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Table 4.36. Qualitative Performance Assessment for Control Categories 
Used in MDOF System Study. 

Performance Assessment 

Based Upon: 

Control Story Drift Nodal Mass 

Category Acceleration 

1 E G 

2 E S 

3(a) E Pto S 

3(b) S toE PtoG 

4 S toG S toG 

5 StoG G 

Note: E = Excellent, G = Good, S = Satisfactory, P = Poor 
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Chapter 5 

Conclusions and Future Work 

5.1 Summary and Conclusions 

As the field of structural control continues to mature, a consensus is emerging as to 

the essential attributes of an effective and acceptable control system or approach for 

application to structural systems. Reduction of selected maximum response quantities is 

certainly mandatory; but simplicity, reliability, and ability to function without substantial 

amounts of externally-supplied power are also desirable features. 

The studies presented herein have examined a semi-active control approach which 

involves controlled interactions between two distinct structural systems - or different 

components of a single structural system - in order to reduce the resonance buildup that 

develops during an external excitation. This approach utilizes certain types of elements 

to physically produce the interactions, which consist of reaction forces that are applied to 

the systems. The mechanical properties of the interaction elements may be altered in real 

time through the use of switching components to effect changes in the reaction forces 

which are favorable to the control strategy. The major advantage of this semi-active 

control technology is that relatively large control forces can be generated with minimal 

power requirements. 

A preliminary study involving two interacting SDOF systems has been conducted to 

examine the effectiveness of the proposed control approach. This study was exploratory 

in nature and involved very simplistic models of structural systems. However, it was 

crucial in the development of a methodology for implementation of the control strategy 

(i.e., Method 1) that could be extended for application to MDOF systems. At present, it 

has been demonstrated that such an extension is only possible for linear systems, whose 

response can be decomposed into particular modes of vibration. The response control of 
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one or several of these modes, each of which behaves like a SDOF system, then naturally 

follows from the previous work. However, because the control strategy focuses on the 

so-called relative vibrational energy associated with the linear system (in particular, the 

components of this energy contributed by certain modes), it may also be possible to 

further extend the approach to nonlinear systems which exhibit mode-like properties, 

since this kind of system also has a relative vibrational energy associated with it. 

In addition, the results of the preliminary study were instrumental in the conception 

and development of new interaction elements (i.e., Types 1 and 2) for use in the follow­

on study involving MDOF systems. As may be recalled, these elements consist of an 

elastic element which is placed in series with a component that may be activated or 

deactivated in real time. When activated, the component behaves as a rigid connecting 

member. When deactivated, the component yields in an extremely-fast manner, rapidly 

dissipating the strain energy that is stored in the elastic element. In fact, of all the control 

cases examined, the greatest degree of response reduction is achieved when these types of 

elements are utilized. Finally, the results of the Category 1 cases in the preliminary study 

indicate that a significant improvement in response control effectiveness may be obtained 

if the proposed control algorithm is used instead of algorithm developed by Kobori et al. 

for the Active Variable Stiffness control method [1]. 

The follow-on study considered MDOF models of structural systems to examine the 

effectiveness of the proposed control approach and investigated various interaction 

arrangements involving what may be interpreted as: two adjacent multi-story buildings 

that interact with one another; or a single multi-story building that interacts with either 

itself and its base, an externally-situated resilient frame, or an unrestrained, relatively 

small mass located on top of the multi-story building. In each of these situations, the 

response control effort is directed at controlling only one multi-story building, which is 

designated the primary system; the other multi-story building, resilient frame, or small 

mass is referred to as the auxiliary system. 
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The following list summarizes the main conclusions for the MDOF system study: 

1) Under appropriate conditions, the proposed control method and algorithm are 

capable of achieving a substantial decrease in the story drift levels associated with the 

primary system. Depending upon the particular interaction arrangement, the nodal 

mass acceleration levels may either be reduced or elevated. 

2) For the five categories of control cases previously considered, the best response 

reduction results are obtained when interaction elements capable of continuous energy 

storage and sudden energy dissipation (Types 1 and 2) are utilized. 

