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ABSTRACT 

The main result of this thesis is a matching between an elliptic curve E over 
F = Q( v'569) which has good reduction everywhere, and a normalized holomorphic 
Hilbert modular eigenform f for F of weight 2 and full level. The curve E is not 
F-isogenous to its Galois conjugate Eu and does not possess potential complex mul­
tiplication. The eigenform f has rational eigenvalues, does not come from the base 
change of an elliptic modular form, and does not satisfy f = f ® t for any quadratic 
character € of F associated to a degree 2 imaginary extension of F. We show that 
a,AE) = ap(f) for a large set ~ of u invariant primes in F. This provides the first 
known non-trivial example of the conjectural Langlands correspondence (see Section 
1.1) in the everywhere unramified case. 

The method we use exploits the isomorphism between the spaces of holomorphic 
Hilbert modular cusp forms and quaternionic cusp forms. The construction of f 
involves explicity constructing a maximal order 0 in the quaternion algebra B/ F 
which is ramified precisely at the infinite primes. We determine the type number T1 

of B as well as the class number H 1 for 0, which equals T1 in our case of interest. 
We found that for Q( v'569), T1 = H 1 = 24. One sees that the space of weight 2 full 
level cusp forms for F has dimension 23. 

The main tools are 8-series attached to ideals and Brandt matrices B( 0 for an 
order in B for quadratic fields Q( fo) with class number 1 and whose fundamental 
unit u has norm -1. ( Q( v'569) is such a field.) The 8-series gives a way to obtain 
representatives of left 0-ideal classes and hence representatives of maximal orders of 
different type. The Heeke action on quaternionic cusp forms is given by the modified 
Brandt matrices B'(e), hence a set of simultaneous eigenvectors for these matrices 
corresponds to the normalized eigenforms for F. 

Applying these algorithms to Q( .;509), we prove that there are exactly three 
normalized eigenforms which have rational eigenvalues for all the Heeke operators. 
We show that for one of these eigenforms f, ap(f) =I ap(fu) for certain primes ~' 
proving that f does not come from base change. We also note that there is another 
elliptic curve E' /Q( v'569) which is isogenous to its Galois conjugate and hence not 
isogenous to either E or Eu. We show that a"'(E') = a"'(f') 'V~ E ~' where f' 
is the third normalized eigenform that we found above. This is compatible with 
the expectation that all three non-isogenous elliptic curves correspond to normalized 
eigenforms with rational eigenvalues. 
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Chapter 1 

Introduction 

1.1 Langlands' Conjecture 

Let m > 1 be a squarefree integer and F = Q( .jm). Let 

and let 

Normalized holomorphic Hilbert modular eigenforms } 
f, of weight 2 and full level, with coefficients in Q 

£={ Elliptic curves E/F, up to F-isogeny, } 
with good reduction everywhere 

Conjecture 1.1 (Langlands) There is a bijection: 

which preserves L-series, that is, iff corresponds toE, then L(f,s) = L(E,s). We 

say that such an elliptic curve is modular. 

The reader who is not familiar with the terms above can refer to the appendices 

where these terms are defined. For an exposition of this conjecture, one can see 

[Rami], Section 6, and the references cited therein. 

1 
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The £-series of an elliptic curve uniquely determines it up to isogeny. In fact, a 

theorem of Faltings states that two elliptic curves E 1 and E 2 are isogenous if and only 

if the local factors L r.> (Et, s) and Lr.>(E2 , s) are equal outside a finite set of primes 'E 

(see Corollary 2 in [Fall). In fact, by the Cebotarev Density Theorem, it suffices to 

take 'E to be any set of Dirichlet density 0. Analogously, by the Strong Multiplicity 

One Theorem, two normalized eigenforms f1 and f2 are equal if and only if the Fourier 

coefficients ar.>(f1) and ap(f2 ) are equal outside a finite set of primes 'E. By [Ram2], it 

even suffices to take 'E to be any set of Dirichlet density less than 1/8. 

Langlands' conjecture is far from being proven, although there are some frag­

mentary results. Given f E 82 , it is known how to obtain a corresponding E E £ 

when one of the following conditions is satisfied: 

1. f is the "base change" of an elliptic modular form ([La]). In this case, 

the corresponding E is F -isogenous to its Galois conjugate E 17
• 

2. f = f ® £, where € is a quadratic character of F corresponding to 

a totally imaginary quadratic extension J( of F. In this case, the 

corresponding E has potential complex multiplication (CM). 

Given E E £which has potential CM, it is also known how to obtain the corresponding 

f E 82 • When neither condition above is fulfilled , no examples are known of this 

correspondence. However, when one considers the natural extension of Conjecture 

1.1 to the case of elliptic curves E and weight 2 eigenforms f of non-trivial conductor, 

one knows how to associate E to f when f is sufficiently ramified at some prime p, 

i.e., the local representation of GL2 (Fp) defined by f is supercuspidal or special (see 

[Ca]). 

We should note that for small m, methods of algebraic geometry can be used 

to determine the dimension of the space of cusp forms, and construct a basis for 

these (see [HvG]) . However, it is difficult to explicitly construct a basis consisting of 
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simultaneous eigenvectors for the Heeke operators using these methods, nor is it easy 

to compute their eigenvalues. As we shall see, it will be necessary to choose a large m 

in order to provide a non-trivial example of Langlands' conjectural correspondence. 

Our method (see below) exploits the correspondence between unramified eigen­

forms of weight 2 and suitable forms on a totally definite quaternion algebra, thereby 

reducing the problem to calculations on certain finite sets. 

1.2 An Approach Using Quaterion Algebras 

Quaternion algebras were used in the following manner in order to study the set 5 2 : 

Denote by n the ring of integers ofF, p a prime ideal of nand F 10 the localization of 

F with respect to p. Let B IF be the unique (up to isomorphism) quaternion algebra 

which is ramified only at the infinite primes of F. This means that the localized 

algebra B 10 = B ®F F10 is isomorphic to the matrix algebra M 2 (Fp) for all the finite 

primes g::>, and over the infinite places OOi, i = 1, 2 ofF, Boo; is the unique division 

quaternion algebra over R. 

Let G = B x. We construct the double coset space: 

X= MG \ G(A~) I G(F) , 

where AF is the nng of adeles of F, A~ the subring of finite adeles, and 

MG = Tip<oo GL2(R10 ) is the maximal compact subgroup of 

X can be canonically identified with a natural set existing in the global algebra 

B. First we give some definitions: An ideal I of B is an 'R-module in B for which 

I ®n F ~ B. An element b E B is integral or is said to be an integer, if R[b] is an 

'R-lattice in B. An order in B is a ring 0 consisting of integers and containing R 
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such that FO = B. A left ideal for an order 0 is an ideal I for which OJ C I. Two 

ideals 11 and 12 are said to be right equivalent if 11 = J2b for some b E Bx. Similarly, 

two orders 0 1 and 0 2 are of the same type if 0 1 = b02 b-1 for some b E Bx. The 

number of right equivalence classes of left 0-ideals is called the class number H 1 of 

0 and the number of type classes of maximal orders of B is called the type number 

T1 of B. Both of these numbers are actually finite (for any order 0) . 

Fact: The set X is canonically identified with the right equivalence classes of 

left 0-ideals where 0 is any maximal order of B. Denote by 

S = {f: X -t C} j { constant functions on X }. 

For convenience, we shall refer to the elements of S as quaternionic cusp forms, though 

this term is not usually restricted to this special infinity type and ramification. For 

details, one can look at the appendices and the references cited there. 

S is also a Heeke module. The action of t he Heeke operator T "' on S, where 

p < CXJ is given by the following: Let 7rp be a uniformizer for R p, and gp E G(A~) 

such that the p-th component of gp is [ 7rO ~ ] , and 1 otherwise. Since GL2 (Rp) is 

open and compact in GL2 (Fp), we can decompose as a finite disjoint union: 

Denote by Rp a complete set of inequivalent representatives of R c:> j1r p · A classical 

result states that we can choose the set {gi} to be 

{ [ 71"0 7 ] I a E Rp} U { [ ~ ~P ] } • 

Define, for f E S, h E G(A~) : 

n 

(Tp(f))(h) = Lf(gih). 
i=l 

One sees that this descends to a well-defined action on S . 
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Let S be the C-vector space of holomorphic Hilbert modular cusp forms f 

of weight 2 and full level. S is a multiplicity free direct sum of simultaneous !­

dimensional Heeke eigenspaces. A similar decomposition holds for S. By Jacquet, 

Langlands and Shimizu (see [GJ], Theorem 8.3), there is a Hecke-equivariant corre­

spondence: 

Thus, we have reduced the problem to computations involving the elements of 

the finite set X! 

The exact manner in which S corresponds to Swill be exploited in this thesis in 

order to construct Brandt matrices B(e) and modified Brandt matrices B'(e), which 

are families of rational matrices indexed by e E R>>O, the totally positive elements 

of R. (see Chapter 8). These are objects that were first defined over Q and later 

used in order to construct cusp forms for congruence subgroups of SL2 (Z). 

Note that the construction of quaternionic cusp forms can be generalized to a 

number field F of even degree n over Q, and B the quaternion algebra over F which 

is the division algebra only at the infinite primes. 
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1.3 Results 

Let F = Q( .J569). The main result of this thesis is a matching 

E~f. 

E is an elliptic curve over F which has good reduction everywhere, is not F-isogenous 

to its Galois conjugate and does not possess potential CM (see Chapter 2). f is a 

weight 2, full level holomorphic eigenform with rational eigenvalues, does not come 

from the base change of an elliptic modular form, and does not satisfy f = f 0 E for 

any quadratic character E of F associated to a degree 2 imaginary extension of F (see 

Chapter 3). (These properties are analogous to those of the elliptic curve E.) We 

prove that 

for a large set :E of O"-invariant primes in F . This lends evidence to Conjecture 

1.1. This also gives the first known non-trivial correspondence in the everywhere 

unramified case. In the future, we plan to prove that the Euler factors of the £-series 

for these two objects are equal for all primes of F. 

By the results of [T] , [Ca], and also of [BR], one knows that there exists an 

irreducible, continuous representation: 

such that tr(D"e(f)(Frob"')) = a "'(f) for all p . For the equality of £ -series, we need to 

show that the traces of Frobenii on D"e(f) coincide with those on D"e(E), the Galois 

representation on Te(E) ®zt Q e, where Te(E) is the Tate module of E. The existing 

method of Faltings and Serre do not apply directly. See Section 10.5 for further 

details. 

Our construction off involves explicity studying the object S of the previous 

section. The key steps are as follows: 
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We first find relations for the quaternion algebra B over Q( v'569) which IS 

ramified only at the infinite primes. We also construct a basis for a maximal order 

in B which is actually valid for any F = Q( .Jm) for which m - 5 mod 8, such as 

m = 509 (see Chapter 4). 

We find an effectively computable formula for the type number T1 of B as well as 

the class number H 1 for the maximal order 0, which equals T1 in our case of interest 

(see Chapter 5). This general formula is applicable also for other real quadratic fields 

when certain conditions are met. We find that for Q( v'569), T1 = H 1 = 24. Thus 

one sees that the space of weight 2 cusp forms for F of full level is of dimension 23. 

We extend the definition of 0-series attached to ideals in an algebra B defined 

over a quadratic fields F with h(F) = 1 and whose fundamental unit u has norm 

-1 , such as Q( v'569) (see Chapter 6) . We develop algorithms to explicitly construct 

this object, which first require us to find a complete set of representatives of right 

equivalence classes of left 0-ideals. (see Chapter 7). The 0-series give us a way to 

obtain such representatives. Once these are found, the right orders of these ideals are 

automatically representatives of maximal orders belonging to different type classes. 

For fields satisfying the properties in the previous paragraph, we also define 

Brandt matrices B(e) and modified Brandt matrices B'(O for an order in B (see 

Chapter 8). We show that the Heeke action on S is given by the B'(e) , hence a 

set of simultaneous eigenvectors for these matrices corresponds to the normalized 

eigenforms in S2 • In other words, an eigenvector v corresponds to an eigenform f 

such that the eigenvalue of v with respect to B'(n') equals the eigenvalue off with 

respect to the p-th Heeke operator, where p = ('1r) and 1r E R >>O· This completes 

the algorithm to find f . 

In Chapter 9, we apply these algorithms to F = Q( v'509) in order to construct 

quaternionic cusp forms for F. We show that there are exactly three one-dimensional 

simultaneous eigenspaces < v 1 >, < v 2 >and < v 3 >which have rational eigenvalues 



CHAPTER 1. INTRODUCTION 8 

for the modified Brandt matrices B'(O for all e E F>>O· In fact, the generators Vi, i = 

1 ... 3, can be chosen to have integer entries. We also compute the corresponding 

eigenvalues of these spaces for a large set E of primes in F. 

In Chapter 10, we complete the proofs of our main result. We show that the 

eigenform f corresponding to v 1 satisfies a"'(f) =/:- a"'(fO') for certain primes tJ, where 

a is the nontrivial automorphism of F. This proves that f is not the base change 

of an elliptic modular form. In this regard, we note that there is another elliptic 

curve E' / Q( .J509) which has good reduction everywhere, is isogenous to its Galois 

conjugate and hence not isogenous to either E or EO'. We found that a"'(E') = a "'(f') 

for the same set of primes E, where the eigenform f' corresponds to v 3 . It is observed 

that ap(f') = ap(f'O'). This is indeed as expected. 

Notation. We shall denote by m a positive squarefree integer, F = Q( Vffi), 

and R the ring of integers of F . If m = 1 mod 4, we let () = l+r, so R = Z[O] . 

For any number field :F, we denote by h(:F) the order of its ideal class group Cl(:F), 

and h+(:F) the order of the narrow class group Cl+(:F) (i.e., the group of fractional 

ideals modulo the subgroup of principal ideals with a totally positive generator). We 

shall fix an algebraic closure Q which will contain all the number fields that we will 

consider. Results which begin with a letter refer to a statement in the Appendix (i .e., 

Proposition D.4 is found in Appendix D). 



Chapter 2 

The Interesting Elliptic Curve 

In this chapter, we show that there is at least one totally real quadratic field where we 

can find an elliptic curve which does not fall in either of the two categories in Section 

1.1. T he following elliptic curve is in a table found in R.G.E. Pinch's thesis ([Pin]) , 

among other curves which have good reduction everywhere over certain quadratic 

fields. We show below that E is not F -isogenous to its Galois conjugate. This is 

also noted (without proof) in [Cr] , where one also finds a Weierstrass equation for 

an elliptic curve E' which is F-isogenous to its Galois conjugate. We shall see this 

equation for E' in t he last chapter. 

Theorem 2.1 Let F = Q( .J509) and () = 1±f09. There exists an elliptic curve E 

defined over F such that: 

1. E has good reduction everywhere, 

2. E is not isogenous over F to its Galois conjugate, and 

3. E does not possess potential complex multiplication. 

A minimal Weierstrass equation forE is given by: 

E : y2 
- xy- ()y = x 3 + (2 + 20)x2 + (162 + 30)x + 71 + 340 

9 
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Proof. We shall use the notation in Appendix B.2. Using the relation ()2 = 0 + 127, 

the associated values for E are: 

b2 - ai + 4a2 

- ( -1)2 + 4(2 + 20) 

- 9 + 80 

b4 - 2a4 + ata3 

= 2(162 + 30) + ( -1)( -0) 

- 324 + 70 

b6 - a~+ 4a6 

- ( -0)2 + 4(71 + 340) 

- 0 + 127 + 284 + 1360 

411 + 1370 

bs - 2 4 2 2 at a6 + a2a6 - at a3a4 + a2a3 - a4 

- ( -1)2 (71 + 340) + 4(2 + 20)(71 + 340) - ( -1)( -0)(162 + 30) + 

(2 + 20)( - 0)2 
- (162 + 30)2 

- (71 + 340) + 4(142 + 2100 + 68(0 + 127))- (1620 + 3(0 + 127)) + 

(2 + 20)(0 + 127)- (26244 + 9720 + 9(0 + 127)) 

- (71 + 340) + 4(8778 + 2780) - (381 + 1650) + 

(20 + 254 + 2540 + 202
) - (27387 + 9810) 

- 7669 + 2560 + 2( o + 127) 

- 7923 + 2580 

.6. - -b~b8 - 8b~ - 27b~ + 9b2b4b6 

- -(9 + 80)2(7923 + 2580) - 8(324 + 70)3 - 27( 411 + 1370? 

+9(9 + 80)(324 + 70)(411 + 1370) 

- -(81 + 1440 + 6402)(7923 + 2580) 

- 8(104976 + 45360 + 4902 )(324 + 70) 
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-27(168921 + 1126140 + 1876902
) 

+9(2916 + 630 + 25920 + 5602
)( 411 + 1370) 

-(8209 + 2080)(7923 + 2580)- 8(104976 + 45360 + 490 + 6223)(324 + 70) 

-27(168921 + 1126140 + 187690 + 2383663) 

+9(2916 + 26550 + 560 + 7112)( 411 + 1370) 

-(65039907 + 16479840 + 21179220 + 5366402
) 

-8(111199 + 45850)(324 + 70)- 27(2552584 + 1313830) 

+9(10028 + 27110)( 411 + 1370) 

- -(65039907 + 37659060 + 536640 + 6815328) 

-8(36028476 + 14855400 + 7783930 + 3209502
) 

-27(2552584 + 1313830) + 9( 412150813738360 + 11142210 + 37140702
) 

- (71855235 + 38195700)- 8(36028476 + 22639330 + 320950 + 4076065) 

-27(2552584 + 1313830) + 9( 4121508 + 24880570 + 3714070 + 47168689) 

- -(71855235 + 38195700)- 8( 40104541 + 22960280) 

-27(2552584 + 1313830) + 9(51290197 + 28594640) 

- 442+410 

Here, ..6. = u , the fundamental unit of F, with N(u) = -1. Thus, the equation 

given for E is indeed minimal, and since the discriminant is a unit in R, E has good 

reduction everywhere. 
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Next we show that E is not isogenous to Ea. Suppose not. Then the local 

factors of the L-series of E and Ea will be the same for all the primes (see Section 

B.9). However, we will presently show that for either of the prime ideals p I (5), 

the reductions E and lfa do not have the same number of points in the residue 

field R/ p ~ Z/5. This contradicts the equality of the local factors. Note that 

509 = 4 = 22 mod 5, so we choose p = (5, 2 + v'509) = (5, 1 + 2fJ) . Now, by 

Proposition E.5, fJ = 521 (2- 1) = 2 mod p, so we have: 

a1 -1 4 mod p 
a3 - -fJ -2 3 
a2 2 + 2() - 2 +2. 2 1 
a4 162 + 3() 2 + 3. 2 3 
a6 71 + 34fJ 1 + 4 . 2 - 4 

hence the reduced curve is: 

E/(Z/5) : y2 + 4xy + 3y = x3 + x2 + 3x + 4 

To find the number of affine points on the reduced curve, we simply let x = X 0 = 
0 ... 4 to obtain polynomials J(y) = y2 + by + c = 0. We compute the discriminant 

disc(!) = b2 + c mod 5. The number of affine points with x-coordinate X 0 is two if 

disc(!) is 1 or 4 (the squares of (Z/5)x), one if disc(!) is 0, and zero if disc(!) is 2 

or 3. We tabulate these values below: 

II Xo J(y) I disc(!) I # points ( Xo, y) II 
0 y2 + 3y + 1 0 1 
1 y2 + 2y + 1 0 1 
2 y2 + y + 3 4 2 
3 y2 + 1 4 2 
4 y2 + 4y + 4 0 1 

Hence there are 7 finite points in E /(Z/5). 
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Similarly, for .Eu /(Z /5) we obtain the following coefficients: 

au 
1 -1 - 4 mod p 

au 
3 -1+0 4+2 1 

au 4 - 20 - 4-2.2 - 0 2 
au 

4 165-30 - 2·2 - 4 
au 

6 - 105 - 340 - 1 · 2 - 2 

hence the reduced curve is: 

Applying the same procedure above to find the number of affine points on this curve, 

we get: 

II Xo J(y) I disc(!) I # points ( Xo, y) II 
0 y2 + y + 3 4 2 
1 y2 + 3 3 0 
2 y2 + 4y + 2 3 0 
3 y 2 + 3y + 4 3 0 
4 y 2 + 2y + 3 2 0 

Hence there are only 2 finite points m .Eu /(Z/5), and we conclude that E is not 

isogenous to Eu. 

Though it is not needed in the proof of Theorem 2.1, we can use the same 

method above in order to compute the number of points in the reduced curve for 

various primes of F. We include both inert primes and split primes. As expected, the 

number of points on the reduced curves is the same for both E and Eu at inert primes, 

since cr gives a bijection of these points . For split primes p I (p), we counted points 

on the reduced curves only for one of the primes p, and included the squareroot of m 

modulo p in the indicated column. The entries in the column for E and Eu exchange 

values for pu . Using a computer to do the calculations, we obtain the following table: 
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Table 2.1. Cardinality of Reduced Curves for E and E 17 

II p ylmmodp* 

3 13 13 
5 2 2 7 
7 55 55 
11 5 8 13 
13 168 168 
17 4 20 15 
19 373 373 
23 7 22 27 
29 4 29 19 
31 979 979 
37 18 40 30 
41 1699 1699 
43 6 47 42 
47 2165 2165 
53 2828 2828 
59 3503 3503 
61 3724 3724 
67 24 59 74 
71 15 64 59 
73 12 69 69 
79 6273 6273 
83 29 74 69 
89 8 83 93 
97 11 110 90 
101 2 111 106 
103 32 89 94 
107 9 95 110 
109 20 115 115 
113 31 107 102 
127 1 145 120 
131 17079 17079 
137 57 125 135 
139 19563 19563 
149 22343 22343 

* this column is blank if p is inert in F 
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To finish the proof of Theorem 2.1, it remains to show that E does not possess 

potential CM. We first remark that the h+(F) = 1. Our conclusion about E is now 

a consequence of the following: 

Proposition 2.2 Let :F a totally real number field which satisfies h+(:F) = 1. Let 

E I :F be an elliptic curve which has good reduction everywhere. Then E does not 

possess any potential complex multiplication. 

Proof. Suppose E(C) has CM defined over the field Q( y'n), where n < 0. 

Consider the field J( = :F( y'n). Then E and its complex multiplications are defined 

over K. Consider the f-adic representation defined by the Tate module of E I J(: 

where H = Gal(QI K). We construct another representation: 

(T~P] : H --t GL2(Qt) 
T --t CTt(PT p-1

) 

where Aut(KI :F) = {1, p }. Now, since E is actually defined over :F, CTf extends to a 

representation 

where G = Gal(QI:F). However, we note that 

Since E has CM over K, the representation CTe is abelian (see [Si), p. 109), 

so CT£ = xe EB x£ for some Galois characters xe, x~ of H. It can easily be seen from 

such a decomposition that, in the obvious notation, CTyl = xY1 EB x~[pJ as well. Now, 

Xt corresponds to a weight 1 grossencharacter 'ljJ of J(, and Xe = X~P] if and only 

if 'lj;(z) = 'lj;(z) for all z E /(~ = C*. But 'l/J(z) = z-1 and 'lj;(z) = :zt, hence 
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l/J(z) =/= l/J(z), so Xe =/= xY'1. Thus X~= xY'1, and so ae = Xe EB xY'1, hence ife = lnd~(xe). 
Since the degree of xe is 1, we get the formula for the conductor of ife: 

cond(ae) = N§(cond(xe)) I disc(K/F) I 

(see [Mar]). Recall, though, that E has good reduction everywhere, so every ife is 

unramified at all the finite primes. Since ife is ramified at all the primes which divide 

cond(ae), we see that disc(K/F) must be the unit ideal. Thus J( is a finite abelian 

extension ofF where every finite prime ofF is unramified, so J( has to be contained 

in the Hilbert+ Class Field H+ of F. But H+ has degree h+(F) = 1 over F, so F is 

its own Hilbert+ Class Field. This is impossible, since n < 0. • 



Chapter 3 

The Interesting Eigenform 

In this chapter, we state the existence of a holomorphic Hilbert modular cusp form f 

over F of weight 2 and full level which has properties that are analogous to those of 

the elliptic curve E that we found in the previous chapter. We shall show in a later 

chapter that the eigenvalues ap(f) are equal to the coefficients ap(E) for that elliptic 

curve, for a large set ~ of finite primes p. This lends evidence to the expectation that 

f is modular, and corresponds to E under Langlands' correspondence. 

Theorem 3.1 Let F = Q( .J509). There is a holomorphic Hilbert modular cusp form 

f over F of weight 2 and full level such that: 

1. f is an eigenvector for all the Heeke operators TP , and all of its eigen­

values are rational, 

2. f does not come from the base change of an elliptic modular form, and 

3. f =j; f ® E fo r any quadratic character E of F corresponding to some 

quadratic imaginary extension ]{ of F . 

Parts (1) and (2) of this Theorem will be proved in Section 10.3. Part (3) is a 

consequence of the following: 

17 
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Proposition 3.2 Let f be a holomorphic newform of weight 2 and level N for F, a 

totally real quadratic field. Suppose h+(F) = 1. Then f ;j: f 0 € for any quadratic 

character t: ofF corresponding to some quadratic imaginary extension]( of F. 

