabell in& are the same as in fi&. I. 

essarily extrema in these curves at resonance ener
gies. The delay time and collision lifetime curves give, 
however, uncontroversial evidence that the structure 
observed in the transition probability curves is asso
ciated with resonance states. 

From the position of the extrema of the A, colli
sion lifetime curves of fig. I b, we place the six 
observed resonances at 0.61, 0.847, 0.971 , 1.170, 
1.382, and 1.56 eY. The third and fifth of these res
onances are the strongest, having lifetimes of about 
42 and SO fs, respectively, measured from the non-
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Fia. 3. Distin&uishable atom non-reactive 000-1 20 transition 
probabilities (a) and the corresponding delay times (b). The 
enei"JY grid and the labelling are the same as in fig. I . 

resonant baseline of the corresponding curves. For 
comparison, the symmetric stretch vibrational period 
for H3 at the saddle point of the PKl surface is about 
IS fs [ 9] . The energies of these two 30 resonances 
differ from those of the first two collinear resonances 
on PKl (0.88 and 1.31 eY) [23,24] by about 0.1 eY, 
corresponding to twice the estimated zero-point 
energy of a single bending mode (doubly degener
ate) of H 3 at the saddle point of PKl [ 4) . This sug
gests that they both be classified as ground states of 
the bending mode, as previously proposed for the 
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Fia. 4. Distinguishable atom reactive transition probabilities from 
the around vibrational and rotational state (v=0, }=0, m, =O) 
to all rotational states in v=O, v= I. and v= 2 summed over both 
reactive arrangement channels. The energy grid and the labelling 
are the same as in fig. I. 

0.971 eV resonance [31 '. This analogy further sug
gests that these 0.971 and 1.382 eV resonances be 
classified as the first and second excited symmetric 
stretch states of H3 [ 25-281. It should be remem
bered, however, that this classification is approxi
mate, since the collinear states are known to also have 
antisymmetric character [ 26,291 and have been suc
cessfully modeled using both hyperspherical [29,301 
and natural collision coordinate [ 25-271 adiabatic 
approximations. Following Colton and Schatz [ 31 1, 
and Bowman [ 321, we will use the common spectro
scopic notation for linear triatomic molecules [ 331, 
( v,, vF• , v3 ) to label the resonance states, where v" 
v2, and v3 are the number of quanta of symmetric 
stretch bend, and antisymmetric stretch, respec
tively. The superscript 1 !2.~ 1 denotes the component 
of vibrational angular momentum along the molec
ular axis and takes on the values v2 , v2 -2, V2 -

4, ... 0 if u2 is even and v2, v2 -2, v2 -4, .. . , I ifv2 is 
odd. Since our present calculations are restricted to 

The 30 resonance energy is found to be 0.97S eV in ref. [ 3 I . 
but we believe the current value of 0. 97 I eV is more accurate. 

the zero total angular momentum partial wave. the 
component of the total angular momentum and hence 
the vibrational angular momentum along the molec
ular axis must vanish (;!2;.1=0). We label the 0.971 
and 1.382 eV 30 resonances as (I , 0°, 0) and ( 2, 0°, 
0) states, respectively. Similarly, we label the 
remaining resonances at 0.61 , 0.84 7, 1.1 70, and 1. 56 
eV by (0, 0°, 0), (0, 2°,0), (1 , 2°, 0), (2,2°, 0) , 
respectively. The weak (0, 0°, 0) and (0. 2°, 0) res
onances were not previously detected because a col
lision lifetime analysis had not been performed 
[ 1-61 . It is interesting to note that in each of the two 
series, (0, 0°, 0), (I, 0°, 0) , ( 2, 0°, 0) and (0, 2°, 0), 
(1 , 2°, 0), (2, 2°, 0), the collision lifetime increases 
with the number of symmetric stretch quanta. This 
may be a reflection of the increasing depth of the cor
responding vibrationally adiabatic wells [ 34] with 
increasing vibrational quantum number [25 1= and 
may enhance the chances that such resonances can 
be observed experimentally. In contrast, the collision 
lifetime of the resonance state is reduced by excita
tion of the bending mode. 

The labelling of the (1, 0°, 0) and (1 , 2°, 0) reso
nances is consistent with the recent identification 
made for similar J = 0 resonances on the LSTH sur
face [ 36,3 71 by Colton and Schatz [ 31]. Further
more, approximate theories have been used to 
calculate 30 resonance positions and widths 
[ 31,32,38,39]. In particular, the reduced dimen
sionality collinear exact quantum with adiabatic bend 
method ( CEQB) of Bowman [ 32] predicts the 
existence of (1, 0°, 0) , (1, 2°, 0) , (2, 0°, 0) , and 
( 2, 2°, 0 ) resonances on the LSTH surface with ener
gies of 0.974, 1.20, 1.35, and 1.50 eV, respectively, 
which are in remarkably good agreement with our 
accurate PK2 surface results. This agreement may be 
due to an accidental compensation for inaccuracies 
in the CEQB results by the difference in the potential 
energy surfaces used, or, more likely, it may reflect 
the similarity in the resonance spectrum for the two 
surfaces and the validity of the CEQB appro:otima
tion. Finally, Pollak and Wyatt [39 1 have used adi
abatic appro:otimations to extend the resonant 
periodic orbit (RPO) method of Pollak and Child 
[ 401 to 30 H + H2 on PK2. The adiabatic RPO 
model predicts the energy of the ( 1, 0°, 0 ) and 

= See table 2 of ref. [3S I. 

5 
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(2, 0°, 0) resonances on PKl to be 0.954 and 1.340 
eV, respectively. They find no (1, 2°, 0) resonance, 
but do find five bending excited resonances with 
u, = 2. In particular, their resonance labelled as n = 2, 
m, = 1, m 2 = 1 at 1.473 eV corresponds to the 
( 2, 2°, 0) resonance whose accurate energy we find 
to be 1.56 eV. Of the remaining RPO resonances, one 
has an energy beyond the range we consider and the 
rest do not appear in the J = 0 partial wave to which 
the current results are restricted. The agreement 
between the RPO and the accurate resonance ener
gies is reasonable but not as good as that of the CEQB 
results. 

The absence of 1=0 resonances having an odd 
number of quanta in the bending mode is easy to 
understand. The wavefunction representing such a 
mode would have a nodal line at y, = 0. This is pre
cluded by the boundary conditions (stemming from 
the single-valuedness of the wavefunction) imposed 
on a J = 0 partial wave scattering wavefunction. 
Likewise, an odd number of bend quanta does not 
occur for stable linear triatomic molecules in J = 0 
states; otherwise, the component of the vibrational 
and therefore the total angular momentum along the 
molecular axis would not vanish [ 41 ). The single
valuedness and vibrational angular momentum lan
guages are mathematically equivalent. 

In fig. 2, the probability and corresponding delay 
time for the reactive 000--.020 transition are shown. 
The probability curve is only slightly affected by the 
resonances while the delay time is seen to be substan
tially influenced. In fig. 3, the non-reactive 000--.120 
transition probability and delay time are displayed. 
Both quantities reflect the underlying resonances 
dramatically. The absence of numerical noise in figs. 
2 and 3 reflects the numerical stability of the SHC 
scattering methodology using a finite element con
struction of the LHSF. Finally, cumulative reaction 
probabilities from the ground state (u=O, i=O) to 
(v=O, J= all), (v= 1, J=all), and (v=2, j=all) 
summed over the two product arrangement channels 
are shown in fig. 4. The relatively constant value of 
. the (v=O,i=O)-(v=O, j=all) curve above 1.0 eV 
is remarkable in view of the rapidly increasing num
ber of open states with increasing energy and is 
suggestive of an appropriate sum rule. 

6 

' 4.Summary 

The results obtained illustrate the effectiveness of 
the SHC method for performing accurate 30 scatter
ing calculations at high energies. The quality of the 
results has allowed the identification of a very rich 
and interesting high internal excitation resonance 
structure in H + H2 collisions via lifetime analysis. 
This analysis shows the existence of six resonances 
below 1.6 eV, and based on the energetics, the reso
nances are interpreted as due to the formation of a 
linear metastable compound state with different 
degrees of excitation of the symmetric stretch and 
bend modes. Furthermore, we find that the lifetimes 
of the resonant states increase with increasing exci
tation of the stretching vibrational mode, while exci
tation of the bending mode reduces these lifetimes. 

Acknowledgement 

Work supported in part by US Air Force Office of 
Scientific Research, Contract No. AFOSR-82-0341. 
Support from the US Department of Energy, Grant 
No. DE-AS03-83ER 13118 is also acknowledged. We 
thank the San Diego Supercomputer Center on whose 
Cray X-MP/48 these calculations were performed. 

References 

( I 1 A. Kuppermann and P.G. Hi pes. J. Chern. Phys. 84 ( 1986) 
5962. 

(21 A. Kuppermann and G.C. Schatz, J. Chern. Phys. 62 (1975) 
2502; 
G.C. Schatz and A. Kuppermann, J. Chern. Phys. 65 ( 1976) 
4642,4668. 

[3 J G.C. Schatz and A. Kuppermann, Phys. Rev. Letters 35 
(1975) 1266. 

(41 A.B. Elkowitz and R.E. Wyatt, J. Chern. Phys. 62 (1975) 
2504; 63 ( 1975) 702. 

(51 R.B. Walker, E.B. Stechel and J .C. Light, J. Chern. Phys. 69 
( 1978) 2922. 

[6 1 F. Webster and J.C. Light, J. Chern. Phys. 85 ( 1986) 4744 . 
[7] L. Eisenbud. Ph.D. Thesis, Princeton (1948); 

E.P. Wigner, Phys. Rev. 98 (1955) 145. 
[ 8 I F. T. Smith, Phys. Rev. 118 ( 1960) 349. 
(91 R.N. Porter and M. K.arplus, J. Chern. Phys. 40 (1964) 1105. 

( 101 A. Kuppermann, Chern. Phys. Letters 32 (1975) 374. 



147-

Volume 133, number I CHEMICAL PHYSICS LEITERS 2January 1987 

( II] R. T. Lin a and A. Kuppermann, in: Electronic and Atomic 
Collisions, Abstracts of Papers of the 9th International 
Conference on the Physics of Electronic and Atomic Colli
sions, Seattle, Washinaton, 24-30 July 1975, Vol. 1. eels. J .S. 
Risley and R. Geballe ( Univ. Washington Press, Seattle, 
1915) pp. 353, 354. 
Conference on the Physics of Electronic and Atomic Colli
sions. Seattle, Washinaton, 24-30 July 1975, Vol. I, eels. J.S. 
Risley and R. Geballe (Univ. Washinaton Prns, Seattle, 
1975) pp. 353, 354. 

[12] L.M. Delves, Nucl. Phys. 9 (1959) 391; 20 (1960) 215. 
( 13] A. Kuppermann, in: Theoretical chemistry- theory of scat

terina: papers in honor of Henry Eyrina. ed. D. Henderson 
(Academic Press, New York, 1981 ) pp. 122-124. 

[ 14] A.S. Davydov, Q~antum mechanics ( Perpmon Press, New 
York, 1976) pp. 167-178. 

[IS I G. Dhatt and G. Touzot, The finite element method dis
played ( Wiley, New York, 1984) . 

[ 161 K. Bathe, Finite element procedurn in en&ineerina analysis 
(Prentice-Hall, En&lewood Cliffs, 1982) pp. 672-695. 

[1 71M. Mishra,J. LinderbeTJand Y. Ohm, Chern. Phys. Letters 
Ill (1984) 439; 
J. Linderbera,lntem. J. Quantum Chem. 19 (1986) 467. 

[181 C.A. Mead, Chem. Phys. 49 (1980) 23; J. Chem. Phys. 72 
(1980) 3839. . 

[ 191 L. Wolniewicz andJ. Hinze, J. Chem. Phys. 85 (1986) 2012. 
[201 B.R. Johnson. J. Chem. Phys. 73 (1980) SOSI. 
(211 A. Kuppermann and J.A. Kaye, J. Phys. Chem. 85 (1981) 

1969. 
[ 221 G.C. Schatz and A. Kuppennann, J. Chem. Phys. 59 (1973) 

964. 
[231 D. Diestler, J. Chem. Phys. 54 (1971) 4547. 
(241 A. Kuppermann, J.A. Kaye and J .P. Dwyer, Chem. Phys. 

Letters 74 (1980) 257; 
J. Romelt, Chem. Phys. Letters 74 (1980) 263; 
K.D. Bondi and J.N.L. Connor, Chem. Phys. Letters 92 
(1982) 570. 

[25) R.D. LevineandS. Wu.Chem.Phys. Letters II (1971) 557. 

[ 261 A. Kuppermann, in: Potential enei'JY surface and dynamics 
calculations, ed. D.G . Trublar ( Plenum Press. New York, 
1981) pp. 405,414. 

[271 B.C. Garrett and D.G. Truhlar, J. Phys. Chem. 86 (1982) 
1136; 87 (1983) 4554. 

[281 J.M. Bowman, A. Kuppermann. J.T. Adams and D.G. 
Trublar, Chem. Phys. Letters 20 ( 1973) 229. 

[ 29] A. Kuppermann and J.P. Dwyer, in: Electronic and Atomic 
Collisions, Abstracts of Contributed Papers, II th Interna
tional Conference on the Physics of Electronic and Atomic 
Collisions. Kyoto, Japan (The Society for Atomic Collision 
Research. Tokyo, 1979) pp. 888, 889. 

[301 J. Rtsmelt, Chem. Phys. 79 (1983 ) 197. 
[ 31] M.C. Colton and G .C. Schatz, Chem. Phys. Letters 124 

(1986) 256. 
(321 J.M. Bowman, Chem. Phys. Letters 124 (1986) 260. 
[ 33] G. Herzbera, Infrared and Raman spectra of polyatomic 

molecules (Van Nostrand, Princeton, 1945) p. 272. 
[34] A. Kuppermann, J. Phys. Chem. 83 (1979) 171. 
[ 35] D. G. Trublar and A. Kuppermann, J. Chem. Phys. 56 

(1972) 2232. 
[361 B. Liu,J. Chem. Phys. 58 (1973) 1925; 

P. Sieabahn and B. Liu, J. Chem. Phys. 68 (1978) 2457. 
[371 D.G. Trublarand C.J. Horowitz, J . Chem. Phys. 68 (1978) 

2468; 71 (1979) 15 14. 
[381 B.C. Garrett, D.W. Schwenke, R.T. Skodje, P. Thirumalai, 

T.C. Thompson and D.G. Truhlar, in: Resonances, Am. 
Chem. Soc. Symp. Ser., Vol. 263 (Am. Chem. Soc., Wash
inaton, 1984) p. 3 75. 

[ 391 E. Pollak and R.E. Wyatt, 1. Chem. Phys. 81 (I 984 ) I 80 I. 
[ 40 I E. Pollak and M.S. Child, Chem. Phys. 60 ( 198 I) 23. 
[ 41] G. Herzbera, Chem. Phys. 60 (1981) 80. 

7 



- 148 -

Three-dimensional Atom-Diatom Reactive Scattering Calculations 

Using Symmetrized Hyperspherical Coordinates 

III. Scattering Results for J = 0 H + H 2 t 

Paul G. Hipes ~and Aron Kuppermann 

Arthur Amo.9 Noye.9 Laboratory of Chemical Phy.,ic.,, 

Divi&ion of Chemi&try and Chemical Engineering, :1: 

California In&titute of Technology, 

Pa.9adena, California 91125 

(Received ) 

Ab.,tract 

This paper describes an accurate numerical application of the symmetrized 

hyperspherical coordinate formalism to quantum mechanical H + H 2 reactive 

scattering. Results from calculations using the LSTH potential energy surface 

are emphasized. A few results from the Porter-Karplus II surface are compared 

with the LSTH results. The calculations are restricted to the zero total angular 

momentum partial wave and span the range of total energies 0 .3 e V to 1.6 e V . We 

present probabilities, partial wave cross sections, and a surprisal analysis. These 

calculations, performed at over 500 energies, represent the most extensive set of 

accurate results available for the J = 0 partial wave of any reactive system to 

date, and have permitted a lifetime matrix analysis to be performed. Accurate 

H 3 resonance energies are derived from this analysis and compared with the 

resonance energies assigned by other methods and models. 
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1. Introduction 

In this paper, we present the results of three-dimensional H + H 2 reactive 

scattering calculations which use the hyperspherical coordinate formalism1 - 3 de

scribed in paper I 4 of this series and the surface function basis set described in 

paper II. 5 The usefulness of the hyperspherical coordinate methodology for three

dimensional reactive scattering has been shown in two previous communications. 3 

In the first,30 we showed that the new calculations agree well with the earlier ones 

of Schatz and Kuppermann.6a,c In the second,3b we applied the lifetime matrix 

analysis 7 ofF. T. Smith to the scattering results for the Porter-Karplus8 potential 

energy surface II (PKII) and discussed the very interesting resonance6a,3 b,9-17 

structure of this system. The present paper differs from the two communications 

in two respects: we will emphasize the results from the LSTH18 •19 potential 

energy surface and a much broader spectrum of results will be included. 

The scattering results in this paper are limited to the lowest total spatial 

angular momentum partial wave (J = 0). This statement does not imply that 

there are any dynamical approximations used in the calculations. The limita

tion to a single partial wave is the exploitation of a rigorous constant of the 

motion which is not present in a scattering experiment. Unfortunately, we can

not directly compare our results to experiments. We have not gone beyond the 

lowest partial wave because the finite element method we used for constructing 

surface functions is too expensive to be practical for J > 2 and there appear 

to be alternative methods to calculate the surface functions in a more efficient 

manner.20 

As is common in atom-diatom reactive scattering calculations, we have cho

sen to test our new methodology on the system H + H2.21 - 24 There are at least 

three reasons for this choice. The LSTH surface is accurate enough to warrant 

the expenditure of the amount of computer time that such dynamics calcula

tions currently require. Its accuracy also encourages the hope that results from 

experiments can be reliably compared to the results of dynamics calculations. 
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The second reason for choosing this system is that previous accurate calculations 

exist for it6 •25 •26 so that the new methodology can be validated. The third reason 

is that H + H2 consists of three identical particles and computational effort can 

be reduced through the use of this symmetry. It is unfortunate that this reaction 

is not a simple one to study in the laboratory; however, there have been some 

recent experiments on the dependence of final state relative populations on the 

relative reagent translational energy for H + H 2 •27 

The present calculations are a first step in establishing a computational 

methodolgy that is intended to provide differential cross sections for H + H 2 at 

energies above the v = 1 threshold and for other chemical systems. The prospect 

for accurate calculations of differential and integral cross sections over a large en

ergy range for H + H2 and its isotopic analogues is especially exciting in view of 

the number of experiments on this system. In particular, Gerrity and Vallentini28 

and Rettner, Marinero, and Zare29 have measured relative populations of final 

states in pump-probe experiments on H + D 2 using translational energy resolved 

reagents. Absolute integral reaction cross sections have been measured at sev

eral energies for this reaction by Gerlach-Meyer, Kleinermanns, Linne bach, and 

Wolfrum30 and by Tsukiyama, Katz, and Bersohn.31 Differential cross sections 

for D+H2 have been measured by Gotting and Toennies32 and by Buntin, Giese, 

and Gentry.33 Because only J = 0,1 results have been calculated3 •6 •25 •26 •34- 37 

at the energies of these experiments, no direct comparisons have yet been made 

between theory and experiment. It is our hope that this situation will be quickly 

remedied by the theorists. 

The paper is arranged as follows. In section 2, the degree of convergence of 

the results that follow is discussed. Section 3 presents the relationship between 

three kinds of scattering results: a) those labeled by the irreducible represen

tations of P3 (the permutation group of three identical particles); b) the Pauli 

antisymmetrized results; and c) those labeled as reactive and nonreactive. In 
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sections 4 and 5, the respective transition probabilities for the A1 and A 2 irre

ducible representations are presented and discussed. In section 6, E irreducible 

representation J = 0 partial wave cross sections and probabilities are presented 

and analyzed. In section 7, the resonance structure of H 3 is presented. In sec

tion 8, a rotational surprisal analysis is given, and in section 9, final vibrational 

population ratios summed over all final rotational states are given. In section 10, 

our findings are summarized. All results in this paper belong to the zero total 

spatial angular momentum partial wave. This fact will not always be repeated 

with every figure and remark. 

2. Convergence Considerations 

Before the results of a numerical study can be interpreted, it is necessary 

to understand the degree to which the results are reliable. In this section, we 

consider the accuracy of the results with respect to the values chosen for the nu

merical parameters of the method. The methods used in the current calculations 

have been discussed in detail in two previous papers.4 •5 

The numerical parameters fall into two classes: geometric parameters and 

completeness parameters. The geometric ones are associated with the construc

tion of the surface functions with the finite element scheme and the propagation 

of the the hypersphericallogarithmic derivative matrix as an initial value prob

lem in p. The completeness parameters are the number of surface functions used 

in expanding the scattering wave function and the number of values of pat which 

surface functions are constructed. 

There are several geometric parameters associated with the surface function 

construction at a single value of p. One of the most important is the number 

of finite elements used to calculate surface functions.5 All elements used are 

quadrilaterals with four bilinear shape functions per element. The LSTH results 

are based on 4 761 elements for the surface functions. The PKII results are based 

on 3481 elements. Convergence of the lowest 20 A1 surface function eigenvalues 
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with respect to the number of elements is 0.5% for the highest eigenvalues and 

better for the lower ones. A similar degree of convergence is expected for the 

A2 and E surface functions. Given a finite element approximation to the surface 

functions, the eigenvalues are improved iteratively until the relative change in 

them in successive iterations is one part per million. That is not to say that the 

absolute accuracy of the surface function eigenvalues is that high, but that , given 

the subspace defined by the finite element approximation, the best eigenvalues 

are determined with 1 ppm precision. 

Another numerical parameter associated with the surface functions is the 

number of quadrature points used in the variational and interaction integrals over 

(w~,/~).4 •5 For all calculations, integrations are done with four Gauss-Legendre 

quadrature points per element . This quadrature scheme is exact for the shape 

functions used. 

The next geometric parameter concerns one of the boundaries of the finite 

element domain. In order to reduce the numerical effort, we terminated the finite 

element mesh at a small, but nonzero value wr of w~ and at this value of w,x 

the solutions are set to zero. The value of wF is chosen to be small enough that 

the potential energy is very high so that the surface functions are negligible at 

smaller values of w,x. Convergence of the surface function eigenvalues with respect 

to this parameter depends on the level of exci~ation of these functions. The lowest 

surface function eigenvalues converge more quickly than the higher ones which 

penetrate more deeply into the classically forbidden region. In addition, there are 

competing effects; for a fixed number of finite elements, decreasing wr spreads 

the elements over a larger area which in turn, reduces the accuracy of the finite 

element approximation. The 30th A 1 surface function eigenvalues vary by 0.5% 

when wfin is reduced from the value used in the full scattering calculations. 

