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ABSTRACT 

The transition probabilities and rates of dissipation of energy 

by the neutrino -antineutrino pairs are calculated for the processes: 

+ - ± ± e + e - v + v and e + y - e + v + v, in the limit of a nondegen-

erate electron gas. These quantities are also calculated for the 

process y + y- v + v using a nonlocal weak interaction; the result ­

ing matrix elements are reduced by a symbol manipulation c J mputer 

program. The energy dissipation rates for these processes, the 

± ± -
urcaprocess, and the processes e + (z,A) -e + (z,A)+ v+ v 

and y + (z, A) -- (z 1 A)+ v + v are compared. + The process e + e --

v + v or e± + y -- e± + v + v is found to dominate in the range of 

temperatures and densities considered: 108 °K ~ T ~ 5 x 109 °K, 

1 gm/ cm
3 ~ p ~ 10

6 
gm/ cm

3
• 
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I. BACKGROUND AND INTRODUCTION 

The existence of the neutrino was first proposed by Pauli in 

1933 to account for an experimentally-observed lack of conservation 

of energy in reactions involving radioactive (:3-decay. This particle 

was to react so slightly with matter that, once produced, it could 

escape from the apparatus unnoticed, carrying with it the en~rgy 
I 

deficit. 

Gamow and Schoenberg (Gamow 1941) proposed that this neu-

tri no, produced in (:3-decay or in the inverse proce ss of electron 

capture, 

( z. 1 A) - ( z ~ i I A) + e- + v 

( Z. ~ i , A) ~ e- -- ( ~ 1 A l + 'V 

(I. l) 

could play an important role in the energy transport mechanisms of 

stars. Once produced, the neutrino, as in the laboratory experi-

ments, would escape from the system, in this case a star, without 

further interaction and take energy with it. A photon, a lthough much 

easier to produce, would interact within such a short distance that 

only those produced near the surface of the star would have much 

chance of escaping. Gamow and Schoenberg's calculations were based 

on the Fermi theory of (:3-decay and on the experimentally-measured 

p a ram eters of (:3-decay: · maximum electron energy and halflife. 

. 16 - 16 
As an example , f or the reachon 0 + e - N + v , the 

threshold for electron capture is 6 Mev. This corresponds to the 

average thermal energy at a temperature of 5xl0
10 

°K or 2400 times 
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the temperature at the center of the sun. Although this is a rather 

high temperature for stars, this reaction will serve to give an ink-

ling of the possibilities involved. Gamow and Schoenberg considered 

only the release of gravitational potential energy during the collapse 

of a star from the solar radius to 1/ 40th of that radius at a temper-

atur e around the threshold. I£ 1 o/o of the stellar mat erial taf-e s part 
i 

in the reaction, collapse could occur in about the free-fall time of 

1/2 hour. This corresponds to an energy release rate of lxlo16 

ergs/gm sec for the o
16 

material. 

Normally, the energy liberated in nuclear reactions is greater 

than that dissipated by neutrinos. After the nuclear reactions have 

run their_ course, leaving heavy nuclei with little binding energy, 

the neutrino reactions can take precedence. Assuming a model of 

the stellar structure, they are able to conclude that in the collapse 

the neutrino luminosity exceeds the photon luminosity, and hence 

neutrino processes are of importance in the collapse and in the sub-

sequent nova and supernova explosions. In a less v iolent way, neu-

trino processes should play a role in stellar evoluti on. Since this 

neutrino process provides a way to take energy right out of the heart 

of a star, we should investigate any similar processes which might 

enhance this effect. 

In the Fermi theory of f3-decay {Fermi 1934), the interaction 

matrix element is considered to be constant with the density of final 

states governing the emission spectrum, aside from corrections 

for the Coulomb interaction between the electron and the nucleus. 
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But, the more recent theory of weak interactions of Feynman and 

Gell - Mann {Feynman 1958), Sudarshan and Marshak {Sudarshan 1958) , 

gives a quantitative description of the interaction matrix element. 

This description not only describes f3-decay but predicts other inter-

actions having the same coupling constant. Among t hese is the vertex: 

- + 
e + e - v + v. From this basic interaction come the procrsses: 

I 

(I. 2) 

e - + e-r -- Y+Y (I. 3) 

e.±~ '6 - e-:1:: T ') T \) (I. 4) 

~ ~ ~ - 'Y+Y (I. 5) 

~ ~ ~ ~ Y~-'t +V+~ 1'\. "'- i. l z.. I 3,· • • {I. 6) 

~ +~~,ft.,)_.,. '\) +\> (I. 7) 

Pontecorvo {1959) first suggested the astrophysical importance of {I. 2), 

which is analogous to bremsstrahlung except that in the electron-photon 

vertex the photon is replaced by a neutrino-antineutrino pair. With 

the same substitution, (I. 3) is analogous to pair annihilation (Chiu 1960), 

(I. 4) is analogous to Compton scattering ( Chiu 1961), and (I. 5) and (I. 6} 

are analogous to the scattering of light by light through a v irtual elec-

tron (Chiu 1960). R eplacing one of the fre e photons of (I. 5) by the Cou-

lomb field of a nucleus, we obtain (I. 7) (Matinyan 1961). In stars we 

have ions, electrons, photons, and positrons produced in electron-

positron pairs by high energy photons. Thus processes (I. 2) - (I. 7) 
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can occur in stars and may be of importance. 

We will compute the transition probabilities for (I. 3), (I. 4) and 

{I. 5) and calculate the energy dissipation rates for these processes 

in the limit that the electron gas is nondegenerate . Reactions (I. 2), 

(I. 3), {!. 4) and (I. 7) have been dealt with in the literature. The re­

sults that we obtain and those obtain~d by others are tabulated in Appen­

dix D. 
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II. THE INTERACTIONS 

Preparatory to calculating the transition probabilities, let us 

briefly describe the interactions which are involved . A free f e rmion 

is described by a four component spinor, ~ , satisfying the first 

order Dirac equation, (p' - m) ~ ::: 0, or less common l y by a two com-

ponent spinor, cp, satisfying a second order differential e qua,tion, 

2 2 
(p - m )cp = 0. The ~ and cp are related by 

In Feynman and Gell-Mann1 s theory of the universal F e rmi interaction 

(Feynman 1958), the fermions interact as two component spinors with-

out gradient couplings. This corresponds, in the Dir a c picture, to 

interaction through a four-component spinor having only two indepen -

dent components. With ~ as a Dirac spinor, we then use ~~ =a~ 

in the interaction. In the representation 

(II. 1) 

where a are the Pauli spin matrices, we have 
a 

a = (: ~) ~ ~(~) I 
'-\·;~.., a* ~ ( ~) 

so that (a~) clearly has only two components. A neutr ino then satis-

fies the massless Dirac e quation and has its spin aligned antiparallel 

to it s momentum: 

_F(a'-P) : o, ( E + <r -p) A. = o . 
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Experiment decides between parallel and antiparallel alignment. 

If we introduce a weak current J ct, 

J~ = ( e v,) ~ tp.. v2.) ~ l K p) 

= ( ~~ ~0(. 'f~\) + ( ~f l,(. '-\)~~) + ( 'f~ ~Q. ~~) , 

then for an interaction Lagrangian of 

(II. 2) 

the eros s terms describe neutron I)-decay (n _,. p + e- + v) , muon 

I)-decay (f-L _,. e + v + v), and muon- capture by a proton (f.L-+p- n + v). 

These reactions are observ ed to be well-described by this theory (Klein 

1948}. The reaction e+ + e-- v + v i s predicted by the cross term 

(ev}(ve} but has not been observed . To account for observed strange-

ness changing weak interactions, additional terms must be adde d to 

the current J • We will have no need for such terms as we deal only 
f-L 

with leptonic processes. We will assume that there is no neutrallep-

tonic weak current. It is unlikely that there are such currents, but 

if there are, it is possible that the neutral currents could cause the 

cancellation of certain terms in the charged current interaction, e.g. 

the . sum (ev)(ve) + (ee)(vv) canc..els exactly. 

From the rate for I)-decay (Reiter 1960) the coupling constant 

2 -5 
been found to be GM = l. 024 ± . 002xl0 where the proton mass, 

p 
has 

M , is introduced to produce a dimensionless quantity. 
p 

Alternatively, we might couple this weak current to a vector 

meson, uxl, which would then mediate weak interactions (Feynman 1958 }. 
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It should be remembered that the vecto r field theory is not renormaliz-

able in the normal sense. However, since no divergences occur in 

our applications, we will ignore this fact and hope that this does not 

make these calculations meaningless . Although there has been much 

discussion of the possible couplings of the uxl with the baryon w eak 

currents, for the leptonic weak current we will simply take f charged 

uxl and th~ coupling: 

+ c . c. (II. 3) 

where U is the uxl field operator. If M is the uxl mass, the two 
1-L 

2 2 
coupling constants are relate d by 47if ::: 8GM • One might introduc e 

a neutral uxl, W
0

, coupled to a n e utral weak current, but this i s 

unnecessary to account for the observed leptonic inte ractions and in-

traduces the difficulty mentioned above. For the reaction y+y-v + v, 
we will need to use an uxl and in this case a neutral current would not 

affect the calculation. For interactions described by (II. 2), the de-

scriptions of the interaction by (II. 2) and by (II. 3) are the same in the 

limit that the uxl momentum is much less than the uxl mass . To 

prevent the K meson from decaying into an uxl , the uxl mass must 

be at least that of the kaon (MK"' Mp / 2) . Recent experiments {Danby 

1962) are nicely interpreted with an uxl mass of M = 0.8 M. We 
p 

will use this value when the need arises, but it must be borne in mind 

that the existence of the uxl is as yet unsubstantiated. 

Regarding this interaction, there are two sets of simple math-

ematical relations which are of interest. First, from the definiti ons 

of a and a ' it can be easily verified that the following relations hold: 
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(II. 4) 

Next, let us consider the process A+ B--+- C + D, which is described 

in the local theory by the matrix: (U.Cyf.LauA)(U.DyflauB). This matrix 

form is subject to exchanges of various particles with corresponding 

changes in the form of the coupling. Using the representati<in (II.l) and 

writing out components, it is seen that 

m = VB G ( o.. c ~f a u.. ,.. )( u. ~ ~ t a. u. i!> \ 

:-Ye)G(v..c:. ~fau.BHU.tl ~fa.~A) 

1 

(II. Sa) 

(II. Sb) 

(II. 5c) 

T 
where auA = (0 0 ~A2), etc. Exchanging incoming or outgoing parti-

cles(i.e. A-B, or C-D) changesthesignofthec.oupling. Ex-

changing an ingoing with an outgoing particle while taking the antiparticle 

in each case (e.g. B- C, C- B) changes the coupling constant by 

a factor of 2 and changes the form of the coupling from (pseudo) vector 

to (pseudo) scalar. These are the Fierz transformations and they are 

used when one of the transformed terms is easier to handle than the 

original. 

In addition to the weak interaction we will have use for the elec-

tromagnetic interactions of the electron and uxl. Let us introduce the 

Lagrangian densities for the free electron: 
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and for the free uxl: 

We will use the minimal gauge-invariant electromagnetic coupling ob-

tained by the substitution: a -+ a + iqA . If we consider that l!J 
v v v r 

I 

·annihilates electrons o r creates positrons and U annihilates positive 
f-l. 

uxls, + W , or creates w-, we use 

d v U t ~ t 6 v + i.e A 'II ) U I"' = II -J \)f 

av'-\J----} ~6..,-~ef\..,)~ 

where A is the photon vector potential. We also introduce an anoma­
f.J. 

lous magnetic moment, y, for the uxl through the term: 

* ieyF U U , where F :s:: (a A - a A ) is the electromagnetic field 
f.J.V f-l. V f.J.V f-l. V V f-l. 

tensor. Then the uxl Lagrangian becomes 

To show the effect of the magnetic moment t erm, we form the Euler-

Lagrange equation of motion for U : 
f.l 

l\ ~II~ llr + M2. Ut - ~ e ~;-g) llf\lf ~ Ffv Uv) ~~elI+ 1)FfvUy -r L e 1\fl~~r) \Jf = 0, 

The last term represents a self-interaction of the uxl with the electro-

magnetic field source which, in this case, is just the uxl current. 

If we neglect that term and neglect terms in e
2 

a s b eing of second 

- ~ 2 order, write af.laf.J. = atat - 'V 0 'V, take the root of the (at) operator, 

and go to the nonrelativistic limit with the substitution U = exp ( -iMt)rp , 
f.l f.l 

we find that the spatial components of cp satisfy the Schroedinger 
f.l 
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type equation 

Thus y contributes to both the magnetic, 

interactions. 

