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Table 4.36. Qualitative Performance Assessment for Control Categories
Used in MDOF System Study.

Performance Assessment
Based Upon:
Control Story Drift Nodal Mass
Category Acceleration
1 E G
2 E S
3(a) E PtoS
3(b) StoE PtoG
4 StoG StoG
5 StoG G

Note: E = Excellent, G = Good, S = Satisfactory, P = Poor
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

As the field of structural control continues to mature, a consensus is emerging as to
the essential attributes of an effective and acceptable control system or approach for
application to structural systems. Reduction of selected maximum response quantities is
certainly mandatory; but simplicity, reliability, and ability to function without substantial
amounts of externally-supplied power are also desirable features.

The studies presented herein have examined a semi-active control approach which
involves controlled interactions between two distinct structural systems — or different
components of a single structural system — in order to reduce the resonance buildup that
develops during an external excitation. This approach utilizes certain types of elements
to physically produce the interactions, which consist of reaction forces that are applied to
the systems. The mechanical properties of the interaction elements may be altered in real
time through the use of switching components to effect changes in the reaction forces
which are favorable to the control strategy. The major advantage of this semi-active
control technology is that relatively large control forces can be generated with minimal
power requirements.

A preliminary study involving two interacting SDOF systems has been conducted to
examine the effectiveness of the proposed control approach. This study was exploratory
in nature and involved very simplistic models of structural systems. However, it was
crucial in the development of a methodology for implementation of the control strategy
(i.e., Method 1) that could be extended for application to MDOF systems. At present, it
has been demonstrated that such an extension is only possible for linear systems, whose

response can be decomposed into particular modes of vibration. The response control of
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one or several of these modes, each of which behaves like a SDOF system, then naturally
follows from the previous work. However, because the control strategy focuses on the
so-called relative vibrational energy associated with the linear system (in particular, the
components of this energy contributed by certain modes), it may also be possible to
further extend the approach to nonlinear systems which exhibit mode-like properties,
since this kind of system also has a relative vibrational energy associated with it.

In addition, the results of the preliminary study were instrumental in the conception
and development of new interaction elements (i.e., Types 1 and 2) for use in the follow-
on study involving MDOF systems. As may be recalled, these elements consist of an
elastic element which is placed in series with a component that may be activated or
deactivated in real time. When activated, the component behaves as a rigid connecting
member. When deactivated, the component yields in an extremely-fast manner, rapidly
dissipating the strain energy that is stored in the elastic element. In fact, of all the control
cases examined, the greatest degree of response reduction is achieved when these types of
elements are utilized. Finally, the results of the Category 1 cases in the preliminary study
indicate that a significant improvement in response control effectiveness may be obtained
if the proposed control algorithm is used instead of algorithm developed by Kobori et al.
for the Active Variable Stiffness control method [1].

The follow-on study considered MDOF models of structural systems to examine the
effectiveness of the proposed control approach and investigated various interaction
arrangements involving what may be interpreted as: two adjacent multi-story buildings
that interact with one another; or a single multi-story building that interacts with either
itself and its base, an externally-situated resilient frame, or an unrestrained, relatively
small mass located on top of the multi-story building. In each of these situations, the
response control effort is directed at controlling only one multi-story building, which is
designated the primary system; the other multi-story building, resilient frame, or small

mass is referred to as the auxiliary system.
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The following list summarizes the main conclusions for the MDOF system study:

1) Under appropriate conditions, the proposed control method and algorithm are
capable of achieving a substantial decrease in the story drift levels associated with the
primary system. Depending upon the particular interaction arrangement, the nodal
mass acceleration levels may either be reduced or elevated.

2) For the five categories of control cases previously considered, the best response
reduction results are obtained when interaction elements capable of continuous energy
storage and sudden energy dissipation (Types 1 and 2) are utilized.

3) The proposed control approach is most effective when these types of interaction
elements are either: internally mounted within the primary system, between adjacent
nodal masses; or attached between the primary system and an auxiliary system
intended to resemble an externally-situated elastic frame.

