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ABSTRACT

A formalism has been developed, using Feynman's space-time formu-
lation of non-relativistic quantum mechanics whereby the behavior of a
system of interest, which is coupled to other external quantum systems,
may be calculated in terms of its own variables only. It 1s shown that
the effect of the external systems in such s formalism can always be
included in a general class of functionals (influence functionals) of
the coordinates of the system only. The properties of influence func-
tionals for general systems are examined. Then, specific forms of influ-
ence functionals representing the effect of definite and random classical
forces, linear dissipative systems at finite temperatures, and combina-
tions of.these are analyzed in detail. The linear system analysis is
first done for perfectly linear systems composed of combinations of
harmonic oscillators, loss being introduced by continuous distributions
of oscillators. Then approximately linear systems and restrictions
necessary for the linear behavior areconsidered. Influence functionals
for all linear systems are shown to have the same form in terms of their
classical response functions. fn addition,; a fluctuation-dissipation
theorem is derived relating temperature and dissipation of the linear
system to a fluctuating classical potential acting on the system of in-
terest which reduces to the Nyquist-Johnson relation for noise in the
case of electric circuits. Sample calculations of transition probabi-
lities for the spontaneous emission of an atom in free space and in a
cavity are made. Finally, a theorem is proved showing that within the
requirements>of linearity all sources of noise or guantum fluctuation
introduced by maser type amplification devices are accounted for by a

classical calculation of the characteristics of the maser.
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THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING

WITH A LINEAR DISSIPATIVE SYSTEM

1. Introduction

Many problems arise in quantum mechanicé in which several systems
are coupled together but one or more of these systems are not of
primary interest. These "uninteresting" systems may be regarded as
thé environment with which the others interact. As an example, let
us consider a problem of irreversible quantum statistical mechanics:
the relaxation of a system of inverted nuclear spins not coupled to
each other but coupled to the crystal lattice in which they are imbedded.
The crystal lattice, which acts like a thermal bath, is not of primary
interest but its influence on the nuclear spins is the essential cause
of.the nuclear relaxation. Another example is that of the behavior of
an atom in an excited state which interacts with the electromagnetic
field in a lossy cavity resonator. Because of the coupling there will
be energy exchange between the field and the atom until equilibrium is
reached. If, however, the atom were not coupled to any external dis-
tufbanceg it would simply remain unperturbed in its original excited
state. The cavity field, although not of central interest to us, in-
fluences the behavior of the atom.

To make the discussion more definite, let us suppose there are two
systems, A aﬁd B, as shown below, coupled together through some interac-

tion potential which is a function of the parameters of the two systems.

V(A,B)




It is desired to compute the expectation value of an observable
which is a function of the A variables only. As is well known, the
complete problem can be analyzed by taking the Hamiltonian of the

complete system, forming the wave equation as follows

[HA + HB+V(A)B)] \”AB = - % “S‘E WAB )

and then finding its solution. In general, this is an extremely dif-
ficult problem. In addition, when this approach is used, it is not
easy to see how to eliminate the coordinates of B and include its
effect in an equivalent way when making computations on A . A satis-
factory method of formulating such problems as this in a general way
was made available by the introduction of the Lagrangian formulation
of quantum mechanics by Feynman. He applied the techniques afforded
by this method extensively to quantum electrodynamics which is a study
of the interaction of matter and the electromagnetic field. For in-
stance, in a problem where several charged particles interact through
the electromagnetic field, he found that it was'possible to eliminate
the coordinates of the field and to include its effect as a delayed
interaction between the particles (1),(2).

Initially, the specific subject of interest to us was that of
quantum noise in maser type devices. In an effort to locate all the
sources of such noise a more general study evolved. The central problem
to be considered here is to develop a formalism for finding the effect
of a general, unobserved system B on another system (the observed or
test system)‘whose characteristics are of'interest,and then to

specialize the formalism to cases where various combinations of linear
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systems and classical forces act on the observed system. In this case,
where the unobserved system is linear, it will be found that parameters
such as impedance, which characterize its classical behavior, are also
important in determining its guantum effect on the observed system.
Since this system may include dissipation, the results have applica-
tion in a study of irreversible quantum statistical mechanics.

In Section II, a general formulation of the problem is made and
certain functionals, called influence functionals, will be defined,
which contain the effect of the unobserved systems such as B on the
observed system. 1In Section III the special cases are considered in which
the unobserved system is a definite classical force and a random clas-
sical force. In Section IV the influence functionals for linear
systems at zero temperatures are derived and the use of influence
functionals in making calculations is discussed. In addition, the
possible forms of influence functionals for linear systems are derived
by considering their general properties as discussed in Section II.
Section V is devoted to classical forces acting through linear systems,
while Section VI considers the effect of finite temperatures of linear
systems. Then, in Section VII, the unobserved systems are again as-
sumed to be general but weakly coupled to the observed system. Within
the approximation of weak coupling these general systems also behave as
if they were linear. Then finally in Section VIII, the results of the
analysis are used to prove a general theorem concerning maser noise.

An equivalent approach can be made to the problem using the Hamil-
tonian formulation of quantum mechanics by making use of the ordered
operator calculus developed by Feynmen (3). This has some advantages

in that many results may be obtained more simply than by Lagrangian



b

method and nonclassical concepts such as spin may be dealt with
readily. This approach has been used to some extent by Fano and is

currently being developed by Hellwarth (k4),(5).
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IT. General Formulation; Influence Functional

We shall begin the discussion with a brief introduction to the
Lagrangian or space-time approach to quantum mechanicsa Since the
treatment here is necessarily brief, the reader is referred to the
original article published on the subject (l). Secondly, using the
technigues thus made available we will define a class of functionals
which can be used to describe the effects of a general interaction
system in influencing the behavior of a general test system®. These
will be called influence functionals and it will be found that they
are only functionals of the variable of the test system, the variables
of the interaction system belng eliminated. We will then be able to
express the behavior of the test system in terms of its own coordi-
nates only. Thirdly, we will deduce some general properties of these
functionals. Finally, it will be shown that the influence functional
represents that part of the propagator of the density matrix of the
test system which contains the effects of the interaction system. As
such,it is equivalent to general formulations of the same problem,
which have been given earlier (L).

Since the influence functional can be formulated for very general
systems, it should not be surprising to discover that it may be impos-
sible actually to carry out the process of eliminating the interaction
system variables because of the complexity of the mathematical opera-
tions required. In principle, however, it can always be done. All of

the systems to be considered in detail here are linear, or approximately

*Throughout this work we will designate the test system as the system
whose behavior is of interest. Conversely, the interaction system will
be the system whose behavior is not of primary interest.
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80. As such they have the property that the influence functionals can
be evaluated exactly. As a last preliminary remark it should be re-
iterated that although we shall talk of general test and interaction
systems, spin has not been satisfactorily included in the Lagrangian
formulation. In fact, the formulation is restricted to cases involv-
ing momentum or coordinate operators. Therefore, strictly speaking,
systems in which the spin 1s of importance are not covered by this
analysis. However, this has no beariﬁg on the validity of the results
since their nature is such that their extension to the case where spins
are important can be inferred. The Hamliltonian ordered operator ap-

proach to this problem does not suffer this disadvantage.
II.1 Lagrangian Formulation of Quantum Mechanics

Let us suppose that we are considering a single system which has
coordinates that are denoted by @ , and that for the time being it is
not acted on by any other guantum system. It can be acted on by out-
side forces, hovever. The Q system may be very complicated, in which
case Q represents all the coordinates in a general way. If at a time
t = 1 the value of Q@ is QT then the amplitude for the system to go
from position QT at t =71 to QT at t =T 1is given by

T .
}i{ [ 2@ a0a
e T

k(g T50,,7) = [ sa(t) (1)

an integral which represents the sum over all possible paths in coordi-

nate space from QT to QT of the function

T
%[af(é,a,t)dt

;ﬁ(Q,Q,t) is the classical Lagrangian of the system and
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T

JCf(Q,Q,t)dt is the classical action. For the case that @ is a

b4

single linear coordinate of position, this 1s represented in the diagram

below. The magnitude of the amplitude for all paths is equal but the

]
i

I
I
!
!
i
|
]

RN
-

Q(t)—>
phase for each path is glven by the classical action along that path
in units of ﬁ . Thus, amplitudes for neighboring paths which have
large phases tend to cancel. The paths which contribute the greatest
amount are those whose amplitudes have stationary phases for small
deviations around a certain path. This 1s the path for which the clas-
sical action is at an extremum and is, therefore, the classical path.

Remarkably enough, for free particles and harmonic oscillators, the

result of the path integration is
% Scz
K(QT,T;QT,T) = (Smooth Function) e

where Scz is the action evaluated along the classical path. However,
for more complicated systems this simple relation doés not hold. A
discussion of the methodsof doing integrals of this type is not appro-
priate here except for a brief mention of the most basic method. This
consists of breaking the action integral into an infinite sum over in-
finitesimal time increments. Thus, if Qj corresponds to the value of §

at the time tj , then the amplitude, equation 1, can be written
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a9, x
K(Qy,T3Q,,7)= llmf f [ (——‘%——%Qj,%)eJ MQa- ©

€ -0 j:l

In the above equation QO = QT and. QN = QT . Then the operation writ-
ten as HQ(t) becomes a large number of integrals symbolized by

N-1
]:I de over all possible values of the variable Qj*

J=1
If the system at t = 1 is in a state described by ¢n(QT) then

the wave function at Qp (i.e., the amplitude to be at QT)v is given by

v(ag)= [ Kapma,m8 00, = [[ew f Ld,a,00a8] ¢_(q ) Ra(t)dq, .
(3)

In the above a single integral slgn has been used to express all the
integrations represented by Bq(t) and dqQ_, a convention which will

be employed often. Thus, the mathematical operation

exp i TJC(Q;Q,t)dt Da(t)
Joo 3] a2

is equivalent to a kernel which can take the wave function from t = T

*If there exist vector potential terms or others linear in the velocity,
then one must be more careful about the approximation to the action

S(QJ+1,Q ) designated here by

Q, 1~ Q.
e'f(“i%*“g')Qj)tj)

For a more thorough discussion of the point, see R. P. Feynman (1).



to t =T K It follows that at t =T the probability amplitude

that the system is in a state designated by ¢m(QT) is given by

Aup = f¢;<QT) v(ag)da,

T
=f¢;(QT)exp[%f af(Q,Q,t)dtJ ¢ (e )Da(t) aq _aq, - (1)

The probability of the transition from n - m is given by lAmp!2 and

*If Q 1s not acted on by outside forces or by other quantum systems
then '

K(apT50,,7) = T 4, (a) g2 )exe [ - 3 B (2 -7)]

where the ¢ (@) are eigenfunctions appropriate to the unperturbed
system @ . % This can be seen easily by the following. If the state
of @ at t =7 is ¥(Q,,7) then it can be expanded as follows:

¥, = Y o 4.e) e [- 5 5,7]

vhere a =[¢§(QT») exp[% EHT] ‘V(QT;T)dQT

At t =T we have

v (ep™) = Yoo p () e - —;{ B

Il

=fZ g (Qp) #x(Q )exp [- % En(T-T)’] v(a_,m)aq_

- [ xapmsa,mva, e,

This relation will be useful in later calculations.
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from equation 4 this can be written

P = [ ¢;(QT)¢m<QT')em[%[S(Q)-S(Q')]} #* (a8, (a,)de_dq!aq,dq)

n—-m

X Ha(t) Lq(t)  (5)

T
where 5(Q) =Jf;£(Q,Q,t)dt , the classical action.
T

For the next more complicated case let us consider two systems

*  The systems are coupled by some

whose coordinates are @ and X .
potential which can be designated as V(Q,X) and incorporated in the
total Lagrangian. We assume that when V =0 the states of Q@ and X
can be described by sets of wave functions ¢k(Q> and 752()() respec-
tively. Then, if at t =1, @ is in a state ¢H(QT) and X 1is in
a state ‘%i(XT) ; then the amplitude that @ goes from state n to

m while X goes from state i to f can be formed in a similar way

to that of U4 ,

= | g% *(x i ] ,
A pr(eg V(R x5 5(a, )] B (@) (% )ax e, ¥ day £Q(t) BX(t)
i-*¢ (6)
where 8S(Q,X) represents the classical action of the entire system
including both Q and X . The important property of separability

afforded by writing the amplitude in this way is now apparent.** For

¥Each system will be denoted by the coordinates that characterize it.
Where @ or X means specifically a coordinate, it will be so desig-
nated by a statement if it is not obvious.

**If system @ represents a harmonic oscillator and the interaction of
Q with X were linear and of the form ™ -y(t,X) Q(t), then that part
of expression 6 which involves the @ wvariables corresponds to the
function Gy, defined and used by Feynman to eliminate the electromag-
netic field oscillators. See reference (2).
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instance, 1f one wishes to know the effect that the Q system has on
X when it undergoes a transition from state n to m , then all of
the integrals on the @ variables may be done first. What is left
is an expression for iAmpf for X and in terms of X wvariables

v only. This property will be examined in more detall in the next sec-
tion.

The extension of writing transition amplitudes for large numbers
of systems is obvious. In principle the order in which the variables
are eliminated 1s always arbitrary. If one has a situation where two
systems of interest are coupled together through a third system, then
one can eliminate the coordinates of the third system thus expressing
the behavior of the two test systéms in terms of their own coordinates
only. Here it is worth while to mention a well-known property of the

Lagrangian and the action. If two systems (Q and X) are coupled by

some potential, the Lagrangian for the entire system is written

‘i‘(Q..J).(JQJX)t) = ozb(é.:Q;t) + ‘zI(Q.:X:t) + Z(X:X}t) (7)

where «i;(Q,Q,t) is the Lagranglan for @ with no external influences
and -i&(Q,X,t) = V(Q,X,t), the potential of interaction between Q
and X . Z(X,X,t) is the Lagrangian for the X system with no exter-
nal disturbances. The action integral for the complete situation is

constructed similarly and it will be represented by

5(q,X) = 8,(Q) + 8.(Q,X) + 5(x)

This property will prove to be very useful.



IT.2 Definition of Influence Functional

In the types of problems which are under consideration here we
will be interested primarily in determining the behavior of one system,
vhen it is being acted on by other guantum mechanical systems, or by
classical forces, or both simultaneously. Utilizing the properties of
the Lagrangian formulation of guantum mechanics mentioned above, we
can novw define a functional for taking these external influences into
account.

Theorem I. For any @Q system acted on by external classical
forces and quantum mechanical systems as discussed above, the probability
that it makes a transition from state WH(QT) at t =171 to q;m(QT) at

t =T can be written

P = f vk(Qp) v (Qp)exp {%[so(q) —sO(Q')]} ?(Q,Q')wg(q;)wn@T-)

n—->m
X DHeHQ'dQ_dq!dq dqr (8)

where GF(Q,Q') c%ntains all the effects of the external influences on
Q , and SO(Q) i[- Zg(é,Q,t)dt , the action of @ without external
disturbance. TheTproof of this is straightforward. Let us examine two
coupled systems characterized by coordinates Q and X as represented

diagrammatically below. @ Wwill represent the test system and X the

V(Q,X,t)

quite general interaction system, perhaps representing all the rest of

the universe coupled by a general potential V(Q,X,t) to Q . Assume
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Q to be initially (t = 1) in state Wh(QT) and X to be in state
Xi(xT). The probability that Q is found in state \Vm(QT) vhile X
is in state 7%(XT) at t =T can be written in the manner discussed

above and is

- [l - f P (ag) vy (ag) KA 0x) X, (31)

P
n-—+mnm
i-f 1-f

X exp {%[SJ@D -5,(@)+9(0-5)+8; (0,205 @' x') |
(9)

X (@)X (x1) % (X)) aX dXd¥, 4140 dQ1dq,da) HQDQ' DXOX' .

The primed variables were introduced when the integrals for each Amp
—

n—->n
were combined. Now if all of expression 9 which involves L1
coordinates other than @ or @' is separated out and designated as
S;(Q,Q'), then the following expression is obtained
fJ r = ¥* 1 l[ [ | 1 t
J(Q,Q ) -fxf(xr) Fe(Xp)exp { |8(X)-8(X")+81(,X)-51(Q",X )]
1 1 1 1
X A¥(x1) )Zi(xT)dededede,@x,Qx . (10)

This expression when substituted into equation 9 ylelds the desired form
of equation 8. As éan be seen, if is a functional whose form'depends
upon the physical system X , the coupling between @ and X , and the
behavior of X in the time interval between T and T . Furthermore,
explicitly % is a functional of only Q(t) and Q'(t) . In general,
it will be different for each sysfem X and the behavior of X during

the time interval T<t<T , at least on a detailed level. However, in
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many physical situations weak coupling between systems 1s involved.

We shall see that the approximate influence functional which can be
used in this case to represent the effect of the interaction system
has a form which is independent of the nature of the interaction sys-
tem. In such cases, each interaction system has the same effect on @ .
This is true because, for instance, i1f there are two systems A and B

which can act on C , and if

o2 _
Aonc” ‘#B on C

then the effects of A on C are the same as those of B on C . In
other situations where several combined systems of the same type
(linear) are acting on Q , the same form of Z; results. These cases
will be cénsidered in detail in later sections. Before this is done

there are some properties of Sf which can be derived on a general basis.

II.3 General Properties of Influence Functionals

. Theorem IT. If the physical situation is unsure (as for instance
if the type of interaction system X , or the initial or final states
are not known precisely) but if the probability of the 4th situation
is w, and the corresponding influence functional is 55 s, then the

£
v.)
effective o is given by

géff = % Y Z"J'g = <9‘)> . (11)

To demonstrate this we write an expression for the probability of tran-

sition for the gth situation:
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f Q) (Q.I.)eXP{ [ (Q)-58_(q )]} Fl@a @)y (@)

n
X dQ_dq!de dq., BQ O

But the effective P is given by

n>m

Coedote = T ¥ Fan” [ epvapes {3fs,@-s,@))} 7,5, @)
; £
xvr(a)v (g )aq dqrdgdqrdefer . (12)

Thus, Giff given by equation 11 is the appropriate expression.

Theorem III. If a number of statistically and dynamically indepen-

dent partial systems act on @ at the same time and if ﬂf(k) is the
influence of the kth system alone, the total influence of all is given

iz (k)

by the product of the individual

7 - 1 g™ - (13)

k

The argument here is similar to the ones above. We assume that the
initial state of the kth system is ;Zik)(xik)), that its final state
is %§k)(x§k) ), and that the interaction between x(k) and Q is rep-
resented by SI(X(k),Q) . .The probability that ( makes a transition

from n - m can be written



-16-

g “’;i(%wm(%)exp[%[So(q)-som')”g ey 2 ) ey

n-m
X exp [%[ 5,028, (x9)" a5 (x (9, g) -5, (), Q')]J
XA {92 () a9 ax (" ax{Fax (059 20" { gt (o)

Xdq dq!dgrder DeHQ' . (1k)

However, each of the expressions behind the multiplicative sign between

the braces is identified as an influence functional. Therefore Pn

can be written as follows:
Ve i o t k) v 1
F m=fwm(q.],)ur;(QT) xp{}{[so(q) 5,(Q )]}Ik[gi( CHD L CIIACE)
X DqoQ'dQ dQldq dql - (15)

Definition. In many cases Zf will be of the form éiQ(Q’Q'),.
§ is then called thg influenge phase. For independent disturbances
as considered in Theorem'III, the influence phases add. In the event
that i@(Q,Q') is a real number we will continue to use the notation
§ 5 the phase simply becomes imaginary. It will frequently be more conven-

ient to work with § rather than % .
Theorem IV. The influence functional has the property that
7*(Q,Q') = %(Q',Q) (16)

as can be ascertained by inspection of the general expression of equation

10.
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Theorem V. In the class of problems in which the final state of
the interaction system is arbitrary, which means the final‘states are
to be summed over, then 9%(Q,Q') is independent of Q(t) if qQ(t) =
Q'(t) for all t . All of the problems we will be concerned with here
are of this type.

The validity of this statement can be ascertained by observing
equation II.10, the general definition of the influence functional.

In particular, for the case where the initial and final states of the
interaction system X are 1 and f respectively, as in equation
10, we denote the influence functional by fz;;(Q,Q') . Let us assume
we have no interest in the final state of X which means that fQ;i
must be summed over all such states. The initial state 1 can be

quite general. Thus, the influence functional for the case of an ar-

bitrary final state is
FJ&(Q:Q') = Z fgi(Q)Q')
f

For clarity in finding the result of letting Q(t) = Q'(t) for all

t in Q;(Q,Q') we will write out the expression explicitly from

equation 10. It is
5 (0,0) = [ § % (%7) Ko (%8 exp {%[S(X)-S(X')+5i(Q;X)-SI(Q:X')]}

xy’i‘(x;) xi(xT)dedx;dedxq'_,Sx(t)a@x'(t)

Since Q appears in the interaction potentials acting on the X ana

X' variables respectively, it loses its identity as the coordinate of



-18-~

a quantum system and becomes just a number (which may be, of course,

a function of time). Thus, SI(Q,X) may be interpreted as the action
of a classical potential which drives the X system. The above
expression becomes then fhe expression for the probability that X
vhich is in.state i/ initially, is finally in any one of its possible
states after being acted on by a classical potential (as, for instance,
in equation 5 summed over the final states, m). This result is unity.

We have then that @;ZQ,Q') = 1 and is independent of Q(%)

Corollary. A more restrictive statement of the above theorem
can be made. In this same class of problems in which the final states
are summed over, if Q(t) = Q'(t) for all t >t~ then %(Q,q") is
independent of Q(t) for >t

This can be seen in very nearly the same way as for the above
theorem. Again let us turn to eqguation 10 and break up the iime inte-
gral into two parts, before and after t, + For t<<to » () £ Q' (%),
and S;(Q,Q') simply describes the effect of X on Q for the case
that X is initially in a state ¥ (x.) and at b - t_ is in'a

i
state #(Xy ) . For t>t ], Q(t) = Q'(t) and the expression for
o

%, (Q,Q) 1is
(0]

(@@ = [ T#30q) % oxpese { §500 -5(xr)s8 (0,505, (ax)1}

X f(x,(';o) %(Xto)dxtodxéod)grde' DX(t) X' (t)

This is the expression for the probability that X has made a tran-

sition to any one of its possible states at + = T after being in =
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state Xxxté) at t = to and in the interim to<:t<1T has been acted
on by a classical potential. Since this result is unity, we have that
Q’to(q,q) = 1 end is independent of @Q(t) for t>t . As will be
seen later in the specific case of linear systems, this leads to a
statement of causality. Notice that the above argument cannot be made
if Q. =@ for t<t and Q # Qi for t>t_ . This is because
the sum over states, which was necessary to make E;(Q,Q') independent

of Q(t) is perfomed over final (t = T) and not initial states.

