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ABSTRACT

Lattice models based upon empirical two-body potential functions
are used to predict the elastic constants of '"mantle-candidate'' minerals
at high pressures for direct comparison with seismic velocity profiles.
The method of long waves, originally formulated by Born and his co-
workers, has been applied to solids in the rock salt, spinel, and rutile
structures. Calculations for NaCl (rock salt), MgO (rocksalt), A12Mg04
(spinel), and TiO, (rutile) are compared with recent high-precision
ultrasonic data. The effect of van der Waals forces and second-neighbor
anion-anion interactions is shown to be small. The NaCl and MgO data
are best fit with an exponential cation-anion repulsive potential. The
elastic constants of MgO cannot be well fit unless the ionicity (valence
product) is lowered to 0.7 of its full ionic value, For NaCl this is not
required. The shear instability (C44 = 0) is predicted for both NaCl and

MgO, but the exact pressure is sensitive to the details of the potential.

Using the Mg—O two-body potential found for periclase, AlZMgO4
spinel was investigated using only two pieces of input datum, K and P
Although the predicted elastic constants were in good agreement with the
data, the pressure derivatives were not. The discrepancy is caused by
a large contribution from the internal deformations which occur in all
non-centrosymmetric structures. The same result was found for 'I‘iOz. A
relaxation of the rigid-ion and central-force approximations may correct

this discrepancy.
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Using the Mg—O bond parameters found for periclase and the
Si—O bond parameters found from K and fo, of stishovite, the elastic

properties of the high-pressure polymorph K-MgZSiO

4 spinel were
predicted. The predicted equilibrium density was in agreement with
previous experimental extrapolations; the predicted L paramecter was
in agreement with prior estimates based on bond-length arguments, and
the predicted bulk modulus was in agreement with prior systematics
estimates. However, the internal deformation contribution again
dominated the pressure derifratives and caused both the predicted V

and Vg to be lower than the corresponding seismic velocities in the
'"'spinel region' of the mantle. A comparison of MgO (rock salt) and
SiLO2 (stishovite) with the seismic profiles for the '"post-spinel’ lower
mantle shows a discrepancy in both absolute value and gradient. Unlike
the silicate spinel, this is not obviously caused by the internal deforma-
tions. The lattice models predict that both TiO2 and stishovite will
become unstable in shear (1/2 (Cy;-C;,) = 0) at high pressure.

Other methods of using laboratory data to interpret seismic
profiles are reviewed. Birch's formulation of isotropic finite strain
theory is corrected and used to test the homogeneity and adiabaticity
of the lower mantle of recent earth-inversion models. Systematics are
shown to be insufficient to treat the shear properties. Although lattice
models are limited by empirical approximations to the complex bonding
forces, the empiricism is on a more basic level than that of velocity
density systematics previously used to interpret seismic profiles. By

using lattice models, one gains the natural dependence of both the com-

pressional and shear properties on the crystal structure.
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I. INTRODUCTION

One of the primary objectives of solid earth geophysics is the
determination of the pressure, temperature, composition, and crystal
structure of the earth as a function of depth. The solution of this
problem requires input from a wide range of disciplines. The seismol-
ogist provides the most direct data. By fitting the observed travel time
of compressional waves, dispersion of surface waves, free oscillation
spectrum, mass, and moment of inertia of the earth, he attempts to
find the best distribution of compressional wave velocity V., shear
wave velocity Vo and density @ as a function of depth. The interpre-
tation of these material constants in terms of temperature, pressure,

composition, and phase requires the skills of a materials scientist.

The ultimate experiment which such a materials scientist could
perform would be to reproduce the temperature and pressure conditions
of the earth's interior in his laboratory. If he could, at the same time,
measure the compressional and shear wave velocities and density of
"mantle-candidate'' mineral assemblages, he could effect a direct com-

parison with the seismically determined profiles.

Unfortunately, such an approach is not yet technologically feasible.
The only experimental methods capable of reproducing the temperature
and pressure conditions throughout the entire earth are the shock-wave
techniques. Although the shock-wave method has yielded the only
pressure-volume information available for many of the high-pressure

polymorphs of oxides and silicates (Ahrens, Anderson, and Ringwood,



1969), the pressure-volume information is neither adiabatic nor iso-
thermal, but follows a thermodynamic path known as a Hugoniot. Even
if one knew how to accurately correct these data to an adiabat or an
isotherm, which one doesn't, this method is presently capable of
yielding only the volume dependence of the free energy, i.e., the
pressure, the bulk modulus, and the pressure derivatives of the bulk
modulus to all orders. No technique has yet been perfected to measure
the elastic wave velocities behind a shock front in solids. Until this is

" -(4/3)\/32 = Klp

achieved, only the density and the combination D-v
can be compared to the seismic velocity profiles. Although this method
has been successfully pursued by Anderson (1967), it does not make full

use of the seismic data since VP and ¥ and P all carry information

about the physical constitution of the mantle.

Static compression experiments are similarly limited in that
they yield only the volume dependence of the internal energy and not
the elastic constants. Although the compression in such cells is iso-
thermal, these experiments have presently been limited to room
temperature and pressure to ~ 200 kbar, which corresponds to an

approximate depth of 500 km.

Of all the techniques presently used, only ultrasonics gives
all the information necessary for a direct comparison with seismically
determined velocities and density, but unfortunately these experiments
have been limited to pressures of 10-15 kbar or depths of about
50 km. For the upper mantle, above the 400 km discontinuity,

such information is very useful. The theory of finite strain,



which will be discussed in Chapter III, can be used to extrapolate these
data from the relatively low-pressure laboratory regime to the high

pressures of the earth's upper mantle.

Below 400 km, the situation is quite different. The seismic
velocity profiles show two major discontinuities, one at about 400 km
and one at about 600 km, which are presumably evidence of solid-solid
phase changes of the olivines, pyroxenes,and garnets to more close-
packed, high-pressure forms. Even though the olivine-spinel phase
change has been directly studied in the x-ray cells, and the spinel -
post-spinel change has been observed for germanate analogs and the
fayalite end member of the olivine series, no elasticity data are avail-
able for these high-pressure silicate modifications, and finite strain theov-)/

is therefore of no use.

What is needed is some method which is capable of not only
extrapolating elastic constants, but also of predicting them. Previous
prediction methods have involved the scaling of Vp. Vs' or some com-

= s

bination like the seismic parameter P-=-v 4/3)\.182 as a function of

P
density. These scaling laws will be reviewed in the next chapter.
Besides being purely empirical, they contain the assumption that

pressure changes the elastic constants in the same way as composition,

that is, through the density.

It is the purpose of this thesis to develop a more physically
sound method of predicting and extrapolating the elastic velocities and
density of mantle-candidate minerals for comparison with the seismically

determined profiles in the mantle. No claim of originality is made for



the method; it is the well-known method of long waves pioneered by
Born and his co-workers in the 1920's and improved upon ever since.
What is new is its application to complex crystals and to the problem

of the constitution of the earth's mantle.

Basically, the approach is to use all the data available for a
given mineral, plus data on similar minerals,to determine the two-body
interatomic potentials for each of the various bonds. Once these two-
body potentials are fixed, the density and all the elastic constants may

be calculated as a function of pressure.

The exact nature of these interatomic forces are extremely
complicated and are only partially understood on the quantum mechanical
level. They are many bodied in nature and thus depend on the angles
between atoms as well as on their separation. The claim in this work
is not to make any exact calculation of these interactions, but only to
find the most physically reasonable empirical approximation to them.

It is important to point out that although the lattice models are limited
by empirical approximations to the complex bonding forces, the
empiricism is on a more basic level than in velocity-density systematics
previously used to interpret seismic profiles. By using lattice models
one gains the natural dependence of both compressional and shear
properties on the crystal structure. One is no longer constrained to

the bulk modulus, but can make full use of both the compressional and

shear velocities.

Following a brief discussion of the definition and meaning of

elastic constants, the method of long waves is developed in detail in



Chapter III. In Chapter IV the interatomic potential is discussed.
Chapter V applies the method to the rock salt, spinel, and rutile
structures. The objective is to use the precise ultrasonic data to see
if the input of only two parameters, K and /5 , are enough to predict
the elastic constants and their pressure derivatives. The assumption
that the bond parameters found for these compounds which are stable
at P = 0 also describe the bonds in high-pressure modifications allows
one to predict the elastic constants and density of these high-pressure

structures. D’-—MgZSiO4 spinel is treated as an example in Chapter VI.

The two assumptions of the model developed here which most
severely limit its geophysical usefulness are seen to be the central
force approximation and the rigid-ion approximation. While relaxation
of the former assumption requires a deeper quantum mechanical under-
standing and may require more input parameters, the latter assumption
can be relaxed knowing only the dipolarizability and quadrupolarizability

of the anions and should be the next improvement.

In lieu of direct high-temperature, high-pressure data, these
lattice models represent the most physically reasonable framework
through which available laboratory data may be used to predict Vp, VS,
and IO of mantle-candidate minerals for comparison with the seismic

profiles.



II. SOME PREVIOUS ATTEMPTS TO USE LABORATORY DATA

TO INTERPRET SEISMIC VELOCITY AND DENSITY PROFILES

2-1. Isotropic Finite Strain Theories

Birch (1938) applied Murnaghan's (1937) finite strain theory to the
case of an isotropic solid under hydrostatic pressure arriving at the fol-
lowing expressions for the velocities and density as a function of com-

pression at constant temperature (or along an adiabat).

L7} |
Ve = i(_‘:f_f_ﬁl_z{?\uz/awe(u)\oﬂo/u,)_’(}/z' (2~1-1)

Vs < { (_1/‘22__9'_.{/3[//(04— (3~ 4—/(,,)_‘](& (2-1-2)

o. _-i(nfz.e)% e (3o +2 )] (2-1-3)

In these expressions € 1is the Eulerian measure of the hydrostatic

strain and is related to the density by /0//00 ={(1 -2€ )3/2.

In a following paper, Birch (1939) used these equations to make
the first interpretation of the seismic velocity and density profiles in
terms of composition. Assuming a two layer mantle with a discontinuity
at 474 km, he found that VP, Vi and £ in the upper layer were in
excellent agreement with Jeffrey's (1937) observed values for input
parameters A,= 6.81 x 1011 dynes/cmz, Mo=6.065 x 10“ dynes/cmz,
and /Do = 3,28 gm/cms. In the region beginning at 474 km, Birch's fit

gave A,=12.12 x gt dynes/cmz, Ho=8.91% 10" dynes/cmz, and /Oo:

3.91 gm/Cms, but the agreement with Jeffrey's observed profile was



not as good.

This failure to fit the lower mantle was partly a result of poor
seismological data (the 600 km discontinuity had not been discovered)
and partly a result of Birch's incomplete formulation of the finite strain

theory. Sammis, et al., (1970) pointed out that Birch's equations (2-1-1)

and (2-1-2) should be written

S/z e
Ve = {(“‘2-@—) r>\0+2/‘4o- €(Who+iome 182 —Jmn):&i (=14
pe

Yz.
VS = {(i—l&)ﬁz 2%0"6(@7\0"'8/}0"’3/‘7‘\*/\(1)]% (2'1'5)
Z/Do i =

The coefficients £, m, and n are third-order coefficients in the

expansion of the elastic energy density in powers of the strain invarients.

Z =1
Pob= At2ile TF — 2T, + R TP + LT +mT,+OL") 7170
Z
The three invarients of the Eulerian strain tensor are given by

1\ = e;,i
I, = e(ea€y — €yey) (2-1-7)

Ix= Yol€y € Crke ~3E€HERT gy +2,Eij€thh;) )

The derivation of equations (2-1-4) and (2-1-5) is identical to
Birch's (1938) derivation of (2-1-1) and (2-1-2) in every detail except
one: the expansion of the strain energy density is not truncated after the

second-order terms, but is retained to third-order in € as written.

Following Birch, the compressional and shear velocities in an

isotropic material subjected to a finite hydrostatic strain are



Vo= Al=217/ps

Vs = C -V /20 (2-1-8)
where
/o[(x 2€) ‘;_ﬁ + Aeﬁl‘fxs ?‘QLQID;Q;; +4623i1‘§_l>_ +4e3%13
g}ﬁ) (a +ze%?f +et 2 igﬂ (2-1-9)

C=pl-23 -z 2 — e 0
ﬁ JI aj:z QIB
Here € is the finite hydrostatic strain (€ = - & - «*/2, f/fo =(1- 2E)3/2
and 1/(1 +& ) is the factor by which each line in the crystal is hydro-

statically shortened.

By taking the indicated partial derivatives of ¢ and arranging the

terms in ascending powers of € , we get

V‘f= (unzess/lll?\o*fz/xa ~€(11 26+ 1O s —1BL —4m)

—€X(1TL+35/m +3m)] /0o
(2-1-10)

2 Sz —
Vs = (1-2€) L2pho = E(LRe*B o3 +m)
- e*(540+1zm)] [ zps |

Because of the differentiation in the calculation of A and C, the third-
order coefficients £, m, and n appear with A, and Mo to the first order
in € . For the same reason, the coefficients of the € terms are
incomplete. The complete terms would contain fourth-order constants
ignored in the truncation of equation (2-1-6) after the €3 terms. For
this reason, these equations should be used in the form given by equations

(2-1-4) and (2-1-5). By truncating the free energy expansion after the



second-order terms, Birch got only the A, and M. contribution to the

€ terms. Hughes and Kelly (1953) derived equations analogous to (2-1-10)
in Lagrangian coordinates having the same form; i.e., the third-order
coefficients appear to first order in the Lagrangian hydrostatic strain 4 .

Upon computing the bulk modulus K//O = V; - (4/3)Vg by using

(2-1-10), we obtain

5/
K=(1-2€) [Ke= &(TKo=1BL -G ~Zm)

. (2-1-11)
—e (B L +2Tm+3m)]

which is identical to the expression given by Birch (1952):

K= Ko(wl?)m[l+7¥—2,§§(2.—99)] (2-1=12)

where f=-€ and S = (184 + 6tm + 2/3n)/4K0. Note that the fz term
in (2-1-12) is incomplete, being composed of the incomplete EZ terms

in the velocities.

The third-order constants, £ , m, and n, may be interpreted in
terms of the pressure derivatives of the velocity. By using the expres-

sion for the pressure given by Birch (1952)

5/z
P= -3K,e(1-2€) (1+2e%) (2-1-13)

and equations (2-1-10) for the velocities, the pressure derivatives may

be expressed as

(__L_ Q—V-P = | \3)0"’[4#0-‘3’-‘4”’0 (2_1_14)
Vp aF Jo e Rot Zpho

s = ) 3o+ GAo +32m +Jam
Vs 2P/, ©kKo Ao ‘ (2-1-15)
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Given only a hydrostatic finite strain, it is not possible to deter-

mine !, m, and n individually, but only the combinations

§=182+4m
(2-1-16)
which appear in the velocity derivatives. Since
(@5} - 4-2¢ (2-1-17)
ael, #
and
€= I8 +m+¥am _ S+4/aN (2-1-18)
4 Ko 4K,

equation (2-1-17) is linearly dependent on equations (2-1-3) and (2-1-4).
For most geophysical purposes, however, S and # are sufficient.

These parameters are given in Table 2-1-1 for a number of solids.

The most serious objection to finite strain theory is that one is
never certain as to the convergence of the expressions for the velocities
(2-1-10) or the bulk modulus (2-1-12). The coefficient of the € term is
typically an order of magnitude larger than the leading term, and the
coefficient of the €° term, although incomplete, appears to be an order
of magnitude larger still. Therefore, these expressions are probably
insufficient for € > 0.1, which is roughly the strain at the base of the
mantle. For self-consistent analyses, the €”terms, being incomplete,

should not be retained. The expressions should be used in the form



(il

V; = 7‘0_(\—ze35/z[_7\,+2/u.,— E(URe*10me = § )]
Vs = f%(n-ze)% [ o= €(3ha+ 40 +0)] (2-1-19)
K= (28" K[1-€(7-48)]

P = -3K.e(1-2¢)" (1+2e%).

By fitting equations (2-1-19) to the seismic velocity and density
profiles, it is possible to evaluate A, Mo, /0,,$)and 7. for any homo-
geneous region of the earth having an adiabatic temperature gradient.
Jordan, et al., (1971) have made this fit for the following velocity and

density profiles (in the lower mantle)

(1) Birchl ()196%)

(2) BirchIl (1964 )

(3) Pyrolite (Clark and Ringwood, 1964)

(4) Eclogite (Clark and Ringwood, 1964)

(5) CIT 435002 (Jordan and Anderson, 1971)

(6) CIT 435003 (Jordan and Anderson, 1971)

The Birch T model and the two CIT models have been superimposed
in Figure 2-1-1. The major difference between these profiles is the

low density gradient of the CIT models in the lower mantle.

In addition to equations (2-1-19), equations of the form

V;’ = (_;_);)(‘_Ze)sla\'_;\ﬁz/uo—e(n)‘r\o,uo—g) +e? (/3’)]

V: - (_\p‘:) (‘—ZESS/Z [/b‘o =1 - (3?\°+4/(l°+ 'YL) + 61(3)] (2-1-20)

P=-3K, e(\—ze)s/z [1+2€§ re® (oO]
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were also fit to the above models and the parameters o , B, and ¥
found. Equations (2-1-20) are perfectly valid in form, but the o, B,
and 7 parameters cannot be interpreted in terms of zero pressure

velocity derivatives unless the 64 terms are retained in the expansion
of q.’D .

It is in fact possible to add any number of terms with increasing
powers of € . The important question is how many terms do we need to
define the low order parameters; i.e., do the coefficients in the expan-
sion become smaller at a faster rate than € ? It is a basic problem of
finite strain expansions that this question cannot be answered. The
question we can answer in this type of analysis is how many orders are
needed to fit a given VP, V, set of data within some acceptable r.m.s.
limit.

In Figure 2-1-2 the total r.m.s. discrepancy between the Birch II
model and finite strain fits is plotted as a function of the order of the
finite strain theory. It can be seen that while the fit is significantly
improved by going from the incomplete first-order formulation given by
Birch,(2-1-1 through 2-1-3), tothecomplete first-order fit (2-1-19), it is
not significantly improved by going to the complete second-order (2-1-20).

This is true of all the models.

Table 2-1-2 gives the parameters for the six models fit. The
Birch I and II, pyrolite, and eclogite models were well fit by the second-
order theory and gave ''physically reasonable'' zero-order parameters.
The inversion models CIT 435002 and CIT 435003 could be fit, but did

not yield ""reasonable' zero-pressure parameters as will be discussed
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below.

It is not surprising that the two Birch models and the Clark-
Ringwood eclogite and pyrolite models are well fit by the finite strain
since the assumptions of homogeneity and adiabaticity are built into the
Adams-Williamson inversion used to compute them.. However, the recent
inversion models CIT 435002 and CIT 435003 contain no implicit relations
between Vp, Vg and /0 . Both fit the seismic data equally well. Our
inability to fit the lower mantle of these models with physically reason-
able zero-pressure parameters implies that the region under study is
either anisotropic, inhomogeneous, or non-adiabatic. These possibilities

will now be investigated.

There is seismological evidence that the lower mantle is inhomo-

geneous. Johnson (1969) gives evidence for the following discontinuities

Depth AVP/VP
830 0.0045
1000 0.0079
1230 0.0059
1540 0.0065
1910 0.0032

Assuming AVS/VS >~ AVP/VP as obgserved at the major discontinuities,
it is possible to estimate the change in the seismic parameter AD/D at
each discontinuity. Since dp/dP =1/ , each observed AD has the
effect of decreasing dp/dP relative to the homogeneous case, as illustrated

in Figure 2-1-3. Correcting for the approximate Q@ change associated
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with Johnson's observed VP discontinuities increases the slope of /O(z)
by ~0.07 gm/c:rn3 in the region 800-3000 km. By assuming /O = A@VS,
the density jumps associated with the ® jumps, %9 =-'3 % may be
removed. The net effect in the region 800-3000 km is to decrease the
slope of /o(z) by ~ 0.09 gm/cm3. Hence removal of the observed
jumps has two cancelling effects on the density gradient which leave

/) (z) approximately unchanged.

The effect of a superadiabatic temperature gradient can be approx-
imately estimated as outlined in Table 2-1-3. The effect of correcting
the profile CIT 435002 for a superadiabatic gradient ranging from 0 to
0.5 °C/km is illustrated in Figure 2-1-4. In this figure the zero-pressure
P and 2 found from the fit parameters (Table 2-1-2) are superimposed
on the estimated /0-@ trajectories for olivines, pyroxenes, and garnets
given by Anderson and Jordan (1970). It can be seen that for a super-
adiabatic gradient of 0.2-0.4°C/km the model CIT 435002 can be fit

with '"reasonable'' parameters.

The conclusion is that while the two inversion models 435002 and
435003 cannot be fit by isotropic finite strain theory with ''reasonable"
zero-pressure parameters, the more nearly adiabatic of the two, 435002,
yields reasonable parameters when corrected for a superadiabatic of
~ 0.2-0.4°C/km. The effect of the observed inhomogeneity is minimal.

It should be pointed out that this type of a finite strain analysis
is as far as one can go in an interpretation of the velocity and density
profiles without assuming a compositional model. This analysis gives
the velocities and their pressure derivates at P = 0 and some high T on

the adiabat which can then be compared to lab data. In the more
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sophisticated finite strain models (Leibfried and Ludwig, 1961) or the
lattice model calculations presented in the following chapters, one must
assume a compositional model, then predict its elastic properties at

mantle T, P conditions for a direct comparison with the seismic profiles.

2-2. The Systematics Approach

The next step in the use of lab data to interpret seismic velocity
profiles was initiated by Birch's (196la) observation that the
compressional-wave velocity was an approximate linear function of the

density and mean atomic weight M for some 250 specimens of rock. He

put this relation in the form

p= AR +BVp. (2~E%D
Quoting Birch, 'It is tempting to infer that if the density is changed by
compression, for a given substance, the velocity varies in much the
same way with the density as it does for these structural and compositional
changes; in other words, that lines of constant M show the relation of
velocity to density for compression of any material whose points fall on
this line.'"" Most of the early (pre-1965) geophysical ultrasonic measure-
ments were made on rocks to 10 kilobars. The purpose of the pressure
was not to allow the measurement of pressure derivatives, but rather to
remove the effects of porosity. The motivation of the ultrasonic work was

to define the constants A and B in equation (2-2-1).

If one succumbs to '"Birch's temptation'' and assumes that tem-

perature and pressure have the same effect on Vp as the change in
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composition, then equation (2-2-1) becomes very useful in the interpre-
tation of seismic profiles. Birch (1961b) used relation (2-2-1) to show
that many previous velocity and density profiles were not self-consistent
in that assumed '"homogeneous'' regions corresponded to lines of
changing ™M on the velocity-density Birch diagrams. Only Bullen's (1956)

model A was self-consistent, and was very similar to an M = constant

model throughout the mantle.

The first attempt to infer composition was made by Birch (1964).
He used (2-2-1) to obtain the density from the velocities through the
transition zone, but then used the Adams-Williamson procedure to
obtain the density of the lower mantle. He could thus use equation (2-2-1)

to infer ﬁ of the lower mantle.

Like all purely empirical relations, Birch's hypothesis has its
exceptions. Simmons (1964q)pointed out that calcium-rich rocks did not
seem to follow the trend for other rocks and suggested the following form

for equation (2-2-1).
3 (2-2-2)
Vp = A+ 460[Ca0] +Bpo
In this expression the bracketed quantity is the weight-fraction of CaO.

Simmons (1964bmeasured the shear wave velocity in many of the
rock specimens used by Birch (1960) in his compression wave study.

Apparently this data could not be expressed in the form:
Vs = AR +Bo e

since no follow-up paper was published on the systematics.
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The next major step in the evolution of systematics was
Anderson's (1967 ''seismic equation of state'’, a simplified form of

which may be written (for small compressions)

- AV\C[-_JM (2-2-4)

In this equation A and n are constants and @ is the seismic parameter
V12> - 3 V2 which is also equal to K_/© . Although equation (2-2-4) is
essentially an empirical relationship in the spirit of Birch's hypothesis
(2-2-1) regarding the compressional velocities, it has the following
advantages:

(1) The functional form of (2-2-4) is consistent with an

equation of state of the rather general form

= (e K (B (8]

as is easily shown using the definition ® = (dP/d/o ) g

in the limit of small compressions.

(2) Static compression and shock data can be used as well
as ultrasonic data to determine the parameters in (2-2-4),
thus significantly enlarging the relevant experimental

pressure range.

In the case of the seismic equation of state (2-2-4) the temptation
to infer that pressure and composition have the same effect in Ve o
space is thus even stronger since the relation has the functional form of

an equation of state.

More recent refinements (Anderson, 1969) have attempted to

isolate the effect on & of factors other than ™M and /O . In specific,
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the effects of cation-radius, crystal field effects, and anion-cation

coordination were empirically investigated.

The seismic equation of state was first used by Anderson and
Smith (1968) as a constraint on the inversion. They required that the
density and @ be related by © =AM " but did not constrain AM or
n. By fitting the free oscillations, group and phase velocity of surface
waves,and travel times of body waves, they determined AM and n, and
thus obtained some information about the composition. They concluded

that M, and hence the composition, changed through the transition zone.

The use of laboratory data to establish an empirical relation
between the bulk modulus and the density has thus proved quite useful.
However, this approach does not fully utilize the seismic data. As
independent VP and Vs profiles are being refined, one would like to be
able to fully utilize this information, rather than just the combination
@ = V;—% V:. Toward this end the systematics approach is far less
useful.

Figures 2-2-1 and 2-2-2 are Birch diagrams Vp vs. 0 and
Vs vs. O based upon ultrasonic data. Each plot shows the effect of
pressure as computed from equations (2-1-19). The effect of a 1000°C

change in temperature is also shown. Note that for VP, both the tem-

perature and pressure effects are approximately parallel to the lines of

M

—

M = constant more scattered, but the effect of pressure for certain

1

constant. For V_, not only is the data determining the lines of

structures like rutile and spinel is not parallel to the M = constant line.
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The remainder of this thesis deals with an alternate method of
using laboratory data in the interpretation of seismic profiles. Rather
than use the data to establish an empirical relation between velocity and
density, it will be used to establish the empirical parameters in the
two-body potential functions of a lattice model for each mineral. By
thus putting the empiricism on a more fundamental level, one gains the

natural dependence of elastic wave velocities on the cyrstal structure.
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TABLE 2-1-1

Ultrasonic Data for the Velocity Derivatives, Bulk Modulus,
and Shear Modulus

LM g% e

10—12 10-12 1012 1012 1012 1012

cn?/dyne cm?/dyne dynes/cm? dynes/cm? dynes/cm? dynes/cm?

Forsteritel Mg,Si0, 1,249 714 1.286 .811 -1.8 -2.6
Olivine!  Fo g3Fa g7 1.211 737 1.294 .791 -1.0 -2.5
Periclase MgO .862 +665 1.622 1.308 -0.2 -1.6
Lime* ca0 1.309 .603 1.059 .761 0.6 -3.3
Bromelite* BeO .538 L0449 2.201 1.618 6.3 -12,1
Zincitex Zn0 613  -1,138 1,394 L4462 10.3 -10.2
Corundum  Al,0; 478 .347 2.521 1.613 7.6 -5.5
Hematite* Fe,03 .591 .151 2,066 .910 7.7 -8.1
Spinel Mg0+2.6 Al,03 L494 .0762 2.020 1.153 11.1 -9.6
Trevorite?* NiFe,0, " .610 -.0082 1.823 .713 9.0 -8.4
Garnet Al-Py .919 456 1.770 .943 -1.5 -4,5
Rutile? Ti0, .825 .101 2,155 1.124 -3.9 -9.3

Finite strain parameters { and n were computed according to
equations (2-1-14), (2-1-15), and (2-1-16).
*polycrystalline

lKumazawa, M., and Orson L. Anderson [1969]

2Liebermann [1969]
3Manghnani, M. [1969]

All others from Anderson, 0. L., et al.[1968]
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TABLE 2-1-2

Finite Strain Parameters for the Lower Mantles of Several Earth Models

Model and 0th Order lst Order an Order
Interval fit Po A ks 3 = ol Sy = By
(gm/cm’) (kb) (kb) (kb) (kb) (kb) (kb)

Birch I .91 1155 1295 8254 5688  -- - -
(woo-sc0odem) 3 91 1164 1237 4532 4225 2.47 4339 1165

W

Birch II 3.96 1072 1308 5915 5380 -- = s
(1000-3000 lexn)

3.94 905 1257 -1850 4010 8.00 6941 540
Pyrolite 4.11 1327 1405 10,744 13,266  -- = -
(looc-sassbee) 4 43 1868 1279 9210 6693 -2.24 3681 3612
Eclogite 3.91 1221 1323 10,074 12,424  -- -- s
(looo-3c00km) 3 92 1428 1189 7907 5782 -1.86 3740 3545

CIT 435002 3.93 923 1302 1844 5269 = e =

L1035~ 2703 lew)

CIT 435003 3.74 -270 1193-8,132 1430  -- - -
(o3s-21034m) 413 2402 1392 49,640 8008 -57 -52,077 4.5

Parameters of the Complete lst Order Fit (P =0, T 1600°C)

Model and
depth range Lo (Vplo (V.1 A Ko D,
(gm/cm3) (km/sec) (km/sec) (kb) (km/sec)z'

Birchl 3,91 9. 19 5.76 .24 2018 51.6
Birch II 3.96 9.65 5.75 o 1944 49.1
Pyrolite 4,11 10.03 5.85 .24 2264 55.1
Eclogite 3.91 9.95 5.82 .24 2103 53.8
CIT 435002 3.93 9.50 5.78 .13 1798 39.3

CIT 435003 3.74 7.52 5.65 -.15 525 14.0
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TABLE 2-1-3

Correcting Seismic Profiles for a

Superadiabatic Temperature Gradient

From ultrasonic data:

(2tnVs/ Mm/o)P ~ 2.5

AVe= -2.0aVp AT

dAVs = —2.5a Vs &T

CQ/O"_"' - O(/O AT
Following Birch{ 196©) :
K o Ko
olo | S
Let /\ deg/km. = superadiabatic temperature gradient

= — doKo A = 0<0Ko A Si
4 < - K3

SV = 2.0 0Xe V, Ag{
? ——-K P

SVS": 2.5 42‘_539. Vsa St
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Figure 2-1-3

CORRECTING SEISMIC PROFILES

FOR OBSERVED INHOMOGENEITY

Johnson (1969) gives evidence of the following discontinuities:

Depth AVP/Vp Depth A{\/’p/Vp

830 0.0045 1540 0.0065
1000 0.0079 1910 0.0032
1230 0.0059

Assume A VS/VS ~ AVP/Vp as observed at other discontinuities.