4) For these kinds of interaction arrangements, very significant response reduction
is achieved (a 50 to 75 percent decrease in the peak values of the first mode response,
which provides the largest contribution to the story drift levels for the ensemble of
excitation records considered) when stiffness ratios of order unity are used (1 = 0.50
for Category 1 cases; & =1.00 and pu =1.00 for Category 2 and 3(a) cases).

5) For the cases in Categories 1, 2, and 3(a), the results generally indicate that it is
better to employ the full complement of available interaction elements rather than a
partial complement. Such a policy enables effective reduction of the first mode
response and prevents the excitation of higher modes by the control effort.

6) Because the more-idealized Type 1 elements produce nearly the same controlled
response behavior for the primary system as does the less-idealized Type 2 elements,
as is verified by the results of the Category 1, 2, and 3(a) cases, it is acceptable to use
Type 1 elements for further exploratory investigation which involves these types of
interaction elements. This course of action permits a substantial savings in compu-

tational effort.
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7) The proposed control approach appears to be less effective for the situation in
which the primary and auxiliary systems represent two existing structures (i.e., two
adjacent buildings), in which the auxiliary system is presumed to be much stronger
and more massive than the primary system. However, significant response reduction
may still be achieved if a low-high primary-auxiliary system configuration exists.

8) When the results of cases in Categories 3(b) and 4 which involve the same
primary-auxiliary configuration are compared, it is generally observed that the
response reduction obtained for the cases in Category 4 is less than that for the cases
in Category 3(b). Hence, Type 3 elements are less effective at implementing the
control strategy for this interaction arrangement and the assumed conditions asso-
ciated with the auxiliary system.

9) The cases in Category 5 show remarkable response reduction capability in view
of the facts that only a single interaction element is utilized and an auxiliary system
consisting of a relatively small, unrestrained mass is employed. Although the control
effectiveness of these cases is not as great as that of some cases in other categories,
such an interaction arrangement might prove useful for applications involving wind
gust excitation, such as has been previously considered for tuned mass dampers and
active mass drivers.

10) The cases in Categories 3(b) and 5 reveal that response control effectiveness is
highly dependent upon the value selected for u, the parameter associated with the
Type 1 elements used.

11) For each of the categories previously considered, a comparison of the results of
special reference cases, in which the interaction elements are locked in the activated
operating state, with the results of the cases that use the proposed control method
indicates both the efficacy of the switching process and the necessity of a control
algorithm for the operation of the interaction elements.

12) Several examples of a Category 1 controlled primary system — which is
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initially given certain nonequilibrium displacements but is externally unforced —
show that the proposed control method is capable of reducing the response of higher
frequency modes and suppressing the response of several dominant modes. These
results suggest that such a capability may also be possible for a primary system which

is externally forced.

5.2 Topics for Future Work

Some questions may be raised regarding the simplistic nature of the models used to
represent actual structural systems and the idealistic conditions assumed for the behavior
and operation of the interaction elements. These are legitimate concerns. The studies
presented herein are based upon a very fundamental treatment of the structural control
problem, in which the structural systems are represented by discrete mechanical systems.
Such models were chosen for two reasons: to reduce the number of parameters necessary
to characterize the systems; and to obtain exact expressions for the natural frequencies
and mode shapes of vibration, with the number of degrees of freedom (i.e., the number of
structural stories) appearing as a parameter, a feature that greatly facilitated the study.

Perhaps, in more detailed and extensive studies, it would be desirable to include
additional factors that could be expected in a real-world setting. Some of these factors
might be:

. Constitutive and Geometric Nonlinearities

. Three-Dimensional Effects (e.g.: variation in the directional orientation

of the external excitation; presence of rotational, other translational, or even

vertical modes of vibration; etc.)

