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Abstract 

This thesis reports on work done in applying some of the concepts and architec­

tures found in biological computation to computer algorithms. Biology has long 

inspired computer technology at the level of processing elements. This thesis ex­

plores the application of biologically inspired algorithms at a higher level-that of 

functional structures of the nervous system. The first chapter gives background on 

the attentional/ awareness model of the brain, why it is important to biology and the 

advantages in real-time performance and in learning facilitation which we expect from 

applying it in computer algorithms. 

The second chapter examines the application of this model to a canonical computer 

science problem-the bin packing problem. Approaching this NP-complete problem 

when limited by computational resources and time constraints means that algorithms 

which throwaway large amounts of the information about the problem perform better 

than those which attempt to consider everything. The existence of an optimum in 

the size of a working memory needed to find the best solution under time pressure 

is shown. The transition between the regime of strict time constraints and more 

forgiving time constraints is quite sudden. Chapter 3 presents an analytical model 

for better understanding the performance of various bin packing algorithms. 

Chapter 4 examines the application of the attentional model to a real-time com­

puter game testbed. This testbed is explained, and results are shown which illustrate 
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that in a complex, unpredictable environment with tight time and resource constraints 

conditions, an algorithm which examines only that information which falls into a rel­

atively small part of the playing area can win against player which addresses it all. 

Chapter 5 turns to an examination of the role of reduced informational repre­

sentations upon learning. Solving of various logical-kinetic puzzles by a simulated 

segmented arm is done by a learning system. A logic supervisory subsystem uti­

lizes attentional/ awareness methods to train, and pass control of the different control 

levels of the articulate arm over to, the neural networks, adaptive resonance the­

ory networks, and declarative computer memory which it trains. Finally, chapter 6 

presents an overview and evaluation of the work. 
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Chapter 1 Introduction 

Biology has long served as an inspiration for invention. Humans strive to build 

machines to copy behavior we see, such as the flight of birds and the swimming 

abilities of dolphins. We have imitated the properties of biological materials from 

wool to wood. Most recently, our computers have been inspired by the phenomenal 

capabilities of biological brains, particularly our own. Our desire to mimic the brain 

stems from the abilities it possesses, which are in so many cases superior to computers 

and algorithms we can build today. The brain shows amazing adaptability to a wide 

variety of unpredictable, noisy inputs. It deals gracefully with the unexpected, in 

situations where a creative, ingenious solution, instead of one that is optimal, is 

required in real time. 

Scientists and engineers have explored many ideas in response to this inspiration. 

Most of them have engaged biology at the neuronal level. McCulloch and Pitts 

[2] made an important discovery that neuron network models could be constructed 

to produce any logical function. Later, Rosenblatt [1] developed a mechanism for 

training a perceptron~a neuron modeled in the McCulloch-Pitts fashion~to do input 

discrimination. On this basis, later researchers described the emergent computational 

and memory properties of networks of similar neuron-like models (e.g. Hopfield [3]). 

Subsequently there has developed a rich literature and many important applications 

which take advantage of the capabilities of neural networks. 
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This thesis will explore the biological inspiration at a different level. Instead of 

focusing at the neural level, it will examine what computational advantages may be 

gained from copying the brain at the architectural, or functional level. Specifically, we 

are interested in the role which the important elements of attention and awareness 

play in the brain, and what advantages can be expected by digital computational 

architectures which utilize the same kinds of mechanisms in their operation. 

As a starting point, we take as a broad model of the human computational system 

a proposal by Koch and Crick [5], [7], [6], personal communication, [4]. This model 

is intended to investigate the computational strategy which organisms have evolved 

to deal with overwhelming environmental complexity and still behave in real time. 

Systems forced to behave in real time face special pressures which the more rigor­

ous parts of algorithmic research and computer science have had less success dealing 

with. Confronted with a sufficiently complex problem, such as those described in the 

computer science literature as NP complete [32], we can in principle find an algorithm 

which will solve it. But as the size of the problem grows, the algorithm will take an 

immense amount of computational resources to find a gauranteed optimal solution. 

(If the problem is of sufficient size, the amount of resources may be so large as to defy 

any possibility of instantiating the algorithm.) I argue that biological organisms face 

environments of equal or greater complexity to problems devised by computer sci­

ence, yet they are able to respond in these situations with adequate performance and 

without using astronomical quantities of supercomputer time. How is this possible? 
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1.1 An attentional model 

The attentional model is a hypothesis about how biological brains solve this problem. 

At its simplest, we imagine the environment of an organism as a richly textured, com­

plex sensory environment. We picture the computational resources of the organism 

as containing a high-operational-cost "logic," or "planning," unit. This "logic unit" 

is expensive to operate and much slower than the reflexes the animal employs to ex­

ecute most decisions. In deference to its slower nature, the use of the logic resource 

is restricted by the organism. If the logic part of the brain were allowed to fully 

control the organism, real-time behavior would be radically impaired. For example, 

humans learning to walk on two legs require a great deal of concentration and practice 

to master this complex behavior. If the level of attention required to learn to walk 

was continuously required to move in this way, it is doubtful that humans could do 

so. The learning of the "walking reflex" is critical to free the expensive parts of the 

brain for use in other problems. After walking is learned, one only becomes aware of 

walking when something is wrong: after an injury, for instance, when muscles need 

to be retrained, or when an error occurs, such as tripping over an obstacle. 

Reducing the complex environment to a small number of sensory-motor online 

systems makes it possible to pack a strategy for survival into fewer neurons. The 

question is the strategy the species takes to learning. If the species deals with envi­

ronmental effects at the population level, having planning centers is not the approach 

taken. The online systems evolve to deal with environmental novelties. For species 

which invest more energy in each individual, however, being able to efficiently learn, 
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Computational Model 

Figure 1.1: A simple computational model of the awareness bottleneck. Only a small 
portion of the data acquired through the senses is pa~sed through stages of early 
processing and arouses the attention to P MS it through the awareness bottleneck to 
the slower, serially operating planning and execut ive areas. 

and deal with envi ronmental novelt ies, is an imperati ve. 

As a mechll.nism for learning or for size reduction, then, we believe that a reduced 

representation of the complex environment is critical for t he real-time performance 

of biological systems, and that is why they exhibit the qualities of "attention" and 

"a.wareness. " 

1.2 N eurological Inspiration for the Awareness Model 

According to Crick and Koch [6], the ftlnctiou of conscious awareness in biologica l 

systems is to " ... produce the best current interpretation of the vistlal scene in the 

light of past experience, either of ourselves or of our ancestors (embodied in our genes), 

and to make this interpretation directly ava ilable, for a sufficient time, to the parts of 
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Figure 1.2: The anterior cingtl late cortex (shown highlighted) may play an important 
role in the coordination of attention lI.nd awareness in the brain. 

the brain that contemplate and plan voll1ntary motor 011tPl1t, of one sort or another, 

incll1ding speech." From this biological ftlnction we abstract several principles. First , 

an awareness representation consists of a transformation, specifically, a reductive 

transformation, on current sensory data. That is, the awareness holds in a kind of 

cache state a version of the current information from sensory and remembered data. 

Second, this awareness representat ion is one which provides maximum utility (in some 

sense) to tbe organism. Third, the organism's higher-order planning centers utilize 

this represented information to construct a real-time response to its situation. 

1.3 The anterior cingulate cortex 

vVhile there is no consensus on the matter of where in the brain an attentional func-

tion resides, or even on whether they reside in particl1lar areas of the brain, or are 

holistically derived, there has been attention given to discovering the parts of the 

brain involved in attention ally provid ing data to, or coordinating, biological aware-

ness. In the primate brain, this task may have an important part of its function 

take place in the anterior cinglliate cortex. Several studies exploring tasks which rely 
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Base Neutral Congruent Incongruent 
RED LOT RED RED 

BLUE DOG BLUE BLUE 
YELLOW YELLOW 
BROWN RlN BROWN BRO\\N 
GREEN CAT GREEN GREEN 

ORANGE SOCk. OR·'\:-;GE 

Figure 1.3: The Stroop Task. An illustrat ion of the effects of awareness on perfor­
mance in a simple task. The task is to read either the words in the li st or the color in 
which the words a re printed. The base task has no colored print, but uses the names 
of colors. The neutral task uses colored print, but the words are not the na lTlcs of 
colors. [n the congruent task, the names of the colors are printed in the salTle color, 
and in the incongruent task , they are printed in other colors . People find the base, 
neutral, and congruent tasks very easy. [n the incongmcnt task, it is easy to read 
the words as printed, but very dilliclLlt to read the colors, because of the competition 
with the awareness of what the words say. 

heavily on the ability of the brain to coordinate attentive data. For example, the 

Stroop task [16J, which asks subjects to either read words in a list or name the colors 

in which the words are printed. 

Tn this task, there is a conflict presented by the content of awareness represen-

tat ion and the performance desired (read ing or color naming) . In t hi s and other 

similarly demanding tasks (like generate-use task [14J and task switching [11]), t he 

anterior cingulate cortex is active. More recent experiments [12J, [15J indicate that 

this function of the ACC is tied to its abilities as an error predictor. That is, the ACC 

modulates awareness by its hypothesis a bout the trustworthiness of the data which 

it is coordinating. When it believes t hat the ''reflex'' response wi ll be adequate, it is 

less active. When it believes that the higher order brain functions are necessary to 
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come up with a response, it is active. 

There are other psychophysical experiments which indicate that the bulk of sen­

sory information is not represented to the higher-order brain centers. Change blind­

ness [18] [19], in which even dramatic changes to a visual scene do not "register" in 

conscious awareness, is an excellent example. It appears that the brain relies on sen­

sory information residing in a scene as a kind of memory, and so does not internally 

represent all that information in the more advanced stages of the visual processing 

pathways. This means that there is a data bottleneck between early visual processing 

parts of the brain (the retina, V1) and planning parts of the brain (frontal cortex). 

The phenomenon of blindsight [21] [20] illustrates the fact that some behaviors do not 

pass through this bottleneck, but are dealt with by the on-line systems. A patient 

with blindsight is unaware of visual stimuli, but when confronted with a forced choice 

on a simple visual task, performs much, much better than chance. In addition, visual 

tasks which are typically subconscious in everyone, such as size scaling in grasping, or 

orienting the hand vertically or horizontally to take an object, are performed almost 

normally in patients that are perceptually unable to see the objects being grasped. 

This indicates that there is much visual preprocessing that takes place below the level 

of conscious awareness, and only a select subset of sensory data is represented as the 

contents of awareness, for processing by the frontal cortex. 
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1.4 Why attention and awareness? 

Crick and Koch [6] suggest that the mental mechanisms of attention and awareness 

are tuned to produce a reduced representation (optimal in some sense) which is then 

available to the energetically (and functionally) expensive planning areas of the brain 

to use for decision making. The evidence suggests that there are "zombie" parts of the 

brain which can affect motor responses without the involvement of conscious aware-

ness. The hypothesized reason for the brain's utilization of the awareness "pathway" 

for processing is that it is necessary to have unified planning and decision-making 

by the organism. The 'awareness' subsystem, with its access to explicit memory, can 

deal with more complex scenarios and generate a strategy for action (see also [10]). 

Several reasons can be adduced for this. 

First, a unified basis for decision avoids conflict or inconsistency in the actions 

of the organism. That is, if there are multiple "zombie" agents active within the 

brain, they may alternate in controlling the organism, or their conflicting commands 

may produce no action at all. Second, a unified decision process can be leveraged to 

create a superior memory apparatus, making possible higher-order responses by the 

organism. For example, a digger wasp (Sphex ichneumoneus) will leave a kill outside 

a hole, enter, check the hole out, then go out again and drag the prey inside. If 

the prey is moved, the wasp will simply repeat and repeat and repeat its (zombie­

driven) actions (see [31] ref. [30]). Higher-order, unified, conscious, memory-enhanced 

decision making can decrease these sorts of susceptibilities. Third, a unified process 

allows for long-range strategic plans and forecasts. It makes possible the commitment 
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to a course of action within wider environmental parameters. 

Having a higher "logic" planning cortex is not an unmitigated good. This part of 

the brain is expensive to operate, most importantly in terms of the slower reaction 

times it produces for the organism. Conscious responses in humans slow reactions 

by at least a few hundred milliseconds over the "zombie" reflex system responses. 

For example, startle reflexes in humans range from around 10 ms for the blink re­

flex to about 50 ms for the patellar reflex. In contrast, conscious processing requires 

several hundred ms for responses (e.g. [33]). This cost is born by the organism in 

increased reaction times to predator attacks, and in the inability to take advantage of 

faster-reacting food sources. The hypothesis is that this expensive, slower "planning 

machine," to be used optimally, must be guarded from the bulk of sensory input. 

Thus, the awareness representation must be reduced. The real-time exigencies of 

behavior often require the organism to choose some course of action. That is, the 

costs of doing nothing (sitting and thinking) are often higher than taking some ac­

tion, even if that action is suboptimal. The lack of differentiation for higher-order 

visual resources, or "visual attentional capacity," has been the subject of investiga­

tion [24] as well. Here Lee et. al. found that concurrent discrimination of stimuli 

varying in form, color, and motion show that visual attention performs equally when 

faced with similar and dissimilar dual discrimination tasks (Le. between two dif­

ferent forms versus between form and color). The expectation is that this resource 

limitation extends to other sensory modalities as well. That is, while the semantic 

content of the "awareness" representation may change with modality, as different 
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preprocessing steps for vision/hearing/etc. are activated, the awareness bottleneck 

remains relatively constant in capacity. 

1.5 Awareness and Memory 

The awareness mechanism also seems important for some kinds of memory, both for 

memorization and recall. There has been much interest in exploring the role of event­

related potential as an indicator of this process (e.g., [28]). Differentiation has been 

made for major categories of memory including procedural memory, and semantic 

(or declarative) memory [25]. However, this is not the whole story, and there is 

evidence for subdivisions within those areas for various sensory modalities, functions 

of storage and recall, etc. (e.g., [27], [26]). The role of memory will vary depending on 

the kind of memory involved. For episodic memory, at least, attention and awareness 

seem to form a gateway (e.g. [34]). That is, what is attended to (placed in the 

awareness representation), can enter into episodic memory. What is not attended can 

not. This is an oversimplification, and there are intermediate-term facilitation effects 

from unattended stimuli which show that there must be a memory component which 

operates below the threshold of conscious awareness. As a rule, though, it appears 

that for long-term episodic memory to be formed, the contents must be put through 

the awareness "bottleneck." 

Procedural memory also would seem to have a component sensitive to the contents 

of awareness. Here, though, there is a less definitive, or declarative/factual, element 

which can be pointed to as being represented. Instead, a kind of "concentration" 
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on a task seems to facilitate procedural memory formation. Once this has happened, 

though, attending further to the task does not help and may even inhibit performance. 

For example, a lot of concentration is required when humans are learning to walk, but 

after this has happened, attention to walking is unnecessary. Furthermore, attention 

can then be turned to skills which depend on walking. In many complex sports, 

intermediate levels of skills are learned, and consequently ignored, as more advanced 

skills are taken up by the attentional process to be mastered. 

Why might this be? The awareness bottleneck as a prerequisite for long-term 

declarative memory formation could be to limit the size of declarative memory. That 

is, not every sensory datum collected by the organism is worthy of storage. The mem­

ory capacity of the brain could be overwhelmed, and its recall speed severely reduced. 

Only those data most useful for strategic planning and goal-oriented responses and 

activities need to be remembered. The awareness bottleneck exhibits these filtering 

properties. 

The attentive component involved in procedural memory also appears to be impor­

tant. Here more general concerns about learning may be involved: procedural learning 

must be very generalizable. A strong attentive component may be the important key 

in reducing the amount of "background noise" in the learning environment (by shut­

ting it out as unimportant to the task) and therefore in training a much more robust, 

generalized, procedural response. At this level, though, even though attentiveness 

may be facilitatory, it is not under conscious control. A sense of "concentration" 

may feel demanding, but the function itself is implicit, with no conscious access to 
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procedural memory. 

1.6 Neurological Inspiration for Algorithm Archi­

tecture 

The system described by Koch and Crick is diagrammed below as by Psaltis in Figure 

1.4. The sections of the diagram towards the bottom-the motor/processing modules, 

early processing and error generation-reside in the brain below the level of conscious 

awareness. This subconscious system is a kind of "inner zombie" (at least in human 

beings), which has fast reflexes and extensive procedural memories. The attention and 

awareness are the gateways which present preprocessed sensory data to the higher, 

more computationally expensive parts of the brain (the logic, or planning, cortices, 

and memory). 

The brain as a whole, according to this model, contains many feedback loops be­

tween the "zombie" level parts of the brain and the planning, executive, and memory 

areas. The system as a whole, to maintain a coherent course of action, must be ca­

pable of suppressing either volitional control in favor of reflex-level control, or vice 

versa. 

Ultimately, the true function of awareness in the brain is undoubtedly more com­

plex than that described above. The current state of neuroscience of attention has 

been compared [29] to the state of geography in the fifteenth century: some researchers 

have described in detail isolated sections of new-found beach, but there is as yet no 
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Figure 1.4: Attention/ Awareness System. In this functional model of the role of 
attention and awareness, the pathway incorporating the awareness bottleneck oper­
ates in parallel to the faster "zombie" systems, taking their attentional cues from the 
"error signals" which the wmbie system generates. 
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overall map. We believe, though, that it is not too early to begin thinking about 

the role of attention and awareness in the brain, trying to decipher their mechanisms 

and functions, and beginning to explore how to utilize the insights gained thereby to 

improve computer algorithms. 

1.7 Applying attentional processes to computer al­

gorithms 

What we would like to abstract from the biological functions of attention and aware­

ness is a computational architecture which can aid in performance on the same kinds 

of tasks in a computer system. The awareness/reduced representation/bottleneck 

mechanism in the brain is a very powerful tool involved in real-time, meaningful 

behavior and robust declarative and procedural memory. Specifically, referring to 

the figure, we want to explore ways in which the attentional processing framework 

interacts with other parts of the system. 

One goal will be the demonstration that, for sufficiently complex environments, 

using a reduced representation of the environment allows an algorithm to function 

better when under time pressure. We will examine the details of this in two contexts. 

The first will be an application to a new algorithm for solving a traditional computer 

science problem-the bin packing problem. Despite being easily posed, this problem 

is an example of an NP hard problem, requiring immense computational resources to 

solve exactly for even moderately sized problems. We will propose a new heuristic 
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which employs a reduced representation of the problem space to produce competitive 

solutions under more time pressure than traditional algorithms which do not use such 

a reduced representation. In doing so, we will gain an understanding of the conditions 

under which that happens and the types of problems amenable to this approach. 

The second context is an application to a real-time computer game. In this (in­

vented) game, two players compete to take control of a mutually accessible territory. 

We will explore the conditions under which it is possible for a computer player which 

uses only a small part of the playing field information available to it can win over a 

competing computer player which uses all of it. 

