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Abstract 

Recently, QCD processes involving a heavy quark at energ1es much 

smaller than its mass have been examined in an effective field theory approach. In this 

' heavy quark theory', the mass of the quark is taken to infinity while its four velocity is 

held fixed . The effective theory has a large set of symmetries because of the decoupling of 

the flavor (when the kinematic dependence on masses is removed) and spin of the heavy 

quark from its interactions with the light degrees of freedom . As a consequence, several 

matrix elements of the theory are determined in terms of a single function, the Isgur-Wise 

function . Being nonperturbative in character, this function is not fully calculable. How-

ever, it has a calculable logarithmic dependence on the masses of the heavy particles, aris-

ing from QCD effects in the full theory. 

Some extensions of the standard model contain heavy color triplet scalars. 

It is instructive therefore to consider the analogous effective field theory for scalars. In 

processes where pair production does not occur, the statistics of the heavy particles are 

irrelevant, and their interactions are identical with those of quarks. Thus there is a ' super-

flavor symmetry' that interchanges quarks and scalars, and a flavor symmetry between 

scalars. Again, these symmetries determine several matrix elements involving scalars up 

to the same Isgur-Wise function . In this thesis, the logarithmic mass dependence of the 

t 
operators Q> 2 t Q> 

1
, <J>/ (i a~t Q> I) , and ( i 8~ Q> 2) Q> 

1 
is calculated. The latter two opera-

tors mix under renormalization. 
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1. Introduction 

Quantum Chromodynamics (QCD) is now widely accepted to 

be the theory behind what were historically known as the 'strong interac­

tions', the interactions between the nucleons in the nucleus of an atom. QCD 

is a quantum field theory of interactions between quarks, the elementary con­

stituents of the nucleons, the charge responsible for the interaction being 

called 'color' . The strong interactions between hadrons are now viewed as a 

Van-der-Waals type remnant of the interactions between these quarks. QCD 

is characterized by a mass scale, AQC'D' at which the coupling constant 

diverges. The theory is asymptotically free, 1) and conventional perturbation 

theory works for high energies, but fails for energies comparable to the QCD 

scale. One is thus in the strange situation of having a theory but not being 

able to calculate all the consequences of interest. As a result, one is forced to 

resort to the symmetries of the theory, rather than dynamical calculations, to 

make predictions. 

The simplest symmetry relevant to the strong interactions, iso­

spin, was introduced in the thirties. The masses of the proton and the neutron 
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being almost identical, the two particles were related by this isospin symme-

try, which would then be exact in the limit that the two masses coincide. The 

symmetry was enlarged in the sixties to the 'flavor S U ( 3) ' of the baryons. 

Empirica11y, the predictions of the latter symmetry are less accurate than 

those of pure isospin. With the coming of the quark model and ofQCD, these 

facts are understood to be due to the differences between the masses of the 

up, down and strange quarks being small relative to the QCD scale, rather 

than due to the proximity of their absolute values. Isospin is a good symmetry 

because (md- m
11

) I AQCD is small, while flavor SU (3) is not quite as 

good because (m - m ) I AOCD is not as small. Corrections to the predic-
s 11 - . 

tions of these symmetries could then be studied as an expansion in these 

parameters (there are also corrections arising from the electromagnetic inter-

actions). 

Another symmetry artses m the QCD Lagrangian when the 

quarks are taken to be massless. The two chiral components of the quark fla-

vors independently exhibit flavor symmetries that result in the conservation 

of the vector and axial vector currents. The symmetry is manifest in the mass-

less theory, but not in QCD with massive quarks. Thus, when the absolute 
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values of the masses of the quarks are much smaller than the QCD scale, one 

expects this 'chiral symmetry' to be approximately true. 'Effective field theo-

ries' with manifest chiral symmetry can be built to study the interactions of 

(possibly composite) particles in this limit. Again, S U (2) L x S U (2) R is 

experimentally a better symmetry than S U (3) L x SU (3) R because the 

strange quark mass is not as small relative to the QCD scale as the up and 

down quark masses. Chiral symmetry is spontaneously broken in nature; 

however, the existence of this symmetry enables a perturbative expansion 

that relates several low energy processes. Corrections to the predictions of the 

effective theory with massless quarks are computed as an expansion in 

The three quarks, up, down, and strange, are all lighter than the 

QCD scale. In the ' Standard Model ' of elementary particles, there are in 

addition three other quarks, the charm, bottom, and top quarks (the top is yet 

to be experimentally confirmed) that are heavier than this scale. Again, one 

of these, the charm, is not much heavier, while the other two are significantly 

heavier. It is natural , therefore to examine the consequences of two kinds of 

symmetries: where the difference in the masses of these heavy quarks is 
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insignificant relative to the QCD scale, and where their absolute magnitudes 

are much larger than the QCD scale. In the first case, one expects a flavor 

symmetry among the heavy flavors; while in the latter, the QCD Lagrangian 

must be examined in the appropriate limit of infinitely massive quarks for 

new symmetries that are not manifest in QCD itself. Corrections to the effec­

tive theory must be computable as an expansion in AQCD/ m Q * 

Intuitively, the picture ts familiar.2) In atomic physics, the 

nucleus is assumed to be infinitely heavy relative to the electrons, and is 

therefore unaffected by the interactions of the electrons. The interactions of 

the electrons, in tum, are identical for different flavors of the nucleus ('iso­

topes'), provided only that the nucleus has the same charge. Now consider a 

hadronic bound state. The asymptotic freedom of QCD implies that if all the 

quarks were very heavy, then since the coupling constant would be small on 

the scale of their Compton wavelengths, it would be possible to calculate 

properties of hadrons from first principles. However, there are also light 

quarks, and their QCD interactions are very complicated. Consider the bound 

state of a very heavy quark with light quarks. However complicated the inter-

*. For reviews, see references 12-4 1 and the references therein. 
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actions of the light quarks, they do not affect the motion of a sufficiently 

heavy quark . Further, the light quarks are unaffected by the actual flavor of 

the heavy quark. This becomes especially clear in the rest frame of the heavy 

quark, where the light quarks simply see a static color triplet source at the ori­

gin. Different flavors of the heavy quark with the same color would have the 

same strong interaction effects on the light ones. In the limit of infinite heavy 

quark mass, there are no relativistic effects such as color magnetism . Thus 

the spin of the heavy quark decouples from the gluon field, and thence from 

the interactions of the light quarks. There is therefore a S U (2N h) symmetry, 

where N h is the number of heavy flavors . The decoupling of the spin was 

first understood in a nonrelativistic model of the heavy quark5) and is of par­

ticular relevance to calculations on the lattice.6) In fact, one can go further. 

The light quarks are unaffected by the total spin of the heavy object that is the 

source of the color flux . If the heavy object were a color triplet scalar rather 

than a quark, the light quark interactions would not be different. Thus, there 

is also a symmetry between heavy scalars and heavy ferrnions. Such a sym­

metry is called a ' superflavor ' symmetry.7) 
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The Standard Model does not include any colored scalar objects. 

There is also no experimental indication that such objects exist at currently 

accessible energies. However, although the Standard Model successfully cor­

relates all current observations in tenns of a few parameters, it is widely 

believed that there must be an extension of the model that resolves some of 

its unsatisfactory features .10) These include the gauge hierarchy problem (the 

existence of disparate scales among the gauge interactions), the problem of 

the origin of the fermion masses and mixing angles, and the lack of unifica­

tion with gravity. Perhaps the problem that is most significant is that of the 

Higgs Boson that implements the mechanism of spontaneous symmetry 

breakdown to give masses to the fermions. It is yet to be observed, and argu­

ments suggest that there should be new physics at the Te V scale, the expected 

mass scale of the Higgs.11) Extensions of the standard model that address 

these issues, such as supersymmetric or technicolor models, often involve 

heavy color triplet scalars. 12) It is of interest therefore to include such triplets 

in the formalism, and examine the consequences of the superflavor symme-

try. 
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To make the symmetries manifest, one must construct from 

QCD an effective theory where the quarks are infinitely massive. Since an 

infinity is involved, one must consider carefully how this limit is to be taken. 

