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ABSTRACT 

In many existing markets demanders wish to buy more than one unit from a group of 

identical units of a commodity. Often, the units are sold simultaneously by auction. The 

vast majority of literature pertaining to the economics of auctions, however, considers en­

vironments in which demanders buy at most one object. In this dissertation we present 

a collection of results concerning the generalization of theoretical and experimental results 

from environments in which buyers have single-unit demands to environments with two-unit 

demands. We derive necessary and sufficient conditions for a set of bidding strategies to be 

a symmetric monotone equilibrium to a uniform price sealed bid auction. We prove that 

equilibrium bidding strategies converge to truthful revelation as the number of bidders gets 

large. We also prove that the uniform price sealed bid auction and the English clock are 

not isomorphic in the two-unit demand environment. Either type of auction may gener­

ate higher efficiency and either may generate higher revenue. Finally, we report a set of 

experimental results which demonstrates that the revenue generating properties of the two 

auctions are different in two-unit demand environments. In the experimental environment, 

more revenue is generated by the uniform price sealed bid auction than the English clock, 

and more revenue is generated per market period if the market is run only once than if it 

is repeated with the same participants. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

An auction is a "market institution with an explicit set of rules determining resource allo­

cation and prices on the basis of bids from the market participants" (McAfee and McMillan 

(1987)). Auctions are used in every part of the world to transact trillions of dollars worth 

of objects every year. The omnipresence of auctions has certainly not gone unnoticed by 

economists who have generated a huge literature on the subject. The vast majority of the 

literature focuses on environments where a single seller has one or more indivisible object(s) 

to be sold to multiple bidders, each of whom wants to buy at most one of the objects. 

In most markets however, it is common for buyers to wish to buy more than one unit 

of a commodity. U.S. treasury bills are an example; about 1.5 trillion dollars worth of 

U.S. treasury bills are sold per annum (Salwen (1992)). They have been sold by two types 

of sealed bid auction: discriminatory (currently in use, where buyers pay the amount of 

their bids), and uniform price (in which all buyers pay the same price.). In many of the 

world's stock markets, initial issues of common stock are sold through sealed bid auctions. 

The Burlington Northern Railroad holds an auction for leasing railroad cars using a type 
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of uniform price sealed bid auction. BNR is the buyer and the owners of railroad cars 

are the sellers who submit bids. The railroad leases all cars for an amount equal to the 

highest accepted bid. In Great Britain, the National Grid Co., jointly owned by the UK's 

12 privatized distributors, buys electric power using an auction. Generators bid per-unit 

prices for 30 minute periods the following day and National accepts the lowest bids. The 

price paid is equal to the highest accepted bid. 

Economists have also advocated auctions as a means of resource allocation and price 

determination. Both the uniform price sealed bid auction (Furbush(1991)) and the open 

ascending bid auction (Salwen(1992)) have been proposed as alternative methods for selling 

treasury bills. Other example~ of such proposals include those made by Grether, Isaac and 

Plott (1981) , and Rassenti, Smith and Bulfin (1982), who advanced the idea of using sealed 

bid auctions to sell airport landing slots. 

The properties of auctions in environments with multi-unit demands have not been as 

thoroughly investigated as those in the single-unit demand case. In this dissertation, using 

the methodologies of both game theory and experimental economics, we explore whether 

particular properties of the single-unit demand case generalize to the multi-unit demand 

case, and establish that they often do not. In the next two subsections, we provide a brief 

survey of relevant previous work . 
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1.1 Previous Theoretical Literature 

1.1.1 Equilibria 

In the first major paper on the subject of auctions, Vickrey (1961) introduces the second 

price sealed bid auction and its multi-unit generalization, the uniform price sealed bid 

auction. In his paper he assumes an independent private values environment, in which 

each demander draws a valuation, known only to her, from a distribution which is known 

to all demanders. A particularly good example of a market in which the independent 

private values model might be appropriate is a market for a government contract where each 

contractor knows his own cost for fulfilling the contract and has enough general knowledge 

to infer the distribution of the other contractors' costs. 

The rules of the uniform price sealed bid auction specify that all demanders simultane­

ously submit sealed bids for the object(s). If there are k objects to be sold, the k highest 

bids are accepted and the corresponding demanders receive units. Demanders then pay a 

per-unit price equal to the k+ 1st highest bid for each unit they receive. In the case of 

single-unit demands, that is, when there may be multiple units to be sold but demanders 

purchase at most one unit, this auction form is demand revealing. Each bidder has a dom­

inant strategy to submit a bid equal to the value she has drawn. Recall that a player's 

dominant strategy ma;ximizes his expected utility no matter what strategies other players 

follow. The dominant strategy property follows from the fact that the second price sealed 

bid auction is a Groves mechanism. See Green and Laffont (1977) for a characterization of 

mechanisms with dominant strategy equilibria. 

Forsythe and Isaac ( 1982) show that the second price auction is the only demand re-
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vealing direct mechanism in the single-unit demand environment. The outcome is efficient, 

that is, it yields the maximum possible total profits to all participants in the market of 

any feasible allocation, because the item is purchased by the demander who has the highest 

valuation. 

To see the dominant strategy property, consider a bidder named i, who has some val-

uation v; for receiving the one object to be sold. Bidder i is a member of a group of n+1 

bidders, each of whom draws a valuation from a distribution G, which has strictly positive 

density on an interval [0, v]. Let Gn( x) be the probability that the highest valuation drawn 

by any of the other demanders is less than or equal to x and let 9n(x) = dGn(x). Let Fn(x) 

be the probability that the highest bid made by one of bidder i's competitors is less than 

or equal to x and let fn(x) = dFn(x). Assume fn(x) > 0 on the interval [O,v]. Bidder i 

chooses a bid b; to maximize his expected payoff: 

rb; 
E1r = Jo (v;- x)fn(x)dx. (1.1) 

The first order necessary condition for a maximum to (1.1) is: 

(vi- b;)fn(b;) = 0. (1.2) 

Since fn(x) has strictly positive density on [0, v], it follows that b; = v;. To see that bi = v; 

is a maximum, note from (1.2) that dd~; > 0 forb; < v; and < 0 for b; > v; . 

Vickrey also provides a discussion of English auctions within the independent private 

values model. An English auction is a progressive ascending bid auction. There are many 
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variants of English auctions which are strategically equivalent in the independent private 

values model. The auction form considered in this dissertation is the variant commonly 

known as the Japanese auction or English clock, used in, among other places, the produce 

markets of Tokyo and Osaka. This type of auction is modeled by Milgram and Weber (1982). 

The price is raised continuously and as it climbs bidders indicate whether they are still 

taking part in the bidding or quitting. In the single-unit demand case, they communicate 

whether or not they wish to purchase a unit at the current price. After a buyer drops out he 

may not resume bidding. As soon as exactly k bidders remain active the auction ends, and 

the remaining bidders receive units at the current price (the price at which the last bidder 

dropped out). Each bidder has a dominant strategy to stay in the bidding until the price 

reaches his valuation and then immediately quit bidding. In the unique dominant strategy 

equilibrium, the bidders with the k highest valuations receive the objects, resulting in an 

efficient final allocation. 

The uniform price sealed bid auction and the English clock generate the same final allo­

cations and final prices in their respective unique dominant strategy equilibria. Therefore, 

the two auctions are said to be isomorphic. The dominant strategy equilibria specify that 

each bidder truthfully reveal his valuation. Since the equilibrium strategies are the same 

for each player, the equilibria are said to be symmetric. 

Another auction mentioned in Vickrey's paper is the first price sealed bid auction. This 

type of auction is commonly used for government procurement contracts and its multi-unit 

generalization, the discriminatory sealed bid auction, is used in the treasury bill auction. 

There is no dominant strategy equilibrium in this type of auction, because a bidder's best 

response depends on the strategies the other players are using. However, maintaining the 
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same assumptions on Fn, Gn and v; in our discussion of the second price auction, we can 

find a symmetric, strictly monotone Bayes-Nash equilibrium to this game. Recall that Nash 

equilibrium is a set of strategies (of all players) from which no player has an incentive to 

deviate. The set of dominant strategy equilibria to a game are thus a subset of the Nash 

equilibria. A Bayes-Nash equilibrium is a Nash equilibrium to a game with a particular 

informational environment, in which players know the distribution of all players' types 

but the actual realization only of their own type. Suppose all bidders follow some common 

strictly monotone bidding rule B( v ). The expected profits to bidder i can then be expressed 

as: 

. a-1 (b;) 
E1r'(b;) = fo (v;- b;)gn(x)dx. (1.3) 

The first order necessary condition to this problem is: 

(1.4) 

Using the symmetry and strict monotonicity of the bidding function, it can be shown that 

if B(v) solves equation (1.4) and E1ri(O) = 0 for all i, B(v;) must satisfy: 

(1.5) 

Because of the dominant strategy property and the efficient allocations generated by the 

uniform price sealed bid auction and the English clock in the single unit demand environ-

ment, it is natural to consider generalizations of the two auction types for the multi-unit 

demand environment. There has already been some interesting work on equilibrium mod-
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els of auctions in multi-unit demand frameworks. Wilson (1979) considers the case when 

the item to be sold is divisible and demanders have continuous downward sloping demand 

functions for fractions (shares) of the good. He solves for a market clearing price in an 

environment with common values when first or second price auctions are employed. In 

these auctions, bidders report a continuous demand function as their message. He finds the 

price is positive as is each bidder 's resulting share. Engelbrecht-Wiggans and Weber (1979) 

give an example of a multi-object auction with non-additivity of preferences. This means 

that bidders' utilities for objects depend on what other objects they receive. They find 

that conducting multiple simultaneous sales may in general be quite inefficient. Although 

the example is for the uniform price sealed bid auction, the authors credibly claim that the 

inefficiency extends to other types of auctions. Palfrey (1980) models the simultaneous but 

separate sale of heterogeneous objects by first price sealed bid auction when bidders face a 

constraint on exposure. He finds that symmetric Nash equilibria exist if and only if there 

are two or less buyers and two or less objects. 

If a demander wishes to and is permitted to purchase more than one unit, the demand 

revealing property no longer necessarily holds for either the uniform price sealed bid auction 

or the English clock. Demanders may have positive incentive to underreveal their demand 

functions (see Forsythe and Isaac ( 1982) for an example) in order to lower the prices they 

pay. Therefore, the uniform price and English auctions do not necessarily yield efficient 

outcomes. 

Demand revealing mechanisms for multi-unit demand environments have been discov­

ered. Weber (1983) proposes an auction that yields a dominant strategy to bid truthfully 

on the k most highly valued units to each demander in a market where there are k identical 
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units to be sold. Each bidder simultaneously submits k sealed bids, the highest k bids 

secure items, and a bidder who receives 1 items is charged the sum of the 1 highest rejected 

bids made by other bidders. This auction is not uniform price as demanders pay different 

per-unit prices. 

In many of the markets where multi-unit auctions are employed, the units are not 

identical. Examples include the markets for art, real estate, and repossessed motor vehicles. 

Leonard (1983) generalizes the second price sealed bid auction for an environment where 

each buyer may purchase at most one of a heterogeneous set of units. Demange, Gale and 

Satomayer (1986) generalize the English clock for this type of environment. Both of these 

generalizations are demand revealing mechanisms. 

Vickrey suggests an auction form which yields a dominant strategy of truthful revelation 

in an environment where bidders may purchase more than one unit from a set of (possibly 

heterogeneous) objects . Each bidder submits a bid for every subset of the objects. The 

set of objects is distributed among the bidders according to the partition of the set which 

draws the maximum total bid amount (summing over the high bids on the elements of the 

partition). Each bidder is charged the difference between the maximum total which could 

have occurred had his bids not been submitted, and the sum of the high bids placed on 

the subsets other than the one he receives in the actual maximizing partition. A dominant 

strategy for each bidder is to bid the amount of his valuations. He also introduces an auction 

form which is demand revealing in an environment in which buyers have multi-unit demands 

and multiple identical objects to be sold are supplied elastically. It requires payments to 

the seller to exceed payments by the buyers, requiring a third party (perhaps a planner) to 

incur a deficit. All of these demand revealing auctions are variations of Groves mechanisms. 
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In chapter two we extend the independent private values model to allow demanders 

to have positive valuations for obtaining up to two units from a fixed supply of identical 

units. We model the simplest and most obvious generalization of the uniform price sealed 

bid auction for the two-unit demand environment and provide necessary and sufficient 

conditions for a bidding rule to be a symmetric monotone Bayes-Nash equilibrium. In any 

symmetric monotone Bayes-Nash equilibrium, each demander bids an amount equal to her 

valuation for her more highly valued unit and bids less than her valuation for her lower­

valued unit. We also prove that as the number of bidders approaches infinity, the amount 

of underrevelation on the lower-valued unit approaches zero. 

1.1.2 Revenue 

Vickrey notes that the three aforementioned auctions generate the same expected revenue 

(in equilibrium) in the risk neutral independent private values environment. The expected 

revenue is equal to the expected value of the second highest valuation. This observation is 

generalizable into an important result known as the revenue equivalence theorem. 

Revenue Equivalence Theorem: (Myerson (1981)) Every auction that allocates the 

goods efficiently and offers zero profit to a. zero valuation bidder has the same expected 

profit for every bidder valuation and the same expected revenue for the seller . 