We would also like to understand better what advantages implementing such a 

bottleneck has for memory and machine learning. The tool we use to investigate 

this is a multi-leveled system wherein a computer controlled arm, using algorithms 

developed according to the above model, bootstrap themselves into increasing facility 

in the control of a segmented arm. At the bottom level, the arm's joints must be 

controlled to produce a desired motion. Intermediately, since the arm is moving in 

an environment with obstacles, the arm's motions are collected and learned as the 

basic "gestures," like going around an obstacle, or going straight to the target. The 

system also learns to collect these gestures into sequences of coherent, optimized 

motions which move the arm from one target point to another, effecting the solution 

of different sorts of abstract problems. This integrated testbed will demonstrate the 

effectiveness of the awareness "bottleneck" in facilitating learning at the reflex level, 

and in the interaction between the slower, more optimization minded "planning" units 
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of the model and the faster, procedural, reflex units. This example will emphasize 

the role of attention and awareness as a mediating bottleneck between the logic and 

the reflex systems, and its role as a catalyst for effective machine learning. 
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Chapter 2 The Bin Packing Problem and 

the Match Fit Algorithm 

2.1 Introduction 

The computational abilities of humans and computers are in many ways comple­

mentary. Computers are superior at routine, serialized tasks where high degrees of 

precision are required. Humans are superior at dealing with large and dynamic data 

flows and unexpected stimuli where highly precise operation is less important. One 

contributing factor to this are the differing computational architecture used by com­

puters and humans. Computer algorithms have been designed to approach problems 

with the goal of seeking exact solutions, or at least solutions which are optimal in 

some sense. To do this, they use as much information about the problem domain as 

possible. Biological computation is bound by a different set of constraints. In order 

to deal with a complex and ever changing environment, the computational architec­

ture of the primate brain has evolved to select a subset of relevant information via 

one or more attentional processes and to make only this information available to the 

planning centers of the brain [17J. This bottleneck (which sets the contents of "aware­

ness") permits humans to be very good at generalizing, dealing with novel situations, 

and responding in real time, but less accomplished at finding exact solutions to hard 



Blocks 

.­• 

23 

Bins 

Problem: 
Put the blocks into as few bins as 
possible without overfilling them . 

Figure 2.1: The bin packing problem. This simple problem captures the essence of 
what is difficult about a wide range of computational applications, from trip schedul­
ing to cargo placement to cutting boards from logs. 

problems. 

We would like to explore conditions under which the demands placed on a com-

puter are more similar to those which the brain handles, situations where highly 

complex problems defy exact solutions, and where external time pressure forces rapid 

response, and investigate how algorithms can deal with these constraints. 

The bin packing problem is a promising testbed for this. It is a known NP hard 

problem [15], [5], and is very general, with applications to cutting stock, machine and 

job scheduling, parallel processing scheduling, FPGA layout, loading problems, and 

more [16], [12]. In its most basic form, the problem is phrased thus: 

Given a set S of real numbers in (0,1]' we wish to find the smallest 

possible number k such that there is a partition of S into k subsets, Si, 

i = l..k, with Si n Sj = 0, USi = S, for i =f j, and 'IIs i 2:{Si} ~ 1. 
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One can think of this problem as an assortment of blocks of varying sizes being fit 

into bins of unit size. The goal is to fit the blocks into as few bins as possible with­

out overfilling them. The elegance of the bin-packing problem has attracted much 

attention, including various generalizations such as applications to two and three di­

mensions [1], [13J. Since finding exact solutions for NP problems is believed to be 

computationally intractable, researchers have generally attempted to find heuristics 

which perform well and to analyze this performance. A large number of heuristic ap­

proaches have been suggested. These can be classified into online and meta-heuristic 

approaches. The online approaches (such as the Best Fit algorithm) are in general 

much, much faster than the meta-heuristic approaches (such as genetic algorithms or 

simulated annealing). 

The only known way to solve the bin packing problem (or any NP-complete prob­

lem) is essentially to try every possible solution and see which one is the best. For 

even very small problems, the computational cost to do this can skyrocket. To solve 

a bin packing problem of only 20 blocks, this means that on the order of 1018 combi­

nations must be tried. If one full packing could be tried every nanosecond, this would 

yield a solution in about 50 years. 

While not solving the P = N P problem, "branch and bound" algorithms can 

reduce time needed to find exact solutions to NP problems. These algorithms work 

by cutting off problem branches when it becomes clear that no solution will be found 

in them. If the root of a particular branch of permutations of a bin packing problem 

already takes more bins than the best known solution, that set of permutations need 
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not be examined. These algorithms dramatically reduce the solution time, but they 

have the weakness of having unpredictable (and still very long) running time. If it were 

possible to know in advance which branches could be pruned from the search tree, the 

problem would already be solved. These algorithms, then, are still non-polynomial, 

but their computational explosion is less dramatic than the more brute-force try­

every-solution approach. 

If the goal of achieving an exact solution is sacrificed, meta-heuristic algorithms 

can be used to again reduce the amount of time needed to find a good solution. These 

algorithms, such as dynamic programming, genetic algorithms, simulated annealing, 

the various gradient descent methods, and more, all work from the basis of having 

the complete problem specified, and being able to reshuffle the solutions they have 

created as better solutions are discovered. 

Online algorithms represent the next level of solution time reduction. These are 

the algorithms which do not start with complete knowledge of the entire problem 

(although they may accumulate such knowledge as they solve it). Instead, they 

approach the problem one piece at a time. These kinds of heuristics typically operate 

much, much faster than the meta-heuristics. Some (like Next Fit) operate at basically 

the maximum possible speed at which it is possible to solve the problem. Such 

algorithms have reduced performance relative to meta-heuristic algorithms, especially 

for harder cases which may be specifically designed to probe the weak points of online 

algorithms. 

Since we are most interested in the time-pressured performance of algorithms, 
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we will concentrate on the online class of algorithms. Global algorithms, such as 

reduction procedures [8], genetic algorithms [10], [14], or simulated annealing ap­

proaches, typically take orders of magnitude longer to run than online algorithms. 

These meta-heuristics perform better, but our interest in high performance under 

tight time constraints rules out this class of algorithms. The four best-known online 

algorithms are named Best Fit, Worst Fit, First Fit, and Next Fit, and were analyzed 

by Johnson in [16]. Of these, the two of most interest to us are the Best Fit (BF) and 

Next Fit (NF) algorithms. The BF algorithm (see Figure 2.2(b)) maintains a list of 

all partially filled bins it has used so far and compares each new block with the space 

available in all previously used bins. The bin in which the new block fits with the 

least leftover space is the one chosen in which to place it. If no bin has enough space 

to fit the new block, a new bin is allocated for it. In contrast, the NF algorithm (see 

Figure 2.2(a) maintains no list of past bins. It considers each bin separately and fits 

blocks into the bin until the next one considered will not fit. It then allocates a new 

bin and considers it. 

As a result, the Next Fit algorithm operates very, very quickly. It does only one 

comparison per block in the problem above the bare minimum of packing each block 

into its own bin. The Best Fit algorithm operates quickly compared to meta-heuristic 

algorithms, but comparatively much slower than Next Fit. For large problems (of 

10,000 blocks), this difference can be several orders of magnitude. 

To date, assessment of these various algorithms has largely taken the form of 

worst-case analysis, wherein the worst possible performance is identified, or statistical 
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Figure 2.2: Best Fit and Next Fit algorithms. (a) shows the operation of the Next 
Fit algorithm. NF only checks each new incoming block against one bin in memory. 
If it fits, it is packed, if it doesn't, a new empty bin is selected and the block is packed 
into that bin. (b) shows the Best Fit algorithm. BF checks the new block against all 
bins in memory. It packs the block into the bin into which it fits leaving the least 
space. If the block will not fit in any bin, BF selects a new empty bin and packs the 
block into it. 

analysis, where the algorithm is applied to large numbers of representative problems 

and conclusions drawn about the performance of the algorithm. These measures 

are computationally accessible, but given that the worst-case performance ratio (See 

Chapter 3) of online algorithms is quite low, from 1.7 for Best Fit to 2 for Next Fit 

[3], [7], there is not much room for algorithms which perform dramatically better than 

these. 

The worst case performance ratio for an algorithm is the performance of that algo-

rithm on a list of blocks specially designed to produce its worst possible performance. 

Thus, the algorithm is guaranteed to perform better on any real problem. (This will 

be discussed in more detail in Chapter 3.) 
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2.2 Considerations on the Best Fit algorithm 

While the performance of Best Fit is already quite good, when we consider a time-

constrained problem, where algorithms are under time pressure to produce the best 

possible packing, then we can explore algorithms which have comparable or slightly 

improved performance than Best Fit, but which perform at speeds nearer to that of 

Next Fit. 

The Best Fit algorithm has received a great deal of examination, mostly in dis-

covering facts about its performance ratio. The performance ratio is an important 

quantity in determining the quality of an algorithm, and is defined as 

P = Nactual 

Noptimal 
(2.1) 

where Nactual is the number of bins the algorithm actually takes to solve the 

problem, and N optimal is the least possible number of bins required. That is, the 

correct solution has a "performance ratio" of I-it uses exactly Noptimal bins in 

the solution. The use of the performance ratio of an algorithm is hampered by the 

necessity of knowing the number of blocks in the optimal solution. In all but a few 

carefully constructed (or heavily analyzed) problems, discovering this quantity is very 

difficult. For some problems, this quantity can be found by trial and error, usually 

by finding a solution which can be shown to use the fewest possible number of bins 

(by adding up the sizes of the blocks in the problem). For many test cases, especially 

when sufficiently large, this estimate of the optimal solution is very good [8]. When 

this approximation applies, another way to think of the performance ratio is as the 
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Figure 2.3: Lifetime of bins with various levels in the Best Fit algorithm solution. 
The bars show how long (compared to the total time taken to solve the problem) a 
block with one bin in it remains at a certain level. The very long residency times for 
bins that are quite full indicates that the algorithm is generating bins at these mostly 
full levels faster than it can find blocks to fill them any more. The high standard 
deviation results from the lifetimes of the fullest bins being taken over all the bins in 
the problem, those which were created at the very beginning and those created just 
at the end. 

reciprocal of the average level of bins in the final solution. 

One inspiration for our algorithm is a characteristic of the way in which Best Fit 

treats bins in its interim solutions (see Figure 2.3). Bins below a certain level can 

be thought of as "in progress," that is, actively being used by the algorithm to pack 

new blocks. Above a certain bin level, however, the flow of incoming bins is enough 

to make the algorithm unlikely to work any more with a particular bin at that level. 

Furthermore, the number of "in progress" bins scales well, increasing very slowly even 
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Figure 2.4: Belt Fit bin level plot. The various curves are for different runs of the 
SF algorithm on a 500 block problem. (The algorithm uses around 250 bins to solve 
the problem.) After the algorithm is done, the bins in the solution are ordered by 
level and plotted. The bins are size unity and the blocks are uniformly distributed 
between sizes 0 and 1. 

for large problems. 

Another way to look at th is characteristic of BF is shown in Figure 2.4. The 

level plots shown are the result of sorting the bins in a BF solution of a 500 block 

bin packing problem by their level (how full they are). The knee in the level plot 

indicates the separation of the problem into two groups by the actual operation of the 

algorithm. The few bins to the left of the knee are not very full, and so are in active 

consideration by the algorithm. New blocks are very, very likely to end up in one of 

these bins. Most of the bins lie to the right of the knee and are very full, and so not 

being llSed much by Best Fit in its operation. FUlihermore, the new blocks which 
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do fit in these bins are quite small, and so if they are placed in the bins which are 

being actively considered, they won't have that large of an effect. The arrow marks 

the number of bins at the knee, which is the approximate number of bins which are 

being actively used at anyone time by BF. This number remains quite constant even 

for very large problem sizes. 

2.3 Match Fit algorithm 

We have designed an algorithm which operates in linear time (as does Next Fit), but 

which uses approximately those bins and blocks which Best Fit would use, and whose 

performance is thus very close to that of Best Fit. It does this by maintaining at any 

one time a limited "short-term memory" of bins and blocks, and allocating blocks to 

the bins in short-term memory to fill them up as well as possible. The algorithm's 

operation is illustrated in Figure 2.5. 

The operation of the algorithm (see Figure 2.5) maintains in memory those bins 

which are actively involved in the solution of the problem. It does this by limiting the 

size of its "short-term memory" according to parameter specification, and taking full 

bins out of this short-term memory to keep within that bound. We have introduced a 

memory for blocks, as well. The algorithm matches blocks and bins from its memory, 

which is usually quite small compared to the problem as a whole. Since bins packed in 

this working memory will not be reexamined, the criteria used for matching attempts 

to produce bins which are nearly full. Thus, the algorithm takes advantage of the 

relatively small number of bins in the "active" category for excellent time performance 
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Figure 2.5: The Match Fit algorithm illustrated. The algorithm maintains a memory 
of bins and blocks. On each cycle it attempts to find matches between bin/block pairs 
which are within a small threshold of making a full bin. When it finds such a match, 
it removes the nearly full bin from its memory and refreshes its memory from the 
queue of waiting blocks and/or new, empty bins. If no such match is found, blocks 
are put into bins in which they don't match exactly, but the bin is not removed from 
memory. 
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Best Fit Match Fit Match Fit Match Fit 
3 Bins, 3 Blocks 10 Blocks, 6 Bins unlimited memory 

Performance 0.96 0.90 0.96 > 0.99 
Ratio 
(mean) 

Table 2.1: Falkenauer data test comparison results 

even for large problems (the algorithm is O(n)) with a relatively small (0(1)) memory. 

After each iteration, the memory is replenished from any blocks left unpacked. The 

bin memory is replenished with empty bins. If no suitable matches in memory can 

be found, the algorithm forces placement of blocks into bins which they don't fill as 

well, and then replenishes memory. 

2.4 Performance of Match Fit algorithm 

We have run Match Fit on the Falkenauer [10] test sets and compared its performance 

to Best Fit, as shown in Figure 2.6 and in Table 2.1. These test sets are standard 

collections of bin packing problems assembled by Emanuel Falkenauer. The set used 

in these experiments contains collections of 120, 250, 500, and 1000 block problems 

(20 problems each). 

On the 1000 block collection, which is composed of problems with a uniform 

normalized block distribution on integers in [20, 100] with bin size 150, Best Fit has a 

mean performance of 0.96. The performance of the Match Fit algorithm varies with 

memory size. With a working memory of only three bins and three blocks, it has a 
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Figure 2.6: Performance of Match Fit on Falkenauer data set. The problems solved 
are those with 1000 blocks. The blocks are of integer size, distributed on [20,100] 
with bin size 150. The "full MF" performance is for the algorithm when using no 
working memory constraints. 

mean performance of 0.90. 

For working memory sizes of only ten blocks and six bins, or of six blocks and 

eight bins, the average performance of Match Fit was 0.96, equal to that of Best Fit. 

The working memory size is about 2% of the problem size for performance at parity 

with Best Fit. For larger working memory sizes, the performance gradually improves 

and outperforms Best Fit, and for very large working memory sizes (comparable to 

the size of the problem), Match Fit very often yields optimal solutions (which are 

known for these test problems), with an average performance of 0.994. 

In Fig. 2.7, the algorithms performance on a very large problem (10,000 blocks; 
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Figure 2.7: Performance of MF algorithm on large test problem. 10,000 blocks; uni­
form distribution (0,1] on size. The bins are of size unity. The performance increases 
as the working memory of the algorithm increases slowly towards the performance of 
Best Fit (which is 98%). 
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uniformly distributed in size) is shown. The early saturation of performance suggests 

that Match Fit will do well under time pressure. The reason is that since the MF 

algorithm takes a shorter time to operate, and still can produce competitive perfor­

mance with BF, then when there is not much time to operate, the MF algorithm 

will be able to keep up and perform better than BF. The saturation is comparable 

when either bin or block memory is increased. Of the two, increasing block memory 

offers slightly better marginal performance. This suggests that bin packing algo­

rithms which operate in very resource-limited environments would do well to expand 

the number of blocks they consider simultaneously alongside, or even before, they 

expand the number of partially filled bins they consider. 

Match Fit can perform better on the Falkenauer test set because of the integer 

sizes of the blocks. This means that there are pairs or triples of blocks which combine 

to exactly fill some bins, and many of the solution bins MF finds are of this type. 

When the blocks have real-valued sizes, this does not happen as often, and there 

tends to be more space left over in the bins it packs. 

The asymptotic performance of the MF algorithm on this problem can be seen 

in more detail in Figure 2.8. The saturation of the performance suggests that MF 

will do well under time constraints. From Figure 2.8, we notice that comparing bin 

and block memory, both have similar affects on performance. Of the two, increasing 

block memory offers slightly better performance. This suggests that bin packing 

algorithms which operate in very resource-limited environments would do well to 

expand the number of blocks they consider simultaneously alongside, or even before, 
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Figure 2.8: Asymptotic performance of MF algorithm on large test problem. Here 
the bin memory size is fixed at 10 bins. The problem is 10,000 blocks of uniformly 
distributed size. The bins are size unity. 
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they expand the number of partially filled bins they consider. 

2.5 Time-pressured performance characteristics 

Our primary focus in this investigation is the performance under time pressure of these 

various algorithms. By time pressure we mean the performance of the algorithm in a 

situation where the best solution is demanded from the algorithm after a particular 

length of time. The time constraint is enforced by an external controller, which 

allows the algorithms to run on a problem for a fixed amount of time, and then 

allocates any remaining blocks unpacked by the algorithm at one block per bin. This 

is equivalent to blocks passing a real-life packing machine operated by one of these 

algorithms. If the algorithm could not consider a particular block as it passed (that 

is, if the blocks passed too quickly), then that block would pass outside the working 

area of the machine and be placed into its own bin. Figure 2.9 shows a performance 

comparison between the BF, NF, and a few configurations of the MF algorithm (with 

five bins and a varying numbers of blocks available to its working memory). The 

problems being solved by the algorithms are the packing of the 1O,000-block problem 

(uniform (0, 1J distribution on block size) into bins of size unity. As can be seen, the 

performance of the MF algorithm is intermediate to BF and NF performance. 

An examination of the performance characteristics for the MF algorithm indicates 

that when the algorithm is in its most interesting performance region in terms of its 

time-pressured performance-that is, performing well, but not yet at its optimum 

where it would be best to choose the most possible memory-there is an optimum 
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Figure 2.9: Comparison of time-pressured performance of three bill-packing algo­
rithms. The performance of Mat.ch-Pit, is intermediate to Next Pi!' and Best Pit . The 
t,ime allowed for the problem solution is shown in milliseconds, but will sca le if "­
different processor is used for the problem, while maintaining the general shape of 
the clll'ves. The problem is packing 10,000 blocks uni fo rmly d ist ribu ted in size over 
(0, 1J into uni ty-sized bins. 
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Figure 2.10: Optimality in memory size for time-pressured MF algorithm. Under time 
pressure, there is a performance optimum for the MF algorithm. Too many items in 
memory slows the algorithm down too much, whereas with too few items, it does not 
perform as well. The problem is packing 10,000 blocks uniformly distributed in size 
over (0,1] into unity-sized bins. The time pressure here is 90ms allowed per game. 

in the amount of working memory the algorithm uses. This is shown more explicitly 

in Figure 2.10. The optimal for this case (with five bins) is about 25-30 blocks in 

memory. When fewer blocks are used, the performance is worse because the algorithm 

doesn't have as good a chance of finding good packings for blocks. When the memory 

uses more blocks, the performance also decreases, because although good packings 

are being found, it takes the algorithm longer to find them and runs out of time. 

