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ABSTRACT 

Lattice models based upon empirical two- bod y potent i al func tiuns 

are used to predict the elastic constants of 11mantle -candidate 11 min e rals 

at high pressures for direct comparison with seismic velocity profiles. 

The method of long waves, originally formulate d by Born and his co ­

workers, has been applied to solids in the rock salt, spinel, and rutile 

structures. Calculations for NaCl (rock salt), MgO (rock salt), Al2Mg0
4 

(spinel), and Ti0
2 

(rutile) are compared with recent high-pre cision 

ultrasonic data. The effect of van der Waals forces and second-neighbor 

anion-anion interactions is shown to be small. The NaCl and MgO data 

are best fit with an exponential cation-anion repulsive potential. The 

elastic constants of MgO cannot be well fit unless the ionicity (valence 

product) is lowe red to 0. 7 of its full ionic value. For NaCl this is not 

required. The shear instability (C44 = 0) is predicted for both NaCl and 

MgO, but the exact pressure is sensitive to the details of the potential. 

Using the Mg-Q two-body potential found for periclase, Al2Mg0
4 

spinel was investigated using only two pieces of input datum, K and j5 . 

Although the predicted elastic constants were in good agreement with the 

data, the pressure derivatives were not. The discrepancy is caused by 

a large contribution from the internal deformations which occur in all 

non- centro symmetric ~trudures. The same re s u l t was found for Ti02 . A 

relaxation of the rigid-ion and central- force approxirna ti on1:1 may ~.:or n:ct 

this discrepancy. 
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Using the Mg--0 bond parameters found for periclase and the 

Si-Q bond parameters found from K and f of stishovite, the elastic 

properties of the high-pressure polymorph ~ -Mg
2
Si0

4 
spinel were 

predicted. The predicted equilibrium density was in agreement with 

previous experimental extrapolations; the predicted 1).. parameter was 

in agreement with prior estimates based on bond-length arguments, and 

the predicted bulk modulus was in agreement with prior systematics 

estimates. However, the internal deformation contribution again 

dominated the pressure derivatives and caused both the predicted V 
p 

and V to be lower than the corresponding seismic velocities in the 
s 

"spinel region" of the mantle. A comparison of MgO (rock salt) and 

Si02 (stishovite) with the seismic profiles for the "post-spinel '' l owe r 

mantle shows a discrepancy in both absolute value and gradient. Unlike 

the silicate spinel, this is not obviously caused by the internal deforma-

tions. The lattice models predict that both Ti0
2 

and stishovite will 

become unstable in shear (1/2 (C 11 - c 12 ) = 0) at high pressure. 

Other methods of using laboratory data to interpret seismic 

profiles are reviewed. Birch ' s formulation of isotropic finite strain 

theory is corrected and used to test the homogeneity and adiabaticity 

of the lower mantle of recent earth-inversion models. Systematics are 

shown to be insufficient to treat the shear properties. Although lattice 

models are limited by empirical approximations to the complex bonding 

forces, the empiricism is on a more basic level than that of v e locity 

density systematics previously used to interpret seismic profiles. By 

using lattice models, one gains the natural dependence of both the com-

pressional and shear properties on the crystal structure. 
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I. INTRODUCTION 

One of the primary objectives of solid earth geophysics is the 

determination of the pressure, temperature, composition, and crystal 

structure of the earth as a function of depth. The solution of this 

problem requires input from a wide range of disciplines. The seismol-

ogist provides the most direct data. By fitting the observed travel time 

of compressional waves, dispersion of surface waves, free oscillation 

spectrum, mass, and moment of inertia of the earth, he attempts to 

find the best distribution of compressional wave velocity V , shear 
p 

wave velocity Vs' and density f as a function of depth. The interpre-

tation of these material constants in terms of temperature , pressure, 

composition, and phase requires the skills of a materials scientist. 

The ultimate experiment which such a materials scientist could 

perform would be to reproduce the temperature and pressure conditions 

of the earth 1 s interior in his laboratory. If he could, at the same time, 

measure the compressional and shear wave velocities and density of 

"mantle- candidate 11 mineral assemblages, he could effect a direct com-

parison with the seismically determined profiles. 

Unfortunately, such an approach is not yet technologically feasible. 

The only experimental methods capable of reproducing the temperature 

and pressure conditions throughout the entire earth are the shock-wave 

techniques. Although the shock-wave method has yielded the only 

pres sure-volume information available for many of the high- pres sure 

polymorphs of oxides and silicates (Ahrens, Anderson, and Ringwood, 
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1969), the pressure-volume information is neither adiabatic nor iso-

thermal, but follows a thermodynamic path known as a Hugoniot. Even 

if one knew how to accurately correct these data to an adiabat or an 

isotherm, which one doesn't, this method is presently capable of 

yielding only the volume dependence of the free energy, i.e., the 

pressure, the bulk modulus, and the pressure derivatives of the bulk 

modulus to all orders. No technique has yet been perfected to measure 

the elastic wave velocities behind a shock front in solids. Until this is 

achieved, only the density and the combination CI:> = V 
2 

- (4/ 3)V 
2 = Kif 

p s 

can be compared to the seismic velocity profiles. Although this method 

has been successfully pursued by Anderson (1967), it does not make full 

use of the seismic data since V and V and f all carry information 
p s 

about the physical constitution of the mantle. 

Static compression experiments are similarly limited in that 

they yield only the volume dependence of the internal energy and not 

the elastic constants . Although the compression in such cells is iso-

thermal, these experiments have presently been limited to room 

temperature and pressure to -v 200 kbar, which corresponds to an 

approximate depth of 500 km. 

Of all the techniques presently used, only ultrasonics gives 

all the information necessary for a direct comparison with seismically 

determined velocities and density, but unfortunately these experiments 

have been limited to pressures of 10-15 kbar or depths of about 

50 km. For the upper mantle, above the 400 km discontinuity, 

such information is very useful. The theory of finite strain, 
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which will be discussed in Chapter III, can be used to extrapolate these 

data from the relatively low-pressure laboratory regime to the high 

pressures of the earth's upper mantle. 

Below 400 km, the situation is quite diffe rent. The seismic 

velocity profiles show two major discontinuities, one at about 400 km 

and one at about 600 km, which are presumably evidence of solid- solid 

phase changes of the olivines, pyroxenes, and garnets to more close-

packed, high-pressure forms. Even though the olivine-spinel phase 

change has been directly studied in the x-ray cells, and the spinel -

post-spinel change has been observed for germanate analogs and the 

fayalite end member of the olivine series, no elasticity data are avail-

able for these high-pressure silicate modifications, and finite strain th~ory 

is therefore of no use. 

What is needed is some method which is capable of not only 

extrapolating elastic constants, but also of predicting them. Previous 

prediction methods have involved the scaling of V , V , or- some com­
p s 

bination like the seismic parameter <±> = V 
2 

- (4/ 3)V 
2 

as a function of 
p s 

density. These scaling laws will be reviewed in the next chapter. 

Besides being purely empirical, they contain the assumption that 

pressure changes the elastic constants in the same way as composition, 

that is, through the density. 

It is the purpose of this thesis to develop a more physically 

sound method of predicting and extrapolating the elastic velocities and 

density of mantle-candidate minerals for comparison with the seismically 

determined profiles in the mantle. No claim of originality is made for 
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the method; it is the well-known method of long waves pioneered by 

Born and his co-workers in the 1920's and improved upon ever since . 

What is new is its application to complex crystals and to the problem 

of the constitution of the earth's mantle. 

Basically, the approach i s to use all the data available for a 

given mineral, plus data on similar minerals,to determine the two-body 

interatomic potentials for each of the various bonds. Once these two­

body potentials are fixed, the density and all the elastic constants may 

be calculated as a function of pressure. 

The exact nature of these interatomic forces are e xtremely 

complicated and are only partially understood on the quantum mechanical 

level. They are many bodied in nature and thus depend on the angles 

between atoms as well as on their separation. The claim in this work 

is not to make any exact calculation of these interactions, but only to 

find the most physically reasonable empirical approximation to them. 

It is important to point out that although the lattice models are limited 

by empirical approximations to the complex bonding forces, the 

empiricism is on a more basic level than in velocity-density systematics 

previously used to interpret seismic profiles. By using lattice models 

one gains the natural dependence of both compressional and shear 

properties on the crystal structure. One is no longer constrained to 

the bulk modulus, but can make full use of both the compressional and 

shear velocities. 

Following a brief discussion of the definition and meaning of 

elastic constants, the method of long waves is developed in detail in 
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Chapter III. In Chapter IV the interatomic potential is discussed. 

Chapter V applies the method to the rock salt, spinel, and rutile 

structures. The objective is to use the precise ultrasonic data to see 

if the input of only two parameters, K and j3 , are enou.~h to predict 

the elastic constants and their pressure derivatives. The assumption 

that the bond parameters found for these compounds which are stable 

at P = 0 also describe the bonds in high- pressure modifications allows 

one to predict the elastic constants and density of these high-pressure 

structures. 'd -Mg2Si0 
4 

spinel is treated as an example in Chapter VI. 

The two assumptions of the model developed here which most 

severely limit its geophysical usefulness are seen to be the central 

fo rce approximation and the rigid-ion approximation. While relaxation 

of the former assumption requires a deeper quantum mechanical under-

standing and may require more input parameters, the latter assumption 

can be relaxed knowing only the dipolarizability and quadrupolarizability 

of the anions and should be the next improvement. 

In lieu of direct high-temperature, high-pressure data, these 

lattice models represent the most physically reasonable framework 

through which available laboratory data may be used to predict V , V , 
p s 

and f of mantle-candidate minerals for comparison with the seismic 

profiles. 
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II. SOME PREVIOUS ATTEMPTS TO USE LABORATORY DATA 

TO INTERPRET SEISMIC VELOCITY AND DENSITY PROFILES 

2-1. Isotropic Finite Strain Theories 

Birch (1938) applied Murnaghan's (1937) finite strain theory to the 

case of an isotropic solid under hydrostatic pressure arriving at the fol-

lowing expressions for the velocities and density as a function of com-

pression at constant temperature (or along an adiabat) . 

Vr ~ i ( •-;.t )I"- LA• + '-JA• -E. (II Ao + 10).1.) J t (2-1-1) 

'4· f (i~:t{''[_;«.+ E-(3A.+ 4-J<·lJ t (2-1-2) 

p .. - L(I-LE.)!Y'z € (3A-o +Z_Po)J (2-1-3) 

In these expressions t. is the Eulerian measure of the hydrostatic 

strain and is related to the density by f>/fo = (1 - 2E.. )
3

/
2

. 

In a following paper, Birch ( 1939) used these equations to make 

the first interpretation of the seismic velocity and density profiles in 

terms of composition. Assuming a two layer mantle with a discontinuity 

at 474 km, he found that V , V , and ? in the upper layer were in 
p s 

excellent agreement with Jeffrey's (1937) observed values for input 

':I 11 2 11 2 
parameters Ao= 6. 81 x 10 dynes/em , )A-o = 6. 065 x 10 dynes/em • 

and fo = 3.28 gm/cm3 . In the region beginning at 474 km, Birch's fit 

':I 1 11 I 2 II I 2 f gave /\. 0 = 12.12 x 0 dynes em, )Ao"'8.91'1. 10 dynes em, and o= 

3. 91 gm/cm3, but the agreement with Jeffrey ' s observed profile was 
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not as good. 

This failure to fit the lower mantle was partly a r e sult of poor 

seismological data (the 600 km discontinuity had not been dis c ove r e d) 

and partly a result of Birch ' s incomplete formulation of the finite strain 

theory. Sammis, et al. , (1970) pointed out that Birch' s equations (2-1 - 1) 

and (2-1 - 2) should be written 

(2 -1- 4) 

(2-1-5) 

The coefficients ). , m, and n are t hird-orde r coefficients in the 

expansion of the elastic energy density in powers of the strain invarients. 

The three invarients o f the Eulerian strain tensor are given by 

I -:: E. .. 
I <.1 

(2-1-7) 

The derivation of equations (2-1-4) and (2 - 1- 5) is identical to 

Birch's (1938) derivation of (2-1-1) and (2-1-2) in every de tail except 

one: the expansion of the strain energy dens i ty is not truncated after the 

second-order terms, but is retained to third-order in E. as written. 

Following Birch, the compressional and shear velocities in an 

isotropi c material subjected to a finite hydrostatic strain are 
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(2-1-8) 

where 

C-= f[-z ~~ - ( I+Z~) ~<1?._ - E: .;J¢ J 
t ~:I:z. ~I3 . 

Here E is the finite hydrostatic strain (E. = - o<- o<z.l2, fifo= (1- 2E )312 

and 1 I (1 + c:J..) is the factor by which each line in the crystal is hydro-

statically shortened. 

By taking the indicated partial derivatives of cp and arranging the 

terms in ascending powers of E. , we get 

V 2 __ )
5!2. r • ( '\ ) 

~ (I- .ZE. L f\o-t" G)Lo - €. \ l f\o + 10 )Ao - l8J.- 4;m 

-f:-\ lll..l+351'YY\ +31Y1..)] / po 
l 5/2.- ( \ Vs =' ( 1-ZE.) LZp.o- E. ~"o+8yo4-3trn -t-"1'1\.; 

(2-1-10) 

- E 2. (54 ~ + \ l. ffll J] J Z fo 

Because of the differentiation in the calculation of A and C, the third-

order coefficients i, m, and n appear with ).. 0 and )Ao to the first order 

in E. • For the same reason, the coefficients of the E..7.. terms are 

incomplete. The complete terms would contain fourth-order constants 

ignored in the truncation of equation (2-1-6) after the €
3 

terms. For 

this reason, these equations should be used in the form given by equations 

(2-1-4) and (2-1-5). By truncating the free energy expansion after the 
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second-order terms, Birch got only the }\
0 

and )Ao contribution to the 

E. terms. Hughes and Kelly (1953) derived equations analogous to (2-1-10) 

in Lagrangian coordinates having the same form; i.e., the third-order 

coefficients appear to first order in the Lagrangian hydrostatic strain At. 

Upon computing the bulk modulus K/ ~ = V~ - (4/ 3)V~ by using 

(2-1-10), we obtain 

5/z.. 
K-= C\-2.€.) [k .. - E:.(7Ko-\8.2...-C:.1'Ni. -~/'("\) 

3 

which is identical to the expression given by Birch ( 1952): 

(2-1-11) 

(2-1-12) 

where f = - € and S = (181 + 6m + 2/3n)/4K . Note that the f
2 

term 
0 

in (2 - 1-12) is incomplete, being composed of the incomplete E 
2 

terms 

in the velocities . 

The third-order constants, J.. , m, and n, may be interpreted in 

terms of the pressure derivatives of the velocity. By using the expres-

sion for the pressure given by Birch (1952) 

(2-1-13) 

and equations (2-1-10) for the velocities , the pressure derivatives may 

be expressed as 

(I dYp) I 13/.0 + 14...Uo -leJ..- 4J'(Y'\ -
\Jp .;)P o "Ko AoT 2}Ao 

(2-1-14) 

(I ~~sJ = 3Ao + ~.M.o + 3h!Y'f\ + ,!.2/Y\ 

Vs .JP o G;, Ko Mo (2-1-15) 
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Given only a hydrostatic finite strain, it is not possible to dete r-

mine J. , m, and n individually, but only the combinations 

(2-1-16) 

which appear in the velocity derivatives. Since 

4- (2-1-17) 

and 

5= (2-1-18) 

equation (2-1-17) is linearly dependent on equations (2-1-3) and (2-1-4). 

For most geophysical purposes , however, ) and 11_ are sufficient. 

These parameters are given in Table 2 - 1-1 for a number of solids. 

The most serious objection to finite strain theory is that one is 

never certain as to the convergence of the expressions for the velocities 

(2-1-1 0) or the bulk modulus (2-1-12). The coefficient of the E term is 

typically an order of magnitude larger than the leading term, and the 

coefficient of the E.z term, although incomplete, appears to be an order 

of magnitude larger still. Therefore, these expressions are probably 

insufficient for E '7 0.1, which is roughly the strain at the base of the 

mantle. For self- consistent analyses, the E.'l. terms, being incomplete, 

should not be retained. The expressions should be used in the form 
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(2-1-19} 

By fitting equations (2-1-19) to the seismic velocity and density 

profiles, it is possible to evaluate )...0 , )A.o. fo ' !Jand '1tl_ for any homo­

geneous region of the earth having an adiabatic temperature gradient. 

Jordan, et al., (1971} have made this fit for the following velocity and 

density profiles (in the lower mantle} 

( 1} Birch I ( 19~+) 

(2} Birch II (/9"+} 

(3} Pyrolite (Clark and Ringwood, 1964) 

(4} Eclogite (Clark and Ringwood, 1964) 

(5} CIT 435002 (Jordan and Anderson, 1971) 

(6} CIT 435003 (Jordan and Anderson, 1971}. 

The Birc.h :rr model and the two CIT models have been superimpose d 

in Figure 2-1-1. The major difference between these profiles is the 

low density gradient of the CIT models in the lower mantle. 

In addition to equations (2-1-19), equations of the form 

(2-1-20} 
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were also fit to the above models and the parameters d.. , 13, and o 

found. Equations (2 - 1- 20) are perfectly valid in form, but the d... , 13, 

and o pa rameters cannot be interpreted in terms of zero pressure 

velocity derivatives unless the E:.
4 

terms a r e r etained in the expansion 

of cp . 

It is in fact possible to add any number of terms with increasing 

powers of E. . The important question is how many terms do we need to 

define the low order parameters; i.e., do the coefficients in the expan-

sion become smaller at a faster rate than E. ? It is a basic problem of 

finite strain expansions that this question cannot be answered. The 

questi on we can answer in this type of analys is is h ow many orders are 

needed to fit a given V , V set of data within some a cceptable r. m. s. 
p s 

limit. 

In Figure 2-1-2 the total r.m.s. discrepancy between the Birch II 

model and finite strain fits is plotted as a function of the o rder of t he 

finite strain theory. It can be seen that while the fit is significantly 

improved by going from the incomplete first-order fo rmulation given by 

Birch,(2-l-l through 2-l-3),t.o'\hecomplete fi rst-order fit (2 - 1-1 9), it is 

not significantly improved by going to the complete second- order (2 - 1- 20). 

This is true of all the models. 

Table 2-1-2 gives the parameters for the six models fit. The 

Birch I and II, pyrolite, and eclogite models were well fit by the second -

order theory and gave "physically reasonable " zero-order parameters . 

The inversion models CIT 435002 and CIT 435003 could be fit, but did 

not yield " reasonable" zero-pressure parameters as will be discussed 
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below. 

It is not surprising that the two Birch models and the Clark-

Ringwood eclogite and pyrolite models are well fit by the finite strain 

since the assumptions of homogeneity and adiabaticity are built into the 

Adams-Williamson inversion used to compute them . . However, the recent 

inversion models CIT 435002 and CIT 435003 contain no implicit relations 

between V , V , and /) . Both fit the seismic data equally well. Our 
p s I 

inability to fit the lower mantle of these models with physically reason-

able zero-pres sure parameters implies that the region under study is 

either anisotropic, inhomogeneous, or non-adiabatic. These possibilities 

will now ll>e investigated. 

There is seismological evidence that the lower mantle is inhomo-

geneous. Johnson (1969) gives evidence for the following discontinuities 

Depth 6.V p/V p 

830 0. 0045 

1000 0.0079 

1230 0.0059 

1540 0.0065 

1910 0.0032 

Assuming A V /V ~ .D. V /V as observed at the major discontinuities, 
s s p p 

it is possible to estimate the change in the seismic parameter D.~/CD at 

each discontinuity. Since df/dP = 1/~ , each observed [}~ has the 

effect of decreasing df I dP relative to the homo~eneous case, as illustrated 

in Figure 2-1-3. Correcting for the approximate ~change associated 
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with Johnson's obs e rved V p discontinuities increas e s the slope of ,;O(z ) 

3 ~ 
by "'0. 07 gm/ em in the region 800- 3 000 km. By as suming f = A cp , 

the density j umps associated with the ~ jumps, r- =51 may be 

removed. The net effect in the region 800-3000 km is to decrease the 

3 
slope of p (z) by ""'"' 0. 09 gm/ em . Hence removal of the obs erved 

jumps has two cancelling effects on the dens ity gradient which leave 

;0 (z) approximately unchanged. 

The effect of a superadiabatic temperatu re g radient can be approx-

imately estimated as outlined in Table 2 - 1- 3 . The effect of correcting 

the profile CIT 435002 for a superadiabati c gradient ranging from 0 to 

0. 5 oC/ km is illustrated in Figure 2-1-4. In this figure the zero-pressure 

~ and ~ found from the fit parameters (Table 2 - 1-2) are superimposed 

on the estimated ? -~ trajectories for olivines, pyroxenes , and garnets 

given by Anderson and Jordan (1970). It can be seen that for a super-

adiabatic gradient of 0.2-0.4°C/km the model CIT 435002 can be fit 

with " reasonable 11 parameters. 

The conclusion is that while the two inversion models 435002 and 

435003 cannot be fit by isotropic finite strain theory with " reasonable " 

zero-pressure parameters, the more nearly adiabatic of the two, 435002, 

yields reasonable parameters when corrected for a superadiabatic of 

"'-'0.2-0.4°C/km. The effect of the observed inhomogeneity is minimal. 

It should be pointed out that this type of a finite strain analysis 

is as far as one can go in an interpretation of the velocity and dens i ty 

profiles without assuming a compositional model. This analysis gives 

the velocities and their pressure derivates at P = 0 and some high T on 

the adiabat which can then be compared to lab data . In the more 
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sophisticated finite strain models (Leibfried and Ludwig, 1961) o r the 

lattice model calculations pre s ented in the following chapters, one must 

assume a compositional model, the n predict its e lastic prope rtie s at 

mantle T, P conditions for a direct c omparison with the s eismic profiles . 

2-2. The Systematics Approac h 

The next step in the use of lab data to interpret seismic velocity 

profiles was initiated by Birch's (196la) observation that the 

compressional-wave velocity was an approximate linear function of the 

density and mean atomic weight M for some 250 specimens of rock. He 

put this relation in the form 

f = A l M) + B Vp . (2 -2- 1) 

Quoting Birch, "It is tempting to infer that if the dens ity is changed by 

compression, for a given substance , the velocity varie s in much the 

same way with the density as it does for these structural and compositiona l 

changes; in other words, that lines of constant M show the relation of 

velocity to density for compression of any material whose points fall on 

this line. " Most of the early (pre-1965) geophysical ultrasonic m e asure -

ments were made on rocks to 10 kilobars. The purpose of the pressure 

was not to allow the measurement of pressure derivatives, but rathe r to 

remove the effects of porosity. The motivation of the ultrasonic work was 

to define the constants A and Bin equation (2-2-l). 

If one succumbs to "Birch's temptation" and assumes that t ern-

perature and pressure have the same effect on V as the change in 
p 
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composition, then equation (2-2 - 1) becomes very usefu l in t he inte rpre­

tation of seismic profiles. Birch (196 l b) used relati on (2-2-1) to s how 

that many previous velocity and density profiles were not self- con s i s tent 

in that assumed "homogeneous " regions corresponded to lines of 

changing M on the velocity-density Birch diagrams . On ly Bullen •s (155(.,) 

model A was self-consistent, and was very similar to an M = constant 

model throughout the mantle. 

The first attempt to infer compo siti on was made by Birch ( 1964} . 

He used (2-2 - 1) to obtain the density from the velocit ies through the 

transition zone, but then used the Adams - Williamson procedure to 

obtain the density of the lower mantle. He could thu s use equation (2- 2 -1} 

to infer M of the lower mantle. 

Like all purely empirical relations, Birch 1 s h ypothesis has its 

exceptions. Simmon~ ( 1964a) pointed out that calcium- rich rocks did not 

seem to follow the trend for other rocks. and sugge s ted the following form 

for equation (2 - 2-1). 

(2-2-2) 

In this expression the bracketed quantity is the weight-fracti on of CaO. 

Simmons (1964b)measured the shear wave velocity in m any of the 

rock specimens used by Birch (1960) in hi s compression wave study . 

Apparently this data could not be expressed in the form: 

V5 = ACP\) + Bp 
(2-2- 3} 

since no follow-up paper was published on the systematics. 
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The next major step in the evolution of systematic s was 

Anderson's (1967r:~) " seismic equation of state ", a simplified form of 

which may be written (for small compressions) 

(2-2-4) 

In this equation A and n are constants and cp is the seismic parameter 

v2 - 4
3 v

2 
which is also equal to K If . Although equation (2-2-4) is 

p s s 

essentially an empirical relationship in the spirit of Birch ' s hypo the sis 

(2-2-1) regarding the compressional velocities, it has the following 

advantages: 

(1) The functional form of (2-2-4) is consistent with an 

equation of state of the rather general form 

-p = ( N-M)_, Ko l (~oJN- (~fJ 

as is easily shown using the definition ~ = (dP I df ) s' 

in the limit of small compressions. 

(2) Static compression and shock data can be used as well 

as ultrasonic data to determine the parameters in (2-2-4), 

thus significantly enlarging the relevant experimental 

pressure range. 

In the case of the seismic equation of state (2-2-4) the temptation 

to infer that pressure and composition have the same effect in ;o - S[> 

space is thus even stronger since the relation has the functional fo rm of 

an equation of state . 

More recent refinements (Anderson, 1969) have attempted to 

isolate the effect on 4> of factors othe r than M and f . In specific, 
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the effects of cation-radius, crystal field effects, and anion-cation 

coordination were empirically investigated. 

The seismic equation of state was first used by Anderson and 

Smith (1968} as a constraint on the inversion. They required that the 

density and <J? be related by ,P = AM (p n but did not constrain AM or 

n. By fitting the free oscillations, group and phase velocity of surface 

waves1 and travel times of body waves, they determine! AM and n, and 

thus obtained some information about the composition. They concluded 

that M , and hence the composition, changed through the transition zone. 

The use of laboratory data to establish an empirical relation 

between the bulk modulus and the density has thus proved quite useful. 

However, this approach does not fully utilize the seismic data. As 

independent V and V profiles are being refined, one would like to be 
p s 

able to fully utilize this information, rather than just the combination 

ct> = V :- i V;. Toward this end the systematics approach is far less 

useful. 

Figures 2-2-1 and 2-2-2 are Birch diagrams V p vs. f and 

V 
5 

vs. p based upon ultrasonic data. Each plot shows the effect of 

pressure as computed from equations (2-1-19} . The effect of a l ooooc 

change in temperature is also shown. Note that for V , both the tem­
p 

perature and pressure effects are approximately parallel to the lines of 

f1 = constant. For V , not only is the data determining the lines of 
s 

M = constant more scattered, but the effect of pres sure for certain 

structures like rutile and spinel is not parallel to the M = constant line. 
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The remainder of this thesis deals with an alternate method of 

using laboratory data in the interpretation of s eismic profiles. Rather 

than use the data to establish an empirical relation between velocity and 

density, it will be used to establish the empirical parameters in the 

two-body potential functions of a lattice model fo r each mineral. By 

thus putting the empiricism on a more fundamental level, one gains the 

natural dependence of elastic wave velocities on the cyrstal structure. 
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TABLE 2-1-1 

Ultrasonic Data for the Velocity Derivatives, Bulk Modulus , 

and Shear Modulus 

1 dVP l dVS Ks 
vP F v

5
F 1.1 l; 

1(T"l2 10-12 1012 1012 1012 

cm2/dyne cm2 /dyne dynes/cm2 dynes /cm2 dynes/cm2 

Forster! tel Mg2Si04 1.249 .714 1.286 . 811 -1.8 

Olivine1 Fo,93Fa,o7 1.211 .737 1.294 • 791 -1.0 

Peric1ase MgO ,862 .665 1.622 1.308 -o.2 

Lime* CaO 1.309 .603 1.059 • 761 0.6 

Bromelite* BeO .538 .0449 2,201 1.618 6.3 

Zincite* ZnO .613 -1.138 1.394 .442 10.3 

Corundum Al203 .478 .347 2.521 1.613 7.6 

Hematite* Fe2o3 .591 .151 2.066 .910 7.7 

Spinel Mg0•2.6 Al203 .494 .0762 2.020 1.153 11.1 

Trevorite2* NiFe204 .610 -.0082 1.823 .713 9.0 

Garnet Al-Py .919 .456 1.770 .943 -1.5 

Rutile3 uo2 .825 .101 2.155 1.124 -3.9 

!') 

