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ABSTRACT 

The covariant path integral formalism for theories of open and closed strings is 

used to study the first order of string perturbation theory beyond tree level for the 

closed-string states, in which the string world sheet has the topology of the disk or the 

real projective plane. We find that scattering amplitudes (in flat spacetime) confirm 

these surfaces' contribution to the low-energy effective action for the bosonic string 

theory, as derived by another method, demanding consistency of string propagation in 

background gravitational and dilaton fields (the "sigma model approach"). However, 

we are not able to obtain results consistent with this effective action by demanding 

that amplitudes in a curved background be finite; this is an unresolved puzzle. De­

coupling of spurious tachyon states from the superstring S-matrix is discussed, and 

finiteness of amplitudes for the disk plus projective plane is demonstrated for a large 

class of external states, when the gauge group is S0(32). 
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Chapter 1. Introduction and Summary 

This thesis is about the type I string-a theory of interacting open and closed 

strings whose world sheets can be orientable or nonorientable surfaces. Four years 

ago Green and Schwarz revolutionized the course of elementary particle theory by 

showing that gauge anomalies in the low-energy effective field theory of type I su­

perstrings canceled precisely for the gauge group, 50(32), which was singled out by 

consistency of the string theory [1] . Since then, open strings have been superseded 

by the phenomenologically more promising heterotic string [2]. So why study type I 

strings? Our motivation is to gain a better understanding of some general features 

of string theory. String theories are so much more complex than quantum field theo­

ries, and require such greater mathematical and "technological" sophistication, that 

we would like a relatively simple example or toy model on which to test some of the 

emerging principles that are hoped to be common to all string theories. The restricted 

Virasoro-Shapiro model [3], which we shall for convenience call the "type I bosonic 

string," is such an example, for it behaves very analogously to its supersymmetric 

successor. For instance, its dilaton tadpole amplitude vanishes for the gauge group 

S0(2DI2 ) (where D = 26 is the critical dimension) at lowest nontrivial order in the 

string loop expansion [4, 5]. 

The perturbation series in powers of the string coupling, )., consists of a sum of 

world sheets whose topologies are of increasingly negative Euler characteristic, X· For 

purely closed strings, this just means more and more handles on a sphere, but for 

open strings there exist many other surfaces. Midway between tree level (the sphere, 

Sz) and one loop (the torus, Tz), there is the disk (D2), and for unoriented strings, the 

real projective plane (Pz). These are similar to loop contributions of closed strings 

in the way that they modify the low-energy effective field theory; for example, they 

generate a nonzero cosmological constant, unless there is supersymmetry. However, 

amplitudes on D 2 and P 2 are easier to evaluate than loop diagrams because the 

former are integrals over familiar functions, whereas the latter involve Jacobi theta 

functions. Furthermore Dz and Pz are distinguished from the torus and higher loop 

surfaces in that any disk can be transformed into any other disk by a local rescaling 
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(Weyl transformation) of the two-dimensional world-sheet metric; similarly for P2 [6) . 

Higher-genus surfaces do not have this property: to transform a torus of one geometry 

to another, it is in general necessary not only to Weyl transform the metric but also 

to adjust the relative sizes of the two kinds of noncontractible loops. The latter is 

called a Teichmiiller deformation [7), and ·the parameters in the metric that effect 

this are called moduli. The path integral evaluation of string scattering amplitudes 

due to Polyakov [8) requires integrating over all possible geometries of the world 

sheet, which includes an integral over the moduli. D2 and P2 have no moduli, and 

so are also simpler in this respect than loop contributions. In what follows we will 

restrict our attention to D2 and P2 and concentrate mainly on the bosonic string. 

Also we use the Polyakov path integral approach throughout. Although the path 

integral gives results equivalent to those of the operator formalism, in which string 

theory was originally cast, it is possible to compute some quantities in the former 

that would be very awkward or impossible to calculate directly in the latter, such as 

tadpole amplitudes. The fixing of gauge symmetries of the string action also has a 

more intuitive, geometric meaning in the path integral. 

Chapter 2 deals with a subtlety of gauge fixing in the Polyakov path integral [32] . 

The string action is 

( 1.1) 

where T is the tension, z is a coordinate on the world sheet, hab is a two-dimensional 

metric, and x~-' ( z) is the spacetime coordinate of the string. The path integral is 

J VhVxe-8 . Since S is invariant under world-sheet reparametrizations za -+ za', 

hab(z)-+ h~b(z') and Weyl transformations hab-+ eu(z)hab, this is a two-dimensional 

gauge theory. The gauge is almost fixed on low-genus surfaces by fixing hab = 8ab, but 

for S2 and D 2 there is still a residual symmetry in the remaining integral J Vxe-8 , 

called the conformal Killing group. It consists of reparametrizations x(z ) -+ x (z'), 

which change the world sheet metric only by a Weyl transformation. For S2 the group 

is SL(2, C) and for D2 it is SL(2, R), both of which are noncompact. Scattering 

amplitudes are obtained by inserting into the path integral a vertex operator for 
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each external line, whose position is integrated over the string world sheet (e.g., the 

integrated vertex operator for a tachyon of momentum pis J d2z-/heip·x(z)). The 

residual SL(2, ... )symmetry can be fixed by fixing the positions of three (one) vertex 

operators for S2 (D2). One also expects that the gauge could be fixed by introducing a 

constraint in the functional integral over xP. using the method of Faddeev and Popov. 

In chapter 2 it is shown that this is not the case: the formal SL(2, .. . ) symmetry of 

the path integral is broken when the latter is defined by introducing an ultraviolet 

regulator. Therefore the SL(2, ... ) symmetry that appears in scattering amplitudes 

can only be connected to an underlying symmetry of the path integral in a formal, 

nonrigorous way. Although this observation has little practical consequence (since it is 

much easier to fix positions of vertex operators than to constrain the J Vx integral), 

it seems to indicate that the SL(2, ... ) symmetry is a less fundamental feature of 

strings at tree level than one might have thought. This suspicion was subsequently 

borne out by Liu and Polchinski [9], who showed that the infinite volume of SL(2, R) 

should be renormalized to a finite value in order to obtain a nonvanishing vacuum 

energy for the D2 contribution to the low-energy effective action of the string. 

The following three chapters are about the precise form of higher-genus contri­

butions to the effective action of the string's massless modes: the graviton, dilaton, 

antisymmetric tensor, and vector gauge boson. There are two methods of deducing 

the effective Lagrangian. The traditional approach has been to compute scattering 

amplitudes in the limit of large string tension, T, and find a field theory that produces 

the same amplitudes [10, 11]. This is in fact how strings were first observed to contain 

gravity. The closed-string massless sector is described at tree level by the action 

where ,..2 /32tr is Newton's constant, ¢ is the dilaton field, Haf3-y = Baf3,-y + B-ya,{J + 
B(3-y,a is the field strength of the antisymmetric tensor Baf3, and D = 26. The terms 

of O(T-1 ) involve higher derivatives and powers of R and are suppressed by powers 

of the Planck mass, which is proportional to T. 
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More recently a rather powerful and completely different way of obtaining (1.2) 

was developed by Fradkin and Tseytlin [12], and by Callan et al. [13-16]. The 

idea was to quantize the string in a nontrivial classical configuration of the massless 

fields, similar to the background field method for quantizing gauge theories. The fiat 

spacetime string action (1.1) is replaced by 

Sbg = ~ j d2z ( Vhhab8axJ1.8bxv 9p.v(x) + f.ab8axfJ8bxv Bp.v(x)- 4~T¢(x)VhR). 
(1.3) 

(Here R is the world-sheet curvature, not to be confused with the spacetime curvature 

in (1.2).) Since the original action is Weyl-invariant, its stress-energy tensor has a 

vanishing trace. Upon quantization this symmetry is anomalously broken, except in 

the critical dimension, D = 26. It is necessary to maintain scale invariance; otherwise 

the Weyl factor a(z) (which appears in h -+ euh) would be integrated over in the 

sum over surfaces [17, 12], which would vastly complicate the dynamics of the string 

and destroy its most physically appealing features as a fundamental theory. When 

tracelessness of the stress energy tensor is imposed for the theory (1.3), including 

effects of loops of the xfJ ( z) field, it is found that the background fields must satisfy 

equations of motion corresponding to an action [13] 

This is identical to the action (1.2) after making the field redefinitions 

At first it may seem surprising that such unrelated methods should lead to the same 

result . Prior to [13], however, Lovelace [18] had given some general arguments for 

why this should be the case, which we shall not try to explain here. 

In the above treatment the world sheet was taken to be the complex plane, which 

for a Weyl-invariant theory is equivalent to the sphere. The procedure was also 
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applied to the upper half-plane [14], which is topologically a disk, with the action 

(1.3) supplemented by a background abelian gauge field coupling to the boundary, 

as well as a coupling of the dilaton to the extrinsic curvature of the boundary. The 

requirement of scale invariance thus also gives a field equation for AIL, which was 

found to correspond to the effective action 

(1 .6) 

where FILv is the field strength of AIL, and A is an undetermined constant, the cosmo­

logical constant~ 

The factor of e¢>12 in (1.6) is easy to explain. A scattering amplitude for massless 

particles in the background (1.3) at a given order in the topological expansion is given 

by 

where the Vi are vertex operators for the external states and the path integral is over 

a surface of Euler characteristic X· If the dilaton condensate is a constant, < ¢> >, 

then 

because¢> couples to -t the Euler density in Sbg· Since the effective Lagrangian £eff 

must reproduce AN, the contribution to £eff from this topology must also contain a 

factor of eh<l> . Therefore the cosmological term is of the form Axvf9eh<1>. Redefining 

the fields as in (1.5) to eliminate mixing of the graviton and dilaton in their kinetic 

* The natural generalization of (1.6) to the nonabelian case is to take the determinant over 
spacetime indices and include a trace over gauge group indices. 
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terms, we see that the correction to £eff to first order (X= 1) in the string coupling 

). and lowest order in r-1 is 

(1.7) 

Eq. (1. 7) says, among other things, that the amplitude An for dilaton emission 

into the vacuum on D2 (P2) should be exactly Ju.K. times the corresponding vacuum 

energy density An2 (P2 )· An and A for P2, as computed from the Polyakov path inte­

gral by Grinstein and Wise [19] do not, however satisfy this relation; also Douglas and 

Grinstein did similar calculations for D2 [4], finding A = 0 but An =/= 0. Furthermore 

Fischler, Klebanov, and Susskind (20) found a discrepancy between N-graviton am­

plitudes on D2 computed string-theoretically and those determined by the effective 

action (1.2)+(1.7). It seemed that the background field method effective Lagrangian 

was incorrect, and more evidence to that effect was presented by this author in (21). 

It now appears that (1.7) is correct, due to a number of recent developments (9, 22, 

23]. The first two of these references indicated that previous calculations of the dilaton 

tadpole were wrong and that a different dilaton vertex operator than previously used 

gives the correct answer. Ref. (9] also showed how one can obtain a nonvanishing 

value for the D2 cosmological constant that is consistent with ( 1. 7). In chapter 3 

it is shown that the proposed dilaton vertex operator is not really Weyl-invariant 

and must be supplemented by a prescription to give sensible results. Using the same 

prescription, a new vertex operator for gravitons can also be constructed in which 

the the graviton polarization tensor is not traceless. This enables one to compute the 

graviton trace tadpole, which appears in field theory by expanding 9J.Lv = OJ.Lv + K.hJ.Lv 

in the cosmological term, and thus the cosmological constant for D2 and P2 can be 

directly computed. In chapter 3 A and An are found to be in the correct ratio to 

agree with (1.7) in this way. 

Chapter 4 is a reanalysis of the paradox found by Fischler, Klebanov, and Susskind 

(FKS). It can be formulated as follows. An N-graviton amplitude at tree level, 

ANc(S2 ), consists of terms with two powers of external momenta from the Einstein 
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Lagrangian, yf9R, plus terms of order p4 jT, p6 jT2, etc., which come from string cor­

rections like yf9R2
, yf9R3

, etc. On the disk, the N-graviton amplitude ANc(D2 ) will 

have divergences because of on-shell massless propagators in dilaton and graviton­

trace tadpoles, as in fig. 1.1. 

(a) (b) 

Figure 1.1. (a) Dilaton and (b) graviton tadpole contributions to the three-graviton coupling. 

FKS found that in the effective field theory, (1.1 )+(1. 7), the divergent part of ANa 

could be expressed as 

(1.8) 

whereas a direct string theory calculation gives 

(1.9) 

The paradox was resolved by Polchinski (23], who found that a very careful factor­

ization of tadpole divergences gives a term of +1 in (1.9). His solution required a 

great deal of machinery-conformal field theory, inclusion of ghost fields, Teichmiiller 

theory, BRST quantization, local frame dependence of fields , etc.-so he also gave 

a simpler alternative explanation for this problem, which was uncovered using very 

simple techniques. In chapter 4 we confirm the result of FKS and extend it to the case 

of tachyon scattering amplitudes. We go a step further than they did by replacing 

the proportionalities in (1.8) and (1.9) with equalities, and equating (1.8) with the 

corrected version of (1.9), to determine A in terms of stringy quantities. It is found 

that A has the correct value relative to the dilaton tadpole, providing a confirmation 

of the effective action (1.7) . We point out, however that this consistency hinges upon 
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using Feynman gauge for the graviton propagator in the field theory calculation, an 

assumption that seems inadequately justified so far. Furthermore flaws in the heuris­

tic resolution of the FKS paradox given in (23] are pointed out, and we conclude that 

if a simple explanation does exist, it has not yet been fully discovered. 