3) The proposed control approach is most effective when these types of interaction 

elements are either: internally mounted within the primary system, between adjacent 

nodal masses; or attached between the primary system and an auxiliary system 

intended to resemble an externally-situated elastic frame. 

4) For these kinds of interaction arrangements, very significant response reduction 

is achieved (a 50 to 75 percent decrease in the peak values of the first mode response, 

which provides the largest contribution to the story drift levels for the ensemble of 

excitation records considered) when stiffness ratios of order unity are used (J.l = 0.50 

for Category 1 cases; a = 1.00 and J.l = 1.00 for Category 2 and 3(a) cases). 

5) For the cases in Categories 1,2, and 3(a), the results generally indicate that it is 

better to employ the full complement of available interaction elements rather than a 

partial complement. Such a policy enables effective reduction of the first mode 

response and prevents the excitation of higher modes by the control effort. 

6) Because the more-idealized Type 1 elements produce nearly the same controlled 

response behavior for the primary system as does the less-idealized Type 2 elements, 

as is verified by the results of the Category 1,2, and 3(a) cases, it is acceptable to use 

Type 1 elements for further exploratory investigation which involves these types of 

interaction elements. This course of action permits a substantial savings in compu­

tational effort. 
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7) The proposed control approach appears to be less effective for the situation in 

which the primary and auxiliary systems represent two existing structures (i.e., two 

adjacent buildings), in which the auxiliary system is presumed to be much stronger 

and more massive than the primary system. However, significant response reduction 

may still be achieved if a low-high primary-auxiliary system configuration exists. 

8) When the results of cases in Categories 3(b) and 4 which involve the same 

primary-auxiliary configuration are compared, it is generally observed that the 

response reduction obtained for the cases in Category 4 is less than that for the cases 

in Category 3(b). Hence, Type 3 elements are less effective at implementing the 

control strategy for this interaction arrangement and the assumed conditions asso­

ciated with the auxiliary system. 

9) The cases in Category 5 show remarkable response reduction capability in view 

of the facts that only a single interaction element is utilized and an auxiliary system 

consisting of a relatively small, unrestrained mass is employed. Although the control 

effectiveness of these cases is not as great as that of some cases in other categories, 

such an interaction arrangement might prove useful for applications involving wind 

gust excitation, such as has been previously considered for tuned mass dampers and 

active mass drivers. 

10) The cases in Categories 3(b) and 5 reveal that response control effectiveness is 

highly dependent upon the value selected for J1, the parameter associated with the 

Type 1 elements used. 

11) For each of the categories previously considered, a comparison of the results of 

special reference cases, in which the interaction elements are locked in the activated 

operating state, with the results of the cases that use the proposed control method 

indicates both the efficacy of the switching process and the necessity of a control 

algorithm for the operation of the interaction elements. 

12) Several examples of a Category 1 controlled primary system - which is 
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initially given certain nonequilibrium displacements but is externally unforced -

show that the proposed control method is capable of reducing the response of higher 

frequency modes and suppressing the response of several dominant modes. These 

results suggest that such a capability may also be possible for a primary system which 

is externally forced. 

5.2 Topics for Future Work 

Some questions may be raised regarding the simplistic nature of the models used to 

represent actual structural systems and the idealistic conditions assumed for the behavior 

and operation of the interaction elements. These are legitimate concerns. The studies 

presented herein are based upon a very fundamental treatment of the structural control 

problem, in which the structural systems are represented by discrete mechanical systems. 

Such models were chosen for two reasons: to reduce the number of parameters necessary 

to characterize the systems; and to obtain exact expressions for the natural frequencies 

and mode shapes of vibration, with the number of degrees of freedom (i.e., the number of 

structural stories) appearing as a parameter, a feature that greatly facilitated the study. 

Perhaps, in more detailed and extensive studies, it would be desirable to include 

additional factors that could be expected in a real-world setting. Some of these factors 

might be: 

• Constitutive and Geometric Nonlinearities 

• Three-Dimensional Effects (e.g.: variation in the directional orientation 
of the external excitation; presence of rotational, other translational, or even 
vertical modes of vibration; etc.) 