An interesting and simple proof can be found in Milgram (1989). Let P equal the 

probability that the bidder wins the item, E denote the expected payment of the winner 

and X equal the winner's valuation. The bidder's utility is then: 

U(P,E,X) = P(X- E) . (1.6) 



CHAPTER 1. INTRODUCTION 10 

Let (P*(X), E*(X)) be the optimal choice for the bidder. Denote the corresponding profits 

as U*(P*(X), E*(X); X). It can be shown, invoking the envelope theorem, that the first 

order condition to the bidder's problem is: 

u•' (X) = U x(P*(X), E*(X); X)= P*(X). (1.7) 

Since U*(O) = 0: 

X 

U*(X) =fa P*(s)ds. (1.8) 

For any auction in which the allocation is always efficient, P*(X) equals the probability 

that all other bidders' valuations are less than X. Since the utility achieved by the bidder 

is independent of the method of sale, the rents taken by the seller must also be indepen-

dent of the method of sale. Thus the expected revenue must be the same in any auction 

mechanism which always generates an efficient allocation in equilibrium. The observation 

that a description of an auction could be reduced to a mapping P(X) which specified the 

probability of a bidder's getting the item as a function of his valuation allowed Myerson 

(1981) to discover the optimal auction , that is, the type of auction which generates the 

most revenue to the seller. In the optimal mechanism, there is a reserve price greater than 

or equal to the sellers valuation and the item goes to the bidder with the highest valuation. 

Revenue equivalence strongly depends on the assumption , which we keep in chapter two, 

that demanders are risk neutral. Risk aversion of the bidders results in the first price sealed 

bid auction yielding higher average revenue (Weber (1983)). The second price sealed bid 

auction and the English clock ha.ve dominant strategy equilibria., which a.re not affected by 

the level of risk aversion of the bidders. 
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The informational structure of the market environment can affect the equilibria and 

therefore the expected revenue of the auction games. The original independent private 

values model has been extended by Milgram and Weber (1982), who develop a general model 

(called the general symmetric model) of which the independent private values environment 

is a special case. Their model (they keep the assumption of risk neutrality) allows for private 

valuations as well as other variables which affect the value of the object to demanders (the 

variables are allowed to be affiliated which makes the bidders' value estimates statistically 

dependent). They prove that in the general symmetric model, the English clock generates 

higher expected revenue than the second price auction, which in turn yields greater expected 

revenue than the first price auction. An explanation for the higher revenue generated by 

the English clock offered by Milgram and Weber is that the English clock allows bidders 

who are uncertain about their valuations to acquire useful information from the behavior 

of other bidders. They also show that the English auction yields more revenue than eitber 

type of sealed bid auction if the seller releases any private information which she has about 

the value of the object. 

In chapter three we show that the uniform price sealed bid auction and the English clock 

are not isomorphic in the two-unit demand environment. Two examples are provided to 

illustrate that the auctions can generate different allocations in equilibrium. Either auction 

may, ex-ante, allocate the commodity more efficiently and either auction may generate 

higher revenue, invalidating some generalizations of the revenue equivalence theorem to the 

multi-unit demand case. 
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1.2 Previous Experimental Work 

Much of the experimental work done to date involving auctions of a fixed supply of identical 

units has been motivated by the theoretical results. We restrict our attention here to the 

experimental studies of auctions in independent private values environments. In general, 

in the case of single-unit demands, the predictions of the dominant strategy equilibria of 

the uniform price sealed bid and English auctions are supported. Coppinger, Smith and 

Titus (1980) find that observed prices in English and second price auctions are not different 

from those in the dominant strategy equilibrium and that the two auctions generate highly 

efficient final allocations. They also observe that the proportion of bidders following their 

dominant strategies increases as the auction is repeated. Cox, Roberson and Smith ( 1982) 

fail to reject the hypothesis that observed prices in the second price auction are equal to 

those occurring in the dominant strategy equilibrium and observe very efficient allocations. 

Burns (1985) finds that sequentia.l English auctions converge to the competitive outcome 

whatever the size of the market. McCabe, Rassenti and Smith ( 1991) consider the behavior 

of many types of multi-unit auctions in environments with single-unit demands. The English 

clock and the uniform price sealed bid auction produce slightly different outcomes. There 

is lower variance in prices and more efficient allocation under the English clock. McCabe 

et al. also find a very strong tendency for demanders to use their dominant strategy when 

playing the English clock. 

Thus when there is a unique symmetric dominant strategy equilibrium to an auction, it 

seems to be observed experimentally. However, when there exists a symmetric Bayes-Nash 

equilibrium but no dominant strategy equilibria to an auction game, the risk neutral Bayes-
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Nash equilibrium performs poorly in explaining the data from corresponding experiments. 

In first price auctions, observed bids are higher than those occuring in the symmetric Hayes­

Nash equilibrium under risk-neutrality. 

Cox, Roberson and Smith (1982) find that a variation of the Bayes-Nash equilibrium 

concept, which allows demanders to exhibit varying degrees of risk aversion, better explains 

their experimental data for first price auctions. Cox, Smith and Walker (1985) reject the 

multiple-unit (but single-unit demand) generalization of the first price sealed bid symmetric 

Nash (risk neutral) equilibrium bidding model. They find some support for an alternative 

model, called the constant relative risk aversion model. 

Some experimental work has been concerned with the relative revenue generating prop­

erties of different auctions. Coppinger et al. find that the revenue in the second price 

auction is somewhat below that produced by the English auction. They also find (as do 

Cox et al. (1982)) that the first price sealed bid auction generates more revenue than the 

second price sealed bid and the English auction. Smith (1967) compares revenue generated 

by uniform price and discriminatory sealed bid auctions and concludes that the difference 

in revenue depends on the amount of excess demand. Miller and Plott (1985) find that the 

discriminatory auction generates more revenue than the uniform price auction when market 

demand is inelastic near the competitive equilibrium price and quantity while the uniform 

price auction takes in more revenue when market demand is relatively elastic. Cox, Smith 

and Walker ( 1985) observe that revenue from sealed bid auctions declines as the level of 

experience of the subjects increases but do not find strong evidence that the discriminatory 

auction generates either higher or lower revenue than the uniform price auction. Olson and 

Porter (1992) find that in a market with multiple heterogeneous goods to be sold but in 
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which demanders could only each buy one unit, that a generalization of the English clock 

generated higher more revenue than a generalization of the second price sealed bid auction. 

There are also previous results concerning allocative efficiency of various auctions. Cop­

pinger, Smith, and Titus observe that the final allocations of the English auction are more 

efficient than those of the second price sealed bid auction which are, in turn, more efficient 

than those of the first price sealed bid auction. Cox, Roberson, and Smith observe that 

the second price sealed bid auction generates more efficient allocations than the first price 

sealed bid auction. Olson and Porter find that the English clock leads to higher efficiencies 

than the second price sealed bid auction. 

In chapter three we report the results from a line of experimentation designed to consider 

relative revenues and allocative efficiencies of the uniform price auction and the English clock 

in the two-unit demand case. \Ve also compare the data from a single-unit demand condition 

to data from a two-unit demand condition. For the parameters in the two-unit demand 

condition of our experiment, we find that the uniform price auction generates significantly 

more revenue than the English clock. Also, significantly greater revenue is generated per 

market period (for both types of market organization) when the markets are conducted 

only once than when they are repeated and more revenue is generated by the English clock 

in the single-unit demand environment than in the two-unit demand environment. In all 

conditions the final allocations are highly efficient. 
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1.3 This Dissertation 

15 

In this dissertation we present a collection of theoretical and experimental results. The focus 

is on the generalization of the properties of auctions in single-unit demand environments to 

environments with two-unit demands. The main contributions of the dissertation are the 

following: 

• Necessary and sufficient conditions are derived for a set of bidding strategies to be a 

symmetric monotone equilibrium to the uniform price auction when demanders wish to 

purchase two units from a set of identical units. 

• A proof of convergence of bidding strategies to truthful revelation as the number of bidders 

gets large is provided. 

• The uniform price sealed bid auction and the English clock are proven not to be isomorphic 

in the two-unit demand environment. Either type of auction may achieve higher expected 

efficiency and either may result in higher expected revenue. Both of these results contrast 

sharply with the results in single-unit demand environments. 

• A set of experimental results is reported. The results indicate that the revenue generating 

properties of the two auctions are different in two-unit demand environments although no 

significant difference is detected in their allocative efficiency. More revenue is generated 

by the uniform price sealed bid auction than by the English clock. Also, more revenue 

is generated per market period if the market is run once than if it is repeated for several 

periods. 
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Chapter 2 

The Uniform Price Sealed Bid 

Auction 

In this chapter we generalize the independent private values framework to allow demanders 

to draw positive valuations for obtaining up to two units from a set of identical units of a 

commodity. We then consider the theoretical properties of a simple generalization of the 

uniform price auction within the two-unit demand independent private values environment. 

Necessary and sufficient conditions for a bidding function to be a symmetric monotone 

Bayes-Nash equilibrium are derived, and an example is provided. It is also shown that 

as the number of bidders gets large, the only possible symmetric monotone Bayes-Nash 

equilibrium is truthful bidding. 



CHAPTER 2. THE UNIFORM PRICE SEALED BID AUCTION 

2.1 The Model 

17 

Let there be k (> 1) identical units to be sold and n+l (> 1) demanders indexed by 

i = 1, ... , n + 1. Each demander draws two valuations independently from a fixed and 

common distribution 1'( v ), where 1'( v) has strictly positive density on [O,v] C R+ and 

1'( v) E C 2 • Order the two values from higher to lower and index them 1 and 2 respectively; 

vf ~ v~ ~ 0 are the valuations of demander i. Define G( vf, vD = Prob( Vt ~ vf, v2 ~ v~), 

where v1 and v2 are a pair of values independently drawn from 1'(v). Let g(v1,v2) denote 

the probability density function of G. Since g is a joint density of order statistics drawn 

from a distribution with positive density on [0, v], g(v1 , v2) > 0 for all Vt. v2 such that 

0 ~ v2 ~ v1 ~ v. All demanders are risk neutral. Valuations are private information but')', 

n, and k are common knowledge. 

2.2 The Game 

All demanders submit two nonnegative bids . The highest k bids are accepted and the 

corresponding demanders pay a per-unit price equal to the k + 1st highest bid. A tie for 

kth highest bid is broken by randomly allocating a unit to one of the tied demanders. A 

bid which is equal to zero is never accepted. 

When buyers are willing to pay for more than one unit, the uniform price sealed bid 

auction does not have the incentive properties it has in environments with single-unit de­

mands. The following example may clarify this idea. Suppose for simplicity (and only 

for the example) that there is complete information, so that each buyer knows all of the 

valuations of the others . 



CHAPTER 2. THE UNIFORM PRICE SEALED BID AUCTION 18 

Table 2.1: Buyers' Valuations in Example 1 

buyer 1 buyer 2 
Higher Valuation 5 3 
Lower Valuation 4 0 

Example 1: The number of buyers (n+1) = 2, and the number of units to be sold (k) 

= 2. Buyers' valuations are given in table 2.1: 

Consider buyer 1' s decision on what to bid. He supposes that buyer 2 is going to bid 

3 on his highest unit and 0 on his second unit (later we will show this strategy to be the 

best response of bidder 2) . If buyer 1 bids the amount of his valuations, that is 5 on his 

high unit and 4 on his second, he wins both units. The per-unit price paid is equal to the 

highest rejected bid, which is 3. Then his profits are (5-3)+ (4- 3) = 3. Buyer 2's profits 

are zero. If instead, buyer 1 bids 5 on his high unit and then 0 on his second unit while 

buyer 2 bids 3 on his high unit and 0 on his second, each bidder receives one unit, the price 

is zero, and the profits are 5 and 3 to buyers 1 and 2 respectively. By underbidding on his 

second unit, buyer 1 wa.s made better off. For buyer 1, bidding his valuation for that unit 

was not his best response. 

2.3 Symmetric Equilibria 

2.3.1 Necessary Conditions 

Since the environment described in section 2.1 specifies symmetrically informed bidders 

whose valuations are drawn from a common distribution, it is natural to consider equilib-



CHAPTER 2. THE UNIFORM PRICE SEALED BID AUCTION 19 

ria which consist of symmetric bidding strategies. Therefore, we restrict our attention to 

symmetric equilibria. In theorem 1 we derive a necessary condition for a bidding strategy 

to be a symmetric monotone Bayes-Nash equilibrium. Several definitions are required for 

the statement and proof of the theorem. 

two valuations into two bids. 

Definition 2 A bidding function , B( v1 , v2) is type M if: 

1} B(O,O} = (0,0} , 

2} B is continuous in v1 and v2, 

5} ~82 exists and is > 0 if B j > 0 and ?j!.;. exists and is 2: 0; z i= j if Bj > 0. 
~ v~ 

Definition 2 describes a general notion of monotonicity. It allows bidding strategies 

which specify that Bj( v1 , v2) = 0 for all v1 ~ v1 and v2 ~ v2 for any v1 E [0, v] and any 

v2 E [0, v]. It includes , a.s a special case, bidding functions which are strictly increasing in 

v1 and v2 (where 0 = v2 = vi). The concept of separability is described in definition 3. 

Definition 3 A bidding function is separable if B(v1 ,v2) = (B1 (vl),B2(v2)). That ts, 

a demander's bid for his higher (lower) valued unit is independent of his lower {higher) 

valuation. 

Definition 4 
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(2.1) 

The function H(.) is the probability that in a sample of size n drawn from g( v1 , v2 ), exactly l 

observations in the sample have the property that ( Vt ::; Zt, v2 ::; z2), exactly m observations 

have the property that ( Vt > Zt, V2 ::; Z2) and exactly n - m - £ have the property that 

Definition 5 

(2.2) 

The function T(.) is important to the statement and the proofs of theorems 1-3. It is useful 

in describing the amount by which bidders underbid on their lower valued unit in a Type 

M equilibrium. 

