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The effect sf the variable density isf tBz Standard Atn~os-  

pkere on the dynamic stabi"Hiey ol a missile in ver.&bcak flight 1s 

considerad, The analysis is restricted to small distsarbances 

from steady rectilinear fBigh4, The cxponewtial deerease sf den- 

s i t y  wiBA altitude characteristic of the Standard Stratosphere is 

introduced into $be equations of =%ation and a stat~i2Sty criterion 

far Cfie dynamic behavior immedla26 Ey following a small distur- 

bance fa found. Al ternat ively ,  a hy2erbalic variation of density 

wi th  altitude is ~ s e d  to approximate the Stadat-$ Akmaasphere *and 

the idedical stability c ritsrioa is obtain-.&, 

Fbe effect of non-linear pitching moment and lift waria- 

%ions' with angle of attack an the dynamic response to a sudden 

change in angle 08 attack is considered, 4n a p p r o ~ ~ ~ a t e  sofution 

to tbe asn-linear zqiaatton bafmotisn is developed. Several numer- 

ical examples are cono~der ed , and the re  13~lt0 of the apprcl%imate 

solution are cornpared wi th  the very  accurate results of mramzsi- 

cal i.8.a%agration as wall  as the classical; linearized solution. The 

effect of a asa-linear masmen$ curve  on the determination of sta- 

b i l i t y  der ivat ives  frsm flight test6ata is discussed in the light of 

these examples, 
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The sslutfans to the equations of motion of an airplane when 

subjected "c srr~all disturbances from steady flight have comprised 

a standard part  of the cur r icu lum for students sf aeronautics during 

the past several y e a r e ,  The classical treatment of the problem i s  

due largely  to 6, W ,  Bryan who applied the theory of small osci&fa- 

tioars previously devs lopd  by Routh. Bryan assumed that the forces 

and momeds due to a slight disturbance from a state of equilibrium 

depend linearly on the diahrrbancs . T h e  solution i s  than shown to 

depend on a number of constants called stability derivatives, For 

many years,  the development of anprimental  techniques for d a t e r -  

mining these derivatives haa been the yr inelpal intareat of BnvestZga- 

tors in the field of dynam~ic stability as applied to aeronautics, U n t i l  

ve ry  recently there has been little or -no change in the theory and it 

i.s in use today essentially in the form developed by Bryan. 

It should be noted that the etassical theory applies strictly 

only %a the case d idiniteaimaB d i o t u r b a n c e ~ ,  However,  the rasufts 

have been found to apply with reasonable accuracy to finite dis tur-  

bances of " the  magnitude experienced in the fl ightof conventional 

subsonic airplanes. In other w o r d s ,  the second order terms nagleetad 

in tha theory do not have  any appreciable  effect on the motion. 

With the advent of the high s p e d  jet airplane and missiles, 

the assurn$ii;ans of the ekaosical theory are  violated 50 such an extent 



that the applicability of the theory is questi~aabHe. In the ease 08 

euperssnaic rocket-powered mtssileni these violations are parbicu- 

fa r ly  flagraat. X a r  the first place, such missiles rarely f ly  at con- 

stant speed; on the contrary, the usual  flight comprises a period 

d v a r y  "nmigb acce1eratioa follawed by a lens repid deceleration, 

Secondly, %ha cssmple~e fuel supply is often cshdasumed in a. very 

short  time, giving rise to appreciable variations of mass and cen- 

%as of gravity location, Thirdly, a portion of the flight is some- 

times vertical in direction, haace Lkie atmosp"9nric: density is  

rapidly varying. Zaa these reasons, the aerodynamic forces and 

msmcBtls - the s tabi l i ty  e'Berfpitakivas - are e%abjec$: to appreciable 

variation during the period of the oscillation baing studied. 

Eut perhaps the most se riousr deviation from the conditions 

of the c l a~s i ca l  theory occurs when one attempts to extend the re- 

sults to the ease of finite disturbances. In most missile configura- 

tions, smafb aspset ratio \vings are mounted in tandem cdla propor- 

tionately large diameter bodies . This exaggerates the aerodynamic 

interference effects and slaeh missiles exhibit markedly non-linear 

dependence of the aercdynamic farces and moments UP the angle of 

a t t a c k  Consequently, the amplitude of disturbances %or which one 

would expect the r=laasicai theory to be valid is esnsiderably reduced. 

But at ehs same time, in the normal operation of such missi les,  

large sudden changes in the apgle sf a$-t$ack are frequently required. 
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Weirace it would appear that, in the case of guided , the 

exkeasion of the theory of sw~all @scillatle>ns $0 finite disturbances 

is vary questibnable. 

The effect of variable speed o n  dynamic stability has beans 

investigated by N . 3 ,  Stewart (Reference 1). He con~ideted the 

case aB: %s rnaiesile in coasting flight, decelerating under the idlra- 

encle d drag. Hi@ results show that al%bsugh $be effective damping 

is decreased in this case, Lhe drag does not lead to inahbil'ily. 

The effect of variation of mass on the dynamic stability s f  

jet pro2elled miersiles has Been iavesbLigated by N.  V .  Barton ('4 tf- 

srence 2). His analysis chows %at the diaturbamrt-e of a missile 

with decreasing d a m p  out meore rapidly khan it dasa bsr a 

csnotank %-%lass missile, indicating that variable ?-decreasing mass is 

more stable. A%$8 the escnillaticn ft-equaacy of the variable mass 

missile inacreasas wi%h tima and is greater than the oscillation free 

quancy of the C O P ~ S L P P ~ S ~  maas mfssiPe. 

In Past BY' of the 2resent p r p r ,  the effect on the Po.trgiQ.kxs"niaof 

dynamic stabi l i ty  of the variation sf eLmoapBarie density is8 vertical 

flight is conefdesed. The analysis is reatrietsd to the care of in- 

finitesimal 6iskurbances so &hat the forces and moments depend 

'timarly on the angle of sttack, The stability dersivativaa are, haw- 

ever,  fusaazeians of the indepndent wriable, and the problem is 

reduced to the oolurtian of a linear differential. equation with non- 

constant coefficients, far which the exact seolrrtilcan can be obtained 



by the n~ekhoda of mathematical analysis. 

In Part V of the presalzt pape r ,  the ef fect  sf non-linear 

variation of lift and pitching moment w i t h  angle of attack on the 

dyaamic rts~onse to a s t e p  function input in angle of attack l e  in- 

vestigated, The missile is assr~mad to be f lying at constant speed 

and altitude. The problem is reduced L a  an ordinary ~iracond order 

non-linear differential equation which cannotbe solved exactly by 

methods known dda y . Wewe var , approximate solutions may be 

obtained, and by the mathod of numerical integration a ao'XutIon to 

any desired degree of accuracy can be obtained, 

The stability of the nen-linear sy &tam i s  determinzd from 

considerations of the solution in the neighborhood of the crbticzl 

poinks of the differential equation, and the inve $tigation of the dy- 

namic response is eodined to systems which  have been previously 

d a t e r m i n e d  to be stable. 

In its application to a guided missile the problem of dy- 

namic respans~ proper ly  involves "%ha combination of the misslke 

as an aerodynan~ic body and the control system. & ! n u t  since ultimately 

any r r ~ ~ t i o n  of the rnfseilc must be brought about  by aerodynamic 

forces ,  it 1s dasfrablc to know the dynamic behavior of the missile 

atone. In g:3articuhr, the "'over-shoot" ceharacteristic sf the response 

l o  n sudden change in t r im position is important In the design of the 

control system as i t  indicates the amount of "feed-back' necessary 
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to :>rotride satisfactory steering sf the n2issile . 
in the present analysis  an at tempus made $0 approximate 

this overshoot without resorting to the tcdTouc3 method of aumeri- 

cal integration. A com;arison s f  this a2proximatiesn with the nu- 

merical sofertisn and the linearized solution is presented. 

R very  i-mpcrta.911 problem confronting the ae rodynamicist 

working In the field of guided missiles is ikc reduction of flight 

tes t  data in order l o  evaluate the stability darfvativea , One of the 

prwedures  followed is to analysc the transient re-sgonse of the 

missile to a. s t ep  function in?& in the c o n t r ~ t  surface deflection. 

T"as is eqrrivalerlt to a ste; fuqction input in the angle of attack. 

Inn Appndix  IIS sf this paper the effect of a won-linear momeat 

curve on this procedure is discussed. 
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IS. (SBCRDP2GaTES, P;GTATBI;=:f<, SYMBCLS 

The equations of motion for a missile ean be referred to 

a set of body axes which are  fixed in the missile and move wi&e it. 