IT.4 Statistical Mechanics

Finally, it is appropriate to point out explicitly the signifi-
cance of the influence functional in a study of quantum statistical
mechanics for the case where summation over the final states of the
interaction system is involved. First, we will define the density
matrix. Let us éssume we have a system Q as before which is in a
pure state representable by w(i)(q,t) = E: aéi)(t)¢n(Q) . The ¢n
are a set of orthogonal, normalized eigenfunctions. The expectation

value of an operator A 1is, of course, given by

<ayW) f V% @ uya) v (g,0)ag

where the superscript on the <<A> (1) is used to denote average over
the state 1 . In practical situations, however, the state of Q 1is
not known precisely. 1In this case to get the "expected" average, the
procedure is to average <A.(i> over all the systems in an ensemble

each representing a possible state of ¢q . Then,
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N N .
Ay - i Z[w(i) (@) at) ¥V (q,t)aq
i=1
N
-7 2 [V oo @ w, @

n};n‘ & iz r(l%)*(t)ar(li)(t))An,n= gn' 2, (0a (1) A,
vhere A, = Jr ¢;,(Q) A ¢n(Q)dQ and where the double bar represents
average over the ensemble following the notation of Tolman (6). The
guantity EE;T%T:ZT?T is designated as pn,n' » Tthe elements of a
matrix p the use of which was first introduced by von Neumann (7).
Thus we can write

Ay =rr(en) = Lo Ay, : (18)

n,n

Suppose now that there are two systems involved, @ and X ,
which have been interacting for times +t<T . At the time T the
two systems are disconnected so that their average states may be repre-
sented in terms of the eigenfunctions of the unperturbed sysfems. 'If
¢n(QT) and um(XT) represent these eigenfunctions for @ and X
respectively, then the total wave function for two representative sys-

tems of the ensemble can be written,

PlapXp) = Weg) (%) = X 8 (1) 8, (a)p, (T, (%) (19)

and the density matrix for the total system is identified as

nm,n'm'

90 (1) - FE e - o o () (20)
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Thus the average value of an operator A(T) B(T) where A operates

on @ and B operates on X 1s, using equations 19 and 20,

< B> - [ ey A0 AR ey Kit)aaa, (21)
-z g P X)) - Thrf(:(gjx)(T) ) (22)
n;:(Q) [a e (p(@%) (1yp) (23)

shere Tr'®) means trace over X variables only.

Suppose now that it is desired to find <{A) . From equation 23

this is found to be

<A> = o [A Trx(p(Q’X)(T)H . (24)

Thus, A1) = @ (myy w. (25)

Usually, however,pQ(T) is not given and we must find it in terms of
the initial value of the density matrix, pQ(T), i.e., before the inter-
action between Q and X in terms of an influence functional. Rewrit-

ing equation 21 for the case that B(T) = 1 we have

CAmy = [ Va7 () olag-ag) o) A 8y -ag) 7 () W(ay)
X 4;3apdapX By - (26)

Utilizing the closure property of orthonormal eigenfunctions, i.e.,

Y #x(ep)p, Q) = vlep-an)
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and writing down the wave functions of @ and X in terms of their

values at the earlier time T (as in equation 6, for example), we have

¢

/

<a(r)) =fZ' Prap)d (@u)A(T) 3 8 ()8 (ap) exm [%[SO(Q)-SO(Q')]J
X S(XP-XT')GXP[ %[S(X) -8(x")+8.(Q",%) -5, (a',X") ]J i) ¥ (x ax ax!

X Dxox'f ) e (1)gE)P, (a")daaqldq,, 2ar(t) . (27)

a,a’

The part of equation 27 in the brackets is recognized as % (q)q') for

the case that X begins in state i ,
[X?(X;)‘Xi(XT) =) pmm,(T)u;'(X;)um(XT)] , and ends in an arbitrary

state. Taking the matrix elements on A(T) we find that equation 27

can be rewritten as follows

WD = T a,® [ 908, 0 e Fi5,@-5,)1]

X 5(a,e") aZal Pa,at (P4 (Q1)F,(Q )aa,de7d0 dg) DLQ! . (28)
s
Thus the coefficient of A , (T) is evidently p(Q),(T) . It is
n'n n,n

interesting to point out that in an earlier part of the discussion the
sum over the final states in the influence functional was regarded as
meaning the final state of the interaction system was arbitrary.
Another way of looking at the situation is provided in equation 28

above, where the sum over final states can be regarded as taking the



average of A(T) 1* .

(A(T) 1> = mr(oa 1%)

where 1X is the unit operator in the X system and A(T) as before,

operates only on the test system.
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IITI. Influence Functionals for Classical Potentials

In this section we will derive specific forms and praperties of
influence functionals for the effects of classical potentials on the
test system. These represent the simplest form of influence func-
tionals and their properties fbllow directly from the general properties
obtained in the previous section. Finally, we will derive the influence

functional when the classical potential represents Brownian noise.

III.1 Properties of Influence Functionals for Classical Potentials

The first step is to find the influence functional for a definite
classical potential acting on the test system, Q@ . If the potential
energy term in the Lagrangian is of the form V(Q,t), then it can be

ascertained readily by referring to Theorem I that

T
Faa) = e~ 5 [[vian) - viar,o)]a o

or eguivalently the influence phase is

T
2@ = - %I[V(Q,t) - V(Q',t)] aw . (2)

The next degree of complication is to have several poﬁentials,
Z; Vk(Q,t) acting on @ simultaneously. However, since the sum of
all these potentials represents an equivalent potential, say
VT(Q,t) = E; Vk(Q,t), then it is ob&ious that the total influence func-
tional Q)(Q,Q') is the product of the individual ”jk(Q,Q') . More

specifically,
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T
5T(Q:Ql) = exp %[ [VT(QJt) ‘VT(Q';t)]dt

T
{k - %f [V (q,t) -V, (Q'¢)] dt
5

£[ Qe (3)

= €

g

0

or

T
§ ,Q') = _l ,b) - ', - ,Q') . N
@a) - T -§ f @ sk - T Bee) - ®)

The same result follows directly from Theorem IIIT which gives the total
influence functional for several statistically and dynamically indepen-
dent systems acting on § . The total influence functional for all the
systems (in this case potentials) is the product of the functionals for
the individual systems.

Anoﬁher property of the classical influence functionals is ob-
taiﬁed by inspection of equation 1. We notice that for any classical
f;(Q,Q’) if conditions are such that @Q(t) = Q'(t), then §(Q,Q')= 1
end is independent of t for all times that the two vdriables are
equal. It follows that the influence phase is zero for this condition.

Finally, by application of Theorem IT we find that if the poten-
tial is uncertain but the probability of each VE(Q,t) is w_ then

£

the average functional is given by

T
Faa7= L v, emi-3 [ [an-yar,o)as) - NEARACED
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In the paragraphs following we will assume a probability distribution

wz appropriate to Brownian noise and will be able to derive a specific

form for the average influence functional.

III.2  Specific Functionals for Random Potentials

Theorem VI. If the potential has known form -V(Q) but un-
known strength C(t) as a function of time so that the total potential
is v(Q,t) = -C(t) V(Q) , then the average influence functional can be

written in general form,

T
<%>- <exp[§fc(t) (v(@) - v(@")] dt]> (7)

or, in Fourier transform notation,

@
<5>= <exp[—2-ﬂ-ﬁ f c, [v_,()- V_V(Q')] va) (8)
where o
c, - f o(t)e IV g (9)
and
T
[v,(@-v ()] - f[v(cz(t))- v ()1 ar . (10)

If this C(t) is Brownlan noise with a power spectrum @(y) and a cor-
o)

relation function R(T) = %J/»¢(v) cos vt dv , then the average value of
0

T
exp [1j C(t)v(t)_dt] , 1s

T

a function such as
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T

(exp {i~/4 c(t)v( t)dt = exp {TJ[Jf R(t-s)v(t)v(s)dsdt ; (11)

and it follows that the avei'age influence phase is

Tt
<) - - -l-§ f f R(6-0)[V(a(t))-V(Q' (£)) 1(V(a(s))-¥(@'(s)) Jasat  (12)

@
—52-[ v)]v(Q)—V(Q)l dv . (13)
0]

Proof: First it will be shown that for purely Gaussian noise of what-
ever coupling strength (average magnitude of C) the above expressions
apply; second; for noise of a stationary random character, not neces-
sarily Gaussian in nature but very weakly coupled to Q , the process

can be represented approximately by the expressions for <{77-)> given above.

A. TIf the noise 1s such that each frequency component is random

and its distribution is Gaussian, we will show that

foe) @®
i 1 2
{exp —2;[ va_vdv > = exp -;[ @(v) 'vyl av § ,
-0 0

T
vhere it 1s to be noted that d/.C(t)v(t)dt = é%

T

C v dv and C(t)
Vv ~v

88

is the random varisble.

To find this expectation value the procedure is to multiply

00
i
exyp {’é_{( f va_vdv
-0



-28-

by the probability for Cv ; then integrate over all possible "paths",

Cv . Now, for a stationary random function @(v) is defined by
<vaCv, = bs@(v)s(v+v') . (14)

However, for doing the path integral in frequency space it is more
convenient to break up the path integral into discrete frequency com-

ponents C, , C , etec. such that v

-y, =Av =¢€3 for this
Vit Vil J+l 73 ’

case the above relation becomes

ba 8, @(v,)
ey, 0 > = ——+ . | (15)

Since we are dealing with Gaussian noise then the first probability

distribution for any frequency component is given by

Cy, Coy
= -———E—~— ex - J 'j€ .

Therefore, we can now write

o 00
i i
exp | 5 Cv dv = lim ]:[ expy=5=C,6 v_, €
< 21[ vV -V > € >0 j=—CO 21( VJ Vj .
~00
Cy, C-vj
- d
B g €p dc, (17)
J o d
fﬁt 1 Cy Cov.,
= 1lim ‘/erxp =—[Cy, v_y, 4C_y, vy, e - —3—deb g0 a0 (18)
€->0 j=1 e vy T fvy) YTV

where in the second expression the form has been changed to an infinite

product over positive J . BEach of the double integrals indicated above
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is self-contained in that it depends on one index only and its form
is identical with all the rest. Therefore, only one term need be
evaluated. To do this we note that Cv is a complex number and can

J
be written

Q
i

A + iB
v v
and

c = A =-1iB
-V v v

where the index on v has been dropped for this calculation. Disre-

garding the constant Jacobian of the transformation from CV,C_V to

Av’Bv the jth integral can be written

. cc
1 Vv =V
ffexp {5; [c,v c_v,]e- W] e} ac ac_

(19)
€B

oe]
1 2, .2 ie v
) .[Jr . {} hnﬁ(v) (AV+BV)€ " 2x Av(vv+v—v) 2n(vv-v-v) dAvdBv ’
=00

This integral is Gaussian 1n both Av and Bv and can easily be

evaluated by completing the square to give

‘exp {: E—%£Zl [(vv+v_v)2-(vv—v_v)2J} = exp {; sz:%gfjg?}

Again the multiplicative constants obtained from the integration process

have been dropped. Therefore, to within a normalizing constant

@ vy, Vo Plvy)e
1 _ 00 viV-vy 3
<exp o f va_vdv}> = elgmo i exp {- -
-0 - .
= exp {- %T&é(v) Ivvl2 dv . (20)
0
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That the constant is in fact unity, can be seen by substituting

v, =0, {1>=1 . Now, if the substitution is made that

v(t) = g [va®) - via' ()] | (21)

then the average influence phase is found to be

o8]
18> =-;;-§ [¢(v) |v (@) -VV(Q')|2dv ,
0

B. The Gaussian behavior of Brownian noise, characterized by
the typical Gaussian probability distribution, may be the result of
a large noise accumulated by many small independent sources, none of
which have a truly Gaussian distribution (provided that each source
is small in its contribution compared to the total noise evolved).
How that comes about may be seen by the following analysis in which
the average influence functional for very weak noisy potentials will
be found. We will proceed by again finding an expression for a func-

tion of the form

T

<:exp i Jf c(t)v(t)at ;>

T

where now the average magnitude of C(t)v(t) is very weak but its
random character is not necéssarily Gaussian in nature. Taking ad-
vantage of the fact that C(t)v(t) is small, let us consider the

power series expansion of the above function as follows:
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T T T T
<exp ifc(t)v(t)dt >=<l+i fc(t)v(t)dt— !2'-?[[C(t)C(s)v(t)v(s)dsdt+..>

(22)
| T T T
=+ i[<C(t)> v(t)dt- —32"-!-[[<C(t)0(s)> v(t)v(s)dsdt- .-  (23)

where the random variable is C(t) as before. Taking the terms one by

one we find

<l> = 1 ’

Le(t)y = 0, since C(t) is random with a distribution centered
around C(t) = 0 ¥

<b(t)C(si>:= R(t-s) , the correlation function.
If higher order terms than this are considered, for instance,
<<C(t)C(s)C(rf> , more knowledge about the nature of the noise is neces-

sary before definite assertions can be made as to the character of these

*1f {c(t)y = T(t) £0 , the C's can all be changed by c'(t) = c(t)-C(t),
then R is the correlation function of the fluctuation C'(t), desig-
nated by R' here. The C(t) acts as an external potential. The
expansion becomes

iy - T
Lexp {ifc(t)v(t)dt Yo 1)+ if<C'(t) » T(£) v(t)at

TT
) %;‘f[<(0‘(t)+c(t))(0'(s)+6(s))> v(t)v(s)dsdt + *-

All terms which have <@'(ti> disappear, so the above becomes

T T
exp i[c(t)v(t)dt}> fc(t )v(t)- gff C(t)T(s)v(t)v(s) dsdt

T

ij'(t—s)v(t)v(s)dsdtNe@{ 7/6(t)kr(t)dt exp -ffw(t-s)v(t)v(é)

(e8]
' 0

:IH
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terms. If it is assumed that all odd terms such as the one above are
near zero, as one expects in the case of Brownian noise, then for

small average magnitudes of the term C(t)v(t) ,

T T T
<exp 1[ c(t)v(t)at > 1 - %ff R(t-s)v(t)v(s)dsdt

T T
< exp -ff R(t-s)v(t)v(s)dsdt (24)

vhich was shown to be exactly. true in the case of Gaussian noise.
It is of interest to notice that in the event that N such
weakly coupled noisy systems are acting on @ then the average influ-

ence phase is written very simply in terms of the above form:

Tt
<¢>N systems = -N f[ R(t-s) v(t)v(s)dsdt .

However, the validity of this result could be questioned on the grounds
that in raising the exponential to the Nth power, the errors in the
arproximation might be compounded into sizeable magnitudes. More

clearly stated, if

2 3
f(a) =1+ a + Ci8 + C,a” + --o

where the C's are of the order of unity, then for sufficiently small

values of & one cen write f(a)=ze® . To second order the error in-

L-2Cy, 2 .
——75———)a , therefore an approximation correct

ca-(1- 201)/2 a®

curred is e°- f(a) = (
to second order would be x~f(a) . Since we have

assumed a < 1 the a2 in the exponent may be neglected in the
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approximation. Now suppose we have fN (a) to compute. Let us take
the expression correct to second order for f(a) and compute f’N(a) as

follows,
fN(a) =2 exp [Na - (—é-——J:)-NaQJ

and the quantity to be examined is the fractional error in representing

fN(a) by Se

1-2¢
2 exp ,: -(——é-—l)NazJ

It has been assumed that 8 <1 but Na is not necessarily small. If

Na~1 and we let N get very large, then the exponent can be expressed

1l-2C 22
lim log(fNIg:) = - 5 l) NNa - e =0
Na ~ 1 e
N —-oo

The next higher order term in the exponent is of the order of Na3

which approaches zero faster than the second order term. Therefore,
in the limit of very small a and very large N the exponential ap-

proximation is exactly correct.
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Iv. Inflﬁence Functionals for Linear Systems at Zero Temperatures

There exists a large class of problems in guantum mechanics in
vhich the test system interacts with a linear system. There also may
be forces applied to the linear system which in turn transmit these
forces in filtered form to the test system. In thls section the speci-
fic form for influence functionals which are appropriate to linear
systems composed entirely of harmonic oscillators will be found. This
approdch is taken because all linear systems which are lossless and
those which contain certain kinds of loss can be represented by com-
binations of oscillators. In addition, these functionals can be found
exactly. In the many cases where dissipation arises from other sources
we will show that to the degree that the loss is linear it can alsoc be
represented by oscillators. This part of the analysis will be done in
Section VII. PFor simplicity of presentation it is assumed in this sec-
tion that the interaction system will have zero temperature initially
and will have no external forces applied to it. ‘It will be found in
later sections that the effects of both temperature and forces can be
,inéluded in a direct way.

The procedure here will be to consider the interaction system as
composed first of one lossless oscillator, then to extend the analysis
to arbitrary distributions of oscillators. One outstanding effect of
continuous distributions is shown to be that of adding dissipation to
the system. Therefore, the form of the influence functionals for dis-
sipative linear systems is also derived, by analyzing lossless oscil-
lators. The use of the influence functiénal in meking a calculation is

discussed and second order perturbation expressions are derived for
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transition probabilities of a test system when acted on by linear
systems and classical potentials. Finally, the general form of func-
tionals ‘for linear systems will be deduced from the general properties

of functionals given in Section IT.

A statement of the theorem to be proved in this section is as

follows:

Theorem VII. Tt is assumed that the test system, @ , is linearly

coupled to the linear interaction system, X , so that the total Lagran-

glan for the system Q,X is

Ziotar = Lo(@Qst) + L(X,X,1) + £ (va,X) (1)

vhere XL (rQ,X) = yax .

Diagrammatically, the situation is

YaX

The influence phase for the effect of X on @ can then be written

(2)

P rae ) a_(@-a)
L - 1 — - 7
%(q,Q") = mb[ [ %ivz:) * (tiv;_v‘)/ ]dv

and is found by studying the properties of X alone. Qv is the Fourier
transform of y(t)Q(t) and 2Z(v) is a function which is derived from
the characteristics of X . More exactly, Zv is a classical impedance

function which relates the reaction of X to an applied force. The rule
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is as follows: Zv is found by taking the classical system correspond-
ing to X (that is, whose Lagrangisn is Z(X,%,t)) and finding the
response of the coordinate X to a driving force f£(t) which is
derived from the potential -f(t)X(t). f£(t) is considered to be
applied at t =0 subject to the initial conditions that

x(0) = X(0) =0 . Zv is defined by the expression

fv .
Z(V) = lVX (3)
. w .
where f =~70f(t) eVt ana X =_[~X(t) e %% . 1n the time
0

domain equation 2 can be expressed as

i@(QJQ') = 2

8%8

%
J( 775 (Q-Qf) [ F(t-8)-Q!F (t-s) Jdsdt . (1)
-0

In the above equation Im F(t), which we will call B(t) is, for

t >0, the classical response of X to a force f(t) = 5(t).

Re F(t), which for this zero temperature case we call Ao(t), is the
correlation function for the zero point quantum fluctuation of the
variable X , a point discussed more at length in Section IV.5 . The

relations connecting these quantities are then,

F(t) = Ab(t) + iB(t)

o) (5a)
1 =iyt
T fB(t) at
vV

and the inverse relations
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Tm( Jcos vt dv

i
i
alno

o8 o8

1
Ab(t) in»

(5D)

B(t) - % Tm( Ysin vt dv

1
ivZz
v

In the case of finite temperatures, the influence phase can be written
in the same form as equation U4 except that Re F(t) = A(t), that is,
without the subscript o , and a more general relation exists connect-

ing A(t) and Im(iﬁ%—), (see Section VI).
v

Iv.l S;QQ,Q‘) for Single Lossless Harmonic Oscillator

Consider a test system, Q, which is coupled to a harmonic oscil-
lator whose mass is m, characteristic frequency o, and displacement

coordinate X . The complete Lagrangian for X and @ can be written

. mX2 ma)2X2
getotal = QEO(Q:Q:t) - - e YQX (6)

and the total action is written similarly

T 22 2
8tota1(®X) = 8,(Q) +j (= - m——“i;‘—- +rex)de .

T
In the interaction lLagrangian y 1is a coupling factor and may or may
not be a function of time. If X 1s assumed to be initially in the
ground state (corresponding to zero temperature), then to within a
normalizing constant }Ki(x) = e-mwXE/eﬁ . The final state of X is
assumed to be arbitrary which means the final states are to be summed
over. Therefore, in equation II.10 the definite state 7LZ££(XT) Xf(x&)

will.be replaced by the sum z: ¢§(XT) ¢n(X%) = S(XT- X&) .
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The ¢n(X)' represent the energy eigenfunctions of the harmonic oscil-
lator. With this information available the influence functional is
completely defined and according to the rules already given it can be

written as follows:
'} 3 T
¥ (a,") =f8(xT-xT')exp [-;{[S(X)-S(X')] + %fr(QX-Q'x')dt]

X exp [- %“ﬁ(x?xf)].ex(t),ex(t')dedx;dedx,_'D

T
mﬁg mu)2X2 rd
where S(X) =‘/.(—§— - )dt and the subscript o on JB(Q,Q')
T

2
indicates zero temperature. The derivation of this expression can be
carried out in several ways and in fact has been done previously*. In
principle, it 1s very easy since, as has already been mentioned, for
the harmonic oscillator the propagation kernel when a potential is

involved, is

K(Xp T3, 7)= exp[%[S(XHSI(Q:X)]} Dx(t)- exp[%[s(x)*"SI(Q:X)]}

classical.
where the only dependence on X remaining is through its end points

XT and XT . Thus,

Faa) = o) exp[%[S(X)-S(X')+SI(Q;X)-SI(Q'X‘)]}

classical

|- % (E®] axanonay | (7

*See the equation following Equation 61 in reference (2).



