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Abstract 

Each of the three independent chapters of this dissertation examines or jus

tifies cooperative behavior in one of two specific public goods environments. 

The first chapter presents cxprrimf'ntal evidence documenting a subject's 

behavior when faced with simpk games that require turn taking for efficiency. 

Both symmetric and asymmdric games as well as games with explicit pun

ishmf'nt actions are studied and compared. The length of the game is a 

treatment variable; experiments simulating onr-shot, finite and infinite rep

etition games an' conducted. Group outcomrs arc sorted by the player's 

average payoffs and the importance of focal solution concepts like group wel

fare, equality, and symmetry arc inferred. Individual strategies uscd in the 

experiments are also sorted and compared enabling a discussion of cndgame 

effects and conflict within the games. 

Standard non-cooperativc gamf' theory IS not selective enough to dis

criminate among many of the possible outcomes of the games examined in 

Chapter One. fielying on focal and axiomatic solution concepts allows dis

crimination, yet these procedures are inherently ad-hoc. The second chapter 

examines the outcome to a population game with evolutionary dynamics in 
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order to theorcticly justify the results of the first chapter in a less ad-hoc 

manner. In particular, the second chapter applies the Replicator Dynamic. 

It is shown that under an assumption of limited rationality, specifically lim

ited memory, there is a unique' global equilibrium. The unique equilibrium 

contains a trio of outcomes: non-cooperative Nash play, payoff irrational 

play, and cooperative turn-taking. 

The third chapter presents findings from a second series of experiments, 

a series designed to study free riding and the voluntary contribution mech

anism. In the experimPnLal environment, subjects arc randomly assigned 

constant marginal rates of substitution between the public and the private 

good. These random assignments arc changed each decision pcriod , allowing 

the measurement of player response functions. These response functions are 

analogous to the bidding functions obtained in private good, sealed-bid auc

tion experiments. The results are quite different from the results of others 

in environments with little or no heterogeneity. There is much more free 

riding, very little evidence of decay across periods, and only sparse evidence 

of anomalous behavior such as spliU ing and spite. 
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Chapter 1 

An Experimental Analysis of 

Two-Person Reciprocity 

Games 

1.1 Recipro c ity Games 

As described in Ostrom (1990), the farmers near the city of Valc>ncia, Spain 

take turns directing water from canals onto their fields. \Vhen one farmer 

ha.s taken all the water he needs, the next farnwr, who has lwcn waiting, 

gets to take a.ll the water he needs. There is obvious temptation for the 

waiting farmers to try to take water out of turn ; Valencia. is hot and dry and 

the crops are in constant clang<'r, especially in drought years. R<'markably 

enough these turn-taking schemes have survived for centuries. 

The purpose of the turn-taking scheme is to insure an effici<'nt. or at least 
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near efficient, use of the water supply. Without the agreement to rotate, 

the farmers would waste valuable resources fighting amongst themselves over 

the scarce water. It is possible that farmers closC'r to the canals, or further 

upstream, would have an advantage in an unfettered contest for the water. 

The advantaged farmers might C'Ven be better off with free competition than 

with the turn-taking scheme. However, the disadvantaged farnwrs might be 

forced out of business without the turn-taking scheme, and the total amount 

of crops produced might go clown. By following the turn-taking scheme, the 

farmers avoid these potential problems. 

There are other situations in which turn-taking schemes can enable groups 

of people to t>xploit a resource to their collccti,,e advantage. Two firm s, for 

example, can alternatively offC'r monopoly price bids in a series of contract 

auctions. Without the turn-taking scheme, tlw firms would be forced to 

offer competitive price bids; the earnings of the auction's winnC'r would be 

drastically reduced. Similarly, two opposed politicians can alternatiwly vote 

against their immediate bC'sl interC'sts so that a string of bills. some of which 

please their constituents, will be assured of passage. If the politicians did 

not agree on a turn-taking sclwme, tl1<'ir votes would cancel out and perhaps 

no bills would pass. 

All these situations can lw classified under the rubric of Reciprocity 

Games. A Reciprocity Game, then, is any noncooperative situation in which 

some efficient outcomes can only be realized by utilizing nontrivial corre

lated strategies, or turn-taking. Repeated versions of classical games like' the 

Battle of the Sexes and ChickC'n arc Reciprocity Games, pure coordination 

games like The Repeated Prisoner's Dilemma ar<' not. 
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As an example of a Reciprocity Game, consider the repeated, finite action, 

two player game implied by the stage-game payoff matrix G 1 . wlwre 

G
1 

= [ (3, 3) 

(7,3) 
(3, 7) ]· 
(4,4) 

Label the actions A and B. Let Lhe top and bottom rows represent t lw payoffs 

if the row player chooses action A or B, respectivf'ly. Let the left and right

hand columns represent thP payoffs if the column player choosrs action A or 

B , respectively. 

Assuming that both players arc rational, or expected utility maximizrrs, 

that they are non-altruistic, and t bat they have complete information abont 

the payoffs and the rationality of the other player, noncooperative game 

theory offers certain predictions about the player's behavior. The clarity of 

thPse predictions depends upon the number of times that the stage-game is 

repeated. 

If the stage-game is not repeated, each player has a dominate strategy, 

which is to choose action B. Play of this action at every sta.ge is a lso the 

unique subgame perfect equilibrium of any finite repetition game. In equi

librium , each player receives a payoff of four in each stage. T he rquilibrium 

is efficient only in the non-repeatrd or one-shot game; in the repeated game, 

all the efficient outcomes involn' alternating bdwPen the stagr-game pay

offs of (3, 7) and (7, :3). To gain these payoffs, both players must choose their 

dominated action, and furthermore, the players must coordinate so that they 

do not choose the clominatPcl action a.t the samP Lime. Given an even num-
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her of stages, the simple alternation scheme of having the playcrs take turns 

choosing actions A and B leads to an outcomP in which each player gets an 

average stage payoff of five . 

If the stage game is repeated an infinite number of times, the folk theorem 

implies that there a.re an infinitc number of subgame perfect equilibria. Any 

outcome that has payoffs greater than or equal to four is subgame perfect . 

In fact, there are an infinite number of effi cient subgame perfect equilibria, 

each one involving some pattern of alternation between (3, 7) and (7, :3) . 

The multiplicity of eq uilibria is in itself a probkm for the playcrs - which 

equilibrium should they coordinate on? Axiomatical concepts like symmetry, 

group welfare , or equality can be used to de termine focal points, yct, even 

with these concepts there need not be a unique equilibrium . The e fficient 

payoffs do share a common trait, however. In the e ffi cient out comes, the 

players must resort to a pattern of alternation bd ween the stagc-ga mc payoffs 

of (3, 7) and (7, 3). 

The purpose of this papcr, tlwn , is to examine the abi li ty of people to 

enter into a lternation schemes and achieve effi cient outcomes to reciprocity 

games. The games will be studiccl under three different repetil ion conditions: 

one-shot, finite repetition , and infinit e repetition. Compari sons \\'ill be made 

between a game that has symmdric payoffs and a game that has asymmetric 

payoffs. The effects of adding a t hird action , one intended to be a clear 

punishment, will also be consiclcrecl. 
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1.2 Related Research 

The previously mentioned book by Ostrom (1990) is concerned with exam

ining the ability of people to efficiently exploit common pool resomces. She 

reviews several case histories in which groups of people are able to introduce 

rotation schemes and successfully exploit the resource. Some of lH'r examples 

have been in place for centuries. 

Ostrom el al. (1991) have abstracted from these real life examples in an 

experimental study of the usc of a common pool resource. In their study, 

rotation schemes offer an dTiciC'nt way to exploit the resourcC', oncl, in fact, 

some of the eight-person groups try to institute these schemes. Ostrom et al. 

find that these schemes fail do to mistrust, n1istakes or cheating. The authors 

find that the efficiency of thC' use of the resourcC' increases if incJi,·iduals are 

allowed to impose fines on one another; however, resource usC' never reachC's 

optimal levels. 

Murninghan et al. (1987) studiC'd modified Prisoner's Dilemmas that WC're 

in fact Reciprocity Games. Thcy found that in infinite repetition trf'atrnents 

and with the ability to communicate, subjects often resorted to oltC'rnation 

schemes, some sacrificing potential payoffs to do so. Some subjects also 

a.ttf'mpted complca: altenwlion schemes in an effort to generote more equal 

payoffs. 1 Thf'ir treatments are simi lar to the infinite repetition, symmetric 

treatment considf'rcd here. Tbf' main differences between thf' t rf'o! ments arc 

that Murninghan el al. allow communication, and also the osymnwtries in 

thC'ir payoff structure occur on thf' main diagonal. 

1Murninghan et al. , p. 17. 
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Palfrey and Rosenthal (199La; 1991b) and Cooper et al. (1000; 1980; 

1987) have studied various public goods and coordination games that with 

repetition become Reciprocity Games. Cooper et al. (1990; 1087) also exam

ined the add it ion of an action deemed to be a punishment. They found that 

the availabili ty of the extra action did effect the players choice of strategies. 

Sclten and Stoecker (1986), in their work on finitely repeated Pri soner 's 

Dilemmas, developed a. system of outcome classification that is similar to the 

strategy classi fica.tion system usccl here. 2 

1.3 The Experimental Design 

Each offour different. payoff treatments will be examined under threc different 

repetition conditions. The four different payoff treatments arc: symmetric 

(Gt), asymmetric (G2 ), symmetric with punishment (G3), and asymmetric 

with punishment (G4 ). Each of these treatments is representcd by a payoff 

matrix in Table 1.1. The cliffercnt repetition conditions are: one-shot, finit e 

repetition, and infinite repetition. 

1.3.1 Equilibria 

The equi libria for G1 have been di sc ussed already, but for complctcncss, they 

will also be examined he re along '"ith the equilibria in the other threc games . 

2 Tn Sclton and Stoecker (1986) either a Cooperative outcome or End-Eff0ct Play occurs 
if the cooperative alternative in th0 on0-shot game is chos0n consecutively form > 4 peri
ods during the supcrgame. Unlike Sclten and Stoecker , this paper examines the sequence 
of p lay at the individual level and makes inferences about. the types of strategies that each 
individual plays, either Alternating, o r Nash (or Other). 
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First, in the one-shot conditions of both G1 and G2 there is either a unique 

dominate strategy or dominate solvable Nash equilibria. In G1 the unique 

equilibrium is for both players to choose action B, it gives each of them a 

payoff of four. The outcome will be denoted by the pair {B, B} so that each 

player's move is reflected. In G2 the unique equilibrium, {A , B}, is for the 

row player to choose action A and get a payoff of three, and for the column 

player to choose action B and get a payoff of seven. 

Recall that the games G3 and G4 are identical to the games G 1 and G2, 

respectively, except that G3 and G 4 have an additional action available to 

the players. The action is clearly not a desirable action; if it is played, both 

players get much worse payoffs. However, the avai labi lity of the action means 

that both G3 and G4 have three equilibri a instead of only one. They share 

the equilibria. of their counterparts, namely {B,B} and {A,B}, respectively, 

plus they each have two additional equilibria. 

In G3 the additional equilibria are: {(~B, ~C), (~B, ~C)}, the fractions 

representing the weights in a. mixed strategy, and { C, C}. In G4 the ad

ditional equilibria are: {(!A,~ C), OA, ~C)} and { C, C}. These additional 

equilibria. are dominated, in the sense that both players get higher payoffs, 

by the {B, B} equilibrium in G3 and t he {A,B} equilibrium in G4 . 

Finite repetition creates no additional equilibria. in either G1 or 111 G2. 

However, in G3 and in G4 finite repetition creates many additional equilibria.. 

In fact, due to a. finite game folk theorem, any minimax-dominating outcome 

can be approximated by a subga.me perfect equilibrium if the number of 
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stages is large enough .3 The folk theorem result causes a problrm that. is 

ve ry similar to the problem <'ncountered in the infinite repetition games, how 

do players coordinate on a particular equilibrium when the set of equi libri a 

is very la rge? 

Infinite repetition , in all four games, leads to sets of equilibria that are 

very large indeed - they an' infinite. In fact , the infinite rrpd it ion folk 

theorem says that if thr di scount rate is low enough, any outcome to a 

game which results in average stage-game payoffs which are greater than the 

minimax payoffs is supportable as a subgame perfect equilibrium . 4 Note 

3 For example, fo r G 1 repeated T >= 3 times , 

({B, A}1, {A, Bh, {B, A}J, ... , {A, B}r_1, {B, B}r] 

with the threat of playing {C, C } for each subsequent stage if there is a defection is 
subgame perfect. To he more speci fi c, in repeated versions o f o ne-shot gr~nws that have 
multiple Nash equilibri a , for any indi vidually rational and feasible outcome ·rt there exif'tf' 
a length T and a subgame perfect equilibrium such that if U is the averagf' stage payoff 
in the equilibrium , 

JJU- uJJ < £ 

for any £ > 0. T he result holds fo r two-person games and for n-person gam f's if the 
dimensionality of the payoff spae<' is equal to the number of players. For details see Benoit 
and Krishna (1985); p. 919; refer to Theorem 3.7. 

4 The eq uilibrium payoffs must be such that the following equation ho lds: 

1 6 • 
--1•· > v· + --v· 
1- 6'-' 1 -6' 

1 • 1 t t 
--,v; = --,((1- 6 )vi ,min + 0 v;) 
1- u 1 -u 

where v; is the average payoff of the equilibrium strategy given no defection, ii; is the 
maximum payoff a player can get by deviating, vi* is the average payoff of t he chosen 
punishment strategy, and 8 is the discount. rate. Equa t ion 1 says that tllf' t otr~ l payoff for 
playing the equilibrium must be grea ter than the total payoff for deviating once and then 
getting the punishment payoff for the rest of the game. For details sec Fudenbcrg a nd 
l\1as kin (1986); pp. 533- 554; refer to Theorem 1. In the infinite repetition treatments , 
the discoun t rate was ten percent. 
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that the minimax payoffs for G 1 through G4 arc: (4,4), (3, 7). (1~, 1 ~), and 

(1 ~, 1~)- Again, the question is: How do players coordinate on a particular 

equilibrium when the set of equilibria is very large? 

It is possible to par<' the sets of <>quilibrium outcomes down tot he manage

able level of three or less by applying the axiomatic refinements of Equality, 

Symmetry, and Welfare Maximi?-ation, along with Pareto Optimality. The 

Equality refinement requires each player to receive the same payoff; the Sym

metry refinement requires each player to choose their dominated action the 

same number of times; and the \V<' lfare Maximization refinem<'nt r<"'quires t he 

sum of the player's payoffs to be maximized. Pareto Optimali ty, of course, 

means that each outcome must be efficient. T he equi libri a t hat pass these 

refinements will be called focal solutions. 

Specifically, in G 1 and G3 , t lw one to one alternation scheme leads to av

erage stage payoffs of (5, 5) an d satisfies all four of these refinem<"'nts. Forth<"' 

symm etric games, t he imposition of the refinem<'nts means th a t th e nnml)('r 

of focal solutions is the sam<' in the one-shot, finite, and infinitP repetition 

conditions . In each case, thPrc is a unique focal solution. 

On the other hand, in G2 and G4 , a one to one a lternation schC'me satisfies 

on ly the Symmetric refinement and leads to aYerage stage payoffs of ( 4, 5). 

To satisfy the Equali ty refinement requires a one lo two a.lterna t ion scheme. 

In this scheme the row playN chooses action A half as often as the column 

player chooses action B and players end up with average stage payoffs of 

(4~,43)- Furthermore, to satisfy the Welfare Maximizing rPfin<"'rnent leads 

to play of the {A, B} stage game equ ilibrium and awrage stag<" payoffs of 

(3, 7). For the asymmetric gam<"'s, the imposition of the refin<"'mC'nts means 
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that the number of focal solutions is three in the infinite repct it ion condition 

and in the finite rcpetition condition of G4 • The one-shot condition and the 

finite repetition condition of G2 have unique focal solutions. 

The behavior in the one-shot games should be considered as a calibrating 

device. The outcomcs achieved are worst case outcomes in the sense that 

there is no chance for the players to use an efficient rotation scheme. Tlw

ory predicts that behavior will conform to the Nash Solution, which will be 

defined as Hypothesis 1. 