Proof. Suppose that for some quadratic imaginary extension ]( ofF we have 

f = f 0 t:. The holomorphic eigenform f corresponds to a vector f and a cuspidal 

representation (7!', V1r ) of GL2 (AF) which is trivial at the infinite primes such that the 

representation space v1r of 7l' ~ 0~ 7l' tJ is: 

where < · > means "span of." The condition f = f 0 t: means that 7l' ~ 7l' 0 ( t: o det) . 

By a theorem of Labesse and Langlands ([LL]), we have an equality of L-series: 

L( 7l', s) = L(x, s) 

for some grossencharacter X of the quadratic extension K . (Note that these two L­

series are defined over different fields. This equality means that for any place v ofF, 

the v-th Euler factor L(1l'v,s) equals flwiv L(xw, s ).) Moreover, it is known that the 

conductor of 7!' (cf. [Cas] and [Ge], pp. 73 and 89) in this case is given by: 

cond(7l') = IJ cond(?l'v) = N{f (cond(x)) I disc(K/ F) I 

Recall that since f is of full level, 7l' must be unramified at all the finite primes of F . 

Thus, cond(?l') must be the unit ideal, hence, as in Theorem 2.1, we must have ]( 

contained in the Hilbert+ Class Field ofF, which is impossible since h+(F) = 1 and 

F is totally real. • 



Chapter 4 

The Algebra B and A Maximal 
Order 0 

From this chapter to Chapter 8, we shall be concerned with developing the theoretical 

background necessary in order to construct the eigenform f by using the function space 

S defined in Chapter 1. This will enable us to perform the necessary calculations for 

the field Q( v'509). 

In this chapter, we obtain defining relations for B , the positive definite quater­

nion algebra which is unramified at all finite primes, over fields Q( fo) with m =j. 

1 mod 8, regardless of class number. We also find that in this same algebra, we can 

find a basis for a maximal order 0 which is expressible in terms of() and the generators 

i, j, and k = ij, when m- 5 mod 8. This includes Q( v'509) . 

By the Local-Global Correspondence in Appendix D, the set of left ideal classes 

of 0 is in bijection with the set consisting of the Oxi, where Xi E X and X is the 

finite set described in Chapter 1. Here, O xi means that ideal J of B such that 

J p = O pxi,p , where Xi = (xi,p)p<=· The ideal J exists precisely because of the 

Local-Global Correspondence. Thus, in principle, one can find a complete set of 

representatives of left 0 -ideal classes given a basis for 0. 

19 
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4.1 The Algebra 

Theorem 4.1 Let m :f=. 1 mod 8 be a positive squarefree integer, F = Q( ..jm). Then 

B = (-1,-1) 

is the unique quaternion algebra defined over F with Ram(B) = { oo11 oo2}. 

Proof. Recall that the notation B =(a, b) means that B has basis {1, i,j, ij} over F, 

where i 2 =a, P =band ij = -ji. It is clear that B = (-1,-1) is positive definite. 

We shall show that over every finite prime, B is locally the matrix algebra. Let B' 

be the quaternion algebra over Q given by B' = ( -1 , -1). Then B = B' ® Q F. The 

isomorphism type of B~ = B' ®Q Q p is determined by the Hilbert symbol ( - 1, -1) in 

the respective QP (see Appendix D.4). But a simple calculation [Sel , Chapter III.1.2] 

shows that ( - 1, -1) = 1 if p =/= 2 and ( -1 , -1) = -1 for p = 2. Since ( - 1, -1) is 

clearly positive definite, we see that Ram(B') = { oo, 2}. Hence for any prime tJ of F 

which does not divide 2, 

Now, if m = 2 or 3 mod 4, 2 is ramified in F, and if m = 5 mod 8, 2 is inert in 

F. So if m :f=. 1 mod 8, there is only one prime tJ lying over 2. Since Ram(B) has 

even cardinality and already contains the two infinite primes, we see that B is also 

unramified over the prime dividing 2. • 
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4.2 The Maximal Order 

When m = 5 mod 8, the algebra B contains a canonical maximal order: 

Theorem 4.2 Let m- 5 mod 8, F, R and() as usual, B = ( -1, -1). Let 

O _ R [ 1 + i + j + k i + ()j + (1 + ())k . k] 
- 2 ' 2 '], . 

Then 0 is a maximal order of B (regardless of m!). 

Proof. In the following computations, we let 

c - 1 + i + j + k c - i + ()j + (1 + ())k 
01 -

2 1 02-
2 

• 

First we prove that 0 is an order. Obviously 0 is a full lattice in B. Next, we show 

that Hurwitz's quaternions 

1{ = z [ 811 i' j' k l 

is a ring with Z C 1{ C 0. Easily, 1 = 281 - i- j- k E 1i, so Z C 1i. To show that 

1{ C 0, we only have to prove that i E 0: 

z i + (()- ())j + (1 + ()- (1 + ()))k 

2 ( i + Oj +}1 + ())k) - ()j - (1 + O)k 

282 - ()j - (1 + ())k E 0 

We show that 1{ is closed under multiplication. Since -1, i, j and k are in 1i, 

we just have to show that products involving 81 are in 1-l: 
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c5i ( 1 + i + j + k) ( 1 + i + j + k) 14 

c5t i 

ic51 

c51j 

j c51 

- ((1 + i+j + k)+(i + i2 +ji+ki) + 

= 

-

-

= 

= 

-

-

= 

-

= 

= 

-

-

-

-

-

-

(j + ij + j 2 + kj) + (k + ik + jk + k2))/4 

((1 + i + j + k) + (i - 1 - k + j) + (j + k- 1- i) + (k- j + i- 1))/4 

( -2 + 2i + 2j + 2k)/4 = ( - 1 + i + j + k)/2 
1 +i+j+k 

-1 + 2 

- 1 + 81 E 1-l 

( 1 + i~j + k ) i 

(i + i2 + ji + ki)/2 = (i - 1- k + j)/2 = ( -1 + i + j- k)/2 
-1- i - j - k . . 

2 +z+J 

-81 + i + j E 1-l 

i (1 +i~j+k) 

(i + i2 + ij + ik)/2 = (i- 1 + k - j)/2 = ( -1 + i - j + k)/2 
- 1-i - j - k+i + k 

2 

-81 + i + k E 1-l 

( 1 + i~j+k)j 

(j + ij + j 2 + kj)/2 = (j + k- 1- i)/2 = ( -1- i + j + k)/2 
-1-i - j - k 

2 +j + k 

-81 + j + k E 1-l 

j (1+ i~j+k ) 

(j + ji + j 2 + jk)/ 2 = (j- k- 1 + i)/ 2 = ( -1 + i + j - k)/2 
-1-i - j-k . . 

2 +z + J 

- -81 + i + j E 1-l 

c51 k = ( 1 + i ~ j + k ) k 

= (k + ik + jk + k2 )/2 = (k - j + i- 1)/2 = ( -1 + i - j + k)/2 

22 
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-1- i- j- k 
2 + i + k 

-81 + i + k E H 

k81 k ( 1 + i ~ j + k) 

(k + ki + kj + k2)/2 = (k + j- i- 1)/2 = ( -1- i + j + k)/2 

(-1- i + (-1 + 2)j + (-1 + 2)k)2 

(
1+i+j+k) . k - +J +. 

2 

-81 + j + k 

23 

Next we show that 0 is a ring, i.e., the product of 82 and any basis element 

is expressible as an R-linear combination of basis elements. The computations are 

more confusing than that for H , so we show all the intermediate steps. The factor on 

the right of the first product is always expanded first. The product is then brought 

to t he form t1 + t 2i + t3j + t4k. We often put all these under a common denominator 

of either 1 or 2. We then bring it to a quaternion which is in H or of the form 

8181 + 8282 + 8 3 j + 8 4 k. To do the second, we must solve : 

t1 - 8t/2 

t2 8t/2 + 82/2 

t3 8t/2 + 828/2 + 83 

t4 8t/2 + 82(1 + 0)/2 + 84 

We have tried to show this in a natural manner by expanding the ti's in terms of the 

8i's. One notes that for some products, it is imperative that m = 5 mod 8 in order 

for the final expression to have coefficients in R. The actual derivations now follow: 

8~ - nr(82) 

-(1 + 02 + (1 + o?)/4 

- (1 + 02 + 1 + 20 + 02)/4 

-(1 + 0 + 02 )/2 
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1 + 0 + 0 + m-1 
4 -

2 

- _ 0 _ (m; 3) 
8182 - (1 + i + j + k)(i + Oj + (1 + O)k)/4 

- ((i + i2 + ji + ki) + O(j + ij + j 2 + kj) + (1 + O)(k + ik + jk + k2))/4 

- ((i- 1- k + j) + O(j + k- 1- i) + (1 + O)(k- j + i- 1))/4 

- (( -1- 0- 1- 0) + (1- 0 + 1 + O)i + 

(1 + 0- 1- O)j + ( -1 + 0 + 1 + O)k)/4 

- ( -2(1 + 0) + 2i + 20k ))/4 

- ( -(1 + 0) + i + Ok))/2 

- (-(1 + 0) + (-(1 + 0) + (2 + O))i + 

( -(1 + 0) + (2 + 0)0 + ((1 + 0) - (2 + O)O))j + 

(-(1 + 0) + (2 + 0)(1 + 0) + (1 + 20- (2 + 0)(1 + O))k)/2 

= - (1 + 0) (1 + i: j + k) + (2 + 0) c + Oj +2(1 + O)k) + 

4 J + 4 k ( 1 + 0 - 20 - 0- m- 1) . ( 1 + 20- 2- 0- 20 - 0 - m- 1) 
2 2 

- (m- 5 ) . (m + 3 ) - (1+0)81+(2+0)82 - -8-+0 y- -8-+0 k 

8281 
( i + Oj + (1 + O)k )(1 + i + j + k) 

-
4 

- (i + Oj + (1 + O)k + (i2 + Oji + (1 + O)ki) + (ij + Oj2 + (1 + O)kj) 

+(ik + Ojk + (1 + O)k2)/4 

- (i + Oj + (1 + O)k + ( -1 - Ok + (1 + O)j) + (k- 0- (1 + O)i) + 

( -j + Oi- (1 + 0))/4 

- (( -2- 20) + 20j + 2k)/4 

- (-(1 + 0) + Oj + k)/2 

- (-(1 + 0) + (-(1 + 0) + (1 + O))i + 

(-(1 + 0) + (1 + 0)0- (- 1- 20 + (1 + O)O)j + 
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( - (1 + 0) + (1 + 0)(1 + 0)- (( -2- 0) + (1 + 0)(1 + O)))k)/2 

- - (1 + O) (1 + i ~ j + k) + (1 + O) c + Oj +
2
(1 + O)k) _ 

( -1 ~ m~l) j _ ( -1 + 2~ + m~l) k 

- (m-5) (m-5 ) -(1 +0)81 + (1 +0)82- -8- j- 8 +0 k 

82j -
( i + 0 j + 2 ( 1 + 0) k) j 

= (ij + Oj 2 + (1 + O)kj)/2 = (k- 0- (1 + O)i)/2 = ( -0 + ( -1- O)i + k)/2 

- ( -0 + ( -0- 1)i + ( -0-0 + 20)j + ( -0- (1 + 0) + 2 + 20)k)/2 

- - O (1 + i ~ j + k) _ c + Oj +
2
(1 + O)k) + Oj + (1 + O)k 

- -081 - 82 + Oj + (1 + O)k 

j82 - j c + Oj +
2
(1 + O)k) 

- (ji + Oj2 + (1 + O)jk)/2 = (-k- 0 + (1 + O)i)/2 = (-0 + (1 + O)i- k)/2 

- ( -0 + ( -0 + 1 + 20)i + ( -0 + (1 + 20)0- ( -0 + (1 + 20)0))j + 

( -0 + (1 + 20)((1 + 0)- ( -0 + (1 + 20)(1 + 0)- 1)k)/2 

= - O (1 + i ~ j + k) + (1 + 20) c + Oj +
2
(1 + O)k) + ( -0 + ~ + 20

2
) j 

- ( -0 + 1 + 3: + 20
2 

- 1 ) k 

- - 081 + (1 + 20)82 + 02j- (0 + 02)k 

82k - c + Oj +}1 + O)k) k 

- (ik + Oj k + (1 + O)k2)/2 = ( -j + Oi- (1 + 0))/2 = ( -(1 + 0) + Oi - j)/2 

- ( -(1 + 0) + ( -(1 + 0) + 1 + 20)i + 

(-(1 + 0) + (1 + 20)0- (- 0 + (1 + 20)0))j + 

( -(1 + 0) + (1 + 20)(1 + 0) + ((1 + 0) - (1 + 20)(1 + O)))k/2 

- -(1+0) c+i~j+k) +(1+20) c+0j+}1+0)k) +02j-(0+02)k 

- - (1 + 8)81 + (1 + 20)82 + (m ~ 1 
+ 0) j- (m ~ 1 

+ 20) k 
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k82 k c + Oj +2(1 + O)k) 

= (ki + Okj + (1 + O)k2)/2 = (j- Oi- (1 + 0))/2 = ( -(1 + 0)- Oi + j)/2 

_ ( -(1 + o) + ( -(1 + O) + 1)i + ( -(1 + o) + o + 2)j + 

( -(1 + 0) + (1 + 0)- ( -(1 + 0) + (1 + O))k)/2 

-( O) (1 + i + j + k) (i + Oj + (1 + O)k) . 
- 1 + 2 + 2 +J 

- (1 +0)81 +82+j 

Next, we show that every element of 0 is integral. Let 

r1 E R 

nr(a) (r1 r1 + r2 . r1 + Or2 + 2r3 . r1 + (1 + O)r2 + 2r4 k) 
nr 2 + 2 z + 2 J + 2 

r~ r~ + 2r1r2 + r~ r~ + 02 r~ + 4r5 + 20r1r2 + 4rlr3 + 40r2r3 
4+ 4 + 4 + 
r~ + (1 + 0)2ri + 4r~ 2(1 + O)r1r2 + 4rlr4 + 4(1 + O)r2r4 

4 + 4 

4r~ + (1 + 02 + (1 + 0) 2 )r~ + 4rj + 4r~ + 
4 

(2 + 20 + 2(1 + O))r1r2 + 4rtr3 + 4rlr4 + 40r2r3 + 4(1 + O)r2r4 
4 

2 ( 1 + 02 + 1 + 20 + 0
2 

) 2 2 2 
rl + 4 r2 + r3 + r4 + 

(1 + O)r1r2 + r1r3 + r1r4 + Or2r3 + (1 + O)r2r4 

2 ( 1 + o + 0
2
) 2 2 2 rl + 2 r2 + r3 + r 4 + 

(1 + O)r1 r2 + r1r3 + r1r4 + Or2r3 + (1 + O)r2r4 E R, since 

1 + 0 + 02 - 1 + 0 + m~l + 0 = _m_+_3 + 0, and m = 5 mod 8. 
2 2 8 

26 
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Finally we show that 0 is maximal. From the products we have computed 

above, we can easily compute the trace of the product of two basis elements. Thus: 

-1 -(1 + 0) -1 -1 

disc(O) n -(1 + 0) -20- (~) -0 -(1 + 0) 
-1 -0 -2 0 
-1 -(1 + 0) 0 -2 

-1 -(1 + 0) -1 -1 

n -(1 + 0) -20- (~) -0 -(1 + 0) 
= 

-1 -0 -2 0 
0 0 1 -1 

-1 -(1 + 0) -2 -1 

= n -(1 + 0) -20- (~) -(1 + 20) -(1 + 0) 
-1 -0 -2 0 
0 0 0 -1 

1 1+0 2 
n 1+0 20 + (mr) 1 + 20 

1 0 2 

1 1+0 0 

n 1+0 20+ (~) -1 
1 o 0 

nl ~ 1 ;01 

n 

so 0 is indeed a maximal order (see Section D.5) . • 



CHAPTER 4. THE ALGEBRA B AND A MAXIMAL ORDER 0 28 

4.3 Discovering the Order 

The order 0 was discovered using the following reasoning: It is well known that 1i is 

a maximal order in B' = ( -1, -1) over Q, and disc(H) = 4Z. Now, 1i 0 z R is still 

an order in B = B' 0 Q F, but it is no longer maximal, since its discriminant is 4R. 

Suppose we assume that h( Q( y'ffi)) = 1. Then 1i is contained in a maximal order 0 

which has a basis, say 0 = R[ell . .. , e4]. Then the transition matrix A, where 

must have determinant 2. Hence, modulo an element of GL4 (R), A must be one of 

the following matrices in Hermite normal form (see [N] for the definition): 

[

2 x Y zl [1 0 0 0] [1 0 0 0] [1 0 0 0] 0100 02xy 0100 0100 
0 0 1 0 ' 0 0 1 0 ' 0 0 2 x ' or 0 0 1 0 · 
0001 0001 0001 0002 

Here, x, y, z E {0, 1, B, 1 + 0}, a set of representatives for R/(2) . The inverses of the 

matrices above are the same as the matrices themselves, except the non-trivial row 

is [t - ~ - ~ -~],etc. The entries of A should ensure that the ei are integers in B , 

i.e., their norms and traces are in R. This eliminates the first and last choices, since 

t81 + ... has trace 1/2, and tk has norm 1/4. The norm of e3 for the third choice 

is l-J;t, and this is never in R for any of the choices for x above. This leaves only 

the second choice, with { x, y} = { (), 1 + B} as possible solutions that would make e2 

an integer when m = 5 mod 8. Theorem 4.2 shows that the choices for x and y that 

we made makes this order always maximal, and in fact the initial assumption that 

Q( .Jffi) has class group order 1 is unnecessary. 



Chapter 5 

Computing T and H 

5.1 A Formula for T and H 

As the next step in finding a complete set of representatives of left 0-ideal equivalence 

classes in the quaternion algebra B = ( -1, -1) over Q( v'509), we shall derive a 

formula for the type number T = T1 and class number H = H 1 , which we shall 

show to be equal to T in our case of interest. In our terminology, H is simply the 

cardinality of the set X defined in Chapter 1. It turns out that aside from being able 

to computeT and Hover this field, we can do it for other values of m, when m and 

F = Q( -Jffi) satisfy certain conditions. 

The most important tool will be the main theorem in ([Pi1]). In it , Selberg's 

Trace Formula is used to construct an algorithm that determines the type number 

T9192 for an arbitrary algebra B over a number field when the product q1q2 is square­

free, i.e., the non-maximal localizations are of prime level (see Appendix D.6 for the 

definition of these terms). Using this, it is possible to get a simple formula for the 

type numbers when B is defined over Q. Unfortunately, the algorithm does not give 

such an effectively computable formula for all quadratic fields, but we discovered that 

under special conditions, such a formula can be derived from this theorem. 

29 
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Theorem 5.1 (Pizer) Let :F be a totally real number field of degree n over Q, S 

the ring of integers of :F. Let B be a positive definite quaternion algebra over :F. Let 

q1 be the product of the finite primes of :F which ramify in B and let q2 be a finite 

product of distinct finite primes of :F such that ( q1 , q2) = 1. Then the type number 

Tq1 q2 of Eichler orders of level q1q2 in B is 

• e is the number of primes dividing q1q2 . 

• M is Eichler's Mass and is given by 

where (:F is the zeta function of :F. 

• h(Sa) is the ideal class number of locally principal S a-fractional ideals 

(see Note (1) below). 

• w(Sa) is the index of the group of units of S in the group of units of 

Sa. 

• C is the collection of all orders defined by the following procedure: 

1. let e1 , .•. , e5 be a complete set of representatives of U mod U2 , 

where U are the units of S j 

2. let d1 , ..• , dk be a complete set of integral ideal representatives of 

E · Fr(:F)2 mod (Pr(:F)) where E is the subgroup of Fr(:F) (the 

divisor group of :F) generated by all the p which divide q1q2 , and 

Pr(:F) is the subgroup of principal divisors of Fr(:F). 

3. let n 1 , . . . , nt be a set of all elements of S such that 

(5.1) 
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Notes: 

(a) (nj) = dj' for some j', 1 ~ j' ~ k 

4. consider the collection of all polynomials overS of the form 

(a) fp, ,e;r(x) is irreducible over :F. 

{b) :F[x]/ fp,,e ,-r(x) cannot be embedded in any :Foo,, i 

{the real completions of :F); 

1, ... ,n 

(c) for all p < oo, p8~=> I r, where s"' = l ~ J, where L·J is the 

floor or truncate function. 

5. let a be a root of some fp,,e,.,.(x) given above and for each fp,,e,.,.(x) 

choose only one root. Then C = {Sa I Sa is an order of :F( a)} 

such that 

(a) S[a] C Sa 

(b) zf V1 < oo then aJr-sP E S where s = lvp(N(a))J ov J p a,p, p 2 

1. It will turn out that the Sa are the ring of integers of the respective 

:F(a), so the term "ideal class number of locally principal Sa-fractional 

ideals" simply means "the class group order of :F( a)" in this case, since 

all fractional ideals are locally principal. 

2. The symbol { ~} is explicitly defined in [Pi1], but since we shall see 

that for the case we are interested in we have q1 = q2 = 1, i.e., these 

products are empty, we will not define this symbol. 

31 
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It is fortunate that Theorem 5.1, though stated in a complicated manner, can 

be used to derive an effectively computable formula for the type number under special 

conditions, which are satisfied by Q( v'509): 

Theorem 5.2 Let m- 1 mod 4 be a positive squarefree integer, F = Q( y'rri) , R the 

ring of integer ofF, U the units of R, u the fundamental unit of U. Assume that 

(P1) h(F) = 1, and 
(P2) N(u) = -1. 

Let B be the totally definite quaternion algebra which is unramified at all the finite 

primes of F. Then the type number T of B is 1 if m = 5, and if m > 5, it is given 

by: 
1 m 1 1 

T =-2::: x(u)u2 + -h(Q(v=Tn)) + -
6

h(Q(v-3m)) 
48m u=l 8 

where X is the character mod m appearing in Proposition E.9. 

Remark. Properties (P1) and (P2) ofF imply that every ideal of R is generated 

by a totally positive element. We will also see in later chapters that this fact will enable 

us to construct objects that will be useful in finding representatives of ideal and type 

classes, as well as realize the action of the Heeke operators. 

Proof of Theorem. Assume that m - 1 mod 4 is a positive squarefree integer and 

that F = Q(y'ffi) and u have the properties above. Proposition E.12 in the Appendix 

shows that 3 does not divide m. This property will be used to study the biquadratic 

field Q( y'ffi, .;=3), and to apply Proposition E.4 of the Appendix. We proceed to 

determine the quantities in Theorem 5.1. 

We have h(Q( y'ffi)) = 1. Since B is unramified for all finite primes, q1 = 1, 

and for maximal orders, q2 = 1. Thus e = 1. The two products in the definition of 

Eichler's Mass Mare thus both empty. Since m = 1 mod 4, disc(F) = m, so 
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We shall further simplify M by explicitly finding (F(2). Our method will be that 

of [L], which uses generalized Bernoulli numbers. Define the nth Bernoulli number, 

Bn, by 
tet tn 
--""'B­t 1 - L...J n , . e - n>O n. 

For a character X mod f, define Bn,x by 

One sees easily that when X= 1, then Bn,x = Bn. For F = Q( ..jm), m > 0, define: 

Bn,F = IJ Bn,x, 
X 

where the product runs through the characters mod d = ldisc(F) I = m which cor­

respond to characters of Gal(F/Q). Hence this product involves only the trivial 

character and the character X mod d discussed in Proposition E.9 of the Appendix 

(used in the calculation of the class group order). Thus 

In [L], it is shown that 

( ( ) = (27r )2
nv'JBn,F 

F n 4dn(n!)2 

if n is a positive even integer. Thus we have, for n = 2 (knowing that B 2 = 1/6): 

1 
M = 48B2,x· 

To explicitly find B 2 ,x, we have to individually find the coefficient of t 2 /2 in the 

Taylor series expansion of 

for u = 1 ... m. One can differentiate this expression twice and let t approach 0, 

but the answer is more obvious if we write the above expression as a quotient of two 
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power series then perform the differentiations and set t = 0. Using either method, we 

get: 

B _ ~ ( ) (6u2
- 6mu + m2

) 
2,x - L..J X u 6m . 

u=l 

However, we know that 
m m 

2: x(u) = 0 = 2: x(u)u. 
u=l u=l 

The first equality follows because x is a non-trivial character, and the second because 

X is an even character, so 
m m m m 

2: x(u)u = 2: x(m- u)(m- u) = 2: x(u)(m- u) =- 2: x(u)u 
u=l u=l u=l u=l 

and the conclusion follows. Thus we are left with: 

Now we proceed with the rest of the algorithm. The product defining E 1 (Sa) = 

Eq1 q2 (Sa) is also empty regardless of Sa, so Et(Sa) = 1. Equation 5.1 then becomes: 

T = Tl = M + ~ L h(Sa) 
2 SaEC w(Sa) 

We now follow the algorithm to find the collection C: 

1. Since U = (- 1)(u) and U 2 = (u2
), we gets= 4, and a set of represen­

tatives for u mod U 2 is given by 

{ 1, -1, u, -u } 

We note that when m = 5, the fundamental unit is u = () = ¥, and 

()2 = 1 + (). 