We can then estimate (A® /P );

/O

(d,o /dP) = 1/@ so each A@ihas the effect of decreasing (d/o/dp)

relative to the homogeneous case.

Correcting for Johnson's @ increases the slope of/o by ~ 0.07 gm/cm3
in the region 800-3000 km.
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Figure 2-1-4.

4.6
p, g/cm3

Seismic parameter versus density for olivines, pyroxenes,

and garnets assuming both molar volumes and seismic
ratios are molar averageable (after Anderson and Jordan,

1970).

The effect of correcting seismic profile

CIT 435002 for a superadiabatic temperature gradient
according to Table 2-1-3 is shown by the dashed line.
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Figure 2-2-1. (following page) Compressional velocity versus density
for various oxides and silicates. The dark circles are
minerals with mean atomic weight near 20. The light
dashed lines are pressure trajectories calculated from
finite strain theory and the parameters of Table 2-1-1.
The solid lines with arrows show the effect of a 1000°C

rise in temperature (after Anderson, et al., 1971).
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Figure 2-2-2. Shear velocity versus density for various oxides and
silicates. The effect of pressure is shown by the light
dashed lines; of temperature, by the solid lines with
arrows (after Anderson, et al., 1971).



30

III. THE DEFINITION AND MEANING OF ELASTIC CONSTANTS

AND METHODS FOR THEIR CALCULATION

This chapter has three objectives. The first is to establish the
reference states, coordinate systems, and strain measures necessary to
discuss elastic constants in a prestrained elastic medium. The second
is to compare methods of calculation based upon finite strain expansions
of the internal energy with those methods which assume a specific
functional form for the two-body, central, interatomic forces. The
third is to develop the interatomic potential model using Born's (1923)
method of long waves, obtaining general expressions for the volume

dependence of the elastic constants of ionic crystals.

This chapter develops the theoretical framework used to investi-
gate the potential and predict the elastic properties of geophysically

interesting structures in the following chapters.

3-1. Effective vs. Thermodynamic Elastic Constants

Before proceeding to an atomistic formulation of the elastic con-
stants, it is important to review their definition in the context of con-
tinuum mechanics. There are as many different ways to define the
elastic constants as there are different tensor measures of the strain,
but only one definition gives the "'effective'' constants. The '"'effective
elastic constants are defined as those constants which control the propa-
gation velocity of small amplitude waves in a medium which has undergone

a finite homogeneous prestrain. It is these ''effective'' elastic constants
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for the case of a hydrostatic prestrain which we wish to compute and
average for comparison with the seismically determined velocity

profiles in the earth.

There have been several recent papers dealing with the distinc-
tion between thermodynamic and effective elastic constants, most
notably Thurston (1964, 1965) and Wallace (1965, 1967). The following
discussion is a brief review of their work. It serves the dual purpose
of comparing the various definitions of the elastic constants and estab-
lishing the notation to be used in the remainder of this thesis. Only the
results are presented in the following text; the mathematical derivations

have been relegated to Appendix 1.

As pointed out by Thurston (1965), the elastic constants may be
defined in at least three different ways: ''(l1) as second derivatives of
the internal energy with respect to some tensor measure of the deforma-
tion; (2) as first derivatives of the stress tensor with respect to some
tensor measure of the deformation; (3) as coefficients in a linearized
equation of motion or, equivalently, as coefficients in formulas for the
propagation velocities of small amplitude waves.' Further, the elastic
constants defined by each of these methods depend upon the specific
measure of the deformation. The coefficients of the stress-strain
relation depend upon the choice of a reference state from which the
strains are measured, the tensor measure of the deformation with respect
to which the derivatives are taken, and the choice of a stress tensor. The
coefficients of the linearized wave equation depend upon the coordinates

used in the equation of motion.
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Reference States

In order to sort out the various possibilities, consider the three
states as diagrammed in Figure (3-1-1). Again following Thurston (1965)
call these the ''natural'’ unstressed state, the ''initial'' homogeneously
deformed state, and the ''present'' or current state. Denote the density
of the natural state by /?5 and the position of a material particle by a,
(i=1, 3). Denote the density of the initial state by F , the position of a
material particle by Xi (i = 1, 3), and the associated stresses by —T-ij'
Denote the density of the present state by/o » the position of a material

particle by X, (i =1, 3), and the stresses by Tij' The coordinates a;

Xi , and xi are referenced to the same cartesian axes.

Measures of the Strain

The strain tensor may be referenced to either the natural state,
the initial state, or the present state. If it is referenced to the natural

state, we make the following definitions (Murnaghan, 1951)

ig,. = OB S f..= ox./ da,

1 1 1 1] 1 3

. aui/ aaj (3-1-1)
1 1

My = 7 Ealieg ~ O45) = T W5y 0y H iy )

The nij are called the Lagrangian or material strains. If the strain

tensor is referenced to the present state we make the definitions

&ij Bl 2%,
1

7 (835 = Bk Bk

€ ij

[3=1-2)
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The €.y are called the Eulerian or spatial strains. If one wishes to
express the internal energy as a Taylor series in the strains, the
question naturally arises as to which tensor should be used. Since either
expansion must be truncated, this decision' should be based upon which

is more rapidly convergent. Thomsen (1970a, b) considers the gquestion
in some detail and concludes that the Lagrangian expansion is to be pre-
ferred for two reasons. First, it gives a more accurate prediction of the
observed shear instability (C44 = 0) in NaCl. Second, and more important,
the Lagrangian formulation is consistent with the Mie-Grlineisen treat-
ment of the vibrational energy. This point is discussed further in
section 3-2. The distinction between Eulerian and Lagrangian strains

is not important in the interatomic potential approach because the elastic
constants are derived in closed form. They are defined by comparing
the long-wave limit of the lattice vibrational equation with the continuum
equation of motion for plane wave propagation in the initial (stressed)
state. In this case, since we are dealing with small displacements from
the initial state Ux = x« - Xx , the displacement gradient U“B =

o Uy / axp is the natural measure of the strain as required by the
Lagrangian. Also, it is most convenient to reference the atomistic

expressions to the initial (equilibrium) state.

Elastic Constants

Limiting the discussion to Lagrangian strains, the following

definitions are made :
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1 - /) Mg
3 2t ~ F IE
Ciet = (370 T\
¥ . s F
thl-’-’-(g—t—‘)‘ (*"‘"’7)
I % cl)zm T /° Mt aﬂk‘)
where E = internal energy per unit mass
F = Helmholtz free energy per unit mass
S = entropy
T = temperature _

All derivatives are evaluated in the natural state.

(3-1-3)

The tij were named the thermodynamic tensions by Truesdel

and Toupin (1960). They are introduced to remove the complications

arising from the fact that the strains are usually referenced to the

natural state while the stress is usually defined per unit area of the

deformed body. By definition they are the conjugate variables to % //'5;

ives, tijd’}z 3 is the differential of work per unit of original volume done

by stretching the body. The expansion for E and F are therefore:
- o~ 5
P E("Z.Lé',s) = P E(0,3) + t}’z’) +%z, Ciyra ?ZU T+ .

BFOGT)= B FOT) £+ Jo Cops Ty o *

(3-1-4)

In the lattice calculation it will be shown that it is more convenient

to reference the strain to the initial state.

strains:

Working again with Lagrangian
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U = x;, -X; Fiy= 3x./3%,

Uy = oUi /9% (3-1-5)
Sy = ( (R =84) = Y2 (U Ug + UnUsy) )

"“zﬁ(af/as )y = B (3F/354), R

Gl = (i}jﬂ; P (;QQS;EQS;')S S
CEm:—(ggi)T' F’(é%ff%)r

In these expressions all derivatives are evaluated in the initial

state. Expansions for E and F about the initial state have the form
- — — -
PE(S4,S)= PEOS « TySy+ hCimSudu
(3-1-7)
pF 535) = AF(O,T)+ &)S‘J G B ® ...

The elastic constants Cijkl and Cijkl are called the thermodynamic

elastic constants.

The energy density may also be expanded in powers of the dis-

placement gradients Ui x

/‘3 E(X,V,,95) - /55(1,0,5) +SyUy + 2 S Ul * ... (3-1-8)
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Since this was the expansion originally used by Huang (1949), Wallace

(1967) has named Sij 1 the Huang coefficients. By casting the

k
Lagrangian expansion (3-1-7) in terms of the displacement gradients and
identifying terms, one gets the following relation between the Huang
coefficients and the thermodynamic elastic constants (see Appendix 1 ).
S 5 —
S5=Ch =T
(3-1-9)
s — s
Sajkl. = _Gl b, ¥ C“N
The definition of the elastic constants as the second derivatives of

the energy density has led to three sets of elastic constants c.. C

ijkl” “ijkl

and S, . each corresponding to a different reference state or mcasure
i

jk1’

of the strain.

Consider now those constants which relate the stress to the strain.
If the stress tensor in the present state is expanded in terms of the dis-

placement gradients U one can define a set of elastic constants

kl’

Aqu = ( .}Ta-)/,)U,,.,)x (3-1-10)
The associated Taylor series is:
Ty = T+ Aget Un | (3-1-11)

The tensor Ukl may be decomposed into symmetric and antisymmetric

parts
Uu_""' en, + Wk

Cer= % (Upg +Uni) (3-1-12)

Wk = %(Uu-Uih) )
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Note that ¢, is the infinitesimal of Skl defined in equation (3-1-5). A
new set of constants may be defined as the tensor elements relating
stress in the present state to these infinitesimal strains. Wallace (1967)

has named these the Birch coefficients defined as:
This is just the differential form of Hooke's Law. The associated Taylor
series expansion for the stress is

5 (3-1-13)
—ES= Ty + Bigkr € + (ITy/ 000 Wy + )

The Birch coefficients are related to the thermodynamic elastic

constants (proof given in Appendix 1 ) as

. . _ _ . (3-1-14)
Bire = Yo ( Tiw S50+ Tig S+ T Sie + Ty S 2T S ) + Cie
Elastic Waves in a Prestressed Crystal
We have now defined five different elastic constants c.,, ., C.., .,
ijkl ijkl
Sijkl’ Aijkl’ Bijkl’ each corresponding to a specific reference state and

strain measure. The question now is which, if any, of these elastic
constants defines the propagation velocity of infinitesimal elastic waves
in the initial (strained) state? It is these ''effective elastic constants'
which we ultimately wish to compute for the case of a finite hydrostatic

prestress.

Following Huang (1950, Appendix 6) we form the Lagrangian

density for the displacement field Ui(xj)‘
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;_(X-L,U;,Uis) = 72/5 Ifjll- E (3-1-15)

Using the expansion in terms of the displacement gradients (3-1-8) for the

potential energy density gives
L= REIUIM + 3E(F,0,8) —Z 839 _ 1 T Sy Ui _ (3-1-16)
) 2X; ijel a%; AFy | .

By the usual variational technique (i.e., see Moiseiwitsch, 1966,

Chapter 3), the Euler field equations are obtained in the form

2 _ 3 o >z _ ad(aat\ =0 Gieg® B
AU, =A%y QU /X)) At \ 9T

Which, upon differentiating (3-1-16), become

5U; = 2 2 § S5+ Vo Z ( Sgwt + Sueyy) 2
fes ‘?sti 3 /z'u( 3 "‘J) X,
In order that the strain energy function existg, we must have (see, i.e.,

Love (1944), $66) Sijk1 = Siyzj- Upon differentiating , we aet

_62.’: Z Z S.‘,-hl QU isi2a (3-1-18)
F *‘(5‘ ’ axsaxl) :

For a plane elastic wave

i y X - twt

U= T e (3-1-19)

equations (3-1-18) become

s e - 5 3-1-20
/ow" uy ™ 4—’\‘(“% % Sasu. Ys y,} Wp L=hZ2 3 ( )
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Hence it is the Huang coefficients which are the effective elastic
constants. The sum over j and § means that it is only the symmetric
combination (Sijkl + Silkj) which is observed in experiments. Note that
the wave equation (3-1-20) has exactly the form of a wave equation in an
unstressed medium; the only difference being that the Sijkl are, in
general, of lower symmetry than the corresponding elastic constants in
a stress-free medium. By requiring rotational invariance, Huang (1950)
derived the following symmetry relations for the elastic constants in a

prestressed medium.

S;_" = S.’)"

(3-1-21)
Sip Sjk — Sj¢ Sik +Syer +Sjike = O

Note that in a stress-free medium, Sij = 0 and equation (3-1-21) gives
the familiar symmetry relation Sijkl =

Siin

Hydrostatic Prestress

The various elastic constants and their interrelationships have

been defined above for the case of an arbitrary finite prestress Ti' - Si"

In the application to the earth's interior, it is generally assumed that :
the pressure is hydrostatic.

__LJ- = -PSy (3-1-22)
In this case the symmetry relations (3-1-21) become
P(5520ik =St Sk ) + Sykt — Sjig = O (3-1-23)

and we see that even in the case of hydrostatic pressure the Sijkl lack
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the familiar symmetry. However, if we define new elastic constants

Bijxe  such that

Bire = PSS SiaSx) + Syme (3-1-24)

where it is easily seen that

Aljhl +/6J-lkj = Sa'.jh,{ * S“'hj (3-1-25)

then the éijkl can replace the Sijkl in the equation of motion (3-1-20) the
two are therefore equivalent. However, by using equation (3-1-24) in the
symmetry relations (3-1-21), we see that for the case of a hydrostatic

prestrain

Bigra = Bins (3-1-26)
and the )5 ikl therefore have the full symmetry of the elastic constants.

We henceforth call Xijkl the effective elastic constants.

By using equation (3-1-9), the effective elastic constants may

be related to the thermodynamic elastic constants.

"5"3“- = S"iskl" St Sjk_ S_',!.S'-k) + CL_‘,hl. (3-1-27)

Further, by specializing equation (3-1-14) to the case of hydrostatic

prestress and comparing with (3-1-27), it is easily seen that

3-1-28
Biyxr = Dy . ( )
As mentioned in the introduction, most of the relations given in

this section have previously been given by Thurston (1964, 1965) and

Wallace (1965, 1967). To facilitate comparison with their work,
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Table 3-1-1 compares the notation used here with the notation in their

papers.

Having established notation and defined the various elastic con-
stants, the next section reviews the various methods of actually cal-
culating and extrapolating the effective elastic constants for compariscn

with the seismic profiles.

3-2. Calculation of the Elastic Constants -- Finite Strain

and Interatomic Potential Models

It was shown in the previous section that the effective elastic con-
stants may be calculated as the second derivatives of the free-energy
density with respect to the strains. An expression for the free energy is
now required such that it can be appropriately differentiated. This is
usually handled in one of two ways.

(a) The free energy may be expanded as a Taylor series in the
strains, the coefficients evaluated from the measured elastic
constants and their pressure and temperature derivatives at
the '"natural''zero pressure state.

(b) The free energy may be expressed as the sum of atomic inter-
actions of assumed functional form. Parameters in the poten-
tial are fixed by data in the natural state. The elastic constants
may be computed either by direct differentiation (method of
homogeneous static deformation) or by a direct comparison
between the long-wave limit of the lattice vibration equation

and the continuum wave equation (3-1-20) (method of long waves).
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We will call (a) the finite strain approach and (b) the interatomic poten-

tial approach.

The Finite Strain Approach

The formulation presented here was first given by Leibfried and
Ludwig (1961) and has more recently been applied by Thomsen (1970a, b)
to the sodium chloride data. Since the approach will only be sketched
here, the reader is referred to these works for a more detailed

development.

The free energy is written
F= Qo+ (3=2=1)

where CPG is the potential energy of the static lattice and Fs is the

vibrational energy.

“thw; /kT
_ AT _ s (3-2-2)
R ?[ hi + kT (1 - € )|

In this approach the potential energy of the static lattice is

expanded to fourth-order in the Lagrangian strain /g
G, = G 1o T Z Tpa Mymy +
)

~ ~ —2-
* I/SEV Z C"JMM 'Qij Ku'ﬂm\ + & 3)
AN

| Y E‘: i3
+ AI V “Z% “umﬁ"t)nunmmn +
The super-tilde denotes evaluation in the fixed reference state; this

reference state is chosen such that d), is 2 minimum.
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The thermal energy Ky is expanded to second-order in the

strains

R(1T)=Fs(0;T)+ z( ) Wi+ Ve 2, Ma“u) g+ ... (3729)
J i

Applying the Grtineisen approximation that the strain derivatives of all

frequencies are the same,allows equation (3-2-4) to be written

UlT) (T) * USZ 1'_\ ’Yl“ (3'2-5)

+ s ;Z;_; [“7\13&;05 ¥ E;iu(US’T Ev)] Wis M + .

where
T g e o
- (25, -
A= Vo (Lm0 LY (3-2-7)
J%LJ;?{,&L e '))Zkl. ~s
5 |
Us = Z #w (Ve + ;m’T) (3-2-8)

2- ‘F\VT 2' Jﬁvk-r
N (e AT PR (3-2-9)

Com = k(B

Substituting equations (3-2-3) and (3-2-4) into (3-2-1), the free energy is

given (in Voigt notation) by:
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FILT) = FOT) +V Z /e Cpfltp +

P

" '\7‘5;L /31 kanmp'q/‘ e (3-2-10)

o VA/ﬁZ/‘v \/41. CK/@MV 47,( %/5 ”[/(47))
= UM 2 haa +

A~

t 3[R Us M+ Y LU -TC ) o, + .
£ 2[ Ay ’ [ 1M+ ...

Equation (3-1-27) defines the effective elastic constants under

hydrostatic prestrain as

ﬁiﬂ*‘"": Cijkm+ P( S‘l_')gkm "’Sim SJ\\ - SiK S‘,m) i (3'2'11)

Changing the coordinate system from the initial to the natural so that the

free-energy expansion (3-2-10) may be used

éi}km"' —_%-' 'S:ir iC Cﬁ{ugthgum + 'P(S;SS,M —-gimg“)k

(3-2-12)
— Sk S;)m)

RET).
Cestu = QAYlrs dNtw
Thomsen (1970t has evaluated this expression for a cubic crystal.

He gives (in Voigt notation) for hydrostatic stress:
/3 ~ 54 i =~ -
)54/6 (V,T) == (%_/—-) { Qq',g + N ;Q;?a/u_*” y&%% C.(/,/a,v
~ ~ ~ ~ ‘5 B
_ U514ﬁ+742‘p(us‘TCv)§’ pgt (3-2-13)
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) kL
where gx =¢ = gi) Spy * g,sguﬁ i gns

1- /z.l -]

He changes from isothermal to adiabatic constants using the relation

& -8y = TE AL

(3-2-14)

The expressions for the adiabatic constants are given by Thomsen as:

B (Y= ()" § By - 3R s 28R Ao

#%g[x“-T‘&gqg-

The pressure is given by'

Py = - 3R ( iﬂ AN IS VIV

;‘K[ (T OTg}

The constants are defined as

| - 4
r;‘pz_s'ﬁz’&%“‘ M T;Fr;;d
_ | S 2 0
Ausg" “91;\%}80}9/(\) A= 7 a% /\pys _

These constants are evaluated from data near T =

(3-2-15)

(3-2-16)

(3-2-17)

Toe P =0,

~

Thomsen gives six simultaneous equations for the unknowns V. K, 3.,

", A in terms of six experimental quantities Vo' K:, X o’

(aKs/ aT)P:O' ( OK®/ BP)T s | aZKB/ BPZ)TO . An additional four
o
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~
simultaneous equations give the unknowns )8*, )\% ; [7,(/3 : /\D(IG in
s, a
terms of the measured quantities )8,(/6 s I 9/6.(/5 / T)on - 8)3,:/6 /o P),I.o ;
2 2
and (0 ,5,,, /o P )To .

In the finite strain approach as outlined above, all the relevant
data is used to determine the coefficients in the Taylor series expan-
sion of the free energy and to determine the Grtlneisen parameters. The
crucial question in using this approach to extrapolate elastic constants is
how rapidly does the above expansion converge? Questions such as how

3
1 is M2 D lative to the other t i atio
arge is /3! 77, a(/g/uyg relative to the other terms in equation

(3-2-13) must be faced.

In a geophysical context, this theory provides the most straight-
forward means of extrapolating the elastic constants and density for those
materials for which the 16+ pieces of data discussed above are available,
and is thus limited to discussions of the upper mantle. For those
materials in the transition region (400-700 km) and below, it has not
been experimentally possible to measure the elastic properties required
for such a finite strain approach. For these transition region and lower-
mantle minerals, a theory with some ability to make predictions is
required — the atomistic approach based upon two-body interatomic
potentials is such a theory. By replacing the input data required by the
finite strain approach with a physically-motivated interatomic potential,
the elastic properties of the lower mantle oxides and silicates may be

discussed.
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Atomistic Approach Based on Two-Body Interatomic Potentials

Instead of expanding the free energy as a Taylor series in the
strains, it may be written as the sum of interactions between the atoms.
If the functional form of the two-body potential between each pair of atoms
in the solid is known, the free energy may be expressed in closed form.
Thus the convergence problem facing the finite strain approach does not
arise; it is replaced by the problem that the functional form of the inter-

atomic potential is poorly known.

The problem of formulating a physically reasonable potential
with the minimum number of empirical parameters will be deferred to
the next chapter. In the remainder of this chapter the method of long
waves will be reviewed in considerable detail as it yields expressions
for the volume dependence of the effective elastic constants in terms

of the interatomic potentials.

3-3. The Method of Long Waves

In the method of long waves one uses a perturbation expansion to
solve the vibration equation of the lattice in the limit of long wavelengths.
The elastic constants are then identified by comparing the resultant
vibration equations with wave equations of macroscopic elasticity theory
(3-1-20). The method was first developed by Born (1923) and Begbie and
Born (1947). Although in their formulation the method is not applicable
to ionic crystals, since they are,in general,piezoelectric, Huang (1949)
used Ewald's theta-function transformation to separate out the macro-

scopic electric field associated with the elastic wave,and was thus able
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to formulate the method of long waves in convergent form for ionic

solids.

In this section Huang's formulation (also given in Born and Huang,
1962) will be developed. There is no original work except for the exten-
sion to the case of hydrostatic prestress, which turns out to be trivial.
The objective is rather to lay the theoretical framework for the geo-

physical applications to follow.

Since this development so closely parallels that given in Born
and Huang, it is convenient to change to their notation, thus saving the
reader the rather bothersome task of effecting the change. We shall
drop the distinction between natural and initial states; henceforth all
coordinates will be referenced to the initial state and, following Born
and Huang, the coordinates in this state will be donated by x;rather
than Xi. Further, u will be used to denote displacements from the initial
state rather than U,and a, will now be used to denote the lattice basis
vectors. It should be emphasized that the initial state is an equilibrium
state but not necessarily a stress-free state, and that the assumption

that it be stress-free will not be made in the following development.

Following the notation in Born and Huang (1962) let:

e 15 1P

lattice cell index

n = number of particles in basis
k(0...n-1) = base index

2, 2, 23 = lattice basis vectors

,tll, _b_z, ’13'3 = basis vectors of reciprocal lattice

my = mass of particle k in the basis
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va = wvolume of the lattice cell

() = x(R) + x(k)

lattice point occupied by particle (k)
in the initial state

lattice vector

20) = L'z + L8, + La,

|
vector connecting particle (&,) to

g’y _ :
z(kk') - ﬁ) = (ﬁ') particle ({é )

u( }’t) = small displacement vector of (f{)
@ = lattice energy of entire lattice to be
normalized later (see B ¢ H, p.219),

Expanding the lattice energy in terms of ion displacements from

the initial state

@ Z @ ( Ux.& + Z. Z. @o(/d kh' u‘(&)uﬁ(ﬁ) +

2 e h g S

ik - 57 ®v‘/53( kk'“)ui(h)uﬁ JUglie) +
299"

kk'k”
The coefficients are given by

k)= ( ‘;@,) = O,

& L/Ld{k) o

D)= ( o) = B ) =5

TN 33@ B (SU B
@ufs'f iiﬁ“) - (;uo((&)‘)(’sd(g')JUI ’E.')) - @d/ﬂ’(#k‘ L ) )

The coefficients are written on the right-hand side in a notation which

explicitly shows that the linear term is independent of L , the quadratic
term depends only on the relative coordinates L-1' of the two particles,

and so on.
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Under the assumption that every particle is in its equilibrium
position (which is distinct from the assumption that the configuration
corresponds to vanishing stresses), the linear coefficients @M(k). are

equal to zero. The potential energy of the system is then, to second-

order, @= Yz < @cxp( uu)u, (k.) u}s(k' . The kinetic energy
#
is s %% éﬂ’nk[\u,( k)] where the dot indicates a time

derivative. The Lagrangian for the system is

. “ |
Is T"V = Va%‘l/mki:uot(i)] ‘—'yZ iﬂ @0(/6 kk_' (L)ufﬂ(i‘)

and Lagrange's equations of motion are

i( 3L )_ > - O A=1,1,3
&Um(i) Jua((i)

which for the crystal are

i, (R) + Z D, (M) u/j(ﬁ:) = £ £=1,2,3,... (3-3-3)
& /6 ok=1,23
k=0n-1

Assume a plane wave solution to be a Bloch function of the form

" :mL;pz_(-'.) —lwt
Uyl k) = r—,\z\/(lel He (3-3-4)
where y is an arbitrary wave number vector and j =0,..., 3 n-1 indexes

the 3n solutions for a given y. For this assumed solution the equations

of motion become
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-7 -1(%{;&:)
—wlwd(k-) = @d/@ ) L e * \m//efk')

Lk/s Tm Mg My

—ri ¥ (A tR) =% (R)

{3=3=5)

-2“&_}’. (2‘:“ X“))
= ZW(‘Q)@
/5

cr Wmne M

@dﬂ l: k! )

which can be written in the form

w* Wy(k)=Z C.,(f;(w) Wy (k') k=0, m- X=1,2,3 (3-3-6)
16
where
_orA v L Xtey-% (Y] 4t 1m¥ % (¢)
Cafs(w)- c ! @# (3=3=T)
VM e

Note that the original infinite number of equations of motion (3-3-3) have
been reduced to the 3n equations (3-3-6). This was possible because
éwp(hh‘ does not depend on both £ and X', but only on the relative
index A-4' . Hence in equation (3-3-7) it has been assumed, without

loss of generality, that A= 0.

Following Huang (1949), let

B = L1 (54 B (35,

The second term is due solely to the coulombic interactions while the
first term includes the rest. This separation allows the C“/&(ﬁ') to

be separated into its coulombic and non-coulombic parts:

—ani y - X () C o g pull xvl&
Qip(‘i')z &Fﬂ % @a(/a (kw) c a .
/mp/mb.’