In the case of the BF algorithm, which is equivalent to a limiting case of the MF 

algorithm where an almost unlimited bin memory is allowed (but using a single block 
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Figure 2.11: Optimality in memory size for time-pressured MF algorithm. Repre­
sentative curves are shown for various numbers of bins used in working memory. 
The problem is packing 10,000 blocks uniformly distributed in size over (0,1] into 
unity-sized bins. 

in memory at a time), the packing is superior, but the time taken is roughly two 

orders of magnitude more. 

The characteristics of this optimum can be seen in more detail in Figure 2.11. The 

nature of the optimum in working memory size is present for all the combinations of 

bins and blocks used in the memory. 

We are also interested in how the optimal strategy changes as the time pressure 

eases. Figure 2.12 illustrates that there is a quite abrupt change in the optimal 
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approach to solving the problem as the time pressure is slowly varied. In this figure, 

the memory parameters of the algorithm were varied widely (from 1 bin and 1 block 

to 200 blocks in memory and 20 bins in memory). For each value of time pressure, the 

various Match Fit algorithms using their memory parameters were run, and the best 

performer was examined. The top plot of Figure 2.12 shows the best performance of 

any of the Match Fit algorithm configurations in solving the problem. The bottom 

plot shows the working memory size (the addition of blocks and bins in memory) 

at this optimal point. We observe a sharp threshold in the parameter space of the 

optimal configuration. Below this threshold, the optimal approach to solving the 

problem is for the algorithm to use a small working memory to best advantage. This 

remains true as the time pressure eases off and the algorithm is able to perform better 

and better. When the performance becomes close to its asymptotic limit, however, 

there is a transition. For time pressures less than this transitional value, the algorithm 

is better off to use basically as much memory as is available to it (the saturation in 

working memory size shows reflects the maximum size of 250 used in the simulations). 

Before the threshold, the performance curves exhibit the clear optimum we anticipate 

for a system solving a demanding problem in real time: there is an optimum in the 

amount of resources it should dedicate to the task. As the time pressure eases off, 

this optimum becomes less pronounced, and the approaches which use more resources 

start to become attractive. 

Why is this threshold so steep? Figure 2.13 presents a way to answer this question. 

Before the threshold, the performance curves exhibit the clear optimum we antic-



43 

10 

" 
0 .9 

" c 
CO 

E 0 .• .g 
" fl. 

"iii 0 .7 

.~ a. 
0 0 .• 

0.5 
10 100 

Time alioy (ms) 
c 300 

,2 
~ 

~ 250 

ro 
E 
li 200 ~ 
0 

'0 
~ 150 
.~ 
2-
0 100 E I ~ 
~ 
m 

50 C 

~ ;: 
0 

~ 1+ I x 

10 100 '--

Time pressure (ms) 

c=J = transition region 

1000 

1.1.. I 
I I T 

1000 

Figure 2.12: The performance of MF 8., a function of time pressure and the corre­
sponding sudden change in strategy needed to achieve optimal performance. For time 
pressures such that the algorithm cannot perform Itt its asymptotic level, the optimal 
strategy is to use a relatively small working memory. The transition between this 
regime-that where it is optimal to use a very small working memory and that where 
it is optimal to use a very Iltrge working memory- is extremely sharp. The error bltrs 
in the top plot show the standard deviation in performance of the memory configu­
ration with the highest mean performance over 10 runs of the simulation. The error 
bars in the bottom plot indicate the standard deviations for those values of working 
memory size for which the performance at a given time pressure was ever the best in 
any simulation run, and so are quite pessimistic. 
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ipate for a system solving a demanding problem in real time: there is an optimum 

in the amount of resources it should dedicate to the task. As the time pressure eases 

off, this optimum becomes less pronounced, and the approaches which use more re­

sources start to become attractive. Their performance curves no longer have humps, 

but start to bend (see Figure 2.13( c)) and eventually simply rise asymptotically (as 

do some curves in Figure 2.13(c) and all in Figure 2.13(d)). When these asymp­

totic curves outpace the curves with maxima, it is more advantageous to select a 

resource-intensive algorithm. There effect which drives this process is the fact that 

the algorithm has an asymptotic performance-with a specific memory size the hump 

in the performance curve flattens as time pressure eases and overall performance in­

creases. As this happens, it suddenly becomes advantageous to use lots of memory, 

because the asymptotic performance becomes higher. 

2.6 Per-block computational constraints 

There is another way to implement a time pressure on the algorithms. Instead of 

limiting the time pressure on the solution as a whole, we can limit the resources the 

algorithms spend on a finer scale, at the per-block level. This is straightforward to 

do with the Best Fit algorithm, we simply give it a certain number of computational 

"tokens" with which to pack every block and require it to use tokens to do memory 

accesses, comparisons, stores, etc. For example, it might cost one token to examine 

the level of a bin (corresponding to a memory access), another token to compare the 

level with a current working block, and so on). Since Match Fit can use mUltiple 
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Figure 2.14: Operation of Best Fit when time constraints are low. The algorithm can 
succeed in keeping an ordered list, and so needs no mechanism to handle situations 
when it fai ls to do so. 

blocks at once, we can become quite fine grained, but not quite to the per-block 

level. Instead, we allocate a certain number of tokens for each block it takes into its 

memory, and let it store up tokens until its memory is full and use them as it solves 

the problem. The same operations require the Match Fit to give up tokens, and when 

it runs out of tokens when processing the hlocks and bins in its memory, it must start 

getting new blocks in. 

What the algorithms do when they run out of time is an interesting decision. For 

the Match Fit, when it runs out of time, it is forced to put all the blocks remaining 

in its working memory into new, empty bins using one block per bin. For example, if 

it was packing six blocks, and got ten blocks per token, it would start with six blocks 

in working memory and sixty tokens. If it could only pack four of the blocks with the 

sixty tokens, the other two would be packed at one block per bin, and then the memory 

would be reloaded. The Best. Fit algorithm we nlll with a variety of exit strategies. 

Figure 2.14 shows the situation Best Fit is intended to face--enough computational 
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resources to perform searches and maintain an ordered list in its memory. 

In the strictest exit strategy (shown in Figure 2.15(a)), the algorithm uses half 

its tokens to conduct a binary search for the best bin. It then packs the block, and 

uses the rest of the tokens to do the insert. When the problem becomes large enough 

so that it cannot find the best fit, it gives up and packs the block in a new empty 

bin. In another strategy (Figure 2.15(b)), the algorithm is not constrained to use half 

the tokens on searching and half on inserting. It is allowed to do as much searching 

as it wants, even knowing that it will not be able to re-insert an augmented bin. A 

third strategy (Figure 2.15(c)) allows BF to keep two lists, ordered and unordered. 

The ordered list grows until the time pressure doesn't allow bins to be replaced. The 

bins are then put in an unordered list, and the ordered list will start to shrink. The 

algorithm behaves in such a way to keep the size of the ordered list right about the 

point where it can do both searches and replacements. If the list grows too large, 

it does not have enough time to replace bins, and so the list shrinks as it packs 

new blocks into the bins from the ordered list. If the list shrinks, the algorithm has 

enough time to finish searching it and to put in newly created bins with blocks that 

can't be packed from the list. The fourth strategy (Figure 2.15(d)) has Best Fit give 

up on keeping an ordered list. As it does its searches and replacements, it simply 

operates until it runs out of tokens and then takes either the best fit found so far (for 

packing) or the best location for the bin found so far (for replacement). For large 

problems, this quickly leads to a list which is barely ordered at all, and "searches" 

and "replacements" are essentially random. The fifth strategy (Figure 2.15( e)) gives 
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Figure 2.15: Various exit strategies we implement for Best Fit in a resource­
constrained environment. (a) shows a strategy where half the resonrces are allocated 
for searching and half for replacing repacked bins. When the resources are used up, 
the new block is assigned to an empty bin. (b) diagrams the case similar to (a), but 
where the algorithm will use all of its tokens if necessary doing the initial search. (c) 
is the strategy where the algorithm maintains an unordered list as well and can do 
searches withol1t replacements if it mns out of resources. In (d) Best Fit does not 
maintain an ordered list any more, but aborts its searches and replacements when it 
runs out of resources, taking the best result up until then. (e) shows the case when 
Best Fit isn' t maintaining an ordered list or doing binary searches, but simply using 
the first part of its list as a "working memory." 
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Figure 2.16: Plots of performance as a function of the number of tokens allowed per 
block (the time pressure as implemented through the use of computational "tokens.") 
The problem is packing 10,000 blocks uniformly distributed on (0,1] with unity sized 
bins. 

up completely on an ordered list and maintains a system whereby all the tokens are 

used to search the first few bins in the list. Newly created bins are placed at the front 

of the list, while replacement bins (which are assumed to be getting fuller) are placed 

at the end. 

The performance of these strategies is shown in Figure 2.16. The different strate-

gies mentioned perform increasing well. The cutoff in performance to 0.5 is due to 

the eventual inability of some exit strategies to perform their searches and replace-

ments with the computational resources as given. Those strategies applied to Best 

Fit which do not give up after their resources are exhausted, but instead compromise 

the assumptions of Best Fit by not doing a complete search, do better. The Match 
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Fit algorithm using a memory of 10 blocks and five bins outperforms all the variants 

of Best Fit under more intense time pressure. As the time pressure eases off, the Best 

Fit strategies improve to eventually all outperform MF. 

The better the Best Fit strategies perform under time pressure, the more they 

resemble the Match Fit algorithm in the sense of using limited information. The 

maintenance of two lists-an ordered and unordered list-is similar already to the idea 

of using a reduced representation of what is important about the problem. In this 

case, the question of which bins are important is arising from the order in which 

the blocks happen to be presented to the problem. The strategies which give up 

on an ordered list, and either operate on essentially random bins in memory, or on 

the bins clustered towards the front of the problem, perform better, but are even 

more similar to Match Fit. The items they examine (whether systematically spread 

through memory or clustered at the beginning) are an even more dramatic reduced 

representation of the memory used by the BF algorithm. 

Figure 2.17 shows how these performance differences evolve during the solution of 

the problems. At the beginning of the problem, the performance increases until the 

memory required overwhelms the available computational resources. At that point, 

the performance either degrades rapidly to 0.5 (for the strategies which give up when 

they cannot maintain an ordered list), or approach some threshold performance level 

for those strategies which abandon the Best Fit memory organization. Match Fit 

rapidly reaches its asymptotic performance level, since it requires a constant amount 

of computational resources, and given those, it reaches asymptotic performance by 
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(d) 

(c) 

(a) One list - search and insert (30 tokens) 
(b) One list - search dominant (30 tokens) 
(c) Two lists - ordered and unordered (30 tokens) 

(d) One list - not fully ordered (30 tokens) 
(e) Match Fit (15 tokens, 10 blocks, 5 bins) 
(f) Best Fit (any strategy, 200 tokens) 
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Figure 2.17: Plots of performance throughout the solution of a bin packing problem. 
The problem is packing 10,000 blocks uniformly distributed on (0,1] with unity sized 
bins. The solution time corresponds to the number of blocks packed out of the total 
problem size of 10,000, so the horizontal axis marks the elapsed time as the problem 
is being solved. Mean and standard deviation shown for 9 trials (BF) and 5 trials 
(MF). 
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SF (any strategy) 
Match Fit (15 tokens, 10 blocks, 5 bins) 
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Figure 2.18: Plots of asymptotic performance in the solution of a bin packing problem. 
The problem is packing 10,000 blocks uniformly distributed on (0,1] with unity sized 
bins. The solution time corresponds to the number of blocks packed out of the total 
problem size of 10,000. Mean and standard deviation shown for 9 trials (BF) and 5 
trials (MF). 

the time it finishes processing the first few batches of blocks it reads. Given enough 

computational resources, of course, any BF strategy will look about the same, and 

the plot is shown for using 200 tokens is representative of any of the strategies. Figure 

2.18 shows another view of this case, where the computational resources available are 

ample for all algorithms. 
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2.7 Conclusions 

The Match Fit algorithm provides an interpolation between several of the interesting 

online approaches to solving the bin packing problem, a classic NP-complete problem 

which has analogs to many other interesting and important computational problems. 

We noted that the bin packing problem is one where we observe a decreasing impor­

tance on additional resources utilized in solving the problem, where the information 

neglected is the "correct" kind. That is, neglecting much of the problem state in the 

functioning of the algorithm need not lead to great performance deficits. We then de­

vised an algorithm which would take advantage of this idea by utilizing a user-defined 

amount of computational resources in its solution of the problem. 

Since we are able to vary the size of the memory available to the MF algorithm 

fairly smoothly, we can smoothly observe the impacts of strategies to solution which 

are resource-intensive and those which do not require so many resources. When not 

under time pressure, we observe classic asymptotic performance behavior with respect 

to the amount of resources used, and this asymptotic performance lies between the 

extremes of the Next Fit algorithm (which uses virtually no resources) and the Best 

Fit algorithm, which uses more resources. When the algorithm is under time pressure, 

however, there is an optimum in the computational resources used by the algorithm. 

This corresponds to the difference between the usual computer and human, or, more 

general, neurobiological computational strengths. When there is less time pressure, 

and when exact solutions are desired, the approach which uses the most information 

about the problem is favored. Under conditions where time pressures are important, 
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it is best to severely restrict the amount of information considered by the planning 

parts of the algorithm. 

Under increasing time pressure, we observe that there is a very sharp threshold 

between the optimal performance of the two approaches. When time pressure is 

severe, that is, there is not enough time to quite get to near-asymptotic performance, 

it is advantageous to select a strategy which uses very few computational resources. 

When the time pressure is not so severe, it very quickly becomes advantageous to 

use very large (relative to the previous case) amounts of computational resources. 

The reason for this is that under intense time pressure, the system switches from 

performance being asymptotic in the amount of resources used to having an optimum. 

Instead of providing a performance boost, having more resources available simply 

"distracts" the algorithm and slows it down as it has to take time to take the extra 

information into account. 

Furthermore, we observe that under per-block time pressure, those strategies that 

are reasonable for the Best Fit algorithm to take to increase its performance begin 

to look more and more similar to algorithms which systematically limit their use of 

computational resources by using only the information in the problem which is most 

valuable. The Match Fit algorithm still outperforms Best Fit in this regime, though, 

because it takes a more systematic view of what parts of the interim solution are 

important and which are not. 

These three lessons-an optimum in the performance vs. resource utilization curve 

when the algorithm operates in time constrained environment, and the sudden transi-
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tion from a limited-memory optimum to a large-memory optimum, and the transition 

of the best strategy for a more comprehensive strategy to take under time pressure 

looking more and more like a reduced representation-using strategy-we believe are 

extensible to a wide variety of computationally interesting problems. The bin pack­

ing problem shares with many other interesting problems the characteristic that it 

is very hard to solve exactly, but relatively easy to get close. When there is this 

smooth measure on performance (instead of the more binary case of, say, the k-SAT 

[11] problem), we expect to observe these three phenomena in real-time algorithms. 
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2.8 Appendix 

Pseudocode of Match Fit Algorithm 

procedure MatchFit 

while (there are unassigned blocks) 

refill block working memory from unassigned blocks 

call FitBlocks 

for (any blocks left unassigned) 

call GauranteeFitBlock 

endfor 

endwhile 

endprocedure MatchFit 

procedure FitBlocks 

for (each bin in working memory) 

for (each other bin in working memory; not counting already compared pairs) 

if (this pair of bins has combined fill levels which cross threshold into "nearly full") 

combine bins, remove both from working memory 

end if 

endfor 

endfor 

for (each block in working memory) 

for (each other block in working memory; not counting already compared pairs) 
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if (this pair of blocks has combined size which are above threshold to "nearly full") 

combine blocks into new bin, remove both from working memory 

endif 

endfor 

for (each bin in working memory) 

if (this block would fill this bin to above threshold for "nearly full") 

add this block to this bin; remove both from working memory 

endif 

endfor 

endfor 

endprocedure Fit Blocks 

procedure GauranteeFitBlock 

set B as Best Fit bin for this block 

(unallocated bin with least empty space remaining when block is inserted) 

if (B exists) 

else 

add block to B 

add block to new, empty Bin 

if (exists empty slot in working memory for new Bin) 

insert new Bin in first empty slot found 

else 

remove fullest bin from working memory 
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insert new Bin in just-freed spot 

endif 

end if 

end procedure GauranteeFitBlock 
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Chapter 3 Modeling of Online Bin 

Packing Algorithms 

3 .1 Introduction 

As mentioned in Chapter 2, most analysis of online bin packing heuristics has focused 

either on the mathematically accessible worst-case performance of the algorithms 

(e.g., [3], [1], [7]) or on statistical approaches (e.g., [6]). In this chapter, we will be 

concerned with modeling the online algorithms we've discussed in terms of both their 

behavior under time pressure and, in the case of the Best Fit algorithm, in developing 

a way to estimate the expected performance of the algorithm. 

3.2 Worst-case performance bounds 

The worst-case performance bound for a bin packing algorithm was explored by John­

son et al. [1] and subsequently others, such as [8]. The worst-case performance ratio 

is defined for a bin-packing heuristic as the least value 1/ such that ';;:;fi? for all L, 

where Ph(L) is the performance of heuristic h on the list of blocks L, and OPT(L) is 

the optimal performance for that list. 

As noted in Chapter 2, the worst-case performance bound for the Next Fit algo-
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rithm is 2, and the bound for Best Fit is 1.7. The trick to constructing these lists 

lies in two facts about these online algorithms. The first is that they have to handle 

the blocks in the order they are presented. This is part of what makes them "on-

line" algorithms, and means that the order of the blocks in the list is very important. 

The second fact is that these algorithms do not reassign blocks based on subsequent 

information. 

The strategy for composing the worst-case list for Next Fit is shown in Figure 3.1. 

III N blocks fit in N/2 bins 

000 

000 

N-I Bins 

Worst-Case Performance P = 2(1-1) 

Figure 3.1: Worst-case list construction for the Next Fit algorithm. The blocks are 
constructed as indicated from bins which are completely filled and then ordered in 
presentation as indicated by the numbers on the blocks. The bottom half of the figure 
shows how the blocks are placed in bins by the algorithm. 

The Next Fit algorithm can be induced to perform very badly, because it only 

takes into account one bin at a time. This results in very fast operation, but in the 

worst case, it can be fooled into packing many bins almost empty. 