. Controllability and Observability Issues

. Parameter Identification and Uncertainties

. Thermal Loading of Control Devices

. Time Delays in Switching Processes

. Ground/Structure Interaction Effects
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The next steps which should most likely be taken in further investigation include:
development of more realistic models for the structural systems and interaction elements
utilized in simulations, which would more accurately capture the dynamics (both thermal
and mechanical) of the actual systems and devices involved; and incorporation of the
capability to identify and target the most dominant response modes in real time. In
addition, verification of the proposed control approach through experiments on reduced-
scale physical models of structural systems should be accomplished.

Also, it has not been rigorously established that the control algorithm used in the
proposed approach guarantees the stability of the controlled system. Because the
uncontrolled system is assumed to be asymptotically stable and the excitation input is
assumed to be bounded and of finite duration, it would intuitively seem that the proposed
approach preserves the stability of the system since the strategy of the approach is to
remove relative vibrational energy from the system, and it has already been shown that
this kind of energy provides an upper bound for the response quantities of interest.
However, it would be preferable to mathematically demonstrate that the proposed
approach preserves the stability of the system, and perhaps such a demonstration can be
carried out in future work.

Lately, earthquake engineering investigators have expressed concerns regarding the
so-called near-field effects which have been manifested in recent seismic episodes, such
as the 1992 Landers and 1994 Northridge earthquake events. These effects generally
occur at locations geographically near to the faulting mechanisms responsible for the
earthquake, and they are characterized by much greater peak ground velocities and
permanent ground displacements than are experienced at more remote locations. It can
be shown that such effects have a tendency to place high demands on the ability of multi-
story structures to withstand sudden and pronounced story drifts [2, 3]. These kinds of
ground motions are very different from those exhibited by traditional earthquake records,

such as the ones employed as excitation input for the studies presented herein, which
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typically produce a more gradual buildup in the response of the structure. For such
reasons, it would be wise to examine the control effectiveness of the proposed approach
in cases that employ these kinds of ground motions.

In each of the control categories previously considered, it has been assumed that the
auxiliary system is capable of absorbing any additional energy received as a result of the
control effort, and so attention need not be given to its response. In future work, it would
be prudent to directly examine the response of the auxiliary system in various cases to
verify such an assumption, and perhaps provide the results of some simple calculations
involving the strength of materials to substantiate this claim. Also, it is worth reiterating
that the parameters characterizing the auxiliary system were selected with the intention
that one of the following conditions holds: the effects upon the auxiliary system resulting
from interaction with the primary system are minimal (e.g., interaction between two
existing structures); or the auxiliary system does not represent a load-carrying structure
and can withstand large deflections or excursions (e.g., an externally-situated resilient
frame or an unrestrained, relatively small mass).

Finally, it should be mentioned that because most of the dynamic activity for the
control cases in the MDOF system study occurs in a single response mode, it should be
possible to perform further analysis using reduced-order models for the structural
systems. A few situations for which this analysis approach could be helpful are the
control cases considered in Categories 3(b) and 5, in which there appeared to be optimal
values for u given specified values of o and B. Perhaps, if it were reasonable to model
the external excitation as a random process (e.g., filtered, stationary Gaussian white
noise), a technique such as statistical linearization [4] could be used to find equivalent
elements and systems to which approximate analysis may be applied in order to facilitate
analytical determination of optimal values for g in terms of the other parameters.

It is believed that the studies which have been presented herein provide a solid basis

for more detailed and advanced investigations of a control approach that uses semi-
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actively controlled interactions for the response control of structural systems subjected to
external excitations. Although originally intended for multi-story buildings undergoing
seismic excitation, it is hoped that these research efforts can also be utilized for general
areas of application such as vibration suppression in mechanical systems, vehicles, and

other kinds of structures that are exposed to external excitations.



- 259 -

References for Chapter 5

. T. Kobori and S. Kamagata, “Dynamic Intelligent Buildings — Active Seismic
Response Control,” Intelligent Structures — 2: Monitoring and Control, Proc. of
Intnl. Workshop on Intel. Systems, ed. by Y. K. Wen, Perugia, Italy, 1991, London:
Elsevier Science Pub. Ltd., 1992, pp. 279-292.

