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Abstract 

The quantum mechanics of singular systems is a topic of considerable importance 

for all the theories of elementary particle physics in which gauge invariance is a 

universal attribute. This is especially true for string theories which are gauge theories 

par excellence. 

This thesis begins with a brief exposition of singular Hamiltonian mechanics. 

This tool is applied principally to manifestly supersymmetric particle and string the

ories. The Dirac particle and the bosonic particle and string are briefly examined. In 

particular, a method is shown for quantizing the point superparticle in four and ten 

dimensions. The two actions proposed for describing the manifestly supersymmetric 

string are shown to be essentially equivalent. The problems of their quantization are 

briefly discussed. 
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Introduction 

Non-relativistic mechanics, both quantum and classical, lies at the foundations of 

physics. Both its Hamiltonian form and its Lagrangian form are necessary knowledge 

for anyone who would understand any part of the modern edifice. 

Relativistic mechanics, the language of particle physics, is found almost exclu

sively in its Lagrangian paradigm, because the Hamiltonian paradigm must, of neces

sity, obscure Lorentz invariance. 

However, the Hamiltonian paradigm is more appropriate in many ways. Its con

nections with quantum mechanics are more immediate and its richer structure trans

lates directly into quantum mechanics. For example, unitarity is manifest in the 

Hamiltonian paradigm; all one needs is a quantum Hamiltonian which is Hermitian. 

This is an advantage of the Hamiltonian path integral over the Lagrangian path 

integral, which must be checked for unitarity explicitly. 

The Hamiltonian treatment of relativistic systems is complicated by their common 

t endency to be singular in the sense of Dirac. The cause of this on the one hand is the 

symmetric treatment of both time and space and the consequent irrelevance of which 

time coordinate one chooses to be the time. On the other hand, manifest Lorentz 

invariance often requires the addition of extra variables to the system whose dynamics 

are pure gauge. An example of the first difficulty is t he t heory of General Relativity, 

whose Hamiltonian vanishes identically because of general coordinate invariance. An 

example of the latter is electrodynamics where Ao (say) is an irrelevant variable. 

Relativistic systems usually have phase spaces which are smaller than one would 

naively think them to be, just because of the existence of irrelevant variables. In 

this sense, singular systems are ubiquitous in relativistic physics. The importance of 

singular systems extends to string theories as well. In fact, for string theories singular 
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mechanics is important in two ways. Not only should the spacetime mechanics of 

string theories be singular (because of the multitude of symmetries possessed by the 

theory) but the two-dimensional first-quantized mechanics of the string is singular. 

First-quantized particle and string theories form the main subject of this the

sis. Because we are studying the worldline or worldsheet mechanics, the spacetime 

Poincare invariance of the theories will be manifest and the main objection to the use 

of Hamiltonian methods will be avoided. 

This thesis is organized into three chapters. The first chapter is a brief exposi

tion of singular mechanics. The general theory of singular mechanics proceeds from 

Dirac's generalized Hamiltonian mechanics [21,32]. Batalin, Vilkovisky and Fradkin 

[3,4,5,6, 7 ,26,27], building on the foundation laid down by Dirac, have enlarged and 

clarified the role of singular mechanics in quantum systems, culminating in the BFV 

path integral formulation of quantum mechanics. 

The second chapter starts from the example of the bosonic particle and continues 

with the examination of the Dirac electron and the various manifestly supersymmetric 

particle theories. In particular it is shown that the superparticle theories of Brink 

and Schwarz [16] and Siegel [52] are inequivalent. The Brink-Schwarz superparticle is 

shown to be the Wess-Zumino scalar multiplet in four spacetime dimensions. The ten 

dimensional Brink-Schwarz superparticle, which has resisted covariant quantization 

since 1981, is reduced to a system which is covariant and should be quantizable in a 

covariant form. This is accomplished through the introduction of extra variables into 

superspace. 

The third chapter opens with a discussion of the bosonic string and reproduces 

the gauge-fixed Polyakov path integral [48] from the BFV path integral. From there 

the Green-Schwarz [30,31] and Siegel [53] actions for the superstring are analyzed and 

shown to be essentially equivalent. Finally, the problems of covariant quantization of 

the theories are discussed and a formal quantization is proposed. 
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I. Singular Mechanics 

1.1 Singular Systems 

When passing from a Lagrangian description to a Hamiltonian description of a 

dynamical system, one must perform a Legendre transformation on the Lagrangian, 

which is a function of the generalized velocities to obtain the Hamiltonian, which is 

a function of the momenta. First one defines the momenta as 

Pi := fJLjfJqi ( 1.1) 

and then inverts the relation (1.1) to obtain the velocities in terms of the momenta 

and the coordinates. The Hamiltonian is defined by the Legendre transformation 

Ho(q,p) = PiiJi(p, q)- L(q, q(p, q)). (1.2) 

In some dynamical systems it is impossible to invert the relation (1.1) defining 

the momenta. A system in which the relation (1.1) is not invertible is said to be 

singular. A singular system has the non-invertible relations of (1.1) as constraints. 

Generally, the non-invertible relations of (1.1) can be expressed as vanishing func

tions of the positions and momenta: 

(1.3) 

(Here the curly equals sign, read as weakly equals, is a reminder that the equations 

(1.3) are not identities and should not be set to zero when they appear inside Pois

son brackets.) The constraints (1.3) define a subspace of the full phase space in 

which the system's evolution takes place. The Hamiltonian for the evolution of the 
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system is ambiguous on the constraint surface given by equations (1.3) . One may 

add to the Hamiltonian Ho an arbitrary combination of the constraints c/Jn, since all 

such Hamiltonians are equal on the constraint surface and are therefore physically 

equivalent. 

Thus the most general Hamiltonian one can write is of the form 

(1.4) 

where Ho is the Hamiltonian of (1.2) and the An are, as yet, arbitrary. Another way 

of stating that the evolution of the system takes place in the submanifold defined by 

the constraints is that the evolution of the system must conserve the constraints: 

(1.5) 

The PB denotes the Poisson bracket and the cPn are assumed not to be explicitly time 

dependent so that all of the time dependence is implicit in the dependence on the 

phase space variables. 

There are three possible ways that the conservation of the constraints (1.5) might 

be satisfied. The first is that it might be identically satisfied. The second is that the 

.X n are not arbitrary but must be specified functions of the dynamical variables: 

.Xn = An(P, q). (1.6) 

If this is the case, there may be some arbitrariness in the solutions (1.6) . If there are 

any solutions to the conditions 

(1.7) 

then the solutions (1.6) are arbitrary up to the addition of some linear combination 

of the solutions of (1.7). That is, An = An(P, q) is obviously equivalent to 

' A '' z(i) An= n + Ai n (1.8) 

with .Xi arbitrary and z~i) the ith solution to equation (1.7). 
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The third possibility for satisfying the conservation of the constraints in equation 

(1.5) is to impose additional constraints, sometimes called secondary constraints. 

If i t is necessary to impose secondary constraints, the system's phase space is the 

subspace satisfying both the primary constraints of (1.3) and the additional secondary 

constraints. 

Secondary constraints are treated in the same manner as the primary constraints. 

The Hamiltonian is again unique only up to the addition of these further constraints. 

All physical Hamiltonians must preserve the constraints. 

In general this procedure is iterative. Each constraint may be added to the 

Hamiltonian and the constraint must be preserved. This procedure must terminate 

with some set of constraints r/Ym, m = 1, ... , 1'11 and a Hamiltonian which is unique up 

to the addition of some constraints 

(1.9) 

Furthermore, the constraints will all be conserved under time evolution 

(1.10) 

Repeated indices are understood to be summed in the above equations. 

Once a full set of conserved constraints is found and the most general Hamiltonian 

is determined, the detailed dynamics may be examined. 

1.2 Constraints 

Among the constraints there is one important distinction to be made. This dis

tinction separates the constraints into two classes. Roughly put, the constraints of 

the first class generate gauge symmetries while those of the second class are irrelevant 

degrees of freedom which must be removed from the dynamics. A constraint is said 

to be first-class if its Poisson brackets with all the constraints of the system vanish 

weakly. A second-class constraint is any constraint which is not first-class. 
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Until it is stated otherwise, the constraints are assumed to be irreducible. That 

Is, there is no linear combination of the constraints which is either zero or another 

constraint except the trivial combination. 

It is easily shown that the Poisson bracket of any two first-class constraints is 

also of the first class by the use of the Jacobi identity for Poisson brackets. Thus the 

first-class constraints by themselves form a Lie algebra. 

Let us denote the first-class constraints by '1/Ja and the second-class constraints by 

Xa · The algebra satisfied by the first-class constraints is 

Naturally, the second-class constraints do not form an algebra. It is easy t o 

see that, in fact, the determinant of the matrix of Poisson brackets of second-class 

constraints must not vanish, even weakly. 

(1.12) 

If the determinant in (1.12) did vanish then there would be an eigenvector of {xa, Xb} 

with a zero eigenvalue: {xa, Xb}vb ~ 0. Equivalently, {xa, Xbvb} ~ 0, which contra

dicts the assumption that all of the X a are second-class because the linear combination 

XbVb is evidently first-class. 

An illuminating example of this classification of constraints is the following . As

sume that there is a dynamical system which yields the constraints 

qi ~ 0 , i = 1, ... , N + !vi, 

Pi~ 0, j = 1, ... ,N. 
(1.13) 

The constraints q1 ~ 0, ·i = N + 1, ... ,!vi, have vanishing Poisson brackets with all 

other constraints. They are thus first -class. Any Pi has unit Poisson bracket with a 

corresponding qi so that the Pi and qi, i = 1, ... , N are second-class. 
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In this simple example the second-class constraints are superfluous degrees of 

freedom. No dynamical quantity depends on them. However , in order to obtain a 

consistent quantization, one may not set them to zero naively without modifying the 

dynamical system. Consistency will require that the commutator of two quantum 

mechanical constraint operators either vanish or be another constraint. 

Second-class constraints do not have Poisson brackets which vanish on the con

straint surface. Because Poisson brackets become commutators after quantization, 

the Poisson bracket must be modified so that it ignores the degrees of freedom cor

responding to the second-class constraints. In this simple example it is clear that 

one should just drop the variables qi and Pi, i = 1, .. . , N from the sum in the original 

Poisson bracket 

D {aAaB aAaB} {A,B}PB =""""' -a .-a --a -a .. . ~ q' Pi Pi q' 
(1.14) 

This modified Poisson bracket, sometimes called a Di·rac bracket, can be written for 

the system with constraints (1.13) as 

D {a A aB a A aB} 
{A, B} DB := L 87~- ~87 . 

i=N+l q p, p, q 
(1.15) 

The Dirac bracket has the property that the bracket of any second-class constraint 

with any other dynamical variable vanishes identically. This is crucial for quantum 

mechanics while it may be merely convenient for a classical system. The reason 

for this is that one must define quantum mechanical states which are "physical." 

That is, one must define states which correspond to the classical configurations which 

satisfy the constraints. One way of implementing the constraints is to impose them 

as operatorial equations, or in other words, to require that the quantum operators 

which represent the constraints annihilate physical states. If two operators annihilate 

a physical state then so too must their (anti )commutator. If that (anti )commutator 
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is neither zero nor another constraint, t hen there are no physical st ates at all. 

0 = [xa,Xb]iphys) = ~ablphys) =? lphys) = 0. (1.16) 

1.3 The Reduced Phase Space 

Suppose that one is given a dynamical system having a set of dynamical vari

ables r = {(qi ,Pi)li = 1, ... ,D}, a set of first-class constraints {'¢'jlj = 1, ... ,j} , a 

set of second-class constraints {Xki k = 1, ... ,s} and a Hamiltonian which preserves 

the constraints. One can reduce this system to an equivalent system containing only 

first-class constraints by introducing the Dirac bracket and setting the second-class 

constraints to zero identically. Just as for the simple example of second-class con

straints which was exhibited earlier , the Dirac bracket must have the property that 

any second-class constraint has vanishing bracket with any dynamical quantity. The 

gener al definition of the Dirac bracket [21,32] is 

(1.17) 

with ~ij denoting the inverse matrix of the Poisson bracket of all second-class con

straints Xi = 
. . . 

t::,_tJt::,_jk = 81, 

!::,.ij := { Xi, Xj} PB · 
(1.18) 

The inverse exists because det i{Xi,Xj}l =/:- 0, as was argued earlier. 

It is obvious that (1.17) has the property that {A, xi} DB = 0 for all A and all 

z. The second-class constraints may now b e taken as identities. After excising the 

second-class constraints one is left with a phase space f2 ~ r in which the second-class 

constraints are satisfied, a Hamiltonian H which conserves the constraints, 

. j 
'¢'i = {'¢'i,H}DB =Vi (p , q)'¢'j ~ 0 , (1. 19) 
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and an algebra of first-class constraints 

(1.20) 

It was remarked earlier that the Hamiltonian is actually one of an f parameter set of 

equivalent Hamiltonians. That is, all Hamiltonians 

(1.21) 

are physically equivalent. The difference of any two physical Hamiltonians must 

generate an unphysical change in a dynamical variable. The Hamiltonians H + Ai'l/)i 

and H + )..i'lj;i generate flows in the reduced phase space 

(1.22) 

whose difference is a flow in an unphysical direction. 

The first-class constraints generate unphysical or "gauge" transformations in any 

dynamical variable. This means that a physical phase space may be chosen as a 

subspace of f1 = { (p, q) E fzl~i(p, q) = 0} which cuts the flows generated by the first

class constraints. One specifies any such space, r ~' by imposing exactly f additional 

arbitrary constraints, ei, subject only to the requirement that 

(1.23) 

These addit ional gauge fixing constraints, together with the first-class constraints, 

may be thought of as being second-class. 
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The original phase space had 2D dimensions. Eliminating the s second-class 

constraints reduced the dimension to 2D - s. Each first-class constraint effectively 

eliminates two degrees of freedom. Each first-class constraint itself eliminates a degree 

of freedom and the arbitrary gauge-fixing constraint eliminates a second. Thus the 

number of physical degrees of freedom in a constrained system is 2D - s- 2f. 