An analogy is helpful.4) A heavy object thrown in the air is to a good approx-

imation unaffected by the air resistance, in the sense that its world line 

remains unaltered. Thus the appropriate limit is one where the heavy quark 

has a straight world line, that is, the four-velocity v of the quark is held 
1-.1. 

fixed.8,9) It is important to realize however that the four-velocity here can be 

relativistic. The effective theory thus differs from nonrelativistic models. The 

four-velocity satisfies the usual constraint v v!-.1. = 1 . In this effective theory, 
1-.1. 

the S U (2N h) and the Super-flavor symmetry (when colored scalar particles 

are included) are manifest. Various ampJitudes can be related in this effective 

theory using these symmetries. The most significant predictions are for the 

semileptonic B-meson decays, the results being of relevance to the determi-

nation of the Cabibbo-Kobayashi-Maskawa mixing angles V band V b . It is c ll 

important that these predictions are model-independent, being simply predic-

tions of an effective theory that is a limit ofQCD. The supertlavor symmetry 

relates these amplitudes to those involving heavy colored scalars, and would 



therefore relate the interactions of bound states of such scalar particles to 

those of the heavy mesons. 7) 

There are two kinds of corrections to the effective theory that 

can be computed. First, physical particles have finite masses, and one can 

classify the corrections due to having set them to infinity, as an expansion in 

1\..QC'D / mQ . The second kind arises from QCD processes. Virtual gluons in 

the full theory can have an arbitrary momentum, greater or smaller than that 

of the quarks. In the effective theory however, since the quarks are infinitely 

massive, the virtual gluons have momenta that are always smaller. Thus there 

are corrections to the effective theory amplitudes that arise from that region 

of phase space where the virtual gluons have momenta that are of the order of 

or larger than the quark momenta. The asymptotic freedom of QCD enables 

these to be accessible to perturbation theory, and the renorrnalization group 

can then be used to scale down to low energies. 

In this thesis, QCD corrections are calculated to the relations 

predicted by supertlavor symmetry. 13) In chapter 2, the effective field theory 

is laid out, followed in chapter 3 by the predictions of the Super-flavor sym-
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metry. The QCD corrections are calculated in chapter 4, and the final chapter 

makes some concluding remarks. 
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2. The Effective Theory 

The physical situation of interest is a bound state of a heavy par-

ticle and light degrees of freedom , where the momenta carried by the latter 

are small compared to the mass of the heavy particle. The heavy particle 

moves at a constant velocity, unaffected by the QCD processes involving the 

light particle. An external electroweak current can change either its flavor 

and/or velocity, but this does not have an effect on the strong interactions 

with the light degrees of freedom . Thus, the effective theory is built by con-

sidering the limit where the mass of the quark is taken to infinity while keep-

ing its four velocity fixed. Clearly, a theory where the particle has a fixed 

velocity breaks Lorentz invariance, so one must consider a whole spectrum 

of effective theories corresponding to all possible velocities to retain relativ-

istic in variance. Formally, the independence of heavy particles with different 

velocities corresponds to a velocity superselection rule. 9) 

The Velocity Super-Selection Rule 

In the limit that the heavy particle is infinitely massive, one can 

take its mass to be the mass of the bound state, mh = mh d 1 1 . The ea vy oun ·sa e 
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heavy particle momentum is the difference between the momentum of the 

bound state and the small momentum of the light degrees of freedom 3) 

p~ - p~ - ~ 
heavy - bound q { 1) 

The residual momentum is defined as the difference between this heavy parti-

cle momentum, and the momentum it would have if it were on-shell, 

k~ = P~ - m v~L 
heavy heavy 

The velocity of the heavy particle, 

v~ = 
heavy 

p~ 
heavy 

m heavy 

k~ 
= v~ +-­

bound m 
heavy 

{ 2) 

{ 3) 

approaches the velocity of the bound state as its mass becomes larger. In the 

effective theory the two velocities are equal. Thus, the velocity of the heavy 

particle is unchanged by the QCD interactions with the light degrees of free-

dom, and one can tag these particles by their velocities. In the effective the-

ory therefore, there is a field for each velocity v . 
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The Feynman Rules 

There are several ways to build the Lagrangian of the effective 

theory. The simplest approach perhaps is to directly derive its Feymnan rules 

from the QCD Feynman rules.6,l4) Consider first the scalar case. In scalar 

gauge theory, we have the following Feynman rules for the propagator and 

the vertices. The gauge propagator is unchanged in the effective theory and is 

not shown below. 

v 

p _ _._ _ _. _ 

2 2 
(-ig) (p+q) 

J..l 
(2ig)ll 

J..I.V 
p -m 

FIGURE 1. Feynman rules for scalar gauge theory 
A dashed line indicates a scalar particle. 

Substituting phJ..I. ~ mh vJ..I. + kJ..I. and retaining terms of leading order 
eavy eavy 

in mh , one gets the Feynman rules shown below. Note that the 'seagull' eavy 

vertex is suppressed relative to the other vertex by a power of the heavy 
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mass, and hence need not be considered. The factors of 2m in the vertex and 

=...-= 
v 

2m (v · k) 

v v 

(-2ig) (mv) 
ll 

FIGURE 2. Feynman rules for a heavy scalar particle. 
The double dashed line indicates a heavy scalar particle The 
seagull vertex is suppressed and is not shown. 

the propagator cancel in calculations and may be dropped. The lines are 

labeled by the velocity v, and this velocity is unchanged by the interaction 

with the gluon. 

The same procedure can be carried out for a heavy quark. The 

usual propagator 

( 4) 
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with the substitution pl-l ---+ m vl-l + kl-l g1ves, upon retaining the 
heavy heavy 

leading terms, 

i(v·y+l) 

2 (v · k) 
( 5} 

Since the velocity of the heavy quark is unchanged by the interaction with the 

gluon, the quark-gluon vertex -igy 1a , with g the strong interaction cou-
1-1 

piing, and ya the color S U (3) generator, is always sandwiched between two 

factors of ( 1 + v · y) / 2. Using 

(] + V • y) J.l ( 1 + V • y) VJ.l 

2 y 2 = ( 6} 

it is clear then that the heavy quark-gluon interaction is -igv ya . The 
J.l 

absence of a Dirac structure to the vertex is an indication of the decoupling of 

the spin of the heavy quark from the QCD interactions. The expression for 

the propagator may then be simplified. The factor ( 1 + v · y) I 2 may be 

commuted past the vertex, until it hits an external on-shell spinor, on which it 
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is unity, since it is a projection operator on the heavy field (see Equation (16) 

below). Thus, one gets the Feynman rules for the heavy quark shown below. 

v 

i 

v·k 

J..L,k 

v v 

( - ig ) v 7a 
J..l 

FIGURE 3. Feynman rules for a heavy quark. 
The double line indicates a heavy quark. Compare these rules 
with those for the heavy scalar particle (see Figure 2 on page 13). 

The Super-flavor symmetry is now apparent. The scalar and the spinor heavy 

particles have identical Feynman rules in the effective theory. 

The Lagrangian 

The effective theory Lagrangian can be derived from the QCD 

Lagrangian, with appropriate field redefinitions.9) To do this, one needs the 

connection between the field in the effective theory that corresponds to a par-

ticle of a given velocity, and the field in the full theory that corresponds to all 

momenta of the particle. First, the kinematic dependence on the mass in the 
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fu]] field is removed, and then the spin structure is accounted for. For scalar 

particles, the definition 

im ( v · x) .+. 
X = e "' v 

( 7) 

implies that the mass dependence is purely in the commutator of the mom en-

tum operator with the field. That is, 

[1?>, x] = ( m v ) X + i a X 
1-1. 1-1. 