There are other geometric parameters which are associated with the prop

agation of the logarithmic derivative matrix in p as an initial value problem. 

We have used Johnson's logarithmic derivative propagator38 in our calculations. 
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One parameter used in the propagation is the initial value p0 of the hyperradius 

at which the scattering wave function is set to zero. We have used p 0 = 2.0 

bohr for the PKII calculations and Po = 1.8 bohr for the LSTH calculations. On 

the LSTH surface the use of Po = 1.8 bohr and Po = 1.9 bohr gave identical 

probabilities and phases to at least four figures for all energies below 1.6 eV for 

all scattering matrix elements. 

The final value Pmax of p at which the propagation ends and projection of 

the hyperspherical solutions onto the Jacobi coordinate solutions takes place is 

another parameter in the calculations. We used the value Pmax = 12 bohr because 

the potential energy surface is that of an isolated diatomic molecule at this and 

larger values of the hyperradius. Convergence of scattering matrix elements 

with respect the value of Pmax was not investigated. The range of hyperradii at 

which the atom is isolated from the diatomic molecule is known independently 

of a scattering calculation. Futhermore, extending the scattering calculations 

to larger hyperradii simply increases the errors due to nonorthogonal overlap 

matrices and roundoff. It is important to bear in mind that scattering matrix 

element phases are sensitive to the value of Pmax·, while the probabilities are 

not. At low translational energies, the phases are sensitive because the effective 

de Broglie wave length is quite long. A final parameter associated with the 

propagation is the length of the propagation step. We have used both 0.01 bohr 

and 0.005 bohr step sizes and found that the differences in probabilities are parts 

per million. The propagation machinery is probably the most accurate part of 

the calculations. 

We now consider the numerical parameters which determine the complete

ness of the expansion of the numerical scattering wave function. There are two 

parameters connected with this topic. One is the number of surface functions 

used to expand the wave function in a single sector. A sector is defined as the 

range of p values over which a single set of surface functions is employed. The 



- 154-

other is the size of the sectors. These two parameters are closely related and ei

ther one can be changed to improve the completeness of the basis set. A smaller 

surface function set is adequate over a smaller sector and vice versa. The length 

of a sector we used was 0.05 bohr in the PKII calculations and 0.1 bohr in the 

LSTH calculations. For PKII, the At and E calculations employed 26 and 43 

surface functions, respectively. For LSTH, the number of At, A2, and E surface 

functions used is 34, 33, and 65, respectively. 

The ideal technique for determining the error from the finiteness of the sur

face function set is to use slightly fewer surface functions and find the change in 

the results. (Or if the computer resources are available, do a calculation with a 

larger number of surface functions.) Reducing the number of At surface functions 

from 34 to 32 at 1.55 e V and leaving all other numerical parameters unchanged, 

we found that all probabilities are converged to 5% or better (typically conver

gence of probabilities is less than 1%) and phases are converged to 2° or better. 

For transitions to and from the highest rotational states (j ~ 10) with small 

probabilities (~ 10-4 ), the convergence is less satisfactory. The A 2 scattering 

matrices are converged to the same level as the At. 

This approach has proved impossible for the E calculations due to the large 

number of avoided crossings in the surface function eigenvalues as functions of p. 

Specifically, we have found it impossible to omit one or two surface functions and 

repeat a calculation because of the resulting unacceptably large loss of particle 

flux. It was possible to use 65 E surface functions. The next smaller set of surface 

functions was 43. Comparing these two calculations is not very useful. We have 

no indication that the E scattering matrices are converged to a lesser degree than 

the At scattering matrices. For example, the unitarities of the scattering matrices 

for all three irreducible representations become greater than a few percent at the 

same total energies (~ 1.6eV). 

The final numerical parameter that we will discuss is the value of p beyond 

which all surface functions are assumed to have negligible amplitude between 

4 
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arrangement channel regions. For sufficiently large values of the hyperradius, 

the surface functions may be replaced by a separable basis set. The motivation 

for a change in the type of basis set used is the expense of the finite element 

technique. We are. limited in the number of elements we can afford to include 

due to both memory and cpu time limitations. For hyperradii at which the 

arrangement channels are separated by a wide classically forbidden region of 

configuration space and the classically allowed regions of configuration space are 

compact, the surface functions are localized in the arrangement channel regions. 

The finite element mesh is too expensive to waste on regions of configuration 

space where the functions are negligible and should be localized in regions where 

the surface functions are localized. However, for these large hyperradii at which 

the arrangement channels are effectively separate, the finite element approach is 

not necessary because a separable basis set is a very good one and much cheaper. 

The strength of the finite element approach is that it can represent functions with 

a complicated structure as in the strong interaction region. However, when the 

arrangement channels have separated, the solutions to the Schrodinger equation 

are simply perturbed diatomic molecule wave functions and the flexibility of the 

finite element approach is not needed. We used the separable basis set beginning 

at 6 bohr. Comparing calculations on the PKII surface using 6 bohr and 6.5 bohr 

as the hyperradius beyond which the separable basis set is used, the convergence 

is 2% and 2° for probabilities and phases, respectively. 

Two important overall measures of the accuracy of a scattering calculation 

are the unitarity and symmetry of the scattering matrix. For all energies below 

1.55 e V, the deviations from unitarity are 2% or less. Over the same energy range, 

the scattering matrix is symmetric to within 10% for elements with squared 

modulus greater than 0.01. These are the worst cases and at lower collision 

energies, the scattering matrix unitarity and symmetry are much better. We 

have in no way enforced either characteristic on the results. Parker, Pack, and 

coworkers34 report unitarities and symmetries of 0.1% or better. This suggests 
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that perhaps some form of symmetrization may be taking place implicitly or 

explicity in their method. Otherwise, it is very interesting to understand how 

they have attained such unitarities since their method is much like ours. 

The amount of computer time used to do a scattering calculation determines 

to a great extent the usefulness of the method. On a Cray X-MP /48, the finite 

element calculation of surface functions requires 6 seconds per surface function 

for the At and A2 irreducible representations and 8 seconds per surface function 

for the E representation based on a 70w~ and 70-y~ finite element mesh. The 

interaction and overlap matrix calculations require 8 seconds per matrix for 67 

E surface functions and 6 seconds per matrix for 34 At surface functions. For the 

interaction matrix integrals, the calculation of the potential energy is the domi

nant task so the number of surface functions is not a big factor in determining 

the computer time for these integrals. The total time required to calculate all 

surface and separable functions and the corresponding interaction and overlap 

matrices is 3. 76 hours and 15.08 hours for the 34 At and 67 E surface functions, 

respectively. In passing, we note that half of the total time used is expended on 

I/0 with the disk drives which is necessary because of memory limitations. 

The logarithmic derivative propagator requires 106 seconds for matrices of 

dimension 65 (E representation) and 16 seconds per energy for matrices of di

mension 34 (At representation). The particular irreducible representation does 

not influence this time. It depends only on the number of steps (1060 steps) 

and the dimension of the matrices. We have not optimized the propagator or 

seve~al key sections of the finite element program as much as is possible, so these 

times are conservative. Since many hundreds of total energies are used, the total 

propagation time is several hours. 

3. Permutation Symmetry and the Pauli Principle 

The identicity of the three hydrogen atoms in the present calculations per

mits the classification of the spatial wave functions, scattering matrices, and 
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scattering amplitudes by the irreducible representation labels from the group p 3 

which is the group of all possible permutations of three identical objects. In the 

previous papers,4 •5 we exploited this permutation symmetry to reduce the nu

merical effort needed to construct solutions to the nuclear Schrodinger equation. 

Here, we are concerned with the relations between results labeled by the P3 irre

ducible representation A1, A2, and E, the Pauli antisymmetrized results, and the 

familiar reactive-nonreactive results. The irreducible representation labels used 

are those of the point group CJv which is isomorphic with P 3 and whose r epre

sentation labels have familiar meanings. The irreducible-representation-labeled 

solutions refer to the spatial part of the wave functions alone. All interactions 

which depend on nuclear spin are completely negligible at the energies of these 

calculations and nuclear spin did not enter into the numerical procedures . 

Electronic spin was taken into account implicitly by the use of the LSTH 

surface (corresponding to the doublet electronic ground state of the H 3 system) 

and by the assumption of electronic adiabaticity of the reaction at the collision 

energies considered. All wave functions considered in the present paper refer to 

either nuclear spatial or nuclear spin wave functions. 

We are free to choose the nuclear spin functions for the three particles to 

be simultaneous eigenfunctions of 52 and 5z with eigenvalues S(S + l)h2 and 

Msh, respectively. 52 is the operator for the total nuclear spin angular momen

tum squared and S z is the operator for the space-fixed component of the total 

nuclear spin angular momentum. For three spin one-half nuclei, the total spin 

states are quartet (S = ~) and doublet (S = ~ ). The quartet spin functions 

are totally symmetric under any permutation operation, i.e., they transform as 

the A 1 irreducible representation. The doublet spin functions transform as the 

E irreducible representation. No other nuclear spin states exist for the three 

hydrogen atoms. 

The absence of nuclear spin-dependent interactions in the Hamiltonian per

mits the complete solutions of the nuclear Schrodinger equation to be written 
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as the direct product of a spatial wave function and any one of the spin states. 

Since both the spatial and spin wave functions have well defined transformation 

properties under the operations of P3, the direct product solutions (total solu

tions) for nuclear motion do also. The direct product decompositions for C 3 v 

are 

At(spatial) ® At(spin) = A1 (total) 

At (spatial)® E(spin) = E(total) 

A2 (spatial) ® At (spin) = A2 (total) 

A2(spatial) ® E(spin) = E(total) 

E(spatial) ® At(spin) = E(total) 

E(spatial) ® E(spin) =At EB A2 EB E(total) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

In the particular case of three fermions, the Pauli principle requires the total 

solution to transform as A2 under the operations of P3 • Equations (1) through 

(6) show that the only spatial solutions which occur in nature are those that 

transform as A2 and E for three identical spin one-half nuclei. In other words, 

we can uniquely associate a total nuclear spin state with a spatial wave function 

when the Pauli principle is satisfied by the total wave function. The E spatial 

solutions are associated with the doublet nuclear spin state and the A2 spatial 

solutions are associated with the quartet nuclear spin state. The A1 spatial wave 

functions do not occur in physically acceptable solutions when the three nuclei 

have spin one-half. We will nevertheless present a small number of At results for 

their theoretical interest. 

It was shown in paper II5 that the Pauli antisymmetrized differential cross 

sections, when summed over initial nuclear spin states and averaged over final 

nuclear spin states, are simple linear combinations of the corresponding spatial 

A2 and E differential cross sections. When the initial rotation state of the di

atomic molecule is even, the Pauli cross sections are equal to the (spatial) E cross 

sections, regardless of the final rotational states. If an experimentalist selects the 
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initial diatom rotational state to be even (para-hydrogen), then the three-particle 

system has been chosen to behave spatially as the E irreducible represent ation 

and to be in a doublet nuclear spin state. When the initial rotational state of the 

diatomic molecule is odd ( ortho-hydrogen), then two possiblities exist depending 

on the final rotational state of the diatomic molecule. If the final rotational state 

is even, then the Pauli cross section is one-third of the E spatial cross section. If 

the final diatom rotational state is odd, the Pauli cross section equals one-third 

of the spatial E plus two-thirds of the spatial A 2 cross sections. In other words, 

the A2 spatial wave functions are only necessary to describe the ortho to ortho 

transitions. If an experimentalist has no control over the initial nuclear spins of 

the three atoms or sensitivity to their final nuclear spins and selects the initial 

rotational state to be odd, then we can say that the system has a one third prob

ability of looking like spatial E and two-thirds probability of looking like spatial 

A 2 • If he observes even final rotational states then he is examining only the part 

of the system that transforms spatially as E . If he observes odd final rotational 

states then he is observing an admixture of theE and A 2 spatial solutions. 

The most familiar representation for the results of reactive scattering cal

culations is the reactive-nonreactive picture which can be constructed from the 

P3 irreducible representation results.4 Reactive transitions are those in which 

the final arrangement channel differs from the initial one. Nonreactive tran

sititions are those which begin and end in the same arrangement channel. In 

the reactive-nonreactive picture it is assumed that the particles are distinguish

able whether they are identical or not. Such a procedure is allowed in classical 

mechanics where trajectories can be used to distinguish identical particles. In 

quantum mechanics, identical particles can be distinguished only if their wave 

packets have no overlap at any time which is not the case for a scattering ex

periment, so the reactive-nonreactive picture is fictious. When the particles are 

identical an experimentalist cannot determine if the product diatomic molecule 
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belongs to the same arrangement channel as the initial diatomic molecule or an

other arrangement channel. Mathematically, there is no difficulty in using the 

reactive-nonreactive picture for quantum mechanical scattering.4 The incident 

plane wave is simply restricted to one arrangement channel. By contrast, the 

P3 irreducible representation spatial scattering wave functions have an incident 

plane wave in all three arrangement channels thereby incorporating the indistin

guishability of the particles. 

There are cases for which it is possible to say that the transition is reactive. 

When the initial and final rotational states of the diatomic molecules differ by 

an odd number of rotational quanta, then the transition is reactive. This conclu

sion follows formally from the fact that the scattering amplitude and scattering 

matrix elements representing nonreactive transitions with an odd number of ro

tational quanta change vanish identically. The physics behind this conclusion 

is simple. There are no spin-dependent interactions by assumption. A change 

in the parity of the diatom's spatial wave function requires also a change in its 

nuclear spin state and this can only occur with an exchange of nuclei, implying a 

reactive transition. For transitions which involve a change in the diatom's rota

tional quantum number by an odd integer, the reactive cross section differs from 

the corresponding E irreducible representation one by the constant t. On the 

other hand, it is not possible to determine that a transition is nonreactive in an 

experiment. 

In this paper, we will focus attention on the irreducible representation re

sults because they are closest to nature; however, some reactive results will be 

presented because they have such a well established history. We are conscious 

that the results in this paper are restricted to the lowest total spatial angular 

momentum state J = 0 while we have emphasized comparison with ~xperiments 

and nature which are not so restricted. Furthermore, it is not even true that 

the lowest partial wave dominates the cross section. ec The finite element method 

used for these calculations is accurate and robust, but is also expensive, so that 
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higher partial waves will be calculated with other techniques in development in 

our laboratory. In spite of the angular momentum restriction of these calcula

tions, they represent the highest energies yet solved accurately for any reactive 

system and we wish to draw our conclusions from results which are are as close 

to nature as possible. 

4. At Scattering Results 

The At irreducible representation scattering wave function contains scatter

ing amplitudes for transitions from even initial rotational states of the diatomic 

molecule to even final rotational states. As shown in section 3, it does not con

tribute to any Pauli antisymmetrized scattering wave function for any partial 

wave. This representation is of interest because it supports resonance structure 

and it also contributes to the reactive and nonreactive components of para to 

para transitions.4 Furthermore, it is less expensive to calculate since there are 

fewer states open at a given total energy than for the E representation. The 

J partial wave, At irreducible representation body-fixed scattering matrix el-
I •I /cl 

ements (SJ,At ):,'l~c' are expressed in terms of the corresponding reactive and 
~I til •I lei 

nonreactive scattering matrix elements (SJh.~.;;~' as 

(SJ,At)"1 ,_i1 ,1c
1 = (SJ)/3,t~

1

,_i',lc
1 + 2(SJ)/3'"

1

,_i',lc
1 

( 7) 
t1 1J 11c {3,ti,J,Ic a,t11J,Ic 

where both j and j' are even. The superscripts >.',v',j',k' denote the initial 

arrangement channel and diatom state. The subscripts >., v,j, k denote the final 

arrangement channel and diatom state. v' and v are the diatom vibrational 

quantum numbers, j' and j are diatom rotation quantum numbers, and k' and 

k are the diatom rotational angular momentum projection quantum numbers for 

the helicity representation. 

In figure 1, we show the J = 0 A 1 probabilities for transitions of the type 

(0,0,0) -. (O,j,O) for j = 0,2,4,6 which originate from the lowest diatomic 

molecule state as a function of the total energy E (lower abscissa) and initial 
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translational energy Eo,o (upper abscissa). We use the notation (v',j',k') ---+ 

( v,j, k) to describe the process. We will use the word product to refer to the final 

diatomic molecule whether it appears in the same arrangement channel as the 

initial state or not. From this figure, we can see how much rotational excitation 

occurs from the collision of the ground state molecule. For all of the A 1 results 

in this paper, ever 10th data point or energy is depicted, so that the curve is not 

obscured by the markers. Calculations at over 500 energies were performed. 

In panel (a) of figure 1, it is seen that below 0.2 eV translational energy, 

the probability of initial state loss is small. Above that energy, the probability 

of initial state loss increases very rapidly. From panel (b), we see that most of 

the final state population is ( 0, 2, 0) for 0.3 to 0.5 e V translational energy. For 

translational energies around 0.6 eV, the products are roughly 30% in (0, 2, 0) 

and 50% in (0,4,0). At 0.8 eV translational energy, the product distribution 

is about 40% (0,2,0), 20% (0,4,0), and 20% (0,6,0). One common feature of 

panels (b), (c), and (d) is that as the energy increases there is a threshold follow 

by a distinct local maximum in the probability curve. The maximum occurs at 

increasing translational energies as the final j increases and represents the largest 

absolute maximum attained in each curve. For the transition (0, O, 0) ---+ (0, 2, 0), 

the probability generally decreases following that maximum. For the transitions 

(0, 0, 0) ---+ (0, 4, 0) and (0, 0, 0) ---+ (0, 6, 0), the probability of the rotational 

excitation becomes comparable at higher translational energies to the maxima. 

In addition, the maximum probability decreases and the effective threshold for 

significant probability increases with increasing final j. 

The alert reader will have noticed that all transitions mentioned have initial 

diatom rotational projection quantum numbers of zero and the corresponding 

final projection quantum numbers are also zero. This is a consequence of the 

restriction to the J = 0 partial wave and the helicity representation of the scat

tering wave function. Within the J = 0 partial wave, the diatom rotational 

projection quantum numbers must be zero. 
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In figure 2, we present the corresponding J = 0 A 1 transition probabilities 

for vibrationally excited H2 initial states: (1, 0, 0) -+ (1 , j, 0) for j = 0, 2, 4, 6. 

As for the ground vibrational state curves of figure 1, there is a dramatic loss of 

the initial state beyond an initial translational energy, which in the present case 

is 0.05 eV. This value for v = 1 is smaller than the 0.2 eV threshold of figure 

1a. The probability of observing product molecules in the same state as the 

initial diatomic molecule falls to zero near 0.2 eV translational energy. Seventy 

percent of the product diatomic molecules at that energy are in the state (1 , 2, 0) 

as is seen in panel (b) of figure 2. Panels (c) and (d) imply that the remainder 

of the product must appear in the ground vibrational state because the high 

rotational levels do not have much probability ($ 1%) of being populated by 

the collision. The sharp drop in probability in panel (a) coincides energetically 

with the occurance of a resonance at 0.981 eV total energy.3b (The energies 

and characterization of resonances in this system are given in Table I and are 

discussed in more detail in section 7.) This resonance apparently causes the inital 

state to be completely lost and most of the product to appear in the v = 1,j = 2 

state. In panel (b), the probability of exciting (1, 2, 0) is less than 15% except 

in narrow regions around the two sharp peaks. For translational energies above 

0.4 eV, the likelihood of exciting (1,4,0) and (1,6,0) from (1,0,0) is about 25% 

and 10%, respectively. Overall, away from resonances, the there is less rotational 

excitation within the v = 1 manifold than there is within the v = 0 manifold 

when the initial rotational state is j = 0. We see that resonances have a dramatic 

effect on the final state populations of v = 1 when the initial state is also v' = 1. 

In figure 3, probabilities for the transitions (O,j',O) -+ (1,0,0) for j' = 

0, 2, 4, 6 for J = 0 and the A 1 irreducible representation are shown. From this 

figure , we can assess the effectiveness of rotational energy for producing a partic

ular vibrationally excited final state (1, O, 0) which has no rotational excitation. 

These transitions correspond to the conversion of all of the initial rotational en

ergy into vibrational energy. As in figures 1 and 2, resonances have a considerable 
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effect on these transitions. Interestingly, in panels (a) and (b) we see that the 

E=0.981 e V resonance promotes the excitation of (1 , 0, 0) from j' = 0, 2, while 

the E=1.36 eV resonance reduces the likelihood of the formation of (1, 0, 0). At 

1.0 e V total energy, the j' = 0, 2 initial states are almost equally likely to result 

in vibrational excitation, while at the same total energy the j = 4, 6 initial states 

have little probability of producing vibrational excitation. At 0.8 eV transla

tional energy, j' = 2, 4 initial states are almost three times as likely to cause 

vibrational excitation as j' = 0. The j' = 4 initial state is effective in produc

ing (1, 0, 0) only over the small translational energy range from about 0.8 eV to 

about 0.9 eV. 

In summary, the J = 0 At scattering probabilities have displayed some inter

esting features. The effect of resonances on the curves is quite strong. This will 

become even more apparent when the A2 results are discussed in the next section 

because A2 does not have resonance states at the energies we have examined. In 

addition to the sharp oscillations in the At probabilities, this representation is 

active in the sense that the initial state of the diatomic molecule is not likely 

to reappear as a state of the products. Finally, high rotational excitation is not 

likely in the products and is not effectively converted into vibrational excitation. 

5. A2 Scattering Results 

The A2 irreducible representation scattering wave function contains only 

those transtition amplitudes to and from odd rotational states of the diatomic 

molecules. The A2 scattering matrix elements are linear combinations of both 

reactive and nonreactive transitions and do have a part in nature. The Pauli 

principle associates these A2 spatial results with the quartet total spin state of 

the nuclei. The relationship between the J partial wave A2 body-fixed scattering 

matrix elements and the corresponding distinguishable particle scattering matrix 

elements is 

(SJ,A2 )"' .j' ,lc' = (SJ)/3 ,v' .j' ,lc' + 2(SJ)f3 ,v' .j' ,lc' 
v,,,lc {3,v,,,lc a ,v ,, ,lc (8) 
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where both j and j' are odd. In addition, the expressions for the distinguish

able particle (reactive-nonreactive) scattering matrix elements in terms of the 

irreducible representation matrix elements are given in section 6.D. 

