i
New Aspects of the Theory of

Electron Transfer Reaction Dynamics

Thesis by

José Nelson Onuchic

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

1987

(submitted March 9, 1987)



ii

To My Father,
Who Taught Me To Love Science



iii

Acknowledgments

It is a pleasure to acknowledge John Hopfield, a brillant advisor and a
very good friend during this period. To do science in collaboration with him
was always a pleasant activity, never an obligation. The scientific and life
experience he provided me is something very precious, and I will always be in

debt to him for that.

Life in the Hopfield group was very nice and interesting. Science and
social activities always played a very important role. It was fun to interact
with David Beratan, Noam Agmon, Alvin Joran, Burt Leland, John Reinitz,
Bo Cartling, Eric Baum, and Jimmy Hanson. Interaction with David Beratan
played a important role in the development of this work. He is a talented

scientific collaborator and a very good friend.

Also at Caltech, collaboration outside the Hopfield group was very im-
portant. In particular, I have enjoyed discussions with and learned from Rudi
Marcus, Harry Gray, Walther Ellis, and Arnébio da Gama. Part of this work
was developed in collaboration outside of Caltech with Anupam Garg, Vinay
Ambegaokar, and William Bialek. I also want to thank Peter Wolynes for
inspirational scientific discussions. Thanks also go to Debbie Chester for her

secretarial work during this period.

I'want to thank all my Brazilian friends here at Caltech during this period.
Also, I want to thank all my friends and colleagues at the Instituto de Fisica

e Quimica de Sao Carlos, in particular, those in the Biophysics group.

I am also indebted to Sérgio Mascarenhas. As my advisor in Brazil, he

inspired me to work on biophysics and gave me full support in the beginning



iv
of my scientific life. He is also a very good friend, and he was supportive and
understanding when I decided to come to Caltech.

I want to conclude by thanking my family. Mayra was just wonderful
during this period. Thanks to her, life outside Caltech was very pleasant. In
her company, I had five wonderful years in the United States. Her support
and understanding, even during a few difficult periods, was essential during
the development of this thesis. Lucas arrived less than one year ago. He came
to fill an important space in our family. Special thanks go to my mother who
took very good care of us from Brazil. Thanks to everyone in our families who
were very supportive during this period and understanding of our need to live
far away from them.

Financial support for this work was provided by the Brazilian Agency
Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq). They
provided me with a fellowship, and they paid all of my university fees. Sup-
port was also provided by the Universidade de Sao Paulo and by the National

Science Foundation (NSF).



v

Abstract

This thesis deals basically with some new aspects of the electron transfer
theory. It is divided into four parts: (1) Chapter I gives an introduction to
the electron transfer problem; (2) Chapter II addresses the subject of how
nuclear dynamics influences the electron transfer rate; (3) Chapter III explains
how to calculate electron transfer matrix elements for non-adiabatic electron
transfer systems, in particular protein systems; and (4) Chapter IV discusses

some preliminary ideas about new problems I intend to work on the future.

In Chapter II the following dynamical problems are addressed. For the
case of one overdamped reaction coordinate, the problem of adiabaticity and
non-adiabaticity is considered in details. For an underdamped reaction coor-
dinate, a preliminary discussion is given. All this formalism is developed using
a density matrix formalism and path integral techniques. One of the advan-
tages of using this formalism is that, by analyzing the spectral density, we
can connect our microscopic Hamiltonian with macroscopic quantities. It also
gives us a natural way of including friction in the problem. We also determine
when the Hopfield semiclassical or the Jortner “quantum” models are good
approximations to the “complete” Hamiltonian. In the limit that the reaction
coordinates are “classical,” we discuss how we can obtain the Fokker—Planck

equation associated with the Hamiltonian.

By adding more than one reaction coordinate to the problem (normally
two), several other problems are studied. The separation of “fast” quantum
modes from “slow” semiclassical modes, where the fast modes basically renor-

malize the electronic matrix element and the driving force of the electron trans-
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fer reaction, is discussed. Problems such as exponential and non-exponential
decay in time of the donor survival probability, and the validity of the Born-
Oppenheimer and Condon approximations are also carefully addressed. This
chapter is concluded with a calculation of the reaction rate in the inverted
region for the extreme adiabatic limit.

In Chapter III we discuss calculations of electronic matrix elements, which
are essential for the calculation of non-adiabatic rates. It starts with a dis-
cussion of why, through bond rather than through space, electron transfer is
the important mechanism in model compounds. Also, it explains why tight-
binding Hiickel calculations are reasonable for evaluating these matrix ele-
ments, and why, through space and through bond, matrix element decays with
distance have a different functional dependence on energy. Bridge effects due
to different hydrocarbon linkers are also calculated.

This chapter concludes with a model for the calculation of matrix elements
in proteins. The model assumes that the important electron transfer “path-
ways” are composed of both, through bond and through space parts. Finally,
we describe how medium (bridge) fluctuations may introduce a new form of
temperature dependence by modulating the matrix element.

In Chapter IV we discuss some experimental results obtained for electron
transfer in the porphyrin—phenyl —(bicyclo[2.2.2]octane),,~quinone molecule,
and we propose some new experiments that should help to clarify our interpre-
tation. It concludes with some preliminary discussions of how we can include
entropy in the finite mode formalism described in Chapter IT, and how we
intend to use the formalism described in Chapter III in order to understand

electron transfer in real protein systems.
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CHAPTER I - Introduction

to the Electron Transfer Problem



I.1 Overview

Electron transfer is an important reaction in several chemical and bio-
logical processes.! Of the reactions that occur in condensed matter, it is the
simplest one to be studied, and therefore a natural target when trying to de-

velop microscopic models for chemical reactions.

Chemical electron transfer can be divided basically into two types. The
first one is electron transfer between ions and molecules in solution. In this
case, it is necessary that the two molecules involved in the transfer form a
precursor complex before the electron is able to transfer.! In the second type
the transfer occurs between two fixed sites. In the latter case, the donor and
acceptor are in the same molecule or bound to some rigid matrix.3 This second
class of reactions is very important in several biological processes, and it is the

kind of reaction we mainly address in this work.

Some important examples of electron transfer reactions in biology are the
oxidative phosphorylation and photosynthetic reactions, which take electrons
through a potential gradient. In both respiratory and photosynthetic systems
the primary action of the energy source (combustion of the substrate by oxygen
in respiration and absorption of light by chlorophyll or bacteriochlorophyll in
photosynthesis) is to move electrons along an electron transport chain. The
biological system then extracts energy from the resulting electrical potential
in order to phosphorylate ADP (adenosine diphosphate) to ATP (adenosine
triphosphate) or to transport ions across membranes. Details about the bio-

logical process are given in Refs. 1a and 1b.

One of the most studied electron transfer systems is the reaction center iso-



lated from the antenna pigments of the purple bacterium Rhodopseudomonas
sphaeroids.1%:1% This reaction center contains four molecules of bacteriochloro-
phylla (BChl), two molecules of bacteriopheophytin (BPh), one ubiquinone-10
(Q), and one non-heme iron. All these components, together with external cy-
tochromes, are packed in a lipid membrane. A summary of the electron transfer
events in such a system is shown in Figure I.1. Of all the reactions shown in
this figure, the one that received early attention was the electron transfer from
the cyt. ¢ to BChl™ in Chromatium, a different type of photosynthetic bac-
terium, which was studied by DeVault and Chance (Figure 1.2).4 This reaction
is particularly interesting because it shows a normal Arrhenius behavior at high
temperatures (above 200° K), but is temperature-independent at low temper-
atures. The semiclassical and “quantum” electron transfer theories were used
to explain this behavior. These theories are described in the next section.

In an attempt to understand the main features of the above biological
problems, several rigid electron transfer model compounds have been built,
and an enormous amount of new experimental data is available.2 One such
system is the porphyrin-quinone system linked by a bridge of (0, 1, or 2) bicy-
clo[2.2.2]octane units.?® Also, electron transfer in native and modified proteins
has been studied.® Gray’s group Ru-modified proteins,5* Hoffman’s group mod-
ified hemoglobin,?® and McLendon’s modified cytochrome ¢%¢ are examples of
such systems. To develp new theoretical methods that will be applied to in-
terpret some of the experimental data from these systems is one of the goals

of this thesis.
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esses in the reaction center of the photosynthetic bacteria Rhodopseudomonas
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Figure 1.2 — Cytochrome ¢ oxidation rate in Chromatium vinosum as a func-
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1.2 Summary of Theoretical Models

Several theoretical models have been developed to understand long-dis-
tance electron transfer (donor-acceptor separation larger than ~ 5 A). These
reactions are the focus of this thesis. We summarize these models in this
section, and briefly describe the new models that are developed in this thesis
and the reason why they are needed. Also, the theory described in this thesis
is designed mainly to calculate unimolecular rates, i.e., electron transfer rates
between donor and acceptor in the same molecule, or between two molecules
after a precursor complex is formed.!®!? The summary presented here gives
enough information to introduce the reader to the problem, but is in no way a
complete review of all the theoretical work developed to date.

Initially, we describe the classical theory of Marcus!®® for bimolecular
electron transfer. Assume that electron transfer occurs between two molecules,
and that it occurs only after they form the precursor complex. The rate of
formation of such a complex can be described as

kp

A+B = A.B. (I.1)
k_p

If, during the encounter, the electron transfers with a unimolecular rate &y,

the observed bimolecular transfer rate is

1 1 1
= - + , 1.2
kobs kp Kak, (Z.2)

where K4 = kp/k_p is the equilibrium constant for formation of the 4 . -B
complex. When the electronic and “nuclear” motions can be separated us-

ing the Born-Oppenheimer approximation (adiabatic limit, and this point



is more carefully addressed later in this section), the first-order rate con-
stant, k1, is taken to be an effective frequency, vy, for motion along the “re-
action coordinate (vibrational and “solvational” contributions) multiplied by
exp(—AG*/kpT), where AG* is the activation “free energy.”

To better illustrate how k; is calculated we now consider the electron
transfer problem coupled to two “nuclear modes,” one vibrational (mode 1)

and one solvational (mode 2). The reorganization energy is defined as

(1.3)

where a; and a; are the displacement of the modes from their pretransfer
equilibrium positions after the electron transfer. If the the electron transfer

rate is calculated using transition state theory,!:” the rate is

Q+A%V},

15T (I.4a)

ki, = vy exp{——

where AUy is the driving force (or energy gap) of the electron transfer reaction.

Here?
1 Z?—l Aiw? 2
VN = —2—7}— -———Z:-:\-‘—- s (I4b)
and
2
AU* = (_)Lif\U_O)_ . | (I.4¢)

Eq. 1.4 can be easily generalized for as many nuclear coordinates as must be
included. If we compare the rate described in the paragraph before Eq. 1.3
with Eq. 1.4, we notice that in one of them we have free energy, and in the
other one we have real potential energy U. On the one hand, the problem is
well defined only if we actually have potential energies. How to think about

dynamics along a free energy coordinate has been a controversy in this field for



some time. On the other hand, large entropic changes have been observed in
several electron transfer reactions,® and Eq. 14 is unable to properly account
for this large AS. In the final chapter of this thesis we present some comments
about the meaning of dynamics on a free energy surface, but this point is not
carefully addressed in this thesis. Some work by Marcus®%:69 also addressed
this point. In most of this thesis we consider motion only on potential energy
surfaces.

For simplicity we now consider only one nuclear mode coupled to the
electron. The Hamiltonian for the entire electron transfer system (neglecting

coupling to the environment) can be written as!

2
p 1 AU,
Hpr = Tpaso, + Z—XZ-{--Z—MQZ(y-i-yoUz)Z -+ —-z—oaz . (I.5)

Here y is the reaction coordinate, A = 2M0Q2y,, and Tp 4 is the electronic ma-
trix element coupling the donor and acceptor states.%® This Hamiltonian as-
sumes a Born-Oppenheimer approximation for the donor and acceptor states,
and a Condon approximation for the electronic matrix element. The validity of
these approximations is discussed in Chapter II. Non-adiabatic and adiabatic
potential wells are shown in Figure 1.3. If the rate is adiabatic, the “reaction
coordinate” potential surface is shown in Figure I.3¢, and, if Tpa < k BT, the

rate calculated using transition state theory (exactly as in Eq. I4) is

0 (A + AUp)?
k]_ = E;r- exp{ m . (IG)

But the reaction is not always adiabatic, principally when the electron is trans-
ferred a long distance. In this case (still a transition state theory approach),
the rate k; must be multiplied by an adiabaticity factor kg L, which is calcu-

lated in the Landau-Zener framework,'® and in the high-temperature limited



7 7

Figure 1.3 — (a) Upper panel. Energy of the electronic (spin) states | T) and
| |) as a function of the reaction coordinate y (see Eq. I.5). (b) Middle panel.
The region where the potential surfaces in (a) cross, with arrows denoting the

reactive trajectory. (c) Lower panel. Adiabatic surfaces corresponding to the

zero—order (non-adiabatic) surfaces in (a).
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can be written as!!

B 2[1-—exp(——uEL/2uN)] .
L emp(vmn/t) (£

where
2nT3 , 1

= . 1.7
VEL h  JarksTA (Z.75)

When kg1 < 1 the rate becomes non-adiabatic, and thus

27T3 1 (A + AUL)? }

ki = DA —_—— I8
! ho JarkgTh ¥ { 4kpTA (Z8)

To this point the nuclear coordinates are treated classically, and rates have
been calculated using transition state theory.

The importance of the non—adiabatic theory for biological electron transfer
was observed by Hopfield in 1974.° He developed a semiclassical non-adiabatic
theory for electron transfer with one nuclear mode coupled to the acceptor and

one to the donor. The rate obtained is

[+ ]
ki = Z_h’ETgA D4(E)D.(E) dE , (1.9)
—o0

where D4(E) describes the electron removal spectral density, and D/, (E) the

insertion energy of an electron into the acceptor state. Thus, if AUy = Eg— E,,

then
_ 2
Dy4(E) = 1 expq — (B~ B4+ Aa) , (I1.10q)
V270l 203
1 (E — Eq — Aa)?
D!(E) = N exp {—- 207 } , (I.100)
where

AR
2 — RO J ith = . .
o} iQ; A coth <2kBT) with i =dora (1.10¢)
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If instead of two modes we consider only one (donor or acceptor), the rate

becomes
27, o 1 (AU — A)?
_ 2 = _aro— AL 11
b= R s e { -0 i

From Eq. I.10c we can explain the cyt. ¢ oxidation rate in Chromatium (Fig-

ure 1.2). o2

; is temperature-independent at low T and varies linearly in T at

high temperatures. There is a need to treat the reaction coordinate quantum
mechanically in order to get this temperature—-independent rate at low temper-
atures. If kgT > h(}, the classical limit is valid, and Eq. I.11 becomes exactly
Eq. L.8.

As a final theoretical model we discuss the “quantum” model developed
by Jortner and collaborators.}? The rate is calculated using a Fermi golden

rule approach. The one mode rate in such a model is formally written as

ki = ?thgA xF (I.12q)

where F is the thermally averaged nuclear vibrational Franck—Condon overlap

factor

F = Z an [ < XnDleA > |2 6(Ed,nD - EasmA) ° (I'lzb)

np,ma

Here Xnp, (Xm,) are the nuclear wave functions for the donor(acceptor) states
of the Hamiltonian I.5 or of a more complicated Hamiltonian. np and m4 are
the quantum numbers for each of these states. p,, is the thermal probability
of the donor being in the state np. The delta functions in Eq. 1.12b are purely
formal. We do not give further details about this formalism but, as expected,
at high temperatures all three formalisms agree.

All the theories described here lack a careful description for the dynamics
of the nuclear coordinates. Without a good description of the nuclear dynam-

ics, it is impossible to determine when the non-adiabatic limit is valid, and
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when it starts to break down. Only the classical model tries to take dynamics
into account, but it does not explain how the system relaxes after the particle
goes through the crossing point of the surfaces (Landau—Zener region). The
weakness of the models can be noticed from Hamiltonian 1.5, which does not
take into account how the “reaction coordinate” interacts with the environ-
ment and is dampéd. A detailed study of the dynamics of the problem is given
in Chapter II. Also, as mentioned earlier, all of these theories make two basic
approximations, the Born-Oppenheimer and Condon approximations, without
adequate justification. When these approximations are valid and what happens

when they break down are discussed in Chapter II.

For completeness, it is useful to mention that theoretical work has been
done for a diffusive reaction coordinate. Such an approach is used to describe
electron transfer reactions in polar solvents. If the solvent polarization is the
only reaction coordinate considered, the diffusive dynamics may be valid, and
in the adiabatic limit the rate has a Kramer’s behavior instead of a transition
state one.!® A careful discussion about this macroscopic model for solvent
polarization and all relevant references can be found in Ref. 1c. Recall that

Kramer’s limit is the opposite of the transition state theory limit.

Assume we understand the nuclear dynamics. When the rate is non-—
adiabatic, the problem of predicting the electronic matrix element, Tpg4, is an
important problem. If we write the electronic Hamiltonian in a basis of donor
and acceptor localized states, the interaction between these two states is given
by the the non-diagonal matrix element Tp4. One of the first attempts to
calculate electron transfer matrix elements in biological systems was made by

Hopfield using a square well model,® and therefore treating the medium in an
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average sense. This model was used to calculate the electron transfer matrix
element of light-initiated transfer of an electron from cytochrome to BChl+
in Chromatium.* Also treating the medium in an average sense is the model
developed by Siders, Cave and Marcus.!* In that case an angular dependence
between donor and the acceptor is included. But, no “detailed” description of

the medium is included.

It is generally accepted that the electron transfer rate is dependent on the
details of the medium the electron tunnels through. Experiments performed
on model compounds,? which have the donor and acceptor covalently linked
(through-bond electron transfer), have shown that different bridges connect-
ing donor and acceptor lead to different transfer rates. On the theoretical side,
Halpern and Orgel’® in 1960 first identified the importance of orbital sym-
metry, overlap, and energetics on the bridge-mediated electronic interaction.
McConnell!® in 1961 used a one—electron one-orbital-per-bridge-site model to
describe electron exchange through a saturated bridge. A literature is emerging
that allows estimates of the importance of electron (conduction band) or hole
(valence band) tunneling, and dependence of the electronic donor—acceptor
interaction on redox potentials and bridge geometry.!” In some theoretical
work, using tight binding Hiickel calculations, our group tried to quantify these
effects.17¢17h A discussion of the validity of the average medium description

or the tight binding one is one of the topics presented in Chapter III.

From model compounds, we learned that covalent pathways really assist
electron transfer. Therefore, they must be important for electron transfer in
proteins. However, if we look at protein structures, we come to the conclu-

sion that the covalent pathways are, in most proteins, prohibitively long, and
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some through-space electron “jumps” (tunneling) are probably important. In

Chapter III we develop a model that includes both possibilities; i.e., the elec-

tron transfer pathway is composed of many covalent pathways joined by a few

through-space jumps. Initially we present the model, assuming that the elec-

tron tunnels through a rigid medium and then we discuss how these medium

fluctuations affect the transfer rate.

The plan of this thesis is as follows:

Chapter II describes new theoretical approaches to describe the dynamics
of electron transfer reactions. The topics discussed are the following: (1)
The effect of friction on electron transfer reactions is studied. A discussion
of the validity, depending on friction, of Hopfield’s semiclassical® or the
Jortner’s “quantum”!? models is presented. Criteria for adiabaticity and
non-adiabaticity are discussed. (2) A model is presented for separating
the fast local modes (such as CO vibrations) from the slow reaction co-
ordinates and the bath in the electron transfer problem. In this case the
fast mode overlap “renormalizes” the electronic matrix element. How this
affects the adiabatic and non-adiabatic limits is discussed. (3) We also dis-
cuss how, starting from the Hamiltonian, we can write the Fokker—Planck
equation associated with the electron transfer problem if the reaction co-
ordinate(s) is(are) “classical.” (4) In the case of multiple “slow” reaction
coordinates (i.e., those that can not be treated as “renormalizing” the
matrix element), a discussion is given about the point at which the donor
survival probability decays exponentially in time or not. (5) A discussion
is given about the validity of the Born-Oppenheimer and Condon approx-

imations, and about what happens to the rate when these approximations
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fail. (6) A calculation is presented of the electron transfer rate in the
inverted region and extreme adiabatic limit.

Chapter III describes the effect of the transfer medium between donor
and acceptor on the electron transfer rate. A discussion is presented
of through-bond versus through-space electron transfer matrix elements.
Here we also discuss how different hydrocarbon bridges affect the through—
bond electron transfer matrix element in several model compounds. We
also use these two mechanisms to propose a model for matrix elements
through protein environments. This chapter is concluded with a discus-
sion of how the protein environment motions may modulate the electron
transfer rate and therefore give rise to a new form of temperature depen-
dence.

Chapter IV describes some preliminary ideas that will be further devel-
oped in the future. A discussion is presented of the experimental re-
sults available for electron transfer in the model compound porphyrin-
linker—quinone molecule, where the linker is composed of 0, 1, or 2 bi-
cyclo[2.2.2]octane units. Some new experiments are proposed to clarify
our understanding of this system. To conclude this chapter, we discuss
one way that large entropic changes may be included in simple electron
transfer models, and how we intend to apply the protein model described

in Chapter III to real systems.
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I1.1 Summary

This section gives a summary of the work presented in the following four
sections of this chapter. The most important results are emphasized in order
to help the reader to proceed through the chapter. Also, some supplemental
discussion of these results is given. Besides the results presented below, it is
important to remark that to perform these calculations we had to introduce
new methods to this field. In our work (details in Secs. II.2, IL3 and IL.4), we
describe how to use a density matrix approach combined with Path Integral

techniques! to calculate rates for chemical and biological reactions.

Adiabaticity vs. Non-Adiabaticity

Effect of Friction on Electron Transfer Rates

Consider Hamiltonian 1.5, but with the nuclear mode y coupled to the
remaining nuclear degrees of freedom of the problem (the bath). The Hamil-

tonian is

Py 1
Hepr = T it
ET DA0z+2M+2

p? 1 ¢ 2
+ E —b —Mbw;‘,’ I:xb + b 2y:l (I1.1)
b(bath)

g
Mﬂ2(y+y00z)2 + 502

where zp’s are the bath coordinates. A schematic representation of the param-
eters used in the equation above is given in Figure II.1. To model the bath
as a set of independent harmonic oscillators linearly coupled to the reaction
coordinate is correct as long as the bath modes are all weakly coupled to the
reaction coordinate. This prescription will start to provide quantitatively in-

accurate answers if, in reality, some of the bath degrees of freedom are strongly
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Figure IL.1 — Potential energy surfaces for the reaction coordinate. The

labels + and — refer to the donor and acceptor sites. The energies Ey, E,,
and E'p are the forward and reverse activation energies, and the reorganization

energy, respectively.
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excitated. If that is the case, the mode should be treated separately, not with
the continuum of modes. More details about this assumption are given in
Secs. 11.2 and II.3.

As discussed by Caldeira and Leggett,? details of the bath are unnecessary;
only how the “reduced dynamics” of the electron and reaction coordinate are
affected by the bath is important. Therefore, the bath oscillators’ influence on
the reaction coordinate is determined by the following relation, which is known

as the spectral density,

2
)

5(0) - wb) . (II.2)
b(bath) Myws

Jo(&)) =

| A

In this section we work mainly with the ohmic form of the spectral density

Jo(w) = nw exp(—w/A) and y=n/2M , (11.3)

where A is a high frequency cutoff that is required on both physical and math-
ematical grounds. It must be much faster than any time scale associated with
the problem. As discussed in Sec. IL.2, if other forms for the spectral density
were considered, a frequency—dependent damping constant n would be neces-
sary. Because at the level we want to address the problem here there is no
reason to further complicate it, we use (in this section) the ohmic form for the
spectral density. (See Secs. IL.3 for details.)

Because the bath and the reaction coordinate are assumed harmonic, and
the coupling between them is linear, we can diagonalize the quadratic part of

Eq. II.1 and get
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€ . -
Hpr = Tpa oz + ;0= + Uzzcaxa

) ~2
p 1. .o, c
+ E { = +§maw:‘;x§+ ~°‘~a} , (I1.4)

2m
o [
where Z, are the normal coordinates, and pqo, Mq, and @4 are the correspond-
ing canonical momenta, masses, and frequencies. In analogy to Egs. II.2 and

I1.3, the effective spectral density becomes

™ 2 . n*ydw
«

This technique can be applied to more complex Hamiltonians where several
reaction coordinates exist. These Hamiltonians can also be transformed to the
form given in Eq. II.4 but with a different spectral density. Details about this
case are given in Sec. II.3.

We now calculate electron transfer rates in the non-adiabatic limit. Here
we discuss two interesting limits of the coupling between the reaction coordi-
nate and the bath. (See Secs. II.3 and I1.4 for details.) Initially we consider
the weak coupling limit. By weak coupling we mean that the widths of the re-
action coordinate energy levels, which are important for the electron transfer,
are much smaller than %{), but large enough so that the non-adiabatic limit
still holds (this point is discussed more carefully in the end of this subsection
and Secs. I1.3 and II.4). When this condition is satisfied, the rate is

rfr = ghfrg L (FC)T | (I1.6)

where (F.C.) is the thermally averaged Franck-Condon factor

(F.C) ZZP Did | T) |< 6B | A >[? WPHA(ER ~EA) . (I1.7)



24

p(Eg ;;‘?A) is the donor (acceptor) thermal density of states, and ¢’s are the
reaction coordinate eigenfunctions, neglecting the coupling to the bath. Here
f(r) is the forward (reverse) electron transfer rate. The function h(EP — E4)
has [ h(E)dE = 1 and is highly peaked when EP = E4 (see Secs. I.3 and
II.4 for details). Because the width of h(E) is much smaller than AQ, §(E)
is normally substituted for it to simplify the algebra, although here the delta
function has only formal meaning.

In this limit, the electron transfer rate has the functional form of the
Jortner “quantum” model. Eq. II.6 gives a rate that is peaked for values of
€, which are multiples of (). This peaked behavior can be eliminated only if
there is enough inhomogeneous broadening.

The second limit considered is the case of strong coupling between the
reaction coordinate and the bath. In this case the density of states varies
smoothly with energy. Initially, consider the case where y is underdamped.
When both of these conditions are met we call it the moderate—friction limit. A

quantitative estimate of this condition is given in Sec. II.4. Here the probability

of having the electron on the acceptor at time ¢ (assuming that P4(0) = 0) is
PA(t) = PA — PA exp(~Tpat) , (I1.8)

where

Tpa = Tf +T7_ (I1.94)

with

h \/47!‘ERkTeff

27 .
= ﬁ;Tz%Ap{;’A(y) : (I1.9b)

rhr = exp {—(¢ F Er)*/4kTessEr}
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and

pA — 1+tanh(s/2kTeff)
© = 2

(I1.9¢)

Eg = 2MQ?y? is the reorganization energy and pp 4(y*) is the probability of
finding the nuclear mode (“particle”) in the intersection point between donor
and acceptor wells when the electron is on the donor (acceptor). Fa is the
difference of slopes of the donor and acceptor potential wells at the crossing

point. The effective temperature, Teyy, is
kTeps = MQ*u?(n,T) (11.10)

where u?(n,T) is the mean-square displacement of the reaction coordinate
about its equilibrium value. (See Sec. I1.2 for details.) At high temperatures
Tess ~ T. This functional form for the electron transfer rate (Eq. IL9) is
similar to the one proposed by Hopfield in his semiclassical model. This rate
i1s valid when we are in the strong coupling limit and when each transit of
the “particle” through the Landau—Zener region is too rapid for the electron
to make many transitions from donor to acceptor. This last statement is the
point of discussion for the remainder of this subsection.

A particular case of the strong coupling limit is one in which the nuclear
coordinate is overdamped (v > ). In this case the characteristic time of the
reaction coordinate is given by 7. = w !, where w, = 12/2~. In this situation
(assuming kT > %12 /2, which is true for real diffusive modes such as solvent

polarization), the electron transfer rate is

1/2
T = gﬁzﬂ ( 1 ) / L exp _(eF Er)?
h ~PAN\4TERkT 1+ (27T , /hw.ER) 4kTER
(I1.11)
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If an “adiabaticity” parameter g is defined

_ 2nT3,

the reaction is adiabatic or non—adiabatic, depending on whether g is large or
small.

The condition given by Eq. II.12 is especially interesting because it pro-
vides a quantitative estimate for the validity of the non-adiabatic limit. In

order to simplify the discussion, we now define two characteristic times:

2Tpa L1z
t ~ = .
dnft Ech Yowe ) (II 13)

which is the average time the “particle” stays in the Landau-Zener region each

times it reaches it, and

t I~ —-—————(2TDA)
aits ErkT w,

(I1.14)
which is the time taken by the particle for each transit through the Landau-
Zener region. Also, it is important to point out that because 2 Tp4 < kT, for
the problems we are interested in, tZZ > tkz s

Considering the two characteristic times above, we note that the adia-
baticity condition, g > 1, is satisfied when 3%, > (Tpa/h)~*, and we need
not meet the condition tf%, > (Tpa/h)~!. The latter condition, tiGs >
(Tpa/R)~1, is the conventional adiabatic limit, and when it is true, the con-
ventional picture of split nuclear wells is valid. But, as we showed in the case
of t;Z., > (Tpa/h)~!, “adiabaticity” holds under a much weaker condition
than the conventional one.

As can be seen from Sec. II.2, Eq. II.11 was developed, assuming that

the motion of the particle is diffusive even when it is in the Landau—Zener
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region. Thus, if ¢35, < (Tpa/h)~! < t}Z;,, when the particle crosses the
Landau-Zener region, each of its transits is associated with a very small trans-
fer probability proportional to T? ,, but adiabaticity results because the par-
ticle crosses this region many times before it drifts away. Otherwise, i.e., if
ti%; > (Tpa/h)~!, we should look at the problem in the conventional way,
where we have the “adiabatic” splitting of the nuclear wells. This latter limit
in the inverted region is discussed at the end of this section.

If the motion of the nuclear coordinate is classical, an extension of the
above discussion is possible for the underdamped case. We are interested in the
low—friction limit, i.e., when every crossing through the Landau-Zener region
is ballistic. Even so, the discussion we present here does not give quantitative
estimates as in the overdamped case; it permits some preliminary understand-
ing of the problem. As in the overdamped situation, it is not necessarily only
the time ’involved for each Landau-Zener crossing that is important to decide
whether or not the rate is non-adiabatic. Also, similarly to the case we solved
for the overdamped problem, we assume that the activation energies are much
larger than kT. In the Landau-Zener picture, if a particle goes accross the

crossing region with velocity v, the time it stays in this region is of the order

ILz Tpayo
t ~ ~ . II.
Lz v ER‘U ( 15)

But every time this particle is excited so that it is able to cross the Landau-

Zener region, the average value of 1/v with which it goes through the crossing

<l> ~ % , (I1.164)

region is about

and therefore

trz ~ loz \/ = - (II.16b)
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In the underdamped limit, before the particle relaxes, i.e., it does not have
energy to traverse the crossing region any more, it may go through the Landau-
Zener region several times. This point is discussed next.

Recall that the size of the transition state region (Irs) is ~ kTyo/ERr, and
the average free path (Ifre.) is ~ (kT /M)Y/2/~. As discussed by Frauenfelder
and Wolynes,® if I 7 > Irg, the curves split and the standard adiabatic theory
is valid. This is not the situation we are interested in. If i1z < l1s, the number
of times it goes across the Landau—Zener region may depend on two factors:

(1) lpz < lrs < lfree every transit through the transition region is ballistic.

But if 1z < lfree < l7g, then on each passage through the transition

region multiple crossings of the Landau-Zener region occur, and

Nerosses ~ lTS/lfree . (IIl7a)

This last case is not important in the low—friction limit because the cross-
ings through the Landau-Zener region are not ballistic.

(2) If the friction is very low, the system does not lose enough energy after
leaving the transition state to avoid recrossing it. The number of forward

crossings in this case was estimated by Kramer

time to lose kT 20 kT

~ I.17
time traverse the well ~ E; ’ (11.17b)

~

Ncrossca -

where Ey is the activation barrier.

Therefore, similar to the overdamped case, the condition for non-adiaba-
ticity is expected to be about 2/Tpa > Nirosses trz. In the limit that we
can consider the crosses to be uncorrelated, i.e., Nerosses Of order unity, and
the crossing is ballistic, the condition above is very similar to the one given by

Eq. 3.11 of Sec. II.2.
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All of the discussion presented here for the underdamped case is based on
some qualitative arguments. As can be seen in Secs. II.2, II.3 and II.4, when
the nuclear coordinate is classical, we can write the Fokker—Planck equation
associated with the problem. How to solve this equation in the overdamped
regime is presented in Sec. I.2. In order to quantify and obtain a clear un-
derstanding of the conditions described above for the underdamped case, we
intend, in the future, to solve the Fokker-Planck equation in this limit. Be-
cause the differential equation in this limit is much more complicated, we are

still not sure whether an analytical solution will be possible.

For completeness, we conclude this subsection, pointing out that the con-
ditions for the validity of the non—adiabatic rate in the limit of weak coupling
to the bath (Egs. I1.6 and I1.7) are presented in Appendix B of Sec. IL.3. Recall
that by weak coupling we mean that mixing between the energy levels of the
reaction coordinate is “small.” In this case quantum effects are important, and
to calculate the transition from the non-adiabatic to the adiabatic problem is
a very complex problem, which we do not intend to address in this thesis,

although it deserves more careful attention in the future.

Separation of Fast and Slow Modes

All of the previous discussion assumes that the cutoff frequency, A (see
Eq. IL.3), is the fastest frequency of the problem. We now consider the possi-
bility of a a fast mode (here associated with the coordinate y) whose motion
is much faster than A. We also consider a “slow” mode, z, coupled to the

problem, which satisfies the conditions described in Eq. I1.3, i.e., much slower
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than A. For simplicity, the z mode is considered strongly coupled to the bath.
Although this is not a necessary assumption for the formalism, it is a good one
for the slow modes of interest discussed at the end of this subsection. In this
subsection, we describe how the dynamics of these two modes can be separated.
This point is carefully addressed in Secs. II.3 and II.4.

Assuming that %, > kT, the energy fluctuations of the z mode are much
smaller than the spacing of the y energy levels. Therefore, because the fast
mode y is the fastest frequency associated with the problem, its effect can be
separated by “renormalizing” the electronic matrix element. The forward rate
for the electron transfer can be written as a sum of several two-level system
problems coupled to one nuclear mode 2. The renormalized matrix elements

and driving forces are
Tl = Tpa<nd =0/mY > , (II.18q)

where n¥, (mY) are the vibrational states of the y mode when the electron is

on the donor (acceptor), and
e¥(my) = ¢ — m4hKQ, . ‘ (11.18b)

In Sec. I1.4 we calculate the non-adiabatic rate in general, and the adiabatic
rate when z is overdamped. We do not write the rates in this section but they
are basically a sum of rates given by Eq. I1.9 summed over all values of mY.
This description, in which we separate the influence of fast modes from
that of the slow modes, is useful for describing electron transfer coupled to
both fast modes (such as CO vibrations) and to “slow,” sometimes diffusive,
modes (such as solvent polarization or gross protein motions). After separating

the fast “quantum” modes, the slow modes left in the problem can normally
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be treated in the strong coupling limit, and therefore the entire formalism
developed for strong coupling can be applied. Applications of this model to
calculate electron transfer between quinones and oxidized bacteriochlorophyll
dimer, and between rigidly linked porphyrin and quinone systems are discussed
in Sec. II.4. The second case is discussed in more detail in Chapter IV.

In the case that the z mode is diffusive, the condition for adiabaticity
is different for each term of the sum because each has a different ng . The
forward rate can be written as

27 2 1 1/2
=3 5 (T8 (ma) (47rEf2kT)

ma

1

_ [ (e¥(ma4) — EE)?
1+ (27r (3 J(mA))l) /hw§E§> exp { 4) — Ef

g } . (I1.19)

Notice tha't in the adiabatic limit the rate becomes independent of TB’:{ , and is
basically ¢ independent for large driving forces. This is discussed in Sec. I1.4,
and this model was applied to understand intramolecular electron transfers
in 6——(4——methylpheny1)amino—-z—naphthalenesulfon——N,N—-dimethylamide(TNS-
DMA) and 1-cyano-4-dimethyl-aminobenzene (DMAB).4

The Fokker—Planck equation

Here we discuss how, beginning with Hamiltonian II.1, we obtain a differ-
ential equation of motion — a Fokker-Planck equation - for the reduced density
matrix of the electron plus the reaction coordinate. This conversion can not

always be performed. It can be done if kT /% is much larger than the charac-
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teristic frequency of the reaction coordinate ( \/m in the underdamped
case and w, in the overdamped one).

Suppose that at some time, to, the total density matrix of the system can
be factored into one part for the bath alone (which we shall take to be at a
temperature T'), and a part for the electron plus the reaction coordinate. The
reduced density matrix p,(z,y;to) for the electron and reaction coordinate at

a later time ¢ is (see Sec. II.2)

oo oo
por(z,y;t) = Y / / dz' dy’ Joren (2,95t ', 4" t0) pori (2,4 80)
—00 —oo

al N
(I1.20a)
where

R o A z y r
J =J DO’J DAJ D:z:J Dy| Alo]A*[A]

o! Al z! y' L

; ;
xepr{Srsela,0] = Svely, AN} | - Flayl] (11.200)

The limits on the functional integration signs indicate the boundary conditions
that the trajectories must satisfy; e.g., o(to) = o', o(t) = 0. The quantity
Alo] is the bare amplitude associated with a spin trajectory o(r), as defined
in Sec. I1.2, and S,1.[y, A] is the classical action for the reaction coordinate to
follow a trajectory y(r), given that the electron trajectory is A(r), ignoring the

coupling to the bath. Performing the calculation as described in Sec. II.2 we

get
F) h (32p B2 ' '
5’{- = 2’1\4(&’; - ayZ) - %(U(x) ~Uly))o - %[Ha,p]
' 9 8 kT
——;—(ozf(z)p - pozf(y)) —(z - y)(b—g - 55) - %—z—(z —-v)%p. (II.21)

After performing a Wigner transform on this equation, it can be written in the
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well-known momentum-position representation

ow 10 9, 8 9?
T3 “'ng“(PW) + B‘I;(U ()W) + 2’755(PW) + nkTé-;z—W
1df 0 )
-+ *z'a—y—*a—p-{az,W}—-ﬁ[Ha‘{—sz(y),W] , (IIZZ)

where the commutators and anticommutators now involve only the spin degrees
of freedom, and

1 . u u
Wap(y:p) = o= / exp(ipu/h) pap(y — 5,9+ 5) du . (I11.23)

- OQ

The solution of this equation for the overdamped case is shown in Sec. I1.2,
and it gives a rate very similar to the one given by Eq. IL.11. As previously
discussed in this section, the solution of the underdamped limit is especially
relevant to the question of adiabaticity, but we have not yet been able to solve
it analytically. Also, Eqs. II.21 and II.22 assume only one reaction coordinate.
In Sec. I1.4, we solved the case for two reaction coordinates and showed when
the models of Agmon and Hopfield® or of Sumi and Marcus® are valid. The
case of two reaction coordinates is discussed in more detail in the following
subsection.

To conclude, we notice that much will have been gained if it is possible
to reduce these problems to Fokker-Planck equations, since the latter can be
solved numerically. More important, this is a clear way to understand how
the microscopic quantum mechanical model can be related to “macroscopic”

models for electron transfer.



34

Exponential or Non-Exponential Time Decay

for Donor Survival Probability

So far we have calculated electron transfer rates, which means that the
donor survival probability decays exponentially with time as can be seen from
Eqgs. I1.8 and II.9. Assume now that we have an electron transfer problem,
which after we renormalize the effect of all fast vibrations, is still coupled to
several “slow” modes. For the point we want to make, two coordinates are
sufficient. Here we discuss two possibilities. The first possibility is that the
slow mode is coupled to o, (as the reaction coordinate described until now),
and therefore modulates the activation barrier. The second possibility is that
the slow mode is coupled to 0., and it modulates the electronic matrix element.
These two possibilities are carefully discussed in Sec. II.4.

In the first case we assume the following Hamiltonian

2

P 1 €
Hppr =Tpas 0 + 2]\;!/ + 'Z—MyﬂZ(y +y00'z)2 + —2-02

p? 1 2 2, 1 P2 2 Caly 2
+2Mz + ‘Z‘Mzﬂz(z -+ zoaz) + '2‘ Z; -7'7'7,— + mawy { To +

2
1 Pg 2 cpz
= — , I1.24
3 2,3: mg Tmaws |zt mpw} ( )

where y and z can be treated in the strong coupling limit. We also assume

ohmic forms of the spectral density for both coordinates
J§* = ny,.w exp(—w/A), and . =ny./2M,, . (I1.25)

A is the cutoff frequency, which was discussed earlier.
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In Sec. II.4 we solve this problem in two limits. In the first one both
coordinates relax much faster than the electron transfer rate, and the donor
survival probability decays exponentially in time. In the second limit the z
coordinate moves much slower than the electron transfer, so the donor suvival
probability is non-exponential in time. As an example, in this subsection we
summarize the results only for the overdamped case, because it is the only
one for which we can analytically connect the non-adiabatic and the adiabatic
limits.

In the first limit, the donor survival probability is exponential in time, and

the electron transfer rates rates are

1/2
rf,r — _2_7r_T2 [ 1 J /
h P4 | 4n(EY + EL)kT

1 Ej.,
X ——=l , I1.26
{ 1+ [2nT3 , /h(wEEY + wZE3)] } exp { kT } ( a)
where )
_ [s F(EY + Efa)]
Ir ™ “4kT(BY + E3) (I1.260)
As before, we define the adiabaticity parameter g,
_ 2rT% ,
9= hwiEY, + hwzE% ° (11.21)
which can be written as
1.t (II.28)
g Gy gz

where g, and g, are the adiabaticity parameters for the y and z modes, re-
spectively.
If § < 1, the non-adiabatic limit is valid, and the above rates can be

written as the following integral

oo
= [ ka@Ph () ds | (11.29)

-0
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where kJir_(z) are the forward and reverse rates when the system is frozen
at a particular value of 2z, and P}~ (2) are the equilibrium distributions of
2 when the electron is on the donor (+) or the acceptor (), respectively.
k!{j,’;a (2) is calculated exactly as in the one mode case, but using a 2 dependent
driving force, €¥(z) = € + 2M,;01220z. This expression is basically the result
obtained by Agmon and Hopfield® or Sumi and Marcus® when the transfer is
exponential in time. The final rate is the rate in the y direction averaged over
the z coordinate. If the non-adiabatic limit is not valid, we can use Eq. 11.29
to calculate the rate only if g, < g.. This means that every crossing through
the Landau-Zener region is basically in the y direction or that Eq. 11.29 is
not valid. The reason why the non-adiabatic limit can be calculated, using
Eq. I1.29, independent of the y and z modes chosen, is that the dynamics
of the nuclear coordinates are not important when this limit is valid Fx1
anyway).

In the second limit we can calculate the electron transfer expectation value

P(t) (< 04(t) >), and we get (assuming that we have an equilibrium distribu-

tion for z when the electron is on the donor)

P(t) = / iz [P;’O(z) + (1 - Pgo(z)) exp (— ky(z)t)] x Ph(z) , (I1.30a)

— o0

ky(2) = kf(2) + k(2) . (I1.300)

Here PY(z) and k, are, respectively, the equilibrium value for < o, > and
the electron transfer rate when we freeze the system at a particular z value.
Current work in Hoffman’s group involves looking for this non—exponential
behavior in electron transfer between heme groups in Zn modified hemoglobin

at low temperatures.”
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In this second limit, the formalism presented by Agmon and Hopfield or
Sumi and Marcus works without any difficulties because the z coordinate is
much slower than y, and therefore every crossing through the Landau-Zener
region is basically in the y direction. It is also important to point out that
because ¥(z) appears only on the exponent of the rate expression, the non-
exponential behavior is the same for the adiabatic and non—adiabatic limits.

Also in Sec. I1.4, we develop the Fokker-Planck equation associated with
this two-mode problem, and with this formalism we show which approxima-
tions have to be made to obtain the diffusion equation used by Agmon and
| Hopfield. This is a particular limit of a more general equation developed there.

To conclude this subsection, we discuss the case in which the slow mode is
coupled to 0, and this coupling is not necessarily linear in this slow coordinate
(anharmonic coupling is allowed). As an example, we apply this formalism to
electron tfansfer in the porphyrin-bridge—quinone molecule.? This problem is
more carefully described in Sec. I1.4. Figure II.2 shows the structure of this
molecule. Because we are interested in the problem of exponential versus
non-exponential decay in time, we wrote the simplest Hamiltonian to describe
this effect, and therefore the matrix element is assumed to be renormalized
by the fast mode(s), and we consider only one mode coupled to ¢,. The
slow mode here is the rotation of the dihedral angle between the porphyrin
and the quinone, 8, because the electronic matrix element depends on relative
orientation of the two molecules. Thus, the simplest Hamiltonian that can be

written is

STy %=t R%toarn

2

Pa
+M + Ug(e) + Bathg . (II.31)

Hgr

+ Vz(z) + 0. f(z) + Bath,
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Figure 1II.2 - Structure of the molecule Porphyrin-Phenyl-

(Bicyclo[2.2.2]octane),~Quinone. n = 0,1,2. M is a metal, normally Zn.
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Here V; and Uy are the potentials associated with z and 4. f (z) is the coupling
of coordinate z to the z component of the spin.
In the limit that z is diffusive and 6 is very slow, and considering

Va(z) = M 0%(z* + 23)/2 and f(z) = M, Q%z,z, we obtain

J o2 o (U8
“’ﬁll(o,t) = Do-—ﬁn-}-—( 9( )ﬁu)—k_,{(a)ﬁu +k;(0)ﬁ22 , (II.32a)

ot 002 a6 z
a 9? a (U6
-é—t-ﬁzz(ﬂ,t) = Dewﬁ:"z-{_% ( ;(z )ﬁzz) +k{(0)ﬁ11 - k;(a)ﬁzz s (II32b)
where
L A30) [ w2\ 1 (¢ F ER)?
kv = =0 — R .
z 4 (E;kT 1+g exp{ wTEs [ 0 UI3%)
and
AZ(0)rh ( Zo Zo )
, 0
= : . II.33b
g 2Efwz  \ |z* + z¢] + |z* — zo| ( )

Here z* is the crossing point for the donor and acceptor curves. (See Sec. I1.4
for details.)
Solutions to Eqgs. II.32 are straightforward when the transfer rate is much

slower or much faster than the 8 coordinate. In the first case,
P(t) = Po + (1- Po)exp[— (T +T7)t] (I1.34a)

where

2
rfir = / k1T (0) Pey(8) do . (II.34b)
0

In the second case,

P(t) = /2" do [Pw + (1 ~ Po) exp { — (K1(6) + k;(a))t}] X P,y(0) .
’ (I1.35)
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When the transfer is adiabatic, the rates k/i" become independent of Ag, and
therefore of 4. In this limit Eqs. I1.34 and I1.35 are exactly the same, and the

decay is exponential in time.

We now discuss a result that, although very simple, is useful to illustrate
the difference between a slow mode coupled to ¢, and a slow mode coupled to
oz. If the slow mode is coupled to o, it modulates only the matrix element.
Therefore, in the adiabatic limit, the rate is not modulated by the slow coor-
dinate. Then, in this limit, the donor survival probability always decays expo-
nentially in time. This is not true when the slow mode is coupled to ;. Thus,
the non-exponential behavior at low temperatures for the electron transfer
in the porphyrin-bridge-quinone with one linker group8 (see Figure I1.2 with
n=1) shows us that the rate is probably not adiabatic, because it appears to
depend on the slow coordinate, §. An interesting problem to pursue now is to
try to obtain the potential Us. Whether this potential has only one or many
minima may lead to different dynamics at low temperature. For example, if
this potential has two minima, non-exponentiality appears when the barrier
between the two minima becomes larger than kT. Non-exponentiality exists
independent of the dynamics of the slow mode. If there is only one minimum,
non-exponentiality is due to a dynamical effect; i.e., it appears only when the

electron transfer rate is much faster than the slow coordinate.

The Spectral Density

Looking at the spectral density function, J.rf(w), given by Eq. IL5, we

see that it is directly proportional to the imaginary part of the dynamic sus-
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ceptibility of a damped harmonic oscillator with undamped frequency 2 and

friction coefficient 7n; i.e.,
Jerr(w) = M2Q*3x"(w) . (I1.36)

This spectral density was generalized for several reaction coordinates in
Secs. I1.3 and II.4. Thus, these spectral densities describe particular ways
that the environment affects the transferring electron. Therefore, when treat-
ing real systems, we need the response function (susceptibility) of the medium
modes because of the electron transfer. The most interesting part of that is
that the spectral density permits an understanding of how the microscopic
Hamiltonian is related to macroscopic parameters.

As a warning (discussed in Secs. II.2 and I1.3), if there are medium degrees
of freedom that are strongly excited, this linear treatment of the environmental
modes breaks down and anharmonic corrections are necessary. However, in
several problems, after the fast local modes are separated in the way described
in this section, all we need is the response function of the “slow” medium

modes.

The Born-Oppenheimer and Condon Approximations

In the standard treatment of non-adiabatic electron transfer, the Born—
Oppenheimer approximation is used to calculate the donor and acceptor wave
functions, and on top of that the Condon approximation is applied to calculate
the matrix element, Tp 4. After performing these approximations, the electron
transfer Hamiltonian is of the form of Eq. II.1 (when we have only one nuclear

mode, but generalization is straightforward). Here we discuss the validity of
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such approximations for the case of a model Hamiltonian where the electron
tunnels through a chain of identical orbitals. In this subsection we describe
two examples; in the first one we have only one mode coupled to the donor or
acceptor, and in the second there is one mode coupled to the donor and one
to the acceptor. Details of this subsection are presented in Sec. II.3.

We work in the non-adiabatic weak coupling to the bath limit. For the fast
quantum modes, for which we expect that the Born—-Oppenheimer and Condon
approximations breakdown may occur, this weak cdupling limit is applicable

(see Sec. IV of Sec. I1.3). Without including the bath, the Hamiltonian is
Hgr = H®+ H"° 4+ H", (II.37)

where e is electron and n, nuclei. Here we present models for each part of

Eq. I1.37 and solve the following equations for the localized states:
HD,M\I/D(E,Rl,..., RNRC)Z{TF+VD+VM+Hn}\I’D = FE¥p (II.38a)
HA, M\I/A(E,R]_,..., RNRC)Z{T;+VA+VM+Hn}\I/A =FEWV,, (II.385)

where D, M, and A are the donor, medium, and acceptor respectively, and R;
is the ' reaction coordinate.

Recall that, in the weak coupling limit, the energy broadening due to the
bath guarantees non-adiabaticity but is not strong enough so that the vibronic
levels are mixed. In this case, the forward transfer rate from a single donor

state is (see Egs. I1.6 and IL7)

Moo= I<¥p|Va|¥] > h(Ep - EY) (I1.39a)
F
def 27
Mo 5 |2 HEl*h(Ep - E) . (I1.39%)
F

Applying the Born-Oppenheimer and Condon approximations to the sum of

matrix elements gives
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Y | <Up(Z,Ri...Rype) | Va | U5(Z, Ry ... Rape) > |*h(Ep — EF)
F

=T34 D |<¢p(Ri...RNno) | 85(Ry... Rupo) > |2h(Ep — EE).
) (I1.40)
First, we consider one nuclear mode linearly coupled to a single bound elec-
tron (donor state, for example). The electronic Hamiltonian we use in this

subsection is described in Figure IL.3. For this electronic Hamiltonian we have

Hp am = ADaLaD +ﬂD(aZaD + a;gao) + Zﬂ(aianﬂ +alan_y) (II.410)

HS = Aaalaa+Ba(ahas +alan) + Y B(a}ant1 +afan). (I1.410)

Ap and A4 are negative and are the binding energies of the isolated donor and
acceptor relative to the energy of an isolated bridge orbital. The fermion oper-
ators create () or annihilate an electron on a donor(8p (7)), acceptor (84(F)),
or bridge site orbital (0, (F—na), n =0, £1, +2, ... ) Bp(a) is the donor (ac-
ceptor) interaction (< 0p(4)(F)|H|fo(n)(F) >) with the nearest bridge orbital.
This electronic Hamiltonian is the simplest possible one we can consider for
through-bond electron transfer. The importance of through-bond pathways
for electron transfer is discussed in the next chapter.

The Hamiltonian for the one vibrational mode coupled to the donor is
n n—e t 1 t T
H™ 4+ H" ¢ =(blb+ E)hﬂ—-)\(b +blapap . (I1.42)

The boson operators create (bT) or annihilate (b) a vibration on the oscillator

and (b7 +b) = /2MQ/R y.
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8, 8,
o (N-1) (N)X (Ns+D)
YY) O w LA Q-Q O oo
B ' B

Figure I1.3 — Arrangement of the donor, acceptor, and bridging orbitals for

Hamiltonian II.41.
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As described in Sec. I1.3, the donor wave function is

YP(F) = 3§ 9585(0) [00(7) + -\/Eﬁ—i-___ S drlon(r—na)] |, (17.43)

F 2 —4p2 3
where
6 + ;11_ — % (II.44q)
E; = Ettal (5 4+ 1/2)RQ, (I1.44b)
and

gj |Ap — ——=2== ~E;| = Mgj+1Vi+1+g;-1V/4) =0 . (II.45)
\ /E'J".’ — 442

¢;(y) solves the nuclear Schrédinger equation (Eq. I1.42) in the absence of the

electron (harmonic oscillator with origin y = 0). In the Born-Oppenheimer

approximation

VBo.(Fy) =), {gﬁb]‘(y)

J

s nlg (= =
X [00(7") + o /\I’Jy)z =7 Zn: e(y) ™0, (F— na)] } , (I11.46)

where

€y) + - = 5 (I1.47)

and X' = A(2MQ/#)Y/2, The Born-Oppenheimer wave function is qualitatively
wrong because it assumes an electronic decay for each possible value of the
nuclear coordinate.