1012 

dynes/cm2 

-2.6 

-2.5 

-1.6 

-3.3 

-12.1 

-10.2 

-5.5 

-8.1 

-9.6 

-8.4 

-4.5 

-9.3 

Finite strain parameters r and ., were . computed according to 
equations (2-1-14), (2-1-15), and ( 2- 1- 16) . 
*polycrystalline 

1Kumazawa, ~·, and Orson L. Anderson [1969) 

2tiebermann [ 1969 J 

3Manshnan1, M. [1969] 

All others from Anderson, ~ • .!!_ a1. [1968) 



21 

TABLE 2-l-2 

Finite Strain Parameters for the Lower Mantles of Several Earth Models 

Model and 
th 

0 Order 
st 

1 Order 
nd 

2 Order 

Interval fit fo i\.o )..Ao :5 -11. _rj. -(3 - 2> 
(gm/cm

3
) (kb) (kb) (kb) (kb) (kb) (kb) 

Birch I 3.91 1155 1295 8254 5688 
( 1000 -~ooo k~·) 3.91 1164 1237 4532 4225 2.47 4339 1165 

Birch II 3.96 1072 1308 5915 5380 
( 1000- lOoo «-) 

3.94 905 1257 -1850 4010 8.00 6941 540 

Pyrolite 4. 11 1327 1405 10,744 13,266 
( \000 - '?>000 ........ ) 

4.13 1555 1279 9210 669 3 -2.24 3681 3612 

Eclogite 3. 91 1221 1323 10,074 12,424 
(looc.> -~ooo k-) 3 .92 1428 1189 7907 5782 - 1 .86 3740 3545 

CIT 435002 3.93 923 1312 1844 526 9 
l\01$"- l."l03 t.e-) 

CIT 435003 3 .74 -270 11 9 3 -18' 1 3 2 1430 
(10lS"-l."l03~) 

4. 13 2402 1392 49,640 8008 -57 -52 ,077 4.5 

Parameters of the Complete 1st Order Fit (P = 0, T 1600°C) 

Model and 
depth range Po (V P)o (V s)o \So Ko <l>o 

(gm/cm3
) (km/ sec) (km/ sec) 

l.. 
(kb) (km/sec) 

Birch I 3.91 9.79 5.76 .24 2018 51.6 

Birch II 3 .96 9.65 5.75 .23 1944 49.1 

Pyrolite 4. 11 10.03 5.85 .24 2264 55. 1 

Eclogite 3.91 9.95 5.82 .24 2103 53.8 

CIT 435002 3.93 9.50 5.78 . 13 1798 39 . 3 

CIT 435003 3 .74 7.52 5.65 - . 15 525 14.0 
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TABLE 2-1-3 

Correcting Seismic Profiles for a 

Superadiabatic Temperature Gradient 

From ultrasonic data: 

(;}~Vp/~kf)p ~ z.o 

(~~ Vs/ ~~,P )p ~ 2.5;' 

Following Birchf 19~5) : 

!!:_~~ 
rXo K 

Let D.. deg/km. = superadiabatic temperature gradient 
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Figure 2 - 1 - 2 

BIRCH II FIT vs. ORDER 

r.m.s. error 

Order vP v f Total 
s 

Incomplete 1st .014 .032 .0013 .035 

Complete 1 
st .0055 .0027 .0010 .006 

Complete 2 
nd .0021 . 0007 .0004 .002 

0.04-

>< ~ 
u \ 
z \ 
~ \ 
P-i \ 
~ \ p:; 
u \ 
U) \ H 

0 0.02. \ 

rJ) \ 

~ 
\ 
\ 

p:; \ 
...:l \ 
~ 
~ \ 
0 \ 
~ 0-_ ---

FIT ORDER 
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Figure 2-1-3 

CORRECTING SEISMIC PROFILES 

FOR OBSERVED INHOMOGENEITY 

Johnson ( 1969) gives evidence of the following discontinuities: 

Depth Depth 

830 0.0045 1540 0.0065 

1000 0.0079 1910 0 . 00 32 

1230 0.0059 

Assume D. V /V ~ ~ V /V as observed at other discontinuities. s s p p 

We can then estimate (A~ /~ ). 
1 

p 
p 

-- _ r\ornO · 

(df /dP) = 1/~ so each 6~..thas the effect o f decreasing (d? /dP) 

relative to the homogeneous case. 

Correcting for Johnson's cp increases the slope of(> by,.. 0.07 gm/ cm3 

in the region 800-3000 km. 
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66 

I 
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Q> I f/1 
....... 
E 
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54 
.& 

I 

~ 435002 
UNCORRE.C TEO 

46 
3.8 44 5.2 5.4 

p, 

Figure 2-1-4. Seismic parameter versus density for olivines, pyroxenes , 
and garnets assuming both molar volumes and seismic 
ratios are molar averageable (after Anderson and Jordan, 
1970). The effect of correcting seismic profile 
CIT 435002 for a superadiabatic temperature gradient 
according to Table 2-1-3 is shown by the dashed line. 
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(following page) Compressional velocity versus density 

for various oxides and silicates. The dark circle s arc 

minerals with mean atomic weight n ear 20. The light 

dashed lines are pressure trajectories calculated from 

finite strain theory and the parameters of Table 2-1-1. 

The solid lines with arrows show the effect of a 1 000 °C 

rise in temperature (after Anderson, et al. , 1971). 
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Figure 2-2-2. Shear velocity versus density for various oxides and 
silicates. The effect of pressure is shown by the light 
dashed lines; of temperature, by the solid lines with 
arrows {after Anderson, et al., 1971) . 
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III. THE DEFINITION AND MEANING OF ELASTIC CONSTANTS 

AND METHODS FOR THEIR CALCULATION 

This chapter has three objectives. The first is to e stablish the 

reference states, coordinate systems, and strain measures nece ssary to 

discuss elastic constants in a prestrained elastic m edium . The s e cond 

is to compare methods of calculation based upon fini te strain ex pansion s 

of the internal energy with those methods which assume a specific 

functional form for the two- body, central, interatomic forces. The 

third is to develop the interatomic potential model using Born ' s (1923) 

method of long waves, obtaining general expressions for the volume 

dependence of the elastic constants of ionic crystals. 

This chapter develops the theoretical frame wo rk used to investi­

gate the potential and predict the elastic properties of geophysically 

interesting structures in the following chapters. 

3-1. Effective vs. Thermodynamic Elastic Constants 

Before proceeding to an atomistic formulation of the elastic con­

stants, it is important to review their definition in the context of con­

tinuum mechanics. There are as many different ways to define the 

elastic constants as there are different tensor measures of the strain, 

but only one definition gives the " effective 11 constants. The "effective 11 

elastic constants are defined as those constants which control the propa­

gation velocity of small amplitude waves in a medium which has undergone 

a finite homogeneous pre strain. It is these "effective" elastic constants 
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for the case of a hydrostatic prestrain which we wish to compute and 

average for comparison with the seismically determined velocity 

profiles in the earth. 

There have been several recent papers dealing with the distinc ­

tion between thermodynamic and effective elastic con stants, most 

notably Thurston (1964, 1965) and Wallace (1965, 1967). The following 

discussion is a brief review of their work. It serves the dual purpose 

of comparing the various definitions of the elastic constants and estab­

lishing the notation to be used in the remainder of t his thesis. Only the 

results are presented in the following text; the mathematical derivations 

have been relegated to Appendix 1. 

As pointed out by Thurston ( 1965 ), the elastic constants may be 

defined in at least three different ways: " (1) as second d e rivativ es of 

the inte rnal energy with respect to some tensor measure of the deforma­

tion; (2) as first derivatives of the stress tensor with respect to some 

tensor measure of the deformation; (3) as coefficie nts in a line arized 

equation of motion or, equivalently, as coefficients in formulas for the 

propagation velocities of small amplitude waves. 11 Further, the elastic 

constants defined by each of these methods depend upon the specific 

measure of the deformation. The coefficients of the stress- strain 

relation depend upon the choice of a reference state from whic h the 

strains are measured, the tensor measure of the deformation with respect 

to which the derivatives are taken, and the choice of a stress tensor . The 

coefficients of the linearized wave equation depend upon the coordinate s 

used in the equation of motion. 
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Reference States 

In order to sort out the various possibilities , consider the three 

states as diagrammed in Figure (3-l·V· Again following Thurston ( 1965) 

call these the 11 natural 11 unstressed state, the ''initial" homogeneously 

deformed state, and the "present" or current state. Denote the density 

of the natural state by {> and the position of a material particle by a . 
1 

{i = 1, 3). Denote the density of the initial state by r , the position of a 

material particle by X. {i = 1, 3), and the associated stresses by T ... 
1 1J 

Denote the density of the present state by f , the position of a material 

particle by x . {i = 1, 3), and the stresses by T ... The coordinates a., 
1 1J 1 

X. , and x . are referenced to the same cartesian axes. 
1 1 

Measures of the Strain 

The strain tensor may be referenced to either the natural state, 

the initial state, or the present state. If it is referenced to the natural 

state, we make the following definitions {Murnaghan, 1951) 

u. = x. - a. 
1 1 1 

f . . = '0 x. I o a. 
1J 1 J 

u .. = au./ aa. (3 - 1-1) 
1J 1 J 

1 1 
11. ij = 2 {fk. fk . - ~- . ) = 2 {u . . + u .. + uk. uk .) 

1 J 1J 1J J1 1 J 

Then_ .. are called the Lagrangian or material strains. If the strain 
1J 

tensor is referenced to the present state we make the definitions 

g .. = aa./ dx. 
1J 1 J 

1 
E. ij = 2 ( b ij - gki gkj) 

(3 - 1-2) 
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The £,;.~ are called the Eulerian or spatial strains. If one wishes to 

express the internal energy as a Taylor series in the strains, the 

question naturally arises as to which tensor should be used. Since either 

expansion must be truncated, this decision should be based upon which 

is more rapidly convergent. Thomsen ( 1970a, b) considers the question 

in some detail and concludes that the Lagrangian expansion is to be pre­

ferred for two reasons. First, it gives a more accurate prediction of the 

observed shear instability (C44 = 0) in NaCl. Second, and more important, 

the Lagrangian formulation is consistent with the Mie-GrUneisen treat­

ment of the vibrational energy. This point is discussed further i n 

section 3-2. The distinction between Eulerian and Lagrangian strains 

is not important in the interatomic potential approach because the elastic 

constants are derived in closed form. They are defined by comparing 

the long-wave limit of the lattice vibrational equation with the continuum 

equation of motion for plane wave propagation in the initial (stressed) 

state. In this case , s ince we are dealing with small displacements from 

the initial state ull( = Xoc: - X" , the displacement gradient u cX.(3 = 

d Uoc:: I dX(3 is the natural measure of the strain as required by the 

Lagrangian. Also, it is most convenient to reference the atomistic 

expressions to the initial (equilibrium) state. 

Elastic Constants 

Limiting the discussion to Lagrangian strains, the following 

definitions are made : 
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(3-1- 3) 

where E = internal energy per unit mass 

F = Helmholtz free energy per unit mass 

s = entropy 

T = temperature 

All derivatives are evaluated in the natural state. 

The t .. were named the thermodynamic tensions by Truesdell 
lJ 

and Toupin ( 1960). They are introduced to remove the complications 

arising from the fact that the strains are usually referenced to the 

natural state while the stress is usually defined per unit area of the 

deformed body. By definition they are the conjugate variables to ~'J If ; 

i.e . , t . . d'?i .. is the differential of work per unit of original volume done 
-- lJ lJ 

by stretching the body. The expansion for E and F are therefore: 

(3-1-4) 

In the lattice calculation it will be shown that it is more convenient 

to reference the strain to the initial state. Working again with Lagrangian 

strains : 
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(3-1-5) 

(3-1-6) 

In these expressions all derivatives are evaluated in the initial 

state. Expansions for E and F about the initial state have the form 

(3-1-7) 

The elastic constants cijkl and Cijkl are called the thermodynamic 

elastic constants. 

The energy density may also be expanded in powers of the dis-

placement gradients U .. 
lJ 

(3-1-H) 
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Since this was the expansion originally used by Huang (1949), Wa llace 

(1967) has named Sijkl the Huang coefficients. By casting the 

Lagrangian expansion (3-1 -7) in terms of the displacement g radients a nd 

identifying terms, one gets the following relation between the Huang 

coefficients and the thermodynamic elastic constants (see Appendix t ) . 

(3 - 1-'J) 

The definition of the elastic constants as the second dC'rivatives of 

the energy density has led to three sets of elastic constants cijkl' Cijkl 

and Sijkl' each corresponding to a different reference state or measure 

of the strain. 

Consider now those constants which relate the stress to the strain. 

If the stress tensor in the present state is expanded in terms of the dis -

placement gradients Ukl' one can define a set of elastic constants 

(3-1-10) 

The associated Taylor series is: 

(3-1-11) 

The tensor Ukl may be decomposed into symmetric and antisymmctric 

parts 
uld.:::. E..ll. + w .ltl 

(3-1-12) 
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Note that ~JAA is the infinitesimal of Skl defined in equation (3 - 1-5) . A 

new set of constants may be defined as the tensor elements relating 

stress in the present state to these infinitesimal strains. Wallace (1967) 

has named these the Birch coefficients defined as : 

This is just the differential form of Hooke •s Law. The associated Taylor 

series expansion for the stress is 

(3-1-13) 

The Birch coefficients are related to the thermodynamic elastic 

constants (proof given in Appendix 1 ) as 

(3 -1-14) 

Elastic Waves in a Prestressed Crystal 

We have now defined five different elasti c constants cijkl' Cijkl' 

Sijkl' Aijkl' Bijkl' each corresponding to a specific reference state and 

strain measure. The question now is which, if any, of these elastic 

constants defines the propagation velocity of infinitesimal elastic waves 

in the initial (strained) state? It is thes e 11effective elastic constants •• 

which we ultimately wish to compute for the case of a finite hydrostatic 

prestress. 

Following Huang (1950, Appendix 6) we fo r m the Lagrangian 

density for the displacement field U. (X .). 
1 J 
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(3-1- 15) 

Using the expansion in terms of the displacement gradients (3-1- 8) for the 

potential energy density gives 

By the usual variational technique {i.e., see Moiseiwitsch, 1966, 

Chapter 3 ), the Euler field equations are obtained in the form 

(3-1-17) 

Which, upon differentiating {3-1-16), become 

In order that the strain energy function exist-, we must have {see, i. e . , 

Love {1944), ~66) Sijkl = Sklif Upon differentiating, we C)e-t 

{3-1-18) 

For a plane elastic wave 

(3-1-19) 

equations (3-1-18) become 

(3-1-20) 
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Hence it is the Huang coefficients which are the effective elastic 

constants . The sum over j and ~ means that it is only the symmetric 

combination (Sijkl + Silkj) which is observed in experiments . Note that 

the wave equation (3-1-20) has exactly the form of a wave equation in an 

unstressed medium; the only difference being that the Sijkl are, in 

general, of lower symmetry than the corresponding elastic constants m 

a stress-free medium. By requiring rotational invariance, Huang (1950) 

derived the following symmetry relations for the elastic constants in a 

prestressed medium . 

(3-1-21) 

Note that in a stress-free medium, S .. = 0 and equation (3-1- 21) gives 
lJ 

the familiar symmetry relation sijkl = s jikl. 

Hydrostatic Prestress 

The various elastic constants and their interrelationships have 

been defined above for the case of an arbitrary finite prestress T .. = S .. . 
lJ lJ 

In the application to the earth•s interior, it is generally assumed that 

the pressure is hydrostatic. 

(3-1-22) 

In this case the symmetry relations (3-1-21) become 

(3-1-23) 

and we see that even in the case of hydrostatic pressure the Sijkl lack 
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the familiar symmetry. However, if we define new e lastic constants 

such that 

(3 -1-24) 

where it is easily seen that 

(3-1-25) 

then the <>ijkl can replace the Sijkl in the equation of motion (3-1-20}; -the 

two are therefore equivalent. However, by using equation (3-1-24) in the 

symmetry relations (3-1-21}, we see that for the case of a hyd rostati c 

pre strain 

(3 -1-26} 

and the J ijkl therefore have the full symmetry of the elastic constants . 

We henceforth call ~ ijkl the effective elastic constants. 

By using equation (3-1- 9), the effective elastic constants may 

be related to the thermodynamic elastic constants. 

(3 -1-27} 

Further, by specializing equation (3-1-'14} to the case of hydrostatic 

prestress and comparing with (3-1-27), it is easily seen that 

(3-1-28} 

As mentioned in the introduction, most of the relations given in 

this section have previously been given by Thurston ( 1964, 1965) and 

Wallace (1965, 1967}. To facilitate comparison with their work, 
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Table 3-1-1 compares the notation used here with the notation in their 

papers. 

Having established notation and defined the various elastic con­

stants, the next section revi ews the various methods of a ctually cal­

culating and extrapolating the effective elastic constants for comparison 

with the seismic profiles. 

3-2. Calculation of the Elastic Constants -- Finite Strain 

and Interatomic Potential Models 

It was shown in the previous section that the effective elastic con­

stants may be calculated as the second derivatives of the free - ene rgy 

density with respect to the strains. An expression for the f ree ene r gy is 

now required such that it can be appropriately differentiated . This is 

usually handled in one of two ways. 

(a) The free energy may be expanded as a Taylor series in the 

strains, the coefficients evaluated from the m e asured elastic 

constants and their pressure and temperature derivatives at 

the 11natural 11 zero pressure state. 

(b) The free energy may be expressed as the sum of atomic inter­

actions of assumed functional form. Paramete rs in the poten­

tial are fixed by data in the natural state. The elastic constants 

may be computed either by direct differentiation (me thod of 

homogeneous static deformation) or by a direct comparison 

between the long-wave limit of the lattice vibration equation 

and the continuum wave equation (3-1- 20) (method of long wave s) . 
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We will call (a) the finite strain approach and (b) the interatomic poten-

tial approach. 

The Finite Strain Approach 

The formulation presented here was first given by Leibfried and 

Ludwig (1961) and has more recently been applied by Thomsen (1970a, b) 

to the sodium chloride data. Since the approach will only be sketched 

here, the reader is referred to these works for a more detailed 

development. 

The free energy is written 

{3-2-1) 

where cR, is the potential energy of the static lattice and F 
8 

is the 

vibrational energy . 

(3-2-2) 

In this approach the potential energy of the static lattice is 

expanded to fourth-order in the Lagrangian strain ~ 

(3-2-3) 

+ !4! V .Z C~}.U""'"-?tij X.u ~~ 1'\."-
.4 . .. '{, 

The super-tilde denotes evaluation in the fixed reference state; this 

reference state is chosen such that <Po is a minimum. 
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The thermal energy F 
8 

is expanded to second-order in the 

strains 

(3-2-4) 

Applying the Grtlneisen approximation that the strain derivatives of all 

frequencies are the same, allows equation (3-2-4} to be written 

(3-2-5} 

where 

{3-2-6} 

(3-2-7} 

(3-2-8} 

(3- 2- 9} 

Substituting equations (3-2-3) and (3-2-4) into (3-2-1), the free energy is 

given (in Voigt notation) by: 
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-t v ~ Y3~ C'Gif3,..u-.1f~11, ~ + 

+ v :t, Y4 ~ C1';;.v 1,/~t~ ~-t!v 
~rv 

C\ (T} L lot V'la~. + 
<>( 

(3-2-10) 

Equation (3-1-2 7) defines the effective elastic constants under 

hydrostatic prestrain as 

(3-2-11) 

Changing the coordinate system from the initial to the natural so that the 

free-energy expansion (3-2-10) may be used 

_!_ firfj$ Crs-tu.1tk.~~""" -+ 1' ( ~'i~k""'- ~ trn ~..)~ 
" - ~-~~ · IT,,\ ~'F(?'t)T) .) ') 

(3-2 -12) 

C.rs-t......_ = ~Yl'"' d'Y\.-t.\4. 

Thomsen (1970~ has evaluated this expression for a cubic crystal. 

He gives (in Voigt notation) for hydrostatic stress: 

_..8"'1' ( V,T) = q f fC-,. +1f ~ c:'Y'/'- + Y<-11~ -c.,..)'-" 
-UsA~+ 1A~,6(Us-T Cv)~- P ~:. (3

-
2

-
13

) 
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where 

He changes from isothermal to adiabatic constants using the relation 

~; - _$~ = \~Cv ~I(~ ( ~ l~ 
y 

(3-2-14) 

The expressions for the adiabatic constants are given by Thomsen as: 

,!)~ ( v,T) ~ ( t/3 1.:&"! - 3 K )a 'It+ 9/z. K Ao<f 'It, 

-tc~c"t'- r· ~~~~J ~- p ~~ 
The pressure is given by: 

-Y3 
PC v 

1
T) ~ - 3 K ( ~ ) l1l -~ r 1L L_ + ~ A 113 

-~R [! + (A-t( 1-'5,· )) ~ ~. 
The constants are defined as 

(3-2-15) 

(3-2-16) 

(3-2-17) 

These constants are evaluated from data near T = T
0

, P = 0. 

"' "" "' Thomsen gives six simultaneous equations for the unknowns v. K, a . A ' 

r , 1\ in terms of six experimental quantities V , K s, ()( , 
0 0 0 

( 6Ks/ oT)p=O' ( aKs/ aP)To' ( o2
K

8 I oP2
)To . An additional four 
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/"<' 

simultaneous equations give the unknowns ~'f' _A~ , rAf3 , 1\ ~f3 in 

terms of the measured quantities )JI(f, ( d~"'! I d T)P=O' ( d~V., I a P)To ' 

2 2 
and ( d ~~ I d P )T

0 
• 

In the finite strain approach as outlined above, all the rele vant 

data is used to determine the coefficients in the Taylor series expan-

sion of the free e nergy and to determine the Grt1neisen parameters . The 

crucial question in using this approach to extrapolate elastic constants i s 

how rapidly does the above expansion converge? Questions such as how 

large is relative to the other terms in equation 

(3-2-13) must be faced. 

In a geophysical context, this theory provides the most straight-

forward means of extrapolating the elastic constants and density for those 

materials for which the 16+ pieces of data discussed above are available, 

and is thus limited to discussions of the upper mantle . For those 

materials in the transition region (400-700 km) and below, it has not 

been experimentally possible to measure the elastic properties r equired 

for such a finite strain approach. For these transition region and lowe r-

mantle minerals, a theory with some ability to make predictions is 

required - the atomistic approach based upon two-body interatomic 

potentials is such a theory. By replacing the input data required by the 

fi nite strain approach with a physically-motivated interatomic potenti al, 

the elastic properties of the lower mantle oxides and silicates may be 

discussed. 
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Atomistic Approach Based on Two-Body Interatomic Potentials 

Instead of expanding the free energy as a Taylor series in the 

strains, it may be written as the sum of interactions between the atoms. 

If the functional form of the two- body potential between each pair of atoms 

in the solid is known, the free energy may be expressed in closed form. 

Thus the convergence problem facing the finite strain approach does not 

at-·i se; it is replaced by the problem that the functional form of the inter­

atomic potential is poorly known. 

The problem of formulating a physically reasonable potential 

with the minimum number of empirical parameters will be deferred to 

the next chapter. In the remainder of this chapter the method of long 

waves will be reviewed in considerable detail as it yields expressions 

for the volume dependence of the effective elastic constants in terms 

of the interatomic potentials. 

3-3. The Method of Long Waves 

In the method of long waves one uses a perturbation expansion to 

solve the vibration equation of the lattice in the limit of long wavelengths. 

The elastic constants are then identified by comparing the resultant 

vibration equations with wave equations of macroscopic elasticity theory 

(3-1-20). The method was first developed by Born (1923) and Begbie and 

Born ( 194 7). Although in their formulation the method is not applicable 

to ionic crystals, since they are,in general,piezoelectric, Huang (1949) 

used Ewald 1 s theta-function transformation to separate out the macro­

scopic electric field associated with the elastic wave, and was thus able 
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to formulate the method of long waves in convergent form for ionic 

solids. 

In this section Huang ' s formulation (also given in Born and Huang, 

1962) will be developed. There is no original work except for the exten-

sion to the case of hydrostatic prestress, which turns out to be trivial. 

The objective is rather to lay the theoretical framework for the geo-

physical applications to follow. 

Since this development so closely parallels that given in Born 

and Huang, it is convenient to change to their notation, thus saving the 

reader the rather bothersome task of effecting the change. We shall 

drop the distinction between natural and initial states; henceforth all 

coordinates will be referenced to the initial state and, following Born 

and Huang, the coordinates in this state will be donated by x;rather 

than Xi.. Further, ~will be used to denote displacements from the initial 

state rather than U,and a . will now be used to denote the lattice basis 
"" ,....1 

vectors. It should be emphasized that the initial state is an equilibrium 

state but not necessarily a stress-free state, and that the assumption 

that it be stress-free will not be made in the following development. 

Following the notation in Born and Huang ( 1962) let: 

).( tl. J.. 2, .!3) = lattice cell index 

n = number of particles in basis 

k(O .. . n-1) = base index 

Al' ~2' ~3 = lattice basis vectors 

.2\ b2 -, b3 = basis vectors of reciprocal lattice 

mk = mass of particle k in the basis 



v a 

~( ~) = ,2£(.~.) + ~(k) 

1 2 3 
~(I) = i ~ 1 + Q. .e2 + f... ..e3 

I I 
x( ~ t ) = x( X ) - x ( i ) 
,_ kk' - k - k' 
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= volume of the lattice cell 

= lattice point occupied by particle ( ~) 
in the initial state 

= lattice vector 

Q' = vector connecting particle ( k ' ) to 
particle ( ~ ) 

= small displacement vector of ( ~) 

= lattice energy of entire lattice to be 
normalized later (see B ~ H, p.219). 

Expanding the lattice energy in terms of ion displacements from 

(3- 3-2) 

The coefficients are written on the right-hand side in a notation which 

explicitly shows that the linear term is independent of J... , the quadratic 

term depends only on the relative coordinates J. - .l1 of the two particles, 

and so on. 
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Under the assumption that every particle is in its equilibrium 

position (which is distinct from the assumption that the configuration 

corresponds to vanishing stresses), the linear coefficients g?tX.(k), arc 

equal to zero. The potential energy of the system is then, to second-

?F.. z ;:t:_ ( 1.- l') ~ 11
) 

order, '±' "" Yz. tf. \l:!l><f> ~)1..' u..{)(.(R..) uf/'R· 
is T _h: Z L_ 121YY1k1 u~( ~)Qz. 

o<~oc .t L 

The kinetic energy 

where the dot indicates a time 

derivative . The Lagrangian for the system is 

and Lagrange ' s equations of motion are 

which for the crystal are 

j = l, 2 , 3, .. . (3-3-3) 

0C=l, 2, 3 

k = o, n - 1 

Assume a plane wave solution to be a Bloch function of the form 

(3- 3 - 4) 

where y is an arbitrary wave number vector and j = 0 , ... , 3 n-1 indexes 

the 3n solutions for a given y. For this assumed s olution the equations 

of motion become 



51 

(3 - 3 -5) 

= 
~ ~~ -211A '.f- · ( ~(l)- X\t')) f. P~f ( k-k, ) e 

which can be written in the form 

R-= 0 M-1 
I 

(3 - 3 -6) 

where 

Note that the original infinite number of e quations of motion ( 3 -3- 3) ha v e 

been reduced to the 3n equations (3-3-6). This was possible becaus e 

J_ 1' (fL (Jt~') does not depend on both ..R. and ).' , but only on the relative 
-olj3 
index ). -1' . Hence in equation (3- 3-7) it h as been assumed, wi thout 

loss of generality, that J.. = 0. 

Following Huang ( 1949), let 

P - 3- H) 

The second term is due solely to the coulombic interactions while the 

first term include s the rest. This s eparation allow s the C ~Xf> ( ~ ) to 

be separated into its coulombic and non-coulombic part s : 

( 3 - 3 - 9) 
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The lattice vibration equation (3- 3-6) becomes 

(3 -3 - 10) 

Note that the terms giving the coulombic restoring force on a particle 

due to its own displacement have been written separately in the second 

term. The prime on the summation in the third term indicates that the 

j._ = 0, k = k' term has been omitted. This third term gives the cou­

lombic force on particle (~) due to the displacements LA(~1

1 ) of all the 

other ions. 

Written explicitly, the coulombic contribution to g_} is 

e.~t.e.-.· 
(3-3-11) 

For the case 1! 0, k I= k 1
• direct differentiation gives 

(3-3-12) 

For the case P-. = 0, k = k', the cou1ombic field change experienced by 

ion k due to its displacement u..(~) can be expressed as the chang<' in the 
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coulombic field at (~) due to a displacement -U(~) of all the othe r ions 

in the lattice. 

