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ABSTRACT

The effect of the variable density of the Standard Atmos-
phere on the dynamic stability of a missilé in vertical flight is
considered. The analysis is restricted to small disturbances
from steady rectilinear flight., The exponentizl decrease of den~
sity wi& altitude characteristic of the Standard Stratcsphere is
introduced into the equations of motion and a stability criterion
for the dynamic behavior immediately {oliowing a small disiure
bance is found., Alternatively, & hyperbolic variation of density
with altitude is used toapproximate the Standard Atmosphere ‘and
the identical stability criterion is obtained,

The effect of non-linear pitching moment and 1ift varia-
ticna"wit‘%} aaglé of attzck on the dynamic response to a sudden
change in angle of attack is considered. An approximate solulion
to the non-linear equation of motion is developed. Several numer-
ical examples are considered, and the resulis of the approximate
solution are compared with the very accurate resulis of numeri-
cal integration as well as the classical linearized solution. The
effect of a non-linear moment curve cn the determination of sta-

bility derivatives from {light testdata is discussed inthe light of

these examples,
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I. INTRODUCTION

The solutions to the equations of motion of an airplane when
subjected to small disturbances from steady flight have comprised
a standard part of the curriculum E@és‘éaé@mﬁ of aeronautics during
the past several years. The classical treatment of the problem is
due largely to G, H. Bryan who applied the theory of small oscilla-
tions previously developed by Routh. Bryan assumed that the forces
and moments due to a slight disturbance from a state of equilibrium
depend linearly on the disturbance. The solution is then shown to
depend on a number of constants called stability derivatives. For
many years, the development of experimental techniques for deter-
mining these derivatives has been the principal interest of investiga-
tors in thé field of dynamic stability as applied to aeronautics. Until
very recently there has been little or no change in the theory and it
is in use today essentially in the form developed by Bryan.

It should be noted that the classical theory applies strictly
only in the case of infinitesimal disturbdnces. However, the results
have been found to apply with reasonable accuracy to finite distur-
bances of the magnitude experienced in the flight of conventional
subsonic airplanes. In other words, the second order terms neglected
in the theory do not have any appreciable effect on the motion.

With the advent of the high speed jel airplane and missiles,

the assumptions of the classical theory are violated to such an extent
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that the applicability of the theory is questionable. In the case of
supersonic rocket-powered missiles these violations are particu-
larly flagrant. In the first place, such missiles rarely fly at con-
stant speed; on the contrary, the usual {light comprises a period
of very high acceleration followed by a less rapid deceleration.
Secondly, thé complete fuel supply is }oﬁ;an consumed in a very
short time, giving rise to appreciable variations of mass and cen-
ter of gravity location. ?hirdl?. a portion of the flight is some~
times vertical in directicn, hence the atmospheric density is
rapidly varying. For these reasons, the aerodynamic forces and
moments - the stability derivatives - are subject to appreciable
variation during the period of the oscillation being studied.

Eut perhaps the most serious deviation from the conditions
of the classical theory occurs when one attempts to extend the re-
sults to the case of {inite disturbances. In most missile configura-
ticns, small aspect ratio wings are mounted in tanéem on Propor-
tionately large diameter bodies. This exaggerates the asrodynamic
interference efiects and such missiles exhibit markedly non-linear
dependence of the aerodynamic forces and moments on the angle of
attack. Consequently, the amplitude of disturbances for which one
would axg&ectﬁze classical theory tc be valid is considerably reduced.
But at the same time, in the normal operation of such missiles,

large sudden changes in the angle of attack are frequently required.
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Hence it would appear that, in the case of guided missiles, the
extension of the theory of small oscillations to finite disturbances
is ‘very questionable.

The effect of variable speed on dynamic stability has been
investigated by H. J. Stewart {(Reference 1). He considered the
case of a missile in coasting flight, decelerating under the influ-
ence of drag., His results show that although the effective damping
is decreased in this case, the drag does not lead to instability.

The effect of variation of mass on the dynamic stability of
jet propelled missiles has been investigated by N, V., Barton (tef-
erence 2). His analysis shows that the disturbance of a miséﬂe
with decreasing mass damps ocut more rapidly than it does for &
constant mass m%gsil& ) in&iﬂéting that variable decz@asing mass is
more stable. Also the oscillation frequency of the variable mass
missile i;acreasz@s with time and is greater than the oscillation fre-
quency of the constant mass missile.

In Part IV of the present paper, the effect on the longitudinal
dynamic stability of the variation of atmospheric density in vertical
flight is considered. The znalysis is restricted to the case of in-
finitesimal disturbances so téat the forces and moments depend
linearly on the angle of attack, The stability derivatives are, how-
ever, functions of the independent variable, and the problem is
reduced to the solution of a linear differential equation with non-

constant coefficients, for which the exact solution can be obtainad



b
by the methods of mathematical analysis.

In Part V of the presgent paper, the effect of non-linear
variation of lift and pitching moment with angle of attack on the
dynamic response to a step function input in angle of attack is in-
vestigated. The missile is assumed to be flying at constant speed
and altitude. The problem is reduced to an 0?&@%&&?? gecond order
non-linear differential equation which cannot be solved exactly by
methods known today. However, approximate solutions may be
obtained, and by the method of nums@rical integration a solution to
any desired degree of accuracy can be obtained.

The stability of the non-linear system is determined from
considerations of the solution in the neighborhood of the critical
points of the differential equation, and the investigation of the dy-
namic reaponse is confined to systems which have been previcusly
datermined to be stable.

In its application to a guided missile the problem of dy-
namic response properly involves the combination of the missile
as an aerodynamic body and the control system. Bul since ultimately
any motion of the missile must be brought about by aercdynamic
forces, it is desirable to know the dynamic behavior of the missile
alone . In particular, the “over-shoot' characteristic of the response
to a sudden change in trim position is important in the design of the

control system as it indicates the amount of '"feed-back' necessary



to provide satisfactory steering of the missile,

In the present analysis an attempt is made to approximate
this overshoot without resorting to the tedious method of numeri-
cal integration. A comparison of this approximation with the nu-
merical solution and the linearized solution is presented.

A very important g;%o%%am confronting the aerodynamicist
working in the field of guided missiles is the reduction of flight
test data in order to evaluate the stability derivatives, One of the
procedures followed is to analyse the transient response of the
missile to a step function ianput in the control surface deflection.
This is eguivalent to a step function input in the angle of attack,
In Appendix III of this paper the effect of a non-linear moment

curve on this procedure is discussed.
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SYMBOLS

The equaiions of motion for a missile can be referred {o
a set of body axes which are fixed in the missile and move with it.
An orthogonal set of principal body axes with origin in the missile
center of gravity, the x-axis the longitudinal centerline, the y-axis
in the normally horizontal plane and the z-axis in the normally ver-
tical plane, is selected. This coordinate system is shown in Fig-
ure 1. The velocities, moments, angular velocities, displacements
and angular displacements are all éefineé in accordance with the
right hand rule.

Throughout the text, the usual convention of placing a dot
over a guantity to denote differentiation with respect to time is used.
Whenever a fractional power of a quantity is involved, the positive
real branch of the multivalued function is taken. For the inverse
trigonometric functions, the principal branch is taken. In the fol-

iowing list the principal guantities used in this paper are defined.
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D0, E L F = coefficients of non-linear equation of motion -
defined in text

a = speed of sound, ft/sec
< = reference chord for moment coefficients, ft
€e = damping constant for classical theory evaluated at
sea level, lb/sec
L . o
Cp = T p\/‘as = 1ift coefficient
z
< = —— = pitching moment coefficient
M Fovese T ERCTEE
C, = 2& evaluated at trim position
« PY
C = 2Cm evaluated at trim position
My o
Cu. = 2% evaluatedat =0
M a(xssw)
CMq , = 2S%n  evaluated at q = 0
3(ac/v)

%3

&

S
B

incomplete elliptic integral of first kind

o
ti

acceleration of gravity, ft/sec?

I = f(gz+ z3)dm = moment of inertia about x~axis (roll),
1b sec®/ft

I = f(Xa*r z9dm = moment of inertia about y-axis (pitch),

y Ib secd/ft

I = f(Xaf' y?)dm = moment of inertia about z-axis (vaw),
b secé/ft

k = parameter defining variation of relative density with

altitude. 1/fi.