1.4 Canonical Quantization 

Upon quantization the dynamical variables go over to operators whose commu

tation relations are given by the classical bracket relations . For non-singular systems 

one makes the operatorial transcriptions 

~ •t. fJ 
p ~ p := -Zn fJq, 

q ~ q := q, (1.24) 

in{q,p} ~ [q,]JJ . 

The canonical quantization of a singular system is similar but presents special 

problems. First of all, one must translate the constraints into quantum operators, 

rPi ~ $i, and there may be problems with operator ordering ambiguities. The some

times difficult problem of operator ordering will not be addressed in this work. Second, 

the algebra of first-class constraints should be preserved. This means that one must 

ensure that the relations (1.20) hold as operator equations with the constraint on the 

right 

(1.25) 

The prescription for dealing with the second-class constraints is to modify (1.24) 

by taking the Dirac bracket over to the commutator 

in{q,p}ns ~ [q,p] . 

Analogously to the reduction of the phase space, r ~ c r1 c r2 c r, a physical 

subspace of the Hilbert space must b e chosen. The oldest scheme for choosing a 
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physical subspace is that employed by Gupta and Bleuler for quantizing electrody

namics. The essence of this procedure is the requirement that the matrix element of 

any constraint operator vanish between physical states. 

(1.26) 

The interpretation of this condition is that the Hilbert space splits into the space of 

physical states and the space orthogonal to the physical Hilbert space. The constraint 

operators map the physical states onto unphysical states orthogonal to the physical 

states. Since the unphysical states may have non-zero norm in the canonical Hilbert 

space inner product, they may not be set to zero in general. 'vVe call the condition 

(1.26) the weak Dirac condition. A much stronger condition was originally considered 

by Dirac. This condition is that the constraint operator should annihilate the physical 

states, 

(1.27) 

It is clear that the strong Dirac condition (1.27) implies the weak Dirac condition 

(1.26). To employ the strong Dirac condition the second-class constraints must be 

eliminated through the use of the Dirac bracket, otherwise contradictions may result 

as in equation (1.16). No such stricture is needed to employ the weak Dirac condition 

(1.26). 

An example of the strong Dirac quantization condition is electrodynamics in the 

wave-functional form. The dynamical variables are Al-'(x) and its conjugate momen

tum ITJ.L = F~-'0 . The system has two constraints, I1° ~ 0 and \7 · II ~ 0. Imposing 

them on a wave-functional \II 

W='ll[A] 

o =- j x [v· 8~] wd3
x = j(vx). 8~ wd3

x 

= w[A + Vxl- w[A], 

(1.28) 

leaves a functional which is independent of the non-dynamical field Ao and is invariant 

under a time independent gauge transformation. 
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1.5 The Path Integral Quantization of Constrained Systems 

Classical mechanics has as its goal the description of the motion of a system as 

a solution, qi = qi(t), of the equations of motion with specified boundary conditions 

qi(to) = qb, qi(to) = <ib· Quantum mechanics only allows one to calculate the ampli

tude, (qf, iJiqo, to), for finding the system at qf at time it given that it was at q0 at 

time to. This amplitude may be expressed in the following standard fashion: 

(1.29) 

where Ji is the Hamiltonian of the system. One may split up t f- to into N intervals 

(ti , t i+I) with iN+l = t f and write 

N 
e-*(trto)H = II e-Hti+I-t;)H . (1.30) 

i=O 

Through the repeated insertion of 

(1.31) 

one may bring the amplitude to the form 

N 
(q 't lqo , to) = lim j dpN+I II dpi dqi e*(p;(q;-q;-~)-(t; -t;_!)H(p;,q;_I)) 

f f N -+oo 27r1i . 27r1i 
z=l 

= : J 1Jp1Jq ek J dt(pq-H(p ,q)) (1.32) 

= j 1JqM(q)ek5 . 

The measure factor, M(q), in the last integral results from doing the momentum 

integrations. 
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Constrained systems may be quantized in the same way except that the path 

integral must be modified. Just as the classical evolution of the system stays within 

the submanifold of phase space satisfying the constraints, the "quantum evolution" 

should also be in the constrained submanifold in order that physical states propagate 

into physical states. This can be achieved by modifying the measure of the phase 

space path integral. 

First let us consider systems without second-class constraints. The physical sub

space of a constrained system with n first-class constraints is chosen by n "gauge 

conditions" which intersect all of the flows generated by the first-class constraints. 

Thus for each constraint '1/Ja ~ 0 a gauge condition 6 ~ 0 must be chosen so that 

(1.33) 

One procedure is to integrate only over those :field configurations which satisfy 

'1/Ja ~ 0 and 6 ~ 0. Clearly, the measure of the path integral should be independent 

of the functional form of the constraints so long as the same submanifold of phase 

space is specified by the set of constraints. 

In particular, the m easure 

(1.34) 

should be invariant under a change of constraints 

(1.35) 

with detA =j:. 0 and detB =j:. 0. This implies that the factor M must be proportional to 

det{ '1/Ja , 6}, which is the phase space transcription of the measure found by Faddeev 

and Popov [24] for the path integral in configuration space. 
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Theories which have second-class constraints are really no harder to handle in 

principle but there may be computational difficulties if the second-class constraints 

have awkward Poisson brackets. 

The first step is to eliminate the second-class constraints through the use of Dirac 

brackets. Once this is done, the path integral must be restricted to those paths which 

lie in the constrained submanifold f2. As before, one restricts to this space by the 

insertion of a delta function o[xa] into the measure. Invariance under redefinitions of 

the second-class constraints requires the insertion of a factor (sdet{xa,Xb}PB)~ into 

the measure in analogy with the first-class case. The general S-matrix is then of the 

form (50,27] 

An alternative to choosing a gauge, ~a(P, q) = 0, which depends upon the original 

dynamical variables, is first to impose only the constraints and write the path integral 

as 

and to notice that the symmetries of the "action" in the exponential, 

8q = { q, 1/Ja}t:a, 

Op = {p, 1/Ja }t:a, 

b d b b 
8>..a = ( 8a dt - Va - fac>..c)Eb, 

(1.37) 

(1.38) 

include a change in the Lagrange multiplier Aa· A gauge choice which includes the 

multipliers Aa would be just as suitable for defining the functional integral (1.37). A 

possible gauge condition is one of the so-called relativistic gauges (7 ,26,27] 

~a = Aa(P, q, >..). (1.39) 
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In a relativistic gauge the action takes the form 

(1.40) 

The variable 1r is a Lagrange multiplier whose equation of motion just enforces the rel

ativistic gauge condition (1.39) . A functional integral using the action (1.40) includes 

integration over both of the multi pliers ). and 1r . The only subtlety is to determine the 

correct measure for the functional integral, analogous to the measure (1.34). One of 

the properties of the correct measure is that the S-matrix be independent of the gauge 

fixing scheme used to define it. For this purpose the phase space BRS transformation 

is most useful. 

1.6 BRS Symmetry and the BFV Path Integral 

The existence of a global fermionic symmetry in gauge-fixed Yang-Mills theories 

was discovered by Becchi , Rouet, and Stora [8] and independently by Tyutin [55]. 

There is a more general symmetry which is possessed by any constrained Hamiltonian 

system. This symmetry was found by Batalin and Vilkovisky [7}. The first step in 

the construction of the BRS symmetry is the enlargement of the phase space of the 

dynamical system. Let us assume that the second-class constraints, if there are any, 

have been eliminated through the use of the Dirac bracket. Thus it is without loss of 

generality that we may assume that the system has first-class constraints only. 

The first variables we wish to add to the system are the Lagrange multipliers ). 

and 1r, a pair for each first-class constraint 1/Ja. The variables ). and 1r are canonically 

conjugate and have the same statistics (Grassmann parity) as the constraint 1/Ja · 

Along with the Lagrange multipliers, one introduces the ghost variables ca, ba, Ca and 

lja . The ghosts all have statistics opposite to 1/Ja· The unbarred ghosts are canonical 

conjugates as are the barred ghosts and the Lagrange multipliers ). and 1r. 

These extra variables can be loosely justified in the following way. Suppose for 

a moment that the constraint '1/Ja is bosonic. In this case we add to the system two 

bosonic and four fermionic degrees of freedom. We do not impose the constraint. 



16 

Instead, the fermioni c degrees of freedom act [1,2,47] as "negative" dimensions. The 

phase space thus has two fewer degrees of freedom by virtue of the added variables . Of 

course, we will justify these variables by showing how to construct the path integral 

and demonstrate that the path integral is correct by reducing it to the expression 

(1.36). 

The key to doing this is existence of a global fermionic symmetry generated by 

the quantity, n, which satisfies {D,D} = 0. This generator, called the BRS charge, 

can be expressed as 

(1.41) 

The BRS charge n, discovered by Batalin and Vilkovisky [7], generates the canon

ical version of the global fermionic symmetry discovered in Yang-Mills theories by 

Becchi, Rouet and Stora [8] and Tyutin [55] . The BRS charge is, in general, not 

unique. All the possible BRS charges are unitarily equivalent (34]. 

It is also necessary to have a Hamiltonian for the dynamical system in the ex

tended phase space which is BRS invariant . 

This Hamiltonian may be constructed as follows 

HBRS = Ho + ba VJYc13 +~ban·· · ba1 HCtJ ... Ctn, 
n;::-:2 

where v! is the coefficient in the relation 

(1.42) 

(1.43) 

(1.44) 

I£ the structure functions JZ13 and v! are not constants, then the terms naj ... Ctn 

and Haj ... an in the expansions (1.41) and (1.43) may not be zero. In most cases it is 
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fairly easy to obtain these extra pieces from the requirement that D and HERS satisfy 

{HERS, D} = {D, D} = 0. The existence of the extra pieces for a general dynamical 

system was demonstrated in reference [34] where a general procedure for calculating 

them is given also. 

To each variable a quantity called ghost number may be assigned. The original 

degrees of freedom, qi and pj, are assigned ghost number zero. The extra degrees of 

freedom are assigned the following ghost numbers 

gh(.-\a) = gh(7ra) = 0, 

gh(ca) = -gh(ba) = 1, 

gh(ca) = - gh(ba) = -1. 

(1.45) 

Time evolution under the Hamiltonian HERS preserves the ghost numbers, while t he 

generator D increases the ghost number by one because ghost number is addi t ive and 

the ghost numbers of HERS and D are 0 and 1 respectively. 

In this enlarged phase space the path integral for the S-matrix may be given the 

very general form [26] 

(1.46) 

Here \II is an arbitrary function of all of the variables of the system, and must have 

ghost number -1 if the path integral (1.46) is to conserve ghost number, and t he 

variables Q and P stand for all of the coordinates and momenta of the system, 

including the ghost and Lagrange multiplier degrees of freedom. 

In an ordinary path integral such as the one given by (1.32), the boundary con

ditions are chosen to correspond to the initial and final states of the amplitude we 

are evaluating. Here, however, we have more variables in our system and we must 

decide what boundary conditions must be put on the ghosts and Lagrange multipli

ers . We shall choose those boundary conditions which ensure the existence of a global 
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symmetry generated by the BRS charge n. From the properties of the BRS charge 

{n,n}DB = o, 

{HBRs,f2}DB = 0, 

one finds the variation of the action of (1.46), 

SBRS = J dt(PQ- HERS+ {\lf , f2} DB), 

under the infinitesimal canonical transformation 

Oz = {z, f2c} DB 

to be 

[ 
, . an ] 2 

85BRS = :2:.:= z l EJzi - n I c, 

(1.47) 

(1.48) 

(1.49) 

where the prime on the sum denotes that the sum is carried out only over those vari

ables which are not fixed at the boundaries. The proper "BRS invariant" boundary 

conditions will be those which cause the expression (1.49) to vanish. 

One possible way to do this is to choose some set of variables, (i, to set to zero 

at the boundary so that the following conditions are met. 

f2k;=0 = 0, 

{(j, f2}DBk;=0 = 0. 
(1.50) 

There are three sets of variables which will satisfy (1.50) . From the structure of 

the BRS charge, 

n = c'l/J + :2:.:= bn cn+l nn + fnr' 
n2:1 

(1.51) 

it is immediately obvious that each of the following sets of boundary conditions makes 
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n vanish [34]. 

(i) c =b=7r= 'l/J(p) =O, 

(ii) b=c=O ' (1.52) 

(iii) c = c = 7r = 0. 

One may also check that the second condition of (1.50) is satisfied by each of the 

conditions (1.52). Thus the three sets of conditions are sufficient to guarantee the 

vanishing of the BRS variation of the action (1.49). In fact, slightly weaker conditions 

m ay be imposed at the boundary which will also ensure the existence of the global 

BRS symmetry. These can be obtained directly from the expression (1.49) : 

(i) '1/J(p) = 0, b = 0, c = c0 , 7r = 1ro, 

( iia) c = 0, b = b0 , ). = Ao, 

( iib) c = 0, b = 0, 7r= 1ro, (1.53) 

( iic) c = 0, b = b0 , 7r = 0, 

(iii) c = 0, C = c0 , 7r = 1ro. 

The first conditions appear to be more restrictive than the others but, in fact, are not . 

They just specify the boundary conditions on the original variables (in this case on 

p.) The boundary conditions on the original variables are left unspecified in t he other 

cases but, nonetheless, they are assumed implicitly to exist. The boundary conditions 

(1.53i) are only useful for constraints, '1/J, which satisfy an abelian algebra so that they 

may b e treated as momenta of the system, otherwise t he boundary conditions on the 

rest of the original variables qi and Pi are difficult to set. The other conditions of 

(1.53) are easier to use in practice. 

Having in hand BRS invariant boundary conditions, we now turn to the Fradkin

Vilkovisky theorem which asserts that the path integral (1.46) is independent of the 

gauge fixing function 'II. Following Henneaux [34], we prove the independence of Z>¥ 

under infinitesimal changes of W. 
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Let z denote all canonical variables in the extended phase space. Let us perform 

the infinitesimal canonical transformation 

where 

and 

are infinitesimal and where 

zi ( t) = Zi ( t) + i { Zi, n }( t) ~ W, 

= Zi(t) + iWij ~~ (t) ~W, 
u~J 

ow= w'- w 

w··- {z· z·} t) - ,, J 

(1.55) 

(1.56) 

(1.57) 

(1.58) 

is the canonical form. ·with any of the BRS invariant boundary conditions, the 

action is invariant under the infinitesimal canonical transformation (1.55). The path 

integral measure is not invariant, however. Let us compute the Jacobian of the change 

of variables ( 1.55) . 

