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ABSTRACT

The transition probabilities and rates of dissipation of energy

by the neutrino-antineutrino pairs are calculated for the processes:

-

e ¢ vk T and & 4 W a5 v e Vv, in the limit of a nondegen-
erate electron gas. These quantities are also calculated for the

process y+ y —~ v+ v using a nonlocal weak interaction; the result-
ing matrix elements are reduced by a symbol manipulation cémputer

program. The energy dissipation rates for these processes, the

b

urca process, and the processes e* 4 (z,A) ~e™+ (z,A)+ v+ v

and y+ (z,A) > (z,A)+ v+ V are compared. The process e + e~

v+7V or et + y*ei+ v+ Vv is found to dominate in the range of

8 o

temperatures and densities considered: 100 "K < T <5 x 107 °K,

6

1 gm/cm3 <p<10 gm/cms,
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I. BACKGROUND AND INTRODUCTION

The existence of the neutrino was first proposed by Pauli in
1933 to account for an experimentally-observed lack of conservation
of energy in reactions involving radioactive P-decay. This particle
was to react so slightly with matter that, once produced, it could
escape from the apparatus unnoticed, carrying with it the energy
deficit.

Gamow and Schoenberg (Gamow 1941) proposed that this neu-
trino, produced in B-decay or in the inverse process of electron

capture,

(2,A) = (2«L A+ &+ (I.1)

(2t A+ e— (2 ,A) +V

could play an important role in the energy transport mechanisms of
stars. Once produced, the neutrino, as in the laboratory experi-
ments, would escape from the system, in this case a star, without
further interaction and take energy with it. A photon, although much
easier to produce, would interact within such a short distance that
only those produced near the surface of the star would have much
chance of escaping. Gamow and Schoenberg's calculations were based
on the Fermi theory of B-decay and on the experimentally-measured
parameters of B-decay: maximum electron energy and halflife.

As an example, for the reaction 016 +e — N16 + v, the

threshold for electron capture is 6 Mev. This corresponds to the

average thermal energy at a temperature of 51&1010 °K or 2400 times



wPe

the temperature at the center of the sun. Although this is a rather
high temperature for stars, this reaction will serve to give an ink-
ling of the possibilities involved. Gamow and Schoenberg considered
only the release of gravitational potential energy during the collapse
of a star from the solar radius to 1/40th of that radius at a temper-
ature around the threshold. If 1% of the stellar material ta]ices part
in the reaction, collapse could occur in about the free-fall time of

16

1/2 hour. This corresponds to an energy release rate of 1x10
ergs/gm sec for the 6 sonpentad,

Normally, the energy liberated in nuclear reactions is greater
than that dissipated by neutrinos. After the nuclear reactions have
run their course, leaving heavy nuclei with little binding energy,
the neutrino reactions can take precedence. Assuming a model of
the stellar structure, they are able to conclude that in the collapse
the neutrino luminosity exceeds the photon luminosity, and hence
neutrino processes are of importance in the collapse and in the sub-
sequent nova and supernova explosions. In a less violent way, neu-
trino processes should play a role in stellar evolution. Since this
neutrino process provides a way to take energy right out of the heart
of a star, we should investigate any similar processes which might
enhance this effect.

In the Fermi theory of B-decay (Fermi 1934), the interaction
matrix element is considered to be constant with the density of final
states governing the emission spectrum, aside from corrections

for the Coulomb interaction between the electron and the nucleus.
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But, the more recent theory of weak interactions of Feynman and
Gell-Mann (Feynman 1958), Sudarshan and Marshak (Sudarshan 1958),
gives a quantitative description of the interaction matrix element.
This description not only describes B-decay but predicts other inter-
actions having the same coupling constant. Among these is the vertex:

- 4 — . e B "
e +e —v+v, From this basic interaction come the proc?sses:

e+ (A — eF+v+T (I.2)
e~ +et — v&y (I. 3)
e+ Y — eTry+y (1. 4)
<Y — vy (I.5)
I +3  — w¥sv+y n=i,2,3 (1. 6)

(I.7)

<l

I «2,A\— v+

Pontecorvo (1959) first suggested the astrophysical importance of (I.2),
which is analogous to bremsstrahlung except that in the electron-photon
vertex the photon is replaced by a neutrino-antineutrino pair. With

the same substitution, (I.3) is analogous to pair annihilation (Chiu 1960),
(I.4) is analogous to Compton scattering (Chiu 1961), and (I.5) and (I.6)
are analogous to the scattering of light by light through a virtual elec-
tron (Chiu 1960). Replacing one of the free photons of (I.5) by the Cou-
lomb field of a nucleus, we obtain (I.7) (Matinyan 1961). In stars we
have ions, electrons, photons, and positrons produced in electron-

positron pairs by high energy photons. Thus processes (I.2) - (I.7)
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can occur in stars and may be of importance.
We will compute the transition probabilities for (I.3), (I.4) and
(I.5) and calculate the energy dissipation rates for these processes
in the limit that the electron gas is nondegenerate. Reactions (I.2),
(I.3), (I.4) and (I.7) have been dealt with in the literature. The re-
sults that we obtain and those obtained by others are tabulated in Appen-

dix D.
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II. THE INTERACTIONS
Preparatory to calculating the transition probabilities, let us
briefly describe the interactions which are involved. A free fermion
is described by a four component spinor, ¢ , satisfying the first
order Dirac equation, (§ - m) Y =0, or less commonly by a two com-
ponent spinor, ¢, satisfying a second order differential equation,

(p2 - mz)go =2 0. The Yy and ¢ are related by

¢=lgem)[F) , e-tli-vdaveay,
In Feynman and Gell-Mann's theory of the universal Fermi interaction
(Feynman 1958), the fermions interact as two component spinors with-
out gradient couplings. This corresponds, in the Dirac picture, to
interaction through a four-component spinor having only two indepen-
dent components. With ¢ as a Dirac spinor, we then use {' = ay

in the interaction. In the representation

X°=(° l) ; Xl=(° ':1), ¥5=X°H‘xz\é3=(é ?), (I1.1)

1 © g

where o, are the Pauli spin matrices, we have

o0 18 y ~ (o)
a=(g%); w=(R); w-av=(}
so that (ay) clearly has only two components. A neutrino then satis-

fies the massless Dirac equation and has its spin aligned antiparallel

to its momentum:

plavl =0, (e+wplA=0.
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Experiment decides between parallel and antiparallel alignment.

If we introduce a weak current .]'a

J. = (& pvz*r =y

(¥ ) (\V)-L Yo ¥y ) "'(:Fixxd.\\ﬁv)w

"

then for an interaction Lagrangian of

L =y&cJ ),L (IL. 2)

the cross terms describe neutron p-decay (n —~p+ e + V), muon
B-decay (L — e+ v+ V), and muon-capture by a proton (p +p— n+ v).
These reactions are observed to be well-described by this theory (Klein
1948). The reaction e+ + e — v+ v is predicted by the cross term
(ev)(ve) but has not been observed. To account for observed strange-
ness changing weak interactions, additional terms must be added to
the current ‘Tp' We will have no need for such terms as we deal only
with leptonic processes. We will assume that there is no neutral lep-
tonic weak current. It is unlikely that there are such currents, but

if there are, it is possible that the ;neutral currents could cause the
cancellation of certain terms in the charged current interaction, e.g.
the .sum (ev)(ve) + (ee)(vv) cancels exactly.

From the rate for B-decay (Reiter 1960) the coupling constant
has been found to be C-M; = 1,024 4 . OOZX].O—S where the proton mass,
Mp’ is introduced to produce a dimensionless quantity.

Alternatively, we might couple this weak current to a vector

meson, uxl, which would then mediate weak interactions (Feynman 1958).
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It should be remembered that the vector field theory is not renormaliz-
able in the normal sense, Howéver, since no divergences occur in
our applications, we will ignore this fact and hope that this does not
make these calculations meaningless. though there has been much
discussion of the possible couplings of the uxl with the baryon weak
currents, for the leptonic weak current we will simply take a charged

uxl and the coupling:

b ol =V“T1?{' U}t 3},. + C.C. (II. 3)

where UH is the uxl field operator. If M is the uxl mass, the two
coupling constants are related by 47rf2 = 8GM2. One might introduce
a neutral uxl, WO, coupled to a neutral weak current, but this is
unnecessary to account for the observed leptonic interactions and in-
troduces the difficulty mentioned above. For the reaction yry—v+ v,
we will need to use an uxl and in this case a neutral current would not
affect the calculation. For interactions described by (IL.2), the de-
scriptions of the interaction by (II.2) and by (II. 3) are the same in the
limit that the uxl momentum is much less than the uxl mass. To
prevent the K meson from decaying into an uxl, the uxl mass must
be at least that of the kaon (MK"’ MP/Z). Recent experiments (Danby
1962) are nicely interpreted with an uxl mass of M = 0 8 Mp. We
will use this value then the need arises, but it must be borne in mind
that the existence of the uxl is as yet unsubstantiated.

Regarding this interaction, there are two sets of simple math-
ematical relations which are of interest. First, from the definitions

of a and a , it can be easily verified that the following relations hold:



o

a::-‘z—'(\-‘-Lxs\ a::—i—(\*u%s) == a,'a_.=§a.=0,
(II. 4)
aa-a,33a-3, a Xr = - Xﬁa , ax,ﬁ— Y,,.a- .
Next, let us consider the process A+ B — C+ D, which is described
in the local theory by the matrix: (TlcypauA)(uDyHauB). This matrix
form is subject to exchanges of various particles with corresponding

changes in the form of the coupling. Using the representatign (II.1) and

writing out components, it is seen that

m = V_g G ( We Xra\‘\g“ub x,x a.u.s\ (1. 5a)
=-{& G(t. Xf.a U-BNU-\: K}A a U-A‘ (II. 5b)
=2V8'G (Wg a w\\(Tp a ue) (IL. 5¢)

=278 & (C,D,-C.DY (A B, -ALB)

where auAT =(00 AlAZ)’ etc. Exchanging incoming or outgoing parti-
cles (i.e. A — B, or C — D) changes the sign of the coupling. Ex-
changing an ingoing with an outgoing particlé while taking the antiparticle
in each case (e.g. B — C, C — B) changes the coupling constant by
a factor of 2 and changes the form of the coupling from (pseudo) vector
to (pseudo) scalar. These are the Fierz transformations and they are
used when one of the transformed terms is easier to handle than the
original.

In addition to the weak interaction we will have use for the elec-
tromagnetic interactions of the electron and uxl. Let us introduce the

Lagrangian densities for the free electron:



and for the free uxl:

2 = -5 1o Ua - 34 Ue T Do Ve - 2aUp) « M UG UG
We will use the minimal gauge-invariant electromagnetic coupling ob-
tained by the substitution: av -3 8V + iqu. If we consider t]['xa.t
annihilates electrons or creates positrons and Up annihilatés positive

+ =
uxls, W , or creates W , we use

avur_’ (B,«—La Av\Ur\ ‘—"“'\,Ur\
s — (dy-iehy)¥

where APL is the photon vector potential. We also introduce an anoma-

lous magnetic moment, vy, for the uxl through the term:

ieyF 1
pv [

tensor. Then the uxl Lagrangian becomes

U , where F =(3 A -8 A ) is the electromagnetic field
v My IR VR

* ;
L =- 5 [WeUy-TuUp 1" LT 0a - o061 + MAUR U + e ¥R VR Ly
To show the effect of the magnetic moment term, we form the Euler-

Lagrange equation of motion for UH:

TPUF + M2 U -lLe [\ ) _“—/-L—Tf’ F(’V Uy) + ¢ e_u*‘“Ff.\qu +ie T l——HUf
The last term represents a self-interaction of the uxl with the electro-
magnetic field source which, in this case, is just the uxl current.
If we neglect that term and neglect terms in oo as being of second
order, write 8}18H = atat Ve ?, take the root of the (é3t)2 operator,

and go to the nonrelativistic limit with the substitution U"Lz exp(—th)goH,

we find that the spatial components of gop satisfy the Schroedinger



type equation

Z ™ ZM
+e0-WT(E-P) - te UxY) @ E .
2 Mt 2 M

Thus vy contributes to both the magnetic, (Bxg), and electlric, (E-?Z),

interactions.