(Bxo/ ), and electric, 
I 
I 

Subtracting the free Lagrangians from the total Lagrangians 

leaves the interaction terms: 

For convergent processes the ·s matrix is a function of the Lagrangian 

density, 

where T indicates the time ordered product. We will not go through. 

a full derivation of Feynman's rules(*), but we can obtain the inter-

action expressions for use in perturbation field theoretic calculations 

(* )See for example Bogoliuboy and Shirkov (1959). 
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by taking i times the momentum space representation of the inter-

action Lagrangian. We use the phase convention of exp(-ikx) for 

an incoming particle and exp(ikx) for an outgoing particle where k 

is the particle momentum. In addition we will replace the charge 1 e 1 

by '..[4; e 1 so that in subsequent work e 
2

e:,! 1/137 in units where il = c = 1. 

The particle propagators can be derived from the field oper<f.tor com­
; 

mutation rules (see Appendix A). Doing this, the Feynman rules are 

then as given in Table I. 

Using fermion spinors, u, normalized to uu = 2E,. the pro-

jection operator, for a particle of mass m and momentum k, is: 

~ uu = t{ + m. With this normalization the transition probability, 
sp1ns 

av, is given by 

= \ \m\2. 
2. 1f ~ 2..E! 2. E 

D (II. 6a) 

where D, the density of final states, is 

D (II. 6b) 

Here, n in" a nd 11 out11 indicate all incoming or outgoing particles. With 

these rules we can calculate the rates for the reactions of interest. 



-12-

III. THE TRANSITION PROBABILITIES 

A. + -The Process e + e - v + v . 
The process e+ + e - v + v is described, to lowest order, by 

the Feynman diagram of Figure 1. Using the rules of Table I, we find 

for the matrix element: 

If we use the second form of the Fierz transformation (II. 5b), we obtain 

Taking the absolute square, introducing the traces of the matrices, and 

using the particle projection operators after summing over outgoing 

particle spins and averaging over incoming particle spins, we find 

We can simplify this expression by using the properties of a so that 

(III.l) 

Evaluating the density of final states from (II . 6) for two outgoing parti-

cles, the transition probability is 

(III. 2) 

The integral which occurs here has been done by Lenard (1953), who 

found that 



-13-

(III. 3) 

With this integral and the matrix relations of Appendix B, crv can be 

reduced to the form: 

(III. 4) 

where E
1 

and E 2 are the energies of the positron and electron and 

p 1 and Pz are their 4-momenta. To evaluate this expression in the 

center of mass system, we let p1 = (E , 0, O,p), Pz = (E, 0, 0,-p), ET = ZE. 

Then we have 

cr-.J -= G..._ l E./- w-..'1.) 1\ =-c.= 1.. 
31T 

In conventional units with ET in units of the electron mass 

(III. 5) 

o-:: 

which is the same as the expression obtained by Chiu and Stabler (Chiu 

1961) . at a later date. 

If, instead of the point weak interaction, we use a charged 

uxl m e diated interaction, we have the Feynman diagram of Figure 2. 

Conservation of momentum gives: p:: p 1 - ~ = k 2 - Pz• Feynman' s 

rules then give us the matrix element: 
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The pA.p!3 term of the uxl propagator prevents the use of a Fierz 

transformation, and the appearance of k
1 

or k 2 in the uxl momen­

tum precludes the use of Lenard's integral. The final state~ integrals 
I 

are, however, easily effected in the center of mass system, and the 

matrix algebra can again be done with the r elations of Appendix B. 

We obtain 

C1 = ,_ :z. 2. :z. M -m + w 

Here, w and p are the energy and momentum, respectively, of either 

one of the particles in the center of mass system. In the limit that the 

uxl mass is large compared to particle momenta, (ET<< M, m << M), 

this reduces to 

2. "\ 

a- 'i -::: ~ ~ l ( E ~ - m. ~) -t ~" (- ~ T -r E ~ m"~- + rn. ~ ) + • · · 1 . 
The second term becomes significant for ET- M, which for M = 0. 8 Mp 

is 700 Mev. This energy is much greater than the thermal energy in 

stars so that here the uxl effect is negligible. 
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B. ± ± 
The Process e + y - e + v + v • 

± ± -Next we consider the bremsstrahlung reaction: e + y- e + v + v. 

There are two Feynman diagrams in Figure 3 which describe this reac-

tion to lowest order for a local weak interaction. Using the rules of 

Table I and a Fierz transformation (II. 5b), the matrix elements for these 

two diagrams are 

In this case the transition probability, using (II. 6), is 

'"' = 1251!5 ~(~,\El'\-) ( d'p, 'i,lp~-~~) \ J.'\c., J.'k, 

• b 'k~) b ~ k:_) ~4 l ?2. ~ ~.+ k2.- r- ?,) \ m A+ m s\2. 
(III. 6) 

where E(p1) is the energy of the initial electron and E(q) is the energy 

of the initial photon. 

Gauge invariance requires that under the transformation 

e - e + Ct' q , where e and q are the photon polarization and 
f.L f.L f.L f.L f.L 

momentum respectively, the matrix element be unchanged. If we con-

sider the dependence of the matrix element on the polarization alone, 

this requires that IJ1_(1j) = IJ1 (lj + Ct' 9{), and since IJ1 is linear in lj, 

/JJ(9[) = 0. If we direct the z axis along the photon momentum, then 

IYI_ (y
0

) - IYJ (y
3

) :: 0. Because of this we can average over the photon 
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polarizations in jm j 2 by substituting ( -iy ... y ) for (i ... i). Then 
J.l J.l 

the time and l ongitudinal components cancel: 

\m\~-:: i: lrn\'1:.\\z. ... tlm\~2.)\~-t-t\m\'L)I'L-~\m~t\\2. 

= ± \ m l t-,1\1. ~ ~ \ m\ et-~1\z. 

where e
1 

= {0 , 1, 0, 0 ) and e
2 

= (0, 0,1, 0). 

Squaring the matrix element and averaging over the incoming 

polarizations and summing over the outgoing polarizations, 

L \ W\A ~ m~ \2. = 5it G2.e2. S-p l.t-:t ~fX<., ~~a\ l.t\ ... B-t Ct- D) 

~ ol. '1. t\-=- s"l(~\-t m )~~ tt, + ~ ... mnra\fz_-\-rt\) a~~\~, ... ~+ ~ ') 'i "1) 

- ~ o. ~ b .= 3~ L \ #,-\- W\) ~, l ¥, + ~ ... ~) ~ f a l!( 2. + m) ~ , t f 'l--~ + w.) ~ f a 1 

-~Q(_coc = Spl\~~-\-~) ~fa(r2.-fr-TW\) ~,(-f)_·nn) ~fa \r,"'"1 ... w-) ~ ,J 

~ b ~D =sf l.\~,+~) ~fa lf2..-~~VV\) 'i, l~\."'"w-) ~~ \(2..- '+ W\) ~~a] 

where the system invariants are 

The integral over the neutrino momenta in (III. 6 ) can be performed using 

Lenard's formula (III. 3), and with the application of the gamma matrix 

relations of Appendix B, the transition probability can be reduced to 
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(III. 7) 

To perform the final integrations we go to the center of mass system 

with the z axis along the momentum of the incoming electron. The 

substitution z ::::: (e
2 

+ p
2

) /m, where e
2 

and p
2 

are the final electron 

energy and spatial momentum, r educes the integrands to ln{z) and 

polynomials in z. If we let s be the total center of mass energy of 

the system in units of the electron mass, we finally obtain for the 

transition probability: 

(III. 8) 

In the extreme relativistic limit, s>> l, this reduces to 
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Letting w be the incoming photon energy, we set In 

the nonrelativistic limit jw j << 1, s ~ 1. We use the expansion 

\!\ ~ =- I ls"L-\l ..._ \~"'--\)"'- .._ \~'--\)~ .,_ 
t!~-1} 2. .., T 6 " B 

in (III. 8) and obtain 

or in conventional units 

(III. 9) 

S -SD E4, 1.2. "JO ( ~) 

where ET is the total kinetic energy in the center of mass system 

in units of the electron mass. The relative velocity, v, is c in the 

N. R. limit but goes to 2c in the extreme relativistic limit. In 

Figure 4, crv for this process is plotted as a function of the photon 

energy, and we see that it is smooth through the intermediate region 

between theN. R. ~nd E. R. limits. 

When the energy dissipation rate of this process is computed 

in theN. R. limit, we shall need to know the average rate, E, at which 

energy is carried off by the neutrinos in the CM system. When there 

are only the two neutrinos in the final state, this average is the total 

energy of the system times the transition probability, but here 

~ ~ \\ k ~ ~k~) J(O"~) -=-~ t ~~;-a;- p:) ckto-~) 

=- Yr\ • ~ . t o-") - \ '? ~· d l 0'" \J) 

where A
0 

or A denotes the time component of a four-vector. The 
0 
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second term requires the re-evaluation of the integrals in (III. 7) with 

an additional factor of p~, the second electron1 s energy , in the inte­

grand. The integration can be carried out as before. Adding the two 

terms of E: 

(III.lO) 

In the extreme relativistic limit 

r e 2.'l2.3 
\ \~ S - 2..D4D ) 

Neglecting the constant term, (E / av) ~ (17 / 20) ms so that the neu-

trines carry off 85o/o of the energy in the E. R. limit . For the non-

relativistic limit 

(III. H) 

Here, (€ /av) = w so that, on the ave r age, the neutrinos get half of 

the center of mass kinetic energy or, what is the same thing, the photon 

energy. 

The expres sions (III. 8) and (III.lO) and those derived therefrom 

differ from the corresponding expressions found by Chiu and Stabler 

(Chiu 1961) by a factor of 41T. We hav e used an electron charge of ..(4;e 

while they use e. However, it would appear that they use e 2/hc~l/l37 
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which, we believe, should be changed to e 
2 

/he!:!:!. ...[4; / 13 7, Matinyan 

and Tsilosani (Matinyan 1961) have reported that V. L Ritus has ob-

tained a much greater value for the neutrino energy loss for this process 

than that of Chiu and Morrison (Chiu 1960), who used the values of Chiu 

and Stabler, 

In the extreme relativistic limit we will need the ave r age energy 
. ! 

carried off by the neutrinos but not in the center of mass (CM) system. 

Let us find the average rate at which energy and momentum are carried 

off by the neutrinos in the E. R, limit. From (III. 7) we see that 

d(crv)::: B(p
2

)/E(q)E(p
1
) where B(p

2
) is an invariant and E{q) and E(p

1
) 

are independent of p
2

, If we then form 

. , (IIL 12) 

we will have a vector quantity. This will be a linear combination of 

(q + p
1

) and (q - p
1

) since they are the only vectors we have. In the 

center of mass system, in the E. R. limit, (q + p
1

) has only a time 

component while (q - p
1

) has only a z component. Thus the coefficient 

of p ~ in CM is the coefficient of {q + p 1) and the coefficient of p ~ 

is the coefficient of (q - p
1
). 

- 2 -I 
Inspection shows that p 

2 
= p 

2 
= 0. 

There is only one invariant, {p
1

· q), since we take m
2 = 0. We can 

thus find p
2

!J. in the E. R . limit in any system by using the following 

center of mass system results obtained from (III.l2) using d( crv ) from 

(III. 7): 
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p~ =-
e._ G-....__ ly,·¥"l.. tcy+f,lt>L\1'\. Z.lf,·j-\- }'

0
J 

l2.01r'l... Et f•l l'\) 

?~ "' 
e.._ G-"'L. w:!' ~:, \ \~ ~ - 6 ~) 

~011"1.- 46 

With these and the relation p1 + q = av{p1 + q) we obtain for the E . R o 

case: 

(III.l3) 

C. The Process y + y - v + v . 

Finally, we describe the photoproduction reaction: y + y - v + v o 

For a l ocal weak interaction we have the single Feynrnan diagram of 

Figure 5. This must, of course, be symmetrized with respect to the 

two incoming photons. Using the rules of Table I and a Fierz transfer-

mation (II. Sb) we have for the matrix element: 

Gell-Mann (1961) has shown that this matrix element is zero. 

Sinc.e the neutrino - antineutrino pair is created at a point, the particle 

amplitudes at the origin are nonzero and hence they a re in an orbital 
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angular momentum state of L ::e 0. Ih the center of mass system the 

two particles are traveling in opposite directions. The antineutrino 

spin is along its direction of motion; the neutrino spin is antiparallel 

to its momentum. Hence , the z component of the spin is l so tha t 

the spin state is S = 1. With L = 0, S ::: 1 we have a J = 1 state. 

Angular momentum being conserved in the interaction, the initial pho-
1 
; 

tons must be in a J = 1 state. But, Yang (1950) has shown that fo r 

symmetry reasons two photons can not be in a J = 1 . state. Hence, 

the amplitude for y + y - v + v, via a local weak interaction, must 

be zero. 