Definition 6 (F;i (x)IB) = Prob(at least v bids made by bidders other than i are less than 

or equal to x if all bidders except for bidde1· i use B). 

In other words, (F;i(x)IB) is the cumulative distribution function of the vth order statistic 

of bids made by n randomly chosen demanders using strategy B. 

Theorem 1 A bidding function (3 ( Vt, v2) = (f3t ( Vt, v2), fJ2( Vt, v2)) is a symmetric type M 

undominated Boyes-Nash equilibrium only if: 

(2.3) 
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and: 

(2.4) 

where: 

(2.5) 

and 7J2 solves the differential equation: 

(2.6) 

with the initial conditions: 

v; = 0; if n > k- 1 

7J2(0) = 0; ifn = k -1. (2.7) 

Theorem 1 is proven using lemmas 1-7, which are stated and proven in this subsection. 

An additional lemma ( 10) , required for technical purposes, is stated and proven in appendix 

A. 

nated type M Bayes-Nash equilibr-ium only if: 

(2.8) 
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Proof: Suppose all n+1 bidders are using the same equilibrium bidding function 

B* ( VJ. v2 ). For notational ease, let Fv-i• ( x) = Fv-i ( x) I B*. Since B* is symmetric, 1 is 

fixed and common, and valuations are drawn independently, F;i*(x) = F;(x);Vi. Since B* 

is an equilibrium, all bidders are maximizing expected profit. To derive the expected profit 

to bidder i, as a function of the amount he bids, we must divide all possible outcomes of 

the auction into four cases. 

Case 1: The purchase price is lower than i's highest bid but higher than his second highest, 

in which case i receives one unit. His profits are the value for his highest unit, vi, minus the 

price he pays, which is the kth highest or 2n-k+1st lowest of the other players' bids, since 

there are k others besides i. The profits in case 1 times the probability of the occurrence of 

case 1 is equal to: 

(2.9) 

where Mv is the vth lowest order statistic of bids made by bidders other than bidder i and 

b~ is the jth highest bid made by bidder i. 

Case 2: The price is lower than either of i's bids, implying that i's two bids are among the 

k highest. Profits are vi + v~ minus two times the price he pays. This price is equal to the 

2n-k+2nd lowest of the other players' bids. The profits in case 2 times the probability of 
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case 2 equals: 

b' fa 2 (v~ + v~- 2M2n-k+2)fin-k+2(M2n-k+2)dM2n-k+2· (2.10) 

Case 3: Bidder i 's higher bid is accepted and his lower bid sets the price. The higher bid is 

among the k highest and the lower bid is the k+1st highest , implying that the lower bid is 

between the 2n-k+1st lowest and the 2n-k+2nd lowest of the other demanders bids. Profits 

are equal to v{ minus i 's lower bid . The profits in case 3 times the probability of case 3 is 

given by: 

(2.11) 

Case 4: The price is higher than either of i's bids . Neither of his bids are accepted, he 

receives no units , and his profits are 0. 

By combining the last three equations, we see that the objective function for bidder i is 

given by: 

b' +fa 2 

( v~ + v~ - 211hn-i.·+2)!2n-k+2(M2n-k+2)dM2n-k+2 

+(v~- b~)(Fin-k+l(b~)- Fin-k+2(b~)). (2.12) 

In equilibrium, bidder i's two bids , bl and b~ , are chosen to maximize the objective function 

subject to: 

(2.13) 
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The first order necessary (Kuhn-Tucker) conditions are given by: 

8E7ri ( i hi )f* (hi) hi B;;- = VI - I 2n-k+I I = 0; I > 0, 
I 

::; 0; hl = 0, (2.14) 

and: 

8E1ri ( ; hi)!* (hi) (F.* (hi) F.* (hi)) hi a;;- = v2 - 2 2n-k+2 2 - 2n-k+I 2 - 2n-k+2 2 = 0; 2 > 0, 
2 

::; 0; h~ = 0. (2.15) 

If f2n-k+I (hi) > 0, then B* is separable and Bj( vi)= VI for VI ;::: 0. If f2n-k+I (hi) = 0, then 

there can be more than one solution but any strategy is weakly dominated by Bj( vi) = vi. 

Any strategy which involves underbidding results in profits identical to those under truthful 

revelation if the final price is less than hi, but lower profits than those under truthful 

revelation if the final price is less than vf but greater than hi. Any strategy which involves 

overbidding results in profits to bidder i that are identical to those under truthful revelation 

if the final price is less than v~ but are lower than those under truthful revelation if the 

final price is above vi but less than hi. D 

We have shown that in equilibrium, each bidder's higher bid equals his higher valuation. 

We derive the lower bid in lemmas 2-7. 
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Lemma 2 /3 is a Type M undominated symmetric Bayes-Nash equilibrium only if {32 ( v2 ) = 

(2.16) 

Proof: The derivation of B2( v2) requires the derivation of the expression (F2n-k+l (b~)-

F2n-k+2 (b~))/ f2n-k+2(b~) in equation (2.15). By lemma 10, which is in appendix A, 

f2n-k+2 (b~) > 0. Since B* is being used by all players and Bi( vl) = v1: 

(2.17) 

(2.18) 

where the function ll2(x) :[0, B2(v)J--...[v2,"v], and ll2(x) B2h(x ). Now consider the 

probability that a randomly drawn bidder, named y '1- t, submits 2 bids that are less 

than or equal to b~. The probability that two of y's bids are less than b~ is the probability 

of the following event: 

(2.19) 
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Similarly, exactly one of y's bids is less than or equal to b~ when either of the two 

following events occurs: 

(2.20) 

or 

(2.21) 

The last expression equals 0 because it requires that (vi:::; b~,v~ ~ V2(b~)), an event 

that occurs with probability zero. 

Since the expression (F2n-k+l (b~)- F2n-k+2 (b~))/ f2n-k+2 (b~) ~ 0 (because the numer-

a tor is a probability and the denominator is a density), it must be the case that V2( b~) ~ b~; 

but by assumption vi ~ v~. The probability that demander y makes 0 bids less than or 

equal to b~ is given by: 

(2.22) 

Suppose now that each of the n bidders other than bidder i draws one pair of valuations 

from G( v1 , v2 ). Suppose exactly £ of the buyers make two bids less than or equal to b~, 

exactly m buyers make one, and exactly (n-m-£) bidders make zero bids less than or equal 

to b~. The probability of this event is given by: 
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Prob( exactly .e observations of Bi( v}i) ~ b~, exactly m + .e observations of Bi( v;zi) ~ b~) 

The previous expression equals H(b~, V2(b~), G, n, m, f) where H is as defined in equation 

(2.2). It follows that: 

(2.24) 
e,m;2f+m=2n-k+1 

2n 

I: (2.25) 
q=2n-k+2 e,m;2f+m=q 

and 

(2.26) 

The last three equations imply that: 

(2.27) 

Since all bidders are using the same strategy, b~ must equal B2(v;) . Therefore: 

T(biTf. (bi)(oV2)- 1 G k)-T(B*(i) i8Bi(v2)G k) 
2• I 2 2 ' ob2 ' 'n, - 2 V2 'V2, QV2 ' 'n, • (2.28) 

Using equations (2.15),(2.27) and (2 .28), we see that equation (2.6) and the second part of 

equation (2.4) must hold. D 
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In lemmas 3 and 4 we solve for v2 . If any demander draws a lower valuation less than 

equal to v2, he submits a lower bid equal to zero. We show that v2 is equal to v2, where v2 

satisfies equation (2.5). 

Lemma 3 fh( v2) = 0; where v2 satisfies: 

(2.29) 

Proof: The first order conditions imply that for b~ = 0: 

(2.30) 

Equation (2.30) holds with equality if F2(0) = T(O, V2(0), ( 8 ~~~o) )-1, G, n, k), which implies 
2 

that V2 (0) = v2 and shows that equation (2.5) must hold. 0 

Proof: Consider v~ < v2. 

(2.31) 

By equation (2.15), B2(v~) = 0. It is shown that the first part of equation (2.4) must hold 

in equilibrium. 0 

In lemmas 5-7 we derive initial conditions for the differential equation in (2.6). The 

initial conditions depend on the difference between the number of bidders and the number 

of units to be sold. 
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Lemma 5 v2 = 0; if n > k - 1. 

Proof: Consider v2 = T(O, v2, 88jv~v:i), G, n, k). By lemma 10, which is stated and proven 

in Appendix A, the denominator of the last expression, which is equal to f2n-k+ 2 (0), is 

strictly greater that 0. If the numerator is equal to zero, it would imply that v2 = 0. The 

numerator is: 

I 

L H(O , Vz(O) , G, n, m ,f) = L f' '( :· _f)' 
l,m;U+m=2n -k+1 l,m;U+m=2n-k+1 '

1n. n m ' 

(2.32) 

The last expression equals 0 unless e = 0. Suppose f equals 0. Then the expression equals: 

Since m ;::: 0, the last expression equals 0 if 2n- k + 1 > n which occurs if n + 1 > k, that 

is, if the total number of bidders is greater than the number of units . Therefore, v2 = 0 

when n > k - 1. D 

Lemma 6 /32 (v) = v; if n < k- 1. 

Proof: Consider T(B2(v), v, 8~~;v), G, n, k). The denominator ofT is positive by lemma. 

10. If the numerator is equal to zero we know that B2(v) = v. If v~ = v, the numerator of 
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T equals: 

L H(B2(v),v,G,n,m,e)= L 
1 1 

n! 
em (n- m- l)' l,m ;2l+m=2n-k+I l,m;2l+m=2n-k+I · · · 

(2.34) 

The previous equation equals 0 unless n = m + e. It also equals 0 unless 2£ + m = 2n- k + 1. 

It can be easily shown that n = m + e and 2£ + m = 2n - k + 1 cannot be satisfied 

simultaneously if n < k - 1. 

(2£ + m = 2n- k + 1) {::} (2£- n- e = 2n- k + 1) {::} (£ = n- k + 1). (2.35) 

Noting that l ~ 0, we see that equation (2 .35) is false if n < k-1. We have now shown that 

if n + 1 < k, T(B2(v), v , 8~~;v), G, n, k) = 0 and have obtained the initial condition that 

B2(v) = v if n + 1 < k. The second part of equation (2.7) must hold. D 

Lemma 7 -;B2 (0) = 0; if n = k- 1. 

Proof: Define B;(o) to be: 

-·( -=- ) aB;(o) B 2 0)=0-T(O,B2(0, 
0 

,G,n,k). 
V2 

(2.36) 



CHAPTER 2. THE UNIFORM PRICE SEALED BID AUCTION 31 

The numerator ofT equals: 

"" -=- "" n! L..t H(B2 (0),0,G,n,m,f)= L..t f' '( _ _ )' 
l,m;2l+m=2n-k+1 l,m;2l+m=2n-k+1 .n1. n m f . 

(2.37) 

The last expression equals zero unless f = 0 and m = 0. However, if f = m = 0, the 

expression equals zero unless 2n-k+ 1 equals zero. If 2n - k + 1 = 0, then n ::p k - 1 if n > 0. 

Therefore, for n = k - 1, T(O, "B;(O), 8~~;o), G, n, k) = 0, which implies that n;(o) = 0 for 

n = k - 1, showing that the third part of equation (2 . 7) must hold. 

Proof of Theorem 1 The proof follows directly from lemmas 1-7. It has now been 

shown that B*( v11 v2) is a type M undominated symmetric Bayes-Nash equilibrium, only if 

it equals {3. D 

2.3.2 Sufficient Conditions 

In theorem 1 we provided necessary conditions for a bidding function to be a symmetric 

undominated Type M Bayes-Nash equilibrium. In theorem 2 sufficient conditions are given 

for f3 to be an equilibrium. There are two conditions: A and B. Condition A insures that the 

appropriate second order conditions are satisfied; if all other demanders use {3, the payoff 

function of bidder i is concave in bidder i 's strategy. Condition B insures that f3 is type M. 

Theorem 2 Suppose that: 
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A) 

(2.38) 

B) 
1 &T &T &2 /h 

- &v2 - &(32 &v~ 
1 &T > 0. + &(32 

(2.39) 

symmetric undominated Type M Bayes-Nash equilibrium if it satisfies (2.3} - (2. 7) 

The theorem is proven using several lemmas. In lemma 8 we prove that f3 is Type M. 

In lemma 9 we prove that f3 is an equilibrium. Lemmas 10 and 11, required for technical 

reasons, are proven in appendix A. 

Lemma 8 If condition B holds, f3 is Type Nf. 

Proof: Clearly /3(0,0) = (0,0) and /3 is continuous in v1 and v2 . v1 (v2 ) = 0, v2 (vt) = v:i 

T(/32 , v2 , ~, G, n, k ). The partial derivative of /32 with respect to v2 satisfies: 

(2.40) 
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Rearranging terms in the last equation yields: 

1 8T 8T ~ - 8v2 - 8fh 8v
2 

1 + 8T Wf2 
(2.41) 

whlch is greater than zero by assumption B. Finally, since f3 is separable: 

(2.42) 

We have now shown that f3 is type M. 0 

Lemma 9 If conditions A and B hold, f3 is a undominated Type M symmetric Bayes-Nash 

equilibrium. 

