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Abstract

Each of the three independent chapters of this dissertation examines or jus-
tifies cooperative behavior in one of two specific public goods environments.

The first chapter presents experimental evidence documenting a subject’s
behavior when faced with simple games that require turn taking for efficiency.
Both symmetric and asymmetric games as well as games with explicit pun-
ishment actions are studied and compared. The length of the game is a
treatment variable; experiments simulating one-shot, finite and infinite rep-
etition games are conducted. Group outcomes are sorted by the player’s
average payoffs and the importance of focal solution concepts like group wel-
fare, equality, and symmetry are inferred. Individual strategies used in the
experiments are also sorted and compared enabling a discussion of endgame
effects and conflict within the games.

Standard non-cooperative game theory is not selective enough to dis-
criminate among many of the possible outcomes of the games examined in
Chapter One. Relying on focal and axiomatic solution concepts allows dis-
crimination, yet these procedures are inherently ad-hoc. The second chapter

examines the outcome to a population game with evolutionary dynamics in
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order to theoreticly justify the results of the first chapter in a less ad-hoc
manner. In particular, the second chapter applies the Replicator Dynamic.
It is shown that under an assumption of limited rationality, specifically lim-
ited memory, there is a unique global equilibrium. The unique equilibrium
contains a trio of outcomes: non-cooperative Nash play, payofl irrational
play, and cooperative turn-taking.

The third chapter presents findings from a second series of experiments,
a series designed to study free riding and the voluntary contribution mech-
anism. In the experimental environment, subjects are randomly assigned
constant marginal rates of substitution between the public and the private
good. These random assignments are changed each decision period, allowing
the measurement of player response functions. These response functions are
analogous to the bidding functions obtained in private good, sealed-bid auc-
tion experiments. The results are quite different from the results of others
in environments with little or no heterogeneity. There is much more free
riding, very little evidence of decay across periods, and only sparse evidence

of anomalous behavior such as splitting and spite.
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Chapter 1

An Experimental Analysis of
Two—Person Reciprocity

Games

1.1 Reciprocity Games

As described in Ostrom (1990), the farmers near the city of Valencia, Spain
take turns directing water from canals onto their fields. When one farmer
has taken all the water he needs, the next farmer, who has been waiting,
gets to take all the water he needs. There is obvious temptation for the
waiting farmers to try to take water out of turn; Valencia is hot and dry and
the crops are in constant danger, especially in drought years. Remarkably
enough these turn-taking schemes have survived for centuries.

The purpose of the turn-taking scheme is to insure an efficient, or at least



near efficient, use of the water supply. Without the agreement to rotate,
the farmers would waste valuable resources fighting amongst themselves over
the scarce water. It is possible that farmers closer to the canals, or further
upstream, would have an advantage in an unfettered contest for the water.
The advantaged farmers might even be better off with free competition than
with the turn-taking scheme. However, the disadvantaged farmers might be
forced out of business without the turn-taking scheme, and the total amount
of crops produced might go down. By following the turn-taking scheme, the
farmers avoid these potential problems.

There are other situations in which turn-taking schemes can enable groups
of people to exploit a resource to their collective advantage. Two firms, for
example, can alternatively offer monopoly price bids in a series of contract
auctions. Without the turn-taking scheme, the firms would be forced to
offer competitive price bids; the earnings of the auction’s winner would be
drastically reduced. Similarly, two opposed politicians can alternatively vote
against their immediate best interests so that a string of bills, some of which
please their constituents, will be assured of passage. If the politicians did
not agree on a turn-taking scheme, their votes would cancel out and perhaps
no bills would pass.

All these situations can be classified under the rubric of Reciprocity
Games. A Reciprocity Game, then, is any noncooperative situation in which
some efficient outcomes can only be realized by utilizing nontrivial corre-
lated strategies, or turn-taking. Repeated versions of classical games like the
Battle of the Sexes and Chicken are Reciprocity Games, pure coordination

games like The Repeated Prisoner’s Dilemma are not.



As an example of a Reciprocity Game, consider the repeated, finite action,

two player game implied by the stage-game payoff matrix Gy, where

(3;,3) (3,7)
(7,3) (4,4)

Label the actions A and B. Let the top and bottom rows represent the payoffs
if the row player chooses action A or B, respectively. Let the left and right-
hand columns represent the payoffs if the column player chooses action A or
B, respectively.

Assuming that both players are rational, or expected utility maximizers,
that they are non-altruistic, and that they have complete information about
the payoffs and the rationality of the other player, noncooperative game
theory offers certain predictions about the player’s behavior. The clarity of
these predictions depends upon the number of times that the stage-game is
repeated.

If the stage-game is not repeated, each player has a dominate strategy,
which is to choose action B. Play of this action at every stage is also the
unique subgame perfect equilibrium of any finite repetition game. In equi-
librium, each player receives a payoff of four in each stage. The equilibrium
is efficient only in the non-repeated or one-shot game; in the repeated game,
all the efficient outcomes involve alternating between the stage-game pay-
offs of (3,7) and (7,3). To gain these payoffs, both players must choose their
dominated action, and furthermore, the players must coordinate so that they

do not choose the dominated action at the same time. Given an even num-



ber of stages, the simple alternation scheme of having the players take turns
choosing actions A and B leads to an outcome in which each player gets an
average stage payoff of five.

If the stage game is repeated an infinite number of times, the folk theorem
implies that there are an infinite number of subgame perfect equilibria. Any
outcome that has payoffs greater than or equal to four is subgame perfect.
In fact, there are an infinite number of efficient subgame perfect equilibria,
each one involving some pattern of alternation between (3,7) and (7,3).
The multiplicity of equilibria is in itself a problem for the players — which
equilibrium should they coordinate on? Axiomatical concepts like symmetry,
group welfare, or equality can be used to determine focal points, yet, even
with these concepts there need not be a unique equilibrium. The efficient
payoffs do share a common trait, however. In the efficient outcomes, the
players must resort to a pattern of alternation between the stage-game payolls
of (3,7) and (7,3).

The purpose of this paper, then, is to examine the ability of people to
enter into alternation schemes and achieve efficient outcomes to reciprocity
games. The games will be studied under three different repetition conditions:
one-shot, finite repetition, and infinite repetition. Comparisons will be made
between a game that has symmetric payoffs and a game that has asymmetric
payoffs. The effects of adding a third action, one intended to be a clear

punishment, will also be considered.



1.2 Related Research

The previously mentioned book by Ostrom (1990) is concerned with exam-
ining the ability of people to efficiently exploit common pool resources. She
reviews several case histories in which groups of people are able to introduce
rotation schemes and successfully exploit the resource. Some of her examples
have been in place for centuries.

Ostrom et al. (1991) have abstracted from these real life examples in an
experimental study of the use of a common pool resource. In their study,
rotation schemes offer an efficient way to exploit the resource, and, in fact,
some of the eight-person groups try to institute these schemes. Ostrom et al.
find that these schemes fail do to mistrust, mistakes or cheating. The authors
find that the efficiency of the use of the resource increases if individuals are
allowed to impose fines on one another; however, resource use never reaches
optimal levels.

Murninghan et al. (1987) studied modified Prisoner’s Dilemmas that were
in fact Reciprocity Games. They found that in infinite repetition treatments
and with the ability to communicate, subjects often resorted to alternation
schemes, some sacrificing potential payoffs to do so. Some subjects also
attempted complex alternation schemes in an effort to generate more equal
payofls.! Their treatments are similar to the infinite repetition, symmetric
treatment considered here. The main differences between the treatments are
that Murninghan et al. allow communication, and also the asymmetries in

their payofl structure occur on the main diagonal.

'Murninghan et al., p. 17.



Palfrey and Rosenthal (1991a; 1991b) and Cooper et al. (1990; 1989;
1987) have studied various public goods and coordination games that with
repetition become Reciprocity Games. Cooper et al. (1990; 1987) also exam-
ined the addition of an action deemed to be a punishment. They found that
the availability of the extra action did effect the players choice of strategies.

Selten and Stoecker (1986), in their work on finitely repeated Prisoner’s
Dilemmas, developed a system of outcome classification that is similar to the

strategy classification system used here.?

1.3 The Experimental Design

Each of four different payofl treatments will be examined under three different
repetition conditions. The four different payoff treatments are: symmetric
(G), asymmetric ((3), symmetric with punishment ((3), and asymmetric
with punishment ((4). Each of these treatments is represented by a payoff
matrix in Table 1.1. The different repetition conditions are: one-shot, finite

repetition, and infinite repetition.

1.3.1 Equilibria

The equilibria for (; have been discussed already, but for completeness, they

will also be examined here along with the equilibria in the other three games.

%In Selton and Stoecker (1986) either a Cooperative outcome or End-Effect Play occurs
if the cooperative alternative in the one-shot game is chosen consecutively for m > 4 peri-
ods during the supergame. Unlike Selten and Stoecker, this paper examines the sequence
of play at the individual level and makes inferences about the types of strategies that each
individual plays, either Alternating, or Nash (or Other).



First, in the one-shot conditions of both (7 and (G5 there is either a unique
dominate strategy or dominate solvable Nash equilibria. In (/; the unique
equilibrium is for both players to choose action B, it gives each of them a
payoff of four. The outcome will be denoted by the pair {B, B} so that each
player’s move is reflected. In G5 the unique equilibrium, {A, B}, is for the
row player to choose action A and get a payofl of three, and for the column
player to choose action B and get a payoff of seven.

Recall that the games (G3 and (G4 are identical to the games G; and (3,
respectively, except that (G3 and (4 have an additional action available to
the players. The action is clearly not a desirable action; if it is played, both
players get much worse payoffs. However, the availability of the action means
that both (/5 and (4 have three equilibria instead of only one. They share
the equilibria of their counterparts, namely { B, B} and {A, B}, respectively,
plus they each have two additional equilibria.

In G5 the additional equilibria are: {(1B,2C), (3B, 3C)}, the fractions
representing the weights in a mixed strategy, and {C,C}. In G4 the ad-
ditional equilibria are: {(3A4,2C),(2A4,2C)} and {C,C}. These additional
equilibria are dominated, in the sense that both players get higher payoffs,
by the {B, B} equilibrium in (3 and the {A, B} equilibrium in Gj.

Finite repetition creates no additional equilibria in either Gy or in Gs.
However, in (3 and in G4 finite repetition creates many additional equilibria.
In fact, due to a finite game folk theorem, any minimax-dominating outcome

can be approximated by a subgame perfect equilibrium if the number of



stages is large enough.?> The folk theorem result causes a problem that is
very similar to the problem encountered in the infinite repetition games, how
do players coordinate on a particular equilibrium when the set of equilibria
is very large?

Infinite repetition, in all four games, leads to sets of equilibria that are
very large indeed — they are infinite. In fact, the infinite repetition folk
theorem says that if the discount rate is low enough, any outcome to a
game which results in average stage-game payoffs which are greater than the

minimax payofls is supportable as a subgame perfect equilibrium. * Note

3For example, for G, repeated T >= 3 times,
[{B’A}l ’ {A)B}E! {B‘ ‘4}3! v EAy {A,B}T._], {BrB}T]

with the threat of playing {C,C} for each subsequent stage if there is a defection is
subgame perfect. To be more specific, in repeated versions of one-shot games that have
multiple Nash equilibria, for any individually rational and feasible outcome u there exists
a length T and a subgame perfect equilibrium such that if U is the average stage payofl
in the equilibrium,

| U —u|| <e

for any ¢ > 0. The result holds for two-person games and for n-person games if the
dimensionality of the payofl space is equal to the number of players. For details see Benoit
and Krishna (1985); p. 919; refer to Theorem 3.7.

*The equilibrium payoffs must be such that the following equation holds:

1 . 5 .
T—g " BT 5%

ITI(SU; — ﬁ((l = 61)1;1-_,,15,1 + (Stv,j)

where v; is the average payoff of the equilibrium strategy given no defection, #; is the
maximum payoff a player can get by deviating, vi* is the average payoff of the chosen
punishment strategy, and § is the discount rate. Equation 1 says that the total payoff for
playing the equilibrium must be greater than the total payoff for deviating once and then
getting the punishment payofl for the rest of the game. For details see Fudenberg and
Maskin (1986); pp. 533 - 554; refer to Theorem 1. In the infinite repetition treatments,
the discount rate was ten percent.




that the minimax payofls for (; through G4 are: (4,4),(3,7), (1%, 1%), and
(1%, 1%). Again, the question is: How do players coordinate on a particular
equilibrium when the set of equilibria is very large?

It is possible to pare the sets of equilibrium outcomes down to the manage-
able level of three or less by applying the axiomatic refinements of Equality,
Symmetry, and Welfare Maximization, along with Pareto Optimality. The
Equality refinement requires each player to receive the same payoff; the Sym-
metry refinement requires each player to choose their dominated action the
same number of times; and the Welfare Maximization refinement requires the
sum of the player’s payoffs to be maximized. Pareto Optimality, of course,
means that each outcome must be efficient. The equilibria that pass these
refinements will be called focal solutions.

Specifically, in (7 and G, the one to one alternation scheme leads to av-
erage stage payoffs of (5,5) and satisfies all four of these refinements. For the
symmetric games, the imposition of the refinements means that the number
of focal solutions is the same in the one-shot, finite, and infinite repetition
conditions. In each case, there is a unique focal solution.

On the other hand, in G, and G4, a one to one alternation scheme satisfies
only the Symmetric refinement and leads to average stage payoffs of (4,5).
To satisfy the Equality refinement requires a one to two alternation scheme.
In this scheme the row player chooses action A half as often as the column
player chooses action B and players end up with average stage payofls of
(4%,4%). Furthermore, to satisly the Welfare Maximizing refinement leads
to play of the {A, B} stage game equilibrium and average stage payoffs of

(3,7). For the asymmetric games, the imposition of the refinements means
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that the number of focal solutions is three in the infinite repetition condition
and in the finite repetition condition of 4. The one-shot condition and the
finite repetition condition of (7, have unique focal solutions.

The behavior in the one-shot games should be considered as a calibrating
device. The outcomes achieved are worst case outcomes in the sense that
there is no chance for the players to use an efficient rotation scheme. The-
ory predicts that behavior will conform to the Nash Solution, which will be
defined as Hypothesis 1.

