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Abstract 

We study the phenomenon of y-scaling in inclusive quasielastic electron scat­

tering. Emphasis is placed on the approach to scaling at finite four-momentum 

transfers, and the effects of final state interactions. Brueckner-Goldstone p erturba­

tion theory for nuclear matter is used to perform a detailed, microscopic calculation 

of the dynamic structure function of nuclear matter. This is compared to the naive 

prediction of the Impulse approximation, and we find that the approach to scaling 

is quite different . The Brueckner-Goldstone approach reproduces the trends seen 

experimentally (Impulse approximation does not); however, there is still not good 

quantitative agreement with the data. We take this to be a possible sign of problems 

in the conventional nucleon-nucleon interactions studied. 
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Chapter 1 

Introduction 

1 

In trying to understand the intemucleon force, physicists still remam unsure of 

one critical point , the short-range behavior. Without this information, we cannot 

determine the relationship between the conventional nuclear physics picture of point 

nucleons interacting via meson exchange, and the QCD picture of nucleons as "bags" 

of quarks that exchange quark pairs and gluons at short range. What we know from 

N-N scattering is that the interaction becomes repulsive at short range. This is 

taken from the fact that the phase shifts change sign at high energy [1] (high energy 

is only about 300 MeV; at higher energies inelastic processes become dominant). 

However, we don't know exactly what the source of this repulsion is. Using the 

conventional picture, we have vector-meson exchange, which is repulsive at short 

distances[2], but the range ( ~0.25 fm) is significantly smaller than the size of the 

nucleons themselves ( ~0.8 fm). In fact, most meson exchange modes (except for one­

pion-exchange) are all of shorter range than the nucleon size (Fig. 1.1) . This makes 

one feel somewhat uncomfortable about using meson exchange at these scales, and in 

fact, obliged to start considering the interactions of the quarks inside the nucleons. 

This approach has led to speculation that we might see the formation of hybrid 

states such as six-quark bags. N-N scattering will almost certainly not be able to 

tell us this- inelastic effects such as pion production dominate at the higher energies 

required to study the core in detail. Instead, we look to the bound systems of 
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Figure 1.1 N - N potential based on a meson exchange picture. Scales 
and ranges are based on parameters given by deTourreil et al. [3]. Dotted 
line represents the estimated size of a nucleon. 

nucleons, the simplest being the deuteron. If we can study the wavefunctions of such 

systems in detail, we can see what influences their short distance (or equivalently 

high-momentum) behavior. It is possible, though, that many different models can 

produce the same effects in the wavefunction. What we also need is information on 

the short-range correlations present in larger systems (A~ 3). With this we might 

start to discern exactly what is happening to the nucleons when they come very 

close to one another in the nuclear medium. 

There are two properties of a nucleus which (in theory) are measurable and 

can tell us about the wavefunction at short distance scales (or equivalently at high 

momenta). The spatial distribution p(r) (usually measured for practical purposes 

via the charge density) can be extracted from elastic scattering by taking the Fourier 

transform of the charge form factor F( q), defined as 

F(q) = j dr e - iq ·"p(r) 

= j dre-iq ·r j dr2dr3 ... drAi'll(r,r2,r3,··· , rA)I 2 (1.1) 

(there are also center-off-mass and finite-size effects which must be taken into 

account in this equation). We can see from the argument of the exponential that 

large q is going to give us information about fluctuations at small r, but there is 
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nothing in the form factor that will tell us much about correlations. The ideal 

measurement would be of the off-diagonal part of the one-body density matrix 

p( r, r '), defined as 

(1.2) 

How might it be measured? Let us consider for the moment the single particle 

momentum distribution n( k) of nucleons inside a nucleus. n( k) is given by 

where 

If we combine Equations 1.3 and 1.4, then we can see that 

n(k) = j drdr'dr2dr3 ... dr A eiA:-(r-r') "W'"(r, r2, ... , r A)"W(r', r2, ... , r A) 

= j drdr' eik·(r-r') p( r, r') 

(1.3) 

(1.4) 

(1.5) 

Here, measuring at large k corresponds to small lr - r'l· Through this we might 

learn about correlations between nucleons if, for some range of momenta, the effects 

dominate any mean-field structure in the momentum distribution. Calculations tell 

us that at small momenta (k < kF), the momentum distribution is dominated by 

single particle effects, so we can learn little about two-body correlations (see Section 

4.1). However, at high momenta ( k > k F), single particle effects are vanishingly 

small and all we see are the effects of N-N correlations. Thus, we can indeed study 

the short-range correlations between nucleons. But how to measure n( k )? There 

are two obvious methods. One is a single nucleon knockout experiment where 

the knocked-out nucleon is detected in coincidence with the scattered probe. The 

momentum distribution enters directly into the theoretical derivation of the cross 

section and thus can be easily extracted. Such experiments with electrons as probes 
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have been perlormed and yielded information on the low-momentum component of 

the distribution (see, for example, Refs. [4,5]). However, given current accelerators, 

it is not feasible to measure at higher momenta because of very low count rates. 

This might change with the new generation of acclerators, such as CEBAF which 

will be continuous beam machines, and thus low count rates will be offset by 100% 

duty factors (achieving high duty factors is much more important than achieving 

higher beam intensity, which can actually be detrimental in terms of signal to noise). 

An alternative is proposed using inclusive, quasielastic electron scattering. These 

are more practical experiments and, in fact, have already been performed. Here we 

hope to measure the momentum distribution via a scaling function. 

Scaling phenomena have already played an important role in nuclear physics. 

Quite often when scaling behavior is found, the scaling function bears some relation 

to a fundamental property of the system under study. If this property is one that 

can be studied more easily by other techniques, then effort is likely wasted. But, if 

the property cannot be easily studied any other way, then we have a very powerful 

tool. An example of this is the experimental confirmation of Bjorken scaling in 

nucleons[6,7]. It provided the proof that hadrons were indeed made up of more 

fundamental constituents. Also, it showed that these constituents interacted only 

very weakly with one another at short range, a signal for asymptotic freedom. Both 

these facts played a very strong role in the development in the currently accepted 

theory of the strong interactions (QCD). How though can scaling help us measure 

the single particle momentum distribution of nucleons? West [8] and Kawazoe et 

al. [9] independently analyzed the part of the inelastic electron-nucleus scattering 

cross section called the quasielastic peak (see Chapter 2) to show that under a 

weak interaction hypothesis (similar to Bjorken's), that a scaling function can be 

extracted which bears a simple relation to the momentum distribution. In fact, the 

existence of sum rules for structure functions in electron scattering is a strong hint 
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that scaling can be found (see Sec 2.4). However, they are by no means absolute 

proof of a scaling phenomenon, and even if such does indeed exist, sum rules can 

tell us nothing about what the scaling variable is, or what the scaling will tell us. 

Another question arises when the scaling is not perfect (this is, in fact, the 

case for existing experimental data). Experiments are done at finite momentum 

transfers, while the simplest theoretical predictions work best at infinite momen­

tum transfer. Under experimental conditions, how good is the weak interaction 

hypothesis? For Bjorken scaling, there are violations of scaling, but these are well 

modeled by first-order perturbation theory in QCD(lO). In the nucleus, there could 

still be strong final-state interactions that muddle the analysis. It is not clear that 

these can be resolved (although we try to do so) . Also, nucleons are structured 

objects of finite size. Are they different in the nuclear medium than in free space? 

Do their form factors change? None, one, or all of these effects could be significant. 

This might make it impossible to extract a unique scaling function. Sick (11) and 

McKeown (12) have already considered the form-factor question, and found that 

there are strong constraints on nucleon modification in the medium if scaling is to 

be maintained. In this thesis we consider the other question, whether final-state 

interactions contribute strongly to the cross section (and thus the scaling function) 

in the comparison to experimental results. We use nuclear matter as a test medium, 

because of the ease with which the effects of microscopic interactions can be studied. 

This thesis consists of four main sections. In Chapter 2, the formalism for 

quasielastic electron scattering is reviewed, and the general principles of y-scaling 

are discussed. The status of theory and experiment (to date) will also be presented. 

In Chapter 3, we review many-body theory as it applies to nuclear matter, with em­

phasis on the techniques and assumptions that we will need later on. In Chapter 4, 

we discuss the structure function of nuclear matter, from the simple approximation 

relating it to the momentum distribution to the effects of final-state interactions in 
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a microscopic many-body theory. Comparisons are made to new measurements of 

the scaling function for various heavy nuclei. In Chapter 5 , conclusions are drawn 

and the possible future directions of theory and experiment will be discussed. Two 

appendices will discuss algebraic details needed for the calculation. 
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Chapter 2 

Quasielastic Electron Scattering 

What does the term "quasielastic" mean? If we study the inclusive inelastic cross 

section for electron scattering on a nucleus at rest, we can see something quite 

interesting (Fig. 2.1 ). Aside from the resonances and deep-inelastic structures, 

there is a very strong peak centered at We/ + €, where Wei is the energy transfer 

for elastic scattering from a free nucleon (this assumes we have picked a kinematic 

region where the peak is not swamped by overlapping structures). This would seem 

to indicate that we are scattering from nucleons inside the nucleus, which have 

separation energy 0( €). In fact, this is the best evidence we have that nuclei are 

made up of nucleons! This elasticlike scattering from single nucleons in the nucleus 

is called quasielastic scattering. More generally it applies to processes where the 

scattering seems elastic on the constituents of a system, but inelastic on the system. 

The breadth of the peak is due to the fact that the bound constituents have a 

continuous distribution of momenta. Thus, one can never transform into a frame 

where all the constituents are at rest, as in the free elastic scattering case. 

Quasielastic scattering (QES) has long been used to determine the momentum 

distributions of Bose and Fermi systems for low momenta. Moniz et al. [14] used 

the results from quasielastic electron scattering to determine the Fermi momenta 

for finite nuclear systems, and various groups are now starting to use QES with 

neutrons to determine the low-momentum properties of liquid 3He [15] and liquid 
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Figure 2.1 Quasielastic scattering cross sections for 3 He at 8° for incident 
electron energies of 3.26, 7.26 and 10.95 GeV. Arrows mark the location 
for the elastic peak for a free nucleon at the same kinematics. The energy 
shift in this case is about 8 MeV. It is larger for heavier nuclei (From 
Ref. (13]). 

2.5 

4He [16]. Recently, people have looked at QES as a tool for determining very high 

momentum components of the nuclear wavefunction, in tum looking at the short-

range correlations of the nucleon-nucleon interaction[8, 17, 18]. 

The analysis by West in 1975[8] spawned much of the current experimental and 

theoretical work in QES from nuclei. He demonstrated in a simple model that 

the relationship between the measured cross section and the nuclear momentum 

distribution could be given by a single variable. The idea was analogous to Bjorken 

x-scaling in the nucleon structure function[6] (but different in spirit) and was labeled 

y-scaling. The first measurements of QES cross sections sensitive to high momentum 

components of the nuclear wavefunction were done by Schutz et al. on 2H[19], and 

Day et al. on 3 He[13]. Both sets of data were analyzed for scaling behavior as 

predicted by West, and indeed there were only minor deviations from complete 

scaling[17,18]. Agreement with theoretical calculations was not good at this stage 

(this will be discussed in Sec. 2.5). A proposal was made to the then newly formed 
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NPAS (Nuclear Physics At SLAC) program for an experiment that would look for 

y-scaling in heavy nuclear systems, using targets of 4He, 12C, 27 Al, 56Fe, and 197 Au. 
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2.1 Elementary Electron Scattering Theory 

We need to develop the formalism for the scattering of electrons from a nucleus. 

We consider only the Born (or one-photon exchange) approximation with plane 

waves for the incident and final-state electron. Also, the electron mass is negligible 

compared to the kinetic energies being considered (0.5 MeV versus approximately 

3 GeV) , so it is neglected. 

We start with the Feynman diagram for the one-photon exchange process for 

electron scattering from a nucleus (Fig. 2.2) (the conventions used will be those of 

Bjorken and Drell[20]). 

Figure 2.2 Feynman diagram for electron scattering from a nucleus at 
the one-photon exchange level. 

Energy and momentum are conserved at each vertex. k ( k') labels the four momen­

tum of the initial (final) state electron, and P(P') labels the four momentum of 

the initial (final) target state. q is the four-momentum transfer of the scattering 

reaction. The exact definitions of these (to be used throughout this thesis) are 

q=k-k', w=Ei-Eh q=(w,q) , Q2 =-l=q2 -w2 (2.1) 

Another useful relation gives the momentum transfer in relation to the electron 

energies and scattering angle as 

Q2 4EE' . 20 - stn-- 2. (2.2) 
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We consider the target to be a nucleus of mass MA at rest . We assUine we know 

its spin state, and also that we know its final-state after scattering. In this case, we 

write the differential cross section as 

(2.3) 

where ry~'" is the leptonic tensor, written as 

1 
TJ~'" = 2EE'2 LLii(k)'Y~'u(k')u(k')'y.,u(k) 

... .., 
= kl'k~ + k~kv- k · k'g~'" (2.4) 

where u( k) is a Dirac spinor, and the sum over spins is performed using trace 

techniques. W~'" is the hadronic tensor, written in terms of the nuclear currents as 

(2.5) 

The initial and final electron energies and momenta are (relatively) easily measured, 

and the initial state of the target is assumed to be known. The only problems arise 

in the final-state of the target. If we wish to know about the exact final-state, it 

must be measured in the experiment. The experimentalist then has the problem of 

detecting all particles over a solid angle of 47r. What is sometimes done is to detect 

one or two particles of the final-state in coincidence with the final-state electron; 

but this still has problems with very low count rates. ( e , e'p) experiments have 

been performed at Saclay and NIKHEF (Refs. [4,5]) for relatively low energies, and 

Donnelly[21] has calculated the characteristics of the cross section for detection of 

n-particles in coincidence with the final-state electron. 