Subtracting the free Lagrangians from the total Lagrangians

leaves the interaction terms:

i’“'i = - Le AFKE?U:\U& T Le AQ(XFU‘;\ UP
S ¥ . *
+ile AF Ud(}PUd\- Le A,LU@ (X{‘ Ua)

— e  ApAs Ul Uu + € A Ag UV

For convergent processes the S matrix is a function of the Lagrangian

density,
Y e.xP‘_ Lgi(x\ A&l

where T indicates the time ordered product. We will not go through
a full derivation of Feynman's rules('r), but we can obtain the inter-

action expressions for use in perturbation field theoretic calculations

(*) See for example Bogoliubov and Shirkov (1959).
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by taking i times the momentum space representation of the inter-
action Lagrangian. We use the phase conveption of exp(-ikx) for
an incoming particle and exp(ikx) for an outgoing particle where k
is the particle momentum. In addition we will replace the charge ‘e’
by 'V4re' so that in subsequent work e 1/137 in units where h=c=1.
The particle propagators can be derived from the field opera?.tcr com-
mutation rules (see Appendix A), Doing this, the Feynman fules are
then as given in Table I.
Using fermion spinors, u, normalized to uu = 2E, the pro-

jection operator, for a particle of mass m and momentum k, is:

%2 uu =K+ m. With this normalization the transition probability,

spins

ov, 1is given by

Z
| D
T2E W 2E (IL. 6a)

° u*.

oV =27

where D, the density of final states, is

D = L T|2E, zvs(y-w) o' Mh\‘\gigy-i p) (I1. 6b)

|
7~ oo sut
Ly 9% (z7)*

Here, "in" and "out" indicate all incoming or outgoing particles. With

these rules we can calculate the rates for the reactions of interest.
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III. THE TRANSITION PROBABILITIES

A. The Process e+ +e —v+ v,

The process e+ + e — v+ Vv is described, to lowest order, by
the Feynman diagram of Figure 1. Using the rules of Table I, we find

for the matrix element:
M=V G (G“z‘lr\au\ez)iﬁe\ %r\ Bt

If we use the second form of the Fierz transformation (II.5b), we obtain
W\=—LVE“G(TL\;2\&,~&\A\“\\'\1&'| X}Aaucz\ .

Taking the absolute square, introducing the traces of the matrices, and
using the particle projection operators after summing over outgoing

particle spins and averaging over incoming particle spins, we find
Z
\m\ = Z-G'Z'SPLX(z\&F aXc‘\tPa] SP{L#\‘W\\X[La(élTM\ !F a] .

We can simplify this expression by using the properties of a so that

\m\izy_d’sv[kz‘ﬂﬁk‘ ‘Pa] SPE.XS\%)“ éz %(531* (IL.1)

Evaluating the density of final states from (IL.6) for two outgoing parti-

cles, the transition probability is

o = S S0 Sl kampimp) M LMy

| B T\:LEIEZ
(III. 2)

The integral which occurs here has been done by Lenard (1953), who

found that



-] 3 -

Tng = f| 4"k ' SUNSUR) $* T kirka = P) e kg
[h(s=-;—‘\— (ZPhPQ*?ZSAP\- (II1. 3)

With this integral and the matrix relations of Appendix B, ov can be

!
reduced to the form: '

2.
BTEIEZ

oy = (prperm2 N Zppa + o) (ILL. 4)

where El and E2 are the energies of the positron and electron and

Py and p, are their 4-momenta. To evaluate this expression in the

center of mass system, we let p, = (E,0,0,p), P, = (E£,0,0/), ET=2E.
Then we have
ov =6 (Ef-wr) R=c=1.
3w
In conventional units with ET in units of the electron mass
e\ he)* (6 ME) x
o= {§ F- (Ex - 1)
3w M (II1. 5)
- 45
gt l.4% |0 (%)(ETL“I) cm®,

which is the same as the expression obtained by Chiu and Stabler (Chiu
1961).at a later date.

If, instead of the point weak interaction, we use a charged
uxl mediated interaction, we have the Feynman diagram of Figure 2.
Conservation of momentum gives: p = Py - kl =k, - P, Feynman's

rules then give us the matrix element:



.

™M=- ‘\-Hz('&u Y2 e gpp — papalta? (Ee\xFaum).
(p* - M*)
The p)‘_pI3 term of the uxl propagator prevents the use of a Fierz
transformation, and the appearance of kl or kz in the uxl momen-
tum precludes the use of Lenard's integral. The final states integrals
are, however, easily effected in the center of mass systern,' and the

matrix algebra can again be done with the relations of Appendix B.

We obtain

2
S G [Z(ae"—otebw?‘c) 4 2L +\n\a

—Zd.c):‘
!ZT\' @(&ZI%") %2' (28

3

.

-‘rﬁ\lﬁb
_E?’T

where a =(‘\u.:2'+4mf/|“’\4 v ot/ Mt )
b =(2_uaP“"'\*'m"/Mﬂ)

c = Pz (4 + w3 [MY)

ra

a = M'-mz+2w2' 3 @:—2-0.)? °

Here, w and p are the energy and momentum, respectively, of either
one of the particles in the center of mass system. In the limit that the
uxl mass is large compared to particle momenta, (ET << M, m << M),

this reduces to

4
> ‘ E
c-\l=3i {(E-zr“mt\"’FJ\L{(—"‘QI"+E%W\L+W\?)+"‘].

The second term become s significant for ET ~ M, which for M = 0.8 Mp
is 700 Mev. This energy is much greater than the thermal energy in

stars so that here the uxl effect is negligible.
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B. The Process e + y-*e:ti- v+ v,

Next we consider the bremsstrahlung reaction: S y—*ei+ v+ v,
There are two Feynman diagrams in Figure 3 which describe this reac-
tion to lowest order for a local weak interaction. Using the rules of
Table I and a Fierz transformation (II.5b), the matrix elements for these

two diagrams are

m‘\: “LWGE—(U\)Z\&P&Q\:\\( ¢ ULG.H\

RS T

mB:—LmGE(U\VZXra\LW U..ez¢P A’ Xf.\au.e\\ 5

In this case the transition probability, using (II. 6), is

\ 4 2 2 4 N
TN T TZ8 T E(RIE(S) g dpa dlpi-nlljdk dke

« SUAISIE) Slp, wkurka-qp) 1T, *
(III. 6)

where E(pl) is the energy of the initial electron and E(q) is the energy

of the initial photon.

Gauge invariance requires that under the transformation

ep, = eth + aqu, where eH and g are the photon polarization and

momentum respectively, the matrix element be unchanged. If we con-

sider the dependence of the matrix element on the polarization alone,

this requires that /}7,{?,’) =m(¢+ ad), and since M is linear in ¢,

/%{;q_’) = 0. If we direct the z axis along the photon momentum, then

M (yo) - M (y3) = 0. Because of this we can average over the photon



1B

s y 2 _— 3
polarizations in |m |® by substituting (-3y W Yp) for (¢...¢). Then
the time and longitudinal components cancel:

' CO|

£ iUl < H I m O« 5 im - il

"

{wl

Tlmeen <t imien”

]

where e, = (0,1,0,0) and e

1 = (0,0,1,0).

2

Squaring the matrix element and averaging over the incoming

polarizations and summing over the outgoing polarizations,

YAy« Ml = B G e splk, ‘&?)(«126, a| (A~B+C+ D)

Ao h= Spllgremilplpie g ~mllpalgurmladelBrege m) Yo |
~4a8B= Spl(femly e Ypa lgrm) Yy (o g m) Yo 2]
~428C = Spllgvm) Ypalpo-g v ) ¥y frm) daa (fie f o ) ¥al

457D = SpLlam) Ypa (ga-grm) by o) Yoy o - £+ m)¥pal]

where the system invariants are

Z = = = -
T*.’—’W\- ) d—’(?\'%\ ) ?\ (?“PL\ , g (?1’ %‘ .
The integral over the neutrino momenta in (IIL. 6) can be performed using
Lenard's formula (III. 3), and with the application of the gamma matrix

relations of Appendix B, the transition probability can be reduced to

G‘z A i z e ™
N =72 W3E(e\=‘\E(cp S JPZ %tFZ“W\) A
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(III. 7)

To perform the final integrations we go to the center of mass system
with the z axis along the momentum of the incoming electron. The
substitution z = (ez + pz)/m, where e, and p, are the final electron
energy and spatial momentum, reduces the integrands to 1ln{z) and
polynomials in z. If we let £ be the total center of mass energy of
the system in units of the electron mass, we finally obtain for the

transition probability:

oy = @u E {\né (48°-48>- 548 -5LE+ 50)
A E-0E= ) L(E-1)

i & =4
o1 (-558°<1598" + 5108122 -14NE « IS B \} ,
1= (IIL. 8)

In the extreme relativistic limit, §£>> 1, this reduces to

48

o\ (E.R.)=§%T{L§—(\r\§ = )
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Letting w be the incoming photon energy, we set £ =w+ Y1+ w?. In

the nonrelativistic limit jw [ <<1, £~ 1. We use the expansion

Ut VL ) i
A . &

\
(e>—) z
in (III. 8) and obtain

- _j__ e’LG_'qu -k.; :L
ovi(N.R) B T o < [

or in conventional units
= 4
G TAl

o - "1;2_5' x107%° E?\* (%) cm”

where ET is the total kinetic energy in the center of mass system
in units of the electron mass. The relative velocity, v, is ¢ 1in the
N. R. limit but goes to 2c in the extreme relativistic limit. In
Figure 4, ov for this process is plotted as a function of the photon
energy, and we see that it is smooth through the intermediate region
between the N. R. and E. R. limits.

When the energy dissipation rate of this process is computed
in the N. R. limit, we shall need to know the average rate, €, at which
energy is carried off by the neutrinos in the CM system. When there
are only the two neutrinos in the final state, this average is the total

energy of the system times the transition probability, but here

L0t k) dtow =[ (preg-pi) diow

il

€

"

m-8loy) - \ P d Lo )

where A° or Ao denotes the time component of a four-vector. The
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second term requires the re-evaluation of the integrals in (IIL. 7) with
an additional factor of p;, the second electron's energy, in the inte-
grand. The integration can be carried out as before. Adding the two

terms of €:

€ -G W E {\n\;(\wg“—sgq~aosg"-ma~g’*
180 - (E= 018 -1) L (=)

r2s0g + lg) « (=2 Tag + VIV & s2sine”

£1222 8 +12102]8 +2295 &> —2q0 2 ) g .
(III.10)

In the extreme relativistic limit

i1 &t (lng -2123_)

(= RN =
(E®) \® 0 T 2040

' Neglecting the constant term, (¢ /ov) =~ (17/20) m§{ so that the neu-
trinos carry off 85% of the energy in the E. R. limit. For the non-

relativistic limit

4 k. C_r"— )
€ lne)= 5o Bt . (IIL. 11)

Here, (€ /CTV) = w so that, on the average, the neutrinos get half of
the center of mass kinetic energy or, what is the same thing, the photon
energy.

The expressions (III. 8) and (III.10) and those derived therefrom
differ from the corresponding expressions found by Chiu and Stabler
(Chiu 1961) by a factor of 4w. We have used an electron charge of Vare

while they use e. However, it would appear that they use ez/hc& 1/137
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which, we believe, should be changed to ez/hcﬂ VT /137, Matinyan
and Tsilosani (Matinyan 1961) have reported that V. I. Ritus has ob-
tained a much greater value for the neutrino energy loss for this process
than that of Chiu and Morrison (Chiu 1960), who used the values of Chiu
and Stabler.

In the extreme relativistic limit we will need the AVeIage enargy
carried off by the neutrinos but not in the center of mass (CM) system.
Let us find the average rate at which energy and momentum are carried
off by the neutrinos in the E. R, limit. From (III. 7) we see that
d(ov) = B(pz)/E(q)E(pl) where B(pz) is an invariant and E(q) and E(pl)

are independent of Pye If we then form

?1})‘:& cl\c’\ﬂ 'Pp_})\ ¥ (I11.12)

we will have a vector quantity. This will be a linear combination of
(g + pl) and (q - pl) since they are the only vectors we have, In the
center of mass system, in the E. R, limit, (q+ pl) has only a time
component while (g - pl) has only a2 z component. Thus the coefficient
of E; in CM is the coefficient of (q+ p;) and the coefficient of 53
is the coefficient of (q - p;). Inspection shows that Eg = E]é =

2

There is only one invariant, (pl-q), since we take m =0, We can

0.

thus find 52|..L in the E. R. limit in any system by using the following
center of mass system results obtained from (III.12) using d(ov) from

(111, 7):
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With these and the relation p; + q = ov(p; + q) we obtain for the E. R.

case:

e 6 (pra) 53‘1
“-(\*k )/,\ -_350“\_53;\2{ \{‘.\‘\)\V\ Z(\b\ar\ 1‘}},‘

+ |20k 2lpeq) - 223 1 P f’“} (II1.13)

C. The Process y+y—v+ Vv,

Finally, we describe the photoproduction reaction: y+ y —~ v+ v,
For a local weak interaction we have the single Feynman diagram of
Figure 5. This must, of course, be symmetrized with respect to the
two incoming photons. Using the rules of Table I and a Fierz transfor-

mation (II.5b) we have for the matrix element:

m= = ZTGF \mvz\&/kauw

& | |
A ?\.}L E, ){‘ W\'\#-’W\ ¢LF-AVL-M]‘
Gell-Mann (1961) has shown that this matrix element is zero.

