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Abstract 

The fibroblast growth factor (FGF) family exhibits mitogenic, chemotactic and 

angiogenic activity in a variety of cell types. The first three-dimensional structures of 

two members of the FGF family, bovine acidic FGF (aFGF) and human basic FGF 

(bFGF), have been crystallographically determined by multiple isomorphous 

replacement (MIR), and refined to 2.7 A and 1.9 A respectively. The structures of 

both aFGF and bFGF consist of twelve antiparallel J3 strands which are arranged in a 

folding pattern with approximate three-fold internal symmetry. A striking feature of 

the FGF structures is the overall similarity to the structures of soybean trypsin 

inhibitor and interleukins-la and 1J3, in spite of the low sequence homology between 

these proteins. 

FGF stimulates cellular proliferation and differentiation through the interactions 

with both the cell surface FGF receptor and heparin. In the FGF structures, the two 

putative receptor binding sites are located on different sides of FGF. Also, a region 

rich in positively charged amino acids that is likely involved in heparin binding has 

been found in the FGF structures. It is further shown that the putative heparin and 

receptor binding regions occupy distinct locations on the protein surface. 

Because heparin is required for FGF binding to its receptor, the interactions 

between FGF and sucrose octasulfate, a heparin analog, have been studied. The 

crystal structure of the complex between aFGF and sucrose octasulfate has been 

determined to 2. 7 A resolution by a combination of MIR and molecular replacement 

methods. Sucrose octasulfate binds to the aFGF positive patch mentioned above as a 

potential heparin binding site. Based on the structure of aFGF and sucrose octasulfate 
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complex, a possible FGF receptor binding mechanism in the presence of heparin is 

proposed. 

Other crystallographic studies of FGF include the structural determination of the 

two FGF mutants; the complex of aFGF and 1,3,6-naphthalene trisulfonate, a close 

analog of the FGF inhibitor suramin; and the bFGF-copper complex. 
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Chapter 1 

General Introduction to Fibroblast Growth Factors (FGFs) 
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Growth is a fundamental process in all living organisms. It is not only associated 

with the early stages of development, but remains a general feature in many tissues. It 

has long been known that cell proliferation and differentiation are strictly modulated 

by hormones. Hormones can be amino acid derivatives, or cholesterol based steroid, 

or polypeptide growth factors (1). The knowledge about polypeptide growth factors is 

relatively scarce compared to that of other hormones due to the difficulty of protein 

purification. But with the rapid development of protein purification and molecular 

biology techniques, more and more polypeptide growth factors have been recognized, 

isolated and cloned and their biological functions have been further investigated (2). 

The knowledge of how these polypeptide growth factors are triggered and interact 

with their target cells is critical for understanding the origin, development and 

maintenance of life. 

Fibroblast growth factors (FGFs), belong to the polypeptide growth factor family 

that can stimulate and regulate cellular growth and development. Although it was 

originally purified from fibroblast cells (3, 4), FGF has been revealed to be mitogenic, 

chemotactic and angiogenic to a wide spectrum of cells (5, 6, 7). In addition, FGF is 

also an important neurotropic effector which can influence the proliferation and 

differentiation of neuroectoderm derived cells (7). The FGF family contains at least 

seven homologous proteins. This includes the two original members: acidic and basic 

FGF (8, 9), the four oncogene products: int-2/KS3/K-fgf, hst, FGF5, FGF6 (10-16) 

and keratinocyte growth factor (17). As a consequence of their strong affinity for 

heparin, FGF is also often referred to as heparin-binding growth factor (HBGF). The 

FGF family members have quite high sequence homology and similar biological 

activities (Figure 1.1). For instance, the two original members of the FGF family, 

aFGF and bFGF, share 55% sequence identity over the 140 amino acid length and 

have been shown to display similar activities to most cell types (18). On the other 

hand, functional differences between these growth factors definitely exist. For 
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example, while normal members of the FGF family lack the leader signal peptides in 

their sequences, all the proto-oncogene FGF products possess a hydrophobic peptide 

sequence at their amino terminus. Another example supporting the unique roles of 

each FGF family member is that KGF has been demonstrated to be much more potent 

than acidic and basic FGF in stimulating the growth of epithelial cells (19) and 

further, bFGF appears to lack binding affinity for KGF receptors (20). 

The mitogenic response initiated by FGF is, in common with most peptide growth 

factors, mediated through cellular FGF receptors (7). Kinetic studies indicate there are 

two types of receptors on the cell surface which participate in FGF binding. One is a 

high affinity receptor (Kd = to-ll M) (21-23) and the other one is a low affinity 

receptor (Kd = t0-9 M) (24, 25). Both aFGF and bFGF have been cross-linked to one 

high affinity FGF receptor which has an approximate molecular weight of 130 kD 

(26). At present, at least four high affinity FGF receptors have been identified and 

cloned, each encoding a receptor that responds to one or more of the FGFs (27). The 

first FGF receptor, FGFRl, was purified from chicken embryos and the 

corresponding gene was identified as the chicken cekl gene and humanflg gene. The 

derived amino acid sequence from the isolated gene reveals that the FGF receptor 

belongs to the class of membrane tyrosine kinase (28). It consists of two or three 

extracellular immunoglobulin-like domains, one transmembrane helix and one 

intracellular tyrosine kinase domain. FGFRl has been shown to have equal binding 

affinity for aFGF and bFGF but with about 10 times lower affinity for KGF (29, 30). 

The second member of the FGF receptor family, FGFR2, is homologous to FGFRl. 

Being encoded by the related genes bek, ck3, K-sam and TK14 (29, 31-33), FGFR2 

binds aFGF and bFGF equally well but has little binding affinity for FGF-5 (29). 

With the structural similarity in the primary sequence with FGFRl and FGFR2, 

FGFR3 responds to both aFGF and bFGF (34). Recently FGFR4 has been identified 

(35) and it exhibits the highest affinity for aFGF followed by K-fgf and bFGF (36). In 
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addition, the FGF receptor is complicated by the fact that each FGF receptor gene 

may give rise to three or more different forms as a result of alternative mRNA 

splicing (37). Therefore, FGF receptors with either two or three extracellular 

immunoglobulin-like domains and different lengths of the intracellular tyrosine 

kinase domains have been observed (37) 

After binding of FGF to the tyrosine kinase receptor, the high affinity receptors 

are dimerized and subsequently the intracellular tyrosine kinase activity is switched 

on via an autophosphorylation mechanism (38, 39). Although the signal from FGF is 

known to be ultimately transduced into the nucleus to induce DNA synthesis, the 

detailed signal pathway remains unclear. A cascade of phosphorylation could be 

involved because it is reported that incubation of FGF with 3T3 cells results in 

phosphorylation of a series of proteins (40). Recently, phospholipase C-y (PLC-y) has 

been suggested to be a major substrate of FGFRl (41). Furthermore, calcium 

concentration also appears to be connected with the level of expression of FGF 

receptors (42). 

In addition to the high affinity receptors, low affinity FGF binding sites have been 

characterized and shown to be heparin or heparin-like proteoglycans which are 

located on the cell surface or in the extracellular matrix (43-46). Binding of FGF to 

heparin not only provides a convenient way for the protein purification but also 

stabilizes and potentiates FGF activities (47). Recent studies have further 

demonstrated that binding of FGF to the receptor absolutely requires the presence of 

heparin-like molecules (48-50). Neither aFGF nor bFGF can bind high affinity FGF 

receptor in heparin or heparan sulfate deficient cells, while the mutant phenotype has 

been shown to be inverted if heparin is added. Furthermore, heparin is suggested to be 

possibly directly attached to the FGF receptor by the identification of a proteoglycan 

which has been shown to be the high affinity FGF receptor (51). Treatment of this 

proteoglycan with heparinase resulted in a receptor with lower molecular weight and 
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less binding affinity for FGF (51). 

To identify the specific functional domains on FGF that may bind the FGF 

receptor and heparin, a series of peptides derived from the bFGF sequence were 

synthesized (52). These bFGF derived peptides were tested for their abilities to inhibit 

bFGF binding to the receptor as well as their binding affinity for heparin. Peptides 

related to the sequences of FGF-(21-41) and bFGF-( 107 -116) were demonstrated to 

compete for bFGF binding to the receptor. In addition, these two peptides were also 

shown to inhibit thymidine incorporation into 3T3 fibroblasts when stimulated by 

bFGF, which further suggests the importance of these regions in receptor binding. In 

fact, more evidence supports the idea that the region of bFGF-(1 07 -116) is very likely 

to be directly involved in interacting with the FGF receptor. For example, Thr 113 of 

bFGF, which is located in this region can be phosphorylated by protein kinase A, and 

the phosphorylated bFGF displays an enhanced binding affinity for the FGF receptor 

(53). Additionally, although the members of the FGF family are highly homologous, a 

high frequency of sequence insertions or deletions have been observed in the region 

of bFGF-(107-116) (Figure 1.1). For example, between bFGF amino acids 112 and 

115, aFGF and KGF have two and four more residues than bFGF. Because various 

FGFs exhibit different binding affinities for the FGF receptors, it is likely that 

receptor binding specificity is related to these insertions and deletions. 

Since heparin plays a necessary role in FGF binding to its receptor (48-50), 

understanding the interactions between FGF and heparin is also critical for 

understanding the receptor binding mechanism by FGF. Chemical modification and 

thrombin digestion (54-56) studies have implicated that lysine 118 and Arg 122 of 

aFGF may be involved in heparin binding. Further, bFGF related peptides from this 

region containing the residues after 94 have been shown to bind heparin (52). A 

similar result supporting the importance of the carboxyl terminal region in heparin 

binding was obtained by using a series of genetically truncated bFGF (57). In 
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addition, the primary sequence of FGF reveals that there is a region in the C-terminus 

rich in positively charged amino acids. There are five lysines and arginines clustered 

around lysine 126 in bFGF whereas there are seven lysines and arginines in aFGF. It 

is very likely that these positively charged residues may play an important role in 

heparin binding. 

In addition to facilitating FGF binding to the tyrosine kinase receptor, heparin as 

well as other polyanions reveal the ability to protect FGF from thermal, acidic and 

proteolytic degradations (58, 59). FGF has been found to be surprisingly unstable at 

physiological temperatures but appears to be more stable in vivo, probably because of 

complexation to polyanionic molecules such as heparin or heparin-like molecules 

(60). The stabilization effect of polyanions on FGF has further been shown by the 

observation that aFGF appears to require lower energy for refolding in the presence of 

polyanionic molecules such as heparin, inositol hexasulfate and A TP (61). Heparin is 

primarily present on the cell surface and in the extracellular matrix (ECM). Indeed, 

endogenous bFGF has been found associated with heparin and heparin-like molecule 

such as heparan sulfate in the ECM (62-64), and addition of heparinase to ECM 

results in the release of FGF from ECM (65). Furthermore, the ECM has been 

implicated as a source of FGF for long-term stimulation of DNA synthesis for a 

variety of cells (66). These findings suggest that the ECM may serve as a reservoir of 

stored FGF. Because aFGF and bFGF are not secreted due to the lack of signal 

peptide sequences, the storage and release of FGFs from the ECM may be an 

important regulatory mechanism of FGF activity. 

Based on these observations, various mechanisms have been proposed to explain 

the partition of heparin or heparin-like molecules in regulating FGF activities. These 

include that 1) heparin may function to stabilize the tertiary structure of FGF; 2) 

binding of heparin may trigger a conformational change in FGF so that FGF can bind 

the FGF receptor with high affinity; 3) binding of FGF to heparin may facilitate FGF 
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oligomerization which is necessary for FGF receptor dimerization. In fact, evidence 

has been observed for all these possible models. While it has been discussed that FGF 

can be stabilized by heparin as described above, the binding of heparin to bFGF but 

not aFGF has been reported to induce a small but highly reproducible conformational 

change as observed in the amide I region of the protein's infrared spectrum (67, 68). 

Furthermore, FGF dimerization has also been demonstrated recently by a cross

linking experiment with the presence of heparin (69). For further examination of these 

possibilities, a three-dimensional structure of FGF complexed with heparin is really 

necessary. 

After binding of FGF to the receptor, FGF is internalized by receptor-mediated 

endocytosis (43, 70). The detection of translocation of intact FGF into the cell nucleus 

led to the discovery that the amino terminus of FGF is a nuclear translocation 

sequence (71). A truncated form of FGF without the N-terminus fails to stimulate 

DNA synthesis and cell proliferation, though tyrosine kinase activity is observed to be 

induced after FGF binding to the receptor. It was further shown that when the FGF N

terrninus is replaced with another nuclear translocation sequence such as that of yeast 

histone 2B, the chimeric FGF exhibits a comparable activity to the native protein 

(71). After nuclear translocation, FGF is involved in the transcriptional regulation of 

at least two genes (72). Although the detailed interaction of FGF with the genes 

awaits further investigation, this is the first time that a peptide growth factor has been 

reported to be directly involved in the gene-specific transcription. 

To better understand the signal process triggered by FGF, crystallographic studies 

of FGF have been carried out by us since 1989. A three-dimensional structure of FGF 

can provide not only a structural understanding of the receptor binding mechanism by 

FGF and other similar peptide growth factors, but also can provide a solid basis for 

the rational designs of drugs to either promote or inhibit FGF activities. It has been 

demonstrated that the oncogenes int-2, hst, FGF-5 and FGF-6 are expressed in many 
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transformed cells such as those of lung cancer and breast cancer (73) and the 

significance of the FGF family for malignant transformation is further indicated by 

the finding that, after genes from the ras family, the hst gene is the most frequently 

encountered oncogene in transfection assays (16). More efficient anti-tumor strategies 

should possibly be devised based on the active site structure of FGF. On the other 

hand, FGF is a potential drug for tissue repair of burnt skin and stomach or duodenal 

ulcers (74). If FGF is used as a tissue growth promoting therapy, the stability of FGF 

inside cells is a crucial factor. Without disrupting FGF activities, this can be achieved 

either by changing FGF per se such as proper site-directed mutagenesis or by 

designing accessory molecules that can stabilize FGF by protecting it from acidic and 

enzymatic degradation. All those approaches rely heavily on an accurate three

dimensional structure of FGF. Furthermore, recent studies have revealed that bFGF 

can prevent the death of lesioned cholinergic neurons (75), and Alzheimer's disease is 

connected with an increased level of expression and abnormal distribution of bFGF in 

brains (76). We anticipate our structural and functional studies of FGF will also help 

to find either novel or improved therapies aginst the FGF related diseases. 
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Chapter 2 

Structure Determination of Acidic and Basic FGF 
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2.1. Crystallization and preliminary diffraction studies of FGF 

The recombinant analogs of bovine aFGF (Ala47Cys, Gly93His) and human 

bFGF (Ser70Cys, Ser88Cys), which were expressed in E. coli, have comparable or 

even higher biological activities than the native forms (1, 2) and were used in our 

structural and functional studies. The factorial method (3) was employed for 

crystallization trials. The protein samples of 10 mg/ml aFGF in 20 mM Na Citrate 

(pH 5.6) and 13 mg/ml bFGF in 20 mM Na Citrate (pH 5.0) were used. 