Suppose all bidders except for bidder i are using the bidding function /3( v1 , v2 ). The 

objective function for bidder i is given by: 

b; 

+ fo 2 

( v; + v~- 2Mzn-k+z)hn-k+z(Mzn-k+z)dMzn-k+2 

+(v;- b~)(Fzn-k+1(b~)- Fzn-k+Z(b~)). (2.43) 

where F~.~(x) F;i J/3. Bidder chooses bi and b~, to maximize the objective function 

subject to: 

(2.44) 
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By lemma 11 (see Appendix A), the objective function is twice differentiable. The first 

order necessary conditions are given by: 

8E1r; · · · · 
7JiT = (v~- bDhn-k+t(b;) = O;b~ > 0, 

1 

$ 0; bi = 0, (2.45) 

and: 

$ 0; b~ = 0. (2.46) 

The second derivatives are (omitting the superscript designating demander for notational 

ease): 

(2.47) 

(2.48) 

(2.49) 

The second order conditions are then: 

(2.50) 

It follows from (2.45) that if hn-k+l ( b~) > 0, then b1 = Vt for Vt ~ 0. If hn-k+l ( b~) = 0, 

then there can be more than one solution to (2.4.5) but any strategy is weakly dominated 
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by bt = Vt. Therefore b{ = f3t (vi) = vi. Since f3 being used by all players besides i and f3 

is type M, 

(2.51) 

And since a,B§(v2
) > 0 for v2 > v2*: 

. V2 

(2.52) 

As we did in the proof of theorem 1, we can derive the following equation: Prob( exactly f 

observations of f31 (v!i) s; b~, exactly m + f observations of f32 (v:;i) s; b~) 

The previous expression equals H(b~, W2(b~) , G, n , m,f) , and equations (2.54) and (2.55) 

follow: 

H(b~, W2(b~) , G, n, m,f), (2.54) 
e,m ;2f+m=2n - k+l 

(2.55) 

The last two equations imply that: 
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We can rewrite the first order condition in (2.46) for b~ > 0 as: 

One solution to the last equation is to set b~ = (32 ( v~): 

Recalling the fact that H1(x) = f32 1 (x), we see that: 

The first order conditions imply that for b~ = 0: 

0 ~ W2(0)- T(O, W2(0),(8T;~~O))_\G,n,k), 

0 ~ Ht2(0)- T(f32(v;),v;, 
8
8

/32 ,G,n,k). 
V2 

36 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

The last inequality holds with equality when W2(0) = v2. Now consider some v2 < v2. 

(2.61) 

By the first order condition (2.46), b2( v2) = /32( v2) = 0. We have now shown that the best 

response to f3 must satisfy (2.3)-(2.6). 
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It remains to derive initial conditions for the differential equation in (2.59). Consider 

v* = T(O v* 8.62 (v2) G n k) = F2n-k±J (O)-F2n-kt2 (0). By lemma 10 f2n-k+2(0) > 0. If 
2 ' 2• 8v2 ' ' ' hn-k±2(0) 

F2n-k+1(0)- F2n-k+2(0) = 0 it would imply that v2 = 0. 

n! 
F2n-k+1(0)- Fzn-k+z(O) = L fl '( _ _ f)l 

l,m;U+m=2n-k+1 .m. n m . 

(2.62) 

The last expression equals 0 unless f = 0. If f equals 0, the expression in equation (2.62) 

equals: 

Since m 2: 0 the last expression equals 0 if n + 1 > k implying that v2 = 0 if n + 1 > k. 

Now consider T(j32(v), v, 8~~;v) , G , n, k ). If the numerator is equal to zero, j32(v) = v. The 

numerator equals : 

n! L H(j32 (v) ,v,G, n , nt,C)= L f' '( _ -e)' 
l,m;2l+m=2n-k+1 e,m;U+m=2n-k+1 .m. n m . 

(2.64) 
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The previous equation equals 0 unless n = m + l. It is also 0 unless 2£ + m = 2n- k + 1. 

n = m + l and 2£ + m = 2n - k + 1 can not both be true if n < k - 1. Therefore, 

if n + 1 < k, T(f32(v), v, 8~:;v), G, n, k) = 0 and the initial condition that {32(v) = v if 

n + 1 < k follows. Now suppose n+1= k and consider P2 (0) where: 

(2.65) 

The numerator of T(/32 (0), 0, 8~~~o), G, n, k) equals: 

' L H(P2 (0),0,G,n,m,e) = L l' '( :· -f)' 
e,m;2l+m=2n-k+l e,m;2l+m=2n-k+l .m. n m . 

(2.66) 

The last expression equals zero unless l = 0 and m = 0. However, if l = m = 0, the 

expression equals zero unless 2n-k+1 equals zero. If 2n- k + 1 = 0 then n :/= k- 1 if n > 0. 

Therefore, for n = k - 1, T = 0 which implies that tJ2 (0) = 0 when n = k - 1. 

We have now shown that {3( v1 , v2 ) is a solution to the first order conditions in (2.45) and 

(2.46). If the appropriate second order conditions hold, f3 is a best response. The second 

order conditions are: 

(2.67) 
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and 

(2.68) 

a;~'lr < 0 is satisfied if bi = VI and hn-k+I(b2) is greater than zero. If hn-k+I(b2) = 0, 
l 

then many solutions are possible but bi = VI dominates any solution that has bi =fi VI· 

a;~'lr < 0 is insured by condition A. To see this, consider: 
2 

Equation (2.69) implies that f~n-k+2 ( b~) 

(2.69) 

and it is now apparent from equations (2.38), (2 .69) and (2.70) that assumption A is satisfied 

if and only if 
82!;113 < 0 for all b2 such that 0 :=:; b2 :=:; v. Assumption A guarantees that the 

2 

function Etri is strictly concave in b~ when all demanders besides bidder i use the strategy 

{3. We have now shown that {3 is a best response to itself under assumptions A and B. 0 

There is underrevelation on the lower valued unit for the following reason: in the event 

that a demander's lower bid is the k+1st highest, he has some incentive to underbid on 

it in order to lower the price he pays for the unit he receives (the fact that the lower bid 

is the k+ 1st highest implies that the higher bid is among the k highest, and therefore the 

demander receives exactly one unit). There is no incentive to underbid on the higher valued 

unit, since in the event that the demander's higher bid is the k+ 1st highest, he wins no 

units, and his profits are zero. Overbidding is always a dominated strategy. 
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The two symmetric equilibrium bids are separable, indicating that the extent of under-

revelation on the lower unit depends only upon the rank of the unit, the distribution of 

valuations, the number of bidders and the number of units sold, and is independent of the 

bidder's higher valuation and his higher bid. The independence results from the fact that 

the price paid is independent of the amount of the higher bid, and therefore the gains from 

lowering the final price depend only upon how many bids are accepted in the event that 

the lower bid is the k+1st highest . 

It is important to realize that if a symmetric equilibrium to this game exists, it does 

not preclude the existence of asymmetric Nash equilibria. Consider a case where there are 

two units to be sold to two buyers, each of whom values two units. One buyer bids v for 

both of her units and the other bids 0 for both of her units . No single demander has any 

positive incentive to change her strategy. 

2.3.3 A Simple Example 

The following is an example of an undominated Type M symmetric equilibrium. 

Suppose 1( v) is uniform on the interval from 0 to 1, n + 1 = 2 and k = 3. We know that 

,81 ( vn = vf in an undominated symmetric equilibrium. The calculation of ,82 ( v~), which 

equals v~- T(.), proceeds in the following manner. First note that e!m!(n~m-e)! = 1. Using 

the fact that v1 ~ v2 , we can derive the following equation which gives the probability that 

a bidder makes exactly two bids less than or equal to b~: 

(2.71) 
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The probability that a randomly chosen bidder makes exactly one bid less than or equal to 

b~ equals: 

(2.72) 

and again using v1 ~ v2 , we can derive the probability that a randomly chosen bidder makes 

exactly zero bids that are less than or equal to b~. The probability is given by: 

(2.73) 

It can be easily verified that: 

(2.74) 

The numerator ofT equals the following expression (note 2n-k+l = 0): 

(2.75) 
(m,l;m+U=2n-k+l) 

Next, we derive the denominator ofT. F2n-k+2(b~) equals: 

(2.76) 

The derivative of this expression is: 

(2.77) 
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Since the equilibrium is symmetric, V2 ( b~) = v;. The solutions to the first order necessary 

conditions are given by: 

(2.78) 

(2.79) 

with the initial condition ,82(1) = 1 because n < k- 1. Solving for ll~(b~) we obtain: 

V'(b') - 1 - v2 
2 2 

- 2(v' b') 2 - 2 
(2.80) 

A solution can be found by setting b~ = ( v;)2 which implies that V2 (b~) = (b~)t and also 

that V~ = ~( v;)- 1
. We obtain: 

(2.81) 

It can be readily verified that the second order conditions are satisfied . 

2.4 Large Numbers of Bidders 

If a large number of bidders wants to buy a fixed supply of units, one might expect that each 

bidder has little incentive to underreveal his demand . As the number of bidders approaches 
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infinity, it seems reasonable to believe that, if demanders are playing symmetric equilibrium 

strategies, the amount of underrevelation would converge to zero, each bidder would submit 

two bids equal to his valuations, and the result would be an efficient final allocation at 

the competitive equilibrium prices. In theorem 1, we provided necessary conditions for a 

bidding function to be an undominated Type M symmetric Bayes-Nash equilibrium. The 

equilibrium must involve underbidding by an amount equal to T(.) on demanders' lower 

valued units. If it could be shown that as the number of bidders gets large, T converges 

to zero, then the equilibrium bidding strategies must converge to truthful revelation. The 

following theorem implies that in fact, as the number of bidders becomes large and the 

supply remains constant, the only possible symmetric undominated type M Bayes-Nash 

equilibrium is truthful bidding. 

Theorem 3 Let z1(n) : N -+ [O,v],z2(n) : N ---.. [O,v] and z3(n): N --+ R+. and let 

z1 (n)::;; z2(n) for all n. Then fork fixed, as n-+ oo, T(zt(n), z2(n), z3(n), G, k, n)--+ 0 

Proof: Recall that: 

(2.82) 

(2.83) 
'\'2n '\' n 1 T. 
L....q=2n-k+2 L....m,e:m+2 f=q f!m!(n_.:m-()! denom 

where: 

(2.84) 
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Let n increase to n+1 fork fixed. Then it must be the case that f also increases to f + 1 

since the summation in the last equation is over all combinations of m and f such that: 

m + 2f = 2n- k + 1. Therefore, n-+ oo => f-+ oo. Let a= n- f. a stays constant as n 

and f increase. Since the integrand in the next equation is less than or equal to one: 

= 1; Z1 = V. (2.85) 

Also: 

where 0 ~ A(.) < 1 and equals 0 if z1 = v. It follows that: 

lim Tnum(zl(n),z2(n), z3(n),G,n,k) = 0. 
n-oo 

(2.87) 

Now we consider Tdenom(z1 (n),z2(n),z3(n),n,k,G), which equals (using the product rule): 

+(n-a)( {z
2 

g(v1 ,z2)dvi)(n-o--l)*A(n)•-(
1 

)" Jo Z3 n (2.88) 
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We know from equation (2.85) that: 

= 1; Z1 = V. (2.89) 

Let: 

oA(n, z1(n), z2(n), .) =X( ) 
,:) n. 
UZ! 

(2.90) 

-oo < X(n) < oo. The derivative exists and is finite because g(v1,v2) E C 1 on [O,vj2. 

By assumption, z1(n) ~ z2(n) and (by the definition of g(v1,v2)),v1 2: v2. Therefore, 

we find: 

l
z2(n) 

lim (n- a)( g(z1(n), v2)dv2)(n-o-l) = lim (n- a)= oo. 
n--+oo 0 n-+oo 

(2.91) 

Let Z(n) = 81~~· -). -oo < Z(n) < oo. The derivative exists and is finite because g(v1, v2) E 

C 1 on [0, v] 2 . z1
3 

is > 0 because by assumption z3( n) > 0. The remaining term of Tdenom is: 

(2.92) 

the last equation, zl(n) < z2(n) while VI 2: v2 . Therefore, u;J(n) g(vl, z2)dv2) = 0 for a.ll n . 

..!.. is > 0 by assumption. Now, notice that: 
Z3 

(2.93) 
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Therefore: 

< 

< l:m,a;2(n-a)+m=2n-k+l ( (n a)!~i(a-m)! Tnum) 

Lm,a;2(n-a)+m=2n-k+2( (n a}!~ha m}!Tdenom) 
n! 

"""' (n a)!m!(a-m}! Tnum ) 
~ n! T. 

m,a;2(n-a)+m=2n-k+l (n-a+l)!(m-l)!(a-m)! denom 

lim T(.):::; """' (lim n- a+ 1 * lim Tnum ) 
n--+oo ~ n-...oo m n--+oo Td 

2(n-a)+m=2n-k+l enom 

<lim L 
-n-...oo (n-a)*m*A(.) 

m,a;2(n-a)+m=2n-k+l 
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(2.94) 

(2.95) 

(2.96) 

(2.97) 

Since m ~ 1 (because 2f.. + m = 2n - k + 1, k ~ 2 and e :::; n), the limit in the la.st expression 

is clearly 0 if A(n) > 0. 

Now reca.ll that in any type M equilibrium, !32 ( v2) :::; v2 and {!!;: > 0 for v 2 ~ vi. 

Also, in any type M equilibrium, A(n,/32(v2),v2,G) > 0 for v2 < v. Therefore we can let 

z1(n) = :B2(v2,n,.),z2(n) = v2, and z3(n) = ai3~~;·n). It must be the case that: 

(2.98) 

0 

2.4.1 Digression: A Note on Replication 

It might seem reasonable to compare the behavior of an economy with n+1 demanders and 

k units to be sold with that of an economy with 2(n+1) demanders and 2k units to be sold. 