Let us present the argument more concretely. Consider, first, 

the vector part of the spur in (III . l4): 

where SYM denotes the first term with e
1
- e

2
, q

1
- q

2
. The com­

mutation relation of the y matrices and the trace of any number of y 

matrices are invariant under the substitution of the negative transpose 

for each y matrix: 
T 

y - - y • Making this substitution and taking 
f-1 f-1 

the transpose of the argument of the spur: 

Since J d 4
p is even in p, we may substitute -p for p in V . Also, 

Sp(AB):: Sp{BA) so that exchanging symmetric parts , we find 

Comparing this with the original form for V, we find that V: -V = 0. 
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This is an example of Furry! s Theorem (Furry 1937), which states 

that because of charge conjugation invariance, the contribution of a 

diagram having a closed fermion loop with an odd number of y in­
J.L 

teractions is cancelled by the contribution of the diagram with the 

direction of that loop reversed. 

Next, let us consider the axial vector part of (III.l4): 
I 
I 

AJ.L is a function of q1, q 2 , e 1, e 2 , 

and symmetric in the two photons. 

and m , bilinear in e
1 

and e 
2 

Since A is pseudovector, it 
J.L 

contains the permutation symbol E aj3/to, which is antisymmetric in 

all pairs of indices. In the CM system with transverse photons, we 

ments, A must have the form: 
J.L 

(III.l5) 

where F 
1 

and F 
2 

are functions of the invariants (q
1

• q
2

) and 
2 

m' 

which are symmetric in the two photons. We have used E (A, B, C, D,) = 
Eaj3/to AClBI3CA.D0 • Now, for the axial vector part of the matrix element, 

we have IYJ A ::: const (uv ?..f\auvl ) . The Dirac equation for the neutrinos 

yields (uv 2}f2auv1) = (uv 2~ auvl) = 0. Using conservation of momentum, 

q1 + q 2 = ~ + k 2 , we get zero for the first term of AJ.L • In the CM 

system with transverse photons, working with compone.nts, we find that 

(e1 , e 2 , q1-q2 , J.L) = (k1 + k 2 ) (e1 x e 2 ) t ' so that this term of J.L z componen . 

A is also zero. Thus IYJ = 0. The argument for the second term 
J.L 
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hinges on the fact that A is not a function of k1 or k
2 

except in the 

combination k
1 

+ k
2

• This is essentially the same as the local nature 

of the interaction. 

If we now consider a nonlocal weak interaction, the same argu-

ments would apply for a neutral uxl. The appropriate Feynman dia-

gram is given in Figure 6. The matrix element ·would be 

If\ " leo" ,t) l"' 'L 'ira u., I\ I J. ~f ""r\.1 0 a f' It·~"' ,!., )'-' ... eL h\·L- ..... 1 
'drv - ~ k, ... ~ .• \ •. l '\f..,+ ll..L, /"""\.... + t s" t-'\ \ • 

l \.;..., -t "~l,_ {_ !'-'\\.... 

Here, the second t erm of the uxl propagator numerator produces 

[uv 2 (~ + }£
2

)auv1] = 0. Aside from the uxl denqminator factor of 

[2(q
1

• q
2

) - M 2] , the other piece of the uxl propagator numerator 

yiel ds the same expression for the matrix element as in the local in-

teraction case (III.l4) and hence is zero. 

For the charged uxl these arguments do not apply a nd the 

matrix element may not vanish. The four Feynman diagrams for 

this interaction, to lowest order, are given in Figures 7a, b, c, d. 

Using Feynman1 s rules from Table I, we find the following matrix 

elements: 

(III.l6a) 

)J ., 
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(III.l6b) 

)f. l e I • ~ ~ ~ ;-1'~) j o<.~ - el~ '? ~~- e I .. t~~ -'i l 'r I c( e t~ -r I r- e I cot))\ ;-l~ ~ H ~ ' 
t 
I 

(III.l6c) 

• (III. 16d) 
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In this process, unlike the two previous ones, the uxl momentum is 

not limited by the external momenta. Here the uxls are in closed 

loops so we must integrate over all values of uxl momenta. 

There is a similar situation in the case of the decay J-L-e + y. 

Although we now know that this process is forbidden by the difference 

between the neutrinos associated with muons and those associated with 
I 
I 

electrons (Danby 1962 ) , the calculation of the matrix element, still may 

be done as a formal exercise. For a local weak interaction, the pro-

cess is described by the two diagrams of Figure 8. In both cases 

the loop integral is f d
4
p/p which, while cubically divergent, is zero 

since the integrand is odd in p and the interval of integration is even. 

Introducing a charged uxl we have the three diagrams of Figure 9. 

We now have two or three particles in the closed loops and the same 

symmetry argument no longer holds. Indeed, Feinberg (1958) found 

that for an anomalous magnetic moment of l, the matrix element is 

convergent. For no anomalous moment it is divergent, and in either 

case the first non-vanishing term is O(G):: O(m
2 
/M2 ). (*) We will 

return to this process after computing the neutrino pair production 

matrix element. 

L et us gather some tools to aid in our examination of the rna-

trix elements (III.l6) . We would like to examine these matrix e lements 

to some o rder in (m
2 
/M

2
), where we consider the particle energies 

to be of the order of m, since this is the energy range of interest and 

(::<) When we use the notation O(mn/~), it is to be understood that the 
coupling constant is f 2 . The only exception will be when G is ex ­
plicitly displayed. 
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since such a limitation will ease the calculational difficulties. To do 

this we will expand the propagator denominators using 

A--B 
\ \ I 

=- + -~-A A P>-

+_I ~-\-'e>_\ ~··· 
A A. p.., 

to obtain, for example, 

(III.l?) 

Since p is a variable of integration, we must integrate the products 

of such expansions. The integrals which arise will be of the form: 

In Appendix C we find that the dominant term, (m 
2 << M

2
), in such an 

integral is: 

I( b) = O(m2c/M2c)m2 (r+ 2-a-b) s, r, a, (III.l8) 

where c = b + s for a - r - 2 ~ 0 

c=b+s+a-r-2 for a - r - 2 ~ 0 . 

If we consider a product of expansions of the form of (III.l?) for 

uxl and electron propagators all multiplied by some numerator, then 

for some given terms in the expansions, t he product will be character-

ized by some values for s,r,a,b. Of course, r could be half integral 

but then the integral, I, vanishes so we take s, r, a, b integral. If we 

consider further terms in any electron propagator expansion, b and 

s are fixed. Going out one term in the expansion, Aa = 1, Ar = 0, i· 
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Half integral r causes I to vanish. Thus A(a-r-2) = 1 and c in-

creases (c =: b + s + a - r - 2) or remains constant (c :: b + s). Going 

out two terms, Aa = 2, Ar = 0,1. Here A(a-r-2):: 2,1 and c in-

creases or remains constant. In general c increases until c = b + s 

and then remains constant. In either case Ac f. 0 and the exponent of 

M
2 

in the denominator of the resulting integral does not decr-ease. If 
i 

we consider further terms in an u_x:l propagator denominatoir expan-

sion, a and s are fixed. Going out one term in the expansion, Ab = 1, 

Ar = 0, for integral r. Then (a-r -2) is fixed and Ac = 1. Going out 

two terms, Ab = 2, Ar = 0,1. If Ar = 0, then Ac = 2. For Ar = 1, 

if (a-r - 2) was ~0 then Ac = A(b+s) = 21while if (a-r-2) was <0 then 

Ac = A(b + s + a - r - 2) = 1. In all cases further terms in an uxl ex-

2 
pansion yield lower exponents for M • Thus if for some term in the 

expansions c is greater than some val ue c , for all further terms 
0 

c > c . Also, given any c , going out sufficiently far in the uxl ex-o 0 

pansions we can have c > c . 
0 

We can also say something about the exponent of k, where k 

represents any of the external momenta, in the terms of the matrix 

element. To assure gauge invariance the photons enter through the 

field tensors F /YJ is bilinear in the two field tensors and F 
~v ~v 

2 
has one factor of k so that together we have k • Examination of the 

matrix elements (J:II.l6) shows that each term has an odd number of 

vectors in it. If we again use the expansions for the denominators, we 

see that all vectors other than k ent er in the pairs 

Thus for any term we have kn, where n is odd and greater than or 
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equal to two so that n ~ 3 . 
n 

We can drop terms having k , n< 3, since 

the y must cancel to preserve gauge invaria nce . 

4 
Another fact that will be of aid is that the 1/ M numerator terms 

in the expression 

(uxl propagator ){uxl- single ph oton interaction)(uxl propagator) 

cancel. These terms are simply 

A=~'\ <t>- 11oll~-t)~ lt ?-r~~)·e. ~~" -~"r-crhe~ 

-'?~ e,_ - 'H '\ ~ e r-- \-~ e ~ 11 \:'il- 1'~ . 

A= 0 . 

(III.l9) 

With these t ools we can deal effectively with the matrix elements 

(III.l6) . First, let us treat the divergent loop integrals . All four matrix 

elements have primitive diverg ences . They are linear, cubic, quintic, 

andcubicin /J1A' /J1B' /J1C ' and /J1 D' respectively . Ifweneglect 

4 
1/ M terms from single photon-uxl interactions , these are r e duced to 

linear, linear, cubic, and cubic , respectively. Expanding the propagator 

denominators and going out sufficiently far to assure gauge invarian~e, 

w e see that /J1 A and /J1 B are conv ergent and that /J1 C and 

logarithmically divergent. These divergent pieces are: 

/J1 are 
D 
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In our coordinates 

Using the Dirac equation 

LV..~"L ~:,a l "'(>4,. ;- W'-l ""¢>, a. '-"-v ,~ == "?1.. \_ v-.'-~'l. ~ a v...., 11 • 

. 2 2 2 2 2 2 
We create a common denommator of D : (p

4 
-m )(p

1 
-M )(p

2 
-M ) '-

(p 3 
2 

- M
2

)(p
5 

2
-m

2
), suspend writing the constant coefficient, and u s e 

the notation (_¢) = (uv 2_¢au v1). Further, l e t £ = 1 - y and drop terms 

which must cancel by gauge invariance or which are convergent. 

Then, including the symmetric p arts, we find: 
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I. 
I 

Since 2{p1· p 3 ) = p 2 
2 + p 5 

2
, all the terms of !YJ D(DIV) are cancelled 

by terms of !YJ C{DIV). We can expand the denominator to get 

.,. ?' \ ~1..- k,) T ... 

~ '?'\... - ~L) \ p~- M\..)5 

All furthe r terms of this expansion lead to convergent integrals. If, 

in the integral, p enters the denominator only in the form p 
2

, we 

may make these substitutions in the numerator (see Appendix C): 

With these substitutions all remaining divergent terms which satisfy 

the gauge invariance requirement cancel. Thus /}'} A+!YJ Bt/YJ C+/}1 D = /}'} 

is convergent. 

We now turn to the convergent terms. Examining all terms in 

!YJ with the aid of the relations (III.l8) and the gauge invariance re­

quirements, we find that the leading term is O{m 
2 
/M

2
). Such terms 

yield a matrix element of order {f
2 
/M

2
) ~{G), which does not vanish 

if M
2 

- oo. These terms come only from !YJ A and there only from 
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the g term of the uxl propagator . This contribution i s propor-
fJ.V 

tional to 

We expand the uxl denominator, 

and apply (III.l8) to see that only the first term in the series contri-

butes to O(G) . The matrix element, to this order, is the same as 

for the local weak interaction (III . l4) but for the factor : -M
2 

j (p
2 

-M
2

). 

We rna y write it as 

where the effect of the uxl is to introduce a sort of convergence fac-

tor. The Fierz transformation and all of the other arguments used in 

the local interaction case can be u s ed her e to show that to O(G) this 

matrix ele ment is still zero. 

This is not the same as in the case of the muon decay . Here, 

the leading term in the matrix e lement beha ved the s a me w ith and 

without an uxl. In the (J. - decay in the local interaction case , t h e rna-

trix element vanished , while introducing an uxl produced terms of 

O(G). But in the (J.-decay case the local interaction matrix element 
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was cubically divergent. After the introduction of the uxl, the corres-

ponding terms still vanished. That is 

and I = 0 but P ;j. 0. However, expanding [ (p-k) 
2

-M
2

] we have 

+ ... 

and here the leading term vanishes. The remaining terms still contain 

divergences and are able to contribute to O(G) . On the other hand, the 

matrix element for y + y - v + v, for a local weak interaction if gauge 

invariance requirements are considered, is convergent. In general, 

if a process is convergent for a local weak interaction, then, since it 

appears that the zero order effect of introducing an uxl is to include 

a cutoff factor, [ -M
2 
/(p

2 
-M

2
)], and since we would expect a conver-

gent integral to be independent of a cutoff, the uxl should have no effect 

to zero order. However, we certainly have not proved this general 

conclusion with any rigor. 