2. Since q1q2 = 1 and Fr(F) = Pr(F), we have k = 1, E = (1), and 

{d} = {dt} = {1} 

is a complete set of representatives of E · Fr(F)2 mod (Pr(F)) 
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3. From (2), we can take t = 1 and 

4. We shall call the polynomials obtained in this step contributing poly­

nomials, and denote this set by \}i. Since p, = 1 = t and n = n 1 = 1, 

we shall abbreviate: 

Since vp(n) = 0 for any vr.>, we have sr.> = 0 for every p < oo, so 

condition ( 4.c) is always satisfied by any r. Condition ( 4.d) is vacuous. 

Now we look at condition (4.b). Since F is totally real, this condition 

requires that the discriminant of fe.n 

be totally negative. But for any r, b.(J-l,-r) and b.(!_,.,_,.) are always 

positive, since u > 0. Hence we need only consider f 1,_,. and fu,-r· But 

N~(u) = u(u"") = -1 tells us that u"" < 0, so for any r, (r"")2 -4u"" > 0. 

So only ee = 1 remains. We further abbreviate: 

J_,.(x) = x 2
- rx + 1 

Our problem is therefore to find all r E R, say r = a+ b(}, a, b E Z 

such that: 

r 2 
- 4 < 0 and ( r"")2 

- 4 < 0, or equivalently 

-2 < r,r"" < 2, or 

-2 < a + b(} , (a + b) - b(} < 2 or 

- 2 < a+ b(}, -a- b + b(} < 2 

Adding these two inequalities, we see that necessarily: 

-4 < (20- 1)b < 4 or 
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-4 < Vmb < 4 

Hence if m > 16, then b = 0 is the only possible value. In this case, 

T = a = 0, ±1. Note that these three values yield a contributing fT" 

So now assume that m < 16, i.e., m = 5, 13. In both cases, 1 < 

4/ Vm < 2, so b = 0, ±1 are the only possible values. We check which 

yield contributing fr's: 

b = 0: As before, T =a= 0, ±1. 

b = 1: We must have 

-2 <a+ l+r < 2 and - 2 < a+ l-r < 2 

- 5-fo 3- fo d -5+# 3+# 
2 <a< 2 an 2 <a< 2 

-5+,/m 3-# 
2 <a< 2 

If m = 5, only a= 0 or -1 lies in this range, and T = 0,-1 + 0 = -Ou 

both yield contributing f,.. If m = 13, there are no integers in the 

range above, so b = 1 is not possible in this case. 

b = -1: A similar analysis yields - 3"';# < a < 5-p If m = 5, 

only a = 0 or 1 lies in this range, and T = - 0, 1 - 0 = ou both yield 

contributing f,.. If m = 13, there are again no integers in the range 

above, so b = -1 is not possible in this case. 

Clearly, condition (4.a), irreducibility, is satisfied by all the f,. men­

tioned above, since the roots are imaginary. We summarize step 4 in 

the following: 

Lemma 5.3 Assume the hypotheses in Theorem 5.2 above. 

(a) If m > 5, the only contributing polynomials in \ll are f.,. , where 

T = 0,±1. 

(b J If m = 5, the only contributing polynomials zn W are f .,., where 

T = 0, ±1, ±0, ±0u. 
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The roots of these polynomials and the fields that they generate over 

Qh/m) are shown below. 

Table 5.1 Fields Generated by Roots of Contributing Polynomials fr 

II T I Roots ** an a~ Of I 
fr = X

2
- T X + 1 II 

0 (4,(1 Q(vm,c4) 

1 (6, (~ Q(vm,c6) 

-1 (~, Cl Q(vm,c6) 

0 
ll+a ll-a 

Q((5) ----
2 ' 2 

-0 
-0 +a -0- a 

Q((5) 
2 ' 2 

00' 
()0' + (3 f}O' - (:J 

Q((5) 
2 ' 2 

-fJO' 
-00' + f:J -00' - f:J 

Q((5) 
2 ' 2 

** a= v'-3 + fJ, (3 = v'-2- fJ, fJ = ¥, a: v'5----+ -v'5 

The only non-obvious part is proving the last four rows for F = Q( v'5), 

but it is easy to see that F(a) = F((3), since af3 = v'5 E F. 

We note that the irreducible polynomial of a over F is x2 
- ( -3 + fJ), 

while that of (3 is x 2 - ( -2- 0), and the irreducible polynomial of both 

a and f3 is the product of these: x 4 + 5x2 + 5. We shall show that 

F(a) is contained in Q((5 ). From the fifth cyclotomic polynomial and 

Euler's identity, we get 

-1+v'5 . j5+v'5 cos(27r /5) = 
2 

, sm(27r /5) = 
8 

, hence 

f) - 1 + v'5 - _,2 -c 
- 2 - 5 5' 

37 
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and so F = Q ( v's) C Q ( (5 ). Also, the ring of integers S of Q ( (5 ) is 

Z[(5]. Next, one sees that 1 = ±((l - (t) E S satisfies 1 2 = -3 + 0, so 

a E Q((s). • 

Similarly, we find that ±(1 + 2(5 + a + (t) are the square roots of 

-2 - 0. Of course, it is easy to derive 1 as a square root of -3 + 0 in 

Q( (5 ) . Since a is an algebraic integer, we must find a . .. d E Z such that 

1 = a+ b(5 + c(l + d(t. Since the real part of 1 must be 0, we determine 

that b = 2a, d = 2a- c. Equating 1 2 with -3 + 0 = -3- a- (t, we 

get: 

4a2
- 6ac + c2 = 1 and 3a2

- 2ac + 2c2 = 2 

from which a2 + c2 = 1. Since a, c E Z, we get a = 0, c = ±1, and 1 is 

determined as above. 

Alternatively, one can also directly compute the ring of integers ofF( a) 

and its discriminant, and use some facts about cyclotomic and abelian 

extensions to conclude that this field is contained in Q ( (5 ). 

5. We proceed to the last step of the algorithm: finding the orders Sa. 

Condition (5.a) says that R[a.,.] must be contained in Sa. However, we 

find that R[a.,.] is the maximal order of F(a.,.): 

Lemma 5.4 Let m be as in Theorem 5.2, R the ring of integers of 

Q(y'ni). Then: 

(a) The ring of integers ofQ(y'm,(4) is R[(4] . 

(b) The ring of integers ofQ(fo,(6) is R[(6]· 

(c) Form = 5, the ring of integers of Q((5 ) is 

R [ ±0: a] = R [ ±0"2 + {J] . 

Proof. Parts (a) and (b) are covered by Corollary E.2 of the Appendix. 

Let S be the ring of integers of Q ( (s). Note that (f0 generates S over 
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Z, if k :j; 0 mod 5. To show (c), we have: 

0 ; a = -a - a 2+ (l - a = -a = (IO, hence s = R [ 0 ; a] . 
Similarly, we get 

-O+a 
2 

-fJU + f3 
2 

ou + f3 
2 

-

= 

a+a+a-a 
2 

(; = ({o, 
-1 - (l - a + 1 + 2(s + (l + a 

2 

(s = (fo, 
1 + (l + a + 1 + 2(s + a + a 

2 

1 + (s + ,; + a = - (i = Cfo 

so all these generateS over R (in fact over Z). Hence the only possibility 

for SaT is the ring of integers of the respective F( aT). • 

Lemma 5.5 The set of orders C consists of the rings of integers S 

of the extensions F( aT) where aT is a chosen root of a contributing 

polynomial fT as determined by Lemma 5. 3. 

39 

Proof. Only condition (5.b) needs to be verified. Our computations show that all of 

the roots aT of fT are roots of unity, so NJ;(ar)(aT) = 1, so Sp = 0 for every p . Hence 

• 
Hence, equation 5.1 becomes: 

We first study the contributions in this sum from the biquadratic fields 

(1) Q(vfrri',v=I") and (2) Q(vfrri',y'=3), which will be valid for both m = 5 and 

m > 5. We will apply Proposition E .9 of the Appendix to simplify the class numbers 

of the biquadratic extensions above: 
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1. Let mt = -1,m2 = -m,mo = m,l( = Q(..;::T,y'='m). Hence ho = 1, 

by hypothesis. It is well known that the class group order of Q( H) 
is 1, and the only roots of unity are powers of .;::1, i.e., h1 = 1, w 1 = 4. 

Also, the only roots of unity in Q( y'='m), m #1, 3, are ±1, i.e. , w 2 = 2. 

By Proposition E.3, w = 4 and u0 = u. So we obtain h = ~h( y'='m). 

2. Let m 1 = -3, m 2 = -3m, m 0 = 9m, J( = Q( yC3, .J-3m). Similarly, 

it is know that the class group order of Q( .J=3) is 1, and the only 

roots of unity are powers of ( 6 , i.e., h1 = 1, w 1 = 6. By Proposition 

E.4, w = 6 and u0 = u. Again w 2 = 2 and we obtain h = ~h( .J-3m). 

40 

Next, from Propositions E.3 and E.4, [Sx : U] = 2 and 3, respectively, for 

Q( ylm, yCT) and Q( ylm, .J=3). 

We can now finish proving Theorem 5.2 for m > 5. The field Q( ylm, .J=3) 
contributes twice in the sum (forT= 1, -1), so equation 5.1 becomes: 

T 

For m = 5, the field Q( (5 ) contributes 4 times in the sum, corresponding to 

T = (), -B, ()u, - Bu . Let S be the integers of Q((5 ). It is well known that sx = 

((10)(B), hence [Sx : U] = 5. Keeping the simplifications we made form> 5, we get: 

1 1 2 
T = M + Sh(Q(-J=5)) + 6h(Q(.J=I5)) + Sh(Q((s)) 

Eichler's Mass number M for m = 5 is (1 - 4 - 9 + 16)/240 = 1/60. 

The appendices of [BS] show that h(Q( vf-5)) = h(Q( v'=I5)) = 2. The dis­

criminant of Q((s) is 125, so the Minkowski bound for Q((s) is 

4! (±) 2 v'i25 < 2 
44 7r 
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hence every ideal class has an ideal of norm 1. Thus Q( ( 5 ) has class group order 1. 

Equation 5.1 becomes 
1 1 1 2 

T=-+-+-+-=1 
60 4 3 5 

which finishes the proof for m = 5. • 
Following the proof of Theorem 5.1 in [Pi1], we see that 

(5.2) 

c2 = c- c}, and cl = {Sa E c I (N(a)) = (1) }. That is, a is a root of JJ-L.e,r(x) 

with (nJ-L) = (1). From this, we have: 

Proposition 5.6 Let m be a positive squarefree integer, F = Q( ..jffi), with h(F) = 1, 

and B the unique quaternion algebra with Ram(B) = {oolloo2} . Then H = T, i.e., 

the number of left-ideal classes of a maximal order equals the type number of maximal 

orders. Consequently, if 11, ... , IH is a complete set of representatives of distinct 

left 0-ideal classes for a fixed maximal order 0, then the corresponding right orders 

Or(J1), .. . , Or(IH) form a complete set of distinct representatives of maximal orders 

of different types. 

Proof. (The notion of a right order can be found in Appendix D.5.) We have h(F) = 1, 

q1 = q2 = 1, 2e = 1 and nJl. = n 1 = 1 in the algorithm to find C. Thus C2 = 0. 

Substitute these in (5.2) to get the result. • 
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5.2 Langlands' Conjecture for m = 5 

Our computations above show that H = T = 1 for F = Q( VS), hence the function 

space S has only the zero function. Hence 52 has no eigenforms. In [Pin], we also 

see that there are no elliptic curves over F which have good reduction everywhere. 

Hence £ = 0. Thus: 

Theorem 5. 7 Langlands' Conjecture 1.1 is true for Q( VS). 

5.3 T for Various F 

It is surprising that there are 40 values of m in the range 16 < m < 510 that satisfy 

the hypotheses of Theorem 5.2. The ideal class group orders may be computed using 

the formulas in Proposition E.9 of the Appendix. These m and associated class group 

orders, Eichler's Mass, and type numbers are tabulated below. We note that with 

the exception of m = 5 above, the character sum in the formula forM is divisible by 

m. We also observe that all the values of m are prime. The condition N(u) = -1 

tells us that m is a squarefree product of primes 1 mod 4. The additional condition 

h(F) = 1 seems to imply that m is actually prime. We therefore ask the question: If 

m _ 1 mod 4 such that Q( Vm) has class number 1 and R has a unit of norm -1, is 

m a prime? 
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Table 5.2 Type Number for B/Q( y'ni') for Certain m 

II m h(Q(v'-ffi)) I h(Q(J-3m)) I M T II 
13 2 4 

1 

12 
1 

17 4 2 ~ 1 
6 

29 6 6 
1 

2 
4 

37 2 8 
b 

2 
12 

41 8 2 ~ 2 
3 

53 6 10 
"( 

3 
12 

61 6 8 
11 

3 -
12 

73 4 4 
11 

3 
6 

89 12 2 
1J 

5 
6 

97 4 4 
1( 

4 
6 

101 14 10 
1~ 

5 
12 

109 6 12 ~ 
4 

5 

113 8 6 3 5 

137 8 6 4 6 

149 14 14 
Jb 

7 
12 

157 6 16 
4J 

7 
12 

173 14 18 
1J 

8 
4 

181 10 12 
ll:l 

8 
4 

193 4 8 
4~ 

10 
6 

197 10 22 
4~ 

9 -
12 
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Table 5.2 (continued) Type Number for B/Q(vrn) for Certain m 

II m h(Q( ../-m)) I h(Q(J-3m)) I M T II 
233 12 10 

50 
12 -

6 

241 12 4 
7l 

14 -
6 

269 22 14 
~;j 

12 -
12 

277 6 28 
lUJ 

14 -
12 

281 20 6 
:l5 

16 
2 

293 18 22 
~5 

13 -
12 

313 8 8 
5U 

19 
3 

317 10 26 
lUl 

14 -
12 

337 8 12 19 22 

349 14 16 
lbl 

17 
12 

353 16 6 16 19 

373 10 32 
ltil 

20 
12 

389 22 22 
lbl 

19 
12 

397 6 24 
57 

19 -
4 

409 16 4 
7~ 

29 
3 

421 10 20 
:lU~ 

22 
12 

433 12 8 
lbJ 

30 
6 

449 20 6 
bl 

29 
2 

457 8 12 30 33 

461 30 18 
bl 
4 

22 

509 30 14 
215 
12 

24 



Chapter 6 

8-Series of an Ideal 

The notion and construction of a E>-series for an ideal in a quaternion algebra is 

discussed in several papers, including [Pi4], [Pi5], [Pi6] and [Gr]. In these papers, B' 

is a positive definite quaternion algebra over Q, and Lis a Z-ideal of B'. The E>-series 

of L catalogues in a certain sense the number of elements a of L that have a fixed 

norm, for all possible nr( a). It is also useful in determining if two left ideals represent 

different ideal classes. Our objective in this chapter is to find conditions wherein we 

can extend the definition of a 0-series to quaternion algebras over a quadratic field, 

prove analogous properties for them as those found in the papers above, and to find 

ways to explicitly and effectively (i.e., in reasonable computational time) find the first 

few terms of this (infinite) series. We shall often refer to L/Z, a lattice in an algebra 

B' / Q, in order to compare our construction to those in the mentioned papers. 

We assume henceforth that F = Q(..;m), m > 0, with (Pl) h(F) = 1 and (P2) 

the fundamental unit u has norm -1. These properties assure us that every fractional 

ideal can be generated by a totally positive element, and every totally positive unit is 

a power of u 2 • As usual, R = Z[O] is the ring of integers ofF, with 0 = I+p. 
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6.1 8-Series of an R-ldeal 

We assume that B is a positive definite quaternion algebra over F. Thus the norm 

of any (3 E B is totally positive, and every R-ideal J of B has a basis of 4 elements. 

Denote by nr( J)+ a totally positive generator of nr( J). For any (3 E J, define: 

NJ(f3) = nr((3)/nr(J)+ 

Thus the image of NJ is in R>>O, the totally positive elements of R. We can think 

of NJ as a "scaled" norm. For L/Z, nr(L)+ is simply a positive generator of nr(L). 

Now define the 0-series of J: 

L exp( T NJ(f3)) 
/3EJ 

L Ce,Jexp(TO, where 

Cf.,J #{ (3 E J I NJ(f3) = ~ } . 

We will call Cf.,J the representation number for~ in J . Because R>>O is dense in R >o, 

it is not at all clear that cf.,J is always finite (for LjZ, we will see that this is clear). 

We will prove later that cf.,J is finite for every~ and J, so the 0-series is well defined. 

Ignoring this for now, we have: 

Proposition 6.1 The definition of Cf.,J for any R-ideal J is independent of the choice 

ofnr(J)+· 

Proof. Any two choices for nr( J)+ differ by a totally positive unit u 2
n, for some 

n E Z. Since nr(un) = u 2n, multiplication by un E R gives a bijection between the 

set of (3 E J of norm ~ and those (3' E J of norm u2n~. • 

Now we see that the 0-series can be used to determine if two ideals or orders 

are in different classes. · 
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Proposition 6.2 If J is an ideal and J' = I1J12, with both li E Bx, then Cf.,J = Cf..J' 

for all e E R. Thus 0J(T) = 0J'(T). 

Proof. Suppose J' = 11J12 as above. Then we can choose nr(J')+ to be 

nr(lt)(nr(J)+)nr(l2), since the nr(li) are totally positive. Every (3' E J' is of 

the form (3' = 11 fJ12 for some f3 E J. Thus 

nr(f3') 

NJ·(f3') 

nr(l1 )nr(f3)nr(l2), so 

nr(/3')/nr(J')+ 

- nr( 11 )nr(f3)nr( 12) / ( nr( 11 )nr( J)+nr( 12)) 

- NJ(/3), 

• 
This tells us that if two left (resp. right) 0 -ideals have different 0 -series, then 

they are not in the same left (resp. right) ideal class (use 11 = 1, resp. 1 2 = 1). 

Two orders with different 0-series are not of the same type (use 1 1 = 121
). It is 

still possible, though, for two ideals having the same 0-series to be in different ideal 

classes. 

6.2 Preliminaries on Quadratic Forms 

As we shall see, to effectively compute the representation numbers for J, we will need 

to know something about quadratic forms. Assume that :F is an arbitrary field with 

characteristic different from 2. We shall use multi-index notation: X = (x1 ... xn]· 

We will write a quadratic form f(X) inn-variables using a symmetric sum: 

n 

f(X) = L: a;,jXiXj 
i,j=l 

with the a;,j E :F, not all a;,j = 0 and a;,j = aj,i· The determinant of f is the 

determinant of the matrix A = [a;,j]· Two forms f(X) and f'(X') with coefficients 
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in :F are :F-congruent if under a substitution of variables (X'f = CXT into f', we 

obtain the form f, and the matrix Cis in GLn(:F). Every f with coefficients in R is 

uniquely R-congruent to a form xi+ ... + x7 - x?+I - . .. - x;. We call f positive 

definite if i = n. 

If the form f has non-zero determinant and f(X) = 0 for some X =/= 0, we call f 

a zero form. We say that f represents a in :F if there is an X = [a1 ... an] E F with 

f(X) =a. For instance, the Hilbert symbol (a, b):r in :F is 1 if and only if ax2 + by2 

represents 1. Clearly, congruent forms represent the same elements of :F. 

We shall be mostly interested in forms over Q, with X assuming values only in 

zn . If f and J' have coefficients in Q, we say the f is equivalent to f', symbolically 

f ,...... J', if there is a change of variables taking f to f' with matrix C, as above, in 

SLn(Z). Iff,...... f', C gives a bijection between the set of X E zn such that f(X) =a, 

and the set of X' E z n such that f'( X') =a, for any a E Q. 

6.3 Computing 8J 

Suppose that we are given an ideal J in terms of a basis over n. We show that we 

can find an effective algorithm to find the ce,J · As a byproduct, we find that these 

numbers are finite. First we explore the nature of NJ: 

Proposition 6.3 Choose a basis [,BI. ... , ,84 ] for J, and write ,8 E J as 

4 

,8 = 2:(xr + Xr+4(}),8r 
r=l 

where X = [x1 ... x8 ] E Z8 . If we write NJ(,B) as: 

then 'l/1 and '11 2 are quadratic fo rms with coefficients in Q and values in Z . Further­

more, '11 1 is positive definite. Th ese properties hold regardless of the chosen basis. 
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Proof. We have remarked that }1/J has values in R>>O, so the Wi are integer valued. 

Represent (3 in the form above. It is easy to see that the coefficients of 1, i,j and k 

in (3 are R-linear combinations of the Xi, so the 'lii are indeed quadratic forms with 

rational coefficients. Also, by Proposition E.5 of the Appendix, a necessary condition 

for a+ bO, a, bE Z, to be in R>>O is that a> 0. Thus 'lit(X \ {0}) C Z>o· This is 

possible only if 'lit is positive definite. • 
Corollary 6.4 For any~ E R>>O and ideal J of B, the representation number ce,J 

is finite . 

Proof. Let ~ = a + b() E R. In the notation above, the set 

is finite, since 'lit is positive definite and integer valued. Thus, ce,J is also finite. • 

In the analogous construction for L/Z, ./IIL(f3) = 'li(X) is itself a positive definite 

integer valued quadratic form, hence we see immediately that Cn,L is finite for any 

n E z>O· 

The properties above let us explicitly compute ce,J for ~ =a+ b() and a :::; M E 

R. Choose a basis for J and write 'lit(X) = "f:_ai ,jXiXj , with ai,j = aj,i· Since 'lit is 

positive definite, ai,i > 0 for every i. Thus we can write 

where wFl is again a positive definite form in Xz, .•• 'Xn- Proceeding in this manner, 

we write (changing notation) 
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with all the b;,; > 0. Thus if we require ll11 (X) ::; M, then necessarily 

Since f(X) = f( -X) for any quadratic form, we need to let Xn run through only 

0 ... L J M /bn,nJ, and account separately for Xn = 0 and Xn > 0. For every fixed Xn in 

this range, we find that 

I 
bn-1 n I M- bn,nX~ 

Xn-1 + b ' Xn ::; 
n-1,n-1 bn-1,n-1 

Thus Xn- 1 must be constrained to a certain range as well, depending on the chosen 

Xn,n- Proceeding in this way, we see that this method of "completing the square" 

gives us a way to find all X such that ll11(X) ::; M, and for such X, we automatically 

find \li 2(X) as well. Thus: 

Proposition 6.5 There is a finite algorithm to find the representation numbers of 

any ideal of B . 

6.4 Rubens vs. El Greco 

Unfortunately, the efficiency of this algorithm depends on the choice of basis for J. 

Consider the following quadratic form: 

f( x, y) = 101x2
- 198xy + 101y2

• 

Suppose we want to find all x,y E Z such that f(x,y)::; 100. Whether we choose x 

or y to begin the process above, we have a 1 ,1 = 101. We get: 

Thus we let y range through 0 ... 5 = L)100 x 101/400J and do our accounting. 

Notice, though, from the graph on the next page, that every slice y = n contains at 



CHAPTER 6. 0-SERIES OF AN IDEAL 51 

most one lattice point! On the other hand, a simple change of variables: 

X t- X 

y t- x+y 

which is in SL2 (Z) tells us that 

Applying the same process above, choosing a 1,1 = 4, we get 

so y only ranges through 0 and 1! So in fact, the slice y = 0 contains almost all the 

lattice points! 

-6 

Figure 6.1 Graphs of 101x2 
- 198xy + 101y2 = 100 

and 4x2 + 4xy + 101y2 = 100 

6 

6 
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This is a truly great improvement if we can make such a change of variables in 

SLs(Z). Among the SLs(Z) orbits of \}ill which form will make the process above 

most efficient? It turns out that this optimal form is: 

6.5 The Hermite Normal Form 

The form equivalent to \}it that we need can be obtained from a construction due to 

Hermite. Before we derive it, we need the following well known result which can be 

found in [N): 

Proposition 6.6 Let R be a unique factorization domain, and Mn(R) the set of n x n 

matrices over R. If at ... an E R and i E { 1 ... n}, then there is a matrix A E Mn ( R) 

with column i equal to [at ... an] and determinant gcd(at ... an)· 

Sketch of Proof/ Algorithm. Since we will need to do this explicitly in a future setting, 

we shall sketch its construction for i = 1 (for simplicity) and use induction on n: 

The proposition is trivial for n = 1. Now, suppose An-1 is a matrix in Mn_1(R) 

with [at ... an_1JT in the first column and determinant dn-1 = gcd(all . .. , an-t)· Let 

dn = gcd(ab ... an)= gcd(dn-1,an)· Let x,y E R such that dn-tX +any= dn. Let: 

0 

at 
--y 
dn-t 

a2 
--y 
dn-1 

an-t --y 
dn-1 

X 

with the obvious adjustments when n = 2. Clearly An has entries in R, and its first 

column is a1 ... an· It is proven in [N) that det(An) = dn . • 

In the statement of the proposition, we can of course say "row" instead of 

"column." 