Although not equilibria in all cases, the following hypotheses will be con

sidered for both the finite and infinite repetition treatments (noticc that they 

do not specify behavior in the carlicst stages of the game; they allow a period 

of time for the players to coordinat e): 

Hypothesis 1 (Nash Solution) After a a rla in pe1·iorl. ench ]Jlayer 

chooses the action wh·ich leads to th e highest Pareto-Ranked, subgame per

fect equilibrimn. 

Hypothesis 2 (Alternating Solution) Afle1· a ce1·tain prriorl. th e out

come to the game will have players alte1·nating between action il and act?'on 

B swh that th e realized play 11'ill be { ... , {A ,B}, {B ,A}, {A , fl} , . . . }. 

Hypothesis 3 (Welfare Solution) After a certain period, th e ovtcome to 

the game will be S1tch thai the sum of the playen:; payo.!Js is ma~rimi::ed. 

Hypothesis 4 (Equality Solution) After· a certain period, thr outcome to 

the game 1l'ill ma:rimize the sum of th e players payoffs subject to hm,ing each 

player receive th e same payo.ff. 
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Hypothesis 1 embodif's the predicted outcome in the finite repetition 

games. The Nash Solution is also an equilibrium in any of tlw infinite repe

tition games, although it is not an efficient equilibri a in the symmetric cases. 

Hypothesis 2 embod ies the axiomatic refinement of Symmetry, it requires the 

players to adopt a one to one rotation scheme; Hypothesis 3 embodies the 

axiomatic refinement of \.Yclfare Maximization; and Ilypotlwsis 4 embodies 

the axiomatic refinement of Equality. Although not always equi libri a, these 

three solutions are efficient outcomes to the finite repetition games. 

1.4 The Experiments 

All the experiments were perfornwcl in a laboratory at the California. Insti

tute of Technology. The experimcnts were run on a set of computers linked 

together in a. network. The subject pool consisted of students, most of whom 

were recruited from introductory economics and political science courses. 

There were nine experimental Sf'ssions: one session for each finite and infi

nite repetition treatment of G 1, G'2 , G3 , and G4 ; and one session for all the 

one-shot treatments. The number of subjects in f'a.ch session varied from 

ten to fourteen because some recruited subjects did not show up for some 

experiments. 

The following outline describes the order of events that took place in a 

typical experimental session: 

1. Each subject entered the laboratory and sat at the tf'rminal of their 

choice. 
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2. The subj0cts were read a set of directions detailing tlw rules of the 

session. The subjects were not shown a payoff matrix, instead each 

action and payoff was explained to them independently. The subjects 

were led through two practice periods and then quizzed. 5 

3. In a period, each subject chose either A or B (or C) and was then 

informed of their payoff and partner's choice. This wa.s r<"'peatcd under 

the following conditions: 

(a) In the on0-shot treatm0nts, each subject was randomly match0d 

with another at the h<'ginning of each period. Tlw gam<"' <"'ndecl 

after US periods. 

(b) In the finite repetition treatments, each subject play<'d the same 

person each period. The game ended after 15 periods. 

(c) In the infini te repd.ition treatments, each subject play<"'d the same 

person every period. After the 15th period, a ten-sided die was 

rolled so tha.t the subjects cou ld sec the result. If a 9 was rolkd 

then the game end0cl, otherwise the game contimwd another pe

riod after which thC'r<"' was another die roll. The ganw did not end 

until a. 9 was rolled . 

4. At the end of the game, the subjects were randomly matched with a. 

person 'vhom they had not. playccl and a not her game was st artecl . 

5 A copy of the directions and quiz used in the one-shot treatment of r..1 is included in 
the appendix. 
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5. Each subject in a session played 4 games and was then paid cash for 

each point they earned in llw experiment. In the one shot treatment s, 

the order of games was: C'1 , G3 , G 2 , and G4 . In the finite and infini te 

repe tition treatments, the subj ects played the sam e game four times. 

6. The experimental session ended. 

In the symmetric treatments, every player faced the same payoffs, so 

there was no difference between a row and a column player. Hence, in the 

symmetric treatments, all subjects were treated identically. 

On the other hand, in the asymmetric treatments, the labels row and 

column had meaning, the player unlu cky enough to be a row pla.vcr was at 

a disadvantage. In order to prcvent row players from gam bling that they 

would become column players latcr in the session. at t he beginning of each 

asymm etri c treatment half of tlw subjects were informed that they would he 

row players for all four games in t.he session. In the one-shot session , this 

di vision took place before the third game, after all the symmd ric games h ad 

b een played. 

Table 1.2 reports the number of subjects and the number of obscrvations, 

respectively, in each trea tment.. 6 An obser vation consists of t.hc out come of 

one complete game and t wo seq uen ces of actions, one for each pla~'cr involved. 

The table also shows the da tes of each session, the length , the exchange rate, 

and the order of the one-shot treatments. 

6 T here were 93 subjects tota l. An effort. was made not to have exp~>r i <' n ced players , 
however 7 d id participate in two sess ions. Two participated in 4/20/90 and 5/17/90, one 
participated in 5/17/90 and 5/18/90, and four participated in 5/11 /90 and 5/18/90. These 
people were never matched with the same person more than once, even across sessions. 
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1.5 The Results 

1.5.1 The One-Shot Treatment 

The first step is to examine the players' behavior in the one-shot treatments. 

The Table 1.3 describes the number of times each possible outcome pair was 

observed.7 

In order to determine whether or not an individual's actions changed a.s 

sjhe gained experience with the game, the data was split into t.he first eight 

periods and the last seven periods and then compared using a standard \ 2 

test.8 In no case was there a signifi can t difference between the distribution of 

actions at the beginning and the distribution of actions at thf' encl. The \'2s 

were: 0.3370 for G1 , 0.2983 for 0 2 row players, 1.2301 for G2 column play<'rs, 

1.6290 for G3, and 2.5813 for (,',1 column players. The column pla~·f'rs in G.1 

chose action B in every case. 

In G1 , fourteen of the 1.50 observations, or 9.3 percent, assigned payoffs 

below the minimax to at least one of the players. In G2 , sixteen of the 

seventy-five row player observations and six of the seventy-five column player 

observations, 21.:3 percent and 8 percent respectively, assigned payoffs below 

minimax payoffs. Assuming that the true frf'qu<'ncy of below incliviclually 

rational payoffs is the lower encl of a 95 percent confidence interval around 

these observed frequencies would ]cad to the following percentages: 5.4, 13.1, 

7 In G 1 , half of the subjects played A at least once. In G 4 , one subj ect was responsible 
for all the plays of action C. 

8 xl, here and elsewhere , is the standard test statistic using Yate's continuity correction. 
It has a x2 distribution with i d<'gre<'s of freedom. For a complete explanation o f this t.<:'st, 
see Everitt (1977) pp. 12 - 14. 
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and 2.8, respectively. 

Obviously, there is a substantial minority of players who play non

equilibrium strategies. In an ideal environment, Hypothesis 1, that each 

player choosf's the su bgame pcrff'ct equili bri urn strategy, would he rejected 

on the basis of even one non-equilibrium play. However, the crit.nia adopted 

for this experim<"ntal environment allows their rejection only if the upper 

bound of the 95 percent conficknce interval around the observed proportion 

of plays is less than 0.95. These bounds are displayed in the Table 1.4. 

Hypothesis 1 must be rejected for G1 , and for the row players in both asym

metric treatments. The fact that not all people always play the unique, 

subgame pf'rfect equilibrium st rakgy in one-shot games has l)ecn observed 

many times.9 

Notice the significant change' in the behavior of the column players when 

comparing G2 to G4 . In G2 , 8 pncent of the actions chosen by tlw column 

players violate the Nash Solution, in G4 no actions chosen violate' the Nash 

Solution. This is an anomaly bC'\ause behavior docs not change for the row 

player, neither docs it change' hd WC'cn G1 and G3 . One C'Xplana.tion for 

the data is that, because G2 and G4 were played in succession by the same 

players, the column players karnccl how to play according to Hypothesis 1. 

Oddly enough, the row players did not share in the revelation. 

9 Sce Ledyard (1992), Dawes (1980) and Cooper eta/. (1987; 1990). 
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1.5.2 The Finite and Infinite Repetition Treatments: 

Average Payoffs 

The outcomes to the finite and infinite repetition treatments arc representC'd 

by the average payoffs of both players. To allow a period of time for the 

players to coordinate on a specifi c outcome, the first four periods arc ignored. 

Also, so that the infinite repetition treatments remain comparable to the 

finite repetition treatments, the averaging ends with the fifteenth period (the 

finite repetition treatments were fifteen periods long). 

Referring to Figure 1.1 , t lw set of possible outcomes to C 1 if it were 

infinitely repPa.ted is represcntC'cl by the triangular figure in both the top 

and bottom diagrams. Gi,·en that a ten period average is used, the possible 

outcomes arc a subset of the triangular set. Actual outcomes to the games 

are shown by a letter representing one or more observations. The letter is 

located at the coordinates cldnminecl by the avcrage payoffs of the players. 

For an outcome to be Pardo Optimal, it must be locat·cd on the hy

potenuse of the triangular sd. Tlw 4.5° line highlights the outconws in which 

the players receive equal payoffs. Every outcome located northeast of the 

dotted lines payoff dominates tlw minimax. These minimax dominating out

comes, given a small enough di scount rate, are subgame perfC'ct equilibria if 

the game is infinitely repeated. 

In Figure 1.1 , the top diagram represents the outcomes of the finite repe

tition treatment of G1 . The bottom diagram represents the outconws of tlw 

infinite repetition trcatmC'nt of C 1 . Similar figures are constructC'd for the' 

two treatments of G2 , G3 , and C 4 • 
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Note that in G 1 and G3 thcre is no difference between a row and a col

umn player. In order to avoid drawing conclusions from arbitrarily scattercd 

outcomes, all the outcomes are located on or below the 45° line. In G2 and 

G4, there is a difference between a row and a column player. 

Again referring to Figure 1.1, specifically to the top diagram which shows 

the outcomes of the finite repet iLion treatment, notice that tlw outcomes oc

cur in two clusters. One cluste r is located around the unique one-shot equi

librium or Nash Solution, point ( 4, 4). The other is located around the focal 

solution, the outcome that emhodics the Alternating Solution. tlw Equality 

Solution and the Welfare Maximizing Solution, point (5, 5 ). The observations 

are divided roughly between the two clusters. Although the Nash Solution 

was the most observed ;vith five. fourtcen groups were able to improve upon 

it using some pattern of reciprocation, three actually implemcnted the focal 

solution. One player out of the t wcnty pairs recPived below mi11imax payoffs. 

The bottom diagram, which shows t he outcomes of the infinitcly repeatcd 

treatment, is in sharp contrast to the top one. Here, twenty-one of twenty

four observations are located at the focal solution. Of the three remaining 

outcomes, two are located ncar the Nash Solution, and the last is located at 

an outcome better than thc Nash Solution but not as good as the focal so

lu tion. The <:>xtension of the tinw- hori zon from Anite to infinitc draws many 

outcomes away from tlw Nash Solution and to the focal solution. People 

appear to have few problems implementing a rotation scheme and achiev

ing efficient payoffs, approximately 90 percent succeed, if G\ is infinitely 

repeated. 

Figure 1.2 shows the outcomPs of the finite and infinite repdition treat-
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ments of G3 . Recall that G3 is identical to G1 except that an additional 

action, a punishment, was added to the action space. Despite Lhc additional 

strategy, Figure 1.2 closely resembles Figure 1.1. In the top diagram, the 

finite repetition treatment, thirteen of the twenty outcomes arc close to the 

focal solution. In the bottom diagram, the infinite repetition treatment, 

nineteen of the twenty-four outcomes are at Lhe focal solution. 

The top diagram in Figure 1.3 shows the outcomes of the finite repetition 

treatments of G2 , the first of the asymmetric games. Seven outcomes were 

at the Nash and \Velrare Maximi 11ing Solutions, point (7, 3). One outcome 

was at the Alternating Solution, point (5,4) . No outcomes wNe at or even 

near the Equality Solution , point ( cl~, 4~ ). 10 ]\fore than half oft he outcomes, 

eleven of twenty, have the row player receiving less than minimax payoffs. 

The bottom diagram shows ihf' outcomes to the infinite repetition treat

ment of G'2 . Unlike in the symmetric games, there is no improvement in 

the efficiency of the outcomes as i he Lime hori zon gets longer. Roughly the 

same proportion of outcomes arc at the Nash Solution, the Alternating So

lution, and the Equality Solution (eight, two, and zero observations out of 

twenty-four, rcspectiYely) as in the finite repetition treatment. Again, half 

of the outcomes ha,·c the row player receiving less than minimax payoffs. If 

anything, the payoffs in the infinite repetition treatment are \\·orsc than the 

10The Equality Solution requires a oue to two rotation scheme, i. e. row plays A once for 
each two times that column plays A. This rotat ion schC'me has a three movP cycle. \Vhat 
is exhibited in tlH' fi g ures is a ten m ove average payoff. Even if a oue to two rotation 
scheme was implemcntccl , t hP t.en move average would not give equal p<~yoffs . Tlowe\'N, 
any one lo two rotatio n scheme' would result in payoffs located on tlw Pardo FrontiN 
and the averaging syste-m used would loca te the outcome within 0.2 payoff points of the 
Equality So lution. No outcomes werf' within these tolerances. 
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payoffs in the finite repetition treatment . 

Figure 1.4 shows the outcomes to G4 . Recall that G4 is idrntical to G 2 

except that a punishment action is added. Unlike in the symmf'tric case, hrre 

the presence of the punishment action changes behavior. In the top diagram, 

the most observed outcome is the Alternating Solution, point (5, 4). This is 

in contrast to the most observed outcome in the finite repetition treatment 

of G2 which was the Nash or Welfare Solution, point (7, 3) . However, a. 

substantial number of outcomes are still inefficient outcomes. The bottom 

diagram has these same fcaturrs : the most observed point is t.hc Alternating 

Solution, and many observations are at inefficient outcomes. Again , drawing 

on the similarity between t,hc top and botLom diagram , infinitr repetition 

did not greatly improve the chancrs of coordinating on an efficient outcome. 

Table 1.5 shows the distribution of oul,comcs over the focal point solu

t,ions. It is clear that infinite rrpctition makes a difference in tlw symmetric 

treatmrnts it, rrsults in a higlwr percen!,age of dTicient Alternating Solu

tion outcomes. In the asymnwt ric case, infinit,c repetition docs not seem to 

make a differrnce, the disLribution over the focal solutions remains similar. 

However, the addit ion of a punishment action causes a shift from the 'Wel

fare Maximizing Solution to t,hr Alternating Solution. In every asymmetric 

treatment, a substantial numbrr of outcomes are not efficient. 

1.5.3 Comparing Average Payoffs 

Table 1.6 shows t,hc average payoffs in the one-shot treatments and in rounds 

5 to V5 of the finite and infinite repetition treatments. In the sym 1net ric 
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treatments, the average payoffs rise as the time horizon lengthens. In the 

one-shot treatment, the average is ncar the payoff associated with the Nash 

Solution, which assigns each player four. In the infinite repetition t reatments, 

the average is near the payoff associated with the Alternating Solution, which 

assigns each player five. Therc seems to be I itt le lost or gained from the 

addition of the punishment action. 

The asymmetric trcatments are much different than the symmetric ones, 

the longer horizons do not imply more efficient group payoffs. In fact, from 

the point of view of the column player, the longer time horizon is disastrous 

- especiall y when the punishrncnt action is p resent.. The avcrage column 

player's payoff drops more than 20 percent when moving from the one-shot 

treatment to either the finite or infinite repetition treatment of (/4 . From the 

group's perspective, this drop in the column player's payoff is not made up 

for by the small incrcasc in the payoffs of the row player. Thc average row 

player only gets around 10 [Wrccnt more when moving from the one-shot lo 

e ither repeated trcatment of G.1. The finite repetition treatmcnt of G2 is the 

only treatment where the players improve upon the payoffs of t hc one-shot 

trcatmcnt. 