West's derivation of y-scaling involved what is known as the inclusive cross 

section, meaning that the final-state of the target is undetermined. Practically, this 

means that all final-states are possible and must be summed over in a theoretical 

calculation. 
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2.2 Derivation of the Inclusive Cross Section 

If we sum over the final-states in Eq. 2.5 (Lorentz invariance and current conserva­

tion are taken into account), then the most general form for W~-'" is 

W~-'" = -W1(q2
, q · P) (g~-'"- q;;") 

+ W2(q2 , q · P)-
1
- (P~-'- p. q q~-') (P"- p. q q") (2.6) M1 q2 q2 

(this assumes that we have a spin zero target, or that we have averaged over initial 

spin states of the target). The two functions W1 and W 2 contain information about 

the structure of the target . There are only two independent variables left at this 

point, and they are generally taken to be q2 and q · P. These are both Lorentz 

scalars, and thus quite general, but we could also have chosen q and w as our two 

variables. These will be used later on when we restrict ourselves to the lab frame. 

We can now collapse the tensor structure of the cross section to a simpler form 

(2.7) 

where 

a 2 cos2 () /2 
aM= 

4E2 sin 4 
() /2 

(2.8) 

is the Mott cross section for elastic scattering of a point Dirac particle. A slight 

manipulation of the structure functions gives an alternate form 

d2a _ ((Q2)2 
1 (Q2 2 ()) ) 

dE'dD.'- aM 7ji WL(q , q · P) + 2 7ji + 2tan 2 Wr(q,q · P ) (2.9) 

where WL(T) represents the longitudinal(transverse) structure function. These can 

be defined in terms of wl and w2 as 

These labels indicate which part of the photon polarization the nuclear current has 

coupled to. 
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2.3 The Impulse Approximation 

Fig. 2.3 shows the Feynman diagram for the quasielastic process if we assume that 

it is dominated by sin,e:le nucleon knockout. 

Figure 2.3 Feynman diagram for single nucleon knockout. Final-state 
interactions are ignored at this level. 

Energy-momentum conservation at the nuclear vertex gives us 

(2.10) 

where MA is the mass of the target nucleus, M is the nucleon mass, p is the 

momentum of the struck nucleon (and also of the recoiling fragment), and M A-I is 

the mass of the recoil fragment. The latter term is the major unknown here. 

Since we have summed over final-states, and the target is in its ground state, 

Eq. 2.5 reduces to a ground-state expectation value 

(2.11) 

where T( AB) represents the time-ordered product of A and B. This is now in the 

form of a forward Compton amplitude. The simplest representation of this is the 

absorption by a nucleon in the target of a photon at time 0, and the emission of 

a photon with the same quantum numbers by the same nucleon at time x 0 later 

(Fig. 2.4). 

This simple model IS the Impulse Approximation (IA). It assumes that there IS 
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Figure 2.4 Feynman diagram for forward Compton scattering from a 
nucleus. In this figure, the photon is absorbed and emitted by the same 
nucleon. No interactions are allowed in the intermediate state. 

no intermediate state interaction, and that the whole process takes place on one 

nucleon with the rest of the nucleus purely in a spectator role. An extended and 

more generalized version of lA allows a second Compton amplitude to contribute to 

the result (Fig. 2 .5), but as we will see later, its contribution falls off very rapidly 

with q. 

Figure 2.5 Same as Fig. 2.4 except that the photon is absorbed by one 
nucleon and emitted by another. 
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2.4 Scaling in Nuclear Targets 

To derive the scaling function for QES, it is simplest to start with the non-relativistic 

approximation to the cross section (This follows West [8]). Here 

(2.12) 

where aR is the Rutherford cross section. S(q,w) is the pure charge scattering limit 

of WL/Z (Z is the number of charges), defined as 

(2.13) 

(Note that isospin is left out in this derivation, and that all particles are assumed 

to take part in the interaction) S is generally called the "dynamic structure factor" 

for the many-body system. p( q, t) is the operator for injecting a momentum q at 

time t into the system, defined as 

p(q, t) = L al+q(t)a1 (t) (2.14) 
A: 

We can remove the time dependence of p by rewriting it as 

p(q,t) = eiHtp(q,O)e-iHt (2.15) 

p can now be written in terms of momentum states for an A-body system as 

p(q , t) = (
2
:)JA ~ J dkl ... dkA e-iHt ik~> .. . , ki + q , ... , kA}(k1 , ... , ki, ... , kAi eiHt. 

(2.16) 

Inserting this into Eq. 2.13 allows us to write S as 

S(q ,w) = ~1r(2:)6ARe j dteiwt j dkl···dkAdPl···dPA 

L(OieiHtik~> ... , kA} 
i,j 

(2.17) 
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Now we need some information on the Hamiltonian. To keep things simple, we 

will ignore any momentum dependence of the potential energy term. Thus, if 

then we can write 

A p~ 
H = 'L- + V(1, ... ,A) 

i=l 2M 
(2.18) 

( 
p2 (p;+q )2 ) 

H(pll .. , p;+q, .. ,pAIO)= ~ftj+ 
2

M +V(l, ... ,A) (Pll···,P;+q, .. . , pA IO) 
).,-t 

2p;. q + q2 
=(Eo+ 

2
M )(pl , .. , p; + q , .. , pAlO} (2.19) 

where Eo is the energy of the initial state, given by 

(2.20) 

After some very straightforward algebra, we can evaluate the integral over time in 

Eq. 2.17 and also most of the momentum integrals to find 

M (joo kdk S(q,w) =- (
2 

)2 n(k) 
q -q/2+Mw/q 1r 

+ 100 kdk dk' f(k k'· q)) 
-q/2+Mw/q (27r)2 (27r)3 ' ' 

(2.21) 

as the final result for the structure factor, where n( k) is the momentum distribu-

tion as defined in Chapter 1 (normalized to unity) and f(k, k'; q) is the two-body 

momentum space correlation function, written as 

f(k, k'; q) =(A- 1) j (~~)3 ••. (~~)3 (Ojk, k' + q , k 3, ... , kA}(k + q , k', k 3, ... , kAIO}. 

(2.22) 

The first term of Eq. 2.21 corresponds to the Compton amplitude of Fig. 2.4, and 

gives the naive result expected from IA. The second term corresponds to Fig. 2.5. 

In a simple single-particle model it falls off very sharply with q[8). We will examine 

the strength of this term for nuclear matter in Chapter 4. If we now define a new 

variable y as y = -q/2 + Mwjq, then we can see that 

S(q,w) = ~ (F(y) + Fc(y,q)), (2.23) 
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so that in the limit Q2 ---+ oo, qS becomes a function of the single variable y . This is 

scaling! West's original motivation for this calculation likely came from sum rules. 

If we consider the coulomb sum rule for S 

lim j oo S(q,w)dw = 1 , Q2-oo Wei 

(2.24) 

then we can change variables from w toy to see that 

lim l oo qS(q, y)dy = M. 
Q2-oo oo 

(2.25) 

The fact that this integral is finite and independent of q indicates that qS does 

indeed become a function of the single variable y. This is valid only as a check, 

since the existence of the sum rule alone makes it possible to define an arbitrary 

number of variable transforms, all of which could (or could not) really scale. The 

detailed analysis is required to confirm whether or not a scaling variable can be 

found . 

Many authors have generalized West's derivation beyond what is equivalent to a 

naive Fermi gas model(17,22]. This mainly involved replacing the energy-conserving 

delta function with a more general form, and ignoring the correlation term, which 

is known to be very small. The structure factor is now written as 

J dk 
S(q,w) = (

2
1r)3 n(k)b(w + E 0 - EJ) . (2.26) 

E 0 is taken as the initial energy of the nuclear system (MA), and Ef is the sum of 

the final-state energy of the struck nucleon, and the recoil energy of the residual 

nucleus. We will now work with relativistic kinematics. The latter is generally 

written as 

(2.27) 

where MA-l is the mass of the residual nucleus- possibly in an excited state. The 

integration over the delta function is then done with respect to the angle between 

k and q ( Okq ). Given q and w , and the fact that I cos Otq I is bounded by one, then 
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there is a restricted set of allowed values of k (kmin < k < kmax)· The form of the 

structure factor is then 

I 
8k"l rkmcu: dk 

S(q,w) = 8w Jkmin (2rr)2n(k)' (2.28) 

where k11 = k cos 8tq. In strict analogy to West's derivation, y is defined as k11· The 

equation for y is then 

(2.29) 

where transverse components of k have been neglected as small. Using Eqs. 2.27 and 

2.29, we find that kmin ~ IYI and kmax ~ ly+2ql. Now we see an explicit dependence 

on q of the structure factor, which might give us deviations from scaling at finite 

Q2. When y ~ -q, then the scaling function necessarily goes to zero. Thus there 

are now kinematic cutoffs that were simply not present in West's model. 

If we are to work in a relativistic framework, there are some things that must 

be worried about before we can predict scaling. Before, we had simple coulomb 

scattering. Now there is a second structure function, WT, which contains informa-

tion on the electron coupling to magnetic moments of both the neutrons and the 

protons, as well as on coupling to the convection current created by the moving 

protons. To study this we can use the Fermi gas model of Moniz[14]. Here, the 

nucleus is considered as a non-interacting gas of fermions, with filled states up to 

the Fermi level kF. The struck nucleon must have momentum k < kF in the initial 

state, and k' > kF in the final-state. We can write down WL and WT as 

WL= 3MT q
2

jdk8(w+Ei-EJ)8(kF-k)8(lk+ql-kF) 

4rrAk}Q2 vP+M2V(k+q)2+M2 

x [Tt~
2

)(~:)(vk2 +M2 - 1~ 1 k·q)
2 

-T1(Q
2
)] (2.30) 

WT = 3MT jdk8(w + Ei- EJ)8(kF- k)8(lk + ql- kF) 

2rrAk} Jk2 + M2j(k + q)2 + M2 

X [Tl(Q2) + 2~2T2(Q2)(k2 - (k. q)2)] . (2.31) 
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T1 and T2 are linear combinations of the nucleon form factors , and only depend on 

Q2 (T1 is, in fact, proportional to Q 2 ). Looking at WT, we see that there is a second 

structure factor S' which must be considered, defined as 

(2.32) 

If this is comparable to Q2 S, then the scaling derivation no longer holds, and scaling 

should not be observed experimentally. Fortunately, this is not a problem. We can 

study the effects of convection currents using the Fermi Gas model of Moniz (14], 

and for the Q2 andy's considered, the convection current contributions are only a 

few percent (Fig. 2.6). 

0 . 10 

---68 16° 

0.08 - 8=20° 

-.- 8=25° 

0.06 . .... 8=30° ,· . 
E=3.65 GeV 

0.04 

0.02 

0.00 
-0.8 -0.6 -0.4 -0.2 0 

y (GeV/c) 

Figure 2.6 The fraction of the structure function Wr due to the structure 
factorS'. This is calculated using the Fermi gas model of Moniz [14] , but 
using a momentum distribution which has a correlation tail for k > kp. 
The larger the angle, the larger the value of Q2 • 
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2.5 Overview of World's Results 

There have already been a number of experiments performed whose data sets can 

be used to look for y-scaling in nuclei. The first were on light systems such as 

2H and 3He, and more recently an experiment has been performed on the heavier 

nuclei. These have all been performed at the highest Q 2 feasible for extraction of a 

scaling function. Many more experiments have been performed at low Q2 , but it is 

fairly certain that a scaling analysis is far from reasonable there. Correlation effects 

certainly still dominate [23] and are considered the solution to problems with the 

experimental verification of the coulomb sum rule[24,25]. 