The partial strategy for composing the worst-case list for Best Fit is shown in 



N blocks fit 
in N/3 bins 
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t-2e [:::J [:::J [:::J - Smallest blocks entered first 

t+eDDD 
!+e 0 DO-Largest blocks entered last 

Nil 8 bins level ~ 1 N/6 bins level ~ 2/3 N/3 bins level ~ 112 

Worst-Case Performance P = t ,::; 1.66 

Figure 3.2: Worst-case list construction for the Best Fit algorithm. The blocks are 
constructed as indicated and then arranged from smallest to largest. c is some very 
small number. 

Figure 3.2. 

Here the situation is more complex. Since Best Fit has a memory, it will not fall 

into the same trap of packing many bins mostly empty. It will find such bins in its 

memory and fill them better. (In fact, BF will perform optimally on the worst-case 

NF problem.) The worst that BF will do is when presented with blocks very close to 

1/ N where N is an integer. Figure 3.2 shows the trick. The blocks are chosen such 

that the smaller blocks are slightly under the 1/ N point and the larger blocks are 

slightly over. When presented in order, this means BF will pack the smaller blocks all 

together, and then when it comes to the larger blocks, it will have to leave the bins 

more empty (up to half empty for blocks sized 1/2 + c). The case shown produces a 

performance of 5/3 but it can be extended to produce worst-case performance bound 

of 1.7. 

This same strategy can be used for Match Fit, and, in general, for any online 
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algorithm with finite block memory (provided it is sufficiently high performing). This 

means that the worst-case performance bound for Match Fit, and for any bin packing 

non-reallocating algorithm which uses a finite memory size, is 1.7. Match Fit will 

perform better than Best Fit on the transitions between the different block sizes for 

this list, but asymptotically, that does not impact the worst-case performance. 

The reason is that we can always prepare sample problems following the strategy 

of Johnson, which exploit the non-reallocating nature of the algorithm by tricking 

it into packing many bins only half-full. In the case of the Next Fit algorithm, the 

worst-case tricks the algorithm into packing many bins less than half full, producing a 

worst-case performance ratio of 2. When addressed to (sufficiently high-performing) 

algorithms with memory, this strategy cannot work. The algorithm is not susceptible 

to the method of presenting blocks alternating between large and small, because it has 

a memory: it will find the bin created two steps previously and use the still-mostly­

empty bin. Thus, it cannot be fooled into packing many blocks mostly empty-if it 

has a memory greater than Next Fit (which is the smallest possible memory for an 

online algorithm to have), it will not fall into the trap which NF does. However, if 

the algorithm has a finite memory, a problem large enough exists so that the method 

used by Johnson et al. [1] can apply. 

For algorithms with unlimited memory which nevertheless pack a new block as 

soon as it comes in (such as BF) the bound will hold. For those which have unlimited 

memory but do not pack a block as soon as it comes in (such as Best Fit Decreasing, 

where the blocks in the problem are sorted in decreasing order of size and then BF 
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is run on the resulting list), this bound will not hold. However, such algorithms are 

not "online" any more, in the sense that they must deal with the problem as a whole 

(in order to sort it, assign genetic algorithm markers to the blocks, etc.). 

Even reallocating algorithms are subject to this bound, so long as they use a finite 

working memory. Asymptotically, the problem can be made large enough to swamp 

their memory, and since all the blocks in the list are the same size, there is no benefit 

in reallocating the packing. These algorithms have the potential to perform better 

on the transitions between block sizes than BF, but again, this does not change the 

asymptotic bound. 

For a large class of online algorithms, then, including Match Fit and Best Fit, the 

best possible worst-case performance bound is 1.7. For a larger class, that is, those 

that use their memory advantageously, the worst-case performance bound is less than 

2. 

3.3 Time-constrained performance modeling 

We know turn to constructing time-constrained performance models for the three 

algorithms, Next Fit, Best Fit, and Match Fit for the case where time constraints 

are implemented as an overall problem time constraint. The time pressure considered 

here is the same as the problem-level constraint in Chapter 2-the time constraint 

is enforced by only allowing the algorithms to run for a fixed amount of time, after 

which any unallocated blocks are packed at one block per bin. 
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3.3.1 Next Fit 

For NF, the time order of the algorithm is P rv t. So for a problem size of N blocks, 

where NF has an asymptotic performance Po, the performance will be 

(3.1) 

This means that the overall performance will be a weighted average of the perfor-

mance of NF on the portion of the problem that it solves, and the performance on 

the portion it does not solve (which is 2). 

The size of the problem processed by NF in time t is 

N 
NNF =-t 

to 
(3.2) 

where to is the scaling time which is the time needed by NF to solve the problem 

when there are no time constraints imposed. Combining, 

1 
P= t e ) 2+---2 to Po 

(3.3) 

As can be seen in Figure 3.3, this fit corresponds very closely to the observed data. 

3.3.2 Best Fit 

For Best Fit, we have the same kind of analysis, with 
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Figure 3.3: Time-constrained performance model for Next Fit. The line is the model 
and the circles are the simulation data. 
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N 
p= ~1~------~-------

PoNBF + 2(N - N BF ) 
(3.4) 

and 

NBF=aN [t 
V~ 

(3.5) 

which give 

p= 1 
2 - a fI(2 - ..1..) V to Po 

(3.6) 

The fit of this to the simulation is also very close, as in Figure 3.4, this fit corre-

sponds very closely to the observed data. 

3.3.3 Match Fit 

The situation for Match Fit is more complicated. The algorithm doesn't always 

perform the same actions in an iteration, since what it does depends on the blocks 

and bins it is actually working with (and what it had on a previous iteration), so 

the performance model is not simply quadratic or linear with the size of the working 

memory. We can use a fitted model to understand better how the performance of 

the algorithm, and the time it takes to execute, vary with respect to the size of its 

working memory in blocks and bins. 

The model used for fitting the time order of Match Fit is a cubic log model: 
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Figure 3.4: Time-constrained performance model for Best Fit. The line is the model 
and the circles are the simulation data. 
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Figure 3.5: Time order model for Match Fit. Plots are shown for one bin in working 
memory, and for seven bins in working memory. The solid lines are the model fits, 
and the circles are the simulation data. 
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t = a (log memory blocks)3 + b(logmemory blocks)2 + c log memory blocks + d (3.7) 

From inspecting the algorithm, it is not immediately clear that this model should 

provide a good approximation to the algorithm execution time. However, the exe­

cution time is close to quadratic when seen on the log scale. The reason for this is 

that there are two competing effects in the algorithm. First, as the number of blocks 

in working memory grows, the algorithm takes longer per cycle to work through its 

memory. This is offset, though, by the "short-circuit" effect of the analysis: if the 

algorithm finds a good match which places a bin over the threshold into the "very­

nearly-full" category, it does not reexamine that block or bin-it packs the block 

and moves on, and does not need to reassess that block or bin in the future. As 

the number of blocks in working memory grows, it becomes more likely to find such 

short-circuiting matches. This effect is especially strong when there are small num­

bers of bins in memory. As the working memory grows larger, though, despite finding 

some short circuits, the algorithm still has to examine large numbers of blocks. This 

is especially true when there are few bins in working memory, and for the case of one 

bin, the curve is very nearly quadratic on the log scale. As there get to be more bins 

in the memory, the quadratic effect of still having to process through those blocks 

which don't find matches becomes much less important, since there is more and more 

of a chance that all will find good matches. So as the number of bins in memory 

increases, the algorithm settles to close to steady state performance corresponding to 
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Figure 3.6: Fits of the time model parameters with bin memory size for Match Fit. 

good probabilistic match-finding for all blocks in working memory. 

The reason the curve is most clear on the log scale is due to the combinatorics 

involved with the distribution of sizes on the blocks in the problem. If the blocks 

were distributed differently, the scaling would change somewhat. 

Figure 3.6 shows quadratic fits to the time order parameters discussed previously, 

as the number of bins in memory changes. The quadratic changes with bin memory 

size relate to the operation of the algorithm: the pair-wise matching of the bins to 

blocks in memory indicates that changes to the parameters will come quadratically. 

These considerations leave us with a 12-parameter model which does quite well in 

approximating the time-order performance of Match Fit. Such a complex empirical 

model is only necessary due to the fact that the algorithm doesn't always behave in the 

same way. Given different problems, it may take less time to operate. Nevertheless, 

we can place a firm O(N) boundary on the execution time, which grows quadratically 
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as the memory size increases. This is because the algorithm will make at most W 2/2 

comparisons, where W is the size of the working memory used. 

We now turn to an empirical model of the performance attained by Match Fit. 

The performance model for the performance data shown in Figure 3.7 is exponen-

tial: 

P = aeb(memory blocks) + c (3.8) 

An exponential model of performance matches the above interpretation of the 

model for algorithm execution time. Since performance depends on the ability of 

the algorithm to find matches between bins and blocks, then as the size of working 

memory increases, the performance should improve as well, and the rate of improve-

ment should go proportionately to the size of the memory. Since the performance 

must saturate as memory grows larger, a single exponential is the simplest model. 

A double-exponential model fits the data even better at this level, perhaps reflecting 

the modes of matching performed by the algorithm: blocks with other blocks and 

blocks with bins. We do not observe the same smooth change of fitting parameters 

as the number of bins is varied, however, so we achieve better overall modeling with 

the single exponential approximation. 

The time and performance models are combined for Match Fit in the same was 

as for Best Fit and Next Fit: 

(3.9) 
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Figure 3.7: Performance model for performance vs. block memory of MF algorithm. 
The fits are exponential. 
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Here Po is gotten from the performance model, and 

t 
NMF=N­

to 

where to is the value from the time model discussed above. 

(3.10) 

These models give a very good account of the behavior of Match Fit, as shown in 

Figure 3.8 
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Figure 3.8: Results of the Match Fit model. The plots are the optimal performance 
for various memory configurations of MF vs. time pressure, and the number of blocks 
in working memory at that optimal point. 

As can be seen, the model predicts very accurately the optimal performance be-

havior, as well as the threshold in optimal strategy as time pressure eases off. 

3.4 Expected performance of Best Fit 

The Best Fit algorithm has received a great deal of examination with regards to find-

ing worst-case performance bounds and empirical performance. Since most realistic 
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problems do not resemble worst-case examples closely, another important measure of 

the quality of an algorithm is probabilistic: what is the expected performance ratio of 

the algorithm. Although the Next Fit algorithm has been successfully examined using 

this criterion [2], there has not been a successful analysis on the expected performance 

of BF. In this section, we will develop a method for estimating the performance of 

Best Fit on problems of blocks with sizes uniformly distributed in (0, 1J and bin sizes 

of unity. 

We begin our probabilistic analysis of the BF algorithm in an examination of the 

expected performance ratio assuming a uniform probability distribution on the sizes 

of the input blocks. By the level of a bin, we will refer to the sum of the sizes of all 

blocks that have been placed in that bin. A key element in our analysis will be the 

idea of a 'gap' in the level diagram. If we arrange the bins currently being used by 

the BF algorithm by ascending order in their level, we will have a curve which looks 

something like Figure 2. A gap in the level diagram, then, is the space between two 

successive levels in this sorted arrangement. For example, a gap of 0.1 would arise if, 

in their sorted order, there was a bin with level I and the next bin had level 1+0.1 

(See Figure 3.9(c)). 

Referring to the curves of Figure 3.9, we can think about the levels of the bins 

as falling into three regions. In the fullest region (above the knee of the curve), the 

sorted levels will be closest together after the algorithm has been running for a while. 

In the complementary region, located at levels less than one minus the level of the 

knee, there will be no bins: blocks which would fill the bin to this low level would 
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Figure 3.9: Bin level diagrams for ascending-fullness-sorted bin levels in a Best Fit 
algorithm solution of the bin packing problem. (a) The colors correspond to different 
trial runs (b) One specific trial run (c) Illustration of gaps in level diagram. 
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e 

Figure 3.10: The gap size g around a position () is given by finding the levels (k and 
l) of the bins with levels adjacent to () (when the bins sorted by ascending order by 
level). The gap about () is the difference in level between those two bins. 

instead be placed by the BF algorithm in the many bins that are almost full. Between 

these two areas is a region of more active interest. Here an equilibrium will develop 

as the algorithm operates: if the bins are too dense (that is, the gaps are small), the 

algorithm will deplete the region of bins as it finds good matches and moves the bins 

higher in the sorted order (very near the top or nearly full). If the bins are too sparse 

in this region, the algorithm will find blocks for which a good match is unavailable, 

and will start to populate the area. 

Referring to Figure 3.10, we would like to derive the form of the distribution on 
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the gaps occurring in the BF algorithm. Specifically, for some point e which is in 

the "region of active interest," that is, greater than one half (only one bin can have 

level less than one half at any given time) but less than the threshold value, we'd like 

to know f(g), the probability distribution function (PDF) on g, the size of the gap 

which surrounds e. 

To find this distribution, we approach from the problem probabilistically. That 

is, we can write that 

f+(g) = J f(g, x, b)dxdb (3.11) 

or, using the marginal distributions: 

1+(g) = J f(glx, b)f(x)q(b)dxdb (3.12) 

where f+(g) is the PDF after some block has been placed, and f(g) is the PDF 

before this block has been placed. x is the gap about e before the block placement, 

and b is the size of the block. q(b) is the PDF of the blocks, as set up by the problem 

statement (here we will consider a uniform distribution on the block size). 

Since we know q(b), and we will assume that f+(g) --t f(g), all we need is to 

write down an equation for f(glx, b). There are regions of the values of x and b which 

change the form of this distribution. For x < g, we have the situation as diagrammed 

in Figure 3.11. The gap size before block placement is smaller than that after, so the 

gap about e must increase. In order for this to happen, the block must be placed by 
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BF into either the bin at level I or the one at level k. That is, it must fall either into 

the gap about 0, or into the gap above this one. 

g-x 
, II • 

original gap size - X 

X 
III I 

new gap size g e 

k 

Block ra lls into next gap 

g-" 
• I 
j 

new gap size g 

Figure 3.11: If the post-fitting gap size 9 is more than the prefitting gap size x, it 
must be because a block either fit into the gap about () , or into the gap adjacent to 
that one. 

For the PDF for x < 9 (see Figure 3.11), then, we have J(g lx, b) = J(g - x) , which 

is the probability that the adjacent gap in one direction has size 9 - x or that the 

one in the opposite direction does. These cases have different requirements on the 

value of b, however. [n the first, b E (t, k); in the second, bE (k , j). These cases are 

slimmed to give 

9 1 

l+(g) IX<9 = J J(x)f(g - x) J q(b)d/xlx (3.13) 
o I 

Taking q(b) = 1 (the uniform distribution) , and knowing that j - 1 = 9 gives 

9 

J+(g)IX<9 = J gJ(x)J(g - x)dx (3.14) 
o 

Or, looking at it another way, when x < g, I+(g) is the product of the probability 
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of a block falling into either the gap in question or the next one, and the probability 

of that gap being the right size to sum to g. 

size = X 

I 

e e 
Figure 3.12: The post-fitting gap size 9 is less than the prefitting gap size x about 
8. One way for this to happen is for a new block of just the right size to be packed 
in a new bin. 

When x > g, the gap has shrunk, so a new bin must have been created which 

falls into the previous gap. There are two ways this can bappen. First, a new block 

might he created that is larger than 0.0, and so fits in a new bin whlch has a level 

between I and k (Figure 3.12). Second, the block might fit in an existing bin and 

cause its new level to be between I and k (Figure 3.13). Considering the first case, 

there are two possibilities for how the gap about 8 could change to size g. One is 

that the new bin might be at level k - g, and 8 E (k - g, g), the second is that the 

bin might have level 1+ 9 with 8 E (I, I + g). For either case, if we assume that 

the probability distribution of the position of the 8 within the gap is uniform, the 

probability that 0 will satisfy the requirements is ;. (Recall that x > g.) Since there 
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Figure 3.13: The post-fitting gap size 9 is less than the prefitting gap size x about 
e. In the second case, this has happened because a block has fit into a bin of lower 
level. 

are two possibilities, f(glx, b) = ;c5(b - (k - g)) + ;c5(b - (l + g)). This means 

00 1-/ 

f+(g)lx>g,casel = J f(x)~ J [c5(b - (k - g)) + c5(b - (l + g))] q(b)dbdx (3.15) 
9 l-k 

The limits of integration encompass the c5 functions, so 

00 

f+(g)lx>g,casel = J f(x)~ [q(k - g) + q(l + g)] dx 
9 

Taking a uniform distribution again (q(b) = 1) gives us 

00 f(x) 
f+(g)l x>g,CaSel = 2g J ----;-dx 

9 

(3.16) 

(3.17) 

The second case is more difficult to analyze. So far in our analysis, f + (g) has been 

independent of e. In the present case, this is no longer true. To see why, we need to 
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examine the way in which a new block will combine with an existing bin to impact 

the gap of interest. 

In order for this to happen, the block must not be able to fit in the current gap, 

that is, b > 1-1 > 1- k > O. This implies that b > x. Also, since the block fits in the 

gap described by bins with levels n, m, we have that n + b > I. Combined with the 

fact that I ~ m, this indicates that b > m - n. We can now examine the probability 

of this case by integrating over suitable ranges for the block size and the size of the 

gap into which the block falls. But how large can the gap into which the block falls 

be? This depends on e. Intuitively, when e is small, it is easier to find combinations 

of block sizes and gap sizes to combine to impact the gap. When e is large, there is 

less of a chance of doing so. 

Mathematically, we can say that the probability of getting a block/bin combina­

tion at the right place in the gap about e is equal to the product of the probability 

of a certain sized block coming along and the probability that this bin will land in a 

gap which will have the property of moving the bin on its low side to the right level. 

Since we're examining the marginal distribution f(gJx, b), we know b (we'll integrate 

it out later), so we are faced with the problem of finding the probability that the gap 

described by b and x will actually have this property. This probability, since the BF 

algorithm guarantees that a block will be placed in a bin of a particular level (which 

we're calling n), is the probability that the gap which has bin level n as one of its 

endpoints will be of the right size to make the assumptions meaningful. If this gap 

is too small, then the block wouldn't have landed in the gap in the first place. If it 
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gets too big, it will bump against the gap about () which is the target. This places 

bounds on the size of the gap, and since we know f(g) the distribution on the size of 

the gap, we can just integrate to find the probability of the gap being that big. 