(3- 3-1 3 ) 

Substituting equations (3- 3-12) and (3-3-13) into the lattice vibration 

equation (3- 3-1 0) gives: 

A straightforward application of the method of long waves is not 

possible at this point because certain terms in the wave-number expan-

sian are divergent. The physical problem is that ionic crystals are in 

general piezoelectric; one must specify both the strain and the macro-

scopic electric field before one has completely specified the forces 

acting on the particles. Huang (1949) resolved this problem by recog-

nizing the analogy between (3- 3-14} and the electric field in a dipole 

lattice, and then using Ewald's theta-function transformation to separate 

the macroscopic electric field from the effective coulombjc ficJd. 
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Analogy Between Vibration Equation and the Electric Field in a 
Dipole Lattice 

It is interesting at this point to note that the second two terms in 

equation (3- 3-14) have the exact form of the electric field in a dipole 

lattice. The field at a point~ due to a dipole .£( ~) at x( e ) is given by 

(far-field approximation) 

(3 - 3-15) 

in component form 

(3-3 - 16) 

In a Bravais lattice of such dipoles 

(3-3-17) 

the field at~ is given by 

(3-3-18) 

I ~<£) -l I 
Returning to equation (3-3-14), we see that the last term is just the 

field at ~ (~) created by the displacements 

(3-3-19) 

which is seen, by comparison with ( 3- 3-18), to be equivalent to the field 

at~ (k) due to a lattice of dipoles 

(3-3-20) 
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when the dipole at ~(k) is excluded. Ewald ( 1921) called this the 

11exciting field 11
• The second term in equation (3-3-14) is the exciting 

field at (~) due to displacements ~(~, ) = -~(~), which is equival ent to 

the exciting field in a lattice of dipoles 

(3-3-21) 

Hence, as pointed out by Huang ( 1949) and Born and Huang ( 1962), the 

key to the solution of the vibration equation (3- 3-14) is the formulation 

of the exciting field in the dipole lattice. 

Ewald ' s Theta-Function Transformation 

The use of Ewald 1 s theta- function transformation in equation 

(3- 3-14) accomplishes two purposes. First, it allows a separation 

from the vibration equation of a term corresponding to the macroscopic 

electric field. Second, it allows the coulombic sums to be written in 

more quickly convergent form. 

Using the integral representation of 1/ I~( 9.) - ~ I 

(3-3-22) 

in equation (3-3-18) we obtain 
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Since the expression in the curly brackets is a periodic function of x 

with the periodicity of the lattice, it may be represented by a F ou rier 

series with components 

(3- 3 - 24) 

Interchange summation and integration; let~· = ~- ~(1) be the integra­

tion variable for a given ..2... 

~ 
z. -l~' l{i" -z-rrU·:/'")..-:f)·.L' ( 1 ~c~.""'1."";) == _\ L S -rrr e. ) d.)< • 

Va... 1.. -1. y II 
c.a\1 _z.,. ~ flh)· ~(.l) 

• e.. 

(3- 3-25) 

Since the sum is equivalent to an integration over all space and since 

e - 2 1"'( iy(h) • x(.2..) = 1 we have 

(3- 3-26) 

' ~ -~ I ';/-Ch) +¥l 
:::= ZIT I e I' ' 

'Jo.. p!l 
The Fourier expansion of the curly bracket in (3-3-23) can thus be 

written explicitly as 
-I ~lt)-_lli'' + 2'tT .l 'f. (~(It)- 25.) 

.&2e 
i:rf.R. 

-~~~ ~{h)4-;t 12. + Z11' l 'f.th). )( 
== :<:rr L~ e 

Yt>- h p 

(3-3-27) 

This is known as the theta-function transformation. Since the left-hand 

side is rapidly convergent for large values of? while the right-hand 
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side is rapidly convergent for small p , by dividing the integral in 

(3-3-23) into two parts and using the appropriate side of (3-3-27) in 

each we get 

~
«J -1~11\-.t\~f'~ ...,.z:rr;_'f·(~Ct)-~) 

E. (X) - L D d 4 
) 5.. ~ e. c:9 -;-

;. - 13 r~ .;}xt(a)Ct l i1f '-;- R f (3-3-28) 

R -1T'1p'\~lh)+¥ \ ~-T 2"1f).(¥_(h)+y._)•:i._ 

+ zrr .L ) ~ e &p 7.. 
Ya. h o f I j 

To simplify notation let 

-Y. 
G(x) = ~ 

X ' 
(3- 3 -29) 

The second term may be integrated directly, and the h = 0 term written 

separately to give 

I 
+ 11' _I L 

V, Rz. h 

Carrying out the differentiation gives: 

+ 

+ (3- 3- 30) 
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where 

(3 -3-32) 

The next step is the key to the treatment of ionic lattices -- the 

separation of the macroscopic electrostatic field. For the lattice of 

dipoles under consideration, the macroscopic polarization (dipole 

moment per unit volume} is (in the limit of small y} 

(3 -3-33} 

The corresponding macroscopic electric field can be found using 

to be 

where (3- 3- 34} 

ED{= - 4-n' ( ~ \( £.¥._ \ errJ. ¥·1-
\/G. 1¥1 ) 1¥1) • 

(See Born and Huang (1962} p. 249.} 
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Note that part of the first term in equation (3- 3 -31) c an be 

identified as the macroscopic field if the term is rewritten as follows 

Thus the coulombic field in the dipole lattice can be written in a form 

which explicitly contains the macroscopic field 

(3-3-36) 

Note that for small y , the leading term in (3- 3-31) goes as y r:l.. y 
13

1 IYI 2 

and has no unique limit. After the separation of the macroscopic field, 

h b (Yr.., YP.I I r l 2 ) (1-e-
1111

¥!1./ Rl. ) h 1 t is term ecomes "'"' t-' , t e eading term of 

which goes as Yt:~-. y!3 as y_.o. 

i') R' mt y.·x( ~t• 
f ( ~c• )- ~( ~_1) e.. 

In the case of a composite lattice 

E~ ~ [ -0: (i~~ )(* .f. f<~l) J e_21T.t ~-:t 
and equation (3-3-36) becomes: 

(3 -3-37) 
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+ 

(3 - 3 - 38) 

In order to solve the vibration equation (3-3-14) , we must eva lu­

ate the exciting field at a lattice point: i.e. , we must e v a luate E_(){ (~) at 

a lattice site with the dipole at that site removed. The field due to the 

dipole at (~) is 

(3-3-39) 

Subtracting this from the t' = 0, k = k 1 contribution to the s e cond term 

of equation (3-3-38) (see also equation (3-3-30)) give s 

(3 -3-40) 

Using the integral representation (3- 3- 22) for 1/1 ~(k) - ~ 1 , this may be 

written: 

(J - 3 -41) 
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Defining 

(3-3-42) 

the effect of subtracting the contribution of the dipole at (~) is the re­

placement of HCX.I3 (~) with H~l3 (~) in the J.. = 0, k = k' term of equation 

(3-3-38). Following Born and Huang (1962) we write this exciting field 

at (~) in the form 

where 

211i. jt\h) · (Al~)-~<~')) 
·e.. 

(3- 3-43) 

(3- 3-44) 

In the second term H~l3 has to be substituted for H ~!3 for the term 

~ = 0, k = k'. Equations (3- 3-43) and (3- 3-44) are valid for all vaules 

of y; however, only for y small does the EO( term have its macroscopic 

significance. 

Hence, we now have the required expression for the "exciting 

field" in a dipole lattice which can be used to solve the vibrational 
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equation~J~/.14). Upon using equation (3-3-43) in e quation (3-3-14) one gets 

(3-3-45) 

where (3-3-46) 

E.(= - 4rr r .E. \L_(.JL) L_ ~ w~ (Jt'! Y) 
v~ \1¥' 1 ~ 1¥1 w.' "\fM\Itl j -

If this equation is written in the form 

(3-3-47) 

we can identify 

(3- 3-48) 

In the method of long-waves C«.f3(~,) is expanded in powers ofy. 

However, because of the (yo( y (3/ y_ 2
) in the second term, the zero-order 

term in the expansion cannot be assumed to be independent of y. We 

therefore leave this term explicitly in the wave equation, redefining 

c~f3(ft,) as: 
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{3-3-49) 

The vibration equation {3- 3-45) becomes: 

{3-3-50) 

• 

Long Wave Expansion 

In equation {3-3-49), replace y_ with Ey_ and expand with r e spect 

to E. to get 

-co) .., -c,) 2 -{2.> 
c1' < ~k ')+ .LE.i- c11 crek.')'/t + ~ E ~co(tlidltk') · {3 - 3-51) 

. y~ y').. + ... 

where the coefficients are given by 

' 
Differentiation of {3-3-49) and {3-3-44) gives the expansion coefficients 

{3- 3- 52) 
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C~,eo~ ( kk') = - 4'~~'2. ..., L ~~A (t~·J x1(t~·) ~>-.(k1k·) -
i I'YYI,k if(\~· ,_ -, 

_ 411 3 e-e-.:• (£~a- ~,8>--+- ~~-bf1) + 
~~vo.. -,Jtmk.mk'1 

+ 41r~R3e.f!e.&• L H~(R~(:~)) X1l:,k)Xft.(k~Jt.) + 
~ rm.K tYnJ<.'' ll.' 

(3-3-54) 

+ ·nT3 e~e~c.' 
1 
L_'~ (b«1 ~,e>.+~?-~,a1)GC111I~Ch)\2./ R2.J + 

"R2
Vo.. -fhY\.k ft\!LI h L 

+ 4ir4 Y-<(r.)y~Ch)y1 th)jr.tn)G.
11

('ift\'f<h)l4/R2 ) + 
~ 

+ -:;.t t'fottr.)yf'Cn)~-o.+ y.~,(h'lyr<n)<;,p>-.+ y#((h)yAth)<o~1 + 

+ Yl'h) jl-Chl ~c(l\ + y,(h)Y~(h) &l ~ G1
(11"'1.\¥ (h)\1R')J. 

21rl."¥Ch'l • ( ~(--1-~t~')) 
·e. 
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Note that the second order coefficient C !~~A (kk'} given by (3- 3-54) 

does not agree with the corresponding equation (31. 23) in Born and 

Huang ( 1962) . The difference is that Born and Huang 1s coe fficie nt con-

tains an extra factor of the form y1S (h) yA (h} ~t({3 in the G' term which 

should not be there. 

The following properties of the expansion coefficients will be 

useful in solving the vibrational equations. They are proved in Born 

and Huang ( 1962} f26, 

-(0) -(o) 

cot o~R') = cpcJ. c~'k.) 

Ceo> r c.o1 2 ~· ~~ ( ~tk') ::. L. ~ 0ari_ (.le'k) = o 
lt' I k.' ,-- ~ 

To solve the vibrational equation (3- 3- 50), expand W (~). 
J 

wrl.. (k I~), and EO( in terms of € Y· 
J 

(3- 3-55) 

(3-3-56} 

(3-3-57) 

(3-3-58} 

(3- 3- 59) 

(3- 3-60) 

(3-3-61) 
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(3- 3-62) 

- {0) . r::-C I) ll ,_ E(2) 
Et - ED( + .... e. t:"" ....- /Z.. E. o< + . . . (3- 3 -63) 

Substituting these expansions into the vibration equation (3-3-50) and 

collecting terms of equal order in E. gives the following perturbation 

equations 

(3-3-64) 

(3- 3 - 65) 

(3 - 3- 66) 

The Zero-Order Equation 

The zero-order equation (3-3-64) has non-trivial solutions of the 

where ]b (j) is an arbitrary 

vector in space. That this is indeed a solution follows from equation 

(3-3-58) together with the observation that (because the unit cell is 
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electrically neutral) 

(3 - 3-67) 

The First-Order Equation 

Substituting the zero- order solution into the first - order equation 

(3- 3-65) gives 

(3- 3-68) 

• 

Even though E~) contains w~1 
)(k •11 ), it is considered independent. 

Hence, the left-hand side is considered the homogeneous part of the 

system of equations; the right-hand side is the inhomogeneous part. 

According to the theory of linear equations if 

CW = D 
~-- ,....._, 

and W 1 is a solution of the system of homogeneous equations C W' = 0, 
~ ~ 

then the necessary and sufficient condition for the inhomogeneous cqua -

tiona to be solvable is that the inner product C¥[', J;2) = 0. In component 

form 

For equation (3 - 3-68) this solvability equation becomes (recog­

nizing -wrn;_ '!J(j) as a solution of the homogeneous equations) 



68 

(3- 3-69) 

The first term is zero because of equation (3-3-60); the second term 

is zero because the unit cell is electrically neutral; hence the solvability 

equation is satisfied. 

The first-order equation (3-3-69) may be given a physical inter-

pretation if the displacement due to the zero-order wave 

(3- 3 -70) 

is described as a homogeneous deformation in a region small compared 

to the wavelength of a long wave. This homogeneous deformation may 

be described as 

a._, 13 ::: l , 2, 3 (3-3-71) 

where the deformation parameters are given by 

(3-3-72) 
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The exponential factor is considered a constant within the region under 

consideration. Using this result, rewrite the first-order equation 

(3-3-68) as follows: 

let (3- 3-74) 

then 

<; -(1) 