• Controllability and Observability Issues 

• Parameter Identification and Uncertainties 

• Thermal Loading of Control Devices 

• Time Delays in Switching Processes 

• Ground/Structure Interaction Effects 
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The next steps which should most likely be taken in further investigation include: 

development of more realistic models for the structural systems and interaction elements 

utilized in simulations, which would more accurately capture the dynamics (both thermal 

and mechanical) of the actual systems and devices involved; and incorporation of the 

capability to identify and target the most dominant response modes in real time. In 

addition, verification of the proposed control approach through experiments on reduced­

scale physical models of structural systems should be accomplished. 

Also, it has not been rigorously established that the control algorithm used in the 

proposed approach guarantees the stability of the controlled system. Because the 

uncontrolled system is assumed to be asymptotically stable and the excitation input is 

assumed to be bounded and of finite duration, it would intuitively seem that the proposed 

approach preserves the stability of the system since the strategy of the approach is to 

remove relative vibrational energy from the system, and it has already been shown that 

this kind of energy provides an upper bound for the response quantities of interest. 

However, it would be preferable to mathematically demonstrate that the proposed 

approach preserves the stability of the system, and perhaps such a demonstration can be 

carried out in future work. 

Lately, earthquake engineering investigators have expressed concerns regarding the 

so-called near-field effects which have been manifested in recent seismic episodes, such 

as the 1992 Landers and 1994 Northridge earthquake events. These effects generally 

occur at locations geographically near to the faulting mechanisms responsible for the 

earthquake, and they are characterized by much greater peak ground velocities and 

permanent ground displacements than are experienced at more remote locations. It can 

be shown that such effects have a tendency to place high demands on the ability of multi­

story structures to withstand sudden and pronounced story drifts [2, 3]. These kinds of 

ground motions are very different from those exhibited by traditional earthquake records, 

such as the ones employed as excitation input for the studies presented herein, which 
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typically produce a more gradual buildup in the response of the structure. For such 

reasons, it would be wise to examine the control effectiveness of the proposed approach 

in cases that employ these kinds of ground motions. 

In each of the control categories previously considered, it has been assumed that the 

auxiliary system is capable of absorbing any additional energy received as a result of the 

control effort, and so attention need not be given to its response. In future work, it would 

be prudent to directly examine the response of the auxiliary system in various cases to 

verify such an assumption, and perhaps provide the results of some simple calculations 

involving the strength of materials to substantiate this claim. Also, it is worth reiterating 

that the parameters characterizing the auxiliary system were selected with the intention 

that one of the following conditions holds: the effects upon the auxiliary system resulting 

from interaction with the primary system are minimal (e.g., interaction between two 

existing structures); or the auxiliary system does not represent a load-carrying structure 

and can withstand large deflections or excursions (e.g., an externally-situated resilient 

frame or an unrestrained, relatively small mass). 

Finally, it should be mentioned that because most of the dynamic activity for the 

control cases in the MDOF system study occurs in a single response mode, it should be 

possible to perform further analysis using reduced-order models for the structural 

systems. A few situations for which this analysis approach could be helpful are the 

control cases considered in Categories 3(b) and 5, in which there appeared to be optimal 

values for J1 given specified values of a and f3. Perhaps, if it were reasonable to model 

the external excitation as a random process (e.g., filtered, stationary Gaussian white 

noise), a technique such as statistical linearization [4] could be used to find equivalent 

elements and systems to which approximate analysis may be applied in order to facilitate 

analytical determination of optimal values for J1 in terms of the other parameters. 