There ought to be yet a third method of verifying the D2/ P2-corrected effective 

action. In field theory the tadpole divergences in diagrams such as fig. 1.1 can be 

removed by shifting the vacuum so that the classical equations of motion are satisfied 

(hence there will be no tadpoles). Similarly Fischler and Susskind [24] noted that 

one should be able to cancel divergences in string loop diagrams by shifting the back­

ground for the lower-order surfaces. For example, the divergences on D 2 quantized 

in a fiat background are canceled by tree-level (S2) contributions in a curved back­

ground which differs from the trivial background by a configuration of order ..\. The 

background needed to cancel the divergences will not satisfy the field equations of 

the tree-level effective Lagrangian (1.2); rather, it should satisfy the field equations 

of (1.2) plus a cosmological term and a dilaton tadpole term. By seeing how much 

background is needed to cancel the divergences and comparing with the equations of 

motion, one can determine the values of A and the dilaton tadpole and see whether 

they agree with direct determinations. In [24, 25] this was asserted but not demon­

strated. In chapter 5 we pursue this idea and find that it does not give the correct 

value of A for D2 (or P2). The resolution of this potentially serious problem is left 

for future inquiries, since it is not clear to us how to fix it. 

In chapter 6 we leave behind the subject of effective Lagrangians to examine the 

finiteness of type I strings. As a warm-up a simple proof is given that the tadpole 

divergences cancel between D2 and P2 for arbitrary amplitudes of the S0(2Df2
) 

bosonic string. Of greater interest is an analogous demonstration for the superstring. 

This was done for amplitudes with N gravitons by Itoyama and Moxhay (26]. It was 

not clear, however whether several technical points in their work were handled quite 

correctly. The first problem concerns quadratic divergences that appear in amplitudes 

on D 2 and P2 . It is surprising that these occur because they are associated with 

tachyon tadpoles, and tachyons should not be present in the superstring. (26] relates 
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the difficulty to the fixing of residual gauge symmetries in the amplitude. As noted 

earlier, this entails fixing the positions of vertex operators in the case of the bosonic 

string. For superstrings the world sheet can be thought of as being replaced by 

a supermanifold having Grassmann coordinates oa as well as the usual za. Vertex 

operators become integrals over the supermanifold, and amplitudes on S2(D2) are 

invariant under the supersymmetric extension of SL(2, C)(SL(2, R)). (We shall refer 

to these graded Lie groups as super-SL(2, ... ).) Thus one can fix not only the values 

of za for several of the vertex operators but also some of the oa. Ref. [26] notes that 

the quadratic divergences disappear if this is done for D2, P2. On the other hand, 

they observe that one is free to fix or not fix ()a's on S2, and also on D2 if only open­

string external states are considered: either way gives the same result. Moreover 

fixing vertex operator positions corresponds to extracting the group volume. For a 

graded Lie group this will be an integral over real and Grassmann variables. But the 

integral over the latter is always finite~ so it is hard to see how fixing or not fixing 

the odd part of the symmetry can affect the finiteness of an amplitude. 

We clarify this puzzle by showing that extraction of the full group volume requires 

making a change of variables in the integrals over the supermanifold; however, super­

space integrals are in general unaltered by a change of variables only if the manifold 

has no boundary. For an open surface like D2, a change of variables can induce a 

surface term on the boundary. We show that in the present case the surface term 

is infinite; thus fixing the odd part of the super-S L(2, R) symmetry amounts to a 

particular way of rewriting quadratic divergences as integrals over the boundary and 

discarding these. 

We further relate this phenomenon to recent work of Green and Seiberg [27], 

who noted that the operator product expansion (O.P.E.) of certain superstring vertex 

operators contains spurious states for some values of the momenta of the two particles. 

Among these spurious states is the bosonic string tachyon, and we show that this state 

is failing to decouple on D 2 amplitudes in which the() variables are not fixed. Fixing 

* One could imagine that the result of the Grassmann integration is an integral for the even part 
that is more divergent than the usual SL(2, C) volume, but this does not occur. 
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the O's corresponds to rewriting the vertex operators in a different form, known as 

the F2 picture, as opposed to the original form, the Ft picture. In (27] it was shown 

that the spurious tachyon state does not occur in the O.P.E. of vertex operators in 

the F2 picture, but only for F1. It is the equivalence of the two pictures that allows 

one either to fix or not fix B's on 82. This equivalence breaks down on D2, where 

the existence of a tachyon tadpole puts the spurious state in a restricted kinematic 

region (p = 0), so that analytic continuation in the momenta of the external particles 

cannot remove its effects, as was possible for 82 . 

The second problem in [26] is that the fermionic partners of the xJ.I fields in the 

supersymmetrized version of the string action ( 1.1) are Majorana spinors 'lj;J.I, but 

Majorana spinors cannot be globally defined on P2 with a Euclidean metric, and the 

results of Riemannian geometry needed to define the Polyakov path integral for a 

general topology require that the world sheet have a Euclidean signature. Actually a 

surface with N external closed-string states can be thought of as having N punctures, 

or boundaries , and it was shown by Grinstein and Rohm [28] that Majorana spinors 

can be consistently defined on such a surface, but that the spinor field must suffer 

a discontinuity in its sign around an odd number of the punctures if the number of 

punctures is odd. This corresponds to an amplitude with an odd number of external 

Ramond-Ramond particles; if we take all the spinor fields to be antiperiodic around 

the same punctures, regardless of their chirality. Therefore an amplitude on P2 with 

an odd number of external NS-NS particles and no other kinds is ill defined because 

of the nonexistence of Majorana fermions with the correct boundary conditions. If 

a problem was to occur in the infinity cancellations between Dz and P2, we might 

expect it to appear for this class of amplitudes. The nonexistence of Majorana spinors 

on Euclidean Pz manifests itself as the nonexistence of a graded extension of the 

conformal Killing group 80(3) in Euclidean signature. Ref. (26] deals with this by 

temporarily continuing amplitudes to Lorentzian signature where the super-80(3) 

* R-R b oundary conditions mean that both the left- and right-moving spinor fields are an­
tiperiodic about a puncture on S2 , whereas NS-NS (Neveu-Schwarz) boundary conditions are 
periodic (29]. Both kinds correspond to spacetime bosons; the antisymmetric tensor is a R-R 
particle, whereas gravitons and dilatons are NS-NS. 
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exists, fixing the 8's and continuing the result back to Euclidean P2. In the text 

several weaknesses of their procedure are pointed out, and a more careful treatment 

is presented. In the end we confirm the result of [26], giving a more lucid (in our 

opinion) proof that the divergences of the P2 amplitudes have the correct sign and 

magnitude for canceling those of D2. Therefore, if type I superstrings are to be ruled 

out on the basis of self-consistency rather than phenomenology, as is the hope of 

some, it seems likely that the problem will have to come from some other quarter 

than the nonexistence of Majorana spinors on the closed unoriented surfaces of odd 

Euler number, of which P2 is only the simplest example. 
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Chapter 2. The Conformal Killing Anomaly of the Polyakov String 

2.1. Introduction 

An essential ingredient of the Polyakov formalism for string theory is the fixing of 

gauge symmetries of the classical action. For the bosonic string these are the general 

coordinate transformations and the Weyl rescalings of the metric. Demanding that 

the quantum theory retain these symmetries leads to the critical dimension, D = 26 

[8]. It also leads to a peculiar prescription for computing on-shell amplitudes, that one 

should divide by the volume of the group generated by the conformal Killing vectors, 

Vol(CKG) [7]. Because this volume is infinite for the topologies of the sphere and 

disk, then-point amplitudes on these surfaces vanish for n < 3 (52) and n < 1 (D2) [4, 

21, 30]. For larger n the SL(2,C) or SL(2,R) symmetries of the world-sheet integrals 

appear to exactly cancel the infinite factor, leaving a finite answer. 

The factor 1/Vol(CKG) is supposed to compensate for gauge-equivalent config­

urations in the functional integral. It was expected that one could avoid explicitly 

mentioning the factor by fully fixing the gauge [30]. The usual procedure is to fix 

the world-sheet coordinates of several vertex operators, which means performing the 

Polyakov path integral, obtaining an infinite result if it is on the sphere or the disk, 

and then extracting the infinite factor of Vol(CKG). One might wonder whether the 

resulting finite value is really unique, since it comes from something of the form oofoo. 

It would be preferable, as suggested in [30], to fix this symmetry in the functional in­

tegral at the outset by choosing a slice in the space of embeddings, rather than fixing 

positions of vertex operators, and then to show that the two procedures are really 

equivalent. The present chapter demonstrates that this is not possible: the classical 

CKG symmetry of the string action is broken by any regulator, even in the critical di­

mension. The standard prescription does not correspond to fixing a gauge, but rather 

to averaging over gauges that are actually inequivalent due to this anomaly. The 

major result of Moore and Nelson is untouched by this difficulty however, because of 

the absence of moduli for 52 and D2 (see sect. 2.4). 
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2.2. Gauge dependence of amplitudes 

The Polyakov partition function is an integral over metrics and embeddings, 

Z= L 
topologies 

f[dh][dx] exp( -S) 
Vol(W x'D) 

(2.1) 

W is the group of Weyl transformations and 'D is the group of diffeomorphisms, 

W: hab ~ eu hab 

'D: X- f*x = x(f(~)); h ~ J* h = ~;:~~;hac(!(~))' (2.2) 

where J(e) is a coordinate transformation on the world sheet. The conformal Killing 

group ( CKG) is the subgroup of 'D such that 

j* hab(O = exp(pfj])hab(e) (2.3) 

for some scalar function p(j] . The usual procedure for evaluating (2.1) is to express 

gin terms of a gauge fixed metric h, via h = f*(euh)~ Then [dh] is just a Jacobian 

( det pt P) 112 , times [df][da-]. The latter is canceled by (Vol(W x 'D))-1 because of 

the gauge symmetry W x'D. This is not quite right if there is a nontrivial CKG, for 

then we can always find a a- that compensates for j E CKG, giving j*(euh) = h. To 

avoid overcounting each metric-supposedly-we should take f[dj] not over 'D but 

rather 'DfCKG. Hence the factor of 1/Vol(CKG) comes in. 

Alternatively [30] one should be able to choose a slice S in the space of embed­

dings, which is transverse to the action of the CKG, i.e., if x E Sand j E CKG, then 

j*x ~ S . Since x transforms nontrivially, the parametrization h = f*(euh), x = f*x 

is a good coordinate system on the space of embeddings and metrics. The measure 

becomes [dh][dx] = [df][da-][dx]( det pt P) 112 J, where J is the additional Jacobian 

that comes from gauge fixing in the x sector. 

* We ignore modular parameters since these do not exist for the sphere or disk, which are the 
interesting topologies for our purposes. 
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A problem arises when one tries to carry this out. We shall see that CKG gauge­

fixed quantities depend on the choice of sliceS, showing that the CKG is not a good 

symmetry of the quantized theory. It is sufficient to focus on the embedding part of 

the partition function, 

Z = j [dx];, exp( -S[h, x]), (2.4a) 

(2.4b) 

using the curved space Laplacian D.hx = -(1/vg)oa(..Jhhababx). The measure in 

(2.4a) depends on the gauge-fixed metric because it is defined in terms of an inner 

product (8x(0, 8x(0) = J d2~--/h8x(~)2 . If there is a CKG, (2.4) has a further gauge 

symmetry, even though h has already been fixed to h: 

x-+ j*x, j E CKG 
(2.5) 

The action S[h, x] is unchanged under (2.5) because it amounts to a diffeomorphism 

x -+ j*x, h -+ j*h, followed by a Weyl rescaling j*h -+ exp(-p)j*g = h, using 

(3). Moreover the measure [dx];, is invariant under (2.5), as was argued in ref. [30). 

Henceforth we shall redefine CKG to mean the group of transformations (2.5) , under 

which h does not change. (This is isomorphic to its original meaning.) To fix the 

gauge in (2.4a), let x be constrained to lie in a slice F(x) = 0 through the CKG 

orbits. F has three components for D2 because SL(2,R) has three generators. The 

Faddeev-Popov procedure gives 

Z = j dj j [dxh8(F(x))Jp(x) exp( -S[h, x]) 

= Vol(CKG)Z9 .r, 
(2.6) 

where dj is the invariant group measure and Jp is the F-P determinant corresponding 

to the gauge condition F(x) = 0. Even though dj is a finite-dimensional measure, the 

group volume is infinite, since SL(2,R) is not compact. 
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Although the following analysis could also be carried out for spherical (S2) world 

sheets, it is simpler to illustrate the problem for the disk (D2), which may be obtained 

by stereographic projection of a hemisphere onto the region of the complex plane 

lzl :::; 1. Let g be the standard round metric for the hemisphere 

(2.7) 

which has constant bulk curvature and zero extrinsic curvature on the boundary. 

The eigenfunctions of !:lh are just the spherical harmonics, with eigenvalues l(l + 1), 

except that they are restricted to have 1-m even so that no momentum flows off the 

boundary [4]. In this basis 

(2.8) 

Since xis real, the c's are also restricted by cfm = ( -1)mcr,_m· We omit the zero-mode 

integrals throughout, as this just gives a factor of (Vol( spacetime) )26 . 