Since the neutrino-antineutrino pair is created at a point, the particle

amplitudes at the origin are nonzero and hence they are in an orbital
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angular momentum state of L = 0. In the center of mass system the
two particles are traveling in opposite directions, The antineutrino
spin is along its direction of motion; the neutrino spin is antiparallel
to its momentum. Hence, the z component of the spin is 1 so that
the spin state is S=1. With L=0, S=1 we havea J =1 state.
Angular momentum being conserved in the interaction, the i;ﬁitial pho-
tons must be ina J =1 state. But, Yang (1950) has shown that for
symmetry reasons two photons can not beina J =1 state. Hence,
the amplitude for y+ y —~ v + Vv, via a local weak interaction, must
be zero.

Let us present the argument more concretely. Consider, first,

the vector part of the spur in (III.14):

vV = < L\& Lgrd.sm) . (jﬁv\m\\ é,_(}b/ ALfm\:s ‘r{_ﬁ‘”"\l
Liprq\=w) Lt llp ~qut - ‘”‘L]

where SYM denotes the first term with e

1 €5, 4 d,- The com-
mutation relation of the y matrices and the trace of any number of vy
matrices are invariant under the substitution of the negative transpose

for each v matrix: YH = \/Eo Making this substitution and taking

the transpose of the argument of the spur:

U= =Spllgehiml dl-peml Algdodivmidu] | gsMl
Lipe g WL g WL Cp }L\‘W‘{l

Since fdép is even in p, we may substitute -p for p in V. Also,

Sp(AB) = Sp(BA) so that exchanging symmetric parts, we find

\ = —Spi\fm k# +éL*rw.\é k\zﬂ*‘m\ éia.\vf qfl-qu 1 % {S‘H"\l_
Y_K?dr}‘\ w1l e w\_ﬂ_(? 1-7.\ — )

Comparing this with the original form for V, we find that V = -V = 0.
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This is an example of Furry's Theorem (Furry 1937), which states
that because of charge conjugation invariance, the contribution of a
diagram having a closed fermion loop with an odd number of yp in-
teractions is cancelled by the contribution of the diagram with the
direction of that loop reversed.

Next, let us consider the axial vector part of (III.14):
|

Ay = 4 é?(.\& Vs ‘.95*-#\. cw) & (?‘*M\ﬁdﬂl #L*W\:\ «{symi
St \K?*j\ Wil el gl ] e

AH is a function of dps 90 ©s €55 and m, bilinear in & and e,

and symmetric in the two photons. Since Ap is pseudovector, it
contains the permutation symbol eotﬁké’ which is antisymmetric in
all pairs of indices. In the CM system with transverse photons, we

find that e =e_-

>4, = 0. Because of these require-

y Gy G Sy T B =iy

ments, A“ must have the form:

A/GF‘ k}‘“?"\}‘ e(a\"ﬂ"leu&»\ F e(e.\e,_lch—ﬂ,“/*\

(II1.15)

where F; and F, are functions of the invariants (ql-qz) and mz,

which are symmetric in the two photons. We have used €(A,B,C,D,) =
OL[SPuS AOiBﬁClDS Now, for the axial vector part of the matrix element,
we have mA = const (u Zﬁ,au ). The Dirac equation for the neutrinos
yields (uvZK au,, (u.vZK1 au ) = 0. Using conservation of momentum,
qtaq,= kl + kz, we get zero for the first term of AH . In the CM

system with transverse photons, working with components, we find that

, so that this term of

(epeep qy-dy. 1) = U5y + k), (&) X 85)) onrmponents

AP is also zero. Thus /] = 0. The argument for the second term
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hinges on the fact that A is not a function of kl or kz ‘except in the
combination kl c 5 kz. This is essentially the same as the local nature
of the interaction.
If we now consider a nonlocal weak interaction, the same argu-

ments would apply for a neutral uxl. The appropriate Feynman dia-

gram is given in Figure 6. The matrix element would be

W\ = (cows‘t.\ h—xvt\&r&. \lq\\\,\ﬁ\b S?\\&\, a £,

\ | \
Ao ST S !

ape = Ul U bdo [ME L (gyy .
&\t.\'t'\‘-'z_\ = ML

Here, the second term of the uxl propagator numerator produces
[uvz()él + Kz)auvl] = 0. Aside from the uxl denominator factor of
[Z.(ql-qz) - MZ] , the other piece of the uxl propagator numerator
yields the same expression for the matrix element as in the local in-
teraction case (III.14) and hence is zero.

For the charged uxl these arguments do not apply and the
matrix element may not vanish. The four Feynman diagrams for
this interaction, to lowest order, are given in Figures 7a, b, c, d.
Using Feynman's rules from Table I, we find the following matrix

elements:

g

m,;="";f \O\q\’il-\ivl%?aé;—m éz/P

i~

\

|
¢, Yau
m B \n\ (III.162a)

¥ ( 3/’;{ FT_X;%EJW )] S L)
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Mg = e"‘\L \A‘*?U\—LW_ va‘)’s:*m e ?llﬂm \&/“ a Uy,
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(IIL.16Db)

% {.e"k?E*TQ)adF‘e—\F ?34-9\*'?4? ! H.u ei[e— G\.\(s e.*ﬂg*iﬂﬂg )
|

M, = 'e;f\ \O\*Pimn ) #q\_m 1/,‘ a Wy, (III.16c)
(A hp R M sl L pteelatt .

x [e,_-\\:p ?1\ <@ -Crp Pre Cat Te i(ﬂ-t[s i~ C\,,_,Le "'[ﬁ\]

*[e\- (‘Ym‘fs\ 3)\(; ‘C\QY?:\ -+ em’??.r "'% ( "\,\f e\).-%ﬂ\e" fﬂl* {S‘{V\l \
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In this process, unlike the two previous ones, the uxl momentum is
not limited by the external momenta. Here the uxls are in closed
loops so we must integrate over all values of uxl momenta.

There is a similar situation in the case of the decay p—e + y.
Although we now know that this process is forbidden by the difference
between the neutrinos associated with muons and those as SOCfLated with
electrons (Danby 1962), the calculation of the matrix elerneni.i still may
be done as a formal exercise. For a local weak interaction, the pro-
cess is described by the two diagrams of Figure 8. In both cases
the loop int4egral is fd4p/p which, while cubically divergent, is zmero
since the integrand is odd in p and the interval of integration is even.
Introducing a charged uxl we have the three diagrams of Figure 9.
We now have two or three particles in the closed loops and the same
symmetry argument no longer holds. Indeed, Feinberg (1958) found
that for an anomalous magnetic moment of 1, the matrix element is
convergent. For no anomalous moment it is divergent, and in either
case the first non-vanishing term is 0(G) = O(mz/MZ). (*) We will
return to this process after computing the neutrino pair production
matrix element.

Let us gather some tools to aid in our examination of the ma-
trix elements (III.16). We would like to examine these matrix elements
to some order in (mZ/MZ), where we consider the particle energies

to be of the order of m, since this is the energy range of interest and

(*) When we use the notation O(mn/M‘n), it is to be understood that the
coupling constant is £2, The only exception will be when G is ex-
plicitly displayed.
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since such a limitation will ease the calculational difficulties. To do

this we will expand the propagator denominators using
\ \ \ )

+~ — R —

A-B A AT A

to obtain, for example,

&+ B B - v v

Lo oo Byeks
AT A A

\ \ (e - T2 - )

S Shind i _L?’—-M‘\ (o wiE L gt ' . (II.17)

Since p is a variable of integration, we must integrate the products

of such expansions. The integrals which arise will be of the form:

4 DZT
Lis,va,b)= gwid® (- w (prom)P

In Appendix C we find that the dominant term, (m2'<< MZ), in such an

integral is:

2c, 2 (r+2-a-b)

(s, r,a,b) = 0{m=°/M*)m (111.18)
where c=b+ s for a-r-2=220
=b+tsesta-1r -2 for a7 =20,

If we consider a product of expansions of the form of (III.17) for
uxl and electron propagators all multiplied by some numerator, then
for some given terms in the expansions, the product will be character-
ized by some values for s,r,a,b. Of course, r could be half integral
but then the integral, I, vanishes so we take s,r,a,b integral. If we
consider further terms in any electron propagator expansion, b and

s are fixed. Going out one term in the expansion, Aa =1, Ar = 0,4,



28

Half integral r causes I to vanish. Thus A(a-r-2)=1 and c in-
creases (c=b+ s+ a-r - 2) or remains constant (c = b+ s). Going
out two terms, Aa =2, Ar = 0,1. Here A(a-r-2)= 2,1 and c in-
creases or remains constant. In general c increases until c=b+ s
and then remains constant. In either case Ac £0 and the exponent of
M2 in the denominator of the resulting integral does not decrrease. If
we consider further terms in an uxl propagator denomina,tolr expan-
sion, a and s are fixed. Going out one term in the expansion, Ab =1,
Ar = 0, for integral r. Then (a-r-2) is fixed and Ac =1. Going out
two terxms, Ab=2, Ar=0,1. If Ar =0, then Ac=2. For Ar =1,
if (a-r-2) was =0 then Ac = A(bts) = 2,while if (a-r-2) was <0 then
Ac=A(b+ s+ a-1r-2)=1. In all cases further terms in an uxl ex-
pansion yield lower exponents for MZ'. Thus if for some term in the
expansions c¢ is greater than some value G or for all further terms
c>c.. Also, given any €yt going out sufficiently far in the uxl ex-
pansions we can have c¢ > cye

We can also say something about the exponent of k, where k
represents any of the external momenta, in the terms of the matrix
element. To assure gauge invariance the photons enter through the

BV
has one factor of k so that together we have kz. Examination of the

field tensors AW /M is bilinear in the two field tensors and F

matrix elements (III.16) shows that each term has an odd number of
vectors in it. If we again use the expansions for the denominators, we
see that all vectors other than k enter in the pairs (elez), (pz), (mz).

Thus for any term we have kn, where n is odd and greater than or
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equal to two so that n =2 3. We can drop terms having kn, n < 3, since
they must cancel to preserve gauge invariance.

Another fact that will be of aid is that the 1/M4 numerator terms

in the expression
(uxl propagator)(uxl-single photon interaction)(uxl propagator)

cancel. These terms are simply
e (p-qlelp-glp Llp-g~ple Ap -p-yhep (I1I.19)

Peen Maper-qaerll maye -
But, in our coordinates qz =e°q T e g, e, g =e,q, = 0 so that
A=0,.

With these tools we can deal efiectively with the matrix elements
(II1.16). First, let us treat the divergent loop integrals. All four matrix
elements have primitive divergences. They are linear, cubic, quintic,
and cubic in mA’ /MB’ ﬂ;C’ and :4‘1 D’ respectively. If we neglect
1/1\/i4 terms from single photon-uxl interactions, these are reduced to
linear, linear, cubic, and cubic, respectively. Expanding the propagator
denominators and going out sufficiently far to assure gauge invariance,

' W M /N M
we see that lA and p are convergent and that //] C and p are

logarithmically divergent. These divergent pieces are:

W\D(DN\ = -‘il‘%— U\QFU_\X\)Z Vs a_Az‘\_\“: %f) a Wy

Y i

s Pl}x?\‘i?ﬁe??d_q
P P mY)

Le-ld_E.'LF - (ev e) 34&?373 + &S‘\ ME .
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M (D) = ~§1§M\,\ i(\xvd\;a
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In our coordinates

b A R T el T o el e Po " * P39y
S5 T oWy T Sl T B Py Pi*p* PyrGs
Using the Dirac equation

[Tt lparm) pravg ) = pLliy $a vy

We create a common denominator of D = (p42—m2')(p12—M2)(p22—M2)x

2—I\/.[Z')(}'JSZ—mz), suspend writing the constant coefficient, and use

(p3
the notation (&) = (Evz.!)lauvl). Further, let £=1 -y and drop terms
which must cancel by gauge invariance or which are convergent.