CHAPTER 6. 8-SERIES OF AN IDEAL 53 

Theorem 6. 7 (Hermite) Iff is a form in n variables with Q coefficients and non­

zero determinant d and iff is not a zero form, then f "' f(l) = L:: ai,jXiXj with the 

following properties: 

1. 0 <I a1,1 ~~ (4/3)(n-l)/2 ylfdl, 

2. I a1,1 I~ 2 I a1,j I, if i > 1, 

where f(2) is a form in n- 1 variables satisfying the same conditions imposed on f(l) 

with n replaced by n - 1. The determinant of f( 2) is da~J.2 • . 

For a form f with rational coefficients, we shall call such an f(l) as in Theorem 

6.7 to be a Hermite normal form (an HNF) for f. This is not necessarily unique. If 

f can be its own HNF, we say f is in HNF. 

Proof/Algorithm. The classical proof of Theorem 6.7 appearing in [Jo] gives 

us a method to find an HNF for f which is easily implementable on a computer. 

We shall mention the details which will be required in the algorithm. A form in 1 

variable is clearly in HNF already, so we assume that we can find an HNF for a form 

in k - 1 variables and from this construct an HNF for a form in k variables. That is, 

we assume that for every form f in k - 1 variables, there is a change of variables in 

SLk_1 (Z) which produces an HNF for f. 

Let a 1,1 E Qx be represented by f, and X = [c1 ... ck] a solution to f(X) = al,l· 

Furthermore, we can assume that gcd( c1 ... ck) = 1. By Proposition 6.6 we can firid 

C E SLk(Z) with first column [c1 •.. ck]· The transformation (X'V = CXT yields a 

form f(i)(X') = "a· ·x~x'· 
LJ '·3 ' J' 
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Suppose that we transform J(i) once more using 

X~ -

X~ 

x' k 

YI + Ct,2Y2 + .. . + Ct,kYk 

c2,2Y2 + · .. + c2,kYk 

with Ci,j E Z . We obtain a form J(ii) = I: aLYiYi with a~.1 = a 1,1 . Now let 

/
(2)( ) - j(ii) ( , , )2 Y2 · · · , Yk - a1,1 - a1,1Yt + a1,2Y2 + · · · + at,kYk 
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(6.1) 

(6.2) 

By induction, we can find an HNF for the form j<2>, and since j<2> is independent of 

the c1 ,j , we might as well assume that the transformation (6.1) yields an j<2> as in 

(6.2) which is in HNF. Thus condition (3) is satisfied by J(ii). 

Now, the only terms in J(ii) involving y1 will arise from the summand 

of j(i>. Under (6.1), this becomes 

i.e., a~,r = a1,1c1,r + L:j=2 al,jCj,r· Thus we can choose every c1,r independently to be 

an integer such that 

Thus condition (2) can be satisfied. 

A sufficient condition for (1) to be satisfied would be that I a~.1 I is minimal 

among the I a~,r I (see [Jo]) . If this is not satisfied, exchange x 1 and Xr to minimize 

I a~.1 1. Conditions (2) and (3) may no longer be satisfied, but if not, iterate once 

more from the first step of the algorithm with this new a 1 ,1 . This process must stop 

because there are only a finite number of rational numbers in (0, N) represented by 

f when X E zn, for any N > 0. • 
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This algorithm is even more explicit when f is positive definite (hence the result­

ing J(k) are, as well). In this case, the a1,1 in the final J(l) is necessarily the minimum 

positive valu.e that f can attain! Initially, we can choose a 1,1 in the algorithm above 

to be the value of the smallest ai,i (just to make the process more efficient). Hence, 

in fact, C = I, and the first step is unecessary, yielding J(l) = f. Thus the algorithm 

can be implemented inductively as follows: Begin with J(l) = L:::~j=l ai,jXiX j. 

2. Put j<2 > in HNF (inductive step). 

3. Determine a 1 ,2 , . .• , a 1 ,n to satisfy Axiom (2). 

4. If a 1,1 is minimal among the a i ,i, then STOP, otherwise swap x1 and Xr 

to minimize a 1,1 , and return to Step 1. 

Even if a chosen programming language does not support recursion, we see that 

if n is known beforehand, this algorithm is still easily implemented via nested loops. 

Also, when \ll1 undergoes a change of variable, we must do the same with \ll2 • Since 

a change of variables in SL8 (Z) corresponds to a change of R-basis for J, we can 

even reconstruct this basis for J that gives us a W1 in HNF. In our implementation, 

though, we will not be interested in doing this. 

In some sense, the HNF of an arbitrary positive definite quadratic form f with 

Q-coefficients is that form J(l) rv f which makes f(l)(X) = M "as narrow as possible" 

in all dimensions except possibly one, in contrast to J(X) = M which may be "long 

and stretched." We see that a1 ,1 is as small as possible, forcing the determinant of 

f( 2) to be as large as possible. Proceeding thus, we see that bn,n is as large as possible, 

so Xn is constrained to the smallest possible interval, if we set f(X) = M . Going 

back, we see that for this bn,n' bn-l ,n-l is as large as possible, so Xn-b for any fixed 

xn, is constrained to the smallest possible interval. This was starkly seen in Figure 

6.1. 



Chapter 7 

Finding Type and Ideal Class 
Representatives 

In this chapter, we assemble our constructions into a heuristic algorithm or strategy 

to find representatives for ideal classes of the maximal order 

O = R [ 1 + i + j + k i + Oj + {1 + O)k . k] 
2 ' 2 '), 

in B = ( -1, -1), the objects we obtained in Chapter 4. Since H 1 = T11 a byproduct 

of this process is also a set of representatives of type classes of maximal orders in B. 

Our method is reminiscent of the bare-hands method to compute the ideal class group 

of a number field. Although the algorithm will be used for these specific objects, it is 

easy to see that it is also implementable for an arbitrary B = (a,b)JF and order 0 , 

so long as F has properties {P1) and (P2), one has an explicit basis for 0, and one 

knows the class number of 0. 

We reiterate the assumptions made so far: m = 5 mod 8, F = Q( vm), R is the 

ring of integers ofF, and F possesses properties (P1) h(F) = 1 and {P2) N(u) = -1 

as in Theorem 5.2. The assumptions guarantee that any ideal of R can be generated 

by a totally positive element, and every ideal of B has a basis over R . 

56 
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7.1 Ideals of the form J =Of 

Since our goal is to find ideal classes for a fixed maximal order, we would like to 

be able first to find left ideals of an arbitrary order 0. Fortunately, it is easy to 

manufacture such ideals in industrial quantities when they are of a particular form. 

Let a E B\F. Then J( = F(a) is a quadratic field extension ofF contained in 

B , and the non-trivial field automorphism a' of J( fixing F can be thought of to be 

the conjugation in B , i.e., a(u') = a, so Nff = nriK· Let I be an ideal of S , the 

ring of integers of J(. Then J = 0 I is a left ideal of 0, since 0( 0 I) = 0 I. Also, 

nr(J) = nr(J), since 1 E 0. Clearly, if I' = I-y for some 1 E K, then J' = J1, so J 

and J' are in the same left 0-ideal class. 

Proposition 7.1 Suppose we choose a E 0, a~ R so that S = R[a]. Then J =OJ 

is an integral ideal for any ideal I of S , i.e., J C 0. If 1-t is the inverse of I in 

Fr(K), then J-t =I-to and Or(J) = J-toi. 

Proof. Since 0 is a ring and I C S = R[a] C 0, we have J C 0. By Proposition 

D.3, 

J-t = Jjnr(J) = (01)/nr(J) =I Ofnr(I) =I-to , 

recalling that conjugation is an anti-automorphism, and 0 = 0, since tr( 0) C R C 

0. We also have: 

so J- 101 ~ Or(J). But J-1 01 has the same level as 0 and Or(J) by the local-global 

correspondence, so we have J- 101 = Or(J). • 
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We will now see that it suffices to consider ideals of the form OJ as in the 

construction above, in order to find representatives of left 0-ideal classes. 

Theorem 7.2 Every left 0-ideal class of a maximal order 0 contains an ideal of the 

form OJ where I is an ideal in a field extension I<= F(b) contained in B. 

Proof. The left 0-ideal classes are in bijection with 

X= MG \ G(A~) I G(F), 

as stated in Chapter 1. Since this is a finite set, there is a finite set of primes S such 

that 

Now, 

G(A~) = MG B~ G(F), where 

Bs = II BP C G(A~) 
pES 

is(B) := {(b, ... ,b) E Bs I bE B} 

is dense in Bs, hence is(Bx) is dense in B~. Since MG is open in G(A~), we have, 

by Strong Approximation (see [Vi]) 

Thus, every f3 E G(A~) is of the form f3 = J.l is(b) be for some J.l E MG, b, he E Bx. 

Thus, under the Local-Global correspondence, the left 0-ideal 0/3 is in the same class 

as Ois(b), where is(b) can be viewed as a fractional ideal in F(b). • 
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7.2 The Algorithm 

We now outline the algorithm for finding representatives for left 0 -ideal classes: 

1. Determine the class number H. 

2. Initialize the list of representatives of left 0-ideal classes to L = { 0}. 

3. Find an element a E 0 , a tf. R, such that the ring of integers S of the 

quartic field J( = F[a] is exactly R(a]. 

4. Determine h = h(K) and S = {11 .. • h}, ideal representatives for the 

class group of /(, 

OR, 

Generate a large (but finite) list S = {Ji} of prime ideals of J( . 

5. Now, for Ii E S, do: 

(a) Find a basis for Ji = Oh 

(b) Determine if Ji is in the same class as any of the ideals in L 

obtained so far . If not, add Ji to L, and keep a note of a and h 

6. Stop if H representatives have been found, otherwise resume from Step 

3. 

The following sections will now explain in further detail the steps above, and 

give suggestions in order to make the search more efficient. 
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7.3 Choosing a 

Although Theorem 7.2 says that some extensions F(a) will yield class representatives, 

we will content ourselves with first looking through biquadratic extensions ofF in B. 

This is solely for practical (computational) reasons. It is easy to verify for such an 

extension if R[a] = S, the integers of J( = F(a). It would also be easier to find 

generators for ideals (prime or otherwise) of R[a] by using methods similar to those 

in Appendix A. 

The main tool to find a's so that R[a] = S will be a modification of the 

algorithm to find representation numbers. The main idea goes as follows: Let n be a 

squarefree integer relatively prime tom. We know that since m = 1 mod 4, the ring 

of integers of Q( ..;m, yn) is R[¢], where q) is in Corollary E .2. Thus we wish to find 

some values for n such that a E 0 satisfies the quadratic polynomial that q) does. 

This requires two variations on the same theme. If n = 2, 3 mod 4, then a should 

satisfy x 2 - n = 0. Thus a is of the form r283 + r4j + r3k, since its trace has to be 

0. We thus modify the procedure to find the representation numbers of 0 to find all 

a of the form above with norm less than some M. After this, of course, we have to 

eliminate those a whose norm is not squarefree or congruent to 1 mod 4. Similarly, 

if n _ 1 mod 4, a must satisfy x 2
- x- n~l = 0. (Since 0 is a ring with 1, we could 

also have chosen x 2 + x- n~l . ) Thus a is of the form -81 + r283 + r~ + r3k, since 

its trace has to be -1. 

By Proposition E.9, h(Q( ..;m), Q( yn)) is a multiple of h(Q( yn)) so if the latter 

number is large, so is the former . The algorithm is expected to be more efficient if 

there are many classes in S to choose from, say at least H classes. Thus we are more 

interested in the a for which h( Q( yn)) is large. 
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7.4 Choosing S = {Ii} 

Since the object is to investigate ideals of the form OJ, we are not really interested 

in finding the ideal class group of J( = F(a). Methods are available to determine the 

ideal class group of arbitrary number fields (see, for instance, [PZ]), but the effort to 

write a computer program to implement these is not worthwhile. If the ideal class 

group is of small order (or prime order), then it would be possible to do it by hand. 

In particular, if it is prime, any non-principal ideal will generate the class group, so 

it suffices to find one such non-principal ideal. 

In the general case, we may be content with just finding a large collection of 

split prime ideals Q in J( (since every ~is principal, so is any inert prime inK). By 

class field theory, every ideal class has an infinite number of prime ideals, so if we 

have a large enough set of primes, we probably represent all the ideal classes. 

7.5 Finding a Basis for an Ideal 

We continue to assume that a E 0\'R, J( = F(a), such that 'R[a] = S, the integers 

of K. The main problem with ideals of the form J = OJ, I an ideal of S , is to find 

a basis of 4 elements for J. We know that if I is a prime ideal of S, it is easy to find 

two generators for I, knowing the minimal polynomial for a. By induction, [PZ] (p. 

400) show how to represent any ideal I in terms of two generators, so we assume that 

it is easy enough to express I in the form (ell c2), Cs E F(a) C 0. In practice, we 

will often choose I to be prime. Thus if 0 = 'R[,81, . .. ,84], then J is generated over 

n by the 8 elements {.Brcs}· 

Now we show how to construct a basis of 4 elements from this set. We shall 

follow the treatment in [Pi5]. 



CHAPTER 7. FINDING TYPE AND IDEAL CLASS REPRESENTATIVES 62 

Let t = 4(s - 1) + r. Write f3rcs as al,t + a2,ti + a3,d + a4,tk, with au,t E F. 

Let A be a greatest common Z-denominator of all the au,t, i .e., all bu,t = au,tA E R. 

We construct the rank-4 matrix M = [bu,tlu=t,4 ;t=L..s, where each column represents 

a generator of J. 

Before we proceed, we would like to point out that it is easy to find G = 

gcd(a, b) E R for a, b E R, by looking at g = gcd(N6(a), N6(b)) E Z, One simply 

looks at the prime factors p of g and then determine which '!?-primes 1rjp divide both 

a and b and accounting for multiplicities. In practice, we construct beforehand a list 

of primes {1r} where IN6(1r)j is less than some large number. 

Going back to our task, any matrix obtained by multiplying M on the right with 

a matrix C E SL8 (R) (and then dividing by A) will again yield a set of generators 

for J, that is, by regarding each column as a quaternion in the same way that M was 

constructed. Thus, our goal is to find C such that M C has four columns of zeroes. It 

turns out that we can even find C so that MC is in lower triangular form. Naturally, 

we do this in stages: Let b1 = gcd(b1 ,11 • .. , bt,s). Since R is a PID, we can express bt 

as 

(7.1) 

with 'f/t E R and gcd(ry1 , ... , ry8 ) = 1. By Proposition 6.6, we can find C E SLs(R) 

with first column [ry1 ... ry8]T. Thus M(t) = MC = [b~,t ] has b~ , t = bt and every b~ ,t is 

divisible by b1 . Let C = [ci,j] E SL8 (R) with Ct,t = -bt,t/bt , 1's on the diagonal, and 

zeroes everywhere else. Thus we can again multiply M(t) on the right by C to obtain 

M(2), a matrix with all zeroes on the first row except for column 1, which has b1 • We 

can do the analogous process to M(3 ), the matrix obtained by deleting the first row 

and column of M(2) . Proceeding thus, we obtain a lower triangular matrix. Finally, 

dividing all entries by A, we have J = R[811 •• • , 84), where: 

bt,l + b2,ti + b3,1j + b4,1k 
b2,2i + b3,2j + b4,2k 

b3,3j + b4,3k 
b4,4k 
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This algorithm can be generalized to work on ideals in other forms. If I= ~1 ~2 , 

for example, we can find a basis for J = 0 I by applying the above process to find a 

basis for J 1 = 0~1 , then apply it once again to J2 = J 1 ~2• Similarly, it is possible to 

construct a basis for the order I-10I using this method. 

7.6 Finding Solutions To ax+ by= gcd(a, b) 

The only part of the above algorithm which needs to be made explicit is the process 

of expressing b1 as a R-linear combination of the bt,t· Since this is done by induction, 

we illustrate the method for finding x, y E R such that ax+ by = 1, where a, b E 

R, gcd(a,b) = 1. Now, if gcd(Nf:;(a),Nf:;(b)) = 1, then it is easy to use the Euclidean 

algorithm to find x',y' E Z such that x'N6(a) + y'Nf:;(b) = 1, in which case we have 

(x'a")a + (y'b")b = 1, and we are done. 

Unfortunately, if we do not have gcd(N6(a), N6(b)) = 1, we do not know of any 

efficient method to find such x, y , except for a straightforward bounded search: Let 

x = x1 + xl), y = y1 + y20, be a solution. Clearly we can restrict x1 , x2 to be within 

0, ... , INf:;(b)j, otherwise we can subtract an appropriate multiple of N6(b) from x 

and lump this amount into y. Thus if IN6(b)l is not too big, we can quickly find a 

solution by letting x 1 and x2 go through this range and determining if y = (1- ax)/b 

is in R . In any case, this method terminates. 

Programming Note: In the inductive process of finding the TJi as in (7.1), one 

can note enough information in order to construct a matrix as in Proposition 6.6 

with first column [TJ1 • .. 'f/k]T and determinant 1. The main ingredient in (6.6) is 

an expression for gcd(TJ1 , .• . , TJi) as a R-linear combination of the TJj for every i E 

1 ... k. To illustrate, suppose we had a, b, c E R. Let ax + by = gcd( a, b) and 

gcd(a,b)t+cz = gcd(a,b,c), so (ax+by)t+cz = a(xt)+b(yt)+cz = gcd(a,b,c). We 

see that gcd(xt, yt) = t and gcd(a,b)xt + gcd(a,b)yt = t . Similarly, we find an expression 

for 1 as a linear combination of xt, yt and z . We leave it to the reader to generalize 
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this to k variables. 

7.7 How to Tell Them Apart 

We would like to know how to determine if two left 0-ideals belong to different ideal 

classes, which is Step 5b of the algorithm. In the previous chapter, we saw that the 

E>-series gives a necessary test for two ideals to be in the same class. Now we give a 

necessary and sufficient condition for two ideals to be in the same class: 

Proposition 7.3 Let I and J be left 0-ideals for an Eichler order 0. Then I and 

J belong to the same ideal class if and only if there is an a E M := J I such that 

nr(a) = nr(I)nr(J), i.e., with NM(a) = 1. 

This is proven in [Pi5], with the computations valid for any quaternion algebra 

over a number field. A consequence of the proof is that I= Jj3 with f3 = afnr(J). 

To use this proposition, we will need to construct a basis for M = J I and 

then its 0-series. Alternatively, we can compute the normalized norm form N M = 

'll!1 (X) + W2 (X)O, where '11 1 is in Hermite Normal Form, and see to it that the a 1 ,1 

coefficient of '11 1 is not 1. Since this is time consuming, it is often worthwhile to first 

check if I and J have the same initial terms in their 0-series, and if this is so, to try 

again with another ideal. 

This concludes the algorithm to find representatives for left 0-ideal classes. We 

will see in a later chapter how this heuristic was actually implemented for the fields 

that we are interested in. Since we know in the case that we are interested in that 

T = H, we can also find representatives for type classes of maximal orders. 
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Brandt Matrices and Eigenforms 

Brandt matrices were classically constructed from a complete set of representatives of 

left 0-ideal classes of an Eichler order 0 of B', a definite quaternion algebra over Q 

with Ram(B') = { oo, p}. For such a B', [Pi5] and [Pi6] show that terms appearing in 

a so-called Brandt matrix series are actually modular forms (for Q) of a given weight 

and level p. 

Our goals for this chapter are as follows: 

1. Extend the definition of Brandt matrices B(e) (respectively, modified 

Brandt matrices B'( e)) attached to an Eichler order 0 of a quaternion 

algebra over certain quadratic fields F, where e = 0 ore E n>>O· These 

are matrices in Mat(H x H, Q) (respectively, Mat((H -1) x (H -1) , Q)) 

where H = H~, the class number of 0. 

2. Describe an (equivalent) adelic construction for Brandt matrices. 

3. Make explicit the adelic definition of Heeke operators on automorphic 

functions over quaternion algebras in order to define cusp forms. 

4. Show that this construction exactly corresponds to the adelic construc­

tion of the modified Brandt matrices, and thus 
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5. Conclude that a basis of eigenvectors for all the modified Brandt ma­

trices corresponds to the set of (normalized) weight 2 eigenforms of full 

level: such an eigenvector v corresponds to an eigenform f such that 

the eigenvalue of v with respect to B'(1r) is the eigenvalue off with 

respect to the p-th Heeke operator (where p = ( 1r) and 1r E R > >O), for 

every prime p < oo. 
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We shall continue assuming that F = Q(.Jffi) has properties (P1) h(F) = 1 and (P2) 

N(u) = -1 as in Theorem 5.2. 

8.1 Definition of Brandt Matrices 

There is a general notion of Brandt matrices found in [Pi5], in fact including a char­

acter, but we shall be content with defining it only in the sense that will be useful 

to us. In the notation there, our construction will just be for B0( e, N), which will 

correspond to cusp forms of weight 2. 

Let 0 be an Eichler order of level N = q1q2, H = HN , and {11, ... ,IH} a 

complete (ordered) set of representatives of distinct left 0-ideal classes. As mentioned 

in Proposition D.4, {1;;1 11 , •.. , lj; 1 IH} represent the left Or(h)-ideal classes, for every 

k E {1, ... , H}. In the notation of Section 6.1, let 

(8.1) 

which is simply the number of elements of nr 1 in the order Or(Ii)· Note that every 

unit of Or(Ii) is such an element multiplied by an element of U = nx . Define: 

Now, fore E R>>o, let 
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which is 1/ei times the number of elements in the left Or(Ji)-ideal /j1 !; of norm 

enr(I;)fnr(Ii)· Now define the e-th Brandt matrix for 0, B(e) = B(e, 0): 

Proposition 8.1 The construction of B(e, 0) depends only on the ordering of the 

ideal classes. Thus B(e, 0) is well defined up to conjugation by a permutation matrix. 

Proof. A calculation similar to the proof of Proposition 6.2 shows that c" r:-1 1 depends 
"' J t 

only on the left ideal classes of I; and Ij. Also, Or(Iia) = a-1 0r(Ii)a where a E Bx, 

so e(Ii) = e(Iia) (use nr(a-1 ,8a) = nr(,B)). Hence b;,i(e) depends only on the 

ordering /1 ... !H. • 
Proposition 8.2 If 0 and 0' are Eichler orders of level N, then there is a permu­

tation matrix M such that B(e, 0) = M-1 B(e, O')M for all e E R>>o ore= 0. 

Proof. Let 0 and 0' be two orders of level N. Then there is an a E G( A~) such that 

0' = aOa-1 • If / 1 .•. IH are a complete set of representatives of distinct left 0-ideal 

classes, then a/1 ... a!H is a complete set of representatives of distinct left 0'-ideal 

classes, and the corresponding right orders are still Or(Ii)· Thus e(Ii) = e(ali), 

and ce,(a/i)-1(al;) = ce,(Ij1a-1 )(a I;) = cu;-1 I;. Thus, again only the ordering of the Ii 

matters, and we obtain the desired conclusion. • 

In view of this, we shall denote by B(e) = B(e, N) = B(e, 0) "the" e-th Brandt 

matrix of level N, for some Eichler order 0 of level N. 

The following properties of the Brandt matrices are stated in (Pi5] and proven 

there for quaternion algebras over Q. The proofs carry over to our new definitions 

for F = Q(.Jffi) with F satisfying (Pl) and (P2). 
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Theorem 8.3 1. e ·b· ·(t) = e ·b· ·(t) J t,} ~ t },t ~ 

2. L::f:1 bi,i(O is independent ofi. Denote this value by b(e). Then b(e) is 

the number of integral/eft Oi ideals of norm,, where Oi = Or(Ii). Thus 

this number depends only on the level of Oi and not on the particular 

order. 

3. The Brandt matrices generate a commutative semisimple ring. 

8.2 Modified Brandt Matrices 

Define the H x H matrix A by: 

1 etfe2 etfe3 
1 -1 0 0 

A= 1 0 - 1 0 

1 0 0 0 0 -1 

Proposition 8.4 With A as above and' E 'R>>O or'= 0, 

[ 

b(e) 0 

AB(,, N)A-1 = 
0

0

:. 
B'(,, N) 

68 

Again, this is proven in [Pi5] with the proof carrying over in our case. The 

submatrix B'(O = B'(, , N) will be referred to as the '-th modified Brandt matrix of 

level N. 
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8.3 The Adelic Construction 

Shimizu [Sh] constructs a representation of the Heeke Algebra acting on the space 

of automorphic forms, and [HPS] show that this can be used to provide another 

construction of Brandt matrices. We follow the discussion in [HPS], and simplify it 

for the case that we are interested in. 

Let B = (-1,-1) over F = Q(vm) as before, with all our assumptions on F, 

0 a maximal order in B, and B(AF) the adelization of B with respect to 0: 

B(AF) ={a= (ap) E IlBP I aPE OP for almost all p}, 
p 

where the product includes the infinite primes. Every left 0-ideal is of the form Oa, 
where we interpret this product to mean that (global) lattice which is locally Opap 

for all the finite p. Let 

u = U(O) = {u =(up) E B(AF) I Up E a; for all p < oo}. 