(3-3-9)
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The lattice vibration equation (3-3-6) becomes

w? W, (Rl %)=%C:P(il) Walk'1Y) + (50

+“'— Z @dﬂ(u) W,s(ki*) +

—2n1¥-£(“) , mi}-zi’;)
e Wy ('] ¥
+€dfm)< Z%‘ ®/ ( )W P(k\‘))e

Note that the terms giving the coulombic restoring force on a particle
due to its own displacement have been written separately in the second
term. The prime on the summation in the third term indicates that the
X =0, k = k' term has been omitted. This third term gives the cou-
lombic force on particle (g) due to the displacements u(&l,) of all the

other ions.

Written explicitly, the coulombic contribution to @ is

@(\_ _ ya Z 5 Cr o (3~-3-=11)
e | X0sum -x@E)-ud]
Uk
For the case A # 0, k # k' direct differentiation gives
@C (ﬁlw) e e“e"'i Eh —'———z (3-3-12)
4 Ded¥a TX1 ) x=x (he)

For the case £ = 0, k = k', the coulombic field change experienced by

ion k due to its displacement ‘1_,{_(2) can be expressed as the change in the
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coulombic field at (g) due to a displacement -U(g) of all the other ions

in the lattice.

0 & g (3-3-13)
@o(p(hk) R g €4 i‘ax«axp 1X) % ()

Substituting equations (3-3-12) and (3-3-13) into the lattice vibration

equation (3-3-10) gives:

L N x— 1
wz(gnw.‘mg‘)—écﬁe(w\\,{d(k\f) *

+ €y ZW : Z __"'_-._{ 2 ‘ } T
=k P (3-3-14)
Tm, P RV, (X% | (- X] s

"'Z“L 7(11) I 2T _?\_(::i
— Cae t ZZ Er %(h'\¥) ¥ iﬁi :
e e Lk W: QX4 ¥ X ¥

A straightforward application of the method of long waves is not

possible at this point because certain terms in the wave-number expan-
sion are divergent. The physical problem is that ionic crystals are in
general piezoelectric; one must specify both the strain and the macro-
scopic electric field before one has completely specified the forces
acting on the particles. Huang (1949) resolved this problem by reco.g-
nizing the analogy between (3-3-14) and the electric field in a dipole
lattice, and then using Ewald's theta-function transformation to separate

the macroscopic electric field from the effective coulombic field.
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Analogy Between Vibration Equation and the Electric Field in a
Dipole Lattice

It is interesting at this point to note that the second two terms in
equation (3-3-14) have the exact form of the electric field in a dipole
lattice. The field at a point x due to a dipole p() at x({) is given by

(far-field approximation)

£00= vV =V [P0 V(g ] (3-3-15)

in component form

Ex(X)= Z Py(p) 22 _ % | (3-3-16)
= P ad%e L X-x { |
In a Bravais lattice of such dipoles
pw = Tt (3-3-17)

the field at x is given by

awLy - X
£ (x)= Z Pg, D 'Z e (3-3-18)
axﬂb)(p | x(8)-x\

Returning to equation (3-3-14), we see that the last term is just the

Field at E(ﬁ) created by the displacements

amiy % ()

Uy i) = 'J_:: W, (k1Y) € (3-3-19)

Mk| ﬂ
which is seen, by comparison with (3-3-18), to be equivalent to the field

at x (k) due to a lattice of dipoles

¢y ; S L) 3-3-20
(k) = SR Wo(k|T) ( )
Pe =R
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when the dipole at x(k) is excluded. Ewald (1921) called this the
""exciting field'. The second term in equation (3-3-14) is the exciting
field at (1.(:) due to displacements E-(LS') = -E(E), which is equivalent to
the exciting field in a lattice of dipoles
oolh) - S WalkiY). (3-3-21)
Tmye
Hence, as pointed out by Huang (1949) and Born and Huang (1962), the

key to the solution of the vibration equation (3-3-14) is the formulation

of the exciting field in the dipole lattice.

Ewald's Theta-Function Transformation

The use of Ewald's theta-function transformation in equation
(3-3-14) accomplishes two purposes. First, it allows a separation
from the vibration equation of a term corresponding to the macroscopic
electric field. Second, it allows the coulombic sums to be written in

more quickly convergent form.

Using the integral representation of 1/{x(%) - x|

o~ -x1"p
j _ g_& e cQ./o (3-3-22)

in equation (3-3-18) we obtain

Zg) - X0 + 2WAy - [KO-X) ) ~ICyeX
E.o((x\— Z Pﬁ gx.‘axﬂg { Ze s }8 cQﬂ(fi—E-Z?w)
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Since the expression in the curly brackets is a periodic function of x

with the periodicity of the lattice, it may be represented by a Fourier

series with components

-lxm X120t + 2Ly (¥)-X)
a(hhhy) = g e P ATy J) :

cent (3-3-24)

2™0 ylhy - X
w = & x

-~ ¢

Interchange summation and integration; let x' = x - x() be the integra-

tion variable for a given L.

—1x gt —2wi (yay) - X
2315 fax

%(Hh h;) = T

c..u (3-3-25)
_2mi }Uﬂ')j(l-)

2 & .
Since the sum is equivalent to an integration over all space and since

e-ZﬁiX-(h) ¢ x(%) =1 we have

__lx‘ﬁ ..ZT\'L(¥U’\)+¥) X
_ 2
YLz \|T S%.ﬁ{v i i (3-3-26)
2x 1 ‘T‘L b L +¥l
P

The Fourier expansion of the curly bracket in (3-3-23) can thus be

written explicitly as
“1R0Y X1t 421 L Y- ( XY - X) z_“g_¥_“'\)
2 T = 3 q(hhinE -
T £

(3-3-27)
~I0 gty | F 424 (k)X

=ZTFZ-—-—

This is known as the theta—functmn transformation. Since the left-hand

side is rapidly convergent for large values of P while the right-hand
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side is rapidly convergent for small p » by dividing the integral in
(3-3-23) into two parts and using the appropriate side of (3-3-27) in

each we get

. -lﬂl\—ﬁ],o +21T'A-¥ ( X () - X)

€00 = 2
o Z P Q)&Q)‘,% W%Sg CQ/D (3-3-28)
R -ﬂ‘/f,z\#h\«&;lz-\- 211'}.()/_(9\\ +¥_)._Z(-
+ B ZS =y 12 Q }
Ya 70 /0 .

To simplify notation let

-% o0 x&

Gx=2 , Hm-= _z__l,& e Aax (3-3-29)
* Ir X

The second term may be integrated directly, and the h = 0 term written

separately to give

TR -2y

Eulx) = 7 Py 2 i __e N

2L Y- X(0)
+ R ; H{rRIx)-xN e + (3-3-30)

211'\(#_("‘\"'#) X
Z T lyw+y|*/ ) e §

V-. R"

Carrying out the differentiation gives:
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/R ¥ ALY X

€0 = %?ﬁ{- %% e 4

21T L E X(L)

& RJ%_HD(IB(R\EUJ—}_D uh (3-3-31)

_ 4 Z’()/-:(h\)*)’ac)( Yplh) +Yp) G Iy(ey +y|*/RF) *

Ve 1 2Ny Ay X
o
where
r &
Hdp(}j = _9  H(w) (3-3-32)
JX&DXA N
The next step is the key to the treatment of ionic lattices -~ the

separation of the macroscopic electrostatic field. For the lattice of
dipoles under consideration, the macroscopic polarization (dipole

moment per unit volume) is (in the limit of small y)

20k Y+ X
Pw=-p e s (3-3-33)
V& -
The corresponding macroscopic electric field can be found using
V- (EX)+ 4 P)) =0
to be X
PARYAD 3
Eix)= ke
where (3-3-34)
Eer —AT (Ye( p) HE
Vo \ 1Y ] .

(See Born and Huang (1962) p. 249.)
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Note that part of the first term in equation (3-3-31) can be

identified as the macroscopic field if the term is rewritten as follows

—_Tr !g a'rri_y-_z
Z Ps 2 j_}{e_ e N E - (3-3-385)
Ve Oyt
21(& ¥

%\y\(%)e ) +mz %{"’

Thus the coulombic field in the dipole lattice can be written in a form

/R iy
g e

which explicitly contains the macroscopic field

Z 4-“»' )(' /R-z 1"( x X
X = X -+ K ‘

My
2Tl =X W)
+ R Z HU?A(R\XU!) * e,“ 7 _ (3-3-36)
C(ymty)eX
- Z (g Gty 7)€Y
;zzvq - )

Note that for small y, the leading term in (3-3-31) goes as ydyB/ l¥| .
and has no unique limit. After the separation of the macroscopic field,

-T2 1ylY/R>

this term becomes (y YB/ Iyl 2) (l-e ), the leading term of

which goes as y Vg as y—0. In the case of a composite lattice
EI
P(M P(h‘) €.
zTn.;L X
Fh [ -2 )( 7 D) J
Va\ |yl "%

and equation (3-3-36) becomee:

t#x‘.(h‘

(3-3-37)
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wlw\/ﬂl ATy X
&,,(1)=Eu+%75pﬁmie§ﬁ¥¢{ ]

oy x(
ZH‘P(me -%1) e iy 1K)

(3-3-38)

2T A

_a e Z(ym»«yﬂ(ypwx;aemlu(mw /e?) -

Va ?2' Z_T”¥U,\\ (%~ Y(\l))
o

In order to solve the vibration equation (3-3-14), we must evalu-
ate the exciting field at a lattice point: i.e., we must evaluate 5,,((5) at
a lattice site with the dipole at that site removed. The field due to the

dipole at (g) is

2L Y- X R)
2, Ppcxe)e ¥ 2> | (3-3-39)

Mad%s | %R - X

Subtracting this from the L= 0, k = k' contribution to the second term

of equation (3-3-38) (see also equation (3-3-30)) gives

2L ¥ X ()

% Dalk) &

2 %RH(RHM %)) -

i (3-3-40)
) FRY %

Ix&hzx\

Using the integral representation (3-3-22) for 1/|x(k) - x|, this may be

written:

k) RIX(e)~ %)
Z Pb(h CzTH#—?E( N g -1 }_8 -XLCQ_)(E (5= 3=4 1)
Qhadkp (| xik)-x| VAT )
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Defining

5 I
H o= :_2;_8 e d&x (3-3-42)
N g

the effect of subtracting the contribution of the dipole at (g) is the re-
placement of Hotﬁ (x) with H(;(ﬁ (x) in the L =0, k = k' term of equation
(3-3-38). Following Born and Huang (1962) we write this exciting field

at () in the form

¥ () 2y X ()
€, (XU = E, o VS +e,ﬂ Y X % pr(lk')@s(m (3-3-43)

where

_11"" YR?
de(i‘k)- ,\_/E)/_#a_[ L RJ +

. 9
%7 My (R ()) €Y

(3-3-44)
e 2 (YR GO gy
'Rz Vo.
2miy(R) - (%)~ X(RY)
ol

In the second term H?J(ﬁ has to be substituted for Holp for the term

£=0, k =k'. Equations (3-3-43) and (3-3-44) are valid for all vaules

of y; however, only for y small does the Ey term have its macroscopic

significance.

Hence, we now have the required expression for the '"exciting

field'" in a dipole lattice which can be used to solve the vibrational
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equation@-}H). Upon using equation (3-3-43) in equation (3-3-14) one gets

A welkt ) = Eﬁc;(il)wf(h'\g) +

Z S )W tet}) — € By —  (3-3-45)
TR e ST T
e:ei'—‘ 4" ny
= ) Wa (X'
k',dm' Qd/ﬁ(\d&) /el J)
where (3-3-46)
Ex= — 4T (Y« S’ Wa (£'1Y
- - HEFENZ T e
If this equation is written in the form
3 !
w* () Wa (k1Y) = {%C?(uw) W (&' 1¥) (3-3-47)
we can identify
Qqﬁ (é')‘-‘ C;a(\i') * 4-_\‘;[ ( !-( zé;.) CrCy
Y e
S&'ekzek"Qﬁ@(*h“ — CeCul Q"P(hh’) (3-3-48)
mk ku

My Mgt

In the method of long-waves Ca(@(li') is expanded in powers of y.

However, because of the (y, yﬁ/ y 2-) in the second term, the zero-order
term in the expansion cannot be assumed to be independent of y. We

therefore leave this term explicitly in the wave equation, redefining

E&p(:’il) as:
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lea(w) Cx/a(\zh') 5”:: CEr Ze—k“de('m T Crlye! Q (kk*) (3-3-49)

Mye Mg/

The vibration equation (3-3-45) becomes:

W) ek ¥) = ZC?(\Z’Q)W/,(M\BL)—%EP( (3-3-50)

Long Wave Expansion

In equation (3-3-49), replace y with €y and expand with respect

to € to get

Edp(‘i')‘ E%& (k') + LGZ Ca}@?(kk’) Yy + € ZC,(Fu(u.) (3-3-51)

. y-, YA X500
where the coefficients are given by
0 '2’ 2*Cy )
k') = ==
Qa/sv( ) QEW) ’ a/sm (o)G)ngGy; -

Differentiation of (3-3-49) and (3-3-44) gives the expansion coefficients

6%‘2(1&'3 z@ (&) + Sh.en iR‘ZCu H.,,F(RX(; W) —
P L
2m ¥cm(xm x(&"))
LY (R G (| y (W) /R
_%}r\_/ Z"_,e-kz)/( YR Gy i/ (3-3-52)

—evlnw 1R Z Hua(RX(E)) — 472 T'\0m Yol GO Y /RY -

-W_"W i X F U-) 'Rl\h.zh—y YP ¥
216 ) (X 00 =X 0e)) g
&
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gty = 22T 7 D) xyld) —
¥k
T e T
_ 2ree R H Rx(E) X5 () —
T 3] 3
_ amiiecen Z' i( w (W) Sar +Ya () Sar) Gt |y [/RY) +
4 /a aﬂ) |y | /RY)
® Vﬂ.‘m’\\‘mk: h \/ 7, y-
2Ty Y Y G (/R -
iy tn) - DOy — X(R'Y]
e
Clagpn (Jee) = =4 Xy (i) Yo (i) =
AN 4 Z@ (i) Xy i) X
— 4T3 Epey (S,;Sp>\+SaAS,47) +
R¥No /My My
+ 4T R e Z H,,(P(R}(:b) Xy (ék) XA(I}?—) * (3-3-54)

/m/.,_ IYY\*_‘ A

+ APexow (Sux S + Sun Sar) GO YOOI*/RZ) +
R*Va My My Zh: i

% %“ Y<(RYalh) Yy (R) Yalh) G "(art l)L(h)l"/ £3) #
4 %1; iy“‘(hWPM S+ Yot Yy (W) Sph + Y (M) Ya (M) S5 +

T YD YR e + Yp (YA Sarf Gl Tyl /R -

2‘"’(10‘\\ o ( X()— X(K‘))
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Note that the second order coefficient E;E&A (kk') given by (3-3-54)

does not agree with the corresponding equation (31.23) in Born and

Huang (1962). The difference is that Born and Huang's coefficient con-

tains an extra factor of the form vy (h) yy (h) gdﬁ in the G' term which

should not be there.

The following properties of the expansion coefficients will be

useful in solving the vibrational equations. They are proved in Born

and Huang (1962) §26,
—=(0) —= (o)
o o,e(k‘*') = Cou (k)
up,(kwp -C,m(wm
Cm ; CLZ) : \
A(hk)‘: ‘,(PA_]’ Udz\ o Cﬁxjf}\(kh)
=) .
%Tﬁ' g (kR = 21’"" F‘*“‘m o}

ZF‘ - Cfo;;,(w %Jﬁ ‘Cﬁ}}ﬁ(m

Z Ay Cd/eb(k\e') =

kk'

To solve the vibrational equation (3-3-50), expand w(};-),

W, (kl-jx), and E in terms of € y.

(3-3-55)

(3-3-56)

(3-3-57)

(3-3-58)

(3-3-59)

(3-3-60)

(3-3-61)
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W (B159) = Wi let?) + ke Wi et 1)+ 1o €2 WGt ) + (3-3-62)
Ey= ED +icEL - e ELx ... (3-3-63)

Substituting these expansions into the vibration equation (3-3-50) and

collecting terms of equal order in € gives the following perturbation

equations
Z FO@ iy O iy ©
' m)wp (nlj) = Cp EoL (3-3-64)
k3 Vg

Z( (hlz')\fs/m(}e'l = "Z (kk‘ 1\'4 )(h']*) * A E ) (3-3-65)
’5 Y P

Z Capeed W 01} = *'Z”C#m(my,y, WO+ (3-3-66)

) Yy 4 (2) 0¥ ©) ¥
+ZE;ICW(&E )&Wp(!l) %E +Z[Lu ( )}W (Hd).

The Zero-Order Equation

The zero-order equation (3-3-64) has non-trivial solutions of the
form W(O’(}al] ¥) =-~J,mk. uﬁ(;‘») where L (j) is an arbitrary
vector in space. That this is indeed a solution follows from equation

(3-3-58) together with the observation that (because the unit cell is
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electrically neutral)

(o) ; = o
= -4 m kAL uf”m]%e“' - o

The First-Order Egquation

Substituting the zero-order solution into the first-order equation

(3-3-65) gives

Z C (lek % Je“ -2 1m C (RRIV, Ugly) + € EY) (3-3-68)
¥ ! L
/5 kBT o8 /1YY "f—ﬂm’k )
Even though E&l) contains WES )(k'f% ), it is considered independent.

Hence, the left-hand side is considered the homogeneous part of the

system of equations; the right-hand side is the inhomogeneous part.
According to the theory of linear equations if

W=D

O

and W' is a solution of the system of homogeneous equations C W' = 0,
then the necessary and sufficient condition for the inhomogeneous equa-
tions to be solvable is that the inner product (W', D) = 0. In component
form s
/
m=| *
For equation (3-3-68) this solvability equation becomes (recog-

nizing Vmy WU(}) as a solution of the homogeneous equations)
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()7
%ﬁ,[ %Bf‘“ C,yaa(kk)yfu () + ex_ “J - 0=

Ty

\I

T {Zr_:" Cﬁ@ﬁ(kﬁ'}){gu’@ j) ¥ E Z K— . (3~3~69)

kk!

The first term is zero because of equation (3-3-60); the second term
is zero because the unit cell is electrically neutral; hence the solvability

equation is satisfied.

The first-order equation (3-3-69) may be given a physical inter-

pretation if the displacement due to the zero-order wave

o ATEy-% M EY-X
UL 0= Wy (RIY)E - Wpe T (3-3-70)
\ /M

is described as a homogeneous deformation in a region small compared
to the wavelength of a long wave. This homogeneous deformation may

be described as

/
Xo(r'xoa*%uo}‘g'x/s £ B=123 (3-3-71)

where the deformation parameters are given by
AMi€ yY-%
Ugp= 2 = D [ e # j _
&Y/S axfe

ZTVQ}L pS

(3=3=72)
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The exponential factor is considered a constant within the region under
consideration. Using this result, rewrite the first-order equation

(3-3-68) as follows:

u) -—2m.e¥ X

il ¥ = , ) 3373
ZC%(M\,\/ TILE k%ﬂ on () Ugy ( & e | ( )
+Su gY
m K e
Trigy-X s T
" e e Wiy e c
Vg T
then

—2MLEY-X i —(1)
Z Cpuofil € TR = Z Vi Cogr U ¢

RBY (3-3-75)
5 —2TEY X m
(F2) e v e B

1f we write

(0)

"?B 's/—:q—n:Z@ “’" (3-3-176)

2,; , Z hh.' X;(hlv)

L

equation (3-3-73) may be written
Z Z@ (u-) () = =7 7 Do () Uap Xy () +
L (3-3-77)
Q) ’ZTT‘G X
+ AE e;E s
The first term on the right-hand side is the force on particle k due to the
external strain caused by the zero-order wave. The term on the left-

hand side is the counter-force due to the induced internal strain 'U‘ﬁ(k')-
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We thus see that equation (3-3-77) describes the balance of forces in a
volume element in a state of homogeneous strain (both external and
internal) and subject at the same time to an electric field. Egquations
(3-3-68) are 3n in number (k=0,1,..., n-1:a=1, 2, 3). However,

if these equations are multiplied by Vk and summed over k, both sides
are identically zero. Hence of the n equations for a given X, only

n - 1 are independent. We can thus take the displacement of one of the
base particles to be zero, and measure all other displacements relative
to it. Taking W&_”(Olgﬁ) = 0, we thus reduce (3-3-68) to 3(n-1) equations

in 3(n-1) unknowns.

The formal solution of (3-3-68) is found by operating with the

3IN-3 -1
inverse f( ):—_(Q(o)) defined such that

%B Qf’m'ﬂ(km COem) = S#k" St . (3-3-78)

1f we make P a 3n x 3n matrix by bordering it with zeros
(F‘dﬁ (kk') = 0 if k =0 or if k' = 0) and operate on equation (3-3-68)

we get:

\nlm(hl}f)= *-hZ 5 (hk'){TZT M Cﬂﬂa(h‘k‘)y, Uslp) (3-3-79)
e

+ 2 (ki) e EY
P ﬁ 7

L4
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The Second-Order Equation

Substitution of the zero- and first-order solutions into the second-

order equation (3-3-66) gives:

23 Co () Wa (1Y) = Lo CHT Y W) -

- e 2 e Clgn06)yop Ut —
(3-3-80)

- ZZ C‘W bh‘)y, (k‘k)z Z C,ﬁa(k"k‘”)ﬁ Y Us () +

P ZZ C(l)}(hk)yi (k',k.u) _e_g,_ E/(: N __g ELZ)
Je'/d ey W W .

Recognizing that VM W) is again a solution of the homogeneous
equation, its inner product with the inhomogeneous part gives the

following solubility condition.
& 7
(%”“‘1) [ w“’(}‘)] U ()= 4T %?X { [e8, 2] +(o<2r,/ek)} .
b (3-3-81)

¥ty = a1 Z{Z Lpcadyif £

where

[ABYA] = 811"V ZwJ ' Ca@}t(kh’) (3-3-82)
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(60 = . T 2 7, )| Z, Ty e Vi (3-3-83)

b S

. (%“C w(t’h‘”){"’)

[/50(75]-

21V 5 Z Wf_—' C’dﬂi (kk')(% Eﬁ(h‘)&‘) 9;) (3-3-84)

Symmetry Properties of the Round and Square Brackets

The square brackets are symmetric with respect to the inter-

change of indices within each pair

[467 X]=[ax,5A] = [2,A7] (3-3-85)

as is easily seen from the symmetry of the E(izﬁ)\ (kk') (3-3-57). The

round brackets are symmetric with respect to both interchange within
each pair and with respect to the interchange of the first and second

pairs, as can be seen from equation (3-3-59).

(a(/B BA) = (pa,32) = (a3, NB) = (¥A, %3) (3-3-86)

Hence the round brackets have the full symmetry of the elastic constants

while the square brackets do not.
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Continuum Wave Equation for the Propa gation of Small Amplitude
Waves in a Prestressed, Piezoelectric Medium

We wish now to write the analogous equation to (3-1-20) for the
case of a piezoelectric medium, such that the elastic constants (and
peizoelectric constants) may be defined in terms of the brackets through

a direct comparison with (3-3-81).

For a piezoelectric medium, one must use, in place of Hooke's

Law, the constitutive stress-strain relation
=7 -3 & 3-3-87
Sy %= /&x?/ax UF;L % 8ol T Ep . ( )

The equations of motion are

=2 204 = 2 don Pa — Z € 25 -3-
U a2 o = (3-3-88)

Assuming a plane elastic wave solution

2TA _;1_ h = Aw‘t
Ug (Xt)= U € (3-3-89)

and associated electric field
. ‘21TL¥ X - Lwt
E.=Ex€ (3-3-90)
the equation of motion (3-3-88) becomes

pw 2Py = 4T Z(Z)(‘S.a/g,\ )’r)’a)up +2_’TTLZ(Z. 1)/,)[5 (3-3-91)

Comparison of this continuum wave equation (3-3-91) with the long-wave

limit of the lattice vibration equation (3-3-81) allows the elastic and
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piezoelectric constants to be expressed in terms of the interatomic

potential.

Z Ao i = Z L(BIA] yoys + & N oy e

? Caxy Yo = %__ [/6,0(?51 i (3-3-93)

Since we will not be interested in the piezoelectric constants in the appli-

cation to follow, they will not be discussed further.

For any value of y (3-3-92) gives

By + v = 2[&pIX] + (VXY + (a2 7)), (3-3-94)

The problem here is that [ﬁ(ﬁ,)’l] is not symmetric with respect to
interchange of the index pairs and thus does not have the full symmetry
of the elastic constants. Following Born and Huang, § 27, we define new

constants

Cﬁa(‘lp)t"‘&ampl = 2[_0(/[')’,3)\1 {3-3-95)

which satisfy the required symmetry relations
&«apx = &w/e)\ (3-3-96)

It is easily verified that

Qe = Leqa ¥ ] +L8¥,0A] -'[/@Nﬂ (3-3-98)
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satisfies both (3-3-95) and (3-3-96). However, (3-3-97) requires that
L@%“A ] = E}O\,ffﬁ] . Although this symmetry property of the square
brackets cannot be directly demonstrated, it follows from the fact that
(3-3-81) and (3-3-91) are physically equivalent. Born and Huang (1962)
claim this is a consequence of the disappearance of the initial stress.
However, this pair-wise symmetry is actually a condition for the exis-
tence of the strain-energy function and thus requires only that the initial
stress be specified, not that it be specified to be equal to zero as
implied by Born and Huang. Hence, for the case of a medium under

hydrostatic prestress
ﬁ«r,gﬁ [056,25 N +[/375,o<>q - [/cak,oz?l] ¥ (mx./s,\)' (3-3-99)

Central Forces

By considering only central forces, the non-coulombic contri-
butions to the elastic constants may be written directly in terms of
radial derivatives of the non-coulombic potential. The total non-

coulombic potential may be written

" - 52 Z N (1208)+ wie) - Q(ﬁ:)() (3-3-100)

Qe 2!
where §1':k'(rkk') is the two-body short-rum)e potential acting between
particle type k and particle type k'. The coefficients in the displacement
expansion (3-3-2) may be obtained by direct differentiation of (3-3-100)

(see Born and Huang, §29).
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E 0 = Z B X ()
@,P(u.) ¢ =35 ~ Qe Xl ) %a () k't ke (3-3-101)

@:‘P(ﬁ‘): ;\Z\,}% S‘Fﬁ:.-i—Q,iuX-((é-h%(&h)}

where
s ( r %ﬁiui)

Qu [r'dlr :‘Cfsz!?i-&)]

Using (3-3-101), the non-coulombic contribution to the coefficients of

(3-3-102)

the wave-number expansion (3-3-51) may be written

c,:;;(m-(mmn g S fow -7 Qu x‘(u.)xf(...)} k+k'
(0) _ % 2‘ e 3
(G- L (542 20+ Z 2 QLXMW | o

:};(&'3 . { Sd/g ZP..,, X,(w§+ZQu Xg(u)xfa(u))(a u)}

(M )

Conalie) - _Jﬂ_—iS?ZPWX;Lu)X,(u) + 7 Qe X B Xa LY ..\xktu-)}
('\’T‘uh‘n.h' .
Using (3-3-103) in (3-3-82), the non-coulombic contribution to the

square brackets may be written

[0(}8“5)&] 2.V ).u{ éd/a o X () Y be)

(3-3-104)

* Qb 2B Xt X 8]
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In general, the round brackets defined by (3-3-83) cannot be
separated into coulombic and non-coulombic parts because of the matrix
inverse in the definition. Only for very special geometries can this term
be simply expressed. For example, if every particle is a symmetry
center, the round brackets are equal to zero. This is because g(l) is
an odd function function of xy; for a centrosymmetric lattice the k"
and k" sums in (3-3-83) are zero. The next simplest case is a cubic
diagonal lattice; i.e., a cubic lattice in which the origin of each sub-
lattice k lies on the cube diagonal. Inspection of (3-3-103) shows, in
this case, the only non-zero g(l) (kk') are those with # B #Y . Hence
in diagonal lattices, the internal deformations contribute only to Cua
Examples are the ZnS and C::LF2 structures. For all other geometries

the full expression (3-3-83) must be evaluated for each elastic constant.
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TABLE 3-1-1

Comparison of Stress-Strain Notations

This Thurston Wallace Wallace Thurston Thomsen
Work (1964) (1967) (1965) ¢Brugger (1970b)
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IV. THE INTERATOMIC POTENTIAL

One of the basic assumptions of the Born model is that the
cohesive energy of a static lattice can be represented as a sum of

two-body interactions of the form

-y (e) (vDW:) (r)
@ij(ri‘i) = \/1_] (rij) + VIJ (r'l._]) ¥ VIJ (rij) (4-0=1)
where
Y gje)(rij) = electrostatic potential energy between the ith and
.th . _ s g
j ions = qiqj/rij it
.th .
g = change on i ion
33 = distance between ith and jth ions
Vi(.;bw)(rij) = van der Waals or London interaction
6 8
= cij/rij &+ fij/rij i SRORl (4-0-2)
iy = van der Waals dipole-dipole constant
fij = van der Waals dipole-quadrupole constant
Vij) = empirical repulsive potential opposing the inter-

th

penetration of the i~ and jth ions. Its functional

form is usually assumed to be either B/r?. or

X FiilP,
The potential energy of an i-type ion is then given by

P; - Z_i)ij(rij) 1% (2= 0=3)
J

It is convenient to make a distinction between the long-range

electrostatic potential which must be summed over all ions in the
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lattice and the van der Waals and repulsive terms which are short
range; falling off as llrg. or e-rij/P where n and the exponent are
greater than 4. Hence it is usually adequate to sum only over nearest

neighbors; i.e.
g o

3= Z Vg +Z T (4-0-4)
* ally \ y neorest
3 nc'\%hbor's .

