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Abstract 

A new set of models for homogeneous, isotropic turbulence is considered in which the 

Navier-Stokes equations for incompressible fluid flow are generalized to a set of N 

coupled equations in N velocity fields. It is argued that in order to be useful these 

models must embody a new group of symmetries, and a general formalism is laid out 

for their construction. The work is motivated by similar techniques that have had ex­

traordinary success in improving the theoretical understanding of equilibrium phase 

transitions in condensed matter systems. The key result is that these models sim­

plify when N is large. The so-called spherical limit, N -t oo, can be solved exactly, 

yielding a closed pair of nonlinear integral equations for the response and correlation 

functions. These equations, known as Kraichnan's Direct Interaction Approximation 

(DIA) equations, are, for the first time, solved fully in the scale-invariant turbu­

lent regime, and the implications of these solutions for real turbulence (N = 1) are 

discussed. In particular, it is argued that previously applied renormalization group 

techniques, based on an expansion in the exponent, y, that characterizes the driving 

spectrum, are incorrect, and that the Kolmogorov exponent ( has a nontrivial depen­

dence on N, with ((N -t oo) = ~- This value is remarkably close to the experimental 

result, ( ~ i , which must therefore result from higher order corrections in powers of 

~. Prospects for calculating these corrections are briefly discussed: though daunting, 

such a calculations would, for the first time, provide a controlled perturbation expan­

sion for the Kolmogorov, and other, exponents. Our techniques may also be applied 



iv 

to other nonequilibrium dynamical problems, such as the KPZ equation for interface 

growth, and perhaps to turbulence in nonlinear wave systems. 
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Chapter 1 

Introduction 

1.1 The Energy Cascade 

Perhaps the most basic issue in the theory of homogeneous turbulence is the nature of 

the so-called Kolmogorov energy cascade[!]. To describe the problem in the simplest 

possible terms, consider a three-dimensional fluid that is being stirred on some length­

scale, 10 , much larger than any dissipative length-scale, 111 • The stirring force causes 

(kinetic) energy to be input into large-scale, long wavelength hydrodynamic flows. 

If the fluid equations of motion were linear, the energy would remain in these long 

wavelength modes for all time. However, the equations are, in fact, nonlinear, and 

energy will gradually be transferred to shorter and shorter wavelength modes via the 

interactions between them. Eventually this cascade process will input energy into 

small-scale modes, of size 111 , which are strongly damped by viscosity. At this point 

the energy is dissipated irreversibly, and finally appears as heat. A steady state is 

then achieved in which energy is dissipated at the same rate that it is generated, and 

there is a kind of momentum-space flux of energy from small wavevectors, k = 0(10
1 
), 
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to large wavevectors, k = 0(1;;1 ) . In the intermediate inertial range, 10
1 ~ k ~ 1;;1 , 

the equations of motion are essentially scale invariant, and one expects power-law 

behavior of the energy spectrum, 

(1.1) 

The exponent ( is called the Kolmogorov exponent, and, crudely, the question of its 

value is the fundamental issue in the theory of turbulence. 

To state the problem in more formal terms, consider the N avier-Stokes equations 

for a three-dimensional incompressible fluid: 

ov 1 2 
~ + >.o(v · V)v = --Vp + voV v + f; V · v = 0, 
u~ Po 

(1.2) 

where v(r, t) is the velocity field, p(r, t) is the pressure (determined completely by 

the incompressibility condition), f(r, t) is the external driving force (without loss of 

generality, we take V · f = 0), p0 is the mass density, v0 is the kinematic viscosity, 

and the coupling constant, >.0 , physically equal to unity, is included for convenience. 

Since we assume the stirring to be large-scale, the Fourier amplitudes, f(k, w), of 

the driving force vanish rapidly for k ~ m0 = 101
. In the absence of the nonlinear 

convective term, >.0 ( v · V)v, we would have 

v(k,w) = f(k,w)j(iw + vok2
), (1.3) 
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and only those velocity Fourier modes, v(k, w), for which k < m 0 would be substan-
"' 

tially excited, and no small-scale motions would result. However, the nonlinearity 

leads to interactions between modes, and energy will gradually be transferred to 

shorter wavelengths. 

We may estimate the lengthscale, lv, at which the viscosity becomes important 

using dimensional analysis[l]. If energy is input into the system at a rate € per unit 

mass, and is more-or-less conserved in the inertial range, then it must be dissipated 

at the same rate at the length scale lv. The only viscosity dependent quantity (with 

the correct dimensions of length) intrinsic to the dissipation process is 

(1.4) 

A well defined inertial range clearly requires some combination of small viscosity, 

large energy input, and large stirring length. 

The energy spectrum is obtained from the velocity-velocity correlation function, 

1 
U(r- r', t- t') = 2(v(r, t) · v(r', t')), (1.5) 

with Fourier transform 

(1.6) 
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The meaning of the average, ( · ) , will be made clear below. The (angular integrated) 

energy spectrum is then defined by 

E(k) = Bdkd-ljoo dw
2 

U(k,w), 
-co 1r 

(1.7) 

where the angular factor Bd = ( d- 1 )1rtd jr( ~d) is chosen so that E = J0
00 dkE( k) = 

~(v2) is the total energy per unit mass, and for later convenience we have kept the 

spatial dimension, d, as a free parameter. In the inertial range, the power law form 

(1.1) is expected to hold. 

1.2 The Kolmogorov Argument 

In 1941, Kolmogorov[1] presented a simple argument for the value of(. The argu-

ment was based on two fundamental assumptions. First, the cascade process was 

assumed to be local: in a sense, to be made precise later, the fluid equations lead 

mainly to exchanges of energy between modes with wavenumbers of the same order 

of magnitude. This allows one to define a momentum-space energy flux, which is the 

rate at which energy is transferred "through" wavevectors of magnitude k . Locality 

postulates that this flux is independent of k in the inertial range, and must therefore 

be precisely equal to €. Second, the energy spectrum was assumed to be independent 

of the length scales 10 and lv. This turns out to be the more questionable assump-

tion. It basically postulates that as the stirring length, lo, diverges, with € fixed, the 
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energy spectrum at any given fixed k in the inertial range remains unchanged. The 

larger scale motions therefore do not affect the details of the local cascade process. 

Through simple dimensional analysis these two assumptions together determine E(k ): 

the unique combination of l, and k that yields a quantity with the same dimensions 

as E(k) is 

(1.8) 

independently of the dimension, d. The dimensionless Kolmogorov constant, CK, is 

postulated to be a universal number (for given d). 

There seem to be two schools of thought on the validity of (1.8). The Kolmogorov 

prediction, and its derivation, would probably not receive the attention it does today 

if it did not fit the experimental data so well[2]. One school takes this agreement as 

strong evidence that ( = ~ is exact, and this has led to numerous attempts, based 

to varying degrees on the actual fluid equations themselves[3,4], to put the result 

(I. 7) on a firmer theoretical footing. Unfortunately, all of these derivations contain 

uncontrolled approximations, and the inherent danger is that they may all simply be 

more complicated rephrasings of Kolmogorov's original argument. 

The second school (which includes the present authors) takes the view that turbu-

lence is a strongly interacting, nonlinear problem, and that it would be very surprising 

(if not disappointing!) if the answer were indeed so simple. Given the failure of all 

attempts to date to prove its exactness, the proximity of experimental reality to the 

~-law should tentatively be viewed as coincidental[5], and some systematic means 
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sought to distinguish ( from ~. 

It is simple enough to parameterize such a distinction. If we relax the condition 

that E(k) be independent of the outer scale, 10 , the energy spectrum may then depend 

on the dimensionless combination klo = k/mo, and equation (1.8) may be generalized 

to 

(1.9) 

and thus ( = ~+~ . This definition of the exponent J.l seems standard in the literature, 

originating from the Kolmogorov-Obukhov-Yaglom log-normal theory[2], in which J.l 

is proportional to the variance of %kln[E(k)], where E(k) is the (fluctuating) energy flux 

at scale k (no longer equal to the constant €). Experimentally one finds J.l ~ 0.2-0.5. 

The exponent J.l may also be interpreted in terms of the fractal codimension, d- D 1 , 

of the dissipation region via J.l = 3( d - D 1). 

1.3 Renormalization Group Approach 

The most modern approach to the theory of turbulence is based on renormalization 

group ideas[4]. The renormalization group method has proven extraordinarily success­

ful in the treatment of strongly interacting, highly nonlinear problems in equilibrium 

statistical mechanics. One might hope that the method would be equally successful 

in treating the problem of turbulence, and hence resolve the differences between the 

two schools of thought. This hope turns out to be unfounded, as we shall detail 
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below. However, the method does yield exact results for related problems, which can 

then serve as a basis for comparison with appropriate limiting cases of a more general 

theory. For this reason we summarize the renormalization group results in fair detail. 

In applying the renormalization group method to turbulence, one begins by mod­

elling the stirring force, f, as a stochastic variable, usually taken to be Gaussian with 

zero mean and Fourier transformed variance 

(/i(k, w)];(k', w')) = D(k, w)rii(k)6(k + k')6(w + w'), (1.10) 

where rii(k) = 6ii - kiki/k2 is the transverse projection operator arising from the 

choice VT · f = 0. The 6-functions reflect the basic assumption that the turbulence 

is homogeneous. Within this model, true turbulence is obtained when the driving 

spectrum, D(k,w), vanishes rapidly for k ~ m 0 . One may well question whether 

this model yields the same Kolmogorov spectrum as one with a more deterministic 

stirring force, i.e., whether or not they lie in the same "universality class." Clearly for 

a very weak deterministic force, the flows will also be deterministic. However, as the 

strength of the forcing grows, the onset of turbulence is expected to occur through 

various routes to temporal chaos. Eventually (through as yet ill-understood means), 

as the driving strength increases, flows that are both temporally and spatially chaotic 

are generated[6]. Once the flows are chaotic, the behavior in the inertial range is 

expected to be insensitive to the detailed structure of the forcing, and the stochastic 

model is probably appropriate. This question will not be addressed any further in 
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this work; from now on we simply work with the model (1.10). The meaning of the 

average in (1.5) is now clear: the velocity field is to be averaged over all realizations 

of the stochastic driving force. 

In addition to the velocity correlator, U(k, w ), there is another crucial two-point 

correlation function, namely the response function, G(k, w), which measures the av-

erage response of the velocity field to an infinitesimal forcing field: 

( b~;(k,w) ) = G(k,w)f;j(k)8(k + k')8(w + w'), 
8/j(k',w') 

(1.11) 

and with the Gaussian stochastic driving, (1.10), one has the more explicit relation 

(iJ;(k, w)/j(k', w')) = G(k, w)D(k, w)f;j(k)8(k + k')8(w + w'). (1.12) 

The response function is causal, so that in the time domain G(k, t) = 0 for t < 0, 

while 

G(k, t-+ o+) = 1 for all k. (1.13) 

The renormalization group method is based on a form of the driving spectrum that 

has completely opposite characteristics from that required for turbulence. Specifically, 

the driving spectrum is assumed to grow stronger as k increases: 

Dok4-d 
D(k,w) = D(k) = 

2 
1 , 

(k2 + mo)2Y 
{1.14) 
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where the parameter y is assumed to be either negative, or positive but small. 

When y = 2 - d, D( k) ~ D 0k 2 and the model is that of a thermally driven fluid 

(for this case it is safe to take mo = 0)[4]. The fluctuation-dissipation theorem then 

requires that Do= kBTvo, and the relation U(k,w) = (2D0 fv0 )ReG(k,w) holds. The 

model was originally proposed by Forster, Nelson, and Stephen[4a] in order to study 

the effects of small-scale thermal fluctuations on large-scale hydrodynamics. By using 

a momentum-shell renormalization group technique, in which short length-scale fluc­

tuations are successively integrated out, these authors were able to derive recursion 

relations for the length-scale dependent effective viscosity, v(l), and the effective non­

linearity coefficient, ~(l), where ~(l) = ..\(l)[D(l)fv(l)3 Jll2 and lis the renormalization 

group flow parameter. For d > 2 they showed that lim/-+oo v(l) = vn is finite, while 

lim/-+oo ~(l) = 0, indicating that linear hydrodynamics, with a renormalized (eddy) 

viscosity, vn, appropriately describes large-scale flows. Generally, vn is larger than 

v0 (and is, in fact, positive even when v0 = 0), indicating enhanced diffusive trans­

port by small-scale eddies. The energy spectrum obeys the equipartition principle, 

E(k) "'kd-1• In contrast, ford< 2 nontrivial large-scale behavior results: In an ex­

pansion in y = 2- d, ~(l) flows to a finite fixed point value, ~R = O(y). However, the 

energy spectrum still obeys E(k) "' kd- 1 , a consequence of the fluctuation-dissipation 

theorem. 

These authors also considered the case y = 4- d, and hence D(k) ~ Do, in 

which all wavenumbers are driven equally ("uniform" driving). In this case, linear 
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hydrodynamics is valid on large scales only when d > 4. Once more, when y = 4-d > 

0, 5..(1) flows to a nontrivial fixed-point value, >..R = O(y), and E(k) "'k!(2d-5) . Note 

that in both cases the borderline between the two different kinds of behavior occurs 

at y = 0. 

A short time later, DeDominicis and Martin[4b] formalized and generalized these 

results using field-theoretic methods. From Ward identities, and the general form 

(1.14) for the driving spectrum, they showed that for y < 0 linear hydrodynamics 

results on large scales, while for y > 0, >..R = O(y) is finite. Furthermore, they showed 

that to all orders in y (see Appendix A for a discussion), the energy spectrum takes 

the power-law form 

(1.15) 

with no further explicit dimensionality dependence in (. 

The renormalization group picture implies much more than power-law energy 

spectra. The existence of fixed points implies scaling of the correlation functions. 

Thus, for example, in the inertial range the correlation and response functions are 

predicted to take the forms 

(1.16) 

(1.17) 

where the exponents ~ and z, and the scaling fun ctions g( s) and u ( s) are universal, 
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while A1, A2 and il are non universal scale factors. The dynamical exponent z provides 

a connection between length-scales and time-scales. The fact that it appears also in 

the prefactor of (1.16) is a consequence of the normalization (1.13). DeDominicis and 

Martin show that, again to all orders in y, the exponents are given by 

1 1 
z = 2 - 3y; ~ = d + 3y (y > 0). (1.18) 

Notice that this implies the "hyperscaling'' relation, 

~ + z = d + 2, (1.19) 

which will be significant later on. The relation (1. 7) gives E( k) ~ Bdilovk-((D.,z), 

where 

((~, z) = ~- z- d + 1 (1.20) 

and flo = f::'oo g; u( s ). Together with (1.18) this immediately yields the result (1.15). 

It should be emphasized that (1.20) is a general scaling relation, whereas (1.18) and 

(1.19) are valid only within they-expansion. 

Now, what connection, if any, do these results have with turbulence? Clearly, what 

we will call the "short-ranged" driving problem, in which D( k) effectively vanishes 

for k ;:::: m0 , corresponds, in some sense, to the limit y -+ oo of the "long-range" 

driving problem. If we blindly take this limit in (1.15), ( diverges to plus infinity, 

which is clearly nonsensical. This is our first hint that the y-expansion must have a 
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finite radius of convergence, y0 . 

From theories of critical phenomena one knows that "input" exponents, like y, 

need not actually be infinite to recover "short-range" behavior. Rather, for sufficiently 

large values, y > Ye , one expects long-range driving, (1.14), to become technically 

irrelevant, and give rise only to lower-order corrections to the leading short-range 

(i.e., turbulent) behavior. In the simplest, most optimistic scenario, the value of y 

at which this happens is precisely the radius of convergence of the expansion around 

y = 0, i.e., Ye = Yo · In the renormalization group picture, this corresponds to a 

continuous coalescence of the long-range fixed point with the short-range one, and 

the exponents correspondingly go continuously over to their short-range values. We 

would conclude, in this case, that ( = ~Ye - 1, z = 2 -lYe, and~= d- 2 +lYe· 

Unfortunately, within they-expansion there is no direct way of ascertaining either 

y0 or Ye· DeDominicis and Martin(4b] have shown that for y > 4 there are an infinite 

number of relevant Galilean invariant perturbations to the linear hydrodynamical 

fixed point. This says nothing about the stability of the power-law driven fixed point. 