The inequalities forming the bounding conditions on the gap at n are 

b> 1-m (3.18) 

m ~ l (3.19) 

The first inequality comes from the larger condition that 1 - n > b > 1 - m, 

which is the condition that the block end up in the gap at n in the first place. Let 

h = m - n be the size of the gap at n, then the first inequality above gives: 

b> 1-m 

b + n > 1- m + n = 1- (m - n) = 1- h 

h> 1 - b - n = 1 - (b + n) = 1 - (l + g) = l-l- 9 

h>l-l-g 

Where we have used n + b = l + g. Taking the second inequality yields: 

m ~ l 

m~n+b-g 

m-n~b-g 

h~b-g 

So we have an inequality that b - 9 > h > 1 - l - 9 and the probability we seek 

b-g 
is J f(h)dh. This will yield a function of b, l, and g. We will integrate over b, or, 

l-l-g 

more precisely, over b > x, since we derived this constraint on b earlier. We need to 
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integrate out the dependence on I however. We have assumed that e occurs randomly 

within its gap, which means that in the gap after block placement, e can be anywhere 

in (I, I + g). (Note that this is not strictly true, since if e + 9 > 1 then I must be 

limited. We maintain the assumption since we're interested in values of e beneath 

the threshold.) This means that the PDF of I is uniform on (e - g, e). Integrating 

out I, then, introduces the dependence on e which we expected: 

9 b-g 

J ~ J f(h)dhdl 
9-g 1-I-g 

(3.20) 

This is the equation for one possibility of producing a gap of size g. Following a 

similar approach for the case where n + b = k - 9 yields this probability: 

9+g b-g 

J ~ J f(h)dhdk 
9 1-k+g 

(3.21) 

Combining terms and integrating gives 

f+(g)lx>g,m,,' = 1 f(x) Ill, t£: /(h)dhdl + 7lI f(h)dhdk] dbdx 

(3.22) 

We now turn to the case where x = g. For this case, f(glx, b) = 8(g - x) so long 

as the block size b is "correct," meaning that it doesn't combine with existing bin 

levels to change the size of the gap about e. Where does this happen? If we imagine 

the possibilities for b, when b is small, b < 1 - j, it will not interfere with the gap 

about e because it will go into a bin with a level higher than the one at the top of the 
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this gap. For 1 - j < b < 1 -l, the block will fit into either the bin at the bottom of 

the gap (of size l), or into the bin at the top of the gap. Either occurrence will cause 

the gap about e to increase in size. The interval between 1 -l and 1 - k is simply x. 

The interval between 1 - k and 1 - j can be integrated out: it is a gap of unknown 

size, and so has the probabilistic value g. Similarly, when b is larger than k, it will 

go into a new bin of its own with a level large enough not to interfere with the gap 

about e. This will also be true for ~ < b < l. For l < b < k, however, the new bin 

will come into the gap about e and cause this gap size to decrease (this was the first 

case of x > 9 above). 

For 1 - l < b < ~ the story is more complicated: this is the regime of the second 

case above of when x > g, and to assess whether the block combines with an existing 

bin to change the size of the gap about e follows analysis of the same sort which we 

employed in that situation. From the inequalities 

b> I-m 

m~ l 

l<b+n<k 

we find that 1 - k < h < b are the limits on h, the size of the gap into which the 

(}+g b 

block falls. This yields a probability of J .1 J f(h)dhdl for this range of values for 
(J 9 l-k 

the block size. Putting these together, then, we have 

1 1 

f+(g)lx=g = J J f(x)f(glx, b)o(g - x)dxdb = f(g) J f(glb)db (3.23) 
o 0 

And 
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1 O<b<l-j 

o I-j<b<l-l 

f(glb) = (3.24) 

9+g b 
J ~ J f (h) dhdl 1 - l < b < ~ 
o 1-I-g 

1 

o l<b<k 

1 k<b<l 

So 

(3.25) 

Putting these together gives this result 

{ 

0 ~ b } 
f+(g)lx=g = f(g) 1 - 2g - 9 - J ~ J J f(h)dhdbdl + 

O-g 1-11-I-g 
9 
J gf(x)f(g - x)dx+ 
o (3.26) 

2g J f~)dx+ 
9 

00 1 [0 b-g 9+g b-g 1 I f(x) £ oig ~ 1-Lg f(h)dhdl + £ ~ 1-[+9 f(h)dhdk dbdx 

If we assume that packing a single block will make negligible changes to f(g), 

we have an integral expression for f (g) which depends only on the distribution on 

the sizes of the input blocks (here, the uniform distribution has been folded into the 

equation). 
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Once we have the distribution on the gaps in the region below threshold, we can 

use that to find the contribution of blocks falling into this region make to the PDF 

of the levels of bins around threshold. If we denote this PDF as h(l), then we know 

that a block must land in a gap larger than 1 - l in order to end up with a bin of 

level l. This means that 

00
1 

00 

h(l) = J ggf(g)dg = J f(g)dg 
1-1 1-1 

(3.27) 

because gf(g) is the probability of the block landing in a gap of size g, and the 

block size will be distributed uniformly within this gap distance. 

Since the contribution of blocks of sizes larger than the threshold, or smaller than 

one minus the threshold, will be uniform, it will be this contribution to the PDF 

from blocks coming from below threshold which will determine the shape of the level 

diagram. 

The gaps in the level diagram occurring as the BF algorithm operates will have 

approximately an exponential distribution, as shown in the example case of Figure 

3.14. If we consider the function N(x) as the number of gaps of size x, then llN will 

be proportional to the gap size x itself, since for a uniform distribution, the chance of 

finding a new block which will be inserted into that gap (and thus removing it) is just 

proportional to x. Since the distribution is approximated by NN(X) , it too will have 
total 

an exponential distribution (Ntotal is the total number of gaps in the approximation). 

For larger gaps, the deviation from the predicted curve is larger than for the 

smaller gaps. This is for two reasons. First of all, there are not as many gaps during 
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Figure 3.14: Distribution of the gap sizes during the running of the Best Fit algorithm. 
The fit is with an exponential. 

the statistical run of a single test (which our example records) and so deviations will 

be larger. Second, the assumption we made - that when a gap is removed by a block 

it will disappear without affecting the gaps in this region of interest - is strictly true 

only when the gap itself is small, and so a block which is placed into the bin by the 

BF algorithm fills it very full, and places it above the knee of the curve and out of 

our region of interest. For gaps of sizes larger than this, there is a probability related 

to its excess size that it may remain (after having a block added) in the region of 

interest, and so our neglect of this factor is more important. 

The distribution of gaps in the region of interest, then, is given by 

1 
f(x) = _e-ax 

a 
(3.28) 

where a is the exponential decay constant. 
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Chapter 4 The Desert Survival Game 

4.1 Introduction 

Computer games are an attractive testbed for cognitive modeling (e.g., [9]). Agre and 

Chapmen [10] point out some of the benefits in using a computer game (Pengo, in their 

case) as a testbed for such modeling: the environment is complex but specified by the 

experimenter, there are real-time demands placed on any player of the game, the play 

is uncertain, meaning that predicting the actions of other players, or artifacts, in the 

game is nondeterministic. Especially when playing against an unknown algorithm, 

the actions of the opposing player are unpredictable. While computer games are 

artificial, these qualities which they abstract from the real world are a large part of 

what makes them interesting to humans, and makes them valuable as testbeds for 

exploring the behavior of cognitive models. 

Our interest in using a computer game parallels that of Chapman and Agre. For 

our purposes, we would like to test out some of the ideas entailed by the model of 

attention and awareness proposed by Crick and Koch [2J. Here we are interested in 

the lower level aspects of reduced representations: using the idea of throwing away 

large parts of the environment or collapsing them in importance, in order to enable 

an otherwise expensive strategy to operate faster on complex, uncertain data in real 

time. 
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4.2 Description of the D esert Survival game 

The testbed for this experiment is an artificial "Camel Game"- Desert Survival. This 

game is based on that described by Barbastathis III with certa in simplifications. 
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Figure 4. 1: Schematic of the Desert Survival game. The fu ll playing grid is con­
structed with territory markers--oases- arranged ac"Cording to some method (here 
the amtngement is in a regular grid). There are two players, red and hlue, and each 
starts with some movable pieces (camels) which they use to attempt to capture their 
opponents territory. 

In essence, the Camel Game is a territorial one: two players vie against each other 

for control of resource production in a simulated environment . The environment , in 

this case, is a desert of a certain size (100 by lOa grid squares by default), and resource 

production occurs at specific territory markers of the desert oases. As tools in the 

capture of desert territory, both players have a certain number of camels (50) under 

their command. To capture an oasis if it is empty, the player must move two camels 

simultaneously onto the grid square occupied by the oasis. If the opposing player 
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has one camel on that grid square, the player must have three camels simultaneously 

present. In general, to capttl1'c an oasis requires two more camels than the opponent 

ha.. in an oasis square. 

.. 

Figme 4.2: Red player captures a blue oa..is. To capture an oa..is, the capturing 
player must have two camels at the oasis more than the player which currently owns 
the oasis. If the opposing player has no camels there, then two will capture it. If the 
opposing player bas one camel, it takes tbree to capture tbe territory. 

Game play proceeds in turns. Eacb turn, botb players have a chance to move 

their camels one square in any direction (laterally or diagonally). A player may also 

provide a camel witb a "goal." In the absence of a direct command by a player in 

a given turn, each camel piece will consult its goal and move in a hest-straigbt-line 

fashion towards it. 

Figure 4.3: Camel navigation . The desert is played on a grid of squares. On each 
turn, camels may move one square horizontally, vertically, or diagonally. 
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In the desert, the camels require water to survive. Each turn in which a camel 

moves, it uses up a certain amount of water. If the camel doesn't move, it uses no 

water. Being camels, there is a certain maximum amount of water they can carry 

for movement between oases (enough for 200 turns). To give a camel more water, a 

player must move it to an oasis which they own. There, when not moving, the camel 

will drink enough water per turn to allow it to move for 15 turns (until it reaches 

maximum water capacity). If a camel runs out of water between oases, it will die and 

no longer be available to the player. 

Figure 4.4: An oasis. The territory in the game is marked by oases. An oasis is 
always owned by one player or another. The moving pieces (camels) replenish their 
water at friendly oases. 

The game lasts a certain number of turns (by default 840), after which the player 

who controls the most oases is declared the winner. A turn consists of offering the 

opportunity to each player to give orders to their playing pieces (the camels). These 

orders consist of instructing the camels to head towards one spot in the desert (which 

is typically occupied by an oasis). Ordinarily, the turns are controlled by a clock to 

be of a fixed duration, that is, the players are allowed a fixed time within which to 

give their orders, after which the camels are moved by the game engine whether or 

not the player has finished with their turn. This time pressure can be adjusted and 

even turned off entirely, to allow turns of arbitrary length, in which each player has 
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as much time as desired to give their camels commands. 

4.3 Explanation of the rules 

The Camel Game, ultimately, is a several-times-generalization of a competitive trav­

eling salesman problem (e.g., [3]). The traveling salesman problem is to determine 

the fastest way to route a traveler (the salesman) between cities separated by varying 

travel times. One generalization, then, would be to route several travelers among the 

cities. Another variant would be to specify that at least two travelers be present in 

each city at once. A competitive version would add in the "city capture" effect, and 

then playing with traveling distance specifications can be coerced to mimic the water 

consumption of camels. Ultimately, though, this means that an optimal strategy for 

play involves moving one's camels as efficiently as possible between oases that are not 

yet controlled, under the constraints of water resources and with an eye to the strat­

egy of the opponent. The strategic element of the game comes from the NP-complete 

nature of the problem. In computer science, problems are segmented by difficulty 

into several main classes. "P" complexity problems are those with an exact solution 

which is calculable in polynomial time. This means that as the number of elements 

in the problem grows, the amount of time it takes a certain computer to solve the 

problem grows polynomially (linearly, quadratically, etc.) For most real problems, 

the polynomial is of a small power (such as one, two, three, eight, etc.). Another way 

of looking at it is that this polynomial growth means that a computer can "keep up" 

with increasingly large problems by increasing either the amount of time spent solv-
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ing the problem, or the amount of resources dedicated to it, in a polynomial fashion. 

In practice, this allows very large "P" problems to be solved in short time frames 

by relatively simple computers. For example, sorting lists with n elements by some 

order measure is a "P" problem with complexity nlogn (algorithms with complexity 

n log log n are also known [4]). 

"NP" problems, on the other hand, are not so amenable to such efficient solution. 

Problems in the NP class have the property that as the size of the problem increases, 

the amount of computational resources required to find an exact solution scales faster 

than a polynomial of any power. Many problems of the NP type are known, isomor­

phic to each other. For example, the SAT problem (finding terms to satisfy a binary 

expression, such as abc + bde + cbf + bef = 1, where adjacency signifies the AND 

operation and + signifies OR), or the bin packing problem (finding arrangements of 

blocks in bins so as to use as few bins as possible without overfilling), and so forth. 

If the camel game were much, much simpler, a clear solution might exist which by 

using few computational resources would perform optimally. Since the game is large 

and the problem is very difficult, such a simple solution is unknown. The number 

of fast-changing parameters (positions, water resources of the camels) is very large, 

and operates against a dynamic backdrop of many more slowly changing parameters 

(oasis ownership). Given that it is a generalization of a known NP problem, exact 

solutions are completely intractable using any known methods, and so some kind of 

heuristic algorithm must be deployed. 

The rules of the Camel Game make the heuristics more interesting. The necessity 
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of using two more camels than an opponent has in an oasis to capture it implies a 

pressure to bunch up camels. Since the size of the environment is large, bunching 

camels up too much is counterproductive: the opponent can let a large "herd" intrude 

at will, while splitting its own camels up into smaller "squads" and thus capturing 

more territory. In general, this rule gives the edge to defense, while the size of the 

playing field makes a purely defensive strategy unattractive. 

Similarly, the ability of the camels to carry fairly large amounts of water gives a 

lot of "path dependence" to the game, where an accounting of the current state of 

one's own and the opponent's pieces is important. A camel which runs out of water 

is lost, and so the future strategic value of the camels themselves can be assessed 

against their present ability to be moved and capture territory. 

The ability for camels to be moderately "self-guided" presents the player with 

interesting strategic options. On the one hand, giving a camel a distant goal can save 

a lot of work in giving intermediate commands to the camel. On the other hand, the 

farther the journey (and so the more work saved), the higher fraction of its stored 

water the camel will use. The "work" referred to is the amount of computational 

resources it takes to control a player's camels on each move. These resources are 

limited-the algorithm only has a fixed time to give its orders to all the camels it 

is controlling. Thus, it is an attractive option to use the self-guidance of the camels 

to avoid giving them orders except when necessary. On the other hand, the camels 

themselves have no notion of strategy or planning, and so will not naturally behave in 

any kind of reliably optimal way. The scale of the environment is such that a camel 
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will frequently use up much (or all) of its water supply making a journey across even 

say one half of the full size of the desert if it cannot stop at intermediate locations to 

re-water. This means that there is a trade-off between the necessity to "micromanage" 

camels and their ability to carry out long commands unaided without running out of 

water. 

The game rules used in this scenario differ in some important ways from the game 

described by Barbastathis [1]. First of all, in this game there is no money involved. 

In the original set of rules, the camels maintained money and water, and could trade 

money for water at enemy oases. Also, the oases maintained balances of money which 

could be captured, and the scoring incorporated this differential valuation on oases. 

In this version of the game, these rules are simplified: the camels may only drink 

at oases owned by their own team and never at enemy oases. There is no money at 

oases-they are all of equal value. The basic geometry of the game is unchanged: 

sheiks start out with the same number of camels, on a board that looks the same. 

Details in the navigational algorithm of the individual camels are consistent. Another 

larger change is the removal of the incremental navigational ability of the camels. In 

the original game, the camels would not always move each turn-they would "hesitate" 

with some probability that became smaller as they had more experience moving. In 

the new version, this is removed; the camels always move every game cycle, except 

when they are within an oasis where they still have a probability of leaving that is 

less than one. 

The biggest difference from the original game is the removal of the "computational 
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tokens" which were used to control how much computational time an algorithm could 

spend per game cycle. In the new version, this mechanism is replaced by a straight­

forward measure: real computer time used. Instead of spending tokens to compute 

saliency and give camels orders, the competing algorithms can do whatever they are 

programmed to do within the constraints of a game cycle, but the time spent per 

game cycle is fixed. Thus, the measure of how much computational resources an al­

gorithm needs is not dependent on the choice of where to assign computational token 

usage, but in actual execution time. 

4.4 Computational resources and strategies in the 

camel game 

The Camel Game shares some characteristics with other complicated environments: 

it is a large, fast-changing system with an overwhelming number of "sensory" inputs 

(or parameters) and no obvious model with which to deal with all the data and make 

optimal command decisions. In this context, there can be many classes of heuristic 

approaches (or strategies), and those can incorporate a large number of more finely 

grained differences within them. 

The way we make computational resource usage a large factor in the Camel Game 

is by setting the game cycles, or how fast the turns run, to proceed independently 

of each player's actions. That is, the game is a "real-time" game where if a player 

does not move the pieces within a certain time limit, the game goes on anyway. This 
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creates another trade-off in player strategy in which we are very interested: what 

differences are there between good strategies when time pressure is light (that is, 

when much time is allowed per turn) and when it is intense (that is, when very little 

time is allowed per turn). 

To examine these effects, we compare three strategies. 

4.4.1 Unguided camels strategy 

The first is the 'unguided' strategy: this player algorithm lets its camels wander more 

or less at random. The "more or less" is that the player sends its camels to oases, 

and lets them arrive before sending them somewhere else. All camels are controlled 

independently. In effect, this is the most random strategy which still incorporates the 

camels modest ability to "self-guide" themselves to targets. 

4.4.2 Savvy player strategy 

The second strategy is the 'savvy' player algorithm. This algorithm has three stages 

of operation. First, a saliency map [6] of the desert environment is calculated. This 

saliency is calculated around grid squares where there are oases (the rest of the desert 

has no resource value), as illustrated in Figure 4.5. 

The number of oases and camels in the neighborhood (here a 3 x 3 grid) of the oasis 

for which saliency is being calculated are counted. Then the number of friendly and 

enemy oases and camels are assigned a weight. In the example, friendly camels and 

oases are weighted negatively and enemy camels and oases are weighted positively 
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Figure 4.5: Saliency measure as used by 'savvy ' algorithm. The area within a certain 
horizon of each oasis is evaluated for the presence of friendly and enemy camels and 
oases. These numbers are a'<signed saliency weights according to a map such as that 
shown (for the red player). 

(this would make places where there are a lot more enemy oases and camels than 

friendly oa<;es and camels more salient). Already, then, there are several parameters 

available for adjustment in the algorithm: the size of the neighborhood, and the 

weights given to enemy and friendly camels/oa<;es. 

The second stage is to average this saliency map over some characteristic size. This 

is done essentially by convolving the saliency map with a square of fixed dimensions. 

An example of the result is shown in Figure 4.6. The reddest areas are those with 

the highest averaged saliency values. Lighter red correspond to saliencies nearer zero, 

fading into light green for small negative saliencies and darker green for very negative 

saliencies. The area of the desert sUHounding the highest value in the averaged 

saliency map is pa'<sed on to the next stage. 

The third stage of the algorithm is to give commands to camels which arc in this 
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Figure 4.6: An averaged saliency map. The saliency assigned to each oasis desert 
location is calculated hy analyzing how many friendly and enemy camels and oases 
there are nearby. 

smaller area of the desert. Any camel outside this area is left to follow previous 

commanrls or to choose a destination at random, if it has reached its target. In 

addition , these commands will be to target an oasis also within the smaller area. In 

dIect, then, the algorithm focuses in on a smaller playing environment and commands 

its camels there as if that were the entire scope of the game. 