While the cohesive energy of an infinite crystal

@= z Z éi = %Z Z@‘) (4-0-5)
i R

is infinite, the energy density W is finite.

s
W = XE‘NA z @y energy/mole (4-0-6)
V=i

Y=l oS indexes the ions of one molecule

S total number of ions in one molecule

N, = Avogadro's number

The utility of the Born model in predicting elastic constants of
geophysically interesting minerals at high pressures is ultimately
determined by how accurately equations (4-0-1) - (4-0-6) represent
the volume dependence of the energy density. The basic assumption
that the complex bonding forces can be adequately represented by a sum
of two-body central interactions having the simple functional forms
given above can be tested either experimentally or by detailed quantum
mechanical calculations. The experimental testing is one of the

objectives of Chapter V where the Born model predictions are compared
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with recent high-precision ultrasonic data for a number of structures
pertinent to the lower mantle. The detailed gquantum mechanical (g. m.)
theory for alkalide-halides has been worked out principally by Landshoff
(1936), Ldwdin (1948),and Lundgvist (1955). Although such a quantum
treatment is beyond the scope of this thesis, the results will be sketched

in the next section, particularly as they relate to Born approximation.

4-1. Quantum Mechanical Calculations for Ionic Solids

The earliest g.m. calculation bearing on the problem of ionic
crystals was the demonstration by Uns8ld (1927), Brtick (1928), and
Pauling (1928) that the repulsion between closed ionic shells was of an
exponential form,rather than the power law form derived by Born and
Landé (1918a) from the Bohr electrostatic atom model which was
popular at that time. Using this same approximation of closed clectron
shells, the sodium chloride lattice was originally treated by Landshoff
(1936, 1937) and, in more detail, by L8wdin (1947, 1948). These early
works by L8wdin,plus a later major paper (L8wdin, 1956),represent
the most comprehensive quantum calculations of the cohesive and elastic
properties of a solid yet attempted. Since L8wdin's calculations clearly
show strengths and weaknesses of the Born formulation used in this

thesis, his approach will now be outlined.

L¥wdin considered a static system of ions for which the

Hamiltonian operator is (using L8wdin's notation)

=N |
Hop=w+zi Hi+i Gix
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where
2 AR
W = % 2 _I_'E,_S_ = ion-ion interaction
gg' 24°4
1 - ; :
H = 2 P e2 Z — = kinematic energy of electrons
g "1 + electron-ion interaction
e2
Gy = = electron-electron interaction
ik 2r.
ik
g, g' index the ion positions

i, k index the electron positions,

(4-1-1)

The ground state energy of the system is given by the lowest-

I
eigenvalue & of Schrédinger's equation

HeD - €D

where @ is an antisymmetric wave function of the space and spin

coordinates of the electrons.

The ground state energy is given by the lower bound of the

integral equation

5@* HOP@ T, B, <o DT,
S@*é QT QT, ... ATy .,

£ -

(4-1-2)

(4-1-3)

Since the exact solution of Schr&dinger's equation for a many-

electron system is almost hopelessly complex, L8wdin made the

following approximations

A. Instead of solving the exact Schr8dinger equation, he used

the one-electron approximation scheme also called the
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Hartree-Fock self-consistent field method.

Instead of finding the one-electron wave functions by the
self-consistent field method, L8wdin used the free-ion wave
functions in the Hartree-Fock energy equation. He thus
assumed that the solid was fully ionic, and neglected the
mutual deformation of the ions. Hence there are no van der
Waals or other multipole interactions in his formulation. As
Slater (1967) points out: '"The characteristic of this problem
of interacting closed-shell atoms or ions is that a single
determinantal wave function forms a satisfactory description,
and configuration interaction is much less necessary than in
such a problem as the H, molecule, involving covalent
binding. "

The overlap integrals are only worked out for nearest
neighbors, and higher order terms in the overlap integrals

have been neglected.

L&wdin computed the cohesive energy by subtracting the free-

ion energy from the Hartree-Fock energy, writing his results in the

form

where

E =E_+E +E +E
coh m corr ex s

E. = Madelung energy

E = Coulomb correction due to overlap
corr

Eex = Exchange energy

Es = Overlap energy between nearest

neighbors .
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Without giving the detailed form of these terms, the important result as
regards the Born approximation is that the first three terms and part of
the fourth can be represented as a sum of two-body interaction. By
expressing Ecoh =B, * Erep’ where Erep = Ecorr + Eex # Es,

L&wdin found that computed values of Ere as a function of R could

be fit with an exponential function of the form >\e-R//D . Thus the
quantum results could be cast into a functional form equivalent to that
assumed by Born and Mayer (1932). However, although the results look
formally the same, there is one important difference. Part of E is
given by three-body integrals and cannot be expressed as a sum of two-
body interactions. One of L8wdin's more important results was the
demonstration that these three-body interactions explain the deviation
from Cauchy's relation (C12 = C44) observed for alkali-halides in the
NaCl structure. On this same point, La and Barsch (1968) extended
L3wdin's approach to include the overlap of second neighbor anions.
They were then able to explain the rather large deviations from Cauchy's

relations observed in MgO.

By using a different expansion of the ion wave functions, Lundgvist
(1955) showed that the main effect of the three-body interaction term is
the introduction of an effective ionic charge, g* in the coulombic term,
where q* € q. In the Born approximation, this quantum result will be
incorporated by introducing an ionicity factor, 0 4« I £ 1, in the
coulomb terms. In the treatment of MgO in Chapter V, it will be shown
that by reducing < from 1.0 to 0.7 much better agreement is obtained

between the Born model calculations and the ultrasonic data.
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The improvement of these quantum calculations represents the
forefront of atomistic elasticity. However,even the qualitative insights
provided by the crude approximations sketched above show that, with
the exception of the effects of three-body interactions on the shear
constants, the Born model can be expected to give a fairly good
approximation to the volume dependence of the energy in ionic crystals.
Quoting Slater (1967), '""What L8wdin found, in fact, was a far-reaching
resemblance between the quantum-mechanical calculation and the Born-

Landé theory."

4-2. The Born Approximation

Having established that the empirical Born formulation given by
equations (4-0-1) - (4-0-6) closely parallels the detailed quantum
mechanical results, each of the terms in the Born potential will now be

discussed.

The Electrostatic Potential

The electrostatic term in the energy density is usually written

(Kittel, 1966)

w(e)___ N Z,I@L'e) "_NAZ.' 9(;"35 = NAQ"
t

> = Lz O

where rij = Rp

ij
R = reference dimension
Pij = dimensionless scale factor

Madelung constant = % Z Lﬂ
oy Pij o

m
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The factor 1/2 corrects for counting each interaction twice in the sum.
The symbol (+) indicates that the sign of each term in the sum is

dependent upon the sign of the charge on the ith and jth ions.

The Madelung constant is conditionally convergent and cannot be
summed directly. There are two well-established methods of calculating
Oy’ the Evjen (1932) and the Ewald (1921) techniques. The Evjen
technique involves grouping terms into electrically neutral cells, thus
speeding the convergence. This technique is at its best for simple,
highly symmetric structures. The Ewald method rewrites the sum given
above as a sum over the direct lattice plus a sum over the reciprocal
lattice, each of which converges faster than the original sum in direct
space. This method is more generally applicable to complex lattices

and is further described in Appendix .

In treating the electrostatic term for '"essentially ionic'' oxides

and silicates, an empirical ionicity factor will be introduced

\/\/@ = Np O(Mé;%i /R (4-2-2)

where 0< &£ 1
in order to allow for an 'effective ionicity' of less than 100%. The
ionicity factor will be determined by requiring the best fit to the elastic

constants and their pressure derivatives.

The concept of an effective ionic charge is not a new one. It was

first introduced by Lyddane, Sachs, and Teller (1941). Szigeti (1949)
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related the effective ionicity to the dielectric constants.

. +(,nz+z)2' J(ze) Na (_\_+ _\_) (4-2-3)
3 ‘ﬂ"\{' M Mz
where € = dielectric constant
n = index of refraction
Y; = frequency of long wavelength transverse optical vibra-
tions
z = valence
m, = mass of ion
<4 = ionicity factor

Since all the variables except ¢ are known for many crystals, Szigeti

was able to calculate &. For materials to be investigated in this thesis

he found:
Material d
NaCl 0.74
MgO 0.88

Ti.O2 (Rutile) 0.65 - 0.88

Although treated empirically by Szigeti and in this thesis, the coulomb
correction is a result of the g.m. treatment of Lundqgvist (1955) as

shown in the previous section.

The van der Waals Potential

The van der Waals interaction can be understood semiclassically
as the interaction of the instantaneous dipole moments (Kittel, 1966).

One instantaneous dipole moment of magnitude P; produces an electric
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field E = 2.p.1/r3 which induces a dipole moment on a second ion given
by
3

Aj = electronic polarizability of ion j »

The potential energy of the dipole interaction is

L

VE™ x -2pipy /= -4?\-39? = Gy
g \";j

It should be pointed out that, unlike the interaction of two per-
manent dipoles which depends upon their relative orientation, the van

der Waals interaction is a central interaction depending only on the

separation rij between the two ions.

The van der Waals constant Cij can be related to the principal

absorption lines and polarizability of the ions

BB

o~ 3BAN 22— -
Cc_\ A E.’.‘PES (4~2~4)
where Ei = hy; = energies corresponding to main frequencies of
the ions
A. = ionic polarizability ,

i
Although this seems very straightforward, the actual evaluation
of the van der Waals constant in solids is subject to considerable

uncertainties.

As Pitzer (1959) points out in his review article, London energies
agree reasonably well for He and H,, but for larger molecules serious

disagreement, frequently by a factor of two,arises between theory and
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experiment. Mayer (1933) found that the London calculations of the van
der Waals coefficients were only half as large as those given by optical
data for the alkali-halides. His experimental values for the dipole-
dipole and dipole-quadrupole interactions for NaCl are given in Table
4-2-1. Mayer found that the dipole-quadrupole contribution to the
cohesive energy, ;C(_g is between 10% and 20% of the dipole-dipole, '1%6 ’
contribution, while the quadrupole-quadrupole interaction, ECI_O , 18
negligible. More recently, Hajj (1966) has given the smaller values also

given in Table 4-2-1.

Lennard-Jones and Dent (1927) observed that the 02- ion is
isoelectronic with the neon atom and used the coefficients found for the
inert gas to describe the interaction of the 02- ions in some rutile

structures. The Lennard-Jones potential may be written in the form

ra 2
o 0~
(1) = 4€-.H——-} -—(——) _] =
Cpts B P (4-2-5)

= AeT'"_ 4ec° - D _ C
n-sn. ‘st F._-;z' chb .

Identifying CBB = 4€G"6, these values are given in Table 4-2-1 for Ne
and Ar. The values of € and ¢ are found from the measured bulk
modulus and density of the inert gas crystals (Kittel, 1966) and are

given in Table 4-2-1. Note that the C_ isclose to Mayer's value.

BB
Margenau (1939) computes the van der Waals constants for Ar and Ne

to be
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R RB R‘o
where for Ne: C, = 4.67 x 10'60, C, = 6.9 x 10'76, Cy=5.3x 10”92
for Ar: Gy =55.4x 10760 C, = 120 x 10776 C, = 136 10”92

Hence, the larger value of CBB found in the Lennard-Jones treatment is
probably an effective sum of the dipole-dipole and higher order multipole

interactions. For argon

c -60
- —B6§- (Meyer) = - &}gﬂ—.;g = .036 x 10”12
R (3.76)% x10
G, Gy © -60 T8
1 S Cj 55.4 x 10 120 x 10
PR NI ™ (Margenau) = - —4a8 =
6 g8 RIO 3. 76)°x107%%  (3.76)% 10™%%
136 x 1072

.0196 + .003 + .00024

(3.76) % (10~ 89)

1R

.023 x 10

In the remainder of this thesis, I will use the inert crystal
potentials to characterize the anion-anion second neighbor interactions,
since these contain the repulsive term as well as the van der Waals

dipole-dipole term. This will be called the '"inert crystal assumption'.

The effect of these uncertainties in the van der Waals coefficients
on the elastic constants and their pressure derivatives will be investi-
gated in Chapter V where the individual structures are treated in detail.

As Tosi (1964) points out, this uncertainty is not very important in
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calculations of the cohesive energy since the van der Waals energy is
only a few per cent of the total. Furthermore, uncertainties in the

va'n der Waals energy are largely compensated by the adjustable param-
eters in the repulsive term Vggﬂ. Born and Huang (1962, p. 28) state
this quantitatively. They show that any term of the form A/R" added to

the energy expression will only change the total cohesive energy by

AW = L( %9"“)?“*""-] (_A_) (4-2-6)
(Ro/p)* R/ -

For a typical Ro//o = 10 the multiplicative factor is 0.2 for n = 6 and
0.1 for n = 8. Even though they contribute very little to the cohesive
energy, Tosi (1964) has shown that the inclusion of the van der Waals
terms systematically improves the fit between experimental and calcu-

lated cohesive energies for the alkali-halides.

It will be shown in the section on elastic constants that these
terms are quite important, particularly in certain cases like the shear
constant (344 for the NaCl structure, where the electrostatic and nearest-

neighbor repulsive contributions are very small.

The Empirical Repulsive Potential

The two-body repulsive potential has traditionally been given

one of the following two functional forms,

..(ﬂf,'f: ({-‘n (Born and Landé, 1918a
Vi )

05 (4-2-7)
Vﬂ"‘ - 7\6"—“/’0 (Born and Mayer, 1932)
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Each has two empirical parameters which are evaluated from the
experimental values of the first and second volume derivatives of the
energy; namely the density and bulk modulus at p = 0. Equations (4-2-7)

represent the most basic assumption of the Born theory.

As discussed in section 4-1, quantum calculations for closed
shell systems verify the exponential form as do the experimental
cohesive energies calculated by Tosi (1964) and the elastic constant
calculations given in Chapter V of this work. However, since the
experimental tests are at low pressures, and for geophysical applica-
tions we wish to compute the elastic constants to strains of V/Vo e
4.0/5.5 = .73 at the base of the mantle, we wish to know if the
exponential form is a good representation of the quantum repulsive
energy over this compression range. In one attempt to answer this
question, Kalinin (1960) has investigated the interaction between the
closed shell systems He-He, 7. Li+, and Be T-Be't on the gquantum
mechanical level. By minimizing the energy with respect to the constant
1/p in the exponent for various fixed values of the separation R, he
computed 1/£ as a function of R. He found that 1//0 varied by less
than 1% to pressures of the order of 104 kilobar for all three systems
and concluded that the exponential form was a good representation of the
energy of repulsion between atoms and ions with filled shells over the
entire pressure range of geophysical interest. Of course, these cal-
culations are for a 1-s shell which one would expect to be less deform-
able than the outer shells of more complex ions. However, L8wdin has

shown that for alkali halides, the repulsive energy is approximately
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exponential for compressions of at least 0. 64.

The Cohesive Energy and Evaluation of the Empirical Parameters

The various terms discussed above will now be used in equation

(4-0-9for the internal energy density.

S
w = 1N i&_} energy/mole
Zz A v
@v = potential energy of a ) -type ion (4-2-8)
S = number of ions per molecule

For <V = a cation, @v has the following form:

—'G’h/v
2, 79 - G ,e P

anions

‘i (4-2-9)

For YV = an anion, @v has the form

é Z_ %_%‘_ S Z th. & Ayk —Ghéovg

all; R neacest
J y") cations

Cv.l Dya
. 3
Ll S M }

anions

(acwd-micsboﬁ)

(4-2-10)

Notice that anion-anion interactions have been included while cation-
cation interactions have not. This is because for all materials con-
sidered in this thesis the anion is larger than the cation. Hence, the
anion overlap is greater than that of the cations. The energy density

can thus be written
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L Z 2§ -G AT
(R

Z: Vi Y 1= Cee + De
* v'anionsa,? i (?WR)“’ (P"’;)ug

where Z, = number of nearest neighbors of V-type cation
Myt = number of second neighbors of ¥ '-type anion
CAB = cation-anion van der Waals coefficient
CBB = anion-anion van der Waals coefficient
DBB = Lennard-Jones anion-anion repulsive term
R = reference dimension

rvk = vak

The equilibrium condition is (dU/dR)ﬁ = 0 and the zero pressure

bulk modulus is given by

? o ’\V/ 2] ’\t/ 42U d}ﬁa - Bulk modulus of
B W = J’i’z Qv the static lattice
Expressing v = ES/CI = volume/mole of the static lattice

1/3

R (ClV) = linear edge of cubic reference cell
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where C, = moles/reference cell = 7[,/Np.

1,

A tilde over a quantity means it is evaluated for the static lattice. The

"

molecules/reference cell

derivatives are easily performed. These two pieces of data allow two of
the cation-anion repulsive parameters ( /\,.Fy) to be determined. The
algebra will not be worked out here, but will be carried through as each

structure is treated in Chapter V.

It is important to point out that f(v and R must be the bulk
modulus and reference dimension of the static lattice which are obtained
by linear extrapolation from the high-temperature data as explained in

the next section.

4-3. Obtaining the Bulk Modulus and Density

Appropriate to the Static Lattice

The P, V, T equation of state of a solid under hydrostatic pressure
is

The harmonic vibrational spectrum of a collection of NA ions can be
represented by 31* independent oscillators having frequencies V; .
Following the methods of statistical mechanics, we consider a canonical

ensemble of microstates of possible energies

N = integer (4-3-1)

W * £ 7w + Znchwe .

Since the oscillators are independent,the partition function Z may be

written as a product of single oscillator partition functions
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|
(W) /KT + z',—EFZ_:_kvc)
Z = 2 Eilaly vy (4-3-2)

o0 —hn;v;’/k-r

2,-2 € =

m; =l

The Helmholtz free energy may be calculated from the partition function

( - éhv;/ﬁr)“

as

FOVTY) = —KT L%

(4-3-3)

v kT
=W(v\+ZL,[-'7:hvi+kT9m(\ye, )1

=WV + T (T,
The equation of state is thus

P —LAF/SY) =~ —on) _ 1 Z{_‘z v + _hwe }M’Wi (4-3-4)
AV Vol

b T 2InV
e Wi /. " I .
If one now makes the Einstein approximation that all V; are the same,
and the Griineisen approximation that all '5; = -—'%_;J,”‘_;\U"i = B/ are

the same, one gets the Grtlneisen equation of state

P--— %‘«%)JJEV;\O (4-3-5)
V
where
) ; _ | (hv /&)
Ea= Ra+TS - E-\\,-*T(%f—,)v = "Z%h‘)‘ +kT7l;

v /KT
e_ -

One need not make the Einstein approximation to get the Mie-
Griineisen equation of state. Tosi (1964) shows that the Mie-Grilneisen
equation follows from the less restrictive assumption that the vibrational

energy of the solid, divided by its temperature, be a function only of the
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ratio between the temperature and a purely volume-dependent character-
istic temperature. Thus equation (4-3-5)is also true for a Debye solid

as shown in Born and Huang (1962, § 4).

Consider now the problem of evaluating the empirical repulsive
parameters for the static lattice. The simplest assumption is that Fvib

in equation (4-3-3) does not depend on the volume. To this approximation:

P= ‘éyﬂ. GL&)::O
v AV /oo
T=300"K (4=3~06)
o LW
K(P-0 T=%00K) = [\I —-T}
T-300°) = | V(G|

T=500 »
Tosi (1964) has shown that this approximation of neglecting the volume

dependence of Fvib leads to larger discrepancies in the calculated co-
hesive energy than neglecting van der Waals terms. A more realistic
approach is to work with the Mie-Grlineisen equation (4-3-5). At P = 0,

T=T
o

(é&i) = -UEL%(WB!
Qv ‘L

(4-3-7)
) o (W) _ 3 (1Ea
K0T = (gB), = Vo(20H), - V.3 (1E%)

ToNo

These equations may be used directly as outlined in Tosi (1964). How-
ever, often the temperature dependence of the density and the bulk
modulus is known for temperatures above the Debye temperature. In

this case a linear extrapolation from the high-temperature regime to
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T = 0°K gives V and K, the molar volume and bulk modulus of the

static lattice, as will now be demonstrated.

Following Born and Huang (1962, § 4) expand W (V) about

equilibrium volume V defined by (dW /dV)V = .

WiV = W+ L EWIy-" + L BWin Y +
< avily 3L Qvily
Retaining only linear terms

(Q\_Af_) = W (v-) + ...
Y av*|,
\'
(4-3-8)
(g!;ivi)= @\ X cPWl (V=T
avi) avrle | avly _
At P =0,

V=’\7 o .(/_I._J_ B (T
R v

If it can now be shown that the second term on the right-hand side is a
linear function of T at high temperature, then the high-temperature data
may be linearly extrapolated to T = 0 to get the equilibrium volume of the

~
static lattice V.

Consider first the vibrational energy

hV;/kT
Evi= 22 vi + kT2 P
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Let x; = hy /kT . In the high-temperature limit x << 1

Xi
~~ %ZJ\’\V; e kT%- l+7(i+"z'xiz+”' =1
=L 2w kT L
z L
~ LI \w TZ (=&
= zf;‘w ¥ ?T s £
-~ VT by +3N KT - ETS ¥,
FAD g ¢

1§

%Zhv; + 3N T ~J5% v,

L

= 3INEKT
Thus at high temperatures

~

V=V *+ V(B) 3NKT , (4-3-9)

ravy
1f ( §/V) is a constant, then V may be extrapolated from the

high-temperature regime to get V as illustrated in Figure 43.

Consider now the bulk modulus in the high-temperature regime

_\5'_":. — (i?) = alw — i( _a— Ev-b)]
v v < a\J'- v\ Vv
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1f ( §/V) is a constant (see Swenson, 1968), (d/dV)( ¥ /V) = 0 and we

have
_"i = an__L_\_N— - l &E!'ﬂo
V Av* (v) Aav
Using (4- 3-8) gives

<K

-, - B -

Identifying the first term as K/V and using (4-3-9) onthe second
term gives

5 B, -

®\V V) @y .

Differentiating equation (4-3-5) for Evib and using the definition

Cy = (dEvib/dT)V one gets

SEu - (Ba-CT)(7)

So
.K_-.:. E.{»{ﬂ
v ¢

% (%)m - (L)" (em-cv)] T

<

Under the assumption that ( § /V) is constant, K/V has the form

_\3_ = K 4 (cons{un‘t) T

<R

Thus a plot of K/V vs. T at P = 0 has an intercept of K/V when extrapo-

lated from the high-temperature regime.

All these arguments are hinged on the assumption that ( §j /V)
is a constant. Swenson (1968) gives arguments as to why this should be

true, and Bassett et al. (1968) give data which show that in the relation
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r/}g: (V/Vo)a, a = 1 for a wide range of solids.

Tosi (1964) reviews the various methods which have been used to
handle the vibrational energy and thus arrive at empirical repulsive
parameters appropriate to the static lattice. He finds that the difference
between repulsive parameters found by equations (4-3-6) and those found
for the static lattice after correcting for the vibrational contributions
differ by up to 25%. Further he finds that the agreement between
theoretical and experimental cohesive energies for the alkali halides
are systematically improved upon making the thermodynamic corrections
and that the magnitude of this improvement is larger than those caused

by including van der Waals forces or second neighbors.
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Table 4-2-1

Multipole Coefficients

c ct
The cation-anion interaction is ¢ng = - —%E - —%é
*AB  TaB
C D
The anion-anion interaction is ¢§gw = = —§§'+ —%%
s BB
NaCl CAB CBB DBB

(10-%0 ergs em®) (10-%0 ergs cm®) (10710% ergs cm!?)

Mayer (1933) 11.2 116 -
Hajj (1966) 1.7 64.5 -

Inert Crystal 103 1594
(Argon)

4g0

Huggins & Sakamoto 7.8 -

(1957)

Inert Crystal - 8.46 35.8
(Neon)
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Table 4-2-1 (Continued)

Inert Crystal Parameters in the Lennard Jones

o V12 o \6
Potential ¢BB = 4e ;—) - (?—— )
AB AB

from Kittel (1966)

6 12
0 & (I‘AB)O CBB b4eo DBB beo

(K) (10-16 ergs) (R) (10760 erg cm®) (10710% ergs cm!2)

Argon  3.40 167 3.76 103 1594

Neon 2.74 50 3.13 8.46 35.8
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Figure 4-3-1. Linear extrapolation to obtain static lattice parameters.
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V. SPECIALIZATION OF THE INTERATOMIC POTENTIAL MODEL

TO SPECIFIC STRUCTURES OF GEOPHYSICAL INTEREST

5-1. The Sodium Chloride Structure

In this section equations (3-3-99) for the elastic constants will be
specialized to the case of the cubic sodium chloride (rock salt) structure.
Equations are given for the volume dependence of the elastic constants,
as well as closed form expressions for their first and second pressure
derivatives at P = 0. These expressions contain the electrostatic inter-
actions, the empirical cation-anion repulsion, the cation-anion van der
Waals interaction,and the anion-anion interaction as discussed in

Chapter IV.

This section has two objectives. The first is to show how the
general equations given in Chapter III, §3 are evaluated for an extremely
simple, diatomic, cubic solid before investigating the more complicated,
polyatomic, low-symmetry structures. The second objective is to
explore the effects of the various terms in the potential on the elastic

constants and their pressure derivatives.

The elastic constants and their pressure derivatives are evaluated
for NaCl and MgO for direct comparison with the ultrasonic measure-
ments of Spetzler, Sammis, and O'Connell (1970) and Spetzler (1970).
MgO is of direct interest as a candidate material for the lower mantle
below the 600 km discontinuity (Ringwood, 1970). NacCl is of interest
because of its low bulk modulus relative to MgO (238 kbar vs. 1680 kbar).
Since it undergoes a larger compression in the 10 kbar range presently

accessible to ultrasonics than does MgO, it has been possible to
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measure second pressure derivatives as well as the simultaneous
temperature data necessary to make a first-order extrapolation to

T = 0 for comparison with the static lattice results.

Specialization to the NaCl Structure

Because the elastic constants are symmetric with respect to the
interchange of indices within each pair, each pair may be represented by

one index as follows )(5,(/63}\ (ol,’z;ﬂ‘)\ = 1, 3) —-a—cij (i, =1,6) .

Tensor Notation Voigt Notation

11
22
33
23
31
12

(5-1-1)

[= oS | N S PV

For the special case of cubic symmetry, we have (see, for

example, Nye, 1964, p. 140) three independent constants

C“:C =C C =C =C =C =C =C

22 33 12 21 23 32 13 31

C44 = C55 = Cpe ,

All of the rest of the 6 x 6 = 36 possible cij are zero. From equation
(3-3-99) we get

11 = B = I, + a1

15 = A = 212,18 <[22 11] + (11, 22)

Cyg =Opas = [22.33] @323 .  (5-1-2)

C
C

1l
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Since the NaCl structure is centrosymmetric, the Ci;% (kk')

vanish identically and thus so do the round brackets. The squarec brackets

are written in terms of coulombic and non-coulombic parts

C
[«7,6X] = [«¥,p2] +[o<25,pA]N (5-1-3)
where the coulombic part is given by (3-3-54) (the details of the coulombic

sums are given in Appendix 2 ) and the non-coulombic part by (3-3-103).

& L 4
= ChvCy = SR8+ o Zu LRl + Qe

Caz= C?Z.+ CTz e M Z_ { P:.: X (v.h +Qkh')‘ (hk) Xz(l& Z(S -4

2R*

C44, CM— CJ,A. —EFL% Z i Xl(ii')z > thh' 'XI(J&')I Xl(l:h'f-i .