. W. D. Iwan, “Near-Field Considerations in Specification of Seismic Design
Motions for Structures,” Proc. of Tenth European Conf. on Earthquake Engrg.,
Vienna, Austria, Aug. 1994, accepted for publication.

. T. H. Heaton, J. F. Hall, D. J. Wald, and M. W. Halling, “Response of High-Rise
and Base-Isolated Buildings to Hypothetical M,, 7.0 Blind Thrust Earthquake,”
Science, Vol. 267, 13 Jan. 1995, pp. 206-211.

. J. B. Roberts and P. D. Spanos, Random Vibration and Statistical Linearization,
New York: John Wiley and Sons, Inc., 1990, Chap. 5 and 6.



~ 260 -
Appendix A

A Generalized Form of
Pontryagin’s Minimum Principle

A.1 Introduction

In Chapter 2, attention is given to a particular form for the integrand L of the
performance index J associated with the optimal control problem formulated in Section

2.2. This form is one for which
L=1(z,z,u,t) (A-1)

(i.e., L explicitly depends upon the argument z). But such a problem can always be
converted into one for which the integrand has an explicit functional dependence only

upon z, u4, and ¢, by virtue of the constraint relation
z2=g(z,u,t) (A-2)
in which case, the modified form for the integrand, denoted by L,is
L=L(z,u, t)=L(g(z, u, 1), 2, u, 1) (A-3)
L may then be used to formulate the Hamiltonian H, given by
H=H(A,z,u, t)=1"g(z, u, 1)+ L(z, u, 1) (A-4)

If a solution to the optimal control problem formulated in Section 2.2 exists, then

the following necessary conditions, rigorously proved in [1], must be satisfied:

_fp—;’ —I:%zli; Vtelt,, t,] (A-5)
and
HA,z,u, O<H(A, z,v, 1), YweQ, Vielt, t,] (A-6)

subject to the boundary conditions



dt, =0 (A-7)

1y

ot

It is now shown that, for the assumed functional form of L as given in (A-1), an

dzb=0, [a—(P'i'ﬁ:l

alternative set of necessary conditions to (A-5) and (A-6) is available. These conditions
are considered more useful because they directly involve L instead of L. The path taken
to obtain these conditions starts from those given in (A-5) through (A-7), which have
already been established. A transformation is then used to modify the system costate A.
It is finally demonstrated that the condition in (A-6), although still valid, may be replaced
by an equally valid yet more convenient condition. The following derivation is partially

based upon the developments given in [2, 3].

A.2 Derivation

To begin, it is assumed that an admissible control # is a bounded, piecewise
continuous function of ¢ on the interval [z,, #,]. Furthermore, it is required that u(t) € Q,
Vtelt,, t,], where Q is a specified (possibly closed) subset of E", the Euclidean space
associated with R".

Moreover, it is assumed that g satisfies the uniform Lipshitz condition
le@, u, )-ga, v, D|sm[|z-a|+clu-v|]} Vielt, 1] (A-8)

where m and c are positive constants and | - | denotes an appropriate finite-dimensional

norm (e.g., the Euclidean norm). In addition, the auxiliary Lipshitz condition

lz-al, <kfu-v], (A-9)
will be shown to hold, where
2=g(z,u,t), a=ga,v,t) (A-10)
and
= R d 1
l2l,= max [z, e, = | "Juco (A-1D)

where T is some characteristic time for the problem.
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Let z be the system state (i.e., the entire trajectory) corresponding to the optimal

control u. Suppose that a class of controls neighboring u are considered, and denote an

arbitrary member of this class by v =u + du, where du is an admissible (not necessarily

infinitesimal) variation to the optimal control. Let the system state corresponding to such

a member be denoted by a =z + &z, where &z is the variation in z due to du. The class

of neighboring controls considered includes only those controls which take the system

state from z, at time ¢, to z, at time ¢,, where z, and ¢, are either specified or

determined from the conditions given in (A-7). Using (A-10), it is then clear that