B 2,3 = constants used to define noun-linear lift curve

K} 2.3 = constants used to define non-linear moment curve

K () " = complete elliptic integral of first kind

i = 1ift, lbs; rolling moment, 1b/ft.
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R

i

i

]

i
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H

]

H

H
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. 2
mass, lb-sec /it
pitching moment, lb-ft; Mach number
accelerometer reading

yawing moment, lb-ft

v _ ad
9 =55

i
[i]

about x-axis) rad/sec

$

steady state of value of P

i
H

g-—-% roll rate rad/sec

6= 22 .
3t >
about y-axis) rad/sec
- 3@
@ = 5t = pitch rate rad/sec

steady state value of O

“2" P \/‘2’ = dynamic pressure, ib/ﬁg

= I perturbation in yaw rate (angular velocity

about z~axis) rad/sec
- 9 )

¥ = 57 = yaw rate rad/gec
steady state value of R, rad/sec

radius of curvature of flight path, ft.

reference area for aerodynamic coefficieats, sq. ft.

time, sec

velocity perturbation in x-direction
velocity component in x-direction
steady state value of U

velocity perturbation in y-direction

velocity component in y-direction

perturbation in roll rate (angular velocity

perturbation in pitch rate (angular velocity

ft/sec
ft/sec
ft/zec
fi/sec

ft/sec
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steady state value of V ft/sec

<
i

<

= missile velocity ft/sec

velocity perturbation in z-dirsction ft/sec

W =

W = velocity component in z-direction ft/sec

Wy = steady state value of W

XY 1% = coordinate axis, right handed principal body.axes

{roll, pitch, yaw axis respectively)

.4 = force in x-direction, b

v = force in y-direction, llb’

Z = force in z-direction

Xu = 33X = ﬁesiétaxwe é@rivaiive. rate of change of force

au in x~direction with velocity in x-direction, 1%35@«:/&
(X»Z)u,w,v'v,q > (Y)p,v,\’/,r = resistance ﬁerivativeza{}‘), lb-sec/ft
(M:)u,w,évq ; (L.N)P,V_;,,r = rotary &%révsiives(z}. ib-sec
(Mg = enivg
W, I,

a = angle of attack, rad.

N = damping constant 1/time

¢ = ¥ = incremental angle of attack rad.

e = perturbation angular displacement in pitch, rad
| @ = angular displacement in pitch measured from horizontal, rad
®, = steady state value of ®

A = Ecéariihmic decrement of relative deansity variation

with altitude
P = mass density of air, lb-sec?/ft

sea level value of L

od
H
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a = -g— = relative density

a5 = relative density at 35,000 £t in the standard atmosphere
aq; = relative density at altitude corresponding to x

T = time, sec.

w = circular frequency, rad/sec

W, = natural undamped circular frequency, rad/sec

M = phase angle, rad

it has been necessary to use some of the symbols listed
above with a difierent definition than the one indicated. Alsc, some
additional quantities have been introduced. In both cases, the def-

inition of the guantity is given at the time it is introduced.



III. ECUATIONS OF MOTIC

Z

The equations of motion are referred to a set of principal
body axes; hence all moment of inertia terms vanish. It is assumed
that the missile is initially in a state of steady flight, that the linear

and angular velocities and displacements can be represented as:

U=U +u P:R+p ®=0+6
V-Vt Q=Q+q $=9+9 (0
W:= W+w P=R+r 1I/=’tIf.+1}/

and thatv R=R =9 = 1I/'=O. It is alsc assumed that 6 is suffic-
iently small that sine may be taken equal to ¢ and cos e may be
taken equal to one; and that u, v, w, p, q, r are sufficiently small
that their squares and products may be neglected. The eguations

of motion as given in Reference 3 are then:

m(a-Vr+Wi[Q+ql) = X -mqgsin® -mgcos® e

i

m(v -Wp+Ur) Y +mg cos ® ¢

m(w-UlQ+qJ+Vp) = Z +mq cos @,

(2)
Lp:L
I,4 - M
L#-N

if the moticon is confined fto infinitesimaeals, each of the air

reactions can be expressed in the form:

X =X, aUdUJ'aWdejkaQ deanP+a dR
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where the second order terms are neglected. The partial deriva-
tives are then wriitten in the form % - X, and are known as
"stability derivatives®”. In the analysis of the effect of the é@ns?ty
gradiénﬁ on longitudinal dynamic stability, this assumption is made.
But in the analysis of the efiect of the non-linear variation of pitch-
ing moment and lift with angle of attack on the dynamic behavior of
a missile, the second and third order terms in dW are included in
~ the expressions for M and Z. Accordingly, instead of the usual
notation, Mww y Zp W these terms are written M(w), Z(w)respec~-
tively.

If the missile has a longitudinal plane of symmetry (which
is usually the case) and if it is flying at zero yaw, ﬁz&ny of the sta-
bility derivatives are zero and the set of six simultaneous equations

(2) reduce to two sets of three eguations each:

m(u +Wiq+qcos® o) = X, u+X, w+Xq+X -mgsin@ -mWQ (3.1)

i3

m(w-Uq +gsin@ o) Zu+Zw) +Z,q +L, W +Z, rmgeos @, (3.2)

+mU.Q,
I[,qg = Muu +Mw)+Mqq +Maw + M, (3.3)
m(v+Ur -W,p-gcos@d = Y,u +Yop +Yor +Yyv +Y. (4.1)
I,p = Lyv +Lpp +L,r +L, (4.2}
L = Nyv +Ngp +N.r +N,v +N, (4.3)
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It is to be emphasized that these equations are referred to
principal body axes instead of the more csnﬁmoniy used V'wind"
axes or se::a-v::aHeé "stability' axes, and that the appropriate ex-
pressions for the stability derivatives must be used.

Considering the longitudinal equations (3), it is observed
that if Z,=M,=0, E*“unaiicms (3.2) and (3.3) become indepen-
dent of Zquation (3.1) and the pitch motion can be described by a
two degree of ireedom system. For a missile wiﬁich is symmetri-
cal with respect to the yaw plane and which‘ is trimmed at zero
angle of attack, it is apparent that the lift and moment on the mis-~
gile are zerc and their derivatives with respect to u will be small
and can be taken equal to zero. Hencé it is to be expected that at
small angles of attack the coupling of u with w and @ is small and
that the system can be adequately treated as a two degree of free-
dom system. This means that the influence of the long period mo-
tion on the short pericd motion ié aegii;gibl@ . Calculations for
representative missiles have been carried out and this is indeed
found to be the case. The results of these calculations are pre-
sented in Table I.

Et’is noted that the long period for a supersonic missile is
of the order of 100 seconds whereas the short period is of the order
of 1 second. Therefore it is to be expected that the long period

should have no appreciable effect on the short period. Furthermore,
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it is obvious thai the short period motion is the one which is im-
portant for steering and conirol. The long period motion would
appear to be of little practical importance since the assumptions
made will cerﬁaialy be vioiateé during the course of the long per-
iod.

if it is assumeﬁ that the missile iz stabilized in roll, the
lateral equations (4) reduce to exactly the same form as the lon-
gitudinal equations except for t}ie gravity terms,

Returning to the longitudinal equations, dividing Zquation
(3.2) by m and (3.3) by [, and designating by primes the quan-

tities so divided, the equations becomae:

(1-Z.)w -Z'w) -(U+Zg)q = -gsin@e +gcose +UQ (3.1)

My W - M) ~Myq +q = M (5.2)

There remains a bothersome term in these equations, namely
gsin@ e . If the missile is flying a4t & small angle of climb,
stn ® 2 O  and this term may be neglected. However, as is
often the case, if the missile is flying in a nearly vertical direc~
tion, it is not apparent that this term may properly be neglected.
Furthermore , its presence gives rise to an additicnal root to the
characteristic equation, and this additional root is divergent. The

divergence is slow however, and it can be shown that it represents
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the curvature of the flight path due to gravity. To neglect this term
would seem to be a reasonable assumption since the time interval
for which the motion is being studied is of the order of five to ten
seconds during which the change in the flight path due to gravity will
be slight. Computations for representative cases have been made
and the results are shown in Table I. These results indicate that
there is no appreciatble error involved in neglecting gravity.

Noting that Z; << U ang Zw << | , hence Z;, and Z;V;,

can be neglected and Equations (5) are written:
w-Zw-Ugq =Z' +UQ, + gcos @, (6.1)

!

-Mg,w =M -Mgq +q = M, (6.2)

Séiving (6.1) for g:

w Z(w) (Z.' +UQ + gcos @,)
Ty " U U U. (7
and differentiating with respect to time:
. W Z"(w)
9 *U -~ U (8)

' Substituting (7) and (8) into (6.2), the system is reduced to the one

equation of motion:

Wo_ Z M) ~Mé(i".- ?..(."‘.’.’) - MiLw = (9)
U, U .
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If it is desired to compute the response to a step function
input in control surface deflection, the forcing functions, M: and

<, can be written as step functions and the response computed
directly from Zquation (9). f{‘%m incremental velocity, w , is meas-
ured from the original trim position and Q, and @, correspond to
the steady state values at the original irim position. Alternatively,
a linear transformation in w can be made such that w = 0 corres-
ponds to the trim position at the new control surface deflection,
whence Q, and @, are referred to the new trim position, The so-
lution of the transformed equation is found subject fo the initial con-
ditions, w(O)=VWo and wW()=0 , where w, corresponds to the

old trim position measured in the new coordinate system. If this
latter viewpoint is adopted, M. =0, zZ. ig the aerodynamic force

in the z-direction and @, is thé angular velocity for the steady state
motion in the new trim position. For the steady state motion of

the missile in a vertical plane, equilibrium of forces in the z-di-
rection, neglecting squares of the angle of attack (Reference Figure

2), requires:

-Z, -mgcos @ = m B Q;

where R, is the radius of curvature of the flight path.
But U,=Q,R, , hence —-Z, ~mgcos ® = mUGQ or -z -gcos @, =U0.
and the right hand side of Equation (8) is zero. The problem is now

reduced to finding a solution to the homogenecus equation:
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.