1.5.4 The Finite and Infinite Repetition Treatments: 

The Strategy Space 

The followin g definitions diYiclc the strategy sets associated with each repe

t ition treatment into thrce disjoint parts: 
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Definition 1 (Alternating Strategy) An individual's sequence of play is 

an Altemating Strategy if, for every pe1·iod in the sequence, th e grotlp 's play 

in the previous period was {A,B} or {B ,A}, then individual's play in this 

period is B if last pe1·iod it was A and A if last period it was B. 

Definition 2 (Nash Strategy) An individual's sequence of play is a Nash 

Strategy if for every pe1·iod in the sequence, the individual's play c01·responds 

to the action taken in the highest Pareto ranked, one-shot, subgame perfect 

equilibrium. 

Definition 3 (Other Strategy) An individval's sequence of play 1s rm 

Othe1· Strategy if if, is not an Jlllenwting Strategy or a Nash Strntcgy. 

It is possible to sort every individual 's complete sequence of actions into 

one of the three previous categories. The Alternating Strategy category 

includes all strategies that try to alternate - dire punishment strategies as 

well as completely forgiving st rategies. The Nash Strategy category includes 

only the one strategy.U The Other Strategy category is a. catchall and could 

contain many things, completely random behavior being one example. 

Table 1.7 shows the distribution of strategies for each game's finite repe

tition treatment. Notice that in the symmetric games G 1 a.ncl G2 , the Alter

nation Strategy is picked most often. Also there is not a significant diiTerence 

between the distributions, so the punishment act ion makes little diiTcrence. 

11It is possible to have a sequence of plays defined as both an Alternating and a Nash 
Strategy. In the symmetric treatments , if both players choose action 13 in every round , 
each player's strategy will be put int o both categories. Fortunately, no pair of play<'rs 
chooses action 13 in each round , so the problem does not surface. 
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In the asymmetric games G 2 and G4 , there is a significant difference 

between the distribution of strategies with and without the presence of the 

punishment action. The difference exists for both the row and the column 

players. The presence of Other Strategies on the part of the row players in 

G2 shows that there were attempts at alternation - they do not just play 

the Nash Strategy. Most of the column players, however, play the Nash 

Strategy. So, the row players tend to either give up and play the Nash 

Strategy themselves or they punish their partners with the minimax. Most 

of them start playing the Nash Strategy. 

The proportion of players that play an Alternating Strategy in G4 is much 

higher for both types when the the punishment action is present. Note that 

the players never have to use this action, its presence is enough to cause the 

shift. A substantia.! numh<'r of players, both row and column, still pick an 

Other Strategy. 

In fact, in each of the finite' repetition games, a large numl){'r of Other 

Strategies are chosen. Possibk explanations for this is that there is conflict 

between the players, or that they miscoordinate in the early rounds. In any 

case, there is uncertainty during the game about which equilibrium strategy, 

the Alternating Strategy or tlw Nash Strategy, each player is supposed to 

use. 

Another explanation is that there are end-game effects present. With 

end-game effects, players who had been choosing their action according to 

the Alternating Strategy would change to the Nash Strategy before the last 

period. Unlike in G1 and G2 , in G3 and G4 end-game effC'cts would be 

consistent with many subgame perfect equilibria. 
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Table 1.8 reproduces each strategy distribution when the last two peri

ods of play are ignored.12 There is, in fact, a dramatic end-game effect in 

both symmetric games; 17.5 percent of the subjects switched from Alter

nating Strategy to Other Strategy in the last two periods of G 1 , 20 percent 

switched in G3 . The data from the asymmetric games, on the other hand, 

show positively no evidence of an end-game effect. One must conclude, tlwn , 

that the Other Strategies present in G2 and G4 are due to conflict or misco

ordination. 

Table 1.9 shows the distribution of strategies for each game's infinite 

repetition treatment. Notice that in the symmetric games G1 and G2, the 

Alternation Strategy is again picked most often. Also there is not a significant 

difference between the distributions, so the punishment action makes little 

difference. 

The presence of the punishment action also makes little difference in the 

asymmetric games, although there is some shift away from the Nash Strategy 

for the column players. The high number of Other Strategies shows that the 

conflict and miscoordination prcsf'nt in the finite rPpetition trcaJmcnts is still 

there in the infinite repetition t.rPat ments. 

The strong difference between the symmetric !mite and inflnitf' rf'petition 

treatments is not surprising considering the presence of the end-game effects. 

What is surprising is the strong difference between the finite and infinite 

repetition treatments of G2 . There was no end-game effect present in the 

finite treatment of G 2 . 

12Two was chosen because it is the minimum number of reriods that allows both playrrs 
a chance to defect from the Alt-ernate strategy. 
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1.6 Conclusions 

After considering the evidence presented here, it is not unreasonahle to pre

dict that some groups of people, like the aforementioned Valencian farmers, 

will be able to enter into stable alternation schemes if they are faced with 

situations similar to Reciprocity Games. The farmers are in a symmetric 

situation, 80 percent of the farms are less than 1 hectare. The farmers are 

involved in an infinite repetition conflict, the farms have been there for cen

turies. Like most of the participants in infinite repetition treatm('nts of G1 

and G3, the farmers have bef'n ahle to institute an efficient rotation scheme. 

In these experiments , it has b('f'n shown that people faced "·ith symmetric 

Reciprocity Games enact solutions which are progressively mor<' efficient as 

the time horizon increases from one-shot to finite repetition to infinite repe

tition. End-game effects have been found in the finite repetition treatments. 

In symmetric situations, punishmPnt options play very little role. 

The ability of groups of people to obtain efficient outcomes if there are 

large asymmetries between tlwm is much more doubtful. As has been seen, 

there can be a. conflict or miscoordination if the turn-taking a.nd welfare 

maximizing solutions are cliffPrent. Although some succeed in instituting 

one of these t.wo efficient focal outcomes, of those who fail, man~' get non

individually rational payoffs. Not a single group successfully instituted a one 

to two, or equal payoff, rotation scheme. 

Unlike the symmetric games, pfficiency m the asymmetric games docs 

not tend to increase as the time horizon lengthens. In fact, due to prolonged 

conflict or miscoordination, av('ragc payoffs in the infinite rf'pdition treat-
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ments are below the average payoffs in the one-shot treatments. \Vith finite 

repetitions, the presence of th<' punishment action causes an incrPase in the 

number of alternation schemes that are successfully implemented or tried , 

although the number of efficient outcomes does not increase signiflcantly and 

the average payoffs fa 11. 

Certainly the results of the examination of the asymmetric games high

lights problems from a policy standpoint. Common welfare criteria, like the 

Utilitarian criterion (maximize the sum of the payoffs), the Rawlsian cri

terion (maximize the minimum payoff), Pareto Optimality, or even simple 

rationality are not always achif'vable without intervention. In [act, clearly 

bad outcomes occur frequ<:>ntly. 

And wha.t type of intervention will work? If you care about the sum of 

the payoffs you may choose to shorten the length of the game. Shortening the 

length of the game will c<:>rtainly benefit the group, but the disadvantaged 

will suffer for it. If you care about equality you may choose to endow people 

with the ability to punish, or tax, or fine the other participants. Among the 

efficient outcomes, there will be more egalitarian behavior, but the combined 

benefits of the group will likely fall on average. 

On the other hand , the results of the symmetric games are very encourag

ing from a policy standpoint. Punishments, taxes or fines ar<' not nf'cessary. 

Simply increase the time horiwn and efficiency rises. 
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1.8 Sample Instructions and Quiz 

The following is a copy of the instructions given in the one-shot treatments 

of G4. 

INSTRUCTIONS FOR A DECISION-MAKING 

EXPERIMENT 

This is an experiment in decision making. You will be paid in cash at the 

end of the experiment. The amount of money you earn will depend upon the 

decisions you make and on the decisions other people make. 'vVe rf'quest that 

you do not talk at all or otlwrwise attempt to communicate with the other 

subjects except according to tlw specifi c rules of the experiment . If you have 

a. question, feel free to raise your hand. One of us will come over to where 

you arc sitting and answer your question in private. 

This experiment has 15 sepa rate rounds and then it will end. During each 

round of the experiment you will be randomly paired with a not her subject. 

You will never be paired with the same subject for two rounds in a row. 

Each round you will be given a. token which will be worth either 4 or 2. 

It will always be worth t lw sanw amount. Each round you will be able to 

use the token in one of three ways: option A, or option B, or option C. 

PAYOFFS 

The amount of money you earn in a. round depends upon which option 

you pick as well as which option your partner picks. WHAT HAPPENS 
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IN YOUR GROUP HAS NO EFFECT ON THE PAYOFFS TO 

MEMBERS OF THE OTHER GROUPS AND VICE VERSA. In 

each round , you have nine possible earn ings. These are shown in the following 

table: 

EARNINGS TABLE 
Your Choice 

A 
A 
A 

B 
B 
B 

c 
c 
c 

His/Her Choice 
A 
B 
c 

A 
B 
c 

A 
B 
c 

To summariz<"' the table: 

Your Earnings 
3 points 
3 points 
1 point 

Your Token Value + 3 points 
Your Tok<"'n Value 

1 point 

l point 
1 point 

2 points 

l ROWS 1 to 3: If you choose option A you will get 3 points if your 

partner picks either option A or option B. If you choos<"' option A and 

your partner chooses opt ion C, you will get l point. 

2 ROWS 4 to 6: If you choose option B you wi II get your t ok<"'n value 

+ 3 points if your partner picks option A, you will get your token value 

if your partner picks opt ion B, or you wi 11 get 1 point if ~'our partner 

picks option C. 
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3 ROWS 7 to 9 : If you choose option C you will get 1 point if your 

par t ner p icks e ither option A or option B . If you choosC' o pt ion C and 

your partner chooses o pt ion C, you will get 2 points. 

SPECIFIC INSTRUC TIONS: 

At the end of the experiment you wi ll be paid 5 cents for every point you 

have accumulated. 

Quiz 

The following is a copy of t hC' qu iz given in t he one-shot treat mcnts of G4 . 

QUIZ 

id #. --------------------------------------------------

1. If my token is worth 4 points, t he other player in my group will have a 

token value equal to: 

1. 4 points. 

11. 2 points . 

11 1. Either 4 or 2 points. 

tv. None of the above. 

2. If someone was in my group on round 5 of an experim<'nl, it will be 

certain , ve ry like ly, impossible t hat he or she will he in my group 

on round 6. 
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3. If my token value is 2 and I choose option B and my pa rtner chooses 

option A, how many points will I earn? 

4. If I choose option A and my partner chooses option C, how many poin ts 

will I earn? 

5. If at the end of a round I have 2 points, how much am I paid for that 

round? 
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1.9 Tables 
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Table 1.1: The payoff tables for the four different payoff treatm<'nts: symmet
ric (Gt), asymmetric (G2), symmetric with punishment (G3 ), and asymmetric 
with punishment (G4 ). 

The Payoff Tables 

G _ [ (3, 3) (3, 7) ] 
TJ- (7,3) (4,1) 

[ 

(3, 3) (3, 7) (1, 1) l 
G3 = (7,3) (4,4) (1, 1) 

(1,1) (1,1) (2,2) 

G _ [ (3, 3) (3, 7) ] 
2

- (.5,3) (2, 1) 

[

(3,3) (3,7) (1,1) ] 
G4 = (.5,3) (2,4) ( 1,1) 

(1,1) (1, 1) (2,2) 
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Table 1.2: The date of each expC'riment along with the numbC'r of subjects, 
the number of observations, the number of periods, the exchange rate, and, if 
there were different treatments in one session, the order of treatmC'nts. 0, F, 
and I stand for one-shot, finite rC'petition, and infinite repetition, r<"spectively. 

Experiments 

game trtmnt date subj. obs. length ~ m·clcr point 

Ct 0 2/4/91 10 75 1 !5 1 
F 1/31/91 LO 20 1.5 4 

I .5/18/90 12 24 { 61' 37, 
4 

17, 29} 

G3 0 2/4/91 10 75 1 .5 2 
F 1/14/91 10 20 15 4 

I .5/17/90 12 24 {20, 41' 4 
26, 25} 

G2 0 2/4/91 10 75 1 .5 3 
F 2/1/91 10 20 15 <I 

I 5/11/90 12 24 
{28, 19, 

·1 
16, 20} 

c,. 0 2/4/91 10 75 1 .5 4 
F 2/1/91 11 28 1.5 4 

I "1 /20/90 12 24 
{ 16. 29, 

·1 21, 24} 
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Table 1.3: The distribution of outcomes in t he one-shot t reatments. The 
entries in each table represent the number of t imes each outcome was ob
served in t hat t reatment. The outcomes that satisfy HypothC'sis 4, the Nash 
Solution, have been underlined. Notice that there are no ent.riC's below the 
diagonal in t he symmetric game's G1 and G3 ; the symmetric outcomes are 
classified together. ln the <~symmetric games, a ll outcomes arc classified sep
arately. 

The Distribution of Outcomes 
One-Shot Treatments 

1 ') ] 
62 

G = [ 6 53 ] 2 0 16 
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Table 1.4: For each One-Shot treatment, the breakdown of individual strat
egy choices between successes and others for the Nash hypothesis is shown. 
Also shown is the frequency of success and the upper bound of its 95 per
cent confidence interval. Finally, the distribution of observations under the 
hypothesis when there is no punishment strategy is compared to the distri
bution of observations when there is a punishment strategy; a x:2 statistic is 
reported. 

One-Shot Contingency Table 

Hyp. 1 Nash Solution 

successes 136 137 59 58 69 7.5 
other 14 13 16 17 6 0 
freq. 0.9066 0.9133 0.7866 0.7733 0.9200 1.000 
high 0.9460 0.9514t 0.8657 0.8541 0.9723t l.OOOt 
x2 / 1 0.0000 0.0000 4.3-103* 

t - significant at a= 0.05 
* - significant by adopted criteria 

high is the upper bound of the 95% c. interval around freq. 
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Table 1..5: For each finite (F) and infinite (I) repetition treatment, the dis
tribution of outcomes over each focal point solution is shown. 

Distribu t ion of Out comes Over 
Focal Point Solution Concepts: 

G1 G3 G2 04 
F I F I F I F I 

Ilyp . 2 Alternating 3 21 5 19 1 2 8 7 
Hyp. 3 Welfare * * * * 7 8 3 5 
Ilyp. 4 Equality * * * * 0 0 0 0 

JTyp. 1 Nash .5 0 1 0 *"' *"' "'* ** 
Other 12 3 14 5 12 14 17 12 

* - Ily p. is the sam e as Alternating 

** - Ilyp. is the same as Welfa re 
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Table 1.6: The average payoffs in the one-shot treatment and in rounds 5 -
15 of the finite and infinite repetition treatments. 

Average Payoffs 

One-Shot Finite Infinite 
Gt G3 Gt G3 Gt G3 

player 4.147 4.027 4.535 4.58.5 4.908 4.8.50 
group 8.294 8.0.54 9.070 9.170 9.816 9.700 

One-Shot Finite Infinite 
G2 G4 G2 G4 G2 G4 

row 2. 78.5 2.725 2.955 3.021 2.896 3.029 
col 6.0·10 6.160 6.175 4.757 5.638 4.821 
group 8.825 8.88.5 9.130 7.778 8.534 7.8.50 
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Table 1.7: In each Finite Repetition treatment, the distribution of strategy 
choices is shown. The distribution of strategies when there is no punishment 
strat<'gy is compared to the distribution of strategies when th<'re is a. punish
ment strategy; a. y 2 statistic is rC'porkd. 

Finite Rcp<'l it ion Contingency Table 

ROW COL 
Gt G3 02 G4 G2 G4 

Alt. 21 23 0 11 4 10 
Nash 6 4 2 2 1.5 4 
Other 13 13 18 15 1 14 

y~ 0.-1009 10.2234* 19.4124* 

* - sign ifi cant at a= O.O.S 
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Table 1.8: The different strategy distributions over the focal solutions ob
tained when all periods are taken into account and also when all but the last 
two periods are taken into account are displayed for each finite repetition 
treatment. 