Although not equilibria in all cases, the following hypotheses will be con-
sidered for both the finite and infinite repetition treatments (notice that they
do not specify behavior in the earliest stages of the game; they allow a period

of time for the players to coordinate):

Hypothesis 1 (Nash Solution) After a certain period, ecach player
chooses the action which leads to the highest Pareto-Ranked, subgame per-

fect equilibrium.

Hypothesis 2 (Alternating Solution) Afier a certain period, the out-

come to the game will have players alternating between action A and action

B such that the realized play will be {...,{A, B},{B, A}, {A, B},...}.

Hypothesis 3 (Welfare Solution) After a certain period, the outcome to

the game will be such that the sum of the players payoffs is maximized.

Hypothesis 4 (Equality Solution) After a certain period, the outcome to
the game will maximize the sum of the players payoffs subject to having each

player recetve the same payoff.
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Hypothesis 1 embodies the predicted outcome in the finite repetition
games. The Nash Solution is also an equilibrium in any of the infinite repe-
tition games, although it is not an efficient equilibria in the symmetric cases.
Hypothesis 2 embodies the axiomatic refinement of Symmetry, it requires the
players to adopt a one to one rotation scheme; Hypothesis 3 embodies the
axiomatic refinement of Welfare Maximization; and Hypothesis 4 embodies
the axiomatic refinement of Equality. Although not always equilibria, these

three solutions are efficient outcomes to the finite repetition games.

1.4 The Experiments

All the experiments were performed in a laboratory at the California Insti-
tute of Technology. The experiments were run on a set of computers linked
together in a network. The subject pool consisted of students, most of whom
were recruited from introductory economics and political science courses.
There were nine experimental sessions: one session for each finite and infi-
nite repetition treatment of Gy, (9, Gi3, and Gy4; and one session for all the
one-shot treatments. The number of subjects in each session varied from
ten to fourteen because some recruited subjects did not show up for some
experiments.

The following outline describes the order of events that took place in a

typical experimental session:

1. Each subject entered the laboratory and sat at the terminal of their

choice.
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P

2. The subjects were read a set of directions detailing the rules of the
session. The subjects were not shown a payoff matrix, instead each
action and payoff was explained to them independently. The subjects

were led through two practice periods and then quizzed.®

3. In a period, each subject chose either A or B (or C) and was then
informed of their payoff and partner’s choice. This was repeated under

the following conditions:

(a) In the one-shot treatments, each subject was randomly matched
with another at the beginning of each period. The game ended

after 15 periods.

(b) In the finite repetition treatments, each subject played the same

person each period. The game ended after 15 periods.

(¢) In the infinite repetition treatments, each subject played the same
person every period. After the 15th period, a ten-sided die was
rolled so that the subjects could see the result. If a 9 was rolled
then the game ended, otherwise the game continued another pe-
riod after which there was another die roll. The game did not end

until a 9 was rolled.

4. At the end of the game, the subjects were randomly matched with a

person whom they had not played and another game was started.

5A copy of the directions and quiz used in the one-shot treatment of (¢4 is included in
the appendix.
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5. Each subject in a session played 4 games and was then paid cash for
each point they earned in the experiment. In the one shot treatments,
the order of games was: (71, G3, G2, and G4. In the finite and infinite

repetition treatments, the subjects played the same game four times.

6. The experimental session ended.

In the symmetric treatments, every player faced the same payoffs, so
there was no difference between a row and a column player. Hence, in the
symmetric treatments, all subjects were treated identically.

On the other hand, in the asymmetric treatments, the labels row and
column had meaning, the player unlucky enough to be a row player was at
a disadvantage. In order to prevent row players from gambling that they
would become column players later in the session, at the beginning of each
asymmetric treatment half of the subjects were informed that they would he
row players for all four games in the session. In the one-shot session, this
division took place before the third game, after all the symmetric games had
been played.

Table 1.2 reports the number of subjects and the number of observations,
respectively, in each treatment.® An observation consists of the outcome of
one complete game and two sequences of actions, one for each player involved.
The table also shows the dates of each session, the length, the exchange rate,

and the order of the one-shot treatments.

SThere were 93 subjects total. An effort was made not to have experienced players,
however 7 did participate in two sessions. Two participated in 4/20/90 and 5/17/90, one
participated in 5/17/90 and 5/18/90, and four participated in 5/11/90 and 5/18/90. These
people were never matched with the same person more than once, even across sessions.
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1.5 The Results

1.5.1 The One-Shot Treatment

The first step is to examine the players’ behavior in the one-shot treatments.
The Table 1.3 describes the number of times each possible outcome pair was
observed.”

In order to determine whether or not an individual’s actions changed as
s/he gained experience with the game, the data was split into the first eight
periods and the last seven periods and then compared using a standard \?
test.® In no case was there a significant difference between the distribution of
actions at the beginning and the distribution of actions at the end. The y*s
were: 0.3370 for Gy, 0.2983 for (75 row players, 1.2301 for GG column players,
1.6290 for (73, and 2.5813 for (74 column players. The column players in G4
chose action B in every case.

In G4, fourteen of the 150 observations, or 9.3 percent, assigned payoffs
below the minimax to at least one of the players. In (3, sixteen of the
seventy-five row player observations and six of the seventy-five column player
observations, 21.3 percent and 8 percent respectively, assigned payoffs below
minimax payoffs. Assuming that the true frequency of below individually
rational payolls is the lower end of a 95 percent confidence interval around

these observed frequencies would lead to the following percentages: 5.4, 13.4,

“In Gy, half of the subjects played A at least once. In (G4, one subject was responsible
for all the plays of action C.

8xZ, here and elsewhere, is the standard test statistic using Yate’s continuity correction.
It has a x? distribution with i degrees of freedom. For a complete explanation of this test,
see Everitt (1977) pp. 12 - 14.



and 2.8, respectively.

Obviously, there is a substantial minority of players who play non-
equilibrium strategies. In an ideal environment, Hypothesis 1. that each
player chooses the subgame perfect equilibrium strategy, would be rejected
on the basis of even one non-equilibrium play. However, the criteria adopted
for this experimental environment allows their rejection only if the upper
bound of the 95 percent confidence interval around the observed proportion
of plays is less than 0.95. These bounds are displayed in the Table 1.4.
Hypothesis 1 must be rejected for (71, and for the row players in both asym-
metric treatments. The fact that not all people always play the unique,
subgame perfect equilibrium strategy in one-shot games has been observed
many times.?

Notice the significant change in the behavior of the column players when
comparing (75 to (4. In (G5, 8 percent of the actions chosen by the column
players violate the Nash Solution, in (74 no actions chosen violate the Nash
Solution. This is an anomaly because behavior does not change for the row
player, neither does it change between (7 and (3. One explanation for
the data is that, because (75 and (G4 were played in succession by the same
players, the column players learned how to play according to Hypothesis 1.

Oddly enough, the row players did not share in the revelation.

?See Ledyard (1992), Dawes (1980) and Cooper et al. (1987; 1990).
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1.5.2 The Finite and Infinite Repetition Treatments:

Average Payoffs

The outcomes to the finite and infinite repetition treatments are represented
by the average payoffs of both players. To allow a period of time for the
players to coordinate on a specific outcome, the first four periods are ignored.
Also, so that the infinite repetition treatments remain comparable to the
finite repetition treatments, the averaging ends with the fifteenth period (the
finite repetition treatments were fifteen periods long).

Referring to Figure 1.1, the set of possible outcomes to G if it were
infinitely repeated is represented by the triangular figure in both the top
and bottom diagrams. Given that a ten period average is used, the possible
outcomes are a subset of the triangular set. Actual outcomes to the games
are shown by a letter representing one or more observations. The letter is
located at the coordinates determined by the average payoffs of the players.

For an outcome to be Pareto Optimal, it must be located on the hy-
potenuse of the triangular set. The 45° line highlights the outcomes in which
the players receive equal payoffs. Every outcome located northeast of the
dotted lines payoff dominates the minimax. These minimax dominating out-
comes, given a small enough discount rate, are subgame perfect equilibria if
the game is infinitely repeated.

In Figure 1.1, the top diagram represents the outcomes of the finite repe-
tition treatment of ;. The bottom diagram represents the outcomes of the
infinite repetition treatment of (4. Similar figures are constructed for the

two treatments of (75, (G5, and Gy.
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Note that in ; and ('3 there is no difference between a row and a col-
umn player. In order to avoid drawing conclusions from arbitrarily scattered
outcomes, all the outcomes are located on or below the 45° line. In (5 and
(G4, there is a difference between a row and a column player.

Again referring to Figure 1.1, specifically to the top diagram which shows
the outcomes of the finite repetition treatment, notice that the outcomes oc-
cur in two clusters. One cluster is located around the unique one-shot equi-
librium or Nash Solution, point (4,4). The other is located around the focal
solution, the outcome that embodies the Alternating Solution, the Equality
Solution and the Welfare Maximizing Solution, point (5,5). The observations
are divided roughly between the two clusters. Although the Nash Solution
was the most observed with five, fourteen groups were able to improve upon
it using some pattern of reciprocation, three actually implemented the focal
solution. One player out of the twenty pairs received below minimax payoffs.

The bottom diagram, which shows the outcomes of the infinitely repeated
treatment, is in sharp contrast to the top one. Here, twenty-one of twenty-
four observations are located at the focal solution. Of the three remaining
outcomes, two are located near the Nash Solution, and the last is located at
an outcome better than the Nash Solution but not as good as the focal so-
lution. The extension of the time-horizon from finite to infinite draws many
outcomes away from the Nash Solution and to the focal solution. People
appear to have few problems implementing a rotation scheme and achiev-
ing efficient payoffs, approximately 90 percent succeed, if G is infinitely
repeated.

Figure 1.2 shows the outcomes of the finite and infinite repetition treat-
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ments of (3. Recall that (G5 is identical to (; except that an additional
action, a punishment, was added to the action space. Despite the additional
strategy, Figure 1.2 closely resembles Figure 1.1. In the top diagram, the
finite repetition treatment, thirteen of the twenty outcomes are close to the
focal solution. In the bottom diagram, the infinite repetition treatment,
nineteen of the twenty-four outcomes are at the focal solution.

The top diagram in Figure 1.3 shows the outcomes of the finite repetition
treatments of (5, the first of the asymmetric games. Seven outcomes were
at the Nash and Welfare Maximizing Solutions, point (7,3). One outcome
was at the Alternating Solution, point (5,4). No outcomes were at or even
near the Equality Solution, point (41, 4%).10 More than half of the outcomes,
eleven of twenty, have the row player receiving less than minimax payoffs.

The bottom diagram shows the outcomes to the infinite repetition treat-
ment of (5. Unlike in the symmetric games, there is no improvement in
the efficiency of the outcomes as the time horizon gets longer. Roughly the
same proportion of outcomes are at the Nash Solution, the Alternating So-
lution, and the Equality Solution (eight, two, and zero observations out of
twenty-four, respectively) as in the finite repetition treatment. Again, half
of the outcomes have the row player receiving less than minimax payoffs. If

anything, the payoffs in the infinite repetition treatment are worse than the

19The Equality Solution requires a one to two rotation scheme, i.e. row plays A once for
each two times that column plays A. This rotation scheme has a three move cycle. What
is exhibited in the figures is a ten move average payofl. Even if a one fo {wo rotation
scheme was implemented, the ten move average would not give equal payoffs. Iowever,
any one to two rotation scheme would result in payoffs located on the Pareto Frontier
and the averaging system used would locate the outcome within 0.2 payoff points of the
Equality Solution. No outcomes were within these tolerances.
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payoffs in the finite repetition treatment.

Figure 1.4 shows the outcomes to G4. Recall that G4 is identical to (5
except that a punishment action is added. Unlike in the symmetric case, here
the presence of the punishment action changes behavior. In the top diagram,
the most observed outcome is the Alternating Solution, point (5,4). This is
in contrast to the most observed outcome in the finite repetition treatment
of G which was the Nash or Welfare Solution, point (7,3). However, a
substantial number of outcomes are still inefficient outcomes. The bottom
diagram has these same features: the most observed point is the Alternating
Solution, and many observations are at inefficient outcomes. Again, drawing
on the similarity between the top and bottom diagram, infinite repetition
did not greatly improve the chances of coordinating on an efficient outcome.

Table 1.5 shows the distribution of outcomes over the focal point solu-
tions. It is clear that infinite repetition makes a difference in the symmetric
treatments — it results in a higher percentage of efficient Alternating Solu-
tion outcomes. In the asymmetric case, infinite repetition does not seem to
make a difference, the distribution over the focal solutions remains similar.
However, the addition of a punishment action causes a shift from the Wel-
fare Maximizing Solution to the Alternating Solution. In every asymmetric

treatment, a substantial number of outcomes are not efficient.

1.5.3 Comparing Average Payoffs

Table 1.6 shows the average payofls in the one-shot treatments and in rounds

5 to 15 of the finite and infinite repetition treatments. In the symmetric
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treatments, the average payoffs rise as the time horizon lengthens. In the
one-shot treatment, the average is near the payoff associated with the Nash
Solution, which assigns each player four. In the infinite repetition treatments,
the average is near the payoff associated with the Alternating Solution, which
assigns each player five. There seems to be little lost or gained from the
addition of the punishment action.

The asymmetric treatments are much different than the symmetric ones,
the longer horizons do not imply more efficient group payoffs. In fact, from
the point of view of the column player, the longer time horizon is disastrous
— especially when the punishment action is present. The average column
player’s payofl drops more than 20 percent when moving from the one-shot
treatment to either the finite or infinite repetition treatment of (4. From the
group’s perspective, this drop in the column player’s payoff is not made up
for by the small increase in the payoffs of the row player. The average row
player only gets around 10 percent more when moving from the one-shot to
either repeated treatment of (4. The finite repetition treatment of (73 is the
only treatment where the players improve upon the payoffs of the one-shot

treatment.

1.5.4 The Finite and Infinite Repetition Treatments:

The Strategy Space

The following definitions divide the strategy sets associated with each repe-

tition treatment into three disjoint parts:
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Definition 1 (Alternating Strategy) An individual’s sequence of play is
an Alternating Strategy if, for every period in the sequence, the group’s play
in the previous period was {A, B} or {B, A}, then individual’s play in this
period is B if last period it was A and A if last period it was B.

Definition 2 (Nash Strategy) An individual’s sequence of play is a Nash
Strategy if for every period in the sequence, the individual’s play corresponds
to the action taken in the highest Pareto ranked, one-shot, subgame perfect

equilibrium.