The major experiments have all been performed at SLAC, the latest as part of 

the Nuclear Physics At SLAC (NPAS) program. The analysis by Sick et al. [17] of 

the scaling function of 3He at high Q2 and out to large IYI was the first real test of 

the scaling hypothesis. Previous scaling analyses had all been at too low a Q2 for the 

Impulse Approximation to be even naively considered valid[26]. The initial data set 

used by Sick showed a reasonable scaling function out toy= -1 GeV /c, with some 

rather significant discrepancies around -0.2 GeV /c (Fig. 2.7) It should be noted 

here that scaling analyses only study the region y < 0. This corresponds to the low 

w side of the quasielastic peak, where we believe that inelastic effects such as meson-

exchange currents, internal nucleon excitations and deep-inelastic structure are not 

significant (which they are for y > 0 as can be seen by the obvious lack of scaling in 

the experimental results). Later analyses by Sick using the data sets of Refs. [13] and 

[27] removed these deviations[ll] (Fig. 2.8). Soon after, Bosted et al. investigated 

the scaling function for 2H for roughly the same Q2 and y, and found that scaling 

did indeed occur [18] (Fig. 2.9). Theoretical agreement with the 2H data is quite 

good, but it is quite horrendous for the case of 3He. Calculations of the scaling 

function using Faddeev wavefunctions are a factor of 10 too small at large IYI[17], 

and do not even agree in the Q2 - oo limit[29,30]. Variational calculations agree 
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Figure 2.7 F(y) extracted from the inclusive quasielastic cross section for 
electron scattering on 3 He. Theoretical curve is the result of a Faddeev 
calculation using the Reid Soft Core potential [28] (from Ref. [17]). 

in the asymptotic limit[31 ,22], but also fail to reproduce the approach to scaling 

(Fig. 2.10). Even the good agreement with the 2H data is somewhat dubious, in 

that the agreement is in the asymptotic limit, and the approach to scaling still 

disagrees. The 3 He data suffer another problem. Rather than use the kinematic 

term 8w/8kll• Sick et al. use 8wj8y. Using Eqns. 2.29 and 2.27, we can see that 

these two expressions are very different at finite Q2 , with 

dw 
dy 

q+y + y 

j(q + y)2 + M2 jy2 + M1-l 

dw q 

dk 11 = j(q+y)2+M2 ' 

(2.33) 

(2.34) 

and that each one can change the approach to scaling dramatically. For a heavy 

system, the ratio of Eqn. 2.33 to Eqn. 2.34 is given by (q + y)jq. At large q, this 

is one. However, at the finite Q 2 studied, this ratio is quite different from one, 

as can be seen in Fig. 2.11 , where the approach to scaling is studied using both 
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Figure 2.8 Same as Fig. 2. 7, except that the data set has been expanded, 
different kinematic cuts on the data have been made and the definition 
of y has been modified (from Ref. [11]}. 

kinematic factors. If the data set is reanalyzed using the correct factor, the scaling 

function is different from Sick's, and on close analysis, the approach to scaling is 

from above (Fig. 2.12)[33]. The disagreement between experiment and lA is even 

more dramatic than before, as lA can do nothing but approach scaling from below. 

What can be wrong? It would seem that somehow the Impulse Approximation is 

still not valid. Then we have to decide what mechanism is causing it to break down. 

Laget has speculated on the contribution of scattering off quasi-deuteron states in 

the nucleus, and found strong contributions to the 3He cross section[34]. We can see 

in Fig. 2.13 that these effects fall rapidly with Q2 , and we will still have the same 

problems in the asymptotic limit. Frankfurt and Strickman have done a similar 

calculation in a relativistic framework[35]. Their results are shown in Fig. 2.14. 

However, all of these are somewhat naive as to how they put the two-body system 
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Figure 2.9 F(y) extracted from quasielastic scattering on 2 H (from 
Ref. [18]). 

in the nucleus. Another way of thinking about the two-body idea is in terms of 

final-state interactions. The nucleon that is struck by the virtual photon is strongly 

correlated with its nearest neighbors. The effects of this are still manifest in the 

final-state, and the nucleon continues to interact strongly with its neighbors as it 

moves out of the nucleus. This approach will be discussed in detail in Chapter 4. 

The most recent set of data comes from the NE3 experiment at NPAS[32]. They 

have analysed cross sections for quasielastic scattering off 4 He, 12C, 27 Al, 56Fe and 

197 Au. Here the scaling is not as impressive as for the lighter nuclei. For example, 

the scaling function of 12C is seen in Fig. 2.15 There are strong deviations from 

scaling at large IYI· The different curves all seem to agree rather well at y = 0 

however, so the effect is not likely due to a mistake in the kinematic definitions. An 

interesting curve in their paper shows F(y) vs. A at a specific value of y and Q 2
• 

In Fig. 2.16 we see that for large A, F(y) seems to approach an asymptotic limit 

that we might associate with nuclear matter. This result was obtained after our 

decision to use nuclear matter as a test medium, and encourages us to believe that 

any effects we find will indeed be found in real nuclei. 
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Scattering with Other Probes 

The elements of y-scaling analysis have been used for probes and targets other 

than electrons and nuclei. There has been a great deal of work done on neutron 

scattering off liquid 3He to obtain momentum distributions that look a great deal 

like Fermi distributions (Fig. 2.17)[15]. Also, the Bose condensate has been searched 
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Figure 2.17 Momentum distribution extracted for liquid 3 He using 
quasielastic neutron scattering. The curve through the data corresponds 
to a Fermi distribution at 1.8 K. The 3 He was at 0.37 K (from Ref. [15]}. 

for in liquid 4He[16], along with the spreading effects due to correlations (Fig. 2.18). 

These are all still looking at the low-momentum regions of the distributions, where 
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Figure 2.18 The momentum distribution for liquid 4He obtained at var­
ious temperatures using quasielastic neutron scattering. The increase 
in strength near p = 0 for decreasing T is interpreted as the onset of a 
Bose-condensate phase (from Ref. [16]). 

the effects of correlations are only weakly seen. 
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Gurvitz has analyzed pion-nucleus and proton-nucleus scattering data from TRI-

UMF at lower Q2[36] and found scaling behavior there also (Fig. 2.19). This is 
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0.6 

somewhat surprising given 1) the low Q 2 ; 2) the strong interaction problems associ­

ated with such scattering; and 3) the uncertainty of the real scattering mechanism 

in the case of the pion. This might almost make one worry that scaling seen ex­

perimentally is a nasty trick being played on us by nature, but that seems very 

unlikely. 
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Chapter 3 

Many-Body Theory for Nuclear 
Matter 

Nuclear physics presents two problems for many-body theorists. Standard tech­

niques for other systems have generally consisted of a perturbation expansion in 

the two-body interaction using a basis obtained from mean-field theory. The nu­

clear force contains terms which, when considered in terms of perturbation theory, 

are of order one or greater. Thus, the perturbation series would not converge at low 

order. Also, the nuclear interaction contains a hard core of large (in some models 

infinite) strength. This can have the effect of making the perturbation terms diver­

gent, and will likely make even the finding of a mean-field solution impossible. There 

were many attempts to bypass these problems, usually by the development of "ef­

fective interactions," such as the Wigner [37] or Skyrme [38,39] interactions, which 

strove to reproduce the observed nuclear properties via a phenomenological, rather 

than a fundamental, approach. These effective interactions did a reasonable job of 

reproducing static properties, such as binding energies and charge radii[40,41,42], 

but it was never clear what their connection to the real underlying physics was. (It 

is somewhat interesting to note that the Skyrme interaction was shown to be con­

nected to more fundamental models of effective interactions if the Density Matrix 

Expansion (DME) of Negele and Vautherin is used [43,44] .) 

The starting point for a more fundamental technique to get around these prob-
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lems comes from two-body scattering theory. The problem of divergences also comes 

in when the scattering problem is considered. A practical solution is found in the 

T-matrix, calculated from the Lippman-Schwinger equation. It is a non-relativistic 

technique that reduces the sum over all orders of perturbation theory to a simple 

integral equation. For many-body systems, the analogy to the T-matrix is the G­

matrix. It too represents a sum to all orders of perturbation theory, but also takes 

into account Pauli blocking of states and the mean-field interaction of a particle 

with the bulk of the system. It is calculated via the Bethe-Goldstone equation, and 

the mean field interaction is calculated self-consistently using Brueckner-Hartree­

Fock (BHF). The G-matrix changes the perturbation expansion from one in the 

number of interactions to one in the number of particles that can interact. 

The derivation of both T and G-matrix algebra and also their application to real 

problems will be discussed in this chapter. The representation used for perturbation 

theory (Goldstone diagrams) will be introduced along with the appropriate rules. 
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3 .1 Strong Interaction Perturbation Theory 

Perturbation theory always considers matrix elements of the form (4>oiAI4>o), where 

</>0 is the unperturbed state, and A represents the perturbation (including propaga­

tors and intermediate states). Thus, we always have a sib,.1ation where we evaluate 

ground-state expectation values , meaning the initial and final-states are the same. 

In a Feynman graph, this means that the external legs would match between initial 

and final-states (except for exchange effects). What Goldstone diagrams do is join 

up the external legs of equivalent initial and final states, The unperturbed states 

represent a "sea," which is filled. These states are called "holes." Thus, when we 

apply the perturbation interaction, the Pauli principle forces the fermions to scatter 

into unoccupied states (outside the sea) called "particles." Two simple examples 

are seen in Fig. 3.1. (Note the minus sign in the second diagram, and also the factor 

k 1 k2 

0 ---0 

Figure 3.1 Two simple examples of Goldstone diagrams. The second 
diagram is an "exchange" diagram of the first. The prefactors and signs 
will be discussed later in the chapter. 

of 1/2 which is in both diagrams; these will be explained when general rules for the 

diagrams are discussed.) Both diagrams above contain only hole states. However, 

we can also consider other cases, such as the diagram in Fig. 3.2, which have inter-
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mediate particle states. Rules for Goldstone graphs come about in a similar way to 

kl k2 k3 

Pl 
ok3 

P1 

k1 ---- k2 k3 

Figure 3.2 A slightly more complicated Goldstone diagram, this one with 
intermediate states above the Fermi sea. 

rules for Feynman diagrams. The perturbation series is analyzed for its behavior 

under specific circumstances. 

1. t represents a hole; 

2. + represents a particle; 

3. A propagator, given by O:::::hole .. Eh- L:,article .. E,)-1
, appears for the interme­

diate state between each interaction or operator; 

4. A factor of 1/N, where N is the number of reflections and other geometric 

operations under which the diagram is invariant 

5. The sign of the diagram is ( -1)h+e+o, where his the number of hole lines, e is 

the number of energy denominators and o is the number of one-body-potential 

operators in the diagram. 
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3.2 The T- and G-Matrices 

The equation for the T -matrix can be derived very simply from diagrams in non­

relativistic perturbation theory. T can be written as in Fig. 3.3, summed to all 

+ + + • • 

Figure 3.3 The ladder sum for the T-matrix. This series must be summed 
to all orders in the interaction. 

• 

orders. But it is easy to see that this senes can be replaced by the truncated 

summation in Fig. 3.4. This, in diagrams, is what is commonly known as the 

+ 

Figure 3.4 The diagrammatic expansion of the Lippman-Schwinger equa­
tion. If we iterate on T, we get back the ladder expansion of Fig. 3.3. 

Lippman-Schwinger equation. It can be written algebraically as 

T = V + VGoT. (3.1) 

V is the bare interaction, T is the T-matrix and G0 is the free particle propagator, 

written as 
1 

Go= . , 
Eo- Ho+'t'r/ 

(3.2) 
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where H0 is the unperturbed Hamiltonian for the interacting particle, and Eo is 

some starting energy for the reaction (typically the sum of the energies of the two­

particles before interaction), and the imaginary part controls the influence of any 

singularities that might occur. Off-shell effects are possible, and these would b e 

absorbed into the value of E0 • 

If we rewrite the integral equation to solve for T as 

T= 
1 

V 
1- VGo 

(3.3) 

(remembering that this is a matrix equation), then we can see that for V becoming 

very large, T will likely be well behaved. This allows us to apply perturbation 

theory in T to problems that would have been unmanageable before. 

The derivation of the G-matrix is very similar to that of the T-matrix. The 

difference now is that , since we are working with a many-particle system, we must 

take into account Pauli blocking and binding. Also, the "free" Hamiltonian H 1 of 

the system now will have a potential term that takes into account the mean-field 

interaction of one particle with all the others. The diagrammatic expansion is the 

same as for the T -matrix. Algebraically, we can write the equation for the G-matrix 

as 
Q 

G=V+VW H . G 
- 1 + ZT'J 

(3.4) 

The operator Q has the following eigenvalues , 

if a or f3 is a hole state 
if a and f3 are particle states, 

(3.5) 

which ensure the Pauli blocking as prescribed. We write H 1 as H1 = Ek + U (where 

E k is the kinetic term and U is the potential term to be defined later), and W is the 

"starting energy" of the system. It is determined by the structure of the Goldstone 

graph being considered. To determine W for a given G-matrix, first split up the 

matrix into its ladder sum and look at the energy denominators that pass through 
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the sum. Rewriting the denominator as W- e(ka)- e(k b) gives us the definition 

of the starting energy. 
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Brueckner-Hartree-Fock for Nuclear Matter 

This is a well-studied topic in nuclear physics, and there exist many good review 

articles on it . We will go through a brief discussion of the topic here, but for 

further and more detailed discussion, the review articles of Bethe (45), Sprung (46] 

and Day (47] are highly recommended. 

Infinite nuclear matter is a uniform system of nucleons populated equally by 

neutrons and protons. Also, the coulomb interaction between protons has been 

turned off. In such a system, translational invariance immediately tells you that 

the mean-field wavefunctions are p lane waves. Thus, our energy eigenstates are 

states of good momenta. The system obeys Fermi statistics (nucleons are spin 1/2 

particles) and (in the non-interacting limit and at zero temperature) fully occupies 

states up to a momentum kF, known as the Fermi momentum. This region forms 

our sea. Above kF the states are empty. The effect of the two-body interactions to 

which we apply G-matrix theory is to excite the particles in the sea to momenta 

above kF. 