There are higher order effects. Examination of the matrix ele-

ments (III.l6) with the relations (III.l8) shows that all four Feynman 

diagrams contribute to O{m 
4 

/ M
4

). It is a straightforw ard though lengthy 

task to evaluate these terms. The actual evaluation was done on a high-

speed digital computer w i th a program devised to do dot products, matrix 

permutations, substitution of integrals and other work of a symbol-

manipulation nature. This program is described in Appendix C. We 

w ork in the CM system with transverse photons and let 
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(III. 20) 

a+b+f=O 

The contributions to this order are then found to be: 

I I 

'((\~ = - ~.._:~ \\ =t:: ck "t J-x { l ( <i,) T 2. - ( t,_)T,ja L £\li~ t~-ll4=t. l \-:c')li->L) 

oc 

where D.= [I+ Za z(Fz)(l-x)/m
2
], 

Y\\c ~ -~~~'- i l \ ¢,)T~- l¢~) T,~ a. ( ?,~ - + -L~.._ ) 

* (~,) \ E?-1• e~ lb-~}(- ~- ti- 2~'")} , 

"'L 

'MD~ -l.e~" t [ ~t,)T 2.-\ t1-!T,1 a l- ~ ) 1 
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The integrals remaining in /J1 A were not done by the computer but b y 

hand to yield: 

2 ,/ 2' 
where 2w is the total center of mass energy and p = 2w {1 - 1 1-1/ w ) • 

/J1 has the form: 

Using (II . 6), the transition probability is 

We take the incoming photons along the z-axis, each having its polari-

zati on in the x o r y directions, and average over the four combined 

polarization states. The neutrino momenta are taken to lie in the x, z-

plane. Here the integrations are easily effected. Then 
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We can evaluate these expressions in the nonrelativistic limit, jw /<< m, 

and in the extreme relativistic limit, m << w << M, 

(III. 2lb) 

There is no real value of y for which these expressions vanish. In 

theN. R. case the bracketed coefficient has a minimum value of 10. 6 

for y = -5 / 4 and is equal to 10 . 9, 24. 2, 102. for y:: -1, 0, 1 re-

spe ctively. Using y = 0, 

in conventional units . Using M = 0 . 8M , 
p 

-63 I L1.J )1. t c..) 
o- lN.~.) -=- 2. 0 )(I D l W'\ \T 

(III. 22) 

c.m.._ 
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which is much smaller than either of the other two eros s sections {III. 5) 

and {III. 9) for (w/m)<< l. Although this eros s section is small, it does 

show that perfectly reasonable calculations can be made with uxls. 

This result is much smaller than the estimate given py Matinyan 
' 

and Tsilosani {1961), who did not show that the O(G) term vanishes. 
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IV. ENERGY DISSIPATION RATES 

We will now calculate the energy dissipation rates, in a hot 

electron, positron, photon atmosphere, due to the three transition 

probabilities: (III.4}, (III.8) and (III.21). The electron and positron 

densitie:S are described by a Fermi distribution: 

(IV o la} 

where E is the total energy and f-L , the chemical potential, serves to 

normalize the total density. The photon gas is described by a Bose 

distribution with zero chemical potential: 

(IV o lb} 

These distributions are in what we will call the lab system wherein 

the gas center of mass is at rest. 

+ -For the reaction e + e -- v + v we need the positron and 

electron distributions. The radiation is in equilibrium with the e + e-

pairs through the reaction 

-ny n=2,3,4o .. 

Following Landau and Lifschitz (1958}, the photon gas chemical poten-

tial is zero and so f.Lt + p. _ = 0 where p. ± are the potentials of the 

electron and positron gases. In the absence of residual matter, the 

positron and electron densities are equal: n+ = n . Then the densities 

are given by 
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If we approximate the transition probability for the pair pro-

+ - 2 
duction reaction y + y - e + e by 2wr c , multiply this by the 

0 

square of the number of photons with energy greater than an electron 

mass, and divide by the equilibrium density of electrons and posi-

trons, we have the reciprocal of a characteristic relaxation time, 'T , 

for the approach to equilibrium between photon and electron1positron 

densities: 

where r 
0 

is the classical radius of the electron and Cl is the fine 

structure constant. Evaluating this 

where T 
9 

is the absolute temperature in units of 10 9°K. For 

T
9 

> .17, 7 < l sec, which is small compared to the evolution times 

in stars . 
-7 

For T 
9 
~ . 3 we have 7 < 10 sec. These times are upper 

limits as other processes will enter due to the presence of matter. 

Having established that equilibrium conditions exist, we can 

now calculate the energy dissipation rate, E, using 

The distributions are given in (IV .l); the transition probability is given 

in (III. 4). E(vv) is the energy taken off by the neutrinos and is here 

equal to the total energy of the interacting particles. Working in the 

lab system of coordinates we find 
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~ = -~G-___," ...,....---- \\ L E: I E:z. - t'. f ..... -+-~\ \2.E, EL -7-f'' p'L + w-.\..) 
91o\.:"f\c..)loili E:,E.'L l~><-?lt~-r-)1k.T) +I 1 

"' (E"1+E2.l ";- '\?~ J.f, J._fL olQ, J._.Q-L 

In the nondegenerate limit we neglect the 1 in the distribution denomi-

nator s • Using fJ. + + fJ. _ = 0 we find 

In this limit we see that (dn _ dn+) is independent of the residual e l ec­

tron density, n
0 

= n _ + n+, since ~-'-+ and fJ. _ enter only through the 

combination: (fl.+ + fl._}. In theN. R. limit, E::: m + p
2 
/2m. The 

integrand has its maximum at (p 
2 
/2m

2
) = (kT /m ) so that for (kT} << m 

the N. R. approximation is valid. Then the first term in (p / m) is 

where p is the density in gm/cm
3

. In the E. R. limit we take E=p>>m 

and find 

12.B 
-rrs 

(.G- Hfr t \c. T)'\ c 
l~c..\~ M~ 

(N. 3) 
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These results in both the E . R . and N. R. limits are in agreement with 

those later obtained by Chiu and Stabler (1961). Chiu (196la) has also 

calculated the effect of slight degeneracy of the electron gas. 

± ± -
Next we consider the process e +y- e +v+v • The transition 

probability (III. 9) and the average (vv) pair energy were calculated in 

the CM system in the N . R. limit while the particle distribu~ions are 

given in the lab system. The relativistic transformations involve 

But in the nonrelativistic limit 13cM ~ p / m ..... O so that we can neglect 

the transformations. Then 

where E is as defined in (III.ll) . Using this we obtain 

4 
35 

The last factor is simply the electron-positron density. Integrating 

we obtain 

(IV. 4) 

where l ;fl is the average number of electrons per nucleon. The 
e 

value (IV . 4) is in agreement with the work of Chiu and Stabler (1961) 

except for the factor of 4 1r discussed after the crv calculation. Our 

result is 47r times larger than theirs. 

The factor Vf.L deserv es further consideration. Aga in follow ing 
e 
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Landau and Lifschitz, the number of electrons and positrons in the 

extreme and nonrelativistic limits are 

N.'R.. 1 T<-'-w...J 

'E.~·I 

In the N. R. limit the effect of atomic electrons, n
0

, is considered 

while in the E. R . limit we will see that . n+ + n _ >> n
0 

even for high 

densities. We take n to be ~the nucleon number density and then 
0 

plot, in Figure 10, that matter density at which t~e number of pair 

produced electrons and positrons equals the number of residual elec-

trons. For the N. R. case we have set n = 0 in the expression for 
0 

(n+ + n _). The residual or pair produced electrons will dominate N , e 

depending upon which side of the curve the chosen temperature and 

density lie. On the same graph we plot, as a fun~tion of temperature, 

that equivalent matter density for which the electron gas becomes de-

generate. The temperature used is such that kT is 1/3 of the Fermi 

energy. For the N. R. limit we have plotted (n+ +n _)/n
0 

as a function 

of temperature for various densities in Figure ll. At T 
9 

:: l and 

3 
p :: 2000 gm/ cm , N is enhanced by a factor of 1. 7 over the n value. 

e o 

In the extreme relativistic region, Chiu and Stabler consider only the 

residual electrons but, unless p > 10 9 gm / cm
3

, the pair produced elec -

trons dominate . At such high densities, degeneracy sets in. Using the 

pair production electron density, we have in the N . R. limit 
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In the extreme relativistic limit we may use (III.l3) for the 

average momentum carried off by the neutrinos to find: 

Using (III.l3) and (IV . 1), taking the nondegenerate limit, and neglecting 

the electron mass, we obtain 

e 
(IV. 5) 

where D ::!: (n++ n )/ n . Using the pair production electron density 
e - o 

We must let T 
9 

> 20 so that (III . l3) is non-negative. Chiu and Stabler 

(1961) obtained an answer of the same form as (IV.S) but w ith an overall 

coefficient of 0. 2xl08 and the constant in the bracket equal to +0. 6. 

Since the method of calculation is not given, we can not tell where the 

difference arises. However , since the temperature range in which this 

expression is valid is rather high for stars, the practical difference, 

in this case, is small. 

If the electron gas is degenerate, there will be a strong decrease 

in the energy dissipation due to this process. Here, as in the other 

processes, the integrations over initial particle densities used must be 
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better approximated, but here, in addition, the degeneracy will affect 

the final state since it contains an electron. If degeneracy is complete, 

scattering becomes impossible unless the final electron passes the 

Fermi surface. The effect of degeneracy has been calculated by Chiu 

and Stabler. 

Finally there is the neutrino energy loss due to the two photon 

annihilation reaction. Again we have 

where (s , s), (t ,t) 
0 0 

found in {III. 22) that 

are the four - momenta of the two photons. We 

crv is proportional to s 6 in the CM system. 
0 

After summing over photon spins and integrating over the final states, 

there is but one invariant: (s•t). We can write crv :: (invariant)/s t 
0 0 

4 
so that crv is proportional to (s•t) / st. Then 

0 0 

Is- 'I I 4&'2... L S·t'~ 
CJ'I/ :: e 

2 '0 ?::.5 11 =- M"' ::. .. -t .. 

Using the distribution (IV .1) we have 

where z is the cosine of the angle between the two photon momenta. 

Integrating we find 

(IV. 6) 

-" _.., \3.(\\ 
c.. = a . -1\ " 1 t:> .;, \ " I..T) 

s(z) is the Riemann zeta function s(7):: 1. 008 .... As we would ex-

pect, this contribution is very small. Neglecting the ln(2w) term in 
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the E. R . cross section (III. 21) except in the coefficient, this tempera­

ture dependence also hol ds in the range m < T < M: 

t_ ~ ~ 0 , 1 b ~ ~. \o \ ~ j ~ l T "\ I :~J 1 x I \.(~T ~ !> l ~ J ~y-j \ J w..- -;, e.c 

(N. 7) 

for zero anomalous moment . 
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v. CONCLUSIONS 

In conclusion we will compare the energy dissipation rates of 

the various neutrino processes, and, although a detailed discussion of 

the astrophysical effects of these processes is beyond the scope of this 

paper, we will mention some of the implications of these reactions 

which have been investigated by others. 

When comparing the dissipation rates, we will include .three 

reactions for which we have not calculated the rates. We will use 

the results of S. G. Matinyan and N. N. Tsilosani (1961) for the pro­

cess (I.?), G . M. Gandel'manandV. S. Pinaev•s (1959)resultsfor 

the bremsstrahlung reaction, and the results of G. Gam ow ( 194la) 

for the urca-proces s for three elements weighted according to esti­

mated relative abundances . 

The transition probabilities and energy dissipation rates for 

all but the urea-process are listed in Appendix D . These energy 

dissipation rates are plotted as functions of the temperature for var­

ious values of the density in theN. R. limit in Figures 12, 13, 14, 

15, 16 , 17. Forthesegraphswehavetakentheaverage (Z / A}tobe 

1/2 and the average (Z
2 

/ A} to be 6, corresponding to Mg
24 

which is 

of interest for the high density, low luminosity dwarf stars (Gandel' man 

1959}. Finally, in Figure 18 we indicate the ranges of density and 

temperature for which the various processes dominate. For the pro-

cesses involving incoming electrons, we have used the pair produced 

density where it is important. 

We see, approximately, that for T 
9 

> . 5, the electron pair 

annihilation process dominates, while for T
9 

< . 5, the Compton 
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scattering process is most important. 

-
The rate for the process '( + '( - '( + v + v has not yet been 

calculated and it may be of importance. We can estimate it as 

I 4 2 -
(M m) e d times the '( + '( - v + v rate . (M/ m}

4 
is included since 

we will have a term of O(G); e 
2 

accounts for the added photon in­

teraction; d( ~ l) stands for the effect of an additional particlie in the 
I 

final state. Estimating in this way we have 8.,...., 10
14 

erg / gm sec at 

p = l, T 
9 

= 3 . This is less than that due to electron pair annihila­

tion which, having the same density dependence , thus dominates. 