(1.59) 
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Since 8'l! is infinitesimal, the Jacobian is just 

(1.60) 

to first order. From this it follows that the measure transforms as 

(1.61) 

which, when substituted into the path integral (1.46), yields the desired result 

(1.62) 

The Fradkin-Vilkovisky theorem m ay be used to reduce the BFV path integral 

to t he form (1.36). To do so, we first choose our gauge fixing function Ill to be 

Ill= f3- 1x(p, q)c + b>-. , (1.63) 

where f3 is arbitrary for now. Using the shorthand 

n = C1p + L cn+lbnnn + lrrr, (1.64) 
n 

we may write the bracket 

{Ill, D} = /3-1 X7r + >-.1/; + bb + f3- 1c{x, 1/; }c + L(cbt >-.Dn + L f3- 1cc(cb)n { x, Dn}· 

(1.65) 
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S BRS = J dt [pq + 7r ~ +be+ be- Ho 

- ~ bncn Hn + {3- 1X7r + A'lj; + bb 
n;:::l 

+ {3- 1c{x, ~ }c + c ~ bn Fn(P, q, c)]. 
n ;::: l 

(1.66) 

The factors of {3-1 may be eliminated from the above expression at the expense of 

introducing {3 ' s on the kinetic terms be and 1r ~ through the change of variables 

7r -t {37r' 

c ---* f3c. 
(1.67) 

In fact, this change of variables has unit Jacobian because the ghost c and the La

grange multiplier 1r have opposite Grassmann parity. The Fradkin-Vilkovisky theorem 

assures us t hat the path integral is independent of the gauge fixing function \]! , and 

hence is independent of {3 . We thus may take the limit of vanishing {3, whose only 

effect is to excise the kinetic terms mentioned above from the exponential of the path 

integral. 

In the limit of vanishing {3, the path integral is easily done. The integral over 

b yields a factor 8[b] which is set to one by the integral over b. The integrals over 

the Lagrange multipliers 1r and ). bring down factors of 8[x] and 8['1/;] respectively. 

Finally, the ghost integrals on c and c produce the superdeterrninant sdet{x, '1/; }. vVe 

thus obtain the desired result 

(1.68) 

1. 7 Operatorial BRS Quantization 

One may use the BFV formalism to construct states in the enlarged Hilbert space 

and to study their evolution. The first task is to define the physical states. This can 
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be done analogously to the Dirac condition (1.27). First, one must transcribe the 

canonical variables to operators on this Hilbert space and one must construct an 

operatorial BRS charge D which is Hermitian and satisfies the condition 

D2 = 0. (1.69) 

Physical states are defined to be those which are annihilated by the BRS charge. 

Dlphys ) = 0. (1.70) 

The states may also be chosen to have a definite ghost number. 

gh(iphys)) = n . (1.71) 

From the condition (1.69) it follows that any state of the form Dl¢) is physical for 

any I¢) . These states are orthogonal to all the physical states of the theory and are 

irrelevant. That the physical state condition (1.70) for zero ghost number states is 

equivalent to the strong Dirac physical state condition is easy to see when either t he 

constraints form a true Lie algebra or when they have zero brackets with each other. 

·when the constraints have zero brackets with each other, the BRS charge is simply 

(1. 72) 

A zero ghost number state is not a function of the ghost coordinates c01
, lP but is a 

function of the original phase space variables and the Lagrange multipliers ). 01
• 

The physical state condition (1.70) then implies that 

;JOt iphys) = 0, 
[) 

[)).
01

iphys) = 0. 
(1.73) 

·when the constraints form a Lie algebra, then the BRS charge has the form 

(1.74) 

The second term in the BRS charge (1.74) gives zero when operating upon a zero 

ghost number state. The physical state condition again yields the conditions (1. 73). 
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Time evolution of a state is governed by the BRS invariant Hamiltonian HERS 

which must commute with the fermionic BRS charge fi. 

(1.75) 

The condition (1.75) ensures that the physical state condition (1.70) is preserved by 

time evolut ion under the Hamiltonian HERS · 
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II. Point Particle Theories 

2.1 The Scalar Particle 

The simplest point particle theory one could imagine is that of the scalar particle. 

This particle is completely defined by its position in spacetime xJL . Such a particle 

has no internal structure or intrinsic angular momentum. The action for this particle 

is just the length of its world line. A massive particle moves along a classical path 

which extremizes the action 

S = - m j ds = - m j dT~. 

In defining the conjugate momentum to the position, 

p _ mxJL 
JL - r-:-:r' 

v-x~ 

one is naturally led to the constraint 

and to the interesting result that the Hamiltonian vanishes identically 

Ho = 0. 

(2 .1 ) 

(2.2) 

(2.3) 

(2.4) 

The vanishing of the Hamiltonian is a consequence of the reparametrization invariance 

of the action (2.1). The demonstration of this fact is quite simple (57]. A Lagrangian 
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which is reparametrization invariant transforms as 

(2.5) 

when the time is changed by r -t r + ~ ( r). On the other hand, the variation of the 

Lagrangian can be computed directly from 8q = ~q and the chain rule: 

A direct comparison of the two expressions demonstrates that 

.fJL L 
q fJq = . 

(2.6) 

(2.7) 

If a Lagrangian has reparametrization invariance which is not manifest, the Hamil

tonian will not vanish identically but will be a combination of the first-class con

straints. This is the case for both point particle theories and for string theories. In 

both the point particle and string theories the dynamics is completely determined by 

the constraints. 

Because the Hamiltonian vanishes identically, there are no secondary constraints. 

Physical states may be chosen to be those which satisfy the constraints as operator 

equations, 

(2.8) 

which is the Klein-Gordon equation 

(2.9) 

The free propagator may be calculated from the phase space path integral via the 

Batalin-Fradkin-Vilkovisky formalism. 

( J.L I J.L ·) _ j "'"'P "'"'Q ei J(PQ+{tlt,O})dr X f, T f Xi , T, - v v (2.10) 

where Q and Pare generic labels for (xJ.L,c,b,>.) and (pJ.L,b,c,1r) respectively. The 
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coordinates are fixed at the endpoints while the momenta at the endpoints are inte

grated. The full BRS generator is 

(2.11) 

and the gauge fixing function may be chosen to be 

W =-~ 
6.T. 

(2.12) 

Evaluation of the expression (2.10) is not difficult and yields the result 

(2 .13) 

If one makes the reasonable requirement that particles with positive energy travel 

forward in time while particles with negative energy travel backward in time, one 

is forced to restrict the integration over ..\ to be positive because of the equation of 

motion 

(2.14) 

When this is done, the Feynman propagator is obtained. (The same result could be 

obtained by inserting the factor O(p0)0(x~- x?) + 0( -p0 )0(x?- x~) into the integral 

to enforce these boundary conditions.) 

Of course, a free theory is not very interesting. Ultimately, one would like to use 

this "first quantization" to construct appropriate "second quantized" field theories . 

In this case the free second quantized theory should be constructed so that its classical 

solutions yield precisely the physical states specified by the physical state condition 

(2.6). Following Siegel [51] we postulate that the action is 

(2.15) 

where K is a differential operator chosen so that the action is invariant under un

physical changes state <P-+ <P +fix. This can be accomplished by choosing JC so that 
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[}c , fi]+ = 0. Let us choose K to be fi, then 

S = J d 4x de cp(x, c) c( D - m 2 )cp(x, c) 

= J d 4xcp(x)(D- m2 )cp(x), 

is the ordinary Klein-Gordon action. 

(2.16) 

The Klein-Gordon particle is a trivial example of a constrained system. More 

insight can be obtained from a consideration of the classical Dirac electron and its 

quantization, which not only contains classically anticommuting variables but a lso 

has second-class constraints. 

2.2 The Dirac Electron 

The first classical action for the Dirac electron using anticommuting, or Grass

mann variables, was written by Berezin and Marinov [11]. 

(2 .17) 

In this action the variables ~~-', 6 and ). are anti commuting while x~-' is commuting. 

The notation uiJ. is a shorthand for xiJ.f~. The canonical momenta 

1 
PI-' = mu1t + i>.( -x2 )-2 (~~-' + Uv~v uiJ.), 

z 
pf. = 2~' (2.18) 

z 
P5 = 2~5, 

P>.. = 0, 

lead to the constraints 

(2.19) 
z v 

pf.l'- 2~ 'T/iJ.V ~ 0, 

z 
P5 -·2~5 ~ 0. 
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Of these, the first three are first-class while the last two are second-class. The two 

second-class constraints may be removed by introducing the Dirac brackets 

The Hamiltonian 

{~1-1' ~v} DB = iTJJ.tv, 

{~s,~s}DB = i . 

generates the equations of motion 

XJ.l = 2>-.lPJ.I + ~JLA2, 
P,L = 0, 

~~t = iPJ.t)..2, 

6 = im>-.2. 

One may fix a gauge by choosing the multipliers to be 

This Hamiltonian yields a simple set of equations of motion. 

(2.20) 

(2 .21) 

The constraint (P2 + m 2) generates T reparametrizations just as it does for t he 

scalar particle, while the constraint (P · e + me5) generates translations in an anti

commuting time. We might call this anticommuting time '13. This system, in fact, is 

an example of a one dimensional supersymmetric theory. This can be demonstrated 

by writing the theory in a manifestly supersymmetric form. We accomplish this by 

pairing up the fields which are "superpartners" into single "superfields" which are 
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functions of both T and {). vVe define the following superfields 

XIL(r,fJ) = xiL(r) +ifJeiL(r), 

Xs( r, fJ) = 6( r) + fJ<Ps( r ), 

E(r, fJ) = eo(r) + fJe1(r). 

(2.22) 

The five superfields XJL and E are commuting superfields while X 5 is an anticommut

ing superfield. The supersymmetric covariant derivative, D, and the supersymmetry 

generator, Q, defined by 

satisfy the algebra 

Q2 = i.!!_ 
dr' 

? . d 
n~ = -t-

dr' 
QD + DQ = 0. 

(2.23a) 

(2.23b) 

Using the properties (2.23b) and the superfields (2.22), we may construct an action 

which is manifestly invariant under the global supersymmetry transformations 

8<P = t:Q<P . 

The action 

(2.24) 

is also invariant under local r-reparametrizations 

8Xs = iD(t:DXs), (2.25) 

8E = d~ (~:E)+ i(D~::)(DE) , 

with f. a commuting function ofT and fJ . 
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vVhen written out in component form, 

S = j dr [-
1
-(±2 + i~ · t + ~~ · x + i~5~5 + ¢;- ~~5¢5) + m¢5] , 

2eo eo eo 
(2.26) 

the action (2.24) can easily be seen to be equivalent to the action written by Berezin 

and Marinov (2.17). A locally supersymmetric superfield formulation has been written 

by Brink, Deser, Zumino, Di Vecchia, and Howe [13] for the massless case. 

Upon quantization, the anticommuting variables ~J.L and ~5 will become oper

ators with anticommutators given by the Dirac brackets (2.20). Various authors 

[11,12,29,35,42] have identified the quantum operators corresponding to ~J.L and 6 
as the elements of the Dirac gamma algebra ijf~/5~/J.L and i/f/5· In fact, as we 

shall see, the situation is a bit more subtle than this. The second-class constraints 

must be handled carefully in order to obtain a consistent quantization. First let us 

observe that there are an even number of Grassmann variables and an odd number 

of second-class constraints on those variables. The reduced phase space is thus odd 

dimensional. The variables ~J.L are easily separated into pairs conjugate under the 

Dirac brackets (2.20): 

satisfying the relations 

~0 +6 
Til= y2 ' 

* -~o + 6 
Til= y2 

6 +i6 
"72 = y2 

* 6- i6 
"72 = y2 

(2.27) 

(2.28) 

The constraint on ~5 is not as easily solved. In fact , because it is second-class, it 

cannot be imposed on a state directly. The easiest way to take it into account [12] is 
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to impose the condition (1.26): 

j d6 x*(~s)[Ps - i6/2]x(~s) = 0. (2.29) 

This implies that the physical states are all proportional to Xo = ( V2 + eioe5 ), all 

with the same value of a:. All of the wavefunctions are of the form 

(2.30) 

with c/J, as well as X0 , of mixed Grassmann parity. The wavefunction cjJ is specified 

by four complex functions cPij ( x): 

(2.31) 

The cjJ carry exactly the same information as a Dirac spinor wavefunction. 

vVe may find an operator for ~5 which realizes the relation (2.20) as an anticom

mutation relation. This operator is 

(2.32) 

which, strangely enough, is the direct transcription of the last constraint in (2.19) 

into operator form. To realize the relations (2.28) we assign the operators 

.a 
7]1 ---+ z!::) *' 

U1h 

.a 
1]2 ---+ z !::) *. 

U'J]2 

The constraints then become the conditions 

0 = ( 0 - m2 )cPij(X ), 

0 = meioX_ 0 (-6)cP(1Ji ,1J2,x) + Xo(-~s)(iv'2~a!l)cP(1Ji,1J2,x). 

(2.33) 

(2.34) 

This last condition cannot be satisfied unless a = 0, 1r or c/J( 1Ji, 'l]z, x ) - 0. Thus 

one is forced to choose a: = 0, 1r in order to obtain any quantum theory at all. For 
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these values of a the fermionic constraint is equivalent to the condition 

(2.35) 

If we require the norm of the state functions 

(2.36) 

to be positive, then a must be zero. 

The condition (2.35) is obviously the Dirac equation, and does not contain the 

spurious factor of /5· The correct propagator may be obtained by the BFV prescrip

tion. Other authors [12,29,42] have obtained an incorrect propagator by not treating. 

the boundary conditions in a careful manner. 

