Iminium and Enamine Activation:
Methods for Enantioselective Organocatalysis

Thesis by

Sean Pomeroy Brown

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2005

(Defended February 22, 2005)
For

Florence Elizabeth Southall
Acknowledgements

I will always be grateful to Prof. David MacMillan for creating a truly exciting and highly rewarding graduate experience. Dave has taught me a great amount about chemistry and science in general. I admire his creativity and desire for excellence, which have inspired me during my graduate career.

I also appreciate the good-natured environment that the Caltech chemistry faculty and staff have developed. In particular, I would like to thank Prof. Linda Hsieh Wilson, Prof. Nathan Lewis, and Prof. Dennis Dougherty for reading this thesis and sitting on my defense committee.

I feel fortunate to have been a member of the terrific group of highly dedicated scientists in the MacMillan group. The group has tripled in size since I arrived and the current and ex-members are too numerous for me to thank everybody, so I would like to thank the whole MacMillan group past and present. They have provided a tremendously educational atmosphere in which to conduct science. I always felt the freedom to ask questions and state my opinions while still being challenged and encouraged. Most importantly, I am glad that the group also takes intramural sports too seriously. I have enjoyed wins, losses (even though it didn’t look like I did), championships, and the all important chalkboard planning. In particular, I would like to thank the group members that I directly collaborated with on projects.

Finally, I would like to thank my family. My parents, grandmother, and brother have supported me throughout my education (including junior college), and always provided an oasis of good food and video games when I needed a break. I appreciate my parents for allowing me to set my own goals and for encouraging me to attain them. My
“little” brother, Darren, continually inspires me through his patience, humor, and good nature. For my grandmother’s enduring love and kindness I have dedicated this thesis in her memory.

Most importantly, I would like to thank my best friend and wife, Catrine. Without her, I cannot imagine having done any of this. Words cannot express my gratitude for the love, patience, and support she has given me during my graduate work.
Abstract

Further development of an organocatalytic LUMO-lowering activation strategy utilizing chiral imidazolidinone salts has been described. Enantioselective catalytic Friedel-Crafts alkylations of furans and thiophenes have been achieved with good yields and high levels of enantioselectivity. Furthermore, this methodology has been utilized to access enantioenriched D-chiral esters.

The organocatalytic iminium activation strategy has been applied to the development of an enantioselective Mukaiyama-Michael reaction for the construction of the D-butenolide architecture. This reaction is viable due to imidazolidinone catalysts’ ability to partition silyloxyfurans to react through an unprecedented 1,4-addition manifold to D,D-unstaturated aldehydes. This Mukaiyama-Michael methodology has also been extended to provide access to D-amino acids by use of silyloxyoxazoles.

Enamine activation of aldehydes has provided the first direct asymmetric D-oxidation of carbonyls. This proline catalyzed HOMO-raising activation strategy affords high levels of reaction efficiency and enantioselectivity. Moreover, the function of proline solubility has been investigated to explain an unusual kinetic and enantioselective profile.

The imidazolidinone framework, developed for iminium activation, was also demonstrated to participate in enamine activation of aldehydes to perform the enantioselective D-chlorination of aldehydes. A first generation catalyst provided good yields and high enantioselectivities at −30 °C. Design of a second generation catalyst afforded high levels of reaction efficiency and enantioselectivity at ambient temperature.
Table of Contents

Acknowledgements .. iv
Abstract ... vi
Table of Contents .. vii
List of Schemes ... xi
List of Figures ... xii
List of Tables .. xiii
Abbreviations .. xv

Chapter 1 Enantioselective Organocatalysis
I. Introduction .. 1
II. Development of a General Approach to Enantioselective Organocatalysis
 LUMO-Lowering Catalysis ... 4
 Chiral Imidazolidinone Catalysts ... 5
 HOMO-Raising Catalysis .. 6
III. Summary of Thesis Research ... 6
IV. References ... 8

Chapter 2 Enantioselective Organocatalytic Friedel-Crafts Alkylation of Furans
I. Introduction ... 11
 Enantioselective Friedel-Crafts Alkylations ... 11
 Organocatalysis ... 12
II. Results and Discussion

First Generation Imidazolidinone Catalyst .. 12
Second Generation Imidazolidinone Catalyst .. 18

III. Conclusion

.. 21

IV. Experimental Section

General Information ... 23
Procedures ... 24
Stereochemical Analysis .. 34

V. References

.. 39

Chapter 3 Enantioselective Organocatalytic Mukaiyama-Michael Reaction

I. Introduction .. 40
The βButenolide Architecture .. 40
The Mukaiyama-Michael Reaction ... 41
Enantioselective Catalytic Mukaiyama-Michael Reactions 41
Mukaiyama-Michael vs. Mukaiyama-Aldol .. 42
Organocatalysis of the Michael Reaction ... 43
Iminium Catalyzed Michael Reactions ... 44

II. Results and Discussion .. 44
Organocatalytic Access to the βButenolide Architecture 44
Organocatalytic Access to β-amino acids ... 48