One might conjecture that the expected revenue of the uniform price sealed bid auction in 

the latter economy would be twice the expected revenue in the former. It can be shown 

that the conjecture is false in the multi-unit demand case but it is easy to show that it is 
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also false even in the single-unit demand case. The following example clarifies the idea. 

Example 3: n + 1 = 2, k = 1, and demanders draw one valuation from G(v) which we 

assume for the example is uniform on [0,1). In the dominant strategy equilibrium, bi = vi. 

The expected revenue is equal to the expected value of the lower of 2 order statistics in a 

sample of 2 drawn from G. 

- ~ j+oo (n+1)! k-1 n+l-k 
Rev1-k - oo v(k- 1)!(n+ 1 -k)!G(v) (1-G(v)) g(v)dv (2.99) 

j +oo 
= - oo v(2 - 2v )dv. (2.100) 

Now suppose n + 1 = 4, and k = 2. The expected revenue from the auction is equal to the 

expected value of the second lowest order statistic from a sample of 4 drawn from G. The 

expected revenue equals: 

(2.101) 
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Chapter 3 

Uniform Price Auction vs. 

English Clock 

As we saw in chapter one, the uniform price sealed bid auction and the English clock 

are isomorphic in the independent private values environment when demands are single­

unit. The focus of this chapter is the difference in the bidding strategies, revenue and final 

allocations between the two types of auctions under multi-unit demands. As is illustrated 

in section 3.1, the type of auction which achieves higher expected efficiency and induces 

higher bids, leading to higher expected revenue, depends on the distribution of valuations 

of demanders. 

In sections 3.2-3.4 we describe the design of an experiment, which we use to consider some 

empirical properties of the two types of auctions . In section 3.5 we give some theoretical 

predictions of experimental outcomes. In section 3.6 we analyze the data in detail and 

describe the results. We compare the a.llocative efficiency and market revenue across three 
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different dimensions: 

1) whether the uniform price sealed bid auction or the English clock is employed, 

2) whether individual demands are single-unit or two-unit, 

3) whether the auction is run once or is repeated. 

We also test statistically the predictions of the dominant strategy equilibria of both 

types of auctions in the single-unit demand environment , the symmetric monotone Hayes­

Nash equilibrium of the uniform price auction in the two-unit demand environment , as well 

as revenue equivalence of the two auctions . 

3.1 Theoretical Non-Equivalence 

The purpose of this section is to show that the uniform price sealed bid auction and the En­

glish dock do not necessarily generate identical expected revenues and allocative efficiencies 

in their respective symmetric equilibria. in multi-unit demand environments. 

Assume the following independent private values framework. Let there be m demanders 

indexed by i so that i=l , ... ,m. There are k identical units of a commodity to be sold. 

Each demander i draws w; valuations vi, ... , v~j i~1dependently from a distribution r;( v ). 

Demander i knows m,k, vL ... ,v~;,r 1 ( v ) , .. . , rm( v ) and w1 , • • • , wm. He does not know the 

actual valuations of the other buyers. 

Theorem 4 The English clock and the uniform price sealed bid auction may generate in­

efficient allocations in their respect ive symmetric equilibria. Either the English clock or 

the uniform price sealed bid auction may generate greater expected revenue or a/locative 

efficiency. 
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Proof: Consider examples 4 and 5. 

Example 4: m = 3, k = 2, w1 = 2, w2 = W3 = 1. 

0 v < 1, 

.01 1 ~ v < 8, (3.1) 

1 v ~ 8. 

An approximation of df2 ( v) is illustrated in figure 3.1. Let f 1 ( v) = 0 for v < 10 and 

= 1 for v ~ 10. Also, let v} = 10, v~ = 10, vi = 8, vr = 1 and the allocation mechanism 

used be the uniform price sealed bid auction. Assume that all ties are broken in buyer 1 's 

favor. We know that bi = vf if w; = 1 (a single-unit demander bids equal to his valuation). 

Therefore buyer 1, supposing that vi = br and that vr = br, faces the following expected 

payoff. E1r 1: 

b{ ~ 8, b~ ~ 8, 

P1(10- 8) + P2(10- b~) + P3(10 + 10- 2(1)) b{ ~ 8,8 > b~ ~ 1 

P3(10 + 10- 2(1)) + P2(10- bD 8 > b} ~ 1, 8 > b~ ~ 1 

P1(10- 8) + (P2 + P3)(10- 1) b} ~ 8,b~ < 1 

8 > bi ~ 1' b~ < 1 

b{ < 1, b~ < 1. 

(3.2) 

where P1 = .992, P 2 = 1-.992-.012, and P3 = .01 2. The expected profits for each of the 

six types of strategies in (3.2) are 4.0014,2.16- .0198b~, .1998- .0198b~, 2.1393, .1791 and 

0 respectively for rows 1 - 6. Bidder 1 maximizes expected profit by submitting b}, b~ ~ 8, -
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that is, by choosing a strategy from the first row of (3.2). Each of the other two bidders, 

for whom w; = 1, submits a bid equal to his valuation. Bidder one wins both units and 

pays a per-unit price of 8. The allocation is efficient because the units are obtained by the 

demander(s) to whom they have the greatest value. 

Suppose now that the mechanism utilized is the English clock. If .f. = 0, then q1(0) = 

2, q2(0) = q3 (0) = 1. At price 1 bidder 3 drops his demand from one unit to zero units 

because he does not want to win the unit a.t a price greater than its value to him. This 

leaves total demand at 3 units. At price 1 + f bidder 1 can update his beliefs about the 

other two bidders. Since Prob( vf = 8lvf > 1) = 1, bidder 1 knows that di will equal 8. 

Bidder 1 reasons that his profits, if d~ > 8, would be (10- 8) + (10- 8) = 4. The final price 

would be 8 because bidder 2 is a. single-unit demander with a dominant strategy of truthful 

revelation. If, however, d~ = 1 + f, (bidder 1 reduces his quantity demanded to one unit 

immediately after bidder 3 drops out), his profits are (10- 1- f) = (9- f)> 4, and so he 

drops his demand to one unit a.t price 1 + f. The final allocation is the following: buyers 

one and two each receive a unit and the market price is 1 +f. The allocation is not efficient. 

In example 4, the two mechanisms yield different ex-post revenue. Notice that they also 

do not yield the same expected revenue. There are three other possible configurations of 

demand in the example. They are: 

1) v} = 10,v~ = 10,vf = 1,v{ = 8, 

2) v} = 10, v~ = 10, vf = 1, v{ = 1, 

3) v} = 10, v~ = 10, vf = 8, v{ = 8. 

Case one obtains the same outcome as in example 4 which we have just discussed, but 

with demanders 2 and 3 reversed. In case two, if either type of auction is used then buyer 
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g(v) 

0 1 v 8 10 

Figure 3.1: Probability Density Function for Example 4 

one obtains both units and pays a. per-unit price of 1. In case three, if either type of auction 

is used, buyer one obtains both units and pays a. per-unit price of 8. In all realizations the 

revenue generated by the uniform price sealed bid auction is greater than or equal (and in 

some realizations strictly greater) to that generated by the English clock. Therefore, the 

expected revenue of the uniform price sealed bid auction is greater than that of the English 

clock for the parameters of example 4. 

Example 5: Suppose the distribution from which bidders 2 and 3 draw their va.lua.­

tion(s) is the one whose density function is illustrated in figure 2 in which, 

0 v < 2, 

.5 2 ~ v < 8, 

1 v 2: 8. 

(3.3) 

Bidder 1 draws two valuations from a. distribution in which Prob(vf = v~ = 10) = 1. 

Suppose m = 3, k = 2, w 1 = 2 and w 2 = w3 = 1, the allocation mechanism employed is 

the uniform price sealed bid auction and v} = 10, v~ = 10, vi = 8, vr = 8. Recall that 
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bi = vi = 8 for i E 2, 3. Consider bidder 1 's bids. His expected payoff, E1r 1, equals: 

(P1 + P2)(10 + 10- 2(8)) + P3(10 + 10- 2(2)) b~ 2:: 8, b~ 2:: 8, 

P1(10- 8) + P2(10- bD + P3(10 + 10- 2(2)) b~ 2:: 8, 8 > b~ 2:: 2, 

P3(10 + 10- 2(2)) + P2(10- bD 

P1(10- 8) + (P2 + P3)(10- 2) 

0 

8 > b} 2:: 2, 8 > b~ 2:: 2, 

b1 1 . 
1 2:: 8,b2 < 2, 

8 > b~ 2:: 2, b~ < 2, 

b~<2,b~<2. 

53 

(3.4) 

where P1 = .25, P2 = .5 and P3 = .25. The expected profits of the strategies in the six 

rows of (3.4) are 7, 9.5- .. Sb~, 9- .5b~, 6.5 , 1..5 and 0 respectively. Bidder 1 's best response 

is to submit bf 2:: 8 and b~ = 2 (a strategy from the second row of (3.4)). In the final 

allocation, bidder one receives one unit and either bidder two or three receives the other. 

The allocation is not efficient. 

Suppose the English clock mechanism is employed. If .:r_ = 0, then q1 (0) = 2, q2(0) = 

q3 (0) = 1. At price 2 + E, where E equals the minimum price increment, bidder i notices that 

q2 (0) = q3(0) = 1. This allows bidder 1 to update his beliefs about 2 and 3's valuations. 

He conjectures that vi = vr = 8 and that 8 will be the final price. At this point his best 

response is to reduce his quantity demanded to one unit at a price greater than 8. Since 

di = dr = 8, bidder one receives two units and the final allocation is efficient. 

The English clock yields higher expected revenue ex-ante for the parameters in exam-

ple 5. There are three possible configurations of market demand other than the one we 

discussed. They are: 

1) v} = 10,v~ = 10,v~ = 8,vj = 2, 
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g(v) 

Figure 3.2: Probability Density Function for Example 5 

2) vt = 10, v~ = 10, v~ = 2, v5 = 8, 

3) vt = 10, v~ = 10, v~ = 2, vj = 2. 

Case one obtains the following outcome for both types of auctions: buyers one and two 

each receive a unit and pay a per-unit price of two. In case two the outcome is the same 

as in case one but with demanders two and three reversed. In case three under both types 

of auctions, bidder one receives both units and pays a per-unit price of two. Under all four 

possible configurations of demand, revenue from the English clock is greater than or equal 

to that from the sealed bid auction. In one realization, the revenue from the English clock 

is strictly greater. Therefore the expected revenue of the English clock is strictly greater 

than the uniform price sealed bid auction for the parameters of example 5. 

For example 4, the final allocation from the English clock may not be efficient and the 

expected revenue generated is lower when the English clock is used than when the uniform 

price auction is employed. For example .5, the final allocation from the uniform price sealed 

bid auction may not be efficient and the expected revenue is higher under the English clock 

than under the uniform price sealed bid auction. D 
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3.1.1 Discussion 

In this section we compared generalizations of two common auction forms and incorporated 

the notion of multi-unit demands. We saw that the theoretical strategic isomorphism and 

revenue equivalence results, which hold when demands are single-unit in the independent 

private values environment, do not necessarily hold when demands are multi-unit. The 

difference between the two mechanisms is that the English clock allows demanders to update 

their beliefs about other demanders' valuations while the price is increasing. The extra 

information may lead bidders to behave in ways that either raise or lower revenues and 

efficiency of final allocations when compared to the uniform price sealed bid auction. 

These results certainly do not refute the revenue equivalence theorem. The revenue 

equivalence theorem considers only auctions in which the equilibrium final allocations are 

efficient. With multi-unit demands, since inefficient allocations can occur in equilibrium, 

the revenue equivalence theorem does not apply. However, we have shown that it does not 

necessarily extend to multi-unit demand generalizations of single-unit auctions to which it 

does apply. 

3.2 Experimental Design: Motivation 

This section describes the design of our laboratory experiment in which we investigate 

the revenue and efficiency properties of the two auctions in a variety of conditions. The 

experimental design allows us to contrast the data. along three dimensions: 

1) Sealed Bid vs. English Clock: \ 'Ve have seen in the previous subsection that when 

demanders are playing equilibrium strategies, the two auctions may generate different prices 
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from each other. This suggests that there should also be differences empirically. The nature 

and extent of these differences is of obvious interest to a seller or buyers trying to choose 

an auction form to maximize or minimize revenue or to a planner choosing a mechanism to 

maximize efficiency. 

2) One Shot vs. Repeated Games: In some markets, items are generally sold only 

once, while in other markets similar units of a good are auctioned repeatedly or periodically. 

A seller's or planner's preferred type of auction may differ in the two circumstances. It also 

may be possible for a seller or a planner to choose between a simultaneous and a sequential 

auction to sell multiple identical units. Since a one-shot game and a repeated game in 

which players do not know when the game ends have fundamentally different equilibrium 

properties, the outcome is likely to be different in the two conditions. For these reasons we 

contrast the outcome in one-shot versus repeated games. 

3) Single-Unit vs. Two-Unit Demands: V-/e have seen that when demands are 

multi-unit, demanders, even when behaving non-cooperatively, may have an incentive to 

underreveal their demands. In the experiments we compare outcomes from environments 

in which market demand is identical but in which individual demands are varied. In the 

single-unit demand condition, all demanders have positive valuations for one unit. In the 

two-unit demand condition, all demanders wish to buy two units. In a way, the two-unit 

demanders can be thought of as two one-unit demanders colluding to maximize the sum of 

their individual profits and so the experiments can give insight as to the impact of these 

"cartels" on the market as a whole. 
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3.3 Experimental Design: Environment and Parameters 

3.3.1 Supply and Demand Conditions 

There were 4 units inelastically supplied every period. The distribution of valuations 1( v) 

was uniform from 0 to 1000.1 In the single-unit demand experiments, 6 demanders each 

drew one valuation from 1( v) independently every market period. In the two-unit demand 

condition, 3 demanders drew two valuations from 1( v) every period. 