Crystals of aFGF were obtained by vapor diffusion against 0.2 M (Nf4)2S04, 2 

M NaCl, 0.02 M sodium potassium phosphate and 0.1 M sodium citrate at pH 5.6 

(Figure 2.1 ). The protein droplet contained equal volumes (3 J.ll) of the reservoir 

solution and a 10 mg/ml protein solution. The typical aFGF crystal is about 0.5 x 0.5 

x 0.5 mm3 in size and diffracts to approximately 2.5 A resolution. The crystals stop 

growing after about one month with fresh protein samples, but it takes much longer 

for old protein samples to grow to the optimal size. This may be due to an increased 

amount of dimeric arising from formation of intermolecular disulfide bonds. 

Precession photographs showed that the crystals are trigonal with space group P3t21 

(or its enantiomorph P3221) with unit cell edges of a = b = 78.6 A, c = 115.9 A 

(Figure 2.3). The Matthews coefficient calculation (4) indicated that there may be 

three aFGF molecules per asymmetric unit. 

Crystals of bFGF were also obtained by S. Faham using the hanging drop method. 

The precipitant solution contained 25% polyethylene glycol 8000 and 0.1 M Hepes at 

pH 7.6 (Figure 2.3). The crystals grow in the triclinic space group P1, with unit cell 

dimensions of a= 31.1 A, b = 33.5 A, c = 37.0 A, a= 64.2o, ~ = 106.40, y = 103.3° 

and diffract to about 1.9 A (Figure 2.2). Crystals of bFGF used for data collection are 

typically larger than 1 mm x 0.4 mm x 0.4 mm. 

2.2. Heavy atom derivative search for aFGF crystals 
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The multiple isomorphous replacement (MIR) method was used to obtain phase 

information. Heavy atom derivatives were screened by soaking aFGF crystals in 

different heavy atom reagents at various concentrations. Because no satisfactory 

synthetic mother liquor was found for the aFGF crystals, heavy atom reagent 

solutions were injected directly into the hanging drop with a 10 ~1 syringe. Typical 

volume was about 0.3 ~1 of heavy atom solution added to 6 ~1 crystallization drop. 

The screening of heavy atom compounds was carried out by comparing diffraction 

intensities on precession photographs of the soaked crystals with precession 

photographs of the native crystals. Table 2.1 lists the heavy atom compounds that 

were screened for aFGF. 

2.3. Area detector data for aFGF 

All diffraction data for the aFGF structure determination were collected at room 

temperature on a Siemens area detector mounted on a Siemens rotating anode 

generator operating at 50 KV x 90 rnA. CuKa radiation (A.= 1.54 A) was used for the 

diffraction studies. Crystals were sealed in the capillaries in equilibrium with several 

microliters of a high salt synthetic mother liquor (1000 ~1 of such a solution consists 

of 750 ~14M NaCl, 80 ~1 (NJ4)2S04, 8.0 ~14M NaKP04, 150 ~1 1.0 M Na Citrate 

at pH 5.6 and 12 ~1 H20) in which crystals can survive for several days. The crystals 

were mounted with a random orientation in capillaries. Data collection for these 

crystals started at a random Q angle and stopped after scanning 100°. The n scan was 

repeated after phi was changed by 90°. The collected data sets were autoindexed, 

integrated, scaled and reduced with the XENGEN software package (5, 6). Table 2.2 

lists the data statistics for the native and the derivative crystals which were soaked in 

4 mM EMTS and 3.3 mM K2PtC14 for 12 hours and 3 days, respectively. 

2.4. Heavy atom binding sites in aFGF 
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After both native and derivative data sets are available, heavy atom sites can be 

located by the difference Patterson function if the derivatives are isomorphous with 

the native crystal. All the derivative data sets were locally scaled to the native with 

the ROCKS program (7) before the difference Patterson maps were calculated. The 

difference Patterson for EMTS was very clear as illustrated for the Harker section w = 

1/3 (Figure 2.4A). Similar results were obtained for the anomalous difference 

Patterson (Figure 2.4B). The difference Patterson for K2PtCl4 is noisy and the 

anomalous signal can barely be observed (Figure 2.5). 

In either space group P3t21 or P3221, the asymmetric unit is one sixth of the unit 

cell and by convention it is located between x = (0, 1), y = (0, 1) and z = (0, 1/6). But 

because of the origin ambiguity on z, only x = (0, 1), y = (0, 1) and z = (0, 1/12) needs 

to be searched for self vectors while z = (0, 1/6) is needed for cross vectors because of 

the fixed origin. In order to find the heavy atom binding sites of EMTS and K2PtCi4, 

half of the Patterson function unit cell was searched with PSP (program written by B. 

T. Hsu). The peak height output by PSP does not take symmetry into account, which 

means in P3t21 or P3221, all points on the two fold axis will be doubled. After these 

factors were considered, one and two binding sites for EMTS and K2PtCi4 derivatives 

were found, respectively (Table 2.3). One binding site (0.53, 0.35, 0.023) was found 

to be the same for the two derivatives, implying that a common origin is used. 

2.5. Phase calculations and phase extensions for aFGF 

With the heavy atom binding sites available, the multiple isomorphous 

replacement phases were calculated and refined with PHARE (8). The phase 

possibilities for centric reflections in space group of P3t21 are shown in Table 2.4. 

With anomalous scattering information of the EMTS derivative incorporated, the 

refinement showed an increased phasing power of the anomalous derivative, 

confirming that the space group is P3t21 instead of the enantiomorph P3221. The 
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difference Fourier map showed additional minor binding site for the K2PtCl4 

derivative after 8 cycles of heavy atom site refinement (fable 2.5). The overall figure 

of merit is 0.68 to 3.0 A (Table 2.6). 

To improve the quality of the MIR electron density map, two phase extension 

methods were applied: solvent flattening and noncrystallographic symmetry 

averaging. For solvent flattening, programs from the CCP4 suite were used (9). The 

sphere radius for generating the envelope was chosen as 10 A. The solvent content 

was initially set to 40% due to the uncertainty about how many molecules were in one 

asymmetric unit. The protein envelope was generated automatically by B. C. Wang's 

method (10) and then applied to the MIR electron density map. Solvent flattening 

converged after six cycles. The solvent-flattened phases combined with MIR phases 

were used to generate another molecular envelope and applied to the MIR map again. 

This was repeated until convergence was achieved. After solvent flattening, the 

electron density map showed that there may be two molecules in one asymmetric 

unit. Using the value of 1 daltonJA3 for protein density, it was predicted that the 

solvent content of the unit cell was 60%. Using a solvent content of 55% (instead of 

60% to be sure that no protein electron density was cut off), solvent flattening of the 

original MIR map was repeated. The final phase angle changes of noncentric and 

centric reflections at 3 A were 34.90 and 12.20, respectively. 

Although the solvent flattened map clearly shows the molecular boundaries, it 

was still not possible to trace the backbone of the protein. To further improve the 

map, molecular averaging was carried out. Because the self-rotation function did not 

show how the two molecules in the asymmetric unit are related to each other, two P1 

cells were made to include each molecule from the solvent flattened map. Cross 

rotation functions (11) were then calculated based on the structure factors converted 

from these two P1 cells. The resultant peak shows these two molecules are related to 

each other by a general transformation with the three spherical polar angles of 45.00, 
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82.0° and 165.0°. Using these angles, the relative translation between the two 

molecules was determined by skewing the density of one molecule to the same 

orientation as the second, followed by calculation of a real-space translation function 

with the use of Fourier coefficients LJF0 (-h)F5 (h)]exp(-21tihu) where F0 and Fs 
h 

are the complex structure factors for the observed and skewed structures. The non-

crystallographic symmetry was further refined by maximizing the density correlation 

coefficient (12). 

With the refined noncrystallographic transformation matrix, initial electron 

density averaging between the two molecules was carried out (13) using the 

molecular envelopes generated by B. C. Wang's method (10). Due to the close 

contacts between the two molecules, the molecular envelopes generated by this 

method overlapped with each other in space and therefore were adjusted manually. 

After averaging, the R factor between FobsS and FcaJcS which were calculated from the 

symmetry averaged electron density map, dropped from 43.0% to 19.8%. The 

electron density map calculated with 2F0 - Fe coefficients and the averaged phases 

was obviously much improved and chain tracing became possible (Figure 2.6). 

2.6. Model building and refinement of aFGF 

The positions of the alpha carbon atoms were initially determined from sections 

of the averaged map stacked on acetate slabs. Ninety one Cas were roughly located 

and displayed on a Silicon Graphics workstation using the TOM/FRODO program 

(14). After polyalanine models of the two aFGF molecules were built, refinement of 

the model with PROLSQ (15) and phase recombination of the model phases with the 

averaged phases was carried out. The initial aFGF model was built based on the 

averaged maps. Because the averaged map had some loop regions truncated due to the 

size of the initial molecular envelope, averaging was carried out again with a 
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molecular envelope generated by putting 3 A spheres on each atom of the initial 

model. Using the new envelope, averaging converged at an R factor of 18.3% to 3 A 

resolution. After more cycles of model building, refinement and phase combination, 

residues 1-137 and 10-137 for the two aFGF molecules in the asymmetric unit were 

built into the electron density map. The last three carboxyl terminal residues are 

disordered in both molecules and the amino terminus of one aFGF is also disordered. 

Refinement of this model between 8- 2.7 A resolution yielded an R factor of 20.9%, 

with root-mean-square deviations from ideal bond distances and angles of 0.02 A and 

3.8° respectively. A total of 35 water molecules were located by difference Fourier 

calculations and added to this aFGF model. Refinement with XPLOR (16) of this 

model which has 2009 nonhydrogen atoms progressed to the final R factor of 17.7% 

with r.m.s. deviations from the ideal bond distances and angles of 0.012 A and 2.3° 

respectively. The structure coordinates have been deposited in the Protein Data Bank 

(lBAR.AFGF.PDB). The two aFGF molecules have about 98% and 91% complete 

structures respectively. 

2.7. Structure determination and refinement of bFGF 

The same heavy atom derivatives, EMTS and K2PtC4, were used in the bFGF 

structure determination by S. Faham and B. T. Hsu. Crystals of bFGF were soaked in 

a synthetic mother liquor (30% PEG8K, 0.1 M Hepes, pH 7.5), containing either 3 

mM EMTS or 5 mM K2PtC4 for 2 days (Table 2.7). Using the aFGF model, the 

heavy atom binding positions in bFGF crystals were located by difference Fourier 

map with the molecular replacement phases of aFGF. There is one EMTS binding site 

and 4 K2PtCl4 binding sites on bFGF. Isomorphous replacement phases were 

calculated to 2.8 A with an overall figure of merit of 0.62. The MIR map revealed 

similar molecular folds with aFGF and residues 20 to 144 of bFGF were subsequently 

fitted into the electron density map by A. J. Chirino. The first 19 and the last 6 bFGF 
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residues are disordered. Refinement of the bFGF model with a total of 40 water 

molecules with XPLOR programs by A. J. Chirino led to the final R factor of 17.0% 

between 5- 1.9 A resolution. The r.m.s. deviations of bond length and bond angle are 

0.015 A and 2.3° respectively (lBAS_BFGF.PDB). 
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Table 2.1. Heavy Atom Compounds Tested 

Compound Concentration Soaking time 

EMTS 4mM 12 hrs 

K2PtC14 3.3mM 7 days 

K21rCl6 20mM 7 days 

K2Pt(CN)4 1.6mM 14 days 

PtPOP 1.5mM 14 days 

K2U02F5 4mM 4days 

Hg(Ach * 12 days 

Pb(Ach 1.6mM 16 days 

Hg(Phh 2.9mM 9 days 

Nal 12.5mM 3 days 

PCMBS ** 6days 

Meurbromin *** 3 days 

EMP 0.8mM 3 days 

AuCl3 l.OmM 3 days 

* 0.3 ~1 of 1/4 saturated Hg(Ac)2 solution was added to the hanging drop. 

** 0.3 ~1 of 1/2 saturated PCMBS solution was added to the hanging drop. 

*** 0.5 ~1 2% Murbromin solution was added to the hanging drop 

EMTS: Ethyl Mercuri thiosalicylate 

EMP: Ethyl Mercury Phosphate 
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Table 2.2. Summary of the aFGF Area Detector Data 

reflections reflections 

resolution unique collected completeness R-factor 

Native 2.7 A 12,574 25,107 85% 4.4% 

EMTS 3.2A 7638 25675 93% 6.7% 

K2PtC14 3.2A 7179 23836 88% 7.9% 

Table 2.3. Heavy Atom Binding Sites Located by Patterson' s Function 

3n 

3n-1 

3n+1 

X 

0.53 

0.12 

0.56 

0.35 

0.87 

0.37 

z 

0.015 

0.046 

0.015 

Table 2.4. Centric Zones for P3t21 

Old 

0° or 180° 

60° or -120° 

120° or -60° 
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hOI 

0° or 180° 

120° or -60° 

60° or -120° 



Table 2.5. Refined Heavy Atom Sites 

X y z Occupancy B (A-2) 

EMTS 0.545 0.343 0.0147 0.475 27.5 

K2PtCi4 0.873 0.116 -0.0458 0.381 37.2 

0.557 0.353 0.0179 0.248 36.4 

0.150 0.548 0.145 0.115 51.1 

Table 2.6. Phasing Power of the Derivatives 

Resolution 11.1A 8.3A 6.4A s.2A 4.4A 3.8A 3.4A 3.oA overall 

EMTS 2.13 2.07 2.53 2.07 1.79 1.75 1.74 1.47 1.88 

EMTSanom 2.43 1.94 1.50 1.53 1.06 0.89 0.73 0.42 0.90 

K2PtCi4 1.08 1.66 1.75 1.71 1.27 1.08 0.87 0.66 1.17 

27 



Table 2.7. bFGF Heavy Atom Refinement Statistics 

Data Reso- Concen- measured comp- Rsym Refined fHIE 

lution tration reflection lete (%) Sites 

Native 1.9 A 8,462 89% 4.8 

EMTS 2.8A 3mM 2,745 87% 5.8 1 2.0 

K2PtC14 2.8A 5mM 2,877 91% 8.2 4 2.2 

Rsym = LII- <I >I/~) 
1 

fH /E=[Lf~ /L(Fderiv,obs -Fderiv,calc)
2f2 
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Figure 2.1. An aFGF crystal grown under the high salt condition. 

Figure 2.2. bFGF crystals grown with the condition found by S. Faham (17). 
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Figure 2.3. Precession photograph (~ = l20) of the hOI zone of aFGF crystals. 
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u•e.v•e u•t eee 

V•l 000 

(A) 

u•e.v-e u•l eee 

(B) 

Figure 2.4. The difference Patterson (A) and difference anomalous Patterson (B) 

maps of EMTS in the Harker section w = 1/3. 
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u=e. v=e U=l 606 

V=l 006 

Figure 2.5. The difference Patterson map of KzPtC4 in the Harker section w = 1/3. 
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Figure 2.6. The 3 A averaged electron density map in the region of f3 strand 2. 
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Chapter 3 

FGF Structures and their Relationship to Biological Function 
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3.1. Architectural overview of the FGF structure 

The crystal structures of aFGF and bFGF reveal a very similar fold for the two 

proteins. With a roughly spherical shape of approximate 30 A in diameter, FGF 

contains 12 antiparallel ~ strands that are arranged in a pattern of approximate three

fold internal symmetry as shown in Figure 3.1. Six of the strands form an antiparallel 

~ barrel, consisting of strands 1, 4, 5, 8, 9 and 12, numbered sequentially from the 

amino terminus. One end of the barrel is covered by the remaining six ~ strands, 

coupled in pairs so that the axis of the ~ barrel coincides with the molecular pseudo 3-

fold axis relating every 4 ~ strands (strands 1-4, 5-8 and 9-1 0). 