It is believed that the studies which have been presented herein provide a solid basis 

for more detailed and advanced investigations of a control approach that uses semi-
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actively controlled interactions for the response control of structural systems subjected to 

external excitations. Although originally intended for multi-story buildings undergoing 

seismic excitation, it is hoped that these research efforts can also be utilized for general 

areas of application such as vibration suppression in mechanical systems, vehicles, and 

other kinds of structures that are exposed to external excitations. 
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Appendix A 

A Generalized Form of 
Pontryagin's Minimum Principle 

A.I Introduction 

In Chapter 2, attention is given to a particular form for the integrand L of the 

performance index J associated with the optimal control problem formulated in Section 

2.2. This form is one for which 

L = L(i, z, U, t) (A-I) 

(i.e., L explicitly depends upon the argument i). But such a problem can always be 

converted into one for which the integrand has an explicit functional dependence only 

upon z, U, and t, by virtue of the constraint relation 

i =g(z, U, t) (A-2) 

in which case, the modified form for the integrand, denoted by [, is 

[ = fez, u, t) == L(g(z, u, t), Z, U, t) (A-3) 

[ may then be used to formulate the Hamiltonian H, given by 

- -- ';jI -
H = H()." z, u, t) ==)., g(z, u, t)+ L(z, u, t) (A-4) 

If a solution to the optimal control problem formulated in Section 2.2 exists, then 

the following necessary conditions, rigorously proved in [1], must be satisfied: 

. aH t- aH '../ 
z= aX' -/I, = az; vtE[ta' tbl (A-5) 

and 

H(X, z, U, t)::; H(X, z, v, t); Vv EO, Vt E [ta' tbl (A-6) 

subject to the boundary conditions 
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[~ -I r dzb =0, [~; +H JI dtb =0 (A-7) 
Ib Ib 

It is now shown that, for the assumed functional form of L as given in (A-I), an 

alternative set of necessary conditions to (A-5) and (A-6) is available. These conditions 

are considered more useful because they directly involve L instead of "[. The path taken 

to obtain these conditions starts from those given in (A-5) through (A-7), which have 

already been established. A transformation is then used to modify the system costate I. 

It is finally demonstrated that the condition in (A-6), although still valid, may be replaced 

by an equally valid yet more convenient condition. The following derivation is partially 

based upon the developments given in [2, 3]. 

A.2 Derivation 

To begin, it is assumed that an admissible control u is a bounded, piecewise 

continuous function of f on the interval [fa' fb ]. Furthermore, it is required that u(t) E.o, 

'ilf E [fa' fb ], where .0 is a specified (possibly closed) subset of E', the Euclidean space 

associated with R'. 

Moreover, it is assumed that g satisfies the uniform Lipshitz condition 

Ilg(z, u, f)-g(a, v, f)II~m[IIz-all+cllu-vll]; 'ilfE[fa' fb ] (A-8) 

where m and c are positive constants and " • " denotes an appropriate finite-dimensional 

norm (e.g., the Euclidean norm). In addition, the auxiliary Lipshitz condition 

liz -a liz ~ kllu -v IIu (A-9) 

will be shown to hold, where 

i = g(z, u, f), a = g(a, v, f) (A-lO) 

and 

(A-II) 

where T is some characteristic time for the problem. 
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Let z be the system state (i.e., the entire trajectory) corresponding to the optimal 

control u. Suppose that a class of controls neighboring u are considered, and denote an 

arbitrary member of this class by v = u + ou, where ou is an admissible (not necessarily 

infinitesimal) variation to the optimal control. Let the system state corresponding to such 

a member be denoted by a = z + &, where & is the variation in z due to Ou. The class 

of neighboring controls considered includes only those controls which take the system 

state from za at time ta to Zb at time tb, where Zb and tb are either specified or 

determined from the conditions given in (A-7). Using (A-lO), it is then clear that 