4

dt[&]=g(a, v, )-g(z, u, 1)

in which case

6z(t)=J [g(a, v, ©)-g(z, u, 7)]dT

where the fact that 8z(¢,) = &z, =0 has been invoked. It is also clear that

|&0l< [ le@. v D-g@ v, D]dr
Using (A-8) yields
||&(f)||SJ m[ || 82() |+ | Su(T)| Jdz

Recall the Gronwall-Bellman lemma [4], which asserts that if

t

swso+ [ [pOED+uDdE p(D)20

o

where o is a constant, then

t —[p(md " p(1)d
5(:)3{“‘[ P nﬂ(f)d'r]ej‘"p i
t

o

Applying this result to (A-15) gives

t
” &(t) ” < mcem(t—ta)-[ e-m(r_ta)
t

a

ou(T) ||dT
Vtelt,, t,], for which

!
|&@], < meTem = [ du(r)|dr
tﬂ

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)
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Thus,
|z-al, <k[u-v]|, (A-20)

where k =mcTe™ ') and (A-9) is verified.

Now,

LiZ,z,u, t)y-La,a, v, t)=1(2,z, u, t)—- L(Z, z, v, 1) (A-21)

+L(Z,z,v,t)—L(a,a, v, t)

But
T T
L(a, a, v, t)=[—g§—(z}, zZ, v, t)} (d—i)+[%(i, zZ, v, t)} (a-2) (A-22)
+ L(Z, z, v, t)+0(||2'—d||§ +||z—a||§)
Also,
) .

%(z‘, z, v, t)=%(z', z u, t)+[§;u(z’ z, u, t)_(v—u)+0(||"“’||i) (A-23)

and

24 224 dz du

In addition,

) -
.a_L(i, zZ, v, t)=.a£(z', zZ, u, t)+|: oL Gz u, )| -w)+0(u-v[}) (A-24)

|2-a|=|g(z u, )-gla, v, n|<mk+c)|u-v|, (A-25)
so that
o(z~al; +|z~al})=0(u-v[5) (A-26)
Hence,
Lz, z,u, t)-L(a, a,v, t)=L(Z, 2, u, t)—- L(z, 2, v, t) (A-27)

T T
+{%(z', Z, u, t):l (z'—d)+[§z—l‘(z', z,u, t)] (Z-a)’“o(”"""”z)

Likewise,
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i-a=g(z,u, t)—gla,v,t)=g(z, u, t)—g(z, v, t) (A-28)

+[%g(z, u, t)](z—a)+0<llu—VI|i>

Therefore, for the class of neighboring controls considered,

J[UI-J[V]= J'tb [L(z, z, u, 1) - L(4, a, v, t)]dt (A-29)

boror T.. .
+[" [F (e u, n-gta, v, 0)- AT G- )]
’a
which is valid for any A .
Now, let
H=HG, z,u, )=A"g(z, u, )+ Lz, z, u, t) (A-30)

Using (A-27) and (A-30), (A-29) becomes (after some manipulation)

L . . oH'
JU)- J[V]= j HOW 42 D= HOL 220, 0+ 2 @-a)|d (A3

t

a

J"b JL
+
t

| %
where the two partial derivatives in (A-31) are both evaluated at (Z, z, u, ?).

T
[-—,— (z—-a)-AT(z —d)Jdt+O(”u -y ||i)

Also, let

A=A- %f_—(z’, z,u, t) (A-32)

which is actually a defining relation for A, since A is governed by (A-5). It can then be

shown that

%I(I, z, u, t)=%g(l, Z,2, U, 1) (A-33)

where H and H are as defined in (A-4) and (A-30), respectively, and 7 is evaluated

according to (A-2). Thus, (A-5), together with (A-32) and (A-33), becomes

d|{JdL| oJH
=—|—=|-— A-34
di [ % } % (A=39
In addition, using (A-32), it easily shown that
T
H=H- a—L, g (A-35)

XK
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Using (A-34) to substitute for dH/dz in (A-31), integrating some terms by parts,

and cancelling other terms yields

JIU1-J[V]= f b[H(A, Z,2,u, )=H(QA, 2,2, v, D]dt+O(Ju—v|})  (A-36)