Then, including the symmetric parts, we find:

Myow) = a\qF E‘Lyg)\52:g:‘g\z\erFa\lez-?t\i&.'ed\?r?s\la
D
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W\ (D) = \ Mp )alé@.i- (er paMevpllZppE + € (o3 «pillquanl]
« lev el pops (prapE) ~ & prpk lpu-pe)- la. \—c‘.L\

7 . :
o % s L?s ck,‘\(.?\c\.x\ = E ?11__ \?3‘ c\.«.\ k \>\' ﬂ-.ﬂ}\. te
; 2 ; 2 M
Since 2(p1-p3) =p, *Pg all the terms of D(DIV) are cancelled
by terms of M C(DIV). We can expand the denominator to get
\ \ fAp k-t

D LPL_ w) LPL__ M\\‘\’ k‘s"‘* ) & Pw__ M-S

.

All further terms of this expansion lead to convergent integrals. If,
in the integral, p enters the denominator only in the form pz, we
may make these substitutions in the numerator (see Appendix C):

™I —E\i A6

ﬁ
et ?(3 T %d(—‘ \ “:\oLF 3?\%"’ (300\3%%* WS %(5)\‘ .

With these substitutions all remaining divergent terms which satisfy
the gauge invariance requirement cancel. Thus mA+/}’] B—i-m C+mD =ﬂ?
is convergent.

We now turn to the convergent terms. Examining all terms in
/M with the aid of the relations (III.18) and the gauge invariance re-
quirements, we find that the leading term is O(mZ/MZ). Such terms
yield a matrix element of order (fz/M2)~ (G), which does not vanish

if M2 — . These terms come only from /%A and there only from
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the gHV term of the uxl propagator. This contribution is propor-

tional to

So\“?{kﬁvz [Aamé ‘Jé 7%‘ 3 3 yy )

(p ﬂ,jwd“ﬂﬂ* g* EL S\{H}

We expand the uxl denominator,

| = \ ZP K\‘-L CLL-J___ Ztk-‘_‘t\,u)
gt (pe-mm) o (pr—miT (g MY

and apply (III.18) to see that only the first term in the series contri-
butes to 0(G). The matrix element, to this order, is the same as
for the local weak interaction (III.14) but for the factor: —MZ/(pZ-MZ).

We may write it as

2 32

Eﬁ_ff_go\ \ﬁ%ﬂmdﬁa?—\—“éz*’—

2. ) aUswu* SLsleE
é-?{.*m '
where the effect of the uxl is to introduce a sort of convergence fac-
tor. The Fierz transformation and all of the other arguments used in
the local interaction case can be used here to show that to 0(G) this
matrix element is still zero.

This is not the same as in the case of the muon decay. Here,
the leading term in the matrix element behaved the same with and
without an uxl. In the p-decay in the local interaction case, the ma-
trix element vanished, while introducing an uxl produced terms of

0(G). But in the p-decay case the local interaction matrix element
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was cubically divergent. After the introduction of the uxl, the corres-

ponding terms still vanished. That is

S \ {;'P o S ?U;%Y- M =

and I =0 but I'# 0. However, expanding [(p—k)Z-MZ] we have

S
P LM

and here the leading term vanishes. The remaining terms still contain

|

divergences and are able to contribute to 0(G). On the other hand, the
matrix element for y+ y = v + Vv, for a local weak interaction if gauge
invariance requirements are considered, is convergent. In general,

if a process is convergent for a local weak interaction, then, since it
appears that the zero order effect of introducing an uxl is to include

a cutoff factor, [—MZ/(pZ—MZ)] , and since we would expect a conver-
gent integral to be independent of a cutoff, the uxl should have no effect
to zero order. However, we certainly have not proved this general
conclusion with any rigor.

There are higher order effects. Examination of the matrix ele-
ments (III.16) with the relations (III.18) shows that all four Feynman
diagrams contribute to 0(m4/M4). It is a straightforward though lengthy
task to evaluate these terms. The actual evaluation was done on a high-
speed digital computer with a program devised to do dot products, matrix
permutations, substitution of integrals and other work of a symbol-
manipulation nature. This program ié described in Appendix C. We

work in the CM system with transverse photons and let
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The contributions to this order are then found to be:

M, = -5 \\ 2dx dxf L) T, -(edT]alaina) {42 0=
v

+ oxel * %{lsazu-%\t\—x) Ly

A
tas . 8w
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(III. 20)
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The integrals remaining in /nA were not done by the computer but by

hand to yield:

M, = Es (Lot Rl 1 - 5 - (55 + 3506 dolig

o+ | ;e
- 24‘ v % (_Xn(.\'f’n 1

O P L R i Ev e e A PSR IR

P ?_w +\ ‘,.\ka\-f\] l&

where 2w is the total center of mass energy and p = 20.\2'(1 - d 1—l/m2).

/}7 has the form:

——-;-E;W\ = Fla) e T-edtla « F @) L#,\(e‘-edk\o-%\ "

Using (II. 6), the transition probability is

v oo [N e SUB SR IS e kg -

\ow
We take the incoming photons along the z-axis, each having its polari-
zation in the x or y directions, and average over the four combined
polarization states. The neutrino momenta are taken to lie in the x,z-

plane. Here the integrations are easily effected. Then
q.
o4 &

e * %Lg T MB L(F- F’-Y—*LF‘L] 3
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We can evaluate these expressions in the nonrelativistic limit, Jc.o 1<< i 1

q z
eylNR) = eﬂ% wa K L Z‘g‘ﬁ %‘5*%—)1 (III. 21a)

and in the extreme relativistic limit, m << w << M,

4 9 s 2 2
ovleR)= f;;—%\‘g‘ugg\ +L\‘%\&z+§g\f\ i %z% * % Etv\lltoﬂ] . (IIL. 21b)

There is no real value of y for which these expressions vanish. In
the N. R. case the bracketed coefficient has a minimum value of 10.6
for y=-5/4 and is equal to 10.9, 24.2, 102. for y= -1, 0, 1 re-

spectively. Using vy =0,

&
__ism ey i, ¥, 88
oviNR) = Sy (‘RL) (GM7] Re) e AT W (IT1. 22)

in conventional units, Using M = 0. SMP,

G“(N.R.} = 2.0 % }D—EB (%)k (%") cm™
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which is much smaller than either of the o.ther two cross sections (III.5)
and (III.9) for (w/m)<< 1. Although this cross section is small, it does
show that perfectly reasonable calculations can be made with uxls.

This result is much smaller than the estimate given by Matinyan

and Tsilosani (1961), who did not show that the 0(G) term wvanishes.
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IV. ENERGY DISSIPATION RATES
We will now calculate the energy dissipation rates, in a hot
electron, positron, photon atmosphere, due to the three transition
probabilities: (III.4), (III.8) and (III.21). The electron and positron

densities are described by a Fermi distribution:

A _ 2. 2 o\? o\s?_
A (21t%Re )2 ex\:i&e’—ﬁ\lk‘rl + |

(IvV.la)

where € is the total energy and p , the chemical potential, serves to
normalize the total density. The photon gas is described by a Bose

distribution with zero chemical potential:

c)kr\ Z ezo\e 0\-51—

(L= we 3 exﬂ_(e 3Tl =1 (IV.1b)

These distributions are in what we will call the lab system wherein
the gas center of mass is at rest.

For the reaction e+ + e — v+ v we need the positron and
electron distributions. The radiation is in equilibrium with the e+e_

pairs through the reaction
e++e_‘—>ny n=E2.35.%4 .4

Following Landau and Lifschitz (1958), the photon gas chemical poten-
tial is zero and so By + p_=0 where b, are the potentials of the
electron and positron gases. In the absence of residual matter, the
positron and electron densities are equal: n, =n_. Then the densities

are given by

mkT )3/2

Ny = L(W exp (~wmef WT) .
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If we approximate the transition probability for the pair pro-
duction reaction y+ y — e+ +e by Zyrrozc, multiply this by the
square of the number of photons with energy greater than an electron
mass, and divide by the equilibrium density of electrons and posi-
trons, we have the reciprocal of a characteristic relaxation time, 7T,

for the approach to equilibrium between photon and electron—[positron

densities:

T = > W) exp (ZweleT) \‘h

4w kT od &
where ro is the classical radius of the electron and & is the fine

structure constant. Evaluating this

—\fz

T - .6 *‘D—:qu eXPLS.c’lITq‘

9

where T, is the absolute temperature in units of 10 °K. For

9

T, >l 71 éec, which is small compared to the evolution times

9

in stars. For T,> .3 we have 7 < 1077 sec. These times are upper
limits as other processes will enter due to the presence of matter.

Having established that equilibrium conditions exist, we can

now calculate the energy dissipation rate, €, using

g = SS dns dn. tov) E9) .

The distributions are given in (IV.l); the transition probability is given
in (III.4). E(vv) is the energy taken off by the neutrinos and is here
equal to the total energy of the interacting particles. Working in the

lab system of coordinates we find
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In the nondegenerate limit we neglect the 1 in the distribution denomi-

nators. Using p, +p_= 0 we find

_ g (ErEl) (EE2-ppr NNZE Ex p. Pa:*«m)?\ PLJ‘P\A?LA_E,
E =——F L \ErEal
12735 (R ] EEw e *pLE +Ex) [T

In this limit we see that (dn_dn_l_) is independent of the residual elec-
tron density, n =n_ % n, , since My and p_ enter only through the
combination: (4, + p_). Inthe N. R. limit, E=m+ pZ/Zm. The
integrand has its maximum at (pZ/ZmZ) = (kT /m) so that for (kT}<<m
the N. R. approximation is valid. Then the first term in (p/m) is

S =“‘-|—:T{ (GM;)l(ﬁ“‘;T(md’\mc exp (-2Zmc k)

(®e)?
E = 0.49 *lDH_]__;_ e xp L“l\-‘\'Tq) era’a\m—sec

where p is the density in gm/cm3. In the E. R. limit we take E=p>>m

and find

€ - 128 (& H}S\L L\c'\'\ﬁ c

s (Re)t M3 Y5

b 9
& = C.4( » IDl Taq ers | qm-sec,

f
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These results in both the E. R. and N. R. limits are in agreement with
those later obtained by Chiu and Stabler (1961). Chiu (196la) has also
calculated the effect of slight degeneracy of the electron gas.

Next we consider the process eii.—y — ¢%}v+V . The transition
probability (III.9) and the average (vv) pair energy were calculated in
the CM system in the N. R. limit while the particle distribuqions are

given in the lab system. The relativistic transformations involve

-
E

QCM - E_ ~ EY
But in the nonrelativistic limit ﬁCMN p/m~0 so that we can neglect

the transformations. Then
£ ”& A Lay) Avx_cs\mg (o< )= \6: Aw\_o\\mg
where € is as defined in (III.11). Using this we obtain

g A _E:E,L_x N g \o\n_

35 W exp lwlkT) -1\

The last factor is simply the electron-positron density. Integrating

we obtain

2 5= -"GL _\®
22T = (T

- &
= 1.0 = 0% L To‘% e ey l?)m— secC y

]&e
where 1A & is the average number of electrons per nqcleon. The
value (IV.4) is in agreement with the work of Chiu and Stabler (1961)
except for the factor of 47 discussed after the ov calculation. Our
result is 47 times larger than theirs.

The factor ],/EJLe deserves further consideration. Again following
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Landau and Lifschitz, the number of electrons and positrons in the

extreme and nonrelativistic limits are

3 '11

Ny *N_ "I.\ﬂ:: “* Zk-:‘_ié—:\f) exp k—?_wx&\kﬂ-& N.R., T¢¢W\)
2,

NaxtWo = O.Bg%(%\ ER, TZ272wm,

E
In the N. R. limit the effect of atomic electrons, n_s is con-‘sidered
while in the E. R. limit we will see thatr n, +tn >> n_ even for high
densities. We take n_ to be 1 the nucleon number density and then
plot, in Figure 10, that matter density at which the number of pair
produced electrons and positrons equals the number of residual elec-
trons. For the N. R. case we have set n, = 0 in the expreséion for

(n+ + n ). The residual or pair produced electrons will dominate Ne’
depending upon which side of the curve the chosen temperature and
density lie. On the same graph we plot, as a function of temperature,
that equivalent matter density for which the electron gas becomes de-
generate. The temperature used is such that kT is 1/3 of the Fermi
energy. For the N. R. limit we have plotted (n++n_)/no as a function
of temperature for various densities in Figure 11. At T9 =1 and

p = 2000 gm/cms, N, is enhanced by a factor of 1.7 over the n_ value.
In the extreme relativistic region, Chiu and Stabler consider only the
residual electrons but, unless p > lO9 gm/cm3, the pair produced elec-

trons dominate. At such high densities, degeneracy sets in. Using the

pair production electron density, we have in the N. R. limit

& =125 «x oM T:S k%\ exp (-5.95 ,Tq) erjl,3m~sec .
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In the extreme relativistic limit we may use (III.13) for the

average momentum carried off by the neutrinos to find:
€ \ Uy k) D\V\\.?\ o\V\LC\,\ .