In these expressions

R = Nearest Neighbor Distance

N (v
P‘l - _La@.()]

= [t 1 (5-1-5)
l"“

s =L La‘@:r(ﬂ)

ek {:rar(r or ]g

N
@(r) = Non-coulombic two-body potential
kk' between k and k' type ions

r

de = 1X680)

Xhhed = X0 = XCGd + fh2y + Tozp + Laay
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’8_.,1 = R(Ollll)

2, = R(l; 0, 1)
2; = R(L,1,0)

Va = Volume of unit cell = a,+ (szg3) - 2R”

The &; in the coulombic parts of equations are dimensionless
Madelung-like constants. The details of their calculation from equation

(3-3-54) is given in Appendix R . Cowley (1962) gives for the NaCl

structure
d“ = ‘2- 55604
Mz= 0.11298
0= 1.27802 |
These constants have certain internal cross-checks, ol = -2«0(44. and

(o(‘,+20L.z_)zl/9_-§ = _%:O(H which will be useful in checking these constants
R

for more complex structures.

Indices R = 0, n — 1 index the n primi tive sublattices. For any
compound AB in the rock salt structure, n = 2 and therefore three dis-
tinct two-body potentials @kk,(r) must be specified. For the most
general case considered in this section, we have for the non-coulombic
B

. . N
cation-cation @Ah(r) =0

cation-anion N (¢) = VAB(Y‘) s _C.f'—a——a (5-1-6)
e )
anion-anion @:B(r) = ~ Ces 4+ Dgs

(2 (2} .
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The terms on the r.h.s. of these equations are discussed in section 4-2
on the potential. In this section we will make calculations for both the
Born-Landé€ (1918a) and the Born-Mayer (1932) forms of the empirical,

two-body, repulsive potential. Respectively, these are

B
(Fe)’

ot
\/Ae(r) AL GB//O

Vaol™) =

(5-1-7)

It

The cation-anion interaction is over nearest neighbors, while the anion-
anion interaction is over what are usually termed second neighbors.

These sums are worked out in Table 5-1-1. For the cation-anion

interaction
= | d@ﬁh’ \ ! GCAQ
PAB r ar ]R E(VAG)R + R®
(5-1-8)
STL@ (L ABT — — L) + L (y") — 48Cee
Qe[ &+ 4B - N vl - T
For the anion-anion interaction
I &@:s:\ _ ©Ces _ 12Des 2 _C_ﬂ,_e _ 3D
Fga [:T‘ Qr & =r (;-B"— FL 3—5_7&%%
" (5-1-9)
™
QBB_ [I_C_Q_(_L& E):{ = _— 48Ce 168 Deaa
rar\ Yy Qv o t;so ré-éfo

The prime denotes differentiation w.r.t. r.

After doing the short-range sums, the expressions for the

elastic constants become
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C™ @%‘_4_ Lo {(2&5"’4?@5} Rz“'(ZQAB"’“’QBe Q‘—}

2 R* Va
Ca= O(n:égz + _\‘!_ {(-—2,?;;3-—4‘993) R"+ 2Qes R‘} (5-1-10)
2R4 a

= Kaadq? +4-5 * 4
Car TET%‘*’\!/:{(Z% 4Re) R™+ 2QueR*{

Note that the identical terms PAB — PBA and QAB

been combined, thus eliminating one factor of one-half. However, the

= QBA have alrecady

Pog and QBB terms must still be divided by two to avoid counting the

B—B interaction twice. Substituting equations (5-1-8) and (5-1-9) for

Pkk' and Qkk' gives

O44= 0(4*&3" & VA'S + 6Cas _
29-4 RL 29

C,= %¥9% . Van _42Cas _ 9 Cap 4 9 Des
I —2——&3 R R3 4 Tig 2 elf
(5-1-11)
Qo= Dudg? _ Vag _ ¢Cos _ 9 Ces 4 21 Dea
T2 TR TR AR e
Cea
R’

Evaluation of the Empirical Parameters in V and Expressions for the

Bulk Modulus

AB

Before the elastic constants may be calculated, we need to
evaluate the two empirical constants in the cation-anion repulsive
potential. These are obtained from the zero-pressure density and bulk

modulus as follows.
The energy density of the static lattice is given by

W-_--:;,; A(UA + UB) energy/mole (5-1-12)
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where UA = energy per cation and UB = energy per anion. The factor of

one-half corrects for having counted each interaction twice.

UA= - _ﬁ + Zas DAB(Ry“ (_:_:;%’l

R

Up= - Még + Zre| Vea () — Cne] 4 (5-1-13)

+ Zaa| — Ces + Ves ]
Ree A

Il

Where O(M Madelung constant = 1.747558

]

Z,B # of nearest neighbors = 6

ZBB # of second neighbors = 12

Equation (5-1-13) becomes
e 0k - _ P2 -
\/\/" ‘ENHiUA"' UB.S Nﬁi ﬁ% - Z%{VQB(R) %]4— (5-1-14)

+ Zee | — Cee 4+ _Dee
d BRe AR*E

The equilibrium equation may be written as

(dw/dR)LPZ -

where the ~~ denotes the equilibrium state for the static lattice.
aw\ N {o(ms»z z [v’(‘@pecm]
S = Nao)2mTd & Zee| Vpe +
ar | = =i

"'iﬂ%[ ZCBQ = 3_DBB :l = O
2 L4RT  jeB®

(5-1-15)
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The bulk modulus is computed according to the relation

where V = volume/mole = 2N R3. Since the energy is expressed as a

A

function of the nearest neighbor distance R, the volume derivative may

be more easily evaluated if it is transformed to a derivative with

respect to R using the chain rule.

2N AN GNa
fr. = JJg
A IBN- ( R/ -
At equilibrium
& w{ . W
Avtiy de*

Differentiating equation (5-1-15) one more time gives

AR*

2

I
A

2 Ny~ 20wl n[v“ca>~41c7
M_NA{,%C_*,_ZB AG ___égg}_—&

i _:_E__gg[— 2) Cee

(5-1-16)

{5-1=17)

(5-1-18)

(5-1-19)
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At equilibrium

K= V&w! - 2N T [—'f—r %-wmégl
W 5 A% . ZNa 36Na R :11 Npi-% ] + (5-1-20)

+ Zas \/,;‘r5 (R) - %%} 4- i_ga ‘1 —‘i%_C_%a i sse‘gj,,ﬂ.%

which simplifies to

K- _h'% —20mYa” | =1 Vae (B) — 42,&.3]
~4

|8 _7 — |
S e % (5-1-21)
Zos| - 21 Cos . 39 Dy |{
TS a T T el

We now wish to use equations (5-1-15) and (5-1-21) to evaluate the two

empirical parameters in V

143

AB(R) in terms of the experimental values of
Kand R = (M/ZN.F ) where M is the atomic weight and /’6 is the

density.

This may be done rather easily for both the power-law and the
exponential forms of the potential because of the following properties of

these functions.

Power Law Exponential
Vv, =B/R" V,, = AeRIP
Vplg : -% Vs V,qle = - VA;
Vae =3R%+—” Vas Voo = %B:— (5-1-22)
vﬁ;‘g _ -ngn+1§!n+2)vAB Valg o Y“;"?‘_
v:; _ n(n+11;(n+2)(n+3) Vas o Vas

R4 Fiic) /04
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Note that for both functional forms of the potential

nm_ 8!
Ve = " R Ve
$ = n+ 1 for the power-law potential (5-1-23)

é

'1340 for the exponential potential

This has been pointed out by Anderson (1970), although it is not
characteristic of a general potential as he suggests. Solving equation

(5-1-15) for (v,,’e)\,e,

Vis| = { 0(«’\\2% -Z.Ba % Cap ... B Dag ?S AN (5-1-24)

'3 ZAB + QT e B

So, according to equation (5-1-23)

_-s ow* _ e [gc_»__;@_n A (5-1-25)
ZHB 4 RT 16 R|3 —R'f -

Substituting this expression into equation (5-1-21) gives

8K = -20dg? 5 Z ( _3D
BR- 2l + 1 %ne[ SR '@i"%‘)] N
(5-1-26)
c:g.ﬁ;> AR T ap Cns + @[ 2l ‘ﬁ_’ ’32_._%?_;0_ -
Solving this equation for § gives
® L, 422a3Can _ Zes|-21Ces . 3 ]
¢ '8K+Q@$+ Mg - gL ST (5-1-27)
) 3

GG (18P
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Note that for the simpler case of nearest neighbor interactions only and

no van der Waals terms, equation (5-1-27) above simplifies to

5= BERY . 2
ahéH%;
as given by Kittel (1966). It is interesting to note that the relation
ﬁ/f) =n + 1 follows from the relations (5-1-23) and (5-1-24) and is
independent of the number of interactions added onto the potential.

Once & has been determined, the other constants in VAB(R) may be

determined from equation (5-1-24).

~ N+l
B= R NMJ-'qL (CF XY CﬂB i 3 CUS = é’ _"D—T”
NZae % -l N ) 4R e X

(5-1-28)

=RE K LA Con . Zas 3 Ces _ 1322';
?‘@oﬁ; g e i ¥

The volume dependence of the bulk modulus is given by

K(R)= VE&W _ V &ZW(QE) AW dPR ]
av* 2@ \av] T ar ave

2 R

_ i ~domdar | zpBLvﬁ’é 2 »., _ 54 e] (5-1-29)

+ __D 2,'1 Caa 45‘ Daej
Ko g_tf k

As a direct check on the algebra, this equation is identical term for

term with 1/3 (Cll + ZCIZ) calculated from equations (5-1-11).
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At equilibrium (P = 0)

] ! /
Vie — RVan = —Vaslz (5+R)
® R" <
is the same for both functional forms of VAB' This must be true since

K( R)) is one of the two input parameters. However, at R # R , the two
potentials give a different predicted value of K(R) since in general the

power-law expression
|
VA;(R! _ RYas® =m(m+3) V&e(E)
R R* R?
does not equal the exponential expression

Vea (R) _ RVrs(®) _ R (£ J,z) Vaa(R)
R re rPL\FP R

For the power-law potential

KRY= oo {_ Amdg® :EQBL'Y\(M-rB) Vas (R) _ 54C_n_§_] +

4 3 >
L E * (5-1-30)
Zgs | ~21Ces 4 45 Des
+—%«E[_4"R9+'(o RS §
For the exponential potential
K(R)= L) —40md9* 7 [E R Naa (R) _ 54Cas
"8 %ﬂeﬂh o $(%+2) 1234) & 1 (5-1-31)

The pressure volume relation is given by
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=— AW _ _ W IR _
A AR AV (5-1-32)

- -2 fodg? | 2aal Vee® | GCas) L2 Lsca,sv
6%“%90+ = I Ak A

Equations (5-1-11) for the volume dependence of the elastic

constants may be written (using equations (5-1-22))

(a) Power-law Potential

= o, ¥rq? vV A2.C S 8
Cii g'g‘% + mg'n’-];ls) - Ena -Z ’_%B_ +%'D§

Ci= %adrg? nVae _ GCrs _ 9Cen 427 Deg

C =0(ﬁ&'31 __h\/p,B GCF\ __Z_;_
2R ® TR Tiw Tmxe (5-1-33)

(b) Exponential Potential

Q= 64da* | (oY Vae _ 42Cae _ 9 Cos 4 S Ds
TR TR R AR e
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Expressions for the First and Second Pressure Derivatives of the Elastic

Constants at P = 0

Expressions will now be derived for the first and second pressure

derivatives of the elastic constants at P = 0. These expressions are

useful in making a direct comparison with the ultrasonic data.

The pressure derivatives are computed according to the relation

dC _ ACy/AR
ar  dP/dR (5-1-34)

The relation dR/dP = -R/3K allows these equations to be written

(at P = 0)
dL§54 ’ —aii_(éy;s&
AP ly 3R\AR (5-1-35)

j

L°C +_‘_[d§\+_‘- dCq
: RLPly 3| Qe

(5-1-36)

& - (E)"' o) L] d| 1] Gy
ap Iy 138) AR e K| Pl 3| gp Iz

where C,; represents any one of the three independent elastic constants

or the bulk modulus.

Consider first the bulk modulus

_(Q-E ‘.:'Edf—\
dPl, 2R 4RI,

Differentiation of equation (5-1-30) for the power-law potential
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dK| = = 160 S z I A(n+3) Vee , 486 Cos
T TR RN B gl

(E-1-37)

43 Cee __ &75 Dgo
T % [%’ :ia{— e J\?sfl}

The equilibrium equation (5-1-15) may be used to further
simplify the expression to

ARl = = ) Zapl - T -1 Ve 390 Ca
gl =g ]

e (5-1-38)

@

Z 1958 Cee — @27 Dgs
+in{ S -ATm]]
For the case of nearest neighbor interaction only and no van der

Waals terms (dK/dP)|,, can be shown to have a simple form

Akl _ n+7
dPi~n 3

Differentiation of equation (5-1-30) for the exponential potential

gives
&K\ = == [GomBQr | 2 [_<(B_ +3(R +4E> Vag . 40 C B]
] R — = t+ ~hAB —== = +
ari,, 54K{ . IO) (la) P/ a3 =Y
+ Eaﬂ 243 Cas G75 Des
e RS
Again using the equilibrium equation to rewrite the first term
gives

%‘é]: f:,%(‘z i z%[<_ (%)5_ 3(%)2+ \?_'%7_\%65 +390%]+

vip| B - ] o
z
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In the case of nearest neighbor interactions only and no van der
Waals terms (dK/dP)lg again has a simple form
aK| = (%ﬂ)(%n)"m
APl 5(&- 2)

The second pressure derivative of the bulk modulus is now com-

puted according to equation (5-1-36). In this case equation (5-1-35) may

be used to simplify equation (5-1-36) to the form

47K =(_ﬁ_)" k| _ o [aK| 1] dk (5-1-40)
aetl, 3R/ grr|, KL4PL 3|dPl. .

Equation (5-1—38) or (5-1-39) is used for (dK/dP) depending on the
assumed form of VAB' Consider first the power-law potential.
Differentiating equation (5-1-37) with respect to R and using the equilib-

rium condition gives

42K
4 p*

) +3Y — Vh
= ey {Ehﬁ[(h(n+4)(n 3) SOn)\__lag_ _4350%%3] "

~

(5-1-41)

RS

g com T sl gL

For the case of nearest neighbors only and no van der Waals

terms, (dZK/sz)LV has the simple form

QK| = =4 (m+3)
are*|, 9K .

Next consider the exponential potential. Differentiating equation (5-1-30)

twice with respect to R and using the equilibrium condition gives
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QK| _ 2%, 2% .0) - 80 Ya
dfp_l\w_ c,zKLSL”K (2+2)((&) 2£+¢) 80%>y{§_4330%%}

Zag | 1095 C %OE@.}_ B Ll
'se | P+ 0B )
_ldkl L) LA
[dF’\jE ’R—&P\

For the case of nearest neighbors only and no van der Waals interactions:
@K| = ( )((2) +ze+<a) 80 -
dprly 9\<(e/,o 2) rF

£,2

‘O

(Rlp+2) - B+)(Es2) - 14
[(E/P < J[(g N E+2) B

Equations (5-1-35) and (5-1-36) for the pressure derivatives of
the elastic constants will now be evaluated. Differentiating equations

(5-1-11) with respect to R gives, for the power-law potential

QCy — -2%3Q*  n(n+1)(N+3) Vas  , 578Caa , 81 Cas — 135 Da
i TR T R T B e

&*Cu - IO&.&& 4+ n(r+)(n+3)(n+4) Vas _3780(as — 405 Ceg +270Des

—_—

e Re S 2R R

(5-1-43)

dCe = -20edg? h(ﬂ+3}\/ﬁa 54Cas + Bl Ces _ 40S Daa
R R TR TE R T ke

d*Ca _ 100 d9> 4 n(n+3xn+41m S40Cas _ 405 Cge 4+ 405 Dee
QR Rée R Z e 2z R"
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dCas - wZD(u&rgL + n(n+3) Vas _ 54 Caa +a7 Cop _. 225 Dee

de fRS »Rq. -QIO -R‘O 51 -Rl(a

Aas _ 10%a4d9® _ n(ne3) Vae , 540Cap _ 135 Cee 4225 Dga  (5-1-43)
) ®e ® RO2 R 2T,

For the case of the exponential potential

Z
o, - - 2’ — (5fl5 oY + 70 - 9 G- P 22

d*Cu - Joo<n-b<L (s_)‘[(s)& 2% 42| Vo _ 3780Cse _ 405 Cse , 210D
AR> ALt P AW R R -7

QCn = -R%2d9" _ R/ p . 2)Vas | 54Ces .2 Cog _ 405 Dos
'a'é__ TS'—%- P(p )er —Rpo +4 R 32 Re (5-1-44)

L0 _ oe(n_qF E):ﬁ +4R (| Vae _540Cae _ 405 Ces | 405 Dye
AR* P ) /°+ RS R < = Tz R

dCu = ~R0sedq” B (R, 2)Vas _54Cae , 27 Ces _ 225 Deo
ar _'*gﬁ+ﬂ(“ﬁ* R Re 4 RS 32 R

d2Can _ 1004adg* _ B (R) +4R +({]Vm +540 Cae _ 135 Ces | 225 Dap
AR ® TP ® Z R 2 RTe
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Substitution of equations (5-1-43) into equations (5-1-35) and
(5-1-36) gives the pressure derivatives for the power-law potential,
while substitution of equations (5-1-44) into equations (5-1-35) and
(5-1-36) gives these derivatives for the exponential potential. The
expressions for these derivatives are the same except for the V

AB

term. It was shown that at equilibrium

(i) - 5(E09)

therefore (dC,,/dP)|  and (dC44/dP)]N are the same for both forms of

V, o While (dCllldP)\~ is different. Each of the three second deriva-

AB
tives (dZCII/dPZ)\N is different for each functional form of the cation-

anion repulsion.

For the case of nearest neighbor cation-anion interactions only,

the pressure derivatives reduce to the simple expressions given below:

Power-Law Potential

cQO..‘ . 6 M+)(N+3) % _z_ei._l _  (ne)(n+3) —17.5516
AP lpo (n-1) Zas Ol (n-1)
(5-1-45)
g\_l\ = & n+3 + Zd.n.] = (n+3) + 0.775 {03
AP leo (n"l) Zas K (n=1)

&Cu.\ o =l _h+_3__2,0(4+] _ —(ns3)+8I758
dP lep (n-1) Zas olm (n-1)
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Exponential Potential

CQCH\ - _© [_L_ §(§+‘)+zq.] =_§'G§+‘)"\7.SS‘|(0
Ps afo\(o

— Z-ﬂ dr'\ -
P oo (%0 2) % 2
a| = _G {_1_ (E+2)+;gl_.{l _ (E+2)+0.775803 (5-1-46)
aP lp-o (E/P_Z) Zas P 0dm -_!’;;—_2-

= ;9;__[_l- (Rlp+2) —&{z - (%«»2,) +8.7758!
2) =

R 2z .

—_—

As a check on the algebra, it can be readily shown that
1/3 [(dCllldP)l + Z(dCIZ/dP)]] calculated from equations (5-1-45)
and (5-1-46) are equal to (dK/dP)| as given by equations (5-1-38) and

(5-1-39).

Numerical Predictions for NaCl and MgO

The two input parameters, K and R, are obtained by the linear
extrapolation of V(T) and (K/VNT) from the high-temperature regime
(T > 65 ) to absolute zero, as discussed in section 4-3. The experi-
mental data and extrapolation are shown in Figure 5-1-1 for NaCl and
in Figure 5-1-2 for MgO. Note that for NaCl the thermal expanison
coefficient rises very rapidly above the Debye temperature, and one
might be tempted to make the dashed extrapolation of V shown in 5-1-1b.
However, since this rapid rise in & may be due to the formation of
vacancies (Enck and Dommel, 1965), it should be disregarded and the

solid extrapolation used. This solid line extrapolation gives the same
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% and R found by Thomsen (1970b) from the more rigorous solution of the
fourth-order anharmonic equations. The extrapolated V and K values are
given in Tables 5-1-1 and 5-1-2. The other input parameters are the
multipole coefficients CAB’ CBB’ and DBB which are discussed in

Chapter IV and are summarized in Table 4-2-1.

Tables 5-1-4% through5-1-|0 give the theoretical predictions of the
elastic constants and their first and second pressure derivatives at zero
pressure. These calculations are made for a range of ionicity factors,
<, between 0.6 and 1.0. The effect of the multipole terms is investi-
gated by repeating the calculations with and without these terms. The
results of the calculations are compared with experiment in Figures
(5-1-3) through (5-1-9). Finally, using the ionicity factor, 9 , which
gives the best agreement between experiment and theory at P = 0, the
volume and the elastic constants are calculated as a function of pressure.
These results are given in Tables 5-1-11 through 5-1-14; and in

Figures 5-1-8 and 5-1-9.

Discussion and Conclusions

As stated earlier, the primary objective of this chapter is to
understand the effects of the functional form of the potential and its
various terms on the elastic constants and their pressure derivatives.
The geophysical question is: Given the compressional properties, F)'
and K , of a material, how accurately can its shear properties be pre-
dicted. In order for the theory to be geophysically useful, the shear

properties must be relatively insensitive to the potential, but strongly
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dependent on the crystal structure. For both NaCl and MgO the precise
ultrasonic data exist to make this test. Discrepancies between theoretical
predictions and experimental values will be discussed in terms of uncer-
tainties in the velocity at compressions corresponding to 600 km depth

in the earth and 2892 km at the base of the mantle. At 600 km,

P ~ 215 kbar and K ~ 2000 kbar so P/K =~ 0.11. At the base of the

mantle P x~ 1338 kbar and K = 2000 kbar so P/K = 0.67.

We will first consider NaCl. Since NaCl is a better approximation
to the Born ionic model than any other solid investigated in this thesis,
one would hope for good agreement between theory and experiment.

Table 5-1-Z shows that this is indeed the case. The largest discrepancy
between theoretical and experimental elastic constants is 9. 4% for CIZ'
This is a consequence of the central force model; L8wdin (1948) has
shown that three-body interactions explain this deviation from Cauchy's
relation. The discrepancies in the prediction of the other elastic con-
stants are all less than 4%. The prediction of dK/dPl‘\i’s within 2% of
experiment, while dCllldPLfmd dClZ/dP‘jre both within 5%. Although
dC44/dPEs 200% low, this has very little effect on the high-pressure
predictions since dC44/dP is so small. At (P/Ko) % 0.1 (~600 km in
the mantle), the error in C44 caused by this error in the predicted
pressure derivative is only 8.6 kbar or 6%. The importance of taking
data as a simultaneous function of temperature and pressure is clearly
shown by Figure 5-1-5 for (dK/dP)(T). Note that (dK/dP)l’:.s 4.88, while
(dK/dP)Z98 is 5.35. It is essential that the pressure derivatives be

extrapolated to T = 0 before a comparison is made with the static lattice
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model prediction.

Even the second pressure derivatives have the correct sign and
relative magnitudes, although they are all smaller than the experimental
values by factors of 3 to 8. The second derivatives have virtually no
effect on the predictions at P/K values comparable to those in the mantle.
Since the second pressure derivatives of the elastic constants involve
the fourth derivative of the interatomic potential with respect to the ion
separation, it is quite remarkable that the predictions have the correct

sign and order of magnitude.

Figures 5-1-8 and 5-1-9 summarize Tables 5-1-4 through 5-1-7
in which the effects of the functional form of the potential, the various
multipole terms, and the ionicity are investigated. Note that the
ionicity factor, & , has the largest effect on the predictions with a
value between 0.9 and 1.0 best satisfying the elastic data. This is for-
tunate since any significant lowering of the ionicity would cause an
unacceptable discrepancy between the theoretical and experimental
values for the cohesive energy. The functional form of the potential
only effects (dCllldP)(~and hence also (dK/dP)l; It can be seen that the
exponential form of the anion-anion repulsive energy gives the best fit
to experiment. This is in accord with the conclusion reached by L&wdin
(1948) from the q. m. calculation and by Tosi (1964) from the cohesive
energy. The inclusion of van der Waals and anion-anion terms does not
significantly improve the general agreement between theory and
experiment; the effect is to slightly lower the ionicity at which the best

total fit is achieved. The most striking effect of these terms is on the
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pressure derivative of 044. Note that in Figure 5-1-12, C44 8O€S tO
zero. This is a sufficient condition for a phase transformation (in this
case to the CsCl structure) and has been discussed in some detail by
Anderson and Liebermann (1970). However, the pressure at which the
structure becomes unstable if the second neighbors are included is twice
as large as that predicted by a nearest neighbor model. The conclusion
to be drawn here is that while the occurrence of a shear instability is
predicted, the exact transition pressure is very sensitive to the details
Qf the potential and can therefore not be reliably predicted using Born
lattice models. Returning to Figures 5-1-8 and 5-1-9, the shaded regions
bound the predictions using the various multipole terms as summarized
in Table 4-1-1 and should be thought of as a measure of the uncertainty
in the theoretical predictions introduced by our incomplete understand-

ing of van der Waals and anion-anion interactions.

One final note on NaCl; the compression curve given in Table
5-1-12 and Figure 5-1-12 is insensitive to second neighbor or anion-
anion interactions and agrees within 3% of P with that given by Weaver,
et al. (1968) and Thomsen (1970a). The Birch-Murnaghan curve gives

14% lower pressures at 200 kb.

We will now consider MgO. Figures 5-1-10 and 5-1-11 summar-
ize the calculations given in Tables 5-1-8 through 5-1-10. As with NaCl,
the ionicity factor, & , has the largest effect on the prediction; but
unlike NaCl, the MgO data are not best fit with O-x1. By looking only
at dK/dP for € = 1, Anderson and Anderson (1970) concluded that the

power law gives a better fit than the exponential, as is evident from
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Figure 5-1-10. However at 4 = 1, note that the predicted value of EII

is 50% too low. Note further that for + = 0.7, the predicted Ell is
only 10% too low, while the exponential potential gives an excellent fit
to dKIdPr; Also, the fit for (dClz/dP)LgetS progressively better as the
ionicity is lowered. As for NaCl, the predicted (dc44/dP) for MgO is
too small, but because of the small size of this derivative, the uncer-
tainty introduced in C,, at P/K = 0.1 (600 km in the mantle) is only
168 kbar or 10%. When translated into a velocity this gives an uncer-
tainty of ~5%. The large deviation from Cauchy's relation (C12 = C44)o
observed in MgO is due to the large size of 02- relative to Mg2+. La
and Barsch (1968) discuss this discrepancy using L&wdin's (1948) q. m.
formulation. For the central force model discussed here, a 20% error
in one or both of these elastic constants is inescapable. In spite of the

problem of the deviation from Cauchy's relation, it appears that an

exponential potential with & = 0.7 gives the best fit to the data.

Note that the van der Waals and anion-anion interactions have
much less relative effect in MgO than in NaCl. There are two reasons
for this. First, from Table 4-1-1 it can be seen that the coefficients
are smaller for MgO than for NaCl. Second, because MgO is divalent,
the electrostatic and repulsive terms make a larger relative contribution
to the elastic constants. Since this is the case for all mantle candidate

minerals, the calculations can be greatly simplified.

In Figure 5-1-13 the elastic constants and the volume have been
plotted for 4 =0.7and <4 =0.6. The compression curve is not

sensitive to this small change in ionicity and is in good agreement with



131

the Birch-Murnaghan curve (Chapter 2 , eqn.2z-1-19). As for NaCl, the
transition pressure of MgO is very sensitive to the details of the potential,

in this case & , while the predicted values of C,, and C,, are relatively

11
insensitive.

It should be noted that lowering the ionicity factor to 0.7 has
important consequences in the calculation of the cohesive energy. The
experimental value of the cohesive energy is not known since one step in
the Born-Haber cycle, the heat of formation of 02—, is not known. The
usual procedure is to use a Born lattice model with & = 1.0 to calculate
the cohesive energy and thus solve for the unknown AH? (02-). Gaffney
and Ahrens (1969) found A Hfo(OZ_) = 202. 3 kcal/mole by this method.
However, upon redoing their calculation for & = 0.7, one gets the
unacceptable result AH;(OZ-) =-35.2 kcal/mole. The conclusion is
that while lowering the ionicity improves the shape of the cohesive
energy curve, it introduces an error in the total depth of 10-20%. This

energy calculation is given in Appendix &

In summary, NaCl elastic data are best fit by an exponential
potential with 0.9 < ¢ < 1.0. The MgO data are best fit by an exponen-
tial potential with 0.6 < 4 < 0.7. Based on this simple structure for
which good ultrasonic data exist as a simultaneous function of tempera-
ture and pressure, it appears that the Born model is capable of pre-
dicting elastic wave velocities of oxides in the lower mantle to an

accuracy of 5%.
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TABLE 5-1-1

Short-Range Sums for the Rock salt Structure

Cation-Anion

B 4
X

(%) (i) (xu-f (V')

th

Neighbor
Number

Qe O S O

[s <1

Anion-Anion

R
R?.

RZ.