A n  orthogonal set of p~incip'i body axes with artgiw in the missile 

canter a2 gravity,  the x-axil., the lobgitudina'h centerline, the y-axis 

in the rmsrmakly horizontal pHma and the z-axis in the normally ver- 

tical p l n e  , 2s selected. This coordinate system is shown in Fig- 

ure 1. The vePo~ifies, m ~ m e n t s ,  angular velocities, diaplcemt?n&s 

and angular displacements are all defined in accordance with the 

right hand rule . 
Throughout the text, the ~usrmal conveatfon of plating a dat 

ove r  a quantitg: to denote differentiation with respect to time is used, 

Nebenever a fractional power of a quantity is involved, the positive 

real branch of the multiva2uad function is taken. For the inverse 

trigonometric functions, the principl branch is taken. In the faP-- 

Io9ing kist $he principal quantities used in this p a ~ r  are defined. 



A , B  ,C , D ,  2 ,F = coefficients of non-linear eqwtion c ~ f  mation - 
defined in text 

4: = reference chord for moment coefflciente, f$ 

%=o = damping constan* for claasl;ical theory cvalwted at 
sea Level, L'rp/sec 

P L 
""I- = &pv2s = 1st coefficient 

CL. - a C, - - ewluated a& tr im position 
K t  aa 

- - aCM evaluated at = 0 
a(dc4v 

C ~ q  
- - a evaluarted at: q = O 

a(qc/,v\ 

3 ,  = incomplete elliptic integral of f irst  kind 

8 = acceleration of gravity, ft/sec2 

E x = S(r12+ zydm s moment of inertia about x-axis (rol l) .  
~.b i;eeZ/it. 

= )(xz+ zqdm = moment af inertia about y-axis (pitch) . 
Ib seeZ/ft 

= ![X'+ 'j2)dm = moment of inertia about z-axis (yaw), 
Ib sea:Z/ft 

k = parameter defining variation of rafatlvs density wi th  
altitude . L/fc. 

k 'f,2,3 = conotaanto clsed to define non-lin58e" l i f t  curve  

K = cons"eands used to defina non-linear morsrent curve  
1 , 2 , 3  

K (".i/) = complete elliptic integral  sf first kind 



= aacce'terometer reading 

= e  - -  a' = perturbation in roll rate (angular velocity 
a t  about x-axis)  rad/sec 

= l r a  ..d/sec a t  
= steady s t a b  of value of P 

ae - a t  =pr tu rbab ionf rzp i ' t cb ra t s (angu la rve l sc f ty  
about y-axis) aad/sec . 

2 
= $ p V  = dynamic pressure,  lb/ft 2 

= E pertarbation in yaw rate (angular velocity 
about z-axis) rad/sec 

a @  = 9 = - = ~ P W  rats rad/sctr a t  

= steady state value of W , radfsee 

= radius cPt: curvahur~  oP flight path, ft . 
= reference area lor a e r d y n a m i ~  ca~?Eficien"lt, sq, f d .  

= time, S B C  

= velocity ssmpseaznt in w-direction ft/sec 

= steady state value of U fi/oee: 

.: velocity perturbation in y-direc"efon ftiaec: 



= steady state value of V f t  / sec 

v = missile velocity & / s e e  

w 3 velocity perturbation in Z-direction ftlsee: 

iV 1 = s teady  state value of %; 

x ,Y ,z  = coordinate axis, r tghd handed principal body axes 
(x-all.. pitcb, yaw axis respectively) 

X = force in x-direction, Bb 

Y = force in y-direction, Pb' 

Z = force in e-direction 

XU = dX = Resistance derivative, rate of change of force 
a u in x-directiea w i t h  velocity in x-direction, Sb-sccjft 

= resistance de;ivatives('f. ~b-sec/f t  

1 Y 

CL = angle raf attack, rad . 

8 = ~ r t u r b a t i o k ~ ,  ihagufar displacement in pitch, rad 

6 = angular displacement in pifci~ measured from horizontal, rad 

0, = steady state value of QD 

A = 10g~rSthmic decrement of re la t ivs  dens &ty variation 
with altitude 

f = maas density OI air, ib-rec2/ft 

t? a sea level value of p 



P = - = relative density 
6 

a;, = relative density at 35,000 f t  in the standard atmosphere 

a; = relative dcrrrasity at attitude corresporildimg to x 

Z = time, SdC. 

Wt, = natural undamy%d circular freqaeracgr , radlses: 

52 = phase angle:, rad 

It has been necessary to use some on" the symbols listed 

above wi th  a dsferent  daf inition than the one indicated. Also, some 

additional quantities have been introduced. In both cases,  $ha def- 

inition of the quantity is given ail the.tlmc it i~ int roduc~d.  
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EII. EGUAF18NS CF b"2GTPCN 

The equatioplas of mstion are referred to a set  of p r i n c i p l  

body axes; bancs all momcat of inertia terms vranhsh. It ie assumed 

that %Be mti.lsilia is initially in ia atale! of steady flight, .&hat the linear 

anre$ angular velocities and displacements can ba raprc seatad a@ : 

and that = PI = g, = T=o. It is also assumed that 6 is suffic- 

iently small thaO s ine  m a y  be laken equal to e and cosi 8 may be 

taken equal to m e ;  and that u, v ,  w , p,  q, r are sdficient iy small 

that their squares a d  produets may be naplacled. The eqwtiswe 

of motion a a  given fa Referaace 3 are then: 

reactions can be expressed In the form: 



-P1&- 

where the second order terms are neglected. The partial deriva- 

aX t ives  are then written in the form = Xu and are known as 

tr"stability dsrimtivesg\ 18% the saaItysir of the effect of the density 

gradient on PongitudimL dyaamie stssbili%y, this assumption is made . 
Burt in the analysis of the effect af the non-linear vorizatfsan of pitch- 

ing moment an6 lift with angle of a thek  sn the dynamic b b v i o s  of 

a missile, the seeand and third order terms in dW a re  tacladed in 

the axprassions for h4 2 .  A ~ ~ o r d f n g f i y .  issateiread sf the usual  

notation, Mww , Zwvv these term@ are wtftkn M(w) , Z(w)respec- 

tively. 

If the missile has a fonqitaadinat plaac eaf symmetry (which 

is us~a3ly  the C I B C )  .sad fP it is flyfag at zero yaw, many sf the a t r -  

bility darivativeo are %era and the a@% @Pf six aimlalehaaaou~ equations 

(2) reduce to two  s e t s  0s three equations each: 



P t  ia to bc ampkfsaiaed that these equations are referred to 

priprcipl b d y  axes instaad d the more @ommonIy used '"wind" 

axes sr so-called Hst~bi l i ty8 i  u e s ,  and that t&a a p p ~ ~ p r i ( ~ ~ t e  exm 

pressions for the stability derivatives must ba ansad. 

Geslalnsida ring the langlturfi-l eqmtions (31, it, f s oboer ved 

that if 2, = M,c 0 , Eqtndations (3 .a) and (3.3)  become iad~pen- 

dent of Squation (3 . f )  aad. tke pitch matian can "ea ddaaerlbed by a 

two degree e$: freedom s y ~ t e r m .  For a misciiilhs which is symmetri- 

cat; with  respect to t b  yaw plane &ad which IS trimmed at zero 

angle of attack, It is a p p r e n t  that the 1wiA and moment on the mis- 

sile are sero and their dcriva-stiveo with r a s p c t  to u will be small 

@mall angles of & t a c k  tae coupl3nq of u with w and 8 1s srerrra81 arig 

that the system caw be adequately treated a s  a two degree of fret- 

d ~ m  syb~tem. This means that the fdlaaence of the long p r f s d  mo- 

tioa on the short period motion is negligible. Calculatiesnr for 

rtpr~sanLtaLiva misoibs &ave been carried out and this is indeed 

foumd to be the case.  The re%arslLts of these calculi9lioms are gre- 

seated in Table I. 

It is notad that %he long period %or a suprsonfc  missile i s  

of the order sf 100 seconds whereas  the short  l.period is  of the order 

of l second. Therefore it .la to be expected that the long period 

should have no appreciable affect on the afttart period. Furthermore, 
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it ia obvious that the short p e r i d  motion Is the aolna which 5s im- 

portant far steering aad codrol . The long *rid mation '616tauld 

;lappar to 'be of little practicat impop&once riace t b ~  assumptions 

made will certainly be violated during the C Q U P S ~ ~ ~  OQ the long per- 

iod. 

If 10 is  assumed Chat %he missile is stabift;ead in roll, the 

lateral eqtt.stf ons (4) reduce 6-0 ctsxacdly the same form as the 10x1- 

gitudiml equatian~ except for the g$ravff;y terms,  

Returning t s  tba lorngitardiml equations, dividing 2cguation 

(3.21) by rn ( 3 . 3 )  by IIy and designating by primeair the qepann- 

There rernriias a botftarsome term in these sgguat,lona, mmely 

g sin Q! e . If $he missile is  flying at a small angle rsf climb, 

sin  @, 2 0 and thir term may be neg1ected. However, ak~, is 

d t a a  Lbe case, If the missile is flying in a nearly va~tieal dtrec- 

tiaa, It is  not ~tsiapprel.tt that &his terms may p rop r ly  be neglected. 