3.3.2 Information Conditions 

Demanders knew their own two valuations, the distribution of valuations, the supply avail-

able and the number of buyers. They did not know the actual valuations of the other 

buyers. 

3.4 Procedures 

3.4.1 Procedures Common to All Conditions 

The one-shot games consisted of one trading period while the repeated games were divided 

into a series of trading periods. Each subject was given a redemption value sheet at the be-

ginning of each period (see appendix B for samples of the materials distributed to subjects) 

listing the monetary value for which they could redeem from the experimenter any units of 

a commodity acquired during the trading period. To obtain the units, subjects purchased 

1 Valuations were randomly computer generated and then rounded upward to the nearest integer. Partic­
ipants were told that they ha.d an equal chance of drawing any integer value between I and 1000 and that 
the valuations had been generated by a computer before the experiments were run. Valuations were drawn 
independently each period but the same valuations were used for several experimental sessions, enabling the 
experimenter to control for dema.nd draws when ma.king comparisons across the various conditions. 
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Table 3.1: Number of Experiments Conducted for Each Treatment and the Number of 
Market Periods per Experiment 

Treatment Num. Experiments Num. Periods per Expt. 
SB/OS/2U 15 1 
SB/R/2U 4 20 
E/OS/2U 15 1 
E/R/2U 4 20 

SB/OS/1U 6 1 
SB/R/1U 1 10 

E/R/1U 1 10 

them in an auction with cash obtained through an unlimited loan from the experimenter 

for the duration of the experimental session. The profits to the demanders were the sum of 

the differences of the redemption values for the units bought and the prices paid for them. 

All of the experiments were conducted at the Laboratory of Experimental Economics 

and Political Science at the California. Institute of Technology and all of the subjects were 

undergraduates at the California Institute of Technology. The length of the experiments 

for the repeated play conditions averaged 40 minutes for the uniform price auction and 

90 minutes for the English clock. The sessions of one-shot games averaged 15 minutes for 

the sealed bid and 20 minutes for the English clock. Table 3.1 contains some information 

concerning the number of experiments conducted and the number of market periods in each 

experiment. 

The following subsections outline some of the procedures which were specific to certain 

experimental conditions. 
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3.4.2 Specific Procedures 

Uniform Price Auction 

Repeated Play: Subjects could enter bids on their computer terminal. The program then 

indicated to them the per-unit price and how many of their bids were accepted. The 4 

highest bids were accepted and the winners of the units paid a per-unit price equal to the 

5th highest bid. 

One Shot: Each experimental session, subjects filled out by hand their bids on a form 

distributed to them. They were told that they were to be grouped in a market with bidders 

from different experimental sessions. The experimenter played them against these opponents 

at a later date. This procedure was to insure that they could not learn anything about their 

opponents from the practice periods or by any other means. 2 The form can be found in 

appendix B.3. 

English Clock 

This3 experiment was not computerized. \Vhile the experimenter transcribed the informa-

tion on the blackboard, each subject indicated the number of units she demanded at the 

current price. At the beginning of each period, the current price was zero francs. 4 The 

2 Payment and verification were handled in the following way. Subjects were enrolled in an introductory 
economics course. Students in the course could participate in experiments and the money they earned would 
be given to them upon completion of the course . This procedure had been in effect for several years and so 
subjects knew they would actually be paid. 

3 The single-unit demand treatment was only run as a repeated game and not as a one-shot game. The 
one-shot games would have involved many aHditional experiments and in light of the very strong tendency 
for demanders to truthfully bid in the repeated games (even in the first period), and previous experimental 
research, our priors were very strong that we would observe the dominant strategy equilibrium outcomes in 
the one-shot games. 

4 "Francs" is a common name for the experimental currency in terms of which units of commodities are 
valued . Francs are convertible to U.S. dollars at the end of the experimental session at an exchange rate 
known to all participants at the beginning of the experiment. 
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experimenter then allowed the price to rise in small increments until a bidder wished to 

drop a unit from the bidding. The price at which each demander reduced her quantity 

demanded was posted on the board for the remainder of the market period. The clock 

price continued to rise until there were exactly 4 units demanded.5 The remaining bidders 

received the units and paid a per-unit price equal to the price at which the clock stopped. 

The procedure was the same whether the game was played once or repeatedly. 

3.5 Predictions 

3.5.1 Point Predictions 

For the different conditions of this study the current state of knowledge of game theory can 

give us predictions of varying degrees of precision and strength. These are reviewed below 

for the treatments to which they apply. 

Single-Unit Demand 

As we saw in chapter one, in the single-unit demand environment, there always exists a 

symmetric dominant strategy equilibrium with truthful bidding for the uniform price sealed 

bid auction. As we have also seen in chapter one, the dominant strategy equilibrium of the 

uniform price auction has been widely observed in the previous experimental literature. 

For the English clock game there is also a dominant strategy equilibrium in the single-

unit demand environment. In the equilibrium , each demander stays in the bidding until the 

price reaches her valuation and then immediately exits from the bidding. This equilibrium 

5 1£ more than one demander drops out at. the same increment, leaving less than k units demanded, then 
the experimenter backtracks , i .e ., lowers the price until one of the demanders gets back in . 
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Table 3.2: Predicted Average Ex-Post Per-Unit Revenue for the Sealed Bid Auction and 
the English Clock Under Single-Unit Demands (in francs) 

Auction Revenue 
One-Shot Repeated 

Sealed Bid 287 281 
English - 281 

has been observed consistently in previous experimental studies. 

The predicted average ex-post market revenue is given in table 3.2. The revenues differ 

between the one-shot and the repeated games because the actual realizations of market 

demand differ (although the distribution from which demand is drawn is identical) in the two 

conditions. The demand draws in the one-shot games are a subset of those in the repeated 

games. The demand draws for all conditions of our study are displayed in appendix C. The 

predicted revenue is identical across the two auctions, however, because the realizations of 

demand are the same across the two auctions and the revenue occuring in the two respective 

dominant strategy equilibria of the two auctions is identical. Since the units are allocated 

to the demanders with the highest valuations, the allocative efficiency is 100 percent in all 

market periods, where we define the percentage efficiency as the percentage of the maximum 

possible gains from trade realized during a. market period. 

Two-Unit Demand 

In chapter two we characterized symmetric monotone unclominated Bayes-Nash equilibria 

to the uniform price sealed bid auction in the two-unit demand environment. A strictly 

monotone symmetric equilibrium for the experimental parameters is derived in appendix 
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Table 3.3: Predicted Average Ex- Post Per-U nit Revenue and Efficiency for the Sealed Bid 
Auction Under Two-Unit Demands 

Auction Revenue 
One-Shot Repeated 

Revenue (in francs) 84 81 
Efficiency (in percent) 93 93 

C. If all demanders were to play the symmetric equilibrium strategy the average ex-post 

revenue and market efficiency would be as given in table 3.3. 

3.5.2 Predictions of Differences Across Treatments 

Single-Unit Demands vs. Two Unit Demands- We predict that both revenue and 

allocative efficiency will be lower in the two-unit demand environment. The prediction is 

based on the fact that the unilateral incentive for strategic underrevelation exists only in 

the two-unit demand environment . The underrevelation is likely to lead to revenue and 

efficiency less than in the single-unit demand environment. This can be seen for the sealed 

bid auction by consulting tables 3.2 and 3.3. 

Sealed Bid vs. English Clock - We predict revenue equivalence and equal alloca.tive 

efficiency under single-unit demands across the two auctions. However, under two-unit 

demands there seems to be a. strong possibility that both metrics would differ. Since we do 

not have an equilibrium model of the English clock in the two-unit demand environment 

we can not predict higher revenue or a.llocative efficiency for either mechanism. 

One-Shot vs. Repeated - In our repeated games, subjects were not aware which period 

was to be the last. Since the periods were short, at most four minutes, the probability that 
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any given period was the last must have been perceived to be very small. Similarly, due 

to the shortness of the market periods, subjects' discount rates must have been close to 

1. Thus, our repeated game condition may be thought of as an infinitely repeated as well 

as a finitely repeated game. By the Folk theorem, the equilibrium outcomes of the one­

shot games are a subset of the possible equilibrium outcomes in any period of an infinitely 

repeated game. Also, a set of strategies consisting of playing the Nash equilibrium strategy 

in every period of a finitely repeated game constitute a Nash equilibrium of the finitely 

repeated game. 

In previous single-unit demand experimental studies of both types of auctions the dom­

inant strategy equilibrium to the one-shot game has been observed in repeated games. In 

the two-unit demand case, however, it would not surprise us to see different outcomes. In 

particular, it is possible that cooperative behavior among demanders, resulting in prices 

lower than in the non-cooperative symmetric equilibrium outcome of the one-shot game, 

can be sustained in the repeated game. vVe would therefore predict no differences in rev­

enue and ex-post efficiency in the single-unit demand condition but likely differences in the 

two-unit demand condition, with lower per period revenue in the repeated games. 

3.6 Results 

In this section, we report the results of our study. When making some of the inferences 

below, we implicitly assume, by using each period as a data point, that the outcomes in 

each period are independent. This is a plausible assumption only in the one-shot games. 

Nevertheless, we report the same statistics for the repeated games as the one-shot games, 
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because the statistics are useful in making comparisons across treatments. 

Results 1 - 6 are discussed in section 3.6.3. In result 1, we consider the accuracy of 

the point predictions of the game theoretic equilibria discussed in subsection 3.5.1. The 

interesting contrasts across treatments are reported in results 2 - 6. In section 3. 7, some 

observations concerning individual behavior are presented. 

3.6.1 Equilibria 

Our principal observations concerning the validity of the theoretical equilibrium point pre-

dictions for the conditions of our experiment are summarized in result 1. 

Result 1 In the single-unit demand condition, prices are not different than those predicted 

in section 3. 5.1. However, in the two-unit demand uniform price sealed bid auction experi-

ments, prices differ from those occuring in the symmetric monotone Bayes-Nash equilibrium. 

Support: We reject, using a sign test6 the hypothesis that the observed prices in the two-

unit demand uniform price auction are less than or equal to those occuring in the strictly 

6 The sign test is a procedure for testing hypotheses about the median, call it JL, of a continuous distribu­
tion. If X denotes the random variable whose distribution is under investigation, then P(X::::; JL) = P(X ~ 
JL) = .5. The general null hypothesis has the form flo : IL = J.I·O· 

When JL = 0, any X; is equally likely to be positive or negative. If, however, the true value of JL is much 
greater than 0, we would expect most of the observed X;'s to be positive. Define the test statistic Y = the 
number of X;'s such that X; > 0. For testing Ho, versus Ha : JL > 0, the sign test rejects Ho when the 
test-statistic Y ~ c. If we regard each X; as a trial, and the data consist of a set of n identical trials, and 
if we define a positive X; to be a success and a non-positive X; as a failure, then we have p = P(success) 
= P(X; > 0) = P(X; > IL) = .5. Then , when Ho is true, the statistic Y has a binomial distribution with 
parameters n and p (p = .5). Therefore, if the null hypothesis is Ho : IL = 0 and the alternative hypothesis 
is H a : JL ;f. 0, then we reject H o if either Y ~ c or Y :S ( 11 - c). When p = .5 and n ~ 10 the binomial 
distribution can be approximated by a normal distribution. For our data, in order to compare observed 
revenue to predicted revenue, we let each X; equal the observed revenue minus the predicted revenue in a 
market period . 

To compare relative revenue generated by the two auctions, we let X; equal the observed revenue in the 
uniform price sealed bid auction minus that observed in the English clock . Since we used the same valuations 
for the two mechanisms, the difference should be equal to zero if the mechanisms generate the same revenue 
given the same valuations. Other comparisons across treatments were performed similarly. 
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Table 3.4: Observed Average Ex-Post Per-Unit Revenue: Single-Unit Demands 

Auction Revenue 
One-Shot Repeated 

Sealed Bid 302 ( 6 Periods) 285 ( 10 Periods) 
English - 271 (10 Periods) 

Table 3.5: Observed Average Ex-Post Per- Unit Revenue: Two- Unit Demands 

Auction Revenue 
One-Shot Repeated 

Sealed Bid 310 (15 Periods) 236 ( 80 Periods) 
English 223 ( 15 Periods) 164 (80 Periods) 

monotone Bayes-Nash equilibrium in the two-unit demand one-shot games (p < .05) as well 

as in the repeated games (p < .01). We fail to reject the hypotheses that observed prices 

are equal to those prevailing in the dominant strategy equilibrium for the English clock and 

for the sealed bid auction in the single-unit demand condition (for the pooled data from the 

one-shot and the repeated games) at the 10 percent level. 

3.6.2 Revenue 

In tables 3.4 and 3.5, we summarize the average per-unit franc revenue achieved across 

treatments. Principal observations concerning revenue are summarized in results 2 - 4. 

Result 2 The uniform zn·ice sealed bid auction generated more revenue than the English 

clock in the two-unit demand condition. The two auctions generate the same revenue in the 

single-unit demand condition. 
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Support: A sign test rejects the hypothesis that the revenue generated by the English 

clock is greater than or equal to that generated by the sealed bid auction. The test yields z 

= 1.803 (p < .05) in the one shot, z = 3.16 (p < .001) in the repeated version. The revenues 

generated by the two auctions in the single-unit demand environment are not different from 

each other (p > .1) for the repeated games. 