+|i@ - ﬂ.}(z -a)

73

&

The last term in (A-36) vanishes because only neighboring controls are considered for

lq

which a(z,) =z(z,) and a(z,) =z(t,). Hence, (A-36) becomes
JIU1- J[V]= J' [HA, 2,2, u, - HQA, 2, 2, v, D)dt+O(u—v[})  (A-37)

Consider the following claim:
Claim:
Suppose an admissible control u, having corresponding system state z, is optimal

on [t,, t,]. Then
HA,2,z,u, )SH(A, 2,2z, v, t); VwveQ, Vielr, 1,] (A-38)

Proof:
The assertion in (A-38) will be proven by contradiction. Assume there exists a time

t €[t,, t,] and a control w € Q such that
H(A(D), (1), z(D), u(D), £)> HA®D), 2(D), 2(D), w, T) (A-39)

The piecewise continuity of u and the continuity of A, g, z, and L imply that an

interval [z, t,1<[1,, t,], with f €[¢,, t;], and an € >0 exist, such that
H(A(1), 2(2), (1), u(t), t)~ H(A(2), 2(1), z(t), w, 1) > € (A-40)
Vte(t,, t;]. Consequently, let v be chosen so that

viy=w , telt,, t;] (A-41)

vity=u(t) , telt., t;]

Then
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JW1-JIV]I> ety —1,)+ O(u—v|) (A-42)
But
Ju=vl,=0(1 -t (A-43)

Thus, selection of 7, —¢, small enough forces J[U]}- J[V]>O0, which contradicts the
optimality of . Hence, the assertion in (A-38) is proved. n

Having concluded the immediate derivation, it should be noted that the procedure
followed above may be repeated while allowing for z, and ¢, to vary. In addition to the
foregoing results, which must be satisfied independent of whether or not z, and t, are
allowed to vary, boundary conditions equivalent to those given in (A-7) will also be
obtained. Thus, using the relations provided in (A-33) and (A-35), and noting that
odL/dz = dH/dZ (since g does not explicitly depend upon Z), the resulting necessary

conditions are

JH : d|JH| oJH
=, A=—|—=|-—; V -44
BT A dt[ 9'] P telz,, 1] (A-44)
and
HA,z,z,u, t)SHQA, %, z,v, t); YWweQ, Vrelt, t,] (A-45)

subject to the boundary conditions

d oHT J oH"
[—az‘ﬂ— +§} tdzb=0, [7?+H—g g:lt dt, =0 (A-46)

where g is as indicated in (A-30). It is worth mentioning that for the case when Q= R,

the condition in (A-45) can be replaced by
oH
—(A, 2,2, u,1)=0 A-47
EW ( ) ( )

The conditions given in (A-44), (A-46), and (A-47) may then be independently verified
by using the calculus of variations, which lends further support for the validity of the

conditions in (A-44) through (A-46).
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Appendix B

Some Mathematical Relationships
and Derivations

B.1 The 0O(-) Notation

A scalar, vector, or tensor function f(h) is said to be order of magnitude g(h) as

h — 0 if the condition

im I

h—0 g(h) (B-1)

holds, where g(h) is a nonnegative scalar function, b is a scalar, vector, or tensor

quantity, and 4 is a nonnegative scalar variable. This is expressed by
f(h)y=0(g(h)) as h—0 (B-2)
Furthermore, it can also be shown that if
fi(h)=0(g(h)) and f,(h)=O(g,(h)) (B-3)
then

Sih)+ f5(h) = O(g;(h)+ g,(h)) as h—>0 (B-4)
Moreover, if ¢ is a scalar constant, then

cf(h)=0(g(h)) as h—0 (B-5)

B.2 Derivation of Equations (3-28) and (3-29)

| AE\(1,) l
E(t;)

1 2 2
|smofalx o,

| 2| ey P
PRI 'xl(tk ) sup
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_ AI *1 (tk) lfup
BTN
le(tk ) sup
] ]
|1, =7,
= 2
|x1(tk ) sup
|50, =[x, | |20, +|x6],
B |50,
_ ‘A| x(t) |mp {2| x(t) op T A| xl(tk)lsup }
x|, EXaIm
2

| Al xl(tk) |sup + ' Al X (tk) L‘up

%Ok, | | 1500,
Now, let
REEIC _|AE @)
~ ueol, T E®)
in which case (B-6) becomes
6*+20-y=0
It is then easily verified that
0=41+7y -1

0=1+1y--Ly 13 3 . _1

from which it is clear that 6 <+ ¥, since y<1.