-39~

This represents a series of Gaussian integrals since S is itself
guadratic in the X variables. However, the algebra involved in
calculéting equation 7 is considerable and the extension of 7 to

cases involving more complicated combinations of oscillators compounds
the difficulties. Therefore, z;(Q,Q') is done by a different method
in Appendix I(a) which can be extended more readlly to other calcula-

tions which we wish to do later. The result of Appendix I(a) is

T t
18,0,0)= s | [ ira(a,-a) (0,800 qpeto(to) g (&)

T T
Thus, F(t-s) in equation 4 corresponds in this case to e+iw(t_s)/mw
and from the definition given above B(t-s) = ﬁ% sin w(t-s) . The
finite time interval indicated by the limits T and T can be inter-
preted as turning the coupling (between Q and X) onat t =1 and
off at t =T . However, since the interaction system is to be consi-
dered in most cases as part of the steady state environment of q , it
is really more meaningful to extend these limits over an infinite range
of time (1--00, T+ ). The possibility of allowlng X to interact
with @ over é finite range of time can be taken care of by giving the
coupling factor Yt the proper time dependence. Rewriting 8 in trans-

form notation (see Appendix I(b)) we have

(o]
Q'(q_ -q_ ) Q_ (@ -q')
? (Q,q')= 2%[[ e J av . (9)
o ~mf (v-i€)“~w"] ~nf (v+ie) T-0"] .
w
In this equation L 575 =-/— sin ot e-in dt which corresponds
mw ;
-m[ (v-i€)"w"]

0
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to of equation 2% .

inv

Having obtained the expression for the influence phase we now turn
to the classical problem of finding the response of X(t) to a driving
force, f(t), applied at t = O with the initial conditions x(0) =x(0) = 0.
Starting with the Lagrangian of the unperturbed oscillatof from equation
6, we add to it a potential term -f(t)X(t). This potential has the
same form as the coupling potential -yQX wused in the gquantum calcula-
tion. However, it is to be emphasized that the response of X to a
force has nothing to do with the system @ outside of the type of
coupling involved; therefore, f(t) ~will symbolize the force in the

classical problem. The complete Lagrangian is

2 2.2

af().()x)t) = %— - mng + £X (]_O)

and the equation of motion derived from it is, as is well known,

X +moX = £ . (11)

Its solution under the initial conditions stated above is

<

= f(s) sin w(t-s)ds (12)

X(t) =

O\d-

¥ € which occurs in ivZ, 1s a convergence factor which was inserted
in taking the Fourier transform 1/mw 1(t) sin wt where 1(t) is
the unit step function. It must be kept to show the location of the
poles with respect to the v-axis where doing integrations of the type
loo)
H(v)

ivZ(v) dv .
0

After the calculation the € 1is set equal to zero. This convergence
factor must be used since we are dealing with a lossless system. In
practical cases where loss occurs naturally, the poles will automati-
cally be located off the vy-axis.
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or alternatively, in terms of Fourier transforms, is

fv *
X, = (1)) ' (13)

Therefore, B(t-s) in this case is a Green's function which yields the
response of X(t) to an impulse force f(s) = 8(s) and its transform
yields l/inv-

Thus a classical calculation of the ratio Xv/fv under quiescent
initial conditions yields the proper function for l/inV in the in=-
fluence functional, at least for the case of a single oscillator. The
terminology Zv was chosen to agree with that widely used in electrical
engineering for the case when the harmonic oscillator represents an
electric circuit. Thus the circuit corresponding to equation 10 if

X(t) represents a charge and f(t) a voltage, is as follows:

L=m
——
(0@ W6 o=

*Since the initial conditions are given for t = 0, the transforms cor-
respond to Laplace transforms. There the transformation variable is
s and corresponds to our iv+e . Thus,

X, =7 x(t)e P hay

0

. . ®
(i)vz goiveg, [i(t)e-l(v—le)t+i(v-ie)x(t)e—i(v—ie)t] ' -(v—ie)exv
0

The products of integration by parts disappear at t = 0 because of
the quiescent initial conditions and at, t = oo because of the conver-
gence factor. Therefore, (Xz = -(v—ie)2XV
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. 2 . .
where m represents an inductance, l/mU) a capacitance, with current

flow X(t) . The impedance of the circuit is given by

f . . 2 2

g oo v v em[(v-ie)®e”]
(X Tivx T iy .

voo(x), v

This is the same expression for Zv as 1s indicated by equation 13.

IV.2 Distribution of Oscillators. Representation of lLoss.

The results of the preceding section are easily extended to the
situation where the interaction system is a distribution of oscillators.
First, we consider the case of independent oscillators coupled to the
test system. It is assumed that thére is a distribution of oscillators
such that G(f))dfL is the weight of oscillators in the range between
). and 1+ dfL. . More specifically, G([())df) is the product of the
number of oscillators and the square of their coupling constants in

afl. Thus, we have a situation represented by

Qx(t,-N)

) X(t,-41)

/
\

/
Each oscillator is assumed to be initially in the ground state and
finally in an arbitrary state; the coupling is again assumed to be

linear. The total action is then given by

2 J12X2

T oo
5(Q,x(2)) = SO(Q)+ff a(n) [%— - QX} dndt . (14)
T O

From the general properties of influence functionals already described
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we know that when independent disturbances act on @ the influence
functional is a product of the ones for each individual disturbance.
Since G%(Q,Q') = exp [i@O(Q,Q')] for the case of a single oscillator,

the total influence phase for the distributioun is the sum of the indivi-

dual phases,

(e - [ otn)and (@,e) (15)
>, 0

More explicitly,

(0 0) Q0
Q'@ Q') q_ (Q -q')
[ [G(n)dﬂf v ¥ TV LA A av . 16
° = 0 o L -lv-1€) -n%) ' “[(v+ie)®-n”) ’ e

For this case then, the form of equation 2 is obtained if we put

1 7 -G(1)
- = —_— AN (17)
lVZV ! (V—i€>2—ﬂ2

or

(18)

2 2 -

B o}
1oy )y, [ o) g
o Vv -N

*Equation 18 is obtained from 17 in an obvious way if we make the expan-
sion

1 1
m —L  lin { an . en }
€ >0 (y-i€) -_N_ € > 0 Lv-ie -0 v-ie +0
1 i € i €
= + lim - lin —————
1;2-_()_2 2n €E~>0 (v—_{')~)2+€2 2 0 (v+ﬂ)2+€2
- 2+ 1% [8(v-n)-8(ven)
2 2 2L

v =)
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Thus the effects of all the oscillators are included in the influence
phase through the expression for Zv , eguation 17. Now,‘however,
because of the continuous distribution of oscillators, z, has a finite
real part. We will now show that this real part represents dissipation
by arriving at the same impedance function classically.

The procedure is the same as before. We take the part of the
Lagrangian from equation 11 having to do with the oscillators, except
that the coupling potential -Q(t)-ZT G(N)X(N,t)dfl is replaced by

~-f(t)“7p ¢(N)x(Nn,t)dN , a classical potential. X(N,t) is the co-
ordina%e of the oscillator in the distribution whose frequency is )L
while the total coordinate of the complete linear system with which
f(t) is interacting is Jfo a(N)x(N.,t)anN = X(t) . It is the rela-
tionship between f(t) gnd X(t) in which we are interested in this

classical case:

) 3 x(n )2 x( )2
z(x(n),x(n),t)=f G(n)dn[ 5 = L 5 2
0

Q
+ f(t)f a(n)x(n)an . (19)
0

The equations of motion are the infinite set

O“—-\8

[G(jl)dll [XIL +1133?L - ﬁﬂ = 0 . (20)

However, since the oscillators are not coupled to each other, this
relation can be true always only if the integrand is zero. This re-

sults in the same equation as before for one oscillator,
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R0 ,t) + NX(n,t) = £(t) . (21)

For quiescent initial conditions and for £(t) applied at t =0 we

have the same solution as before. In Fourier transforms this solution

is expressed

A SR
£, (v-i€)2-J1? iVZv(fL)

The relation of the total coordinate Xv to fv is obtained simply*

va(.l)_)G(ﬂ)dJ).
0

= f
v

2 2 7
(v-ie) - iVZV

Fﬂ L
<

<

_[ Glnj)dn 1 (22)
0

*¥To get a better picture of the situation, let us return to the circuit
analogy. Equation 20 is the Lagrangian for an infinite number of
resonant circuits in parallel, all driven by the same voltage, f(t).

There are G(/))d () circuits with frequencies between /) and L+ dJfL .
Each circuit is characterized by a capacitance l/../)_2 s a unit inductance,
and a charge flow equal to X(f1,t). The total charge flowing through the
generator is the sum of the charges in the individual circuits, i.e.,

X(t) =/O‘OG(_"(1)X'(_O.,t)dﬂ .
0 v

—=X(t)

B 81 g -
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Comparing this with equation 17 it is seen that again the same expression
for Zv is obtained in the quantﬁm and classical cases. In addition,
since Zv is now didentified with a classical impedance, the real part
represents resistance while the imaginary part corresponds to reac-
tance. Therefore, dissipation has been introduced into the influence
‘functional for cases where the loss is representable by a continuous
distribution of oscillators. To demonstrate this in a concrete case
the spontaneous emission prbbability of a particle in free space has
been computed using the influence function method (Appendix ITI). This
example demonstrates a particular case in quantum mechanics where loss
arises from a distribution of oscillators.

The relationship
(o's]
1 -ivt
o = f B(t) e dt
V.o
has already been established during the course of the derivation of

the influence phase for the single oscillator. Now the inverse relation
between F(t) and L/inv can be written for the zero temperature.case.

In the time domain the influence phase for the distribution of oscilla-

tors is
o] t _
1 . -1 t- iNn(t-
B(qsq')= -7f () dﬂf f (g -ap) (et HF8) _gr et ME=sy a4y
0 ~0 -0
Comparing this with equation 4 it is evident that
©
F(t) =f G(J’;) S0 a0 .
0

However, it has just been shown in equation 18 that
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1 nG(v
_Im(inV) N év)

Therefore, it can be immediately written that

00
2 1, ivt
F(t) = - ;—[ Im(i—ﬁ—)e dv
0 v

as was given in equations 5b.

The results above can now be extended by a simple argument to
include all linear systems composed entirely of distributions of oscil-
lators. To do this it need only be shown that the general system can
be reduced to a distribution of oscillators independently coupled to the
test system, which was the situation just considered. To be more
definite, suppose there exists a test system Q , coupled to an assemblage
of oscillators which are also interconnected with each other. For
instance, the situation might be as shown below, where each of the Xn
components of the total interaction system could also represent a

system of oscillators.

A X Iy |l— — —
P |

However, it is well known* that such a linear system may be represented

by an equivalent set of oscillators (the normal modes of the total sys-

tem) independently coupled to @Q .**

* This point is considered more fully in Section V on classical forces.
**The fact that one or more of the X, might represent continuous dis-
tributions of oscillators need not be bothersome since in principle
they represent the behavior of the total system in terms of its in-

finite set of normal modes.
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Or, said another ﬁay, the classical representation of the Lagrangian

in normal modes finds new linear combinations of the Xn which makes
the total Lagrangian, except for the coupling, a sum of individual guad-
ratic forms with no cross terms. But, this same transformation of
variables can be made on the expression for G;(Q,Q') (see equation
II.10). The effect of this transformation is to change the &&X

volume by a numerical factor, since the transformation is linear.¥ Thus,
in effect, we get the sum df independent systems in the guantum mechani -
cal case also. From this argument it is concluded that the results
above regarding a>distribution of independent oscillators coupled to a
test system, apply to any linear interaction system. Therefore, it has
been found that the influence funcfional for all linear systems has
exactly the same form e+i@O(Q,Q') where @O(Q:Q') is a quadratic
functional of the @ and Q' . @O(Q,Q') is adapted to a ?articular
linear system only through the classical response of that linear sys-
tem to a force. Thus, the procedure for finding the influence functional
for a linear system has been reduced to a classical problem, as waS'oﬁt-
lined at the beginning of this section. The fact that eliminating the
coordinate of an oscillator always yields an influence functional which
is quadratic in the potential applied to that oscillator, is a basic
property of linear systems. For example, where the coupling Lagrangian
is linear between an oscillator of coordinate X and another system of

coordinate @ , the elimination of the X coordinate yields an influence

*The only result of such a numerical factor would be to change the nor-
malization of GQQ,Q') . However, we already know that for the case
that the final states of the interaction system are summed over
F(q,q ) = 1. Therefore the normalization of %(Q,4)  is not changed
by the transformation and thus is not dependent upon the coordinates

chosen to represent the interaction system.
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phase which is quadratic in @ as has already been shown. If Q vwere
the coordinate of another osciilator coupled to P , then elimination
of the @ coordinates would yield an influence phase quadratic in P ,
etc. This can be understood mathematigally by observing that the
Lagrangian for all the oscillators with linear coupling is always
quadratic. Doing the path integral to eliminate a coordinate is basic-
ally a process of completing the square and performing Gaussian integrals.
This process of completing the square also yields quadratic terms. It is
therefore not surprising that the influence phase for any linear system
should be always of the same quadratic form.

It is to be emphasized that the analysis so far presented has
been concerned entirely with systems whose complete behavior can be
described by combinations of lossless oscillators at zero temperature.
The only example of such a system is the electromagnetic field in free
space. In all other physical situations linear behavior is an approxi-
mation to the actual behavior. However, this approximation may be very
good over a wide range of operating conditions. In a later section the
problem of approximately linear systems will be considered in detail.
The results will be found to be the same as for perfect oscillators to

the extent that linear behavior is realized.

IV.3 Use of Influence Functionals

At this point in the analysis we need to consider how influence
functionals are to be used in the calculation of a problem. For clarity
the discussion will be specialized to a particular problem but the
principle is valid more generally. Suppose we wish to know the proba-

bility that a test system @ makes a transition from an initial state
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i . i
¢n(QT)eXP [- i EnT] to a final state ¢m(QT)exp [- % Em$] when coupled
to an interaction system. The formal expréssion for this probability

is, from Section IT,

nfm=f¢;(QT)¢m(Q,f)exp {%[SO(Q)-SO(Q')]} F@,0")Pr(@)P_( )da_+ 9! (t).
(23)
This is formally exact but except in special cases it cannot be evaluéted
exactly. Furthermore, to obtain any specific answers to the problem the
characteristics of @ must be known as well as knowing the influence
functional. However, by using perturbation theory we may find general
expressions for transition probabilitles to as many orders as desired.

For example, if the interaction system is a linear system at zero tem-

1% _(Q,Q")
perature, we know that GQ(Q,Q') is of the fogm( e . The per-
1% (,Q")
turbation expansion is obtained by writing e © in terms of a

pover series and evaluating the path integral corresponding to each term
in the expansion. In many cases the coupling between @ and the inter-
action system is smail enough that only a few terms in the expansi&n are
necessary. In Appendlix II the procedure for finding the perturbation
expansion is described and in addition specific expressions are found

up to second order in the potentials involved for the sevefél forms of
influence functionals already derived. To illustrate the types of ex-
pressions which might be obtained we suppose that the coupling potential
between @ and the linear system described above is of the form XV(Q)
where V(Q) is very small but that they are coupled for a very long -

interval of time T . The approximate expression for equation 23 is as

follovws:
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2T|an!2 1
P = Re( ) for v. >0 (A2.20)
n—m ﬂ %1m Zv nm
nf£m nm
= 0 for Vom <0
and
oplv k|2 )
P =1 - n Re(Z ) for all k such that v L0
n—-n k A Vnk Vak n
o (a2.21)
where
Zv - Zv
nk v=vnk
and -

T - [ Br@V@p @@

Equation A2.20 is interpreted as saying that Q wmay make only transi-
tions to states of lower energy which follows from the fact that the
interaction system is itself initially at zero temperature. Equation
A2.2]1 is the probability for @ +to remain in its initial state. This,
of course, is unity minus the probability of transitions to all possible
other states. In this case the only possibilities are the states lower
in energy. These, then, are expressions for the probability of spon-
taneous emission of the test system into the linear interaction system
and it is to be noticed that they are derived from the zero temperature
influence functional Qg(Q,Q'), equation 2.

Calculation of transition probabilities representsonly one piece

of information that one might desire to know about a test system. For

instance, it is more usually desired to find the expectation value of
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an operator in the test system. To calculate this one needs to know
the density matrix descriﬁing the test system when it is coupled to an
interaction system. The exact‘expression for the required density
matrix 1s given in Section II.4. Again in the general case, one runs
into the difficulty of meking an exact calculation and is forced to
make calculations using perturbation theory. The same procedure of
expanding the influence functional into a power series and performing

the required path integrations yields the perturbation expressions.

IV.4t Influence Functional for an Oscillator Damped by a Distribution.

It has already been established that the influence of any linear
system comprised of oscillators can be found from a knowledge of the
impedance of the system. Therefore, this example is not needed to es-
tablish the validity of the principle. However, the way in which loss
is represented by a distribution of oscillators is perhaps easier to
visualize by the physical picture afforded in this example than in the
case of Section IV.2 where a very general distribution of oscillators
was considered. The situation here can be thought of as a group of
atoms, comprising the test system, Q, located within a resonant cavity.
The cavity walls are lossless except for one or more holes through them
which couple the electromagnetic field in free space outside to the
-field inside of the cavity. The free space field will be taken care of
by a distribution of oscillators as’before. The problem is therefore
one of finding the influence of an oscillator coupled to a distribution
G()) defined as before, on a test system. The diagram below depicts

the situation:
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\
v
QX g0t
Q Y TN, t)
X,w,m\
/
The Lagrangian for the complete system is written
oi(é,,Q,)'(,X,Y(_ﬂ_),Y(ﬂ),t) =
@
:2 2 2 2.2
Z (4,a,t)+ 2 - no’x + QX~+[G(IL) [L NELS S XYJ an . (2k)
o] 2 2 2 2
0

The influence of the distribution on X has been determined already.
In the time integral form it is of the form of equation 8 integrated
over the distribution of oscillators. Knowing this, which we call

%(X,X'), then

T
”5<Q,Q'>=fs<xr-x,];>9’<x,x'>exp {%{s(x)-s(x'n[ (@x-q'x")at]

<57 x A fax o d(e) (25)

where S(X) is the action of the wperturbed oscillator. This deriva-
tion is carried out in Appendix V by doing the path integrél directly
as indicated in equation 25. As was anticipated, the form of the in-
fluence functional is the same as found previously (equation 2). The

expression for 2z = is (from equation A5.17)

_ 1G(v) N = I G(n)dan- )
Zv 2v2 v [ ( : J[ v2<11? J (26)

0

Again, the distribution of oscillators produces a.dissipative term, here
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recognized as KG(V)/2V2

To compute the corresponding classical case the procedure is the
same as before. Thus, taking the Lagrangian for the linear system

driven by a classical force f(t) we obtain

:f(}.()X:Y._[L)Y_()_:t) =
0
el 2.0 .2 2.2
ﬂxé—-m“)gx+f><+fa(m [%-ﬂ; +XYJdI)_ : (27)

0

The equations of motion are in transform notation,
@
., 22
m[(v—lE) -0t X+ a(n) YV(Jl)d_n_ = -fV
0

[(V—iE)z-Jlg] Y, = X . (28)

1%

As before, f(t) is applied at t = O and quiescent‘initial conditions
prevail on X(t) and Y(J/1,t). Solving these equations for the ratio
fv/Xv again ylelds equation 26. WNotice that the finite resistance
ﬁG(V)/2v2 permits us to drop the convergence factors because the
poles of l/Zv do not lie on the v axis as they do in the case of

no loss. Again we find that it is the classical impedance which appears
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in the influence phase.¥

*It is interesting to note that one can find the influence’ functional
for two oscillators in series as follows:

XY

o XY

The impedance Zv can be deduced easily from the results of calcula-
tion in the guantum case by letting
2

£ 8(n-ay)

G) =a'(n) +

From equation 26,

. 2 o0
N O N TN 2 if 6'(N)an
v 2 2 v Vv ( 2_ 2) Vv 2_ _{)_2
v AV by o Vv
2 /2 2 /2 '
e M/

ZV + [%?Z;E:;EET = Zv + —Z;TVT—

Here F%Y is a coupling constant corresponding in circuit theory. to

capacitive coupling between two resonant circuits. Similarly, if there
are several of these in series

Q QX X rXYXY Y FYWYW W - - -
l I
G, (1) G, () G, ()
en 2
o Cxy/ /v®

Z = (v)
v ZX * ZY(V)+ r;w/v

v)+

‘_/\gblRme1Rw——

X F—me

corresponding to

|
>
Al o
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IV.5 Form of Influence Functionals for Linear Systems and Classical

Forces Deduced from Properties of Influence Functionals

So far, we have found the influence phase for classical potentials,
uncertain classical potentials, and linear syrctems at zero temperature.
By studying equations III.l, III.12, and 4, we see that the general
form for the influence functional in which all three of these were
acting on @ 1is

T

T %
F@a)- el [1a(e) @0 ())ar - [ [at-o)(a,-0;)(q,ap)asat

T

Tt '
; [ f (6-5)(a,-a) (@_+a!)dsdt (21)

where A(t-s) + iB(t-s) = F(t-s)

The exponent is writtenall in terms of Q for simplicity although when
the potentials in . @ are not linear (as V(Q)), the same general form
exists, ekcept that it is written in terms of V(Q). We now observe
thaﬁ there are other possible combinations of the Q,Q' variables not
represented here such as tgrms in (Qt+Q%)’ (Qt+Q%)(QS+Qé). To see if
such terms are possible, lét us form a hypothetical functional contain-

ing all possible forms up to second order in @q .

T Tt
Flaa= em| [ [m(t)(Qt-Qp«rs(t)(thpJ ac - [ [ ate-o)(aya)) (a-ag)ass

Tt
+ f f [iB(t'S)(Qt‘Q,'C)(QS+Qé)+iC(t-S)(Qt+Q{;)‘(QS‘Qé)+D(t'S)(Q't+Q*'c)(Qsﬂé):,

X dsdt (28)
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That the coefficients of the Q's inside the double integrals should be
functions of (t-s) is evident since the functional should not depend
on the absolute time. We now wi;l try to eliminate terms in the ex-
ponent by using the general properties of @f(Q,Q') given in Section

II. First, we know %(Q,Q') = %*(Q',q). This implies that all the
functions «,B,A,B,C, and D are real. Next, we know that f;(Q,Q') =1
if Q'(t) = @(t) . Hence B,D are zero. This leaves only one term
which we did not have before, that of ((t-s). Now we apply the
cbrollary to Theorem V which says that if Qt = Q% for t;>to then
5YQ,Q') is independent of Q for t>t . This statement is obviously
true for the a(t) and A(t-s) terms. Consider now the B(t-s) term.
For + >to s Qt- Q% = 0 and therefore this term is also legitimate. As
for the C(t-s) term, let us consider t>t , but s<t_ . Then

Q Q. #£ 0 . Furthermore, Q.+ Q) = 2q, # 0 . Therefore, C(t-s) must
also be zero. The fact that C(t-s) = 0 is actually a statement of
causality, i.e., that the effect due to an applied force cannot precede
the time the force was applied. To see this, let us change the limits

of integration on this term
Tt TT
- 10! 0! - - t 0! s .
| [ et-er@pap @ apasas= [ [ ote-s)(a ) (q,-az)0tas
T T T S
Interchanging s for t in the last integral yields

TT
f f c(s-t) (q,-Q¢)(Q +Q))dsat .
Tt

Now the integrand is of the same form as that of the B(t-s) term.

However, for a fixed +t +the integration over s 1is over the range of
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8 >t . This amounts to a sum over the future rather than & sum over
past histories of the variable ¢q .