Fur tBsrm~m,  16s p r e a e ~ f ~ e  gives rise $0 am additional root to the 

charactariotie equattsn, a d  this addt-lrioml root is diverpent, The 

divergenee fs rlsw ho'(~k"~v@r, and it ean be ebow~n that, it regresents 



the curvature  oih" the flight path due to gravity To neglect this term 

would seam to bs r reasonable aesaamptfoar, sirace the time Interval 

for whieb the motion is baing studied is of the order of five to ten 

second%, dellring which the  change in the flight patb due to gravity w i l l  

be @light:. Csmg~ta&ions for rep~e?se.tsbtiird cases b v e  been made 

and the rasufts are ohown in Table I. These raawlte Indictate that 

%&ere i s  no appreciable error irervolved in negbttiritg gravity. 

Noting that Z; <C U. and Z* 44 I , hence Z; and Zi 
can "s neglected and Equa%fesazls (Sf are wr i t t ea :  

W. -z1W) - uq 2,' + UQ, + g cos 0. 

w ' +  U,Q, + gcos  @, 
4 =, Ul Ut 

asld & I f f e r a n t i  wi th  re spec* L s  time : 

Substbtu&ing (7) orad (8) into ( b . z ) ,  the? dy8tem IS redaced f 6  the one 

equation oi m63t18~1: 
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If it i s  desired to esmputc the respsnss to a step function 

input in control surface deflection, the forcing functions, M: and 

2: can bo written as step functions and the response computed 

directly from Zquatilan ( 9 ) .  The incrementaI velocity, w , is  meas- 

ured from the original tr im gosi&ir=rn and Q, 8d @, correspa3nd to 

the steady state values at the original %rim p ~ s i l i o n .  Altero3gtively, 

a lineas transf~rmation i%n w can be made suekt that w = O carrea- 

ponds to the trim position a t  the new cetntrof ~ilrfa~ltf defleestisn, 

whence Q, and 8, are rsferred ts the new trim position. The so- 

lution of: the %ramsformed B Q U ~ ~ ~ G ; P ~  is7 found subject to the initial con- 

d i t i o n ~ ,  ~ ( 0 )  = WO and w (0 )  - 0 , w h e r e  W, eesrrerppowds ta the 

old trim position measured in the new c ~ ~ r d i a a t e  system. ff this 

latter viewpoint is adopted. M: = 0 . 21 ' ia the aerodynamic force 

in the a;-direction and Q, 6s the angular velocity for the steady state 

mstion in the m w  trim porition. FOP the steady ~3Lah motion oi 

the missile in a vertical plane* eq~ i l i b r t am of farce@ 5m the z-di- 

ractiotn, negkecking squares of the angle of sttack (Reference Figure 

2 ) ,  requires: 

- Z ,  - rnq cos 8. = m R.Q: 

where R, is the radius of curvature 01 the flight p l h .  

Bill U, - Q, R. . hence -2, - rn g cor 4. = m U, O, or -z' -gcor 4 = uQI 

and the right hand side of Z5wtlon ( 9 )  ta aera ,  The problem Is gasw 

rectuccd to finding a solution to t"ne bomcsgcnec~ue equation: 



gro . I)  



To investigate the effect of the atmospheric density gradient 

on the dynamic stability aP a missile, the analysis is restricted to 

fnAaitessimaP disturbances from steady flight at conatant speed. 

Accordingly in Equation (10). M?W) and Z i w )  are written in the 
* 

usual form. M, w and w respectively. The as~umptian of a 

t w o  degree of freedom system is still valid and the effect: of gravity 

may still be meglaeted. The only difference from the classical 

theory is that the stability derivakiv6?s are not pure eonslants but 

are naw F;u'tl,ckiof"it?r of the densi&y. This dependence on density is 

exhibited by wri t fag  the derivatives in the form: 

z, = zL0 r 
Mi = ML0 a- 

M; = M q e g  
M = p,;: b 

where  Lha subecriph, o , refers tc sea level conditians , and a= a ( X I  

x being the distance along the Plight path. 

With this nsCatiam, letting = d u, 

and the equation sf motion ia written: 



Assuming vertical %Tight and letting x be the vertical distance above 

35,000 A,  the standard atmsrpherie: deasity variati~fa with  altfgude 

- A X  where is the relative 
U-= cr, e 

density at 35,000 PL. ( 14) 

Now the aquation of motion becomes: 

2 2 L d2& 
h T 4- ~:h'q * - C,,U,XC' " +(-UP(,? + z ~ ~ M ~ ~ ' + U ~ & A O - ) Z ~  (15) 

do- do- da- = 0 

Where C, = -M~~-U ,M;~  -2, Dividing through by u2 h26' 



Making a chanpo oi var;able, z = C" an; dividing through by 
U' X 

Zquation (16) become s : 

$8 ometr ic f unctlot1. 

Consider for a m-ament J~coation (18;. P t  i s  noted that 

Z , M ~  < < U M; . ixence Z, M; may be wltcted.  Letting Z,,vd Mie = O  

Zqwtioa (1'7) reduces exactly to the csr-ePfluertt hypergeometric aqua- 

tian, which writtan in standard form is: 

This aquation has an exact solutircsa valid for all finite I which is 

expressed in standard form: 

The values of the parameter, , for two representative missiles 

i n d e ~ a d e ~ ~ k  variable, are presented 6n Table 11. Tha fuactictra , K ( - ~ , I ; Z )  

has the expansicrtn in term$ of BesscI functions for large valaaas of t( 



the series being unUsamZy aa9 absolutely casnvergegitt for z ,? real 

and 0 S 2 6 X . 'The Ak are given by the gelaerating functim 

Substituting into Zquatfsn (BO) 

2 z 
where (4d2- 1 2 X 4 ~  -3  . -.(42/2-~2r-~j2) 

(21tr)  = 
22r r! 

z Stabt%%itutl~ag SquatLon (23) and neglecting - higher powers of 
u( 

- , Squation ( 2 2 )  becomes: 
r( 



Z 
and since i a  neglected corn- 

pared to 1, the quantity {, +(hz- irf is to be replaced by 1 and 

Wi th  tkase sasbetitutiesns the ooButtoa to Equation (18) is then given by: 

- I  where € ( z )  = t a n  i laad C, and 4, ass constants to 

lca - I 
bs determimed by the Initial csnsditioas. 

To get the S S C I S ~ U ~ ~ Q R  in terms 0% the disOk~ll~ce along the flight 

c, % -AX path note $ha$ Z = - e where x is the altitude measured 
V, A 

from 35,000 feet. XaLrodu~b tha paew variable, y = x - X, where X ,  

is the value of n when "be Bisturbakzca seglurrs. W i t h  QBIs natatiom: 

- M, neglecting Zke esmgaired t;s - 
A 

where a; = a;e- r X I  is the value of the relative density when the 

dis%urBanca occuro . Sdbstitutlng these relati sms into Equatism (299) : 



ZP = C, exp { %A e-Ay] 

From ZquaLicaa (29) it is sboerved that as y becomes very  

large the ompZiQude of the oaeilk%isrm, khough it may decrease 

C 0; initially dcpndinq on the value of the praizmctea , will even- 
2 U h  

tually become and remain very large. This irmdieatesr thank a mie;sile 

which is stable in a iconstant density atmosphere will even%uaTly be- 

came unstable in vertieat flight through the standard atmosphere, 

To investigate the initial stability sf tho osci'ilalion, e-xy 

is expanded in powers of X y  . The amplitude af the sscitlatirsm 

is than given by: 

which for s,mali9 vaEuea of Ay may be written: 

From this it is aean that OBc initial character of the osi3;c:llati~sn w i l l  

be stable if the prameter  COG ' and unstable if - ( a 
i?U,A > 4 2U,h 



The preceding analyeis is valid for Y( large compared to z 

This occurs, as is seen from Table I i ,  at high altitude. A different 

aeymptotic e x ~ n a i e i n  for the eodluant hyprgesanetrie: Pwction must 

be aseel for low altitude tzcaoss w h e r e  r( and z arc of the same order. 

Rower vest, aa al%ernate procadetre cans be followed which w i l l  apply 

equally well for .a31 a l t i r~~des ,  The fact that tP1~ asymptotic expaa- 

@ion for the codliuent Es(ypergeebmstrbc: fr~~tetiors io expressed in terms 

of S e r a e l  functions suggests that a differeat appraximatisn I s  the 

relative density gradisat be made in O ~ d 8 1  to  reduce LBr; dtffercsatfal. 

