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ABSTRACT

Lattice models based upon empirical two-body potential functions
are used to predict the elastic constants of '"mantle-candidate'' minerals
at high pressures for direct comparison with seismic velocity profiles.
The method of long waves, originally formulated by Born and his co-
workers, has been applied to solids in the rock salt, spinel, and rutile
structures. Calculations for NaCl (rock salt), MgO (rocksalt), A12Mg04
(spinel), and TiO, (rutile) are compared with recent high-precision
ultrasonic data. The effect of van der Waals forces and second-neighbor
anion-anion interactions is shown to be small. The NaCl and MgO data
are best fit with an exponential cation-anion repulsive potential. The
elastic constants of MgO cannot be well fit unless the ionicity (valence
product) is lowered to 0.7 of its full ionic value, For NaCl this is not
required. The shear instability (C44 = 0) is predicted for both NaCl and

MgO, but the exact pressure is sensitive to the details of the potential.

Using the Mg—O two-body potential found for periclase, AlZMgO4
spinel was investigated using only two pieces of input datum, K and P
Although the predicted elastic constants were in good agreement with the
data, the pressure derivatives were not. The discrepancy is caused by
a large contribution from the internal deformations which occur in all
non-centrosymmetric structures. The same result was found for 'I‘iOz. A
relaxation of the rigid-ion and central-force approximations may correct

this discrepancy.
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Using the Mg—O bond parameters found for periclase and the
Si—O bond parameters found from K and fo, of stishovite, the elastic

properties of the high-pressure polymorph K-MgZSiO

4 spinel were
predicted. The predicted equilibrium density was in agreement with
previous experimental extrapolations; the predicted L paramecter was
in agreement with prior estimates based on bond-length arguments, and
the predicted bulk modulus was in agreement with prior systematics
estimates. However, the internal deformation contribution again
dominated the pressure derifratives and caused both the predicted V

and Vg to be lower than the corresponding seismic velocities in the
'"'spinel region' of the mantle. A comparison of MgO (rock salt) and
SiLO2 (stishovite) with the seismic profiles for the '"post-spinel’ lower
mantle shows a discrepancy in both absolute value and gradient. Unlike
the silicate spinel, this is not obviously caused by the internal deforma-
tions. The lattice models predict that both TiO2 and stishovite will
become unstable in shear (1/2 (Cy;-C;,) = 0) at high pressure.

Other methods of using laboratory data to interpret seismic
profiles are reviewed. Birch's formulation of isotropic finite strain
theory is corrected and used to test the homogeneity and adiabaticity
of the lower mantle of recent earth-inversion models. Systematics are
shown to be insufficient to treat the shear properties. Although lattice
models are limited by empirical approximations to the complex bonding
forces, the empiricism is on a more basic level than that of velocity
density systematics previously used to interpret seismic profiles. By

using lattice models, one gains the natural dependence of both the com-

pressional and shear properties on the crystal structure.
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I. INTRODUCTION

One of the primary objectives of solid earth geophysics is the
determination of the pressure, temperature, composition, and crystal
structure of the earth as a function of depth. The solution of this
problem requires input from a wide range of disciplines. The seismol-
ogist provides the most direct data. By fitting the observed travel time
of compressional waves, dispersion of surface waves, free oscillation
spectrum, mass, and moment of inertia of the earth, he attempts to
find the best distribution of compressional wave velocity V., shear
wave velocity Vo and density @ as a function of depth. The interpre-
tation of these material constants in terms of temperature, pressure,

composition, and phase requires the skills of a materials scientist.

The ultimate experiment which such a materials scientist could
perform would be to reproduce the temperature and pressure conditions
of the earth's interior in his laboratory. If he could, at the same time,
measure the compressional and shear wave velocities and density of
"mantle-candidate'' mineral assemblages, he could effect a direct com-

parison with the seismically determined profiles.