Result 3 Less revenue was generated per period when the games were repeated than when 

they were played once. 

Support: We reject the hypothesis that revenue from the repeated games is greater than or 

equal to the one-shot games at the (p < .1) level for both auctions in the two-unit demand 

condition. 

Result 4 More revenue was genemted by the English clock under single-unit demand than 

under two-unit demand. 

Support: We reject the hypothesis that revenue under single-unit demands is less than or 

equal to that under two-unit demands at the (p < .01) level for the repeated game condition 

of the English clock. We cannot reject the same hypothesis for the sealed bid auction at 

the 10 percent level. 

3.6.3 Efficiency 

We can also consider levels of efficiency observed in the experiment. When considering the 

levels of efficiency attained it is difficult to describe them as high or low because there is 

no universally agreed upon threshhold, above which allocative efficiency is said to be high 

and below which efficiency is considered to be low. We can, however, compare the observed 
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efficiencies with those which would result if units were distributed randomly among the 

three demanders in the two-unit demand condition, with each demander receiving at most 

two of the four units sold during each market period. 

Result 5 Both types of market m·ganization generate efficiencies higher than random allo­

cations in the two-unit demand condition. 

Support: We reject the hypothesis that the efficiency of the observed allocations are less 

than or equal to the expected efficiency resulting if the 4 units were distributed randomly 

among the demanders in such a way that no demander receives more than two (in the 

two-unit demand condition). The level of significance with which we reject the hypotheses 

are: p < .0001 for the one-shot uniform price auction, p < .005 for the repeated uniform 

price auction, p < .0005 for the one-shot English clock and p < .05 for the repeated play 

version of the English clock. 

In result 6 we consider differences in allocative efficiencies across treatments. 

Result 6 The levels of efficiency attained by the two auction form s are not different from 

each other. There is no difference in the level of efficiency between the one-shot and the 

repeated games. The efficiencies in the single-unit demand experiments are not different 

from those in the two-unit demand experiments. 

Support: The majority of the observed efficiencies are 100 percent in all of the seven 

treatments. A sign test of the differences in efficiencies achieved fails to reject the hypothesis 

that the levels of efficiency of the two types of auction in the two-unit demand conditions 

are equal. z = 0.024,(p-value > .1) for the one-shot game, and z = .47,(p-value > .1) 



CHAPTER 3. UNIFOR.M PRICE AUCTION VS. ENGLISH CLOCK 68 

m the repeated games. A sign test of the difference in the efficiency fails to reject the 

hypothesis that the efficiency is the same in the one-shot vs. the repeated games for the 

sealed bid auction and for the English clock in the two-unit demand condition (p > .1 for 

both auctions). We also fail to reject the hypothesis that the efficiencies are the same in 

the one-unit vs. the two-unit demand conditions (p > .1) for all treatments. 

Discussion 

In line with previous experimental research into auctions, we fail to reject the point pre­

dictions of the dominant strategy equilibrium for either type of auction in the single-unit 

demand environment. However, prices are higher than in the symmetric monotone equilib­

rium of the uniform price sealed bid auction in the two-unit demand environment. This is 

consistent with the previous literature in that symmetric Ba.yes-N ash (under risk-neutrality) 

equilibria tend to perform poorly in explaining experimental data. It is possible that the 

high bids are a reflection of risk aversion on the part of demanders or that some demanders 

are having difficulty in determining their best response and therefore bid close to their val­

uations, behaving like price-takers. It may also be the case that the behavior is consistent 

with an asymmetric equilibrium. \.Ve shall examine individual behavior in detail in the next 

subsection. 

In the two-unit demand treatments, the uniform price auction generated significantly 

more revenue than the English clock, suggesting that a seller with several identical units 

to sell simultaneously might prefer to use the uniform price auction to the English clock 

if he has reason to believe that the distribution of demanders' valuations is uniform. It 

seems likely that the difference in revenue is attributable to the iterative property of the 
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English clock mechanism in which many times more messages are sent between buyers. 

Since demanders observe market quantity demanded as the clock price increases, they can 

more easily update their beliefs about other buyers. In this way, the English clock facilitates 

strategic behavior. In the uniform price sealed bid auction, strategic behavior was probably 

more difficult for subjects. We base this assertion on the fact that the rents obtained by 

the seller in the uniform price sealed bid auction exceeded those which would occur in the 

(non-cooperative) symmetric monotone Bayes-Nash equilibrium. It may be possible that 

the difference in revenue is due to the level of excess demand as suggested by Smith ( 1967) 

or due to the elasticity of demand as suggested by Miller and Plott (1985). It is beyond the 

scope of this project to compare these theories. 

Another clear result which emerges from the data is that the repeated play version 

generates lower revenue per period. This is indicative of some type of learning or experience 

effect in which buyers in later periods improve their extraction of surplus from the seller. 

Game theory suggests that more cooperative behavior (buyers submitting lower bids) can 

be a non-cooperative equilibrium in a repeated game when the final period is unknown. 

Indeed, more cooperative behavior on the part of players seems to be observed than in the 

one-shot game. Our empirical evidence suggests that a. seller may be better off if he can 

lead buyers to believe that they are playing a one-shot game. Two open questions are 1) 

whether, in a multi-unit demand setting, he should bundle all of the units he has and sell 

them all at one time and 2) whether he should tell demanders exactly how many periods 

will be played. 

We found that the English clock generated less revenue in the two-unit demand condition 

than in the single-unit demand condition, but that the uniform price auction did not. At 
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first glance this seems somewhat surprising. A complete explanation is not possible since 

we have no reason to suppose that the revenues of the two auctions should be equal in the 

two-unit demand environment and there is no satisfactory equilibrium model of the English 

clock in multi-unit demand environments. It seems likely that the difference between the 

one-unit and two-unit revenues in the English clock was due to strategic behavior. We 

believe that the difference was not observed for the sealed bid auction because strategic 

behavior was more difficult . 

Both of the mechanisms generate allocations which are more efficient than algorithms 

which allocate the units randomly even in the two-unit demand conditions. Both mecha­

nisms realize most of the gains from trade despite the possibility of inefficiencies resulting 

from strategic behavior . 

The equal efficiencies generated by the two auctions under single-unit demands was 

expected considering the results of previous work and the very strong theoretical predictions. 

The equality of efficiency under two-unit demands is somewhat surprising, especially in light 

of the different revenues in the one-unit and the two-unit demand conditions and across the 

two auctions. It seems that even though subjects behaved strategically and manipulated 

market prices in their favor, they still preserved for the most part the efficient allocations 

which would result in a competitive equilibrium. The ordinal ranking of bids remained 

the same as the ordinal ranking of valuations . The evidence suggests that the multi-unit 

demands do not have a strong tendency to lower efficiency levels, even in a very thin market. 

However, we concede th a t repli cation is needed to confirm our results, because we used only 

one set of parameters and th ere is considerable previous evidence (Miller and Plott (1985), 

and Smith (1967), for example ) which suggests that relative revenue generating properties 
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of different auctions depend on the particular parameters of the market. 

In the next subsection we further analyze the data at the individual level. 

3.6.4 Individual Behavior 

Uniform Price Auction 

We can assign all bidding strategies in the two-unit demand condition to one of four ex-

haustive and mutually exclusive classes . The first two classes are very restrictive7 while the 

last two are very large. 

Strategy 1: Bidders use the strictly monotone Bayes-Nash equilibrium. Recall that 

the equilibrium strategy involves each bidder submitting a bid equal to his valuation on his 

more highly-valued unit, and underbidding on his lower-valued unit. 

Strategy 2: Bidders behave as price takers. They bid their valuations for two units. If 

all bidders follow this strategy, the competitive outcome results. 

Strategy 3: U ndominated: These are all strategies other than strategies 1 and 2 that 

are not dominated by another strategy. This group includes all strategies which involve both 

a higher bid equal to the higher valuation and a lower bid less than or equal to the lower 

valuation. This is the also the set of rationalizable strategies. 

Strategy 4: Dominated: This group encompasses all other strategies. Any strategy 

that involves underbidding on the higher-valued unit is dominated by a strategy in which 

the demander bids his valuation on the higher unit. Any strategy which includes a bid 

greater than a demander's valuation for either unit is dominated by a strategy in which 

7 We will say that a bidding st.rat.egy is in one of the first two classes if the bid is less than 1 cent away 
from the exact bidding function specified by the st.rat.egy. 



CHAPTER 3. UNIFORM PRICE AUCTION VS. ENGLISH CLOCK 72 

Table 3.6: Demanders' Strategies in the Two- Unit Demand Uniform Price Auction 

Strat. 1 Strat. 2 Strat. 3 Strat 4 
One Shot 3.6 29.6 12.3 54.5 

Repeated Periods 1-10 6.6 20.0 12.3 61.1 
Repeated Periods > 10 7.2 30.0 19.5 43.3 

demander instead bids his valuation. In table 3.6 we report the percentage of the time that 

the four types bidding strategies were observed. 

Very few subjects used the symmetric monotone Bayes-Nash equilibrium strategy. This 

result is not unanticipated as the equilibrium bidding function is difficult to calculate and 

is only a best response if it is being used by all of the other bidders. Over one quarter of 

the bidders submitted bids equal to their two valuations. It is a strategy which is easy to 

calculate and is also a natural focal point. Roughly 15 percent of the time, bidders used 

other strategies which would be undominated in a one-shot game. 

More than half of the time, bidders followed strategies which are dominated in one-shot 

games. However, bidders were less likely to follow dominated strategies as they played the 

game longer in the repeated games, suggesting that they were "learning" which strategies 

were dominated. The fact that high efficiencies were nonetheless achieved in the auction 

suggests that use of dominated strategies did not. affect the ordinal ranking of the bids in 

the market. The persistence of dominated strategies in conjunction with the high observed 

efficiencies hints that the players using dominated strategies did not lose much by using the 

strategies, i.e., they were not often punished for their actions. 

Let us consider more precisely the nature of the strategies which demanders were using . 

in the experiment. In tables 3.7 and 3.8 we give the number of times each of nine possible 
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Table 3.7: Demanders' Strategies in the Uniform Price Auction (One-Shot Games, Number 
of 0 bservations) 

b2 < V2 b2 = v2 b2 > v2 
b1 < VJ 13 2 1 
b1 =VI 7 13 1 
b1 > VJ 1 0 7 

Table 3.8: Demanders' Strategies in the Uniform Price Auction (Repeated Games, Number 
of Observations) 

b2 < v2 b2 = V2 b2 > V2 
b1 <VI 51 4 10 
b1 = VJ 53 60 9 

b1 > VJ 2 8 43 

subfamilies of strategies were used. n = 45 and n = 240 for tables 3. 7 and 3.8 respectively. 

The most striking feature in the two tables is the concentration of the data along the 

diagonal from upper left to the lower right. By far the two most frequently observed types 

of dominated strategies were underbidding on both units, and overbidding on both units. 

The relatively high number of players overbidding on both units indicates that final 

prices were not high enough to cause the overbidders to lose money. In fact, in none of 

the one-shot games did any player actually receive negative profits during a market period. 

The high incidence of the strategies (b1 > v1 ,b2 > v2) and (b1 < v1,b2 < v2) hints at a 

type of asymmetric "equilibrium" behavior in that the players who are underbidding have 

little incentive to increase their bids if they are playing against overbidders, because the 

increase in bid does not increase appreciably the probability of receiving units. Similarily, 

if other players are underbidding, the overbidders receive units at lower prices than those 
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Table 3.9: Demanders' Strategies in the English Clock with Two-Unit Demands 

At Value Less than Value Greater than Value 
One Shot 42.3 53.8 3.9 

Repeated Periods 1-10 27.3 70.3 2.4 
Repeated Periods > 10 17.1 82.9 0 

Table 3.10: Demanders' Strategies in the English Clock with Single-Unit Demands 

At Value Less than Value Greater than Value 
Repeated Periods 1-5 93.3 6.7 0 
Repeated Periods > 5 96.7 3.3 0 

that would prevail if the underbidders followed undominated strategies. The overbidders, 

then, have little incentive to change their strategies. 

English Clock 

When analyzing the data froin the English Clock, it is not possible to identify the strategies 

which demanders are following because the dropout points which are higher than the final 

price are not observable. However, we can examine the dropout points observed8 and check 

whether demanders tended to drop out at prices less than, equal to, or greater than their 

valuations. In table 3.9, we list the percentage of the time each strategy was followed on 

a demander's lower-valued unit in the two-unit demand condition. For comparison, the 

strategies followed in the single-unit demand condition are given in table 3.10. 

Note the sharp contrast between the two conditions. There is a strong tendency for 

8 The table includes only the observations where it could be ascertained which of the three strategies were 
being used. 
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demanders to bid truthfully in the single-unit demand condition, even in the early periods. 

In the two-unit demand condition however, well over half of the subjects underrevealed 

on their lower-valued unit. The tendency toward underrevelation became stronger the 

more periods that subjects had played, suggesting that subjects were learning to drop their 

lower-valued units in order to lower the price they paid on their higher-valued units. This 

underrevelation was not reflected in low efficiencies but was reflected in the low revenues 

generated by the clock. 
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Chapter 4 

Summary and Concluding 

Remarks 

In chapter two we generalized some important theoretical properties of the uniform price 

sealed bid auction to an independent private values environment with two-unit demands. 

We considered a class of bidding functions called type M, essentially a general type of 

monotonicity. A necessary condition for a bidding function to be a type M symmetric un­

dominated Bayes- Nash equilibrium was derived. The dominant strategy equilibrium of the 

single-unit demand environment clearly obeys the necessary conditions. In any equilibrium, 

there is underbidding for each demander's lower valued unit, as demanders, while still be­

having non-cooperatively, underreveal demand in an attempt to shift the market price in 

their favor. An interesting property of type M equilibria, separability, is also obtained. 