Definition 3 (Other Strategy) An individual’s sequence of play is an
Other Strategy if it is not an Alternating Strateqy or a Nash Strategy.

It is possible to sort every individual’s complete sequence of actions into
one of the three previous categories. The Alternating Strategy category
includes all strategies that try to alternate — dire punishment strategies as
well as completely forgiving strategies. The Nash Strategy category includes
only the one strategy.!' The Other Strategy category is a catchall and could
contain many things, completely random behavior being one example.

Table 1.7 shows the distribution of strategies for each game’s finite repe-
tition treatment. Notice that in the symmetric games Gy and (5, the Alter-
nation Strategy is picked most often. Also there is not a significant difference

between the distributions, so the punishment action makes little difference.

"It is possible to have a sequence of plays defined as both an Alternating and a Nash
Strategy. In the symmetric treatments, if both players choose action B in every round,
each player’s strategy will be put into both categories. Fortunately, no pair of players
chooses action B in each round, so the problem does not surface.
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In the asymmetric games (G, and G4, there is a significant difference
between the distribution of strategies with and without the presence of the
punishment action. The difference exists for both the row and the column
players. The presence of Other Strategies on the part of the row players in
(G, shows that there were attempts at alternation — they do not just play
the Nash Strategy. Most of the column players, however, play the Nash
Strategy. So, the row players tend to either give up and play the Nash
Strategy themselves or they punish their partners with the minimax. Most
of them start playing the Nash Strategy.

The proportion of players that play an Alternating Strategy in (74 is much
higher for both types when the the punishment action is present. Note that
the players never have to use this action, its presence is enough to cause the
shift. A substantial number of players, both row and column, still pick an
Other Strategy.

In fact, in each of the finite repetition games, a large number of Other
Strategies are chosen. Possible explanations for this is that there is conflict
between the players, or that they miscoordinate in the early rounds. In any
case, there is uncertainty during the game about which equilibrium strategy,
the Alternating Strategy or the Nash Strategy, each player is supposed to
use.

Another explanation is that there are end-game effects present. With
end-game effects, players who had been choosing their action according to
the Alternating Strategy would change to the Nash Strategy before the last
period. Unlike in ; and G, in G3 and G4 end-game effects would be

consistent with many subgame perfect equilibria.
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Table 1.8 reproduces each strategy distribution when the last two peri-
ods of play are ignored.'? There is, in fact, a dramatic end-game effect in
both symmetric games; 17.5 percent of the subjects switched from Alter-
nating Strategy to Other Strategy in the last two periods of Gy, 20 percent
switched in (3. The data from the asymmetric games, on the other hand,
show positively no evidence of an end-game effect. One must conclude, then,
that the Other Strategies present in G, and G4 are due to conflict or misco-
ordination.

Table 1.9 shows the distribution of strategies for each game’s infinite
repetition treatment. Notice that in the symmetric games (¢4 and G, the
Alternation Strategy is again picked most often. Also there is not a significant
difference between the distributions, so the punishment action makes little
difference.

The presence of the punishment action also makes little difference in the
asymmetric games, although there is some shift away from the Nash Strategy
for the column players. The high number of Other Strategies shows that the
conflict and miscoordination present in the finite repetition treatments is still
there in the infinite repetition treatments.

The strong difference between the symmetric finite and infinite repetition
treatments is not surprising considering the presence of the end-game effects.
What is surprising is the strong difference between the finite and infinite
repetition treatments of ;. There was no end-game effect present in the

finite treatment of (5.

12Two was chosen because it is the minimum number of periods that allows both players
a chance to defect from the Alternate strategy.



1.6 Conclusions

After considering the evidence presented here, it is not unreasonable to pre-
dict that some groups of people, like the aforementioned Valencian farmers,
will be able to enter into stable alternation schemes if they are faced with
situations similar to Reciprocity Games. The farmers are in a symmetric
situation, 80 percent of the farms are less than 1 hectare. The farmers are
involved in an infinite repetition conflict, the farms have been there for cen-
turies. Like most of the participants in infinite repetition treatments of Gy
and (3, the farmers have been able to institute an efficient rotation scheme.

In these experiments, it has been shown that people faced with symmetric
Reciprocity Games enact solutions which are progressively more efficient as
the time horizon increases from one-shot to finite repetition to infinite repe-
tition. End-game effects have been found in the finite repetition treatments.
In symmetric situations, punishment options play very little role.

The ability of groups of people to obtain eflicient outcomes if there are
large asymmetries between them is much more doubtful. As has been seen,
there can be a conflict or miscoordination if the turn-taking and welfare
maximizing solutions are different. Although some succeed in instituting
one of these two efficient focal outcomes, of those who fail, many get non-
individually rational payoffs. Not a single group successfully instituted a one
to two, or equal payoff, rotation scheme.

Unlike the symmetric games, efficiency in the asymmetric games does
not tend to increase as the time horizon lengthens. In fact, due to prolonged

conflict or miscoordination, average payoffs in the infinite repetition treat-
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ments are below the average payoffs in the one-shot treatments. With finite
repetitions, the presence of the punishment action causes an increase in the
number of alternation schemes that are successfully implemented or tried,
although the number of efficient outcomes does not increase significantly and
the average payoffs fall.

Certainly the results of the examination of the asymmetric games high-
lights problems from a policy standpoint. Common welfare criteria, like the
Utilitarian criterion (maximize the sum of the payoffs), the Rawlsian cri-
terion (maximize the minimum payoff), Pareto Optimality, or even simple
rationality are not always achievable without intervention. In fact, clearly
bad outcomes occur frequently.

And what type of intervention will work? If you care about the sum of
the payoffs you may choose to shorten the length of the game. Shortening the
length of the game will certainly benefit the group, but the disadvantaged
will suffer for it. If you care about equality you may choose to endow people
with the ability to punish, or tax, or fine the other participants. Among the
efficient outcomes, there will be more egalitarian behavior, but the combined
benefits of the group will likely fall on average.

On the other hand, the results of the symmetric games are very encourag-
ing from a policy standpoint. Punishments, taxes or fines are not necessary.

Simply increase the time horizon and efficiency rises.
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1.8 Sample Instructions and Quiz

The following is a copy of the instructions given in the one-shot treatments

of G4.

INSTRUCTIONS FOR A DECISION-MAKING
EXPERIMENT

This is an experiment in decision making. You will be paid in cash at the
end of the experiment. The amount of money you earn will depend upon the
decisions you make and on the decisions other people make. We request that
you do not talk at all or otherwise attempt to communicate with the other
subjects except according to the specific rules of the experiment. If you have
a question, feel free to raise your hand. One of us will come over to where
you are sitting and answer your question in private.

This experiment has 15 separate rounds and then it will end. During each
round of the experiment you will be randomly paired with another subject.
You will never be paired with the same subject for two rounds in a row.

Each round you will be given a token which will be worth either 4 or 2.
It will always be worth the same amount. Each round you will be able to

use the token in one of three ways: option A, or option B, or option C.

PAYOFFS

The amount of money you earn in a round depends upon which option

you pick as well as which option your partner picks. WHAT HAPPENS
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IN YOUR GROUP HAS NO EFFECT ON THE PAYOFFS TO
MEMBERS OF THE OTHER GROUPS AND VICE VERSA. In
each round, you have nine possible earnings. These are shown in the following

table:

EARNINGS TABLE

Your Choice His/Her Choice Your Earnings

A A 3 points

A B 3 points

A C 1 point

B A Your Token Value + 3 points
B B Your Token Value

B C 1 point

C A 1 point

C B 1 point

C ) 2 points

To summarize the table:

1 ROWS 1 to 3: If you choose option A you will get 3 points if your
partner picks either option A or option B. If you choose option A and

your partner chooses option C, you will get 1 point.

2 ROWS 4 to 6: If you choose option B you will get your token value
+ 3 points if your partner picks option A, you will get your token value
if your partner picks option B, or you will get 1 point il your partner

picks option C.
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3 ROWS 7 to 9: If you choose option C you will get 1 point if your
partner picks either option A or option B. If you choose option C and

your partner chooses option C, you will get 2 points.

SPECIFIC INSTRUCTIONS:

At the end of the experiment you will be paid 5 cents for every point you

have accumulated.

Quiz

The following is a copy of the quiz given in the one-shot treatments of Gj.

QUIZ

id #.

1. If my token is worth 4 points, the other player in my group will have a

token value equal to:

1. 4 points.
1. 2 points.
ni. Either 4 or 2 points.
iv. None of the above.
2. If someone was in my group on round 5 of an experiment, it will be

certain, very likely, impossible that he or she will be in my group

on round 6.
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If my token value is 2 and I choose option B and my partner chooses

option A, how many points will I earn?

. If I choose option A and my partner chooses option C, how many points

will I earn?

. If at the end of a round I have 2 points, how much am I paid for that

round?



1.9 Tables
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Table 1.1: The payoff tables for the four different payoff treatments: symmet-
ric ((G1), asymmetric ((), symmetric with punishment (('3), and asymmetric
with punishment (Gy).

The Payoff Tables

_ | (3,3) (3,7) 3,3 3.7
Gl_[(T,S) (4,-1)] GQ‘[(5,3) (2,.1)]
(3,3) (3,7) (1,1) (3,3) (3,7) ( 1)}
Gs=| (7,3) (4,4) (1,b1) | Gs=] (53) (2,4) (1,1)
(1,1) (1,1) (2,2) (1,1) (1,1) (2,2)
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Table 1.2: The date of each experiment along with the number of subjects,
the number of observations, the number of periods, the exchange rate, and, if
there were different treatments in one session, the order of treatments. O, I,
and I stand for one-shot, finite repetition, and infinite repetition, respectively.

Experiments
game trtmnt date  subj. obs. length ’;J—CO'—:.% order
e 0O 2/4/91 10 75 1 5 1
F 1/31/91 10 20 15 4 -
. 61, 37
'r S ‘( 5 ) { Y 3 Y, -
[ o580 12 2 o0 !
Gx O 2/4/91 10 75 1 5 2
F o 1/14/91 10 20 15 4 :
u . 20, 41,
I 5/17/90 12 24 {26, 25 1 -
Go O 2/4/91 10 75 1 5 3
F 2/1/91 10 20 15 4 -
28, 19
5 ¢ 2 2 170 : ‘ -
I 3/11/90 1 4 16, 20) 1
Gy O 2/4/91 10 75 1 5 1
F o o2/1/91 14 28 15 1 -
{16, 29,
4/2 2 2. . .
L2090 122 L o0 |




Table 1.3: The distribution of outcomes in the one-shot treatments. The
entries in each table represent the number of times each outcome was ob-
served in that treatment. The outcomes that satisfy Hypothesis 4, the Nash
Solution, have been underlined. Notice that there are no entries below the
diagonal in the symmetric games (¢; and G3; the symmetric outcomes are
classified together. In the asymmetric games, all outcomes are classified sep-
arately.

The Distribution of Outcomes
One-Shot Treatments

C 12 . _[6 53

o[ 8] ae[2R]
19 0 0 58 0

Gs=| 63 2| Gi=|0 13 0
0 0 4 0
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Table 1.4: For each One-Shot treatment, the breakdown of individual strat-
egy choices between successes and others for the Nash hypothesis is shown.
Also shown is the frequency of success and the upper bound of its 95 per-
cent confidence interval. Finally, the distribution of observations under the
hypothesis when there is no punishment strategy is compared to the distri-
bution of observations when there is a punishment strategy; a x? statistic is
reported.

One-Shot Contingency Table

Hyp. 1 Nash Solution

Row Column
Gy G Gy Gy G G4
successes 136 137 59 5H8 69 it
other 14 13 16 17 6 0
freq. 0.9066 0.9133 0.7866 0.7733 0.9200 1.000
high 0.9460 0.95147 0.8657 0.8541 0.97237 1.0007}
X2 0.0000 0.0000 4.3403*

T - significant at o = 0.05
* - significant by adopted criteria
high is the upper bound of the 95% c. interval around freq.
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Table 1.5: For each finite (F) and infinite (I) repetition treatment, the dis-

tribution of outcomes over each focal point solution is shown.

Distribution of Outcomes Over
Focal Point Solution Concepts:

* - Hyp. is the same as Alternating

** - Hyp. is the same as Welfare

Gy Gis G 2
F I F I F I F 1
Hyp. 2 Alternating 3 21 5 19 1 2 8 7
Hyp. 3 Welfare ¥ ® ®* % F B 3 B
Hyp. 4 Equality * ¥ ¥ ¥ 59 O 0 0
Hyp. 1 Nash B 0 1 @ FTF T IE =
Other 12 3 14 5 12 14 17 12
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Table 1.6: The average payoffs in the one-shot treatment and in rounds 5 -
15 of the finite and infinite repetition treatments.

Average Payoffs
One-Shot Finite Infinite
G4 G5 £ Gs G4 G5
player 4.147 4.027 4.535 4.585 4.908 4.850
group 8.294 8.054 9.070 9.170 9.816 9.700
One-Shot Finite Infinite
G, Gy Gs Gy Go Gy
TOwW 2.785 '2.725 2955 .3.021 2.896 3.029
col 6.010 6.160 6.175 4.757 5.638 4.821
group 8.825 8.885 9.130 7.778 8.534 7.850
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Table 1.7: In each Finite Repetition treatment, the distribution of strategy
choices is shown. The distribution of strategies when there is no punishment
strategy is compared to the distribution of strategies when there is a punish-
ment strategy; a y? statistic is reported.

Finite Repetition Contingency Table

ROW COL
Gy Gs Gy Gy Gy Gy
Alt. 21 23 0 11 4 10
Nash 6 4 2 2 15 4
Other 13 13 18 15 1 14
X2 0.4909 10.2234* 19.4124*

* - significant at @ = 0.05
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Table 1.8: The different strategy distributions over the focal solutions ob-
tained when all periods are taken into account and also when all but the last
two periods are taken into account are displayed for each finite repetition
treatment.

Finite Repetition,
Strategy Distributions,
All Periods and All But the Last 2 Periods:

Gl Gg
all periods all periods - 2 all periods all periods - 2
Alt. 21 28 23 30
Nash 6 6 1 5
Other 13 6 13 5

Row Players

G Gy
all periods all periods - 2 all periods all periods - 2
Alt. 0 0 11 11
Nash 2 2 2 2
Other 18 18 15 15

Column Players

Ga Gy
all periods all periods - 2  all periods all periods - 2
Alt. 4 4 10 10
Nash 15 15 4 5

Other 1 1 14 13
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Table 1.9: In each Infinite Repetition treatment, the distribution of strat-
egy choices is shown. The distribution of strategies when there is no punish-
ment strategy is compared to the distribution of strategies when there is a
punishment strategy; a y? statistic is reported.