Unfortunately, such an approach is not yet technologically feasible.
The only experimental methods capable of reproducing the temperature
and pressure conditions throughout the entire earth are the shock-wave
techniques. Although the shock-wave method has yielded the only
pressure-volume information available for many of the high-pressure

polymorphs of oxides and silicates (Ahrens, Anderson, and Ringwood,



1969), the pressure-volume information is neither adiabatic nor iso-
thermal, but follows a thermodynamic path known as a Hugoniot. Even
if one knew how to accurately correct these data to an adiabat or an
isotherm, which one doesn't, this method is presently capable of
yielding only the volume dependence of the free energy, i.e., the
pressure, the bulk modulus, and the pressure derivatives of the bulk
modulus to all orders. No technique has yet been perfected to measure
the elastic wave velocities behind a shock front in solids. Until this is

" -(4/3)\/32 = Klp

achieved, only the density and the combination D-v
can be compared to the seismic velocity profiles. Although this method
has been successfully pursued by Anderson (1967), it does not make full

use of the seismic data since VP and ¥ and P all carry information

about the physical constitution of the mantle.

Static compression experiments are similarly limited in that
they yield only the volume dependence of the internal energy and not
the elastic constants. Although the compression in such cells is iso-
thermal, these experiments have presently been limited to room
temperature and pressure to ~ 200 kbar, which corresponds to an

approximate depth of 500 km.

Of all the techniques presently used, only ultrasonics gives
all the information necessary for a direct comparison with seismically
determined velocities and density, but unfortunately these experiments
have been limited to pressures of 10-15 kbar or depths of about
50 km. For the upper mantle, above the 400 km discontinuity,

such information is very useful. The theory of finite strain,



which will be discussed in Chapter III, can be used to extrapolate these
data from the relatively low-pressure laboratory regime to the high

pressures of the earth's upper mantle.

Below 400 km, the situation is quite different. The seismic
velocity profiles show two major discontinuities, one at about 400 km
and one at about 600 km, which are presumably evidence of solid-solid
phase changes of the olivines, pyroxenes,and garnets to more close-
packed, high-pressure forms. Even though the olivine-spinel phase
change has been directly studied in the x-ray cells, and the spinel -
post-spinel change has been observed for germanate analogs and the
fayalite end member of the olivine series, no elasticity data are avail-
able for these high-pressure silicate modifications, and finite strain theov-)/

is therefore of no use.

What is needed is some method which is capable of not only
extrapolating elastic constants, but also of predicting them. Previous
prediction methods have involved the scaling of Vp. Vs' or some com-

= s

bination like the seismic parameter P-=-v 4/3)\.182 as a function of

P
density. These scaling laws will be reviewed in the next chapter.
Besides being purely empirical, they contain the assumption that

pressure changes the elastic constants in the same way as composition,

that is, through the density.

It is the purpose of this thesis to develop a more physically
sound method of predicting and extrapolating the elastic velocities and
density of mantle-candidate minerals for comparison with the seismically

determined profiles in the mantle. No claim of originality is made for



the method; it is the well-known method of long waves pioneered by
Born and his co-workers in the 1920's and improved upon ever since.
What is new is its application to complex crystals and to the problem

of the constitution of the earth's mantle.

Basically, the approach is to use all the data available for a
given mineral, plus data on similar minerals,to determine the two-body
interatomic potentials for each of the various bonds. Once these two-
body potentials are fixed, the density and all the elastic constants may

be calculated as a function of pressure.

The exact nature of these interatomic forces are extremely
complicated and are only partially understood on the quantum mechanical
level. They are many bodied in nature and thus depend on the angles
between atoms as well as on their separation. The claim in this work
is not to make any exact calculation of these interactions, but only to
find the most physically reasonable empirical approximation to them.

It is important to point out that although the lattice models are limited
by empirical approximations to the complex bonding forces, the
empiricism is on a more basic level than in velocity-density systematics
previously used to interpret seismic profiles. By using lattice models
one gains the natural dependence of both compressional and shear
properties on the crystal structure. One is no longer constrained to

the bulk modulus, but can make full use of both the compressional and

shear velocities.