Finite Repetition, 
Strategy Distributions, 
All Periods and All But the Last 2 Periods: 

G1 G3 
all periods all periods - 2 all periods all periods - 2 

Alt. 21 28 23 30 
Nash 6 6 4 .5 
Other 13 6 1:3 .) 

Row Players 
G2 G4 

all periods all p<>riods - 2 all periods all periods - 2 
Alt. 0 0 11 11 
Nash 2 2 2 2 
Other 18 18 15 15 

Column PlayPrs 
G2 G4 

all periods all periods - 2 all periods all periods - 2 
Alt. 4 4 10 10 
Nash 15 15 4 .5 
Other 1 1 14 13 
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Table 1.9: In each Infinite Repetition treatment, the distribution of strat
egy choices is shown. The distribution of strategies when there is no punish
ment strategy is compared to the distribution of strategies when there is a. 
punishment strategy; a. x2 statistic is reported. 

Infini te Repetition Contingency Table 

ROW COL 
G1 G3 G2 G4 G2 G4 

Alt. 42 40 6 6 2 7 
Nash 2 1 6 4 12 6 
Other 4 7 12 14 10 11 
y~ 1.2003 0 . .5538 4.8254 

* - sign ificant at a= 0.05 
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1.10 Figures 
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Chapter 2 

A Bounded Rationality, 

Evolutionary Model for 

Behavior in Two Person 

Reciprocity Games 

2.1 Population Games and the Replicator 

D y namic 

Due to the Folk Theorem, a gen<'ric infinitely repeated game has many equi

libria. The multitude of equilibria is a problem for theorists bC'cause a jus

tifiable and non-arbitrary method of eliminating the majority of the equi

libria has not been found. In t hC' last chapter, experimental evic!C'nce was 

presented tha.t suggested that p layers in infinitely repeated , symmetric reci-
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procity games usually succeed in establishing a pattern of alternation. The 

player's actions have given a clue as to which of the equilibria should remain 

after elimination. In this chapter a method which eliminates most of the 

experimentally unobserved equi libria is given. 

The m ethod is based on a mathematical model of evolution, developed in 

biology, called the Replicator Dy namic. The Replicator Dyna mic supposes 

a large population of players, each endowed with a particular strategy. Each 

player in the population lives (plays a game), creates offspring identical to 

itself, and then dies. The mixture of player types within the population 

changes from generation to generation as the population grows and depends 

upon the success that each playC'r has in creating offspring. In the Replicator 

Dynamic, each player begets a number of offspring that is proportional to 

that player's lifetime fitn ess, or payoff. The result is that later generations 

have a. higher proportion of players endowed with high payoff strategies. 

Suppose that the initial population has every possible st ratC'gy repre

sented in it. Then, if the Replicator Dynamic is ever in equilibrium , meaning 

that the mixture of player types rC'mains the sam e from generation to gener

ation, the strategies that remain in the equilibrium have been justified in a 

Darwinistic sense. 

The problem with the Repli ca tor Dynamic is creating an initia l popula

tion with every possible strategy in it. In the case of an infinitely repeated 

game, there are infinitely many possible strategies making it necessary to 

have a population of infinite si?:e. The analysis of the dynamics on such a. 

population are beyond the sta te of the art . For any analysis to succeed , there 

must be only a finite number of possible strategies. It is impossible, then, 
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without further assumptions, to use the Replicator Dynamic as a method 

of justification. Here, it will be assumed that players have a. finite memory. 

This bounded mtionality constmint uniformly limits the number of possible 

strategies. 

Application of the model to the infinitely repeated, symmetric reciprocity 

game succeeds in ihe sense that there is only one possible equilibrium. The 

equilibrium encompasses the exchange of favors a.s well as a. behavior asso

ciated with short run payoff maximization and a. behavior which could be 

coined as irrational (although none of the players are rational in any sense). 

All of these behaviors are seen in the experiments reported in the previous 

chapter. It is not a complete success, however, because the behaviors are not 

seen in the same ratios and furthf'rmore, the irrational behavior is not an 

equilibrium in the standard sense. 

These types of population games have been studied before, perhaps the 

best known examples are the papers by Axelrod (1979) and Axelrod and 

Hamilton (1981) which reported on Repeated Prisoner's Dilemma. tourna

ments. In these tournaments, various people, most of them professional 

scientists, submitted computer programs which were, in essence, strategies 

in the repeated Prisoner's Dilemma. Together, the programs made an artifi

cial population which competed by playing a repeated Prisoner's Dilemma. in 

round robin fashion. After competing each strategy was reproduced based on 

their relative scores, the higher a strategy's score, the higher that strategy's 

representation in latter generations. They found that the strategy tit-for-tat 

displaced the other submitted strategies. 

A variety of papers focusing on the dynamics of the tournaments followed. 
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Blad (1986), Hirshleifer and Martinez Coil (1988), Mueller (1987) and Young 

and Foster (1991) use Replicator Dynamics to justify or determine equilib

ria in three-strategy Prisoner's Dilemma and perturbed Prisoner's Dilemma. 

games. The strategies considered were: All Defect, All Cooperate, and some 

variant of tit-for-tat (grim for example) . The cooperative outcome was an 

equilibrium in almost all settings in these works. Smale (1980) applied the 

Replicator Dynamics to a sett ing where players only remembered a summary 

of the past (an average of their past payoffs). He found that if the players 

play good strategies, then cooperation is a globally stable equilibrium. 

A different approach was taken by Miller (1989) who used an optimization 

technique called the Genetic Algorithm. A Genetic Algorithm takes a. subset 

of the possible strategies as a population. The possible strategies, in turn, are 

determined by the computing power available. The population then evolves 

much like populations under the Rf'plicator Dynamic. The cliff<'rence is that 

each member of the population faces a probability of random mutation (be it 

gene specific or crossover) before or after the next generation is formed. Miller 

found that " ... cooperative strategies ... tend to proliferate throughout the 

population under [certain conditions]." 1 

One criticism of these lines of research is that all of them apply their 

dynamic models to subsets of the possible available strategies. Furthermore, 

the subsets are determined in relatively arbitrary ways. In the three strategy 

dynamic models, for example, no reason is given for considering tit-for-tat 

while not considering, at the same time, the grim strategy. 2 This criticism 

1Miller (1989), p. 12. 
2 Mucller (1987) attempts an argument by showing that he considers as a third strategy 
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becomes more powerful when the works of Boyd and Lorberbaum (1987) and 

Nachbar (1989) are taken into account. Boyd and Lorberbaum showed that, 

contrary to previous optimistic research, no pure strategy is evolutionarily 

stable in the infinitely repeated Prisoner's Dilemma. This finding depends 

upon the fact that all possible strategies have a chance of being played. 

Nachbar showed that the limit of the Replicator Dynamic in a two-stage 

Prisoner's Dilemma has everybody defecting (although All Ddcct is not the 

only strategy in the limit). 

One way to uniformly limit the number of strategies under consideration 

in an infinitely repeated setting is to apply a bounded rationality constraint. 

The constraint is a logical one to consider given the comments of Aumann 

and Sorin (1989) who write: 

The first hint that bounded recall might have something to do 

with cooperation came in the summer of 1978. Aumann and 

Kurz, with the help of Jonathan Cave ... worked out a version of 

the infinitely repeated Prisoner's Dilemma with memory one; this 

means that each player can base his action only on what !tis op

ponent did at the previous stage - he has "forgotten" everything 

else. This results in an 8 x 8 hi-matrix game; iterated removal 

of weakly dominated strategies yields a unique strategy pair, in 

which both players start by playing "friendly" and continue with 

"tit-for-tat" thereafter. The outcome is cooperative, both players 

the strategy that in some sense punishes optimally. 
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always playing "friendly." 3 

However, Aumann and Sorin is not a paper concerned with population dy

namics, and so it proceeds down a different path. 

The effects of a one period recall will be considered here, only the payoff 

structure will not be that of a Prisoner's Dilemma. Instead , the analysis 

will focus on the Reciprocity Game. This paper is, in a sense, an answer 

to Rapoport (1988) who laments about the " ... persistent hegemony of Pris

oner's Dilemma ... " and claims that " ... it is evident that there is enough 

to do in this area [of 2 x 2 ganws] for an army of investigators."4 

2.2 The Environment 

Let G be a symmetric, two-person, strategic game with finite action spaces 

Ai = Aj = {a, b} and payoff matrix 

where the top row and first column correspond with the choicP of action 

a and the bottom row and second column with action b. Let G00 be the 

supergame made up of an infinite sequence of plays of game G. 

A history or memory of length k for player i is defined as hf E IT~=I Aj. 

Notice that under this definition, player i only has a memory of the last k 

3 Aumann and Sorin (1989), p. 9. 
4 Rapoport (1988) , pp. 400 - 401. 



53 

actions of player j; player i does not remember his own actions. Let sk E 

Sk : hk ~---+ A (with subscripts suppressed) be a function that maps a player's 

memory into an action. Call sk a strategy with a bounded memory of length 

k and let Sk c s= be the set of all k length strategies. Let sa = S 1
• 

Another way to think of the set sa is as the set of strategies which can 

be implemented by a two-state automaton, such automatons are commonly 

called Moore machines. A Moore machine, here from player i's point of view, 

consists of a quadruple, {H, q0 , j, >.};,where, 

1. H is a finite set of histories or states, 

2. qo is an initial state, 

3. f: H x Aj ~---+ His a transition function, and 

4. >. : H 1---t A; is a behavior function. 

In this particular case, it is convenient to suppress Hand f and explicitly 

enumerate >.. This should cause no confusion because H = {a, b} and f 

maps Aj directly into H, i.e . .f(a) =a and f(b) =b. This convent ion allows 

a machine to be written as a triple, for example {a, a, a}, where the first 

represents qo the initial move of the machine, the second represents >.(a) , 

the move that the machine chooses if its opponent chooses action a., and the 

third represents >.(b), the action chosen if its opponent chooses action b. The 

machine {a, a , a} plays action 'a' on the first move, and then plays action 'a' 

regardless of the action its opponent chooses. There are eight possible two 

stage machines with these characteristics and they correspond directly with 

the strategies in the set S8 . Number the eight machines as in Table 2.1. 
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Suppose that two players, who are limited to choosing strategies in 8 8 

or equivalently to choosing one of the eight machines, meet and play c=. 
Because of the finite strategies, the sequence of play eventually cycles, with 

the longest cycle being four stages. For example, if player i chooses machine 

ss = {a, a, b} and player j chooses machine s8 = { b, b, a}, then the sequence 

of plays will be {(a, b), (b, b), (b, a), (a, a), (a, b), (b, b), ... }, with the first of 

each pair in the sequence being player i's move. Player i's sequenc<:> of payoffs 

will be {,8,')',7],a,,B,/, ... }; the payoffs will also cycle. Define the function 

1r : 5 8 x 5 8 
f-+ ~ as player i's average cycle payoff. For this example, 

1 
1r(ss, ss) = -(,8 + 1 + 1] +a). 

4 

As an alternative example, consider the payoff if player i had chosen s 1 

and player j had chosen s2 • In this case, the sequence of play will be {(a, b), 

(a, a), (a, a), ... }. After the first. stage, the machines play (a, a) forever. The 

average cycle payoff to player i is, 

The application of the bounded rationality constraint and the particular 

definition of the payoff functions has transformed the infinitely repeated game 

c= into a single period game with an 8 X 8 payoff matrix, II. rr is shown in 

Table 2.2 
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2.3 The Replicator 

The following notation is inspired by Taylor and Jonker (1978). Consider a 

population of N risk-neutral, payoff maximizing players who interact in ran

domly matched pairs. Let n; be the number of players who choose strategy i. 

The population can then be represented as a point p in the eight-dimensional 

simplex~. with p; = n;j N and :L:f=t p; = 1. 

Assume that there is exponential growth or decay. Specifically, ~ = r;ni , 

where r; is the current growth rate for n;. Growth in the population follows 

d:: = f N, where f is the average growth rate. 

By differentiating Pi = N, 

l ~ dN 
c Pi __s}J__ _ n i dt 

dt N N2 

N N 
Pi( 1'; - f) . 

Now, assume that the growth rate of players with strategy i is equivalent 

to the expected payoff, or fitnf'ss, of player i. In other words, F(ilp) = 

:L:f=t Pt1r(s;, sl), which is the exp<"ctecl payoff of player i, is equivalent tor;. 

Similarly, F(plp) = :L:?=t p;F(ilp) , which is the expected payoff of a. random 

member of the population, is equivalent to f. Then by substitution , 

dp · d; = p;[F(ilp)- F(plp)]. (2.1) 

Now, ~ is the instantaneous change in the proportion of players using 
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strategy i. Note that ~ > 0 if and only if F(iJp) > F(pJp), and ~ < 0 

if and only if F(iJp) < F(pJp). Hence, the proportion of players using 

strategy irises (or falls ) with time only if the expected payoff of strategy i is 

greater than (or less than) the expected payoff of a random member of the 

population. If the expected payoff to strategy i is the same as thC' expect<'d 

payoff to a random member of the population, then ~ = 0. 

Equation 2.1 implies a dynamic in continuous time on the simplex 6.. 

Given an initial state or initial population in 6., the dynamic describes a 

particular trajectory. 

Assumption 1 Every initial pop1tlation is a point p located in th e inte1·ior 

of the simple:r 6.. 

The assumption means that <'Very possible strategy has at least some 

representation in the population. 

Definition 1 An equilibrium is any population p such tlwt !ljt = 0 for all 

t. 

Definition 2 Given an eq1tilib1'ivm p , p is asymptotically stable if a 

frajeci01'Y that passes thro11gh p' converges to p with lime, for all p' in an 

open neighborhood a1'0tmd p . 

Definition 3 Given an eq1tilibrium p , p is globally asymptotically sta

ble if a tmjecfo1'Y that passes lll1'01tgh p' converges top with lim e. jo1· all p' 

in the inte1·io1' of 6.. 
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Playing a random member of a population p is like playing against a 

mixed strategy q where p = q. A particular mixed strategy will be clenot<'d 

q; and will be treated in the obvious way by the function F. 

Assumption 2 The payoff matrix, M, is such that 1J > '1~ .6 > 1 > 

max{,B, a}. 

The assumption means action a is strictly payoff dominated by action b 

and assures that in what follows x E (1/2, 1). Furthermore, the assumption 

defines the properties necessary for the game to be a symmetric Reciprocity 

Game. 

Now, which strategies are of interest in a Reciprocity game? The strate

gies s 1 and s 2 always play a, which is a dominatC'd strategy in the game G. 

The strategies s3 and s 4 always play action b, which is the dominant strategy 

in the game G. There are three ways alternation can occur: if a player with 

strategy s 5 meets a player with strategy s6 , or if two players with strategies 

S7 or s8 meet. Only the first of these ways is consistent with the idea of 

reciprocation. 

Define the point q e = pe = [0, 0, 0, 0, x, (1- :r ), 0, 0], with :r such that the 

following equali ty holds: 

If the population is at point p e, then the only strategies present are strategi<'s 

ss and s6. 

Lemma 1 The point p e 1s an rq7tilibrium. 



Proof: This is true since, 

implies ~ = 0 for all i . 
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f3 +7J 
xa + (1- x)-

2
-

x ry+ /3+ (1- x)! 
2 

F(6lpe) 

F(pelpe) 

0 

So, an equilibrium with both s5 and s6 players present exists. In this 

equi librium, every t ime an s 5 player meets and s6 player, there will be Alter

nation. Of course, meetings bctwc<'n s 5 a nd s6 p layers are not th<' only types 

of meetings that occur. When an 5 6 player m eets anot her 5 6 playPr, the se

quence of play is{ ... , (b, b), ... }. At each stage, the players myopicly choose 

t he Dominant Strategy Nash equi librium. It is also an subgame-perfect Nash 

equilibrium in the game G00
, although every other equilibrium has Pareto 

Superior payoffs. The last type of meeting which could occur is between two 

5 5 players. In this case, the sequence of play is { . . . ,(a,a), . . . } which is not 

subgame perfect Nash equilibrium play; it wi ll be called Irrational. 