Infinite Repetition Contingency Table

ROW COL
G] Gg G2 G4 G2 G4

Alt. 42 40 6 6 2 7
Nash 2 1 6 4 12 6
Other 4 7 12 14 10 11
X3 1.2003  0.5538 4.8254

* - significant at a = 0.05




1.10 Figures
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Chapter 2

A Bounded Rationality,
Evolutionary Model for
Behavior in Two Person

Reciprocity Games

2.1 Population Games and the Replicator
Dynamic

Due to the Folk Theorem, a generic infinitely repeated game has many equi-
libria. The multitude of equilibria is a problem for theorists because a jus-
tifiable and non-arbitrary method of eliminating the majority of the equi-
libria has not been found. In the last chapter, experimental evidence was

presented that suggested that players in infinitely repeated, symmetric reci-
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procity games usually succeed in establishing a pattern of alternation. The
player’s actions have given a clue as to which of the equilibria should remain
after elimination. In this chapter a method which eliminates most of the
experimentally unobserved equilibria is given.

The method is based on a mathematical model of evolution, developed in
biology, called the Replicator Dynamic. The Replicator Dynamic supposes
a large population of players, each endowed with a particular strategy. Each
player in the population lives (plays a game), creates offspring identical to
itself, and then dies. The mixture of player types within the population
changes from generation to generation as the population grows and depends
upon the success that each player has in creating offspring. In the Replicator
Dynamic, each player begets a number of offspring that is proportional to
that player’s lifetime fitness, or payoff. The result is that later generations
have a higher proportion of players endowed with high payoff strategies.

Suppose that the initial population has every possible strategy repre-
sented in it. Then, if the Replicator Dynamic is ever in equilibrium, meaning
that the mixture of player types remains the same from generation to gener-
ation, the strategies that remain in the equilibrium have been justified in a
Darwinistic sense.

The problem with the Replicator Dynamic is creating an initial popula-
tion with every possible strategy in it. In the case of an infinitely repeated
game, there are infinitely many possible strategies making it necessary to
have a population of infinite size. The analysis of the dynamics on such a
population are beyond the state of the art. For any analysis to succeed, there

must be only a finite number of possible strategies. It is impossible, then,
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without further assumptions, to use the Replicator Dynamic as a method
of justification. Here, it will be assumed that players have a finite memory.
This bounded rationality constraint uniformly limits the number of possible
strategies.

Application of the model to the infinitely repeated, symmetric reciprocity
game succeeds in the sense that there is only one possible equilibrium. The
equilibrium encompasses the exchange of favors as well as a behavior asso-
ciated with short run payoff maximization and a behavior which could be
coined as irrational (although none of the players are rational in any sense).
All of these behaviors are seen in the experiments reported in the previous
chapter. It is not a complete success, however, because the behaviors are not
seen in the same ratios and furthermore, the irrational behavior is not an
equilibrium in the standard sense.

These types of population games have been studied before, perhaps the
best known examples are the papers by Axelrod (1979) and Axelrod and
Hamilton (1981) which reported on Repeated Prisoner’s Dilemma tourna-
ments. In these tournaments, various people, most of them professional
scientists, submitted computer programs which were, in essence, strategies
in the repeated Prisoner’s Dilemma. Together, the programs made an artifi-
cial population which competed by playing a repeated Prisoner’s Dilemma in
round robin fashion. After competing each strategy was reproduced based on
their relative scores, the higher a strategy’s score, the higher that strategy’s
representation in latter generations. They found that the strategy tit-for-tat
displaced the other submitted strategies.

A variety of papers focusing on the dynamics of the tournaments followed.
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Blad (1986), Hirshleifer and Martinez Coll (1988), Mueller (1987) and Young
and Foster (1991) use Replicator Dynamics to justify or determine equilib-
ria in three-strategy Prisoner’s Dilemma and perturbed Prisoner’s Dilemma
games. The strategies considered were: All Defect, All Cooperate, and some
variant of tit-for-tat (grim for example). The cooperative outcome was an
equilibrium in almost all settings in these works. Smale (1980) applied the
Replicator Dynamics to a setting where players only remembered a summary
of the past (an average of their past payoffs). He found that if the players
play good strategies, then cooperation is a globally stable equilibrium.

A different approach was taken by Miller (1989) who used an optimization
technique called the Genetic Algorithm. A Genetic Algorithm takes a subset
of the possible strategies as a population. The possible strategies, in turn, are
determined by the computing power available. The population then evolves
much like populations under the Replicator Dynamic. The difference is that
each member of the population faces a probability of random mutation (be it
gene specific or crossover) before or after the next generation is formed. Miller
found that “...cooperative strategies ...tend to proliferate throughout the
population under [certain conditions].”!

One criticism of these lines of research is that all of them apply their
dynamic models to subsets of the possible available strategies. Furthermore,
the subsets are determined in relatively arbitrary ways. In the three strategy
dynamic models, for example, no reason is given for considering tit-for-tat

while not considering, at the same time, the grim strategy.? This criticism

IMiller (1989), p. 12.
ZMueller (1987) attempts an argument by showing that he considers as a third strategy



becomes more powerful when the works of Boyd and Lorberbaum (1987) and
Nachbar (1989) are taken into account. Boyd and Lorberbaum showed that,
contrary to previous optimistic research, no pure strategy is evolutionarily
stable in the infinitely repeated Prisoner’s Dilemma. This finding depends
upon the fact that all possible strategies have a chance of being played.
Nachbar showed that the limit of the Replicator Dynamic in a two-stage
Prisoner’s Dilemma has everybody defecting (although All Defect is not the
only strategy in the limit).

One way to uniformly limit the number of strategies under consideration
in an infinitely repeated setting is to apply a bounded rationality constraint.
The constraint is a logical one to consider given the comments of Aumann

and Sorin (1989) who write:

The first hint that bounded recall might have something to do
with cooperation came in the summer of 1978. Aumann and
Kurz, with the help of Jonathan Cave ...worked out a version of
the infinitely repeated Prisoner’s Dilemma with memory one; this
means that each player can base his action only on what his op-
ponent did at the previous stage — he has “forgotten” everything
else. This results in an 8 x 8 bi-matrix game; iterated removal
of weakly dominated strategies yields a unique strategy pair, in
which both players start by playing “friendly” and continue with

“tit-for-tat” thereafter. The outcome is cooperative, both players

the strategy that in some sense punishes optimally.
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always playing “friendly.”3

However, Aumann and Sorin is not a paper concerned with population dy-
namics, and so it proceeds down a different path.

The effects of a one period recall will be considered here, only the payoff
structure will not be that of a Prisoner’s Dilemma. Instead, the analysis
will focus on the Reciprocity Game. This paper is, in a sense, an answer
to Rapoport (1988) who laments about the ... persistent hegemony of Pris-

»

oner’s Dilemma ...” and claims that “...it is evident that there is enough

to do in this area [of 2 x 2 games]| for an army of investigators.”*

2.2 The Environment

Let G be a symmetric, two-person, strategic game with finite action spaces

A; = A; = {a, b} and payoff matrix

a f3
no

M =

where the top row and first column correspond with the choice of action
a and the bottom row and second column with action b. Let G* be the
supergame made up of an infinite sequence of plays of game G.

A history or memory of length k for player ¢ is defined as h¥ € 115 A;.

Notice that under this definition, player i only has a memory of the last k

3Aumann and Sorin (1989), p. 9.
4Rapoport (1988), pp. 400 — 401.
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actions of player j; player i does not remember his own actions. Let s* €
S* : h* — A (with subscripts suppressed) be a function that maps a player’s
memory into an action. Call s a strategy with a bounded memory of length
k and let S¥ C S be the set of all k length strategies. Let S? = S'.
Another way to think of the set S is as the set of strategies which can
be implemented by a two-state automaton, such automatons are commonly
called Moore machines. A Moore machine, here from player i’s point of view,

consists of a quadruple, {H, qq, f, A};, where,
1. I is a finite set of histories or states,
2. qo 1s an initial state,
3. f:H x Aj — H is a transition function, and
4. A : H — A; is a behavior function.

In this particular case, it is convenient to suppress H and f and explicitly
enumerate A\. This should cause no confusion because H = {a,b} and f
maps A; directly into H, i.e. f(a) = a and f(b) = b. This convention allows
a machine to be written as a triple, for example {a,a,a}, where the first
represents go the initial move of the machine, the second represents A(a),
the move that the machine chooses if its opponent chooses action a, and the
third represents A(b), the action chosen if its opponent chooses action b. The
machine {a,a,a} plays action ‘a’ on the first move, and then plays action ‘a’
regardless of the action its opponent chooses. There are eight possible two
stage machines with these characteristics and they correspond directly with

the strategies in the set S®. Number the eight machines as in Table 2.1,



Suppose that two players, who are limited to choosing strategies in SB
or equivalently to choosing one of the eight machines, meet and play G*°.
Because of the finite strategies, the sequence of play eventually cycles, with
the longest cycle being four stages. For example, if player 7 chooses machine
ss = {a,a, b} and player j chooses machine sg = {b,b,a}, then the sequence
of plays will be {(a,b), (b,b), (b,a), (a,a), (a,b), (b,b), ...}, with the first of
each pair in the sequence being player i’s move. Player 1’s sequence of payoffs
will be {8,7,n,a,3,7,...}; the payoffs will also cycle. Define the function

7188 x 5B R as player i’s average cycle payoff. For this example,

1
(85, 88) = Z(B +21 41 + a)

As an alternative example, consider the payoff if player ¢ had chosen s;
and player j had chosen s;. In this case, the sequence of play will be {(a,b),
(a,a), (a,a),...}. After the first stage, the machines play (a,a) forever. The

average cycle payofl to player i is,
7(s1,82) = a.

The application of the bounded rationality constraint and the particular
definition of the payoff functions has transformed the infinitely repeated game
G*° into a single period game with an 8 x 8 payofl matrix, II. IT is shown in

Table 2.2
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2.3 The Replicator

The following notation is inspired by Taylor and Jonker (1978). Consider a
population of N risk-neutral, payoff maximizing players who interact in ran-
domly matched pairs. Let n; be the number of players who choose strategy .
The population can then be represented as a point p in the eight-dimensional
simplex A, with p; = n;/N and ©}_, p; = 1.

Assume that there is exponential growth or decay. Specifically, %i = Ty
where r; is the current growth rate for n;. Growth in the population follows
4 — 7N, where 7 is the average growth rate.

di

By differentiating p; = %,

dpe _ G _miw

dt N N2
TNy i
N N
= pilri —F)

Now, assume that the growth rate of players with strategy 2 is equivalent
to the expected payoff, or fitness, of player i. In other words, F'(:|p) =
Sy pim(si,81), which is the expected payoff of player i, is equivalent to r;.
Similarly, F(p|p) = %, p; F(i|p), which is the expected payoff of a random
member of the population, is equivalent to 7. Then by substitution,

dp;

—+ = pnilF@lp) = F(plp)]. (2.1)

Now, E;%’ 1s the instantaneous change in the proportion of players using
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strategy 1. Note that 2 > 0 if and only if F(i|p) > F(p|p). and 2t < 0
if and only if F(i|p) < F(p|p). Hence, the proportion of players using
strategy ¢ rises (or falls) with time only if the expected payoff of strategy i is
greater than (or less than) the expected payoff of a random member of the
population. If the expected payofl to strategy z is the same as the expected
payoff to a random member of the population, then % = ).

Equation 2.1 implies a dynamic in continuous time on the simplex A.

Given an initial state or initial population in A, the dynamic describes a

particular trajectory.

Assumption 1 FEvery initial population is a point p located in the interior

of the simplex A.

The assumption means that every possible strategy has at least some

representation in the population.

Definition 1 An equilibrium is any population p such that —if;—' =0 for all

X

Definition 2 Given an equilibrium p, p is asymptotically stable if a
trajectory that passes through p' converges to p with time, for all p’ in an

open neighborhood around p.

Definition 3 Given an equilibrium p, p is globally asymptotically sta-
ble if a trajectory that passes through p’ converges to p with time, for all p’

in the interior of A.
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Playing a random member of a population p is like playing against a
mixed strategy q where p = q. A particular mixed strategy will be denoted

q; and will be treated in the obvious way by the function F'.

Assumption 2 The payoff matriz, M, is such that n > ﬂ%’z R

maz {3, a}.

The assumption means action a is strictly payoff dominated by action b
and assures that in what follows = € (1/2,1). Furthermore, the assumption
defines the properties necessary for the game to be a symmetric Reciprocity
Game.

Now, which strategies are of interest in a Reciprocity game? The strate-
gies sy and sy always play a, which is a dominated strategy in the game (.
The strategies s3 and s4 always play action b, which is the dominant strategy
in the game (. There are three ways alternation can occur: if a player with
strategy ss meets a player with strategy se, or if two players with strategies
s7 or sg meet. Only the first of these ways is consistent with the idea of
reciprocation.

Define the point q° = p® = [0,0,0,0, z, (1 — 2),0,0], with 2 such that the

following equality holds:

Pty _ 848

ra+ (1 —2) - 5

(1 =2}y

If the population is at point p°, then the only strategies present are strategies

ss and sg.

Lemma 1 The point p© is an equilibrium.



Proof: This is true since,

Flp) = zat(1—a) T
= zn;ﬁ+(1—x)'y
= F(6]p°)
= F(p°|p°)

L2

implies %‘- = 0 for all z.

O

So, an equilibrium with both ss5 and s¢ players present exists. In this
equilibrium, every time an ss player meets and sg player, there will be Alter-
nation. Of course, meetings between s5 and sg players are not the only types
of meetings that occur. When an sg player meets another sg player, the se-
quence of play is {...,(b,b),...}. At each stage, the players myopicly choose
the Dominant Strategy Nash equilibrium. It is also an subgame-perfect Nash
equilibrium in the game G*°, although every other equilibrium has Pareto
Superior payoffs. The last type of meeting which could occur is between two
ss players. In this case, the sequence of play is {...,(a,a),...} which is not

subgame perfect Nash equilibrium play; it will be called Irrational.
Lemma 2 The equilibrium p° is locally asymptotically stable.