In particular, it neither establishes that Yo = 4, nor that Yo = Ye, though a great 

deal of work has been based on precisely these assumptions(7] . What makes them so 

compelling is that, as first noticed by DeDominicis and Martin(4], they yield precisely 

the Kolmogorov result for the energy spectrum, ( = ~ · 
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1.4 Analogy to Spin Models with Long-range 

Interactions 

In order to place the renormalization group results in a clearer context, it is use-

ful to consider the following analogy[8] . Consider the standard ferromagnetic phase 

transition in an Ising model with long-range interactions. The Hamiltonian is 

(1.21) 

where s; = ±1 is the Ising spin at d-dimensional lattice site i , and the exchange 

constants have the power-law behavior 

J - J, IR ~-(d+u) . -1- . J, 0 
ij - 0 ij ' z -r J' 0 > ' (1.22) 

in contrast to those for the standard Ising model which vanish when i and j are not 

nearest neighbors. In Figure 1-1 we show the boundaries between various types of 

critical behavior in the d-a plane. For a < ~d or d > 4 a Gaussian model controls 

the critical behavior. For sufficiently large a and d < 4 the usual short-range critical 

behavior, characteristic of the nearest neighbor Ising model, results. For d < 4 

there is an intermediate range of a for which nontrivial long-range critical behavior 

results. We make an analogy between Gaussian behavior in the spin model, and 

linear hydrodynamic behavior in the fluid model; between short-range Ising critical 
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behavior and real turbulence; and between nontrivial long-range critical behavior and 

the long-range driven fluid. Analogous to the y-expansion in the fluid problem is the 

Eu-expansion[9], with Eu = 2a - d, which penetrates upwards into the long-range 

critical region from the line a = ~d. In addition, an analysis equivalent to that of 

DeDominicis and Martin[4b] shows that for a > d, there are infinitely many relevant 

perturbations to the long-range Gaussian fixed point (corresponding to multicritical 

behavior of all orders). It is clear from Figure 1-1 that this line has no significance 

whatsoever so long as d > 2. 

In the spin problem one has the advantage that the short-range critical behavior 

may be accessed directly through the usual E-expansion[10] about d = 4. Thus one 

can check directly the relevance of long-range interactions at the short-range Ising 

fixed point. This, as well as more general arguments, allow one to fix precisely 

the boundary between short-range and long-range critical behavior[ll], which occurs 

when a= 2- flo, where flo( d) is the short-range value of the critical decay exponent, 

fl. In addition, the long-range value of f1 is given exactly by 'f/LR = 2- a, much like 

the exact results {1.15) and {1.18) for the fluid problem. Note that this immediately 

implies continuity of rJ across the boundary. 

We may now address, by analogy, the question of the position of the equivalent 

boundary in the fluid problem. There is no information in the Eo--expansion about the 

value of TJo, and therefore no hint that the value a = 2- flo is special. Only by locating 

both fixed points, and seeing when they merge, or equivalently, seeing when the long-
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range fixed point becomes unstable to the short-range one, can this boundary be 

located. Naively one might have expected this boundary to occur at u = 2, for this is 

when the k2 and ku terms in the Fourier transform, J(k) = }0 + J2k2 +Juku+ O(k4 ), 

of J;i exchange dominance as k --+ 0. For subtle reasons, involving the nontrivial 

rescaling of the k2 term under renormalization[ll], this expectation is false. There 

is no reason not to have similar doubts about the Yo = Ye = 4 conjecture in the 

turbulence problem. 

It is basically the existence of the point A in Figure 1-1, near which all of the four 

possible fixed points are simultaneously perturbatively accessible (both E and Eu are 

small) that allows one to infer the detailed characteristics of the short-range-long­

range boundary. The apparent absence of such a point in the d-y plane for fluids is 

what leads to the failure of the renormalization group method in turbulence. We are 

therefore forced to seek a new approach in order to make progress on this problem. 

1.5 The ~-expansion and the Spherical Limit 

In the theory of equilibrium phase transitions there are actually two analytic tech­

niques that have provided many of the fundamental insights into the nature of critical 

phenomena: the epsilon expansion[9,10] and the ~-expansion[12]. The first, as we 

have seen, corresponds most closely to the y-expansion, and is based on the fact that 

the critical behavior is simple in sufficiently high dimension, d > de. One can then 

perform a systematic expansion in E = de - d when d < de (here de = 4 for the 
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short-range Ising model, and de= 2u for the long-range Ising model with u < 2). 

The second technique involves analytically continuing the problem to one with a 

larger number of degrees of freedom, N. Thus the Ising Hamiltonian is generalized to 

the O(N) model, H(N) = -~ Liij JijSi · Sj, where si is anN-component unit vector, 

lsd = 1. If taken in an appropriate fashion, the so-called spherical limit, N -+ oo, is 

often analytically tractable, and a systematic expansion in 1 may be developed for 

the exponents[12). The epsilon expansion has generally proven the more definitive of 

the two in understanding critical phenomena, mainly because it transpires that the 

dimensionality of interest, namely d = 3, is usually, in some sense, closer to de = 4 

than are physical values of N , say N = 1, 2, or 3, to N = oo. However, the 1-

expansion has the advantage that the dimensionality, d, is a completely free variable, 

and is therefore useful in the study of physics in lower dimensions where E is not 

small. 

In turbulence, as described, the analogue of the epsilon expansion is uncontrolled 

in the region of interest. We seek, therefore, an approach in which the variable y 

[or, more generally, the entire driving function D(k,w)), like the dimensionality, d, in 

the spin problem, may be taken as a free parameter. This thesis, then, is concerned 

with the construction of a 1-expansion for turbulence[13). Our primary aim is to 

obtain an analytically tractable spherical limit and then to elucidate the dependence 

of the Kolmogorov spectrum, (1.1), on y. In particular, we wish to understand the 

analyticity properties of ((y), and how true turbulence is recovered in the limit of 
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large y . 

The essential results of our study are summarized below, and in Figures 1-2 and 

1-3. The spherical limit yields a pair of coupled, nonlinear integral equations 

for the functions G(k,w) and U(k,w) [see equations (3.3) and (3.4) in Chapter 3] 

which turn out to be precisely Kraichnan's Direct Interaction Approximation (DIA) 

equations[14]. Although they have been around for nearly 35 years, these equations 

have never been fully solved. Kraichnan[14], through a series of scaling arguments, 

concluded that 

3 3 
z = 1, ~ = d + 2, and ( = 2 (1.23) 

for short-range driving. We shall show that these results are, in fact, correct and 

present complete solutions for the scaling functions g( s) and u( s) (see Chapter 4). 

Note that these exponent values violate the hyperscaling relation (1.19) and therefore 

do not correspond to any value of y. 

How do these results come about? If one now examines the solutions to the 

DIA equations in the presence of long-range driving, one discovers some amazing 

things. Firstly, so long as the integrals converge in the scaling limit, m 0 -+ 0, one 

finds precisely the hyperscaling relation (1.19). If, furthermore, it is assumed that 

D(k) controls the scaling, then (1.18) and (1.15) hold and the y-expansion results 

are reproduced exactly. In fact, it can be shown that the DIA equations are an 

exact resummation of the O(y) renormalization group recursion relations. The limit 

N -+ oo is therefore exact to O(y) . However, the DIA equations also extend these 
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recurswn relations to arbitrary driving, D(k, w), and allow one to see where the 

renormalization group results break down. Specifically, when y ~ 3 the DIA integrals 

no longer converge, and the limit mo -+ 0 becomes subtle. By careful asymptotic 

analysis one can show that the dynamical exponent sticks at z = 1, and, again, so 

long as the driving still controls the scaling, one finds 

y-3 y-3 
~ = d + 1 + -

2
- and ( = 1 + -

2
-. ( 1.24) 

Finally, to connect these with the Kraichnan ( = ~ result, one must determine the 

value of y at which the driving ceases to control the scaling. This occurs at y = 4: for 

y > 4 long-range driving becomes technically irrelevant, and except for lower order 

corrections to scaling, is equivalent to the real turbulence problem. For y > 4 all 

exponents then stick at values determined by (1.24) with y = 4, i.e., precisely the 

values (1.23) predicted by Kraichnan[14). 

In Firgure 1-2 these results for the exponents in the spherical limit are contrasted 

with those obtained from the Yo = Yc = 4 conjecture. In Firgure 1-3 we show a plot 

analogous to that for the Ising model, Firgure 1-1. Our basic prediction is then that 

a new type of "critical behavior" intervenes between the boundary of convergence for 

the y-expansion, y0 = 3 (which we believe to be exact: see below), and the onset 

of true turbulence at Yc = 4 (which will likely have corrections for finite N). Thus, 

although real turbulence indeed occurs for y > Yc = 4, the different behavior in the 

intermediate interval, 3 < y < 4, changes completely the values of the turbulent 
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exponents. In renormalization group language, a new stable fixed point bifurcates 

away from the now unstable long-range driving fixed point, and only later coalesces 

with the true turbulence fixed point. This scenario is clearly even more involved 

than that for the Ising model, where the analogues, uo and Uc, of y0 and Yc, though 

nontrivial, are at least equal, uo = Uc = 2- TJO· 

The physics behind they= 3 borderline is, in fact, well known, corresponding to 

the oft-quoted effects of sweeping of smaller eddies by larger ones. The dynamical 

exponent value z = 1 then confirms the Taylor "frozen in" hypothesis: small-scale 

turbulent structures are swept past a fixed observer at a speed which fluctuates, but 

remains more-or-less constant in order of magnitude. This speed basically determines 

the shortest time-scale in the problem, and the small scale structures change very lit­

tle in the time it takes them to be swept by. Thus, measuring the temporal velocity 

fluctuations at a single point is nearly equivalent to measuring spatial velocity fluctua­

tions along a one-dimensional line at a single time. Therefore, inertial range frequency 

spectra and wavenumber spectra should be the same up to a rescaling factor which 

depends on the large-scale cutoff, mo. The fact that the spherical model equations 

reflect this physics is heartening and leads us to believe that y0 = 3 and z = 1 are 

exact results. 

In a nutshell, it is attempts to remove the boundary at y = 3 that motivates many 

of the attempts to show that the Kolmogorov ~-law is exact (see especially Ref. 15). 

At the level of the DIA equations, these efforts focus on producing, in some natural 
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way, extra terms which cancel the divergent parts of the integrals when y 2 3. One 

problem with this is that if these same terms are produced when y < 3, there will be 

large-k divergences in the region described (presumably correctly) by the y-expansion. 

The theory will then fail to encompass the known exact results. 

The second problem is connected with the entire philosophy of the Iarge-N ap­

proach. The limit N __. oo produces an exactly soluble model. Any alterations in 

this model can come only from finite-N corrections; the DIA equations, not their 

subtracted versions, are fundamental. The differences between the value ( = ~ at 

N __. oo and the experimental result ( ~ ~ at N = 1 are now accounted for in a very 

natural way: we propose that, just as for the O(N) spin model, the exponents~ and 

((and most likely the boundary Yc) vary continuously with N, interpolating between 

((oo) = ~ and ((1) ~ ~- The fact that ((oo) -::/= ~ is strong evidence that ((1) is a 

nontrivial exponent, not obtainable through any simple argument. A real test of our 

approach would be to compute the first correction, in powers of ~, to (( oo ). As will 

be seen in later chapters, this is a daunting task, but seems to be a necessary step in 

order to confirm our ideas. 

We therefore view the DIA ~-result not as a problem to be fixed, but as an 

amazingly accurate zeroth order result, differing from the experimental result by only 

10%. Large-N expansions for spin models seldom do this well! 
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1.6 Outline 

The remainder of this thesis is organized as follows: In Chapter 2 we generalize the 

incompressible Navier-Stokes equations, (1.2), to N equations for N d-dimensional 

velocity fields. In Chapter 3 we obtain the limit N --t oo and derive the spheri­

cal/DIA equations. In Chapter 4 we solve these equations and derive the results 

shown in Figures 1-2 and 1-3. Finally in Chapter 5 we summarize and describe 

work for the future. Appendix A is devoted to the derivation of the Ward iden­

tity. In Appendix B we describe a time-independent toy model whose large-N limit 

yields frequency-independent DIA-type equations that can be solved analytically us­

ing power laws. The solution to these toy equations contain all the structure of their 

frequency-dependent counterparts, and provide some further insight into the workings 

of the full DIA equations. Appendix C outlines the numerical work that is involved 

in Chapter 4. In Appendix D, we describe one of our attempts at generalizing our 

large-N model. Although this attempt is fruitless, it provides another example for 

the application of the formalism developed in Chapter 3. 
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Chapter 2 

Generalization to N velocity fields 

2.1 Analogy to Spin Models 

The most straightforward generalization of the Navier-Stokes equations, (1.2), to N 

velocity fields, v 1, l = 1, ... , N, is 

where f 1 are independent random forces. The only question one must address is that 

.... 
of the choice of the tensor AN (for later convenience, a distinction, to be defined 

below, has been made between upper and lower latin indices). 

Here we again appeal to the spin model analogy. The generalization of the Ising 

Hamiltonian, (1.21), toN-component spins, s; = (s;,1 , ... , s;,N ), is 

H(N) = -~"""""' 1·· ~ C1
ms·JS. ls,·l2 = N 

2 ~ tJ L....., N t, J,m' 
•"1-J i,m=l 

(2.2) 

.... 
where one must choose an appropriate N x N positive definite matrix C N (the normal-
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ization lsd2 = N is chosen by convention, and yields the correct large- and small-N 

-limits) . Since C N is symmetric one may perform a rotation in spin-space to diago-

nalize it, obtaining 

H(N) = -~"" J .. ~ >..1s · tS · t ls·l2 - N 
2 L...J I) L...J 1, ], l I - l 

i:Fj 1=1 
(2.3) 

where)./ are the eigenvalues of C N· Clearly, any state with long-range magnetic order 

will energetically prefer to align along the component of s with largest eigenvalue, say 

>..1 . If )..1 is unique one can, in fact, show that the critical behavior is completely 

dominated by this "easy axis," [16] and lies in the same universality class as that 

of the Ising model, (1.21 ). We have therefore gained nothing by giving si extra 

components. Only if )..1 is not unique does the critical behavior change. Thus if 

)..1 = )..2 = ... = )..M, M $ N , are the largest eigenvalues, then the model has O(M) 

symmetry and the critical behavior depends on the value of M. Again, however, the 

N - M components with smaller eigenvalues are redundant and do not effect the 

asymptotic critical behavior. Clearly, then, in order to obtain the simplest possible 

model, one should take M = N (i.e., C~m = btm) and 

H (N)- -~"" J· ·S · . S · - L...J 1) I )" 2 •..J.• 
1-r-J 

(2.4) 

This is the so-called N-vector model. Special cases are N = 1, Ising; N = 2, XY; and 

N = 3, Heisenberg. The crucial property of H(N) is its invariance under the group of 
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rotations, O(N), in spin space, and this is what allows the universality class of the 

transition to vary with N[17]. 

By analogy, if we seek a generalized model for turbulence in which Kolmogorov-

type exponents depend continuously on N, it seems likely that one must build into the 

equations an extra group of symmetries. Thus, by analogy with the set of rotations 

N ..... T ..... 

s~,l = L R~(g)si,m , g E O(N), RNRN= IN (2.5) 
m=l 

(here IN is the N x N identity matrix) which leave H(N) invariant, we seek an N-

dimensional irreducible representation of a group (technically, a simple compact Lie 

group), G, of transformations along with an appropriate tensor, AN, such that the 

transformation 
N 

v'1 = L D~(g)vm, g E G, (2.6) 
m=l 

leaves the equations of motion (2.1) invariant. Since the group is taken to be compact, 

-t-
the representation may always be taken as unitary, DNDN= IN. We assume, of 

course, that the pressures, p1, and the forces, f 1
, also transform under (2.6). We leave 

open the possibility that the velocity fields are complex (their real and imaginary parts 

then being the physical variables). The distinction between upper and lower indices 

is then made: v 1 transforms via the inverse (or complex conjugate) representation, 

N N ..... 