The conclusion to be drawn from all this is that there are three
possible types of terms up to second order in § and Q' when definite
classical forces, indefinite classical forces, and linear’systems act
on & . Terms of this type have already been derived during the course
of our analysis. Therefore, there are no major types of phenomens
which have not been noticed. In the light of the above discussion we
would expect the effects of additlional phenomena, if they are described
by terms of second order or less in Q and @', to be contained in one
or more of the three forms of exponents shown in equation 27. For in-
stance, in the case of a linear system at finite temperature, it will
be found that the effect of temperature is to change the effective
value of A(t-s) in the exponent of equation 27 from its minimum value,
Ab(t-s), which occurs at zero temperature (see equation 5b). It should
be pointed out that although A(t-s) occurs in a term which has the
form of an uncertain classical potential acting on tﬁe test system, at
zero temperature one must be careful about this interpretation. For the
existence of a random classical potential implies a random fluctuation
of the variables of the interaction system which could induce transi-
tions in the test system either upwards or downwards in energy. However,
if the interaction system is already in its lowest state it can only in-
duce downward transitions in the test system so that the term in'Al(t-s)
by itself is not sufficient. Thus, as has already been found, the ex-
ponent of the zero temperature influence functional contains two terms,

one in Ao(t-s) and the other in B(t-s)--which are related through
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equations 5a,b. Together they give the whole picture, i.e., that
there is a zero point, random fluctuation of the variables of the
interaction system but that this fluctuation can induce only those

transitions in the test system which give up energy to the interac-

tion system.
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V. Influence Functionals for Classical Forces Acting through Linear

Systems

If a classical force is applied to a linear interaction system
which in turn is coupled to a test system, the effect of the interac-
tion system is to modify the character of the force applied to the test
system. In this section we will find the exact form for the influence
functional of this effective force. More precisely, the theorem is as

follows:

Theorem VIII. If a linear system is coupled to Q(t) through

one of its coordinates X(t) and if a classical force ¢C(t) 1is
coupled to another coordinate Y(t), then $(Q,Q') representing the

effect of both the linear system and the force is

(1)

Frela - ) c_(a-Q)
"o . 1 v -y - - v
ba,en) = b (@,e)+ m{ [ (Tvz) =+ (fin_v) ] v

where Zv is a transfer impedance function which modifies the effect
of Cv on @ . It is found by computing the classical response of

the coordinate X to the force C with all other potentials acting

on the linear system (including those due to coordinates of external
systems such as § ) set equal to zero. The result of the calculation

yields iVZv = CV/XV . Alternstively, in the time domain,

o t

Baa) - B e+ g [ [ (aape(ss)o asat (2)

-00 -0

where
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) [0.0]
- *
1 =fb(t)e Whay .
0

In the form of a dlagram the theorem can be stated

QX | Iinear | YF _ QX | Linear
< Sy:tem F(t) - Q System
Qf £(t)

t
where f£(t) = J[ F(s)b(t-s)ds . It will be convenient to work in

the frequency dSmain.

First we recall the influence phase for a classical force acting
directly on Q . From this expression we will be able to identify
the character of the force acting on Q in more complicated expres-
sions. If the potential is of the form -C(t)qQ(t) we have, from

Section ITI

®
[{CDIE '5[]:?; f [CV(Q_-V-le)+ C_V(QV—Q;)J dv (3)
T
vwhere C_ =J[ c(t) e-ivt'dt .

V.1l Classical Potential and Q Coupled to the Same Coordinate

Before developing the general situation we consider the simpler
sltuation where Q 1s coupled to a linear system through the potential
-QX and a force F(t) is applied to the same system through the poten~

tial -FX . The Lagrangian for the complete system is written

*The notation zv,b(t-s) was chosen to avoid confusion with Z, and
B(t-s) which are the impedance and response function respectively of
the linear system as seen by the test system.
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L(systen) = Z(4,,t)+ (F+@)X + LXK, X,¥, - +¢) (%)

where X,Y,°** represent all the coordinates of the linear system.

al(@_ ) Q-V(Qv‘%)} v . (5)

%(q,0") = §¢(Q’Q') = Eiﬁ_/‘[. (ivz.) ¥ (-ivz )
0 v v

If F % 0 it 1s evident from 3 that the required influence phase can

1] t
be found by replacing Qv by Qv+ Fv and QV by Qv+ Fv . Notice

that Fv does not carry the prime notation since it is not & coordi-

nate. If this substitution is made in 5, we have

(Q'+F )(qQ_-q' ) (q_+F )(a -Q')
Q(Q)Q')'—‘- 23[}17[ V+ v -y =V + -v+ -y v vy J av
: 0

(ivz) (-ivz_ )

1 “rr FF_ (@ -q')
= éo(Q)Q')'* mf [T;‘Z% (Q_V‘@\")“' —(-}_/-17;7!—} dv . (6)
. 0 -

As might be expected the total effect of the linear system and the
driving force consists of two separate terms, one describing the
effect of the linear system alone, apd the other describing the effect
of the driving force. Comparison of equations 2 and 6 shows that the
effective force applied to Q is in transform language Fv/inv and
further, shows that Fv is modified by l/inV s the classical im-
pedance function of the interaction system. In this special example
where F and Q are both coupled to the same coordinaté, Zv is
both the correct impedance to be used in EO(Q,Q'), i.e., that im-

pedance seen by the test system, and is the transfer impedance zv

which modifies Fv . This 1s not true generally as we shall see in
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the next section. In addition, it is interesting to observe that no
unexpected quantum effects appear because of the addition of a force
to the interaction system. The only effect of the interaction system
is to modify the characteristics of F(%t) in an entirely classical

way .

V.2 Classical Forces Acting through a General Linear System

Having obtained én idea of the type of results to expect in the‘
above simplified analysis we now proceed to the more general case.
Let the N coordinates of the interaction system be represented by
Xy i=1..+ N . Its coupling to the test system, Q(t), and to the
driving force C(t) 1is given by the potentials -X Q and -XC,
respectively. Thus we are assuming for simplification in writing that
Q is coupled only to the variable Xn and the force C(t) is applied
Jjust to the wvariable Xk .. Again the interaction system 1s assumed to

be composed entirely of harmonic osclllators. The Lagrangian is

L(system) =L(d,q,t)+ 1}:3 [-;:(Tij)'(iij-vijxixj)] + X QX C . (7)
2

It is well known in the theory of linear systems that new coordinates
may be defined by means of a linear transformation of the ‘Xi . These
new coordinates will be chosen as the eigenvectors, 'Yﬁ ; of the inter-

action system (8). Thus,

Assuming the a, to be properly normalized, the Lagrangian may be

is

rewritten as follows



6l
L@yt b= £ 0r T (B0 o) ¥ la e 1 - (8)

Since these are now independent oscillators coupled to @ the influence

phase can be written down immediately,

o0 2 2

a,
Ty _ 1y 1 ' -0t .
b(a,a')= %@E(Q:Q ) %’zﬁﬁ”@%@-v Q_V)<ﬁ-27(—-)-)+@l (@ -q! )Tvz;(“)ﬂ dv
0
Pra a c
1 ng ki'v ' %ng kﬁ -V ;
+ %; EﬂK_jr [ 1sz(v) (Q-v Q—v) -ivZ ( V) (@ —QV)J dv (9)
O
where
1 Yz(v) Yz(v) ( )
= = 10
3 = M
1vZé(v) anﬁQ’v C =0 akﬂcv Q=
v V70
calculated classically.
This can be written in the form of equation 1 if we make the
correspondence
a2
1 _ 2: ng
ivZ ivz (v)
v £ £
and 8 8
1 _ }: nt kl . : (11)
ivz 7 inzZvi
v
Using eguations 10 and 11 we now wish to show that Té—— and =
: ivZ 1VZv
are equivalent to Xn(v)/Qv and Xn(v)/Cv respectively. Thus
o> ¥ ,(v) a_ Y (v) X (v)
1 :‘Z nf _Za2( _Z ng” 4 !
vz vz (v) ~ ng ‘a_Q - Q )
v )/ )2 2 ngtv , ) v v
CV~O C = Cv:
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and

Q=0

(13)

Equation 12 is a mathematical expression of the argument used earlier
to find the appropriate impedance function to be used in the influence
functional for a linear system acting on @ . The additional informa-
tion obtained here in this regard is that when other forces are
present they are to be set equal to zero when this computation is made.
Equation 13 states the new result that the transfer impedance which
modifies Cv in its effect on the test system is to be found by com-
puting the ratio of Cv to the coordinate Xn(v) to which the test
system is coupled. Again the other forces acting on the system are

to be set equal to zero when this classical computation is made. The
total force acting on the test system when several forces are acting
on the interaction system is simply the sum of these forces each modi-
fied by the appropriate transfer impedance determined in the above

described manner.

V.3 Random Potential Acting through a Linear System

To conclude the analysis of classical potentials, we will now
find the average influence functional for an uncertain force acting
through a linear system on a test system. As in Section IIT we assume

the force has a pover spectrum given by

CC
B(v) = é;lL_XZL_

had(v+v')
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and that the probability for the amplitude of any frequency component

is random. The problem is then to find

. Fr ¢ c
{H@,0) =T, (@,a)ex giﬁj [(iVZV;(Q_V-QLVH -(—_T_V-ZH(QV-QL)JdV}>
0

il

.7
F,@a) owlghy [ iy ) wb>. G

However, the coefficient of @g(Q,Q') is Just the same form as the
expression evaluated in Section IIT. Thus from equation III.8 we
have

{F@a ) = F (a,e')exm 3- ﬂ;igf 2?”,2 |a,-a! |7 dJ : (15)
0 1%

We find that the effective power spectrum of the force acting on the

test system @'(v) 1is given by

C’
v’2> - giv)'z ° (16)

v

Z
1%

1 .,
pr(v) = had(v+v') <fv2|
The interpretation of this result is that the power spectrum of the
effective force acting on the test system is simply the power spectrum
of the original force filtered by the transfer characteristics of the
linear system. This can be summarized by the following: ITf CV is

the uncertain force (in Fourier transform notation) applied to the

linear interaction system and its power spectrum is ¢(v)= EES%;:;TY

XLC C > , the effective force applied to the linear system is

FOVRTRY
a <q.vc+ V’> 1 _
T b (vv') ’ivzvl2 -

C )= Cv/ivzv and its power spectrum is @*'(v)

#(v) / ave |
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VI. Linear Systems at Finite Temperatures

In the previous two sections the influence functionals for linear
systems at zero temperatures were developed through the analysis of
oscillators. In this section this analysis will be extended to include
the effects of finite temperatures. We have already established the
forms of influence functionals which are possible for linear systems
in an argument which utilized the general properties discussed in Sec-
tion IT. Each of these forms has already occurred in the analyses of
classical potentials, random potentials, and zero temperature linear
systems. Therefore, the results to be expected here are one or more of
the forms already obtained.

The discussion is begun again with a single oscillator as our
linear system, for simplicity. From this, the extension to distribu-
tions of oscillators is immediate as it was in Section IV. The complete
problem is set up in the same way as for zero temperature except that
the initial state of the oscillator is not simply the ground state or
any definite eigenstate. The effect of temperature is to make the
initial state uncertain and it is properly represented by a sum over
all states weighted by the Boltzmann factor e_BEn where B = l/kT,

T being the temperature in this case. The final state is again arbi-

trary; therefore, a formal expression for the influence functional is
T
F@a) = Y &(Xp-Xp) exp {% [s(X)—S(X')+f (QX-Q'X')d’G]}
n
.

exp {—BEH} B (XB (X Jax -+ BX'(t) (1)
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where, of course, the ¢n represent the energy eigenfunctions of the
oscillator unperturbed by external forces. The first problem is to
i . % - BEn
find a closed form for the expression ). ¢n(Xt)¢n(X£)e . This
n

can be done by noticing that its form is identical with the kernel
which takes a wave function from one time to another if we make the
correspondence that B represents an imaginary time interval. If the

times involved are t2 and tl , this kernel is

il

KO(2,1)

Zn B, (X,)P%(X, )exp {- % E (t,- t.l)} (2)

i

exp {% S(X)cﬂ} for the harmonic oscillator , and

where the subscript o indicates the absence of external forces. TFor
the harmonic oscillator the expression for § is easily obtained in

terms of the initial and final positions X, and X, (2). Thus,

mw 2 2
Sep = : [(Xl+ X2)cos w(tg—tl)— 2X1X2] . (3)
2 sin w(tg-tl)

Utilizing equations 2 and 3 and making the correspondence B::i(tg—tl)/ﬁ,

X.= X , and X,= X' , we find that

1 o~

% -BEn mow 2 2 .
2.8, (X )FF(x1)e = P V- o Tin (AT [(XT+ X!")cosh Bﬁw—EXTX{ig .
(%)

Using this expression for the initial state of the osclllator, we
novw will manipulate the form of GXQ,Q') to coincide with the expres-

sion Al.3 in Appendix I . Therefore,
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-BE
(3 n _ no 2,cosh Bw- 1 2,cosh Bhw + 1
z:¢n(XT)¢n(XT)e = Xp { lﬂz [XT(sinh B )+XT ( sinh B )
(5)
where the change of variables x = X + X' and x' = X - X' has been
T T T T T T

made to produce equation 5 from equation 4. Furthermore, making use

of the identity

cosh(Bfw) - 1 _ sinh(Bjw)
sinh(Bfw) cosh(Bfw)+ 1’

the right side of equation 5 can be written

2
exp { I axf)} (6)

where a = c:§2£?§;1)+ = . (7)

The influence functional of equation 1 can be rewritten now as
T

% (a,a') ‘--fa(x%)exp {%[s<x+x'>-s<x-x‘>+f<%+ &;)dt}}

o S e (&)
X exp { - vy (:; + ax; ) dx <o Oxt(t)

where the additional substitution @ = g+q' and Q' = g-¢g' has been
made. FEquation 8 is exactly the same influence functional as is indi-
cated by equation Al.3 in Appendix I(a), the evaluation of which has

been carried through. From Al.27
@
1 2
F(a.Q") = % (,Q")exp{ - —ﬁE[ IQV-Q;f (7;%9
n
0

[(a-l)&(v-w)+(a+l)6(v+w)] dv:}
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) . _ cosh(Bfw)+ 1 Bw )
Substituting a = —7—- ¥ = coth( 5 ) and noting that

D
f 8(v+w)dy = O , we get finally the influence phase
5 .

5 Yy -3 0y L 1 7h/ 2mnw v At 2 v '
Ba,0) =18 (a,a") ﬂﬁg‘g( LR oo, ¢ (9)

Thus, the influence phase is made up of two terms, the first of which
is the effect of the oscillator at zero temperature. The second is
recognized as having the same form which was found for an uncertain
classical potential with a Gaussian distribution. Therefore, the
effect of finite temperature is to introduce a noisy potential acting
on & at the frequency of the original oscillator. The power spectrum
of the nolise produced by the finite temperature is

plv) = —= B(v-w) - (10)

omy (ePPV- 1)

To indicate more clearly the relationship of @(v) to the characteris-
tics of the linear system it is instructive to extend this expression
to the case of a distribution of oscillators G(w) all at the same

finite temperature. The resulting influence phase is

00 00 2
2,-%,]
i8(0,0') = 1 | B (aancl)a-2; [ e el o,
!T ’ “ﬁe%[ G

where in the distribution m has been set equal to unity. The first
term is again the influence phase for zero temperature, while the
second term again has the form of a noisy potential whose power spectrum

is
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V) = " G(v)
pLv) ov(PPV_1)

Recalling the analysis of the distribution of oscillators of Section
IV.2, it is found for equation IV.18 that =G(v)/2 = Re(l/Zv).

Therefore, the power spectrum can be written

1
# Re(z-)
G

(12)
In the time domain we have from equation Al.17

o t
1§ = 18 %Zﬁ%ﬁ% f[<%%mQ@me@wM.uw
-00 =00

Comparing this with equation IIT.12 for random classical forces we see

that the correlstion function of the noise due to the finite tempera-

ture is
‘jS £ G(v) (t-5)
R(t-s) = Gly o8 v tes) oo
0 A
27 b Im(iv% ) cos v(t-s)
o ) dv (1%)
" 0 (eBﬁv - 1) . ,

Finally, if we write equation 13 in terms of F(t-s) as, for instance

in equation IV.L, we find from equation Al.16b that

®  a(v) cothn (Eé! <
F(t) =f ) 2 : cos vt dw—if G(v)
0

v
0

sin vt dv .

Thus,
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(e 0]
AlL) = - —i— f Im(ivi' ) coth(%ﬁ) cos vt dv
0 v
and (15)
(e 0]
B(t) = - % .]— Im(iv; ) sin vt dv
0 14

which are the more general counterparts of equations IV.5b. Notice

however, that only the relation for A(t) changes with temperature.

Theorem IX. If a linear interaction system is initially at a
finite temperature, the resulting effect is the same, as far as the
test system is concerned, as if the linear system were at zero tempera-
ture and in addition, a random classical potential were connected
independently to the test system. The power spectrum of the random
potential is given by equation 12 and is related both to the temperature
and to the dissipative part of the impedance of ﬁhe linear system. The

theorem stated in terms of a diagram is

q X X _ q ax X
Temp = T - Temp = O
cQ
C
1
<cvcv > Re(z-
where @(v) = v . This fluctuatior dissipa-

brd(vev') v(eﬁﬁv_ 1)

tion theorem has a content which is different from those stated by
Callen and Welton (9), Kubo (10), and others. It represents still
another generalization of the Nyquist theorem which relates noise and
resistance in electric circuits (11). These previously stated fluctua-

tion dissipation theorems related the fluctuations of some variable in
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an isolated system, which is initially at thermal equilibrium, to the
dissipative part of the impedance of the isolated system. This would
be equivalent to relating <<Q2> when the test system is at equili-
brium (F = 0) to the dissipative part of Fv/Qv vhere F = is a

classical force acting on q .

o —Er(t)

However, Theorem IX describes the effect of an external quantum system
at thermal equilibrium on a test system and separates it into two
effects, a zero point guantum term, which cannot be classifled as pure
noise, and a random potential term. Using this influence functional
approach we can find <fQ2;> due not only to the internal fluctuations
of @ but also due to the effect of X .

The fact that all the derivations so far have been exact, which
is a consequence of dealing only with systems made up of distributions
of oscillators, brings up two interesting aspects of the theory. The
first one is that Zv does not erend on the temperature, only on the
distribution of oscillators. Yet in any real finite system, one would
expect that the temperature of a system does affect its impedance some-
what. The second aspect is that when a force ((t) of any magnitude
whatever, is applied to the linear system, its temperature does not
change although it is obvious that if Zv has a finite real part the
linear system must absorb energy from C(t) . For clarity, the influence

functional for
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&L ()
Q QX X,Y, «oe fY ¢ _ Q X’Y’ > s
T | B T =0
A te(t)
£
where Fv = iv: and C(t) dis the random force with a power spectrum

: v
given above, is

)

g [ Rfe el LT 2

i%(q,q") = iﬁo(Q,Q')+ 2nﬁ_jf T dv —-—7§‘/~¢(V),QV"Q;[ dv .
| 2 v : 7 5

As is seen, the addition of f(%t) does not change Zv or T . How-
ever, the fact that Zv is Independent of temperature is made more
plausible when it is observed that the energy level spacings between
states of a harmonic oscillator are equal. Furthermore, matrix ele-
ments of a linear coordinate say, X , only exist between adjacent
states. Therefore, transitions excited in X due to an applied force
involve the same emitted or absorbed energies regardless of the
initial state of X . The fact that the temperature of the linear
system does not depend on any force applied to it has its explanation
in the way in which dissipation is represented, i.e., through distri-
butions of oscillators. These distributions contain infinite numbers
of oscillators and thus an infinite amount of energy would be re-
quired to change their average energy state. All of this discussion
is just another way of saying that systems of oscillators are exactly
linear in their behavior.

All the results so far suggest that any linear system can be
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handled by the same rules that have been developed for systems of
oscillators. This will be developed fully in the next seg¢tion. How-
ever, we will assume this to be true now and conclude this section by
applying the theorem just derived to obtain Nyquist's result for noise
from a resistor. Take as an example an arbitrary circuit as the test
system connected to a resistor RT(V) at a temperature T . The resis-

tor comprises the interaction system.

alt)
Test M
System L R](t)‘;R,I,(V)

The interaction between the test system and the resistor is charac-
terized by a charge Q(t) flowing through the test system and resistor
and a voltage V(t) across the terminals. Let us associate Q(t) with
the coordinate of the test system and V(t) with the coordinate of
R(v). The interaction part of the Lagrangian is symbolically repre-
sented by -Q(t)V(t) since the current voltage relationship in R(v)

is opposite to that of a generétor. The gquantity iVZv appearing in

the influence function&gl is given by

Q
v 1 1
-v— I e E—:R—— = iVZV s or Re(‘z") = szv .
v 14 v

Then Theorem IX tells us that this situation may be replaced by

a(t)  v(®)

(t)

Test

System Ro(v)
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a resistor at zero temperature and a random classical voltage whose

power spectrum is

ﬁvR
plv) = —Eﬂ;*z‘I .

e -

(17)

The mean value of this voltage is

o0 00} gﬁVR
2 2 v
<V (t)> = ;[ ¢(v)dv :f ———%—:—l—; dv . (]_8)

5 n(e

For high temperature B <K1 , and we find that over the frequency range
vhere Bhv <1 , @#(v) = kTR . If R is constant over the freguency
range of interest whose limits are Vs and vy s then as a result of

the noise power in this range

(A(6)> = bir(s, - £)) (19)

where f 1s the circular frequency. This is the famous result for
noise ffom a resistor due to Nyquist. Notice that the noise voltage
generator must be ﬁlaced in series with the resistor as a consequence
of interacting directly with the coordinate of the test system, which
in this case is @Q(t), the charge flowing in the circuit. If the
coordinates were chosen such that Q(t) were the coordinate of the
resistor and V(t) that of the test system, then the noise generator
would become 3 curreht source interacting with the voltage V(t) so
that the situation would be

Q(t)

e

Test £
System  [V(t) @i(t) %Ro(v)

©

Q
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2 LT . . -
vhere (17> = = (fg' fl) in the high temperature limit.

It is worth mentioning but obvious from the derivation, that if
there were many sources of dissipation coupled to the test system,
each at different temperatures, then there would be a fluctuating
potential associated with each source of dissipation with a power
spectrum characteristic to the temperature involved. The case of
different temperatures represents a non-equilibrium condition in that
the hot resistors are always giving up energy to the cold ones.
However, when the resistors are represented by distributions of oscil-
lators the temperatures do not change because of the infinite energy

content of each one, as discussed before.
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VII. Weakly Coupled Systems

We are now faced with the problem of finding influence functionals
whose behavior is in some sense linear but whose total behavior is not
representable by systems of perfect oscillators. There are many
examples of this. The concepts of resistance, electric and magnetic
polarizations, etc. are basic quantitities which characterize the
classical electrical behavior of matter. However, for an accurate
description of this behavior, these quantities can be constant, inde-
pendent of the applied electromagnetic field only in the range of
approximation that the magnitude of this applied field does not become
too large. We will consider here the analysis of such systems and the
approximations which make linear analysis valid. Insofar as linear
behavior is obtained, the results of this section are basically the
same as those obtained in previous sections with regard to finding
influence functionals. However, it is interesting to see the same
principles come out of the analysis another way. In addition, it will
be found that expressions corresponding to Zv which sppear in the
influence functional are actually closed forms which can be used to
compute such gquantities as the conductivity from a knowledge of the
unperturbed guantum characteristics of a system. These eipressions p
have been derived before by several authors but it is interesting to
find that they appear in the influence functional guite naturally.

The results will then be applied to the case of a beam of non-
interacting particles passing near a test system such as a cavity.

This analysis naturally lends itself to a discussion of noise in beam
type maser amplifiers. In Appendix IV, the results of this and Section

IV are used to compute the spontaneous emission of a particle in a cavity.



~79-

VII.1 Interaction Systems with Coupling Potentials of the Form -V(Q)U(P)

Theorem X. If a general interaction system, P , is coupled to
a test system Q so that the interaction potential is small and of
the form  -V(Q)U(P), then the effect of the test system is that of
a sum of oscillators whose frequencies correspond to the possible
transitions of the interaction system. Therefore, to the extent that
second order perturbation theory yields sufficient accuracy, the
effect of an interaction system is that of a linear system.