Following a brief discussion of the definition and meaning of

elastic constants, the method of long waves is developed in detail in



Chapter III. In Chapter IV the interatomic potential is discussed.
Chapter V applies the method to the rock salt, spinel, and rutile
structures. The objective is to use the precise ultrasonic data to see
if the input of only two parameters, K and /5 , are enough to predict
the elastic constants and their pressure derivatives. The assumption
that the bond parameters found for these compounds which are stable
at P = 0 also describe the bonds in high-pressure modifications allows
one to predict the elastic constants and density of these high-pressure

structures. D’-—MgZSiO4 spinel is treated as an example in Chapter VI.

The two assumptions of the model developed here which most
severely limit its geophysical usefulness are seen to be the central
force approximation and the rigid-ion approximation. While relaxation
of the former assumption requires a deeper quantum mechanical under-
standing and may require more input parameters, the latter assumption
can be relaxed knowing only the dipolarizability and quadrupolarizability

of the anions and should be the next improvement.

In lieu of direct high-temperature, high-pressure data, these
lattice models represent the most physically reasonable framework
through which available laboratory data may be used to predict Vp, VS,
and IO of mantle-candidate minerals for comparison with the seismic

profiles.



II. SOME PREVIOUS ATTEMPTS TO USE LABORATORY DATA

TO INTERPRET SEISMIC VELOCITY AND DENSITY PROFILES

2-1. Isotropic Finite Strain Theories

Birch (1938) applied Murnaghan's (1937) finite strain theory to the
case of an isotropic solid under hydrostatic pressure arriving at the fol-
lowing expressions for the velocities and density as a function of com-

pression at constant temperature (or along an adiabat).

L7} |
Ve = i(_‘:f_f_ﬁl_z{?\uz/awe(u)\oﬂo/u,)_’(}/z' (2~1-1)

Vs < { (_1/‘22__9'_.{/3[//(04— (3~ 4—/(,,)_‘](& (2-1-2)

o. _-i(nfz.e)% e (3o +2 )] (2-1-3)

In these expressions € 1is the Eulerian measure of the hydrostatic

strain and is related to the density by /0//00 ={(1 -2€ )3/2.

In a following paper, Birch (1939) used these equations to make
the first interpretation of the seismic velocity and density profiles in
terms of composition. Assuming a two layer mantle with a discontinuity
at 474 km, he found that VP, Vi and £ in the upper layer were in
excellent agreement with Jeffrey's (1937) observed values for input
parameters A,= 6.81 x 1011 dynes/cmz, Mo=6.065 x 10“ dynes/cmz,
and /Do = 3,28 gm/cms. In the region beginning at 474 km, Birch's fit

gave A,=12.12 x gt dynes/cmz, Ho=8.91% 10" dynes/cmz, and /Oo:

3.91 gm/Cms, but the agreement with Jeffrey's observed profile was



not as good.

This failure to fit the lower mantle was partly a result of poor
seismological data (the 600 km discontinuity had not been discovered)
and partly a result of Birch's incomplete formulation of the finite strain

theory. Sammis, et al., (1970) pointed out that Birch's equations (2-1-1)

and (2-1-2) should be written

S/z e
Ve = {(“‘2-@—) r>\0+2/‘4o- €(Who+iome 182 —Jmn):&i (=14
pe

Yz.
VS = {(i—l&)ﬁz 2%0"6(@7\0"'8/}0"’3/‘7‘\*/\(1)]% (2'1'5)
Z/Do i =

The coefficients £, m, and n are third-order coefficients in the

expansion of the elastic energy density in powers of the strain invarients.