Ht is observed that the density variation with altitude %(fir #be 

standard atmosphere can be zspgroximated fat: limited incremeate 

in altitude by a hyprbola of the form: 

where x s alt.$ittt$a measured in fast from sea Level 

x, s altitude where %be disturbance from steady Plight occurs 

g =: the value sf u ( x )  a% x = x ,  

Such an approximation with 
k =( 

a; - I). ld4is found to be 
a- ( r ,  + l0,000) 

~eabot~able for increments of altitude sf the order of 10,000 feat.  

FOP dtitudea x ,  greater then 35,900 f"b. the value of Hi= .$I x 1 0 ~ ~  is 

used. This capparolis;imah;S~~n is earnpared with the ataphdard ehmosphara 

in Figure 3 .  



Sub;igti$utin@ this axp~ession for cr(x) in Ehlazation (13) the 

C,o; . ' 

d 2 i 9 + z -  dd and - - - 
d ye i t k y  dy 

(33) 

I Substitute + Y = Z then d = d and the equation of motion is: 
dy dz 

whieh is a form sf Besselfs equation and its rgslu$ion is given in Ref- 

erence 6 or :  

where 

2, = Beasel function or order p 

aetyo-~1ptatfg: expre.?seion lo  possible and 'LP is asympt~ticdljQ repre- 

sented as: 



where C, and tfz arc eonsts.glles ha be determined by the initial con- 

ditions . 
Now it is clear that the damping of the system is expressed 

by the exponent of a: 

where co is $Be sea IsveP value of the ~ogarithmig: decrement as 

defined gar the classical theory and given by: 

c. = -M;* -u.M;~- zL0 

Rew ritifsg the damping parameter la a form which more clearly 

where 8 = (&)(-$I 

the missile eodigurstion and &Iach number only, wkf ta the second 

, csntaias the depndenee r;=a'l?i al%itudo . F r m  khe 

expression ( 3 6 )  above, it l o  clear that the mLasife is stable if 6 > 

and unstable if E < $ . The unatable case can occur even tor psi-  

%Lve values af the damping factor , C, , which in the clasaieal theory 
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would mean stability. Heaca again the rstaule is obtained &bat a 

misigilt which .1-8 stable i i  a constant density atmosphere, such as  

experienced ia level flight, @ran become metable in vertical flight 

due Is the density variation, I t i s  seen from (37.1) above t h t  , 

since the damping factor C, decreases wi th  Increasing b+Aach 

num~bar  at auperks-onic a p e d s  , an& since 1.Saach number appears 

exglieitly in the d e a ~ m i m t o ~ ~  of ah@ first Pactar of , and since 

the relative dens iv  of the iniLio1 altitude apparks in the nl~~rnerak~r 

of the second factor, the tendency toward instability increases 

with b&b increasing initial altitrrda aplrg speed. 

It -la to bs a~~~pfrlariecd that the kayprbojtie variation of 

deasrty with (1~~ltitt3CIe is a re886nab1~ apprwimcsrtion only for fim- 

ited intarvolrs of srltitde, hence the otabifity criterion prh inra  to 

%ha initis1 stability af the oyslcism. The resbtPt is  then in  axact 

agreement with that gzbtained'pseviouoly (Equt ioa  (31) ) iP k is 

regtiaced by h . 
This instability in vertical flight ean ha explained pbysi- 

eelly . 1l the missile is undamped, the t o h i  energy of saci12atisa 

remains constant and war ias sishusoidalljr batweanz af 8 potential 

energy and aPH kinetic energy. The potential energy is istored 

against the ttaerodynami~ spring1', and if the spring becomes 

weakened during the taacillatioa, which is  the case in vertical 

flight, the amplitude ~f vibratfow muat increase. Ca the other hand, 
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if the missile Is  dampd and flying at constant altitude , some s f  

the energy w i l l  be dissipated In work  done against the damping 

forces, and the sum sf the: potential pPas kinetic energies wi l l  de- 

crease, hence tb@ &mptl$ude of oscillatfsn will decrease. Cam- 

bitzing these two  ef fects  far & damped missile, In vertical flight, 

if the damping is light snthsugh, the increase in amplitude dm to the;: 

weakening spring w i l l  outweigh the decrease due to damping with 

the ask result that, tke arnplibuda increaiss; and a e  the missile 

speed increases, the aerodynamic spring weakens mote rapidly 

and this effect becomes more pronounced. 

In Figares 4 and 5 the response of a disturbed missile in 

vertical flight eompaked f ram the above analysis is presePa&e$ Zgb 

comparison with the constant dawoity case for high and low alti- 

ttsdc. It is noted that tha affect id variable density is sregligible 

at l ow  altitude bat qr~itc pronomace8 at high attitude. 



V. ETFZGT OF M G N - L P N L ~ ~ R  PITCHING ~ I C ~ ~ X E H T  AND LIP r 
VMlabTIBM -WITH ANGLE OF ATTACK OH $= RZSPONSE 

T O  A S"PZP GfSMC'TliCK INPUT IN ANGLE GF ATTACK 

In order to formulate the probkm 191 a manner amenable &a 

solution by analylfeal means, kba pitching moment and normal force 

a o  functisns ai the angle of attack are approximated by p1yaoomiafs. 

It ifs canve~rient ts use eubic pal~amta lr  sE the form: 

where ?P is the tn~reme~lb La angb of attack meatirured from the trim 

W pssriticzza. Since w is a small qusatity compared with U, , 29 = - u, 

negfeeting higher order terms. Subatituling there rdslationr~ in&o 

Equalion (10) and collecting ta rmo : 

3 + .(A + B't9 -I- E g2)& + (C + Dd + ~ t 9 ' ) d  = 439) 



Before proceeding with &he ec~Putisn of Equation (39) iS is 

ciasfrerb2e to e seb l i ah  the stability af the system, This is done in 

the usual mannar by csnilridaring the so%;utie;ts in the aeighborkood of 

the critical points of $he equation and ideati.P"yi.ktg the type of the 

critleal p ~ i m t g .  This l a  carried OUP, in detail for %he- seven numeri- 
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eal examples con~idered  In this paper and is presented ia Ap- 

pendix 1, 

Aasum.Eng a stable s y ~ t e m ,  it fa desired to  find a solution 

to the equation: 

srxbje et to the initial conditions : 

$(o: = Q, 

29Co) = 0 

v;iahera in particular, 

f w  = A + B Q  +m2 

and w i t h o d  loss of generality go is taken < 0 . Uafartumte3ky 

%he exact s~fation to this equatiaa cannot be eprbrssoed in terms 

4 the known filsnctianms ePE mathemtics (except in the cases A = B 

degree sf acccracy can ta obtained by the methods of numerical 

integra2iort. This prscsdurs is tedious =hen done by hand and. is 

best accomplished b y  of autozqatie computf$~;g machines. 

The latter method 1s expansive and 1"~s additional cast can net al- 

ways be Janstfffed. 1% i s  therefore desirable to find an approximate 

sof;utia;.n in terms af the tabulated fane tioas ahathema% ies . 



-32- 

An iteration ar gesrturbatian procedure would a p w a r  to be 

is  order. Nwseven, since g(z~)d 19 of the3 third power in f(tP) 

is of %he 6.saco.waS power in zP , the di_ffem;a~%ial equa%ions  fa^^ the 

second sad higher appzh~ximati oas bsecama imraasiagly complex 

and the rrunncr ical appllcatl~3~~ of %he resul t@ to any spcrblc axample 

bcornes even mare I;edi~as ~ % P I Z . I  the numericaL integratio~"f, willPIf~ 

the rersulQs are? P I E ? S S  aceliar a%*. Also, there Ts tb~s QE~@@%%OT~ 02: haw 

many terms mast be carried, Since the solution is e~7?sassntlslIy il 

Fourier expaston, and term& of the form t sinat and t c o s ~ t  occur, 

which beecaw large as % becomes large. Theag? term@ do not corn- 

stitute ;a diverges-ace if Bha ea%$~@ rsr  tee I-s taken, ortinee t h ~  y are 

cancelad out by srtaboeqaent terms; but the? queo%toa of bow many 

terms must be taken to insure this ~anceli~g is nat easi ly  anrswersd. 