To show this, we shall first assume the interaction system to
be in an eigenstate ¢a(PT)exp {- % EaT} at the beginning of the in-
teraction and in an arbitrary state at thesend of the interaction
consistent with the usual procedure we have followed. Also, for con-

venience in writing the interaction potential will be assumed -U(P)Q .

The influence functional is then

B
3(@,Q") =f8(PT-qu)exp {%[SO(P)-SO(P')Jrf (QU-Q'U')dt]}

(1)
% 1 ) ]

X gx(p1)g (P )aP_ - -Bp'(t)

where in the above we have written U for U(P) and U' for U(P').
Since the magnitude of the interaction is assumed to be small, the
perturbatlion approach can be used to good advantage. Thus, expanding

the interaction part of the exponent and keeping terms to second order

in Q@ only,

T
’,f(Q,Q')=f6(PT—Pr_‘C)exP [%[S(P)-S(P')]]%. +f (QU-q'U")dt

Tt
i (2)
+(-ﬁ)2 f f (QtUt-Q;;U;:)(QSUS-QéU;)det} gx(p)p (P )aP_ -+ DP'(t) .
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The evaluation of this is done in an entirely straightforward manner.¥

The complete expression for 1 is then,

(UabUba)

. T
iU

a’ aa P b

Fla,Q') =1+ f (qg-qgldt - ——5—
o n

T %
X f[ (Qt—Qg)[Qsexp[—imba(t—S)] -Q.éeXP[id)ba(t-S)]]dsdt (3)

where U_ =4[‘¢§(P)U(P)¢b(P)dP , and @ =(Eb~Ea)/M .

All terms which involve Uaa will be disregarded. This is be-
cause Uaa represents the average value of the operator U(P) in an
eigenstate of the interaction system alone. Even if it is not zero, it

will be noted from equation 2 that terms involving Uaa can be written

*¥A typlcal term in equation 2 is as follows:

Tt
fS(PT-P,]'g)exp {%{[S(P)-S(P')]} (%)eff Q,U,Q U dsdt
X $x(P)g (P_)ap, --+ HP'(t)

Taking the time integrations outside the path Integral and replacing
the path integrations by propagating kernels, this becomes

T ¢
i\ 2
(%) f[ QtQSdsdtfa(PT-PT')K*(PT',P;)K(PT,Pt)UtK(Pt,PS)USK(PS,PT)
T 7T

X Px(P)P (P )aP_ .-+ apy

. i .
Remembering that K(PT,Pt) -Z ¢n(PT)¢;§(Pt)exp {- 7 En(T~t)}, this
expression becomes simply,

T

t
- 2% Eéi;gé jﬁjﬂ Q.Q, exp [-i&ba(t-s)] dsdt
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ana P 1 ana P 2
1+ ¥ (q-ap)dt +'§§'[“?r*:/F(Qt-Q£)dt} +ee
T T
T
i 1]
= exp [ﬁf Uaa(Q't_Q't)dt}
T

When {f(Q,Q‘) is used to make a calculation on the test system, this
term has the effect of adding a constant potential V(Q(t)) = —UaaQ(t)
to the unperturbed test system. Disregarding Uaa’ the influence func-
tional then becomes

t
Z; UabUba 0

Hlaa) =1 - ror (@ -ap) (@ exp [ -ia (t-s)]

e
- q! exp [1o, (t-8)]) (1)

where the limits have been extended and the factors T Vg inserted to
allow finite coupling time if necessary. ITf the strength of coupling
is sufficiently weak then equation 4 can be rewritten

2w t

)
'ab ffYtYs(Q’t-Q‘{Z)(QSeXPE-imba(t-S)l

g;(Q:Q') T exp "2: — 5
CR A

- qlexp | imba(t~s)]) - (5)

In this form we recognize Z;(Q,Q') as that describing the effect

of a sum of harmonic oscillators independently connected to the test
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U, U*
*
system each of whose "weights" is —E§§E§ . The complete response

function for the system of oscillators is

ZUabUba
B (t-s) = Im F_(t-s5) = Z;I —f— sin w, (-5)
where the subscript a on Ba refers to the initial eigenstate.

According to previous definition, the mass of each individual oscilla-

tor is identified by m and its characteristic fre-

, ) QlUbalg Dpa :
guency by wba . Therefore, to the extent that second order perturba-
tion theory ylelds satisfactory accuracy, any system-may be considered
as a sum of harmonic oscillators. This is equivalent in classical
mechanics to the theory of the motion of a particle having small dis-
placements around an equilibrium position. Its motion, to a first
approximation, 1s also that of a harmonic oscillator, if the Tirst
effective term in a power series expansion of the potential around
that equilibrium position is éuadratic in the displacement.

In this part of the discussion we should again point out the
motivation for writing the approximate influence functional, equation

Lk, in terms of the approximate exponential of equation 5, apart from

the obvious advantage of making the form agree with that of exactly

*Tt is interesting to examine the total weight of all the oscilla-
tors. This is o
E: UabUba B (U )aa
2 7 2
b A 1
When U(P) is the coordinate, P , of a harmonic oscillator and a
is the ground state, then

Ejtgbuba__;; (uﬂn)l/E o2 [_xmopﬂdP_' 1

B }‘2 - ﬁe ‘IE;{ xp T - 2?\3};(1) )
This is the coefficient or weight of a single harmonic oscillator
as we have already discovered.
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linear systems. Frequently, we deal with a test system which is
influenced by another system which is actually made up of a large
number of very small systems. Examples of such an interaction system
would be a beam of atoms or the electrons in a metal. Although the -
expression for the influence functional for any one of the sub-systems
is only good to second order, their individual effects are so small
that this accuracy is very good and equation 4 or 5 is equally valid.
However, when the sum of the effects of the sub-systems is not small,
then the two forms above do not describe the situation equally
insofar as the composite effect of the interaction system is concerned.
We know that when these sub-systems are dynamically and statistically
independent, the total influence functional is simply a product of

the individual ones. In such a case the influence functional obtained

by using equation 5 as follows

H@,e") = o {i ff; @k(Q,Q')}

yields much greater accuracy than that obtained from equation 4 where

we would find
Flaaed~i+i ) Ee)
k

@k(Q,Q’) being the influence phase for the kth sub-system. This is
recognized as a variation of the problem in Section III where it was
shown that if f(a) = 1 + a for small a , then fN(a) is very

accurately represented by eNa where Na 1is not small. Here we wish

to show that



-8l

=

G(x) = lim ]]: (1 + Xk) = exp[ Z% Xk‘}

N large k=1

where the x, are small but not necessarily equal to each other, and

where the total sum E: x is finite. Rewriting the expression for

>k
G(x) . we have

ERENS) Ly

G(x) =1 + X+ = XX + = XX X 4 v
b R TR Gj,g;z=1 R

Jtk IFKEL
=1+ + = X, (1-6 )+ XX X
= R Jk=1 I RELRY ! -1 J k4

)((l—Bjk—SkE-aj£+26jk6k£)+ e

As N is allowed to get very large the contribution of the terms

involving quantities such as Sjk becomes less significant. For

instance, in the third term

N 2
(1) (108, ) ~ () - L)

J,k=1
and for very large N only the leading term in this sum is important.

Thus, we have the result that

o 1
a(x) =1+ ) x, + 57
large N k=1 '

ze@[%ka .

The expression given by equation 5 has additional implications

which are not immediately apparent from the analogy with the harmonic
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ogscillator. No assumption was made as to whether the initial state was
necessarily the lowest of the system. Therefore, g could be either
positive or negative. Suppose for a moment that the interaction
system has only two states (¢a(P) and ¢b(P)) and that the

initial state, a , is the lower one (mba><3) . It is obvious that

the only effect it can have on the test system @ 1s to absorb energy
from @ . However, if the initial state, a , is the upper state
(corresponding to mba<()) then the interaction system can only give
up energy to the test system. It can do this in two ways, through
spontaneous emission or through coherent emission due to some

coherent driving force exerted on it by the test system. So for the
case mba>(3 we expect the influence functional to show that the
interaction system has the effect of a cold system characterized by

a dissipative impedance (or positive resistance.) Conversely, for

w <O 1t is expected that G%Q,Q') will be characterized by a
negative resistance and a random potential due to the spontaneous
emission transitions. The influence functional for either case is

given by the result for the harmonic oscillator, in Appendix I(b). It

2
is only necessary to make the correspondence lUbat /A= 1/2mw .

o© t 1 t e8]
Blag) - L f Q'(q_-a') ) @ e-e) 7 ““Lf | 2
’ 2l (SR (-ivZpg, )
’ 0 ’ ’ 0
X = !Ubalg

E [(v-1)%- o 7 ] : (7)

where inba =
SV

gmba,Uba

First of all we notice that the sign of Zba v changes with that of
b4
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wba and therefore its dissipative part can be positive or negative

as was afgued above. Secondly, for mba<f0 there is a random poten-
tial acting on Q whose power spectrum is given by B(v)= n'UbaIEJ(v+wba
0f course vhen a > 0 , the integral involving this term disappears

' indicating the noise potential does not exist.

In a real physical situation it is not likely that the interaction
system will be in a definite state initially. To extend the above
results to a more general case we assume that the initial state is
described as a sum over states weighted by a density matrix p(7)
which is diagonal in the energy eigenstates of the system. For
example, if the system is initially in temperature equilibrium,

o = e—B@ﬂ/Tr(e_Biy) where % is the Hamiltonian operator such that

Onn™ P exp(—BEn)/ }; exp(BEn) . The influence functional becomes

T
Zf(Q,Q‘)=[6(PT—PT‘)exp[%[S(P)-S(P')Jrf (UQ—U'Q')Vd‘G]]

)P Px(p?

aa T
5 a

B, (B AP ---BPI(E) . (8)

Within the limit of small coupling, then we can simply extend the
influence phase of equation 5 by summing over all initial states
weighted by the initial density matrix paa . If this is done, we
obtain the usual form of the influence phase, equation 4, with a
response function B(t-s) given by
2paaUabUba ,
B(t-s) = g;£~—~7(-———-sin wba(t-s) . (9)

Again E(Q,Q') is the phase for a sum of oscillators, each of whose
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weights is paaanb{E/ﬁe " In Section IV it was shown that B(t-s)
was the classical response of the linear system to an impulse of force
applied to the coordinate U(P). However, the expression‘above is in
a form which ig familiar to us.only when we think of the interaction
system, P , as consisting of a sum of oscillators. 1In this connection
B{t-s) is the total classical response of the oscillators describing
thesystem P +to an impulse of force applied to the "coordinate"
U(P).** To obtain a more direct interpretation of equation 9 we now
calculate the linear classical response B(t-s) of the interaction
system to an applied impulse of force in terms of its unperturbed
gquantum characteristics. In so doing we will show that equation 9 is
indeed this expression. Therefore, we will again have the result that
the influence functional for & general, linear interactlion system is
formed simply from a knowledge of its classical characteristics just
as in the case of systems of perfect oscillators. To calculate the
response function B(t-s) we calculate the expected value of U(P) as
a function of time after a potential -f(t) U(P) is applied at t = O.

Thus

@le(e) ) = fxv*(Pt)U(Pt)w(Pt>dPt

where W(Pt) represents the state of system P at t . Using the

¥It is interesting to notice that the relative populations of any two
levels may be described by an effective temperature Tezzl/kBe . For
instance if the probabilities of occupation of states a and b are
Pgg 80nd pPpp respectively, we use the definition paa/pbb=exp Be(Ea—Eb).
If pgu=0 this is described by setting Te=0+, meaning to approach
zero from the positive side. Similarly-if the two states were inverted
Ppp=C0 and T_=0- . This device has been used widely in the description
of such situations.
*¥U(P) may be regarded as a coordinate which is a function of other co-
ordinates P in terms of which we choose to describe the interaction
system.
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path integral representation for the development of a wave function

with timé, as outlined in Section ITI, this can be written

, t
<U(Pt)> =[ UtS(P —P')exp {%[SO(P)—SO(P'H‘[f(s)(US—Ué)ds]}
0
X W (B V(P )ap, - BP() . (10)

The initial state will be an average state described by a density matrix

diagonalvin the energy representation so that
J — * !
v (2)w(P) }; P P (PP (P)

Assuming f(s) to be small in magnitude, equation 10 can be written to

first order

t
Uy = Za paa[UtB(Pt’Pé)eXP{%[SO(P)-SO(P')]} 1+ %ffSUSds
0

t
%f fSUéds} px(p1)p_(P )ap_ -- OP"
O -

il

a

i t
) Pos [Uaa+ Zg Ve ba~£ﬁ exp -l (t—sﬂ

iv _ U P

—’%@ 5 e[t (e-s) dS] ‘ o

Again assuming Uaa = 0 , equation 11 becomes

f, sin wba(t-s)ds . (12)

e R

aa ab ba
(- T, e
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*
For f(s) = &(s), then the classical response function is

20 U '
B(t) = ). ——EE;§E;9§ sin . t (13)
a,b mba

which is identical with the response function found in the influence
functional.

Since we have found expressions identifiable as classical response
functions and impedances, it remains to show that associated with the
dissipative part of the impedance is a noise potential. The impedance

is simply obtained from

1 7 -ivt 2pa5nbaluba'2
:.:f B(t)e dt e Z . (l)-'l-)
0 a,b

L f[(v-16)2- @Baz]

To obtain the power spectrum it is only necessary to sum the influence

phase of equation 6 over all initial states weighted by Poa Thus we
find
Blv) =3 wo_ U |° By ) (15)
aal "ab %wba
a,b )
and we now wish to relate this to the real part of l/Zv . From equa-

tion 1h it is found that

2
7| U
%;) = Ej —l_%él_ v [pbb'paa] §lviar ) . (16)

v a,b

Re(

Revwriting @(v)

*¥Tt should be noted that implicit in the use of first order perturbation
theory to obtain 13, 1s the fact that for this relation for the res-
ponse function to hold as a steady state description of the linear
system, the initial distribution must not be significantly disturbed
by the application of the driving force.



2 [PevPaa
plv) = Zb’4%m| “a;**'NVM%Q ) (a7)
) _ob_q
Paa

If the average initial state of the interaction system is one of tem-

-BF -BE
perature equilibrium, then p_ = e ay'E: e and
n

Py, B(E-E) B,
e = e . Taking advantage of the characteristics

paa

of 6(v«nba) gso that v can replace ® oy s from equations 16 and 17,

ﬂ'U a|2
{gb ——%—-——— v(obb-paa)ﬁ(v%a)} -[_e_éK‘le

1%

*

i

B(v)

# Re(—z;l;)

V[eﬁ}/lv_ l]

(18)

Therefore, again we find that the power spectrum is related to the
dissipative parts of the impedance when the initial state is one of
temperature equilibrium. The power spectrum given in the form of
eguation 17 again illustrates the origin of thermal noise and identi-
fies it as being Jjust another aspect of spontaneous emission. Pound
has also discussed this (12). The only contribution to the noise power

spectrum is through the possible downward transitions of each possible

*Notice that if P were a two-level system initially in the lower
state, then ppp=0 and T =0+. In this case @(v)=0 which agrees

with the required result for v > O (equation 6) for wypg >0). IT
initially P werg in the upper state then pg,=0 and Te=0-
yielding @(v)=- > Re(l/ZV) agreeing with equation 6 for wp, <O .
This is the power spectrum of the so-called spontaneous emission
noise from an inverted two-level system.
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state, a , weighted by the statistical factor, CI It may be dis-
turbing that Re(éL) contains singular forms such as 6(v«wba) .

v .
However, the infinite sums over the distribution of states of which

it is a coefficient can be replaced by integrals over densitiles of
states in most practical situations and as part of an integrand
5(V+&Ba) is not unrealistic. We will now find the influence func-
tipnals for situations where the coupling potential is more general

than has been handled up to now in this section.

VII.2 Interaction Systems Characterized by Vector Coupling

Until now the coupling between the interaction and test systems
has simply been represented as the product of two scalar quantities
which were functions of the coordinates of the two systems respectively.
The case of an oscillator coupled to a test system was even more re-
stricted; to find the influence functional exactly, the coupling was

required to be linear in the oscillator coordinate as,

vp(e,x) = -xv(Q) :
However, where approximations appropriate to weakly coupled systems can
be made as in the preceding section, the potential can be of the

slightly more general form

v1(Q,P) = v(Q)U(P)

where this time P 1is the interaction system coordinate. However, let
us nov consider the case that the coupling potential between the test
and interaction systems is a sum of potentlals of the type already dis-

cussed. By this we mean that the potential is of the form,
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v (Q,P) = % v (@u () (19)

a situation which is depicted in the diagram below.

v, (Q)u, (P)

VQ(Q)UQ(P)

A simple exampie of this is the situation where the two systems are

coupled through several of their respective coordinates as follows:
vi(@P) = ) QB
(04
Alternatively, the problem may be such that there are several test
systems which are coupled to each other through a common interaction

system:

o [ V1(Q)u(®) vyla)uyfp) |

V3(Q3)U3(P)

43

In this case, the coordinates Q- QE’ and Q3 could be considered,

for purposes of finding the influence functional, as independent
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coordinates of a composite test system which was coupled to the inter-
action system through a potential of the form of equation 19.

There are many examples of physical situations in which the coupl-~
ing potentials are of the form of eguation 19. To illustrate the type
of problem in a more specific way, we will discuss a particular case.
- Let us consider a problem such as would arise in a study of quantum
electrodynamics where several atoms, composing test systems, interact
with each other through the radiation field. For the purposes of this
discussion we are only interested in the coupling between the test
systems and the radiation field of coordinate ¢ , which represents
the interaction system, and in showing that it is of the form of
equation 19 so the terms of the Lagrangisn not applying to the interac-
tion will be neglected. If r n and emn represent the position vector
and charge of the nth particle in the atom labeled m respectively, then

the coupling potential between test and interaction systems is

VI(rm’Q) - EZ ®mn Zmn” 2 (Emn>
m,n
. tr :
=‘—§: emnﬁzmn)a Aa (Emn) (20)
m,n
Q=x,y,z

In the preceding equation the subscript « denotes one of the three
components of the vector to which it is attached. It is well known
that the transverse part of the electromagnetic field, étr(f) s can Dbe

expanded in plane waves as follows (13)

_é_tr(q(t) ,r)= \/—8_:;:2 Z [Ex(ql(il)cos(_lg-z)+ qlEB)sin(_k_'E))
k

k

v eyt P cos(xr)+ ol Vain(-x) >] (21)
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where and. €y are polarization vectors orthogonal with each

1,2,
q(l(g »3,4)

Y
other and with the propagation vector k . The may be
considered the coordinates of the harmonic oscillators of the radiation
field comprising the interactlion system. FEquations 20 and 21 together,
yield a coupling potential of the form of equation 19.

In these cases, previously derived forms for influence functionals
are not applicable and additional analysis is necessary. However,
instead of deriving the form in very general terms we will take a
specific example which will serve to illustrate another physical situa-
tion which is applicable to the discussion and which will yield some
rather interesting results. The general relation is easily deduced from
the results thus attained. Let us consider the effect of a material
characterized by a tensor conductivity %15 on a test system which
interacts with the material through an electric field. To make the
situation definite, let the interaction system consist of a cubical
block of resistive material each of the opposite sides of which is con-

nected to an external circuit. In the Tigure below, connections are

only shown to four of the six sides for clarity. The coordinates of

[

External
Circuit

External
Circuit
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the test system, which is composed of the external circuits, are the
three components of the electric field, E . The resistor itself is
assumed to be an electrically neutral, solid material which is composed
of a large number of interacting charged particles. Not all of the
particles in the resistor will necessarily contribute to the effect

of the resistor on the test system, but since we are not making a
guantitative computdation of the influence functional here, that need
not concern us. The assumptions made are, 1) that the entire coupling

between resistor and the test systems is through the coupling potential

v (EX) - g e, X" E ,

where the summation is over all particles in the field and, 2) that the
electric field E is not a funétion of position in the resistor. For
ease of writing we will represent 5: ei Ei by an equivalent sum

eX and in addition the product g-gl will be written XaEa employing
the Einstein summation rule. Xa , of course, refers to one of the

components of the vector X . Thus, the interaction potential is

(o4
VI(E,X) = X E

which obviously has the form of equation 19. It is understood that
Ea and Xa are functions of time although the notation will be
omitted. The influence functional can be formulated in the same way

as that given by equation 1
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T
‘GJ(E,E' [6(2% ggT)exp{ [S(X) -5(X')-e f B Xa—E'aX&)dt]}
X T e, PXEDE (X)X - DK (1)

T

= 6(§T-X‘I")exp{%[8(§)-8(_}g')]} [l-iﬂe- (Eo‘x tE;CO‘x&’t)dt

o T t
B (i_é) ff (sza t_E;: X(;t, XEg I3 S—E‘B : )det] Zapaa¢z(—"r)¢ (X )
TT

Xd3XT... @3x'(t) (22)
In the above equations ¢a(§) represents one of a set of orthogonal
eigenfunctidns which desceribes the resistor in a state unperturbed by
external influences such as the electric field E(t) and Poa is an
element of the initial density matrix diagonal in the representation of
the ¢a(->9 . The procedure for evaluating this is exactly similar to
that which was outlined in Section VIT.1, and has no need for further
discussion here. If the evaluation is done , the influence functional

can be written

oo t v
13(8,E") - - ; (E [ BF* o t-5)- E'f3 (t-—s)} dsdt (23)
, w | ] o
26?0 (X (x 1ot
where Faﬁ(t) = Z Paa a)ab ﬁ)ba e “ba . (24).

a,b R

According to the rules previously derived we would expect tlat the res-

ponse function which yields <Xa(t)> as a function of an impulse of
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field applied in the B direction at +t =0 is
i
- = ZlF* (1) - t]
By(t) = ImFoo(t) = 3[FE (8) - F_ (%)
or, in terms of equation 2L,
2
o

ie
+ complex conj. (25)

Bag(t) _ E: aa(X%)ab(XB)ba e—iwbat
a,b

It is easy to verify this result by computing eXa(t) as a function
of an applied field Eﬁ(t) using first order perturbation theory.
This is exactly the same prbcedure as was followed in the previous
section for the problem under consideration there (see equations 10
through 13) and the algebra need not be repeated. However, the compu-
tation yilelds the result of equation 25 as expected. If the average
value of current <ja(t)> in the resistor is desired instead of
<éXa(t)> as a function of an applied impulse of voltage, this is
easily obtained as follows

2
~i £
© paénba(xa)ab(xﬁ)ba e lwba

) =i = T ;

+ complex conj.