Lemma 2 The equilibrium p e is locally asymptotically stable. 

Proof: By Lemma 1 p e is an eq uilibrium. In equ ilibrium, the expected payoff 

to a random member is x !1-;fJ + (1- x )!. Suppose point p' is an element of an 
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open neighborhood around pe. If the trajectory through p' converges with 

time to pe then pe is locally asymptotically stable. 

Two conditions must be meet for the trajectory to converge to pe. First, 

no strategy with positive weight at point p' can have a higher fitness when 

playing qe, the equilibrium mixed strategy, than qe itself. 

Second, if any strategy happens to do equally as well as qe, then it must 

be the case that that strategy is in the support of qe and qe must do better 

when playing q' than q' itself, where q' is the mixed strategy associated with 

the point p'. 

Formally, 

• For all Pi> 0, F(s;lpe) :::=; F(qelpe) and, 

• if F(s;lpe) = F(qeiPe), thPn qi > 0 and F(s;lp') < F(qelp'). 

The fact that these two conditions are sufficient for asymptotic stability 

is due to Taylor and Jonker (1 978). 

Note that it is enough to consider only pure strategies with positive weight 

because any mixed strategy will have a payoff that is a linear combination of 

the payoffs to pure strategies. If all the pure strategies satisfy the previous 

two conditions, then any mixed strategy will as well. 

The payoffs of all strategies that might have positive weight in a disturbed 

state against the equilibrium strategy are: 

• F(1, pe) = F(2, p e) = :ra + (1- x)a =a 

• F(3, pe) = F( 4, p e) =X/+ (1 -X )t = / 
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None of these strategies does better against qe than qe itself. Both s 5 and 

s6 do equally as well, however, so how these strategies do against themselves 

and how qe does against them must also be considered. 

• F(qe,5) = F(qe, 6) =X~+ (1- x)! 

• F(5, 5) =a 

• F(6,6)= r 

Because the payoff to qe is higher than the payoff to strat egy s.s wh<'n 

both play against s 5 and because it.s payoff is higher than the payoff to s6 

when both play s6 , and because no other strategy does as well agai nst i t as 

itself, the equilibrium is loca lly stable . 

0 

lienee the equilibrium p e is resistant to small shocks or invasion by small 

numbers of players with a diffNent strategy. But what if there is a large 

shock or if there are large numbNs of players with other strat<'gies in the 

initial population? To determine what happens in these cases, the following 

two lemmas will be used.5 

5 T he two Lemmas show that it is possible to iterativ<> ly eliminate strictly dominated 
stra tegies in this case. A genera l theorem encompassing this result can be fo und in Samuel
son and Zhang (1992). 
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Lemma 3 Given Si and si such that F(i,p) < F(j,p) for all p E ~~and 

any p 0 in the inte1·ior of~' limt-+oo Pi = 0. 

Proof: First , note that because p; and Pi are m ~' E.!. is bounded below 
PJ 

by 0. Because of this, it is enough to show that limt-+oo Ei = 0. Time is 
PJ 

continuous and runs from 0 to oo. Consider an infinite sequence of points in 

time {t1, t2, ... , tn, .. . }, such that tn > tn-l· Given any initial population, 

it is possible to determine the values of Pi and Pi at any point tn · Define a 

second sequence by Tn = p,(tn). 
PJ { tn) 

Now, to show that the sequence of Tns is monotonicly decreasing, it JS 

sufficient to show that 

~ ~ 
which implies that .J~.L < ->~.L. 

p, PJ 

Because F(ilp) < F(jlp), 

!!h 
....sfl__ 

Pi 
and 

~ 
__sjJ_ 

Pi 

~ 
!!h 
....sfl__ < 
p; 

[F(ilp)- F(plp)] 

[F(jlp)- F(plp)] 

~ 
__sjJ_ 

Pi 

Because the sequence Tn is monotonicly decreasing and boundcd below by 

0, it must converge, and because it converges, limt-+oo Ei must also converge. 
PJ 
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Suppose the limit converges to a point x greater than zero. Then, at point 
~ ~ 

x, ....d.L = ..JJL. This implies that F(ilp) = F(jlp) which is a contradiction. 
Pi P1 

So, the limit point must be 0. 

D 

Lemma 4 Consider population p with Pk < c;, stmtegies St and q such that 

F( lli) ::; F( qli) for all i f- k and F( lli) < F( qli) for at least one i f- k. If 

c; is small enough so that F(llp) < F(qlp) and if Pk is never bigge1' than c;, 

then for p 0 in the interior of 6. , limt-oo PI = 0. 

Proof: First, note that because p1 and q are in 6., L PI . is bounded below 
ilq;>O p, 

by 0. Because of this, it is enough to show that limt-oo L PI = 0. Time is 
•iq,>O p, 

continuous and runs from 0 to oo. Consider an infinite sequence of points in 

time {t1,i2,·· .,tn,·· .}, such that tn > tn-l· Given any initial population, it 

is possible to determine the values of PI and Lilq,>oPi at any point tn. Define 

a second sequence by Tn = Pl(t, 
ilq

1 
>O p,(t,). 

Now, to show that the seq uen ce of Tns is monotonicly decreasing, it is 

sufficient to show that 

dpt/ Lilq;>O Pi = ( "" . dpl - . "" dp; )/( "" ·)2 0 
dt ~ p, it p, ~ lt ~ p, < 

ijq,>O C ilq,>O G ilq,>O 

~ L: ~ 
which implies that ....d.L < rlq,>o dt 

PI Lrlq, >O p, 

Because F(llp) < F(qlp), 

[F(llp)- F(plp )] 



"'""" 1£i L,ilq, >O dt 

I:ilq;>O Pi 

and 

< 
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[F(ilp)- F(plp)] 

Because the sequence Tn is monotonicly decreasing and bounded below 

by 0, it must converge, and because it converges, limt.-oo 2: PI must also 
iJq;>O p, 

converge. 

Suppose the limi t converg<"'s to a point x greater than ZNO. Then, at 

• ~ I:ijq >O * Tl . . l' h F(li ) F( I ) 1. I . powt x, _......_ = • . 11s 1mp 1es t at p = q p w 11c 1 I S a 
PI l:.Jq;>O p, 

contradiction. So, the limit point must be 0. 

0 

And now, the main result: 

Theorem 1 The eq11ilib·ri1tm p e is globally asymptotically stable. 

Proof: The strategy s4 strictly dominates the strategies s1 and s2, F(s,dp) > 

F(siiP) and F(s41P) > F(s21P) for all pin~ . By Lemma3, P1 and P2 go 

monotonicly to zero as t goes to infinity. In particular, for any small positive 

number c, at some point in time, p 1 and p2 will both be less then c. 

Now, either s4 or q e strictly dominates s7 with regard to all strategies 

except s 1 and s2. If 
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then qe is strictly dominant. If the inequality does not hold, then clearly, 

implying that s4 is strictly dominant . 

Because the inequalities above are strict, it is possible to pick an E: small 

enough so that if the weights of the strategies s1 and s 2 are less than .::, 

either F(s41P) > F(s71P) or F(qelp) > F(s4 ip). Lemma 4 then implies that 

P1 goes to zero as t goes to infinity. 

Similarly, Lemma 4 can be usc>d to show that Ps and then P3 and P4 go 

to zero as t goes to infinity; each time q e is the mixed strategy nceded in the 

Lemma. 

We are now left with only two pure strategies that can have weight greater 

than.::, ss and s6. Suppose Ps is very small , then F(ssiP) = ((3 + ry)/2 + 81 

and F(s61P) = 1 + 82, for some 81 and 82 small. If Ps is small , then Ps 

will grow with time. What if p5 is large? Then F(ssiP) = a + 81 and 

F(s61P) = (f3+ry)/2+82, for some 81 and 82 small. If Psis large, then Ps will 

decay with time. 

In any case, the trajectory through any initial point must eventually come 

within any neighborhood of p e, and by Lemma 2 converge tope. 

0 

No matter what the initial population is (as long as it is in the interior 

of~), the Rcplicator Dynamic will converge to an equilibrium with only s 5 

and s6 players. In this equilibrium there will be three types of sequences of 
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play: Alternation, Dominant Strategy Nash, and Irrational. 

2.3.1 Other Symmetric Garnes 

What types of problems occur if Assumption 2 is not met? Well, suppose 

a > /, which covers the case of the Prisoner's Dilemma. Then there is no 

strategy that strictly dominates another. While p e is still an equilibrium, it 

is not a globally asymptotically stable equilibrium. The same result occurs 

if f3 > /, or if f3 > 'f/; these cases cover the game of Chicken. A numerical 

example encompassing both of these alternatives will be given later. 

Recall Aumann and Sorin 's application of a one period recall to the in

finitely repeated Prisoner's Dilemma. Aumann and Sorin justify their result 

by the elimination of strategies based on weak dominance alone. Unfortu

nately, under the Replicator Dynamic weak dominance alonc is not enough 

to assure that a particular strategy's representation in the population goes 

to zero. While Nachbar (1988) does prove a theorem which gives positive 

convergence results in a subset of weakly dominant solvable games, his result 

cannot be applied in Aumann and Sorin's example. The difficulties encoun

tered in weakly dominant solvable games are covered well in Nachbar (1988) 

and interested readers are refcrred there. 

2.3.2 Asymmetric Garnes 

There are inherent similarities between the Battle of the Sexes and Reci

procity Games which might lead you to believe that a similnr result could 

be obtained in the Battle of the Sexes. There is a problem, howcver - the 
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Battle of the Sexes is an asymmetric game. There are two approaches in the 

modeling of asymmetric games as population games: analyze two distinct 

populations, and make the game symmetric through random population as

signment. 

Analyzing two distinct populations changes the dynamics dramatically. 

Consider what would happen in the case of the Reciprocity Game. Call the 

two populations the row population, rp, and the column population, cp. Let 

them evolve in the obvious way. Then the populations such that rp = cp = 

p " would still be an equilibri um , but instead of being an global attra.ctor, it 

would be a repeller. Any small ckviation leading to a higher number of ss 

row players, for example, will cause the dynamics to flow towards populations 

consisting entirely of s 5 row players and s6 column players. There are many 

other equ ilibria possible, each depending upon the initial populations. A 

global result is impossible. 

Suppose that the game is mad<' symmetric. The obvious way of accom

plishing the task is to randomly choose one of each pair of players to be the 

row player and to let the otlwr bet he column player. A player's payoff would 

be their average payoff gotten as a row player plus their average payoff gotten 

as a column player divided by two. Alternatively, each player would face a 

payoff matrix consisting of cells which were the average payoff across both 

types given those actions. Specifically, suppose 



67 

and 

where Me was the payoff matrix faced by column players and Mr was the 

payoff faced by row players. Then the payoff matrix faced by a player in the 

version of this game played with random population assignment would be: 

M = 2 2 . 
[ 

~ f3c + f3r l 
!Zd!l!:. ~ 

2 2 

This method is an improvement over the two population method because it 

does not change the outcome predicted in the Reciprocity Game. In fact, 

any asymmetric game that mf'ets Assumption 2 after having been made 

symmetric will meet all the assumptions required by Theorem 1. 

Unfortunately, even with random population assignment, the Dattle of 

the Sexes does not meet Assumption 2. 

2.4 Examples 

Consider the payoff matrix 1111 , 

Then Theorem 1 holds with :r = 1/3. Figure 2.1 shows a phase portrait for 

the initial generation that has all strategies with equal representation in the 
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population. 

In equilibrium, there are only three possible outcomes to a meeting be

tween two players, call them: Alternation, Dominant Strategy Nash Play, 

and Irrational Play. Alternation occurs whenever a player with strategy 85 

meets a player with strategy 8 6 . The sequence of play in this case would 

be {(a, b), (b, a), (a, b) , ... }. Alternation occurs with probability 4/9. Dom

inant Strategy Nash Play occurs whenever a player with strategy 8 6 meets 

another player with strategy s6 . The sequence of play in this case would 

be {(b,b),(b,b),(b,b), .. . }. Dominant Strategy Nash play occurs with prob

ability 4/9. Irrational Play occurs whenever a player with strategy 8 5 meets 

another player with strategy 8 5 . The sequence of play in this case would he 

{(a,a),(a,a),(a,a), ... }. The probability of this outcome is 1/9. 

As an example of what happens if the payoff matrix is not constructed 

with the correct inequalities, consider the payoff matrix M 2 , 

In this case, Theorem 1 does not hold. Figure 2.2 shows a phase portrait for 

the initial generation that has all strategies with equal representation in the 

population. Figure 2.3 shows a phase portrait for a different initial genera

tion. Notice that the equilibria are different for these two initial generations. 
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2 .5 Conclusion 

It has been shown that a large class of two-player, hi-matrix games, both 

symmetric and asymmetric, have a unique equilibrium when they are mod

eled as population games containing players with bounded recall. The class 

is the set of all games which meet Assumption 2. In the unique equilibrium, 

both trading favors and short term maximization occur. A third irrational 

outcome also occurs. Normative justification for all three of these behaviors 

can be obtained from the Darwinistic maxim claiming that only the fittest 

should survive. 
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81 : {a, a, a} 82 : {b,a ,a} 
83 : {a,b,b} 84 : { b, b, b} 
8s : {a,a , b} 86 : {b,a,b} 
87 : {a,b,a} 8g : { b, b, a} 

Table 2.1: The eight machines or strategi<>s contained in S 8 . 
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0 0 (3 (3 ()' 0 (3 (3 

0 0 (3 (3 0' 0 (3 (3 

1J 1J I I I I 1] 1J 

1J 1J I I I I 1J 1J 

IT = 0 0 I I ()' 
!3+'1 c.+/3+'1+'1 a+i3+YJ+'Y 

2 4 4 

0 0 I I 
!1±[}_ 

I 
a+~+!l+:i: a+~+!l+:i: 

2 4 4 

1J 1J (3 (3 cY+/3+!1+'1 a+/3+'7+1: a+-y (3 
4 4 2 

1J 1J (3 (3 <Y+i3+YJ+'Y o+P+YJ+'Y 1] 
-y+a 

4 4 
-2-

Table 2.2: T he environment IT. 
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2.8 Figures 



76 

Phase Portrait for Example 

0.9 ---------------------------------------------------------------------------- ------------------------------------

Generation (in 1 Os) 

--- AA- _ BB-*- AAB 
-e- BAB -M- ABA__...._ B BA 

Figure 2.1: The phase portra it for payoff matrix !111 . The term _ AA stands 
for the sum of the representation of s1 and s2 , _ BB is similar. The initial 
generation has all strategies equally represented in the population. 
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Phase Portrait for Counter-Example 
Initial Generation A 

1 ~----------------------------------------------. 

0.9 ·············-----·-·······-------------------------------------------------------------------------------------

Generations (in 1 Os) 

---- AA- _ 88------ AA8 
-a- 8A8 -M- A 8A __.__ 8 8A 

Figure 2.2: The phase portrait for payoff matrix !lh. The term _ AA stands 
for the sum of the represent at ion of s 1 and s 2 , _ BB is sim ilar. The initia l 
generation has all strategies <'qually represented in the population. 
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Phase Portrait for Counter-Example 
Initial Generation B 

0.9 ............................................................................................................... . 

-~ 0.8 ················································································································ 
ro "3 0.7 ............................................................................................................ . 
a. fr. 0.6 ................. ······························································································ 

.!: 0.5 .............. ································································································· 
c: 
0 04 .......... ···································································································· t . 

§.0.3 
n: 0.2 ---------------------------------- ---------------------------------------------------------

0.1 

0~~~~~~~~~-.~~ .. ~~~~ .. ~~~~ 

Generations (in 1 Os) 

--- AA- _ BB---- AAB 
-e- B AB -M- A BA ......_.. B BA 

Figure 2.3: The phase portrait for pa.yoff ma.trix 1112 . The term _ AA sta.nds 
for the sum of the representation of s 1 a.nd s2 , _ BB is similar. The initial 
generation is p 0 = [0.048, 0.0~8, 0.078, 0.078, 0.264, 0.282, 0.182, 0.020]. 
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Chapter 3 

Anomalous Behavior in Linear 

Public Goods Experiments: 

How Much and Why? 