For these reasons, this approach ha@ been absadowd . 
A r-dtp by step approximating procedure bas bean r~sal~rLei4. 

to. The equatim is linearized ayes a closrsd intervial of the nmglf- 

tudee of 29 the lineariasation being b a e d  QPB a time average of the 

reepoare over the inkerval. TBs conatal-n&g used in the linearisation 

are changed for each &tap. In %he ffollerwtng sectioa, this melhd  

is dovelopd amd explained. The analysis is sf neeese1t.g~ Paeking 

in m&%hematfsal r tgssr and re kh h~ het'itjlPy 37a phyafcal Entenitioa amd 

analogy l o  %Be well-known linear srcllbtor . 
The eafUlf0~1: $0 kke dqaati~n: 

? 3 + t 2  +w,Z?9 = O  
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where l( axxi wn are constants, subject to the initial condition&: 

d(0) = a, 

$('a) = 0 

is w a l l  known to  be: 

where 

and $336 firad; derivative ia given by: 

w, - 2 t  2b = . - q , ~ ,  - e sin w t  
W 

If values of W: and q are oehcted to replace c j@)  and f ie)  re-  

r 
tisn (41). the approxhats  solution can be written 

ao EqalSan which wi l l  be valid for sufficiently emall values ;.g 

time . It is noted that in the lhesr y Es% small csscillatloars , w,Z = C and 

R = A  , but this approxbatisn is unsatisfoct~sy for the mgniteacie 

saf va 2uaa of 29 under conside ration ha re . 
Before ealecli-eng a graiue d , it fo observed that in tbe 

fiitaearias-ed case, the damping factor, Q has P s e e a d  order affect 

on the frequency, O . For example, if !.@ = 0.6. i.e. the system 

Is  600/0 critically d a m ~ d ,  w = 0, BG , -i .e , the frequency is 8Oe"/o 

v.2 of the andamped natural frequency; and 42 - 3 0.2, i ,e . the oya- 
"4 
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tem is 20% critically damped, w -1 0.98 d,, , i .e. the frequency 

1% apprcjrlmata8y 98'i0 sf: the undamped nolurel frequency. Pn the 

capes which arise in practice, the m%s~l i t~?  is ilmsider~bly leas t b n  

60% critically damped; in fact. it is  usually of the order of 25% 

or less. Since it is desired to find 29 as a function rPt: time it wcaafd 

seem reaeom~zbfa tto safaet a values of w,, corresponding to the $re?- 

queney of the undamped system. 

Accordingly, consider for the moment f (29) 2 @ r 0 . Now 

j + w : &  = o  

zP(0) = aO ) ;9 ( 0 )  = 0 

Equation ($4) can be solved as fo?lows: 

Ine9?gratixlg with r e ~ p c t  do 9 : 

It q(9)  ia a pe1ywomial in d , G(Q,) - G(9) will atso be a polporn- 

Pal in d , and henee, 2' = P(d) w h e r e  P ( 8 )  i~ again a polynomial 

in 'LP . Writing 



and integrating: 

which defines ZP as a function cf t . 
Similarly, Gqut ion  (45) can ba solved and its solution is: 

Letting the inter vaB under consideration be qqo < ZJ g 291 where a, < o , 

and from E ~ u ~ ~ Q P L .  (30) 

and the approxima& eol%l$ion to Gqwtiesrs (44) caw be written: 

from which: 9 = -GC,W, sin a t  (54.1) 

Consider wow Equadism (41) with f (9) & 0 . 3wsrming an 

energy balance: 



where tbcs integral on %bet right hand side represents the sz~esgy 

digs ipled during the %ime ZP varies from OC, to 10 . Letting ED,, 

represent this integral: 

Similarly for %ha Pinearised bayatem: 

and 

Subr%itut.ing the approxiraats solution to dqwOion (44) as given by 

Equations (54) and ( S B , 1 )  into 2quations (56) and (58) :  
wh 

=a:~, ,  ~ ( ~ . G O S X I  sinzx dx  
(5 92 

Mow $18; the end of lime t, , equating the energy dissiptad in the 

two syetems, i.e. Eo15 = and solving Bor 4 : 

The apprmimate oolatioro ts EqwLlon (41) vatid in the time inkrwal 

0 4 t & t, for which a, c 29 4 Z# io thea: 

a, e-$t 
2 P  a',= cos ( a t - a )  



w h e r e  

- 1  "9'2 = t a n  (;3) 

DiP'bersntiaiinp huation (bk), the value s?f .rb is forand ta ba: 

w, - 3 t  + - e sin w t  
W 

(b3)  

It is abser ved from Eqhxakiaas (43) for the l i~eariasd system that as 

idarclticakfj. with Zcwtion (54.1). The quantity (a,ccl,( rapress&e 

For the non-linear case with eeso damping, the angular ve- 

locity, i s  given by Gqs-tisjn (48) as: 

However, letting q l r  o in Equation ( 6 3 )  the angalar wel~~cify i s :  



which in genersl wi l l  not aqua1 . The maximum value of 4 

for the uprldasnpd non-linear ays.&sm is obtained when d is equal 

to zero in squation (48): 

%,, = .tlli7;;;;s; 

For the linear system, the maximm value of 2b is: 

q,,, = l c w , ~ " l  

Hence, if the quant i ty  -~Y,w,  in Lqudtloo ( 6 3 )  is replaced by d m  

Bbs approximate expression for 4 becamas: 

which in the limit a% q-w o becomes: 

2b = If= sin G J , ~  (64.1) 

1"ehoetld be noted that the exprsssnsn for zb given by Zquation (64) 

ia aol the time derivative of %he approximate solution bar z0 givem 

by Equation (61) but it bae &he same general characeer and gives ths 

proper value d @MA x in the limit as Q-c o , Baeaua~se tks ap- 

p ~ o x i n s t e  value ~f G ( t )  obtaiaed in this way iar not the Lime deriva- 

t ive of the approximate value sf 3( t )  , the fuactioms G(t) and d t )  

should be treated as unrelated functiono. 

Since g(@) is in geaeral sn~n-eogls&nt, it is clear that the 

appropriate value  aOf U,, wi l t  be a P'amctlotm of the amplitude 0% the 
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a?~eiTLtion. Z f  the e y s k m  is rnot eonsarvalive, i .e .  f(4) f o , 

this amplitLuda -;t.elI change: wi th  time and af%er %isla t2 its mag-- 

nftuda fa  givea by: 

The genasal procedure oattined above corn bs eon%iauad for swother 

intervsf d,' < d stO, , using the reeiiezczed value of the oscillation am- 

plitude to determine the value 0% w, , and modifying the procedure 

to izk~cs;;cum% far the dsferent initial conditions far %%a a e c c ~ d  i n l ~ r v a l ,  

since zb (t,) wiLJ ia g e ~ e r a l  not be e e r ~ .  This soIa%ion w i l l  be vatid 

for tz S t t tf . Fo13Lowiag this steep by step procraais , the aolutisn 

cam ba coadinzued , an4 by saleetiag the interval% of timad @uP"%iczialw$ly 

emall, the approximate. solution can pre surn~bly be made Lo differ 

from the exatk salutioa by sz3 little ass desired. Furthermore, the  

approximate atsPu~isra, fsr the ufpdarnt~d ease given by Sqmtisns (61) 

sad (64) by b a i n g  Q - o and kbe exact selra%fon in the rudrarrtpd 

case given by Eqtpa&iano (48) and ($9) agree at t = o and at t = t, 

irreswc"rivs of the magnitude 08 t2 This suggests, by amlogy 

to the dampd liaear ab yotern,  that in t"ns case of omall &;amping, 

the apprresximte s~latle~ns sBglul& be reasonably g o d  for f a i r l y  

It is ccovenient Lo sehc;t t2 ouch that dl = 0 , since tbie 

~limpbgbe s the initial conditions for the aaxb inter vat . W ieh this 
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choice of t, , the a p p r o x i ~ ~ a t s  eolutian can be written: 

for o ~ t  5 t, , a , s ? P S o  

ti = 1 / m ( $ ) e - t t  sin w t  

E+, And when t =  t, = 2 

W 

t = dEGi (2) c3 e (7118 

For the next interval, it is cepnveniani %a eheroec t, such %bat zb 

mries from $[t2) to 0 . This gives the new srarhee oB U, and q : 



w h e r e  5, is the amplitude af t"ce peak sf the undamped asci l$ot i~n 

on the spposike side oi a@ ra f rem a, . Meace G ( 6 , )  = G(a,). ;H$ 

q ( t 9 )  8 is an add function of 29 them 6 ,  = 6, . 
Lelfing 'C =t -tz where t = 0 cclrrrspoads to 29 = cX,,zb:Q, 

"te sdeoad interval as" the oscillation ia given by: 

Tbe process i~ then cr3.p"t-t;inued LOP a third interval such that 'LP war- 

ies from ZP(t3) t~ o ; hence this interval is exactly aimifat. to the 

first.  The fourth 'k~terval is; similar to the second, st  cctrxa . 
The procedure oatlined akove can be followed for any %&a- 

eronabb functions f(2.0) and $9) provided the amplitude of tkc os- 

cilPati~-ns considered is such that, the system is stable. Pt, is found 

in practice that the pitc'aing moment FII . angle t3f attack, which de- 

termines the fmetion 9(7!2)9 can be ~atfs%a@torfky rspraseHlLed by 

a cubic polynomial, Tbis had the adbadage of leading to elliptic 



integrals of the first kind fear &he determl~ation of W, &ad these 

functisno ore bbulatad . U higher order pslyaomiais are used, 

%he integrals w i l l  hawe to be csnnputsd. 