A striking feature of the aFGF and bFGF structures is the overall similarity to the 

folding pattern observed for the interleukin -1 a. and -1 ~ (ll...-1 a. and 1 ~). two growth 

factors that mediate the immune response (1-4). Despite the fact that IL-l~ has 

several more extended loops compared to FGF, superposition of FGF and interleukin-

1~ a.-carbon atoms of the 12 strands reveals a root-main-square deviation of only 1.5 

A (Figure 3.2). Recently, hisactophilin, which is an actin-binding protein (5), and a 

Kunitz-type trypsin inhibitor from Erythrina caffra seeds (6) have been found to also 

consist of 12 antiparallel ~-strands. This unusual fold was first observed in the 

structure of soybean trypsin inhibitor determined about twenty years ago (7, 8). 

Interestingly, although they possess quite different biological functions ranging from 

growth factors to protease inhibitor, these similarly folded polypeptides have the 

common feature of being involved in recognition of other proteins. 

In spite of the structural similarity, sequence comparison of these proteins with 12 

anti parallel ~ strands reveals very low sequence homology. For instance, human 

aFGF and interleukin-1 ~ are only 12% identical and 33% similar. In addition, the 

protein internal sequence symmetry correspondent with the pseudo three-fold axis can 

not be detected using the programs in the University of Wisconsin GCG package. 

Nevertheless, when the sequences of these proteins are aligned based on the three-
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dimensional structures, it is found that the hydrophobic character of residues at nine 

positions in the Jl sheets (residues 14, 23, 31, 56, 65, 73, 97, 109 and 117 of aFGF) is 

quite well conserved (Table 3.1 ). The crystal structures further demonstrate that the 

conserved residues form a compact core inside the protein, suggesting a unique role 

of these conserved amino acids in the protein folding (Figure 3.3). 

3.2. Structural comparison of the two aFGF molecules in one asymmetric unit 

Because the aFGF structure was determined using the crystals containing two 

aFGF molecules in one asymmetric unit, these two protein molecules were built and 

refined independently (9). An obvious difference between the two structures is that 

the first nine residues of one aFGF is disordered whereas the amino terminus of the 

second aFGF has well defined structure. Except that, superposition of the two aFGFs 

shows that they have quite similar backbone and side chain conformations, with an 

r.m.s. deviation of less than 0.56 A for the 126 common a-carbons (Figure 3.4). The 

quantitative comparison of the two structures illustrated in Figure 3.6 further indicates 

that there are only three local regions where the structural discrepancy is over 1.0 A. 

The most structurally variable region is around aFGF glutamine 77 where the 

difference is as large as 1.6 A. Located on one of the longest FGF loops between Jl 

strands 7 and 8, glutamine 77 and its adjacent residues are fairly exposed to a large 

solvent channel inside the crystal. Usually protein loops are flexible and the different 

conformations observed here may reflect a dynamic picture of FGF in solution. 

The second largest structural difference occurs near glutamate 91 of the Jl turn 

between strands 8 and 9. Unlike Gln 77, this is due to a lattice contact in the crystal. 

One aFGF has two amino acids located adjacent to Glu 91, Asn 92 and Tyr 94, which 

are in contact with Glu 49 of a neighboring molecule. For the other aFGF, the main 

chain carbonyl groups of Glu 91 and Gly 93 are hydrogen bonded to the neighboring 

residues Arg 88 and Lys 101, respectively. Lastly, the third site of a relatively large 
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structure variance is also caused by a lattice contact, where the aFGF residue 

glutamate 49 forms an intermolecular hydrogen bond to tyrosine 94 of the 

neighboring molecule. 

Molecular packing inside crystals can affect the main chain conformations as well 

as the side chain conformations. For example, superposition of the two aFGFs shows 

that the side chains of tyrosine 55 are quite different (Figure 3.5). Lattice contact 

analysis shows that while Tyr 55 of one aFGF does not interact with its neighboring 

molecules, Tyr 55 of the second aFGF in the asymmetric unit is however situated at 

an intermolecular interface and interacts with its neighboring molecule. 

Consequently, the two residues Phe 75 and Pro 65, which are adjacent to Tyr 55 and 

have hydrophobic interactions with Tyr 55, also display different conformations in 

the two structures. 

For further structural comparison, temperature factor analysis was performed for 

the two aFGFs. The temperature factor plot for the two molecules illustrated in Figure 

3.7 shows that although the rough trends of the temperature factor for the two 

molecules are similar, one molecule has generally higher temperature factors than the 

other, and further, several local regions display large fluctuations. This is consistent 

with the calculated average temperature factors, which are 26.7 A2 and 22.7 A2 for 

the two aFGFs respectively. Systematic analysis of the intermolecular contacts within 

4 A between symmetry related molecules shows that the aFGF molecule with lower 

average temperature factor has 13 residues involved in non-covalent contacts with its 

neighboring molecules. In contrast, none of the amino acids of the aFGF with a 

higher average temperature factor interacts with adjacent protein molecules. This 

suggests that lattice contacts are probably responsible for the overall temperature 

factor difference. Also, in addition to the overall temperature factor difference, local 

regions near residues 49 and 72 are shown to have relatively large difference in 

temperature factors. These differences are also mainly due to the lattice contact effect 
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(Figure 3.7). The Glu 49 region, which displays structural differences in the two 

aFGFs, has been discussed above. And one of the two leucines 72 in the two 

structures is also seen interacting with residue 126 of a neighboring molecule inside 

the crystal. 

Because the aFGF structure has been determined to 2.7 A, only 37 water 

molecules have been located for the two aFGFs in the asymmetric unit. These thirty 

seven water molecules are nevertheless unevenly distributed between the two protein 

molecules. Thirteen and twenty-four water molecules are bound to the two aFGFs 

respectively. Superposition of the two aFGFs further showed that while most interior 

water molecules were at common positions in both structures, the exterior water 

molecules are often different. Among the 7 common water molecules in both 

structures, five of them are located inside the protein and only two are bound on the 

protein surface. Furthermore, the four buried water molecules are found to bind the 

main chain amino and carbonyl groups from different 13 strands, whereas one buried 

water molecule is found to form a hydrogen bond with the buried side chain of Ser 99 

(Table 3.2). 

In general, the two aFGF molecules in the asymmetric unit have very similar three 

dimensional structures and the few observed local structural differences are mainly 

due to the lattice contact effect. In addition, interactions between the neighboring 

molecules packed inside the crystal may also be responsible for the overall 

temperature factor difference in the two structures. The structural similarity of the 

different molecules in one asymmetric unit is further supported by the commonly 

situated interior water molecules which have been independently located. The close 

conformations of the two aFGFs not only assures the correctness of the structure, but 

also simplifies the structural comparison between acidic and basic FGF. 

3.3. Structural comparison between aFGF and bFGF 
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With 55% sequence identity and 70% similarity, it is not surprising that acidic and 

basic FGF have very similar three dimensional structures. Superposition of aFGF and 

bFGF shows an overall r.m.s. difference of 0.74 A between the corespondent 126 Ca 

atoms (Figure 3.8). Furthermore, the structure similarity of aFGF and bFGF is not 

only contained in the 13 strands but also in virtually all the loops. In addition, despite 

the different resolutions, many of the bound water molecules are commonly observed 

in the two structures (9). Although forty ordered water molecules are located in 

bFGF, only thirteen and twenty four water molecules are found for the two aFGFs in 

the asymmetric unit respectively. Yet seven water molecules, that are common in the 

two aFGF structures in one asymmetric unit, have also common positions in bFGF. 

Similar to aFGF, four out of the five interior water molecules function to mediate the 

interaction between different 13 strands (Table 3.2) while one buried water molecule 

interacts with bFGF Ser 109. 

In spite of the overall structure similarity of aFGF and bFGF, there are several 

local regions that do display conformational difference between the two structures 

(Figure 3.8). The most variant region is around Ser 114 of bFGF or Glu 104 of aFGF 

where the a-carbon position difference is as large as 4 A. The crystal structures reveal 

that bFGF Ser 114 is located at the end of the long loop between 13 strands 9 and 10 

while at the same region aFGF has two more inserted residues (Lys 105 and His 106) 

than bFGF before 13 strand 10. Thus it leads to the dramatic conformational change of 

aFGF Glu 104 as shown in the Figures 3.8 and 3.9. 

Besides the large conformational difference revealed in this amino acid insertion 

site, there are three additional regions that have obviouly structural differences. They 

are localized around bFGF residues Pro 37, Ser 70 and Ser 101 (Figure 3.9). Unlike 

the regions of aFGF Glu 104 or the homologous residue of Ser 114 in bFGF, which 

have intrinsic structural differences, the conformational difference of these three 

regions are all due to lattice contact effects. For example, while aFGF Glu 28 is in 
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contact with Arg 128 of a neighboring molecule, its corresponding amino acid Asn 38 

in bFGF nevertheless interacts indirectly with Asn 105 of an adjacent bFGF through 

another residue Arg 40. Also, Asn 72 and Ser 101 of bFGF are both located at the 

molecular interface and interact with Leu 131 and Tyr 125 respectively. In contrast, 

aFGF Gly 62 is not involved in any lattice contacts and aFGF Glu 91 interacts with 

Glu 187 from a neighboring molecule. 

Therefore when lattice contact effects are excluded, aFGF and bFGF do have 

quite close three-dimensional conformations, except for the loop between strands 9 

and 10 in which the sequence insertion occurs in aFGF. The structural similarity of 

acidic and basic FGF demonstrated here is in agreement with the biochemical studies 

that a similar but slightly different activity profile for aFGF and bFGF has been 

reported. This will be discussed further in the following sections. 

3.4. The cysteine locations revealed in the FGF structures 

There are three cysteines in aFGF and four in bFGF, with two of them conserved 

in all species of aFGF and bFGF (aFGF Cys 16, Cys 83 and bFGF Cys 26, Cys 93). 

While alkylation of aFGF after reduction was reported to have no effect on mitogenic 

activity (13), a contrasting result was obtained by Harper et al. suggesting that a 

disulfide bond between Cys 16 and Cys 83 could be formed in aFGF (14). For bFGF, 

substitution of cysteine -70, -88 and -93 with serines by site-directed mutagenesis was 

reported to result in unaltered FGF activities, which implies that the disulfide bridge 

in bFGF is not functionally important (15-17). 

The double mutant Ala47Cys, Gly93His aFGF analog has been shown to possess 

a comparable or slightly higher mitogenic activity than the native (18). The locations 

of cysteines -16 and -83 as well as alanine 47, the substitution for cysteine-47, are 

explicitly defined in the three dimensional structure of this analog (9) (Figure 3.10). 

Cys 16 is located on the loop between J3 strands 2 and 3 while Ala 47 and Cys 83 are 
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located on the ~ strands 4 and 8 respectively. Interestingly, the cysteine localized on 

the loop structure is totally buried whereas the cysteine or the cysteine substitution 

located on the ~ strands are exposed. The exposure of Cys 83 in the three dimensional 

structure of aFGF is in agreement with the observation that EMTS binds aFGF near 

Cys 83. Furthermore, it is shown in the crystal structure that the distance between 

residues 47 and 83 is about 11 A while Cys 16 is situated relatively further away from 

these two residues by an approximate distance of 20 A. It is clearly indicated here that 

no pair of cysteine residues are in close enough proximity to one another to form an 

intramolecular disulfide bond. 

For bFGF, the structure of bFGF Ser70Cys and Ser88Cys analog, which has an 

equal activity to the native (15, 16), shows that residues -70, -88 and -93 are located 

on one side of the protein while cysteine-26 is buried at the other end (Figure 3.11). 

The shortest distance between these four residues is about 6.5 A, which is between 

amino acids 88 and 93. Residue 70 is situated about 18 A from 88 and 93 while Cys 

26 is located at least 20 A away from all the three residues. Therefore, like aFGF, it is 

quite certain that no intramolecular disulfide bridge can be possibly formed between 

these cysteines in bFGF. However, based on literature reports (20) as well as our 

observations that dimeric FGF can be detected with SDS-PAGE and HPLC, 

intermolecular disulfide bonds in both aFGF and bFGF appear to be possibly formed 

gradually between the exposed cysteines (i. e., cysteines-70, 88 and 93 in bFGF and 

cysteines-47 and -83 in aFGF). 

Since two disulfide bridges are observed in some structures of twelve antiparallel 

~ strands such as Kunitz-type trypsin inhibitor (5-7), the FGF cysteine positions are 

compared to that of trypsin inhibitor DE-3 from Erythrina caffra (ETI) (7). As 

revealed in the proteinase inhibitor structure, one disulfide bond is formed between 

the two loop residues cysteine-39 and -83 while the other disulfide bridge is between 

cysteines-131 and -139 located at the end of strand 9 and the beginning of strand 10. 
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Superposition of bFGF and ETI shows that the four cysteines in bFGF are neither 

overlapped with or close to the cysteines forming the disulfide bridges in ETI (Figure 

3.12). In general, the disulfide bonds of ETI, which has larger molecular dimensions 

( 44 x 40 x 40 A 3) (7) than FGFs, are located on the protein surface. 

3.5. Receptor binding studies 

Interest in FGFs have centered on the molecular details of the receptor-mediated 

pathways by which their diverse physiological activities are expressed. The 

knowledge of the interactions between FGFs and FGF receptors could provide 

valuable insights into the design of therapeutically useful agents which can either 

mimic or inhibit the action of the growth factor. In general, hormones can be 

classified into two groups based on their target receptors. The first class of hormone 

enters cells and binds a cytosolic receptor that is a transcription factor. Examples of 

this class of receptors are the steroid and thyroid receptors. The second class of 

hormone binds a receptor which is a transmembrane protein and a second messenger 

is usually coupled to the hormone and receptor interaction. Most peptide growth 

factors belong to the second class. Furthermore, some of these peptide growth factor 

receptors have seven transmembrane helices (such as the 13-adrenergic receptors and 

rhodopsin) and G proteins, cyclic AMP and ultimately protein kinases are involved in 

the signal transduction pathway. Others have a single transmembrane helix (such as 

PDGF and IL-2 receptors) and signal transduction is mediated through 

autophosphorylation of the intrinsic tyrosine kinase or the kinase associated with the 

receptors (19, 20). While many receptors of cytokines coordinating immune and 

inflammatory responses are non-tyrosine kinase proteins (such as the receptors of IL-

2, IL-3, IL-5, IL-6, GM-CSF, G-CSF and etc.) (20), other peptide growth factor 

receptors such as FGF receptors contain intrinsic tyrosine kinase domains. On the 

basis of their structural characteristics, tyrosine kinase receptors can be further 
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classified into three subclasses (20). These include the cysteine-rich monomeric 

receptor (class I), the cysteine-rich heterotetrameric a2!h receptor (class II) and the 

receptor with several extracellular immunoglobulin-like domains (class III). For 

instance, EGF receptors belong to class I while insulin receptors and FGF receptors 

belong to class n and m respectively. 