Rl

10
11
12
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TABLE 5-1-2

Static Lattice Parameters for NaCl

Lattice
Experimental Model Prediction
Parameter Units Source Value Value Model
v cm /mole Fig.5-1-1 26.0
R A Fig.5-1-1 2.784  Input
Ref. (1) 2.785
K kbar Fig.5-1-1 284.7 Input
Ref. (1) 285.5
G, kbar Fig.5-1-3 600 577 DIE
Ref. (2) 614
Ca kbar Fig.5-1-3 127 139 DIE
Ref. (2) 121
Cu kbar Fig.5-1-3 140 139 DIE
Ref. (2) 139
K’ Fig.5-1-5 4.88 4.78 DIE
G, Fig.5-1-4 11.3 10. 7 DIE
Ch Fig.5-1-4 1.7 1.8 DIE
Ca Fig.5-1-4 0.15 -0.16 DIE
K" per kbar Fig.5-1-5 -0.084  -0.02 DIE
Cir per kbar Fig.5-1-4 -0.13 -0.05 DIE
G per kbar Fig.5-1-4 -0.05 -0.006 DIE
(o3, per kbar Fig.5-1-4 -0.01 -0.006 DIE

Model DIE has an ionicity factor & = 1.0, an exponential repulsive
potential, and van der Waal constants from Mayer (1933) (see
Table 5-1-7).

Ref. (1) - Thomsen (1970a)
Ref. (2) - Thomsen (1970b)
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TABLE 5-1-3

Static Lattice Parameters for MgO

Lattice
Experimental Model Prediction
Parameter Units Source Value Value Model
R A 2.093 Input
Ref. (1) 2.089
K kbar Fig.5-1-6 1687.7 Input
Ref. (1) 1733.8
& kbar Fig.5-1-6 3100 2680 G.7E
Ref. (2) 3351
Ca kbar Fig.5-1-6 960 1190 G.7E
Ref. (2) 924
) kbar Fig.5-1-6 1600 1190 G.7E
Ref. (2) 1634
K' Fig.5-1-7 3.8 3.9 G.7E
c, Fig.5-1-7 8.7 7.8 G.7E
c. Fig.5-1-7 1.5 2. G.7E
CL Fig.5-1-7 1.0 0.003 G.7E
K" per kbar -0.003 G.7E
(ol per kbar -0.005 G.7E
EI’JL per kbar -0.001 G.7E
cu per kbar -0.001 G.7E

Model G.7E has an ionicity factor < = 0.7, an exponential potential,
and both van der Waals and anion-anion interaction.

Ref. (1) - Thomsen (1970a)
Ref. (2) - Thomsen (1970b)
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TABLE 5-1-11

Predicted Volume Dependence of the Pressure and

Elastic Constants for NaCl

Inputs: X =2.784 A,

Case 1: Cae = C» ~ Dm =0

R VIV P Car

(&) (kb) (kb)
2.784 1.000 0 133.5
2.700 .912 32.61 118.3
2.650 . 862 60.05 102.6
2.600 . 815 95. 41 80.1
2.550 .768 140.8 49.0
2.500 .724 198.7 6.7
2.495 .720 205.3 .7

Cr
(kb)

133.
183.
222,
271,
330.
404.
412,

5
6
7
0
2
0
3

K = 284.7 kbar,

Cy
(kb)

587.0

931.6
1203
1537
1948
2453
2509

$=1.0

Cn i CI?,
(kb)

453.5

748.0

9799
1266
1617
2049
2097

-e0 & -0 ®
Case 2: Cpp=11.2x10 ergcm, Cgp=116x10 ergcm’
= 1594 x 10™“erg cmR

R
(&)

. 784
. 700
.600
.500
.400
. 380

[ SS TR oS TR VRN ST O H

v/

1.000
.912
815
.724
. 641
.625

P
(kb)
0
32.60
95.50
199.6
370.3
415.9

Cuas
(kb)
138.8

131,
1L1.
g s 18
15.

(%

N OO o~ W

Ciz

(kb)

138,
196.
302.
473,
756.
832.

8
5
1
0
2
9

(Mayer,

Cy
(kb)
576.5
905.7
1482
2355
3683
4022

1933}

C- Cn

(kb)
437.8
709.2

1180
1882
2926
3190

K
(kb)

284.7
432.
549.
692.
869.
1087
1111

O O W o

K
(kb)
284.7
432.9
695.3
1100
1732
1896
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TABLE

5-1-12

Predicted 298°K Compression Curve for NaCl

P(V,T) = PO(V) + PV, T)

-aW(V
Fy (V) _aT(/_) P*(V,T) = -%- Wyio
o3
Woy* MR, * MRTD(ST) ,  DOO- %S é‘iT&%
Assume P*(V, 298) = constant
¥ = 26.0 cm® /mole R=2.784 A @, =327°K
Vpe= 26.99 cm®/mole  Rpg= 2.819 A K =284.7 kbar
& - 1.0
Case 1, Chp = Cep = Dyp =0
R VIV ViV, P,(V) PxV,T) P Birch-
(4&) (kb) (kb) (kb) Murnaghan
2.819 1.038 1.000 -9.8 9.8 0 0
2.784 1.000 . 963 0.0 9.8 9.7
2.700 .912 .879 32.61 42.4 39.9
2.650 . 862 . 830 60.05 69.9 65.0
2.600 . 815 .785 95. 41 105.2 95.1
2.550 .768 . 740 140.8 ] 150. 6 134.2
2.500 . 724 697 198.7 208.5 183.2
2.495 . 720 .694 205.3 215.1 187.2

Birch-Murnaghan Parameters:

Ko = 238.4,

Kig=5.35

(Spetzler et. al. 1971)

continued. ..

To
Diff.

11
12
14
15
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TABLE 5-1-12 (continued)

-L0 ~60
=11.2x10 ergem®, Gy = 116 x 10 erg cm®

O
o

w

o
.N
0O
>
)

]

Dy = 1594 x 16" erg cm®

R VIV V/Vse Po(V) Px(V,T) P Birch- %

(R) (kb) (kb) (kb) Murnaghan Diff.
2.819 1.038 1.000 -9.8 9.8 0 0 0
2.784 1.000 .963 0.0 9.8 9.7 1
2.700 .912 . 879 32.6 42.4 39.9 6
2.600 .815 . 785 95.5 105.3 95.1 8
2.500 . 724 . 697 199.6 209.4 183.2 14
2.400 . 641 617 370.3 ' 380.1 321.5 18
2.380 . 625 . 602 415.9 425.7 357.3 19
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TABLE 5-1-13

e

K

(kb)
1688
2139
2788
3602
4627
5918
7548
9619

11571

K

(kb)
1688
2177
2892
3805
4972
6467
8385

Predicted Volume Dependence of the Pressure and
Elastic Constants for MgO
Inputs: K =2.093 & Cos = 7-8x 10" ergs cm
K = 1687.7 kbar Cp = 8.46 x 10°° ergs cm¢
Dap = 35.8 x 10°“ ergs cm?

Case 1, $=0.7

R VIV P Che Ce G G~ Cp

(4) (kb) (kb) (kb) (kb) (kb)
2.093 1.000 0 1190 1190 2683 1492
2.050 .940 118.7 1183 1420 3576 2156
2.000 .873  300.4 1150 1751 4860 3109
1.950 .809 542.0 1085 2169 6468 4299
1.900 .748  861.3 977.7 2700 8479 5779
1.850 .691 1281 817.2 3380 10991 7611
1.800 .636 1832 591.6 4256 14130 9874
1.750 .584 2555 289.3 5398 18061 12662
1.712 .547 3251 2.3 6504 21706 15202
Case 2 =0.6

R VIV P Cax Gy Cu Gy~ Cua.

(A) (kb) (kb) (kb) (kb) (kb)
2.093 1.000 0 1023 1023 3017 1994
2.050 .940 119.8 1000 1240 4051 2811
2.000 .873  306.6 943.6 1557 5561 4005
1.950 .809  559.6 845.6 1965 7485 5520
1.900 .748  900.0 692.8 2493 9932 7439
1.850 .691 1355 469.2 3180 13040 9861
1.800 .636 1963 155.5 4081 16991 12910
1.780 .615 2259 -0.02 4518 18857 14339

9298
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TABLE 5-1-14

Predicted 298 °K Compression Curve for MgQ

P(V, T) = B(V) + P*(V, T)

By (v) =" PRV, T) = & W

X .3
\"/vub = %NAKBGD +3Np. ha-r D( eD/T) 5 Dx) = %J So Z &2

Assume P*(V, 298) = constant

V = 11.045 cm® /mole R = 2.093 A s = 966°K
= 3 = A T -
Vo= 11.24 cm?®/mole  Ry= 2.106 A K = 1687.7 kbar
Casel, Jd=0.7
R VIV, VIVee B(V) PxV,T) P Birch- %
(&) (kb) (kb) (kb) Murnaghan Diff.
2.106 1.019 1.000 -30.2 30.2 0 0 0
2.093 1.000 . 982 0.0 30.2 30.2 0
2.050 . 940 .923 118.7 148.9 146.0 2
2.000 .873 . 857 300.4 330.6 337.2 2
1.950 . 809 .794 542.0 572.2 587.2 3
1.900 .748 .734 861.3 891.5 921.2 3
1.850 . 691 .678 1281 { 1311 1357 4
1.800 . 636 .624 1832 1862 1943 4
1.750 .584 .573 2555 2585 2720 5
1.712 . 547 .537 3251 3281 3457 5
Birch-Murnaghan Parameters:
Ky = 1605, Kl = 3.89 (Spetzler, 1970)

continued. . .
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TABLE 5-1-14 (continued)

Case 2, &=0.6

R VI V/Vmg  PBy(V)  P¥V,T) P Birch- s

(A) (kb) (kb)  (kb) Murnaghan Diff.
2.106 1.019 1.0 -30.2 30.2 0 0 0
2.093 1.000 . 982 0.0 30.2 30.2
2.050 . 940 .923 119.8 150.0 146.0 3
2.000 .873 . 857 306.6 336.8 337.0 .1
1.950 .809 .794 559.6 589.8 587.2 .4
1.900 . 748 .734 900.0 930.2 921.2 1
1.850 . 691 .678 1355 \ 1385 1357 2
1.800 . 636 .624 1963 1993 1943 3
1.780 .615 .064 2259 2289 2217 3
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5-2. The Spinel Structure

In the last section, equations (3-3-99) for the elastic constants
were specialized for the cubic, diatomic, sodium chloride structure. In
this section, these equations are worked out for the more complex,

triatomic, spinel lattice.

The Consistent Pair-Potential Assumption

When treating polyatomic solids in the Born approximation, it is
important to differentiate between the various types of bonds rather than
lump all cation-anion repulsive interactions into one term of the form
B/R"” or )\e-R/P , as is usually done in the literature. For example,
in the case of A2B04 spinel, there are six distinct two-body interactions,

given below.

Cation-Cation Interactions:

= 2 -,-& >
@AA("\ ‘q_ﬂﬁ\_ 1 DM _"C.%L (5-2-1)

Taa
Purr= pge
Py
Cation-Anion Interactions;
(ry= “&! 0\ V, — CAD
R A S e
(F)= | . Vao(r) - Cag
oo %%—-i— =
8

Anion-Anion Interactions:

(5-2~3)
Do) = %%:;
(a

Co

_Ce 4 D
() &)
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Note that there are now two empirical cation-anion repulsive

functions (V {r), VBo(r) ), and hence four empirical parameters A

AO AO
/OAO’ )\-BO’ /OBO' If only the bulk modulus and density of the spincl
are known, only two of these parameters may be evaluated. However,
this problem may be circumvented if one makes what I shall call the
""consistent pair-potential assumption''. This is the assumption that the
two empirical parameters of the cation-anion repulsive interaction ka‘(r)
depend only on the type of ions interacting. They are assumed to be
independent of the specific solid in which this interaction takes place

and of the coordination number of the cation in the solid. Thus, for the
MgO’ /OMgO h VMgO(r)

that were determined from % and R of MgO in the last section. The

case of AlZMgO4, one can use the empirical A

measured values of K and R for AlZMgO can then be used to find the

3

parameters )LAI and fDAlO in the aluminum oxygen repulsive potential

O

For the case of MgZSiO spinel, which is of direct interest in

VAlo(r).

the lower mantle, no ultrasonic or compression data exists. However,

4

by using the consistent pair-potential assumption, VSEO(r) may be deter-
mined from the data on SiO2 stishovite. In this way the elastic constants

and their pressure dependence may be estimated.

The consistent pair-potential assumption can be tested using
suites of solids containing the same cation-anion pairs for which good

ultrasonic data exists. For example, V (r) and V shown

Alo(r) are
and AIZMgO4 in

MgO
to be self-consistent for the series MgO, A1203,
Appendix 4. Further tests of this assumption should be one of the goals

of future ultrasonics work in geophysics.
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Tosi (1963) reached the conclusion that repulsive parameters
cannot be transferred from structure to structure, since he could not
accurately calculate the observed energy change associated with the
transformation of NaCl from the rock salt to the CsCl structure using
only one set of bond parameters. However, since the energy change is
such a small part of the cohesive energy (typically 1%), and since
volume dependence of the Gibbs free energy of the two structures are
subparallel in G, V space, the requirement that the Born model describe
such phase transitions is far more stringent than the requirement that
it reflect the effect of structure on the elastic constants. When the
elastic constants are measured through such a phase change, this test

will be possible.

Specialization to the Spinel Structure

The spinel unit cell, with cube edge R, contains eight A,BO,
molecules and is diagrammed in Figure 5-2-1. It may be described in

terms of fourteen interpenetrating F.C.C. Bravais lattices as

(Wyckoff, Vol. 3, 1965)

Mg: 000 Yals 74
Al: %h%%h; eV’ BB BB %

(5-2-4)
O: UUWU; WA ; MU, %W, - AW, Ui U e

UTW ) UUTRy U, Jam U, Uk Vi s Usle, Ushe V-

Any lattice site may be reached from one of the above fourteen

sublattice origins by a linear combination of the F.C.C. basis vectors:
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A =R(Ok, %) 5 Q.= R(12,0,%2) 5 Qs=R(},12,0), (5-2-5)

The W parameter is 0.375 for oxygen ions in perfect cubic close

packing; for Al,MgO,, W = 0.387.

2 4

Since spinel has cubic symmetry, there are three independent

elastic constants

Q= Cy= Cm = By, = LM + (1)
Cio= Cay= Cpa= Cap= Cia= Gy = “m,.abu{}[}u]+ nz2) (5-2-6)
Cop Cos = Co = Aoaza = [223%] + (2322) .

For the spinel structure, internal deformations make a contri-

bution to the elastic constants since the B-type site 1s not a symmetry

center. The round brackets were computed according to their definition

IV, e N (5-2-7)

, \
(OEFX) = =137 [T, (k) %Cﬁlym‘wf@)-
ZQS/;A(H):“' )T

where

(5-2-8)

Cly (k)= —ZT_ 7 i) 25 L)

Mhmk"
as was derived in Chapter III.
It is not possible to compute the coulombic and non-coulombic
contributions to the round brackets separately since the entire Q(O)

matrix must be inverted to yield g .

Writing the square brackets in terms of coulombic and non-

coulombic parts
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¢ N
[o83] = [opav 2]+ [aB AL,
The coulombic sums were computed directly according to equations
(3-3-52) - (3-3-54). The sublattice indices k, k' ranged from 1 to 14
with x(k) given by (5-2-4). The sum over the direct lattice was taken
Ey= " -
over the vectors x(,7,) = x(k') - x(k) + Qlal + QZaZ + Q3a3 where

the basis vectors a, are given by (5-2-5). The h sum was taken over

the reciprocal lattice vectors

b(h) = hlbl -~ thZ - h:,)b3
where 1 1 1
bl = ﬁ('l, 1. 1)z b2 = _R(l»'l'l); b3 = i(lil'-l).

The details of these lattice sums are given in Appendix 3. The results

are

U= 0.375 (perfect cubic close packing of oxygens)

Madelung constant O(M =128.6 for R = 8.09 /o\, q=le
Electrostatic (1111] € = -1973. (5-2-9)
S [122)© -986.4 | 3q°/2R*
Square Brackets [1212] e =300.8
M= 0.387 (AIZMgO4)
Madelung constant (XM = 132.6 for R = 8.09 &, q = le
Electrostatic [1111]¢ = -2069 (5-2-10)
Contributions e _ 2 4

5 this (1122]e = 1034 Jdq°/2R
Square Brackets [1212]3 = 326.9 :

The square brackets are plotted as a function of U in Figure 5-2-6. The

Madelung constant for W = .375 is in agreement with that given by
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Waddington (1959). Although the trend is the same for larger A, the
values computed here using the Ewald method are ~ 2% smaller than
those reported by Waddington (1959) based on an Evjen calculation.

The electrostatic contribution to the elastic constants have not previously

been computed for the spinel structure.

The expressions for the elastic constants are formally identical
with equations (5-1-4) given in the previous section. For these

equations

o, =[n]° 28 = —1975. , (-2069))
-cho
D{,f{a[lm_]f[nnji% - —3B48 , (-380.4)
9
o 0= IlZ.ZJ%: 98k.4 , (1034)

)

where the numbers in parentheses are for A = 0.387. Note that these

(5-2-11)

sums meet the required internal consistency checks
Ky = = R N py

Ay F20p) Vo = —4 Un
( | ll)egs 372':‘

where /n; = number of molecules per reference cell of volume Va'
The short-range sums in the CiNj part of equation (5-1-4)

may be easily done by hand with the help of Table 5-2-1 which gives

the nearest and relevant next-nearest neighbor positions of the cations

and anions. With the help of this table, the elastic constants may be

written as,
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Co=0dq o\ (4R A + Quodd] +
22%’ 2Va [ 3% 3°°]

+ 8 ol 45) + Quo(@+457)] + B[R (24742885 R)
+ Qoo (25t 4325 R | E + (i)
= 1 _ 2
Ca d_\;%%— +§‘\7‘;{4{ %Og“rﬂ-o +an£’}.rgg] +

B
+ 8[—%(2'1}’442-?14'822*’ 21/4) i Qoo(.uf*_g(—*’gd-_va“ﬁzg)]% +(”Zl) ( 2 12)

- 2 4
Cpa= 0’(2%%1+21_\1:. {4[@0%@ +QBO%@J N
+ B[Ro(282+45%) + Quo(4p752+25%)] + B[ Ro(2Y 4 28> 405 +R%) +
~Quo( YH+34+54 + R‘/ae,)] ﬁ +(1212)

The B, & , and £ parameters are defined in terms of the

reference dimension R and . parameter according to (see Table 5-2-1)

fo= VAR+2S: A= (F-U)R
Gor T3 (U /)R - (u-)R e
(o™ 'V?Q/A— $= ('LL‘ Bé)k

Since the O—Q interactions are relatively unimportant, we have taken

all r

s, to be equal. The various Pkk' and Qkk" k = A, B, O are given

in terms of the two-body potentials by
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ﬁo~[L(&®ho)] = Vap + eCac
" L5 a0 fao f:g
=[1d /1 4Bwo = —Vao 4+ Vao _ 48Cao
Qo [f‘dr(r dlr-m)],;o rngo +_;§fi Gy
Rzl L (&@,,,)W = Vao , GCep (5-2-14)
L'r' dr Jrao rgo rgoa
=lLd (L = i Va 48 Ceo
Qe [T‘dr‘ r %r’ )1% T—E % r:, =0
b L, & — o
Ro[k(48e)] - ccp-apy

In equations (5-2-12) for the elastic constants, note that the

identical terms PBO = POB’ PAO = POA, QBO = QOB’ QAO = QOA

have been combined.

Evaluation of the Empirical Parameters in VAO and VBO

Before the elastic constants can be calculated, we need to evalu-
ate two of the empirical constants, 7\9 and/Dn or ?‘B and /Dc, ;
depending upon whether the A—O or the B—O is known from data on the
relevant diatomic solid. The energy density of the static lattice is

given by

W= 'lé_'Nn( 2U, +UB + 4Uo) c.\"oss/nno\e

= Na} ~0‘~§;‘ + 2% o] Violr) - CT:C] + (5-2-15)
Ao

+?-eoI_Vao(") _e__] + azm{ Coo +D.,o]

where

N
I
i
o

AO Coordination number of the A-type ion

N
i
I
S

BO Coordination number of the B-type ion
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ZOO = Number of oxygen second neighbors to a given
oxygen = 12

Since we now wish to take derivatives with respect to the lattice

constant R, it will be more convenient to rewrite equation (5-2-15) in

terms of R using (5-2-13),

w: NR { —'O(rr\Rﬁgz + R%Eno VA/O(Q) - %] 5

(5-2-16)
+iu] - ]+ 2L« T ]
where P VW R fpac
V(e - lwe:f"(u Va) R [Peo
Cro = Coo /(=Y u+3u)?
Cao~ Coo/ 27(U-1a)° (5-2-17)

Cos BRLw

Doo X 262144 Doo

To save needless algebra, the COO and DOO parameters have
been written as though the 02- ions were in perfect close packing.
This approximation was made in light of the result from the previous

section that the O—0O interactions have little effect on the bulk modulus.

The equilibrium condition has the form
(&W) == anm + Zino[ (K} 1 G c ] r
drR /3 LY

+ 2 Vo () + g _g F 22| &2 _“1%{“

(5-2-18)
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where the prime denotes differentiation w.r.t. R.

The bulk modulus is computed according to the relation

o
K=V g ,

An expression for the volume per mole V in terms of the reference

dimension R may be written in a form applicable to any structurc as

_r ~ Y3
v C, R=(CV) (5-2-19)

where C1 = moles/reference cell = nllNA

where 471 = molecules/reference cell.

For the NaCl structure ’}71 = 142, Cl = l/ZNA

For the spinel structure /Vll = B, C, = 8/NA

At equilibrium:

&, RG]

Differentiating equation (5-2-18) with respect to R gives

ot - N 2t oG] 5221

-4 -42 o0
2] « 2 e el

So the bulk modulus may be written

K= é{ -Q0mdal | 234 B _ 42 Cgl 4
2 T [ R ey (5-2-22)

+1ao[\7 o . 4&.,&] + fﬁoo[ 4200 4 'S%Eﬂg
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As for the case of NaCl, we can write

v,ll - —-S_Fro V,J

"o B (5-2-23)
" ]

CORE S

Using the equilibrium condition (equation 5-2-18)

Vo= <= O(F\%gg 2 @ +6Ce 122, ] CCo _128] \ — GCao

i a%m( e ¥ °°Y.‘°2+?&i+ I-_?' 51 B (5-2-24)
©Cao
—*T'

e (2 ] - ) -

=3

Equation (5-2-22) gives

A 9K+ao( Voo -4LC,° _ 2%, |-4 5t Dos -2-
wox {3 _r g} - o229
+47%¢po .

Equation (5-2-23) may be written

510 = —E(@)
Vao \ R

which, together with (5-2-24) and (5-2-25) gives

g ] oGl e ) g
zz.oﬁ—%% +ieo[Veo +GC&] + gzﬂ[c,cf.. L ]} 46 a.., .

ootro
x

(5-2-26)

By identical algebra, one may also obtain

R 2 - 22] o - an) o] il e
Y +3im[ e%;g}zz,,[(zg— ‘w"’]f"a’é” =

For the exponential form of the cation-anion potential, which is the only

oo

§=

P
sa

{
{ %%

one we will investigate for the spinel structure, equations (5-2-17) give
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R
NS e
5 (5-2-28)
_l ——
The second empirical parameters, Aa or Ago , may now be

evaluated using equations (5-2-24) and (5-2-17).

Y Juaawd Rp,

(Vi) = —%o\l'_m(; Je
. = =L (0_<_~_z_<a¢+z [\r (EH@C.J +2Z [C_Cf,%@ﬂ)_%m (5-2-29)
AD 13 R
JW ’°
7\ {a %u+3u=- {2%0(0(%%—% +2so[\7' (%) (p%“[

-] ]
By identical algebra
v(w- /4)‘1//050

10 Bo
TAE(U-Ya)

{ | (o_(ﬂix%,,,zi [v,o(ﬁh :{ (5-2-30)
rerige g e}

The Volume Dependence of the Bulk Modulus and the Pressure

The volume dependence of the bulk modulus is given by

K(RY~ VAW _ v M(dﬂ)ﬂ AW LR (5-2-31)
Aav: dR*\ qv AR AV

By using (5-2-19) for the V derivatives of R, and using (5-2-18) and

(5-2-21) for the R derivatives of W, equation (5-2-31) may be written
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K(®Y= ~4thda . 22, [ Vio _ 2V _ 540
 § Sl -2k ge )+

o1 -] e g s

where, according to (5-2-17)

T
| _{%iqgiigi_T /oo
Vi = —Z\_npm —R—)

) fro

Y

The pressure-volume relation is given by

P= AW _ _aw 48
av dg Qv

Using (5-2-18) and (5-2-19), gives
Pe gt e[ o) 2l 0 5]

-5

(5-2-32)

(5-2-33)

Equations (5-1-35) and (5-1-36) may be used to derive explicit

expressions for the pressure derivatives of the elastic constants.

However, because of the excessive algebra, these derivatives will be

found by finite differencing on the computer.
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Numerical Predictions for AlZMgLOA and Discussion

Linear extrapolation of V(T) and(K/V)(T) from the high temperature
regime to T = 0°K gives the two input parameters R = 8.001 A and
K = 2140.6 kbar (see Figure 5-2-2). Since the ultrasonic data for MgO
was best fit by an exponential cation-anion potential with ¥ 2 0.7; the
parameters A‘o and /an found for model G.7.E in the last section were

used here. Equations (5-2-26), (5-2-28), and (5-2-29) were then used

to find the other two parameters ), and /Dm, for the AlI-O interaction.

Having thus obtained all the required parameters, equation (5-2-33)
was used to compute P(R), equation (5-2-32) to compute K(R), and
equations (5-2-12) to compute Cij(R)' The results of these computations
are summarized in Table 5-2-2 where they are compared with the
ultrasonic data of O'Connell (1971). It should be pointed out that these
data are for non-stoichiometric spinel of composition MgO-2.61 AL, O,.
Preliminary results of Lewis (personal communication) and O'Connell
indicate that the elastic moduli are relatively insensitive to variations
in stoichiometry, changing by less than 5%. The effect of non-

stoichiometry on the pressure derivatives has yet to be measured.

An interesting result of these calculations is the distortion of the
spinel structure from cubic close packing of the oxygen ions. If one
assumes that the oxygens are close-packed and solves for Ag and /opo
using % = .375, one predicts elastic constants in poor agreement with
experiment (Table 5-2-3). The ]nrof.'k disagreement is for C,, and is

due to the large negative contribution from the internal strains. In
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Figure (5-2-5) the cohesive energy (equation 5-2-15) is plotted as a
function of W for P= 0. The energy has a minimum for W = ,392.

This says that if a spinel crystal having W= .375 and the repulsive
parameters associated with that oxygen parameter were allowed to find
its equilibrium configuration at P = 0, it would distort to W = .392
(expanding from R = 8.00 A to R = 8.09 A). The energy curve for

P =400 kb is also given, showing that the W parameter does not change
with pressure for this model. The observed oxygen parameter is

W = .387 (Wycoff, 1965). If Aas and fro are found for this W, the
lattice will again distort to U= .392, but the associated expansion is
only from R = 8.00 & to R = 8.05 A. The elastic constants in this case
are in much better agreement with experiment (Table 5-2-2). Since the
crystal is nearer its preferred distortion, the contributions to the elastic

constants due to internal deformations are much smaller.

The distortion in this direction is due to the increase in the
Madelung constant for larger L . This allows the crystal to distort
and expand while still increasing the absolute value of the cohesive
energy. The equilibrium W is also a function of the relative strengths
of the Mg—O and AI~O bonds -- the fact that the model predicts a W
close to that observed is confirmation of the consistent pair potential
hypothesis. Conversely, the measured 1L parameter can be used to
further refine the Mg—O potential, the readjustment being made in the
ionicity factor, ¥ , for MgO, which is not precisely determined by the
elastic data for MgO. However, the discrepancy between calculated

UL = .392 and observed WA = .387 may be due to a shortening of the
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Mg-O bond due to a covalent contribution in the bonding -- and thus
beyond the scope of this model. The inclusion of van der Waals and
oxygen terms in the cohesive energy does not significantly change these

results.

For spinel, as for NaCl and MgO, the predicted elastic constants
and their pressure derivatives are not significantly changed by the
inclusion of van der Waals and oxygen-oxygen second neighbor inter-
actions. We shall therefore not include second neighbor effects in the

next section on the rutile structure.

It is interesting that, experimentally, AlZMgO4 looks like a
"Cauchy-solid' since Cy,~ C,,- One might be tempted to assume that
this implied central forces. However, since spinel is not centro-
symmetric, the central-force model predicts C12 £ C44. The difference
between theory and experiment is presumably due to the same three-body
forces responsible for the large deviation from Cauchy's relation observed

for MgO.