3.1 Introduction 

1 There is a. growing body of data. obtained from experiments on voluntary 

contributions in linear public goods environments with a single publi c good 

a.nd a. single private good. Many features of the data have been difficult to 

explain; for example, subjects violate dominant strategies on a regular ba

sis. They give a.way money, apparently just to be nice (Isaac and Walker 

[1984, and elsewhere]) ; at least as often , they seem to give away money just 

to be mean (Saijo and Yamaguchi [1992]). Furthermore, individual behavior 

1T his chapter contains work that is joint with T homas Palfrey. 
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over time exhibits erratic patterns, it alternates back and forth between ex

treme generosity and extreme selfishness. Ledyard's (1992) excell<"nt surv<"y 

documents these and several other anomalies. 

These anomalies might be cause for alarm as they signal trouble for any 

but the most schizophrenic models of behavior. However, the range of en

viornments for which these experimental results have been reported is very 

narrow, and the designs employed make it difficult if not impossible to iden

tify decision rules at an individual level. The point of this paper is to broaden 

the playing field in a natural direction , using a design that permits estima

tion of individual behavior. By changing both the information structure and 

the distribution of preferences , this design also provides a robustness check 

on the anomalous findings of past experiments. 

We offer the following thought experiment in the context of a well-studied 

private goods allocation mechanism, the second-price auction, in hopes that 

it will help the reader understand some of our concerns about design, and to 

foreshadow what follows. 

A Thought Experiment: 

Imagine conducting a Sf'cond-price sealed bid auction experiment 

with four players, where each is told to bid for an obj('ct that 

is worth exactly $1.58 to him. After careful explanation of the 

rules, ten identical, sealed bid, second-price auctions are t lwn 

conducted in sequence. Bids are required to be greater than or 

equal to 0 and less than $1..58 and ties are broken randomly. After 

each auction, subjects are told the winning bid and the second 
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highest bid. When the tenth auction is over, everyone is paid by 

the experimenter and thanked for showing up. 

What do you think the distribution of bids will be, and how will 

this distribution change from period to period? How wou ld you 

plan to bid in such an auction? 

The first observation to be made about the thought experiment is that 

it shares some of the traits of many voluntary contribution, public goods 

experiments that have been reported in the literature. In the most common 

voluntary contribution, public goods experiment , like in the thought experi

ment, there are a number of identical players. Also, the players are asked to 

make a decision about buying a good and they are given personal incentives 

not to buy it, or at least to spend as little as possible on it. Much of what is 

known about free riding is based on experiments with this typf' of design. 

The second observation to be made is that little can be learned a bout the 

general bidding behavior of the participants. In the auction, each player at

taches the same value to the good in each of the ten auctions. Furthermore, 

every other player also attaches this same value to the good. The measure

ment of a gem•ral bidding function is practically impossible; the best one can 

do is estimate behavior at a particular point. 

It would be possible, by running a number of experiments and varymg 

the value of the good, to construct something that looked like a bidding 

function. However, that function would depend upon the fact that every 

player attaclws the same value to the auctioned good. This function would 

only measure how an individual's choice behavior changes wlwn their own 
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value and the joint dist?·ibution of all bidders' values change simultaneously. 

The estimated function would have other limitations as well- to obtain the 

data required , an individual would have to participate in a large number 

of 10-auction sequences. The amount of play necessary might lead to a 

confounding of the effects of bidding behavior and of experience, unless a 

large number of experiments were conducted. 

A final observation is that, in spite of the fact that there is a dominant 

strategy equilibrium where each bids $1.57, one can, for a variety of reasons, 

imagine players bidding differently. In fact, it is difficult to guess what might 

actually happen, especia lly if Lhe players are inexperienced.2 

It should be no surprise to learn that audion experiments arc not usually 

conducted like Lhe thought experiment. Auction experiments have focusrd 

exclusively on different environments, environments in which players have 

diverse preferences and di verse information. These are the environments in 

which auctions most naturally occur. What is surprising is that voluntary 

contribution f'Xperiments have, for the most part, not shared Lhis focus. 3 

This paper, and the experimental design it employs, is motivated by our 

20ne might a lso notice that the thought experiment is a repeated game not a one-shot 
game. We do not address this potential complication until later in the paper. 

3 There are a few exceptions , notahly Fisher et a!. 1991 and Isaac et a!. 1985, both 
of which consider environments with two types. The former provides subjects with iden
tical information a bout other subjects' preferences as in parallel homogeneous preference 
experiments. The latter has several other different features, including nonlineariti es, and 
does not conduct any baseline experiments with homogeneous preference. nrookshire et 
a!. (1991), Smith (1980) , and Manvel! and Ames (1980) a lso have conducted experiments 
with heterogeneous preferences, but these are not comparable for other reasons. None of 
these experiments varied individual subject preferences across decisions , nor did they pro
vide explicit information about the dis tribution of preferences in the population. Palfrey 
and Rosenthal (1991) use an environment similar to the one expla ined here, but the public 
good technology is step- level, not linea r. 
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reflections about the thought experiment, and by a view that much can be 

gained by shifting the research agenda in the direction of this different class of 

environments. One benefit is simply better measurement: response (bidding) 

functions can be estimated at the individual level. Also, we can check for 

the robustness of existing results to environments that include features, such 

as heterogeneity of preferences, that are endemic to natural settings. In 

what follows , we report results from our experiments that study this kind of 

environment, and we contrast these results with previous findings. 

3.2 Background 

This paper investigates contribu tion behavior under the Voluntary Contribu

tion Mechanism in simple linear public good environments where all players 

have dominant strategies. The typical environment consists of N individuals, 

each endowed with X ; discrete units of a private good. The marginal rate of 

transformation between the public good, y, and the private good is one-for

one, and individual utility functions are of the form: U(y, x;) = Vy + rix;. 

We refer to V as the value of the public good, and it is normalized to be the 

same for all individuals. 

The Voluntary Contribution Mechanism defines a simple game, in which 

each individual simultaneously decides how much public good (between 0 and 

X;) to produce on his own. Total public good production in the economy is 

the sum of all private production of the public good. Payoff functions are 

then defined from the final allocation and the utility functions in the obvious 

way. This game is repeated several times. 
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As pointed out in Section 1, much of what we think we know about 

behavior in this game is based on experiments in which X; and r; are the same 

across individuals and repetitions and r;JV > 1. This paper concentrates on 

a group size of four. 

Several findings have emerged from these other investigations: (1) nearly 

all players in this game violate their one-shot dominant strategy, with many 

contributing upwards of half their endowment, even when r;/V is three or 

more; (2) there is a strong negative relationship between the marginal rate of 

substitution r;/V and the rate at which violations are observed; (3) roughly 

half the aggregate private endowment is contributed by inexperienced sub

jects on the first play of the game; (4) violations of dominant strategies 

diminish with repetition and with experience (playing a second sequence of 

games with a new group); (.5) viol at ions of dominant strategies to contribu te 

(rJV; < 1, Saijo and Yamaguchi [1992]) appear to be even more prevalent 

than violations of dominant st rat egies to free ride. 

3.3 Our Design and Procedures 

Our experiment looks at the above findings more closely by studying envi

ronments with both non-degenerate distributions of r;/V, and with private 

information. These innovations are introduced to overcome the limitations 

of past designs , limitations suggested by the thought experiment. The inno

vations permit us to measure rc>sponsiveness to 1·;/V, via response or bidding 

functions, at both the individual level and the aggregate level, and to mea

sure a baseline> of deviant or erroneous behavior clue to nuisance factors , such 
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as boredom or confusion. 

There are a number of specific features of our design that enable us to 

address other issues that are relevant to understanding other commonly ob

served patterns of behavior. These features are listed below. A sample copy 

of the instructions is in the Appendix. 

1. In all our environments, subjects receive r;'s that are randomly assigned 

according to a uniform distribution between 1 and 20. vVe sometimes 

refer to these as token values. Each time a subject is to make a new 

decision, he is independently and randomly assigned a new r; for that 

decision. Subjects do not know the other subjects' assignments of rj 's, 

but the distribution is publicly announced at the beginning. The value 

of V is also announced at the beginning. 

Therefore, the data contain multiple observations of the choice behavior 

of each individual, observations at different levels of r;jV, and permits 

the estimation of response functions at both the individual and aggre

gate levels. 

2. We vary the distribution of marginal rates of substitution, (1·;/V), 

by shifting V. We look at the four different distributions given by 

V E {3, 6, 10, 15}. One of the distributions, V = 3, has the feature 

that group efficiency is not maximized when all subjects contribute in 

every round. In that condition, on average, forty percent of the time 

subjects are assigned a tok<>n value that is worth more than four times 

the individual marginal value of the public good. In these cases, con

tribution reduces group efficiency. 
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3. We vary the endowment. In one condition, everyone is cndowed with 

one indivisible unit of the private good. In the other condition everyone 

is endowed with nine discrete units. 

4. Each subject makes a sequence of ten decisions in a fixed group with 

three other players. This allows a direct comparison to some past 

experiments, notably those reported in the Isaac and Walker studies. 

5. Each subject participates in a total of four sequences, each time with 

a different group of subjccts. The first two sequences have the same 

parameters; the last two sequences have the same paramctcrs (but dif

ferent from the first two). This allows us to identify experience effects. 

All four sequences occur in a single session that lasts approximately q 
hours. Each session incluclcs sixteen subjects. 

6. All sessions were conducted at the Caltech Laboratory for Experimental 

Economics and Political Science, using a collection of PC's that are 

linked together in a network. 

7. Each subject was paid cash, based on a session-specific exchange rate, 

for each point they carncd in the session. The exchange rate was picked 

so that the sum of equilibrium payoffs was approximately the same 

across sessions. 

[Table 1 here] 
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3 .4 Response Functions and Background 

Noise 

We focus mainly on two aspects of the data. The first has to do with at

tempting to identify what we call ermrs or background noise- behavior that 

is grossly inconsistent with standard theory. Second, we attempt to measure 

response functions, which are the analog to bidding functions in auctions. 

The functions answer the question: How do contribution decisions depend 

on the marginal rate of substitution? We measure errors and response func

tions at both the aggregate and individua.l levels, using nonparametric and 

parametric models of the error structure. 

It is useful to think of our analysis in the context of a random utility 

model, of the sort found in Maddala (1983), McFadden (1982), and elsewhere, 

for the analysis of data with limited dependent variables. For example, in the 

condition where subjects have a single indivisible unit of the private good, 

they face a simple binary decision. We model the statistical structure of 

residuals by assuming that ut ility functions have a random component that 

is not observed. For lack of a better name, we call this the alh·uism (or 

warm glow) term. Depending upon the value of the altruism term, subjects 

may receive some additional utility from contributing a unit of their endow

ment , over and above the utility induced by the payment method used in the 

experiment. 

Theoretically, an optimal response function for an individual with an 

additive warm glow term , c:;, is to contribute X; if r;jV < 1 + c:; , and to 
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contribute 0 if r;/V > 1 + c:;. Any behavior is optimal when r;/V = 1 + c;. 

This is what we call a ctdpoint strategy (Palfrey and Rosenthal [1988]). In 

fact, this optimal strategy is a one-shot dominant strategy for any values of 

c;, r;, V, and X;. 

If the value of c; is stochastic, and vanes according to some assumed 

distribution, an estimated response function gives the probability of contri

bution as a function of other controlled variables, such as experience, etc. 

In addition, the response function gives us indirectly an estimate of "back

ground noise." We look a.t the effect of the following variables on response 

functions: 

• The induced marginal rate of substitution (r;fV). 

• Experience. 

• Endowment (divisible or indivisible - i.e. one or nine units). 

• The value of the public good (V). 

• Repetition (Is there a decay over the ten rounds of play?). 

3.5 Analysis of the data 

3.5.1 Some baselines 

We present three different bas<'line error rates. This gives a rough calibration 

of a lower bound on the amount of background noise4 in the experiment. By 

4 Contemporaneous work by Andreoni (1992) is also pursuing this issue. 
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this, we mean the percent of observed decisions that appear incongruous with 

nearly any currently accepted theory of rational decisionmaking. We also 

make an attempt to compare our baseline with baselines observed elsewhere, 

to the extent possible. 

Splitting 

By splitting, we mean that a subject contributes some fraction of his endow

ment, but not all of it. Because of the linear structure of the environment , 

such behavior is not rational even if a subject has a warm glow term added 

to his marginal rate of substitution. While it might be possible to think up 

models where such behavior is rational, such explanations would likely be 

quite contri ved . Tables 2, 3, and 4 present the splitting data from our ex

periments. Recall that in half of our experiments, subjects were not capable 

of splitting, since they had only a binary choice. Thus, the data in this table 

is based on only half the sample. One can see t wo striking features. First, 

splitting is more prominent among inexperienced subjects and in the early 

periods of each 10-period game. Second, splitting almost never occurs when 

subjects have r;fV < 1. In other words, a lmost all splitting ca n be accounted 

for by subjects who have a dom inant strategy to free ride. 

[Table 2, Table 3, and Table 4 here] 

These findings contrast sharply with those of Issac and Walker. They 

observe splitting well over half of t he time in their data. and, for their marginal 

rate of substitution , or MRS, of 1.33 experiments, there is very little decay 

of splitting over the course of the ten periods. 
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[Table 5 here] 

Spiteful behavior 

Many have speculated that subjects violate their dominant strategy to free 

ride because of some form of altruism, or alternatively, because their utility 

function depends on group payoffs in a positive way. If this is the main 

driving force behind the past findings, then we should see very little free 

riding when subjects have r;jV < 1. Based on this scenario, violations of 

dominant strategies to contribut<" can reasonably be attributed to effectively 

random behavior. This gives us a second kind of baseline error rate. In our 

experiments, four percent of the decisions violate the dominant strategy to 

contribute when 1·;/V < 1. This number is remarkably stable across periods 

and across the experience treatmPnt (see Table 6). 

[Table 6 here] 

Sacrificial behavior 

In one of our designs, V = 3, thC' group optimum is not obtained by everyone 

contributing for every possible r; they might draw. In particular, the group 

payoff is maximized if subjects contribute if and only if r; ~ 4 V = 12. A 

subject who contributes when 7'; > 12 sacrifices more than the <>ntire group 

benefits. It is hard to imagine any except the most fervent altru ists contribut

ing under these circumstances. The frequency of this type of contribution 

also provides, in a slightly different wa.y, a lower bound on the amount of 
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"crazy" or random behavior. As Table 7 shows, this kind of behavior is ap

proximately as common as spiteful behavior, but virtually disappears with 

experience (1 observation out of 129). 

3.5.2 

[Table 7 here] 

Estimation of response functions from aggre

gate data 

A Simple Model 

We measure response functions as the probability of contribution as a func

tion of the marginal rate of substitution or MRS. First, consider the following 

family of theories, a family that includes both the dominant strategy (gam<") 

theory and the altruism theori<'s based on an additive warm glow altruism 

term. Each member of this family is characterized by an error rate, c:, and a 

threshold , 1\1 . An (c:, 1\;J) theory states that "Individuals contribute to a pub

lic good if and only if the marginal rate of substitution (token value divided 

by public good value plus warm glow) is less than or equal to !If . However, 

they make errors at a rate of c: ." 

If M = 1, then this is just the dominant strategy theory, modified appro

priately to account for the possibility of error. If M > 1 this indicates some 

degree of altruism, everyone is altruistic. If M < 1, this indicates negative al

truism. According to our data., what is the best theory in this family? Using 

the criterion of maximum likelihood, the answer is theM* that produces the 

fewest classification errors in the data, together with c:* equal to whatever 
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the classification error generated by M* is. This is not only easy to calculate, 

it is also easy to illustrate graphically. Figure 1 displays the answer: In our 

data, the best theory isM= 1.1. It results in only 12.5 percent (c*) classifi

cation errors and is very close to the selfish cutpoint equal to 1.0. Figures 2 

and 3 break this analysis down across the various levels of the ll-treatment 

and the two levels of the endowment treatment. 