For simplicity we consider the T = 0 case. Because the bridge orbitals are

orthogonal, and the driving force of the reaction must be left on the single donor
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oscillator (for energy conservation), just one matrix element Hp4 contributes

to the rate:

B
L2,

Now, if 462 <« E’]2 and g; can be expanded as described in Appendix C of

HDA ZﬂA (II.480,)

Sec. I1.3, the equation above becomes

BpPa e~y B
Hpy = Dﬂ A[ Fi ]I/Z[AD 32 /A0 —jhﬂ]N_H’ (I1.49q)
where
v = (Er/R0O) = (A/h0)?, (4.28)
¢~ B/E; . (I1.49%)

In the Born—-Oppenheimer/Condon limit

Condon BpBa B N+1 3—1’71. 1/2
Hpd™" = 3 (AD—A'g(j)) (j! ) (11.50)

g is the chosen value of y in the tunneling matrix element. There is an ¢ (reor-
ganization energy) dependence in the so-called “electronic” matrix element as
was found in the exact solution because the choice of § is € dependent. Condon
breakdown arises when more than one matrix element enters the rate expres-
sion at fized £ (as we discuss next in this subsection) or when 3/E(y) varies
rapidly in the range of y, which maximizes the product of nuclear functions
for different €. For a fixed value of €, the Born-Oppenheimer Condon result
becomes the exact result for the choice § = (Ap — A4)/)'. This 7 is the value
at the crossing point of the surfaces.

The interpretation of this result is simple but important. With coupling

on the donor, the exact donor wave fuction includes admixtures of many €;s.
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However, the acceptor can only access the portion of the wave function that
propagates, leaving €/h(l vibrations on the donor. This particular part of the
wave function decays as (6/A4)Y. The Born-Oppeheimer/Condon approxi-
mations match the exact result in this limit because energy conservation forces
the decay to the correct value. More profound problems with these approxi-
mations arise when there is coupling on both the donor and acceptor sites.

In the case of one nuclear mode on both donor and acceptor, the situation
is different. Here we assume the simplest situation, same frequency and same

coupling. The exact result becomes

> 1< Up|H|EE > P =
F

(%52) Ll el ars10

where M = e/hQ and

o 4
€ = Ap =2 /R0—jA0 (I1.51b)

In the Born-Oppenheimer/Condon approach, it becomes

BaBp ( B )NH
B A

2

Do I<uplHIEE > | =
F

X ZI < $0(y)[85(y° — 2u8) >< do(y*)|Prr—s(y* — 2v¢) > |* . (I1.52)

The minimum crossing of the two nuclear potential surfaces occurs at

A' AA _Al)
D _
y 2% + 3V . (I1.53a)

The decay constant at this point is

6(17) o~ B —3
(Ap + A4)/2 = AZ/RO

(I1.53b)
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The nuclear factor in the Condon expression is maximized when half of the
vibrational excitation is left on the donor and half on the acceptor (because
couplings were chosen equal), or jAQl = (Ap — A4)/2. ez*2¢t for this value of
J, and this value only, is equal to the approximate value. Because many €;’s
énter the sum, as transfer distance increases, the large €’s (with smaller j’s)
may dominate, and the driving force dependence of the rate may vary with
transfer distances. No choice of § gives the Born-Oppenheimer/Condon rate

the proper distance dependence.

In summary, there are two kinds of errors in the Born-Oppenheimer/
Condon approach to the problem: (1) The incorrect functional form of the
Born-Oppenheimer decay length. The true electronic decay is not modulated
by the reaction coordinate position when the electron is on the bridge orbitals.
It is sensitive only to the vibrational energy left behind. (2) The assumption

that € is € independent (Condon approximation).

Analyzing Eqgs. I1.51 and I1.53, we understand why the Born-Oppenheimer
and Condon approximations “work” in most cases. The reason is that the en-
ergetic distance to the center of the band (Ap or A4 which are energies in
order of 5 eV) is much larger than the nuclear energy fluctuations involved
(reorganization energies are fractions of eV). In order to observe the break-
down of these approximations we need long distances, so that N is large in
Eqgs. I1.51a and I1.52. As discussed in Sec. IL.3, that is exactly the case of the
radiolysis-initiated electron transfer study in glassy MTHF by Miller, Beitz
and Huddleston.® In their measurements they observed a shift in the peak of
the rate vs. AG plot to larger exothermicity for longer distance transfer. In

Sec. II.3 we discuss this result, and we show that such a behavior may be due
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to Born—Oppenheimer/Condon breakdown.
The “Adiabatic” Rate in the Inverted Region

In the adiabatic limit, as can be seen from Eq. 1.5 and Figure 1.3, the
nuclear motion occurs only on the lowest energy surface, and the electron
transfer rate limiting step is the way in which the nuclear coordinate flips
between the two minima. This approach works when we are in the “normal”
region, but in the “inverted” region it would lead to no transfer. This is the
point of discussion of this subsection and Sec. II.5.

In Sec. IL.5, we solve Eq. II.1 in the extreme adiabatic limit (very large

Tpa), and we get, using a semiclassical approximation

Ro?  [2mkT. E
rf = T Ef”exp{———’;ﬁf} , (I1.54)

where Ey is the forward activation energy, and & is the effective frequency of

the coordinate y. This expression is equal to Eq. IL.9b at Tp4 ~ ah®, with
a of order unity for reasonable parameters values. This is exactly what we
expect; the crossover from small Tp, to large Tp4 occurs when the matrix

element is comparable to the spacing & between vibrational energy levels.
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In biological and chemical electron transfer, a nuclear reaction coordinate is coupled to other
nuclear and/or “solvent” coordinates. This coupling, or friction, if strong enough, may
substantially slow down motion along the reaction coordinate, and thus vitiate the assumption of
electron transfer being nonadiabatic with respect to the nuclei. Here, a simple, fully quantum
mechanical model for electron transfer using a one mode treatment which incorporates this
coupling is studied. Path integral methods are used to study the dependence of the reaction rate on
friction, and the limits of the moderate and the high friction are analyzed in detail. The first limit
will prevail if the reaction coordinate is, e.g., an underdamped nuclear vibration, whereas the
second limit will prevail if it corresponds to a slow or diffusive degree of freedom. In the high-
friction limit, the reaction rate is explicitly shown to vary between the nonadiabatic and adiabatic
expressions as the tunneling matrix element and/or the friction are varied. Starting from a path

integral expression for the time evolution of the reduced density matrix for the electron and
reaction coordinate, a Fokker-Planck equation is obtained which reduces in the high-friction
limit to a Smoluchowski equation similar to one solved by Zusman.

I. INTRODUCTION: THE ROLE OF FRICTION

The migration of an electron from one molecule to an-
other, or between two localized sites in the same molecule is
a very common phenomenon and plays a central role in im-
portant biological and chemical processes such as oxidative
phosphorylation, photosynthesis, and oxy-reduction reac-
tions.’ Naturally, in all these processes, it is not merely one
electron that changes its state; the nuclei in the molecule(s)
along with the electrons that are tightly bound to them must
also readjust. This important fact, has, of course, been real-
ized by earlier workers.?~” References 2 to 7 vary in their
treatment of the nuclear degrees of freedom, but they all
share the view that whether or not the electron adiabatically
follows the nuclei in the transfer process is a question of the
size of the electronic tunneling matrix element. In many
chemical processes the electronic state does readjust rapidly
as the nuclei move, and the reaction is said to be adigbatic. In
biological processes, however, the distance between the sites
of electron localization can be as much as 15 A, which leads
to small tunneling matrix elements with experimental values
in the range 107310~ eV. The vibronic energies, in con-
trast, are typically of the order of 102 eV, This has led to the
belief that since the change of state of the electron can take
place on the time scales associated with nuclear motion,
most biological electron transfer is nonadiabatic, i.e., the

* Also Institute for Theoretical Physics, University of California, Santa
Barbara, California 93106. This is also the present address of the first au-
thor.

® On leave of absence from Instituto de Fisica ¢ Quimica de Sio Carlos,
Universidade de S&o Paulo, 13560, Sio Carlos, SP, Brazil.
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electronic matrix element determines the efficacy of the
transfer.®

What has been omitted in this simple picture are the
many other degrees of freedom corresponding to the other
atoms of the molecule(s) and the solvent which is present in
many cases (particularly those involving biomolecules). The
frequencies associated with gross motions of proteins, relax-
ation of solvent polarization, and the motion of counterions,
etc., can often be very small, even in comparison with the
electronic tunneling frequency. (Reference 9 provides ex-
perimental evidence for slow modes in the context of adiaba-
tic chemical electron transfer.) More importantly, even if it is
possible to identify a single “‘reaction coordinate” (represent-
ing, e.g., the direction in the multidimensional coordinate
space along which the potential energy barrier is lowest), this
coordinate will, in general, be coupled to all the others. This
coupling will, among other things, result in a transfer of en-
ergy from the reaction coordinate to the other coordinates,
and give rise to what would classically be interpreted as dissi-
pation or friction.

It is of course ciear that some such energy removal
mechanism must be present if an exothermic reaction is ever
to take place. More interestingly, however, it can also affect
the dynamics of the electron transfer itself. To see this let us
assume for the moment that the temperature is high enough
to permit us to think of the motion of the reaction coordinate
classically. Let us associate with this coordinate, y, an adia-
batic potential ¥V (y; + ) or ¥{y; — ) depending on whether
the electron is in the donor or acceptor site, respectively. (See
Fig. 1.) (These potentials should be thought of in the same
spirit as the potentials used to solve the vibronic eigenvalue
problem in the Born—-Oppenheimer approximation.) If we
denote the tunneling matrix element by (iA,/2), it follows

© 1885 American Institute of Physics 4491
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FIG. 1. Potential energy surfaces for the reaction coordinate when the elec-
tronic transition is forbidden {adiabatic potential wells). The labels + and

— refer 10 the donor and acceptor sites, respectively. The encrgies £, E,,
and E, are the forward and backward activation energies, and the reorgani-
2ation energy, respectively.

that most of the tunneling can occur only within a length of
order /, , of the crossing point y*, where /, , is the so called
Landau-Zener length '°:

l, =#A/|F, —F_|, (L.L)
where
F, =—-[8V(yxV/d],.,. (1.2)

If the friction is low enough (but not too low-see Sec.
I11), and the temperature is high enough, then each transit of
the reaction coordinate through the Landau-Zener region
will appear ballistic, and the probability of tunneling will be
small and calculable perturbatively in #A,, leading to the
standard picture of a nonadiabatic reaction. If, on the other
hand, the friction is high enough (see Sec. IV}, the motion of
the reaction coordinate through the Landau-Zener region
may appear diffusive rather than ballistic, and it may slow
down to the point where the electronic change of state is once
again rapid by comparison. The electron will then be able to
make many transitions between the two states, and it is clear
that in order to ascribe a definite state to it, we must study
how the phase coherence between these states is lost. This
can only come about because of the motion of the nuclei, and
this suggests that the reaction rate in this limit will be similar
to what one would get by assuming that the electron fol-
lowed the nuclei adiabatically all the time, even though the
vaule of fiA, itself would have suggested that the reaction
was nonadiabatic.'!

Although there is as yet no evidence for biological elec-
tron transfer processes being coupled mainly to a diffusive
nuclear coordinate, it is still worthwhile to study the effects
on electron transfer of the coupling between the reaction
coordinate and the remaining degrees of freedom for several
reasons. The first is conceptual: The simplest pictures of
adiabatic and nonadiabatic reactions are very different from
each other, and it is interesting to see how they emerge from
a unified treatment in which the relative time scales of the
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electron and the reaction coordinate can be continuously
varied from the limit in which the electron is “slow” and the
reaction coordinate “fast” to the opposite limit where the
roles are reversed. Such a variation is most naturally brought
about by the coupling studied in this paper since on a priori
grounds alone it would seem to be present in reactions in-
volving complex molecules. Secondly, even though the ef-
fects of this coupling would be most clearly evident in an
adiabatic electron transfer, they are by no means absent in
the nonadiabatic limit. (See Sec. 111.) Finally, these consider-
ations are not limited to electron transfer, and many of them
apply to some other situations such as ligand binding to
heme proteins. !

In this paper we present a simple but fully quantum
mechanical model for electron transfer which incorporates
friction in the sense of coupling together the nonelectronic
degrees of freedom. For simplicity, we take the Hilbert space
of the electron to consist of just those two states that are
involved in the transfer. It is convenient to use the Pauli
matrices for the operators in this space, and we shall often
refer to the electron as a “‘spin.” We shall employ a basis such
that the reactant (electron in the donor site) and product
(electron in the acceptor site) states are eigenstates of o, with
eigenvalues + 1 and — 1, respectively. We further assume
that the electronic degree of freedom is directly coupled to
only one reaction coordinate y, which we shall sometimes
call the “particle,” and which in turn is coupled to the re-
maining nuclear and solvent degrees of freedom, hereafter
referred to as the “bath” or “‘environment.” As shown by
Caldeira and Leggett,'? provided the physical situation is
such that none of the bath degrees of freedom are strongly
excited, then for the purposes of understanding the behavior
of the nonenvironmental degrees of freedom, it is possible to
represent the bath by a collection of harmonic oscillators,
and take the coupling to be linear in the oscillator coordi-
nates. Thus, the Hamiltonian that we shall consider is'>'*

Her =205 4 —zi{—Pi +V(yo,)
Ca 2
o} y] ]
(1.3)

2

Here, y and P, are the reaction coordinate and the corre-
sponding momentum, and {x,, p, | are the coordinates and
momenta of the bath oscillators. The quantities
Viy;o, = + 1) and V{y;0, = — 1) are the adiabatic
potential surfaces introduced earlier. Many of our results are
true for fairly general choices of ¥ y; o, ), but we shall per-
form explicit calculations only for the special case

Viypo)= | MOy +ywo.) + |eo,.
We expect our results to be valid for more general potentials
since experience with the problem of a particle diffusing over
a one-dimensional barrier indicates that the reaction rate is
sensitive only to gross features of the potential such as the
barrier height, etc.'>'® We shall, accordingly, cast our re-
sults, as far as possible, in terms of such quantities.

It might appear at first sight that we need to specify the
masses m,,, frequencies w,,, and coupling constants ¢, , for

+Zp‘2’+ mawix, +
azma iaaa

(1.4)
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all the oscillators in order to completely specify the problem.
This is however unnecessary because we are not interested in
the detailed dynamical behavior of the bath oscillators. As
shown in Ref. 12, the reduced dynamics of just the electron
and the reaction coordinate are influenced by the bath only
through the following combination of parameters known as
the spectral density:

AM=1ZJE4W—%L (1.5
29 mo,
The spectral density, in turn, can be determined provided
one knows the semiclassical equation of motion satisfied by
the particle. In particular, if, for fixed o,, the particle exper-
iences a frictional force linearly proportional to its velocity
with a coefficient 7, that is if the equation of motion is

d¥y dy d
M—= —V{(y0,)=F,, L6
dﬁ+”ﬁ+@(y”) (1.6}

where F,,, is any external force, then one can show that Jy(w)
is given by
Jolw) = nw exp( — w/A). (1.7

Here, A is a high frequency cutoff that is required on both
physical and mathematical grounds, and that is much larger
than the domain of frequencies over which Eq. (1.6} is a rea-
sonable approximation to the exact equation of motion. We
shall, in fact, take Jy{w) to be given by Eq. (1.7). The main
reason for doing this is that it leads to a well-characterized
form of dissipation, and allows us to make contact with the
conventional problem of diffusion over a one-dimensional
barrier.'*'¢

It should be noted that if Jy{w) is not given by Eq. (1.7),
the classical equation of motion is no longer Eq. (1.6), and
has to be generalized to have a frequency dependent friction
coefficient.'” In particular, it is no longer possible to define a
simple friction coefficient or a diffusion constant. The ques-
tion of what the correct spectral density for a given biomole-
cular reaction should be is open at this time, but we believe
that many of the techniques of our paper should prove useful
in any case.

We emphasize that the use of harmonic oscillators is not
equivalent to expanding the full particle-plus-bath potential
to second order in the displacements of the bath coordinates
about their equilibrium values. Further, there is no limit to
the overall strength of the dissipation that can be treated via
such a prescription. The prescription will start to provide
quantitatively inaccurate answers if in reality some of the
bath degrees of freedom are strongly excited, but it repre-
sents, nevertheless, a first step in arriving at a comprehensive
understanding of how friction affects electron transfer.

To summarize, our model consists of an electron (with a
two-dimensional Hilbert space) that is directly coupled to a
single nuclear coordinate. The latter is assumed to move on
an adiabatic potential surface of the form (1.4} and is in turn
coupled to an environment which we represent by a set of
harmonic oscillators following Caldeira and Leggett.’? The
oscillators have a spectral density Jy(w) of form (1.7), where
is a parameter that quantifies the strength of the coupling
between the reaction coordinates and the environment, and
which we shall regard as given. Our aim in this paper is to
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analyze as completely as possible the rate of electron transfer
as a function of the tunneling matrix element A,, the exo-
thermicity €, the parameters of the reaction coordinate po-
tential, i.e., M, y,, and (1, and the friction coefficient 7. We
would like to obtain the conditions under which the reaction
is adiabatic or nonadiabatic, and also to construct simple
physical arguments for understanding these conditions, in
particular the dependence on the friction coefficient 7. As
far as we know there is at present no information on what the
spectral density for any particular reaction should be. There-
fore, our emphasis in this paper shall be on understanding
the conceptual issues associated with the introduction of
friction into the problem, and on developing techniques
which we think will be useful for dealing with generaliza-
tions that may be necessitated by future experimental and
theoretical work on its nature and source.

The plan of our paper is as follows:

(1) In Sec. II we shall present a formally exact path inte-
gral expression for an inclusive probability that we interpret
to be the probability that electron transfer has occured at a
time ¢ after some specified initial state for the system as a
whole. Except for a trick that eliminates a large amount of
tedious algebra, this section consists mainly of a recapitula-
tion of formal results aiready in the literature, and the reader
who is not interested in the details should note the definition
of the inclusive probability [up to Eq. (2.3)], and proceed to
the answer for it [Egs. (2.14), (2.15), and {2.23) onward).

{2) In Sec. 111, we shall show that it is possible to simplify
this formal expression very considerably for moderate values
of friction. We shall obtain an answer for the reaction rate
[Eqgs. (3.7)and (3.8)] that is quite similar in functional form to
the one obtained by Hopfield® in its overall temperature de-
pendence but differs in some details (T4 is different]. We
shall see that the calculation itself provides an upper limit on
the friction for this result to be valid, and we shall give some
plausible arguments for what the lower limit should be. We
shall then provide a very simple interpretation of our results.

(3) In Sec. IV we shall analyze the formal path integral
expression in the limit of very high friction, and show that
with some very plausible approximations it is possible to
obtain a relatively simple expression for the reaction rate for
all values of the tunneling amplitude i, [See Eq. (4.18)]. As
expected, we find that if the tunneling matrix element and/
or the friction is large enough, the rate is independent of 4,
and is very similar to the rate at which a particle diffuses over
a one-dimensional barrier obtained by considering only the
lower of the curves V' ( y; + ) and ¥V (y; — ) for each value of y,
whereas in the opposite limit it reduces to the nonadiabatic
result of Sec. II1. The important ratio turns out to be that of
the time spent in the Landau-Zener region to the “tunneling
time” Ag .

(4) In order to understand the resulit of Sec. IV better, we
show in Sec. V how to obtain a Fokker-Planck equation for
the reduced system consisting of the electron and the reac-
tion coordinate. This equation is valid over a wide range of
values of temperature and friction, and should be useful for a
detailed study of the crossover from the nonadiabatic to
adiabatic regime. Rather than do this, we shall limit our-
selves to the very high friction regime and convert the
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Fokker-Planck equation into a Smoluchowski equation,
which is identical {except for minor corrections) to a set of
equations arrived at by Zusman through the use of a stochas-
tic Liouville equation.'®

(5) In Sec. VI we shall summarize Zusman’s solution of
this equation. The reaction rate thus obtained is almost but
not quite the same as that of Sec. IV.

{6) We conclude this paper in Sec. VII with some re-
marks about the possible future extensions of our work.

Il. PATH INTEGRAL CALCULATIONS OF INCLUSIVE
PROBABILITY

In this section, we shall derive a formally exact expres-
sion for the conditional expectation value P {r ) defined as fol-
lows. Suppose that for 1<0, the electron is held fixed in the
donor site, or equivalently, that the spin is in the “up” state,
and the reaction coordinate and the bath are in equilibrium
with it. In other words, the entire system is described by the
density matrix

plt)=|+)(+lexp{—-BH ), <0, 2.1
where 0, + )= + |+ ), B=(kT)""', with T being the
temperature, and

H*=ﬁfHJMm=:n+mw

2.2)
where H,,,, consists of all the terms in the sum in Eq. (1.3).
The electron is let go at ¢t = 0, and the entire system is al-
lowed to evolve according to the full Hamiltonian Hg,. We
define W (r ) to be the probability that the spin will be found in
the up state at a later time ¢, irrespective of the state of the
reaction coordinate or the bath. The conditional expectation
value (o, (1)), denoted Pt ), is then given by

Pu)y=2Wi)—1. 2.3)

We shall calculate P(t } for the special choice (1.4} of the
potential ¥{ y; o, ), following the method of Chakravarty and
Leggett,'® and Leggett er al.,?® which in turn is based on the
Feynman-Vernon influence functional method.?’* Since
the spin is coupled only to harmonic oscillators (bath as well
as the reaction coordinate) it is clear that one can integrate
out the oscillators. The only complication is that the spin is
not directly coupled to all the oscillators, and although one
can first eliminate the bath and then the reaction coordinate,
it is simpler to proceed as follows.

Let us consider the purely quadratic part of the Hamil-
tonian (1.3) that is not coupled to the spin, and imagine dia-
gonalizing it via a transformation to normal modes. Since y
can be written as a linear combination of these normal
modes, we can write the Hamiltonian Hzr as follows:

HET = i;i(lax + 5603 +yoaxzaaia
a

—2__ 2l 4
ma,f]( !

a®a

+Z[———-+ |, BLRL +

where %, are the normal coordinates, and ¢, /i, , and @,
are the corresponding canonical momenta, masses, and fre-
quencies. The quantities 7, are proportional to the coeffi-
cients in the expansion of y in terms of X, ’s
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Since Hyr now consists of a spin coupled to a set of
mutually noninteracting oscillators, it follows from Refs. 21
and 22 that Pt }isinfluenced by the oscillators only througha
spectral density Jo(w) defined in exact analogy with Eq.
{1.5):

Slo — B,). 2.5)

= -Z

The problem is thercfore reduced to finding J..{w) since
once it is known we can write'®?° a formal expression for
P(t).[See the discussion following Eq. (2.16). The reader who
is not interested in the details of the derivation of J,q4(w)
should skip to this point after noting its form—Eq. {2.14)].

It is not even necessary to find ,, etc., explicitly in or-
der to determine J 5 (w). Since the transformation from Egs.
{1.3)and (1.4) to Eq. (2.4) does not involve the spin, the same
Jx{w) will control the dynamics of a continuous variable ¢
moving in some potential U {g) and coupled to coordinates y
and {x, | in the same way as the spin. In fact, as shown by
Leggett,'” it suffices to know the equation of motion for g in
the classical limit in order to deduce J,4(w), and this allows
us to circumvent the calculation of the normal modes.

To this end, let us consider the Hamiltonian

2

P,
H, == +Ujg+
2 q

+ﬁ;: | ne

where p, is the momentum conjugate to g. The classical
equations of motion (with U'lg) = dU /dg, ¢ = dg/d:, etc.)

P2+ MOy +
Y MOy +gf

+§mw{x+

a%a

are
pg= —-U'lg) — My +q)
My= —MQYy+q) — Zcx ——yz , 2.7
maia= _mawa a—cﬂy'

The Leggett prescription for obtaining J.q(w) is as follows.
We define the Fourier transform

glz) = f‘: q(t) exp{ — izt )dt, Im(z)<O {2.8)
and write the equation satisfied by g as
Riaz) = — Ullg) (2.9)

where l? {2} s a function of z alone, and U }{g) is the Fourier
transform of U'(g). Then, J ¢ (w) is given by

Jq = lim Im[K (@ —ie)]; o real. (2.10)
—0 4+

Carrying out these steps, and using the definitions (1.5)
and (1.7), one obtains

Kig)= —pz + MOL @/ (MQ* + L)) (2.11)
with
R ] IR

The cutoff A can now be taken to 1nﬁnity, which then leads
to the expression
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Liz)= — M2+ inz. (2.13)
Substituting this in Eq. (2.11}, and using Eq. (2.10), we get

7efl*
Jglo) = o i (2.14)
where we have defined
Y =n/1M. (2.15)

Note that J 4 (w) is directly proportional to the imaginary
part of the dynamic susceptibility of a damped harmonic
oscillator with undamped frequency 2 and a friction coeffi-
cient 7:
Joalw) = M>0%" (o). (2.16)
We can now use the results obtained in Refs. 19 and 20
directly, and write®

Wit)=fGofZAA[o]4d*[1]

—°f drf dsg(r)

X[ (5)Kqlr — 5) — iy S)K,(r - s)]].

Here, < o denotes an integral over all spin trajectories o{7 )
(see below), and A4 [o] is the amplitude that any given trajec-
tory oi{r ) would have in the absence of coupling to the reac-
tion coordinate. The exponential factor is the influence func-
tional of Feynman and Vernon for a bath of harmonic
oscillators, which we have written out explicitly with the
following notations:

x:xp{

2.17)

§ir)=lolr)=A(r)1/2, ylr)=lofr)+4(r)}/2,
(2.18)

Kir)= fmda) J o5 (w)sin{ewr), (2.19a)

K,(r) f do J,,(w)cos(wr)coth(ﬁgm) {2.19b)

The spin trajectory ofr ) {and similarly 4 (7 }] consists of any
function that takes values on the set + 1 and — 1 with dis-
continuities at an arbitrary, countable number of points
1, 8, ..., 1, <1, Subject to the conditions®*

oir)=Alr)=1, (2.20)

The values + 1 correspond to eigenvalues of o, so that for
any pair of trajectories o{r ) and A (7 ), the segments in which
£ (r) = 0 can be thought of, roughly, as states in which the
spin density matrix is in a diagonal state; following Ref. 19,
we shall call such segments sojourns. Similarly, segments in
which y{r ) = O represent off-diagonal states of the density
matrix and we shall call them blips.

The identification of the amplitude A [o] and the mea-
sure to be associated with the spin paths is most easily done
by examining the amplitudes X, , to go from the state | + )
at time zero to the state | + ) at time r under the influence of
the Hamiltonian

H, = i‘;—"o, + jeo,.
If we consider the first term as a perturbation and work in
the interaction picture, then it is simple to construct the Dy-

son series for the time evolution operator, and we get

— 0 <7<0; r=1t

(2.21)

K..= 3% (:.iéa)"' J' dr, f “ar, . f "t
M m-;.z.(.. 2 o o L

[otr tar).

where g{7 ) equals + 1 for <1, flips to — 1, and stays at
that value until = #,, when it flips to + 1, and so on. Equa-
tion (2.22) is the precise meaning of the formal expression
K, =(ZcAlo)

The last step is to rewrite the expression (2.17) in terms
of a single sum over all possible pairs of paths {oir A (r)}.
We do this by considering each double path as a succession
of alternating blips and sojourns. Note that there are two
kindsofblips [ £ (7} = + lor — 1], and similarly, two kinds
of sojourns [ y{r)= + 1 or — 1]. Since £ (r ) and y{r ) can
both be written as a sum of piecewise continuous functions
taking on values + 1,0, or — 1, the double integrals of the
kernels X, and X in the influence functional are easily per-
formed. Finally, summing over all possible numbers of blips,
and integrating over their locations, we get

Pi)= S —Aé)"_fdrz,, '[)""d,h_,...

aA=0

- 1€
x 222
“p[ 2 (2.22)

xf dn Fot, by ) (2.23)
0

where

I?,,({t,])=2“"exp( ,Z.A){Z[CXP( ,i &ibe /k)

"1

e 3 594)

k=1

X H cxp{ 1;1( —ly2 1 +¢0))”

=1

(2.24)

Here, 1, , ==t, — 1, ,andthe{, sare variables indicating the
signs of the blips; each of them can equal + 1 or — 1.
Further,

A; = Gyltyn 1) (2.25a)
By = Goltyrzj 1) + Galtas - 13/)

= Giltay) = Galtak - 1351 b {2.25b)
Py = Giltyan) + Gilty 126+ 1)

— Gty 12k} = Giltyon 1) (2.25¢)

where G, and G, are second integrals of the kernels X, and
K,

G,t) =ﬁ 072 Gnior), (2.26a)
w
Gylt) = f do J“"“’n— mt)]coth(ﬁﬁw)
(2.26b)

and it is to be understood that the limit f,— — o is to be
taken in evaluating ®,,. Formulas for G, and G, are given in
the Appendix.

The expression (2.23) for P(r ) can be thought of as a gen-
eralized, grand partition function for a one-dimensional sys-
tem of charged rods, or blips. The term A; can be interpreted
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as the energy of a blip. It is always positive, and grows both
with increasing temperature and with increasing blip width
for wide enough blips. Consequently, very wide blips are
always suppressed. The term B,, represents the interaction
energy of two blips, and because it is multiplied by the factor
&, €x. blips can both attract and repel one another. Finally,
&, is the phase factor arising from the interference between
trajectories with sojourns of opposite sign.

Despite its formidable appearance, Eq. {2.23) can be
made to yield useful results in the limits of moderate and
high friction. This is the subject of Secs. III and IV.

i1l. MODERATE FRICTION AND NONADIABATIC LIMIT

In this section we shall show that if the friction is moder-
ate (we shall make this more precise) then the expression
(2.23) for P(t} can be approximated by a very simple form
characteristic of exponential decay with clearly identifiable
forward and backward reaction rates (i.e., electron going
from donor site to acceptor site and vice versa). Our strategy
is motivated by the simple picture given in Sec. I. We expect
there to be a range of values of friction in which it is small
enough that each transit of the Landau-Zener region is too
rapid for the electron to make many transitions, and at the
same time large enough that there is no precise relation
between the times at which these transits occur. Since a blip
can be thought of, loosely speaking, as an interval in which
the electron is “making up its mind” about which state to
end up in, or as a single tunneling event, we should expect
that different blips are uncorrelated, and that interblip inter-
actions are unimportant. This is indeed the case, as we shall
see.

Let us suppose that the decay rate has a value T,
(which must, of course, be calculated) so that we can associ-
ate with P(t), for not too short values of ¢, a variation of the
form exp( — I, ¢). If such a form is to rise from the series
(2.23), it follows that AZF,, must actasa probability distribu-
tion such that the mean length of a blip plus its neighboring
sojourn equals I''. Quite generally, however, we expect
I',. to contain an activation factor, which in the high tem-
perature limit equals exp( — E ; /kT ) etc., which merely re-
flects the frequency with which a particle has enough energy
to reach the Landau-Zener region. Within each transit of
the Landau-Zener region, however, we can have several tun-
neling events, corresponding to a mean blip-plus-sojourn
length ¢, , ., which can be obtained by dividing I',, by the
activation factor. If we can self-consistently impose the con-
dition that the self-energy of a blip forces the mean length of
ablip, which we denote t,,;,,, to be much smaller thany, _ |, it
follows from Egs. {2.25) and (2.26) that it is reasonable to
neglect the interblip interactions By, , and all the phase fac-
tors @,; except those withj = k + 1. Since we are assuming
that 1., <1, . ,, we can approximate ®, , . ; as follows:

Pissr =Gilta s 226) = Giltan 4 126) — Gillan v 2260 1)
==Gilthz =l ) 3.1

The partially averaged influence functional ,, ({1, }) [see
Eq. (2.24)] now decomposes into a product of functions de-
pending on the blip lengths alone.
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Flle) = []I:]lexpf - G;(b,)z]

x [ ]:Izcos[G.(bj)]cos!ebj/ﬁl]

X cos{G,(b,) — €b,/#}, (3.2)
where b;, the length of the jth blip, is defined by
b=ty —t, . {3.3)

We now substitute Eq. (3.2) in Eq. {2.23), and rewrite the
multiple integral as an integral over the lengths of all the
blips and sojourns (with the constraint that they add up to 7).
Since G, is a rapidly increasing function of its argument, we
can extend the upper limits of the blip integrals to + « . The
sojourn integrals then give a factor of t" /n! in the nth term of
the series, which is easily summed to give

Pity=P_ +(1 —P_jexp(—T,,t), (3.4)
where

T, =A} f “expl — Gyt 1cos[ G, 1) cosler A, (3.5)

2 o«
P, =1- -Aif expl — G,(t)]cos[G,(t | — et /#]d1.
I, Jo
(3.6)

As stated earlier, the time scale I', ! is determined by
the argument, and we must ensure that the self-consistency
condition is satisfied, i.e., #,;, €2, , ,. We can evaluate T,
explicitly if the time scale 7, defined in the Appendix is much
less than the lesser of % and ¥ . (Recall that ¥ = 7/2M.)
This will be the case if the barrier heights E ,, E,, are large in
comparison with both the thermal energy kT and the vibra-
tional enegy #(). Equation (A8) of the Appendix is then a
good approximation to G,(t ) over the region where the expo-
nential in Eq. (3.5) is appreciable, and 1, is equal t0 7,. In
the same region G,(r) can be approximated by Eq. (AS5). It
follows that

rna = rna./ + rna‘b' ‘37)
where

r 4 " E /KT, 3.8

na.f“T(E’kTeﬂ) Cxp(— ra eﬂ) ( N )

is the forward rate. The backward rate I',, , is given by the
same equation with E , replaced by E, . (See Fig. 1 for the
definition of E/, E,, and E,.) We have introduced an effec-
tive temperature 7,4, through

kT = MOy, T), (3.9)
where u%(y, T) is the mean square displacement of the reac-
tion coordinate about its equilibrium value in either poten-
tial well ¥( y; + ). From the discussion of the 7and 7 depen-
dence of 4* in the Appendix it follows that T,y =~ T at high
temperatures, so that the forward and backward rates satisfy
detailed balance, and P_ , which is the equilibrium expecta-
tion value (o, ), and is generally given by

P, = —tanh(e/2kT ), (3.10)

reduces to the answer we would get from the Boltzmann
distribution.
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The expression (3.8) is quite similar to the one found by
Hopfield®* in that the effective temperature 7.4 changes
from T to a temperature-independent value as the actual
temperature decreases, although the detailed manner in
which it does so is different. As states in the Appendix, the
crossover temperature depends on the strength of the fric-
tion, and measuring it should provide an indication of how
important friction is in any given reaction.

The self-consistency condition now reads, approximate-

ly,
( #Al )
— |«
4E kT

Since fA, is usually much smaller than E,, this condition
will always be satisfied unless the friction is very large.

The determination of how large the friction must be in
order for Eq. {3.8) to hold is a more delicate question. Indeed,
if the friction is very low, we should expect P (1} to depend
sensitively on the choice of the potentials ¥{y; + ), and
answers obtained by studying the parabolic form (1.4) may
have rather limited validity. We shall therefore make only
rough, qualitative statements about the behavior of P{t} in
this case.”

Let us imagine, to begin with, that there is no friction. In
this case we will have in each well a whole ladder of energy
levels with a nonuniform spacing. Further, any level in the
left well will, in general, be separated from the one closest to
it in the right well by a detuning, 8, which we expect to be of
order #i{}/2. This detuning will be much larger than the tun-
neling matrix element #iA between these levels, where A is
given by A, times the overlap integral of the levels in ques-
tion. If we now start our system in one of the levels on the
left, and assume that we can neglect the mixing of this level
with all but its closest partner in the right well, the system
will oscillate back and forth between these two levels. The
probability of finding the system on the right, however, will
be very small, or order (3/5 ). This oscillation will continue
ad infinitum unless there is a mechanism for the system to
equilibrate, and so we must reintroduce the coupling to the
bath. Then, given that the system is in the right well in a level
with an energy E as measured from its bottom, it will lose
energy by making transitions to other levels at a rate 2yE /
#i€). The net rate at which the reaction will proceed is then
approximately given by the product of these two factors,
suitably weighted over the levels of the left well so as to
reflect the initial density matrix. Although this sum is diffi-
cult toevaluate, we can argue that the rate should be propor-
tional to (i) an activation factor exp — (E ;/kT ) arising from
the initial Boltzmann distribution, (ii) a factor of order {A,/
Q) arising from the mixing of individual levels in each well,
and (iii) the frequency ¥ associated with the rate of energy
loss. Recall that this last factor is also present in the rate at
which a particle diffuses over a simple one-dimensional bar-
rier when the friction is low.

One can now get a rough understanding of the effects of
increasing the friction by thinking of the levels in each well as
acquiring a width. This tends to increase the reaction rate by
decreasing the detuning between the levels. It also tends to
reduce the time over which phase coherence between two

(3.11)
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neighboring levels can be maintained, i.e., it tends to dampen
the oscillations. It follows that by the time y = (}/2, there are
neither sharp levels, nor any coherence between them, so the
results stated in this section should hold.

We conclude this section with a simple semiclassical in-
terpretation of the result [Eq. (3.8)]. Let us consider a particle
in the left well, traversing the Landau-Zener region with a
velocity v. Then, the probability p(v) that the electron will
tunnel to the state | — ) during one forward and return tran-
sit is given by'®

plv) = mhAL/F, v, (3.12)
where F, is the difference in the slopes of the potentials at
the crossing point:

d
Fy=F_~F, =;;!V(,v; +)=V{y—),-..3.13

The probability W, ( y*.v) of finding a particle in the state
| + ) at y = y* and with velocity v can be taken to be the
Wigner transform of the reduced density matrixp, ,(y, ')
for the reaction coordinate, evaluated at the position y*, and
at a momentum Mu:

«

M
W, ., (y*u)=— dx
e 2rh) - o

XexpliMvx/flp, . (y* —x/2,y* + x/2).
(3.14)

Since the flux of particles with velocity v at the point p* is
given by v W, (y*v), the forward rate I',,, / is given by

A5

2F,

- I A% g
(3.15)

Using the fact that p_ _{ y, y} is a Gaussian probability dis-
tribution centered at y = — y, with mean square deviation
42, itis simple to show that Eq. {3.15) is identical to Eq. (3.8).

J dvplop W, (y*v) =
(4]

IV. HIGH FRICTION AND THE ADIABATIC LIMIT

In this section we analyze the formal path integral
expression [Eq. (2.23)] for P(z) in the high friction limit and
show that the reaction rate may become independent of the
matrix element #A,. The arguments of this section are not
quite as robust as those of the previous one, and we believe
that a better answer for the rate in this limit can be obtained
by solving the Smoluchowski equation derived in the next
section. We nevertheless include this section because (a) it is
the only instance known to us where one can sum many
orders of perturbation theory in a real-time path integral,
albeit approximately, and (b) the fact that the resuits so ob-
tained do not differ substantially from those of Sec. VI indi-
cates that the mental picture of the process in this limit on
which our approximations are predicted is valid and useful.

Since we shall work entirely in the overdamped limit in
this section, the relevant approximations to G,(¢ ) and G,(r)
are given by Egs. (A3)and (A7) of the Appendix. The charac-
teristic time over which these functions vary (and over which
the reaction coordinate, or “particle,” moves) is given by
1, = ', where

=072y, (4.1)
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Let us imagine restricting the electron to the | + ) state.
Then the time taken by the particle to traverse the Landau-~
Zener region in a single visit is of order 7./, 2 /{ y* + y,). For
large enough ¥ and/or A, this time can become much larger
than the mean blip time which is of order (E, kT /%%)~'/*. In
contrast, different passages of the Landau—Zener region will
be separated by a mean time of order 7. exp(E ;/kT'), which
is much longer than 7, if E, is more than a few times k7.
This suggests that for times t> 7., the electron trajectories
which contribute appreciably to P (r ) consist of well separated
blocks, with each block consisting of closely spaced blips. We
indicate this pictorially in Fig. 2, where the lower and upper
horizontal segments represent sojourns and blips, respec-
tively. We shall call the long intervals between blocks super-
sojourns, and label them as indicated in the figure.

In analyzing Eq. {2.25), we shall, therefore, use the
asymptotic form for G,(t ) {linear function of 7 if the argu-
ment spans a super-sojourn, and the short time form (A8)
otherwise. Similarly, we shall take G,(t ) to be a constant [giv-
en by the first term of Eq. (A3)] in the first case, and to be
given by the first two terms in the +—0 expansion of Eq. (A3)
in the second. With the definitions

b=t —t;_,, (4.20)
S, =0y =ty {4.2b)
it is straightforward to show that
A4, =b2273, 4.3)
By = [b,bk/rf,, b, and.bk in the same block,(4‘4)
0, otherwise.

The phase factors ®,; are a little more complicated. If the
blip &, and sojourn s, are in the same block, then

Oy = — (. E, /b5, (4.5)
whereas if they are in different blocks, 9, vanishes unless
the sojourn s, is a super-sojourn, and &, lies in the block
immediately following it. (This is true even for k = 0.) In that
case,

®, = — Eb/h (4.6)

It now follows that as in the previous section, the influ-
ence functional decomposes into a product of functions, de-
pending this time only on the lengths of the blocks. If we
denote the length of the J th block by B, (this should not be
confused with the interblip interaction B, which always has
two subscripts), and that of the following supersojourn by
S,, then we can write

AU UL

—Block —-a}—gopum—-—n—aiock—u
N
FIG. 2. Schematic representation of the important electronic trajectories in
the limit of high friction. The short horizontal segments are the blips which
bunch together into blocks. Different blocks are separated by long intervals
calied super-sojourns. The labeling in such that the jth super-sojourn follows
the jth block.

:)~;st,,(.n”ds, dB,)R (B,)HR(B

where it is understood that the block and super-sojourn
lengths are constrained to add up to 1. The functions R and
R " are given by

I

i) - £1- ()32 )

where it is similarly understood that the blip and sojoum
lengths must add up to B, and where

{?,] 1 P(—-Af )[cos(eA,/ﬁ)cos(E,A,/ﬁ)}
2"

4.7)

{{s:,, })}

F, 212 ) lcos[(e — E, A /%]
no o E,
X cos(—‘-LA S ), 4.9
hl:lx ﬁ k+ 12k ( )
with the definition
A=YS¢b, (4.10)
=5

The evaluation of P (t } is most easily organized by taking
Laplace transforms. Defining

P(A)=Jwexp(—,1:)m:)d:, (4.11)
0
and simﬂarlyl.i(/{)andk’(/l ), we get

a1 R'(4) ]

P A[H—-__A-Tw)' (4.12)

We explicitly show the evaluation only of R (4, since that of
R (A ) is very similar:

Riu)= "2( - Aé)"f---fexpl

+b, +5++5,.4)]

—i(b,+b2+~~-

XF ({5, b, })ds, _ ,...db,. (4.13)
The evaluation of the sojourn integrals is easy; the & th inte-
gral gives a factor
A
APt (@ E A /R
We now note that we are interested in P(t) for times much
longer than w_', and so any singularities of P(1) with
Rell )€ — . arenot of interest. We can accordingly consid-
er Eq. (4.14} in the limit A—0, where it reduces to

(4.14)

**-—5(1\“ 1k (4.15)

w E,
The delta functions render all but one of the blip integrals
trivial, which is easily done. The final result is

A} (mF?/E kT)'?

Rii)= -
W= = o+ sz 1] P

— E /kT).
(4.16)

R {A ) is similarly evaluated, and P (4 ) is inverted to give
Pit)=P, +(1 —P_)exp{—TIt), 4.17)

J. Chem. Phys., Vol. 83, No. 9, 1 November 1985



Garg. Onuchic, and Ambegaokar: Electron transfer in biomolecules

where
_ ANM/EKT)"
41 + Al(rh/ 20 E,)]
X [exp( — E,/kT) + exp( — E,/kT)],  (4.18)
and
P_ = — tanh(e/2kT). (4.19)
If we now define an “adiabaticity parameter” g,
g = Aj(mf/20.E,), {4.20)

then the reaction is adiabatic or nonadiabatic depending on

. whether g is large or small. If g<1, Eqg. {4.18) reduces to the
nonadiabatic rate of Sec. I1I, while if g> 1, we get a A, inde-
pendent, or adiabatic rate

w, E, i/2
Tu= 5 ;}(—f) [exp{ — E,/kT)+ exp{ — E,/kT}].

(4.21)

The interpretation of the condition for adiabaticity or
nonadiabaticity is simple: g is the ratio between the time
spent by the particle in the Landau-Zener region when the
friction is high and the time taken for one spin precession
(which is the inverse of the tunneling frequency A; ).

It is worth noting that Eq. (4.21) is almost exactly the
rate we would write down on the basis of a Kramers-like
calculation for a particle diffusing in a potential obtained by
keeping the smaller of ¥(y; + ) and V(y; — ) for each y."*
(There are small corrections to the preexponential factor.)

In Sec. VI, we shall see how almost exactly the same
results are obtained by solving the Smoluchowski equation
which we derive in the next section.

V. DERIVATION OF THE FOKKER-PLANCK AND
SMOLUCHOWSKI EQUATIONS

In this section we shall show how, starting from a Ha-
miltonian of the form (1.3), one can integrate out the bath
and obtain an equation of motion—a Fokker-Planck equa-
tion, in other words—for the reduced density matrix of the
electron plus the reaction coordinate. It is very useful to have
such a description since it is much less cumbersome than a
path integral, and is, even in the worst case, amenable to
numerical solution. Of course, it is not always possible to
achieve such a description, and the criterion for being able to
dosois, as we shall argue, that kT /#ibe much larger than the
characteristic frequency of the reaction coordinate
[(0? — ¥%'/? in the underdamped case, and 22?/2y in the
overdamped one]. This covers a wide range of parameters,
and so our Fokker-Planck equation should be useful even
for studying the underdamped, nonadiabatic case, and
should allow a more detailed analysis of the crossover from
nonadiabatic to adiabatic behavior. We shall not, however,
do that here. Instead, we shall show how the Fokker-~Planck
equation reduces to a Smoluchowski equation in the limit of
very high friction, whose solution we shall then outline in
Sec. VI following Zusman.'® We also note that the Fokker—
Planck equation is not limited to the special quadratic poten-
tial [Eq. (1.4)] for the reaction coordinate.
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Our argument follows that of Caldeira and Leggett for
ordinary Brownian motion very closely.?® Suppose that at
some time f,, the total density matrix of the system can be
factorized into a part for the bath alone (which we shall take
to be at a temperature T°), and a part for the electron plus the
reaction coordinate.?” (Note that this part does not have to
factorize any further.) Then the reduced density matrix
Pox X, y; to) for the electron and reaction coordinate at a later
time 1 is given by*®

oa (X, ¥5 1) = J f dx' dy’
Pos dg"n . Y

X parar X, v 1 X, 9 L) o (X, ¥5 ko) (5.1)
where
I =290 51 D452 Dx 73 Dy

X[A (0)4*[4] exp-;'-gsm(x, o] =S,.. il

XF [x, y]. (5.2)

The limits on the functional integration signs indicate the
boundary conditions that the trajectories must satisfy, e.g.,
ofty) = o', ot} = o. The quantity 4 [o] is the bare amplitude
associated with a spin trajectory of{r ), as defined in Sec. II,
and S, , [y, 4 ]is theclassical action for the reaction coordi-
nate to follow a trajectory y(7 ), given that the electron trajec-
tory is A (7 ), and ignoring the coupling to the bath. That is,

Sivelrndl '-'L'IQM(%,:—)Y— VLV(T),/I(T)]}G'T.
(5.3)

Note that V'{p, A ) does not need to be given by Eq. (1.4).
Finally, # [, y] is the influence functional for a system cou-
pled to a set of harmonic oscillators. It has a structure identi-
cal to that for the spin coupled to a bath that we discussed in
Sec. I1. We rewrite it here for ease of reference:

Flxyl = exp[ - ;;—ff u(r J{ulsiKyfr — 5)

— vis)K {7 ~ s)}ds dT], (5.4

u(r)\ _
(47 ) = txtr1 st (59
Kir)= J;cdw Jolw) sin(wr ), (5.6a)
Rir)= f:dw Jyw)cosiwr Jooth fhw/2). (5.6b)

Note that it is Jy{w) and not J 4 {w) that appears in Egs. (5.6).

Asdiscussed in Ref. 26, the kernel K, can be replaced by
— 77 times the derivative of a delta function since most
particle trajectories will vary on a frequency scale much
smaller than A. The kernel X, has a somewhat longer range,
namely #/kT. From a semiclassical argument we would ex-
pect that the most important particle trajectories vary on a
time scale characteristic of damped motion in the potentials
V{y; + ). Thus, if this time scale is much longer than #/kT,
we can replace 1?2(1') by a delta function times a constant.
Specifically, we write

K(r)= —mb(r), (5.7a)
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Ky(r)=2mkT8(7), (5.7b)
so that
o -1 ' d
Flayl= exp{ = 2tx 4+ yidr
2 1y dT
- 1’-:—27: ‘:(x —y)zdr}- (5.8)

The propagator? now has no nonlocal terms in it, and so the
reduced density matrix of interest at any given time ¢ can be
related to itself at any earlier time 1,, which means that we
can find a differential equation of motion for it. If we sym-
bolically write, for infintesimal 8,

T +6:0)=1+8% + 663, (5.9)

where 1 is the unit operator and Z is some other linear
operator (which we shall find), then

3p/dt =% p. (5.10)

We now find z by doing a stationary phase analysis as
in Ref. 26 or Sec. 4-1 of Ref. 22. Let us take the Hamiltonian
describing the electron and the reaction coordinate to be of
the general form

. 2
H=ﬁ-{+ U(y)+0.f(y)+H,. (5.11)

where H,, is a part that depends on the electronic degree of
freedom only and which we shall take to be
H, =il 2)0, + (€/2)0,. (5.12)

[Thechoice (1.4)correspondsto U{ y) = MQ( y* + 331/
2, f{y) = MQ%,y.] Combining Egs. (5.2}, (5.3), {5.7), (5.8),
and {5.11), we can write {with y==dy/dr, etc.},

F=N"22Toft ZA4[0]A*(A ]exp—;-

!+ & " -
x{f (LM =57 — Ulx) + U(y)
—ofr ) flx)+Alr)f ()] ——;’—

t + 6 . t+ &
— )%+ P+ — — P
><f, x y)(X+y)+ﬁvaf’ (x y)}-
(5.13)

Here, N is a normalization constant. Let us take the paths
x(r } and ¥{t ] to be straight line segments connecting x, y to
x', y'. Replacing f(x)and f(y)by f(X)and f(¥), where

E=(x+xV2, F=b+y12, (5.14)

we can do the o and A path integrals as explained in Sec. 11.
Thus, we find

; pi+ S
K, R=f3Z0A, CXPl - -;-J- ofr )f(i)}

=6, - %ofﬂ, +0, f®)0) + 067,

(5.15)
If we now define
5= — ¥8.(% — ) {5.16a)
&= (y ¥ +r6(x - ¥ (5.16a)

61

Garg, Onuchic, and Ambegaokar: Etectron transter in biomolecules

.- ~ > .
it is easy to show that J becomes the exponential of a diag-
onal quadratic form times the electronic propagators:

~ - [ M
J =N ZCXP%[E(ﬁ —-£3)

—a.ws)+5.vm+—j-4;% -£3)

+ 2L 515 — 5 + o6 K. BK L (5 (517

Thereis an amblgulty at this point about whether or not
the term (£ 2 — £ 2)/4 should be included in N. If it is not,
one can show that the resulting Fokker~Planck equation
does not conserve probability. On the other hand, if it is
included (which is what we shall do), the normalization con-
stant is not what one would obtain from other consider-
ations, such as those in Sec. 4-1 of Ref. 22. This is somewhat
disturbing since unitarity has been built into expressions
{5.1) and (5.2} and should not have to be reimposed. A solu-
tion of this conundrum would be most welcome.

It follows from Eq. (5.17) that

P _ M3 _3%)
ar ox* &
i i
- ;[Utx) - U{yllp —;[prl

—%lvzf(x)p —po, f19)

—x - )22 -——‘9”)-7’#” —yPp. (5.18
Tx y)(ax ) “—x —yyp. (5.18)
This can be written more concisely in operator notation as

dp i3 qkT

Z - 8, : — Ly,

- ﬁ[ pl~+=D.[ypl] [yippiI

{5.19)

To convert this to a more familiar form we take the Wigner
transform, i.e., we define

1 1= , u u
Wopslpp)=——| explipu/fijp, ( -— +-—>d .
a(»p) 27rﬁf~c plipu/R) po gl ¥ P

(5.20)
Dropping terms of order #, Eq. (5.18) becomes
ow
— —-—--(pW —[U’
i viEn SN [ (W]
a?
+2y—-—(pW nkT—W
82
1df d i
— e —{g,, W} ——[H, + o0, W,
>3 ] ﬁ[ o fIyW]

(5.21)

where the commutators and anticommutators now involve
only the spin degrees of freedom.