B.3 Relationship for a Generalized Performance Index

Consider the generalized performance index

Iz, 1, 1y, w(D)]= 9(z,. tb>+_["L(z(r), u(), T)dt

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)

(B-11)
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where z(7) denotes a trajectory obeying

% =g(z(7), u(1), 7) (B-12)
T

on the interval 1< 7<¢,. For a given initial state z = z(¢) at an arbitrary initial time ¢,
but fixed final time ¢, and prescribed u(7), the derivative of J with respect to ¢ is given

by
J==L(z(®), u(®), t) (B-13)

as verified by using Leibnitz’s rule for differentiation of an integral. Alternatively, if the

functional form of J were known, J could be directly evaluated from

n

. aJ aJ
Jj=) Z o+ B-14
24, &t (B-14)
Equating (B-13) and (B-14), and rearranging yields
U
—g +—+L=0 B-15

A relation which links A to J in the formulation of the optimal control problem
discussed in Chapter 2 is now derived. The derivation follows the account given in [1].

Consider the equation obtained by taking the partial derivative of (B-15) with respect to

Zj jefl, ..., n},

ER N

9z; = dz, 7' dtdz; oz
or, assuming continuous first partial derivatives,

S| 0% ol dg, | 9*J oL
A AT

&\ 9z, 0z, 2; 0z; | dtdz; Iz

Next, consider the derivative of dJ/dz; with respect to ¢

dl ol | ~ 04 *J
—‘EI:B_ZJ] i=1 3zj 9%; st 3zj ot B9

Assuming that the first partial derivatives of J with respect to z, and ¢t are continuous,

0 (B-16)

0 B-17)

ke{l, ..., n}, the order of differentiation may be interchanged, whereupon

d| oJ = 92 3%J
Fhadll RGN U . B-19
dt|:82]:| =1 3Ziazj g'+9t82j ( )




-271-

The relations in (B-17) and (B-19) may be combined to yield

d aJ] AL ~ dJ Ig,
——|=— ==t ) —= (B-20)
dt[az] azj Pt azi 821
which holds Vj e({l, ... , n}, and so (B-20) is representable in vector form as
d[dJ] L dg'aJ
===t = = B-21
ai [ az] 2% & 2D
which is the desired relationship.
B.4 Matrix Inversion Lemma
Consider the following claim:
Claim:
(I+GH) ' =1-G(I+HG)'H (B-22)

where G and H are assumed to be invertible matrices of the same dimensions, and I is
an identity matrix with appropriate dimensions.

Proof:

I1-G(I+HG)'H
=1-[H'(1+HG)G']
=1-[1+ (GH)"]'1

=[1+(cH)"|[1+(GH)" ]‘1 ~[1+(cH)™ ]'1
={r+(@GH)" - 1}[1+ (GH)'IJ_I
=(GH) [1+(ca)"]"

={[1+@n)ycm}

=(I+GH)" .
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Next, it is shown that a series expansion may be obtained for (I+GH )—1 through
recursive application of (B-22):

(I+GH)™
=I1-G(I+HG)'H
=I1-G|I-H(1+GH)'G|H

=1-G{1-H[1-G(1+ HG) H|G|H
from which it is apparent that

(I+GH)'=I1-GH+(GH} -(GH)’ + - (B-23)