Saves r~gresernbtive name-sical examples hawe been worked 

oat by the method outlined abstre. These ware taken from acdraal 

sC 
missile ~ o d i g u r a t l ~ n b  and include high and law elltfiude opration st 

differcotl Mach namhfegfs and aaglea cd attack, Tht  iattial c0';9tditioz%.~ 

w e r e  ehossn to eorreapond to step functiormr cmtrol sarpface deflec- 

tion@ necessary for turns of the order of from oae to f im g F a .  Tha 

general character af the moment and lift Carve# vs . angle of attack 

t ~ g a t h s ~  with their mathematical tspproxim-attoas by cubic; polynom- 

ials are presented in Figures 6 and 7. 

T b  seven examples eon be dahseribd by the vaPua8 of the 

cwfficfents A ,  B , C , D, 3 ,  and F , a d  the initial dirpkcemant , c~,. 

These are presented In Table IfE. Tha &abfi?s c3f the calcukatioas 

far thesre cases are praseat%;.$ la Agwndilr;: PI. The results olE the 

a~ralycis iw csisraprissnaw with lamerleal i&tgz~atiosno abbtn~d by 

1.B ,M. punched card teehaiitques a d  the claseical, limeariaed ro- 

lulisn a r ~  preaented in two ways. The responses in both Q and .rb 

are plotted ggsimsst t h e  a& prseented sllarmtely with the apprap- 

riata plot% sf the ra storing mameat, - 91d129 and the damping func- 

tion, f($) againat di&plaeeme~lt in Figures 9a ta Bb. Pharaa space 

diagrams on. which the trajectories of the sslutions are platted ara 

presented in Figurea  f b  to 2 2 ,  



The variable density analysis indicates that a missile which 

is  stable at c=oasLa.n(; speed in level flight can become tanstable in 

vertical flight through $ha standard atmosphere, the tendency ts- 

ward instability increasing wi th  both altitude aad Wach number. 

The analysis assumes conrhrrt o p e d  and the result is  due entirely 

to the density gradient. This sffact together with S$;&awartfrr result, 

that the effective damping is decrsaead when a misails is deecler- 

aging under the influence of drag, would indicate that some form 

&rf control should be incsrpsratad fa any missile which is intended 

for vertical flight a& high altitudes. 

Tine: respcanlse to a sudden angle? of attack in the case a 

non-linear moment curve is found 40 be qualiti~tively similar to 

that far a linear moment curve , though quaHntiatlvaly, the differ- 

ence is very marked. This difference in the examples treated, 

which are con~sideaad to be representative, irmdicates that the clas- 

sical, linearized ~olu t i sn  In surb cases leaads to large errors. The 

~approximatd 18luti821 d ~ r f  V Q B ~  gives results which are considerably 

more representative of the actual bhavior ,  and appears to be 

adequate far design purposes. $f extreme accuracy is required, 

the m e t h d s  of nkamt-erieaP iweagraticser should be used. 
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APPESDEX 1 

Stability Considerations 

To imatrostigate the stabil i ty sf  the system described by the 

equation: 

it is convenient ta let &= $ and replace the equation by the equiva- 

lent autonam~orrs pair of fsquasrtiono: 

$ = F(s,q) = 4 

= ~ t a 4 )  = - ~ ( ~ P I J  - f ~ ) q  

The critical points of this set  of equatisnts are deffrmrsclt by: 

This  Q C C U ~ S  t~~hee5 q = ~  and either "S=G QI- g(LPj=o . 
In the eases t o  be discussad, 

Consider f i s e t  the critical point, & =  o, $ = o 

fn the neighborhood 0% zP = o , + = o , neglecting higher order 

This car? be w r i t t e n  in matrix nolation as 



far which L-ka date rminanl 

The matrix is reduead to canot.tica1 form oy applying es! esmplex 

for which the charac"tsrfstie roots are: 

If A > O and C ,(*)2, h, and hp are complex wi th  negative real 

p r t s ;  hence the origin is a atitnbb spiral point. For the seven arn- 

msrical cases considered, these cbklditieha~ arb sati?~bfad. Wenee 

in all cases, the system i~ stable in the neighborboodl af 29= = 0 

The other critical p i n t s  are more conveniently di;scussed 

seprestely for the various examples . 
Examples 1 and HI 

For these ca@es b = D = O hence g ( d )  = C + F d 2  

Sincela C 2 0 ,  F 7 0, ~, dz are imaginary, and the origin is there-. 

fore &he only reall critical paint. 



Examples 1x5: and IV 

For these case&, g ( d )  = C + Dd +F$' whem D 7 C > 0 ,  F(O 

Hence there are two critical points other than ehe origin, They are 

(d,~) and (a, o) where :  I = -g f 
2 2 F  2F 

' C  Now --20 hence 79, ,dz are $281 and of opposite signanad $ > - ~ P , > o  
F 

9 = O and neglecting second and higher order terms: 

d = g  

for which %he charactaristic roots are: 

Wesea A, and ,A, are real sad sf dfgferea), sign, and tksr paint c4-- t?! , 

4 = 0 is a saddle point. 

Simikrly , in the neighborlaosd of zP = 4 , 4 = o 

for which tke characteristic roots are: 



Hence X , , h z  are real and sf different sign and the point &= 4 , 

Q 2 O $5 also a saddle point. 

txampfee V, V h n d  VII 

For these examples g (dl = c + o ~ P  and g(23).o for & = 
D 

The characteristic roots are 

Now 3ines C 7 0 , A ,  and X z  are real and s f  different sign, 

the point 19 = 4 , $= is a aaddle point. 

The nature of the eriticak point@ is established and a &is- 

cusrsisn of the stability for finite initial csnditlana is pssaisible. In 

Sxamplea I and $1, since the oalyrgsal critical point isii tbe origin 

which is zz stitnblc spiral point, and since tbe damping termr 

f l#) = A + E-dZ is &lidfays > $3 for all 9 , the system is stabla 

for any initial coandflisras . 
En Examples 1x1 through VII, the trajectories through the 

&addle points con be cow~putcd in each ciaea and the separatrix found. 

The system is then stable for any initial cesnditfsras which lie within 

the separatrix. Because of the nature haf the e~uat ion~a,  this it a 

tedious computation, and for the tni%iat conditioms used in the seven 
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examples, a simpler procedure is 20s sible . 
It is noted that the andamp% system, i . a .  R == B = E = 0 ,  

ha@ the ram& critical points as the damped system, with the ex-  

ce$reion that; frrigia i s  a center instead s f  a stable spiral point. FOP 

the former, the trajectoriee through the saddle pofnks are easily 

computed, and the setparatrices are fsund. Naw if the dampirag 

term does not change sign Q V ~ T  the renga of zP included withiin 

the separatrix, tbe damped system wi l l  be stable bar any itnitial 

conditions cmtained within the separatrix of the undampd system. 

This fa found to be the case for %he examples eonsidered, as is 

shown graphically in Figures 23 to 1%. 



Application of Approximate Met&& of 
Solution to Spcif ic  Examples 

In the application of the a g p t o x i ~ a d ~  mstbsd davelopd in 

Part V to actual case& it is a s s w e d  &at f (291 = A + 629 + E d2 

&ad that q (29) = e + Od + F z ~ "  . Tbe; determinatisn of the effec- 

tive damping eoasbnt is i~traigkaorward by application of Equation 

(6 9) , and the result is: 

The algebra ia the, &e(tcrmin;4tti@l.1 sf &Jn varies ~omewhat  

d e p d t n g  on the viatws of C ,  D ,  a& F. The different eases en- 

courntssad in the examplaa cited in this g a p r  are traated seprately 

be bow. 

Csbeer 1,  (Examples I and II) O = O ;  C , F  > O,aocO, hence q c + ) = C - + ~ ~ ( l I . l )  

From Equation (47) : 
,9 

Let ;t; = cos 4 - 



cornplate elliptic integral of the fireel kind. 