L lhYlk' c D(A't v 8 '6 • 
~~~ I r (3-3-75) 

If we write 

(3-3-76) 

equation (3-3-73) may be written 

(3-3-77) 

The first term on the right-hand side is the force on particle k due to the 

external strain caused by the zero-order wave. The term on the left-

hand side is the counter-force due to the induced internal strain lJ..~(k 1 ). 
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We thus see that equation (3-3-77) describes the balance of forces in a 

volume element in a state of homogeneous strain (both external and 

internal) and subject at the same time to an electric field. Equations 

(3-3-68) are 3n in number (k = 0, 1, ... , n- 1 : OC= 1, 2, 3). However, 

if these equations are multiplied by -{k and summed over k, both sides 

are identically zero. Hence of the n equations for a given rX. , only 

n - 1 are independent. We can thus take the displacement of one of the 

base particles to be zero, and measure all other displacements relative 

to it. Taking w;c>(o If>= 0, we thus reduce (3-3-68) to 3(n-l) equations 

in 3(n-l) unknowns. 

The formal solution of (3-3-68} is found by operating with the 

~n (3""-~)::::. ( ~<o))-1 inverse ~ ~ defined such that 

(3- 3-78) 

If We make r a 3n X 3n matrix by bordering it with zeros 
~ 

(f'o<.l3(kk 1
} = 0 if k =0 or if k 1 = o) and operate. on equation (3-3-68) 

we get: 
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The Second-Order Equation 

Substitution of the zero- and first-order solutions into the second-

order equation (3-3-66) gives: 

(3-3-80) 

- L L c~~~(~~)vy2_ r,:y(~'k") ~ L ~i\ (Jr<"k'") l/lr1~···' v., Uts(j) + 
t' ;it , .. I' ~·~ 1?. (3f. I 

Recognizing that -vmi;. '1\(~) is again a solution of the homogeneous 

equation, its inner product with the inhomogeneous part gives the 

following solubility condition. 

({:~) [ w"'(flf 1A"'(~\ ~ 4fT, f ~ [ [rif,1A] + (o<O,p)} . 
(3-3-81) 

where 

(3- 3- 82) 
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(3-3-83) 

(3- 3- 84) 

Symmetry Properties of the Round and Square Brackets 

The square brackets are symmetric with respect to the inter-

change of indices within each pair 

(3-3-85) 

as is easily seen from the symmetry of the c(!~o/-. (kk') (3-3-57). The 

round brackets are symmetric with respect to both interchange within 

each pair and with respect to the interchange of the first and second 

pairs, as can be seen from equation (3-3-59). 

( ¥) ~") = (f3cl-1o A) = (d.~ 1Ao) : (oA) ri.(3) (3-3-86) 

Hence the round brackets have the full symmetry of the elastic constants 

while the square brackets do not. 
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Continuum Wave E uation for the Pro a ation of Small Am litude 
Waves i n a Prestress e , Piezoe ectric Medium 

We wish now to write the analogous equation to (3-1-20) for the 

case of a piezoelectric medium, such that the elastic constants (and 

peizoelectric constants) may be defined in terms of the brackets through 

a direct comparison with (3-3-81). 

For a piezoelectric medium, one must use, in place of Hooke's 

Law, the constitutive stress-strain relation 

(3- 3- 87) 

The equations of motion are 

(3- 3- 88) 

Assuming a plane elastic wave solution 

_ 21T A.¥. x - .Awi 
Uo~, ( ,;x.>t)- lAot e.. (3-3-89) 

and associated electric field 

(3-3-90) 

the equation of motion (3- 3- 88) becomes 

Comparison of this continuum wave equation (3-3-91) with the long-wave 

limit of the lattice vibration equation (3- 3-81) allows the elastic and 
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piezoelectric constants to be expressed in terms of the interatomic 

potential. 

(3-3-92) 

(3-3-93) 

Since we will not be interested in the piezoelectric constants in the appli-

cation to follow, they will not be discussed further. 

For any value of~ (3-3-92) gives 

(3 - 3-94) 

The problem here is that [o:'f
1 
0 .A] is not symmetric with respect to 

interchange of the index pairs and thus does not have the full symmetry 

of the elastic constants. Following Born and Huang,~ 27, we define new 

constants 

which satisfy the required symmetry relations 

&tJp>. = &ort.f>­

&r~..Yfi- =- ~,\c(b' • 

It is easily verified that 

(3-3-95) 

(3-3-96) 

(3-3-97) 

(3- 3-98) 
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satisfies both (3-3-95} and (3-3-96). However, (3-3-97) r equire s that 

Although this symmetry property of the square 

brackets cannot be directly demonstrated, it follows from the fact that 

(3- 3-81} and (3- 3-91) are physically equivalent. Born and Huang ( 1962} 

claim this is a consequence of the disappearance of the initial stre ss . 

However, this pair-wise symmetry is actually a condition for the exis-

tence of the strain-energy function and thus requires only that the initial 

stress be specified, not that it be specified to be equal to zero as 

implied by Born and Huang. Hence, for the case of a medium under 

hydrostatic prestress 

(3- 3-99} 

Central Forces 

By considering only central forces, the non-coulombic contri-

butions to the elastic constants may be written directly in terms of 

radial derivatives of the non-coulombic potential. The total non-

coulombic potential may be written 

(3-3-100) 

where i_I)~k ,(rkk ,) is the two- body ~hor-t-ran')e potential acting betwe en 

particle type k and particle type k'. The coefficients in the displaceme nt 

expansion (3-3-2) may be obtained by direct differentiation of (3 - 3-100) 

(see Born and Huang, ~ 29). 



where 

76 

~t = (_!_ cg~~·) 
tac' \""' &.\ r:.l ... 
~· ~ [J._ c! (l &~~:'\ l 

r- &r r &' -; J L 
~ 

(3- 3-101) 

(3- 3-102) 

Using (3-3-101), the non-cou1ombic contribution to the coefficients of 

the wave-number expansion (3-3-51) may be written 

(3-3-103) 

Using (3- 3-103) in (3-3- 82), the non-cou1ombic contribution to the 

square brackets may be written 

(3- 3-l 04) 
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In general, the round brackets defined by (3-3-83) c annot be 

separated into coulombic and non-coulombic parts because of the matrix 

inverse in the definition. Only for very special geometrie s can this t e rm 

b e simply expressed. For example, if every particle is a symmetry 

center, the round brackets are e qual to zero. This is be c ause ~( 1) is 

an odd function function of xl'; for a centrosymmetric lattice the k 11 

and k 111 sums in (3-3-83) are zero. The next simplest case is a cubic 

diagonal lattice; i.e., a cubic lattice in which the origin of each sub-

lattice k lies on the cube diagonal. Inspection of (3- 3-103) shows, in 

this case , the only non- zero C ( 
1

) (kk 1 ) are those with d.. f. (3 F o . Hence 
~ 

in diagonal lattices, the internal deformations contribute only to C 
44

. 

Examples are the ZnS and CaF 
2 

structures . For all other geometries 

the full expression (3-3-83) must be evaluated for each elastic constant. 
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TABLE 3-1-1 

Comparison of Stress-Strain Notations 

This Thurston Wallace Wallace Thurston Thomsen 
Work ( 1964) (1967) (1965) {Brugger (1970b) 
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IV. THE INTERATOMIC POTENTIAL 

One of the basic assumptions of the Born model is that t he 

cohesive energy of a static latti ce can b e represented as a sum of 

two- body interactions of the form 

<;Q V (e) ( ~DW. ) (r) 
.. (r .. ) = . . (r .. ) + V.. (r .. ) + V .. (r .. ) 
1J 1J 1J 1J 1J 1J 1J 1J 

(4-0-1) 

where 

V ~~)(r . . ) = electrostatic potential energy b etween the ith and 
1J 1J 

.th . I J 1ons = q.q. r . . 
1 J 1J 

i 1 j 

h 
. th . 

qi = c ange on 1 1on 

r . . 
1J 

d . b . th d . th . = 1stance etween 1 an J 10ns 

v~~DW)(r . . ) = 
1J 1J 

I 

van de r Waals or London interaction 

6 8 
= C . ./r .. + f../r . . + ... 

1J 1J 1J 1J 

C . . = van der Waals dipole-dipole constant 
1J 

f .. = 
1J 

van der Waals dipole-quadrupole constant 

(4- 0-2) 

V(r) = 
ij 

empirical repulsive potential opposing the inter-

. f h . th d . th . f . 1 penetratlon o t e 1 an J 1ons. Its unctlona 

form is usually assumed to be either B/r:'-. or 
1J 

1 -r·"lf /\. e 1J . 

The potential energy of ani-type ion is then given by 

= <7~ . . (r .. ) 
L-'±'1J 1J 

j 

i f j 
, 

(4-0-3) 

It is convenient to make a distinction between the long- range 

electrostatic potential which must be summed over all ions in the 



81 

lattice and the van der Waals and repulsive terms which are short 

range; falling off as 1 / r~. or e- rij If 
lJ 

where n and the expone nt are 

greater than 4. Hence it is usually adequate to sum only over nearest 

neighbors; i.e. 

ce) 
<D.= L. v~, 

I. o..\1) J 

While the cohesive energy 

+ .L ( V;~vow) + v(jf")) 
.) t\I!Gf"eSt' 

r-.e·,~hbors 

of an infinite crystal 

ci> = Yz. ~ ~i = Yz Z ~Lj 
<J 

is infinite, the energy density W is finite. 

energy /mole 

)) = 1, .. . . s indexes the ions of one molecule 

S = total number of ions in one molecule 

NA =Avogadro 's number 

(4-0-4) 

(4-0-5) 

(4-0-6) 

The utility of the Born model in predicting elastic constants of 

geophysically interesting minerals at high pressures is ultimately 

determined by how accurately equations (4-0-1)- (4-0-6) represent 

the volume dependence of the energy density. The basic assumption 

that the complex bonding forces can be adequately represented by a sum 

of two-body central interactions having the simple functional forms 

given above can be tested either experimentally or by detailed quantum 

mechanical calculations. The experimental testing is one of the 

objectives of Chapter V where the Born model predictions are compared 
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with recent high-precision ultrasonic data for a number of structures 

pertinent to the lower mantle. The detailed quantum mechanical (q . m.) 

theory for alkalide-halides has been worked out principally by Landshoff 

(1936), L~wdin (1948),and Lundqvist (1955). Although such a quantum 

treatment is beyond the scope of this thesis, the results will be sketched 

in the next section, particularly as they relate to Born approximation. 

4-1. Quantum Mechanical Calculations for Ionic Solids 

The earliest q. m. calculation bearing on the problem of ionic 

crystals was the demonstration by Uns~ld (1927), Brfick (1928), and 

Pauling (1928) that the repulsion between closed ionic shells was of an 

exponential form, rather than the power law form derived by Born and 

Land~ ( 1918a) from the Bohr electrostatic atom model which was 

popular at that time . Using this same approximation of closed electron 

shells, the sodium chloride lattice was originally treated by Landshoff 

(1936, 1937) and, in more detail, by L~wdin (1947, 1948). These early 

works by L~wdin,plus a later major paper (L~wdin, 1956) , represent 

the most comprehensive quantum calculations of the cohesive and elastic 

properties of a solid yet attempted. Since L~wdin' s calculations clearly 

s4ow strengths and weaknesses of the Born formulation used in this 

thesis, his approach will now be outlined. 

LOwdin considered a static system of ions for which the 

Hamiltonian operator is (using LOwdin 's notation) 

H = W + L H . + L
1 

Gik 
op i 1 ik 
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Z Z ' g g 
r ' = ion- ion interaction 

gg 

1 -2 2 ~ z H--p -e<:_J= i - 2m i r . 
g l 

kinematic energy of electrons 
+ electron-ion interaction 

2 e = = 
2rik 

electron- electron interaction 

g , g ' index the ion positions 

i , k index the electron positions • 

(4-1-1) 

The ground state energy of the system is given by the lowest­

c' eigenvalue c... of Schr~dinger 's equation 

where q;, is an antisymmetric wave function of the space and spin 

coordinates of the electrons. 

The ground state energy is given by the lower bound of the 

integral equation 

E. = 
5 ~"*Hop<£> &'L, cQ'tl. · · · dL LN 

s <I>* cf> cQ. 'L; & 'L l. .•• ~'"t' N 

(4-1-2) 

(4-1-3) 

Since the exact solution of Schr~dinger ' s equation for a many-

electron system is almost hopelessly complex, L~wdin made the 

following approximations 

A. Instead of solving the exact Schr~dinger equation, he used 

the one-electron approximation scheme also called the 
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Hartree- Fock self-consistent field method. 

B. Instead of finding the one-electron wave functions by the 

self- consistent field method, L~wdin used the free-ion wave 

functions in the Hartree- Fock energy equation. He thus 

assumed that the solid was fully ionic, and neglected the 

mutual deformation of the ions. Hence there are no van der 

Waals or other multipole interactions in his formulation. As 

Slater {1967) points out: 11The characteristic of this problem 

of interacting closed-shell atoms or ions is that a single 

determinantal wave function forms a satisfactory description, 

and configuration interaction is much less necessary than in 

such a problem as the H
2 

molecule, involving covalent 

binding. 11 

C. The overlap integrals are only worked out for nearest 

neighbors, and higher order terms in the overlap integrals 

have been neglected. 

L~wdin computed the cohesive energy by subtracting the free-

ion energy from the Hartree- Fock energy, writing his results in the 

form 

E =E +E +E +E coh m corr ex s 

where 
E m = Madelung energy 

E corr = Coulomb correction due to overlap 

E = Exchange energy ex 

E = Overlap energy between nearest 
s 

neighbors # 
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Without giving the detailed form of these terms, the important result as 

regards the Born approximation is that the first three terms and part of 

the fourth can be represented as a sum of two-body inte raction . By 

expressing E h = E + E , where E = E + E + E , co m rep rep corr ex s 

LOwdin found that computed values of E as a functi on of R could 
rep 

be fit with an exponential function of the form Ae- R/f . Thus the 

quantum results could be cast into a functional form equiva lent to that 

assumed by Born and Mayer (1932) . However, although the results look 

formally the same, there is one important diffe renee. Part of E is s 

given by three-body integrals and cannot be expressed as a sum of two-

body interactions. One of LOwdin 's more important results was the 

demonstration that these three- body interactions explain the deviation 

from C a uchy ' s relation (C 12 = c
44

) observed for alkali-halides in the 

NaCl structure . On this same point, La and Barsch ( 1968) extended 

LOwdin ' s approach to include the overlap of second neighbor anions. 

They were then able to explain the rather large deviations from Cauchy's 

relations observed in MgO . 

By using a different expansion of the ion wave functions, Lundqvist 

(1955} showed that the main effect of the three-body interaction term is 

the introduction of an effective ionic charge, q* in the coulombic term, 

where q* ~ q . In the Born approximation, this quantum result will be 

incorporated by introducing an ionicity factor, 0 L-~ £ 1, in the 

coulomb terms. In the treatment of MgO in Chapter V , it will be shown 

that by reducing ~ from 1. 0 to 0. 7 much better agreement is obtained 

between the Born model calculations and the ultrasonic data. 
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The improvement of these quantum calculations r e presents the 

forefront of atomistic elasticity. However, even the qualitative insights 

provided by the crude approximations sketched above show that, with 

the exception of the effects of three-body interactions on the shear 

constants, the Born model can be expected to give a fairly goo d 

approximation to the volume dependence of the energy in ionic crystals. 

Quoting Slater (1967), ''What L~wdin found, in fact, was a far- reaching 

resemblance between the quantum-mechanical calculation and the Born-

Lande theory. ' ' 

4-2. The Born Approximation 

Having established that the empirical Born formulation given by 

equations (4- 0-1)- (4-0-6) closely parallels the detailed quantum 

mechanical results, each of the terms in the Born potential will n ow be 

discussed. 

The Electrostatic Potential 

The electrostatic term in the energy density is usually written 

(Kittel, 1966) 

(4-2-1) 

where r . . = Rp . . 
lJ lJ 

R = reference dimension 

p .. = dimension1es s scale factor 
lJ 

eX = Made1ung constant = 1 z_ ~ 
m 2 ~~ Pij • 
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The factor 1/2 corrects for counting each interaction twice in the sum. 

The symbol (±) indicates that the sign of each term in the sum is 

d d t h . f h h h . th d .th . epen en upon t e s1gn o t e c arge on t e 1 an J 1ons. 

The Madelung constant is conditionally convergent and cannot be 

summed directly. There are two well-established methods of calculating 

CXm• the Evjen (1932) and the Ewald (1921) techniques. The Evjen 

technique involves grouping terms into electrically neutral cells, thus 

speeding the convergence. This technique is at its best for simple, 

highly symmetric structures. The Ewald method rewrites the sum given 

above as a sum over the direct lattice plus a sum over the reciprocal 

lattice, each of which converges faster than the original sum in direct 

space. This method is more generally applicable to complex lattices 

and is further described in Appendix Z... 

In treating the electrostatic term for " essentially ionic" oxides 

and silicates, an empirical ionicity factor will be introduced 

(4-2-2) 

where 0 < ~ .£:. 1 

in order to allow for an " effective ionicity•• of less than 100%. The 

ionicity factor will be determined by requiring the best fit to the elastic 

constants and their pressure derivatives. 

The concept of an effective ionic charge is not a new one. It was 

first introduced by Lyddane, Sachs, and Teller (1941). Szigeti (1949) 
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related the effective ionicity to the dielectric constants. 

E = n.,_ +- ( "ri.4~~)~ J. (~e.)2. NA ( J... + .L \ 
::3 11 )).2. .tm, Mh j 

t 

(4-2- 3} 

where E:. = dielectric constant 

n = index of refraction 

)lt. = frequency of long wavelength transverse optical vibra­
tions 

z = valence 

m. = mass of ion 
1 

Jl- = ionicity factor 

Since all the variables except~ are known for many crystals, Szigeti 

was able to calculate .,A-. For materials to be investigated in this thesis 

he found: 

Material .J 

NaCl 0.74 

MgO 0. 88 

Ti02 (Rutile} 0. 65 - 0. 88 

Although treated empirically by Szige ti and in this thesis, the coulomb 

correction is a result of the q. m. treatment of Lundqvist ( 1955} as 

shown in the previous section. 

The van der Waals Potential 

The van der Waals interaction can be understood semiclassically 

as the interaction of the instantaneous dipole moments (Kittel, 1966). 

One instantaneous dipole moment of magnitude p . produces an electric 
1 
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by 
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3 
= 2p. I r which induces a dipole moment on a second ion given 

l 

A. = electronic polarizability of ion j • 
J 

The potential energy of the dipole interaction is 

It should be pointed out that, unlike the interaction of two per-

manent dipoles which depends upon their relative orientation, the van 

der Waals interaction is a central interaction depending only on the 

separation r .. between the two ions. 
lJ 

The van der Waals constant C . . can be related to the principal 
lJ 

absorption lines and polarizability of the ions 

where 

(4-2-4) 

E. 
1 

= h)).:. = energies corresponding to main frequencies of 
the ions 

A. = ionic polarizability • 
l 

Although this seems very straightforward, the actual evaluation 

of the van der Waals constant in solids is subject to considerable 

uncertainties. 

As Pitzer { 1959) points out in his review article, London energies 

agree reasonably well for He and H2 , but for larger molecules serious 

disagreement, frequently by a factor of two, arises between theory and 
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experiment. Mayer (1933) found that the London calculations of the van 

de r Waals coefficients were only half as large as those given by optical 

data for the alkali-halides. His experimental values for the dipole-

dipole and dipole-quadrupole interactions for Nael are given in Table 

4-2-1. Mayer found that the dipole-quadrupole contribution to the 

cohesive energy, e~ is between lOo/o and 20% of the dipole-dipole, ~ , 
R R 

contribution, while the quadrupole-quadrupole interaction, R~O , is 

negligible. More recently, Hajj (1966) has given the smaller values also 

given in Table 4-2-1. 

Lennard-Jones and Dent (1927) observed that the 0
2

- ion is 

isoelectronic with the neon atom and used the coefficients found for the 

inert gas to describe the interaction of the 0
2

- ions in some rutile 

structures. The Lennard- Jones potential may be written in the form 

(4-2-5) 

- 4~~12.-- c -v-.ll. 
I 'l 

Identifying eBB = 4€<:!'", these values are given in Table 4-2-1 for Ne 

and Ar. The values of E. and <!""' are found from the measured bulk 

modulus and density of the inert gas crystals (Kittel, 1966) and are 

given in Table ...._-2..-1. Note that the eBB is close to Mayer's value. 

Margenau (1939) computes the van der Waals constants for Ar and Ne 

to be 
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-60 
where £orNe: c 1 =4.67xl0 , -76 c2 = 6. 9 x 10 , C 

3 
= 5. 3 X 10- 92 

c
3 

= 136 x lo- 92• 
-60 forAr: c 1 = 55.4x 10 , -76 c 2 = 120 x 10 , 

Hence, the larger value of CBB found in the Lennard-Janes treatment is 

probabl y an effective sum of the dipole-dipole and higher order m ultipole 

interactions . For argon 

CBB 
- --:1) (Meyer) 

R 

103 X 10- 60 .036 X 10-12 
= -(3.76)6 xlo- 48 = 

136 X 10-92 

55.4xl0-60 

(3. 76)6 
X 10-48 

120 X 10- 76 

(3.76) 8 (10- 64) 

(3.76) 10 (l0- 80) 
= .0196 + . 003 + .00024 

= . 02 3 X 1 0- l.Z. • 

In the remainder of this thesis, I will use the inert crystal 

potentials to characterize the anion-anion second neighbor interactions, 

since these contain the repulsive term as well as the van der Waals 

dipole-dipole term. This will be called the " inert crystal assumption". 

The effect of these uncertainties in the van der Waals coefficients 

on the elastic constants and their pressure derivatives will be investi-

gated in Chapter V where the individual structures are treated in detail. 

As Tosi ( 1964) poi nts out, this uncertainty is not very important in 
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calculations of the cohesive energy since the van der Waals energy is 

only a few per cent of the total. Furthermore, uncertainties in the 

van der Waals energy are largely compensated by the adjustable param­

(r) 
eters in the repulsive term V,~ . Born and Huang (1962, p. 28) state 

this quantitatively. 
n 

They show that any term of the form A/R added to 

the energy expression will only change the total cohes ive ene rgy by 

(4-2-6) 

For a typical R
0

/ f = 10 the multiplicative factor is 0. 2 for n = 6 and 

0. 1 for n = 8. Even though they contribute very little to the cohesive 

energy, Tosi (1964) has shown that the inclusion of the van der Waals 

terms systematically improves the fit between experimental and calcu-

lated cohesive energies for the alkali-halides. 

It will be shown in the section on elastic constants that these 

terms are quite important, particularly in certain cases like the shear 

constant c
44 

for the NaCl structure, where the electrostatic and nearest­

neighbor repulsive contributions are very small. 

The Empirical Repulsive Pote.ntial 

The two- body repulsive potential has traditionally been given 

one of the following two functional forms. 

(Born and Lande, 1918a.) 

(4-2-7) 
(Born and Mayer, 193Z.) 
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Each has two empirical parameters which are evaluated from the 

experimental values of the first and second volume derivatives of the 

energy; namely the density and bulk modulus at p = 0. Equations (4-2-7) 

represent the most basic assumption of the Born theory. 

As discussed in section 4-1, quantum calculations for closed 

shell systems verify the exponential form as do the experimental 

cohesive energies calculated by Tosi ( 1964) and the elastic constant 

calculations given in Chapter V of this work. However, since the 

experimental tests are at low pressures, and for geophysical applica-

tions we wish to compute the elastic constants to strains of V /V ~ 
0 

4. 0/5.5 = . 73 at the base of the mantle, we wish to know if the 

exponential form is a good representation of the quantum repulsive 

energy over this compression range. In one attempt to answer this 

question, Kalinin (1960) has investigated the interaction between the 

closed shell systems He-He, Li+- Li+, and Be++- Be++ on the quantum 

mechanical level. By minimizing the energy with respect to the constant 

1/ p in the exponent for various fixed values of the s epa ration R, he 

computed 1/f as a function of R. He found that 1/ f varied by less 

than lo/o to pressures of the order of 10
4 

kilobar for all three systems 

and concluded that the exponential form was a good representation of the 

energy of repulsion between atoms and ions with filled shells over the 

entire pressure range of geophysical interest. Of course, these cal-

culations are for a 1-s shell which one would expect to be less deform-

able than the outer shells of more complex ions. However, L~wdin has 

shown that for alkali halides, the repulsive energy is approximately 
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exponential for compressions of at least 0 . 64. 

The Cohesive Energy and Evaluation of the Empirical Parameters 

The various terms discussed above will now be used in equation 

(4-0-~for the internal energy density. 

energy/mole 

~v = potential energy of a '))-type ion (4-2-8) 

S = number of ions per molecule 

For V = a cation, <f>'Y has the following form: 

(4-2-9) 

For V = an anion, SPv has the form 

(4-2-10) 

Notice that anion-anion interactions have been included while cation-

cation interactions have not. This is because for all materials con-

sidered in this thesis the anion is larger than the cation. Hence, the 

anion overlap is greater than that of the cations. The energy density 

can thus be written 
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where Zy = number of nearest neighbors of v-typc cation 

number of second neighbors of 
I 

anion ~..; · = ')) - type 

CAB = cation-anion van der Waals coefficient 

CBB = anion- anion van der Waals coefficient 

DBB = Lennard-Jones anion-anion repulsive term 

R = reference dimension 

r)lk = RpVk 
• 

The equilibrium condition is (dU I dR)R = 0 and the zero pres sure 

bulk modulus is given by 

......... 
Expressing v = 

R = 

R.3 
/C 1 = 

(ClV)l/3 

- Bulk modulus of 
thC' static l a ttict• 

volume /mole of the static lattic e 

= linear edge of cubic refe renee cell 
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where C 1 = moles I reference cell = ~' /NA 

1[, = molecules/reference cell • 

A tilde over a quantity means it is evaluated for the static lattice. The 

derivatives are easily performed. These two pieces of data allow two of 

the cation-anion repulsive parameters ( A.v. fy ) to be determined. The 

algebra will not be worked out here, but will be carried through as each 

structure is treated in Chapter V. 

'"V 'V 

It is important to point out that K and R must be the bulk 

modulus and reference dimension of the static lattice which ar e obtained 

by linear extrapolation from the high-temperature data as explaint:d in 

the next section. 

4-3. Obtaining the Bulk Modulus and Density 

Appropriate to the Static Latti ce 

The P, V, T equation of state of a solid under hydrostatic pressure 

is 

The harmonic vibrational spectrum of a collection of ~ions can be 

represented by 3~ independent oscillators having frequencies Vi. . 

Following the methods of statistical mechanics , we consider a canonical 

ensemble of mic restates of possible energies 

'vJ('/) + ~L hv~ + Z. "~~ • hvi. 
l t 

n ;.= integer (4-3-1) 

Since the oscillators are independent,the partition function Z may be 

written as a product of single oscillator partition functions 
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I 

-( V'J(V)/ Ae.T + LiT? hv•) 
2.. = e.. l-1 l. l.. 1.. ~ ... L 3NA ( 4 - 3 - 2 ) 

oo -hn;V< /Jt-r ( -'nv; /Jil )-1 