Since &.ua:-1 is commensurable with U for all 0: E B(Ap), we can define the usual 

Heeke ring R(U,B(AF)) (see [Shi]) . Put 

Denote also by nr the usual extension of nr to B(Ap). For~ E R >>O, denote by 

T(O the element of R(U,B(AF)) which is the sum of all double cosets UaU such 

that aP E 0" for all p < oo and nr(a) E ~U(AF ). 

Denote by M = M 2 (0) the complex vector space of all continuous C-valued 

functions f(a) on B(AF ), satisfying 

J(uab) = J(a) 

for all u E U,a E B(Ap), and bE ax. We define a representation of R(U,B(AF)) 

on M as follows: For UyU E R(U, B(AF )), let UyU = UiUYi its decomposition into 
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disjoint right cosets. Now, let: 

p(UyU)f(a) = "Lf(y;a) 
i 

and extend p to all of R(U,B(AF)) by linearity. 

It is shown in [HPS] that the structure of M 2 ( 0) as a Heeke module is inde­

pendent of the chosen maximal order. 

If His the class number of 0, we have: 

H 

B(AF) = U Ux,xBx. 
-X=l 

Note that the h = Ox,x give a complete set of representatives of left 0-ideal classes. 

The elements of M are determined by their values at the x,x. For f E M, let 

h = f(x,x) . The map 

(8.2) 

gives an isomorphism of M into cH = cl EB ... EB CH, where each C; is just a copy 

of C. We can use the isomorphism 8.2 to give a matrix representation for p. For 

e E R(U, B(AF)), let 

B(O = [p;,AOki=l...H 

where Pi,j is the map from Ci to Ci which is the composition of the injection of Ci 

into cH, the inverse of 8.2, p(0, 8.2, and the projection of CH into C ;. 

Proposition 8.5 The definition of B(O yields the same matrix as that in 8.1 , as­

suming that we use the same maximal order 0 and set of left 0-ideal representatives 

l,x. 

This is proven in [HPS]. 
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8.4 Relationship with Cuspforms 

We shall now make explicit the isomorphism as Heeke modules between the spaces 

of Hilbert modular cusp forms and C-valued functions on the finite set X modulo 

constant functions, which was alluded to in Chapter 1. We will follow the construction 

of Hida ([Hi]), which is also discussed in [T). As before, we shall be interested only 

in the weight 2, full level case. 

In Hida's terminology, we let 0 be the maximal order which is locally M 2(Sp) 

for all finite ga. Let 

u = MG = II GL2(Sp), 
p<oo 

an open subgroup and the finite part of the adelization of 0, as in Chapter 1. Denote 

by S(U) the space of C-valued functions on X. Note that S(U) is just M 2 (0) in 

the adelic construction of Brandt matrices. The Heeke action on S(U) is that given 

in Chapter 1. Let inv(U) be the subspace of S(U) which are functions of the form 

f o nr, where nr is the (surjective) reduced norm map 

and f is a C -valued function on I~ (the finite ideles of F). However, this map, when 

restricted to the image of Bx , surjects into the totally positive elements ofF (this is 

the Theorem of Norms in [Vi), p. 80). Since inv(U) is already a subspace of S(U), 

we can view inv( U) as functions of the form 

where Cl+(F) is the ray class group of F. It is well known (see [Ma), p. 178) that the 

order h+(F) of this group is 2h(F) if the fundamental unit u ofF is totally positive 

and h(F) otherwise. Thus, in our case, where we have assumed (P1) and (P2), we 

see that h + (F) = 1, so inv( U) is nothing more than the space of constant functions 

on X. 
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The Heeke operators certainly fix inv(U). Thus, in order to examine the Heeke 

action on the space of cusp forms, we must decompose S(U) into an orthogonal sum 

of inv(U) and a space S2 (U) which is preserved by the Heeke algebra. 

Let us describe the Heeke action on inv(U). Let Tp be the ~-th Heeke operator, 

and f the function which is 1 on all elements of X. In Chapter 1, we saw the 

decomposition of 

( TI GL2(Sp)) gp ( TI GL2(Sp)) 
p<oo p<oo 

into disjoint right cosets. Note, though, that in this decomposition, we also obtain 

exactly the elements in B(AF) which yield, upon multiplying to the right of 0, the 

set of integral left 0-ideals of norm 1r, where 1r is a uniformizer for ~· Thus, T "(f) 

is the function with constant value equal to the number of such left ideals. 

We have seen in Proposition 8.4 that the normalizing matrix A transforms the 

Brandt matrices into two blocks consisting of a 1 X 1 cell containing b( 0 and the 

modified Brandt matrix B'(O. Since we noted that b(1r) is precisely the number of 

integral left 0-ideals of norm 1r, where 1r is a totally positive uniformizer for ~' a 

prime ideal of F, we see that B' ( 1r) precisely gives the action of the Heeke operators 

on the cusp forms! We summarize this as: 

Proposition 8.6 Let {v;} be a basis for cH-l consisting of eigenvectors for all the 

modified Brandt matrices. Then each v; corresponds to a (normalized) holomorphic 

Hilbert modular eigenform f; of weight 2 and full level whose eigenvalue with respect 

to the ~-th Heeke operator is precisely the eigenvalue ofv; with respect to B(1r), where 

1r is a totally positive generator for ~· 

Since we are interested in cusp forms which have rational eigenvalues, we will 

be looking for eigenvectors for the B'(e) which actually have coefficients in Z. In 

particular, we shall be factoring the characteristic polynomials of these matrices over 

Q to find rational roots. 



Chapter 9 

Calculations 

We shall now show that the algorithm that we constructed is effective for the cases 

that we are interested in. The routines in this algorithm were implemented in the 

Maple V programming environment and were ran on IBM-PC 386 and 486 machines, 

the SUN machines at Caltech and the GRAY Supercomputer at the Jet Propulsion 

Laboratory. 

9.1 An Appetizer 

We begin with an easy example, where F = Q( v'37) . For this field, the fundamental 

unit is 5 + 2() and the class and type numbers are both 2 . Thus there is an ideal 

class distinct from that of 0. Consider the field extension ]( = F[81], where 

c _l+i+j+k 
01 -

2 

is the element in the basis for 0 given in Section 4.2. Over F, 3 is a split prime, and 

- 3 = (3 + B)(4 - B), 

73 
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hence (3 + O)u is a totally positive generator for one of the prime over 3. Recall that 

81 is a 6th root of unity, satisfying 

x 2
- x + 1 = 0. 

But modulo 3, x2
- x + 1 = (x- 2)2

, so the J{ ideal 

~ = (3 + 0, 81 - 2) 

is the ramified prime dividing 3 + 0. Let J = 0~. We computed the first few terms 

of 0J and found that the smallest totally positive integer a + bO represented in this 

series is 2. Hence J and 0 are in distinct ideal classes. 

By looking at the 0-series for 0, one sees that for this field, 0 has 24 elements 

of nr 1. In fact , these elements are precisely the units of 1-{ C 0 (as in Chapter 4): 

{ 
. . ±1 ± i ± j ± k} ±1, ±z, ±J, ±k, 

2 
. 

The right order 0' of J has 6 elements of norm 1. Hence the normalizing matrix A is 

A=[1 4] 
1 -1 

This example has the property that the modified Brandt matrices B'(O are 

already 1 x 1 matrices! Thus the lone entry of B'(1r'), when 1r is totally positive 

uniformizer for ~' is already the ~-th eigenvalue of the unique eigenform in S2. We 

assemble below these eigenvalues for ~ = 1 ... 10 + 20 (in the lexicographic ordering 

in Proposition E.5) and the primes ~ = a+ bO ofF for 11 :::; a :::; 30. For the reader's 

convenience, we have put the entries for~ and ~u in two consecutive rows without an 

intervening line, when ~ is prime. 
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Table 9.1 Heeke Eigenvalues for the Brandt Matrices for B/Q( v'37) 

II ~ =a+ bO I ~ I p E Z** I Eigenvalue II 
1 1 
2 2 0 
3 3 -1 
4 -1 
4+0 11 -3 
5-0 -3 
5 5 - 3 
5+0 -3 
6-0 -3 
6 0 
6+0 3 
6+20 0 
7-0 3 
7 9 
7+0 47 3 
7 +20 5 
8-20 0 
8-0 47 3 
8 0 
8+0 -6 
8 +20 0 
8 +30 7 3 
9-20 5 
9-0 -6 
9 4 
9 + 0 1 
9+20 -6 
9 + 30 2 
10 - 20 0 
10- (;} 1 
10 0 
10 + (;} 101 - 3 
10 + 20 0 

** - this column is blank if ~ is not a prime in F 
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Table 9.1 (continued, for~ a prime) 

Heeke Eigenvalues for the Brandt Matrices for B/Q( v'37) 

II ~ = a + bO I ~ I p E Z I Eigenvalue II 

11 - 30 7 3 
11-0 101 -3 
11 + 20 107 -12 
13- 20 107 -12 
11 + 30 73 9 
14- 30 73 9 
13 13 -10 
13 + 0 173 -21 
14-0 173 -21 
13 + 30 127 -7 
16- 30 127 -7 
14 + 30 157 3 
17- 30 157 3 
14 +50 41 -3 
19 - 50 41 -3 
16 + 0 263 9 
17-0 263 9 
16 + 30 223 19 
19- 30 223 19 
17 17 30 
17 +50 149 15 
22 - 50 149 15 
17 + 60 67 - 12 
23- 60 67 -12 
19 19 2 
19 + 30 337 13 
22- 30 337 13 
19 + 40 293 -6 
23- 40 293 -6 
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Table 9.1 (continued, fore a prime) 

Heeke Eigenvalues for the Brandt Matrices for B/Q( v'37) 

II e =a+ bO I e I p E z I Eigenvalue II 
19 + 60 151 -8 
25-60 151 -8 
19 + 70 53 9 
26-70 53 9 
20 +30 379 15 
23-30 379 15 
22 + 70 197 3 
29-70 197 3 
23 23 30 
23 +50 419 15 
28-50 419 15 
23 + 80 137 18 
23 + 90 7 3 
25 + 0 641 -33 
26-0 641 -33 
25 + 30 619 -35 
28-30 619 -35 
25 + 70 359 -15 
26 + 30 673 -21 
29-30 673 - 21 
26 + 90 181 - 3 
28 + 30 787 23 
28 + 90 307 -7 
28 + 110 3 -1 
29 29 42 
29 + 20 863 24 
29 +50 761 - 33 
29 + 60 691 12 
29 + 90 373 -21 
29 + 110 71 - 3 



CHAPTER 9. CALCULATIONS 78 

The table of [Pin] also has an elliptic curve E over Q( .J37) which has good 

reduction everywhere. For this curve, [Pin] shows that E is isogenous to E u. A 

minimal Weierstrass equation for E is given by: 

E/Q(Vfi): y2 + y = x3 + 2x2
- (19 + 80)x + (28 + 110) 

We computed aP = 1 + N(~) - #EP for the ~ = (e) in the table above, and these 

values matched exactly with the eigenvalues of B'(e). 

Since the dimension of 5 2 is 1, there is a single normalized cusp form f. Thus 

f = f 0 t, hence f is the base change of an elliptic modular form of weight 2. This is 

consistent with E being isogenous to Eu. 

9.2 The Main Course 

We now tackle the field that we are interested in, F = Q( v'509). The fundamental 

unit ofF is u = 442 + 410 where 0 = 1±f09, and the class number His 24. 

In the algorithm of Chapter 7, we first find suitable a . The a which eventually 

led us to distinct ideal classes were i and: 

1 . 1 + 0 . ( 1 Ll)k 2 + 5z + -
2
-; + 1 - 2u ~ 

01 + 982 - 40 j - ( 4 + 50) k 

nr(a1) = 90 

k 

h(Q(v'-359)) 

nr(a2) 

-359 

19 

1 1 . . 7+0 2 + ( 4 - 20)z + 2; + -
2
-k 

01 + (7- 0)82 + (65- 30)j + (63- 20)k 

96 
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k - -383 

h(Q(v'-383)) - 17 

79 

From Appendix A, we know that R[Vk] has index 2 in the ring of integers of 

K, for either value of k above. Thus it suffices to consider a~ = 2ai - 1, i = 1, 2, 

which satisfy x2 
- k = 0, in order to generate prime ideals of J( which do not divide 

2, by Theorem 27 of [MaJ. We prefer a' since it has integer coefficients, and x 2 - k 

can easily be factored over residue fields R/ ty. Since h( F) = 1, we will be interested 

only in prime ideals of F which split in J(, as inert primes are principal. If x2 - k 

splits into two distinct factors (x- f3t)(x- /32 ) modulo ty =(a+ bO), then 

and it suffices to consider only one of the ideals I on the right, as they belong to the 

same K-ideal class. We have nr(OJ) =a+ b(}. 

Since the class number of 0 is rather large, we first used the 8-series of OJ for 

various prime ideals I in extensions J( = F(a) above. We chose to let a be between 

0 and 30, i.e., we looked at the 8-series from 1 to 30 + 20. If the 8-series of this 

OJ is distinct from those already encoutered, then we know that this new left ideal 

is in a different class. Using this method, we discovered that it was even sufficient 

to consider the 8-series up to 16 + (} to distinguish 23 of the 24 ideal classes. The 

following ideals I yielded these classes. The reason for the numbering chosen will be 

clear in Table 9.3, which shows the 0-series of J; = 01;. 
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Table 9.2 Prime Ideals I;= (a;+ b/}, ')';),where J; =OJ; have distinct 0-Series 

/i I / ; I p E z II 
/1 F 1 
12 F(ai) 61 -23 + 468- 10i - (1 + 8)j + ( -2 + 8)k 61 
h F(a1) 45 + 48 81 - 10i - (1 + 8)j + ( -2 + 8)k 173 
14 F(a1) 149 45 - 10i - (1 + 8)j + ( -2 + 8)k 149 
Is F(at) 53 +50 34 -10i- (1 + 8)j + (-2 + 8)k 101 
16 F(a1) 79 6- 10i - (1 + 8)j + ( -2 + 8)k 79 
17 F(a1) 53 -22 + 448 - 10i - (1 + 8)j + ( -2 + 8)k 53 
Is F(a2) 23 + 28 32 + ( -8 + 8)i - 4j - (7 + 8)k 67 
/g F(a1) 9+8 14- 10i - (1 + 8)j + ( -2 + 8)k 37 
lw F(a1) 10 + 8 7- 10i - (1 + 8)j + ( -2 + 8)k 17 
lu F(ai) 184 + 178 22- 10i - (1 + 8)j + ( -2 + 8)k 281 
/12 F(ai) 107 + 100 33- 10i- (1 + O)j + ( -2 + O)k 181 
/13 F(a2) 47 - 18 + 360 + ( -8 + O)i- 4j - (7 + O)k 47 
/14 F(a1) 31 -1 + 20- 10i- (1 + O)j + ( -2 + O)k 31 
/15 F(a1) 32 + 30 3- 10i - (1 + O)j + ( -2 + O)k 23 
/16 F(ai) 131 54- 10i- (1 + 8)j + ( -2 + O)k 131 
/17 F(a1) 59 -14 + 280- 10i- (1 + O)j + ( -2 + O)k 59 
/18 F(a2) 61 -26 + 520 + ( -8 + O)i- 4j - (7 + 8)k 61 
/19 F(i) 31 + 30 34 + i 89 
120 F(a1) 75 + 70 15- 10i- (1 + O)j + ( -2 + O)k 73 
/21 F(a1) 13 -3 + 60- 10i- (1 + O)j + ( -2 + O)k 13 
122 F(ai) 157 -6 + 120- 10i- (1 + O)j + ( -2 + O)k 157 
123 F(i) u + o 2+i 5 

The initial coefficients of the 0-series of the ideals J; are tabulated below. We 

remark that since 0 has 24 elements of nr 1, every coefficient in these 0 -series is a 

multiple of 24. Although we computed these coefficients up to 30 + 20, we observed 

that it was sufficient to consider the series up to 12 in order to uniquely determine a 

series, except in seven cases. J4 and J5 were indistinguishable up to 16. J6 became 

distinguished from J7 and J8 at 13, and the latter two were distinguishable at 14. 

Also, J13 and J14 were distinguishable at 13. As before, we use t he lexicographic 

ordering for ~ in Proposition E.5. Rows between double lines have the same initial 

coefficients in their 0-series, for the range indicated. 
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Table 9.3 Beginning Coefficients c{,J; of the 0-Series of J1 to J 23 

II 
Ideal: lf---,---,----,--,r---::-r----,---,-----~..-----:~r--= ~a +~b()--.--.--.---....,.....,.---------,---.--~~~ 

1 I 2 I 3 I 4 I s I 6 I 1 I 8 I 9 I 1o I 11 I 11 + o I 12 - o I 12 
Jl 24 24 96 24 144 96 192 24 312 144 288 0 0 96 
J2 0 24 0 24 0 96 0 24 0 144 0 0 0 96 
J3 0 0 24 0 0 24 0 0 96 0 0 0 0 24 

J4 0 0 0 24 0 0 0 24 0 0 0 0 0 96 
Js 0 0 0 24 0 0 0 24 0 0 0 0 0 96 
J6 0 0 0 0 24 0 0 0 0 24 0 0 0 0 
J7 0 0 0 0 24 0 0 0 0 24 0 0 0 0 
Js 0 0 0 0 24 0 0 0 0 24 0 0 0 0 

]g 0 0 0 0 0 24 0 0 0 0 24 0 0 24 
JlO 0 0 0 0 0 24 0 0 0 0 0 0 0 48 
Jn 0 0 0 0 0 0 24 0 0 24 0 0 0 24 
J12 0 0 0 0 0 0 24 0 0 24 0 0 0 0 

J13 0 0 0 0 0 0 24 0 0 0 48 0 0 0 
J14 0 0 0 0 0 0 24 0 0 0 48 0 0 0 

J15 0 0 0 0 0 0 0 24 24 0 0 0 0 48 
J16 0 0 0 0 0 0 0 24 0 24 24 0 0 24 
J17 0 0 0 0 0 0 0 24 0 24 48 0 0 0 

J18 0 0 0 0 0 0 0 24 0 24 0 0 0 0 

J19 0 0 0 0 0 0 0 48 0 0 0 0 0 0 

J2o 0 0 0 0 0 0 0 0 24 48 48 0 0 0 

J21 0 0 0 0 0 0 0 0 48 24 0 0 0 24 
J22 0 0 0 0 0 0 0 0 48 0 48 0 0 0 

J23 0 0 0 0 0 0 0 0 0 48 48 24 24 48 

Table 9.3 continued, for ideals with the same coefficients in the 0-series above: 

Ideal: I ~ = a + b() 
1 12 + o 1 13- e I 13 I 13 + e I 14- o I 14 I 14 + e I 15- e I 15 I 15 + e 

II ~: I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~I ~II 
J6 0 0 24 0 0 0 0 0 96 0 

J7 0 0 0 0 0 24 0 0 144 24 

Js 0 0 0 0 0 48 0 0 96 0 

J13 0 0 48 0 0 24 48 48 0 0 

J14 0 0 24 24 24 48 0 0 24 24 
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Table 9.3 continued, for J4 and J 5 • 

18 + 0 

2~ II 

After a lengthy search which did not yield another ideal with a distinct 8-series, 

we switched to using the necessary and sufficient conditions of Proposition 7.3. Let 

I be an ideal in S for some F[a] above. The 8-series of OJ is identical to that of 

exactly one of the left ideals above, say Js. We constructed a basis for I' = J-1 Js , and 

computed NI'(a) = 'lli1(X) + 'lli2(X)O, with '1111 in Hermite normal form. Proposition 

7.3 then says that OJ is actually in a different class as Js if and only if a 1 ,1, the 

leading term of '111 11 is greater than 1. (This is because 1 +bOis totally positive if and 

only if b = 0). Using this condition, we quickly determined that 

J24 = 0/24 with /24 = (46 + 50,334- 10i- (1 + O)j + (-2 + O)k) 

is the 24th left ideal class, with first few terms of 8-series identical to that of J 16• 

Here, 124 is a prime ideal in F[a1 ] dividing 829. 

It is also interesting to note that if the corresponding right orders of the left 

ideals above are 0 1 ••• 0 24 , then it turns out that these orders all have distinct 8-

series, as shown below. Furthermore, if Oi has basis {Ill . .. , 14 } it is easy to see that 

Of, the order with basis {If, .. . , 1rl (where a acts on coefficients), is once again a 

maximal order of B. Clearly, a permutes the order classes. Based on the 8 -series of 

Of , we observed that a actually fixes all the order classes, except two, and it is no 

surprise that these are 0 16 and 024· 
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Table 9.4 0-Series for Right Orders 

01 24 24 96 24 144 96 192 24 312 144 288 0 0 
02 6 0 24 24 36 0 48 24 78 0 72 0 0 
03 4 4 0 4 24 0 32 12 48 48 72 0 0 
04 2 0 6 6 14 8 18 8 24 12 38 0 0 
Os 6 0 6 12 36 0 48 36 6 0 90 0 0 
06 2 0 4 8 16 8 18 8 12 16 30 0 0 
07 2 0 8 4 16 2 12 22 32 20 32 0 0 
Os 4 4 0 4 16 16 16 36 28 40 56 4 4 
Og 2 0 4 10 16 4 10 12 22 26 36 0 0 
010 2 2 4 4 14 8 14 18 26 34 32 0 0 
On 2 4 4 8 10 16 14 22 30 34 34 0 0 
012 2 6 8 14 12 24 16 30 26 38 34 0 0 
013 4 4 0 12 24 8 16 36 20 64 48 0 0 
014 2 2 8 2 12 10 22 10 32 28 62 2 2 
015 2 0 4 8 18 8 10 10 16 24 30 0 0 
016 2 0 0 2 2 10 4 20 28 32 20 2 0 
017 2 4 0 8 12 2 20 24 22 46 50 0 0 
018 2 0 2 12 16 6 20 6 10 8 34 0 0 
019 12 36 12 84 72 36 96 180 12 216 144 0 0 
020 4 12 16 28 24 48 4 60 52 72 48 0 0 
021 2 4 0 6 10 8 24 14 26 36 38 0 0 
022 4 4 0 12 24 8 16 36 12 80 40 0 0 
023 4 4 16 4 44 16 32 4 52 44 48 0 0 
024 2 0 0 2 2 10 4 20 28 32 20 0 2 
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Now that we have concrete representatives of left ideal classes, we were able 

to explicitly construct the first few Brandt matrices B(O and the modified Brandt 

matrices B'(O, where we chose e to range up to 63 +50. This involved computing 

these coefficients for the 8-series of the 300 ideals J;1 Js, r 2:: s, due to the symmetry 

properties in Theorem 8.3. We also computed the characteristic polynomials of the 

B'(O and factored them over the rationals. We found that the polynomial of B'(19 + 

B) had three distinct rational roots and an irreducible factor of degree 20. Hence, 

although C 23 has a basis of eigenvectors for all the B'(O, only three eigenvectors 

have eigenvalues which are all rational. The (transpose of the) three eigenvectors Vi 

corresponding to these eigenvalues are: 

[0, 0, 0, 0, 1, 0, -2, -1, 1, 1, 0, -2, 0, 0, -3, 1, 0, 0, 0, -1, 2, 0, 2) 

[0, 0, 0, 0, -1, 0, 2, 1, -1, 1, 0, 2, 0, 0, -2, -1, 0, 0, 0, 1, -2, 0, 3) 

[45, 45, 25, 60, 23, 40, 34, 27, 18, 28, 30, 19, 35, 20, 31, 28, 20, 15, 25, 37, 51, 40, 31) 

The corresponding eigenvalues are shown in Table 9.5, below: 
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Table 9.5 Eigenvalues for Simultaneous Rational Eigenvectors for B' (e) 

II ~ = a + b(} I ~ I P E Z** I Vt I V2 I V3 II 
1 1 1 1 
2 -1 -1 -1 
3 3 -4 -4 1 
4 -3 -3 -3 
5 6 -6 4 
6 4 4 -1 
7 7 -6 -6 9 
8 7 7 7 
9 7 7 -8 
10 6 6 -4 
11 6 -6 4 
11 + (} 5 3 -2 -2 
12- (} 5 -2 3 -2 
12 12 12 -3 
12 + (} 29 0 10 -5 
13 - (} 29 10 0 -5 
13 13 1 1 26 
13 + (} 4 9 4 
14 - (} 9 4 4 
14 6 6 -9 
14 + (} 83 14 9 14 
15 - (} 83 9 14 14 
15 24 24 4 
15 + (} 113 11 6 11 
16- (} 113 6 11 11 
16 5 5 5 
16 + (} 30 0 10 
17 - (} 0 30 10 
17 - 6 - 6 49 
17 + (} 179 0 25 10 
18- (} 179 25 0 10 
18 - 7 - 7 8 
18 + (} 8 3 8 
19- (} 3 8 8 
19 19 -12 -12 38 
19 + (} 3 8 -12 

** - this column is blank if ~ is not a prime in F . 



CHAPTER 9. CALCULATIONS 86 

Table 9.5 (continued for~ a Prime) 