In Fig. 3.5 we show the diagram for the scattering of two particles via the G­

matrix. Now we need to relate this in more detail to the algebraic structure. The 

Figure 3 .5 The labels associated with an interaction v ia the G-matrix. 

full matrix element for the G-matrix is written as (k3 ,k4 IG(W)Ik 1 , k 2), where the 

momenta correspond to the labels in Fig. 3.5. The full expression for the G-matrix 
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is then 

- (k3, k4 IVIk1 , k2) 

+ L (k3, k4JVJka, kb}(ka , kbJG(W)Jkb k2} . (3.6) 
W- e(ka)- e(kb) 

Now we need to discuss how to define the single-particle energies, or more ex­

actly, the single particle potential. The "standard" definition of the single-particle 

potential comes from the Hartree-Fock terms in a G-matrix expansion. It can be 

expressed as 

The first term is the Hartree direct potential, and the second term gives the Fock 

term. The diagrammatic expansion is given in Fig. 3.6. Original calculations only 

----x + 

Figure 3.6 The single particle potential calculated in the Hartree-Fock 
approximation. Here, that corresponds to one-loop order in the hole­
lines. 

defined a potential for k < kF, with the potential above the Fermi sea identically 

zero(48]. This avoided the problem of singularities in the propagator and greatly 

simplified the calculations. However, it is quite easy now to take into account the 

potential above the Fermi sea as wel1(49]. This prescription is reasonable only for 

considering the single particle energies. If the binding energy is wanted, rearrange-

ment terms, like those discussed by Brueckner and Goldman, should be considered 
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Figure 3. 7 Contributions to the separation energy of a particle of mo­
mentum k. The single particle potential loses importance very rapidly 
with increasing k, and at about k = 2kF, it is insignificant with respect 
to the kinetic energy. 
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as well(50]. The qualitative behavior of the potential is such that for momenta 

above 2kF, it is insignificant with respect to the kinetic energy term (Fig. 3.7). 

The effects of continuing the potential above the Fermi sea can be easily un­

derstood. The binding energy /nucleon is increased (due to the suppression of the 

gap between the hole and particle states), but the saturation density is relatively 

unchanged. 

Another useful quantity for measuring the strength of the two-particle-two-hole 

interaction is the wound integral. The wound is a measure of the change in the wave­

function due to the interactions. If we define a "defect" as the difference between 

the real wavefunction and the unperturbed wavefunction between two particles J.1. 

and vas 1(,.11 ), then the wound(~) is defined as 

(3.8) 

The subscript "avg" denotes that this result is averaged over the Fermi sea. We 

can find (,.v by again considering the equation for the G-matrix (Eqn. 3.4). The 

ladder expansion for G is equivalent to the statement that Gl</>) = VltP), where 
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/¢>) is the unperturbed wavefunction, and 11/J) is the true wavefunction. Hence, 

/(~-'") = 11/J) - 1¢>). Let us operate on 1¢>) with Eqn. 3.4. This yields 

Gl¢>) = VI¢>) + V W ~ H
1 

Gl¢>) · (3.9) 

The LHS can be replaced by VI1/J) to give 

V/1/J) =VI¢>)+ v w ~ Hl Gl¢>). (3.10) 

We can immediately extract from this that 

11/J) = 1¢>) + W ~ H
1 

G/¢>) · (3.11) 

It is now immediately obvious that 

(3.12) 

For practical reasons, it is convenient to work in terms of partial wave amplitudes 

when considering real quantities (The technology for this is discussed in Appendix 

I). For example, we can write the total wound K as 

.,. _ '""" .,.JST 
"'- L...., "'LL' . 

JST 
LL1 

The partial wave amplitudes are given by 

KJST = _1_k3 (2J 1)(2T 1) J dk'Q\k', P)IG"fJT(P; k', ka)l
2 

LL' 61r3 F + + (W- e(IP+k'l) - e(IP- k'/))2 ' 

(3.13) 

(3 .14) 

and k a is some "average" relative momentum inside the Fermi sea, and the value 

that we will use for W is given by W = e(I P+kal) + e(IP - kal). This is simply 

the sum of the energies of the two hole states in the expression. In Table 3.1 , 

the breakdown of the wound into partial wave channels is given for both the RSC 

and Paris potentials. As we will see in Chapter 4, the wound and the momentum 

distribution of nuclear matter are closely related. Analyzing the wound tells us 
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which channels most strongly perturb the Fermi gas distribution, and thus, which 

channels dominate the momentum distribution. 

The wound can also be shown to be a good expansion parameter for the per­

turbation series in hole-lines. It takes the place of a coupling constant in standard 

theory. If the wound is small, then lowest-order perturbation theory is reasonable, 

and we need not worry too much about higher-order terms. As we see here, the 

wound is fairly small, and we can feel fairly confident about truncating the expan-

sion at low order. 

Now we can compare the effects of the extended potential on the energy, sa t­

uration density and wound integral for each potential. The exact values of the 

saturation properties are actually fairly sensitive to the number of partial waves 

considered, and the methods for considering the contributions for higher partial 

waves. Different authors will produce results that are different by about 5% or less 

(note that this discrepancy is for the potential energy; the deviation in the binding 

energy would be larger but is a misleading representation of the true error). The 

results in Table 3.2 are obtained with truncation at the partial waves shown. 

There is a set of generally accepted approximations that have been made in the 

evaluation of the potential energy, related to the treatment of the center of mass 

momentum, and angular correlations between momenta. These will be discussed in 

Appendix I along with the details of how the results are obtained. 
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K,JST 
LL' 

s T J LL' RSC Paris 

0 1 0 00 0.0242 0.0149 
1 0 1 00 0.0336 0.0193 
1 0 1 02 0.0959 0.0809 
0 0 1 11 0.0042 0.0011 
1 1 0 11 0.0021 0.0011 
1 1 1 11 0.0046 0.0059 
1 1 2 11 0.0025 0.0031 
1 1 2 13 0.0029 0.0030 
1 0 1 20 0.0000 0.0000 
1 0 1 22 0.0000 0.0001 
1 0 2 22 0.0003 0.0005 
0 1 2 22 0.0001 0.0001 

K, 0.1704 0.130 

Table 3.1 The contribution to the wound for different partial wave chan-
nels, evaluated for kp=l.36 fm- 1• We see that the dominant wound con-
tributions come from the 1S 0 and 1S 1 - 1 D 1 channels, with only minor 
contributions from higher partial waves. 

U(k>kF)=O U(k>kF)fO 

RSC - 11.2 MeV - 15. MeV 
E~ Paris - 11.2 - 15. 

RSC 1.42 fm- 1 1.42 fm- 1 

ks Paris 1.51 1.51 

RSC 0.13 0.175 
K, 

Paris 0.11 0.14 

Table 3.2 Saturation properties of the RSC and Paris potentials for two 
methods of calculating the single particle potential. 
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Chapter 4 

Structure Function of Nuclear 
Matter 

The structure function for nuclear matter can be written as the ground-state expec­

tation value of an operator product. In Chapter 3 we saw that such an expectation 

value can be evaluated using Brueckner-Goldstone perturbation theory. Also, the 

physics of nuclear matter is much simpler and more easily analyzed than that of 

finite nuclei. Since for very heavy nuclei, high-momentum effects are expected to be 

independent of mass number[51) , it would seem to be an ideal system for studying 

scaling in the large A nuclei. Indeed, we will see from the results of the NE3 exper­

iment at SLAC[32) that the scaling function does indeed approach an asymptotic 

limit for large A. 

We will first review what is known about the relationship between correlations 

and the momentum distribution for finite nuclei and nuclear matter. Then we will 

consider the problem of the uncertainties in the scaling function at large IYI· This is 

the region where the effects of correlations are dominant, and the contributions from 

the single-particle components have essentially vanished, so we will be sensitive to 

very small effects. 
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4.1 Momentum Distributions of Finite Nuclei 

First, we will discuss what is known about the momentum distributions of finite 

nuclei. There has been a great deal of work on this subject, using both mean field 

approaches and two-body cluster-type expansions. The mean field approach suf-

fers from the lack of short-range correlations in the wavefunction. Correlations can 

be modeled somewhat by multiplying the single-particle wavefunction by J as trow 

functions [52], which mock up the short range behavior, but this method is some­

what arbitrary, and doesn't necessarily put the right physics into the problem. To 

demonstrate the problem with the mean-field theory, Fig. 4.1 shows the momentum 

distributions for 12C, 56Fe and 197 Au calculated using Hartree-Fock wavefunctions 

and the Skyrme III interaction[41]. The shaded area represents the approximate 

tail that exists in some of the more rigorous methods of calculation that we will now 

discuss. Obviously, the mean-field wavefunctions are missing orders of magnitude 

of strength in the tail. 

There are equations for exact solutions (at the non-relativistic level) of the two­

and three-body problems in quantum mechanics. Thus we can study 2H, 3H and 

3 He. Let us start with the simplest, which is the deuteron. Here, if we write the 

wavefunction in coordinate space as 

( 4.1) 

then we can write n( k) as 

n(k) ex 14>s(k)l2 + i4>v(k)i 2
, ( 4.2) 

where the </>'s are the Fourier transforms of the '1/;'s. We saw in Chapter 2 that the 

F(y)'s obtained from different potentials were in good agreement with the experi-

mental results. This encourages us to believe that we can calculate the momentum 

distribution accurately for the deuteron. The next system that is obvious for study 
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Figure 4.1 The momentum distributions of 12C, 56Fe and 197 Au from 
mean-field theory. The wavefunctions are from a Hartree-Fock calcula­
tion using the Skyrme III interaction. 

1s 3He. Here, the Faddeev equations are an exact solution of the non-relativistic 

three-body system. From a practical point of view, this is not quite true. Calcula-

tions must, for storage reasons, be cut off at a finite number of partial waves, and 

cutoffs are common for the limits of integrals required in momentum space. All of 

these could affect the high-momentum components of n(k). As seen, the theoretical 

F(y) 's do not agree at all with the data, even in the Q2 -. oo limit (Sauer's results 

seem to come close, but the location of y = 0 in his calculation does not lie on top 

of the experimental point. Thus , his calculation needs to be shifted with respect to 

the data, at which point any glimpse of agreement goes away completely). Either 

there is another mechanism contributing to F(y), or somehow, the calculations are 

suppressing high-momentum components. The latter is quite probable, since at the 

moment the Faddeev equations are used only for the bound state, and distorted 

waves are used for the continuum states. 

What about systems with A > 3? There exist fairly good calculations in Brueck-



46 
ner and exp(S) theory for light nuclei, up to 160. Van Orden, Truex and Banerjee 

have calculated n( k) for 160 using Brueckner theory[53], and their result is shown in 

Fig. 4 .2. Zabolitzky and Ey have calculated n( k) for 4He and 160 using the exp(S) 
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Figure 4.2 The momentum distribution of 160 calculated by Van Or­
den et a/. using Breuckner-Hartree-Fock on a harmonic oscillator basis. 
Curve Cis the mean-field result; A and B are the full momentum distri­
butions using RSC and the dTRS potential respectively. Curve D is the 
mean-field result using a Wood-Saxon potential. The units are given in 
"mesonic units," which are k (in rm- 1)/ 0.7 fm- 1 (from Ref. [53)). 

coupled cluster method [54) (Brueckner theory is a subset of this method) , along 

with various different potentials to study the sensitivity to short-range behavior 

in the potential (Fig. 4.3). The strong dependence of n(k) on short-range behav­

ior of the potential is quite evident from their results for the RSC potential[28), 

which has strong short-range Yukawa terms, and a strong tensor interaction, and 

the SSCB potential, which has a very soft core and a relatively weak tensor com­

ponent. Except for nuclear matter, there exist no calculations for A> 16 of n(k) , 

which have a microscopic basis. 
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Figure 4.3 The momentum distributions of 4 He and 160 calculated by 
Zabolitzky and Ey using the exp(S) method. Note the fairly strong 
dependence in the tail on the potential used. UNC is the result from the 
single particle basis used, SSCB is the dTRS potential, RSC is the R e id 
Soft Core potential, and HJ is the Hamada Johnston potential (from 
Ref. [54]). 
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4.2 Momentum Distribution of Nuclear Matter 

The momentum distribution for nuclear matter interacting only through a mean 

field is trivial, given by a step function cutting of at kF. Knowing this, we can 

immediately evaluate its magnitude via the normalization condition 

J dk 
(21r)3 n(k) = 1. (4.3) 

For n 0(k) = C8(kF- k) , we find that C = 67r2kf.3 • Using Brueckner theory, we 

should be able to calculate the momentum distribution of a fully interacting sys­

tem. This is done by evaluating the ground-state expectation value of the operator 

ala1 . This is the number operator for the density of particles at momentum k . 