III. Conclusion ... 50

IV. Experimental Section ... 51
General Information

Procedures .. 52

V. References

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Enantioselective Organocatalytic \mathcal{O}-Oxidation of Aldehydes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction ... 66</td>
</tr>
<tr>
<td></td>
<td>\mathcal{O}-Oxidation of Carbonyls ... 66</td>
</tr>
<tr>
<td></td>
<td>Enantioselective Catalytic Approaches to the \mathcal{O}-Oxidation of Carbonyls 67</td>
</tr>
<tr>
<td></td>
<td>Proline Catalyzed Reactions .. 68</td>
</tr>
<tr>
<td>II.</td>
<td>Results and Discussion .. 69</td>
</tr>
<tr>
<td></td>
<td>Organocatalyzed \mathcal{O}-Oxidation of Carbonyls 69</td>
</tr>
<tr>
<td></td>
<td>Other Approaches to Organocatalyzed \mathcal{O}-Oxidation of Carbonyls 73</td>
</tr>
<tr>
<td></td>
<td>Blackmond’s \mathcal{O}-Oxidation Mechanism 74</td>
</tr>
<tr>
<td></td>
<td>The Role of Proline Solubility ... 77</td>
</tr>
<tr>
<td></td>
<td>Soluble Proline Mimics .. 79</td>
</tr>
<tr>
<td>III.</td>
<td>Conclusion ... 80</td>
</tr>
<tr>
<td>IV.</td>
<td>Experimental Section ... 82</td>
</tr>
<tr>
<td></td>
<td>General Information .. 82</td>
</tr>
<tr>
<td></td>
<td>Procedures ... 83</td>
</tr>
<tr>
<td></td>
<td>Stereochemical Analysis ... 91</td>
</tr>
<tr>
<td></td>
<td>Procedure for Linearity Experiment .. 92</td>
</tr>
<tr>
<td></td>
<td>Kinetics Experiment .. 93</td>
</tr>
<tr>
<td></td>
<td>Visual Comparison Experiment ... 93</td>
</tr>
</tbody>
</table>
Chapter 5 Enantioselective Organocatalytic α-Chlorination of Aldehydes

I. Introduction .. 98

The Utility of Enantioenriched Halogen Stereocenters ... 98

Asymmetric Construction of Halogen Stereocenters ... 98

Enantioselective Catalytic Construction of Halogen Stereocenters 99

Imidazolidinone Catalyzed Enamine Activation ... 100

II. Results and Discussion .. 100

First Generation Enantioselective Catalytic α-Chlorination 100

Development of a Room Temperature Enantioselective α-Chlorination 105

Second Generation Enantioselective Catalytic α-Chlorination 108

Enantioselective Single operation Construction of Terminal Epoxides 111

III. Conclusion ... 113

IV. Experimental Section ... 115

General Information ... 115

Procedures .. 116

Stereochemical Analysis ... 123

V. References .. 125

Appendix 1. X-Ray Crystallographic Data for (2S,3R)-5-(N-Methyl-N-((S)-1-
phenylethyl)amino)-2-(benzamido)-2,3-dimethylpentanoic

Acid·Hydrochloride .. 128
List of Schemes

Chapter 1 Enantioselective Organocatalysis
Scheme 1. Lewis acid catalysis ... 4

Chapter 2 Enantioselective Organocatalytic Friedel-Crafts Alkylation of Furans
Scheme 1. Catalytic cycle of the organocatalytic Friedel-Crafts alkylation of furans ... 15

Chapter 3 Enantioselective Organocatalytic Mukaiyama-Michael Reaction
Scheme 1. Butenolide containing natural products 40
Scheme 2. Catalytic cycle of the organocatalyzed Mukaiyama-Michael reaction ... 45

Chapter 4 Enantioselective Organocatalytic α-Oxidation of Aldehydes
Scheme 1. Strategies for the preparation of α-oxy carbonyl compounds 67

Chapter 5 Enantioselective Organocatalytic α-Chlorination of Aldehydes
Scheme 1. Pseudo C₂ symmetry ... 109
Scheme 2. Increased catalyst steric bulk leads to product configurational stability ... 109
List of Figures

Chapter 2 Enantioselective Organocatalytic Friedel-Crafts Alkylation of Furans

Figure 1. Mayr’s study of the relative reactivity of nucleophilic \square systems 13
Figure 1. Computation model of amine catalysts... 19
Figure 1. Computation model of catalysts iminium ions................................. 19

Chapter 4 Enantioselective Organocatalytic \square-Oxidation of Aldehydes

Figure 1. Blackmond’s reaction calorimetry data.. 74
Figure 2. Blackmond’s non-linear relationship data.. 75
Figure 3. Enantiomeric excess of the product 6 vs. the enantiomeric excess of proline (5) ... 77
Figure 4. The percent initial rate of homogeneous reaction as a function of time... 78
Figure 5. Visual comparison of the homogeneous and heterogeneous reactions... 79