It has been shown by Gandel1man and Pinaev (1959) that for 

low photon luminosity conditions the neutrino luminosity can exceed 

the photon luminosity. They consider a stellar model with an iso-

thermal core. If we let T and p be the core temperature and c c 

density, then 

fc. 

(
Rir -I \.2.s 

1"'- fc. II~-\ "l 

Using their values for the constants of the stellar model and (IV. 4) 

for the energy dissipation rate in the e± ± '(- e± + v + v reaction, 

it can be found that 

L~ 
52. B - :z. . :; 

o. B )( lO Tc. fc. 

e.r- 5 I se..c... 

L-y I L~ -::. 
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where Lv and L are the n eutrino and photon luminosities, respec­
'1 

tively. pc is in gm/ cm
3 

and Tc is in T
9 

units. At high densities 

and temperatures, the neutrinos can take the lead. At T = 1 and 
c 

p = lxl o6 
the neutrino luminosity is 5 00 times the photon luminosity 

c 

so that neutrino processes then control the evolution of the star. 

Gamow and Schoenberg {194la) and Chiu (196lb,c) hal e per-

' 
formed analyses of the collapse of the stellar atmosphere due to the 

rapid dissipation of energy by the neutrino processes once the tern -

perature has risen high enough for them to become prominent. Fowler 

and Hoyle {1962) find that the neutrino processes or a similar energy 

dissipation mechanism is necessary to provide the proper time scale 

for the production of the elements around Fe
54 

in the observed pro -

portions. On the other hand, the abundance of red supergiant stars 

in the region of h and X Persei is found by Hayashi and Cameron 

(1962) to exceed that expected on the basis of a decrease in the life-

time of such stars due to the energy loss caused by neutrino emission. 

This situation has yet to be clarified. 

Since all of these reactions, aside from the urca-proces s, 

depend upon the unobserved (ev)(ve) coupling, a substantiation of 

its exist ence would be welcome. Observation of a charged uxl coupled 

to a leptonic weak current and the absence of cancelling neutral cur-

rents would lend weight to the existence of this and other non-eros s 

. * terms m the .J J coupling. 
J.l J.l 
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APPENDIX A. Particle Propagators. 

We will sketch the derivation of the momentum space propagators 

for the electron and uxl to obtain the correct phases. (For a more 

complete treatment and for the derivation of expressions used in this 

appendix, see Bogoliubov and Shirkov (1959).) 

The propagator for a particle moving between points f and y 

is the vacuum expectation value of the time-ordered product of the par-

ticle1 s field operators. Thus, for an electron created by ljJ or annihi-

lated by ljJ, we have 

where < > indicates the vacuum expectation value. If we break up 
0 

iii and ljJ into creation and annihilation operators, we have 

where 

since 

ljJ(-) annihilates electrons and ljJ(+) creates positrons. 

<lf!(+) = lf!(-)> = <lf! (+)=iii (-)> :::: 0, 
0 0 0 0 

fl ~f ( l ~Hl'il 1 ~\....-~ \)(.)})., 

L < L ~ l-llx.)) '\~\.~) \'\ 1\lo 

Then 

w h ere [ , ] + is the anticommutator. Since the anticommutators are 

c-numbers and the vacuum is normalized to l, we find 
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-p =-{ l \.\)~-)l'\) 1 '-\ll+)\~)J+ 

L- \... '\} \.-) lx.) I ~I.-I") l ~) l ~ 

The electron commutator is 

. [ '\)l-)\'\l
1 

'\Jl+\()I.Jl-t l~~'\-~-'MJ ~ \)L-)l~-X.J 

l'1'~-)l)l..)l\fl+\ \'\lJ+ ~ l~~i+W\)+ \)\ ... ) li-~) 

(±) +' \ e~kx. where D (x} = l2. 1r )~ 

and the Pauli Jordan function, D(x) = D{+){x} + D(- )(x}, satisfies the 

Klein-Gordon equation: 
2 { 0 -m )D(x) =: 0. 

Then 

where Dc{y) is the causal Green's function of the Klein-Gordon equa-

tion. This Green1 s function allows an effect only inside the forward 

light-cone of a source. Then in the momentum representation 

for an electron of momentum k or a positro n of momentum -k . 

Similarly the charged vector uxl cornrnutator is 
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or 

so that 

\) l u x. ~) =- ( T l u; '{ \ \J ~ lx.) ) ) ~ 

or 

-=- { < 'Jtl'~\ u~I.~) L)L)/t> 

l < \J*F' Ll'-) \J~~) L~) )0 

= ~ ~ ~r 'l -+ 
d)l.t:: )~9 

I M"\... 
) t:f l >L- 'f) 

bX.C: ~ Xv 
I 'I<L<-,) 

-: '- L 'J( ~ -Y l l~"--~"-- i.. e) I 
M "--

in the momentum r epresentation. 

c\~ k 
l 1...."\1\ 
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APPENDIX B. Matrix Relations. 

The y matrices are defined by the commutation relation 

y y +y y = 2g where g = 0 for }-l:#:V, g = 1, -1, -1, -1 for 
}-1 V V t.J. · }-L V }-LV }-LV 

tl = v = 0, 1, 2, 3. We define y 5 = y 0y1y 2y 3 and let EO!I3A.o be the 

totally antisymmetric fourth-rank tensor. Taking any representation 

we find Sp(y)::: 0, tl = 0,1,2,3,5. We let ft =A y. Then the fol-
tl }-1 }-1 ' 

lowing relations can be easily verified: 

y y = 4 
}-1 }-1 

y fty = -2ft ' 
}-1 1.1. 

Sp(l) = 4 

Sp (odd number of y matrices) = 0 

Sp (ft Jt):: 4(A'B), 

Y Jt Jt y ::: 4(A• B) 
}-1 }-1 

y ft Jt ¢ y = -2 ¢ Jt t 
1.1. 1.1. 

Sp(y) = 0, 1.1. = 0,1,2,3,5 
1.1. 

Sp (ft Jt y S) = 0 

Sp (ft Jt ¢ Jj?) ::: 4(A· B)(C· D)+ 4(A· D) (B · C) - 4(A· C) (B· D) 

Sp (ft Jt ¢ ]j? y 5 ) =- AO!BI3CA.Do EO!I3A.o 

n-1 i+ l 
Sp (i. ft 2 •. • ft.)= L (-1) (A ·A.) Sp(.q\1 .. • ft. 1.q\.+ l ' • .ft 1) 

"~1. n i=l n 1 1- 1 n-

n even, n ~ 2 . 
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APPENDIX C. Program for Reduction of Matrix Elements. 

Since, in perturbation field theory with a small coupling constant, 

the matrix elements of higher order processes become less significant, 

the fact that they quickly become prohibitively lengthy to reduce does 

not render the theory useless. There are, however, cases in which 

one desires to reduce fairly complicated expressions such as
1 

(III.l6). 

' 
It is the length and tediousness of these calculations that makes them 

difficult to do without error; the basic methods used are well -known . . 

It may well be that this burden could be lifted by more powerful analy-

tical methods . On the other hand, we can take advantage of the 

repetitive nature of the work and code the problem for reduction by a 

high-speed digital computer.(>{' ) 

A program has been written to reduce the matrix elements (III.l6). 

The program is specific to this problem, but in general conception and 

in many particular aspects the methods could be applied to other prob-

lems. It should be emphasized that this is not a problem in numerical 

analysis. The variables are given code numbers since that is the kind 

of symbol a computer handles, but these numbers need have no ordinal 

significance. Real numbers enter as coefficients and integral exponents. 

The coefficients are treated as rational fractions with integral numera-

tor and denominator. This means that no numerical ina ccuracies ~re 

introduced. 

First, we will describe the major steps involv ed in the calcula-

tion and then redescribe them in greater detail. Next, we will cover a 

(>'" ) Mathews {1960) has written a program to do the dot products in some 
express ions ar i sing in the quantum theory of gravitation.. The method 
used was different from that used in the program under description. 
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few of the coding techniques which were used. Finally, some possible 

extensions of the techniques will be mentioned. 

A. Description. 

To evaluate the matrix elements of expression (III.l6) to O(m 
4
/M4 ) 

one would: 

1. Perform the dot products indicated between propakator 

numerators and the inter action terms. 

2. Do the integration over the undetermined momentum. 

a. Introduce a cut-of£ factor for divergent terms. 

b. Produce a common denominator using Feynman 

parameterization. 

c. Do the momentum and parametric integrals. 

3. Reduce the matrix combinations between the neutrino 

spinors. 

4. Symmetrize the result with respect to the two photons. 

The flow chart of Figure 19 describes the process in greater de­

tail. Rather than collecting terms at each stage of the calculation, if 

an operation produces many terms from one, we usually set up a reser­

voir of terms and proceed on with just one of them until it is fully re­

duced. Then we return to the reservoirs to pick up and further process 

the remaining terms until all have been dealt with. An 1 R 1 on the flow 

chart indicates that such a reservoir has been set up. 

The following written description, which parallels the flow chart 

but is more detailed, is broken up into three parts, the pieces of which 

alternate. 1 COM' will indicate commentary which describes the 
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calculation and derives any needed relations. These pieces follow each 

other and can be read separately. 1 PR01 sections describe the work 

more from the program view. 1 EX1 labels an example of the work. 

Each of the diagrams was done separately. Those quantities which 

form data for a particular diagram are labele d 'INPUT'. Some sec-

tions of PRO which will be used more than once are given su~routine 

names (e.g. SORT) and the occurrence of that name at some other lo-

cation indicates that that subroutine is also to be applied at that location. 

COM. Let · us treat one diagram at a time. For the time being we can 

ignore the (p. 
2

-m . 
2

) factors in all propagator denominators and con-
1 1 

sider just the propagator and interaction numerators in (III.l6). Con-

servation of momentum allows us to replace q 2 in all expressions by 

PRO. Each of the propagator nume rators or interaction expressions 

are INPUT as lists of terms . All of these lists together constitute R 1. 

(A term consists of a numerical coefficient numerator, exponents of 

2 
scalars (e.g. 1/M, m, uxl anomalous moment), symbolized vectors 

( k k ) ' . t( 2 
e.g. Pa• qla' la' 2a' ela' e2a' rna, Ya• gaf3' mvar1an s e.g. P ' 

p·ql' p·~· p ·k2 ' p•el' p• e2 ' ~·el' ~·e2, k2·el' k2• e2 ' el·e2, kl·k2' 

k
1
•q1, k 2 ·q1), and matrix quantities (e.g. p1 , 4_1 , ~· )f2 , ,i1 , ,i2 , yf.l). 

The neutrino spinors are not symbolized since they always appear at 

the beginning and end of the matrix quantities and we can simply act as 

if they were there. The matrix (a) is not symbolized since it always 

occurs as (auv), and the effects of the a 1 s can be derived without their 
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explicit symbolization. For electron propagators, the electron mass 

is treated as both a vector and scalar at this time so that when doing 

dot products we may have: m{m y ) ::: m(l).) 
f.L f.L 

EX. For /J1D we obtain from expression (III.l6) the following numera-

tor lists: 

[ 'Jf.._ - ~~ "?r r~- ~1.. ?r- k,d. - ~1.. kt- po~. - ~"L k 'r "-~d-1 

l ~t'-v - ~1.. f'f'? v + ~1.. f'~ ~'-v + ~"'- k<-1~ pv - ~'-~~ lL~ j 

L.e.,o4..e.,f> -le., ·e.-..1 cs~~1 

L?\ ~ WI.MrJ 

l ~" ~~ ~r l 

COM. In (III.l9) we showed that the (l/M
4

) terms from adjacent uxl 

propagators at an uxl-single photon interaction cancel. We can there-

fore disregard such terms. 

PRO. D e cide on one term from each of the numerator lists in R 1. On 

each successive return to R 1, we take another combination of numera-

tor terms until all are exhausted, and we then proceed to the symmetri­

zation of the reduced terms (see page 11). 

EX. Choose terms 2 , 2, l, 1, 1 in the five lists respectively. 

PRO. (In the INPUT we list which pairs of numerator lists are uxl 

propagators from an uxl-photon-uxl interaction.) For each such pair 

of lists, we test to see if the combination of the terms chosen from 

these lists have a factor (l/ M
4

). If there are any pairs which satisfy 

this condition, we return to R l; if not, we continue. 
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EX. There are no such pairs here and so we continue. 

COM. The properties of the matrices a and a were displayed in (II. 4). 