Eigenvalues for Simultaneous Rational Eigenvectors 

II ~ = a + bO I ~ I P E Z I V1 I V2 I V 3 II 
20 + 0 293 16 26 -9 
21-0 293 26 16 -9 
22 + 0 379 -20 20 -10 
23-0 379 20 -20 -10 
23 + 20 67 -7 8 -2 
25- 20 67 8 -7 -2 
25 + 0 523 36 11 36 
26-0 523 11 36 36 
25 + 20 167 22 -8 12 
27- 20 167 -8 22 12 
29 + 0 743 44 -36 14 
30-0 743 -36 44 14 
31 31 -18 -18 57 
32 + 0 929 40 10 30 
33- 0 929 10 40 30 
33 + 20 647 18 43 -2 
35- 20 647 43 18 -2 
34 + 0 1063 4 -1 34 
35-0 1063 -1 4 34 
35 + 20 787 27 32 -48 
37- 20 787 32 27 - 48 
37 + 0 1279 -20 25 -40 
38-0 1279 25 -20 -40 
39 + o 1433 -71 29 54 
40-0 1433 29 -71 54 
39 + 20 1091 60 0 0 
41 - 20 1091 0 60 0 
40 + 30 577 -27 33 3 
43-30 577 33 - 27 3 
41 41 -18 -18 82 
41 + 30 661 -20 -10 - 25 
44-30 661 -10 - 20 -25 
43 + 20 1427 63 -52 - 62 
45-20 1427 -52 63 -62 
45 + 20 1607 42 57 - 48 
47-20 1607 57 42 -48 
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Table 9.5 (continued for f. a Prime) 

Eigenvalues for Simultaneous Rational Eigenvectors 

II f. = a + bO I f. I P E Z I V1 I V 2 I V3 II 
45 + 40 173 9 -1 - 11 
49 - 40 173 -1 9 -11 
47 47 44 44 89 
47 + f) 2129 30 - 75 15 
48- f) 2129 - 75 30 15 
50+ f) 2423 -24 - 69 -24 
51- f) 2423 - 69 -24 - 24 
51 + 40 773 - 24 -4 - 29 
55-40 773 - 4 -24 -29 
53 53 -19 -19 26 
54+ f) 2843 - 6 -61 -46 
55- f) 2843 - 61 -6 - 46 
54+ 50 11 - 2 3 - 2 
59- 50 11 3 -2 - 2 
55+ f) 2953 81 -99 6 
56- f) 2953 -99 81 6 
55+ 40 1213 - 46 34 - 41 
59 - 40 1213 34 -46 - 41 
56+ 30 2161 - 35 -55 - 85 
59-30 2161 - 55 -35 -85 
56+ 50 241 2 - 8 2 
61-50 241 - 8 2 2 
57 + 50 359 - 6 9 -36 
62 - 50 359 9 -6 -36 
58+ 50 479 - 24 -4 -4 
63-50 479 - 4 -24 -4 
59 59 -22 -22 38 
59+ f) 3413 -106 -11 - 51 
60- f) 3413 - 11 -106 - 51 
60 +f) 3533 6 -84 66 
61- f) 3533 - 84 6 66 
61 61 - 3 -3 122 
62 +f) 3779 30 0 90 
63- f) 3779 0 30 90 



Chapter 10 

The Main Result 

10.1 Introduction 

We are now in a position to complete the proof of our main result. Let F = Q( v'50§), 

R the ring of integers ofF and () = 1±f09. We recall that the curve E / F described in 

Chapter 2 has good reduction everywhere, is not isogenous to its Galois conjugate Eu, 

and does not possess potential complex multiplication. We shall presently complete 

the proof of Theorem 3.1, that is, show that there is a holomorphic Hilbert modular 

eigenform f of weight 2 and full level over F , with rational eigenvalues, such that f 

does not come from base change of a cusp form over Q. Recall that we have already 

shown that f =f f 0 E for any quadratic character E of F corresponding to a degree 2 

imaginary extension of F. We shall also show that the Euler factors in the L-series 

of E and fare equal for all primes in E , where: 

E = { 7r = a + b() E R > > 0 I 7r is a prime of F and 1 < a < 64} . 

88 
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10.2 The Eigenform 

Recall that we have found that there are exactly three simultaneous eigenspaces 

< v; >, i = 1 ... 3, for all the Brandt matrices B'(e) of CJ, such that the v; can be 

chosen to have entries in Z. By Proposition 8.6, v 1 corresponds to a holomorphic 

Hilbert modular eigenform f of weight 2 and full level, whose eigenvalue with respect 

to the p-th Heeke operator is theeigenvalueofv1 with respect to B'(1r), where p = (1r) 

and 7r E R>>O· 

10.3 Proof of Theorem 3.1 

Now we conclude the proof of Theorem 3.1. Let f be as above. Since the entries of v 1 

are integral and all the B'( 1r) have rational entries, the eigenvalues of v 1 with respect 

to all the B'( 1r) are rational. Hence the eigenvalues off with respect to all the Heeke 

operators T"' are also rational, for all primes p. 

Next, iff came from the base change of a cusp form over Q, then 

for all primes p. Thus to show that f does not come from base change, it suffices to 

show that there is a prime p which does not satisfy the above equality. For a prime 

1r E R>>O, denote by a'll"(v1 ) the eigenvalue of v 1 with respect to B'(1r). We observe 

that 

where 1r = 11 + fJ, and 7ru = 12 - fJ. Since 

and 

we get our desired contradiction. This concludes the proof of Theorem 3.1. 
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10.4 The Comparison Theorem 

We now compare the curve E and the cusp form f corresponding to v 1 : 

Theorem 10.1 For the elliptic curve E and the Hilbert modular eigenform f corr-e­

sponding to the eigenvector v 1, we have 

for all primes p = ( 1r) and 1r E :E. 

The proof of this theorem is by direct computation. For the primes 1r as de­

scribed in the theorem which are split, we determine n such that ( 7r) = (p, n + vm) ' 
where p = N(1r), and reduce E using Proposition E.7. We then compute 

as in Chapter 2. A similar procedure is done for the primes 1ru = (p, -n + .Jffi). 

For inert primes p = (p), the coefficients are simply reduced mod p and similar 

computations done to count points on the reduced curves. In all cases, ar;(E) = ar;(f) . 
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10.5 Concluding Remarks 

The elliptic curve 

E' /Q( v'sQ9) : y2 + (1 + O)xy + (1 + O)y 
x 3 + ( -4051846 + 3439850)x + 4312534180 - 3660733000 

found in Cremona's paper [Cr] has ap(E') equal to the eigenvalue of v 3 with respect 

to B'(n'), with 1r E E. 

This accounts for all three known elliptic curves over F with good reduction ev­

erywhere and the only three normalized eigenvectors for the modified Brandt matrices 

which have rational eigenvalues. 

Finally, we note that to any holomorphic Hilbert modular eigenform f of weight 

2, we can attach, as in [T] and [BR], a 2-dimensional £-adic Galois representation 

(where .e is a prime in the field Q({ap(f)}) = Q): 

o-e(f) : Gal(Q/ F) -t G12 (Qe) 

It is known that L(o-e(f),s) = L(f,s). Our Theorem above shows that the local Euler 

factors L'lr(o-e(f),s) and L'lr(o-e(E),s) are equal for a large number of primes p = (1r) 

of F. 

A method of Faltings and Serre, as described in [Li] , gives a way to determine 

if two diadic representations of Gal(Q/ I<) are isomorphic. However, this method is 

not applicable in our case, since it requires the traces of Frobenius a"' to be even. As 

we can see from the tables, some of the traces are odd. In the future, we plan to try 

to extend this method and remove this restriction. 

To conclude, we make the following: 

Conjecture 10.2 The Euler factors of L(E, s) and L(f, s) are equal at all primes. 



Appendix A 

Number Fields and Quadratic 
Fields 

The main sources of this Appendix are [Ma], [CF] and [BS]. 

A number field :F = Q[a] is a finite-dimensional field extension of Q, for some 

root a of an irreducible polynomial of Q[x] in some fixed algebraic closure Q . We 

shall denote by N = N~ and Tr = Tr~ the (absolute) norm and trace functions 

from :F to Q . 

A.l Ring of Integers 

For any :F, its ring of integers, S, is defined to be the set of elements of :F which 

satisfy a monic polynomial with integer coefficients. We shall refer to the elements of 

S as algebraic integers or simply integers when the context is clear; we may also call 

S a number ring. It is well know that this set in fact constitutes a ring, and it is also 

a Dedekind domain with fraction field :F. Its units are those elements of norm ±1. 
The traces and norms of algebraic integers are rational integers. 

Henceforth, :F will denote an arbitrary number field, and S its ring of integers, 

92 
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unless otherwise specified. 

Let :F have degree n over Q. A module in :F is a set M which consists of all 

Z-linear combinations of a finite set of generators J.lb ... J.lk· A set of generators is 

a basis for M if it is linearly independent over Z . Every module M has a basis, and 

any basis forM has the same cardinality. A full module is one which has a basis of n 

elements. An order of :F is a full module which contains 1 and is a ring. The ring of 

integers of :F is the maximal order of :F, that is, every order of :F is contained in S. 

For this reason, some texts use the notation O:r to denote S, but in this thesis, the 

symbol 0 will denote an order in a different object . 

Let { a 1 , ... , an} be an ordered basis for S. Any other basis for S is related to 

this basis via a transformation in SLn(Z ). Therefore the value 

disc(:F) = disc(S) = det(Tr(a;aj)i,j=L .. n) 

is independent of the basis, and we shall call this the discriminant of :For S. 

We shall be particularly interested in quadratic fields F = Q( fo), where m 

denotes a squarefree integer. We denote by a the (unique non-trivial) automorphism 

ofF which sends fo to -fo. We shall use au to denote the image of a under a. 

As usual, the square root of x > 0 will be taken to be positive, and that of x < 0 will 

be~i. 

It is known that for quadratic fields Q( fo), its ring of integers nand discrim-

inant are given by : 

{ z + Z fo if m 2,3 mod 4 n 
Z + ZfJ, () _ Hfo if m_l mod 4 - 2 

disc(R) { 4m if m _ 2, 3 mod4 
m if m = 1 mod 4 

From now on, whenever we assume that m = 1 mod 4, we will let () = H:(ffi. 
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In this case 

if a= a+ bfJ, a, bE Q, we have 

(
m -1) aa =(a+ b)- bfJ, N(a) = a2 + ab- b2 

4 
, Tr(a) = 2a + b 

A.2 Ideal Class Group 

For any F, the set of ideals of S form a free monoid under multiplication. The 

ideals of S shall be called integral ideals. Two integral ideals I and J are equivalent, 

symbolically I'"" J, if there exist principal integral ideals (a) and ((3), i.e., a, f3 E S, 

such that (a)I = (f3)J. This is an equivalence relation, hence it is possible to define a 

multiplication of equivalence classes of ideals. It is well-known but not obvious that 

there are only a finite number of equivalence classes of ideals under this relation, and 

that these classes from a finite group, Cl(F), called the ideal class group of F. Its 

cardinality, which we denote by h(F) or h(S), will be called the class group order. 

Most authors say ideal class number, but this term will be used differently in this 

thesis. The principal ideals, Cl(F)*, clearly form the identity class. The inverse of 

the class of I is the class of any ideal J such that I J is a principal integral ideal. 

Hence S is a principal ideal domain (PID) if and only if h(F) = 1. It is also known 

that S is a PID if and only if Sis a unique factorization doman (UFD). Every ideal 

can be generated over S by two elements, and in fact one of them can be chosen to 

be a rational integer, or any fixed non-zero element of the ideal. 

We call J a fractional ideal of :F if J is a set of the form a I, this time for some 

a E ;:x and I a nonzero integral ideal. This generalizes the concept of an integral 

ideal. Define J - 1 , the inverse of J, by: 

J-1 = { a E F I aJ C S }. 

Then JJ-1 = S, and the fractional ideals Fr(F) ofF form a group under multiplica­

tion, with S as the identity. We also see that Cl(F) is isomorphic to the the quotient 

Fr(F)/Pr(F), where Pr(F) is the subgroup of principal fractional ideals. 
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If I C J are ideals, then I-1 :::) J-1 . The fractional ideal 

S* = { a E :F I Tr( aS) C Z } 

contains S, so diff(S) = (S*)- 1 is an integral ideal, called the absolute different of :F. 

Since S is a Dedekind domain, every ideal I of S is uniquely expressible as a 

product of prime ideals of S. Hence, every fractional ideal J can be expressed as a 

finite product: 

where the g:J; are distinct prime ideals and n; E Z. When J is an integral ideal, the 

n; are non-negative. 

Every integral prime ideal g:J appears in a factorization of the principal ideal 

(p) = pS for some unique rational prime p. We say that g:J divides p, or equivalently 

g:J 2 (p) . We say that a rational prime pis inert if (p) is a prime ideal of S . The exact 

power of g:J in the factorization of (p), denoted e := e(g:J I p), is called the ramification 

index of g:J over p. If e > 1 for some g:J dividing p, we say that p is ramified. The 

primes p which are ramified are precisely those which divide disc(:F). The residue 

field Sjg:J is a finite field extension of Zjp. The dimension of Sjg:J over Zjp, denoted 

f := j(g:J I p), is called the inertial degree of p over p. Define the norm of p by 

N(p) = q = pf, and extend this definition multiplicatively to any integral ideal. 

If [:F : Q] = n, P1 ... Pr the primes dividing p E Z, e1 ... er and ft .. . fr the 

corresponding ramification indices and inertial degrees, then 

r 

2::: eJ; = n. (A. I) 
i=l 

The above formula implies that a prime ideal g:J of the ring of integers of a 

quadratic field F is one of three kinds: 



APPENDIX A. NUMBER FIELDS AND QUADRATIC FIELDS 96 

1. p = (p) (inert primes) ; 

2. pp11 = (p) (split primes) ; 

3. p 2 = (p) (ramified primes) ; 

A.3 Valuations, Metrics and Completions 

We now consider discrete valuations and metrics on an arbitrary field :F. A map 

v : :F --+ Z U CX> is called a discrete valuation of :F if: 

1. v maps yx onto Z. 

2. v(O) = CX>. 

3. v(x + y) ~ min(v(x), v (y)) with strict inequality if v(x) =/- v(y ). 

A map I 1: :F--+ R is called a metric of :F if for all x, y E :F: 

1. I x I~ 0 and I x I= 0 ~ x = 0. 

2. I xy 1=1 x II Y I· 

3. There is a constant C E R such that 11 + x Is C if I x Is 1. 

We shall say that two metrics I 111 I b on :F are equivalent if they define the 

same topology on :F. This is so if and only if there is a c > 0 such that for all 

x E :F, I x l1 =I x 12· Every valuation is equivalent to one where we can take C = 2 

in Axiom 3. This gives us the usual triangle inequality: I x + y I S I x I + I Y I· 
A metric is discrete if there is a 8 > 0 such that 1 - 8 < I x I < 1 + 8 implies that 

I x I= 1. A metric is non-archimedean if one can take C = 1 in Axiom 3; this is so if 

I x + y I S max(l x I, I Y 1). 
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Now we focus on a number field :F. For a prime ideal p of S, one can consider 

the p -adic valuation vP on :F. Assume that N(p) = q = pf. If a E :Fx , we let 

vP(a) = exact power of pin the factorization of (a). 

Define vp(O) = oo. This makes v"' a discrete valuation. We can also define a p-adic 

metric on :F: 

This defines a discrete non-archimedean metric. 

It is known that every field on which a metric is defined can be embedded in 

its completion, which is a (unique) minimal field that is complete with respect to this 

metric. Denote by :Fp the g:J-adic completion of :F with respect to the given p-adic 

m etric. The ring of integers of :F"', denoted by Sp, is defined by 

a set which is in fact a discrete valuation ring, with fraction field :Fp· We shall denote 

also by p the maximal ideal of Sp, which consists of those a E Sp with absolute value 

strictly less than 1. 

:Fp is a finite extension of Qp, the p-adic completion of Q under the usual p-adic 

metric. We shall only be interested in local fields which are completions of a number 

field, so we shall henceforth symbolize a (non-archimidean) local field by :Fp. 

We shall denote by 1r"' a uniformizer for S"', that is, g:J = ( 1r "') . The units of 

S"' are those elements with absolute value exactly 1. The residue field kp = Spj(1rp) 

is an extension of Zjp of degree f. The canonical map Sp -t kp will be denoted by 

- . -, I.e., r -t r . 

We can also consider field embeddings oo; 

Each oo; defines an archimedean metric: 

I a loci = I oo;(a) I 

:F-tC, i = l, . .. ,n = [:F : Q]. 
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where the I I on the right side above is defined by: 

for x,y E R, I xI= max (x,-x), I x+iy I= )x2 +y2 

The completion of :F that such a metric defines is isomorphic to either R or C. 

We say that oo; is a real embedding if the completion it defines is R , and non-real 

otherwise. Non-real embeddings come in complex conjugate pairs oo; and oo; = cooo;, 

where c is complex conjugation. Thus if r is the number of real embeddings of :F 

and s is half the number of non-real embeddings, then n = r + 2s. A number field 

:F is said to be totally real if every embedding oo; of :F yields R as its completion. 

We can also speak of totally positive elements of :For S, which are those a such that 

oo;(a) > 0 for every embedding oo; : :F--+ R. We denote these sets by :F>>O and 

S>>O· Similarly we can speak of totally negative elements of :For S. 

We denote by M:r the set of inequivalent metrics on :F. The non-archimedean 

me tries will be denoted by M]:. and the archimedean ones by M?. It is known 

that these two classes are in 1-1 correspondence with the distinct primes in S and 

the distinct embeddings of :F in C, respectively, the correspondence constructed as 

above. Hence we shall also refer to them as the finite primes, symbolically g:J < oo, 

and infinite primes, respectively. As usual, the phrase "for almost all g:J" means "for 

all but finitely many g:J." 

We denote by A:r the ring of adeles of :F. This consists of all vectors (aP)PEM.r 

where aP E F p and aP E SP for almost all p . Addition and multiplication is defined 

componentwise. We have A :r = Ac; x A~, where Ac; are those adeles with 1 at the 

finite primes, and A~ those with 1 at the infinite primes. The units of A :r, denoted 

by I:r, is called the idele group of :F. :F and :Fx are embedded diagonally in A:r and 

I.r, respectively. These are called the principal adeles and ideles, respectively. 

Dirichlet 's Unit Theorem states that for any number field :F, the units, U , of 

the ring of integers S is a finitely generated abelian group. The torsion part of U is 
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the cyclic group of roots of unity in :F. The torsion-free part of U is generated by 

r + s- 1 elements of U. 

The focus of this thesis is totally real quadratic fields. Henceforth, unless oth­

erwise specified, m will always be a positive squarefree rational integer, F = Q( Vffi) 
and R the ring of integers ofF, U its units. From the above, the torsion free part of 

U is generated by a single element u > 1, which will be called the fundamental unit 

of R. In other words, every unit is of the form ±uk for some k E Z. We shall see in 

Appendix E that u can be effectively computed, and analytic formulas are available 

to effectively compute h(F), based only on m and u. 

A.4 Extensions 

Let :F' I :F be a finite extension of number fields. We can define objects for this 

extension analogous to some of those we saw above. To begin, S' and p' will denote 

the corresponding integers and primes in :F'. The relative discriminant, disc:' will 

be defined using the relative trace and a basis for S' over S, which is unique up to a 

square in U. Every p ' appears in the factorization of the ideal in S' generated by a 

unique p. We can define relative quantities e(p' I p), f(p' I p). The norm N(p') = pf 

is now an integral ideal inS. The sum in (A.1) will now equal the degree of :F' over 

:F. The relative different diff(S' IS) is the integral ideal which is the inverse of the 

dual fractional ideal 

(S')* = {a E :F' I Tr;'(aS') C S} 

More importantly, when :F' I :F is Galois, we can define certain subgroups of 

G = Gal(:F' I :F). Let p' I p . Define the decomposition group of p ' over p by 

D p' = D ( p' I p) = { (J E G I ( p')" = p' } . 

Define the inertia group of p' over p by 

Ip' = I(p' I p) = { u E G I a" =a mod p ' V a E S' }. 
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These are subgroups of G with JP, C Dp'· Furthermore, the primes over p are 

permuted by the elements of G, and the quantities e and f are independent of the 

prime over p. 



Appendix B 

Elliptic Curves 

The main source of this Appendix is [Si]. 

B.l Varieties and Morphisms 

Let :F be a perfect field. Denote affine n-space over :F by A n[:F] or just An, defined 

to be the set of n-tuples over :F. The set of :F-rational points of An are those with 

coordinates in :F. They are precesely those points all of whose coordinates are fixed 

under the coordinatewise action of all a E Gal(:F /:F). 

A subset Y of An is an affine algebraic set if it is the set of common zeroes of 

a set of polynomials T C :F[X], X = (x1 .•• Xn); we write Y = V(T). For any subset 

Y of An, define 

I(Y) = { f E A I f(P) = 0 \;f p E y }, 

the ideal of Y. Define :F[Y] = :F[X]/ I(Y), the affine coordinate ring of Y. We say 

that Y is defined over :F, denoted Y/ :F, if I(Y) can be generated by polynomials in 

:F[X]. If so, let I(Y/:F) = I(Y) n :F[X], and :F[Y] = :F[X]/ I(Y/:F). Y is a variety if 

I(Y) is a prime ideal in :F[X]. For a variety Vj:F, the quotient field of the integral 

domain ;::-[V] is denoted :F(V), and called the function field of V. The dimension of 

101 
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V is the transcendence degree of F(V) over F. 

If / 1 ••. fm generate I(V), then Vis smooth at P E V if them x n matrix 

(a fd ax i( P) h~i:~m,t~i~n 

has rank n- dim(V). V is smooth if it is smooth at every point P. Let 

Mp = { f E F[V] : f(P) = 0 }. 

The local ring of Vat P, F[V]p , is the localization of F[V] at Mp. The elements of 

F[V]p are said to be regular or defined at P. 

Iff is an irreducible polynomial in F[X], we define the affine curve off in An 

to be Y = V(f) = V( {f} ). It is a variety with dimension n- 1. 

Projective n-space over F will be denoted by pn. It is the set of equivalence 

classes of non-zero points (xo .. . xn) in A n+t under (x0 ••• xn) "' (Ax0 ••• Axn) for 

some A E Fx. An ideal I of F[X) = F[x0 ••• Xn] is homogeneous if it is generated by 

homogeneous polynomials. A projective algebraic set V is of the form: 

V = V(I) = { P E pn I f(P) = 0 V homogeneous f E I} 

for a homogeneous ideal I. For such a set, its homogeneous ideal I(V) is the ideal in 

F[X] generated by 

{ f E F[X]I f is homogeneous and f(P) = 0 V P E V} 

An algebraic set V is defin ed over F, denoted Vj F , if I(V) can be generated by 

homogeneous polynomials of F[X]. V is a projective variety if I(V) is a prime ideal 

of F[X]. 

If Vj F is a projective variety and we choose An C pn, then V n An is an 

affine variety. We define the coordinate ring, function field and dimension of V to 

be those of V nAn when this set is non-empty. For a point P E V, choose An with 
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P E An C pn. We say that V is smoooth at P if V n An is smooth at P. Similarly, 

the local ring of V at P is that of V nAn at P . 

Let Vi, V2 c pn be varieties. A rational map from Vi to V2 is of the form 

<P [fo, .. ·, fn], 

where fo, .. . fn are such that \/ P E Vi where all fi are defined, 

</J(P) = [fo(P), ... , fn(P)] E V2 

Note that it is not necessary for <P to be defined at all the points of Vi. We say that 

<P is defined over :F if there is a g E F(Vi) such that g fi E F(Vi) \/ i. 

A rational map </J, as above, is regular or defined at P E Vi if there is a g E F(Vi) 

such that: 

2. for some i, (gf;)(P) =I 0. 

A morphism is a rational map which is regular at every P. Two varieties Vi and 

V2 are isomorphic if there are morphisms <P : Vi ---t v2 and 1/J : v2 ---t vl such that 

1/J o <P = idv1 and <Po 1/J = idv2 • 
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B.2 Weierstrass Equations 

Let :F be a field with algebraic closure :F. An elliptic curve E over :F is a pair (E, 0), 

where E is a curve of genus 1 and 0 E E(:F). The notion of the genus of a curve 

can be found in [Si), but we will not need it here. For brevity, we shall sometimes 

say curve to mean an elliptic curve. We refer to 0 as the basepoint, origin or identity 

of the curve. Note that for any extension :F' I :F, E is again a curve over :F'. Every 

curve is given by a Weierstrass equation: 

Theorem B.l Let E be an elliptic curve defined over :F. 

1. There exist functions x, y E :F( E) such that the map 

<P E --t pz 

<P [x, y, 1] 

gives an isomorphism of E I :F onto a curve gwen by a Weierstrass 

equation 

(B.1) 

with coefficients a11 • • . a6 E :F; and such that <P(O) = [0, 1, 0). We refer 

to x and y as the Weierstrass coordinate functions of E. 

2. Any two Weierstrass equations for E as in (B.l) are related by a linear 

change of variables of the form 

X = u2X' + r (B.2) 

with u,r,s,t E :F,u =I 0. 