On D2 there are three normalizable conformal Killing vectors (CKV's) Va, 

(vz) /3(1- z2) 
yz 1,2,3 = V ~ 1- z2 ' 

. /3( 1+z2) 
zy~ -1-z2 , (2.9) 

satisfying 

(2.10a) 

and the boundary condition 

0, (2.10b) 

which insures that the boundary is preserved by reparametrizations. The CKV's 
... ... 1-' 

generate infinitesimal conformal isometries j*x~-' = (1 + Ea Va · 8)x~-' = L:(clmYYlm· 
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The transformed c's are 

(2.11) 

where c = c1 + ic2 and A, B are Clebsch-Gordan-like coefficients, 

(
(l- m + 1)(1- m + 2))

1
/

2 

Aim = 
1 

(21 + 1)(21 + 3) ' 
B =(l 1)((/+m)(l+m-1))1/2 

lm + (21- 1)(21 + 1) 
(2.12) 

We now compute the gauge-fixed partition function, Zg.f.· The CKG symmetry 

is fixed by imposing the gauge condition F(c) = 0. To expose the gauge dependence 

of Zg.f., we consider a family of slices 

(2.13) 

that depend on a real parameter K.. Then J F is the modulus of the determinant 

B2oc~0 
1 ' 0 

8(F(c()) 
-B22c22 

ex B22c~ _2 -B2oc~0 0 (2.14) 
8( c, €, t3) - ' 

F(c)=O 
* * -2i( c22 - c2,-2) 

(Note that dj ex d3 c near the identity.) Omitting a finite normalization factor, the 

gauge-fixed partition function in (2.6) is then 

CXl 

Zg.f. = (det ~~J-D/2 j dadf3la3 + (~>.2 - ~)af32 1 exp( -3(a2 + (1 + ~>. 2 )(32 )) (2.15) 

-= 

(where a = Im c~2 and f3 = c~0 ), which clearly depends on ~>., hence the gauge. A 

more glaring inconsistency is that Z = ( det ~1)-D/2 is finite when regulated, whereas 

J dj is infinite, since Vol(SL(2,R))= oo. Therefore Zg.f. should vanish, according to 

(2.6), and in disagreement with (2.15). 
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When vertex operators are inserted in the path integral, there is a divergence 

associated with the symmetry that allows one of their positions to be fixed on the 

world sheet. (On the sphere three may be fixed). Since this symmetry group turns 

out to be identically the CKG, * one might wonder whether the gauge dependence 

goes away for higher point functions computed in the same manner as (2.6), that 

is, not fixing the vertex operator positions, but fixing several modes of x~-'(~). We 

investigated this for the dilaton tadpole on D2, denoted A'v, which can be calculated 

by expanding the usual dilaton vertex operator in modes of 6.. h and integrating over 

the c's. That is, 

A'v = j IT dc8(F(c))Jp(c) exp( -Sreg(c))Vn(c; p = 0), (2.16) 

where Sreg is the regulated action (defined below), and the vertex operator for a 

dilaton of momentum p is 

In (2.17), o;v is a transverse polarization tensor, "c.t." are Weyl anomaly counterterms 

[31,38], and c~b is given by (for example) 

·a _ AI/2 -TJA/2A-l/2 a 
C - reg e c , (2.18) 

where A is the matrix of unregulated eigenvalues of t:..h, and Areg is regulated so as 

to have a finite determinant. The reason we need c in the exponent rather than cis 

that even though the action is regulated to give a finite value for det t:..h, this does 

not give a regulated Green's function (x~'(z)xv(z') ) at short distances. If we define 

* I say "turns out to be" because the formal proof that the CKG-invariance of the functional 
integral implies the CKG-invariance of the world-sheet integrals breaks down, since the former 
is not really a symmetry. 
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X~eg = cfmYim however, the Green's function (x~eg(z)x~eg(z1)) is finite as z -+ I 

Thus, 1f is the cutoff for the Green's functions in (2.18), and eq. (2.16) would give the 

usual expression for the dilaton tadpole if we removed the gauge-fixing apparatus. 

Call the latter An. It is straightforward to show that 

An = (Z9.J.(K)j Z)An + (K-dependent term), (2.19) 

where Zg.f.(K) is given in (2.15). Thus An is gauge dependent. 

It seems clear that all the amplitudes will be affiicted in this manner. Also it is 

obvious that the same problems will occur for S2, which has three extra CKV's in 

addition to those for D2 , eq. (2.9). Other topologies are discussed below. 

3. Regulator effects 

Our unsuccessful attempt to fix the gauge symmetry (2.5) shows that it is not 

really a symmetry of Z, eq. (2.4a). How is it broken? One might suspect the functional 

measure, since this is the source of chiral anomalies in theories with fermions. Using 

(2.11), however, the Jacobian for Il de can be explicitly computed for small CKG 

transformations on D2; it is 

(2.20) 
1- m 
even 

Since any reparametrization-invariant regulator must weight every m within an l 

multiplet equally, this is always unity to 0((2
). 

That leaves the action. Indeed we already know that regulating the action so 

as to make det /}.h. finite breaks Weyl invariance (which is partly responsible for the 

usual conformal anomaly), and then S[h, x] is no longer invariant under x-+ j*x for 
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j E CKG. The correct version of (2.6) should accordingly read 

Z = j dj j [dxJ;..b(F(x))JF(x) exp( -SregfJ* h, x]) 

= j djZ9 .J.fJJ. 

Since Zg.f. is now seen t~ depend on j, the volume J dj no longer factors out. 

(2.21) 

One may at first be puzzled as to why the breaking of W-invariance by the 

regulated action should lead to any problem, since the counterterms 

(2.22) 

and space-time dimension are carefully chosen to preserve W -invariance of the full 

partition function [7, 8}. But there is no paradox. Even though 

(2.23) 

is W-invariant, this is not sufficient for Z9.r to be j-invariant. The latter obtains 

only if Zg.f. by itself is W-invariant, which is clearly not the case. 

It is instructive to see just how the breaking of the CKG symmetry occurs for 

the infinitesimal transformations (2.11). Let Areg be the diagonal matrix of regulated 

eigenvalues >.1 of fl.;.., as before. For the variation of Sreg = !ct AregC to vanish under 

(2.11) to first order in E, it is necessary that 

(2.24) 

This reflects the fact that some of the infinitesimal CKG transformations (those which 

are not isometries) mix modes whose values of 1 differ by one unit. Eq. (2.24) is 
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satisfied only if 

(2.25) 

Now any regulator must make det A finite, which means the regulated eigenvalues go 

to 1 as l -+ oo. But suppose Al = 1 + 8 for some l. Then (2.25) implies 

(N + 1)N 
AN = (l + 1)l (1 + 8), (2.26) 

which diverges as N -+ oo! Therefore no regulator respects (2.25). 

Eq. (2.26) demonstrates that the CKG symmetry is badly broken even for arbi­

trarily small values of the cutoff for det A-call its. For any s > 0, A00 = 1, whereas 

the condition (2.25) for maintaining CKG invariance implies A00 = oo. Therefore 

Z9.f.fj, s] does not continuously become j-independent as s -+ 0. This can also be 

seen by looking at the expression 

j djZ9 .r(j,s)/Z9.J.(O,s) = Z(s)/Zg.J.(O,s). (2.27) 

Using eq. (2.15) (which is Zg.f. evaluated at j = identity) and the fact that Z 
(det !:lj,) - Dfz, the r.h.s. of (2.27) is manifestly cutoff-independent and finite, whereas 

the l.h.s. would diverge like J dj as s -+ 0, if Zg.f. became j-independent in a smooth 

way. This behavior can be qualitatively described by the Ansatz 

Zg.f .(j, s) "'exp( -N Fiil 1/s)Z9 .t.(O, s ), (2.28) 

where the constant N F depends on the gauge condition F in just such a way as to 

make the integral J dj of (2.28) independent ofF, as Z must be. Note that at s = 0 

the r.h.s. of (2.28) is invariant under infinitesimal CKG transformations but does 

depend on large ones, li I > 1. 

The reason for saying that the CKG symmetry is anomalously broken is that 

it cannot be preserved by adding local counterterrns to the action, such as (2.22). 
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This is because all such counterterms are already determined by the requirement of 

W-invariance of the partition function (7]. These are due to local effects and are the 

same for all genera in the topological expansion. 

4. Discussion 

We have shown that the CKG gauge symmetry of the Polyakov partition function 

IS anomalous, but not necessarily in the traditional sense of having nonconserved 

charges. The Nother currents for the CKG generators are found to be 

(2.29) 

in complex conformal coordinates. Then one can show that for Sz, for example, whose 

CKV's are 

~ (1) ( i ) (z) ( iz ) (z2
) ( iz2 ) 1

•···•
6 

ex: 1 ' -i ' z ' -iz ' z2 ' - iz2 ' 
(2.30) 

the integrated "anomaly'~ is 

(2.31) 

where we have used the conformal anomaly of (8x( z)8x(z)) ,....., 88lnhzz· For the 

metric (2. 7), the only nonvanishing "anomaly" is A3, yet the CKG symmetry is 

broken in the regulated action for all but three linear combinations of the generators, 

those three being 

(2.32) 

These generate pure rotations, which do not change the metric at all and hence do 

not depend on having unbroken W -invariance in the action. Therefore the Aa 's are 

not a reliable indication of how the CKG symmetry is broken. 
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A difference between the present situation and ordinary quantum field theory ap­

plications is that in the latter we often ignore the divergent functional determinants 

as being uninteresting normalization factors for physical amplitudes, and anomalies 

arise from symmetry breaking due to regulating Green's functions rather than deter­

minants. But in string theory these determinants have direct physical significance: 

they determine how much a given order in string perturbation theory contributes to 

the vacuum energy of the effective field theory, as well as the gauge group for which 

tadpole cancellations occur in open string theories [4, 26]. 

The significance of the above result is that one cannot define an infinite dimen­

sional integral for scattering amplitudes on 52 or D2 that is not of the form OCJjOCJ . 

The usual prescription is simply to define an N-particle amplitude to be 

(2.33) 

by using (-function or proper time regularization for the determinants, a world-sheet 

cutoff for the vertex operator correlations, and fixing positions of vertex operators to 

compensate for Vol(CKG). It would be satisfying if (2.33) could be derived from an 

actual integral, with no OCJ/OCJ factors, such as eq. (2.16). Since this cannot be done, 

it is, strictly speaking, incorrect to speak of the Polyakov path integral for 52 or D2 

amplitudes. The expression (2.33) is only formally equal to the result of performing 

an integral. This is in contrast to the situation for lattice gauge theories, for example. 

Admittedly there may be no real physics at stake: eq. (2.33) seems to give physically 

sensible results. But from the standpoint of mathematical rigor, it is annoying that 

we cannot carry out the gauge-fixing construction that was so elegantly outlined in 

[30] . Thus, as has already been emphasized, the usual procedure of integrating over 

all embeddings and dividing by Vol(CKG) is an average over all CKG-gauge slices, 

each one of which generally gives a different contribution. 

Fortunately the proof of W-invariance of the functional integral given in [30] is 

still valid despite this problem. There it was pointed out that W-invariance was 

apparently spoiled by the presence in the functional measure of the determinant of 
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the inner products of the Teichmiiller deformations, which depends on the Weyl factor 

cr. By carefully defining the measure for moduli it was shown that this source of Weyl 

dependence is canceled out. Fixing the CKG gauge symmetry was an intermediate 

step in the proof, but since there are no moduli on Sz or Dz, it is not invalidated by 

the breakdown of CKG invariance for these topologies. The only thing affected is the 

claim that no special formalism (fixing vertex operator positions) is needed for the 

tree-level topologies; we have shown that it is needed. 

There are several other topologies with CKG's. These are the projective plane, 

torus, cylinder, Klein bottle, and Mobius strip. This list is exhaustive because one 

can prove that no CKV's exist for surfaces with negative Euler characteristic [7]. 

For all of these topologies the CKG's are compact, in contrast to Sz and Dz. For 

example, the CKG is S0(3) for the projective plane [7] and U(l) x U(l) for the torus. 

Since the remaining topologies can be obtained from the torus by identifying pairs of 

points under the action of some involutive functions [6], their CKG's turn out to be a 

U(l) subgroup of that for the torus. Since the CKG is compact for all these surfaces, 

the Polyakov path integral is perfectly well defined on them without fixing the CKG 

gauge. It is curious that in all these cases the CKV's are actually true Killing vectors, 

i.e., j* h = h. For example, the projective plane has the CKV's in (2.32). It has been 

shown explicitly that the CKG can be gauge-fixed in that case [33], giving the same 

result as when it is not fixed. Therefore the CKG symmetry is anomalous only for 

the sphere and the disk7 

* The difficulty of trying to do CKG-gauge fixing on D2 was first discovered by M. Douglas, 
B . Grinstein, and M. Wise, who collaborated in the early stages of this work. 
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Chapter 3. Tadpole Amplitudes 

3.1. The dilaton tadpole problem 

Scattering amplitudes involving an external dilaton of momentum pare computed 

by inserting the vertex operator [10] 

(3.1) 

into the Polyakov path integral Z, where the polarization tensor 

p. p = 1; p2 = p2 = 0, (3.2) 

is designed to be transverse and K. n is a normalization factor that can be determined 

by unitarity of tree amplitudes [34] to be 

(3.3) 

(K. is the gravitational constant appearing in the effective action (1.2)). 

The normal-ordering symbol in (3.1) means omitting all singular self-contractions 

in the operator ax ax. For example, introducing a short-distance regulator E into the 

Green's function (x(zl)x(z2)) rv ln(lzl - Z212 + E2) gives (ax ax) rv 1/ E2. We must reg­

ulate in a reparametrization-invariant way, however, since physical quantities must 

not depend on what coordinate system is used. The cutoff E does not have this 

property, but in conformal coordinates, where the metric is hab = eO'(z)8ab, the quan­

tity ds 2 = eO'Idzl2 is invariant; thus one should replace E2 by e-0' E2 in the regulated 

Green's function (35] . One then finds that (8x8x) "' 1/E2 + 82
rJ. The last term has 

geometrical significance [7]: it is related to the world-sheet curvature, 

(3.4) 

This is the conformal, or Weyl, anomaly of (8x8x}. It is clearly not invariant under 

Weyl transformations, (J ~ (J + rJ1
, and so we take : 8x8x: to mean that the Weyl 
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anomaly is also subtracted out, in addition to the divergent part. Similarly the 

operator xfJx has a Weyl anomaly (xfJx) ,...., fJa, which would appear in contractions 

between ox and eip·x' but the transversality of s;v eliminates these. 