To begin the BFV quantization, one first computes the BRS charge. Because the 

constraints do not form an abelian algebra, there is a term containing more than one 

ghost. The ghosts c1 and b1 are anticommuting while cz and bz are commuting. The 

BRS charge is 

(2 .37) 

It is simplest to choose the gauge-fixing function to be 

(2.38) 

The propagator is computed from the BFV path integral 

ZsFV = J 'DP'DQeifdr(PQ-Ho+{iJ! ,D.}nB). (2.39) 

Here P and Q stand for all of the phase space degrees of freedom, including the 

ghosts and the Lagrange multiplier variables. Since the canonical Hamiltonian, Ho, 
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of any reparametrization invariant action (such as the Berezin-Marinov action (2.17)) 

vanishes, the "Hamiltonian" governing T evolution is just the "gauge fixing" piece 

H = -{\ll , n}DB 
(2.40) 

Imposing the Feynman boundary conditions that the positive (negative) energy par

ticles move forward (backward) in time on the motion of the particle, one finds from 

the x J.L equations of motion that AI must be restricted to nonnegative values: 

:i;J.L = () H = ')AI pJ.L - \ ') c J.L EJP ~ /\ J" • 
J.L 

(2.41) 

Unlike the simple case of t he bosonic particle, there is a nontrivial ghost integral 

to evaluate. \Nith the ghost boundary conditions Ci = 7ri = 0, the ghost integrations 

lead to a factor 

(2.42) 

which will be implicit in the following. 

The path integral over the variable ~5 can be done as in Bordi and Casalbuoni 

[12], or directly by discretization of the integral 

~(r)=~J 

E(~Ji~i) := J v~ eifoT dt(t~i+1J~) = (~j- ~i + iryT)e-~J~i/2 • (2.43) 

~(O)=~i 

This expression is not the propagator, since it does not p reserve the physical states 

under t ime evolution. The propagator defined from the expression (2.43) as [25] 

(2.44) 

preserves the orthogonality of the physical states Xo and the unphysical states X;r 
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under T evolution. 

(2.45) 

The rest of the transition amplitude is easy to evaluate. The full propagator is 

(2.46) 

The boundary conditions must be handled carefully. The transition element (2.46) 

must be evaluated between physical states. In particular, the 6 dependence is crucial. 

To obtain the correct propagator, we take the matrix element of (2.46) between states 

whose dependence on ~5 is physical. Thus 

(2.47) 

with ~P. identified as the expressions in (2.27), is the the Dirac propagator when the 

identification 

(2.48) 

is made. There is no factor of /5 to spoil unitarity, which is as it must be since the 

Hamiltonian path integral is manifestly unitary. 

2.3 The Brink-Schwarz Superparticle 

As an analog to the Klein-Gordon and Dirac particles, one may write an action 

for a particle moving in a space whose coordinates are a commuting position in space

time and at least one anticommuting spinor. These variables are the coordinates of 

superspace, analogous to the one dimensional superspace variables T and{) which were 

used to write the action for the Dirac particle in a manifestly supersymmetric fash

ion. Let us simplify 'the discussion by taking a superspace consisting of a commuting 
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vector variable xJ.I. and a single anticommuting Majorana-vVeyl spinor 0. It is useful 

to write theories as theories in superspace because the coordinates ( xJ.I., 8) have simple 

transformation laws under the Poincare superalgebra. Under the action of the usual 

Poincare generators, aJ.LPJ.L + ~WJ.Lv]J.Lv, with ]J.Lv = 2x[J.L pv] + ~(/J.Lv(), the coordinates 

of superspace transform as 

(2.49) 

Supersymmetry transformations, generated by Qc, with Q = ( -i"eJP and JP = PJ.L1'\ 

transform the coordinates as 

e-+ B +c. 
(2.50) 

By building a field theory whose fields are functions of position in superspace , 

one is able to construct actions which are manifestly supersymmetric. 

The objects one is allowed to use to construct manifestly supersymmetric actions 

are the superfields themselves, the supersymmetric covariant derivative, and integra

tion over superspace. The supersymmetric covariant derivative, D = /o - i§IJ.L a~" , 

has the property that it anticommutes with the supersymmetry generator Q = 

-Jo + ie1 J.L a~ ... 

In this section we investigate actions describing the motion of particles in su

perspace. These actions have as their dynamical variables the positions x J.I. and () in 

superspace and should be invariant under changes 

{)() = c. 
(2.51) 

where c is a constant anticommuting spinor. The first such action is the one written 

by Casalbuoni [17] without a one-dimensional metric on the world-line and by Brink 
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and Schwarz [16]: 

(2.52) 

Here e is the "einbein" which takes the role of the metric tensor on the world-line. 

The case which is most relevant to the goal of understanding the dynamics of the 

manifestly supersymmetric string is the case of a massless ten-dimensional superpar

ticle with a single spinor which is both Majorana and \iVeyl. If we had chosen a spinor 

which was vVeyl but not Majorana, then the expression tJ,J.LiJ would have to have been 

replaced by 1J,J.L iJ- B1J.L B. From now on we shall consider the massless case exclusively 

since it is the case which is most analogous to the superstring in any dimension . 

The momenta for the variables e, xJ.L and e are defined as 

(2.53) 

where the subscript R denotes the right-handed derivative. The canonical Hamilto-

man 1s 

(2.54) 

and there are two primary constraints. 

</Jl := Pe ~ 0, 

</J'2 := ( + i1JJP ~ 0. 
(2 .55) 

Conservation of the constraints (2.55) requires the imposition of a third constraint , 

"" ·- lp2 ,...._, 0 'f-'3 .- 2 ,...._, . (2.56) 

One may check that the most general allowed Hamiltonian is 

(2.57) 

with >. 1,2 ,3 arbitrary, and that there are no further constraints. The constraints Pe ~ 0 
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and ! P 2 ~ 0 are purely first -class, generating r-reparametrizations, while 1>2 contains 

both first- and second-class pieces as one may see from the canonical Poisson brackets 

(2.58) 

Because PJl is null, the first-class piece of 1>2 may be identified as 

(2.59) 

This constraint generates the analog of the superstring's ~~:-symmetry in the super

particle system: 

oe - {e -~.( 1st) } 
- ''1-'2 c PB 

= e-1(xll - iB,IliJhJlt:, 

oxll = { xll' ¢>~1st) c} p B 

= i01 Jloe, 

oe = 4i€iJ. 

(2.60) 

The second-class piece of the constraint may not be identified covariantly unless 

t he system is further enlarged and constrained. If one wishes not to add any more 

variables to the system, the second-class piece of <Pz may be identified only non

covariantly, for instance, as 

-~.(2nd) _ A. OJP 0 '""'"' O 
'~-'2 - '1-'2/ I '""'"' (2.61). 

Discounting the einbein and its momentum, the canonical phase space for the 

Brink-Schwarz superparticle has 2D bosonic and 2S fermionic dimensions, where D 

is the dimensionality of spacetime and Sis the number of real components of whatever 

spinor we are considering. For a ten-dimensional Majorana-Weyl spinor, S is sixteen. 

There is a single first-class bosonic constraint, namely ¢>3, S /2 fermionic first-class 

constraints and S / 2 fermionic second-class constraints. Thus the gauge fixed phase 

space has 2D - 2 bosonic and S /2 fermionic physical degrees of freedom. 
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2.4 The Siegel Superparticle 

Obviously, the fact that the second-class constraints of the Brink-Schwarz super

particle cannot be identified covariantly in a simple manner means that the theory 

cannot be quantized in a simple, covariant fashion. It would be ideal, then, if one 

could do away with the second-class problems and also have a manifestly covariant 

gauge choice. This was the idea of Siegel when he proposed the action [52] 

J -. 1 2 '-
Ssiegel = dr[(x- i818) · P- 2 gP + 8-rr + '1/JIP-rr]. (2.62) 

This action, excepting the last two terms, is the first-order form of the massless 

Brink-Schwarz action (2.52) . 

Just as in the first-order form of electrodynamics (the Palatini formalism), one 

may treat both x and P as "positions" and give each a momentum. The Dirac 

procedure will identify P with the conjugate momentum to x through second-class 

constraints. The analysis of the constraints is as straightforward as before, but is 

somewhat messier. 

For the Siegel action (2.62) take the coordinates to be xP., Pp., 8, 1r, '1/J, and g. 

Their canonically conjugate momenta are then Px, Pp, ( , P1r, P'if;, and P9 respectively. 

A conserved set of constraints is obtained after two iterations of the Dirac procedure. 

These constraints are 

Px- P ~ 0, 

Pp ~ 0, 

p1r ~ 0, 

IP-rr ~ 0, 

P9 ~ 0, 

p'if; ~ 0, 

p2 ~ 0. 

(2.63) 

The first pair are second-class and may be ignored if Pis identified as conjugate to 
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x. The second pair are similarly ignorable if 7f is identified everywhere with-( -iOIP. 

This leaves a consistent set of constraints 

p2 ~ 0, 

(IP ~ 0, 

P9 ~ 0, 

p'I/J ~ 0, 

which are all first-class . The corresponding Hamiltonian is 

with >.1,2,3,4 arbitrary. 

(2.64) 

(2.65) 

Again discounting the einbein g, the gravitino 'lj;, and their momenta, the canoni

cal phase space has, as before, 2D bosonic and 25 fermionic dimensions. Here again, 

there is a single bosonic and S /2 fermionic first-class constraints; but there are no 

second-class constraints. Thus the gauge-fixed phase space has 2D- 2 bosonic and S 

fermionic physical degrees of freedom. The action of Siegel thus describes a different 

system from the one described by the Brink-Schwarz action (2.52). The Siegel super

p article, because it lacks second-class constraints, is easily quantizable in a covariant 

fashion. 

2.5 Light-Cone Quantization 

Let us examine the Brink-Schwarz superparticle in ten dimensions with a single 

Major ana-Weyl spinor. It was noted before that this is the most important case to 

consider because it shares the main difficulty of the Green-Schwarz string, namely 

second-class constraints. The first-class constraints of (2.55) and (2.56) are 

P 2 ~ 0, DIP~ 0, (2.66) 

while the second-class constraints are not so easily identified in a covariant fashion . 

In this section we will iden.tify them in a particular non-covariant fashion. If we define 
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the light-cone gamma matrices 

(2.67) 

we may choose the second-class constraints to be 

../..(2nd) D + 
'+'2 = ~/ ) (2:68) 

and calculate the matrix of Poisson brackets 

(2 .69) 

This matrix can be easily inverted so that the Dirac bracket may be defined. This 
. . 
Inverse IS 

. - + 
6.-1 - z (']_]__) 

ab - 4.j2p_ 2 ab (2.70) 

on the subspace defined by the projection operator ,-,+ /2. The Dirac brackets 

which are computed from the second-class constraints are 

{x iL,Pv}DB = 8~, 

{x1', xv }DB = 4~-OIJL+v(), 

1 
{xiL,Ba}DB =-

4
p_ (J+!t'())a, 

{Oa , Bb}DB = 4~P- (J+!-)ab· 

(2.71) 

The fact that the coordinates xJL do not have vanishing brackets with each other is 

a general feature of theories with second-class constraints. Through much tedious 
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algebra one finds that the xJ.I may be replaced by either of two new coordinates 

iPu- + qJ.t = xJ.I + --B,..,J.t ua 
2P_ I ' 

whose Dirac brackets vanish. 

The tilded set of variables is completed by the fermionic coordinates 

The untilded variables are completed by the fermionic coordinates 

These new sets of coordinates satisfy 

{qJ.1 ,19±}DB = 0, 

{qJ.I,J±}DB = 0, 

{19+,19+}DB = {J+,J+}DB = 0, 

{19+,19- }nB = {J+,J-}nB = 0, 

{19-,19-}nB = ..j2 
2 

?,+,-, 
2(P_)~ 

- - 2 + -
{19-,19-}DB = r.;l I · 

v2 

(2. 72) 

(2. 73) 

(2.74) 

(2.75) 

(2. 76) 
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We define the (non-canonical) momenta for the 7J± and J± as 

( ·- l(JP-v+ + .- 4 I l 

- 1 - + 
(+ := 4(/ I ' 

(_ = (_ := t(/+,-. 

The momenta(±, in particular, satisfy 

,-~(+ 
{7J+,(+}DB = P-(~), 

{7J-,(+}DB = 0, 

{7J+,(-}DB ~ 0, 

3 ,+,-
{'IJ-,(-}DB ~ 2~(~). 

(2. 77) 

(2. 78) 

A quantum theory might be built upon either of the sets of variables PJ.L, qJ.L, '!?±, (±, 

or PJ.L, ijJ.L, J±, C±· Perhaps the simplest way to build a quantum theory is to work in 

momentum space for the xJ.L and position space for the 7J. One solves the constraint 

P 2 = PiPi- 2P+P- ~ 0 for P+ = PiPi/2P_. The state is taken to be a function of 

the momentum variables Pi, P_ only. On such a state, the fermionic momenta may 

be represented as the differential operators 

(2.79) 

The first -class constraint DIP ~ 0 may be written 

(2.80) 

The physical state <I>, then, is a function of the aforementioned momentum variables, 

the spinor .,J+ and half of the spinor 7J_ which anticommutes.with itself (here denoted 
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by ry) satisfying the condition 

(2.81) 

A position space dependent state may the be obtained by Fourier transforming the 

solution to (2.81) with P+ identified as PiPi/2P_ . 

Clearly this is not a useful characterization of a physical state and it is not even 

covariant at that. Before going on to give a covariant version of the ten-dimensional 

Major ana-Weyl Brink-Schwarz particle, let us examine the four-dimensional version 

which can be made quite simple through the elimination of the second-class con

straints without changing the physical content of the theory. 

2.6 The Four Dimensional Brink-Schwarz Superparticle 

In four dimensions a spinor may not be both Majorana and vVeyl at the same 

time. For simplicity let us choose to examine the case of a single vVeyl spinor which 

is analogous to the case of two Majorana spinors in ten dimensions . \Ve will follow 

the conventions* of vVess and Bagger [56]. The free superparticle action 

leads in the usual way to the constraints P 2 ~ Da ~ Da ~ 0. (There are two 

fermionic constraints because there are two real components to the spinor (). ) They 

satisfy the usual algebra 

{Da, D,a} = 0, 

{Da,Dp} = o, (2.83) 

{Da, Dp} = 2iu~pPw 

Again, smce Pp. is null, there are both first- and second-class constraints present. 