In figure 4, we display transition probabilities from the initial state (0 , 1, 0), 

which is the lowest diatom state in this representation to final rotational states 

in the v = 0 vibrational manifold. From this figure, we can analyze about 

the degree of rotational excitation produced by the collision. Figure 4 is the A 2 

counterpart of figure 1 and some insight is gained by comparing them. One overall 

characteristic of the A2 probability curves is that they display less rotational 

excitation over the entire energy range shown than do the corresponding A 1 

curves. Panel (d) shows that excitation to the state (0, 7, 0) is very unlikely from 

the initial state (0, 1, 0). Both the At (figure 1) and A2 (figure 4) results are 

similar in the occurence of maxima at successively higher energies for successively 

higher final rotational states. The maximum in panel (b) is at 0.4 e V translational 

energy; that in panel (c) occurs at 0.8 e V translational energy; and that in panel 

(d) is at 1.2 e V translational energy. 

A very important feature of these A 2 curves is the complete lack of fine 

structure which suggests the absence of any resonances over this energy range. 

These curves are strikingly smooth in their energy dependence as compared to 

their At counterparts in figure 1. In section 7, we will show that the lifetime 

matrix analysis indicates an absence of A2 resonances over the energy range 

shown in figure 4. 

In figure 5, the probability of rotational excitation within v = 1 manifold 

from the initial state (1, 1, 0) for J = 0 A2 is shown. This figure is the A2 coun

terpart of the At probabilities in figure 2. As for the ground vibrational manifold 

transitions in figure 4, the degree of rotational excitation is small and generally 

decreases for increasing amounts of rotational excitation in the product molecule. 

These curves also show a complete lack of any sharp resonance structure. 
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In figure 6, we display the probabilities for the transitions (O,j', 0) --+ {1, 1, 0) 

for j' = 1, 3, 5, 7 for J = 0 A2. This figure is the counterpart of the A1 results of 

figure 3. From figure 6, we can analyze the effectiveness of rotational excitation 

in promoting the formation of the (1, 1, 0) vibrationally excited state. At a given 

total energy, initial rotational excitation does nothing to promote the formation 

of the product (1,1,0). In panels (a) through (c), the probability curves are 

monotonically increasing functions of energy E. In panel (d) the probability curve 

shows a maximum. At a fixed translational energy (say 1.0 eV), j = 3 is no more 

likely to form {1, 1, 0) than j = 1 and j = 5, 7 are much less likely to result in 

(1, 1, 0). For these A2 transitions, rotational excitation in the reagents does not 

promote vibrational excitation. In fact, high rotational excitation up to j' = 7 

in the initial diatomic molecule lowers the probability of formation of {1, 1, 0). 

Unlike the corresponding A 1 results in figure 3, resonance structure plays no part 

in the A 2 dynamics. 

The J = 0 A 2 probability curves are interesting in their contrast to the 

A1 curves. The A2 probabilities show no resonance structure. The likelihood 

of forming diatomic states which are different from the initial diatomic st ates is 

much smaller in the case of A2. These dynamics are probably a consequence of the 

nodal structure of the corresponding surface functions. The A2 surface functions 

have nodal lines in the regions of configuration space which are important in 

causing excitation in the final diatomic molecule. 

6. E Scattering Results 

The E irreducible representation scattering wave function contains transi

tions between all energetically allowed states of the diatomic molecule, including 

both even and odd rotational states. The expression for the J partial wave E 

irreducible representation body-fixed scattering matrix elements in terms of the 
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corresponding distinguishable particle scattering matrix elements is: for j ' and 

j both even 

for j' and j even 

(SJ,E)v' •.i' ,lc' = Va(SJ)/3,v' •/ ,lc' for j ' even and j odd v,],lc ~,v,],lc 

(SJ,E)v' •.i' ,lc' = -Va(SJ)/3,v' ,_;' ,lc' for j' odd and j even v,],lc ~,v,],lc 

(SJ,E)v' ,_i' ,lc' = (SJ)/3,v' .j' ,lc' _ (SJ)f3,v' ,_i' ,lc' 
v,],lc {3,v,],lc ~,v,],lc for j' and j odd. 

A. Zero Impact Parameter Collisions 

(9) 

(10) 

(11) 

(12) 

In this section, we present J = 0 partial wave cross sections for collisions 

in which the initial rotational state of the diatomic molecule is j' = 0. We have 

chosen to display partial cross sections instead of transition probabilities because 

the former are closest to physical reality and the E irreducible representation is 

the one which contributes to experimental cross sections. Since j = j + i, where 

i is the angular momentum associated with the relative motion of the atom 

with respect to the center of mass of the diatomic molecule, we conclude that for 

J = j = 0, we must have l = O, where J, j, and l are the total, diatom rotational, 

and orbital angular momentum quantum numbers. This corresponds to collisions 

with zero impact parameter in classical mechanics. The final rotational state of 

the diatomic molecule is not restricted and we wish to understand how effective 

translational energy is for producing rotational excitation in the products of 

the collision for the E irreducible representation. This representation contains 

transitions between all energetically allowed states of the diatomic molecule. 

For three identical atoms the J = 0 partial cross sections are r~lated to the 

scattering matrix elements by4 

J=o,r (-a ) = ~lov',_i',lc' _ (sJ=o,r)v',_i',lc'l2 (13) 
U(v' ,;• ,lc')--+(v,j,lc) 'cp k'~ ., v,],lc v,],lc 

v ,] 
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where 

(14) 

(15) 

where k~~ ,j' is the initial relative wave number for total collision energy E and 

diatom initial state with internal energy ev• ,j', J.L)t.,v" is the reduced mass for the 

relative motion of the atom A)t. with respect to the center of mass of the diatomic 

molecule A 11 A" and m is the mass of each of the three atoms. 

In figure 7, the J = 0 partial cross sections for the E irreducible represen

tation transitions (0, 0, 0) --+ (0, j, 0) for j = 1, 2, 3, 4 are shown. Figure 7 is the 

E counterpart to figures 1 and 4. All transitions are to and from the lowest 

vibrational state of the diatomic molecule. The first observation is that there 

is not much rotational excitation in product H 2 as is the case for the A 1 and 

A 2 irreducible representations. This is consistent with the fact that the three 

saddle points are collinear and these are zero impact parameter collisions. Even 

at 1.6 eV total energy where rotational states with 13 quanta of excitation are 

energetically accessible, only the lowest few excited rotational product states are 

significantly populated by such collisions. 

In figure 8, J = 0 partial cross sections for (0, O, 0) --+ (1,j, 0) for j = O, 1, 2, 3 

for theE irreducible representation are presented. It can be seen that transitions 

to the state (1, 1, 0) are significantly more probable than those to final states 

(1, 0, 0), (1, 2, 0), and (1, 3, 0) at most collision energies. Indeed, the most likely 

product is (1, 1, 0) at all collision energies. Also note that the resonance at 

0.981 eV total energy greatly enhances the (0, O, 0) --+ (1, 1, 0) transition. The 

(0, 0, 0) --+ (1, 3, 0) partial cross section has a pronounced maximum at 0.9 eV 

initial translational energy where it attains a magnitude comparable with that 

of the (0, 0, 0) --+ (1, 1, 0) transition. This maximum is probably due to the 

resonance with total energy 1.191 eV. 



- 169-

An interesting question concerns the likelihood that a vibrationally excited 

H 2 molecule is deactivated by a zero impact parameter collision. In figure 9, the 

J = 0 partial cross sections for the vibrational deexcitation transitions (1, 0, 0) --+ 

(O,j',O) for j' = 0,1,2,3 for theE irreducible representation are shown. Notice 

the different scales used in panels (a) and (b). The transitions to odd final 

rotational states with v = 0 shown in panel (b) have a factor of 10 greater 

partial cross sections than those to even final rotational states shown in panel 

(a) at translational energies below 0.5 eV. Above 0.5 eV translational energy, the 

final states (0, 2, 0) and (0, 1, 0) become equally probable. In addition, we note the 

pronounced effect oft he resonances at 0.981 e V and 1.3653 e V total energy on the 

magnitude of the partial cross section, respectively for the transitions (1, 0, 0) --+ 

(0, 1, 0) and (1, 0, 0) --+ (0, 2, 0). Interestingly, the 1.3653 eV resonance reduces 

the probability of the transitions (1, O, 0) --+ (0, 1, 0) and (1, 0, 0) --+ (0, 3, 0) while 

it enhances the (1, O, 0) --+ (0, 2, 0) transition. 

B. Effectiveness of Rotational Energy for Inducing Vibrational Exci

tation 

For the J = 0 partial wave, we wish to address the question of the effec

tiveness of initial rotational energy in the diatomic molecule for producing a 

particular vibrationally excited state of the product molecule. In other words, 

at a fixed translational or total collision energy, is vibrational excitation more 

probable if the initial H'J is rotationally hot? 

In figure 10, we show J = 0 partial cross sections for the transitions (0, j', 0) --+ 

(1, 0, 0) for j' = 0, 1, 2, 3 for theE irreducible representation. Figure 10 is the E 

counterpart to figures 3 and 6. From figure 10, it is seen that the effectiveness 

of a given rotational state in producing the vibrationally excited state is highly 

dependent on the total energy of the collision. For example, the initial state 

(0, 3, 0) is several times more likely to produce (1, O, 0) than the initial states 

(0,0,0) or (0,2,0) at total energies around 1.1 eV. In contrast, at total energies 
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above 1.5 e V, the initial states (0, 3, 0) and (0, 0, 0) have approximately equal 

probabilities of exciting the v = 1 state and the initial state (0, 2, 0) is twice a 

likely to excite it. For all total energies, it is seen that adding one quantum of 

rotational excitation to the initial H 2 enhances the probability of forming (1, 0, 0) 

by factor of 5 to 10 times relative to an initial H2 in the ground rotational state. 

The initial state (0, 3, 0) is also effective in producing the final state (1, 0, 0) at 

total energies below 1.3 e V . This enhancement is not a consequence of increasing 

the total energy content of the system, but of the specific rotational mode of the 

initial diatomic molecule; otherwise, j' = 2 would be more effective than j' = 1 

at the same translational energy which it is not at any energy shown. 

Are these mode specific dynamics altered when a different final state in the 

vibrationally excited manifold is examined? To answer this question, we plot in 

figure 11 the partial cross sections from the same initial states to a final state with 

one quantum of rotational excitation: (O,j', 0) --+ (1, 1, 0) for j' = 0, 1, 2, 3. The 

j' = 1 initial rotational state is again more effective than j' = 0 for producing 

vibrationally excited H 2 at all collision energies. The resonance at 0.981 e V total 

energy dramatically enhances the probability of the transition (0, 1, 0) --+ (1, 1, 0) 

At higher collision energies, the three rotationally excited initial states are equally 

likely to result in the final state (1, 1, 0). A comparison of figures 10 and 11 shows 

that there is less difference in partial cross sections at the high energies for the 

final state (1, 1, 0) than for the final state (1, 0, 0) . 

One other common feature of figures 10 and 11 deserves comment. The 

resonance at E=0.981 eV is strongly coupled to the initial state (0, 1, 0) and 

significantly enhances its coupling to the vibrationally excited manifold. 

C. Total Initial State Loss 

In this section, we examine the squared modulus of the diagonal scattering 

matrix elements (probabilities) for the E irreducible representation. Partial cross 

sections are not shown because, due to the Kronecker delta in equation (13), 
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these are rapidly oscillating functions of the collision energy which obscures the 

underlying physics. The oscillations are caused by the strong dependence of the 

phase of the diagonal scattering matrix elements on energy. 

In figure 12, we show the J = O, E representation probabilities for the tran

sitions (O,j',O)-~> (O, j' , O) for j' = 0, 1,2,3,4,5. In these, the final state of 

the H2 molecule is the same as the initial state. The corresponding transitions 

in the v = 1 manifold are shown in figure 13. The most dramatic feature of 

curves in these two figures is the alternation in the degree of loss of the initial H 2 

molecule state with initial rotational state. For all of these elastic E represen

tation transitions, the probabilities are unity at low translational energies and 

decrease rapidly as a function of translational energy beyond some characteristic 

value. For even rotational states, the loss of the initial state is incomplet e and 

becomes approximately constant as a function of energy. In contrast, for odd 

rotational states the loss of the initial state is almost complete. In other words, 

the degree of loss of the initial state is strongly dependent on the evenness or 

oddness of the initial rotational state. This conclusion holds for both the ground 

and excited vibrational manifolds. 

Aside from the partial wave nature of these results, is there any sense in 

the comparison that we just made between these transitions, in view of the fact 

that ortho to ortho transitions include contributions from the A2 irreducible 

representation in spin insensitive experiments? The answer is yes. The E cross 

sections correspond to the doublet total nuclear spin states and the A2 cross 

sections correspond to the quartet spin states. It violates no physical principles 

to consider an experiment in which the spins of the nuclei are state selected so 

that a desired total nuclear spin state is achieved. That is not to say that such 

an experiment is technically possible; it currently is not, due to experimental 

difficulties, but it is conceptually feasible . It is therefore appropriate to examine 

transtitions with a single total nuclear spin state. 
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There is a simple intuitive explanation for the behavior seen in figures 12 

and 13. First, recall that ortho-hydrogen has a triplet nuclear spin state and 

para-hydrogen has a singlet spin state (ignoring the third atom). For the E 

irreducible representation, the total three particle nuclear spin state is doublet . 

This information is enough to determine the nuclear spin state of the initial atom 

from the initial rotational state of the diatomic molecule. We can conclude that 

the initial atom nuclear spin is antiparallel to the nuclear spins of ortho-hydrogen. 

Therefore, the so called Pauli repulsion is not present in the E representation 

collisions with ortho-hydrogen initial states and the incident atom is more likely 

to get close to the diatomic molecule leading to transitions. In the case of para

hydrogen, the incident atom's nuclear spin is parallel to one of the nuclear spins 

in the diatomic molecule. The two nuclei with parallel spins experience Pauli 

repulsion and the incident atom has a lower probability of getting close to the 

diatomic molecule. The result is less loss of the initial state in the case of para

hydrogen as compared with the loss of ortho-hydrogen. 

D. Reactive Probabilities Summed Over Final Rotational States 

Does high rotational excitation in the initial H2 diatomic molecule pro

mote or inhibit reactive transitions? In figure 14, the energy dependence of the 

probability of a reactive transition from the state (0, 8, 0) to all final rotational 

states in v = 0 and in v = 1 is plotted (i.e., (0, 8, 0) -+ (0, j = all, 0) and 

(0, 8, 0) -+ (1,j =all, 0)). The initial state (0, 8, 0) of H 2 was chosen because it 

is almost isoenergetic with (1, 0, 0). Transitions to v = 2 are negligible compared 

to those to v = 0,1 and are not displayed. From figure 14, we can see that high 

rotational excitation is effective is producing reactive transitions to vibrationally 

cold products when the collsion energy is large, but has 10% or smaller proba

bilities at any collision energy for exciting vibrationally hot reactive products. 

As a point of reference, figure 15 shows the corresponding final-j-summed reac

tion probabilities from the ground state of the diatomic molecule. Notice that 



- 173-

the maximum probability for producing vibrationally cold products from both 

initial states occurs at around 0.6 to 0.7 eV translational energies. 

When the initial H 2 molecule is vibrationally hot and undergoes a reac

tive collision, is it more likely to end up in the ground or excited vibrational 

manifold? To address this question, the reaction probabilities for the transitions 

(1 , 0, 0) ~ (v,j =all, 0) for v = 0,1 are plotted in figure 16. At the phenomeno

logical threshold for reaction E 11o "' 0.2 e V, the products are far more likely to 

be vibrationally hot. At translational energies above 0.4 eV, the final state pop

ulations are roughly equal in v = 0 and v = 1. Notice the effect of the resonance 

at 1.3653 eV total energy on these final-rotational-state-summed probabilities: 

The vibrationally hot product is enhanced and the vibrationally cold product is 

inhibited. 

For completeness, we give below the expressions for the distinguishable par

ticle scattering matrix elements in terms of the irreducible representation matrix 

elements. 

For j and j 1 even: 

(SJ){31v',_;' 11c' = ! ((SA1 ,Jt' ,_;' 11c' + 2(SE1J)v' 1_;' 11c'] 
{3 1V 11 11c 3 v 11 1lc v 11 1lc 

(SJ){3,v' 1j' 11c' = ! ((SA11J)v' 1_j' ,lc' _ (SE,J)v' ,_;' ,lc'] 
a,v ,,,lc 3 v,,,lc v,,,lc 

For j even and j' odd: 

(SJ){3,v' ,_;' , lc' = 0 
{3,v,,,lc 

12 I •I Ll -1 E J I •I lc' 
( SJ)~-' •" •! I"' = -(S I ), 1.1 I 

a 1v,,11c .v3 v ,11lc 

For j odd and j' even: 

( SJ)f3,v'~_;' ,II' = 0 {3 ,v 11 1lc 

12 I •I lc' + 1 E J I •I lc' 
(sJ)IJI'f1 1! 1 = -(S 1 )" 1! 1 a 1v,,11c .v3 t1 11 11c 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 



- 174-

For j and j' odd: 

(SJ)f3,v' .j' ,lc' = ~ ((SA2 ,J)v' ,j' ,lc' + 2(SE,J)v' ,_;' ,lc'] 
f3,v ,],lc 3 v,],lc v,],lc (22) 

(SJ)/3,v' .j' ,lc' = ~ [(SA 2 ,J)v' ,_;' ,lc' _ (SE,J)v' ,_;' ,lc'] 
a,v,],lc 3 v,],lc v,],lc (23) 

1. Resonance Structure 

In the earliest days of accurate collinear reaction scattering, structure was 

observed in the reaction probability versus total energy curves and was attributed 

to an underlying metastable or resonance state.9 •10 Many examples of the res

onances have been observed, quantified, and discussed for the collinear reactive 

scattering of three particles.11 •17 Of particular importance have been the adia

batic models of such resonances based on either periodic orbit dividing surfaces 

(PODS)l5 •16•39 and on hyperspherical coordinates.11 •17 In this section, we discuss 

the lifetime analysis7 of F. T. Smith as applied to the p resent scattering matrices 

from the LSTH potential energy surface. It has previously been shown that this 

analysis is capable of isolating these resonances very accurately. 40 Also discussed 

is the convenient classification of the resonances in terms of the quantum num

bers associated with a linear stable triatomic molecule introduced by Bowman13 

and Colton and Schatz.14 

In figures 1 through 16, we have interpreted the overall shape of the plots of 

transition probability or partial cross section against collision energy and com

mented on the corresponding dynamics. Many of the curves for the A1 and E 

irreducible representations display rapid variations as a function of energy. These 

rapid variations are due to the formation of short-lived three-particle states in 

the strong interaction region of the potential energy sur£ace.11 ,lb They can be 

understood as the result of interference between a direct (nonresonant) process 

and the resonance state.10•11 •41 - 43 In a sense, the curves are a vibrational spec

trum of the metastable states of H3 . When the total collision energy is close 
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to the energy of a resonance state, the transition probability varies rapidly with 

energy for transitions which are strongly coupled to the resonance state. 

In figures 17-19 are shown some of the eigenvalues of the collision lifetime 

matrix as a function of the total energy for the At, A2 , and E irreducible repre

sentations using the LSTH surface, respectively. For the At lifetime analysis and 

energies near some of the resonances, scattering matrices were calculated every 

0.0001 eV. For the A2 lifetime analysis the energy spacing was as small as 0.001 

eV. For all of the irreducible representations, the coarsest energy grid was 0.01 

eV. The lifetime matrix eigenvalues shown in figures 17 through 19 are those that 

display maxima. We define these maxima as resonances, since they correspond 

to longer collision lifetimes than those at neighboring energies. Also indicated in 

these figures is the assignment of the resonance state. 

In figures 17 through 19 we have intentionally omitted curves which have 

large eigenvalues at the opening of a new state of the diatomic molecule. It 

was common to obtain large lifetime matrix eigenvalues at such openings. These 

curves decrease rapidly with increasing energy and are quite distinct from the 

eigenvalue curves which are interpreted as representing resonances. The latter 

rise from a approximately constant baseline in a smooth manner to a maximum 

and fall back smoothly to the baseline. The curves that were eliminated begin at 

a large value and decrease rapidly with increasing energy (i.e ., they do not display 

an interior maximum). Whether these curves are due to numerical instabilities 

or are correct and have some straightforward interpretation is not known. 

In figure 17 where the At lifetime eigenvalues are displayed, there is a second 

curve which shows an interior maximum but is without a true baseline. There 

are approximately 50 energy points in this curve and it is very smooth when 

magnified, so it is not spurious and cannot be easily ignored. Notice also that 

this second curve has a maximum at energies just above the opening of a new 

state of the diatomic molecule and that the high energy baseline is at -40 fs while 

the low energy baseline is at roughly zero delay times. We are not confident 
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that we understand this feature of the lifetime analysis and have not assigned 

any quantum numbers to it, but we do not wish to omit it from our results. 

The corresponding lifetime analysis of PKII results does not produce such an 

anomalous curve. Jb 

Some parts of the curves in figures 18 and 19 are represented with a dotted 

line. The dotted line indicates parts of the lifetime eigenvalue curves which 

are subject to enough numerical noise that the exact position of the curve is 

uncertain. The dotted lines represent a good approximation to the lifetime curves 

but are not quantitatively correct. 

It has been pointed out by Pollak15 that maxima in the eigenvalues of the 

lifetime matrix can be due to trapping at adiabatic barriers (instead of in adia

batic wells), and he prefers not to call them resonances if this is the case. Such 

interpretations of the nature of metastable states are very important and in

teresting, but require the use of modeling for insights. For example, adiabatic 

models dependent vitally on the choice of coordinate systems.15 However, when 

an appropriate choice of coordinates is made, the resonant periodic orbit method 

(RPO) accurately predicts the 3D resonance structure we observe. Nevertheless, 

our accurate collision lifetime results are model-independent, and we refer to any 

formation of a metastable state of the three particles in the strong interaction 

region (as manifest by a local maximum in a lifetime eigenvalue versus energy 

curve) as a resonance whether it can be accurately modeled as trapping at an 

adiabatic barrier or well. In another paper, we will describe the results of an 

adiabatic model of one of the strong resonances. 