Binding of growth factors to their receptors often leads to receptor dimerization or 

oligomerization either by the binding of one monomeric ligand to two receptors 

simultaneously (such as human growth hormone (21)), or by binding of two 

monomeric ligands to two receptors (such as EGF (20)), or by binding of one bivalent 

ligand to two receptors (such as PDGF (20), NGF (22), TGF-13 (23), M-CSF (24)). 

For FGF, although it is a monomeric ligand, the receptor binding and dimerization 

mechanism has not yet been elucidated and some possibilities will be further 

discussed in chapter 4. 

The first FGF receptor eDNA was reported to be isolated in 1989 by using an 

oligonucleotide probe of a purified FGF receptor fragment (25). The amino acid 

sequence derived from this eDNA clone, which is a fms-like gene called fig (26), 

revealed that the receptor is composed of three extracellular Ig-like domains, one 

transmembrane helix and an intracellular tyrosine kinase domain with an approximate 

molecular weight of 130 kD. After this pioneering work, at least four more FGF 

receptors have been identified and cloned (25-36). Although these receptors are all 

encoded by fig and the related gene bek (26, 27), alternative RNA splicing has been 

shown to be possibly responsible for the observed multiple forms of FGF receptors, 

which can possess either two or three Ig-like domains, and different lengths of 

cytoplasmic tails (37). Furthermore, it appears that different FGF receptors have 

different binding specificities for the various members of the FGF family. For 

example, the KGF receptor, encoded by a gene closely related to bek (27), can bind 

with high affinity to KGF and aFGF but not bFGF (27). Sequence comparison shows 
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that the C-terminal 50 amino acids of the extracellular lg-like domain closest to the 

membrane are quite diversified in KGF and bFGF receptors (27). These 50 amino 

acids have now been further confirmed to be the major ligand binding specificity 

determinant by an elegant ligand-receptor binding study with chimeric receptors in 

which the last 50 amino acids are interchanged between different receptors (28). 

While details of the binding interactions between FGF and the last 50 carboxyl 

terminal amino acids of FGF receptor remain obscure, the crystal structure of FGF 

and the putative receptor binding sites allocated on this "3-D map" of FGF may 

provide some clues. 

Before the three-dimensional structure of FGF was determined, the possible 

receptor binding sites on bFGF had been explored with a series of bFGF derived 

peptides (38). On the basis of their ability to inhibit radiolabeled bFGF binding to the 

receptor and to stimulate thymidine incorporation, two functional subdomains were 

identified, which were bFGF-(25-69) and bFGF-(94-121 ). Shorter pep tides contained 

within these sequences, 31-51 and 107-116, were less effective but still exhibited 

similar activities. Interestingly, these two peptides however showed inconsistent 

mitogenic results in different cell lines. While bFGF-(31-51) had weak growth 

stimulation ability to 3T3 fibroblast cells, the same peptide was observed to inhibit 

the growth of vascular and capillary endothelial cells. For bFGF-(1 07 -116), although 

it showed quite potent agonist effects on 3T3 fibroblast cells, it had little effects on 

vascular and capillary endothelial cell growth. 

As demonstrated by the bFGF structure (9), bFGF-(31-51) covers from the 

beginning of 13 strand 2 to the end of the loop between 13 strand 3 and 4. Strands 2 and 

3 are adjacent, and are stabilized by interstrand hydrogen bonds (Figure 3.13). While 

most amino acids of 13 strand 2 are buried inside the protein in both aFGF and bFGF, 

13 strand 3 and the two 13 turns in this region are relatively more exposed on the 

protein surface (Figure 3.15B). Since a longer peptide of bFGF-(25-69) was shown to 
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have more potent mitogenic activity than bFGF-(31-51) (38), the conformations of 

the two peptides are therefore compared. Surprisingly, most additional residues in the 

longer peptide (residues 25-30 and 52-69) are not in contact with bFGF-(31-51) 

(Figure 3.14 ). The only interactions between residues after 51 and the region of 31-51 

are reflected in a hydrophobic core formed by Leu 33, lie 35 from bFGF-(31-51) and 

Leu 54, Leu 56, Leu 64, lie 66 from bFGF-(52-69). The additional six amino acids 

before 31, on the other hand, are observed to form a ~ turn which could stabilize the 

conformation of bFGF-(31-51) by forming two hydrogen bonds through the 

interactions of residues 26-31 and 29-45 respectively. 

The second putative receptor binding peptide, bFGF-(107-116) is located on a 

different face of bFGF from 31-51 as illustrated in Figure 3.16. Much evidence has 

strongly suggested that the region of bFGF-(107-116) is very likely to be directly 

involved in interacting with the FGF receptor. For example, in addition to the peptide 

mapping experiment which revealed the importance of bFGF-( 107 -116) in receptor 

binding (38), Thr 113 located in this region can be phosphorylated by protein kinase 

A, and the phosphorylated bFGF displays an enhanced binding affinity for the FGF 

receptor (39). Further, between bFGF amino acids 112 and 115, aFGF and KGF have 

two and four more residues than bFGF respectively, and the two oncogenes int2 and 

FGF5 have an additional 7 to 14 amino acids at the same region (Figure 3.17). In 

general, the FGF family is a highly homologous protein family with very rare 

sequence deletions and insertions. The high frequency of sequence insertion occurring 

here strongly suggests the functional importance of this region. 

Spanning ~ strands 9 and 10, bFGF-(107-116) and aFGF-(97-108) reveal a 

generally similar structural framework, but with a slightly different conformational 

loop. The two inserted residues in aFGF occur on the long loop which connects 

strands 9 and 10 so that the overall tertiary structure of 12 anti-parallel ~ strands is 

maintained (Figure 3.18). The ~ strands at this region are almost buried except the 
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partially exposed bFGF Trp 115. The long loop connecting the two strands is 

however quite exposed (Figure 3.19). The two adjacent basic residues located at the 

beginning of the loop, which are Lys 100, Lys 101 in aFGF and Arg 110, Lys 111 in 

bFGF, have perpendicular side chain conformations with the first basic residue 

relatively distant from the rest of the loop. The following residue in the sequence is a 

histidine in aFGF, but a tyrosine in bFGF. With both similar main chain and side 

chain positions, bFGF Tyr 112 is exposed to solvent while His 102 of aFGF is buried 

under the side chain of the inserted aFGF Lys 115. A very different solvent 

accessibility is observed again on the next residue in the two structures, which is an 

alanine in aFGF but a threonine in bFGF. The solvent exposure of bFGF Thr 113 is 

consistent with the result that this residue can be phosphorylated by protein kinase A. 

Following Thr 113 is Ser 114 in bFGF which is located at the end of the loop between 

strands 9 and 10 where a dramatic change of the backbone conformation occurs on 

the corresponding residue of Glu 104 in aFGF. aFGF Glu 104 is observed to swing 

out of the loop so that the two inserted aFGF residues Lys 105 and His 106 can be 

accommodated at the end of the loop. The more extended loop in aFGF leads to a 4 A 

deviation in the Ca positions at this place. 

Due to the overall architecture of the ~-stranded protein, there are many ~turns 

connecting adjacent strands in the FGF structure. However the loop between ~ strands 

9 and 10, which is likely to interact with the FGF receptors, does not belong in a 

typical ~ hairpin classification. Strands 9 and 10 do not have interactions with each 

other except near the loop region. Two hydrogen bonds are formed between the main 

chain amino and carbonyl groups on ~ strand 9 and 10 and form the narrow end of the 

n loop. There are five bFGF residues and seven aFGF residues located in this loop. In 

both structures, these amino acids are demonstrated to have such geometry that three 

sharp turns are formed inside this loop, resulting in a stable conformation where 

multiple polar interactions and hydrogen bonds are formed between the main chain 
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amide and carbonyl groups. The two additional aFGF residues are inserted in the third 

turn of the loop so that the overall geometry of the loop is maintained. The stability of 

the loop between J3 strands 9 and 10 shown here supports the observation that the 

peptide of bFGF-(107-116) alone can possess strong inhibitory activity to the receptor 

binding by FGF. Because most residues on J3 strands 9 and 10 are buried, the loop 

between the two strands is very likely to play an important role in receptor binding. 

To further confirm and characterize this receptor binding region, more biological 

studies, such as the site-directed mutagenesis of the amino acids located on the loop, 

need to be carried out. 

3.6. Nuclear translocation of FG F 

After binding of FGF to the receptor, the FGF and FGF receptor complex is 

internalized into cells by receptor-mediated endocytosis. Intact aFGF has been 

identified for up to six hours after it enters cells and degradation products of 10-KD 

and 15-KD can be detected inside the cell up to 24 hours (40, 41). Further, the 

presence of FGF in the cellular nucleus has been recently shown by 

immunohistochemical localization studies within mesenchymal cells (42). Nuclear 

import of polypeptides occurs by binding of the peptides to a nuclear pore complex 

that facilitates the translocation process. Specific sequences containing basic residues 

usually accelerate targeting of proteins to the nucleus (43). Based on the sequence 

characteristics of nuclear translocation of proteins, a peptide of aFGF-(7-13) 

containing the sequence NYKKPKL was identified to be similar to the nuclear 

translocation sequence of other nuclear proteins ( 44 ). It was further shown that a 

mutant aFGF lacking the putative nuclear translocation sequence failed to stimulate 

cellular DNA synthesis and cell proliferation, although it could still induce receptor 

tyrosine kinase activities. In addition, when the aFGF N-terminus was replaced by 

other nuclear translocation sequence such as that of yeast histone 2B, the chimeric 
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aFGF was reported to exhibit comparable mitogenic activities to the native protein 

(44). The significance of the presence of FGF in the nucleus was further investigated 

in a cell-free system of nuclear extract from Ehrlich ascites tumor cells. In this 

experiment, bFGF was demonstrated to regulate phosphoglycerate kinase gene 

transcriptions (45) and a 5' upstream region of the pgk gene was further demonstrated 

to be required for gene activation induced by bFGF. Therefore, it is likely that FGF 

may have direct interactions either with this DNA sequence or with other unknown 

cis-elements. 

The FGF crystal structure shows that the nuclear translocation peptide of FGF 

appears not to have a stable three-dimensional conformation. Of the two 

independently-determined aFGF molecules and the bFGF structure (9), the FGF 

amino terminus can only be observed in one aFGF molecule (Figure 3.20). The 

structure reveals that the peptide of aFGF-(1-9) possesses a rather extended form and 

does not specifically interact with the remainder of the molecule. Instead, it is 

stabilized by contacting neighboring molecules which are packed inside the crystal 

around it mainly through hydrophobic interactions. For example, Phe 1, Leu 3 and 

Pro 4 are clustered on one side of the amino terminal peptide and form a hydrophobic 

core by interacting with Phe 22, Tyr 15, Leu 133 and Leu 135 of a neighboring 

molecule. On the other side of the peptide, the side chain of Leu 5 is stabilized by 

interacting with Leu 55, Pro 64, Pro 79 and Leu 84 from another neighboring 

molecule. There are three closely located basic residues in the nuclear translocation 

peptide, lysines 9, 10 and 12. Both lysines 9 and 12 appear to be quite flexible and are 

disordered in the crystal structure, whereas the next basic amino acid, Lys 12, has 

defined side chain density, although it is quite exposed to solvent and has barely any 

interactions with other residues. As demonstrated here, the overall independence of 

the aFGF nuclear translocation sequence from the rest of the structure is consistent 

with the observation that the chimeric aFGF fused with other nuclear translocation 
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sequence maintains mitogenic activity. 

3.7. FGF binding to heparin 

FGF is a unique member of the peptide growth factor family in the sense that 

FGF is so far the only growth factor known to absolutely require heparin or heparin

like molecule to bind its receptor (46-48). While many other growth factors such as 

GM-CSF, ll...-3, pleiotrophin, platelet factor 4, amphiregulin and heparin-binding

EGF are known to be able to interact with heparin, and some of these including ll...-3 

and GM-CSF, are active only in the presence of heparin (49), the significance of 

heparin binding to these growth factors is still unclear. However for FGF, a series of 

recent biochemistry experiments have demonstrated that heparin is involved in 

modulating FGF activity in the first step of FGF action by facilitating FGF binding to 

its receptor. Yayon et al. showed that the binding ability of FGF to the FGF receptor 

was lost in the heparan-sulfate deficient cells while the mutant phenotype could be 

inverted if heparin or heparan sulfate was added (47). In addition, it was further 

pointed out by Sakaguchi et al. that heparin could be directly attached on the FGF 

receptor by the identification of a 150-kD heparan sulfate proteoglycan as a high 

affinity FGF receptor (46). They also showed that treatment of the heparan sulfate 

proteoglycan with heparinase resulted in a reduced molecular size of the receptor and 

decreased binding affinity of FGF for the proteoglycan, which further suggests that 

heparin-like molecules may play an obligatory role in the regulation of receptor 

binding of FGF. 

Besides regulating FGF binding to receptor, heparin also functions as a stabilizer 

of FGF and protects FGF from acid and enzymatic degradation (50,51). In addition, it 

also serves as a reservoir for storage of FGFs in the extracellular matrix (ECM) and 

release of FGF from ECM can be observed when heparinase or extra heparin is added 

(52). The size and the degree of sulfation in heparin, shown by many in vitro and in 
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vivo experiments, are the critical factors for heparin binding to FGF. Depolymerized 

heparin containing as little as 8-10 sugar units were demonstrated to be as effective as 

the whole heparin molecule for binding FGF or releasing FGF from ECM (53, 54). 

The sufficiency of a heparin octasaccharide for regulating FGF binding to the receptor 

is further supported by the recent FGF-receptor binding study with a soluble form of 

FGF receptor and a series of small heparin oligosaccharides of different lengths (55). 

For the sulfate groups, N-sulfate groups have been shown to be crucial for heparin 

binding to FGF while the presence of 0-sulfate groups appears to have an increased 

but not critical effect on heparin binding to FGF (53). 

Correspondent with the highly negatively changed groups on heparin (Figure 

3.21), a region rich in positively charged and polar amino acids is found in both aFGF 

and bFGF crystal structures (9-12). Lys 112, Lys 113, Asn 114, Arg 116, Lys 118, 

Arg 122, Gln 127, Lys 128 are clustered around Lys 118 in aFGF while Asn 28, Arg 

45, Lys 120, Arg 121, Lys 126, Lys 130 and Gln 135 are centered around Lys 126 in 

bFGF. Lys 118 of aFGF and Arg 126 of bFGF are located on ~ strand 11, which is 

adjacent but distinct from the putative carboxyl terminal receptor binding site (Figure 

3.22). The importance of the residues after Asn 103 for heparin binding in bFGF has 

been demonstrated in many biochemistry experiments. For example, in agreement 

with the studies with a series of genetically truncated FGFs (56), peptide bFGF-(103-

146) was demonstrated to possess binding affinity to radiolabeled heparin (38). 

Furthermore, reductive methylation, site-direct mutagenesis and thrombin digestion 

experiments have all implicated the importance of aFGF Lys 118 as well as its 

adjacent residue Arg 122 in heparin binding (57-59). 