In Table 5-2-2 the elastic constants and their pressure deriva-
tives are given both with and without the round brackets. It can be seen
that these contributions from the internal deformations have a large
effect on the pressure derivatives — changing dC44/dP and
d/dP[—é-’ (Cyq- Clz)] from positive to negative. This result will be
seen to be also true for the silicate spinel,MgZSiO4)investigated in the
next chapter; it leads to the unsatisfactory result that dV4,/dP is negative.
It is important to note that while the induced dipole moments do not con-

tribute to the square brackets, they do make a contribution to the round
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brackets (Cowley, 1962), and should be investigated in an attempt to
remove this important discrepancy between the rigid-ion model and
experimental data. Work in this direction is already in progress

(Striefler and Barsch, 1971).

The geophysically interesting MgZSiO4 spinel will be treated in
Chapter VI, using the Mg—0O bond parameters found for periclase in the
previous section and the Si—O bond parameters found for stishovite in

the next section.
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TABLE 5-2-1

Neighbor Positions and Short-Range Sums for the Spinel Structure

For k = B, the k' sum is over the 4 nearest oxygen neighbors

. =137 , T=(u-Y%)R, R = cell edge
Site Type 1
k k! x,(kk')  x,(kk')  x (kk') | xf o 3k x*
1 14 =¥ -1 v ¥ Vi V&
1 13 -1 1 -3 i
1 10 L] -1 —¥
1 9 7 i ]
e o i = Iry
Site Type 2
k k' x, (kk') x,(kk') x5 (kk') :5_,‘ x‘,x;_ x4
2 7 -¥ -3 -3 i i
2 11 ¥ b -1
2 12 ) -} i J
2 8 -} J J
%4%@; 3 i 20N

(continued. . .)
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(continued)

For k = A, the k' sum is over the 6 nearest oxygen neighbors

Lo, = VB%+ 2§ , B = (5B-1)R, 5= (W-3B8)R

k k' x, (kk') X (kk') X3 (kk') %= o g x&
3 8| s 5 5 V3 A5 A
3 10| -5 -8 # el p*
3 12| $ I 5 8 pY ¢
3 13| -8 7 - S *
3 11| ¢ 5 p v s s
3 14| -5 =8 A 5* £ #
4 8 -5 -9 p s e
4 -p 5 $ A* P‘-S‘ /A*
4 14| -5 P 5 e 3
4 11 5 - -5 §? st gt
4 12| S -5 - s s 3
4 13| -$ S A 5 st s*
5 14 5 -5 5 & A A
5 11 - s -§ # o /64
5 7 i S ﬁ -5 gz Plst S‘l
5 9 S _/5 S 82 /5151— §4
5 8 _s s - g g4 ¢t
5 10 s -5 . ¢ " st
6 13 8 S -5 /5‘ ’5’5‘ /34
6 12 - - s A Vi /B‘
6 10 < 2 -$ < /e’ﬁ‘ s
6 8 = -p s g g g4
6 - b p 5 ¢* s’

6 s g - g 5* 5*

(continued. . -)



180

TABLE 5-2-1 (continued)

For k = 0, the k' sum is over the 12 nearest oxygen neighbors
(second neighbors). Only x;(kk') for k 7> k' are tabulated since
xi(k'k) = -xi(kk').

S= U-¥p §= Au-Jo W =2~
k| x, (kk') x, (kk') %, (kk')
7 8 [e) £ g
12 i £ o -
13 - Yo 25 -Ya
10 P& - Y4 Va
11 2 kS ©
11 | # O
14 -Ya Vo Fe3
14 | & -4 25
8 ) N gy
12 A O M
13 | W% 2% Y.
10 25 2 -
8 12 T =% O
12 <l i o
13 ~l/a -4 25
13 | /& Va4 RS
11 £ o -~
14 a -25 #
9 25 Ja -4
11 /4 o -M
14 Y -2§ Y&
9 | 2 -4 X
xi(8, 7] = -xi('?, 8)

(continued. . .)
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TABLE 5-2-1 (continued)

k k! x, (kk') x4 (kk') x5 (kk')

9 14 -M =P @)
14 -7 ~% o)
11 Ya -4 -2%
11 ~1/a /4 2%
13 M 0 -m
10 0 -M - M
12 ~Ifa -2% s
13 -5 0 -8
10 O - o
12 8 -2§ -

xi(9’ 8) = 'Xi(B, 9)

10 13 = m o}
13 -3 P4 o)
12 -4 s 25
12 4 fa- RS
14 ¥ O !/
11 -Ya. 25 y/
14 - (@) =
11 71 25 Va

x,(10,9) = -x,(9,10)  x,(10,7) = -x,(7, 10)

11 12 0 - M
13 -25 /0 Ya
12 o) -5 g
13 2§ —\/a - Y&

x 11, 7) = -x,(7, 11); x.(11,8) = -x(8, 11); x(11,9) = -x.(9, 11);
x,(11,10) = -x.(10, 11)

(continued. . .)



182

TABLE 5-2-1 (continued)

k k' | x, (kk') x, (kk') x5 (kk')
12 14 -2 -lfa - Y4
14 -25% Ya Vi
x,(12,7) = -x,(7, 12); x,(12, 8) = -x,(8, 12); x,(12,9) = -x,(9, 12);
xi(lz, 10) = -xi(IC‘, 12); xi(12, 11) = -xi(ll' 12)
13 14 0 = "
14 =% t
(13, 7) = -x,(7, 13); x,(13, 8) = -x,(8, 13); x,(13,9) = -x,(9, 13)

xi(l3, 10) = -xi(lo, 13); xi(13, 11) = -xi(ll, 13)

x,(14, 7) = -x,(7,14); x;(14, 8) = -x,(8, 14); x,(14,9) = -x,(9, 14);

x,(14, 10) = -x,(10, 14); x,(14, 12) = -x,(12, 14); x,(14, 13) = -x,(13, 14)
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TABLE 5-2-2

Static Lattice Parameters for AIZME;O4 Spinel

Ideal AlpMgO4q4  Al;MgOgy
Structure  Structure Incl.vander
No No Waals OO Experimental

Multipoles Multipoles Interactions

Param. Units U= 0.375 W= 0.387 U= 0.387| Value Source
R A Input Input Input 8.001 Fig.5-2-2
K kbar Input Input Input 2140.6  Fig.5-2-2
£, kbar 2650 2916 (3402) 2934 3082 Fig.5-2-3
Ca kbar 1755 1709 (1509) 1714 1564 Fig.5-2-3
Gk kbar 249 1130 (1509) 1110 1617 Fig.5-2-3
K! -- 3.8 3.7(3.7) 3.6 3.9  Fig.5-2-4
C! i 4.6 3.1(6.2) 3.0 4.4  Fig.5-2-4
cL -- 3.5 3.9(2.5) 3.8 3.6 Fig. 5-2-4
Gl -- -0.71 -0.30(.45) -0.39 0.8  Fig. 5-2-4

< = 0. 7) Numbers in parentheses are the results when internal

deformations are ignored.



184

TABLE 5-2-3

Contributions to the Theoretical Elastic Constants of Al_MgO, Spinel

2
Elastic Sq. Bracket Rnd.Bracket
W Constant Contribution Contribution Total
. 375 Cy 2781 -130.8 2650
No
C, 1821 - 66.31 1755
Multipoles
Cas 1821 -1571. 248.9
= 3BT Cy 3402 -486. 2916
No
Cn 1509 200. 1709
Multipoles
Caa 1509 -379, 1130
.387 Cu 3324 -390. 2934 Including
vander Waals
Ch 1551 160. 1714 and
O-0
Cas 1551 -441. 1110 Interactions
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5-3. The Rutile Structure

The rutile structure is of geophysical interest since it is the
structure assumed by SiO2 at pressures greater than 160 kbar. Orig-
inally synthesized by Stishov and Popova (1961), this high-pressure
polymorph was identified by Chao, et al. (1962) in the shock-altered
Coconino sandstone of Meteor Crater, Arizona, and named stishovite.
The mixture of oxides SiOZ (stishovite) + MgO (rock salt) is one of the
candidate assemblages for the post-spinel region of the mantle and will

be investigated in the next chapter.

The only relevant data which exist for stishovite are the lattice
constants, the static x-ray and shock-wave compression curves (which
yield the bulk modulus), and the coefficient of thermal expansion and
Debye temperature. No ultrasonic measurements have been made, to
date, on stishovite. Thus the only way to estimate individual elastic
constants and their pressure derivatives for comparison with seismic
data is through a lattice model. Since it seems technologically possible
to make ultrasonic measurements on polycrystalline stishovite in the
near future, the compressional and shear velocities predicted by this
model can be checked. Measurement of the single-crystal elastic
constants seems remote. High-precision ultrasonic data exist for single-
crystal TiO2 rutile (Manghnani, 1969) which will be compared with lattice-

model predictions for that solid.

The importance of treating stishovite in the overall strategy of

this thesis is that it yields the Si—O bond parameters which, under the
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consistent pair-potential assumption, allow the elastic behavior of

b --MgZSiO4 (spinel) to be predicted for comparison with the seismic
profiles (Chapter VI). They are also the ''least-ionic’' of the solids
investigated using the essentially ionic theory in this thesis. It is
therefore of considerable interest to see to what extent the clastic

behavior is effected by their non-ionic character.

In his review paper on the properties of rutile, Grant (1959)
discusses the nature of the Ti—O bond on the basis of several criteria.
First,the large static dielectric constant of rutile, 173, relative to the
optical dielectric constant, 8.4, is typical of highly-ionic crystals and
indicates a strong ionic character. However, based on the electro-
negativities, the Ti—O bond is only 43% ionic. Second, the observation
of a feeble temperature independent paramagnetism has been taken to
indicate a covalent contribution to the bonding. Third, the bond-length
is somewhat shorter than that predicted for pure ionic bonding by
Lennard-Jones and Dent (1927) indicating a covalent contribution. Fourth,
the electron density, as determined by x-ray diffraction, does not have
a node between the Ti and O ions (Baur, 1956). This is clear evidence
for a covalent contribution to the bonding since not even the MgO map
exhibits such a node. Fifth, the low solubility of rutile in polar solvents
indicates a covalent contribution to the bonding, and, finally, the lower
stability of the rutile structure predicted by Pauling's rules is probably
compensated by a corresponding increase in the covalent contribution

to the bonding.
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These criteria, as outlined by Grant, are qualitative in nature,
and more important, they do not even agree. The point is that some
observables are more sensitive to the non-ionic character of the bond
than others. For example, Baur (1961) concludes that the TiO, is
largely covalent since an ionic model does not predict the equilibrium
positions of the ions, while Wackman, et al. (1967) conclude, on the basis
of energy calculations, that the bonding in rutile is predominantly ionic.
In the hope that the elastic properties are not sensitive to a covalent

contribution to the bond, we will proceed.

Specialization to the Rutile Structure

The unit cell of stoichiometric rutile is tetragonal and is dia-
grammed in Figure 5-3-1. The structure may be represented as six
interpenetrating tetragonal Bravais lattices with origins (Wyckoff, Vol. I,
1965)

Ti: 000 ; % Y2 o

(G=3-1)
O: ¥( uwo ; u""/z,,VL-*u,'/t) .

Any lattice site may be reached from one of the above six sub-

lattice origins by a linear combination of the tetragonal basis vectors
2 = (a, 0, 0), 2, = (0, a, 0), a; = (0,0,c), (5-3-2)

The W parameter is very near 0.30 for those rutile structures for which

it has been measured. For TiO,, Baur (1956) reports W = 0.306 = .00l
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Because of the tetragonal symmetry, there are six independent

elastic constants. In Voigt notation they are (sce Nye, 1964, Table 9)

Co=Cap= Dy, =[] + (11

Cax = ,235353 = [5333:] +(3333)
Cay=Cos = Desas = [2233] + (2323) T
Ciu = Do, = [188] + (2

I, 2[1zi2] - [n22] + (122)

Cig = Gy = ,3,\53; 2.[!3\3] -1n33] +(n33),

All other Cij are zero.

The coulombic and non-coulombic contributions to the square

brackets are again written separately

¢ N

[BTAT = [#TA] + [wgth ]
Equation (3-3-54) was used to compute the coulombic sums. The sub-
lattice indices in this case range from 1 to 6 with x(k) given by (5-3-1).
The sum over the direct lattice was taken over the vectors &(&.) =
x(k') - x(k) + Qlél + 9\23,2 + 23@_3 where the basis vectors a, are given
by (5-3-2). The h' sum was taken over the reciprocal lattice vectors.
(5-3~-4)

where

The results are
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= 0.306 (Tioz), c/a = .644

Madelung constant o(M = 11.27 (11.24) for R =a =4.594 &, q = 2e

Electrostatic 111° = 3.532 (3.171)
C°ngii’;;i°n [3333]° = -0.2691 (2.400) ) (5-3-5)
Square Brackets [2233] = 0.1343 (-1.198) 5.

122)% =-1.886 (-2.428) > dq7/2R

1212]° = -24.61 (-25.86) s

0313]5 =-24.38 (-24.16) ) ,

The numbers in parentheses are for WU = .3018, the approximation for

which all the Ti—O bond lengths are equal. The computer program was

checked by comparing the Madelung constants with those computed by

Baur (1961).

The expression for the elastic constants may be written in an

analogous form to (5-1-4 ).

= Oy Pl l. Q.4 11
OH —2—2—%""2]-;%{ &X(KH) Qu,'xf(u\ % * (‘ )

;3 > L
Cp= Onada® 4 21%%1% R X o) + Qi X5 L.‘i-ﬂ + (3333)

2 R4
(5-3-6)
LT g1 {'P "+ Qo) Xl (e522)
C%=M_99L+_‘__Z i?wxz } +Q).u7( (m') X, (w {‘f (1z212)
2R* ZVa kel
C.ﬁdé%j; o Z,i w)(k&) + Qe X, (N 1, S .)75+ (122)
_=3_36. \! > i— B Xl + QA ) X;[LSF (2233)
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In these equations:

L‘"'J RRY . 3532 (3aM)
.é,.o’-
sz ]}335 aa" .-0.269  (2.400)
S
sz[‘_z?.'bb:] 2+ _ 0.134% (-1.198) (5-3-17)
y
Moo [1127] 282 - -l.BBG  (-2428)

¥z = é[rz\a"jﬁnzz] > 2R - 4733 (-49.29)
K, = <z[l315} ~1n133 }2‘” ~48.89  (-47.12)

The short-range sums in equations (5-3-6) may easily be done by
hand with the help of Table 5-3-1 which gives the nearest neighbor
positions for the two cation sites. Using this table, the elastic constants

may be written in the form:

&= 0(-.2431+_|_j4[zp wia® + 4B, Wat +2Qq W0 +4Qq, ﬁa—'!i (1)

Cy3= “_12%%5 = %4[&,,1614 Quez 4] g + (3333)

Caa= DLZE%D +__% [RnT + Qe WVQZngJr (2323) (5-3-8)
L™ -9%%3,‘,, Eli [&P,u.u o + 48, W0+ 200 WO+ 4 Qe ]i+ (1212)

Q= O‘;v L Et%[—zfgow-%ab‘aﬁzam. uhat+ 4%&#&*}%* (122)
Qs 2-;{3 A _,%4{_ £,.C* +G)m7,!«1a‘6ﬂ} +(2233)
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The parameter ¥ is defined as ¥ =1/2 -L (see Table 5-3-1).

The derivatives of the potential are given by

CC OIS

(ot {5-3-9)
rQO(- BO" .
Note that the identical terms PBO‘1: POBi have been combined in
equations (5-3-8).
Evaluation of the Empirical Parameters in VBO
The energy density of the static lattice is given by
U - z\b"%%o) o
W= NA{»NM&% i RAse e & Ak 3 (5-3-10)

o

For the cubic crystals investigated in the previous two sections, it was
possible to describe the hydrostatic compression by one variable -- the
cube edge R. For tetragonal crystals like rutile, this is not always
possible since the c/a ratio can change as a function of the hydrostatic
pressure. Surprisingly, at the time of this writing, there is better

data on the pressure dependence of c/a for stishovite than for rutile.

For stishovite, Liu, et al. (197() report that c/a increases with pressure
according to the relation Ac/c_ = (0.65%0.1)Aa/a . For rutile,
Clendenen and Drickamer (1966) find that c/a decreases with pressure
according to c/a x (c/a)o (1-1. 7P(10_4)) where P is in kbars.

However, they express low confidence in their rutile data, and their
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compression curve gives an anomalous bulk modulus. Liu, et al.(1971)
show that Manghnani's (1969) ultrasonic data imply c/a increases with

pressure as observed in stishovite.

Figure 5-3-2 shows that the cohesive energy (5-3-10) has a
minimum at W= .293 at P =0and U =.292 at P = 369. Under the
assumption that the two Ti—O bond lengths are equal, c/a can be written
in terms of U as c/a = V8 UL - 2'. Thus, according to the model, c/a
should decrease with pressure according to the approximate relation

c/a = (c/a), (1 - 33p(10°%)).

For the purpose of evaluating the empirical parameters in the
potential, we will assume c/a = constant, independent of the pressurec.
In this approximation, the equilibrium condition is

Awl. |dw dal -0 (5-3-11)
avi, |do. dvj

and the bulk modulus is

v v 404 G

where

V= NaQ’C = Na@ (G20) volume /mrole (5-3-13)
z

Differentiating equation (5-3-10) gives:

°'Fm —"‘2.\}’ +(c/20) /jo o
AW - doba _sZ ke +4zw‘+cc/z=3 A€
40 a P -y
-1z Q/P“
&zN = - ﬂ‘\&%" + 4M‘A e_ P
;s; 5-3-14)
o ~{ZF 4 (/20T R/Peo (

+4[2yt 4] A €
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while the volume derivatives are, in the form of equation (5-2-19)

2 i 8 5 -
ool f--3( e

where CI = (NA Clza)-l

Exactly as in the previous two sections, the equilibrium con-

dition (5-3-11) and the equilibrium bulk modulus

B V[M(&jtj (5-3-16)
aa* \ Qv o
\%
may be used to evaluate A,o and /oso . However, because of the two

distinct B—O bond lengths, the equations are not as trivial to solve.
Using the equilibrium condition to eliminate A from the expression for

the equilibrium bulk modulus gives the following equation ‘For-/o
R=£w${{1£+iﬂ
JarC QA Peo

[ et ATV (et P30

MCT+(2¢‘4(‘/20.) e }
1ﬂue, +{2gtelgmf €2 XJpso .

(5-3-17)

This equation was solved numerically by a method of successive approx-

imations. The other parameter is given by

Nzt %Dse
)\ (_X___% g’_[f’ue_?: 1’21},’--»((:/20.\ QW”—j /o‘:)

(5-3-18)

The volume dependence of the pressure and bulk modulus are
_ﬁua,/ =
e M, = o/mé' — Ao {r'u,e,
3((:/2&) O."

2P+ (cpal 2/ (5~3~19)
+ 21}"’+(C/m) W PBD_G
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-Eua
K= VAW - _l,_{ —40(m§xg€1 Y2 o Pee
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Computation Results and Discussion for Rutile and Stishovite

Linear extrapolation of V(T) and(K/V)(T) from the high-
temperature regime yields the two rutile input parameters 3 = 4.58 A
and K = 2238 kbar (see Figure 5-3-3). The elastic constants were
computed according to (5-3-8) for a range of ionicity factors
1.0 €4 € 0.5. Table 5-3-2 shows the mean deviation between the
elastic constants as measured by Manghnani (1969) and the theoretical
predictions. The best agreement is for & = 0.5. In Table 5-3-3, the
theoretical elastic constants and their pressure derivatives ( & = 0.5)
are compared with Manghnani's (1969) measurements. While the
elastic constants are in fair agreement, the pressure derivatives are
all too small by a factor of ~2. However, these pressure derivatives
were computed under the assumption that c/a and 2t are constant. If
one allows c/a to vary as observed by Clendennen and Drickamer (1966),
the pressure derivatives increase, as shown in Table 5-3-3, but not

enough to be in agreement with the observations.

This large discrepancy between the theoretical and experimental
pressure derivatives in rutile represents a significant failure of the Born
model. It was hoped that the change in c/a with pressure would explain

these large derivatives (relative to other oxides), but, if the measured
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values are correct, the discrepancy must be due to either a non-
exponential functional form for the repulsive potential or to the many-

body, non-central forces neglected in the Born approximation.

Qualitatively, the pressure derivatives have the correct relative
sizes, and the theoretical pressure derivative of the shear constant
1/2((311- CIZ) is negative as observed. Theoretically, the rutile
lattice becomes elastically unstable (1/2(C11- C12) = 0) at P = 290 kbars.
McQueen, et al. (1967) report that, under shock conditions, rutile
transforms to a distorted fluorite structure at P = 330 kbar, while

Linde and DeCarli (1968) report that the reaction commences between

150 and 200 kbars.

For stishovite, the input parameter a may be estimated from
the room temperature lattice parameters given by Chao, et al. (1962)
-6
and coefficient of thermal expansion K= 18.62¥0,35x10 /% (Wemef'. 1971)s

By assuming X is proportional to C F = 4.164 A can be obtained as

v!
shown in Figure 5-3-4. Since there is no ultrasonic data, K must be
estimated from compression data. Liu, et al. (1971) fit static x-ray
diffraction data with a suit of K, and Ko‘ ranging from Ko' = 3,

K
o

K
o

3550 kb to Ko’ = 8, Ko = 3190 kb. Ahrens, et al. (1970) estimate

3000 kb, Ko' = 7.

Assuming K = 3200 kb, the elastic constants and their pressure
derivatives were predicted for an exponential potential (Table 5-3-4).
Note that this model gave K' = 3.3. In view of the poor results for
rutile and the suggestion from compression data that K' should be larger

for stishovite, it seems fruitless to proceed with this potential.
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Taylor Series Potential

Since the Born model with an exponential potential could not
explain the large pressure derivatives measured in rutile and suggested
by compressional data for stishovite, we will drop the requirement that
the repulsive potential be exponential in form, add one additional

parameter to the potential, and use the measured value of K' as an

input parameter.

The most straightforward way to do this is to write the cohesive
energy W as a function of the cation-anion bond length r (assuming the

two cation-anion bonds are the same length)

Wiy =N, (_O(,af;._f (oVao(ﬂ) energy/mole (5-3-21)
AU

and then expand in a Taylor series about the energy minimum.

W) = W+ ‘BL((*-?'“\?" 4+ Bs(r—-?—'-)3+ L. (5-3-22)
where
_ dzw - —
ST
B,= T K (1-%") {5~3-23)
G C
Q,= 41z W3
Nalet) .

Equations (5-3-21) and (5-3-22) may be used to write the repulsive

cation-anion potential as
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Vo (™) = -é:[ U+ Balr-FY 4By (—-7R 4, o(mégﬂ
Na a.

Vo) = & [zez_(r—?:waes (&Y .0 _ o(m.s\%f ]

Nna 2'UL (5-3-24)

Va cr\=¢[aek+ GB(r-T) 4., + Amdaq®
*e -5 Er

These equations may be used in (5-3-19) for the pressure, (5-3-20) for

the bulk modulus, and (5-3~8) and (5-3-9) for the elastic constants.

The constants B2 and B3 are given in Tables 5-3-3 and 5-3-4
for rutile and stishovite, together with the predicted elastic constants

and their pressure derivatives.

The deviation between measured and predicted clastic constants
is given in Table 5-3-2 for both the exponential and Taylor series forms
of the cation-anion repulsive potential. Note that when the potential
is adjusted to give the larger K', the predicted elastic constants are

also brought into closer agreement with the experimental values.

The lattice model predicts that, like rutile, stishovite will be-
come unstable at high pressure. The pressure PT at which
1/2((_‘,11- Clz) = 0 is given for the three models in Table 5-3-4. It
ranges between 475 and 760 kb. As for NaCl and MgO, the exact
transition pressure is sensitive to the details of the model. The
velocities and density will be computed for each of the three stishovite
models developed in this chapter and compared with the seismic profiles

in the next chapter.
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The contribution of the internal deformations to the elastic con-
stants and their pressure derivatives was found to be smaller for the
rutile structure than for spinel. It is possible that the contribution to
the round brackets from the polarization of the oxygen-ions may explain
the large observed pressure derivatives. This could be tested using a

modified rigid-ion model.
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TABLE 5-3-1

Neighbor Positions and Short-Range Sums for the Rutile Structure

k k' | x,(kk')  x,(kk') xg(kk') | x,(kk') x3(kk') x x* x;xZ
(a) (a) (c) (a%) (2) (%) (a*ch)
1 3 | -u ~U o Vi 0 w O
5 78 WU @) u> ) ut o
4 | Jfru U~/ ~. I Ya- LN
4 f-u U-2 ‘a ¥ Ya V V4
6 | uh h-u - v* /4 Vv YA
6 | w'h  hw $. L e VvV Y
%—v UMY 1 2ubayt Y
2 4 | -u wn o) i 0 2wt o
6 u - o) kg 0 w O
3 LU h Vv a W Wa
3| hn hew “h Vv /a A
5 | u-h U-a Yo L % v Via
5 | A w T (% Vh- vt 178
% 2uB4Yr 1 a4yt Y

Y= -
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TABLE 5-3-2

Comparison of model fit to the elastic constants for the exponential

and Taylor series cation-anion repulsive potential.

Absolute Mean Deviation

I L

S ra 2 ]Cij(theor.) = Cij(exp. )\
Exponential .7 365 kb
Cation-Anion 6 283
Repulsive
Potential =2 253
Taylor Series l 270
Cation-Anion 6 221
Repulsive

=5 260

Potential
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TABLE 5-3-3

Comparison of theoretical and experimental elastic constants

and their pressure derivatives for TiOZ-

Exponential Cation-Anion Repulsive Potential ( 4 = 0.5)

Theoretical Theoretical Experimental
cifa = const. c/a £ const. (Manghnani, 1969)

C, 2406 kb. (c/a assumed to de- 2867 lkb.

Cs 5102 crease with pressure 5239

Cas 1047 as measured by 1307

Ce. 2128 Clendennen and 2241

Ci 1936 Drickamer, 1966) 1952

G 1060 1595

cf 2.8 3.6 6.5

Ca 4.0 .4 8.3

Ca -0.6 -1.8 1.1

Ce 2.6 3.2 6.4

Ch 4.4 4.6 9.1

Ch 3.6 .0 5.0

PT 294 Jeb 352 k.

(C-Cn)=0

Taylor Series Cation-Anion Repulsive Potential ( & = 0.6)

Theoretical (c/a = const.) Experimental
{(Manohnanc , 1969
E 2636 kb 2867 kb,
Ciy 5390 5239
Gt 1034 1307
Cw 2283 2241
Cn 2065 1952
G 1079 1592

(continued...)
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TABLE 5-3-3 (continued)

Theoretical (c/a = const.) Experimental
(mnnci\f\mnc 1969)
& 5.9 6.5
s 8.0 8.3
Cis 0.1 1.1
O 5.7 6.4
s 7.4 9.1
Cus 5.8 5.0
PT 381 kb. 352 kb

(C“-C’uﬁ 0)
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TABLE 5-3-4

Theoretical Elastic Constants and Pressure Derivatives for Stishovite

fapts Tayion Semes " Potential
K (kbar) 3200 kb. 3500 kb | 3200 kb
K! 7 4 | (3.3} calc.
" .3008 .3008 . 3008
£ (A) 4,164 4,164 4.164
cla L6377 L6377 |
+ 0.7 0.5 0.7 0.5 0.7
Calculated
C, (kbar) 3869 3774 4224 | 4083 3871
G 8432 7137 8834 7467 8428
i 1470 1207 1552 1230 | 1469
) 3258 3312 3589 3624 3260
Co 2805 3014 3160 3323 2808
s 1378 1733 1594 2006 1379
Gh 6.6 3.2 2.9 2.7
Ca 8.9 4.9 .9 4.
Cle 0.88 -0.41 -0.06 -.69 0.03
Che 5.9 6 2.9 2.8 Z
ch 8.0 4.7 4. 4.
Co 5. 4.3 3.9 2.7
P’ ( Jeloar) 760 475 709 475 709
B, (10°c gs) .637233 697527 | A= .164738x10 °
Bs (107 cgs) -.215894 -.118667 | o= .305927x10°
Electrostatic constants for c/a = .6377, W= .3008
olm=11.275 (units &g /2a%) q = 2e
olu= 3.547 Olee= - 2.467
b= 5.173 K= -50.63
ae= -2.584 s = -47.72
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V1. APPLICATIONS TO THE EARTH

In this chapter, the lattice models developed in Chapter V are
used to predict the elastic behavior of several close-packed oxide and
silicate mantle-candidate minerals at high pressures. The computed
compressional and shear wave velocities are compared with seismically
determined velocity-depth profiles in the earth. Two mincralogical
models are investigated: (1) MngiO4 (assumed to be in a normal
spinel structure) in the pressure regime corresponding to the "'spinel"
region of the transition region of the mantle ( ~400-600 km) and (2) the
combination of oxides ZMgO S:‘lO2 in the ''post-spinel’ region below

~ 600 km.