( 8) 

and the derivatives on the field involve only the residual momentum. With 

this definition, the usual Lagrangian for colored scalars 

( 9) 

becomes 

J scalar 2 . ·t D _, = 1mx v · x v v v 
( 10) 

after neglecting the kinetic term, since it is suppressed relative to the interac-

tion term by a power of the mass. The color gauge symmetry has been 

imposed by replacing the ordinary derivative with the covariant derivative. 

Clearly this Lagrangian results in the Feynman rules of Figure 2 on page 13. 
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Pair creation does not occur in the effective theory while it does 

in the full theory. Therefore, the number of degrees of freedom of the heavy 

quark field must be less than that of the usual fermion field. That is, the heavy 

quark field must satisfy a constraint equation. To deduce the constraint, it is 

probably easiest to look at the fonn of the functional integral in momentum 

space. 3) The functional integral gets significant contributions from the sta-

tionary points of the action . The kinetic term for the quark in the action is of 

the form 

d4 

f_ P q(-p)(y·p-m)q(p) . 
(21t) 4 

( 11) 

It becomes obvious, upon substituting phi-l ~ mh vl-l + k~L, that for a eavy eavy 

heavy quark of velocity v the relevant region is the solution to 

k·y 
(v·y-I)q(p)~- ~o. ( 12) 

m 

To leading order in the heavy mass therefore, the heavy quark field h of v 

velocity v may be taken to obey exactly 

( v · y) h = h . v v 
( 13) 
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The relationship between the fields in the effective theory and the full theory 

is then 

h = eim(v · x)Q . 
l' 

( 14) 

This equation cannot be exact, because of the constraint equation ( 13). v · y 

squares to unity, and thus has two doubly degenerate eigenvalues ± 1. It is a 

straightforward mathematical result that for any such idempotent operator, 

the vector space may be written as a direct sum of two vector spaces, corre-

sponding to the two eigenvalues± 1. The projection operators on to these two 

subspaces are then (1 ± v · y) / 2 . Thus, more generally, 

() = e - im ( v · x) (h + 0 ) 
~ v v ( 15) 

where besides projecting on to the subspaces with eigenvalues ± 1, so that 

( v. y) & = - & 
" v 

(v·y)h = h ' 
" v 

( 16) 

we have removed the kinematic dependence on the large mass. The & part is v 

of order AQCD/ m and can be ignored. This is obvious upon considering the 

equation of motion 

{i(D ·y) - m}Q = 0. ( 17) 
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In tenns of the fields h and o this equation becomes 
v v 

[ m ( v · y- 1) + i ( y · D)] ( h v + o) = 0. ( 18) 

Thus, for large m, this results in 

o = i ( y . D) h . 
v m v 

( 19) 

This is analogous to the two components of the Dirac spinor being sup-

pressed in the nonrelativistic approximation . Thus, the connection between 

the heavy quark field and the full field is, up to tenns suppressed by powers 

of the mass, 

h = (1 +y · v) e imv ·xQ . 
v 2 

( 20) 

The antiquark has been ignored so far. Since in the effective theory there is 

no pair creation, only the heavy quark field need be considered if the process 

of interest has no heavy antiquarks. However, antiquarks can be easily 

included in the same way. The antiquark field for a given velocity is defined 

by 

h = ( 1-y · v) e - imv. x0 . 
v 2 -

( 21) 
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The projection is on to the other subspace, and the sign in the exponent is 

changed to reflect the antiparticle nature. 

The heavy quark Lagrangian is now easily derived. The QCD 

Lagrangian 

l,QCD = \jJ (iy . f) - m) \1' ( 22) 

gives in this case 

L = h [m (y · v- 1) + i (y ·D)] h . v v v 
( 23) 

Here, h is the Dirac adjoint, and D the SU (3) color covariant derivative. 
v ~ 

Using the constraint equation (16), this simplifies to 

L = h (iy·D)h . v v v 
( 24) 

This equation can be further simplified by introducing on either side of the 

derivative the projection operators ( 1 + v · y) / 2 , and using equation (6). 

The result is then 

L quark = h i ( v · D) h . 
v v v 

( 25) 
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Clearly, this Lagrangian results in the Feynrnan rules of Figure 3 on page 15. 

The Lagrangian for the antiquark can be derived in the same way. It is 

L antiquark = -h ; ( v . D) h . 
v " v 

( 26) 

Thus, the propagator is unchanged, while the color charges have changed 

their sign, as expected. 

There are several unusual features in the effective theory. The 

Lagrangian is not even Lorentz invariant, a reflection of the fact that in the 

effective theory, the QCD interactions do not change the velocity of the 

heavy particle. Heavy particles moving along with different velocities are 

completely independent. To get a Lorentz invariant Lagrangian, Lagrangians 

corresponding to various velocities have to be added. 

( 27) 

v 

However, this is not a nonrelativistic model. The velocities involved are not 

constrained in any way, and when there is more than one heavy quark 

involved, the velocity of one need not be small in the rest frame of the other. 
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The kinematic mass dependence has been removed from the 

heavy fields . Thus, in their mode expansions, only the residual momenta are 

involved, and derivatives on the fields result in a factor of these momenta. 

There is no pair creation in the effective theory, so only the heavy particle 

fields are involved. The Lagrangians (10) and (25) have a large set of symme­

tries that are not manifest in the QCD Lagrangians. The symmetries and their 

consequences will be explored in the next chapter. 
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3. Symmetries and Consequences 

The Lagrangians of the effective theory have a large set of sym-

metries that are not manifest in the full theory of QCD. The various flavors 

(masses) of the heavy particles have the same interactions. The spin compo-

nents of the heavy particle decouple from the interactions with the light 

degrees of freedom , and indeed the total spin itself is not relevant: the scalar 

and spinor particles have identical interactions. While these symmetries were 

apparent on inspection of the Feynrnan rules, it is useful to construct them 

formally, to enable rigorous calculation of the consequences. There are many 

equivalent ways to derive these. Several matrix elements of currents between 

the observable bound states of these heavy particles may all be calculated up 

to a common function, the 'Isgur-Wise' function. 

Spin Symmetry 

The heavy scalar Lagrangian has the usual U ( 1 ) symmetry of 

charged scalar particles, 

8x = ir, x . v s v 
( 28) 
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A more interesting symmetry however, is the spin symmetry8) of the quark, 

since it has implications for heavy meson decay amplitudes. The Lagrangian 

of equation (25) has an SU (2) symmetry corresponding to the two spin 

components of the heavy quark. This is most easily seen in the rest frame of 

the quark. In this frame, the Lagrangian (25) reduces to 

l quark = h ·Lnoh 
--~o o1 J o , ( 29) 

while the constraint equation (16) becomes 

( 30) 

This equation is invariant under the SU (2) symmetry on the two non-zero 

components of the spinor. (There still is of course a U ( 1 ) symmetry corre-

sponding to the number of heavy quarks). The generators of the symmetry 

can be constructed explicitly. Suppose that one is in the standard representa-

tion where 

o _ I 0 j 
y - 0 -~ ' 

( 31) 

then the generators can be taken to be 

s = f:r ol 
- 0 lo oj · ( 32) 
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This can be generalized to an arbitrary velocity. First choose an orthonormal 

set of space-like vectors ('polarization vectors ' ) that are orthogonal to the 

velocity: 

v ·e . = 0. 
J 

Using the fact that L~v = i [y~,y v] satisfies the Lorentz algebra 
4 

["<;'~v "<;'pcr] . vp"'~cr . ~p"<;'vcr . ~cr"<;'vp . ~cr"<;'vp 
£... ,£... = tg £... - 1g £... + 1g £... - Ig £... , 

the three generators defined by 

v (1 + v · y) S . = iE. [y · e ,y · e ] 
} ;pq p q 2 

can be shown to satisfy the SU (2) algebra 

[S ,S ] = iE S . p q pqr r 

( 33) 

( 34) 

( 35) 

( 36) 

The projection operator commutes with the commutator in the definition 

because of the orthogonality of the velocity and the polarization vectors, and 

it is sufficient to check that the commutator term satisfies the required rela-

tion . These generators are not Hermitian, but are Dirac self-adjoint, 

V 0 +V 0 
S cr, -- s'.' . . = y ._) ·Y 

J J J 
( 37) 
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As a consequence, the transformation 

( 38) 

implies the transformation for the adjoint 

&h = -ih ( e · S) , 
v v - -

( 39) 

and the effective field theory Lagrangian is then invariant under this transfor-

mation. 