The dilaton tadpole amplitude for a string world sheet of arbitrary topology x is 

Zx (Vn(p = O)}x, where Zx is the path integral on the surface and ( )xis normalized 

so that (l}x = 1. For S2 this vanishes doubly since, as discussed in the previous 

chapter, Zs2 = 0 and also(: fJxfJx: )82 = 0. At the next order, the expectation values 

(: fJxfJx: )n
2
,p

2 
are no longer zero because the Green's functions have contributions 

that are not singular at short separations: in complex coordinates, 

(3.5) 

where the upper (lower) sign applies for P2 (D2). The extra contribution can be 

thought of as being due to an image charge at the point z = ±ljz. One finds that 

the dilaton tadpole has the value [19,4] 

An= .J24~~: { Zn2 Vol(SL(2, R)), 

21r - Zp ~ 
2 2' 

(3.6) 

In chapter 1 it was explained that quantization of the string in a condensate of 

massless background fields led to a prediction about the ratio of An to the vacuum 

energy density Ax contributed by topology x, 

7 
An= ~nA~~:A. 

v24 
(3.7) 

But Ax is supposed to be given by -Zx, so (3.7) can be checked using (3.6). Let us 

first review why Ax = - Zx· The relation is most easily understood for the torus, 

where Z is just the one loop string path integral with no external lines. This is 

analogous to the one loop vacuum bubble diagram in a free field theory, which is 

responsible for generating the cosmological constant, to lowest order in n. In fact, 
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Polchinski 's evaluation of Zr2 [36] showed that it was exactly the same as minus the 

sum of vacuum energies for the constituent point particle field theories corresponding 

to the string excitations, except for a natural ultraviolet cutoff provided by the string 

that makes Zr2 UV-convergent. More generally, the correspondence between string 

theory and effective field theory amplitudes for massless modes is 

I:. J 1)xe-S[xlv, · · · VM =IT J dD xf(x,p;)K [iifiix] SJ~x) 
topologies 1=l (3 .8) 

· ln (! V<Pexp(-Seff[<P] + J dDxJ<P)), 

where <P is a generic massless field, f is the wave function of the external state, and 

J( is the inverse propagator. When there are no external particles (M = 0) (3.8) 

reduces to 

L Zi = Zs2 + Zn2 + Zp2 +· ··=-A, 
top . 

(3 .9) 

provided that the field theory path integral is normalized to unity when A= 0. (For 

example, the Euclidean path integral for a point particle with £ = ~mx2 + V(x) 

on a lattice of length L. goes like (27r /m )LIZ e-LEo as L ~ oo, where Eo is the 

vacuum energy.) A should be thought of as the sum of contributions from the various 

topologies. Using Z = -A in (3.6), one sees that eq. (3.7) is not satisfied. For Dz 

the disagreement seems to be drastic since Vol(SL(2,R)) is divergent. However it was 

argued in [9] that the volume should be renormalized in a certain way, which gives 

Vol(SL(2, R)) = -1r /2. We will not repeat their argument here but will accept their 

result. Thus (3.6) is off by the same factor of (D- 2)/(D + 2) for both topologies. 

It was claimed by Klebanov (see [9]) that (3.6) is actually the sum of two tadpoles, 

the dilaton and the graviton trace tadpole, which comes from the cosmological term 

Avg when 91-' 11 is expanded around flat space, 91-'11 = 81-'11 + "'hl-'11· For example, the 

tachyon mass shift is divergent because of the massless propagators at p = 0 in the 

two diagrams of fig. 3.1. 
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(a) (b) 

Figure 3.1. (a) Graviton trace tadpole and (b) dilaton tadpole contribution to the tachyon two-point 
function. 

We have verified this claim by showing that the divergent part of the tachyon two­

point function A2r(D2) on the disk factorizes into the dilaton tadpole (3.6) and the 

two-tachyon, one-dilaton coupling on s2, 

(3.10) 

(the details of this calculation are given in chapter 4). If An was the correct dilaton 

tadpole, we would expect the right-hand side of (3.10) to make up only that part of 

the mass shift corresponding to fig. 3.1(b), not the whole thing. It is in this sense 

that An in (3.6) includes the graviton tadpole. The plausible appearance of (3.10), 

if one forgets the graviton tadpole, explains why Weinberg was able to corroborate 

the incorrect value of An using factorization of loop amplitudes [5] . 

3.2 A covariant dilaton vertex operator 

From the above discussion we see that the correct dilaton tadpole should be a 

factor of (D + 2)/(D- 2) greater than that computed with the vertex operator (3.1). 

Rey [22] verified this using a method of Cohen et al. [37] which uses punctures on 

the surface rather than vertex operators and is supposed to be more fundamental. 

But it is also far less convenient than using vertex operators, and one would like to 

find a vertex operator that gives the correct tadpole. A natural variant of (3.1) is the 
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covariant expression 

(3.11) 

Since the trace of Dp.v is D instead of D- 2 and there is the extra term J d2zVhR, 

the tadpoles computed from (3.11) are (D + 2)/(D- 2) times (3.6), as desired. 

Let us now derive the vertex operator (3.11). Because Dp.v is not transverse, a 

counterterm is needed to cancel the Weyl anomaly of (oxP.eip·x) = ipP.eip·x (8xx). 

Using 

(3.12) 

for short distances, one finds that 

(3.13) 

Therefore the Weyl anomaly ofT: OaxP.8axP.: eip·x is 

1 1 . -a cripP. a xP. = -8 cr8 e~p·x 
47!" a a 47!" a a . 

Integrating by parts gives - 4
11r82creip·x = 4

1
7r VhReip·x, which is canceled by the coun­

terterm in (3.11) . 

Unfortunately the derivation just given contains mistakes. First of all, the inte­

gration by parts has ignored a surface term, as is clear from the fact that 8u8eip·x is 

zero when p = 0, whereas 82creip·x is not . For definiteness consider the case of S2 in 

which z is integrated over the entire plane. Although Sz has no boundary, a surface 

term still arises because u(z) is not globally well defined; but diverges as z -too. For 

the homogeneous, round sphere, 

(3.14) 

which at p = 0 gives a surface term on the contour at oo of the form j jdzl/l z l. For 

spheres with different geometry, cr must still have the same asymptotic behavior as 

(3.14) in order to have nonsingular curvature at z = oo. 
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The second :flaw is that (3.13), although identical to the result of other authors 

(38], is missing a piece. Eq. (3.12) describes only the short-distance behavior of the 

Green's function. For 52 the complete (unregulated) expression is 

(3.15a) 

where 

(3.15b) 

and A = J d2uvg is the area of the world sheet. This can be understood by writing 

G in terms of the orthonormal eigenfunctions and eigenvalues of the world-sheet 

Laplacian b. = --;};;oahab...Jhab, 

(3.16) 

Since the sum excludes the zero mode, operating on G with T b. gives 

(3.17) 

(since P5 = 1/A). The function of the F factors in (3.15a) is to give the necessary 

- 1/A in (3.17). Using (3.15) with a cutoff, the anomaly (3.13) becomes* 

1 
(oax( z)x(z) ) = - TOa (cr(z) + lnF2(z)). 

87r 
(3.18) 

This solves the previously mentioned problem; since ln F "'ln lzl2 for large z, (3.18) 

is finite as lzl -t oo and gives rise to no surface term in the partial integration, but 

* Similar observations have also been made in (39] and [40]. 
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there is now an extra contribution proportional to fJ2 ln F ex ~/A. To eliminate it, 

we must add another counterterm to the vertex operator, which becomes 

TT ( ) - _K_Jdz "h (rhab.fJ ~-'fJ v." _1_R 2) ip·x 
v D p -

2
.J24 zv n . aX bX • ol-'11 -

4
1rT + A e . (3.19) 

We have checked that this operator gives tree-level amplitudes entirely equivalent to 

those constructed from the noncovariant operator (3.1). However, it is disturbing 

that the extra counterterm is nonlocal (since A is an integral over the world sheet). 

This new term also shifts the value of the dilaton tadpole--curiously it gives the same 

result on Pz as the noncovariant vertex gave. Therefore if we wish to verify the sigma 

model prediction for An using the covariant vertex operator, we must not include the 

2/ A counterterm in (3.19). This in turn means ignoring surface terms at oo if we use 

the covariant vertex on Sz. 

In retrospect it is not surprising that we must ignore such global aspects of the 

world sheet in order to corroborate the sigma model results, for the latter were ob­

tained on a world sheet of infinite area, using dimensional regularization. In dimen­

sional regularization, Weyl anomalies are computed by treating CT as a perturbation 

to 1 ~ eu, and it is always assumed that integration by parts is valid. It would 

be interesting to see whether the sigma model effective action is the same if a reg­

ulator that respects global properties of the world sheet is employed, such as the 

heat kernel method (i.e., multiplying (3 .16) by e-c.Xn ). This was checked in [40] for 

the tree-level-type contributions (1.4), but not for the more interesting case of the 

cosmological terms from higher-genus surfaces. 

3.3. The graviton tadpole and the cosmological constant 

Given that the prescription described above for the covariant dilaton vertex op­

erator makes sense, we can construct a new version of the graviton vertex operator, 
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usually written as* 

(3.20) 

where c.JJv is transverse and traceless (TT). However, taking cJJv to be TT is just a 

choice of gauge for the external state; under a gauge transformation c.JJv goes to 

(3 .21) 

where ( is an arbitrary vector. c.~v is neither transverse nor traceless, but satisfies 

the harmonic coordinate condition [10] 

(3.22) 

which is nothing more than the linearized equation of motion for the graviton. It 

should be possible to make a Weyl-invariant vertex operator for gravitons satisfying 

this more general condition. The lack of tracelessness and transversality will, as for 

the dilaton, lead to Weyl anomalies that must be subtracted by counterterms. The 

result, analogous to (3.9), is 

(3.23) 

This of course reduces to (3.18) in the TT gauge. 

If we now compute (Va) on P2 or D2, it gives a nonzero graviton tadpole pro­

portional to c.JJJJ· To avoid complications with renormalizing Vol(SL(2,R)), we can 

* the sign of Va is chosen so that it gives amplitudes in agreement with the effective action (1.2) 
when 9JJv = 6!Jv + K,h!Jv . 
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restrict our attention to P2, for which the one-graviton amplitude is found to be 

(3.24) 

Clearly this is a rather unphysical quantity since trt: is gauge-dependent. Nevertheless 

it can be compared to the field theory tadpole that comes from the cosmological term 

(3.25) 

when g1-1v is expanded around fiat space, 

(3.26) 

Using the usual LSZ procedure, the one-point amplitude in Euclidean space (which 

we use throughout) is 

K, 

--Atrc 2 . 

Comparison with the string theory result implies 

A= -Zp2 , 

(3.29) 

in agreement with the more general (but perhaps less convincing) argument given 

earlier, eq. (3.8). This provides another check on the consistency of the prescription 

described in the previous section. We have also computed the graviton tadpole for 

D2 using the method of ref. [9], obtaining ~Zn2trt: as in eq. (3.24) . 

The reader may wonder how it is that gauge-noninvariant amplitudes have arisen 

here, since the field theory, and presumably string theory, are generally covariant. 

The problem is that the background gf.i.v = 81-1v is not a minimum of the action when 

a cosmological term is present. In general a gauge theory quantized about a clas­

sical background gives gauge-invariant amplitudes only if the background satisfies 

the equations of motion [41]. A more satisfying procedure would be to work in a 
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background such as deSitter space to eliminate this problem, but computing string 

amplitudes (as opposed to just the partition function) in curved backgrounds intro­

duces a whole new set of difficulties, to be described in chapter 5. The philosophy 

taken here and also by other authors (20, 42] is that although amplitudes in a flat 

background in field theory or in string theory are not meaningful by themselves (if 

A =f. 0), the comparison of the two is meaningful. This comparison is explored in 

greater depth in the next chapter, leading to further corroboration of the relation 

between the dilaton tadpole and cosmological constant, as well as the unitarity of 

string theory scattering amplitudes on D2 and P2. 
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Chapter 4. Factorization of divergent amplitudes 

4.1. Introduction 

Because there are no tadpoles at tree level in string theory, all amplitudes on 

S2 are finite, but at the next order, tadpoles are responsible for infinities in the 

amplitudes [43]. They can be illustrated using the coupling of three closed-string 

tachyons on the disc, for example, as shown in fig. 4.1. 

(a) (b) 

Figure 4.1. Factorization of A3T(D2) into: (a) AJT,v(S2) and Av(D2) or AT(D2); (b) AJT(S2) and 
A2T(D2). 

Configurations in which all three vertex operators are close together are conformally 

equivalent to the degeneration of the disk into a sphere (S2) and a disk connected by a 

narrow tube, representing a dilaton or tachyon propagator at zero momentum. These 

give rise to logarithmic and quadratic divergences, respectively, as can be understood 

by the way propagators are represented in the operator formalism of string theory. 

For states satisfying the Lo = Lo constraint, in Euclidean space, it is 

1 

(p2 + m2)-l = ( 47rT)-l J dr r(47rT)-t(p2+m2)-l, ( 4.1) 

0 

which at p = 0 diverges quadratically for a tachyon with m 2 = -81rT and logarithmi­

cally for a massless particle. There is also a logarithmic divergence when only two of 

the vertex operators come together (fig. 4.1b) because the intermediate tachyon is on 

shell rather than at zero momentum. The quadratic divergences are fictitious [5]: we 
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know that (4.1) should give -1/8nT for tachyons at p = 0, not infinity, and indeed 

the problem can be circumvented by analytically continuing ( 4.1) in the variable p2 

to obtain the right answer. However, the logarithmic divergences are physical and 

cannot be removed. 

One way of isolating these divergences is to use a short-distance cutoff such as 

(3.1) in the world-sheet integrals and express amplitudes as aC2 +blnt:+ct:0 ; the ln t: 

term is interpreted as an on-shell propagator. One wants to equate this term with 

field theory amplitudes in which the divergence is expressed in the form (1/p2 )1p2=Q, 

however, and it is not clear what the exact correspondence is between this expression 

and ln t:lf=O· The connection can be found using the ideas of the previous paragraph. 