The commands given Rre chosen in the fo llowing way. For each camel , if Q and f3 

are parameters, and dj is the distance from the camel to the j'th oasis in the small 

area, and s, is the saliency of that oasis, then the probability that the camel will be 

given a command to head toward oasis j is 

pCUj 

I'camel targets oasis j = 1 + f3d
j 

(4.1 ) 

That is. the greater the value of Q, the more the camel tends to head for high-
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saliency oases. The higher the relative value of {3, the more it tends to look for nearer 

oases. 

Of the three additional variable parameters in these stages, the most interesting 

to us is the size of the small area (the "awareness window") which the algorithm 

considers. The values of the command parameters 0: and f3 are held fixed at 0: = 0.1 

and {3 = 1.0. The behavior of the game is not very sensitive to the choice of these 

parameters. 

4.4.3 "Deep Blue" Strategy 

The third strategy we will examine we refer to as the "Deep Blue" algorithm, in 

reference to the IBM chess-playing supercomputer [l1J. This algorithm also works in 

a series of stages. The first stage is to simulate internally the future state of the entire 

environment for some set number of turns (and assuming no additional commands 

given to the camels). That is, by knowing the targets of the camels on the board, 

the system predicts how they will move, whether any oases will be captured and by 

whom, whether any camels will need water or run out of water. 

In the second stage, the algorithm assigns some of its camels to defense. What 

this means is that if the opponent is directing camels towards a particular oasis and 

will be taking it over within the look-ahead time frame, the algorithm will attempt 

to find enough camels to send to the endangered oasis to defend it from a takeover. 

If there are not enough friendly camels close enough to save the oasis, the algorithm 

doesn't defend it and lets it be captured. 
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Figure 4. 7: Illustration of Deep Blue a lgorithm. The Deep Blue player simulates in 
advanc.'e the motions of aU the camels on t he entire playing field and commands its 
camels accordingly. 
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In the third stage, the algorithm makes sure its own camels are not going to run 

out of water: if any are in danger, it sends them to the nearest friendly oasis to 

replenish their supply. 

The fourth stage is the offensive stage. The algorithm takes all the healthy camels 

and assigns them to capture enemy oases. It does so exhaustively, calculating a very 

good candidate of assignments to capture the most oases in the minimum amount 

of time. The way it does this is by calculating the distances from every camel to 

every oasis it does not yet control. Then it goes through this matrix of distances and 

calculates what the first oasis it could capture would be and which camels are needed 

to do it. It assigns those camels and moves on to the next-earliest captured oasis. It 

continues until it runs out of either enemy oases or unallocated friendly camels. 

This algorithm is not provably optimal (as indicated, the problem is complex 

enough to elude that possibility). It is, however, a very capable heuristic, with a few 

key customizable parameters, such as the depth in the game to look ahead and the 

water levels at which it will send camels to replenish their own water supplies instead 

of to take a defensive or offensive role. For example, since it takes fewer camels to 

defend an oasis than to capture a new one, it makes sense to allocate camels to defense 

first. Capturing as many oases as soon as possible makes sense as a goal: this will 

make the job of the opponent harder, and the game exhibits some positive feedback 

effects: having a lot of territory means there are many places to replenish camel water 

supplies, giving more resource production and thus an advantage in the game. 
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4.5 Characterizing the strategies 

To characterize these strategies and interpret the results, we arrange two players 

utilizing different strategies (or the same strategy with differing parameters) to play 

the Camel Game against each other. During the game, the players capture territory 

from each other or defend their initial territory. The game is repeated many times, 

so that the statistics of the relative performances can be assessed. The performance 

of each player is the number of oases it holds at the end of the game. To report this, 

we will use the "performance margin", which is the percentage of oases an algorithm 

holds more than its opponent. Thus, in a game with 100 oases, a performance margin 

of 20% would mean that the winning player held 60 oases. This performance margin 

measure is calculated as follows, where currenLoases is the number of oases owned 

by the player under test, and enemy _oases is the number of oases owned by the 

algorithm which that player is playing against: 

PM = 100 2(current_oases) - totaLoases = 100current_oases - enemy_oases (4.2) 
tclaLoasffi tcl~~asffi 

When the current player (the test player) owns all the oases the performance 

margin is equal to 100. When the enemy player owns all the oases, the performance 

margin is -100. The game, if let run long enough, will end in one of these two states. 

In order to resolve finer detail of performance, then, we do not allow the game to run 

until this happens, but stop it after a fixed time. 
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4.5.1 Savvy player vs. unguided camels 

A key expectation of our model is that there be an optimum in the "awareness" size 

associated with the 'savvy' player algorithm which uses the awareness analogue as a 

guiding mechanism. The reason for this is that if the "awareness" size is too small, 

then although the algorithm will run quickly, it will not have much to work with, and 

so not perform very well. At the other extreme, if the amount of information is too 

large, then the algorithm will start to slow down and miss turns, or give outdated 

instructions to its camels, and so the performance will again degrade. An optimum 

in the performance curve means that there is a benefit to the algorithm in having an 

awareness-like mechanism which throws away most information and preserves only 

the most important. 

Figure 4.8 shows the performance margin of the savvy player when playing against 

the unguided algorithm under time pressure. When the awareness window is small, 

the savvy player performs on a par with the unguided player. This is because the 

algorithm has very little data to work with, and so although it runs quickly, it cannot 

give its camels meaningful instructions. The small awareness size means that most 

of its camels do not receive any directions, and so the outcome has no performance 

advantage for either player. 

As the awareness size increases, the savvy player sees more and more of the play­

ing field, and is able to command more of its camels and give them more meaningful 

instructions. Consequently, its performance margin increases. Why does the per­

formance margin again drop off when the awareness size gets too large? The savvy 
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Figure 4.8: Performance of Savvy algorithm vs. unguided player. When resources are 
limited, there is an optimal in the size of the awareness window. In (a) the savvy 
player plays with a limitation in computational tokens. Tokens are required by it to 
calculate the awareness window for a given size, and more tokens for each command 
given to a camel. In (b) there are no computational tokens, but a guideline based 
on real computer time taken by the algorithm is used. The abrupt changes in the 
performance curve are seen to be due to the grid arrangement of the oases. When 
they are arranged more smoothly, the performance curve is more smooth (See Figure 
4.11). 
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algorithm with a larger awareness size begins to spend more and more time calculat-

ing commands to give its camels. In doing so, it falls behind in the game and ends 

up giving instructions that are out of date. In the extreme case, it would be unable 

to give many instructions at all during the course of the game, so its camels would 

behave on a par with unguided camels. 

The local maximum in the performance, then, reflects an optimum in the amount 

of "awareness," or in the size of the reduced representation for the algorithm. On the 

low end, the optimum is bounded by the inability to give the algorithm enough data 

to make good decisions. On the high end, the optimum is bounded by the oversupply 

of information: the time pressure placed on the algorithm makes keeping up with the 

game important. The demands of behaving in real time make too much information 

equally deleterious. 

Figure 4.8(b) shows a comparison between a desert map with oases arranged on a 

grid and oases arranged randomly. The grid arrangement shows a dramatic increase 

in performance when the awareness size increases above ten, at which point more than 

one oasis is visible to the algorithm. Using randomly distributed oases produces a 

much smoother curve, since there is no sudden threshold on the low end. On the high 

end, where time limitations are more important, the two curves drop simultaneously, 

as expected. 
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4.5.2 Results for different parametric configurations 

These results are robust to a large degree to various algoritlmlic details of the saliency 

measure and the values of the instructional parameters used to give directions to the 

camels. In Figure 4.9, we see that the choice of saliency measure must have an element 

of offensive play in order to win against a simple opponent using unguided camels. 
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Figure 4.9: Performance of various saliency measures played against unguided camel 
opponent . 

The names of the saliency measllfes correspond to the calculation as shown Il1 

Figure 4.10. 

The weightings given to the various game pieces by these saliency measures reflect 

different approaches about what "looks interesting" to the algorithm. The "aggres-

sive" measure wants to see spots on the map where it has camels and the enemy bas 
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3. "aggressive" b. "defensive" 
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c. "isolationist" d. "suicide" 

Figure 4.10: Diagram of saliency mell.~ures. The (a) and (d) salicncy measures have 
an offens ive component, in that they will tend to attract the savvy player 's fie ld of 
view to areas where the opponent has territory. The (b) and (c) mea~ures, in contra.t, 
will tend not to look at such areas, and therefore never go on the offensive. 
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Figure 4.11 : Examples of the grid (a) and territorial (b) oasis arrangements. 

oases. The "defensive" measure, on the other hand , looks for spots where it has oases 

and the enemy has camels. The "isolationist" measure looks for friendly camels and 

oases, not seeking out the enemy at all, and the "suicide" measure looks for places 

where there are both lots of enemy oases and camels. 

Referring to the performance curves, we see that the im portance a saliency mea-

sure gives to oases is more important than that given to camels. The aggres.~ive 

saliency approach (which is the typical measure used) does somewhat better than the 

suicidal measure. Both, however, exhibit the optimum in their performance curves 

indicating that they are giving somewhat reasonable (at least) instructions to their 

camels. The other two measures, on the other hand, perform at or even below random 

chance. The reason is that iu giving their camels instructions, they tend to tell them 

not to capture new oases. The isolationist measllfe particularly doesn't even look in 

places where the enemy OMes are. These two saliency measures are thus detrimental 

to the performance of the savvy a lgorithm. 
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This overall pattern is true even for significant changes in the underlying rules 

of the game. If the way oases are arranged is varied from a grid to a "territorial" 

arrangement, the overall performance remains the same. The grid arrangement (as 

shown in Figure 4.11) is that oases owned by each side are arranged in a regular 

grid. In the territorial arrangement, they are distributed more randomly in a clus-

tered pattern around a "home base" and thinning alit towards the initial territorial 

boundary. 

The smoother performance curvcs in the territorial arrangement are a result of 

the closer spacing between oases over large parts of the desert . This means that finer 

differences in the nllmber of oases captured are visible, as seen in Figure 4.12. 
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Figure 4. 12: Savvy player performance against unguided camels with a territorial 
oasis arrangement . 

These overall patterns hold qualitatively when players lise the savvy algorithm 
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with different parameters against each other. As an example, in Figure 13 is the 

performance of a savvy algorithm using the aggressive saliency measure competing 

with the same algorithm using the defensive saliency measure. 

40 

c"- 30 ._ "'C 
0)-
L.. (J) 
co.c. 
~ ~ 20 

~ ~ 
c 0 
~ ~ 10 
L.. X .g (J) 

(J) '*' 0 a.. __ 

-10 0 10 20 30 40 

Awareness window width 
50 60 

Figure 4.13: Performance of the savvy player using an "aggressive" saliency measure 
vs. a savvy player using a "defensive" saliency measure. 

Figure 4.14 shows a comparison of games played under different sets of underlying 

game conditions. 

As can be seen, the performance is both qualitatively and quantitatively the same 

under a variety of underlying game conditions: the basic result of the experiment-

that both too little information and too much information lead to poorer performance-

is consistent even under many permutations of the game rules. The red-outlined graph 

is a run for the rules that have been explained above. (b) shows a game where camels, 

instead of starting randomly distributed on the board, begin the game at a "home" 
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Figure 4.14: Desert Survival played under a range of game situations. The savvy 
player is playing the player with unguided camels. Details in the rules have a minimal 
effect on the overall performance characteristic of the algorithm. 

location in each player's territory. (C) is an outcome where oases are arranged ran-

domly instead of in a regular grid. (d) changes the details of the regular grid, making 

the spacing smaller. The significant qualitative difference is the much smoother curve 

when the oases are arranged randomly. This is because the regular grid has a sharper 

increase in available information when the window of awareness enlarges to cover 

more than just one oasis at a time. In a random arrangement this isn't the case, so 
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the increase in performance is more smooth. The small decrease in optimal attention 

size for the case of smaller oasis separation is not really statistically significant. 

4.5.3 "Deep Blue" vs. unguided camels 

The performance of the "Deep Blue" algorithm playing against the unguided strategy 

is quite overwhelming. Even under tight time constraints, the performance margin of 

the Deep Blue player goes very rapidly to 100%. 

4.5.4 "Deep Blue" vs. savvy player 

We are very interested in the performance margin of the savvy player playing the 

"Deep Blue" player. Figure 4.15 shows what happens under this condition. 

As can be seen, under time constraints, the savvy player (here with an awareness 

size of 33 and using the "suicide" saliency rule) can still outperform the "Deep Blue" 

player. How does this happen? When the time allowed per turn is very low (close to 

zero), the two strategies perform at near chance. This is because neither has time to 

issue any commands to their camels, and so the camels of both pretty much wander 

randomly. When time pressure is eased off some, though, the savvy player gains the 

advantage. Using an awareness size of 33 is in the highest zone of its performance 

against unguided camels, meaning here it is in a good position to utilize its trade­

off of neglecting some parts of the map in favor of speed of play. The time allowed 

per turn is given in units of milliseconds. This is for a particular computer used for 

testing. For another machine, this axis might scale one way or another depending on 
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Figure 4.15: Savvy player plays the "Deep Blue" player under varying time con­
straints. When the time allowed is very low, the savvy player wins. As the time 
allowed increases, "Deep Blue" begins to dominate. 

the relative performance, but the shape of the curve would remain consistent. 

And that is how it can win against a much stronger opponent. When the time 

pressure is high, the savvy player can stay on top of the game. It's strategy is to ignore 

much of the board and concentrate on giving adequate commands to those camels 

in its "field of view." The "Deep Blue" player can give hetter commands, but it is 

a much more computationally demanding algorithm. The penalty, then, is twofold. 

First, it doesn 't have the chance to give as many commands to its pieces. This means 

that more of its camels are wandering unguided for more time. Second, when it does 

give commands, they may be outdated, reflecting information that is already sta.le. 
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If its forward trace of the game to determine vulnerable oases does not happen much 

faster than the evolution of the game itself, it ends up giving commands, for example, 

to defend an oasis which has already long been captured by the savvy player. The 

computationally intensive attempt to give near optimal commands, then, backfires 

under time pressure. A much simpler algorithm, which just ignores 90% (and more, 

as we will see) of the playing area, can actually win when the timing of the game is 

fast enough. 

As the time pressure is eased, however, the advantages of the savvy player decay. 

The strength of the "Deep Blue" algorithm becomes more important in terms of its 

not falling behind and its ability to give lots of commands to camels. At some point, 

the time agility of the savvy player and the expensive strength of the "Deep Blue" 

player are matched, and as time pressure is eased off even more, the Deep Blue player 

begins to win more and more decisively. When no time pressure at all is applied, the 

Deep Blue player often ends up with a performance margin of 100%. 

This general behavior holds true even when the parameters are changed. Figure 

4.16 shows curves similar to that above under different experimental conditions. The 

processor is slightly (33%) faster; the algorithm utilizes the "aggressive" rather than 

the "suicide" saliency measure, and the awareness dimension is varied. 

For this set of experiments, the faster computer (as well as the aggressive saliency 

map) means a more decisive victory for the savvy player when time pressure is high 

(that is, low time allowed per turn). The same analysis applies, however, to the overall 

performance trend. The differences in exact performance margin between the different 
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Figure 4.16: Performance of savvy player against Deep Blue player for varying aware· 
ness window sizes. The width indicated is the measure of the edge of t he awareness 
window. 
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awareness dimension sizes are hard to attribute with any statistical significance to 

that parameter variation. If there is an effect, it is quite small, as might be expected 

by the overall smoothness of the performance curve when looking at performance as 

a function of awareness size when playing the unguided player. 

4.5.5 "Deep Blue" vs. "Deep Blue" 
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Figure 4.17: Deep Blue with an "awareness window" vs. Deep Blue playing on entire 
field. The player using an awareness window gains an advantage when the window 
is large enough. (50 ms per turn time constraints are present in this game. The 
advantage of the awareness window player stems from its magnifying an initial lead. 

Figure 4.17 helps us to understand better the values of a reduced representation 

in terms of the more extensive algorithm alone. Here, a version of the "Deep Blue" 

algorithm is run on a smaller area of the desert, and competes with the full algorithm 

run on the entire playing environment. (There is moderate time pressure for this 
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experiment. ) 

With some time pressure, the algorithm using the awareness model loses when the 

awareness size is small. When the size is at about a third of the edge of the playing 

field, however, the awareness-model player starts to win. This means that by playing 

with only about 10% of the data, the "Deep Blue" player is able to outcompete 

a version of itself playing with 100% of the data. Here, especially, since the only 

difference between the players is the amount of data they use to play (each using the 

same algorithm), the conclusion is that under time constraints, the neglect of the vast 

majority of the problem can actually be beneficial. 

4.6 Conclusions 

An important criterion for the evaluation of biological computational strategies is the 

necessity to behave in real time. An apparently sub-optimal approach may in fact be 

the best, given the constraints imposed by having limited (expensive) computational 

resources and the necessity of reacting immediately. When assessing the options 

available to a biological (or artificial) system, in realistic scenarios the cost of doing 

nothing-of sitting and thinking-must be considered alongside the costs of making 

the wrong choice. When the cost of doing nothing is comparable to that of a wrong 

choice, it can even be better to act randomly, but fast, than to deliberate. 

For the case of a computer game with fairly simple rules, but playing on a large­

sized board, the addition of time constraints leads to an optimum in the amount 

of information an awareness-model-inspired player uses to make play decisions. Too 
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little, and the player is handicapped by insufficient data; too much, and enough time 

is required to process the data that the player falls behind and gives too few, and 

even outdated, orders to its pieces. 

When playing a much more computationally imposing opponent, the awareness­

model-inspired player can still win if the time constraints are heavy. As behaving 

in real time becomes less important (that is, as the time pressure on the players is 

eased), the awareness-model player's edge deteriorates, and the much more nearly 

optimal, but computationally expensive, algorithm takes the upper hand. 
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Chapter 5 An Attentional Learning 

Model and its Application to Control of 

an Articulated Arm 

5.1 Introduction 

There is evidence that attentional mechanisms in humans are important for memory 

formation (e.g., [19], [2]). Machine learning, then, is one area where we expect al­

gorithms inspired by attentional functions to outperform conventional ones. There 

are several ways in which attention might facilitate learning. One is in the important 

area of generalization. In biology, the brain must segment the data to be learned 

away from the background. Remembering a phone number should not be linked to 

the color of the paper on which it is written, or whether a male or female voice spoke 

it. Such segmentation will also help in a second way: reducing the amount of data 

that must be memorized, thus improving learning speed. Picking the right informa­

tion to be learned, and ignoring the rest is a job well suited for an informational 

bottleneck within the brain, and indeed, such a bottleneck appears to be necessary 

for the utilization of some kinds of memory. 