Probit Analysis 

An alternative, more fami liar way to estimate response functions is by Probit 

analysis. In effect, the Probit analysis fits curves through the raw data shown 

in Figures 4-7. In this analysis, we assume that an altruism term, cit, is a 

Normally distributed random term added to an individual's MRS that it is 

independently distributed across individuals and across decisions. 

The impact of experience, endowment and other experimental treatments 

are easily assessed by introducing dummy variables. The simplest probit 

model, with only a constant term and ri/V, or MRS, entering on the right 

hand side gives us an estimate oft he average altruism term, which we denote 

by t, and its standard deviation r7<. 

We consider five Probit l\1odels which are built by recursiYely adding 

independent variables to the basic model. Note that an observation in these 

models is a. decision involving a single token. In order to maintain equa l 

representation between the conditions with an endowment of one and those 

with an endowment of nine, an investment decision in the endowment of one 

cond itions is given the same Wf'ight as nine similar investmf'nt ckcisions in 
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the endowment of nine conditions. 

The intercept coefficients in a Probit model represent changes in €/CT., and 

the slope coefficients represent changes in -1/CT,. The estimated mean , €, is 

equal to minus the slope coefficient divided by the intercept coefficient. It 

follows that a. negative change in the already negative slope coefficient leads 

to a. decrease in €, holding everything else constant. This decr<>ase is implied 

by the decrease in variance due to the more negative slope coefficient. If 

everything is to stay the same, t must also decrease. The decrease in variance 

also makes the slope of the curve steeper. 

From each Probi t Model , WC' ca n obtain a response function P(- ), which 

returns the probability that a subject invests in the public good. The six 

variables in the other models ar<>: exper.s, a. slop<> dummy for subjects with 

experience; exper, a consta nt dummy for subjects with experienc<> ; endow.s, a. 

slope dummy for treatments with an endowment of nine; endow, a constant 

dummy for subjects with an endowment of nine; V, the marginal return 

from the public good; and period which ranges from 1 to 10. Coefficients, 

t-sta.tistics, log likelihoods, and the percentages correctly predicted for each 

model are given in Table 8. 

[Table 8 here] 

Turning to specific models, even the simple model P1 , in which a player's 

investment dC'cision depends only upon MRS , is able to correct ly predict 

83.064 percent of the observations. 

In model P 2 , the slope coemcient for the experience variable, exper.s, 1s 

negative which means the response curve for experienced subj<'cts is st eep<>r 
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than the response curve for inexperienced subjects. The coefficient for the 

intercept variable for experience, exper, is positive. This tends to offset the 

change in t implied by the reduced variance, however, the total change in t 

is still negative. 

A player's cutpoint is the point at which he is indifferent between investing 

in the public good and investing in the private good, the point where 'Pi = 

1/2. For inexperienced subjects, the estimated cutpoint is 1.641 , and for 

experienced subjects, it is 1.399. This finding reinforces the findings of Isaac 

and Walker. Experienced subjf'cts are more consistent with the dominant 

strategy model than inexperien ced subjects. In this case, the effect is even 

significant. Of independent int<>rest is that experienced subjects' response 

functions are sleepeT, indicating less random behavior. 

Probit model 'P3 , shows a minor effect of the addition of a pair of Pn

dowment varia hies, both equal 1 if the endowment is nine tokens and 0 if 

the endowment is one token. Tn this case, the slope shift is positive and the 

intercept shift is negative. The consequence is that the response fun ction for 

subjects in the high endowment condition is flatter than the response fun c

tion for subj ects in the low endowment condition. The negative intercept is 

enough to counteract the highf'r variance, however , and the high endowment 

m eans are lPss than the low endowment m eans. The magnitudes of these 

coefficients are much smaller than those associated with the experience ef

fect and the e ffect of the endowment change is similarly smaller. 5 The actual 

differen ces ar<' shown in Figure 8. 

5The m agnitudes are comparable because the variables, both dummies, are of the same 
scale , namely 0 or 1. 
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The variable V, which is added in model P4 , measures the marginal val

uation of the public good. One interpretation (since we have controlled for 

MRS) is that its coefficient tells us what happens to a subject's behavior as 

the payoffs rise. Although the effect is very small, we find that a player's re

sponse function becomes steeper, and the average deviation becomes smaller. 

A similarly small result holds when the period of the decision is taken into 

account. Holding everything else constant, a player is less likely to contribute 

in later periods than in earlier periods. 

Quite clearly, the major effects are clue to MRS and experience. \\' hile the 

endowment condition has some effect, it is not as important. The effects clue 

to the size of the payoffs and to the period of the decision pale in comparison. 

3.5.3 Response Functions and Errors: Individual 

Level Analysis 

The analysis in the previous section assumes that individuals are identical. 

In fact, there are indications of heterogeneity in our data. Similar indications 

have also been noted in past work. This section offers a simple approach to 

look at differences between individuals, based on minimization of classifica

tion errors (as in section 5.2.1). We do two things. First , we break down tha.t 

analysis by individual, and obtain a distribution of classification minimizing 

cutpoints for individuals. This allows us to identify the fraction of subjects 

who behave consistently with the Nash equi librium, subjects we call Nash 

players. Second , from these estimated individual cutpoints, we can obtain a 

distribution of the error rates across individuals. This gives us a way to iden-
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tify what fraction of subjects are behaving consistently with some cutpoint 

model. 

We define a Nash Player as a player who is rational and non-a.ltruistic.6 

That is €; = 0. With this in mind, consider Tables 7 and 8 which report, 

by subject, the raw number of classification errors for each of the twenty 

possible cutpoints. These cutpoints correspond to the possible token values. 

They are the only applicable cutpoints, because they relate directly to every 

possible realization of r;. 

[Tables 7 and 8 here] 

Each possible cutpoint is given a score based on how well it represents 

that subject's decisions in the exp<"riment. The score is simply the number of 

times a. violation would have occurred if that was the actual cutpoint rule the 

subject used. 7 More specifically, we hypothesize that a particular player is 

using a cupoint that corresponds to token value x (we consider <"very possible 

x in turn). Hypothetically, each time that play<"r receives a token valuer;, 

he compares it to x and then spends only if r; < x. A classification error 

occurs if one of the two following events occurs: 7'; < x and the player does 

not spend, or 7'; > x and the player does spend. The lower tlw cutpoint's 

score, the better it represents that person's decisions. In tltcse two tables 

we report the data from one of the {6,1} treatmf'nts and one of the {6,9} 

6 Because our estimation allows for errors, a Nash Player may be diffe rent than a player 
who perfeclly follows the decision rule implied by the self-interested model. The difference 
is that a Na.<>h Player is allowed to make mistakes. 

7 When a particular rule was imprecise, i.e., when the player was indifferent, it was 
assumed that no errors were made. 
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treatments.8 

The first thing to notice is that the minimum error cutpoint is not always 

unique. When forced to estimate a unique cutpoint, we select the one closest 

to 1, which is Nash play. In Table 9, subjects { 4, 6, 10, 14, 15, 16} are classified 

as Nash players, as are subjects {3,4,5,6,8, 10,12, 13,15} in Table 10. A 

second thing to notice is that not every subject has the sa.me estimated 

cutpoint. In Table 9, for example, subject #2 has an estimated cutpoint 

of 2.17 (corresponding to a token value of 13) while subject #16 has an 

estimated cutpoint of 1.0 (corresponding to a token value of 6). Another 

observation is that, for some subjects, the minimum number of errors is 

strictly greater than zero. 

Pooling across all experirrwnts, we find that 144/256, or 56 percent of 

the observations are Nash players. The entire distribution of cutpoints is 

illustrated in Figure 9. On tlw :r-axis is the difference between the estimated 

cutpoint and the value of the public good in tok('n value units. For example, 

subject #1 from Table 10 would be included in the "3" category in this figure, 

since his estimated cutpoint is 9 and the value of the public good is 6. An 

x-value of 0 in this figure corresponds to Nash play. This figure can also he 

broken down by experience, and doing so illustrates the effect of ('Xperience 

on inducing Nash (non-altruistic) play. This is shown in Figure 10. 

Finally, we define consistent players as players that can be perfectly clas

sified, so that they never make an error at their estimated cutpoint. Pooling 

across all experiments, we find ] 78/256, or 70 percent consistent players. The 

8These two tables are meant to be representative. 
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percentages of experienced and inexperienced consistent players are 75 and 

64 respectively. Figure 11 displays the distribution of error rates, measured 

as the proportion of an individual's decisions that are inconsistent with his 

estimated cutpoint. Comparing to the earlier baselines, these error rates are 

again mostly in a range of five percent or below. 

3 .5.4 Comparison to Previous R esults 

There are a few simple comparisons between our data and the data from 

four person experiments conducted by Isaac and Walker. Recall that, in 

Issac and ' '',Talker's experiments, all subjects have identical marginal rates of 

substitution , equal to either 1.33 or 3.33 (which they refer to as High MPCR 

and Low MPCR). Their experiments also used a ten-period repetition design. 

The most notable difference between their data and ours is in the fre

quency with which we observed consistent Nash play. This occurs when a 

subject, for an entire ten-period rC'petition, makes no decision that is incon

sistent with dominant strategy Nash equilibrium. In terms of Figures 9 and 

11, these subjects are in the 0-categories in both figures . vVe observe this 

118 out of 2.56 observations, or 45 percent of the time. Isaac and vValker 

observe this 7 out of 76 observations, or 9 percent of the time. Thus we find 

five times as much consistent Nash play. Large differences also occur in the 

frequency of splitting, as pointed out earlier (Tables 2- 5). 

A second comparison is to look a.t the decisions made by our subjects 

when they had MRS = 1.33 and MRS = 3.33. The comparison is given in 

Table 11 . 
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[Table 11 here] 

Again, the same kind of pattern emerges. We find lower contribution 

rates. In fact, our contribution rate for MRS = 3.33 is roughly the same 

magnitude as the background noise measured in our baselines. 

A third comparison is what we call repetition effects and what has been 

referred to elsewhere as decay - it is typical in these experiments to see less 

contribution in later periods than in early periods. In fact, in comparable 

experiments, contribution rates in early periods have ranged from two to four 

times as much as contribution rates in later periods. 'vVe measure an effect in 

our data (recall the Probit analysis), but we find the magnitude of the decay 

to be very small. It is true that there is more free riding in later periods, 

but this is attributable to a decrease in subject errors, or an increase in their 

consistency, not to a change in their decision rule. This fact is also reflected 

in the decline of splitting behavior documented earlier. 

Andreoni (1988) conducted experiments similar to those of Isaac and 

Walker and observed magnitudes of contribution, free riding, and decay that 

by interpolation are roughly the same as those found in the data gener

ated by Isaac and Walker. Those experiments used five person groups and 

MRS = 2. Instructions were somewhat different and some new treatments 

were explored. Andreoni's result.s are similar to those of Issac and Walker, 

and differences between our data and his are likewise similar to the differences 

between our data and Issac and Walker's. 

Our findings also contrast sharply with the highly anomalous behavior 

In the experiments done by Saijo and Yamaguchi. They conducted homo-
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geneous preference experiments with MRS = .7 and MRS = 1.42. Like 

Andreoni, they observe magnitudes of free riding, and decay for their exper

iments with an MRS = 1.42 that are roughly the same as those in Isaac and 

Walker's data. Saijo and Yamaguchi and Issac and Walker also observe simi

lar split rates. The splitting rates observed in both of Sa.ijo and Yamaguchi's 

treatments are 55 percent. They get as much splitting when subjects have a. 

dominant strategy to contribute, a.s when subjects have a. dominant strategy 

to free ride! Our findings are dmmatically different. 

Saijo and Yamaguchi obsC'rve aggregate contribution rates that are dif

ferent from ours and also from Isaac and Walker's. For the 1.42 treatment, 

they observe 27 percent contribution, which is quite a bit less contribution 

than that seen in Isaac and vValker's data. for MRS = 1.33. Our closest ob

servations to MRS = 1.42 are at l\fRS = 1.5 and MRS = 1.4. We obserwd 

contribution rates of .27 and .36, respectively for those two values of MRS. 

In their MRS = .7 treatment, Saijo and Yamaguchi see a contribution 

rate of 58 percent! Recall that our observed contribution rate was so close 

to 1 (.96) for this range of MRS, that we used this as one of our baselines for 

the rate of background noise! We have no satisfactory explanation for this 

enormous diffE'rE'nce between their results and ours. However, we do note 

that those experiments were conducted somewhat differently in a number of 

ways, which may partially account for the differences in data. 

Saijo and Yamaguchi employed seven member groups instE'ad of four 

member groups, they conducted the experiments manually instE'ad of through 

a. computer network, and they used different instruction methods. In fact , 

they used two instruction sets as a. treatment, and found significant differ-
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ences due to that treatment. Also, they required subjects to make each 

decision within 20 seconds, and they used a different subject pool. Saijo 

and Yamaguchi suggest that the differences may be attributable to cultural 

d ifferences between Japan and the U.S. We are skeptical of that explanation, 

but have no better one to offer. 

3.6 Interpreting the Results 

The main differences between our findings and previous findings can be sum

marized by the following observations: 

1. We observe less splitting. 

2. We do not observe significant decay. 

3. We observe lower contribution rates. 

4. We observe more Nash behavior. 

5. 'vVe observe essentially no spiteful behavior. 

The findings that replicate from past experiments with comparable group 

sizes are that experience leads to lower contribution rates, and contribution 

rates are declining in the marginal rate of substitution (margina l valuation 

of the private good). 

Explanations for the differences that we observe are either methodological 

or environmental in nature. Possible methodological explanations abound: 

we uti lize slightly different experimental procedures, or our instruct ions and 
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computer screens are different, we employ a different subject pool, etc. On 

the environmental side, our experiments utilize a different economic envi

ronment, by which we mean the information structure and the profile of 

preferences in the group are different. In particular, as emphasized in the 

introduction, the information structure and profile of preferences correspond 

almost exactly to the standard environment used for auction experiments. 

In each period, preferences in the group are randomly and independently 

drawn from a known distribution of marginal rates of substitution, thereby 

inducing heterogeneity across individuals. This contrasts sharply with envi

ronments that have been explored in earlier investigations of the voluntary 

contributions mechanism. 

To try to assess the relative importance of the methodological and en

vironmental explanations, we have subsequently tried to replicate Issac and 

Walker's findings using our procedures and subject pool and their homoge

neous environment. Specifically, we conducted an additional experimental 

session where every subject had a. publicly announced marginal rate of sub

stitution equal to 3.33, and every subject was endowed with multiple units 

of the private good. 

Figure 12 compares the results of this sessiOn with the data from Issac 

and Walker. There is very little difference. The main features of the data 

replicate: there arc very high contribution rates early on, and these rates 

decay significantly. In this extra session, we also observed similar splitting 

rates and amounts of Nash lwha.vior. Based on this data., we dismiss the 

possibility that differences in our experimental procedures or subject pool 

are responsible for the differences in our results. 



103 

Thus we are left only with environmental explanations. This leads us to 

conclude that the findings from earlier experiments, experiments that utilized 

homogeneous environments, are not robust to public goods environments 

which exh ibit variation in preferences, even if we limit attention only to 

linear public goods environments. This is a significant finding, even more so 

if one suspects, as we do, that heterogeneous preferences are a fa.ctor in most 

natural settings. There is an interesting question left open, namely "Why 

does heterogeneity lead to such different results?" 

It is possible that, with homogeneous preferences, it is easier for a. group 

to achieve a cooperative solution of the sort suggested by repeated game argu

ments. For example, if subjects adopt the type of strategies that rf'ciprocate 

generous behavior by others, or lw ] ieve that others adopt these strategies (see 

Kreps, Milgrom, Roberts, and Wilson [1985]), then some of thf' patterns of 

behavior that have been noticed in the homogeneous preference experiments, 

decay and pulsing, for example, can be rationalized. 

In our design, since preferences are private information , the ability to 

signal one's generosity to other players is interfered with.9 If one is observed 

to contribute, other subjects cannot tell if you are being generous, or simply 

acting selfishly. 