Using (III.13) and (IV.l), taking the nondegenerate limit, and neglecting

the electron Vmass, we obtain

€ =21 6 T Ne L fn L2l -C + 232\

s
where -C z\wé* &vn)l- 0\1 = q’(o\ : LP(."L\ f\- lw\%l

£ =o.8 «~i0® E [\DSW'\‘C\ - D.SZ{\De

Me

(IV.5)

where D, = (n++n_)/n0. Using the pair production electron density

€— = 0.4\ = |D|3 T: k_“é\ \-\03“’ Tc\ = O.S'Z‘(] &rﬁ\ﬂm'sed.

We must let T9 > 20 so that (III.13) is non-negative. Chiu and Stabler

(1961) obtained an answer of the same form as (IV.5) but with an overall

coefficient of O, Z}c;lO8

and the constant in the bracket equal to +0.6.
Since the method of calculation is not given, we can not tell where the
difference arises. However, since the temperature range in which this
expression is valid is rather high for stars, the practical difference,
in this case, is small.

If the electron gas is degenerate, there will be a strong decrease

in the energy dissipation due to this process. Here, as in the other

processes, the integrations over initial particle densities used must be
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better approximated, but here, in addition, the degeneracy will affect
the final state since it contains an electron. If degeneracy is complete,
scattering becomes impossible unless the final electron passes the
Fermi surface. The effect of degeneracy has been calculated by Chiu
and Stabler.
Finally there is the neutrino energy loss due to the two photon

annihilation reaction. Again we have

g = S (orv) (se+t.) dnls) dnix)

where (so, s), (to,t) are the four-momenta of the two photons. We
found in (III. 22) that ov is proportional to Sg in the CM system.
After summing over photon spins and integrating over the final states,
there is but one invariant: (s-t). We can write ov = (invaria.n‘c)/sotO

so that ov is proportional to (s~'t)4/50to. Then

—T e*et As-x) i
28 55 MY Seke

Using the distribution (IV.l) we have

g = A5l ed G (oo +te) <545 L~ dadida
2935 ¥ M4 Leng:(sik'\_\ —\N“_P_x\:&“‘-r\—‘]

where z is the cosine of the angle between the two photon momenta.

Integrating we find

.24 ¥ '3
g- qul']?l’s zw‘ét&\q el & (kT) i )

&= 0.4« 1o > T.-.l‘z (‘%,—\ ; erix)\ﬂwu- sad .

{(z) is the Riemann zeta function ¢(7) =1.008... . As we would ex-

pect, this contribution is very small. Neglecting the In(2w) term in
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the E. R. cross section (III.21) except in the coefficient, this tempera-

ture dependence also holds in the range m < T < M:

€ = Lok rhio \ogn (Tal2d] <037 (3] ey lq-zec
(IV.7)

for zero anomalous moment.
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V. CONCLUSIONS

In conclusion we will compare the energy dissipation rates of
the various neutrino processes, and, although a detailed discussion of
the astrophysical effects of these processes is beyond the scope of this
paper, we will mention some of the implications of these reactions
which have been investigated by others. [

When comparing the dissipation rates, we will include three
reactions for which we have not calculated the rates. We will use
the results of S. G. Matinyan and N. N. Tsilosani (1961) for the pro-
cess (I.7), G. M. Gandel'man and V. S. Pinaev's (1959) results for
the bremsstrahlung reaction, and the results of G. Gamow (1941a)
for the urca-process for three elements weighted according to esti-
mated relative abundances.

The transition probabilities and energy dissipation rates for
all but the urca-process are listed in Appendix D. These energy
dissipation rates are plotted as functions of the temperature for var-
ious values of the density in the N. R. limit in Figures 12, 13, 14,
15, 16, 17. For these graphs we have taken the average (Z/A) to be
1/2 and the average (ZZ/A) to be 6, corresponding to Mg24 which is
of interest for the high density, low luminosity dwarf stars (Gandel'man
1959). Finally, in Figure 18 we indicate the ranges of density and
temperature for which the various processes dominate. For the pro-
cesses involving incoming electrons, we have used the pair produced
density where it is important.

We see, approximately, that for T9 > .5, the electron pair

annihilation process dominates, while for T, < .5, the Compton

9
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scattering process is most important.

The rate for the process y+ y —~y+ v+ v has not yet been
calculated and it may be of importance. We can estimate it as
(M/m)4e2d times the y+ y —~ v+ Vv rate. (M/rn)4 is included since
we will have a term of 0(G); e2 accounts for the added photon in-
teraction; d( 1) stands for the effect of an additional particl-[e in the
final state. Estimating in this way we have £~ 1014 erg/gm: sec at
p= 1, T9 = 3. This is less than that due to electron pair annihila-
tion which, having the same density dependence, thus dominates.

It has been shown by Gandel'man and Pinaev (1959) that for
low photon luminosity conditions the neutrino luminosity can exceed
the photon luminosity. They consider a stellar model with an iso-

thermal core. If we let T, and p_ be the core temperature and

density, then

‘ = ! i F_ F 'For r‘gR"OlhiR
“ Rlr \ . c ¢
R \ = L =
T_TC(‘/E .—\)) ‘ ‘C'(‘IE \ \ oy §R_'(__R

Using their values for the constants of the stellar model and (IV.4)

+

for the energy dissipation rate in the gL % y —~e + v+ V reaction,

it can be found that

2 & .25
L.\‘ = 0.8 x IDS g P; erjlsec
.5 _op.5
Ly = G5 2 ™ T fsco era/ sec
.5  z

- 10

Ly/Ly= S*100° T pe
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where L, and LY are the neutrino and photon luminosities, respec-
tively. Pe is in gm/cm3 and Tc is in T9 units. At high densities
and temperatures, the neutrinos can take the lead. At Tc =1 and
P = lxlO6 the neutrino luminosity is 500 times the photon luminosity
so that neutrino processes then control the evolution of the star.

Gamow and Schoenberg (1941a) and Chiu (1961b,c) hau{e per-
formed analyses of the collapse of the stellar atmosphere due; to the
rapid dissipation of energy by the neutrino processes once the tem-
perature has risen high enough for them to become prominent. Fowler
and Hoyle (1962) find that the neutrino processes or a similar energy
dissipation mechanism is necessary to provide the proper time scale
for the production of the elements around Fe:s4 in the observed pro-
portions. On the other hand, the abundance of red supergiant stars
in the region of h and X Persei is found by Hayashi and Cameron
(1962) to exceed that expected on the basis of a decrease in the life-
time of such stars due to the energy loss caused by neutrino emission.
This situation has yet to be clarified.

Since all of these reactions, aside from the urca-process,
depend upon the unobserved (ev)(ve) coupling, a substantiation of
its existence would be welcome. Observation of a charged uxl coupled
to a leptonic weak current and the absence of cancelling neutral cur-
rents would lend weight to the existence of this and other non-cross

s
terms in the J " JH coupling.
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APPENDIX A. Particle Propagators.

We will sketch the derivation of the momentum space propagators
for the electron and uxl to obtain the correct phases. (For a more
complete treatment and for the derivation of expressions used in this
appendix, see Bogoliubov and Shirkov (1959).)

The propagator for a particle moving between points k and y
is the vacuum expectation value of the time-ordered product of the par-
ticle's field operators. Thus, for an electron created by { or annihi-

lated by {, we have

CTYWQ ¥R,

v
I

( \Pk\{\lqu\>o Xo <N
- T VLY, Xs > Vs

where < i indicates the vacuum expectation value. If we break up

y and § into creation and annihilation operators, we have

N \\,m - ‘_\JL—\ ) T - ¢L+3 G
where Lp(_) annihilates electrons and n.p(ﬂ creates positrons. Then

since O<l{'1(+) = L[J(")>O = O<$(+) - IJ‘(‘)>O - 0’

b o{ (L0, T2, —
<[G¢‘-L_‘kx\,‘\’m\'{\uo Xs Yo

where [, ], is the anticommutator. Since the anticommutators are

+

c-numbers and the vacuum is normalized to 1, we find
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The electron commutator is

[ \\’L\k \1—\ \,q‘k-r

N +M\~\L— D7 (4-%)

[Q\m\ \x},"\:&\ R\{YB*— __:\. ?s\f‘fW\.\ \ﬂt \

where D(i) (x) = 5;4 e'“‘“ CRES \L") sle- ) Aq
BLgl = D)L s X «0, x>0

and the Pauli Jordan function, D(x) = D(+)(X) + D(—)(x), satisfies the
Klein-Gordon equation: ([J —mZ)D(X) 2 0

Then
Pt (3 +m)[ B BW) - 8L-¢) D7 WY]

L\u[ A‘\ ke
(w-W-1e) (2w}

=—\L"\ \é\{ +Wt\ Du:\\ﬁ i— }S\i-ﬂm\g

\.

where Dc(y) is the causal Green's function of the Klein-Gordon equa-

tion. This Green's function allows an effect only inside the forward

light-cone of a source. Then in the momentum representation

Pleleckron) = - TEIN
L e — ¥ -

for an electron of momentum k or a positron of momentum -k.

Simiiarly the charged vector uxl commutator is
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LU0, U gl = Lgpe - L }""\; D7 (x=y)
or Lur (ol 0% LY ™ +—F§ﬂ\ DY ey)
so that
Plud) = (T\Ufh\ VM DN
- X( u"‘L MO AD A Xe <Y

< U*F‘L ARIVAE T DA xs >V

L \)“ )y 09 ) 8 Lgeme) + 087 1), U LYY B bk y)
b P A

I

: k%)‘*v ‘—%&- ) D (xmy)

\.\'L x~y)
}x })(v \ " ) Aqk

.\Lﬁf“ ) (w\ —p--ie) Lue)®

or

Ploxl) = Lc\}:\;_—t k?iMl)

in the momentum representation.
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APPENDIX B. Matrix Relations.
The y matrices are defined by the commutation relation
oy o W R where gp'v =0 for p#v, g =1, -1, -1, -1 for

P B pv
p=v=20,1, 2, 3. We define Y5 = YoV1Ya V3 and let 601(3).6 be the

p_v

totally antisymmetric fourth=rank tensor. Taking any representation
we find Sp(yy‘) =0, p=0,1,2,3,5. Welet A= A.p_yp. Then the fol-

lowing relations can be easily verified:
VY, =4 v, £ By, = 4(A-B)
v Ay, = 24 v KBy, =-2¢ B4
VABEBy =20 BAB+2BAB ¢
Sp(l) =4 , SP(YH) =0, p=0,1,2,3,5
Sp (odd number of y matrices) = 0
Sp (K B) = 4(A"B), Sp (£ B yg) =0
Sp (A B ¢ B) = 4(A-B)(G-D) + 4(A-D) (B-C) - 4(A.C) (B-D)
st i
Sp (A fyen - Ky) = Z (DT (A A SpU LKy Ky K )

n even, n =2,
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APPENDIX C. Program for Reduction of Matrix Elements.

Since, in perturbation field theory with a small coupling constant,
the matrix elements of higher order processes become less significant,
the fact that they quickly become prohibitively lengthy to reduce does
not render the theory useless. There are, however, cases in which
one desires to reduce fairly complicated expressions such as1 (I11.16).

It is the length and tediousness of these calculations that rna.k‘es them
difficult to do without error; the basic methods used are well-known.
It may well be that this burden could be lifted by more powerful analy-
tical methods. On the other hand, we can take advantage of the
repetitive nature of the work and code the problem for reduction by a
high-speed digital computer. (*)

A program has been written to reduce the matrix élements (III.16).
The program is specific to this problem, but in general conception and
in many particular aspects the methods could be applied to other prob-
lems. It should be emphasized that this is not a problem in numerical
analysis. The variables are given code numbers since that is the kind
of symbol a computer handles, but these numbers need have no ordinal
significance. Realv numbers enter as coefficients and integral exponents.
The coefficients are treated as rational fractions with integral numera-
tor and denominator. This means that no numerical inaccuracies are
introduced.

First, we will describe the major steps involved in the calcula-

tion and then redescribe them in greater detail. Next, we will cover a

(*) Mathews (1960) has written a program to do the dot products in some
expressions arising in the quantum theory of gravitation. The method
used was different from that used in the program under description.
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few of the coding techniques which were used. Finally, some possible

extensions of the techniques will be mentioned.

A. Description.

To evaluate the matrix elements of expression (III.16) to 0(m4/M4)
one would:

l. Perform the dot products indicated between propaigator

numerators and the interaction terms.

2. Do the integration over the undetermined momentum.

a. Introduce a cut-off factor for divergent terms.

b. Produce a common denominator using Feynman
parameterization.

c. Do the momentum and parametric integrals,

3. Reduce the matrix combinations between the neutrino

spinors.