We are interested in how a supervisor for a learning system employing this kind 
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Figure 5.1: Attentionallearning architecture. At first, the responses of the system are 
calculated by the logic/planning unit. After the system has learned how to control the 
arm sufficiently well, control is transferred gradually away from the logic/planning 
areas to memory. The error signal arouses the attention function, which lets the logic 
know that the memory needs more guidance in learning the current situation. 

of informational bottleneck assists learning. The application used as a testbed is 

a demanding problem of control of a segmented arm. The function of attention is 

utilized for several different important functions in the problem solution. It is used 

to separate out the important elements from the unimportant in the field of obstacles 

for better generalization when learning gestures. It is also used to divide the task into 

various levels of expertise. As the most basic and generalizable elements are learned 

first, and the harder elements later, the most abstract, high-level factors are left in 

the domain of the logic subsystem. 

Figure 5.1 shows the learning model used for these experiments. When the sys-

tern is new to the problem, it uses its logic/planning functions to solve the control 

problem. This results in performance which is largely error-free, but very slow, since 
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complicated optimization problems must be solved. As the logic/planning subsystem 

solves these control problems, the reduced representation of the environment, which 

the logic determines to be important in solving the problem, is then presented to 

the memory for learning. There are several different kinds of memory involved which 

correspond to the kinds of memory humans employ to solve different kinds of prob­

lems. There is a procedural memory which learns from examples to reproduce forces 

on the arm segments to cause desired motions. There is an unsupervised memory 

which accumulates example of common "gestures." There is a declarative memory 

which stores sequences of these gestures as "directions" of how to go from one target 

to another. 

As the system becomes more and more trained, the memory gradually takes over 

control of the arm from the logic unit. This happens independently at the various 

levels. Thus, once the networks which learn the arm force motion are trained, the 

logic does not compute those forces and torques any longer, and leaves them up to the 

memory. This frees it to spend more of its time training the other parts of memory. 

Or equivalently, it allows the system to start behaving more rapidly. As gestures and 

the higher-level directions between targets are learned, the logic/planning subsystem 

delegates more to the memory and spends more of its time deciding what to do in 

the solution of the abstract problem solution. 

This can be interrupted, however, by the attentional mechanism. When there is 

an error-that is, if the arm seems to have gotten stuck in its motion or goes to the 

wrong place or hits an obstacle-the attention mechanism is triggered, which makes 
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the logic subsystem then dedicate time to solving the current situation of the arm in 

order to better train the memory subsystems. 

5.2 Application environment-the articulated arm 

At the most abstract level, the arm is used to solve various kinds of puzzles. We 

explored two different logical problems with the system. The first is a problem of 

ordering various targets in a target location. This is equivalent to the Tower of Hanoi 

problem [4], [21] (note that "Claus" is an anagram for Edouard Lucas, who invented 

the problem in 1883). Despite the long history of this problem, there is as yet no 

solution proven optimal, although algorithms exist which are widely suspected to be 

optimal (e.g., [8], [17]). The second is the bin packing problem, a common computer 

science problem which is non-polynomial in nature [7]. With the multi-level learning 

system we use, changing between problems like this can be done with no changes at 

all to the program at the memory, attentional, and short-term memory levels. 

In the sorting (Tower of Hanoi) problem, we begin with an allotment of disks of 

various sizes on three pegs. The goal is to arrange the disks in order of increasing 

size on the target peg. The restrictions are that the disks must be moved one at a 

time and at no time may a larger disk rest on top of a smaller disk. 

In our version of the problem (see Figure 5.3), the pegs are placed on a two­

dimensional board, and the problem is imagined to be solved by an articulated arm 

which moves around the board and physically takes the top disk from each peg and 

moves it to another. Various obstacles are placed randomly on the board, through 
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1 2 3 

Figure 5.2: The Tower of Hanoi problem. The objective is to move the stack of disks 
from peg 1 to peg 3, only moving one disk at a time, and never placing a larger disk 
over a smaller. It is said that there is a Hindu temple where monks work a problem 
utilizing 64 golden disks, and when the last disk is placed, the world will end. 

which the arm cannot pass. The only constraint on the pegs and obstacles is that 

they aren't placed such that the arm can't move between the pegs. That is, the use 

of the arm to physically sort the disks can't be impossible. The arm's segments can 

overlap each other, and for our purposes, it is assumed that the end effector, if placed 

over a peg, takes or releases the disk by itself. Our problem, then, is to move the end 

effector of the arm between the appropriate pegs in the correct order so as to solve 

the abstract problem. 

The three distinct levels of responses to be learned are as described above. At 

the most basic, a "motor control network" must be trained to control the motion 

of the arm. That is, when the second segment of the arm needs to move clockwise, 

the proper forces have to be applied to do that. At the top level, the right sequence 

of movements between the pegs must be undertaken, or the problem will never be 

solved. In between, there are motions, or "gestures" which are generalizable between 

problems and which can be learned by a controller, such as "going around an obstacle 
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Figure 5.3: The Tower of Hanoi problem arranged in two dimensions for solution by an 
articulated arm. The arm must move between the marked baskets without colliding 
with the solid obstacles. (The outlines squares are the positions of the target baskets. 
The solid circles are obstacles.) 
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clockwise" or "extend the arm a bit to get around the obstacle next to the peg before 

going to the peg." 

These three levels of generalization can be compared to things humans learn. 

While driving, for instance, the basic "gestures" of driving-turning left, changing 

to the right lane, exiting a freeway-are generalized between episodes of driving. The 

basic motor controls of steering are even more basic. At the top level, the directions 

one memorizes to navigate take as given the grammar of driving gestures and motor 

control. 

5.3 Articulated arm control 

The details of the articulated arm, the playing board, and targets is shown in Figure 

5.3. The arm is composed of three segments. The first has length 1, the second length 

~ and the third ~. The end effector is located at the end of the third segment, and 

therefore can be moved anywhere within a radius 2 of the origin, which is presumed 

to be fixed. The position of the arm is specified by three angles, 01,(h, 03 , which 

describe each segment's orientation with respect to the x axis. 

The strategies that humans actually use to optimally control arm movements 

are quite complex [22], [20]. For our purposes, we give the arm segments a minimal 

dynamics involving a maximum torque and a momentum/friction decay characteristic. 

The equations of motion which describe the arms' dynamics are: 
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(5.1) 

(5.2) 

Here the ei are the angles of the various joints in the arm. The Oi are their 

angular velocities. Pi is the torque on the joint and Ii is its moment of inertia. a is 

the constant which sets the magnitude of the momentum/friction decay, and is set to 

0.96. The (t) and (t - 1) superscripts refer to the discretization of time. That is, e?) 

is the ith angle at time t, and e?-l) is the ith angle at time t - 1. 

In optimizing arm motion in the environment within these parameters, our logic 

subsystem employs a minimum torque-change heuristic similar to that described by 

Uno et al. [22] The three-segment arm has a complicated inverse kinematics, dia-

grammed in Figure 5.4, which requires an expensive optimization process to find the 

best trajectory to move from a present position to a target position. The minimum 

torque-change model breaks the degeneracy of the problem by selecting the configu-

ration out of the possible solutions which requires the minimum change to achieve. 

This is the most costly step for the logic in deciding on how to move the arm. For 

a much simpler problem (a one-segment arm, for instance), there is no degeneracy, 

and so much less need to utilize memory to speed behavior. Similarly, if there is no 

pressure to behave quickly, the expensive computational process to find the optimal 

trajectory is not a burden. Learning only becomes imperative when the complexity 

of the situation becomes large and real-time behavior is still required. 
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Figure 5.4: Inverse kinematics for a three-segment arm. A two-segment arm has a 
twofold degeneracy in deciding how to place the end effector on a target. The three­
segment arm has a range of values for one segment, within which for every value, 
there is a twofold degeneracy. 
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Figure 5.5: The motor learning problem for an arm segment as learned by the neural 
network. 

The pegs (baskets) and obstacles are placed on the playing board in such a way 

that the arm can still move freely and not too close to each other such that the 

arm can't find a way to avoid the obstacles and reach a basket. Each basket has an 

obstacle between it and the origin, which must be reached around to enter the basket. 

5.4 Learning arm kinematics 

As the puzzle is solved, the system is simultaneously learning at all the various levels. 

The arm kinematics are learned by a network responding to forces as shown in Figure 

5.5. The force curve shown is one generated to move the arm as quickly as possible 

(given a maximum torque) from one angle to another. In our system, the force models 

as originally computed by the logic/planning subsystem are learned by a three-layer 

neural network with four units in the hidden layer. The units use a hyperbolic tangent 

activation function and are fully interconnected. There are two input parameters: the 

current distance from the computed goal angle and the angular velocity of the arm 
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Figure 5.6: The motor network learning the motion problem. The forces and angles 
of the arm under the control of the logic are shown as dashed lines. The solid curves 
are the forces and angles of the arm under the control of the motion network. The 
plots on the left are the forces throughout a trajectory. The plots on the right are the 
angular change by segment on this trajectory. The diagram below is the illustrated 
history of how the arm moves under the control of the two systems. "Trajectory step" 
refers to the discretized time step as the arm performs the motion. 

segment. The output is the torque to be placed on the segment joint. The motion 

learning network starts its training once a sufficient number of samples (about 40 

trajectories) have been collected so that it doesn't fall into a shallow local minimum 

and fail to learn the motor curves. Once it begins learning, we use the Levenberg-

Marquardt learning algorithm (an optimization method which uses a modified Gauss-

Newton method to estimate the second derivative of the error surface and improve 

convergence speed), two iterations per motion, which learns quite fast over the next 

two dozen or so trajectories, after which it has trained sufficiently well that it stops. 
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Figure 5.6 shows this learning process for actual trajectories. Each arm segment 

is controlled by the same steering process, and the comparison between forces (and 

angles) of the arm under the control of the logic and network show a very close 

correspondence. 

During training, the control of the arm is shared by the network and the logic. This 

sharing is adjusted based on the current training error level of the network multiplied 

by a quality criterion calculated as logistic function of the size of the training data. 

This product is the quality parameter indicating how well the network has learned 

the data, and how much data there was to learn. If the quality parameter is 0.5, 

the network will be used for controlling the motion of the arm half of the time. If 

it is over 0.98, it will be used 100% of the time. As the network is trained, the 

quality parameters rises from 0 towards 1 as more and more data are accumulated 

and the network learns better and better to model it. After this threshold of 0.98, if 

the network fails to steer the arm to the required target, an error signal triggers the 

attentional mechanism, and the logic takes over and does the motion, thus producing 

more training data. While control is shared, it is switched randomly from the logic to 

the network-in-training during motion of the arm through a trajectory. This allows 

the arm to accumulate more data to improve its force modeling as it takes over more 

and more arm control. 

Figure 5.7 shows these processes for one example. When 4000 examples are gath­

ered, the network begins training. With fewer than that is more likely to result in 

fast initial training but result in a network stuck in a local minimum from which it 
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Figure 5.7: Details of kinetic network learning. The number of examples being trained 
on is shown in the right-hand axis. The training error and the resulting quality 
parameter are shown relative to the left-hand axis. 

cannot escape. This is because since training is done on real motions of the arm, and 

uses a fast-converging learning algorithm, the network will overlearn the data from 

the first few trajectories and not generalize. If a slower learning algorithm is used 

(such as gradient descent), this is less of a problem. As training goes on (two itera-

tions of Levenberg-Marquardt per arm motion), the training error drops. Also, more 

data is added and the two effects result in an improved quality parameter, meaning 

that the network begins to take over control of the arm movement. Generalization 

is excellent-this network, with a training error of .0346, has a test set error (over 

the whole input field) of .0017 (both taken in the least-squared sense). For actual 

trajectories the test set error is still very low but is higher (around that of the train-

ing set error). This is because for actual trajectories, there tend to be fewer points 
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Table 5.1: Gesture memory input dimensions 

scattered through the space, and more clustered in the areas where performance is 

more critical, such as when the arm segment is close to its target location. 

5.5 Learning gestures with Adaptive Resonance 

Theory 

For the middle level, we utilize an ART-like network as described by Grossberg and 

Carpenter [10], [11] to learn the various gestures utilized by the arm as it behaves in 

different problem environments. The ART architecture is an unsupervised learning 

model which auto-clusters the data which the logic presents to it during actual prob-

lem solving, and learns models for those clusters which can then be introduced into 

the control loop and, eventually, greatly reduce the need for the logic to compute the 

trajectories for the gestures itself. 

Figure 5.8 diagrams the function of the ART network. The input space is the re-

duced representation of the environment which the logic has determined to be imp or-

tant in performing a particular gesture. (Going around an obstacle to the left doesn't 



139 

ART units 

Figure 5.8: The Adaptive Resonance Theory network in diagram. Each unit exists in 
a part of the parameter space, where it can be in resonance with the current problem 
status. Resonance results in either training (if the logic unit is generating examples); 
failure of resonance results in the creation of a new ART network unit. 1>1 and 1>2 
are representative phase dimensions. An ART unit is in resonance with the problem 
status when those status parameters are inside its extent within the parameter space. 
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depend on another obstacle on the other side of the board.) The learning problem, 

then, is pared down from a very-high dimensional one to a lower-dimensional one 

which only considers the next obstacle to deal with (or the basket to move to, if no 

obstacles are in the way). This results in faster learning and better generalization by 

the ART network. The network works in a six-dimensional space set by the relative 

angles of the second and third arm segments (relative to that of the first), the relative 

angles of the final target and the present obstacle, and their distances from the origin. 

These are shown in Table 5.1. Each unit maintains a mean and covariance matrix of 

the current data is has learned or is learning, and uses a gaussian distribution to com­

pute a resonance with each new gesture to be learned. This resonance is computed as 

the probability of that gesture being within the mean/covariance model of the unit. 

The network as a whole uses a "winner-take-all" mechanism to decide which ART 

unit is most in resonance with the current input. If the resonance is greater than 

0.5 (that is, if the new input is within two standard deviations of the mean of the 

winner-take-all-selected unit), then the input is considered to be in resonance with 

that unit, and is picked up by it. 

Each unit is associated with a linear neural network which it uses to model the 

gesture parameters of the data it is in resonance with. These linear networks have six 

inputs (for the six dimensions of the data), and six hidden units. Once a unit has more 

than three data points, it begins to train its associated neural network to model the 

data. This training also uses Levenberg-Marquardt and operates up to ten training 

epochs for every new gesture data point added to it. Typically, though, fewer epochs 
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are required before achieving a minimum error of 5 x 10-5 . If a new data point ruins 

the ability of the existing network to model the data well, it is rejected and forms 

a new ART unit of its own (where it will compete with the existing units). If the 

new data point can be learned well, though (the usual case), then it is incorporated 

into a new estimate of the mean and covariance which is computed (using a gaussian 

model) of the unit's resonance region. The outputs of the neural network are relative 

coordinates for the segments of the arm to steer towards in completing the gesture. 

These coordinates are then mappable directly on the kinematic level for controlling 

the arm joints to move the arm to that configuration. 

Once an ART unit has more than six data points, it is allowed to begin to respond 

to the environment itself, and if it is in resonance with the current environment (here, 

the resonance threshold is set to 1, that is, one standard deviation from the mean 

of the unit's data), it will control the choice of the next gesture. Each unit, then, 

corresponds to a "gesture" that the system has learned or is learning how to make. As 

enough examples are gathered to provide a good training base, the logic shifts control 

to the ART network and only calculates new gesture trajectories when no resonance 

with any unit is strong enough. Training and operation overlap: if resonance occurs 

with one of the existing units, and that unit has sufficiently good performance, it is 

used to construct the next trajectory. If resonance occurs, but that unit needs more 

data to train with, it is given the resulting data by the logic unit. If no resonance 

occurs, then a new unit is created, which will be added to and trained and used as 

that gesture is utilized by the system. 
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It only takes a few examples to build up a good gesture model (the trajectory 

models are quite linear for the parameter ranges within a gesture), so only six or 

seven trajectories are needed until they can start to be used. This linearity permits 

the networks associated with the ART units to usually achieve least squared training 

set errors below 10-3 , and frequently learn to the training threshold of 5 x 10-5 

without significant overtraining. On the other hand, similar gestures may not be 

repeated by every movement from one basket to another, so it may take a while (in 

puzzle-solution time) to accumulate the few examples needed from real solutions. An 

antidote to this would be "directed play." That is, the generation of scenarios which 

are in resonance with the ART unit that we want to train, but which don't have 

anything specifically to do with an example puzzle. These scenarios, though, would 

be generalizable to real puzzle solution. 

5.6 Learning directions 

The sequence to follow when moving from one peg to another is memorized using 

"declarative memory." These are basically memorized series of gestures: "to go from 

peg 1 to peg 3, first go clockwise around obstacle 2, then counter-clockwise around 

obstacle 6, then straight on to peg 3." These directions are learned as the logic 

solves the puzzle and continue to evolve as play proceeds. If a sequence of directions 

doesn't result in success, then we go back to the originating basket and try again 

by generating a new set of directions. These will replace the original set. Since it 

only takes one example for this memory to be useful, the sequence memory comes 
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I sre. target I des!. target Is,ls,ls,I--.. I. Go past obstacle 2 left 
2. Go up to obstacle 3 
3. Go around obstacle 3 
4. Go to destination target 

Figure 5.9: Diagram of the structure of sequence, or directions, memory used by the 
system. For a particular motion which the abstract puzzle solver indicates, memory is 
searched to find sets of directions which correspond to the desired movement between 
targets. The memory that matches the current position of the arm the best is selected. 

into play quite quickly. On the other hand, it is not generalizable at all, except to 

different arrangements of the items to be sorted on the same playing board (meaning 

the same pegs and obstacles in the same position, just a redistribution of the disks 

to be moved). 

The sequences of directions are remembered in a conventional array type memory. 

The initial point of the arm position is stored along with the target we are going from 

and the target to which we are going. When recalling these memories, only those 

which match the targets between which we want to move (for example, from target 

3 to target 2) are considered, and the sequence memory closest to the present arm 

position is selected. If the variation from the current position is more than 10 degrees 

away, no memory is recalled and a new one must be generated by the logic. Figure 

5.9 illustrates the structure of the directions memory. 

If following a memorized set of directions results in an error (that is, when the 

directions have been followed, the arm is still more than 0.06 distance units from the 

target), the logic is alerted by the error signal to generate a new path for the arm by 

going back to the previous starting point and starting over. The new sequence which 

is generated will replace the existing sequence in the memory. 
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Figure 5.10: Learning gestures. Here is shown the learning progression of the system 
as it learns to perform the gestures needed in solving the problem. The vertical 
lines separate the different puzzles the system is solving. The data is averaged over 
a 40-move moving average. (A puzzle typically takes between 40 and 60 moves to 
solve.) A move is moving a disk from one peg to another and is an aggregate of several 
gestures. The different backgrounds correspond to different arrangements of obstacles 
and pegs. The smaller lines separate puzzles solved on the same board arrangement 
(that is, the same pegs/obstacles but a different initial distribution of the disks). 