in which case 

d 
-[&]=g(a, v, t)-g(z, u, t) 
dt 

&(t) = f [g(a, v, r) - g(z, u, r) ]dr 
ta 

where the fact that &(ta) = &a = 0 has been invoked. It is also clear that 

II &(t) II ~ f II g(z, u, r) - g(a, v, r) Ildr 
ta 

Using (A-S) yields 

II &(t) II ~ f m[ II &( r) II + ell ou( r) II ]dr 
ta 

Recall the Gronwall-Bellman lemma [4], which asserts that if 

~(t)~<1+ f [p(r)~(r)+,Ll(r)]dr; p(r)::?O 
to 

where <1 is a constant, then 

[ 
cr -r p(TJ)dTJ ] r p(,r)d-r 

g(t) ~ <1 + Jt
o 

e 10 Jl( r)dr e 10 

Applying this result to (A-15) gives 

II &(t)11 ~ meem(t-ta ) L>-m(-r-ta ) II ou(r)lldr 

II &(t) liz ~ meT em(tb -ta) ~ fb II ou( r) Ildr 
ta 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-IS) 

(A-19) 
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Thus, 

II z - a liz ::; k II u - v Ilu (A-20) 

where k = mcTem(tb-ta), and (A-9) is verified. 

But 

and 

Now, 

L(i, z, u, t) - L(a, a, v, t) = L(i, z, u, t) - L(i, z, v, t) (A-21) 

+ L(i, z, v, t) - L(a, a, v, t) 

L(a, a, v, t) = [f! (t, z, v, tl r (a - i) + [: (i, z, v, tl r (a - z) (A-22) 

+L(i,z, v, t)+O(lli-all~+llz-all~) 

Also, 

f! (t, z, v, t) = f! (t, z, u, t) + [~2':;' (t, Z, u, tl}V -u) + O(llu - v Ie) (A-23) 

: (t, z, v, t) = : (t, z, u, t)+[ ~2':;' (t, Z, u, tl}V -u)+ O(llu -v Ie) (A-24) 

In addition, 

Ili-all=llg(z, u, t)-g(a, v, t)ll::;m(k+c)llu-vllu (A-25) 

so that 

O(lli -a II~ +llz -a II~) = O(llu -v Ie) (A-26) 

Hence, 

L(i, z, u, t) - L(a, a, v, t) = L(i, z, u, t) - L(i, z, v, t) (A-27) 

+ [f! (t, z, u, tlr (t -a)+ [: (t, z, u, tl r (z -a)+ O(llu -v Ie) 

Likewise, 
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i; - ti = g(z, u, t) - g(a, v, t) = g(z, u, t) - g(z, v, t) (A-28) 

+[Z (z, u, t)}z-a)+O(IIU-VII~) 
Therefore, for the class of neighboring controls considered, 

J
Ib 

J[U]-J[V]= [L(i;, z, u, t)-L(ti, a, v, t)]dt 
la 

(A-29) 

which is valid for any Il. 

Now, let 

H = H(i;, z, u, t) == Il T g(z, u, t) + L(i;, z, u, t) (A-30) 

Using (A-27) and (A-30), (A-29) becomes (after some manipulation) 

J[U] - J[V] = fb [H(Il, i;, z, u, t) - H(Il, i;, z, v, t) + JH T (z - a)]dt 
~ ~ 

(A-31) 

+ r[ a;; T (i -a)-,1.T (i -a)]dt + 0(11 u -v Ie) 

where the two partial derivatives in (A-31) are both evaluated at (i;, z, u, t). 

Also, let 

- JL . 
Il == Il - at. (z, z, u, t) (A-32) 

which is actually a defining relation for Il, since Il is governed by (A-5). It can then be 

shown that 

JH - JH. 
~ (Il, z, u, t) = ~ (Il, z, z, U, t) (A-33) 

where Hand H are as defined in (A-4) and (A-30), respectively, and i; is evaluated 

according to (A-2). Thus, (A-5), together with (A-32) and (A-33), becomes 

i =~[aLJ- aH 
dt at. ~ 

In addition, using (A-32), it easily shown that 

_ JL T 

H=H-- g 
at. 