Z =1
Pob= At2ile TF — 2T, + R TP + LT +mT,+OL") 7170
Z
The three invarients of the Eulerian strain tensor are given by

1\ = e;,i
I, = e(ea€y — €yey) (2-1-7)

Ix= Yol€y € Crke ~3E€HERT gy +2,Eij€thh;) )

The derivation of equations (2-1-4) and (2-1-5) is identical to
Birch's (1938) derivation of (2-1-1) and (2-1-2) in every detail except
one: the expansion of the strain energy density is not truncated after the

second-order terms, but is retained to third-order in € as written.

Following Birch, the compressional and shear velocities in an

isotropic material subjected to a finite hydrostatic strain are



Vo= Al=217/ps

Vs = C -V /20 (2-1-8)
where
/o[(x 2€) ‘;_ﬁ + Aeﬁl‘fxs ?‘QLQID;Q;; +4623i1‘§_l>_ +4e3%13
g}ﬁ) (a +ze%?f +et 2 igﬂ (2-1-9)

C=pl-23 -z 2 — e 0
ﬁ JI aj:z QIB
Here € is the finite hydrostatic strain (€ = - & - «*/2, f/fo =(1- 2E)3/2
and 1/(1 +& ) is the factor by which each line in the crystal is hydro-

statically shortened.

By taking the indicated partial derivatives of ¢ and arranging the

terms in ascending powers of € , we get

V‘f= (unzess/lll?\o*fz/xa ~€(11 26+ 1O s —1BL —4m)

—€X(1TL+35/m +3m)] /0o
(2-1-10)

2 Sz —
Vs = (1-2€) L2pho = E(LRe*B o3 +m)
- e*(540+1zm)] [ zps |

Because of the differentiation in the calculation of A and C, the third-
order coefficients £, m, and n appear with A, and Mo to the first order
in € . For the same reason, the coefficients of the € terms are
incomplete. The complete terms would contain fourth-order constants
ignored in the truncation of equation (2-1-6) after the €3 terms. For
this reason, these equations should be used in the form given by equations

(2-1-4) and (2-1-5). By truncating the free energy expansion after the



second-order terms, Birch got only the A, and M. contribution to the

€ terms. Hughes and Kelly (1953) derived equations analogous to (2-1-10)
in Lagrangian coordinates having the same form; i.e., the third-order
coefficients appear to first order in the Lagrangian hydrostatic strain 4 .

Upon computing the bulk modulus K//O = V; - (4/3)Vg by using

(2-1-10), we obtain

5/
K=(1-2€) [Ke= &(TKo=1BL -G ~Zm)

. (2-1-11)
—e (B L +2Tm+3m)]

which is identical to the expression given by Birch (1952):

K= Ko(wl?)m[l+7¥—2,§§(2.—99)] (2-1=12)

where f=-€ and S = (184 + 6tm + 2/3n)/4K0. Note that the fz term
in (2-1-12) is incomplete, being composed of the incomplete EZ terms

in the velocities.

The third-order constants, £ , m, and n, may be interpreted in
terms of the pressure derivatives of the velocity. By using the expres-

sion for the pressure given by Birch (1952)

5/z
P= -3K,e(1-2€) (1+2e%) (2-1-13)

and equations (2-1-10) for the velocities, the pressure derivatives may

be expressed as

(__L_ Q—V-P = | \3)0"’[4#0-‘3’-‘4”’0 (2_1_14)
Vp aF Jo e Rot Zpho

s = ) 3o+ GAo +32m +Jam
Vs 2P/, ©kKo Ao ‘ (2-1-15)
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Given only a hydrostatic finite strain, it is not possible to deter-

mine !, m, and n individually, but only the combinations

§=182+4m
(2-1-16)
which appear in the velocity derivatives. Since
(@5} - 4-2¢ (2-1-17)
ael, #
and
€= I8 +m+¥am _ S+4/aN (2-1-18)
4 Ko 4K,

equation (2-1-17) is linearly dependent on equations (2-1-3) and (2-1-4).
For most geophysical purposes, however, S and # are sufficient.