-li. ""' L e. = I- e. -

1')'\' :f 

The Helmholtz free energy may be calculated from the partition function 

as 

(4- 3- 3) 

The equation of state is thus 

P= _ r_ ~f=" 1 ~y).1 = - ;)WCv) __ 1 z_\ ~ hv; + hvc: 1.J~v~ 
~V v l l erw;;.-.-r ;)~V 

- I 

(4-3-4) 

If one now makes the Einstein approximation that all V~ are the sam~::, 

and the Gr'(lneisen approximation that all 0; == -~~v,"" 0 
.)kV 

the same, one gets the Gr'(lneisen equation of state 

where 

art: 

(4- 3-5) 

One need not make the Einstein approximation tu get the Mie-

Gr'(lneisen equation of state. Tosi ( 1964) shows that the Mie- GrOne is en 

equation follows from the less restrictive assumption that the vibrationa l 

energy of the solid, divided by its temperature, be a function only of the 
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ratio between the te mperature and a pure ly volume-de p endent cha rac te r-

istic temperature . Thus equation (4-3-5) is a l so true for a Deby e solid 

as shown in Born and Huang ( 1962, § 4). 

C onsider now the problem of evaluating the empirical r e pulsive 

parameters for the static lattice . The simplest assumption is that F .b 
V l 

in equation (4-3 -3) does not depend on the volume . To this approximation: 

P==- -&W 
&..V 

K ( P=O >T ... 3 00°K) :: [v(!
2

~ )1 Qp.o 
1•500 • 

(4-3-6) 

Tosi ( 1964) has shown that this approxim ation of ne glecting the volume 

dependence ofF .b leads to larger discrepancies in t h e calculated co­
Vl 

hesive e nergy than neglecting van der Waals terms. A more r ealistic 

approac h is to work with the Mie-Gr{lneisen equation {4-3 -5 ) . At P = 0, 

T = T 
0 

(~) = 
&V Vo 

These e quations may be used directly as outline d in Tosi (1964) . 

{4- 3 -7) 

How-

ever, often the temperature dependence of the density and the bulk 

modulus is known for temperatures above the De bye tempe rature. In 

this case a linear extrapolation from the high-temperature regime to 
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- ,-.J T = 0°K gives V and K, the molar volume and bulk modulus of the 

static lattice, as will now be demonstrated. 

Following Born and Huang ( 1962, § 4) expand W (V) about 

equilibrium volume V defined by (dW /dVk;; = 0. 

W(Y) -=- W -t- l &2 VV\ ( y-\;).,_ -+ ~ dl..3W \(v -V)3 + 
z &v2. l¥ 3 ~ &v3 1v 

Retaining only linear terms 

At P = 0, 

~\ cv-v) + ... 
&. v2. v 

-1- • • 

(4-3-8) 

If it can now be shown that the second term on the r ight-hand side is a 

linear function of T at high temperature, then the high-temperature data 

may be linearly extrapolated to T = 0 to get the equilibrium volume of the 

"' static lattice V. 

Consider first the vibrational energy 
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Let x. = hv. / kT . In the high-temperature limit x . <..-<. 1 
1 1 1 

l+l'i+~Xi-+ ... -1 

Thus at high temperatures 

(4 - 3- 9) 

If ( ~ /V) is a constant, then V may be e xtrapolated from the 

high- temperature regime to get V as illustrated in Figure 4---3-l. 

Consider now the bulk modulus in the high- temperature regime 
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If ( ~ /V} is a constant (see Swenson, 1968), (d/ dV} ( o /V) = 0 and we 

have 

K =- &,.'W - (1\ &tvjlo_ 
V dV"l. vJ &V 

Using (4- 3-8) gives 

,....., "" 
Identifying the first term as K/V and using (4-3-9} on the second 

term gives 

So 

c9.3'N ) Y (l \ 3Nle.\ - C!) & tv1lo 
&v?. v \< v J Cv &V . 

Differentiating equation (4-3-5) forE .band using the definition 
Vl 

K =- ~ + \ ~) ~ (1) 3Nk.- (l)" (3Nk -C~~)] T 
v v L & v3 I v ~ v v . 

Under the assumption that ( ~ /V} is constant, K/V has the form 

"' "' Thus a plot of K/V vs. T at P = 0 has an intercept of K/V when extrapo-

lated from the high-temperature regime. 

All these arguments are hinged on the assumption that ( 0 /V) 

is a constant. Swenson ( 1968} gives arguments as to why this should be 

true, and Bassett et al. (1968) give data which show that in the relation 
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lj~o= (V /V 
0

)a, a z 1 for a wide range of solids. 

Tosi ( 1964) reviews the various methods which have been used to 

handle the vibrational energy and thus arrive at empirical repulsive 

parameters appropriate to the static lattice. He finds that the difference 

between repulsive parameters found by equations (4-3-6) and those found 

for the static lattice after correcting for the vibrational contributions 

differ by up to 25%. Further he finds that the agreement between 

theoretical and experimental cohesive energies for the alkali halides 

are systematically improved upon making the thermodynamic corrections 

and that the magnitude of this improvement is larger than those caused 

by including van der Waals forces or second neighbors. 
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Table 4-2-1 

Multipo1e Coefficients 

The cation-anion interaction is ~~W = 
CAB C~ 

~VDW a CBB DBB 
The anion-anion interaction is ~BB - --6- + ~ 

rBB rBB 

NaCl 

(lo-6a 

Mayer (1933) 

Hajj (1966) 

Inert Crystal 
(Argon) 

Huggins & Sakamoto 
(1957) 

Inert Crystal 
(Neon) 

CAB 
ergs 

11.2 

11.7 

7.8 

CBB 
cm6) (lo-60 ergs cm6) 

116 

64.5 

103 

8.46 

DBB 
(lo-106 ergs cml 2) 

1594 

35.8 



a 
0 

(A) 

Argon 3.40 

Neon 2.74 
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Table 4-2-1 (Continued) 

Inert Crystal Parameters in the Lennard Jones 

(10- 16 ergs) 

167 

50 

from Kittel (1966) 

3.76 

3.13 

6 
eBB - 4e:a 

(lo-60 erg cm6 ) 

103 

8.46 

DBB .,. 4e:o 
12 

(10- 1 06 ergs cm12 ) 

1594 

35.8 
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T 

T 

Figure 4-3-1. Linear extrapolation to obtain static lattice parameters. 
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V. SPECIALIZATION OF THE INTERATOMIC POTENTIAL MODEL 

TO SPECIFIC STRUCTURES OF GEOPHYSICAL INTEREST 

5-1. The Sodium Chloride Structure 

In this section equations (3-3-99) for the elastic constants will be 

specialized to the case of the cubic sodium chloride (rock salt) structure. 

Equations are given for the volume dependence of the elastic constants, 

as well as closed form expressions for their first and second pressure 

derivatives at P = 0. These expressions contain the electrostatic inter­

actions, the empirical cation-anion repulsion, the cation-anion van der 

Waals interaction, and the anion-anion interaction as discussed in 

Chapter IV. 

This section has two objectives. The first is to show how the 

general equations given in Chapter Ill, § 3 are evaluated for an extremely 

simple, diatomic, cubic solid before investigating the more complicated, 

polyatomic, low- symmetry structures. The second objective is to 

explore the effects of the various terms in the potential on the e lastic 

constants and their pres sure derivatives. 

The elastic constants and their pressure derivatives are evaluated 

for NaCl and MgO for direct comparison with the ultrasonic measure­

ments of Spetzler, Sammis, and o •connell ( 1970) and Spe tzler ( 1970). 

MgO is of direct interest as a candidate material for the lower mantle 

below the 600 km discontinuity (Ringwood, 1970). NaCl is of interest 

because of its low bulk modulus relative to MgO (238 kbar vs. 1680 kbar). 

Since it undergoes a larger compression in the 10 kbar range presently 

accessible to ultrasonics than does MgO, it has been possible to 
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measure second pressure derivatives as well as the simultaneous 

temperature data necessary to make a first-order extrapolation to 

T = 0 for comparison with the static lattice results. 

Specialization to the NaCl Structure 

Because the elastic constants are symmetric with respect to the 

interchange of indices within each pair, each pair may be represented by 

one index as follows ~rJ.~ ~f. 

Tensor Notation Voigt Notation 

11 1 

22 2 

33 3 
(5-1-1) 

23 4 

31 5 

12 6 

For the special case of cubic symmetry, we have (see, for 

example, Nye, 1964, p. 140) three independent constants 

All of the rest of the 6 x 6 = 36 possible C .. are zero. From equation 
lJ 

(3- 3- 99) we get 

ell = ~Ill \ = [11, 11] +(11,11) 

cl2 = ,;Oil~~ = 2 [12, 1?] - [_ 2 2' 11] + ( 1 1 ' 2 2 ) 

c44 = ~2?123 = [22, 33] + (23 , 23) (5-1-2) . 
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Since the NaCl structure is centro symmetric, the C ( 
1

) (k k 1
) "fo 

vanish identically and thus so do the round brackets. The square brackets 

are written in terms of coulombic and non-coulombic parts 

(5-1- 3 ) 

where the coulombic part is given by {3-3-54) {the details of the coulombic 

sums are given in Appendix 2. ) and the non-coulombic part by (3-3-103). 

In these expressions 

R = Nearest Neighbor Distance 

(5-1-5) 

= [-' ~(.l Jc:f>:._,(r)jJ 
r dl r ~'I l r~ 

'!tit' 

N 
~ {r) = Non-coulombic two- body potential 

kk 1 between k and k 1 type ions 
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..sl 
::. R(O, 1, 1) 

~2 = R(l, 0, 1) 

~3 = R(l, 1, 0) 

Volume of unit cell 
-~ 

Va = = ~1 · (~2 x~3) -= 2R-

The D(ij in the coulombic parts of equations are dimensionless 

Madelung-like constants. The details of their calculation from equation 

(3-3-54) is given in Appendix Z Cowley (1962) gives for thc NaC1 

structure 

0::11 = -2 . 55604 

rX,1.. = 0 . 1 1 2 9 8 

ri,..= 1 .27802 

These constants have certain internal c ross- checks, d,,"" - ~ d44- and 

which w ill be useful in checking these constants 

for more complex structures . 

Indices It = 0, n- 1 index the n prim itive sublattices . For any 

compound AB in the rock salt structure, n = 2 and therefore three dis ­

tinct two-body potentials <I>kk ,(r) must be specified. For the most 

general case considered in this section, we have for the non - coulornbic 

cpk~ ,(r) 

cation-anion (5-1-6) 

anion-anion 
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The terms on the r. h. s. of these equations are discus sed in s ection 4-2 

on the potential. In this section we will make calculations for both the 

Born-Lande (1918a) and the Born-Mayer (1932) forms of the empirical, 

two-body, repulsive potential. Respectively, these ar e 

(5-1-7) 

The cation-anion interaction is over nearest neighbors, while the anion -

anion interaction is over what are usually termed second neighbors. 

These sums are worked out in Table 5-1-1. For the cation-anion 

interaction 

(5-1 - 8) 

For the anion-anion interaction 

2 = [_!_ &~~ J = <OCee 
BB r &r r-8 

f: ISS as (5-1-9) 

46C.ee. + IC:-8 "Dee 
r~o ~<o 

-=- - ~ C~e + ~ 1)e,e, 
Z R'0 3Z.. R'~.-

The prime denotes differentiation w. r . t. r. 

After doing the short- range sums, the expressions for the 

elastic constants become 
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(5-1-10) 

Note that the identical terms P AB = P BA and QAB = QBA have already 

been combined, thus eliminating one factor of one-half. However, the 

PBB and QBB terms must still be divided by two to avoid counting the 

B-B interaction twice. Substituting equations (5-1-~) and (5-1-9) for 

Pkk 1 and Qkk 1 gives 

cl\ = cx,~<t "Z. + v." ~ _ 42..C,..~ - .2 C.se. + ..2. Dss 
zg_-+ R. R'} 4R?" 8 R's-

(5-l-11) 

(\ .. ~~- I 

G. c~s 9 Cse +n~ VNo-
ze..+ Rl. R' -4R' 3Z R'~ 

c-44--= ex~~%"" ' -~~ + ~ -:Del!. + VA'3 + G:,C..Ae 
.2R"'- Rl. ~9 4 R' 3Z, ~IS"" 

Evaluation of the Empirical Parameters in V AB and Expressions for the 

Bulk Modulus 

Before the elastic constants may be calculated, we need to 

evaluate the two empirical constants in the cation-anion repulsive 

potential. These are obtained from the zero-pressure density and bulk 

modulus as follows. 

The energy density of the static lattice is given by 

(5-1-12) 
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where U A = energy per cation and UB = energy per anion. The factor of 

one-half corrects for having counted each interaction twice. 

Where 

UB~ -D;'M~~;z_ + =l:Ae.[Y~s(R) - C~:J + 

-t ~sal- Cae + -nat3 J 
L 8~<.> W4R1~ 

O(M = Madelung constant = 1. 747558 

Z AB = # of nearest neighbors = 6 

ZBB = # of second neighbors = 12 

Equation {5 -1-13) becomes 

{5-1-13) 

'vJ ~ ~ Nn sUA+ \Jr:> { "" Na ~ - D(~ -'- 2:_...., \ Vp,c(R)- CAIII.l + 
~ n l "' ~ n L -- ,--- '"" L <> i_t; J ( 5- 1 - 14} 

The equilibrium equation rna y be written as 

(dW /dR~- = 0 
it 

where the rv denotes the equilibrium state for the static lattice. 

(5-1-15) 
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The bulk modulus i s computed ac c ording to the relation 

3 
where V = volume / mole = ZN A R . Since the energy is expressed as a 

function of the nearest neighbo r distance R, the vol ume derivative may 

be more easily evaluated i f i t is t r ansfo r med to a derivative with 

respect to R using the chain r u l e. 

(5-1 - 16) 

Since 

(5-1 - 17) 

- I ( I )s-
le, N~ ~ • 

At equilibrium 

(5 - 1- 18) 

Differentiating equation (5 - 1- 15) one more time gives 

(5 - 1-1 9) 
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At equilibrium 

K,: v &2 WI :::; 2-NAR
3 L3'=>1 N~ l<~J NA \ --<-~t~ + &v~ -v l. R (5-l-20) 

+ ~A6l_V;~ (R) - 42.~;~] + ~~ [-~~e + ~~-~1 
which simplifies to 

(5 - l -2 1) 

We now wish to use equations (5-1-15) and (5-1 - 21) to evaluate the two 

empirical parameters in V AB(R) in terms of the experimental values of 

K and R = (M/2~f )
113 

where M is the atomic weight and f is the 

density . 

This may be done rather easily for both the power - law and the 

exponential forms of the potential because of the following properties of 

these functions . 

Power Law Exponential 

VAB = B/Rn 
VAB = ;A.e -R if 

I -n 
VA a 

VA8 = R VAB I 
VA6 = ---

(::l 

v." _ n(n+l) V, v '' VAs 
\5-l- .U.) = or At; - 2 AB A~ 

R 

v ''' _ -n(n+1)(n+2)V. yfff VAB 
:: -~ AB - 3 A~ A\3 p R 

v ''~ _ n~n+q~n+2Hn+3) V. v 'v VAB 

AB - 4 AB M ··y 
R 
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Note that for both functional forms of the potential 

= ~ I 
- R ~B 

b = n + 1 for the power-law potential 

S = Rf;o for the exponential potential . 

This has been pointed out by Anderson ( 1970), although it is not 

(5- 1-23) 

characteristic of a general potential as he suggests. Solving equation 

(5-1-15) for (V~a> l -
&: 

(5-1-24) 

So, according to equation (5-1-23) 

(5-1-25) 

Substituting this expression into equation (5-1-21) gives 

(5-1-26) 

Solving this equation for ~ gives 

(5-1- 2 7) 
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Note that for the simpler cas e of nearest neighbor int<'ractions only and 

no van der Waals terms, equation (5-1 -27) above simplifiPs to 

as given by Kittel (1966). It is interesting to note that t he relation 

'V 

Rip = n + 1 follows from the relations (5 -1-23) and {5-1 - 24) and is 

independent of the number of interactions added onto the potential. 

Once b has been determined, the other constants in V AB(R) may be 

determined from equation (5-1- 24). 

The volume dependence of the bulk modulus 1s given b y 

~ ~~ l -4~;-~ + ~~s [ v~ _ ~~ _ 5~¥PBJ + 

+ :z~c \ _ 32. Caa + 45"" n()(5)J 
z. L 4 "? 10 R's- - -

(5-1-28) 

(5-l-29) 

As a direct check on the algebra, this equation is identical term for 

term with 1/3 (C
11 

+ 2C
12

) calculated from equations (5-1-11). 
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At equilibrium (P = 0) 

\ 1 11 I 
VA& _ 2-VAG 
y ~1-

is the same for both functional forms of V AB. This must be true sinc e 

K( 'Ft) is one of the two input parameters. However, at R f R, the two 

potentials give a different predicted value of K(R) s ince in general the 

power-law expression 

does not equal the exponential expression 

For the power-law potential 

(5-1-30) 

For the exponential potential 

(5-1-31) 

The pressure volume relation i s given by 
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(5-1- 32) 

Equations (5-1-11) for the volume dependence of the e lastic 

constants may be written (using equations (5-1-22)) 

(a) Power-law Potential 

(4+: O(+'r~ql. - h VAB + ~ c~e. - ~ Css -r 15' ""]A,B 
2 g+ \) ""R3 f<9 4 -w 3~ "1(15"" 

(5-1-33) 
(b) Exponential Potential 
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Expressions for the First and Second Pressure Derivatives of the Elastic 
Constants at P - 0 

Expressions will now be derived for the first and second pres sure 

derivatives of the elastic constants at P = 0. These expressions arc 

useful in making a direct comparison with the ultrasonic data. 

The pressure derivatives are computed according to the relation 

(5-1-34) 

The relation dR / dP = -R/ 3K allows these equations to be written 

(at P = 0) 

(5 -1- 35) 

(5-l-J6) 

where C .. represents any one of the three independent elastic constants 
lJ 

or the bulk modulus. 

Consider first the bulk modulus 

&Kj _ -R &K\ 
dP ,.,- ~~ &R "' 

Differentiation of equation (5-1- 30) for the power - law potential 
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(5-1- 3 7) 

The equilibrium equation (5-1-15) may be us e d to further 

simplify the expression to 

(5-1- 3 8) 

+ "ie.e.l\~5 c~a - ill "Dfte] 1 T 4 ~, I (o IS" j . 

For the case of nearest neighbor interaction only and no van de r 

Waals terms (dK/dP)I"' can be shown to have a simple form 

OlK) = n+7 
&P rv 3 

Differentiation of equation (5-1- 30) for the exponential potential 

gives 

&K\ = - ~~ ~ '"~M~<i>l. + i.Ae[- <(-g)
3
+ 3(&f·+4R) YAa + 4B~ C~g l-+-

d? rv 54- K L ""R_~ f f f ~3 
"- "j 

Again using the equilibrium equation to rewrite the first term 

gives 

(5-1-39) 



12.1 

In the case of nearest neighbor interactions only and no van der 

Waals terms (dK/dP)lt again has a simple form 

~~::: 1_ [(~f+t)('R{P+2.)-14l 
ctPN 3(~-L) J. 

The second pressure derivative of the bulk modulus is now com-

puted according to equation (5-1-36). In this case equation (5-l-35) may 

be used to simplify equation (5-l- 36) to the form 

_!_[ dKj + _l_l ciK \ 
k &P,.., 3 j &P ""' • 

(5-1-40) 

Equation (5-l- 38) or (5-l- 39) is used for (dK/ dP) depending on the 

assumed form of V AB. Consider first the power-law potential. 

Differentiating equation (5-l- 3 7) with respect to R and using the equilib-

rium condition gives 

(5-1-41) 

+ ~[- 10::75" em + C,C..O J:Bo l ' - r 4!;. I + l. l _, &k I 
2. z ~, 4<'s-Jj l&P""' 3J K dP"' . 

For the case of nearest neighbors only and no van der Waals 

2. 2, . 
terms, (d K/ dP )l has the simple form 

'V 

&z.k l = -4:- ( rnt"3) 
&?-z. "" .9K .. 

Next consider the exponential potential. Differentiating equation (5-l- 30) 

twice with respect to R and using the equilibrium condition gives 
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(5-1-4 2} 

- [&K\ +__!_] ~ ~, 
d!f' rv 3 k &P tv • 

For the case of nearest neighbors only and no van der Waals inte racti ons: 

Equations (5-1-35} and (5-1-36} for the pressure derivative s of 

the elastic constants will now be evaluated. Differ e ntiating equations 

(5-l-11} with respect to R gives, for the power-law potential 

(5-l-43} 
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For the case of the exponential potential 

(5-1-44) 
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Substitution of equations (5-1-43) into equations (5-1- 35) and 

(5-1-36) gives the pressure derivatives for the power-law potential, 

while substitution of equations (5-1-44) into equations (5-l- 35) and 

(5-l- 36) gives these derivatives for the e xponential potential. The 

expressions for these derivatives are the same e xcept for the V AB 

term. It was shown that at equilibrium 

n(n+3)(~ J = ~ (~+~)( ~} , 

therefore (dc
12

/dP)j"' and (dC
44

/dP)j"' are the same for both forms u! 

V AB' while (dC 11 I dP)\..., is different. Each of the three second deriva­

tives (d
2

c 11 /dP
2

)\"" is different for each functional form of the cation-

anion repulsion. 

For the case of nearest neighbor cation-anion interactions only, 

the pressure derivatives reduce to the simple expressions giv en below: 

Power- Law Potential 

&C"\ = ~ [ (n+l)(h-+3) + ~c£.1 =. (n+1)(n-T3) - 17.55/<c 
(ip i>;O (n-1) r:A" 0(1"\ (n- 1) 

(5-1-45) 

~\ = ~ l n+3 + zoc,;r..J (n+3) + 0.775"80"!> 
&P ?eo (n-t) lA'i!> o(l"\ (n-1) 

~c44\ = ::!£._ l n+3 _ Zc-!4+] =- -(n+3) + 8.7755\ 
dP f"·O (\1- 1) ~A6 c/1"\ (n- 1) 
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Exponential Potential 

& Cu \ :::. 
&P P•O 

'=- [-' -R ( 'R -1- 'J .._ .vxJ =- J (~ + 'J- 17. '55"1 ~ 
(R;j:>-.Z) l.Ae f f o<Mj ")-Z 

~~ _ ~~-\_1 ('R+Z)+-<C{•~l ::. 
dP p=o (~p-7-) L z~e f o{M J 

( ~-+ 2.) + 0.775803 

~ -2.. 

Jc~~) =­
&P p=o 

f' 

=- _ (~+ z) + 6.77581 

r~ -Z. 
f 

As a check on the algebra, it can be readily shown that 

(5-l-46) 

1/3 l(dC 11 /dP)I~ + 2(dC 12 /dP)jJ calculated from equations (5-1-45) 

and (5-1-46) are equal to (dK/dP)j as given by equations (5-1- 38) and 
"" 

(5-1-39). 

Numerical Predictions for NaCl and MgO 

The two input parameters, K and R, are obtained by the linear 

extrapolation of V(T) and (K/V)(T) from the high-temperature regime 

(T ~ 8 0 ) to absolute zero, as discussed in section 4-3. The experi-

mental data and extrapolation are shown in Figure 5-1-1 for NaCl and 

in Figure 5-1-2 for MgO. Note that for NaCl the thermal expanison 

coefficient rises very rapidly above the Debye temperature, and one 

might be tempted to make the dashed extrapolation of V shown in 5-1-1 b. 

However , since this rapid rise in D( may be due to the formation of 

vacancies (Enck and Dommel, 1965 ), it should be disregarded and the 

solid extrapolation used. This solid line extrapolation gives the same 



126 

V and K found by Thomsen ( 1970~ from the more rigorous solution of the 

fourth-order anharmonic equations. The extrapolated V and K values are 

given in Tables 5-1-1 and 5-1-2. The other input parameters are the 

multipole coefficients CAB' CBB' and DBB which are discussed in 

Chapter IV and are summarized in Table 4-2-1. 

Tables 5-1-4 through5.-1- IO give the theoretical predictions of the 

elastic constants and their first and second pressure derivatives at zero 

pressure. These calculations are made for a range of ionicity factors, 

~, between 0. 6 and 1. 0. The effect of the multipole terms is investi-

gated by repeating the calculations with and without these terms. The 

results of the calculations are compared with experiment in Figures 

(5-1-3) through (5-1-9). Finally, using the ionicity factor, J. , which 

gives the best agreement between experiment and theory at P = 0, the 

volume and the elastic constants are calculated as a function of pressure. 

These results are given in Tables 5-1-11 through 5-1-14-; and in 

Figures 5-1-8 and 5-l-9. 

Discussion and Conclusions 

As stated earlier, the primary objective of this chapter is to 

understand the effects of the functional form of the potential and its 

various terms on the elastic constants and their pres sure derivatives. 

The geophysical question is: Given the compressional properties, p 
and K , of a material, how accurately can its shear properties be pre-

dieted. In order for the theory to be geophysically useful, the shear 

properties must be relatively insensitive to the potential, but strongly 



127 

dependent on the crystal structure. For both NaCl a nd M gO the pre cis e 

ultrasonic data e xist to make this test. Discre pancies between theoretical 

predictions and e xperimental values will be discuss e d in t e rms of uncer-

tainties in the velocity at compressions corresponding to 6 00 km d e pth 

in the earth and 2892 km at the base of the mantle. At 600 km, 

P ~ 215 kbar and K ;;:: 2000 kbar so PIK ~ 0. 11. At the bas e of the 

mantle P ~ 1338 kbar and K ~ 2000 kbar so PIK ~ 0. 67. 

We will first consider NaCl. Since NaCl is a bette r approximation 

to the Born ionic model than any other solid investigated in this t hesis, 

one would hope for good agreement between theory and expe rime nt. 

Table 5-1-Z shows that this is indeed the case. The largest discrepancy 

between theoretical and experimental elastic constants is 9. 4% for C 
12

. 

This is a consequence of the central force model; LOwdin ( 1948) has 

shown that three-body interactions explain this deviation from Cauchy 1s 

relation. The discrepancies in the prediction of the other elastic con­

stants are all less than 4o/o. The prediction of dKidP( is within Zo/o of 

experiment, while dC 11 I dPl~nd dC 12 I dP\:-re both within 5% . Although 

dC
44

1dP(2s 200o/o low, this has very little effect on the high-pressure 

predictions since dC
44

1dP is so small. At (PIK ) <:: 0. 1 ( -v600 km in 
0 

the mantle), the error in c
44 

caused by this error in the predicted 

pressure derivative is only 8 . 6 kbar or 6o/o . The importanc e of taking 

data as a simultaneous function of temperature and pressure is clearly 

shown by Figure 5-1-5 for (dKidP)(T). Note that (dK i dP)I is 4. 88, while 
'V 

(dKidP)
298 

is 5 . 35. It is essential that the pressure derivatives be 

extrapolated to T = 0 before a comparison is made with the static lattice 
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model prediction. 

Even the second pressure derivatives have the correct sign and 

relative magnitudes, although they are all smaller than the experimental 

values by factors of 3 to 8. The second derivatives have virtually no 

effect on the predictions at P/K values comparable to those in the mantle. 

Since the second pressure derivatives of the elastic constants involve 

the fourth derivative of the interatomic potential with respect to the ion 

separation, it is quite remarkable that the predictions have the correct 

sign and order of magnitude. 

Figures 5-1-8 and 5-1-9 summarize Tables 5-1-4 through 5-1-7 

in which the effects of the functional form of the potential, the various 

multipole terms , and the ionicity are investigated. Note that the 

ionicity factor, ~ , has the largest effect on the predictions with a 

value between 0. 9 and 1. 0 best satisfying the elastic data. This is for­

tunate since any significant lowering of the ionicity would cause an 

unacceptable discrepancy between the theoretical and expe rimental 

values for the cohesive energy. The functional form of the potential 

only effects (dc
11 

/dP(and hence also (dK/dP)\.:., It can be seen that the 

exponential form of the anion-anion repulsive energy gives the best fit 

to experiment. This is in accord with the conclusion reached by L~wdin 

( 1948) from the q. m. calculation and by Tosi ( 1964) from the cohesive 

energy. The inclusion of van der Waals and anion-anion terms does not 

significantly improve the general agreement between theory and 

experiment; the effect is to slightly lower the ionicity at which the best 

total fit is achieved. The most striking effect of these terms is on the 
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pressure derivative of c
44

. Note that in Figure 5-1-12, c
44 

goes to 

zero. This is a sufficient condition for a phase transformation (in this 

case to the CsCl structure) and has been discussed in some detail by 

Anderson and Liebermann ( 1970). However, the pres sure at which the 

structure becomes unstable if the second neighbors are included is twice 

as large as that predicted by a nearest neighbor model. The conclusion 

to be drawn here is that while the occurrence of a shear instability is 

predicted, the exact transition pressure is very sensitive to the details 

of the potential and can therefore not be reliably predicted using Born 

lattice models. Returning to Figures 5-l- 8 and 5-l- 9, the shaded regions 

bound the predictions using the various multipole terms as summarized 

in Table 4-1-1 and should be thought of as a measure of the uncertainty 

in the theoretical predictions introduced by our incomplete understand-

ing of van der Waals and anion-anion interactions. 

One final note on NaCl; the compression curve given in Table 

5-1-1 ~ and Figure 5-1-12 is insensitive to second neighbor or anion­

anion interactions and agrees within 3% of P with that given by Weaver. 

et al. ( 1968) and Thomsen (1970a). The Birch-Murnaghan curve gives 

14% lower pressures at 200 kb. 

We will now consider MgO. Figures 5-1-10 and 5-1-11 summar­

ize the calculations given in Tables 5-1-8 through 5-1-10. As with NaCl, 

the ionicity factor, ~ , has the largest effect on the prediction; but 

unlike NaCl, the MgO data are not best fit with ~-::.:::. 1. By looking only 

at dK/dP for ~ = 1, Anderson and Anderson (1970) concluded that the 

power law gives a better fit than the exponential, as is evident from 