W Zw) . r
U‘, - U. M(W) “Mq(

- =X -M. w =0 (10}
U, w

Qg

with the initial conditions:

W)= Woe , W(o)= o (10.1)
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IV, EFFECT CF VARIABLE DENSITY CN
LONGITUDINAL DYNAMIC STABILITY

To investigate the effect of the atmospheric density gradient
on the dynamic stability of a missile, the éﬁalygis is restricted to
infinitesimal disturbances from steady flight at constant speed.
Accordingly in Egquation (10), M'(WJ and Z(w)are written in the
usual form, M;V w and Z;vw respectively. The assumptionof a
two degree of {reedom system is still valid and the effect of gravity
may still be neglected. The only difference from the classical
theory is that the stability derivatives are not pure constants but
are now functions of the density. This dependence on density is

exhibited by writing the derivatives in the form:

zZ, = Z‘:\’o T
Mw = My, @
Mg = My o (11)
My = My @

where the subscript, o , refers tc sea level conditions, and 0= ¢ (X)
x being the distance along the flight path.
With this notation, letting %f- =

Z(wy 2

L _(Z’wr) B E_v;/o(crwf-wé') =z (0”2:9+ 20d)
U U, °

o
ot ° U,

and the equation of motion is written:

D +(-My - UM, ~Z.)od + (-UMLT +Z My o* -Z,,¢) 9-0 (12)



Writiag o 4y d¥ dx _ d¥
‘ dt dx dt Cdx

2 a2 ol

¥ =U"2Z2 | ¢ U 2

d x2 ax

Zguation (12) becomes:

2 i t i ! s ] '
UrAY 4 (M, -UM, -Z, ) U 2 4 (UM, o +Z M c-UZ, 9T (13)
ol x‘t o (] C] ax @ b o dx
=0
Assuming vertical flight and letting x be the vertical distance above

35,000 ft, the standard atmospheric density variation with altitude

for altitudes > 35,000 ft. may be written:

T o e"%X where @3 . is the relative
density at 35,000 ft. (14)
hence
d% _ e X iae
ax
k3
Cif_rv = >\2<r
o x?
4
" d¥ _d¥ ¢ d% 2 . d¥ , e d¥
dx “ar ax 0 oax "N gm PO
Now the equation of motion becomes:
22 244 2 dd 2 dd . R ,
UXT ==, +UAT == -CUI* — +[-UM,0 +Z, M +UZ )y (15)
do ada de ° LR

=0

Where C, = ‘M'QO“U-M\:'V, -Z. . Dividing through by UtXo*®

Wo

o™ ¥ (= -E‘_)ﬂ+ (“)\f’;;_+;‘;x“"la+§;oo_)w=o (16)
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’ 2
Making a change of variable, =z = and dividing through by (C" )

Equation (16) becomes:

d 4oy dY Mo , Zog L, Zw M
dz? "z l)a—z+\f[c>\+c:%12+U,z)ﬁ)”“" (17)

Bquation (17) has an exact sclutica in terms of the confluent hyper-
geometric function.
Consider for a moment Zguation (10). It is noted that
Z;\,M‘; << UM, , heace Z., M’; may beneglected. Letting Z., Mqlazo
Zquation (17) reduces exactly to the confluent hypergeometiric equa~

tion, which written in standard form is:

o’ d?d
z + -Z)— +p¥ =0 18
where now
P
“'le. Z\'N‘,
E R
¢ C, A G

This equation has an exact solution valid for all finite z which is

expressed in standard form:

Yﬁ: !E("Z’,;Z)‘ : {19)

The values of the parameter,  , for two representative missiles
at two Mach numbers and altitudes, together with the values of the
independent variable, are presented in Table II. The function F (-9,1,2)

has the expansion in terms of Bessel functions for large values of ¢
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given in Reference 4

L

FCr1z) = eé‘ga/\k (;(Z—)‘Jk(a\fﬁ) (20)

the series being uniformly and absolutely convergent for

2,'2 real
and ogzZzsX.

The Ak are given by the generating function
w5 (1+% ) = K
e =2 A%

A (21)
(‘ +_é_c_,_)fz+| k=0

Substituting into Equation (20)

Fli) = e#{ Jewz) "-ZL(%)%J(ZVEZ) +3(F)evpz) e} @)

For large values of Z the Bessel functions have the asymptotic

expansion: (Reference 5)

1/ D wear)
J;(z)fv ﬁ.z-z{cos(z-”" “’)Z-—-—i———--

P P P sin(z-3F- T Z————( ! (vzm)}( 3)

reo (22 )?.!’H

where (V.r) = (’41)1-11)(41)2—32) {4V er-1?)

22!‘
Substituting Tquation (23) and neglecting T and higher powers of
z

7 Equation (22) becomes:

5 ,
e
Fepiz) ~ e cos(2vpz - T wz}/ sin(2yz - I (24)

-2_'1/;(5—cos(2\/727 ——4‘)}
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which can be written
H
'F‘.(‘Q»HZ) s e i
AT (nZ)*.

2 .
Bat 4/ 1+l 2) 1 = 1+3(e2)

l+(—ijz-2i_)z-z~ sin(zwfrz'z— +tan-‘{(, ! —g) (25)

ez” 2] mé)/-éf}
* Z )
and since p is neglected com-

pared to 1, the quantity 4/ +(f(;7_-§'_-)a~$ is to be replaced by 1 and

Equation (25) becomes:

z

2

AE‘ N :""—r
Co.L;z) ~ ("

cos (2VFZ +€@ +F) (26)
With these substitutions the solution to Equation (18) is then given by:
£ 4
W= C, ez cos (2VAZ + €(2) + 9) (27)

i N
—I"—_'}T/?} and C. and ¢, are constants to

where €(Z) = tan"l
(lez Tz

be determined by the initial conditions,
To get the solution in terms of the distance along the flight
C.95 A

e x where X iz the altitude measured
U A

from 35 ,000 feet. Introduce the new variable, y = x - X, where X, ‘

n

path note that Z

is the value of X when the disturbance occurs. With this notation:

Z = _Q:_f‘:'_e‘w (28)
U A
kz = M., e~ (28.1)
U X

neglecting Z, compared to =M
‘ X

where ¢ = g;e** is the value of the relative density when the

disturbance occurs., Substituting these relations into Equation (27):
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SO oAy -
J = exp{ ‘U’\ } cos(y/ :JM;{“Q—‘ eX Lew “9.)
_ch': = _ .
U A

=4 eXPZ( X } cos 1/ ‘AM S e F re(z) v Pi) (29)

aU/\

From Equation (29) it is observed that as y becomes very

large the amplitude of the cscillation, though it may decrease

C.T.

on will even~

initially depending on the value of the parameter
tually become and remain very large. This indicates that a missile
which is stable in a constant density atmosphere will eventually bew
come unstable in vertical {flight through the standard atﬁ@ﬁp&zar@ R
To investigate the initial stability of the oscillation, e Y

is expanded in powers of Ay . The amplitude of the oscillation

is then given by:

(r9)"
(Y| = Jle{eu;(’ Ay +: ..),,,\79}

A C.0 i Coa; a) (3§}
=4, @~ ([ZTA 'Z]"’ T2y

which for small values of Ay may be written:

Co _ 1
19l = g eMams %)Y (31
From this it is seen that the initial character of ths pscillation will

C.w

L3

Coli ¢ L

be stable if the parameter 2UA 4

> ‘-:: and unstable if
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The preceding analysis is valid for { large compared to z .
This occurs, as is seen from Table II, at high altitude. A different
asymptotic expansion for the confluent hyg;ergeemetric function must
be used for low altitude cases where g and z are of the same order.
However, an aliternate procedure can be followed which will apply
equally well for-all altitudes. The fact t}xat the asymptotic expan-
sion for the confluent hypergeometric function is expressed in terms
of Bessel functions suggests that a different approximation to the
relative density gradient be made in order to reduce the differential
equation of motion to Bessel's equation.

it is observed that the density variation with altitude for the
standard atmosphere can be approximated for limited increments

in altitude by a hyp@rbol& of the form:

a;

a(xXyz ———
l+k(X*X.)