From these we see that if A represents the product of an odd number 

of y matrices then aAa = Aaa = 0; if A is the product of an even num-

ber of y matrices then aAa = Aa. In all of the matrix combinations 

of (III.l6) the A 1 s which occur are the product of an even nufTiber of 
I 

y matrices or electron masses, and all electron masses occur in such 

an A. Thus the condition aa can occur if and only if we have an odd 

power of the electron mass. We therefore disregard terms with odd 

powers of the electron mass. 

PRO. Take the terms decided upon and combine them. (When we com-

bine terms, we form a new term by multiplying the coefficients, adding 

the exponents of the two terms, and placing their symbols next to each 

other in order.) Test the m exponent. If it is odd, return to R 1; if 

it is even, continue. 

EX. The terms chosen yield 

The m exponent is zero, which is even, so we continue. 

COM. With the exception of the two cases mentioned (i.e. l/M
4

,m
2 r+1), 

we multiply out all of the terms in the numerators performing the indi-

cated four-vector dot products. We discard those terms in which any of 

the invariants formed is known to be zero. Since the y matrices do not 

commute, we must preserve their order and can not, at this time, carry 

out the dot product implied by y ••• y • 
f.l. f.l. 
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PRO. (SORT subroutine) Take the symbols and group them consecu-

tively so that all matrices are to the right of all other symbols without 

changing the order of the matrix symbols, 

(DOT PRODUCT subroutine) Take the leftmost symbol having a free 

vector index and find the symbol having the same index. Use the ap-

propriate relation from the following set to reduce the pair: 

for A, B: nonmatrix vectors 

for A: nonmatrix v ector 

for A: vector 

for A: nonmatrix vector 

• • • g(l!(l!o • • 

unaltered. 

When the first relation is used, test the resulting invariant. If it is any 

reservoir. If not, repeat this process until no further reduction is pos-

sible. (SORT). 

EX. Doing the dot products and sorting we find the term: 

COM. Some matrix operations can be performed without permuting rna-

trices. The Dirac equation for the neutrinos gives }£
1 
uvl :i: 0 a nd 
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uv
2 
~2 ::: 0. The commutation relation for the y matrices gives: 

Jt.Jt::: A
2

, y y = 4. We use these relations where possible and dis­
f..L f..L 

card terms which yield a zero. 

PRO. (MATRIX ZEROES AND PAIRS subroutine) Test the first and 

last matrix symbols. If we have }£2 .. . or ..• ~, return to the pre ­

ceding reservoir. Starting from the left, test each neighborlp-g matrix 
I 

pair. If we have •. . .d.Jt .•. , test to see if A is ~' k 2 , or q1. If 

so, return to the preceding reservoir; if not, u se ... Jt.i . .. :z ••• A 
2 
.•. 

or .•. y y ••• ::: 4. . • . . . . (SORT). Repeat testing for pairs until 
f..L fJ- . 

none are found and then continue. 

EX. We perform pp = p 2 
to find the term: 

COM. We now have to do the integral over the loop momentum, p, by 

creating a single denominator through E'eynman parameterization, 

completing the square of that denominator, integrating over the mo-

mentum variable of that denominator, and finally integrating over the 

Feynman parameters. In case the p integral is primitively divergent 

for any term, we will multiply that term by a simple convergence 

factor of -A2
/(p

2 -A2
). This is justified since we have shown that all 

primitive divergences cancel. Since we desire to know /J1 only to 

O(m 
4
/M

4
), we will discard terms which do not contri bute to this order. 

Also, we will apply the gauge invariance condition described in the t ext. 

First, let us derive some useful relations. The basic para-

meterization relation is: 
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Differentiating with respect to b yields: 

Combining these for n = 2 we have: 

abc 

I 

= ;2_ (\ -=---~-:g:~J_~t:~d-)(~-~ 
\ \...\\-:e \ C:h ~ \\-)1..) 'o ~ ~t..'tc}~ 
c 

In general, for n denominators each having an exponent 

~ 
"::. 2:"~;. lc = l\-X Ild.l "'" X. I \_I 

l ·,- 1-::. l \ - x ·~)a.\. t- x ~ L .l . 
l. 1'.-1 = aV\. 

f3. we find: 
1 

(C.l) 

Integrals over the momentum in a closed loop are of the form: 

I~ = \ 

The simplest convergent loop integral is I~, which can be done as a 

contour integral, remembering that L has a small imaginary part 

(Feynman 1'3~9 ). Thus 

• 

There are some simple recursion relations which allow us to find all 

I: from I~ . Differentiating w ith respect to L we obtain: 

T r _ j_ J.. ,r 
.l... v-+\ - \'\. rr ..L. Y'-
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Forming a factor of (p2 -L) in the nume rator we find: 

I r""' -- L T,.._ Tr 
" ,_ ~ ->"-\ 

Combining these we find : 

(C. 2) 

Since the denominator (p
2
-L) contains only invariants, if thf numer­

ator contained PaPf3' we might replace this by (gaf3/ 4)p
2 

since gaf3 

is the only tensor at our disposal. The 1/4 is a normalization factor: 

gaf3gaf3/ 4 = 1. If we let Gr(~ • • • a 2 r) ::: G(r) represent the sum of all 

nonredundant terms of products of r factors of gaf3 using 2r indices 

2r/ each once, we may write G(r)p K(r) for Pa·. · Pa where K(r), 
2r 

the normalization factor, is determined by: 

(C . 3) 

For given r , G(r) has (2r)! / (2r r!) :;;: (2r - 1)1 ! terms and K(r) = 
r 

2(r-l)K(r-l) ::: 2 (r-1)! . Using relations (C . 2) and {C. 3) we finally have: 

- Ill... 
l 

G- Lr) L-\)r- -""-r-~ lYI-VI'\-1-~)1. L M"' r..,. 1)\ 
2..\"" \.'1-t-ll~ LI"-IJ ~ Ll'\-m-r-::z.. (C . 4) 

In order to apply these relations , the uxl propagators will be 

expanded according to 

A-~ 
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2 2 
where A= (p -M ). These expansions are then multiplied together 

f . . ( 2 M2)-l to orm a power ser1es 1n p - • 

PRO. The uxl denominator expansion is INPUT as a list of lists 

which then constitut e R 2. (Each list is characterized by some value 

of the number of electron propagators for the diagram, A, some value 

2 2 . . 
for the 1/ (p -M ) exponent, B, and some value of the power of p 

I 
; 

in the numerator for each term of the list, RD . Neither the 'electron 

propagator denominator nor the 1/ (p 
2

-M
2

) factor are symbolized. ) 

EX. The denominator for !YJD is 

which can be broken down into the lists: 

= L"'-~ w-. ~) ~ L? ._ - tv'."-(l- li.1 

-t l~.._-M.,_)-~ l- 2l~-"'-~\ ~'Ll~ - \c-.._)1 

-t \ f- M\.rs l - rc Lr-. k.\L f· "-·'~ r· "-· \ ""~ L p· \<.,\l p· \<,Jl? · ~£.,_ \ 

- 'D \ f . k ,\ll( . ',.:_,_ \\? . k \.\ -t B \?. '~',,_) l ?· "-\..' l ? . \<. L) 1 

-t- ~ • • l .) . 
For these lists we have (A,B,RD) :-: (1,2,0), (1,3,1), (1,4,2), (1 ,5,3) 

COM. Let us now consider a particular uxl denominator expansion 

term and a ·particular term of the numerator. The p integral is of the 

form 
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and is convergent or divergent as (2a+2b-2-2r) is >0 or .:::;a . If the 

integral is divergent, we multiply by the convergence factor: 

-K/ (p2 - A2). 

If we have a convergent integral, we can tell if it has terms 

Of O(m
4j M 4 ). C "d h . t 1 ons1 er t e 1n egra 

Using the parameterization formulas (C.l) we can write 

2 2 
where L

1 
= (1 - z )M -zm , K denotes constant factors. Doing the p 

integral using expression (C. 4) we find 

1:. -= \( I __ "t_"' __ ,_l.:.....\:......-_-=c._,:......e._-,--=c\:...:..-:c-=--
!v\~s L '/I.+'B- ~ - 2 

2 2 
If we let L = (1-z) - z~, ~ = m / M , then 

Substituting x = L{z) and expanding z and (1 - z) by the Binomial theo-

rem we hav e 

where 0 .:::;; i ~ A-1, 0 .:::;; j ~ B-1. If we consider that ln(~) :: 0(1), then 

\( ~ . l ~ j .... \(_ ~?-- A. + 2 + ~ j 
M"Ll"::.-t·A+&-?--"L) l\ - ~)A.+~- 1 

Since we want the dominant term as ~ - 0, we let j = i = 0 and see 

that 
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C=B+S for A - R - 2 ~ 0 

(C. 5) 

C::B+S+A-R-2 A-R-2~0. 

With this we can test convergent terms and discard those for whi:ch 

c > 2. 

PRO. Find RN, the exponent of p in the numerator term. \Let S 

2 
equal the exponent of 1/ M . Consider the next one of the denominator 

lists. If none remain , then return to R 1. (For this list we have 

A, B, RD.) Compute the degree of divergence: DD = RN + RD + 4-

2A - 2B. Compare DD with zero. If DD ~ 0, set the C / D indicator 

to DIV (divergent); if not, set C/D indicator to CONY (convergent). 

If CONY, compute X ::.: 2A-RN -RD-4. If X is odd, increase 

it by 1. 2r+l . 
(Odd X means that we have p 1n the numerator so we 

effectively take the next term in the electron propagator denominator 

expansion by increasing the p exponent by 1 and the l / (p
2 

-m 
2

) ex-

ponent by 1. If there is actually no next term in that expansion, we 

will have lost nothing. ) If X ~ 0, compute C = B + S; if not, compute 

C = B + S + X/2. If C > 2, return toR 2; if not, continue. 

If C/D is DIV, change the sign of the term coefficient. 

(Neither A2 
nor (p

2 -A2
) -l are symbolized but are implied by the 

DIV setting. ) 

EX, We find the p power to be RN ::: 5, and the (l / M 2 ) exponent to 

be S = 2 . Suppose that the next list is the fifth denominator list in R 2, 

the list of lists. Then A = 1, B = 5, RD = 3, and we compute DD = 0~0 
so that C / D is set to DIV. Since . the integral is primitively divergent, 
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we do not test its relevance but instead change the sign so that we have 

COM. Since the electron propagator denominator parameterization 

need be done only once for each diagram, we do that manually. We 

combine the A electron propagators with A-l parameters, 1 (z,x), 

combine these with the l/(p
2 

-M
2

) factor using another param~ter, 

and combine all this with the convergence factor denominator using 

u, 

the parameter w. Starting with the parameterizing formula (C.l) we 

find 

I 

~ \ .. 
l~-~c~+lo,I)J~ 

\e:,-1\\ 

~-\ w 

2 3 2 
where d'T::wdwdu, w udwdudz, w u zdwdudzdx for A=l,2,3, 

respectively. Further: 

For A:o:2, l et x::::O, andfor A=l, let x = z = 0 in L . 
0 

If the 

integral is convergent, we simply set w = l. L ' and k are functions 
jJ. 

of the system momenta and invariants. k depends on x and z while 
jJ. 

L 1 depends on w, u, z and x. We will be able to write 
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L' = (l-w) A2 
+ w(l -u)M

2 
+ wuL(x, z) 

so that the w and u dependence of the parameterization is known for 

all of the diagrams. Only the electron parameterization varies. We 

further define: 

(C. 6) 

EX . We do, here, the parameterization for /J1D. There is only one 

electron propagator. We find 

2 2 2 2 = p - (1-w)A: -w(l-u)M -wum 

2 2 2 
so that k:: 0; L(x, z) = m ; 61 :: 5 = 0; E = D. :::: m /M ; E 1

:: A 1 
-

(l-u)M
2 / A2 

-um
2 j A2

. 

PR 0. Set CD = l, 0 as C / D is DIV or CONV. Compute the integer 

(A+B+CD-l)! / (B-1)! and multiply the coefficient of the term by it. 

B-l B-l 2 3 2 
Multiply the term by w (l-u) . Multiply the term by w, w u, w u z 

as A::: l, 2, 3. Set up a denominator exponent: DN = A+ B+ CD. (Only 

the exponents of w,u,z,x,l - u will be carried.) 

5 4 
EX. For our term we set CD = l and multiply the term by 30w (l -u) 

to give 

4 5 4 2 
-30 (l / M ) w (l-u) (p· e

1
)(p. e

2
)(p ) p . 
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For the denominator exponent we have DN = 7. 

PRO. Set up a reservoir, R 3, of the terms of the denominator list 

chosen from the list of lists. Take a term from R 3, unless all have 

been used; in which case, return toR 2. Combine that denominator 

term from R 3 with the numerator term. 

EX. Take the second term of the list to give 

COM. The denominator now has the form (p
2 

-2uwp• k-V ). To use 

the formula {C . 4) for loop integrals we want the denominator in the 

form (p12 -Lu ). Substituting p :: p
1 

+ uwk accomplishes this. 
f.L f.L f.L 

Then L 11 ::: V+w
2

u
2

k
2

. This substitution must also be made in the 

numerator. 