Proof: By Lemma 1 p®is an equilibrium. In equilibrium, the expected payoff

to a random member is Tﬂ‘;—ﬁ + (1 —a2)y. Suppose point p’ is an element of an



open neighborhood around p¢. If the trajectory through p’ converges with
time to p® then p€ is locally asymptotically stable.

Two conditions must be meet for the trajectory to converge to p®. First,
no strategy with positive weight at point p’ can have a higher fitness when
playing q°, the equilibrium mixed strategy, than q° itself.

Second, if any strategy happens to do equally as well as q°, then it must
be the case that that strategy is in the support of q° and q° must do better
when playing ' than ¢’ itself, where q' is the mixed strategy associated with
the point p’.

Formally,
e For all p! > 0, F(s;|p°) < F(q°|p°®) and,
o if F(s;|p®) = F(q°|p°), then ¢; > 0 and F(s;|p’) < F(q°|p’).

The fact that these two conditions are sufficient for asymptotic stability
is due to Taylor and Jonker (1978).

Note that it is enough to consider only pure strategies with positive weight
because any mixed strategy will have a payoff that is a linear combination of
the payoffs to pure strategies. If all the pure strategies satisfy the previous
two conditions, then any mixed strategy will as well.

The payoffs of all strategies that might have positive weight in a disturbed

state against the equilibrium strategy are:
e F(lL,p?)=F(2,p°)=ra+ (1 —2)a=a

o F(3,p°) = F(4,p) =ay+ (1 —a)y =17
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o F(5,p%) = F(6,p%) = 222 + (1 — z)y

s F(1.p%) = F(§,p°) = p B o (1 — )T = SEERIR

None of these strategies does better against q° than q° itself. Both s5 and
s¢ do equally as well, however, so how these strategies do against themselves

and how q° does against them must also be considered.

* F(q,5) = F(q,6) = 222 + (1 —z)y

e F(6,6) =~

Because the payoff to q° is higher than the payoff to strategy ss5 when
both play against s5 and because its payoff is higher than the payvoff to sg
when both play sg, and because no other strategy does as well against it as

itself, the equilibrium is locally stable.

O

Hence the equilibrium p® is resistant to small shocks or invasion by small
numbers of players with a different strategy. But what if there is a large
shock or if there are large numbers of players with other strategies in the
initial population? To determine what happens in these cases, the following

two lemmas will be used.®

®The two Lemmas show that it is possible to iteratively eliminate strictly dominated
strategies in this case. A general theorem encompassing this result can be found in Samuel-
son and Zhang (1992).
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Lemma 3 Given s; and s; such that F(i,p) < F(j,p) for all p € A, and

any p° in the interior of A, limy_.o p; = 0.

Proof: First, note that because p; and p; are in A, *EJ% is bounded below
by 0. Because of this, it is enough to show that lim;_. 1;7" = 0. Time is
continuous and runs from 0 to oo. Consider an infinite sequence of points in
time {ti,%2,...,t,,...}, such that ¢, > ¢,_;. Given any initial population,
it is possible to determine the values of p; and p; at any point ¢,. Define a
second sequence by T}, = %%tt—:%.

Now, to show that the sequence of T,s is monotonicly decreasing, it 1s

sufficient to show that

dpi/p; dp; dpj ., 2
—EWEE = e — g2 Y5 <
P (Pi—p — Py, )/Pj <
ay
which implies that Foa it

Because F(i|p) < F(j|p),

dp;

= = [F(ilp) - F(plp)
and

dpj

L = [F(jlp) — F(plp)]

Pj
|’

dp; dp;

_dt_ < gt

i Pj

Because the sequence T}, is monotonicly decreasing and bounded below by

0, it must converge, and because it converges, lim;_.. *;’—' must also converge.
=
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Suppose the limit converges to a point x greater than zero. Then, at point

d—P.j- dp - -
T, 4 = —Ejl—. This implies that F(i|p) = F(j|p) which is a contradiction.

So, the limit point must be 0.

O

Lemma 4 Consider population p with p, < €, strategies s; and q such that
F(llz) < F(q|i) for all i # k and F(l|i) < F(q|¢) for at least one i # k. If
€ ts small enough so that F(l|p) < F(q|p) and if pr is never bigger than ¢,
then for p° in the interior of A, limy_.o pr = 0.

Proof: First te that because nd e in A, is bounded below
irst, note that because p; and q are in E._::Iﬁ is bou
by 0. Because of this, it is enough to show that lim;_. . = 0. Timeis
y : s

continuous and runs from 0 to co. Consider an infinite sequence of points in
time {t1,t2,...,4n,...}, such that ¢, > #,_;. Given any initial population, it
is possible to determine the values of p; and Y2, .o pi at any point ,,. Define
a second sequence by T}, = z&@

ilgi >0 px(tn.)

Now, to show that the sequence of T,s is monotonicly decreasing, it is

sufficient to show that

dpi/ ZijgsoPi dp dp; 9
—T—(ZP:__?%Z )/(Zp1)<0

. . dt .

1|lg; >0 dt t|qi>0 i|gi>0
d 4p

o Zilq >0 ar

hich implies that - ,
which implies that o < m
Because F'(I|p) < F(q|p),

dp;
4L —  [F(llp) - F(p|p)]
Pi
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and
) dpi
L0 & _  [p(i|p) - F(p|p)
2ilgi>0 Pi
I
oiﬁ = Eih-‘)ﬂ%.
P 2 ilgi>0 Pi

Because the sequence T, is monotonicly decreasing and bounded below
by 0, it must converge, and because it converges, lim;_, . —" must also
g
converge. '
Suppose the limit converges to a point x greater than zero. Then, at

dp B,
L Zi]q')(} dt

point z, & = m. This implies that F(I|p) = F(q|p) which is a

contradiction. So, the limit point must be 0.

And now, the main result:
Theorem 1 The equilibrium p° is globally asymptotically stable.

Proof: The strategy s, strictly dominates the strategies s, and sy, F'(s4|p) >
F(s1]p) and F(s4|p) > F(sy

p) for all p in A. By Lemma 3, p; and p, go
monotonicly to zero as ¢t goes to infinity. In particular, for any small positive
number ¢, at some point in time, p; and py will both be less then ¢.

Now, either s4 or q° strictly dominates s; with regard to all strategies

except s; and s,. If
at+p+n+y

T 8>0
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then q° is strictly dominant. If the inequality does not hold, then clearly,

_a+ﬂi‘n+’y>

0

implying that s, is strictly dominant.

Because the inequalities above are strict, it is possible to pick an € small
enough so that if the weights of the strategies s; and s, are less than e,
either F'(s4|p) > F(s7]p) or F(q°|p) > F(s4|p). Lemma 4 then implies that
pr goes to zero as t goes to infinity.

Similarly, Lemma 4 can be used to show that pg and then p; and ps go
to zero as t goes to infinity; each time q° is the mixed strategy needed in the
Lemma.

We are now left with only two pure strategies that can have weight greater
than e, s5 and sg. Suppose ps is very small, then F(ss|p) = (B +1)/2+ &
and F(sg|p) = v + &2, for some é; and &, small. If ps is small, then p;
will grow with time. What if ps is large? Then F(ss|p) = a + é; and
F(s6|p) = (B+1n)/2+ 62, for some §; and &, small. If ps is large, then ps will
decay with time.

In any case, the trajectory through any initial point must eventually come

within any neighborhood of p®, and by Lemma 2 converge to p°.

No matter what the initial population is (as long as it is in the interior
of A), the Replicator Dynamic will converge to an equilibrium with only ss

and sg¢ players. In this equilibrium there will be three types of sequences of
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play: Alternation, Dominant Strategy Nash, and Irrational.

2.3.1 Other Symmetric Games

What types of problems occur if Assumption 2 is not met? Well, suppose
a > 7, which covers the case of the Prisoner’s Dilemma. Then there is no
strategy that strictly dominates another. While p© is still an equilibrium, it
is not a globally asymptotically stable equilibrium. The same result occurs
if B > ~, or if B > n; these cases cover the game of Chicken. A numerical
example encompassing both of these alternatives will be given later.

Recall Aumann and Sorin’s application of a one period recall to the in-
finitely repeated Prisoner’s Dilemma. Aumann and Sorin justify their result
by the elimination of strategies based on weak dominance alone. Unfortu-
nately, under the Replicator Dynamic weak dominance alone is not enough
to assure that a particular strategy’s representation in the population goes
to zero. While Nachbar (1988) does prove a theorem which gives positive
convergence results in a subset of weakly dominant solvable games, his result
cannot be applied in Aumann and Sorin’s example. The difficulties encoun-
tered in weakly dominant solvable games are covered well in Nachbar (1988)

and interested readers are referred there.

2.3.2 Asymmetric Games

There are inherent similarities between the Battle of the Sexes and Reci-
procity Games which might lead you to believe that a similar result could

be obtained in the Battle of the Sexes. There is a problem, however — the
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Battle of the Sexes is an asymmetric game. There are two approaches in the
modeling of asymmetric games as population games: analyze two distinct
populations, and make the game symmetric through random population as-
signment.

Analyzing two distinct populations changes the dynamics dramatically.
Consider what would happen in the case of the Reciprocity Game. Call the
two populations the row population, rp, and the column population, cp. Let
them evolve in the obvious way. Then the populations such that rp = cp =
p® would still be an equilibrium, but instead of being an global attractor, it
would be a repeller. Any small deviation leading to a higher number of s;
row players, for example, will cause the dynamics to flow towards populations
consisting entirely of s5 row players and sg column players. There are many
other equilibria possible, each depending upon the initial populations. A
global result is impossible.

Suppose that the game is made symmetric. The obvious way of accom-
plishing the task is to randomly choose one of each pair of players to be the
row player and to let the other be the column player. A player’s payofl would
be their average payoff gotten as a row player plus their average payoff gotten
as a column player divided by two. Alternatively, each player would face a
payoff matrix consisting of cells which were the average payoff across both

types given those actions. Specifically, suppose

(6% ﬂc
e Ve

M, =
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and

M= | Br ’
N Yr
where M. was the payoff matrix faced by column players and M, was the
payoff faced by row players. Then the payoff matrix faced by a player in the
version of this game played with random population assignment would be:
actoy  BetBr
bl R
2 2
This method is an improvement over the two population method because it
does not change the outcome predicted in the Reciprocity Game. In fact,
any asymmetric game that meets Assumption 2 after having been made
symmetric will meet all the assumptions required by Theorem 1.
Unfortunately, even with random population assignment, the Battle of

the Sexes does not meet Assumption 2.

2.4 Examples

Consider the payoff matrix M,

3 3
7 4

A’l =

Then Theorem 1 holds with # = 1/3. Figure 2.1 shows a phase portrait for

the initial generation that has all strategies with equal representation in the
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population.

In equilibrium, there are only three possible outcomes to a meeting be-
tween two players, call them: Alternation, Dominant Strategy Nash Play,
and Irrational Play. Alternation occurs whenever a player with strategy ss
meets a player with strategy ss. The sequence of play in this case would
be {(a,b),(b,a),(a,b),...}. Alternation occurs with probability 4/9. Dom-
inant Strategy Nash Play occurs whenever a player with strategy sg meets
another player with strategy s¢s. The sequence of play in this case would
be {(b,b),(b,b),(b,b),...}. Dominant Strategy Nash play occurs with prob-
ability 4/9. Irrational Play occurs whenever a player with strategy s5 meets
another player with strategy ss. The sequence of play in this case would be
{(a,a),(a,a),(a,a),...}. The probability of this outcome is 1/9.

As an example of what happens if the payoff matrix is not constructed

with the correct inequalities, consider the payoff matrix Ms,

4 3
T 2

Affg -

In this case, Theorem 1 does not hold. Figure 2.2 shows a phase portrait for
the initial generation that has all strategies with equal representation in the
population. Figure 2.3 shows a phase portrait for a different initial genera-

tion. Notice that the equilibria are different for these two initial generations.
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2.5 Conclusion

It has been shown that a large class of two-player, bi-matrix games, both
symmetric and asymmetric, have a unique equilibrium when they are mod-
eled as population games containing players with bounded recall. The class
is the set of all games which meet Assumption 2. In the unique equilibrium,
both trading favors and short term maximization occur. A third irrational
outcome also occurs. Normative justification for all three of these behaviors
can be obtained from the Darwinistic maxim claiming that only the fittest

should survive.
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s1: {a,a,a}|sz: {b,a,a}
sg: {a,bb} | sy: {b,b,b}
ss: {a,a,b} | s¢: {b,a,b}
{a,b,a} | sg: {b,b,a}

"]
~

Table 2.1: The eight machines or strategies contained in SB.
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Phase Portrait for Example

Generation (in 10s)

—m— AA —+— BB —*— AAB
—5— BAB " ABA & BBA

Figure 2.1: The phase portrait for payoff matrix M;. The term - AA stands
for the sum of the representation of s; and sy, _ BB is similar. The initial
generation has all strategies equally represented in the population.
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Phase Portrait for Counter-Example
Initial Generation A

Generations (in 10s)

—=— AA—+_BB % AAB
—S- BAB - ABA A& BBA

Figure 2.2: The phase portrait for payoff matrix M,. The term _ AA stands
for the sum of the representation of s; and s;, _ BB is similar. The initial
generation has all strategies equally represented in the population.
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Phase Portrait for Counter-Example
Initial Generation B

1
0.9
& 0.81
= 0.71
Q
S 0.61
£ 0.5
5 0.4-
go.
g,o.a-
o 0.2 759
0.11m

0-

Generations (in 10s)

—m— AA —+— BB % AAB
—5— BAB " ABA—=%— BBA

Figure 2.3: The phase portrait for payoff matrix M,. The term _ AA stands
for the sum of the representation of s; and sy, - BB is similar. The initial
generation is p° = [0.048,0.048,0.078,0.078, 0.264,0.282,0.182,0.020].
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Chapter 3

Anomalous Behavior in Linear

Public Goods Experiments:

How Much and Why?

3.1 Introduction

! There is a growing body of data obtained from experiments on voluntary
contributions in linear public goods environments with a single public good
and a single private good. Many features of the data have been difficult to
explain; for example, subjects violate dominant strategies on a regular ba-
sis. They give away money, apparently just to be nice (Isaac and Walker
[1984, and elsewhere]); at least as often, they seem to give away money just

to be mean (Saijo and Yamaguchi [1992]). Furthermore, individual behavior

IThis chapter contains work that is joint with Thomas Palfrey.
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over time exhibits erratic patterns, it alternates back and forth between ex-
treme generosity and extreme selfishness. Ledyard’s (1992) excellent survey
documents these and several other anomalies.