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Figure 5-1-10. However at~ = 1, note that the predicte d value of c
11 

is 50% too low. Note further that for ~ "1::. 0. 7, the predicted c11 is 

only 10% too low, while the exponential potentia l give s an excellent fit 

to dK/d~,.:_ Also, the fit for (dc 12 /dP)Lge ts progressively better as the 

ionicity is lowered. As for NaCl, the predicted (dc
44

/dP) for MgO is 

too small, but because of the small size of this derivative, the uncer-

tainty introduced in c
44 

at P/K = 0. 1 (600 km in the mantle) is only 

168 kbar or 10%. When translated into a velocity this gives an unce r-

tainty of ""5%. The large deviation from Cauchy's relation (C 12 = c 44)
0 

. M 0 . d h 1 . f o2 - · 2 + observed 1n g 1s ue to t e arge S1Ze o relatlve to Mg La 

and Barsch ( 1968) discuss this discrepancy using L~wdin ' s ( 1948) q. m. 

formulation . For the central force model discussed here, a 20% error 

in one or both of these elastic constants is inescapable. In spite of the 

problem of the deviation from Cauchy 's relation, it appears that an 

exponential potential with ~ = 0. 7 gives the best fit to the dcd:.a. . 

Note that the van der Waals and anion-anion interactions have 

much less relative effect in MgO than in NaCl. There are two reasons 

for this . First, from Table 4-l-1 it can be seen that the coefficients 

are smaller for MgO than for NaCl. Second, because MgO is divalent, 

the electrostatic and repulsive terms make a larger relative contribution 

to the elastic constants. Since this is the case for all mantle candidate 

minerals, the calculations can be greatly simplified. 

In Figure 5-1-13 the elastic constants and the volume have been 

plotted for ~ = 0. 7 and ~ = 0. 6. The compression curve is not 

sensitive to this small change in ionicity and is in good agreement with 
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the Birch-Murnaghan curve (Chapter z. , eqn.Z-1-1~). As for NaCl, the 

transition pres sur e of MgO is very sensitive to the details o f the potential, 

in this case J.. , while the predicted values of C 
11 

and C 
12 

are r elatively 

insensitive. 

It should be noted that lowering the ionicity factor to 0. 7 has 

important consequences in the calculation of the cohesive energy. The 

experimental value of the cohesive energy is not known s ince one step in 

2-
the Born-Haber cycle, the heat of formation of 0 , is not known. The 

usual procedure is to use a Born lattice model with ~ = 1. 0 to calculate 

0 2-
the cohesive energy and thus solve for the unknown ClHf (0 ). Gaffney 

0 2-
and Ahrens ( 1969) found l:J. Hf (0 } = 202. 3 kcal/mole by this method. 

However, upon redoing their calculation for ~ = 0. 7, one gets the 

0 2-
unacceptable result A Hf (0 ) = -35. Z. kcal/mole . The conclusion is 

that while lowering the ionicity improves the shape of the cohesive 

energy curve, it introduces an error in the total depth of 10-20%. This 

energy calculation is given in Appendix -3 • 

In summary, NaCl elastic data are best fit by an exponential 

potential with 0. 9 < ~ < 1. 0. The MgO data are best fit by an exponen­

tial potential with 0. 6 < J. < 0. 7. Based on this simple structure for 

which good ultrasonic data exist as a simultaneous function of tempera-

ture and pressure, it appears that the Born model is capable of pre -

dieting elastic wave velocities of oxides in the lower mantle to an 

accuracy of 5o/o. 
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TABLE 5-1-1 

Short- Range Sums for the Rock salt Structure 

Cation-Anion 

Neighbor <. .. 1. 1.. 4 

Number x)R' y~ z.IMt' (x~tJ.., ) (yk.lo!} (~} (y~, ) x~.~., 

1 0 0 R 0 0 0 0 

2 0 0 -R 0 0 0 0 

3 0 R 0 0 R~ 0 0 

4 0 -R 0 0 if 0 0 

5 R 0 0 R2. 0 0 R4 

6 -R 0 0 It 0 0 R'4 
z._,. 2R' 2R.t 0 2R4 

R.' 

Anion-Anion 

1 R R 0 R" R~ Rl R4 

2 -R -R 0 R~ R~ R2. R4 

3 -R R 0 R~ R~ R' R4 

4 R -R 0 Rot. R~ If R4. 

5 R 0 R ~ 0 0 R4 

6 -R 0 -R R:t 0 0 It 
7 -R 0 R R~ 0 0 R+ 

8 R 0 -R R'- 0 0 R+ 

9 0 R R 0 Rz 0 0 

10 0 -R -R 0 If 0 0 

11 0 -R R 0 RL 0 0 

12 0 R -R 0 Rz. 0 0 

~ 
I-! -- 8R

4 BR' 4Rl.. 8R~ 
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TABLE 5-1-2 

Static Lattice Parameters for NaCl 
Lattice 

Experimental Model Pre diction 
Parameter Units Source Value Value Model 

""' em /mole v Fig. 5-1-1 26.0 
N 

A R Fig. 5-1-1 2.784 Input 
Ref. (1) 2.785 

K kbar Fig. 5-1-1 284.7 Input 
Ref. (1) 285 . 5 

,..._ 

c,, kbar Fig. 5-l- 3 600 577 DlE 
Ref. (2) 614 

....... 
kbar Fig.5-1-3 127 139 D1E c,l. 

Ref. (2) 121 

e# kbar Fig. 5-1-3 140 139 DlE 
Ref. (2) 139 

"'"'-
K' Fig. 5-1-5 4.88 4.78 D1E _, 
c,, Fig. 5-1-4 11. 3 10. 7 D1E 
,.., 
C,t Fig. 5-1-4 1.7 1.8 D1E 

~ Fig. 5-1-4 0. 15 -0.16 DlE 

K" per kbar Fig. 5-1-5 -0.084 -0.02 DlE 

c·· II per kbar Fig. 5-1-4 -0.1 3 -0.05 D1E 

C" 11 per kbar Fig. 5-1-4 -0.05 -0.006 D1E 
,..., 
c •• 
~ 

per kbar Fig.5-l-4 -O.Ol -0.006 DlE 

Model DlE has an ionicity factor ~ = 1. 0, an exponential repulsive 
potential, and van der Waal constants from Mayer (1933) (see 
Table 5-1-7). 

Ref. (1) - Thomsen (1970a) 

Ref. (2) - Thomsen ( 1970b) 
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TABLE 5-1-3 

Static Lattice Parameters for MgO 
Lattice 

Experimental Model Prediction 
Parameter Units Source Value Value Model 

,..., 
A R 2.093 Input 

Ref. ( 1} 2.089 

K kbar Fig. 5-1-6 1687.7 Input 
Ref. ( 1} 1733.8 ,... 

ell kbar Fig. 5-l- 6 3100 2680 G. 7E 
Ref. (2} 3351 

"" Cn .. kbar Fig . 5-l- 6 960 1190 G. 7E 
Ref. (2} 924 

c~ kbar Fig.5-l-6 1600 1190 G . 7E 
Ref. (2} 1634 

......, 
K' Fig. 5-1-7 3.8 3.9 G. 7E 
"" c,: Fig. 5-1-7 8.7 7.8 G. 7E ..., 
c,~ Fig. 5-1-7 1.5 2.0 G. 7E - Fig. 5-1-7 1.0 C' 0.003 G. 7E '4+ 

-K '' per kbar -0.003 G. 7E 

C" II 
per kbar -0.005 G. 7E -C" 11.. per kbar -0.001 G. 7E 

""' C" 
~ 

per kbar -0.001 G. 7E 

Model G. 7E has an ionicity factor J. = 0. 7, an exponential potential, 
and both van der Waals and anion-anion interaction. 

Ref. ( 1) - Thomsen (1970a) 

Ref. (2) - Thomsen ( l970b) 
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TABLE 5-1-11 

Predicted Volume De,eendence of the Pressure and 

Elastic Constants for NaCl 

Inputs: R = 2. 784 A, 
,..; 

K = 284 . 7 kbar, ~ = 1. 0 

Case 1: C11~ = C ~ = De.e = 0 

R V/V p c44 c~~ c,, C 11 - c ,z. 
(A) (kb) (kb) (kb) (kb) (kb) 

2. 784 1.000 0 133.5 133.5 587.0 45 3. 5 

2.700 . 912 32.61 118.3 183.6 931. 6 748.0 

2.650 . 862 60.05 102.6 222.7 1203 979.9 

2.600 . 815 95.41 80. 1 271 . 0 1537 1266 

2.550 .768 140.8 49.0 330.5 1948 1617 

2.500 .724 198.7 6.7 404.0 2453 2049 

2.495 .720 205.3 1.7 412.3 2509 2097 

_,0 '- -"0 ~ 
Case 2: C~= 11.2 x 10 erg em, Caa= 116 x 10 erg em, 

Dee= 1594 x 10-10c..erg cm1~ {Mayer, 1933) 

R 

(A) 

2.784 

2.700 

2.600 

2.500 

2.400 

2 .380 

,..., 
V/V 

1.000 

.912 

. 815 

. 724 

.641 

.625 

p 

(kb) 

0 

32 . 60 

95.50 

199.6 

370.3 

415.9 

c4+ 

(kb) 

138.8 

131.3 

111. 1 

73.9 

15.5 

1.2 

C,z. 
(kb) 

138.8 

196.5 

302.1 

473.0 

756.2 

832.9 

C u 

(kb) 

576.5 

905.7 

1482 

2355 

3683 

4022 

C 11- C.z.,_, 

(kb) 

4 37 .8 

709.2 

1180 

1882 

2926 

3190 

K 

(kb) 

284.7 

4 32.9 

549.4 

692.9 

869.6 

1087 

1111 

K 

(kb) 

284.7 

432.9 

695.3 

1100 

1732 

1896 



Case 1' 

R 

(A) 

2.819 

2.784 

2.700 

2.650 

2.600 

2.550 

2.500 

2 . 495 
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TABLE 5-1-1Z 

Predicted 298°K Compression Curve for NaC1 

P(V, T) = P
0

(V) + P*(V, T) 

P. (V) = -~W(V) 
o 2JV P* (V, T) = t Wvi'b 

D(")()- ~ e :;._'!. &:e 
X Jo e:~-1 

Assume P* (V, 298) = constant 

"" 26. 0 cm3 /mole "' 6 

v = R = 2. 784 A 6p=327 °K 

Vz~ = 26. 99 cm3 /mole Rm= 2. 819 
0 

A K' = 284.7 kbar 

~ = 1.0 

c~o = c~ = Ds~ = 0 

V/V v /vt,s P 0 (V) P*(V, T) p Birch-

(kb) (kb) (kb) Murnaghan 

1.038 1.000 -9.8 9.8 0 0 

1. 000 . 963 0.0 9.8 9.7 

. 912 . 879 32.61 42.4 39.9 

.862 . 830 60.05 69.9 65.0 

. 815 . 785 95.41 105.2 95 . 1 

. 768 .740 140.8 150.6 134.2 

.724 .697 198.7 208.5 183.2 

.720 .694 205. 3 215. 1 187 . 2 

Birch-Murnaghan Parameters: 

T 
K~s = 238. 4, K~= 5.35 (Spetzler et . gj. . ) 1911) 

continued ... 

% 
Diff. 

0 

1 

6 

8 

11 

12 

14 

15 
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TABLE 5-1-1Z (continued) 

-c-o 
erg em"' 

-(,.0 
Case 2, CAP. = 11. 2 X 10 c&; = 116 x 10 erg cm<o 

- II)(, 
D118 = 1594 x 10 erg cm14 

R V/V V/Vl:'le P 0 (V) P*(V, T) p Birch- o/o 
(A) (kb) (kb) (kb) Murnaghan Diff. 

2.819 1. 038 1.000 -9 .8 9.8 0 0 0 

2.784 1.000 . 963 0.0 9.8 9.7 1 

2.700 .912 .879 32.6 42.4 39.9 6 

2.600 . 815 . 785 95.5 105.3 95.1 8 

2.500 .724 .697 199.6 209.4 183.2 14 

2.400 .641 .617 370.3 380.1 321.5 18 

2.380 .625 .602 415.9 425.7 357 .3 19 



145 

TABLE 5-1-1;:5 

Predicted Volume De_eendence of the Pressure and 

Elastic Constants for MgO 

R = 2. 093 ft. 
-(oO 

Inputs: CAB = 7.8 x 10 e r gs em'-
-J -G.O K = 16 8 7 . 7 k bar c£3() = 8. 46 x 10 ergs em" 

DaB 
-/0(, IZ. =35.8xl0 ergscm 

Case 1' J..= 0. 7 

R V/V p c~ c ,l!. Cn c,,- c ,2.. K 
0 

(A) (kb) (kb) (kb) (kb) (kb) (kb) 

2.093 1. 000 0 1190 1190 2683 1492 1688 

2.050 .940 118.7 1183 1420 3576 2156 2139 

2.000 .873 300.4 1150 1751 4860 3109 278H 

1.950 .809 542.0 1085 2169 6468 4299 3602 

1.900 .748 861.3 977.7 2700 8479 5779 4627 

1.850 . 691 1281 817.2 3380 10991 7611 5918 

1.800 .636 1832 591.6 4256 14130 9874 7548 

1.750 . 584 2555 289.3 5398 18061 12662 9619 

1. 712 .547 3251 2.3 6504 21706 15202 11571 

Case 2, ~= 0. 6 

R V/V p C.o~4 c,~ c" C11 - c,.t. K 
0 

(A) (kb) (kb) (kb) (kb) (kb) (kb) 

2.093 1.000 0 1023 1023 3017 1994 1688 

2.050 .940 119.8 1000 1240 4051 2811 2177 

2.000 . 873 306.6 943.6 1557 5561 4005 2892 

1.950 . 809 559.6 845.6 1965 7485 5520 3805 

1. 900 .748 900.0 692.8 2493 9932 7439 4972 

1. 850 .691 1355 469.2 3180 13040 9861 6467 

1.800 . 636 1963 155.5 4081 16991 12910 8385 

1.780 .615 2259 -0.02 4518 18857 14339 9298 



Case 1' 

R 

(A) 

2.106 

2.093 

2.050 

2.000 

1. 950 

1.900 

1. 850 

1.800 

1.750 

1. 712 
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TABLE 5- 1- 14 

Predicted 298 oK Compression Curve for MgO 

P(V, T) = P
0

(V) + P>~ (V, T) 

p (V) =- dW(V) 
o -av 

Assume P*(V, 298) = constant 

'""' 11. 045 em~ /mole "" v = R 

P*(V, T) = ~ W,i'r. . 

= 
0 

2. 093 A eo = 966 OK 
"' 

~~= 11.24 cm3 /mole R298= 
0 

2. I 06 A K = 1687.7 kbar 

cO = 0.7 

"" V/V V /Vi.,a P0 (V) P*(V, T) p Birch-

(kb) (kb) (kb) Murnaghan 

1. 019 1.000 -30.2 30.2 0 0 

1.000 . 982 0.0 30.2 30 .2 

.940 .923 118.7 148 . 9 146.0 

.873 . 857 300.4 330.6 337.2 

. 809 .794 542.0 572.2 587.2 

.748 .734 861.3 891. 5 921.2 

.691 .678 1281 1311 1357 

.636 .624 1832 1862 1943 

. 584 .573 2555 2585 2720 

.547 .537 3251 3281 3457 

Birch- Murnaghan Parameters: 

K7
16 

= 1605, K I = 3. 89 -ne (Spetzler, 1970) 

continued ... 

% 
Diff. 

0 

0 

2 

2 

3 

3 

4 

4 

5 

5 
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TABLE 5-1-14 (continued) 

Case 2, ~ = 0. 6 

R V/V V /Vz.,8 P0 (V) P".<(V, T) p Birch- % 
(A) (kb) (kb) (kb) Murnaghan Diff. 

2. 106 1. 019 1.0 -30.2 30.2 0 0 0 

2.093 1.000 . 982 0.0 30 .2 30.2 0 

2.050 . 940 .923 119.8 150.0 146.0 3 

2.000 .873 . 857 306 .6 336 . 8 337.0 . 1 

1.950 .809 .794 559.6 589.8 587.2 .4 

1.900 .748 .734 900.0 930.2 921.2 1 

1. 850 .691 .678 1355 1385 1357 2 

1.800 .636 .624 1963 1993 1943 3 

1. 780 .615 .064 2259 2289 2217 3 
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0 
0 

0 

.~ 
0 ----------------- p = 8 kb ---

• • • • • • Meincke 8 Graham(l965) 
o Enck 8 Dommel (1965) 

200 400 600 
Temperature, °K 

200 400 600 
Temperature, °K 

800 

800 

::X:: 6~~~~--~--~--~--~--~--~ 

Fig ure 5-1-1. Static lattice parameters for Na Cl. 



~ 
0 

w' 
IQ 

~ 

~ 

"-
0 
Q) 
c ·-
_J 

Q) 

0 
E 

.......... 
!'(') 

E 
u 

"-
0 
.0 
~ 

16 

12 

MgO 

149 

Smoothed Li near a 
Spe tz ler ( 19 69) 

Static Lattice 
Parameters 

3 - 0 

em !mole, R=2.0 93 A 

-
K =1687. 7 kb 

200 400 600 800 1000 1200 
Temperature, °K 

F igure 5 - 1-2. Sta ti c lattice pa rameter s fo r M g O . 
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5-2. The Spinel Structure 

In the last section, equations (3-3-99} for the e las tic cons tants 

were specialized for the cubic, diatomic, sodium chlorid e structu r e . I n 

this section, these equations are worked out for the more complex , 

triatomic, spinel lattice. 

The Consistent Pair- Potential Assumption 

When treating polyatomic solids in the Born approximati o n , it is 

important to differentiate between the various types of bonds rathe r than 

lump all cation-anion repulsive interactions into one term of th e form 

B/Rn or Ae -R/f, as is usually done in the lite rature. For example. 

in the case of A
2
Bo

4 
spinel, there are six distinct two-body inte ractions, 

given below. 

Cation- Cation Interactions: 

(5-2-l} 

(P, (r) -== ~Aqe 
AB -<s

1
1) 

'A a 
Cation-Anion lnte ractions: 

(5-2-2} 

~80(r)-= ~ + VGoC') _ C~ 
\;., ( re:,~"' 

Anion-Anion Interactions: 

(5-2-3) 
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Note t hat there are now two empirical cation-anion repulsive 

functions {V AO{r), V B O {r) ), and hence four empirical parameters .A AO' 

If only the b ulk modulus and density of the s pincl 

are known, o nly two of these paramete rs may be evaluated . However, 

this problem may be circumvented if one make s what I s hall call the 

" consistent pair-potential assumption " . This i s the assumption that the 

two empirical parameters of the cation-anion repulsive interaction v kk l{ r) 

depend only on the type of ions interacting . T hey are assumed to be 

independent of the specific solid in which this inte r actio n takes place 

and of the coordination numbe r of the cat ion i n the solid. Thus , for the 

case of Al2 Mg0 4 , one can us e the empirical A MgO' p MgO in VMgO( r) 
"V 

that were determined from K and R of MgO i n the last s e ction. T he 

'V /V 

measured values of K and R for A l
2 

MgO 
4 

can then be used to find the 

parameters )\._AlO and f AlO in the aluminum oxygen r epulsiv e potential 

VA
10

(r). For the case of Mg
2
Si0

4 
spinel, which is of direct interest in 

the lower mantle, no ultrasonic or compres s ion data exi s ts. Howev er, 

by using the consistent pair-potential assumption, V S (. 
0

{r ) may be dete r­

mined from the data on Si0
2 

stishovite . In this way the elastic constants 

and their pressure dependence may b e estimated . 

The consistent pair-potential assumption can be tested using 

suite5 of solid s containing t he same cation-anion pair s for which g ood 

ultrasonic data exists. For example, V MgO{r) and V AlO{r) ar e shown 

to be self-consistent for the series MgO, Al2 o
3

, and Al
2

M g0 4 in 

Appendix 4. Further t e sts of t hi s assumption should be one of the goals 

of future ultrasonics work in geophysics. 
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Tosi (1963) reached the conclusion that r e pulsive parame ters 

cannot be transferred from structure to structure, since he could not 

accurately calculate the observed energy change associated with the 

transformation of NaCl from the rock salt to the CsCl structure using 

only one set of bond parameters. However, since the e n e r gy change 1s 

such a small part of the cohesive energy (typically lo/o), and since 

volume dependence of the Gibbs free energy of the two structures are 

subparallel in G, V space, the requirement that the Born model describe 

such phase transitions is far more stringent than the require m ent that 

it reflect the effect of structure on the elastic constants. When the 

elastic constants are measured through such a phase change, this test 

will be possible . 

Specialization to the Spinel Structure 

The spinel unit cell, with cube edge R, contains eight A
2
Bo

4 

molecule s and i s diagrammed in Figure 5-2-1. It may be descr ib e d m 

terms of fourteen interpenetrating F. C. C. Bravais lattic e s as 

(Wyckoff, Vol. 3, 1965) 

Mg: ooo; v~ }4 Y"" 

A 1: Sk 5k> ~k ; sJe '/e 'l'e ; ~% Ys ; 1s 'l's-%. 
(5-2-4) 

Any lattice site may be reached from one of the above fourteen 

sublattice origins by a linear combination of the F. C. C. basis vectors: 
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(5 -2- 5) 

The l..t paramete r is 0. 375 for oxygen ions in perfect cubic close 

packing; for Al
2 

MgO 
4

, lA. = 0. 3 87. 

Since spinel has cubic symmetry, there are t h ree independent 

elastic constants 

C. 11 -:: C21.:= C:r~ = .J1111 ; [11 I 1] + (I I I 1') 

C12-= Cz1"'C..B-,: C3 2.= C~ "" C31 "" l>11zl.:::: z[lztz.} -[221D + (11 2.2.) 

C-4+"' Cs~ = C"" ::o ~2~23 ::. [2.233.] + (232?:,) • 

(5 - 2-6) 

For the spinel structure, inte r nal deformations make a contri-

bution to the elastic constants since the B-type site is not a symme try 

center . The round brackets were computed according to their definition 

(5 - 2-7} 

where 

c~;oo~.k~~)= -211 _, L. ~~C~i·) Xt(~ .. ) 
y;mAc.,mk" 1 I 

(5 - 2-8) 

as was derive d in Chapter III. 

It is not possible to compute the coulombic and non-coulombic 

contributions to the round brackets separately since the entire C(O} 
~ 

matrix must be inverted to yield k' 

Writing the square brackets in terms of coulombic and non-

coulombic parts 
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lhe coulombic sums were computed directly according to equations 

(3-3-52) - (3 - 3 -54). The sublattice indices k, k' ranged from 1 to 14 

with x(k) given by (5-2-4). The sum over the direct lattice was t aken 

over the vectors x(kt,) = x(k') - x(k) + Q.1 a 1 + Q.2a
2 

+ Q
3

a
3 

whe r e 

the basis vectors a . are given by (5-2- 5) . The h sum was taken over 
l 

the reciprocal lattice vectors 

where 1 1 1 
bl = R(-1, 1, 1); b 2 = R(l, -1, 1); b 3 = R(l, 1, -1) • 

The details of these lattice sums are given in Appendix 3. The r e sults 

are 

V.= 0. 375 (perfect cubic close packing of oxygens) 

Madelung constant C(M = 128.6 

Electrostatic l1111] e = 
Contributions [1122] e = to the 
Square Brackets ~212] e = 

'U.= 0. 387 (Al
2
Mg0

4
) 

Madelung constant CX.M = 132. 6 

Electrostatic 
Contributions 

to the 
Square Brackets 

for R = 
0 

8 .09A, q_"'-le 

-1973. } (5-2-9) 

986.4 c!q2/2R4 

300.8 

for R = 8.09A, q .:: 1e 

(5-2-10) 

The square brackets are plotted as a function of 1.{ in Figure 5-2-6. The 

Madelung constant for 1A = . 3 75 is in agreement with that given by 
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Waddington ( 1959). Although the trend is the same for larger 1A , the 

values computed here using the Ewald method are ""Zo/o smaller than 

those reported by Waddington ( 1959) based on an Evjen calculation. 

The electrostatic contribution to the elastic constants have not previously 

been computed for the spinel structure. 

The expressions for the elastic constants are formally identical 

with equations (5-1- 4) given in the previous section. For thf'se 

equations 

') ( -Z~9.) 

- 384-.S (- 350.4) 
(5-2-11) 

' (I 034-) 

where the numbers in parentheses are for 1A = 0 . 387. Note that these 

sums meet the required internal consistency checks 

(~II+ Z (X11..) ~: - 4 l)(M 
.(R3 3 11., 

where 11, = number of molecules per reference cell of volume V . 
a 

The short-range sums in the C~. part of e quation (5-1-4) 
lJ 

may be easily done by hand with the help of Table 5-2-1 which gives 

the nearest and relevant next-nearest neighbor positions of the cations 

and anions. With the help of this table, the elastic constants may be 

written as, 
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+ e[ PAO( Zl + 4 ~l.) + QAo(2,B4 4-4~ 2.)] + s[Poo {2?P -12~\~s;\ R/4) + 

-+ Q00 (2.lf4+l'!,++32S,4+R~'\)] ~ + (lliiJ 

C.,2 "" cXn~g<- +___L 5' 4LP00 ±.~ + QGo 4 ~J + 
2 g4u Z Va.. l L 3 ~ 

(5-2-12) 

C*~ ~1. + __!_) 4-[Peo 1~ -+QBo1-I~J + 
.<.R+ 2 Yo.. l 3 3 

+ s[PI'\{)C2f3:1.+4~:t.) + QAo(4fo2~z.+.<~4~ -+- e{Poo(l1j-'-+ Z.Sl.+e~z.+~'/4) + 

-f-Goo(lj.-4 +~"'+<;,4 + ft'/b.'6) J ~ + ( llH.) • 

The !3, ~ , and ~ parameters are defined in terms of the 

reference dimension R and ~ parameter according to (s e e Table 5-2-1) 

S = ( 1-t.- Ye) R. 
(5-2-13) 

Since the o-o interactions are relatively unimportant, we have taken 

all 'Oo to be equal. The various Pkk , and Qkk,. k = A, B, 0 are given 

in terms of the two-body potentials by 



Qoo~ [~t(~ <}taojl_eo 

"Poo~[~ (~~J]r: 
00 

168 

I = Yeo + (.CeQ 

~ ~ 
=- -'ifk + v~Q_ -

r~ ~~ 
(.Coo - I 21ec> 
r~ rot 

Qoo=[~trL~ &~o~Jr~ = -4BC.oo + ((.£,l::bo 
r~ ro.;b 

(5-2-14) 

• 

In equations (5-2-12) for the elastic constants, note that t he 

have been combined. 

Evaluation of the Empirical Parameters in V AO and V BO 

Before the elastic constants can be calculated, we need to evalu-

ate two of the empirical constants, AA and ffl or 7t5 and f e 

depending upon whether the A-0 or the B-0 is known from data on th e 

relevant diatomic solid. The energy density of the static lattic e is 

given by 

where 

Z AO = Coordination number of the A-type ion = 6 

ZBO = Coordination number of the B-type ion = 4 

(5-2-15) 
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z
00 

= Number of oxygen s econd neighbo rs to a given 
oxyge n = 12 

Since we now wish to take derivatives with r e spect to the lattice 

constant R, it will be more convenient to rewrite equation (5-2-15) in 

terms of R using (5-2-13). 

W= 

where 
-~4%.+- IY41).. + 3'U..l. 

/...Aoe. 
-& (lA- Y4) R/feo 

A.&Oe 

Gr;o- CBO/ Z1 (V-.- Y4 )~ 

Coo 51~Coo 

(5-2-16) 

(5-2-l 7) 

To save needless algebra, the c
00 

and n
00 

parameters have 

2-
been written as though the 0 ions were in perfect close packing. 

This approximation was made in light of the result from the previous 

section that the 0-0 interactions have little effect on the bulk modulus. 

The equilibrium condition has the form 

(5-2-18) 
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where the prime denotes differentiation w. r. t. R. 

The bulk modulus is computed according to the relation 

An expression for the volume per mole V in terms of the refer enc e 

dimension R may be written in a form applicable to any structure as 

'/3 
1<. = (C.V) 

(5-2-19) 

where c 1 = moles I reference cell = n 1 /NA 

wher e IY/1 =molecules/reference cell. 

-7'3 
~~ = ~ (c.v) ~ ~· (t)~ 

Z. -S/3 2. ( ~ 
d'R = - "- C, ( C.Y) == - Z.C. ~) 
&Yl- 9 9 ~'-

For the NaCl structure 1'/1 = 1/2, C 1 = 1 I 2NA • 

For the spinel structure !V{ 1 = 8, C 1 = 8/NA 

At equilibrium: 

(5-2- 20) 

Differentiating equation (5-2-18) with respect to R gives 

(5-2-21 

So the bulk modulus may be written 

(5-2-22) 
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As for the case of NaCl, we can write 

\ I-' ll - - ~ , ,..... , 
VAO - ~ Vfi,O 

~ (5-2-23) 

IJ':" -: - ~e.o \f" I 
110 Roo . 

Using the equilibrium condition (equation 5-2-18) 

(5-2-24) 

Equation (5-2-22) gives 

~:·~~lAO t ~K + ~~~ _=t~~ -~C.·~ - ~~oot~+ ts~.~~j~ + (5-2-25) 

+- 4Z.tAo 
~§ , 

Equation (5-2-23) may be written 

SNJ ~ - ~ ~ ( vj~ ) 
VP.o R. 

which, together with (5-2-24) and (5 - 2 - 25) gives 

& ~ *AOfiK+~-1ao['f--4l1;]-Z.too[-~~~Ji +AZ.-i! 

Ao 2~Ao ~ ~~~~ 4- =lao[* + <D ~] + C loo [ G, ~00 - \7-:ooJ 1 + G. ~ • 

(5-2-26) 

By identical algebra, one may also obtain 

(5-2-27) 

For the exponential form of the cation-anion p o tential, which is the only 

one we will investigate for the spinel structure, equations (5-2-17) give 
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(5-2-28) 

, 

The s econd empirical parameters, AAO or A80 , may now be 

evaluated using equations (5-2-24) and (5-2-1 7). 

(5-2-29) 
so 

By identical algebra 

(5-2- 30) 

The Volume Dependence of the Bulk Modulus and the Pressure 

The volume dependence of the bulk modulus is given by 

(5-2-31) 

By using (5-2-1 9) for the V derivatives of R, and using (5-2-18) and 

(5-2-21) for the R derivatives ofW, equation (5-2-31) may be written 
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(5-2 - 32) 

where , according to (5-2-17) 

The pressure-volume relation is given by 

'P· -t&W,.. -&W ~ 
&V (11[ &.1/ 

Using (5-2-18) and (5-2-19), gives 

(5-2-33) 

Equations (5-1-35) and (5-1-36) may be used to derive explicit 

expressions for the pres sure derivatives of the elastic constants. 

However, because of the excessive algebra, these derivatives will be 

found by finite differencing on the computer . 
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Numerical Predictions for A1
2
Mg0 

4 
and Discussion 

Linear extrapolation of V(T} and(K/V)(T) from the high temperature 

regime toT = 0°K gives the two input parameters R = 8. 001 A and 

K = 2140.6 kbar (see Figure 5-2-2). Since the ultrasonic data for MgO 

was best fit by an exponential cation-anion potential with ~ % 0. 7; the 

parameters A
110 

and ftJO found for model G. 7. E in the last section were 

used here. Equations (5-2-26), (5-2-28), and (5-2-29) w e re then used 

to find the other two parameters :AAo and fAo for the Al-0 interaction. 

Having thus obtained all the required parameters, equation (5-2-33) 

was used to compute P(R), equation (5-2-32) to compute K(R), and 

equations (5-2-12) to compute C . . (R). The results of these computations 
lJ 

are summarized in Table 5-2-2 where they are compared with the 

ultrasonic data of 0 1Connell (1971). It should be pointed out that these 

data are for non- stoichiometric spinel of composition Mg0·2. 61 Al
2
o

3
. 

Preliminary results of Lewis (personal communication) and 0 1Connell 

indicate that the elastic moduli are relatively insensitive to variations 

in stoichiometry, changing by less than 5%. The effect of non-

stoichiometry on the pressure derivatives has yet to be measured. 

An interesting result of these calculations is the distortion of the. 

spinel structure from cubic close packing of the oxygen ions. If one 

assumes that the oxygens are close-packed and solves for >-Ao and {J110 

using 1A = . 375, one predicts elastic constants in poor agreement with 

experiment (Table 5-2-3). The lo.r? disagreement is for c 44 and is 

due to the large negative contribution from the internal strains. In 
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Figure (5-2-5) the cohesive energy (equation 5-2-15) is plotted as a 

functionoflA. for P = 0. The energy has a minimum for V- -~ . 392. 

This says that if a spinel crystal having U = . 3 75 and the repulsive 

parameters associated with that oxygen parame t e r were allowed to find 

its equilibrium configuration at P = 0, it would distort to 1A. = . 392 

(expanding from R = 8 . 00 A toR = 8. 09 A). The energy curve fo r 

P = 400 kb is also given, showing that the l.A.. parameter does not change 

with pres sure for this model. The observed oxygen parameter is 

U.... = . 387 (Wycoff, 1965). If AAo and (JAo are found for this 1A., the 

lattice will again distort to U = . 392, but the associate d expansion is 

only from R = 8. 00 A to R = 8. 05 A. The elastic constants in this case 

are in much better agreement with experiment (Table 5-2-2). Since the 

crystal is nearer its preferred distortion, the contributions to the elastic 

constants due to internal deformations are much smaller. 

The distortion in this direction is due to the inc rease in the 

Madelung constant for larger V.. . This allows the c r ys tal to distort 

and expand while still increasing the absolute value of the cohesive 

energy. The equilibrium V- is also a function of the relative strengths 

of the Mg-0 and Al-0 bonds -- the fact that the model predicts a U. 

close to that observed is confirmation of the consistent pair potential 

hypothesis. Conversely, the measured LA. parameter can be us ed to 

further refine the Mg-0 potential, the readjustment being made in the 

ionicity factor, ~ , for MgO, which is not precisely determined by the 

elastic data for MgO. However, the discre pancy between c alculated 

lA. = . 392 and observed 1A. = . 387 may be due to a shortening of the 
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Mg-0 bond due to a covalent contribution in the bondi11g -- and thus 

beyond the scope o f this model. The inclusion of van de r Waals and 

oxygen terms in the cohesive energy does not significantly change these 

results. 

For spinel, as for NaCl and MgO, the pre dicted elastic constants 

and their pressure derivatives are not significan tly changed by the 

inclusion of van der Waals and oxygen-oxygen s econd neighbor inter -

actions. We shall therefore not include second neighbor e ffects in the 

