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Abstract 

The objective of the research described herein is to demonstrate conditions under 

which controlled interactions between two structures or structural components can be 

made effective in reducing the response of structures that are subjected to seismic 

excitation. It is shown that the effectiveness depends upon such factors as the control 

strategy implementation, the interaction element mechanical properties, and the param­

eters which characterize the dynamic behavior of the structural systems. 

A study is conducted to examine the performance of a structural response control 

approach referred to as Active Interface Damping (AID). This control approach utilizes 

controlled interactions between two distinct structural systems - or different compo­

nents of a single structural system - to reduce the resonance buildup that develops 

during an external excitation. Control devices or elements may be employed to phys­

ically produce the interactions between the systems. The proposed control approach 

differs from some other control approaches in that the sensors, processors, and switching 

components all operate actively, whereas the interaction elements function passively. 

The major advantage of this semi-active control technology is that relatively large control 

forces can be generated with minimal power requirements, which is of prime importance 

for the control of relatively massive systems, such as structures. 

In the most simple form, the strategy of the control approach is to remove energy 

associated with vibration from only one system (the primary system). This process is 

accomplished through the transfer of energy to another system (the auxiliary system) by 

means of interaction elements, the dissipation of energy directly in the interaction 

elements, or a combination of both these methods. In a more complex form, the control 

strategy may be to minimize some composite response measure of the combined primary­

auxiliary system. Only the most simple form of the control strategy is considered in the 

present study. 
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Several physical interpretations of the control approach are possible: one is that the 

systems represent two adjacent multi-story buildings; another is that the primary system 

represents a single multi-story building, while the auxiliary system could represent either 

an externally-situated resilient frame or a relatively small, unrestrained mass - or even 

be completely absent (in this latter scenario, the interaction elements are internally­

mounted control devices). The interactions consist of reaction forces that are developed 

within and transmitted through the elements which are located between the two systems 

(or different points of a single system). The mechanical properties of these elements can 

be altered in real time by control signals, so the reaction forces applied to the systems 

may be changed, and the response control objective is achieved by actively changing the 

interactions at the interface of the two systems (or different points of a single system). 

Initially, a preliminary study of the proposed control approach is conducted within 

the specialized setting of linear single-degree-of-freedom (SDOF) primary and auxiliary 

systems. Numerical simulations are performed for a series of control cases using 

horizontal ground accelerations from an ensemble of earthquake time histories as 

excitation input. Subsequently, a follow-on study of the proposed control approach is 

conducted for linear multiple-degree-of-freedom (MDOF) primary and auxiliary systems 

intended to represent actual structural systems. Based upon the investigation and insight 

obtained from the preliminary study, a limited number of control cases are considered 

which include those deemed most effective and implementable. Numerical simulations 

are again performed using the same excitation input as for the SDOF systems. The 

control approach is targeted at reducing the response contribution from the fundamental 

or dominant mode of vibration associated with the primary system. Uniformly-discre­

tized models of a 6-story primary structural system capable of only lateral deformations 

are considered in most cases. A few cases involving models of a 3-story primary 

structural system are also examined. 
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Holiday Inn Excitation Records. Type 1 elements are used, with J.1 = 0.10. a = 6.50 and 
f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 

Figure 4.40. Response Time-History of Mode 2 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J.1 = 0.10. a = 6.50 and 
f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 

Figure 4.41. Response Time-History of Mode 1 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J.1 = 0.10, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-3. 
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Figure 4.42. Response Time-History of Mode 1 for a 3-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with /1 = 0.05. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 3-6. 

Figure 4.43. Response Time-History of Mode 1 for a 3-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with /1 = 0.05, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 3-6. 

Figure 4.44. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 10.00. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-6. 

Figure 4.45. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 10.00, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-6. 

Figure 4.46. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 10.00. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 

Figure 4.47. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 10.00, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-3. 

Figure 4.48. Response Time-History of Mode 1 for a 3-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 5.42. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 3-6. 

Figure 4.49. Response Time-History of Mode 1 for a 3-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = 5.42, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 3-6. 
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Figure 4.50. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with f.1 = 0.005. a = 0.00 
and f3 = 0.06. Only top element participates. 

Figure 4.51. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with f.1 = 0.005, and is 
locked in the activated state. a = 0.00 and f3 = 0.06. Only top element participates. 

Figure 4.52. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with f.1 = 0.025. a = 0.00 
and f3 = 0.30. Only top element participates. 

Figure 4.53. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with f.1 = 0.025, and is 
locked in the activated state. a = 0.00 and f3 = 0.30. Only top element participates. 

Figure 4.54. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with f.1 = 0.50. All elements 
participate. Targeted Response Mode: 2. 

Figure 4.55. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with f.1 = 0.50. All elements 
participate. Targeted Response Mode: 1 and 2. 

Figure 4.56. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with f.1 = 0.50. All elements 
participate. Targeted Response Mode: 1. 

Figure 4.57. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with f.1 = 0.50. All elements 
participate. Targeted Response Mode: 2. 

Figure 4.58. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with f.1 = 0.50. All elements 
participate. Targeted Response Mode: 1 and 2. 
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Chapter 1 

Introduction and Background 

1.1 Introduction 

During the last two decades, a growing interest in the intelligent control of civil 

engineering structures has developed, and many analytical, numerical, and experimental 

studies have been conducted by various investigators with this objective in mind. This 

interest is confirmed by the appearance of numerous journal papers and technical reports 

on structural control in the literature (see [1-5] for an extensive review), as well as the 

convocation of several conferences and workshops on this topic. Such an interest has 

arisen in part because of the ambitious efforts by architects and engineers to create large­

scale structures such as high-rise buildings and towers, long-span bridges and cables, and 

deep-water offshore platforms. 

Yang and Soong [3] have remarked that improvements in structural analysis and 

design methods coupled with the development of high-strength materials have permitted 

the construction of taller and larger structural systems. In fact, it has been predicted that 

the next generation of buildings may be one order of magnitude taller than those currently 

considered feasible. But the inherent flexibility and low intrinsic-damping properties of 

the materials used to fabricate these structures produces an increased vulnerability to 

external excitations in the form of vibratory response. As a result, a control system might 

become an integral member of a structural system in order to maintain both its stability 

and integrity during response to routine and excessive loading conditions. 

There is a natural desire for the protection and preservation of structures, their 

occupants, and their contents during critical periods of usage or catastrophic excitation 

episodes. Situations in which a structure is subjected to unpredictable environmental 

excitations associated with atmospheric, oceanic, or seismic events (e.g., wind gusts, 
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water waves, or earthquakes) are of particular concern. The incorporation of control 

devices into a structure to guard against these events should be viewed as a means of 

alleviating such concerns, and this preventative measure has become viable because of 

the technological successes achieved in such areas of applied scientific endeavor as 

control theory and actuation, signal detection and processing, and fluid power utilization. 

Several well-developed approaches (and their associated systems) to the problem of 

controlling a structure subjected to an external excitation have emerged and are discussed 

in the next section. 

1.2 Background 

As indicated by Leipholz and Abdel-Rohman [6], structural control involves the 

regulation of pertinent structural characteristics in order to ensure a desirable structural 

response while under the effect of loading. This regulation is achieved by modifying the 

dynamic behavior of the structure through the application of control forces. The control 

forces may be produced by either passive or active control systems. Passive control 

systems operate without the need for energy from an external source. As such, these 

systems must develop forces which are reactive in nature. Often, their main function is 

simply to dissipate mechanical energy (i.e., all forms of kinetic and potential energy) that 

has accumulated within the structure. Alternatively, active control systems operate only 

when an external supply of energy is available. But their advantage over passive control 

systems lies in the fact that, within reasonable bounds, they are capable of producing 

arbitrarily prescribed control forces for application to the structure. This feature permits a 

strong connection between active control systems and modem control theory. 

Some traditional approaches which have been used to suppress unwanted vibration 

in mechanical systems produced by an external excitation are: 

• Alter the mechanical properties of the system to shift the natural 
frequencies of vibration (i.e., the resonant frequencies) away from the 
dominant frequencies of excitation. 
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• Introduce energy dissipating or damping mechanisms into the system to 
prevent excessive vibration at or near the resonant frequencies. 

• Employ vibration absorbers to counteract forces exerted on the system 
by the excitation. 

• Employ vibration isolators to reduce transmission of forces to the system 
by the excitation. 

• Actively generate applied forces to counteract forces exerted on the 
system by the excitation. 

It is not surprising then that extended versions of these basic approaches constitute 

the primary methods used for most structural control applications. The principal areas of 

technological development that have met with some measure of success are structural 

base isolation, energy dissipation by internal devices, and active force application. 

Among the latter two areas, Soong [7] has reported the following examples of structural 

control systems: tuned mass dampers; tuned liquid dampers; sliding-friction dampers; 

supplemental viscous dampers; viscoelastic dampers; active mass drivers; active brace 

and tendon restraints; and pulsed gas-jet thrusters. 

One of the earliest proponents for the application of modern control theory to civil 

engineering structures subjected to external excitations and other loading conditions was 

Yao [8], who in 1972 advocated 

" ... an error-activated structural system ... defined as a structural system the 
behavior of which varies automatically in accordance with unpredictable 
variations in the loading as well as environmental conditions and thereby 
produces desirable responses under all possible loading conditions." 

In their initial efforts, structural control investigators have drawn upon the results 

and techniques developed by the electrical and mechanical engineering communities for 

such diverse applications as servomechanism devices, chemical production processes, 

and guidance of aerospace vehicles. However, applications involving externally excited 

structures often possess characteristics and present challenges that depart from or even 

invalidate the assumptions and conditions upon which these results and techniques have 

been based. 
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In an address at a recent conference on structural control, Housner [9] has aptly 

pointed out the fact that much of the theoretical basis in the development of active 

structural control is rooted in modern control theory. For example, control algorithms 

used to govern the operation of control systems intended for civil engineering structures 

are often based upon standard solutions to the linear quadratic regulator (LQR) problem. 

However, some of the features associated with structural control applications which differ 

from the conventional LQR formulation are: 

• a dynamical system typically characterized by only a few critical modes 
of response, permitting the option of reduced-order modelling 

• a limited number of available sensors and actuators, suggesting the need 
for an optimal placement of these devices 

• a relatively massive system, necessitating the influence of large and 
sustainable control forces 

• a control objective focusing on the reduction of selected maximum 
response quantities but tolerating substantial imprecision in the state space 
trajectory for the system 

• a requirement for robust, reliable, and possibly fault-tolerant control 
system performance under conditions for which the external excitation is 
generally unpredictable 

• a control algorithm that is both computationally implementable and 
physically achievable 

Because of their capability to provide arbitrarily prescribed control forces for 

application to the structure, active control systems are more effective than passive control 

systems. However, this superior effectiveness is accompanied by: increased complexity 

(e.g., requirements for sensors, processors, and actuators)~ higher costs necessary to 

construct, operate, and maintain such systems~ and questionable reliability. On the 

contrary, passive systems usually require minimal maintenance, do not need a power 

supply in order to function, and are simple and extremely reliable. 

From these considerations emerges the concept of a hybrid control system, which 

consists of a combination of active and passive control systems. This system represents a 
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compromise between the two control approaches, and it is intended to be more efficient 

than either of these systems taken separately when all of the performance costs and 

benefits are taken into account. Typically, the active part of such a control system is 

operated for only brief intervals of time, as directed by a control algorithm, whereas the 

passive part is always ready to function. As may be verified in the literature, there has 

been an explosive growth in the number of hybrid control systems proposed for structural 

control applications during the last several years. 

Historically, aseismic design procedures for structural systems have relied upon the 

ductility of structural members in the event of excessive loading conditions [10]. 

Materials which exhibit ductile behavior have the ability to dissipate energy during 

inelastic deformation. However, such deformation generally leaves the structure in a 

damaged condition with a compromised load-carrying capacity. Various researchers 

have demonstrated that energy dissipating devices are an effective and reliable means of 

reducing structural response during seismic excitation. Pall and Marsh [11] proposed and 

tested sliding-friction devices mounted at the intersection of di;:tgonally-crossed braces 

connecting adjacent structural floors. The two ends of such a device are normally 

resistant to relative motion but will slip when a predetermined level of restraint force is 

exceeded. Because of the hysteretic behavior of the force-deformation curves for such a 

device undergoing cyclic loading, mechanical energy is dissipated. Filiatrault and Cherry 

[12] developed a simplified design procedure for determining the level of slip force to be 

used during operation of these braced sliding-friction devices. It is based upon the 

observation that a uniform distribution of slip force levels along the height of the 

structure is nearly as effective as an optimally-determined distribution of slip force levels, 

which vary with the height. 

Another combination of active and passive control systems is manifested in the 

concept of a semi-active control system. The idea behind this approach appears to have 

first been elucidated by Karnopp et al. [13]. A semi-active control device consists of a 



-6-

passive mechanical element (or combination of elements) across which the force is 

controllable. The variability in force will generally depend upon the instantaneous 

mechanical properties of the element and the states of the dynamical systems with which 

the element interacts. As described by Karnopp and Allen [14]. 

"The concept involves a damping mechanism for force generation which can 
be modulated through a feedback control signal. The scheme requires only 
signal level power and small transducers to generate large, controllable forces 
in the damper." 

In principle and practice, any forces which are actively generated during operation 

of a semi-active control device are not permitted to do work directly on the systems to be 

controlled. The resulting energy changes of these systems can only occur through the 

effect of reactive forces developed by the device. As an example, consider a control 

device that consists of friction plates which are attached between two structures. When 

there is relative motion of the two ends of the device, a normal force must be generated 

and applied to the plates in order to develop and sustain a resisting force between the 

structures. It is assumed that this normal force may be adjusted so that the resisting force 

is varied in a manner which has an optimal control effect upon the structures involved. 

However, the energy changes associated with this process are not a result of the normal 

force doing work on either of the systems to effect these energy changes. Rather, the 

normal force merely alters the mechanical properties of the device (i.e., the slip force 

level) that is responsible for the interactions between the structures. 

A number of investigators have performed analytical, numerical, and experimental 

studies involving the incorporation of semi-active devices into structural systems for 

control purposes. Hrovat et al. [15] investigated a semi-active tuned mass damper for the 

control of wind induced vibrations in tall buildings. The tuned mass damper utilized an 

auxiliary viscous damper whose properties could be controlled. They demonstrated that 

the performance of this control system is superior to passive systems and comparable to 

active systems. Akbay and Aktan [16] proposed an actively regulated friction-slip brace. 
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The operation of the brace was controlled by varying the clamping force on the friction 

interface of the slip device in order to regulate the reactive force transmitted to the 

structure. Dowdell and Cherry [17] performed a numerical study to demonstrate the 

effectiveness of varying in time the slip force levels associated with braced sliding­

friction devices. Two control algorithms were investigated for the operation of these 

devices: one involved a simple clamp-and-release scheme; the other used a linear state 

feedback law motivated by optimal control theory. 

Sack and Patten [18] introduced a semi-active hydraulic actuator as a means of 

achieving a variable viscous damper. The actuator utilized an adjustable flow orifice in 

the fluid return path connecting the high-pressure and low-pressure compartments of a 

piston-cylinder mechanism. Such a device is capable of providing large control forces, 

and it could be realized by installing a variable flow restriction on an otherwise generic 

shock absorber. In addition, Hirsch et al. [19] conceived, constructed, and tested a semi­

active tuned mass damper which utilized a controllable viscous damper that can be 

activated or deactivated with electromagnetic forces. 

Kobori et al. [20-23] advanced an active variable stiffness approach in which 

auxiliary braces are alternately engaged by or disengaged from the primary support frame 

for the structure. This engagement or disengagement is accomplished by piston-cylinder 

mechanisms which may be rapidly locked and unlocked. These braces and locking 

devices have actually been installed in the Kajima Technical Research Institute (KaTRI) 

No. 21 building in Tokyo [24]. Two methods are proposed for regulating the operation of 

the devices in order to achieve a desired control effect for the structure: one uses an open­

loop approach based upon the excitation input characteristics in an effort to avoid 

resonance conditions; the other uses a closed-loop approach based upon an adaptive self­

balancing principle. 

In addition, it has been suggested that semi-active control systems be incorporated 

into other kinds of structural systems. For example, Kawashima and Unjoh [25] proposed 
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using active variable damping and variable stiffness for the seismic response control of 

bridges, while Yang and Lu [26] considered using semi-active friction damping for the 

seismic response control of bridges. 

More recently, increased attention is being devoted to control methodologies which 

are based upon the theory of variable structure systems or sliding mode control [27-29]. 

Such methods of control bear a strong resemblance to those developed for the singular 

optimal control of linear systems [30]. Structural control research efforts following this 

approach are found in [31, 32]. The basic idea is that variable structure systems possess 

different dynamic properties in different regions of the state space. The change in the 

properties of the controlled system is idealized to occur instantaneously as the trajectory 

of system states crosses a switching surface, which separates one region from another. 

The switching surfaces are selected so as to produce a favorable control effect on the 

system as its trajectory migrates through the state space, eventually being driven to the 

origin. This method is also reminiscent of active variable damping and variable stiffness 

approaches. 

Another novel method proposed for the mitigation of excessive structural response 

during seismic excitation involves the interaction of two distinct structural systems or 

components of a single structural system. Kobori et al. [33] advocated the use of tuned 

steel connectors between adjacent buildings for seismic response control. Each connector 

consists of a passive joint damper whose function is to dissipate energy upon elastoplastic 

deformation under loading conditions. The joint dampers are mounted to permit relative 

motion between the buildings in any direction, rendering them effective in suppressing 

both lateral and rotational motions. Such passive devices have actually been installed in 

the steel-reinforced concrete Kajima Intelligent (KI) building in Tokyo, which is 

comprised of a 5-story "A" building linked to a 9-story "B" building. Sera et al. [34] 

performed numerical and experimental analyses on a model of a four-winged, 12-story 

building with an internal atrium. The wings of the building were interconnected by link 
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members of fixed stiffness and damping properties. Simulations were performed, and 

different values were considered for these properties in separate simulation cases. Their 

results indicated that this configuration produced special "link modes" of vibration, 

which were effective in reducing deformations in each wing during seismic excitation. 

1.3 Description and Organization of the Thesis 

This thesis documents an exploratory study that has been initiated to examine the 

performance of a structural response control approach referred to as Active Interface 

Damping. This control approach utilizes controlled interactions between two distinct 

structural systems - or different components of a single structural system - to reduce 

the resonance buildup that develops during an external excitation. Control devices or 

elements may be employed to physically produce the interactions between the systems; 

these interaction elements are fully described in Chapters 3 and 4. The proposed control 

approach differs from some other control approaches in that the sensors, processors, and 

switching components involved all operate actively, whereas the interaction elements 

function passively. The major advantage of this semi-active control technology is that 

relatively large control forces can be generated with minimal power requirements, which 

is of prime importance for the control of relatively massive systems, such as structures. 

In the most simple form, the strategy of the control approach is to remove energy 

associated with vibration from only one system (the primary system). This process is 

accomplished through the transfer of energy to another system (the auxiliary system) by 

means of the interaction elements, the dissipation of energy directly in the interaction 

elements, or a combination of both these methods. In a more complex form, the control 

strategy may be to minimize some composite response measure of the combined primary­

auxiliary system. This study focuses on the simple form of the strategy and presents 

conditions under which the strategy will be effective in reducing only the response of the 

primary system. In this situation, the auxiliary system must be capable of absorbing any 



-10-

additional energy received as a result of the control effort. 

Several physical interpretations of the control approach are possible: one is that the 

systems represent two adjacent multi-story buildings; another is that the primary system 

represents a single multi-story building, while the auxiliary system could represent either 

an externally-situated resilient frame or a relatively small, unrestrained mass - or even 

be completely absent (in this latter scenario, the interaction elements are internally­

mounted control devices). The interactions consist of reaction forces that are developed 

within and transmitted through the elements which are located between the two systems 

(or different points of a single system). The mechanical properties of these elements can 

be altered in real time by control signals, so the reaction forces applied to the systems 

may be changed, and the response control objective is achieved by actively changing the 

interactions at the interface of the two systems (or different points of a single system). 

The objective of the research described herein is to establish under what conditions 

the proposed control approach is effective in reducing the response of the primary system 

when subjected to seismic excitation. As will be shown, this effectiveness depends upon 

such factors as the method of control strategy implementation, the interaction element 

mechanical properties, and the parameters characterizing the dynamic behavior of the 

primary and auxiliary systems. 

Before proceeding to case studies of the proposed control approach, the concepts 

and theory of classical, instantaneous, and incremental optimal control methods are first 

considered. This body of material is introduced and developed in Chapter 2, and it is 

addressed in order to understand what constitutes an optimal control process and to offer 

some alternatives for coping with the difficulties which arise when the external excitation 

is unpredictable. As mentioned earlier, much of the theoretical basis that has been used 

to treat structural control problems is rooted in modem control theory, for which the 

notion of an optimal control process is essential. Some results are obtained that may be 

valuable for fully-active control systems and might prove effective in the response control 
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of structural systems subjected to seismic excitations. It is hoped that these results will 

also lay a foundation for further studies in the field of structural control. 

In Chapter 3, a preliminary study of the proposed control approach is conducted 

within the specialized setting of linear single-degree-of-freedom (SDOF) primary and 

auxiliary systems. Numerical simulations are performed for a series of control cases 

using horizontal ground accelerations from an ensemble of earthquake time-histories as 

excitation input. In each of the control cases, the system parameters are specified and a 

particular type of interaction element is considered. The effectiveness of the control 

approach is judged by comparing the response of the controlled primary system to that of 

an uncontrolled primary system. The simplicity of this study is beneficial in formulating 

the structural control problem, guiding the selection of a specific set of parameters, and 

suggesting appropriate values for the chosen parameters. Most importantly, this study 

facilitates the development of a basic methodology for the implementation of the control 

strategy that is extendible to multiple-degree-of-freedom (MDOF) systems. 

In Chapter 4, a follow-on study of the proposed control approach is conducted for 

linear MDOF primary and auxiliary systems intended to represent actual structural 

systems. Based upon the investigation and insight obtained from the results presented in 

Chapter 3, a limited number of control cases are considered which include those deemed 

most effective and implementable. Numerical simulations are again performed using the 

same excitation input as for the SDOF system study. The control approach is targeted at 

reducing the response contribution from the fundamental or dominant mode of vibration 

associated with the primary system. Uniformly-discretized models of a 6-story primary 

structural system capable of only lateral deformations are considered in most cases. A 

few cases involving models of a 3-story primary structural system are also examined. 

A summary of the work and results presented in this thesis is provided in Chapter 5. 

There, overall conclusions are drawn, effects that have not been taken into account are 

mentioned, and recommendations for future work are indicated. 
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It should be emphasized that the control approach adopted herein is an outgrowth of 

both the active variable stiffness system invented by Kobori and the concept of semi­

active control introduced by Kamopp. However, the control approach presented in the 

following chapters is much broader than has been previously considered, and it can be 

applied to situations involving the interaction of two structural systems - or between 

different components of a single structural system - and may include the effects of 

additional mass, stiffness, damping, or some combination of these mechanical properties. 

Of particular significance are the control strategy employed and its relation to the 

reduction of certain structural displacements (the so-called story drifts) associated with 

the primary system, and the control algorithms used to operate the interaction elements 

upon which the control approach is based. As will be seen in Chapters 3 and 4, bounds 

can be established for the absolute structural displacements by considering a particular 

kind of vibrational energy. The control strategy is intimately related to this vibrational 

energy and the manner in which it evolves with time. It is believed that the adoption of 

such a framework for the description and analysis of structural control problems, 

including the concept of controlled interactions, sets apart the methodologies and studies 

presented herein from the previous investigations discussed in the preceding section. 
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Chapter 2 

Classical, Instantaneous, and Incremental 
Optimal Control Methods 

2.1 Introduction 

In this chapter, the concepts and theory of what will be referred to as classical, 

instantaneous, and incremental optimal control methods are introduced and developed 

primarily within the context of structural control applications. The structural systems of 

interest are assumed to be linear, with time-invariant properties, and to be described by a 

discrete set of state variables (see [1-3] for further discussion on state space representa­

tion of dynamical systems). In addition, these systems are subject to external excitations 

- in particular, horizontal base acceleration as a result of the strong ground motion 

brought about by seismic disturbances. 

2.2 Definition and Formulation of an Optimal Control Process 

In this section, a special case of the basic problem encountered in the classical 

theory of optimal control processes is formulated. Such a case is sufficiently general, 

though, to include the class of structural systems considered. The development of the 

material presented here is partially adapted from the accounts given in [4, 5]. 

The objective of an optimal control process is to achieve a performance optimum 

for some actual system. This is accomplished by optimizing the dynamic behavior and 

control requirements of an ideal system associated with the actual system. The dynamic 

behavior and control requirements are quantitatively characterized by a performance 

index. The ideal system is a mathematical representation or model of the actual system, 

and it is typically based upon many simplifying assumptions. If the actual system is 

adequately approximated by the ideal system, then satisfactory physical performance 
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should result. In what follows, the term system will be used to denote the ideal system. 

First, suppose that the dynamic condition or state of the system at any time t is 

fully described by a set of m real scalar quantities ZI' ... , zm' known as system state 

variables, which are functions of t. These quantities form the components of a vector 

Z = (ZI' ... , zm) T, Z E Rm. It is assumed that the dynamic behavior of the system can be 

controlled to some extent by specifying values for the r real scalar quantities uI , ... , ur ' 

known as control input variables. These quantities form the components of a vector 

u = (uI ' .•. , ur) T, U E Rr. Furthermore, it is assumed that the system state variables are 

governed by ordinary differential equations of the form 

dz· 
_I = gj(zl' ... , zm' uI , ... , ur ' t) 
dt 

(2-1) 

on a time interval ta ~ t ~ tb , where i E {I, ... , m}. The functions gj(z, U, t), which also 

form a vector g = (gl' ... , gm) T, gERm, are assumed to be defined and continuous, 

together with their partial derivatives 

(Jgj . {I }. (Jgj 
~, ) E , ... , m, -, k E {l, ... , r} 
OZ} (Juk 

(2-2) 

for all Z E Rm and U E Rr. 

Next, suppose that a real vector function u(t) ERr is prescribed \:It E [ta' tb ]. Upon 

substituting U = u(t) into (2-1), a system of ordinary differential equations is obtained 

(2-3) 

If the requirements of the Cauchy-Lipshitz theorem are satisfied, then this system of 

differential equations possesses a definite solution on the time interval ta ~ t ~ tb , known 

as a state space trajectory, for every initial condition za == z(ta). 

The aggregate of mathematical objects 

(2-4) 

will be called a control process. Thus, it is evident that to every control process U, there 

corresponds a unique trajectory, with definite initial and final states, which is a solution 
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to (2-3). It should be mentioned that although the aggregate is sufficient to yield a unique 

trajectory, the objects comprising U may not all be a priori known. Indeed, one of the 

tasks involved in the synthesis of an optimal control process is to determine each of these 

objects if some freedom exists in their selection. 

Now, let 

(2-5) 

be a real scalar function which is assumed to be defined and continuous, together with its 

partial derivatives 

~~, ~L, j E {I, ... ,m}; aL, k E {I, ... , r} 
OZj OZj aUk 

(2-6) 

for all i, Z E Rm and U E Rr
, and let 

(2-7) 

be a real scalar, nonnegative definite function which is also assumed to be defined and 

continuous, together with its partial derivatives 

aq> . {I }. aq> az
j

' J E , ... , m, at (2-8) 

For every control process U, a real scalar quantity J[U], known as a performance 

index, may be assigned by a relation of the form 

(2-9) 

where Zb == Z(tb)' Thus, J[U] is a functional defined on some set of control processes. 

The control process (; is said to be optimal if the inequality 

J[U] ~ J[U] (2-10) 

holds for any other control process U which transfers the initial state z(ta) = za to the 

final state Z(tb) = Zb' where z(t) is the trajectory corresponding to U. Likewise, the 

trajectory i(t) corresponding to (; is an optimal trajectory for the system. 