PRO . {To facilitate further manipulation we want Pa to enter the ex­

pression in only one way.) Test each symbol in turn starting from 

the left. If it contains a (p •A}, use the relation 

•. . {p·A) ... ~ .. . Aa:. ·Pa, 

where Aa is any vector. Repeat this until p enters only as Pa· 

EX. The term becomes 

PRO. Starting from the left, test each symbol to see if it is a Pa· 

Ii it is, produce two terms using Pa -- p1a+ uwka. Place the first 

in R 4 and repeat the search procedure until the term no longer 
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contains p a: On subsequent returns to R 4, take another term from 

R 4 and repeat the procedure. When R 4 is empty, return to R 3, 

EX. Since k :!it 0 in the example, we get simply 

COM. We can now apply formula (C . 4) to effect the integral fver p
1

. 

PRO. Starting from the left, test each symbol to see if it is a p
1

. 

If it is, find the index mate and test for p
1 

.•. p
1

. If this is the case, 

use Pla' .• Pla = p1 Z; if not, delete the p1 but save the index . (This 

index is for later use in producing G(r) . ) Continue until there are 

no more Pla symbols. Count the nu mber of p
1
Z's , RPS, and the 

number of Pla's, RPA. If RPA is odd, return to R4; if not, set 

RP::: RPA/ Z. Compute Z:: DN-RPS-RP-3, N = {RPS+RP+l)!/(RP+l)!, 

RP I andDR=Z {DN-l)!Z!. Multiply the term coefficient by N, set 

up a term coefficient denominator of DR, and change the sign of the 

numerator if Z is odd. Set up a new denominator exponent 

DE = DN-RPS - RP-Z. 

EX. We find RPS:::.: 1, RPA = 6(even), RP = 3, Z = O{even), N:::!: 5, 

DR::!: 5760, DE::!: 1. The indices saved a re (a,i3,o,IJ., v,p ). We have 

the term : 

COM . The integration over the parameters w, u, z, x remains to be 

done. The w a nd u integrals will be of the form: 
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F{s,n,t,m,r) z: the O(r) terms of I(s,n,t,m) where 

The order is with respect to the p a rameters E x E / K
2 

or 6 !:c: D / K
2

, 

which are much less than 1. For m = -1 we will use the logarithm 

2 
form. If we let z =[ (1-s) + ES + os] and expand the integrand of 

I in a series, we find: 

I 

or 1\s,V\,-'t.,-\l ~ ~2. 5 \\ 1--:c\"~ ty,.:t ~ · '· 1 
Co 

where D. = E + 6. These terms are sufficient for our purposes. 

This then requires the integrals: 

' 
J \~\ 'a l - \J:: \ l \-""t~d :c!- !._.,._ -:t_ 

b 

{C. 7) 

where O<<t::.<<l. J(a,b,c,r) isthe O{r) termof J(a,b,c) . Wefind 

for c ~ 0, r = 0: 
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c-'b-\ \ ~ 
l-\) a! ;...""b. 

for c ~ 0, r=f. 0, b-c+l< r < a+b - c+l: 

J(a,b,c,r) 
\'("+c.-'c -\ \ ~r 

-l-\ 1 a . ~ 

for c~O,andallother r, J(a,b,c,r):::O. 

for c ;: -1, r = 0: 

a 
J(a, b, -1 , 0) = -.I. 

<=o 

for c:: -1, r=f. 0, b+l ~ r ~ a+b+l: 

J(a, b, -1, r) = 

for c z -1, a ll other r: J(a, b, -1, r)::: 0. 

It o ~ c.- 'o-\ ~c. 

In the w integral, K
2 

::: .tf. 2 
Then s = -1 , since .N. only 

arises from the cutoff factor. Since we want the cutoff-independent 

term, let r = 0. For (/, {J, 6. we use E1
, 6', 6.' as defined in (C . 6). 

Since no (1-w) f a ctors appear, t = 0, and since the p
1 

integral al-

ways l eaves a denominator, we have m > 0. The resultant terms of 

F( - 1, n, 0, m, 0) w ill contain 6.' in the denominator or else a factor 

1n 6.'. From its definition we have .tf6.'/ M
2

::: {l-u)+u E+u
2o. If it 

occurs, the ln{A
2

/ M
2

) term is dropped since we know that /J1 is 
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cutoff independent. If no w integral is performed, the denominator 

is already of the form : M
2 ~·. In either case we again need the 

I(s, n, t, m) integrals. 

For the u integral K
2 = M 2 

and E,o,~ are as in (C.6). We 

set r = 2 since we only want the O(m 
4 
/M

4
) terms. The resulting 

terms will have coefficients, numerator factors of E, o, ~ al"fd perhaps 
' 

a factor of ln~ or a power of ~ in the denominator . 

PRO. (Because it would be too involved, and because there is no sym-

bol manipulation involved, we w ill not give a detailed description of 

the evaluation of these integrals. We determine the parameters for 

F(s,n,l,m,r). Thenweuse each term ofthe series (C.7) inturn 

and calculate the J (a, b, c, r) needed. These terms are collected. 

There will b e at most two terms in each case. These t e rms constitute 

R 5 for the w integral and R 6 for the u integral.) 

EX. For our term, for the w integral we need F(-1,5,0,1,0), which 

has the two terms: -ln~-13 7 / 60. We take the ln~ piece which, to­

gether with the (1-u) 
4 
/M

4
, specifies F (2, 0, 4, -1, 2) = -l/25 for the u 

integral. Our term yields 

COM. We can now apply the criterion based on the requirement of 

gauge invariance: the number of momentum factors in the numerator 

must be 3 o r greater. If the denominator contains momenta, we will 

keep the term since there may b e gauge invariant terms in the expan-

sion of the denominator. This allows us to drop many terms and is 
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essential to the convergence of the matrix element. 

PRO. (As INPUT we have the maximum number of momentum factors 

in the terms of €, 6, D.,k. The vectors ~· k 2 , and q1 have one power 

of momentum. As INPUT we have a momentum power of 3 or 0 for 

the 1/ D. and ln.C:. factors, depending on whether or not they contain 

any momenta.) Take the numerator exponents of € , 6, D. obtc+ined 

from the parametric integrals and multiply each by its respective mo-

mentum power . Sum these numbers . Test each symbol and a dd its 

momentum power to the sum. If there is a 1/ D. or lnD., add the ap-

propriate momentum power to the sum. If this sum is less than 3, 

return to R 6 for the next term; if not, we continue. 

EX. The momentum values of € , 6, D., 1/ D. and lnD. are all zero . 

None of these factors occur but the vector s yield a momentum power 

of 3 so that we may continue. 

GOM. In doing _the x and z integrals we must remember that € , 6, D., k 

may depend on these param eters. After substituting for €, 6, D., k we 

find that for A * 3 th e integrals a re complicated by the appearance of 

1/ D. and lnb. with D.:: [l-2z(l-z)(l-x )(k
1

· k
2

)/ M
2

] . For A ::: 2 there 

are only the integrals: 

\1 )( \'1 J_ )( 

" 
= 

_I_ 
\'vt\ 

'(\-=1:--i 

For A = l there is no x or z integral. Accordingly, for A :=: 3 we 

will postpone the x, z integrations until after we have collected all of 

the final terms, but we will now do the integrals required for A= 2, l. 

PRO. T ake the exponents of € ,k, D. in the numerator a nd delete them 

after placing the appropriate number of symbols for each of them. 
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(Since we w ill substitute for these factors, they must be symbolized. 

As INPUT we have E, 6, !::::.., and k in terms of coefficients, invariants, 

vectors, and the parameters.) Starting from the left, test each symbol 

of the term. If it is one of E, 6, !::::..,k, substitute for it thereby produc-

ing many terms. All terms produced excepting one are put into R 7. 

Continue with this term until it has no further substitutable f<tctor s . 
I 

On subsequent returns to R 7, take a term and repeat the substitution 

procedure on it. If there are no more terms, return to R 6. 

EX. In this case, E, 6,!::::.., k do not appear. 

PRO. If A::: l, 3, ignore the x, z exponents; if A:::: 2, delete the z 

exponent, n, after multiplying the coefficient denominator by (n+l). 

EX. Here, A= 1 so that nothing need be done. 

PRO. Take the indices saved from the p
1

1 s and create a reservoir, 

R 8, each term of which is the combination of the original term with 

one of the terms of G(r). (These terms can be generated using the 

recursion relation 

2...r-\ 
: 2 

~=I 

::.. . \ 
EX. We have the indices (a,f3,6,fL,,v,p). There are 15 terms to G(3). 

We take one term to give the term: 

PRO. Do (DOT PRODUCTS) and (SORT). If there is a zero dot product, 

return to R 8 . 
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EX. Our term, with all integrals done, becomes 

COM. With the integrations complete (except for x, z if A :z: 3), we turn 

to simplifying the matrix expressions. We might have any combination 

of an odd number of matrices between the neutrino spinors. :EfY per-

muting these matrix quantities using the y matrix commutation relation 

and using the neutrino Dirac equation, we can reduce any term to a 

techniques, one can verify that 

We can use this to eliminate (~1,t2,41 ). If we consider the polarizations 

in combination with the matrix quantities, we have the basic forms : 

(III. 20). These forms will be multiplied by combinations of invariants 

and perhaps a factor of 1/6. or ln.6. If we collect all these terms, we 

have the reduced but non- symmetrized matrix e l ement. 

PRO . Set up a reservoir, R 9, and place this term in it. Take a term 

from R 9, unless there are none; in which case, return to R 8. Apply 

(MATRIX ZEROES AND PAIRS). If a zero is produced, return to R 9; 

if not, continue. Do the 7 te sts listed below, in sequence. If any of the 

conditions is satisfied, then follow the procedure given and skip further 

tests: 

1. If there is a y , move the leftmost one one place to the right, 
p. 

producing 2 terms. For a neighbor of y , use: v 
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For any other neighbor, use 

(To do this, the mate must b~ located. 
' 

To prevent the situation '{ y - y y - y '{ ••• (ad infinitum}, we must 
~ v v ~ ~ v 

look separately for a '{~ with each index and deal with yCi.2 only after 

yCi.l is no longer in the expression.} 

2. If there is a }f2 , move the rightmost one one place to the 

left, producing t wo t erms: 

where A= k
1

, q
1

, e
1

, or e 2 . 

3. If there is a }f
1

, move the leftmost one one place to the right, 

producing two terms: 

where A= q
1

, e
1

, or e 2 . 

4. If there is a ,4
1

, which is not at the extreme right, move the 

leftmos t one one place to the right, producing one term: 

5. If there i s an i-2 which is not either in the combination ~2,41 
or at the extreme right, move it one place to the right, producing 2 terms: 

(. • ·~2f,.. ••• }-- ( ••• f,..~2 ... }+ 2 ( •.. (e2 ·A} •.• }, A= e1 
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6. If we have the combination i 1i 2.t1
1

, produce three terms: 

(. • -i1i2.tl1· • ·) _... (. · · {el·kl)i2 . • · )+(. • • (e2·k2)11. · ·) 

+ ( ... ( el. e 2) llr .. ) . 

7. If the invariant {k
1
·k2 ) is present, take the leftmost one 

and produce two terms: 

If any of these operations were carried out, take the terms 

produced, (SORT) each, and place them in R 9, and then return to R 9; 

if not, continue. 

EX. We make the substitution (k1·k2 ) = (k1·q1)+(k2 ·q
1

) and take, here, 

the first term to give 

PRO. Delete the matrix factor symbol but keep an 1 exponent• to denote 

which it was (i.e. 1
1

, i 2 , ,4
1
). Delete the polarization symbols but keep 

an 1 exponent• to denote which they were (i.e. T 
1

, T 
2

, T 
1 

T 
2

, e
1

· e
2

), 

and change the sign of the coefficient once for each factor of (~ • e
2

) 

or {k2 ·e
1
). Deletethe {k

1
·q

1
) and (k

2
. q

1
) symbolsbutkeepanex­

ponent for each. Reduce the coefficient to lowest terms, and change 

the signs of the numerator and denominator if the latter was negative. 

EX. Reducing the coefficient we have 
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PRO. (R 10 stores the fully reduced terms. We keep the cumulative co-

efficient and the various exponent s for e ach p o ssible type of t erm. The re 

is a common denominator, LCD , for R 10, and each time a term is to b e 

added to R 10, thi s common denominator and the coefficient of the term 

as w ell as all coefficients in R 10 are adjusted, if necess a ry , to create 

a new LCD for the term and the contents of R 10. Then the c 9 efficient 

numerator of the term is added to the accumulated numerator already 

in R 10 for that type of term . ) Let the term coefficient be N/ D. Reduce 

D/ LCD to lowest terms: D 1 / LCD' . Unless D 1 = l, multiply LCD and 

all coefficients in R 10 by D 1
• Multiply N by LCD' and add the product 

to the appropriate sum in R 10. Return to R 9. 