next section on the rutile structure. 

It is interesting that, experimentally, Al
2

M g 0 
4 

looks like a 

11Cauchy-solid 11 since cl2~ c44" One might be tempted to assume that 

this implied central forces. Howe ver, since spinel i s not centro-

symmetric, the central- force model predicts C 
12 

F C 
44

. The difference 

between theory and experiment is presumably due t o the same three- body 

forces responsible for the large deviation from Cauchy 1s relation observed 

for MgO. 

In Table 5-2-2 the elastic constants and their pre ssure deriva-

tive s are given both with and without the round brackets. It can be seen 

that these contributions from the internal deformations have a large 

effect on the pressure derivatives - changing dC
44

/dP and 

d/dP[~ (C 11 - c 12 )J from positive to negative. This result will be 

seen to be also true for the silicate spinel, Mg
2

S i 0 
4

, investigated in the 

next chapter; it leads to the unsatisfactory result that dV 5 /dP is negative. 

It is important to note that while the induced dipole moments do not con-

tribute to the square brackets, they do make a contribution to the round 
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brackets (Co wle y, 1962), and should be inve stigated i n a n attemp t to 

remove t hi s important discrepancy between the rigid -ion model and 

experimental data. Work in this dir e ction is alread y in progress 

(Strief{er and Barsch, 1971). 

The geophysically interesting Mg
2
Si0 

4 
spine! will be treated in 

Chapter VI, using the Mg-0 bond parameters found for periclasc in the 

previous section and the Si-0 bond parame ters found for stishovite in 

the next section. 
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TABLE 5-2-1 

Neighbor Positions and Short- Range Sums for the S:eine1 Structure 

Fork= B, the k 1 sum is over the 4 nearest oxygen neighbor s 

reo =13 ~ Q = ('U- Y+ ) R, R = cell edge 

Site Tn:~e 1 

k k' X (kk 1) X (kk 1) X (kk 1 ) 
l.. 1.. l.. x+ x, X XL I 

1 14 -) -1 1 ~l. ~4 04 
1 13 -0 i -o l i ~ 1 10 0 -1 -~ 

1 9 1 1 0 
z~ 4r:"l ±r.;4 1:. r;; ~ 
£1 

3e.o 9 eo ~ e.o 

Site Ty:ee 2 

k kl x, (kk ') xl(kk') x 3 (kk ') .2.. .... .1.. x+ x, x,xz. I ----- -
2 7 -l -'6 -o YL r 14 
2 11 0 '() -1 j l l 2 12 7J -b 3 
2 8 -~ ~ ~ 

Z-1.1eol 1.r;; + 4 rc;:"" 
<J eo - So 

kl 3 J 

(continued ... ) 
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TABLE 5-2-1 (continued) 

Fork= A, the k' sum is over the 6 nearest oxygen n eighbors 

r,.
0 

= -,J(3z + 2~2.', (3 = (5/a-~ )R, b= ( 1).- 3/s )R 

k k' x,(kk') Xdkk ') }(,3 (kk I} xz.. 1. "1. 4-

I x,x1. x, 
-- - --

3 8 8 $ ~ (32. t-/ &2. ~ 
3 10 -p -~ -b t2. ~).~J. ~ .. 
3 12 ~ f $, $2. 1'1.§1. 5.4 

3 13 -~ -f -$ ~z.. ~l~). s;+ 

3 11 ~ b f3 iol. $,4 s, .. 

3 14 -~ -$, -fo >2. ~4 s;" 

4 7 (3 -f> -s; (31.. (Pz)Z.. /'4 
4 9 -t' ~ ~ !>,_ t'Lt;,'L t• 
4 14 - ~ /> ~ ~2. 1.~1 $,4 f-' 
4 11 b -f -~ ~2. f1b .. ~4 

4 12 .s. -~ -(3 $;1. ~4 ~4 

4 13 -~ ~ (3 ~2. ~4 b+ 

5 14 j!J -~ ~ f?2 (.3).~1. f4 
5 11 -p b -~ (61.. JlfJt ft} 
5 7 -S, fo -~ ~L f/..~1. ~4 

5 9 s; -r ~ bl j31f,1. ~4 

5 8 -~ ~ -; $,.z ~4 ~~ 

5 10 s -£ /J ~.l. ~4- ~+ 

6 13 f ~ -$. ~~ f/&L fit 
6 12 -~ -~ ~ ~L jJ,f/ f3i-
6 10 <b f3 -~ ~I. ,,>L ~4 

6 8 -~ -[!> ~ ~ (3'~2. ~--
6 7 -s; -~ (3 &J. s;4 b4 

6 9 ~ b -f b.z. ,s• ~+ 

(continued .. . ) 
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TABLE 5 - 2-1 (continued) 

For k= 0, the k' sum is over the 12 nearest oxygen neighbors 
(second neighbors). Only xi(kk') for k 7 k' are tabulated since 
x.(k'k) = -x.(kk'). 

l l 

2l~ LA- VB ~= .cu.- Y.z.. 11{=2-U-l 

k k' x 1 (kk 1) x~(kk') X:3 (kk ') 

7 8 0 ~ ~ 

12 3 0 1 
13 - !14 2.s; -Y+ 
10 (£ - V4 Y4 
11 ~ g 0 

11 11( 11( 0 

14 -Y4 v4- Z£ 
14 'I+ -~ 2~ 

8 0 '1Y{_ -?Y1. 
12 A4{ 0 1f( 

13 Y4- 2~ - '/4-
10 .2~ f4 -Y+ 

8 12 ~ -S 0 

12 '11( -~ 0 

13 -'/4 -14- -2~ 

13 Y4- V4 -~~ 

11 5 0 - 3 
14 1/4- -22> '/4-

9 .}..~ /4 -14 
11 1K. D --nt 
14 Y4 -2~ Y~ 

9 .2~ -Yt Y4-
x . (8,7) = - x . (?, 8) 

l l 

(continu ed . . . ) 
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TABLE 5-2-1 (continued) 

k k ' x 1 (kk') x _t(k k') x 3 (kk ') 

9 14 -1Jf... -'>'t 0 

14 -f -J 0 

11 Y+ - Y4 -2~ 

11 -Y+ 14- - 2. ~ 

13 -"}){_ 0 - 7Tl. 

10 0 -1r{ -'?Y\. 

12 -'(+ -2~ ~ 
13 -s 0 - 3 

10 0 -3 - ~ 

12 }4 -Zb -'14-
x . (9, 8) = -x.(8, 9) 

l 1 

10 13 -?K ~ 0 

1 3 -~ ! 0 

12 - Y+ -Y+ l.b 
12 !14- 1+ ~) 

14 -?f 0 1f 
11 - i4- 2.h -14-
14 - 5 0 ~ 

11 Y+ 2~ V4-

x . (10, 9) = -x. (9 , 10) x.(10, 7) = -x. (7, 10) 
l l l l 

11 12 0 -1K "h\... 

13 -2~ Y4 VA-
12 0 -3 ~ 

13 -2~ - '/4 - Y.+ 

X. (11, 7) = -x.(7, 11); x.(11, 8) = -x.(8, 11); x.(l1,9) = -x. (9, 11); 
1 1 1 1 I I 

x. ( 11' 1 0) = -x. (10, 11) 
l 1 

(continued . .. ) 
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TABLE 5-2-1 (continued) 

k 

12 

k' 

14 

14 

x, (kk ') Xz.(kk ' ) 

x.(12, 7) = -x.(7, 12); x . (12, 8) = -x.(8, 12); x.(12, 9) = -x.(9, 12); 
1 1 1 1 1 1 

x.(12, 10) = -x. (10, 12); x.(l2, 11) = -x.(11, 12) 
1 1 1 1 

13 14 

14 

0 

0 

x.(13 , 7) = -x.(7, 13); x.(13, 8) = -x.(8, 13); x.(13, 9) = -x.(9, 1 3) 
1 1 1 1 1 1 

x.(13, 10) = -x.(10, 13); x.(13, 11) = -x. (11, 13) 
1 1 1 1 

x . (14, 7) = -x.(7, 14); x.(14, 8) = -x.(8, 14); x.(14, 9) = -x. (9, 14); 
1 1 1 1 1 1 

x.(14, 10) = -x.(10, 14); x.(14, 12) = -x.(12, 14); x . (14, 13 ) = -x.(13, 14) 
1 1 1 1 1 1 
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TABLE 5-2-2 

Static Lattice Parameters for Al
2
Mg0 

4 
Spinel 

Ideal Al2Mg04 Al2Mg04 
Structure Structure Incl. van der 

No No Waals o-o Experimental 
Multipoles Multi poles Interactions 

Par am. Units '"U.= 0.375 U.= 0.387 'U_= 0.387 Value Source 

rv 

A R Input Input Input 8. 001 Fig. 5-2-2 
-.., 
K kbar Input Input Input 2140.6 Fig. 5-2-2 
....,. 

2650 Cu kbar 2916 (3402) 2934 3082 Fig. 5-2-3 

'""' 1755 1709 (1509) 1714 1564 Fig. 5 -2-3 ~z... kbar 

c"'+ kbar 249 1130 (1509) 1110 1617 Fig.S-2-3 

""" K' 3.8 3. 7 (3.7) 3 .6 3.9 Fig. 5-2-4 

c• 
II 

4.6 3.1(6.2) 3 .0 4.4 Fig. 5-2-4 

c,~ 3.5 3. 9 (2.5) 3. 8 3 .6 Fig. 5-2-4 

cA.'+ -0.71 -0.30(.45) -0.39 0.8 Fig. 5-2-4 

d = 0. 7) Numbers in parentheses are the r esults when internal 

deformations are ignored. 
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TABLE 5-2-3 

Contributions to the Theoretical Elastic Constants of Al2Mg0 
4 

Spinel 

Elastic Sq. Bracket Rnd. Bracket 
Constant Contribution Contribution Total 

.375 Cu 2781 -130.8 2650 
No 

c ,2. 1821 - 66.31 1755 
Multi poles 

c~ 1821 -1571. 248.9 

.387 Cu 3402 -486. 2916 
No 

c,l. 1509 200. 1709 
Multi poles 

c44 1509 -379. 1130 
--- -· 

.387 Cn 3324 - 390. 2934 Including 
van der Waals 

Cn .. 1551 160. 1714 and 
o-o 

c~ 1551 -441. 1110 Interactions 



(a) 

(b) 

y 

Figure 5-2-1. 
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Spinel structure after W k (b) sublattice numbers . yc off (1965) . (a) ion positions. 
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5-3 . The Rutile Structure 

The rutile structure is of geophysical inte rest s i n e (' it 1s the 

structure assume d by Si02 at pressures greate r than 160 kbar. Orig­

inally synthe sized by Stishov and Popova (1961) , thi s high-pressure 

polymorph was identified by Chao, et al. (1962) in the shock-altered 

Coconino sandstone of Meteor Crater, Arizona, and named stishovite. 

The mixture of oxides Si0
2 

(stishovite) + MgO (rock salt) is one of the 

candidate assemblages for the post-spinel region of the mantle a nd will 

be investigated in the next chapter. 

The only relevant data which exist for stishovite are the lattice 

constants, the static x-ray and shock-wave compression curves (which 

yield the bulk modulus), and the coefficient of thermal expansion and 

De bye temperature. No ultrasonic measurements have b ee n made, to 

date, on stishovite. Thus the only way to estimate individual elastic 

constants and their pre ssure derivatives for comparison with s e ismic 

data is through a lattice model. Since it seems tec hnologically p o ssible 

to make ultrasonic measurements on polycrystalline stishovite in the 

near future, the compressional and shear velocities predicte d by this 

model ca.n be checked. Measurement of the single-crysta l elastic 

constants seems remote. High-precision ultrasonic data exist for single­

crystal Ti0
2 

rutile (Manghnani, 1969) which will b e compared with lattice­

model predictions for that solid . 

The importance of treating stishovite in the overall strategy of 

this thesis is that it yields the Si-0 bond parameters which, under the 
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consistent pair -potential assumption, allow the e lastic beh avior of 

~ -Mg
2
Si0

4 
(spinel) to be predicted for compari son with the s ejsmic 

profiles (Chapter VI). They are also the " least-ionic " of the solid s 

investigated using the e ssentially ionic theory in this thesis. It is 

therefore of conside rable interest to see to what extent the clastic 

b e havior is effected by their non-ioni c characte r. 

In his review paper on the properties of rutile, Grant ( 1959) 

discusses the nature of the Ti-0 bond on the basis of seve ral criteria . 

First, the large static dielectric constant of ruti le, l 7 3, r elative to the 

optical dielectric constant, 8. 4, is typical of highly-ionic c rystals and 

indicates a strong ionic character. However , b ased on th e electro­

negativities, the Ti-Q bond is only 4 3 % ionic. Second, the observation 

of a feeble temperature independent paramagnetism has b ee n taken to 

indicate a covalent contribution to the bonding. Third, the bond-length 

is somewhat shorter t h an that predicted for pure ionic bonding by 

Lennard -Jone s and Dent (1927) indicating a cova lent contribution. Fourth, 

the electron density, as determined by x-ray diffraction, does not have 

a node between the Ti and 0 ions (Baur, 1956). This is clea r eviden ce 

for a covalent contribution to the bonding since not e ven the M g O map 

exhibits such a node. Fifth, the low solubility of rutile in polar solvents 

indicates a covalent contribution to the bonding. and, finally, th e lower 

stability of the rutile structure predicted by Pauling •s rules is probably 

compensated by a corresponding increase in the covalent contribution 

to the bonding. 
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These criteria, as outlined by Grant, arc qualitative in nature, 

and more important, they do not even agree. The point is that some 

observables are more sensitive to the non-ionic character of the bond 

than others. For example, Baur (1961) concludes that the Ti02 is 

largely covalent since an ionic model doe s not predict the cquil jbrium 

posi tions of t he ions,while Wackman, et al. (1 96 7) conclude , on the basis 

of energy calculations , that the bonding in rutile is predominantly ionic. 

In the hope that the elastic properties are not sensitive to a covalent 

contribution to the bond, we will proceed. 

Specialization to the Rutile Structure 

The unit cell of stoichiometric rutile is tetragonal and is dia­

grammed in Figure 5-3-1. The structure may be represented as six 

interpenetrating tetragonal Bravais lattices with or igins (Wyckoff, Vol. 1, 

1965) 

Ti: 0 00 ; Y~ Yz. Yz.. 

o: ± ( u -u..o ; v. .. ~-y,_ , v~-1A ) Vt.) 
(5-3-1) 

Any lattice site may be reached from one of the above s1x sub­

lattice origins by a linear combination of the tetragonal basis vectors 

~l = (a, 0, 0), ~2 = (0, a, 0), ~3 = (0 , 0 , c), (5- 3-2) 

The 1.A parameter is very near 0. 30 for those rutile structures for which 

it has been measured. For Ti0
2

, Baur ( 1956) reports l..,L = 0. 306 :f:: • 001. 
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Becaus e of the tetragonal s ymmetry, there are six independent 

elastic constants. In Voigt notation they are (s e e Nyc , 1964, Table 9) 

ell~ Cn. = ))'"' = [111Q + (1 11 ,; 

c33 ==- ~3333 = [6333_] + c 3333) 

c4+-=--C:ss-==- .0zsz3 = [z.~"3?J + ( 2."3~"3) 

Cc.<.. = 1;,~1~ = [' , z:t] + ( n .. r2.) 

c.,i.. = _b"n -=: z[,z ,z.J- [111..2...] ~ (1122.') 

C,3 := C,"l> = ~1133= ~LI?>\3]- [11!>3] +( 1133) . 

All other C .. are zero. 
lJ 

(5 - 3-3) 

The coulombic and non-coulombic contributions to the square 

brackets are again written separately 

Equation (3- 3- 54) was used to compute t he coulombic sums. The sub-

lattice indices in this case range from 1 to 6 with ~( k) given by (5-3-1). 

The sum over the direct lattice was taken over the vectors *.(~' ) :..: 

~(k') - ~(k) + Q1 ~ 1 + ~z.sl:z + R3~3 where the basis v ec tors ai arc given 

by (5- 3 -2). The h ' sum was taken over the reciprocal lattice v ec tors. 

where 

The results are 

1 = (0, - , 0) , 
a ~3 

(5-3-4) 

1 = (0, 0 , -) 
c 
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u = o. 306 (Ti0
2

), c/a = . 644 

Made lung constant d.. M = 11. 2 7 ( 11. 24) for R - a = 4. 594 A, q = 2e 

Electrostatic Ul1 l]e = 3. 532 (3.171) 
Contribution [3333]e = - 0. 2691 (2. 4 00) (5-3-5) 

to the 
Square Brackets [2233]1!. = 0 . 1343 (- 1.198) 

~ q2 /2R4 
[112 2Je.. = -1. 886 (-2.428) 

[12 12r = -24.61 (-25.86) 

~3 1 3]e. = -24 . 38 (-24. 16) j 

The numbers in parentheses are for 1..A... = . 30 18, the approximation for 

which all the Ti-0 bond lengths are equal. The computer program was 

checked by comparing the Madelung constants with those computed by 

Baur ( 1961). 

The expression for the elastic constants may be written in an 

analogous form to (5-1-4 ) . 

~ = cx~~l. + _ ,_ 2 ~ -r~ x)~),_ + Q~. xl_c~.)L x3t~.)~l+ c~3Z3J 
2 R.~ 2 Yo.. IQ.''- (. j 

(5- 3-6) 

c~."== ~~l-+ ~ L- S 'P~. Xz ~.y- +Q~. X,(~·)' xl. t:..)z. ~ + ( IC:.J z.) 
e!<+ ZVo. ~·t ( 

c.ll.=cx:,l.~%1.. +-'-2..- 5 -~ Y-1-t~Y-+Q~·x.,tl.),_X,\.! .... )1~+ (11 22.) 
~R+ Z.Yo... lq.!.t l 

c ~ o(,3~q 1. + _j_ L- ~- r~ x3l~t +Q~. xL (J...t x3(~s·c + ( 22.33) 
~ ze4lj :<.Vo.. ~·.l "-- 5 
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In these equations: 

CX 11 = D 111]c. zR4--=- 3.5!>Z. ( 3.11 1) 
~2-

o(~~= [333~e <-~~ = -0 . .GC:.5l I ( Z.400) 
~~l. 

o4·d~n~0 ~ = 0.134::, (-1.1 '78) 

Cx'~c,"" [1 12-Ljc. z~4- =-I. BS(o (- 2..4 25J 

«,~,~L,z•zJt1•2.2::r> 1~ = -4?.33 

e<', 3 -< z[1313]c.- G J33f' /1~::: -48.89 

(- 49.2.9) 

(-41.\Z.) . 

(5-3-7) 

The short- range sums in equations (5-3- 6) may e asily be done by 

hand with the help of Table 5-3-1 which give s the neare st neighbor 

positions for the two cation sites. Using this table, the elastic constants 

may be w ritten in the form: 

C44 = ~z. + _I ) 4 [Peen. C.. l. + Ql3ol.. !j/Q2
C '-l ~ + ( z. 3Z. 3) 

21<.-r .zv~ (_ J J 
(5-3-8) 

QbG. -~2. +_I_ $4\ ZPeo,1A .. ~+4feol. lf-a.l. +,(Q6ol U4d..4 + 4Qeo1.. </'""Q~ ( + (I'LI"LJ 
2K4 zv~ (_ L .) 

C\l-= ~2.+ _, S4-[-Z~iu.~l.-4Peo1'Vh1.l.+zo~,u""o...++4Q~z.7ft.l~~-+- (1122.) 
)_(.(~ :<Vo... L 



197 

The parameter 7f; i s defined as 7./J = 1/2 - V- (s ee Table 5-3-1). 

The derivative s of the potential are given by 

(5- 3 - 9) 

(
- V~ + Ve~) 

r3 '2. 
lao• , 

Note that the identical terms PBOi= POBi have been combi ned 1n 

equations (5-3-8). 

Evaluation of the Empirical Parameters in VBO 

The energy density of the static lattice is given by 

(5- 3 -10) 

For the cubic crystals investigated in the previous two sections, it was 

possible to describe the hydrostatic compression by one variable -- the 

cube edge R. For tetragonal crystals like rutile, this is not always 

possible since the c/a ratio can change as a func t ion of t he hydrostatic 

pressure. Surprisingly, at the time of this writing, the re is b e tte r 

data on the pressure dependence of c/a for stishovite than for rutile. 

For stishovite, Liu, et al. (1971) r e port that c/a inc reases with pressure 

according to the relation h c I c = (0. 65 ± 0. 1) !1 a/ a . For rutile, 
0 0 

Clendenen and Drickamer (1966) find that c/a dec reas e s with pressure 

according to c/a ~ (c/a) (1 - 1. 7 P (10-
4

)) where Pis in kbars. 
0 

However, they express low confidence in their rutile data, and their 
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compression curve gives an anomalous bulk modulus. Liu, et al. (1971) 

show that Manghnani 's ( 1969) ultrasonic data imply cIa increase~:; with 

pressure as observed in stishovite. 

Figure 5-3-2 shows that the cohesive energy (5-3-1 0) has a 

minimum at 1A = . 293 at P = 0 and "1l = . 292 at P = 369 . Under the 

assumption that the two Ti-0 bond lengths are e qual, cia can be written 

in terms of U as cl a = 18 U- 2
1

• Thus, according to the model. cIa 

should decrease with pressure according to the approximate relation 

-4 
cia~ (cia) (1- .33P(l0 )). 

0 

For the purpose of evaluating the empirical parameters in the 

potential, we will assume cIa = constant, independent of the pres sure . 

In this approximation, the equilibrium condition is 

(5- 3 -11) 

and the bulk modulus is 

(5-3-12) 

where 

(5-3-13) 

(5-3-14) 
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while the v olume derivatives are, in the form of equation (5-2 - 19) 

where 
-1 c 1 = (NA c/2a) . 

(5-3 -15) 

Exactly as in the previous two sections, the equilibrium con -

clition (5- 3-11) and the equilibrium bulk modulus 

may be used to evaluate Aeo and feo . However, because of the two 

distinct B-<) bond lengths, the equations are not as trivial to solve. 

Using the equilibrium condition to eliminate ;A. f rom the expression for 

the equilibrium bulk modulus gives the following equation -ror ~ 

R ~ zcx..-~-%2. [ -~ + ~. 
~O..l.C... 0... ft!>o 

_ "(LlAa.. 'l. -{2."¥>&-+ (Cf,zp.f 0./fGo 

. [ v. l. ~ fD6o + {'1.!/F+ ( c.fzo..) ) c:. J 1 
-f[u.ej,~ +i 2..1ft.+(c/zAt' e. iz-v-... +<C/uY'· 'aJfao 

(5-3-17) 

This equation was solved numerically by a method of successive approx-

imations. The other parameter is given by 

(5-3-18) 

The volume dependence of the pressure and bulk modulus are 

[ 

'\.. -1i 1.ACl.-J/'ao 
P= - c9.W = -I ~l..- 4~&o ) n!U- e +-

&V 3(C/ 20.) a: p;;;c;.l. L z. -. u 
.----~--:-"'' -...Jl"'l-''-t(t/2-AJl· a.../jJ 6 o( (5-3-19) 

-+ i 21/''l.. +CC/2/).),_ e J 
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(5- 3-20) 

Computation Results and Discussion for Rutile and Stishovite 

Linear extrapolation of V(T) and(KIV)(T) from the high-

temperature regime yields the two rutile input parameters a= 4. 58 A 
"-

and K = 2238 kbar (see Figure 5-3-3). The elastic constants were 

computed according to (5-3-8) for a range of ionicity factors 

1. 0 ~J ~ 0. 5. Table 5-3-2 shows the mean deviation between the 

elastic constants as measured by Manghnani (1969) and the theoretical 

predictions. The best agreement is for ~ = 0. 5 . In Table 5 - 3-3, the 

theoretical elastic constants and their pressure derivatives ( ~ = 0 . 5) 

are compared with Manghnani 's ( 1969) measurements. While the 

elastic constants are in fair agreement, the pressure derivatives are 

all too small by a factor of "- 2. However, these pressure derivatives 

were computed under the assumption that cIa and ?..A.- are constant. If 

one allows cIa to vary as observed by Clendennen and Drickamer ( 1966 ), 

the pressure derivatives increase, as shown in Table 5-3-3, but not 

enough to be in agreement with the observations . 

This large discrepancy between the theoretical and experimental 

pressure derivatives in rutile represents a significant failure of the Born 

model. It was hoped that the change in cia with pressure would explain 

these large derivatives (relative to other oxides), but, if the measured 
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values are correct, the discrepancy must be due to either a non-

exponential functional form for the repulsive potential or to the many-

body, non-central forces neglected in the Born approximation. 

Qualitatively, the pressure derivatives have the correct relative 

sizes , and the theoretical pressure derivative of the shear constant 

1 /2(C 
11

- C 
12

) is negative as observed. Theoretically, the rutile 

lattice becomes elastically unstable (l/2(C
11

- c
12

) = 0) at P = 290 kbars. 

McQueen, et al. ( 196 7) report that, under shock conditions, rutile 

transforms to a distorted fluorite structure at P ~ 330 kbar, while 

Linde and DeCarli (1968) report that the reaction commences between 

150 and 200 kbars. 

For stishovite, the input parameter a may be estimated from 

the room temperature lattice parameters given by Chao, et al. ( 1962) 

and coefficient of thermal expansion CX.= 18.G:,Z-±0.?.5"xH)'/oc.(\Veo.vef"", 1971). 

By assuming 0<. is proportional to CV' a = 4. 164 A can be obtained as 

shown in Figure 5-3-4. Since there is no ultrasonic data, K must be 

estimated from compression data. Liu, et al. (1971) fit static x-ray 

diffraction data with a suit of K and K 1 ranging from K 1 = 3, 
0 0 0 

K = 3550 kb to K 1 = 8, K = 3190 kb. Ahrens, et al. (1970) estimate 
0 0 0 

K = 3000 kb, K I = 7. 
0 0 

rv 

Assuming K = 3200 kb, the elastic constants and their pressure 

derivatives were predicted for an exponential potential (Table 5- 3-4) · 

Note that this model gave K 1 = 3. 3. In view of the poor results for 

rutile and the suggestion from compression data that K 1 should be larger 

for stishovite, it seems fruitless to proceed with this potential. 
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Taylor Series Potential 

Since the Born model with an exponential potential could not 

explain the large pressure derivatives measured in rutile and suggested 

by compressional data for stishovite, we will drop the requirement that 

the repulsive potential be exponential in form, add one additional 

parameter to the potential, and use the measured value of K 1 as an 

input parameter. 

The most straightforward way to do this is to write the cohesive 

energy Was a function of the cation-anion bond length r (assuming the 

two cation-anion bonds are the same length) 

energy /mole 

and then expand in a Taylor series about the energy minimum. 

where 

~= n k' ( 1-i?') 
G. c, 

C,= 41z.1A3 
NA (c.,h..) 

(5-3-21) 

(5-3-22) 

(5-3-23) 

Equations (5-3-21) and (5-3-22) may be used to write the repulsive 

cation-anion potential as 
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V~<r)-=...!... [ze.z.(r-r)+363 (r-rt+ ... _ ~~~ J 
C, NA Z !).. 2 (5- 3-24) 

V~~(r-)=.2.-[zBl-+"B:?>(r-Y:::.J + ... + tX'.-.-1ql-
~ f\J~ 1,(,~\) • 

These equations may be used in (5- 3-19) for the pressure, (5-3- 20) for 

the bulk modulus, and (5-3..::8) and (5-3-9) for the elastic constants. 

The constants B 2 and B 3 are given in Tables 5-3-3 and 5-3-4 

for rutile and stishovite, together with the predicted elastic constants 

and their pressure derivatives. 

The deviation between measured and predicted clastic constants 

is given in Table 5-3-2 for both the exponential and Taylor serie s forms 

of the cation-anion repulsive potential. Note that when the potential 

is adjusted to give the larger K', the predicted elastic constants are 

also brought into closer agreement with the experimental values. 

The lattice model predicts that, like rutile, stishovite will be­

come unstable at high pressure. The pressure PT at which 

l/2(C
11

- c
12

) = 0 is given for the three models in Table 5-3-4. It 

ranges between 475 and 760 kb. As for NaCl and MgO, the exact 

transition pressure is sensitive to the details of the model. The 

velocities and density will be computed for each of the three stishovite 

models developed in this chapter and compared with the seismic profiles 

in the next chapter. 
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The contribution of the inte rnal deformations to the c las tic con ­

stants and the ir pressure d e rivatives was found to be smalle r for the 

rutile structure than for spinel. It is possible that the con tribution to 

the round brackets from the polarization of the oxygen-ion s ma y explain 

the large observed pressure derivatives. This could be tested using a 

modified rigid-ion model. 



TABLE 5-3-1 

Neighbor Pos i tions and Short-Range Sums for the Rutile Structure 

k k' X I (kk 1) x 2 (kk ') x_,(kk ' ) x~(kk') x~(kk') 2. l.. 
x 1 xL 

:L :L 
xl.x3 ------

(a) (a) --(c) (~) (c~ (a_.) (a1..c1.) 

1 3 -u... -I)_ 0 1.{_L 0 'lA."t 0 

5 lA. 1.A 0 ul... 0 1A4 0 

4 Yz.-U u-11. -'11-. 1/11... '14- t1 f/4-
4 (2-U 7;..-'/2... V2 y- 14- ~4 11'~ 
6 u.-lf'L 1t-u -1-L f'l.. Y4 y4 tf!A-
6 U.- 1/2- Y).-tA yl-. tl. Xt- 1J}- 'If~ 

..L--. ').:v ..... ~ 4 1f '~- 1 2. u"•"'~ 1);+ 7/Jl... 
~· 

2 4 -u_ 1.A.- 0 u"t- 0 1(~ 0 

6 u -I.A. 0 u~ 0 1A~ 0 

3 (2-v.. '/2-lA 1L y Y4 1f'4 ?fY4 
3 f]_- 1-.t ~2-- 1.-( -12 tl. ~ 1f <f~ 
5 U..- 'h .. 1<.-12_ y2.. 'fl. it ¥4 1'~ 
5 'U-12- 1J..-YL -y2.. tL ~ 1/-'4 1/-'Y4-

:2_ ),:1(.2+4~"3.. 1 2...l,.('t-41f4 lf'L 
Jc' 

if= Y2-u 
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TABLE 5-3-2 

Comparison of model fit to the e lastic constants for the exponential 

and Taylor s e ries cation-anion r e pulsive pote ntial. 

Exponential 

Cation-Anion 

Repulsive 

Potential 

Taylor Seri es 

Cation-Anion 

Repulsive 

Potential 

• 7 

.6 

. 5 

. 7 

. 6 

. 5 

Absolute M e an Deviation 
I P 

"' 2 ]c .. (theor.) - C . . (exp. )\ 
I lJ lJ 

365 Rb 

283 

25 3 

270 

221 

260 
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TABLE 5-3-3 

Comparison of theoretical and experimental elastic constants 

and their pressure derivatives for Ti0
2

. 

Exponential Cation-Anion Repulsive Potential ( J.. = 0. 5) 

Theoretical Thea retical Expe rime ntal 

c/a = canst. c/a /:. canst. (Manghnani, 1969) 

c,, 2406 ki:J . (c/a assumed to de- 2867 leb . 

c3~ 5102 crease with pressure 5239 

~ 1047 as measured by 1307 

c~ 2128 Clendennen and 2241 

C,z. 1936 Drickamer, 1966) 1952 

c ,> 1060 1595 
·--- ----- --

I 
Cu 2.8 3.6 6.5 

c' 33 4.0 3.4 8.3 

~ -0.6 -1.8 1.1 

c~ 2.6 3.2 6.4 
I c,z. 4.4 4.6 9 . 1 

Cr3 3.6 4.0 5.0 
p-r 2 94 .leb 352M.. 

(C,-C.,.)::O 

Taylor Series Cation-Anion Repulsive Potential ( ~ = 0. 6) 

Theoretical (c/ a = canst.) Expe rimenta1 
( 1'1'\~~Y\Qn < 11 ,(,9j 

c" 2636 ~. 2 8 6 7 Jz.l... 

c3> 5390 5239 

c'\4 1034 1307 

C(,(, 2283 2241 

c11.. 2065 1952 

c,3 1079 1592 

(continued ... ) 
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TABLE 5-3-3 {continued) 

Theoretical (c/a = const.) Expe rimental 
( ft\o."")'f)no-n .: ' \%,,) 

I 

c " 5.9 6 .5 
I 

C33 8.0 8.3 
I 

c~.,.. 0.1 1.1 

c~ 5.7 6.4 
I 

C r2.. 7.4 9. 1 

c ;3 5.8 5.0 

p-r 381_1Q1. 352 ~ 
(c .. -c..11.:= o) 
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TABLE 5-3-4 

Theoretical Elastic Constants and Pressure Derivatives for Sti shovite 

Inputs 

(kbar) 

(A) 

c/a 

~ 

Calculated 

e ll (kbar) 

c33 
c~ 

c~ 

c ,z. 
c ,3 
, 

c" 
I c,:!, 
c~ 

c~ 
J C,z. 
f c,} 

pi" ( k.b>...--') 

Bl.. 
30 (10 cgs) 

B..3 
3'J (10 cgs) 

TA'f L.orc. Se R t es 
\=b;~NTIAI..S 

3200 hb. 

7 

.3008 

4.164 

.6377 

0.7 --

3869 

8432 

1470 

3258 

2805 

1378 

6.6 

8.9 

0.88 

5.9 

8.0 

5. 1 

760 

.637233 

-.215894 

0.5 --

3774 

7137 

1207 

3312 

3014 

1733 

5.7 

7.0 

- 0.41 

5.6 

7.3 

6.3 

475 

I 

3500 .b1 

4 

.3008 

4.164 

.6377 

0.7 --

4224 

8834 

1552 

3589 

3160 

1594 

3.2 

4.9 

- 0.06 

2.9 

4.7 

3 . 3 

709 

.697527 

-. 118667 

Exponential 
Potential 

0 . 5 --

4083 

7467 

1230 i 

3624 

3323 

2006 

2.9 

3.9 

-.69 

2.8 

4.5 

3.9 

475 

"A= 

f= 

3200 k..b. 

(3.3) calc . 

. 3008 

4 . 164 

0.7 --

3871 

8428 

1469 

3260 

2808 

1379 

2.7 

4.5 

0.03 

2.3 

4.2 

2.7 

709 

.164738 

.305927 

- S 
xlO 
X 10-S 

Electrostatic constants for c/a = . 6377, l.A..= . 3008 

cl.rr~= 11.275 (units ~<t /2a4 ) q = 2e 

d...\1= 3.547 <>!Go<.= - 2.467 

fX1J = 5 • 1 7 3 0( ll. = -50 . 6 3 

c4= -2. 5 84 ~3 = -4 7. 72 
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TlOz. 
(d.) 

Q=Tt 
~---Q 0=0 

(b) 

y 

. ositions. ----~ )( k ff (1965). (a) •on p ture after Wyc o Rutile struc nurnbe rs. Figure 5- 3-1. (b) sublattice 
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Figure 5-3-2. Cohesive energy versus oxygen paramete r for Ti0
2
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VI. APPLICATIONS TO THE EART H 

In this chapte r , the lattice models developed in Chapte r V are 

used to predict the elastic behavio r of s everal clos e -packed oxide and 

silicate mantle-candidate minerals at high pressure s. The computed 

compressional and shear wave velocities are compared with s eismic ally 

determined velocity-depth profiles in the earth . T wo mineralogical 

models are inve stigated: ( 1) Mg
2
Si0 

4 
(assumed to be in a normal 