In many practical applications, it is assumed that some class of admissible control 
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processes has been identified in advance. An admissible control process utilizes only 

those functions ~ (t), ... , ur(t) which have values such that u(t) E n, 'it E [ta' tb ], and 

n c R r has been selected to incorporate the restrictions on U1' ••• , Ur corresponding to 

any physical constraints. The admissible control input functions considered herein are 

assumed to be at least piecewise continuous. 

2.3 Necessary Conditions for an Optimal Control Process 

With the formulation of the basic problem in the classical theory of optimal control 

processes complete, it is then useful to find necessary conditions which characterize the 

optimal control process and the optimal trajectory. A special case of the basic optimal 

control problem is now examined: the initial state za and initial time ta are specified, 

whereas the final state Zb and final time tb may each be either specified or unspecified. 

In cases for which Zb and tb are free to be specified, it is necessary to simultaneously 

determine these quantities along with u(t). 

The first class of optimal control problems considered are those for which n == Rr. 

In such a case, the calculus of variations may be used in conjunction with the method of 

Lagrange multipliers to find the desired necessary conditions. Using these mathematical 

tools, the necessary conditions for a solution to this class of optimal control problems 

may be derived [4] as 

. dH ; = ~[dH]_ dH dH = O. \-I 
Z = d A' /I, dt di dz' du ,v t E [t a' t b] 

subject to the boundary conditions 

[
dqJ -,1,+ dH]T dz =0 
dz di b' 

Ib 

where H is a Hamiltonian state junction, defined as 

H(A, i, z, u, t) == AT g(z, U, t) + L(i, z, u, t) 

and A is the system costate vector, whose components are Lagrange multipliers. 

(2-11) 

(2-12) 

(2-13) 
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In cases for which the control input vector is constrained to belong to some 

specified set of admissible functions; U E n, with n c Rr; the minimum principle of 

Pontryagin [5] is used (see Appendix A). This principle states, in essence, that all of the 

necessary conditions in (2-11) and (2-12) remain in effect except for the last condition in 

(2-11), which is replaced by 

H()." i, z, u, t) ~ H()." i, z, ii, t); 'Vii E n, 'Vt E [ta' tbl (2-14) 

where the optimal values for)." i, z, and U are used in (2-14). 

2.4 Classical Optimal Control Methods 

A standard problem known as the homogeneous linear quadratic regulator (LQR) is 

now considered. A regulator is a feedback controller designed to maintain the state of a 

dynamical system within an acceptable deviation from a reference condition (if it were 

suddenly perturbed away from this condition) by using a minimum amount of control 

effort [6]. Solutions to this problem have formed the basis for much of the early work in 

structural control applications, as previously mentioned in Chapter 1. 

The dynamical system is assumed to be governed by a linear (and, as will be seen 

from the relation between U and z, homogeneous) differential equation of the form 

i =Az+Bu (2-15) 

where the matrices A and B are time-invariant, and the associated performance index is 

selected to have the quadratic form 

(2-16) 

where Pb and Q are symmetric, nonnegative definite matrices while R is a symmetric, 

positive definite matrix. This choice for J has acceptable physical implications for the 

system behavior and yields desirable mathematical properties for obtaining a solution. In 

a sense, the functional form selected for J can be viewed as a constitutive relation for use 
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with the necessary conditions given in (2-11) through (2-14). 

The particular case of interest is that for which Zb is free but tb is fixed, and 

n == Rr. From the form given in (2-13), the Hamiltonian H for this problem is 

For an optimal control process to exist in this case, the necessary conditions are 

i=Az+Bu, -i=Qz+ATA, Ru+BTA=O; '<ite[ta, tbl 

with the accompanying boundary conditions 

A(tb) = Pb Zb; Za' ta, tb, Pb specified 

(2-17) 

(2-18) 

(2-19) 

The solution to this problem which satisfies the conditions in (2-18) and (2-19) was 

first obtained by Kalman [7]. A technique known as the sweep method [6] is employed 

here to solve this two-point boundary value problem. Let 

A(t) = P(t)z(t) (2-20) 

where P(t) is some matrix function of t, whose form is to be determined. In order to 

obtain a relation that may be used to find this form, (2-20) is differentiated to give 

i = Pz+Pi = Pz+P(Az+ Bu) 

The second of the necessary conditions in (2-18) requires that 

-i = QZ+ATA =[Q+ATp]Z 

while the last of the necessary conditions in (2-18) demands that 

u = -R-1BTA = -R-1BTpz 

in which case, by using (2-22) and (2-23), (2-21) becomes 

-Pz = [ATp+PA-PBR-1BTp+Q]z 

(2-21) 

(2-22) 

(2-23) 

(2-24) 

Since the relation in (2-24) must hold at each z along the optimal trajectory for any 

given za' it is necessary that 
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(2-25) 

where the boundary condition is deduced from (2-20). Equation (2-25) is known as a 

matrix differential Ricatti equation, and if a solution P = pet) to (2-25) exists with final 

condition PUb) = Pb' then (2-24) is satisfied and (2-20) is valid. The solution to (2-25) is 

discussed in [6, 8], and under some general conditions which incorporate the assumptions 

stated for the parameter matrices, P will be a nonnegative definite matrix. Consider the 

limiting case for which tb - ta ~ 00. Upon examining (2-25), it is possible that a finite, 

steady-state solution P = P exists and possesses the property P = 0, in which case 

(2-26) 

Equation (2-26) is known as a matrix algebraic Ricatti equation. In either case, the 

solution for P is then used with the result in (2-23) to obtain the optimal u. 

Another problem that is perhaps more closely related to control applications for 

structural systems which are subject to external excitations is the inhomogeneous LQR. 

The solution to this problem is credited in [6] to Garber, who has shown that for a 

dynamical system governed by a linear (and, by the presence of v, which is unrelated to 

z, inhomogeneous) differential equation of the form 

i = Az + BUu + BVv 

with the performance index given in (2-16), the optimal u is given by 

u = _R-IBuT (pz +w) 

(2-27) 

(2-28) 

where P(t) satisfies (2-25), and wet) is a solution to the vector differential equation 

-w = [AT - P BU R-1 BUT]w + P BVv; 'it E [ta , tb], W(tb) = 0 (2-29) 

where v(t) is an excitation input vector function which forces the system state to evolve 

in time. However, for applications involving seismic excitations, the functional form of 

v(t) is generally not available in advance. This prohibitive condition leads to the 
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realization that other approaches must be considered in the pursuit of "optimal" control 

methods for structural systems. 

2.5 Instantaneous Optimal Control Methods 

As demonstrated in the previous section, the classical theory of optimal control 

processes is well developed for linear dynamical systems which are subjected to a priori 

known external excitations (this includes the specialized case of unforced systems, for 

which the excitation input is zero but a dynamic response follows from nonzero initial 

conditions that may be caused by a perturbation). For a seismically-excited structure, a 

complete knowledge of the ground motion is generally not available when the control 

input must be determined and applied. This situation has motivated the development of 

instantaneous optimal control methods, which are founded upon the concept of attaining 

the best performance possible for the system while utilizing only information available at 

the current instant in time (and, possibly, that from previous instants in time). 

The Instantaneous Optimal Control Method of Yang et al. 

The first instantaneous optimal control method for structural systems appears to 

have been introduced by Yang et al. [9]. The key idea behind the proposed method is to 

use a time-dependent performance index in lieu of the standard integral performance 

index given in (2-16). This time-dependent performance index also has a quadratic 

functional dependence upon z and u, like the integrand in (2-16). The implication 

inherent to the method is that the performance index is minimized at every instant in time. 

In practice though, the performance index is minimized only at discrete, regularly-spaced 

points in time. An abbreviated development of this method will be carried out here. The 

intention of duplicating the efforts of the investigators is to illustrate a generalization to 

their approach and draw attention to some puzzling aspects of their results. The 

presentation of the method here is somewhat different from that in [9], but the main 

features are essentially equivalent. 
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Consider again a dynamical system governed by the linear equation given in (2-27). 

In the case of a linear structural system, a typical equation of motion would be 

Mi+Ci+Kx = Eu+Ev (2-30) 

where x E Rn is the generalized coordinate vector, u E R' is the control input vector, and 

v E RS is the excitation input vector. The parameter matrices M, C, and K, assumed to 

be symmetric and positive definite, are directly related to the kinetic, dissipative, and 

elastic properties of the uncontrolled structural system, respectively. The matrices E and 

E represent mappings between the control and excitation forces acting on the system and 

the control and excitation inputs, respectively. The form in (2-27) is then obtained by 

introducing the mathematical objects 

(2-31) 

The time-dependent performance index is given by 

J(t) = Hz T (t)Qz(t)+u T (t)Ru(t)] (2-32) 

The equations of motion in (2-27) can be uncoupled by using the transformation 

z(t) == Ty(t) (2-33) 

where T is an invertible matrix whose columns consist of the complex eigenvectors of 

A, and A is assumed to be a stable matrix (i.e., the eigenvalues of A all have negative 

real parts). Substituting (2-33) into (2-27) and rearranging terms yields 

(2-34) 

where D is a diagonal matrix whose entries consist of the complex eigenvalues of A. If 

the system conditions are known at some initial time tc ' the solution to (2-34) is given by 

y(t) = e(I-le)D y(tc) + JI e(t-i)Dw(l)di 

Ie 

(2-35) 

in which e(') is the matrix exponential function. Consider a later time td = tc + h, where 

h is understood to be a small increment in time. Then, by using the trapezoidal rule for 
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numerical integration, (2-35) can be approximately evaluated at time td as 

(2-36) 

Using the transformation given by (2-33) and the expression for w from (2-34), (2-36) 

may in tum be used to approximately evaluate Z(td) as 

z(td) = T ehDT-1 z(te) + th[/(td) + T ehDT-1/(te)] + O(h3
) (2-37) 

where I == B"u + BVv. Recalling the series expansion for /.), and rearranging some of 

the terms, (2-37) may be expressed as 

Z(td) = z(te) + hi(tJ +th2 Ai(te)+ th2[ l(td) ~ I(tJ J+ O(h3
) 

If j(te) is approximated by 

j(te) = I(td) ~ l(te) + O(h2) 

then it should be evident that the result in (2-38) could just as well be expressed as 

z(td) = z(te) + hi(te) + t h2z(te) + O(h3
) 

(2-38) 

(2-39) 

(2-40) 

which is simply a Taylor series expansion for Z(td) in terms of quantities evaluated at te. 

The result in (2-40) clearly indicates that a restriction to linear systems, upon which the 

development in [9] is based, is not necessary. 

The objective is to optimize the time-dependent performance index J(td), as given 

in (2-32). In order to achieve this objective, a constraint relation between Z(td) and U(td) 

is needed. This relation is obtained by dropping the terms of order O(h3
) in (2-38) and 

regarding the expression for Z(td) as exact. Hence, it is apparent that the optimization of 

J(td) is accomplished only in an approximate sense, and it should be recognized that this 

procedure is equivalent to assuming that u(t) and v(t) vary linearly with t. 

The optimization of J(td) is facilitated by forming the Hamiltonian H(td) as 

H(td) = A} (td )[{Z(te) + hi(te) + th2[Ai(te) + j(te)]} - Z(td)] + J(td) (2-41) 

where A(td) is a vector Lagrange multiplier. According to the optimization theory of 
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Lagrange, the necessary conditions for minimizing J(td) subject to the constraint (2-38) 

are obtained by requiring H(td) to be stationary with respect to arbitrary infinitesimal 

changes in A(td)' Z(td)' and u(td); that is 

aH(td) = 0 aH(td) = 0 aH(td) = 0 
aA(td) '()z(td) 'au(td) 

(2-42) 

where it is assumed that v(te)' u(tJ, z(tJ, and V(td) are fixed and known. The resulting 

necessary conditions are the constraint relation given in (2-38), neglecting the terms of 

order O(h3
), and 

(2-43) 

Thus, 

(2-44) 

Substituting (2-44) into (2-38) and rearranging terms yields 

U(td) = -th[I + th2 R-1B"T Q B" r1 
R-1B"T Qi (2-45) 

(assuming the indicated inverse exists), where 

(2-46) 

There are two troublesome features of this result which must be pointed out. First, 

it is noticed that U(td) ~ 0 as h ~ 0, which is inconsistent with the previous assumption 

that u(t) varies linearly with t, from which it would be expected that U(td) ~ u(te) as 

h ~ o. The difficulty may be traced to the definition of the performance index given in 

(2-32). Clearly, J(td) ~ J(tJ as h ~ O. But upon examining (2-32) and realizing that 

z(te) is fixed for the analysis, and therefore independent of U(td) , the obvious choice for 

u(td) to minimize J(td) is zero in the limit as h ~ o. Thus, the form given in (2-32) is 

not acceptable for use with this instantaneous optimal control method. 

Next, the manner in which the control input is physically implemented has not been 

addressed. In particular, u(t) is ramped in a linear fashion from u(te) at time te to U(td) 
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at time td' To accomplish this process, the determination of U(td) must be completed by 

time tc in order to establish the rate at which u(t) changes with t. However, V(td) is not 

known until time td' Hence, U(td) cannot be calculated according to (2-45) at time tc' 

Thus, this particular method violates causality. Perhaps this fact was overlooked by the 

investigators because their study was based upon numerical simulations for which a 

complete excitation record was available in advance. 

An Alternative Instantaneous Optimal Control Method 

The analysis for the control method outlined above involves a single representative 

short time interval for which the calculations used to determine u are uncoupled from all 

other segments in time. It is conceivable that some of the difficulties with this approach 

might be eliminated if a performance index which accounted for a series of consecutive 

short time intervals were used instead. This approach is briefly explored below. 

Consider again a linear dynamical system governed by (2-27). Then 

where 

tk = ta + (k -l)h, h = tb - ta; k E {t, ... , m} 
m-l 

and m is an integer, with 

Suppose the following performance index is selected 
m-l 

(2-47) 

(2-48) 

(2-49) 

J(m) = tZ~PbZb + .L>k Hz T (tk+1)QZ(tk+!)+u T (tk ) RU(tk)] (2-50) 
k=! 

where Pb' Q, and R are all as previously defined in Section 2.4, and Ck represents some 

appropriately chosen weighting factor. Using (2-47) as a constraint relation between the 

values of Z(tk)' u(tk)' and Z(tk+l)' the optimal values for U(tk) which minimize J(m) are 

to be found. 

As before, the optimization theory of Lagrange asserts that the solution for the 
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constrained minimization of J(m) is equivalent to the solution for the unconstrained 

minimization of H(m), where 
m-I 

H(m) = LAT (tk)[z(tk)+hg(tk)-Z(tk+I)+O(h2 )]+J(m) (2-51) 
k=1 

and g == Az + B"u + BVv. The necessary conditions for the unconstrained minimization of 

H(m), where A(tk) is now regarded as an independent vector variable, are 

aHem) = 0 aHem) = 0 aHem) = 0 
aA(tI) 'az(tI+I) '(Ju(tl ) 

(2-52) 

with 1 E {I, ... , m -I}. Upon letting ci = h (this choice will be explained momentarily), 

and dropping the terms of order O(h2
), the relations in (2-52) become 

(2-53) 

(2-54) 

(2-55) 

subject to the boundary condition 

(2-56) 

Equation (2-54) represents a relation between A(tl) and A (t1+1 ) which develops 

backward in time, with a boundary condition specified for A(tm-I). Since A(t/) depends 

directly upon Z(tI+I)' which in tum depends upon v(t/)' it is not possible to determine an 

optimal solution for U(tl) unless the values of V(tl) are a priori known. Hence, although 

otherwise analytically sound, this method is not appropriate for applications involving 

seismic excitations or any physical phenomenon for which a complete excitation record is 

not available in advance. 

It is interesting to observe the behavior of these necessary conditions in the limit as 

m --7 00. Upon rearrangement and letting m --7 00 (in which case h --7 0, tl+1 --7 tl , and 

the discrete variable tl becomes the continuous variable t), (2-53) through (2-55) become 
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(2-57) 

with the accompanying boundary conditions 

(2-58) 

These results are identical to the necessary conditions obtained for the inhomogeneous 

LQR problem discussed in Section 2.3, for which a solution can be found by using the 

relations given in (2-25), (2-28), and (2-29) if vet) is known in its entirety. The reason 

for selecting ck = h now becomes apparent: this choice ensures that the series in (2-50) 

and (2-51) converge as m ~ 00 (since h ~ 0 as m ~ 00). 

The Suggested Instantaneous Optimal Control Method 

Attention is now turned toward a control method which provides what may be more 

accurately described as an instantaneous optimal control method for linear dynamical 

systems subject to unpredictable external excitations. The key idea behind the proposed 

approach is based upon a method attributed in [10] to Bass. Before proceeding with the 

development of this approach, it is first worth revisiting the homogeneous LQR problem 

examined in Section 2.4 so that a remarkable property associated with the optimal control 

process can be demonstrated. This property is directly related to the proposed approach. 

Consider the quadratic function 

V(z, t) =!Z T S(t)z 

and define the matrix S(t) to be governed by the relation 

-S=ATS+SA-SBR-1BTS+Q; 'itE[ta , tb], SCtb)=Sb 

(2-59) 

(2-60) 

where Sb is symmetric and nonnegative definite. It can be easily verified that S is also 

symmetric and nonnegative definite. Using (2-59), the expression for V evaluated along 

trajectories obeying (2-15) is given by 

(2-61) 
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where, upon using (2-60), (2-61) becomes 

V = (SZ)T Bu -tz T[S BR-1BT S + Q]Z (2-62) 

Now suppose that the control strategy is to minimize V - to cause V to become as 

negative as possible - along system trajectories at every instant in time (the motivation 

for selecting this strategy is discussed below). Clearly, the choice for u which minimizes 

V along trajectories obeying (2-15) is u ~ -00, rtt E [ta' tb ], which is neither physically 

possible nor desirable. Indeed, a better choice for u would be one that yields the "best" 

performance for the system while simultaneously conserving the control effort. If the 

control input were also constrained to belong to some set of admissible functions (i.e., 

restricted to some reasonable range of values), then this procedure would be acceptable. 

In the case of the homogenous LQR problem, there are no explicit restrictions on u; 

rather, u is chosen to optimize the performance index given in (2-16), which assigns a 

direct penalty for the "size" of u in the last quadratic term of the integrand. Based upon 

this observation, an alternative procedure is proposed for the case in which the control 

input is unconstrained: the modified control strategy is to minimize the sum of V and a 

positive definite function of u, such as tu T Ru, where R is as previously defined. 

By using (2-62), it can be shown that along trajectories obeying (2-15) 

(2-63) 

where 

II . II~ = ( . ) T R ( • ) (2-64) 

Since the system state is uniquely defined at each instant in time, the control input which 

minimizes V + tu T Ru at every instant in time is given by 

(2-65) 

where S is the solution to (2-60). This solution for u is exactly the same as the solution 

previously obtained in Section 2.4 when Sb = Pb . The precise equivalence of the two 
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solutions is now further demonstrated. 

In order to verify the true optimality of the proposed control strategy, consider the 

generalized peiformance index 

l[z, t; tb, u(t)] = tZJSbZb + fb t[zT(t)Qz(t)+uT(t)RU(t)]dl (2-66) 

where z(t) denotes a trajectory obeying (2-15), t::; l ::; tb. For a given initial state z at an 

arbitrary initial time t, but fixed final time tb and prescribed u(t), it is shown in [11] (see 

Appendix B) that 

(2-67) 

where Land g are the same objects as defined in Section 2.2. Ordinarily, (2-67) only 

represents an intermediate result that is used in the development of the Hamilton-lacobi­

Bellman equation, which forms the basis of another method by which solutions to 

optimal control problems may be obtained. It is used for a different purpose here. In the 

present context, (2-67) becomes 

_!!",[dl] = Qz + AT dl 
dt dz dz 

(2-68) 

By comparison with the second necessary condition in (2-18), (2-68) reveals that 

(2-69) 

when the optimal u(t) is used. Using (2-63), it may be shown that along trajectories 

obeying (2-15), (2-66) becomes 

J[z, t; tb, u(t)]=tzTSz+ fb tllu(t)+R-1BUTS(t)z(t)II:dl (2-70) 

If the control input is selected according to (2-65), (2-70) is simply given by 

. - _ 1 T l[z, t, tb, u(t)]-zz Sz (2-71) 

in which case A = S z, by (2-69) and (2-71). Letting Sb = Pb, it is clear that this is the 

same result as obtained earlier, since S(t) = P(t), Vt E [ta' tb], from (2-25) and (2-60). 

Hence, this class of optimal control problems has the property that the control strategy of 
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selecting u to minimize V + tu T Ru along system trajectories at every instant in time 

produces an optimal control process as defined in Section 2.2. 

The question then naturally arises as to the significance of using V evaluated along 

trajectories obeying (2-15). This question can be answered by recalling the second or 

direct method of Liapunov [12], which is typically useful for stability analyses of general 

dynamical systems. The basic idea is that if a positive definite function of the system 

state can be found whose total time derivative is always negative when evaluated along 

system trajectories, the system is asymptotically stable: 1 z 1--7 0 as t --7 00. In the case of 

the homogeneous LQR problem, V, as given by (2-59), would be a candidate Liapunov 

function if stronger conditions are imposed on Q and Sb' requiring them to be positive 

definite instead of merely nonnegative definite. Under these conditions, it is easy to 

show that V, as given by (2-62), is negative definite when the control input prescribed by 

(2-65) is used. Thus, the control strategy has the following physical interpretation: it 

ensures that the state of the controlled system will eventually be driven to zero in an 

optimal manner by selecting the control input given in (2-65). 

It was indicated in Section 2.4 that as tb - ta --7 00, a steady-state solution S = S to 

(2-60) might exist. Actually, it can be shown [13] that even with the relaxed conditions 

on Q and Sb' S exists and is positive definite whenever the matrix pair (A, B) is 

stabilizable and the matrix pair (C, A) is detectable. The pair (A, B) is said to be 

stabilizable if a constant matrix L exists such that A - B L is stable. Since Q T = Q by 

hypothesis, Q can be decomposed as Q = C T C, and the pair (C, A) is said to be 

detectable if a constant matrix M exists such that A - M C is stable. If V is evaluated by 

using the control input given in (2-65), with S = S, it is nonpositive definite. However, a 

generalization of the Liapunov direct method, proved by Barbasin and Krasovskii [14], 

states that if V is nonpositive definite along every nontrivial system trajectory, but not 

identically zero "it E [ta' tb] for arbitrary ta' the system is asymptotically stable. It can 

be shown that these requirements are satisfied with the relaxed conditions on Q and Sb 
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when the pair (A, B) is stabilizable and the pair (C, A) is detectable. 

Of course, deducing that (2-60) should govern the time evolution of S would have 

been nearly impossible apart from the hindsight afforded in Section 2.4. But the principle 

of the suggested control approach is still valid, especially in light of the desirable stability 

properties discussed above. These asymptotic stability properties imply that the measure 

used for the response of the system, given by equation (2-59), is being driven to zero in a 

monotonically nonincreasing fashion. This is certainly an attractive type of behavior for 

controlling the system response. 

In view of the foregoing results, the following approach is suggested for the control 

of linear dynamical systems subjected to external excitations for which information is not 

available in advance. This control approach constitutes an instantaneous optimal control 

method (i.e., optimal in a local-time sense but certainly suboptimal in a global-time sense 

as delineated by (2-4), (2-9), and (2-10) in Section 2.2). 

Consider again the linear dynamical system described by (2-27), where A, B", and 

BV are time-invariant, and A is assumed to be stable. Let 

(2-72) 

be a Liapunov function for the system trajectories described by (2-27) with u and v 

identically zero. S(t) is then evaluated from a matrix differential Liapunov equation 

(2-73) 

where Q is any symmetric, positive definite matrix. The solution to (2-73) is given by 

(2-74) 

which can be directly verified by Leibnitz's rule for differentiation of an integral. Now, 

for the case in which u and v are not zero, the control strategy is to select u so as to 

instantaneously minimize V or V + ±u T Ru along trajectories obeying (2-27), depending 

on whether u is constrained or unconstrained to belong to n c RT, respectively, where 
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v = (S Z) T ( B"u + BVv) - t Z T Q z (2-75) 

Note: Henceforth, the analysis will be carried out for the case in which the control 

input is unconstrained, with the understanding that when the constrained control input 

case is being considered, the terms which contain R should be dropped from the resulting 

expressions or relations. 

Now, consider a performance index of the form 

(2-76) 

where Q and R are no longer arbitrary as for the standard LQR problem but correspond 

to the matrix parameters indicated above. Sb should be a symmetric, positive definite 

matrix but otherwise arbitrary. Using (2-75), (2-76) becomes 

(2-77) 

It is recognized that the integrand in the first integral of (2-77) possesses the same 

combination of terms involving u as the expression V + tu T Ru, in which V is evaluated 

from (2-75). In fact, this structure will always be present as long as the positive definite 

function of u appearing in the performance index matches that which is appended to V. 

Therefore, a minimization of the expression V + tu T Ru corresponds to a minimization 

of the integrand in the first integral in (2-77). 

Thus, in addition to the previous discussion based upon stability considerations, it is 

apparent that the suggested control strategy has an alternate interpretation. For the case 

where both u and v are identically zero, the matrix SCta)' as evaluated from (2-74), and 

the initial state za determine the zero input cost, tz~S(ta)Za' which is the value of the 

performance index when the dynamical inputs are absent. When u and v are not zero, 

the effect of the control strategy is to instantaneously minimize the integrand of the first 

integral in (2-77), which represents the rate of accumulation of J contributed by the 

control input. However, the rate of accumulation of J contributed by the excitation 
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input, represented by the last integral in (2-77), cannot be directly altered in an 

instantaneous sense, since v is externally imposed and the value of z is fixed at the 

current instant in time. 

Some additional comments are now in order. First, although the final time tb has 

been regarded as fixed in the analysis, its value is generally unknown. This is because ta 

along with tb are taken to define a segment of time during which the external excitation 

affects the system to be controlled. But as mentioned before, information concerning the 

excitation is not available in advance. Thus, it is reasonable to treat the problem simply 

as if tb - ta ~ 00. This approach has the added benefit of enabling S to be determined, 

since the solution for S(t) cannot be obtained from (2-74), even when Sb is specified, if 

tb is not known. But the solution in (2-74) reveals that as tb - ta ~ 00, Set) ~ S, a 

steady-state value that is given by 

S = Loo 

i A T Q i A dl (2-78) 

In practice though, S can be more easily evaluated by using its steady-state property in 

(2-73), requiring it to satisfy a matrix algebraic Liapunov equation 

(2-79) 

which may be readily solved for S (also, the need to specify Sb i~ eliminated). Thus, this 

instantaneous optimal control method depends only on the parameter matrices A, BU
, Q, 

and possibly R (if the unconstrained control input case is considered). 

Of interest is the case for which the control input is unconstrained. In this case, the 

instantaneous optimal control method yields 

(2-80) 

In the absence of external excitations, V will be negative definite when the value given 

for u in (2-80) is used, indicating the unforced system will be asymptotically stable under 

the effect of the control strategy. Incidentally, it is apparent that the control method 
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method outlined above may alternatively be described as a procedure to minimize the 

total time derivative of the augmented Liapunov function 

V(Z, t) = V(z, t) - fb !u T Ci)RuCi)dl (2-81) 

along trajectories obeying (2-27), although the geometric interpretation of V(z, t) is no 

longer apparent. In addition, there are no explicit restrictions on the particular functional 

form selected for the integrand in (2-81), other than it is taken to be a positive definite 

function of u. Forms other than the quadratic type used above will generally lead to a 

nonlinear functional dependence of u upon z, in contrast to (2-80). 

2.6 Incremental Optimal Control Methods 

In real applications, it may not be feasible to measure or estimate the system state at 

every instant in time, as is required when using an instantaneous optimal control method. 