5.7 Dynamics of learning 

Figure 5.10 shows the results of gesture learning as the arm solves the problem. When 

the arm begins playing, the logic unit is doing all the planning, as well as gesture 

computation and arm kinematics. As the arm behaves, its learning mechanisms 

began to take over operation. This figure shows how the unsupervised ART-like 

gesture learning system takes over the planning of gestures to go from one peg to 

another. During the first few puzzles, the logic has to spend a lot of the solution 
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time (around 60%) planning these gestures. After that, however, the system begins 

to learn commonly repeated gestures (like moving clockwise a short distance around 

an obstacle) and takes over the gesture planning. This reduces the total time spent in 

problem solution, and also dramatically reduces the amount of time the logic spends 

"thinking about" gestures-it drops to less than 10%. 

There is a comparable reduction in the amount of time the logic has to dedicate to 

training the network that learns arm kinematics (in a supervised way), and learning 

the gesture sequences to go from one basket to another. The learning of gestures is 

the most dramatic example, however. After these networks are trained and operating, 

the logic unit spends its time figuring out which overall motion to perform next (go 

to peg 3, then to peg 1), and in dealing with error signals propagating up from its 

reflex networks when they make a mistake and it has to assist them. 

Figure 5.11 shows an example of the arm's behavior after several puzzles have 

been solved and the arm is more trained. The bars indicate times when the error 

signal arouses the attention of the logic unit because of an error in the way the 

memory subsystem has directed the arm. The error signal is generated as a difference 

in position from the target (peg 2) and the current state of the arm after following 

the directions in memory. If this difference is large enough, it means the arm hasn't 

been directed to the place the logic expected it to go, and so triggers an attentional 

"interrupt." Then, the logic recalculates the gestures and/or the directions needed to 

control the movement for which there was an error. Sometimes, this process doesn't 

take a lot of extra time. This happens when the required motion is fairly easy to 
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Figure 5.11: Interrupt-driven training. The bars locate interrupts to the logic when 
the performance error signal tells it that the memory-controlled subsystem needs more 
training. The solid line is the training time spent. Sometimes, the error is corrected 
without very much additional training time. Other times, much additional time is 
needed to recalculate the gestures and directions needed for a particular movement. 
Other times, a motion requires the attention of the logic, but is not being signaled 
by an interrupt. 
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optimize, or when there was an error in the directions, and the gestures required can 

simply be pulled from memory and reassembled. Other times, an interrupt requires 

quite a bit of extra time from the logic. Also, there are times when the logic is 

spending time training the memory without an error interrupt. This is when the 

motion hasn't been learned yet, so the logic subsystem is still teaching that gesture, 

or set of directions, to the memory. 

We now return to a discussion of the operation of the system in terms of the blocks 

of Figure 5.1. The angular position and velocities of the arm segments, and the posi­

tions of obstacles, baskets, and disks, form the environment. From this environment, 

the job of the controller as a whole is to move the arm in the best way to solve 

the puzzle. The solution of the puzzle at the abstract level (that is, which move to 

perform next with a view to solving the problem) always remains the province of the 

logic. Before the network is trained, the logic/planning subsystem feeds back to the 

attentional process to select only the relevant parts of the environment, thus dramat­

ically simplifying the optimization task it performs and assisting memory formation 

speed and improving generalization. There is some sacrifice in optimality here, but 

when time-pressured, the behavior is much faster than would be the case with global 

optimization. 

When training is more complete, the attention mechanism is used to propagate 

"error" messages up to the logic, telling it when the (mostly trained) zombie levels 

have failed to do what the logic thought they would, so that it can improve their 

training. From the perspective of the logic, this training consists of either rememo-
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rizing a sequence of directions, at the top level, or "practicing" the movement again 

for training the lower levels. The lower levels are not explicitly memorized by the 

logic unit into declarative memory. They are trained through behavior. The motion 

level learns in a supervised fashion as the logic controls the arm. The gesture level 

learns in an unsupervised fashion from the behavior of the logic in choosing gestures 

to execute. This illustrates the role of the reduced representation of the short-term 

memory in interfacing to different kinds of memory. For declarative memory, the bot­

tleneck reduces the amount of information necessary for it to learn useful patterns. 

For procedural memory, whether supervised or unsupervised, it assists the logic unit 

by pruning out the information in the environment that is less relevant, making the 

resulting patterns lower dimension and more rapidly learned by the procedural mem-

ories. 

As the game is played, then, the expensive logic unit is used more and more 

optimally: at first, it has to not only figure out which pegs to move the arm to next 

in order to solve the problem, but also figure out which obstacles it must get around in 

what order, what series of gestures it needs to do that, compute trajectories for each 

gesture, and then guide the arm through the trajectories. As it learns, the memory 

subsystems take over more and more control, learning the motor sequences necessary 

to guide the arm, the gestures needed to bypass obstacles and get the end effector 

near the target pegs, and the directions to get from one peg to another, leaving 

the logic unit free to operate at the abstract level of puzzle solution. This greatly 

improves the speed of performance: figuring out arm ballistics and computing near-
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optimal gestures are hard problems, and when these responses have been learned, 

performance (in terms of speed) can be greater by an order of magnitude and more. 

The problem of using an arm to solve a puzzle is one in which neither pure logic 

nor traditional all-network learning is very good. When the logic has to plan out in 

detail all the motions of the arm, it can take a very long time to solve the problem. 

The conventional learning problem is intractable. For even quite small problems, 

there are dozens of dimensions in the learning problem, generating error signals is 

hard, and learning is very slow, if it would work at all. 

Figure 5.12 shows an example of how the arm moves during the solution of a 

particular sorting problem. As can be seen, the arm in its history navigates all its 

joints successfully to avoid the obstacles. The kinks mark the separation between 

different gestures the arm makes as it moves from target point to target point. 

5.8 Bin packing problem 

The hierarchical learning method allows us to make changes in the abstract problem 

solving level and use the same learning structure to quickly change the task the system 

learns to solve. We did this for the bin packing problem [7]. The puzzle is to put 

a given number of blocks (we use puzzles of 35 blocks), with random sizes from .01 

to 1, into as few bins (of size 1) as possible without overfilling any bin. The system 

must move the arm's end effector between the spots on the board where blocks to be 

packed are placed, and the spots on the board where the bins are in which they are 

to be put. The three situations of interest to us are diagramed in Figure 5.13. Every 
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Fignre 5.12: The traces from the arm motions as it solves a Tower of Hanoi sorting 
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Figure 5.13: Three bin packing puzzles. The Next Fit puzzle uses a single spot for a 
block and another single spot for a bin. The second case (Match Fit) considers two 
blocks and three bins at once. The third case (close to Best Fit) utilizes five blocks 
and five bin locations. The blocks come in at the bottom of the playing field. They 
are shown as X's in the target locations, with the size of the block in the examples 
indicating the size of the block. The target bins are located at the top of the playing 
field. There are obstacles between all the target bin locations and the block locations, 
as well as two obstacles to the left and right. 

40 seconds (in puzzle solution time), if the system hasn't yet picked up a block to 

place, one is removed from the set of blocks with which it is working. This enforces a 

real-time behavioral performance constraint on the system: if it cannot behave within 

this time limit, those blocks it fails to handle will be placed one per bin in the final 

solution. 

At the abstract level, the algorithm used to decide where to place blocks and bin 

is the Match Fit algorithm, described in Chapter 2. As discussed there, when there 

are only one block and one bin location used by the algorithm, the performance is 

equivalent to that of the Next Fit algorithm. As the number of bins used grows, 

the performance becomes that of the Best Fit algorithm. In between, the Match Fit 

algorithm, by making use of the most important parts of the interim solution, can 

achieve performances near that of Best Fit, while using fewer computational resources, 
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Figure 5.14: Comparison of performance on the bin packing puzzle in three situations. 
The Next Fit situation results in the expected performance of 0.75. In the Match 
Fit situation, the system learns the gestures and arm force movements during the 
first game, and thereafter can perform better: at a level of 0.88. In the Best Fit 
situation, the system is much, much slower in learning the many more motions, and 
so performance remains stuck at the level of 0.5. Data are shown for a typical trial 
run, so the starting values of the performance for all three algorithms are largely 
noise, and depend on the (random) sizes of the first few blocks to be packed. 

and therefore does much better in time-constrained situation. 

That same comparison holds when memory is involved, as can be seen in Figure 

5.14. In the Next Fit case, learning is very quick, and the performance is stable at 

the expected value of 0.75. Here, there are only two motions for the arm to learn: 

going from the only block location to the only bin location. The transition from logic 

control of motion to network control is very smooth, since because of the regularity, 

the data is very consistent and easy for the system to model. 
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In the Match Fit case, learning is slower, and the interim performance can be 

seen rising during the first game as the system must spend longer optimizing the 

individual movements of the arm, and therefore loses some of the blocks to the time 

limit. After the first game, though, enough of the motions have been learned so that 

very few blocks are lost, and performance stabilizes at a mean of 0.88. 

The Best Fit case shows, though, that simply adding more elements to the mix 

can harm performance. Here, there are five block locations and five bin locations. 

The logic unit must spend a lot more time choosing which motion is the best and 

then optimizing gestures to complete that motion. The gestures tend to be more 

complicated, and thus take longer to learn. Waiting a long time would result in 

eventual rises in performance by the system as the more complicated gestures were 

learned, but this is much slower than for the Match Fit case, and here performance 

stays at 0.5 as almost all the blocks are lost to the time limit. 

Figure 5.15 shows how the time taken to do individual moves (from one spot to 

another on the playing board) decreases as the arm becomes more proficient in its 

movements. As the trained memory takes over from the logic/planning subsystem, 

the learned optimizations are easier to achieve, and so motion speeds up dramatically. 

In this case, by a factor of about 5. In problems like the Tower of Hanoi puzzles, which 

require more arm movement, this speed-up is greater (a factor of 10 and higher). 

Figure 5.16 shows the fraction of time the system spends in the logic/planning 

subsystem and the training and recall of various memory subsystems. During solu­

tion of the first puzzle, the system spends almost 100% of its resources training the 
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Figure 5.15: Time performance over several puzzle solutions (Match Fit case). The 
time shown is the time to complete one move in the problem solution. The problems 
take between 60 and 70 moves to solve. The time shown is a running average over 15 
moves. 
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Figure 5.16: Fractional time spent by the system as a whole within the various 
subsystems (movement, gesture learning and recall, directions learning and recall, 
and the overhead of operating the logic). The time shown is a running average over 
15 moves. 
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gesture and directions memories. It spends a few percent of its resources training 

the movement memory as well, but, as mentioned above, this is not so resource in­

tensive, and training is rather rapid once sufficient data is collected. As the system 

operates, however, the fraction of time it spends training the gestures and direction 

sequence memories decreases, and more time is spent doing logic/planning overhead 

tasks (figuring out where to play next, etc.). By the time the system is solving the 

fourth puzzle, resource utilization is taken up mostly by the logic/planning subsys­

tem. Total solution time, as discussed above, has dropped to below 20% of what 

it required in the first problem, and so responding to interrupts when the memory 

subsystems fail to guide the arm correctly accounts for almost all of the time spent 

in these subsystems (using them in recall mode is hundreds of times faster than the 

time spent doing the optimization needed to provide them with new training data). 

Figure 5.17 shows that these subsystem resource utilization times as in Figure 5.16 

are consistent on the average. Here, data from 19 trials are averaged, showing a con­

sistent decrease in system resources dedicated to movement, gesture, and directions 

computation and learning as time goes on. The figure gives cumulative times, so that 

the time spent on computing or learning gestures is the difference between the line 

with this label and the line labeled "movement." The error bars shown are standard 

deviations from the mean. The standard deviation remains high even after the sys­

tem has been operating for 200 moves and more because in this regime, the system 

time is dominated by the "interrupts" caused when the learned response causes an 

error, attracting the "attention" of the logic subsystem. The decreasing amount of 
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Figure 5.17: Cumulative average time spent by the system (over 19 trials) in various 
subsystems while solving a bin packing problem. Time is shown cumulatively, so that 
the distance between lines is amount of time spent on that subsystem. Error bars are 
shown only every 10 moves. The time shown is a running average over 15 moves. 
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time spent in the average indicates the decreasing frequency of these interrupts, but 

as handling these interrupts becomes the dominant way the system spends time in 

the subsystem, the variance in that time spent remains large. 

5.9 Conel us ions 

Learning with the assistance of a mechanism which uses attentional processes assist 

a logic/planning unit in training a hierarchical memory has several benefits. First, 

it dramatically reduces the dimensions on the input space. The sorting problem as 

described has some 30 dimensions, with dependencies that are ill-suited to learning 

by a traditional neural network. By segmenting the process and learning simpler 

approximations in a hierarchical way, using the reduced representations as utilized 

by the logic/planning subsystem to solve the problem at different levels, it becomes 

possible to present tractable problems to the neural networks. 

Second, the hierarchical organization of skills enables those learned the fastest to 

be assumed during the learning of higher-level skills. 

Third, the attentional mechanism as employed allows for cooperation between the 

memory subsystems and the logic/planning subsystems. When the faster network­

based subsystems can respond, they do so. It is only when they make errors that the 

logic subsystem is aroused and spends time correcting the error. 
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Chapter 6 Conclusions 

We have explored several aspects of the application of attentional and awareness 

mechanisms, observed to function with such efficacy in biology, to computer algo­

rithms. There are many benefits of such systems in biology. The most interesting for 

our purposes are the way in which they facilitate the abilities of humans to function in 

complex, unpredictable, real-time environments without overloading the brain with 

processing demands, and the way in which attentional processes aid in learning and 

memory formation. 

To explore the first characteristic, we tested algorithms which drew from the 

model of awareness to produce reduced representations of their complex domains for 

real-time solution in testbeds consisting of a traditional computer science problem­

bin packing-as well as a simulated computer strategy game. The generality of our 

approach is dependent on some features of the problem which are true for a wide, 

although not universal, class of other hard NP problems. First of all, the problem 

is amenable to partial solution. That is, there is a way to assign a value to a non­

perfect solution. This is widely true for NP problems, but does not describe them 

all. For example, the traveling salesman problem has this quality: performance can 

be assigned to non-perfect solutions on the basis of how far the salesman must travel. 

The SAT problem is not amenable to this real-valued performance criteria, however. 

A solution either satisfies the SAT problem or it does not. 
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Secondly, the bin packing problem has the property, explored in Chapters 2 and 

3, which makes additional information about the problem carry less and less impor­

tance. This is the property that allowed us to create a new algorithm which uses very 

limited computational resources to achieve performance comparable to more resource­

intensive existing algorithms. We argue that this is related to a commonly observed 

property of NP and other hard problems, which is that while finding an exact solution 

is very, very difficult, finding a bad solution is much easier. Again, this is a property 

shared by many problems but not all. (The same examples of traveling salesman and 

SAT apply.) 

The common (although not universal) occurence of these properties support the 

argument, for which there is yet no formal proof, that there is a wide class of problems 

for which algorithms exist between maximally greedy and full-blown combinatorial 

search which perform well under time pressure and exhibit this optimum in a cache 

memory size. The ability to perform at less than perfect means that such heuristics 

exist, and the decreasing importance of having all information about the problem in 

hand at all times leads to an performance optimum with cache memory size. This 

means that when forced to behave under time pressure, such algorithms will perform 

best when they ignore large parts of the problem. If this "awareness paradigm" 

were invalid, there should be a pressure to use more and more information and this 

optimum would not exist. The details of the composition of this class of problems is 

unknown, and an area for further research. 

This same conclusion was apparent in the application of the awareness model 
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to the computer game. Again, when resources were constrained, the performance 

characteristic of an algorithm which uses the awareness model has an optimum. In this 

testbed, we can see the awareness model compete directly with an algorithm which 

takes the entire playing area into account as it chooses what moves to make. Such 

an algorithm wins with no time constraints, but under time pressure, the awareness­

inspired algorithm wins the game. 

Another feature to come out of the bin packing testbed was the very fast transi­

tion between the situation when the awareness strategy was optimal (for cases where 

there was more time pressure) to the situation where indeed the pressure is to use 

more and more problem information. The conclusion here is that for even relatively 

mildly time-constrained situations, where optimal solution-finding is only just barely 

impossible, it is still better to use fast awareness-analog heuristics which use a re­

duced representation of the problem. We believe that this transition is reflective 

of the possibilities inherent in solving hard problems of this type. Given a reduced 

representation of the data, more time is put to better use by fully exploiting that 

reduced data, rather than spending it processing more data. It may be that this has 

implications for information processing pressures on the evolutionary development of 

the brain's attentional mechanism. 

We also applied the awareness model to a learning problem. When assisted by 

a supervisor which limits the amount of information used to train a neural network, 

we find that the network can actually learn faster than when presented with the 

raw training data. There are other added benefits, such as the ability to adaptively 
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determine which subfunctions need the most computational resources and a robust 

resistance to noisy input data. Here, the bottleneck of the attentional mechanism 

resulted in fast, robust learning. In a situation where a learning system faces complex, 

high-dimensional data and a need to behave in real time, an architecture similar to 

the one we describe can make learning feasible. 

There are many directions in which this work can be extended. Testbeds make 

convincing arguments, but real-world applications of these architectural ideas are 

needed to make a more developed case for awareness-inspired algorithms. There are 

many areas in the real world where time sensitivity is important, the environment is 

complex and uncertain, and the problems to be solved (or learned) are of the kind 

where only some of the information matters at any given time. Driving, for example, 

is such a case. Most of the time, a driver can allocate resources to other tasks, such as 

talking on a phone or listening to the radio or music. Sometimes, however, such tasks 

are dangerous distractions. An application of the attentional/ awareness architecture 

here could be made in two areas. First, in an assistive capacity to aid the driver in 

identifying situations where full attention is needed for driving, and when, in contrast, 

the driving task is undemanding and resources can be used in other pursuits. Second, 

the model could be applied to the car's systems themselves, in an active capacity 

allowing the car to react in real-time in an autonomous driving situation. 

There is much more that can be done by way of exploring the connection between 

the learning aspects of the attentional model and the more real-time behavioral as­

pects. A combined system would ideally use attentional mechanisms to learn what 
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kinds of triggers and information define important, or salient, parts of its environ-

ment, depending on its current goals, and then to use that knowledge to produce 

reduced representations appropriate for time-critical processing and decision-making. 

An example of such a system might be a game-playing system which bootstrapped 

itself from very little knowledge of the rules of a real-time strategy game similar to 

the Desert Survival game used in our testbed to play the game well. Also, the layered, 

hierarchical system we present could be extended in several ways. One interesting 

direction of exploration would be the development of a "meta-learning" interrupt 

mechanism which would trigger the addition of additional layers. 

As more is learned about the neurological components of the awareness and at­

tentional systems in humans, there will undoubtedly be further enhancements and 

refinements which are suggested in the model we explored here. Of particular in­

terest are the feedback mechanisms whereby the higher-order brain functions, such 

as planning, decision-making, etc., can influence the lower-order functions, such as 

attentional processing, to provide them with signals related to what the system is 

interested in. These feedback loops are important to a fuller understanding of the 

function of awareness and attention in the human brain and will certainly provide 

much inspiration for future computer algorithm implementations. 


	thesis-20101007_0021
	thesis-20101007_0022
	thesis-20101007_0023