B.5 Natural Frequencies and Mode Shapes for the Free Vibration of a

Uniformly-Discretized, Chain-Like Mechanical System

Consider a discrete, undamped mechanical system which consists of n repeated
identical units, with the same boundary conditions as that indicated in Figure 4.1. The

equation of motion for a representative nodal mass away from the boundaries is given by

mi, — k(x4 —x,)+k(x, —x,_;)=0 (B-24)
where r€{2, ..., n—1}. The boundary conditions to be enforced are
mi, —k(x, —x ) +k(x,-0)=0 (B-25)
and
mi, —k(x,~x,,)=0 (B-26)

The solutions of interest to (B-24) have the form
x, = A, cos(wt~ @) (B-27)

Substituting (B-27) into (B-24), and cancelling common terms yields
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A +(@-2)A +A_ =0 (B-28)
where
as= % w? (B-29)

Similarly, (B-25) and (B-26) become
A+ (ax—-2)A =0 (B-30)
and
(x—1)A,+A, =0 (B-31)

respectively. Equation (B-28) is a difference equation, and techniques for its solution
may be found in [2, 3].

Elementary solutions to (B-28) exist and are of the form
A =BéPr (B-32)

Substituting (B-32) into (B-28), and rearranging terms yields

2-a=él +e? (B-33)
in which case

2—a=2coshf (B-34)
if B is real, or

2— o =2cos|f] (B-35)

if B is imaginary. Equations (B-34) and (B-35) represent a constraint relation between
the parameters o and f3.
In general, the solution to (B-28) which satisfies the boundary conditions given by

(B-30) and (B-31) must be of the form

A =aeP" +bePr (B-36)

T
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Substituting (B-36) into (B-30) gives
ae*f +pe 2P +(a—2)[aeﬁ +be‘ﬁ]=0 (B-37)

which, upon using (B-33), becomes

a+b=0 (B-38)
Substituting (B-36) into (B-31) gives
(@-Dfae™® +be |+ ae" P +pe P =0 (B-39)
which, upon using (B-33), becomes
ae"B(1—e Pyt be VP (1-ePy=0 (B-40)

Equations (B-38) and (B-40) may be combined into a matrix form as

1 1 a 0
OB a —e'ﬁ) e—(n+l)ﬂ(1 —éP) {b} = 0} (B-41)

Clearly, (B-41) yields nontrivial solutions for a and b only when the determinant of the

coefficient matrix vanishes, in which case
e PP(1—e Py mVB(1_Py=0 (B-42)

After some manipulation, (B-42) becomes

sin[(n +1 B :l = sin[n E] (B-43)
i

i
where i = \/—-—1 .
There are two classes of roots to consider which satisfy (B-43):
a) (n+l)€=(2s—2)n‘+n€; s=1,2, ... (B-44)
in which case
B=B,=2smi (B-45)
Using (B-45) with (B-35) and (B-36), it is readily shown that

=0 = w=0 (B-46)
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and
A =a;+b (B-47)
which constitutes a trivial solution.
b) (n+1)€=(2s—1)7r-—n€; s=1,2, ... (B-48)
in which case
2s-1) _.
B=B, =G i (B-49)

(actually, s terminates at n because for s > n, the roots replicate the functional behavior

for s <£n). Using (B-49) with (B-35) and the trigonometric identity

1-
sin?| £ l _ 1zcosll (B-50)
2 2
gives
.2 2s-Dn~m
a=aq, =4sin’| === B-51
: [(Zn +1)2 ] ( )
and from (B-29) yields
k . {@2s-Drm
O=0 =2, —sin — B-52
* \/; [(2n+1)2] (B-52)
Using (B-49) with (B-36) gives
A=A =aePlryp e Pl (B-53)
But from the boundary condition in (B-38), (B-53) becomes
i|ﬁ, Ir _ —-i|ﬁ, |r
A, =2ia{e ° ] (B-54)
’ 2i
or
.| 2s=1
A = — 7 B-55
rs = Cs sm|:(2n ) r] ( )

where ¢, =2ia; € R, since A, ; must be real from the assumed form in (B-27). Hence,

the relations given in (4-7) are established from (B-52) and (B-55).
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