There is no reason to believe that the mineralogy of the lower
mantle is any less complex than the upper mantle or crust. The purpose
of this chapter is not to propose and support a mineralogical model for
the lower mantle, but rather to show how the lattice models may be

used to predict elastic properties of unmeasured high-pressure phases.

6-1. __1\£g25_i_.04 Spinel
Ringwood and Major (1966) demonstrated the existence of a dis-
torted spinel polymorph of MgZSiO4. The refined structure of this
B-phase was given by Moore and Smith (1970). The B-phase differs from
the normal 7 -spinel in that the S'104 polyhedra, which arc isolated in
the ¥ -spinel, share one of their oxygen ions in the B-phase, resulting

in a Sizo7 group (see Morimoto, et al., 1970, for a detailed diagram).
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While both structures are based on a cubic close packing of the oxygens,

the B-phase has orthorhombic symmetry.

Because of the work in the preceding chapter on the spinel
structure, we will treat 0 -MgZSiO4, deferring a study of the B-phasec
for the present. Extrapolation of the lattice constant for members of
the MgZSiO4- F‘eZSiO4 spinel solid solution series yields R = 8.07 A
for the magnesium end member (Ringwood and Major, 1970). Akimoto
and Ida (1966) reported R = 8.07 = .02 A for Mg,5i0,, but it is not
clear whether this was the B or [ phase. Kamb (1968) used this lattice
constant to show that, under the assumption that the Si—O distance is
the same as in the olivine phase, 1.625 &, a MgZSiO4 normal spinel
would have the anomalously low oxygen parameter W = 0,.366. This
would correspond to an Mg—O bond length of 2.09 A, close to that in
MgO.

Under the consistent pair-potential hypothesis, we should be
able to predict the properties of MgZSiO4 spinel using only the bond
parameters for Mg—O found for MgO and those for Si—O from stishovite.
In Figure 6-1-1, the cohesive energy (equation (5-2-15))is plotted as a
function of W for P = 0 and for P = 200 kbars. The equilibrium lattice
constant R varies along these curves as indicated. Although only the
exponential Si—O potential is shown in Figure 6-1-1, the same calcula-
tion was made for the two Taylor series potentials found for stishovite
in the last chapter. The oxygen parameter and lattice constant for each

of these potentials are summarized below.
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Si—O Potential R
(4)

Exponential . 367 8.02

Taylor Series . 367 8.06

(K = 3500, K' = 4)

_Taylor Series .368 8.08
(K= 3200,K'=7)

It is encouraging that the predicted lattice constant is close to
the experimentally extrapolated 8.07 A and that the equilibrium
parameter has an abnormally low value close to .366 predicted by a

bond-length argument (Kamb, 1968).

A comparison of Figure 6-1-1 with Figure 5-2-5 shows that the
W parameter is controlled by the electrostatic part of the energy. For
AlegO4, the Madelung constant (absolute value) increases for larger
2, while for MgZSiO4 it increases as 2 decreases. Thus, as noted
in the previous chapter, an aluminate spinel with repulsive parameters
determined assuming W < .392 will expand slightly and distort to find
the energy minimum at constant pressure, while a silicate spincl has

a tendency to have a smaller W .

Note that for MgZSiO as for the aluminate spinel, W does not

4!
significantly change with pressure. Also, as was the case for AlegO4,
the W -dependence of the Madelung constant found here using the Ewald
method differs by less than 2% from that reported by Waddington (1959)

based on an Evjen calculation. This gives a check on the lattice sum

program.
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Fyfe (1954) used Mulliken's (1951) semi-empirical relation
between bond energies and overlap integrals to show that the short
(1.6 &) Si—O bond could be explained without invoking c¢xtensive
Tl -bonding using '"d'" orbitals as suggested by Pauling (1952). The
fact that the central-force, rigid-ion model used here was able to

account for this effect lends support to Fyfe's argument.

The zero-pressure elastic constants, as well as the pressure
dependence of Vp’ V., and s predicted for each of the three Si—O
potentials are given in Table 6-1-1. The velocities are
compared with the seismic profiles in Figure 6-1-3. Notc that these
quantities have been tabulated both with and without the contributions
from the internal deformations to clearly emphasize that it is the
round bracket contributions which are responsible for the negative
dv_/dP.

A negative st/dP is not impossible. Indeed, a small or

negative d 4/4/dP appears characteristic of the spinel lattice. For

d\Ve/dP =043x0 k= _ while for Fe,NiO, dVs/dP =-003 lem
7 -

AlZMgO4 sec-kb- sec. kb

However, before rejecting 6-Mg25i04 as a principal constituent of
the mantle, we must be sure that the small predicted pressure deriva-
tives are not the result of our neglect of the polarizability of the oxygen
ion. The observation of a similar effect in AlegO4 spinel in §5.2

suggests that this is the case.

Note that the bulk modulus predicted from systematics is in
good agreement with the values given in Table 6-1-1. D. Anderson (1967Y)

predicted Ko = 1910, and D. Anderson (1969) predicted K, =1980+210 kb.
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6-2. Post-Spinel Phases

Based on observed phase transformations in isostructural
compounds, Ringwood (1970) suggested the following three phasc

changes in ‘ﬁ—MgZSiO(_} spinel

(1) Disproportionation into the mixed oxides
Y—MgZSiO4 —> 2MgO + 510,

(spinel) (rock salt) (rutile)

(2) Disproportionation into an ilmenite structure plus a
rock salt oxide

?-MgZSiO‘}

(spinel) (ilmenite) (rock salt)

— MgSiO3 o MgO

(3) Transformation to the SrZPbO4 structure
J-Mg,Si0, —>  Mg,Si0,
(spinel) (strontium plumbate)
Ringwood (1970) argues that (3) is the most plausible post-spinel

phase of MgZSiO4 because

(a) All known SerO4 isotypes are formed between end members

possessing rock salt and rutile structures.

(b) All known SJ:ZPbO4 isotypes are characterized by molar
volumes which are practically identical with the mixed oxides.
(MgFe)ZSiO4 transforms to a phase having a molar volume of

the mixed oxides under shock conditions.

(c) Extrapolation of transformations in the solid solution

MgZSiO4- Mn GeO4 suggest MgZSiO4 would transform from

2
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the beta structure to the strontium plumbate structurc at

pressures of 200-300 kb.

(d) The free energy AGO of formation of Mg,S5i0, spinel from

4
the constituent oxides is relatively high. Spinels with large

A Go are more likely to transform into a new single phase

than to disproportionate into the oxides.

However, studies of MgGeO3- MgSiO, indicate that an ilmenite form of
1\/IgZSiO3 will become stable between 200 and 300 kb and this led
Ringwood (1970) to conclude that (2) is a distinct possibility. He
considers disproportionation into the mixed oxides as unlikley becausc
of (d) above. Preliminary results of Bassett and Takahashi (1970)

indicate that T-FeZSiO4 spinel disproportionates into the oxides.

It is interesting that each of these three transformations leads
to similar densities and compression modulus @ . A comparison of the
shear properties of each of these ''post-spinel' phases should be a next
objective of the lattice model method developed in this thesis. However,
because of the rather unsatisfactory results for the shear predictions
in spinel, this study will be deferred until non-central forces and
polarizable ions are incorporated into the models and better spinel
agreement is obtained. Only the mixed oxide phases ((3) above) will

be investigated at lower mantle pressures.

In Table 6-1-4, the elastic velocities and density of the MgO
model developed in §5.1 (& = 0.7 and excluding second neighbors)

are given as a function of depth. Table 6-1-3 gives this information
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for each of the three stishovite models developed in § 5.3. These

trajectories are compared with the seismic profiles in Figure 6-1-2.

Note that while the slope of the MgO trajectories for both Vp
and V_ are parallel to the seismic profiles, they arc too low in absolute
value by 0.5-1.0 km/sec. These low values can be seen to be a con-
sequence of the central force approximation. As shown in Figure - -,

the central force model predicts C,, too low and C,, too high. The net

44
result is that the shear modulus, /4 , being a combination of Cuy and
(Cll- CIZ) is predicted too low. Hence the theoretical predictions for
both Vp and VS are more than 0.5 km/sec lower than the measured

values (Vp = .05, VS = 6.00) even at P = 0. In order to remedy this

situation, non-central forces would have to be introduced into the model.

For stishovite, note that the zero-pressure values of Vp and VB
are relatively insensitive to the model parameters. However, c,le/dP
and dVS/dP are sensitive to the model. The effect of the internal
deformation (round bracket) contributions is to lower the velocities,
as was the case for '6-Mg25104 spinel, but, unlike the spinel case, the
profiles obtained by neglecting the round brackets are not satisfactory
since the shear velocity still has a tendency to decrease with pressure.
Hence, at this point a mechanical mixture of oxides does not look like
a satisfactory post-spinel assemblage. Any stronger conclusion will
have to await the inclusion of polarizable ions and non-central forces in
the model. Once a more complete model has been formulated, it will

be interesting to compare the three '"post-spinel'' phases outlined above.
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TABLE 6-1-1

Predicted Elastic Behavior of MgZSiO4 Spinel

Case 1 Exponential Si—O Potential
Hashin-Strichtman |

R = 8.024 P P vp Vg
W = 36T (kb) (gm/em ) (km/sec) (km/sec)
K = 1754 (1998)% 0 3.62 9.35( 9.81) 4.91 (5.68)
Cy = 2706 (3036) 140  3.84 9.58 (10.35) 4.55 (5.81)
Co = 1278 (1375) 308  4.09 9.58 (10.89) 3.67 (5.93)
Ca= 995 (1461)

Case 2 Taylor Series Si—0O Potential (SiOZ, Ko = 3500, K = 4)

Hashin-Strichtman

K =8.0614 P P Vp Vg

R = . 367 (kb) (gm/cm ) (km/sec) (km/sec)
K = 1703 (1995) 0 3.56 9.39(9.87) 4.9l (5.69)
C, = 2627 (2956) 131  3.78 9.58 (10.33) 4.58 (5.79)
C. = 1243 (1412) 294 4.02 9.55 (10.77) 3.79 (5. 86)
Ce= 990 (1509)

Case 3 Taylor Series Si—O Potential (SiOz, K, = 3200, K= 17)

Hashin-Strichtman

R = 8.084 P P Vp Vg

A = .368 (kb) (gm/cm ) (km/sec) (km/sec)
K = 1829 (2364) 35 3.56 9.82 (10.59) 4.76 (5.98)
C, = 2654 (3277) 193 3.78 9.96 (11.18) 4.10 (6.13)
C, = 1416 (1806) 390 4.02 10.2 (11.33) 3.43 (6.24)
Cq= 960 (1830)

* The numbers in parentheses are the results if internal deformations
are neglected.

T Simmons (1967)
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TABLE 6-1-2

Periclase Earth Model

(d=0.7, second neighbors included)

Hashin-Stricktman?*

P /Al Vp v,
(ko) Oom) ~  lymle®  Cewseed | Cewn/3ec).
0 0 3.61 9.13 5.23
42 132 3.70 9.32 5.30
114 343 3.84 9.68 5. 40
196 575 3.98 10.01 5.48
291 800 4.13 10.33 5.54
401 1075 4.29 10. 64 5.56
526 1305 4. 46 10.94 5.56
670 1590 4.63 11.23 5.53
835 1915 4.82 11.50 5. 46

* Simmons (1967)

T Bullen A(1956)
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TABLE 6-1-3

Stishovite Earth Models

Model 1: Exponential Potential K = 3200

VRH. AVG.
P _Z = Voo
0 0 4£.33 10,97 6.11
123.4 ko 369 km. 4.49 qm/ins 11.16 wmfac 5.96 km/sec
264.2 740 4.66 11.30 5 1%
424.6 1095 4.83 11.40 5.39
607.0 1470 5.02 11.40 4.84
Model 2: Taylor Series Potential K = 3500, K' = 4
VRH. AVG.
2 = Y Vg
0 0 4.33 11.39 6.25
136.1 kb 405 Jem 4.49 epv/em? 11,63 lam/sec. 6,08 lamfec
293.3 805 4.66 11.80 5.79
473.0 1125 4.83 11.86 5.36
676.0 1605 5.02 11.75 4.56
Model 3: Taylor Series Potential K = 3200, K' =7
VRH. AVG.
" z . o Vs
0 0 4.33 10.9% 6.11
130.9 kh 392 bm. 4. 49 qmim? 11,66 kewfsc 6. 10 bear /s
294.3 805 4.66 12.16 5.88
492.8 1233 4.83 12.48 5.44
728.7 1705 5.02 12.51 4.40
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VII. SUMMARY AND CONCLUSIONS

Chapter Il summarizes previous work using clastic data to
interpret seismic velocity and density profiles. Birch's ecarly applica-
tions of isotropic finite strain theory to the lower mantle are reinvesti-
gated with two improvements: (1) the velocity expressions are written
to include terms neglected by Birch, and (2) these expressions are fit
to recent inversion models which are free of the adiabatic homogeneous
assumptions built into previous inversion techniques. The low density
gradient in the lower mantle of these models leads to the conclusion
that the lower mantle is not homogeneous and adiabatic. A rough cal-
culation shows that observed inhomogeneities plus a small super-
adiabatic temperature gradient (0.2°C/km) can account for the worst
case. In the review of systematics, it is shown that the assumption
that pressure changes Vs in the same way as composition (along lines of

constant M) is not true for certain structures.

Chapter III reviews the various definitions of elastic constants,
the distinction between thermodynamic and effective elastic constants,
non-isotropic finite strain theory, and develops the method of long waves
as formulated by Born and Huang. This chapter forms the theoretical

basis of the remainder of the thesis.

Chapter IV discusses the various terms in the interatomic
potential. Of particular interest is the concept of an effective ionic
charge and the use of inert gas Lennard-Jones potentials to characterize

the anion-anion interactions without necessitating additional empirical
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parameters. It is also shown that a linear extrapolation of V(T) and
(K/\ﬂ(T) from the high-temperature regime gives values appropriate to

the static lattice. Although this has been pointed out by Letbfried and
Ludwig (1961 ), the demonstration given here is a bit less complex. This
is an important point in that the model is quite sensitive to the input
parameters K and F’ » and the extrapolation to the static lattice has

been treated incorrectly in the recent geophysical literature (O. Anderson,
1970).

Chapter V applies the long wave interatomic potential model to
three structures of geophysical interest; rocksalt, spinel, and rutile.
For NaCl it was found that (1) the experimental and theoretical elastic
constants and their pressure derivatives were best fit by an exponential
potential model with an ionicity factor, & , near 1.0. (2) The mixed
derivatives dZCij/deT were important, in that the measured first
pressure derivatives changed significantly between 300° and 0°K.

(3) The anion-anion interaction does not significantly effect the predicted
elastic constants or their pressure derivatives, but it does have a large
effect on the predicted shear instability pressure (C44 = 0). For MgO,
(1) the best agreement between experiment and theory was obtained for
an exponential potential with an ionicity factor, ¥+ , betwecen 0.6 and

0.7. (2) The large deviation from Cauchy's relation which is not treated
by these models leads to a low prediction of the shear modulus. (3) The
second neighbors do not significantly contribute to the elastic constants Or
their pressure derivatives, (4) The predicted shear instability pressure

(644 = 0) is sensitive to the detzils of the potential such as second
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neighbors and the ionicity, d . For AlZMgO4 spinel, the model success-
fully predicted the distortion from a cubic close packing of oxygen ions
to U7 0.375. The internal deformations make a large contribution
to the elastic constants and their pressure derivatives. They change
dC44/dP and d/dP [J-z(Cll- CIZ)J from positive to negative, contrary
to experiment, and lead to the unsatisfactory result that d AL/dP is
negative. This discrepancy may be rectified by allowing the ions to be
polarizable, since the deformation dipoles contribute to that part of the
elastic constants associated with internal strains. For Tio2 rutile, the
model was quite successful in predicting the elastic constants, but
unable to account for the large measured pressure derivative. Allowing
cf/a to change with pressure did not significantly increase the predicted
derivatives. However, the large derivatives could be fit by changing
the functional form of the cation-anion repulsive potential. This change
also brought the theoretical and experimental elastic constants into
better agreement, but does not constitute an ''explanation' of the large
derivatives. Since the compression data for stishovite also suggest a
large K', it is important to understand whether this is a general
characteristic of the rutile lattice or is dependent upon the nature of the
cation-anion potential. Ultrasonic data on other solids in the rutile
structure, like cassiterite, and a more flexible model containing non-

central forces and polarizable ions will help answer this question.

In Chapter VI, the elastic properties of ‘O-Mg25104 spinel arc
investigated using the Mg—O potential from periclase and the Si—O

potential from stishovite. The resulting model has a very reasonable
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equilibrium lattice constant, W -parameter, and bulk modulus. When
the predicted velocities are compared with the seismic profiles in the
"'spinel' region of the mantle, both the values and gradients arc too low.
The cause can be traced to the large internal deformation contributions

as was the case for AlegO spinel. Perhaps non-central forces and

4
polarizable ions will reduce this discrepancy. The mechanical mixturc
of 2MgO + 510, is compared with the velocities. The predicted tendency
of Vs for stishovite to decrease at high pressures does not appear to be
due to the internal deformations. Although a firm conclusion must
await a more thorough understanding of 'I‘iO2 as explained above, it

now appears that a mechanical mixture of oxides is not a good candidate

for the post-spinel phase.

The next step is to include non-central forces and polarizable
ions into the model in a way which will not significantly increase the
number of empirical parameters. Besides the large pressure deriva-
tive problem in rutile, other interesting applications would be a
comparison between the predicted elastic properties of - and 7 -Mg25i04
using the same potentials, and a comparison between the three possible

post-spinel phases outlined in Chapter VI.

In a more complex model, optical data may be used to further
refine the potential. Also, the observed transition pressure for those
transitions due to an acoustic instability (i.e., NaCl —=CsCl) could be
used as an input to help define the potentials. Also, suits of oxides con-
taining the same cations should be measured to further test the ''consistent

pair-potential hypothesis''. A natural next candidate is pyrope garnet
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(Mg3AIZSi3O Slow neutron diffraction as a function of pressure

12}
would provide data on the entire vibrational spectrum which could be

utilized to further improve the models.

The point is that our best information about the constitution of
the earth's interior is the seismic velocity and density profiles. Latticc
models based upon interatomic potentials provide the most physically
motivated framework through which laboratory data on the compressional,
acoustical, and optical properties of oxides and silicates can be used to

unravel the composition and crystal structure of the earth's mantle.
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APPENDIX 1

Derivation of the Relations Between Various Elastic Constants

Relation between the Huang Coefficients and the Thermodynamic

Elastic Constants

The following proof of equation (3-1-9) follows that in Wallace

(1967). Consider the expansion given in equation (3-1-7).
PE(55,5) = PE(0,S) +TSy+ £ QS S+ ...
Expressing this in terms of the displacement gradients

PE(S3.9)= PEO,S) + & T | Uyt Uy + e Uy | +
- 1 C{,u[Urh + Uy + Usts;l {Uu + Uge + U;;{Usa

Regrouping like powers of Uij through the quadratic terms

PE(8;3)= PEOS)+ 3T Uy +
p 'z:r;q Usj-Usl A ﬂé—) Cu)hl [U.,JU}_:_]

PE(S4,3)- BEO)+ T Uiy L&(ﬁ&k + Gt ) Uy Ui

Comparing this term by term with the Huang expansion (equation 3-1-8)
PE(Z048) = 2 (2,0,5) + S§Uq + & Sigka TyUp + ...

one gets the desired relation

Sijke = T Sik + Cipa
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Relation Between the Birch Coefficients and the Thermodynamic

Elastic Constants

Equation (3-1-14) in the text relates the Birch coefficients to the

thermodynamic elastic constants as

Bqll" %(?..Ssg +T S‘su » —-‘——'JFS.L +:{SLSRL - 2?;55,,_,_) * Casu.

The first step in the derivation of the above relation is to express the

stress in the present state in terms of the stress in the initial state

Iii_: Fin ‘_r_-;l. r‘;; where F.‘.s = a)‘;/éx_;\
£ P
or
Ty = -;—; FFle e 3= Pp (A-1-1)

We can thus compute the Birch coefficients according to their definition

Begre ( aT;-,/s«;hQ\x

i

using the chain rule

Iy = Sy s (A-1-2)
X IR, AWy

Differentiating (A-1-1) gives the first factor on the r.h.s. of (A-1-2)

oLy = — 1t T | vuf T, |+ L 20 BT, +
YR J
s I* I, ——] J QRs (A-1-3)
+ —L AF5e FkTm + LFF, 27,0
T 9% 3 F5
Since,

_1\ -&J} = = Ses I _ SirSes

JF{\ QF{‘S
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15 = i} A o & 0 26, T
—_— = = mn —= Tpn ktmm —-—F-?D-
PAT e Z[ = o Fes ) afes - %

- L7_[ Cotmm ge“g‘“sg?" * Cltmn B G S?m]\x
Cics |,

equation (A-1-3) may be written {at x = X)

n

0T

= = Srs Sikgal.:f:_‘_ + SirSm S_'\t:fﬂ + g}r Sssﬁ:k :f‘lnk + 5;;%“,: C'Mrs
s

¥

L&

= —:'r;sgrs ""—T_—s")gir -“';_T';SSS\— *C«'.Srs

Solving equations (3-1-12) for Fij gives

Fis"' -"Z(G,;s*-&); Loy Wi+ Z'Sc'))

which may be differentiated to yield the second factor on the r.h.s. of

equation (A-1-2).

2Fes
ATy

—'Z ( Srhgsz + ga.gsk)

So equation (A-1-12) becomes

B = g‘;cs = 4 (SrSaes Sraun) | g rs +TSir 4T B +Cges |
el

]

‘lﬂ_—'ﬁ'}&uﬁ TaySie + Vot Sye Cipa =

- TSk + TSt * T, S *,C‘S“‘]

= é‘_[:r-h g‘sg *:ﬁ'l S_'\k +-:r;k S‘-t - :T_;\l g;k = 2-_‘_:_‘- SH‘J + CE._'\U.

which is the degired result.
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APPENDIX 2

Details of the Coulombic Sums

Electrostatic Contributions to the Square Brackets

In section 3-3, Ewald's theta-function transformation was used
to write the Coulombic contribution to the square brackets as

(equation 3-3-82)

[“ﬁ’ﬂt = ' 7 (mum, E‘%;QM(W)

8TV, k'

where (equation 3-3-54)

A

Cdpw)g( kR) = — .4_“_32"_33;'_—( So(z; g/sf\ * gm\ gp") +

—'Rl\’m‘\!m o ' ¢
+ AT2R3 L Q! Z_ Hdﬂ(ﬁj_((u‘)) Xx(ék) X)«(k'n) =
My Ay £

ar?e,ey 53 (Ger Sppt SenSag) Glrt Lyl /RY) +
y R*Yadmpmy: b i d § ¥ N
* (h) Yilh) G (Y R2) +
4 % Neln) Y () Yy (h) Yalh) ¥
v ;én{< ‘,'-'““WA““) Sin + Yo L) Y () 5,6/\ + y.,m Yalh) S/a, + Yalh) s (h) Sar+
+ Y yak) 5a) G (1 lz;(u\\‘/zl)}O

i (W) (O ('Y
* e

where
e = € /x

-X
@ = a6y = - (1rg)

-x
G : £a/axt= S (1+5+%)
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H(z) (A-2-1)

H(E) -
pt%) T2,

v -5 |
HE)- 2 1\ e dg = |-
T"ZSE d

%me 28 T 4s

It is understood that for the case k = k', Hd/d(Z) is to be replaced

(&)
z .

by H’;(Z) in the £= 0 term where (equation 3-3-42)

z -¢
Ho%z) = -2 S e dg - et(@)
FALIIN =
Since the evaluation of equation (3-3-54) for specific structures

it will now be worked out in detail.

may not be obvious,
9
In this case '2.=- RX(ﬂe)

Consider first the term H‘,;G (’R;LU(,&.))

is the dimensionless argument. Using the chain rule, the differentiation

(A-2-1) may be carried out as follows:

("a)=___% 2H(2) gz

A%«
QHE) = | 1-& e&%
22 O

2L _ 2(RIX) - Xs = BXa
e 3Ry X
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Carrying out the final differentiation gives:
=
Hig(B) = — S 15 '£.+?r-e}
o % gt H(Z) =

*Rysz{ XHUWZe Bﬁx

Differentiating the second term on the r.h.s.
.
—z -&
SHETOREEo0) PR SRS
T r 7z Z
So:

()= - [ €
- x,olpsl [H(z)+ 2c J

o)
wZ
For the H(,B) case, replace H(Z) with H(O)(Z) in the expression above.
Of course, this is only important in the C( °)

because of the x (k’}‘{,) factors in C o(<,sz)$ and Cp;))'i\ terms. The FORTRAN

term of the round brackets

program used to compute the square brackets is given, with notes, at
the end of this appendix. It was checked by reproducing Cowley's (1962)
numbers for the NaCl structure. For the more complex structures, a
direct check was not possible since the electrostatic contributions to the
square brackets have not been previously calculated. However, the
Madelung constant was checked against previous calculations -- since
this was calculated in parallel with the square brackets, they are pre-

sumably also correct.

The Madelung Constant

The Madelung constant was computed according to the equation

(II.12) in Born and Huang (1962)
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& ') ;
UImG . R Z e HRIXGWD + T 5 eww -
v % e ZNaRY L’
ané yln)- ( xte)=X0k")

: %’G(ﬂ‘tytm\lltzl) e

- R 2 el
ﬁh

where r is the reference dimension of the lattice (not to be confused
with the theta-function break-point R). Note that, as in the —éo{(/j;\ case,

the reciprocal lattice term is symmetric in y so the complex phase
exponential can be written as a cosine.
The insensitivity to the theta-function break-point R can be seen

for the case of rutile below. For any new structure, a curve like this

should be computed to choose a suitable R before the square brackets

are computed.

3.0
Ti0,
Q= 0.(A4
I2.0—-— = 2€.
Si\fci 10 QL

|

[1.O —
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The Round Brackets

As stated in the text, it is not generally possible to separate the

round brackets into coulombic and non-coulombic parts. However, the
: . . ={a) =f1)
electrostatic contributions to C and C_ 4
okp a(/_a

were computed according to equations (3-3-52) and (3-3-53) using the

must be computed. These

methods given in this appendix. The basic program was checked by

recalculating Cowley's (1962) numbers for the ZnS structure.
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APPENDIX 3

The Born Haber Cycle for MgO

It was noted in Chapter V that although the lowering of the
ionicity gave better agreement between the theoretical and experimental
elastic constants for MgO, it significantly reduced the cohesive energy.
For 9 = 0.7, the cohesive energy is (using the parametersgiven in
Table $-19) =

; K
W= N (=8mdg, A€ ") = —C68.18 kal/mde
r

which is to be compared with W = -905.53 kcal/mole computed from

essentially the same data by Gaffney and Ahrens (1969).

In principle the cohesive energy can be obtained experimentally
through the Born Haber thermochemical cycle diagrammed in Figure
A-3-1. In practice this is not possible since the heat of formation of
02_ has not been measured. By solving for this missing link, Gaffney

and Ahrens (1969) calculated
o, 2~ o z o ;
Hf (O ) —-WL + 5RT Hf (cation) + Hf (oxide)
(907.3) - (561.8) - (143.8) = 202.3 kcal/mole
Using the lower value of W corresponding to<% = 0.7 above, one calcu-
lates A Hfo(OZ-) = -35.2 kcal/mole. Hence the lowered ionicity must

be compensated by a covalent contribution to the cohesive energy not

treated in this development.
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Figure A-3-1. Born Haber cycle for MgO.
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APPENDIX 4

The Consistent Pair-Potential Hypothesis

Below the repulsive parameters found from MgO and AlegO4

are given as a function of the ionicity. The static lattice parameters of

A1203 found in Figure A-4-1 were used to compute )‘ﬁlo and pMO for

direct comparison with those in AIZMgO4.

MgO (ncarest neighbor only) .AIZO3 (nearest neighbor only)
A
. -l IO A-ll lo
(10 ) A (10) A
ergs ergs
1.0 62.79 T 1.0 93.05 . 360
=9 78.80 .348 i 125.2 «337
.8 106.8 .321 .8 182.6 312
= | 162.2 « 292 o | 299.0 o B
.6 .6 583.1 255
AlegO4 (nearest neighbor only)
Al-O Bond
& TR P
(107) (4) U
ergs
0.7 262.4 <& 1D 375

196.6 <287 . 387
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Figure A-4-1. Static lattice parameters of A1203.