V~ = L VmD';;1(g-1) = L Vm[DN (g)-ljm1. (2.7) 
m=l m=l 
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If the representation is unitary (which we assume unless stated otherwise), then 

v1 = v 1*, and DJ/(g-1 ) = D~(g)*[18]. If the representation is orthogonal (and 

hence all quantities are real) there is no distinction between upper and lower indices. 

If the representation is not unitary, it differs from unitary only by a similarity trans-

formation, and v1 is then an appropriate linear combination of the vm•. Substituting 

(2.6) and (2. 7) into (2.1) we obtain then the condition 

A~m'n' = L D~(g)D!J'm(g)Dr;;n(g)A~n, 'Vg E G, (2.8) 
l,m,n 

i.e., that AN be invariant under the group of transformations G. The questions to 

be addressed then, are, given a group G, which irreducible representation should we 

choose, and given a representation how do we construct appropriate cubic invariants, 

2.2 Diagramatic Formalism 

Before addressing these questions it is useful to outline the perturbation theoretic 

formalism for the Navier-Stokes equations, including its generalization to N > 1. 

The formalism was first developed by Martin, Siggia, and Rose[19], extending the 

earlier Wyld diagrammatic theory(20], and was used by DeDominicis and Martin(4b] 

in their renormalization group calculations. 

First we include the incompressibility condition, V · v = 0, explicitly by realizing 



29 

that the gradient of the pressure in (1.2) simply cancels the longitudinal part of the 

nonlinear term. Thus if we define the k-space transverse projection operator, 

(2.9) 

and let 7a.a(r) be its inverse Fourier transform, then the Navier-Stokes equations may 

be written 

av - 2 8t + .Ao 7 ·(v · V)v = v0 V v + f 

where we have used the shorthand notation 

['T ·(v · V )v]a(r) = L j d3r'7a.a(r- r')v(r') · Vva(r'). 
,8 

Let us define the "Navier-Stokes operator" 

av - 2 N(r,t) = at+ .A0 7 ·(v · V)v -v0V v; 

(2.10) 

(2.11) 

then we may formally compute the statistical average of any functional F[v] of the 

velocity field via 

(F[v]) = j Dv F[v]J[v](8[N[v] - f]) (2.12) 

where J Dv is a functional integral over all incompressible velocity fields, and is 
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defined by an appropriate continuum limit, 

M 

J Dv- lim II j ddv(r;, t;)6("V · v(r;, t;)) 
M->oo i=l 

(2.13) 

where {r;, ti}f!1 runs over a discrete space-time grid, and "V · v(r;, t;) is the obvious 

discretized divergence at lattice point (r;, t;). Similarly, 

M 

6[N[v] - f] = lim II 6(N(r;, t;)- f(r;, t;)) 
M->oo i=l 

(2.14) 

enforces the Navier-Stokes equations at all space-time points. The Jacobian, J[v], is 

given by 

with the operator 

J[v] = det [ 6N(r, t)] ' 
6v(r',t') 

(2.15) 

(2.16) 

inside the determinant, and is precisely what is needed to convert 6[v - N-1 [f)] to 

6[N[v] - f] . 

We now represent the 6-function using the identity 6(x) = f~oo ~~e-iwx for each 
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space-time point, so that 

(2.17) 

where w(r, t) is also incompressible, i.e., V · w = 0. It can be shown that causality 

(i.e., the fact that bN(r, t)/bv(r', t') vanishes when t' > t) implies that the Jacobian 

term reduces to[21] 

(2.18) 

Rotation invariance implies that C 2 must vanish, and the Jacobian term is therefore 

a constant, independent of the velocity field. 

Performing the average over the Gaussian random field f(r, t), we finally arrive at 

(F[v]) = ~I Dv I DwF[v]e.C[v,w] (2.19) 

where the Lagrangian is 

C[v, w] - -i L I ddr I dt[wo(Ot - Vo V 2 )v13bo/3 + AoW0 7"0 f3(V • V)v13] 
o,/3 

~ L I ddr I dt I ddr' I dt'wo(r, t)Dof3(r- r', t- t')wf3(r', t'), 
o,{3 

(2.20) 



32 

with Do:f'(r- r',t- t') = Uo:(r,t)fl'(r',t')) [see (1.10)], and Z =I Dv I Dwe.C[v,w) 

ensures correct normalization by cancelling out the (formally divergent) constant C1 . 

One may now extend, in the obvious way, the quantities being averaged to functionals 

of both w and v: 

(F[v, w]) = ~I Dv I DwF[v, w]e.C[v,w) _ (2.21) 

This is important as it turns out that response functions may be generated in this 

way[19]. In particular, for isotropic driving, (1.10), we have 

(iwo:(k, w)v11(k', w')) = G(k, w)fo:11(k)8(k + k')8(w + w') (2.22) 

[compare (1.11) and (1.12)] while, as before, 

(vo:(k, w)v11 (k', w')) = U(k, w)fo:11(k)8(k + k')8(w + w'), (2.23) 

where (1.5) is obtained by realizing that tr[f(k)] = 2. In Fourier space the Lagrangian . 

may be written £ = £o + .Ao£1, with 

£o[v, w] = i Lf-i( -iw + vok2)w( -k, -w). v(k,w)- ~lw(k,w)l2 D(k,w)] 

(2.25) 

£1[v , w]=-~ [11 r L Po:/1-y(k)wo:(-k,-w)vl'(k-q,w-n)v-y(q, n) 
2 A w q Jn o:,/1,-y 
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(2.26) 

where Pa/3-y(k) = f 0 13(k)k-y + fa-y(k)k/3, and we have used the short hand notation 

Jk = J (g:~a, L = J t, etc. Recalling that k. v(k,w) = k. w(k,w) = 0, we easily 

compute the zeroth-order (>.0 = 0) forms 

Go(k,w) -
1 

(2.27) 

Uo(k,w) - D(k, w)IGo(k, w)l2
. (2.28) 

The usual diagrammatic perturbation theory[19] in >.0 results by expanding e'~0 .c1 in 

a Taylor series and performing the averages term by term. Representing the resulting 

integrals by Feynman diagrams, the zeroth order correlation function, U0 , becomes a 

straight line, the zeroth order response function, G0 , becomes a combination straight-

wavy line. Vertices have three legs (one wavy one and two straight ones) and a 

momentum-conserving 6-function, along with a factor ~>.oPa/3-y(k) (where k is the 

incoming momentum on the wavy leg) accompanies each one (see Figure 2-1). 

Generalizing the formalism to N velocity fields is straightforward. Introducing 

incompressible fields w 1 and w 1, l = 1, ... , N which bear the same relationship to 

each other as v 1 and v1, and assuming 

(f~(k, w)J13,m(k',w')) = D(k,w)fa,/3(k)o(k + k')o(w + w')o!n 
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k,ro 

'Y 

(c) 

Figure 2-1: {a} G0 (k,w) fo:f3 , vo: is represented by the straight line, iw13 is represented 

by the wavy line. (b) Uo(k, w) fo:/3 (c) ~>-oPo:/3-y(k) 
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one finds a Lagrangian ,C(N) = .C~N) + .X0.C~N) , with 

N . 

- L r 1 { __ 2z [( -iw + Vok2 )wt( -k, -w). v1(k,w) + c.c.J 
1=1 A w 

~D(k,w)w1 ( -k, -w) · w 1(k,w)} 

__ 4i L L 111 r [A~npo~-r(k)wo,i( -k, -w) 
l,m,n o,~.-r k w q Jn 

X Vp,m(q- k,w- f2)v-r,n (q, f2) + c.c.J. 

(2.29) 

(2.30) 

The fields w 1 are assumed to transform in precisely the same way, (2.6), as the fields 

v 1. The properties (2.7) and (2.8) then immediately imply that both .C~N) and .C~N) 

are invariant under the group, G N, of transformations. When .X0 = 0 we have 

(iw~(k,w)v~,m (k',w')) - G(k,w)fop(k)6!n6(k + k')6(w + w') (2.31) 

(v~(k,w)v~,m(k',w')) - G(k,w)fop(k)6!n6(k + k')6(w + w') (2.32) 

with G0 and 00 given by (2.27) and (2.28). 

Perturbation theory in .Xo.ClN) is also straightforward. The only changes are that 

one associates an extra index, l, with each line in a diagram, and the vertices are 

convention that an arrow coming into a vertex carries an upper index, while an arrow 

going out of a vertex carries a lower index (see Figure 2-2). 
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2.3 Symmetries of AN 

In order to limit our search for appropriate cubic invariants, we now discuss symmetry 

requirements on the coefficients A~n. 

Firstly, since the projection-type operator Pa.a-y(k) is symmetric under interchange 

of {3 and/, it is natural to choose A~n symmetric in m and n. It is easy to check that 

the equations of motion are still nontrivial even if A~n is antisymmetric in m and n 

(the nonlinear term does not vanish identically so long as N ~ 1), but this does not 

give a sensible N = 1 limit. In particular the diagonal terms, n = m, which are the 

only ones that survive when N = 1, are cancelled. We therefore assume A~n = A~m. 

Secondly, we impose the constraint that the total energy be conserved in the 

absence of viscosity and forcing. The total energy is defined as 

J 
1 N 

E = ddn(r, t), E(r, t) = 2Po L v1(r, t) · v,(r, t) 
1=1 

(2.33) 

whose integrand reduces to ~Po L:1 lv112 when the representation is unitary, but is in 

any case real and positive. Using the incompressibility conditions, and appropriate 

integrations by parts, one finds 

(2.34) 

and therefore vanishes automatically if A~n = A!r' (more complicated assumptions 
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which allow for an antisymmetric part may be possible, but we again appeal to a 

sensible N = 1 limit) . Associated with this conservation law is the conserved energy 

Together with the symmetry in m and n, this implies that we require full symmetry 

under all permutations of the three indices: 

A
lmn _ Alnm _ Anml _ Amln 
N-N-N-N· 

2.4 Group Theoretical Considerations 

(2.35) 

.... 
We now treat more technical issues involving the relation between AN and the group 

G. We will discuss two approaches to constructing group invariants: trace invariants 

and Wigner symbols. The first is actually a special case of the second, but is easier 

to motivate, and hence worth introducing separately. 

2.4.1 Trace Invariants 

Perhaps the simplest way to generate invariants is to associate the indices l, m, and 

n with the generators of the group G. Thus we let J1
, l = 1, ... , N be some set of 

finite-dimensional Hermitean matrices such as the unitary matrix, U(g), representing 
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any group element, g E G, may be expressed as 

(2.36) 

where the a1 are real numbers. The group structure is completely specified by the 

structure constants, jlmn , which are real and defined by the commutation relations 

N 

[Jl,Jm] = i L jlmnJn (2.37) 
n=l 

We will always take tr[J1] = 0 (since an overall phase factor in (2.36) has no effect). 

By choosing suitable linear combinations if necessary, we may also take tr[J1Jm] 

>..81m , where the real number ).. > 0 is chosen for convenience. In this case jlmn 

A tr{ [J1, Jm]Jn} is completely antisymmetric in all three indices. For example, if 

G = SU(2), and J 1 = a1, l = 1, 2, 3, are the Pauli matrices, then ).. = 2, and 

jlmn = 2Elmn where EJmn is the fully antisymmetric tensor with E123 = 1. 

Suppose we now define matrix dynamical variables, 0 0 [x], by 

N 

Oa[x] = :Lxa,IJ1, a= 1, ... , d 
1=1 

(2.38) 

where x 1(r,t) = x 1(r,t) are real vector field dynamical variables. The unitary trans-
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formation (2.36) induces a transformation on the x 1 via 

N 

na(x'J = ut (g)fla(x]U(g) = L x~,IJ1 (2.39) 
1=1 

which defines a N x N real orthogonal matrix Dl); (g) via 

N 

ut(g)J1U(g) = L: Dl);(g)J1
', (2.40) 

1'=1 

N .... T ...., 

x~ = L Dl);(g)x~; DN (g) DN (g)= IN (2.41) 
1'=1 

(compare (2.6)] and there is no distinction between upper and lower indices in this 

case. We now ask: what equations of motion for the x~ can we write down that are 

invariant under this group of transformations? To see the answer, note that due to 

the cyclic property of the trace, any quantity of the form 

tr{na(x]ni3(Y] ... n'Y(z]} = L A'l.···lmXa,l}Y{j,/2 ... z"f,lm, (2.42) 
lt,b, ... ,lm 

where, 

(2.43) 

is an invariant of order m . Invariants other than those defined by (2.43) can also 

be constructed: simply contract the indices on products of lower order AN's. For 
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Consider then any set of equations of motion of the form 

x~ = F~[x], l = 1, ... , N, a= 1, .. . , d, (2.44) 

where F~[x] is a sum over all possible m, and for each m, all possible mth order 

invariants (which we will still denote generically by A~···1m ) , of terms of the form 

(2.45) 

where 0 002 ..• om could be any spatial-rotation invariant integra-differential operator 

acting of the r dependences of the x~ ( r, t). In particular, the form 

(2.46) 

yields the nonlinear term in (2.1) with x 1 = v1• These equations must transform 

covariantly since multiplying by X 0 ,1 and summing on l yields a scalar on both sides 

of the equation. 

Given a group G, there are many possible choices for the generators J 1; however, 

within a given representation, any choice may be obtained from any other by taking 

appropriate linear combinations. The corresponding invariants are then similar linear 

combinations of each other. The number, N, of generators is determined by the 
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dimension of the group. Thus, if N is to vary (in particular, become large) the group 

G must vary with N . The dimension of the matrices J 1 (i.e., the dimension of the 

representation) is of no consequence here. Though the details of the representation 

may enter [more than just the structure constants (2.37) are relevant in computing 

+-+ 

(2.43)], the matrices DN are representation independent, and a single maximal set 

of independent invariants must exist. It is simplest to assume that the J 1 generate 

the fundamental representation, i.e., they have minimal dimension. For SU(2) these 

are the Pauli matrices; for SU(n) they are any orthogonal set of N = n2 - 1, n x n 

traceless matrices. Below we will discuss invariants that depend more significantly 

on the representation. 

In the example of SU(2) represented by the Pauli matrices, the first few invariants 

are 

(2.47) 

Note that Almn = ijlmn is completely antisymmetric in this case, and therefore vio-

lates the requirements in Section 2.3. It will always be the case that A~n- AjV1n = 

i>.jlmn . The only question is whether or not there is a nontrivial symmetric part 
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[clearly not, for SU(2)]. Note also that the fourth order invariant can be constructed 

trivially from sums of products of the second order one. In fact, in this case all higher 

order invariants may be constructed from products of Kronecker-6's and €-tensors. 

This implies the well-known result that all rotation invariant combinations of vectors 

in three dimensions may be constructed from dot products and cross products. 

2.4.2 Wigner Coefficients 

In the second approach to constructing invariants we associate the index l with the 

basis vectors (or states) on which the J1 operate. Thus N is now the dimension of 

the matrices rather than their number, and may vary even when the group G is fixed, 

independent of N. Using a quantum mechanical bra-ket notation, if {11), .. . , IN)} is 

an orthonormal basis for the vector space (with corresponding hermitian conjugates 

{ (11 . . . , (NI} ), then we define dynamical states 

N N 

lxa) = L x~ll), (xal = L Xa,l(ll, l = 1, ... , d. (2.48) 
1=1 1=1 

The operation 

(2.49) 

then defines the group of transformations on the x~ via 

N N 

x~ = L D%(g)x~, x~,l = L D%(g)*xa,l' (2.50) 
1'=1 1'=1 
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where 

Dlj;(g) = (LJU(g)Jl'). (2.51) 

For the group SU(2), the representations are labelled by the total spin, j = 

0, !, 1, ~' 2, ... , and have dimension N = 2j + 1. A convenient basis is formed by the 

eigenstates of angular momentum component Jz: 

Jl) = Jj, m), - j ~ m = l - j - 1 ~ j. (2.52) 

For integer j these are most familiar in the form of the spherical harmonics 

"Yim(O, ¢>). The transformation matrices (2.50) are the famous quantum mechanical 

D-matrices[22]. 