From Equatio~ (68)  : 

The approximate solution for the fir s t  inter vaf: o S t < T, , a, dzP C o 

is given by: 

s i n  aOt  

where  the constants are given by the fobwing equations on setting 



Nsw ias the valus sf t w b n  19 = 0 , hence: 

Since cj(z~)rP = c 21 + ~ 2 9 ~  which is igin odd function sf zC * 

the amplitude sf oa~cillslticln far the undamwd system is symmelrb- 

eal with rsawct to 20 = o . The aolutio~n for b b ~  second irPlborval, 

0 ,  0 < 2 9 d a a  , i s  given ~ J P  the follow- 

ing equations where 'C = t - T, 

sin ~ 2 :  

Thilz eonstrants are given by Equations (11.5) through (X1,9) sa setting 

i = 1, How 7, is  the value of t when Zb = 0 , benee: 



FOP t b  third interval, Th G t G T, , a, ), 29 2 o the aofution is 

gives by tkct following equations where 2 = t - T- 

-t2 
e T C O S ( W ~ O - ~ ~ )  (EX. 18) 

the constanas being given by Equations (11.5) through (11.16) on set- 

tiag i = 2.  Now Tj i s  the value af t when Z P = Q  , hence: 

For %he fourth intervat, T3 C t c 7, , Z ~ ( T ~ )  1( C 0, O > ~ B O L ~  

%he a olution i9r given by the following aquatione w h e r e  2 = t - T3 

3 = n j-)e-$' sin ~ J , T  
w3 



Tba consbl.gt~, are given by Zquatiano (PP.5) tfirsugh (fE,9) on set- 

ting i = 3 .  How TI is the value of t when $ = o , hence 

(IT. 26) 

Tba solution for ths next four intervals is  obtained in exactly the 

C a s e I I .  (ZxamplesIIlandIV) C , D > O ; F , a . < o  hence 9 ( n = ~ + ~ ~ + ~ @ 2  

where 

Factoring, P(4 l  = (6 - CCo)(d-/3.)(d-C)(fl- 6.1 where PO,x,& 
2 

are the roots of the cubic: ~9~ + b d 2  + c 9  + d = 0 

Since the system ia stable under the given initial conditions &,q,&, 

are regit a d  P, == a, c o .: so .= Y, and the oscillrtioa in z9 is  



where: ?fb = s in - '  k, = 

(If. 34)) 

and 3 [w, ,$~] is the incomplete eBligtic Integral sf the firs$ 

kindofamplitude cC;, * 

Far tho firrst interval, o s t  S T, , or,& 2 9 S O  the scatation I s  

given by Equations (11.3) and (11.4); the constants are determined by 

Equations (11.7) through (11.10) eta eettiomg I = 0 ,  and Eqwtisns (II ,3f)  

through (11.33). T; and 6' (T. ) ass csbtaaSned horn EqwtSms 

(11.11) and (II,12) respectively, Sinec ql@)d ia not an odd Punc- 

tion of 29 , tbe amplitude af oocillstion d the ~~lpdgbrnped sjTstem 

ia not symnnetrSca1 with respect ts z0 = o . Hence for thr3 second 

interval o t z9 G 5, where 5, 18 the lesser of the two positive 



roots sf the aqwtion: + b e d +  c,z9 + dd, = o = (zf- j3,  I)($- 6,)(29- Y , )  

,lq<o<,<o < S , < v ,  

- a e-%'r. The quaa%ltiao b, , c ,  , cl, are obtained by subs&ituting a, - 

for a, in Squattons (11.28). Hence for the second Interval, 

, are datermined from Equations Qli1,31) and (11.32) upon 

papbeing ~ 0 , @ e , Y 0 , 6 e  by a, ,B, ,x  , 5, raspeetiw ly and 

Equations (11.7) through (11.30) on setting S. = 1 apply. T, is ob- 

bined from Zqtlation (If. 16) and $a is now given by 

For  the thfrcr! interv&l, 7; 6 t ST, , 5, >, zP2 o , the sofation 

&ion (11.19). Tba eonatasits are obtained on setting d = 2 anad raplac- 

lag a, with 6,  in Zquations (Il. f )  througb (11.10) ; 4 ,,, is ob- 

vift=& ha i?? ,% , Sa , Y .  , and gp respactiivaBy, ?Y, and % 

being determined from Z+;uatians (11.38) and (L%,P2)  upon replacing 

a,, 4, , V, , 6, wi th  s,, 13, ,  5 , 5, r ~ s p ~ c t % v ~ i ! l y  3 and 

-rb (T,) are gtvea by Squakiona ($I. 20) and (PI. d l )  . 



Far the iourth iatarval, T, 6 t 4 T, , . rb t~ , )  5 d 6 o , 0 2  zp2 a, 

the solution ist given by Equrzstlo~o (It. 23) atld (11.24). a, is $he 

nmmsrfczsfly omaZlar esP Lhs t w o  mega%fve roots of the c u u e  

where b, , C ,  , d,  are obtained from Zqustion ( T i .  28) sn ra-  

placing a, by 6 , .  4e'2(T3-~). The ecnstante are determined 

by asttlng i 3 in &quation# (I1,7) through (11.10) an& by replacing 

(PI. 31) through (11.33). T+ and a, are given by Equations 

(HI. 36) 

Since the system is stable under the chosen initial conditions, 

IIEa. (Zxampfe V) If C C , D 7 0 ,  fJ,<cx,<o , 6 , > 0  , the solu- - 
Lion is obtained in the same way a@ in Case %I with  the cxcep%is.wa 

Ghat: Equation (jI .33)  is sept~eed  by: 



E q u ~ t l s n  (Ili.3i) is replacad by: yo = 

and Zquation (11.34) is replaced by: m,,# = 
fJm 

(11.40) 
K ( Y f l  - 3{~~,4?] 

The solukion is obtained in the same way as Case EI with the axcep- 

" /=qczi - 4 Gquatkoa (XI. 3 3 )  is replaced by: Who - (11 a 4%) 
a [ ~ ;  43 

Equation (II. 32)  is replaced by q0 = ~ , n - ) / z ,  

4 " pgqZ7.q 
Equation (11.34) I s  replaced by 

Wh* = K ( y : )  - B (ry.,B,) (HI. 44) 



Sffeet of Non-Linear Pitching 1\4omannt 
Carves  an the Determination of %%ability 

Derivatives from Flight Test Data 

Cne of' the techniques used for the de"iemlmt3iora of sta- 

bility darivakieiverss from blight tea t  d a b  is $;"be a-1: sic the 

transient response to  a otep func$ion input itrs control sanrfaea de- 

flecttsrs. 1% is eaatom~rg ko aaeiume a linv2ar system. From a 

m e a s w e m e  of the rmplitagda of the oscillatioa we. tima, the 

Eogarithmie deerameat is dekermiriled. Tha aaros;; .sf the oscji'Q- 

ktfgbrm determine the dampad aatnbral frequency. The eombina-. 

tion of tllesc two  than dafiaee %Be undamped natural fraqwncy 

which to all graetlical purposes d s t a r d n e o  the kpuamti$g 

E the moment curve is a non-limear fr;a%tc&iesn of the angle 

of attack, the " f f r&$que~~~y"  of khc oseillatisn varies with the ampif- 

tmda . Pn this case, the a s u l  procedure sf measuring the =eras 

of the oscillation and averaging them w i l l  zqat determine $he value 

of * at the trim parition, but some sort a f  average value. 
d a 

The eo4~19parieo.n %he cPasoTcza1, linearized solution with the nu- 

merical integration for tbe sa vea examples considered in this 

paper clearly Iad i~a t t s  that the value of - Cw obtained in the 
d a 

usual  way w98"1ara% be very  meaningful if the non-linearity is at all 
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I'~.t&eraativety, an attempt t o  determine the nsa-linear m0- 

men8 curve , using the approximats solution for the r a s p w e  may 

be made. The procedure So be outlined requires that angle 0% at- 

tack, normal acetaleration im the pitch plane, aab pitch rate be 

meaaared as funclioms of Simd; and &staumeb, of c ~ t ~ r ~ d ,  I ks6w- 

bdge of &%ch number, velocfty , and dynamic ?refsseoste, fa order 

.&ha.& %he moment curve may be reduced to emlficient form. In 

addition, 4% is necessary to B B S U Q  the general shape sf the mo- 

ment cur w.  (This is onssiogoue to the assamption of linearity 

as r;aa&ly made)  . 
Consider first a moment carve af %be Psrm: 

- q ( w  15 -(C + f d 2 ) d  ) C,F > o  

Asstame also that the damping tannetiesn its cons-at 

F r ~ m  the reearde of angle of attack vs. time:, normal accarSeratiaz8 

vo. time, and pitch rate v s .  tima, the damping cozlstanB, can be? da- 

tetc3iaed. The initial amplitude, a, , of the asezillatisn in angle 

of a%bck is also measured. Designating T, as the first zero of 

29 and using Zqw&fon (P1,I.l) 

where 



dtermined as: 

and wQo can then be determined f ram: 

Q ,Who and a, are determined and can $a subs;-titu$.cd in Jqraa- 

%ion (11.5): 

" 2 ,/m 
OJh, = w h e r e  yo = 

K(%) 

which determines a relation between F and C. 