#

where X altitude measured in feet from sea level

altitude where the disturbance from steady flight occurs

X =
G, = the value of o0 at x=x,
Such an approximation with Kk =(-—E——~ - l)x i0*is found to be
- f T (X +10,000)

reascnable for increments of altitude of the order of 14,000 feet.
For altitudes x. greater than 35,000 ft. the value of k=.61 x 1074 is
used. This approximation is compared with the standard atmosphere

in Figure 3.
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:’Subétituﬁing this expression for O(x) in Ejuation (13} the

eguation of motion becomes:

2?9 Co(r d . ' Zw M?‘ . ‘
d + G __’:“+{‘qu°‘ + % +‘kaq<r.}w o (32)
Xt pk(x-x) dx U (1+kIx-x]) (1+ KLX-x))°
d _ d
MNow létx-x1=y, tﬁe’a = -_373
C. 4 z' M' ,
» U M. Sl 4 kZ, @
and M-}-._[{'_. it-:o+[ M*‘om y? ° }'Lo =0 (33)
dy? i+ky dy |U(1+ky) (1+ ky)*

Substitute -‘f; +Y4Y=2Z then %fj = .‘;12 and the eguation of motion is:

C,O—. -ngq: Zw. MLUTZ

d% kU dv kU, + 2o \
— — + k2 U. kU, Y =0 (34)
a4z zZ dz z z*

which is a form of Eessel's equation and its solution is given in Ref-
erence b as:

where

+M, U‘)JZ'
ﬁ—(kU. /
5. L Lo ,
S22k (35.1)
ZoM, G2zl
2 2 w! 94 W Tt
e %S k2 U* kU }
z= L 4 (x-x)

Zr» = DBessel function or order p
Since the value of z in this expression is always ‘larzge , @n
asymptotic expression is possible and ¥ is asymptotically repre-

sented as:
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cos(BZ%+4) (36)
where C, and 4 are constants to be determined by the initial con-
ditions.

Now it is clear that the damping of the system is expressed

by the exponent of z:

- (Cow

2kU. i) =N (37)

where C, is the sea level value of the logarithmic decrement as

defined for the classical theory and given by:

Co = =My, ~UM, ~Z!

We

Rewriting the damping parameter in a form which more clearly

exhibits its characteristics:

i d e (S

¥ = Mach number, a = speed of
sound in ft/sec '

the first factor ' (a !?M ) in the expression for € is a function of
the missile configuration and Mach number only, while the second
factor, ( %-_) » contains the dependence on altit;sﬁe . From the
expression (36) above, it iz clear that the missile is stable if £ >3

r o ‘ N 2
and unstable if £ <z . The unstable case can occur even for posi-

tive values of the damping factor, C, , which in the classical theory
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would mean stability. Hence again the result is obtained that a
missile which is stable in a constant density atmosphere, such as
experienced in level flight, can become unstable in vertica}.flig%}%
due to the density variation. It is seen from (37.1) above that,
since the damping factor C, decreases with increasing E&.;%aclh
number at supersonic speeds, and since Mach number appears
explicitly in tr}'ze denominator of the first factor of £ , and since
the relative density of the initial altitude appaars in the numerator
of the second factor, the tendency toward instability increases
with both increasing initial éliiﬁuée and speed.

It is to be emphasized that the hyperbolic variation of
density with altitude is a reasonable approximation only for lim-
ited intervals of altitude, hence the stability criterion pertains to
the initial ﬁtabilitﬁ of the system. The result is then in exact
agreement with that obtained previously (Equation (31)) if K is
replaced by A .

This instability in vertical flight can be explained physi-
cally. If the missile is undamped, the total energy of oscillation
remains constant and varies sinusoidally between all potential
energy and all kinetic energy. The potential energy is stored
against the "aerodynamic spring', and if the spring becomes
weakened during the oscillation, which is the case in vertical

flight, the amplitude of vibration must increase. On the other hand,
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if the missile is damped and flying at constant altitude, some of
the energy will be dissipated in work done against the damping
forces, and the sum of the potential plus kinetic energies will de~
crease, hence the amplitude of oscillation will decrease. Com-
bining these two effects for a damped missile in vertical flight,
if the damping kia light enough, the increase in amplitude &ée to the
weakening spring will outweigh the decrease due to damping with
the net result that the amplitude increases; and as the missile
speed increases, the aerodynamic spring weakens more rapidly
and this effect becomes more pronounced.

In Figures 4 and 5 the response of a disturbed missile in
vertical flight computed from the above analysis is presented in
comparison with the constant density case for high and low alti-
tude. It is noted that the effect of variable density is negligible

at low altitude but quite pronounced at high altitude.
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V. EFFECT OF NCN-LINSAR PITCHING MOMENT AND LIFT
VARIATION WITH ANGLE CF ATTACK ON THE RESPCONSE
TO A STEP FUNCTION INFUT IN ANGLE CF ATTACK
In order to formulate the problem in & manner amenable to
solution by analytical means, the pitching moment and normal force

as functions of the angle of attack are approximated by polynomials.

it is convenient to use cubic polynomials of the form:

M)

Y

Mg, ¥ + K, v+ K, (38)

i

Z () Z“: ¥+ kv o+ k¥ (38.1)

where ¥ is the increment in angle of attack measured from the trim
position. Since w is a small quantity compared with U, ¢-= %’;—
neglecting higher order terms. Substituting these relations into

Equation (10) and collecting termas:
D+ (A+BY+ Ev2)d +(C+Dd+ F*)Y =0 (39)

And the initial conditions (10.1) are:

Wo
Y(o) = o, = -
v (39.1)
1:9(o)= O
where:
z! . 2
RV S A 2k 40
A= Mg -5 - UM, - 210 ( Coy = Cug + — cL(t) (40)
) N 2_ .
g . 2k _ 35 3G (46.1)



E - -3k, _ 45 Pc (40.2)
U 2mU aa’,
1 + 2
' Mant q‘SC ‘1‘56‘) CL‘ (-CM)
€ <M s e ) o) e we

21, m

, a_,_DCL _C
D - -k +5Ma q,SC(_a*c,,> +(q5c) tle e (40.4)
¢ 21, \ aa?, U 21, m

2y
D kM a'Sci-1 3%Ca Q'S¢ 2(3" a3, )( CM“)
Foeoi e 22128 ) (3F) ~ (40.5)
L § 5 I, | 3t 9, U, 21, m
where: Cu. =b 9Cnm (40 .6)
« fkC |
(35
C = aCM (é%.?)
"R
2U.
9C,
C - 40,
Ld“‘ od A2 Kppin ( 8)
aCM A
. ol 40.9
Crg = 2 (40.9)

L= i

Before proceeding with the solution of Equati;n (39) it is
desirable to establish the stability of the systemn., This is done in
the usual manner by considering the solution in the neighborhood of

the critical points of the equation and identifying the t?ge of the

critical points. This is carried out in detail for the seven numeri-
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cal examples considered in this g}a%@r and is presented in Ap-
pendix I.
Assuming a stable system, it is desired to find a solution

to the equation:
W + f(9)Y + g =0 (41)

subject to the initial conditions:

Yo = o,

9oy = o (41.1)
where in paz-ticﬂar ,

fw) = A +Bv +Ev®

q@) = C+DVY+Fv* (42)

and without loss of generality O, is takem <O . Unfortunately
the exact solution to this equation cannot be exyressed in terms

of the known functions of mathematics (except in the cases A = B
=E=0orE=Ez=D=F =0). However, a solution to any desired
degree of accuracy can be obtained by the methods of numerical
integration. This procedure is tedicus when done by hand and is
best accomplished by means of automatic computing machines.
The latter réa%%mé is expensive and the additional cost can not al-
ways be justified. It iz therefore desirable to find an approximate

solution in terms of the tabulated functions of mathematics.
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An iteration or perturbation procedure would appear to be
in order. However, since WY is of the third power in ¥ and f)
is of the second power in V¥ , the differential equations for the
second and higher approximations become increasingly complex
and the numerical application of the results to any specific example
becomes even more tedious than the numerical integration, while
the results are less accurate. Also, there is ti;e guestion of how
many terms must be carried. Since the solution is essentially a
Fourier expansion, and terms of the form t sinot and tcoswl sccur,
which become large as t becomes large. These terms do not con-
stitute a divergence if the entire series is taken, since they are
canceled out by subsequent termas; but the question of how many
terms must be taken to insure this cancelip.g is not easily ans;wereé.
For these reasons, this approach has been abandoned.

A step by step approximating procedure has been resorted
to. The equation is linearimed cover a closed interval of the ampli~
tude of ¥ , the linearization being based on a time average of the
response over the interval. The constants used in the linearization
are changed for each step. In the following section, this method
is developed and explained. The analysis is of necessity lacking
in mathematical rigor and relies heavily on physical intuition and
analogy to the well-known linear oscillator. |

The solution to the equation:

D+ g rwd =0 (42)
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where  and w, are constants, subject to the initial conditions:
Y(o) = &,

o

i

W(o)
is well known to be:

e'%t cos{wt -Q) (43)

<

T
R
t1E

EN
rofss

where W = : (

)
Lo (22}

and the first derivative is given by:

#

Ko}

. (VR
¥ = - W, — € 2 5in wt (43.1)

if values of w: and g are selected to replace g) and f(¥) rew-

' 14
spectively in Zquation (41}, the approximate solution can be written

as Equation (4 which will be valid for sufficiently small values of
time. It is noted that in the theory of small oscillations, w}?=C and
n=A , but this approximation is unsatisfactory for the magnitude
of values of Y under consideration here.