The structure of Eq. (5.21} is illuminated by thinking of 2
classical object with some internal degrees of freedom—for
example, angles associated with moments of inertia—mov-
ing in a medium that exerts viscous forces only on the center
of mass of the object, and not on the internal degrees of free-
dom. (The latter may or may not experience external fields
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depending on the position of the center of mass.) In this case
the dynamics of the internal variables will be purely convec-
tive—and governed by Liouville's equation, i.e., by the clas-
sical analog of the first term on the right-hand side of Eq.
{5.19}—whereas the diffusive terms will only involve the cen-
ter of mass. This is precisely the form of Eq. (5.21), reflecting
our assumption that friction enters the problem via the reac-
tion coordinate. Note, however, that for the problem at
hand, the dynamics of the internal coordinate, i.e., the elec-
tron or “'spin,” are intrinsically quantum mechanical as evi-
denced by the persistence of Planck’s constant in Eq. {5.21).

If the friction is very high, we can assume that the mo-
mentum equilibrates to a Maxwellian distribution at each
point y independently, so that W takes the form

Wegl v, i 1) = (2eMKT )2 expl — p*/2MKT )1 g{ y, t).
(5.22)

This distribution has a momentum space width VMkT,
which in one collision time (2}~ ! translates into a position
space width yMkT /7. Equation (5.22) will be a reasonable
ansarz provided U(y), f(y), and all the components n,z
vary slowly on this length scale. It is clear that this condition
will be met for U{ y), f{ y), and the diagonal components n,,
and n,, provided the friction is large enough. (We use the
subscripts 1 and 2 rather than + and — in this and the next
section to prevent confusion with the operations of addition
and subtraction.) We shall see in the next section that the
condition is also met for n,,, but that it is more stringent than
that for U(y), f(y), and n,, and n,,.

The momentum can now be integrated out in the stan-
dard way,'>'® leading to Smoluchowski-like equations,
which we write down here for the special choice {1.4} only for
simplicity:

on 1 4 dJ ia
—at“ = ;E{an(y + ¥l + kTa}"n + "i'q(”u =ny),
(5.23a)
any, 14 g ia
.____122 = .17_5;{Mﬂ’(y — Yol + kTa—y)"zz - —2—"-(".: = "),
(5.23b)
any, 1 a{ 2 3]
= —{ M kT
5 w Y+ & ny
iAy i
+ S = o) = —fe + Fayinya (5.23¢)

The equation for n,, can be obtained from Eq. {5.23c) by
complex conjugation.

These are essentially the same equations as those of Zus-
man.'® Our derivation of them, starting from a Hamiltonian,
unambiguously resolves the difficuity faced by him in decid-
ing what systematic force to associate with the off-diagonal
components of 1. In the next section we shall summarize his
solution to these equations and obtain an answer for the re-
action rate that is almost identical to that found in Sec. IV.
We do this for the sake of completeness and also because it is
usefu] to have a feeling for the approximations involved in
real space as opposed to energy space which is what Zusman
works in.

VI. SOLUTION OF THE SMOLUCHOWSKI EQUATION A
LA ZUSMAN

The first step in solving Eqs. {5.23) is to Laplace trans-
form them with respect to time. This is especially advanta-
geous if one is looking for a solution in terms of an eigenfunc-
tion expansion as one often does for the ordinary
Smoluchowski equation.?®*° That is, suppose we assume a
solution of the form

Nag( ¥, t) =3 a,nig( yiexp( — I',2), (6.1)

where Re(I';)>0, then its Laplace transform /i 4 ( y, A )is giv-
en by

Rag( ¥, A) =Y angp (YA +T,) {6.2)

so that if we have an approximate solution for 71,5( y, 4 ), an
examination of the poles and residues gives the eigenvalues
and eigenfunctions. We shall be concerned mainly with the
pole closest to the origin (which is then interpreted to be the
decay rate), although some of the higher eigenvalues and
eigenfunctions can also be found by simple extensions of
what follows.

The crucial step is to argue that 71,, varies on a length
scale, a, that is much shorter than g, the length scale for 7,
and 7,,. An estimate of a can be found by using the uncer-
tainty principle, since a large value of 7,, implies a large
uncertainty in the electronic state of the system. Thus, if n,,
is appreciable over a region of width & near the crossing
point y*, the energy uncertainty is F, a, while the time spent
by the particle in this region is given by a’/kT. Thus, since

(AE (At )~(F, a)a’n/kT )=, (6.3)
a=(hkT /Fyn)'> {6.4)

Note that as stated in the previous section, a»/MkT /7 for
large enough 7, so the passage from the Fokker-Planck
equation to the Smoluchowski equation is justified.

Under the assumptions that ay*<u?, a’<u?, and as
long as we are interested in A values less than F, a/#, the
equation for 1, ,( y, 4 ) can be simplified to an inhomogeneous
Airy equation. The inhomogeneity is proportional to
(A}, — fz;), which can be treated as a constant equal to its
value at y = y* since it varies little over a length a. We now
argue that for purposes of solving the 7,, and 7, equations,
the imaginary part of #1,, can be replaced by a delta function
at y = y*. Specifically, we write

Im[A(y,A)] =§1u (An(y* 4)

— Ayl y*, A)]6(y — y*). (6.5)
The resulting equations for #,; and 7, are nothing but
the Laplace transforms of the decoupled equations for the
time evolution of the probability distribution in either well
with an initial delta function source at y = y*. It is straight-
forward to solve them and obtain the eigenvalues and eigen-
functions. The procedure fails if |4; | > F, a/#, but this still
allows us to get quite a few A, and n”. For example, the
cigenvalue second nearest to the origin is at A,~ — w,,
which is well separated from A, = — I, and indicates that a
reaction rate can be sensibly defined. The result for I' is
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A(m#/E kT )2
41 +g}

X [exp{ ~ E ;/kT) + exp| — E, /kT)], (6.6)
where g’ is an adiabaticity parameter given by
¢ =ZBar iz (® + 30l + D = pl ) (67)

Note that this is very similar to the adiabaticity param-
eter g defined in Eq. (4.20).

Vil. CONCLUSIONS

We have shown in this paper how path integral tech-
niques can be used to study a simple model for the coupling
of a reaction coordinate to the many degrees of freedom pres-
ent in a biomolecule. Qur methods should be applicable to
more complicated situations where it is necessary, e.g., to
treat the direct coupling of the electronic degree of freedom
to more than one coordinate. In particular, much will have
been gained if it is possible to reduce these problems to
Fokker-Planck equations since the latter can then be nu-
merically solved. One of the possible interesting extensions is
to consider two nuclear coordinates coupled to the electron
transfer problem, one fast mode (e.g., an underdamped nu-
clear coordinate), and one slow mode (e.g., solvent polariza-
tion). The analysis of the different limits of this problem may
lead us to understand several important biological electron
transfers.

It is somewhat surprising that even when A, is large the
rate obtained in the adiabatic limit is the one appropriate to
diffusion over a one-dimensional potential with a cusp bar-
rier and not the potential we would get by diagonalizing the
electronic part of the Hamiltonian for each value of the reac-
tion coordinate. While the distinction may not be important
in practical terms, the conceptual point involved is impor-
tant and interesting in itself. In hindsight, it is possible to
understand it by invoking the “watched pot effect” which
says that a quantum system in a state that is continually
monitored by an external agency cannot evolve out of that
state.>' In our system, the bath, via the reaction coordinate,
can be thought of as *“‘observing” the z component of the
spin. The higher the friction, the more frequent the observa-
tion. The electron is thus prevented from evolving out of the
| 4 ) states, and the one-dimensional potential in which the
reaction coordinate diffuses is the one in which the electron
has definite o, quantum numbers.

Perhaps the most important question that arises from
this work is how the phenomenological friction coefficient 7,
or more generally, the spectral density, would be experimen-
tally determined in any given situation. We feel it is impor-
tant to address this issue, since the concept of a spectral den-
sity is a powerful tool in reducing the complex details of the
bath-system interactions to a manageable degree, and retain-
ing only those features that bear on the properties of the
interesting degrees of freedom.
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APPENDIX: FORMULAS FOR G4(f), Ga("), AND THE
DAMPED HARMONIC OSCILLATOR

This Appendix contains formulas for the kernels G, and
G, defined in Sec. II [see Eq. (2.26)] as well as some relevant
information on the quantum mechanical damped harmonic
oscillator.

It is straightforward to show that with J 4 (w) given by
Eq. (2.12), G,(t) is given by

M
Git)= ﬁyé [@q sin(wof Jexp( — 77 )

+ 27{1 — cos(wot Jexp( — 72)} ], (A1)

where
wo = {0 — )72 (A2)
Note that Eq. (A1) remains valid even if ¥ > 1. In particular,

in the extreme overdamped limit, ¥» }, G,{¢ ) can be approxi-
mated for all times large in comparison to y ' by

G,m:“ﬁ%y[l — exp(—,1)], (A3)
w, = N/2y. (Ad)

For short times {t<w. '(27") in the overdamped (under-
damped) case], on the other hand,

Gt =2My2 0t /#i = E,t /A, (AS)

The evaluation of G,{) is not quite so simple, and we
shall limit ourselves to statements valid only if y2 §2/2. If
kT /#iis large compared to the characteristic frequency w,
associated with the maximum of J_ q(w) (Which varies from
g for small /9 to o, for large y/), we can use the small
argument expansion of coth{fiw/2kT) in Eq. {2.26b). This
gives

Gyl ):—‘ng[ut - (-4{—2’; - 1) + exp( — ¥1)
{2 s

+ l—(fﬁ - 3)sin(wol )” +

wo \ N2
In the highly overdamped limit this becomes {for r>y "),

(A6)
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)= Mfgkr ;—Y:)[w,t 1t expl—w.t)] + o .
(A7)
It should be noted that Egs. (A6)and (A7) do not give the
correct asymptotic behavior of G,(t) as 7—oc. The leading
term is linear in ¢ with the indicated coefficient, but the next
term, which is a constant, is not given correctly. What is
more important is the time scale on which G,(1 ) is accurately
given by the two leading terms in the asymptotic expansion.
We expect this time scale to be the larger of #/kTand ¥~ ' in
the underdamped case, and the larger of /A7 and . ' in
the overdamped case. For times less than the smaller of these
two times in either case, we can approximate G,{r) by ex-
panding in powers of ¢. This gives (with =1/kT),

Gyft)=t%/27% + -, (AB)
P f " dw J g (@)coth( Bhiw/2). (A9)
mh Jo

By using results contained in Appendix B of Ref. 12, this
integral can be expressed entirely in terms of the mean
square displacement of the reaction coordinate about its
equilibrium position in either of the potentials wells
V{y; + ), provided V ( y,0,}is given by the special form (1.4).
In other words, suppose we constrain the electron to be in
the | + ) state, and couple the bath to the reaction coordi-
nate as in Sec. I. The system is then effectively described by
the Hamiltonian

H

o8¢

1 ;

c, 2
+z[—~—+ im el {xa + " y] ]
(A10)

and the bath parameters satisfy Eq. (1.5). If we now con-
struct the reduced density matrix p | _{ y, ') of the reaction
coordinate by taking the trace of the full thermal equilibrium
density matrix exp( — SH,, ) (suitably normalized) over the
bath degrees of freedom, the mean square displacement u? is
given by

=" Bty no.. o (Al1)
Caldeira andleggen” show that
p= 204 f dw J g (w)coth( Biw/2). (A12)
Thcrefore,
= QMQyqu/fi)". (A13)

Note that 4* is a function of both the temperature and
the friction. For any given temperature it is always less than
its zero-friction value:

ﬁn coth( BAN/2). (A14)

K n=0)=

Further, at high temperatures, irrespective of the damping,
47 acquires its “equipartition theorem™ value kT /MQ2 As
the temperature decreases, so does u°, and it eventually
crosses over to a low temperature value depending on the
friction. The crossover temperature is also determined by the

friction. Thus, in the underdamped regime

/‘2~2A:w —z—tan“‘(a)o/y)) for kTS #Q, (A15)
while in the heavily overdamped regime
W= i In2y/w,) for kTSHw, Injy/Q).  (Al6)
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We present a simple, but compiete, quantum mechanical model for electron transfer. It contains the elements necessary
to caiculate a rate: electron, reaction coordinate(s), and bath. The completeness of the mode! allows analysis of the dynamical
aspects of the transfer (validity of the nonadiabatic, Born—Oppenheimer, and Condon approximations, for example). Interaction
between the reaction coordinate(s) and the bath is discussed for “weak™ and “strong™ coupling, and the rate expression is
derived in these limits. A model for donor and acceptor vibronic wave functions is solved exactly by using a molecular orbital
approach. The rates are calculated from these states and a comparison with the standard Born—Oppenheimer/Condon result
is made. The nature of the “inverted” effect is found to depend on transfer distance and details of the vibronic coupling.

I. Introduction

Simple electron-transfer reactions, reactions which do not in-
volve bond formation or rupture, are of theoretical and experi-
mental interest in physics, chemistry, and biology.! The success
of the theoretical foundations provided by the Marcus, Hush, and
Levich schools has been remarkable. Current theories provide
a firm foundation for understanding the source of reaction rate
differences as large as 10 orders of magnitude for similar reac-
tions.>””  The electron-transfer problem nominally contains three
elements: (1) an electron which is localized in distinct regions
of space before and after transfer; (2) a “reaction coordinate(s)”
which represents a combination of degrees of freedom of the
environment directly coupied to the oxidation/reduction; (3) all
other degrees of freedom of the environment which are not directly
coupled to the electronic coordinate but create a bath which
facilitates energy flow into and out of the reaction coordinate.

Standard approaches for calculating electron-transfer rates are
generally useful in the adiabatic or nonadiabatic limit. The first
one assumes that the relaxation of the reaction coordinate is much
slower than electron exchange between trapping sites. This is the
condition for adiabatic electron transfer and it has been extensively
used for chemical electron-transfer rate caiculations.'® In some
long distance biological and other electron-transfer reactions® the
opposite limit is assumed and a nonadiabatic analysis of the
experiments is performed. In the latter case there are a few
fundamental theoretical problems. Because the bath is not gen-
erally included in the Hamiltonian, a quantitative constraint on
the condition that relaxation must be much faster than electron
exchange cannot be obtained. Interest is growing in understanding
the validity of this assumption.®!® Also, the dynamics of the
motion along the reaction coordinate depends on the environment.
In the quantum regime, the standard nonadiabatic calculations
are unable to take this into account. Recent work in this group®
and by Biaiek and Goldstein'! has considered this problem. We
intend to address this point in some detail. There are also cir-
cumstances in which details of the coupling between electronic
and reaction coordinate motion cannot be treated with the standard
(Born—Oppenheimer, Condon} approximations. These difficulties

" On leave of absence from Instituto de Fisica ¢ Quimica de Sao Carlos,
Universidade de S3o Paulo, 13560, Sio Carlos, SP, Brazil.

i Contribution No. 7355.

¥ Also Caltech Division of Biology and AT&T Bell Laboratories, Murray
Hill, NJ 07974,

with the conventional theories arise when time-scale separations
are not valid.

The goal of this paper is to consider more general formulations
of the clectron-transfer problem. These models consider the
dynamics of the electron transfer and relevant time scales needed
to define a transfer event as being adiabatic or nonadiabatic. The
Born-Oppenheimer and Condon approximations are considered
in detail. Finally, connections are drawn with existing and pro-
posed experiments.

This paper is structured as follows. Section 11 presents an
electron-transfer Hamiltonian which includes the electron, reaction
coordinate, and environment. Section 111 discusses the calculation
of a transfer rate from the Hamiltonian of section II. The two-level
nature of the problem and the Born—Oppenheimer approximations
for the wave functions are discussed. The influence on the rate
of the relationship between environmental and reaction coordinate
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frequencies is also considered. Section IV presents matrix element
calculations for the nonadiabatic rate expression. The Born—
Oppenheimer and Condon approximations are considered inde-
pendently for electron-transfer mediated by a molecular bridge.
Section V discusses the relevance of these theories to some ex-
perimental systems.

II. The Electron-Transfer Hamiltonian: Electron pius
Reaction Coordinate plus Environment

The clectron-transfer problem consists of an electron which
moves between two trapping sites (donor and acceptor). This is
not a purely electronic motion, because it is influenced by motions
of some nuclei, which are called nuclear modes. In this section
we write the “simplest™ possible Hamiltonian necessary to represent
this problem. By simplest, we mean that we use many crude
approximations such as the one-electron model and a quadratic
expansion of environmental degress of freedom. The validity of
these approximations is discussed.

We consider, therefore, the following Hamiltonian

L] N
Hegr = 21Ty + Z)TR, + VFrFa) + V(R Ry +
i-) Jj=
S PRy Ry (2.1)

where 7, represent the electronic coordinates ( electrons) and R,
the “nuclear™ (environmental) coordinates (N modes). The
corresponding many-dimensional nuclear potentials must have two
well-separated minima which correspond to the states D"A and
DA". Ineq 2.1 T is the kinetic energy, V is the electronic or
“nuclear” potential energy, and f is the coupling between the
electronic and the nuclear coordinates.

As an initial approximation, we choose a one-electron model
for V(7,.....F,). This approach can be justified if only one electron
moves between trapping sites and the others are closed core shells.
Therefore, the interactions of the core electrons with cach other
and with the transfer clectron are treated by establishing an
effective potential V,(F) for the transfer electron. This is a rea-
sonable approximation because the important part of the wave
function, when there is weak coupling between orbitals, is its tail
far from the atomic cores of the trapping sites. Far from the sites,
the wave function can be factored as W(transfer electron) X ¥(core
electrons). To normalize this state we need to know the entire
wave function. This is done artifically by choosing the appropriate
“depth” of the one-clectron potential. %213 The depth is chosen
to give the wave function the proper asymptotic behavior far from
the nuclei. This approximation is not expected to give realistic
details of the states near the nuclei. When the transfer distance
is small the one-clectron model may no longer be valid. The
adiabatic rate, however, is shown to be nearly independent of
details of electronic structure.

The one-clectron approximation has been used extensively in
the electron-transfer literature. Textbook examples of wave
function propagation in one-dimensional barriers provide the
simplest description of long distance wave-function decay in a
one-clectron model.’* Early considerations of the bridge mediated
electron transfer problem employed one-electron models. Halpern
and Orgel'** in 1960 first identified the importance of orbital
symmetry, overlap, and energetics on the bridge mediated elec-
tronic interaction. McConnell'*® in 1961 used 2 one-electron one
orbital per bridge site model to describe electron exchange through
a saturated bridge. A literature which allows estimates of the
importance of electron or hole tunneling, and dependence of the
electronic donor-acceptor interaction on redox potentials and
bridge geometry is emerging.'® Orientation effects on the tun-
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(b) Cave, R. J. Ph.D. Thesis, Californis Institute of Technology, 1986. (c)
Siders, P. Ph.D. Thesis, California Institute of Technology, 1983,

(13) (a) Beratan, D. N.; Onuchic, J. N.; Hopfieid, J. J. J. Chem. Phys.
1988, 83, 5325. (b) Beratan, D. N. Ph.D. Thesis, California Institute of
Technology, 1986.

(14) Beil, R. P. The Tunnel Effect in Chemistry, Chapman and Hall: New
York, 1980.

(15) (a) Halpern, J.; Orgel, L. Discuss. Faraday Soc. 1960, 29, 32. (b)
McConnell, H. M. J. Chem. Phys. 1961, 35, 508.

67

Onuchic et al.

neling matrix element for spheroidal constant potential models
of porphyrins are under study as well.'® Information learned
about these numerous effects is expected to carry through in some
fashion to the many-electron problem. Quantitative experimental
tests of one-electron models lie in the future.

The long distance electron-transfer probiem is rather unique
from a quantum chemical point of view. Variational methods
which calculate long distance donor wave function propagation
must be calculated with wave functions containing asymptotically
accurate “tails” for a given tunneling energy. Variational cal-
culations performed on wave functions expanded in incomplete
or asymptotically incorrect basis sets can yield accurate energies
because the calculation is insensitive to the low-amplitude details
of the state. Accurate (or convergent) energies do not validate
the asymptotic details of the calculated wave function. A dis-
cussion of the functional forms for the one-electron wave-function
decay in a bridging medium has recently been given and a con-
nection has been drawn between square well potential and mo-
lecular orbital models.!** Electronic potential models suppress
the nuclear motion and vibronic coupling, considering only the
electronic potential in a single nuclear configuration
“corresponding” to the transition state. The current mode! includes
both nuclear and clectronic coordinates as well as coupling between
them.

We now discuss the “nuclear™ potential, Vp(R,,...Ry). As
previously described, V{R,,....Ry) is the potential energy for all
the degrees of freedom of the medium that surround the electron.
We assume that V(R,....,Ry) is quadratic in the coordinate space.
This is a common assumption and is used mainly because it
simplifies the mathematics and qualitatively, at least, models a
binding energy surface. The harmonic approximation would
provide inaccurate predictions if, in reality, some of the envi-
ronmental degrees of freedom were strongly excited. The final
part of the Hamiltonian (2.1), namely the coupling between
clectron and environment, f{7,R)), is a subject of section IV. It
represents, for example, the observed changes in bond length and
frequency accompanying reduction/oxidation.

The interesting electron-transfer problems are rather compli-
cated. Because the environment or protein matrix has a very large
number of degrees of freedom, it is helpful to write the elec-
tron-medium coupling in the Hamiltonian as depending only on
a few nuclear coordinates, representing the notion that “most”
of the medium modes are insensitive to the transfer event. A
simple theoretical view of a single reaction coordinate is as follows.
After performing a Bornm-Oppenheimer separation of the electronic
and nuclear coordinates, the problem is left with a many-di-
mensional “nuclear” potential surface. One may then be able to
identify a single “reaction coordinate” representing, for example,
the direction in the multidimensional space along which the po-
tential energy barrier is lowest. This is never done in practice.
When it is known experimentally that the transferring electron
is strongly coupled to medium modes with radically different
dynamics, it is essential to use several nuclear coordinates. Some
examples of reaction coordinates are localized vibrations of the
donor or the acceptor molecules, solvent polarization, and gross
protein motion.

We approximate fI7,R;) as being linear in R, This is consistent
with the fact that V,{R,,....Ry) is assumed quadratic in the co-
ordinate space; i.c., if higher order terms were necessary the
harmonic approximation for the reaction coordinates would not
be valid. If f had a term quadratic in R, it would shift the
frequency of the oscillators. However, even linear coupling of a
nuclear mode to the electron causes small changes in the curvature
of the potential surfaces. In most cases this shift is small and is
neglected (see section IV). After making the approximations

(16) (a) Larsson, S. J. Chem. Soc., Faraday Trans. 2 1983, 79, 1375. (b)
Larsson, S. J. Am. Chem. Soc. 1981, 103, 4034. (c) Beratan, D. N; Hopficld,
J.).J. Am. Chem. Soc. 1984, 106, 1584. (d) Hale, P. D.; Ratner, M. A_/n1.
J. Quantum Chem. Quanium Chem. Symp. 1984, 18, 195. (¢) da Gama, A.
A.S. Theor. Chim. Acta 1985, 68, 159, (1) Richardson, D. E.. Taube, H. J.
Am. Chem. Soc. 1983, 105, 40. (g) Richardson, D. E.; Taube, H. Coord.
Chem. Rec. 1984, 60, 107.
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described above (one electron, quadratic wells, choice of reaction
coordinate, linear coupling), we can rewrite the Hamiltonian (2.1)
in the form

P!
Her =T + V(’)*’Z[f.,(')R +2_A_4—+§M9 R, ]

2
P | v 2= r | )
— wwpl] Xy .
wbath) | 2M), 2 a M‘,wbz e
7 is the electronic coordinate, R,’s are the reactions coordinates,
and x,'s are the remaining degrees of freedom of the environment
coupled to the reaction coordinates. These coordinates {x,’s) are
called “bath™ in the remainder of this paper. The bath consists
of all nuclear coordinates of the system which are coupled to the
reaction coordinates.
For convenience the Hamiltonian (2.2) is written

Her = HE+ H™ + H" + H™ (2.3)
where
H =T+ V(N (2.4a)
is the one-electron Hamiltonian
(2.4b)

H™ =3 f.(PR,

is the Hamiltonian including the coupling between the reaction
{nuclear) coordinates and the electron

H =3 2M (2.4¢)

is the reaction coordinate(s) Hamiltonian, and

Cab :
H™b = — + M, x,+ 3 R, 2.4d
h(h\h){ZMb b [ T My ] (240)

is the bath plus bath-reaction coordinate(s) coupling Hamiltonian.

Because this model utilizes a quadratic “nuclear” potential, we
can diagonalize the bath Hamiltonian H™® via a transformation
of normal modes, and write it in the form of eq 2.4d without loss
of generality. This transformation of the bath to uncoupled
harmonic oscillators, coupled only via the reaction coordinates,
simplifies the algebra significantly. Including anharmonic in-
teractions makes it impossible to uncouple the coordinates.!”

With the electron-transfer Hamiltonian now defined, we cal-
culate the associated electron-transfer rate. We define this rate
as the negative time derivative of the natural logarithm of the
absolute value of the probability of finding the electron on the
acceptor minus its equilibrium probability. If this rate is much
siower than the relaxation times of all reaction coordinates, it is
constant in time and the probability of finding the electron on
the donor varies exponentially in time. When this condition is
not met, i.e., this derivative is not constant in time, the concept
of a rate is meaningless. Comparisons of rates obtained with
“standard” methods and those caiculated with more complete
models are made. “Standard” in this context means treatments
which omit parts of the Hamiltonian in eq 2.2, make separations
of coordinates, or make other simplifying assumptions when de-
veloping a rate expression.

IIl. The Two-Level Representation of the Electron-Transfer
Problem: Approximation for the Donor/Acceptor Wave
Function

The first two terms of Hamiltonian (eq 2.2), i.e., eq 2.4a and
2.4b, can be rewritten in the form

H + H™ = Ty + Vo) + V) + Vi) +
Z VPG + LMP + LAPIR, B.D)

(17) Bialek, W.; Goldstein, R. F. Biophys. J. 1988, 48, 1027.
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or
H + H™ = T + Vp(7.R...Ry, ) + Vu(F.R...Ry, ) +

VAFR....Rx,) (3.2)
where

Nxc
=VHF + LfH(AR, withi=D M,orA (33)

awi
Here D, M, and A are the donor, medium, and acceptor re-
spectively. Nc is the number of reaction coordinates. Models
for this reaction coordinate—electronic coupling are shown in the
next section and in the literature.'®'®  Usually £,M is neglected
because most reaction coordinates are known to be locally coupled
to the donor or acceptor.

Substituting 3.1 in 2.2, we get a Hamiltonian that can be
characterized by two distinct zero-order electronic states, donor
and acceptor, with some residual electronic coupling between them.
To caiculate the rate of the electron transfer, we assume that the
electron is initially on the donor, neglecting the donor-acceptor
exchange interaction, and that all the environmental coordinates
of the system are in equilibrium. Then the coupling is turned on
starting the time evolution of the entire system. The coupling
between the two zero-order states is calculated by using first-order
perturbation theory.

Now, we introduce two critical approximations to the problem.
First we use the Born—Oppenheimer approximation. Then, for
fixed nuclear coordinates (reaction and bath), we find’!?

{T; + Vp + VulWp(FR,....Rx, ) =
|Ep® + ZAPRIVL(FR,....Rx, ) (3.42)
L]
IT: + Vi + VuWAFR ... RN, ) =
{E\0 + TAARIUL(FR,,...Ry, ) (3.4b)
a

The coupling between the states is
ToalRy. Ry ) = (04| Val¥p)

The Schrodinger equation (eq 3.4) is written for the electron and
all nuclear coordinates directly coupled to the electron. The values
of A, depend on the details of " and H*. The condition in eq
3.4c is satisfied for large distance electron transfer. The as-
sumption that the electronic energies in 3.4a and 3.4b are linear
in R, is consistent with the harmonic approximation. The second
approximation used to calculate the rate is the Condon approx-
imation, which fixes R,’s in all Tp,'s contributing to the rate at
a single value. It is reasonable only when 7y, is weakly dependent
on the AR, terms. The validity of these approximations is discussed
in section IV.

Using eq 3.4, the two localized clectronic states can be rep-
resented as spins with o, = 1. When Pauli matrices are used
for the operators in this space, the Hamiltonian becomes

(EDO + EAO) (EDO - EAO)

if (WAl Wp) &1 (3.4c)

Hgr = Tpao, + 3 + 3 o, +
5 A2+ 2% + AP =AM R+ P}
+
- 2 2 %7 o

Pyt Cap :
MQ R+ 2 4 M xp + R,
2 ,,(E.,, M, 2 """’[ J ZM : ]

where we have employed a basis such that the localized electronic
states are eigenstates of o, with eigenvalues +1 and —1. All details
of the electronic structure of D, A, and M are contained in Tp,.
Use of a single value for T, shows that a Condon separation was
used. This representation yields the same Hamiitonian matrix
equation as does eq 3.4. Replacing o, by (ap'a, + a,'ap) and

(18) (a) Beratan, D. N.; Hopfield, J. J. J. Chem. Phys. 1984, 81, 5753.
(b) Ivanov, G. K.; Kozhushner, M. A. Sov. J. Chem. Phys. 1984, I, 1813,
(19) Ratner, M. A_; Madhukar, A. Chem. Phys. 1978, 30, 201.
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Figure 1. Potential energy surfaces for the reaction coordinate. The
labels + and ~ refer to the donor and acceptor sites. The energies Ej,
E,, and Eg are the forward and reverse activation energies, and the
reorganization energy, respectively.

Y

o, by (ap'ap - a, *a,) converts the Hamiltonian to the operator
notation where a' (a) creates (destroys) an electron on the donor
(D) or acceptor (A).

Shifting the origins of all nuclear (reaction and bath) coor-
dinates and the energy scale, and defining the driving force

(A2 = (A2

=E-EN- Y ———— 3.6a
e T (3:62)
and the displacement
)‘nD —AA
M — 3.6b
Yo M0, (3.6b)

Hamiitonian 3.5 can be rewritten as

= + LAY +£ -+
Hegr = Tpao, § 2M 2 ;) 2%

2
NEB) i, + szwb [x,, + ZM a] (3.7)
If only one reaction coordinate is considered, this is the Ham-
iltonian used by Garg, Onuchic, and Ambegaokar.® In this section
we generalize their results for the case of weak coupling to the
bath, and consider some cases with two reaction coordinates. Two
reaction coordinates, one representing the fast local vibrational
modes and another the slow (perhaps “diffusive”) modes such as
solvent polarization, are needed to address many of the interesting
dynamical questions concerning electron-transfer reactions. After
solving the electron-transfer problem for one and two reaction
coordinates, extensions to systems with larger numbers of coor-
dinates is direct and simple.
Initially we analyze the one reaction coordinate problem with
P}

Her = Tors, + 327+ SML0 + 300)? + S0, +

H
Cp
+ M + 38
th 2Mb b“’b[ Mbwu’y] (3.8)

where y is the reaction coordinate. A schematic representation
of the donor potential well ¥(y:+) (o, = 1) and acceptor potential
well ¥(y;-) (a, = -1) is shown in Figure I. It is not necessary
to specify all the masses M, frequencies wy, and coupling constants
¢y, for bath oscillators, because we are not interested in the detailed
dynamical behavior of the oscillators, but only how they influence
motion along the reaction coordinates.’® The reduced dynamics
of the electron and reaction coordinate are influenced by the bath
only through the spectral density?

(20) (a) Caldeira, A. O; Legget, A. J. Ann. Phys. (N.Y.) 1983, 149, 374.
(b) Physica 4 1983, 121, 587.
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Jo(w) = = iy 6(«) wy) 3.9)

2 pibath) M ¥y

How to experimentally measure the spectral density is still an
open question (see also section V). Theoretically, it can be de-
termined from the semiclassical equation of motion satisfied by
the “particle.?® In our case for fixed a,, if the motion on the
reaction coordinate experiences a frictional force linearly pro-
portional to its velocity with coefficient »; i.e., if

d’y dy

e T Ta
where F,,, is any external force, then
Jolw) = nw exp(—w/A),

+ M+ yo) = Foy (3.10)

with A » Q (3.11)

If Jo(w) is not given by the equation above, the classical equation
of motion is no longer eq 3.10 and must be written with a fre-
quency-dependent friction coefficient. In the quantum limit for
a fixed o,, as shown in Appendix B, the spectral density is related
to the broadening of the reaction coordinate energy levels. We
show in this section that detailed knowledge about the bath is
needed only when the nonadiabatic limit is invalid. In the non-
adiabatic limit, it is only required that the reaction coordinate
relaxation time be fast enough so that transitions from donor to
acceptor are uncorrelated (see also Appendix B and in ref 9 and
10).

Because the reaction and bath coordinates are assumed har-
monic, and the coupling between them is linear, we can diagonalize
the quadratic part of Hamiltonian 3.8 (more generally 3.7), via
a transformation to normal modes, and obtain the Hamiltonian

€ -
Hgr = Tppao, + so, + ngzaxﬁ +

2
B &
S — + omEl + 312
7| 2w T e | O

where %, are the normal (reaction plus bath) coordinates, and jj,
g, and &g are the cormspondmg canonical momenta, masses, and
frequencies. Hyy now consists of a spin coupled to a set of mu-
tually noninteracting osciliators. The spin is influenced by the
oscillators (as in eq 3.9) only through the spectral density

2 2
Je(w) = g%-———ﬁ:&ﬂ&(w - &) (3.13)

Calculations of Ji{w) for the situations considered in this paper
are given in Appendix A.

Now we can calculate transfer rates. Let us consider two types
of Jo(w). The first distribution couples the reaction coordinate
to modes with frequencies which vary from very slow to ones much
faster than itself. The second distribution couples to bath modes
much slower than the reaction coordinate. Let us consider the
first case. Garg, Onuchic, and Ambegaokar® considered the
spectral density Jo(w) given by eq 3.11. As is shown in Appendix
A, in the first case

@ yo?
B e .14
j‘"(w) (QZ - w2)2 + 4w272 (3 1 )
where v = 5/2M, is the relaxation frequency of the reaction
coordinate.

The results summarized here are valid only when friction is large
enough so that there is no phase coherence between neighboring
energy levels of the reaction coordinate, i.c., there are no sharp
levels. (This is always true for ¥ > 2/2.)° Then, in the nona-
diabatic limit, the probability of having the electron on the acceptor
at time ¢ is

PA(1) = PA — PA exp(~To1) (3.15)

where
T.=Tu. + . (3.16)
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with
2% 1Toal?
Tp = = e exp(-E, / kT,
na 'y (4TER’(T¢n)'/: P( L/ eﬁ)
2x
= hFJITDAllpD,AU") (3.17)
I + tanh {(¢/2kT.q)
A= (3.18)

T'n,f and T’ are the forward and reverse rates, and pp A(3*) is
the probability of finding the nuclear mode (“particie™) in the
intersection point between donor and acceptor wells when the
electron is on the donor (acceptor). F, is the difference of slopes
of the donor and acceptor potential wells at the crossing point.
Figure | defines E, (reorganization energy), E; (forward activation
energy), and E, (reverse activation energy). The effective tem-
perature, Ty, is

kT = M 2% 7)
where u(n,T) is the mean square displacement of the reaction
coordinate about its equilibrium vajue.® At high temperatures
T.w = T. Equation 3.15 is exactly the solution of the system of
equations

(3.19)

dPr
1“) = T /PP(1) - T,,'PA(1)
qpP
-—E-(Q = -Tu'PP(1) + T,/ PA) (3.20a)
with
PAY+ PPN =1 PMO)=0 (3.20b)

From 3.15 we note that P.* is the equilibrium probability of
finding the electron on the acceptor, exactly as expected from
detailed balance,

The quantum rates given in eq 3.17 are valid only when there
is no phase coherence between the energy levels of the reaction
coordinate. They are identical with the semiclassical rates® ob-
tained from a Landau-Zener®' approach. The homogencous
broadening is large enough to generate a smoothly varying density
of states for the reaction coordinate. The density of states is not
a sequence of peaks separated by A and with width of order hy
(h~ is a lower bound for the width, see Appendix B for details).
This form for the density of states is identical with that considered
by Hopfield,® in his semiclassical mode! for electron transfer,
although friction was never clearly included in the model. Gen-
eralization of eq 3.17 for more than one reaction coordinate can
be done as proposed by Hopfield.% When v is not large enough
to satisfy this condition, eq 3.17 is no longer valid (see eq 3.23
and Appendix B).

The nonadiabatic rate given by eq 3.17 is valid only when each
transit of the “particle” through the Landau-Zener region is t00
rapid for the electron to make many transitions from donor to
acceptor. A quantitative estimate for this condition is known >0
The form of Jo(w) does not have to be exactly the one considered
in ref 9 (eq 3.11) but can have any form which broadens the energy
levels enough to make the density of states smooth. For low
temperatures, increasing friction reduces u?, but how friction acts
is not important. When temperature is increased guantum effects
are unimportant, T = T, and no information about the bath can
be obtained from the rate. Different Jo(w)'s give slightly different
u?'s, but the nonadiabatic rate is basically the same. Therefore,
if the nonadiabatic limit holds, details about Jo(w) cannot be
extracted from tlectron-transfer rates.

When ¥ > {1, the motion of the reaction coordinate is over-
damped. In this case the characteristic time of the reaction
coordinate is given by 7. = w.', where w, *= 03/2y. In this
situation (assuming kT > A 0?/2y, which is true for real diffusive

(21) Landau. L. D ; Lifshitz, E. M. Quantum Mechanics, 3rd ed.; Perga-
mon Press: New York, 1977; Section 90.
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modes such as solvent polarization), the electron-transfer rate is
‘r(.r -

2_t ITDAlz !

b (AxERk YL L 4 (x| Tpal/ hwcEr)

] exp(-Er,./kT)

(3.21)
If an “adiabaticity” parameter g is defined
2'1TDAIJ
T e — 3.22
g hwEr (3.22)

the reaction is adiabatic or nonadiabatic depending on whether
g is large or small. g is the ratio between the time spent by the
“particle™ (reaction coordinate) in the Landau-Zener region
{exactly the time it takes the particle to drift out of this region)
and the time taken by one transition from donor to acceptor
(B /1Tpal).

The rates in eq 3.2] are valid only when Jo(w) is given by eq
3.11and v > Q. Under these circumstances the reaction coor-
dinate is diffusive’ with diffusion constant D = kT/y. In this
situation, principally in the adiabatic limit, details about the
spectral density are important. If Jo(w) is not given by eq 3.11
then n is frequency-dependent. Eqguation 3.21 shows that the
adiabatic correction to the nonadiabatic limit is a function of w,,
the relaxation time of the reaction coordinate. When the adiabatic
limit is reached, the rate becomes proportional to w, and inde-
pendent of Tp,. In this limit the condition for validity of eq 3.21,
'™ « w,, depends on the size of E;,. If this condition is violated,
the transfer is nonexponential in time.

Therefore, we conclude that when “adiabatic™ corrections are
important, knowledge about how relaxation of the reaction co-
ordinate occurs is necessary. Equation 3.21 is a particular example
for Jo(w) given by eg 3.11 and v » Q. For a different spectral
density, the “adiabatic” result depends on it, and the rates given
by eq 3.21 are fio longer valid; i.c., the rates depend strongly on
the reaction ¢oordinate relaxation time, which is not true in the
nonadiabatic limit.

Although assuming n frequency-independent is an oversim-
plification, this kind of approach (in the overdamped limit) has
proven 1o be useful in cases such as solvent polarization.> The
results of ref 33, and experimental measurements of dielectric
constants for polar solvents which obey the Debye form, > are
experimental examples which justify this model in these particular
cases.

We now consider the situation where the width of the reaction
coordinate energy levels is much smaller than AQ, but large enough
so that the nonadiabatic limit still holds. We call this situation
the extreme nonadiabatic limit, and the detailed evaluation of the
electron-transfer rate is given in Appendix B. When this condition
is satisfied, the rate is

T = 25’5|TD,\|2(FC) (3.23)
where (FC) is the thermally averaged Franck-Condon factor
(FC) = ZTp(E L. Do lle M YPHE] - E 2 (3.24)

¢

p(E,f’) is the donor thermal density of states and ¢'s are the
reaction coordinate eigenfunctions, neglecting the coupling to the
bath. The function A(EP - E*) has {h(E) dE = 1 and is highly
peaked when EP = E* (see Appendix B). Because the width of
h(E) is much smaller than AQ, 3(E) is normally substituted for
it to simplify the algebra, although the defta function is concep-
tuafly wrong. Generalization of this Franck—Condon factor for
larger numbers of reaction coordinates is straightforward.”>?}

To eliminate the peaks of the Franck—Condon factor, it is
necessary to include inhomogeneous broadening 1o generate a
smooth density of states on the acceptor. Under this assumption

ic Theory,

{22) McConnel, 3. Rotational 8) Motion arit Diels
Acsdemic Press: New York, 1980,

(23) Siders, P, Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 741, 747.
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we can change 3, to fdE*/AQ, and the Franck—Condon factor
(FC) becomes

o(EP.T)
(FC) = Z————N3,Plp, A, 3.25)

w h
where ¢ = nAQ and nis an integcr

The rate given by cq 3.23 is exactly the one calculated by
Jortner,” and is usually referred to as the quantum mode! in the
ciectron-transfer literature. In this case, details of Jy(w) are
unnecessary, as long as there is very little broadening of the
reaction coordinate cnergy levels, but sufficient brodening to
guarantee the nonadiabatic limit.

In summary, the nonadiabatic rate is given by eq 3.17 or eq
3.23, depending on the strength of the coupling to the bath. Eq
3.23 is correct in the weak damping limit. When friction becomes
large enough so that the reaction coordinate density of states is
smooth, the rates in eq 3.17 are the correct ones. These rates have
the same functional form as the ones obtained in Hopfield's
semiclassical model.®

In the remainder of this section, we consider the situation where
one reaction coordinate is much faster than the remaining nuclear
coordinates, bath, or other reaction coordinates. Calling the
frequency of this fast mode Q;, we only work in the limit of AQ,
> kT.e. These conditions are necessary so that thermal excitations
of this fast coordinate are unimportant. In this case, we can
simplify the problem to a new two—level problem including the
clectron plus the fast reaction coordinate.

We now consider the second type of Jy(w) for the one reaction
coordinate case; i.e., all the bath modes are much siower than Q
in eq 3.8. For this case, we transform eq 3.8 to eq 3.12, and get
{sce Appendix A)

Jurw) ~ (3.26)

@yt + TMLyolbw - Q)
In this case the reaction coordinate is weakly influenced by lhc
bath modes because it is much faster than them.

Because J{w) has two well-defined frequency regions, the
problem is solved by using the method of Leggett et al. 2 The
caiculation proceeds in two stages. First, we replace J,n{(w) with
its high-frequency component

Jiglw) = -M Pye(w ~ Q) (3.27)
so the Hamiltonian to be solved is

P}
Hgr = Tpao, + ZM + 2M Q}(y + yoo,)t + -—a, (3.28)

Assuming that the reaction coordinate is much faster than the
spin, a kind of Born—Oppenheimer approximation can be per-
formed. The Born—~Oppenheimer solution for this ground state
is

H'erd(ia)) = {Toas, + Eolo,) + go,}w;a,) (3.29)
Using the fact that for eq 3.28 Ey(o,=1) = Ey(a,=~1), and making

the appropriate shift in the origin of the energy scale, the Ham-
iltonian we have to solve is then

Hier = Tpao, + %«, (3.302)
where
Toa™ = Toa(do(yio,=Dieo0ia,=~1)) = Tpa(de%lé6*)
(3.30b)

We can now proceed to stage two. Taking into account the
low-frequency modes, the Hamiltonian is

(24) (a) Leggett, A. J; Chakravarty, S.. Dorsey, A.. Fisher, M. P. A ;
Garg, A.; Zwerger, W, preprml 1985. (b) Chaknvnny S.; Leggett, A. J.
Phys. Rev. Lett. 1984, 53
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€
HET = TDAgnd, + =g, + G,ZZgiﬁ +
8

2

where

al
Pa0) = ST ——b(0 - @) = Jo(wls®  (331b)
8 Mgy
Calculation of rates for this problem, principally when Jy(w)
satisfies 3.11, has been performed extensively by Leggett et al. %
They have shown that the condition for validity of the nonadiabatic
limit is that spin flips (transfer from donor to acccptor) to inco-
herent. When this condition holds, the rate is proportional to
1Tpa™P with
2% M2
To = - 1Tpa"Wp(e. 7,77 (3.32)
where p has dimension of reciprocal energy, and depends on the
coupling to the bath, ¢, and temperature.
We finally consider electron transfer coupled to two reaction
coordinates. The Hamiltonian is

P}
+ + + 2o, +
Hegr = Tppo, + 2M ZM Q2 + ypo,)? Uz
pz
+ + +
2M MQ Hz + zg0,)?

SR P PO IV o 3.33

ww 12M, T 2 v § X Mbwbz)’ MWbZZ (3.33)
and Jo*(w) and Jo*(w) are the spectral densities for the y and z
coordinates, respectively.

A particular case of eq 3.33, which may be very useful for real
systems, has y, a fast local vibrational mode, and z, a slow reaction
coordinate. Solvent polarization might be modeled with the z
coordinate. It is reasonable to assume that £, is much faster than
all bath modes. We consider the case in whnch the bath has
frequencies which vary from very slow to much faster than Q,,
Under these circumstances eq 3.33 can be transformed to eq 3. 12
(sec Appendix A) with the spectral density

Jer(w) = Jeﬂ"(”) + ":ffv(“’)

Because the Jor'(w) satisfies eq A.11, it is strongly peaked around
Q,. The slow part of J.(w) can be neglected, and the equation
above can be rewritten as

(3.34a)

Jer(w) = Jo(w) + 3M,.9,3y026(w -Q)  (3.34b)
In a way similar to eq 3.30, the fast mode y renormalizes 7p,.
ie.

Toa™ = Tpa($0, 160, (3.35)
and the problem we are left with is exactly the first case of the
single reaction coordinate. By analogy to the beginning of the
section, when the nonadiabatic limit hoids the rates are exactly
as in eqs 3.17 and 3.23

(L2 T

" h m cxp(_Ef:/kTeﬂ‘) (3.36a)
R

if damping is strong enough, or

p( .7')
Ta'= —!Tm'“l’z‘. s [ L (3.36b)
is
in the weak damping limit. and ¢ = nhQ,.
The conditions for the validity of the nonadiabatic limit are
exactly the same for the single-mode probiem. The fast-mode
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y only renormalizes Tp,. If, for example, z is overdamped, we
can calculate the rate in analogy to eq 3.21, and get

= 2% ’TDA="'2 1 <
B (AxECKTY/ L1+ Qu|Tp M/ hwEg?)
exp(-E.*/kT) (3.37)

The adiar:.)aticity parameter g is the same as eq 3.22 replacing Tpa
by Tp.".

Another interesting case of eq 3.31 occurs when the relaxation
of the fast mode is faster than the motion of the slow mode. In
this case we can define a “rate” for the fast part of the problem
which is a function of the slow-mode coordinate. Some work in
this limit has been performed.?

IV. Matrix Element Calculation: Exact and
Bom-Oppenheimer/Condon Results

In the previous section some nonadiabatic rates were found to
be proportional to the sum of squared Hamiltonian matrix ele-
ments. The matrix elements were approximated as the product
of electronic and nuclear factors. The nuclear wave functions in
such a calculation neglect the damping effects. These rates (eq
3.24,3.32, and 3.36b) are appropriate when coupling to the bath
is weak and/or when there is a fast reaction coordinate which
renormalizes the electronic matrix element. The goal of this
section is to caiculate these nonadiabatic matrix elements exactly
for a simple model, and to investigate the validity of the Born-
Oppenheimer and Condon approximations.

When the nonadiabatic weak damping limit is applicable the
bath broadens the vibronic levels of the donor and acceptor. We
work in the limit that the broadening guarantees nonadiabaticity
but is not so large that the vibronic levels are mixed. The transfer
rate from a single donor state is (see Appendix B and eq 3.24)

I, = %"z:_l(wbmw[nlh(.ep - E5 4.1
Applying the Born—-Oppenheimer and Condon approximations to
the sum of matrix elements gives

g“\I’D(ile--‘RN.CNVAlWAF(ivRI“-RN“))‘:"(ED - EAD
(4.2a)

~ |TDA|2§)(¢D(R,...R,.-K)|¢A’(R,...RN“))Izh(ED - E\H)
(4.2b)

If the model includes vibrations on both sites, the nuclear coor-
dinates appear in both donor and acceptor wave functions. We
must first formulate a vibronic Hamiltonian relevant 10 the initial
and final states and find the wave functions for these states, in
order to evaluate the perturbation matrix element. Qualitative
estimates of the errors which arise from approximations in all
stages of the calculation are beginning to emerge. '43130.18 The
goal of this section is to complete a nonadiabatic rate calculation
from beginning to end evaluating the validity of the common
approximations (Born—Oppenheimer and Condon) which are made
along the way.

We connect with the previous section by considering the
electron-transfer Hamiltonian

Her = HS + H™ + HP

We present models for each part of eq 4.3 and solve eqs 4.4 for
the localized states:
Hp M¥p(Z.R,....Rx, ) = {Tp + Vp + Vy + H'\V, = E¥yy
(4.42)

4.3)

Ho g A(ZR Ry, ) = Ty + Vo + Vi + H ¥, = EV,
(4.4b)

(25) (a) Agmon, N.; Hopficld, J. J. J. Chem. Phys. 1983, 78, 6947. (b)
Sumi, H.; Marcus, R. A. J. Chem. Phys. 1986, 84, 4272
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Figure 2. Arrangement of the donor, acceptor, and bridging orbitals.

The first model includes one-nuclear mode linearly coupled to a
single bound electron. The electronic potential is assumed to be
of a form!* so that a tight-binding or molecular orbital model
is appropriate. For systems with polymeric bridges of variable
length, a periodic approximation for ¥y is expected to be a good
starting point. If the amplitude near the boundary is small it is
an adequate approximation to continue the “bridging™ medium
indefinitely to the left and right of the donor and acceptor sites.
The transfer rate is calculated for the exact and Born—Oppen-
heimer states. The conventional Condon approximation is dis-
cussed for the Born—Oppenheimer states. Next, we consider
models with one oscillator on the donor and one on the acceptor.
Finally, we present a prescription for calculating exact wave
functions when more than one oscillator is on the donor or acceptor
site. The relevance of the approximate and exact expressions to
experimentally measured transfer rates is discussed in section V.

Vibronic Model for One-Nuclear Mode. Wave functions decay
in regions of space where the potential energy exceeds the energy
of the state. This decay may be calculated with surprisingly few
free parameters if the potential in the nonclassical regions is
periodic and the amplitude of the donor or acceptor state at the
boundary of the periodic potential is very small (i.e., minimal
reflection at the boundary).’? In the periodic molecular orbital
limit such a model allows us to write the donor (acceptor) plus
medium electronic Hamiltonian

Hpy =
Apap'ap + Bplactap + aptay) + LA(a,' 6, + a,'ar)
L]
(4.5a)

Hapm =
Ana'an + Balan'as + a)tan) + LB(a,'ape + a,'a,.))
(4.5b)

Ap and A, are negative and are the binding energies of the isolated
donor and acceptor relative to the energy of an isolated bridge
orbital. The fermion operators create (1) or annihilate an electron
on a donor (8p(7)), acceptor (8,(7)), or bridge site orbital (8,(R-nd),
n =0, 2], %2 ..). Bp, is the donor (acceptor) interaction
({(Bpa)(P)iHNbpn)(F))) with the nearest bridge orbital. Eigen-
functions of these electronic Hamiltonians have been discussed
at length,'552¢

The Hamiltonian for the one vibrational mode coupled to the
electron is

H + H™ = (b'b + 1)hQ - (0" + b)apap

The boson operators create (b') or annihilate (b) a vibration on
the oscillator and (5" + b) = (2M,Q/h)'"%y. The mode is localized
on the donor in this example. Coupling between the electron and
the nuclear mode is linear in the nuclear coordinate so a term
proportional to y is added to the Hamiltonian “when” the electron
is on the donor. Exact eigenfunctions of A and H™ are well-
known.'$®2 However, the electron-vibrational coupling adds
considerable complexity to the problem.

Because the bridging potential is periodic, wave function decay
far from the donor is determined by the exchange interaction
between bridging sites and the energy of the bound state.'® For
simplicity only one basis function is placed on each bridging group.
leading to onc band of bridge localized states to assist the tun-
neling. Since the bridges of interest are saturated, the energies
of the donor and acceptor localized states are outside of this band.