A sufficient condition for a solution to the necessary conditions to be an equilibrium is 

also deduced and an example of an equ ilibrium is provided. As the number of bidders gets 
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large, the underrevelation in equilibrium converges to zero. It is perhaps not surprising that 

bidders exhibit an increasing tendency to behave like price takers as the market becomes 

thicker and each bidder's ability to affect the market price declines. 

In chapter three we compared generalizations of two common auction forms and incorpo­

rated the notion of multi -unit demands. We saw that the theoretical strategic and revenue 

equivalence results, which hold when demands are single-unit in the independent private 

values environment, do not necessarily hold when they are multi-unit. We then examined 

outcomes from a set of laboratory experiments. In the experiments, where there was a 

uniform distribution of valuations, we observed that the uniform price auction generated 

more revenue than the English clock in the two-unit demand condition, suggesting that a 

revenue maximizing seller ma.y want to use the uniform price auction rather than the En­

glish clock in environments similar to the two-unit demand experimental environment. We 

also found that less revenue was generated when the auctions were played repeatedly than 

when they were played only once. We conclude, citing both theoretical and experimental 

evidence, that in multi-unit demand environments the two mechanisms are fundamentally 

different from each other. This result contrasts sharply with much of the previous theoret­

ical and experimental literature concerning single-unit demand independent private values 

environments . 
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Appendix A 

Additional Lemmas 

Lemma 10 If all n players besides bidder· i use a bidding function that is type M and 

undominated, then fv(x) > 0 fm· 0:::; x :::; B2(v, v). 

Proof: Recall that F 11 equals Prob(At least f bidders make 2 bids that are less than or 

equal to x, at least m + e bidders make at least 1 bid that is less than or equal to x) 

Consider the probability that a randomly chosen bidder makes 2 bids that are less than 

or equal to x which is given by: 

(A.l) 

The term in the last equation follows from the fact that if B is undominated, that b¥ = vf 2: 

v~ 2: B 2 ( vf, v~) (bidding an amount higher than one's valuation is dominated). The term 

is clearly strictly increasing in x if B is type M and undominated for x such that 0 ~ x ~ v. 

Now consider the probability that a randomly chosen bidder makes at least one bid that is 
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less than or equal to x, which equals: 

(A.2) 

The last term results from the fact that underbidding on the higher valued unit is dominated 

by bidding an amount equal to the higher valuation and from the fact that vf ~ v~. This 

last equation is also strictly increasing in x for all x such that 0 ~ x ~ v. It follows that 

Fv( x) is strictly increasing in x and that fv ( x) > 0; 0 ~ x ~ B 2 (v, v). 0 

Lemma 11 E-rri ,B is twice differentiable. 

Proof: By assumption 1 E C 2 • 

Since g( VI, v2) E Cl, JC: fcJ g( VI, v2)dv2dv1 is twice differentiable with respect to x and 

y (for a reference see 11Iarsden pp. 285-286) and thus continuous in x andy (Marsden pp. 

161-162). 

It follows that H(x, y, G, n, m., e), the product of twice differentiable functions, is twice 

differentiable with respect to x and y (see Marsden pg. 171) and thus continuous in x and 

y. 

Now consider Fv(x) = L~~v Lf,m;2f+m=q H(x, {3- 1(x),G,n,m,f). Fv(x) is twice differ-

entiable in x since the sum of differentiable functions is differentiable, (Marsden pg. 199). 

This implies that fv( x) is differentiable and continuous in x. 

The expected profit is given in equation (2.43). E7ri is differentiable in bi and b~ because 

an anti-derivative of a continuous function is differentiable (Marsden pg. 286). 
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The first derivatives equal: 

(A.3) 

and 

(A.4) 

Clearly, both of the expressions are differentiable in bi and b~. We have now shown that 

E1ri(bL b~) is twice differentiable. D 
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Appendix B 

Experimental Instructions and 

Forms 

In this appendix we include sample instructions for both the English clock and the uniform 

price sealed bid auction experiments, a sample redemption value sheet, and a sample bid 

form for the one-shot uniforrn price auction. In section B.l are the instructions common 

to both the the English clock and the uniform price sealed bid auction experiments. The 

instructions for the two experiments were identical except for the part entitled "The Auction 

Process," the text of which is given in section B.2 for the English clock, and in section B.3 

for the uniform price sealed bid auction. Figures B.l and B.2, which are in section B.4, 

contain the sample redemption value sheet and the sample bid form respectively. 



APPENDIX B. EXPERIMENTAL INSTRUCTIONS AND FORMS 82 

B.l Instructions Common to All Experiments 

This is an experiment in the economics of market decision-making. The instructions are 

simple, and if you follow them carefully and make good decisions, you might earn a consid­

erable amount of money which will be paid to you in cash. 

The experiment will be broken up into a series of trading periods in which you will 

make decisions. At the beginning of each period, you will be given a Record Sheet. The 

Record Sheet describes the value to you of a fictitious commodity which you can purchase 

in the market. Your Record Sheet is your own private information. You are not to reveal 

its contents to anyone. 

The currency used in this market is francs. All trading will be in terms of francs. Your 

final payoff will be in terms of dollars. The conversion rate is .. ... francs to one dollar. You 

will be paid at the end of the experiment. 

Each buyer has .... value(s) on his Redemption Value Sheet. Each value is equally likely 

to be any integer between 1 and 1000. If you have more than one value, your values are 

ordered on the Redemption Value Sheet from highest to lowest. 

You can obtain units of the commodity by participating in the market process which is 

described below. There are ... units to be sold in each market period. 

The Auction Process 

Earnings 

Please refer to your record sheet to determine your earnings. Your earnings for the period 

are the redemption values of the units you receive minus the total of the prices you paid 
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for them. For the first unit that you buy in the trading period marked at the top of the 

page, you will receive the amount listed in row (1) marked 1st Unit Redemption Value. 

If you buy a second unit during the same trading period, you will receive the additional 

amount listed in line (4) marked Second Unit Redemption Value, etc ... The profits from 

each purchase, which are yours to keep, are computed by taking the difference between the 

redemption value and purchase price of the unit bought. That is, 

YOUR EARNINGS= REDEMPTION VALUE- PURCHASE PRICE 

Suppose for example, that you buy two units and that your redemption value for the 

first unit is 200 and for the second unit is 180. If you pay a per-unit price of 150, your 

earnings are: 

Earnings From First = 200 - 150 = .so 

Earnings From Second = 180 - 150 = 30 

Total Earnings = .so + 30 = 80 

The blanks on the table will help you record your profits. The purchase price of the 

first unit you buy should be recorded on row (2). You should then record the profit on the 

purchase as directed on row (3). At the end of the period, record the total profit on the 

last row of the page. Subsequent periods should be recorded similarly. 

There will be a practice period at the beginning of the experiment. If you have any 

question concerning the experiment, please raise your hand. 
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B.2 Specific Instructions for the English Clock 

The Auction Process 

Each period, you will be grouped with .... other participants. There will be .... of these 

groups. Each of the groups will be in a separate market, that is, they will be bidding on a 

different set of units. You will be in the same group for several periods. The experimenter 

will inform you if there is a change in the members of the group. There will be .... units 

available to each group each period. 

You can obtain these units by participating in an ascending price auction. The auction 

proceeds as follows. At the beginning of a period, a "low" price will be posted. You will 

then be asked to submit a request specifying how many units you would like at that price. 

If the total number of units requested is more than the number of units available, the price 

is increased. 

Suppose, for example, that a per-unit price of 50 is posted on the board and there are 

4 units available to be sold to 3 buyers. Suppose that each of the three buyers requests 

2 units. Notice that at the price of 50 there is an overdemand for units. That is, at this 

price total requests are more than the 4 units available. Since the total amount requested 

is greater the number of units available, the price will be increased and new requests must 

be submitted. 

The price is now increased to 60 francs and new requests are submitted. The only 

restriction placed on a participant 's new request after a price increase is that the number of 

units requested must be less than or equal to his number of units requested at the previous 

price. 
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The price will continue to increase as long as total orders are greater than the number 

of units available. The price will stop increasing if total orders equal the number of units 

available. If a price increase results in total requests of less than the number of units 

available , then the price will be reduced until a price where total requests equal that number 

is found. This final price will be the per-unit price charged. 

B.3 Specific Instructions for the Uniform Price Sealed Bid 

Auction 

The Auction Process 

Each period, you will be grouped with .... other participants . There will be .... of these 

groups. Each of the groups will be in a separate market, that is, they will be bidding on a. 

different set of uni ts . You will be in the same group for several periods. The experimenter 

will inform you if there is a change in the members of the group. There will be .... units 

available to each group each period. 

During each period you may submit bids for units of the commodity by filling out a bid 

form which will appear on your computer screen at the beginning of the period. The bid 

form has slots for ten bids but you will not be allowed to fill in more than .... bid(s). To fill 

out the bid form, just put the amount of your bid in the column labeled bid per unit and 

enter a 1 in the column labeled number of units. 

Once you have filled out your form, you must submit it to the market. Once all partic­

ipants have submitted their bids, all of the bids will be ranked from highest to lowest. The 

highest ... . bids in each group will be accepted and receive the .... units awarded to the 
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group. The per unit price for all of the accepted bids is equal to the highest rejected bid, 

that is, the .. . th highest bid in the group. If there is a tie for the lowest accepted bid, the 

unit( s) is randomly assigned to the tied buyers . Notice that if you have a bid accepted, the 

price you pay for that unit will never be more than what you have bid. 

B.4 Forms 

On the next page is a sample redemption value sheet . On the following page is the form 

used in the one period uniform price auction experiments . 
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Figure B.l: Redemption Value Sheet 
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Figure B.2: Bid Form For One Period Uniform Price Sealed Bid Auction 
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Appendix C 

Experimental Parameters 

In this appendix we solve for a symmetric monotone Bayes-Nash equilibrium for our exper­

imental parameters. The appendix also includes two tables, in which are shown the exact 

valuations which demanders had in the experiments, as well as some details concerning our 

procedures. 

C.l Bayes-Nash Equilibrium for the Experimental Param-

eters 

For our experiment n + 1 = 3, k = 4, and 1(v) is uniform. From theorem 1, we know 

that any equilibrium requires ,81(vi) = v1 and ,82(v) = v. We also know that .82(v2) must 

satisfy equation (2 .6) We can ca.Icula.te F2n-k+I(b2)- F2n-k+2(b2), which for the example 

is F1 (b2)- F2 (b2 ), the probability that two randomly drawn bidders make a total of exactly 
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one bid less than or equal to b2 • It is equal to: 

(C.1) 

Also, 

and therefore 

(C.3) 

Therefore: 

Solving for v;, we obtain: 

(C.5) 

There are many solutions that obey the initia l conditions of theorem 1, i.e. that ,82(1) = I. 

Only one solution is strictly monotone in the (0 ,1) interval and it is depicted in figure C.l. 
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The second order condition is the following : 

We have verified that the last equation is satisfied by the solution depicted in the graph. 
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Table C.l: Demanders' Valuations in the Two-Unit Demand Condition 

Demand Draw Demander 
1 2 3 

v} v} vi vi vr v~ 
1 886 866 696 118 936 222 
2 818 377 997 108 299 128 
3 486 300 598 121 210 15 
4 723 204 738 697 825 694 
5 694 557 496 333 987 726 
6 571 424 882 583 587 448 
7 793 777 804 51 803 508 
8 422 188 985 127 635 440 
9 877 343 369 364 722 75 

10 977 37 788 652 145 118 
11 813 741 439 431 953 665 
12 897 792 69 49 877 569 
13 676 502 472 288 842 99 
14 695 358 870 463 132 11 
15 978 586 927 864 786 157 
16 395 6 914 591 253 180 
17 102 13 850 155 772 473 
18 915 105 632 195 838 719 
19 727 628 830 650 241 110 
20 667 241 331 24 812 183 

C.2 Valuations 

Tables C.l and C.2 indicate the value to subjects, in terms of "francs", the experimental 

currency, of obtaining the commodity trading in our experimental market. 

In each of the eight two-unit demand repeated play experiments, all twenty demand 

draws were used. In four of the experiments, i.e. two English clock and two sealed bid 

auction experiments, the demand draws 1, ... ,20 were used in periods 1, .. 20 respectively. 

In the other four two-unit demand repeated play experiments, draws 11-20 were used in 
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Figure C.l: Symmetric Equilibrium Lower Bid for the Experimental Parameters 
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Table C.2: Demanders' Valuations in the Single-Unit Demand Condition 

Demand Draw Demander 
1 2 3 4 5 6 

vl v2 v3 v4 vs v6 

1 866 886 118 696 936 222 
2 377 818 997 108 299 128 
3 486 300 121 598 15 210 
4 204 723 697 738 825 694 
5 557 694 333 496 987 726 
6 571 424 583 882 448 587 
7 777 793 804 51 803 508 
8 422 188 98.5 127 440 635 
9 343 877 364 369 75 722 
10 977 37 652 788 118 145 

market periods 1 - 10, and draws 1 - 10 were used in market periods 11-20. There were 

30 one-shot games with two-unit demands, 15 using each type of auction. Each of demand 

draws 1 - 15 was used in one game for each type of auction. 

In each of the two repeated play single-unit demand experiments demand draws 1, ... ,10 

were used in markets periods 1, ... ,10 respectively. In the six one-shot single-unit demand 

experiments demand draws 1 - 6 were used. 
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