Before selecting a value of w,.z , ‘it is observed that in ths
iin%arized case, the damping factor, B has a second order effect
on the frequency, W . For example, if _gi:‘ = 0.6, i.e. the system

is 60%0 critically damped, w =0,80 W, , i.e. the frequency is 80%¢

of the undamped natural {requency; and if %-2- =0.2, i.e. the sys-
"
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tem is 20% critically damped, w * 0,98 W, , i.e. the frequency
is appraximatély 98% of the undamped natural frequency. In the
cages which arise in practice, the missile is considerably less than
60%,, critically damped; in fact, it is usually of the order of 25%,
or less. Since it is desired to find Y as a function of time it would
seem reasonable to select a value of w, corresponding to the fre-
quency of §§m undamped system.

Accordingly, consider for the moment f(W)=R=0 . Now

Equations (41) and (42) become respectively:

P+ qEY = 0 (44)

Y(e) = U, , Y=o

P+ b):zo = 0 (45)
Yy = (A, , D(o)=o0

Equation (44) can be solved as follows:
. d ( »{9‘)
= 2 (2} = —qv
il 3 (46)

Integrating with respect to V :
Ca ¥
k1
— = - oxdx = G(x,) -GI) (47)
2 E| /
a

If g() is a pelynomial in ¢ , G(q.) - GM) will also be a polynom-
ial in ¥ , and hence, ¥°=P®@) where PM) is again a polynomial

in v . Writing

9= 4Y . /Pw) (48)

dt



and integrating:

i d
t = = (49)
~ W P
which defines vy as a functionef t.
Similarly, Equation (45) can be solved and its sclution is:
? 4
x
t = ——— 50
w v -x* 0)
(* 9

Letting the interval under consideration be @ < U<, where d.<o,

then {rom Zguation (49)

wi

dx
t, = (51)
[x v PO
and from Equation (50)
o2
. dx T- sm"(%)
t, R CANTLAET 2 o o (52)
Equating t,=t, and solving for w, :
Y,
L o)
" Y dx (53)

and the approximate sclution to Eguation (44) can be written:

Y

"

@, cos wnt - (B9

from which: 2 -0, Wy Sin wat (54.1)

Consider now Equation (41) with f(¥)%50. Forming an

energy balance:



-
2 0

.
+ J gx)x dx = —Jf(«ﬁ){pdzc

INEE

o

(35)

(]

where the integral on the right hand side represents the energy

dissipated during the time vV varies from o, toy . Letting £

represent this integral:

S t

Eos = Jf(W)iOdz,O =ff(19(fc>)£0czu dt

<

(56)

Similarly {or the linearized system:

J

’zi“a &)a 2 ! .
> +Ei‘(w—af) =—’ézjwd19~ (37)
qo

t
and o =0 f ey dt (58)

Substituting the approximate solution to Zquation (44) as given by

Zquations (54) and (54.1) into Equations (56) and (58):

wy,t
E =W
0is o n

o

f(oeocosx) Sin?x dx

(59
' SRR Wit sin 2W,t
ED!S —Cxownvz(a — 4 " )
Now at the end of time t, , eqguating the energy dissipated in the

two systems, i.e. F__ = E;:s and solving for K

uhtl .
J f(oc cosx) sin*x dx

o

~
t

wat, sin"2 whnt,
2 4

(60)

The approximate solution to Equation (41) valid in the time interval

ost<t, for which « << is then:

w -7
Y = OCOZ)——" ezt cos (wt-Q.)

(61)



where Y
wn Sin‘i({iﬁ\)
V. dx
a.,‘!)P(X)
.. osin @)
1] ‘—_——"—wh
whtl E ]
S f(zx,cos Xx) sin*x dx (62)
(O Wet. _ sin 2wt
2 4
w =/ (WY
Q - tan“(ﬁ‘i%)
w

Differentiating EZquation (61}, the value of 19 is found to be:

. -R
O —ocow,,‘—(:-ﬂ ezt sin wt (63)

It is observed from Equations (43} for the linearized system that as
>0 w;-wn and L{L—>0 hence 1}7—>--q,w,, sihw,t which agrees
identically with Ecuation (54.1) . The quantity |, w,| represents
the maximum velocity of the undamped system.

For the non-linear case with zero damping, the angular ve-
locity, is given by Egquation (48) as:

W = A[PG)
However, letting nR- o0 in Equation (63) the angular velocity is:

= -0 W, Sin wyt
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which in general will not equal ¥ P(¥) . The meximum value of ¥
for the undamped non~linear system is obtained when ¥ is equal

to zerc in Zquation (48):
Yoo = V G0
For the linear system, the maximum value of V¥ is:

Yppy = 1%, |

Hence, if the quantity -o,w, in Zquation (63) is replaced by v G(«x,)

the approximate expression for ¥ becomes:
. W, _-Rt .
P = 1 6l o e’z% sin wt (64)

which in the limit 28 g+ o0 becomes:

¥ = /Gl@) sin wat (64.1)

It should be noted that the expression for ¥ given by Equation (64)
is not the time derivative of the approximate solution for ¥ given
by Equation (61) but it has the same general character and gives the
proper value of U, in the limit as R o . Because the ap-
proximate vala@‘af Y (t) obtained in this way is not the time deriva-
tive of the approximate value of Y(t) , the functions (t) and V(t)
should be treated as unrelated functions.
Since g(v) is in general neh-cenztam, it is clear that the

appropriate value of W, will be a function of the amplitude of the
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oscillation. If the system is not conservative, i.e. f(V) R0,
this amplitude will change with time and after time ¥, its mag-

nitude is given by:

. Wh
vl = l“o:)“

e it (65)

The general procedure outlined above can be continued for ancther
interval | Y € VU €Y, using the reduced value of the oscillation am-~
plitude to determine the value of W, , and modifying the procedure
to account for the different initial conditions for the second interval,
since VW (t,) will in general not be zero. This solution will be valid
for t,stsl,, Following this step by step process, the solution
can be continued, and by selecting the intervals of time sufficiently
small, Sae approximate solution can presumably be made to differ
from the exact solution by as littie as de ai%aé. Furthermore, the
approxirnate solution for the undamped case given by Equations (61)
and (64) by letting n—o0 and the exact solution in the ua&amfmé
case given by Hgquations (48) and (49) agree at t=0 andat t=t,
irrespective of the magnitude of t, . This suggests, by analogy
to the damped linear system, that in the case of small damping,
the approximate solutions should be reasonably good for fairly
large values of t, .

It ié convenient to select t, such that VY =0, since this

simplifies the initial conditions for the next interval. With this
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choice of t, , the approximate solution can be writien:

for ostst,, a,sv¥ <o
R
¥ = oco(w") ezt cos (wt-) (66)
W
. N -t .
v = G(a,)(%")e  sin wt (67)
L
where Wy, = -0—2'———— (68}
{ dx
«a\/ Px)y
Z
noo= ?%j.f<a@c05t4)s§n2q dy (69)

W = Yyw?-(e)

(70)

2 = tan” (%)

w
T

And when t=1, = z tLL
(89
Y oy - HE2
Y(t,) -‘-\/G(ao)((:)—?)e 2 .55}1(%—}1—_(1) (79
gz e

a = A€ Vw (72)

For the next interval, it is convenient to choose 13 such that 9

varies from iO(tz) to 0 . This gives the new values of W, and g :



>
W, =
v fs’dx
o 4 P(X)
T
4 (? -
(A - f(x, cos y) sin®y dy

where §, is the amplitude of the peak of the m‘adgmgeé oscillation
on the opposite side of mero from O, . Hence G(6,)=G6@) I
gW)VY iz an odd function of ¥ then §,=o¢, .

Le%ﬁiag T=t-1, where t=0 corresponds to V=, ¥=0,
the second interval of t%za‘ oscillation is given by: |

(A.)' -‘2«'[ .
Y = 8,( "’) e z" sin wt
w

l

¥ = &(tz)(g—’l‘)e'%tcos (. T+ £2,)

where
W, 2w - (R2)
e (2

The process is theu continued for a third interval such that ¥ var-
les from Y(t,) to o ; hence this interval is exactly similar to the
first. The fourth interval is similar to the second, et cetera.

The procedure outlined above can be followed for any rea-
sonable functions f(v) and g(¥) provided the amplitude of the os~
cillations considerad is such that the system is stable. It is found
in practice that the pitching moment vs. angle of attack, which de-~
termines the function g(¥)¥ can be satisfactorily represented by

a cubic polynomial. This has the advantage of leading to elliptic
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integrals of the first kind for the determination of W, and these
functions are tabulated. If higher order polynomials are used,
the integrals will have to be computed.

Seven representative numerical examples have been worked
out by thg method outlined above. Thess were tazken fr@m‘actaai
missile éenﬁgurations and include high and low altitude operation at
different Mach numbers and angles of attack. The initial conditions
were chosen to correspond to step function control surface deflec-
tions necessary for turns of the order of from one to five g's. The
general character of the moment and lift curves vs. angle of attack
together with their mathematical approximations by cubic polynom-
ials are presented in Figures 6 and 7.