This symmetry has an unusual structttre.3) For every velocity, 

there is a SU (2) symmetry, the different velocities being related by Lorentz 

transformations. This is somewhat analogous to gauge symmetries where 

there is an independent symmetry at each point in spacetime, the different 

spacetime points being related by Lorentz transformations. Unlike gauge 

symmetries however, here the Lorentz transformations also rotate the polar-

ization vectors, and thus mix the spin symmetries. 
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Flavor and Super-Flavor Symmetry 

When several flavors of the heavy particle are present, the effec-

tive theory Lagrangian becomes, (using equations (1 0) and (25)), 

Nh 

L quark = ~ h (j) i ( v · D) h (j) 
v ~ v v 

j = 1 

in the case of quarks, and 

N 
X 

L~calar = L 2mx?)t i (v. D) x~j) 
j = 1 

( 40) 

( 41) 

in the case of scalars. While the latter seems to have a dependence on the 

masses of the scalar particles, this is a trivial normalization dependence that 

can be eliminated by rescaling the field. It is important to note that all the 

heavy fields involved have the same velocity. The spin symmetry of the 

heavy quark Lagrangian is now enlarged to a S U ( 2N h) symmetry corre-

sponding to unitary rotations of the flavors and the individual spin compo-

nents. Similarly, the flavors of the scalar partic1es result in a SU(N ) 
X 

symmetry. 
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The interactions with the gluons with the heavy scalar and 

spinor fields being identical, the two heavy fields may be combined into a 

five component heavy field, on which the super-flavor symmetry can be 

defined: 7) 

The Lagrangian in terms of the superfield is 

L = i ~ !lA ( v · D) \f' , v vu v 

where the mass matrix is 

and the adjoint of the superfield is defined by 

0 
~ = ~t y 0 

v v 
0 1 

( 42) 

( 43) 

( 44) 

( 45) 

The mass of the scalar could be scaled into the field, but it is convenient to 

retain the conventional dimensions. 
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The symmetry is generated by the following transformation: 

c0S 0 + ~ · 0 sJ2m,) 

8'I'v = i s 'I'v ( 46) 

Here, s is an infinitesimal spinor that satisfies ( v · y) s = s and allows the 

heavy scalar to mix with the heavy spinor. The usual SU (2) symmetry on 

the heavy quark is generated by §, while the new generator is the projection 

operator 

(l+v·y) 
so= 2 

The super-flavor part implies 

2m 8 (ixt DxJ = !2; {hsDx- xt D (xs)} x ~k"'x 

8 (ihDh) = r2m {sxtDh- hD (xs)} 
'IJ X 

( 47) 

( 48) 

and is clearly a symmetry of the Lagrangian since Ds = 0. It is obvious that 

this is a SU (3) x U ( 1) symmetry on the three non-zero components of the 



30 

five component super-field. Thus, in the rest frame of the heavy objects, we 

have generators of the type 

xxOOz 
xxOOz 
OOxxO, 
OOxxO 
zz OO y 

( 49) 

where the zeros prevent mixing with the anti-quark, (the third and fourth col-

umns are irrelevant because the corresponding entries in the superfield are 

vanishing in this frame) and the other entries are simply the corresponding 

entries in the identity matrix and the Ge11-Mann matrices 

l
x x z 

X X Z · 

zzy 

(50) 

Similarly, the generators of the flavor symmetries may also be constructed by 

putting the appropriate fields in a super-field. 

The Isgu r-Wise Function 

The consequences of these symmetries can easily be explored 

qualitatively.3) Consider the bound states of the heavy particles with anti-
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quarks. For definiteness, let these be the D and D* (the pseudo-scalar and 

vector meson bound states of the charm quark), the B and B* mesons (bound 

states of the bottom quark) and a hypothetical X particle (the bound state of a 

heavy scalar particle with an anti-quark). In the effective field theory, one can 

assume that the wave functions of these bound states factorize into the prod-

uct of a free heavy particle wave function and a wave function of the remain-

ing light degrees of freedom, 

!Bound)-;:::, !heavy) l!ight) . (51) 

Transitions between the bound states being considered are caused by currents 

that involve changes in the flavor, spin, or velocity of the heavy particle. In 

the effective theory, these currents leave the light degrees of freedom unaf­

fected. Thus one expects the transition amplitudes to be factorizable as 

(Bound
1 

(v
1
)1Jh !Bound

2 
(v

2
)) 

= (heavy
1 

(v
1
)1} lheavy

2
(v

2
))(light

1 
(v

1
)ilight2 (v2)) 

(52) 

The overlap integral between the initial and final light states involves non­

perturbative QCD, and is not calculable. However, general arguments sim­

plify its structure. In the brick wall frame where v 
1 

= -v
2

, the angular 

momentum of the light degrees of freedom must be conserved, because they 
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are unaffected by the current. Therefore the incoming and outgoing helicities 

of the light particles must be equal and opposite. Further parity in variance of 

QCD implies that the overlap integral is identical for both helicities. Conse­

quently, it can depend only on the velocities. Lorentz invariance, and the fact 

that the velocities square to unity imply that the dependence is on the single 

scalar kinematic invariant v 
1 

· v 
2

. Thus, one can write 

(53) 

This function incorporating information about the single independent helicity 

amplitude is called the Isgur-Wise function. 

The symmetries in the effective theory relate the matrix ele­

ments of the current between heavy particles of different flavor or spin. These 

relations can be derived by explicit application of the generators, or by using 

group theoretic techniques. In this way, all the transition amplitudes between 

the bound states considered above are determined up to the Isgur-Wise func­

tion. The function arises from non-perturbative QCD and cannot be calcu­

lated explicitly. However, its value is known at the kinematic point v 
1 

= v 
2

, 

corresponding to ' zero-recoil ' (in the rest frame of the initial heavy particle, 



33 

the final heavy particle is also at rest). Consider the transition between 

mesons of two different flavors of the heavy particle. The flavor symmetry of 

the effective theory indicates that the mediating current is a symmetry cur-

rent. Its matrix element is therefore known in terms of the normalization of 

the states. Choosing appropriate normalizations for the meson and heavy par-

ticle states, the value of the Isgur-Wise function can be fixed at this threshold 

point. (Evaluating m the rest frame of the first particle, 

The Interpolating Field Method 

The straightforward way to explore the consequences of the 

symmetries is to use the action of the generators of these symmetries on the 

states to relate various transition amplitudes. A simpler way is to use ' inter-

polating fields ' that create and destroy the bound states to keep track of the 

transformation properties under the various symmetries, and then to construct 

the general form of the matrix elements consistent with these symmetries.4) 

To compare the two methods, the most instructive example is the transition 

between mesons, which is relevant for semileptonic B and D decays. 
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Consider the definitions of the transition matrix elements below. 