In a previous letter,3b we assigned quantum numbers to the PKII resonance 

states following the lead of Bowman13 and Colton and Schatz.14 The quantum 

numbers are those appropriate for a stable linear triatomic molecule and are 

(vt,v~0 1,v3 ), where v1 is the symmetric stretch quantum number, v2 is the bend 

quantum number, VJ is the antisymmetric stretch quantum number, and n is the 

vibrational angular momentum quantum number. n1i. is the component of the 
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total angular momentum along the molecular axis. It is called the vibrational 

angular momentum quantum number because it can be understood as arising 

from the doubly degenerate bending modes of the linear triatom system in the 

same way that circularly polarized light is understood as a linear superposition 

of linearly polarized light. We wish to be clear that the use of these quantum 

numbers is a convenient means of classifying the resonances, but is of limited 

validity. For example, the normal mode analysis of the H 3 resonances may not 

be valid because the resonance is weakly bound and we have made no effort to 

determine whether the quanta of excitation are in the symmetric stretch mode 

or in the antisymmetric stretch or both. The main reason the classification is 

sensible is that the resonances can be assigned into series with approximately 

constant energetic spacing. 

The resonances we observe are all labelled with 11 = 0, because the results 

are limited to the J = 0 partial wave. As a consequence of the vanishing of 11, 

the only values of v2 which are allowed are the even ones since v2 has the ranges 

V2 = 11, {}- 2, {}- 4, ... , 0 or V2 = 11, {}- 2, {}- 4, ... , 1.44 

In figures 17-19 and in Table I, we have indicated the assignments for the 

various maxima. These assignments are in accord with those given by Bowman 

and Colton and Schatz. It is of interest to compare the energies of the max

ima in our lifetime analysis with the resonance energies predicted by Bowman's 

CEQB,13 the CS method of Colton and Schatz,14 the RPO model of Pollak15
•
16 

and the SCSA technique of Garrett and coworkers.12 In table I, the resonance 

energies and assignments from our accurate calculations and the results from 

other methods for both the PKII and LSTH potential energy surfaces are listed. 

From table I, we see that the agreement between the resonance energies 

found with all of these approaches is quite good. The weak resonances (0, 0°, 0) 

or (0, 2°, 0) which appear as maxima in the lifetime matrix eigenvalue curves had 

not previously been observed by approximate methods (see however reference 

14). As discussed above, Pollak15 has determined that these weak trappings of 
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the system in the strong interaction region are due to adiabatic barriers and we 

have no reason to dispute this conclusion. Bowman has observed several of the 

higher resonances on the LSTH surface in his approximate calculations using the 

collinear exact quantum bending corrected ( CEQB) model and agrees very well 

with our accurate positions. In particular, he has noted the bending excited res

onances. Colton and Schatz, using the coupled state (CS) approximation (which 

is exact for J = 0), have observed two of the resonances in table I as extrema 

in probability versus energy curves with positions in reasonable agreement with 

the accurate lifetime eigenvalue results. Pollak's extension of the periodic orbit 

dividing surface adiabatic model (PODS) to three-dimensions has permited the 

detailed assignment of the bending excited resonances and agrees very well with 

the exact results when the appropriate coordinate system is used. The stabi

lization method of Garrett, Truhlar, and coworkers12 assigns the energies of the 

resonances (1, 0°, 0) and (1, 2°, 0) in good agreement with our results, but is the 

least accurate of the several approximate methods considered in Table I for the 

(2, 0°, 0) and (2, 2°, 0) resonances. 

As a final comment, Pollak's15 remarks about the effect on probability curves 

of the weak maximum in the lifetime matrix eigenvalue curve corresponding to the 

assignment (0, 0°, 0) can be evaluated. He suggests that trapping in an adiabatic 

barrier does not cause oscillations in the probability curves. We would like to 

point out that figure l(a) does show a pronounced dip at the energy corresponding 

to this resonance. A more detailed modeling of the process associated with this 

(0, 0°, 0) lifetime matrix eigenvalue maximum is desirable. 

8. Surprisal Analysis 

We have performed a rotational surprisal analysis45
-

47 on the J = 0 results 

for the PKII potential energy surface. The PKII surface partial cross sections 

for reactive transitions are used in order to compare the partial cross section 

surprisal with that obtained by Schatz and Kuppermann8
c for the integral cross 
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sections. Our desire to compare with Schatz and Kuppermann also explains 

the unconventional form of the analysis given below which is identical with that 

performed in reference 6c. 

The purpose of a surprisal analysis is to examine that part of the dynamics 

which is not determined by the available density of states. In pratice, the total 

cross section is divided by the prior distribution function which is based entirely 

on the available density of states. The result is a renormalized cross section which 

is plotted versus the parameter of interest. Such plots display the information 

content of the cross sections. Cross sections which follow the prior distribution 

have no information content in the sense that they are statistical in nature. 

Cross sections which deviate from the prior distribution, do so because of some 

underlying feature of the dynamics which is special to that system. The prior 

distribution function that we use is 

P., ;(E)= p(E- e.,,;) 
' p(E- eo,o) 

(24) 

where p(E!~;) is the density of translational states (not to be confused with the 

hyperradius) . E!~; is the translational energy associated with total energy E and 

isolated diatomic molecule energy e.,,;. There is no factor of 2j + 1 in the density 

of states because for J = 0, the diatom rotational state projection quantum 

number must be 0. In other words, in the J = 0 partial wave, the diatomic 

molecule does not have access to 2j + 1 states for each possible j, but only to 

one. 

The surprisal analysis we perform in this paper is analagous to that in 

Schatz and Kuppermann6c. This unconventional form for the surprisal analy

sis is adopted in order to permit a comparison of our J = 0 partial cross section 

results to those for integral cross sections which they calculate up to 0. 7 e V total 

energy. It was our hope that the present partial wave cross sections might have a 

surprisal plot similar to that of Schatz and Kuppermann, perhaps paving a way 

to transform the J = 0 partial wave cross sections into integral cross sections. 
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The rotational surprisal plot based on the PKII J = 0 partial wave cross 

sections is plotted in figure 20. The abscissa is the internal energy content of the 

product H 2 and the ordinate is the appropriate partial cross section divided by 

the prior distribution function. Each curve represents a differerent total collision 

energy. Only the points have meaning and the curve is made of straight line 

segments connecting the points corresponding to the same total energy. The 

use of dashed and solid lines is for clarity. We see that the results do not fall 

on straight lines, but are quite oscillatory, especially at increasing total collision 

energies. A comparison of our low energy surprisal curves with those of Schatz 

and Kuppermann (figure 23 of reference 6c) shows that the rotational surprisal 

analysis based on partial wave cross sections produces curves which do not have 

the same shape or slope as those based on integral cross sections even for E ~ 0. 7 

e V. This is disappointing; however, the large deviations from straight lines shown 

in figure 20 of this paper are interesting and unexpected, indicating that partial 

cross sections are less subject to a surprisal parameterization than are integral 

cross sections. 

9. Final State Vibrational Population Ratios 

As a final topic, we examine the ratio of nascent populations of the the vi

brationally hot and vibrationally cold products under single translational energy 

conditions. The initial distribution of H2 states is assumed to be Boltzmann 

with a temperature of 298.15 K and the reagent H2 is assumed to be entirely 

para-H2. The initial para-H 2 distribution of states does include the 2j' + 1 de

generacy factor associated with the diatomic molecule's initial rotational state j' 

and the appropriate nuclear spin statistics. The nascent final state populations 

are calculated from the J = 0 partial wave cross sections at a fixed initial relative 

translational energy summed over all final rotational states within the vibational 

manifold of interest. If the real experiment were somehow restricted to be in the 

J = 0 total spatial angular momenum state, then these population ratios would 
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be exact. Unfortunately, the partial cross sections make only a small contribu

tion to the total cross section for H + H2 6 c and we do not wish to imply that 

these ratios can be compared meaningfully with experimental results. We simply 

wish to examine the dynamical characteristics of our J = 0 results. 

In figures 21 through 23, the ratio of the nascent v = 1 population to the 

nascent v = 0 population as a function of the initial translational energy of the 

reagents is plotted as a solid line for reactive, nonreactive, and Pauli antisym

metrized cross sections, respectively. The dashed line in each figure represents 

the same ratio for the case when the initial para-hydrogen is not thermal but 

rather all in the j' = 0 state. Also shown as arrows at the top of each figure 

are the positions of the resonances as determined by the lifetime matrix analy

sis. Each resonance is marked by two arrows because that abscissa in figures 21 

through 23 is initial relative translational energy. The value of this energy for 

which a resonance state is excited is dependent on the initial state of H 2 • The 

two resonance energies marked correspond to initial rotational states j' = 0 (long 

arrows) and j' = 2 (short arrows). These two initial rotational states are the 

only para-H2 states thermally populated at room temperature to any significant 

extent. 

From the J = 0 nascent vibrational population ratios shown in figures 21 

through 23, one can clearly see that the resonance structure manifests itself even 

with the thermal averaging of initial states and summing over final j states. 

One hopes that similar plots using the total cross sections will also show the 

underlying resonance features which these partial wave results do. Notice that 

all three representations (reactive, nonreactive, and Pauli antisymm.etrized) show 

structure due to the resonances labeled (1, 0°, 0) and (2, 0°, 0) and none of them 

are much affected by the weak (1, 2°, 0) resonance; however, the strong (2, 2°, 0) 

resonance at about 1.55 e V total energy is seen only in the reactive representation. 

Such nacent vibrational state population ratios may allow experimentalists to 

uncover resonance structure. 27 
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The resonance labeled as (0, 2°, 0) is not apparent in figures 21 through 23 

because the probability of forming v = 1 is vanishing at the translational energies 

corresponding to this resonance. 

The nascent final vibrational state population ratio appears to be a good 

method for searching for resonances experimentally. The strong resonances do 

significantly affect the ratio of v = 1 to v = 0 populations at the J = 0 level. 

Whether this is also true for the integral cross sections is a matter for future 

calculations and experiments. 

10. Summary 

The results of an accurate calculation of J = 0 partial wave scattering using 

symmetrized hyperspherical coordinates for the reactive system H + H 2 have 

been presented and discussed. Although partial wave results seldom dominate 

in chemical reactions, we have tried to interpret our results in a physical setting. 

We have examined the efficacy of various internal states of H2 for inhibiting 

or enhancing state to state processes. We have also considered the question of 

final state populations in several ways. One of the most important themes in 

this exposition is the significance of the underlying resonance structure on the 

dynamics of H + H 2 • It is our hope that these accurate J = 0 results shall 

soon be extended to J > 0 to yield differential and integral cross sections across 

resonance energtes. 
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TABLE 1 . Resonance energies.a 

LSTH PKII 

Assign- present 
ment results CEQBb esc 

present 
RPQd SCSAe results RP01 

(0,0°,0) 0.65 0 .61 0.619 

(0,2°,0) 0.880 0.847 0.859 

( 1,0°,0) 0.981 0.974 0 .98 0.981 0.984 0.971 0.975 

(1,2°,0) 1.191 1.20 1.20 1.186 1.196 1.170 1.179 

(2,0°,0) 1.3635 1.35 1.374 1.242 1.382 1.366 

(2,2°,0) 1.55 ± 0.02 1.50 1.545 1.464 1.56 1.542 

a All energies are in units of eV measured from the bottom of the isolated H2 
potential well. 

bReference 13 

cReference 14 

dReference 16 

eReference 12 

1Reference 15 

9Adiabatic Barriers 
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Figure Captions and Figures 

Figure 1. At transition probabilities as a function of total energy for transitions 

of the type (0,0,0)--+ (O,j,O),j = 0,2,4,6 for H + H2 on the LSTH potential 

energy surface. For the At representation, the results of only one out of every ten 

energies at which scattering calculations were made are depicted, for clarity of 

the curves. The lower abscissas in each panel indicates the total system energy 

E, whereas the upper abscissas represent the initial translational energy. The 

arrows pointing to the upper abscissa indicate the threshold energies for the 

opening of the (v,j) states of H2. The longer arrows correspond to v = 0, the 

medium length ones to v = 1 and the shorter ones to v = 2. 

Figure 2. At transition probabilities as a function of total energy for transitions 

of the type (1,0,0)--+ (l,j,O),j = 0,2,4,6 for H + H2 on the LSTH potential 

energy surface. See caption of figure 1 for additional information. 

Figure 3. At transition probabilities as a function of total energy for transitions 

of the type (O,j', 0) --+ (1, O, O),j' = O, 2, 4, 6 for H + H2 on the LSTH potential 

energy surface. See caption of figure 1 for additional information. 

Figure 4. A 2 transition probabilities as a function of total energy for transitions 

of the type (0, 1, 0) --+ (O,j, O),j = 1, 3, 5, 7 for H + H2 on the LSTH potential 

energy surface. See caption of figure 1 for additional information. 

Figure 5. A 2 transition probabilities as a function of total energy for transitions 

of the type (1, 1, 0) --+ (1,j, O),j = 1, 3, 5, 7 for H + H2 on the LSTH potential 

energy surface. See caption of figure 1 for additional information. 

Figure 6. A 2 transition probabilities as a function of total energy for transitions 

of the type (O,j',O)--+ (1, l,O),j' = 0,2,4,6 for H + H2 on the LSTH potential 

energy surface. See caption of figure 1 for additional information. 

Figure 7. E J = 0 partial cross sections as a function of total energy for 

transitions of the type (0,0,0)--+ (O,j,O),j = 1,2,3,4 for H + H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 
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Figure 8. E J = 0 partial cross sections as a function of total energy for 

transitions of the type (1, 0, 0)---+ (1,j, O),j = 0, 1, 2, 3 for H + H 2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 9. E J = 0 partial cross sections as a function of total energy for 

transitions of the type (1, O, 0) ---+ (O,j, O),j = O, 1, 2, 3 for H + H 2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 10. E J = 0 partial cross sections as a function of total energy for 

transitions of the type (O,j',O)---+ (1,0,0),j' = 0,1,2,3 for H +H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 11. E J = 0 partial cross sections as a function of total energy for 

transitions of the type (O,j',O)---+ (1, 1,0),j' = O, 1,2,3 for H +H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 12. E transition probabilities as a function of total energy for transitions 

of the type (O,j',O)---+ (O,j',O),j' = 0,1,2,3,4,5 for H + H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 13. E transition probabilities as a function of total energy for transitions 

of the type (1,j',O) ---+ (1,j',O),j' = 0,1,2,3,4,5 for H + H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 14. Reactive transition probabilities as a function of total energy for 

transitions of the type (0,8,0)---+ (v,j = all,O),v = 0,1 for H +H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 15. Reactive transition probabilities as a function of total energy for 

transitions ofthe type (0,0,0)---+ (v,j = all,O),v = 0,1 for H +H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 16. Reactive transition probabilities as a function of total energy for 

transitions of the type (1,0,0)---+ (v,j = all,O),v = 0,1 for H +H2 on the LSTH 

potential energy surface. See caption of figure 1 for additional information. 

Figure 17. Highest eigenvalues of the F. T. Smith lifetime matrix as a function 

of total energy for J = 0 of the A1 irreducible representation for H + H2 on the 
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LSTH potential energy surface. The arrows at the top of the figure indicate the 

threshold for opening of the (v,j) states of H2. The number of energies used in 

this plot is of the order of 500. The quantum numbers assigned to the maxima 

in the eigenvalue curve are also indicated in the figure. See text for discussion of 

the second curve shown. 

Figure 18. Highest eigenvalues of the F. T. Smith lifetime matrix as a function 

of total energy for J = 0 of the A2 irreducible representation for H + H 2 on the 

LSTH potential energy surface. The number of energies used in this plot is of 

the order of 300. See caption of figure 17 for additional information. 

Figure 19. Highest eigenvalues of the F. T. Smith lifetime matrix as a function 

of total energy for J = 0 of the E irreducible representation for H + H 2 on the 

LSTH potential energy surface. The number of energies used in this plot is of 

the order of 100. See caption of figure 17 for additional information. 

Figure 20. Rotational surprisal plot of the reactive representation transitions 

(0, 0, 0) -+ (O,j, O),j = O, 1, 2, 3, ... on the PKII surface. The abscissa is the 

final state rotational energy, Pv,;(E) is the prior distribution function defined in 

equation (23), and Q~·~~~)-+(O,i,o) is the partial cross section for the (0, 0, 0) -+ 

(O,j, 0) transitions. The little upward arrows indicate the energies of the produce 

(O,j,O) states of H2 . Each curve is labeled by the corresponding total energy E. 

Figure 21. Ratio of nascent v = 1 to v = 0 vibrational state reactive populations 

(distinguishable atom representation) as a function of the translational energy of 

the reagents. Q~:r~-+v refers to a thermal population of initial rotational states 

for para-hydrogen at T=298.15 K. The arrows pointing to the upper abscissa 

represent resonance positions, as explained in the text. 

Figure 22. Ratio of nascent v = 1 to v = 0 vibrational state nonreactive 

populations as a function of the translational energy of the reagents. Q~!,;:=l~v 

refers to a thermal population of initial rotational states for para-hydrogen at 

T=298.15 K. The arrows pointing to the upper abscissa represent resonance 

positions, as explained in the text. 
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Figure 23. Ratio of nascent v = 1 to v = 0 vibrational state populations as 

a function of the translational energy of the reagents for Pauli antisymmetrized 

partial cross sections. Q(h~~mal-+v refers to a thermal population of initial rota

tional states for para-hydrogen at T=298.15 K. The arrows pointing to the upper 

abscissa represent resonance positions, as explained in the text. 



0 

1.0 

,.. 0 .8 

~ 
i o.8 

It 
0.4 

0 .2 

0 

,.. 0 .8 
(b) 

~ i 0 .8 

It 0 .4 

0 .2 

0 

,.. 0 . 

I 0 .2 

r 0 . 1 

- 192-

E00/eV 

0 .2 0.4 0.8 0 :8 1.0 

pA 1,J•O 
ooo-ooo 

pA 1,J•O 
000-020 

pA1,J • O 
ooo-o8o 

1.2 

I 
10 

0.2 0 .4 0 .8 0.1 1.0 1.2 1.4 1.8 

EleV 

Figure 1. 



- 193-

E10/eV 
0 0.2 0.4 0.8 0 .8 

1.0 

,... 0 .8 pA 1 ,J • O 
100-100 

~ 
~ 
~ 

,... 
~ .. : 

,... 
~ 

~ : 

,... 

1 
~ 

0.8 

0 .4 

0.2 

0 

0 .8 

10 

0 .8 
(b) 

pA,.J • O 
100-120 

0 .4 

0 .2 

0 

0 .4 

0 

0 .3 
(c) 

pA 1.J•O 

0.2 
100-140 

0 . 1 

0 

0 .2 

0 

(d) 

pA,,J•O 

0 . 1 100-180 

04---~----~--~--~--~ 
0 .8 0.8 1.0 1.2 

EleV 

Figure 2. 

1.4 1.8 



- 194 -

Eoo/eV o .e o.e 1.0 1.2 

0.2 (a) 

pA, ,J•O 
>- 000-100 

i 
-8 
ct 0.1 

0 

E02/eV o.e o .e 1.0 1.2 

(b) 
0.3 

>-

~ 
i 
ct 

0 .2 

0.1 

0 

Eo4/eV o.4 o.e o .e 1.0 

o .oe 

?: o .oe :! 

~ 0.04 

0.02 

foe/eV 0.4 o .e o .a 1.0 

(d) 
0.03 

>-

1 
ct 

0.02 

0.01 

0 
o .a 1.0 1.2 1.4 1.& 

EleV 

Figure 3. 



""' z 
i 

""' I 
It 

""' 

I 

- 195 -

E01/eV 
0 0 .2 0 .4 0 .6 0 .6 1.0 1.2 

1.0 

(a) 

0 .8 

0 .6 

0 .4 

0 .3 

0.2 

0 

0 .08 

0 5 0 10 
(c) 

0 .04 
p"z·J • O 

010-050 

0 .02 

0 .008 
(d) 

pAz,J • O 
Oto-o70 

0 .004 

o+---~~--~~~--~~~-4 
0.2 0 .4 0.8 0 .8 1.0 1.2 1.4 1.6 

E/eV 

Figure 4. 



1.0 

>o 0.8 

j 
Gil 0.6 .a 
0 
.t 0.4 

0.2 

0 

0.3 

~ 
0.04 

:! 
Gil 

-8 
.t 0.02 

f'"' 
.t 0.004 

0 

- 196 -

0.2 

p"2·J•O 
110-150 

E11/eV 
0.4 0 .8 0.8 

o+-----~--~---=~--~ 
o .a 1.0 1.2 1.4 1.e 

EJeV 

Figure 5. 



'EQ 1/eV 0.8 

(a) 

>- 0.2 

t 
'8 
It 0. 1 

0 

'EQ3/eV 

0. 15 

>-

t 
'8 

0 . 10 

It 
0.05 

0 

EQ5/eV 0.4 

0 .04 

0 .02 

0 

E07/eV 0.2 

(d) 

>- 0 .010 

! 
It 0 .005 

- 197-
0.8 1.0 

pAz.J •0 
010-110 

0.8 0.8 

0 .8 0 .8 

0 .4 0 .8 

10 

pAz,J • 0 
070-110 

1.0 1.2 

EleV 

Figure 6. 

1.2 

1.0 1.2 

1.0 

0 .8 

1.4 1.8 



NO 
ca 
l==: 

N 
I 
0 
:::: 0.2 

s 
~ 
en 
In 0.1 s 
"it 

i 

- 198 -

E00/eV 
0 0.2 0.4 0.6 0 .8 1.0 1.2 

0 5 
(b) 

5 
10 

E,J =0 0 ooo-030 

E,J=O 
Q 000-040 

~ 04---~--~--T---~--~--~~ 
0.2 0.4 0.8 - 0.8 1.0 1.2 1.4 1.8 

E/eV 

Figure 7. 



(I) 
(I) 

1.0 

0.8 

0.6 

0 0 0.4 

1U 
i 0.3 
11. 

0.2 

0.1 

0.6 

(a) 

- 199-

E00/eV 
0.8 1.0 1.2 

5 
10 

E.J= 0 
a ooo-110 

E,J=O 
a ooo-1oo 

E,J =0 
a ooo-120 

o-+---..-:....,.---.,...---"'""T""----1 
0.8 1.0 1.2 

E/eV 
1.4 

Figure 8. 

1.6 



0 

~0 1.0 
t::: 

C') 

b ~ 0.8 
....... 

NO as 
t::: 0 .4 

N 
I 
0 
~ 
....... 