The seven exam?ies can be described by the values of the
coefficients A, B, C, D, £, and ¥, and the initial displacement, o,
These are presented in Table III. The details of the calculations
for these cases are presenied in Appendix II. The results of the
analysis in comparison with numerical integrations obtained by
1.2.%4, punched card techniques and the classical, ﬁ%aeari@aé 0=
lution are presented in two ways. The responses in both arﬁ P
are plotted against time and presented alternately with the approp-
riate plots of the restoring moment, -g(¥)¥Y and the damping func=
tion, f(¥) against displacement in Figures 9a to 15b. Phase space
diagrams on whi;:h the trajectories of the solutions are ploited are

presented in Figures 16 to 22.
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Vi. CONCLUSION

The variable density analysis indicates that a missile which
is stable at constant speed in level {light can become unstable in
vertical flight through the standard atmosphere, the tendency to-
ward instability increasing with both altitude and Mach number.
The analys,is assumes constant speed and the result is due entirely
to the density gradient. This effect together with Stewart's result,
that the effective damping is decreased when a missile is deceler-
ating under the influence of drag, would indicate that some form
of control should be incorporated in any missile which is intended
for vertical flight at high altitudes.

The response to a sudden angle of attack in the case of a
nén-iiaear moment curve is found to be qualitatively similar to
that for a linear moment curve, though quantitatively, the differ-
ence is very marked. This difference in the examples treated,
which are considered to be representative, indicates that the clas~
éic&l, linearized solution in such cases leads tc large errors. The
approximate solution derived gives resulis which are considerably
more representative of the actual behavior, and appears to be
adequate for design purposes., If extreme accuracy is required,

the methods of numerical integration should be used.
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APPENDIX I

Stability Considerations

To investigate the stability of the system described by the

equation:

P+ 99 + gww =0

with initial conditions: W(o)= «, , ¥(@)=0

it is convenient to let V= Cy“ and replace the equation by the equiva-

lent autonomous pair of equations:

The critical points of this set of equations are defined by:

F(4,9)

9

H

G, 4)

~gwv -fw)d

F(d,9) = G(%,4.) =0

This occurs when §=0 and either ¥=0 or gW=0.

In the cases to be discussed,

#

A+ By + Ev?
C+ DY+ Fw?

f()

il

9(¥)
Consider first the critical point, Y=0, §=0.
In the neighborhood of =0 , 4 =0 , neglecting higher order
terms:

W

4

I

¢

-CY¥ -A¢

11

This can be written in matrix notation as



. -45 .
z -(7)
9
. o 4
z = Z = ( )
£z = (e )y
for which the determinant

A =

The matrix is reduced to cancnical form by applying a complex
transformation, and the secular equation is found to be: A+ Ar+C=o0

for which the characieriastic roots are:

oA B

2
A A\2
r:-z ~Y4)-¢
2
IfA> Cand C >(.'§_) » A, and A, are complex with negative real

parts;' hence ;he origin is & stable spiral point. For the seven nu-
merical cases considered, these conditions are satisfied. Hence
in all cases, the system is stable in the neighborhood of Y=4 =0 ,

The other §ritical points are more conveniently discussed
separately for the various examples.

Examples I and II

For these cases B = U = § hence g¥)=C+ Fo®

For q(¥) =0
2,

=

j@

% =-

e

Since C>0,F>0, ¥),2) are imaginary, and the origin is there-

fore the only real critical point.



Examples III and IV

For these cases, q(U) = C+ DY+F¥* where D>C >0,F<0

Hence there are two critical points other than the origin. They are

.. ._b 1/9, o C
(¥,,0) and (),,0) where: ’Zﬁé * 2f t+ (aF) =

Now “%}O hence 7 4J, are real and of opposite sign and ¥>-9>s0

Zxpanding g(Y)¥ and f(¥)4 in Taylor series about the point %=1,
c? = 0 and neglecting second and higher order terms:
v =4

for which the characteristic roots are:

1"

FU.(9,-v)(¥-¥) - (A+BU+EV)S

- . 2
AT R’+ (.‘?L)+K,
- "2! —_ '?l z
re =7 V(F) K
where K, = FU@-Y) >0 |, g = A+BY + ES?
Hence A, and A, are real and of different sign, and the point -4 ,
4 =0 iz a saddle point.

Similarly, in the neighborhood of -4, ,4=0

9

g = FU(b-0)v-v) - (A +Bv: +ES7)4

13}

¥

]

for which the characterisiic roots are:

b B
- fER

where K, = Fi (¥-v;) >0

1

1

Az

R, = A+ B + Edf

}



e T
Hence A, A; are real and of different sign and the point VY=,
9 = ¢ is alsc a saddle point.

Lxamples V, VI and VII

For these examples q(J) = C+ DV and gw)-ofor ¥, =“_DC.

in the xieigh’émz'%meeﬁ of w=1,4=o0,
D = Y
) = C(I-J) -AG

The characteristic roots are

R

SN
Now sgince C>0 , A, and A, are real and of different sign,
the peint v =, c?=0 is é saddle point.

The nature of the critical points is established and a dis-
cusai;m of the stability for finite initial cenéiﬁsns is possible., In
Examples I and II, since the only real critical point is the origin
which is a stable spiral point, and since the damping term,
fo) = A+ Ev? is always > 0 for all ¥ , the system is stable
for any initial conditions,

In Examples III through VEE, the trajectories through the
saddle points can be computed in each case and the separatrix found.
The system is then stable for any initial conditions which lie within
the separatrix. Because of the nature of the equations, this iz a

tedious computation, and for the initial conditions used in the seven
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examples, a simpler procedure is possible,

It is noted thal the undamped system, f.e. A =B =2 =0,
has the same critical points as the damped system, ;vith the ex-
ception that origin is a center instead of a stable spiral point. For
the former, the trajectories through the saddle points are casily
computed, and the separatrices are found. Now if the damping
term does not change sig# over the range of o included within |
the separatrix, the damped system will be stable for any initial
conditions contained within the separatrix of the un&ampeé system.
This is found to be the case {or the exam;alés considered, as is

shown graphically in Figures 23 to 27.
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APPENDIX II
Application of Approximate Method of
Solution to Specific Examples

;n the application of the approximate method developed in
Part V to actual cases it is assumed that (W) = A+ By + E¥?
and that Q) = C+DY+F¥® . The determination of the effec-
tive damping constant is straightforward by application of Equation

(69), and the result is:

4B E 2
= —e (X A —— X
€ A+3TT ° 4 °°

The algebra in the determination of W), varies somewhat
depending on the values of C, D, and F. The different cases sn-
countered in the examples cited in this paper are treated separately
below.

Case I. (Examples land II}) D=0;C,F>0,0<0, hence qw):C +Fv”(II.1)

From Equation (47):

P() = 9= -2 ((Cxi—FX’)dx
Ko
(1. 2)
P) =L (ot wIESE + of 1)
¥ e, % 2
Let T"a‘, and a-aj*ﬁ,then o< a<|
F‘
Now Equation (II.2) becomes:
2 O'.fF 2, &¢ 2 2,2
P(¥) = o R(3) = -—a-—(oco\»—f_:-)(:—g X1+ a%z?)

and

*dx | "ods
P “quuc J@=57) (1 + a*z?)
@, 2 @ (-]

Let B = cos ¢

Mo

rdx .o g d4 Ky
JPOO feHFal ) fi-Ksintg T fceFad
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sin”' _Fos and K(y) is th
VorFaz +2¢ ¥ 18 the

complete elliptic integral of the first kind.

"

where Y = sin'k

From Equation (68):

TVC+Fal

“n 2 T

The approximate solution for the first interval: ost<T 6 o.<¥<o0

is given by:
et
0 - 0((8) eZ! coslut-a,) (11.3)
¥ = (w "2t gin wit (11.4)
= Y w, € n % )

where the constants are given by the folbwing equations on setting

i=0:

i
O
+
m
R

Ra ¥

Wy, = S — (11.5)
K(’({'/})
Y. = sin Fai (I1.6)
! 2Fai+2¢C
46 E
R‘ = A + -5—1-_—’_ (Ii “+ T diz (ﬁ»?)
w; =W -(Te) (11.8)

Q; = tan” (%/5) (11.9)
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, 5, F
')ﬂmi :'/Cd;z'l’—a—aga"l- —a—OC,“

Now T. is the value of £t when Y =0 , hence:

Iso.