EX. Assume that there were no previous terms so that LCD = 1. We 

then set LCD : 120 and add 1 to the appropriate total for terms of the 

I 22 .1 " form: (1 M ) T 
1 

f p
1

• 

COM . To symmetrize the expression we create a second expression 

with the substitutions e
1
---. e 2 , q

1 
- q 2 and add the two together . We 

then hav e a fully reduced and symmetrized matrix element for one 

diagram . 

PRO. (We get here after exhausting all terms in R 1.) Create a reser-

voir R 11 a nd copy all nonzero terms of R 10 into R 11. Take each term 

from R 11 and change exponents according to the scheme : 

If the total number of J1
1
's, T

1
1 s and T 2

1 s is odd, change the sign of th e 

coefficient. Add the term to R 10 a n d return t o R 11 until all t e rms in 

R 11 have been treated. 
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EX. If the only term in R 10 were the one we were using as an example, 

we would add to it: -(l/ M
2

)
2 

T 2 b (¢2 ). 

PRO. (The English symbols for the variables are built into the program.) 

Take each term from R 10. Reduce the accumulated coefficient and LCD 

to lowest terms. Print the coefficient as a fraction and the letter equiva-

lents for the variables. When all terms in R 10 have been prqted, we 

are through. 

EX. If LCD :::: 36 and the term were 

(R is the uxl anomalous moment) 

we would get a printout of 

2/ 3 F Tl (E2) 

B. Coding 

Since this work was done on an IBM 7090, the symbols were coded 

as 36 bit binary or 12 digit octal words . The symbol numbers were chosen 

so that the code for an invariant is the algebraic absolute sum of the codes 

for the constituent vectors. For example, if we denote 11 code for p 11 by 

C(p), we set: 

C(p) = 100 000 000 000 (octal} 

= 010 010 000 000 

= 110 010 000 000 = C(p) + C(k
1

) • 

A vector index is a number between 1 and 15 (dec) in the first 4 
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bits of the word. E.g . . 

C(p a) = 100 000 000 003 a=3 

= 010 010 000 006 13 = 6 • 

A kronecker delta, or more precisely the metric tensor ga13' 

is coded in two words, each having t wo indices. The first inAex, in 

the first 4 bits, has one of the indices of the gal3. The second index, 

in the next 4 bits, is a number between l and 15, which is the same for 

the two halves of a gal3 and serves to identify them as belonging to 

the same ga~· E. g. 

000 000 000 023 
000 000 000 026 

a=3, 13=6 

where 1 is the second index. (The 1 appears as a 2 in the second digit 

since the octal numbers specify 3 bits, while each index is alloted 4 

bits. ) 

A gamma matrix without indices is C(y) = 000 000 010 000. It 

has two index locations in the first and third 4 bits. The first index is 

used in dot products, while the second is used to identify y ••. y pairs 
f.l. f.l. 

in matrix reductions. The second index is always present. We have 

C(y a) = 000 000 Oil 002 

or = 000 000 on 000 

a=2 

Slashed quantities are coded as y• A = Jt with the addition rule 

for dot products holding. Thus 
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C(p) = 100 000 010 000 ::: C(p) + C(y) . 

The coefficient is kept as a signed integral numerator and 

signed integral denominator. E xponents are kept several to a word 

sometimes signed and sometimes unsigned. 

Thus a sample term might be 

which would be coded: 

-000 000 000 00 I 

000 050 000 002 

IIO 010 000 000 

000 000 000 021 

100 000 000 001 

000 000 000 023 

001 001 010 000 

001 002 010 000 

000 000 0 II 403 

000 000 000 002 

coefficient numerator 

2 
exponent word: (1-u) exp. and (1/M ) exp 

{p· kl) 

half of gO! l3 ( 0!=1) 

Pa 

half of gO!I3 (13 = 3) 

1-1 
1-2 

yl3 

coefficient denominator. 

A table of symbols is kept and any symbol which may occur can 

be identified by comparison with the elements of the table. 

The program was written in F AP (Fortran Assembly Program), 

involved about 4000 commands, used 20,000 words of storage, and exe-

cute(j. for about 8 minutes per diagram. The input data for each diagram 
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was about 150 words. 

Nume rous internal checks were included so that faulty data was 

soon rejected. When terms of an expansion were used, it was required 

either that the last term be of higher order than that needed or that the 

last term be of no lower order than that needed. Since, prior to the 

writing of the program, part of the calculation had been d one by hand, 

that part served as a check on the program. Aside from the ~ossibility 

of using incorrect formulas, the mistakes introduced by an incorrect 

program should be quite different from those introduced by random 

human error so that the check is fairly good. 

C. Generalization 

One would like to be able to do a wider range of similar problems 

by computer techniques. The difficulty lies not in the impossibility of 

writing appropriate programs but in the time required to write them. 

FORTRAN or any of the other programming programs provides an easy 

way to make computer programs for arithmetic problems. Provided 

that the appropriate subroutines are available, one need only wr_ite out 

an arithmetic expression and FORTRAN codes a program to evaluate it. 

It is not hard to conceive of a similar method for use with symbols and 

real-number fractions. However, the writing of FORTRAN was a huge 

t ask and one would guess that writing a symbolic programming program (* ) 

(>:<)One such program is called LISP (Woodward 1961). In LISP informa­
tion is stored in lists of elements, an element being a single symbol or 
another list. The LISP language consists of a set of basic operations 
which can be performed on a list and which can be compounded to ac­
complish any sort of operation on.the lists. The author has not thoroughly 
investigated the feasibility of using LISP type languages in the type of 
problem discus sed here. 
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would also be a large task. There is also the problem that generalized 

methods accomplish things less economically in terms of machine time. 

Another approach is the development of a library of subroutines 

which could be grouped together to do part or all of a problem. Many 

of the parts of the program we have described are of, or could be gen-

eralized to be of, this nature. The method of indexing used fo~ four-

vector dot products would serve in general, although the rule C(A)+ C(B)= 

C(A• B) might be replaced by a tabulated function. This would ease the 

symbol coding restriction imposed by the addition rule. 

All of the operations in the matrix permutation procedure could 

be embodied in the rule: 11 If there is a (some matrix quantity), 

move it one place to the (right or left) unless it would pass (some 

matrix quantity). 11 The programmer would have to figure out which are 

the simplest basic forms and in what order to move the matrix quanti-

ties. The flexibility might be increased by symbolizing a, a, and the 

spinors. It would also certainly be desirable to be able to reduce spurs 

of matrices in addition to matrix quantities between spinors. The matrix 

relations Jt.Jt = A 2
, y y = 4 are common to all such problems. 

J.l f! 

A major difficulty is presented by the integrations. The momen ... 

tum integrals are of a common form but this is not true of the parametric 

integrals. Without the relation A2 >> M
2 >> m 

2
, the entire method of 

doing these integrals would be different. The only recourse may be to 

build up a collection of subroutines for exact rational functions and use 

those needed after working out the general integral formulas, for the par -

ticular problem, by hand. 
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Finally, we might write a general substitution subroutine for 

replacing one symbol by others, and we might try to devise a general 

scheme for collecting terms in a way that would be economical with 

machine storage space. 

An easy method of coding these types of problems for machine 

reduction would certainly find use in computing the matrix elements 
[ 
; 

for higher-order processes. 
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APPENDIX D. Tabulation of the Cross Sections and Energy Dissipation 
Rates. 

For each process we list the transition probability and the rate 

at which energy is carried away by the neutrinos in the N. R. and non-

degenerate electron gas limits. Each is first in units with il = c = k = l. 

Masses are in energy units. Energies may be in units of 

2. 

(III. 4), (IV. 2) 

G.._ "L ) = -:.~lET -IN'-"'-

C..M e.~e.'("'Yi 

0 '
-=- ><. \.-.Y1 

\; l aJ ) .J v ex.'D -\\. 1 Ta 
~ \ I 

± ± -e +-y--e +v+v 

= -~­
~51\"L 

(III. 8) (IV. 4) 

(.)= 
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3. y + y - v + v (III. 21) (N. 6) 

l,lo.;)'::. er.e.r~"\ c;,\ 0\'\ e. ? \..-.1}-t-Q'f\. \\'\ C.. I-'\ 

6'1·151\ 
~ 

€ ~ ~ ll) e." c; T':. 
\1 C> \ 11 M"-

= D .S l( \\)-~ \~~I\ e.r~l ~Y>"'-- ~e...c.... 

e ± + ( ) ± -4. z,A-e +v+v (GandePman 1959) 

1515 1\'\ 

fL 
-vre. e ~~ \ c ~ - <::. ec. · 

5. y + (z, A) - v + v (Matinyan 1961) 

s'l~-\- ~ VV\J 

In these expressions GM 
2 = l.02xl0-

5
, (e

2
/hc ) = l /137, Z =nuclear 

p 

charge, p = matter density in gm/ em 
3

, m ::: electron 

mass, M = uxl mass, M ::z: proton mass. Further (l/ f.L ) = l:;(C. Z ./ A.), 
p e 1 1 1 

(1/ v) = l:;(C.z.
2

/ A.) where C. is the concentration of the nuclear species 
1 1 1 1 

(Z . , A.) and l:;C. = l. To account for the electron-positron density due 
1 1 1 
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to pair production, we have introduced the factor D : 
e 

I 
; 

where NA is Avogadro 1 s number. We have used IJ. = 2, 1/ v ::: 6. e 

The energy dissipation rates are plotted in Figures 13, 14, 15, 16, and 

17. 
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4 
over undetermin ed momenta. 

Momentum is conserved at each vertex. 

TABLE I. Feynman Rules used in formin g the matrix elements. (see 
page I \ ) 
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Figure 1. Feynman Diagram for: Figure 2. Feynman Diagram for: 

- + -e +e -v+v - + -e +e -v+v 

(see page 12.) (see page 13) 

Fig. 3a. Fig. 3b. 

Figure 3o Feynman Diagrams for: 

e·+y-e .. +v+v 

(see page 15) 
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Figure 4. The transition probability for the process 

± ± -
e + y - e + v + v. This is given as a function of the 

center of mass photon energy in the N. R. , E. R. , and 

intermediate ranges. (See page 18). 
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(see pa ge 24) 
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Figure 10. Comparison of the electron densities due to 

pair production and due to residual electrons from matter. 

As a function of temperature we plot that matter density at 

which the atomic electron density equals the electron­

positron density cau~ed by pair production. This is given 

in the N. R. and E. R. ranges with a smooth curve joining 

the two regions. Off of this curve, one or the other 

source of electrons dominates. 

The regions of degeneracy and nondegeneracy 

for the e l e ctron gas are given considering that all elec­

trons are of atomic origin (.Z/ A:.: i) and that degeneracy 

sets in when kT = (Fermi Energy) /3 . (See page 42 . . ) 
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Figure 11. The enhancement of the elect ron density 

due to pair production . D = {electron density due to e 

pair production)/ (electron density due to matter) is 

given as a function of temperature for various matter 

densities . {See page 4z; .) 
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Figure 12. Rate of energy emission through vv pairs 

for the urea processes. (See page 46. ) 

Figure 13. Rate of energy emission through vv pairs 

for the process + - -e + e --- v + v in the nondegenerate 

limit. ForT< 2 x 109 °K we use the expression ob-

tained for the N.R. limit. For higher temperatures a 

smooth curve joining the N.R and E.R. expressions is 

used. (See pages 40, 46 •. ) 
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Figure 14. Rate of energy emission through vv pairs 

± ± -
for the process e + y_ - e + v + v in the nondegenerate 

limit. ForT< 1 x 109 °K we use the expression obtained 

for the N. R. limit. For higher temperatures a smooth 

curve joining the N.R. and E.R. expressions is used. 

(See pages 41, 42, 43 and 46 . . ) 

Figure 15 . Rate of energy emission through vv pairs 

for the process y + .y- v + v in the N.R. limit. (See 

page 46 , .) 
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Figure 16. Rate of energy emission through vv 

± ± -
pairs for the process e + (Z, A) -+- e + v + v 

in the N, R. and nondegenerate limits. (See page 

46 ·' ) 

Figure 17. Rate of energy emission through vv 

pairs for the process y + (Z, A} -- y + v + v in 

the N. R. limit. (See page 46 '.. ) 
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Figure 18. Regions of dominance for energy emission 

through neutrinos for the various neutrino processes . 

{See page 46 ,. .) 
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Figure 19 . Flow chart for the computer program 

used in the reduction of the matrix elements for 

the process y + y - v + v. (See page 54,.) 
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