Instead, it might be acceptable to determine a suitably optimized value for the control 

input which may be applied during a short interval in time by using a zero-order hold 

(i.e., a step function input). This procedure could then be repeated for the next short time 

interval immediately following the current interval, and by continuing in this manner, the 

control input is incrementally adjusted for each successive short time interval. This 

approach is referred to as an incremental optimal control method. 

Suppose that the entire interval [ta' tb ] is uniformly partitioned into a set of short 

intervals, and consider some representative interval from this set with an initial time tc 

and a final time td' Again, let h == td - tc be small in comparison to some characteristic 

time for the linear dynamical system described by (2-27). Define a performance index 

for the representative interval as 
m-l 

M = ~Ck [Vk +!U T (tk)Ru(tk)] (2-82) 
k=l 

where ck is an appropriately chosen weighting factor, Vk is the value of V at time tk , as 

given by (2-75), with 
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(2-83) 

and m is an integer. The motivation for selecting a performance index of this form is 

now explained. 

The control strategy associated with an instantaneous optimal control method seeks 

to minimize an expression of the kind appearing in the summand of (2-82) at every 

instant in time. Consider the modified objective of seeking to minimize a collection of 

terms associated with the representative interval, each term being this expression 

evaluated at a particular time tk belonging to the short interval [tc' td ]. So AI is the 

series obtained by adding together all of the terms in this collection. However, the 

minimization is accomplished only in an approximate sense - the evaluation of the 

expression at each tk is estimated on the basis of its value at tc. Thus, the procedure used 

for the incremental optimal control method consists of a sequence of minimizations at 

particular points in time (represented by tJ belonging to the entire interval [ta' tb ], each 

minimization effort reflecting an approximate optimization of AI for a particular short 

interval (represented by [tc' tdD· 

Before proceeding further, it is convenient to let m -t 00, and thereby increase 

without limit the number of terms in the series forming AI. However, the series will 

generally diverge unless ck -t 0 as m -t 00. To avoid this difficulty, ck is set equal to 

hj(m -1), whereby (2-82) becomes 

(2-84) 

As in Section 2.5, the particular form of V considered is 

T . T 
V=tz Sz ::::} V=(Sz) Z (2-85) 

where S is now understood to be time-invariant and specified according to (2-79) (in 

which Q should be positive definite). Thus, (2-84) becomes 

AI= fd[(sz)TZ+tuTRU]dt 
tc 

(2-86) 
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As given by (2-86), AI is to be minimized subject to the constraint relation (2-27), 

and were it not for the fact that the excitation input is presumed unknown beyond the 

time tc ' the necessary conditions given in (2-11) through (2-14) could be used to obtain 

an optimal solution for u during the interval [tc' td ]. The approach adopted to develop 

an incremental optimal control method is to demand that these necessary conditions be 

satisfied in an approximate sense, one which is based only upon information available at 

time tc' 

To this end, it is clear that the value of any dynamic quantity associated with the 

system at td may be expressed in terms of its value and higher order derivatives at tc by 

using a Taylor series expansion involving powers of h, for example 

z(td ) = z(tc) + i(tc)(h) + O(h2) (2-87) 

and 

A(td ) = A(tc) + i(tc)(h) + O(h2) (2-88) 

Since h is fixed and tc is assumed to be known, td will also be fixed, and therefore the 

last boundary condition in (2-12) is automatically satisfied. In general, Z(td) is not fixed 

but will depend upon u(tc) and v(tJ - only u(tJ may be specified. From (2-12), the 

first boundary condition which should be satisfied in order for the control process to be 

optimal is 

(2-89) 

In addition, the first term appearing in (2-89) can be expanded in powers of h to give 

a~1 = a~1 +~[a~]1 (h)+O(h
2

) 
at Id at Ie dt at Ie 

(2-90) 

Evaluating (2-11) at t c and using relations (2-87) through (2-90), the following equations 

are obtained after dropping the terms of order O(h2) 

z(td)=z(tc)+gll (h) 
e 

(2-91) 
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(2-92) 

(2-93) 

in the case where the control input is unconstrained. In the case where the control input is 

constrained to belong to some specified set of admissible functions; U E .Q, with .Q c Rr; 

(2-14) is evaluated at tc and (2-93) is replaced by 

H(A, i, z, u, t) It ~ H(A, i, z, ii, t) It ; 'rIii E.Q 
c c 

(2-94) 

By using the initial condition provided for the system at time ta' (2-92) is used 

along with (2-93) or (2-94) to obtain A(tc) and u(tJ for the first short time interval. 

Then, equation (2-91) can be used to integrate the system state to obtain Z(td)' This is 

subsequently used as the initial condition z(tc) for the next short time interval, and by 

continuing in this manner, the process may be repeated for each successive short time 

interval in the set comprising the entire interval [ta' tbl. 

A knowledge of the external excitation beyond the current instant in time is never 

needed to determine the control input. This feature obeys the principle of causality, and 

so the method is suitable for applications involving seismically-excited systems. In 

actual practice though, (2-91) is not used, and Z(td) is obtained either by measurement or 

estimation in the case of physical applications or by a more sophisticated integration 

scheme than (2-91) in the case of numerical simulations. This algorithm represents a 

closed-loop control method. 

Finally, in the case where the control input is unconstrained, the expression for u 

obtained from the incremental optimal control method is given by 

(2-95) 

(assuming the indicated inverse exists). Several additional remarks are in order. First, if 

BU 
T S B U is invertible, then it can be shown (see Appendix B) that 

[I + hR-IBuTS B U r = 1- hR-IBuTS B U + O(h2) (2-96) 
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In the analysis that lead to (2-95), the terms of order O(h2) were ignored. If this same 

level of approximation is maintained, then (2-95) becomes 

U = _R-1BuT {[I - hS BUR-I BuT ]sz + hS(Az + BVv) } (2-97) 

Also, it is observed that as h --7 0, the result given in (2-97) approaches the result given 

in (2-80), which was obtained by using the instantaneous optimal control method. This 

sort of behavior for U is both reasonable and expected. 

Dynamic Controllers 

At all stages in the foregoing development, it has been assumed that, other than the 

requirement for piecewise continuity, the control input may be arbitrarily prescribed to 

instantaneously become any member belonging to Q. This assumption corresponds to 

the idealization of a nondynamic (sometimes referred to as inertialess) controller, where 

the value of u can jump from one point to another in Q. Such an assumption is justified 

if the "level" of control input is not excessive and the dynamic response of the controlled 

system varies slowly in comparison to the dynamic response of the physical controller -

which depends upon the amount of time required for sensing, processing, and sending 

signals, along with that necessary for the actuators to mechanically respond. 

A variation on the previous results obtained by using incremental optimal control 

methods is now presented for cases in which the dynamics of the controller are to be 

explicitly taken into account. Only the case for which the control input is unconstrained 

(i.e., Q == R') will be considered. This extension is based upon a discussion in [15]. 

Consider again a linear dynamical system governed by (2-27). Suppose that the 

performance index is now selected to have the form 

M=Jld[(SZ)T i+tuTku+tuTRU]dt 
Ie 

(2-98) 

which assigns a direct penalty on the "size" of u and thereby limits the extent of dynamic 

performance expected from the physical controller. Also, assume that the control input 

obeys a dynamical relation of the form 
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II = h(u, z, c) (2-99) 

where c is a vector of appropriate dimension whose components represent a set of control 

variables which may be directly specified. It is assumed a priori that (2-99) may be 

inverted to obtain a functional relationship for c, expressible as 

c = hell, u, z) (2-100) 

Furthermore, assume that the initial values of the system state z(tc) and control input 

u(tJ are known. Next, define the new vector variables 

A {z} A • A A) {Z(tc)} 
Z == u ' u == u, v == v; z(tc = u(tJ (2-101) 

Then, (2-27) and (2-98) can be recast in terms of these quantities as 

(2-102) 

and 

!lJ= fd[(szf £+tuTRu Jdt (2-103) 

where the new parameter matrices are given by 

A [A BU] A [0] A 

A = ° 0' B
U 

= I' B
V 

= B
V

, 
(2-104) 

The augmented system governed by the dynamical equation in (2-102) and the 

performance index as expressed in (2-103) are now in a form suitable for application of 

the incremental optimal control method outlined above. Applying a zero-order hold on u 

(i.e., u is a step function) for the augmented system, which has a nondynamic controller, 

carries over to applying a first-order hold on u (i.e., u is a ramp function) for the original 

system, obeying the dynamical expression 

(2-105) 

where u(tJ is evaluated from (2-97) by replacing R by R, S by S, etc. Also, if the 

same level of approximation is maintained as was used in the foregoing analysis, then 
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(2-106) 

where g(tJ is evaluated from the right-hand side of (2-27). Hence, (2-100) becomes 

(2-107) 

Thus, the specifications for the operation of the dynamic controller according to the 

incremental optimal control method are complete. 

2.7 Summary 

The material introduced and developed in this chapter has focused on linear time­

invariant dynamical systems described by a discrete set of state variables. It was shown 

that the equations of motion for the structural systems of interest may be expressed in 

terms of such variables. Definitions were given for an optimal control process, and a 

standard optimal control problem known as the linear quadratic regulator (LQR) was 

formulated and solved for both the externally-forced and unforc~d cases. It was pointed 

out that the solution for the externally-forced case is only possible when the excitation is 

a priori known. Thus, other control approaches must be considered for applications that 

involve seismic excitations or any physical phenomenon for which a complete excitation 

record is not available in advance. 

This state of affairs motivated the development of instantaneous and incremental 

optimal control methods as alternatives for coping with the difficulties which arise when 

the external excitation is unpredictable. It is believed that some of the results obtained 

might prove effective in the response control of structural systems subjected to seismic 

excitations. 

The developments presented in this chapter are not immediately applicable to the 

proposed control method discussed in Chapter 1, which is based upon a semi-active 

control approach. However, it is hoped that these results will be useful for further studies 

in the field of structural control, specifically, those utilizing fully-active control systems. 
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Chapter 3 

Response Control of Linear SDOF Systems 
Using Active Interface Damping 

3.1 Introduction 

When investigating the application of new technological principles and methods to 

physical systems of interest, it is usually advantageous to begin by considering simple 

idealizations of the actual systems. Thus, the present study focuses on two interacting 

SDOF systems that are subjected to base acceleration, the source of which is seismically­

generated horizontal ground motion. One of these systems is designated the primary 

system and the other is referred to as the auxiliary system. The two SDOF systems are 

understood to be models for either two interacting structures or a single structure and a 

control device which facilitates interaction of the structure with its base. 

The control objective is to reduce the resonance buildup in the response of the 

primary system that is produced by an external excitation. The strategy employed to 

achieve this objective is to remove energy associated with relative vibration from the 

primary system through interaction with the auxiliary system. A control algorithm is 

used to determine when interactions between the systems should occur. Interactions are 

permitted only when their anticipated effect is favorable to the control strategy. The 

interactions consist of reaction forces that are developed within and transmitted through a 

single interaction element that is located between the systems. The mechanical properties 

of this interaction element can be altered in real time by a control signal and are discussed 

later for each of the control cases considered. 

Since the control objective is concerned with the response of the primary system, it 

becomes necessary to specify those aspects of the system behavior that are to be 

controlled. Typical response features of interest for an actual structure are the relative 
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displacements of certain points on the structure from their equilibrium positions, as well 

as the absolute accelerations of these points. In the present study, the control effort is 

directed at reducing the relative displacements which are caused by the excitation. The 

stresses induced in the structure are directly proportional to these displacements when 

deformations are within the linear-elastic range of the material comprising the structure. 

3.2 Problem Formulation 

The following conditions are assumed to hold in this study: 1) the primary system 

and the auxiliary system are subjected to the same base acceleration and respond linearly; 

2) the interaction element functions passively, is considered to be massless, and responds 

instantaneously to control signals (i.e., its mechanical properties may be instantaneously 

altered); 3) the system states are completely observable, and all system parameters have 

been identified in advance; and 4) only current values of the base acceleration and system 

state variables are available to determine the control input. 

Under these conditions, the equations of motion for the primary and auxiliary 

systems are expressible as 

.. 2 r ' 2 f- .. 
Xi + '='i(J)iXi + (J)i Xi = i - Y 

where i E {I, 2}, with the parameter definitions 

~. r c· - f· 
(J)i == -', '='i == ' ,fi == -' 

m i 2~miki m i 

(3-1) 

(3-2) 

where m i , ki' c i ' and Xi represent the mass, stiffness, damping, and relative displacement 

(as measured from the base) of the ith system. Ii is the control force applied to the ith 

system by the interaction element, and y is the absolute displacement of the base of each 

system. The subscripts 1 and 2 are used to denote the primary and auxiliary systems, 

respectively. For the purposes of later discussion, let u be the reaction force developed 

within the interaction element, which is subsequently referred to as the control input, and 

let v == y, which is subsequently referred to as the excitation input. u is assumed to be 
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positive when the interaction element is in tension. Because the element is treated to be 

massless, a relationship exists between the control force acting on the ith system and the 

control input, which is given by 

(3-3) 

where II = 1 = - ~ for the assumed configuration of the systems. A schematic illustration 

of the systems is provided in Figure 3.1. 

Occasionally, it is convenient to recast (3-1) into the modified form 

ii=~Zi+b;"u+bvv (3-4) 

where 

_ {Xi}. _ [ 0 1] u _ { 0 } v _ { 0 } z· = ~ - 2 b. - b -
I Xi' -Wi -2SiW;' I -IJm;' -1 

(3-5) 

The equations represented by (3-4) are the state space form for the equations represented 

by (3-1). It is evident that both u and v are dynamical inputs to the equations governing 

the systems. The scalar pair (x;, x;), which comprise the vector Zi' is referred to as the 

state of the ith dynamical system. The state of a dynamical system is an embodiment of 

the minimum amount of information at a particular point in time which, along with the 

equation governing the dynamic behavior of the system, is sufficient to determine the 

state of the system at all future points in time. Loosely speaking, the state of a system 

consists of a certain set of defining conditions associated with that system. 

3.3 Control Strategy 

In much of modern control theory, the framework used to formulate problems is 

founded upon the assumption that the control input may be arbitrarily prescribed and, 

hence, no explicit restrictions regarding admissibility of a control input need be taken into 

account during the solution procedure. In contrast though, the control approach under 

investigation here utilizes control forces which are reactive in nature and, thus, cannot be 



-49-

arbitrarily prescribed. However, the objective of the control effort for the applications of 

interest is response stabilization or reduction rather than more sophisticated goals, such as 

regulation or tracking, in which a precise type of behavior is desired for the controlled 

system. This simple control objective renders the proposed control approach extremely 

attractive, especially in view of the following feature: successful operation of the control 

system may be ensured without the demand for a significant supply of external power. 

Due to its inherent simplicity and accompanying restrictions on admissible control 

forces, the proposed control approach is only capable of directly controlling dynamical 

quantities that are more primitive than the state. Of particular interest is a type of energy 

associated with the controlled system. As indicated above, the control input is related to 

the control forces which enter directly into the equations of motion. But the energy of a 

system is related to a first integral of the equation of motion for that system. Hence, by 

differentiating an appropriate expression for the energy of the system, the rate at which 

this energy changes is directly related to the control input. Furthermore, it is shown 

below that this energy is a positive definite function of the system state. Thus, if the 

system energy can be limited in some fashion, then the system state is bounded. In turn, 

each of the components of the system state is bounded. This logic constitutes the control 

strategy proposed below. 

Consider some time interval [ta' tb ] during which control of the primary system is 

to be accomplished (e.g., the duration of the external excitation). The relative vibrational 

energy of the primary system, El , is defined as 

(3-6) 

or, in terms of the system state, 

E,~ tzi ~ Zl; SI ~ [~ (3-7) 

The response control objective is to reduce the maximum absolute value of the primary 

system relative displacement, I Xl lmax' that occurs during this interval of time. Since 
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tmlx~ ~ 0 at any instant in time, a least upper bound for I xII, denoted by I xllsup' can be 

established at every instant in time. The greatest of these upper bounds then serves as a 

bound for I xI I max , that is 

in which case 

I xd,; I xII",. VI E [Ia. 'bl; I XI I,"" '" ~ 2E
I, 

mImI 
(3-8) 

(3-9) 

Thus, EI provides a measure which bounds I XI I at every instant in time. Hence, I xI lmax 

may be controlled by controlling EI during the time interval [ta' tb]. 

When u = u(t) and v = v(t) are prescribed 'rIt E [ta' tb ], the state of the primary 

system evolves according to (3-4) along a definite dynamical path in the state space, 

ZI = ZI(t), which then determines EI = EI(t). The control strategy is to remove relative 

vibrational energy from the system to the extent allowed by the constraints on the control 

input values, and thereby drive EI as close to zero as possible at all intermediate times t. 

Since v is seismically generated, and therefore unpredictable, the values of u used to 

construct any portion of such a path during a time interval [ta' t] must not depend upon 

any values of v for t > i. 

A control process which produces a succession of system states that should 

approximate the desired dynamical path is proposed as follows: First, let [ta' tb ] be 

uniformly partitioned into a set of suitably short time intervals, each of duration hand 

referred to as a control algorithm sampling period. Next, consider a representative short 

time interval, the kth sampling period, defined by tk ~ t ~ tk + h. At time tk, v and ZI 

are measured or estimated. A control processor then uses this information to ascertain an 

appropriate operating state for the interaction element: activated or deactivated. In the 

activated state, interactions between the systems are enabled. In the deactivated state, 

interactions between the systems are disabled. This determination may initiate a 

switching event by which changes in the mechanical properties of the interaction element 
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are accomplished. These mechanical properties dictate the physical nature of the 

interactions and subsequently the control input values used for the sampling period 

duration. Interactions are permitted during the kth sampling period only when their 

anticipated effect is favorable to the control strategy. The system then responds to the 

values of u resulting from these interactions until the beginning of the (k + 1)th sampling 

period is reached, when an appropriate operating state is determined again. This 

procedure is repeated for each successive sampling period. 

For the purposes of both implementing the control strategy and formulating control 

algorithms, efforts are directed toward minimizing the change in El for the representative 

sampling period, denoted as Mt, or even causing this change to be as negative as 

possible. By differentiating (3-6) and using (3-1), £1 may be evaluated as 

(3-10) 

which then yields 

(3-11 ) 

Two methods are considered to achieve this goal. For each of these methods, let 11 (t) be 

the functional form for 11' the value of the control force applied to the primary system by 

the interaction element. Such a form depends upon the type of interaction element used 

and its current operating state (i.e., activated or deactivated). 

Method 1: 

Let 11 (t) be the functional form for afinite control force resulting from continuous 

operation of the interaction element during the sampling period. It is assumed that the 

interaction element remains in one of its admissible operating states for the entire 

sampling period. Using (3-11), and assuming further that fl(t) is a continuous function 

of t, a series expansion may be obtained for Mt as 

(3-12) 
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If the sampling period is small in comparison to some characteristic time for the primary 

system, the terms of order O(h2
) may effectively be ignored. In addition, the quantities 

multiplying h in the second term of (3-12) are fixed irrespective of the operating state 

selected for the interaction element. Thus, the contribution of this term to Mlk cannot be 

changed. Hence, to the degree of approximation considered, the difference in values for 

Mlk obtained by selecting different operating states depends solely on the first term in 

(3-12). 

If the value of fl(t) = -II u(t) at tk, corresponding to the activated state, yields a 

negative value for the first term in (3-12), then the resulting value for Mt will be less 

than the value obtained by using fl(t) = 0, corresponding to the deactivated state. 

Method 2: 

Let fl (t) be the functional form for a pulse-like control force that is localized to the 

time tk • Such a control force could be produced by a sudden impact between the systems 

occurring at the beginning of the sampling period. To idealize this phenomenon, suppose 

that fl(t) = II(tk)o(t-tk ), where II(tk) is the impulse imparted to the primary system as 

a result of the impact, and o(t-tk) is a Dirac delta function. Using (3-11), and by again 

considering a series expansion for Ml,k' it may be shown that 

(3-13) 

where the symbols - and + denote times immediately before and after the impulsive 

interaction, which is modelled to happen instantaneously. If a sudden impact is initiated 

at time tk such that the first term in (3-13) is sufficiently negative, then EI will decrease 

immediately following time tk and the resulting value of Mt for the controlled system 

will be less than that for the uncontrolled system. In contrast to Method I, some of the 

quantities multiplying h in the second term of (3-13) (i.e., XI) may change if such an 

impulsive interaction occurs. 

3.4 Interaction Elements 
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In order to facilitate the implementation of the control strategy by the two methods 

discussed in the previous section, several interaction elements are considered. For the 

control cases which utilize Method 1, three types of interaction elements are separately 

used to examine the effectiveness of the control approach. Each of these elements may 

be described as nondynamic and memoryless (these qualifiers are discussed in more detail 

in Chapter 4). The first type consists of a member that is capable of providing a rigid 

connection between the two systems when activated. In the case for which the auxiliary 

system consists of a linear elastic element, it is assumed that, upon deactivation, the 

interaction element may be instantaneously slipped to reduce the reaction force to zero. 

The second type consists of a member that is capable of providing a viscously-damped 

reaction force between the two systems when activated. The third type consists of a 

member that is capable of providing a Coulomb-damped reaction force between the two 

systems when activated. For each type of interaction element, the activated state 

corresponds to the enabling or presence of an interaction between the systems, while the 

deactivated state corresponds to the disabling or absence of an interaction between the 

systems. The relation between the reaction force and the primary and auxiliary system 

displacements and their derivatives is given below for each type of interaction element in 

the activated operating state: 

• Rigidly-Connected / Instantaneously-Slipped Member 

(3-14) 

(XI must be obtained iteratively from the equation of motion for the primary 
system, since that equation is expressed in terms of u.) 

• Viscously-Damped Member 

(3-15) 

• Coulomb-Damped Member 

• x2 :f:. Xl (slipping phase) 
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(3-16) 

• X2 = XI (sticking phase) 

(3-17) 

(Urig is the value of U as given by (3-14). Is is the slip force level normally 
associated with a stick-slip element.) 

The parameters a, f3, and r are defined in the next section. Each of these element types 

is schematically illustrated in Figure 3.3. The configuration of the primary and auxiliary 

systems is indicated in Figure 3.3. The systems are shown to be connected by a generic 

interaction element, which could represent anyone of the three types discussed above. 

It is not necessary to specify the precise physical nature of the interaction element 

for the control cases which utilize Method 2 since the activation-deactivation process is 

modelled to happen instantaneously. However, the phenomenon is assumed to be 

equivalent to a perfectly-plastic impact between the two systems. The energy changes 

associated with this process could be effected, for example, either by rapid conversion of 

mechanical energy to thermal energy within the interaction element or through 

deformation of some of the material comprising the interaction element. The pertinent 

quantities associated with this process are the impulse transferred to and the final velocity 

acquired by the primary system immediately following the impact. These quantities are 

given below for an instantaneous interaction assumed to occur at time tk: 

• Impulsively-Generated Perfectly-Plastic Impact 

II (tk) = ;~ [X2 (tk) - XI (tk)]' XI (tt) = f3 ~ 1 [f3 x2 (tk) + XI (tk)] (3-18) 

3.5 Numerical Study 

A deterministic analysis is conducted through numerical simulations. An explicit 

Runge-Kutta method with fourth-order truncation error is employed to numerically 
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integrate the equations given in (3-1). The numerical simulations are performed for a 

series of control cases using horizontal ground accelerations from an ensemble of 

earthquake time histories as excitation input. This ensemble is comprised of the 1940 

Imperial Valley (EI Centro) SOOE, 1952 Kern County (Taft Lincoln School Tunnel) 

S69E, and 1971 San Fernando (Holiday Inn) NOOW earthquake records. Subsequently, 

these earthquake records are denoted herein by the symbols ELC, TAF, and HOL, 

respectively, following the convention used in [1]. 

The accelerograms from these events were normalized to an effective peak ground 

acceleration of 0.40g according to the procedure described in [1]. Each of the recorded 

acceleration values was divided by a characteristic acceleration value computed for that 

particular event and then multiplied by 0.40g. The purpose of this scaling operation was 

to reduce the statistical variance of the peak response of a SDOF oscillator subjected to 

each of the excitation records; it is meant to produce equal spectral intensities. The 

normalized accelerograms are shown in Figure 3.4, and the amplitudes of the Fourier 

Spectra for these records are shown in Figure 3.5. In contrast to one another, these 

records exhibit and possess very different time-domain behavior and frequency-domain 

content. They have been thoroughly analyzed and are widely accepted for use as 

excitation input to simulate the response of structural systems to the strong ground 

motion brought about by seismic disturbances. 

For prescribed u and v, the dynamical behavior of the primary system is fully 

characterized by specifying the fraction of critical damping '1 and the undamped natural 

frequency WI /2 n. In all of the control cases examined in this study, SI = 0.02. Values 

ranging between 0.10 and 10.0 Hz are used for wt!2n to construct response spectra. In 

turn, the dynamical behavior of the auxiliary system is fully characterized by specifying 

the dimensionless parameters 

(3-19) 
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which, when inserted into (3-2) and used with (3-3), yield 

"" = ~ "',. (, = ~:J3 (,. I, = - ~ I, (3-20) 

In the case of i = 2, (3-20) permits an alternative expression for (3-1) 

(3-21) 

It is convenient to group the control cases to be examined into nine control 

categories, which are distinguished by the method of control strategy implementation, the 

number of possible operating states for the interaction element, the physical nature of the 

interactions (which corresponds to the type of interaction element used), and the values 

considered for the parameters that characterize the dynamical behavior of the auxiliary 

system. A listing of these control categories is provided in Table 3.1. For most of them, 

the interaction element has the capability to function in either one of two operating states. 

However, this capability is restricted by the additional limitation that the element may be 

activated or deactivated only at the beginning of a sampling period, and that it must 

remain in the selected operating state for the duration of the sampling period. For all of 

these control cases, a fundamental criterion which is based upon the control strategy is 

used in the determination of the appropriate operating state. This criterion is discussed in 

the next section. 

For the cases in Categories 1 through 5, the interaction element is capable of two 

operating states: an activated state and a deactivated state. In Categories 1 through 3, the 

first type of interaction element described is used, which provides a rigid connection 

between the systems when activated and provides no interaction between the systems 

when deactivated. In Categories 4 and 5, an interaction element which is capable of 

producing an instantaneous effect that results in a perfectly-plastic impact between the 

systems is used (e.g., some kind of robust impact damper which reduces the relative 

velocity between the systems to zero in an instant of time). 

In Categories 6 and 7, the second type of interaction element described is used, 
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which provides a viscously-damped interaction between the systems when activated. In 

Categories 8 and 9, the third type of interaction element described is used, which 

provides a Coulomb-damped interaction between the systems when activated. However, 

for the cases in Categories 7 and 9, the interaction element possesses only a single 

operating state (the activated state), whereas for the cases in Categories 6 and 8, the 

interaction element is capable of two operating states (the activated and deactivated 

states). 

The cases in Category 1 involve an auxiliary system that consists only of a linear 

elastic element. As the interaction element is deactivated, it is assumed that the rigid 

connecting member may be instantaneously slipped in a manner by which the strain 

energy stored in the auxiliary system is suddenly dissipated. The mechanism for this 

dissipation depends upon the actual hardware used to produce the interaction but could be 

achieved by the viscosity of a working fluid or sliding friction at a solid-solid interface. 

Now, let VI be defined as the rate at which potential energy is stored in the elastic 

element of the primary system (or, VI == !kIxt; VI = kIxIXI, kI > 0). For exactly half of 

the cases considered in this category, interactions are prohibited whenever VI < 0, 

whereas interactions are permitted for any value of VI (but will occur only as directed by 

the control algorithm) in the remaining cases. Note: Special reasons exist for choosing 

to consider these two particular sets of cases, and these reasons are discussed in the last 

section of this chapter. 