T = o

W(T)= ¥, e 2 T

Since qg(wv = CY+ Ew? which is an odd function of ¢

the amplitude of oscillation for the undamped system is symmetri-

(11.10)

(I1.11)

(11.12)

(11.13)

cal with respect to V=0 . The soclution for the second interval,

TStET,, W(T)2¥30, 0<¥< «, , is given by the follow-

ing equations where T = t-TT,

7,

W, -2T

¥ = cz‘( . ) € 2 sin wT
wJ,

-

p L,Jm) -t
= W(T
)(w’ e

2z Cos(w.T+SL)

(11.14)

(11.15)

The constants are given by Equations (II.5) through (II.9) on setting

i=1. Now T, isthe value of t when ¥ = O , hence:

g "'.Q—~|

T, =T +

(11.16)



For the third interval, T,<t<T, K «.,>¥:>o0 the solution is

given by the following equations where T = t-T,

UJn ".‘?—‘ ’
Y o=, (w:) €27 cos(w.T-52,) (11.18)
: C (W, e ~ ,
¥ = ‘p"e(""‘wz)e 2T sin w,T (11.19)

the constants being given by Equations (II.5) through (II.10) on set-

ting i = 2. Now T, is the value of t when ¥=0 , hence:

I+Q,
Ty = Tz + o (if.20)
. . _g}(T —T) 4 .
W)= 4, e P (I1.21)
Q= -0 e TR
For the fourth interval, T, <t s T, , {0(1'3) €W € 0, 02V,
the solution is given by the following equations where T=t-T,
R .
v = ocs(a)(*—)-”—’)e’ff sin 0T (11.23)
3
. . wn, e ) .
v = 'Zoo(Tg)(w )e 2’L COS(C&);"L— +_(13) (_;I.Zé)
3

« = a e (T T) (11.17)

(IL.22)
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-t L

The constants are given by Equations (II.5) through (II.9) on set-

ting i = 3. Now T, is the value of t when ¥ = 0 , hence

.o ‘
2 3 .
T; = 7-3 + T {ZI.&ZS)
By (T -
a = a e (") (11. 26)

The solution for the next four intervals is obtained in exactly the
same way as for the first four.
Case II. (Examples lliand IV) (C,D >0 ;F,x.<0 hence g(w=C+DY+F¥"

From Equation (47):
o

P = aaf(c,m-oxa + Fx3)dx
“o
F (11.27)
Pw) = :é- (- o) WP+ bV +c¥ +d)
where
4D
o = Oc°+ B—F'
2 4D 2C
IR S (11.28)
i A e 2C
d o, + 3F a; + = &Ko
Factoring, P@)-= -—g(w—ao)(qy-ﬁo)(w-);)(w_ 5.) where £, .6,

are the roots of the cubic: ¥¥+ bYW +cv¥v-+d = 0
Since the system is stable under the given initial conditions 4.1, 4.
are realand B, < &, <0 < §, < V¥, and the oscillationin ¥ is

in the interval a, < VY s &
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o

dx_ _ 1 dx 11.29
L\/ P00 1/.25 ( N X=X =BUX-E X x-8) ( )
4.
- - _d¢
\F_F_’ o, -3 - 8) | J1-kZsin?d
2 o
23w %} (11. 30)
AT A TR )
2
‘ e (ao = éo}(ﬁo o v
wheve: A 'k, = 5 iI.31
% = sin” k T REEACREA ( )
4} - S,'n-' ac(po“‘so) (EE@ 32)
M ﬂo (ao‘éo‘;
and oA {V{,,‘?o} is the incomplete elliptic integral of the first

kind of amplitude ¢, .

Dy e-vxa-
By FEquation (68): Wy, = 4"/ = Z ' (11.33)
) ;“ { ‘ljo ) ? } :
For the first interval, o0t s T, | eI <O0 the solution is

given by Equations (I1.3) and (II.4); the constants are determined by
Equations (11.7) through (II.10) on setting i = 0, and Equations (II.31)
through (II.33). T and (T.) are cbtained from Equations
(11.11) and (II.12) respectively. Since g(¥)¥  is not an odd func-
tion of o , the amplitude of oscillation of the undamped system

is not symmetrical with respectto ¥v=0 . Hénce for the second

interval o<V < §, where 5, is the lesser of the two positive
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roots of the equation: Y +bVU +cv+d. = 0 =(¥-B)NY-6)Y-V)

B <& <0 <& <Y

— tz(
The quantities b, ,¢,,d, &are obtained by substituting «, = a € zT
for &, in Equations (II.28). Hence for the second interval,

TctsT, , JTI>V¥20, osIg 6, o letting T=t-T,

the solution is given by Kquations (I1.14) and (11.15) where now:

T /- - -
_ z‘\/—zﬁ(at Y.)(ﬁ. é.)

W, = 11, 34)
’ Ky) - F (¥, 4) (
v, 9 are determined from Ecquations (II.31) and (I1.32) upon
replacing o, 3,,%.,8, by o, B,V , 5 respectively and
Equations (II.7) through (I1.10) on setting i = 1 apply. T, is ob-
tained from Equation (II.16) and $, is now given by
- *&(Tz - T«)

5, = 5,€72 (11.35)

For the third interval, T, <t<T, |, §,2v¥>0 , the solution

is givers by Qquatiem (11.18) on replacing «, by 8 and Zgua-
ti%m (iI.19). The constants are obtained on setting i = 2 and replac=-
ing «, with %, in Zquations (};E‘,’?} through (II.10); W, is ob-
tained from Equation (II.34) on replacing «,,B,,Y, ,6., ¥, and 4,
with  «,,8, v:,8,,%, , and 4, respectively, ¥, and 4,

being determined from Equations (II.31) and (II.32) upon replacing

@, ,AB,,Y%, 5 with a,,3,, v, 8, respectively. Ts and

w(T;) are given by Zquations (II.20) and (I1.21).
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For the fourth interval, T, St €T, , ¥(T,) sJ S0 , 03V
the solution is given by Equations (II.23) and (I1.24). «, is the
numerically smaller of the two negative roots of the cubic
Ve byt s s 0 = (W) W-8)0-n)
where by, C; ,d; are obtained from Hquation (II.28) on re-
placing o, by 5,- éze~§(Tﬁ'T;). The constants are éétermiaeé
by setting i = 3 in Zquations (II.7) through (I1.10) and by replacing
A, B, S, Yo with &5, 3, , 85,7, respectively in Zguations
(11.31) through (I1.33). T, and o, are given by Lquaticns
(11.25) and (II.26).

Case III, F=o0 g9 = C+ DY

2

Now - ) P
P = ~2f(cx+ D x2)dx
; 5
= 2R - a)w-8)- 5. (11.36)
3cy [
mee e ) ]
@ 2 N ao*’éi
2D
3CNS o, .37
s eerZp)fi -4 -2 30
a ao+§_c_
X 20

Since the system is stable under the chosen initial conditions,
are real.

Ila. (Zxample V) I C,D>0, B <<0 , § >0 , the solu-
tion is obtained in the same way as in Case II with the exceptions

that: Zguation (I1.33) is replaced by:

. &/ (11.38)
° > {v., 4.}
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Zquation (I1.31) is replaced by: ¥ = sin” Z - “ﬁ" (11.39)
LJ/458(s.-)
and Squation (II.34) is replaced by: (), = 2 3 (11.40)

KA - v, 4}

IIib. (Examples Viand VI[) C>0,0<0 , B,>6,>0 ,%<0

The solution is cobtained in the same way as Case II with the excep-

tions:

o /‘ZD -
- ‘3"’ (Bo ac)

o Ny 4
Zquation (I1.33) is replaced by: Wy, = (11.41)
G LY, 4.}

Equation (II.31) is replaced by woo= syl %e (11.42)
° ﬁ@ - qo

" : . . . -1 -

Eguation (II.32) is replaced by 4 = sin & (11.43)

e )
Equation (II.34) is replaced by w, = < BT (1. 44)
N t 4 - 9,
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APPENDIX I
Zffect of Non-Linear }?iéﬁhiég Moment
Curves on the Determination of Stability
Derivatives from Flight Test Data
One of the technigues used for the delermination of sta-
bility derivatives from flight test data is the émigsis of the
transient response to a step function input in control surface de-
flection. It is customary to assume a linear system. Froma
measurement of the amplitude of the oscillation vs, time, the
logarithmic decrement is determined. The zeros of the oscil-
lation determine the damped natural frequency. The combina-
tion of these two then defines the undamped natural frequency
which to all practical purposes determines the quantity

. 'S¢
Mw = q dCH
I, d«

If the moment curve is 2 non-linear function of the angle
of attack, the "frequency' of the oscillation varies with the ampli-
tude. In this case, the usual procedure of measuring the zeros

of the escillation and averaging them will not deterrnine the value

dCn
d o

of

at the trim position, but some sort of average value.
The comparison of the classical, linearized solution with the nu-

merical integration for the seven examples considered in this
paper clearly indicates that the value of :Co:‘ obtained in the

usual way will not be very meaniagiul if the non-linearity is at all

gevere.
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Alternatively, an attempt to determine the non-linear mo-
ment curve, ;J,séag the approximate solution for the response may
be made. The procedure to be outlined requires that angle of at-
tack, normal acceleration in the pitch plane, and pitch rate be
measured as fatzs:tiaﬁs of time; and assumes, of course, & know-
ledge of Mach number, velocity, and dynamic pressure, in order
that the moment curve may be reduced to coefficient form. In
addition, it is necessary to assume the general shape of the mo~
ment curve. (This is analogous to the assumption of linearity
usually made).