/mp* mp 
' j i 

- * * - -=fc, 1-l+ ( E ·v) {a+ (v+v')l-l+a_(v - v')l-l} 

<P* . ( v ', c,) I J! , Y ~-t hi IP . ( v) > '\ 
J v v I . - *P ,l'v (J = Tgf. '\ f. V V 

~lpl'v<J 

(54) 

Here P . is a pseudoscalar meson and p*. a vector meson with the heavy 
I I 

quark Q ., and c, the polarization vector of the vector meson . The factors of 
I 

masses appear in the denominator to make the quantities on the right inde-

pendent of the heavy masses in the effective theory. This follows from the 

normalization of meson states in QCD: 

(B (p, s) IB (p ', s ') ) = 2Eo , (2n) 3 o3 (p - p') . 
s, s - -

(55) 

These fonns of the matrix elements ar~ the most general consistent with 

Lorentz invariance and parity in variance of the strong interactions. By using 

the spin and flavor symmetry generators to relate various states, and the com-
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mutation relations of the symmetries, all the form factors here may be 

expressed in tenns of the lsgur-Wise function as shown below. S) 

J = 0 

] = ( 1 + v · v') ~ 
(56) 

The first of these relations follows straightforwardly from contracting the 

first definition in (54) with ( v - v') and using the constraint equations for 
J.! 

the heavy fields. 

It is simpler to derive these relations using the idea of interpolat-

ing fields.4) These are fields carrying the right quantum numbers to create or 

destroy the initial or final states. Of course, these are not elementary states, 

and such fields do not rigorously exist. However, they do provide a way to 

keep track of the appropriate transfonnation properties. Consider for example 

the interpolating fields 

P . ( v') = l ,y5fl , r;;;_P ; v v ~ ·· · 11 
(57) 

P*1 (v',E) = lv,y5 (r.* ·y)~, 'v mp*J 
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which destroy the mesons. Then, the matrix elements become 

(58) 

q~*.(v',E)Ihi,rhi !P . (v)) . . . . 
5 

.1 v v ' = - 10 It E * . f! f! r h 1 h' 1 lo > \ v' Y v v' v v Y v 
p*mP. 

} I 

The vacuum expectation values on the right may be evaluated as if this was a 

physical Green function, by Wick's theorem and the associated contractions. 

For the heavy quark, the contraction is just the spin structure of the heavy 

quark propagator (since only the transformation properties rather than the 

magnitudes are tracked this way) 

(59) 

while for the light particles we have some general function of the velocities 

(Oil l , lo) = M . v v ( 60) 

Note that the velocity of the light particles has changed, while it is unaltered 

for the heavy ones. Being a four dimensional matrix, M may be expanded in 

tenns of the sixteen Dirac matrices. Parity conservation precludes the terms 
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with y5
, while the Lorentz transformation property precludes crJ..l v. Thus, the 

general form of M is 

M = A ( v · v') I+ B ( v · v') v · y + C ( v · v') v' · y . ( 61) 

The matrix elements above are then evaluated as traces. 

( 62) 

<P*1 (v',~)l~.rh~IPi(v)) [ * (l+v'·y) (l+v·y) 5 J J = Tr (~ · y) r y M 
m * m 2 2 

p j pi 

Although there seem to be three independent functions in M, only the combi-

nation M = (A - B- C) I is significant since the terms with v · y and v' · y 

anticommute with the y
5 and leave the projection operators invariant. This 

combination may therefore be identified with the Isgur-Wise function,4) 

~ (v · v') = (A-B-C) . ( 63) 

The transitions between spinorial bound states of the heavy sea-

lar are far simpler because of the absence of the Dirac structure. If the spinor 

wave function for the bound state is u, satisfying ( v · y) u = u and 

uu = 2m , transitions between such mesons are clearly proportional to 
X 
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c; ( v · v') u' u. This procedure of using interpolating fields is equivalent to the 

usual tensor methods of group theory. While this approach is more intuitive, 

the tensor methods are perhaps more efficient. Tensor methods are spelt out 

in the next section, and the results written down . 

Tensor Methods 

The matrix elements to be evaluated are of the type 

(B (v') I 0 (v, v') IB (v)). ( 64) 

The operator destroys the initial heavy particle and creates the final one, and 

is therefore of the form 

( 65) 

In the effective theory, r is simply a matrix, all derivatives on the heavy 

fields are replaced by the momenta. The Wigner-Eckart theorem implies that 

if the states and operators are represented by matrices that transform in the 

appropriate way under the symmetries, then the amplitude must be given by 

traces of products of these matrices. This technique is widely used in flavor 

S U ( 3) for instance.17) Here, we have two S U ( 3) symmetries correspond­

ing to the two different velocities v and v'. The initial state transforms as 
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( 3, 1) , the final as ( 1, 3) and the operator as ( 3, 3) . There is only one pos-

sible way to take traces to get a singlet. 

The choice of matrices is not unique, but they must transform 

appropriately under the Lorentz transformations. The 5 x 4 matrices are 

defined by7) 

( 66) 

( 67) 

( 68) 

Here C is the charge conjugation matrix arising because the antiquark is 

responsible for the spinorial nature. Here it is required to satisfy 

CyT C = -y . The adjoints are defined by 
1-l ).! 

'I' = y 'Pt [r o 0l . 
0 

0 II ( 69) 
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The matrix elements are then computed as 

( 70) 

It is clear from the structure of the matrices that essentially the same traces 

are taken in both the interpolating field and the tensoria1 approaches. Using 

either method, one gets the following results for the relevant matrix elements 

in the effective theory_?) 

(P .(v')lh.y 11h . IP .(v)) = ~(v·v') jm.m . (v11 +v' 11) 
} } I I } I 

(P* . (E', v')l h.y11h . IP* . (E, v)) = -~ (v · v') Jm .m . 
} } I I } I 

* . 
[ (E'* ·E) (vll + v'~L)- (E'* · v) Ell_ (E · v') E'll J 

(P* . (E' v')lh .y11h . lP.(v)) = i~(v·v') jm .m.E11vaf3E,* v v' . 
} ' } I 1 .J I V a f3 

<P* . ( E,' v,) I h .y11 y 5 h . IP . ( v) > = ~ ( v . v,) 
.I .I 1 1 

Jm
1

mJ (1 + v · v') E'* 11 - v' 11 (E* · v) J 

t vll Rk-(X.(v')l X· (io11xk) lxk(v)) = -~(v · v') - u'u. 
J '.1 2 m . 

.I 

( 71) 

( 72) 

( 73) 

( 74) 

( 75) 

( 76) 
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L t -v'l-l [~1. (X.(v')l (ia~x.) xkl\'k(v) ) = ~(v · v') 1 u'u. 
J J 2 mk 

( 77) 

In the limit v ~ v' , the currents here become symmetry currents generating 

the flavor symmetry, and to give consistent normalization, ~ ( 1) must be 

unity. 

In the effective theory, the transition between the mesons are 

related to the spinorial bound states of the scalar particle by the super-flavor 

symmetry. If heavy colored scalar triplets were indeed to exist, their decays 

would thus be related to the decays of the Bottom and Charm mesons. Cor-

rections to this effective field theory picture are dealt with in the next chapter. 
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4. Running Corrections 

In the early days of field theory, the need for renonnalization 

was viewed as a serious deficiency. With the advent of the modern view 

point, I&) however, it is regarded as both essential and useful. 19) Field theories 

are viewed as descriptions of physics at a certain energy scale, rather than as 

universally true. At energies much lower than the heavy particle masses, an 

effective field theory description, where these particles are completely 

absent, can be built. Renormalization then provides a way of summing some 

of their effects. An example is the removal of the heavy quarks from consid­

eration in Kaon decays.20) 

There are two steps in this procedure.3) First, the particle is 

' integrated out', giving a nonlocal action . The coefficients at this stage are 

influenced by all the energy scales. To remove the dependence of the coetli­

cients on long distance physics, so that this is incorporated explicitly, one 

must match the two theories at the boundary. Physical quantities are calcu­

lated using both the full and the effective theory, and the parameters of the 

effective theory chosen so that the results are identical at the boundary. This 
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way, only the short distance effects are present in the coefficients at the 

boundary. The renormalization group can be used to scale these coefficients 

down to the energy scales of interest. 