In addition to the fundamental criterion, which is used to determine whether or not 

an interaction may be initiated and/or maintained, the cases in Categories 2 and 3 utilize 

another criterion to determine whether or not an interaction may be initiated (from a 

deactivated operating state). This additional criterion is necessary because impulsive 

forces will generally develop between the systems at the moment when an interaction 

commences if the velocities of the systems are dissimilar and both systems possess mass. 

The criterion requires the relative velocity between the systems to be nearly zero in order 
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to initiate an interaction, as explained in the next section. It is recognized that such a 

criterion is unnecessary for the cases in Category 1 because the auxiliary system is treated 

to be massless in those cases (i.e., f3 = 0). 

For the cases in Categories 4 and 5, the interactions occur impulsively at strategic 

instants in time through an attachment-and-release process. During such a process, the 

systems are forced by means of a perfectly-plastic impact to instantaneously attach to 

each other so that they acquire the same velocity, as described earlier. The connection 

created is then immediately terminated, allowing the systems to move independently for 

the duration of the sampling period. Such interactions generally occur intermittently. 

Regarding the cases in Categories 8 and 9, an effective damping coefficient, ceff ' 

may be obtained for a Coulomb damper by considering a linear viscous damper with 

actual damping coefficient ceff and requiring each element to dissipate the same amount 

of energy per cycle when subjected to a sinusoidal deformation process of amplitude A 

and frequency w. This method of equivalent damping is discussed in [2] and leads to a 

relation between the slip force level Is of the Coulomb damper and the effective 

damping coefficient ceff ' given by 

n 
I = -C.IT wA 

s 4 eJJ 
(3-22) 

For the purposes of comparison, the values used for the parameter Cs associated 

with the cases in Categories 8 and 9 are selected by requiring the values of ceff to match 

the values of cint used for the corresponding cases in Categories 6 and 7. By assuming 

that A = I xI lmax and W = WI' and using the defining expressions for 8 and Cs in (3-15) 

and (3-16), (3-22) becomes 

c s = ~ 8 'I WI [ WI I XI lmax] 
2go 

(3-23) 

It is recognized that the last term in (3-23) is the pseudo-velocity of the primary system 

response. Several intermediate values were obtained for this quantity from the response 

of the uncontrolled primary system (for given values of 8 and WI) when subjected to 
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each of the excitation records. These intermediate values were then averaged over the 

excitation records to obtain a final value for each combination of 8 and (01. This final 

value is used in (3-23) to determine £s for the cases involving the controlled primary 

system. The range of values used for £s for the cases in Categories 8 and 9 are reflected 

in Table 3.1 by the effective values used for 8 to compute £s according to (3-23). 

The sets of parameter values used to characterize the auxiliary system and some of 

the particular features associated with specific control cases are listed in Tables 3.2 

through 3.7. The values considered for the parameters indicated in Tables 3.2, 3.3, 3.4, 

3.5,3.6, and 3.7 are used for the cases belonging to Categories 1,2,3,4,5, and 6 through 

9, respectively. 

3.6 Control Algorithms 

Before discussing control algorithms in detail, it is necessary to call attention to 

some matters concerning the additional criterion that is used to determine whether or not 

an interaction may be initiated for the cases in Categories 2 and 3. These matters are 

related to some of the principles involved in the control algorithm used for cases in 

Categories 4 and 5, and so it is prudent to discuss them now. 

Attachment Criterion 

For the cases in Categories 2 and 3, the purpose of the interaction is to transfer 

energy from the primary system to the auxiliary system without dissipating any energy 

within the interaction element, which consists of a rigidly connected member when 

activated. In order for such an interaction to commence, it is necessary for the velocities 

of the two systems to be brought into coincidence; this process is referred to as an 

attachment and is modelled to happen instantaneously. Since the velocities of the 

systems are generally dissimilar before an interaction commences, and because each 

system typically has mass associated with it, an impulsive force is required during the 

attachment process to cause the systems to acquire the same velocity, x2 (t:) = XI (t:). As 
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indicated below, this process always results in a loss of the combined relative energy of 

the two systems. It can be shown that the change in the combined relative energy of the 

systems associated with the attachment process, assumed to occur at time fk' is given by 

AEtot(tk) == ~[EI (fk) + E2 (tk)] = -.!.. ml f3 [Xl (tk") - x2(tk") r 
2 f3 + 1 

(3-24) 

while the accompanying change in relative energy of the primary system is given by 

AEI (fk) = -± ;~ [Xl (fk") - X2 (fk")][ Xl (fk") + Xl (ft)] (3-25) 

In all of the control cases other than those in Categories 4 and 5, the intention of the 

control effort is to achieve a favorable control effect on the primary system by the 

transfer or dissipation of energy through continuously-applied, nonimpulsive interactions 

but not by sudden changes in EI through instantaneously-applied, impulsive interactions. 

This objective may be ensured for the cases in Categories 2 and 3 if the attachment 

process is delayed until an instant in time when x2(tk") = Xl (tk"). Under these conditions, 

AE10t (tk) and AEI (tk) are both zero, and the impulsive force vanishes as well (confer 

with (3-18». However, this restriction is unnecessarily prohibitive and would cause 

many opportunities for interaction to be missed. So it becomes desirable to determine 

practical conditions under which an attachment process can be accomplished, even when 

X2 (tk");t; Xl (fk"), but which limit the adverse effects. 

The additional criterion used to determine whether or not an attachment process 

should be permitted at some representative time fk is expressible as 

(3-26) 

where 

(3-27) 

The condition expressed by (3-26) has been chosen because I Xl Isup' which is directly 

related to EI , is left relatively unchanged following the attachment process, after which it 



-61-

can be changed only through the interaction effects brought about by continuously­

applied forces. It is relatively straightforward to show (see Appendix B) that 

and also that 

Hence, if it is required that I ~ (tk) I < BE Ei (tk)' with BE « 1, then 

I ~I x1 ( t k ) Isup I BE 
!-;------;----'- < -
Ix1(tk)1 2 

sup 

and it is evident that (3-26) will be satisfied. 

(3-28) 

(3-29) 

(3-30) 

Upon further inspection of (3-24) and (3-25), it is apparent that in some instances 

IM1(tk)I<IMtot (tk)l, while in other instances IMtot (tk)I<IM1(tk )l, depending on the 

particular values of x1 (tk)' x2 (tk ), and f3. If it is stipulated that 

(3-31) 

whenever I M1 (tk ) I < I M tot (tk) I, then (3-26) will certainly be satisfied. Alternatively, if 

it is stipulated that 

(3-32) 

whenever I Mtot(tk) I < I M1 (tk) I, then (3-26) will certainly be satisfied. Thus, by using 

the appropriate condition stipulated in either (3-31) or (3-32), Mtot(tk) is kept "small" 

while simultaneously satisfying (3-26). This is an attractive feature since it is reasonable 

to interpret Mtot(tk) as a measure of the potential for damage to the systems that is 

associated with an abrupt attachment process. In addition, by using (3-18) and (3-24), the 

following relation holds 

(3-33) 
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Therefore, requiring M tot (t k) to be small also ensures that II (t k) will be small. This has 

important physical consequences because, in reality, the attachment process will require 

some small yet finite amount of time to transpire. An effective force during the 

impulsive interaction may then be determined by dividing the impulse by this small 

amount of time. By ensuring that II (tk) is small, this effective force is kept small. It is 

of anecdotal interest to note that the criterion is automatically satisfied for all cases in 

Category I, since f3 = O. 

Fundamental Criterion 

As discussed previously, two methods are considered to implement the control 

strategy: continuously-applied, nonimpulsive interactions; and instantaneously-applied, 

impulsive interactions. The control algorithm corresponding to Method 1 is described 

first. At the beginning of each sampling period, the states of the primary and auxiliary 

systems are measured or estimated. These states are used to determine the control forces 

that would be produced by an interaction. Then, the control processor evaluates the rate 

at which relative vibrational energy is added to the primary system as a result of the 

interaction (given by the term mUltiplying h in (3-12». When this quantity is less than or 

equal to zero, then either: (a) an interaction is initiated and maintained for the sampling 

period duration, or (b) the interaction is maintained, if already in effect, for the sampling 

period duration. Otherwise, either: (a) an interaction is not initiated, or (b) the interaction 

is terminated, if already in effect. The conditional tests in this algorithm comprise what is 

referred to as the fundamental criterion for Method 1, and represent the logic used by the 

control processor to determine whether or not an interaction may be initiated and/or 

maintained. 

There are a few caveats to the decision process outlined above that must be further 

explained. First, for the cases in Category 1 (excluding those cases for which interactions 

are prohibited when VI < 0), the auxiliary system consists only of a linear elastic 

element, and upon deactivation, the interaction element may be instantaneously slipped to 
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reduce the reaction force to zero. Hence, the interaction element may always be 

immediately reactivated in accordance with the fundamental criterion. Thus, for these 

particular cases, the interaction element remains activated at all times with the exception 

of certain discrete points in time at which this deactivation-reactivation process occurs. 

Also, for the cases in Categories 2 and 3, the initiation of an interaction is only permitted 

when both the conditions of the fundamental criterion and those of the additional criterion 

related to the attachment process are satisfied. 

The control algorithm corresponding to Method 2 is described next. As with the 

algorithm for Method 1, the states of the primary and auxiliary systems are measured or 

estimated at the beginning of each sampling period. These states are used by the control 

processor to compute the value of LlEI(tk)' according to (3-25), that would result from an 

impulsive interaction. When the value of LlEI (tk) has reached a local (but negative) 

minimum in time, an attachment-and-release process is initiated (without regard for the 

attachment criterion). This local minimum is determined by monitoring the computed 

value for LlEI (tk) at the beginning of each sampling period and identifying the lowest 

(but negative) value attained before it begins to increase for subsequent sampling periods. 

Then, to ensure that a true minimum has been reached, the control processor postpones 

initiation of the attachment-and-release process until the value of LlEI (tk ) is observed to 

monotonically increase from the identified minimum for np consecutive sampling 

periods, where np is a parameter. The conditional tests in this algorithm comprise what 

is referred to as the fundamental criterion for Method 2, and represent the logic used by 

the control processor to determine whether or not an attachment-and-release process may 

be initiated. 

3.7 Results 

The simulation results are compiled in the form of response spectra, which plot the 

pseudo-velocity of the primary system response, (OIl XI lmax' versus the undamped natural 
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frequency of the primary system, (01 /2n, for the range of values considered. Response 

spectra have historically been used by engineers for design purposes [3]. However, when 

several curves representing the response of various control cases are plotted along with 

the curve representing the uncontrolled case, this graphical construct becomes a useful 

tool for judging the effectiveness of the proposed control approach. Results are now 

summarized for the control cases belonging to each of the previously described control 

categories. 

Category 1: 

The response spectra for the controlled cases in which interactions are permitted for 

any value of VI are significantly reduced in comparison to the response spectrum for the 

uncontrolled case for each of the excitation records considered. A trend of decrease in 

the response spectrum is nearly always observed as the value of a is increased. The 

spectra for all of the cases are shown in Figure 3.6 for each of the excitation records. 

The response spectra for the controlled cases in which interactions are prohibited 

when VI < 0 are generally reduced in comparison to the response spectrum for the 

uncontrolled case for each of the excitation records considered. A trend of decrease in 

the response spectrum is nearly always observed as the value of a is increased. The 

spectra for all of the cases are shown in Figure 3.7 for each of the excitation records. 

Category 2: 

The response spectra for the controlled cases are generally not reduced in 

comparison to the response spectrum for the uncontrolled case for each of the excitation 

records considered. The spectra for all of the cases are shown in Figure 3.8 for each of 

the excitation records. 

Category 3: 

The response spectra for the controlled cases are moderately but not consistently 

reduced in comparison to the response spectrum for the uncontrolled case for each of the , 

excitation records considered. The spectra for all of the cases are shown in Figures 3.9 
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and 3.10 for each of the excitation records. 

Category 4: 

The response spectra for the controlled cases are generally reduced in comparison to 

the response spectrum for the uncontrolled case for each of the excitation records 

considered. A trend of decrease in the response spectrum is usually observed as the value 

of f3 is increased at all but the higher frequencies. The spectra for all of the cases are 

shown in Figure 3.11 for each of the excitation records. 

Category 5: 

The response spectra for the controlled cases are generally reduced in comparison to 

the response spectrum for the uncontrolled case for each o( the excitation records 

considered. A trend of decrease in the response spectrum is generally observed as the 

value of a is increased while using the smallest value of f3, and the opposite trend is 

usually observed as a is increased while using the largest value of f3. The spectra for all 

of the cases are shown in Figures 3.12 and 3.13 for each of the excitation records. 

Category 6: 

The response spectra for the controlled cases in this category, which is included in 

the study primarily for the purposes of comparison with Category 7, are shown in Figures 

3.14 through 3.18 for each of the excitation records. For all of the controlled cases in this 

category, the interaction element is permanently locked in the activated operating state. 

The performance exhibited by the controlled cases in Category 7 at least equal, and 

usually surpass, that in this category. 

Category 7: 

The response spectra for the controlled cases are moderately but generally reduced 

in comparison to the response spectrum for the uncontrolled case for each of the 

excitation records considered. A trend of decrease in the response spectrum is generally 

observed as the value of 8 is increased. The spectra for all of the cases are shown in 

Figures 3.19 through 3.23 for each of the excitation records. 
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Category 8: 

The response spectra for the controlled cases in this category, which is included in 

the study primarily for the purposes of comparison with Category 9, are shown in Figures 

3.24 through 3.28 for each of the excitation records. For all of the controlled cases in this 

category, the interaction element is permanently locked in the activated operating state. 

The performance exhibited by the controlled cases in Category 9 at least equal, and 

usually surpass, that in this category. 

Category 9: 

The response spectra for the controlled cases are significantly and generally reduced 

in comparison to the response spectrum for the uncontrolled case for each of the 

excitation records considered. A trend of decrease in the response spectrum is generally 

observed as the value of 8 is increased. The spectra for all of the cases are shown in 

Figures 3.29 through 3.33 for each of the excitation records. 

3.8 Discussion 

In the last column of Table 3.1, a qualitative assessment of the control effectiveness 

or performance achieved is assigned for typical cases in each of the control categories. 

Such factors as the extent of response reduction attained for the controlled system, and 

the consistency of the results obtained by using different excitation records for a given 

case are taken into account to arrive at these assessments. It is evident from the results 

previously discussed that the cases belonging to Category 1 are by far the most effective 

with regard to the response control objective. The response control effort is generally 

ineffective for the cases belonging to Categories 2 and 3. 

The cases in Categories 4 and 5, which are the only ones that use the Method 2 form 

of the control strategy implementation, are also very effective. But the consequences of 

allowing impulsive forces to act upon the systems, and thereby modify their response, 

have not been adequately addressed. Also, some questions remain concerning the details 
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of how such impulsive interactions might be physically achieved. As was pointed out 

earlier, the interactions for the cases in these categories correspond to perfectly-plastic 

impacts which are assumed to occur instantaneously, and so it was not necessary to 

specify the actual devices used to accomplish this idealized phenomenon. For these 

reasons, the cases utilizing Method 2 are not pursued further in the follow-on study. 

The cases in Categories 7 and 9 are also effective, with the results indicating that 

the cases in Category 9 are generally more effective than those in Category 7. However, 

this superior effectiveness might be related to the approximations used to determine the 

value of Cs for the cases in Category 9, resulting in effective values for 0 that are greater 

than they are supposed to have been. In fact, because of the difficulties associated with 

establishing the appropriate slip force level, as well as concerns about the power 

requirements to generate the normal forces necessary for the proper functioning of the 

stick-slip device, the third type of interaction element will not be pursued further in the 

follow-on study. 

The results of those cases in Categories 6 and 8 which differ noticeably from the 

results of their corresponding cases in Categories 7 and 9 indicate that the switching 

process associated with altering the mechanical properties of the interaction element 

generally leads to improved control effectiveness. 

Additional Observations 

Of special interest are the cases in Category 1 for which interactions are prohibited 

when VI < o. Physically, this restriction means that when the elastic element of the 

primary system is in the process of unloading (i.e., the system mass is moving back 

toward its equilibrium position), interactions with the auxiliary system are not permitted. 

In essence, these cases involve the same kind of auxiliary system and control algorithm as 

that employed by the Kajima Corporation of Japan for the Active Variable Stiffness 

(AVS) control method, as discussed in [4]. Thus, for the purposes of the present study, 

this control algorithm will be referred to as the Kajima A VS control algorithm. Figures 
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3.6 and 3.7 indicate that if an actual system can be made to respond like the auxiliary 

system used in this category, then the control algorithm which permits interactions for 

any value of VI (i.e., the proposed control algorithm) yields a substantial improvement in 

control effectiveness than the control algorithm which prohibits interactions when VI < 0 

(i.e., the Kajima A VS control algorithm). Of course, this conclusion is valid only for the 

ensemble of excitation records considered. 

Consider now the response characteristics of an externally-unforced SDOF primary 

system that interacts with a SDOF auxiliary system of the type used in Category 1 and is 

controlled by the two kinds of algorithms discussed above. It is assumed that at the initial 

time to' x(to) = Xo and x(to) = O. Upon doing some simple analysis, further insight may 

be gained. The following results are obtained for the amplitude ratio, period of vibration, 

and energy change associated with one cycle of oscillation for an undamped system of 

mass m and natural frequency m/27r (since in this case all quantities of interest except 

a refer to the primary system, the subscript denoting the primary system is suppressed 

for convenience and clarity): 

• Proposed Control Algorithm -

x(to + ~t) _ (1- a)2 ~t 1 till 
Xo - (1 + a)2' T - ..)1 + a ' Eo 

• Kajima A VS Control Algorithm -

x(to + ~t) 1 ~t 1 +...Jf+(i till 
Xo (1 + a)' T = 2..)1 + a' Eo = 

For both of these algorithms, T == 2 7r / m and Eo == ± m m2 x; . 

a(2+a) 
(1 + a)2 

(3-34) 

(3-35) 

Figures 3.34 and 3.35 show a portion of the force-displacement time-history which 

develops within the interaction element for the two kinds of algorithms discussed above, 

respectively, for a = 0.25. In both of these cases, the primary system is given an initial 

displacement of Xo and then released. The hysteresis loops which appear in the diagrams 

represent the energy dissipated per cycle by the interaction element. It is evident that 

more energy is dissipated per cycle for the case using the proposed control algorithm than 
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for the case using the Kajima A VS control algorithm; this conclusion can also be reached 

upon examining (3-34) and (3-35) when a < 3. These results may offer a partial 

explanation for the observed behavior in the externally-forced case. 

For the case in which the primary system is harmonically forced at a frequency of 

(f)j2n in a steady-state manner, it is simple to show that 

• Proposed Control Algorithm -

x(to + ~t) = 1, ~ = 1, till = -8a 
Xo T Eo 

(3-36) 

• Kajima A VS Control Algorithm -

x(to + ~t) = 1, ~ = 1, till = -2a 
Xo T Eo 

(3-37) 

where f E 2n j (f). The force-displacement time-histories for this case would be similar 

to the diagrams shown in Figures 3.34 and 3.35, except that the displacement oscillates 

between positive and negative xo ' and each curve would return to the initial point at the 

end of each cycle of oscillation, yielding closed hysteresis loops. 

In seeking to compare the performance achieved by these two control algorithms, it 

is also helpful to examine the effective damping ratio for both the externally-unforced 

and harmonically-forced cases. The effective damping ratio is the damping ratio for an 

uncontrolled SDOF system that would yield the same amount of energy dissipation per 

cycle as is obtained for the controlled SDOF system. In the case for which the primary 

system is externally unforced, it may be shown that 

'eft = ~; !c1=tln(1-b), ~T+4? 
(3-38) 

Using (3-36), (3-37), (3-38), and a = 0.50, the values of 'eft for the proposed control 

algorithm and the Kajima AVS control algorithm are 0.33 and 0.06, respectively. In the 

case for which the primary system is harmonically forced at (f) = (f), it may be shown that 

b (f) b till ( =--=-; bE-
eft 4n (f) 4n E 

o 

(3-39) 

Using (3-36), (3-37), (3-39), and a = 0.50, the values of 'eft for the proposed control 
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algorithm and the Kajima A VS control algorithm are 0.32 and 0.08, respectively. Both 

the externally-forced and harmonically-forced cases demonstrate that much higher values 

for 'eft are achievable when using the proposed control algorithm. 

It should be mentioned that the cases in Category 1 may be viewed in an entirely 

different manner than previously done. Consider a new interaction element consisting of 

the old interaction element used for these cases, which can be instantaneously slipped to a 

zero reaction force condition upon deactivation, placed in series with the linear elastic 

element that was formerly considered to be the auxiliary system. From this viewpoint, 

the cases in Category 1 may be described as those for which the new interaction element 

facilitates an interaction between the primary system and its base (i.e., the ground). Such 

an interaction element, and a modified version of it, will form the basis for much of the 

follow-on study involving MDOF models of structural systems. 

Chattering Phenomenon 

In the theory of variable structure systems, or sliding mode control, usually the 

objective is to bring the state of a system to a singular hypersurface (often referred to as a 

switching surface) in the state space, and then to maintain the state on that surface while 

simultaneously driving it toward the origin. Because relay devices are utilized by the 

controller to achieve this desired behavior for the system, a chattering phenomenon will 

result. While in chatter, the state undergoes extremely fast, alternating excursions across 

the switching surface in an effort by the controller to maintain the state on the surface. 

With regard to the Method 1 form of the control strategy implementation - which 

utilizes continuously-applied, nonimpulsive interactions to implement the control strategy 

- it is not desirable for such a phenomenon to occur. In the simulations conducted for 

the control cases in the present study, there was no evidence of a chattering behavior for 

the interaction elements during their operation. However, a simple example is now 

presented which indicates that this phenomenon can occur under certain conditions for 

the proposed control approach. It is prudent to mention that this example involves an 
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auxiliary system which, for the intended applications, is not very realistic, but it does 

serve to illustrate the phenomenon. 

Consider again two interacting SDOF systems which are externally unforced. The 

primary system is characterized by a fraction of critical damping ~ of 0.02 and an 

undamped natural frequency m127r of 1.00 Hz. The auxiliary system is characterized by 

a = 0.00 and f3 = 5.00. The interaction element is a semi-actively operated Coulomb­

damped member, as previously used for control cases in Category 9, with £s = 0.25. 

Figure 3.36 shows the response time-history of the primary system, in which the auxiliary 

system is initially at rest and the primary system is given an initial displacement, for both 

the controlled and uncontrolled cases. The chattering phenomenon occurs during those 

portions of the response when the curve is relatively flat. 

It may be of anecdotal interest to note that when an externally-unforced SDOF 

primary system that interacts with a SDOF auxiliary system of the type used in Category 

1 (as described earlier) under conditions for which a » 1 and the first control algorithm 

discussed is used, the displacement of the primary system does not oscillate. Rather, the 

response consists of a series of undulating decreases in the displacement, and as a 

becomes very large, chattering behavior results. 

It would be advantageous to develop additional criteria that may be used to 

anticipate the occurrence of chattering behavior for the interaction elements and thereby 

prevent their operation, even if otherwise directed by the control algorithm, until such a 

time at which this phenomenon will not occur for a subsequent short interval of time. 

Extension to MDOF Systems 

In a later chapter, efforts are directed at extending the Active Interface Damping 

control approach investigated for two interacting SDOF systems to MDOF models of 

actual structural systems. This study will examine only linear MDOF systems, whose 

response can be decomposed into particular modes of vibration. The response control of 

one or several of these modes, each of which behaves like a SDOF system, is then sought. 
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Generic Interaction Element 
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Rigidly-Connected / Instantaneously-Slipped Member 
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Viscously-Damped Member 
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Coulomb-Damped Member 

• \. ) I • 

Figure 3.2. Schematic Representation of Interaction Elements Used for SDOF System Study. 
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- with f3 = 0 and r = 0 - for the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
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Figure 3.16. Response Spectra of Categ~ 6 Controlled Cases for Various Values of 8 
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Figure 3.17. Response Spectra of Categ~6 Controlled Cases for Various Values of 0 
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- 90 -

r-, 200 
() No Control • ~ 
rJJ 100 (a) ELC 

E <5 = 2.50 _--a 
() 50 <5 = 5.00 .----a '-' 
:>.. .... .... 
() 20 --, 
0 .. ' 

..... 
~ 

> 10 

I 

0 
'0 5 

::l 
~ 
rJJ 

Po; 2 
0.03 I 3 100 

Frequency (Hz) 

r-, 200 
() No Control • ~ 
rJJ 100 (b) TAF 

<5 = 2.50 E _--a 
() 50 4= =---:. -=- <5 = 5.00 .----a '-' -- ~ 
:>.. ::-... -:-.. ~ .... '~ .... 
() 20 ' ..... 
0 "~ ..... 

'\ ~ 

> 10 , 
I '\1 
0 
'0 5 

.. 
::l 
~ 
rJJ 

Po; 2 
0.03 I 3 100 

Frequency (Hz) 

r-, 200 
() No Control • ~ (c) HOL rJJ 100 

<5 = 2.50 E _--D 

() 50 <5 = 5.00 .----a '-' 

:>.. .... .... 
() 20 
0 ..... 
~ 

> 10 

I 
0 
'0 5 

::l 
~ 
rJJ 

Po; 2 
0.03 I 100 

Frequency (Hz) 

Figure 3.18. Response Spectra of Categ~ 6 Controlled Cases for Various Values of <5 
- with a=8.oo, {3 = 5.00, and y=.ya{3 - for the (a) El Centro, (b) Taft Lincoln 
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- with a = 8.00, f3 = 5.00, and r = .yaf3 - for the (a) El Centro, (b) Taft Lincoln 
School Tunnel, and (c) Holiday Inn Excitation Records. Results are for primary system. 
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Table 3.2. Parameter Sets Used for Category 1 Control Cases. 

Parameter 

Set a=~ f3= mz Y= C2 BE 
kl ml c1 

1 0.5 0.0 0.0 -

2 1.0 0.0 0.0 -

3 2.0 0.0 0.0 -

Table 3.3. Parameter Sets Used for Category 2 Control Cases. 

Parameter 
a=~ Set f3= mz Y= C2 BE 

kl ml c1 

1 0.0 0.2 0.0 0.01 

2 0.0 1.0 0.0 0.01 

3 0.0 5.0 0.0 0.01 

Table 3.4. Parameter Sets Used for Category 3 Control Cases. 

Parameter 
a=~ f3= mz C BE Set Y=-1. 

kl ml C1 

1 0.5 0.2 ~af3 0.01 

2 0.5 5.0 ~af3 0.01 

3 2.0 0.2 ~af3 0.01 

4 2.0 5.0 ~af3 0.01 

5 8.0 5.0 -vaf3 0.01 
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Table 3.5. Parameter Sets Used for Category 4 Control Cases. 

Parameter 
a="-2 13= ~ C np Set r=-1. 

kl ml c1 

1 0.0 0.2 0.0 2 

2 0.0 1.0 0.0 2 

3 0.0 5.0 0.0 2 

Table 3.6. Parameter Sets Used for Category 5 Control Cases. 

Parameter 
a="-2 13= ~ C np Set r=-1. 

kl m l c1 

1 0.5 0.2 ~af3 2 

2 0.5 5.0 ~af3 2 

3 2.0 0.2 ~af3 2 

4 2.0 5.0 ~af3 2 

5 8.0 5.0 ~af3 2 

Table 3.7. Parameter Sets Used for Categories 6 through 9 Control Cases. 