(4.6)

(26} Davydov, A. 8. Phys. Status Solidi B 1978, 90, 457.
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Exact Eigenfunctions. Since the Hamiltonian is a function of
two variables, the eigenfunctions of

Hpm = Hpm + H" + H™ (4.7)

are
o= ‘JL—-S;X,(FN’,U’) (4.8)

where ¢{») solves the nuclear Schrodinger equation in the absence
of the electron (harmonic osciliator with origin y = 0) and the
x{F)'s are not orthogonal states. In analogy with the solution of
the electronic Schrodinger equation described by Davydov,? in-
tegration of the complete donor Schrodinger equation yields

YO(7y) =

Bp .
? g;¢;0‘)[00(7) + quﬂm,(r - nd) ]} (4.9)

g+ 1 = 5 (4.10a)
) Y 8 .
E = Eosl - (4 )AQ (4.10b)

where

B’ E
gl Ap - _(E,Z Zagn - &
AgmG+ D'+ g, =0 (4.11)

z is used here to distinguish the wave function decay constant'®
from the driving force of the reaction, e. The donor iocalized state
has ¢ < 1. This result is valid when the energy shift of the donor
localized state caused by the bridge is small relative to the binding
energy of the donor. g; is a mixing constant defined by the energy
of the state. A similar calculation was performed with 8 function
binding and coupling potentials.'** The main difference between
the molecular orbital and the é function coupled wave functions
is that the decay length of x,(7) in the orbital model has a log-
arithmic dependence on the binding energy (if t < 1,8, =~ E;/8)
rather than a square root dependence.’™

Two methods can be used to find the energy eigenvalues. One
calculates the g,'s for a particular energy guess (from the Born—
Oppenheimer energy) and examines the behavior of g; for large
Jj. These coefficients converge to zero for large j when the ei-
genvalue is found and diverge rapidly otherwise. An alternate
method is to cast the recursion relation in matrix form:

Ap~ Ey -\ 0 0 &
-X Ap-E, a3 o0 &
0 -Avi o Ap-E, AV L 8 w0 (4.12)
0 0 AVl Ap-E £

&

Bp and 8 are small compared to the binding energy of the localized
state in the case of interest, so terms of order 8p?/(E? — 46%)'/2
have been neglected in 4.12. The first condition is true if the
presence of a bridge is known not to affect the energy of the
transferring localized electron. The second condition is necessary
for the tight-binding model to be applicable. Ap - E; is of the
order A2/AQ + nhQ for the ground state. The validity of these
assumptions in real systems has been discussed elsewhere.!**
The g;'s decay very rapidly with j (as [exp(—y)¥//j']"/? in the
ground state, vy = (A\/A Q)% see Appendix C) and excellent ap-
proximations can be made by truncating the matrix and finding
the roots numerically. More generally, Appendix C proves that
for any coupled state n,g™ = (jln) where j and n are harmonic
oscillator eigenstates with equilibrium positions differing by 2y,.
The amplitude of the wave function on the Nth orbital of the
bridge is proportional to ¢,¥ where j is the number of vibrations
in the donor oscillator. For Jgf « 1.4, =~ 8/[E~ (j + /) hw].
A coupled donor state presents a linear combination of expo-
nentially decaying parts to the acceptor and the observed rate can
include contributions from one or more of these tails depending
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on the vibronic details of the acceptor. The oscillator states in
which the wave function was expanded have the equilibrium
displacement of the ionized donor. Hence, when |7 is very small
& must correspond to the projection of the oscillator states for
the system with the electron on the states of the shifted oscillator.
Coupling probiems of this form, when solved exactly, are rather
complex because the coupling introduces small shifts in the os-
cillator frequency and anharmonicity. In nearly all conventional
electron-transfer models these effects are neglected.

Equation 4.9 solves the initial-state Schrodinger equation
without Born—Oppenheimer separations in order to give asymp-
totically correct wave function propagation at long distance. The
Born~Oppenheimer energies are expected to be quite reliable
because they are sensitive to the bulk properties of the wave
functions rather than the asymptotic tails.

Born-Oppenheimer Eigenstates. The Born—Oppenheimer
electronic donor Hamiltonian is

M0\
Hgo = Hpm - N Y (4.13)
and the electronic energy for the one-mode problem is
Bv?

E* ~ (Ap - Ny) - —————————e .14

so(y) = (8p - ') (Ao~ Ny)t = ag7 (4.14)

if the binding energy of the isolated donor (Ap - X'y) relative to

the energy of an isolated bridge orbital (£ = 0) is much larger

than the energy shift of the level due to the presence of the bridge

(Jap - Ny| > Bp?/[(Ap - Ny)? - 48%]1/2). We define X' =
MM Q/ )12,

The electronic donor wave function is

-[(_ATB)YW—’]T/—’ZMG"(; - nd)  (415)
D - - n

Since the bridge is infinite and periodic

Yo = 0p(F) +

1 EO)
[ ; = -—ﬂ_ (4.16a)
and
B
T — ifi« ] (4.16b)

£0)

The Born-Oppenheimer nuclear Hamiltonian is

/272
1 Al 2w A
=T, + M0 y-—| = -+
Hao =T, 2M’Q(y hn[M,n] ) YS!

8o’

D~ ———[(-\D‘ Nyt - a2 (4.17)

The nuclear eigenfunction is
NEN
¥ao(¥) = 6,00 = 2¥0), 230 = —h—ﬂ-[ 37)'5] (4.18)

provided that the 8p® term can be ignored. ¢, is a harmonic
oscillator eigenstate with origin at 2y, The nuclear wave functions
are harmonic oscillator states with frequency Q and shifted origin
compared to the uncoupled state. (If the 8p? term is not neglected,
anharmonicity is introduced and the two parabolic well model is
not adequate.) To the extent that energy corrections due to the
bridge are small compared to the energy of the state

ERO =~ Ap+ (j+ )hQ-2/hQ (4.19)

The Born—Oppenheimer wave function has a pathological be-
havior in the region where X’y is of the order of Ap.?’ Such

(27) Freed, K. F. J. Chem. Phys., 1986, 84, 2108.
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behavior is not present in the exact wave function. Because this
region of configuration space is not important for the electron-
transfer states, this probiem may be eliminated by including a
cutoff value for y, so that this region is avoided. Such a cutoff
can be introduced to the Hamiltonian with no noticeabie effect
on the exact or Born—Oppenheimer states in the region of interest
to the electron-transfer problem. The exact solution is basically
the same whether this cutoff is included or not.

Comparison of Wave Functions. Expanding ¢(y — 2y,) in terms
of ¢(y), the Born-Oppenheimer donor states are

¥polFy) = )}: g2:4,(0) X

8o g (3w
- 4.
IR wzwz;:(y) 8,(F - nd) ]} (4.20)

using the result of Appendix C for g, () is defined in eq 4.16a.
Comparing this equation with the exact wave function, eq 4.9,
we see that when the electron is on the donor the wave functions
are identical. When the electron is on the bridging orbitals, the
wave functions are different. In the exact wave function, when
the electron is on the bridge it has no interaction with the donor
oscillator. However, when on the bridge it tunnels with an energy
equal to the total energy of the initial state minus the energy left
on the oscillator. The Born-Oppenheimer wave function is
qualitatively wrong because it assumes an electronic decay for
each possible value of the nuciear coordinate. The Born-Op-
penheimer form would be correct if the time taken by the electron
to sample its “relevant” space including the bridge were short
compared to the characteristic time of reaction coordinate (y)
motion. In the weak donor-bridge coupling limit this condition
for Born~Oppenheimer validity does not hold. Because the exact
and Born-Oppenheimer states have identical properties in the
high-amplitude region, their eigenvalues are nearly identical.

The differences between the decay of the exact and Born-
Oppenheimer donor states is unimportant on the Nth bridge orbital
if

[90(7) +

Ap] ® [(N + 1)(AX/hQ) + le] (4.21)
Recall that ¢ is the driving force of the reaction. In this case
fluctuations in the tunneling energy due to the reaction coordinate
are much smaller than the binding energy.

Exact Wave Functions, Exact Matrix Elements. When the
nucicar mode is on the donor the exchange matrix element is

(¥P(FyP)Balan'an + a'an)|WAFYD)) (4.22)

where
YP(FP) = L 0P)x PP (4.23)
Y AFYP) = XAF - Rpa)é0P) (4.24)

and y is replaced by yP. ¢/yP) is the ith vibrational state of the
ionized donor. The acceptor state can be written in the factored
form (eq 4.24) because the two sites are vibrationally distinct and
uncoupled.

We only consider the donor ground state (zero temperature)
for purposes of illustration. In the one-mode case the driving force
in units of A is j = ¢/AS). Since the donor state has no amplitude
on the acceptor, only the second operator in 4.22 contributes to
the matrix element and

ay'a WA (x ~ Rpa) ) = BF - N&Yg(yP))
Because the bridge orbitals are orthogonal and the driving force

of the reaction must be left on the single-donor oscillator for energy
conservation just one matrix element Hp, contributes to the rate:

B
(E7-agy ©

(4.25)

Hpa = B4 (4.26)

Now, if 43° « E;? and g, can be expanded as described in Ap-
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pendix C (valid when Bp?/(E;? - 46%)'/? « |A ~ E|}), the matrix
element can be written (2 « 1)

ﬁDﬁA ey i/2 8 N+l
Hpy ~ — e 4.27
A= g [ 7 ] Bp- A /RO - jRQ 427

where

v = (Er/AQ) = (\/hQ) (4.28)
Y, ~ B/E, {4.29)

and the total energy is
E ™ =~ Ap - M/hQ+ hQ/2 (4.30)

Because terms in the denominator of the distance (/V)-dependent
term in eq 4.27 arc negative, increasing the exothermicity by
increasing -4, decreases the distance-dependent part of the
transfer matrix element. The term involving v and j is peaked
at j = y. Clearly, the distance decay of the matrix element is
driving-force-dependent. This dependence is especially strong when
the donor and acceptor energies lie near a band of bridge states
(¢ = 1/E in the one-band model). Notice also that differen:
dependences of rate on ¢ result depending on whether Ap or A,
is varied.!16¢

Born-Oppenheimer /Condon Approach. The Born-Oppen-
heimer states are asymptotically incorrect in the limits described
above. When the exact and Born—Oppenheimer states are the
same (i.c., ¢ a very slowly varying function) the Condon ap-
proximation for the matrix element of Born—Oppenheimer states
is excellent. However, when the Born-Oppenheimer approxi-
mation is poor, we cannot directly judge the quality of the Condon
approximation by comparing Born~Oppenheimer/Condon rates
with the exact rates.

The Born—Oppenheimer matrix element is

(YD (Fy)delBaan'aal ¥ a(F:y)8,)

and is strongly peaked around the maximum of ¢o(y - 20)¢,0).
The Condon approximation fixes y in the electronic wave function
at a position where the product of nuclear factors is maximized.
Since the Born—Oppenheimer states are qualitatively invalid, we
can take this position as the one which gives the matrix element
a value as close as possibie to the exact value.

The matrix element for the Born-Oppenheimer states in the
one-mode¢ example may be approximated by

(4.31)

Hpy =

@ON™™ ' 0o® - 256D ﬂAaS,(.\”))

(4.32)

Because the product of nuclear wave functions is strongly peaked
and #(y) is slowly varying in this region, for & « |

Boba 8 Ml ey N2
ondon ., [ [—
H5xen = =5 (Ao—ww) ( 7 ) @39

¥ is the chosen value of y in the tunneling matrix element. There
is an ¢ (reorganization energy) dependence in the so called
“electronic™ matrix element as was found in the exact solution
because the choice of y is ¢ dependent. Condon breakdown arises
when more than one matrix clement enters the rate expression
at fixed ¢ or when 8/ E(y) varies rapidly in the range of y which
maximizes the product of nuclear functions.

Comparison of Exact and Born-Oppenheimer/Condon Cal-
culations for One Mode. The differences between the exact and
Born—Oppenheimer/Condon rates arise from the coupling between
electronic and nuclear motion when the electron is on the bridge.
This coupling is manifest in the ¢ terms. The nuclear overlap terms
in the approximate rate expression are identical, in the limits of
interest, with the corresponding g's. The decay constants for the
ground-state donor in the one-mode case is

( Bp
[(Ap + N'p)? —482)'72
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]
Pl e jAQ = (4.34)
Ap - AN /hQ - jhQ
for the exact solution, and
B
) = e 4.35
D= 50 439)

for the Born—Oppenheimer/Condon solution. Because only one
mode is coupled to the transfer event just one ¢, enters the rate
expression in the exact case. The Born-Oppenheimer surfaces
are

1 A
MC e + - - 2
Up™ = 8o+ Th0y = 2000 - 2

U™ = A, + .;.kyl; 2y = N /k (4.36)

Because the driving force of the reaction is

a2
ex|ap-o= -4, (4.37a)
e 2 (4.37b)
A, )

#(J) is identical with this when 7 = (Ap — A,)/N’. This j is the
value at the crossing point of the surfaces. That the wave function
decay should be driving force (i.e., A,) dependent is neglected
in the standard Condon approach, where a single y is as-
sumed‘u,n.zs

The interpretation of this result is simple but important. With
coupling on the donor, the exact donor wave function included
admixtures of many ¢'s. However, the acceptor can only access
the portion of the wave function which propagates leaving ¢/ hQ
vibrations on the donor. This particular part of the wave function
decays as (8/A,)". The Born—-Oppenheimer/Condon approxi-
mations matches the exact result in this limit because energy
conservation forces the decay to the correct value. More profound
problems with these approximations arise when there is coupling
on both the donor and acceptor sites.

One-Nucilear Mode on Both Donor and Acceptor. Exact
Calculation. In many instances there is substantial electronic
coupling to both donor and acceptor vibrational modes. As an
example of such a case, we solve a two-oscillator problem with
equal frequencies and coupling on donor and acceptor. Gener-
alizations of the problem are straightforward. In this model the
initial and final states are

¥ = [;gj(mx;o(?)¢jn () ]
‘pnmA = ¢nDUD)[;hJ(m)XjA(7)¢1A(yA)]

(4.38a)
(4.38b)

M = ¢/hQ = n+ m where n is the number of vibrations left on
the donor. Since excitation can be left on both oscillators and
there are M quanta of vibrational energy to distribute, the rate
now includes a sum of squared matrix elements

;'(‘I’D'H’I“'AF)F =

Babo Y M PRIVA UL QP U W 2
( 8 )ﬁ["w(_ﬁ_) ™M=y “39

where

R
Y Bp - N/ R - jAQ
Born—-Oppenheimer /Condon Approach. The sum of Born-
Oppenheimer matrix element when one mode is placed on each
site is
Ul HIWDF = Ti¥p(xy)g00)e00) X
18aan' @Al ¥ A (X020 = 2§DV b ~ 250 )7 (4.41)

(4.40)
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For ¢ = MAQ and J§] « 1, the Condon approximation gives

B4Bp [ M

—5— Ao apD ?f(%(yb)l%(}'[’ = ™)) (@o*) X
[éa-, 0% = 22D (4.42)

for this sum. The minimum crossing of the two nuclear potential
surfaces occurs at

A Ar - Bp

Dz e o 4.4
VR T (4432)
The decay constant at this point is
8
W) (4.43b)

= (o + A0/2- A /hQ

The nuclear factor in the Condon expression is maximized when
half of the vibrational excitation is left on the donor and half on
the acceptor (because couplings were chosen equal), or jAQ =
(Ap ~ A,)/2. ™ for this value of j, and this value only, is equal
to the approximate value. Because many s enter the sum, as
transfer distance increases the large &'s (with smaller j's) may
dominate and the driving force dependence of the rate (and other
details) may vary with transfer distances. This is addressed in
section V. No choice of y gives the Born—Oppenheimer /Condon
rate the proper distance dependence.

In summary, there are two kinds of errors in the Born-Op-
penheimer/Condon approach to the probiem: (1) The incorrect
functional form of the Born—Oppenheimer decay length. The true
electronic decay is not modulated by the reaction coordinate
position when the electron is on the bridge orbitals. It is sensitive
only to the vibrational energy left behind. (2) The assumption
that & is eindependent (Condon approximation). This is clearly
false even in the one-mode case since & « 8/A,. Examples of these
errors and constraints on their importance are given in section
V. .

Exact Vibronic Siates for Models with Two or More Modes
per Site. The exact wave functions can be found when more than
one-nuclear coordinate exists on the donor or acceptor. Consider
a two-nuclear coordinate problem where one mode might corre-
spond to an inner sphere (chemical bond) reaction coordinate and
one to an outer sphere (solvent) coordinate. Thus

Hpm = H + HP + H" (4.442)

where
Hy® = (b)'b, + AQ, + (b'h, + ),  (4.44b)

Hy™ = ~ay'ag[A (B, + by) + M(by' + by)] (4.440)

and the electronic Hamiltonian is as previously described (eq 4.5a).
Two independent oscillators are each coupled to the electron. This
problem is the simplest one which includes an electron with re-
action coordinates of differing time scales.

The two-mode problem is solved by analogy with the one-mode
problem. Taking

¥(F, y. y)) = Zkgl.ka,k(F)tﬁl()’;)q’kUz) (4.452)
Je

one finds

A
[EMZ - 4ﬂ2]U2
8] = Mlgiawi(k + 1)V2 + g4 k12 = 0 (4.45b)

gu«] dp- E ] - MlguaG+ 1)1+

where

Ejy= B - (G + V)R, - (k + 1A, (4.45¢)
Since the recursion relation relates each g, to at least two other
mixing constants, only the matrix approach to caiculating ei-
genvalues is useful. The secular equation is now
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Ap - Egp Ny =A; [ %00

=~ Ap-Eq; N [ 8o

- o Ap-Ep -7 O 2io | =0 (4.46)
0

9 f)\x AD -E, _")\: gl.l

This approach can be generalized to any number of modes. As
the number increases, so does the number of off-diagonal elements
in the matrix equation and truncations of the matrix must be made
with consideration of the sizes of the g's, which can be estimated

by using Appendix C.

V. Discussion and Conclusions

The dependence of the electron-transfer rate on distance, re-
organization energy, and redox energy of donor and acceptor is
strongly dependent on the details of the model. The electronic
structure of the donor, acceptor, and bridge is crucial as wel] as
the frequency and coupling of the reaction coordinates. Qualitative
theoretical estimates of driving force and distance dependence®s™
can now be scrutinized, at least in the limits of the simple models
presented here. We ourselves are interested primarily in the
nonadiabatic theory because of its relevance to the long distance
biological electron-transfer problem. We have found that there
are threc ways that simple nonadiabatic electron-transfer theories
fail. (1) The electronic decay length may be driving-force-de-
pendent. (2) The decay length dependence on driving force de-
pends on the details of the vibronic coupling. (3) Coupling between
electronic and nuclear motion, treated incorrectly in the Born-
Oppenheimer/Condon approach, may cause different rate-driving
force dependences at different donor—acceptor distances.

Systems like those of Miller, Beitz, and Huddleston? (radiolysis
initiated transfer through glassy MTHF), and Joran, Leland,
Geller, Dervan, and Hopfield®® (photoexcited transfer from
porphyrin to rigidly linked quinones), are examples of electron-
transfer systems where the periodic approximation may apply.
Amino acid residues in a protein may effectively create a periodic
bonded medium through which transfer might occur in biological
systems.®¥ The “band” which assists electron tunneling is de-
termined primarily by the energetic proximity to the donor and
acceptor states. In the case of hydrocarbon linkers, the bands of
interest are very narrow compared to the energetic distance of
the localized states from the band. Because mediation via one
band apparently dominates in most cases, the one orbital per site
model is appropriate. More elaborate treatments of the bridging
medium have been discussed.’® For hole transfer, the formalism
presented in section IV is valid if the clectron operators are re-
placed with hole operators.

The distance dependence of electron-transfer rates.has been
measured in a few instances. In radiolysis initiated tunneling from
biphenyl radical anion to various acceptors it was found that ¢
=~ 0.09 assuming a unit size of ~4 A (a = 0.6 A~, where Tp,
« exp(—aRpa)). In the rigid porphyrin—{linker),~quinone systems
theory predicts®! ¢ = 0.026 (experiment® gives ¢ < 0.045). Given
the reduction potentials of biphenyl and benzoquinone, the bi-
phenyl radical anion is about 3 eV from the band of {2.2.2] linker
states and the acceptor energy varies from 1 to 3 eV from the
{2.2.2] states. It is not clear exactly where the corresponding
MTHF “band” sits but we expect it to be close to that of other
saturated hydrocarbon. Forward electron transfer in the rigid
model compounds occurs at ~2 eV from the valence band of the
linker.?! Because the bands are so narrow, we find 8[2.2.2] =~
0.05 eV for the o-bonded systems and 8 ~ 0.2 ¢V for the glassy
system. To fit the radiolysis date, Miller found reorganization

{28) (a) Miller, J. R.; Beitz, J. V; Huddleston, R. K. J. Am. Chem. Soc.
1984, /06, 5057. Similar experiments utilize time resolved emission quenching
are aiso of interest: (b) Domingue, R. P.; Fayer, M. D. J. Chem. Phys. 1988,
83, 2242. (c) Guarr, T.; McGuire, M. E.; McLendon, G. J. Am. Chem. Soc.
1985, /07, 5104.

(29) (8) Joran, A. D.; Leland, B. A.; Geller, G. G.; Hopfield, J. J.; Dervan,
P. B. J. Am. Chem. Soc. 1984, 106, 6090. (b) Leland, B. A.; Joran. A. D.;
Felker, P.; Hopfieid. J. J.; Zewail, A. H.; Dervan, P. B. J. Phys. Chem. 1985,
89, §571.

(30) Isied, S. S. Prog. Inorg. Chem. 1984, 32, 443.

(31) Beratan, D. N. J. Am. Chem. Soc., in press.
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Figure 3, (a) Plots of in (rate(A,)/rate(A, = -2.0 eV)) for different
values of v, for the case of one mode coupled only to the donor, and fixed
donor energy (Ap - A*/AQ = 2.0 V). The horizontal axis gives ¢ =
Ap = M} /AQ ~ A, in units of AQ. The plots from top to bottom corre-
spond to N = 0, 2, 4, 7, 10, and 20, respectively. The parameters are
defined in the text. (b) Same as Figure 3a for plots of In (rate(N)/rate(N
= (0)) for different values of A,. The horizontal axis shows the value of
N. The piots from top to bottom correspond to A, = -2.0,-2.6,and -3.2
eV, respectively.

energies of ~0.8 eV and AQ ~ 0.18 eV. Given the proximity
of these states to the valence levels of the bridge, hole transfer
is believed to dominate, 6164

Consider electron transfer through an orbital bridge when only
one mode on the donor is coupled to the transfer event. The rate
in this case (¢ « 1) is

- rgk(i)zﬂwz(%)z .
* A \as 8
exp[~(A/AQ)?I{A/AQ]2/"0
(e/hQ)

g\
(E) = exp(-aRp,)

a=-a'ln(8/44)
There is only one distance decay constant (¢) in this equation
because the transfer occurs at the acceptor energy, which is a
constant. The “electronic” decay length of the conventional theory
depends on the driving force of the reaction since

e=Ap-A/hQ- A, (5.3)

h(Ep - Ex) (5.1)
Writing
(5.2a)

(5.2b)
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In the standard theories, the Condon approximation chooses the
decay length to be driving-force-independent. When the coupling
is entirely on the donor, changing the driving force by changing
A, alters the decay length, but changing Ap does not. In the later
case the conventional theory is adequate. The reverse is true if
the reaction coordinate coupling to the electron is entirely localized
on the acceptor.

Figure 3 is presented as an example of the effects suggested
in section 1V for the one mode on donor problem. The calculations
were performed with 8 = 0.1 eV, A2/ AQ (reorganization energy)
=09eV, AQ=0.15¢V, Ay = ~1.1 eV, and A, varing between
-2.0 and -3.8 ¢V. We vary the energy of the uncoupled site in
order to sce the effect of energetics on rate and decay length.
Because the decay lengih is driving-force-dependent, the maximum
rate at different transfer distances occurs at different acceptor
energies.

When there is vibronic coupling to both donor and acceptor,
the rate (if ¢ <« 1) is proportional to the sum in eq 4.39, or eq
4.42 in the Born—Oppenheimer/Condon limit. The “clectronic™
decay factor in the later case is §/(Ap — AP), a single term. With
a mode on donor and acceptor, the exact and approximate rates
are different because many s are required. Nonexponential decay
in distance arises and the apparent decay length varies for fixed
driving force as the transfer distance changes. At short transfer
distance the &, that maximizes the Franck—Condon factor dom-
inates the rate sum. However, as the distance increases ¢'s for
smaller j dominate. This effect may also introduce unusual dlriving
force dependences. Figure 4 presents an example of a problem
with one mode coupled to both donor and acceptor. The param-
eters are similar to the ones used for Figure 3; that is, the donor
and acceptor are never closer than 2.0 ¢V to the center of the band.
The reorganization energy is equally divided between donor and
acceptor (0.45 eV on each site). In Figure 4a Ap = ~1.55 ¢V and
A, is varied between —-1.55 and -3.35¢V. A, =-3.35¢V and
Ap is varied between -1.55 and ~3.35 ¢V in Figure 4b.

Changing driving force by changing Ap (Figure 4b) instead
of A, (Figure 4a) can cause drastic differences in the rate vs.
driving force dependence especially in the inverted region. In this
region the standard Franck-Condon factor decreases exponentially
as Ap increases but ,.," increases. Since only ¥'s smaller than
%,u0 are introduced by varying A, at fixed 4p. there are no such
compensating effects in the rate vs. driving force plots of Figure
4a. Peaks of these plots are transfer distance dependent reflecting
the dominance of different &'s at different transfer distances.
Figures 3b shows that in the one mode case the rate decays
exponentially with distance. When one mode is coupled to both
donor and acceptor, as in Figure dc, the rate decay with distance
is not purely exponential. Nonexponential decay with distance
occurs because more than one & enters the rate expression.

We now comment on the spectral densities discussed in section
11 and Appendix A. Many fast localized vibrations satisfy the
condition that friction is weak enough so that mixing between
energy levels of the reaction coordinate is unimportant. Some
experimental evidence to support this assumption exists. For
example, for metal-free and Zn cytochrome-c porphyrins,’® the
vibrational line widths have been found to be between 1 and 10
cm™’, and the extent of the inhomogeneous broadening about 400
em™'. For slow reaction coordinates the opposite condition is
expected. For “diffusive” motions, such as solvent polarization,
gross motion of proteins, and motion of counterions, the condition
of a smoothly varying density of states holds. Even the over-
damped approximation is reasonable in this case. Experimental
evidence to support this assumption for solvent polarization can
be found in the literature, and Kosower’s work”? is an example
of it. For gross motion of proteins, experimental evidence for the

(32) (a) Vanderkooi, J. M.; Koloczek, H. Presented at the International
Conference of Excited States and Dynamics of Porphyrins, Little Rock, AR,
Nov 17-19, 1985. (b) Even, U.. Magen, 1. Jortner, J.; Fnedman, J.; Levanon,
H. J. Chem. Phys. 1982, 77, 4374,

(33) (a) Kosower, E. M. J. Am. Chem. Soc. 1985, 107, 1114. (b) Ko~
sower, E. M. Huppert, D. Chem. Phys. Let:. 1983, 96, 433. (c) Kosower,
E. M. Acc. Chem. Res. 1982, 15, 259.
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Figure 4. (a) Plots of In (rate(A,)/rate(A, = -1.55 eV)) for different
values of N, for the case of one mode coupled only to the donor and one
to the acceptor, and fixed donor energy (dp = -1.55 ¢V), and reorgan-
ization energy of 0.45 ¢V per mode. The horizontal axis gives ¢ = Ap
~ 4, in units of AQ. The plots from top to bottom correspond to N =
0.2, 4,7, 10, and 20, respectively. The parameters are defined in the
text. (b) Same as Figure 4a for plots of In (rate{Ap)/rate(ap = -3.35
eV)), and fixed 4, (45 = ~3.35 ¢V). The plots from bottom to top
correspond 1o N = 0, 2, 4, 7, 10, and 20, respectively. (c) Same as Figure
4b for plots of In (rate(N)/rate(N = 0)) for different values of Ap. The
horizontal axis shows the value of N. The solid lines correspond to Ap
= ~1.55 (top) and ~3.35 ¢V (bottom). The dashed line shows the initial
slope of the upper curve.
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existance of a “diffusive”™ mode coupled to the Fe in heme proteins
has been found.3* The relaxation time of such a3 mode is on the
107%-s time scale. As discussed in sections 11 and 111, 2 combination
of reaction coordinates, with different time scales, may be coupled
to the clectron-transfer problem.

To conclude the paper we describe a few experiments that may
help clarify some aspects of the electron-transfer problem, and
test the theoretical models. In order to estimate reorganization
energies and Franck—Condon factors the following experiment
should be done. Let us suppose that we have the donor without
the acceptor. As proposed by Hopfield,® if we irradiate this donor
with monochromatic light, the electrons emitted have a kinetic
energy distribution S(E). This function should be peaked for the
photon energy —(Eio,° + 2ERP), where E,.° is the electronic
ionization energy of the donor (i.e., the ionization energy if there
were no vibronic coupling) and EgP is the donor reorganization
energy. The mean square deviation of such a function should be
2k TwEgP. If there is coupling on the acceptor, similar experiments
should be done for A”. Because we are suggesting optical tran-
sitions, the nuclear excitations necessary are larger than the ones
for nonradiative processes. Under these circumstances the har-
monic approximation is less reliable. Another problem with such
experiments is that we may not be able to distinguish between
homogeneous and inhomogeneous broadening, especially if the
solvent is an essential part of the transfer process. In order to
accomplish this, fluorescence spectroscopy experiments like those
described by Vanderkooi and Koloczek are necessary.’? The
difference between adiabatic and nonadiabatic rates is mainly in
the prefactors, not in the activated term. Equation 3.21 is an
example of that. Thus, experiments where only prefactors can
be systematically varied are ideal sources of direct dynamical
information. The porphyrin—(linker),~quinone moiecuies syn-
thesized by Joran, Leland, Geller, Hopfieid, and Dervan are
examples of such systems.?

Born—Oppenheimer breakdown may complicate discovery of
the “inverted™ region for long distance electron-transfer reac-
tions.?*** The point at which the regime changes from normal
to inverted was shown to depend on coupling and transfer distance.
For this reason, a result of Miller, Beitz, and Huddleston? is
particularly interesting. The observed effect was a shift in the
peak of the rate vs. AG plot to larger exothermicity for longer
distance transfer (Figures 7 and 8 of ref 28a) in a radiolysis-in-
itiated electron-transfer study. They explained this effect with
time (equivalent to distance in their analysis)-dependent
Franck~Condon factors arising from slow solvent relaxation around
the donor ion. A shift of this sort is predicted from Born-Op-
penheimer/Condon breakdown if hole transfer dominates (e.g.,
Figure 4b) and the hole donor (electron acceptor) energy is varied.
The proposal that time-dependent solvent relaxation about the
donor clectron causes this shift was made.”” Repeating the ex-
periments at 4.2 K, where solvent motion should be considerably
more restricted, might resolve this question.

Epilogue

Being at Caltech and able to interact with Rudy, and being
interested in biological electron transfer, it is a special pieasure
for us to join in this celebration of Rudy’s seminal contributions
to the field. He had the wisdom to find the right ideas and
constructs, and the kindness to leave a few subtle points for others
to work on.
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Appendix A

Calculation of Spectral Densities. Siarting with the one-re-
action-coordinate case, we consider the purely quadratic part of
eq 3.8, i.e.

Pyz 1 €
Hgr = T, + 4+ = Xy + 24 -g, +
ET DATx i, ZMyQ O + yoo,) 3%

Py 1 Cp :
— + M’ x, + , Al
N tzM., Dl ol § el

that is not coupled to the spin, and imagine diagonalizing it via
a transformation to normal modes. By doing that, we can rewrite
the Hamiltonian A.] as eq 3.12, ie.

€ -
Hpp = Tpao, + 7% + a,%:l,xﬁ +

Bs &

2 o 4 ot +
2rhgg?

1
gl 2my 2 (A2
Our goal now is to calculate Jq(w), eq 3.13, assuming that we
know Jo(w), eq 3.9. Since the transformation for eq A.1 to eq
A.2 does not involve the spin, the same J {w) controls the dy-
namics of a continuous variable ¢ moving in some potential U(g)
and coupled to the coordinates y and x, in the same way as the
spin. To this end, let us consider the Hamiltonian
2

hr—p—°+(,1)+P’2+l
SRSV

P2 i €y ?
=+ Mw2] x, + —— A3
b(Eh){ZMb Moo’ X Mbwbz}’ (A.3)

where p, is the momentum conjugate t0 g. For this Hamiltonian,
the classical equations of motion are

ug = -U'q) ~ M,Q%a,(y + a,4)

MO +ag) +

!

Mj=-MQ(y+aq)- L -y L
» A+ aa) bibuth) b )b(b-lh) Myay?

My = ~Mywp?x, — cpy (A4)
We now use the Leggett’s prescription® for obtaining J.q{w).
Defining the Fourier transform
3u) = f q(1) expi~iuty dt, Im (u) <0  (A.9)
and writing the equation of motion satisfied by § as
R(w)g(w) = U (g) (A.6)
where U,’(q) is the Fourier transform of U1q), Jd{w) is given

by
Jw) = m Im [K(w - i¢)]; w real (A7)

Carrying out these steps, we get

Cbz £ o
b(EmM‘,wbz(wbz - u?) ]}
-M,Q4) + a,§) (A8)
M a2L(u)
R(u) = —pu? + ———2—— A9
W= e+ L (A9

Assuming that Jy(w)/w has no singularities and a cutoff frequency
A, we get

Ly = —u’[ M, +

(36) Leggett, A. 1. Phys. Rer. B 1984, 30, 1208.
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= (Jo(w') /w")
R R e

~M 1 + iJo(u) (A.10)

Substituting eq A.10 in eg A.9, and using &g A.7, we get

Q‘a,,l.lo(w) ]
= ifA>»Q
Jer(w) S+ o)/ M, if A

(A.11)

and

Jer(w) = a,Mo(w) + %M,.Q’a,za(w -0 fAKQ (A1)

If instead of y being coupled to a,q, it is coupled 10 yq0,, the
effective spectral density is

Qo2 o(w)

J, = ifA»Q A.13
M) = F P e M) A1

and

Jemw) = yozl(,(u) + %Myﬂ’yozé(w - ) fAKQ (Al4)

Equation A.13 becomes eq 3.14, when Jo(w) is given by eq 3.11.
Now we consider the problem of two reaction coordinates which
is given by eq 3.33, i.e.,
P 2 p 2
+ + + — +
2 W, MG+ 300) + o

-Mﬂ Xz + zg0,)? + u,

Her = Tpao, +

Py &’
T {—+ '-M Xy, + —— A.l15
weml2m: T 2 R N Mb"’bzy Mu‘% ( )

This equation can be transformed in eq A.2 by using the same
prescription used before. Let us consider the Hamiltonian

Pq: Pyz 1
H, = %t Ug) + M, + -M,le(y +aqP +
p?
m+ 2MQ Xz + aq)+
> {P—b+ Mbwb[ Xy + it y + & Z]I} (A.16)

woatty § 2My 2 Mt Mywy?
which has the cla:sical equations of motion

ug = -Utq) - M,Q%a,(y + a,9) - M,Qa,(z + a,9)
e’)? _

ebath) Mypwy?

My =-MQXy+agq) - NEM oxy—y

oycy?
2 AL
bbath) My
(es)?
Mi=-MQXz+a49) - L c'xy~2 —
b(bath) tebeth) Mpw,2
[0S
y 2
tbath) M ywy
Myiy = —Mywy’x, = e’y — 0’2 (A.17)

Doing exactly as we did for the one mode case, we get

¥
Y I S .. £ M
[ 7 ey Mpwp(wy? - uz)y
oycy’ . ”- i
v Moo= | = M0+ ad) (A1D)
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and the equivalent equation for z. Because the signs of ¢,” and
¢y’ are random, and/or assuming that y and z are rarely coupled
to the same bath mode, the terms proportional to 3 c¥cy’/
Mywy (w2 — u?) in the equation above can be neglected.

In analogy with the one-mode case, we define

i) = -uZ[ M.+ T ——(iL] (A.19)
wioath) My, (wy? — u%)
which satisfies
{Ett=-aigiadt oo
Carrying out the algebra, we get
(@) = T (w) + Jen(w) (A2D)

where J?* are the effective spectral densities for y and z, cal-
culated by using eq A.7, A.9, and A.10, but using 77 (J*) instead
of L (Jy).

Appendix BY

Extreme Nonadiabatic Limit of the One-Reaction-Coordinate
Electron Transfer. Let us calculate the rate of electron transfer
for Hamiltonian (3.8), assuming that Jo(w) is given by eq 3.11.
We assume that friction is weak enough so that mixing between
the energy levels of the reaction coordinate is unimportant.

For the electron fixed on the acceptor (V(3; -) in Figure 1),
the rate of decay of the m,th level is

n exp(hQ/kT) m,+1

(B.1)

Tmi = )™ aptha/an =1 * axptha kD) - 1
using eq 12-110 and 12-128 of ref 38. Therefore
T =~ 2may if kT < hQ (B.2)
2kTy
I, = 7{5'(2'”‘ + 1)ifkT» hQ (B.3)

We now caiculate the forward rate for electron transfer. For
that, let us consider a two-level system (level np, of the donor and
m, of the acceptor), where we have a net loss only from the
acceptor at a rate I',,. The energy difference between these two
levels is AE,,, = E, — E,,. and the coupling between them is given
by AA/2 = Tpa{npims). The wave function at time ¢ can be
written as

¥(1) = a(n)|+) + b(n)}-): a(0)= 1 (B.4)
and
da(r) AE,, A
R = "l"ﬁ"a(l) - b(t) (B.5a)
db(r) AE ,,
a = +1—-—b(t) l—a(l) - I‘,,,Ab(t) (B.5b)

Equation B.5 can be rewritten as
a(r)
(b('))
—iAE /28 -iA[2 a(1) a(r)
(T4 GRE r..p/:)(bm) m(50) o

and the net loss is

d
a(lalz + b)) = -T,,,IbF (B.7)
If the eigenvalues of M are A, and A, then
b(r) = Clexp(A1) - exp(Ayf)] (B.8)
which ensures that 5(0) = 0, and from eq B.5b
L -ia
C= b(0) = B.9)
AR A TR W ¢
(37) This appendix was developed in coliab with A. Garg.

(38) Feynman, R. P.; Hibbs, A. . R. Quantum Mechanics and Path Inte-
grals; McGraw-Hill: Ne\v York, 1965.
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Assuming I',, > A and/or AE,, » A, the nonadiabatic limit
is valid, and
—{AE
2k

2
ha? ha
1+ .
2(AT,,, - ZiAE,,,,,){ D( AT, - 2iA£,,,,,) } (B.10a)
TAE H
ao B 1 of  mal
2™ AT, - 2AE .,

Note that A, always has a large negative real part and A, a small
one. Thus after times of order T, ", Ib(1)}? is essentially constant,
and

A =

(B.10b)

2 hZAZ

A
b(1)) = =
oo 47 - AP 4[AE,, + AT, /4]

(B.11)

Actually, we should also consider transitions between levels in
the donor well. If the transfer rate is slow, then these transitions
maintain the donor in equilibrium, guaranteeing exponential decay
in time. Thus, the forward rate is

Lo ToalPlmpima) P
.= ¥
noms (Eny = Em)? + BT, 2/

< #(En, ) (B.12)

To calculate the reverse rate, we invert this procedure.

The concept of relaxation time, which is used in this Appendix,
assumes that the bath is always in equilibriurn. This is a good
assumption as long as the shift of the equilibrium position of each
bath modes, due to the donor/acceptor transition, is small com-
pared to the bath mode width. Normally this condition is satisfied
because the bath is composed of a large number of oscillators.
The only situation that causes problems is when the transition to
the ground state of the acceptor is important and 7 = 0. In this
case Iy = 0 and the formalism described in this Appendix fails.
Then, in order to calculate rates, we must use the procedure used
to calculate eq 3.32.

Appendix C

Separation of the Coefficients in the Multimode Case and the
Correspondence berween Harmonic Oscillator Overlaps and Wave
Function Expansion Constants. We now give an example which
illustrates the nature of the wave function mixing coefficients and
their interpretation in the multimode problem. Consider the two
mode Hamiltonian in eq 4.44. The recursion relation is

8p’ .
gu[Au— Eoi-agyn ~Ep |- MlgmaU+ D24
sk T

gr14"?} = Mlgiuar(k + 1)V2 4+ g k3 = 0 (C.1)

We write g, = Mg, In the electron-transfer problems for
which this model holds relevance

1803 /(Ej — 481/ <« |Ap - Ej 4 (C2)

Approximating E* with the Born—Oppenheimer energy and
Bo?

= « E* (C.32)

(B - 4602
2

A
E B0 = Ap+ (j+ )RQ - _Mll (C.3b)
i
Xzz
+ (k + YD, - —= (€.30)

[ 3178
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and
&Vl - mhQy + A2/ Q) - M(ges Pk + 1)+
kD] + Ekm(g,“)‘(k - mhQ + A/ A0 -
)\I(Slﬂm(j + DI+ g,—l‘”)"”)] =0 (C4)

n is the quantum number of the coupied state. This equation may
be written as

a(j)b(k) + c(j)d(k) =0 (C.5)

where a(j) = 0, d(k) = 0, and b(k) = c(j). Therefore, b(k) =
0 and c¢(j) = 0 so the coefficient g is separable into a product
of two single-mode coefficients.

The mixing constants when more than two modes are present,
&x,..» €an be separated into as many terms as there are modes
in the probiem providing the corresponding limits obtain. It was
shown that in the & well limit the mixing constants (squared) in
the ground-state wave function are Poisson distributed. We now
show that, in general, for the nth coupled wave function g, = (n}/)
where |n) is a harmonic oscillator eigenstate with given equilibrium
geometry and }/) is a harmonic oscillator eigenstate with a shifted
equilibrium position. We give this proof for one-nuclear mode
and an orbital model for the electronic part of the problem. The
possibility of separating the g's as previously described means that
this fact is true for gV, g,', ... The recursion relation for any
single mode is

gulU+ N-gly' P+ (-m/yP +g. /=0 (C6)

where v = Eq/AQ = (A/hQ)? and we approximated the energy
with the Born-Oppenheimer energy. nis the quantum number
of the coupled siate and j is the index in the wave function ex-
pansion corresponding to the jth vibrational state. We prove that
g ==(n|j), where |n) and [j) correspond to oscillators with origins
at y = 0 and y = 2y,, respectively. Defining the operator

P=b-4"2- —;l-/-;(b'b—b"bi) + b (C.7)
Y

b= #[(M,Q/h)”zy - iP,/(MhQ)'Y]  (C8a)

(C.8b)

1

b= ETE[(MYQ/MWU = 2yo)- iP, /(M R Q)'?]
and b,'(b,) creates (destroys) vibrations with equilibrium position
2po. b'(b) creates (destroys) vibrations with equilibrium position
at the origin (0). Clearly, (j}Pin) gives the left-hand side of eq
C.6. 1f we can show that P = 0, we have proven that g, = (jjm
is the solution of eq 4.12 to the extent that the Born—Oppenheimer
energy is a good estimate of the eigenvalue and

Bo?/ [(Ap ~ My)? - 4872 « Ap

In the case of quadratic reagent and product welis
| M P20 M,Q
27 hg 2

Substituting v(2y,) into the definition of P and using the coor-
dinate representation for the creation and annihilation operators
we see that P = 0, as needed. Moreover, since 2y, is the shift of
the oscillators accompanying electron transfer the sets |f) and |n)
are the cigenstates of these surfaces. The importance of including
a particular mode in the Hamiltonian is proportional to v.
Whether the corresponding g's can be neglected is estimated by

calculating the appropriate product of nuclear oscillator overlap
functions.

T=(/h0)7 = (2y0)*  (CH)
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Abstract

Electron transfer is a very important reaction in many biological processes
such as photosynthesis and oxidative phosphorylation. In many of these reac-
tions, most of the interesting dynamics can be included by using two reaction
coordinates: one fast (local high-frequency vibration modes) and one slow
(outer-sphere modes such as solvent polarization). We report a model to de-
scribe this problem, which uses path integral techniques to calculate electron
transfer rates, and also to obtain the Fokker-Planck equations associated with
this model. Different limiting cases lead to qualitatively different results such
as exponential or non-exponential time decay for the donor survival probabil-
ity. Conditions for the validity of the adiabatic or the non-adiabatic limits will
be discussed. Application of this model to real systems is proposed, in par-
ticular for a porphyrin rigidly linked to a quinone, which is a very interesting
model compound for primary events of photosysthesis. This model can also be
used for other multi-coordinate biological reactions such as ligand binding to
heme proteins. Also, in the concluding part of Sec. 3, we discuss the important
limit where the fast vibronic mode is much faster than all the other nuclear
modes coupled to the problem. In this limit the fast mode “renormalizes” the
electronic matrix element, and this considerably simplifies the treatment of the

problem, reducing it to coupling only to the slow modes.
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1. Introduction

This paper is a continuation of the work begun in the paper “Effect of
Friction on Electron Transfer in Biomolecules,”! in which we developed a the-
oretical model for electron transfer reactions coupled to one reaction coordi-
nate. Electron transfer reactions are very important in biological and chemical
processes such as oxidative phosporylation, photosynthesis, and oxy-reduction
reactions.? In this paper we expand our understanding of the role played by
friction in these reactions, generalizing the results obtained in the previous
paper for one reaction coordinate, and we develop a solution for the case of
transfer coupled to two reaction coordinates. The results obtained by Ag-
mon and Hopfield® suggest that the formalism developed here is applicable to
other chemical-biological reactions, such as CO binding to heme—proteins. The

results obtained here are important for two main reasons:

1- Theoretically this work presents a discussion of the validity of several exis-
tent theories; it also shows how they are related to a general Hamiltonian.
Also, several new calculation methods, which may be useful when devel-
oping theoretical models for chemical reactions in condensed matter, are

developed and described in detail.

2—- Some applications to existing experiments of the results here obtained
are described. How to apply them to some other experimental results is

discussed as well.

This paper is structured as follows. Sec. 2 describes the results available
for the one mode problem in several different limits. A discussion of the validity

of each limit and a comparison to existing theroretical results is given. Also,
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a description of the important time scales of the problem is presented. Sec. 3
introduces the two mode problem. The electron transfer rate is calculated in
several limits. A discussion is given of exponential and non-exponential de-
cay in time of donor survival probability. Some possible applications of the
results to experimental systems are described. Sec. 4 presents the Fokker—
Planck equation associated with the Hamiltonian of Sec. 3. Sec. 5 discusses
some introductory ideas of how to include anharmonic effects when they are
necessary to describe the problem at hand. A model to interpret electron
transfer between a linked porphyrin and quinone is then presented. A prelim-
inary discussion of the available experimental data is given. Sec. 6 discusses

the relevance of the results here obtained.
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2. The One Mode Problem — Review and Generalization

The concepts of adiabaticity and reaction rate for electron transfer reac-
tions have been extensively discussed in the literature (Refs. 3-11, for example).
Because they have not been presented in a complete and clear way, there is
a need to connect a;xd to compile this available information, to clarify some
dubious points, as well as to develop a discussion addressing the validity of
each one of these models. This is the main aim of this section in which, for
reasons of simplicity, we consider electron transfer coupled to only one reaction
coordinate.

The electron transfer Hamiltonian in this case, in the Born-Oppenheimer

and Condon approximations, is

hlo P?
Hpr = + =Y
BT 2 9z 2My

1 P2 2 cay \?
+'2‘ g [;‘n"; + Moy | To -+ mawg . (21)

Here the electron in the donor and acceptor states is associated with o, =

1 €

1 and — 1, respectively. y is the reaction coordinate, and {z,}’s are the bath
coordinates. As discussed by Caldeira and Leggett!? and in Ref. 1, details of
the bath are unnecessary, and only how the “reduced dynamics” of electron and
reaction coordinate are affected by the bath is important. Therefore, the bath
oscillators’ influence on the reaction coordinate is determined by the following

relation, which is known as spectral density,

Jo(w) = gz Z 5(w — wa) . (2.2)

meaW
o a%o

In this section we restrict ourselves to the ohmic form of the spectral density

Jo(w) = nwexp(—w/A),, and v =1n/2M, . (2.3)



86

A is a high frequency cutoff that is required on both physical and mathemat-
ical grounds. It must be much faster than any time scale associated with the
problem. As discussed elsewhere?, if other forms for the spectral density were
considered, a frequency—dependent damping constant # would be necessary.
Because at this level of theory there is no reason to further complicate the
problem, we use in this section the ohmic form for the spectral density. It
also has a simple connection with linear damping of the classical limit of the
reaction coordinate!. Also, in the non-adiabatic limit, details of the spectral
density are irrelevant, and only the strengh of the bath coupling to the reac-
tion coordinate is important. To avoid confusion, we recall that we use the
standard convention for the non—adiabatic term; i.e., the rate is non-adiabatic
if it is proportional to the square of the electronic matrix element, |AAq/2/2.
Initially we consider the case in which the coupling between the bath and
the reaction coordinate is weak; i.e., the width of the reaction coordinate energy
levels is much smaller than %2, but large enough that the non-adiabatic limit
still holds. (By that we mean that the non-adiabatic rate is much slower than
the reaction coordinate relaxation. See Appendix B of Ref. 4 for quantitative
estimates of this condition.) Under these circumstances the non-adiabatic

electron transfer rate is

. inp |BA0/2|%| < nplma > |?
rfir — Ymasnp |[BA0 p(BnpimasT) (2.4)
" nl;"m (E"’D - EmA)z + hzfyrznA;np /4 o
where
_nf. exp(hQy /kT) ma+1 (2.5)
Tma = M, " exp(ril, kT) — 1 | exp(AQ, JKT) 1) ° '

and similarly for v,,. p(Enp;m, ,T) is the thermal density of states for the

donor/acceptor reaction coordinate levels. In the high and low T limits, re-



87

spectively,
Yma & 2may f kT < hQy , (2.6a)
and
2
Yma & :g” (2ma +1) if kT > K0, . (2.6b)
y

Details about how these rates were computed are found in Refs. 4 and 10.
For clarity we now show how the rate above is connected with the conven-
tional “quantum mechanical” rate developed by Jortner and collaborators®.
If Ym,(Ynp) is much smaller than ,, the rate 2.4 is highly peaked when

E,., = E,,. Therefore, if we take the limit ym , (Ynp,) — 0, Eq. 2.4 becomes

M= Y Zihto/2l’| < nolma > [* 6(Eny — Em.) p(BnpimsT)
np,ma
(2.7)
These delta functions are purely formal (only show conservation of energy)
because, as discussed previously, Ym, (Ynp) have to be large enough so that
the non-adiabatic rate is slower than the reaction coordinate relaxation®.
Next we consider the limit where the coupling to the bath is strong enough
so that the density of states of the reaction coordinate is a smooth function of
energy. From Egs. 2.5 and 2.6 we know that this condition is satisfied when
Ymainp > §ly/2 for the levels involved in the transfer. In this limit, the electron
transfer rate is calculated for two cases, one when the reaction coordinate is
underdamped and the other when it is overdamped.
In this strong coupling limit, the rates are obtained using the formalism
developed by Garg, Onuchic and Ambegaokar®. Following that work, we calcu-
late the inclusive probability, W (t), defined as follows. Suppose that for ¢ <0,

the electron is held on the donor (spin up), and the reaction coordinate and
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bath are in thermal equilibrium. At time ¢ = 0 the electron is released, and
the entire system evolves according to the full Hamiltonian, Hgr. W (t) is the
probability that the spin is found in the up state at time ¢. The conditional

expectation value < 0;(t) >, denoted by P(t), is then given by

P{t)=2W(t) -1 . (2.8)

The purely quadratic part of the Hamiltonian (2.1) can be diagonalized

via a transformation to normal modes. The Hamiltonian Hgr is then rewritten

as
hA € R
Hgr = zoox + 50z +ozZCa$a
e 4
+§: + r”n 5252 4 (2.9)
2m,,, * 2ma@2 | ' '

where Z, are the normal coordinates, and pq, Mmq, and &, are the correspond-
ing canonical momenta, masses, and frequencies. In exact analogy to Egs. 2.2,

we now have

n & nQyydw
Jesr(w) = 5 Z ) 6(w—0a) = (07 Zw?)2 1 du2y? (2.10a)
o a*a Yy

= M2Quix"(w) , (2.100)

where x" is the imaginary part of the dynamic response function (susceptibil-
ity) of a damped harmonic oscillator. Therefore, when treating real systems,
we need to obtain the response function of the medium modes due to elec-
tron transfer. Also, as discussed in Refs. 1 and 4, if there are medium degrees
of freedom that are strongly excited, the linear treatment of the environment

discussed here may break down and anharmonic corrections become necessary.
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Using the results obtained in Ref. 1, after integrating over all the harmonic

coordinates, we get

W(t) = / Do [ DAA[o]A*[A]

xexp{ / dr/ dsé(r)[€(s)Ka(r — s) —ix(s )Kl(r—s)]} , (2.11)

where Do denotes the integral over all spin trajectories o(r), and A(o) is the
amplitude that any given trajectory o(r) would have in the absence of coupling

to the reaction coordinate. (See Ref. 1 for details.) Also,
¢(r) = [o(r) = A(1)]/2 , x(r) = [o(r) +A(r)]/2 , (2.12)

and

Ki(r) =/:° dwleff(w) sinfwr) (2.13a)

Ky(r) = /ooo dwless(w) cos(wr) coth (ﬂ_?_u_) . (2.130)

Using the results above, we can write P(t) in terms of a sum over all
possible paths {o(r), A(r)}. £€(r) = £1 we call a blip and x = +1 a sojourn!?.

Using this notation we can write the conditional expectation as

co tz;., t2
P() = ) (A" / dtan [ dtanes [t Fultnta,eoestan) (214
n=0 0 0

where

n n

Fo({t:3) = 27" eXP(—ZAj) Z{GXP(— > §'j§kBjk)

j=1 {s:} k>j=1

X H cos( Z §,<I>kJ> H exp{ —1g5(+ t2]’2] 1+ ‘150;)} :l . (2.15)

j=k+1
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Here, tnm = tn — tm, and the ¢;’s are variables indicating the signs of the

blips; each of them can equal +1 or —1. Further,
A5 = Galtag5-1) (2.16a)
Bjx = Ga(tak,2j—1) + Galtak—1,2;) — Ga(tak,25) — Ga(t2k—1,2;-1) , (2.16b)

Br; = Gi(tzjax) + Giltaj—1,2k+1) — Gi(taj—1,2k) — Gi(taj26+1) » (2.16¢)

where G; and G are second integrals of the kernels K; and Kj :

Gi(t) = ;:—%/dw ii-f(jfzg&)l sin{wt) , (2.17a)
- 2 f eff ) (1~ cos(wi)) coth(m;w) . (217)

and the limit tg — —oo is to be taken when evz;,luating ®o;.