Consider first a moment curve of the form:

- gy = ~(C+ F® ) C,F >0

)

Assume also that the damping function is constant

fw) = 1

From the records of angle of attack vs. time, normal acceleration
vs ., time, and pitch rate vs. time, the damping constant can be de-
termined. The initial amplitude, O, , of the oscillation in angle
of attack is also measured. Designating T, as the first zero of

¥  and using Equation (II.11)

g
=+ Q.
We = T
where )
- -1 Yl/a)
R, = tan (‘A_)a



If the damping is small compared to critical damping, L, may be

datermined as:

o -1

°
U.)no

can then be determinad {rom:

. 1/1‘ %o, (RE)
“ho = 3T, (4T.)+T. e

and W

Na

R,w,, and o, are determined and can be substituled in Equa-

tion (II.5):

g«/F“ﬁ‘FC . '1/—?_;3—
wnazw where Y = Sin m

which determines a relalion between F and €.

Mow the normal accelerometer measures the quantity:

n =w-Ué-gcos,

where 6 is the pitch rate. Hence, from the normal acceleration
and pitch rate records, the quantity:

.on . q
'Y/ *U'+6+—ﬁ-‘cos@.

is determined as a function of time. Designating T, as the {irst
zero of ¥ and proceeding in the same manner as before using now

Equation (II.16) instead of (II.11):

oom | T : (R/2)?
W, = 4(T,-T)) M “/(4'(1'2‘7.)) (Te-T0) * 2
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and a second relation betwzen F and € is determined from the

S P
equations: o - T Fare
K{(y.)
. | Fa?
Y, = SINY 3FaFrIC
o = aerh

Following this same procedure for the subsequent zeros
of the oscillations in ¥ and @ , additional relations between C
and F can be obtained, I C is plotted against ¥, these varicus
c&rvaz—z will intersect each other. Since the equations used tc ob-
tain the relations between C and F are only approximate, it cannot
be expected that all of the curves will intersect in a common point.
However, depending on the accuracy of the data, they should de-
fine a small, closed region in the ¥,C plane, and any point (F,C)
in this region may be used for the approximate values of ¥ and C.

As a second example of the application of the approximate
solution to the dei@rmiﬁatiﬁﬁ of the moment curve, assume the

curve to be of the {orm:

-q@)Y = ~(CY + DV?) c,b>o0

b

and assume that the aampingi iz constant.

From the envelope of the angle of attack vs. time record,
&, and §, are determined as the initial values of the amplitude
on opposite sides of wW=0 . Froceeding as before, using now

i

Equation (I1.38)
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UJ,,O =
- 8‘ {%)Qns}
= - So ~ Ko
Yo = Y se.
-t Xa (69‘ 50)

% : Sln Bo («o" 6o)

Cbserving that P =12§1.7(19-0(,)(10‘,6},)(7,0— 50) = ‘232(293-» 'as—fco wi-a) - 25 al?)

. - Xo S
, . - S8 0% 3¢ _
and comparing coefficients: &4, 5. and 35 = XetB, -6

This determines D and C. Repeating the procedure for the other
zeros of ¥ and o . additional determination of € and D may be
made . ,552{3 average of the different values may then be used as
the correct values of C and D,

Ubviously a similar ;éac@ﬁur% can be used for other as-
sumptions of the moment curve shape,

it is to be emphasized that the above procedure applied to
& non-linear system, since it is based on an approximatie solution,
cannct be expected t{c give resulis as accurate as those cbtained
for a linear system where the exact solution is known. However,
it should yield a more useful result for a non~linear system than
that obtained from an assumption of linearity.

In the application of the proposed method, there are sev-
eral sources of error which are to be guarded against. The first
case discussed, where the moment curve was assumed to be syme-
metric with respect to the origin, applies to the case of 2 sym-
metric missile trimmmed at zero angle of attack. Consequently,

the abscissa of the variocus instrument records is accurately known

(after correction of 6 and W records for effect of gravity, which
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is small). Furthermore, after f is determined, the envelope
can be faired through the peaks of the coscillation and the zerc
should bisect the envelopa., This affords a check. Hence the major
source of error will be in the amplitudes of cscillation. Since the
records from all three instruments will exhibit the same damping,
all three should be used in the determination of n . The determi-
nation.of Y (t) requires the sum of the two instrument readings,
nt) and O(t) ; hence it cannot be expected to be as accurate
as that of V().

The case of a moment curve which is not symmetrical about
the origin arises where a2 symmetrical missile is trimmed at a
finite angle of attack. In this case, the oscillation has éifféreat
amplitudes on the opposite sides from zero. The abscissa of the
oscillations cannot be measured in this case and must be obtained
from an extrapolation back from the steady state following the
transient, This is of course a very inaccurate groc‘:ac’%ure and will
undoubtedly introduce iargeérrers .

An attempt has been made to apply the above method to the
numerical solution of a case with a moment curve of the type
gy = CY+ puy* . Errors of ten percent were assumed in
the measured quantities, and it was found that such errors could
reverse the curvature of the moment curve. Hence it would appear
that in order to determine a non-linear moment curve from flight

test data, extremely accurate instrumentation will be necessary.
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Horizontal
FPlane

Figure 1. Coordinate Sysiem



For iguﬂibrii{:m: Fi = ~Z,cosa +X,5Ina -mg cos (@-a) (a)
X.cos a = mg sin (@ -a) (b)

From eqguation (a): F. = -(Z.H;nq cos ®)cos ox +(X,-mg sin ®) sinx ()

From equation (b):  X.-mgqg sin 8 = mg cos 8 tan « (d)

Combining equations (¢} & {d):

F, = -(Z,+mgcos ®Jcos x + mgcos@® tan o sine (e}
5o . a‘ . 2 a“
Expanding in powers of @« : cosa = I~ 2+ 5 tano sina = e e

Hence, for small values of « , neglecting squares

F = -Z.—Mq cos @, (f)

Figure 2, Forces Acting on Missile Turning in Vertical Plane
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Variation with Altitude and the Standard Atmosphere



[ 3

*1¥ Q0001 = °pnY Terjrul
fOE, PIISSTIN

*quBi[d [eD13I2A Ul DIISSUN Paqan}si(
Jo ssuodsoy ay} uo AjIsus( S]qeIIeA JO 1D9FI0

'y aandry

33 ‘yred g Suory souwistig = A

oo0k?e

Aj1suap juelsud”y

Ajtsusp SIqERIIBRA




°31¥ 000°06 = PPNIYY [eIITU]
“ud PUISSUAL "3ydTd 1®D13I8A UL S{ISSUA Paqanisi(q e
jo ssuodssy 2y uo Lyrsua( sigeraep Jo 1083w ° ¢ aanfig

°31 ‘yjed jydirg Buory edueisiqy = A

[a]
Foom

A1ISUD(T JUBISUD ) = e —

Aytsuac] sigqeiavA




S

» <

s

Figure 6. General Character of Pitching Moment
vs, Angle of Attack for Missile "AY



Figure 7. General Character of Pitching Moment
vs, Angle of Attack for Missile "B
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Attack for Representative
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Numerical Integration
— — — Approximate Solution

e Classical Solution

Figure 16. Phase Space Diagram for Example I
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Numerical Integration
— — —  Approximate Sclution

——————— Classical Solution

Figure 17. Fhase Space Diagram for Example II
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Numerical Integration

— — — Approximate Solution

_______ Classical Sclution

Figure 18. Phase Space Diagram for Example III
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Numerical Integration
— — — Apvroximate Solution

——————— Classical Solution

Figure 19. Phase Space Diagram for Example IV



Numerical Integration

— — — Approximate Sclution

_______ Classical Sclution

Figure 20. Phase Space Diagram for Zxample V



Numerical Integration

— — — Approximate Solution

....... Classical Solution

poed

Figure 21, Phase Space Diagram for Example V
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Numerical Integration

— — — Approximate Solution

——————— Classical Solution

Figure 22. Phase Space Diagram for Example VII
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Separatrix

Figure 23. Trajectories Through Saddle Points
r Undamped System Corresponding to Example III
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Separairix

Figure 24, Trajectories Through Saddle Points
for Undamped System Corresponding to Example IV
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Separatrix

Figure 25. Trajectory Through Saddle Point for
Undamped System Corresponding to Example V
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Separatrix

Figure 26, Trajectory Through Saddle Point for
Undamped System Corresponding to Example VI
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Figure 27. Trajectory Through Saddle Pcint for
Undamped System Corresponding to Example VII
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TAELE 1

Effects of Long Period Cscillation and Gravity on the Character-
istics of the Short Period CUscillation for a Representative Missile

bMach No. .45 1.4¢2
Altitude (ft) 40,000 70,000
Angle of Climb 83° 15°

Three degrees of freedom including gravity

Damping constant .76 12
Circular frequency 4.78 .38

Two degrees of {reedom including gravity

Damping constant .76 .2
Circular frequency £.77 1.38
Two degrees of freedom neglecting gravily

Damping constant <75 12

Circular freguency 4.78 1.38
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TABLE II

Comparison of the Values of the Parameter, p , with the Independent
Variable, z , in the Confluent Hypergeometrie Function, F (7,1;2)

for Two Representative Missiles

Misasile "TAY

Mach No. 1.2 1.5
7 -1400 -174
'z at 35,000 ft 91 81
z at 70,000 ft 9.5 8.5

H
|

M. Ziw
where n oy C °
Co.T

Misgsile B¢
1.2 2.6
-410 -281
36 32

3.8 3.4
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