To elucidate the exact binding site of heparin on FGF, we have been working on 

the crystal structure of FGF and heparin oligomer complex. The structure of FGF and 

heparin complex is also necessary to prove the hypothesis proposed by Yayon et al. 

that a vital conformational change of FGF induced by heparin is probably required for 
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FGF binding to the FGF receptor (47). Crystals of aFGF obtained in the presence of 

low molecular weight heparin by using the old aFGF crystallization conditions (9) 

appeared to exclude heparin from the crystals since the "cocrystal" morphology 

remained the same and no obvious peaks could be observed in the difference Fourier 

map. The reason that heparin is not included in the crystal is probably due to the 

heterogeneity of the heparin sample used in crystallization. Therefore, a homogenous 

heparin analog, sucrose octasulfate, was used for these studies and will be further 

discussed in Chapter 4. 
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Table 3.2. Interactions between aFGF and the Buried Water Molecules 

Water Residue Strand Residue Strand 

H20 504 NH2S6 ~5 co 83 ~8 

H20 505 NH2 97 ~9 co 109 ~10 

H20 515 NH2110 ~10 co 118 ~11 

H20 520 NH223 ~2 co 14 ~ 1 

H20 517 Ser99 ~9 

* Water molecules are numbered as in 1BAR_AFGF. PDB. 

**. NH2 and CO are main chain amide and carbonyl groups that bind the water 

molecule. 

54 



Figure 3.1. A Ribbons representation of the aFGF structure. 
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104 104 

Figure 3.4. The Ca backbone superposition of the two aFGF molecules in one 

asymmetric unit. 

~ro79 ~ro79 

Figure 3.5. An example of side chain conformational difference caused by lattice 

contacts in the aFGF crystal. Residues with thick and thin lines are from the two 

aFGFs in one asymmetric unit after superposition. 
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(A) 
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~H~R~V R~K~PULJUK~Q~E R~VUdS~G V CAN 

Q~ D T[DG] LfL] Y Glsl Q T P N E E C L F L E R L E EfNj H[YNTYJ Iisl K[Kl H 
R~K E~RUJL A~K c v T DEc F F FER L E SUUN~R~R~Y 

A E K Hf'WFV]G[LKlK NfG]R s['KL'"Gjp R!TlH F G Q K A I L F L P L P V SislD 
T S- -~A~R T~Q Y~S K~G P G Q K A I L F L PM SA K~-

(B) 

22 
40 

62 
BO 

102 
120 

140 
155 

Figure 3.8. (A). Stereoview of backbone structures of superimposed aFGF and bFGF. 

aFGF residue 104 is labeled. (8). Sequence alignment of bovine aFGF (top) and 

human bFGF (bottom). 
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Figure 3.10. Locations of the three cysteines (residues 16, 47 and 83) present in the 

aFGF structure. 

Figure 3.11. Cysteine locations in the bFGF structure (shown with the same 

orientation of aFGF in Figure 3.10). 
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Figure 3.13. Backbone conformation of bFGF-(31-51), the N-terminal putative 

receptor binding site. 

Figure 3.14. Backbone conformation of bFGF-(25-69). 
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Figure 3.15. (A) Sequence alignment and (B) solvent accessible smface area of the 

N-tenninal putative receptor binding regions in aFGF (solid line) and bFGF (dash 

line). 
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KGF NTYASAKWTHNGGE ................ MFVALNQ 
95 

AFGF NTYISKKHA .... EKH .............. WFVGLKK 
104 

BFGF NTYRSRKYT .... S ................ WYVALKR 

INT2 NTYASRLYR .... TGSSGPGAQRQPGAQRPWYVSVNG 

FGF5 NTYASAIHR .... TEKTGRE .......... WYVALNK 

Figure 3.17. Sequence comparison of KGF, aFGF, bFGF, int2 and FGFS in the 

putative receptor binding region. 

Figure 3.18. Stereoview of the putative C-terminal receptor binding site. bFGF (thin 

line) is superimposed to aFGF (thick line), based on the twelve J3 strands. 
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Figure 3.19. (A) Solvent accessibility comparison between aFGF and bFGF in the 

C-terminal putative receptor binding site. Interestingly, although aFGF has two more 

residues than bFGF at this putative receptor binding site, bFGF has a slightly larger 

solvent accessible area (318 A2) than aFGF (281 A2). (B) Sequence alignment of 

aFGF and bFGF at the C-terminal putative receptor binding site. 
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Figure 3.21. The major repeating unit of heparin. 

104 

Figure 3.22. The putative heparin binding site (shown with side chains in the region 

from residue 112 to residue 122) and receptor binding sites (thick lines) mapped onto 

the aFGF structure. 
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Chapter 4 

Interactions of FGF with Sucrose Octasulfate and an 

Implied Receptor Binding Mechanism 
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4.1. Introduction 

Although sucrose octasulfate has long been known to promote tissue repair, its 

therapeutical mechanism is unclear. Used in the treatment of stomach ulcers, sucrose 

octasulfate is unique in that the effectiveness appears not to involve an adjustment of 

the stomach pH (1). Based on its polyanionic property and its structural similarity to 

heparin disaccharide, Folkman et al. tested the binding affinity of FGF to sucrose 

octasulfate and found that it can bind sucrose octasulfate more tightly than it binds 

heparin (2). As with the FGF and heparin complex, bFGF bound to sucrose 

octasulfate remains stable even at low pH and exhibits enhanced mitogenic activity to 

various tissue ulcers (2). Recently sucrose octasulfate has been shown to induce the 

same small but highly reproducible spectroscopic changes in bFGF as heparin does, 

further suggesting that heparin and sucrose octasulfate interact similarly with bFGF 

(3). To better characterize the specific interaction between sucrose octasulfate and 

FGF, crystallographic studies of the FGF and sucrose octasulfate complex have been 

performed. In addition, the three-dimensional structure of sucrose octasulfate bound 

to FGF may provide a structural basis for understanding the binding of FGF to 

heparin as well as to its receptor in the presence of heparin. 

4.2. Structure determination of the aFGF and sucrose octasulfate complex 

Both the single (Ala47Cys) and double (Ala47Cys, Gly93His) mutant aFGF 

samples exhibit comparable mitogenic activity to the wild type and were used in 

cocrystallization trials. Low ionic strength precipitant solutions in the presence of 3.3 

mM sucrose octasulfate were used in the factorial screening (4). Cocrystals were 

obtained with both aFGF mutants by the vapor diffusion method. Hanging drops 

contained equal volumes of a 10 mg/ml protein solution and reservoir buffer (0.1 M 

MgCh, 27.5% PEG8K, 0.1 M ADA, pH 6.5 and 3.3 mM sucrose octasulfate). While 

only small crystals of the [Ala47, Gly93] aFGF analog were obtained using this 
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condition, the [Ala47] aFGF analog yielded crystals approximately 0.5 x 0.5 x 0.5 

mm3 in size with a trigonal morphology. The crystals of the [Ala47] aFGF analog 

were therefore used in the following structural studies. Precession photographs 

revealed that these crystals belong to the space group P3t21 or P~21 with unit 

dimensions of a = b = 55.3 A and c = 86.1 A. 

Intensity data were collected on a Siemens multiwire area detector mounted on an 

18-kW rotating anode generator and were indexed with the XENGEN programs (5). 

The cell constants provided by the autoindexing program were a = b = 110.6 A and c 

= 172.2 A, which were exactly twice of those obtained from precession photographs. 

Attempts to index the data using the initial small cell constants (a= b = 55.3 A and c 

= 86.1 A) failed to index a large fraction of the data, supporting the correctness of the 

XENGEN cell constants. Due to the larger dimensions of cell constants, the structure 

determination became more difficult. While the smaller unit cell contains only one 

protein molecule in one asymmetric unit, the larger unit cell contains eight molecules 

per asymmetric unit. 

Nevertheless, when the intensities of reflections were examined, the processed 

data showed a general pattern at low resolution of large intensities for reflections with 

even indices and small intensities for reflections with odd index (Table 4.1 ). Together 

with the observation that only the smaller cell constants were found on the precession 

photographs, it appeared that the crystal form with the larger unit cell could be 

thought of as containing the equivalent of eight smaller unit cells related 

approximately by translations of one half along the a, b, and c axes in the larger unit 

cell. Yet these are not exact relationships, otherwise all reflections with any odd index 

would have intensities exactly equal to zero. 

Because the reflections with odd index are much weaker than those with even 

indices, the molecular replacement search was first attempted in the smaller unit cell 

where there is only one molecule per asymmetric unit. A new data set was generated 
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by removing all reflections with odd h, k or 1, and dividing by a factor of two the even 

indices of the remaining reflections. The search model used in the molecular 

replacement was the 2.7 A resolution aFGF structure (Ala47Cys, Gly93His) 

previously determined in Rees' laboratory [Chapter 3 and (6)]. By using the 

reflections within the resolution of 5 - 8 A, a rotation function solution was obtained 

with the Patterson correlation refinement program (7). After the aFGF model was 

properly oriented, the translation search was carried out in both P3221 and P3I21 

because of the enantimorph ambiguity. The translation search in P3I21 yielded a 

solution with an R-factor of 44% (7.2 cr peak height), while for P3221 the best R

factor obtained was 51% (4.6 cr peak height). The correct molecular replacement 

solutions were later confmned by the binding sites of heavy atom derivatives (see 

below). The Hg binding site of EMTS is just near the only exposed cysteine in the 

[Ala47] aFGF analog, whereas K2PtC4 was found to bind to His 124, His 106, and 

Arg 122. Furthermore, the heavy atom binding sites calculated in a difference Fourier 

map using the molecular replacement phases gave peaks that were consistent with the 

difference Patterson map. 

Although the difference Fourier electron density map calculated with the 

molecular replacement phases showed the heavy atom binding sites on aFGF, no 

obvious difference peaks corresponding to the bound sucrose octasulfate molecule 

were found. In addition, there was little density for the side chain of His 93, 

suggesting that the averaged structure in the smaller unit cell, though close enough to 

simplify the initial molecular replacement search, was not accurate for high resolution 

analysis. Therefore the whole cell was generated by translating the molecular 

replacement model along a, b and c by one half of the larger cell constants so that one 

asymmetric unit contained eight molecules. The space group also changed from 

P3I21 to P3221 when the c axis was doubled. Real space rigid body refinement 

against the EMTS single isomorphous replacement phases was then carried out using 
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TNT (8), which lowered the R-factor to 34.9% at 3.5 A resolution. Several more 

cycles of positional refinement further lowered the R-factor to 27.1 %. Using the 

phases from this model, an F0 - Fe map was calculated. Encouragingly, a large 

difference peak was found near Lys 118, possibly corresponding to the bound sucrose 

octasulfate. However the density was still not sufficiently resolved to unambiguously 

model the sucrose octasulfate. Therefore, to further improve the electron density, a 

second heavy atom derivative data set (K2PtCl4) was collected. The K2PtC4 binding 

sites were located in a difference Fourier map using the refined model phases. The 

MIR phases were subsequently calculated with HEAVY (9) by refining the heavy 

atom sites against the difference Patterson map (Table 4.2). These phases were then 

combined with the molecular replacement phases. Although the overall map quality 

improved slightly after phase combination, the regions near the His 93 side chain and 

sucrose octasulfate remained unchanged, probably due to the poor quality of the MIR 

phases. The figure of merit for the MIR phases was only 0.33 to 3.0 A (See Table 

4.2). 

To further improve the phases, eight-fold molecular averaging was carried out 

(10). The general noncrystallographic symmetry relations between the eight 

molecules in the asymmetric unit were obtained from the refined model. After a 

sucrose octasulfate molecule was roughly positioned according to the difference map, 

a molecular envelope was generated by placing 4.0 A spheres at each atomic position 

of sucrose octasulfate and 2.4 A spheres around each protein atom except those in 

residue 93. Since the search model has a glycine at position 93 (6), 6 A spheres were 

used for this residue. Phases were then iteratively refined by molecular averaging by 

starting from the MIR phases. Averaging at 3 A resolution converged to a final R

factor of 22.5% between the FobsS and FcaJcS. The quality of the electron density map 

after averaging was greatly improved. This is exemplified by a region near His 93 

where no side chain density was evident before averaging (Figure 4.1). 
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In the averaged map, the six-membered ring of sucrose octasulfate has relatively 

well-defined density, while the five-membered ring is partially disordered. After a 

model of glucose tetrasulfate was fitted into the averaged map, iterative manual 

adjustments and positional refinement were performed. The electron density map 

phased by the combined model and averaged phases revealed improved density for 

the five-membered ring and some of the sulfate groups. After gradual addition of 

more sulfate groups and more cycles of positional and temperature factor refinement, 

the entire sucrose octasulfate was successfully modeled (Figure 4.2). The present 

model without solvent molecules has an R-factor of 20.4% using all the data to 2.7 A 

resolution. The r.m.s. deviations from ideal bond distances and angles are 0.016 A 

and 2.7°, respectively. 

4.3. Structure of the aFGF and sucrose octasulfate complex. 

Sucrose octasulfate binds aFGF in the region around Lys 118 (Figure 4.3), which 

is the largest region rich in positively charged residues in both the acidic and basic 

FGF crystal structures (6,11-13). The region of aFGF involved in sucrose octasulfate 

binding spans the residues from Lys 112 to Gln 127. In addition, one N-terminal 

residue, Asn 18, also interacts with the bound ligand. Overall, aFGF bound to sucrose 

octasulfate has a very similar backbone conformation to that of aFGF alone. 

Superposition of 126 a-carbons from the structures of aFGF and aFGF bound to 

sucrose octasulfate shows an r.m.s. difference of only 0.50 A. There are, however, 

some large side chain conformational changes in the sucrose octasulfate binding 

region. Arg 116 and His 124 are two such examples of residues whose side chains are 

moved for interacting with the bound sucrose octasulfate (Figure 4.4). 

The detailed interactions between aFGF and sucrose octasulfate are shown in 

Figure 4.5. Lysine 118 has the most intensive interactions with sucrose octasulfate, 

forming hydrogen bonds with two sulfate groups from the six-membered ring and 
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also form salt bridges to two more sulfate groups from the five-membered ring. In 

addition to Lys 118, Lys 112 is also hydrogen bonded with two sulfates from each 

sugar ring and interacts electrostatically with another sulfate. Surprisingly, the side 

chain of the adjacent residue, Lys 113, is disordered in the complex structure and 

does not seem to interact specifically with sucrose octasulfate. However, its main 

chain amide is hydrogen bonded to sucrose octasulfate. Another amino acid 

interacting with more than one sulfate group is Arg 122, which binds sucrose 

octasulfate through the two sulfate groups from the five-membered ring. Furthermore, 

in addition to these positively charged residues, amino acids Asn 18, Arg 116 and Gln 

127 are also involved in interactions with sucrose octasulfate. 

The overall structures of the eight protein molecules in the asymmetric unit are 

very similar. Each of the eight aFGFs binds to a single sucrose octasulfate except one 

which also has weak interactions with a neighboring aFGF. On the other hand, the 

eight sucrose octasulfate molecules bound to the eight aFGF molecules are however 

more diverse. Comparison of the eight sucrose octasulfate molecules based on the 

superposition of aFGF a-carbons shows that both the sulfate groups and the sugar 

rings, especially the five-membered ring, can adopt different conformations. 

Additionally, the orientation and position of sucrose octasulfate bound to aFGF also 

shows slight variation in the superposition (Figure 4.6). In spite of the differences 

discussed above, the protein residues and the sulfate groups of sucrose octasulfate that 

are involved in binding are in general similar in all the eight complexes, although 

some details of the hydrogen bonds and electrostatic interactions vary in different 

complexes of aFGF and sucrose octasulfate. 