These parameters are given in Table 2-1-1 for a number of solids.

The most serious objection to finite strain theory is that one is
never certain as to the convergence of the expressions for the velocities
(2-1-10) or the bulk modulus (2-1-12). The coefficient of the € term is
typically an order of magnitude larger than the leading term, and the
coefficient of the €° term, although incomplete, appears to be an order
of magnitude larger still. Therefore, these expressions are probably
insufficient for € > 0.1, which is roughly the strain at the base of the
mantle. For self-consistent analyses, the €”terms, being incomplete,

should not be retained. The expressions should be used in the form
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V; = 7‘0_(\—ze35/z[_7\,+2/u.,— E(URe*10me = § )]
Vs = f%(n-ze)% [ o= €(3ha+ 40 +0)] (2-1-19)
K= (28" K[1-€(7-48)]

P = -3K.e(1-2¢)" (1+2e%).

By fitting equations (2-1-19) to the seismic velocity and density
profiles, it is possible to evaluate A, Mo, /0,,$)and 7. for any homo-
geneous region of the earth having an adiabatic temperature gradient.
Jordan, et al., (1971) have made this fit for the following velocity and

density profiles (in the lower mantle)

(1) Birchl ()196%)

(2) BirchIl (1964 )

(3) Pyrolite (Clark and Ringwood, 1964)

(4) Eclogite (Clark and Ringwood, 1964)

(5) CIT 435002 (Jordan and Anderson, 1971)

(6) CIT 435003 (Jordan and Anderson, 1971)

The Birch T model and the two CIT models have been superimposed
in Figure 2-1-1. The major difference between these profiles is the

low density gradient of the CIT models in the lower mantle.

In addition to equations (2-1-19), equations of the form

V;’ = (_;_);)(‘_Ze)sla\'_;\ﬁz/uo—e(n)‘r\o,uo—g) +e? (/3’)]

V: - (_\p‘:) (‘—ZESS/Z [/b‘o =1 - (3?\°+4/(l°+ 'YL) + 61(3)] (2-1-20)

P=-3K, e(\—ze)s/z [1+2€§ re® (oO]
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were also fit to the above models and the parameters o , B, and ¥
found. Equations (2-1-20) are perfectly valid in form, but the o, B,
and 7 parameters cannot be interpreted in terms of zero pressure

velocity derivatives unless the 64 terms are retained in the expansion
of q.’D .

It is in fact possible to add any number of terms with increasing
powers of € . The important question is how many terms do we need to
define the low order parameters; i.e., do the coefficients in the expan-
sion become smaller at a faster rate than € ? It is a basic problem of
finite strain expansions that this question cannot be answered. The
question we can answer in this type of analysis is how many orders are
needed to fit a given VP, V, set of data within some acceptable r.m.s.
limit.

In Figure 2-1-2 the total r.m.s. discrepancy between the Birch II
model and finite strain fits is plotted as a function of the order of the
finite strain theory. It can be seen that while the fit is significantly
improved by going from the incomplete first-order formulation given by
Birch,(2-1-1 through 2-1-3), tothecomplete first-order fit (2-1-19), it is
not significantly improved by going to the complete second-order (2-1-20).

This is true of all the models.

Table 2-1-2 gives the parameters for the six models fit. The
Birch I and II, pyrolite, and eclogite models were well fit by the second-
order theory and gave ''physically reasonable'' zero-order parameters.
The inversion models CIT 435002 and CIT 435003 could be fit, but did

not yield ""reasonable' zero-pressure parameters as will be discussed



13

below.

It is not surprising that the two Birch models and the Clark-
Ringwood eclogite and pyrolite models are well fit by the finite strain
since the assumptions of homogeneity and adiabaticity are built into the
Adams-Williamson inversion used to compute them.. However, the recent
inversion models CIT 435002 and CIT 435003 contain no implicit relations
between Vp, Vg and /0 . Both fit the seismic data equally well. Our
inability to fit the lower mantle of these models with physically reason-
able zero-pressure parameters implies that the region under study is
either anisotropic, inhomogeneous, or non-adiabatic. These possibilities

will now be investigated.