Parameter 

Set a="-2 13= ~ r= C2 8 = Cint 

kl ml C1 c1 

1 0.5 0.2 ~af3 2.5,5.0 

2 0.5 5.0 ~af3 2.5,5.0 

3 2.0 0.2 ~af3 2.5,5.0 

4 2.0 5.0 -va{3 2.5,5.0 

5 8.0 5.0 ~af3 2.5,5.0 
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Chapter 4 

Response Control of Linear MDOF Systems 
Using Active Interface Damping 

4.1 Introduction 

In Chapter 3, a preliminary study which examined various applications of the 

Active Interface Damping control approach to cases that involved two interacting SDOF 

systems was presented. This investigation was intended to be exploratory in nature but 

not exhaustive in extent. In this chapter, a follow-on study of the proposed control 

approach is presented. This investigation considers linear MDOF primary and auxiliary 

systems which are intended to represent actual structural systems. However, in some 

instances, the auxiliary system may represent an externally-situated resilient frame or a 

relatively small, unrestrained mass rather than a conventional structural system; in other 

instances, the auxiliary system is completely absent, and the interaction elements are 

merely attached between different components of the primary system. Using the results 

and insight obtained from the previous study, a reduced number of control cases are 

examined in the present study which include those deemed most effective and imple-

mentable. 

As before, the control objective is to reduce the resonance buildup in the response 

of the primary system that is produced by an external excitation. The strategy employed 

to achieve this objective is to remove energy associated with one or several modes of 

vibration from the primary system through either interaction of the primary system with 

the auxiliary system or interaction of the primary system with itself and its base. A 

control algorithm is used to permit only those interactions which are anticipated to be 

favorable to the control strategy. Again, the interactions consist of reaction forces that 

are developed within and transmitted through interaction elements, whose mechanical 
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properties can be altered in real time by control signals. 

4.2 Problem Formulation 

The following conditions are assumed to hold in this study: 1) the primary system 

and the auxiliary system (when present) are subjected to the same base acceleration and 

respond linearly; 2) the systems are discrete models of multi-story structural systems, 

whose nodal masses are only capable of horizontal deformations from their equilibrium 

positions; 3) the systems possess classical normal response modes, and the damping 

matrix resulting from the discretization process is obtained by specifying values for the 

modal damping ratios; 4) the interaction elements function passively, are considered to be 

massless, and are characterized by parameters associated with their mechanical properties 

that may be instantaneously changed in real time by control signals; 5) the system states 

are completely observable, and all system parameters have been identified in advance; 

and 6) only current values of the base acceleration and system state variables are 

available to determine the control input. 

The models used in this study represent two-dimensional uniformly-discretized 

structural systems, consisting of a series of identical stories formed by floor and roof 

slabs that are interconnected by elastic support columns which provide linear restoring 

forces. The mass of each slab is mi , and the effective stiffness of all columns at each 

story is ki' where i E {I, 2}. The subscripts 1 and 2 are used to denote the primary and 

auxiliary systems, respectively. The equations used for the analysis of the systems are 

expressed in terms of the relative displacements of each slab from a vertically erected 

datum line which is fixed to the base of each system. A schematic illustration of a 

generic primary or auxiliary system is given in Figure 4.1. 

Under these conditions, the equations of motion for the primary and auxiliary 

systems are expressible as 

M·i. +CX. +Kx· =/. -M.v. 
I I I I I I I I I 

(4-1) 
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where the generally time-varying vectors Xi E Rnj, Ii E Rnj , and Vi E Rnj represent the 

relative displacements (as measured from the base), control forces, and excitation input 

associated with the ith system, respectively. The time-invariant matrices M i , Ci , and 

K i , assumed to be symmetric and positive definite, are directly related to the kinetic, 

dissipative, and elastic properties of the uncontrolled ith system, respectively. 

For the purposes of later discussion, let the components of the time-varying vector 

U E R', referred to as the control input, represent the reaction forces developed within 

each of the interaction elements. Because each of the interaction elements is treated to be 

massless, a relationship exists between the control force acting on the ith system and the 

control input, which is given by 

Ii = -1,u (4-2) 

where the matrix Li represents a mapping which relates the control forces applied to the 

ith system and its control input. The precise definition of Lj and the functional form for 

u depend upon the particular control case considered. The excitation input is defined as 

(4-3) 

where y is the absolute displacement of the base of each system. 

Often, it is convenient to recast the equations in (4-1) into the state space form 

Zi = ~Zj + B;u+ B;'vj (4-4) 

where 

z, ,. {:J r\ = [_:IK, _:'-ICJ B; = [_:-Ir,]. B; = [~I] (4-5) 
o and I represent null and identity matrices, respectively, of appropriate dimensions. 

The equations in (4-4) can be expressed in terms of modal response coordinates, the xi,i' 

with j E {l, ... , ni }, by using the transformation 

(4-6) 
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where <l> i is an orthogonal matrix whose columns consist of the eigenvectors of Mi-
l Ki . 

Thus, as is well known, the response of a linear dynamical system may be decomposed 

into particular modes of vibration. 

Since the models considered for the primary and auxiliary systems are chain-like 

systems, consisting of ni repeated identical units, it can be shown [1] (see Appendix B) 

that the eigenvalues and eigenvectors of the ith system are given by 

m .. =2 ~sin[(2j-l) 1r]. ryj={fPitj} fP'k.=c .. sin[(2 j -l) 1rk] 
I,j ~ mi (2ni + 1) 2' 1 'I,".} I,j (2ni + 1) 

fPi,nd 

(4-7) 

with k E {I, ... , ni }, where the fPi,kj are the entries of the matrix <l>i' The coefficients of 

the orthogonal eigenvectors, the Ci,j' are obtained from the normalization condition 

(4-8) 

with I E {I, .. , , ni}, where ~j[ is the familiar Kronecker delta symbol. Substituting (4-6) 

into (4-4) and rearranging terms yields 

(4-9) 

where 

. = B.· = _ B.V = _ _ [0 1]_ [0]_ [0] 
~ -D/ -Di

c ' 1 -Pt' 1 _P/ (4-10) 

with 

D K .m. TM-lK.m. DC .m. TM-lC.m. p-. .m. TM-l L i =='¥i i i'¥i' i =='¥j i j'¥i' i =='¥j i i' 
- T P/ == <l>i (4-11) 

In fact, D/ and Dj
C are diagonal matrices, given by 

° ] -c _ [2 Sj,l mj,l 
, Di -

min. ° , I 

° ] 
2 . m· '"nj l,nj 

(4-12) 

D/ is diagonal by virtue of the mathematical properties associated with <l>j [2]. Di
c is 

diagonal by definition; that is, Ci == Mi <l>i Dr<l>;. This reflects the modelling assumption 

that the modal damping ratios may be specified, and it is further assumed that a single 
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value for the fraction of critical damping applies equally to all response modes (i.e., 

P/ and ~v are the modal participation matrices associated with the control and 

excitation inputs, respectively, and their entries, denoted by pU'k and p.v '1' are referred to 
I,) I,) 

as modal participation factors. In general, the concept of a modal participation factor is 

relevant whenever there are inhomogeneous forcing terms present in the coupled 

equations of motion for a linear dynamical system. From (4-12), it is apparent that the 

equations represented in (4-9), which govern the ni response modes of the ith system, 

may be equivalently represented by a set of ni uncoupled equations, where the jth 

equation is given by 

!!. , ..:. 2 - Ir; -u In;-v x· . + 2 . (J). ·x· . + (J) . .x. . = - p. 'kUk - P"IV , 1 I,) 1,0 I,) I,) I,) I,) I,) I,) I, (4-13) 
k=1 1=1 

The equation in (4-13) indicates that the modal participation factors associated with the 

control and excitation inputs combine together the components of u and Vi' respectively, 

to produce the effective control and excitation inputs for the response modes. 

4.3 Control Strategy 

In essence, the control strategy employed in the study for MDOF systems is the 

same as that employed in the study for SDOF systems. However, only the first method 

for implementing the control strategy, as described in Section 3.3, is used in the present 

study. As previously mentioned, the reason for this is that the effects on the systems 

caused by impulsively generated control forces have not been adequately addressed 

(though it may be possible to transmit these kinds of forces between the systems in a 

manner which does not incur damage to one or both of them). 

As before, the control strategy is to remove relative vibrational energy from the 

primary system by transferring energy to the auxiliary system by means of interaction 

elements, dissipating energy directly in the interaction elements, or a combination of both 
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methods. In fact, attention will be focused on the relative vibrational energy present in 

the dominant response mode of the primary system. This is because in many practical 

situations for which a linear MDOF structural system is subjected to an external 

excitation, only a few (perhaps, a single) response modes are significantly affected. This 

kind of behavior depends upon two factors: 1) the dominant frequencies of the excitation; 

and 2) the participation factors for each response mode. 

From the definitions of Vi and p;v given in (4-3) and (4-11), the contribution of the 

excitation input to the jth response mode of the ith system is proportional to the sum of 

the entries in the jth column of <l>j. Since these columns represent the eigenvectors of 

M i-
1 K j , the extent to which the jth response mode is externally excited depends upon the 

nature of the eigenvectors of <l> i. For the models used in this study, the sum of the 

components of the eigenvector associated with the fundamental frequency is greatest, as 

determined from (4-7), so it is expected that the fundamental response mode will be 

significantly excited. The contribution of the control input to the jth response mode of 

the ith system depends upon both the values prescribed for the Uk and the entries of the 

jth column of p;u. If possible, the values of the Uk should be selected to achieve a 

desirable control effect for the ith system. 

Note: Throughout the remainder of this section and following ones, attention is 

devoted exclusively to the primary system. For this reason, the leading subscript on the 

notation, which is used to distinguish between the primary and auxiliary systems, will be 

suppressed for convenience and clarity, with the understanding that the primary system is 

implied when this subscript is omitted. Elsewhere in the chapter, the subscript may be 

explicitly indicated when it is important to make this distinction. 

Control Objective 

Let the story drift vector of the primary system, denoted by b, be defined in terms 

of its components 
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(4-14) 

This definition for the bj then provides a relation between b and x, given by 

b=Gx (4-15) 

where the entries of the matrix G are easily deduced from (4-14), and it may be shown 

that G is nonsingular. The response control objective is to reduce the maximum absolute 

values of the primary system story drifts, the 1 bj I. Clearly, 

(4-16) 

Because G is nonsingular, the matrix G T G will also be nonsingular. Moreover, G T G is 

symmetric and positive definite, by construction. 

A Useful Result 

At this point, a brief digression is taken to develop a result that will be useful below. 

Let WE Rm be an arbitrary vector and Q be a symmetric, positive definite, time-invariant 

matrix of appropriate dimensions. Suppose that W satisfies the relation 

(4-17) 

where f3 > 0 is a parameter used to establish an upper bound for the quadratic product 

W T Qw. Using the standard theory for normed linear vector spaces, it can be shown there 

exists a parameter a > 0 such that 

Ilwll< a = f3 - A (4-18) 

in order for (4-17) to hold, where A > 0 is the smallest eigenvalue of Q. Furthermore, if 

(ai' f3l) and (a2, f32) are two such pairs of corresponding parameters, then a 2 < a 1 

whenever f32 < f3l. The usefulness of this result may be qualitatively stated as follows. 

Suppose that w varies with t during the time interval [ta' tb ], and II w II is to be 

maintained as small as possible Vt E [ta' tbl If a time-dependent upper bound f32 can be 

established for the quadratic product w T Qw, and if the value of this bound can be 
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controlled, then the value of "W " can likewise be controlled. 

Control Strategy 

Consider some time interval [ta' tbl during which control of the primary system is 

to be accomplished (e.g., the duration of the external excitation). In a manner similar to 

that considered for the SDOF system study, let the relative vibrational energy of the 

primary system, E, be defined as 

(4-19) 

or, as expressed in state variable form, 

E=izTSz; s=[~ ~]=[: ~][M~lK ~] (4-20) 

By using the result from above, it is possible to determine an upper bound for each of the 

I bi I, based upon E. Since tiT M i ~ 0 at any instant in time, 

(4-21) 

Applying the result from above, an upper bound for "x II, denoted by a, can then be 

established at every instant in time 

Ilxll:5 a (4-22) 

This implies that an upper bound, denoted by f32, may be determined for x T G T G x 

(4-23) 

But from (4-15), (4-23) implies 

I bj I ~ II b II ~ f3 (4-24) 

The greatest of these upper bounds then serves as a bound for I bi lmax' that is 

(4-25) 

Thus, E indirectly provides a measure which bounds each I bi I at every instant in time. 

Hence, each I bi lmax may be controlled by controlling E during the time interval [ta' tbl. 
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Modal Decomposition of E 

Attention is now directed to the fact that E can be decomposed in terms of modal 

energy components, as follows 

o ][DK 0] 
DM 0 I 

(4-26) 

where 

(4-27) 

are diagonal matrices [2], with i and DK as defined in (4-6) and (4-11), respectively. A 

closer examination of (4-26) reveals that E may be expressed as 
n 

E-~ E' E -ldM(":"2 2-2) - L..J j' j =2" j Xj + mjXj (4-28) 
j=l 

where dj is the jth diagonal entry of DM. From this decomposition, it is evident that 

I Xj I ~ I Xj Isup' Vt E [ta' tb ]; I Xj Isup == d2M~2 (4-29) 
J J 

This result, applicable to a particular mode of vibration for the system, is analogous to 

condition (3-8) in Chapter 3. In addition, differentiating (4-28) and using (4-13) gives 

(4-30) 

The control strategy is to remove relative vibrational energy from the dominant 

response mode - say, the sth response mode - to the extent allowed by the constraints 

on the control input. This is because the dominant response mode is expected to provide 

the largest contribution to E, which is the quantity to be directly controlled in order to 

achieve the control objective. Hence, the control effort is aimed at regulating Es in order 

to maintain E as small as possible. This control approach is similar to some methods 

suggested for active control applications by Meirovitch and Oz [3] and Yang and Lin [4]. 

For the purposes of both implementing the control strategy and formulating control 

algorithms, efforts are directed toward minimizing the change in Es for a representative 
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sampling period, denoted by !1E{, or even causing this change to be as negative as 

possible. Such a sampling period is exactly as described for the previous study involving 

two interacting SDOF systems. Upon integrating (4-30) over the sampling period, a 

series expansion for !1E{ may be formed as 

8£; = -d:[~P;kUk ]i, (h)-d:'[ ~P;IVI + 2,.0>,i, ]i, (h)+O(h') (4-31) 

~ ~ 

Based upon this expression for !1E{, a control algorithm is used to determine the 

appropriate operating states for the interaction elements such that the control effort during 

a representative sampling period is anticipated to be favorable to the control strategy. If 

the sampling period is small in comparison to some characteristic time for the primary 

system (e.g., the period of the sth response mode), the terms of order O(h2) may 

effectively be ignored. It is then recognized that the remaining terms which multiply h 

constitute Es. This forms the basis for the control algorithm. The specific details of this 

control algorithm are explained for two kinds of control cases in Section 4.6. 

It should be mentioned that in seeking to control only the sth response mode, the 

values selected for the uk could have an adverse effect upon the other response modes; 

that is, this choice for the Uk might serve to excite the other response modes. This effect 

is known as spillover. 

4.4 Interaction Elements 

One of the distinguishing features of the semi-active control approach proposed 

herein is that the interaction elements consist of devices whose mechanical properties can 

be discretely switched in real time according to the commands of a control processor but 

otherwise function passively. (Note: The class of control systems considered could be 

enlarged by allowing for the possibility of modulating some or all of the element 

mechanical properties in a continuous fashion). Such devices are attached between two 

distinct structural systems - or different components of a single structural system - in 
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order to facilitate interactions which are favorable to the control strategy. 

Since the devices are reactive in nature, the control forces produced will develop in 

response to the motions of the points of attachment. These motions are determined by the 

dynamical behavior of each structural system involved, which is typically described by a 

set of nodal displacements associated with each degree of freedom for the system. Only 

one-dimensional interaction elements are considered herein, whose ends are connected to 

the points of attachment. 

Dynamics and Memory 

For the purposes of analysis, a mathematical model is constructed for each 

interaction element, which is generally characterized by a functional relation between the 

reactive force u developed within the element, the element deformation e, the rate of 

element deformation e, and a set of parameters that represent the element mechanical 

properties, which form the components of a vector p. u is assumed to be positive when 

the element is in tension, and e is assumed to be positive when the element ends are 

extended with respect to a given reference length. In addition, if the element behavior 

depends upon certain aspects of its deformation history (i.e., if it possesses memory), then 

it is necessary to introduce element state variables, which form the components of a 

vector q. The functional relation for the kth element is expressed as 

(4-32) 

Often, when the element possesses memory, qk is governed by a relation of the form 

(4-33) 

Hence, an element which is governed by the kinds of the relations appearing in (4-32) and 

(4-33) is said to be memory-dependent. If the relation given in (4-32) does not explicitly 

depend upon the Pk,l' with I E {I, ... , mk }, and if ek and ek are continuous functions of 

t, then the element is said to be dynamic as well. The continuity condition on ek and ek 

usually holds when the element ends are attached to dynamical systems whose state 
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variables are also continuous functions of t. 

As examples, consider the Maxwell and Kelvin viscoelastic elements. A Maxwell 

element consists of a linear elastic element placed in series with a linear viscous element. 

A Kelvin element consists of a linear elastic element placed in parallel with a linear 

viscous element. In the descriptions which follow, let k denote the stiffness of the elastic 

constituent, and let c denote the damping coefficient of the viscous constituent. It is then 

easily shown that the force-deformation constitutive relation for a Maxwell element is 

given by 

. k' u U= e--; 
'C' 

c 
'C'=:-

k 

Alternatively, equation (4-34) may be expressed as 

u=g(e, e, k, 'C', q)=q 

q=h(q, e, e, k, 'C')=ke- q 
'C' 

(4-34) 

(4-35) 

(4-36) 

indicating that a Maxwell element is dynamic and memory-dependent. The well-known 

force-deformation constitutive relation for a Kelvin element is given by 

u=g(e, e, c, k, q)=ce+ke (4-37) 

indicating that a Kelvin element is nondynamic and memoryless. 

Passivity Formalism 

At this juncture, it is appropriate to provide a precise definition for the term passive 

system. This is because the semi-active control approach employed stipulates that only 

passive elements, whose mechanical properties may be altered in a discrete manner, are 

to be utilized. To facilitate the development of this definition, a passivity formalism [5] is 

first presented for general dynamical systems, which is then specialized for the case of 

mechanical systems. Attention will be confined to passive systems that interact with 

other dynamical systems only at a finite number of points along their boundaries. 

Consider a dynamical system with arbitrary input v and a conjugate output y, both 
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of which are generally time-varying. If the system obeys a relation of the form 

(4-38) 

with V(t) lower bounded and g(t):s; 0, '\It E [0, 00), then the system is said to be passive 

(or, to represent a passive mapping between v and y). Furthermore, a passive system is 

said to be dissipative whenever 

L'o v T y dt ;t 0 ~ L
oo 

g(t) dt < 0 (4-39) 

The quantities appearing in (4-38) may be interpreted as follows: V(t) is a form of 

generalized energy stored by the system, v T y is a form of generalized power externally 

supplied to the system, and g(t) is a form of generalized power internally generated by 

the system (since g(t):s; 0 for a passive system, the absolute value of g(t) represents the 

generalized power internally dissipated by this kind of system). Thus, equation (4-38) 

represents a principle of generalized energy balance. 

Integration and subsequent rearrangement of (4-38) yields 

1
00 

g(t)dt = ~v - L
oo 

v Tydt (4-40) 

where ~V == V(oo) - YeO). If the implication in (4-39) is enforced, (4-40) indicates that 

the change in the generalized energy stored by system for all time is less than the net 

amount of generalized energy supplied to the system by the input. This result agrees 

nicely with the intuitive notion of a dissipative system. This formulation is now applied 

to a several mechanical devices, and in these cases, V(t) is the mechanical energy stored 

by the device. 

As examples, consider again the Maxwell and Kelvin viscoelastic elements. In the 

case of the Maxwell element, postmultiply (4-34) by u and rearrange terms to obtain 

:,U u:]=eu_ u: (4-41) 

Equation (4-41) represents a passive mapping between e and u for the Maxwell element, 

indicating that it is both passive and dissipative. In the case of the Kelvin element, 
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premultiply (4-37) with e and rearrange terms to obtain 

d [1 k 2J. ·2 dt "2 e = eu-ce (4-42) 

Equation (4-42) represents a passive mapping between e and u for the Kelvin element, 

indicating that it is both passive and dissipative. Note that (4-41) can be put into a form 

similar to (4-42) by recognizing that u = kee and u = cev for a Maxwell element, where 

ee and ev are the individual deformations of the elastic and viscous constituents, 

respectively, and e = ee + ev . Using these expressions for u in (4-41) yields 

d [1 k 2J. ·2 - - e =eu-ce 
dt 2 e v 

(4-43) 

Reciprocity Relation 

Another result that greatly facilitates the evaluation of the matrix L which is used to 

incorporate u into the equations of motion in (4-5) is the reciprocity relation. Consider a 

mechanical system that consists of the entire collection of interaction elements used in a 

given control case. Let the individual deformations of the one-dimensional elements 

constitute a vector e E Rr. It is assumed that the ends of these elements are permanently 

attached to either the nodal masses of the structural system or the base of this system. 

Then a mapping that relates the element deformations to the structural displacements 

which describe the configuration of the nodal masses may be found and is of the form 

(4-44) 

where the components of the vector x E Rn are the relative displacements. If several 

structural systems (to which the interaction elements are attached) are involved, then a 

relation of the form in (4-44) still may be found and can be generated by augmenting x 

such that it includes all of the displacements associated with the participating structures. 

The mapping in (4-44) physically represents certain kinematic constraints arising from 

the connections between the interaction elements and the structural system. For a passive 

system, the element deformations will be driven by the motions of the co-located nodal 
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masses of the structural system. 

At the points of attachment, an interface exists between the mechanical system 

comprised by the interaction elements and the structural system. The principle of virtual 

work for a dynamical system [6] may be applied to the interface by considering the forces 

acting at the attachment points on either side of the interface. Because the interface is 

massless, the D 'Alembert forces are not present, and the principle of virtual work 

becomes 

(4-45) 

where the components of fERn are the forces applied to the structural system, and the 

components of U E R' are the reaction forces that develop within the interaction elements. 

Ox and Oe represent virtual displacements from the particular values for the structural 

displacements and the element deformations, respectively, at a fixed point in time. For 

virtual displacements which are consistent with the kinematic constraints, (4-44) becomes 

(4-46) 

Substituting (4-46) into (4-45), it is then easily shown that / is reciprocally related to U 

(in view of the kinematic relation between e and x) by 

/=-Lu (4-47) 

This result is especially useful, since it is usually a fairly simple matter to deduce LT 

from the attachment geometry. 

Element Types 

Motivated by the performance achieved for some specific control cases considered 

in the previous study, only three types of interaction elements are proposed for use in the 

present study. One of these interaction elements (a Type 1 element) is idealized as a 

linear elastic element, of fixed stiffness kin" that is assembled in series with a stick-slip 

device which may be either locked or unlocked. The parameter f.l, defined below, is 
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used hereafter to specify the value of kint , with 

k 
J1 ==...J!!!... 

kl 
(4-48) 

When the stick-slip device is locked, the interaction element behaves simply as a linear 

elastic element. When the stick-slip device is unlocked, it is assumed to internally slip at 

an infinitely-fast rate, instantaneously dissipating the strain energy accumulated in the 

elastic element and thereby reducing the reaction force of the interaction element to zero. 

Another of the interaction elements (a Type 2 element) is idealized as a Maxwell 

viscoelastic element whose damping coefficient cint (or, alternatively, time constant r) 

may be switched to either one of two fixed values: ch , the high value of cint ; or c/' the 

low value of cint • The parameter 0, defined below, is used hereafter to specify the value 

of cint ' with 

0== cint 

cl 

(4-49) 

where cl == 2ml'1.owl,l' Thus, 0h and 0/ are used to represent ch and c/' respectively. 

The switching process is modelled to happen instantaneously. It is shown below that, 

with appropriate choices for Oh and 0/, the Type 2 element will behave in a manner very 

similar to that of the Type 1 element. In the case of a Type 2 element, it is occasionally 

useful to refer to r instead of O. The relationship between these two parameters is 

20'loWll r= . 2 • 

J1 W l •o 

(4-50) 

where w~o == kl/ml · 

The remaining interaction element (a Type 3 element) is idealized as a linear 

viscous element whose damping coefficient cint may be switched to either one of two 

fixed values: ch or Ct. Again, the parameter 0, defined in (4-49), is used to specify the 

particular value for cint . It is important to point out that although the same notation and 

terminology is used for their descriptions, the viscous constituents of the Type 2 and 

Type 3 interaction elements are considerably different with regard to their physical nature 
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and duty cycle. This will become evident in following sections of this chapter. 

At points in time other than when a switching event occurs, each type of interaction 

element functions in either one of two possible operating states: an activated operating 

state and a deactivated operating state. In the activated state, the value of 8 is 8
h

; in the 

deactivated state, the value of 8 is 8/; where Dh > D/. Also, each interaction element 

may be activated or deactivated only at the beginning of a sampling period, and once the 

operating state of an element is determined by the control processor, the value of D 

associated with that element is fixed for the duration of the sampling period. 

For the various control cases considered involving MDOF structural systems 

(hence, multiple interaction elements), it is worth emphasizing that the same element type 

is used for all of the interaction elements employed in a particular control case. Likewise, 

each element is characterized by the same set of possible parameter values (i. e., 8h , D/, 

and J1). However, when commanded by the control processor, each element may 

function in either one of the two admissible operating states independently of the others. 

Figure 4.2 shows schematic representations of all three types of interaction elements. A 

generic representation for either one of these element types, which is utilized in some of 

the subsequent diagrams, is shown at the top of this figure. 

In view of the previous discussion, it is convenient to solve (4-34), which represents 

a Maxwell viscoelastic element, for the reactive force in terms of the element deformation 

history (in order to avoid notational confusion, let £ denote the element deformation, and 

let e(·) denote the scalar exponential function) 

u(t) = u(to)e-(t-to)/r + k Jt e-(t-i)/r £(i)dl 
to 

(4-51) 

As mentioned above, the Type 2 interaction element corresponds to a Maxwell element 

with a variable value for r. Consider the case where eel) is slowly-varying over a time 

interval that has a duration of several r, which corresponds to slow motions of the 

element attachment points; then u(t) ~ 0 as r ~ o. This feature permits the element to 
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suddenly dissipate energy that has been previously accumulated as strain energy in the 

elastic constituent. This behavior illustrates that when the interaction element is operated 

with r -t 0 in the deactivated state, it functions in virtually the same manner as does the 

Type 1 element upon deactivation. In fact, it is this kind of behavior which is sought. 

There is an important difference in the application of the control strategy for the 

different types of interaction elements considered, which will necessitate a modification 

to the control algorithm, depending upon the element type that is utilized. For cases in 

which a Type 3 element is used, a high level of reaction force may be instantaneously 

produced upon activation by selecting 0 = 0h. Likewise, a low level of reaction force 

may be instantaneously produced upon deactivation by selecting 0 = 0/. 

In contrast, for cases in which a Type 2 element is used, a new level of reaction 

force is not immediately produced by changing the value of o. Indeed, the operating 

state of the element will change from an activated state to a deactivated state, or vice 

versa. But the reaction force developed within the device does not instantaneously jump 

from one value to another because the element is dynamic, in the sense described earlier, 

and the states of the dynamical systems with which the element interacts, which dictate 

the motion of the element attachment points, and hence e, are bounded and continuous. 

Thus, the reaction force develops within the element over time according to (4-34), and it 

is a continuous function of t even when 0 (and therefore r) is a discontinuous function 

of t. For cases in which a Type 1 element is used, a zero value for the reaction force is 

instantaneously produced upon deactivation of the element (this value persists as long as 

the element remains deactivated), whereas a new level of reaction force is not 

immediately produced upon activation of the element. Thus, this element is nondynamic 

in the deactivated state but dynamic in the activated state. 

Finally, it should be apparent that all of the element types considered are passive 

and dissipative because each may be described as special case of the Maxwell or Kelvin 

viscoelastic element with controllable parameters, representing the mechanical properties 
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of the element. The Type 3 element may be represented as a Kelvin element for which k 

is identically zero and c is intermittently switched to either one of two constant values. 