In Fig. 1 we show a schematic representation of blips and sojourns. In
this figure the short horizontal segments are the blips, which, as discussed, are
associated with the “non-diagonal” states of the density matrix. The blips are
separated by the sojourns, which represent the diagonal states of the density
matrix. When the system is in a blip, x(r) = 0, and when it is in a sojourn,
§(r) =0.

When the reaction coordinate is underdamped, but in the strong coupling
limit, every “transit” through the Landau-Zener region is uncorrelated to all
the other transits; i.e., there is no precise relation between the times at which
these transits occur. The Landau Zener region!* is the region along the y
coordinate where transitions occur. In Fig. 2, it is the region around y*, where

the difference of potential energy between the two wells varies about Ay, i.e.,
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Figure 1 — Schematic representation of the electronic trajectories. The short
horizontal segments are the blips. Different blips are separated by intervals

called sojourns.
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ENERGY

Figure 2 — Potential energy surfaces for the reaction coordinate. The labels
+ and — refer to the donor and acceptor sites. The energies Ey, E,, and Er
are the forward and reverse activation energies, and the reorganization energy,

respectively.
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has a size €1z = Alo/2M, nyo This limit is the moderate friction limit.

Under these conditions, in the non-adiabatic limit?,
P(t) = Poo + (1 — Poo) exp —{ Ii, + I"a)t} (2.18)

where the forward and reverse electron transfer rates are

A2 mh? 1/ (¢ ¥ Er)?
fir_ 20 _ 77" — ¢ A LT 2.19
Taa 4 (ERkTeff> xp {4kT¢ffER } ’ ( a)
and P, the equilibrium value of o, is
Py = — tanh(s/Zchff) . (2.19b)

Here Ep = 2M,02y3 is the reorganization energy, and kTes; = M,Q2u?%(n,T),
where u? is the mean square displacement of the reaction coordinate y. Fig. 2
gives a graphical representation of the parameters in Eq. 2.19. We have used
the concept of effective temperature, T, sr. Appendix A provides details of how
to calculate G; and G2, and a better understanding of T.ss. It follows from
Appendix A that Tess ~ T at high temperatures.

From Appendix A, we know that for short times the expressions for G,

and G, are
@ = 22, (2.200)
and
2
Ga(t) = i— where 752 = -2—-12&-—:2% (2.200)
27§

Because G5 appears in the exponential of Eq. 2.15, 79 is approximately the
duration of a blip, tpip. The non-adiabatic limit used above is valid when in
each transit only one transition is possible. This condition is obtained self-

consistently in the following way. Within each transit of the Landau-Zener
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region, which can involve several tunneling events, the mean blip—plus-sojourn
length, ¢p+5, is of the order of the inverse of 'y, divided by the activation factor
( = exp[—Ef/kTess] ). It follows from Egs. 2.16 and 2.17 that if totip K tots,
it is reasonable to neglect the interblip interactions Bjk, and all phase factors
®r; except those with j = k£ + 1. These are the conditions used to compute
the above rate. If we can self-consistently impose that totip < tp1s, Eq. 2.19
is valid, and this condition reads! approximately

RIA2
o N P .
(szef,ER> < (221)

This condition is similar to the one of Goldstein and Bialek!?,
Pna < AO 3 (222)

but they did not consider the effect of activation energies, which divide the
rate in the criteria above.

Next, we discuss the overdamped limit. This limit is valid when w, =
ﬂz /27 < v, and may be used to describe reaction coordinates such as solvent

15,16 oross protein motions!?, and motion of counter—ions. This

polarization
limit is called the high friction limit. In this case, if the activation energies are
at least a few kT, P(t) has exponential decay in time as given by Eq. 2.18, but

the electron transfer rate, I, can be calculated for the general case, not only

for the non-adiabatic limit. Under these circumstances the rate is given by

rfir = A3 ([ nh? i 1 (c ¥ Er)®
=— 5 exp — ¢ ~—————+ , (2.23)
4 \EgkT 1+ A2(nh/20.ER) $TEg

where

_ AZnh
9= 2w ER

(2.24)
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is the adiabaticity parameter. If ¢ « 1, the rates reduce to the non-adiabatic
limit, while if g > 1, we get the Ao independent adiabatic rate. An application
of this result to understand solvent polarization in electron transfer reactions
is described in Ref. 18.

The condition given by Eq. 2.23 is very interesting because it provides a
quantitative estimate for the validity of the non-adiabatic limit. In order to
simplify the discussion, we now define two times:

drift Ech YoWe ( )

which is the average time the “particle” stays in the Landau-Zener region each

time it reaches it, and

1z ., (hdo)?

which is the time taken by the particle for eacﬁ transit through the Landau-
Zener region. Also, it is important to point out that, because AAg < kT for
the problems we are interested in, t£Z > t{;g -

Considering the two time scales above, we note the adiabaticity condition,
g > 1, is satisfled when t}Z 5t > Ag !, and we do not need to meet the condition
ti%; > Ag'. The latter condition, t7Z, > A, is the conventional adiabatic
limit, and when it is true, the conventional picture of split nuclear wells is
valid. (Also, the validity of Eq. 2.23 becomes questionable when this last limit
is valid!»15.) But, as we showed in the case t;Z > Ag 1, “adjabaticity” holds
under a much weaker condition than the conventional one.

As can be seen from Ref. 1, Eq. 2.23 was developed assuming that the
motion of the particle is diffusive even when it is in the Landau-Zener region.

Thus, if t7%; < Ag' < t§Z,,, when the particle crosses the Landau-Zener
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region, each of its transits is associated with a very small transfer probability
proportional to A2, but adiabaticity results because the particle crosses this
region many times before it drifts away. Otherwise, i.e., if tgg §> Ag 1 it is
simpler to look at the problem in the conventional way, in which we have the

“adiabatic” splitting of the nuclear wells.
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3. The Two Mode Problem

As discussed in Sec. 1, if only harmonic “nuclear” modes with linear coup-
ling between them are considered, the electron transfer Hamiltonian for the two
reaction coordinates case, in the Condon and Born-Oppenheimer approxima-

tions, can be written as

RA p? €
Hgp = 2°a, +21\} + Mn (y+yoaz)2+§az

P2 2, 1 PZ 2 Cal g
e+ e e+ [t (2

[+

2
1 cpz
+3 Zﬂ: L 1 mpw} (zp + mﬂwz) : (3.1)

The two reaction coordinate problem of electron transfer is interesting because
it is the simplest model that is able to describe the effect of a fast localized
vibration and a slow (sometimes diffusive) motion on electron transfer. In
the above Hamiltonian the coordinates y and z represent the fast and slow
coordinates, respectively. Although this problem has already been partially
addressed in the literature (Refs. 3, 4, 9, 19, and 20, for example), the aim of
this section is to study it beginning with a general Hamiltonian, understanding
all of its important time scales, verifying how friction affects them, and finally
discussing the validity of each of the approximations that are commonly used.
The reasons for assuming independent baths for the y and 2z coordinates are

addressed in Appendix A of Ref. 4.

As discussed in Sec. 2, we do not need to know details about the parame-



98

ters describing the bath oscillators, but only the spectral densities

2

T c
il 2 §(w— we
J§ (w) 2 ; MaWa (v~ wa)
Bw) |z 3 7 ' 52
w ~ §lw —
° 2 3 mgwg (w wﬂ)

Also, as in Sec. 2, in most of this section we restrict ourselves to the well-known

ohmic forms of the spectral density for both coordinates
JOF =nywexp(—w/A), and vy z=1ny./2M,, . (3.3)

A is a cutoff frequency, which was discussed is Sec. 2.
Now, we calculate electron transfer rates for the following situations:

a) When the coupling between bath and reaction coordinates is strong. In
this case the moderate and high friction limits are considered.

b) When the coupling of the bath to both coordinates is weak.

c) When the coupling of the bath to the fast coordinate is weak, but coupling
to the slow one is strong.

d) When the fast coordinate y has (1, that is much faster than all the other
nuclear frequencies of the problem including the cutoff frequency A. Recall
that A is the fastest frequency of the problem in the three case above.
First, we consider the strong coupling situation. As in Sec. 2, the purely

quadratic part of Hamiltonian 3.1 can be diagonalized via a transformation to
normal modes, and Hgr is rewritten as Eq. 2.9, but now we have the following

spectral density

~2
Vi C
J, = — LT —_—
eff(w) 2 za: fha‘:‘v)a (w wa)
nyQyydw n{452¢w

_ 3.4
(02 —w?)2 + 4w2y2 ' (02 — w?)? + dw?y? (3.4)
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Details of this diagonalization are described in Appendix A of Ref. 4.
Next we calculate P(t) using the formalism described in Sec. 2. Formulas
for G; and G3, which we need in this section, are given in Appendix A and

Ref. 1.

Exponential Non-Adiabatic Limit (Moderate Friction)

First we work in the moderate friction limit for the two reaction coordi-
nates y and z. In the short time limit (which is true for a blip duration), as

discussed in Appendix A, G; and G3 can be written as follows:

., (Bk + Ef)

Gi(t) = ————h-———t , (3.5a)
and
2 11 1 2EL KTV
Ga(t) # —, where = = + and (r?)"2 = £ _"eif
R A A ) B R

(3.5b)
Here, EY, = 2M,02y} and E% = 2M,022¢ are the reorganization energies for
the y and z coordinates. The concept of effective temperature was introduced
in Sec. 2. The above expressions are used for calculations only in short time
intervals, i.e., during blips (which are of order o).

Let us assume for now that P(t) decays exponentially in time with a
non-adiabatic decay rate, I'y4, which must be computed. This assumption is
valid when two conditions are met. First, at least one of the modes has to
satisfy the criteria for non-adiabaticity given by Eq. 2.21. Also, both modes

must have a relaxation time much faster than the electron transfer rate; i.e.,

Yy>Vz > Lna. If both of these conditons are satisfied, then (as in the last
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section) it is reasonable to neglect the interblip interactions Bjk, and all phase

factors ®j; except those with j = k + 1. Under these circumstances, similar

to Ref. 1,
D k1 = —G1(tak+2 — tak+1) (3.6)
and Eq. 2.14 becomes
P(t) = P + (1 — Ps) exp(—Tpat) , (3.7)
where
Tpa = A2 / exp[—Ga(t)] cos[G1 (£)] cos(et /R)dt (3.84)
0
A [
Po,=1- F 0 / exp[—G2(t)] cos[Gy(t) — et/h|dt . (3.8b)
na 0

We can now calculate ', when Egs. 3.5 are good approximations for G;

and G during the blips duration, and the electron transfer rate is

Lpo=Tf,+T7_, (3.9)
where
1/2
Tlir = f}ﬁ — mh’? exp _Eﬂﬁlﬁ (3.10)
na 4 \EgkTesys 4kT.ssER | '

Here Ep = EY, + E}, and Teyy = (T2 B} + T%E3)/(EY + E3).

An interesting comment to be made about the equation above is that if
some experimental data for electron transfer are fit using only one reaction co-
ordinate, at low temperatures T, s represents an average of all modes instead
of a real physical mode; i.e., at zero temperature the mode frequency which
we estimate from T is the weighted average frequency, not a real mode fre-

quency. In cases such as the electron transfer between hemes in hemoglobin?!



101

and in Cytochrome ¢ oxidation in Chromatium??®, which was fit with a low
temperature T, 55 = 350°K by Hopfield®?, effects like this may be important.

As an example let us plot the forward rate given Eq. 3.10 using parameters
similar to the ones given by Goldstein and Bearden?? for the Chromatium
problem. (They fit the experimental result using a one mode model.) In
Fig. 3 we show two plots. The first one considers only one nuclear mode
of Ky = 250cm™!, Ep = 1200cm™!, and ¢ = 3600cm~!. The second plot
considers two nuclear modes, 100 and 400 cm ™!, and the reorganization energy
is divided between the two modes, E} = E% = 600cm™1. T,.s; was calculated
using Eq. A.9. From Fig. 3 we conclude that the two plots are very similar,
and therefore crude analysis of the experiments described in the last paragraph
using one mode models will lead to a frequency that is the average frequency
of all modes coupled to the problem instead of a physically significant one.
Eq. 3.10 is valid for modes in the strong coupling limit. High—frequency modes,
such as CO vibrations, do not satisfy this limit, and how to include them in
the problem is discussed at the end of this section.

At this point it is interesting to notice that because we are in the non-
adiabatic limit and both modes relax much faster than the electron transfer
rate, Eq. 3.10 can be written as

oo
rir = / kfin.(2)P(2) dz (3.11)

—o0
where kJi7 (z) are the forward and reverse rates if we freeze the system in
a particular position of the coordinate z, and Pe",;'“'(z) are the equilibrium
distributions of z when the electron is on the donor (+) or acceptor (),
respectively. kJir (z) is calculated exactly as in the one mode case (Eq. 2.19a),

but uses a z dependent driving force, e¥(2) = € + 2M,Q22p2z. This expression
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Figure 3 — Temperature dependence of the forward rate given by Eq. 3.10.
We plot T'{,/[(27R)(hAo0/2)?] in units of (1/cm~! vs 1000/T(°K). The solid
plot uses E} = Ef = 600cm™!, ¢ = 3600cm™?, A}y = 100cm™!, and AQ, =

400cm™1. The dashed plot uses the same energies but EQy, = A, = 250cm 1.
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is a generalization of the result obtained by Agmon and Hopfield® or Sumi and
Marcus?® when the transfer is exponential in time, since in their case the z
coordinate is classical and diffusive.

Eq. 3.11 is written in the form above because we assumed the z coordinate
to be the slow one, but the result given by Eq. 3.10 is general for any modes y
and z as long they satisfy the conditions stated at the beginning of this subsec-
tion. For example, the rate 3.10 can be obtained by considering kf7,(y) and
the equilibrium distributions for the y coordinate. A more detailed discussion,

also including the case when the non-adiabatic limit is not valid, is given in

the following subsection.
Exponential Limit (High Friction)

Now We consider both coordinates overdamped; i.e., v, > 0, and v, >
1;. Then the relaxation frequencies for the y and z modes are wy = ﬂg /27y
and w? = 12 /2,, respectively. Also, we work in the limit hw¥, hw?Z < kT.
Assuming that

1 1 1 (e¥ F E%)? 1 (e* F E%)?
S < mexpi e TR LT T ER) 12
o7 oz S TP { WTEY, | 0 O wrEz 0 o12)

the electron trajectories, which contribute appreciably to P(t), consist of well-
separated “blocks” of closed spaced blips (similar to Ref. 1). In the above limit
we can neglect interaction between blips in different blocks. Also, the average
duration of these blocks is fnuch smaller than (w¥)~?! or (w?)~!. Under these
conditions P(t) can be calculated analytically.

Defining



104

b]' = tgj - t2]‘_1 (3.13(1)
8y = t2j+1 - t2]‘ ) (3.13b)

and using Eqgs. 2.16, it is straightforward to show that (see Ref. 1 for details)

A]. = f"%if’zbf (3'14)
and
By = { ___85_21"3 kT p;bk, if b; and by are in the same block; (3.15)
otherWISe

For the phase factors, if the blip b; and the sojourn si are in the same block,

yEy z gz
‘ij = — (wch E + wch R) b]‘Sk . (3.16)

If they are in different blocks the phase factors vanish, unless sx is a long
sojourn separating “blocks” (super-sojourn in Ref. 1), and b; lies in the block

immediately following it. In this case,
Or; = —-Eij/h . (3.17)

In Eq. 3.16 we have to keep terms up to t? in G;(t) (see Egs. A.3 and A.11).

The series 2.14 is calculated in a way similar to that described in Ref. 1.
P(t) is given by an expression similar to Eq. 3.7, although the rates do not
have to be restricted to the non—adiabaticglimit. Here, the electron transfer

rates rates are

THir =

éé h? 1/2
4 |(EY%+ ER)kT

1 Egr
* {1 + A3 [rh/(2wi EY + 2wZE})] } exp {‘7@‘} ) (3-184)
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where ,
e F (B} + E3)]

Brr = SkmmI 1 E2)

(3.180)

As in Sec. 2, we define the adiabaticity parameter g,

Adrh
20 EY, + 2wZE% ’

g= (3.19)

which can be written as

1 1
=—4+ — , (3.20)
gy gz

1

7
where g, and g, are the adiabaticity parameters for the y and 2 modes, re-
spectively.

If § < 1, the non-adiabatic limit is valid, and the rates 3.18 can be given
by Eq. 3.11; i.e., the final rate is the rate in the y direction averaged over
the z coordinate. Otherwise, we can use Eq. 3.11 to calculate the rate only
if gy < g.. This means that every crossing thr;)ugh the Landau-Zener region
is basically in the y direction or that Eq. 3.11 is not valid. The reason why
the non-adiabatic limit can be calculated using Eq. 3.11, independently of the
y and z modes chosen, is that the dynamics of the nuclear coordinates is not
important when this limit is valid (7 < 1 anyway).

This condition, g, < g., gives us a quantitative estimate of when the
formalism presented by Agmon and Hopfield®, and later extended by Sumi

and Marcus?9

, is valid. This condition can be generalized for other dynamical
situations by saying that in order for Refs. 3 and 20 to be valid, it is necessary
that every cross through the Landau-Zener region be basically in the y direc-

tion. Also, in the overdamped limit, we can notice that only one fast mode is

sufficient to guarantee “non-adiabaticity.”
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Non-Exponential Limit

We now consider the situation in which the z mode is much slower than
the electron transfer. The average frequency with which the electron switches
sides is much faster than any important motion of the z coordinate. Under
these circumstances we can consider the short-time limit expressions given in
Appendix A valid during the entire duration of the electron transfer reaction
for G{ and G3.

Let us initially consider the situation in which thlip K tp4s, and therefore
the non-adiabatic limit is valid. As discussed earlier, this latter condition has
to be imposed self-consistently. When this condition is valid and z is very slow

(using Eq. 2.16 and expressions for G; and G given in Appendix A), we can

write:

k(Tey EY +T? E%)

7= - ha IR (t2; — t2J'—1)2 ) (3.21a)
2E4kTZ
ik = --thﬁ(tzf — tgj-1)(tak — tak-1) , (3.210)
Ey 2z z
@QJ‘ = —-—-R—-:;—E—Ri-(tz - tl) for j =1 and - Eh&(tzj - tgj._l) for j # 1,
(3.21c¢)
Ey

(Dk,k+1 = —_ﬁ&(t2k+2 — t2k+1) and (3.21d)
Qr; =0 for k#0and j>k+2 . (3.21e)

Here the short-time approximation was used during blips of both coordinates,
and also for the z coordinate during the sojourns. For the y coordinate, the
long-time approximation has been used for the sojourns.

Assuming that at ¢ = 0, the electron is in the donor and all nuclear

modes are in thermal equilibrium, we can now calculate the electron transfer
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expectation value P(t) (< 0z(¢t) >). Using Egs. 2.14 and 2.15, we find

P(t) = / ~ e [pgo (2) + (1 - Pg’o(z)) exp (- k,,,,m(z)t)] x P(2) , (3.220)

—o0

kyma - kf + k"

y,na y,na °

(3.220)

Here PY(z) and kyn. are, respectively, the equilibrium value for < o, >
and the electron transfer rate when we freeze the system in a particular value
for coordinate z. Pt (z), which was defined in Eq. 3.11, is the equilibrium
distribution for z when the electron is on the donor. Because the z coordinate
is very slow, we sometimes may not use an equilibrium distribution for 2, but
whatever is the appropriate distribution when the electron transfer process is

initiated. Exactly as in Eq. 3.11,

a2 wnz (¥(2) T BY)?
klina(z) = 0( ) exp——{ T } , (3.234a)

4 \ BLKTY,, 4kTY, EY
where
e¥(z) = e+ 2M, 0222 . (3.23b)
As in Eq. 2.19b,
PY(z) = —tanh (e¥(2)/2kTY,) . (3.24)

The result above is shown by comparing the perturbation series 2.14 term
by term with the series expansion of Eq. 3.22 in powers of (A%)". Details of
this calculation are given in Appendix B. Current work in Hoffman’s group?3
is looking for this non-exponential behavior in electron transfer between heme
groups in hemoglobin at low temperatures.

We now calculate an example of a typical distribution of driving forces

¥(z) for systems where non—exponential behavior may occur. The width of
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this distribution gives us information about the size of the non—exponentiallity
in Eq. 3.22. From typical values of solvenﬁ polarization or protein medium
reorganization energies, a reasonable example is to calculate this distribution
for a slow mode with reorganization energy E% = 0.3eV. In Fig. 4 the prob-
ability distribution of e¥(z) with z at equilibrium is shown for T = 300°K
and 77°K. From this figure we obtain a mean-square displacement for the
driving force distribution of (0.12eV)? and (0.06eV)?2, respectively. Because
non—exponentiality is probably important only at low temperature, if 2 is at
equilibrium, we should look at the low temperature distribution, but, if we
cool down the experimental system very rapidly, the z coordinate will not re-
lax, and therefore a distribution similar to the one at room temperature may
be observed at lower temperatures. Also, phase transitions of polar solvents
to a solid phase will give a fixed distribution of driving forces for temperatures
below freeiing.

Theoretically speaking, the above result is interesting because we were able
to sum up the entire perturbation series 2.14 in a situation in which the decay
is non-exponential in time, and to obtain an analytical result. Generalization
of this expression to the overdamped regime (high friction) is straightforward,

with the only difference that ky »q(2) is replaced by ky(z) where

ky(z) = kf(2) + kj(2) (3.25qa)
and
2 52\ /2 y v\2
k_f;r — _1}_9_ m 1 exp — (E (2) + ER)
y 4 \E}kT 1+ A2(rh/2w¥EY) 4kTE3,
(3.25b)

In this subsection the formalism presented by Agmon and Hopfield® and Sumi

and Marcus?® works without any difficulties because the z coordinate is much
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Figure 4 — Distribution of driving forces, £¥(z), assuming that z has an

equilibrium distribution (see Egs. 3.22 and 3.23). E% is assumed to be 0.3 eV.
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slower than y, and therefore every crossing through the Landau-Zener region
is basically in the y direction. It is also important to point out that because
e¥(z) appears only in the exponent of Eq. 3.25b, the non—exponential behavior

is going to be the same for the adiabatic and non-adibatic limits.

In this section, and in Sec. 2, we present results for which the the series
2.14 can be summed analytically, so closed expressions are obtained for the
electron transfer rate. It is important to point out the power of this technique
when analytical results are impossible. In this case, numerical integration of
the terms of the series 2.14 is an achievable task, and it can be performed when
quantitative results are needed for situations out of the limits presented here.
An example of this occurs when z is not fast enough so that the exponential
non-adiabatic limit is valid, but 2z is also not slow enough so that we can
assume 2 to be static during the whole electron transfer process. In the next
section, we obtain the Fokker—Planck equation associated with this problem
in the limit that the nuclear modes can be treated classically. In this case,

numerical solutions are much simpler.

The Weak Coupling Limit

In the next two subsections, we consider the following situations: one in
which the two modes of Hamiltonian 3.1 are in the weak coupling limit, and
another in which one is in the weak coupling limit and the other is in the strong

one.

Let us consider the first case and also assume that the relaxation of both

modes is fast enough compared to the electron transfer rate so that the donor
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survival probability decays exponentially in time, and also the non-adiabatic
limit is valid. (See Appendix B of Ref. 4 for details.) For simplicity, we assume
that A}y = khQl, and € = mhQy,, where k and m are integers. In this case,
the electron transfer rate is calculated by generalizing the one mode result
(Eq. 2.4) to two modes. In order to do that clearly, we rewrite Eq. 2.4 as

rfy =

2m hAo
h 2

>2 (FC)fir(e) (3.26)

where the Franck—-Condon factor, (F'C), is

mainp | 2|2 z
(FC)fr(e) = & ) hYmasnp [RB0/2| |<2nDImA>I o(EnpmssT)
2 (Enn _‘EmA)Z +h ’7727&4;)11)/4

np,Mma

(3.27q)

and

EnD=O—EmA=O = £ . (327b)

The notation is defined in Eqgs. 2.4, 2.5 and 2.6.

In the two mode case, we have to convolute the Franck—Condon factors

for the modes. Doing this, we get for the electron transfer rate

rlir = %’i (Eﬁ—“—) > (FC){i"(e —nhQy) (FC)"(nhQy) .  (3.28)

n

The above result can be easily generalized for as many nuclear coordinates as

necessary.

As in Eq. 3.11, the rate given by Eq. 3.28 may be written as

=Y kL (np,a)p(Bny ,T) (3.29)
nhia

where ki (n%,. 4) is the forward/reverse electron transfer rate when the z mode
is in a fixed donor/acceptor state. p(E,s ,T) is the equilibrium density of

states of the z mode when the electron is on the donor/acceptor.
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One Strongly Coupled and One Weakly Coupled Mode

Now we consider the second case, in which the coupling of y to the bath is
weak and that of z is strong. We also assume that z is much slower than y, and
therefore A{l, > h(1,. In these circumstances, the electron transfer rate can
be calculated using Eq. 3.11 if the decay is exponential in time, or Eq. 3.22, if
z is extremely slow. Here we present the calculation for the exponential case.

Using Eq. 3.11,

o0
M= [ Hra&Pe) d (3.300)
-0
where
. 27 hAo 2 -
kfna(2) = & (T> (FC)(e¥(2)) . (3.300)

The Franck—Condon factor is

h'/mi;n}’,lh’AO/zlzl < n%'mi > 12

1
(FC) i (e¥(2)) = = P(Erg s T),
2 z;n (Bug, = Bmg)? +R302, oy 4 0
(3.31a)
and
En%:O_Emizo = ey(z) s (3.31b)

where €¥(2) = € + 2M;Q2%2pz. For details of the notation, the reader should

see Egs. 2.4 and 3.11.

Separation of Fast and Slow Modes

To conclude this section we consider the interesting situation in which y

is the fastest nuclear frequency of the system; i.e, 1, is even much faster than
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the cutoff frequency A. Also, the coupling of the y coordinate to the bath
is weak. (In Appendix A of Ref. 4, we show that the latter conditon is not
necessary but simplifies the algebra.) We also assume that the slow mode z is
strongly coupled to the bath. We now discuss how to renormalize the effect
of the fast mode, and then to reduce our problem to a situation in which it
is coupled only to the slow modes (z and bath modes in this particular case).

This situation was discussed is Ref. 4, and the effective spectral density is

s
Jepr(w) =~ fff(w) + EMyﬂgygé(w -Q,) . (3.32)

In this regime, the final rate expression is similar to Eq. 2.4, but the broadening
of the y energy levels, rather than being due to the bath coupling(Lorentzian
shape), is due to the z coordinate (therefore, Gaussian shape). In particular,
as is shown in Ref. 4, if A{ly > ¢, kT (excited states of y are not important),

the electron tranfer rate is

1/2
rHir = |ag’ P2 Th? exp — (e¥ Ef)* (3.33q)
na ) *
4\ EzkTZ, 4KTZ, E%
where
AT = Ap<ndy=0jmY =0> . (3.33b)

The notation, Af)f s , is used in Eq. 3.33, because we may think of the fast
mode as renormalizing the electronic matrix element, and then the problem is
reduced to a one mode problem again. In the case of z overdamped, the rate
can be calculated, using Eq. 2.23, if Ag is replaced by Agff and Er by E%.
Because A{l, is much larger than the energy fluctuations of the z mode,
we can generalize the above result (recall that Ay > kT). In this situation,
the forward rate for electron transfer can be written as a sum of several two—

level system problems coupled to only one nuclear mode (2 mode), in which
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each one of them has a matrix element A/ (my) = Ag < nY, = 0lmY > and
driving force e¥(m,) = € — m¥%hQ,, instead of one single two-level problem
coupled to two nuclear modes (same procedure to calculate the backward rate).
The prescription described in this subsection is simplistic and further work is
necessary, but it gives us some initial understanding of this problem. This
natural separation of the problem into fast and slow modes has also been used
by Jortner and collaborators® and by Goldstein and Bialek!®, but only in the
non-adiabatic limit. Then, in the non-adiabatic limit, the forward electron

transfer rate is

Mooy iAsffimA)P( s )l”exp__ {(sy(mA)—Efz)2} |

(3.344)
where
S ma? = az[eR(=S) S Lo ER 4b

This description in which we separate the influence of fast modes from
that of slow modes may be very important for describing electron transfer in
real systems. It will be especially useful when the electron transfer problem is
coupled to fast modes, such as CO vibrations, and also to slow, sometimes dif-
fusive, modes, such as solvent polarization. After separating these fast modes,
the “slow” modes left in the problem can normally be treated in the strong
coupling limit, and therefore the entire formalism developed by us for this limit
can then be applied. As an example here, Eq. 3.34 is a reasonable first model
to understand the € (AG) dependence of the recent experimental results such
as the electron transfer rate between quinones and the oxidized bacteriochloro-

phyll dimer?* (EY, =0.2 eV, A1, =0.2 eV, and E% =0.375 V), and between
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rigidly linked porphyrin and quinone systems?5, (E% =0.3 eV, A2y, =0.2 €V,
and E% =0.2 eV). Fig. 5 shows the molecule used in Ref. 25. The values
used for EY and AQdy, in the systems above are reasonable, because the main
fast mode coupled to the electron transfer process is the CO vibration of the
quinone??®. In Fig. 6a we plot Eq. 3.34, using the second set of parameters for
T = 77°K and T = 300°K. From this figure we notice that the electron transfer
rate has a strong temperature and € dependence for small values of €, and a
weak one for large values of €. This prediction for the systems above awaits
experimental confirmation.

If the z mode is diffusive, the condition for adiabaticity is different for
each term of the sum because each has different Af)f . The forward rate can

be written as

oy |A;ff(mA)12< nh? )"2 - 1
£ \BRFT) (141857 (ma)2(nh/20 Ep)

_ [ (e¥(ma) — E)?
X exp { WTER . (3.35)

In Fig. 6b we show a plot of Eq. 3.35 in the adiabatic limit for the same
parameters of Fig. 6a. Because in this figure € varies from 0 to 1.2 eV, Fig. 6b
is valid only if the adiabaticity condition is valid for A%’/ (m4) with m 4 varying
at least from O to 5. Because the rate does not depend on Agf 7 in this limit,
it is basically € independent for large values of €.

An experimental system in which Eq. 3.35 applies is the intramolecu-
lar electron transfers in 6—(4-methylphenyl)amino-2-naphthalenesulfon-N,N-
dimethylamide (TNSDMA) and 1-cyano-4-dimethyl-aminobenzene (DMAB)
26,18 As we see from Refs. 18 and 27, solvent polarization can be represented

by a diffusive mode with (wZ)~! = (€c/€0)7D, Where €, and €p are the optical
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Figure 5 — Structure of the molecule Porphyrin—(Bicyclo[2.2.2.Joctane),~

Quinone?®. n = 0,1,2. M is a metal, normally Zn.-
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Figure 8a — Plot of rate vs. & for the case that we can separate fast and
slow modes. E}, =0.3¢V, E% = 0.2eV, and A{l, = 0.2eV. This plot shows the
non-adiabatic limit given by Eq. 3.34. The dashed line uses T' = 77°K and the

solid one T = 300°K.
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and static dielectric constants, and rp is the Debye relaxation time. In the
systems above the electron transfer rates are proportional to w? for different
aliphatic alcohols solvents. The proportionality factor is basically one. This
tells us that the rate is adiabatic and therefore independent of Agf f (it does
not depend on the overlap of the fast mode wave functions). Also, because the
proportionality factor is about one, € probably lies in the region where the rate
is basically € independent. A ¢ dependence study of the electron transfer rate

in such a systems would be interesting.
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4. The Fokker—Planck Equation

In analogy to what was done in Ref. 1 by Garg, Onuchic and Ambegaokar,
we now develop the Fokker—Planck equation associated with Hamiltonian 3.1.
This representation of the problem is very useful since it is much clearer than a
path integral, and also much simpler if numerical solutions are necessary. The
only major restriction is that in order to achieve this formalism the nuclear
coordinates have to be classsical; i.e., kT /i must be much larger than (02 , -
fyg’z)l/ Z in the underdamped case, and wY¥'? in the overdamped one.

Suppose that at time t = ¢g, the total density matrix can be factored into
a part for each bath alone (taken at temperature T'), and a part for the spin
plus reaction coordinates (s + r). (The validity of this separation is discussed
in Ref. 28, and it is correct for our problem.)‘ Doing that, the spin reduced

matrix ps A (Y1, Y2; 21, 22;t) is given by

o0
po (Y1, Y2; T1,T25t) = ) ////dyidyédZidzé

ARTO

o Jo o (U1, Y23 215 225 1 YL, Y85 21, 2hit0) poron (YD, Y5 21, 253 t0),  (4.1a)

where
. o A Y1 Yz 2z 22
J = / Da/ D) Dy1/ Dy2/ Dz1/ Dzy Alo]A*[A]
o’ ! V1 Y2 e 2z
)
X exp ’h' {Ss+r[y1, 2'1,0’] - Sa+r[y2,z2sA]} . fy[ylayZ] . ?z[zlyzﬂ . (4.1b)

Here ¥ is the influence functional
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oo R Q
AT / / / dR'dQ'dRpparn(R', Q'; o) / pr [ Do
—o0

T
X exp = [Statn(R) — Sbath(Q) + Seath+y(R,y1) — Sbath+y(@v2)] ,  (4.2)
where R, Q refers to the bath collection {z,}. A similar equation is obtained

for the z mode influence functional. Doing the calculation in the way proposed

by Caldeira and Leggett!?, we get

— t d
Fyl(y1,y2] = exp{ ;ny (n1 = y2) - (v1 +ya)dr

to

kT [t(yl_yz)zdr} . (4.3)

2
h to

Also, we recall that Afc|, as described in Sec. 2, is the amplitude that any
given trajectory o(r) would have in the absence of coupling to any nuclear
coordinate.

Because the propagator J has no non-local terms, the reduced density
matrix of interest, pg a(y1,¥2; Z1,22;t), at any time ¢t can be related to itself
at any earlier time to, which means that we can find a differential equation of

motion for it. Thus, if for an infinitesimal time interval 6,

Jt+6;t) = 1+6L+0(8%) , (4.4)
then
dp 3
'a—t‘ = Lp . (4.5)

Calculation of [ is performed using the prescription described in Sec. V of

Ref. 1. Doing this we get
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dp th (8%p 8% 7 n
or _ _ My _ _
at ~ 2M, (ayf e h( v(v1) Uy(yz))”

ih (9% 9%\ i kT 2
jETA (3Zf - 323) B E(U”(zl) - Uz(zz))ﬂ - (-2

= V(Y1 — v2) (-qp— - _59_,;_) — Yz(21 — 22) <2£- - ﬁ)

dy1 Oy 0z; Oz
7 )
- g(ozf(yl,n)p—pazf(yz,Zz)) - ‘E[Ha' . P, (4.6)
where
€ hA
Hy = o; + 2°a, : (4.7a)
1
Uyly) = EMyﬂz(y2+yg) ) (4.7)
and
fly,2) = MyQlyoy + M, 0222 . (4.7¢)

In order to convert to a more familiar form we can take the Wigner trans-

form of pa,s(y1,y2;21,22) and obtain Wy g(y, py; 2,pz). Doing this, Eq. 4.6

becomes
ow __1___3_ __6_ , 1 é_ ] ,
T = T35y ) * ap (GW) =55 (0W) + 5 (UiEW)
92 02 o
+ nykTa 2W+’7:kT6 2W+2’)’ya ( )+2'7zap (pzW)
ldf 7] 1df & 7
Y adyop, W T3 00V T glHe oA W] (a8)

where the commutators and anticommutators now involve only the spin degrees
of freedom.

The equation above is the complete Fokker-Planck equation associated
with Hamiltonian 3.1. For reasons of simplicity we consider only the over-

damped limit in the remainder of this section. It is important to point out
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that the overdamped limit is not the only important one associated with this
problem, but that it is one of the important ones, and it is also sufficient for
a preliminary understanding of this equation. The underdamped problem is a

much harder one, and it requires future study.

The High Friction Limit

If the friction is very high for both modes, we can assume that the momen-

tum equilibrates to a Maxwellian distribution at each point (y, z) independently

so that W takes the form

1
44 1y 2, Dy, P23 t) =
sl 2P pait) = T

p? p2
X - __"Z t) . 4.9
P\ “anET  angaT | "eor(v ) (4:9)
The conditions for the validity of the overdamped approximation are discussed
in Sec. 2, and in Ref. 1.

After doing the standard transformation??, and performing the momen-

tum integration of Eq. 4.8, we generate the Smoluchowski-like equations

on 92 92 o [ M,032
gri (D + D, . ) ni1 + — (_“y"—y(y + yO)nll)

ot Y oy? 922 oy \ ny
+58; <A4;'?§ (z+ 20)n11> + z%—Q(nlg —na1) , (4.10a)
8;:2 = (Dy ::2 + Dz::2> naz + 5% (1\4:],513 (v — yo)ngg)
58; (J\/.f;zﬂg (z - zo)nzz) - _2'_{32__0(”12 —na1) , (4.10)
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Bnlz _ 62 82 d Myﬂg 1] Mzﬂz
ot - <Dy'§y—2+Dzaz2 niz + —8—3; My ynigj+ 9z Nz Zny2

‘ 1A
——ﬁ(e + 2Myﬂ§yoy + 2Mzﬂ§zoz)n12 - -—5-9-(1122 — n11) s (4.106)
where ngy = n},, Dy = kT /ny, and D, = kT /n..

The first step in solving Eqs. 4.10 is to Laplace—transform them with

respect to time. Therefore, if

ne,8(Y, 2,t) Z a; n, gy, 2) exp(—Tit) , (4.11)
where Re(T';) > 0, its Laplace transform is

fia,8(Ys 2, A) Z a; n z2)/(A+Ty) . (4.12)

The crucial step is to argue that 7i;, varies on a length scale that is much
shorter than the length scale for 7i;; and 7i35. This assumption is reasonable
for this problem, and details about its validity are given in Refs. 1 and 15.
Under this assumption, we can write
Iml N] = xR0 s+ 20,02 2M, 02 i1y — foga)
m[fi2(y, 2, )] == 5 (e +2M, syoy + 2M.Q2202) [firy — fiao
(4.13)

Using the above equation, Eqgs. 4.10 can be reduced to
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o 82 2
—ri'l'i’:(D +D 9 )nn

ot Yoy? ' 792
o [ MyQ2 d (M,Q2
+5~§ ( ™ (y+yo)nu + E g (z+zo)n11
A\ 2
—2rh (7()) 6(e+ 2Myﬂzyoy +2M.0222) (n11 — n2a) (4.14a)
8n22 _ 82 82
Fra <D”5§5 +Da577 ) nan
8 (M2 8 (M2
+5§ ( " (v —yo)naz | + 32 my (2 — zo0)n22
A\ 2
+27h (__2_(1> 6(s + 2Myﬂ§yoy + 2Mzﬂ§zoz) (r11 — na2) . (4.14b)

These equations may be solved by a variety of different techniques. For exam-
ple, if the transfer is exponential in time, the calculation of the first eigenvalue
gives the fate. Otherwise, we can use techniques such as time integration or
the generalized momentum expansion®°.

In order to compare our results to the ones obtained by Agmon and
Hopfield® and Sumi and Marcus2°, we consider in the remainder of this sec-
tion only the limit at which the z coordinate moves much more slowly than y.
(The validity of this approximation is discussed in Sec. 3.) Thus, similar to a
Born-Oppenheimer approximation, the zeroth order solution assumes z as a
parameter. Because z is a parameter, the problem reduces to the one mode
case, and the set of equations we have to solve is

Bnu 82 0o luyng
i o p +— | Y+
ot Y 9y2? nh dy Ny ( Yo)n1z

A 2
—27h (——2—9) 6(e¥(2) + 2MyQ2yoy) (n11 — naa) (4.15a)
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6n22 82 a Myng
=D —_ —
3t ) naz + By y (v — yo)n22
A\ 2
+27h (—%) 5(69(2) + 2Myﬂzyoy) (n11 — na2) (4.15b)

where, as in Sec. 3, €¥(z) = € + 2M,0122p2. The solution for the one mode
problem can be found in Refs. 1 and 15, and it is used here. After performing

the integration of the fast y coordinate,

(> ]
Na,g(2,t) = /na,ﬁ(y,t;z) dy , (4.16)
- 00
the set of Eqs. 4.15 become
3 :
E—t-ﬁu(z,t) = ——kg(z)ﬁu + k;(z)ﬁ22 s (4.17(1)
P ;
-a—zﬁ22(z,t) = +k5(z)ﬁ,11 - k;(z)ﬁzz s (417b)
where
A3 ar2 T 1 (¥(2) F BY)?
fir — 20 27 — R 8
Ry 1 (EﬁkT) [1+g'] P { kTEY, } , (4189)
and
A2rh ( Yo Yo )
' 0
= + . 4.18b
¢ = 25t \F@ w5 ol (4.18)

Here y*(2) is the crossing point of the donor and acceptor curves for a fixed
value of z. Note that the rates presented here are very similar to the ones
given by Eq. 3.25. Substituting Eqs. 4.16 and 4.17 into Eq. 4.14, the final set

of equations we have to solve is

Jd
é-t-ﬁn(z,t) = Dy—

82 3 (M2
A+ 5 < (z + zo)ﬁn) —kf(2)n11 + ky(2)Raz

(4.19a)
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a
—8—tﬁ22(2, t) = .Dz

02 Jd (Mzﬂﬁ
N2+ o n

922 Ep (z - zo)ﬁzz) +kf(2)11 — kI (2)A22

(4.190)
When ¢ > kT, the equations above are exactly the problem addressed by

15, As we can note from the

Agmon and Hopfield® and Sumi and Marcus
development of this paper, these equations are only a particular limit of the
more general problem described by Hamiltonian 3.1.

Solutions for Eq. 4.19 are straightforward in two situations. First, when

z is fast compared to the transfer rate,
P(t) = P + (1—Po)exp|[—(Tf +T7)t] , (4.20a)

where
oo
phr = / kT(2) P (2) de . (4.20)

The rates kg i* are given by Eq. 4.18 (See Eq. 3.11 for description of the nota-

tion.) Also, when z is very slow compared to the transfer rate,

P(t) = /°° dz [Pg'o(z) + (1 - P&(z)) exp { — (kI (2) + k[ (2))t }] Pt(z)
- (4.21)
(See Eq. 3.22 for description of the notation.)
Here we have considered both modes overdamped for mathematical sim-
" plicity, but similarly to the work developed in Sec. 3, if y is much faster than
z, Egs. 4.19 have a broader validity, and it is necessary only to replace kg i by
the correct expression, depending on the dynamics of the y coordinate. For

example, if y is underdamped, Eq. 3.30b can be used.
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5. Anharmonic effects

In this section we consider a few situations where the harmonic approx-
imation fails for the problems of interest. By anharmonic we mean that the
nuclear modes are not quadratic and/or the coupling to the nuclear coordinate

is not linear in this coordinate.

Non-Linear Coupling to Ag (03):

Example: Electron Transfer in Porphyrins Linked to Quinones

In this subsection we develop the formalism that we shall use to under-
stand the temperature dependence of the electron transfer reactions where the
slow coordinate is coupled to o, instead of o, as in Secs. 3 and 4. We are also
interested in situations in which the coupling is not necessarily linear in the
slow coordinate. This formalism is important when there is a slow coordinate
that modulates the matrix element instead of the activation barrier as in the
last two sections. Although the formalism we describe in this subsection can
be applied to any system that satisfies the conditions above, in order to make
this subsection clearer, we discuss electron transfer in the porphyrin-bridge-
quinone molecule®! (see Fig. 5), which is a good example of this problem. This
transfer shows exponential decay in time at high temperatures (room temper-
ature) and non-exponential decay at low temperatures (liquid nitrogen)312,
Although the full temperature analysis of this system has not yet been per-

formed, we present here the formalism that we will probably use to understand

the data when they become available, but which already provide us with some
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understanding of this electron transfer reaction.

The simplest Hamiltonian we can write to describe the basic features of
this system must contain at least two nuclear coordinates. From Fig. 5 we
can see that the electronic matrix element depends on the orientation of the
quinone relative to the porphyrin. Therefore, the dihedral angle 8 between the
porphyrin and the quinone is one of the nuclear coordinates. At this level of
theory it is reasonable to assume that this coordinate is diffusive. The other
nuclear coordinate, z, represents the normal vibronic coupling to the problem.
As already discussed, the slow coordinate in this subsection, 8, is coupled to the
problem in a completely different way than the slow coordinate in the last two
sections. Here @ is coupled to o, i.e., modulates the matrix element, instead of
0. (This Hamiltonian is oversimplified for this problem, but it is sufficient for
the conclusions we want to draw in this section. To better describe this system
we need more than one local “slow mode,” and a matrix element renormalized

by the fast modes®2.) Thus, the simplest Hamiltonian we can write is

. hAo(G) € Pz2
Hpr = —"0s+ 505 + oM + Vi (z) + 0. f(z) + Bath,
+-P—62- + Uy(#) + Bathe (5.1)
2My ) )

Here, V; and Uy are the potentials associated with z and 8. f(z) is the coupling
of coordinate z to the spin. As in the last section, the equivalent of Eq. 4.6 is

developed, and we obtain
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o h p % ¢ nzkT 2
at ~ 2M (ax'f 322 g(Vz(m) Vz(mz))p = (o1 = 22)%
ih (9% &% s nekT 2
T g (aaf - aog) — +(Uo(02) ~ Us(62)) 0 — T2 (01 - 82)%
9p _ O dp 9p
— YalZ1 —— == ] — (01 - op _ 9P
Yz(Z1 — z2) (89:1 8:::2) Yo(f1 — 02) (801 802)
: ;
— (oaf@)p = p0:t(22)) - *[Hs, 4] (5.2)
where
H, = gdz + —-——M‘z’(e)om : (5.3)

The simplest model for Ag(6) gives Ag(f) = AZ®cos(d) because of the =
cloud orientation of the quinone and porphyrin33.

If we take the Wigner transformation of p,

oo oo 19
1 zpzy 1D
Wa,ﬁ(x,Pz,a,Pe) = (271'77,)2 / /e ( 5 )
-0 ~— 00

X pap(T—y/2,2+y/2;0 —9/2,0 +9/2)dyd9 , (5.4)

we obtain the momentum/coordinate representation of Eq. 5.2

T e oY)+ (W) — 55 () + o (v
+ nszj; W+n.9kT(,;9 W+2% ( )+2’yeai (PoW)
;d’;z aa {o.,W} — [H +o0.f(z),W] . (5.5)

Higher—order coordinate derivatives are neglected because of fluctuations34e.

This transformation is exact for harmonic coordinates. Also, because we are
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interested in the situation in which 4 is much slower than z, we have neglected
all terms containing derivatives of Ag. If this latter condition is not valid, the
problem becomes extremely difficult.

As discussed in the beginning of this section, it is reasonable to treat
0 as an overdamped coordinate. For mathematical simplicity, we now also
consider z overdamped as well as harmonic. This is not a major problem
for what we want to achieve, i.e., how 0 affects the transfer. This point is
addressed at the end of this subsection. Because we are assuming z harmonic,
Vz(z) = Mo0Q2%(z2 +22)/2 and f(z) = M,02%zoz. In this limit we generate the

Smoluchowski-like equations

9 02 9? a [ M 02
__T"_l_l=(D + Dy >n11+—< "(m—i—zo)nu)

ot *dz2

55 () + 250 —n) . (s00)
%—fﬁ = (Dz aa; + Dg :;) naz + (%— (M;fi (z— 10)n22>
+-§5 (Ué(a) n22> - zA;(0) (n1z —na1) , (5.6)
agtlz = (Dz% + Do%) niz + -a% (M;?ix n12> + 5%— <;ﬁ— n12>
—%(s +2M,Q2zz)n12 — z'A;(O) (n2z — n11) , (5.6¢)

and na; = ni,. Here D, = kT /n, and Dy = kT'/ns.
Because 6 is much slower than z, the zerot® order solution assumes § as
a parameter, and therefore the problem reduces to the following one mode

problem
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éril—%—?ﬁ—al = Dz%nn + -8% (]\l:;i)i (z+ xo)nu) + iA;(H) (12 — na21)
(5.7a)
'*————-——anmg’t;e) = Dq 68:2 na2 + 5% (]\/I:;i)ﬁ. (z - xo)”zz) - z'A;(ﬂ) (n12 — na1)
(5.70)
agtw =D, g;;nu + % (A{:;?ix n12>
——%(s + 2Mzﬂixox)n12 - tA0(0) (n22 —m11) (5.7¢)
which, as in the last section, can be reduced to
6;2,:1 = D, %nu + _68—:1: (M;i)f, (z+ xo)n11>
—27h (—A—Oz(i)) 2 6 (e +2M02z0z) (n11 — naa) (5.84)
agt” = Dz‘aa%n22 + 535 (M;?i (z — xo)nzz)
+2rh (—A%(—q)—) ’ 6(e+ 2Mzﬂ§moz)(n11 - nga) . (5.8b)
The solution of these equations is
g _ _ _
éznn(ﬁ,t) = —ki(0)n11 + kL(0)R2a , (5.9a)
9 _ _ _
5;722(0:t) = +kl(O)fn — K (6)na2 (5.90)
where
2 2\ /2 z)2
- S0 () [ 2] (TR o
and
¢ = AZgngiZ;h ([:c‘::?xo] * l:v*x—oxol) ' (5.105)
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Here z* is the crossing point for the donor and acceptor curves, and
o0
Fap(0,8) = / nep(z,t:60) dz . (5.11)
-— 0

Thus, the final set of equations we have to solve is

5? 6
D in08) = Dy 2 <UZ( ) 7 ) kL (011 + K (O)Az , (5.120)

ot 862 a6 z
3 _ d? 3 (UH0) . f .
—a—znzg(e,t) = DGW 22-{-55 n22 +k (0)7&11 - k (0) nag . (5.12b)

Solutions for Eqgs. 5.12 are straightforward when the transfer rate is much

slower or much faster than the 8 coordinate. In the first case,
P(t) = Poo + (1= Po)exp[— (¥ +I7)t] (5.13a)

where
2n

rfir = kT (6) Pog(8) do . (5.13b)
0

(See Eq. 3.11 for a description of the notation.) In the second case,

P@t) = /02” do [poo + (1 —Pw) exp { — (k1(0) +k;(o))t}] X P.g(6) . (5.14)

When the transfer is adiabatic, the rates kfi" become independent of Ag, and
therefore of 4. In this limit, therefore, Egs. 5.13 and 5.14 are exactly the same,
and the decay is exponential in time.

We now discuss a result that, although very simple, is interesting in order
to understand the difference between a slow mode coupled to o, (Secs. 3 and
4) and a slow mode coupled to o, (this section). Because here the slow mode
modulates only the matrix element, in the adiabatic limit the rate will not

be modulated by the slow coordinate. Therefore, in the adiabatic limit and if
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the slow mode is coupled to 0., the donor survival probability always decays
exponentially in time. This is not true when the slow mode is coupled to o,
(see discussion after Eq. 3.25 or Eqgs. 4.20 and 4.21). Thus, the non-exponential
behavior at low temperatures for the electron transfer in the porphyrin-bridge-
quinone with one linker group31? (see Fig. 5 with n=1) shows us that the rate is
probably not adiabatic, because it appears to depend on the slow coordinate, 6.
It would be interesting to perform the experiment at low temperature with n=0,
where the rate is expected to be adiabatic. Thus, the low temperature transfer
should present a decay exponential in time. If we observe non—exponential
decay in this case, it would mean that some other slow mode (coupled to o)

besides 8 is modulating the electron transfer process.

An interesting problem to pursue now is to try to obtain the potential
Ug. Whether this potential has only one minimum or many minima may lead
to different dynamics at low temperatures. For example, if this potential has
two minima, non-exponentiality will appear when the barrier between the
two minima becomes larger than k7. Non-exponentiality will exist independ-

ently of the dynamics of the slow mode. If there is only one minimum?

, non—
exponentiality is due to a dynamical effect; i.e., it appears only when the

electron transfer rate is much faster than the slow coordinate.

As discussed in the beginning of this subsection, the porphyrin-bridge-
quinone system is only an example, and the formalism described here can be
applied to any electron transfer process that has the electronic matrix element,
Ay, modulated by a slow coordinate. Also, as in the last section, this formalism
can be generalized for £ underdamped. In this case we have only to replace

the expressions for k" (4) by the correct ones.
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Some Initial Ideas About How to Treat

An Anharmonic Nuclear Coordinate Coupled to o,

Another way that anharmonic effects may be important is the situation
in which we have nuclear modes that are strongly excited. In the limit in
which we have been working, the nuclear modes are harmonic, the coupling is
linear, and therefore the nuclear potential wells before and after the transfer
are parabolic. In this subsection we present an initial discussion of how to
treat this problem when the parabolic approximation is no longer valid, but

the nuclear potential wells are still binding.