There is seismological evidence that the lower mantle is inhomo-

geneous. Johnson (1969) gives evidence for the following discontinuities

Depth AVP/VP
830 0.0045
1000 0.0079
1230 0.0059
1540 0.0065
1910 0.0032

Assuming AVS/VS >~ AVP/VP as obgserved at the major discontinuities,
it is possible to estimate the change in the seismic parameter AD/D at
each discontinuity. Since dp/dP =1/ , each observed AD has the
effect of decreasing dp/dP relative to the homogeneous case, as illustrated

in Figure 2-1-3. Correcting for the approximate Q@ change associated
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with Johnson's observed VP discontinuities increases the slope of /O(z)
by ~0.07 gm/c:rn3 in the region 800-3000 km. By assuming /O = A@VS,
the density jumps associated with the ® jumps, %9 =-'3 % may be
removed. The net effect in the region 800-3000 km is to decrease the
slope of /o(z) by ~ 0.09 gm/cm3. Hence removal of the observed
jumps has two cancelling effects on the density gradient which leave

/) (z) approximately unchanged.

The effect of a superadiabatic temperature gradient can be approx-
imately estimated as outlined in Table 2-1-3. The effect of correcting
the profile CIT 435002 for a superadiabatic gradient ranging from 0 to
0.5 °C/km is illustrated in Figure 2-1-4. In this figure the zero-pressure
P and 2 found from the fit parameters (Table 2-1-2) are superimposed
on the estimated /0-@ trajectories for olivines, pyroxenes, and garnets
given by Anderson and Jordan (1970). It can be seen that for a super-
adiabatic gradient of 0.2-0.4°C/km the model CIT 435002 can be fit

with '"reasonable'' parameters.

The conclusion is that while the two inversion models 435002 and
435003 cannot be fit by isotropic finite strain theory with ''reasonable"
zero-pressure parameters, the more nearly adiabatic of the two, 435002,
yields reasonable parameters when corrected for a superadiabatic of
~ 0.2-0.4°C/km. The effect of the observed inhomogeneity is minimal.

It should be pointed out that this type of a finite strain analysis
is as far as one can go in an interpretation of the velocity and density
profiles without assuming a compositional model. This analysis gives
the velocities and their pressure derivates at P = 0 and some high T on

the adiabat which can then be compared to lab data. In the more
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sophisticated finite strain models (Leibfried and Ludwig, 1961) or the
lattice model calculations presented in the following chapters, one must
assume a compositional model, then predict its elastic properties at

mantle T, P conditions for a direct comparison with the seismic profiles.

2-2. The Systematics Approach

The next step in the use of lab data to interpret seismic velocity
profiles was initiated by Birch's (196la) observation that the
compressional-wave velocity was an approximate linear function of the

density and mean atomic weight M for some 250 specimens of rock. He

put this relation in the form

p= AR +BVp. (2~E%D
Quoting Birch, 'It is tempting to infer that if the density is changed by
compression, for a given substance, the velocity varies in much the
same way with the density as it does for these structural and compositional
changes; in other words, that lines of constant M show the relation of
velocity to density for compression of any material whose points fall on
this line.'"" Most of the early (pre-1965) geophysical ultrasonic measure-
ments were made on rocks to 10 kilobars. The purpose of the pressure
was not to allow the measurement of pressure derivatives, but rather to
remove the effects of porosity. The motivation of the ultrasonic work was

to define the constants A and B in equation (2-2-1).

If one succumbs to '"Birch's temptation'' and assumes that tem-

perature and pressure have the same effect on Vp as the change in
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composition, then equation (2-2-1) becomes very useful in the interpre-
tation of seismic profiles. Birch (1961b) used relation (2-2-1) to show
that many previous velocity and density profiles were not self-consistent
in that assumed '"homogeneous'' regions corresponded to lines of
changing ™M on the velocity-density Birch diagrams. Only Bullen's (1956)

model A was self-consistent, and was very similar to an M = constant

model throughout the mantle.