The Type 2 element may be represented as a Maxwell element for which k is fixed at a 

nominal value and r is intermittently switched to either one of two constant values. The 

Type 1 element can be considered a special case of the Type 2 element, in which either 

r~oo or r~O. 

4.5 Numerical Study 

As in the previous study involving two interacting SDOF systems, a deterministic 

analysis is conducted through numerical simulations. These are performed for a series of 

control cases using horizontal ground accelerations from an ensemble of earthquake time­

histories as excitation input. The same numerical integration method and normalized 

earthquake records as were used in the previous study are used for the present study. 

For prescribed u and VI' the dynamical behavior of the primary system is fully 

characterized upon specification of the undamped fundamental frequency of vibration 

wI ,II2 n, the modal damping ratio '1,0 (which is the same for all response modes), and 

the number of structural stories nl . In all of the control cases examined, '1,0 = 0.01. 

Most of the cases considered involve a 6-story primary system for which wl,l /2 n is set 

to 1.00 Hz~ a few cases involve a 3-story primary system for which WI,I /2 n is set to 1.85 

Hz. This is done to preserve the ratio of kdml in all of the control cases so that primary 

systems of similar construction (though of differing heights) are compared. The selection 

of a 6-story primary system and its associated properties is based upon the previous work 

discussed in [7], which involved a full-scale experimental study of active structural 

control. For prescribed u and v2 , the dynamical behavior of the auxiliary system (if 

present) is fully characterized upon specification of the parameters 

a =k2 {3=m2 r 
- , - '~2,0' n2 

kl ml 
(4-52) 
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In all of the control cases examined, 1;2,0 = 0.01. 

It is convenient to group the control cases examined into five control categories 

which are distinguished from one another by the type of interaction element employed, 

the range of parameters used to characterize both the auxiliary system (if present) and the 

interaction elements, as well as the location and attachment of the elements. A listing of 

the control categories is provided in Table 4.1. 

For the cases in Categories 1, 3, and 5, Type 1 and 2 elements are utilized. For the 

cases in Category 4, a Type 3 element is utilized. In Category 2 cases, modified versions 

of the Type 1 and 2 elements are utilized. These modified versions are simply the regular 

versions without the elastic constituent, with the stick-slip device and viscous constituent 

operated exactly as for the ordinary versions of the Type 1 and 2 elements, respectively. 

This is because the auxiliary system in this category consists of an elastic frame that is 

treated to be massless, to which the modified elements are directly attached. 

The physical nature and duty cycle of the viscous constituent used in the Type 2 

element is considerably different from that used in the Type 3 element. In the case of a 

Type 2 element, Oh ~ 00, indicating complete lock-up of the viscous constituent during 

activation, such that it functions merely as a rigid connecting member, whereas 01 takes 

on a finite, relatively small value. In the case of a Type 3 element, Oh takes on a finite, 

relatively small value, whereas 01 = O. Also, the Type 2 element is typically deactivated 

for only short time intervals (i.e., an amount of time sufficient for the strain energy in the 

elastic constituent to be dissipated), whereas the Type 3 element may be deactivated for 

sustained periods of time. The range of values considered for Dh and DI are indicated in 

Table 4.1 for each of the control categories. 

In Category 1, the auxiliary system is absent and the interaction elements are 

attached between adjacent floor and roof slabs, as illustrated in Figure 4.3. In Category 2, 

the auxiliary system consists of a massless elastic frame that is externally-situated to the 

primary system. The interaction elements are attached between the primary and auxiliary 
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systems at corresponding vertical positions, as illustrated in Figure 4.4. 

In Category 3, the auxiliary system represents a complete structural system that is 

adjacent to the primary system. However, there are two widely different applications 

considered for the control cases in this category. In one application (Category 3(a», the 

auxiliary system is supposed to mimic the ideal elastic frame comprising the auxiliary 

system of Category 2. But unlike the cases in that category, a small but reasonable 

amount of mass is ascribed to the auxiliary system for the cases in this category, as would 

be physically expected for an actual elastic frame. In the other application (Category 

3(b», the auxiliary system is presumed to be much stronger and more massive than the 

primary system, as is reflected by the choice of values for a and f3 in Table 4.1. The 

interaction elements are attached between the primary and auxiliary systems to floor and 

roof slabs of corresponding height, as illustrated in Figure 4.5. 

In Category 4, the auxiliary system again represents a complete structural system 

that is adjacent to the primary system. As is done for the cases in Category 3(b), all of 

the cases considered in this category presume that the auxiliary system is much stronger 

and more massive than the primary system. The attachment of the interaction elements is 

the same as that described for Category 3, as illustrated in Figure 4.5, but significantly 

different interaction elements are used. In Category 5, the auxiliary system consists of a 

relatively small mass located on top of the primary system, similar to the configuration 

used for a tuned mass damper or active mass driver. A single interaction element is 

attached between this small mass and the roof slab of the primary system, as illustrated in 

Figure 4.6. 

Some further comments are in order. First, in addition to the control cases of main 

interest, several others may be considered within each control category by examining 

conditions under which all of the participating interaction elements are permanently 

locked in either their activated or deactivated states for the duration of the simulation. 

These additional cases could be included for comparison purposes to verify both the 
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efficacy of the switching process and the necessity of a control algorithm, and they are 

discussed further in Section 4.7. 

Next, the control cases represented in Category 2 are highly idealized because the 

auxiliary system consists simply of an elastic frame which is treated to be massless. 

Because of these properties, the relative displacements of the auxiliary system are not 

directly affected by the base acceleration. And because the frame is massless, it is not 

possible to separate the dynamics of the interaction elements (i.e., the modified versions 

of Type 1 and 2 elements) from the dynamics of the frame. In fact, a composite system 

consisting of the interaction elements and the elastic frame behaves in a manner similar to 

a collection of coupled interaction elements (i.e., the regular versions of Type 1 and 2 

elements), with the frame responding rapidly upon activation and deactivation of the 

interaction elements with which it is in contact. 

Although the models for the structural systems considered in the present study are 

certainly more realistic than those dealt with in the previous study, the interaction 

elements described in Section 4.4 are still very idealized devices. It was already pointed 

out that the Type 1 element may be viewed as a more idealized version of the Type 2 

element. However, the Type 2 and 3 elements could be physically realized by combining 

a hydraulic actuator - which utilizes a variable flow restriction in the fluid return line 

that connects the high-pressure and low-pressure compartments of the piston-cylinder 

mechanism - with other purely passive devices. Figure 4.7 (a) depicts a configuration 

of actual hardware to produce a Type 2 element. The hydraulic actuator is arranged in 

parallel with a viscous damper of fixed damping coefficient Ct. This unit is then placed 

in series with a strong helical coil of fixed stiffness kint • Figure 4.7 (b) depicts a 

configuration of actual hardware to produce a Type 3 element. The hydraulic actuator is 

placed in series with a viscous damper of fixed damping coefficient ch • 

In each of these configurations, the desired functional behavior for the idealized 

interaction element, corresponding to the two admissible operating states, is achieved by 



-134-

either completely opening or closing the flow control valve of the hydraulic actuator. 

Other than the stepwise changes commanded for the flow control valve, the actuator 

functions passively, with fixed mechanical properties, during piecewise continuous 

intervals of time. 

4.6 Control Algorithms 

The implementation of the control strategy is based upon the previous discussion 

surrounding equation (4-31). However, certain modifications must be introduced when 

dynamic interaction elements (Type 1 and 2 elements) are utilized. As described earlier, 

the control strategy is to maintain as small as possible the components of the primary 

system relative vibrational energy contributed by the dominant response modes. In the 

present study, the control effort is actually directed at the most dominant response mode. 

But before restricting attention to that particular case, the following development will 

consider the possibility of attempting the control of several response modes, whose 

effects are assumed to be relatively dominant in comparison to all others. 

Let the jth mode be one such dominant mode. As indicated in Section 4.3, efforts 

are directed at minimizing the change in Ej for a representative sampling period. 

Following the argument used in that section, it was pointed out that the quantity which 

may be used to achieve this goal is Ej • This is because the components of u enter 

directly into the expression for Ej , as seen in (4-30). However, if the Uk are selected to 

be optimally effective in reducing the energy component corresponding to a particular 

mode, it is uncertain what the effect will be on another dominant mode. Hence, a 

compromise is struck by attempting to control the sum of the energy components 

associated with the dominant modes, which is a reasonable approach since this sum 

comprises the major portion of E, which is the quantity to be controlled. 

Consider the pseudo-Liapunov function 

(4-53) 
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where T is defined as 

(4-54) 

and 8 is a diagonal projection matrix (i.e., 8 T = 8 and 8 2 = 8), defined as follows. 

Suppose that the jth response mode of the primary system is to be controlled. Then the 

entry appearing in the jth diagonal position of 8 should be unity. In turn, each 

controlled response mode should have this value in the associated diagonal position, 

depending upon its particular value of j, where j E {l, ... , n}. All other entries along 

the diagonal of 8 should be zero. Therefore, the pseudo-Liapunov function consists of 

the sum of energy components contributed to E by the dominant response modes 

V - ~E' E - I d M (.!.2 2-2) 
- "'-' j' ) - '2 ) x) + m)x) (4-55) 

) 

Consider the first and second derivatives of V with respect to t, given by 

(4-56) 

and 

(4-57) 

By using (4-9) through (4-11), (4-56) and (4-57) become 

(4-58) 

and 

v = Vi + V" + Vv + (T z) T Z (4-59) 

with 

(4-60) 

and 

". T[ 0 8D
K 

] • ". T[ 0 ] ". T[ 0 ] V' - - - V" - - Ii VV - - v 
- Z K C Z, - Z 8 P"' - Z 8 pv -8D -8D -- --

(4-61) 

where 
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(4-62) 

The form for the last term comprising V in (4-59) has not been expanded from that given 

in (4-57) because it will subsequently be demonstrated that this term may be dropped 

from consideration. Finally, it may be shown that 

and 

with 

and 

r n 

V' =-L2dj'olO//J' V· = L VA;, VV = LVi 
) k=1 1=1 

r n 

Vi = - L2dj,olOj.t/j, V" = L V;, V· = LV; 
j 

VA; =-L.tjP}kUk' 
j 

k=1 

Vi = - L .tjPJI VI 
j 

j j 

1=1 

(4-63) 

(4-64) 

(4-65) 

(4-66) 

The quantities of interest to the control algorithm are V and V. However, as will 

be explained momentarily, only V· or V" can be directly affected. Hence, attention is 

focused on these quantities. 

Since the control algorithm adopted for the control cases which utilize nondynamic 

interaction elements (Category 4) is the simplest, it will be described first. The control 

algorithm adopted for the control cases which utilize dynamic interaction elements 

(Categories 1, 2, 3, and 5) is somewhat more complicated, and it will be described next. 

Control Algorithm for Nondynamic Elements 

At the beginning of each sampling period, the states of the primary and auxiliary 

systems are either measured or estimated. These may be used to determine the values for 

each of the Uk in both the activated and deactivated operating states (which, in general, 

will be different). Then, because the operating state of each element may be selected 

independently of the other elements, the following conditions are used to determine the 
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appropriate operating state for the kth element, 'Vk E {I, ... , r}, during the sampling 

period. 

• kth Element is Currently Activated: 

(4-67) 

Yk ( 0h) > Yk (0/) => element is deactivated 

• kth Element is Currently Deactivated: 

Yk (Oh) :::; Yk (0/ ) => element is activated (4-68) 

Yk (Oh) > Yk (0/ ) => element remains deactivated 

Some further remarks are in order here. Of interest is the minimization of Y. Since 

z and v are fixed at any instant in time, yz and yv will also be fixed at that instant in 

time. Hence, an instantaneous change in Y may only be effected by directly altering Y·. 

This is accomplished by selecting a particular value for each of the Uk' which then 

determines each of the Yk. Thus, the logic comprising the control algorithm proposed for 

nondynarnic elements is justified. 

Control Algorithm for Dynamic Elements 

At the beginning of each sampling period, the states of the primary and auxiliary 

systems are either measured or estimated, as are the reaction forces in each element. 

Then, a two-step procedure is used to select the appropriate operating state for each of the 

elements. This procedure consists of: (a) determining which of the currently activated 

elements should be deactivated, and then immediately deactivating these elements; and 

(b) determining which of the currently deactivated elements should be activated, and then 

immediately activating these elements. The reason for employing such a procedure is 

that in cases for which Type I elements are utilized, it is possible for the element to be 

immediately reactivated following deactivation. 

Since dynamic elements are utilized, the values for each of the Uk are fixed at a 
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given instant in time and cannot be changed, even if the element mechanical properties 

are instantaneously altered (except in the case of the deactivation of a Type 1 element). 

Thus, it is expected that certain modifications must be made to the control algorithm 

proposed for nondynamic elements. Then, because the operating state of each element 

may be selected independently of the other elements, the following conditions are used to 

determine the appropriate operating state for the kth element, Vk E {l, .,. , r}, during the 

sampling period. 

• kth Element is Currently Activated: 

Y;(Uk ) ~ 0 ~ 

Y;(uk ) > 0 ~ 

element remains activated 

element is deactivated 

• kth Element is Currently Deactivated: 

if;(c5h ) ~ if;(c5[) ~ element is activated 

if; (c5h ) > if: (c5[ ) ~ element remains deactivated 

(4-69) 

(4-70) 

Some further remarks are in order here. Again, of interest is the minimization of Y. 

Since i, U, and v are fixed at any instant in time, yz, Y", and yv will also be fixed at 

that instant in time, as will be Z from (4-9). Hence, an instantaneous change in Y cannot 

be effected because yz, Y", and yv cannot be directly altered (except in the case of the 

deactivation of a Type 1 element). However, an instantaneous change in if can be 

effected by directly altering if". This is accomplished by selecting a particular value for 

each of the Uk' which then determines each of the if:. It should be recognized that the 

last term in (4-59) may be dropped from consideration by virtue of z being fixed at a 

given instant in time. 

When operated according to the specified control algorithm, the reaction force level 

within an element generally increases, in a gradual manner, for a period of time following 

activation. This gradual development of the reaction force is characteristic of a dynamic 
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element, since Uk must be finite. As long as the value of Vk is less than or equal to zero, 

the element should remain activated since the effect it provides upon V is anticipated to 

be favorable to the control strategy; the value of V: under these conditions is of no 

consequence. However, when the value of Vk is greater than zero, it is desirable to drive 

that value to zero as rapidly as possible. This is tantamount to requiring V: to be as 

negative as possible. Upon examining (4-65) and (4-66), it is evident that this may be 

accomplished by causing Uk and Uk to have opposite signs and requiring Uk to be as 

negative as possible. From (4-34), this will be accomplished if r (or, equivalently, 8) is 

selected to be as small as possible. Since 8/ < 8h , the deactivated operating state should 

be selected. If the value of 8/ has been carefully chosen, a process of rapid reduction in 

the reaction force level will be ensured upon deactivation under most conditions (in the 

case of a Type 1 element, it is instantaneous). 

Once the element is in a deactivated operating state, the concerns are different. In 

this situation, the value of V: should be maintained as small as possible. This is true 

either because the value of Vk is still positive, and it is desired to drive that value to zero 

as rapidly as possible, or because Vk is nonpositive, and it desired to cause Vk to become 

more negative. Of course, once the element is reactivated, the criterion in (4-69) is used. 

For cases in which Type 2 elements are used, Uk is generally nonzero in the 

deactivated state. Consider the sum which multiplies Uk in (4-66), which is the same sum 

as that which multiplies Uk in (4-65). By referring again to (4-34) and examining all of 

the combinations obtained by considering the possible signs for this sum and Uk' it may 

be shown that the criterion in (4-70) is consistent with the desired objectives. Moreover, 

when the criterion in (4-70) indicates that the element should be reactivated, the resulting 

operating state will never immediately conflict with the criterion in (4-69). 

For cases in which Type 1 elements are used, Uk is always zero in the deactivated 

state. In addition, although it is not apparent from (4-34), Uk will be zero for 8 = 8[, 

while Uk will equal just the first term in (4-34) for 8 = 8h . This is a result of the singular 
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conditions associated with a Type 1 element: b/ ~ 0 and bh ~ 00. Hence, VZ is always 

zero in the deactivated state, and it is necessary to examine V~ in order to determine the 

appropriate operating state. 

4.7 Results 

The simulation results are compiled in the form of response time-history diagrams, 

which plot the dominant modal response coordinates of the primary system, the x}' 

versus the time, t, for the first 30 seconds of each excitation input record. The modal 

response coordinates are of principal interest because the control effort is specifically 

directed at reducing the maximum absolute value of these quantities. As will be seen, the 

first or fundamental response mode of the uncontrolled primary system exhibits the most 

activity for the ensemble of excitation records considered. For this reason, only the 

fundamental response mode is specifically targeted for reduction in all cases. 

In all of the time-history diagrams, solid and dashed lines are used to illustrate the 

response of a designated modal coordinate for a controlled and uncontrolled primary 

system, respectively, that is associated with a particular control case. Usually, three such 

diagrams, corresponding to the three excitation records, are shown on a single page. As 

previously discussed in Chapter 3, the symbols ELC, TAF, and HOL denote the 1940 EI 

Centro, 1952 Taft Lincoln School Tunnel, and 1971 Holiday Inn excitation records. 

The Xi are dimensionally expressed in centimeters. This is because the matrix <l> 

used for the mapping in (4-6) is taken to be dimensionless, and the relative displacements 

of the primary system nodal masses, the Xk , are computed in centimeters. Hence, the x} 

may be interpreted in a physical manner by recognizing that the quantity CPk} x} represents 

the contribution, in centimeters, to the relative displacement of the kth nodal mass by the 

jth modal coordinate, where CPk} is the entry in the kth row and jth column of <1>. The 

columns of <I> - given by the T]} in (4-7) and (4-8), and referred to as mode shapes­

are indicated in Tables 4.2 and 4.3 for a 6-story and 3-story primary system, respectively. 
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These mode shapes are schematically illustrated in Figures 4.8 and 4.9. 

Figures 4.10 through 4.12 and Figures 4.13 through 4.15 show the uncontrolled 

response of the first three modes for a 6-story and 3-story primary system, respectively. 

These structural systems possess fundamental frequencies of vibration of 1.00 Hz and 

1.85 Hz. In the case of the 6-story primary system, the response of the higher modes is 

not shown because they exhibit no significant activity, relative to the lower modes, for all 

of the control cases examined. 

In addition to time-history diagrams, tabular data is provided for most of the control 

cases examined, which consists of both peak and root-mean-square (RMS) nodal mass 

accelerations and story drifts for the primary system. Tables 4.4 and 4.5 give the nodal 

mass accelerations and story drifts, respectively, for the case of an uncontrolled 6-story 

primary system. Tables 4.6 and 4.7 give these same quantities for the case of an 

uncontrolled 3-story primary system. 

In both these tables and the discussion below, a special notation is used to describe 

the control cases in Categories 2 through 4. If an nl-story primary system interacts with 

an nz -story auxiliary system, then this interaction arrangement is said to be characterized 

by an nl-nz primary-auxiliary system configuration. Such a description is not applicable 

to the control cases in Categories 1 and 5, for obvious reasons. 

For each of the categories, a class of special reference cases is considered as well, in 

which all of the interaction elements are permanently locked in the activated operating 

state for the duration of the simulation. As mentioned before, this is done to verify both 

the efficacy of the switching process and the necessity of a control algorithm for the class 

of proposed control cases. It is recognized that another class of reference cases could be 

considered, in which the interaction elements are permanently locked in the deactivated 

operating state. However, this class would apply only to control cases which utilize Type 

2 elements. In fact, some of these latter reference cases were examined in this study, but 

it was observed that the system response did not significantly differ from that for the 
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uncontrolled cases. Therefore, no further attention is given to these latter reference cases. 

Category 1: 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.3. Only a 6-story primary system is considered, and 

the auxiliary system is absent. These cases utilize either Type 1 or 2 elements, and 

control effectiveness is examined for J1 = 0.50 and 1.00. These values are considered to 

be physically realizable in view of the location and attachment of the elements. 

Figures 4.16 and 4.17 show the response of Modes 1 and 2 for a case that uses Type 

1 elements with J1 = 0.50, and for which all elements participate. Significant response 

reduction is achieved in the first mode for each of the excitation records. In addition, the 

second mode response is moderately suppressed as a result of the control effort, though it 

is not specifically targeted for reduction by the control algorithm. Figure 4.18 shows the 

response of Mode 1 for a case that uses Type 2 elements with J1 = 0.50 and D[ = 5.00, 

and for which all elements participate. Almost the same degree of response reduction is 

achieved as in the case utilizing Type 1 elements (the second mode response for this case 

is virtually the same as that shown in Figure 4.17). 

Figure 4.19 shows the response of Mode 1 for the special reference case that 

corresponds to the control case used for Figure 4.16. Clearly, the response of Mode 1 is 

adversely affected in comparison to both that obtained by using the proposed control 

method and that which results from using no control for each of the excitation records. 

Figures 4.20 and 4.21 show the response of Modes 1 and 2 for a case that 

corresponds to the control case used for Figures 4.16 and 4.17, but for which only the 

bottom three elements participate. Figure 4.20 indicates that nearly the same degree of 

response reduction is achieved in the first mode, while Figure 4.21 reveals that the second 

mode is significantly excited as a result of this control effort. 

Finally, Figure 4.22 shows the response of Mode 1 for a case that corresponds to the 

control case used for Figure 4.16, but for which only the top three elements participate. 
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Clearly, the first mode response is degraded in comparison to that obtained by using the 

proposed control method. 

Tables 4.8 through 4.11 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method, which use 

either Type 1 or 2 elements, with the indicated element participation. These data indicate 

that both the acceleration levels and the drift levels are generally reduced in comparison 

to that which results by using no control. However, a trend of decrease in the drift levels 

is typically observed as J.l is increased, while a trend of increase in the acceleration levels 

is generally observed as J.l is increased. 

Category 2: 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.4. Only a 6-story primary system is considered. 

These cases utilize either modified Type 1 or 2 elements, and control effectiveness is 

examined for a = 1. 00 and 2.00. These values are considered to be physically realizable 

in view of the character of the auxiliary system for this category. 

Figures 4.23 and 4.24 show the response of Modes 1 and 2 for a case that uses 

a = 1.00 and modified Type 1 elements, and which involves a 6-6 primary-auxiliary 

system configuration for which all elements participate. Significant response reduction is 

achieved in the first mode for each of the excitation records. In addition, the second 

mode response is moderately suppressed as a result of the control effort, though it is not 

specifically targeted for reduction by the control algorithm. Figure 4.25 shows the 

response of Mode 1 for a case that uses a = 1. 00 and modified Type 2 elements with 

o[ = 5.00, and which involves a 6-6 primary-auxiliary system configuration for which all 

elements participate. Almost the same degree of response reduction is achieved as in the 

case utilizing modified Type 1 elements (the second mode response for this case is 

virtually the same as that shown in Figure 4.24). 

Figure 4.26 shows the response of Mode 1 for the special reference case that 



-144-

corresponds to the control case used for Figure 4.23. Clearly, the response of Mode 1 is 

adversely affected in comparison to both that obtained by using the proposed control 

method and that which results from using no control for most of the excitation records. 

Figures 4.27 and 4.28 show the response of Modes 1 and 2 for a case that 

corresponds to the control case used for Figures 4.23 and 4.24, but which involves a 6-3 

primary-auxiliary system configuration for which only the bottom three elements 

participate. Figure 4.27 indicates that nearly the same degree of response reduction is 

achieved in the first mode, while Figure 4.26 reveals that the second mode is significantly 

excited as a result of the control effort. 

Finally, Figure 4.29 shows the response of Mode 1 for a case that corresponds to the 

control case used for Figure 4.23, and which involves a 6-6 primary-auxiliary system 

configuration for which only the top three elements participate. Figure 4.29 indicates that 

the degree of response reduction is nearly the same as that in Figure 4.23 and slightly 

better than that in Figure 4.27 (the second mode response for this case is virtually the 

same as that which results from using no control). 

Tables 4.12 through 4.15 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method, which use 

either modified Type 1 or 2 elements and the 6-6 primary-auxiliary system configuration, 

with the indicated element participation. These data indicate that the drift levels are 

generally reduced in comparison to that which results by using no control. A trend of 

decrease in these levels is typically observed as a is increased. Consistent conclusions 

regarding the acceleration levels are not easily drawn. However, these levels are the 

same order of magnitude as those which result from using no control. 

Category 3(a): 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.5. Only a 6-story primary system is considered. 

These cases utilize either Type 1 or 2 elements, and control effectiveness is examined for 
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a = 1.00 and 2.00, f3 = 0.15 and 0.30, and !1 = 1.00 and 2.00, respectively. These values 

are considered to be physically realizable in view of the character of the auxiliary system 

for this category. 

Figures 4.30 and 4.31 show the response of Modes 1 and 2 for a case that uses 

a = 1.00, f3 = 0.15, and Type 1 elements with ,u = 1.00, and which involves a 6-6 

primary-auxiliary system configuration for which all elements participate. Significant 

response reduction is achieved in the first mode for each of the excitation records. In 

addition, the second mode response is moderately suppressed as a result of the control 

effort, even though it is not specifically targeted for reduction by the control algorithm. 

Figure 4.32 shows the response of Mode 1 for a case that uses a = 1.00, f3 = 0.15, and 

Type 2 elements with ,u = 1.00 and b[ = 5.00, and which involves a 6-6 primary­

auxiliary system configuration for which all elements participate. Almost the same 

degree of response reduction is achieved as in the case utilizing Type 1 elements (the 

second mode response for this case is virtually the same as that shown in Figure 4.31). 

Figure 4.33 shows the response of Mode 1 for the special reference case that 

corresponds to the control case used for Figure 4.30. Clearly, the response of Mode 1 is 

adversely affected in comparison to both that obtained by using the proposed control 

method and that which results from using no control for most of the excitation records. 

Figures 4.34 and 4.35 show the response of Modes 1 and 2 for a case that 

corresponds to the control case used for Figures 4.30 and 4.31, but which involves a 6-3 

primary-auxiliary system configuration for which only the bottom three elements 

participate. Figure 4.34 indicates that nearly the same degree of response reduction is 

achieved in the first mode, while Figure 4.35 reveals that the second mode is significantly 

excited as a result of the control effort. 

Finally, Figure 4.36 shows the response of Mode 1 for a case that corresponds to the 

control case used for Figure 4.30, and which involves a 6-6 primary-auxiliary system 

configuration for which only the top three elements participate. Figure 4.36 indicates that 
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the degree of response reduction is nearly the same as that in Figure 4.30 and that in 

Figure 4.34 (the second mode response for this case is virtually the same as that which 

results from using no control). 

Tables 4.16 through 4.19 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method, which use 

either Type 1 or 2 elements and the 6-6 primary-auxiliary system configuration, with the 

indicated element participation. These data indicate that the drift levels are generally 

reduced in comparison to that which results by using no control. A trend of decrease in 

these levels is typically observed as a and J1 are increased. However, the acceleration 

levels are much higher than those in previous categories. Also, it appears that for a given 

control case, the acceleration levels are typically lower when Type 2 elements are used as 

compared to when Type 1 elements are used. 

Category 3(b): 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.5. Both 6-story and 3-story primary systems are 

considered. These cases utilize only Type 1 elements, and control effectiveness is 

examined for a = 6.50, f3 = 5.00, and various values of J1. The values chosen for a 

and f3 reflect the assumption that the auxiliary system is presumed to be much stronger 

and more massive than the primary system. The value of a is selected to be 30 percent 

greater than the value of f3 because it is assumed that the primary system is of inherently 

weaker construction; otherwise, it might be expected that the stiffness and mass 

associated with each story of the auxiliary system should be scaled by the same factor, in 

which case a and f3 would be equal. The procedure by which the values selected for J1 

were obtained is now explained. 