Essentially, Da and D p are each half first- and half second-class. If we could eliminate 

* Spinor indices are either undotted or dotted according to their handedness. Undotted indices 
are summed upper left to lower right, while dotted indices are summed lower left to upper right. 
Both are raised and lowered with the antisymmetric tensors foc/3 and fi:r/3, f 12 = -f1 2 = 1. The 
matrices all. and uJJP/3 are a 0 = G- 0 = -1 and the usual Pauli matrices a 1

•
2

•
3 = -G-1

•
2

•
3

. a a 
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half of the second-class constraints, then the remaining half would become first-class 

and the dynamical content of the theory would be unchanged. In fact, it is quite easy 

to eliminate half of the second-class constraints. All we need to do is to eliminate the 

pieces of D a (say) which are annihilated by the matrix lP. A first-class reduction of 

the system which is dynamically equivalent to the original system is 

DIP~ 0, 

tJ;::::; 0, 

p2;::::; 0. 

All of the brackets of the system of constraints vanish identically except for 

{DIP, D} = -2iP2 ;::::; 0, 

(2.84) 

(2.85) 

which vanishes only weakly. The absence of any second-class constraints allows us 

the easy identifications 

(2.86) 

A state's wavefunction, <I>, is a commuting function of the coordinates 

<I> = <I>( xll, 0, 0) (2.87) 

which satisfies the constraints (2.84) as operatorial equations. If <I> satisfies the con

dition D<I> = 0 it is known as a scalar superfield and has the component expansion 

<I>(x, 0, 0) = ¢(x) + 0'1/J(x ) + i0a1LOEJJL¢(x) + OOF(x) 
i - 1 -

- -OOEJ1t¢(x)all(} + -00000¢(x), 
2 4 

(2.88) 

where 7/J(x) is an anticommuting Weyl-spinor function and ¢(x) and F(x) are com-
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muting scalar functions. The other fermionic constraint, 

yields the field equations of the Wess-Zumino scalar multiplet. 

f)!JF( X) = 0, 

e711811 '1j;(x) = 0, 

0</>(x) = 0. 

(2.89) 

(2.90) 

This is in contradiction to the findings of [22,43] that the four-dimensional Brink

Schwarz superparticle describes a vector multiplet . 

The simplicity of the system without second-class constraints points the way to 

a method for handling the ten dimensional Brink-Schwarz superparticle in a covari

ant fashion . It is important that any second-class constraints have simple Poisson 

brackets, or better yet, that there be no second-class constraints at all. 

2.7 Null Systems 

A null system is a set of dynamical variables together with a set of constraints 

which exactly eliminate the dynamics of the variables. The simplest example one 

can think of is the single pair of conjugate variables p and q and the single first-class 

constraint p ~ 0. The value of q at any time is a purely gauge dependent quantity 

determined by the Lagrange multiplier >. in the Hamiltonian of the system. 

H = >.(t)p, 

q = {q, H} = >.. 
(2.91) 

A less trivial example is that of a set of D 2 vielbeine e~ and their D 2 momenta 

p~. A set of D 2 first-class constraints will eliminate their dynamics. One such set of 
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constraints is the set of gl(D) generators 

D JLm.......,o 
mn = PneJL ......., • (2.92) 

Alternatively, one could trade the symmetric generators for constraints which are 

more useful. For instance, the symmetric constraints 

(2.93) 

have weakly vanishing Poisson brackets with the antisymmetric SO(D) generators of 

(2.92) and are therefore possible alternatives. 

The quantization of the null system of vielbeine is straightforward. The con

straints D[mn] ~ 0 become differential operator generators of the SO(D) group. One 

assumes that the wavefunction </>( e~) has a power series expansion in the e~ . Any 

such function 4> which satisfies the operatorial equation 

(2.94) 

must be constructed from SO(D) singlet functions. The solution to the constraint 

equation (2.94) is, in fact, a constant independent of the e~ when the constraint 

(2.93) is imposed. 

00 

4>( e~J = 2::) e~1 e~1 ) • • • ( e~e~)cPJLtVt···JLkVk 
k=O 

00 
(2.9.5) 

_ "'\:"' (jJL!VI . .• {jJLkVk ,!.. - D '+'JLtVI···JLkVk 

k=O 
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2.8 Covariant Quantization in Ten Dimensions 

It is possible to mimic closely the non-covariant separation of the second-class 

constraints while still maintaining manifest covariance. To separate the constraints 

we must define an embedding of the light-cone spinors in the Lorentz group. That is, 

we will need to parametrize the embedding SO(S) C 50(9, 1). To this end, let us add 

a null system to the original phase space. vVe add coordinates YA and YA_ which are 

commuting ten-dimensional Majorana-Weyl spinors of the same handedness as the 

spinors 8 of the original theory. The indices A and A each take the values 1, ... , 8. 

The conjugate momenta to the YA and YA_ are denoted by P:! and P;!- respectively, 

and they satisfy the canonical Poisson bracket relations 

{YA,pbB} = 6~6g, 

{YA.,Pl} = s!s;; . 
(2.96) 

The phase space now has 512 extra degrees of freedom which must be eliminated 

by the imposition of constraints if the dynamics are to remain unchanged. The 

simplest constraints to impose would be the vanishing of the momenta pbB and P/1. 

These constraints would carry Lorentz indices, so it would be more convenient to 

introduce instead the constraints 

DAB := YAPaB ~ 0, 

DAB := YAPaiJ ~ 0, 

DAB:= YA_PaB ~ 0, 

DAB := YA_Pai3 ~ 0. 

(2.97) 

which are the generators of the group GL(16). In order to separate the fermioni c 

constraints D ~ 0, we must replace some of the constraints of (2.97) with other, more 

useful, constraints. 

The constraints (2.97) satisfy Poisson bracket relations showing them to be the 
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{DAB,DcD} = 8BcDAD- 0ADDcB, 

{DAB' DcD} = -8ADDciJ' 

etc, 

(2.98) 

and are thus first-class. Because these constraints are all first -class, imposing them 

would eliminate all of the extra 512 degrees of freedom added to the system. The 

1 are quite similar to the vielbeine null system discussed in the last section. It will 

be shown later that to separate the constraints it will be necessary to break the 

symmetry to GL(8) x 50(8). It is useful to replace some of the constraints of the 

GL(16) algebra by constraints which express the null space of the matrix JP. Because 

the matrix 1° 1P satisfies the projection-operator-like relation 

we may postulate the following alternative constraints 

<I> A.iJ := 1 ;.IP1 iJ ~ 0, 

<I> AB := 1 AIP1 iJ ~ 0, 

<l>AB := 1A1P1B- 0AB ~ 0, 

(2.99) 

(2.100) 

which are symmetric in their indices. Here we have included the first constraint <P AB' 

even though it is not independent. In fact, it is implied by the second constraint: 

(2.101) 

The constraints (2.100) are to replace the generators of (2.97) which are symmetric 

in their indices . We will keep those constraints which generate GL(8) x 50(8) x 
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DAB~ 0, 

D[AB] ~ 0, 

DAB~ 0. 

The new constraints (2.100) satisfy the Poisson brackets with (2.102) 

{DA.tJ,<I>c.o} = -28.8(c<I>.b)A' 

{DA.tJ,<I>cD} = - 8.Bc<I>AD' 

{D[AB] , <I>CD} = -DB(C<I>D)A + OA(C<I>D)B' 

{D[AB],<I>cD} = 0D[A<I>B]C' 

{DAB' <I>cD} = - DBD<I> AC' 

{DAB ' <I>c D} = -28 B(c<I> D)A' 

all others 0. 

(2.102) 

(2.103) 

These brackets reveal that all the constraints (2.100) and (2.102) are first-class . 

Taking the symmetries and reducibility of the constraints into account, one may 

count that there are 100 independent constraints of (2.100) and 156 constraints of 

type (2.102). Together they fix out 512 degrees of freedom, exactly the number of 

variables added to the original system. The constraint Da =(a + iOIP a = 0 m ay now 

be separated covariantly. The constraints 

</;.A := DT A ~ 0, 

fA:= jjyA ~ 0, 
(2 .104) 

neatly separate the constraint lJ ~ 0 into first- and second-class pieces since they 

obey 

{ </;_A, </;.tJ} = 2i<I> .A.B ~ 0, 

{<f;A, fB} = 2i<I>AB ~ 0, 

{fA' f B} = 2i(<I>AB +DAB)~ 2i8AB· 

(2.105) 

The new first-class constraints are the </;A and the new second-class constraints are 
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the r B. Further, the second-class constraints have the simplest brackets one could 

hope to obtain. 

It is possible to perform a first-class reduction of the system (2.100), (2.102) , 

and (2.104). It need not have been possible to do so except that the r A will form 

the Clifford algebra of 50(8) upon quantization and gamma matrices are covariantly 

constant if their spinor indices are rotated along with their vector index. 

When using the constraints D [AB] ~ 0, one may not ignore half of the r A's 

because under the Poisson bracket algebra 

{D[AB]' D[CDJ} = !(oAcD[BD]- OADD[BC] 

+8BDD[AC]- 8BcD[ADJ) , 

{D[AB],rc} =~(DAcrE -DBcrA ), 

the r A transform as an 8 of 50(8) . The redefinition of constraints 

(2 .106) 

(2.107) 

yields the same 50(8) algebra (2.106) for the V[AB]'s, but now the r A are 50(8) 

singlets: 

(2 .108) 

The weakly equals sign in (2.108) means we have used the constraint <P AB ~ 0. 

The simplest way of choosing a first-class reduction of the second-class constraints 

r A is to choose four linear combinations of them which have vanishing Poisson brack

ets among themselves. The following combinations will work. 

r2n-l + ir2n ~ 0, n = 1, ... ,4. (2.109) 

These are equivalent to the quantum "chirality" conditions 

il\n-ll\n = 1, n = 1, . . . , 4. (2.110) 

As yet there does not seem to be a straightforward implementation of the system 

of constraints (2.100), (2.102) and (2.104) or their first-class replacements (2.107) and 
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(2.109). The correct implementation of these constraints should yield a superfield for

mulation of the linearized ten-dimensional supersymmetric Yang-Mills theory. Other 

groups [15,23,45,46,54] have considered similar null systems for use in quantizing the 

Brink-Schwarz action but have not achieved any useful formalism. 
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III. String Theories 

The bosonic string is a simple model in which to test ideas which may prove useful 

for the more relevant superstring models; either the NSR "covariant" superstring or 

the manifestly supersymmetric string of Green and Schwarz. In this chapter we will 

discuss the bosonic and the Green-Schwarz strings . 

The full power of the BFV quantization is not needed for eit her the bosonic string 

or the NSR string. These strings have constraint algebras with constant structure 

functions and they do not have any second-class constraints. Thus the method of 

Faddeev and Popov is sufficient for them. This chapter first explores the quantization 

of the bosonic string. In particular, it is shown that the Nambu action and the 

Polyakov action both lead to the same quantum t heory. 

Next, the two most promising actions for a manifestly supersymmetric string are 

examined. These actions, the one proposed by Siegel and the ot her proposed by Green 

and Schwarz, are shown to b e essentially equivalent . The problems of quantization 

of these actions are briefly discussed, and a method of quantization is proposed . 

3.1 The Bosonic String 

The first classical action that we discuss is the one proposed by N ambu to gener

alize the action (2.1) for the point particle. The action (2.1) for the point particle is 

the length of its world line. The natural generalization is that the action for a string 

moving through spacetime should be the area of the sheet it sweeps out during its 

evolution. Thus, the bosonic string is described classically by its position X 1L( O") in 
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spacetime and its evolution is governed by the action [44] 

SNambv. =- j d2aJ-det(8aXf.LopXJ.L) 

= - J d2aJcx. X')2 - x2 X' 2
. 

The momentum conjugate to XIL(o-), 

p (a)·= oL 
f.L · 8Xf.L(a) 

X~()(· X')- X1~(X'2 ) , 

VCX · X')2- X2 X' 2 

must satisfy the Virasoro constraints 

p . x'~o, 

p2 +X'2 ~ 0. 

(3.1) 

(3.2) 

(3.3) 

Because the action is reparametrization invariant, the Hamiltonian vanishes identi

cally. It is convenient to combine the constraints (3.3) into the form 

in order to express their Poisson brackets simply: 

{T±( a), T ±(e)} = ±2(T ±(a) + T±(e) )8' (a - e), 

{T±(a),T'f(e)} = 0. 

(3.4) 

(3 .5) 

The non-zero structure functions are "constants" given by ±25' (a - (!) and the 

constraints are obviously first-class . 
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Another action for the bosonic string is that given by Brink, Di Vecchia and Howe 

[14] and Deser and Zumino [19] and promoted by Polyakov [48] . The "Polyakov" ac

tion is quadratic in the fields XP. and would therefore seem to be the more appropriate 

action to describe the system quantum mechanically. To write the action, we intro

duce the metric, 9af3, on the world sheet of the string. The action used in the Polyakov 

path integral is 

(3.6) 

The world-sheet metric has no dynamics and its momentum consequently vanishes. 

The Virasoro constraints ensure the conservation of the metric's momentum, 

P9 01f3 ~ 0, 

pg01/3 ~ 0 ¢:=;:} t(P ± X') 2 ~ 0, 
(3.7) 

which follows from the Hamiltonian 

(3.8) 

with the momentum defined by 

(3.9) 

The gaf3 are obviously irrelevant variables from the classical point of view. The 

Xt'(O") obey the same dynamics as they did in the Nambu theory. Quantum mechanics 

will resurrect the action (3.6) in a manner which could only be described as circuitous. 

In this fashion the bosonic string is quite analogous to electrodynamics where the 

Lagrange multiplier enforcing the Gauss law constraint in the Hamiltonian formalism 

b ecomes the time component of the quantum vector potential. 
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Had we started from the path integral in the form of equation (1.37), we would 

have found the integral 

(3.10) 

once the momentum integrations were done. This integral is still not gauge fixed, and 

is t hus not well defined perturbatively. 