The Brueckner-Goldstone expansion is given in Fig. 4.4. The first graph is the 

k 

+ 

(a) (b) (c) 

Figure 4.4 Brueckner-Goldstone expansion for the momentum distribu­
tion of nuclear matter through two-hole-lines. 

unperturbed mean-field result , and the second is the depletion due to two-particle 

two-hole excitations out of the Fermi sea. The second graph is closely related to 

the wound integral of Brueckner many-body theory. The third graph gives the dis-

tribution of particles excited out of the sea. This is the most interesting component 

of the distribution, in that it is the part most easily studied in detail. The very 

high-momentum components of this graph will tell us about the short-range parts 

of the interaction we want to study. 
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The analytic structures of the graphs are quite simple. The first graph is given 

above (the mean-field result). The second and third have very similar forms 

nb(k) = - (2rr)3 j dk2dk3dk4 l(k, k31Gik2 , k4)12 
4p (e( k ) + e( k3)- e( k2)- e(k4))2 

x8(kF - k)8(kF- k3)8(k2- kF)8(k4- kF) (4.4) 

nc(k) = (2rr3) j dktdk3dk4 l(kl! k 31 Gik , k4)12 
4p (e(k 1) + e(k 3)- e( k) - e(k4))2 

x8(kF- kt)8(kF- k3)8(k- kF)8(k4- kF). (4.5) 

This expansion should preserve the normalization of n( k) exactly. It is a strong test 

of the numerical techniques to meet this condition (the factor of (2rr )3 is present to 

make the normalization as given in Eq. 4.3). 

Fig. 4.5 shows the momentum distributions obtained by us for the RSC(28] 

and Paris(55] potentials using Brueckner techniques. They are almost identical to 

the distribution of Fantoni and Pandharipande (56] obtained using the Argonne 

v14 potential and the coupled-cluster technique(57]. On the log scale, the effect 

of correlations for k < kF is not noticeable, and on a linear scale (Fig. 4.6) they 

are only marginal (about 10%). This corresponds to what we know about the 

wound integral, which is essentially the average deviation of the correlated and free 

distributions out to kF (within a constant). 

At this point we can take our momentum distribution and calculate a scaling 

function (F(y)) using the lA for nuclear matter (Fig. 4.7). The plateau around 

y = 0 is essentially the result for the free Fermi gas, and the tail is the result of 

correlations. 

We should try to determine what physical properties the tail of the distribution 

is most sensitive to. This will be important when we try to make comparisons 

to experiment. One immediate point is that we do not do our calculation at the 

saturation density, and we might wonder what effect this can have on the strength 

of the tail. It is fairly simple to compare the momentum distributions for different 



50 

101 

100 

~ 
.......... 10-1 '-': .., 
8 ~ -..._., - 10-2 
~ ..._., 
Q 

10-3 

10-4 
0 2 4 6 

k (fm-1
) 

Figure 4.5 The momentum distribution of nuclear matter calculated at 
kp=l.36 fm- 1 , using the expansion of Fig. 4.4. Curves shown are for the 
RSC (solid) and Paris (dashed) potentials. 

values of kF. As we can see in Fig. 4.8, the sole major effect is to redistribute 

the strength in the peak; the correlation tail is fairly stable against change out to 

about 1.2 Ge V /c. Another factor that influences the strength of the momentum 

distribution in the region of interest is the tensor interaction between nucleons. 

More specifically, the tensor interaction in the 351 - 3 D 1 channel. Fig. 4.9 shows 

the consequences of removing the effects of the tensor force in nuclear matter. We 

do this by removing all G-matrix contributions of the form G LL+2 and G L+2L· In 

each case, the removal of tensor effects can deplete the strength by an order of 

magnitude in the range 1.5 fm-1 < k < 4 fm- 1 . 
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Figure 4.6 Same as Fig. 4.5, except shown on linear scale to show the 
depletion for k < kF. The dotted line is the free Fermi gas, and the solid 
line is for the RSC potential. 
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Figure 4. 7 F(y) as calculated using the RSC momentum distribution of 
Fig. 4.5. The dotted curve is the free Fermi gas result. 
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Figure 4.8 Effect of kF on the momentum distribution of nuclear matter. 
The distributions are calculated using the RSC potential. The solid curve 
is the distribution at kF=l.36 fm-l and the dashed curve at kF=l.31 
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Figure 4.9 The contribution of tensor terms to the momentum distri­
bution for nuclear matter. The full curve is n(k) from Fig. 4.5, and the 
dashed curve is the distribution with all tensor terms removed (see text). 



53 

4 .3 Many-Body Effects on t he Struct ure Func-
tion 

One question that must be asked when considering the relation between inclusive 

quasielastic electron scattering and the momentum distribution of the target is: Are 

there final-state or other strong correlation effects in the scattering reaction that 

destroy the simple relation given by the lA? The evaluation of final-state effects in an 

inclusive reaction is a difficult problem. Weinstein and Negele[58] and Weinstein[59] 

have discussed one possible approach, and applied it to the problem of an infinite 

Bose systems interacting via a hard-core potential. Their approach was to expand 

the structure factor S(q,w) of Eqn. 2.13 using Brueckner-Goldstone perturbation 

theory. As we saw in Chapter 3, this is straightforward whenever a ground-state 

expectation value is involved. They found significant contributions from diagrams 

that contain an interaction between the two density operators. These play the role 

of final-state interaction contributions. We use their method to study the structure 

function for the more "physical" system of nuclear matter. 

The complete expansion for S(q,w) up to two-hole-lines is given m Fig. 4.10 

(exchange graphs are calculated, but not shown here) . There are some minor differ-

ences now between our diagrams and those of Weinstein and Negele. We consider 

the full single-particle potential above and below the Fermi surface, so one-loop 

graphs such as diagram (f) in Fig. 4.10 can contribute only through their imaginary 

components. 

Here we can see the true many-body components of the structure function. 

The Diagrams (A,E,F,G and H) correspond to contributions due to the momentum 

distribution for k < kF (this is shown in Ref. [59]). Diagram (a) corresponds to 

the contribution of the momentum distribution for k > kF, while diagram (b) 

represents the two-body correlation term in lA for particles above the Fermi sea. 

Diagrams in which an interaction takes place between the injection and removal of 
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Figure 4.10 Goldstone diagrams for the expansion of S(q,w) up to two­
hole-lines. Wiggly lines represent G-matrix elements, and the dashed 
lines transport momentum and energy ( q and w) through the graphs. 

energy and momentum correspond to final-state interaction effects (unfortunately, 

working in the framework of Compton amplitudes does not allow direct conversion 

back to scattering matrix elements). We can see that final-state interactions take 

place on a microscopic level with real two-body interactions between the struck 

nucleon and the spectator system This is much more fundamental than an optical 

model approach, which is a relatively simple mean-field approximation. As we have 

seen with the momentum distribution, we are studying a kinematic regime where 

mean-field approximations are simply not reliable. 

A key component of the results of Weinstein and N egele's calculation 1s the 
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behavior of the off-shell matrix elements at high-momentum transfer. For Q 2 very 

large, the off-shell elements can be approximated as (ql9(w +iTJ)Iq) . This in turn is 

equivalent to (qiT(w +iT] )lq), where Tis the free scattering matrix element defined 

in Chapter 2. If the scattering is purely due to a hard-core, then this matrix element 

is proportional to lql to leading order. This is a simple consequence of the optical 

theorem, which states 

(4.6) 

where ar is the total cross section. For the hard sphere, ar is a constant equal to 

21ra2
, where a is the radius of the sphere. Weinstein tabulated the q-dependence 

of each diagram, and his results are shown in Table 4.1. The final-state-interaction 

Diagram Leading q-behavior 

a q-1 

b q-4 

c q-1 

d q-1 

e q-1 

f q-1 

g q-1 

Table 4.1 The q dependence of the diagrams in Fig. 4.10 for an infinite 
hard-core potential (from Ref. (59]) 

graphs that contain imaginary components of matrix elements are all 0(1/q) to 

first order. This is the same dependence as shown by the direct IA graph. It is thus 

possible for there to be finite corrections to IA even at Q 2 --+ oo. This is, in fact , 

the case, as can be seen in Fig. 4.11 This is, of course, strongly dependent on the 

behavior of the T-matrix elements at high Q 2 resulting from the hard core. With a 

softer core, ar will decrease with q, and this would result in the final-state effects 

vanishing in the asymptotic limit. 
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Figure 4.11 The results of Weinstein and Negele for the structure func­
tion of a Bose gas interacting with a hard-core potential. Results are 
given in a dimensionless form, with the radius of the hard core (a) set­
ting the scale (from Ref. [58]). 
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4.4 Discussion of Results 

We discuss the detailed algebraic expansions of the diagrams of Fig. 4.10 in Ap­

pendix II, and use the partial wave technology discussed in Appendix I. The inte-

grals over angular coordinates are done using Gauss-Legendre quadrature. Third 

order was found sufficient for good convergence of the integrals. The "radial" k 

integrations are performed using Simpson's rule with a grid spacing of kF/10. The 

effects of halving the grid spacing are on the order of 0.5% or less, consistent with 

the findings of Haftel and Tabakin[60] . In diagram (e), it is neccesary to perform 

principal value integrals in kinematic regions where the energy denominator can be 

zero. The method discussed in Appendix I is used to remove the singularities in the 

integral. For our definition of y , we choose a non-relativistic reduction of Eqn. 2.29. 

This is necessary because of the non-relativistic nature of our calculation, and the 

implications of this will be discussed later in this section. For nuclear matter (no 

recoil energy), this leaves us with 

which in turn yields 

+
-- (q+y)2 

w E- 2M 

y = -q + J2M(w + €). 

(4.7) 

(4.8) 

We use € = -51 MeV, which is the mean single-particle energy for nuclear matter 

Following the lead of Eqn. 2.23 in Section 2.4, we define a function 

q 
:F(q,y) = MS(q,w ) ( 4.9) 

where we now allow for the fact that there might not be perfect scaling at finite Q2 • 

In the lA , :F quickly approaches F(y) , but we are interested in studying any devia­

tion that might occur from the lA because of the effects of final-state interactions. 

Our calculations are performed at four sets of kinematic parameters. These are 
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chosen to match up with part of the NE3 data sets, so that we might later compare 

our answers to the experimental results. The kinematics we study result from an 

incident electron beam energy of 3.6 GeV, and scattering angles of 16°, 20° , 25° and 

30° (these are only a subset of the NE3 kinematics, which examine many other angle 

and energy combinations) . Since we are actually interested in the Q2 dependence 

of the approach to scaling, these kinematic sets will be examined in terms of the 

Q2
, which correspond to the appropriate scattering angle and energy transfer. The 

range of Q2 that we study is then approximately 0 .8(GeV /c)2 < Q2 < 2.6(GeV /c)2
. 

Results are obtained for both the RSC(28] and Paris(55] potentials, although both 

turn out to be virtually identical, and thus they will discussed as a unit . Lastly, we 

only consider the region y < -kF. For IYI < kF, mean-field effects dominate and we 

cannot really study the effects of correlations in any detail (Sec. 4.1) . However, 

for IYI > kF, all the structure we see is the result of two-body correlations, so we 

are very sensitive to their effects in the initial and final states. 

Fig. 4.12 compares results for IA and the full calculation for the range of Q2 

considered. Note the marked difference in behavior of the two with respect to Q 2
, 

and also the sharp kinematic cutoffs. The latter is due to the the matching condi­

tion where the upper and lower integration limits become equal. In the Brueckner 

approach, the cutoff point is the minimum energy transfer for exciting two particle­

hole pairs. This, however, does not correspond to the zero energy transfer point of 

the true scattering process and we will discuss that problem later. We now would 

like to see how well our calculation fares when compared to the data. Unfortunately, 

the data do not exist at nice, uniform values of y, and the values change for each Q 2
• 

Thus, we must interpolate the data to the values of y that we study. Fig. 4.13 shows 

the experimental data and the interpolated results for 56Fe. It is immediately clear 

that the interpolation is a reasonable procedure, given that the data lie on relatively 

smooth curves. The error bars are chosen to be representative of both the statistical 
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uncertainties of the data, and of the uncertainty of the interpolated values. Using 

these interpolated points we can now compare our results to the data. This is done 

for 56 Fe (Fig. 4 .14) and 197 Au (Fig. 4.15). We can see that the trend is now correct 

for the approach to scaling. However, there are two very obvious problems, the 

most obvious being the normalization. The theoretical results are factors of 3- 5 

too large. What is the cause of this discrepancy? For the moment, let us assume 

that the problem lies in the potential. Indeed, such strong dependences can be 

seen in other calculations, such as that of Frankfurt and Strickman [35] for w W2 

of the deuteron (Fig. 4.16). Using RSC vs. the Ramada-Johnston potential (the 

correct version) [61,62] caused an order of magnitude difference in the results, again 

showing the sensitivity of the momentum distribution to the short-range properties 

of the potential (as discussed in Sec. 4.2) . We can attempt to remove the detailed 

dependence on the exact nature of the potential by normalizing the results and the 

data, so that the asymptotic result of each is unity. This entails taking the ratio 

Fn(q,y) 
(4.10) 

with D representing the data, IA and the full calculation. qmax represents the 

maximum q studied for each y. The theory certainly seems to indicate that the 

asymptotic limit is effectively reached at the highest Q 2 . However, we do not know 

this for sure with respect to the data. We will discuss this point later. In Fig. 4.17 

we see the effects of "renormalizing" the results for 56 Fe (the experimental data for 

197 Au does not extend to high enough Q2 to determine an asymptotic limit, so we 

do not examine it here). The agreement is now much better, but now we need to 

turn our attention to the problem of the cutoffs. 