(A-34) 

(A-35) 
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Using (A-34) to substitute for iJH/Jz in (A-31), integrating some terms by parts, 

and cancelling other terms yields 

J
tb 

J[U] - J[V] = [H(A, i, z, u, t) - H(A, i, z, V, t)]dt+ O(llu -v II~) 
ta 

(A-36) 

[
iJL ] Itb + di;-A (z-a) 

ta 

The last term in (A-36) vanishes because only neighboring controls are considered for 

J
tb 

J[U]-J[V]= [H(A, i, z, u, t)-H(A, i, z, v, t)]dt+O(llu-vll~) 
ta 

(A-37) 

Consider the following claim: 

Claim: 

Suppose an admissible control u, having corresponding system state Z, is optimal 

H(A, i, z, u, t) $ H(A, i, z, v, t); \::Iv En, \::It E [ta' tb ] (A-38) 

Proof: 

The assertion in (A-38) will be proven by contradiction. Assume there exists a time 

t E [ta' tb ] and a control WEn such that 

H(A(i), i(i), z(t), u(i), l) > H(A(i), i(i), z(t), w, t) (A-39) 

The piecewise continuity of u and the continuity of A, g, z, and L imply that an 

interval [te' td] C [ta' tb ], with l E [te' td], and an e > 0 exist, such that 

H(J.,(t), i(t), z(t), u(t), t) - H(J.,(t), i(t), z(t), w, t) > e (A-40) 

\::It E [te' td]. Consequently, let v be chosen so that 

(A-41) 

v(t) = u(t) , t e [te' td ] 

Then 
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J[U] - J[V] > c(td - tJ+ O(llu - v ,,~) (A-42) 

But 

(A-43) 

Thus, selection of td - tc small enough forces J[U] - J[V] > 0, which contradicts the 

optimality of u. Hence, the assertion in (A-38) is proved. • 
Having concluded the immediate derivation, it should be noted that the procedure 

followed above may be repeated while allowing for Zb and tb to vary. In addition to the 

foregoing results, which must be satisfied independent of whether or not Zb and tb are 

allowed to vary, boundary conditions equivalent to those given in (A-7) will also be 

obtained. Thus, using the relations provided in (A-33) and (A-35), and noting that 

aLI at. = aH I at. (since g does not explicitly depend upon t), the resulting necessary 

conditions are 

(A-44) 

and 

H(A, t, Z, u, t)::;; H(A, t, Z, v, t); Vv E n, Vt E [ta' tb ] (A-45) 

subject to the boundary conditions 

[aqJ _'+ aHJT liz --0 [aqJ H aHT ] d 0 
(}z /\, at. b' at + - at. g tb = 

~ ~ 

(A-46) 

where g is as indicated in (A-30). It is worth mentioning that for the case when n == RT
, 

the condition in (A-45) can be replaced by 

: (A, t, z, u, t) = 0 (A-47) 

The conditions given in (A-44), (A-46), and (A-47) may then be independently verified 

by using the calculus of variations, which lends further support for the validity of the 

conditions in (A-44) through (A-46). 
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AppendixB 

Some Mathematical Relationships 
and Derivations 

B.1 The 0(·) Notation 

A scalar, vector, or tensor function f(h) is said to be order of magnitude g(h) as 

h ~ 0 if the condition 

lim f(h) = b 
h-+O g(h) 

(B-1) 

holds, where g(h) is a nonnegative scalar function, b is a scalar, vector, or tensor 

quantity, and h is a nonnegative scalar variable. This is expressed by 

f(h) = O(g(h» as h ~ 0 (B-2) 

Furthermore, it can also be shown that if 

(B-3) 

then 

(B-4) 

Moreover, if c is a scalar constant, then 

c f(h) = O(g(h» as h ~ 0 (B-5) 

B.2 Derivation of Equations (3-28) and (3-29) 
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_II Xl (t;) i:up -I Xl (tk) I:up I 
- 2 

I Xl (tk) Isup 

_llxl(tnlsup -IXl(tk)lsup I II Xl(t;)Isup +IXl(tk)lsup I 
- I Xl (tk) Isup I Xl (tk ) Isup 

_1 L1lxl(tk)lsup 1 {2I xl (tk)lsup + L11 Xl(tk)lsup } 

- I Xl (tk) Isup I Xl (tk) Isup 

= 2[1 L11 Xl (~k) Isup IJ + [I L11 Xl (~k) Isup IJ2 
I Xl (tk ) Isup I Xl (tk ) Isup 

in which case (B-6) becomes 

(i +20- y=O 

It is then easily verified that 

0= .}1+ Y-l 

since 0 > O. (B-9) may then be expanded as a binomial series of the form 

0= 1+.1.y __ 1 y2 +~y3 - ... -1 2 2·4 2·4·6 
from which it is clear that 0 < -t r, since y < 1. 