Fig. 4.1 and eq. (4.1) suggest that if some extra momentum q is forced through the 

intermediate propagator, with q going to zero at the end of the calculation, tachyon 

divergences would be rendered finite, and log divergences would appear as poles in 

q2 ~ This can be accomplished by inserting 

(4.2) 

into the Polyakov path integral, so that the integral over the zero mode gives (27r )D 8( q 

+ '2:!1 Pi) rather than (27r)D 8('L:Pi) in an N-particle amplitude. Using this ap­

proach, we will show that the connection between the world-sheet cutoff and the 

divergent propagator is 

(4.3) 

To demonstrate ( 4.3) and our conventions, we factorize the dilaton tadpole diver­

gence in the two-tachyon amplitude on the disk, 

(4.4) 

where we have omitted the factor (27r)D8(pl + P2), and the tachyon vertex operator 

* This idea was used by Weinberg in [5]. 
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Vr(P) = 2: J d2z~: eip·x(z):. 

lzl9 

In complex conformal coordinates, the string action is 

S = 2T j d2z8x~'8x~', 
lzl<l 

where 8 = 8j8z (and[)= 8j8z), and the Neumann Green's function is 

(4.5) 

(4.6) 

(4.7) 

The function F(z) in (4.8) is defined analogously to eq. (3.15b) for S2 but drops 

out of scattering amplitudes due to momentum conservation* and can be ignored 

henceforth. The amplitude ( 4.4) is invariant under SL(2,R) transformations [4] 

n az + b z = =----
- bz +a' (4.8) 

The invariant volume element is 

dO ex d2 bd(arg(a)), (4.9) 

which for convenience is assumed to be normalized so that the Faddeev-Popov de­

terminant for fixing one of the vertex operators at z = 0 is unity. The volume 

J dO = Vol(SL(2, R)) is canceled by a factor of 1/ Vol(SL(2, R)) in Zn2 [7] . In what 

follows ZD2 will always appear together with I dO. Since this combination is indepen­

dent of the value of I dO, it will not be necessary to renormalize it as in [9], although 

one could presumably do so. 

* Inclusion of ( 4.2) in the path integral spoils momentum conservation, but the F's will only 
appear in the form (F)q1 = 1 + q2 ln F .. . , which will not affect the divergent part of the 
amplitude. ( 4.2) also spoils SL(2,R) invariance, but similar remarks apply. 
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With these conventions the two-tachyon function is 

A2T(D2) = (2:) 
2 

Zn2 J dD. J d2z(l -lzl2
)

2-alzl-4+a (I+ O(a)), 

lzl$1 

(4.10) 

where a= q2 j47rT. The pole part of (4.10) comes from expanding the integrand to 

obtain the term J d2 zlzl-2+a. Alternatively, at q2 = 0 this term can be defined by 

cutting off the integral using lzl2 > c2 ; whether we use a covariant cutoff c2 e-u is 

irrelevant since this does not affect the divergent part. Evaluating J d2 zlzl-2 in these 

two ways gives the correspondence (4.3) . Using the momentum source regulator, the 

divergent part of A2T is 

(4.11) 

On the other hand, the two-tachyon, one-dilaton coupling on S2 is found to be 

(4.12) 

Combining this with the tadpole of the noncovariant dilaton vertex operator, 

(3.6), and comparing with (4.11), we see that 

( 4.13) 

as was quoted in chapter 3. 

Eq. (4.13) is what one would expect for the divergent part of A2T(D2) based on 

unitarity, if there was only a dilaton tadpole. But we also expect a graviton tadpole 

contribution, fig. 3.1. This is one way of seeing that the value of the dilaton tadpole 

used above is incorrect. If we use the corrected value of An(D2), eq. (4.13) becomes 

(4.14) 

The last term in ( 4.14) is the graviton tadpole contribution, whose consistency can be 

checked in a nontrivial way by comparing it with the Feynman diagram fig. 3.l(a) in 
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the effective field theory. Although in general it does not make much sense to construct 

effective field theories for the massive modes of the string (since their masses are of 

the order MPlanck), experience shows that at least the coupling of a graviton to two 

tachyons derived from the kinetic term 

( 4.15) 

agrees with the string theoretic determination of A2r,c(S2), so we can use ( 4.15)+Ay'9 

with some confidence to evaluate the graviton tadpole graph. Using the graviton 

propagator in Feynman gauge, 

(4.16) 

one finds that 

AK2 

fig. 3.1(a) = (D _ 2)q281rT, ( 4.17) 

where -81rT is the (mass)2 of the tachyon. Equating this with the last term of (4.14) 

giVes 

(4.18) 

This is in fact the value of An2 needed to confirm the sigma model prediction (3 . 7) for 

An/ A. The actual value of An2 is independent of J dD. because of the implicit factor 

of 1/ J dD. in Zn2 , but if we use [9]'s result for the renormalized value of J dD. = -1rj2, 

then An
2 

= -Zn
2

, in agreement with the argument based on eq. (3.8). Completely 

analogous calculations for P2 also verify that Ap2 = -Zp2 • 

4.2. The FKS paradox 

The simple factorization example of the preceding section has the basic features 

of a more extensive study done by Fischler, Klebanov, and Susskind [20]. They 

looked at divergences of graviton rather than tachyon amplitudes on D2, since a 
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low-energy effective field theory exists for the former. Taking this field theory to 

be the sigma model result (1.2)+(1. 7), they obtained the contradictory expressions 

(1.8) and (1.9) for the field theory versus string theory value of the divergent part of 

graviton amplitudes on D2. We have recalculated these expressions, keeping track of 

the overall normalization and using the correspondence ( 4.3) so that the magnitude 

as well as the form of the two equations can be compared. The string-theoretic result 

for the N-point amplitude is 

(4.19) 

and its field-theoretic counterpart is 

( 4.20) 

Assuming the discrepancy in form between these results has been resolved as in [23], 

they can be equated, giving 

( 4.18) 

the expected value for the disk vacuum energy. 

Actually there are a number of hidden assumptions in eq. ( 4.20). A tei:m linear in 

N, the number of external legs, has been suppressed. This N-dependent term comes 

partly from external leg divergences as in fig. 4.2, 

3 2 

N 

(a) 

3 
2 

N 

(b) 

Figure 4.2. N-graviton scattering amplitudes with divergences due to on-shell propagators on the 
external legs. 
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1 

N 

Figure 4 .3. Tadpole contribution to N-graviton scattering. 

where the dots represent tadpole and mass terms from expanding Ayf§ around flat 

space. In addition, there is an N-dependent piece in the contact term, fig. 4.3. 

FKS argue that in the string calculation the N -dependent divergences cancel each 

other, and so they should be ignored in the field theory calculation. This seems 

plausible to us because the diagrams represented by fig. 4.2(a) depend sensitively on 

how one regulates the infrared divergence of the internal on-shell propagator, and this 

makes the value of theN-dependent part rather ambiguous. Since these contributions 

are strictly proportional toN, they cannot account for the discrepancy between (4.19) 

and (4.20). 

Another assumption, not discussed by FKS, is that the graviton propagator is in a 

particular gauge, often called Feynman gauge because, in analogy to electrodynamics, 

it is the covariant gauge where the propagator is most simple. As was discussed in 

sect. 3.3, graviton amplitudes in a flat background are not gauge-invariant when the 

cosmological constant is not zero. In a general covariant gauge, with the gauge fixing 

term 

£ - ~(h - rh )2 g.f. - ~ p.v,v '> vv,p. ' ( 4.21) 

the propagator is 

2( - 1 ( PaP/3 Pp.Pv b ) 
+ (( - l)(D - 2) Dp.v]T + ]T a/3 
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_ 2(- 1 (D + 2(- 3 + ~~(2( _ 3)) P!-'PvPOtP/3' 
( ( - 1 )2 D - 2 2 p6 

( 4.22) 

where M(01/3) = !{M01p+Mp01 ). Feynman gauge, (4.16), corresponds to~= 1, ( = 1/2. 

Graviton tadpole diagrams involve a trace of the propagator, which is a complicated 

function of ~' ( and D (the dimension of spacetime), and this is where the gauge 

dependence comes in. For other values of~ and (, eq. ( 4.20) would be different; in 

fact, the simple derivation used to evaluate the graphs of fig. 4.3 in Feynman gauge is 

no longer applicable in other gauges (see appendix to this chapter). One might wonder 

if this could be the cause of the FKS paradox, but ref. [23] shows that the problem 

is with the string theory equation (4.19), not the field theory result. Why should 

string amplitudes be equal to field theory amplitudes in a particular gauge? There 

exists an argument [44] that string amplitudes computed in the usual first quantized 

approach can be derived from string field theory with the Siegel-Feynman gauge fixing 

condition, in which the string propagator has a simple form that is supposed to yield 

the graviton propagator in Feynman gauge. Perhaps this idea is correct, but it has 

not yet been demonstrated in detail, as far as we are aware. 

Even though no effective field theory exists for tachyons, we can use unitarity to 

derive a (nonrigorous) soft graviton/dilaton emission theorem for N-tachyon func­

tions, analogous to (4.2): 

(4.23) 

where the graviton and dilaton in the 82 amplitudes are at zero momentum. The sum 

in the second term is over a complete set of polarization tensors c~l, and -~x:Atrc 
is the value of the graviton tadpole. This sum, with the factor of 1/ q2

, clearly 

corresponds to the graviton propagator. To imitate the analogous calculation for 
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ANG (see appendix) as closely as possible, we therefore make the replacement 

( 4.24) 

Furthermore the amplitudes ANT,G and ANT,D, with G and D at zero momentum, 

should be obtained from ANr(Sz) by insertion of the operators 

V = 2K-T J d2 (· ~ 11 ~ 11 • _ VhR) D li'>:C z . ux ux . T 
v24 16~ 

and 

respectively, according to the discussion of vertex operators in chapter 3. Using 

An(Dz) = f*"-A, the result is 

,
2 
AT { . J ? ( - VhR) . } ANr(Dz)pole = 2q2 ANr(Sz) w1th dJz : ox11ox11 : + 16~T mserted . 

( 4.25) 

On the other hand, a direct examination of the string-theoretic amplitude as in (1b] 

and (25] gives 

(4.26) 

Eqs. ( 4.25) and ( 4.26) are directly analogous to ( 4.20) and ( 4.19), respectively, for 

graviton scattering. FKS showed that the operator insertion J d2 z : ox11 Bx11 : gives 

rise to the term T- 1 f)jfJ(T- 1 ) for the graviton case; J d2zVhR corresponds to the 

term 1 in ( 4.20). The particular combination of these operators in ( 4.25) is exactly 

what Polchinski found for factorization of Dz tadpoles using a much more complicated 

(and rigorous) method (23]. As for the prefactors in ( 4.25, 26), comparison gives the 

usual result, An2 = ~Zn2 jdfL 
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For the divergence in A2r, sect. 4.1, the reader will have noticed that there was 

no disagreement between the string theory and field theory results. This is because 

an insertion of J J2 zV'hR in an N -particle amplitude on S2 merely multiplies it by 

41rX = 81r, and all two-particle amplitudes on S2 are zero: it takes at least three 

vertex operators to saturate the SL(2,C) symmetry. 

4.3 Resolution of the FKS paradox? 

In sect. 4.1 the disk was represented by the region lzl ~ 1, but since it is obtained 

from the sphere by identifying z with 1/z, one could equally well take the disk to 

be the region lzl 2:: 1, a sphere with a hole cut out. The SL(2,R) symmetry of D2 

amplitudes allows one vertex operator position to be fixed. In order to make the D 2 

amplitude resemble that on S2 as closely as possible, FKS fixed three vertex operator 

positions, and integrated over the radius a and position z of the hole. Their expression 

for the amplitude was 

and correlations were computed using the Green's function 

(4.28) 

in units where 47rT = 1 (cf. eq. (4.7)). They found that the logarithmically divergent 

part could be expressed by inserting the operator a 2 J d2 z : 8xP. CJxP. : and evaluating 

the correlations using the S2 Green's function. The log divergence comes from the 

integral J daf a. In order to resolve the paradox, one would like to find that the 

divergence is given by an insertion of 

rather than just the first term. 
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The simplified resolution offered in [23] is that J daj a3 J d2 z should be rewritten 

in terms of the invariant radius and position of the hole, which generates the extra 

term of order a2 • The position of the hole's geometric center z' differs from z by an 

amount 

J d2uylh(z + u)u 
2 

c lul<a a a- ( ) 0( 4) oz = =- a z + a J d2uylh(z + u) 2 
(4.29) 

lui< a 

(using hab = eu bab)· The invariant radius can be defined as an average over angles of 

the integrated radial line element, 

a 

a'= 2~ j dO j du exp (a(z + uei8 )j2) 
0 ( 4.30) 

= aeu(z)/Z (1 + a2( ~88a + I._18al2 ) + 0( a4)) 6 12 . 

One then finds that 

( 4.31) 

Although this has the desired t.JhR term, it also has an undesired noncovariant term 

18al2 , which was missed in [23] because the O(a3 ) correction to a' was ignored there. 

Thus the resolution given here does not seem to be quite correct. 

Appendix. Derivation of ( 4.20) 

Here we derive the field theory result for massless tadpole divergences, eq. ( 4.20) . 

The evaluation of graviton tadpole insertions in tree graphs is simplified in Feynman 

gauge by observing that they are equivalent to shifting the background by 

(4.32) 

(In other gauges there are terms of the form Pp.Pv/P4 whose meaning is ambiguous.) 