4, Symmetrize the result with respect to the two photons.

The flow chart of Figure 19 describes the process in greater de-
tail. Rather than collecting terms at each stage of the calculation, if
an operation produces many terms from one, we usually set up a reser-
voir of terms and proceed on with just one of them until it is fully re-
duced. Then we return to the reservoirs to pick up and further process
the remaining terms until all have been dealt with. An 'R' on the flow
chart indicates that such a reservoir has been set up.

The following written description, which parallels the flow chart
but is more detailed, is broken up into three parts, the pieces of which

alternate. 'COM' will indicate commentary which describes the
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calculation and derives any needed relations. These pieces follow each
other and can be read separately. 'PRO' sections describe the work
more from the program view. 'EX' labels an example of the work.
Each of the diagrams was done separately. Those quantities which
form data for a particular diagram are labeled 'INPUT'. Some sec-
tions of PRO which will be used more than once are given subroutine
names (e.g. SORT) and the occurrence of that name at some other lo-
cation indicates that that subroutine is also to be applied at that location.

e s
) -~ “~

COM. Let'us treat one diagram at a time. For the time being we can

ignore the (piz—miz) factors in all propagator denominators and con-
sider just the propagator and interaction numerators in (III.16). Con-
servation of momentum allows us to replace a, in all expressions by
=tk =9

PRO. Each of the propagator numerators or interaction expressions
are INPUT as lists of terms. All of these lists together constitute R1.

(A term consists of a numerical coefficient numerator, exponents of

scalars (e.g. l/Mz, m, uxl anomalous moment), symbolized vectors

. ; 2
(e.g. Py’ Y7 kla’ k2a, €10’ 200 P’ Yo gOlB)’ invariants (e.g. p .

G T T e T T e TR i Ul e i TR T T W o it
kl“ql, kz'ql), and matrix quantities (e.g. él’ f.il, }él, KZ, ’él’ éz, Yp)’
The neutrino spinors are not symbolized since they always appear at
the beginning and end of the matrix quantities and we can simply act as
if they were there. The matrix (a) is not symbolized since it always

occurs as (auv), and the effects of the a's can be derived without their
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explicit symbolization. For electron propagators, the electron mass
is treated as both a vector and scalar at this time so that when doing
dot products we may have: m(mpypd) = mf(l).)

EX. For M we obtain from expression (III.16) the following numera-

D

tor lists:

o 30 B P~ B - g Y = Yo s
Lgev ~qm Peby “mn be v =5 Kppy - k)
leweg - lever) 3,*@]

Lpe ~ wmowg)

Ly % %1

COM. In (III.19) we showed that the (1/M4) terms from adjacent uxl
propagators at an uxl-single photon interaction cancel. We can there-
fore disregard such terms.

PRO. Decide on one term from each of the numerator lists in R1. On
each successive return to R 1, we take another combination of numera-
tor terms until all are exhausted, and we then proceed to the symmetri-
zation of the reduced terms (see page T7).

EX. Choose terms 2, 2, 1, 1, 1 in the five lists respectively.

PRO. (In the INPUT we list which pairs of numerator lists are uxl
propagators from an uxl-photon-uxl interaction.) For each such pair
of lists, we test to see if the combination of the terms chosen from

these lists have a factor (1/M4), If there are any pairs which satisfy

this condition, we return to R 1l; if not, we continue.
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EX. There are no such pairs here and so we continue.
COM. The properties of the matrices a and a were displayed in (II.4).
From these we see that if A represents the product of an odd number
of y matrices then aAa = Aaa = 0; if A is the product of an even num-
ber of y matrices then aAa = Aa. In all of the matrix combinations
of (III.16) the A's which occur are the product of an even nufnber of
y matrices or electron masses, and all electron masses occur in such
an A. Thus the condition aa can occur if and only if we have an odd
power of the electron mass. We therefore disregard terms with odd
powers of the electron mass.

PRO. Take the terms decided upon and combine them. (When we com-

bine terms, we form a new term by multiplying the coefficients, adding
the exponents of the two terms, and placing their symbols next to each
other in order.) Test the m exponent. If it is odd, return to R 1; if
it is even, continue.

EX. The terms chosen yield
l(l/M4) e, e

The m exponent is zero, which is even, so we continue.

2r+l)’

COM. With the exception of the two cases mentioned (i.e. 1/M4,rn
we multiply out all of the terms in the numerators performing the indi-

cated four-vector dot products. We discard those terms in which any of
the invariants formed is known to be zero. Since the y matrices do not

commute, we must preserve their order and can not, at this time, carry

out the &ot product implied by y“. 3 YH'
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PRO. (SORT subroutine) Take the symbols and group them consecu-
tively so that all matrices are to the right of all other symbols without
changing the order of the matrix symbols.
(DOT PRODUCT subroutine) Take the leftmost symbol having a free
vector index and find the symbol having the same index. Use the ap-

propriate relation from the following set to reduce the pair: |

AOZ - Ba — ...(A-B) for A,B: nonmatrix vectors
A(:ﬁ . .gaﬁ, Aa X .gm — s 'AI3 for A: nonmatrix vector
gaﬁ "’Aa’ gﬁcu"'Aa_’"'A,B for A: wvector

Aa cee Yy T e K ‘ for A: nonmatrix vector

CREY -SOMER gl - R

ma * 0o @° ya dia L
Yo o0 Yy unaltered.

When the first relation is used, test the resulting invariant. If it is any
of (ql-ql), (kl-kl), (kz-kz), (ql-el), or (ql-ez), return to the preceding
reservoir. If not, repeat this process until no further reduction is pos-
sible. (SORT).

EX. Doing the dot products and sorting we find the term:

1@/M% (pre))(pre,) BB -

COM. Some matrix operations can be performed without permuting ma-

trices. The Dirac equation for the neutrinos gives léluvl = 0 and
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uvzkz =

2
= A,
AL & 5

card terms which yield a zero.

0. The commutation relation for the y matrices gives:

=4, We use these relations where possible and dis-

PRO. (MATRIX ZEROES AND PAIRS subroutine) Test the first and
last matrix symbols. If we have léz. cw BY &w kl , return to the pre-
ceding reservoir. Starting from the left, test each neighboring matrix
pair. If we have .. AA ., test to see if A is kl’ kz, or qg. If
so, return to the preceding reservoir; if not, use .. M sa B s .AZ. 8
BE s .yuyu. ee=4... ... . (SORT). Repeat testing for pairs until

none are found and then continue.

EX. We perform pp = pz to find the term:

1 (/M%) (pre))(p-e,)p”) 6 -

COM. We now have to do the integral over the loop momentum, p, by

creating a single denominator through Feynman parameterization,
corﬁpleting the square of that denominator, integrating over the mo-
mentum variable of that denominator, and finally integrating over the
Feynman parameters. In case the p integral is primitively divergent
for any term, we will multiply that term by a simple convergence
factor of ‘AZ/(pZ—AZ). This is justified since we have shown that all
primitive divergences cancel. Since we desire to know M only to
O(rn4/M4), we will discard terms which do not contribute to this order.
Also, we will apply the gauge invariance condition described in the text.
First, let us derive some useful relations. The basic para-

meterization relation is:
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| :( dx
36 | Tu-na~xed-

A~

Differentiating with respect to b yields:

-—_I-._-- - hs )(h-\ A*
a i | Lu=s)a e 2™

Combining these for n =2 we have:

\ =2«\ Z A= dx .
abe Th-z)arz:zU—2)b &+ wxc)®

=]

In general, for n denominators each having an exponent Bi we find:

|
af afr- ants

|

) n L= =) n-i n~t-
\\ (e- LT LO-%a) T, U TE A Lol Tl
\ (F -1 L8

%_‘Z%u ) L:Q = L\“'X|\a\-" x\\"\
L= L= xdag & xiLy
\—‘\'\—\1 An . (C.1)

Integrals over the momentum in a closed loop are of the form:

F 5 = dlp .
1, \ Lpt-L1

The simplest convergent loop integral is I(;, which can be done as a
contour integral, remembering that L. has a small imaginary part
(Feynman 1949 ). Thus

o RS S S
3 (p- -L~leV® 2L

There are some simple recursion relations which allow us to find all

I:; from Ig. Differentiating with respect to L we obtain:

1:«-*1:%&1‘;\ »
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Forming a factor of (pZ—L) in the numerator we find:
lrv\ - L Ir'\ s 1:‘\—‘

™

Combining these we find:

i —“2'—-(1+L o\)...t\.*i:__ %“ 0\\“*?3 i (C.2)

T T VT AL bt o
Since the denominator (pZ—L) contains only invariants, if thie numer -
: N . Z .
ator contained szPﬁ’ we might replace this by (gas/4)P since gaﬁ
is the only tensor at our disposal. The 1/4 is a normalization factor:

/4 =1. If we let Gr(al' °a21') = G(r) represent the sum of all

nonredundant terms of products of r factors of gaB using Zr indices
each once, we may write G(r)pzr/K(r) for Py« Py where K(r),

2r
the normalization factor, is determined by:

\3““&1 2 & 301?_:--\ qu\ G'k"{\"' “Zr\ = ¥Klr) . (C.3)

For given r, G(r) has (Zr)!/(er!) = (2r-1)!! terms and K(r) =

2(r-1)K(r-1) = z" r-1)!. Using relations (C.2) and (C. 3) we finally have:
g 4

\ S o o e A
3

‘LP"—L\T“
-m-r-3
o el G0 () (mr e e )
k 27 Lee)) \\r\—\\\‘ Lh-m—r- & . (C.4)

In order to apply these relations, the uxl propagators will be

expanded according to

) =

By Lpdloy Lo bm ol ogens
s =~ BT EREETREXREX”
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where A = (p -M"). These expansions are then multiplied together

e o o 2 5,21
to form a power series in (p -M") .
PRO. The uxl denominator expansion is INPUT as a list of lists
which then constitute R 2. (Each list is characterized by some value
of the number of electron propagators for the diagram, A, some value
for the l/(pZ—MZ) exponent, B, and some value of the power of p

. |

in the numerator for each term of the list, RD. Neither the electron
propagator denominator nor the 1/(p2—M2') factor are symbolized.)
EX,., The denominator for M_ s

\ -
e =y Lptwp- k- M-y ?L-'?—?-‘LL_’ML\

D

which can be broken down into the lists:
= | YT T
s g T -2 k) el
© oY Lea e lp k) —4 ek p k) + 4 Lpkdlpe k) )
LMY [ -8 Gk Mpkdlp k) v8 e kp i) Lp k)

-% k?k\\‘.?ki_\\?\i\.\ +B \F-\LL“\D‘ \LL\tF‘\LL\l

xs. - }.

For these lists we have (A,B,RD) = (1,2,0), (1,3,1), (1,4,2), (1,5,3) «.. »

COM. Let us now consider a particular uxl denominator expansion

term and a particular term of the numerator. The p integral is of the

form

3\‘\ 27
T > T "P‘ -—Pr‘: v ~ ‘L..)
;‘—g\ (?\ ~1?\'Li ‘—L\iL“M\\JL“LFi *1?1'\‘5”1\"3 ~ M
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and is convergent or divergent as (2a+2b-2-2r) is >0 or <0. If the

integral is divergent, we multiply by the convergence factor:

A%/ (p%-A%).

If we have a convergent integral, we can tell if it has terms
of 0(m4/M4). Consider the integral

2(R-A-B-5+2)
" !

\ R 0\:\ W&
T & P = 0LLEY)
el O A
Using the parameterization formulas (C.1l) we can write
1

LA
w M A=\ B B A =
Le o \ =T 0-2)T A \ WY

©

where I_,1 = (l—z)MZ-zrnZ, K denotes constant factors. Doing the p

integral using expression (C.4) we find

T - X x A =T ds
oAl AR -R-2
M L™
If we let L = (1-z) - zA, A= mZ/MZ, then
\
K A (-2 A
Ml\&ﬂ\#&&:ﬂ LA*B-—R—Z

'L:

c
Substituting x = L(z) and expanding z and (l-z) by the Binomial theo-

rem we have

’ i

e K| N \ R-A+l+i—j
T= o =t sl J
2 T ?‘: M'Lt":* A+B-R-1) U*A\A B~ ! X X

where 0 <i < A-1, 0 <j < B-l. If we consider that In(A) = 0(1), then

¥ i i PR 2]
MELS AL R -RL (L- A)A*R-

I’:Z‘:_:_

Since we want the dominant term as A — 0, welet j=1i=0 and see

that
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C=B+ S for A-R-220
{C. 5}
C=B+S4+ A-~-R -2 A-R-2=<0

With this we can test convergent termé and discard those for which
GC> 2.