B.3 Relationship for a Generalized Performance Index 

Consider the generalized performance index 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-I0) 

(B-ll) 
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where z( -r) denotes a trajectory obeying 

dz - = g(z( -r), u( -r), -r) 
d-r 

(B-12) 

on the interval t::; -r::; tb. For a given initial state z = z(t) at an arbitrary initial time t, 

but fixed final time tb and prescribed u( -r), the derivative of J with respect to t is given 

by 

j = - L(z(t), u(t), t) (B-13) 

as verified by using Leibnitz' s rule for differentiation of an integral. Alternatively, if the 

functional form of J were known, j could be directly evaluated from 

j= ~ aJ .+aJ 
£..J a . g, at 
i=1 Z, 

Equating (B-13) and (B-14), and rearranging yields 

I,n aJ aJ 
-g.+-+L=O 
aZi I at 

i=1 

(B-14) 

(B-15) 

A relation which links A to J in the formulation of the optimal control problem 

discussed in Chapter 2 is now derived. The derivation follows the account given in [1]. 

Consider the equation obtained by taking the partial derivative of (B-15) with respect to 

Zj' j E {I, ... , n}, 

~ ~ aJ g. + a
2 
J + aL = 0 

az· £..J az· I ataz· az. 
J i=1 I J J 

or, assuming continuous first partial derivatives, 

t[ a
2 

J g. + aJ agi ] + a
2 

J + aL = 0 
az· az· I az· az· ataz· az· i=1 I J I J J J 

Next, consider the derivative of dJ / aZj with respect to t 

:r[::] = t a:2~z. gi + ~2 ~t 
J i=1 J I J 

(B-16) 

(B-17) 

(B-18) 

Assuming that the first partial derivatives of J with respect to Zk and t are continuous, 

k E {I, ... , n}, the order of differentiation may be interchanged, whereupon 

d [ aJ ] n a
2 
J a

2 
J 

dt az· = I, az. az. gi + ataz· 
J i=1 I J J 

(B-19) 
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The relations in (B-17) and (B-19) may be combined to yield 

d [ JJ ] JL ! JJ Jgi 

- dt Jz· = Jz· + Jz· Jz· 
J J i=l I J 

which holds T.:Ij E {1, ... , n}, and so (B-20) is representable in vector form as 

_!!...[JJ] = JL + Jg T JJ 
dt ()z ()z ()z ()z 

which is the desired relationship. 

B.4 Matrix Inversion Lemma 

Consider the following claim: 

Claim: 

(B-20) 

(B-21) 

(B-22) 

where G and H are assumed to be invertible matrices of the same dimensions, and 1 is 

an identity matrix with appropriate dimensions. 

Proof: 

I -G(I +HGfl H 

= 1 _[H-l(I + HG)G-lr 

= I - [ 1+ ( G Hfl r 
= [I +(GHfl][1 +(GHf1r -[I +(GHf1r1 

= {I + (G Hfl - I}[ 1 + (G Hfl r 
= (GHfl[1 +(GHf1r 

={[/+(GHfl](GH) rl 

• 
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Next, it is shown that a series expansion may be obtained for (I + G Hfl through 

recursive application of (B-22): 

(I+GHr
l 

= I-G(I+HGrIH 

= I -G[I -H(I +GHfIG]H 

= I -G{I -H[I -G(I +HGfIH]G}H 

from which it is apparent that 

(B-23) 