Initially, let us consider the underdamped situation. In this limit, the
nuclear mode oscillates many times before the electron transfer. Thus, the
simplest way to include corrections to this problem is by a “temperature-
dependent” harmonic approximation. In order to do that, all we have to know
is the mean-square displacement of the nuclear coordinate (u). In the classical
regime, u? = kT /MQ? for a harmonic oscillator. Real nuclear potentials are
more like Morse functions, and therefore u? grows faster than linearly with
T. Thus, the first correction due to anharmonic effects would be to consider
the coordinate as harmonic but with a temperature-dependent frequency (de-
creases with T'). If the nuclear potential could behave as a square well, then the

effective frequency should increase with T, but this is not a physical situation.

Also, it may necessary to consider different “effective” frequencies for some
nuclear modes before and after the electron transfer. The simplest way we can
achieve that is by introducing quadratic coupling in the nuclear coordinate

when we couple it to the spin (electron) coordinate. This really complicates
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the mathematics, but we will have to attack this problem in the near future.

In the overdamped regime, the anharmonic situation is simpler. Because
we were able to develop the Fokker-Planck equations associated with the elec-
tron transfer problem (Eqs. 4.14, for example), all we have to consider is dif-
fusion in potentials that are not harmonic. This is a well-known problem, and
methods to solve it may be found in several books, such as in Ref. 34.

Thus, we have tried to show in this subsection that when non-linear effects
are important, we must first try to see how they will affect our problem differ-
ently than in the harmonic approximation. Then we should try to include these
effects in the simplest way possible. As we have seen here for the underdamped
and overdamped regimes, different approaches are necessary, depending on the

problem that has to be solved.
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6. Conclusions

The main goal of this paper is to describe how electron transfer rates can
be calculated in a variety of situations depending on the electronic coupling
and the dynamics of the nuclear coordinates. We believe this has been done
for various interesting situations. As we have seen during the development
of this paper, different nuclear dynamics will lead to completely different ex-
pressions. For the one mode problem we have seen that the strength of the
coupling between the bath and the reaction coordinate may completely change
the dynamics of this coordinate and may strongly affect the rate expressions.
In the overdamped regime we can actually calculate how this rate goes from
the non-adiabatic to the adiabatic limit. In the two mode problem the results
are even more interesting. Besides changes of rate expressions and discussion
about adiabaticity and non-adiabaticity, we can also verify whether or not
the transfer probability is exponential in time. We also present conditions for
the validity of the results obtained by Agmon and Hopfield® and Sumi and

Marcus?9.

From the theoretical point of view, we have continued in this paper what
we started in Ref 1, where a complete Hamiltonian was considered from the
beginning, without having to create artificial broadening of the energy levels,
therefore giving a better understanding of the nuclear dynamics. Because we
work in a density matrix formalism, when the effect of the bath is local in
time (classical limit), we can develop the Fokker-Planck equations associated
with our Hamiltonian, and therefore can compare our model with the existing

classical ones.
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An important result concerns the non-exponential decay of P(t). In the
adiabatic limit, the decay will be non-exponential in time for very slow nuclear
coordinates, depending upon whether this coordinate is coupled to o, or oy.
If it is coupled to o,, it will show exponential behavior in this limit. This
conclusion is very important when we analyze the temperature dependence
of the electron transfer rate for different systems. In the case of porphyrin—
linker-quinone®!?, the coupling to o is the correct one. But in systems where
the slow mode is the solvent polarization or the protein medium?23, or in the
problem of CO binding to heme proteins®, the coupling to o, is probably the
most adequate. In order to better understand this non—exponential behavior in
time, it would be interesting if low temperature experiments were performed
on some other protein systems such as the Ru-protein developed in Gray’s

laboratory35.

We want to emphasize the fact that because most of the electron transfer
problems are coupled to fast localized vibrations, and also to several slow
vibrations (solvent polarization, gross motion of proteins, etc.), the separation
of the problem into fast and slow modes as proposed at the end of Sec. 3 is
a good way to approach the problem. After the fast motion is separated, we
are left only with the slow motions, and for each combination of fast vibration
energy levels we have a different effective matrix element (Af,f f ) and driving
force. This separation of time scales really simplifies the problem, and it is
reasonable to consider the slow modes in the strong coupling limit; i.e, their
density of states is a smooth function of the energy. After the effect of the fast
modes is included, all we need is the response function (susceptibility) of the

“slow” medium modes due to the electron transfer. How to obtain a realistic
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description for these response functions in complex media such as proteins
awaits an answer that lies in the future.

As a final conclusion we would like to point out that, as we have described
in this paper, with the amount of new experimental data which will be available
in the near future, it is the natural step to try to verify which of these results

will be explained by the theoretical models presented here.
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Appendix A — Formulas for G;(t) and G;(t)

We start this appendix with a short review of the appendix of Ref. 1. For

the one mode problem, G, (t) is given by

2My,y3 .
Gi(t) = ————;ﬂ {wo sin(wot) exp(—~t) + 2 [1 — cos(wot) exp(-—'yt)] } )
(4.1)
where wo = (Q2 — 4%)1/2, in the underdamped limit, and by
2
Gi(t) ~ @4;_%1 [1 - exp(—wet)] (4.2)

where w, = (12 /2, in the overdamped limit.
At short times [t < w;1(01!) in the overdamped (underdamped) case]

Y
E%t

G1 (t) ~ 5

(4.3)

At long times, Gy (t) goes to zero.

Calculation of G2(t) is not as simple, but in the short time limit!, it is

given by
t2
where
4 o0
= / dw Jos;(w) coth(Bhw/2) . (4.5)
0

Eq. A.5 can be related to the mean-square displacement of the nuclear coor-

2
2M, Q2
ol = (————yh yyo) u? (4.6)

Because at high enough temperatures u? acquires its “equipartition theorem”

dinate y, u?, by

value kT /M 02, we define T,y as

M. Q2ﬂ'2
Teff = —-—y—E—L— s (A.7)
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and therefore

oo = 2 , (A.8)

where Egp = 2M,02y3. For very long times, it follows from Eq. 2.17 that Ga(t)
becomes a constant. Note that T.sy is a function of both the temperature and
the friction. For any given temperature, Tess is allways less than its zero—

friction value:

KT,y = Eg—’icoth(hﬂy/ZkT) . (4.9)

The equation above can be used as a first—order approximation for T,fs in the
underdamped limit.

For the two mode case the situation is straightforward. Because

Jess(w) = Jgff(w)+J:ff(w) ; (A4.10)

then
Gi(t) = G1(t)Y +G1(t)® , (4.11)

and
Gz(t) = Gz(t)y+G2(t)z . (A.lZ)

Thus, the expressions given in this appendix, using the definitions given

by Eq. 2.16, are used to calculate Egs. 3.5, 3.14, 3.15, 3.16. 3.17, and 3.12.
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Appendix B — Probability for Transfer

in the Non—Adiabatic and Non-Exponential Limit

In this appendix, a calculation for P(t) is performed in the limit that z
is very slow and the transfer rate is non-adiabatic. Also, both modes are in
the moderate friction limit. This is the result given in Eqs. 3.22, 3.23 and
3.24. We also restrict ourselves to the situation in which the driving force is
large compared to kT, so that we do not have to worry about back transfer, a
condition that makes the algebra less tedious.

Thus, we have to show that if kTeyf f<Le and if the limit above is obeyed,

then Eq. 3.22 is valid and

P(t) = / iz 2 exp(—kg,,,;,(z)t) — 1] xP(z) (B.1)
where |
P4 = \[rrpe exp{-MzZi(é:")z} T
Here
2 1/2
o = afi,) =S e
where

e¥(z) =e+2M,0%%2 . (B.3b)
If Eq. B.1 is now written as a series in A2, we get
= a
Pt) =) — (-A)", (B4
n=0

where

ap = 1 ) (B.Sa)
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and forn >0

n/2 1/2
® 2 Th? M2 n(e¥(z) — E%)?
an = dz an \ 7Ty z XPY T T 4TV RV
—oo E kTeff anTeff 4kT; tiER

M,Q2(z + z0)? }
X exp 4 — £ . (B.5b)
{ 2kT sy

For algebraic simplicity we show the calculation only for the classical limit;

ie,T = T f'“Teff In this limit

n/2 1/2
o = (¥ gh )Y exp { 2lE~ Fh = ER)
" 7 4n \ ELkT EY% +nE% 4kT(EY + nE%)

(B-6)

Now our goal is to calculate the series given by Eq. 2.14, using the terms
given by Eq. 3.21 when writing f‘n({t,-}), and show that this series is exactly

the one given by Eq. B.4, defining the Laplace-transform of P(t) as

P()) = ZP(A = / coP(t) exp(—At) . (B.7)

n=0

From Eq. 2.14 we can show that
IBQ(A) = ; (B.S(L)
and forn >0

. xR (oo
Ba()) = (—A2)" / [ dso...dsn dby ...dbs
0 0

X exp[—A(so+ ...+ Sn+b1+...+b,)] Fu({b:}) , (B.8b)

where b; = t; —t3;_1 and s; =t3;41 — t25, and ﬁ‘n is given by Eq. 2.15.
If we now put Eq. 3.21 into Eq. B.8, integrate over the s variables, and

make the change of variables b; = ¢;b;, we get
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~ —A\n 1 ) o Ey—i-Ez kT
P(A) = -(—2—"0)—*—)\-;;;_-1-/ / dbl...dbnexp{—-( R hZR) (62 +...

2E%£kT
+b,2,)} exp{—— ;; (b1b2+...+bn_1bn)}

EYb, EYb, iby .
xcos( ’;; )...cos( I;_z )exp{~——h~(s—EIyz—E'R)

b

expl 2 _p5)expl-Prc_pn)l (B.9)

Since the blips occupy a very short fraction of the total time, in the above

equation we have taken the limit Ab; — 0. Performing the b integrals, Eq. B.9

becomes

sy _ 2 (=AY" (mn\"
B =

x ( EY )”2( BY + Ej )”2 (E%Hn—l)Efa)”?
(Br + E})Eg (ER +2E%)Eg, (Ek +nER)EY

_ (e — E;/e —_ Eﬁ)zE}“‘z 1
X exp { ey (EY)(EY, + E3)

+ ! - - (B.10)

(Ex + ER)(E +2E3)  (Ep+(n—-1)BR)(EL +nEZ) | [ "
Using the fact that
- + - +
(Bk)(Bk + EE) (B +ER)(B% +2B3)
s - - e (B.11)

(B + (n ~1)BR)(ER +nE%)  (BER+nER)ER

we get

By = 2 (A am N py NV
AT X g \kTEY EY + nE3

n(e = BY - E5)?
X exp{ 1KT(EY + nE3) . (B.12)
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Comparing Eq. B.12 with Eq. B.6, we notice that

; (-a3)"

P.(A) = an Snti (B.13)

Thus, we prove that Eq. B.1 is the exact solution of the series 2.14 when the

conditions described above are valid.
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ABSTRACT

Several important chemical reactions in biomolecules have been described
as phonon-assisted transitions between two electronic states. It is widely be-
lieved that the reaction rate saturates at an “adiabatic limit” as the matrix
element V between these states becomes large. We show that this is incorrect
for large energy gaps between reactants and products, where the rate decreases
at large V. Applications are suggested and limitations of approximate rate the-

ories are emphasized.
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The simplest model of a chemical reaction is that of two electronic states,
identified as reactants and products, coupled to a single damped molecular
vibrational mode. This picture, schematized in Fig. 1la, is an example of the
family of spin-boson models which have been applied to a variety of physical
processes and which have received renewed attention in connection with macro-
scopic quantum phenomena.! These models have been used to interpret the ki-
netics of several biomolecular reactions in terms of rather simple descriptions
of the molecular dynamics, and in some instances important features of these
models have subsequently been confirmed in spectroscopic studies.? There is,
however, a strong prejudice that simple models cannot possibly capture the
essential dynamical features of such obviously complex molecules, and several
specific observations have been offered as evidence against the applicability of
these models to real biomolecules.? It is not our intention to offer comments
on these issues that are in any way conclusive, but rather to provide a more
firm foundation for discussion by re-examining the predictions of the simplest
model. We find that there is a large range of parameters over which these
predictions diverge substantially from folklore regarding the theory of reaction
rates, and that this unexpected richness of the simple models parallels certain
unexpected features in the kinetics of the best-studied biomolecular reaction,

ligand binding to heme proteins.

Chemical reactions are usually categorized as “adiabatic” or “non-adiaba-
tic” depending on the extent of mixing between the two electronic states. In
Fig. 1a we have drawn potential surfaces that neglect this mixing altogether,
and from this point of view the reaction is seen to occur through some small
perturbation, which allows a transition from one surface to another; if this
perturbation is ~ V, the rate, from the Golden rule, is ~ V2. In Fig. 1lc we
show potential surfaces obtained by solving the full electronic Hamiltonian,

including mixing, at each value of the vibrational coordinate. The crossing is
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7 7

Figure 1 — (a) Upper panel. Energies of two electronic states | 7) and | |)
as a function of some molecular vibrational coordinate Q. (b) Middle panel.
The region where the potential surfaces in (a) cross, with arrows denoting a
reactive trajectory. (c) Lower panel. Adiabatic surfaces corresponding to the

zero-order surfaces in (a); note the avoiding crossing.
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avoided, and one expects that as the matrix element becomes large and the
two adiabatic surfaces separate, the reaction should be viewed as a problem
of thermally activated escape over a barrier, or possibly tunneling through
the barrier at low temperatures. In this case the precise magnitude of the
matrix element is irrelevant (unless it is so large as to significantly change the
activation energy, but this is unlikely), and the rate saturates at an adiabatic

limit.

The crossover between adiabatic and non-adiabatic regimes has generally
been studied in the context of the Landau-Zener model. The idea is to focus
on the region where the zero-order surfaces cross (Fig. 1b), which is the only
place where the reaction can occur in a semi-classical approximation. One
then replaces the dynamical evolution of the vibrational degrees of freedom
by motion through the crossing region at a fixed velocity v, so that the elec-
tronic states see a Hamiltonian that is time—dependent: the energy difference
between the states varies linearly in time and there is a constant matrix el-
ement V' mixing the two states. Given that the system enters the crossing
region on the reactants’ surface, the probability that it leaves on the prod-
ucts surface is P(v) = 1 — e~ "V"/2AF where F has the units of force and
measures the difference in slopes of the two potential surfaces at the point
where they cross. Thus, if V < (2hvF/7)1/2, the probability is ~ V2, sug-
gesting that a simple perturbative calculation of the reaction rate is possible,
while if V > (2hvF/7)'/2, the system is essentially stuck on the single po-
tential surface corresponding to the adiabatic ground state. This crossover
from adiabatic to non-adiabatic behavior can be understood intuitively as the
point where the system spends just enough time 6t in the mixing region for
the perturbation to have an effect ~ V6t of order unity. This intuitive picture
allows one to extend the Landau-Zener argument to more complex situations,

although some care is required.
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While many limitations of the Landau-Zener approximation are obvious,
what concerns us here is that Fig. 1 is not the only possible picture that
can be drawn. Imagine that the structural change between reactants and
products — the horizontal displacement of the potential surface minima — is
held fixed, and we change the energy gap € between the two states. Then as
this energy gap increases, Fig. la gradually becomes Fig. 2a. This situation
is termed the “inverted region” in the theory of electron transfer reactions,’
inverted because increasing the driving force for the reaction decreases the
reaction rate; quantum mechanically, it is the case in which the electron-
phonon coupling is too small to achieve the maximal rate, so this situation is
also called “undercoupled.”

The adiabatic limit of an undercoupléd problem is shown in Fig. 2c. We
observe that, if the dynamics is exactly adiabatic, so that there is no jumping
from one surface to the other, there is no reaction. This can also be seen in
a Landau-Zener picture, Fig. 2b, where one finds that as the matrix element
becomes large, the probability of a reactive trajectory through the crossing
region decreases exponentially in V'; for small V' the rate remains proportional
to V2,

These pictorial arguments suggest rather different behavior in the adia-
batic limit, depending on whether the reaction is overcoupled or undercoupled:
saturation of the rate constant in the adiabatic limit appears not to be univer-
sal. To see this more precisely, we would like to do a dynamical calculation of
the rate constant in the adiabatic, undercoupled regime.

The model Hamiltonian that corresponds to both Figs. 1 and 2 is
1 . .
H= —;-az +Vo, + —2-[Q2 + w?(Q + go;)?] + damping, (1)

where w is the vibrational frequency, 2¢ is the change in the equilibrium posi-
tion of the coordinate @ during the reaction, and damping® denotes terms that

couple @ to a heat bath and generate vibrational relaxation at a rate ~. The
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Figure 2 — As in Fig. 1, but for large energy gaps between reactants and

products.
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rate we are interested in calculating is that of a spin flip, | 1) — | |), where
the eigenstates are those of 0,. For small V' we can do this perturbatively in
V', and the rate is ~ V2 as indicated above.

To calculate at large V', we first transform to the adiabatic basis schema-
tized in Figs. 1c and 2c. The eigenstates in this basis are |+ >, and the Pauli

operators over this basis are ¢/. The Hamiltonian becomes
1... .
H=E(Q)o, + 5[(@ — A)? + w?Q?] + damping, (2)
where E(Q) = [(¢/2 + w?gQ)? + V2]1/2 and A is an operator

A=in 3 il ). 3)

py==%

We emphasize that this is an exact transformation of the Hamiltonian7; the
standard Born-Oppenheimer approximation is to set A = 0. As one might
expect from Fig. 2, at large V' the slowest rate in the problem is the transition
between the Born-Oppenheimer eigenstates, and we identify this as the reaction
rate. This rate can be calculated perturbatively in /i, which turns out to be
an expansion in V1,

The leading contribution to the rate constant k(+ — —) comes from terms

~ QA, and the Golden rule gives

k=2rh)  Poil(m—|A(Q)Q + QA(Q)In+)1?6(Bm— — Eny),  (4)

where |nt) denotes the n!t vibrational state on the potential surface
(1/2)w?@? £ E(Q) with energy Eni+. P,y is the Boltzmann probability for

occupying this state, given that one is the electronic state |+), and
A(Q) = w9 — E'(Q)][e/2 + w?g + E(Q)]/ D+ D,

Dy ={V?+[e/2 +wgQ F E(Q)]*}V/2.
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This expression for the rate is purely formal, because of the delta functions, but
can be transformed into an integral over a well-behaved correlation function
using standard methods3.

To keep our calculation as close as possible to the intuitive semi-classical
pictures associated with the Landau-Zener argument, we will evaluate this
correlation function in a semi-classical approximation. Since semi-classically
the reaction can occur only in the crossing region, we approximate the matrix
element A(Q) by its value at the crossing point Qo and expand all exponential

factors to quadratic order around Qq. The result is

k= (%—;—g—)z/dr<Q(T)Texp

(w29)? [T )
H0 [ aw) - 0|60 ®)
A .
where (- - )+ denotes an expectation value in an equilibrium vibrational ensem-

20Vr/h

ble constrained to electronic state |+), and T is the time-ordering operator.
Contributions to the integral in Eq. (5) on time scales comparable to w=1! give
rise to quantum effects associated with resonances at multiples of the phonon
energy hw;? to have a consistent semi-classical approximation we must there-
fore assume that the times that are significant are short compared to these
vibrational time scales. In practice the quantum resonances are attenuated by
both the vibrational damping and by coupling to several modes with incom-
mensurate frequencies. We make one further approximation, and this is that
the crossing occurs at a displacement Qo much larger than typical fluctuations
in @, which is equivalent to the assumption that the activation energy for the
reaction is large compared to kT or fiw. The semi-classical rate constant is

then

_ha? [ 2n{(6Q)%) -1 ~ 2V2 2
T V@ -eee p[z«mm (190 041+ e J

(6)
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where @ . is the equilibrium coordinate in state |+), ((6@Q)?) is the mean-square
coordinate fluctuation in this state, and @2 = {(6Q)?)/((6Q)?).
To understand this result, recall that the classical activation energy is,
from Fig. 2, roughly proportional to (Qo — @+)2, with corrections of order V,
while at high temperatures ((6Q)?) is proportional to the absolute temperature

T. Thus, we have the approximate result

2
k ~ th/) /ZngTe-Ea/kaT’ (7)

which should be contrasted with the corresponding result at small V10

v? Ll ~E./ksT
ko~ 5\ stgkgT : (8)

These expressions are equal at V ~ ahd, with a of order unity for reasonable

parameter values. This is exactly what we expect: the crossover from small V
to large V' occurs when this matrix element is comparable to the spacing A&
between vibrational energy levels.

We emphasize that our large V' results are valid only in the undercoupled
regime. There is excellent evidence that this regime is in fact relevant for
at least some biomolecular reactions.? In one photosynthetic electron transfer
reaction there are measurements not just of temperature-dependent reaction
rates but also of the direct optical transition between reactants and products;!!
while the kinetic data can be explained with either undercoupled or overcoupled
models, the spectroscopic data are only consistent with the undercoupled case.
In the binding of small ligands to heme proteins, the energy gaps reported for
the last (intramolecular) step of the binding reaction are so large!? that the
reaction is almost certainly undercoupled, and this is supported by estimates
of g and w from available spectroscopic and structural data.!® Finally, studies
of other photosynthetic electron transfer reactions using chemical substitutions
to vary the energy gap strongly suggest that these reactions are undercoupled

under normal conditions.!4
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The heme protein reactions may provide an example of the effects dis-
cussed here.!® The binding of oxygen (O3) or carbon monoxide (CO) to the
heme iron (Fe) is accompanied by a change in spin states from high-spin
(S = 2) iron in the unbound to a low-spin (S = 0) diamagnetic iron-ligand
complex. In the case of CO, which is itself diamagnetic, this can occur only at
second order in the spin-orbit coupling, so we expect Vco ~ A25/A, with the
spin-orbit splitting Aso ~ 100 cm™! and the crystal field A ~ 104 em™!, so
Vco ~ 1 ecm™!. With Oz, on the other hand, the Fe spin needs to change by
only one unit to S = 1 and then couple anti-ferromagnetically to the triplet
O3; this suggests Vo, ~ Aso ~ 100 cm™!. As emphasized by Frauenfelder and
Wolynes,? if one could calculate the reaction rates in perturbation theory for
both ligands, O3 would bind approximately 10* times faster than CO. In fact,
from 40 K to 160 K the kinetics of the two ligands are rather similar.

The fact that ligand binding to heme proteins is temperature-dependent
down to T ~ 20 K suggests coupling of the electronic state changes to modes
in the hiw ~ 20 cm™? range,'® and a mode at Aw = 25 cm ™! has been identified
in Mossbauer spectra as coupling strongly to motions of the heme iron in both
the O; and CO bound states of myoglobin.!® It is clear that, if this mode is
the dominant one, Vco <« i& while Vo, > A®. Since, from Egs. (7) and (8),
the rate increases at small V' and decreases at large V', with the crossover at
V ~ hw, we see that CO binding will be slow because the matrix element is
small, but Oz binding will also be slow, this time because the matric element
is too large — in going from CO to O; we have increased the matrix element

beyond the value V' ~ h® required for the maximal rate.

We emphasize that these considerations are rather qualitative and that
much more work is required to have a quantitative theory of either CO or O,
binding. We might also point out that the kinetic similarity of CO and O3 is

much less evident!” if one looks at room temperature or at very low temper-



160

atures. Our point is that the simplest dynamical model of chemical reaction
rates predicts, in the undercoupled regime, a non-monotonic dependence of
the reaction rate on the electronic matrix element, with a maximum rate at
some finite V. The parameters of the heme proteins are such that CO and
O2 plausibly fall on opposite sides of this maximum, so that both ligands can
have small — and roughly similar — binding rates even though they are very
different in electronic structure.

As a final remark we note that the correct semi-classical rate at large V
and ¢, Eq. (6), differs substantially from the naive Landau-Zener prediction
k ~ e="V?/2AF  The Landau-Zener picture is of course not dynamical, and
does not correctly treat the possibility of coherence between electronic states as
one enters the crossing region; the latter effect seems to be the most important
in our case, where the adiabatic basis embodies maximum coherence. These
results suggest that the rate would be very different if dissipation (in this
case vibrational relaxation) were very strong, so that coherence is destroyed,
and that even in the more conventional overcoupled case the rate constant

approaches the adiabatic limit with corrections ~ A®/V, not ~ e=7"V*/2hvF
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CHAPTER III — Electron Tunneling Matrix Elements;

Application to Electron Transfer in Proteins
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ITI.1 Through-Bond and Through-Space Pathways —

Protein Pathways and Modulation of Matrix Elements

As proposed by Hopfleld! in 1974 and discussed in Chapter I, several
biological electron transfers, which control the primary steps of bacteria pho-
tosynthesis, are non-adiabatic. For non-adiabatic rates it is important to know
the electronic matrix element connecting the two states involved in the trans-
fer. Because of that, to calculate this matrix element became an important
problem in the field. The basic problem is to understand how the medium
affects the transfer rate. Is the electronic matrix element due to direct overlap
between donor and acceptor states (through-space), or do the orbitals of the

medium between them facilitate the transfer?

From Hopfileld’s work, we notice that the distance decay of the matrix
element, Tp 4, is too slow in order to believe that the electron transfer occurs
through-space, i.e., direct interaction between donor and acceptor orbitals. To
give an idea about numbers, the decay per distance given by Hopfield!:2 in his
early work is @ ~ 0.72A~! when, if we had through-space transfer, o should
be around 1.7A~! (see discussion in Secs. II.2 and III.4). This fast through-
space decay arises from completely neglecting the bridge. Therefore, in the
biological electron transfers described in Chapter I, the medium orbitals must

be facilitating the electron tunneling.

Trying to understand how the medium orbitals affect the electron transfer
matrix elements (through-bond transfer), much experimental and theoretical
work was performed. In the experimental area, several compounds were built

where the distance between donor and acceptor is adjustable. In several of
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them one is able to change the transfer electron energy. A list of such systems

is given in Ref. 3.

From the theoretical point of view, the pioneering work was done by
Halpern and Orgel,* who first identified the importance of bridge mediation
in the electron transfer interaction. Since then, an extensive literature that
estimates the effect of the bridge (electron or hole transfer, depending on the
bridge orbitals and donor/acceptor redox energies) has emerged®. The work
developed in our group by Beratan and Hopfield®?:5¢ is particularly interest-
ing because of its quantitative predictions. They calculate matrix elements for
systems where the bridge is composed by several units of some linkers. The
dependence of the matrix element on the energetics of the system and on the
number of linkers is the aim of their work. A tight-binding Hiickel Hamilto-
nian was used for their calculations, and a periodic approximation was made so
that the wave functions behave as Bloch states. Examples of systems studied
by this method are the prophyrin-bridge—quinone molecule where the bridge
is composed by bicyclo[2.2.2]octane linkers3® (Figure II.2) and mixed-valence
dithiaspirocyclobutane molecules.?® From their work we expect that most of
the electron transfers mediated by organic bridges are actually hole transfer.
This is due to the fact that the transfer electron energy lies much closer to the

valence band.

In Sec. III.2 we present a model that allows us to define when the through-
space transfer or through-bond transfer limits are reasonable models. (We
do not present the model in this section because it is carefully described in
Sec. III.2, which is a short enough section.) Also, in the case of through-

bond transfer, two limits are possible, weak or strong interaction between the
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bridge units. The functional dependence of the matrix element on the tun-
neling electron energy for the three cases is discussed, and this was used to
explain a controversy that existed in this field. The periodic approximation
assumed by Beratan and Hopfield is discussed and justified in this section and
Sec. II1.3. Substituting some reasonable parameters in the expressions obtained
in Sec. III.2, we come to the conclusion that the tight binding model is a good
approximation for the bridges in these model compounds. Therefore, based on
the results of Sec. III.2, we calculate how different hydrocarbon bridges affect
the electronic matrix element, using a tight binding Hamiltonian. These results
are presented in Sec. II1.3, and they show calculations for several model com-
pounds now existent. The basic conclusion of this work is how, compared to
a single linear alkane chain, constructive or destructive interference, increases

or decreases the electron transfer rate.

If we are interested in biology, model compounds are not enough, and
trying to understand electron transfer through a protein environment is a nat-
ural next step. From the model compounds we learned that covalent pathways
really assist electron transfer. Therefore, they must be important for electron
transfer in proteins. However, if we look at protein structures,we come to the
conclusion that covalent pathways are, in most cases, prohibitively long, and
some through-space electron “jumps” are probably occurring. We therefore
developed a model that includes both possibilities: the electron transfer path-
way is composed of covalent legs connected with a few through-space jumps.
Systems for which we intend to perform calculations using this model are de-
scribed in Sec. III.4. A more detailed discussion of how we intend to do the

calculations is given in Sec. IV.2.
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This model for electron transfer in proteins is presented in Sec. I11.4. Here
we summarize its most important results. Sec. III.4 is basically divided into
two parts. The first one assumes that the medium through which the electron
tunnels is rigid, and for this condition it develops a prescription for calculating
the electron transfer rate. In the second part, we include thermal mobility for
the tunneling medium and discuss how it affects the rate. This second part
is an improvement of the model proposed in Sec. III.5. We now describe the
prescription to calculate the electron transfer rate for a rigid protein medium.
Here we recall the fact that through-space decay is much faster than through-
bond decay (~ 1.7 A~! vs. ~ 0.6 A-1). In most of the protein electron
transfer cases, however, the “complete” through-bond pathways (covalent) are
prohibitively long. Therefore, as already discussed, in our model we consider
electron transfer pathways that are composed of through-space and through-
bond parts. For the through-bond parts, as in the matrix element calculations
for covalent chains, a tight binding Hiickel Hamiltonian is used. The electronic

donor Hamiltonian is then written as
N-1
HY = ADa}')aD + ﬂp(a%al +alap) + Z ﬂi(azai+1 + afﬂai) . (II1.1)
=1

If the covalent chain is periodic, the decay of the wave function can be cal-
culated using the method proposed by Beratan and Hopfield.54 In Sec. III.4
we developed a method that we call “decay per bond.” This formalism is
useful when we can neglect “backscattering” between bonds. Calling 8 the
interaction between (sp®) and (sp®) or (sp?) orbitals on different atoms, ~y; the
interaction between hybrid orbitals on the same atom ¢, and «; the self-energy

of the hybrid orbital on atom 7, the decay of the wave function on bond 1 is

o 0
€ = (i BB =% (I11.2)



168
As we see in Sec. III.4, this method is very efficient when ¢? < 1, and works
quite reasonably for protein backbone and alkanes. Reasonable parameters for

all the important through-bond interactions are given in Sec. III.4.

As already discussed, through-space interactions are also going to be im-
portant in proteins. Because they decay with distance much faster than the
through-bond ones, when performing calculations we will be looking for the
shortest possible through-space jumps. By shortest we mean that we can not
go to prohibitively long through-space distances. The simplest way to calculate
the interaction between the two orbitals through which the electron is going
to transfer “through-space” is by using the Hiickel approach,® and therefore
calculating the coupling between these two non—covalent contacts, for orbitals

with the same binding energy V3, by
g = Vo S12 (I11.3)

where S;; is the overlap between them. Now let us assume, for example,
that these two terminal groups are two carbon—carbon sigma bonds. If we
approximate these bonds by a 1S hydrogen-like orbital with binding energy of
10 eV, we obtain at a separation of 5.5 A a A"~ & 0.03eV. This interaction
has a distance decay of 1.74~1. At this separation we have €”~¢ ~ 0.005. At
this level it is important to point out that this model is very crude, but the
distance decay in the weak coupling limit is model-independent and depends
only on the binding energy. Also, this 1S approximation overestimates the

interaction.

Putting these two sorts of interactions together, the simplest expression
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we can get for the electron transfer matrix element is
Ng Ngs
Tpa = (BpBa/E) [T [ 7 - (I11.4)
=1 gj=1

Here the energy, E, is measured with respect to the first “orbital” (bond) that
the donor interacts with. Npg is the number of covalent bonds and Ng is the
number of non—covalent jumps along a given pathway.

We now give a summary of the second part of this model, which discusses
how temperature affects the matrix element. The model described until now
considers a rigid medium through which the electron tunnels. This may not
always be appropriate, and we now show how mobility of the medium groups
may alter (modify the usual temperature dependence) the electron transfer
rate.

As an example, consider an ideal electron transfer pathway composed of
identical orbitals, where only one of the interactions is allowed to fluctuate.

The Hamiltonian for such a system is

H = g + Hrve 4 gint | (I11.5)
where

He = HY + HY (I11.6a)
H™e = H3 + HR“ + Hy* (I11.65)

N
H = ADaLaD + ﬂD(aLal + aIaD) + 8 Z(aza;H + a,:fa,'__l) (II1.6c)

i=1

Nr
He = Agalian+Ba(alan, +a}vT as)+ B Z (a,;a,]-+1 +a;aj_.1) (II1.6d)

J=N+1

Hint — ﬂ;q exp {—a’[(RN+1 . RN) - RO]} (a}vafN-{-l -+ a}‘V-{—la'N) (IIIGe)
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1
Hpve = (b;bp + 5) Rp + Apahap (b}, +bp) (I11.6f)
1
Hnue = <bLbA + —2—> A4 + Aaalaa (bl +b4) (I11.6g)
Hpve = (b}vbN + %) hw (III.6h)

where §;7 is the interaction between sites N and N + 1 at their equilibrium
separation. Also, we define yy = (Ry+1—Ry)—R° as the deviation from equi-
librium of the distance between these two sites. In the simplest approximation,
ynN is considered harmonic.

We can calculate the temperature dependence due to fluctuations of yy.
Doing a semiclassical calculation, we find that the electron transfer rate change

due to this fluctuation is

(exp(—2a'yn)) =/exp(-—2a'yN)P(yN)dyN , (I11.7)

where P(yn) is the probability distribution function for this coordinate. By
semiclassical we mean that quantum mechanics is included only through the
distribution function. (See Sec. IIL4 for details.) Here we assume that the
relaxation of this nuclear mode is fast enough (see Secs. II.1 and IL.4) so that
the donor survival probability decays exponentially in time. If yx is harmonic,

Eq. 2.7 can be calculated exactly, and

(exp(—2a'yn)) = exp(2a’*u}) , (II1.8a)
where
h hw kTS
2
= th = .8b
I = omew O T T mw? (111.85)
is the mean-square deviation of yy. This is equivalent to writing
1 y?v ]
Ply) = ———exp |——%| . II1.9
) Vo P [ 2u% (I11.9)
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The final semi-classical rate is then written as
kgr = %{ITgAIZ (exp(—2c/yn)) F.C(local modes) , (I11.10)

where TP , is the matrix element for a rigid medium. In Sec. IIL.4 we show
that this contribution due to fluctuations of the distance between covalently
bonded groups is going to be negligible. Therefore, if this effect is important,
it will be due to fluctuations of the distance between non-covalent groups along
the electron transfer pathway. A discussion about their possible effect on the

rate is given in Sec. IT1.4.
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A simple model is presented for long distance electron transfer through a bridging medium.
Assumptions about the bridge mediated interaction, inherent in many other models, are shown to
be limits of the more general problem. The relative importance of through bond and through

space coupling is discussed.

1. INTRODUCTION

The rate of long distance (nonadiabatic) electron trans-
fer depends critically on the electronic exchange interaction
(tunneling matrix element) between donor and acceptor.'™
The exchange interaction is usually calculated by one of
three methods. One method assumes that the interaction oc-
curs directly through space and ignores the presence of the
bridge altogether. The other methods assume that all inter-
actions are mediated by the intervening medium (bonds).
The “medium” includes any atomic or molecular species
between donor and acceptor. In real systems this medium
may be protein, halide atom, or hydrocarbon, for example.
The donor-acceptor through bond interaction depends on
the detailed molecular structure of the bridge. For example,
electron transfer through an unsaturated hydrocarbon
bridge may be considerably faster than through a saturated
bridge. Two through bond mechanisms exist. They differ in
their treatment of the interactions between neighboring
bridge units. One assumes very strong and the other assumes
weak electronic interactions between bridging groups. Each
of these methods is an approximation of the correct donor—
acceptor interaction which is assisted by interactions with
both bound and continuum states.

In both the through bond and through space calcula-
tions the tunneling matrix element decays approximately ex-
ponentially with distance.? The various mechanisms predict
decay lengths with different functional dependences on the
electronic binding energy of the tunneling electron.>!?

The aim of this paper is to present a model which con-
nects these three methods. The through bond and through
space treatments in common use are shown to be distinct
limits of the electron tunneling problem. A model problem is
solved and it is shown under which circumstances the limits
are obtained. The validity of selecting one limit for a calcula-
tion depends on the relative energetics of the donor, accep-
tor, and bridging medium and on the interaction between the
neighboring bridging units.
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Universidade de Sio Paulo, 13560, Sio Carlos, SP, Brazil.

* Also Division of Biology and AT&T Bell Laboratories, Murray Hill, NJ
07974.
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. STATEMENT OF THE MODEL

The decay of the donor wave function with distance is
now found in an exactly soluble model system which does
not restrict the decay to a purely through bond or through
space pathway. The rate of distant electron transfer is pro-
portional to a product of electronic and nuclear factors. The
electronic term is related to the electronic exchange interac-
tion between donor and acceptor. The nuclear factor is relat-
ed to the nuclear activation barrier to electron transfer. The
electron tunnels between the donor and acceptor in an “acti-
vated complex” of fixed nuclear geometry reached by atom-
ic distortions to a configuration with matching donor and
acceptor electronic energy levels (within the Born-Oppen-
heimer and Franck-Condon approximations). The models
for electron tunneling describe the electronic potential in the
activated complex and do not address the nuclear motion
needed to reach that configuration. The exchange interac-
tion can be found if the eigenstates of the electronic Schro-
dinger equations [Eq. (1)] can be found.

(T*+ VP4 VMW, = E ¥,

(T +VA+V¥™W, =E,V¥,. (n
This is a one electron representation of the problem. The
nuclear coordinates enter only as parameters in the elec-
tronic potentials V2, ¥4, and V™. ¥'? is the potential of the
isolated donor, ¥ is the potential of the intervening medi-
um, and ¥ “ is the potential of the isolated acceptor. T°* is the
electronic kinetic energy operator. The exchange matrix ele-
ment, T,,, is then (¥, |V*|¥,) where ¥'* is the perturba-
tion which mixes donor and acceptor electronic states. In
this example, ¥ is constant and less than zero on the accep-
tor and zero elsewhere. Since ¥ (¥, ) is not dependent on
the transfer distance in this model, the decay of the exchange
interaction with distance is determined by the decay of
V5.7 (A more detailed explanation is presented in Appen-
dix A.)

The simplest possible model for a bridging medium is a
one dimensional chain of equally spaced constant potential
wells.'>*> Constant one dimensional potentials are poor
substitutes for more realistic potentials if details of the states
near the nuclei are needed. However, the asymptotic behav-
ior of square well or Dirac delta function eigenstates correct-
ly reproduce the decay of more complicated states far from
the wells if the potentials are of finite range. Actual Coulom-
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bic potentials will only change the square well result by a
polynomial factor. Also, shielding effects in many electron
systems may make “muffin tin” potentials appropriate for
one electron calculations.'® The asymptotic behavior of the
states, not the details in the high probability regions, is cru-
cial for the calculation of tunneling matrix elements.

Modeling the medium with an infinite periodic potential
is a useful first approximation for systems which have donor
and acceptor connected by repeating groups such as synthet-
ic organic linkers'®?? or peptide units,'” for example. The
fact that the potential is infinite means that the donor and
acceptor states will not include small corrections due to
wave function reflection at a boundary (see Appendix A).
The decay of a donor localized state in an otherwise periodic
bridge is determined by the energy of the donor and the asso-
ciated decay length determined by the bridge for that energy.
The model Hamiltonian (Fig. 1) considered for the initial
state (donor plus bridge) is

ge= R 32
2m 3x*
- U, if na<x<na-+ b, n#0
+1 = (WU+ U, if Ocx<b , (2)
0, elsewhere

where U>0, U,,,, 0,and nis an integer. — Uis the potential
on each of the bridging units. The spacing between the two
left (and two right) walls of adjacent wellsisa. — U, is the
potential of the isolated donor relative to the potential of all
other bridging potential wells. The choice of these well
depths for a specific system depends on the chemical proper-
ties of the donor and bridge as well as the properties of the
surrounding solvent or protein. When U =0 there is no
bonded network to assist transfer and the problem reduces to
one of purely through space propagation. When U, =0
each well is identical and the Schrédinger equation reduces
to Kronig-Penney form.'>' In the Iatter case all states are
delocalized and all “atoms” in the model are equivalent. The
general solution for the trap plus bridge states could be writ-
ten ignoring the translational symmetry of the bridge. How-
ever, because the potential away from the donor is periodic,
both the donor localized and bridge delocalized wave func-
tions change only by a decay factor per chain unit. The donor
state of interest, ¥, is a localized bound state with E <0.
However, in this model one also finds the delocalized bridge
states (E <0} and the continuum states {E> 0). Defining

x =+ —2mE /% and Q = \2m{U + E /% where E is the

FIG. 1. The electronic potential of the donor plus bridge is shown. U and
U,., are positive. E is shown for a bound donor localized state and is the

ground state of the Hamiltonian in Eq. (2).

energy eigenvalue for the bound state (and is, therefore, neg-
ative}, the Kronig~Penney relation for the wave function de-
cay is

€+ 1/€ =2 coshixia — b)jcos(Qb)

+ skl sinh[x{a — b)]sin(Qb ). 3)
xQ

€is the Bloch factor'*~'* by which the wave function changes
upon translation by one repeating unit in the bridge. The
donor localized ground state is even with respect to the trap
site {x = 0} and the amplitude on the donor is nonzero. For
the donor localized state € is real and |¢| < 1. A boundary
condition dependent on the trap energy determines the actu-
al energy eigenvalues of the states. In the remainder of the
paper, we use E only to represent the ground state energy of
the Hamiltonian in Eq. (2). This is the energy of the transfer-
ring electron which is shown schematically in Fig. 1.

Two limiting cases of this square well problem will be
considered. In the first case the wave function decay in the
bridge has characteristic decay length (1/x) larger than the
bridge unit spacing (¢ — & ). In this casex{a — b )<1. We call
this situation the loose binding limit. In this limit Eq. (3)
becomes

€+ 1/e=2cosh|Q|b (4)

since |E|> U. Hence € = exp(— |Q |6} for the decaying
states. This is the limit in which one works when assuming
constant potential between donor and acceptor and trap well
depth so that the electron has binding energy less than the
true ionization potential of the trap.® When x{a — b)<! a
tight binding (molecular orbital) treatment of the bridging
medium is invalid.'® The precise size of the bridge-bridge
interactions is irrelevant because it is so large. The second
limit is discussed in Sec. I11.

. THROUGH BOND AND THROUGH SPACE LIMITS
FOR A TIGHT BINDING BRIDGE

In contrast to the previous limit of strong interaction
between bridging traps is the tight binding limit of the prob-
lem. In this case x{@ — &} is not small and the wave function
in the bridge has sharp peaks near the bridging atoms. Be-
cause the interaction between sites is small and wave func-
tion details near the nuclei are unimportant, we pass to the
limit b—0, Ursr oo, Ub—[V, (25 /m], and
(Ut U, )=\ (¥, + A)2%/m). This is the Dirac delta
function potential limit which is shown in Fig. 2 and is useful
when b<a. V, is the binding energy of an electron bound to
an isolated bridge unit Dirac delta function potentia] well.
¥, and A are both positive quantities. ¥, + A is the binding
energy of the isolated donor. We emphasize that when
x{a — b }—0 the delta function limit is no longer valid. The
tunneling problem is simpler in the delta well limit and more
easily compared with previous calculations. By resorting to
deita wells we will find only one bound state per isolated
bridge atom. In the more realistic square well model many
bound states may exist in each isolated well. When a chain of
delta wells is formed only one “band” of states results. In
“real” systems many bands of states exist. However, electron
mediation is usually dominated by interaction of donor and
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O4see ree

-y 8x-a)

V-tvped)Six)

D x

o
F1G. 2. A schematic representation of the potential in Fig. 1 is shown in the
delta function limit. ¥, and A are positive. E is the energy of the bound

donor localized state of the Hamiltonian in Eq. (2) in the delta function
timit.

acceptor with a single band of either valence (bonding) or
conduction (antibonding) bridging states.® The delta func-
tion model is appropriate when hole transfer through a va-
lence band or electron transfer through a conduction band
dominates. Analysis of the problem for the general square
wells is also possible.

Equation (3) may be written in the delta well limit as

e+ Ve=el —A}+e 1 +4) )

where A =,/ ¥,/|E|. The boundary condition which deter-
mines the energy of the single donor localized state is

(2m/#w[2HF/m]V, coth(xa)
=12 + @m/BNV, [V, + B) — 2m/#)NA + V,).  (6)
Using the fact that in this section expixa)» 1,
k= =2mE/fF~2mV, + A/F. N
Inthelimit of A €1, i.e., ¥, €| E |, the first order expansion of
Eq. {5} is
€+ 1/exe* + e~ " (8)

This is the same result expected from the square well model
[Eq. (3)} with U—0. The localized wave function decays by
the amount ex~¢™ per repeating unit. This is exactly the
energy dependence of the decay predicted in through space
calculations (U/ = 0). To the extent that the bridge weakly
perturbs the donor, the energy of the state is approximately

¥, + A in both the through bond and through space limits.’

Consider now the case where A is not much less than
one. Because ¢*°» | and writing |E | = V, + 8E, the expan-
sion of Eq. (5) to second order in 5E is

oF [l
2V, exp{ —a\2m V,/%)
m
. 9

WV, J ®)

The interaction between wells is small, i.e.,

exp| — a\2mV, /%) €expla2mV, /)

(€+ 1/e)= 3 —‘Sﬁ]

T4,

-[1+a8E

€+ e~ SF (10)

2V, expla\2mV, /%)

to first order in

SEam/2R)/\V, . {13

SE is the energy of the donor localized state belo' + the center
of the band (which occurs at energy — ¥, ) of brid zing states.
The exchange interaction between two isolated delta wells in
the weak interaction limit is®

— 2V, exp( — 2mV,/#a)=B. (12)
Thuse€ + 1/e==(E + V,)/B, exactly the decay of a local state
interacting with an infinite chain of identical orbitals when
only nearest neighbors interactions are included.*'® The
nearest neighbor limit of the decay is indeed expected when
the interactions between wells are weak.

IV. DISCUSSION

The through bond and through space tight binding lim-
its are well defined. The through space tight binding limit is
valid when the binding energy of the bridging units is small
compared to the energy of the donor state. The through bond
tight binding limit is valid when 8E is small compared to
m /(am/2#) and exp{«xa)» 1. Increasing the binding en-
ergy of the bridge wells or decreasing the spacing between
bridge atoms is expected to increase the validity of the
through bond approximation (retaining xa large). In the
tight binding limit — ¥, is the energy of the band center and
SE is the energy difference between an electron (or a hole)
trap and that band center. Hence, this analysis applies to
both electron and hole tunneling. Indeed, recent evidence for
hole transfer has been reported.?*

In the three limiting cases the tunneling matrix element
decays with distance as

exp[ —VZm/F)E+ UIR ] (13a)
for the loose binding through bond case,
(13b)

exp[ln(Ebe )R /a],

when (€<1/€) for the tight binding through bond case, and

expl — V2Zm/B)E[R ] (13¢)
for the tight binding shallow bridge well (V, €|E |} case. E is
the energy of the initially occupied donor localized bound
state and is determined by g, b, U, and U,,,,,. Note that both
the absolute sizes of these decay constants and their func-
tional dependences on electronic energy are different.

At this point it is useful to describe the origin of the
difference in the functional form of Eq. {13b) compared to
Egs. (13a) and (13c). In order to understand this difference
we must compare the nearest neighbor bridge group interac-
tion, the donor-bridge and acceptor-bridge interaction, and
SE with the depth of the bridge group well U(¥, in the delta
function limit). If these energies are small enough compared
to U(¥,), only nearest neighbor interactions need to be con-
sidered and the problem can be solved by making a first
order expansion. The expansion yields, as expected, the well
known functional dependence found with the tight binding
method when the bridge unit exchange interaction energy
[B. Eq. (12)] is identified. Equation (13b} and related equa-
tions for more complicated linkers are used as starting points
in several examples in the literature.*** We now understand
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the limits of validity for these methods. On the other hand, if
one of these conditions is not satisfied, the functional depen-
dence of the tunneling matrix element on distance cannot be
expressed by a simple analytical expression and equations
like Eq. (3) or Eq. (5} must be solved for € and T,
« exp[(ln €}R /a]. This is true unti! the opposite limit is
reached, i.e.,, U(¥, in the delta function limit) becomes small
compared to the nearest neighbor bridging group interaction
and the problem is reduced to tunneling through a square
barrier. This limit may be reached in two ways: {1) by in-
creasing the neighboring group interaction, i.e., (g — b -0,
and we obtain Eq. {13a); or {2) by decreasing U (V,), i.e., U
(V, 0, and we obtain Eq. {13c).

Tight binding calculations of tunneling matrix elements
are expected to be most appropriate when the energy of the
localized state is close to a band of linker states (5 small).
V,, the binding energy of a bridging unit in the delta model,
should be large. Finally, the spacing between bridging units
should be small, but not so small that the condition exp-
(xa)> 1 is violated. Appendix B discusses the range of validity
of this approximation in the square well model. References
8-12, 23, and 25 work in this limit. When the loose binding
approximation is used U is understood to be no more than a
parameter. Tight binding calculations (e.g., extended
Hiickel} permit the use of independently determined param-
eters and are expected to give a more realistic functional
dependence of the tunneling matrix element on energy when
the tight binding limit is valid (see Appendix B).

In real systems, such as proteins, the dominant tunnel-
ing pathway between donor and acceptor may not include
bonded atoms, and the bonded pathway may be consider-
ably longer.!” In this situation the important tunneling path-
ways may include both bonded and nonbonded neighboring
groups so a more elaborate model is required which includes
all of the different interactions. In such a case the tunneling
is still mediated by the medium groups. The direct donor-
acceptor ({through space) interaction is expected to be negli-
gible. {If through space interactions were of importance
much more rapid decays of T, with distance than common-
ly observed would be expected.?*) The true interaction ener-
gy may have a rather complicated dependence on the donor
and acceptor energetics and subunit interactions. The su-
bunit-subunit interactions depend on the chemical proper-
ties of the groups including their separation, geometry, sym-
metry, and energy, for example.

This one dimensional model is an obvious oversimplifi-
cation. Three dimensional effects and orientational effects
may complicate the analysis of real systems. However, these
details are not expected to cause qualitative changes in the
wave function decay with distance in the bridging medium.
Introduction of polar solvent may alter the effective ioniza-
tion energy of the donor. It is not known to what extent
intervening solvent may act as a through bond pathway.
Boundary effects due to the finite length of real bridging
groups are not expected to be large when " <1 where N is
the number of bridge units between donor and acceptor (see
Appendix A).%¢

In the one delta function trap per repeating unit model a
single band of bridge states is found. Transport is enhanced

178

Beratan, Onuchic, and Hopfield: Bridge mediated electron transfer

by energetic proximity of the donor and acceptor to bands of
bound states of the bridging medium or to the continuum
states. In real systems there are multiple bands. The band
with edge closest to the donor and acceptor energies will
dominate electron (hole) mediation. Depending upon
whether the states in the band are bonding or antibonding,
the transfer mechanism will be hole or electron exchange,
respectively. The importance of bond mediated interactions
between donors and acceptors has been shown recently in
several experimental systems.'”-** More realistic theoretical
models for the bridging medium are under investigation.
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APPENDIX A

In this formulation of the problem the acceptor appears
to have an unimportant role. This is certainly not the case.
Indeed, the problem may be analogously formulated consid-
ering hole transport from the electron acceptor to the elec-
tron donor. The details of the acceptor appear unimportant
because only the electronic tunneling matrix element and not
the Franck~Condon factor was discussed. Within the Born—
Oppenheimer and Franck-Condon approximations

k“‘z/B: {Wp(%; Yo, Ya MDA [ VAl

XWalX; ¥ps Va )l/x)r& YPSE, — E,
a [{Wp (%; o, Fa ) Va [Walx; Fp, Fa D P

X Z}B, {Bpdi lYbXa ) SIE, — Ej).

B, is a Boltzmann weighting factor, ¥, is the donor elec-
tronic wave function, ¥, is the acceptor electronic wave
function, ¢’ is the donor (D) or acceptor {A) initial vibration-
al wave function, and y is the donor or acceptor final vibra-
tional wave function. x is the electronic coordinate. y is the
donor or acceptor nuclear coordinate. The bar above the
coordinate represents a particular value for y chosen when
making the Franck—Condon approximation. The vibronic
coupling on the donor and acceptor determines yp, and y,
which maximize the product (@5 &, |*(¥hxh )- As such, the
vibronic coupling on donor and acceptor determine the tun-
neling energy, E.

Results for the dependence of the tunneling matrix ele-
ment on distance for finite length bridges are not substantial-
ly different from the results for the infinite bridge model in
the tight binding limit if: (1) ¥ €1 and (2} the addition of
bridge groups does not significantly alter the energy of the
localized state (perturbation theory suggests energy changes
of the order €"} as the bridge is increased from N to N + 1
units. For a donor linked to a one orbital per site bridge of ¥
repeating units the amplitude on the N th site, Cy, is*®

(Al)
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o+ 1/e

-2

L )
7 k]

S
- Energy {¢V)

FIG. B1. The lower curve is a plot of Eq. {10)for ¥, =5eVanda =2 A.
The upper curve is the exact result [Eq. {5)]. The central curve is Eq. {5)
neglecting the exp( — xa) term. The lower curve corresponds to the through
bond tight binding limit of the problem.