PRO. Find RN, the exponent of p in the numerator term. ‘Let S
equal the exponent of l/Mz. Consider the next one of the denominator
lists. If none remain, then return to R 1. (For this list we have

A, B, RD.) Compute the degree of divergence: DD = RN+ RD + 4 -
2A - 2B. Gompare DD with zero. If DD = 0, set the C/D indicator
to DIV (divergent); if not, set C/D indicator to CONV (convergent).

If CONV, compute X = 2A-RN-RD-4, If X is odd, increase
it by 1. (Odd X means that we have p2r+l in the numerator so we
effectively take the next term in the electron propagator denominator
expansion by increasing the p exponent by 1 and the l/(pz—mz) ex~
ponent by 1. If there is actually no next term in that expansion, we
will have lost nothing.) If X 2 0, compute C = B + S; if not, compute
C=B+S+ X/2. If C>2, returnto R 2; if not, continue.

If G/D is DIV, change the sign of the term coefficient.
(Neither A sow (pz—./\z)_1 are symbolized but are implied by the
DIV setting.)

EX, We find the p power to be RN =5, and the (l/MZ) exponent to
be S = 2, Suppose that the next list is the fifth denominator list in R 2,

the list of lists. Then A =1, B=5, RD = 3, and we compute DD=0=0

so that C/D is set to DIV. Since the integral is primitively divergent,
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we do not test its relevance but instead change the sign so that we have

-1 /M%) (pre)p-e,) ) ¥

COM. Since the electron propagator denominator parameterization

need be done only once for each diagram, we do that manually. We
combine the A electron propagators with A-1 parameters, i(z,x),
combine these with the 1/(p2'-M2) factor using another parameter, u,
and combine all this with the convergence factor denominator using
the parameter w. Starting with the parameterizing formula (C.1) we

find

|
\\?—" _N.\\\,a\ \P“—H"’\E \\:“"uw}\ v ow

l

_xwﬁaﬂo,\ﬂ‘. wE Lieal®t Ao
- LR—1 L AsB ~ o)

where dr = w dw du, qu dw du dz, W3uzz dw du dz dx for A =1,2,3,

respectively. Further:

W-w) Lpe- R« w W-v) \‘}-M‘) -\-N\J\\*ﬂ\?}'ﬁw\m\

1

Lo LA=3)

*wo&khwﬂ+$—wﬁ «w0£xk?§~Mﬂ

It

P‘-—'L\uu LF-\A -,

For A=2, let x=0, andfor A=1, let x=z =0 in LO. If the
integral is convergent, we simply set w=1. L' and lc}.L are functions
of the system momenta and invariants., kP- depends on x and z while

I' depends on w, u, z and x. We will be able to write
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, 2 2
L'=(1-w)A™ + w(l-u)M™ + wulL(x, z)

so that the w and u dependence of the parameterization is known for
all of the diagrams. Only the electron parameterization varies. We
further define:

E

Me =Lig,x) |, Re=0-0lM~oL | A= S+e,

NS o= M-S =kt A =% e,
(C. 6)

EX. We do, here, the parameterization for ﬂ? There is only one

D-

electron propagator. We find
Lo = (l—w)(pz-A2)+W(1—u)(p2—M2)+wu(pz-mz)
= pz—(1—W)A2—W(l—u)Mz-wum2

sothat k= 0; L(x,z)= rnz; ' % §=20; e= A= mZ/MZ; e'= A =
(l—u.)MZ/A2 -umZ/A‘2 .

PRO. Set CD=1,0 as C/D is DIV or CONV. Compute the integer
(A+B+CD-1) /(B-1)! and multiply the coefficient of the term by it.
Multiply the term by WB_l(l—u)B_l. Multiply the term by W,qu,w3uzz
as A=1,2,3. Setup a denominator exponent: DN = A+B+CD. (Only
the exponents of w,u,z,x,l-u will be carried.)

EX. For our term we set CD =1 and multiply the term by 30w5(1—u)4

to give

-30 (1/M%) w2 (1-u)* (pre))(p-e,) %) ¥
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For the denominator exponent we have DN = 7.
PRO. Set up a reservoir, R 3, of the terms of the denominator list
chosen from the list of lists. Take a term from R 3, unless all have
been used; in which case, returnto R 2. Combine that denominator
term from R 3 with the numerator term.

EX. Take the second term of the list to give -[
4, 5 4 2
-240 (1/M7) w™ (1-u) “(p-e;))(pre,) (") B (e k)P k) (p k) .

COM. The denominator now has the form (pZ—Zquok-L'), To use
the formula (C.4) for loop integrals we want the denominator in the
form (p'Z-L"). Substituting p'.L d 5™ + uwk}L accomplishes this.
Then L' = L‘+W2u2’k2. This substitution must also be made in the
numerator.

PRO. (To facilitate further manipulation we want Py to enter the ex-

pression in only one way.) Test each symbol in turn starting from

the left. If it contains a (p+A), use the relation

axw (P Al v s ERRRT- N

where Aa is any vector. Repeat this until p enters only as Py

EX. The term becomes

4, 5, .4
-240 (1/M7)w™ (1-u) ®1 428PA Y6511 51y 2pPaP EPAP 5P Py By

PRO. Starting from the left, test each symbol to see if it is a Pyr
If it is, produce two terms using Py ~ Pig’ uwka. Place the first

in R 4 and repeat the search procedure until the term no longer
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contains p . On subsequent returns to R 4, take another term from
R 4 and repeat the procedure. When R 4 is empty, return to R 3.

EX. Since k=0 in the example, we get simply

4, 5 4
—240(]./M yw (l—u) elaezppl YE! klpklvkzpplapkmplﬁplgplpplvplp-

COM. We can now apply formula (C.4) to effect the integral pver p.
PRO. Starting from the left, test each symbol to see if it is a P-

If it is, find the index mate and test for Py - Py If this is the case,
use Py,ee Py @ plZ; if not, delete the Py but save the index. (This
index is for later use in producing G(r).) Continue until there are

no more p, ., symbols. GCount the number of plz‘s, RPS, and the
number of pla's, RPA. If RPA is odd, return to R 4; if not, sef

RP = RPA/2, Compute Z = DN-RPS-RP-3, N = (RPS+RP+1)!/(RP+1)!,

RP(DN—I)!/Z! . Multiply the term coefficient by N, set

and DR =2
up a term coefficient denominator of DR, and change the sign of the
numerator if Z is odd. Set up a new denominator exponent

DE = DN-RPS-RP-2.

EX. We find RPS =1, RPA = 6(even), RP =3, Z = O(even), N =5,
DR = 5760, DE = 1. The indices saved are (@,p,6,p,V,p). We have

the term:

4

4, 5
-(1200/5760)(1/M )w” (1-u) ®16°28 Vs klpklvk

2p °
COM. The integration over the parameters w,u,z,x remains to be

done. The w and u integrals will be of the form:
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F(s,n,t,m,r) = the O(r) terms of I{(s,n,t,m) where

{ i +
. . E™ (- %) A% -
e K“& LU- g1 v« EE «g-D\™ "
| 1
! n - & e - u
I(s,m,,-1) =~ &g (-6 A8 Snll-8) » REl~En 1],

The order is with respect to the parameters ¢ = E/K?' or &= D/KZ,

which are much less than 1. For m = -1 we will use the logarithm

form. If we let z =[ (1-£)+ eE+ 5&2] and expand the integrand of

I in a series, we find:

\

u-2) & 1—t & \%\ _iS L\:—.\L

\
1 (S, \"\lt‘ '(T\\‘ B K‘lls*w"-\

%W\
A
~+\ +Lv\+\\e+Lv\*~1\ (\—%\%'\‘"'E 20
]
.t
or  Lle wn -t :“l('{é\\\"?:\hi b § 1ve } 0. T
AN
where A = e+ 6. These terms are sufficient for our purposes.
This then requires the integrals:
-z b
Tlak, o) = (A2t czo 3 3,kzo
LY
\
Tkam\olﬂ\:h\—z\a Sl Y a,bzo
A

where 0<< A< 1. J(a,b,c,r) is the O(r) term of J(a,b,c). We find

for ¢ =20, r=0:
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J(ach):% a) \h\\k + b-cal+l4 0
T s (a0 i L) ’

G al s Tt ocecb-lza
(2 +b-c+! le-b-1)],

for ¢ =20, r# 0, b-ctl< r < atb-ctl:

it
i AR

(2 +bo-r —c+ W Leve-b ),

Jla, b, g,5) =

for ¢ = 0, and all other r, J(a,b,c,r) = 0.
for c=-1, r= 0

a

J(a,b,-1,0) = — )

t=0

=iy a‘.
TN R .

for ¢c=-1, r+ 0, b+l < r < at+btl:
al W ey

J(a,b,-1,r) = rr La+rbo-r +0 (r-ba)!

a\. Ar L\'\ A k~\\rb‘b-‘
r la+b -+ (r-b -0

for c = -1, all other r: J(a,b,-1,r) =0,

In the w integral, K% = A, Then s = -1, since A2 only
arises from the cutoff factor. Since we want the cutoff-independent
term, let r = 0., For ¢,8,2 we use ¢',8',4A' as defined in (C.6).
Since no (l-w) factors appear, t= 0, and since the Py integral al-
ways leaves a denominator, we have m> 0. The resultant terms of
F(-1,n,0,m,0) will contain A' in the denominator or else a factor
In A'. From its definition we have AZA'/MZ = (1—u)+ue+u26. If it

occurs, the ln(AZ/MZ) term is dropped since we know that M is
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cutoff independent. If no w integral is performed, the denominator
is already of the form: M® A'. In either case we again need the
I(s,n,t,m) integrals.

For the u integral KZ = M2 and €,6,4A are as in (C.6). We
set r = 2 since we only want the 0(m4/M4) terms. The resulting
terms will have coefficients, numerator factors of ¢,§,4 ax}d perhaps
a factor of InA or a power of A in the denominator. |
E. (Because it would be too involved, and because there is no sym-
bol manipulation involved, we will not give a detailed description of
the evaluation of these integrals. We determine the parameters for
F(s,n,l,m,r). Then we use each term of the series (C.7) in turn
and calculate the J(a,b,c,r) needed. These terms are collected.
There will be at most two terms in each case. These terms constitute
R 5 for the w integral and R 6 for the u integral.)

EX. For our term, for the w integral we need F¥(-1,5,0,1,0), which
has the two terms: -1lnA-137/60. We take the InA piece which, to-
gether with the (l-u)é/Mll, specifies F¥(2,0,4,-1,2) = —1/25 for the u

integral. Our term yields

-(1200/144000)(1/M4') k, k. k

®1a%2pYs S 1v 2p -

COM. We can now apply the criterion based on the requirement of

gauge invariance: the number of momentum factors in the numerator
must be 3 or greater. If the denominator contains momenta, we will
keep the term since there may be gauge invariant terms in the expan-

sion of the denominator. This allows us to drop many terms and is
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essential to the convergence of the matrix element.
PRO. (As INPUT we have the maximum number of momentum factors
in the terms of €,8,4,k. The vectors kl’ kZ’ and q have one power
of momentum. As INPUT we have a momentum power of 3 or 0 for
the 1/A and InA factors, depending on whether or not they contain
any momenta.) Take the numerator exponents of €,5,4 obta!.ined
from the parametric integrals and multiply each by its respective mo-
mentum power. Sum these numbers. Test each symbol and add its
momentum power to the sum. If there is a 1/A or 1nA, add the ap-
propriate momentum power to the sum. If this sum is less than 3,
return to R 6 for the next term; if not, we continue.
EX. The momentum values of €,35, A,1/A and 1nA are all zero.
None of these factors occur but the vectors yield a momentum power

of 3 so that we may continue.

COM. In doing the x and z integrals we must remember that €,6,4,k
may depend on these parameters., After substituting for €,6,4,k we
find that for A = 3 the mtégrals are complicated by the appearance of
1/A and InA with A = [1-2z(l-z)(1-x)(kk,)/M’] . For A =2 there

are only the integrals:
|

S 7‘“ AK = V\\'\'\ ) h-:# —1 X

°

For A =1 there isno x or =z integral. Accordingly, for A = 3 we
will postpone the x,z integrations until after we have collected all of
the final terms, but we will now do the integrals required for A = 2,1.