45 

Let 

Then the metric with shifted background is 

( 4.33) 

to first order in {3. Now consider terms in the effective Lagrangian proportional to 

r-n, such as 

( 4.34) 

Under the scale change (4.33), such terms transform like [45] 

D A 

fn(g, R) -----+ (1 + f3p·-n fn(fJ, R), (4.35) 

where R is the curvature formed from g. The only difference between amplitudes 

from fn(g, R) and fn(fJ, R) is that each external leg in the latter will have a factor 

of (1 - {3), but we are ignoring the correction proportional to the number of external 

lines, as explained in sect . 4.2. Linearizing ( 4.35) in f3 shows that the graviton tadpole 

contribution to such an amplitude is 

( 4.36) 

Similarly the coupling of one dilaton to the terms e<P fn(g, R) (this is the factor of 

e<P that multiplies the whole tree-level Lagrangian in (1.4)) comes from the scale 

transformation and field redefinition (1.5): 

( 4.37) 

Linearizing this in 4> and combining it with the dilaton tadpole and zero-momentum 
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propagator gives 

(n- l)(D + 2) 2 AA (S ) 
4(D- 2)p2 ~ N 2 . (4.38) 

Using n = r-1aj8(T-1), the sum of the graviton and dilaton tadpole parts, (4.36) 

and ( 4.38) gives the desired result, eq. ( 4.20). Although this derivation was for one­

particle irreducible (lPI) diagrams, it is also true for one-particle reducible (lPR) 

graphs because the tadpole divergence of a lPR graph is the sum of the divergences 

for the lPI parts, and r-1aj8(T-1) for the graph is also the sum of r-1aj8(T-1 ) 

for the lPI parts. 
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Chapter 5. String Amplitudes in Curved Backgrounds 

5.1. Introduction 

In chapter 4 it was shown that divergences in the N-tachyon function on D 2 

should be equal to an insertion of 

(5.1) 

in the same amplitude on S2, assuming the FKS paradox has been correctly cleared up 

by (23]. The idea of Fischler and Susskind (24) is to cancel (5.1) against a contribution 

to ANT(S2) from background graviton and dilaton fields in the string action, 

ANT(S2) ex j Vx(z) IT Jg(x(z))e-sb,Vl · · · VN, 
z 

(5.2) 

where Sbg is given by eq. (1.3), except we omit the antisymmetric tensor field Bp.v· 

The .J9 factor in (5.2) insures that the functional measure transforms covariantly 

under spacetime coordinate changes xP.(z) --; yP.(x(z)). It is often useful to go to a 

Riemann normal coordinate system about a point xo [46], so that Sbg can be expanded 

around the free string action So as So+ 5S, where 

(5.3a) 

5S = 
2~ Rabcd(xo) j d2ze~ca~a[J~d 

- 4~ j d2z (,b(xo) + ea-ga<P(xo) + ~Ce"9'a "9'b<P(xo)) v'hR<2
) + · · · . 

(5.3b) 

The ellipsis represents terms higher order in Rab and "9'2 , which are suppressed by 

powers of 1/T, and Latin indices for the flat tangent space have been obtained from 
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the Greek (curved space) indices using the vielbein, e~(xo). Treating 8S as a pertur­

bation, we can obtain an expression that looks like (5.1) by doing the (a) contractions 

in (5.3b), using 

(5.4) 

as in chapter 3. The result is that 

Apart from the action Sbg, log divergences can also come from the functional 

measure, 

II JdetgJLv(x(z)) = 1 + ~Rab(xo) j d2 z"8(0)"ea(z)e(z) + · · · (5.6) 
z 

by contracting (eae). The symbol "8(0)" means the world sheet 8 function at zero 

separation, which can be written as -4T (otJeO. Thus the log divergence of (5.6) is 

This exactly cancels against the self-contraction of the first term in (5.5) by doing a 

partial integration. So the net effect of the measure contribution (5.6) is to normal 

order aeatJed in (5.5). 

Comparing (5.1) and (5.5), one sees that the background field contribution to 

ANy(S2) cancels the divergence of ANT(D2) if 

and 

2 1 ? 
V </> = --n:-A. 

4 

(5.7a) 

(5.7b) 

Eqs. ( 5. 7) should be a linear combination of the equations of motion for the graviton 

and dilaton. To check this, recall that the spacetime effective action corresponding 
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to the background field string action we have used was shown to be eqs. (1.4) plus 

(1.6), 

(5.8) 

in the sigma model approach. It has the field equations 

(5.9a) 

(5.9b) 

so that R and \72 rjJ are of order ~>, 2 A. Treating A as a perturbation, \7 rjJ will also be 

O(A), so we can drop terms of 0((\7¢J)2 ). Taking traces and linear combinations of 

(5.7a, b), we obtain 

R - D 2A -</J/2 
- 2(D- 2) ~>, e ' (5.10a) 

..,2,~.. = D + 2 2A -</J/2 
v '~-' S(D-2)/\, e ' (5 .10b) 

which clearly disagrees with (5.7). 

A possible source of error in the above treatment is the strength of the VJiR(2) 

divergence from the background fields. In· dimensional regularization (D .R.) the value 

of "8(0)" = -4T (8tJ~~) is strictly zero, even for the finite part, which a priori might 

have had a Weyl anomaly. On the other hand, 

(5.11) 

in D.R. [38]. It is very cumbersome to compute the divergent part of D2 amplitudes 

using the dimensionally regularized Green's function, and our attempt to do so yielded 

divergences of the form 1/-/f.., (where c = d- 2) instead of the 1/c pole that comes 

from the (~e) factors of the background field contributions. Thus it does not seem 

that D.R. will fix the problem, although it does make one wonder whether the VhR(2) 

divergences of the sigma model are unambiguously defined. 
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Another possible source of error is that the effective action (5.6) may be modified 

by field redefinitions that depend on the method of regulating divergences in the string 

calculations. This is closely related to the ambiguity in the VhR terms mentioned 

above and is just a conjecture based on the fact that </> couples to VhR in Sbg. 

One way to eliminate these ambiguities is to restrict our attention to two-point 

functions and shift only the gravitational background. As explained in sect. 4.2, the 

VhR terms do not contribute in a two-point amplitude on S2. By shifting only the 

metric and not the dilaton field, we should be able to consistently cancel only part of 

the divergence in D2 amplitudes, the part due to the graviton tadpole. In the case of 

A2y(D2), we know just what fraction of the total divergence this is: from ( 4.14) and 

(4.11), 

(5.12) 

Thus the l.h.s. of (5.7a) should be multiplied by -4/(D- 2). This still does not 

agree with the field theory equation (5.10a) where </> = 0. 

5.2. Vertex operators in curved space 

There is one more source of log divergences in the background field amplitude 

that we have neglected-modifications to the vertex operators due to the background 

curvature. These were completely ignored in [24]. In [25] it was argued that these 

divergences are canceled by modifying the tachyon mass shell condition to 

( -\72 + Mj) V(x) = 0, (5.13) 

which is the natural generalization of the flat space version, 

( -(8jox)2 + Nij) eip·x = 0, (5 .14) 

and also is necessary for maintaining conformal invariance of the amplitude [47] . 

But ref. [25] neglected some logarithmically divergent contractions that cannot be 



51 

absorbed into the mass shell condition. Using a very simple exercise, we can show 

that these divergences must in general combine with divergences from the action Sbg 

to give results that do not depend on the choice of coordinates for spacetime. 

Consider the two-tachyon function on the sphere in a flat background, and perform 

the change of variables x" ---+ (1 + Ax2)x" in the path integral, which is a coordinate 

transformation in spacetime. To lowest order in A, the change in the amplitude is 

x { (D + 2) J d2z"O(O)"x2(z) + i tPi · x(z;)x2(z;) 

(5.15) 

where N = 81r2T and n = Vol(SL(2,C)) . The first term in brackets is from the 

Jacobian of the functional measure, the second term is from the vertex operators, 

and the third term is from the action. The log divergence of the latter is 

D+2 2 /? --1r-ln € d- z8x11 8x" (5.16) 

after contracting (81' 11 x 2 + 2x~-'x11 ). Then inserting (5.16) back into (5.15) we find 

that the ln c2 contribution to 8A2T from the variation of the action is 

lnc2 AN (D + 2) j d
2
z1d

2
z2d

2
z3 ((ax~'(z3)Bx"(z3 )) _ 1 l.6.12l

2 
) , 

n 1r ID.12I4 21rT ID.13I2ID.23I2 

(5.17) 

where Doij = Zi- Zj . The (8x8x ) term cancels with the "8(0)" term in (5.15), and 

the remaining integral is SL(2,C)-invariant so that (5.17) is nonvanishing. 
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Now 8A2r must be zero, since it is just the effect of a coordinate transformation, 

but the first and third terms in (5.15) give a net nonzero result. The second term 

is an integral over only two world-sheet coordinates, and ordinarily we would need 

at least three to saturate the factor of 1/D., so we have a puzzle. It can be resolved 

as follows. Integrate (5.16) by parts; then (rr: eip;·x(z;): J d2 z3xP(z3)88xP(z3)) no 

longer gives l.6.1zl 2 l.6.13l-2 l.6.z31-2 as in (5.17), but rather 

(5.18) 

where l.6.ijl2 + c2 is to be understood for l.6.ijl2 when Zi --+ Zj. In this form it is easily 

seen that the piece in question is exactly canceled by the middle term in brackets in 

(5.15). 

vVe therefore see that: (1) terms that do not look invariant under SL(2,C) can 

be changed to an invariant form using partial integration; and (2) it is not correct 

to separate the log divergences of the action from those of the vertex operators even 

for flat spacetime (in curved coordinates). It is clear that in a curved background, 

coordinate transformations will also shift part of the divergence between the two, so 

that only their sum has an invariant meaning. Let the metric be flat space Dpv plus 

a perturbation, 

(5.19) 

It is convenient to split 8gpv as in (7) because the A' part corresponds to flat space 

in the coordinate system used previously. Since it has just been shown that such 

contributions cancel against each other, as they must, we might as well set A' = 0 

immediate!/ It has no effect on the curvature, given by 

(5.20) 

The tachyon vertex operator should satisfy eq. (5.13), using covariant derivatives 

* Other choices of A' correspond to different coordinate systems. For example, choosing A' = 
- kA would give Riem ann normal coordinates. 
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constructed from the above metric. A class of solutions (with A1 = 0) is 

V(x) = eip·x (1 +A { i(~~~)
3 + (D -1) ( :

2 

(1- a)+ (:;:t a) 

+(D -1)(D(1- a)+ a):~~})+ O(A2
), (5.21) 

where p2 = M 2 = 81rT and a is an undetermined constant . It is a nice consistency 

check to show that the divergent parts of amplitudes do not depend on a, which we 

have done. Therefore we are free to let a take some convenient value, say a = 1. 

Using the vertex operator (5.21), the O(A) part of the tachyon N-point function 
. * 
IS 

~( 1 1 3 D-1 2 2 )} + £:t - 2GoJi ·Pi+ 6!vf2 (Ji ·Pi) + 4!vf2 (!vi Go- (Pi· Ji) - Pi· Ji) , 

(5.22) 

where Go = - 4;1'lnc2
, Gij = - 4;Tln(l~ijl2 + c2

) , and Jf = L_jp'jGij · The 

GoDJz · Blz term can be shown to cancel the -!GoJi ·Pi term by partial integration, 

as in eq. (5.18). For N = 2, the IJz · 8Jzl2 term can also be integrated by parts, since 

* In eq. (5.22) we have suppressed momentum-nonconserving contributions that come from the 
integral over the zero mode of the string coordinate, due to the fact that the integrand contains 
factors of X and not just ax, apart from the usual eip;·:z:(z; ) factor . The divergent parts of 
these contributions cannot mix with the momentum-conserving ones; they must cancel among 
themselves. 
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Jz = Pl(Gzl- Gz2)- p1.6..G by momentum conservation, and then 

Therefore this term cancels the ( Ji · Pi)3 term in (5.22), and we are left with 

(5.23) 

Once again we are faced with an integral that does not have manifest SL(2,C) invari­

ance, but it can be changed to an invariant form using the same trick as in (5.18), 

namely, 

(5.24) 

The resulting integral after SL(2,C) fixing is logarithmically divergent. With the 

usual cutoff, we find that 

8A2r(S2) = 2(D- 1)Aln t; 

using (5.20), A is related to the spacetime curvature by A= Rj(D(D-1)). Canceling 

8A2r(S2) against the disk contribution (5.12) gives 

D 2 
R = "' A. 

D -2 
(5.25) 

Eq. (5.25) differs from the field equation (5.10a) by a factor of 2. Previously 

we were off by factors of 3(D- 2)/2 (eq. (5.7) versus eq. (5.10)), and -6 (using 

eq. (5.12) but leaving out vertex operator divergences). So inclusion of the vertex 

operator divergences appears to be a step in the right direction; as seen from the flat 

space calculation, it is necessary to include them so that results are independent of 

the choice of spacetime coordinates. 
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In ref. [23] it was found that the Fischler-Susskind mechanism; which is what we 

have been attempting to use, gives correct results for the tadpole and vacuum energy, 

but the method used there was quite different from ours. It involved the cancellation 

of BRST anomalies on a degenerating Riemann surface rather than a straightforward 

evaluation of amplitudes such as we have attempted. Undoubtedly, discovering a 

connection between the two approaches would shed light on the difficulty found here. 

) 
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Chapter 6. Infinity cancellations for S0(2Df2 ) 

6.1. The bosonic string 

The similarities between the bosonic and supersymmetric type I strings are most 

evident in the cancellation of tadpole divergences for amplitudes on D2 and P2 (1]. 

Because of the relative simplicity of the bosonic case, it is possible to show that the 

cancellation occurs for arbitrary external states. The reason that cancellations occur 

between these topologies is that their Green's functions are the same except for a 

sign, 

k = { +1, 
-1, 

(6.1) 

when P2 and D2 are both represented by the unit disk (with antipodal points identified 

for P2) . 

Scattering amplitudes are correlation functions of vertex operators using ( 6.1) for 

(x(z;)x(zj)). A vertex operator has the general form 

VM(z) = VM(z)eip·x 

VM(z) = !(axt1(82xt2 . . . (aN xtNI2' 
(6.2) 

omitting spacetime indices and the polarization tensor. For our purposes the im­

portant characteristic of a vertex operator is the number of derivatives, 2M, which 

determines the (mass) 2 of the associated particle to be 

m 2 =2(M-1), (6.3) 

in units where 47rT = 1. 
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In an amplitude the conformal Killing symmetry can be used to set z1 (the position 

of the first vertex opertor), say, to zero, as well as the phase of z2. Let z2 = a and 

Zn -+ azn for n > 2. Performing the contractions between the exponentials in the 

vertex operators gives 

1 N 

AN= Nn2(P2) J daa-3+2E;M; J n d2ziJr l.6.ijDijl2p;·pj 

0 lz;l<l/a 1=3 1~J 

· .6,_ij = Zi :-" Zj, (6.5) 

and z1 = 0, z2 = 1. The prime on IT' means to omit the .6.i/s when i = j. Because Vl£ 
is a dimension 2M operator, it will go like a-ZM after the above change of variables. 