The BFV method for constructing the path integral starts from the BRS charge 

[37) 

(3.11) 

The correct gauge fixed action may be obtained from the gauge fixing fermioni c 

function 

w = -t j de(b+ + L). 

The gauge fixed action 

becomes 

SBFV = J d2<7(P. X+ ?ri~i + biCi + biii 

-t(T+ + T_)- c+b~ + c_b'_) . 

(3.12) 

(3 .13) 

(3.14) 

After evaluating the P , )., 1r, b, and c integrals, the gauge fixed path integral is 

obtained. 

(3.15) 
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3.2 The Manifestly Supersymmetric String 

Just as the bosonic string describes the propagation of a string through ordinary 

space, the manifestly supersymmetric string describes the motion of a string through 

superspace. The formalism of superspace allows one to describe a field theory in 

which the global spacetime supersymmetry of that theory is manifest. 

The Neveu-Schwarz-Ramond (NSR) version of the superstring is known to have 

spacetime supersymmetry for many solutions, such as ten-dimensional Minkowski 

space, in addition to the manifest superconformal symmetry on the worldsheet. Con

sequently, any string field theory built from the NSR form will be (spacetime) super

symmetric, but its supersymmetry will not be manifest. To construct a string field 

theory with manifest spacetime supersymmetry, one needs a first-quantized theory 

which has superspace coordinates as the fundamental fields on the two-dimensional 

worldsheet. A classical Lagrangian having global supersymmetry and a local fermioni c 

worldsheet symmetry has been constructed by Green and Schwarz [30,31]. This action 

can be quantized in light-cone gauge and is the same as the NSR string in light-cone 

gauge. 

While the Green-Schwarz action is free in light-cone gauge, in general gauges it is 

an interacting two-dimensional theory. This, in part, is why the covariant quantiza

tion of the theory is difficult. Because the action is free in light-cone gauge, one might 

expect that the action could be quantized straightforwardly in a covariant gauge, and 

that the covariantly quantized action would have a simple form. A formal quantiza

tion of the Green-Schwarz action shows that, on the contrary, there are difficulties 

even in passing from the Hamiltonian to a Lagrangian description. 

One should keep in mind, therefore, the possibility that the Green-Schwarz action 

is not the appropriate action for quantization and may need to be amended in whole or 

in part . One such possible action has been proposed by Siegel [53]. The motivation for 

the Siegel modification is to incorporate the smallest algebra containing the generators 

of reparametrizations and of local fermionic transformations as the invariance algebra 

of the string. Unfortunately, the phase space constraints of the Sieg~l modification 
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are equivalent to those of the Green-Schwarz string in generic regions of phase space, 

as I will show in this section. It seems then that one is forced to use the Green

Schwarz action, or some other action as yet unknown, in order to obtain a covariantly 

first-quantized string with manifest spacetime supersymmetry. 

Even though there are difficulties in constructing a covariantly quantized string 

with manifest spacetime supersymmetry, such a construction is a necessary ingredient 

of the corresponding superstring field theory. The dynamical variables, including 

ghosts and auxiliary fields, of the first-quantized string become the coordinates on 

which the string field depends. And, as Siegel has explained [51], the constraints of 

the first-quantized theory will determine the free dynamics of the string field. The 

free field Lagrangian is W H\II, with fi the first-quantized Hamiltonian (operator) and 

\II the string field. 

A manifestly supersymmetric st~ing field theory may make the possibilities for, or 

necessity of, supersymmetry breaking more apparent and may put some constraints 

on the allowable vacua. 

The ghost structure of the theory is likely to yield as much insight into string 

physics as it has for the bosonic and NSR strings [28,41]. 

The first step on the road to string field theory is the construction of a first

quantized theory. Again, because the classical string actions are singular systems, 

their quantization begins with the analysis of their constraints. A canonical analysis 

of the manifestly supersymmetric string was first begun by Hori and Kamimura [36] 

who recognized most of the relevant features of the system. It is more useful to use a 

path integral quantization of the system because it eliminates some of the problems 

of ordering in the canonical formalism and also yields the ghost parts of the action. 

Through the BFV formalism one may formally quantize the Green-Schwarz action. 

The difficulties of, and remaining technical steps in this quantization are discussed in 

section 3.5. The Siegel modification will be shown to be essentially equivalent to the 

Green-Schwarz string, and thus is shown to have no particular advantage over the 

Green-Schwarz string in the canonical formalism. 
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The quantities which appear in the Green-Schwarz action are the two-dimensional 

m etric 9cxf3, a ten-dimensional position XJ.J., and two anticommuting Majorana-Weyl 

spinors eA' A = 1, 2. Both )(J.l. and eA transform as scalars under worldsheet 

reparametrizations. When light-cone gauge is fixed, the remaining pieces of eA to

gether transform as a spinor on the world-sheet, with the label A becoming a two

dimensional spinor index. The covariant classical Green-Schwarz action is [30] 

Ics = ~ j d2 <~v=9{ -tgcx/3 ITa· II13 

- icaf3 rr<l' · [811 813 01 
- 821 813 0

2
] (3.16) 

- c<l'/381, a<l'e1 • 82, 8,a02 } 

where 

II~ := OcxXJ.l.- i 2.:= 8A,J.l. a<l'eA. (3.17) 
A 

Just as the Brink-Schwarz superparticle has primary constraints (2.55) t here are 

similar primary constraints for the Green-Schwarz action [36,38] : 

Pg ~ 0, 

IJA ==(A+ i8A IJ.J.(PJ.l. + (-)A X'''- (- )AifJA ,J,J.eA' ) ~ o. 
(3.18) 

Here Pg is canonically conjugate tog, prime denotes derivative with respect to<~, and 

(A is the conjugate momentum to eA satisfying the (symmetric) canonical Poisson 

bracket 

(3 .19) 

where hA is the chirality projector for the spinor eA : hA()A = ()A . The second relation 

in (3.18) defines the momentum, (A := ORL/fJRBA, which is the right derivative of 

the Lagrangian with respect to the velocity of eA. Already one can see that there is 

something about the ()A which is peculiar for scalar fields. The momentum conjugate 

to the field ()A is constrained to be a function of fields other than the velocity of eA. 

This is more the behavior of a two-dimensional spinor field . 
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Two more constraints need to be imposed in order to conserve the first constraint 

of (3.18). These two constraints are the vanishing of the (traceless) stress tensor Tap: 

(3.20) 

The II~ in eq. (3.20) are the expressions (3 .1 7) expressed in canonical variables. In 

conformal coordinates the constraints (3.20) are particularly simple. ·writing 

(3.21) 

one obtains II~ = 0 for the constraints (3.20). 

One may check that there are no more constraints which need to be imposed in 

addition to (3. 18) and (3.20). Upon examining the constraints one finds that some of 

them are second-class. Specifically, one computes the Poisson bracket of the fermionic 

constraints with themselves and finds 

(3.22) 

(Roman minuscules are ten-dimensional spinor indices.) Because II~ is null (from 

(3.20) ), exactly half of the components of !JA ~ 0 are second-class and half are 

first-class . The null vectors II~ are useful for separating these constraints covariantly 

[36,38]. Contrary to the claims of reference [9], one may check that the first-class 

constraints are separated covariantly from the second-class constraints by 

F A . - D- A "Y II11 ""'-' 0 A 1 2 
. - 1-1 A"" ' = ' ' (3 .23a) 

(3.23b) 

The bar over the label A in (3.23b) is to denote the other value A may take; that is 

I = 2, 2 = 1. The FA(CT) are first-class and the GA(CT) are second-class . The choice 

of second-class constraints is not unique. One could choose any null vector VA with 
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V,;t · IT,;t ;:j. 0 and define a new second-class constraint C;A = fJA /p. V.f ~ 0. One is 

forced into choosing the null vector VA to be ITA because the choice of any null vector 

not given by the theory itself would break manifest covariance. It turns out [36] that 

the generator of reparametrizations is not purely II~ but is ! II~+ 2(- )A J)A()A'. The 

full set of constraints for the Green-Schwarz string is 

(P9 )a{3 ~ 0, 

TA := !II~+ 2(- )AJ)A()A' ~ 0 , A= 1, 2, 

-A 
FA:= D /p.IT~ ~ 0 A= 1,2, 

G ·- D- it"' TIP. ,....., 0 A .- ,p. A ,....., A= 1,2. 

(3.24) 

The first two of these constraints generate Weyl rescalings of the metric and two

dimensional reparametrizations of the world-sheet. The constraints pA ~ 0 generate 

the local fermionic x:-symmetry and together with the first two constraints are the 

first-class constraints of the theory. The conditions GA ~ 0 are second-class and must 

be treated differently from the rest of the constraints in (3.24) . Before analyzing the 

Siegel modification, let us count the degrees of freedom of the Green-Schwarz string. 

Ignoring the metric degrees of freedom one has twenty bosonic and sixty-four fermionic 

phase space variables on which there are two bosonic first-class, sixteen fermionic first

class and sixteen fermionic second-class constraints. The first-class constraints each 

fix out two degrees of freedom while the second-class constraints each fix out a single 

degree of freedom. (This counting works irrespective of the choice of gauge fixing 

conditions.) Thus there are sixteen bosonic and sixteen fermionic physical phase 

space degrees of freedom at each point along the string. 

3.3 The Siegel String Action 

The Siegel string is motivated by a desire not to have the whole of lJA fixed to 

zero, but to have the smallest symmetry algebra containing the generator of the "x:

symmetry." This is reasonable because the troublesome second-class constraints are 

contained in lJA. If only three quarters of the components of fJA were constrained 
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to vanish, then there would be the correct number of degrees of freedom, and the 

constraints would all be first-class. The Siegel string action does have different con

straints from the Green-Schwarz string but they are equivalent to the Green-Schwarz 

string constraints in generic regions of phase space. 

The two-dimensional fields used to construct the Siegel string are, in addition 

to the fields of the Green-Schwarz string, a ten-dimensional and worldsheet vector 

P/x', two ten-dimensional Majorana-Weyl spinors D~ which are also vectors on the 

worldsheet, and three auxiliary fields '1/J~ f3, xA$JLvp' and </>Aa~JL" The '1/JA are two 

Major ana-Weyl spinors in ten dimensions while XA and <PA are an antisymmetric 

tensor and vector respectively. The full vVeyl invariant classical action is [53,49] 

Is= j d2crv-9{gaf3 (~Pa · P13 + Pa · (813X- i :L 1JA/af3eA)) 
A 

+ iEa/3 oaX · ( TP,af3e2 
- 011813e1

) + Ea/3 0118aB1 
· 02~tD.a B2 

+ i L .D~af3eArrAaf3 + :L IIA7JaiiA~ '1/J~ f3JP 7]Df 
A A 

+ ~ XAa rrA8 rrA-y/3 i)A"VJLVP DA D f3 JLVP Q' 8 I ")' 

A 

+ ~ A,Aa/3 rrA8rrAf rrA..,.7] i)A"'JL8 nA} D 'I' "YJL a f3 8 1 7J f • 

A 
(3.25) 

The quantities rrAa/3 are projection operators, 

(3.26) 

and are not related to the expression (3.17) even though they are, unfortunately, de

noted by the same symbol. The Dirac analysis proceeds analogously to the Siegel 

superparticle in chapter 2. The canonical phase space has the conjugate pairs 

(X, Px ), (P, Pp ), ( e, (), (D, B), (g, P9 ), ( '1/J, P1/J), (x, Px) and ( </>, P¢>) as canonical vari

ables. 
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The definition of momenta leads directly to the primary constraints. 

<PI :=(A+ iBA'"(Pc/'9ao + (-)A X"'- i(- )AeA.,"eA.')- i.D1rrA.Bo ~ o, 
¢2 := P]- Pa"9ao- i L(-)Bes,"eB' ~ o, 

B 

A.. ·= BATJ- A,Aa.B l)A"'p.rrAorrATJ rrA-yO ,...._, 0 
'f-'3 • 'f" /' fL 0 I a .8 ,...._, l 

A.. ·- p ap. ,...._, 0 
'1"4 .- p ,...._, ' 

..1.. • p Aa ,...._, 0 
'1"5 .= .,p .8 ,...._, ' 

..1..6 • = pA {3 p.v p ,...._, 0 
'~" · xa ,......, ' 

¢7 := Pgcrf3 ~ 0, 

J. ·- pA-yp. ,..._, 0 
<pB .- ¢>af3 ,..._, . 

(3.27) 

In these pnmary constraints the variables are all mixed up in a complicated 

fashion, but it is still possible to see that ¢I, <P2, ¢4 and pieces of ¢3 are second-class. 

·whether or not the rest are first-class is less clear, but one must suspect that ¢5,6,7 ,8 

are first-class as they shift the Lagrange multiplier fields. In order to simplify the 

analysis one may fix these suspected gauge invariances with further constraints, and 

then must check that there are no inconsistencies that follow from the imposition and 

conservation of the extra constraints. With this caveat, set 

and require their conservation. 

W3 := </JA ~ 0, 

W4 := 'lj;A ~ 0, 

W ·- DA rrAcrl ,..._, 0 5 .- a ,..._, ' 

(3.28) 

Conservation of the constraints (3 .27) and (3.28) requues the additional con-
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"' ·- P~'"' nA nA-y rrA£ ,...._ o '/'9 • - "')' I J1. £ Ct j3 ,...._ l 

¢10 := tlJ¢~tJl.VP D1II1?ITA6.B ~ 0, 

¢u := !J1,~' nA'£ rrA~ rrA,B ~ o, 
¢12 := Ta.B ~ 0, 

¢;13 :=PI~'+ x,.,.' - i L 1JA1 ,.,.eA' ~ o, 
A 

I 2 2 · ~ -A A 1 

Too = Tu = 2(P0 +PI)- z L DI () , 

~-A A 1 
To1 = Po · P1 - i L D0 0 

A 

A 

(3.29) 

(3.30) 

is the stress tensor and is the same as the modified stress tensor in (3.24) . The set 

of constraints (3.27), (3.28), and (3.29) are conserved without the imposition of any 

further constraints. The set of fixing conditions (3.28) is consistent and leaves an 

algebra (53] of constraints generated by ¢;9,10,11,12· The Hamiltonian which preserves 

the constraints, 

H =- t7]et.B Pa. P.a- pl. (X'- i L aB,eB') 
B 

- i L 1JB,,.,.es' ((- )B Po,.,.- X~''+ i1Js,~'ef3') 
B 

') ( · "'""' s -s B' + P.\'" + Px · Po- z L(-) 0 ~tO ) 
B 

+ L(-)A((AeA' + BA17DA~)- t:a.aP'P. p.B' , 
A 

(3.31) 

is unique up to the addition of first-class constraints and is equal to Too upon setting 

the second-class constraints to zero strongly. (That is, taking the second-class con

straints to vanish identically and replacing the Poisson bracket by the Dirac bracket 

so that no contradictions will result from taking the constraints to vanish identically.) 