Initially, the following values of J1 were considered for each primary-auxiliary 

system configuration: 0.50, 0.20, 0.10, 0.05, 0.02, and 0.01. Upon examining the first 

mode response of the primary system for each excitation record, it was observed that the 
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greatest response reduction is achieved for only one or two of these values, so it was 

concluded that an optimal value for Jl might exist. However, this optimal value was not 

precisely determined. The two consecutive values for which the response reduction is 

greatest are reported with the tabular data. Because of space limitations, only one of 

these values is discussed below for each primary-auxiliary system configuration. 

Figure 4.37 shows the response of Mode 1 for a case that uses Jl = 0.05, and which 

involves a (Hi primary-auxiliary system configuration for which all elements participate. 

Only moderate response reduction is achieved in the first mode for each of the excitation 

records. Figure 4.38 shows the response of Mode 1 for the special reference case that 

corresponds to the control case used for Figure 4.37. Clearly, the first mode response is 

adversely affected in comparison to both that obtained by using the proposed control 

method and that which results from using no control for each of the excitation records. 

Figure 4.39 shows the response of Mode 1 for a case that uses Jl = 0.10, and which 

involves a 6-3 primary-auxiliary system configuration for which only the bottom three 

elements participate. Significant response reduction is achieved in the first mode for each 

of the excitation records. However, Figure 4.40 reveals that the second mode is 

significantly excited as a result of the control effort. Figure 4.41 shows the response of 

Mode 1 for the special reference case that corresponds to the control case used for Figure 

4.39. Clearly, the first mode response is adversely affected in comparison to both that 

obtained by using the proposed control method and that which results from using no 

control for each of the excitation records. 

Figure 4.42 shows the response of Mode 1 for a case that uses Jl = 0.05, and which 

involves a 3-6 primary-auxiliary system configuration for which only the bottom three 

elements participate. Significant response reduction is achieved in the first mode for each 

of the excitation records. Also, the second mode response for this case is virtually the 

same as that which results from using no control. Figure 4.43 shows the response of 

Mode 1 for the special reference case that corresponds to the control case used for Figure 
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4.42. Clearly, the first mode response is adversely affected in comparison to both that 

obtained by using the proposed control method and that which results from using no 

control for most of the excitation records. 

Tables 4.20 through 4.25 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method, which use 

Type 1 elements and the 6-6, 6-3, and 3-6 primary-auxiliary system configurations, with 

the indicated element participation. These data indicate that the drift levels are generally 

reduced in comparison to that which results by using no control. In contrast, the 

acceleration levels are generally elevated in comparison to that which results by using no 

control. Only the acceleration levels associated with the 3-6 primary-auxiliary system 

configuration are generally reduced in comparison to that which results by using no 

control. 

Category 4: 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.5. Both 6-story and 3-story primary systems are 

considered. These cases utilize only Type 3 elements, and control effectiveness is 

examined for a = 6.50 and f3 = 5.00. The values chosen for a and f3 reflect the 

assumption that the auxiliary system is presumed to be much stronger and more massive 

than the primary system. The same reasons as are given for Category 3(b) apply to this 

category. For the cases involving a 6-story primary system, either 8h = 5.00 or 10.00; 

for the cases involving a 3-story primary system, either bh = 2.71 or 5.42. These choices 

for Dh ensure that the interaction elements used for the 3-story primary system are the 

same as those used for the 6-story primary system, owing to the manner in which 8h is 

defined (confer with (4-49». The values selected for 8h are considered to be near the 

upper limit that could be physically realized by the actual devices which the Type 3 

elements are supposed to represent. 

Figure 4.44 shows the response of Mode 1 for a case that uses 8h = 10.00, and 
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which involves a 6-6 primary-auxiliary system configuration for which all elements 

participate. Only moderate response reduction is achieved in the first mode for each of 

the excitation records. Figure 4.45 shows the response of Mode 1 for the special 

reference case that corresponds to the control case used for Figure 4.44. It is evident that 

the degree of response reduction for the first mode is less than that for the proposed 

control method for each of the excitation records. 

Figure 4.46 shows the response of Mode 1 for a case that uses Dh = 10.00, and 

which involves a 6-3 primary-auxiliary system configuration for which only the bottom 

three elements participate. Only moderate response reduction is achieved in the first 

mode for each of the excitation records. Also, the second mode response for this case is 

virtually the same as that which results from using no control. Figure 4.47 shows the 

response of Mode 1 for the special reference case that corresponds to the control case 

used for Figure 4.46. The difference between the degree of response reduction for the 

first mode in this case and that for the proposed control method is minimal for each of the 

excitation records. 

Figure 4.48 shows the response of Mode 1 for a case that uses Dh = 5.42, and which 

involves a 3-6 primary-auxiliary system configuration for which only the bottom three 

elements participate. Significant response reduction is achieved in the first mode for each 

of the excitation records. Also, the second mode response for this case is virtually the 

same as that which results from using no control. Figure 4.49 shows the response of 

Mode 1 for the special reference case that corresponds to the control case used for Figure 

4.48. The difference between the degree of response reduction for the first mode in this 

case and that for the proposed control method is minimal for each of the excitation 

records. 

Tables 4.26 through 4.31 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method, which use 

Type 3 elements and the 6-6, 6-3, and 3-6 primary-auxiliary system configurations, with 
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the indicated element participation. These data indicate that the drift levels are generally 

reduced in comparison to that which results by using no control. A trend of decrease in 

these levels is typically observed as Oh is increased. The acceleration levels are generally 

reduced in comparison to that which results by using no control. A trend of decrease in 

these levels as Oh is increased is observed only for the 3-6 primary-auxiliary system 

configuration. 

Category 5: 

The schematic illustration for the interaction arrangement associated with the cases 

in this category is given in Figure 4.6. Only a 6-story primary system is considered. 

These cases utilize only Type 1 elements, and control effectiveness is examined for 

a = 0.00, f3 = 0.06 and 0.30, and various values of /1. The values chosen for a and f3 

reflect the different character of the auxiliary system: a relatively small mass which is 

connected to the top nodal mass of the primary system by a single interaction element. 

The value of f3 is selected as either 1 or 5 percent of the total primary system mass, 

which is both reasonable and in conformity with the typical values used for structural 

control applications that involve tuned mass dampers and active mass drivers. 

The values selected for /1 were obtained in exactly the same manner as described 

for Category 3(b). However, the range of values initially considered for /1 was different 

from that previously used: the values of /1 considered in conjunction with f3 = 0.06 were 

0.050,0.020,0.010,0.005,0.002, and 0.001; the values of /1 considered in conjunction 

with f3 = 0.30 were 0.250, 0.100, 0.050, 0.025, 0.010, and 0.005. 

Figure 4.50 shows the response of Mode 1 for a case in which f3 = 0.06 and 

/1 = 0.005. Moderate-to-significant response reduction is achieved in the first mode for 

each of the excitation records. Also, the second mode response for this case is virtually 

the same as that which results from using no control. Figure 4.51 shows the response of 

Mode 1 for the special reference case that corresponds to the control case used for Figure 

4.50. The degree of response reduction for the first mode in this case is less than that 
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obtained by using the proposed control method but not very different from that which 

results from using no control for most of the excitation records. 

Figure 4.52 shows the response of the first mode for a case in which f3 = 0.30 and 

f.1 = 0.025. Significant response reduction is achieved in the first mode for each of the 

excitation records. Also, the second mode response for this case is virtually the same as 

that which results from using no control. Figure 4.53 shows the response of the first 

mode for the special reference case that corresponds to the control case used for Figure 

4.52. Clearly, the first mode response is adversely affected in comparison to both that 

obtained by using the proposed control method and that which results from using no 

control for each of the excitation records. 

Tables 4.32 through 4.35 give data on the peak and RMS nodal mass accelerations 

and story drifts for the cases corresponding to the proposed control method. These data 

indicate that the drift levels are generally reduced in comparison to that which results by 

using no control when the lower value of f.1 is used. A trend of decrease in these levels is 

generally observed as f3 is increased. The acceleration levels are generally reduced in 

comparison to that which results by using no control when the lower value of f.1 is used. 

A trend of decrease in these levels is generally observed as f3 is increased. 

4.8 Discussion 

In a manner similar to that done for the study involving two interacting SDOF 

systems, a qualitative assessment of the control effectiveness or performance achieved is 

assigned for typical cases in each of the control categories in Table 4.36. It is noted that 

assessments are made with respect to both story drift and nodal mass acceleration levels. 

The results of the Category 1 control cases display excellent modal response 

reduction capability. In addition to the consistent reduction of drift levels, these results 

indicate that acceleration levels are generally reduced as well. These features make this 

specific control approach very attractive. The location and attachment scheme of the 
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interaction elements, along with the absence of an auxiliary system, render this particular 

interaction arrangement especially well-suited for the seismic upgrade and retrofit of 

existing structures. 

The results of the Category 2 and 3(a) control cases display excellent modal 

response reduction capabilities as well. Actually, the more realistic cases considered in 

Category 3(a) exhibit nearly the same capability for response reduction as the 

corresponding more idealistic cases considered in Category 2. However, although 

consistent reduction of drift levels may be obtained, the acceleration levels are generally 

elevated. This effect is even more pronounced for the cases in Category 3(a), but the 

severity of the effect for these cases can be lessened if Type 2 elements are employed. If 

this increase in the acceleration levels can be tolerated, the interaction arrangement used 

for these categories suggests a suitability for incorporation into newly-built structures in 

zones of high seismic risk. 

For all three of the categories mentioned above, it is demonstrated that some cases 

for which only a partial complement of the interaction elements is used are nearly as 

effective at response reduction as the corresponding cases for which the full complement 

of interaction elements is used. In the Category 1 cases, this partial complement would 

be the bottom three elements because the interaction elements are driven by the relative 

displacements between adjacent nodal masses. Upon examining the first mode shape of a 

6-story primary system (refer to Table 4.2 and Figure 4.8), it is found that the relative 

displacements are greatest in the first three stories when the first mode response is 

dominant. Hence, it is expected that by placing the elements only at these positions, the 

response control effect would be comparable to that obtained when all of the elements are 

utilized. 

In the Category 2 and 3(a) cases, this partial complement would be the top three 

elements because the interaction elements are now driven by the displacements of both 

the primary and auxiliary systems. Thus, it is more appropriate to view the elements as a 
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means of providing applied forces to the primary system. If it is assumed that the 

elements provide forces that are approximately equal to one another, then since the top 

three elements have the greatest participation factors (with respect to the first mode) 

associated with them, it is expected that by placing the elements only at these positions, 

the response control effect would be comparable to that obtained when all of the elements 

are utilized. For all three of the categories mentioned above, the response of the second 

mode is often excited because of the asymmetry in the loading conditions produced by 

the control forces associated with a partial complement of elements. By examining the 

second mode shape, it apparent why the loading conditions resulting from the utilization 

of only the bottom or top half of the available elements causes this excitation. 

The control cases in Categories 3(b) and 4 correspond to situations involving the 

interaction of two existing structures. Hence, it is expected that the control approach of 

these categories is directed at applications involving protection of one of the structures 

from seismic hazards. For the cases in Category 4, the extent of response reduction is 

much less than that for the previous categories. This result is largely due to the nature of 

the interaction elements and the limitation imposed on the maximum value of bh • The 

position adopted in this study is that it would be overly-optimistic to expect that damping 

ratios greater than 10 percent (with respect to the fundamental mode of vibration) could 

be physically realized with conventional viscous dampers, and so this restriction is 

maintained for the semi-active control devices utilized. 

Also, it appears that the interaction arrangement for two existing structures works 

best when structures of differing height are involved. This is probably because the act of 

coupling the dynamic behavior of the structures would be expected to have a more 

noticeable effect on either of the two systems when their respective mode shapes are 

significantly different, as will be true for uniformly-discretized structural systems with 

differing numbers of degrees of freedom. However, the results have shown (particularly 

for the cases in Category 3(b» that a low-high primary-auxiliary system configuration is 
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preferable for response control of the primary system than is a high-low configuration. 

Again, this is due the fact that the participation factors associated with the low-high 

configuration are preferable for the first mode, while the high-low configuration induces 

significant excitation in the second mode as a result of asymmetric loading conditions. 

Finally, the control cases in Category 5 show remarkable response reduction 

capability in view of the small size of the auxiliary system and the fact that only a single 

interaction element is employed. Although these cases are not as effective as some of the 

cases in earlier categories, such an interaction arrangement might prove useful for 

applications involving wind gust excitation, which have been previously considered for 

tuned mass dampers and active mass drivers. 

Control of Higher Frequency and Several Dominant Modes 

Some questions may be raised concerning the capability of the proposed control 

approach to reduce the response of higher frequency modes or even suppress the response 

which is due to several dominant modes. As previously mentioned, the ensemble of 

earthquake records considered significantly excite only the fundamental response mode 

of the 6-story and 3-story primary systems examined. For this reason, the fundamental 

mode was solely targeted for response reduction by the control algorithms used. 

Some results are now presented in an effort to suggest that the control approach 

may be effective in both reducing the response of significantly-excited higher frequency 

modes and suppressing the response of several dominant modes. Results are given for a 

Category 1 controlled primary system, which utilizes Type 1 elements with J1 = 0.50, 

and only externally-unforced (i.e., "free" vibration) response is considered, since the 

excitation input used for the MDOF system study does not significantly excite any of the 

modes other than the fundamental mode. 

First, consider a 6-story primary system for which the initial conditions have been 

specified in order to produce dominant response activity in the second mode. Figures 

4.54 and 4.55 show the results of the response control effort for cases in which: only 
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Mode 2 is targeted for reduction; and both Modes 1 and 2 are targeted for reduction; 

respectively. 

Next, consider a 6-story primary system for which the initial conditions have been 

specified in order to produce equally-dominant response activity in the first and second 

modes (i.e., x2 CO) = xICO». Figures 4.56 through 4.58 show the results of the response 

control effort for cases in which: only Mode 1 is targeted for reduction; only Mode 2 is 

targeted for reduction; and both Modes 1 and 2 are targeted for reduction; respectively. 

The results from these cases indicate that the proposed control approach appears to 

have the capability to both reduce the response of higher frequency modes and suppress 

the response of several dominant modes. From a comparison with Figures 4.56 and 4.57, 

Figure 4.58 strongly suggests that there is an advantage in controlling all dominant 

response modes when several modes exhibit nearly the same level of activity. In a future 

study, it would be desirable to consider a situation in which the combination of the 

structural system and the external excitation yields significant response activity in some 

higher frequency modes. 

Existence of Modes for Category 1 Control Cases 

Some important features associated with Category 1 control cases which utilize 

Type 1 interaction elements are now discussed. As described in Section 4.4, the control 

algorithm used for the cases that involve dynamic interaction elements hinges upon the 

quantities yt, as given by (4-64), where the subscript refers to the kth element. Consider 

now a situation in which all of the elements are simultaneously either activated or 

deactivated. Under these conditions, it may be shown that 

(4-71) 

Because all of the elements are in the same operating state at once, it is now more 

appropriate to examine Y", as given by (4-61), rather than individually examine each yt, 
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as given by (4-66). From (4-6) and (4-44), 

. LT· LTn,.-=­e = x = -vx 

Hence, using (4-62), (4-71), and (4-72), (4-61) becomes 

But, as may be verified from the location and attachment of the elements, 

(4-72) 

(4-73) 

(4-74) 

where k is the effective stiffness of all columns at each story and K is the stiffness 

matrix associated with the uncontrolled primary system. Thus, (4-73) becomes 

(4-75) 
j 

It is now clear from the control algorithm, as given by (4-69) and (4-70), that once 

the elements have been deactivated en masse, they should be immediately reactivated 

upon relaxation since the expression for V· in (4-75) is nonpositive definite when D = Dh • 

Under certain conditions, to be described below, this feature permits the existence and 

preservation of response modes even while under the effect of the control effort. 

Based upon this scheme of collective element operation, (4-71) and (4-72) may be 

used to determine the reaction forces in the elements at any particular time as 

(4-76) 

where ts denotes the switching time, the time at which the most recent deactivation-

reactivation process occurred. Equation (4-76) is only valid because of the prescribed 

operation of the elements (i.e., collective activation or deactivation), the stipulation that 

the parameter values which characterize the mechanical properties are the same for each 
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element in both the activated and deactivated operating states, and the assumption that the 

reaction force level drops immediately to zero upon deactivation (i.e., instantaneous 

relaxation). Thus, in terms of the modal response coordinates, the equation of motion for 

primary system becomes 

(4-77) 

Now suppose that at the initial time to' only the jth mode is given nonzero initial 

conditions. In addition, assume that at to' x(ts) is selected so that 

(4-78) 

with arbitrary selection of x/ts) (usually taken to be zero). Then the equations in (4-77) 

become 

(4-79) 

(4-80) 

where xj(to) and xj(to) are specified. 

It is evident that dynamic activity will only be present in the jth mode for all t ~ to. 

Even as switching events occur, and the value of xj(ts) generally changes, the zero initial 

conditions and zero forcing function in the ith mode is maintained. Thus, vibration will 

only occur in the jth mode, and the undisturbed condition in the ith mode is preserved. 

Furthermore, it is apparent that the undamped frequency in the jth mode is increased by 

a factor of -VI + J1 , and it is a simple matter to show even when '0 = 0, the amplitude of 

response is decreased by a factor of {!:~)2 for each cycle of modal oscillation when 

J1~1. 

Although this result is valid only for systems which are not externally excited, it 

offers a partial explanation for the fact that significant spillover into other modes is not 

observed for many of the Category 1 control cases examined, which had full element 
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participation. This conclusion follows because the fundamental response mode generally 

experiences a gradual buildup at an oscillatory frequency near the resonant frequency, 

much like the situation for free vibration, for each of the excitation records considered. 
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Figure 4.2. Schematic Representation of Interaction Elements Used for MDOF System Study. 
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(a) Type 2 Element 

• 
(b) Type 3 Element 

Figure 4.7. Configuration of Actual Hardware to Produce (a) Type 2 or (b) Type 3 Elements. 
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Figure 4.10. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Uncontrolled Primary System Subjected to the El Centro Excitation Record. 
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Figure 4.11. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
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Figure 4.12. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
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Figure 4.13. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 3-
Story Uncontrolled Primary System Subjected to the El Centro Excitation Record. 
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Figure 4.14. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 3-
Story Uncontrolled Primary System Subjected to the Taft Lincoln School Tunnel Excita-
tion Record. 
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Figure 4.20. Response Time-History of Mode 1 for a 6-Story Category 1 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
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Figure 4.27. Response Time-History of Mode 1 for a 6-Story Category 2 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Modified Type 1 elements are used. a = 1. 00. Only 
bottom three elements participate. Primary-Auxiliary System Configuration: 6-3. 
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Figure 4.29. Response Time-History of Mode 1 for a 6-Story Category 2 Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Modified Type 1 elements are used. a = 1. 00. Only 
top three elements participate. Primary-Auxiliary System Configuration: 6-6. 
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Figure 4.30. Response Time-History of Mode 1 for a 6-Story Category 3(a) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 1. 00. a = 1. 00 and 
f3 = 0.15. All elements participate. Primary-Auxiliary System Configuration: 6-6. 
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Figure 4.31. Response Time-History of Mode 2 for a 6-Story Category 3(a) Controlled 
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Figure 4.32. Response Time-History of Mode 1 for a 6-Story Category 3(a) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 2 elements are used, with f.l = 1. 00 and o[ = 5.00. 
a = 1.00 and f3 = 0.15. All elements participate. Primary-Auxiliary System Configura­
tion: 6-6. 
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Figure 4.33. Response Time-History of Mode 1 for a 6-Story Category 3(a) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 1.00, and are 
locked in the activated state. a = 1.00 and f3 = 0.15. All elements participate. Primary­
Auxiliary System Configuration: 6-6. 
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Figure 4.34. Response Time-History of Mode 1 for a 6-Story Category 3(a) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 1. 00. a = 1. 00 and 
f3 = 0.15. Only bottom three elements participate. Primary-Auxiliary System Configura­
tion: 6--3. 
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Figure 4.35. Response Time-History of Mode 2 for a 6-Story Category 3(a) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
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Figure 4.37. Response Time-History of Mode 1 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
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Figure 4.38. Response Time-History of Mode 1 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J.1 = 0.05, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-6. 
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Figure 4.39. Response Time-History of Mode 1 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with f.1 = 0.10. a = 6.50 and 
f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 
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Figure 4.40. Response Time-History of Mode 2 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with 11 = 0.10. a = 6.50 and 
f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 
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Figure 4.41. Response Time-History of Mode 1 for a 6-Story Category 3(b) Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 0.10, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-3. 
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Figure 4.42. Response Time-History of Mode 1 for a 3-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 0.05. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 3-6. 
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Figure 4.43. Response Time-History of Mode 1 for a 3-Story Category 3(b) Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 1 elements are used, with J1 = 0.05, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 3-6. 
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Figure 4.44. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Dh = to. 00. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-6. 
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Figure 4.45. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
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locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
Auxiliary System Configuration: 6-6. 
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Figure 4.46. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Oh = 10.00. a = 6.50 
and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 6-3. 
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Figure 4.47. Response Time-History of Mode 1 for a 6-Story Category 4 Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. Type 3 elements are used, with Oh = 10.00, and are 
locked in the activated state. a = 6.50 and f3 = 5.00. All elements participate. Primary­
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and f3 = 5.00. All elements participate. Primary-Auxiliary System Configuration: 3-6. 
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Figure 4.50. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with f.1 = 0.005. a = 0.00 
and f3 = 0.06. Only top element participates. 



- 210 -

4or---------I,r----------r---------,r---------.----------.----------~ 

" 

20 

o 

-20 

-40 
o 

, , 
, , 

5 

" 
" 
, 
• 

, 
" , , , , 

, , 

" 

10 15 

TiIlle (sec) 

(a) ELC 

uncontrolled - - - - - -

controlled 

20 25 30 

~ 40r------------r------------r------------r------------r-----------_r----------~ 

8 
U 
'-' 

20 

o 

-20 " 

, 
" '. 

t I It .. ' . , , 
, , ' , , 

" , 

" ,I 
'. , , , , 

. , 

, , 
, , . , , , . , ' . , . 

t' I I t I' I' . , 
I' I, 

II " , 
" , 

(b) TAF 

" 

" " 

uncontrolled 

controlled 
-40 

ok-------------~5------------~1~0~----------~1~5,------------2~0n------------02~5,-----------~30 

TiIlle (sec) 

~ 40~------------,-----------~-------------r------------,-------------~----------~ 

8 
U 
'-' 
Il) 20 
rJJ 

= o 
0.. 
rJJ 0 
Il) 

~ 

-20 

(c) HOL 

uncontrolled - - - - - -

controlled 
-40 

kO------------~5-------------.1~0~-----------1~5,-----------~20n-----------~2h5,-----------~30 

TiIlle (sec) 

Figure 4.51. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with J1 = 0.005, and is 
locked in the activated state. a = 0.00 and f3 = 0.06. Only top element participates. 
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Figure 4.52. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) El Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with J1 = 0.025. a = 0.00 
and f3 = 0.30. Only top element participates. 
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Figure 4.53. Response Time-History of Mode 1 for a 6-Story Category 5 Controlled 
Primary System Subjected to the (a) EI Centro, (b) Taft Lincoln School Tunnel, and (c) 
Holiday Inn Excitation Records. A Type 1 element is used, with J1 = 0.025, and IS 

locked in the activated state. a = 0.00 and f3 = 0.30. Only top element participates. 
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Figure 4.56. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
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Figure 4.58. Response Time-History of (a) Mode 1, (b) Mode 2, and (c) Mode 3 for a 6-
Story Category 1 Controlled Primary System which is Unforced, Initially at Rest, but 
Given Initial Displacements. Type 1 elements are used, with p = 0.50. All elements 
participate. Targeted Response Mode: 1 and 2. 
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Table 4.2. Normalized Mode Shapes (Columns of <1» for a 6-Story Primary System. 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

(j = 1) (j = 2) (j = 3) (j =4) (j = 5) (j = 6) 

({J6j 0.55066 - 0.51865 0.45651 - 0.36783 0.25778 - 0.13275 

({J5j 0.51865 - 0.25778 -0.13275 0.45651 -0.55066 0.36783 

({J4j 0.45651 0.13275 -0.55066 0.25778 0.36783 -0.51865 

({J3j 0.36783 0.45651 -0.25778 - 0.51865 0.13275 0.55066 

({JZj 0.25778 0.55066 0.36783 - 0.13275 - 0.51865 - 0.45651 

({Jlj 0.13275 0.36783 0.51865 0.55066 0.45651 0.25778 

Table 4.3. Normalized Mode Shapes (Columns of <1» for a 3-Story Primary System. 

Mode 1 Mode 2 Mode 3 

(j = 1) (j = 2) (j = 3) 

({J3j 0.73698 -0.59101 0.32798 

({JZj 0.59101 0.32798 - 0.73698 

({Jlj 0.32798 0.73698 0.59101 
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Table 4.36. Qualitative Performance Assessment for Control Categories 
Used in MDOF System Study. 

Performance Assessment 

Based Upon: 

Control Story Drift Nodal Mass 

Category Acceleration 

1 E G 

2 E S 

3(a) E Pto S 

3(b) S toE PtoG 

4 S toG S toG 

5 StoG G 

Note: E = Excellent, G = Good, S = Satisfactory, P = Poor 
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Chapter 5 

Conclusions and Future Work 

5.1 Summary and Conclusions 

As the field of structural control continues to mature, a consensus is emerging as to 

the essential attributes of an effective and acceptable control system or approach for 

application to structural systems. Reduction of selected maximum response quantities is 

certainly mandatory; but simplicity, reliability, and ability to function without substantial 

amounts of externally-supplied power are also desirable features. 

The studies presented herein have examined a semi-active control approach which 

involves controlled interactions between two distinct structural systems - or different 

components of a single structural system - in order to reduce the resonance buildup that 

develops during an external excitation. This approach utilizes certain types of elements 

to physically produce the interactions, which consist of reaction forces that are applied to 

the systems. The mechanical properties of the interaction elements may be altered in real 

time through the use of switching components to effect changes in the reaction forces 

which are favorable to the control strategy. The major advantage of this semi-active 

control technology is that relatively large control forces can be generated with minimal 

power requirements. 

A preliminary study involving two interacting SDOF systems has been conducted to 

examine the effectiveness of the proposed control approach. This study was exploratory 

in nature and involved very simplistic models of structural systems. However, it was 

crucial in the development of a methodology for implementation of the control strategy 

(i.e., Method 1) that could be extended for application to MDOF systems. At present, it 

has been demonstrated that such an extension is only possible for linear systems, whose 

response can be decomposed into particular modes of vibration. The response control of 
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one or several of these modes, each of which behaves like a SDOF system, then naturally 

follows from the previous work. However, because the control strategy focuses on the 

so-called relative vibrational energy associated with the linear system (in particular, the 

components of this energy contributed by certain modes), it may also be possible to 

further extend the approach to nonlinear systems which exhibit mode-like properties, 

since this kind of system also has a relative vibrational energy associated with it. 

In addition, the results of the preliminary study were instrumental in the conception 

and development of new interaction elements (i.e., Types 1 and 2) for use in the follow­

on study involving MDOF systems. As may be recalled, these elements consist of an 

elastic element which is placed in series with a component that may be activated or 

deactivated in real time. When activated, the component behaves as a rigid connecting 

member. When deactivated, the component yields in an extremely-fast manner, rapidly 

dissipating the strain energy that is stored in the elastic element. In fact, of all the control 

cases examined, the greatest degree of response reduction is achieved when these types of 

elements are utilized. Finally, the results of the Category 1 cases in the preliminary study 

indicate that a significant improvement in response control effectiveness may be obtained 

if the proposed control algorithm is used instead of algorithm developed by Kobori et al. 

for the Active Variable Stiffness control method [1]. 