B.S Natural Frequencies and Mode Shapes for the Free Vibration of a 

Uniformly-Discretized, Chain-Like Mechanical System 

Consider a discrete, undamped mechanical system which consists of n repeated 

identical units, with the same boundary conditions as that indicated in Figure 4.1. The 

equation of motion for a representative nodal mass away from the boundaries is given by 

where r E {2, ... , n -I}. The boundary conditions to be enforced are 

m Xl - k (X2 - Xl) + k (Xl - 0) = 0 

and 

The solutions of interest to (B-24) have the form 

Xr = ArCOS(lOt- tp) 

Substituting (B-27) into (B-24), and cancelling common terms yields 

(B-24) 

(B-25) 

(B-26) 

(B-27) 
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Ar+l + (a - 2)A, + A,-l = 0 

a=mai 
k 

Similarly, (B-25) and (B-26) become 

and 

(a-1)~ +~-l =0 

(B-28) 

(B-29) 

(B-30) 

(B-31) 

respectively. Equation (B-28) is a difference equation, and techniques for its solution 

may be found in [2, 3]. 

Elementary solutions to (B-28) exist and are of the form 

A = BefJ r 
r (B-32) 

Substituting (B-32) into (B-28), and rearranging terms yields 

(B-33) 

in which case 

2 - a = 2cosh{3 (B-34) 

if {3 is real, or 

2 - a = 2 cos I {31 (B-35) 

if {3 is imaginary. Equations (B-34) and (B-35) represent a constraint relation between 

the parameters a and {3. 

In general, the solution to (B-28) which satisfies the boundary conditions given by 

(B-30) and (B-31) must be of the form 

(B-36) 
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Substituting (B-36) into (B-30) gives 

(B-37) 

which, upon using (B-33), becomes 

a+b=O (B-38) 

Substituting (B-36) into (B-31) gives 

(B-39) 

which, upon using (B-33), becomes 

(B-40) 

Equations (B-38) and (B-40) may be combined into a matrix form as 

[e(n+l)p(~ _ e-p ) e-(n+l)p1(1_ epJ{:} = {~} (B-41) 

Clearly, (B-41) yields nontrivial solutions for a and b only when the determinant of the 

coefficient matrix vanishes, in which case 

e(n+l)p (1- e -p) - e -(n+l)p (1- eP) = 0 

After some manipulation, (B-42) becomes 

where i=R. 

a) 

There are two classes of roots to consider which satisfy (B-43): 

(n+l)~ =(2s-2)7r+n~; s=l, 2, ... 
l l 

in which case 

Using (B-45) with (B-35) and (B-36), it is readily shown that 

a=O => m=O 

(B-42) 

(B-43) 

(B-44) 

(B-45) 

(B-46) 



-275-

and 

which constitutes a trivial solution. 

b) 

in which case 

(n+1)~ =(2s-1)n-n~; s=1, 2, ... 
I I 

f3=f3 =(2s-1)ni 
s (2n+1) 

(B-47) 

(B-48) 

(B-49) 

(actually, s terminates at n because for s > n, the roots replicate the functional behavior 

for s ~ n). Using (B-49) with (B-35) and the trigonometric identity 

sin2
/ ~ / = 1- c;slf31 (B-50) 

gives 

4 . 2[(2S-1) n] a= a = sm 
s (2n+l) 2 

(B-51) 

and from (B-29) yields 

m = m = 2 [k sin [_(2_S_-_1_) n] 
s y;;; (2n+1) 2 

(B-52) 

Using (B-49) with (B-36) gives 

A = A = a eil.Bs Ir + b e -il.Bs Ir 
r ~7,S s s (B-53) 

But from the boundary condition in (B-38), (B-53) becomes 

. e -e 
[ 

il.Bs Ir -il.Bs Ir] 
A,.,s = 2las 2i (B-54) 

or 

. [(2S-1) ] Ars = cssm nr 
, (2n+1) 

(B-55) 

where Cs == 2ias E R, since A,.,s must be real from the assumed form in (B-27). Hence, 

the relations given in (4-7) are established from (B-52) and (B-55). 
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