We now wish to construct quantities of the form 

I - "" A1
I···

1mx X OJ . •. Om - L...J N ll<I,Il • • • Om,lm l (2.53) 
l1 , ... ,1m 

..... 
where AN is chosen to make I invariant under (2.50). Since, by (2.51), 

N 

U(g)Jl) = L D~(g)Jl'), (2.54) 
1'=1 

the kets transform in the same way that the Xa,l do. We may therefore state the 

problem alternatively: we seek a tensor, AN, such that the linear combination of 
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product states 

II(m)) = L A~···lm Ill)®·· · ® llm) (2.55) 
/), ... ,1m 

is a scalar (normalized in some fashion) under the transformation (2.54). For the 

group SU(2) this means that we wish to add m angular momenta together to obtain 

a state with zero total angular momentum. This is a well known problem in group 

theory and quantum mechanics, closely related to the problem of decomposing the 

direct product of (m- 1) irreducible representations of a group into a direct sum of 

irreducible representations. The solutions A~· ··1m are called Wigner coefficients. For 

SU(2), with basis states given by (2.52), one uses the notation 

J 
m; = - j, - j + 1, ... , j . (2.56) 

These are special cases of the Wigner 3j-symbols [22] . In general, the states in the 

direct product (2.54) can belong to different representations, N 1, ••. , Nm and we 

would seek coefficients A~;·:~7vm that make the result a scalar. The general SU(2) 

( 

• 0 • ) )1 ) 2 )3 

Wigner 3j-symbol is then = A~!2/J2N3 , with N; = 2j; + 1 and 
m1 m2 m3 

m; = l; - j;- 1. We are clearly interested only in the case in which all representations 

are the same. 

Appropriate equations of motion may now be written down precisely as before. 

Equations (2.45) and (2.46) are valid with the new tensors AN defined above. 

In addition, the relation to the Clebsch-Gordon coefficients is made clear by con-
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structing the state 

II1(m)) = L A'jj···'"' 112) ® 113) ® · · · ® 11m)· (2.57) 

'2·····'"' 

From (2.55) we have the obvious relation 

N 

II(m)) = L 11)@ II/(m)). (2.58) 
1=1 

Since II(m)) is a scalar, it is clear that II1(m)) must transform in the same way that 

(11 does, i.e., with the complex conjugate representation. More generally, if the states 

in the product come from different representations, N2, ... , Nm, the resulting states 

transform via the complex conjugate of the representation N. Thus by letting N vary 

over all permitted values, the Wigner symbols allow one to decompose the transfor-

mation of the given direct product into a direct sum of irreducible representations 

(this is known as the C1ebsch-Gordon decomposition ofthe direct product) . This does 

not quite define the usual Clebsch-Gordon coefficients. These are defined so that the 

resulting product state transforms via the representation N, not its complex conju-

gate. In the case where the representation is real (i.e., where the complex conjugate 

representation is the same as the representation itself), there is a matrix g''' such that 

N 

IZ) = 2:.: g''' (1'1 (2.59) 
m=l 
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translates the bras into kets. This matrix is really a special case of the invariant 

tensors AN in which there are only two indices since II<2>) = Et,l' gil' ll) ® ll') is clearly 

a scalar. If we then define the Clebsch-Gordon coefficients 

(2.60) 

where the prefactor is an appropriate normalization, it is clear that 

(2.61) 

transforms just as ll) does. For m 2: 4 these coefficients are no more unique than the 

Wigner coefficients are [see the discussion below (2.43)]. For the rotation group 0(3) 

the representations are all real, and one more commonly denotes 

CJ;j;2;;
2

N
3 
= (jmiJ2m2j3m3) = ( -1)h-i3+mJ2j + 1 ( j 

-m 

)2 

(2.62) 

corresponding to the matrix gil' = ( -1 )"lit' ,N - I , and conventional normalization 

Finally, we mentioned at the beginning of this section that the trace invariants 

are really special cases of the Wigner coefficients. They are constructed, in effect, by 

using the group generators as states. This, in fact, corresponds to a special repre-

sentation, known as the adjoint representation[23], and it can be shown that in this 
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representation the Wigner coefficients as defined above are precisely the traces of 

products of generators, (2.43). The demonstration of this fact is a special case of the 

use of tensor methods in the theory of group representations[23], where invariants are 

constructed as traces of products of more general tensor quantities. In the case of 

the adjoint representation, the tensors have only two indices [one transforming under 

the fundamental representation, the other under its complex conjugate, exactly as in 

(2.39)], and are traceless, and hence may always be written as linear combinations of 

the generators, precisely as in (2.38). 

2.5 Graphical Considerations 

A crucial property of the group-theoretical formulation is the preservation of the co-

efficients A~···1m under vertex renormalization. Stated more simply, different order 

diagrams, with the same structure of m external legs, will have the same dependence 

on the indices 11 , ... , lm, and must therefore be proportional to some linear combina-

-tion of AN's with the same m. For small m ( m=2 or 3, say) there will be only a single 

-type of AN, and the dependence on the indices l1, .. . , lm will be uniquely specified. 

The reason for this is that .ciN) is a scalar, and therefore the average of an operator 

Oh , ... ,lm, which transforms in the same way that xh y 12 ... z1m does, is given by the 

sum over p of 

O~t ... lm = >..P(Qll···lm(_c(N))P) 
p - 0 1 o. (2.63) 
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which therefore must also transform in the same way. Now 0~1 · · ./m is independent of 

the v and w fields, and a contraction of the form 

(2.64) 

is, by construction, a scalar. However, the A~··.lm comprise all invariants; therefore, 

0~1 •••1m must be some linear combination of them. 

At the level of graphical technology, it is precisely this property that is responsible 

for the variation of the universality class with N in the spin models. Without the 

group symmetry, diagrams with the same external leg structure would have essentially 

random dependence on the indices and will therefore not add up in any coherent way. 

This is precisely what leads to Ising-like behavior for all finite N. We expect similar 

behavior to occur in the turbulence problem. 

2.6 Galilean lnvariance 

In Chapter 1 we alluded to the importance of Galilean invariance in the establishment 

of the exact renormalization group results (1.15) and (1.18) for the exponents. If the 

generalization to N > 1 is to be truly useful, it seems necessary that we be able to 

prove similar results for any N. This can, in fact, be done, and is a consequence only 

of the symmetries, (2.35). 
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For N = 1 the Galilean transformation 

v1(r, t) = v(r + .X0v 0t, t) - vo, (2.65) 

where v0 is an arbitrary fixed (real) velocity, leaves the Navier-Stokes equations in-

variant since 

0V
1 

( I ) I OV ( ) ot + .Xo v · V v = at + .X0 v . V v. (2.66) 

If, in addition, we assume that w 1(r, t) = w(r + .X0v 0t, t) transforms without an 

additive term (as do f and p), then the Lagrangian (2.20) is Galilean invariant, 

.C [ v 1
, w 1

] = .C [ v, w]. It is precisely this invariance that was exploited by DeDominicis 

and Martin[4b] to prove (1.15) and (1.18) to all orders in y. 

For N > 1, consider the following generalization of (2.65): 

(2.67) 

where h1 = hi are any set of complex numbers, normalized so that E~1 P1P
1 = 1, and 

J-L is yet to be determined. We then have 

ov11 

- + .X ""Almn(v1 
• V)v1 

{)t OL.., N m n 
m,n 

~~ + Ao L A~n(vm · V)vn 
m,n 

+ .Xo(vo · V)[v1 
- .!_ L A~(h)vn], 

J-L n 
(2.68) 

where A~( h) = Em At;J'nhm· The last term on the right cannot generally be made 
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to vanish simultaneously for alll, so full invariance of the equations of motion under 

(2.67) is not possible. Let us focus instead on the equation of motion for scalar 

combinations 

1 ~ I I vq(r, t) = 2 L.,..[q1v (r, t) + q v1(r, t)], 
1=1 

(2.69) 

where q1 = qi is another set of complex numbers with Lt q1q1 = 1. From (2.68), the 

equation of motion for vq is invariant under the transformation (2.67) only if 

N 

J.Lqn = L At;(h)ql = L A1;nhmq[. (2.70) 
1=1 l,m 

This is a kind of eigenvalue problem for the qn, with eigenvalue J.L. The matrix At;(h) 

is symmetric, but not necessarily real, so J.L is not necessarily real. 

Associated, then, with each Galilean transformation, (2.67), are a set of N in-

variant velocity fields, vq(r, t), one for each eigenvector q1 of AW(h), transforming 

with the associated eigenvalue, J.L. This invariance property clearly respects the group 

symmetry: if v 1 is transformed according to (2.6), transforming h1 and q1 in exactly 

the same way yields the same scalar Vq in (2.69), and the same eigenvalue equation 

(2.70). Clearly, when N = 1 the standard Galilean invariance, (2.65) and (2.66), is 

recovered with eigenvalue J.L = 1. 

These invariance properties, though compelling, do not by themselves imply the 

result we seek, namely that the renormalization group results for the exponents gen-

eralize to any N > 1. Further analysis is necessary: in Appendix A we present the 
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technical arguments necessary to fully establish (1.15) and (1.18). The validity of 

these results lends further credence to our proposition that the N > 1 equations 

really do represent a logical generalization of the N = 1 N avier-Stokes equations, 

and do not violate any fundamental symmetries present at N = 1. One might still 

worry that the Galilean symmetry at N = 1 is somehow stronger and more profound 

than the seemingly more restrictive symmetry inherent in (2.67) and (2.70). How­

ever we know of no explicit property (of the correlation functions, for example) that 

demonstrate any "discontinuity" in behavior between N = 1 and N > 1. Unless such 

behavior is found, it seems reasonable to propose that the model evolves continuously 

with N, just as do the N-vector models of magnetism. 
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Chapter 3 

The Spherical Limit (N ~ oo) 

3.1 Graph Decomposition Rules 

Before deriving the spherical limit, we shall first develop some useful graph decom-

position rules in this section. These rules concern the numerical factors due to the 

presence of A~n and thus have nothing to do with the spatial parts of diagrams. 

Their validity is very general and can be applied to a very general class of A~n or 

even to other theories, such as theories with a quartic term ( ¢ 4 theory). 

These rules are summarized in Figure 3-1[24]. To derive them, we first make a few 

remarks about the group transformation properties of perturbation theory developed 

from (2.29) and (2.30). First, as an example, let us consider the nth order term of the 

two-point correlation function (iw1 · v1, ), which may be written as 

( · l [ (N)] n) zw · Vi• >.o£1 o, (3.1) 

where the average (-)0 is done with respect to .C~N). Under the group transformation, 
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Figure 3-1: Graph decomposition rules 
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the term (3.1) transforms exactly as W
1 

· VI' because £~N) and £~N) are invariant. 

Now assuming w 1 and vi' transform according to the irreducible representations of 

the group G, then by the fundamental lemma, Schur's lemma, of group representa-

tion theory, it is straightforward to show that bf is the only invariant second rank 

tensor under the group transformation. Hence (3.1) must be proportional to bf with 

an [-independent proportional constant (see Section 2 .5). Similarly, assuming A~n 

is the only invariant three rank tensor, any three-point correlation function is also 

proportional to AWn. 

Under these assumptions, rule ( i) IS simply the graphic representation of the 

following identity: 

the left hand side = bf' · A1 d ' 1 
VI • 

N 

where 2:1 A 1 corresponds to the closed diagram on the right hand side. 

By using rule ( i), rule ( ii) can be easily derived as follows: 

The right hand side of rule ( ii) is thus the graphic representation of the last expression. 

To derive rule (iii), we first note that since (iw1vmvn) is assumed to be propor-

tiona! to AWn, it can be written as AWn rN, where rN is the proportional constant . 
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Therefore, we have 

L At,:ln(iw1vmvn) = rN. L At,:lnA~n. 
lmn lmn 

This is the content of the third rule. Using rule (ii), rule (iv) can be derived similarly 

to rule ( ii). 

3.2 N--+oo 

As far as two-point correlation functions are concerned, only the first two rules are 

relevant. For any diagrams of two-point correlation functions, we first close them 

by using rule ( i). If the closed diagrams can be separated into two diagrams by 

severing two internal lines, they are so-called two-particle reducible (2PR) diagrams. 

They can be decomposed into two smaller diagrams by using rule (ii). These two 

smaller diagrams may be decomposed further if they are also two-particle reducible. 

This reduction can be proceeded until finally we are left with a bunch of two-particle 

irreducible (2PI) diagrams and some ~ factors. Some of the lower order terms of 2PI 

diagrams are shown in Figure 3-2. If during this reduction, no other 2PI diagrams 

except the lowest order ones (the first term shown in Figure 3-2) are generated, they 
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Figure 3-2: Lower order terms of two particle irreducible diagrams 

are called fully 2PR diagrams. 

In general, any 2PI diagram has an even number of vertices. Therefore, we may 

(") represent them by /2, /4, · · ·, /2~, · · ·. Here, the lower indices indicate number 

of vertices in diagrams, while the upper indices indicate different topologies of the 

diagrams, because there may exist more than one diagram for a given number of 

vertices. When there is only one diagram for the given number of vertices, we drop 

the upper indices. Note that / 2 is the same as the factor defined in the last section 

that results from the lowest order 2PI diagram. 

The total number of~ factors depends on how many times we sever the diagram. 

Suppose that at the end of this reduction, the 2PI diagrams we are left with are 

diagrams, etc. The total number of times we sever the diagram is then simply ( n 1 + 

n 2 + · · · + n~ · · ·) - 1. Adding the ~ that was generated when we closed the diagram 

by using rule ( i), we have 
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For the special case when the diagrams are fully 2PR, ni - 0 for k ~ 2. Therefore, 

we have 

2n1
h order fully 2PR diagram= of' (;) n 

It is now clear that the large-N limit of any diagram is summarized in the asymp-

totic behaviors of !2, !4, · · · when N-+ oo. To discuss these asymptotic behaviors, it 

is convenient to choose the normalization: / 2 = N. Then, under this normalization, 

we parameterize the asymptotic behavior of~~~ by ~~~ = O(N1 -or.~ ). As a result, 

(3.2) becomes 

where by construction, a 1 = 0. Clearly, if all ais are positive, all the higher terms 

(ni f. 0, k ~ 2) vanish when N-+ oo. In this case, fully 2PR diagrams are the only 

surviving diagrams in spherical limit. On the other hand, if some ai is negative, it 

means that the previous normalization h = N is not good. Suppose the most negative 

term is a~ . Then the new normalization is simply I~ko = N . The corresponding 2PI 

diagrams are then the surviving diagrams. 

Although the above procedure of finding the spherical limit is quite general, with-

out considering specific A~n, we are not able to make general statements about what 

kinds of diagrams can survive. Therefore, in this thesis we shall only consider the 

Wigner 3j coefficients of SU(2), which is the group that has been understood most. 

We leave other choices of AWn as possible future generalizations of this work (see 
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Appendix D for one of our attempts). 

Specifically, the A~n we consider are 

(

1
1. mj nj) ·, A{;,m = f(N) l,m,n = -j, -j + 1, . .. ,j, 

where N = 2j + 1. f(N) is introduced for the purpose of normalization and will be 

chosen below. In order to satisfy the symmetry requirements (2.35), we require that 

j is an even integer (if j is odd, 3j coefficients will pick up a minus when exchanging 

two columns). 

As it was mentioned in Chapter 2, when j is an integer, the upper indices (e.g., 

vm) transform in the same manner as 1jm(B, ¢) does. Because ( -l)m1J-m(B, ¢) = 

Yj*.n(B, ¢) and, by construction, (vmt = Vm, the lowering and raising operations of 

indices are defined via 

Thus, Lm Am Bm = Lm Am Bm· Altogether, the 3j coefficients we consider satisfy 

(j j j) ( l m n) _ ( j 
l m n j J j -l 

J 
j ) any permutations in l, m, n . 