The follow-on study considered MDOF models of structural systems to examine the 

effectiveness of the proposed control approach and investigated various interaction 

arrangements involving what may be interpreted as: two adjacent multi-story buildings 

that interact with one another; or a single multi-story building that interacts with either 

itself and its base, an externally-situated resilient frame, or an unrestrained, relatively 

small mass located on top of the multi-story building. In each of these situations, the 

response control effort is directed at controlling only one multi-story building, which is 

designated the primary system; the other multi-story building, resilient frame, or small 

mass is referred to as the auxiliary system. 
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The following list summarizes the main conclusions for the MDOF system study: 

1) Under appropriate conditions, the proposed control method and algorithm are 

capable of achieving a substantial decrease in the story drift levels associated with the 

primary system. Depending upon the particular interaction arrangement, the nodal 

mass acceleration levels may either be reduced or elevated. 

2) For the five categories of control cases previously considered, the best response 

reduction results are obtained when interaction elements capable of continuous energy 

storage and sudden energy dissipation (Types 1 and 2) are utilized. 

3) The proposed control approach is most effective when these types of interaction 

elements are either: internally mounted within the primary system, between adjacent 

nodal masses; or attached between the primary system and an auxiliary system 

intended to resemble an externally-situated elastic frame. 

4) For these kinds of interaction arrangements, very significant response reduction 

is achieved (a 50 to 75 percent decrease in the peak values of the first mode response, 

which provides the largest contribution to the story drift levels for the ensemble of 

excitation records considered) when stiffness ratios of order unity are used (J.l = 0.50 

for Category 1 cases; a = 1.00 and J.l = 1.00 for Category 2 and 3(a) cases). 

5) For the cases in Categories 1,2, and 3(a), the results generally indicate that it is 

better to employ the full complement of available interaction elements rather than a 

partial complement. Such a policy enables effective reduction of the first mode 

response and prevents the excitation of higher modes by the control effort. 

6) Because the more-idealized Type 1 elements produce nearly the same controlled 

response behavior for the primary system as does the less-idealized Type 2 elements, 

as is verified by the results of the Category 1,2, and 3(a) cases, it is acceptable to use 

Type 1 elements for further exploratory investigation which involves these types of 

interaction elements. This course of action permits a substantial savings in compu­

tational effort. 
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7) The proposed control approach appears to be less effective for the situation in 

which the primary and auxiliary systems represent two existing structures (i.e., two 

adjacent buildings), in which the auxiliary system is presumed to be much stronger 

and more massive than the primary system. However, significant response reduction 

may still be achieved if a low-high primary-auxiliary system configuration exists. 

8) When the results of cases in Categories 3(b) and 4 which involve the same 

primary-auxiliary configuration are compared, it is generally observed that the 

response reduction obtained for the cases in Category 4 is less than that for the cases 

in Category 3(b). Hence, Type 3 elements are less effective at implementing the 

control strategy for this interaction arrangement and the assumed conditions asso­

ciated with the auxiliary system. 

9) The cases in Category 5 show remarkable response reduction capability in view 

of the facts that only a single interaction element is utilized and an auxiliary system 

consisting of a relatively small, unrestrained mass is employed. Although the control 

effectiveness of these cases is not as great as that of some cases in other categories, 

such an interaction arrangement might prove useful for applications involving wind 

gust excitation, such as has been previously considered for tuned mass dampers and 

active mass drivers. 

10) The cases in Categories 3(b) and 5 reveal that response control effectiveness is 

highly dependent upon the value selected for J1, the parameter associated with the 

Type 1 elements used. 

11) For each of the categories previously considered, a comparison of the results of 

special reference cases, in which the interaction elements are locked in the activated 

operating state, with the results of the cases that use the proposed control method 

indicates both the efficacy of the switching process and the necessity of a control 

algorithm for the operation of the interaction elements. 

12) Several examples of a Category 1 controlled primary system - which is 
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initially given certain nonequilibrium displacements but is externally unforced -

show that the proposed control method is capable of reducing the response of higher 

frequency modes and suppressing the response of several dominant modes. These 

results suggest that such a capability may also be possible for a primary system which 

is externally forced. 

5.2 Topics for Future Work 

Some questions may be raised regarding the simplistic nature of the models used to 

represent actual structural systems and the idealistic conditions assumed for the behavior 

and operation of the interaction elements. These are legitimate concerns. The studies 

presented herein are based upon a very fundamental treatment of the structural control 

problem, in which the structural systems are represented by discrete mechanical systems. 

Such models were chosen for two reasons: to reduce the number of parameters necessary 

to characterize the systems; and to obtain exact expressions for the natural frequencies 

and mode shapes of vibration, with the number of degrees of freedom (i.e., the number of 

structural stories) appearing as a parameter, a feature that greatly facilitated the study. 

Perhaps, in more detailed and extensive studies, it would be desirable to include 

additional factors that could be expected in a real-world setting. Some of these factors 

might be: 

• Constitutive and Geometric Nonlinearities 

• Three-Dimensional Effects (e.g.: variation in the directional orientation 
of the external excitation; presence of rotational, other translational, or even 
vertical modes of vibration; etc.) 

• Controllability and Observability Issues 

• Parameter Identification and Uncertainties 

• Thermal Loading of Control Devices 

• Time Delays in Switching Processes 

• Ground/Structure Interaction Effects 
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The next steps which should most likely be taken in further investigation include: 

development of more realistic models for the structural systems and interaction elements 

utilized in simulations, which would more accurately capture the dynamics (both thermal 

and mechanical) of the actual systems and devices involved; and incorporation of the 

capability to identify and target the most dominant response modes in real time. In 

addition, verification of the proposed control approach through experiments on reduced­

scale physical models of structural systems should be accomplished. 

Also, it has not been rigorously established that the control algorithm used in the 

proposed approach guarantees the stability of the controlled system. Because the 

uncontrolled system is assumed to be asymptotically stable and the excitation input is 

assumed to be bounded and of finite duration, it would intuitively seem that the proposed 

approach preserves the stability of the system since the strategy of the approach is to 

remove relative vibrational energy from the system, and it has already been shown that 

this kind of energy provides an upper bound for the response quantities of interest. 

However, it would be preferable to mathematically demonstrate that the proposed 

approach preserves the stability of the system, and perhaps such a demonstration can be 

carried out in future work. 

Lately, earthquake engineering investigators have expressed concerns regarding the 

so-called near-field effects which have been manifested in recent seismic episodes, such 

as the 1992 Landers and 1994 Northridge earthquake events. These effects generally 

occur at locations geographically near to the faulting mechanisms responsible for the 

earthquake, and they are characterized by much greater peak ground velocities and 

permanent ground displacements than are experienced at more remote locations. It can 

be shown that such effects have a tendency to place high demands on the ability of multi­

story structures to withstand sudden and pronounced story drifts [2, 3]. These kinds of 

ground motions are very different from those exhibited by traditional earthquake records, 

such as the ones employed as excitation input for the studies presented herein, which 
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typically produce a more gradual buildup in the response of the structure. For such 

reasons, it would be wise to examine the control effectiveness of the proposed approach 

in cases that employ these kinds of ground motions. 

In each of the control categories previously considered, it has been assumed that the 

auxiliary system is capable of absorbing any additional energy received as a result of the 

control effort, and so attention need not be given to its response. In future work, it would 

be prudent to directly examine the response of the auxiliary system in various cases to 

verify such an assumption, and perhaps provide the results of some simple calculations 

involving the strength of materials to substantiate this claim. Also, it is worth reiterating 

that the parameters characterizing the auxiliary system were selected with the intention 

that one of the following conditions holds: the effects upon the auxiliary system resulting 

from interaction with the primary system are minimal (e.g., interaction between two 

existing structures); or the auxiliary system does not represent a load-carrying structure 

and can withstand large deflections or excursions (e.g., an externally-situated resilient 

frame or an unrestrained, relatively small mass). 

Finally, it should be mentioned that because most of the dynamic activity for the 

control cases in the MDOF system study occurs in a single response mode, it should be 

possible to perform further analysis using reduced-order models for the structural 

systems. A few situations for which this analysis approach could be helpful are the 

control cases considered in Categories 3(b) and 5, in which there appeared to be optimal 

values for J1 given specified values of a and f3. Perhaps, if it were reasonable to model 

the external excitation as a random process (e.g., filtered, stationary Gaussian white 

noise), a technique such as statistical linearization [4] could be used to find equivalent 

elements and systems to which approximate analysis may be applied in order to facilitate 

analytical determination of optimal values for J1 in terms of the other parameters. 

It is believed that the studies which have been presented herein provide a solid basis 

for more detailed and advanced investigations of a control approach that uses semi-
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actively controlled interactions for the response control of structural systems subjected to 

external excitations. Although originally intended for multi-story buildings undergoing 

seismic excitation, it is hoped that these research efforts can also be utilized for general 

areas of application such as vibration suppression in mechanical systems, vehicles, and 

other kinds of structures that are exposed to external excitations. 
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Appendix A 

A Generalized Form of 
Pontryagin's Minimum Principle 

A.I Introduction 

In Chapter 2, attention is given to a particular form for the integrand L of the 

performance index J associated with the optimal control problem formulated in Section 

2.2. This form is one for which 

L = L(i, z, U, t) (A-I) 

(i.e., L explicitly depends upon the argument i). But such a problem can always be 

converted into one for which the integrand has an explicit functional dependence only 

upon z, U, and t, by virtue of the constraint relation 

i =g(z, U, t) (A-2) 

in which case, the modified form for the integrand, denoted by [, is 

[ = fez, u, t) == L(g(z, u, t), Z, U, t) (A-3) 

[ may then be used to formulate the Hamiltonian H, given by 

- -- ';jI -
H = H()." z, u, t) ==)., g(z, u, t)+ L(z, u, t) (A-4) 

If a solution to the optimal control problem formulated in Section 2.2 exists, then 

the following necessary conditions, rigorously proved in [1], must be satisfied: 

. aH t- aH '../ 
z= aX' -/I, = az; vtE[ta' tbl (A-5) 

and 

H(X, z, U, t)::; H(X, z, v, t); Vv EO, Vt E [ta' tbl (A-6) 

subject to the boundary conditions 
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[~ -I r dzb =0, [~; +H JI dtb =0 (A-7) 
Ib Ib 

It is now shown that, for the assumed functional form of L as given in (A-I), an 

alternative set of necessary conditions to (A-5) and (A-6) is available. These conditions 

are considered more useful because they directly involve L instead of "[. The path taken 

to obtain these conditions starts from those given in (A-5) through (A-7), which have 

already been established. A transformation is then used to modify the system costate I. 

It is finally demonstrated that the condition in (A-6), although still valid, may be replaced 

by an equally valid yet more convenient condition. The following derivation is partially 

based upon the developments given in [2, 3]. 

A.2 Derivation 

To begin, it is assumed that an admissible control u is a bounded, piecewise 

continuous function of f on the interval [fa' fb ]. Furthermore, it is required that u(t) E.o, 

'ilf E [fa' fb ], where .0 is a specified (possibly closed) subset of E', the Euclidean space 

associated with R'. 

Moreover, it is assumed that g satisfies the uniform Lipshitz condition 

Ilg(z, u, f)-g(a, v, f)II~m[IIz-all+cllu-vll]; 'ilfE[fa' fb ] (A-8) 

where m and c are positive constants and " • " denotes an appropriate finite-dimensional 

norm (e.g., the Euclidean norm). In addition, the auxiliary Lipshitz condition 

liz -a liz ~ kllu -v IIu (A-9) 

will be shown to hold, where 

i = g(z, u, f), a = g(a, v, f) (A-lO) 

and 

(A-II) 

where T is some characteristic time for the problem. 
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Let z be the system state (i.e., the entire trajectory) corresponding to the optimal 

control u. Suppose that a class of controls neighboring u are considered, and denote an 

arbitrary member of this class by v = u + ou, where ou is an admissible (not necessarily 

infinitesimal) variation to the optimal control. Let the system state corresponding to such 

a member be denoted by a = z + &, where & is the variation in z due to Ou. The class 

of neighboring controls considered includes only those controls which take the system 

state from za at time ta to Zb at time tb, where Zb and tb are either specified or 

determined from the conditions given in (A-7). Using (A-lO), it is then clear that 

in which case 

d 
-[&]=g(a, v, t)-g(z, u, t) 
dt 

&(t) = f [g(a, v, r) - g(z, u, r) ]dr 
ta 

where the fact that &(ta) = &a = 0 has been invoked. It is also clear that 

II &(t) II ~ f II g(z, u, r) - g(a, v, r) Ildr 
ta 

Using (A-S) yields 

II &(t) II ~ f m[ II &( r) II + ell ou( r) II ]dr 
ta 

Recall the Gronwall-Bellman lemma [4], which asserts that if 

~(t)~<1+ f [p(r)~(r)+,Ll(r)]dr; p(r)::?O 
to 

where <1 is a constant, then 

[ 
cr -r p(TJ)dTJ ] r p(,r)d-r 

g(t) ~ <1 + Jt
o 

e 10 Jl( r)dr e 10 

Applying this result to (A-15) gives 

II &(t)11 ~ meem(t-ta ) L>-m(-r-ta ) II ou(r)lldr 

II &(t) liz ~ meT em(tb -ta) ~ fb II ou( r) Ildr 
ta 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-IS) 

(A-19) 
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Thus, 

II z - a liz ::; k II u - v Ilu (A-20) 

where k = mcTem(tb-ta), and (A-9) is verified. 

But 

and 

Now, 

L(i, z, u, t) - L(a, a, v, t) = L(i, z, u, t) - L(i, z, v, t) (A-21) 

+ L(i, z, v, t) - L(a, a, v, t) 

L(a, a, v, t) = [f! (t, z, v, tl r (a - i) + [: (i, z, v, tl r (a - z) (A-22) 

+L(i,z, v, t)+O(lli-all~+llz-all~) 

Also, 

f! (t, z, v, t) = f! (t, z, u, t) + [~2':;' (t, Z, u, tl}V -u) + O(llu - v Ie) (A-23) 

: (t, z, v, t) = : (t, z, u, t)+[ ~2':;' (t, Z, u, tl}V -u)+ O(llu -v Ie) (A-24) 

In addition, 

Ili-all=llg(z, u, t)-g(a, v, t)ll::;m(k+c)llu-vllu (A-25) 

so that 

O(lli -a II~ +llz -a II~) = O(llu -v Ie) (A-26) 

Hence, 

L(i, z, u, t) - L(a, a, v, t) = L(i, z, u, t) - L(i, z, v, t) (A-27) 

+ [f! (t, z, u, tlr (t -a)+ [: (t, z, u, tl r (z -a)+ O(llu -v Ie) 

Likewise, 
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i; - ti = g(z, u, t) - g(a, v, t) = g(z, u, t) - g(z, v, t) (A-28) 

+[Z (z, u, t)}z-a)+O(IIU-VII~) 
Therefore, for the class of neighboring controls considered, 

J
Ib 

J[U]-J[V]= [L(i;, z, u, t)-L(ti, a, v, t)]dt 
la 

(A-29) 

which is valid for any Il. 

Now, let 

H = H(i;, z, u, t) == Il T g(z, u, t) + L(i;, z, u, t) (A-30) 

Using (A-27) and (A-30), (A-29) becomes (after some manipulation) 

J[U] - J[V] = fb [H(Il, i;, z, u, t) - H(Il, i;, z, v, t) + JH T (z - a)]dt 
~ ~ 

(A-31) 

+ r[ a;; T (i -a)-,1.T (i -a)]dt + 0(11 u -v Ie) 

where the two partial derivatives in (A-31) are both evaluated at (i;, z, u, t). 

Also, let 

- JL . 
Il == Il - at. (z, z, u, t) (A-32) 

which is actually a defining relation for Il, since Il is governed by (A-5). It can then be 

shown that 

JH - JH. 
~ (Il, z, u, t) = ~ (Il, z, z, U, t) (A-33) 

where Hand H are as defined in (A-4) and (A-30), respectively, and i; is evaluated 

according to (A-2). Thus, (A-5), together with (A-32) and (A-33), becomes 

i =~[aLJ- aH 
dt at. ~ 

In addition, using (A-32), it easily shown that 

_ JL T 

H=H-- g 
at. 

(A-34) 

(A-35) 
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Using (A-34) to substitute for iJH/Jz in (A-31), integrating some terms by parts, 

and cancelling other terms yields 

J
tb 

J[U] - J[V] = [H(A, i, z, u, t) - H(A, i, z, V, t)]dt+ O(llu -v II~) 
ta 

(A-36) 

[
iJL ] Itb + di;-A (z-a) 

ta 

The last term in (A-36) vanishes because only neighboring controls are considered for 

J
tb 

J[U]-J[V]= [H(A, i, z, u, t)-H(A, i, z, v, t)]dt+O(llu-vll~) 
ta 

(A-37) 

Consider the following claim: 

Claim: 

Suppose an admissible control u, having corresponding system state Z, is optimal 

H(A, i, z, u, t) $ H(A, i, z, v, t); \::Iv En, \::It E [ta' tb ] (A-38) 

Proof: 

The assertion in (A-38) will be proven by contradiction. Assume there exists a time 

t E [ta' tb ] and a control WEn such that 

H(A(i), i(i), z(t), u(i), l) > H(A(i), i(i), z(t), w, t) (A-39) 

The piecewise continuity of u and the continuity of A, g, z, and L imply that an 

interval [te' td] C [ta' tb ], with l E [te' td], and an e > 0 exist, such that 

H(J.,(t), i(t), z(t), u(t), t) - H(J.,(t), i(t), z(t), w, t) > e (A-40) 

\::It E [te' td]. Consequently, let v be chosen so that 

(A-41) 

v(t) = u(t) , t e [te' td ] 

Then 
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J[U] - J[V] > c(td - tJ+ O(llu - v ,,~) (A-42) 

But 

(A-43) 

Thus, selection of td - tc small enough forces J[U] - J[V] > 0, which contradicts the 

optimality of u. Hence, the assertion in (A-38) is proved. • 
Having concluded the immediate derivation, it should be noted that the procedure 

followed above may be repeated while allowing for Zb and tb to vary. In addition to the 

foregoing results, which must be satisfied independent of whether or not Zb and tb are 

allowed to vary, boundary conditions equivalent to those given in (A-7) will also be 

obtained. Thus, using the relations provided in (A-33) and (A-35), and noting that 

aLI at. = aH I at. (since g does not explicitly depend upon t), the resulting necessary 

conditions are 

(A-44) 

and 

H(A, t, Z, u, t)::;; H(A, t, Z, v, t); Vv E n, Vt E [ta' tb ] (A-45) 

subject to the boundary conditions 

[aqJ _'+ aHJT liz --0 [aqJ H aHT ] d 0 
(}z /\, at. b' at + - at. g tb = 

~ ~ 

(A-46) 

where g is as indicated in (A-30). It is worth mentioning that for the case when n == RT
, 

the condition in (A-45) can be replaced by 

: (A, t, z, u, t) = 0 (A-47) 

The conditions given in (A-44), (A-46), and (A-47) may then be independently verified 

by using the calculus of variations, which lends further support for the validity of the 

conditions in (A-44) through (A-46). 
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AppendixB 

Some Mathematical Relationships 
and Derivations 

B.1 The 0(·) Notation 

A scalar, vector, or tensor function f(h) is said to be order of magnitude g(h) as 

h ~ 0 if the condition 

lim f(h) = b 
h-+O g(h) 

(B-1) 

holds, where g(h) is a nonnegative scalar function, b is a scalar, vector, or tensor 

quantity, and h is a nonnegative scalar variable. This is expressed by 

f(h) = O(g(h» as h ~ 0 (B-2) 

Furthermore, it can also be shown that if 

(B-3) 

then 

(B-4) 

Moreover, if c is a scalar constant, then 

c f(h) = O(g(h» as h ~ 0 (B-5) 

B.2 Derivation of Equations (3-28) and (3-29) 
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_II Xl (t;) i:up -I Xl (tk) I:up I 
- 2 

I Xl (tk) Isup 

_llxl(tnlsup -IXl(tk)lsup I II Xl(t;)Isup +IXl(tk)lsup I 
- I Xl (tk) Isup I Xl (tk ) Isup 

_1 L1lxl(tk)lsup 1 {2I xl (tk)lsup + L11 Xl(tk)lsup } 

- I Xl (tk) Isup I Xl (tk) Isup 

= 2[1 L11 Xl (~k) Isup IJ + [I L11 Xl (~k) Isup IJ2 
I Xl (tk ) Isup I Xl (tk ) Isup 

in which case (B-6) becomes 

(i +20- y=O 

It is then easily verified that 

0= .}1+ Y-l 

since 0 > O. (B-9) may then be expanded as a binomial series of the form 

0= 1+.1.y __ 1 y2 +~y3 - ... -1 2 2·4 2·4·6 
from which it is clear that 0 < -t r, since y < 1. 

B.3 Relationship for a Generalized Performance Index 

Consider the generalized performance index 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-I0) 

(B-ll) 
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where z( -r) denotes a trajectory obeying 

dz - = g(z( -r), u( -r), -r) 
d-r 

(B-12) 

on the interval t::; -r::; tb. For a given initial state z = z(t) at an arbitrary initial time t, 

but fixed final time tb and prescribed u( -r), the derivative of J with respect to t is given 

by 

j = - L(z(t), u(t), t) (B-13) 

as verified by using Leibnitz' s rule for differentiation of an integral. Alternatively, if the 

functional form of J were known, j could be directly evaluated from 

j= ~ aJ .+aJ 
£..J a . g, at 
i=1 Z, 

Equating (B-13) and (B-14), and rearranging yields 

I,n aJ aJ 
-g.+-+L=O 
aZi I at 

i=1 

(B-14) 

(B-15) 

A relation which links A to J in the formulation of the optimal control problem 

discussed in Chapter 2 is now derived. The derivation follows the account given in [1]. 

Consider the equation obtained by taking the partial derivative of (B-15) with respect to 

Zj' j E {I, ... , n}, 

~ ~ aJ g. + a
2 
J + aL = 0 

az· £..J az· I ataz· az. 
J i=1 I J J 

or, assuming continuous first partial derivatives, 

t[ a
2 

J g. + aJ agi ] + a
2 

J + aL = 0 
az· az· I az· az· ataz· az· i=1 I J I J J J 

Next, consider the derivative of dJ / aZj with respect to t 

:r[::] = t a:2~z. gi + ~2 ~t 
J i=1 J I J 

(B-16) 

(B-17) 

(B-18) 

Assuming that the first partial derivatives of J with respect to Zk and t are continuous, 

k E {I, ... , n}, the order of differentiation may be interchanged, whereupon 

d [ aJ ] n a
2 
J a

2 
J 

dt az· = I, az. az. gi + ataz· 
J i=1 I J J 

(B-19) 
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The relations in (B-17) and (B-19) may be combined to yield 

d [ JJ ] JL ! JJ Jgi 

- dt Jz· = Jz· + Jz· Jz· 
J J i=l I J 

which holds T.:Ij E {1, ... , n}, and so (B-20) is representable in vector form as 

_!!...[JJ] = JL + Jg T JJ 
dt ()z ()z ()z ()z 

which is the desired relationship. 

B.4 Matrix Inversion Lemma 

Consider the following claim: 

Claim: 

(B-20) 

(B-21) 

(B-22) 

where G and H are assumed to be invertible matrices of the same dimensions, and 1 is 

an identity matrix with appropriate dimensions. 

Proof: 

I -G(I +HGfl H 

= 1 _[H-l(I + HG)G-lr 

= I - [ 1+ ( G Hfl r 
= [I +(GHfl][1 +(GHf1r -[I +(GHf1r1 

= {I + (G Hfl - I}[ 1 + (G Hfl r 
= (GHfl[1 +(GHf1r 

={[/+(GHfl](GH) rl 

• 
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Next, it is shown that a series expansion may be obtained for (I + G Hfl through 

recursive application of (B-22): 

(I+GHr
l 

= I-G(I+HGrIH 

= I -G[I -H(I +GHfIG]H 

= I -G{I -H[I -G(I +HGfIH]G}H 

from which it is apparent that 

(B-23) 

B.S Natural Frequencies and Mode Shapes for the Free Vibration of a 

Uniformly-Discretized, Chain-Like Mechanical System 

Consider a discrete, undamped mechanical system which consists of n repeated 

identical units, with the same boundary conditions as that indicated in Figure 4.1. The 

equation of motion for a representative nodal mass away from the boundaries is given by 

where r E {2, ... , n -I}. The boundary conditions to be enforced are 

m Xl - k (X2 - Xl) + k (Xl - 0) = 0 

and 

The solutions of interest to (B-24) have the form 

Xr = ArCOS(lOt- tp) 

Substituting (B-27) into (B-24), and cancelling common terms yields 

(B-24) 

(B-25) 

(B-26) 

(B-27) 
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Ar+l + (a - 2)A, + A,-l = 0 

a=mai 
k 

Similarly, (B-25) and (B-26) become 

and 

(a-1)~ +~-l =0 

(B-28) 

(B-29) 

(B-30) 

(B-31) 

respectively. Equation (B-28) is a difference equation, and techniques for its solution 

may be found in [2, 3]. 

Elementary solutions to (B-28) exist and are of the form 

A = BefJ r 
r (B-32) 

Substituting (B-32) into (B-28), and rearranging terms yields 

(B-33) 

in which case 

2 - a = 2cosh{3 (B-34) 

if {3 is real, or 

2 - a = 2 cos I {31 (B-35) 

if {3 is imaginary. Equations (B-34) and (B-35) represent a constraint relation between 

the parameters a and {3. 

In general, the solution to (B-28) which satisfies the boundary conditions given by 

(B-30) and (B-31) must be of the form 

(B-36) 
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Substituting (B-36) into (B-30) gives 

(B-37) 

which, upon using (B-33), becomes 

a+b=O (B-38) 

Substituting (B-36) into (B-31) gives 

(B-39) 

which, upon using (B-33), becomes 

(B-40) 

Equations (B-38) and (B-40) may be combined into a matrix form as 

[e(n+l)p(~ _ e-p ) e-(n+l)p1(1_ epJ{:} = {~} (B-41) 

Clearly, (B-41) yields nontrivial solutions for a and b only when the determinant of the 

coefficient matrix vanishes, in which case 

e(n+l)p (1- e -p) - e -(n+l)p (1- eP) = 0 

After some manipulation, (B-42) becomes 

where i=R. 

a) 

There are two classes of roots to consider which satisfy (B-43): 

(n+l)~ =(2s-2)7r+n~; s=l, 2, ... 
l l 

in which case 

Using (B-45) with (B-35) and (B-36), it is readily shown that 

a=O => m=O 

(B-42) 

(B-43) 

(B-44) 

(B-45) 

(B-46) 
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and 

which constitutes a trivial solution. 

b) 

in which case 

(n+1)~ =(2s-1)n-n~; s=1, 2, ... 
I I 

f3=f3 =(2s-1)ni 
s (2n+1) 

(B-47) 

(B-48) 

(B-49) 

(actually, s terminates at n because for s > n, the roots replicate the functional behavior 

for s ~ n). Using (B-49) with (B-35) and the trigonometric identity 

sin2
/ ~ / = 1- c;slf31 (B-50) 

gives 

4 . 2[(2S-1) n] a= a = sm 
s (2n+l) 2 

(B-51) 

and from (B-29) yields 

m = m = 2 [k sin [_(2_S_-_1_) n] 
s y;;; (2n+1) 2 

(B-52) 

Using (B-49) with (B-36) gives 

A = A = a eil.Bs Ir + b e -il.Bs Ir 
r ~7,S s s (B-53) 

But from the boundary condition in (B-38), (B-53) becomes 

. e -e 
[ 

il.Bs Ir -il.Bs Ir] 
A,.,s = 2las 2i (B-54) 

or 

. [(2S-1) ] Ars = cssm nr 
, (2n+1) 

(B-55) 

where Cs == 2ias E R, since A,.,s must be real from the assumed form in (B-27). Hence, 

the relations given in (4-7) are established from (B-52) and (B-55). 
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