3. Conversely, every smooth cubic curve C given by a W eierstrass equa­

tion as in (B.l) is an elliptic curve defined over :F with basepoint 

0 = [0, 1, 0). 
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Note that [0, 1, 0] is the only point on the infinite line, and we may regard the 

rest of E as lying in the affine plane z = 1. We define some other quantities for E: 

b2 - ai + 4a2 

b4 - 2a4 + a 1a3 

b6 a~+ 4a6 

bs 2 4 2 2 a 1a6 + a2a6- a1a3a4 + a2a3 - a4 

L\ - -b~bs - 8b~ - 27b~ + 9b2b4b6 

The quantity L\ is called the discriminant of E. We say that E is non-singular if and 

only if L\ =f 0. Under a change of coordinates of the form (B.2), we get u12L\' = L\. 

B.3 Galois Conjugate 

Suppose that :F' I :F is a Galois extension with Galois group G and E is defined over 

:F' with a given Weierstrass equation. Then for a E G, we can define the a-conjugate 

of E as the curve: 

This is a curve with discriminant L\ u, so it is nonsingular whenever E is. 

B.4 Minimal Equations; Reduction Mod p 

Let :Fp be a finite extension of QP, and let SP be its ring of integers, 7rp a uniformizer, 

vp its normalized valuation. A Weierstrass equation for a curve E I :Fp is said to be 

minimal if vp(L\) is minimal subject to a 1 .. . a6 E SP. A minimal equation always 

exists, and is unique up to a change of coordinates of the form (B.2), this time with 

r,s, t E S, u E sx. If ai E Sand vp(L\) < 12, then the equation is minimal. 
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Given a minimal equation for E, one can reduce the coefficients modulo 1r P to 

obtain an equation over the finite residue field kP : 

The curve E I kp will be called the reduction of E modulo 7r "'' or simply the 

reduced curve at 1rP' It may or may not be singular. We emphasize that reduction is 

defined only for a minimal equation. We say that E I :Fp has good or stable reduction 

over :Fp if the reduced curve E I kP is non-singular. This definition is independent of 

the choice of minimal equation. 

Now let :F be a number field with ring of integers S. For a curve EI:F given 

by a Weierstrass equation (B. I), we can identify a 1 ... a 6 as elements of :Fp for all 

vP E M~, so we obtain a minimal Weierstrass equation for E at every :Fp given by: 

with discriminant l\p. The minimal discriminant of E I :F, VEjF, is the ideal of S 

given by 

VE/F = II pvp(.C:.p). 

VpEMj,. 

It is clear that vp(L\p) = 0 for almost all p. A global minimal Weierstrass equation for 

E I :F is a Weierstrass equation where a1 ... a6 E S and L\ = VE/F· Such an equation 

is already minimal for all Vp E M~. It exists only under certain conditions which we 

shall now describe. 

Suppose we have any equation for E given by a 1 . . . a6 with discriminant .6. . For 

every Vp EM~ let 

be a change of coordinates giving the minimal equation for p . Again, the discriminants 

are related by L\ = u:,2 l\P, so we can define a fractional ideal a.c:., given by: 

a.c:. = II r-vp(up). 

VpEMj,. 
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Hence 1JE/:F = (~)a1_2 • The ideal class of aA in :F is independent of the Weierstrass 

equation chosen for E, and we call the class aA the Weierstrass class of EjF. 

Proposition B.2 A global minimal Weierstrass equation for E/:F exists if and only 

if aA = (1), t.e., aA is principal. 

In particular, if h(:F) = 1, a global minimal Weierstrass equation for any curve 

E always exists. We shall be interested in finding the minimal equation of curves over 

quadratic fields with class number 1 which have good reduction everywhere, that is, 

for all p < oo. These are precisely the curves having~ E U. 

B.5 Group Law 

It is possible to define an addition law on the points of E which will make E an 

abelian group with identity 0 as follows: Let P, Q E E . Let L be the line in P 2 

joining P and Q (or the tangent line toE at P if P = Q) . By Bezout's Theorem, L 

intersects E at exactly 3 points, counting multiplicities, since E has degree 3. Let R 

be the third point of intersection of L with E. Let L' be the line joining R and 0. 

Then P + Q is the third point of intersection of L' with E. 

Note that under this addition law, R is the inverse of P+Q, i.e., (P+Q)+R = 0. 

When the coefficients a 1 ... a6 and some affine coordinates of P and Q are given, 

explicit formulas for P + Q can be obtained. 

B.6 Isogenies; Endomorphism Ring 

Let (Ell 0 1) and (E2, 0 2 ) be curves. An isogeny between E1 and E2 is a morphism 
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satisfying ¢>( 0 1 ) = ( 0 2 ). We say that E 1 and E 2 are :F -isogenous if there is a nontrivial 

isogeny ¢>: E 1 ~ E2 , i.e., with ¢>(EI) =/= 0 2 , and ¢>is defined over :F. It is possible for 

two curves not to be :F-isogenous, but :F' -isogenous for some extension :F' I :F. If E 

and E' are :F-isogenous, then the number of points on the reduced curves E I~ and 

E' I~ are the same for all primes ~ < CXJ of :F. 

Given a nontrivial isogeny ¢> : E1 ~ E2 , there is a notion of a unique nontrivial 

dual isogeny J> : E2 ~ Eb with certain properties. Any non-constant rational map 

between curves is surjective, so the composition of non-constant isogenies is a non­

constant isogeny. Hence, being "isogenous" is an equivalence relation. 

Under the addition law, addition and negation define morphisms of the curve. 

Hence, we can can also define, for two elliptic curves E1 and E2 : 

which will be an abelian group under pointwise addition. 

If E 1 = E2 then isogenies can also be composed. Thus for a curve E we can 

define 

End( E)= Hom(E, E) 

which is a ring with addition as given above and multiplication given by composition. 

B.7 Complex Multiplication 

The addition law allows us to define or any integer n, multiplication by n: 

[n]:E~E 

defined as follows: If n > 0, then 

[n](P) = P + P + ... + P (n times) 
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whereas if n < 0 then [n](P) = [-n]( -P), and [O](P) = 0. 

Multiplication by n is an isogeny and is obviously a group homomorphism. Also, 

[n]E f 0 if n f 0. Thus we can think of Z as contained in End(E). There are only 

three possibilities for the structure of End(E): 

1. End(E) ~ Z. 

2. End(E) is an order in a quadratic imaginary extension of Q . 

3. End(E) is an order in a quaternion algebra over Q. However, this can 

happen only if char(F) f 0. 

For different reasons, we shall be interested in orders of a quaternion algebra, so 

these terms will be defined in Section D. The curves which fall in the second and 

third categories are said to posses complex multiplication, abbreviated as CM-curves. 

We are interested in curves which fall in the first category; we shall call them non­

CM curves. We also say that E IF has potential complex multiplication if over some 

extension ofF' IF, E IF' has complex multiplication. 

B.8 The Tate Module; Representation Theory 

The kernel of [n] will be denoted by E[n]. As an abstract group it is isomorphic 

to Zln x Zln. However, it is also acted on by the absolute Galois group of F, 

G = Gal(F I F) , since if [n](P) = 0 and a E G, then [n](P") = ([n](P))" = 0 . 

We now specialize to multiplication by .en, where f is a rational prime. We define 

the f -adic Tate module of E to be the group 

TR.(E) = limE[.en], 
n 
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with the inverse limit being taken with respect to the maps [f): 

By our remark above, we see that Te(E) is isomorphic to Ze x Ze as an abstract group. 

However, since the action of G on each E[tn] commutes with [f) in the inverse limit 

above, G also acts on Tt(E), and this action is in fact continuous in the pro-finite 

topology. We thus obtain a continuous f-adic representation of G on E: 

Pt. : G-+ Aut(Te(E)) 

Observe that if we fix a Ze basis for Te(E), we get a 2-dimensional representation for 

G over a field of characteristic 0: 

We shall now define the usual £-series associated to a representation of a Galois 

group. Let :F' I :F be a normal extension of number fields with Galois group G. Let 

p : G -+ GL(V) be a representation into a vector space over a field of characteristic 

0 with character X· For a prime p of :F, let p' I p be a prime in :F'. Let Dp' 

and Ip' be the decomposition group and inertia group of p', respectively. Then 

Dr>' liP'~ G"''' the Galois group of the residue extension kp'lkr>. Thus we can define 

a Frobenius substitution Frob"'' for D p ' I I eo', which corresponds under the isomorphism 

to a generator of G eo' . Let 

We can now define 

L(p,s) = L(x,s) = IT det (1- N(p)-sp(Frobr>'))l~~"'. 
p<oo 

The determinant of the expression above is independent of the choices of p' over 

p, and depends only on the isomorphism class of p. The product converges for all 

Re(s) > 1. 
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B.9 The L-Series of E 

Let E I :F be an elliptic curve defined over a number field. To simplify the definition 

of the L-series of E, we shall assume for the rest of this section that E has good 

reduction everywhere. Let kp be the residue field at p, qp = #kP, the norm of p, and 

EPI kP the reduced curve. The £-series of E I :F is defined by the Euler product 

LEj:r(s) = IT Lp(q;8 )-I, where 
VpEMJ. 

This product converges and defines an analytic function for all s E C, Re( s) > ~. 

Section B.6 tells us that the L-series of two isogenous curves are equal. We warn 

that "equality of £-series" means corresponding p-factors are equal, not just equality 

of the entire product . For example, for any E IQ( vlffi), we see that if p is inert or 

ramified, then #EP(kp) = E~(kp), but for p with pp17 = (p), #Ep(kp) = #E~u(kpu ), 

so the £-series for E and E 17 are equal taken as a whole product. We shall see later 

that it is not always true that #Ep(kp) = #E~ (kp) (look at the subscripts!). 

Let us fix a rational prime f. It is known that for any prime p V£, the p-Euler 

factor of the representation Pt : G = Gal(:F I :F) -+ Aut(Tt(E)) obtained from the 

£-adic Tate module is equal to the that of the £-series for E! This fact is independent 

of the £ chosen. 



Appendix C 

Hilbert Modular Forms 

The main source of this Appendix is [Ga]. 

C.l The Hilbert Modular Group 

Let GLt(R) be the set of elements of GL2 (R) with positive determinant. The former 

group acts on 'H, the upper half of the complex plane, via linear fractional transfor­

mations: 

if g = [ ~ ! ] E GLt(R), z E 'H, 
az + b 

then gz = d 
cz+ 

Let :F be a totally real number field of degree n over Q , with ring of integers 

S and real embeddings o-1 •• • an, in some fixed ordering. Taken together, the <7; give 

us an embedding of GL2 (:F) into GLz(R)n, and the image of GL2 (S) is a discrete 

subgroup. Let GLt(:F) and GLt(S) denote the elements of GLz(:F) and GL2 (S), 

respectively, with totally positive determinant. Componentwise, GLt(R)n acts on 

'Hn, so under the embedding of G Lt ( S) above, this group also acts on 'Hn. The 

group G Lt ( S) is called the full Hilbert modular group of :F. 

Let n be a non-zero ideal of S. Define the principal congruence subgroup of level 

112 
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n by: 

r(n) = { 'Y E GL"j(S) I 'Y = 12 mod n }. 

where 12 is the 2 x 2 identity matrix. Denote by Z(S) the center of GL"j(S). A 

subgroup r of GLi(:F) such that f(n) C Z(S)f with finite index, for some n, is 

called a congruence subgroup of GLi(:F). 

C.2 Hilbert Modular Forms 

For g = [ ~ ~] E GLi(R), z E 'H, we define the automorphy factor: 

J.L(g,z) = detg-112 (cz +d). 

Using standard multi-index notation, we extend this definition to g = (g1 ... gn ) E 

GLt(R)n, z = (zl ... Zn ) E ?in , and k = (kt . . . kn) E z n, via: 

J.L(g,z)k = IT J.L(gi,zi)ki . 
j=l, ... ,n 

For a function f: ?in -+ C, let 

(! ik g)(z ) = f(g z )J.L(g, z )-k, 

where g, z , and k are n-tuples as in the previous paragraph. 

Let r be a congruence subgroup, k E zn. The space of weak holomorphic Hilb ert 

modular forms of w eight k for r is: 

Wfmk(r) = { f: ?in -+ c I f is holomorphic, and f ik 'Y = f v 'Y E r }. 

We shall say that f has weight k and full level iff E Wfmk(SL 2 (S)). 

Proposition C.l Let r be a congruence subgroup, and A = { u E :F I [ ~ ~ ] E r} . 
Then any f E Wfmk(r) has a Fourier expansion: 

f( z ) = L ce exp(27riTr(~z)), 
eEA• 
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where Tr is the C-linear extension to em --t C of the Galois trace :F --t Q , and A* 

is the dual Z-module: 

A • = { u E :F I Tr( uA) C S } 

The Fourier series is absolutely convergent, and uniformly convergent on compacta. 

We say that f E Wfmk(r) is a holomorphic Hilbert modular form of weight k 

for r if V g E GLf(:F), the Fourier expansion 

(J ik g)(z) = L c~(g)exp(27riTr(~z)), 
~EA• 

has c~(g) = 0 unless ~ = 0 or~ is totally positive. We shall often simply say "mod­

ular form" to mean Hilbert modular form. The C-vector space Mfmk(r), of Hilbert 

modular forms is finite dimensional. 

We define the set of holomorphic Hilbert modular cuspforms of weight k for r, 

denoted Cfmk(r), to consist of those f E Mfmk(r) such that V g E GLf(:F), the 

Fourier expansion of (J ik g)(z) above has ce(g) = 0 unless~ is totally positive. 

C.3 Heeke Operators 

There is a general definition of Heeke operators acting on modular forms of arbitrary 

level in the adelic language, but fortunately, a simple characterization is possible if 

we define it only for r = SL2 (S) and assume that Sis a PID and the totally positive 

units are squares of units. As a consequence, every S-ideal has a totally positive 

generator. These conditions will be fulfilled by the quadratic fields that we will be 

considering. 

Let n = (TJ) be an ideal of S, where 7J is totally positive. Let 

b.(n) = { 8 = [a b] E GL (:F) I ~,b,c,d E S, a~~ 7J- 1 ~et(8) } 
c d 2 

IS a totally positive umt 
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Define Tn, the n-th Heeke operator on Mfmk(r), by 

(Tn(J))(z) = E (! lk h)(z). 
8Er Z(S)\.O.(n) 

where Z(S) is defined in Section C.l. The Heeke operators map cusp forms to cusp 

forms, and 

(Tn(J))(z) = E ce exp(21riTr(~z)), where 
~es• 

c' _ n<t-k/2) """'dk-lc 
~ - ., L.._; ~TJ/rfl' 

d 

where d runs through the divisors of 17 (modulo U), such that ~/dES*. 

The ring H generated by the Heeke operators form a commutative set of oper­

ators acting of Cfmk(r). If m + n = S, then Tmn = Tm Tn. For a prime ideal p, 

T P T p" = T p"+l + N(p )T p"-1. As a consequence of the commutativity of Heeke oper­

ators, there exists a basis of Cfmk(r) consisting of eigenforms of every Tn. Suppose 

we further assume that f is normalized, i.e., c1 = 1. Let Tn(J) = anf, say. Then 

the field Q( {an}) generated by the eigenvalues of f for all the Heeke operators is a 

number field, denoted by :F1. 

C.4 L-series of an Eigenforrn 

As with elliptic curves, we can attach an £-series to an eigenform f via: 

L(J,s) = IT (1- aPN(p)-s + N(p)l-2s)-1 
p<oo 

where a"' is the eigenvalue of f with respect to T"'. 

C.5 Galois Representations 

We shall follow the treatment of Taylor's Ph.D. thesis (T] to state the existence of a 

representation of the absolute Galois group of :F attached to f. 
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Theorem C.2 Let [F : Q] be even, fa Hilbert modular cuspform of weight k, level 

n, S:F, the ring of integers of F 1, ~ a prime ideal of F 1 dividing p E Z. Then there 

exists a representation 

which is unramified outside np such that if q is a prime ofF, q Vnp, then trp(Frobq) = 

aq , and detp(Frobq) = Sq(!)N(q). 



Appendix D 

Quaternion Algebras 

The main source for this Appendix is [Vi). 

D.l Definitions 

Let :F be a field of any characters tic. A quaternion algebra B / :F = ( D, 8) is a central 

simple 4-dimensional algebra over :F, where D is a 2-dimensional separable algebra 

over :F, and 8 E :Fx, such that B = D + Dv (a direct sum), where v E B satisfies 

v 2 = 8 and vd = dv for every d E D, where d -+ d is the unique non-trivial }='­

automorphism of D. 

We can define an involutive anti-automorphism of B, which we shall call the 

conjugation, via 

This extends the definition of d to B. Forb E B, we can therefore define the reduced 

trace, tr(b), and reduced norm, nr(b) , via 

tr(b) = b + b, nr(b) = bb 

which are :F-valued functions. We shall often simply say trace and norm. The set 

117 
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Bx of invertible elements of B are precisely those elements with non-zero norm. If 

b f/. F, then its minimal polynomial over F is 

(x- b)(x- b)= x 2
- tr(b)x + nr(b). 

When the characteristic of F is not 2, the above definition of a quaternion 

algebra is equivalent to the more familiar classical one: (D, 8) is equivalent to a pair 

(a, b), where a,b E Fx and there exist elements i,j E B such that {1,i,j, k} is a basis 

for B over F where k = ij, and 

i 2 =a, j 2 = b, t) = -;t. 

If b = x + yi + zj + tk E B , the functions we have defined above may be recast 

as the more familiar: 

b = x- yi- zj - tk, tr(b) = 2x, nr(b) = x2
- ay2

- bz2 + abt2
. 

D.2 

The matrix algebra M 2 (F) is always a quaternion algebra for any F. In fact, when F 

is separably closed, every quaternion algebra is isomorphic to M 2(F) . In the definition, 

we can let : 

D = { [ -~ ; ] I x, y E F}' v = [ ~ -~ ] . 

D is clearly a quadratic field extension of F , and 8 = v 2 = I, the identity matrix. 

Here, 

if b = [ : ~ ] E M2 (F), then b = [ -~ - ; ] , 

tr(b) = x + t, nr(b) = det(b) = xt- yz 

Note that in the classical definition, it is possible to let 

0 [1 0] . [ 0 1] k [0 1] 
t = 0 -1 ' J = -1 0 ' = 1 0 
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D.3 Tensor Products 

For extensions :F' j :F, the product :F' ® :F B is a quaternion algebra over :F', and 

:F' ® :F ( D, b) = ( :F' ® :F D, b) 

In particular, if B is defined over a number field :F, we can form the localizations 

of B over the completions :Fp, defined by Bp = B ®:F :Fp. If char(:F) =/:- 2 and 

B =(a, b), a,b E :F C :FP, then B "' has basis {1,i,j,k} over :Fv· 

D.4 Isomorphism Types 

We may classify quaternion algebras over C, R, or finite extensions :F"' of Q p up to 

isomorphism. As usual, M 2 (:F) is always a quaternion algebra over :F. For C, which 

is separably closed, this is the only quaternion algebra. For R, the division algebra 

H = ( -1, -1) is the only other possibility. For :Fp, the division algebra (Dnr, 7rp) 

is the only other possibility, where Dnr is the unique two dimensional unramified 

extension of :Fp and 7r P is a uniformizer for :F"'. 

For a number field :F, the classification goes as follows: Denote by 

S = { oo1 , ..• , oor} the set of real embed dings in M?. 

Theorem D.l Every quaternion algebra B over :F is determined up to isomorphism 

by a finite set Ram(B) C S U MJ. of .f.1l!m cardinality, such that: 

B ~ { the division algebra 
"' - the matrix algebra 

if~ E Ram(B) 
if ~ ft Ram(B) 

Ram(B) is called the ramification set ofB, and we say that B is ramified at the primes 

in Ram(B) (respectively, B is split or unramified at the primes not in Ram(B)). 

Furthermore, every subset of even cardinality of S U MJ. occurs as the ramification 

set of some quaternion algebra B. 
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For B = (a, b), the isomorphism type of Be:> over :Fe:> is determined by the Hilbert 

symbol (a, b )Fp in the respective field: 

(
a b) = { 1 if ax2 ~ by2 

- z 2 has a nontrivial solution in A 3 (:F"') 
' Fp -1 otherwise 

Be:> is the matrix algebra if and only if (a, b)Fp = 1 in :Fe:>. 

We call a quaternion algebra B defined over a number field :F positive definite 

if over every real embedding oo;, the localization of B over the completion of :F with 

respect to oo; is a division algebra. The above tells us that when F is a totally real 

quadratic field, there is a unique quaternion algebra, up to isomorphism, which is 

positive definite and is a matrix algebra for every finite completion of F. 

D.5 Ideals and Orders 

We now define some more objects when the center of B is the fraction field of a 

Dedekind domain. As stated before, this is the case when the center :F is a number 

field or a finite extension of Qp. Hence, to be consistent with our notation, we shall 

use S to denote the Dedekind domain and :F its quotient field, keeping in mind that 

we can put a subscript of "g:J" on both. 

Let V be a vector space over :F (for example, V = B) . An S -lattice of V is a 

finitely generated S-module contained in V. A complete S -lattice of Vis an S-lattice 

£ of V such that :F ®s £ ~ V . An ideal of B is a complete S-lattice of B. 

We say that b E B is an intege1', or is integral (in S) if S[b] is an S-lattice of 

B. This is so if and only if both tr(b) and nr(b) are inS. We must warn that unlike 

number fields, the integers of B do not always form a ring; they are in general not 

closed under addition nor multiplication. This fact motivates an object which is of 

great interest in this thesis: 

An order 0 of B is: 
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• an ideal which is a ring (or equivalently) 

• a ring 0 consisting of integers and containing S, such that FO =B. 

We shall mostly be interested in quaternion algebras over number fields with 

class group order 1. In this case, every lattice is given by a basis of 4 elements. Let 

0 be an order given by a basis { u 1 •.. u4 }. We define an integral ideal called the 

discriminant disc( 0) as: 

disc( 0) = S( det(tr( Uiuj) )i,j=t.A) 

Some texts take the square root of the ideal on the right, which can be shown to be 

a square ideal. 

A maximal order is an order which is not strictly contained in any order. Max­

imal orders always exist, and every order is contained in a maximal order. If the 

finite primes in Ram(B) are g:J1 •. • g:Jr, then an order 0 is maximal if and only if 

disc( 0) = ( g:J1 •• g:Jr ) 2 . Unlike the case in number fields where the maximal order is the 

ring of integers, maximal orders in a quaternion algebra are far from unique. 

For any ideal J of B, we have the following canonical orders: 

{bE B I bJ c J} 
{bE B I Jb c J} 

which are respectively called the left order and right order of J , respectively. These 

are, in fact , orders. In general, if J is an ideal and 0 is any order, we say that J 

is a left 0-ideal, respectively J is a right 0-ideal, if OJ C J , respectively JO C J. 

Hence, for example, J is a left Oe( J)-ideal. 

We call Jan integral ideal if J C Oe(J ) (or equivalently, J C Or(J)). We call 

0 an Eichler order if it is the intersection of two maximal orders. Hence maximal 

orders are likewise Eichler orders. 
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D.6 Local Orders 

Let us characterize some orders concretely when the center of B is :F~, a finite exten­

sion of Q P. When B = M 2 (:Fp), the m aximal orders are all of the form b-1 M 2 (Sp)b, 

where b E B x, i.e., all maximal orders are conjugate. Similarly, every Eichler order 

is conjugate to 

for a unique non-negative integer n. In this case, we say that the order has level pn 

When B is the (unique) division algebra over :F", then 

0 = {a E B I nr(a) ESP} 

is the unique maximal order of B. Hence this is also the unique Eichler order. 

D.7 The Local-Global Correspondence 

It is not surprising that there is a relationship between these objects in the algebra 

B defined over a number field and those in the localizations B p for finite primes p. 

For£ an ideal in B , define its localization£"'=£ ®s SP. We shall denote by B (A .:r) 

the adelization of B: 

where 0 is any (fixed) order of B. 

We say that a property of an ideal is local if any ideal £ has that property if 

and only if£"' has that property for every p < CXJ. The following properties are local: 
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1. being an integral ideal. 

2. being an order. 

3. being an Eichler order. 

4. being a maximal order. 

The proofs of these facts make use of the following 

Proposition D.2 Let X be a fixed ideal of B. There is a bijection between the set 

of ideals Y of B , and the following set of tuples of lattices indexed by M]:.: 

{ (Yp)p<oo I Yp is a lattice of Bp such that Yp = Xp for almost all p } 

This bijection is given by the following functions: 

Let q1 be the product of the finite primes in Ram(B) , and q2 = p~1 
• • • p~· an 

arbitrary product of primes not in Ram(B) , with every n; > 0. We say that an Eichler 

order 0 in B, has level q1q2 if locally, O P is the unique Eichler order for p I q~, an 

Eichler order of level Pi; if p = p; I q2, and M2(SP) if p Vq1q2, p < oo. 

If J is a left 0-ideal, where 0 is an Eichler order, then the right order Or( J) is 

an Eichler order of the same level as 0. 