Now the norms1 accelerometer measures the quantity: 

where  4 is the pikeh rate. Hence, from the normal accetcratton 

is Betermined as a function sf tima. Designating T, as the first 

sera of 4 and proceeding in tbe same manner irs before using now 

Equaticn (If .  16) instead ~b (IT, 11) : 



and a secsnd relation between 2' and C is determined f ~ 0 $ g . 4  the 

Following this same procedure fcr %he subsequent zeros 

af the orctllalionira in 19 and & , additional relations between C 

and E' can be obtaf~ed.  33 C is pHo%ti?~d against F, these varioua 

curves wi l l  intersect each other, Sfnitre the equations used to ob- 

tala the reltiorras between C and F are only anapp-rrgximata, it cannot 

bc expcted that all of the curves  w i l l  inter sect  in a common point. 

Weawaver, dependi~rtg on the accuracy of the data, *bey ~ A o u l d  de- 

fine a 1mal3r, clooed ragisen in &Be F, G plane, and any pofne (F, C) 

in this ragion may be used far the approximate va1aes of F agnd C. 

As a second exampld off the rpplicitation of %he apgrox4mata 

dolutf~n to the determinakI08 Cif %be m=%eni"it curve ,  S S B U W P ~  the 

curve  to be of the form: 

-9(29)d = - ( C z 9 + D g 2 )  , C,D > O  

and assume that the damping i~ coastant. 

F F O ~  the enwelop of the angle of attack vvs . time record, 

a, and 5, are determined as the Initial values of the amplitude 

on opposite aides of zP = o . 1- rsceading as before, using wow 

Equation (11.38) 



- s,,,-, J-zTzX 80 - Be (a,- 60) 

Ttsia determines O and C .  Xep~a t ing  the proeecs"%ure for the other 

atklbda. A n  average of the different wa%ues may then be used as 

the correct values of G a d  D, 

abvlsuo'Ly zir, similar procedure can be w e d  for other aa -  

sumlptfsnsp of tBe momeat curve ahape . 
1% i~tl to be emphasized that the above procedar~ applied L o  

eanaot ba expected tss give reeults as accurate as those obtained 

for i3b linear s ystam where the exact solution is Howewer, 

i& $ B o d $  yield $t more useful resuB"i.ope a noa-linear sys$am than 

that obtaiadd from an assumptian of linearity. 

Ia the application of the proposed meehd,  there are sav- 

aral sources of error which are to be guarded against. The first 

case discssced, where the moment curve was zaagaaed $0 be sym- 

metric with rsepset to the asrigin, applies t.s the case of o oym- 

metric missile trimmed at zero angle ~f attack, Consequently, 

the abscissa of the various firasdrumsat records 18 accuraeesfy known 

(after corraettoa of e aab records Lor effect gravity,  which 
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is small), Furthermore, after Q is determined, the elraveloge 

can be fairad through the peaks sf the osci?iBatlon and the zero 

should bisect the envelope. This affords a check, Hence the major 

sourea sf error wi l l  be in the amplitudes sf oecillatiorn, Since the 

records from tail three instriamaatss; wi l l  exhibit the same damping, 

all three should be used in &be datsrmi~tion of q . The determi- 

natioa, of 2 b ( t )  requires tha s m  of" the two instrment r s ~ d i n q o ,  

n t  and e(t9 ; hence it cantnot be expaated to "es as accurate 

as that sf 9 ( t ) .  

The case s>f: a momaxlt; curve wahteh is not symmetrical about 

the origin arises where a symmetrical missile is trimmed at a 

finite angle of attack. In this case, the? oscifhtion has different 

amplitudes on the sppoaite sides from zero. The abscissa sf tka 

oscillatioas cannot be measured in this case and must be obtained 

from am cxtrapolaklsn back %ram %the steady state &1;8110wing the 

transient. Thbe 69 of course a very inaccurate procedure and will 

undoubtedly in t rdaca  large er rsra . 
Aa aWempt has been made to apply Lhe above mdthoFCq 1-0 the 

nwericai ssfutlonn of a case with a momanst curve at' the type 

g(@)ZP = C 1.9 + D ~ P '  . Zrrors of ten percent were  ssesumed in 

the maeeazred quantities, and t t  was found that such errors could 

reverse the curvature of the moment curve.  Hence it would appear 

that in order to determine a n~n- l ine t '~"  moment curve frorn flight 

t e s t  data, extremely accurate instrmtntatiorp will be necessary. 
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Figcre B, Coordi-ate System 



For Zqrzilibrium: F, = -2 ,  cos or + X ,  sin a - h?g c o s  (@,-d) (4 
X. cos  a. = mq s i n  (a* -a) ( fr ) 

From equation (a): F, = - ( Z . +  mg cos O,)cos a +(X, -mq sln 69,) s ~ n a  (c) 

equation (b)~ X, - rncj sin 63, = m q  c o s  63, t a n  a (4 

Combining equaticjns (c) & ( d ) :  

F; = - ( Z , + m g c o s B , ) c o s o c  +rngcosO, t a n a s i n o r  ( e )  

E x j a n d i n g i n p o w e r s  cf a : c o r a ;  I - % ' +  ... ; tona s i n o r ;  a5z4+..- 
2 3 ! 

Hence, for srialf. valuzs of a , neglecting squares 

F; = -Z* - m q  C O J  63, (f i 

Figu re  2 ,  Farces  Acting on ~MissiLe Turning in Vert ical  Plane 
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Aft i tude 

( f t . 0 0 0 )  

I 

Standard Atmosphere 

Figure 3a, Ccmparison af App-.aximsate E e n s i t y  
Variaticc with A1tituc.z: a2.2 the StasAarril Atmosphere 



Figure  3b, C om2ar ison 0% Approximate Densi ty  
Va r i a5 ion  *with Altitude ant3 the "anca-rd Atmosphere 







Figure  6, General Ghzractes 3f Pitching Msme3 t  
vs.  Angle 02 Attack for AMissile "A" 



Figure  "i" General Character  of Pitching PBi1oment 
vs. Angle sf AQtae c for 'h issile ' B" 



Figure  8 General  Character  of Lift v s .  Angle of 
Attack for Representat;ive 

Missihes. 































F i g u r e  16. Phase Space Diagram for Example 1 



Numer icai. Integration 

- - - Approximate Sillation 

Figure 23. Phase Space Diagram far  Example II 



Numerical Integratioc I ., 

Approximate Solufiian I 
C l a s s i c a l  S ~ l u t i o n  

F i g s r e  I S .  Thsse S?;ace Diagram fsr  Example III 



Figu re  13. Phase Space Diagram for Example I'V 



Numerical Integration 

--- Approximate Solution 

------- Classical Soltition 

F igure  2 0 ,  Phase Space piagrarn for ~xample V 



Numerical  Integration 

A p p  oximaie Solution 

Classical Solution 

F igure  21, Phase Space Diag ram for Example V I  



------- Classical Solution 

F igu re  2 2 ,  Phase Space Diagram for Zxample VHI 



Flgu re  2 3 ,  Trajectories Through 3addle Points 
f o r  Undam2ed System Correspolidi~hg to Ill 



Figure  24. Traijeetcrries Through SadciPe Points 
dcr Undamr,ed System Corresponding to Exampie 



Figeare 25 .  Trajectory Through Saddle Point for 
Undamped System Corresponding t3 Exarn2le V 



F i g u r e  26 .  Tra jec tory  Through Saddle Paint  for 
Undamped System Corresponding to Example VI  

"L Separatrix 



Figu re  2"7 Trajectory Through Saddle Point for 
Undamped System Corresponding t o  Lxample VPI 



TABLE 1 

Effactes of Long Period Cscillatfesn and Gravity on the C&iiaractet- 
iaticr sf the Short Period Bscilbtion for a Repre sa.ba~$ive bIiscila 

WLach No. 2.45 
AllLituda (it) 40,000 
Angle of Climb 83" 

Three degrees of freedom inchding gravity 

Two degrees of freedo-rn includisg gravity 

Damping constant .76 
C i r c u b r  frequency 4.77 

Two degrees of Braadom neglecting gravity 

Damping constant e 75 
Giredar frequency 4. '2'8 



C o m p r i e ~ n  s f  the "J~"i3o of oh@ Pdrametar, , with  the idepesdent 
Variable, z , in the CodIraen% Wypergsowiatric Function, , I7 (-7, I ; z )  
far TWQ Representative F+4isailes 

zLa w h e r e  = s- - 
c* Ca 