-n --m 

Finding the large-N limit can be proceeded as we just described. First, we note 

that 3j coefficients are not zero only when l + m + n = 0. Apparently, this implies 
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the "conservation" of indices at each vertex, which in turn implies that (3.1) is pro-

portional to 8f'. Since for a given j the representations of SU(2) are irreducible, the 

proportional constant must be /-independent. Therefore, rules ( i) ( ii) apply. 

The derivation of the large-N limit is proceeded first by normalizing / 2 to N. In 

this case, because 

(

J 
12 = 12 L: 

l,m,n [ 

J 

m 

we may choose f(N) = ffi. Then the next task is to compute a~. 

Amit and Roginsky[24] have considered N-component generalizations of the Potts 

model, which also requires cubic invariants. The cubic invariants were also chosen 

to be the Wigner 3j coefficients of SU(2). Using f(N) = ffi, they computed the 

conventional 3mj coefficients numerically. In this case, the 3mj coefficients, (3mj), 

are related to 2PI diagrams with 2m vertices by (3mj) ( ffi?m = ~~~- They found 

l(3mj)l ;S N-m+l-o 

with a > 0 if m 2:: 2. This implies~~~ = O(N1-o) = O(Nl-oi, ). Hence, a!n =a> 0 

if m 2:: 2. As a result , when N goes to infinity, only fully 2PR diagrams survive. 
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Figure 3-3: Diagrammatic equations in the spherical limit 

3.3 The Resulting Equations 

The main feature of fully 2PR diagrams is that they consist of bubble diagrams only. 

In the spherical limit, the two-point correlation functions are simply summations of 

these bubble diagrams. Let us represent (;by a thick, straight line and G by a thick, 

straight-wavy line in the spherical limit. Obviously, they satisfy the diagrammatic 

equations as shown in Figure 3-3, where as usual, thin, straight-wavy lines represent 

G0 . Using the fact that both(; and G carry the transverse projection operator fo,a(k), 

we may write out these equations. We find 

1 

G(k,w) 

U(k,w) 

-iw + Vok2 + >.ok2 iln b(k,q)U(k- q,w- n)G(q,n), (3.3) 

I G(k,w) 1
2 [D(k,w) + >.0k2 ifn a(k,q)U(k- q,w- n)U(q,n)], 

(3.4) 
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where a(k, q) and b(k, q) result from contractions among Po:rJ-r 's and fo:/3 's : 

a(k,q) 

b(k, q) 

Hence a and b are homogeneous functions. In three dimension, they become 

a(k,q) = ![1- 2(k. q)2 (k. (k- q))2 + (k . q)(k. (k- q))(q. (k- q))] 
2 k4q2(k- q)2 k2q2(k- q)2 , 

b(k, q) - 1[- (q . (k- q))(k . (k- q)) + (k. q)3 J 
k kq(k - q)2 k3q3 . 

Also, they satisfy a simple relation, 

1 
a(k, q) = 2[b(k, q) + b(k, k- q)] , 

which is true in any dimension and can be verified straightforwardly. It is important 

to note that, as promised, the driving function D(k, w) is completely arbitrary in 

(3.4). Therefore, y is a free parameter, and the detailed crossover between short- and 

long-ranged D(k) can be elucidated now! 

These equations are very well known m the theory of turbulence: they are 

Kraichnan's Direct Interaction Approximation (DIA) equations[14], originally derived 

through an uncontrolled approximation scheme. We have derived these equations in 

a well-defined large-N limit. 
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The DIA equations are non-linear integral equations which presumably include 

the energy cascading phenomenon. That is, even though D(k, w) vanishes in the 

inertial range, O(k, w) does not vanish because of the presence of the second term in 

(3.4). In fact , if we consider the strictly bounded force 

{ 

-0 
D(k,w) 

#0 

if k > mo 

if 0 m0 ?: k ?: 0, 

then look at these bubble diagrams that compose 0; one can easily see that the 

diagram with one bubble vanishes fork> 2m0 , that diagrams with two nested bubbles 

vanish for k > 3m0 , and so on. Therefore, looking at the inertial range (k ~ m 0 ) 

effectively picks up diagrams with very large numbers of bubbles, which are the large-

order terms in perturbation theory. The progression of energy towards larger k then 

corresponds to the progression of the value of 0 towards diagrams with larger numbers 

of bubbles. This is the way that the DIA equations preserve the energy cascading 

picture. 

We conclude this chapter by a brief discussion of some old attempts at construct-

ing large-N models of turbulence. The most serious attempts of which we are aware 

are those of so-called stochastic models[17,25,26]. These models, originated from 

Kraichnan's Random Coupling Model (R.C.M.)[25], are only variations of R.C.M. 

Kraichnan noted that the DIA equations also result from the large-N limit of the 

Random Coupling Model in which A~n are randomly ± ~, restricted only by sym-
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metry under permutation of the indices. We stress[l7], however, that because these 

models do not include some higher-order symmetry varying with N and, also, they do 

not reduce to the original Navier-Stokes equations at N = 1, we do not expect that 

they can yield a systematic expansion of the universal exponents. Kraichnan 's result 

does, however, lead one to expect that the limit N-+ oo will be rather insensitive to 

the detailed procedure for obtaining it. 
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Chapter 4 

Scaling Properties of the Spherical Limit 

We now turn to a complete analysis of the DIA equations. Most of the formalism 

described in this chapter is carried over from that of a toy model developed in Ap-

pendix B. We refer readers to Appendix B for more det ails. 

4.1 Recovery of the RG's Results and 
the Analysis of Convergence 

We first note that the DIA equations reproduce they-expansion results precisely. To 

see this, we assume the dynamical scaling forms, (1.16) and (1.17), in the inertial 

range m 0 ~ k ~ A. We shall consider the limit when the inertial range is expanded 

to the whole space of k by letting A go to infinity and m 0 go to zero. Since A- oo 

is the same as v0 - 0, we are equivalently considering the limit of infinite Reynolds 

number. 

Because A- oo is the same as v0 - 0, we shall drop vo, put an upper cutoff A in 

every integral, and take A to oo at the end. Similarly, we shall put the lower-end-cutoff 
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mo in every integral and take m 0 to zero at the end. 

When we substitute the scaling forms, (1.16) and (1.17), into the DIA equations 

and make the rescalings, s = wjvkz, t = D.jvqz and q ~ qjk, we have 

1 

and 

-is+ 

d+2-~-z j JA/k d A 1 ( S- qzt) A1A2k dt d q b(k, q) A ~ u A z g(t), 
mo/k jk- qj jk- qj 

IJ_o k~-2z+4-d-y + 
v 

( 4.1) 

A22kd+2-~-z J dt {A/k ddq b(k, q) A 

1 ~ ;_z u ( ~- qztz) u(t), 
lmofk jk - qj q jk - qj 

( 4.2) 

where the integration limits become k dependent. Obviously, if the two integrals 

involved are convergent when A ~ oo and m 0 ~ 0, they are functions of s only. 

Since all of the other terms in equations are functions of s, it is consistent only when 

the two exponents in k vanish. We thus obtain 

~+z = d+2, 
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and 

2~ - z = 2d- 2 + y, 

which lead directly to the y-expansion solution. This is perhaps not surprising because 

one may perform the renormalizationgroup y-expansion directly on the equations (3.3) 

and (3.4), and the result is precisely the O(y) recursion relations from Ref. 4. Thus 

the equations (3.3) and (3.4) are an exact integration of these lowest order recursion 

relations. 

It is important to note that they-expansion solutions are exact to all orders in y if 

.Ao is not renormalized. When N = 1, this is guaranteed by the Ward identity derived 

from Galilean invariance (see Appendix A). However, when N =f; 1, even though 

Galilean invariance can be generalized in a certain way as shown in Chapter 2, the 

Lagrangian is not invariant under the generalized Galilean transformation. Hence, 

there is no corresponding Ward identity in the case when N =f; 1; nevertheless, by 

resorting to a direct graph analysis, one can still prove that .A0 is not renormalized. 

We refer readers to Appendix A for further details. 

T he validity of y-expansion solutions depends on the convergence of the two in-

tegrals in (4.1) and (4.2). The analysis of the convergence can be proceeded first by 

taking q ~ oo. Then (s- qzt)fik- ql z ~ -x, and the relevant integrals in (4.1) and 

( 4.2) are reduced to 

and 1 a(k,q) 
q~l q21!.-z ' 
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which are convergent if~ > d and 2~ > d + z. Next, we take q - 0 and thus 

(s- qzt)/lk- qlz- s. In this case, we need to consider the integral 

r a(k, q) 
}q~l qtl.-z ' 

which is convergent when ~ < d + z . Finally, when considering the limit q- k, we 

change variables by substituting: x = (s- qzt)/lk- q( . The integrals involved are 

then 

1 b(k,k- q) and 1 a(k,k- q) 
q«l qtl.-z q«l qtl.-z 

These integrals are also convergent in the range ~ < d + z. The final range that 

every integral is convergent is d < ~ < d + z (if 0 < z < d). When we combine this 

with the y-expansion solutions, we find that the y-expansion solutions are valid in the 

range 0 < y < 3. Furthermore, as we increase y towards 3, ~approaches d+z, which 

is the boundary when the convergence of mo - 0 fails. Apparently, when y > 3, we 

need to include m 0 carefully in our analysis. This will be done below. 

4.2 Forcing at y > 3 

In this section, we shall derive the main consequences of y > 3, i.e., ~ > d + z . We 

first generalize the dynamical scaling forms to include mo dependence with 

(4.3) 
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and 

(4.4) 

where limx-+oo g( s; x) = g( s) and limx-+oo u( s; x) = u( s) are the asymptotic scaling 

functions in the limit mo -t 0 or, equivalently, in the inertial range. When including 

the ;o dependence, equations (4.1) and (4.2) become 

1 
-is+ 

= JJ_oktl. - 2zrJ(x)+ 
v 

A22kd+2-Ll.-z1 a(k,q), 
1 

-
1
-u(:-qztz;lk-qlx)u(t;qx), 

q t lk - qltl. qtl.-z lk - ql 

(4.6) 

where we have reparameterized D(k,w) by D0(mo)rJ(;J. 

Let us define 

- r a(k, q) ' 
1 

fl. ;_z u (:- qztz; lk- qlx) u(t; qx), 
}q t lk- qj q lk- ql 

- r b(k, q) ' 
1 

fl. u (:- qztz; lk- qjx) g(t; qx), 
}q t lk - ql lk - qj 

and proceed in the same way as what is done in Appendix B to isolate the singularities 
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in Ja and Jb by defining 

- u(s;x) { 2a(k, ~-q) A 

1 .t..u( :-qz~; lk-qix), 
}q t lk - ql lk - ql lk - ql 

J sing( ) 
b s;, x - g(s;x) { b(k,q) A 

1 
.t..u(:-qztz;lk-qix), 

}q t lk - ql lk - ql 

where we have set q to k in all nonsingular terms. The factor of 2 in J:ing arises 

because a(k, q) = a(k, k-q), so the singularity at q- 0 is identical to that at q- k. 

By construction, !::l.Ja(s; ,x) = Ja(s ; ,x)- J:in9 (s;x) and !::l.Jb(s;x) = Jb(s; ,x)-

Jtin9 (s; x) are convergent as x- oo so that we are able to define 

lim !::l.Ja(s; ,x) - !::l.Ja(s), 
X-+00 

By changing variables: p = s(k- q) and w = (s- qzt)fik- q(, we may write 

( )1 2 (kA P) Uoo(P) .t..-z-d u s·x a ~,- --x 
' p X p.ll-z 

- u(s; x) ~[1- (k · p)2] ~~) x.t..-z-d + O(x.t..-z-d-2) 

d- 11 Uoo(P) ( . ) .t..-z-d + O( .t..-z-d-2) .ll US,XX X , 
d P p -z 

- g(s; x) ~ b(k,k- ~) ~';.~) x.t..-z-d 

g(s; x) ~[1- (k. P?J ~';.~) x.t..-z-d + O(x.t..-z-d- 2) 

d- 1 { u~(p) g(s; x) x.t..-z-d + O(x.t..-z-d- 2), 
d }p pu-z 
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where uoo(P) is defined to be f~ tu(w;p), and we have made use of (B.l3) and 

(B.14). 

By using all of the above expressions, the DIA equations ( 4.5) and ( 4.6) now read 

1 
-is+ 

A 1vg(s; x) 

(4.7) 

(4.8) 

where we have defined u0 = ddl JP ~XW, which may also be rewritten as 

d 1 Ll.-d-z 
- mo 1 r A 

Uo = -d- A2v wA U(k,w) . (4.9) 

Hence u0 is a cutoff dependent measure of the total energy density. 

We see from (4.7) and (4.8) that we may choose A 1v = 1 (take A1 to be real) and 

u0A 1A2mod+2-z-Ll. = 1. And also, for large x, we may expand 

g(s; ,x) - g(s) + gl(s)xd+z-Ll. + · · ·, 

u(s; ,x) u(s) + u1(s)xd+z-Ll. + · ... 
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Clearly, considering the leading terms of (4.7), we require 2- 2z = 0, i.e, z = 1 and 

gts) =-is+ g(s). 

Therefore, g( s) = (is ± v' 4 - s2 ) /2. In order that g( s) ---+ 0 for large s, we choose 

is- v'4- s2 
g(s) = 2 . 

On the other hand, considering the extreme case when y is very large, i.e., TJ(x) = 0 

for x > 1, comparison of the leading terms in ( 4.8) yields 

Since jg(s)j2 = 1 only for s2 < 4, we have u(s) = 0 for s2 > 4 but is otherwise 

undetermined at this order. 

At next-to-leading order, we find 

and 

1 [ (gl(s))] !:::.Ja(s) 
2 u1(s)- 2u(s)Re -( -) = + u1(s). 

lg(s)l g s uo 
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From these equations, we can solve u( s) for s2 < 4. We get 

2u(s) - J 2 Re [~Jb(s)] = ~la(s). 
4-s 

Writing this out, we have 

1 ( s- qzt) ~ ~ [ ~ - ( ~ k- q) ] u ~ z lk- ql- b(k,q)g(t)- b k, ~ g(s) , 
q,t lk - ql lk - ql 

u ~ z lk- ql- a(k,q)u(t)qz-~- 2a k, ~ u(s) . 1 ( S- qzt) ~ ~ [ ~ ( ~ k- q ) l 
q,t lk - ql lk - ql 

Since - j;~}2 Re [ Jting] = J!ing, the final equation for u( s) is 

0 

( 4.10) 

where (s- qzt)/lk- qlz < 2, and we have made use of a(k, q) = ~[b(k, q) +b(k, k -q)] 

and the fact that la( s) is invariant under the substitutions: t' = ( s - qzt)/lk - q( 

and if= k- q. 

An obvious solution to (4.10) is u(s) <X J1- ~:, ~ = z which is the solution 

guessed by Kraichnan[14]. Clearly, this solution implies~ = 1, which is ruled out by 

the requirement ~ > z + d. 

Another exact solution, which is also readily read off, is u( s) <X 6( s ). The consis-
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tency condition is 

1 A 1 11 A 1 1 b( k) q) A = b( k) q) A ) 

q lk- ql~-z qz q lk- q~~-z q~-z 

i.e., rb(~- z, z, d) = r a(~- z, ~-z, d). Therefore, this solution corresponds precisely 

to that of the static model studied in Appendix B, with the substitution~- ~- z. 

The word "static" is justified since in the time space u(t) is constant. Apparently, 

this solution is also not the one we are seeking. 