The dominant diagrams can easily be written as the integral of some function 

F( k) over all k, constrained by a delta function forcing energy conservation. As 

discussed earlier, energy conservation in Brueckner-Goldstone theory takes the two-
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body form resulting from two-particle-two-hole excitations. It thus takes the form 

w + 2e = e(k) + e(2P- k) ( 4.11) 

(here we have replaced the exact hole energies with an average hole energy e). If we 

recall the expression in Chapter 2 for the scaling functio!l using lA, the algebraic 

structure was the same, except for the fact that the energy conservation took on 

the one-body form 

w + e = e(k) ( 4.12) 

(the equivalent energy denominator would be for one particle-hole pair). Here, e 

and € play identical roles, as the average separation energy of a nucleon in nuclear 

matter (which is essentially the same as the average hole energy). We propose 

to make an arbitrary replacement of the two-body form with the one-body form. 

It must again be stressed that this is not rigorous within the strict format of the 

perturbation expansion, but there is a better phenomenological connection with the 

real scattering process, as now we can study the scaling function right down to the 

zero-energy transfer region. We now compare our results again to experiment and 

can see the same problems as before with the unnormalized results (Figs. 4.18 and 

4.19), but there is much more reasonable agreement using the renormalized results 

(Fig. 4.20) . 

We should now address the question of whether the data has indeed reached an 

asymptotic limit. There has been a supplemental run of NE3 of 56Fe (NE3'), which 

took data at higher Q2 for large negative y . The kinematics of the run come from 

an initial beam energy of 4 GeV, and a scattering angle of 30°. This data recently 

became available to us[63], and in Fig. 4.21 we can see that the data do seem to 

approach a scaling limit, and if we reanalyze the approach to scaling (Fig. 4.22), 

the agreement is slightly better than before. 

Given the apparent qualitative agreement between theory and experiment, we 

can study the contribution of each diagram to the approach to scaling. In Fig. 4.23, 
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we examine the approach to scaling diagram by diagram for y = -0.5 GeV jc ( the 

results for other values of yare qualitatively the same). It is immediately clear that 

the only significant contributions come from the lA graph, and from diagrams (c) 

and (d) . Diagram (e) is of slight importance, but plays no real role in the approach 

to scaling. Diagram (b) is extremely small, as anticipated in the discussion in 

Section 2.4. 

Another question that should be addressed is the validity of using the non-

relativistic equation relating w, q and y . We compare the relativistic (Yr) and non-

relat ivistic (Ynr ) definitions for two kinematic sets in Table 4.2. The definitions valid 

for a finite target of A nucleons are 

-(q-~)+J(q-~) 2 - (1-~)(q2+m2-~) 
Yr = ( l _ ~22 ) 

with 

In the limit of infinite A , these go over to 

Ynr = -q + }2M(w + €) 

Yr = - q + }2M(w + €) + (w + €)2. 

( 4.13) 

(4.14) 

( 4 .15) 

( 4.16) 

T he comparison is done for both nuclear matter and 56Fe, so that we can see the 

effects of recoil. The value used for € is -51 MeV, obtained from the nuclear matter 

results at kF = 1.36 fm- 1
. This will tell us how well nuclear matter approximates 

the finite system in a kinematic sense. 

We can see that for low Q2
, the non-relativistic definition works quite well, At 

high Q 2
, the non-relativistic definition of y compares quite poorly to the relativistic 
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8=16° 

w Q2 NM s6Fe 

(GeV) ((GeV /c)2
) Ynr Yr Ynr Yr 

0.10 0.976 -0.687 -0.683 -0.705 -0.685 

0.15 0.962 -0.559 -0.548 -0.570 -0.540 

0.20 0.948 -0.463 -0.443 -0.472 -0.430 

0.25 0.934 -0.386 -0.354 -0.394 -0.338 

0.30 0.920 -0.320 -0.276 -0.328 -0.258 

8=25° 

0.10 2.36 -1.233 -1.229 -1.291 -1.269 

0.25 2.26 -0.911 -0.879 -0.930 -0.874 

0.40 2.16 -0.712 -0.640 -0.725 -0.624 

0.55 2.06 -0.567 -0.446 -0.579 -0.424 

0.70 1.96 -0.460 -0.282 -0.4 71 -0.257 

Table 4.2 The effects of recoil (in the case of 56Fe) and of relativity on 
the relation between y and w. 

one. This is actually not a problem because at high Q2 , our results are dominated 

by IA. Here, the scaling function is exactly the same whether the derivation is 

relativistic or non-relativistic (as long as the energy conserving delta function is 

kept covariant). It is only where the final-state effects are important that we need 

worry about the exact kinematic relationship between w and y. At low Q 2
, there 

is reasonable agreement between the relativistic and non-relativistic definitions of 

y (within a few percent). 
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Figure 4.12 Results for the extraction of :F(q , y) from the full Breuckner­
Goldstone calculation (BGE), and the Impulse Approximation (IA). The 
approach to scaling is shown at various representative values of y which 
are in the correlation tail. The results for the RSC and Paris results 
are virtually identical, so they are only shown as one curve. The dotted 
extensions to lines represent points very near the kinematic cutoff, and 
should not be compared seriously with the data. 
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Figure 4.14 Comparison of the results of Fig. 4.12 with the (interpolated) 
NE3 data for 56Fe[32]. Notice that the theoretical calculation is very 
restricted in kinematics compared to the experimental results. 
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Figure 4.15 Same as Fig. 4.14, but now compared to the NE3 data for 
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Figure 4.16 The structure function wW2 plotted against w' (w' = (2M2 + 
2Mw)/Q2

). Note that the theoretical results can vary by an order of 
magnitude depending on the potential model used. Both potentials do 
a reasonable job on static observables (from Ref. [35]). 
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Figure 4.17 The approach to scaling of the results shown in Fig. 4.12 
plotted against the approach to scaling of the NE3 data for 56Fe. Only 
theoretical points away from the cutoffs are shown 
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Figure 4.18 Same as Fig. 4.14 except that the one-body form for the 
energy conservation is used in the theoretical results. 
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Figure 4.19 Same as Fig. 4 .15 except that the one-body form for the 
energy conservation is used in the theoretical results . 

3 



71 

4 BGE 

3 

LI 
y--0.40 GeV I c 

2 

L 1 - • 
_.._ I y=--0.45 GeV I c ~ 2.5 

'X 
c 

2.0 E 
t::l"' ........... 

1.5 ~ _.._ 
~ 1.0 --------
~ ........... 
~ 3.0 

y=-0.50 GeV I c 
2.5 
2.0 
1.5 
1.0 

y=--0.60 GeV I c 

1 1.5 2 2.5 
Q2 [(GeV/c)2] 

Figure 4 .20 Same as Fig. 4 .17 except that the calculations use the one­
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Figure 4.21 Comparison of our results to the NE3' data for 56Fe at highe r 
Q2 • Notice that the data do see m to approach a scaling limit experimen­
tally. 
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Figure 4.22 Approach to scaling for the 56 Fe NE3' data. The agreement 
is the same or even better than in Fig. 4.20. 
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Figure 4.23 The contributions of various diagrams to the scaling function 
:F(q, y). This is representative of all the situation for all of the values of 
y studied. 
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4.5 Other Results and Future Directions 

Most other work to date on the problems of the scaling analysis have emphasized the 

problems with the kinematic factor, and also with the definition of y. Gurvitz and 

Rinat have studied the extraction of a scaling function using four different models 

for the scattering reaction (all non-relativistic) on a single particle in a potential 

well(64]. They found significant effects, but were very uncertain of the practicality of 

extending their results to a relativistic domain. We reviewed the work of Laget and 

Frankfurt and Strickman in Chapter 2, where they consider the effects of scattering 

from two nucleons in 3He. 

Vary and collaborators have been studying the effects of six- and nine-quark 

bags of the scattering cross section, should they be real and significant degrees of 

freedom in the nucleus. Pirner and Vary found that they could reproduce wW2 (as 

described in Chapter 2) for 3 He using this sort of model(65], and this would have 

immediate bearing on the extraction of a scaling function. Studies of the effects on 

the NE3 cross sections are in progress. 

What should be next? Our calculations cannot really be extended to higher 

Q 2
, because of its inherent non-relativistic nature. Relativistic nuclear many-body 

theories are currently undergoing a great deal of scrutiny, and Brockmann and 

Machleidt have been able to reproduce the empirical nuclear matter saturation 

energy and density from a relativistic Brueckner-Hartree-Fock calculation using a 

one-boson exchange potential which fits the N -N phase shifts (66]. If these theories 

turn out to have a rigorous founding, it might be interesting to repeat our calculation 

using a full relativistic framework, exploiting both the dynamics and kinematics 

present. It is also interesting that the Bonn potential has produced significantly 

softer tensor effects than other potentials(67), and as we pointed out, this may be a 

cure for our quantitative disagreement with the data. 

From the experimental point of view, there are big problems. Higher Q2 's are 
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not really that practical, as the quasielastic peak is already getting lost under the 

deep-inelastic structure at the NE3 kinematics. One experiment that might yield 

intriguing results is NE9 at NPAS. The hope there is to take sufficient data to be 

able to extract the longitudinal and the transverse structure functions of the cross 

section separately This is done by fixing Q 2 and varying the scattering angle. Since 

the cross section is written as 

d20' ( (Q2) 2 
1 (Q2 (}) ) 

dE'df?/ = O'M -;ji WL(q, q · P) + 2 -;j2 + 2 tan
2 

2 Wr(q, q · P) ' (4.17) 

we can plot the differential cross section vs. ( Q2 /2q2 + tan2 (} /2) and extract Wr 

from the slope, and WL from the intercept . This has already been done at low Q2 

by Barreau et al. [24] and Meziani et al. [25], who found that WL seemed to be 

missing strength at the center of the quasielastic peak compared to naive Fermi 

gas estimates (which gave reasonable fits to Wr ) . Theoretical calculations seem 

to show that we understand where the strength has gone (correlation effects push 

the strength out into a tail at large energy transfer) [23], but these effects should 

also affect Wr at the peak. Measurements at high Q2 should help sharpen our 

ideas about what is going on, as correlation effects in the peaks should get fairly 

small. Should theorists be able to fit both the transverse and the longitudinal cross 

sections independently, then we can strengthen our understanding of the reaction 

mechanism, and also of the behavior of the nucleon form factors in the medium. 

We look forward to this experiment with great interest. 
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Chapter 5 

Summary and Conclusions 

In Chapter 2, we reviewed the current state of inclusive quasielastic electron scat­

tering on nuclei, especially as it relates to y-scaling. We discussed the problems 

that exist between theory and experiment, and discussed proposals to resolve the 

discrepancies. 

Our approach was to look at the scaling analysis from the point of view of a 

microscopic many-body analysis. We chose nuclear matter as our test medium, and 

in Chapter 3, we reviewed the techniques of Brueckner-Goldstone theory, which we 

used to evaluate the dynamic structure function in nuclear matter. 

In Chapter 4, we presented a microscopic calculation of the nuclear structure and 

two-body correlation effects on the extraction of a scaling function from quasielas­

tic electron scattering. Although our results did not reproduce the quantitative 

results of experiment, the qualitative results were reproduced. Possible reasons 

for the discrepancies were discussed, and critically examined. The possible direc­

tions · of theoretical work in the future were also discussed, with emphasis on the 

need for a comprehensive relativistic treatment of the nuclear many-body problem. 

The success of Machleidt and collaborators in reproducing the empirical saturation 

properties of nuclear matter may bode well for the development of such techniques. 
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Appendix I 

Evaluation of G-Matrix Elements 

We start with the partial wave expansions for both V and G; 

(!.1) 

JSTM 

and 

(!.2) 

Pr is the isospin operator for the two-body state, and Y~Ls(k) is a spin-spherical 

harmonic, defined as 

Y~s(kt) = L (LMLSMsiJM} YLML(kt) ISMs} (!.3) 
MLMs 

with YLML a spherical harmonic, (LMLSMsiJ M} a Clebsh-Gordon coefficient, and 

ISMs} a spinor. The argument k denotes the angular orientation of the unit vector. 

The angle-averaged approximation for the Pauli operator Q will be used. It 

is given by the L = 0 component of a partial wave expansion, and in terms of 

center-of-mass momentum P, and relative momentum k'. It has the form 

{ 

0 if p + k' < k Fi 

Q(p' k') = k}- p2- k'2 r;~~~ 
if vP2 + k' 2 < kF < P + k'; 

2Pk' 
1 otherwise. 

(!.4) 

We then substitute these expansions into the integral equation for G (Eqn. 3.6) to 
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find 

JSTM 

JSTM 

JSTM J•lm 

The delta function removes the center-of-mass integration, and then we can integrate 

over the angular component of the relative momentum ka to get 

LL1 

JSTM 

"" JST yM ~ yMt ~ = L.J VLu (kt, ko) JLs(kt) JL's(ko)PT 
LL1 

JSTM 

+ ~ L: L: j k;dka Vff,T(kt, ka)Gf)I,(P; ka, ko)Y'fr_8(kt)Y'fr_~8(ko)PT 
7r LL1 L" 

JSTM 

x W- 2e((P2 + k~) 1 12 ) (!.6) 

Note that to do this we have averaged over the angle between P and ka in the 

energy denominator. We can now use the orthogonality of each channel to show 

G'{J}(P; kt, ko) = Vff,T(kt, ko) 

~"" j k2dk Vff,T(kt, kSQ(P, ka)Gi~[,(P; ka, ko) . (!.7) 
+ 7r f,;' a a W- 2e((P2 + k~)l/2) 

This is the equation which we solve. Potentials are generally given in terms of their 

partial wave expansion, so it is quite straightforward to apply them here. 