Renormalization in QCD 

In the full theory ofQCD, the Lagrangian density in terms of the 

bare fields (bare quantities are 'hatted' ) is 

j = 1 j = 1 

where hypothetical colored scalar particles are included, and the covariant 

derivative is 

D = ca +igAIIfl) , 1-l ~l ,.. 
( 79) 

J'Z being the color S U ( 3) generators with the conventional normalization 

Tr [ f1 1h] = l '6ab . The bare Lagrangian does not lead to finite Green func­

tions in perturbation theory. The procedure of renonnalization introduces 



44 

renonnalized fields (unhatted) related to the bare fields by renormalization 

constants: 

q . = 
J 

q. 
J 

r--

z 
·~ q 

-E/2 ~ 
J.l g 

g= z g 

( 80) 

Here ~ = 4 - n , n being the dimension of space-time. J.l is a quantity with 

dimensions of mass that is introduced to keep the coupling constant dimen-

sionless in all space-time dimensions. The Lagrangian is then written m 

terms of the renormalized fields and ' counterterms' CT. 

1 - - 1 C""' GI-l v -" - J + 4 1-i.V 
( 81) 

j = 1 } = 1 

Renormalizability requires the countertenns to be of the same form as the 

terms in the original Lagrangian. 

The counterterms are chosen according to a ' renonnalization 

prescription' (often conditions on the renonnalized Green functions) after the 

infinities in the calculations are controlled using a ' regularization scheme' 

(that usually modifies the physics at short distances). In QCD, ' dimensional 

regularization ' with the 'minimal subtraction' prescription is used.22) In this 
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scheme, the infinities are isolated as poles in E, and the counterterms are con-

structed by removing just these poles (as opposed to subtracting further finite 

quantities). In this scheme, the renonnalization constants are of the form 

00 

z(p) (g) 
Z(g,E) = L 

~ 
( 82) 

p = 1 

An important advantage of this scheme is that it is independent of the 

masses. 19) This is clear by dimensional analysis. Since the renormalization 

constants are dimensionless, they can depend on the masses only via f.l / m . 

But J.l enters only through logarithms, J.l~ = 1 + ElogJ.l, and hence the depen-

dence must be on log (J.l/ m). But the constants are regular for vanishing 

mass, and therefore must not depend on the masses at all . 

As an example, look at the renormalization of the colored scalar 

field in QCD. We need to evaluate the two-point function, with the external 

legs amputated. The graph is infrared convergent, but has a quadratic ultravi-

olet divergence. 
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q 

-~ 

p + q 

FIGURE 4. Self energy of a colored scalar. 
Infrared convergent, but quadratically ultraviolet divergent. 

Using the Feynrnan rules, the off-shell self-energy is 

( 83) 

Using standard techniques, (only the pole term need be evaluated) this evalu-

ates to 

( 84) 

Equating this to ip2 
(Z<I> - 1) , we get the field renormalization constant 

( 85) 
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By calculating the renormalization of the scalar, quark and 

gluon fields, the dependence of the renonnalized coupling on the subtraction 

point can be calculated. This is expressed in terms of the f3 function defined 

by 

og 
f3(g,e) = o(logJ.!) 

This has been calculated to be 1•23) 

f3 (g) = lim f3 (g, e) = - (33- 2N - NsJ _j_ 
e--:) 0 q 2 487t2 

( 86) 

( 87) 

Instead of specifying a subtraction point, and the value of the coupling at that 

subtraction point, it is conventional to integrate this equation and write 

( 88) 

where the integration constant AQCD is the only mass scale of the theory. 

The actual value of this scale depends on the renormalization scheme, and is 

of the order of 200M e V. This is completely independent of the masses of the 

quarks and scalars, or indeed whether these particles have masses at all. 
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The vanishing of the coupling at large energies ('asymptotic 

freedom') together with the renormalization group enables improvement of 

perturbative calculations. Thus, a perturbative calculation that yields a result 

of the fonn 

oo n ( J/ r ( N) = ( ) N / 2 - 1/( ) L n L a lo p ext 
R g J.l P ext g n p g , J.l 

( 89) 

n = O 1 = 0 

is improved by choosing the subtraction point to be of the order of the exter-

nal momenta. Fonnally, the Callan-Symanzik equations, which express the 

invariance of such physical quantities under a change in the subtraction point, 

sum the ' leading logarithms' in such an expansion. 

Renonnalization in the Effective Theory 

In the effective theory, in addition to the QCD Lagrangian for 

the light particles (78), one must include the Lagrangians (10) and (25) for 
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the heavy particles. Once again, one can write these as sums of renormalized 

Lagrangians and counterterms. 

) = 0 k = O 

In the full theory, the renonnalization constants are mass independent. But 

the finite parts of Green functions can have logarithmic dependence on the 

masses. In the effective theory where these masses are taken to infinity, these 

terms can cause divergences. Thus, the renormalization constants must be 

calculated afresh in the effective theory. 

The first quantity to evaluate is the field renormalization con-

stant. The superflavor symmetry implies that this constant is identical for 
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both the heavy quark and the heavy scalar. (This is also clear from the Feyn-

man rules). The relevant graph is shown below. 

-..= 
p 

q 

=-..= 
p + q =---­p 

FIGURE s.Self energy of a heavy colored particle. 
Infrared convergent, but linearly ultraviolet divergent. 

Using the Feynman rules for the effective theory (Figure 2 on page 1 3), the 

self energy in this case is 

( 91) 

There is a slight subtlety that arises when this is evaluated using the usual 

Feynman method for combining denominators. To begin with, there is no 

infrared divergence. However, when the denominators are combined using 

the usual Feynman parametrization 

1 

=J- dx 
ab 2 ' 

0 
[ax +b(l -x)] 

1 
( 92) 
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an infrared divergence is introduced. The final integral over the Feynman 

parameter reads 

l 

Jdx(l-x)3 - n(x)n - 5 . 

0 

( 93) 

The divergence that occurs at x = 0 is an infrared divergence since it occurs 

for n ~ 4 . This can be isolated by putting x = 1 in the second factor. Another 

approach is to combine the denominators differently. The Feynman method 

seems to work best when the denominators have equal powers of the 

momenta. Here, combining denominators using the identity3) 

00 

a~ = J dA 2 

0
[a+bA.] 

( 94) 

eliminates the problem. The result is 

2 
L = - (2im) g (v·~ 

3n2 8 
( 95) 

In the scalar case, the counterterm is 2im (Z - 1) xt (v ·D) x, and we get 
X 

the renormahzation constant to be 

( 96) 
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It seems to be a coincidence that the renormalization constants are identical 

for the full scalar and the heavy scalar. 

The problem encountered here is in fact a general problem with 

dimensional regularization. First, since there is no explicit cutoff, the degree 

of divergence is not apparent. Next, the divergence can equally well arise 

from short distance or long distance effects. This can be seen using the fol-

lowing argument. 3) A general integral 

( 97) 

with I a typical loop momentum and A a function of external momenta, is 

split up in n = 4 + 8 dimensions as 

( 98) 

The integral over the 8 dimensions can be done, giving 

( 99) 
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where lim r ( 8) = 1 . Thus, I 
8 

differs considerably from I if the momenta 
8~0 

are significantly larger than the subtraction point (the ultraviolet divergence), 

and also if they are significantly smaller (the infrared). Keeping the external 

momenta nonzero is one way to avoid the latter in anomalous dimension cal-

culations (in matching calculations, the infrared divergences are common to 

both theories, and are automatically removed). 

At frrst sight, it might seem that the gluon field renormalization 

needs to be recalculated in the effective theory. However, in the effective the-

ory, heavy loops do not occur, because there is no pair production. Therefore 

there is no heavy particle contribution to the gluon field renormalization. As 

a consequence, the f3 function is still given by (87), with only the light quarks 

and scalars in the theory being included in it. 