The impedance ZaB(V) or admittance YaBOz) obtained from equation

25 1s
) (X (e) ), 7 v
T el = TR { Pap(te A
5 e [iv(Xg)ab(Xﬁ)ba ] iV(Xt})ab(Xa)ba}
a,b p VoLE g vTLE Opg

iveg(Xa)ab(XB)ba
o EOv-1€ +w__) (0 55~ Pup)

(26)
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and if we restrict the resistor to unit volume Re'YaB(v) is the
conductivity of the material while Im'ﬁxﬁ(v) relates the current

due to the induced electric polarization to the applied field E(t)

The results, equations 25 and 26, check with those obtained by Kubo (10),
Nakano (14), Feynman (15), and others. For completeness and because its
form is interesting, we write the above influence phase (equation 23)

in transform notation. The form 1s derived in a similar way to that done
for the harmonic oscillator (Appendix I(b)) but is more complicated in

this case and the work is done in Appendix VI. This expression is

o0 'B(E a) E?V(Eg—ELa)
13(8,E") = Eﬁﬂ,/.[ vz, (v) " -iquB(~V) J v

G
oo
1 O iy eB o B
- 2[ (Ev E' )(E_v E_V) ¢a5(v) dy (27)
7
0]
1
where K [ (v) 7 ( J
g (v) = (28)
Tap V[ eﬁh B 1]
It is seen that QJB(V) which is a sort of tensor power spectrum when

written in this form is not simply related to l/%as(v) for aifp.

In the case a =8, (v) reduces to the forms obtained for the

Poc:
simpler systems considered earlier (see equation 18). Therefore, if
the required tensor impedance properties of a material are known, the

influence functional may be formed using equations 23 and 24 or equa-

tions 27 and 28. 1In this case the classical quantities which one needs

to know are
iv(<eXOt>)v 1
By (V)  Zy(v) |
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If they are not known, they may be calculated using the closed forms
of equations 24, 25, or 26. The calculatioﬁ of such forms .is, however,
normally a very difficult task.

In conclusion it is again found that the parameters which are sig-
nificant in forming the influence functionéls for interaction systems
which are characterized by the more complicated type of coupling consi-
dered here are the classical response functions and the corresponding
impedances. In addition, this formulation of the influence'functional
has yielded closed expressions which may be used to compute these res-
ponse functions if the unperturbed quantum characteristics of the
interaction system are known. As a‘last remark it may be again noted
that the generalization of the above expressions to the interaction
potential of eguation 19,

V=) Yal@ Uyle) = MORNC
is direct. To illustrate this we can write the influence phase for this
case from equation 23 which was derived for the case of the‘coupling
poténtial eEaka . It is only necessary to substitute Va(Q) for B>

and Ua(P) for exX, Thus,
o t

16(q,Q') = -—;:K ff v v' lVSFéB(t—s)—VéﬂFaﬁ(t-s)J dsdt (29)
-0 ~00

where

and

i t
ba e (hba . (30)
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The other expressions for Baﬁ(t) and %aﬁ(v) may be found similarly.

VII.3 Beam of Particles Interacting with a Cavity

Consider a beam of non-inferacting, identical particles which
interact weakly with a resonant cavity as might occur, for instance,
in a gas maser. We assume that the beam is not necessarily in tem-
perature equilibrium but that the initial state of the particles
entering the cavity would ve properly represented by a density matrix
diagonal in the energy representation. Such a situation would occur
if the beam were prepared by passing it through a beam separator whose
function would be to eliminate certain particles from the beam depend-
ing on their energy levels. For the purposes of simplifying the
analysis we assume the molecules to be two-level quantum systems and
that before they enter the cavity all of them are in the lower state
or all in the upper state. It is easy to extend these results to the
case where the beam is mixed with a certain fraction in the upper
state and a certain fraction in the lower state initially. Since the
beam is assumed to be composed of non-interacting particles, we can
consider the total beam as composed of two independent beams appro-
priate to the two possible initial states of the constituent particles.
The influence phase for the complete beam is simply the sum of the
influence phases for the two beams. In addition, we assume that the
beam is characterized by a spatial density such that the number of par-
ticles passing a given point along the beam in a time dt is NAt and
if to is the time a molecule passes a Teference point inside the
cavity, Y(t—to) describes the coupling between the molecule and the

cavity. Thus, the beam is a univelocity beam. Again, in a real case
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where the beam is characterized by a distribution of velocities, the
total beam may be split up into many univelocity beams. The total

influence phase is simply a sum of those for each component beam.

CAVITY (Test System)

l

- 2 7 L i
————n
JBEAM (Interaction System)

Let us call the coordinates of the cavity Q , representing the test
system and the coordinates of a particle in the beam P . The inter-
action between beam and particlés~is given by afi(Q,P) = Y(t—tO)QP .
Under these circumstances the infiluence functional for the effect of

the beam on the cavity can be written down immediately:

p (2@ t 9¢)
18.(Q,Q") = -N % [f dsdt[f r(t-to)r(s-to)dto] (Q-ay)
-00 ~0O -0
-imy (t-s) iay, (t-s)  (31)
X(q e ba _q e ba

For the integral involving the coupling parameters,

[ rerema, < [ vorGenaa e . G2)

Therefore, eguation 31 becomes
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p o 2t Sia (t-s)  da (t-g)
ff ["(t-s)(q,-a1) (ae e e T s

ab

¥

s

e ® (33)

19,(R,0") = -N

From this we can identify the. response function of the beam as

QN'Pab‘E

B(t-8) = —F fﬂ(t—s) sin wba(t-s) . (34)

In the same way that was done in Appendix I for the harmonic oscillator
this influence functional can be converted to transform notation and
yields the usual expression, equation IV.2, where from equation 3k
we find

. 2

lNIPab|

(%i%%m:"T”“ Cr, ~ T ) (35)

where

< ~i(vim, )T
fl(r)[_‘(r)e “ba dr (36)

-00

i, ~

and with a power spectrum

NP

|2
Flv) = 5" [R + [

'V"%J . (37)

Previously we have found that for a linear system initially in the

"Cha

ground state the power spectrum is zero over the range of positive
v thus indicating a zero noise potential due to the linear system.
However, @(v) is not necessarily zero for v >0 1in equation 37
in the case that the beam is initially in its lowest state (wba> 0).
This 1s because no restrictions were pléced on the time variation of

Y(t—to). However, in practical situations the coupling between a
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cavity and a particle in a beam passing through the cavity varies
adiabatically so that for all practical purposes @(v) is really
zero for v >0 . To point this out more clearly, let us assume that
T(t-to) = l(t—to) l(tO+TO—t) , that is, the coupling is turned on at
to and off at to+ T, the time of transit in the cavity being T

We Tind by evaluating equation 32 that

{ﬁ(t-s) = (8-t + TO) 1(s-t + TO)

and from this we can find

= d/. (TO— r) l(TO~ r) 1(r) e

-00

-i(v+mba)r
F;ﬂhba ar

ey g)Tg

1- iTO(v-wba)—e

B 2
(v @)
Therefore, from eguation 37,
.2,V %
sin™( 5 )TO
2
Bv) = o |, | . (38)
(v +a ) :
. R 2 " 2
The maximum of @(v) occurs at v = -ty and is [N!Pab! //EJ i

whereas the maximum value ¢(v) can have for v » 0 is

[N‘Pablg/ 2] (M/wib) . The ratio of the two is

Max. of @{v) _ (&%a '0)2
Max. of @(v) for v >0 2

For ammonia molecules at a temperature of T = 29OOK, the average

velocity v Q:leou em/sec. For a microwave cavity of 10 cm length,

L

TO:32X10- sec. For the 3-3 line of ammonia wBaﬂbl.leOll radians/sec.
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2
Therefore, for this case (mbaTO/Z) ‘Q:QXlOlh. From this, we can

conclude even in this case of suddenly turning the coupling on and
off, that the @(v) is negligible for v >0 .
Examination of Re(l/Zv) shows terms of the same form as those

Just discussed,

131 1 % VNIPab!E (ﬂ [ﬂ r‘
Re(1/2 )= -[—- v (= ] - - - + ]
v 2 Zv Zv EK vy I—;—wba mviy vy b
(39)
By the same type of argument as above, the terms in (ﬂ can be

Y
a

neglected when v >0, wba<(3 and conversely, when v >0, wba:>0 the

terms in r;*”b can be neglected. Since this is the case, we can
a

write
1
h Re(gﬁ)

P~ T . ] (40)

where Be = l/kTe , describes the relative initial populations of the
two states. Therefore, we conclude that in most practical cases the
power spectrum can be written in the form of equation 4O and for all
practical purposes it will be exactly correct. In cases where the
transients cannot be neglected for very low wba and very short
transit times, however, @(v) is not so simply related to Re(7%~)
and must be written in the form given by equation 37. ’

It is to be noted that @(v) of equation 40 is not precisely of
the form for the Nyquist relation because of the appearance of
-P a : Bhv s
e in the denominator rather than e . This is a conseqguence

of the finite coupling time between each part of the beam and the
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cavity which results in a non-equilibrium condition. If the coupling
times were infinite, the expression for Re(l/Zv) would contain forms
such as 6(v«nba) , a situation discussed earlier, so that the Nyquist

form then results. However, when the coupling tiwe is long as in

masers,

+ 2= bnd (v
g * Loy, h00en)

so that the true Nyquist relation may be used with negligible error.
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VIII. Sources of Noise in Masers

Having developed the theory of linear systems in detail we are
now in a position to discuss the sources of noise in quantum-mechani-
cal devices such as masers. The subject of maser noise has been
explored by many authors (12),(16),(17),(18). The details of the
treatment given the subject differ, but the principles are essentially
the same. The amplifiers are considered as operating at signal levels
high enough (classical) that a signal entering a maser may be consi-
dered as a group of photons whose number is large enough that the
amplification process increases the signal in a continuous fashion.
The sources of nolse were found to be those derived from the thermal
noise arising from the sources of dissipation, and those derived from
spontaneous emission from the "active" guantum material. They go
further and define an effective temperature of the active guantum
system so tlmt the noise it produces is related to the negative re-
sistance of the active materials. Our analysis of linear systems has
also shown that these same sources of noise exist. 1In a subsequént
article Townes et al (19), discussed the characteristics of maser type
devices when the signal levels entering the maser were very small so
that one could talk of relatively few photons per second entering the
maser. From the results of the analysis it was concluded that in the
case of a very small number of photons there would be a large fluctua-
tion in the output of the maser even without thermal and spontaneous
emission sources of noise. The mean square fluctuation of the output
signal from large, ideal amplification was found to be proportional to

1/n where the input signal consisted of n photons/sec entering the
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cavity. However, since this effect depended upon the signal level
it was not considered to be noise in the usual sense. The results of
our analysis shows that this last source of quantum fluctuation does
not exist, at least insofar as the maser device produces it. In the
following discussion this assertion will be stated more precisely and
its proof will be demonstrated.

To make the discussion definite, let us suppose that we have a
beam type maser amplifier in which all participating systéms used
meet the requirement of linearity. There may be one or more beams
interacting with various electromagnetic resonators which can be coupled
together in any way desired. The output of the maser is connected to a
detector of some sort which perhaps consists of a resistor in which the
current is to be measured. To the input of the maser system we now
apply an incoming classical signal of large magnitude and of frequency
® through an attenuator whose value of attenuation may be varied at

will. Diagrammatically we have:

Classical
Wave

Attenuator MASER Detector

In practice such a situation could arise if the classical wave ori-
ginates from a distant antenna with a very large magnitude of ocutput,
so large that all quantum effects in the wave are effectively obscured.

The long distance would then play the role of the attenuator.
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Theorem XI. Suppose that the classical wave were attenuated

by a large amount so that only a few photons/sec were entering the
maser. The only uncertainty in the signal in the output of the maser
caused by the maser itself arises from those sources of noise which
can be arrived at by a classical calculation of the characteristics
of the maser. There is no extra gquantum fluctuation introduced by
the maser into the output signal due to the small number of quanta
entering the maser.

It is true that the amplitude of the signal output from the maser
might itself be so small that it is still on a guantum level. In this
case the detector output would be uncertain due to inherently small
magnitude of the signal from the maser. However, if this is the case,
we may pul as many amplifiers in series as necessary to bring the
output signal back to a classical level. When this is done the signal
applied to the detector consists of the original signal modified by
the transfer characteristics of the maser system (and attenuator) and
noise signals which arise from all the possible sources computed
classically.* The proof of this assertion is not difficult. We
divide up the total system into a test system, here the detector, and
an interaction system which consists of the maser, attenuator, and
classical signal, C(t). Then, to find the effect of the interaction
system on the detector we need only to look at the influence functional.

However, we already know that it can be written as follows:

*The only error from this procedure results from a situation such as
encountered when a portion of the circult such as the beam has finite
coupling times as discussed in Section VII.3
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e 0]

, ; Qe - ) aq_(q-q)
2 (@) p{m” DS T P
0 v v

v

@® .
i 1 2
+ 2nh _4: ivv (Q_V’Q_v)dv - ;;5 g[ lQV'Qvl E; ¢i(v)dv}

Z
v

where ¢i(v) represents the power spectrum of the noise from the ;B

source, z, is the classical transfer characteristic of the complete
interaction system*, and Zv is the impedance of the maser system
as seen by the detector. All the terms in the influence functional
are familiar in view of the derivations which have been presented
previously. The first term in the exponent of the influence func-
tional is recognized as describing a linear system at zero temperature
(Section IV), the linear system in this case being the maser. This
term describes the spontaneous emission of the detector back into the
maser, a situation which was discussed in Section IV.3. If was fur-
ther discussed (Section VII.l) that this spontaneous emission could
be thought of as resulting from a noise generator created by the
detector (test system) acting on the interaction system in the uéual
classical way, i.e., whose power spectrum was related to the dissipa-
tive part of the detector impedance and to the temperature by the
Nyquist relation
ﬁvRV

¢(V) = ;Z;7§Ejii

where RV is the detector resistance and T 1its temperature. The

second term in the above composite influence functional is easily

*¥In this example the complete interaction system would be everything
in between the source of the classical wave and the detector.
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interpreted and is simply the effect of a classical voltage, related
to the input voltage by the classical transfer characteristic of the

maser, acting on the detector (see Section V). The last term repre-

sents the effect on the detector of random noise wvoltages assogiated
with the various classical noise sources in the maser, (Sections VI,

VII). Both positive and negative resistances are such noise sources.
In elther case the power spectrum of the noise from a particulaf

resistance 1s computed from the same relation as gi¥en above

KVRV

¢(V) = m

where T 1is the temperature of the reactance Rv . If Rv is
negative the effective temperature of Rv will also be negative,
always giving a positive pover spectrum. Therefore, if we were to
compute the current in the detector due to theinteraction system
(maser) using the influence functional, we would find components of
current due to 1) the noise voltage generated by the‘detectér ltself,
the povwer spectrum of which is related to the resistance of the
detector by the generalized Nyquist relation given above, 2) é
classical voltage related to the input voltage C(t) by .the classi-
cal transfer characteristic of the maser, and 3) random noise |
voltages associated with the various classical noise sources (resis-
tances) in the maser. Therefore, the maser simply acts as a

classical amplifier with sources of noise which can be predicted from

considerations of its classical charactéristics.
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APPENDIX I(a)

Proof of Theorem VII for the Case of a Single Harmonic OScillator

It was shown in Section IV.1l that the influence functional for
the effect of a single harmonic oscillator on a test system can Be

written as follows:

T
T(Q,Q") =[8(%;- Xp)exp ;i{[[ - 1 )-—-—- %o x®)e - Q'X'] dt
- 5 (x2+ x:2) L ox(t)Em () ax,_doc! % axs (AL.1)

vhere dX% is an integration over all possible values of X_ etc.

To evaluate this we introduce the variables

X + X' qQ =qQ+ Q'

»
il

(AL.2)
X - X q'

]

Q-Q

b
]

If these substitutions are made

T
Teral 2 t '
Fraw - o) o 3] f2 2

X Bx(t) Dx(t)dx dx’dx dx, (AL.3)

2 2
q } mu)x m(nax

&= g - S v

In anticipation of a later derivation it will be noted that the conétant
a has been introduced as a coefficient of xi and x;z respectively.
For the harmonic oscillator initially in the ground state we will set

= 1 din the final result. Whenever some mathematical operation yields
nerely a constant multiplying Z’it will be the practice to ignore it.

This mekes the writing of % functionals less complicated and at the end
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the constant can be recovered through normalization, if necessary.
This was done between Al.l and Al.3 since the change in variables of
integration should be accompanied by the Jacobian of the transforma-
tion.

Integrating the first term in the exponent of the integrand

by parts ylelds the result

TSJH

2
Flae) = [ o) xp[ T+ a®) e B x -

(AL.L)

Xf{ m . ! %'_)- %}dh]bx{t)ﬂx‘(t)dxqﬁx;d&r&%

" The first part of this expression to be calculated is the integral
over x(t), x'(t) paths and for this the only part of the integrand
which is affected is the time integral in the exponent. Considering

the x(t) paths first and calling this integral I, .+ Wwe have

2

IX”X, fexp Kf xg ]dt Dx(t) Dx' (t) (A1.5)

2 .
where g(x') = % £'(t) + 2 ~5 x'(t) - (t) (AL.8)

To evalvate this expression we break up the time integral into a sum
over N dincrements of time At = ¢ so0 that Ne =T - v . At a time
t = ke the value of x 1is denoted by x = x(tk) . Therefore, the

path integral in x,x' becomes

v Ix, = Nl—iglof fe@ %iz;i [ng(xfc)' qkexiije (E:q dx, ) (?ﬁ:}l— &xl'{).

€->0 (A7)
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The integral over each x,_ yields the result S(gé) and

N~-1 .
Ix,x' = N%inzo ggg.jr(const) 6[g(x£)] exp| - g? quge] dx; - (A1.8)
€ > 0

Since the time interval may be made infinitesimally small, the result
of the path integration on x 1is seen to be a & functional of the path
denoted by g[x'(t)]. The solution g[x'(t)] = 0 is simply the classi-
cal solution and the function of x'(t) for which this equation is

satisfied will be denoted by E'(t). Then we can immediately write for

AL.8
N-1 i . i T —
Ix,x'= Nlin:)o g (const) expl-~ % quke] = exp [- Eﬁf a(t)x (t)dt]
€ » T
(AL.9)

Substituting this result intoc the expression foz'f;E~given by equation

Al.4t we obtain the following:

Iss

T
Fla,a)= f 5(x) exp { T+ w)s Flatx%) - 5 f q<t>'x"'<'t>dt}

X dx_dx'dxqdxt . (AL.10)

The integrals on de and de can be done next. Integration on de
is a Gaussian integral and can be done by completing the square. The
de integration yields a d~function of ié + Therefore,

x2 T ' |
Fasa')= [BixT“)ﬁ(ic%)exp [-‘ m—f%(x;ng —5)+ %Kfq(t)’x""(t)dt] axdx,
' T

(a1.11)
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The two fﬁnctions B(Xi) and 8(%&) can be interpreted as boundary
conditions on the classical solution of g[x'(t)] =0, a second order
linear differential equation. These conditions are that x& = ié =0.
The result of doing the above integral will be to substitute for

x;, i;, and x'(t) the solutions which satisfy these conditions. We
anticipate the result by taking as the solution

ot

T
X' = -J[ f%éfl-sin o(t-s)ds + X cos o(T~ t)- 2? sin o(T-t) . (AL.12)
t

Secondly, we change the variable of integration (using Al.12) from

dx; to de and find from Al.l2 that,
r - -l .
dx! = cos w(? T)de

Substituting Al.12 into Al.11l and changing de to dié we find that

12 T
Fla,a) = [ stg)etiy) o - B2 ) o L [ aox

T
[_,[[L;I(f—)- sin w(t-s)ds +x; cos o(T-t)+ “r sin o(T- t)] d% d}%d‘xé
t

)
The result of the integration is

%'2 TT
%(a,q') = exp {- E;;w%(x;2+ '-3;‘2‘)" §iz—nﬁff q(t)q*(s)sin o(t-s)dsdt } :
T (A1.13)

To get this in a more usable form it is best to express the exponent in

terms of double integrals:
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T T
-j 5) sin w(r-s}s and x; =ffq'l(ns) cos o T-5)ds -
T T
Therefore,
x_:_ ff ——-(—9-9-:-(——[51n o(T-s)sin o(T-t)+ cos w(T-s)cos u(T-t)] dsdt
T T
=[f ﬂ—'-%%-'-(—s—) cos w(t-s)dsdt (AL.1L)
mw
T T

Substituting this in Al.13 the influence phase (%= elé) is

TT
L $(a,a') = - 5y ff a'(t)q'(s) cos w(t-s)dsdt +

T 7T

T T ,
_é—&m ff a(t)q'(s) sin cp(t-s)dsdt (AL.15)
T34

Since t and s enter into the first integral symmetrically it can be

rewritten as indicated by

T T T t
ff E(t,s) = 2[[ E(t,s)dsdt

The second integral can be rewritten as follows:

T T T t
ff E(t,s)dsdt = ff E(s,t)dsdt
Tt T T

Rewriting Al.15:
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T ¢
id-- EﬁlTn_a_)/ [ag'(t)q'(s)cos w(t-8)- ig'(t)g(s)sin w(t-s)]dsdt

vSubstituting Q,Q' for g,q' we can write

Tt
id 2"51}{[[(%" Q,é)[QSF*(t-s)- QS'F(t-s)]dsdt (Al.16a)
T T
where
F(t-s) = i—b cos(t-s) + Tﬂf_o sin w(t-s) (A1.16b)
or,

Tt
18- g | [ (o apiaen () g el

1L~ 8

Tt
t Fmw mwf[ (@ - QJ;)(QS— Qé)cos w(t-s)dsdt (A1.17)
T T .