Besides the above two trivial solutions, there seems to be no obvious analytic 

solution. Therefore, numerical work is in order to find u( s) and ~. Before describing 

our numerical results, it is convenient to consider the case when y is greater than 

three, but not very large. To this end, we put ry(x) = x4- d - y back. Then equation 

(4.8) becomes 

Do ~-2z ~-2z+4-d-y + -:::-mo x 
v 

Following the same reasoning at the end of Appendix B, we expect that when y is 

greater than 3 but less than certain Yc, x2- 2z is the leading term on the right hand 

side, while the remaining terms, x~-2z+4-d-y and xd+2-z-~, are both the next-to-

leading terms. As a consequence, ~ is d + 9 when 3 < y < Yc and sticks to ~(Yc) 

beyond Yc· On the other hand, ( 4.10) becomes 
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(4.11) 

where 6o = ;;-3uo2 Domo 4-d-y, which vanishes at Yc· It is interesting to note that the 

reason why turbulence happens at 6o = 0 actually reflects the definition of turbulence, 

in which Do vanishes in the inertial range. 

Our numerics for solving (4.11) is described in Appendix C . Figure 4-1 shows u(s) 

for various y's with the normalization u(O) = 1. In Figure 4-2, we see that 60 seems 

to vanish exactly at Yc = 4. This is of course not a proof. If Yc = 4 is exact, we have 

z = 1, .6. = d + 3/2, and ( = 3/2, which agree with Kaichnan's guessed solutions[14]. 

In Figure 4-3, we show the turbulence scaling function u( s) at different dimensions. 

Figure 4-4 shows the deviation of u( s) from Kraichnan 's guessed solution, -)1 - s2 J 4. 

The deviation is quite large. 

4.3 Viscous Cutoff in the Spherical Limit 

In this section, we discuss the viscous cutoff A, which is an important length scale in 

Kolmogorov's theory and also plays an important role in subsequent experiments[27]. 

In Kolmogorov's theory, A is (ljv0
3 ) 114 and A/mo "" (Re)314

, where Re is the 
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Reynolds number. When including A, the energy spectrum is predicted to be 

where F(x) is a universal function. We may also rewrite it as 

E(k) (k)-513 
(k) 

f2/3A-5/3 = A F A . ( 4.12) 

Since f.213A-513 = €114v0
514 , we may measure E(k) in units of €114v0

5/4 and kin units 

of A to test ( 4.12). If ( 4.12) is right, one should be able to see that data due to 

different preparations of turbulence collapse on a universal curve. If neither k nor 

E(k) are measured in appropriate units, collapse would not occur. Although many 

subsequent measurements (see Ref. 2) claimed that F(x) is universal, there were also 

measurements[28] claiming that the data were also consistent with models considering 

intermittency, in which m 0 is present in E( k) (which also happens in our spherical 

limit), and, therefore, F(x) is no longer universal. There appears to be no consensus 

as to the extent that F( x) is universal. Therefore, it is still an open question. 

Despite the important historic role that A has played in collapsing data, its ratio 

to m 0 , i.e., Ajm0 , also gives an estimate of the total number of degrees of freedom in 

turbulence. Because w "' kz, we may naively estimate A by setting v0 A 2 "' A z. Hence 

A"' v0 -2.:. and, therefore, A/m0 "' (Re) 2_:•. When z = 2/3, we have A/mo"' Re314 . 

On the other hand, since z = 1 in the spherical limit, A/mo "'Re. As we shall show 
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below, this naive analysis turns out to be wrong in the spherical limit. 

There are two places in which v0 enters into the theory. First, there is a v0 k 2 

term. Second, the cutoff, A, of the integrals also depends on v0 . In general, one 

expects A ~ oo as v0 ~ 0, even though A may not be proportional to v0 -
314 , which 

is expected in Kolmogorov theory. As far as A is concerned, its main effect is to 

renormalize various quantities. For example, if the integral in (3.3) is divergent as 

A ~ oo, it contributes a term, b(A)k2 , which renormalizes v0 . The fact that we are 

considering the region where no divergence arises due to A simply means the effects 

of renormalization are small. 

To see the effect of v0 k2 , we include it in ( 4. 7) by 

1 

A1iig(s;x) 
. vo 2 z -zs + -x- + 

ll 

( 4.13) 

where we have chosen ii = vm0
2-z so that v has the same dimension of vo. As was 

done in Section 4.2, we may choose z = 1, A1ii = 1 and uoA1A2mod+2- z-.a. = 1. We 

may also set A 2 = 1 and absorb the amplitude into the scaling function u(s). This 

amplitude of u(s), which is denoted by A in Appendix C, is basically determined by 

the total energy, i.e., A "' u0 (see equation (C.4)). Hence, we have A1 = v-1moz-2 
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I D.-d uo v = mo . ( 4.14) 

With the above choices, ( 4.13) becomes 

- 1 = -is + g( s; X) + 2._xd+2-D.-z b..Jb( s) + Vo x2-z + .... 
A1vg(s;x) uo v 

Obviously, competing between .l..xd+2-D.-z b..Jb(s) and ~x2-z sets a characteristic 
uo v 

scale, x A, defined by 

Vo 2-z "l ( ) _ Vo 2-z 
-XA L..l. b S - -XA . 
l/ l/ 

The relation b..Jb( s) = 0( u( s)) ,..._, ,\ ,..._, u0 implies 

A l/ I 
XA =-,......,(-)A-d. 

mo Vo 
( 4.15) 

To make contact with the real experimental parameter, Re, we make use of equa-

tion ( 4.9) and find 

( 4.16) 

Eliminating u0 in (4.14) and (4.16), we get v m0 - 1v = lov. Therefore, vfvo is 
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simply the Reynolds number. As a consequence, we get 

A I 2/3 - "'(Re)~ "'Re . 
mo 

This is the correct prediction for A/ m 0 in spherical limit. 
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Chapter 5 

Summary and Future "Work 

In summary, we have proposed and investigated a spherical model for turbulence. 

Our results in the spherical limit are summarized in Figures 1-2 and 1-3. As y is less 

than three, the exponents follow the RG's results. When y exceeds three, the RG's 

results were demonstrated to be invalid. Specifically, when y > 3, we find that z first 

sticks to one at y = 3 and then .6. sticks to d + 3/2 at y = 4, while .6. is still controlled 

by the driving force between y = 3 and y = 4. 

One of the areas that the formalism developed in this thesis may become useful 

is in the theories of surface growth. The model that attracted most attention is the 

Kardar-Parisi-Zhang[29] (KPZ) equation of which the non-linear interaction is also 

cubic. In the lowest-order RG calculations, however, the non-linear coupling becomes 

intractably large at d = 2; and hence, the correct exponents and scaling functions are 

not known. This is quite similar to the situation of turbulence in which the whole 

scalings are also dominated by the non-linear coupling. Application of our formalism 

also produces a pair of coupled integral equations. We expect that a similar numerical 
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work on these equations can provide some insights into what is going on at d = 2. 

The other work that needs to be addressed in the future is the next order cor­

rections to the spherical limit. We have made a brief attempt at going beyond the 

spherical limit. Amit and Roginsky's numerical work suggests that the next order 

terms would be the order of 1/ffi. These terms that contribute 0(1/ffi) are (6j) 

and (9j) coefficients, where the (6j) coefficients are the second term shown in Fig­

ure 3-2, and the (9j) coefficients are obtained by adding two more vertices to the 

(6j) coefficients. There are seven different diagrams that one has to add to the DIA 

equations in considering the (6j) coefficients, and there are even more diagrams for 

the (9j) coefficients. Analyzing these extra diagrams is a daunting task, but seems 

to be a necessary further step. 

We close by a brief discussion of the Taylor frozen hypothesis. As it was mentioned, 

the physics behind z = 1 may be summarized in the Taylor frozen hypothesis. The 

Taylor frozen hypothesis is usually invoked when measuring the energy spectrum 

E(k) . It was originally introduced to analyze grid turbulence with a mean flow 

speed[30]. In this case, the hypothesis reduces the measurement of E(k), which needs 

to be done at different spatial points, to the measurement of the frequency spectrum 

E(w) at one fixed spatial point. If the mean flow speed is U, one may simply replace 

win E(w) by k · U to get E(k). 

In the absence of a mean flow, it is expected[31] that the flow caused by large 

eddies act effectively as the local mean flow, so the Taylor frozen hypothesis still 
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applies locally except that U is substituted by (v(r, t)2)112 . Because the local mean 

flow is randomly distributed, this effect is usually termed the "random sweeping 

effect." This effect is especially pronounced when the difference between the spinning 

velocity scale of large eddies and that of the small eddies is large. In other words, it 

is expected to happen only at high Reynolds number. 

People have argued that because of the random sweeping effect, the small scale 

structures of turbulence change very little when they pass by a fixed spatial point; 

therefore, it is impossible to observe the internal dynamics of the small scale structures 

by looking at the frequency spectrum at a fixed spatial point. Much effort has been 

thus directed to remove the sweeping effect. The most frequently referred models are 

those in which one adopts the Lagrangian type description of fluids by following the 

fluid particles in certain ways[15]. Usually, these theories are not only too complicated 

for rigorous analysis, even at the level of the DIA equations, but also too cumbersome 

and insufficiently systematic for further expansions to higher order terms. At the level 

of the DIA equations, they focus on producing extra terms, which cancel the divergent 

parts of the integrals when y 2: 3, to show the exactness of the Kolmogorv ~-law. As 

mentioned, the danger for doing this is that if these same terms ar·e produced when 

y < 3, there will be large-k divergences in the region described by the y-expansion. 

The theory will then fail to encompass the known exact results. 

In a word, all of these attempts are motivated by the closeness of experimental 

data to -5/3, and the main efforts are to show that the Komogorov's assumptions can 
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be realized in the Lagrangian type descriptions. Once the Komogorov's assumptions 

are realized, the sweeping effects can be removed completely and therefore all of the 

predictions made by Komogorov are correct; in particular, the -5/3 is exact. In 

view of the experimental data for the higher-order spetra of turbulence, there is no 

evidence that Kolmogorv's predictions are correct[37]. These theories will then fail 

to give correct higher-order spectra of turbulence. 

The idea we propose in this thesis is to face the infrared divergences caused by 

the sweeping effect directly. To this end, we have proposed a new set of generalized 

models for turbulence, parameterized by the the number of velocity fields, N. The 

DIA equations represent an exact solution in a special limit, which is continuously 

related, via N, to the real turbulence problem. These equations should thus be taken 

at face value. Previous work[15] which has concentrated on modifying them to obtain 

the ~-law thus appears to miss the mark. We view the ~-law not as a problem to be 

fixed, but rather as an amazingly accurate zeroth order approximation in a systematic 

expansion for ((N). The closeness of the experimental value to the Kolmogorov-~ is 

perhaps an unfortunate coincidence which has led people away from taking the DIA 

equations as seriously as they deserve. 
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Appendix A 

The "Ward Identity and the 

Renormalization of Ao 

The exactness of ((y) = 1 - 2y /3 when 0 < y < 3 is closely related to Galilean 

invariance at N = 1. Here, following the usual method employed in Quantum Field 

theory, we present the derivation of the Ward identity[4b] resulting from Galilean 

invariance at N = 1. The main consequence of the Ward identity is that >.0 is 

not renormalized[4b). We further analyze this consequence through a direct graph 

analysis, which generalizes the method of Forster, Nelson and Stephen[4a]. Finally, we 

show that even though the Lagrangian is not invariant under the generalized Galilean 

transformation derived in Section 2.6 when N > 1 (hence there is no corresponding 

Ward identity); nevertheless, this graph analysis allows us to show that >.o is also not 

renormalized, even when N =I= 1. 
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A.l The Ward Identity {N = 1) 

To derive the Ward identity, we introduce source terms into the Lagrangian .C[v, w] 

and define 

One can also define a "free energy" by F[J~, J2] = -In Z[J1, J2] and then perform 

a Legendre transformation of F [ J t, J 2] via: 

and 

bF 
v = - bJt = (v), 

bF 
w = - bJ2 = (w). 

It is clear that v and w vanish when J1 = J2 = 0. 

The Galilean transformation on various fields are: 

v'(r, t) v(r + >.0ut, t)- u , 

v'(r, t) v(r +>.out, t)- u, 

a'(r, t) - a(r + >.0ut, t), 

where a can be any fields of w, w, J 1 or J 2. Under these transformations, one finds 

.C[v', w'] .C[v, w], 
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r[v',w'] r[v, w]. 

Therefore, br = 0. 

Considering the infinitesimal Galilean transformation when u = Eht and E ~ 1, 

we get from O(E) of eST that 

J J d { br _ br _ } 0 = dt d r _ ( ) [>.0t h · Vv.,(r, t)- h.,]+ ( ) >.0t h · Vw.,(r, t) . v., r, t w., r, t 

Integrating by parts, this becomes 

J J d { br _ br br _ } 
0 = dt d r [>.0th · '\7 _ ( )]v.,(r, t) +h., _ ( ) + [>.0th · '\7 ( )]w.,(r, t) . 

v., r, t v., r , t w., r, t 

Now functionally differentiating this equation twice with respect to ii,a(r1 , ti) and 

w0 (r2, t2), and taking J1 = J2 = 0, so that v = w = 0, we obtain 

(A.l) 

The first term on the right hand side is related to the response function by 
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The content of (A.1) becomes clear when we apply the following Fourier transform: 

We find that 

where r o.fi-t is the three-point vertex function. Since h is arbitrary, we have 

When the bare vertex is symmetrized with respect to a and (3, i.e., r~,B-r = ~>.oPo.,a-y, 

we must also symmetrize the above result. Finally, we have 

1 a . _1 ->.oPo.,a-y(k)-
8 

G (k,w)+ro.,a-y(kw;-k -w, OO)=O. 
2 w 

(A.2) 

Equation (A.2) is the Ward identity we seek, which can be trivially verified to the 

order of >.o. 
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A.2 Direct Graph Analysis 

As mentioned, the consequence of (A.2) is that >.0 is not renormalized; this is because 

twG- 1(k,w) is convergent at y = 0 [4b]. To see this result more directly, we resort to 

direct graphical analysis. First, by naive power counting, we realize that the primitive 

divergences for the (2n + 1 )1
h order diagram of r or./3-r are A-ny, where we have set all of 

the internal wavenumbers to A and all of the internal frequencies to A 2 . Therefore, 

all of the diagrams of r or./3; are logarithmically divergent at y = 0. This, however, 

doesn't imply that the overall r or./3; will also diverge, because these divergences may 

as well cancel each other when we sum them up. Indeed, as we will show below, this 

is what actually happens. 

Following Forster, Nelson, and Stephen, we rewrite 

Uo(k,w) = IGo(k,wW Dok4-d-y = 
2
Do k2-d-y[Go(k,w) + G0(k,w)], 
vo 

and replace all straight lines in diagrams by either straight-wavy lines ( G0 ) or wavy-

straight lines (G0). 

The resulting diagrams have representations in time-space in which G0 (k, t) 1s 

retarded, and each vertex is associated with a time label. Because G0 is retarded, the 

smaller time label is assigned to the straight end in every straight-wavy line. Thus, 

each resulting diagram can be specified by the ordering of time labels on vertices. It 

is important to note that in resulting diagrams, vertices may carry one, two, or even 



93 

three wavy lines, but no matter how many wavy lines they carry, there is only one 

for each vertex carrying ~ PafJ"f· To make distinctions, we use a thick wavy line for 

the one carrying ~Paf31 . 

One can easily deduce that given the topology and the time ordering of vertices 

for a diagram, there is only one way to draw this diagram by using straight-wavy 

lines only and without making distinctions between thick wavy lines and thin wavy 

lines. Hence, there is only one vertex whose time label is the largest for each diagram. 

However, the topology and the time ordering of vertices do not uniquely determine a 

diagram due to the different orientations of the thick wavy line at each vertex. 