For any ideal I, we define its inverse, conjugate, and norm, respectively, as: 

7 

nr(I) 

{ b E B I Ibi c I } 

{a! aEI} 

{ nr( a) I a E I } 



APPENDIX D. QUATERNION ALGEBRAS 

Proposition D.3 Let I be an ideal, Ot(I) = Ot, and Or(!) = Or. 

1. I is a left Or-ideal with Or(I) = Ot, and nr(I) = nr(J). 

2. I-1 is a left Or-ideal with Or(I-1 ) = Ot, and nr(I-1 ) = nr(J)-1 . 

4- II= Otnr(I) and II= Ornr(J). 

5. I- 1 = Ijnr(I). then nr(IJ) = nr(J)nr(J). 

6. The set consisting of all left and right ideals of all orders of a fixed 

level form a Brandt grouppoid. As a consequence, if J is an ideal with 

Or(!)= Oe(J), then 

is an ideal with Oe(IJ) = Oe(I), Or(IJ) =Or, and nr(IJ) = nr(J)nr(J). 
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For proof, one can see [Pi7] and [R], or use the local-global correspondence in 

some i terns above. 

D.B Order and Ideal Classes 

Two orders 0 1 and 0 2 are said to be of the same type if there is a b E B x such that 

0 1 = b- 1 0 2b, i.e ., they are conjugate. Keeping the notation above, the number of 

type classes of Eichler orders of level q1q2 will be denoted Tq
1
q2 • This number is finite. 

The type number Tq
1 

of the algebra B is the number of equivalence classes of maximal 

orders of the same type. For B defined over a local field, all orders of a given level 

are conjugate, i.e., the type number is 1. 
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Two ideals J1 and J 2 are right equivalent if and only if there is a b E B x such 

that J1 = J2b. The right-equivalence classes of left 0-ideals of an order 0 are called 

the left ideal classes of 0. (It is important to use right equivalence on left 0-ideals to 

make this definition work!) Similarly, one can define left equivalence of right 0-ideal 

classes. 

Both sets of left and right ideal classes of an order 0 are finite, and are of t he 

same cardinality, called the (ideal) class number of 0. Also, the class number of any 

two Eichler orders of the same level q1q2 are the same, denoted Hq1 q2 • Furthermore, 

Tq1 q2 :S Hq1 q2 • For B defined over a local field, all left ideals of a given order 0 are 

right equivalent to 0, i.e., the class number of 0 is 1. 

Proposition 0.4 Let 0 be an Eichler order of level q1q2 , and {It, ... , In}, H = 

Hq1 q2 be a complete set of representatives of distinct left 0-ideal classes. Then 

the corresponding right orders Or(I1), ... Or(IH) represent, with possible redundancy, 

all the type classes of Eichler orders of level q1q2 • Fix k E {1, ... , H}. Then 

{I;1 It, ... , I; 1 IH} represent the left Or( h)-ideal classes. 

We shall see that Tq 1 = Hq1 in the algebra B/Q( v'509), and we will be able 

to find a basis for representatives of type classes as well as left ideal classes of all 

maximal orders of B. 



Appendix E 

Calculations on Fields 

In this Appendix we study the ring of integers and their units for various kinds of 

number fields, particularly certain quadratic and biquadratic extension of Q. We 

shall require the following proposition, which is an easy exercise in [Ma]: 

Proposition E.l The Ring of Integers of a Biquadratic Field. Let [{ = Q ( .Jffi, y'n), 

m =f 1 =f n distinct squarefree integers. Let k = mn/ gcd( m, n )2 , S the integers of [{. 

1. Suppose m = 3, n- k = 2 mod 4. Then an integral basis for S is 

{ v'n+Vk} 1, ..;m, ..;n, 2 

and disc( S) = 64mnk. 

2. Suppose m = 1, n- k = 2 or 3 mod 4. Then an integral basis fo r S is 

{ 1+.Jffi c v'n+Vk} 1, 2 , yn, 2 

and disc(S) = 16mnk. 

3. Suppose m = n = k = 1 mod 4. Then an integral basis for S is 

{ 1 + Vm 1 + v'n ( 1 + Vm) ( 1 + v'k) } 
1, 2 l 2 l 2 2 

and disc(S) = mnk. 
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Corollary E. 2 Let m and n be square free integers, m = 1 mod 4, gcd( m, n) = 1. Let 

F = Q( y'ni), () = t+r, I< = Q( .,;m, Jn), 'R the integers ofF, S the integers of 

I<. Then S = 1?.-[<P], where 

if n - 2, 3 mod 4 

ifn = 1 mod 4 

Proof. Let k = mn. Note that k has the same residue as n modulo 4. 

1. If n = 2, 3 mod 4, then by Proposition E.l (2), 

[ l+rm vn+vmn] s = z 1, 
2 

, ..;n, 
2 

= z[ 1, o, ..;n, o..;n ]. 

2. If n = 1 mod 4, then by Proposition E.l (3), 

s = z [ 1, 1 +2rm, 1 +2v~n, (1 +2rm) (1 +F)] 
and the last basis element is: 

1 + mfo + Vm + vmn 
4 

1 - m m + mfo + Vm + vmn 
4 + 4 

1 - m m + mfo- 1 - Vn + 1 + Vm + Vn + vmn 
4 + 4 

1-m m-1 

4 
+ -

2
-<P + O<P, hence 

S = Z[ 1, 0, <P, O<P) 

because l-,t and m;l are both in Z. • 
In the following, we let (n = e21rijn, and z denote complex conjugation, viewed 

as the non-trivial automorphism of a complex quadratic field. We shall use the 

above proposition to study the fields Q( .Jffi, v'-1) = Q( .Jffi, (4) and Q( .Jffi, v'-3) = 

Q( ..;m, (6 ), when m = 1 mod 4. As usual, let F = Q( y'ni), () = I+r, a the non­

trivial automorphism ofF, n the integers ofF and U its unit group with fundamental 

unit u . 
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Proposition E.3 Let m = 1 mod 4 be a positive square free integer, I< = Q( vm,, (4 ), 

S the ring of integers of J(, R, u and () as before. 

1. An integral basis for S is 

2. disc(K/Q) = 16m2
• 

Proof. (1) follows directly from Corollary E.2 above, with n = - 1, <P = .J=T = ( 4 , 

and (2) from Proposition E.l (2). For (3), let a, b, c, dE Z, a =a+ bfJ+c(4 + dfJ(4 E S. 

Then a E sx if and only if N{1(a) = ±1. But 

N/1 (a) = (a+ b() + c(4 + dfJ(4)( a+ b() + c(4 + dfJ(4) x 

(a+ bfJq + c(4 + d()q (4)( a+ b()q + c(4 + d()q (4) 

[(a+ b0)2 + (c +dO?][( a+ bfJq)2 + (c + dfJq)2] 

- [(a+ bfJ)(a + bOqW +[(a+ bfJq)(c + d0)]2 + 

[(a+ bfJ)(c + dfJ<7)] 2 + [(c + dO)(c + dfJq)]2 

Nf;,(wt)2 + (wfw2? + (w1w~)2 + Nf;,(w2)2 (E.l) 

where Wt =a+ b(), W2 = c + d() are both inn. But Q( vm) is a real field, so the form 

on (E.l) is positive definite. Hence a is a unit if and only if N{1(a) = 1. But the first 

and last terms in (E.l) are non-negative integers which cannot simultaneously be 0 

(otherwise a= 0), hence we must have either 

But N~(wj) = ±1 if and only if Wj E U . Hence the above conditions are equivalent 

to 

which proves (3). • 
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Proposition E.4 Let m = 1 mod 4 be a positive squarefree integer, and suppose 3 

does not divide m. Let I<= Q(.;m,(6 ), S the ring of integers of I<, F, R, u and 0 

as usual. Then: 

1. An integral basis of S is 

{ 1, 0, (6, 0(6 } 

2. disc(I</Q) =9m2
• 

3. sx = (( 6 ) ( u), where u is the fundamental unit of R. 

Proof. Again, (1) and (2) follow from Corollary E.2, with n = -3, 4> = Itp = (6 , 

and Proposition E .1 (3). Now for (3). Let a, b, c, dE Z, a= a+ bO + c(6 + d0(6 E S. 

Then a E sx if and only if N/1 = ±1. Now, 

N~(a) = (a+ b() + c(6 + d0(6)(a + bO + c(6 + d()(6) X 

(a+ b()17 + c(6 + d()17 (6)( a+ bfF + c(6 + d017 
( 6) 

~ W"; c + cb:d)e) 2 

+ 3 ( c~ dO)'] x 

[ c·; c + cb; d) 0" )' + 3 ( c \dO")'] ' hence 
16N~ (a) [(2a + c + (2b + d)0)2 + 3(c + d0) 2

] x 

[(2a + c + (2b + d)017
)
2 + 3(c + d017?] 

[(2a + c + (2b + d)0)(2a + c + (2b + d)017
)]

2 + 
3[((c + d0)(2a + c + (2b + d)0)) 2 + 

((c + d017 )(2a + c + (2b + d)017
))

2
] + 

9[(c + dO)(c + d0 17
)]

2 

N~(wt)2 + 3((w1w~)2 + (wfw2)2) + 9N~(w2)2 (E.2) 

where we have 
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w1 = 2a + c + (2b + d)O E R, 

w2 c + dO E R, hence, 
Wt -w2 

a 
2 

+ w2(6 
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The form on E.2 is positive definite, so a E sx if and only if N~ = 1, if and only if 

We now analyze the possibilities for the terms on the right. The middle term is 

thrice the trace of the totally positive algebraic integer (w1w2Y, so it is a positive 

rational integer. Likewise, N/!;(wj) is an algebraic integer for j = 1, 2. Hence the only 

possibilities for N~(w2 ) are 0 and ±1. 

If N6(w2 ) = 0, then Wz = 0, so c = 0 = d and a= a+ be E F. So in this case, 

a is a unit if and only if a E U. 

If N~(w2) = ±1, then the only possibilities for N~(w1 ) are 0, ±1 and ±2. We 

cannot have N~(wt) = 0, otherwise we get 16 = 9. We cannot have N~(w1 ) = ±2 

either, for otherwise we would get: 

±2 N6(wt) 

= (2a + c)2 + (2a + c)(2a +d) - (2b + d) 2 (m; 1) 

(
m -1) c2 + cd - d2 

4 
mod 2 

N6(wz) 

- ±1 

So the only possibility is N~(wt) = ±1. Since we are also assuming that N~(wz) = 
±1, we find that w17 w2 E U, say Wt = ±ur,wz = ±u8

• Recall that ±1 = N(u) = 
u(u""), sou""= ±u-1. We obtain: 

16 1 + 3((wtwn2 + (wrwz) 2
) + 9 ¢? 

2 (w1wn 2 + (wrwz) 2 
¢? 
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2 u2(r-s) + u-2(r-s) ¢:} 

0 u4(r-s) - 2u2(r-s) + 1 ¢:} 

u2(r-s) 1 ¢:} 

r-s = 0{::} 

r s 

Thus, in this case, a is a unit if and only if 

a = WI -W2 

2 
+ w2(6 

WI+ W2.J=J 

2 
±ur ± ur.J=J 

2 

ur ( ±1 ±2 .,;=3) 
ur(~,k E {1,2, 4,5} 

Putting the two cases together give (3). • 
We remark that if m = 1 mod 8, then it may still be possible to find an w E R 

such that N~(w) = ±2, since 2 is a split prime. If m 5 mod 8, then this would be 

impossible since 2 is inert in F. Now we describe n>>O, the totally positive elements 

ofR. 

Proposition E.5 Let m = 1 mod 4 be a positive squarefree integer, F = Q( y'm), (), 

n and n>>O as before. Then: 

n>>O = { a= a+ b() I a, bE z, a> 0 and - ~ < b < _a_ } 
() 0-1 

Proof. Note that ()- 1 > 0. Suppose a = a+ b() E R with a, b E Z. Then a is totally 

positive if and only if a > 0 and au = a + b- b() > 0. Since ou < 0, we cannot have 

a = 0. Suppose a < 0. Then a > 0 implies that b() > -a > 0, so b > 0. But aa > 0 
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implies that b(O - 1) <a < 0, hence b < 0, a contradiction. Hence a > 0. The lower 

bound for b follows from a > 0 and the upper bound from au > 0. • 
This trivial property of the totally positive elements of n allows us to order 

them lexicographically, first by a then by b. This will be extremely useful when 

considering a totally positive definite integral quadratic form on zn (i.e., with values 

in R>>O) which arises from the norm form of an integral ideal in a positive definite 

quaternion algebra over F. Now we look at a description of exactly how the primes 

of Z split in Q( yl?n) when m- 1 mod 4. The following is found in [Ma] . 

P roposit ion E.6 Let m - 1 mod 4, n the integers of Q( ylrn). Suppose that p is an 

odd prime. Then 

2R { 
(2, t+p) (2, t-p) if m = 1 mod 8 

pnme if m = 5 mod 8 

{ (p, n + ylrn) (p, n - ylrn) if m = n 2 mod p 
pnme if m is not a square mod p 

pR 

Next we show how to concretely give a ring homomorphism n ---+ Z/p that 

induces a field isomorphism R/p---+ Z /p when pis split. 

Prop osition E. 7 Let m = 1 mod 4, F = Q( yl1n) , R, the ring of integers ofF, and 

p a split prime of n. Suppose p = (p, n + ylrn), where p E Z is an odd prime and 

m _ n 2 mod p. Then R/p is a finite field of p elements, {0 .. . p - 1} is a set of 

representatives for n mod p , and the map 

<P n ----+ Z fp 
a ----+ a mod p if a E Z 
() ----+ (~)(n-1) mod p 

defines a ring homomorphism which induces the isomorphism R/p ~ Zfp. 

Proof. To prove that {0 .. . p - 1} is a system of distinct representatives for n mod p, 

we must show that if a E p and a E Z, then p divides a in Z. But we see that 



APPENDIX E. CALCULATIONS ON FIELDS 133 

pI N~(a) = a2 E pZ. Next we show that()- Ef(n- 1)(E Z)(mod p). We have 

a E p ¢::> 2a E p, since we can find r, s E Z, such that rp + 2s = 1. But 

2 ( () - (p -
1 )~ n -

1
)) = Vm - pn + n + p = p( 1 - n) + ( n + Vm) E P· 

To show that <P is a homomorphism, we need check only that <P( B2
) = <P( B)2. But 

<P(B2 ) = <P(B + m; 1) _ 2(p- 1)(n ~ 1) + m- 1 = 2(p- 1)n ~ 1 + n2
- 1 mod p 

d "'(B)2 (p-1)2(n-1)2 d an '+' = 
4 

mo p 

and the numerators are seen to be equivalent mod p. Also, 

<jJ(n + vm) = <P(n- 1 + 2B) = p(n- 1) _ 0 mod p, 

so p C ker( <jJ). Since the map is surjective onto a field, we must have p = ker( </J) . • 

Now we find an effective, albeit sometimes slow algorithm to compute the fun­

damental unit: 

Proposition E.8 Let 0 < m = 1 mod 4 be a squarefree integer. Let b be the smallest 

positive integer such that mb2 ±4 = a 2 for some integer a. Then u = a+~fiii" = a~b +b() 

is the fundamental unit of Q( vm). 

Proof. Clearly, N(u) = ±1. Note that since m is odd, a and bare of the same parity, 

so u E n , hence u is a unit. The minimality of b, hence also of a, assures us that u 

is the smallest unit in n which is greater than 1. • 
We shall now give a formula for the order of the class group of a quadratic field, 

which can be found in [Maj. Let F = Q( fo), m squarefree, d =I disc(Q( vm)) I, 
u the fundamental unit ofF if m > 0. We define x, the unique nontrivial multiplica­

tive character mod d, which corresponds to a character of Gal(F/Q) as follows. If 

P 1 a, then x(P) = o. If 2 > P does not divide a, then 

( ) _ { 1 if d is a square mod p 
X P - -1 otherwise 
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Finally, if d is odd, then 

{ 
1 if d _ 1 mod 8 

X(2) = -1 if d = 5 mod 8 

Proposition E.9 Let everything be as above. Then 

1 L x(k) log (sin (br)) 
log(u) ke(Z/d)x,k<d/2 d 

h(Q(vm)) = 
1 '"""' L..J x(k) 

2 - x(2) ke(Z/d)X,k<d/2 

1 
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ifm > 0 

ifm < O,m =J. -1,-3 

ifm = -1,-3 

The following is a tool often used to explicitly construct the ideal class group of 

a number field. Let [F: Q] =nand shalf the number of non-real embeddings of F . 

Proposition E.lO (Minkowski) Every ideal class of S contains an ideal I with 

nl (4) 8 

N(I) ::; n~ ; }I disc(S) I· 

We will refer to the quantity on the right as the Minkowski bound of F. The 

proposition states that if the Minkowski bound ofF is less than 2, then h(F) = 1. 

We shall now recall Hasse's formula ([Ha]) for the class number of imaginary 

biquadratic extensions: 

Proposition E.ll (Hasse) Let mll m 2 be negative squarefree integers) m 0 = m 1m 2, 

F; = Q( y'ffii), w; the number of roots of unity in F;, h; the class group order of 

F; , i = 0, 1, 2. Let J( = Q( .jffil, y17i2), h the class group order of I<, w the number of 

roots of unity in I<, u the fundam ental unit in J(. Let uo be the fundam ental unit of 

F0 • Then: 
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We end this Appendix with an observation about the prime factors of m when 

certain properties are known. 

Proposition E.12 Let m = 1 mod 4 be a positive squarefree integer. If the funda­

mental unit u of the integers of Q( vrn) has norm -1, then m does not have a prime 

factor congruent to 3 mod 4. In particular, 3 does not divide m. 

Proof. Suppose that N ( u) = -1 and that Pt I m, p1 = 3 mod 4 a prime. Since 

m = 1 mod 4 also, we find that there is a p2 = 3 mod 4 which also divides m. Thus 

m = 4p1 p2 k + p1 p2 for some k E Z. Thus if u =a+ b(}, with a, bE Z, then 

-1 N(u) 

- N(a + bO) 

(m-1) a 2 + ab - -
4
- b2 

2 PtP2- 1 2 
a + ab -

4 
b mod Pt 

But if PtP2 = 4j + 1, then j = -4-1 mod Pt· So if we let 2t = 1 mod Pt, we get 

-1 a 2 + ab + t 2b2 mod Pt 

_ a 2 + 2a(tb) + (tb) 2 

_ (a+tb? 

But - 1 is a square mod p if and only if p = 1 mod 4. • 



Bibliography 

[BR) D. Blasius and J. Rogawski, Motives for Hilbert Modular Forms1 to 

appear. 

[BS) Z.I. Borevich and I.R. Shafarevich, Number Theory. Academic Press, 

New York (1966). 

(Ca) Henri Carayol, Sur Les Representations f -adiques Associies A ux 

Formes Modulaires de Hilbert. Annales Scientifiques de L'Ecole Nor­

male Superieure, 4e serie, Tome 19 (1986), pp. 409-468. 

[Cas] W. Casselman, On Some Results of Atkin and Lehner. Math An­

nalen, Vol. 201 (1973) pp. 301-314. 

[CF] Cassels and Frohlich (editors), Algebraic Number Theory. Academic 

Press, San Diego (1967). 

(Cr) J.E. Cremona, Modular Symbols for r 1(N) and Elliptic Curves with 

Everywhere Good Reduction. Mathematical Proceedings of the Cam­

bridge Philosophical Society (1992), Vol. 111 (March, 1992), pp. 199-

218. 

[Fal] Gerd Faltings, Finiteness Theorems for Abelian Varieties over Num­

ber Fields. Appearing in Arithmetic Geometry. Gary Cornell and 

Joseph H. Silverman (editors), Springer-Verlag, New York (1986) . 

136 



BIBLIOGRAPHY 

[Ga] Paul Garrett, Holomorphic Hilbert Modular Forms. Brooks/Cole 

Publishing Company (1990). 

(Ge] Stephen Gel bart, Automorphic Forms on Adele Groups. Annals of 

Mathematics Studies, Vol. 83, Princeton University Press {1975) . 

[GJ] Stephen Gelbart and Herve Jacquet. Forms on GL(2) from the Ana­

lytic Point of View. Proceedings of Symposia in Pure Mathematics. 

Vol. 33 (1979), part 1, pp. 213-251. 

[Gr] Benedict H. Gross, Heights and Special Values of L-series. Canadian 

Mathematical Society Conference Proceedings, Vol. 7 {1987). 

[Ha] Helmut Hasse, Uber die J([assenzahl abelscher Zahlkorper. Berlin 

(1952). 

[Hi] Haruzo Hida, On p-adic Heeke Algebras for GL2 Over Totally Real 

Fields. Annals of Mathematics, Vol. 128 (1988), pp. 295-384. 

[HPS] Hiroaki Hijikata, Arnold K. Pizer and Thomas R. Shemanske, The 

Basis Problem for Modular Forms on fo(N) . The American Math­

ematical Society (Memoirs, Volume 82, Number 418), Providence, 

Rhode Island (November, 1989). 

[HvG] F. Hirzebruch and G. van der Geer, Lectures on Hilbert Modular 

Surfaces. Les Presses de L'Universite de Montreal (1981). 

[Jo] Burton W. Jones, The Arithmetic Theory of Quadratic Forms. The 

Mathematical Association of America, John Wiley and Sons, Mary-

land (1950). 

[LL] J .P. Labesse and R.P. Langlands, £-indistinguishability for SL(2). 

Canadian Journal of Mathematics, Vol. XXXI, 4 (1979), pp. 726-

785. 

137 



BIBLIOGRAPHY 

[La] R. P. Langlands, Base Change for GL(2). Annals of Math Studies, 

Vol. 96, Princeton University Press (1980) . 

[L] Von Heinrich-Wolfgang Leopoldt, Ein Verallgemein erung der Ber­

noullischen Zahlen . Hamburger Abh., 22 (1958), pp. 131-140. 

[Li] Ron Livne, Cubic Exponential Sums and Galois Representation . Con­

temporary Mathematics, Vol. 67 (1987). 

[Ma] Daniel A. Marcus, Number Fields. Springer-Verlag, New York (1977). 

[Mar] J. Martinet, Character Theory and Artin £-functions. Algebraic 

Number Fields, Academic Press (1977). 

[N] Morris Newman, Integral Matrices. (Preprint) Mimeographed Course 

Notes. 

[Pin] R.G.E. Pinch, Elliptic Curves over Number Fields. D.Phil. Thesis, 

Oxford University (1982). 

[Pi1] Arnold K. Pizer, Type Numbers of Eichler Orders. J. Reine Angew. 

Math., 264 (1973), pp. 76-102. 

[Pi2] Arnold K. Pizer, On The Arithmetic of Quaternion Algebras. Acta 

Arithmetica, Vol. 31 (1976), pp. 61-89. 

[Pi3] Arnold K. Pizer, On The Arithmetic of Quaternion Algebras II. J. 

Math. Soc. Japan, Vol. 28, No. 4 (1976), pp. 676-688. 

[Pi4] Arnold K. Pizer, The Representability of Modular Forms by Theta 

Series. J. Math. Soc. Japan, Vol. 28, No. 4 (1976), pp. 689-698. 

[Pi5] Arnold K. Pizer, An Algorithm for Computing Modular Forms on 

r o(N). Journal of Algebra, Vol. 64 (1980), pp. 340-390. 

[Pi6] Arnold K. Pizer, Theta Series and Modular Forms of Level p2 M. 

Compositio Mathematica, Vol. 40, Fasc. 2 (1980), pp. 177-241. 

138 



BIBLIOGRAPHY 

(Pi7) Arnold K. Pizer, The Action of the Canonical Involution on Modular 

Forms of Weight 2 on r a(M). Math. Ann., 226 (1977), pp. 99-116. 

(PZ) M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory. 

Cambridge University Press, Cambridge (1989). 

[Ram1) Dinakar Ramakrishnan, Arithmetic of Hilbert-Blumenthal Surfaces. 

Canadian Mathematical Society Conference Proceedings, Vol. 7 

(1987). 

(Ram2) Dinakar Ramakrishnan, A Refinement of the Strong Multiplicity One 

Theorem for GL2 • Inventiones Mathematicae, to appear. 

[R) Irving Reiner. Maximal Orders. Academic Press, London (1975). 

[Se1) Jean-Pierre Serre, A Course in Arithmetic. Springer-Verlag, New 

York (1973). 

[Sh) Hideo Shimizu, On Zeta Functions of Quaternion Algebras. Annals 

of Mathematics, Vol. 81 (1965), pp. 166-193. 

(Shi) Goro Shimura, Introduction to the Arithmetic Theory of A utomor­

phic Functions. Princeton University Press (1971). 

[Si) Jonathan H. Silverman, The Arithmetic of Elliptic Curves. Springer­

Verlag, New York (1986). 

[T) Richard Taylor, On Galois Representations Associated to Hilbert 

Modular Forms. Inventiones Mathematicae, 98, 265-280 (1989). 

[Vi) Marie-France Vigneras, A rithmetique des Algebres de Quaternions. 

Springer-Verlag, Berlin (1980). 

139 