For an oscillator initially in the ground state a = 1 and

Tt
1d-- ‘zzl‘nﬁff (qp- Q) la e @(t8). grel®(t-8) jeq (41.18)

APPENDIX I(b)

In this section the preceding results will be put in Fourier
transform notation. It is slightly more convenient to work in terms
of g and q' , so we will start with an expression of the form of

eguation Al.16 and change variables from ,Q' to g,q’
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o t

19 - %Z Jr J( [ig'(t)a(s) B(t~s)- q'(t)q'(s) Ao(t—s)]dsdt
-0 -

(A1.19)
o NG )
=§% f[ [1q'(t)a(s)L(t-5)B(t-s) - q'(t)q’'(s)1(t-s)A (t-s)]dsdt
-00 -
where B(t-s) = a%;sin w(t-s) = Im F(t-s)
(A1.20)
Ab(t—s) = é& cos w(t-s) = Re F(t-s)

and 1(t-s) = a unit step function. The subscript o pertains to this
zero temperature case and is attached to Ab(t) because the relations
connecting A(t) and B(t) given at the end of this appendix are
only valid at zero temperature. If the above influence phase acts
only over a finite interval of time as in Al1.16, this can be taken
care of in the above expression Al.19 by replacing 959, by
tht,rsqs where Tt is a coupling factor. Both terms in Al.19 are

of the following form which can be evaluated using the Faltung theorem

(o8] a [0 0]
f f N(t) P(t-s) R(s)dsdt = -(31;)- N_VPvRvdv . (AL.21)
-0 -0 -0

Applying we obtain

o0
— l 1 t 1
1<+ e [ (iq_quBv q_quAv)dv (A1L.22)

-00

where
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&0

-ivt
qu a(t) e ¥ at

v
-0

0
B, =.f 1(t) B(t) e at ,  ete.
-
Changing the interval of integration to include positive frequencies
only, and by adding and subtracting the term iq_"’ q'v(Bv-B v) ,

Al.21 Dbecomes

o0}
1
i9 = tat - t\R t [ - tot -4 .
§ + m[[ 1q-v(qv q'V)BV+ iqv(-q-v+ q‘—V)B-V qvq-V(AoV+Ao-v lBV+lB-V)]dV
0

(AL.23)
Next, the on’Bv need to be calculated:
o
Aot Bo_ = .m%u 1(t) cos cm;(e-ivt +eivt')dt

-00
®

= 5%{)—) f (ei‘m;+ e_iwt)e—i"tdt = ﬁ[&(v«nh S(V"(D)] (AL.24)
: -0

Similarly,

iB -1B_ = ﬁ f 1(t)sin at(e TV PelVt)at = - X [ (vm)—ﬁ(v-w)] (AL.25)

ma
Zoo
and
®
=2 | sin ot e Vg - - 1 . (A1.26)
maw RN 2
5 m[(v-le) - ]

The € is an infinitesimal introduced as a convergence factor and is
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kept throughout the calculation to indicate the location of the poles.
The addition of € is equivalent to adding an infinitesimal amount of
loss to the oscillator. Substituting the results for Av’Bv back in

equation Al.23, we find

00
- i‘f fl", q_'v (_Efﬁé)) [(a-’-l)ﬁ(v-w)+ (a+l)5(v+w)] dv . (AL.27)
0O

Substituting @,Q' for q,q' and setting a = 1 , we have

e 0]
‘ 1 a(e_-a ) a f(q-@)
i § = Qﬂﬁ O [ v Zv L4 + (fiv Z_V; ] dv +
(D .
- ;;L'{éf le- Ql')lz [+ %’mé S(V-HD)] dy (A1.28)
0

For cases zero of temperature the last term is always zero since ‘the
integration is only over positive frequencies and w > 0. It will

be noted, however, that the last term has the same form as that pro-
duced by a noisy classical potential with a power spectrum @(v)= +xf/2mw

X8(v+w). In more general terms this is, from Al.23,

g(v) = é (8 + Ay - 1B + iB_ ) (A1.29)

It is developed in the text that B(t) is the classical response func-

tion for the linear system being analyzed. Here, of course, the system
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is a single lossless harmonic oscillator. Moreover, Ab(t) is,

within a factor of é the correlation function of the zero point

2)
quantum fluctuation-of the oscillator variables. Relations connect-
ing them can be deduced as follows. From equation Al.25 we have

(B ) = 5 [6(v=w) - s(vi)] - | (AL.25)

Thus, we can write

o0
2 sin wt '
B(t) = - ;‘[Im (Bv)sin vt dv = S (AL.29)
o]
Similarly,
90)
e cos wb
Ao(t) = - ;{Jflm(Bv)cos vt dv = ———— . (A1.30)
"

Both of the above two relations can be readily ascertained by refer-
ring to equation Al.20 for the case that a =1 . It is easy to see
that on and Bv are related by a dispersion relation which can

easily be obtained from the second of the above relations, equation

Al.30,
o 0] o0 @
on=fAO(t)e'ivtdv = - -i-f fIm(Bw)cos wt eV oaat
0 00
» a
= —?-flm(Bw) L > (A1.31)
0 [(v-ie) - ]

From equation Al.29 we can find the. usual dispersion relation connect-

ing the real and imaginary parts of an analytic function,



B =
v

O“~—\8

B(t) e VPt

i

Al

0\8

2

—

b8

o]

i

0]
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Im(Bw)

. ,
f Im(Bw) sin wt e V%t aw
0

@ am

[(v-16)%- o]

Observation of equation Al.24k for a =

Al.29 through AlL.32 can be rewritten in terms of on by replacing

Im B
v

by Re A .
¥ v

1 shows us that equations

(A1.32)
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APPENDIX TIT

a. Statement of the Problem

Having found the influence functicnal for the effect of an
interaction system on a test system, it is useful to have perturba-
tion expansions available for use in calculations. There are three
forms of influence functionals which are especially useful in describ-
ing the effects of linear systems on test syétems. They are {;zQ,Q')
for a) linear systems at zero temperature, b) a known classical
potential, and c) an uncertain classical potential. Second order
transition probabilities will be found for all three of these. The
first will be done in detail using the path integral formulation to
show how perturbation theory can be done by that method. In addition
1t is interesting to see how the analysis shows that for a zero tem-
perature interaction system, transitions of the test system are only
allowed to states of lower energy than the initial one.

In a general case where the initial and final states of the test

system are definite. these states can be expressed as

il

v Q) = ) & (M) B (Q)

n

and (A2.1)

2. b1 g.(a)

i

Ve (Qp)

where T and T represent the initial and final times respectivély,
and the ¢n(Q) represent a complete set of orthonormal eigenfunctions

of Q . However, for the purposes here the initial and final states

will be considered eigenstates since the calculations are considerably
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simplified and the extension to cases of more complicated initial and

final states is straightforward. Therefore, we will take

- i E T
@) -f(gle B0
(42.2)

- % EnT
ve(Qp) = P (@)e
Since fhe influence functionals of interest here are exponential in
form, the n - m transition probability for g is
i .
(s_(Q)- s (@")] 1¥(q,q)
P graB (ko o T R g @)

n—-n

X dQ_dQdq;dq,, O 2Q'

If the magnitude of ¢ is small enough, it will be sufficient to expand

zr(Q,Q') in a power series and keep only the first few terms. Thus,

i 1
; =f¢;(QT)¢m(%)J[SO(Q) RN FIVE JC) S

| (42.3)
X B5(QP (a)aq deldq DA LR’ .

=P +P, +P i+« P+ - - (A2.k)

where Pk refers to the term in order k of the potentials involved.
In this appendix wc will not be concerned with orders greater than 2 .
Tnspection of equations A2.3 and A2.L4 shows that the zeroth order term

P0 does not depend upon ® and can be calculated immediately. Thus,

we have
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i

- [ apd e %]
o] m m

iae)
|

gr(a1)g, (a )dq aq’dq dq; HQ DA,

2

T XC)
- f¢;(Q’T)e ¢n(Q"r)dQTdQ‘.[‘QQ'

2

- Jr¢;(QT)K(QT,T;QT,T) f,(a)aq aq,

2

' -%Ez(T-T)
- [ prla) T 9y apia)e ] g (a,)aa aq

2

fl
o

mn

(A2.5)

‘ %; 6m‘Z szn

This is simply the n - m transition probability for g with no per-

turbation applied. Now, we will proceed to calculate higher order terms

involving § .

b. Linear System at Zero Temperature Acting on @

If the coupling potential between @ and a zero temperature -
linear interaction system is -yQX +the appropriate influence phase has

been shown to be

 Fraa.-e) q (a-aq
19 = 2;Kjr [ vy v o, rr 7 J v . (22.6)
0

(iv zv) (-iv z_v)

A more convenient form for this calculation is

0 0

0 0] e 0]

Q-VQX'/ Q{)QLV 4 7\

+ dv - o V_Z—V v (AE- !
0 0
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Since ® is already quadratic in q , then P, = O and we can go

1
directly to the calculation of P, . Thus, from A2.3

o

)-5,(q")]
(1D)px(Q)8, (0. )aq _da aq da), Q20" .

(A2.8)

TN
P, =[ ?5;‘1(@)41,)5?5m<c7>.];)ez 2

In the evaluation of A2.8 four path integrations must be carried out
corresponding to the four terms of A2.7. These will be designated
P;’2’3’h respectively. Further observation of these two equations
shows that Pé = (PZ)* and Pg = (Pg)*. Therefore, only two integrals

need be calculated in detall. For Pg we have

s @-s @) [ F g
P§=f¢2(%>¢m(%>ei ° 7 - f 5,?;{1? 9,

0
X (@)p_(a)aq, *--a' - (A2.9)

To evaluate this we replace Q~v and Qv by their inverse transforms,

and find

o] w t
Q_ Q= jr jr YtYSQtheiv(t's)dsdt =.jr.j_ YtYSQtQS(eiv(t_s)+e_iV(t_s))dsdt
-00 -00 =0
The time ordering of Qt and. QS so that t > s 1is necessary for pur-
poses of doing the path integral. Changing the order of integration on

v, t, and s, Pl can be written

2
]-2'-}? . j? t - eiv(t-s)+e-iv(t—s) ¢*( )8 (L)
PQ Qﬂﬂvz_v [ Ytrs[ ]f m QT m Q'T
0 -0C =0

25 (@)= 5,(@")]
YAl ° e fial)d (e ) 0!
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Representing the integral operation on v, t, and s by I(v,t,s),

P; can be written more clearly as

Ls @ EERCD
Py = I(v,t,8) [ Pray)e” ° Qthfﬁn(QT)dQTdQToBQf g.(Qp)e B o

X#(Qr)aQlaqr0q' - (A2.10)

T

As in the calculation of PO we take advantage of the fact that

j A 50(% q - K(QpsQ,) = f K(Qp,Q,) XK(Qg,Q,)aq,

and that .
- % En(r-s)
k(@) = ). #.(a)¢ (a)e :

Eguation A2.10 can be written

- % B, (1)
P; = I(v,t,s) Z 2 f¢;(QT)¢J(QT)e X ’ ¢:(Qt)Qt¢k(Qt)

3k,
- Z E (t-s) -3 E, (s-7) "
xe RE ge(Q)e P (a )e B #;(a )¢ (q )dQ 4q dq.dq,

e (T-7)
X f g(a) L grlap)e” P g(en8 (Q))aq day -
D

This can be evaluated readily to yield

» ivmk(t—s)

2
1
P, =8 % ‘Q'mkl I(v,t,8)e-

Em- Ek

wmere G - [ 9@ QB0 d e vy =Py
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pé can be put in a form convenient for later calculation by the fol-
lowing:
ivmk(t-s) 2 dv @ t
I(V)tys)e = —f T———Eﬁ VZ_V [ f dsdt TsTt
0 =00 -0
i(v_ + v)(t-8) i(v -~ v)(t-8)
X [e mk + e mk

Applying the convolution theorem in the form

[e s} @
“/ﬂJ[ F(t) G(s) H(t-s)dsdt = é% .jr F G B dn
e ) -~

ooy
where Gq = Jr G(+) I g , we have
-0
. ® ©
v (-8) v a i 1
I(v,t,s)e =T LU ntv_, +v+ie + +v_ =v+ie
0 o )}ivz Rflﬂmk "lmk

(A2.11)

The € 1s a convergence factor introduced in taking the transform

oo i(ﬂ+mG+V)r el(n+vmk+v)r ® .
f Lr)e dr = i(ntv_, +v+ie) = v 4veie  °
4 Y. MV Ve

Thus, the expression for Pé becomes

8,0]

@
1 dvd1 i i
P. =25 : - - -
2w Bl [ | i e e ]

The expression for Pg can be evaluated in an entirely similar

way:
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Lis (@)- s (@)1{°% a_q
o2 - [ prapp apd o o raRd N CURCRLIEE )
0

7 ° - 1s (@)
'=f Enﬂdzzv ff dsdt YsrtelV(t-S) [¢;(Q,T)e © Qt¢n(QT)dQTdQT°gQ
0 ) -00
- 28 (Q") o
X[?‘m(%)e #%o M CADL AL LY . SL (A2.12)

Note that Qt and Qé need not be ordered in time since they occur in

different path integrals. Equation A2.12 when evaluated becomes

-0
@ lr 2
2 V+anl
- lanI _]F 2nﬂvzv dv (A2.13)
0]
where
= ~i(viv )t
= e T at
Yv+v Yt
mn -
_ 1 L 2 3 ,
Since we already know that P, = (PQ)* and P, = (Pa)*, to second
order
a “roanry
Pom = Bmt L. Ph=8 d1+ ) |a |° —1-1
n-m mn 2 mn mk 2
£=1 k (2n)= A
-00
®
1 i i 1 i i
Xf dv[ (- — + —)+ ——( - :
) VZ_V v+(vmk+n)+1€ v—(vmk+q)-1E vZV v+(vmk+n)—1€ v-ﬁﬁk+q)+1
[*vevma]
2 v+vmn 1
+ Ianl I dV———W Re(-z-;-) . (AE.lh)

]
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It remains to simplify the bracketed term inside the braces. In
doing this let us write the pertinent part of equation A2.14 which

is to be evaluated:

a
I_-é dv[h%q,“Hhhfﬂﬂie-'w(%mﬂnd£)

(A2.15)

v+(vmk+nf;ie V"(;mk+n)+i€

To do this we must resort to contour integration. There are two

cases involved vmk+q> 0 and vmk+q<(O .

Case I. vpu+ >0

Since the integration is over positive v, in the limit as
€—+0 , the sign in front of the € in the first and third terms is
arbitrary. Changing the signs and changing the interval of integra-

tion on these terms from +v to -v on these same terms, we have

0] (0 0]

I =4 jr dy -_/ﬂ dv
- in+V[v-(vmk+n)+ie]' in_v[v-(vmk+n)'i€]
-0 0
0] 0]
_ f dv + f dv
1vZ_V[v¥Kvmk+q)-1e] 1vZ+v[v—(bmk+q)+1e]
-0 -0
Combining terms this becomes,
o) oo}
dv dy
I = +[ - - -f < - . (A2.16)
J vz [v-(v  n)+e] I vz Tv-(v +n)-1€]

Since Zv represents the impedance of a passive linear system, the
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poles of l/Zv must lie above the v axis. Conversely,; the pole of
1

v—(vmk+n)+i€

of A2.16, the contour will be closed below the v axis, thus

lies Jjust below the v axis. To evaluate the‘first term

Y
Y

V=mG

\\—-Path of Integration

Using Cauchy's theorem we have

@ : ex
‘ v + l m :
- ivz [V{V +n)+ie] - ivZ [v-(v +ﬁ)-ié]
- o
v=vmk+n+i€+re
-5
dv
+ lim Jf : : = 0
Ro @ 4 1va[v~(vmk+n)-1e]
v=Rel®
or
dy 2n 1

838

iVZV[ V-(mG+7})+la (mG+n)zvnm+n vZ
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It is shown in the theory of linear systems that in general a linear
passive impedance function Zv may be expressed in terms of the
quotient of two polynomials in (iv), i.e., R(iv)/s8(iv). It is fur-
ther shown that the highest powers of v occurring in R(iv) and
S(iv) may differ by no more than unity (20). Therefore, if l/va
exists, it will be equal to an imaginary constant, say iba)’ e
The second integral of A2.16 1s the complex conjugate of the first.
The poles of the integrand lie on the opposite side of the vy axis so

the contour will be closed in the upper half plane. We have then the

result
00
+.j" dv _ 2n 1
ivz [v-(v_ +n)-i€] = (v_, +1)Z TV '
J vt Vgt S v
v —+00

The complete expression for I 1is (fof Vot >0)

2

=0 Tt+‘ri) Z — 2 - ] = vhn+ Re( =—) (42.17)
| mk Vit “-vgm ) mk* Vi1

where the quantities

= + 1 =ib -1ib = O .

vZ 174 o) foe]

v -V
v—>

Case IT. vp+1<0

In equation A2.15 we again Juggle signs. In this case the signé
on the i€ in the second and fourth terms are arbitrary. Changing

these signs, changing the variable of integration from +v to -v on
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these same terms, and combining, ylelds

o

@
T = dv - dv
B | in_v[y+(vmk+q)+i€] } inw[v+(vmk+ﬁ)-i€]

In the first integral all the poles lie below the v axis. Closing

the contour in the upper half plane ylelds only the result of integra-
1

tion around the circle at infinity, i.e., 1lim 7 . Again, the
V- -v
second integral is just the complex conjugate of the first, and
closing it in the lower half plane yields 1lim —%— . Therefore,
y=>oo "2y
T = lim (= +-2)= o0 (A2.18)
vZ vZ
v 00 v -y

as explained before.

Equation A2.1l4 for the probability now can be written to second

order,
2 ny
- . - 1 2
n-m mn {; Eé ,kal Jf Tha(v_. +7) Re(vak+n) * | Qpn
" mk
o 2
' v+vmnl 1 2 Tv+v
Xf a Th v Re(—Z__)zamnl-Zlq‘kl del kni R(—l')
0 1% k 0 7 ZV
Q T 2
5 v+y 1
+}an} fdvl i Re(—Z-:) (A2.19)

where in the latter expression the change in variables denoted by

My, =V vas made.
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One special case which is useful is that of very long coupling

times. Let us assume that the coupling is as follows:

y(t) = 0 for t<-T/2, t>T/2

y(t) = 1 for T/2<Kt<T/2
Then,
T/2 2 . 2
2 i(v+v. )t sin”(v+v__)1/2
Y = Jf e P ae| = ( ?ﬁ
vy Vv
mn
"‘T/2 mn
If T 1is very long, then
v+v
sin>( gmn)T
lim TRy = > 2T 8(v+vmn)
T-00 ( mn)
2

Then, substituting in A2.19 and evaluating the integrals

2
or|q l
P = ‘ 0l Re( 1 ) for v__>0
v Z nm
n->m nm 1%
ntm nm
= 0 for y <O . (A2.20)
2 .
2Ty Q
P =1-9. , nkl Re(=2) for all k (a2.21)
n-mn Pk Lvnk

n=m
such that Vok >0 .

c. Classical Potentlal Acting on Test System

If a known classical potential 1(t)C(t)Q(t) acts on the test

system the influence phase has been shown to be
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o0
g§-=- —2—%{ f c(Q - al)dy (A2.22)

-0
where the coupling term can be inc .uded in elther C_, or @
v

In this case § is of the first order in the potentials; therefore,

7
the expansion of clb appropriate to the second order transition proba-

bility is
. L 7n 2
el@ ~1 4 1D + (;?)
00 00
i 1\ l t Al
=1 ?:r?l[ C-(0,0))ev - 5572 ffc‘vc-n(Qv"Qv)(Qn Q) dvén -
-0 -0

(A2.23)

The calculation indicated by equations A2.23 and A2.3 may be carried out
in & way similar to that done in part b. However, the effect of such a
classical potential on a guantum system has been done many times in the
Hamiltonian fqrmulation of guantum mechanics. Therefore, it is more
diréct tc adapt these expressions to a form more suitapnle to our uses.
If we assume that the perturbation yCQ above is turned off
before the time of observation on the test system, then the second order

probability of the @ system from a state n +to a state m(n £ m), is(21)

o0 . .
. iv .t ‘2
~ |2 ( \ i
P = i f [riv)c(e)alt)] e dt (a2.2k)
n—-m -0 N
E - E

where Vin = L2 ana [Y(U>G(t)Q(t)g&1= Y(t)c(t)Jr¢;[Q(t)]

xa(t)g [a(v)laalt) -
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©
i . i . ivt e s .
If we write C(t) = 5 C,, € ‘dv and take the indicated matrix

element of @ we have

mr 1(v+vmn)t 2
P = [[ c, Y(t)e dtdy

n-m
®©
2
21k +y ‘V'%nndv {(A2.25)
-0
re vy )b
where y_ :J[‘ r(t)e at
mn
-0

It is important to notice that Cv’ in transform language, is the
force acting directly on the test system as indicated by the influence
phase in equation A2.22. Suppose, however, that a classical force, say
E(t) acted on Q through a linear system X, such that the coupling
potential between Q and X is Y(t)Q(t)Xl(t) and that between the

force and X 1is E(t)Xg(t), then the influence phase is from V.l

s E_ (@ -Q))
-V -v v Y
= + d .26
b=+ K,[‘ { 1vz(v; ~ivz(-v) ] v (82.26)
. By
The transform force acting on § 1is ool and the expression for
anm corresponding to A2.25 is
2 la) 5 2
P Sk jf *r_v_v dv . (a2.27)
n—>m ! mn
=0

It is again worth mentioning that if the potential in ¢ were

more complicated, say V(Q), then the only modification of the above
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expressions would be to replace an’ by an .

d. Gaussian Random Potential Acting on Test System

If an uncertain potential of the form y(t)C(t)Q(t) is coupled to

the test system, the average influence phase has been found to be

a
19 =--] g0 la-a'l®av
ﬂnQ_éﬂ v v

where @(v) is the power spectrum of the noisy force C(t) . In ex-

panded form
1 l L} \ t ] :
1d-- pve Z Blv) (QQ_-QQ! -Q Q! +QQ!)dv .  (A2.29)

Since the potentials in § are already of second order, no higher
powers of @ than the first need be included for the second order
perturbation expansion. Thé calculation indicated by equation A2.29,
along with equation A2.3, could be done using the same methods as in
part b. However, it is much shorter to utilize the results of part c.

- If a known classical force C(t) acts on @, the transition proba-

bility
Q|2 iy N
P = fc Y
n- m EnK 4 vty
nfm
Ul T
n
= C ¢ 7y Y dvdn . (A2.30)
2rfh joof VSN VR eV i

If the potential is uncertain, however, we must deal with average proba-

bilities. Thus, for a noisy force
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<P}

Y dvdn
n-nm —v +’1 v+vmn Vmn >

Qm JFJ[ <<C-v +;>Yv+v Voo, VAN (82.31)

But <C-VC+1>= bx@(v) 8(v-q) , therefore

ae]
i

Qo .
« [ [ #wstnr,,, o G
-0

2 o
lem;l [ o

One special case which is frequently useful is that of a coupling

if

‘? dv . (a2.32)

Y
V+an

potential y(t) which is turned on for +t<-T/2 , is unity for
-T/2<t <+T/2 , and is off for t>T/2 where T is very large. Doing
this calculation we find
2 S
213y, |
n
P #lv_) . (82.33)

n-nm 11 mn
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APPENDIX 1IT

a. Influence Phase for Effect of Free Space on an Atom

*

As an example of the tools developed so far, we will now take
the cése of an atom in free space and will calcﬁlate the influence
phase for the effect of free space. To do the problem it is assumed
that the atom is made up bf a system of particles of mass' m.n »
charge en , and position EA + En where EA is the position of the
center of charge of the atom. If the transverse part of the radiation
field in the box is expanded into a series of plane waves each repre-
senting independent harmonic oscillations (13), then the non-
relativistic Lagrangian for the complete system consisting of the

atom and the field in the box can be written (2)

.