Given the topology of the diagrams and the time ordering of the vertices, we 

classify diagrams according to the orientation of the thick wavy line at each vertex: 

in each class, the orientations of the thick wavy lines are fixed at all of the vertices 

except the vertex with the largest time label. Hence, diagrams in the same class differ 

from each other only by the orientation of the thick wavy line at the vertex with the 

largest time label. There are two possible situations. First , if the largest time vertex is 

connected to an external line, there are two possible orientations. These are shown in 

Figure A-1. The summation of leading divergences of these two possible orientations 

is 

where Ma'"'' is the contribution from the remaining part of the diagrams, Paf31 is 

reduced to Paf31 (k) = k1 baf3 + kf3ba1 by using the incompressibility condition, and we 
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'Y' 

a' 

external line 

'Y' 

a' 

external line 

Figure A -1: Two possible orientations when the largest time vertex connects to an 
external line 



95 

have also made use of G0 "' 14 • It is straightforward to show that the summation in 

the bracket is zero. 

The second possibility occurs when the largest time vertex is entirely internal as 

shown in Figure A-2. In this case, the summation of leading divergences is 

[Pa{J-y (AI) + P{Ja-y(A2) + P-ya{J(A3)] X 

Taa•(Al)TIJIJ'(A2)1n•(A3)Na'{J'-y'(A) (~: A
2

~:-y) 
2 14 , 

from the rest of diagrams. The total sum in the bracket also vanishes in this case. 

Therefore, the leading divergences in any class of diagrams get canceled. 

Now since the leading divergences are logarithmic at y = 0 and they are cancelled 

after summation, we conclude that r a/J-r is convergent at y = 0. As a result, ..\0 is not 

renormalized. 

When N # 1, there is an additional factor due to the presence of A~n for each 

diagram. However, if A~n is symmetric under permutations of l, m, and n, these 

factors will be the same for diagrams considered in either Figure A-1 or Figure A-2. 

Hence, the same cancellations happen, and ..\0 is also not renormalized. 
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a' 

Y' 

a' 

Y' 

a' 

Y' 

Figure A-2: Three possible orientations when the largest time vertex is internal 
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Appendix B 

The Model DIA Equations 

To seek the intuition for analyzing DIA equations, we analyze a set of simplified 

equations - model DIA equations - in which all frequency dependencies are simply 

suppressed 

1 

G(k) 

U(k) 

v0e + k 2 ~ b(k,q)U(k- q)G(q), 

IG(kW [n(k) + k 2 ~ a(k,q)U(k- q)U(q)]' 

The underlying equations are the time-independent Navier-Stokes equations 

1 2 
..\0 (v · V)v = --Vp + v0V v + f ; V · v = 0. 

Po 

(B.1) 

(B.2) 

Note that although the dynamics is suppressed, the nontrivial kernels a(k, q) and 

b(k, q) are still included. 
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If we reparameterize D( k) by 

then [>.o] = ~ (the dimension of >.0 ) is the same as before[4b). 

To explore the solutions of (B.l) and (B.2), we assume power law solutions 

G(k) 
hl 

I"V kZ l 
(B.3) 

U(k) h2 
kD.." (B.4) 

When we substitute them into (B.l) and (B.2) and rescale q by qjk, we get 

(B.5) 

Clearly, if the integrals are convergent, we would conclude 

~+2z - d+2, 

6- d- y 2z- ~-

Thus, we have z = 2-~ and~= d-2+~, which play the same role as they-expansion 

solutions to the full DIA equations. To find when the integrals are convergent, we 
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need to know how a(k, q) and b(k, q) behave as q .- oo, q .- 0, or q .- k . These are 

summarized below: 

(a) q .- oo 

a(k, q) = d~l sin2 O(d- 2 + 2 cos2 0) + 0(~) 

b(k, q) = d'!_l q(cos3 0- cosO)+ sin2 0 + 0(~), 

(b) q-- 0 

a(k, q) = ~ sin2 0 + O(q) 

b(k, q) = d'!_l (cos3 0- cosO)q + (sin2 O)q2 + O(q3) 

(c) q' = lk- qj .- 0 

a( k, q) = a( k, k - q), the expansion is the same as (b) 

b(k,q) = sin2 0' + (q'2), 

where cos 0 = k . ij, while cos e' = k . q'. It is then easy to show that the integrals in 

(8.5) and (8.6) are convergent as long as ~ < .6. < d , .6. + z > d and z < d + 2. 

Consequently, the y-expansion solutions of the model DIA equations are valid only 

when 4- d < y < 4. Moreover, as y .- 4, .6. approaches d, which is the boundary 

when the convergence of m0 .- 0 fails. 

It follows from the above observation that when y > 4, one has to treat the lower 

cutoff m 0 carefully. As a first step, we consider an extreme case when y is very large. 

For this purpose, let us parameterize D(k) by Do(mo)1JC!J, with 1J(x) = 0 when 

x > 1. Since everything is convergent as k .- oo when y > 4, the limit vo .- 0 is well-
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defined and we may simply drop it. The only relevant scale is then m0 . Therefore, 

we generalize (B.3) and (B.4) to 

G(k) (B.7) 

U(k) (B.8) 

where s = ..!E.... and by construction, g( s), u( s) - 1 as s - oo. It suffices to take mo 

constant ..6. and z in the whole range of s, while the forcing dependence and the 

crossover from s < 1 to s > 1 are all thrown into g( s) and u( s). Following the same 

procedure of obtaining (B.5) and (B.6), we substitute (B.7) and (B.8) into the model 

DIA equations and find 

1 
g(s) 

_ h 2 h (m s)d+2-.ll-2z 1 b(k q) u( si~ - ql)g( sq) 
1 2 0 ' ik I A ' q ~- q <.>oqZ 

u(s) 
lg(s)l2 

Do(mo)(mos).ll-2z~12
2

ry(s) + 

h 2h (m s)d+2-.ll-2z 1 a(k q)u(si~k- ql)u(sq) . 
1 2 0 ' ik l.ll .£l q -q q 

(B.9) 

(B.10) 

Here no explicit cutoffs are introduced for the integrals. Singularities due to the limit 

m 0 - 0 appear in the singular behaviors of the integral as functions of s. 

Clearly, (B.9) and (B.10) imply h12h2 "" m&'+2z-d-2. Moreover, if Do(mo) 
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I (s) = f a(k )u(si_k- ql)u(sq) 
a }q 'q lk - ql~q~ ' 

h(s) = r b(k,q) u(si~- ql)g(sq) . 
}q lk- ql~qz 

(B.11) 

(B.12) 

As it was mentioned, they are convergent when ~ < .6. < d , .6. + z > d and z < d + 2. 

We shall consider the case when .6. < d is violated so that only singularities at q - 0 

and q - k are problems. These singularities can be easily isolated because they 

essentially happen at isolated points. For example, the singularity at q- k may be 

isolated by setting the regular parts (excluding a and b) of the integrands to their 

values at q = k. Hence, we define 

]Sing 
a 1 - u(sik- ql) 1 - u(sq) - u(s) a(k,q) _ + u(s) a(k,q)--, 

q lk- ql~ q q~ 

- g(s) rb(k,q)u(~lk-qi). 
}q lk- ql~ 

Therefore, .6.Ia(s) = Ia(s)- I!ing and .6./b(s)- h(s) - Iting are convergent. As 

s - oo, since u(sjk - ql) , u(sq) and g(sq) - 1 for most q except when q ~ k 

or q :: 0 , and at these points the integrands are either subtracted or vanishing, we 

conclude 

1 - 1 
_ fa(.6.,.6.,d) =Finite part of a(k,q) , , 

q lk- ql~q~ 
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llh(oo) - rb(il, il, d) =Finite part of [ b(k, q) ~ 1 
. 

}q lk - qiLl.qz 

By changing variables: either w = sq or w = s(k- q), we may write 

where we have made use of a(k, q) = a(k, k- q). Now because of 

' w 
a(k,-) 

s 
(B.13) 

~ ~ w 
b(k,k- -) 

s 
(B.14) 

we may simply redefine 

u(s) f 2a(k, ~-q )u(~lk-ql), 
}q lk - ql lk - qiLl. 

g(s) [b(k, ~-q)u(~lk-ql). 
}q lk - ql lk - qiLl. 

with 2a( k, w) = b( k, w) = 1 - ( k · w )2. The leading order terms of I a ( s) and h( s) can 

thus be identified 
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where uoo =I ~je(l- (k · w)2 ) = d'd
1 I uSjP is a cutoff dependent measure of total 

kinetic energy density. In view of (B.13) and (B.14), it is clear that all the higher 

order terms are at least O(s~-d-2), which vanish if d < ~ < d + 2. 

We now substitute Ia(s) and Ib(s) back to (B.9) and (B.10). We find 

gts) = h1 2h2(mos)d+2-~-2z [rb(~, z, d)+ U00 S~-dg(s) + · · ·], (B.15) 

~:c~)~2 = h1 2h2(mos)d+2-~-2z [ra(~, ~,d)+ U00S~-du(s) + · · ·]. (B.16) 

For large s and ~ > d, the R.H.S. 's are dominated by the U 00 terms. Thus we require 

then become 

1 1 d ~ 
- = -rb(~,z,d)s- + g(s) + · · ·, 
g(s) Uoo 

(B.17) 

u(s) 1 d-~ 
lg(s)l2 = Uoora(~,~,d)s +u(s)+···. (B.18) 

It is clear that to next-to-leading order, we may write[32] 

g(s) 1 + g1 sd-~ + · · ·, 
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Substituting them into (B.17) and (B.18), one finds 

and u 1 is undetermined at this order. This finally determines the self-consistent 

equation for the exponent b.: ra(b.,b.,d) = rb(b.,z,d) and z = 1. 

To solve for b., we first note that because a(k, q) = ~(b(k, q) + b(k, k- q)), we 

have r a(b., b., d) = rb(b., b., d). Thus the final equation we need to solve is 

(B.19) 

Let k · q = y, b(k, q) becomes 

b(q y)- q(1- y2)[(d- 1 + 4y2)q- 2y- 2qy2] 
' - (d-1)(1-2qy+q2) 

Note that b(q,y) satisfies b(~,y) = q
1
2 b(q,y). We may write out the integrals in rb, 

which is the finite part of 

I - K !ooo d d-1-z 11 d (1- 2)d;3 b(q, y) 
- d-1 qq y y <l.' 

0 -1 (1- 2qy + q2)2 

where (27r )d Kd_ 1 is the area of unit sphere in d -1 dimension. After doing a simplified 
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"conformal transformation" [33] q--+ 1,, we get q 

It implies rb(~, z, d) = rb(~, 2d + 2- ~- z, d)[34]. An application of this identity 

is that aside from the obvious solution ~ = z for (B.19), we may also have z = 

2d + 2- 2~, i.e., 2~ + z = 2d + 2 which yields z = 1 and~= d + ~- However, since 

we are interested in the range ~ > d, ~ = z is ruled out, and we are left with the 

only solutions, z = 1 and ~ = d + ~, at this stage. 

The conformal transformation is not powerful enough to exhaust all possible solu-

tions. To explore other possible solutions, one has to evaluate rb numerically. A good 

way to accomplish this evaluation is via using the identity 2a· b = (a+ b)2 
- a 2 

- b2
. 

A A "t 
Then b(k,q) can be cast in the form L: C{j"fqfjjk- qj . Clearly, the basic integral 

involved is 

C(a, {3, d) = Finite part of j ddq A 

1 
o 

1
{j, 

lk -ql q 

which can be evaluated via the standard method. We find 

_ 1 r(~)r(~- ~)r(~- ~)r(~- ~) 
C(a,{3,d)- 2 r(~)r(~)r(d- o~f3) 

Substituting b(k,q), in the form of L:C{j"fqfjlk- qi"Y, back to rb, and after some 
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lengthy but straightforward algebra, we find 

d-1 d-1 
rb(~, z, d)= --8-C(~ + 2, z, d)+ -4-C(~ + 2, z- 2, d)-

d-1 d+1 1 
-8-C(~ + 2,z- 4,d)--8-C(~- 2, z, d) + 8c(~,z + 2,d) + 

1 1 2d- 3 
8c(~, z - 4,d)- 8c(~- 6,z + 2, d) + 

8 
C(~ , z- 2,d) + 

3 2d- 3 3 
BC(~- 4, z + 2, d)+ 

8 
C(~, z, d)- BC(~- 2, z + 2, d)+ 

3 3 
-C(~ - 4 z d) - -C(~ - 2 z - 2 d) 8 , , 8 , . , . 

The above expression is ready for direct computer computations. We find that ~ = 

d + ~ is the only solution of (B.19) persistent in all dimensions. In addition to this 

solution, there are two other solutions at d = 2: ~ = 3 and~= ~ - It is interesting to 

note that the solution , ~ = ~,could also be obtained by assuming that the enstrophy 

flux is constant over the inertial range. These solutions disappear when ld- 21 > 0.05. 
rv 

Therefore, they exist essentially at d = 2. 

We now go back to the old parametrization of 1J( s) = s6- d- y and ask how the 

y-expansion solutions, z = 2- ~ and ~ = d- 2 + ~ , connect to the solutions, z = 1 

and~= d+ ~ -

For this end, we first include 1J(s) in (B.16) 

u( s) = D st>-2z+6-d-y + 
lg(s) l2 
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where D = Do(mo)motl.-2z~ > 0. For z = 1 and Ll = d+~ to be solutions, we require 

sd+2-tl.-z be the the next-to-leading order term, and thus Ll-2z+6-d-y < d-Ll < 0. 

Clearly, this implies that z = 1 and Ll = d + ~ are valid only when y > 5. On the 

other hand, because the y-expansion solutions are obtained under the condition that 

both stl.-2z+6-d-y and sd+2-tl.-2z are leading terms, and this is true only when s2- 2z 

is subleading, hence y has to be less than 4. As a result, when 4 ~ y ~ 5, none of 

them is the solution. 

One must bear in mind that although (B.16) becomes (B.20) when the force is 

present, (B.15) is unchanged and will always fix z to 1 when Ll > d (or y > 4). 

Therefore, s2- 2
z is always the leading term in (B.20) when y > 4. As a consequence, 

when 4 < y < 5, solutions are obtained by setting both stl.-2z+6-d-y and sd+2-tl.-2z 

as the next-to-leading order terms. We get z = 1, Ll = d- 2 + y/2 and g1 = -...!...L
2
r = 
Uoo 

- 2~:, - ~. Hence, for 4 ~ y ~ 5, the self-consistent equation is 

(B.21) 

The implication of (B.21) for numerical computations of the exponent Ll is clear. 

If one starts from y = 4, then one should look for at what value of y the difference 

between r a and rb vanishes. Suppose this happens at Yc, then at Yc and beyond Yc, 

Ll sticks to d- 2 + Yc/2. 
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Appendix C 

Details of Numerical "Work 

In this Appendix, we outline our numerical work for u( s) and Yc· We start from the 

subtracted version of ( 4.11) 

~ ~ -u(s) Re[~Jb(s)]- y1- 4 ~Ja(s)- y1- 4 bo = 0, (C.1) 

where 

1 ( S - qzt ) lk~ ~-~ u -q . 
q,t lk- q( 

[ ~ r:-t2 -(~ k-q)·~ 
b(k, q)v 1- 4- b k, lk- ql v 1- 4 J , 

1 ( S - qzt ) lk: ~-~ u -q . 
q,t lk - qlz 

b(k, q)u(t)qz-~ - b k, ~ u( s ) . [ 
~ - ( ~ k- q) ] 

lk-ql 

We emphasize that in (C.1) the integrals are over ltl < 2 and i(s-qt)fik- qll < 2. For 

convenience, we scale down a factor 2 by settings'= s/2, t' = t/2, and u(x) = u(2x) . 
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Then, for example, we may write 

{ 1
2 

dtb(k,q)J1- t
2
lk- ql-~u ( ~- qt) 

}q -2 4 lk- ql 
= 2Ad-111 dt' tXJ dq 11 dy(1 - y2(;3 qd-1 b( q, y)J1 - t': ft ( s'- qt' ) 

-1 lo -1 (1 - 2qy + q2)2 y'1- 2qy + q2 

= 2Ad-1I(s') 

with Ad_1 = area of unit sphere in d- 1 dimension. 