These anomalies might be cause for alarm as they signal trouble for any
but the most schizophrenic models of behavior. However, the range of en-
viornments for which these experimental results have been reported is very
narrow, and the designs employed make it difficult if not impossible to iden-
tify decision rules at an individual level. The point of this paper is to broaden
the playing field in a natural direction, using a design that permits estima-
tion of individual behavior. By changing both the information structure and
the distribution of preferences, this design also provides a robustness check
on the anomalous findings of past experiments.

We offer the following thought experiment in the context of a well-studied
private goods allocation mechanism, the second-price auction, in hopes that
it will help the reader understand some of our concerns about design, and to

foreshadow what follows.

A Thought Experiment:

Imagine conducting a second-price sealed bid auction experiment
with four players, where each is told to bid for an object that
is worth exactly $1.58 to him. After careful explanation of the
rules, ten identical, sealed bid, second-price auctions are then
conducted in sequence. Bids are required to be greater than or
equal to 0 and less than $1.58 and ties are broken randomly. After

each auction, subjects are told the winning bid and the second
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highest bid. When the tenth auction is over, everyone is paid by

the experimenter and thanked for showing up.

What do you think the distribution of bids will be, and how will
this distribution change from period to period? How would you

plan to bid in such an auction?

The first observation to be made about the thought experiment is that
it shares some of the traits of many voluntary contribution, public goods
experiments that have been reported in the literature. In the most common
voluntary contribution, public goods experiment, like in the thought experi-
ment, there are a number of identical players. Also, the players are asked to
make a decision about buying a good and they are given personal incentives
not to buy it, or at least to spend as little as possible on it. Much of what is
known about free riding is based on experiments with this type of design.

The second observation to be made is that little can be learned about the
general bidding behavior of the participants. In the auction, each player at-
taches the same value to the good in each of the ten auctions. Furthermore,
every other player also attaches this same value to the good. The measure-
ment of a general bidding function is practically impossible; the best one can
do is estimate behavior at a particular point.

It would be possible, by running a number of experiments and varying
the value of the good, to construct something that looked like a bidding
function. However, that function would depend upon the fact that every
player attaches the same value to the auctioned good. This function would

only measure how an individual’s choice behavior changes when their own



value and the joint distribution of all bidders’ values change simultaneously.
The estimated function would have other limitations as well—to obtain the
data required, an individual would have to participate in a large number
of 10-auction sequences. The amount of play necessary might lead to a
confounding of the effects of bidding behavior and of experience, unless a
large number of experiments were conducted.

A final observation is that, in spite of the fact that there is a dominant
strategy equilibrium where each bids $1.57, one can, for a variety of reasons,
imagine players bidding differently. In fact, it is difficult to guess what might
actually happen, especially if the players are inexperienced.?

It should be no surprise to learn that auction experiments are not usually
conducted like the thought experiment. Auction experiments have focused
exclusively on different environments, environments in which players have
diverse preferences and diverse information. These are the environments in
which auctions most naturally occur. What is surprising is that voluntary
3

contribution experiments have, for the most part, not shared this focus.

This paper, and the experimental design it employs, is motivated by our

20ne might also notice that the thought experiment is a repeated game not a one-shot
game. We do not address this potential complication until later in the paper.

3There are a few exceptions, notably Fisher et al. 1991 and Isaac et al. 1985, both
of which consider environments with two types. The former provides subjects with iden-
tical information about other subjects’ preferences as in parallel homogeneous preference
experiments. The latter has several other different features, including nonlinearities, and
does not conduct any baseline experiments with homogeneous preference. Brookshire et
al. (1991), Smith (1980), and Marwell and Ames (1980) also have conducted experiments
with heterogeneous preferences, but these are not comparable for other reasons. None of
these experiments varied individual subject preferences across decisions, nor did they pro-
vide explicit information about the distribution of preferences in the population. Palfrey
and Rosenthal (1991) use an environment similar to the one explained here, but the public
good technology is step-level, not linear.
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reflections about the thought experiment, and by a view that much can be
gained by shifting the research agenda in the direction of this different class of
environments. One benefit is simply better measurement: response (bidding)
functions can be estimated at the individual level. Also, we can check for
the robustness of existing results to environments that include features, such
as heterogeneity of preferences, that are endemic to natural settings. In
what follows, we report results from our experiments that study this kind of

environment, and we contrast these results with previous findings.

3.2 Background

This paper investigates contribution behavior under the Voluntary Contribu-
tion Mechanism in simple linear public good environments where all players
have dominant strategies. The typical environment consists of N individuals,
each endowed with X; discrete units of a private good. The marginal rate of
transformation between the public good, y, and the private good is one-for-
one, and individual utility functions are of the form: U(y,x;) = Vy + rix;.
We refer to V' as the value of the public good, and it is normalized to be the
same for all individuals.

The Voluntary Contribution Mechanism defines a simple game, in which
each individual simultaneously decides how much public good (between 0 and
X;) to produce on his own. Total public good production in the economy is
the sum of all private production of the public good. Payoff functions are
then defined from the final allocation and the utility functions in the obvious

way. This game is repeated several times.
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As pointed out in Section 1, much of what we think we know about
behavior in this game is based on experimentsin which X; and r; are the same
across individuals and repetitions and r;/V > 1. This paper concentrates on
a group size of four.

Several findings have emerged from these other investigations: (1) nearly
all players in this game violate their one-shot dominant strategy, with many
contributing upwards of half their endowment, even when r;/V is three or
more; (2) there is a strong negative relationship between the marginal rate of
substitution r;/V and the rate at which violations are observed; (3) roughly
half the aggregate private endowment is contributed by inexperienced sub-
jects on the first play of the game; (4) violations of dominant strategies
diminish with repetition and with experience (playing a second sequence of
games with a new group); (5) violations of dominant strategies to contribute
(ri/Vi < 1, Saijo and Yamaguchi [1992]) appear to be even more prevalent

than violations of dominant strategies to free ride.

3.3 Our Design and Procedures

Our experiment looks at the above findings more closely by studying envi-
ronments with both non-degenerate distributions of »;/V, and with private
information. These innovations are introduced to overcome the limitations
of past designs, limitations suggested by the thought experiment. The inno-
vations permit us to measure responsiveness to r;/V, via response or bidding
functions, at both the individual level and the aggregate level, and to mea-

sure a baseline of deviant or erroneous behavior due to nuisance {actors, such
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as boredom or confusion.

There are a number of specific features of our design that enable us to
address other issues that are relevant to understanding other commonly ob-
served patterns of behavior. These features are listed below. A sample copy

of the instructions is in the Appendix.

1. In all our environments, subjects receive r;’s that are randomly assigned
according to a uniform distribution between 1 and 20. We sometimes
refer to these as token values. Each time a subject is to make a new
decision, he is independently and randomly assigned a new r; for that
decision. Subjects do not know the other subjects’ assignments of r;’s,
but the distribution is publicly announced at the beginning. The value

of V' is also announced at the beginning.

Therefore, the data contain multiple observations of the choice behavior
of each individual, observations at different levels of r;/V, and permits
the estimation of response functions at both the individual and aggre-

gate levels.

2. We vary the distribution of marginal rates of substitution, (r;/V),
by shifting V. We look at the four different distributions given by
V € {3,6,10,15}. One of the distributions, V' = 3, has the feature
that group efficiency is not maximized when all subjects contribute in
every round. In that condition, on average, forty percent of the time
subjects are assigned a token value that is worth more than four times
the individual marginal value of the public good. In these cases, con-

tribution reduces group efficiency.



5.

86

We vary the endowment. In one condition, everyone is endowed with
one indivisible unit of the private good. In the other condition everyone

is endowed with nine discrete units.

Each subject makes a sequence of ten decisions in a fixed group with
three other players. This allows a direct comparison to some past

experiments, notably those reported in the Isaac and Walker studies.

Each subject participates in a total of four sequences, each time with
a different group of subjects. The first two sequences have the same
parameters; the last two sequences have the same parameters (but dif-
ferent from the first two). This allows us to identify experience effects.
All four sequences occur in a single session that lasts approximately 15

hours. Each session includes sixteen subjects.

All sessions were conducted at the Caltech Laboratory for Experimental
Economics and Political Science, using a collection of PC’s that are

linked together in a network.

Each subject was paid cash, based on a session-specific exchange rate,
for each point they earned in the session. The exchange rate was picked
so that the sum of equilibrium payoffs was approximately the same

across sessions.

[Table 1 here]
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3.4 Response Functions and Background
Noise

We focus mainly on two aspects of the data. The first has to do with at-
tempting to identify what we call errors or background noise—behavior that
is grossly inconsistent with standard theory. Second, we attempt to measure
response functions, which are the analog to bidding functions in auctions.
The functions answer the question: How do contribution decisions depend
on the marginal rate of substitution? We measure errors and response func-
tions at both the aggregate and individual levels, using nonparametric and
parametric models of the error structure.

It is useful to think of our analysis in the context of a random utility
model, of the sort found in Maddala (1983), McFadden (1982), and elsewhere,
for the analysis of data with limited dependent variables. For example, in the
condition where subjects have a single indivisible unit of the private good,
they face a simple binary decision. We model the statistical structure of
residuals by assuming that utility functions have a random component that
is not observed. For lack of a better name, we call this the altruism (or
warm glow) term. Depending upon the value of the altruism term, subjects
may receive some additional utility from contributing a unit of their endow-
ment, over and above the utility induced by the payment method used in the
experiment.

Theoretically, an optimal response function for an individual with an

additive warm glow term, ¢;, is to contribute X; if r;/V < 1 4 ¢;, and to
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contribute 0 if r;/V > 1 + ;. Any behavior is optimal when r;/V =1+ &;.
This is what we call a cutpoint strategy (Palfrey and Rosenthal [1988]). In
fact, this optimal strategy is a one-shot dominant strategy for any values of
€i, i, V, and Xj.

If the value of ¢; is stochastic, and varies according to some assumed
distribution, an estimated response function gives the probability of contri-
bution as a function of other controlled variables, such as experience, etc.
In addition, the response function gives us indirectly an estimate of “back-
ground noise.” We look at the effect of the following variables on response

functions:

e The induced marginal rate of substitution (r;/V').

Experience.

Endowment (divisible or indivisible — i.e. one or nine units).

The value of the public good (V).

Repetition (Is there a decay over the ten rounds of play?).

3.5 Analysis of the data

3.5.1 Some baselines

We present three different baseline error rates. This gives a rough calibration

of a lower bound on the amount of background noise* in the experiment. By

“Contemporaneous work by Andreoni (1992) is also pursuing this issue.
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this, we mean the percent of observed decisions that appear incongruous with
nearly any currently accepted theory of rational decisionmaking. We also
make an attempt to compare our baseline with baselines observed elsewhere,

to the extent possible.

Splitting

By splitting, we mean that a subject contributes some fraction of his endow-
ment, but not all of it. Because of the linear structure of the environment,
such behavior is not rational even if a subject has a warm glow term added
to his marginal rate of substitution. While it might be possible to think up
models where such behavior is rational, such explanations would likely be
quite contrived. Tables 2, 3, and 4 present the splitting data from our ex-
periments. Recall that in half of our experiments, subjects were not capable
of splitting, since they had only a binary choice. Thus, the data in this table
is based on only half the sample. One can see two striking features. First,
splitting is more prominent among inexperienced subjects and in the early
periods of each 10-period game. Second, splitting almost never occurs when
subjects have r;/V < 1. In other words, almost all splitting can be accounted

for by subjects who have a dominant strategy to free ride.
[Table 2, Table 3, and Table 4 here]

These findings contrast sharply with those of Issac and Walker. They
observe splitting well over half of the time in their data and, for their marginal
rate of substitution, or MRS, of 1.33 experiments, there is very little decay

of splitting over the course of the ten periods.
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[Table 5 here]

Spiteful behavior

Many have speculated that subjects violate their dominant strategy to free
ride because of some form of altruism, or alternatively, because their utility
function depends on group payoffs in a positive way. If this is the main
driving force behind the past findings, then we should see very little free
riding when subjects have r;/V < 1. Based on this scenario, violations of
dominant strategies to contribute can reasonably be attributed to effectively
random behavior. This gives us a second kind of baseline error rate. In our
experiments, four percent of the decisions violate the dominant strategy to
contribute when r;/V < 1. This number is remarkably stable across periods

and across the experience treatment (see Table 6).

[Table 6 here]

Sacrificial behavior

In one of our designs, V' = 3, the group optimum is not obtained by everyone
contributing for every possible r; they might draw. In particular, the group
payoff is maximized if subjects contribute if and only if r; < 4V = 12. A
subject who contributes when r; > 12 sacrifices more than the entire group
benefits. It is hard to imagine any except the most fervent altruists contribut-
ing under these circumstances. The frequency of this type of contribution

also provides, in a slightly different way, a lower bound on the amount of
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“crazy” or random behavior. As Table 7 shows, this kind of behavior is ap-
proximately as common as spiteful behavior, but virtually disappears with

experience (1 observation out of 129).

[Table 7 here]

3.5.2 Estimation of response functions from aggre-

gate data

A Simple Model

We measure response functions as the probability of contribution as a func-
tion of the marginal rate of substitution or MRS. First, consider the following
family of theories, a family that includes both the dominant strategy (game)
theory and the altruism theories based on an additive warm glow altruism
term. Each member of this family is characterized by an error rate, ¢, and a
threshold, M. An (e, M) theory states that “Individuals contribute to a pub-
lic good if and only if the marginal rate of substitution (token value divided
by public good value plus warm glow) is less than or equal to M. However,
they make errors at a rate of ¢.”

If M =1, then this is just the dominant strategy theory, modified appro-
priately to account for the possibility of error. If M > 1 this indicates some
degree of altruism, everyone is altruistic. If M < 1, this indicates negative al-
truism. According to our data, what is the best theory in this family? Using
the criterion of maximum likelihood, the answer is the M* that produces the

*

fewest classification errors in the data, together with ¢* equal to whatever
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the classification error generated by M* is. This is not only easy to calculate,
it is also easy to illustrate graphically. Figure 1 displays the answer: In our
data, the best theory is M = 1.1. It results in only 12.5 percent (&%) classifi-
cation errors and is very close to the selfish cutpoint equal to 1.0. Figures 2
and 3 break this analysis down across the various levels of the V-treatment

and the two levels of the endowment treatment.