Since the constraints ¢ 1, ... ,8,13 and WJ, .. . ,s togeth~r are second-class, one must think 
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of D1x and Pap. as derived quantities given by their expressions in (3.27, 3.28, 3.29) . 

When this is done, the only independent variables left are X, Px, () and (, which must 

still satisfy ¢>9,10,11,12 ;:::;; 0. Two of these constraints have identical counterparts in the 

Green-Schwarz theory. The constraint ¢>9 is pA and ¢>12 is TA . The Green-Schwarz 

string has eight additional second-class constraints GA ;:::;; 0 while the Siegel string has 

instead twenty-nine additional independent constraints which h ave vanishing Poisson 

brackets with all other constraints on the constraint surface. One might be tempted 

to call these twenty-nine constraints first-class, but if they were first-class then there 

would be a mismatch in the number of physical degrees of freedom between the Green

Schwarz and Siegel string. In fact, both theories have the same number of physical 

degrees of freedom and have the same second-class constraints in generic regions of 

phase space. To see this, one must analyze the constraints ¢>9,10,11,12 carefully. First, 

it is useful to have a simple notation. Set A = 1 because the case A = 2 is analogous. 

Let D{} become D because A = 1 and a has only one non-zero component by (3.28) . 

Similarly, let P = PaiiAa,B. The constraints (3.29) are now easily written as 

IPD;:::;; 0, .fJ,JLVP D;:::;; 0, (3.32) 

Here we must appeal to the arguments in appendix B in order to solve these 

constraints. Because the variable Pp. is a global supersymmetry invariant, we may 

restrict it to be a real number, and not just a commuting supernumber, without 

ruining the global supersymmetry. As is demonstrated in appendix B, a path integral 

over commuting supernumbers may be restricted to be over the real numbers only. 

Let us restrict the variable Pp. to be real. Because lP is invertible for P 2 =/= 0, the 

first two constraints of (3.32) together imply that 

and be' ;:::;; o (3.33) 

separately. The argument proceeds by multiplying the second constraint by lP and 

then dividing by P 2 if it is non-zero. 
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The relevant constraints on the derived quantity D are 

IPD ~ 0, no' ~ o, . n,~-~vp n ~ o, (3.34) 

The solution of these constraints, D = f( ()', IP) will be the constraints analogous 

to D = 0 in the Green-Schwarz theory. For any J, except f = (IP- iB,e',)O + 
constant, the constraints D = f( 0', IP) are obviously second-class . One may dispose 

of the possibility f = (IP- iB10'1)0 by showing that it is not a solution. 

One may show that the only solution for generic 0' is f = 0 or that (3 .34) are 

equivalent to fJ ~ 0. The third constraint is most easily solved. It implies that 

(3.35) 

where >.a(a-) is a commuting spinor function and ~:(a-) 1s an anticommuting scalar. 

The second equation implies 

t:(o-) ex: (\0'), (3.36) 

while the last requires that a ' = 0 or , equivalently, 

(3.37) 

Generically, all of the components of O' are independent Grassmann numbers and have 

zeros as functions of a-. Eq. (3.37) requires >.(a-) to have poles of the same order as 

the zeros of these generic 0 configurations unless <: is identically zero. The expression 

D, which is tacitly assumed to be a differentiable function of a-, is expressed through 

(3.35, 3 .36) as 

(3.38) 

Therefore Da has poles as a function of a- for generic 0( a-) field configurations 

unless it vanishes. 
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There is one loophole in the above argument. There is a way to solve the con

straints (3.34) which is not of the form (3.35). The last two constraints can be solved 

by setting D proportional to a constant nilpotent commuting number (such as I':J c2 , f:J 

and c2 both Grassmann). That is, the expression (3.38) satisfies the last three con

straints if (32 = 0. It also satisfies the first constraint if the commuting spinor _\ is 

annihilated by IP. These solutions must be considered "pathological." 

T hese pathological solutions are assumed to be unimportant for the quantum 

t heory. To illuminate the peculiar nature of solutions involving nilpotent commuting 

numbers, consider a constraint PJ.LPJ.L = 0. Any PJ.L of the form PJ.L = f3!VIJ.L with JI;J 

arbitrary and (3 2 = 0 satisfies the constraints. The finite dimensional analog of the 

path integral measure over such a constrained surface is dn P 8(P2 ) which becomes 

f3n8(f3 2 )dn NijA{2 upon replacement of PJ.L by (3lvfw From the rules in appendix B , 

we would define f3n8(f3 2 ) as f3n+ 2 fi' (O) which is ambiguous but should be set to zero 

because f3 is nilpotent. These pathological solutions can be eliminated if we define 

the int egrals over these subspaces to vanish. 

The existence of these pathological solutions is of secondary importance to the 

fact t hat they, like jj = 0, are also second-class constraints. 

3.4 Quadratic Constraint Algebras 

It is peculiar that the algebra of constraints (3.34) hides second-class constraints. 

Usually one believes that constraints which form an algebra are first-class and generate 

symmetries. An analogous, though simpler, model of this situation can be made. 

Suppose there is a system with constraints p ~ 0 and q ~ 0. These constraints 

cannot be imposed simultaneously on the system because their Poisson brackets do 

not vanish; { q, p} = 1. These are second-class constraints. An equivalent set of 

constraints may be imposed on the system. Consider the set of constraints 

pq ~ 0. (3.39) 

The constraints (3.39) are equivalent top~ 0, q ~ 0 in that the hypersurfa~es defined 
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by both sets of constraints are identical. The difference is that (3.39) form an algebra: 

{ 2 2} q ,p = 4pq, { 2 } - ')2 p ,pq - -~p ' { 2 } 2 2 q ,pq = q . (3.40) 

Thus the quadratic constraints (3.39) appear to be first-class. 'When they are solved 

(written in a form linear in the dynamical variables) one can see they are actually 

second-class. This simple example shows how algebras of non-linear quantities may 

hide second-class constraints. 

The quantization of theories with quadratic constraint algebras is not straight

forward. If we insist on dealing with the constraints in their non-linear form, we will 

be unable to obtain any states at all, despite the fact that the constraints form an 

algebra. This can be demonstrated with the simple example (3.39) above. First, we 

transcribe the constraints into operators. In order to preserve the algebra (3.40), we 

must order the constraints as follows. 

p2 --t f}' 
2 A? 

q --t q-' (3.41) 

Imposing these operators on a wavefunction leads to the conclusion that the wave

function must vanish. It has been verified explicitly [40] that the same conclusion 

holds for the set of constraints (3 .32) of the Siegel string modification. The BFV 

formalism may not be applied to the system (3.39) directly because the constraints 

are reducible. ·when using the reducibility conditions 

0 = q(p2) + p(pq) , 

0 = q(pq) + p(q2). 
(3.42) 

m the BFV formalism for reducible theories, one finds that one cannot obtain a 

consistent BRS charge fl. 
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Because the solutions of the constraints (3.34) are second-class, the "symmetries" 

of the Siegel string system generated by the last two constraints of (3.34) are not 

true symmetries. The Siegel string, because it has the same constraints as the Green

Schwarz string, also has sixteen bosonic and sixteen fermionic physical phase space 

degrees of freedom. As classical theories the two formulations of the string are equiv

alent. For quantization the (linear) Green-Schwarz constraints are more suitable. 

3.5 Quantization of the Manifestly Supersymmetric String 

The bosonic string (and the NSR superstring) may be covariantly quantized 

through the Lagrangian Faddeev-Popov procedure, similar to (1.36), in which the 

canonical structure of the theories need never enter. Instead, the integration over 

metric degrees of freedom is rewritten to factor out the diffeomorphisms explicitly 

through a change of variables. The resulting Jacobian becomes the ghost action once 

the ghosts are introduced. 

Theories which have complicated phase space structure, such as nontrivial second

class constraints, or algebras of first-class constraints which have phase-space de

pendent structure constants, cannot be quantized using the Faddeev-Popov method. 

Theories with phase-space dependent structure constants in the first-class constraint 

algebra have a more complicated BRS charge which leads to a Lagrangian containing 

ghost-ghost interactions. Complicated second-class constraints require a modifica

tion of the path integral measure and a modification of the Poisson brackets. It is 

unfortunate that the manifestly supersymmetric string has both complications. 

In order to quantize covariantly one of these complicated theories, the constraints 

must first be separated into first- and second-classes. The Poisson bracket is redefined 

so that the second-class constraints have vanishing brackets with any function on 

phase space. The measure of the path integral is modified by the introduction of 

delta functions of the second-class constraints multiplied by the square root of the 

superdeterminant of the matrix of Poisson brackets of all second-class constraints. 

(3.43) 
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Next, the first-class constraints must be considered. The first-class constraints may 

be used to construct a BRS symmetry generator which will later be used to fix out 

the first-class symmetries. One starts by enlarging the phase space. For each first

class constraint ¢; ~ 0 a Lagrange multiplier .X and its conjugate momentum 1r are 

introduced. A ghost c, antighost c and their conjugate momenta b and b round out 

the set additional phase space variables needed for each first-class constraint ¢;. 

From the constraints one must construct the BRS generator (1.41) 

n = b7r + c¢; + more (3.44) 

to satisfy 

{D,D}nB = 0. (3.45) 

This condition is problematical because the Dirac bracket is extremely complicated, 

attributable to the nontrivial brackets the second-class constraints have with each 

other. 

The correct generating functional for the system is 

Z'I! = J 1JP1JQ8[xih/sdet{xi,Xj}PBexpi J dt(PQ- H + {W,D}ns). (3.46) 

with 'l1 any imaginary fermionic function on the extended phase space of original vari

ables and ghost, antighost and Lagrange multiplier degrees of freedom, with ghost 

number -1. The Fradkin-Vilkovisky theorem (1.62) states that the generating func

tional is independent of the gauge fixing function W. 

The Fradkin method cannot be straightforwardly applied to systems with 

quadratic constraints which are second-class. As was stated in section 3.4, the con

straints (3.39) do not yield a consistent BRS charge when the reducibility is taken into 

account. Further, if one treats them as being irreducible, then one may show that 

the correct measure factor, 8(p)8(q), cannot be obtained. Similarly, the treatment 

of the constraints (3.32) as first-class constraints in the Fradkin formalism will not 
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yield the correct result (i.e., the result one gets when the second-class constraints are 

separated out explicitly as in (2.9)). Perhaps there is a modification of the Fradkin 

formalism which allows more flexibility in the treatment of second-class constraints, 

but the replacement of second-class constraints by quadratic first-class constraints 

does not work. 

vVithout possessing a more flexible formalism one is forced to treat the system 

(3.24) according to the rules of the Fradkin formalism. Thus one can write down, at 

least formally, the most general quantum version of the manifestly supersymmetric 

string. 

The measure factor is 

1 

o[G.!la(cr)] ( det( {GAa(cr), GBb(e)} PB)) -2" (3.47) 

where 

(3.48) 

Next, one must construct the BRS charge f2 to satisfy {f2, f2} DB = 0 and show 

that the quantum BRS charge only squares to zero for ten spacetime dimensions. 

This still has yet to be done, but there is no reason to doubt that it can be done. 

There is, perhaps, little calculational power to be gained in continuing the quan

tization in this fashion because the Poisson bracket (3.48) is cubic in the momentum 

PJJ.. The elevation of this bracket from the measure to the action with appropriate 

"second-class ghosts" will yield an action cubic in momenta. The momentum inte

grals cannot be clone explicitly to yield a conventional Lagrangian, but one could 

consider this momentum space path integral as the configuration space path integral 

of a first-order Lagrangian, which, unfortunately, is not free. All that is needed to use 

this formal quantization is the explicit form of the BRS operator f2 whose quantum 

analog is nilpotent. This quantization could be used for any (worldsheet) perturbative 

calculation. 
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To conclude this section, I resolve the puzzle of why the above remarks do not 

apply to the light-cone gauge 

x++p+r ~ 0, p+' ~ 0, (3.49) 

In other words, why can the light-cone gauge fixed string be quantized so easily 

and why is it free? The answer crucially depends upon the observation that t he 

constraints (3.49) m ay be treated on the same footing with the constraints (3 .24) . 

The constraints (3.49) must also be conserved and so fix the Hamiltonian to be [36) 

(3 .50) 

The whole set of constraints (3.49) and (3.24) are all together second- class con

straints as they must be since (3.49) fix the gauge completely. The generating func

tional (3.46) may be used to quantize the theory. Because there are no first-class 

constraints there is no BRS charge. The superdeterminant in the measure factor is 

not field dependent, and the delta functions may be solved easily. When the momen

tum integral is done, one is left with a free theory for the transverse modes. The 

main point of this is that the theory is much simpler if one does not have to separate 

the constraints into first- and second-classes. It also helps that the gauge conditions 

(3.49) are simple and linear. 

3.6 Discussion and Prospects 

The main result of this chapter is the demonstration that the Siegel string action 

is essent ially equivalent to the Green-Schwarz string action. 

The extra symmetries of the Siegel string are not actually symmetries at all 

but hide second-class constraints. Because they are not symmetries, they do not 

need to be fixed out through a gauge choice and do not properly belong in the BRS 

generator of the theory. The existence of a formalism for quantizing a theory with a 

quadratic algebra of constraints which are actually second-class is an open question. 
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The existing formalism for quantization reqmres the explicit identification of the 

second-class constraints and therefore the Green-Schwarz form is the most appropriate 

for quantization. A formal quantization of the Green-Schwarz system has been given. 