0 .3 8 ·-... () 
Q) 
en 0 .2 
en 
(I) 
0 
0 0.1 
'ii 

i 
0. 0 

0.8 

0.2 

1.0 

- 200-

E,J=O 
0100-020 

0
e.J o 
100-030 

1.2 

E/eV 

Figure 9 . 

0.6 0 .8 

1.4 1.8 



- 201 -

E 03 / eV o.e o.8 1.0 1.2 
----~------~----~------~ E02/ eV o.s 0.8 1.0 1.2 
----~----~------~----~--Eo1/eV __ O~·~e _____ o~·-8 _____ 1~.o ______ 1~.2 __ __ 

E00/eV~o+.e~~~o~.8 ______ 1.~o--~ __ 1.~2----

NO 
: 1.5 

('t) 

•o 
~ 

c 1.0 
0 

5 0 
10 

E,J=O 
QOjb-100 

1.0 1.2 
E I eV 

Figure 10. 

1.4 1.6 



- 202 -

E03 / eV o.6 o.8 1.0 1.2 
----~------~------~----~ E02/eV ___ o~·~6 _____ o~.8 ______ 1~.o ______ 1~.2 __ 

E
01

1ev __ o~.6 ______ o~.8 ______ 1~.o ______ 1~.2 __ _ 

e00/ev~o+.e~~T-o~.8----~1·~o~~~1.~2---
C\10 

as 0.4 
~ 

C\1 
'O 

....._ 0.3 
c: 
0 ·-.... 
CJ 
Q) 0.2 

CJ) 

UJ 
UJ 
0 0 0.1 

-as . 

0 

i 0 ...... ---~---~--_,...--~ 
CL. . 0.8 1.0 1.2 1.4 1.6 

E I eV 

Figure 11. 



E01 /eV 0 

E00/eV 0 

1.0 

>- 0 .8 

== :c as 0 .6 
.Q 
0 
It 0 .4 

0.2 

0 

E03/eV 
E02/eV 0 

1.0 

>- 0 .8 

== :s as 
-8 

0 .6 

It 
0 .4 

0.2 

0 

- 203-
0 .2 0.4 0 .8 0 .8 1.0 1.2 

0.2 0.4 0 .6 0 .8 1.0 1.2 
' 

0 .2 0 .4 0.6 0 .8 1.0 1.2 

0 .2 0 .4 0 .6 0 .8 1.0 1.2 

0 0.2 0 .4 0 .6 0 .6 1.0 

0 0 .2 0 .4 0.6 0 .8 1.0 

0 .4 0 .6 0 .6 1.0 1.2 1.4 1.6 

EleV 

Figure 12. 



- 204-

E11 1 eV 0 0.2 0.4 0.8 0.8 

E10 I eV o 0.2 0.4 0.6 0.8 

1.0 

0 .8 
>o 

= :s 0.8 as E.J•O ..Q 

;100-100 0 
Q: 0 .4 

0.2 

0 

E13 1 ev 0 0.2 0 .4 o.8 

E12 1 eV 0 0.2 0 .4 0 .6 

1.0 

0.8 
>o 
~ 
:s as 

0.6 

~ 
0 

Q: 0.4 

0.2 
E.J•O 

/ p130-130 
0 

E15 1 eV 0 0 .2 0.4 0 .6 

E14 1 ev 0 0.2 0.4 0.6 

1.0 

0.8 
>o 

= :s 
as 0.6 

'8 
Q: 0.4 

0 .2 

0 
0.8 1.0 1.2 1.4 1.6 

E I eV 

Figure 13. 



- 205 -

E08 / eV 
0.2 0.4 0.6 0.8 

0.8 

0.6 
pR,J=O 

080-0 
~ 

~ .... ·--·-.c as 
.c 0.4 0 ... 
a. 

0.2 R,J=O Joso-1 
0 

0.8 1.0 1.2 1.4 1.6 

E I eV 

Figure 14. 



~ .... ·-:c as 0.4 
.c 
0 
'-a.. 

- 206 -

E00 / eV 
0.2 0.4 0.6 0.8 1.0 1.2 

0 
5 

5 
10 

0 

PR,J=O 
ooo--o 

PR,J=O 
000-1 

0~--~----~--~----~---.--~ 
0.4 0.6 0.8 1.0 1.2 1.4 1.6 

E I eV 

Figure 15. 



- 207-

E10 / eV 
0 0.2 0.4 0.6 0.8 

0.6~~~~--~--~--~~~~~~ 

5 10 
10 

~ 
0.4 ... ·--·-..c as ..c 

0 .... 
a. 

0.2 

0~----~.-----~------.-----~ 
0.8 1.0 1.2 1.4 1.6 

E I eV 

Figure 16. 



CJ) 
~ ....... 
Q) 

E ·-... 
Q) 
~ ·-...J 

- 208-

50.0 

30.0 

10.0 

-10.0 

-30.0 

..... . . . . . . .· .. 

-50.0~--~--~--~--~--~--~--~ 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

E/eV 

Figure.17. 



- 209 -

10 
50.0 

(0,2°,0) ( 1 ,2°,0) (2,2~0) 
I I I 

30.0 
(0,0°,0) ( 1 ,0°,0) (2,0°,0) 

I I I 

t/J 
A2 -.... 10.0 ....... 

Q) 

E ·-... 
Q) -10.0 ········ 
~ ·-..J 

-30.0 

-50.0~ __ ._ __ ~--~--~--~--~--~ 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

E/eV 

Figure 18. 



- 210 -

5 
0 5 10 

50.0 
(0,2? 0) ( 1 ,2°,0) (2,2~0) 

I I I 
(0,0°,0) ( 1 ,0°,0) (2,0°,0) 

0 ,.._ 
10.0 ....... 

Q) 

E 
0 ·- . ..... . 

Q) .. 
,.._ -10.0 ·---' 

-30.0 

-50.0~--~----~----~----~----~------------
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

E/eV 

Figure 19. 



( 0 J·op) 
log 1 o ----p;;-

- 211 -

-16 ~ 
\ 

-18 ~ 
I 
I I 

-20 I b 
I 0 .6 
I 

-22 I 
lo 

0 .4 

-24 

0 .35 
-26 

-28 

- 4 :1 • 
3 5 I 

01 2 4 II 

- 10 

- 12 

-14 

- 16 

- 18 

- 20 

- 22 

I 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

(a) 

\ 
I 
I 
I 
I 0 .85 
I 

bE • 1.00 e V 

I 0 .95 
I 
I 
I 
I 
bE • 0 .8 eV 

I I 
10 1 1 

(b) 

0 0 . 1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 

(Ev'i' -E00)/eV 

Figure 20. 



en 
0 ·-.., 
as a: 
c 0.4 0 ·-.., 
as -:J 
Q. 
0 a.. 
Q) .., 

0 .2 as .., 
CI'J 
-as c ·-u.. 

0.0 
0 .5 

- 212 -

( 

R J=O ) athermal-1 

R, J=O 
a thermal-a ,- ... , 

I ', , 
I .... ~ 

,' 

I 
.... -.... I 

I ... ,--... ; 
I I 

• ' , ooo-1 ; \ 1/(QR, J=O ) 
' ' , : ,,_, QR• J=O 
• ooo-o 
' ' ' I 

0.7 0.9 

EtrleV 
1.1 

Figure 21. 

1.3 



UJ 
0 ·-... as 
a: 
c::: 
0 ·-... 
as -:l 
0. 
0 
a.. 
Q) ... 
as ... 
en 
-as c::: ·-LL 

- 213 -

(0,2°,0) ( 1 ,0°,0) ( 1 ,2°,0) (2,0°,0) (2,2°,0) 
0.2~--~--~----~----~~----~~ 

0.1 

0.0 
0.5 

( 

NR, J=O ) Qthermal~1 
aNR, J=O 

thermal-a 

.... , \ 
I \ 

I \ 

,/\ \ ' 
.,~ ' 

.," ooo-1 .......... '(QNR, J=O )', 

0.7 

'I 

-~/ a~~o~o 
0 .9 

EtrleV 

Figure 22. 

1.1 1.3 



UJ 
0 ·-... 
tU a: 
c: 
0 0.4 ·-... 
tU 
"3 
a. 
0 a.. 
Q) a; 0.2 ... 

(1J 

(ij 
c: 
u: 

- 214 -

( 

J-O ) athermal-1 

aJ=o 
thermal-0 

( 

J-O ) aooo-1 
J=O 

Oooo-o 

0.0~--~~------_.------~------~ 
0.5 0.7 0.9 1.1 1.3 

E1r/eV 

Figure 23. 



- 215-

Gauss-Jordan Matrix Inversion with Partial Pivoting 

on the Caltech Mark II Hypercube 

Abstract 

The performance of an implementation of Gauss-Jordan matrix inversion 1 •2 

on the Caltech Mark II hypercube3 is explored in this document . The inverter 

employs partial pivoting without scaling and double precision arithmetic. After 

some introductory remarks, the sequential Gaussian elimination and Gauss-Jordan 

algorithms are outlined, followed by remarks concerning their parallel implemen

tations. The reasons for the superiority of parallel Gauss-Jordan inversion over 

parallel Gaussian elimination are discussed. Next, empirical and theoretical effi

ciencies for our program as a function of matrix dimension for different numbers 

and configurations of processors are presented. The empirical efficiencies are based 

on actual timings of the parallel matrix inversion program. An operations count 

for the parallel inversion algorithm is the basis for theoretical efficiencies which 

are in quantitative agreement with the empirical efficiencies. 

1. Introduction 

This paper is concerned with how well a multiprocessor computer can be 

utilized to execute a standard algorithm from linear algebra: matrix inversion. 

Matrix inversion provides a relatively simple algorithm with which to explore the 

issues germane to parallel computing with the Caltech hypercube. As scientists 

interested in large scale scientific programming, we are also interested in parallel 

computers because they may offer the increased performance our applications re

quire for solution. There is no better way to assess the potential for such machines 

than to write parallel programs and measure their performance. In addition, ma

trix inversion is a standard part of any linear algebra library. Such libraries are 
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critical for the evolution of parallel computers into useful tools for large scale scien

tific simulations. The recent introduction of commercial hypercube computers by 

several companies is a sign that hypercubes may become viable supercomputers. 

A particular application for which supercomputer performance is necessary 

and in which our interests lie is scattering theory as it applies to chemical dy

namics. The collision of an atom and a diatomic molecule is described quantum 

mechanically by a partial differential equation. One technique for solving this dif

ferential equation requires the integration of large systems of ordinary differential 

equations. Matrix inversion is a part (along with matrix multiplication) of one 

algorithm commonly used to integrate systems of ordinary differential equations.4 

The writing and understanding of a parallel matrix inverter addresses both the 

needs of our current research efforts and our desire to explore the next generation 

of computers. 

From the scientific programmer's point of view, the principal motivations for 

developing parallel codes are the prospect of large total memory and short execu

tion times through the use of multiple processors. Many scientific programs require 

large data sets, so the availability of large total memory is advantageous because 

it eliminates the need for frequent data transfers between disk and memory. In 

addition to large data sets, these programs typically involve a very large amount 

of floating point arithmetic. The strategy in using multiple processors to reduce 

execution time is to distribute the floating point work among the processors. If 

the penalties incurred by distribution of the work load are not too great, then 

execution time can be significantly reduced relative to that on a single processor. 

Supercomputer level performance is achieved when a large number of processors 

can be used on a task effectively. The degree to which multiple computers reduce 

the execution time is referred to as the efficiency; perfect efficiency is realized when 

N processors execute a task with N times the speed of one processor. 



- 217-

There are three factors which determine the efficiency of a parallel algorithm. 

The first is work load inhomogeneity which occurs when a subset of the proces

sors performs a disproportionate fraction of the work. Work load inhomogeneity 

affects the efficiency adversely because some of the processors become idle while 

others are still working. The goal of any parallel algorithm is to distribute the 

tasks uniformly among the processors so that no processor has more work than 

any other. The second issue is the interprocessor communication which is usually 

necessary in a parallel algorithm. The communication of data contained in one 

processor and needed in another is a task which is absent in a sequential program 

and can decrease the efficiency of a parallel algorithm. If a processor is idle while 

awaiting data from another processor, then that processor is being used ineffi

ciently. A moment's reflection shows that the important quantity in determining 

efficiency is not the total number of communications, but the ratio of communi

cations to processor work load. If this ratio is low, then efficiency is high because 

the processor work load dominates the communication costs. The third issue is 

software overhead. The distribution of a task over multiple processors invariably 

means that some integer arithmetic and logic will have to be added to a sequential 

algorithm to produce a parallel algorithm. The integer arithmetic and logic are 

required to switch on and off different sections of code and to control interpro

cessor communications. The software overhead, if it is significant in comparison 

with the remaining tasks, decreases the efficiency of the parallel code. In short, 

if a parallel algorithm has a higher operations count than the sequential version, 

due to communications, redundant computations, or software overhead, then the 

extra work lowers the efficiency. The successful parallel algorithms are those that 

minimize the work load imbalance, the ratio of communication to floating point 

arithmetic, and the software overhead. 

There is one further issue which effects the efficiency of a parallel algorithm's 

performance. Once a strategy for dividing up a task and organizing the necessary 

communications is chosen, then each processor will have a set of tasks to execute. 
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The translation of these single processor tasks into machine instructions affects 

the overall performance of the parallel code. We have in mind particularly the 

effectiveness with which floating point arithmetic and the associated local memory 

accessing are handled in each processor. The term fine grain performance refers 

to the character of the machine level code that is used for a given task set on one 

processor. It is our intention to remain unentangled by this issue, in part because 

of lack of expertise at the machine language level of coding and in part because 

variations in the efficiency of the machine code will affect parallel efficiencies only 

slightly, if the machine code is reasonably good. Our primary interest is in finding 

algorithms with inherent parallelism and the exploitation of that parallelism. 

As examples of how fine grain performance can affect efficiency measurements, 

consider the following situations. Use of assembly language can result in a better 

code than that generated by a C language compiler, but comparing a parallel code 

written in the language C with a sequential code written in assembly language 

biases the efficiency observed for the parallel code. Such a comparison does not 

accurately reflect the parallelism inherent in the algorithm. This is an obvious 

mistake to avoid; however, there are more subtle program differences that affect 

execution times such as the use of more memory to avoid unfavorable memory 

accessing in loops. This is well demonstrated by the following experience. Two 

sequential versions of the basic Gauss-Jordan algorithm were created inC by dif

ferent people. One of the sequential inversion programs ran slower than a parallel 

program when each were run on the same single processor. In other words, the 

difference in execution time for the two sequential programs was greater than the 

additional execution time used by the software overhead in a parallel program for 

the hypercube. Loop organization and memory accessing order were found to be 

the important differences between the two sequential codes. The lesson is that the 

software overhead costs in the parallel inverter are comparable to the variation in 

performance encountered in different implementations of a sequential algorithm. 
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In an effort to avoid the effect of fine grain performance differences on effi

ciency measurements, all parallel code efficiencies are referenced to single processor 

runs of a slightly modified version of the parallel code. The modified code is pro

duced by removing all references to communication routines and all logic and 

integer arithmetic needed in the parallel code. The result is a sequential code 

which is very close to the parallel code. (An alternative is to base the efficiency of 

the parallel program on the performance of a sequential routine from a standard 

library. The problem with this is that a pedestrian C program is being compared 

with an optimized sequential program. In this approach, fine grain performance 

differences are entangled with the measure of exploitation of parallelism.) It is 

likely that the machine level code of the parallel program can be improved, but 

the behavior of the present code should represent the nature of the algorithm (as 

distinct from its implementation). 

2. Caltech Hypercube Hardware 

The multiple processor machine used for this work is a collection of identical 

Intel 8086/8087 based computers linked together by communication paths with a 

hypercube connectivity.3 To define hypercube connectivity consider 2M processors 

each labeled with a M bit binary number where M = 0, 1, 2, .... Each processor 

has M communication channels, one channel to each processor which carries a 

binary label differing by one bit from the given processor's label. For example, an 

eight processor hypercube can be visualized as geometric cube where a processor 

is placed at each of the cube's eight vertices and the communication channels are 

the edges of the cube. The machine used to obtain the timings presented in this 

paper is constructed of 32 processors. 

There is no shared memory on the Mark II Hypercube. Each processor has 

its own local memory. For a processor to fetch data from the memory of another 

processor, an explicit communication protocol must be written into the user's 

source code. This difference between data passing on the hypercube and how 
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data are handled on a sequential machine is similar to the difference between 

programming in machine language and programming in a higher level language. 

When writing a program in a higher level language, data in memory are referenced 

by using variable names and the programmer need not be aware of the way in 

which the machine actually fetches data to the processor and puts it back in 

memory. In contrast, when coding in machine language, the programmer must 

explicitly fetch data from memory, and put it back. The hypercube programmer 

encounters both types of data handling: if the data are in the local memory of 

the processor that requires it, then he can reference the data with variable names; 

if the data are in another processor, then he must explicitly retrieve it by using 

the interprocessor communication routines. The system routines necessary for a 

variety ofinterprocessor communications are available to the user of the hypercube. 

The inversion codes under discussion in this paper were all run using the crystalline 

operating system developed at Caltech. Further information on the software and 

hardware for the Caltech Mark II hypercube can be found in reference 3 . 

No comparison of the Mark II hypercube with other machines is made and 

no absolute times for execution are reported. The reasons for this are evident. 

The efficiency of a program will be largly unaffected by changes in hardware given 

an invariant ratio of fl.oating point speed to communication speed, and certainly 

the asymptotic performance of a program with matrix size will be unaffected. 

The same is not true of absolute execution times; they are strongly hardware 

dependent . In addition, efficiencies will not be greatly altered by improvements in 

the fine details of the program. 

3. Sequential Gaussian Elimination 

It will be useful to review Gaussian elimination with partial pivoting as it ap

plies to matrix inversion on a sequential computer.5 Gaussian elimination directly 

(in a finite number of steps) reduces the coefficient matrix of a system of equations 

Ax= b with A E Rnxn and x,b ERn 
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to diagonal form in two phases: forward reduction and back substitution. Re

call that the solution to a system of linear algebraic equations is unchanged by 

additions of multiples of any equation to any other equation. Such operations 

provide the means for transforming the coefficient matrix to diagonal form. In 

the first phase, matrix elements below the diagonal are systematically reduced to 

zero beginning with the first column and ending with the last column. In the first 

step, multiples of the first row are added to the following rows. The multiples 

are chosen to produce zeros in the first column below the diagonal. In the second 

step of the forward reduction, mutliples of the second row of the matrix are added 

to the following rows in order to produce zeros in the second column below the 

diagonal. The forward reduction phase ends after ( n - 1) steps and produces an 

upper triangular matrix from the coefficient matrix. In a similar fashion, the back 

substitution phase consists of bringing to zero the matrix elements above the di

agonal beginning with the last column and ending with the first. In the first step 

of back substitution, multiples of the last row are added to the rows above it to 

produce zeros in the last column above the diagonal. Back substitution ends after 

(n- 1) steps. As a result of the transformations in the forward reduction and 

back substitution, the matrix A becomes a diagonal matrix. The same sequence 

of operations is carried out on the right hand side vector b. After the coefficient 

matrix is transformed into a unit matrix, the modified right hand side vector is 

the solution. 

Inversion can be considered as a special application of Gaussian elimination: 

to find the inverse of the coefficient matrix, we choose a special set of bi = ei 

where i = 1, 2, ... , n and ei is the ith unit vector with 1 as its ith entry and zeros 

for the remaining components. Therefore, for inversion, there are n simultaneous 

b vectors and the solution is ann x n matrix. 

AX = I with A, X, and I E Rnxn 

where I is the unit matrix. 
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Gaussian elimination prescribes a finite number of steps which will bring the 

coefficient matrix to diagonal form if the matrix is positive definite or diagonally 

dominate. At each step, the row of the matrix used to achieve zeros in one column 

is called the pivot row and the diagonal element of the pivot row is called the pivot 

element. Notice that the pivot element is in the same column that is to be made 

zero below the diagonal. The multiples of the pivot row necessary to produce a 

column of zeros are called multipliers. This algorithm will fail if a pivot element 

is zero. In many cases, this failure can be surmounted by using partial pivoting. 

Partial pivoting is the standard technique to reduce numerical instability and 

avoid catastrophic failure during the direct solution of systems of linear equations. 

Numerical instability in direct methods of solving linear systems (of which Gaus

sian elimination and Gauss-Jordan inversion are examples) occurs because of very 

large multipliers which, in turn, are due to very small pivot elements. When a 

large multiple of the pivot row is added to another row of the matrix, finite preci

sion arithmetic leads to a loss of the information contained in the non-pivot row. 

The result is a row which is nearly dependent on the pivot row and therfore, a 

nearly singular matrix. Given a particular column, i, that is to be made zero, 

partial pivoting involves choosing from the active rows, that row with the largest 

element in absolute value in column i as the pivot row. This leads to multipli

ers that are always less than unity, hence rounding errors are reduced. A second 

situation which requires pivoting has nothing to do with numerical instability; 

a zero pivot element can be encountered in a perfectly well conditioned matrix. 

As an example, consider the two by two unit matrix with the rows interchanged. 

Without pivoting, the first element of the first row is taken as the pivot element. 

Obviously no multiple of the first row of this matrix will produce a zero in the 

first column when added to the second row. Partial pivoting prevents the failure 

of the program in this situation. 

Once the pivot row is selected, the matrix rows are interchanged so that the 

pivot element is brought to the diagonal position. We shall always assume that the 
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pivot element is on the diagonal for ease of discussion. The rest of the Gaussian 

elimination algorithm is unchanged once the pivot row is selected. If a nonzero 

pivot element can be found at all stages of the forward reduction with pivoting, 

then the algorthm will produce the inverse and the original matrix is nonsingular. 

After the coefficient matrix has been transformed into the unit matrix, the columns 

of the solution matrix must be permuted in the inverse order of the row exchanges. 

For the convenience of the reader, we provide an outline of our implementation of 

a Gaussian elimination method for matrix inversion on a sequential machine. 

4. Observations on Sequential Gaussian Elimination 

A few general observations on Gaussian elimination, as it applies to matrix 

inversion, are in order. We will see that inversion requires fewer operations than 

the general application of Gaussian elimination. Secondly, the inverse construc

tion can be overlaid in the same data space as the transformed coefficient matrix 

thus forming a composite matrix. Thirdly, rows of the composite matrix become 

inactive during the algorithm, but the columns do not. This will have impor

tant consequences for the parallel version of the code. All of these observations 

will apply to the parallel implementation of Gaussian elimination as well as the 

sequential implementation. 