spinel structure) in the pressure regime correspon ding to the "spinel'' 

region of the transition region of the mantle ( ""400-600 k m.) and (2) th <' 

combination of oxides 2Mg0 

""-' 600 km. 

SiO in the "post- spind" r egion bt'low 
2 

There is no reason to believe that the mine r alogy of the l owe r 

mantle is any l e ss complex than the uppe r mantle or crust. The purpose 

of this chapter is n ot t o propose and support a mineralogical model for 

the lower mantle, but rather to show how the lattice models may be 

used to predict elastic prope rties of unmeasured high-pr e ssure phas es . 

6-1. Mg
2
Si0 

4 
Spinel 

Ringwood and Major (1966) demonstrated the existence of a dis-

torted spinel polymorph of Mg2Si0 
4

. The refined structure of this 

13-phase was given by Moore and Smith (1970). The 13-phase differ s f rom 

the normal o -spinel in that the SiO 
4 

polyhedra, which arc i s olated in 

the "'t -spinel, share one of their oxygen ions in the 13-phase, resulting 

i n a Si
2
o

7 
group (see Morimoto, ~-, 1970, for a detailed diagram) . 
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While both structures are based on a cubic close packing of the oxygcns, 

the f3-phase has orthorhombic symmetry. 

Because of the work in the preceding chapter on the spinel 

structure, we will treat o -Mg
2
Si04 , deferring a study of the f3-phase 

for the present. Extrapolation of the lattice constant for members of 

the Mg2Si0
4

- Fe
2
Si0

4 
spinel solid solution series yields R = 8. 07 A 

for the magnesium end member (Ringwood and Major, 1970). Akimoto 

and Ida ( 1966) reported R = 8. 07 ± . 02 A for Mg2Si0 4 , but it is not 

clear whether this was the f3 or 0 phase. Kamb (1968) used this lattice 

constant to show that, under the assumption that the Si- 0 distance is 

the same as in the olivine phase, l. 625 A, a Mg
2
Si0 

4 
normal spinel 

would have the anomalously low oxygen parameter V. = 0. 366. This 

would correspond to an Mg--0 bond length of 2. 09 A, close to that in 

MgO. 

Under the consistent pair - potential hypothesis, we should be 

able to predict the properties of Mg2Si0 
4 

spinel using only the bond 

parameters for Mg--0 found for MgO and those for Si-0 from stishovitC'. 

In Figure 6-1-l, the cohesive energy (equation (5-2-l5))is plotted as a 

function of ?;... for P = 0 and for P = 200 kbars. The equilibrium lattice 

constant R varies along these curves as indicated. Although only the 

exponential Si-0 potential is shown in Figure 6-1-l, the same calcula­

tion was made for the two Taylor series potentials found for stishovite 

in the last chapter. The oxygen parameter and lattice constant for each 

of these potentials are summarized below. 
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Si-Q Potential R 
(1\) 

Exponential . 36 7 8.02 

~Taylor Series .367 8.06 
(K = 3500, K' = 4) 

_Taylor Series 
(K = 3200, K' = 7) 

.368 8.08 

It is encouraging that the predicted lattice constant is close to 

the experimentally extrapolated 8. 07 A and that the equilibrium 

parameter has an abnormally low value close to . 366 predicted by a 

bond-length argument (Kamb, 1968). 

A comparison of Figure 6-1-1 with Figure 5-2-5 shows that the 

LA. parameter is controlled by the electrostatic part of the energy. For 

Al
2
Mg0

4
, the Madelung constant (absolute value) increases for larger 

'U., while for Mg
2
Si0 

4 
it increases as lA.. decreases. Thus, as noted 

in the previous chapter, an aluminate spinel with r epulsive parameters 

determined assuming 1A.. < . 392 will expand slightly and distort to find 

the energy minimum at constant pressure, while a silicate spinel has 

a tendency to have a smaller lA... 

Note that for Mg
2
Si0 

4
, as for the aluminate spinel, U. does not 

significantly change with pres sure. Also, as was the case for Al2Mg0 4 • 

the 1A.-dependence of the Madelung constant found here using the Ewald 

method differs by less than 2% from that reported by Waddington ( 1959) 

based on an Evjen calculation. This gives a check on the lattice sum 

program. 
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Fyfe ( 1954) us ed Mulliken 1 s ( 1951) semi- e m pirical r e lati on 

between bond e ne rgie s and overlap i ntegrals to show that the short 

( 1. 6 A) Si-0 bond could be explained without invoking extensive 

11 -bonding using "d" orbitals a s sugge s ted by Pauling ( 1952). The 

fact that the central-force, r igid - ion model used h ere was able to 

account for this effect lends support to Fyfe 1 s argument. 

The zero-pressure e lastic constants, as well as t he pressure 

dependenc e of V , V , and f predicted for eac h of the thrE-e Si-0 
p s 

potentials are given in Table 6-1-1. The velocities are 

compared with the seismic profiles in Figure 6-l-3. Note that these 

quantities have been tabulated both with and without the contr ibulions 

from the internal deformations to clearly emphasize that it is the 

r ound bracket contributions which are responsible for the negativ e 

dV /dP. s 

A negative dV /dP is not impossible . Indeed, a s mall o r 
s 

negative d)A/dP appears characteristic of the spine l lattice . F or 

-!, 0 I Al
2
Mg0

4 
d Vs/d P =0.4~xro ~,while for Fe~N< -4 dV~ /dP = -o.o~ -""""'"'-. 

ue-k:b · ,..,c . lt.\:, . 

However, before rejecting 6 -Mg
2
Si0 

4 
as a principal consti t u en t of 

the mantle , we must be sure that the small predicted pressure dcri v a -

tives are not the result of our neglect o f the polarizability of the oxygen 

ion. The observation of a similar effect in Al
2
Mg0 

4 
spinel in § 5. 2 

s uggests that this i s the case. 

Note that the bulk modulus pred icted from s ys tematics is in 

good agreement with the values given in Table 6-1-l. D. Anderson (1967 b) 

predicted K 0 = 1910, and D. Anderson (1969) predicte d K 0 = 1980± 210 kb. 
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6-2. Post-Spinel Phases 

Based on observed phase transformations in isostructural 

compounds, Ringwood (1970) suggested the following three phase 

changes in '6- Mg
2
Si0 

4 
spinel 

( 1} Disproportionation into the mixed oxides 

(spinel) (rock salt) 

+ Si02 
(rutile) 

(2) Disproportionation into an ilmenite structure plus a 
rock salt oxide 

O-Mg2Si04 

(spinel} 

MgSi03 
(ilmenite} 

+ MgO 

(rock salt) 

(3} Transformation to the Sr2 Pb0
4 

structure 

O-Mg2Si04 

(spinel) (strontium plumbate) 

Ringwood (1970) argues that (3) is the most plausible post- spinel 

phase of Mg
2
Si0 

4 
because 

(a) All known SrPbO 
4 

isotypes are formed between end members 

possessing rock salt and rutile structures. 

(b) All known Sr
2
Pb0

4 
isotypes are characterized by molar 

volumes which are practically identical with the mixed oxides. 

(MgFe)
2
SiO 

4 
transforms to a phase having a molar volume of 

the mixed oxides under shock conditions. 

(c) Extrapolation of transformations in the solid solution 

Mg
2
Si0 

4
- Mn

2
Ge0 

4 
suggest Mg

2
Si0 

4 
would transform from 
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the beta structure to the strontium plumbate structure at 

pressures of 200-300 kb. 

(d) The free energy 6 G
0 

of formation of Mg
2
Si0 

4 
spinel from 

the constituent oxides is relatively high. Spinels with large 

6 G are more likely to transform into a new single phase 
0 

than to disproportionate into the oxides. 

However, studies of MgGe0
3

- MgSi0
3 

indicate that an ilmenite form of 

Mg2Si0
3 

will become stable between 200 and 300 kb and this led 

Ringwood (1970) to conclude that (2) is a distinct possibility . He 

considers disproportionation into the mixed oxides as unliklcy bec-ause 

of (d) above. Preliminary results of Bassett and Takahashi (1970) 

indicate that o- F e 2Si0 
4 

spinel dis proportionates into the oxides. 

It is interesting that each of these three transformations leads 

to similar densities and compression modulus p . A comparison of the 

shear properties of each of these ''post- spinel" phases should be a next 

objective of the lattice model method developed in this thesis . However, 

because of the rather unsatisfactory results for the shear predictions 

in spinel, this study will be deferred until non-central forces and 

polarizable ions are incorporated into the models and better spinel 

agreement is obtained. Only the mixed oxide phases ( (3) above) will 

be investigated at lower mantle pressures. 

In Table 6-1-4, the elastic velocities and density of the MgO 

model developed in '§ 5. 1 ( ~ = 0. 7 and excluding second neighbors) 

are given as a function of depth. Table 6-1- 3 gives this information 
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for each of the three stishovite models developed in ~ 5. 3 . Thes e 

trajectories are compare d with the seismic profiles in Figure 6-1-2. 

Note that while the slope of the MgO trajectories for both V 
p 

and V are parallel to the seismic profiles, they arc too low in absolute 
s 

value by 0. 5 -l. 0 km/ sec. These low values can be seen to be a con-

sequence of the central force approximation. As shown in Figure 

the central force model predicts C 
44 

too low and C 12 too high. The net 

result is that the shear modulus, )A. , being a combination of c
44 

and 

(C 
11

- C 12 ) is predicted too low. Hence the theoretical predictions for 

both V and V are more than 0. 5 km/sec lower than the measured 
p s 

values (V = 9. 66, V = 6. 00) even at P = 0. In order to remedy this 
p s 

situation, non-central forces would have to be introduced into the model. 

For stishovite, note that the zero-pressure values of V and V 
p 8 

are relatively insensitive to the model parameters. Howeve r, dV I dP 
p 

and dV /dP are sensitive to the model. The effect of the internal 
s 

deformation (round bracket) contributions is to lower the velocitie s, 

as was the case for ~- Mg
2
Si0 

4 
spinel, but, unlike the spinel case, the 

profiles obtained by neglecting the round brackets are not satisfactory 

since the shear velocity still has a tendency to decrease with pressure. 

Hence, at this point a mechanical mixture of oxides does not look like 

a satisfactory post- spinel assemblage. Any stranger conclusion will 

have to await the inclusion of polarizable ions and non-central forces in 

the model. Once a more complete model has been formulated, it will 

be interesting to compare the three "post- spinel'' phases outlined above · 
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TABLE 6-1-1 

Predicted Elastic Behavior of Mg
2
Si0 

4 
Spinel 

Case 1 Exponential Si-Q Potential 

Hashin-Strichtman t 
,.,._, 

s. 02 A. R = p p vP vs 

lA. = .367 (kb) (gm/cm) (km/ sec) (km/ sec) 

" K = 1754 (1998)"" 0 3.62 9.35 ( 9.81) 4. 91 (5. 68) 

Cu = 2706 (3036) 140 3.84 9. 58 (10. 35) 4. 55 (5. 81) 
"-
C,z = 1278 (1375) 308 4.09 9. 58 (10 . 89) 3.67 (5.93) 

~= 995 (1461) 

Case 2 Taylor Series Si-Q Potential (Si0
2

, K 0 = 3500, Kb = 4) 

Hashin-Strichtman 

~ = s. 06 A p f vP vs 

1,.l = .367 (kb) (gm/cm) (km/ sec) {km/ sec) 
"'\. 

K = 1703 (1995) 0 3.56 9.39{9.87) 4. 91 (5. 69) 
/'V 

Cu = 262 7 {2956) 131 3.78 9. 58 (10. 33) 4.58(5.79) 

"'"' c,l = 1243 (1412) 294 4.02 9. 55 (10. 77) 3. 79 (5. 86) 
~ 

c,4' = 990 ( 1509) 

Case 3 Taylor Series Si-Q Potential (Si0
2

, K = 3200, 0 Kb = 7) 

Hashin-Strichtman 
""' s. os A p 

~ R = Vp vs 

v. = .368 (kb) (gm/cm) (km/ sec) (km/ sec) 

f{ = 1829 (2364) 35 3.56 9. 82 (10. 59) 4. 76 (5. 98) 

C,, = 2654 (32 77) 193 3.78 9.96(11.18) 4.10 (6.13) 
"'-

1416 (1806) 390 4.02 10.2 (11. 33) 3.43 (6.24) Ctz. = 
e"'+= 960 ( 1830) 

::c The numbers in parentheses are the results if internal deformations 
are neglected. 

t Simmons { 196 7) 
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TABLE 6-1-2 

Periclase Earth Model 

(~ = 0 .7 , second neighbors included) 

Ha shin - Stricktman'!< 

p zt f Vp vs 
( !fb) ~-) l~l~?_) ---- _1_~/~c. -) - (~~2... 

0 0 3 .61 9. 13 5. 23 

42 132 3. 70 9 .32 5 . 30 

114 343 3 .84 9.68 5.40 

196 575 3 .98 10.01 5.48 

291 800 4.1 3 10. 33 5.54 

401 1075 4.29 10 . 64 5.56 

526 1305 4.46 10.94 5.56 

670 1590 4.63 11.2 3 5.53 

835 1915 4.82 11.50 5.46 

>!: Simmons (1967) 

t Bulle nA(195") 
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TABLE 6-1- 3 

Stishovite Earth Mod e ls 

Model 1: Exponential Potential K = 3200 

VRH. AVG. 

p z F vP v 
- --

0 0 4.33 10.97 6. 11 

123.4 ~- 369 ~- 4. 49 ric-~ 11 . 1 6 1--./stc.. 5. 96 Jr:w.../~c. 

264.2 740 4.66 11.30 5 . 73 

424.6 1095 4.83 11.40 5.39 

607.0 1470 5.02 11.40 4.84 

Model 2: Taylor Series Potential K = 3500, K' = 4 

VRH. AVG. 

p z VE v _______ .a_ 

0 0 4.33 11. 39 6.25 

136. 1 ~ 405 k,...,.., 4. 49 "'T""/~1 11. 63 "-'!~c. 6. 08 ~/s . .t( 

293.3 805 4.66 11. 80 5.79 

473.0 1125 4.83 11.86 5. 36 

676.0 1605 5.02 11.75 4.56 

Model 3: Taylor Series Potential K = 3200, K' = 7 

VRH. AVG. 

p z -- _______ v:-P __________ - V !} ___ 

0 0 4.33 10.97 6. 11 

130.9 ~- 392~. 4. 49 rk-~ 11. 66 J-.., jS<<. 6. 10 1--/s.t( 

294.3 805 4.66 12. 16 5.88 

492.8 1233 4.83 12.48 5 . 44 

728.7 1705 5.02 12.51 4.40 
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VII. SUMMARY AND CONCLUSIONS 

Chapter II summarizes previous wo rk us ing clastic data to 

interpret seismic velocity and dens ity profile s . Birch' s early applica-

tions of isotropic finite strain theory to the lower mantl e are r dnv C'sti -

gated with two improv e ments: ( 1) the velocity e xpressions are written 

to include terms neglected by Birch, and (2) these expressions a re fit 

to recent inversion models which are fr e e of the adiabatic homogeneous 

assumpti ons built into previous inversion techni ques. The low density 

gradient in the lower mantle of these models leads to the c onclus i on 

that the lower mantle is not homogeneous and adiabatic . A rough cal-

culation shows that observed inhomogeneities p lu s a small super-

adiabatic temperature gradient (0. 2°C/km) can account for the wo rst 

case. In the review of systematics, it is shown that the assumption 

that pressure changes V in the same way as composition (along lines of 
s 

constant M) is not true for certain structures. 

Chapter III reviews the various definitions of elas tic constants, 

the distinction between thermody namic and effective elastic cons tants, 

non-isotropic finite strain theory, and develops the method of long waves 

as formulated by Born and Huang. This chapter forms the the o r e tical 

basis of the remainder of the thesis. 

Chapter IV discusses the various terms in the inte ratomic 

potential. Of particular interest is the concept of an e ffecti ve ionic 

charge and the use of inert gas Lennard-Jones potentials to characterize 

the anion-anion interactions without necessitating additional empirical 
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parameters. It is also shown that a linear extrapolation of V (T ) and 

(K/V){T) from the high-temperature r egime gives value s a pp ropriate to 

the static lattice. Although this has been pointC'd out by L~~ bfr icd and 

Ludwi g (1961 }, the demonstration given here is a b it less c omplex. This 

is an important poin t in that the model is quite sens itiv e to the input 

"' "' paramete rs K and f , and the extrapolation to the static la ttic e ha s 

been treated incorrectly in the recent geophysical lite r a t ure (0 . Ander son, 

1970). 

Chapter V applies the long wave interatomi c potential model to 

three structures of geophysical interest; rock salt, spinel. and rutile. 

For NaCl it was found that (l) the experimental and theore tical c l a stic 

constants and their pressure derivatives were best fit by a n exponential 

potential model with an ionicity factor , ~ , near 1. 0. (2) The mixe d 

derivatives d
2c .. /dPdT were important, in that the measu red first 

lJ 

pressure derivatives changed significantly betwe en 3 00° and 0°K. 

{3) The anion-anion interaction does not signific antly effect the predicted 

elastic constants or the ir pre ssure derivatives, but it docs h ave a large 

effect on the predicted shear instabi lity pressure {c
44 

::: 0). F o r MgO , 

{l) the best agreement between expe riment and theory was obtained fo r 

an exponential potential with an ionicity factor , ~ , b e twee n 0. 6 and 

0. 7. (2) The large deviation from Cauchy's relation which is not treated 

by these models leads to a low prediction of the shea r modulus. ( 3 ) The 

second neighbors do not significantly contribute to the elastic constants or 

their pressure derivatives. (4) The predicted shear instability pressure 

{C 
44 

= 0) is sensitive to the deta ils of the potential such as s econd 
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neighbors and the ionicity, J.. . For Al2Mg04 spinel, the model success ­

fully predicted the distortion f r o m a cubi c clos e packing of oxygen i ons 

to 1.( 7 0 . 3 75. T he inte rnal deformations make a l arge con tribution 

to the elastic constants and thei r pre s s ure de rivatives. They cha nge 

f rom positive t o nega ti v e , contrary 

to experiment, and lead to the unsatisfac tory r e sult th at d,.M-/ dP i s 

negative . This discrepancy may be rectified by a llowin g the i o n s t o be 

polarizable, since the defo rmation dipoles c ontribute to tha t pa r t o f the 

elastic cons tants associated with internal strain s . F o r Ti0
2 

rutile , the 

model was quite successful in predict ing the e l a stic constants , but 

unable to account for the large measured pres s u re de rivativ e . Allowing 

c/ a to change with pres s ure did not significantly inc r e as e t he pre d icted 

derivatives. How ever, the large derivatives could be f it by cha n gin g 

the functional form of the cation- anion r epulsive potential. This cha nge 

also brought the theore tical a nd e x perimental elastic c onstants into 

better agreement, but does n ot constitute an 11explanation '' of the large 

der ivatives. Since the compression data for sti shovite also sugge st a 

large K ' , it is i mportant to understa nd whe ther this is a gene r a l 

characteris t ic of the rutile lattice o r is depende nt upon the nature of the 

cation-ani on potentia l. Ultrasonic data on othe r solids in the rutile 

structure, like cassi terite, and a more fl e xible mode l containin g non­

central forces a nd p o l a ri zable i ons will he lp a n swer this que stion. 

In Chapter VI, the elastic properties of 

investigated using the Mg-0 potential from periclase and the Si-Q 

p ot e ntial from sti s hovite. The r esulting mode l has a ve ry reasonabl e 
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equilibrium lattice constant, !A.- parameter, and bulk modulus. When 

the predicted velocities are compared with the seit>mic profiles in the 

" spinel '' region of the mantle, both the values and gradients are too low. 

The cause can be traced to the large internal deformation contr ibutions 

as was the case for Al2Mg0
4 

spinel. P e rhaps non-central fo rces and 

polarizable ions will reduce this discrepancy. The mechanical mixtu rc 

of 2Mg0 + Si02 is compared with the velocities. T he predicted t e nd<:'nc y 

of V for stishovi te to decrease at high pre ssure s does not a ppear to be s 

due to the internal deformations. Although a firm conclusion must 

await a more thorough understanding of Ti0
2 

as explained a bove , i t 

now appears that a mechanical mixture of oxide s is not a good candidate 

for the post-spinel phase . 

The next step is to include non-central forc e s and polarizable 

ions into the model in a way which will not significantly incre as e the 

number of empirical parameters . Besides the large pressure deriva-

tive problem in rutile, other interesting applications would be a 

comparison between the predicted elastic properties of (3- and 1 -Mg2Si04 

using the same potentials, and a comparison b e twee n the thre e possible 

post- spinel pno:se~ outlined in Chapter VI. 

In a more complex model, optical data may be us e d to further 

refine the potential. Also, the observed transition pre ssur e for thos e 

transitions due to an acoustic instability (i.e. , NaCl ~csCl) could be 

used as an input to help define the potentials. Also, suits of oxides con-

taining the same cations should be measured to furthe r t e s t the ''consiste nt 

pair-potential hypothesis ''· A natural next candidate is p y rope garnet 
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(Mg
3
Al

2
Si

3
o

12
) . Slow neutron diffraction as a function o f pressure 

would provide data on the entire vibrational spectrum which c oulcl be 

utilized to further improve the models. 

The point is that our best information about the constitution of 

the earth's interior is the seismic velocity and density profiles. Lattice 

models based upon interatomic potentials provide the most physically 

motivated framework through which laboratory data on the compressional, 

acoustical, and optical properties of oxides and silicates can be used to 

unravel the composition and crystal structure of the earth 1 s mantle. 
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APPENDIX 1 

Derivation of the Relations Between Variou s Elastic Constants 

Relation between the Huang Coefficients and the Thermodynamic 

Elastic Constants 

The followin g proof of equation (3-1- 9) follows that in Wallace 

(1967). Conside r the expansion given inequation (3-1-7). 

Expressing this in terms of the displacement gradients 

"fE(Si),S)= f>E(o,s)-+ i -r:)lU . .l+U.)i. ~ u~Vs.] + 

-+ e C~u[ u-~ ~ ul~ ~ U~-DsJ l Us.t -1- ulk.-+ u.~k U:sJ 

Regrouping like powers of U .. through the quadratic terms 
lJ 

pE (S,j,S) = f E(O,~) .tr ~ T.) l_V;) ~ v:,J + 

.,. -£ -;~ u5~u~._ + '§ C~u I u.j uJ 

p E('S.- ·1 ,~)- ~E(01~) + T.l U~) + i_( -st~'~<- 4-(~·~u) U.~D~<>t. 

Comparing this term by term with the Huang expansion (equation 3 -1- 8) 

one gets the desired r elation 
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Relation B e t ween the Birch Coefficients and the The rmodynamic 

Elastic Constants 

Equation (3-1-14) in the text r elate s the Birch coefficients to the 

thermodynamic elastic constants as 

The first step in the derivation of the above relation is to expre ss the 

stress in the present state in terms of the stress in the initial state 

or 

(A -1-1) 

We can thus compute the Birch coe fficients according to their d e finition 

using the chain rule 

(A-1-2) 

Differentiating (A-1-1) gives the firs t factor on the r.h.s. of (A- 1 -2) 

(A -1- 3 ) 

Sinc e , 
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~T.:r- \ = E [ C ~1/W\-n ~ \j"" fpn ~ C \t\IIM"I ~ f {'<.J \ 
~ fr.s -x c) rr.s ~Fr.s j lz 

-= i [ c..\m"'' ~" .. ~rt'\:S $;f""' + c~'\"1 ~~( ~ ... ~ ~('""'] \ ~ 
= Clzlrs k 

equation (A-1- 3) may be written (at x =X) 

~tjl = -~r.s~~ll.~~lT~o-t.+'b<rbJ<)b~tl\<l +bjr~t~~~ l'<.i'~u_ i" ~;l<'hjtC.Irtr.s 
~f~ I 

-= -\~~~rs +Tsj~~r -4-\~5 ~~r +C.<.~rs 

Solving equations (3-1-12) for F .. give s 
lJ 

E)" i(f-·~ +- E:~~ + w~~ ~ UJ~<. + ~~.:~) 

which may be differentiated to. yield the second factor on the r. h. s. of 

equation (A-1-2). 

So equa tion (A-1-12) becomes 

= ~ l-l;·)~u.+ 1..~.~$-<k +\n S:·)>w:.-+ C;·1~-

-To) ~tR. + 1'.} bit +T; _,. S} + _c,~ tk. J 

which is the desired result. 
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APPENDIX 2 

Details of the Coulombic Sums 

Electrostatic Contributions to the Square Brackets 

In section 3-3, Ewald's theta -function transformation was used 

to write the Coulombic contribution to the square brackets as 

(equation 3-3- 82) 

where (equation 3-3- 54) 

where 

-"X 

G'(X) ~ d.G/cQ1: ::: - i ( \+~) 
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1- ~('l.') 
z 

(A- 2-l} 

It is understood that for the case k = k', Heys(Z} is to be replaced 

by H;(Z) in the J= 0 term where (equation 3-3- 42} 

1. ~z. 
H(O)('"L) = -1=._ ( e & ~ = e,.\-c_ '=l. 1 

~ fif )0 rz-

Since the evaluation of equation (3- 3- 54} for specific structures 

may not be obvious, it will now be worked out in detail. 

Consider first the term ~o<f ("K :L(~.)) . In this case ~-=- R X ( ~leJ 
is the dimensionless argument. Using the chain rule, the differentiation 

(A-2-1} may be carried out as follows: 
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Carrying out the final differentiation gives: 

Differentia ting the second term on the r. h. s. 

So: 
I [ -ct.~J - £'dB~ H ('t..) + .!::.- e.. 

T Z YfT 17z.. -r.'- -~:o 

+ R.,_Xr~- '1-p l {+[He~)+ -ffle J + f1?4Z~ e } 

For the H!;> case, r eplace H (Z) with H(o)(Z) in the expression above. 

Of course, this is only important in the cJ;> term of the r ound brackets 

1 1 -(1) -(2) 
becaus e of the x (kk , ) factors in C~6 and Cti.j3ol< terms. The F ORTRAN 

program used t o compute the squar e brackets is given, with n o tes, at 

the end of this appendix. It wa s checked by r e producing Cowl ey' s (1 962) 

numbe r s fo r the NaCl structure . For the more complex structures, a 

direct check was not possible since the e l e ctrostatic contributions t o the 

square brackets have not been previously calculated . However, the 

Madelung constant was checked against previous calculations -- since 

this was calculated in pa r allel with the square bracke ts , t hey a r e pre -

suma bly a lso correct . 

The Madelung Constant 

T he Made lung constant was compu.ted according to the equation 

(11 . 12) in Born and Huang (1962) 
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where r is the reference dimension of the lattice (not to be confused 

with the theta-function break-point R). Note that, as in the C~~~ case, 

the r eciprocal lattice term is symmetric in y so the complex phase 

exponential can be written as a cosine. 

The insensitivity to the theta-function break-point R can be seen 

for the case of rutile below. For any new structure, a curve like this 

should be computed to choose a suitable R before the square brackets 

are computed . 

\3.0 

TiOz 
C!ja. == O.C:A4 

J~ . o ~~ 2e.. 
Sc.o.\'('d 4o Q 

L 
<s 

11.0 

0.2.. 0.4 O.(o o.s 
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The Round Brackets 

As stated in the text, it is not generally possible to separate the 

round brackets into coulombic and non-coulombic parts. However, the 

electrostatic contributions to c;~) and c~~ must be computed . J:hese 

were computed according to equations (3-3-52) and {3-3-53) using the 

methods given in this appendix. The basic program was checked by 

recalculating Cowley's ( 1962) numbers for the ZnS structure. 
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APPENDIX 3 

The Born Haber C ycle for MgO 

It was noted in Chapter V that although the lowering of the 

ionicity gave bette r agreeme nt b e tween the theoretical and experimental 

elastic constants for MgO, it significantly reduced the cohesive energy. 

For ~ = 0. 7, the cohesive energy is {using the parametersgiven in 

Table 5-I-') 

which is to be compared with W = -905. 53 kcal/mole computed from 

essentially the same data by Gaffne y and Ahrens { 1969) . 

In principle the cohe sive energy can be obtained experimentally 

through the Born Habe r the rmochemical cycle diagrammed in Figure 

A- 3-l. In practice this is not possible since the heat of formation of 

2-
0 has not been measured. By solving for this missing link, Gaffne y 

and Ahrens (1969) calculated 

{907. ) ) {561. 8) {143. 8) = 202. 3 kcal/mole 

Using the lower value of W corresponding to~ = 0. 7 above, one calcu­

o 2-
l ates ~ Hf {0 ) = -35. 2. kcal/mole . Hence the lowered ionicity must 

be compensated by a covalent contribution to the cohesive energy not 

treated in this development. 
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APPENDIX 4 

The Consistent Pair-Pote ntial Hypothesis 

Below the repulsive parame ters found from MgO and Al
2

M g 0 
4 

are given as a function of the ionicity. The static l a ttic e parameters of . 
Al2o3 found in Figure A-4-1 we re used to compute )_Ato and pAlO for 

dire ct comparison with those in Al
2
Mg0 

4
. 

MgO (neares t neighbo r only) Al
2
o

3 
~ /-. 

~ -ll 
( 10 ) 
er s 

1.0 62.79 .373 1.0 

. 9 78.80 . 348 .9 

. 8 106.8 . 32 1 .8 

. 7 162.2 .292 . 7 

. 6 .6 

Al
2

M g0 
4 

(nea rest neighbor only) 

0.7 

Al-0 Bond 
/\ _,, 

( 1 0 ) 
er s 

262.4 

196.6 

;: 
(A) 

.275 

.287 

. 375 

.387 

(nearest n e i ghbo r only) 
).. f 

(10- 11
) A 

cr s 

93.05 .360 

125.2 . 337 

182.6 .312 

299.0 .285 

583. 1 .255 
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