We convert the infinite integral domain of q into a finite one by performing a 

conformal transformation q --+ 1/ q on R)() dq and find that 

I(s) 11 dt {1 dq11 dy.Jl=?i [K~1)(q,y)ft ( s- qt ) + 
-1 lo -1 y'1 - 2qy + q2 

(2) _ ( t - qs ) ] 
Kd (q, y)u y'l - 2qy + q2 ' 

where we have defined 

(1- y2) d-;3 b(q, y) c. qd-I, 
(1 - 2qy + q2)2 

(1 2)d-3 b(q, y) ~-d-3 -y 2 c.Q 0 

(1- 2qy + q2)2 

The singular point is now located at y = 1 and q = 1, but is subtracted. We may 

also rewrite the other integrals in the same way, then (C.1) becomes 

u(s)B(s)- J1- s2A(s)- vfl- s2 b0 = 0. (C.2) 



110 

Here b0 = 60 (2Ad_ 1)-1 and we have defined 

A(s) j_1

1 
dt fo1 

dq j_1

1 
dyu ( vfl ~ ;q~t+ q2 ) [K(2>(q, y)u(t)- K~3>(q, y)u(s)] + 

u ( vfl ~ ;q~ + q2 ) [K(l>(q, y)u(t)- K~4>(q, y)u(s)], 

B(s) = j 1 

dt f
1

dqj
1 

dyu(vfl s;qt 2 ) [K~1>(q,y)Vl=t2-
-I lo -I - qy + q 

K~3>(q, y)Vl- s2] + u ( yfl ~ ;q:s + q2 ) [K~2)(q, y)Vl=t2- K~4)(q, y)Vl- s2
], 

and 

0 h -b( ) - q2(1-y2) 
Wlt q, y = 1_ 2qy+q2. 

The integration is done by Gaussian quadrature using Gauss-Legendre weights 

and points. Thus J~1 dt JJ dq f~1 dyF(s, t, q, y) is replaced by 

n n n 

L L L w(i)w(j)w(k)F(x(l), x(i), x(j), x(k)), 
i=l j=n1 k=l 

where w(i) are the weights, x(i) reside on the Gauss-Legendre points of ( -1, 1), and 
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n, n 1 are taken to be 50, 26, considering the capacity of our computer system (Sun 

SP ARC 1 + station). 

As a result of discretization, (C.2) becomes a system of nonlinear equations which 

then may be fed into any "standard" subroutine designed for such a problem. Our 

error bar, when finding the root, is always at most 0(10-12) for each individual 

equation. 

The interpolation scheme is linear. For comparison, we also run a computation at 

D. = d + ~ and d = 3, using a quadratic interpolation. The difference is very tiny as 

shown in Figure C-1. Increasing divisions to 100 also has little effect (see Figure C-2). 

It is important to note that ( C.1) is homogeneous in u( s ). Hence, if u( s) is a solution, 

so is .Au(s) for any .A. Similarly, if u(s) and 60 are solutions to (C.2), so are .Au(s) 

and .Ab0 . Numerically, it is convenient to fix the value of u(s) at some particulars. 

(In our work, we normalize u(O) to 1.) Let such a solution be up(s), then the general 

solution is .Aup(s ). Consequently, we have 

A2 [ _ ( w ) ( w ) d+1-a ] U(k,w) = k'). .AuP 2vkz + u1 2vkz x + .... 

Physically, .A is fixed by u0 . To see it, we use the expression 

d 1 a-d-1 A - mo 
uo = -d- A _ U(k,w). 

21/ k w 

(C.3) 
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Assuming that fk<mo w U(k, w) is negligible when mo-+ 0, we have 

where (21r)d Kd is the area of unit sphere in d dimension and we have made use of 

(C.3). Finally, we have 

(C.4) 
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Appendix D 

Large-N Limit of a Cubic Invariant 

In this Appendix, we describe briefly the Iarge-N limit of a model with the following 

cubic trace invariant 

A~n f(N) b(l + m + n) X 

(D.l) 

where the notations will be explained shortly. We shall show that this model selects 

all of the diagrams in the Iarge-N limit and therefore is not useful in considering the 

Iarge-N expansion of the exponents. 

In (D.l), following the trace invariants approach described in Section 2.1, A 1mn is 

constructed from SU(M), where M is an odd integer. l, m, and n are two-dimensional 

vectors represented by (az , ay), where az and ay are integers which may be confined 
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m 

(D.2) 

with the origin (0, 0) excluded. Hence the number of allowed (a,r. ay) is N = M 2 -1. 

8(a) is 1 if (ax mod M, ay mod M) = (0, 0). f(N) is introduced for the purpose of 

normalization and will be chosen below. Clearly, A~n is periodic in any of the indices 

l , m, n with the period Min both x andy directions. Thus the choice of (D.2) is only 

a convention. 

The generators J 1, l = 1, · · ·, N, which define the cubic trace invariant A~n ('"" 

tr( J 1 { Jm, Jn})), are a special basis of su(M) algebra, which is also useful in con-

structing finite modes approximation of 2D Euler's equation(35]. We refer readers to 

references[36] for their explicit matrix representations. Here, for our purpose, knowing 

their explicit forms is not necessary. 

In this model, v 1 transforms according to SU(M) of which the dimension of rep-

resentation is N (see (2.41)). It can be shown that there always exists an irreducible 

representation of SU(M) with the dimension of representation equal to N. (This 

representation is associated with the Young diagram in which the first row has two 

columns, while the rest M-1 rows have one column.) Hence rules (i) and (ii) of 

Chapter 3 are valid here. 

As before, the derivation of Iarge-N is proceeded first by computing 

/2 = L (A~n)2, 
l,m,n 
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which can be reduced to 

[3J(N)]2 L [e 2;/mxn + e-
2;/mxn]2

. 
m,n 

There are two types of terms when we expand out the bracket in the above equation. 

One is the cross term which has a zero phase and is proportional to N 2 after summing 

over n and m. The other terms, e± 
4
;,/ m x n, have non-zero phases. Summing of these 

terms over nand m may be evaluated first by computing more generally the following 

sum 

Sa= L e 2;,/nxa; 
n 

where ax and ay are integers. In the Iarge-N limit (hence M is also large), Sa may 

be estimated by 

where the summations over nx and ny are replaced by the integrals over x = nx/ M 

andy = ny/ M. Clearly, if ax and ay are integers but not equal to multiples of M, then 

the integral vanishes and hence Sa "" 0(1). On the other hand, when (ax mod M, 

ay mod M) = (0, 0), Sa = N. This implies 

Sa= Nb(a) + 0(1). (D.3) 
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The most important consequence of (D.3) is that terms with non-zero phases are 

subdominant to terms with zero phase. For example, in the evaluation of !2, the zero 

phase term is O(N2 ), while the non-zero phase terms are only O(N). This conclusion 

applies equally well to the evaluations of other 2PI diagrams. Consequently, the 

leading order terms for any 2PI diagrams must be these with zero phase. In the rest 

of this Appendix, we shall lay out an argument to establish the existence of such 

terms by explicit constructions. Following this argument, we give a simple example 

to demonstrate the constructions. Then, we show that because of the existence of 

zero phase terms in any 2PI diagrams, all of the 2PI diagrams are O(N). 

For any 2PI diagram, we assign an index to each line obeying the "conservation" 

of indices at each vertex (see Figure D-1). The conservation of indices at each vertex 

originates from the 8 function in (D.1). There are two possible configurations at 

each vertex, i.e, either two indices coming out from the vertex (Figure D-1(a)) or two 

indices combined at the vertex (Figure D-1 (b)). In both cases, l may be substituted 

in terms of m and n; A~n then becomes 

A~n = 3f(N) b(l + m + n) [e2I/mxn + e 2;/nxm] . (D.4) 

Therefore, each vertex contributes either e
2I/mxn or e

2;/nxm. The rules for the con­

struction of a term with zero phase are to choose the cross product ( m x n or n x m) 

clockwise at each vertex. (Counterclockwise is equally good as long as one sticks to 

one of the conventions all the time.) For example, if our convention is clockwise, then 



119 

m+n 

(a) 

m+n 

(b) 

B 
• m-s ,. ............ 

,, I ~ 

m I f ' 
I S \ 
1 n 1 n+s ' A·-:t>--·->--·D 
l C I 
\ I 
\ I ' , ' , '..Pl+D , 

-~--

(c) 
Figure D-1: Two possible configurations: (a) m x n (b) n x m (c) An example for 
the construction of a zero-phase term 
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Figure D-1(a) contributes e
2;/mxn, while Figure D-1(b) contributes e

2
;/nxm. Obvi-

ously, if two indices m and n depart from a vertex somewhere in the diagram, they 

will eventually combine at another vertex. Therefore, according to our rules, the 

phases due tom and nat these two vertices are canceled (m x n + n x m = 0) . This 

concludes our proof for the existence of zero-phase terms. 

As an example, we consider the diagram shown in Figure D-l(c), which is 14 

according the notations of Chapter 3. By using (D.4), its explicit expression is 

m,n,s 

where Bm,n = e~mxn + e 2;/nxm. Note that the contributions of vertices A, B, C, 

and D are Bm,n, Bm-s,s, Bn,s , Bn+s,m-s respectively. Our rules correspond to the 

h B B B d B "b t 2";mxn 2 ";(m s) x s 2";nx case W en m,n, m-s,s, n,s , an n+s,m-s contn U e eM , eM - , eM s, 

e 
2~; (n+s)x(m-s) respectively. One can easily check that this gives a null phase. 

Since there are three free dummy indices, 14 ,...., (3!)4 N 3 . In general, if a 2PI 

diagram has 2k vertices, there are k + 1 free dummy indices. Hence we conclude 

1~2 ,...., (3J) 2k Nk+ 1 . As a result, one may choose (3!)2 N = 1, i.e., f = 
3
JN. Under 

this normalization, 1~2 = O(N) - O(N1 -o:~ ). This gives ai = 0 and hence all of 

the 2PI diagrams survive as N-+ oo. 



121 

References 

[1] (a) A. N. Kolmogorov, C. R. Acad. Sci. U.S.S .R. 30, 301 (1941) ; 32, 16 (1941). 

(b) L.D. Landau and E.M. Lifshitz, Fluid Mechanics (2nd Edition, Pergamon, 

1987), Chap. 3. 

[2] See, e.g., A. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT 

Press, Cambridge, 1975). 

[3] See, e.g., T. S. Lundgren, Phys. Fluids 25, 2193 (1982); L'vov, Phys. Rep. 207, 

1 (1991); Yakhot and Zakharov, unpublished. 

[4] (a) D. Forster, D. R. Nelson, and M . J. Stephen, Phys. Rev. A 16,732 (1977) . 

(b) C. DeDominicis and P. C. Martin, Phys. Rev. A 19, 419 (1979). 

[5] Such coincidences are not so uncommon in critical phenomena: consider, for 

example, the proximity of the critical correlation decay exponent, TJ, to the mean 

field value TJ = 0. Also, the specific heat exponent, a, for the superfiuid transition 

in 4 He is very nearly zero, and the susceptibility exponent, /, for the 3-d Ising 

model is very close to 5/4. One knows in these cases that exponents are not 

simply rational numbers, and there is no simple way of obtaining their values. 



122 

[6] See, e.g., P. Manneville, Dissipative Structures and Weak Turbulence (Academic 

Press, New York, 1990). 

[7] See, e.g., V. Yakhot and S. A. Orszag, J. Sci . Comput. 1, 3 (1986). 

[8] This analogy, as far as we know, originates from an oral presentation by P. C. Ho­

henberg, and was brought into our attention by M. C. Cross (private communi­

cation). 

[9] M. E . Fisher, S. -K. Ma, and B. G. Nickel, Phys. Rev. Lett . 29, 917 (1972). 

[10] See, e.g., K .G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1974). 

[11] J. Sak, Phys. Rev. B 8, 281 (1973); 15, 4344 (1977). 

[12] R. Abe, Prog. Theor. Phys. 49,113 (1973); S.-K. Ma, Phys. Rev. A 7, 2172 

(1973) . 

[13] Results for this thesis have been reported briefly in C. -Y. Mou and P. B. Weich­

man, Phys. Rev. Lett. 70, 1101 (1993). 

[14] R. H. Kraichnan, J . Fluid Mech. 5, 497 (1959). 

[15] See, e.g., R. H. Kraichnan, Phys. Fluids 8, 575 (1965); L'vov, Phys. Rep. 207, 

1 (1991). 

[16] D. R. Nelson and E. Domany, Phys. Rev. B 13, 236 (1976). 



123 

[17] Kraichnan has considered equations of the form (2 .1) in which A~n is randomly 

±1/N, subject only to symmetry under any permutation of indices. In the limit 

N - oo this model yields precisely the results we obtain: the DIA equations 

become exact. For a review, seeR. H. Kraichnan and S. Chen, Physica D 37, 

160 (1989). However, if one contemplates a calculation of higher order corrections 

due to finite N, only when the generalized fluid equations include some higher 

symmetry do we expect the universal exponents to vary continuously with N, 

thereby yielding a systematic expansion. We do not expect Kraichnan 's model 

to respect this requirement . 

[18] We could further compactify the notation, with a general relativistic flavor, using 

.... 
upper and lower indices on D N and defining D 1t•(g) = D 1' 1(g- 1 ), but we wish to 

spare the reader the added confusion. 

[19] P. C. Martin, E . Siggia, and H. Rose, Phys. Rev. A 8, 423 (1973). 

[20] H. Wyld, Ann. Phys. (N.Y.) 14, 143 (1961). 

[21] See, e.g., J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Claren-

don Press, Oxford, 1989), Chap. 16. 

[22] See, e.g., L.D. Landau and E.M. Lifshitz, Quantum Mechanics (3rd Edition, 

Pergamon, 1977), Chaps. 4, 8, and 14. 

(23] (a) H. Georgi, Lie Algebra in Particle Physics (Benjamin Cummings, Reading, 

Mass., 1982). 



124 

(b) D. B. Lichtenberg, Unitary Symmetry and Elementary Particles (2nd Edition, 

Academic Press, New York, 1978). 

[24] D. J. Amit and D. V.I. Roginsky, J. Phys. A 12, 689 (1979), note that the rules 

listed in Figure 3-1 generalize what were used by the above authors. 

[25] R . H. Kraichnan, J. Math. Phys. 2, 124 (1961). 

[26] U. Frisch, M. Lesieur, and A. Brissaud, J. Fluid Mech. 65, 145 (1974) . 

[27] We thank D. R. Nelson for pointing this out to us. 

[28] See, e.g., C. W. Van Atta and W. Y. Chen, J. Fluid Mech. 44, 145, 1970; 

F. Anselmet, F. Gagne, and E. J. Hopfinger , J. Fluid Mech. 140, 63, 1984. 

[29] M. Kardar, G . Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986). 

[30] G. T. Taylor, Proc. Roy. Soc. A164, No.919, 476 (1938). 

[31] See, e.g., H. Tennekes, J . Fluid Mech. 67, 561 (1975); M. Nelkin and M. Tabor, 

Phys. Fluids A2, 81 (1990). 

[32] As it turns out that f = .6.- d = 1/2, any integers are thus multiples of E. The 

complete expansions are then u(s) = 1 + L:~=l Uns-n£ , g(s) = 1 + L:~=l 9nS-n£. 

In principle, one can work out each term in the expansions. 

[33] E. A. Kuznetsov and V. S. L'vov, Physica 2D, 203 (1981). 



125 

[34] A careful treatment would involve introducing a small cutoff around k. Since 

k is not changed under the conformal transformation, this will not change the 

conclusion. 

[35] See, e.g., J . Miller, P. B. Weichman, and M. C. Cross , Phys. Rev. A 45, 2328 

(1992); J. S. Dowker and A. Wolski, Phys. Rev. A 46, 6417 (1992). 

[36] G. 't Hooft, Nucl. Phys. B 138, 1 (1978); D. B . Fairlie and Z. K. Zachos, Phys. 

Lett. B 224, 101 (1989). 

[37] See, e.g., C. W. VanAtta and J. C. Wyngaard, J. Fluid Mech. 72, 673 (1975). 