S )

The decay of the tunneling matrix element with the number
of bridging groups (V }is proportional to this amplitude. 8 ' is
the interaction energy of the donor orbital at site zero with
the nearest bridge orbital at site one. The finite bridge con-
tains ¥ identical units. In this model, as in the constant po-
tential bridge models, the electronic tunneling matrix ele-
ment is proportional to the donor wave function overlap
with the acceptor wave function on the acceptor site. For this
reason, the spatial extent of ¥, is important. The width and
depth of the acceptor potential are expected to enter the rate
at all distances as a distance independent prefactor.

One final condition must be imposed on the acceptor
potential. It is required that energy be conserved. Because
V., is the potential felt by the electron on the acceptor in the
activated complex, it must be chosen such that the electronic
energy of the acceptor plus bridge in the activated complex
coincides with the initial state (donor plus bridge) electronic
energy.

(A2)

APPENDIX B

As a numerical example parameters were chosen which
are typical of values which might be chosen to model a hy-
drocarbon bridge between donor and acceptor. At this level
of theory it is not possible to unambiguously choose param-
eters. It is vital to stress that no quantitative predictions of
tunneling matrix elements should be extracted from this ex-
ample. The parametersare ¥, = 5eVanda =2 A. ¥, was
chosen to give the approximate distance from the mediating
band to the trap (~1 eV) and a reasonable value for the
ionization energy of the trap (~ 8 eV). a was chosen to give

— 1 eV for B. The quality of the linear approximation for
€ + 1/€ [Eq. (10)] is shown in Fig. B1. A comparison of the
exact result [Eq. (5)] with the result obtained by complete
neglect [Eq. (8)] of the bridging atoms is shown in Fig. B2.
Calculation of € + 1/¢ for this set of parameters demon-
strates that in typical bonded systems the transfer is mediat-
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FIG. B2. The lower curve is the exact result [Eq. (5)] for the same param-
eters as in Fig. 1. The upper curve is a plot of Eq. (8), the limit of neglecting
the bridging wells.

ed considerably more by the bonded than by the through
space interactions along the same pathway. The linear de-
pendence of € on E is only valid when €«1, however as ¢
becomes too small the linear approximation itself [Eq. (9)]
becomes a poor estimate of the decay. Figure Bl shows that
the through bond picture for electron transport gives a linear
relation between € + 1/€ and E in the one orbital per repeat-
ing unit limit. This approximation is best close to the band.
Further from the band the relation is roughly linear but the
slope is not exactly the 8 which comes directly from molecu-
lar orbital theory. For donor states far from the band a cor-
rection to standard values of 5 may be necessary.
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Abstract

Why should different hydrocarbon bridges give different electron transfer
rates? We answer this question based on energetic and topological (interfer-
ence) effects that can be gleaned from one-electron models. A discussion of
model compound electron transfer rates based on this interpretation is given.
The approximations implicit in the periodic models used here (and in previous

work) are carefully justified.
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I. Introduction

In previous studies, we presented predictions for the tunneling matrix el-
ement dependence on donor, acceptor, and bridge energetics and topology for
several linkers!. We also distinguished the nature and importance of through-
bond vs. through-space pathways for some model potentials®. Here we sim-
plify and unify the results for tunneling through organic linkers. We begin
by discussing considerable simplifications that arise when charge mediation
by either the bonding (valence) or the antibonding (conduction) states domi-
nates the donor-acceptor interaction. We discuss the validity of the periodic,
weak coupling, and small “back-scattering” approximations. Next, we com-
pare tunneling matrix elements for several linkers and show, analytically, how
topological effects in cyclic bridges can enhance or decrease the matrix ele-
ment. Both constructive and destructive interference effects are found to be
important. An understanding of how these effects influence the distance decay
of the matrix element for different organic donor-acceptor bridges of current
experimental interest is the main goal of this paper. (Recall that the rate is
proportional to the square of the matrix element in the non-adiabatic limit3.)
We also discuss the predictions of Hush* and Schipper?, that electron transfer
matrix elements decay in a polynomial rather than in an exponential fashion

with distance.

The goal of this work is to show why different hydrocarbon bridges are
expected to give different electron transfer rates even for the same donors, ac-
ceptors, and transfer distance. A consistent method is given to predict the ef-

ficiency of different bridges for mediating the donor-acceptor interaction. This-
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method is given in a simple enough form so that it can be directly applied
by experimentalists when considering target bridging molecules and it is also
of use for understanding electron transfer rates in existing model compounds.
It may also be useful for designing new molecules with novel applications to

microelectronics ©
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II. One band model for bond mediated electron tunneling

In the first part of this section we show how the electron transfer rate
dependence on distance for a linear alkane bridge can be described with a one
orbital per bond model. This description permits a clearer understanding of
the terms electron and hole transfer. It also identifies the contributions of
different “tunneling pathways” to the tunneling matrix element.

Let us represent an alkane chain by a set of sp(3) orbitals. Orbitals on the
same carbon atom have an interaction ~, and orbitals in the same bond have
an interaction 8. For simplicity we neglect the C~H bonds in this section. For
realistic parameters, |8| > |y|. Thus, if the donor is coupled to an n-alkane

with with 2NV carbon atoms, the Hamiltonian is

N
Hp = ADCLTDU,D + ﬂD(aLal-f-aIaD) + Z’y(a;i_lagi—i—a;iag;,l)
=1
N-1
+ ) Blafazitr +al,a) . (2.1)
i=1
The zero of the energy scale is chosen so that Q) = 0. Also, B and ~ are

defined as negative quantities in the usual Hiickel convention, which follows
from the assumption that the basis functions all have the same phase’.

The above Hamiltonian employs a one—electron model. Discussions of the
reasons that this approximation works for the electron transfer problem have
been given by several authors®°. Because we are working in the weak coupling
limit (donor-bridge and bridge-bridge orbital interactions are “small”), many
electron effects are expected to be unimportant. Assuming that orbitals in the
bridge can be represented well in the tight binding limit?, the one electron wave

function is a good approximation for the donor and acceptor states far from
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the nuclei. This is because the electrons of the bridge are closed shell “core”
electrons®. Electron correlation strongly affects the orbital energies, but the
hopping matrix element between bridge sites is basically a one electron matrix
element. A similar argument has been given for the electron exchange process
in aqueous Fe?t+ — Fe3+.9

If the alkane chain were infinite, we could use Bloch conditions and write

the donor wave function at bonding orbital k as

oF = " (adak + bbakt1) - (2.2)

Here ¢x is the orbital wave function of the k-th sp(3) orbital. The ¢* term
arises from the translational symmetry.
We now calculate the donor localized state of Hamiltonian 2.1 for N — oo.

The system of equations to solve is then

(620 75N () =2 () ey

where E is the energy of the donor state. If the donor interacts weakly with the
chain, then E ~ Ap for the localized state. This approximation is reasonable,

and its validity is discussed later in this section. The equation above gives

1 E2_72_ﬁ2
€+ — = —— 2.4
- e (2.4)

In the case of an alkane chain, || > |v|. If we had an infinite chain of alkane
(without the donor), the solution of Eq. 2.4 would lead to two bands: one with
energy states between 8 + v and @ — v, and the other, between —(3 — ) and
—(B+7~). The first band is composed of the bonding states of the chain and is
called the valence band, and the second one is composed of the anti~bonding

states and is called the conduction band. The donor state interacts mainly
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with the band which is energetically closer to it. From Eq. 2.4, we see that any
state in the band gap (|E| < |B|) has a negative value for e¢. Because the gap
between the two bands is large (about 10 eV), one band generally dominates
the interaction. In most of the systems discussed in the next section, the energy
level of the transfer electron is near the valence band. Now we show how to
formally neglect the effect of the energetically distant band and include only
the donor interaction with the closest one.
Assume that the donor state energy E is close to the valence band. Then,
E is negative and |E — B|,|y] < |B|. Because the donor state is in the band
gap (localized), |[E — | > |y|. Using the approximations above, Eq. 2.4 can be
rewritten as
1 2AE-P)B _ E-8

€+ — o=
€ 18 v/2

Eq. 2.5 is exactly the result we would get from a one orbital per site chain

(2.5)

model with the Hamiltonian

N
Hp = Apahap + ﬂD(aLa1+aIao) + Z Bala;

1=1
N-1
+ Z 'y/Z(cLIa,,-.*_l + aI+1a;) . (2.6)

1=1

This Hamiltonian represents a chain of orbitals with self-energy 3 and near-
est neighbor interaction /2. Now the “orbitals” represent the C—C bonding
orbitals rather than the carbon atomic (hybrid) orbitals. This is equivalent to
saying that the donor interacts with a chain of bonding orbitals of self-energy
B, which form a band of width 2~. This approximation neglects the donor in-
teraction with an entire band of states, not individual states within a band. In
the appendix we give a comparison of the o band calculation with the complete

calculation for n-alkane.
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In order to validate the above discussion we must carefully address two
points. The first is that the bridges we are considering are finite, so the infinite
chain limit is not exact. The second point is that we assumed that the donor
weakly interacts with the chain. As in Eq. 2.2, but for finite N, let us write

the (exact) donor wave function for Eq. 2.6 as

N
Up = %{¢D+Z (ae‘+beN+1“)¢;} : (2.7)
i=1

where N is the normalization factor. Here ¢; is the j-th bond orbital. Also,
for reasons of simplification, we fix the zero of the energy scale in the center of
the band, and define ' = /2. This form for the wave function is completely
general as long as the finite bridge is periodic except at its edges. Multiplying

Hp Yp =FEp ¥p by ¢;5, and integrating we have
< D|: Bp (ae+beN) = (E‘ — Ap) (2.84a)
<1]: Bp+ (ae® +be" 1)y = E(ae + be™) (2.8b)
<il: (e +beN )y + (ae T + bV )y =
= E(ae* +be¥ 1) for i=2,N -1 (2.8¢)
< N|: (aeV 7! + be?)y' = E(ae™ + be) . (2.84)

From Eq. 2.8c, we obtain the same E — ¢ relation that we found for the infinite

bridge,
1 E
€+ 'g = -’7'7 . (2.9)
Combining Eq. 2.8d and 2.9,
a 1
a = _6N+1 (2.10) ’
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From Eq. 2.10, we see that the coefficient multiplying ¢; in ¥p is

. . . 2N+2
C; = aéd +heVIHl = gl (1_ 662]‘ > . (2.11)

From Eq. 2.11 we obtain two conclusions. First, the infinite chain approxima-
tion becomes worse near the ends of the chain. Second, the terminal orbital
coefficient, Cn, is always equal to the infinite chain result, ae?, multiplied by
1 — €2, independent of N (a is chain length independent in the weak coupling
limit, discussed below). Thus, if we link an acceptor to the N** bridge unit,
the amplitude of the matrix element is proportional to (1 — €2)e¥, and there-
fore shows a distance dependence proportional to €V. Also, if €2 < 1 (i.e.,
1 — (e2N+2/€2) ~ 1 for all j) we can neglect backscattering between bonds,
and the infinite chain result becomes exact for a finite chain. It is important to
stress that the €2 < 1 condition is not necessary to guarantee a chain length
dependence of €V,

Assuming that €V < 1, we obtain from Eq. 2.8b that

ae = Ao zED— . (2.12)

(2.13)

Therefore we can assume E =~ Ap as long as f3 < A%. (Recall that Ap is
the energy of the donor orbital relative to the center of the band.)

The normalization factor of Eq. 2.7 is

N
NrP=1+4>"|cif* . (2.14)
=1
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In the weak coupling limit, if fp < E, then ae < 1, s0 N? =~ 1. In this limit,
the normalization constant is chain length independent.

From Eq. 2.11, we see that if €2 < 1, we can neglect backscattering and
the wave function can be described as decaying by the factor v//E per bond
(orbital). Because « is negative and E is positive for hole tunneling, the ratio
~'/E is always negative, and the sign of this ratio is important for interference
effects between tunneling pathways, discussed in Sec.III. For electron rather
than hole tunneling, the signs of both parameters are reversed and the ratio is
still negative. More generally, if we have a chain with varying orbitals where
the periodic condition is not necessarily applicable, we can define a decay per
bond of

e(bond i) = %i:gl‘ , (2.15)

where «;,;—1 is the exchange interaction between orbitals (bonds) ¢ and 7 — 1,
a; is the bond orbital energy, and E is the energy of the tunneling electron.
This approximation has been discussed for electron tunneling through protein
backbones.!¢

For non-linear (cyclic) bridges, the results obtained by neglecting “back-
scattering” agree with the exact result for the leading term in powers of v/E.
However, in such systems other corrections, besides backscattering, appear.
They are basically constructive interference of pathways of same length, or

destructive interference of pathways whose lengths differ by one bond. This is

shown in Section III and in the appendix.
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III. Topological effects on valence band tunneling

through hydrocarbon linkers

For a qualitative treatment of bridge mediated electron tunneling through
hydrocarbons, the basis set of bonding orbitals (hole tunneling) or antibond-
ing orbitals (electron tunneling) is a reasonable approximation. To include
all of the states (bonding and antibonding) in the calculation is entirely pos-
sible. However, it would not permit a transparent comparison of the results
(especially sources of interference) for different bridging groups — the main
goal of this section. As discussed in Section II, this approximation is appro-
priate for saturated hydrocarbons because the bonding-anti-bonding energy
gap (28 ~ 17 eV') is much larger than the energetic distance between the tun-
neling electron and the center of the relevant band (< 5e¢V’). In this section
we include the CH bonds in our Hamiltonians because their influence on the
matrix elements is comparable to many topological effects (e.g., those arising

from having cyclic rather than linear bridges) as shown later in this section.

We begin this section by listing the exact E — € relations for some real
and imagined hydrocarbon chains. We then show that the leading terms in
the relation can be identified with the tunneling pathways in the bridge. The
negative sign of v/E leads to interference between connected pathways dif-
fering in length by one bond. For this reason, edge-fused hydrocarbon states
of symmetry that minimize side routes are particularly important for charge
mediation. A comparison of matrix element decay with distance is made for a
chain composed of cyclic hydrocarbons fused on an edge vs. those fused at an

atom.
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For the following systems we define the decay per unit cell or bond as ¢
or €¢’. The value of « used in this section is 1/2 of the valence band width
discussed in Sec. 2. When discussing the parity of the bridge states one should
recall that the states contribute to the tunneling matrix element only if the

donor and acceptor are of the proper symmetry to mix with them (i.e., 8p and

Ba # 0).

A. Linear alkanet!®

The simplest molecular model for extended n-alkane is composed of one

CC bond and two CH bonds per “unit cell” (see Figure 1). In this case

1+ {44%/|E - E
(1 _E|1+{4/[Blaty-E)}| (3.10)
€ 9 1-{2v/le+~— E]}
This was obtained by expanding the determinate that relates E to ¢
v/e+ve—E 2v/e+2vy\ _
det ( o+ e a+'7~—E)—0' (3.1b)

Figure 2 shows E vs. ¢ in the gap (above the band) for this linker (y =
—1.1, and a, the CH bond energy relative to the CC bond energy, is -.5 eV).

Solving Eq. 3.1b for € + 1/¢ and expanding the quotient for small «,

1 E 2y
l= — eeol 3.
€+~ 7[1 o ] (3.1¢)

Since —27/(E — «) is positive, |¢| is decreased due to the CH bonds (recall that
without any CH bonds, €+ 1/e = E/~). This correction can be attributed to
amplitude that has made a single excursion into the two CH bonds interfering

with amplitude that has propagated directly along the CC backbone. Higher
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Figure 1 — The repeating unit orbital for the valence band of n-alkane is

shown (Je]).



193

8.8

T T T T

8.6

1<l

8.4

8.2

L S ] ¥ A ‘ v L] L] L] ' L] L ‘j

Figure 2 — Decay per repeating unit (per CC bond) in n-alkane is shown.
The energies shown are tunneling energies above the band. The zero of the

energy scale is the CC sigma bond energy.
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order terms in the expansion can be connected with more convoluted tunneling
pathways. This destructive interference is a general effect, in hydrocarbons, of
bonds adjacent to the tunneling pathway.

Far from the band (| E| large), the destructive interference is unimportant.
Recall that we can not use these models for tunneling energies so far from the
valence band that mediation by other bands becomes important. The presence
of CH or other bonds with energy lower than that of CC bonds decreases hole
tunneling, i.e. decrease |¢| (wave function decay becomes more rapid).

To illustrate further complications that arise from geometric effects of
the linker, we consider chains with four member rings. These chains have
pedagogical value as well as relevance to bridges described in Refs. 10 and 12.
We then consider six member rings of current experimental relevance, namely,

fused norbornanes and fused cyclohexanes.

B. Poly(edge-fused cyclobutane)

For the even states (Figure 3a) we find
—EW1- 21y 4+ 42

cr 1_E |- BQ-F) +F | (3.24)

€ 9 (@ —E) ~+
and for small ~,

1 E 2y 0l
=22 3.2b

€+e '7[ E E—-a+ ] (3.25)

Interference arises from the CC bond connecting the two parallel sigma path-
ways as well as from the CH bond. For the odd states (Figure 3b) of the

valence band, however,

(3.3a)

E (a—E)-i—(Z};)
4| (@a—-E)—~
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b)

Figure 3 — (a) Same as Figure 1 for the even states of edge—fused cyclobutane;

(b) same as (a) for the odd states.
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and for small ~,

1 E ~
T="1|1- ce] 3.3b
€+e '7[ E—a+ } ( )

In this case, interference arises only from the CH bonds because there is no
interaction between the parallel ¢ bonding pathways. Figure 4 shows the F —¢

relation for the even and odd states of this unit cell.
C. Poly(spirocyclobutane)'b:10
To illustrate the difference between edge and corner-fused cyclic alkanes,

we now consider spirocyclobutanes. There are two CC bonds per unit cell and

two convergent pathways for tunneling. One finds for the even states (Figure 5)

1_(v—EP-99*(v—E)+a(y - E)* +49% — 507?

3.4
€ 272 (y - E) + 27%a — 473 (5-40)

€+

This equation was used to plot the E — € relation in Figure 6. Expanding this

for small ~:

1 1/E\? 2~ 2~
- === 1— =~ ceel .4b
€+ <7> [ 7 E——a+ (3.4b)

The convergent pathways give a prefactor of 2 in the decay per unit cell, which
enhances tunneling. Destructive interference arises from the CH bonds and
the interactions between bonds to the quaternary carbon atoms. Far from
the band, the factor of two dominates, and wave function propagation per CC
bond is v/2 times as efficient as in n-alkane. However, near the band edge, the
extra destructive interference at the quaternary carbon is significant, and the
full \/2 enhancement relative to n-alkane is not realized.

From the equations for this and other unit cells we see that the valence

band is split into a few closely lying bands. The one band approximation
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Figure 4 — Same as Figure 2 for edge-fused cyclobutane. The solid (dashed)

line shows the decay for the odd (even) states.
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Figure 6 — Same as Figure 2 for spirocyclobutane (even states). In all the
following molecules there are two CC bonds per repeating unit. The decay per

bond is shown ( € = /]e]).
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discussed in the previous section cannot be applied further to these bands
because the gaps are smaller than the energetic distance of the transfer state
to the bands. The sole inclusion of CC o bonds, however, remains valid and is
discussed further in the appendix. The bridge states odd with respect to either
mirror plane of spirocyclobutane, give zero contribution to electron tunneling

due to the molecular symmetry.!?
D. Poly(edge-fused cyclohexane)

A model for the steroidal and cyclohexyl donor-accepter linkers of Closs
and co-workers!! is a chain of edge-fused cyclohexane rings (Figure 7). As in
the edge-fused cyclobutanes, the leading term in the € + 1/¢ equation is E/v
raised to the power of the number of bonds in the unit cell along the most
direct tunﬁeling route. The next higher order terms arise from the destructive
interference due to the CH bonds and the one bond connecvtion between the
two parallel direct tunneling routes. The 2v/FE factor arises from destructive
interference between amplitude propagating along the edge of the molecule
with that propagating between the two edge pathways (for even bridge states).

For the even states, we solved (Figure 8)

a—-E ~ ~ 0 v/ E
2 —-E 27 0 2v/€
det ~ ~ -E 2y v/e+v | =0 . (3.50)
0 0 v Yy+a—FE v
Ye YE A+ e 2~ —-FE

Also, for small v (even states),

e+—1-=[£]2(1-— il —-21+---> . (3.50)
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Figure 7 — Same as Figure 3 for edge-fused cyclohexane.
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Figure 8 — Same as Figure 4 for edge-fused cyclohexane.
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For the odd states, the decay per unit cell is given by (Figure 8)

—E  qfe+~ 27 v/€
~NeE+ —FE 2~ 04 _
det o o a+y—E 0 =0 . (3.6a)
~e ~ 0 a—FE

For these odd states, the bridge functions as two independent n-alkane chains

with one less CH bond every other carbon atom. For small ~,
1 E]? 3
== - ) 3.6b
€+~ {’7} (1 Fop + ) (3.6b)

E. Poly(norbornane)'?

In this case ’(shown in Figure 9), a model for the linkers of Verhoeven and
co-workers, the propagation is similar to that through fused cyclohexane. The
differences arise (to first order) from the presence of two CC bonds in the place
of two CH bonds in the unit cell.

For the even states (Figure 10),

-E 2y 2 0 0 27/€ 0 \
~ a—FE ” 0 0 v/€ 0
¥ el ~E g Y ov+/e 0
det 0 0 ~ a—F ol ~ 0 =0
0 0 v v 11— FE v 2y
€ € v+ e ~ ~ —E 0
\o o 0 0 27 0 ~N+a—E)/
(3.7a)
and
1 E7? 2~ ~
S =2 (1 —3L 4. . 3.7b
€F € [7] ( E -« E * (3.75)
For the odd states (Figure 10),
a—E ~ 0 0 ~/€
¥ -E ¥ Y v+
det 0 ~ a—E ~ ~ =0 (3.8a)
0 g v -——E v
e v+ e ~ ~ —F
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Figure 9 — Same as Figure 3 for norbornane.
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Figure 10 — Same as Figure 4 for norbornane.
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and

1 [E]? 27 ¥

As in the case of fused cyclohexanes, the odd states assist electron transport
more than the even ones due to the absence of destructive interference from
the bond common to adjacent rings. The presence of the CC bond in place of
the CH bond compared to cyclohexane decreases the electron propagation.
We now discuss the simple interpretation of the above results. Let us
assume that the shortest pathway in the unit cell is composed of z CC bonds.

If we neglect pathways with more than = bonds, the decay can be written as

(v/E)* (3-94)

1 1
€+ =
€

"o

where P is the number of convergent pathways in the unit cell. This factor P
enhances the rate due to constructive interference of multiple pathways of
z bonds. The next correction we can include in Eq. 3.9a arises from the
destructive interference of pathways of length z with those of length = + 1.

To this order of correction, the decay can be written

¢+ % - %(7/1«:)3 1-Y /(B - a;)} , (3.95)

where the sum on ¢ extends over the extra bond of all z + 1 bond pathway. «;
is zero if this extra bond is CC and -0.5 eV if it is CH. Eq. 3.9b yields exactly
the first order expansions presented in this section up to this point.

It is important to recall that these corrections arise from the several pos-
sible tunneling pathways, not from backscattering. As discussed in Sec. II,
the backscattering corrections for periodic systems are the corrections to the

approximation € +1/e ~ 1/e.
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The leading terms in the expansions for small 4 may not be adequate
for calculating € in some experimentally important cases because v/E need
not be small compared to one, and prefactors of these and higher-order terms
may need to be included. However, they give a qualitative indication of which
bridges are more favorable for mediating electron transfer at a given tunnel-
ing energy. The discussion to first order about constructive and destructive
interference can be generalized. Pathways that differ by an odd number of
bonds interfere destructively, but those that differ by an even number of bonds
interfere constructively. Convergent tunneling routes such as those in spirocy-
clobutane give €+ 1/¢ a prefactor equal to the number of these routes. Parallel
pathways joined occasionally, such as in edge-fused cyclohexane or cyclobu-
tane, introduce destructive interference due to pathways one bond longer than
the “main” path. For o band tunneling, the odd states in edge-fused molecules
assist tunneling more than the even states. For electron tunneling through the
anti-bonding bands, the reverse is true (even states assist tunneling more than

odd states).
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IV. Discussion

We have seen that different destructive and/or constructive interference
for different bridges leads to different matrix elements. Because of destructive
interference, odd (even) states for edge—fused single ring hydrocarbons have
a slower (faster) decay than n-alkane. Norbornane, due to the additional
CC bridging bonds, is the least favorable bridge considered within a few eV
of the band. Donor and acceptor states may mix with both even and odd
bridge states. At large transfer distances, the wave-function amplitude will be
dominatated by the odd symmetry bridge states. Constructive interference is
important in spiro—cyclic alkanes, ‘and it will always slow the matrix element

decay with distance.

Figure 11 shows the energy dependence of the average wave function de-
cay per bond for the linkers discussed in the previous section (odd symmetry
states). Normal donors and acceptors lie a few eV from the band edge. At
these energies the relative mediation efficiencies can be understood from the
interference effects described in the previous section. The constructive inter-
ference in spirocyclobutane makes it the most effective hydrocarbon charge

mediator that we have considered.

Experimental results show that the model systems are about 2-4 ¢V from
the band. In order to determine this position more precisely, we need the full
AG study at all distances. (Experiments at fixed AG but with both donor
and acceptor energies moved up or down in the absolute sense would be par-
ticularly useful.) From these experiments, it will be possible to obtain € as a

function of energy and AG. This will permit connection of the redox energy
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Figure 11 — The decay per bond is shown for n-alkane (dashed lines), for the
even states of spirocyclobutane, and for the odd states of all other linkers. The
solid curves, from top to bottom, correspond to spirocyclobutane, edge-fused

cyclobutane, edge-fused cyclohexane, and edge-fused norbornane.
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scale with the energetic distance to the center of the band. For systems where
the donor and acceptor are both initially neutral, the importance of the AG
study is even greater because AG is transfer distance dependent (AG is smaller
for longer transfer distances). This problem appears in the norbornyl model
systems (actually, these systems are composed of both edge-fused norbornyl
and cyclobutyl groups) of Verhoeven and co-workers.!? For the recently re-
ported systems of Closs and co-workers!! (biphenyl radical anion donor, fused
cyclohexyl bridges, and napthylene acceptor) we expect the tunneling energy
to be about 2.5 eV on our energy scale. This result is preliminary and a real
quantitative prediction should include all of the bridge orbitals and will require

more experiments.

If a full experimental study as prescribed above were performed, it would
permit us to quantify precisely the redox energy scale. Comparison of the re-
sults for spirocyclobutane, fused norbornanes, and fused cyclohexanes for fixed
donors and acceptors would allow a check of the effectiveness of this calcula-
tion. Also, the AG/distance study would permit a test of our early prediction
that hole tunneling (valence band tunneling) rather than electron (conduction

band) tunneling dominates the charge mediation process in hydrocarbons.

Other complex bridges of biological relevance can be studied with similar
techniques. They do not necessarily need to be composed of hydrocarbon for
this method to be useful. Such an example has been given for electron transfer
through a protein backbone.!® Indeed, these methods can be extended and

applied to aperiodic systems if backscattering can be neglected.l¢

If the donor is weakly coupled to the bridge, the tunneling matrix element

decay is strictly exponential in the number of bridge groups independent of
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the size of €. This finding runs counter to claims of Hush* and Schipper5, that
matrix element decays such as 1/R™ with m ~ 3 are anticipated. Although
the origin of the Hush result is unclear, the 1/ R® prediction of Schipper arises
from faulty analysis of the problem. The wave function amplitude on unmixed
bridge orbital j on the Nt (terminal) bridge orbital in a one orbital per bridge

unit representation is!3

2 ) JN=
———sin . 4.1
N+1® (N ¥ 1) (41)
Considering electron (rather than hole) transfer through this band, the ener-
getically nearest state is the 7 = 1 state, and as a function of N, the amplitude
on the Nt site is:

1
C —_—
LN X N 1)

,as N — o0 . (4.2)
As the chain length increases, the density of states near the band edge changes
and one expects very many bridge state to mix with the donor and acceptor.

Indeed, we know the exact result in the N — oo limit!4 for the amplitude of

the donor localized wave function at the Nt* bridge site is

Cy x eVl | (4.3a)
where
1 E
—— .3b
€+ c= 3 (4.3b)

Hence, in the long chain limit the analytical form for the localized wave function
(and hence the tunneling matrix element) decay is a pure exponential. This is
the case even if backscattering can not be ignored (¢2 not much smaller than
1), in which case we solve the E — € quadratic equation exactly. That the decay

must be exponential in the long chain limit is known from Bloch’s theorem.
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The error in the analysis of Schipper is a common problem, which arises from
summing incomplete perturbation series. To obtain the exponential decay,
the sum over all the N states of the band must be included. It is of interest
that neglect of an entire band with energy far from the donor, acceptor, and
“relevant” band does not introduce functional errors to the modeling. Indeed,
if the interaction parameters are judiciously chosen and the band gaps are large
enough, quite satisfactory results can be obtained from one orbital per bond
models.

Finally, we emphasize the fundamental energy and orbital symmetry de-
pendence of the tunneling matrix element. Its value depends on the tunneling
energy and so, for a given linker, depends on the donor and acceptor energetics
and vibronic coupling. Individual calculations of the tunneling splitting can
not be used to predict the distance decay of thg tunneling matrix element for
different donors and acceptors on the same bridge. Sources of both construc-
tive and destructive interference in saturated tunneling bridges can be readily
identified. Generally speaking, pathways of equal length converging at a single
atom enhance the matrix element more than if these pathways converge at a

bond.
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Appendix

This appendix shows the validity of the o band approximation and presents
preliminary results for tunneling through unsaturated linkers. First, we show
the validity of separating the saturated linker tunneling problem into inde-
pendent bonding and anti-bonding mediated transport problems. That is, we
show that the use of just the bonding CC and CH orbitals reproduces the band
structure of the bonding states obtained from the more “complete”calculation,
which uses a full set of atomic orbitals and finds both the bonding and anti-
bonding bands. Second, we discuss tunneling in unsaturated periodic linkers.

For n-alkane, the full (bonding and anti-bonding) band structure is calcu-

lated from the equation

—-E ~+p8/e 24 0
~ + Be —-F 24 0
det = 0. Al
9| 0 y—E Bcw (41)
0 0 ,BC'H og - E

Bcy is the carbon sp3 orbital exchange interaction with hydrogen and ay is
the diagonal energy of hydrogen relative to carbon sp3. Figure A1l plots this
equation for'® Bcg = —9.14 €V, fcc = —8.5 eV, and ayg = .35 eV.1¢ Also
shown is a plot of Eq. 3.1a (offset by 8.5 eV).

Para-poly(phenyl) (Figure A2) is a linker of increasing interest.!%:16 It
is difficult to obtain quantitative predictions for unsaturated linkers because,
in contrast to the saturated linker problem, a consistent set of experiments
does not exist on which we can “normalize” ¢ for a given tunneling energy.
Also, dynamical effects due to phenyl ring rotation may be significant in sys-

tems without locked geometries. For para-poly(phenyl) chains we find for the
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Figure A1 — The band structure determined for n-alkane using only bonding
orbitals is shown with a dashed line. The band structure determined for n-
alkanel® including both bonding and antibonding states is shown with a solid
line. The structure of the bonding bands determined with the simple model
(solid line) reasonably reproduces those determined from the full model. Recall
that for —2 < €+1/e < 2, the states are delocalized over the bridge. The sigma

band energies were shifted by 8.5 eV for direct comparison with the full model.
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Figure A2 — The geometry and interactions in the para-poly(phenyl) chains

are shown.
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geometry of rings in Figure A3

L (B/B)* ~ (B/B)*(5+12) + (4 +17)

= - : (42)

The interaction between p orbitals in the ring is 8 and the interaction between

p orbitals on atoms connecting the rings is 4. The ratio of these quantities is

v=n/B.

Because the HOMO-LUMO gap is a few eV in these systems and v on
the order of the cosine of the angle between the rings, the small backscattering
approximation is most likely not generally appropriate. Taking v = cos 50°, the
equilibrium geometry of biphenyl, we find the E — e relation shown in Figure
A3. The maximum decay of the rate with distance occurs for the tunneling

energy at the center of gap (E = 0) where
(43)

For a 50° angle, therefore, the rate is expected to change by no more than a
factor of 10 per ring. Because of the relatively small band gap, € (and hence the
distance decay of the rate) may be considerably different for (photoinduced)
forward transfer compared to reverse (thermally activated) electron transfer in

these systems.
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Abstract

A model is presented for electron tunneling in proteins, which allows
the donor-acceptor interaction to be mediated by the covalent bonds between
amino acids and non-covalent contacts between amino acid chains. The impor-
tant tunneling pathways are predicted to include mostly bonded groups with
less favorable non-bonded interactions being important when the through-bond
pathway is prohibitively long. In some cases, vibrational motion of non-bonded
groups along the tunneling pathway strongly influences the temperature depen-
dence of the rate. Quantitative estimates for the sizes of these non-covalent
interactions are made, and their role in protein mediated electron transport is

discussed.
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1. Introduction

Recent experimental measurements of non-adiabatic electron transfer
rates (and intervalence bands) probe the distance dependence of the donor-
acceptor interaction in systems with chemically different non-biological bridg-
ing groups.! The distance depencence of the rates is clearly influenced by the
electronic structure of the bridge. Theoretical models for tunneling through
some of these bridges make a variety of qualitative and quantitative predictions
about distance, energetic, orbital symmetry, and topological effects on the elec-
tron transfer rate.? Native electron transfer proteins and modified proteins3 are
not as easily understood as these model systems because of the ambiguity in
assigning a tunneling “pathway” to the protein. In proteins, in contrast to the
model compounds, direct covalent pathways may not exist between donor and
acceptor or may be prohibitively long, as has been pointed out repeatedly.'®
By a “pathway” we mean the group of atoms (orbitals) that mediates the
donor-acceptor interaction. Because bond mediated interactions are expected
to dominate the direct donor-acceptor “through-space” interaction so severely
in most long distance charge transfer reactions, the proper picture for elec-
tron transfer in proteins (and, perhaps, in polymeric media) must include a
combination of covalent (through-bond) and short distance through-space in-
teractions. By “through-space” we mean interactions between groups not co-
valently bound but near each other in space. The non-bonded contacts may
be constrained by van der Waals, hydrogen bonded, or other steric restrictions
on the protein backbone. Experimental and theoretical estimates show that
completely ignoring the intervening medium gives the electronic wave function

(and hence the matrix element) much too rapid a decay with distance (see
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Ref. 2a, for example). Some workers choose an effective constant potential*
between donor and acceptor with height chosen to include the bond mediated

interactions in an average sense (see discussion in Ref. 2a).

The distance dependence of bond mediated interactions is determined pri-
marily by the atom types and bond lengths in the bridge. Fluctuations of the
distances between the orbitals of the bridge that assist electron transfer may
be the origin of a new type of temperature dependence for the rate. (Vibra-
tions coupled to the donor and acceptor give rise to the standard temperature
dependence.4?) The vibrations of the covalently linked bridge atoms (see Sec.
4) give a weak temperature dependence to the rate. The interactions between
the covalent legs, however, will be temperature dependent because events such
as ring flips or other relatively large amplitude motions (related to the ther-
mal expansion of the protein) may be involved. As such, the standard picture
of a constant, temperature independent tunneling matrix element may not be

adequate.

The aim of this paper is to present a simple model, which demonstrates
how a combination of through-bond and through-space donor-acceptor electron
transfer interactions can modify the standard electron transfer rate expression.
Consideration of both kinds of interactions gives a prescription for estimating
the importance of proposed tunneling pathways in proteins. Our goal is the
development of a model that allows donor-acceptor electron exchange mediated
by both covalent and non-covalent interactions with the intervening medium.
This problem is of interest for protein-mediated electron transfer because: (1)
the predicted through-“space” interaction between donor and acceptor is in-

finitesimal compared to the interaction actually observed in proteins and model
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systems; (2) the through-bond pathway between donor and acceptor in the pro-
teins may be prohibitively long or even non-existent, suggesting that a combi-
nation of covalent and non-covalent interactions may be important; (3) protein

structure is not frozen on the time scale of electron transfer.

The paper is organized as follows. Sec. 2 presents a model for the electron
transfer matrix element dependence on the path for a combined through-bond
and through-space pathway in a protein when all atoms in the bridge are held
at fixed positions. The decay resulting from wave function propagation along
a rigid protein backbone and between unbound protein backbone groups is
discussed. An estimate of the through-space interaction is made. Next, in
Sec. 3, we introduce one vibrational degree of freedom to the bridge and show
how this changes the rate. Generalizations and special cases of this model
are discussed in Sec. 4. We introduce vibrations between all bridge groups
to generalize the one mode result. The single bridge mode calculation is then
studied in the limit in where the bridge mode is used to simulate a weak, floppy,
non-covalent contact between two otherwise rigid chains. We estimate the sizes
of the intra- and inter- chain interaction parameters in proteins for use in the
next section. Finally, we present predictions for electron tunneling in proteins
with covalent and non-covalent interactions in which motion that modulates
the non-covalent interaction is included in the calculation of Tp 4, the tunneling
matrix element. A simple formula is presented for the matrix element decay
along a pathway composed of Ng covalent and Ng non-covalent links. We
discuss plans for making more precise theoretical estimates of the tunneling
matrix element in redox labeled and native electron transport proteins based

on the predicted through-bond and through- space pathways. A discussion of
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tunneling through covalent bonds in proteins is given in the appendix.
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2. Through-Bond and Through-Space Tunneling in Rigid Proteins
A. Through-Bond Decay

Consider a donor and acceptor bound to an extended periodic poly-peptide

bridge. The donor/acceptor interaction mediated by the bridge is
< ¥(donor + bridge)|H*™|¥(acceptor) > . (2.1)

U(donor + bridge) is an eigenfunction of Hf. In the interest of clarity, we
will not write the local vibrational wave functions at this stage. A Born-
Oppenheimer and Condon separation in these coordinates is assumed®’.

N-1
HE = Apalap + Bp(ala; +alap) + Z Biiri(alaiyzs +al ja) (2.2)

i=1-
Hint = ﬁA(aLaN + a}‘vaA) . (2.3)
¥ p has non-zero amplitude on the bridge orbitals at sites 1 through v;
¥ 4 has zero amplitude on the bridge. Mixing of the two states is provided by
Hint, { sums over all orbitals on the bridge. Fig. 1 shows the arrangement
of donor, acceptor, and bridge. In the weak coupling tight binding limit, the
wave function is approximately:

Up =0p(F) —}-'@fDZe'"IZchP(F— nd — by), (2.4)
2

n

where |a] is the separation between unit cells and the p atoms in the unit cell are
at positions I;p. The donor wave function (hence the matrix element) decays by
€ per unit cell. In a simple model for protein backbone, the six hybrid orbitals

in the unit cell give a six-by-six determinant relating E to e¢. This equation is
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Figure 1 — Schematic representation of the orbitals that mediate charge

transfer between donor and acceptor.
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written in the appendix. The E — ¢ relation is shown in Fig. Al for protein
and n-alkane.

In the appendix we develop a model for the wave function decay per bond
in the protein backbone and hydrocarbon chains. The relatively simple de-
cay per bond model is an excellent approximation to the full band structure
calculations for the chains and improves as the tunneling energy relative to
the nearest band increases (backscattering corrections to the decay enter as
the square of reciprocal of the energy to the nearest band). A comparison of
the accuracy of this per bond method with the full band structure calculation
in truly periodic systems is made in the appendix as well. In more detailed
calculations, both the ¢ and « frameworks (as well as pendant groups) should
be explicitly included. Because of the periodic approximation, the matrix ele-
ment decays by € per bridge unit. From the appendix we see that the typical
wave function decay per bond, ¢(per bond), is about 0.3-0.5. Recall that these
values are tunneling energy dependent. We also show in the appendix that for
large enough S (bond), we can reduce the problem to a one band problem with
an effective interaction of 4/2. « is the Hamiltonian matrix element between
hybrid orbitals on a single atom.

Because the wave function decay down the chain is rapid, we may ap-
proximate the donor wave function at any site n in the above periodic chain

as

n

180/(E — ar)] I ec(0), (2-5)

1=1
where ¢ includes all bonds along a chosen protein covalent (¢) pathway. oy is the
energy of the bridge orbital with which the donor interacts. The amplitude

that leaks across a weak, non-covalent contact with a neighboring chain of
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“periodic” protein depends on a different €, determined by the interacting

non-bonded groups.

B. Through-Space Decay

Assume for simplicity that the non-covalent contact through which the
electron tunnels is composed of only two orbitals, one on each backbone chain
(see Fig. 2). Assuming two identical orbitals, the transfer matrix element con-
necting them is on the order of V;,S;2, where V} is the orbital energy and S;o
is the orbital overlap. (This fact is commonly used to approximate Hiickel
parameters.l®) In the case of the covalent pathway, where most of the bond
energy is due to electron delocalization, the size of the matrix element of the
tunneling electron for exchange between the two orbitals is on the order of the
Hiickel 3 for a covalent bond. As discussed previously?®, there are some cor-
rections because the energy of the tunneling electron is not the same as that
of the backbone electrons. However, this energy difference is small relative
to the ionization energy. Because of this, #’s taken to fit optical spectra of
C — C bonds can be used to calculate electron tunneling through these cova-
lent pathways. The non-covalent contacts do not involve a bond, so there is
no simple experimental way to estimate the size of the non-covalent electron
transfer interaction. Therefore, we must rely on theoretical estimates of this

interaction.

In the delta function approximation to the binding potential, the exchange
interaction between two atoms is 2V exp(—Rj24/2mVy/h?), where V} is the

binding energy of one delta function and R, is their separation. As previously
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Figure 2 — Schematic representation of an electron transfer pathway com-

posed by two covalent bridges with one significant non-covalent interaction.
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mentioned, the energy may need to be corrected because of the difference be-
tween the orbital and tunneling energy, but the orbital value is a good estimate.
In reality, the exchange interaction should be calculated for two more realistic
orbitals. The non-bonded interaction is, again, an exchange interaction on the
- order of V3S12 where S12 is the overlap. S, is expected to have an orbital
symmetry dependence in real systems and an exponential distance decay of
exp(—Ri2 2me/h2).

As an example, assume that the two interacting orbitals are two ¢ carbon-
carbon bonding orbitals (other orbitals, such as CH bonds, carbony! groups,
etc. may be important in real systems). Recall that E is the energy of the
tunneling electron in eV relative to the orbital energy V3 and is about 10 eV.

The delta function potential model for the non-covalent sites gives

en—c(J) = (2Vb/ E) exp(—1/2mVy /R*Ryy,) = (20/E) exp(—1.7R13;), (2.6)

where V}, is the absolute binding energy of the tunneling electron (here approx-
imated as 10eV) and R;3 is in A. In a more realistic approximation, we might
model the bonds with two 1S hydrogenic orbitals (orientation effects and more
complicated radial wave functions may correct this with a prefactor), each with

a binding energy of 10 eV. The overlap between these orbitals is
1
S12(18 —18) = {1+ aR + g(ocR)2 exp(—aR). (2.7)

For an orbital separation of 4A (typical van der Waals distance for carbon
atoms), this interaction energy is about 0.25 eV, which gives €,_, about 0.05
(n — ¢ signifies a non-covalent contact). This interaction is very sensitive to
distance. A 4 A separation between sigma orbitals is as short as may be ex-

pected. For a 5.5 A separation, the interaction is 0.03 eV, which gives €,_.
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about 0.005. Also, this 1S orbital approximation is rather crude, but in the
weak coupling limit, the leading exponential term depends only on the energy
of the state and dominates the distance dependence of the interaction. The 1S
representation certainly overestimates the prefactor of the overlap because, in
the real systems, the wave function is anisotropic and has less density perpen-
dicular to the bond than parallel to it (at a given distance from its center).

This effect may severely reduce the through-space interaction.
C. Combined Through-Bond and Through-Space Pathways

Assuming that there are Np covalent bonds and Ng non-covalent jumps
along a given pathway, the .9imple.§t expression for the tunneling matrix element
is

Ns Ng
Tpa = (BpBa/E) H €c(7) H €n—c(J)- (2.8)

i=1 j=1
Here the energy, E, is measured with respect to the first orbital (bond) with
which the donor interacts. Estimates of ¢, for amino acids and linear hydro-
carbon are given in the appendix. The €’s are tunneling energy dependent.

The energy to be used to calculate € (see appendix) can be approximated
E(eV) = —[Ey/2(D) + Ev/2(4)]/2 - 5.1, (2.9)

measuring redox potentials vs. NHE.2¢2¢

The simplest way to improve Eq. 2.8, is to make a periodic approxima-
tion for the protein backbone and to take more accurate values for the decay
per “unit cell” of the protein backbone on the tunneling pathway rather than

calculate the decay per bond. A similar treatment using alkane parameters
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may be applicable for some amino acid side groups. Typical values of a, where
¢ = Aexp(—aR), are 0.6 A~! and 1.7 A~! for through-bond and through-
space interactions, respectively. Predicting the number of through-bond steps
giving “equivalent” decay to one through- space jump depends crucially on the
different prefactors (A’s) for the interactions and requires more detailed study

in the future.
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3. Models for Bridge Modulated Electron Tunneling

The pathways for electron transfer in proteins can be composed of both
bonded and non-bonded legs. Distance fluctuations within these legs and be-
tween legs of the pathway can affect the rate and its temperature dependence.

In this section we introduce the formalism needed to calculate bridge me-
diated electron transfer rates when the interactions in the bridge are allowed to
fluctuate. Recall that Tp4 calculated in Sec. 2 assumed a purely static bridge.
In Sec. 4 we will use the rate expressions developed here for particular kinds
of bridge interactions which are expected to be important in real proteins.

Consider the Hamiltonian for the model of Fig. 2 where vibronic coupling
to only one of the “bridge” interactions is included (H*"t). This is the simplest
model for understanding how bridge vibrations influence electron transfer rates.
In this séction and in Sec. 4 we discuss when these bridge vibrations must be
explicitly included in the calculation. Local vibronic coupling on the donor

and acceptor is also included. The Hamiltonian is

H = Hel + gruc +Hint, (3‘1)
where

He = HY + HY (3.24)
Hnuc - ngc + quc +le\zruc (3.2b)

N-1
HE = Apalap + Bp(alay + alap) + 8 Z (alaipr+al )  (3.2¢)

1=1

Nr—1

~~

He = AAaLaA + ﬂA(aLaNT + a;,TaA) +5 Z (a}aﬁ_l + a}+1a]~) 3.2d)

j=N+1



236

H" = g% exp {—a'[(Rn+1 — Rn) — R%]} (el ani1 + a}r\,HaN) (3.2¢)
Hpve = <b* bp + ) rQp + Apalap(bl, +bp) (3.21)

HRe = (bT ba + ) RQO4 + Aaalas (bl +ba) (3.29)

Hpue = (b* by + > huw. (3.2h)

The donor and acceptor localized states solve
{H® + H™°}¥ = E¥ (3.3)

The two localized electronic states are ¥p and ¥ 4. ¥p has non-zero amplitude
on bridge sites 1 through N; ¥4 has non-zero amplitude on bridge sites N +
1 through Np. H'™ couples these two states. o' in Eq. 3.2e is the decay
length for the exchange interaction betweeen residues N and N + 1. The
prime notation is used to distinguish it from the usual designation of « as the
decay constant for the tunneling matrix element in a truly periodic covalently
bonded medium (o' is about 1.7 A~1).2% A single local vibrational state is put
on D and A. This can easily be extended to multiple modes per site. For
simplicity, a one orbital per unit cell model has been used in Egs. 3.2¢ and

3.2d.

The initial and final states involved in the transfer event are:
Ur = Yp(z;yp;ya)xi (o)X} (va) @k (yn) (3.4a)
and

Ur =Va(z;yp;¥a) X8 (yp — ¥D)XF (va — vQ) @k (yn) (3.4b)
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where z is the electronic coordinate, y’s are nuclear coordinates, yy = (Ry4+1—
Ry) — R°, and a Born-Oppenheimer separation is made for all nuclear modes.
X’s are used for local vibrational wave functions and ®’s are used for bridge
mode vibrational states. This separation of time scales has been discussed
previously for the local vibrations.® It should be valid for the bridge mode when
B1?/h >> w. Also, we assume that the relaxation times of all nuclear modes
coupled to the problem are fast enough so that the donor survival probability

decays exponentially in time. The electron transfer rate, then, is given by

2 .
kgr = ..h’i Y Br) | < U|H™|¥r > |26(Er — Er). (3.5)
I F

The delta function in Eq. 3.5 is purely formal and is included to guarantee
energy conservation. A discussion of how to broaden these energy levels is
given elsewhere.’ The yx mode does not changg equilibrium displacement upon
charge transfer (although it may gain or lose vibrational quanta in the proc-
ess) because it is spatially well removed from the sites of charge localization. In
contrast to most previous studies on model systems (Ref. 6 is the exception),
the perturbing Hamiltonian (H*"!) is explicitly modulated by one nuclear co-
ordinate (more than one such coordinate in the bridge is added in Sec. 4). In
Hamiltonian 3.1 we have one bridge mode and the coordinate for this mode is
the displacement from equilibrium of residues N and NV + 1 (defined as YN)-
Because we are interested in the way in which the bridge mode affects the
dynamics of the transfer reaction, we will consider from this point only one
local mode, yr,, coupled to the donor or the acceptor. The affects described in
this section are “non-Condon” in origin; i.e. they arise from matrix elements

of the form

< @k (yn)lezp(—a'yn)|Bw (yn) > . (3.6)
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The Condon approximation will be used to simplify the matrix element only for
the local mode, not for the bridge mode(s). Non-Condon effects arising from
the local modes have been discussed at length®7 and will result in qualitively
different effects from those described in this paper.

In the one bridge mode model, the absolute D — A distance, is held fized
and yy varies, modulating the overall donor-acceptor interaction. This analysis
can easily be extended to systems with a direct donor-acceptor interaction and
a varying donor-acceptor distance, if the yy coordinate is redefined as the
donor-acceptor separation.

Approximating the bridge as a periodic chain ezcept between sites N and

N + 1, the matrix element < ¥;|H*"|¥r > can be written (x; = |1 >)

Bp

< -E—GN(I’k(yN)[ﬁfq exp{——a'yN}l%eN"—N"IQk: (yn) ><ili’ >, (8.7q)

SO

27
kot = =T 4|

x Y Y " B(k,T)B(:,T)| < ®k(yn)| exp(—a'yn)|@r (yn) > 2] < ilé" > |2
k,k! ¢,

x8[(s' — §)h0 + (k' — k)hw — AE), (3.7b)

where

BpBaN?, .. _
7340 = (2284) (srm e,
11 =< ¢By|Hint|#By,, > at yny =0,

and

in this (one band) model.?* Here E is the electronic energy of the tunneling

electron relative to the center of the band of bridge orbitals. It is assumed
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that this energy is weakly dependent on the local nuclear coordinates so that
the Condon approximation is valid.® 8;? is the exchange interaction energy
of orbitals NV and N + 1 at separation R%. < /|7 > is the nuclear Franck-
Condon factor for the local mode. [/ > and |i > are eigenstates for the
shifted and unshifted harmonic oscillators, respectively. € is the Bloch factor by
which the localized donor and acceptor states decay in the bridge. € depends
parametrically on yz, the value of which is fixed when making the Condon
approximation. The Condon approximation for the local modes allows any
number of local modes to be added to the problem. They will factor out of the
matrix element in the same way.

A special case of coupling to a bridge mode, allowing only zero or one
phonon exchange with it, has been studied.® In that model, transfer through
a potential barrier of modulating height was considered. Here, the orbital in-
teraction between two groups in the intervening barrier is allowed to fluctuate.

We next consider several specific examples for which kg7 may be calculated.