This cancels the factor of a2E;M; in ( 6.4) so that the integral over a is J da j a 3 to 

leading order. These quadratic divergences are associated with the tachyon tadpole 

and are unphysical, as was argued in chapter 4. The massless tadpole divergences are 

obtained by expanding the integral to 0( a2) . vVe will show that these terms are always 

linear in the variable kin (6.1); therefore they have the same magnitude but opposite 

sign for the two topologies. To see this, note that each term in the correlation function 

in (6.4) consists of products of derivatives of the Green's function. After Zi -+ azi we 

have, for example, 

1 ( 1 ka
2z·) a·G··--- ----1 

t tJ - a "'. . D· . ' 
L::>.IJ IJ 
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and in general, 

Eramcii = ~+ "'(ka2
)
1fi(zi,zi)· an m~ 

1=0 

From this it follows that the integrand in (6.4) is of the form 

IJ'I·. ·12p; ·pj (·. ·) = a21M ~(ka2/g1(Zi). 
1=0 

(6.6) 

The functions 91(zi) must be the same for D2 and P2 since the value of k is all 

that distinguishes between them. The l = 1 term in the sum gives the logarithmic 

divergence and is linear ink. Therefore if the normalization factor N n
2
(P

2
) is such that 

AN(D2)+AN(P2) = 0 for one amplitude, this log divergence will vanish in the sum for 

an arbitrary amplitude. As we have already mentioned, the dilaton tadpole vanishes 

to this order when the gauge group is 80(8192) [4]. (The gauge group dependence 

is through a trace for each boundary of a product of group generators, one for each 

open-string external state [48]. For amplitudes with no open-string external states 

and gauge group 80(N), this is a factor of Tr(1) = N for each boundary. Thus Zn
2 

[and Nn2 ] are multiplied by N.) 

This completes the proof of tadpole divergence cancellations except for a few 

technicalities. One is a problem with fixing the 80(3) conformal Killing symmetry 

for P2 (i.e., setting z1 = 0). The 80(3) transformations are [19] 

n Az+B 
z - -=----= 

- -Bz+A' 
(6.7) 

Although the integrands of P2 amplitudes transform as a density under (6.7) (such 

that the change in the measure IT d2zi is compensated), the integration region lz0 1 :::; 1 

is not preserved. This means the integral over the group volume will not factor out 

when the integration over z1 is traded for J dD.. This can be solved by using the 

equivalence of the P2 represented by lzl > 1 with the original P2, lzl < 1. Replacing 

(6.8) 

just means to integrate over P2 twice and divide by two. The region IR2 is invariant 
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under (6.7). After setting ZI = 0, the remaining integrals are invariant under Zi ~ 

-k/zi, so the operation (6.8) can be undone. 

A more serious problem is that in expanding the integrand to 0( a 2), we have 

ignored the a-dependence coming from the boundary of the integration regions lzil < 
1/a. Formally they should give -t of the nonboundary terms, since if we leave 

the integration regions in the form t fm.2 d2z, then lzil < oo in (6.4). But a direct 

evaluation of the boundary contributions for various amplitudes does not give this 

result, and moreover the boundary contributions do not have opposite signs for P2 

and D2.* Physically there is some justification for leaving them out: they contribute 

only as Zi approaches the boundary, whereas the tadpole divergences should occur 

when all the vertex operators are close together. The boundary contributions should 

be external line divergences (ELD 's), as in fig. 4.2(b). The fact that they do not cancel 

between Pz and D2 is mysterious, since the dilaton and graviton mass shifts should 

be zero whenever the dilaton tadpole and vacuum energy cancel, due to the form of 

the effective Lagrangian AJgetP . There are other ELD's that can be calculated by 

rescaling Zi ~ azi for all but one of the Zi. It should be that inclusion of these gives 

a net result of zero for P2 plus Dz when N = 8192. 

6.2. Decoupling of spuriOllS states of the superstring 

The transition from bosonic string to superstring is most naturally accomplished 

in the superspace formalism. The gauge-fixed action is 

S = 2_ j d2zd2 0DX~-' DX~-' 
271" 

= ~ j d2z (ox~-'8x~-' - -if;~-'8{;~-'- .,P~-'8'1/;~-' + F~-' F~-'), 
271" 

where X is the superfield, 

(6.9) 

written in terms of the string coordinate x~-', its superpartner, a two-component Majo-

* The ambiguity is due to manipulating divergent integrals before introducing a cutoff. 



60 

rana spinor ( '1/J, {;), and an auxiliary field FP., which allows the supersymmetry algebra 

to close without using the equation of motion, DDX = 0. f) is a complex Grassmann 

coordinate for the supermanifold, and the supercovariant derivatives are 

D =Be+ BB, (6.10) 

where Be= B/BO. D and D anticommute with the supersymmetry generators 

Q =Be- OB, (6.11) 

Since F~-' has the trivial equation of motion FP. = 0, we eliminate it from XP.. More 

will be said about this later. 

Most of the formalism for scattering amplitudes in the bosonic string goes over 

for the superstring by making the replacements 

in the vertex operators for bosons in the NS-NS sector. The superstring also has 

vertex operators for fermions and R-R sector bosons that have no analog in the 

bosonic string, but these will not be considered here. Correlations of vertex operators 

on Sz are constructed from the superfield Green's function, 

(6.12) 

vVe will also need the Green's function for the disk, 

(6.13) 

One way to obtain this is to add to (6.12) the contribution from an "image charge" 
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(26] at 

(6.14) 

on the super Sz manifold. The Grassmann part of (6.14) follows from the requirement 

that under a supersymmetry transformation 

8z =Be., 8() = c., (6.15) 

8z, 80 should also be a SUSY transformation. A more concrete way to get the D2 

Green's function is to expand (X1Xz) in component fields, 

(X1X2) = (x1x2)- 8182 ('I/J1'1/J2)- 8182 (-if;1-if;2) 

- 81 Bz ( 'I/J1 'if;z) - 81 8z ( {;1 '1/Jz) · 
(6.16) 

The top line is identical to the Green's function for Sz . The second line vanishes 

on Sz because '1/J and 'if; are not coupled in the action, but on Dz they are coupled 

through boundary conditions: in deriving the equations of motion for '1/J, a surface 

term appears, 

which is eliminated by the condition 

'if; = ±iz'lj; at lzl = 1. (6.17) 

The choice of sign corresponds to the two spin structures for fermions on Dz [49], but 

on D2 they give identical results for bosonic scattering amplitudes [50, 26], so we can 

choose the upper sign. Since ('lj;1'1/J2) = -1/(z1- zz), (6.17) implies 

('I/J1{;2) = zzz 
Z1 - Zz 

(6.18a) 

2 
(6.18b), 

for lzzl = 1. Because of the equations of motion [)'lj; = a{; = 0, one expects < '1/JI -if;z) 

to be a function of z1 and zz, so ( 6.18b) should be the correct form for I zzl < 1. It 

agrees with the expression for G12 on Dz in (6.13), using (6.16). 
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Tree-level amplitudes for massless states are correlations of vertex operators like 

(6.19) 

for gravitons (on S2 or D2) or 

(6.20) 

for vector bosons (on D2). They have an enlarged conformal Killing symmetry relative 

to bosonic string amplitudes. For S2 it is the graded extension of SL(2,C), whose 

generators are 

L1 = -8 

Lo = -(zfJ+ ~BfJe) 

L-1 = -(z2 fJ + zBfJe) 

G _l = z( fJo :.___ 08) 
2 

(6.21) 

plus the complex conjugate generators. By exponentiating them, one obtains the 

super-SL(2,C) transformations 

zn = az + b + e T/Z + ~ 
cz+d (cz+d)2 ' 

en= e + ryz + ~; 
cz+d 

ad - be = 1 + ry~, 

(6.22a) 

(6.22b) 

where T7 and ~ are complex Grassmann parameters~ Similarly, amplitudes on D2 

are invariant under the super-SL(2,R) group obtained from (6.22) by making the 

restrictions 

d= a, c = b, Tl = zc. (6.23) 

Because of these enlarged symmetries, there is the freedom to fix not only several 

of the z;, but also some of the ei in the world-sheet integral over vertex operator 

* Similar expressions have been written by other authors [26, 51] who rescaled a, b, e, d -+ 

(1 + !7Jt:)(a, b, e, d) to get the simpler constraint ad- be = 1. But the product of two such 
transformations will not be another such transformation with ad- be= 1, so (6.22) is the more 
correct form. 
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locations. For example, one can fix fh = 82 = 0 and ZI, z2, Z3 to arbitrary values .Z1 , 

i2, Z3 on the boundary of D2 by inserting 

in the amplitude. The invariant volume element can be shown to be 

and the Faddeev-Popov determinant is a superdeterminant [52], 

A * 
~FP = sdet 

0 B 
= ldet A/ det Bl, 

where A is the ordinary SL(2,R) Jacobian, 

and B is the Grassmann part, 

=II Iii- Zj l
2 

i<j 

B = BUJP' 0~) = ( Zl 11 ) • 
8('T), ij) Z2 

For super- SL(2,C), ~FP is just ieq. (6.26)12 • 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

It was observed by Itoyama and Moxhay [26] that equivalent results are obtained 

for S2 if instead of fixing 01 and 02 , all the Grassmann integrals are performed, and 

the regular SL(2,C) is subsequently fixed. Similarly on D2 with only open-string 
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external states, one can either fix 81 and 82 or integrate over them with the same 

result. We show this for the three-vector coupling, 

(6.29) 

Setting 01 = 02 = 0 and fixing the Zi gives 

(6.30) 

which is just the reciprocal of 6.pp, (6.26), so that A3v is independent of the Zi, a.s 

is necessary. Alternatively, integrating over all the O's and fixing the Zi gives 

(6.31) 

which is the inverse of the regular SL(2,R) Jacobian, (6.27). 

Ref. (26] noted that for closed-string amplitudes on D2 (and P2), however, the 

two methods do not give equivalent answers: if the O's are not fixed, the amplitude 

is quadratically divergent. An example is the graviton two-point function, 

Using super-SL(2,R) to fix 01 = 01 = 0 makes the integral independent of 02 , hence 

A2c = 0. Alternatively, integrating over 81 and 82 gives 

(6.34) 

which is quadratically divergent even after SL(2,R) has been used to set ZI = 0. 
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Formally it should not matter which method is used, inserting (6.24) or the or­

dinary SL(2,R)-fixing factor, since both are equal to unity, so the inequivalence is at 

first surprising. Mathematically the problem is that integrals on superspace are in 

general not invariant under a change of variables when the manifold has a boundary. 

A simple illustration is 

J dxdOOf(x) = J dxf(x). (6.35) 

Let X --+ X+ ae, e --+ e + f3x, (where a and f3 are Grassmann numbers), which has 

the super-Jacobian [52] 

&x' 
sdet &x 

80' ax 

Thus (6.35) becomes 

t--
1 a 1 

X 80 = sdet 
80' f3 
88 

+a 
= 1- af3. 

1 

(1- af3) J dxdO(O + f3x)(f(x) + aOxj'(x)) 

= (1- af3) J dx(f + f3axf'). 

Integrating the x f' term by parts gives 

(1- a,B)(1 + a,B) J dxf(x) = J dxf(x), 

(6.36) 

(6.37) 

(6.38) 

provided there are no surface terms, but if the integration region is bounded, they will 

in general be present. Applying similar reasoning to the two-graviton function, we 

have found that a surface term arises in the change of variables needed to fix fh = 0; 

it is 

(6.39) 

Although this does not look the same as ( 6.34), using the change of variables z --+ 1/ z, 
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the zz integral can be written as 

(6.40) 

which is independent of z1. Since 

the surface term indeed accounts for the entire difference between the two forms of 

the amplitude. Nevertheless it is clear that the former answer (zero) is better than 

the divergent one, and since fixing fh works similarly for any amplitude on Dz, we 

should accept this as the correct way to proceed. 

Still one would like to have a deeper understanding of this phenomenon and why 

the discrepancy occurs only for closed-string amplitudes on Dz (or P2). Experience 

with the bosonic string shows that nonlogarithmic divergences are due to tachyon 

tadpoles. The argument based on eq. (4.1) in fact shows that a quadratic divergence 

is due to a tachyon of (mass)2 = -2 (where 47rT = 1) . This is the closed bosonic 

string tachyon, which has twice the (mass)2 of the closed-string tachyon present in 

the superstring before making the GSO projection. 

The key to understanding these observations is to realize that the two ways of 

evaluating amplitudes (fixing B's or integrating over them) correspond precisely to 

t he two "pictures," or formalisms, called F1 and F2, which have long been known to 

be equivalent at tree level [53] . Integrating over B's gives vertex operators in the F1 

picture; for example, the vector boson vertex operator is 

(6.41) 

in component fields. Setting (} = 0 and including a bosonized superconformal ghost 
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field* e-<f>(z) (29] yields an F2 vertex operator, 

(6.42) 

In the F1 picture an amplitude is made entirely of F1 vertex operators, whereas in 

the F2 picture two of them must be F2 and the rest F1: 

This is the same as fixing the odd part of super-SL(2,R), since two of the O's are set 

to zero, and the ghost fields provide a factor of 

(6.43) 

needed to reproduce the odd part of the FP superdeterminant, 1/ det Bin (6.26, 28). 

Why does the equivalence of the F1 and F2 pictures break down for closed-string 

amplitudes on D2? This has to do with the tachyon tadpole. In the F1 picture there 

are many "spurious states" that do not occur in the F2 picture. A spurious state 

is a mass eigenstate of the string that is orthogonal to all the physical states.t One 

way to demonstrate these spurious states is through the operator product expansion 

(OPE) of two vertex operators. Green and Seiberg [27] showed that the OPE of two 

v1 's has the form 

Vi ( . k)Vi ( I. kl) '"'"' 1 - 4k . kl i(k+k')·x(z') 
1 z, 1 z ' ( 1)2-4k·k' e z-z 

1 I I 
+( 1) 1_ 4k·k'V1(z;k+k)+· · · z-z 

(6.44) 

The first t erm is the vertex operator for a bosonic string tachyon; the second term is 

another vector boson vertex, and there are also vertex operators for massive states. 