The operations count to solve a general linear system with n equations and 

n right hand side vectors is ~n3 , where the term operations count refers to the 

number of multiplications required. The operations count for matrix inversion is 

n 3 , where n is the matrix dimension.2 •5 The operations count savings associated 

with matrix inversion comes about because of the special nature of the right hand 

side vectors (i.e., only one nonzero element in each column). These savings exist 

in the parallel version also. 

As a second point, the nonzero elements of the inverse construct can be stored 

where zeros are produced in the original matrix during forward reduction. The in

verse construct begins as the unit matrix. As one column of the construct becomes 
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nonzero, the corresponding column of the transformed coefficient matrix becomes 

zero. This feature exists throughout the forward reduction. A organizational ben

efit of the storage of the transformed coefficient matrix and the inverse construct 

in a composite matrix is that the single matrix is transformed as a whole because 

the two parts transform in the same way. At the end of forward reduction, the 

coefficient matrix is an upper triangular matrix with ones on the diagonal and 

the identity matrix has become a lower triangular matrix. The inverse construct 

must be moved into separate data space before back substitution begins because 

it becomes full immediately. 

A third feature of Gaussian elimination is the growth of inactive matrix rows 

in both phases of the algorithm. Both inversion and the solution of general systems 

of equations have this characteristic. An inactive matrix row is one which is not 

modified further. The inactive matrix rows occur because the rows above the pivot 

row are not altered during the forward reduction and those below the pivot row 

are not altered during back substitution. For the solution of a general system of 

equations, the columns of the coefficient matrix become inactive also. In the special 

case of inversion, this growth of inactive columns is avoided by realizing that the 

inverse construct gains a new active matrix column precisely when the coefficient 

matrix loses one. Storage of the inverse construct where zeros are produced in 

the coefficient matrix during forward reduction yields a composite matrix whose 

columns are always active. During the back substitution, the inversion construct 

is a full matrix with no inactive columns and the coefficient matrix is not modified 

further. We conclude that any application of Gaussian elimination implies the 

growth of inactive matrix rows and that, in contrast to the general system of 

linear equations, matrix inversion can be accomplished without incurring inactive 

matrix columns. 

The remarks above hold for inversion in general; however, we wish to point 

out a feature of the particular algorithm just given. The multipliers for a given 

pivot row are calculated all at once and stored in a second array and the pivot row 
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is stored in a third array. It turns out that, even on a single processor, calculating 

the multipliers for all rows at once and storage of the pivot row in separate memory 

enhances program performance by simplifying the transformation loop. The cost 

is some extra memory. For the purely sequential version of the algorithm, this 

extra memory usage can be avoided. In the parallel version, this choice appears 

naturally, as will be discussed later in the paper. 

5. Sequential Gauss-Jordan Inversion 

The sequential Gauss-Jordan algorithm is an algorithm for in-place matrix 

inversion. It can be thought of as a simple modification of Gaussian elimination 

and has the same operations count: the elements of a column of the matrix, 

both below and above the diagonal, are set to zero in each step. (In Gau~sian 

elimination, elements in a column below the diagonal are set to zero during the 

forward reduction phase and elements in a column above the diagonal are set to 

zero during the back substitution phase.) As a result, no back substitution loop 

is needed nor is any extra memory for the inverse. 

On sequential computers, L U decomposition, which is closely related to Gaus

sian elimination, has largely replaced Gauss-Jordan inversion since the inverse of 

a matrix can be obtained from its LU decomposition in the same total number of 

operations. In addition, the L U decomposition is a useful first step in many other 

applications. However, for a parallel computer, Gauss-Jordan inversion has the 

advantage that no matrix rows become inactive at any stage of the algorithm. We 

shall see that this has several benefits. 

In order to understand how parallel Gauss Jordan inversion is superior to 

inversion by Gaussian elimination, when the sequential versions of these two al

gorithms are different only in organization, we must discuss parallel Gaussian 

elimination and its problems. 
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6. Parallel Gaussian Elimination 

The parallel matrix inversion program based on Gaussian elimination will 

be briefly reviewed. It is discussed more fully in an earlier memo.6 (The first 

discussion of linear algebra on the hypercube is presented by Fox.7 ) Once this 

parallel algorithm is outlined, its modifications to yield the parallel Gauss Jordan 

inverter will be simple, but with significant advantages. 

The basic strategy is to translate the sequential Gaussian elimination algo

rithm into a parallel algorithm with a minimum number of alterations. The two 

tasks that must be introduced into the sequential code are data distribution among 

the processors and interprocessor communications. Data distribution is set up at 

the beginning of the run when the complete data set is passed to every processor 

from the disk drive of the host sequential computer (e.g. VAX). The source code 

in each processor must contain logic which determines that part of the data set to 

be stored in its local memory. (Local refers to an individual processor.) After the 

initial down loading of data, a processor must communicate with other processors 

to fetch data that it does not have in local memory. Based on the data distribution 

chosen and the algorithm, the parallel processor program must be organized to 

initiate interprocessor communications when additional data in needed to proceed 

with the task. The communication routines available in the Crystalline operat

ing system must be called by both transmitting and receiving processors. The 

topics of data distribution and interprocessor communication may be clarified by 

considering a concrete application. 

How the global data (matrix) is distributed among the processors is the first 

decision that must be made and is closely linked with the algorithm chosen. It is 

important to distribute the data in such a manner that the interprocessor com

munication is minimized. For matrix inversion, the data distribution is straight

forward. Imagine that the processors are laid out in a two dimensional array. A 

hypercube architecture machine can always be configured as a two dimensional 
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array of processors. A function, appropriately named whoami, provides the nec

essary information for the application program in each node to understand how 

to communicate to its four nearest neighbors and what its coordinates are in the 

two dimensional array of processors. The communication channels for the two 

dimensional array of processors are along the column and the row containing the 

processor. Next, imagine superimposing the matrix onto the array of processors 

and placing each element of the matrix in the processor which it coincides with. 

This will be called the naive data distribution scheme. Our only modification 

of this idea for Gaussian elimination (see references 6 and 7) is that consecutive 

matrix rows are placed in consecutive rows of processors modulo the number of 

rows of processors. This is called the .5huffled-row data distribution scheme and 

is used to reduce work load imbalance as we shall see. In either case, a matrix 

column is contained in a single column of processors and a matrix row in a single 

row of processors. 

In order to be precise, the formulas for distributing the matrix are given. Let 

Nr and Nc be the number of processor rows and columns, respectively. Then 

matrix element a(i,j) is placed in processor row I and column J according to 

1. 
I=-; 

Nr 

when the naive distribution is employed and 

I = i modulo Nr; 

nruve 

shuffled-row 

when the shuffled-row distribution is employed. The arithmetic is strictly integer 

in these formulas. 
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Cartoons of the naive and shu:ffied-row distribution of a four by four matrix 

over a two by two arrangement of processors are shown below. 
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Once the matrix is distributed among the hypercube processors, parallel Gaus

sian elimination is essentially the same as the sequential version described above. 

The distinctions are that a processor works on its subset of the matrix instead 

of the entire matrix and t hat communications occur when a processor needs data 

held in another processor. Communications are necessary to provide a copy of 

the pivot row and the multipliers to every processor. Once a processor has these, 

the transformation of its part of the matrix is identical to that in the sequential 

algorithm. 

Multiples of the pivot row of the matrix are added to other matrix rows in 

order to produce a column of zeros, so the pivot row must be passed to ot her 

processor rows containing active matrix rows. One row of processors contains the 

pivot row at the beginning of each sweep through the matrix, and other rows of 

processors need the pivot row. Each processor requires only those elements of 

the pivot row contained in the same column of processors. To see this, remember 

that each processor holds a fraction of the total number of columns. It needs 

only the same columns of the pivot row. Since the data are distributed in such 

a manner that any matrix column is contained in a single column of processors , 
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the pivot row section contained in a given column of processors is passed to other 

processors in the same processor column. In other words, the pivot row needs only 

be passed to a subset of processors and the communications are row-wise (i.e ., no 

data are passed to processors in other columns of the processor array). Once each 

processor has a copy of that part of the pivot row which it needs, the multpliers 

are calculated and communicated. 

The multipliers are calculated using the pivot element and the matrix column 

that is to be set to zero in that step. These data are available in one column of 

processors and the multipliers must be passed to the remaining processor columns. 

A given row of the matrix is contained in a single row of processors. The multiplier 

for each matrix row will be calculated in one processor in the same row of proces

sors; therefore, the communication path for passing multipliers is across processor 

columns. The cartoon below illustrates the data fl.ow for the communication of 

the pivot row and the multipliers. The data fl.ow patterns are the same for both 

Gaussian elimination and Gauss-Jordan inversion. 

Now that the data distribution scheme and the algorithm's outline have been 

described, a few remarks about these are possible. The shuffied row data dis

tribution is necessary for an efficient Gau.uian elimination algorithm because it 

leads to a homogeneous work load among the processors as the forward reduction 
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or back substitution progresses. The growth of inactive (unmodified) rows of the 

matrix in both phases of Gaussian elimination decreases the work load in all of the 

processors. One matrix row becomes inactive at each step. The shuffled-row dis

tribution causes each successive inactive matrix row to appear in a successive row 

of processors. In other words, any processor contains no more than one inactive 

matrix row more than any other processor. By keeping the active matrix rows dis

tributed uniformly among the processors, the work load decreases homogeneously. 

It is important to optimum throughput that the work load remain uniformly dis

tributed at all times; otherwise, a small number of processors are overburdened 

while others are idle. The effective number of processors will then be less than the 

actual number, and the parallel computer will not perform as desired. 

In contrast to the shufH.ed-row scheme, the naive data distribution scheme 

with Gaussian elimination permits entire rows of processors to become idle when 

they contain only inactive matrix rows, while other processor rows contain no 

inactive matrix rows. (e.g., consider the first and last rows of processors at an 

intermediate part of the inversion). In fact, the last row of processors contains no 

inactive matrix rows for most of the execution when the naive data distribution is 

used with Gaussian elimination. Since these are the rate determining processors, 

it is as if there were no inactive matrix rows in the parallel algorithm as there are 

in the sequential algorithm. 

Work load inhomogeneity also arises during the calculation of the multipli

ers: only one processor column is responsible for finding them and the remaining 

processors must wait. This is not very detrimental to efficiency because the work 

involved is negligible compared to the remaining floating point arithmetic that 

the processor must carry out . In addition, as the work load of the entire machine 

decreases, the number of multipliers decreases commensurately and the work load 

inhomogeneity is not aggrevated. 

The rows of the matrix are shuffled to maintain work load homogeneity, but 

why not the matrix columns? The columns of the matrix remain active and there 
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is no need to insure that the active columns remain homogeneously distributed. 

In contrast, for L U decomposition, one would want to shufH.e the matrix columns 

as well as its rows, since both become inactive as the decomposition progresses. 

Work load decrease among the processors is harmful for another reason be

sides the inhomogeneity problems it raises: parallel computer efficiency depends 

on a high ratio of floating point operations to interprocessor communications. 

Declining floating point arithmetic in many processors coupled with a constant 

communication overhead leads to inefficient parallel algorithms. In the case of 

inactive matrix rows this is exactly what is happening. Every processor must pass 

the pivot row to its neighbor regardless of the number of active matrix rows it 

contains. The effect is not so important in the multiplier communication. As the 

work load of the processor row decreases, the number of multipliers communicated 

also declines so that the ratio of communication to multiplication is constant. 

We have described how the parallel computing issues set forth in the first 

paragraphs of the paper affect Gaussion elimination inversion. The bottom line is 

whether or not the additional operations, most notably communications, are negli

gible in comparision to those require to complete the given task in each processor. 

The reason communications are emphasized is that each word communicated re

quires a time on the order of that needed for floating point multiplication of the 

word. The integer arithmetic and logic in the software overhead for a parallel code 

is much faster and unless there is a very large amount of it, it is not influential 

on parallel performance. We will see below how the Gauss-Jordan algorithm for 

matrix inversion naturally lessens these problems. 

7. Parallel Gauss-Jordan Inversion 

In parallel Gauss-Jordan inversion, the matrix elements above and below the 

diagonal are zeroed in each sweep. This removes the need for a back substitution 

loop and separate storage for the inverse matrix. As a result, the work load is 

more homogeneous, there are fewer interprocessor communication calls, and the 
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software is simplified. Furthermore, just as in the sequential versions, the floating 

point operations count is the same for inversion by Gaussian elimination and 

Gauss-Jordan inversion. 

The absence of a back substitution loop and the fact that all nondiagonal 

elements of a matrix column are zeroed in each sweep imply that no matrix rows 

become inactive and the shuffled-row data distribution is unnecessary. Instead, the 

naive data distribution scheme is used. In addition, no matrix columns become 

inactive during matrix inversion in Gauss-Jordan inversion for the same reasons as 

the case of Gaussian elimination; therefore, the only source of work load inhomo

geneity is the calculation of multipliers. The Gauss-Jordan algorithm offers nearly 

homogeneous and constant work load distribution with no need for sophisticated 

data distribution schemes. This is one of the criteria for an effective parallel code. 

Another advantage of Gauss-Jordan inversion over Gaussian elimination is 

that half as many calls are required to the communication routines, and more 

data are passed in each call. Both parallel algorithms must communicate exactly 

the same amount of data and over the same pathways. The differences are the 

absence of a back substitution loop with its many communication calls and the 

concommitant increase in the data passed in each commmunication call in the 

Gauss-Jordan algorithm. Since pipelined data passing routines are available, the 

program benefits from fewer, more efficient communications calls. (The time for 

interprocessor communication is a linear function of the number of words commu

nicated with a constant term that is comparable to the coefficient of the linear 

term. Therefore, the communication time per word is twice as long for one word as 

it is for a multiword communication call.) Minimizing the interprocessor commu

nication load is the second requirement for efficient use of the hypercube computer. 

The last criterium we listed for an effective parallel code is low software over

head. With Gauss-Jordan inversion, the length of the program is l that of the 

parallel inversion code using Gaussian elimination, which implies a substantial re

duction of logic and switching overhead. This reduced overhead follows from the 
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absence of a back substitution loop and the need to separate the inverse construct 

from the original matrix. We conclude that Gauss-Jordan inversion in better than 

Gaussian elimination in all categories. 

8. Parallel Partial Pivtoing 

We have not yet considered the issues involved in partial pivoting on the 

hypercube. Pivoting degrades the efficiency of the parallel code because of the 

increased communication costs which are not compensated for by increased floating 

point work. Furthermore, the extra work involved in locating the pivot row is done 

in one processor column; hence, it is not uniformly distributed. We shall see in 

section 9, that pivoting does not reduce the parallel inversion efficiency to any 

great extent. 

Partial pivoting insures that rounding errors are minimized by using mull

pliers that are less than unity. Each sweep in Gauss-Jordan inversion zeros the 

nondiagonal elements of a column of the matrix. For the parallel algorithm, we 

have stored the matrix such that a matrix column is contained in a single column 

of processors. Each processor in the processor column must search through its 

part of the matrix column and choose the largest element in absolute value. Then 

each processor in the column of processors compares the pivot candidate from 

each other processor and takes the largest. The only subtlety occurs when two 

candidates for the pivot element are exactly equal in magnitude. In this case, a 

consistent convention must be in place so that every processor makes the same 

choice concerning which row of processors will hold the pivot row. The com

munication calls needed for the pivot row selection are relatively slow since only . 

one word is passed in each communication routine reference. At the end of the 

search, every processor must know which row of processors contains the pivot row. 

This requires that the column of processors which has determined the pivot row 

communicate column-wise to the remaining processor columns. 
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At the conclusion of the algorithm, the matrix columns must be interchanged 

to undo the effects of pivoting. The columns are permuted in the reverse order 

of the row interchanges. This task entails communicating every matrix column 

to every column of processors. The communications are efficient since they are 

multiword data transfers. The column permutation requires no floating point 

work. 

The extra work necessary for partial pivoting is poorly distributed and in

volves much communication, but will be seen to not significantly reduce efficiencies 

because the extra work is negligible compared to the other tasks. The complete C 

program for the hypercube is reproduced in the appendix and may be consulted 

for the details of the pivoting process. 

9. Efficiency Measurements 

Efficiency, e, is defined as 

time on a single processor 
time on N processors 

where N is the number of processors. The single processor times are obtained from 

runs on a single node of the hypercube. For the results discussed in this section, the 

single processor times are derived from runs of the .same program after removing the 

overhead of the parallel code (i.e . after removing the communication calls and the 

switching logic). We will refer to this modified parallel code as the sequential code 

for remainder of the paper. The sequential code is not an optimized library routine. 

The efficiency is unity when the time to complete a given task on one processor 

is reduced by k when N processors are used. Perfect efficiency implies that an 

N processor machine is N times faster than a single processor. Communication 

overhead, idle processors, and extra operations prevent the realization of unit 

efficiency. 

The efficiency of a parallel algorithm is salient because of the notion of using 

more processors to solve larger problems. Increasing the size of a task on a fixed 
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number of processors typically increases the efficiency towards some asymptote. If 

this asymptote decreases with an increasing number of processors, then the hope 

of solving problems that are currently too big by using parallel machines with a 

large number of processors is diminished. We will demonstrate that asymptotic 

efficiency approaches unity for the parallel Gauss-Jordan inversion program on all 

machines tested. 

The time required to transfer the matrix between the VAX disk drivers and 

the hypercube is not included in the efficiencies. Note that communication with 

the VAX disk drives is not performed during the matrix inversion. It occurs when 

the original matrix is down loaded onto the hypercube. 

Before giving the measured efficiencies, it is interesting to measure the cost of 

the software overhead in the parallel program. This is accomplished by running the 

complete parallel code and the sequential code on a single processor. The parallel 

program, even when run on a single processor, still contains substantial logic and 

integer arithmetic along with calls to communication routines which are not a part 

of a sequential program. The ratio of execution times of the sequential program 

and the parallel code run on a single processor as a function of matrix dimension 

is shown in figure 1. Both the pivoting and nonpivoting versions of Gauss-Jordan 

inversion are shown. The ratio of sequential code execution time to that of a single 

processor run of the parallel code gives a measure of the software overhead in the 

parallel code. From figure 1, we conclude that the software overhead necessary in 

a parallel code is of diminishing significance for increasing matrix size, and except 

for the smallest matrices, the ratio of times is near unity. We see that in the case 

of parallel matrix inversion, the distinction between single processor runs of the 

parallel code and the sequential code is not important. 

In figure 2 efficiencies for Gauss-Jordan inversion with pivoting as a function 

of the full matrix dimension are plotted for 2, 4, 8, 16, and 32 processors. The solid 

curves are straight line segments connecting the data points for a fixed number 

of processors and are provided as an aid in examining the data. The dimensions 
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of the matrices inverted are integral multiples of the number of processor rows 

and columns. This insures that the same number of matrix rows and columns are 

stored in every processor. 

The hypercube cannot allows be arranged in a .5quare array of processors. 

The number of processors in a hypercube is expressible as N = 2M where M = 

0, 1, 2, . . .. If M is even, then the two dimensional array of processors can be cho

sen to have equal numbers of processor rows and columns. If M is odd, then there 

must be at least a factor of 2 difference in the number of rows and columns of 

processors. For the curves in figure 2, the processors are configured with equal 

numbers of rows and columns of processors if M.. is even, and, if M is odd, the 

number of processor columns is twice the number of rows. These are the most 

efficient configurations of a fixed number of processors for Gauss-Jordan inversion 

with pivoting. This statement will be verified below. The efficiency is a monoton

ically increasing function of matrix dimension for a fixed number of processors. 

We can conclude that the work load imbalance and communication and software 

overhead are of diminishing importance as the matrix size increases. For any fixed 

matrix dimension, increasing the number of processors reduces the efficiency since 

it decreases the work load of all the processors. 

For the larger matrices, the efficiencies are 90% or higher for all numbers 

of processors examined in this study. The rate at which the efficiency approaches 

unity with increasing matrix dimension is smaller for larger numbers of processors, 

but the efficiencies do not appear to have an asymptote less than unity for any 

of the machines used. We conclude that for a fixed number of processors, the 

efficiency can be made as close to unity as desired by increasing the size of the 

matrix to be inverted. We will validate this finding again when we perform an 

operations count on the parallel algorithm in the next section. 

For global matrix dimensions greater than 88, the efficiencies are based on 

extrapolated sequential code times. The available memory of a single processor 

impresses a limit on the size of a matrix that can be stored and inverted. A single 
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page of memory on the Mark II boards ( 64K bytes) is sufficient for a 88 by 88 

double precision matrix. The extrapolation is based on fitting the single node 

times to a cubic polynomial for matrices with dimension 64, 72, 80, and 88. For 

documentation purposes, the cubic polynomial used is 

( 37 ) J n2 - 7 . 1 d . . -2 -- n + -- + 3.16n- 6 = smg e no e bme 1n 10 seconds 
3072 128 

where n is the matrix dimension. The coefficient of the n 3 term implies an effective 

time of 60 J.L8 per operation where an operation is 64 bit fioating point addition 

or multiplication. This is in fair agreement with the corresponding true hardware 

time measured by Otto and Kolawa of 40 J.LS.8 Of course the inversion code contains 

substantially more than a set of simple multiplications and additions which is 

reflected in the larger effective single operation time. The comparison between 

the effective operation time and the pure hardware time is made so that the 

extrapolation is substantiated. 

The assertion, that a square or nearly square array of processors is the opti

mum configuration for Gauss-Jordan matrix inversion, is substantiated in figures 

3 through 7. In these figures, efficiencies as a function of global matrix dimension 

are plotted for 2, 4, 8, 16, and 32 processors, respectively. In each figure, different 

curves correspond to different configurations of the processors. The best perfor

mance is achieved from a configuration as close to square as possible. If there 

must be an unequal number of rows and columns of processors, then the numbers 

should differ by only a factor of 2 and, it is slightly better to have more columns 

than rows of processors. The worst configurations are rings of processors and of 

the two possible ring arrangements, a single column of processors is the least ef

ficient. The analysis showing that a square or almost square (if necessary due to 

the number of processors) array of processors is optimum for matrix algebra was 

first done by Fox.7 •9 The current empirical results support his conclusion. 