; . engn tr
L(X,X,4,59,%) = Ly + ) == - A (r,+ x )
= = n
L3 LY 1R APE) (43.2)
k r=1 - -

where éf; is the Lagranglan of the atom unperturbed by outside

forces and

(%) = (BreD)L/? ) (e, (a M cos(x-x) + ol Vstn(kx)

+ Sz(ql({z)COS(_lz-é) + qlgu)sin(l_i-z)] (A3.2)

Here e, and e, are two mutually orthogonal polarization vectors,

-\ 2
each orthogonal to the propagation vector k . If the box 1s large

enough so that one can talk of an integral over k instead of a sum
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L 4 1 d3k
as we will want to do very soon, then E: => 5 =— , 1f the
i (2x)3

integral is normalized to unit volume. Now we assume that the radig-
tion field of the box is constant over the particle, i.e., that
é(£A+ En):g'é(EA) for all particles in the atom. This is the dipole
approximation.¥ 1In addition, even though gy " SB = 0 , which fixes
their relative orientations, their absolute directions in a plane pef-
pendicular to k are still arbitrary. Let us choose the direction
gz so that

e, Z ex = O . (43.3)

Then, combining A3.1, A3.2, and A3.3 ,

Li,x,dpa00t) - o+ 5 L ()2 cA((™))?]
- k r=l,3 2 =

4+

(L 22 - @AY L e oM eos(iory)

n E -

+

9£3)sin (E-gAﬂ . | (A3.4)

The box is now assumed to be very large and the summation will be

replaced by an integral as suggested above. Then, rearranging terms

*Phis is equivalent to taking §(§A+§n), expanding it in a series of
k-x, since this is assumed small, and keeping only those terms which

Eeep the interaction term of the Lagranglian linear. Since the inter-
action is of the form e 2 Xn Ak +X ) for the nth particle, then A

can only contain constant terms
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. 3 202
ZGniga,t) - £, 0+ | 25 {g@? £ (olt)?
eX - e 3
| n"n’ =N fg 2 (1) 11 (3042
¥ (znj ) Ve qy cos(k‘EA)} +f1.g;[§ (4,”")
22 e X -e —
- Ejg_ (qi3))2+ (Y, _2:5;:})\/8ﬂc2 qu)sin (E’EA?] . (A3.5)

n —_—

Since the Lagrangian for the field has been expressed as a distribution
of oscillators, the action formed from this Lagrangian is of the form
of equation IV.6. The influence phase can then be written in the same
form as equation IV.8. To facilitate writing the influence phase we
, (t) | ; ;
notice that E: e X is the dipole moment operator, p . The in-
n

fluence phase is then

& T (irwe), [ o)), -G e))
Blusnt) = §%K_1~16;3.£ﬂ Bx cos” (i LY _[(V_ze)g_ i ;] - ]
Girey) ,|Gieey) - (iteey) ) 3. P
+ ’[(i+i€£2 - igcg] ] av + E%K_/ﬁi6§3_!ﬁ Br sin”(k rA)
(A3.6)

The two terms can be combined since they are identical except for the
sing(kogA) in one and cosg(k-gA) in the other. These, of course,

d3k we notice that

add to give unity. To evaluate the integral over

d3k = dkxdkydkz = kgsin © dpdedk in polar coordinates in k space.

In addition, if p 1is oriented along the =z axis, then
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= sin ©

=
o

and

(L - e )v4= v sin ©

Putting in all of these changes

Blun') - L Tf7v2k251n39 d¢d@dkj'[ by - by (e me) Jd
Hop') = 7 Y
2nft 535 % 5 -[(Vnie)z—kzcz‘! -[(v+i€ )2-k2c2]
uv_n_ aa [ X (w_l) Lo S . (837
Zﬁﬁ[ f_[(v_le) _ﬂ ] - [(v+i€) __D_a] )

If instead of a many-particle atom we have a single charged particle

harmonically bound to some center of force, then the above becomes

-X' ) X (X -X")
- -V v 14
§T(x,x 21:16[ [leT( + Ve, ()] dv (A3.8)

where X 1is the displacement coordinate of the particle, e 1is its

charge, and
-
1 _ _f (hegvg_[)_e) d ML
ivZp(v) A 3nc> (v-—ié)g--_()_2

The equivalent distribution of oscillators to which X 1is coupled is

2 2A2
a(n) = —lf—‘i—?— (A3.9)

3ne
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b. Spontaneous Emission Probability of an Atom in Free Space

To compute the transition probability for this stom, we use
second order perturbation theory developed in Appendix II(a) for a
system initially in state ¢n(x-r) and finally in state QSm(XT) when
acted on by an influence functional for a linear system at zero tem-

perature. The expression is

ET’XnnF 1
P = T qu ) s v >0 , (A3.10)
n-m nm v
nm
n#m
=0, vnm<0
E - FE

where Xnm =[ ¢'§(X) X¢m(X)d.X and Vnm = T—

From equation IV.18 and A3.9 we find

1 G vnm) 2egvrl:m
Re( ) = = . (A3.11)
Z 2 3
v 3¢
nm
Using this in A3.10 we find
ue2v2m 2
P = — Xnml T s (A3.12)
n-m 3fc ‘

ntu
which is the first order spontaneous emission probability for an atom in

free space.

Now we can form an expression for the intensity of radiation per

unit time. The power radiated from this dipole is
2 1 he Xnml2 Vnrl:l

® Re(z—) - 2 (13.13)
Vhm 3¢

)lelm n lim/T - ixnm

an expression which 1s almost the same as that for powver radiasted from
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a classical dipole. The expression becomes exactly the same if we
apply the correspondence principle by replacing the matrix element
of the time average of the coordinate of the oscillator by its corres-
ponding classical quantity. Thus, if X 1is the coordinate of the

corresponding classical oscillator (XO is its maximum value) then*

—qnn‘ > <? = %

*That this correspondence is true can be seen easlly as follows. Con=-
sider the dipole, a harmonic oscillator as above, to be in & high
guantum state, @, . Classically the motion of the dipole can be des-
cribed as X = Xpsin wt. We wish to relate the classical value of

<X?> to its matrix element. In a guantum mechanical sense,

& =[¢:(X)X2¢H(X)dx = f[{zﬁz(x)x }:k B ()P (X)X (') ax'ax.

Since matrix elements exist, in the case of a harmonic oscillation only

for k=n-l, k= n+l, we have
=2 2 2
X = | +Ix 1z .

X n,n+l}

n,n-ll

For very high guantum numbers these two terms become nearly equal

since
_ (n+l)é

nf_ 2
n,n+li = 2mw

J

2
Thus, a5 n —» @@ <X2> = 2!Xn n ll . But in the classical
FAC .

1,2 2 1.2
X_ . Therefore, ixn’n_l‘ > X .

=2
case, X =
o

noi



-1hh-

ir [zmnie is replaced by Xg/h then A3.13 becomes the expression

for the power radiated from a classical dipole. If it served a useful
purpose we could continue and relate the classical resistance of s
dipole to the distribution of oscillators G{y1) by equating the

power radiated by the dipole to % 12R where I is the current of

the dipoie.* Our purpose, however, in doing this example, was to show
for a specific problem that the .effect of a distribution of oscillators
interacting on a system is the same as the effect of loss on the system.
This has been done by relating the energy lost from the radiating dipole
to the distribution. It is not surprising that a sea of oscillators
should give this effect. If the dimensions of the box are allowed to be
finite then energy emitted from the system under observation is reflected
from the walls and eventually finds its way back to be absorbed again.
This is equivalent to saying that the number of oscillators comprising
the electromagnetic field in the box is infinite with a finite frequency

spacing between the modes. Since the oscillators are independent there

*If the povwer radiated from the oscillator is related to the classical
expression 1/2 I°R then from equation A3.13 it can be seen that R
is proportional to Re[l/Z(v)] which in turn is related to the distri-
bution of oscillators. One might expect Im[l/Z(v)] to be related to
the reactance seen by an oscillating dipole, a guantity which is known
to be infinite classically. From equations A3.1C and A3.11 we find
that

2 3.2 23

1 he“y2n “a L he®y
Im( e ) == = _()-
z2(v) 1! 3nc3(v2-112) 31tc3

The integral is linearly divergent. This factor is also related to
the infinite self energy of a point charge which occurs both classi-
cally and in guantum electrodynamics. Here this divergence does notb
bother us since 1t never enters into the calculation.

—00
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is no coupling between them and energy coupled into one of the oscil-
lators from the test system must eventually return to it. If the
dimensions of the box are allowed to get infinitely large, energy
emitted from the test system never gets reflected and thus never
returns. In oscillator language this means that the fre@uency spacing
between oscillators has become infinitesimal, so close that a little

of the energy absorbed by each one gradually leaks into nearby modes

and eventually is completely gone.
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APPENDIX IV

Spontaneous Emission of an Atom in a Cavity

In this calculation as in the free space calculation the dipole
approximation will be used in computing the spontaneous emission
probability. The linear coordinates inside the caviiy wiil-be repre-
sented by the vector Q while the time varying coordinates of the

single cavity mode being considered will be X(t) . The Lagrangian

of the system may be written

e 9
L (systen) =L(d,a,,%) + 1, ===« M@ at) + Lleavity)  (ah.1)

Il

vhere g@ is the atom coordinate, @n% gp is the particle coordinate
in the atom, and A 1is the vector potential of the cavity field. The
interaction term 1s the one of interest, since from it we find the terms

that we wish to solve for classically. This term will be put into more

convenient form. Let us write

AlQ,t) = a(@) x(t) (Ak.2)

where

[3@' a(@)a’q = bre® : (Ah.3)

If A does not vary much over the atom, then é(gp)g;é(gp+ gn) and

the interaction term is written

ifalg) | x(¢)

(ak.k)

n ¢

e d
L =0 g x(%)

(Te8,) a(a)
[2(a,)]

where |1 =
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Let us now determine the ratio

U
- (ak.5)
c
classically. The wave equation appropriate for this caléulation
(high Q)* is
. . TR
v - EE e g A-=P = o . (ah.6)
-~ ¢ cq~ °

The atom is located at 9@ and, since the dipole moment is induced,its
is the same as that of the fleld A 1In the

direction on the average

We have then

cavity.
al@)
P= ——45(g-4q,) (As.7)
[g(gp)i P
Substituting AbL.7 and A4.2 into AL.6 we obtain

- 0 (AL.8)

2 i . by a(Q.)
Ox- X Ly ag) - 229 s (g-q)

clalg,)| ?
Multiplying by

(@]
@]

where w 1s the resonant frequency of the cavity.

E(Q)-, integrating over @ , and taking Fourier transforms, AL.8 be-

comes ‘
(vo- 0?4 359) X - l%é%@gl_ (ﬁ)v =0 . (Ak.9)
We find for the ratio ALk.5
v, 2 2 iywy_ c? .
(E(@ )IXV = [v - w + -Er—]TEKa;T—g = 1v Zv
Q

c
*Q is used here as the dissipation factor of the cavity, wyL/R, while

is a vector representing the linear coordinates inside the cavity.
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The influence phase for this is (although it is unnecessary to write

it)

2 2 :
vl le_-nt ) v (e uv)] .

o0
] — l +
Blus) = mé’ [ (iv 7,) (-iv Z_)

From second order perturbation theory we know

2
2T (v .
P = l oo nm' Re(z = ) for vy >0
n'-> m %vl’lm Ynm
nf m
N w?/a [;a_(_@A)l 2
Noting that Re (Z ) = 575 )
Yam [( 2 202 w v c
vi- 0w )T+ __mn
—

Q
and defining a cavity from factor f2—V e
& Y "R T 2

2 o 3
e r wv> /Q
- i nm’ nm s T (Ak.10)
2.2 W Vim ‘
)+ —2

Q

Phom = FAY ( 5

At resonance this expression reduces to

2
8ﬂ , umnl f2 Qvnm l;
Py = TV = T . (Ak.11)

The quantity usually computed is the ratio of the transition proba-

bility in the cavity at resonance to that in free space. This ratio is

. 2 2
P . co8vity [Bﬂ,“nml v, n@f / VAw]T ) 61(C3Qf2

Pom free space [u]p‘mn!E Vn3m/3;ﬁc3] T v an%

.

At resonance, the ratio increases with respect to @ as one might

expect and decreases with respect to the cavity volume V and Vr?m
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This expression agrees with the one given by E. M. Purcell (22)
although the form factor in his calculation was left out. This does
not matter since for a particle located near the maximum field point

in a cavity the magnitude of f 1is of the order of unity.
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APPENDIX V

a. InTluence Functional for the Effect of a Damped Harmonic Oscillator

The problem was formulated in Section IV.lL. From equation IV.2k

the Lagrangian for the total system is

) 12 e ® 52 22
£ (systen) =2, (G,a,0)+ B - 2 4 gx o+ [ Gm>[-§—- v +xxJom.
| |

The influence functional is then from equation IV.25,

T
?(Q,Q")=f6<xT-XT') Fx,x")exp {%[S(X)-s(’x%f (QX-Q'X')d’G}
_mey2 }dx - Dx(5) (IV.25)

where J(X X') 1is the effect of the distribution on X . From equation

IV.8, the explicit form for f}(X,X') is

1 Tt < Gm_)e-iﬂ(t-s)
Fox) = e -4 [ [@eap o] [SR a0

0

R iN(t-3)
- Q) fG(ﬂ>1 afl] | dsat
0

Substituting this in equation IV.25 we have

%(0,Q") fﬁ(xTxT)exp ﬂf{ (5 -q0?)- 2 (X X%+ (@a-q1x') +
(A5.1)

2 . -'SDX'(t)

t
-;—f(xt-x,;)(xsf(t-s)-Xéf*(t-s))ds} dt - 7(){ X!

o0

where  f(t-s) =-jﬁ () e_ifl(t_s)dll (A5.2)
0

N
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If a change of variables is made from X,X',Q,Q' to x,x',q,q' as

defined in equation Al.2,

%(esa') fﬁ(xT)exp Kf[~ ik - m—(gfxx +935—'-+—-—-+fo x! h(t-s)ds

T

-~

t
+ %f Xi';xs j(t-s)dsJ at - Iﬁ% (X2+ x'z) ax ---,@x'(t) (A5.3)
®
where h(t-s) = £(t-s) + £*¥(t-s) [ 2a(n) cos(l (t~s)d L
O

and Jj(t-8)

f

f(t-s) - £*(t-s) =-f ﬂ%ﬁl sin 1(t-s)d N}
0

It is convenient to change the order of integration in the last integral

in the exponent

T t T T
f[ X4X j(t-s)dsat =ff xtxé j(s-t) dsdt . (A5.4)
T 1t T %

In eguation A5.3 we integrate f}'o'c‘dt by parts, substitute A5.4, and

obtain T

Q,Q ) f xT)ex-p { W(X +x! )+ —K(XTX - X x')+ Kf[ Jrg(x')

t

+ ,} x%[ x! h(t-s)ds + %—‘-J dt}de ces HX! - (A5.5)
T
2 q' 3
vhere g(x') = - f'-l .z T x' +——- + foé j(s-t) ds . (A5.8)
A

The procedure here is similar to that of Appendix I. The path integral
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on Dx(t) yields a delta-functional of the path g(x'), i.e.,

6[g(x‘ﬂ . Then the integral on dx, yields 6(&&) and the dx_

integration is Gaussian. Doing all this, equation A5.5 becomes

12 P X
QJ(Q,Q') =[5(X‘I")5(.‘)5[g(x')] exp § - mﬂ%)(}('aq_ —X——é + %j‘[q-tet

w
t
i tt - J ! t 1
+ -Efxtxs h(t s)ds] at dx_rdeﬁx . - (85.7)
T
Again we have the situation that integration on Dy dx; ! means sub-

stituting the classical path g(x') = O subject to the conditions

xé = i% = 0 . Rather than doing this in the time domain, we will go
directly to Fourier transform notation, extend the time interval

(t--c0 to T = +0), and‘simply'substitute the Fourier transform of
the classical path in A5.7. 1In addition, it will be shown later in part
b that as T -0, x'2s (i;e we) = 0; therefore, it will be left out of

the calculation now. All that is left of A5.7 now may be written

0 ' t
i%(q;q") =% f qt:t +1iI [ x;;xé h(t-s)ds {at (45.8)
. -0 ’

-0

where. x; satisfies g[x%] =0 , or in transform notatioh,

o
Baa) =iy [ [q_vx;, +§x:vx;,hv]dv‘ . (45.9)
Zoo
©
vhere h = Jf l(t)h(’c)e"ivt dt . Similarly, equation A5.6 may be
“o :
written .

2 2 i R
g(x;) = g (vi- w )x; + ?; +§ X d, (A5.10)
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a0
vhere j = [ 1(t) 4() eIVt at
-0

Setting g(x"/) =0 we find

q' q)
x!' = - LA, — = —~—JL———7 (A5.11)
v [m(vg- w2)+ % j-v] ("iVZ-v

Putting this in A5.9 and changing the limits of integration we have

(45.12)

; g9, 1 aa (b+n )
$(a,a") = Lm}if[ V+v+iZZv A (ivz)( 1vzﬁJ

Adding and subtracting the term q' 2 (_‘le

1 frafa-a)  al(a +al)
b(asa1) - lmﬁf [ Tz " T ]dv
o

1
inV) this becomes

-v
Q2 .
1 o 1hv+ih_v‘(ivzv)+(-ivz_v)
+8;Kf qvq-V[ vz, ) (-3 _) v . (45.13)
0

From equation A5.11, (<12 ) + (-1v2_ ) = + %(jv- j_,) o that the

last integral in A5.13 is

Vily s
Bnﬁ J[ 2,Z ,2 (hv+ ijv+ b 1J-v)dv ’ (A5.14)
But,
foo) o)
2G( . -ivt
h +ij +h_ —1J J[ o) dfld[-[(cosllt-l sinNt)e + (cosNt
0]
0 oe)
+1 sinﬁ.t)eith dt .—_f () dﬂ.f -1(ve0)t fu“G(ﬂ)ﬁ("‘“ﬂ)dn: 0.
' 0 0



-154-

Therefore, equation A5.13 becomes in terms of Q,Q'

0]0]
el(q_-a' ) @_(q-q)
1 -y e -
#a.0) - 2“ﬁ.j” [ vinV — + -;va - .J W (A5.15)
0 v -V
where
vz, = (- o)- 53,
@ o)
Since - 33 = .2.1_ f j’ (e7HE_ 10ty -ive o
0 0
Fo) o0 ? 4n) an
G ~ive G(N) &
- [ oy d_().f sinfl‘te dt =[ GoIeZhe
0 0 0
then
1z, = -n(- o) + f e dﬂ“ (45.16)
Y (v~ 16) ‘_fl
and
e 6]
2y o TP ) %f i (85.17)
v A vo- Y

b. Demonstration that x;z + i;Z w2 =0, T ~ ~00°

Before showing that the above assertion is true, a physical argu-
ment can be made which makes it seem very plausible. As we already know
the sea of oscillators G(fl) has the effect of adding a finite amount
of loss to the system being considered. If the initial time ~+ is
considered to be infinitely far in the past, then all the transient
effects will be gone at any finite time +t . Thus, it really does not
matter what initial state was used, the influence functional is indepen-

dent of it.
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Mathematically, we can proceed by starting with the equation

g[x'(t)] = 0 . This is from eguation A5.6

T
" 2 b Vo
X+wx"+q'/m+ 5 | X J(s-t)as = 0 . (45.18)
m | s
t

Multiplying each term by %' and integrating from t =7 to t =T
we can write the above as
T

_(2‘_._+.°_°E>_‘.f)
2 2

T, T T
- f EEL at + %'m[f )'(J;xé j(s-t)dsdt . (A5.19)
T T %

T

From the boundary conditions indicated by equation A5.7, x% = 0 and

= 0 therefore equation A5.19 can be rewritten
XT s

> 22 T T
3 t
%-(xfﬁu ) =f tmt dt + %f[ % x! j(s-t)dsdt . (A5.20)
w
T Tt

Extending the time interval to be infinite and changing to Fourier

transforms, the right hand side of equation A5.20 becomes

.12 @ -
W o X -1v xvq--v
— ! ) = tyt 3
s (xT + wz) ( 5rm * T vax-v‘]v>dv
-0
e 0]
——_j.'.._ t gl - 3.‘_ t st
= enm[vxv [ Q' -5 x!, 4 dv . (a5.21)
«-00 .
But from g(xl‘/) =0 we find
2 2 i,
m(vo- w)x!, = -al, g, (85.22)

Substituting this in A5.21,
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2 312 <

_(D—_ '2 T _ i 2— 2 Tt _

5 (XT + --——-wz) = ——21tmf m( v -w )vxvx_vdv = 0
-0

Thus, the initial transients

since the dv integral is antisymmetric.

disappear as was expected.
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APPENDIX VI

Equation VII.20 which is to be putinto transform notation is

as follows:

1¥(g,E') = 7[f E E‘ SF;:;B(t—s)— E;BFdﬁ(t-s)]dsdt . (VII.20)

If we use the notation as before that FOLB(t) = Aaﬁ»(t)+ 1BaB(t) and

change to the variables

e =E + BE'
e' =E - E!
the above equation reads
Tt
1 L QB o P
1y t - - e! ' - ? .
ib(e,e') = i J( [ief eﬁ%xﬁ(t s) ey el Aixﬁ(t s)] dsdt (A6.1)
T T

Converting this to transform notation:

1P(e,e)= ﬁfﬁijﬁdv[ie e B (v)+1e'a B By ( v)- e'a '5A (v) e'ae‘BA (-vﬂ
(46.2)

,5

LB
mr 1 1
Adding and subtracting -ie!” e} BaB(v)+ iev ﬁ( -v), equation

A6.2 Dbecomes

@
ib(e,e")= E%i‘/~dv[iefﬁ(e?-e;ﬁ)gas(v)+ie'3(e?v+el€)Baﬁ(-v)]
0
Q (46.3)
E:;'dev [er® e\'/B(Aaﬁ(v)—iBaﬁ(v‘))Jre;“ elS(AaB(-v)+iBaB(-v))]
6]

Changing back to the variables E,E' this becomes
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id(E,E') = ——%Jfo dv[E'B(E -E' )B ( )+ EB (E -E' aﬁ(—v)]

o0 (a6.4)
L Jf -E' (EB -E'B) (% [A (v) -1B (v)+A (—v)+iB (-v)]
0

The first integral of A6.4 is the same as the first integral of equation

VIT.24 when it is recognized that

B (v) = L
apg’ inaﬁzﬂ
The second integral indicates the power spectrum is given by
Bap(¥) = (B) [aga()-1,0(n) + A (v) B ()] . (46.5)

To simplify this we notice that

Aaﬁ(v) + iBaB(V) =F_(v)

and

Aﬁog-v)-iBﬁog-v) F;O;-v)

Substituting the expressions for F

ap from equation VII.2l, and taking

the transforms

e2paa(x ) ( )b 7 .
¢aB(V) Z 5 B af [exp {_i(V+wba)t} + exp {i(wmba)%jl&t

a,b 0

[

Z Te paa(xa)ab(xﬁ)ba 6(mea)

a,b

(A6.6)

i
™
A
@
Al\)
P4
)
S
&
<
™
S~
o'
o
=
2
<
+
€
=2
S



-159-

If a state of temperature equilibrium exists initially, pbb/paa can

Bl
be written e ab so that

Z e (%) o (X,) o)ba _g;{;_a_ﬁ)s(v%a) . (16.7)

To relate this to the impedance we take equation VII.23 and form the

expression
1 1 e2(Xd)ab(Xf3)ba 1y iy |
(2 )y + (z,) 5, - ;’b 7 (paa-pbb)(v_iemba - "*ie**“ba) (46.8)
Vee(xa)ab(xﬁ)ba
= Zb 7 (Daa-pbb)(-%r)&(wmba)
8,

Substitution of this in equation A6.7 yields

ﬁ[(‘le ¥ (Zl)* ]
Pagl¥) = V[Zg‘}ff - l]v o (46.9)
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