Composite Operators 

In the previous chapter, the matrix elements of several compos-

ite operators (those which involve a product of elementary fields at a point) 

were related in the effective theory. In general, renormalizing the component 
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fields is not sufficient to renormalize the operator, indeed, the very definition 

of a product of fields at a point is subtle in a continuum field theory; further, 

different operators may mix under renormalization. In the case of quarks, the 

vector and axial vector currents do not get renormalized in QCD. This in fact 

follows from general considerations. These are conserved currents associated 

with the chiral symmetry of the Lagrangian, and thus are related to the 

charges that generate this symmetry. The normalization of charges is fixed 

however (since the commutation rules are nonlinear), and related to physi­

cally measurable observables. Thus, conserved currents do not get renormal­

ized. For chiral currents, this is in fact true even if the chiral symmetry is 

broken by mass tenns, since the renormalization constants are mass indepen­

dent. The operator q
1

q k is an example of an operator that requires renormal­

ization in QCD. 

An operator that does not require renormalization in QCD might 

still have terms of the type log ( m heavy/ AQCD) in its matrix elements. In 

the effective theory, where the heavy masses are considered infinite, such 

terms result in divergences. Thus, the corresponding operator in the effective 
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theory wi11 require renormalization. The renormalization of the operator is 

defined in general by* 

ob = z0o . are ren ( 100) 

The operator renormalization constant z0 is chosen so that Green functions 

with the insertion of the renormalized operator satisfy appropriate conditions. 

In the dimensional regularization with minimal subtraction scheme, they are 

required to be made finite by removal of poles in e. This would give a series 

of the same form as for the other renormalization constants, 

oo z(p) (g) 
= :L a 

~ 
p = 1 

A bilinear operator 0 involving fields <!> 
1 

and <1>
2 

therefore satisfies 

() ("'bare "'bare) = Jz rz 0 ("'ren "'ren) 
bare 'I'] '"'2 1 ~.u2 bare '1'] '"'2 

= z0 o ren 

( 101) 

( 102) 

* A diiTerent convention, with the inverse of Z in the same position as Z in the defining 
equation, is used in ref. [ 13]. This changes the sign of the anomalous dimension term in the Callan-Syman­
zik equation (I 08), but does not alter the results. 
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Note that after renormalization, insertion of a 0 is not equivalent to ren 

inserting the appropriate product of fields . For Green functions with L inser-

tions of the operator, and N fields, we have 

G (N, L) = [nN 1 J (Z ) - L G ( N, L) 
ren z. 0 bare ' 

i = 1 "-1 I 

( 103) 

while for the one particle irreducible functions we have 

r (N, L) = [ ITN Jz .J C z ) -L r (N, L) . 
ren 1 0 bare 

i = 1 

( 104) 

These facts have implications for the symmetry relations 

derived in the previous chapter. There we computed the form of matrix ele-

ments of composite operators built of heavy fields. The physical quantities 

however involve matrix elements in the full theory of QCD. Consider for 

instance the operator 0 ( <1> 1' <!> 2) in QCD. Now, in an effective theory where 

the first particle is considered infinitely heavy, it is logical to assume that the 

relevant operator is 0 1 
( h 

1
, <!>

2
) , that is, of the same functional form but with 

the heavy field instead of the full field. The latter operator however requires 

renormalization, and hence acquires a subtraction point dependence. Thus, 
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the two operators may be identified at at most one energy scale. Typically, 

this is chosen to be the mass of the particle. Thus, 

( 105) 

where the coefficient function satisfies the boundary condition 

( 106) 

up to terms of the order of a s ( m 1) . At this boundary, the matrix elements of 

the operator have large logarithms of the form log (m 1 I AQCD) . The renor­

malization group allows these logarithms to be transferred to the coefficient 

functions from the operator. Using the connection between the renormalized 

and bare operators, we have 

0 bare 

OQCD = C (J..l) e.f.f 
zo 

( 107) 

The subtraction point independence of the bare operator in the effective the-

ory and the operator in QCD implies the renormalization group equation 

( 108) 

where the anomalous dimension of the operator is defined by 

( 109) 
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The anomalous dimension is thus calculable in perturbation theory as a func-

tion of the coup1ing constant, and the solution to the equation is 

C(f.!) = 
g(~) y (g) 1 

exp( J dg 
0 

) C (m 1) . p (g) 
g(ml) 

( 110) 

Next, an effective theory where the second particle is also infi-

nitely heavy can be considered. Once again, the operators are matched at the 

boundary, the mass of the particle, 

( 111) 

where now the operator 0 ~tf is got by using the same functional fonn with 

both the fields heavy. Note that the boundary condition for the coefficient is 

now got from equation (11 0). Thus, the coefficient at low energies is 

C(J.!) = C(m 
1 
)x 

r g <~) r , 2 (g) 

I exp( J dg op ,(g) 

l g(mz) 

) 

g(mz) y (g) 

f 
o' 

exp( dg 
p (g) 

( 112) 
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The corrections calculated here can be combined with the sym­

metry relations of the previous chapter, to make predictions about physically 

measurable transitions. Naively, the effective field theory approach suggests 

a relationship of the form 

( 113) 

if both bound states have heavy quarks, with the trace being of appropriate 

matrices in the formalism. The corrections here imply that the Isgur-Wise 

function can be factorized into two bits, one of which has no dependence on 

the actual masses at all, while the other has a calculable logarithmic depen­

dence on the masses. That is, 

The function ~0 is truly universal since it has no dependence on the masses. 

There is an additional subtlety that can occur in operator renor­

malization. It is possible that the operators mix under renormalization, thus 

requiring the operator renormalization constant to be a matrix. A particular 

choice of an operator basis can then ensure independent multiplicative renor­

malization. This in fact occurs in the case of the heavy scalar. The coefficient 
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function has been evaluated for heavy quarks21). In this thesis, it is evaluated 

for hypothetical heavy scalars13)_ 

Low Energy Running 

The low energy (that is, lower than both the masses) running is 

particularly interesting because it turns out to be velocity dependent. We need 

to evaluate the following graph for insertions of the operators xt 2x1' 

xt 2 (i8!lx 1), and (i8~txt 2) x 1 ; these are the natural ones to consider . . 

~ 
II \\ 

II \\ 

1~\ 

p I k \\ 
I II \\ p2 

FIGURE s. Low energy running for operator 0. 
Both fields are considered heavy. All the three operators have pro­
portional matrix elements. 

When a derivative acts on a heavy field, it is equivalent to inserting the oper-

ator without the derivative, but multiplying by the momentum. Thus, the lat-

ter two operators give the same result as the first, but multiplied by m 1 vr and 

-m 2 v!t respectively. 
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Using the Feynman rules (Figure 2 on page 13), the value of the 

graph for an insertion of xt 2x1 is 

( .4 2) f elk 1 -1 - g (v · v ) . 
3 1 2 ( 27t) 4 ( v 1 . k) ( v 2 . k) k2 

( 115) 

This has both an ultraviolet and an infrared logarithmic divergence. Combin-

ing the denominators using 

( 116) 

this becomes 

( 
.4 2) OOJ OOJ · f elk ] -t - g (v

1 
· v2) 2 d'A dK . ( 117) 

3 0 0 (2n)4 l k2+(vl·k)'A+(v2 · k)K J 3 
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The integral over the momentum can be done in the usual way, using the for-

mula 

D ( 118) 
D D n - m-

= i ( -1) m - n r(m + 2) r(n-m- 2) ( 1 ) 2 

2 D/ 4 D r(n) 2 
(16n) r(2) a 

to give 

00 00 

( .4 2) ( -i ) f f 1 -1 g (4v
1

·v
2

) -- d.'A dK .( 119) 
3 16 2 I 2 2 ll + e 

7t 0 o L K +A + (v2 · v1) 2KA 

It is convenient to change to polar coordinates, K = p sine, and A = p cose, 

so that we can use 

n / 2 

f 
de 

( 1 + p sin2 e) 
= 

log ~ + Jp2 
- 1) 

~ =r(p) . 
~p- -1 

( 120) 

0 

Then the integral evaluates to 

( 121) 
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The divergence at infinity is the ultraviolet divergence (it occurs for D ~ 4 ), 

the one at zero the infrared (occurs for D ~ 4 ). The infrared divergence could 

have been avoided by putting a fictitious mass. Thus, the Feynman graph 

evaluates to 

( 16) 
2 

- - _K_ (v · v ) r(v · v ) . 
3 2 1 2 1 2 

167t 
( 122) 