Probit Analysis

An alternative, more familiar way to estimate response functions is by Probit
analysis. In effect, the Probit analysis fits curves through the raw data shown
in Figures 4-7. In this analysis, we assume that an altruism term, g;, is a
Normally distributed random term added to an individual’s MRS that it is
independently distributed across individuals and across decisions.

The impact of experience, endowment and other experimental treatments
are easily assessed by introducing dummy variables. The simplest probit
model, with only a constant term and r;/V, or MRS, entering on the right
hand side gives us an estimate of the average altruism term, which we denote
by &, and its standard deviation o..

We consider five Probit Models which are built by recursively adding
independent variables to the basic model. Note that an observation in these
models is a decision involving a single token. In order to maintain equal
representation between the conditions with an endowment of one and those
with an endowment of nine, an investment decision in the endowment of one

conditions is given the same weight as nine similar investment decisions in
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the endowment of nine conditions.

The intercept coefficients in a Probit model represent changes in /0. and
the slope coefficients represent changes in —1/0.. The estimated mean, &, is
equal to minus the slope coefficient divided by the intercept coefficient. It
follows that a negative change in the already negative slope coefficient leads
to a decrease in &, holding everything else constant. This decrease is implied
by the decrease in variance due to the more negative slope coefficient. If
everything is to stay the same, &€ must also decrease. The decrease in variance
also makes the slope of the curve steeper.

From each Probit Model, we can obtain a response function P(-), which
returns the probability that a subject invests in the public good. The six
variables in the other models are: exper.s, a slope dummy for subjects with
experience; exper, a constant dummy for subjects with experience; endow.s, a
slope dummy for treatments with an endowment of nine; endow, a constant
dummy for subjects with an endowment of nine; V', the marginal return
from the public good; and period which ranges from 1 to 10. Coeflicients,
t-statistics, log likelihoods, and the percentages correctly predicted for each

model are given in Table 8.
[Table 8 here]

Turning to specific models, even the simple model Py, in which a player’s
investment decision depends only upon MRS, is able to correctly predict
83.064 percent of the observations.

In model P, the slope coefficient for the experience variable, exper.s, is

negative which means the response curve for experienced subjects is steeper
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than the response curve for inexperienced subjects. The coefficient for the
intercept variable for experience, ezper, is positive. This tends to offset the
change in & implied by the reduced variance, however, the total change in &
is still negative.

A player’s cutpoint is the point at which he is indifferent between investing
in the public good and investing in the private good, the point where P; =
1/2. For inexperienced subjects, the estimated cutpoint is 1.641, and for
experienced subjects, it is 1.399. This finding reinforces the findings of Isaac
and Walker. Experienced subjects are more consistent with the dominant
strategy model than inexperienced subjects. In this case, the effect is even
significant. Of independent interest is that experienced subjects’ response
functions are steeper, indicating less random behavior.

Probit model P3, shows a minor effect of the addition of a pair of en-
dowment variables, both equal 1 if the endowment is nine tokens and 0 if
the endowment is one token. In this case, the slope shift is positive and the
intercept shift is negative. The consequence is that the response function for
subjects in the high endowment condition is flatter than the response func-
tion for subjects in the low endowment condition. The negative intercept is
enough to counteract the higher variance, however, and the high endowment
means are less than the low endowment means. The magnitudes of these
coefficients are much smaller than those associated with the experience ef-
fect and the effect of the endowment change is similarly smaller.® The actual

differences are shown in Figure 8.

5The magnitudes are comparable because the variables, both dummies, are of the same
scale, namely 0 or 1.
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The variable V', which is added in model P4, measures the marginal val-
uation of the public good. One interpretation (since we have controlled for
MRS) is that its coefficient tells us what happens to a subject’s behavior as
the payoffs rise. Although the effect is very small, we find that a player’s re-
sponse function becomes steeper, and the average deviation becomes smaller.
A similarly small result holds when the period of the decision is taken into
account. Holding everything else constant, a player is less likely to contribute
in later periods than in earlier periods.

Quite clearly, the major effects are due to MRS and experience. While the
endowment condition has some effect, it is not as important. The effects due

to the size of the payoffs and to the period of the decision pale in comparison.

3.5.3 Response Functions and Errors: Individual

Level Analysis

The analysis in the previous section assumes that individuals are identical.
In fact, there are indications of heterogeneity in our data. Similar indications
have also been noted in past work. This section offers a simple approach to
look at differences between individuals, based on minimization of classifica-
tion errors (as in section 5.2.1). We do two things. First, we break down that
analysis by individual, and obtain a distribution of classification minimizing
cutpoints for individuals. This allows us to identify the fraction of subjects
who behave consistently with the Nash equilibrium, subjects we call Nash
players. Second, from these estimated individual cutpoints, we can obtain a

distribution of the error rates across individuals. This gives us a way to iden-
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tify what fraction of subjects are behaving consistently with some cutpoint
model.

We define a Nash Player as a player who is rational and non-altruistic.®
That is &; = 0. With this in mind, consider Tables 7 and 8 which report,
by subject, the raw number of classification errors for each of the twenty
possible cutpoints. These cutpoints correspond to the possible token values.
They are the only applicable cutpoints, because they relate directly to every

possible realization of r;.
[Tables 7 and 8 here]

Each possible cutpoint is given a score based on how well it represents
that subject’s decisions in the experiment. The score is simply the number of
times a violation would have occurred if that was the actual cutpoint rule the
subject used.” More specifically, we hypothesize that a particular player is
using a cupoint that corresponds to token value z (we consider every possible
x in turn). Hypothetically, each time that player receives a token value r;,
he compares it to @ and then spends only if 7; < . A classification error
occurs if one of the two following events occurs: r; < x and the player does
not spend, or r; > x and the player does spend. The lower the cutpoint’s
score, the better it represents that person’s decisions. In these two tables

we report the data from one of the {6,1} treatments and one of the {6,9}

5Because our estimation allows for errors, a Nash Player may be different than a player
who perfectly follows the decision rule implied by the self-interested model. The difference
is that a Nash Player is allowed to make mistakes.

"When a particular rule was imprecise, i.e., when the player was indifferent, it was
assumed that no errors were made.
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treatments.®

The first thing to notice is that the minimum error cutpoint is not always
unique. When forced to estimate a unique cutpoint, we select the one closest
to 1, which is Nash play. In Table 9, subjects {4, 6,10, 14, 15,16} are classified
as Nash players, as are subjects {3,4,5,6,8,10,12,13,15} in Table 10. A
second thing to notice is that not every subject has the same estimated
cutpoint. In Table 9, for example, subject #2 has an estimated cutpoint
of 2.17 (corresponding to a token value of 13) while subject #16 has an
estimated cutpoint of 1.0 (corresponding to a token value of 6). Another
observation is that, for some subjects, the minimum number of errors is
strictly greater than zero.

Pooling across all experiments, we find that 144/256, or 56 percent of
the observations are Nash players. The entire distribution of cutpoints is
illustrated in Figure 9. On the z-axis is the difference between the estimated
cutpoint and the value of the public good in token value units. For example,
subject #1 from Table 10 would be included in the “3” category in this figure,
since his estimated cutpoint is 9 and the value of the public good is 6. An
x-value of 0 in this figure corresponds to Nash play. This figure can also be
broken down by experience, and doing so illustrates the effect of experience
on inducing Nash (non-altruistic) play. This is shown in Figure 10.

Finally, we define consistent players as players that can be perfectly clas-
sified, so that they never make an error at their estimated cutpoint. Pooling

across all experiments, we find 178/256, or 70 percent consistent players. The

8These two tables are meant to be representative.
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percentages of experienced and inexperienced consistent players are 75 and
64 respectively. Figure 11 displays the distribution of error rates, measured
as the proportion of an individual’s decisions that are inconsistent with his
estimated cutpoint. Comparing to the earlier baselines, these error rates are

again mostly in a range of five percent or below.

3.5.4 Comparison to Previous Results

There are a few simple comparisons between our data and the data from
four person experiments conducted by Isaac and Walker. Recall that, in
Issac and Walker’s experiments, all subjects have identical marginal rates of
substitution, equal to either 1.33 or 3.33 (which they refer to as High MPCR
and Low MPCR). Their experiments also used a ten-period repetition design.

The most notable difference between their data and ours is in the fre-
quency with which we observed consistent Nash play. This occurs when a
subject, for an entire ten-period repetition, makes no decision that is incon-
sistent with dominant strategy Nash equilibrium. In terms of Figures 9 and
11, these subjects are in the 0-categories in both figures. We observe this
118 out of 256 observations, or 45 percent of the time. Isaac and Walker
observe this 7 out of 76 observations, or 9 percent of the time. Thus we find
five times as much consistent Nash play. Large differences also occur in the
frequency of splitting, as pointed out earlier (Tables 2-5).

A second comparison is to look at the decisions made by our subjects
when they had MRS = 1.33 and MRS = 3.33. The comparison is given in
Table 11.
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[Table 11 here]

Again, the same kind of pattern emerges. We find lower contribution
rates. In fact, our contribution rate for MRS = 3.33 is roughly the same
magnitude as the background noise measured in our baselines.

A third comparison is what we call repetition effects and what has been
referred to elsewhere as decay — it is typical in these experiments to see less
contribution in later periods than in early periods. In fact, in comparable
experiments, contribution rates in early periods have ranged from two to four
times as much as contribution rates in later periods. We measure an effect in
our data (recall the Probit analysis), but we find the magnitude of the decay
to be very small. It is true that there is more free riding in later periods,
but this is attributable to a decrease in subject errors, or an increase in their
consistency, not to a change in their decision rule. This fact is also reflected
in the decline of splitting behavior documented earlier.

Andreoni (1988) conducted experiments similar to those of Isaac and
Walker and observed magnitudes of contribution, free riding, and decay that
by interpolation are roughly the same as those found in the data gener-
ated by Isaac and Walker. Those experiments used five person groups and
MRS = 2. Instructions were somewhat different and some new treatments
were explored. Andreoni’s results are similar to those of Issac and Walker,
and differences between our data and his are likewise similar to the differences
between our data and Issac and Walker’s.

Our findings also contrast sharply with the highly anomalous behavior

in the experiments done by Saijo and Yamaguchi. They conducted homo-
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geneous preference experiments with MRS = .7 and MRS = 1.42. Like
Andreoni, they observe magnitudes of free riding, and decay for their exper-
iments with an MRS = 1.42 that are roughly the same as those in Isaac and
Walker’s data. Saijo and Yamaguchi and Issac and Walker also observe simi-
lar split rates. The splitting rates observed in both of Saijo and Yamaguchi’s
treatments are 55 percent. They get as much splitting when subjects have a
dominant strategy to contribute, as when subjects have a dominant strategy
to free ride! Our findings are dramatically different.

Saijo and Yamaguchi observe aggregate contribution rates that are dif-
ferent from ours and also from Isaac and Walker’s. For the 1.42 treatment,
they observe 27 percent contribution, which is quite a bit less contribution
than that seen in Isaac and Walker’s data for MRS = 1.33. Our closest ob-
servations to MRS = 1.42 are at MRS = 1.5 and MRS = 1.4. We observed
contribution rates of .27 and .36, respectively for those two values of MRS.

In their MRS = .7 treatment, Saijo and Yamaguchi see a contribution
rate of 58 percent! Recall that our observed contribution rate was so close
to 1 (.96) for this range of MRS, that we used this as one of our baselines for
the rate of background noise! We have no satisfactory explanation for this
enormous difference between their results and ours. However, we do note
that those experiments were conducted somewhat differently in a number of
ways, which may partially account for the differences in data.

Saijo and Yamaguchi employed seven member groups instead of four
member groups, they conducted the experiments manually instead of through
a computer network, and they used different instruction methods. In fact,

they used two instruction sets as a treatment, and found significant differ-
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ences due to that treatment. Also, they required subjects to make each
decision within 20 seconds, and they used a different subject pool. Saijo
and Yamaguchi suggest that the differences may be attributable to cultural
differences between Japan and the U.S. We are skeptical of that explanation,

but have no better one to offer.

3.6 Interpreting the Results

The main differences between our findings and previous findings can be sum-

marized by the following observations:

1. We observe less splitting.

2. We do not observe significant decay.
3. We observe lower contribution rates.
4. We observe more Nash behavior.

5. We observe essentially no spiteful behavior.

The findings that replicate from past experiments with comparable group
sizes are that experience leads to lower contribution rates, and contribution
rates are declining in the marginal rate of substitution (marginal valuation
of the private good).

Explanations for the differences that we observe are either methodological
or environmental in nature. Possible methodological explanations abound:

we utilize slightly different experimental procedures, or our instructions and
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computer screens are different, we employ a different subject pool, ete. On
the environmental side, our experiments utilize a different economic envi-
ronment, by which we mean the information structure and the profile of
preferences in the group are different. In particular, as emphasized in the
introduction, the information structure and profile of preferences correspond
almost exactly to the standard environment used for auction experiments.
In each period, preferences in the group are randomly and independently
drawn from a known distribution of marginal rates of substitution, thereby
inducing heterogeneity across individuals. This contrasts sharply with envi-
ronments that have been explored in earlier investigations of the voluntary
contributions mechanism.

To try to assess the relative importance of the methodological and en-
vironmental explanations, we have subsequently tried to replicate Issac and
Walker’s findings using our procedures and subject pool and their homoge-
neous environment. Specifically, we conducted an additional experimental
session where every subject had a publicly announced marginal rate of sub-
stitution equal to 3.33, and every subject was endowed with multiple units
of the private good.

Figure 12 compares the results of this session with the data from Issac
and Walker. There is very little difference. The main features of the data
replicate: there are very high contribution rates early on, and these rates
decay significantly. In this extra session, we also observed similar splitting
rates and amounts of Nash behavior. Based on this data, we dismiss the
possibility that differences in our experimental procedures or subject pool

are responsible for the differences in our results.
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Thus we are left only with environmental explanations. This leads us to
conclude that the findings from earlier experiments, experiments that utilized
homogeneous environments, are not robust to public goods environments
which exhibit variation in preferences, even if we limit attention only to
linear public goods environments. This is a significant finding, even more so
if one suspects, as we do, that heterogeneous preferences are a factor in most
natural settings. There is an interesting question left open, namely “Why
does heterogeneity lead to such different results?”