PRO. Take the exponents of € ,k,A in the numerator and delete them

after placing the appropriate number of symbols for each of them.
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(Since we will substitute for these factors, they must be symbolized.
As INPUT we have €,6,4, and k in terms of coefficients, invariants,
vectors, and the parameters.) Starting from the left, test each symbol
of the term. If it is one of €,6,4,k, substitute for it thereby produc-
' ing many terms. All terms produced excepting one are put into R 7.
Continue with this term until it halls no further substitutable f%ctors.
On subsequent returns to R 7, take a term and repeat the substitution
procedure on it. If there are no more terms, return to R 6.
EX. In this case, €,8,4, k do not appear.
PRO. I A=1,3, ignorethe x,z exponents; if A =2, delete the z
exponent, n, after multiplying the coefficient denominator by (ntl).
EX. Here, A =1 so that nothing need be done.
PRO. Take the indices saved from the pl‘s and create a reservoir,
R 8, each term of which is the combination of the original term with
one of the terms of G(r). (These terms can be generated using the
recursion relation
2r-1

Glay i dogp )™ Z\ Nt ze & G Loty iy gy “gra)

Gl (5\ = ‘3.:((5 .
EX. We have the indices (0,B,6p5v,pP)e There are 15 terms to G(3).

We take one term to give the term:

4
-(1200/144000)(1/M )210%28 Y5 51,5122 8058 puBvp

PRO. Do {(DOT PRODUCTS) and (SORT). If there is a zero dot product,

return to R 8,
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EX. Our term, with all integrals done, becomes
4
-(1200/144000)(1/M Me, k) )k k) ,éz ’

COM. With the integrations complete (except for x,z if A = 3), we turn
to simplifying the matrix expressions. We might have any combination
of an odd number of matrices between the neutrino spinors. By per-
muting these matrix quantities using the y matrix commutation relation
and using the neutrino Dirac equation, we can reduce any term to a
combination of the forms: (él), (él), (éz) and (;élﬁézdl). Using spur

techniques, one can verify that
\ - L¢|¢'L d—\,,\ ¥ &-\d‘\'el\ LéL\ ® (kl‘e"l_.\kél\ % \Q\'EL\ kﬁ-:’ \L’:—' o .

We can use this to eliminate (,él;ézgil), If we consider the polarizations
in combination with the matrix quantities, we have the basic forms:
TITZ(;il), (el-éz)(él), Tl(éz) and T, (§)). T, and T, are defined in
(I1I.20). These forms will be multiplied by combinations of invariants
and perhaps a factor of 1/A or InA. If we collect all these terms, we
have the reduced but non-symmetrized matrix element.
PRO. Set up a reservoir, R 9, and place this term in it. Take a term
from R 9, unless there are none; in which case, return to R8. Apply
(MATRIX ZEROES AND PAIRS). If a zero is produced, return to R 9;
if not, continue. Do the 7 tests listed below, in sequence. If any of the
conditions is satisfied, then follow the procedure given and skip further
tests:

1. If there is a YIJ-’ move the leftmost one one place to the right,

producing 2 terms. For a neighbor of Y, use:
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SRS RIS Rt

)= e w2l )

For any other neighbor, use
Lo o YooY == Lo e Yo w2 e o)

where A = k2’ kl’ Q) €, OF e,. (To do this, the mate must bp located.

To prevent the situation ypyv =Y ¥, =Y, ees (ad infinitum), we must

B PV
look separately for a yp with each index and deal with Yoz only after
Yo is no longer in the expression.)
2. If there is a KZ’ move the rightmost one one place to the

left, producing two terms:

(ooodlllyenn) = = fosodpdlas 42 (oo iy M), )

where A=k e, or e

1° Y 2
3. If there is a J, , move the leftmost one one place to the right,

producing two terms:

(...;él./,a(...)—»a (...A;él...m(...(kl-A)...)

where A = dys € OT €5.
4, If there is a él’ which is not at the extreme right, move the

leftmost one one place to the right, producing one term:

Coo syl n b = = Lo vadllyensd A=e, ore, .

5. If there is an ;éz which is not either in the combination ’ézél

or at the extreme right, move it one place to the right, producing 2 terms:

(coefolhei) = - (condéy F2(0(egeA) .ul), A=g



" 7

6. If we have the combination élézé , produce three terms:
- .;él,ézgil. aa) =* (...(el-kl'),éz, e eealeyk)é . 00)
tlooulegoey)bye.) .

7. If the invariant (k,+k,) is present, take the leftmost one
2 p
L

and produce two terms:

Y TR U TR L T TR R, TS, T

If any of these operations were carried out, take the terms
produced, (SORT) each, and place them in R 9, and then return to R 9;
if not, continue.

EX. We make the substitution (kl-kz) = (kl-ql)-l- (kz-ql) and take, here,

the first term to give
4
-(1200/144000)(1/M Me,o k) (k" qp) él "

PRO. Delete the matrix factor symbol but keep an 'exponent' to denote

which it was (i.e. él’ '42,’ Al). Delete the polarization symbols but keep

an 'exponent' to denote which they were (i.e. T T,,T,T

1’ 172817 €5)

and change the sign of the coefficient once for each factor of (k_l- ez)

e

or (kz-el). Delete the (kl-ql) and (kz-ql) symbols but keep an ex-
ponent for each. Reduce the coefficient to lowest terms, and change
the signs of the numerator and denominator if the latter was negative.

EX. Reducing the coefficient we have

a/120)0/M%? (x)t 0" )
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PRO. (R 10 stores the fully reduced terms. We keep the cumulative co-
efficient and the various exponents for each possible type of term. There
is a common denominator, LCD, for R10, and each time a term is to be
added to R10, this common denominator and the coefficient of the term
as well as all coefficients in R10 are adjusted, if necessary, to create

a new LCD for the term and the contents of R10, Then the cqefficient
numerator of the term is added to the accumulated numerator already

in R 10 for that type of term.) Let the term coefficient be N/D. Reduce
D/LCD to lowest terms: D'/LCD'. Unless D' =1, multiply L.CD and
all coefficients in R10 by D'. Multiply N by LCD' and add the product
to the appropriate sum in R10. Return to R 9.

EX. Assume that there were no previous terms so that LCD =1. We
then set LCD = 120 and add 1 to the appropriate total for terms of the
form: (l/MZ)2 T1 f ’él'

COM. To symmetrize the expression we create a second expression
with the substitutions e* " ey, q T4, and add the two together. We
then have a fully reduced and symmetrized matrix element for one
diagram.

PRO. (We get here after exhausting all terms in R1.) Create a reser-
voir R1l and copy all nonzero terms of R10 into R1l. Take each term

from R1l and change exponents according to the scheme:
b-—»f, T1<—>T2’é14—>é2_

If the total number of él’s, ’I‘l‘s and Tz's is odd, change the sign of the

coefficient. Add the term to R10 and return to R1l until all terms in

R 1l have been treated.
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EX. If the only term in R10 were the one we were using as an example,
2.2
)* T, b (4,).

PRO. (The English symbols for the variables are built into the program.)

we would add to it: -(1I/M

Take each term from R10. Reduce the accumulated coefficient and LCD
to lowest terms. Print the coefficient as a fraction and the letter equiva-
lents for the variables. When all terms in R10 have been priz}ted, we
are through.

EX. If LCD = 36 and the term were
-24 RZ f Tl (,él), (R is the uxl anomalous moment)

we would get a printout of

- 2/ 3 R*%*2 F p i (E2)

B. Coding

Since this work was done on an IBM 7090, the symbols were coded
as 36 bit binary or 12 digit octal words. The symbol numbers were chosen
so that the code for an invariant is the algebraic absolute sum of the codes
for the constituent vectors. For example, if we denote "code for p" by

C(p), we set:

C(p) = 100 000 000 000  (octal)
C(k,) = 010 010 000 000
C(p+k) = 110010 000 000 = C(p)+ C(k)) -

A vector index is a number between 1 and 15 (dec) in the first 4
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bits of the word. E.g..

100 000 000 003 a

3

"

Clpg)

]

C(klﬁ) 010 010 000 006 g=6 .

A kronecker delta, or more precisely the metric tensor gaﬁ,
is coded in two words, each having two indices. The first inéex, in
the first 4 bits, has one of the indices of the gap° The second index,
in the next 4 bits, is a number between 1 and 15, which is the same for
the two halves of a ga[3 and serves to identify them as belonging to
the same gap. E. g.

“Eap’ = 000 000 000 026 P
where 1 is the second index. (The 1l appears as a 2 in the second digit
since the octal numbers specify 3 bits, while each index is alloted 4
bits.)

A gamma matrix without indices is C(y) = 000 000 010 000. It
has two index locations in the first and third 4 bits. The first index is
used in dot products, while the second is used to identify yp. s y}i pairs

in matrix reductions. The second index is always present. We have

It

Cly 000 000 011 002 a=2

o

or 000 000 011 000 .

Slashed quantities are coded as y-A = £ with the addition rule

for dot products holding. Thus



C(p)

=
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100 000 010 000 = C(p) + C(vy)

The coefficient is kept as a signed integral numerator and

signed integral denominator.

Exponents are kept several to a word

sometimes signed and sometimes unsigned.

Thus a sample term might be

(1/2)1/M%) (1-0)° (")) £ P A2V

which would be coded:

-000

000

110

000

100

000

001

001

000

000

050

010

000

000

000

001

002

000

000

000

000

000

000

000

010

0l10

011

000 000 000

001

002

000

021

001

023

000

000

403

002

coefficient numerator

exponent word: (l-u) exp. and (l/MZ) exp
(p- i)

half of gaﬁ (a=1)

Pa

half of gaﬁ (B = 3)

coefficient denominator.

A table of symbols is kept and any symbol which may occur can

be identified by comparison with the elements of the table.

The program was written in FAP (Fortran Assembly Program),

involved about 4000 commands, used 20,000 words of storage, and exe-

cuted for about 8 minutes per diagram. The input data for each diagram
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was about 150 words.

Numerous internal checks were included so that faulty data was
soon rejected. When terms of an expansion were used, it was required
either that the last term be of higher order than that needed or that the
last term be of no lower order than that needed. Since, prior to the
writing of the program, part of the calculation had been done by hand,
that part served as a check on the program. Aside from the Epossibility
of using incorrect formulas, the mistakes introduced by an incorrect
program should be quite different from those introduced by random

human error so that the check is fairly good.

C. Generalization

One would like to be able to do a wider range of similar problems
by computer techniques. The difficulty lies not in the impossibility of
writing appropriate programs but in the time required to write them.
FORTRAN or any of the other programming programs provides an easy
way to make computer programs for arithmetic problems. Provided
that the appropriate subroutines are available, one need only write out
an arithmetic expression and FORTRAN codes a program to evaluate it.
It is not hard to conceive of a similar method for use with symbols and
rrea_l-number fractions. However, the writing of FORTRAN was a huge

task and one would guess that writing a symbolic programming program (*)

(*) One such program is called LISP (Woodward 1961). In LISP informa-
tion is stored in lists of elements, an element being a single symbol or
another list. The LISP language consists of a set of basic operations
which can be performed on a list and which can be compounded to ac-
complish any sort of operation on the lists. The author has not thoroughly
investigated the feasibility of using LISP type languages in the type of
problem discussed here.
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would also be a large task. There is also the problem that generalized

methods accomplish things less economically in terms of machine time.
Another approach is the development of a library of subroutines

which could be grouped together to do part or all of a problem. Many

of the parts of the program we have described are of, or could be gen-

eralized to be of, this nature. The method of indexing used folr four-

vector dot products would serve in general, although the rule C(AH C(B)=

C(A+B) might be replaced by a tabulated function. This would ease the

symbol coding restriction imposed by the addition rule.

All of the operations in the matrix permutation procedure could

be embodied in the rule: ''If there is a (some matrix quantity),
move it one place to the (right or left) unless it would pass (some
matrix quantity).'' The programmer would have to figure out which are

the simplest basic forms and in what order to move the matrix quanti-
ties. The flexibility might be increased by symbolizing a, a, and the
spinors. It would also certainly be desirable to be able to reduce spurs
of matrices in addition to matrix quantities between spinors. The matrix
relations £AA = Az, Yp.vp. = 4 are common to all such problems.

A major difficulty is presented by the integrations. The momen=
tum integrals are of a common form but this is not true of the parametric
integrals. Without the relation AZ >> MZ >> mz, the entire method of
doing these integrals would be different. The only recourse may be to
build up a collection of subroutines for exact rational functions and use

those needed after working out the general integral formulas, for the par-

ticular problem, by hand.
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Finally, we might write a general substitution subroutine for
replacing one symbol by others, and we might try to devise a general
scheme for collecting terms in a way that would be economical with
machine storage space.
An easy method of coding these types of problems for machine
reduction would certainly find use in computing the matrix elc{aments

for higher-order processes.
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APPENDIX D. Tabulation of the Cross Sections and Energy Dissipation
Rates.

For each pro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>