Based on the sequence alignment of acidic and basic FGF, most residues of aFGF 

that are involved in binding to sucrose octasulfate are also likely to be involved in 

bFGF binding to sucrose octasulfate (Figure 4.7). The three aFGF basic residues that 

play critical roles in binding sucrose octasulfate are Lys 112, Lys 118, and Arg 122. 
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The analogous residues in bFGF are Lys 120, Lys 126 and Lys 130, respectively. 

Residues Asn 18 and Gin 127, which also contribute to sucrose octasulfate binding, 

are conserved in bFGF as well. The only nonconserved amino acid in aFGF binding 

to sucrose octasulfate is Arg 116, which is a glutamine in bFGF. Nevertheless, 

superposition of acidic and basic FGF suggests that the side chain amide groups of 

Gin 124 in bFGF and Arg 116 in aFGF could play an equivalent role in interacting 

with sucrose octasulfate. 

The crystal structure of the complex between aFGF and sucrose octasulfate 

described here is consistent with biochemical studies of FGF binding to heparin. The 

biological importance of the two basic residues Lys 118 and Arg 122, which are 

shown in the complex structure to be critical in interacting with sucrose octasulfate, 

have been previously reported. Reductive methylation of aFGF occurs mainly on Lys 

118 and yields 90% modification of this residue. The methylated aFGF exhibits a 

reduced binding capacity to heparin as well as a lower mitogenic activity to 

Balb/C3TL cells (14). Similar results were obtained by site directed mutagenesis 

when lysine 118 was replaced by a glutamate (15). Arginine 122, which is adjacent to 

Lys 118 in the tertiary structure, has been shown to be a thrombin cleavage site and 

its digestion can be blocked by the presence of heparin (16). By modeling in the 

major repeating unit of heparin to mimic sucrose octasulfate binding to aFGF, Glc(6-

0S03) and Ido(5-C(h) of heparin, but not Ido(2-0S03), appear to be able to make 

contacts with aFGF similar to those made by sucrose octasulfate. In addition, Glc(2-

NS03) is very likely to interact with more than two residues of aFGF simultaneously. 

This is consistent with the observation that N-sulfate groups are critical for heparin 

binding to FGF by using a series of depolymerized and size-homogeneous heparin 

oligomers (17). The evidence of the structural and biochemical similarity of FGF 

binding to heparin and to sucrose octasulfate shown here strongly suggests that the 

interactions between aFGF and sucrose octasulfate are likely to be applicable to the 
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understanding of the interactions between the heparin polysaccharide and FGF. 

Because of the different molecular size and degree of sulfation between heparin and 

sucrose octasulfate, additional heparin binding sites are likely to be present on aFGF 

and will be discussed further in the following sections. 

4.4. FGF binding to heparin polysaccharide 

The minimum size of heparin required for FGF binding has been extensively 

studied by many groups (17-19). Octasaccharides (i.e., eight sugar units) have been 

demonstrated to be the shortest fragment that can bind FGF and facilitate FGF 

binding to its receptor. Furthermore, it has been recently reported that bFGF can be 

cross-linked as a dimer with the addition of heparin oligosaccharides, suggesting 

dimerization of bFGF may occur in the presence of heparin (19). 

From fiber diffraction studies, heparin forms a helical structure with a repeat 

distance of approximately 17 A and four sugar rings per tum (20). Therefore a 

heparin octasaccharide bound to two FGF molecules should span a linear distance of 

about 34 A. In the cocrystals of the aFGF and sucrose octasulfate complex, there is 

only one type of aFGF dimer found in the crystal packing, where the bound sucrose 

octasulfate molecules could be replaced by a linear heparin helix without penetrating 

the protein molecules (Figure 4.9). The distance between the two bound sucrose 

octasulfates is 18 A, which suggests that four more sugar units of heparin could be 

accommodated between them. Including the two independently bound sucrose 

octasulfate, this results in a polysaccharide with eight sugar units, which is exactly the 

smallest size of heparin fragment required to bind two FGFs (19). Indeed, when an 

octasaccharide (without any sulfate groups) was built so as to have a helical heparin 

conformation and moved into the aFGF dimer to replace the two bound sucrose 

octasulfates, a reasonable fit was observed (Figure 4.1 0). Further, this hypothetical 

structure shows that Lys 35 from each of the aFGF monomers has its side chain 
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pointing towards the center of the octasaccharide and are likely to interact with 

heparin. 

The two monomers of this aFGF dimer that may bind heparin octasaccharide 

(Figure 4.1 0) are related by a non-crystallographic two fold axis. They are brought 

together mainly by interactions at the two ends of the molecular interface. Arg 116, 

which displays large side chain conformational change compared to the native aFGF 

structure, forms three hydrogen bonds with Asp 36 and Ser 38 of the neighboring 

aFGF molecule. In addition, salt bridges are formed between Arg 24 (molecule 1) and 

Asp 32 (molecule 2), and also possibly between Asn 114 (molecule 1), Lys 35 and 

Asp 37 (molecule 2) from two different aFGF monomers. Due to the approximate two 

fold symmetry relationship of the monomers, this interaction pattern is repeated at the 

other end of the dimer which thereby multiplies the intermolecular association 

affinity. 

In this dimer structure, a single sucrose octasulfate does not bind two aFGFs 

simultaneously to directly cause the dimerization. Instead, the conformational change 

at Arg 116 leads to six new hydrogen bonds and several salt bridges, which could be 

the major driving force for the dimerization. Based on this observation, as well as the 

fact that intermolecular interactions shown in this aFGF dimer have never been 

observed in the crystal forms without sucrose octasulfate (6, 9-11), it is probable that 

sucrose octasulfate can dimerize FGF in solution and that the dimerization interaction 

observed here could be physiologically relevant. This idea is supported by our recent 

observation that bFGF can be cross-linked in the presence of sucrose octasulfate (see 

Appendix). 

4.5. Possible mechanism of FGF binding to the receptor 

While the stoichiometry of FGF binding to its receptor is still unclear, it has been 

shown that cross-linking of FGF to its receptor results in a complex with a molecular 
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weight equivalent to one FGF plus one receptor, suggesting that each FGF possibly 

binds only one receptor (21, 22). This contradicts the possibility that two structurally 

distinct sites on a single FGF molecule may interact with two FGF receptor 

simultaneously (6, 9, 10, 11, 29). Recently, the binding mechanism of FGF to its 

receptor became even more complicated by the discovery that FGF binding to the 

receptor can occur only in the presence of heparin (23). Based upon this observation, 

as well as the identification of different putative receptor and heparin binding sites on 

FGF (Figure 4.8), it has been proposed that binding to heparin may result in 

significant conformational changes in FGF to induce the subsequent high affinity 

binding of FGF to its receptor (23). However the structure of aFGF in complex with 

the heparin analog sucrose octasulfate does not appear to support this hypothesis. 

Since no striking conformational change is observed in aFGF when it is bound to 

sucrose octasulfate, it is unlikely that large conformation changes in aFGF are 

prerequisite to receptor binding. 

Unlike dimeric peptide growth factors, such as PDGF and NGF, which can 

simultaneously bind two receptors to induce autophosphorylation of the receptor 

tyrosine kinase (24), FGF is a monomer and the attempts to trap FGF dimers in 

solution have so far been unsuccessful (T. Arakawa, personal communication). 

Recently, the observation of bFGF dimers in solution following the addition of 

heparin was reported (19). The transformation of FGF from a monomeric ligand to a 

dimeric ligand in the presence of heparin provides the possibility that FGF may 

interact with its receptor as a dimer, and hence cause the dimerization of two FGF 

receptors. While the FGF dimer structure formed in the presence of heparin is not 

known, the structure of aFGF and sucrose octasulfate complex may provide a 

reasonably analogous model (Figure 4.9 and 4.10). 

In this hypothetical model of the dimeric aFGF bound to a heparin octasaccharide, 

the two FGF monomers are related by a non-crystallographic two-fold symmetry axis. 
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Examples of other dimeric growth factors with a two-fold axis relating each monomer 

have been demonstrated in the crystal structures of NGF, TGF-13 and M-CSF (25-28), 

The interface of this aFGF dimer consists mainly of the region containing aFGF-(21-

41), a peptide which has been reported to be important for receptor binding (29). On 

the other hand, the second putative receptor binding site, aFGF-(97 -1 08), is located at 

the two ends of the dimer (Figure 4.11 ). Several lines of evidence suggest that the 

region of aFGF-(97 -1 08) is important for FGF binding to its receptor. For example, 

bFGF Thr 113 (corresponding to aFGF Ser 103), which is located in this region, can 

be phosphorylated by protein kinase A. The phosphorylated bFGF exhibits an 

enhanced binding affinity to the FGF receptor (30). Although, in general FGF is a 

highly homologous protein family with infrequent sequence insertions, the area 

between aFGF-(97 -108) is an exception. KGF and aFGF have four and two residue 

than bFGF respectively at this site while the two oncogenes int2 and FGF5 have an 

addition of 7 to 14 amino acids compared to bFGF. The high frequency of sequence 

insertions here suggests the functional importance of this site. Indeed while aFGF and 

KGF can interact with the same type of receptors, bFGF is shown to be unable to bind 

KGF receptors (31), which further supports the idea that receptor binding specificity 

is probably defined in this region. 

aFGF-(97 -1 08) has a similar solvent accessible surface area in the aFGF dimer as 

compared to its monomeric state. Each of these two identical sites located on the two 

faces of the dimer could bind one FGF receptor respectively, thereby dimerizing two 

FGF receptors (Figure 4.11). On the other hand, aFGF-(21-41) is fairly buried in the 

dimer interface and would be shielded from interaction with the FGF receptors. In 

fact, after dimerization, about 300 A2 is buried at the interface of the aFGF dimer. 

Based on this hypothetical dimer structure, aFGF-(21-41) may not contain the real 

receptor binding region. Instead, it may be required to form the intermolecular 

interface of the dimer which can then subsequently bind two FGF receptors (Figure 
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4.11). This model may explain why the peptides aFGF-(21-41) and aFGF-(97-108) 

are both able to inhibit FGF from interacting with its receptor. While the peptide 

aFGF-(21-41) may block FGF from binding to the receptor by disrupting formation of 

an FGF dimer which is required for FGF receptor binding, the peptide aFGF-(97 -1 08) 

could have direct interaction with the receptor and compete with FGF for binding to 

the receptor. 
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Appendix 

FGF dimerization facilitated by sucrose octasulfate 

Since bFGF has been shown to cross-link as a dimer in the presence of heparin 

oligosaccharides ( 19), we attempted an analogous experiment in the presence of 

sucrose octasulfate. A similar cross-linking experiment procedure was followed, 

except that non-radiolabeled bFGF was used. FGF cross-linking experiments were 

carried out at room temperature in 0.5 ml microcentrifuge tubes. FGF and sucrose 

octasulfate were mixed to a final concentration of 1.6 mg/ml and 0.045 mg/ml, 

respectively, in a volume of 40 J.Ll. The mixture, also containing 140 mM NaCl, 20 

mM NaP04 (pH 7.4) and 0.025 mM P-mercaptoethanol, was incubated for half an 

hour. 1.5 J.Ll disuccinimidyl suberate, dissolved in DMSO to a concentration of 20 

mM, was then added to the mixture. After another 30 minutes, the reaction was 

quenched with 10 J.Ll ethanolamine-HCl (3 .85 M and pH 8.0). The final mixture was 

incubated for an additional 30 minutes and subjected to 12.5% SDS-PAGE. The 

polypeptide bands were visualized by Coomassie stain. 

The analog of [Ser70, Ser88] bFGF, which exhibits equal activity to the native 

bFGF, was used in the cross-linking experiment. Because a fraction of the protein 

sample has been dimerized through intermolecular disulfide bonds, P

mercaptoethanol was added to the reaction solution in order to fully reduce the 

disulfide bridges. In the absence of sucrose octasulfate, no significant bFGF dimers 

was detected after addition of the cross-linking reagent DSS (Figure 4.12, lane 4). 

However, bFGF dimerization was observed to occur when sucrose octasulfate was 

added (Figure 4.12, lane 3). Sucrose octasulfate has been demonstrated to be 

functionally similar to heparin before. This cross-linking experiment further 

demonstrates the functional similarity of sucrose octasulfate to heparin. 

A similar experimental procedure was also applied to aFGF, except that the 

concentration of aFGF used was about 1.3 mg/ml. No cross-linked aFGF was 
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observed (Figure 4.12, lane 1 and 2), even after the sucrose octasulfate concentration 

was much increased (data not shown here). One possibility for aFGF not to cross-link 

as a dimer is that the cross-linking reagent is more efficient for basic proteins and 

aFGF has a much lower isoelectric point. Therefore, other cross-linking reagents are 

being tested. 
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Table 4.1. An Illustration of Intensity Distribution of the Data 

H K L Foos Sigma 

0 2 4 82.100 0.080 

0 2 5 0.080 5.840 

0 2 6 34.970 0.130 

0 2 42 15.410 0.380 

0 2 43 0.000 999.0 

0 2 44 3.580 1.430 

0 2 45 6.230 0.820 

0 2 46 27.110 0.400 

TABLE 4.2. Heavy Atom Refmement Statistics 

Derivative Reso- Concen- measured comp- Rsym Refined fHIE 

lution tration reflection lete (%) Sites 

Native 2.1 A 31,326 95% 11.8 

EMTS 3.4A 2.5 mM 16,070 92% 12.2 8 1.26 

K2PtCl4 2.3 A 3.0mM 45,881 91% 9.28 14 0.84 

1 

fH IE= [L/~ I ~)F deriv,obs- F deriv,ca~c>2l2 
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Figure 4.1. lllustration of the 8-fold averaged electron density map in the region near 

His 93. 

Figure 4.2. lcr level electron density around a sucrose octasulfate molecule [(2F0 -

Fc) <Xcalc)], calculated at 2.7 A resolution. 
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Figure 4.3. Binding of sucrose octasulfate to aFGF. The j3 strand that is involved in 

sucrose octasulfate binding is labeled. 
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(7) (8) 

Figure 4.6. Superposition of the eight sucrose octasulfate molecules that are related 

by noncrystallographic symmetry. Figure 4.6 (2) to (8) reveal the sucrose octasulfate 

structures of #2 to #8 (thin line) superimposed to sucrose octasulfate #1, based on the 

corresponding aFGF molecules. Sucrose octasulfate #1 is shown in the thick line. 

Figure 4.6 (1): Superposition of the sucrose octasulfate bound to aFGF determined by 

us (#1, shown with thick line) and the free sucrose octasulfate determined by small 

molecule crystallography (32). 
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aFGF 112 

bFGF 120 

KKNGRSKLGPRTHFGQ 

KRTGQYKLGPKTGPGQ 

Figure 4.7. Sequence alignment of acidic and basic FGF in the sucrose octasulfate 

binding region. 

104 104 

Figure 4.8. The structure of aFGF bound to sucrose octasulfate. The two putative 

receptor binding sites, which are near residues 38 and 104 respectively, are shown 

with thick line. 
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Figure 4.12. Dimerization of FGF. Lane 1, cross-linking of aFGF in the absence of 

sucrose octasulfate; Lane 2, cross-linking of aFGF in the presence of sucrose 

octasulfate; Lane 3, cross-linking of bFGF in the absence of sucrose octasulfate; Lane 

4, cross-linking of bFGF in the presence of sucrose octasulfate. 