* The superconformal ghosts are Faddeev-Popov ghosts associated with fixing the local super­
symmetry of the original world-sheet action to get the gauge-fixed form (6.9). 

t Physical states are those that vanish under the action of the positive-frequency modes of the 
stress-energy t ensor, T ab. Tab = 0 is the equation of motion for the world-sheet metric from 
the action (1.1). 
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In contrast the OPE of V1 with V2 goes like 

Vi(z; k)V2(z1
; k'),...., ( 1~1_4k·k' V2(z'; k + k') + · · ·, z-z 

(6.45) 

with no tachyons appearing. Physically the OPE tells what kinds of states can be 

produced by the two V's, and (6.44) implies that two vector bosons in the F1 picture 

can produce a tachyon. The reason this tachyon is spurious is that its coefficient is a 

total derivative, 

1 - 4k . k' - -8( - ')-1+4k·k' 
(z- z')2-4k·k' - z z ' (6.46) 

which will vanish in the world-sheet integral under suitable conditions: the spurious 

state decouples from the S-matrix. The "suitable condition" is that one can define 

the amplitude using values of k · k' for which possible surface terms vanish. Ref. [27] 

shows this for D2 represented by the upper half-plane, so that z = T on the boundary, 

by cutting off the integral near T = r 1
: 

T
1
-f J dr8( 7 _ r')-I+4k·k' ,...., c-I+4k·k' 

(6.47) 

= €-1+2(k+k')2
• 

For k · k' > t, the limit c --t 0 exists and is zero. To get sensible results, we should take 

this t o be the value of the surface term for k · k' > t also, by analytic continuation. 

If the spurious tachyon created disappears into the vacuum, however, it has exactly 

zero momentum, and there is no freedom to remove divergent surface t erms like ( 6.4 7) 

by varying the momenta of the external particles. Since there is no tachyon tadpole 

amplitude on S2, this will never occur there. Similarly, there is no open-string tachyon 

tadpole on D2, and since it is the open-string tachyon that is the spurious state in 

the OPE of two open string vertex operators, the problem will not affect amplitudes 

for open-string states on D2. But there is a closed-string tachyon tadpole on D2, so 

the spurious state can fail to decouple for amplitudes of dosed-string states. This is 

the origin of quadratic divergences in F1 picture amplitudes on D2 and also P2 . 
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The above remarks can be demonstrated by taking successive operator products 

of vertex operators in the two pictures. The OPE of N V]. operators will contain the 

tachyon vertex 

(6.48) 

obtained by keeping the vector part of the first N - 2 OPE's and the tachyon part 

of the last OPE. A graviton vertex operator is the product of two vectors, V1 ~, so 

(6.48) can be converted to the OPE for N gravitons by squaring the first factor. Using 

SL(2,R) to fix z1 = 0 and letting z2 = a, z3 ---+ az3, etc., as in sect. 6.1, the z2 integral 

becomes 

-a 1 •-2. _ _ J da Bk .~~ k· J da 
a3 - a3' (6.49) 

using momentum conservation and the mass shell condition for gravitons. Thus the 

quadratic divergence is inevitable in this case. For S2, not only z1 but z2 and z3 can 

be fixed . Letting z4 = a and Zi ---+ azi for i > 4 gives 

instead of (6.49), where f(k) is a nontrivial function of the momenta that can make 

the integral converge: the SL(2,C) symmetry effectively forbids a t achyon tadpole. 

In contrast the OPE of N- 2 V1 operators and one V2 gives only another V2 to 

leading order, since V1 V2 "' V2 in eq. (6.45). No spurious states like the tachyon 

appear in the F2 picture. 

At the beginning of this section the auxiliary field FP. was eliminated because of 

its trivial equation of motion Ff..L = 0 and hence its trivial Green's function, 

(6.50) 

Usually the FP. field would not be expected to have any role in scattering amplitudes. 

For simplicity consider an unphysical amplitude, that for N tachyons on S2. Inclusion 
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of F in the superfield would give the delta function contributions in 

ANT(Sz) I'V J II d2zid20i D lzi- Zj- eiBjl2
k;·kj 

a<J 

(
1- eieielji ~ 1rki · kj8(zi- zi)) . 

a<J 

(6.51) 

Since the rest of the integral has only factors like lzi- Zj l2k;·k1-n, the delta function 

contributions can only be zero or divergent. The amplitude should be defined using 

values of ki · kj where they give zero and analytically continued·. However, (27] showed 

that in some cases these delta functions could be used to cancel divergent surface 

terms like (6.47) if one preferred to evaluate the amplitude for arbitrary values of 

the momenta without analytic continuation. If this was also true for the case we 

have been considering, it should eliminate the divergences of the F1 amplitudes on 

Dz. Apparently it is not true. Reevaluating the graviton two-point function (6.32) 

including the auxiliary field gives 

(6.52) 

The cross terms vanish identically; only the terms with l8(z1 - zz)l2 survive in addition 

to the original part. Although they are divergent, they do not have the right form or 

sign to cancel the quadratic divergence. The only correct way to calculate amplitudes 

like ANa(Dz) seems to be in the F2 picture. 

So far we have discussed the amplitudes with all open- or closed-string external 

states. In mixed amplitudes having at least one open-string external state, there will 

never be any problem with tachyon tadpoles, since the states on the boundary can 

cause any amount of momentum to flow through the neck of a disk degenerating into 

D 2 plus S2, as in fig. 4.1(a) . In other words, the string propagator represented by 
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the neck (and eq. (4.1)) can always be made finite by an appropriate choice of the 

external momenta. 

6.3. Tadpole cancellations for the superstring 

To demonstrate the cancellation of divergences between D2 and P2 for superstring 

amplitudes, we must first construct the Green's function for super-P2. One way is to 

find a condition between '1/J(z) and '1/J at the antipodal point, '1/J( -1/z), and proceed 

analogously to the D2 case. Such a . condition exists because vector fields on P2, 

represented as the sphere with antipodal points identified, must satisfy [19] 

and vectors can be made from bilinears of fermions. It turns out to be easier to use 

the method of images [26] . Given that z = -1/z is the even part of the image point 

position, the Grassmann part can be determined to be 

- 0 a= =F-= z 
(6.53a) 

by requiring 8z, 80 to be a supersymmetry transformation when 8z, 88 is. The sign 

choice is a convention; we take the upper sign. Since the image of super- P2 should 

be an equivalent copy of super-P2, it is reasonable to require that (i, B) = (z, 8). 

This implies 

"'- () 
() = - . 

z 
(6.53b) 

The fact ( 6.53a) and ( 6.53b) are inconsistent (using complex conjugation) is a mani­

festation of the nonexistence of Majorana spinors on Euclidean P2 [26]. Ignoring this 

inconsistency, (6.53) can still be used to determine a Green's function, similar enough 
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to that for Dz that both can be written in one formula, 

(= { 
i, 

1, 

Dz 

Pz 

For brevity we will write the argument of the second logarithm in (6.54)as 

even though it is a holomorphic square only for Dz. 

(6.54) 

Amplitudes on Pz will be invariant under a super conformal Killing group (super-

80(3)) only if a subgroup of super-SL(2,C) can be found under which the above 

quantity transforms as a density. We find (as did [26]) that the only such subgroup 

IS eq. (6.22) with the restrictions 

c = -b, d =a, (and c = -b, d- a)· - ' (6.55a) 

c = -fj, € = +17· (6.55b) 

The second line is, like (6.53), inconsistent if c, € and 1], ij are complex conjugates: the 

super-CKG does not exist for Euclidean P2. In Minkowski space, however, continuing 
0 0 

Vla T ----+ ZT, 

z = T + iu--+ i(r + u) = izE, 
(6.56) 

z = T- iu--+ i(r- u) = izE;, 

and Z£, Z£ are independent real variables. (Of course, 0, iJ can also be continued to 

BE, iJE .) Instead of SL(2,C), the CKG for Lorentzian Sz is SL(2,R)xSL(2,R), whose 

parameters a, a, c, €, etc., are likewise independent real variables. Then the restriction 

(6.55) and the image point formula (6.53) make sense. In [26] this procedure was used 

to continue Pz amplitudes to Minkowski space, fix the super- CKG symmetry, and 

then continue back to Euclidean signature. 
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The above procedure, as carried out in (26], has some disturbing features. Under 

z-+ izE, z-+ izE, the image point equations become 

1 
z= --z 

- a 
0= -­z 

- 1 
~ ZE = +-::-, 

ZE 
(6.57a) 

(6.57b) 

But if (6.57) is used, the Green's function looks identical to that for super-Dz, (6.13), 

as does the super-CKG. Surely it would be too trivial a cancellation if the amplitude 

on Lorentzian Pz looked identical to Euclidean Dz. Apparently because of this, (26] 

does not use (6.57), but rather the Euclidean conditions, with z-+ ZE, and z-+ zE. 

Then the image charge contribution to the Green's function is 

(6.58) 

m Minkowski space. But in continuing back to Euclidean space, [26] once agam 

ignores the factors of i in ZE -+ -iz, ZE -+ -iz, giving (6.58) as the Euclidean 

version as well. 

Thus one wonders whether some serious difficulty may have been hidden by the 

above manipulations, especially in light of the argument given in chapter 1 that an 

amplitude with an odd number of external bosons should be more fundamentally 

affected by the lack of Major ana spinors on Euclidean Pz. But in fact the difficulty 

discussed in the previous paragraph can be overcome trivially by realizing that the 

continuation to Minkowski space can also be accomplished via a -+ -iu. Then 

z -+ ZE , z -+ ZE, with no troublesome factors of i. Alternatively one could start 

with the Fz picture and avoid the whole issue of super- CKG fixing entirely, although 

it is more satisfying to see that either way can give the same answer. We have 

explicitly computed dilaton tadpoles, and logarithmic divergences of A3a and A4a 

on P2 + D 2 to leading order in 1/T in this way. Using the results of [26] for the 

overall normalization (which involves various functional determinants), we verified 



74 

their claim that the above quantities vanish for the gauge group S0(32). We also 

find that the finite part of A3a vanishes at order p2 fT. This means the V§R term 

in the tree-level effective Lagrangian will receive no finite renormalizations from D2 

plus P2 . 

Rather than show particular amplitudes, it is more interesting to -exhibit the 

finiteness of a class of amplitudes. The argument of sect. 6.1 for H~~~g~·~~ ,_.,strings 
can easily be adapted to the superstring, giving a simpler proof of finiteness than in 

(26], and one that more readily generalizes to other external states. The N-graviton 

function will be considered for simplicity, but is is obvious how to make the argument 

for other NS-NS states. After fixing z1 = fh = 0, let z2 = a and Zn -+ azn for n > 2 

as before, but now also rescale Oi-+ -JO.Oi . (Note that dOi-+ dOif-JO..) Then 

Zi- Zj- OiOj--+ a(zi- Zj- OiOj) = aZij, 

2- - 22- -_ 
1 + ( ZiZj + (OiOj --+ 1 +a ( ZiZj + a(OiOj = dij, 

(6.59) 

and the amplitude on D2 or Pz becomes, similarly to (6.4) , 

(6.60) 

where 

(6.61) 

The crucial property of{· ··} in (6.60) is that it consists of products of supercovariant 

derivatives acting on Green's functions. A few examples are 
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In general, 

nn tJmcl2 = a(n:m)/2 .2::((a)1 
fz(zl, Bl; Z2, 02), 

1=0 

and the integrand of (6 .60) has the form 

(6.62) 

since there are N D's and N D's in (· · ·). The log divergence comes from the l = 1 

term in (6.62), which is linear in(; otherwise the divergent parts are the same for D2 

and P2. So if Nn2 (D2 = -Np2 (p2 , i.e., 

(6.63) 

the logarithmic divergence will cancel. The factor of i may look strange, but it is 

compensated by another factor of i hidden in N D2 • This is because N D
2 

and N p
2 

contain the invariant group volume elements 

(6.64) 

and for P2 it was extracted in Minkowski space, whereas for D2 we always worked in 

Euclidean space. In either case the volume elements are defined so that 

T} = { fJl + i7)2, 

fJl + 7)2, 

and d2a = da1 da2. Working out eq. (6.65) in terms of fJl and fJ2 gives 

(6.65) 

(6.66) 

Since the CKG has this factor of i for D2, the cancellation takes place for real values 

of the partition functions Zn2 and Zp2 • 
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Epilogue 

If one were to describe the results of this work in a word, "ambivalent" might 

come to mind. For although we have largely affirmed the status quo, i.e., the sigma 

model effective Lagrangian for Dz and Pz , and finiteness of the type I superstring 

at the x = 1 level of the string loop expansion, several questions have been raised: 

What is the justification for ignoring extra contributions to the Weyl anomaly of the 

covariant dilaton vertex? Is there a simple way to see where the authors of (20] erred 

in deriving the paradox of sect. 4.2? Why does our study of tachyon scattering in 

curved spacetime disagree with the sigma model effective Lagrangian? 

All of the above issues have one thing in common-they hinge upon just how 

the short-distance singularities of the two-dimensional quantum field theory on the 

world sheet are handled. We have tried to regulate the divergences as carefully and 

consistently as possible, but there may be a better way that clears up the difficulties. 

As has been emphasized in the text, the more sophisticated techniques of BRST 

quantization [15, 23] seem to circumvent some of these problems at the expense of 

greater abstractness. To understand the derivation of low-energy effective actions and 

finiteness of string theories in the most intuitive and concrete way, it is desirable to 

have a path integral formulation of string perturbation theory that is fully consistent 

with the other methods. What we have presented is a step in that direction. 
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