The superflavor symmetry implies that the same result is got for heavy 

quarks. Any spin structure matrix simply multiplies this result because of the 

spin symmetry. It follows from this that 

z 
X 

2 
g 

1 + -
2
- ( v 

1 
· v 

2
) r( v 

1 
· v 

2
) 

37t E 

2 
g 

= 1 - -
2
- vI · v 2 r( vI · v 2) - 1 

3n E 

2 

( 123) 

Suppose that Z 
0 

= 1 + ag , the anomalous dimension is y 
0 

= -ag
2

, since 
E 

J3(g, E) = [- Eg/ 2 + J3(g)] . With J3(g) = -bg
3

, the renormalization group 
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equation (11 0) is easily solved. The factors that appear are of the form 

[ asC~)Ia/m) Jal (Zb) . Thus, in this case, the running is of the form 

8 [v I · v 2 r( vI · v 2) - 1] 

33 - 2N - N / 2 
q s 

( 124) 

Since lim r(x) = 1 , there is no running in the limit that the velocities are 
x~ I 

equaL This is to be expected; in this limit, the current is a flavor symmetry 

current. All the operators in the scalar and spinor cases exhibit the same run-

ning at low energies. 
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Intermediate Energy 

For energies between the two masses, the first particle is consid-

ered to be infinitely heavy, while the second is treated as usual. To calculate 

the running in this region, the following graph needs to be evaluated. 

»4 
II \ 

II \ 

I~ 

p I k \ p 
. l g \ 2 

FIGURE 7. Intermediate energy running for operator 0. 
The first field is treated in the effective theory, while the second is 
an usual QCD field . 

First consider the operator <1>
2
t x

1
. The Feynman rules give us 

( 125) 
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Once again, there is both an ultraviolet and an infrared logarithmic diver-

gence, but here they arise from different terms. Ignoring the ultraviolet finite 

part, and combining the denominators we have 

( 
4 2)Jl J tlk 1 

-i3g dx (2 ) 4 I 2 - -- 12 
o 1t 1 k + 2xm2 v 2 · k 

This turns out to be 

Thus, using equations (85) and (96), we get 

Jzcf>zx 
2 

1 - g 

61t
2

E 

2 
= 1 + g 

21t
2

E 

The intermediate energy running of this operator is 

- 12 

33 - 2N - N / 2 
a (m ) l q s 

s 1 

a/m2) 

( 126) 

( 127) 

( 128) 

( 129) 
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Now there is a distinction between the theories with quarks and scalars. The 

superflavor symmetry relates only the first particle. Thus, the graph evaluates 

differently, and the result for the intermediate energy running has a 6 instead 

ofthe 12 here_21) 

The graph with an insertion of <!>} (i811x1) is simply m 1 v~ 

times that with an insertion of<!>/ x1 . The remaining graph, with an insertion 

of (ia11q,t 2) x
1 

is 

( 130) 

This has an ultraviolet divergent part proportional to 

( 131) 

Since the ultraviolet divergence in this integral is unaltered by equating p
2 

to 

zero, the integral must be proportional to the momentum p 
1

, which is the 

only momentum left. The renormalization of this operator therefore requires 
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The linear ultraviolet divergence proportional to 

elk k~ 

I (h) 4 (k2 + 2p2. k) k2 
( 132) 

may be evaluated using the standard methods: 

1 

JruJ d\ 2 It' 
0 

(2n) (k + 2xp
2 

· k) 
( 133) 

One tenn proportional to m 2 vi has been evaluated in the previous case 

(equation (127)). The ultraviolet divergence of the mixing term (131) may be 

eva] uated as 

( 134) 

Setting m2 = 0 in the denominator to isolate the ultraviolet divergence gives 

( 135) 
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It is significant that the mixing is proportional to m
2 

rather than m 1. The 

total ultraviolet divergence of the graph is 

( 136) 

The mtxmg reqmres a matrix of renonnalization constants. 

Thus, we have 

01 I 01 bare = z ren , 

02 02 
hare ren 

( 137) 

where Z is a two dimensional matrix of the form 

( 138) 

Similarly, we choose a coefficient matrix 

( 139) 
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Using the same procedure (all entries are of the same order, being one loop 

results) 

- 1 z 

where the dimensionless ratio r is 

As a consequence, we have the matrix equation 

d ( '( ) = g
2 

C(••) [ 6 0] J..ld / J..l - ,..., 
J..l- 127t2- -p 5 

with the boundary condition 

C(m 
1
) = I . 

- -2 

( 140) 

( 141) 

( 142) 

( 143) 

This is most conveniently solved by going to a basis in which the anomalous 

dimension matrix is diagonal, and then reverting to the original basis. Then, 

we get the result 

( 144) 
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the coupling constant ratios are 

and the exponents 

8{v
1

·v
2
r(v

1
·v

2
) -1} 

e = 
I N 

33- 2N - s 
q 2 

-12 e -------
2- N 

33- 2N - s 
q 2 

- 10 
e = 

3 N 
33- 2N - s 

q 2 

( 145) 

( 146) 

Thus, the mixing is not necessarily small. The factor of r in the off-diagonal 

term ensures that the operator (i al-l<!> 
2

) <!> 
1 

has a coefficient of order m 
2 

rather than m 
1 

. 
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5. Conclusion 

The effective field theory approach provides a model indepen-

dent way of making predictions based on symmetry in the case of heavy 

quarks and scalars. Further, corrections to these relations can also be treated 

systematically. Experimentally, this approach is most significant for semilep-

tonic decays. Thus, using the results of the previous chapters, the relevant 

- * relations for the decays B ~ Dev e and B ~ D ev e are 

The subtraction point dependence of the Isgur-Wise function is cancelled by 

that of the coefficient function, which here is, 

6 8 [ v · v' r( v · v') - 1] 

C =(a (mb)J 25(a (m )J 27 
cb a: (m) ;~. (~; ( 148) 
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The analogous relations for the case of scalars have been calcu-

lated here. Consider two elementary colored scalar particles of masses m 1 

and m 2 , the first being more massive. At low energies, the matrix element of 

the simplest current is 

where the function is now* 

12 8 [ v · v' r( v · v') - 1] 

N 
33 - 2N - s 

q 2 

( 149) 

( 150) 

The same Isgur-Wise function appears, and is nonnalized to unity at the 

threshold v = v'. The derivative operators mix, as demonstrated in the last 

chapter. That is, 

[(X
2 

(v')l x
2
t (ia~x 1 ) lx

1 
(v)) 

l(X2 (v')l (ial.tx.2)tx.llxl (v))J 

v~ ~1 ~(v·v') u'u 
2 m2 

t 
, 

-v'~ m2 
~(v·v') u'u 

2 m
1 

( 151) 

*. There are minor errors in the equations corresponding to (150) and ( 144) in ref. fl3 J; 
the exponents have wrong factors there. 
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where~, (M) is now the matrix in equation (144). Thus, if heavy colored sca­

lar particles do exist, the decays of their bound states are related to the decays 

of the heavy mesons. 

These results can be further improved by including corrections 

of higher order in a
5 

(accessible to perturbation theory) as well terms sup­

pressed by powers of A QCD / m h that have been ignored in the effective the­

ory. The latter corrections are not accessible to perturbation theory, and in 

general may have complicated effects. Data thus far seems to indicate that 

such corrections are often not large. Further, in some special situations they 

are not relevant, say at zero recoil24
•
25

) or for decays of the Ab or the Ac 

baryons.26) Another possible consideration is the ratio of the masses of the 

heavy particles. There are arguments27) that suggest that when this ratio is not 

very large, it is more accurate not to have an intermediate energy theory. 

Instead, the low energy theory has matching corrections that depend on this 

ratio. 
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