It is possible that, with homogeneous preferences, it is easier for a group
to achieve a cooperative solution of the sort suggested by repeated game argu-
ments. For example, if subjects adopt the type of strategies that reciprocate
generous behavior by others, or believe that others adopt these strategies (see
Kreps, Milgrom, Roberts, and Wilson [1985]), then some of the patterns of
behavior that have been noticed in the homogeneous preference experiments,
decay and pulsing, for example, can be rationalized.

In our design, since preferences are private information, the ability to
signal one’s generosity to other players is interfered with.? If one is observed
to contribute, other subjects cannot tell if you are being generous, or simply
acting selfishly.

To identify the effects of the private information in our experiments, we
conducted two revealed-information sessions (with V' = 6 and X = 9) where

all token value draws were revealed to everyone in the group. In the first of

?Actually, in most of the homogeneous design experiments, homogeneity is not publicly
announced. However, experiments by Isaac and Walker (1990) find that common knowl-
edge of the homogeneity has no effect on behavior. They conjecture that subjects infer
from the wording in the instructions that other subjects have similar payoff tables.
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these sessions, token values were revealed after the decisions were made. In
the second, token values were revealed before the decisions were made. In
both cases, the signal interference problem is eliminated, which, if the above
explanation is correct, should lead to greater contribution and less free riding.

The pooled results for the revealed information sessions are displayed in
Figure 13, which compares the empirical response function with the data from
all the other heterogeneous preference experiments (those with no revealed
information).!® There is very little difference. In fact, if anything, revealed
information seems to lead to even more free riding behavior, which is contrary
to the reputation hypothesis.

This leaves us without a complete explanation for why we observe such
different results in our environment. At this point, we simply do not know.
A number of other possible explanations can be imagined. Perhaps it was
important (because of faster learning, less boredom, or something else) that
subjects in our design are assigned a new MRS for each decision. This sort of
explanation unfortunately seems to be currently beyond the reach of existing
theoretical models of behavior in these kinds of games. On the other hand,
the findings here are suggestive of possible new directions for theoretical

work, as well as some directions for new experimental designs.

0There is no significant difference between the two revealed information sessions, so
pooling the data is reasonable.
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3.8 Sample Instructions

Decision-Making Experiment

This is an experiment in decision making. You will be paid IN CASH at the
end of the experiment. The amount of money you earn will depend upon the
decisions you make and on the decisions other people make. It is important
that you do not talk at all or otherwise attempt to communicate with the
other subjects except according to the specific rules of the experiment. If
you have a question, feel free to raise your hand. One of us will come over
to where you are sitting and answer your question in private.

This session you are participating in is broken down into a sequence of
four separate experiments. Each experiment will last 10 rounds. At the
end of the last experiment, you will be paid the total amount you have
accumulated during the course of all 4 experiments. Everyone will be paid in
private and you are under no obligation to tell others how much you earned.
Your earnings are given in FRANCS. At the end of the last experiment, you
will be paid 11 cents for every 100 FRANCS you have accumulated during
the course of all 4 experiments.

In each experiment you will be divided into 4 groups of 4 persons each.
Those groups will stay the same for all 10 rounds of the experiment. After
each of the 10 round experiments, everyone will be regrouped into 4 entirely
new groups. Therefore, whenever we change groups, the other people in your
group will be completely different from the last group you were in. You will

not be told the identity of the other members in your group. Since we will
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be running 4 experiments tonight, you will be assigned 4 different groupings,

one for each 10 round experiment.

RULES FOR EXPERIMENT #1

Each round of the experiment you will have 9 tokens. You must choose how
many of these tokens you wish to keep and how many tokens you wish to
spend. The amount of money you earn in a round depends on how many
tokens you keep, how many tokens you spend, and how many tokens are
spent by others in your group. Each round, you will be told how many
FRANCS each token is worth if you keep it. This amount, called your TO-
KEN VALUE, will change from round to round and will vary from person to
person randomly. To be more specific, in each round, this amount is equally
likely to be anywhere from 1 to 20 FRANCS. There is absolutely no system-
atic or intentional pattern to your token values or the token values of anyone
else. The determination of token values across rounds and across people is
entirely random. Therefore, everyone in your group will generally have dif-
ferent token values. Furthermore, these token values will change from round
to round in a random way. You will be informed PRIVATELY what your
new token value is at the beginning of each round and you are not permitted
to tell anyone what this amount is.

After being told your token value, you must wait at least 10 seconds
before making your decision of how many tokens to spend and how many to
keep. Your keyboard will be frozen for this period of time. When everyone

has made a decision, you are told how many tokens were spent in your group
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and what your earnings were for that round. This will continue for 10 rounds.
Following each round you begin with 9 new tokens and are randomly assigned

a new token value between 1 and 20 FRANCS.

PAYOFFS

You will receive 6 FRANCS times the total number of tokens spent in your
group. In addition, you will also receive your token value times the num-
ber of tokens you keep. Notice that this means every time anyone in your
group spends a token, everyone in the group (including the spender) gets an
additional 6 FRANCS, but the spender foregoes his or her token value for
that token. WHAT HAPPENS IN YOUR GROUP HAS NO EFFECT ON
THE PAYOFFS TO MEMBERS OF THE OTHER GROUPS AND VICE
VERSA. Therefore, in each round, you have the following possible earnings,
as shown in the table:
[HAND OUT EARNINGS TABLE. ALSO WRITE ON BOARD)]

Suppose everyone else in your group spends 13 tokens in all and you spend
4 tokens and your token value was 12. You would earn 24 + 78 + 60 = 162
FRANCS. If you had spent 3 tokens you would have earned 18 + 78 + 72 =
168 FRANCS. If you had spent 5 tokens you would have earned 30 + 78 +
48 = 156 FRANCS.

ADDITIONAL PROCEDURES:

1. Are there any questions? [ANSWER QUESTIONS]
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2. Hand out quiz.
3. Correct quiz answers and read them aloud.
4. Answer any additional questions.

5. Two practice rounds — Tell them not to press any keys unless you tell
them to. In round 1 have all even ID#’s spend and odd keep. In round
2 do it the other way. Go over screen display and history. Tell subjects

to refrain from pressing keys for no reason.

Specific instructions for Experiment 2:

Experiment 2 is the same as experiment 1 except you now have been re-

grouped with a completely different set of people.

Specific instructions for Experiment 3:

Experiment 3 is the same as experments 1 and 2 except now everyone in
a group receives 10 FRANCS times the number of spenders in the group.
Again, in addition, nonspenders also receive their token values. Remember
that everyone has been reassigned to a group with a new set of people. Here
is your new payoff table:
[HAND OUT NEW EARNINGS TABLE, AND COLLECT OLD ONE.
CHANGE BOARD. EXPLAIN.]

Suppose everyone else in your group spends 13 tokens in all and you spend
4 tokens and yvour token value was 12. You would earn 40 + 130 + 60 = 230
FRANCS. If you had spent 3 tokens you would have earned 30 + 130 + 72
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= 232 FRANCS. If you had spent 5 tokens you would have earned 50 + 130
+ 48 = 228 FRANCS.

Specific instructions for Experiment 4:

Experiment 4 is the same as experiment 3 except you have been regrouped

again.
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3.9 Tables
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Vv
Endowment 3 6 10 15
1 token 2 2 21 2
9 tokens 2 2 2 2

Table 3.1: Each cell has two 10-period sequences of a cohort with sixteen sub-
jects divided into four groups. The first sequence is called “inexperienced”;
the second is called “experienced.” Groups were shuffled between sequences.
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early late

inexp. | .22 |
(320) | (320)

exp. 12 .04
(320) | (320)

Table 3.2: Analysis of Splits. All data with endowment nine.
early late

inexp. | .36 .19
(182) | (176)

exp. 21 07
(180) | (170)

Table 3.3: Analysis of Splits. Endowment = 9, MRS > 1.
early late

inexp. | .029 | .021
(138) | (144)

exp. .021 | .0067
(140) | (150)

Table 3.4: Analysis of Splits. Endowment = 9, MRS < 1.
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MRS =1.33 MRS =3.33

periods .H6 .60
1-5 (120) (260)
periods .56 40
6-10 (120) (260)

Table 3.5: Splitting behavior in the Isaac and Walker data.



117

early late

inexp. | .03 .04
(262) | (285)

exp. .04 .04
(263) | (288)

Table 3.6: Spiteful behavior. Free-riding rates for subjects with MRS < 1
(Dominant Strategy to Contribute)
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early late

inexp. | .08 .04

(63) | (65)
exp. 0 .002
(65) | (64)

Table 3.7: Sacrifical behavior. Contribution Rates for Subjects with MRS >
4
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Probit Models
1 2 3 4 3

ones 1.778 1.504 1.612 1.801 1.850
(85.301) (57.596) (45.538) (34.252) (32.222)

MRS | -1.156 -0.916 -0.973 -1.013 -1.015
(-86.358) (-58.866) (-44.078) (-42.878) (-42.896)

exper.s -0.861 -0.858 -0.867 -0.868
(-25.252) (-25.084) (-25.235) (-25.233)

exper 0.983 0.980 0.992 0.994
(20.013)  (19.919) (20.075)  (20.089)

endow.s 0.104 0.108 0.107
(3.742) (3.888) (3.856)

endow -0.199 -0.207 -0.205
(-4.618)  (-4.761)  (-4.730)

Vv -0.015 -0.015
(-4.923)  (-4.993)

period -0.008
(-2.146)

lg Ikhd | -8912.7 8522.7 -8511.9 -8499.7 -8497.4
% pred. | 83.064 8‘3 160 83.238 83.429 83.607

Table 3.8: In each Probit Model, the dependent variable is the investment
decision. Equal weight has been given to both the one token treatment and to
the nine token treatment. Under each coefficient is the asymptotic t-statistic.
The log likelihood and the percentage correctly predicted are also given for
each model.
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Token Value (Cutpoint)

1234567 891011121314151617181920

§5533333220000112445

1
2
3
4
5
6
7
8
9
10
11

322211111111 00000245
54433333221112333334

211100000001333455255
432222110000144445565
222210001224445577T7T
3322411100222223585658T7
443333100122222334¢63F€6

i )

533333333333 11114444

33221000111 1358687FT7
33321110000344455657T7
55444432101112344444

12
13
14
15
16

6654433300001 1 122222

211100013445666T7T77T738
22110001111124566¢6¢67
32111112222344456677

Table 3.9: The raw number of classification errors for the first repetition of

treatment {6,1}



Token Value (Cutpoint)
1234567 8 91011121314151617181920

232323 5 5 5 5 5 310 8242423313140585867
2215171712161616161616161115151510234150
5445452718181818182727363636363636363636
189 99000000 0 92727273645454545
18 9 0 0 0 0 0 9 91818182754545454636363
18181818 9 0 0 0 91818363636454563636363
3131222213131310102222222219244141414159
1111 2 2 2 2 220293745454545455454627979
9 301212121212121212121212 924241941394653
10 27271818 9 0 0 0 9 9 9 92745454563636363
# 11 1818181818181814191914364545455454547272
12 9 9000 0 0 9182745454554637272727272
13 191910 1 1 11010 93535354444445353535353
14 44353535262617 9192820213030293737373746
15 22221313 4 4 413131313132034415050505059
16 3012122121211926262621233030283442425151

¢ 0 0w o s
O N O d W

‘able 3.10: The raw number of classification errors for the first repetition of
treatment {6,9}
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IW data Our data

MRS =1.33| .50 37
(240) (90)
MRS=333| .20 .05
(520) (56)

Table 3.11: Contribution rates. Comparison to IW data, when MRS = 1.33
and MRS = 3.33



3.10 Figures
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CUTPOINT ANALYSIS
All Data

Fraction of Decisions Misclassified
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Figure 3.1: Cutpoint analysis: aggregate level
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Classification Error Rates

Various Cutpoints, Endowment of 1
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Figure 3.2: Classification errors aggregated over all subjects shown for all
treatments with an endowment condition of one.
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Classification Error Rates
Various Cutpoints, Endowment of 9
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Figure 3.3: Classification errors aggregated over all subjects shown for all
treatments with an endowment condition of nine.
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Figure 3.4: The aggregate percentage of tokens invested in the public ex-
change vs. the marginal rate of substitution, plotted for both the endowment
of one and the endowment of nine conditions. V = 3.
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Figure 3.5: The aggregate percentage of tokens invested in the public ex-
change vs. the marginal rate of substitution, plotted for both the endowment
of one and the endowment of nine conditions. V = 6.
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Figure 3.6: The aggregate percentage of tokens invested in the public ex-
change vs. the marginal rate of substitution, plotted for both the endowment
of one and the endowment of nine conditions. V = 10.
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Rate of Investment in Public Exchange
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Figure 3.7: The aggregate percentage of tokens invested in the public ex-
change vs. the marginal rate of substitution, plotted for both the endowment
of one and the endowment of nine conditions. V = 10.
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Figure 3.8: The different response functions generated by Probit Model No.
3.
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Individual Cutpoints
All Data
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Figure 3.9: Estimated cutpoints measured as deviation from Nash play (in
token value units). All data.
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Individual Cutpoints
Experience Effects

Frequency (out of 128 observations)
1 =

0.9
0.8
Q.7 1
0.6
0.6
0.4
0.3
(3.2 7

0.1+

o+H+H8 =

I | [ I

8 =2 = 0 1 2 3 4 5 ) 7 8+
Cutpoint (deviation from Nash)
Experienced [__]Inexperienced

@m&mm@mﬁﬁ—m

Classification minimizing cutpoints

Figure 3.10: Estimated cutpoints measured as deviation from Nash play (in
token value units). Experience effects.
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Errors
All data
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Figure 3.11: Classification errors.
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Replication of IW
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Figure 3.12: Replication of homogeneous preference experiments with V' =

6,7 =20, X =9 (MRS= 3.3).
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Response Function
Reveal vs. No Reveal

Fraction of Tokens Contributed
1.2

C.8r

0.6

0.4

0.2

p
OlLIt'!llIltlll1llllll1IIIIlI]lllllllll Ladal b1 111 l./
| ! | | I I | IR AL [

0.0670.267 0.5 0.733 1 1.2 1.5 1833 2.5 3.3383 & 6.667

Marginal Rate of Substitution

—— No Reveal —— Reveal

Figure 3.13: Empirical response function with (reveal) and without (no re-
veal) publicly reported token values.