To solve the integral equation, we employ the method of Haftel and Tabakin [60), 

which is a direct solution of the equation using matrix methods. A general inho-

mogeneous integral equation has the form 

F(x) = L(x)- j dyK(x,y)F(y) (!.8) 
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Assume for the moment that L and K are regular. We can discretize this as 

N 

F(x) = L(x)- LWnK(x,yn)F(yn), 
n=l 

(1.9) 

where Wn and Yn are quadrature weights and points, respectively, and N is the 

number of quadrature points. If we solve for Fat the points y1 ... yN, then we have 

N equations of the form 

N 

L(ym) = L(K(ym, Yn) + 8mn)F(yn) (1.10) 
n=l 

If we know L and K, we can solve these equations trivially using matrix inversion. 

Then F can be solved for arbitrary x. 

But what if K is singular? This, in fact, is the case for the integral equation 

for the G-matrix. The solution will depend on the nature of the singularity. The 

singularity in Equation 1.7 arises from the energy denominator. First, rewrite the 

starting energy as W = W 0 +iry. This tells us how to handle the contour integration. 

We find the pole from noting that there exists some k~ such that W0 = 2e((P2 + 
k;) 112

). We use the knowledge that e(k) = Pj2M + U(k), and that where U is 

important its behavior is well approximated by a quadratic in k. This means that 

the singularity is first order. Now we can replace W- 2E by 

where 

(Wo- 2E) 
C(ka) = (k~ _ k;) , 

(1.11) 

(1.12) 

where C(ka) is now well behaved for ka -t ks. Why would this help? If there 

is a singularity in an integrand, there are two contributions to the results, one a 

principal value (PV) integral, and the other from the contour integration around 

the singularity. To evaluate the PV integral, we need to be able to eliminate the 

singularity in the integrand. First we note that 

1
00 1 

P.V. dx 
2 2 = 0 

0 X - Xo 
(1.13) 
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This then tells us that 

(!.14) 

We can then define 

(!.15) 

so that we can rewrite Eqn. I. 7 as 

(!.16) 

where we now have a principal value integral, since the singularity has been removed 

smoothly. It is now trivial to apply the matrix inversion techniques mentioned 

previously, except that now we solve for a complex-valued function. 

We need to input the potential in momentum space, the single-particle potential, 

and the starting energy W. The latter we discussed in Chap. 3. First let us evaluate 

the potential in momentum space in each angular momentum channel. We need to 

evaluate Vff7(kt,k0 ) explicitly, given V(r,r'). We express Vas 

V(r,r') = 2: vtf7(r)Y!;i,5 (r)Y!;i,!5 (r')PT, 
LL1 

JSTM 

(!.17) 

where, for the potentials we use, Vff,T(r,r') = Vff7(r)8(r-r'). Then we can write 

(!.18) 

If the potential can be written as a sum of Yukawa terms (as can Reid Soft Core and 

Paris), then the transformation to momentum space is trivial and given by Haftel 

and Tabakin [60]. The transformations for the different Yukawa structures are as 

follows: 

(!.19) 
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fo'drr 2]L(kr)(~r + (m
1
r)Z) e~:r h(k'r) = 2(2~~ 1) (QL+I(z)- QL-l(z)) (!.20) 

(1.21) 

where 

(!.22) 

j L is a spherical Bessel function, and Q L is a Legendre polynomial of the second 

kind. Other essential Yukawa terms for RSC tensor terms are 

fo'drr2j0(kr)e~:r iz(k'r) = 4k~'3 [6kk' +~(3m2 + k' 2 - 3k
2)1n(: ~ ~) 

+ 6mk{ arctan(k: k') - arctan(k: k')}] (1.23) 

and 

r= 2· ( )e-mr. ( 1) 2£+5 k ( r = 2· ( )e-mr. (k') QL+2(z)) 
}

0
drr )L+l kr mr JL+3 k r = 2£ + 3 k' }

0
drr JL kr mr JL+2 r + 2kk' 

QL+I(z) 
2kk' 

(1.24) 

(The latter can be used to evaluate higher-order terms from the first) . There is one 

other expression needed for the quadratic spin-orbit term of the Paris potential, 

r=d 2. (k ) 1 ( 3 3 ) e-mr . (k' ) 1 kk'c 2 )Q-2( ) (!.25) Jo rr JL r (mr)2 1 + mr + (mr)2 mr JL r = 2 ms z - 1 L z . 

These are all easily confirmed using integral tables (68] . 

The potential energy is calculated in the Hartree-Fock approximation as men-

tioned in Chapter 2. We start with 

1 
U(k) =- L (k, kdGibk , kl)- (k, klJGJkb k)' 

4P k1<kF 
(!.26) 

and now we need to consider the exchange structure of a G-matrix element. In the 

center of mass representation, 

1 
U(k) =- L (P, koiGJP, ko)- (P, koJGJP , -ko). 

4P IP-kol<kF 
(!.27) 
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We now use Eqn. 1.2 to look at (P, koiGIP, -ko). It is given by 

(1.28) 

and it is immediately obvious that 

The N -N interaction is given only for states with L + S + T odd (because the 

nucleons are fermions), so if we restrict our sum to such states, then we find that 

(P, koiGIP, -ko) = -(P, koiGIP, k o) , (1.30) 

and that 
2 

U(k) =- 2:: (P, koiGIP, ko) . 
4P IP-kol<kF 

(1.31) 

It is now fairly simple to write U(k) in terms of the partial wave amplitudes as 

(1.32) 

where pis the density of nucleons in nuclear matter, and P = lk+k1 l/2. Practically, 

this turns into an integral of the form 

k < kF 

4 n,2 1 (i(kF-k)/2 1k+ko 
U(k)=-M-k L(2J+1)(2T+1) dkoko dPPGifT(P;ko , ko) 

7r JSTL o lk-1<-QI 

(1.33 ) 

k > kF 

4 n2 1 
U(k) = -M-k L (2J + 1)(2T + 1) 

7r JSTL 

J(kF+k)/2 1J(k}+k2 )/2-k~ 
dkoko dP P GifT(P; ko, ko). 

(k-kF )/2 ik-1<-Q I 
(1.34) 
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It has been shown by Banerjee and others [60,69,70,71] that the center of mass 

dependence o[ G can be replaced by evaluating G at an average center of mass 

momentum P for each k0 . Pis given by 

2ko ~ kF- k 
kF- k ~ 2ko ~ kF + k. 

(1.35) 

In fact, the real dependence of G on P is rather weak, and the P dependence is a 

fairly good approximation. [69,71] In Fig. !.1 we plot the G-matrix elements from 

various channels against P as given in Refs. [69] and [71]. We can see that the 

0 

-5 
--------~- k 0 =1.02 fm-1 

-10 
......... 

0 
~ 

0 
-15 ~ 

0.. ....._, 
~ 

k 0 =0.34 fm - 1 

-20 

0 0.25 0.5 0.75 1 1.25 1.5 
P (fm - 1

) 

Figure 1.1 The dependence of G-matrix elements on the center-of-mass 
momentum P. Numbers are from Refs. [69,71]. 

variation is on the order of 2-3%. This weak dependence will allow us to work with 

average center-of-mass momenta for all matrix elements. 
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Using these approximations, we now have an expression for U ( k) given by 

k < kF 

8 11,2 (l(kF-k)/2 
U(k) = -M L (2J + 1)(2T + 1) dkok~ GifT(P; k0 , ko) 

~ JSTL 0 

1 J(kF+k)/2 1 2 2 JST - ) + -k dkoko( -(kF- k ) - ko(ko- k)) G LL (P; ko, ko) 
(kF-k)/2 4 

(I.36) 

k > kp 

8 ;,2 
U(k) =- M L (2J + 1)(2T+ 1) 

~ JSTL 

11(kF+k)/2 1 2 2 JST - ) 
-k dkoko( -(kF- k ) - ko(ko- k)) GLL (P; ko, ko) . 

(k-kF)/2 4 
(I.37) 

This integral is evaluated numerically using Simpson's rule. Ten points were used 

for each interval, and the effect of doubling this number was about a 0.5% change. 

For practical reasons, the potential is evaluated at a restricted series of points and 

then fit to analytic forms for various regions. Following the lead of Jeukenne et 

al. [49}, we fit to a parabolic form for k < 2kF, and to a Gaussian form for k > 2kF 

(the actual analytic form for this region is not very critical. As seen in Chap. 3, 

the potential is insignificant with respect to the kinetic energy for k > 2kp ) . The 

points used for the fitting actually overlap both of these regions to ensure a smooth 

continuation of the potential. 

A last topic which needs to be discussed is the behavior of adjoints of the G-

matrices. If we return to the original equation for G as taken from a ladder sum-

mation, then we have 

(kt , k2/G/k3, k4) = (kt, k2/V/k3 , k4) + L 
k<> ,kb>kF 

(kt, k 2/V/ka , kb)(ka , kb/G/k3, k4} 
W- e(ka)- e(kb) 

(I.38) 

But the ladder sum could also be written in such a way as to give 

(kt , k2/G/k3, k4) = (kb k2/V/k3, k4) + L 
ka,kb>kF 

(kt, k2/G/ka, kb}(ka, kb/V /k3, k4} 
W- e(ka)- e(kb) 

(I.39) 
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It is fairly trivial to see that if W is chosen such that the energy denominator is 

the denominator vanishes, then the problem might be more subtle. Consider the 

case where W = w + i7] . Now the expression for G is 

(kt, k21Gik3, k4} = (kt, k21Vik3, k4} + L 
kB,kb>kp 

If we conjugate this, we get 

(k3, k41Gikt. k2} = (k3, k41VIkt, k2} + L 
kQ,kb>kp 

(kt, k2iVika, kb}(ka, kbiGik3, k4} 
w- e(ka)- e(kb) + i7] 

(!.40) 

(k3, k41Gika, kb}(ka, kbiVIkt, k2} 
w- e(ka)- e(kb)- i7] 

(!.41) 

We can see that Eqn. !.39 is the integral equation for (k3,k4IG(w- i7J)Ikt,k2}· It 

is then clear that (k3, k4IG(w + i7J)Ik1, k 2} = (k1, k 2IG(w- i7J)Ik3, k4}. Now, when 

we have a term (k3, k4IG(w + i7J)Ik1, k 2} + (k1, k 2 IG(w + i7J)Ik3, k4}, this translates 

to (k3,k41G(w + i7J)Ikt,k2} + (k3,k4IG(w- i7J)Ikt,k2}, where the imaginary parts 

will cancel and leave us with twice the real part. This is an important point when 

considering RPA type diagrams and also some of the important diagrams in the 

. . 
ma1n expanston. 
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Appendix II 

Detailed Algebraic Expansions of 
Diagrams 

Here we will deal with the detailed algebraic expressions for the diagrams discussed 

in Chapter 4. Their partial wave expansions are also discussed, along with methods 

for dealing with the angular integrations when necessary. The first two diagrams 

of Fig. 4.10 are discussed in the most detail, as they demonstrate nicely all the 

techniques used for the other diagrams. One point of notational convenience- when 

writing the G-matrix elements, the notation (k1 , k 2 1Gik3 , k 4 ) will be used for on­

shell matrix elements, and the starting energy will be implicit from the diagram. 

The off-shell elements will be written (k1, k 219(w+i7J)Ik3 , k 4), where again the start-

ing energy is assumed implicit from the diagram, but the "external" contribution is 

mentioned, _as the sign of the contribution of the imaginary part will be important 

in some of the diagrams. 
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11.1 Diagram (a) 

First, let us discuss the direct IA term. 

It can be expanded as 

Sa(q,w) = -
2
!Plm j dk1dk2dk3dk4 

(k1, k3IGik2, k4}(k2, k4 1Gi kt. k 3} 

1 
X ~~~~~--~~--~~~ 

(e(kl ) + e(k3)- e(k2)- e(k4))2 

1 
x w + e(k1) + e(k3)- e( k2+q )- e(k4) + iry 

X 8(kF- lk11)8(kp -lk31)8(lk21- kp)8(lk41- kp ) 

X 8(lk2 + ql - kp) 

X 63( k1 + k3 - k2 - k4) · 

(II.1) 

This includes the exchange term, which we can evaluate using the information in 

Appendix I. We make a transformation to center-of-mass coordinates P = (k1 + 

k3)/2 and k 0 = (k 1 - k3)/2. Then we can write 

where the integration over k 4 has been performed to remove the 6-function. Note 
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also the definitions 

D1 = e(P+ko) + e(P-ko)- e(k2)- e(2P-k2) 

D 2 = w + e(P+ko) + e(P-k0)- e(k2+q)- e(2P-k2) + iry 

el = G(kF- IP-kol)' e2 = G(kF- IP+kol) 

83 = 8(\k2\- kF), 84 = 8(\2P- k2\- kF) 

8s = 8(\k2 + q\- kF) · 

Now define (for notation) k' = k 2-P. This will be used for the evaluation of the 

G-matrix elements. 