To identify the effects of tlw private information in our experiments, we 

conducted two revealed-information sessions (with V = 6 and X= 9) where 

all token value draws were revf'aled to everyone in the group. In the first of 

9 Actually, in most of the homogen<>ous design experiments, homogeneity is not. publicly 
announced. However , experiments by Isaac and Walker (1990) find that common knowl
edge of the homogeneity has no effect on behavior. They conjecture that subjects infer 
from the wording in the instructions that. other subjects have simi lar payoff tables. 
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these sessions, token values we re revealed after the decisions were made. In 

the second, token values we re revealed before the decisions were made. In 

both cases, the signal interference problem is eliminated, which, if the above 

explanation is correct, should lead to greater contribution and less free riding. 

The pooled results for the revealed information sessions are displayed in 

Figure 13, which compares the empirical response function with t he data from 

all the other heterogeneous preference experiments (those with no revealed 

information) .10 There is very little difference. In fact , if anything, revealed 

information seems to lead to even more free riding behavior, which is contrary 

to the reputation hypothesis . 

This leaves us without a complete explanation for why we observe such 

different resul ts in our environment. At this point , we simply do not know. 

A number of other possible explanations can be imagined. Perhaps it was 

important (because of faster lea rning, less boredom, or something else) that 

subjects in our design are assigned a new MRS for each decision. This sort of 

explanation unfort unately seems to be currently beyond the reach of existing 

theoretical models of behavior in these kinds of ga.mes. On the other han d , 

the findings here are suggestive of possible new directions for theoretical 

work , as well a.s some directions for new experimental designs. 

10There is no significant difference between the two revealed information sessions, so 
pooling the data is reasonable. 
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3.8 Sample Instructions 

Decis ion-Making Expe riment 

This is an experiment in decision making. You will be paid IN CASH at the 

end of the experiment. The amount of money you earn will depend upon the 

decisions you make and on the decisions other people make. It is important 

that you do not talk at all or otherwise attempt to communicate with the 

other subjects except according to the specific rules of the experiment. If 

you have a question, feel free to raise your hand. One of us will come over 

to where you are sitting and answer your question in private. 

This session you are participating in is broken clown into a sequence of 

four separate experiments. Each experiment will last 10 rounds. At the 

end of the last experiment , you will be paid t he total amount you have 

accumulated during the course of all 4 experiments. Everyone will be paid in 

private and you are under no obligation to tell others how much you earned. 

Your earnings are given in FRANCS. At the end of the last expe riment, you 

will be paid 11 cents for every 100 FRANCS you have accumulatf'cl during 

the course of a ll 4 experiments . 

In each experiment you will be divided into 4 groups of 4 persons each. 

Those groups will stay the same for all 10 rounds of the experiment. After 

each of the 10 round experiment s, everyone will be regrouped into 4 entire ly 

new groups. Therefore, whenever we change groups, the other people in your 

group will be completely different from the last g roup you were in. You will 

not be told the ident ity of the other members in your group. Since we will 
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be running 4 experiments tonight, you will be assigned 4 different groupings, 

one for each 10 round experiment. 

RULES FOR EXPERIMENT #1 

Each round of the experiment you will have 9 tokens. You must choose how 

many of these tokens you wish to keep and how many tokens you wish to 

spend. The amount of money you earn in a round depends on how many 

tokens you keep, how many tokens you spend, and how many tokens are 

spent by others in your group. Each round, you will be told how many 

FRANCS each token is worth if you keep it. This amount, called your TO

KEN VALUE, will change from round to round and will vary from person to 

person randomly. To be more specific, in each round, this amount is equally 

likely to be anywhere from 1 to 20 FRANCS. There is absolutely no system

atic or intentional pattern to your token values or the token values of anyone 

else. The determination of token values across rounds and across people is 

entirely random. Therefore, everyone in your group will generally have dif

ferent token values. Furthermore, these token values will change from round 

to round in a random way. You will be informed PRIVATELY what your 

new token value is at the beginning of each round and you are not permitted 

to tell anyone what this amount is. 

After being told your token value, you must wait at least 10 seconds 

before making your decision of how many tokens to spend and how many to 

keep. Your keyboard will be frozen for this period of time. When everyone 

has made a decision, you are told how many tokens were spent in your group 
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and what your earn ings were for that round. This will continue for 10 rounds. 

Following each round you begin with 9 new tokens and arc randomly assigned 

a new token value between 1 and 20 FRANCS. 

PAYOFFS 

You will receive 6 FRANCS times the total number of tokens spent in your 

group. In addition, you will a lso receive your token value times the num

ber of tokens you keep. Notice that this means every time anyone in your 

group spends a. token, ev<'ryon<' in the group (including the spender) gets an 

additional 6 FRANCS, but the spender foregoes his or her tok<'n value for 

that token. WHAT HAPPENS IN YOUR GROUP HAS NO EFFECT ON 

THE PAYOFFS TO J\1El\1DERS OF THE OTHER GROUPS AND VICE 

VERSA. Therefore, in each round, you have the following possibl<' earnings, 

as shown in the table: 

[HAND OUT EARNINGS TADLE. ALSO WRITE ON BOARD] 

Suppose everyone else in your group spends 13 tokens in all and you spend 

4 tokens and your token value was 12. You would earn 24 + 78 + 60 = 162 

FRANCS. If you had spent 3 tok<'ns you would have earned 18 + 78 + 72 = 

168 FRANCS. If you had spent 5 tokens you would have earn<'d 30 + 78 + 
48 = 156 FRANCS. 

ADDITION AL PROCEDURES: 

1. Are there any quest ions? [ANSWER QUESTIONS] 



111 

2. Hand out quiz. 

3. Correct quiz answers and read them aloud. 

4. Answer any additional questions. 

5. Two practice rounds - Tell them not to press any keys unless you tell 

them to. In round 1 have a ll even ID#'s spend and odd keep. In round 

2 do it the other way. Go over screen display and history. Tell subjects 

to refrain from pressing keys for no reason. 

Specific instructions for Experiment 2: 

Experiment 2 is the same as experiment 1 except you now have been re

grouped with a completely different set of people. 

Specific instructions for Experiment 3: 

Experiment 3 is the same as experments 1 and 2 except now everyone In 

a group receives 10 FRANCS Limes the number of spenders in the group. 

Again, in addition, nonspenders a lso receive their token values. Remember 

that everyone has been reassignPd to a group with a new set of people. Here 

is your new payoff table: 

[HAND OUT NEW EARNINGS TABLE, AND COLLECT OLD ONE. 

CHANGE BOARD. EXPLA IN.] 

Suppose everyone else in you r group spends 13 tokens in all and you spend 

4 tokens and your token value was 12. You would earn 40 + 130 + 60 = 230 

FRANCS. If you had spent 3 tokens you would have earned 30 + 130 + 72 
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= 232 FRANCS. If you had spent 5 tokens you would have earned 50 + 130 

+ 48 = 228 FRANCS. 

Specific instructions for Experiment 4: 

Experiment 4 is the same as experiment 3 except you have been regrouped 

again. 
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3.9 Tables 
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v 
Endowment 3 6 10 15 

1 token 2 2 2 2 

9 tokens 2 2 2 2 

Table 3.1: Each cell has two 10-period sequences of a. cohort with sixteen sub
jects divided into four groups. The first sequence is called "in<:>xperienced"; 
the second is called "experienced." Groups were shuffled betwe<:>n sequences. 
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early late 

mexp. .22 .11 
(320) (320) 

exp. .12 .04 
(320) (320) 

Table 3.2: Analysis of Splits. All data with endowment nine. 
early late 

1nexp. .36 .19 
(182) (176) 

exp. .21 .07 
(180) (170) 

Table 3.3: Analysis of Splits. Endowment = 9, MRS > 1. 
early late 

mexp. .029 .021 
(138) (144) 

exp. .021 .0067 
(140) (1.50) 

Table 3.4: Analysis of Splits. Endowment= 9, MRS ~ 1. 



periods 
1-5 

periods 
6-10 
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MRS = 1.33 MRS= 3.33 

.. 56 .60 
(120) (260) 

.56 .40 
(120) (260) 

Table 3.5: Splitting behavior in the Isaac and Walker data. 



117 

early late 

mexp. .03 .04 
(262) (28.5) 

exp. .04 .04 
(263) (288) 

Table 3.6: Spiteful behavior. Free-riding rates for subjects with ~1RS < 1 
(Dominant Strategy to Contribute) 
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early late 

111exp. .08 .04 
(63) (65) 

cxp. 0 .002 
(65) (64) 

Table 3.7: Sanifica.l behavior. Contribution Rates for Subjects with MRS > 
4 
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Probit Models 
1 2 3 4 5 

ones 1.778 1.504 1.612 1.801 1.850 
(85.301) (57.596) ( 45.538) (34.252) (32.222) 

MRS -1.156 -0.916 -0.973 -1.013 -1.015 
(-86.358) ( -58.866) (-44.078) (-42.878) (-42.896) 

exper.s -0 .861 -0.858 -0.867 -0.868 
( -25.252) (-25.084) ( -25.235) ( -25.233) 

exper 0.983 0.980 0.992 0.994 
(20.013) (19.919) (20.075) (20.089) 

endow.s 0.104 0.108 0.107 
(3. 742) (3.888) (3.8.56) 

endow -0.199 -0.207 -0.20.5 
( -4.618) (-4.761) ( -4 . 730) 

v -0.015 -0.015 
( -4.923) (-4 .993) 

period -0.008 
(-2.146) 

lg lkhd -8912.7 -8522.7 -8511.9 -8499.7 -8<197 .4 
% pred. 83.064 83.160 83.238 83.429 83.607 

Table 3.8: In each Probit Model, the dependent variable is the investmC'nt 
decision. Equal weight has been given to both the one token treatment and to 
the nine token treatment. Under each coefficient is the asymptotic t-statistic. 
The log likelihood and the percentage correctly predicted arC' also given for 
each model. 
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Token Value (Cutpoint) 

1 2 3 4 5 6 7 8 91011121314151617181920 

1 5 5 5 3 3 3 3 3 2 2 0 0 0 0 1 1 2 4 4 5 
2 3 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 2 4 5 

s 3 5 4 4 3 3 3 3 3 2 2 1 1 1 2 3 3 3 3 3 4 
u 4 2 1 1 1 0 0 0 0 0 0 0 1 3 3 3 4 5 5 5 5 
b 5 4 3 2 2 2 2 1 1 0 0 0 0 1 4 4 4 4 5 5 5 

J 6 2 2 2 2 1 0 0 0 1 2 2 4 4 4 5 5 7 7 7 7 

e 7 3 3 2 2 1 1 1 0 0 2 2 2 2 2 3 5 5 5 5 7 
c 8 4 4 3 3 3 3 1 0 0 1 2 2 2 2 2 3 3 4 6 6 

t 9 5 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 4 4 4 4 
10 3 3 2 2 1 0 0 0 1 1 1 1 3 5 5 5 7 7 7 7 

# 11 3 3 3 2 1 1 1 0 0 0 0 3 4 4 4 5 5 5 7 7 
12 5 5 4 4 4 4 3 2 1 0 1 1 1 2 3 4 4 4 4 4 
13 6 6 5 4 4 3 3 3 0 0 0 0 1 1 1 2 2 2 2 2 

14 2 1 1 1 0 0 0 1 3 4 4 5 6 6 6 7 7 7 7 8 

15 2 2 1 1 0 0 0 1 1 1 1 1 2 4 5 6 6 6 6 7 

16 3 2 1 1 1 1 1 2 2 2 2 3 4 4 4 5 6 6 7 7 

Table 3.9: The raw number of classification errors for the first repetition of 
treatment {6, 1} 
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Token Value (Cutpoint) 

1 2 3 4 5 6 7 8 91011121314151617181920 

1 232323 5 5 5 5 5 310 8242423313140585867 
2 2215171712161616161616161115151510234150 

s 3 5445452718181818182727363636363636363636 
u 4 18 9 9 9 0 0 0 0 0 0 0 92727273645454545 
b 5 18 9 0 0 0 0 0 9 91818182754545454636363 
J 6 18181818 9 0 0 0 91818363636454563636363 
e 7 3131222213131310102222222219244141414159 
c 8 1111 2 2 2 2 220293745454545455454627 979 
t 9 301212121212121212121212 924241941394653 

10 27271818 9 0 0 0 9 9 9 92745454563636363 
# 11 1818181818181814191914364545455454547272 

12 9 9 0 0 0 0 0 9182745454554637272727272 
13 191910 1 1 11010 93535354444445353535353 
14 44353535262617 9192820213030293737373746 
15 22221313 4 4 413131313132034415050505059 
16 3012122121211926262621233030283442425151 

Table 3.10: T he raw numl)('r of class ifi cation errors for the first rf'pd it ion of 
t reatmen t {6, 9} 



122 

JW data Our data 

MRS= 1.33 .50 .37 
(240) (90) 

MRS= 3.33 .20 .05 
(520) (56) 

Table 3.11: Contribution rates. Comparison to TW data, when MRS= 1.33 
and MRS = 3.33 



123 

3.10 Figures 
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CUTPOINT ANALYSIS 
All Data 
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Figure 1.1: Cut point analysis: aggregate level 
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Classification Error Rates 
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Various Cutpoints, Endowment of 1 
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Figure 3.2: Classification errors aggregated over all subjects shown for all 
treatments with an endowment condition of one. 



0.8 

0.7 

~ 0.6 e 
Q) 0.5 
c: 

·~ 0.4 

~ 0.3 
(f) 
ro 
u 0.2 

0.1 

0 

126 

Classification Error Rates 
Various Cutpoints, Endowment of 9 
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F igure :3.:3: C lassificat ion errors aggregated over a ll subjects shown for all 
treatments with an endowment cond it ion of n ine. 
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Rate of Investment in Public Exchange 
v =3 

1- endowment of 1 ....... endowment of 9 

Figure 3.4: Tlw aggregate percentage of tokens invested in the public ex
change vs. the marginal rate of substitution, plotted for both the <'nclowm<'nt 
of one and the <'ndowment of nine conditions. V = 3. 
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Rate of Investment in Public Exchange 
v =6 

1~~~-------------------------------------, 

g> 0.9 
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MRS 

1- endowment of 1 ....... endowment of 9 

F igure 3.5: The' aggregate pC' tTC'ntage of toke ns invested in t hC' public ex
cha nge vs. t lw ma rginal rate of substit ution , p lotted fo r both t hC' C'nclowrnent 
of o ne a nd thC' e ndowme nt o f nine cond it ions. V = 6. 
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Rate of Investment in Public Exchange 
V= 10 
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1- endowment of 1 ....... endowment of 9 

Figure 3.6: The aggregate percentage of tokens invested in the public ex
change vs. the marginal rate of substitution, plotted for both the endowmC'nt 
of one and the endowment of nine conditions. V = 10. 
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Rate of Investment in Public Exchange 
v = 15 
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Figure 3. 7: ThC' aggregate per\cntage of tokens invested in th<' public ex
change vs. tlw marginal rate of substitution , plotted for both the <'ndowmcnt 
of one and thC' C'ndowment of ninC' \onditions. V = 10. 
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Estimated Response Functions 
Probit Model #3 
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Figure 3.8: The different response functions generated by Probit i\fodel No. 
3. 
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Individual Cutpoints 
All Data 

Frequency (out of 256 observations) 
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Cutpoi nt (deviation from Nash) 

.. All data 

8+ 

Class:fication minimizing cutpoints 

figurf' :1.0: Estimalf'd culpoi nt s measured as de\' iation from \"ash pla.y (in 
token va1uf' tlnit s) .. ·\11 data. 
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Individual Cutpoints 
Experience Effects 

Frequency (out of 128 observations) 
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Figur<' 1.10: Estimated cutpoints measured as deviation from l"ash play (i n 
token ,·;due unit s) . Exp<'ricncc dfects. 
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Errors 
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Replication of IW 
MRS = 3 .3 

Contribution Rate 
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Figure 3.12: TI<'plica.tion of homogeneous preference experimc·nts with V = 
6, r = 20, X = q (t\fTIS= 3.:1). 
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Response Function 
Reveal vs. No Reveal 
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Figure' 3.13: P.mpirical rC'sponsf' function with (reveal) and without (no re
veal) publicly rf'portcd tokC'n ,·a\uC's. 