103 



References 

1. J. F. Megyesi, et al., J . Cell. Biochem. (20th Annual Meetings, 1991). 

2. J. Folkman, S. Szabo, M. Stovroff, P. McNeil, W. Li, Y. Shing, Annals of 

Surgery 214, 414 (1991). 

3. S. J. Prestrelski, G. M. Fox, T . Arakawa, Arch. of Biochem. and Biophys. 293, 

314 (1992). 

4. J . Jancarik and S-H. Kim, J. Appl. Cryst. 24,409 (1991). 

5. A. J. Howard et al. , J. Appl. Cryst. 20, 383 (1987). 

6. X. Zhu, H. Komiya, A. Chirino, S. Faham, G. M. Fox, T. Arakawa, B. T. Hsu, 

D. C. Rees, Science 251, 90 (1991). 

7. A.T. Brunger, J. Mol. Bioi. 203,803 (1988). 

8. D. E. Tronrud, L. F. TenEyck, B. W. Mattews, Acta Cryst. A43, 489 (1987). 

9. T. C. Terwilliger and D. Eisenberg, Acta Cryst. A39, 813 (1983). 

10. G. Bricogne, Acta Cryst. 32, 832 (1976). 

11. A. E. Eriksson, L. S. Cousens, L. H. Weaver, B. W. Matthews, Proc. Nat/. 

Acad. Sci. USA 88, 3441 (1991). 

12. J. Zhang, L. S. Cousens, P. J. Barr, S. R. Sprang, Proc. Nat/. Acad. Sci. USA 88, 

3441 (1991). 

13. H. Ago, Y. Kitagawa, A. Fujishima, Y. Matsuura, Y. Katsube, Biochemistry J. 

110, 360 (1991). 

14. J. W. Harper and R. R. Lobb, Biochemistry 21,671 (1988). 

15. W. H. Burgess, A. M, Shaheen, M. Ravera, M. Jaye, P . J. Donohue, J. A. 

Winkles, J. Cell Biology 111,2129 (1990). 

16. R. R. Lobb, Biochemistry 21,2572 (1988). 

17. R. Ishai-Michaeli et al., Biochemistry 31,2080 (1992). 

18. J . Sudhalter, J. Folkman, C. M. Svahn, K. Bergendal, P. A. D' Amore, J. Bioi. 

Chem 264, 6892 (1989). 

104 



19. D. M. Ornitz, A. Yayon, J. G. Flanagan, C. M. Svahn, E. Levi, P. Leder, Mol.& 

Cell. Bioi. 12,240 (1992). 

20. I. A. Nieduszynski, K. H. Gardner, E. D. T. Atkins, Cellulose Chemistry and 

Technology, pp. 73-91, 

21. H. Ueno, M. Gunn, D, Dell, A. Tseng, L. Williams, J . Bioi. Chern. 267, 1470 

(1992). 

22. W. H. Burgess and T. Maciag, Annu. Rev. Biochem. 58, 575 (1989). 

23. A. Yayon, M. Klagsbrun, J . D. Esko, P. Leder, D . M. Ornitz, Cell64, 841 

(1991). 

24. A. Ullrich and J. Schlessinger, Cell61, 203 (1990). 

25. N. Q. McDonald, R. Lapatto, J. Murray-Rust, J . Gunning, A. Wlodawer, T. L. 

Blundell, Nature 354,411 (1991). 

26. S. Daopin, K. A. Piez, Y. Ogawa, D. R. Davies, Science 257,369 (1992), 

27. M. P. Schlunegger and M.G. Grutter, Nature 358,430 (1992). 

28. J. Pandit, A. Bohm, J. Jancarik, R. Halenbeck, K.Koths, S-H. Kim, Science 258, 

1358 (1992). 

29. A. Baird, D. Schuben, N. Ling, R. Guillemin, Proc. Nat/. Acad. Sci. USA 85, 

2324 (1988). 

30. J-T. Feige and A. Baird, Proc. Natl. Acad. Sci. USA 85,3174 (1989). 

31. D. P. Bottaro, J. S. Rubin, D . Ron, P. W. Finch, C. Florio, S. A. Aaronson, J. 

Bioi. Chern. 266, 12767 (1990). 

32. Y. Nawata, K. Ochi, M. Shiba, K. Morita, Acta Cryst. 837,246 (1981). 

105 



Chapter 5 

FGF Stability and Activity Revealed by the Mutant and FGF -ligand 

Complex Structures 
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5.1. Introduction 

Since FGFs can induce mitogenic, chemotactic and angiogenic activity in a 

variety of cells of epithelial, mesenchymal and neural origins ( 1 ), FGF is a very 

attractively therapeutic target. With the ability to promote tissue repair (2), FGF has 

been considered as a potential drug for wound healing. On the other hand, some 

members of the family are highly expressed in many malignantly transformed cells 

(3). Therefore, inhibition of FGF activity in these cells may be useful. To use FGF as 

a tissue growth promoting drug, high therapeutic efficiency is usually connected with 

the high stability of the protein. One potential way of enhancing FGF stability is to 

introduce specific mutations into FGF. To investigate how mutations can change FGF 

stability, two mutant structures have been determined and will be discussed in this 

chapter. Furthermore, to be used as a routine therapy, high yield and efficiency of 

protein purification is required to prepare large quantities ofFGF. Copper and heparin 

biaffinity columns have been demonstrated to have increased FGF binding affinity 

(4). The structure of FGF and copper complex has been studied. Finally, the structure 

of an FGF-inhibitor analog complex is analyzed to provide a structural basis for 

rational design of drugs to either enhance or inhibit FGF activity. 

5.2. The mutant Gly93His aFGF structure 

While the mutant Ala47Cys aFGF exhibits comparable activity to the native 

aFGF, the substitution of glycine for histidine 93 in aFGF has been shown to increase 

aFGF stability (5). The thermal denaturation temperature of Ala47Cys/Gly93His 

aFGF is about 10 oc higher than Ala 47 aFGF. This is consistent with the observation 

that while [Ala47] aFGF rapidly loses mitogenic activity in the absence of heparin 

(with a half-life of approximately 13 hours (5)), [Ala47, Gly93] aFGF exhibits no loss 

of activity over 250 hours in the same conditions. In addition, [Ala47, Gly93] aFGF 

appears to have slightly higher activity because it can produce the same mitogenic 
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effect as the [Ala47] aFGF analog or the native aFGF but at lower concentrations. 

Furthermore, because [Ala47, Gly93] aFGF can be eluted from a heparin column at an 

identical concentration of NaCl required for [Ala47] aFGF, the stability of [Ala47, 

Gly93] aFGF does not seem to be due to its increased binding affinity for heparin. In 

order to provide a structural basis for comparing the stability of the [Ala47] and 

[Ala47, Gly93] aFGF analogs, their crystal structures were determined. 

In the [Ala47, Gly93] aFGF structure (6), it is shown that residues 90 to 94 have a 

sequence of Glu Glu Asn Gly Tyr and form a 3:5 ~-hairpin as defined by Sibanda, et 

a/. (7). A 3:5 ~-hairpin consists of two terminal amino acids from two adjacent ~ 

strands with three intermediate residues forming a tight ~ turn. This hairpin structure 

is a combination of a classic type I ~ turn and a G 1 ~-bulge (8, 9) which possesses a 

conformation of ~<lR<lR<lL~. where <lL stands for left-handed alpha helix and <lR for 

right-handed alpha helix. Since the main chain torsion angles for the fourth residue of 

the loop are in the left hand alpha helical region of the Ramachandran plot, glycine is 

the most easily accommodated amino acid at this position. The most common amino 

acids observed to replace glycine in the 3:5 ~-hairpin are asparagine and aspartic acid 

(10), although asparagine is seen more frequently (9). Indeed, basic FGF, which has a 

similar main chain conformation as aFGF in this region (Figure 5.1), has an 

asparagine at the fourth position of the hairpin. 

Although the structure of [Ala47, Gly93] aFGF suggests that glycine should be the 

most energy-favored amino acid at position 93, it could be interesting to determine 

the [Ala47] aFGF structure and compare the structures of the naturally occurring 

[His93] aFGF with the [Gly93] aFGF analog. Thin plates of hexagonal crystals of 

[Ala47] aFGF were obtained by using the similar crystallization conditions for [Ala47, 

Gly93] aFGF (6), but they only diffracted to about 4 A resolution. Conditions for 

better quality crystals were then screened with a factorial method (11) in the presence 

of sucrose octasulfate which can generally stabilize FGF (2). The details of 
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crystallization and structure determination are described in Chapter 4. 

The crystal structure of the [Ala47] aFGF-sucrose octasulfate complex reveals the 

well defined side chain position of His 93 (Figure 4.1 ). Further, the side chain of His 

93 is highly exposed to solvent and is not in contact with the rest of the aFGF 

molecule. The overall geometry of the 3:5 hairpin around position 93 in [Ala47] aFGF 

is quite similar to that in [Ala4 7, Gly93] aFGF (Figure 5.2). In addition, the main 

chain torsion angles of histidine 93 are observed to be maintained in a left-handed 

alpha helix conformation. Therefore, as demonstrated by this structure, in addition to 

asparagine and aspartate, histidine can also be accommodated at the 4th position of a 

typical 3:5 hairpin and adopt a left-handed alpha helix conformation. However, 

relative to glycine, a histidine in the fourth position of a 3:5 hairpin is less favorable 

and hence leads to decreased stability of aFGF. 

5.3. The mutant Asp40Arg bFGF structure 

Another mutant FGF that was studied was the Asp40Arg bFGF analog. Arginine 

40 is one of the positively charged residues located in the region of bFGF-(31-51) 

which has been reported to be important in receptor binding and probably also in 

heparin binding (9). Surprisingly, mutation of arginine 40 to an aspartic acid resulted 

in an active bFGF, although it appears to be less stable at low ionic strength (10). To 

further investigate the property of the mutant, the structural determination of 

Asp40Arg bFGF has been carried out. 

Crystallization trials with the low ionic precipitant solution PEG8K, from which 

the [Arg40]bFGF crystals have been obtained (4), failed to produce any [Asp40] bFGF 

crystals. Instead, screening with factorial conditions (7) yielded crystals of 0.5 x 0.5 x 

0.5 mm3 in size that diffracted to about 1. 7 A resolution. Each droplet contains equal 

volumes of the [Asp40] bFGF sample at a concentration of 10 mg/ml and the reservoir 

solution of 2.0 M (NJ-4)2S04 and 0.2 M Na Citrate at pH 5.6. These crystals belong 
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to the space group P2t2t2I and have cell dimensions of 31.8 A, 42.1 A and 86.1 A. 

At about the same time as the [Asp40] bFGF crystals were obtained, the same crystal 

form of the native bFGF crystals was reported to be crystallized in 60% saturated 

ammonium sulfate and 0.2 M sodium succinate (pH 5.3) (12). 

The mutant structure of Asp40Arg bFGF was determined by a combination of 

molecular replacement and single isomorphous replacement (SIR) method. Using the 

determined bFGF structure (4), a clear molecular replacement solution with an R

factor of 38.0% was obtained by using the Crowther fast rotation function (13) and 

the brute-force translation search (14) when diffraction data within 4 to 8 A resolution 

were used. In addition, rigid body refinement of the molecular replacement model 

with TNT (15) lowered the R-factor down to 36.7% using the same reflections. The 

difference Fourier (F0 - Fe) map calculated with the model phases, however, 

displayed no density for the aspartic acid side chain. To improve the model phases, 

several cycles of positional refinement with TNT to 3 A resolution was carried out. A 

model with an R-factor of 26.1% and r.m.s. deviations from the ideal bond distances 

and bond angles of0.023 A and 3.6°, respectively, was obtained. The difference map 

phased with this model still did not reveal side chain density for Asp 40. 

An ETMS derivative data set was then collected in order to further improve the 

phases. The heavy atom binding site, located from a difference Patterson map (Figure 

5.3), was consistent with that located from a difference Fourier map using the 

molecular replacement phases. In addition, the mercury binding site was near the 

solvent exposed cysteine 93 residue, which further supported the correctness of the 

molecular replacement. The single isomorphous replacement phases were 

subsequently calculated by refining the Hg binding site against the difference 

Patterson with HEAVY (16) (Table 5.1). After the SIR phases were combined with 

the molecular replacement phases, the density of the C13 atom of Asp 40 was found in 

the electron density map calculated with the combined phases. Building in an alanine 
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at position 40 followed by several cycles of refinement, manual adjustment of the 

model and phase combination finally made it possible to model in an aspartic acid. 

Refinement of the [Asp40] bFGF model to 1.7 A proceeded to an R factor of 18.4%, 

with the root-mean-square deviations from the ideal bond distances and angles of 

0.016 A and 2.7°, respectively (Figure 5.4). 

The overall structure of [Asp40] bFGF is very similar to the model of [Arg40] 

bFGF which was used during the molecular replacement solution. The root-mean

square difference of the 124 corresponding a-carbons is only 0.61 A. Surprisingly, 

the change of arginine to aspartic acid at residue 40 does not cause any large 

structural disturbance in this region (Figure 5.5). The positional deviation between the 

Cas of amino acid 40 in the two structures is only 0.14 A. Yet, in spite of the similar 

backbone structures around residue 40, the side chains of Arg 40 and Asp 40 exhibit 

quite different conformations (Figure 5.6). In the crystal structure, Arg 40 is localized 

at the beginning of 13-strand 3 and its side chain is mainly stabilized by forming two 

hydrogen bonds with an adjacent amino acid, Asp 38. In addition, Arg 40 is involved 

in a lattice contact and is further stabilized by interacting with two asparagines of a 

neighboring molecule. It is hence expected that the substitution of the arginine to 

aspartic acid would lead to the disruption of all the interactions that Arg 40 is 

involved in, and would result in an altered structure. Indeed, the mutant Asp 40 

structure shows that the Asp 40 side chain does not interact with Asp 38. Nor is it in 

contact with the neighboring molecule. Nevertheless, the mutant structure reveals that 

Asp 40 bFGF appears to remain a stable structure. Instead of forming the interactions 

observed in [Arg40] bFGF, Asp 40 is stabilized by interacting with the neighboring 

amino acid histidine 36. His 36 is observed to display a large conformational change 

in the D40 mutant structure (Figure 5.6). By moving closer to Asp 40, His 36 is able 

to be hydrogen bonded to Asp 40. In addition, a new hydrogen bond is formed 

between Asp 42 and the repositioned His 36. Therefore, according to this structure, it 
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seems that [Asp40] and [Arg40] bFGF may have comparable stabilities. Indeed, this is 

confmned by other biochemical studies after the structure was solved (T. Arakawa, 

personal communication). 

While the [Asp40] bFGF Ca backbone is shown to remain a similar configuration 

to that of [Arg40] bFGF, considerably larger conformational differences are observed 

in the regions far away from amino acid 40. For instance, the Ca positional 

differences of residues 101, 102 and 103 in the two structures are as large as 2.6 A, 

3.3 A and 2.2 A, respectively (Figure 5.7). The structural analysis shows that the 

conformational divergence is mainly caused by a lattice contact. Amino acids 101, 

102 and 103 are three continuous negatively charged residues localized in the loop 

between the 13 strands 8 and 9, which is extensively involved in the interactions with 

the neighboring molecules. In the [Asp40] bFGF crystal form, the main chain 

carbonyl group and the side chain of Asn 102 form hydrogen bonds with Arg 45 and 

Glu 46 of a neighboring bFGF. In addition, the same Arg 45 also interacts with Asn 

103. In the [Arg40] bFGF crystal form, however, Asn 102 is not involved in lattice 

contacts, while Asn 103 is hydrogen bonded to Arg 40 from an adjacent bFGF. 