A. Rate Expressions

(1) Low Temperature limit (one local mode, one bridge mode)

In this case 1 = 0, k = 0, and 'A} + k'hiw = AE. i labels the local mode
(x) and k the bridge mode (®). At low temperature the first integral in 3.7b is
the overlap of a ground state harmonic oscillator of equilibrium displacement
a'h/mw with an oscillator centered at the origin (from combining exp[—o’yx]

with ®o(yn) ). At low temperature (kT < hw, A(2), the rate is-



240

2m in
kot = | < U (%;y1) Bo(yn) | H™ [ Wa(z;yz) Oxs (yn) > [2

x| < 0|i' > |*6(Er — EF) (3.84)

or

12 AE/RQ 12 k' . &’
kepr = ?1|TBA|2exp o R Z o k| L) exp(ZX)X" .X)X
3 2mw Py 2mw k" ¢!

x8(i'hQ + k'hw — AE) . (3.8b)

X is the reorganization energy of the local mode in units of A0 and k' is the
number of vibrational duanta. excited in the bridge mode due to transfer.
The yn mode gives a matrix element enhancement of exp[a’ h /4mw] com-
pared to the result when yy is held fixed at zero (Condon approximation in
bridge mode). Hence, the bridge enhancement is particularly important when
the interaction associated with yy decays rapidly with distance (o’ large)
and/or when the zero point motion of the oscillator is large. The principal

2

effect on the low temperature rate can be written exp[a’ < y? >], where

< y? > is the mean-square displacement of a ground state harmonic oscillator.
(2) General Rate (one local mode, one bridge mode)

The electron transfer rate is
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2r .
kg = _ﬁ_;TgAP Z ZB(z,T)B(k,T)
4 kk!

x| < @k(yn)| exp[-'yn]|®w (yv) > *] < xilyr)lxe (vr —v8) > 7
x8[(¢" — 0)RQ + (K’ — k)hw — AE]. (3.9a)
B(i(k),T) is the probability of having i(k) vibrational quanta in the local

(bridge) mode prior to electron transfer. Following the standard treatment for

such sums over thermally populated states®, we find

kgr = %]TgAlz Zexp[—X(2ﬁL +1)] (

m,p

7z +1\P/?
nr

xIp (ZX [ﬁL(ﬁL + 1)]1/2> exp [+5(2ﬁ3 + 1)] (M)mﬂ
np

XIm(2S(A5(RE + 1)]Y/2)6 [phQ + mhw — AE] (3.95)

where we defined m =k’ —kand p=14'—1, so

2
kpr = _7:L’3|:rg,,|2 Y " F.C.p(local mode)Bp(7ip)6 [phQ + mhw — AE],
m,p

(3.10)
where S = o/’/(2mw). I; is a Bessel function. Here F.C. is the Franck-
Condon factor for the local modes and B is the contribution to the rate from
the bridge modes. The delta function is purely formal. To obtain numerical
expressions for the rate, broadening of the energy levels must be included.
Discussions of how to accomplish this have been given.5:8% The simplest way
is to assume a uniform density of states for the acceptor levels of 1/%w’, where
w’ is the frequency of the slowest mode of the problem. This approximation is
not always valid and is discussed in Ref. 5. The low temperature rate (kT <

hiw, KQ); i.e. Eq. 3.8, can be derived from this expression.
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To compute the high temperature limit for the rate (kT > A}, Aw) we

use the fact that for large z,

L(z) — \/zl_wzexp {z - g} . (3.11)

Substituting 3.11 in 3.10 we obtain a Gaussian form for the rate,

4SxT Shw] {(AE—Shw—Xhﬂ)z}
exp

_ 2T 0 2
ket = 3 1TD4l exp{ hw | 3T 4xT (Shw + XhQ)

X ! .
V4n(Shw + XhQ)kT

(3.12)

When X% > Shw, the reorganization energy of the local mode is much
greater than the “pseudo-reorganization energy” of the bridge mode (this as-
sumption is reasonable for typical reorganization energies), we find the high

temperature rate is:

_ 2m 0 2 1 4SICT _ 2
kgt = % ITHAl T X exp { S | exp {(AE XhQ) /[4icTXhﬂ]}
= %]T};Alzexp [4§ZT} F.C.(local mode). (3.13)

For slow classical modes (fiw ~ 10 cm™!), the above assumption is reason-
able because if Shw were ~ 1 eV, we would get a temperature depehdence
of exp[320xT (¢m~1)]. This dramatic temperature dependence is non-physical
and has never been observed. For example, if < y? >= 1 A2, this would
correspond to o of 180 AL,

In the high temperature limit, the effect of the bridge enters the rate as
exp[2a/? < y? >], where < y? > is the (temperature dependent) mean-square
displacement of the bridge oscillator. In the low temperature limit this effect

entered as exp[a’? < y? >] (see Eq. 3.8).
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(3) “Semi-classical” calculation of the rate

Eq. 3.7b, the general rate expression where one local mode and one bridge

mode is included, can be written (8% = |k >)

27
kgr = —h—iTgAlz

X ZZB(k,T)B(i,T) < klexp(—d'yn) |k’ >< k'|exp(—a'yn)|k >
PR

x| <i)i' > |2 §[(s — )R+ (k' — k)hw — AE]. (3.14)

We perform the semi-classical approximation, assuming that the motion of the
bridge oscillator is slow enough so that no energy is exchanged between the local
and bridge modes. This is accomplished by assuming < n|exp(—a'yy)|m >=
0, if n # m. This is the same as assuming that exp(—a'yy) commutes with
HE%e, the Hamiltonian of the bridge mode (Eq. 3.2h). If quantum effects are
washed out by coupling to the bath, i.e., the density of states becomes a smooth
function of the energy instead of being sharply peaked with peaks separated
by energy Aw, neglecting such commutators is a reasonable approximation®.
In this limit,
kgt = 27”1T3A|2 >3 " B(k,T)B(1,T) < k|exp(—2a'yn) |k > | < ifi' > |2
ki

x8[(i' — i)hQ — AE]. (3.15)

The bridge contribution to this rate, which is

ZB(k,T) < klexp(—2a'yn)|k >= (exp(—2a'yn)), (3.16)
k

can be written
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(exp(—2ayn)) =[exp(—2a’yN)P(yN)dyN, (3.17a)

where

P(yn) =Y _ B(k,T)®%(yn) B (yn) (3.17b)
k

is the probability distribution function for the bridge coordinate. We call
this model “semi-classical” because this distribution function need not be a
classical one, but the final rate is not the quantum result. For this probability

distribution function, Eq. 3.17a can be calculated exactly® and

(exp(—2a'yn)) = exp(20'* %), (3.180)
where
h hw TS
N = th — = : 18
EN = o O kT T a2 (3-180)

This is equivalent to writing

P(y) = i } . (3.19)

1
V2% [ 2u3

The final semi-classical rate may be written as
[— Eg-}TgA 12 (exp(—2a'yw)) F.C (local modes), (3.20)

In the high temperature limit this is exactly Eq. 3.13. This semi-classical re-
sult gives a rate, which is an average of all bridge coordinate configurations.
Therefore, Eq. 3.17a may be used in more general situations, i.e., when the
bridge potential is not harmonic, and P{yxy) is therefore not Gaussian. Multi-

ple bridge modes enter the rate as products.
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4. Applications of Bridge Modulated Tunneling
A. Bridges with more than one vibrational mode

We consider in this section electron transfer when the donor and acceptor
are coupled to the same bridging unit and the direct through- space interaction
can be neglected. As an example, this model simulates the case in which the
donor and the acceptor are bonded to the same protein chain, and the through-
bond pathway completely dominates the electron transfer rate. This may not
be a physically meaningful picture for an entire profein but is certainly useful
for understanding “legs” of the pathway. In Fig. 3 is shown a schematic repre-
sentation of the simplest possible bridge, which includes N identical “atoms”
(orbitals) connected in a ring by N identical springs (“bonds”). The donor
and acceétor are rigidly linked to this bridge via “atoms” 7 and 7, respectively
(4 > ¢ ). The equilibrium separation between neighboring bridge “atoms” is
Ro, and ARy is the displacement of atom k from its equilibrium position. The
atomic masses are M, the spring constants are k, and wo = \/k/M.

We write the total Hamiltonian in analogy with the one in Sec. 3 as:

H=Hp+ Hs+Husp+Hy , (4.1)
where
Hp(a) = Ap(a)ah4)aD(4)» (4.2a)
Hap = Bessexp {—c/(AR; — AR,)} (ahau + alap), (4.20)
and
p: 1
Hy = Z Ej\gf + —2-ng [(yg)2 + (y;)z] . (4.2¢)

q
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Figure 3 — Schematic representation of a chain of covalent bridge orbitals.
These bridge orbitals are connected in a ring by flexible links. The mass
associated with the site of each orbital is M and each link has a spring constant

k= Muwi.
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In order to keep the notation clear, if in the last section we call the interaction

between two atoms in the chain
Birri = P9exp{—a/(ARi}1 — AR} , (4.3)

then here, assuming that back scattering can be neglected, the net interaction
between donor and acceptor with bridge atoms at their equilibrium positions

is

BpBa [ﬂeq] =9

= |5 (4.4)

Bers =

yg and yg are the normal coordinates for the ring of atoms. The normal modes

of vibration for the ring are (for NV odd)

N
1
q=‘é‘Z s(kgn)ARn for ¢ =0,1,...,(N —1)/2 . (4.50)

and

Ql

N
Z (kqn)AR, for ¢=1,...,(N —-1)/2 , (4.5b)

and where Cy is a normalization factor and is equal to 1/N/2 if ¢ # 0. The

frequency associated with the ¢t* mode is

wg = 2wd(1 — cos k) , (4.6)

where cos(kgN) = 1. For simplicity, we consider N odd; thus, ky = 27q/N,
where ¢ = 0,---,(N — 1)/2, and all eigenvalues except ¢ = 0 are doubly
degenerate.

In order to calculate the tunneling matrix element dependence on the
bridging coordinate vibrations as in the one-mode case, AR; — AR; can be

expanded for large N as
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(N-1)/2
AR; — AR; = Z \/%{ [cos(kng) — cos(knt)]yg
+ [sin(knJ) — sin(kni)]y:} . (4.7)

The w; = 0 mode is always neglected because it is never coupled to the problem.

Substituting Eq. 4.7 into Eq. 4.2b, the problem becomes similar to the
one described in Sec. 2. The difference is that instead of one bridge mode,
N — 1 independent bridge modes affect the rate. Therefore, the net effect of
the bridge modes on the rate is a product (exp(—2a’yx)) in the semi-classical
limit, which in the harmonic case goes as exp(2a’ 2 < yZ >). As an example,
we calculate here the case where j = 0 and 7=1. In our case, for large N, the

density of states of the ¢ or s modes is

N
2woV2

o () = (4.8)

and

[ V]

(cos [k(w)] —1)* + sin? [k(w)] =

518
B

(4.9)

The equation above shows us that when j = 1 and ¢ = 0 the coupling to a
mode of frequency w is proportional to w?. Using Eqgs. 4.8 and 4.9, we get in

the semi-classical limit (Eq. 3.18) a bridge temperature dependence of

,2 V2wo 2w2 9
exp 4 2« ; dw p(w) No? <y*(w)>p (4.10a)
or
12 V2w d w"’ 2
exp ¢ 2a / w <yw)>p . 4.10b
P i Vawd <Y (w) (4.100)

In the high temperature limit this term becomes exp{(2¢/*kT)/(Mw2)}, which

is equivalent to having coupling to only one mode of frequency wp. In the low
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temperature limit it is exp{2(a/’%)/(2M+/2wo)}, which is equivalent to being
coupled to only one mode of frequency v/2wq. Eq. 4.10 is just a particular case

but it gives us an idea of the size of the effect of these chain modes.

For a covalent bond mediated tunneling pathway, the atomic vibrations
are of very small amplitude, and approximating the bridge as a truly rigid
structure is quite acceptable. This is discussed in more detail in the following

subsections.
B. Estimates of Parameters for the Dynamical Effects

(1) Covalent bonds

Fluctuations of the interatomic distances in the covalently bridged donor-
acceptor systems are expected to have small effects on the transfer rate. A
value of o for the bridge interaction (Eq. 3.2e) is of the size 1.7 A~!. This
value is large because the interaction between two groups in a tight binding
approximation decays as exp(—4/2mV,/h%R) where R is the distance between
atoms and V} is the binding energy of the electron on an isolated atom.2% This
interaction is model dependent and depends on the symmetry and energetics
of the interacting sites. The above number is just an order of magnitude
estimate for the decay constant. From the above discussion we note that the
bridge effect on the rate reduces to one effective oscillator with frequency on
the order of a single vibration. For a C — C vibration, u? (Eq. 3.18) is of the
order 0.002 A? (T=0) and, because the frequency of the vibration is so large,

this does not have a temperature dependence. Therefore, for the covalently



250

linked atoms, the rate correction due to the bridge covalent bond vibrations
is insignificant and temperature independent. Hence, it is reasonable to treat
the covalent tunneling pathway as rigid. Because of this we will approximate

the through-bond decay simply with the method presented in Sec. 2.

(2) Non-covalent Contacts

Fluctuations of the through-space distances from their equilibrium values
are expected to be much larger than the through-bond distance fluctuations.
Hence, large fluctuations in the size of the non-covalent interaction caused
by these fluctuations may occur. In the harmonic case (Eq. 3.18a), distance
fluctuations giving a mean square displacement from equilibrium of 1.0 A2
enhance the rate by a factor of 400, but fluctuations of 0.15 A2 enhance it
by only a factor of 2 (for a tunneling energy of 10 €V). Thus, the non-bonded
groups will introduce a temperature dependence arising from thermally induced
changes in the non-covalent interaction energy, depending on the magnitude of
the separation fluctuations between these groups. Also, anharmonic effects on
the temperature dependence may enter because of hard wall repulsion of the
residues because the groups, after a certain point, may fluctuate to larger rather
than shorter distances with further temperature increases. When these effects
are important, we must have the proper (temperature dependent) distribution
of the distance between contacts. This distribution can be determined from
molecular dynamics calculations. With the correct distribution, Eq. 3.17a can

be used to calculate the effect of these fluctuations on the rate.
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C. Matrix elements for pathways with thermal fluctuations

We can now generalize Eq. 2.8 for the electron tunneling matrix element
by including its temperature dependence. In the limit of rapid wave function

decay the tunneling matrix element is

Ns
[Tpal® = |Tpal® H (exp(—2a'y;)), (4.11)

where Ns is the number of through-space jumps and T , is the matrix ele-
ment given by Eq. 2.8 for the equilibrium (zero temperature) geometry. This
expression shows that systems with the same donor and accepfor (and therefore
same local modes) may present completely different temperature dependences,
depending on the magnitude of the fluctuations of the “through-space” dis-

tance(s).
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5. Conclusions

We have introduced two important new ideas. The first is the presenta-
tion of a consistent means of calculating rates in complex systems having both
through-bond and through-space elements in the tunneling pathway. Applica-
tion of this model to the calculation of electron transfer rates in real protein
systems is a natural extension. The second is that the temperature dependence
of electron transfer rates may arise from “bridge” (tunneling medium) modes

in addition to local modes.

It is important to bear in mind that the temperature dependence of the
rate that we find is due to fluctuations of the interactions within the bridging
medium. It does not arise from fluctuations of the absolute donor-acceptor
separation. The observed temperature dependence of electron transfer may
have contributions from these modes as well as the standard contribution from

vibrational modes coupled directly to the donor and acceptor.

Weak non-bonded interactions along the tunneling pathway cause tremen-
dous attenuations in the decaying wave functions. It is, therefore, not surpris-
ing that large rate differences may exist in transfers over similar distances,
driving forces, and energetic distances from the relevant “bands” for proteins

compared to other (covalent and non-covalent) model systems.1:!!

This model is especially suited to compare rates of protein mediated elec-
tron transfer in three classes of systems: (1) those with surface attached redox
probes at different locations (see Ref. 3a and references therein), (2) those with
fixed donors and acceptors and the“medium” modified by chemical means’?

or by site directed mutagenesis®?, and (3) those with identifiable competing
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electron transport pathways with different rates!3. The determination of the
dominant electron transfer pathway(s) in these systems is a challenge that will

be taken in the future.
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Appendix

Wave function decay along covalent pathways

The E — € relation for the protein backbone (C — C and C — N bonds

only) is:
(aN - E) IN 0 0 0 ﬂglz,/é

w  (en—E)  BS) 0 0 0

0 Y a®—_E 4® 0 0
(3) 3 =0,
0 0 & a® - F Bcc 0
0 0 0 Bcc o@D —E ~&)
BE) ¢ 0 0 0 73 (a® - E)
(A1)

where the (2) and (3) superscripts refer to sp? and sp® orbitals, respectively.
The energy of the carbon sp® orbital, a(3), is taken as the energy zero. Figs. Al
and A2 show plots of e +1/e vs. E and €!/3 vs. E for the parameters in Table
1. Fig. A3 shows the orbitals in the protein backbone unit cell. For the C — C
and C(sp®) — N bonds -8.5 eV is a good estimate for 5.2¢ A larger value
is probably appropriate for the C(sp?) — N bond due to larger overlap and
binding energies. We are working at such a crude level of theory, neglecting
all (variable) side groups, so we use only one 8 in the calculation.

If we neglect backscattering between bonds, we can calculate the matrix
element decay per bond in the protein. A “bond” includes the ~ interaction
immediately before the bond and

¥iP
(o — E)(@tiy1 — E) — 5%

In this limit, the decay per unit cell in the protein is the product of the three

€ =

(42)

¢’s for the bonds.
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Figure A1l — ¢+ 1/¢ is plotted vs. energy for a six orbital per amino acid
model for the protein backbone (solid line) and a two orbital per C-C bond
model for the backbone of n-alkane (dashed line). The unit cells are: [N(sp®),
N(sp%); C(sp%), C(sp®); C(sp?), C(sp®)] and [C(sp®), C(sp®); C(sp®), C(sP®);

C(sp®), C(sp®)], respectively.
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Figure A2 - Iell/ 3, the effective decay per bond for backbone tunneling, is
plotted vs. energy in the band gap region for the six orbital per amino acid
model for the protein backbone (solid line) and two orbital per C-C bond model

(six orbitals per unit cell) for the backbone of n-alkane (dashed line).
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Figure A3 — Schematic representation for the orbitals in a protein backbone

unit cell.



TABLE 1 - Orbital Parameters
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Parameter Energy(eV)
a(d) 0.00
a? -0.70
any -3.30
8 -8.50
~ &) -2.20
1) -2.03
N -3.10
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From earlier work, we expect that most electron transfers at physiolog-
ically important redox potentials are mediated by the valence band of the
protein. From Fig. Al, we see that the valence band edge is at about -7.1 V.
Therefore, we can check Eq. A2 for the protein backbone. For protein, Eq. A2

predicts a decay per unit cell of

€1€2€3 = l: A }
FE T | {on - B) (@@ - B) - 7
~33 ~(2)3
@ =)@~ 7) —m] [(am “F)(ax ~ B) -ﬁ2}’ (43

where 1, 2, and 3 refer to N(sp®) — C(sp®), C(sp3) — C(sp?), and C(sp?) —
N(sp®) bonds, respectively. At E = —5.5eV (1.5 eV from the band edge), this
predicts a wave function decay of 14, compared to the exact band structure
calculation (Eq. A1) which gives a decay of 12 per unit cell at this energy.
Farther from the band (e.g., E = —4.0 eV), Eq. A3 predicts a decay of 23
compared to 22 for Eq. Al. This shows that neglect of backscattering gives a
more rapid decay with distance than the exact result. However, it gives quite
reasonable results and provides a prescription for including incomplete unit
cells and aperiodic side groups in the calculation of the matrix element. This
method defines a decay per bond, so when computing the rate, we need only
determine the total number of each type of bond along the pathway of interest.
Although this is simpler, we should use the band result (Eq. Al and Fig. A2
in the case of protein) to calculate the wave function decay in long backbone
segments.

This crude model for the protein backbone gives values for band widths
and gaps on the order of those found in more extensive calculations of protein
electronic structure.l* The variations found in those calculations between pro-

teins with different side groups or secondary structure are much smaller than
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the precision that we can claim for our model. Also, side groups affect the
band states more than the gap states (donor or acceptor states). For these
reasons we can justify our periodic model for the backbone. Also, the validity
of neglecting backscattering to give a per bond decay shows that contributions
to the wave function decay from the pendant groups enter as higher order
corrections to the decay.

Secondary and higher order structure will influence the quality of the peri-
odic approximation for backbone tunneling if non-nearest neighbor interactions
are important for the through-bond decay. If such interactions are determined
to be important, this model will have to be improved to include these effects.
Experience from model compound calculations (and other band structure cal-
culations) suggests that these corrections are not essential to understand the
main features of this problem.

A two orbital per site model of n-alkane gives

—E  ~+8/\ _
det(7+ﬂe' _E >—-0. (A4)

To compare this result directly to Eq. A1, we put all 4’s equal to v(3) and all
a’s equal to a(®. Fig. A4 shows the orbitals in the n-alkane unit cell. This
model may be useful for calculating decay in some protein side groups. The
valence band edge occurs at -6.3 eV, using the parameters in Table 1. The
decay of the wave function per three bonds at E = —4.0 eV (~ 2 eV from the
band edge) is 25. Using the decay per bond equation for hydrocarbon (the
analogue of Eq. A3), we predict a decay of 27. The offset of the ¢ per atom
vs. E plots for protein and hydrocarbon is due mainly to the greater electron
binding energy of nitrogen.

A one-band model for tunneling in a two-band system is appropriate when
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Figure A4 — Schematic representation for the orbitals in an n-alkane unit

cell.
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the interactions in each cell split the backbone states into bands well separated
(their centers are at +4) in energy relative to their widths (2|v|) and the donor
(band gap) state lies close to one of the bands. This condition is |E — 8| < |8].

The wave function decay, when 42 < $? in the small backscattering limit, is

r_ B ~ =9l
CCE-AHETH " 2E+ A (45)

This is exactly the one band limit for wave function decay previously dis-
cussed?®, For the more general case of different atoms in the unit cell, if 3 is

large enough,

= VB
(B - ou)(E - aip1) — B2
_ VP
femss (£ (2552 (s o+ [ege])
¥i/2

~

T E-(oitoai)/2-0

(46)

for E < 0and 8 <0.

As an example, consider pentaamine(histidine) Ru(II/III)- ferricyto-
chrome ¢, (III/II) studied by Gray and co-workers. The mean redox poten-
tial of the sites is +0.175 V vs. NHE. Converting to our energy scale (nor-
malized as in Ref. 2e, but for the current parameters) we find a tunneling
energy on the orbital energy scale of -5.3 eV (Eq. 2.8). This corresponds to
€1 = —0.427, e = —0.391, €3 = —0.395, and €;€2¢3 = —1/15. These three
values are calculated with Eq. A6. From Eq. Al or Fig. Al, at £ = —5.3 eV
¢(per amino acid) = —1/13. Wave function decay in n-alkane at this tunneling
energy is -0.46 (exact result) and -0.42 (neglecting backscattering) per C — C
bond.
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To conclude the discussion of the parameters, we point out that the in-
teraction parameters presented here are an initial set, which may need to be
adjusted when calculations on real proteins are performed. As discussed earlier
in the appendix, this set gives reasonable band widths and gaps. Even more
crucial than the interaction parameters is the choice of the tunneling energy
(redox energy of the transferring electron). We have selected this scale from

model system experiments. In the future this scale will receive further study.
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We consider the dependence of the exchange interaction in electron transfer
processes on the intersite vibrational modes. We assume, in particular, that
high-frequency intramolecular modes of proteins may play this role in biologi-
cal processes. We compare our model with that for tunneling through a time
dependent barrier and with other works which considered the dependence of
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1. Introduction

In this work we are concerned with electron transfer over large distances in
biological systems, particularly proteins. In some circumstances, for example,
when mixed valence or excited species are present electron transfer can take
place between two localized electronic states [1, 2].

Electron localization or delocalization has been a subject of subtle interest in
physics [3], chemistry [4] and biology [5] for many years. Mixed valence com-
pounds, for example, have been classified [4] and experimentally identified [6]
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as completely localized (or delocalized) and partially localized, where localization
or delocalization depends on the electronic interaction between the two “local-
ized” wave functions and on the magnitude of the vibronic coupling on each
trapping site. The interesting regime to be explored is the one where localization
can be characterized within the time scale of some experimental measurement,
and the transfer rate between the two trapping sites can be measured.

There are two proposed mechanisms for electron transfer. In one of them the
transfer rate is a function of the small overlap of the two spatially localized wave
functions (through space mechanism) [2]. In the other mechanism, bridging
groups significantly enhance the effective overlap between the localized functions
(through bond mechanism) [7]. At specially large distances, this second mechan-
ism may assume special importance. Depending on the energy of the localized
state relative to some “‘medium” extended states, and on the electronic hopping
interaction between the bridging units, the “through bond” wave function decay
with distance may be slower than the direct interaction. The role of this kind
of essentially superexchange mechanism has been discussed in great detail in
the recent literature [7-9]. The main aim of the present work is to discuss the
possibility of the influence of the intersite “‘medium” modes on the electronic
interaction, which can be “through space” or “through bond”, since, for the
latter, an effective interaction, which replaces the direct interaction, may be
defined [9]. '

Electron migration at large distances has been observed in biological systems.
Particular interest has been devoted to the photosynthetic system [1,2]. Heme
proteins, and some other systems with well established molecular structure, have
been used in recent intramolecular electron transfer experiments [10-12].

In large biological systems, like proteins with mixed valence sites, the polypeptide
chain has been proposed to play the role of bridging group in a “through bond”
mechanism. Since the protein chain can be modeled as a 1-D periodic structure,
it has been treated by solid state techniques to investigate general feature of the
system [13].

To advance a theoretical model for electron migration in this kind of system we
should start with a simplified model. There are, actually, three main theories for
thermal electron transfer processes [1, 2]: the classical Marcus’ theory [14], the
semi-classical model developed by Hopfield [15] and the quantum one, first
formulated by Levich, Dogonadze and collaborators [16] and later by Jortner
and collaborators [17]. The differences among them are basically in the way each
one treats the “nuclear” coordinates. By nuclear coordinates we mean nuclear
vibrations and librations, solvent motion and any other “slow” effect which may
be coupled to the transfer process. A good discussion of the differences between
the electron transfer theories was presented in a recent review by Marcus [18].

All these theories have a strong relationship with the theories of radiationless
processes [19] and transport of small polarons [20]. The small polaron theory
follows from the molecular crystal model, which assumes negligible overlap
between neighboring sites. In this model, the electron-lattice interaction plays
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the role of trapping the electron by lowering the site energy when the electron
is present.

Biological systems are quite complex. The states of such systems must be described
by statistical operators or density matrices. Due to the large number of degrees
of freedom, a dynamical description of these systems using the above theories
seems to be impossible. However many processes are associated with changes in
a small number of degrees of freedom, weakly coupled to the others, in an
essentially irreversible process [15, 17, 21, 22]. De Vault has called attention to
the special role of vibronic coupling via high-frequency modes (~400cm™") in
biological electron transfer processes [2].

At large distances, the electron transfer process has been assumed in the conven-
tional theories to be non-adiabatic and to respect the Franck-Condon principle.
Because of the latter the electronic exchange interaction is assumed to be impor-
tant for only a single nuclear configuration.

The applicability of the Born-Oppenheimer and Condon approximations to
electron transfer at large distances has been questioned [23]. For very weak
electronic exchange matrix elements (~107* eV) the influence of nuclear coordin-
ates on this interaction energy may be of some importance. In this work we
consider the influence of the intersite and intrasite modes on these matrix elements.
These two types of modes are considered separately, but the influence of them
together is an important problem to be studied as an extension of the present
model.

2. Theoretical model

In order to obtain a reasonable model for electron migration in molecules of
biological interest we shall start with a simple model and later improve it. As we
already discussed, an intramolecular electron transfer between two well localized
states(sites) is considered. Because we are working in the Born-Oppenheimer
approximation, and considering a one electron problem, the Hamiltonian depends
only parametrically on the nuclear coordinates, i.e.,

hel=hel(x; X‘"]a XZ? X“b) (1)

where x is the electronic coordinate and X,, X, and X, are the nuclear coordinates
of the localized modes on site 1 and site 2, and the intersite modes, respectively.

Each site is characterized by a one electron energy level plus all the localized
vibrational modes. The one electron model is used because it has been shown to
be adequate to describe the general features of the distant electron transfer
problem, which is dependent on the long-range tail of the wave function [24].
On site 1, for example

Hsilelzel(x-‘l)a;al-*-z ﬁwi(b:bi+l/2) (2)
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where at(a) and b¥(b) are respectively fermion and boson creation (anihilation)
operators. The one electron energy parameter is defined as

(X)) =J e¥(x; X)hao(x; X,) dx (3)
where the site energy e, and the site localized wavefunctions are assumed
dependent only on the localized site modes.

Using the linear approximation for the expansion of £,(X,) in the nuclear
coordinates we obtain the “‘small polaron” term, i.e.,

51(/?1)=51+Z_ gii’wi(b:+bi) (4)

and define the electron-vibration constant as usual [25]
g = (2/ Mhw?) " [0e,(X,)/0 X1 X? (5)

where X is the equilibrium displacement of normal mode i without coupling.
The “polaron” term changes the equilibrium position and energy of the site
localized modes depending on whether or not the electron is on the site.

To allow the transfer of the electron between the two centers we shall include
an intersite exchange perturbation

H,, = VI2(XlsXZs X'b)(a:az'*'a;ax) (6)
where the two centers electronic integral is
Via( Xy, X, X) = f e3(x; Xo)hae(x; X)) dx. (7)

Putting all of the above parts together, including the energy term of the intersite
modes, we obtain
H=¢,ala,+¢,a%a,
+ X [ﬁwi(b:bi +1/2)+ gihwi(b:_*_ bi)a;al]
i(sitel)
+ ¥ [ﬁwj(b}bj +1/2)+ g,-fwu,-(b}“-!~ bj)azaz]
J (site2)
+ T hobib+1/2)+ T Vio(X, X Xi)(ajay+ aza,). (8)
k(bridge) ijk
In this work we intend to discuss the dependence of V,, on the nuclear coordinates.
It is important to mention that previous works, by Ratner [25] in particular,
considered the dependence of Vi, on the nuclear coordinates. We will compare
our results with the previous ones. We are also going to discuss our model in
light of a result obtained by Buttiker and Landauer [26] for tunneling through
a time modulated barrier, i.e.
V(x, t) = Vo(x)+ Vi(x) cos wt. (9)
In the next section we solve two simple cases of Eq. (8): V,, dependent only on
one site localized mode, and V|, dependent on one intersite mode. We will discuss
how the dependence of V;, on the nuclear coordinate can be considered as a

modulation of the zero order intersite exchange interaction and the different
results when fast or slow intersite modes are coupled to the electron transfer.
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3. A simple application

As a first application we consider only one localized vibration, on one of the two
sites, and we suppose this nuclear coordinate affects V},. This dependence of V;,
on the localized nuclear coordinates has already been considered by Ratner [25]
as V,,=V,,(X,— X,), where X, and X, are the coordinates of the localized
vibrations at the center 1 and 2, respectively.

The two site Hamiltonian with one localized mode on site 1 is
H=¢gaja,+c,a}a,+ ghw(b]+b,)a;a,
+hw(bib,+1/2)+ V(X)) (ala,+ ala,). (10)
A picture of the two localized sites is shown in Fig. 1.
Since we have only a linear correction from the “‘polaron” coupling we can define
hw(bjb,+1/2)+ ghw(b}+b,) = ha(byb, +1/2)+ Ae (11)

where b;(b*) are the boson operators for the shifted oscillator, when the electron
is on the donor, and for reasons of convenience, we include Ae in g,. Then we
can write the time dependent eigenfunctions for each center as

site 1:[n, 1y=(n!)""?exp {~i[e, +(n+1/2) ho ]t/ h}b"a]|0)
site 2:|m, 2)=(m!) " ? exp {—i[e,+ (m+1/2) hw ]t/ h}bia3|0) (12)

where n and m represent the number of vibrational quanta in the harmonic
oscillator.

By using time dependent perturbation theory, and then Fermi's golden rule, we
evaluate the transition rate from the initial thermally averaged states [n, 1) to a
manifold of final states {{m, 2)}.

k=Qw/h) L p(n)(m|o(X)|m)*8[(e, + nhw) — (e, + mhw)] (13)

where p(n) is the thermal density of initial states.

>
(L]
o
[*)
z
w
I L
* ¢]
Xy Xy
Fig. 1. A diagramatic representation of the two local- x¥ — Isthe minimum energy position

1 9y,
ized states when the eletron is insite 1
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This result is equivalent to the one obtained by Ratner [25].

It is useful to assume at this point that the localized modes do not influence the
exchange interaction, i.e., X, is treated in the Condon approximation. The
dependence of V|, on one intersite nuclear coordinate (X,) is now considered.
Assuming we have one localized mode X, and one intersite mode X, Vi, is
expanded to first order in the intersite coordinate

Vi X, ) = V?z‘*’ Vf’{—b2+ Vf;bb (14)

where we make a Condon approximation for the X, coordinate. The difference
between V° and V% is due to the dependence of the integral over the electronic
coordinate (Eq. 7) on the nuclear configuration.

Then, we obtain the following Hamiltonian:
H=¢,aja,+ &,a5a,+ ghw(b]+b))aja, + hw(bib,+1/2)
+hwy(bpby+1/2)+[ V9 + Vs by + ViTb,)(ala, + ajay). (15)
The time dependent eigenfunctions for the two states are:
[n,, n, 1)=(n,'n!) "2 exp{—i[e,+(n+1/2) ho
+(n,+1/2)hw,]t/ h}b; b, ail0)
[my, m, 2)=(m,'m!) " exp {—i[e,+(m+1/2)how + (m, +1/2) hw, ]t/ h}.
- by™ b a3|0) ' (16)
and the transition rate

k=2m/h ¥ p(n,) ¥ p(n)|Vim|n)>

+8[(ey+ nhw) = (e2+ mhw) ]+ [| V5 (mln)(m,| by ny)|*

+| Vi (m|n)(my| by ny)|*].

< 8[(e;+ nhw) — (g, + mhw) + hwy,(n, —my)] (17)
where p(n,) is the initial thermal density of states of the bridging modes.

Looking carefully at the result of the above equation we can think about this
problem forgetting the bridging modes and considering a time dependent
exchange interaction, i.e.

Vio= V9 + Vi, exp (iwyt) + V1, exp (—iwyt) (18)

where +/— is associated with absorption/emission of a vibrational quantum
during the transition. We define

V=V n and Vi=Vi5JVm+1 (19)

where n, = [exp(hw,/kBT)—1]"" is the average number of phonons in the har-
monic oscillator.
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The difference between V}; and V7, is due to the dependence of the integral
over the electronic coordinate on the nuclear configuration. In the classical limit
fi, » 1 (k, T » hw,), and without integrating over the electronic coordinate, the
potentials in Egs. (9) and (19) are equivalent. The relationship between the matrix
elements of V}, and V9, can be used to get some insight about the interaction
of the “traveling” electron and the intersite medium mode.

The simplest model for electron transfer considers tunneling through a static
barrier between two symmetric square wells separated by a distance R (symmetric
because the energy for both sites is the same in the crossing point), as it is shown
in Fig. 2. In our case instead of considering only a static barrier we include an
oscillatory term (V,/2)(b,+b,) for the coupling between the electronic and
nuclear coordinate, i.e. a similar situation to the one considered by Buttiker and
Landauer in [26]. Following Redi and Hopfield [27] we use the following wave
functions for the barrier region between the two wells

1= (2k3/ax1)'* exp [-xi(x+ R/2)]

Uy = (2kp/ ax3)"? exp [+xa(x = R/2)] (20)
where k§ (E, in Fig. 2) is the energy of the infinite square well in units of #%/2m,
R is the separation between the wells, a is the size of the wells, and x3, x3 are
the binding energies of sites 1 and 2 respectively. Assuming the deep well condition
ayx » 1 (there is almost all particle density inside the well), for the static barrier

(symmetric wells) the tunneling matrix element can be evaluated using Bardeen’s
transmission current [27];

Vi, =(2#%k;/ mya) exp (—xR) (21)

The tunneling matrix elements for the time dependent barrier can be obtained
by changing the energy of one well by + hw, (for example, in the Hamiltonian
of Eq. (15), it is the donor energy), and using perturbation theory. The results

je—R —of jo— R —f
E| - —— = VO—-- ref!‘__ection -*— Yo transmission
Eo |— — oo - T - — -~ >
Eo
- - —_— 1
o —=

Electronic coordingte X — .y
{a) (b}

Fig. 2. a Two square wells model for electron transfer.
b Tunneling through a square barrier
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obtained, shown in the next equation, can be related to the time independent
matrix element by assuming #w, « V, E, (typical values for biological problems
are of hw,=400cm™'=0.05eV and V~2eV [27]):

Vi = ()l Vi/ 2 (x1))
= (U (h*x3/2m)| i/ 2g, (A*x3/2m £ hey)
~ £ (Vi/2hw,)[1 - exp (F mRw,/ Ax)1 V1, (22)

where mR/ hy =7 is the traversal time defined by Buttiker and Landauer [26]
and y; is equal to y in Eq. (21).

The relation between w, and 7' determines the influence of the barrier modulation.
At low frequencies (w, < 77 ') the tunneling electron sees a static barrier. At high
frequencies (w, » 77') the tunneling occurs through an averaged barrier of mean
height V;. It is important to recall that this is valid only for this specific electronic
interaction and more generally we must recognize that V, and V3, are dependent
on the model assumed for this interaction. Furthermore, the source for the barrier
oscillation in our model is the electron-phonon interaction, then V7, is propor-
tional to the amplitude of vibration of the bridge coordinate, and the transmission
coefficient for absorption or emission is temperature dependent.

To obtain the final rate equation we have to use a distribution function for the
intrasite mode and work out the sum over the Franck-Condon overlap integrals.
From Eq. (17-19) we can write each contribution as

k=Qa/B)| VI L Kmim)*p(n) - S[AE, .+ (n—m)hw] (23)

where AE,=¢,—¢, and AE, =AE,+ hw,.

Following the conventional procedure we use the generating function method
[19] and write Eq. (23) in the form
+oc

k=(| V5 #°) exp (= G,) J dt exp [—i(AEO,it/ W)+ G (1) + G_(t)] (24)

where
G.(1)=(A%/2)(Ai+1)exp (iwt)
G_(1)=(A*/2)7 exp (—iwt)
Go=G.(0)+ G_(0)=(A*/2)(27i+1)
and A is the reduced displacement of the two site curves (X|— X¥) at Fig. 1.
The reorganization energy of the intrasite nuclear coordinates can be expressed
in terms of A as E, = hw(A%/2). G, is often used as a parameter to quantify the
magnitude of the vibronic coupling. Analytical expressions for k are in general
obtained at the weak coupling limit (G,=1) or at the strong coupling limit

(Go>1). From Jortner [17] we can obtain for the weak coupling limit (small
reorganization energy, E, < Aw and/or low-temperature kzT < hw):

k=Qn| VIS h?w)(7+1)” exp (=Go)[(4%/2)"/p!] (25)
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where p=AE,./hw is the reduced effective energy gap (assumed to be an
integer). For p =2 the use of the Stirling approximation for p! is quite good and
k can be expressed as

k=Q2a| VTP / i) exp (- G,) exp (—yp)/(2mp)'/? (26)

where y=In [p/(8°/2)(7A+1)]-1, for y>0 Eq. (26) expresses the energy gap
law for radiationless processes.

The strong coupling limit (large reorganization energy and high temperature)
reproduces the well-known activated rate equation:

k=Qm|ViT/h)(4mEksT*) ™/ exp (~E%*/ ks T*) (27)

where the effective temperature is defined by kzT* = (hw/2) coth (hw/2ksT) and
the activation energy is ES* = (AE, . — E,)*/4E,. This result can also be obtained
by semiclassical approximation [15] and the classical expression [14] is repro-
duced at sufficiently high temperatures (kT » fiw) when kgT* = k,T.

4. Discussion

In this model we consider the possible influence of intersite “medium” modes
on the exchange interaction (transfer matrix) of electron transfer processes.
High-frequency intramolecular modes of the protein may play a special role in
this “phonon assisted” transfer matrix in biological systems, i.e., the electron
may be interacting with the nuclear bridging modes “while travelling” between
the two trapping sites.

The coupling of the two sites to a common boson field is considered as a way
to describe inelastic tunneling [28]. However, the time dependent transfer matrix
leads to a different physical interpretation. The intrasite and the intersite modes
play different roles in the process. In some ways this separation is similar to the
one of promoting and accepting modes in the theory of radiationless processes
[29]. Indeed the intrasite modes are identified as the accepting modes. The main
effect of the vibronic coupling is included on the unperturbed Hamiltonian to
describe the initial and final states and the intrasite modes are the ones directly
coupled to the donor and acceptor centers. The intersite modes may be less
sensitive to the change of charge on the two localized sites. However, in particular
for electron transfer at large distances, the “electron traveling time” may be
sufficiently long to make the electron-bridging modes interaction effective. To
avoid higher orders of perturbation, the “‘promoting factor” is considered a
one-phonon mechanism. The first consequence is that the conventional multi-
phonon factor changes only by one order (p+1—phonon process), and it is
assigned to the intrasite modes. The second consequence is that “V,,” is no
longer a pure electronic factor, i.e. V3, are related to the vibronic coupling
between the “traveling electron” and the bridging modes. The magnitude of the
effect depends on V,, which is related to the intersite mode vibronic coupling,
and on the relation between w, and 77" in Eq. (22). For typical values of barrier
height, for example, 1.5V, at a distance of 13 A, and with #w, =400 em™, if
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Vi/2he,, = 10, this effect is significantly large. However, much more experimental
and theoretical work is necessary for a clearer interpretation of the mechanism
of intersite mode vibronic coupling and, therefore, to obtain reasonable estimates
for these parameters.

The separation of nuclear vibrations in low- and high-frequency modes has often
been used in the electron transfer theory ([17], for example). However, in this
work only high-frequency modes are considered because for slow-modes the
validity of the non-adiabatic limit is questionable, and this is not a point we
intend to discuss here.

The contribution of the term corresponding to phonon emission (with V7, and
AE_ in Eq. (23), in particular the effect of spontaneous emission (1, =0 in Eq.
(19)), can be important when we consider some electron transfer processes on
the region of validity of the “‘energy gap law”. These processes are predicted to
occur when the electron transfer is associated with a small reorganization of the
nuclear coordinates [30]. In this “weak coupling limit™ the electron transfer rate
can display weak temperature dependence, in particular for small energy gaps.
Temperature dependence of radiationless transitions in this limit has been
observed experimentally to be associated with the factor {Ai+1)” [31]. In biologi-
cal electron transfer, weak coupling limits may be observed when the metal sites
are buried inside the protein pocket, protected from interaction with a polar
medium [30]. The reorganization of the first coordination shell, here associated
with the intrasite mode, has been observed to be small for Ru'"/""'(bpy); and
Ru'"""(NH,)s [32]. Ru(NH,).-histidine modified azurin, for example. was
observed to have a weak temperature dependent intramolecular electron transfer
rate from —10°C to 60°C [11].

In Fig. 3, we show the dependence of the electron transfer rate on the energy
gap for the terms in AE, and AE_ within the weak coupling limit. The two
contributions have to be summed up and the absolute magnitudes will depend

AE~

aE,

Fig. 3. Dependence of k with the energy gap on
(o} 4 8 p the weak coupling limit. T = 300°K.
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on the parameter A= (27| V{5 |*/ #) which is different for each one. To illustrate
the temperature dependence in this limit we also plot k(#w/A) versus T in Fig.
4. In this calculations we use the same value of 400 cm™ for the intrasite modes,
which is in agreement with the mean frequency of metal-ligand bonds in some
metalloproteins. The reorganization energy is assumed to be (E,/ hw) =0.75.

On the strong coupling limit, the reorganization energy being much larger than
fw, the difference in activation energy associated with AE, and AE_ may be very
small. The interesting situation AE, = E,, which has also been used as an explana-
tion for temperature independent electron transfer rates [17], has an activation
energy associated with AE_ which is E} = hw/2A° If, for example, we assume
E,=3000cm™', we have E%=13.3cm™! which is too small to be characterized

experimentally.
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CHAPTER IV - Final Remarks and Possible Future Work
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IV.1 Electron Transfer between Porphyrin and Quinone

Linked by a Bicyclo[2.2.2]Octane Bridge

The aim of this subsection is to present a preliminary discussion about elec-
tron transfer in the porphyrin—phenyl—(bicyclo[2.2.2]octane) n—quinone Sys-
tem, where n = 0,1 and 2 (see Fig. IV.1a). These molecules were synthe-
sized by the Dervan—-Hopfield group, and some experimental electron transfer
measurements are available.! In this subsection we discuss the existent exper-
imental results and try to understand them within the theory now available.
Then, we conclude by describing some experiments that we believe would be
helpful to resolve some conflicting points.

We now summarize the experimental results available for these systems.
Initially, we describe experimental results for Zn-porphyrins. Fluorescence
decay was measured for the case of n = 1 linker, and the electron transfer rate
was calculated by comparing these lifetimes (1) with the reference lifetime (7o)

of the molecule ZnP¢'Bu (see Figure IV.1b). The electron transfer rate is

ket = ~1————1—- . (IV.l)
T1 To

Electron transfer rate vs. driving force (AG) was measured. Different AG’s
were obtained by changing the substituent (R) group of the quinone of Fig-
ure IV.la. The values of the AG were calculated from the measured elec-
trochemical data for porphyrins and quinones. Details of the experimental
procedures can be found in Ref. 1. All these experiments were performed in
four different solvents: CH3CN, n—-PrCN, MTHF, and benzene. The rate vs.
driving force results obtained at room temperature are shown in Figure IV.2

for the single linker case (n = 1). Also, for n = 1, electron transfer in 2-
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(a)

e

(b)

Figure IV.1 - (a) Structure of the molecule Zn-Porphyrin-Phenyl-
(Bicyclo[2.2.2]octane),~Quinone. n = 0,1,2. Different R, and R; groups are
used in order to obtain different driving forces AG (energy gap). (b) Structure

of the reference molecule ZnP¢!Bu.
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Figure IV.2 — Electron transfer rate versus exothermicity for the molecule
Zn-Porphyrin-Phenyl-(Bicyclo[2.2.2]octane)-Quinone (Figure IV.la with

n = 1) in several solvents.
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methyltetrahydrofuran glass at 77 K showed non-exponential decay in time

(the reference decay is monoexponential). The experimental result is fit to
M1
I(t) =ao Z N =P {—tlcos® 8;/T +1/r0]} + boexp{—t/ro}, (IV.2)
1=1

where bg /ao is the fraction of the minor component, probably due to porphyrin—
linker-hydroquinone. The minor component lifetime compares well with the
lifetime of the reference pophyrin (ro ~ 1.7 ns). Here, 6; is the dihedral angle
between porphyrin and quinone, and to assume a matrix element modulation
proportional to the cosine of this angle is the simplest possible approximation
(see Sec. II.4). Also, the expression above assumes an equal probability for all
orientations (uniform distribution), and this is probably incorrect.

Now we discuss these experimental results. From looking at Figure 6a of
Sec. II.4 and at Figure IV.2 we see that a two-mode picture (at least one fast
and one slow) is needed to describe these results. In Figure IV.3 we show how
this model fits the experimental result in benzene. The fast mode is probably
dominated by the CO vibration. A crude estimate of the reorganization en-
ergy for this mode was made by B. Leland,1¢ and he obtained E}’;a"t ~ 0.25 eV
(AQlfast ~ 0.25eV). The reorganization energy for the slow mode Eslov was
chosen to fit the low AG data, and it should be about 0.15 eV. All these pa-
rameters are completely preliminary. The value of the matrix element chosen
to fit the data is Tpa = 7 X 10™* eV. There is a crucial problem here; the
zero of the AG scale obtained from the experimental data does not agree with
the theoretical one. A shift of 0.6 eV must be included. This difference is
probably due to two factors. The first one is the work term; the system goes
from the neutral to the charged state. The second factor is the absence of the

counter ions that exist in the electrolyte solution and stabilizes the ions in the
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Figure IV.3 — Theoretical fit of the electron transfer rate versus exother-
micity for the molecule Zn-Porphyrin-Phenyl-(Bicyclo[2.2.2]octane)-Quinone
(Figure IV.la with n = 1) in benzene. Eq. 3.34 of Sec. II.4 is used. The

parameters used are described in the text.
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electrochemical measurements. The first effect should increase AG, and the
second one should reduce it, because the quinone is much smaller than the
porphyrin. We do not discuss details about these corrections here, but they
should be very similar for all molecules described in Figure IV.1a, if they are
in the same solvent. Therefore, they are probably responsible for the shift we
have to include in Figure IV.3. Another basic problem still exists. At very low
AG, if our shift assumption is correct, we will have some endothermic electron
transfer, and the possibility of back—transfer has to be included in the calcula-
tion (as suggested by Marcus). Here the question is the following: Which rate
is faster, back-transfer to the porphyrin S; state or quinone transfer to the

porphyrin So ground state? To check this point, we propose two experiments.

To verify our value of E§°%, we should study the temperature dependence
of the rate for temperatures before the solvent freezing. The mean-square
deviation of the first peak (variation of the rate at low AG) is /2E&owkT,
and if our model is correct, this should be observed in the experiments. The
other possibility is to try directly to measure the rate of quinone ion formation

together with fluorescence decay.

Next, we discuss the effect of solvent on the rate (see Figure IV.2). Assum-
ing that we have a different energy drift for each solvent, but the same E};“"t
and A fae¢, We estimate Ef{ow for the different solvents. Gross estimates of
the value of E/°” from benzene (s = 2.3) to CHsCN (es = 38.8) show that
it varies less than 0.1 eV. This tells us two things: we have at léast one other
slow mode besides solvent polarization, and the macroscopic linear model for
solvent polarization overestimates the value of Ele”’. We have to be careful to

check the values for E'j’zl""’, as proposed in the last paragraph, before making
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any conclusion.

Now we discuss the low temperature result. As discussed in Sec. I1.4, it
would be interesting to determine the temperature dependence of the electron
transfer rate and to try to observe the transition from exponential to non-

2 can be

exponential decay in time. Some molecular mechanics calculations
done for the porphyrin—quinone relative orientation potential as a function of
the dihedral angle. If the potential obtained has several minima, we should
be able to estimate (from the barrier heights) the “critical temperature” for
going from exponential to non-exponential decay in time, if exponentiality is
mainly a function of this mode. Comparing the theoretical prediction with
the experiments would be interesting. If the potential has only one minimum
(which I do not expect because of the quinone-CO bridge interaction), then

a smooth transition from exponential to non—-exponential behavior should be

expected.

To conclude, we discuss the n = 0 and 2 bridge linker cases (see Figure
IV.1a). Experimental measurements on the zero linker molecule at room tem-
perature estimate that this rate is faster than 1012 Hz. This suggests that
the rate is adiabatic. In order to study the transition from adiabatic to non-
adiabatic rates, it would be interesting if this rate were measured. Also, it
may be simpler to measure this rate at low temperature. If the low tempera-
ture measurements become possible, it may be possible to verify whether other
modes, besides the dihedral angle modulation of the matrix element, are re-
sponsible for the non-exponential decay in time (see Sec. II.4). The n = 2
linker case is interesting to check the predicted matrix element dependence on

distance. Also, it would help to give some estimates of the size of the work
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term if a rate vs. AG study were made for the two linker system. Prelimi-
nary phosphorescence measurements in Pt-porphyrin predicts that kgr(double
linker) < 10%. Comparing with the single linker rate for a similar value of AG,
kg (single linker)/kgr(double linker) > 3000 (not exactly). Theoretical pre-
dictions by Beratan® expect this ratio to be about 2000. This result, however,
is very preliminary, and we do not want to draw any further conclusion before

more reliable experimental data are available.
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IV.2 Some Other Interesting Problems—

Work in Progress

To conclude, we would like to comment on two other interesting problems
we are starting to address now and intend to continue to investigate in the
near future. Some preliminary ideas are given here. The first one, as already
remarked in Chapter I, is that if we consider only a finite number of “reaction
coordinates,” it is impossible to account for large entropic changes that appear
in some electron transfer reactions.? When we deal with entropic changes,
we also approach the problem of dynamics on “free” energy surfaces. The
second problem is to try to apply the model described in Sec. II1.4 in order to

understand electron transfer rates in some protein systems.

How to include entropy in simple model

The models described in this thesis assume electron transfer coupled to
a finite number of reaction coordinates. In this description it is basically im-
possible to account for large entropic changes. Also, in many discussions of
reaction rate theory, entropy is taken into account by assuming that we have
“free” energy wells rather than potential energy wells. Free energy, however, is
a thermodynamic property that one calculates by averaging over many dynam-
ical trajectories, and dynamics is determined by the potential energy surface.

These are the sorts of issues we are trying to address.

A free energy surface can be defined by fixing the reaction coordinate

at some value @ and allowing some subset of all other degrees of freedom to
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equilibrate. This results in a well-defined free energy surface, but we have to
understand whether it has anything to do with the dynamics of the reaction
coordinate. If we assume that our reaction coordinate moves much more slowly
than the time necessary for this subset of modes to come to thermal equilibrium
with their environment, the dynamics of this reaction coordinate (slow mode)
can be described by motion on an effective potential surface determined by the

free energy of the fast modes at each value of the slow coordinate.

This problem is being formalized in collaboration with W. Bialek. Using
a simple picture, we can think about a single mode coupled to a continous
background. The continuum will be responsible for damping (modes with
frequency on the same order as the reaction coordinate) and “fast” modes
that convert the potential energy surface of the specific modes into free energy
surfaces. It is important to point out that linear coupling and a harmonic
bath are sufficient for damping, but more complicated coupling and/or bath is

necessary to generate large entropic changes.

Calculation of Electron Transfer Rates in Proteins

To conclude this chapter, we discuss the way in which we intend to apply
the model described in Sec. II1.4 in order to calculate electron transfer rates
in real proteins. The systems we intend to study initially are the Ru—modified
proteins that are being prepared in Harry Gray’s laboratory with site—directed
mutagenesis (cytochrome ¢ and myoglobin).? The reason to study these systems
is that there will be a large number of isomers, each one with a different site

where the Ru—(NHj3)s groups can bind. This will be obtained by site-directed
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mutogenesis, which will increase the number of histidines on the protein sur-
face. Because of that, we will have several electron transfer systems where
basically only the medium through which the electron tunnels is changed but
“everything else” is the same. Some experimental results are already available
for cytochrome ¢ and myoglobin.® The problem with the actual data is that
only a few different electron transfer rates are available. From the myoglobin
results, a possible example of the medium structure influence on the rate is
seen when we compare the transfer rates to the Ru—(NHj3)s in His-12 and
His-116 from ZnP*. They are very similar (In(kgr) ~ 4.5), but the edge—edge
distances are 22 and 19 A, respectively. This last comment is pure speculation.

Predicting the new form of temperature dependence introduced in
Sec. III.4 for the protein pathways may be important (each isomer will have
different pathway(s)). This is also a challenge that lies in the future. Another
way of chdnging the electron transfer pathway is by changing amino acids that
are “important” to the electron transfer pathway. Experimental work in this
direction is starting to be done in Hoffman’s group in complexes of cytochrome

¢ and cytochrome peroxidase.”
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