Chapter 5 Enantioselective Organocatalytic \square-Chlorination of Aldehydes

Figure 1. Secondary amine catalyst architecture... 102
Figure 2. Proposed transition states for organocatalyzed \square-chlorination... 102
Figure 3. Exposure of (S)-2-chlorooctanal (13) to catalyst 11................. 107
Figure 4. Exposure of (S)-2-chlorooctanal (13) to catalyst 21.................. 111
List of Tables

Chapter 2 Enantioselective Organocatalytic Friedel-Crafts Alkylation of Furans

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>The effect of solvent on the alkylation of 2-methylfuran</td>
<td>14</td>
</tr>
<tr>
<td>Table 2</td>
<td>The effect of imidazolidone architecture on the alkylation of 2-methylfuran</td>
<td>14</td>
</tr>
<tr>
<td>Table 3</td>
<td>The effect of acid cocatalyst on the alkylation of 2-methylfuran</td>
<td>15</td>
</tr>
<tr>
<td>Table 4</td>
<td>The effect of water on the alkylation of 2-methylfuran</td>
<td>16</td>
</tr>
<tr>
<td>Table 5</td>
<td>The effect of non-polar solvents on the alkylation of 2-methylfuran</td>
<td>17</td>
</tr>
<tr>
<td>Table 6</td>
<td>The effect of cocatalyst on the alkylation of 2-methoxymethylfuran</td>
<td>18</td>
</tr>
<tr>
<td>Table 7</td>
<td>Organocatalyzed conjugate addition of furans and thiophenes</td>
<td>20</td>
</tr>
<tr>
<td>Table 8</td>
<td>Organocatalyzed conjugate addition of furans to CH_2-unsaturated aldehydes</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 3 Enantioselective Organocatalytic Mukaiyama-Michael Reaction

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>The effect of protect nucleophiles on the organocatalyzed Mukaiyama-Michael</td>
<td>46</td>
</tr>
<tr>
<td>Table 2</td>
<td>The effect of acid cocatalyst on the organocatalyzed Mukaiyama-Michael</td>
<td>46</td>
</tr>
<tr>
<td>Table 3</td>
<td>Organocatalyzed Mukaiyama-Michael: aldehyde substrate scope</td>
<td>47</td>
</tr>
</tbody>
</table>
Table 4. Organocatalyzed Mukaiyama-Michael: silyloxy furan substrate scope ... 48

Chapter 4 Enantioselective Organocatalytic α-Oxidation of Aldehydes

Table 1. Effect of Solvent on the Asymmetric α-Oxyamination.............. 70
Table 2. Effect of catalyst loading on organocatalyzed α-oxidation 71
Table 3. Enantioselective α-oxyamination: substrate scope 72

Chapter 5 Enantioselective Organocatalytic α-Chlorination of Aldehydes

Table 1. Effect of catalyst and chlorinating reagent on α-chlorination 102
Table 2. Effect of solvent on the organocatalyzed α-chlorination 103
Table 3. Enantioselective α-chlorination: substrate scope....................... 104
Table 4. Ambient temperature α-chlorination utilizing catalyst 11......... 106
Table 5. Enantioselective α-chlorination: substrate scope....................... 110
Table 6. Effect of solvent on the organocatalyzed α-chlorination 112
Table 7. Enantioselective α-chlorination: substrate scope....................... 113
Abbreviations

Cbz: Benzyloxycarbonyl
CI: Chemical Ionization
CNAcOH: Cyanoacetic acid
DBA: Dibromoacetic acid
DCA: Dichloroacetic acid
DFA: Difluoroacetic acid
DME: 1,2-Dimethoxyethane
DMSO: Dimethylsulfonyl Oxide
DNBA: 2,4-Dinitrobenzoic acid
dr: diastereomeric ratio
ee: Enantiomeric excess
EI: Electrospray Ionization
EtOAc: Ethyl Acetate
FAB: Fast Atom Bombardment ionization
GLC: Gas Liquid Chromatography
h: Hour
HOAc: Acetic acid
HOMO: Highest occupied molecular orbital
HPLC: High performance liquid chromatography
HRMS: High resolution mass spectroscopy
Hz: Hertz
IR: infrared
LUMO: Lowest unoccupied molecular orbital

M: Molar

m: meta

mg: milligram

min: minute

mL: milliliter

mmol: millimole

MsOH: Methanesulfonic acid

mT: millitorr

NMR: Nuclear magnetic resonance spectroscopy

o: ortho

p: para

ppm: Parts per million

PTSA: p-Toluene sulfonic acid

TBS: tert-Butyldimethylsilyl

tert: tertiary

TIPS: Triisopropylsilyl

TMS: Trimethylsilyl

TCA: Trichloroacetic acid

TfOH: Trifluoromethanesulfonic acid

THF: Tetrahydrofuran

TLC: Thin layer chromatography

XRD: X-ray diffraction