Therefore, the dramatic structural difference demonstrated here is probably not an 

intrinsic characteristic of this loop. Instead, it is mainly caused by a lattice contact in 

the crystal. This idea is further supported by the structural similarity of the Asn 102 

region in this [Arg40] bFGF structure to another [Arg40] bFGF structure, which was 

independently determined in a new crystal form (17). Furthermore, interactions 

between neighboring molecules are also responsible for the second largest structural 

variance revealed in these two structures (Figure 5.5). Located in a 13 turn, Arg 61 

forms a hydrogen bond to Glu 79 of an adjacent bFGF in the 040 crystal form, 

whereas the same residue in the [Arg40] crystal (6) is not involved in any lattice 

contact. 

Because of the lattice contact effect, it is often asked how reliable protein crystal 
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structures are. A further related question is to ask whether water molecules located in 

crystal structures are physiologically relevant. The two high resolution bFGF 

structures determined by us as well as other independently determined bFGF 

structures provide an excellent example for this kind of analysis. 

At least three different bFGF crystal forms that diffract beyond 2.0 A have been 

reported (6, 12,17) using both high and low ionic strength precipitant solutions. This 

includes two different triclinic P1 forms, crystallized in PEG or ammonium sulfate (6, 

17), and an orthorhombic crystal form obtained with ammonium sulfate (12). 

Interestingly, the two bFGF structures determined in P1 space group 

(1BAS_BFGF.PDB and 3FGF.PDB) have more similar conformations despite very 

different ionic strength precipitant solutions were used. The root-mean-square 

difference of the 124 corresponding a-carbons is only 0.25 A. This is almost within 

experimental error because the two independently determined bFGF structures by us 

and others using the same crystal form and similar crystallization conditions also 

reveal an r.m.s. difference of 0.25 A for the Ca atoms. On the other hand, the bFGF 

structures determined in the orthorhombic form show more structural divergence 

compared to the ones determined in the triclinic forms, with an r .m.s. difference of 

approximately 0.6- 0.7 A. This suggests that different lattice contacts associated with 

changes in space group could cause more conformational differences than different 

crystallization conditions. 

In the three different bFGF crystal forms, forty (6), seventy (17) and eighty (D40 

structure) water molecules were located. While nineteen water molecules are found at 

similar positions in the two Pl bFGF crystal forms, fifteen of these are common in all 

three crystal forms. In addition, eleven common water molecules are located on the 

protein surface and most of them are bound to main chain amide and carbonyl groups. 

Therefore, it may be concluded that although some of the solvent molecules binding 

to proteins appear to have ordered structures due to the crystal packing effect, others 
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are physiologically relevant and could play important roles in mediating protein 

function. 

5.4. Inhibition of FGF activity by suramin 

Although it has been shown that polysulfated glucosaminoglycans are required for 

FGF binding to its high affinity receptor (18-20), other polysulfated compounds 

inhibit interaction between FGF and its receptor (21, 22). One of the polyanionic FGF 

inhibitors which has therapeutic potential against tumor cell growth is suramin (23). 

Suramin is a symmetrical polysulfonated naphthylurea which has been 

extensively used for the treatment of tryposnosomiasis and onchocerciasis (24) 

(Figure 5.8). In addition, suramin has been known to possess anti-proliferative 

activities possibly by inhibiting the binding of various growth factors with their 

receptors (25, 26). Experimental evidence for direct interaction of suramin with 

growth factors has recently been reported (27) by the observations that 1) the 

fluorescence of suramin is significantly enhanced in the presence of aFGF; 2) heparin 

effectively competes with suramin binding to aFGF; 3) the presence of suramin 

stabilizes aFGF from thermal denaturation and also prevents formation of aFGF 

intermolecular disulfide bonds. In addition, based on the observation that the 

molecular weight of aFGF is six times higher after suramin is added in a molar ratio 

of 2: 1, one of the possible inhibitory mechanisms of suramin on FGF activity may be 

that suramin can cause FGF microaggregation. 

To further understand the detailed interactions between suramin and FGF, as well 

as to obtain a structural basis for rational drug designs of better anti-tumor agents, 

crystallographic studies of the FGF and suramin complex were attempted. The 

importance of FGF in carcinogenesis has previously been suggested by the observed 

high concentration of FGF in various tumor cell lines. Recently, direct cellular 

malignant transformation by FGF oncogenes or by bFGF fused with a signal peptide 
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sequence has been demonstrated (21). Furthermore, it is shown that the autocrine 

transformation process induced by the chimeric bFGF can be blocked with the 

addition of suramin (21). Therefore, the use of suramin or suramin analogs has been 

suggested to be a potentially powerful therapy against autonomous cell growth and 

tumorgenesis. 

Attempts to cocrystallize either aFGF or bFGF with suramin have not been 

successful, mainly due to the problem of FGF precipitation in the presence of 

suramin. However, when 1,3,6-naphthalene trisulfonate, which is a close analog of 

half of a suramin molecule in structure, was diffused into an aFGF crystal (6), it was 

found to bind an aFGF dimer with high occupancy. The bound 1 ,3,6-naphthalene 

trisulfonate was located in the difference Fourier map (F0 - Fe), calculated with the 

phases from the aFGF structure (6). After manually fitting of 1,3,6-naphthalene 

trisulfonate into the difference density, the complex structure was refined to 3 A using 

the XPLOR package (28) The refinement has progressed to a current R-factor of 

16.2% with 0.013 A for the r.m.s. bond length deviation and 2.3° for the r.m.s. bond 

angle deviation. 

The refined structure of aFGF and 1,3,6-naphthalene trisulfonate complex 

demonstrates that one 1,3,6-naphthalene trisulfonate binds two aFGF molecules 

simultaneously around the regions of Arg 24 on one aFGF and Lys 128 on the other 

(Figure 5.10). Two lysines around the sucrose octasulfate binding region, Lys 113 and 

Lys 128, form hydrogen bonds to two sulfate groups of 1,3,6-naphthalene 

trisulfonate. 1,3,6-naphthalene trisulfonate also binds another neighboring molecule 

through hydrogen bonds with the side chain of Arg 24 and the main chain amide of 

Asp 28. In addition, the binding is strengthened by hydrophobic interactions. The 

aromatic ring of the naphthalene is sandwiched between Leu 26 from one aFGF and 

carbon atoms of the Lys 113 side chain from the other (Figure 5.11). 

Since the growth factors inhibited by suramin are primarily heparin binding 
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proteins (29), direct interaction of the proteins with suramine in a similar manner as 

heparin has been speculated. This similarity is further supported by the recent report 

that heparin competes with suramin to bind FGF and vice versa (27). The structure of 

the aFGF-1,3,6-naphthalene trisulfonate complex shows that the proposed heparin 

binding site on aFGF is likely to be involved in interacting with suramin. Although 

1,3,6-naphthalene trisulfonate binds two aFGF monomers, the major binding site is 

within the region near Lys 118, which has been suggested to be the heparin binding 

site according to the crystal structure analysis as well as other biochemical results (6, 

30). Among the residues of Asn 18, Lys 112, Lys 113, Asn 114, Arg 116, Lys 118, 

Arg 122, Gln 127 and Lys 128 that are involved in binding to sucrose octasulfate, Asn 

18, Lys 112 and Lys 113 of one aFGF form four hydrogen bonds with the bound 

1,3,6-naphthalene trisulfonate (Figure 5.11), implying that the inhibitory influence of 

suramin upon the activity of aFGF may be at least partially due to the occupation of 

the heparin binding site on aFGF by suramin. Further, in addition to this binding site, 

the structure of the complex reveals that the region between Arg 24 and Asp 28 are 

also involved in 1,3,6-naphthalene trisulfonate binding. The importance of the aFGF

(21-41) region in receptor binding has been reported before (30). Furthermore, the 

same region has been further suggested to possibly be located at the interface of the 

aFGF dimer that binds the FGF receptors (Chapter 4). Therefore, it is also likely that 

suramin disrupts the interactions of FGF with its receptor by occupying the sites 

which are important for FGF binding to the receptor. Finally, since suramin is 

reported to induce FGF microaggregation (27), the structure of one 1,3,6-naphthalene 

trisulfonate binding to two aFGF molecules provides a possible model of how one 

suramin may bind several FGF molecules simultaneously. 

5.5. The FGF Cu binding site 

Copper has been known to modulate the neovascular response from angiogenic 
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stimuli as FGF. While some studies indicate that FGF binding to heparin requires 

copper (31-36), others report that FGF could interact with heparin even in the absence 

of copper (37). FGFs were shown to potentially possess different heparin and copper 

binding sites (37). Shing further showed that although a copper-Sepharose column 

alone is not sufficient to bind either aFGF or bFGF, the biaffinity chromatography of 

copper-heparin is more efficient than heparin affinity columns to resolve aFGF from 

bFGF as well as the multiple forms of aFGF or bFGF (37). 

To confirm the direct interactions between FGF and copper, the difference Fourier 

method has been employed to locate the possible copper binding site on FGF. 

Unfortunately, soaking of bFGF crystals (6) in the synthetic mother liquor of 30% 

PEG8K and 0.1 M Hepes buffer (pH 7.5) in the presence of high concentration of 

CuCh did not successfully incorporate copper into the crystals. Based on speculation 

that the CuCl2 may form Cu(OH)2 precipitant at the crystallization pH, the bFGF 

crystals (6) were soaked for about 10 hours in a solution of 30% PEG8K and 5 mM 

CuCh without the buffer solution. The collected 3 A area detector data of the soaked 

bFGF crystal revealed a clear difference Fourier peak between histidines 36 and 51 

(Figure 5.12). It was further shown in the structure that few local conformational 

changes occur in this region. Both histidines 31 and 51 bind Cu2+ through the N 0 

atoms and the angle between N036, Cu and N051 is about 1200. Furthermore, the 

copper binding site on bFGF is remotely located from the heparin binding site, with a 

distance of 15 A between His 36 and Lys 118, the residue shown to intimately 

interact with sucrose octasulfate (Figure 5.13). 

Soaking of aFGF crystals (6) with CuCh failed to produce crystals with 

incorporated copper. This may be due to the chelation of copper by Na Citrate which 

is the buffer used in crystallization (6). Although the structure of aFGF and copper 

complex is not yet available, sequence alignment analysis shows that the copper 

binding site revealed in bFGF is not conserved in aFGF. Corresponding to bFGF His 
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36 is Leu 26 in aFGF. Nevertheless, despite the sequence divergence, aFGF has been 

reported to have a stronger binding affinity for copper than bFGF (37). Therefore, a 

different binding site on aFGF may be involved in binding to copper. Further 

structural analysis of aFGF shows that two histidines in aFGF, His 106 and His 124, 

are quite close to each other in the three dimensional structure. In addition, one water 

molecule is found to be bound between the two histidines in the refined aFGF 

structure. Furthermore, K2PtCl4, which has been used as the heavy atom derivative 

for the aFGF structure determination, was found to bind aFGF histidines 106 and 124 

simultaneously in two different aFGF crystal forms (6) (Chapter 4). Hence it is very 

likely that copper binds aFGF through these two histidines. Also, as in bFGF, this 

putative copper binding site is separate from the heparin binding site (Figure 5.14). 

The distance between His 106 and Lys 112, which is involved in sucrose octasulfate 

binding, is more than 20 A. This is in agreement with the biochemical studies that 

copper and heparin binding sites appear to be separate (37). 

The distinct binding sites of copper and heparin on FGF explain why a copper and 

heparin biaffinity column is more efficient for FGF purification than a heparin 

column alone. These sites could be used to design engineered metal-binding FGF to 

further increase the protein purification efficiency. For example, a copper binding site 

similar to bFGF may be generated by changing aFGF Leu 26 to histidine so that 

aFGF may have two different copper binding sites around Leu 26 and His 106. 

Furthermore, either the present copper binding sites or engineered sites on FGF could 

be used to bind other metals. One of the possible therapeutic applications for FGF

metal complexes involves using radiolabled metals such as 57Co for the detection or 

the treatment of tumor cells. 
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Table 5.1. EMTS SIR Phases Statistics 

Resolution 

FOM 

P. P. (centric) 

P. P. (acentric) 

6.75 4.42 3.50 2.99 

0.55 0.47 0.44 0.38 

2.25 1.78 1.74 1.52 

3.85 2.86 2.55 2.27 

FOM: Figure of Merit 

P . P.: Phasing Power 
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2.65 2.40 2.21 

0.36 0.33 0.31 

1.48 1.22 1.05 

2.24 1.87 1.65 

2.06 TOTAL 

0.29 0.37 

1.07 1.72 

1.46 2.33 



Figure 5.1. The superimposed 3:5 P-hairpin structures of [Ala47, Gly93] aFGF (thick 

line) and bFGF (thin line) near aFGF residue Gly 93. The hydrogen bonds between 

the strands 8 and 9 are shown with the dashed lines. 

Figure 5.2. Structural superposition of [Gly93] aFGF (thick line) and [His93] aFGF 

(thin line). 
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Figure 5.6. The region near residue 40 in the superimposed [Asp40] (thick line) and 

[Arg40] (thin line) bFGF crystal structures. 

Figure 5.7. Conformational difference near Asn 102 in the two crystal forms of 

bFGF are caused by different lattice contacts. 
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Figure 5.8. Molecular structure of suramin. 

125 



.....
.. 

N
 

0
\ 

+
 

/"
'-

..
 

+
 

/"
-
-

+
 

-
~
~
 

+
 

+-~
~
 

+~
~ 

Fi
gu

re
 5

.9
. A

n 
F 0

-
Fe

 m
ap

 a
t t

he
 2

cr
 c

on
to

ur
 le

ve
l s

ho
w

in
g 

th
e 

lo
ca

tio
n 

of
 1

,3
,6

-n
ap

ht
ha

le
ne

 tr
is

ul
fo

na
te

 

in
 th

e 
aF

G
F 

cr
ys

ta
l. 



Figure 5.10. The binding of one 1 ,3,6-naphthalene trisulfonate molecule to an aFGF 

dimer. Residues of the second molecule in the asymmetric unit are numbered from 

201. 

... ·~·~ 

-2..7 

""' ~~ •• : a• -!5:. 28 r ~KI128 
Figure 5.11. Interactions between two aFGF molecules and the bound 1,3,6-

naphthalene trisulfonate. K #113 and N #128 are from a second molecule in the 

asymmetric unit. 
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Figure 5.13. Copper (shown with van der Waals surface) and heparin binding sites 

on bFGF. The side chains of bFGF-(120-130), which are likely to interact with 

hepairn, are shown with thin lines. 

Figure 5.14. Possible copper (shown with van der Waals surface) and heparin 

binding sites on aFGF. The aFGF backbone has a similar orientation to bFGF shown 

In Figure 5.13. The side chains of aFGF-(112-122), which are likely to interact with 

heparin, are shown with thin lines. 
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