The construction of the BRS charge which has zero Dirac brackets with itself and 

the demonstration that the quantum mechanical BRS charge is nilpotent , are the 

remaining steps necessary to complete the quantization. This formal quantization 

does not possess the most useful attribute of the NSR and bosonic strings; the freedom 

of the world sheet o--model. Nevertheless, one knows how to begin constructing the 

associated string field theory. The set of fields on which the wave functional depends is 

the original set )(P., ()A, the ghosts for the diffeomorphisms and local supersymmetry, 

the "second-class ghosts," and the fields used to elevate the delta functional in the 

measure factor (3.46) to the action. Much less clear is the explicit form for the 

dynamics of the free string field theory. 

I would like to end with two suggestions for future research. The first suggestion 

1s to look at systems which are analogous to the auxiliary superspace variables 1 

for the superparticle. It is obvious that the direct transcription of the constraints 

(2.87) used to separate the constraints of the superparticle in ten dimensions to the 

superstring cannot work because the IT~, defined in equation (3.21) obey t he brackets 

(3.51) 

and therefore the constraints <P AB would not commute among themselves. 

The idea which is interesting to consider is to diagonalize the projection operator 

(3 .52) 

This will make the constraints 1~IIiii2/p./v lB commute to give something propor

tional to the stress tensor. The only possible problem is that the constraint DA ~ 0 

may not commute with the new constraints to give another constraint. This has yet 

to be checked. 
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To explain the second idea, we must digress to a discussion of the equations of 

motion for the Green-Schwarz string. In reference [31] the equations of motion were 

found to be 

ITa · ll,e = t9a,B9 78 I17 · ITs, 

1 · ITaP.~/3 8p()1 = 0, 

1 · ITaP.~.B 813()2 = 0, 

8a{ v=g(ga/3a/3XIL- 2iP~137llil8p() 1 - 2iP~13fJ\ 1'8,e()2]} = 0. 

(3.53) 

Here the symbol p;_/3 is just another name for the projection operator rrAa/3 

defined in (3.26). A crucial observation is made in reference [31] that the gauge 

conditions (3.49) lead to free equations of motion on the worldsheet . It turns out 

that there is a gauge choice one may make which also implies that the equations of 

motion are free. This gauge condition is 

(3.54) 

It would appear that the conditions (3.54) set sixteen equations for each (), but on 

shell the they in fact set exactly eight equations for each (). This is because on shell 

the IT~ are null and the equations of motion already have the vanishing of half of the 

gauge conditions (3 .54). It is problematical to translate the gauge condition (3 .54) 

into canonical form (an attempt is made in reference [18]) , but it is perhaps the most 

natural covariant gauge choice. The gauge condition (3.54) has been treated in the 

Lagrangian formalism by Kallosh (39], who has to introduce two arbitrary null vectors 

in order to fix the gauge. These arbitrary null vectors complicate the theory and also 

break the manifest Lorentz invariance of the theory. 

This thesis has not considered the mechanics of particles or strings movmg m 

background fields. Introduction of background fields into the action complicates the 

Hamiltonian analysis. If it is difficult to understand the flat background theory, it 

is even more difficult to understand the theory in a nontrivial background. Once 
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a theory has been analyzed in a flat background, though, it becomes important to 

understand that theory in nontrivial backgrounds because the consistency of the first

quantized theory could put restrictions on those background fields. 
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APPENDIX A 
Spinor Conventions 

A1etric 

. The spacetime metric is taken to be of signature D- 2, 

T/ J.LV = ( -1 l 1 l 1 l •• • l 1). (A.1) 

vVith this convention the gamma matrices obey the anticommutators 

(A.2) 

Symmetrization and antisymmetrization of indices are defined with unit weight . For 

example, the product of n gamma matrices which is antisymmetric in its indices is 

(A.3) 

11iajorana spinors 

If the matrices /J.L may taken as purely real or purely imaginary, then the spinors 

may be taken as purely real objects. In ten dimensions the gamma matrices may be 

taken to be purely imaginary. They thus satisfy 

(A.4) 

Spinors may be taken to be real so that they satisfy 

(A.5) 

Any two anticommuting Majorana spinors, 'if; and ¢, satisfy 

(A.6) 

i'viajorana spinors may be defined only in spacetimes of dimension D = 8n + 2, 8n + 3, 

or 8n + 4. 
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Weyl spinors 

In even dimensional spacetimes one may construct the matrix 

'"'~ _ ei1r(D-2)/4"'0 ... ,,1 D-l ,D+l- I I • • ·I (A.7) 

which can be used to define Weyl spinors. Weyl spinors are spinors satisfying 

ID+I'Ij; = ±'1/J. (A.8) 

If ID+l is real, then one may define spinors which are both Majorana and Weyl. 

Obviously these spinors may be defined only when the dimension of spacetime is 

D = 8n + 2. 

Dirac Algebra 

One may construct all 2l~l x 2l~l matrices from antisymmetric products of the 

gamma matrices /fl.. These matrices are denoted 

(A.9) 

and are simply 

when all of the indices /Ll through fLn are different and are zero otherwise. These 

matrices have the Hermitian conjugates 

(A.lO) 

In a Majorana representation where the matrices may be taken as purely imaginary, 

(as is true in ten dimensions), we have 

(A.ll) 

For the special case of the ten-dimensional Major ana-Weyl representation the 

matrices 1°1J.L and ,o~/fl.l···fl.s are symmetric while 1°/f1.1 f1.2f1.3 is antisymmetric. 
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Fierz Identity 

It is useful to be able to rearrange spinors in expressions involving four or more 

spinors contracted into expressions involving gamma matrices. The Fierz identity 

allows one to do just this. For ( and 7] commuting spinors in ten dimesions one has 

(A.12) 

If 7] and ( are vVeyl with the same chirality, then we keep those terms with gamma 

matrices having an odd number of indices only. If 7] and ( are \Veyl of opposite 

chirality, we keep those terms with gamma matrices having an even number of in

dices only. Finally, if 'l/Ji are Major ana-Weyl spinors and are all either commuting or 

anticommuting then the following important identity holds. 

(A.l3) 
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APPENDIX B 
Mathematics of Supernurnbers 

Superclassical Dynamical Systems 

vVe suppose that our dynamical variables may be either commuting or anticom

muting numbers. The evolution of the system is governed by a commuting function 

of the dynamical variables, the Lagrangian. To obtain a Hamiltonian description, 

one defines momenta. If a dynamical variable is Grassmann odd, care must be taken 

in defining its momentum. We take the definition that the momentum is the right 

derivative of t he Lagrangian with respect to the velocity. 

(B. l ) 

The expression for the Hamiltonian is then the usual expression with the momentum 

to the left of the velocity. 

(B.2) 

The Hamiltonian generates time evolution of the canonical variables 

i = {z, H}ps, (B.3) 

through the use of the generalized Poisson brackets 

(B.4) 

The symbol Ii i denotes the Grassmann parity of the variables q1 and Pi· If qi 1s a 

commuting number then Iii is 0, and Iii is 1 if qi is anticommuting. 
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The generalized Poisson brackets satisfy the "antisymmetry" and "Jacobi" rela

tions. The antisymmetry relation is 

(B.5) 

where IAI and lEI denote the Grassmann parities of A and B respectively. The J acobi 

identity is generalized t o 

L (-1)1AIICI{A,{B , C}pB}PB = 0. (B.6) 
cyclic perms 

Calculus of Commuting and Anticommuting Grassmann Numbers {20, 1 0} 

Following DeWitt [20], we define supernumbers by starting with an infinite di

mensional Grassmann algebra with basis (a a = 1, 2, ... satisfying only the relations 

(a(b = - (b(a, 

((a)2 = 0. 
(B.7) 

vVe denote this algebra over a base field F by Aoo(F) . We shall be concerned mostly 

with Aoo (R). Any supernumber in A00 (R) may be split into its body and soul 

X E Aoo (R), X= XB + XS 

00 1 
X _ """' - C ran .. . ra1 

S - ~ 1 al···an ':, ':, n. 
n=l 

X B E R , (B.8) 

Functions on Aco(R) may be defined by extending any infinitely differentiable 

real function by the formal series 

(B .9) 

Because the series (B.9) is purely formal, there is no problem with convergence. 
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f..'lore important for physics is the distinction between even and odd (that is, 

commuting and anticommuting) supernumbers. Any supernumber x can be split into 

two pieces, Xc E Rc and Xa E Ra . 

(B.lO) 

Analytic functions of a single anti-commuting variable are precisely the linear 

functions 

f(xa) =a+ bxa, (B.ll) 

because Xa is nilpotent, x~ = 0. 

Functions of a real commuting variable, obtained from infinitely differentiable real 

functions, are defined by the formal series (B.9). 

A definite integral along a path in Rc of a function of a function of a commuting 

variable is given by 

b 
00 

ba 

j f(x) dx = L ~! j f(n)(xB(t))xs(t) [ d;: + d;t ] dt 
a n=O aa 

(B.l2) 

where tis a real number. Here we take the parametrization to be XB(t) = t. The strik

ing thing about the integral (B.l2) is that it is independent of the path (xB(t), xs(t)) 

used to define it . This fact is easily demonstrated. First we rewrite the integral (B.l2) 

as 

(B.l3) 
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Next we split the sums apart and integrate by parts. 

b ba J f(x) dx = J f(t) [1 + x~(t)] dt 
a aa 

00 

+ L ~! [fn-I)(bB)bs - f(n-I)(aB)a5 J 
n=I 

vVe obtain the desired result 

b ba 
00 j f(x) dx = j f (t) dt + L ~! [!(n- I)(bB)bs- f(n - I)(aB)as] 

a aa n=I 

= F(b) - F(a), 

as long as f and all of its derivatives are finite at the bodies aB and bB . 

of this is that the improper integral over R c is the same as that over R . 

from the fact that 

lim F(t + xs) = lim F(t) 
t-.oo t-+oo 

holds for a ll smooth functions F and all finite xs E R c. 

(B.14) 

(B.15) 

A corollary 

This follows 

(B.16) 

By contrast, the integral over anticommuting numbers is a simpler operation. 

This integral, the Berezin integral [10], is motivated not by measure theoretical ideas 

but by simple consideration of the properties one would like such an integral to have. 

The properties one desires are that the integrals are translation invariant 

(B.l7) 

and that integration may be done by parts 

J d~a f(xa) dxa = 0. (B.l8) 

R a 
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By these requirements, the integral over anticommuting numbers is specified by 

j 1 dxa = 0, 

R a 

j XadXa = Z . 

Ra 

(B.19) 

Here Z is a constant supernumber, usu ally taken to be 1. The rules (B.l9) specify 

the integral because the functions one works with are taken to be analytic and hence 

linear. 

Supertrace and Superdeterminant 

Suppose that we have a vectorspace over R c, whose vectors have components 

which are either commuting or anticommuting supernumbers . Let us suppose that the 

first n components are commuting while the last m components are anticommuting, 

V= (B.20) 

where Vi E R c and Uj E R a. Any matrix which preserves this characterization of the 

vectors must be of the form 

(B.21) 

where A is an n x n matrix whose elements are commuting, B is m X m and also 

commuting, C and D are anticommuting n x m and m x n matrices respectively. 

The supertrace of a matrix Jl;f given in (B.21) is defined as 

strAf = trA - trB. (B.22) 
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The superdeterminant is 

sdet ( ~ ~) ~ det(A- CB-1 D )(detB)- 1 

= (det(B- DA-1C))-1detA 

With these definitions we have the properties 

str(lvhJ\h · · · Nfn) = str(J\Ih · · · JVfnNh), 

sdet(M1.Nh) = sdet(.Nh)sdet(.Nh), 

8lnsdet(M) = str(.N/-181\1), 

sdet(l + t.Nf) = 1 + t str(Jvf) + 0( t 2
). 

(B.23) 

(B.24) 

Under a change of variables in a region of R~ x R~\ the "measure" of an integral 

transforms as we expect. The general rule is 

Jn dm d ( 8(xc , Xa)) an - am-u Xc Xa = S et a( . ) Xc Xa· 
Xc,Xa 

(B.25) 

Delta functions 

In integrals over R c, we may define the delta function through its formal series 

(B.9) because it is infinitely differentiable, as all distributions are. 

00 1 
8c(x ) = L 18(n)(xB)x5 . 

n. 
n=O 

The delta function has the property 

The anticommuting delta function is defined by 

and satisfies 

zeros x; 

(B.26) 

(B.27) 

(B.28) 

(B.29) 
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APPENDIX C 
Miscellaneous Poisson Brackets 

In computing Poisson brackets for the manifestly supersymmetric string, one 

needs to use the formula 

f(cr)g(g)8'(cr- e)= ~(f(cr)g(cr) + f(g)g(g))8'(cr- e) 

+ ~(f(cr)g'(cr)- f'(cr)g(cr))8(cr- g). 

The Poisson brackets between the string variables 

IIA'' = pJ.L + (_)A X'L' _ 2i( _ )A7JA ,JLeA', 

DA =(A+ iBAIJ.L(PJ.L + (-)AXJ.L'- (-)Ai7JA,J.L()A') , 

{II~(cr),II'B(e)} = 2(-)A8ABTJJ.Lv8'(cr- g), 

(C.l) 

{DAa(cr), DBb(g)} = 2i8AB8(cr- g)(hA/0 1JL)IIA1,(cr), (C.2) 

{DAa(cr), IIBIL(g)} = -4i(- )A5AB 8(cr- g)(ffA'IJLt, 

yield the Poisson brackets of the first-class fermionic constraints 

{DAITIA(cr), DBills(e)} = -4i8AB 8(cr- g) [ (1° hAillA)(ab) (~II~+ 2(-)ADA()~) 

+ 4(- )A7JA(aDAill~ + ( 10 hxyiL)(ab)DAillAIJL()A' 

i 0 ') A -A,] - 4( I hAI1 (ab)D IJ.LD 

+ (- )A5AB81(cr- g) [(DAIJt)[a(DA.IJL)bJ(cr) + (cr +-+e)] 
(C.3) 

Here ill is a shorthand for II · 1. 
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