As extreme examples, the two possible rings of processors provide insight into 

the relative importance of the communication costs and work load imbalances in 
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Gauss-Jordan inversion. A ring arrangement of processors takes the form of a 

single column or a single row of processors. A single column of processors has 

no work load inhomogeneity and reduced communication load: (1) there are no 

processors idle while multipliers are being calculated; (2) no multipliers need to 

be communicated since that requires column-wise data transfer and there is only 

one column; (3) partial pivoting leaves no processors idle; and ( 4) the final column 

exchange requires no data transfer. In contrast, a single row of processors boasts 

the advantage that the search for a pivot row and the subsequent row exchange 

need no communications. Since the best arrangement of processors is the one 

that is most nearly square, no single factor dominates. When the processors are 

not arranged in a square, it appears that the pivot row search and exchange are 

the most detrimental to the performance since it is better to have more processor 

columns than rows. 

It is interesting to investigate the effect of turning off pivoting in the inverter. 

Figure 8 displays the efficiency of the Gauss-Jordan algorithm without partial 

pivoting as a function of global matrix dimension. Each curve represents the 

best arrangement of the given number of processors. No extrapolated data are 

presented. From studying different configurations of processors, we have again 

found that the best arrangement of processors is that with the same number of 

processor rows and columns. This is the same conclusion reached in the pivoting 

version. If the processor array must be rectangular, then it is slightly better to 

have twice as many processor rows as columns, in contrast to the pivoting version. 

This difference can be rationalized as follows. In the nonpivoting version, the only 

work load inhomogeneity is the calculation of the multipliers. This favors a small 

number of columns of processors. 

Partial pivoting lowers the parallel efficiency slightly, but we can see by com

paring figures 2 and 8 that the differences are not large. Pivoting requires some 

inhomogeneously distributed work and more communication among the proces

sors. In spite of these differences between the pivoting and nonpivoting versions, 
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the square array of processors is the most efficient for both. This implies that the 

optimum configuration of processors minimizes the average communication path 

lengths in both the row and column directions. The fact that using partial pivot

ing lowers the efficiency is of academic interest only since it is a necessity in any 

general purpose inversion package. Matrix inversion without partial pivoting can 

be used only in special circumstances (e.g. for a well-conditioned, positive definite 

matrix). 

Finally, we present the efficiencies for matrix inversion with parallel Gaussian 

elimination in figure 9. This version does not perform pivoting. Figures 8 and 9 

have the same scales to facilitate comparison. The general shape of the efficiency 

curves is the same for both Gaussian elimination and Gauss-Jordan inversion, 

although the absolute positions of the curves are quite different. The Gauss

Jordan inverter is clearly more efficient than the Gaussian elimination inverter. 

This conclusion should come as no surprise in light of the earlier discussions: the 

Gauss-Jordan algorithm provides several enhancements over Gaussian elimination 

with no detracting features. Although the empirical efficiencies are hard evidence 

for our thesis that Gauss-Jordan matrix inversion is very efficient on the hyper

cube computers that we tested, an operations count is necessary to extend our 

understanding to the general hypercube and larger matrices. 

10. Operations Count 

An operations count gives confidence that the implementation of an algorithm 

is behaving correctly. By counting the total number of multiplications, additions, 

and communications in the slowest processor, the theoretical efficiency of the par

allel algorithm with respect to a sequential algorithm is determined. How well the 

empirical efficiencies agree with the theoretical ones reflects the quality of the im

plementation of the algorithm. In addition, the theoretical efficiency, if it agrees 

well with the observed, can be used to extrapolate to parallel machines or ma

trix dimensions not accessible currently. It is particularly important to establish 
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whether on not the asymptotic efficiency at large matrix dimensions depends on 

the number of processors used. 

The operations count for parallel Gauss-Jordan inversion will include commu

nication, multiplication, and addition costs. First, we will count the total number 

of communications to complete the inversion algorithm in the slowest processors. 

Next, the multiplication and addition count will be done for the slowest processor. 

Both floating point multiplication and addition are included because they require 

about the same amount of time (38.8 p.s and 38.1 p.s, respectively)8 on the In

tel 8086/87 processors. By definition, the slowest processor at any stage is that 

one which has the heaviest communication or multiplication load. Notice that 

the operations count is concerned with one processor's tasks not with the total 

operations of all the processors. Pivoting is ignored in our first operations count, 

but will be incorporated later in this section. The symbols used in this operations 

count are: 

n = number of matrix rows in each processor 

r =number of processor rows/number of processor columns 

nr = number of matrix columns in each processor 

N = number of rows of processors 

N 
-=number of columns of processors 
r 

C = total number of communications 

Cpiv =total number of communications to pass pivot rows 

Cmult =total number of communications to pass multipliers 

M = total number of multiplications 

A = total number of additions 

dim= nN =dimension of global matrix 

Interprocessor communications are required to pass the pivot rows and the 

multipliers. To transfer a single pivot row, each processor communicates n·r words 
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of data. This must be done for each global matrix row, so n 2rN words must be 

passed. To communicate the multipliers requires n words be passed for each global 

matrix row. The result is n 2 N communications to pass the multipliers. We find 

that the total communications count is 

C = Cpi v + Crnult 

Cpiv = n 2 Nr 

Crnult = n 2 N 

(1) 

(2) 

(3) 

The slowest parallel processor performs the same number of multiplications 

on its sub block of the matrix as is required by the sequential matrix inversion algo

rithm for a matrix of the same dimension as the subblock. For each global matrix 

row, n multipliers are calculated resulting in a subtotal of n 2 N multiplications. 

Given then multipliers and the nr elements of the pivot row, each processor must 

perform n 2 r multiplications and n 2 r additions for each global matrix row for a 

subtotal of n 3rN multiplications and the same number of additions. 

M = n 2 N +n3rN 

A= n 3rN 

(4) 

(5) 

Equation ( 4) overestimates the effective number of multiplications. It assumes 

that the processors in other columns are idle while the multipliers are calculated. 

In fact, the other processor columns are idle only when the multipliers are cal

culated for the first time in a processor column. This is easily seen by example. 

The first set of multipliers are calculated in the first column of processors while 

the other processor columns are idle. After that, the other processor columns 

are n steps behind the first processor column and do not become idle waiting for 

the multipliers. Each time a processor column first calculates the multipliers, the 

other processor columns wait. The new expression forM is 

(6) 
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In order to find a single operations count that includes communications, mul

tiplications, and additions, C must be converted into effective multiplications. 

Multiplications and additions take the same amount of time.8 Let Ai represent 

the ratio of multiplication to communication time. Multiplication time is that 

necessary to fetch two floating point numbers from memory, multiply them, and 

put them back in memory. Communication time is the time per word to trans

fer i words between neighboring processors in a single call to a communication 

routine. The total communication time varies linearly with the number of words 

transmitted. 8 

tcomm(i)jp.s = 82i + 90 (7) 

where i is the number of 64-bit words passed in a single transfer and includes 

both reading and writing. The communication time per word is longer for one 

word than for many words due to the startup time which is independent of the 

number of words transmitted. Ai = A00 within 1% when i > 100. Ai allows 

the conversion of communication time into effective multiplication time so that 

communication count can be added to the operations count resulting in a total 

parallel operations count. The total operations count for the parallel Gauss-Jordan 

inversion algorithm without pivoting is 

Total effective multiplications= M +A+ AnCmult + AnrCpiv (8) 

Total effective multiplications= 2n3rN + nN/r + n 2 N(rAnr +An) (9) 

which can be simplified for n large enough to set Anr = An = Aoo. 

Total effective multiplications= 2n3 rN + nN/r + A00n 2 N(r + 1) (10) 

The leading term in the multiplication count goes like n 3 and that in the com

munication count goes like n 2 for a fixed number of processors. For n ---+ (X)' the 

multiplication count dominates the total parallel execution time. In particular, 

the communication time can be made negligible compared to the floating point 
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arithmetic time. Fox pointed out that this observation holds in most parallel lin

ear algebra algorithms for the hypercube if the data in distributed sensibly. It 

is important that the coefficient of the n 3 term is linear in N, because this leads 

to unit asymptotic efficiency regardless of the number of processors. If the cubic 

term varies with a higher power of N, then unit asymptotic efficiency would not 

be achievable. 

The sequential algorithm requires 2(dim3 -dim2 ) floating point operations to 

second order in the matrix dimension and no communications. Using the definition 

of efficiency, we find 

e = 
1

- cdm where a = Aoo(r + 1) d f3 1 
1 + ~ + j}_ 2r an = 2r2 

n n 2 

This theoretical efficiency simplifies for large matrices and large n to 

a 
e= 1-

n 

(11) 

(12) 

where a in independent of n, the number of matrix rows in each processor and N, 

the number of processor rows. This expression shows that for any given number 

of processors, the theoretical efficiency tends to unity as the matrix dimension 

Increases. 

It is implicit in the discussion above that there is one value of .\ for all of 

the communications. This is valid if the number of matrix rows and columns in 

each processor is large enough to use the asymptotic value of the communication 

time per word. The timing information for multiplication and communication on 

the Mark II hypercube is determined by the hardware and is given by Otto and 

Kolawa.8 From this reference, the value of A00 ~ 1. Given this single, hardware 

dependent parameter, the expression for the efficiency depends only on the number 

and configuration of the processors and the size of the matrix (i.e., the expression 

provides an absolute value for the efficiency). In the efficiency estimates given 

below, we used the full expression (9) for the execution time of the parallel code 

and the linear equation (7) for tconun(i). 
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Figure 10 shows the predicted and observed efficiencies. The theoretical ef

ficiencies are calculated for the same matrix sizes as those for which efficiency 

was measured. The empirical efficiencies are represented by the markers with no 

connecting curve. The theoretical efficiencies are unmarked and are connected by 

straight line segments. The highest theoretical curve corresponds to the highest 

empirical data. The next highest curve corresponds to the next highest mark

ers and so on. Only unextrapolated times are listed because the extrapolation is 

less reliable than the efficiency estimate. The operations count could be used to 

extrapolate the single node times in principle, but it is desirable to avoid extrap

olation with a expression which is the object of our tests. The agreement between 

the theoretical efficiencies, which have no adjustable parameters, and the observed 

efficiencies in all cases shows that the program is well behaved and that all the 

important issues in this parallel program are accounted for. Most importantly, the 

conclusion that unit efficiency is achievable with large matrix sizes on any number 

of processors is supported by the level of accuracy of the theoretical efficiency for 

the cases that are accessible. 

Including partial pivoting in the parallel operations count increases the num

ber of communications and does not affect the number of multiplications and 

additions. N - 1 communications of a single word occur for each pivot row se

lection, yielding a total of (N · n- 1) · (N- 1) communications. To permute the 

matrix columns at the end of the algorithm requires 2 · ( n · N - 1) · n communica

tions: (N · n- 1) column exchanges are required, each column exchange requires 

2 columns be passed, and each column contains n elements locally. The column 

permutations allow n words to be transfered in a communication routine call and 

hence require less time per word than the single word communication calls needed 

in the pivot row selection process. The following total operations count is obtained 

for Gauss-Jordan matrix inversion with pivoting on the hypercube. 
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We have again assumed that Anr = An = A00 • Since pivoting does not affect the 

number of multiplications, the multiplication count still goes like n 3 in leading 

order. The communication count still goes like n 2 to leading order, but the corre

sponding coefficient is different for the pivoting and nonpivoting versions. Pivoting 

has introduced a term linear in n that behaves like N 2 , the square of the number 

of processor rows. The N 2 term reflects the communication load in the pivot row 

selection task and can be nonnegligible for large numbers of processors and mod

est matrix sizes. For a fixed number of processors, it can be made negligible to 

the floating point work by increasing the dimension of the matrix. The efficiency 

estimate for the pivoting version of Gauss-Jordan inversion is 

1- -d~ A00(r + 3) and a= 1 + At(N- 1)r 
t: = un • where a= ----'---~ ,.., 

1 + ~ + 1i. ' 2r 2r2 
n n 2 

For n > > N, this simplifies to the same form as the non pivoting efficiency 

a 
t:=l-

n 

We have assumed that the operations count for the pivoting version of the sequen

tial algorithm is unchanged since it involves inequality evaluations and intrapro

cessor data relocation are neglected but no floating point work. 

Theoretical efficiencies for the parallel Gauss-Jordan inverter with pivoting 

do not agree well with the observed. In all cases the theoretical estimates are too 

low. It is our belief that the discrepancy arises from neglect of the inequality eval

uations, intraprocessor data movement, and loop overhead which are substantially 

increased in the pivoting version of both the sequential and parallel codes. The 

pivot selection part of the parallel code is roughly one half of the total source code. 

It is our experience that this many lines of code take nonnegligible execution time, 

even if the tasks do not involve floating point arithmetic. This non-floating point 

work is not included in our operations count for either the parallel or sequential 

codes. In principle, these tasks can be timed and included in the operations count, 

but this is typically not done and will not be done here. For the largest matrices, 
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the pivoting efficiency estimate is within a few percent of the observed. Our con

clusion is that for very large matrices, the parallel software overhead is negligible, 

but not for intermediate and small matrices. The nonpivoting efficiency estimates 

are in good accord with the observed for all matrix sizes because there is very 

little software overhead. Given the pedestrian nature of the parallel operations 

count, it is remarkable that the efficiency estimates for the nonpivoting version 

agree with the observed as well as they do. (Recall that the theoretical efficiency 

is an absolute prediction based on hardware performance and the algorithm.) An 

improvement in the efficiency estimates for the pivoting version will require that 

the other operations performed by the code be included in the count in addition 

to the arithmetic operations and communications. 

11. Summary 

In summary, the Gauss-Jordan matrix inversion algorithm with pivoting is an 

efficient algorithm for parallel computation. Some of the reasons for this efficiency 

have been discussed. Two important observations are that the work load of each 

processor is nearly constant throughout the algorithm and is homogeneously dis

tributed among the processors. In addition, references to communication routines 

are kept a low as possible. Most importantly, we have seen that the communica

tion costs increase more slowly n 2 than the floating point costs n 3 with increasing 

local matrix subblock size n. For this reason, floating point work dominates the 

communication costs for large matrices and the parallel program is efficient. 

In contrast, Gaussian elimination applied to matrix inversion involves decreas

ing work loads in each processor and it was necessary to distribute the data in such 

a manner that the work load remained homogeneously distributed throughout the 

processors. Gaussian elimination uses twice as many references to the communi

cations routines in order to transfer the same amount of data. Since pipelined 

communications are available, this increase in the number of references is detri

mental to efficiencies: the effective communication costs are higher because each 
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communication takes more time. In spite of these shortcomings, Gaussian elimi

nation does have an asymptotic efficiency of unity. 6 It is simply not as efficient as 

Gauss-Jordan inversion on a given matrix and hypercube computer. 

It is remarkable that the parallel implementations of two essentially equivalent 

sequential algorithms have very different characteristics and that one is clearly 

superior. One would not choose between Gaussian elimination and Gauss-Jordan 

inversion for a sequential machine based on performance considerations; however, 

for a parallel machine one would do just that. 

We have shown that the Gauss-Jordan algorithm is well understood by the 

agreement between the theoretical efficiencies and the empirical ones. The the

oretical efficiency supports our conclusion that unit efficiency is possible for this 

program on any size hypercube in the limit of large matrix sizes. Although we 

have measured the performance of our program on a wide range of matrix sizes 

and on the possible configurations of 2,4,8,16, and 32 processor hypercubes, cur

rent machine memory is insufficient for empirical verification of our conclusions of 

unit asymptotic efficiencies to the degree that we would like. In spite of the small 

matrix sizes that could be studied, we observed better than 90% efficiency on all 

of the hypercube computers. 

If parallel algorithms which perform as well as Gauss-Jordan inversion can 

be found for most linear algebra tasks, then parallel computing has the potential 

of providing the performance necessary to address some very large problems in 

scientific computation. 

Acknowledgement": One of us (Paul Hipes) would like to thank Peter Noerdlinger 

for pointing out some potential problems in the pivot row selection part of the 

parallel program. 
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Figure Captions 

Figure 1. Ratio of the execution time of a true sequential version of Gauss

Jordan inversion to the execution time of the hypercube version of Gauss-Jordan 

inversion on a single processor as a function of the global matrix dimension on the 

Cal tech Mark II hypercube. The ratios of execution times without partial pivoting 

are represented by square markers. The ratios with partial pivoting enabled are 

represented by triangular markers. The curves are straight line segments connect

ing the corresponding markers and are used to guide the eye. The term global 

matrix dimension is used to denote the dimension of the full matrix regardless of 

the number of processors. 

Figure 2. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on the 

Cal tech Mark II hypercube as a function of the global matrix dimension. Different 

markers and curves correspond to different total numbers of processors working in 

parallel as indicated by the label on each curve. The number of rows and columns 

of processors used is the most efficient arrangement for that number of processors 

(see text). Squares refer to configurations of the hypercube with two processors. 

Pluses refer to a four processor configuration. Circles refer to an eight processor 

configuration. Crosses refer to a sixteen processor configuration. Triangles refer 

to a thirty two processor configuration. Straight line segements between markers 

are simply a guide to the eye. 

Figure 3. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on 

two processor configurations of"the Cal tech Mark II hypercube as a function of the 

global matrix dimension. The ordered pair of numbers labeling each curve gives 

the number of rows of processors and the number of columns as (number of rows 

of processors, number of columns of processors). Straight line segments between 

the markers are simply a guide to the eye. 

Figure 4. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on 

four processor configurations of the Caltech Mark II hypercube as a function of 

the global matrix dimension. See figure 3 for details. 
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Figure 5. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on 

eight processor configurations of the Caltech Mark II hypercube as a function of 

the global matrix dimension. See figure 3 for details. 

Figure 6. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on 

sixteen processor configurations of the Caltech Mark II hypercube as a function 

of the global matrix dimension. See figure 3 for details. 

Figure 7. Efficiency of Gauss-Jordan matrix inversion with partial pivoting on 

thirty-two processor configurations of the Cal tech Mark II hypercube as a function 

of the global matrix dimension. See figure 3 for details. 

Figure 8. Efficiency of Gauss-Jordan matrix inversion without partial pivoting for 

the most efficient configurations of the Cal tech Mark II hypercube as a function of 

the global matrix dimension. Different markers and curves refer to different total 

numbers of processors as indicated by the curve labels in the figure. The straight 

line segments between the markers are simply a guide for the eye. 

Figure 9. Efficiency of Gaussian elimination inversion without partial pivoting on 

the Cal tech Mark II hypercube for the most efficient configuration of the processors 

as a function of global matrix dimension. Different markers and curves refer to 

different total numbers of processors. The ordered-pair label associate with each 

curve in the figure indicates the number of rows of processors and the number of 

columns of processors as (number of processor rows, number of processor columns). 

The product of the two elements of the ordered pair is equal to the total number 

of processors for that curve. The straight line segment between the markers are 

simply a guide to the eye. 

Figure 10. Empirical and theoretical efficiencies for Gauss-Jordan matrix in

version without partial pivoting on the Caltech Mark II hypercube as a function 

of global matrix dimension. Different markers and curves refer to different total 

numbers of processors arranged in the most efficient configuration. The total num

ber of processors is indicated by the label associated with each curve. The curves 

are theoretical efficiencies derived from formal operations counts for a variety of 
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total numbers of processors. The markers are empirical efficiencies for the same 

configurations and total numbers of processors as the theoretical curves. The up

permost curve corresponds to a total number of two processors and is associated 

with the uppermost markers (squares). The second curve from the top corresponds 

to a total of four processors and is associated with the pluses. The third curve 

from the top corresponds to a total of eight processors and is associated with the 

circles. The fourth curve from the top corresponds to a total of sixteen proces

sors and is associated with the crosses. The bottommost curve corresponds to 

thirty-two processors and is associated with the lowest set of markers (second set 

of squares). The sections of the curves between the abscissa values corresponding 

to the markers are straight line segments and are not based on the theoretical 

analysis. 



0 
; as 0.9 
a: 

- 253-

20 40 60 80 100 

Global Matrix Dimension 

Figure 1 . 



0.8 

~ 0.6 
c:: 
C1) 
"(3 
:;::::: -w 0.4 

0.2 

50 

- 254-

Pivoting 

100 150 200 250 300 

Global Matrix Dimension 

Figure 2. 



0.8 

~ 0.6 
c:: 
Q) 

·u 
;: -w 0.4 

0.2 

- 255 -

Pivoting 

o~--~--~--~----L---~--~--~----L---~--~ 
20 40 60 80 100 0 

Global Matrix Dimension 

Figure 3. 



0.8 

~ 0.6 
c 
G) ·o 

:;:: -w 0.4 

0.2 

- 256-

(1,4) 
(2,2) 

Pivoting 

50 100 150 200 

Global Matrix Dimension 

Figure 4. 



0.8 

~ 0.6 
c: 
Q) ·a 
;:: w 0.4 

0.2 

- 257-

(4,2) 

Pivoting 

QL-~~~~~~~--~~~~~~~~--~~~~~ 

0 50 100 150 200 

Global Matrix Dimension 

Figure 5. 



0.8 

>. 0.6 
0 c 
Q) ·o 
;::: w 0.4 

0.2 

(16, 1) 

- 258 -

(2,8) 

(8,2) 

Pivoting 

(4,4) 

o~~~~~~~~~~~~~~~~~~~~~~~ 

0 50 100 150 200 250 300 

Global Matrix Dimension 

Figure 6. 



0.8 

>- 0.6 
0 c 
Q) 
"(j 
;: w 0.4 

0.2 

50 

- 259-

(4,8) 

(8,4) 

Pivoting 

100 150 200 250 300 

Global Matrix Dimension 

Figure 7. 



- 260-

0.8 

~ 0.6 
c::: 
Q) 
"(j - No Pivoting -w 0.4 

0.2 

20 40 60 80 100 

Global Matrix Dimension 

Figure 8. 



- 261 -

1.0.---~--,--~----,---~---.--~----,---~--~ 

0.8 

>- 0.6 
CJ c 
Q) 

·c:; 
; w 0.4 

0.2 

__ ...... --< 1 ,2) 

__._____......- (2,2) 

--(4,2) 
--(4,4) 

---(8,4) 
--(8,8) 

No Pivoting 
Gaussian Elimination 

o~--~--~--~----~--~--~--~----~--~--~ 
0 20 40 60 80 100 

Global Matrix Dimension 

Figure 9. 



1.0 

0 .8 

~ 0.6 
c 
Q) ·o 

; -w 0.4 

0 .2 c 

- 262-

c c (2,1) 
(2,2) 
(4,2) 

c (4,4) 
(8,4) 

20 40 60 80 100 

Global Matrix Dimension 

Figure 10. 



263-

Repria!H from The JourD&I ot Physical Chemiltry, 1986, 90. 3630 
Copyricht <D 1986 by the Americaa Chemical Society aad repriated by permilaioa or the copyri&ht 0'11'11er. 