Consider first the product of G-matrix elements (P, koiGIP, k')(P, k'IGIP, ko). 

Using the partial wave expansions, we can rewrite this as 

(~)
2 

"'"""'"" i 1-l'+L-L'GJST(P· k k')Gj6t(P· k' k ) 
L....., L....., LL' ' o, II' ' ' 0 

7l" JST ;•t 
LL1 ll 1 

x L L Yj"(6(k')Y;:,!(ko)Y~5(ko)Y~!5(k')(tmtiTMT) . (II.3) 
mmtMMT 

If G is purely real, then Giff'(P; k0 , k') = Gi~[(P; k', k0 ) (from Appendix I) , and 

we can sum over m, M, mt, MT to get 

4
1

4 L(2J + 1)(2T + 1)\G:fi!(P; k', ko)l 2
• 

7l" JST 
LL1 

We can insert this into Eqn. II.2 to get 

1 
Sa(q,w) = --

5
-2:::(2J + 1)(2T + 1) 

7l" p JST 
LL1 

(II.4) 
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11.2 Diagram (b) 

Now we consider the two-nucleon term of lA. 

It is interesting because it now has q as part of the argument of a G-matrix element. 

Here we will see how angular momentum mixing works in all the rest of the diagrams. 

The full expression can be written as 

Sb(q,w) = --
1
-Imjdk1dk2dk3dk4 

27rp 

(kt. k3IGik2+q, kcq}(k2, k4IGik1> k3} 
1 

x e( k1) + e( k3) - e( k2+q) - e( kcq) (!1.
6

) 
1 1 

x n
1 

D
2 
e1e2e3e4es e(k4- ql- kF) 

X 83
( k1 + k3 - k2 - k4) · 

Here, one of the G-matrix elements carries a momentum q . The main effect of this 

in the analytic structure is to change the angular momentum couplings between the 

two interactions in the diagram. We write 

(II. 7) 

(2)"" JST I yM ~ yMt -= - L....,GLL' (P; ko, ik +qi) JLs(ko) Jus(k'+q)ITMT}. 
7r JST 

LL1 

MMT 
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Coupling this to the other G-matrix element gives 

(!!.8) 

We can see that there is closure in k0 , so that we have 8Ll'8Jj· However, the closure 

does not work over k', so that all combinations of l and L' should be considered. 

Thus, the final result for S b is then 

Sb(q,w) = -+Im j dPdkodk' L i 1-L'(2T + 1) 
W p JST 

LL11 

Gi~[(P; lk'+ql, ko)GffT(P; k', ko) L Y:;{s(k')Y::i,!s(k'+q) 
M 

1 
X ---------------------------------------

e(P+ko) + e(P-k0 )- e(P+k'+q)- e(P-k'-q) 
(!!.9) 

x ~1 ~2 e1e2e3e4es e(IP-k'-ql- kp) 

How the angular integrations over k' are performed should be discussed. We can 

expand the product over spherical harmonics as 

Y:;{s(k')Y::i,!s(k"T;q) = -
2

1 
L(lm1SmsiJ M) (L'muSMsiJ M)P1m'(01c' )P;L' (Oie'+q) 

Wm1mL1 

msMs 

( II.lO) 

From this we get 8m1mL' and 8Msms· Then we are left with 

2~ L (lmlSmsiJM)(L'mlSmsiJM)P1m1 (0~e,)P'lJ'(01e'+q). 
mlms 

(II.ll) 

P is the normalized form of the associated Legendre function. The relation between 

cos ole' and cos ole'+q is easily derived. If we consider q to be in the z-direction, then 

we can use Fig. !!.1 to show that 

0 
q + k' cos ole' 

cos le'+q = 
.Jq2 + k12 + 2qk' cos ole' 

(II.12) 
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q 

Jc' 

Figure II.l The relation between 0"' and O"'+t, assuming that q points 
along the z-axis . 

The integrals can now be performed using Gauss-Legendre quadrature, which 1s 

discussed in the main text. 

At this point, it is sufficient just to list the general expression and the angular 

momentum expansion for each of the remaining diagrams. All the techniques for 

expanding carry through. 
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11.3 Diagrams (c) and (d) 

Now we begin evaluating the final-state interaction diagrams. The first of these are 

actually paired, in the sense that they appear as time-reversed cases of one another. 

These are diagrams (c) and (d) of Fig. 4.10. 

The general expressions for these are given by 

Sc( q, w) = _ _!_lm j dk1dk2dk3dk4 
7rp 

(kt, k3IGik2, k4)(k2+q , k419(w + iry)lkt+q, k3) 
(e(kt) + e(k3)- e(k2)- e(k4)) 

1 

x w + e(k1) + e(k3)- e(k2+q)- e(k4) + iry 
1 

X . (11.13) 
w + e(k1)- e(k1+q) + zry 

x e(kF -lktl)e(kF -1k31)E>(Ik2l- kF)e(lk41- kF) 

X E>(lk2+ql- kF )0(lkl +ql- kF) 
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Sd(q,w) = -~Im j dk1dk2dk3dk4 
7rp 

(k1+q, k3i9(w + i77)lk2+q, k4)(k2, k4IGik1 , k3) 
(e(k1) + e(k3)- e(k2)- e(k4)) 

1 
x (Il.14) 

w + e(k1) + e(k3)- e(k2+q)- e(k4) + i77 
1 

X . 
w + e(k1)- e(k1+q) + t7J 

X 0(kF -lkll)0(kp -1k31)8(lk2l- kp)0(lk41- kp) 

X 8(lk2+ql- kp)0(lkl+ql- kp) 

These two expressions can be combined to form 

Sc+d(q,w) = -~rmjdk1dk2dk3dk4 7rp 

[( (k1 +q, k319(w + i77)lk2+q, k4)(k2 , k4IGik1, k3) 

+ (k1, k3IGik2, k4)(k2+q, k4i9(w + i11)ik1+q, k3)] 

1 
X -:--:--=---:------:-=---:---:-::--:-----:-:-:---:-:-

(e(kl) + e(k3)- e(k2)- e(k4)) 
1 

X (II.15) 
w + e(k1) + e(k3)- e(k2+q)- e(k4) + i77 

1 

x w + e(kl)- e(k1+q) + i77 

X 0(kF -ik11)0(kF -lk31)0(lk21- kp)0(lk41- kp) 

X 8(lk2+ql- kp)0(lkl+ql- kp) 

and it can be shown, using the discussion in Appendix I , that only the real parts 

of the 9-matrices survive this addition. We can go through the same procedures as 
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for the previous diagrams to find 

( 16 J I 1 1 
Sc+d q,w) = --5-Im dPdkodk D D (P k ) (P k ) · 

7r P 1 2 w+e + o -e + 4 o+q + Z'fl 

x L (i)L-L'+C'-CG'{f!'(P; k', ko) 
LL 1 

C.C/ 
J.:JST 

Re {Q{,~T(IP + q/2llko + q/21, lk' + q/21)} 

x "L(L'aSbiJM)(LcSdiJM) (II.16) 
M 

abed 

x (£'aSbi.J M)(£cSdi.J M) 

X P£,( ()kQ )P£,( ()kQ+q/2)P£(fh:' )P~(ftt'+q/2) 

x 81 E>2E>3E>4E>sE>(IP + ko + ql - kp). 
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II.4 Diagram (e) 

The last important contribution comes from diagram (e) of Fig. 4.10. 

We can write it out as 

Se( q, w) = _2_Im j dk1dk2dk3dk4dksdk6 
7rp 

{kt, k3JGJk 2, k4}(k 2+q , k419(w + i7J)Iks+q, k6}(k s, k6JGJkt , k 3} 

1 
X -.,.----------

e(kt ) + e( k3)- e(k2 )- e( k4) 
1 

X --:-::---:---:-:---:------:-:--:----:-:---:-
e( k t) + e( k 3 ) - e( k 5 )- e( k 6 ) 

1 
X . 

w + e(kt ) + e(k3)- e( k 2+q)- e(k4) + Z1J 

1 x---=------------
w + e(k1) + e(k 4)- e( k 5+ q )- e( k 6) + i 1] 

X 8(kF -JktJ )8 (kF -Jk3J)8(Jk2J- kF)8 (J k4 J- kF) 

X 83( kt + k3 - k2 - k4 ) 

x 83( kt + k 3 - ks - k 6) . 

(II.17) 
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The final expression for this diagram is given by 

Se(q,w) = -+ImjdPdk0dk'dk" 
7r p 

L L::C2T + l)iL-.C+l-1' 
LL1 J; 
ll 1 ST 
c. 

G'{f!(P; k", ko)Gif!'(P; k', k0) 

Q~fT(IP+q/21; lk'+q/21, lk"+q/21) 

x L (£aSbiJM}(laSbljM) 

x(LeSM- eiJM}(l'eSM- eljM) 

X P;_( (J,,, )Pt( (jk, +q /2)P[.( (jk, )P/f( (jk, +q /2) 

1 
x--:--------:--:-----:-=----:----:---~--:------:-=--=---:-

e(P+k0) + e(P-k0) - e(P+k')- e(P-k') 

(II.18) 

1 
x e(P+ko) + e(P-k0)- e(P+k")- e(P-k") (II·19) 

1 
X . 

w + e(P+ko) + e(P-k0)- e(P+k'+q)- e(P-k') + 2T] 
1 

x w + e(P+ko) + e(P-k0) - e(P+k"+q) - e(P-k") +iT] 

x 0(kF- IP+kol)0(kF- IP-kol) 

X 0(IP+k'l- kF)0(IP-k'l- kF) 

X 0(IP+k"l- kF)0(IP- k"l- kF) 

X G(IP+k"+ql- kF)0(1P+k'+ql- kF). 
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11.5 Diagrams (f) and (g) 

There are two diagrams that we have not yet discussed. These are (f) and (g) of 

Fig. 4.10. Both are easily written as 

# # 

':'( ;7f 
.# 1 J . 0 

SJ(q,w) =-
2

1rp lm dk1dk2(k1 + q, k 2IQ(w + Z1J)Ik1 + q, k 2 ) 

:" 
. , , 

X 
1 

(11.20) 
(w + e(kt)- e(k 1+q) + iT/)2 

x e (kF- kt)e(kF- k2)8(lk1 + ql- kFXII.21 ) 

S9 (q,w) =-
2
:p Im j dk1dk2(k1 + q, k2IQ(w + iT!)! kt , k2 + q) 

1 

x (w + e(k1)- e(k1+q) +iT!) 
1 

X . 
(w + e(k2)- e(k2+q) + ZT/) 

X 8(kF- kt)8(kF- k2) 

(II.22) 

X 0(lkt + q l- kF)0(1k2 + ql- kF). (11.23) 
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We can rewrite the expression for 59 under exchange of the two particles in the 

intial state to yield 

S9 (q, w) = -
1
-Im j dk1dk2(k1 + q, k2IQ(w + i77)lk2 + q, kt) 

27rp 
1 

x (w + e(k 1)- e(k1+q) + i77) 
1 

x (w + e(k2)- e(k2+q) + i77) 

X 0(kF- kt)0(kF- k2) 

X 8(Jkt + qJ- kF)0(Jk2 + qJ- kF). 

Now let us take the Q2-+ oo limit of both expressions. This yields 

X (w- e(q) + i77)2 

X 0(kF- kt)0(kF- k2) 

S 9 (q,w) = 
2
!p Im j dk 1dk2(q, 019(w + i77)Jq, 0) 

1 

x (w- e(q) + i77)2 

X 8(kF- kt)8(kF- k2). 

(II.24) 

(II.25) 

(II.26) 

(II.27) 

(II.28) 

It is obvious now that these two terms are equal and opposite, and thus will cancel 

exactly. Of course, we are not in the Q2 -+ oo limit, but q is much larger than 

kF, and it may well be a good approximation. For the sake of argument they are 

calculated, and the final expressions used are 

SJ(q,w) = -+ImjdPdk0 
7r p 

L (2J + 1)(2T + 1)9ifT(IP+q/2l; lko+q/21, lko+q/21) 
LJST 

1 
X . 

(w + e(P + k 0 )- e(P+k0+q) + z77) 2 
(II.29) 

x 0(kF- IP- ko1)0(kF- IP + kol) 

X 0(JP + ko + qJ- kF) (II.30) 
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S9 (q,w) = +rmjdPdko L(2T + 1) 
~ p JST 

LL1 

gfi!'(IP+q/21; lko-q/21, lko+q/21) 

L (LmLSM- mdJM)(L'mLSM- mLIJM) 

P£L ( ()ko+q /2)P{:'L ( ()ko -q /2) 

1 
x (w + e(P+ko)- e(P+k0+q) + iry) (II.3l ) 

1 
X . 

(w + e(P-ko)- e(P-ko+q) + zry) 

x G(kF- IP + koi )G(kF- IP- kol) 

x G(IP + ko + ql- kF)8(IP- ko + ql- kF). (II.32) 
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