A Test of the Babamov-Marcus Vlbratlonally Adiabatic Theory of Hydrogen Atom 

Transfer Reactions 

Paul G. Hipes' llDCI Aroa Kuppermaan• 
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Pasade110, California 91125 (Received: January 29. 1986; /11 Fi110/ Form: April /6, 1986) 

Acx:urate qiWitum·mccbanic:al reaction probability calculations for a a>llinear triatomic model of the abstraction of a hydrosen 
atom from a methane molecule by a methyl radical were performed. The calculations used the method of hyperspherical 
coordinates and a LEPS potential energy surface having a realistic ( 13.86 ltcalf mol) barrier to reaction. With the same 
surface, the same reaction probabilities were calculated by using the Babamov-Marcus vibrationally adiabatic model. It 
wu found that for reagents in their ground and first two vibrationally excited states, this model displayed a dynamically 
correct qualitative behavior. In addition, the reaction probability from the ground vibrational state was accurate to within 
6% for translational energies from 0.35 to 0.51 eV. 

bllroducdoa 
The abstraction of a hydrogen atom from a molecule by a 

methyl radical is a commonly studied reaction. Arrhenius pa· 
rameters derived from gas-phase IDnetics studies have been tab
ulated.' There has also been much interest in the hydrogen atom 
abstraction from small organic molecules by methyl radicals in 
frozen matrices.,... This interest is stimulated by the obeervation 
of finite , temperature-independent rate constants at very low 
temperatures. This phenomenon is interpreted as a manifestation 
of quantum-mechanical tunneling through a potential energy 
harrier. The low-temperature experiments are often analyzed with 
the aid of corrections to transition-state theory to account for 
tunneling.'·' The corrections are based on the solution of one
dimensional barrier penetration problems. A different approach 
is to model the tunneling in the hydrogen atom transfer by a 
collinear, three-particle reaction. Although the collinear (two
mathematical-dimensional) constraint is rather severe, some im· 
portant aspects of the dynamics of light-particle transfer can be 
gleaned from such a study. not only at the low translational 
energies at which tunneling is important but also at significantly 
higher energies. 

Collinear heavy-light-heavy (H-L-H) mass systems have 
generated substantial theoretical activity recently. Until the 
introduction of hyperspherical coordinates to collinear reactive 
scattering,9•10 these systems were difficult to treat quantum me
chanically." Now a variety of symmetric12- 15 (A + BA) and 
uymmetric16-19 (A+ BC) systems have been solved accurately. 
Some general characteristics of reaction probabilities for the 
hea~ight-heavy systems have emerged: pronounced Olcillatory 
dependence on collision energy and near conservation of trans· 
lational energy.•Hs.lO Tbe latter characteristic is equivalent to 
vibrational adiabaticity in symmetric systems and has been ex
ploited to develop efficient and accurate approximations for 
collinear reactive scattering in both symmetricl!.lO-ll and asym· 
metric11.19.ll-25 systems. Resonance positions and widths have been 
approximated in heavy-light-heavy and in more general systems 
by using the ideas of adiabatic separation of degrees of free
dom.u.IS,17.ll.l6-l> Efforts to extend the collinear heavy-light
heavy results to 30ll-l' have suggested that the Olcillatory oollinear 
reactive probabilities may be manifested as oscillatory cross 
sections in the real world. It should be recognized that the current 
intense interest in adiabatic separation of variables has its origins 
in the early work of Marcus.36 

In this paper, we present the results of accurate quantum· 
mechanical calculations for a oollinear model of the hydrogen atom 
exchange between a methane molecule and a methyl radical. The 
methyl moiety is represented by a structureless point having the 
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TABLE 1: LEPS Poc.dal Uorc s.rface p.,._.,.. ud 
CMnoeteriotla 

C-H interaction C -C interaction 

(J/ bohr-• 
R./bohr 
D,f cV 
4 

0.9420 
2.0662 
4.7270 
0.1850 

barrier hei&ht: 13.86 ltcalf mol 
altcw anale: 20.4° 
£(n•O) • 0.1803 eV 
E(n•l) • 0.5304 eV 
£(n•2) • 0.866S eV 
MH • 1.0078 amu 
MCH, • IS .0235 amu 

0.81S 
2.910 
3.660 
0 

mass of the methyl radical. Hyperspherical coordinates are used 
lO formulate the scattering problem exactly.9•10 Accurate solutions 
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Flpre 1. Potential enerJY contoun for the model H,C-H-<:H, LEPS 
surface in Delvea masa scalod coordinatea (solid linea). The loweat coo· 
tour is for 0.16 eV. the hipeat is for 0.8 eV. and the enerJY increment 
between OOIIJ«Utive COIIIDWS is 0.04 e V . The dubed line is the minimum 
enerJY patb. 

to the SchrOdinger equation are gcnCTated numerically by using 
a diabatic representation. Reaction probabilities from the lowest 
three vibrational levels arc presented. In addition, transition 
probabilities calculated by using the Babamov-Marcus vibra· 
tionally adiabatic modcil1 for symmetric, collinear, bcavy
light-bcavy systems are compared with the accurate results. This 
model and its extension to asymmetric systems have been shown 
to be good at rather low translational energies for reaction from 
the lowest vibrational level'5.l0.2l and from tbc rtrst vibrationally 
excited level of tbc reagent." We will examine the applicability 
of the adiabatic model for transitions from the first two excited 
vibrational levels of the reagent in addition to thole from the lowest 
level. 

Pote.dal EMr-u s.rface ud COMerpKe 
The potential energy surface is of the LEPS form,37.l1 and 

potential contours arc shown in Figure I. This surface was 
previously used by Ovchinnikova" and by Babamav and Man:u.s.11 

The barriCT height is 13.86 kcalfmol, in accord with the gas-phase 
activation energy. The LEPS parameters arc listed in Table I 
alons with some surface cbaractcristica. It should be noted that 
the asymptotic Morse parameters do not reproduce any spec· 
troscopic transitions of methane. 

The bypenpherical coordinate method used to accurately solve 
the SchrOdinger equation for a collinear, three-particle system 
has been described clsew~ and will not be repeated ben:. The 
adiabatic model will be discussed after the accurate results are 
presented. The convcrscncc of the accurate numc:rical results with 
respect to basis size, projection distance, and othCT numerical 
paramctcn was investipted. The number of circular rings into 
which aliUIIUf&lion space was divided. with a sinaJc set of coostant 

(2') NalwDara, H.; Obaaki. A. J. Cllmo. Plty1. 1915. IJ. I ,99. 
(26) Kuppamann. A.; [)wyor. J.P. Abnracu of P~. lltb International 

Conference 011 the Pb)'lica o( Eleruoaic aod AICIDic: Collili0111, Kyoto. Japau; 
Society for Atomic Collision Reaea~b: Tokyo, Japaa. 1979; pp 881. 889. 

(27) Lauaay. J. M .; LeDoumeuf. M. J. Plty1. 6 1912. 1$. U,. 
(21) RllcMit. J. Cum. Plty1. 1913. 79. 197. 
(29) Maaz. J.; Scbor. H. H. R. Clt•m. Plty1. Lnr. 1914. 107. ,.2. 
(30) Kulandcr. K. C" Maaz. J .; Scbor. H. H. R. /. c.vm. Plty1. lta5. 111, 

3011. 
(31) Manz. J .; Pollak. E.; R6mclt. J. Cum. Plty1. 1..611. 1912. 116. 26. 
(32) Pollak. E.; R6mclt. J. J. Cum. I'Ay1. 1914.110. 3613. 
(33) Pollak. E.; Bacr. M.; Abuaalbi. N.; KOI&ri. D. Cum. Plty1. ltaS. 99. 

u. P•> Abwalbi. N.; Kim. S. H.; KOI&ri. D. J.; Bacr. M. Cltlm. Plty1. 1..611. 
1914. 111. S02. 

ll'l Bacr. M.; Lut. 1. Cum. Plty1. utt. ltaS. 119. 393. 
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W. H .. Ed.: Plenum: New York. 1976; pp 6~9. 
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l'1pn l. Accurate transition probabilitiea u a function of energy. f'!. 
indicates the reaction probability from vibrational level "of the =gents 
to the vibrational level 11' of the reaction proclucu. The scale on the 
bottom abscisaa on each panel denotes tbe translational energy of the 
rea..,.,L The scale on the upper abocissa of the top panel denotes the total 
ll}'ltem ODCfJY mcasurod from the bottom of tbc isolatod reaaent potential 
CDerJY curve. This scale is common to all panela. The number in par· 
entbesea bcaide some of the eurvea indica tea the factor used to multiply 
the reaults before plottina. The arrowa labeled "barrier" in the bottom 
abacisaa of panela a and b indicate the eneriY of the classical barrier 
heipL 

hypcrradius basis functions PCT rina, was 40. A basis set of four 
even and four odd functions was found to be adequate for con
vergence of the ~ (sec Fisure 2) within I% over the cnCTgy range 
studied (0.2-J.JS-eV total cncrsy. with respect to the bottom of 
the isolated H-cH1 diatom potential cnCTgy curve). J>j', required 
riVe even and five odd basis functions. and 11, required seven even 
and seven odd basis functions for the same degree of convergence. 
The numerical method involves a projection of the solutions onto 
an asymptotic atom-iliatom basis set prior to the calculation of 
the scatterina matrix and transition probabilities. For tbe latter 
to become independent of the atom-diatom distance at which this 
projection is performed, to within tbe convcracncc mentioned, it 
sufficed to integrate the coupled radial equations from an initial 
value of the bypcrradius of S.4 bohrs out to 20 bohrs. 

The adiabatic model used requires the solution of two uncoupled 
ordinary differential equations to obtain phase shifts, and con· 
veracnce was obtained with respect to the corrcspondins discrc· 
tization parameters. 

Resoaltl of Ac:c:urale CaJculatJo. 
Fisurc 2 shows the accurate reaction probabilities from the fint 

three levels of the rcaaent. The fint feature of tbe results which 
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is noticed is the dominance of reactive transitions which preserve 
the vibrational quantum number (i.e., vibrationally adiabatic 
transitions). Reactive transitions between the states whose 
quantum numbers differ by unity are an order of magnitude 
smaller than the adiabatic ones. A change of two vibrational 
quanta is 2 orders of magnitude less probable than conservation 
of the quantum number. (Tbe small 06cillations in the ~'curve 
of Figure 2 probably represent numerical inaccuracies.) This neas 
conservation of vibrational quantum number bas been observed 
in a number of Other collinear calculations consisting of the transfer 
of a light panicle between two heavier ones (H-L-H) of equal 
mass.u-as 

The effect is kinematic in origin and is explained by an argu
ment analogous to that used in the Born-<>ppenbeirner separation 
of nuclear and electronic motion. 21•40 At low translational entr)lies, 
the light particle (the hydrogen atom in the present case) vibrates 
quickly on the time scale of the heavy-panicle motion. In an 
approximate sense, the two heavy panicles approach and recede 
in a potential averaged over the vibrational motion of the light 
panicle. As the translational energy of relative motion increases, 
the decoupling of the vibrational and translational motion is less 
accurate. It is inherent in this picture that the vibrational quantum 
number is unaffected by the collision of the atom and the diatomic 
molecule and hence is adiabatic. Tbe concept that the transfer 
of a light panicle between heavy ones can be approached via an 
adiabatic separation between the oom:sponding degrees off~ 
bas been used previously. as discussed in tbe Introduction. It bas 
also been argued that a natural adiabatic separation between the 
byperradial and byperangular motions exists for general mass 
combinations when hyperspherical coordinates are utilized."·•• 
This near-adiabatic separation is responsible for the rapid con
vergence of coupled channel expansions in these coordinates. Tbe 
general argument for the separation of time scales in reactive 
transitions focuses attention on the strong interaction region of 
the potential energy surface (Figure 1). In this region, as the 
panicle moves from reagent channel to product channel, the 
hyperangle (plane polar angle for collinear triatomic systems) 
changes by a large fraction of its allowed range while the by
perradius (plane polar radius for collinear triatomic systems) 
changes relatively little, which results in an adiabatic separation 
of angular and radial motion.'b." However, as pointed out by 
Babamov and Marcus, 21 the class of heavy-light-heavy mass 
combinations is the one for which the adiabatic separation is 
expected to be most valid. Under these conditions, only vibra
tionally adiabatic transfer processes would be expected. This 
agrees qualitatively with the results in Figure 2. 

Another prominent characteristic of the accurate results is the 
significant degree of tunneling from the lowest vibrational level 
of the reagent to that of the product. For energies above the 
classical barrier height, to determine the fraction of reactive 
probability nux which passes into the product channel via runneling 
through classically forbidden regions of configuration space re
quires an analysis of the probability current density streamlines.•'" 
However, below the classical barrier height. any reactive flux is 
necessarily due to tunneling. From Figure 2a, we see that the 
probability for reaction from the n • 0 level of the reaaent to the 
n • 0 level of the product is sianificant at eneraies below the 
classical barrier. For eneraies close to that barrier but still below 
it. the reactive pathway dominates over the nonreactive one. Tbe 
physical reason for the prominence of tunnelina is the heavy
light-heavy mass combination. Such mass combinations lead to 
small Delves skew anales.•>b A panicle approachina the strona 
interaction reaion does not have to penetrate the barrier at the 
saddle point to move into the product channel. It can cut the 
corner over a sianificant portion of configuration space for which 
the classically forbidden region is narrow (i.e., bas a width of the 
order of the system's local de Broglie wavelenatb or tess•"'). Tbe 

(.CO) 11om, M .; Oppenheimer, J. R. AM. Phys. 19%7, 14, 457. 
(41) Fano. U. Phys. Rn>. A 1911, U, 2.C02. 
( 42) Kuppmnaaa, A. Ia Tlo«>ntlctJI Clllmistry. Adrxvtcu altd Ptnpoc

tlrwr, HendcnoD, D .. Ed.; Academic: New York. 1911; Vol 6A, (a) pp 
IQ0-107. (b) p 15, (c) pp lfr-17. 
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f1..,-e 3. Coordinates ror a collinear triatomic system. 

beavy-li&ht-beavy mass combination increases this reaion of 
configuration space. The result is increased tunneling for such 
combinations. In the low-temperature abstraction of hydrogen 
atoms by radicals, the presence of apparent tunnelina phenomena 
is not at all surpruina from a theoretical standpoint. It has Ions 
been understood that tunnelina probabilities in one dimension 
increase as tbe particle mass decreases. Tbe collinear model, which 
involves two mathematical dimensions, bas led us to a clearer 
perspective, namely that tunnelina can occur by comer-cuuina 
away from the saddle point.•24·•1 

In summary, the reaction dynamics of this collinear model of 
hydroaen atom abstraction from methane by a methyl radical is 
characterized by dominance of vibrational adiabaticity and sia
nificant tunnelina from the n • 0 level. 

Villradoally AdiaNdc Model 

Tbe treatment aiven here roughly parallels that of ref 21 and 
is provided for completeness. Let A •• A8, and A, represent the 
three atoms of mass m~ mil> and m,, respectively. We define two 
sets of coordinates R.' .r.' and R.,' .r; shown in Fiaure 3, where 
o., and Go6 are the centers of mass of A.,A, and A.,A8, respec
tively. Let the subscript>. take on the values a or 'l'· Both sets 
of coordinates can then be represented by R.' ,r;. We now define 
the Delves scaled coordinates"·" R,.r. as 

RA • al.R>/ (I) 

,.), • al.-•rJ.' (2) 

where 

a, • (p,_/1.<")'1• (3) 

m,(m,+ m,) 
~'"-- (4) 

m"+ m,+ m .. 

and 

jjN -~ (5) 
m.+m. 

Tbe set of indices >-.•• stands for either a.{J')' or ')'.{Ja. 
The hyperspherical coordinates p and "• are defmed by'·lo.u . ., 

"• • arctan (r,; R,) 

Tbe SchrOdinaer equation in these coordinates is 

[ -h'( a> I c) I a> ) - - + - - + - - + V(p,t),) -
2p c)p' P c)p P' ""•' 

(6) 

(7) 

E ]11-(p,t),) • 0 (8) 

where 

(9) 

(43) Ganett. B. C.; Tnrblar, D. G.; wa....,, A. F.; DvD.DiDc. Jr .. T. H. 
J. Ch•m. PAy•. 1,.3, 71. 4400. 

(44) Dclvea, L. M .. IVM</. Phy1. 195,, 9, 391. 
(45) Dclveo, L. M. IVM<I. Phys. 1-. 10, 275. 
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A discrete basis set in the hyperangle " , is defined by 

[-2:;, d~:2 + V(p,,, )- •.(p) J~.(,,;p) -0 (10) 

with 

and 

(12) 

where pis considered a parameter and .,._.is the Delves skew 
angle. When the wave function 1/-(p,.,J is expanded in this basis 
set, ac:c:ording to 

(13) 

an inftnitc set of coupled, ordinary differential equations, equivalent 
to the original Sc:hrooinger equation, results: 

- - + •.(p) - E - -- g.(p) + 
2,. dp> 8,.p> [ 
-fll dl fll ] 

.t( -2:1 

( x.I~>~Xw) - :
1 (X.~~~~)~ )gw(p) • 0 

. (14) 

For a symmetric mass combination, the solutions can be chosen 
to have a deftnitc parity, even or odd. Solutions of different parity 
are rigorously dec:oupled. If the entire sum over n' in eq 14 is 
neglected, a single ordinary differential equation for each n and 
each parity results. This neglect is the central feature of the 
adiabatic approximation. The scattering matrix can then be 
expressed in terms of the resulting even and odd phase shifts.ll 
The square of the elements of this matrix gives the COTTeSpondina 
transition probabilities ~ ac:c:ordina to 

(IS) 

where a:, is the phase shift for the symmetric solution for state 
n and 6! is that for the correspondina antisymmetric: solution ... 
The numerical procedure used for implementina the adiabatic 
approximation was as follows. The eigenvalue equation (I 0) for 
•.(p) was solved for a arid of valuea of p. These eiaenvalues form 
part of an effective potential for the g.(P ) . They are depicted in 
Figure 4 for 11 • 0 , I, 2 as asymptotically degenerate pain of 
curves, the lower curve of each pair COTTeSponding to even parity 
and the upper one to odd parity. The (uncoupled) ordinary 
differential equation for tbe adiabatic: model g.(p) was then solved 
numerically, as an initial value problem, by using an Adams
Moulton intqp"ator, and from the asymptotic: behavior of the g.(p) 
at large p, the phase shifts were obtained. It should be stressed 
that the scheme just outlined is 2 orden of magnitude faster than 
a solution of the set of coupled differential equations ( 14) which 
must be used in general. The diagonal term ( h 1 / 21' )( x.l<l' I ~plfx.) 
was not included in the effective potential used to calculate g.(p ). 
R6melt11 bas shown that this diagonal term is important for the 
adiabatic: modeling of resonanc:ea in non-heavy-liJbt-heavy sys
tems. The diagonal term (x.Jd/~Pix.) is identically zero for real 
x .. as in the present case. 

Fiaure S shows the reactive probabilities calculated with the 
adiabatic model alona with the correspondina probabilities ob
tained from the accurate calculations. It can be seen that the 
adiabatic: model results for n • 0 agree very well with the accurate 
ones for low translational energiea. For example. at translational 
energies in the ranse 0.3S-{).SI eV, the difference between tbe 
two is only 6% or less. For higher enerJies, these approximate 
n • 0 results show tbe qualitative behavior of tbe accurate ones 

(46) Matt. N. F.; Ma.ey. H. S. W. TMory of Atomic CollisiON, lrd ed.: 
<h!onl Univenity Prell: O.fonl. 196S; p 349. 
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F1.-e 4. Ei1envaluco •.(p) of the adia~tic ~is u a function of the 
hyperradila. The eiaenvaluco arc meuurcd from the bottom of the 
isolated reaaent molecule potential eneray curve. The tic marks on the 
riaht vertical axis reprcoent the isolated rcaaent eiaenvaluco. These 
curves become pairwise deacncratc up increases. For each such pair, 
tbe lower (upper) curve COrTapoads to even (odd) patity. 

02 0 4 

1.0 (c) 

E/ eV 
0 6 o e 10 

0~----------------------~~---r~ 
E2/ev 

0 0.2 

1.0 ( b) 

p~ 0.5 

Bomer V•2 
Et / eV 

F1,.e 5. Adia~tic model transition probabilitiea. The model n:sulu 
are pracnted by open circla (0 ), and the corTeSpondin& accurate n:sulu 
arc rcpracnted by the solid ~nco and arc the same u in Fil'lrc 2. Scales 
an: the same u in fi&un: 2. 

but are shifted in energy. The correct qualitative behavior is also 
displayed by then • I and n • 2 adiabatic model results, again 
with a sliaht enerBY shift. This suueats that improvements in 
this model may be possible via energy scalins. fii'St-order per-



turbation corrections, optical potentials, or other appropriate 
approaches. From these results, it appears that for heavy
light-heavy systems like the one studied in this paper, the hy
pcrspherical adiabatic decoupling approximation provides a good 
qualitative picture of the dynamics even for vibrationally excited 
reagents. This is very significant since the difference in compu
tational effort between the accurate and approximate methods 
is substantial and because of the insight this model provides. The 
qualitative correctness of the decoupling approltimation for vi
brationally excited reagent states for the present symmetric system 
is in aocord with the results of Abusalbi et al. 19 for reaction from 
the ftnt excited state of an asymmetric system. Low translational 
energy processes arc chemically very important, and accurate 
dynamical approximations such as !be one developed by Babamov 
and Marcus21 arc very useful. 

~ 

We have presented the results of an accurate quantum-me
chanical calculation for a coUinearly constrained model of the 
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abstraction of a hydrogen atom from methane by a methyl radical. 
The dynamics have the general characteristics already noted for 
other heavy-light-heavy systems. The rather large barrier to 
reaction ( 13.86 kcalf mol), involving a saddle point whose energy 
is greater than that of the ground-state reagent, allows tunneling 
to be observed clearly. For heavy-light-heavy systems with small 
barriers to reaction (less than 2 kcalfmo1)"·14·16 the detection of 
tunneling is less straightfor-Ward. We have tested the hyper
spherical vibrationaUy adiabatic model of Babamov and Marcus" 
and found that it describes the general dynamics of this system 
rather well for the ground and the first two vibrationally excited 
states of the reagents. In addition, the reaction probabilities for 
the ground state of the reagent are accurate to within 6% for 
translational energies in the range 0.35~. 51 cV. 
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