The first attempt to infer composition was made by Birch (1964).
He used (2-2-1) to obtain the density from the velocities through the
transition zone, but then used the Adams-Williamson procedure to
obtain the density of the lower mantle. He could thus use equation (2-2-1)

to infer ﬁ of the lower mantle.

Like all purely empirical relations, Birch's hypothesis has its
exceptions. Simmons (1964q)pointed out that calcium-rich rocks did not
seem to follow the trend for other rocks and suggested the following form

for equation (2-2-1).
3 (2-2-2)
Vp = A+ 460[Ca0] +Bpo
In this expression the bracketed quantity is the weight-fraction of CaO.

Simmons (1964bmeasured the shear wave velocity in many of the
rock specimens used by Birch (1960) in his compression wave study.

Apparently this data could not be expressed in the form:
Vs = AR +Bo e

since no follow-up paper was published on the systematics.



17

The next major step in the evolution of systematics was
Anderson's (1967 ''seismic equation of state'’, a simplified form of

which may be written (for small compressions)

- AV\C[-_JM (2-2-4)

In this equation A and n are constants and @ is the seismic parameter
V12> - 3 V2 which is also equal to K_/© . Although equation (2-2-4) is
essentially an empirical relationship in the spirit of Birch's hypothesis
(2-2-1) regarding the compressional velocities, it has the following
advantages:

(1) The functional form of (2-2-4) is consistent with an

equation of state of the rather general form

= (e K (B (8]

as is easily shown using the definition ® = (dP/d/o ) g

in the limit of small compressions.

(2) Static compression and shock data can be used as well
as ultrasonic data to determine the parameters in (2-2-4),
thus significantly enlarging the relevant experimental

pressure range.

In the case of the seismic equation of state (2-2-4) the temptation
to infer that pressure and composition have the same effect in Ve o
space is thus even stronger since the relation has the functional form of

an equation of state.

More recent refinements (Anderson, 1969) have attempted to

isolate the effect on & of factors other than ™M and /O . In specific,
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the effects of cation-radius, crystal field effects, and anion-cation

coordination were empirically investigated.

The seismic equation of state was first used by Anderson and
Smith (1968) as a constraint on the inversion. They required that the
density and @ be related by © =AM " but did not constrain AM or
n. By fitting the free oscillations, group and phase velocity of surface
waves,and travel times of body waves, they determined AM and n, and
thus obtained some information about the composition. They concluded

that M, and hence the composition, changed through the transition zone.

The use of laboratory data to establish an empirical relation
between the bulk modulus and the density has thus proved quite useful.
However, this approach does not fully utilize the seismic data. As
independent VP and Vs profiles are being refined, one would like to be
able to fully utilize this information, rather than just the combination
@ = V;—% V:. Toward this end the systematics approach is far less
useful.

Figures 2-2-1 and 2-2-2 are Birch diagrams Vp vs. 0 and
Vs vs. O based upon ultrasonic data. Each plot shows the effect of
pressure as computed from equations (2-1-19). The effect of a 1000°C

change in temperature is also shown. Note that for VP, both the tem-

perature and pressure effects are approximately parallel to the lines of

M

—

M = constant more scattered, but the effect of pressure for certain

1

constant. For V_, not only is the data determining the lines of

structures like rutile and spinel is not parallel to the M = constant line.
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The remainder of this thesis deals with an alternate method of
using laboratory data in the interpretation of seismic profiles. Rather
than use the data to establish an empirical relation between velocity and
density, it will be used to establish the empirical parameters in the
two-body potential functions of a lattice model for each mineral. By
thus putting the empiricism on a more fundamental level, one gains the

natural dependence of elastic wave velocities on the cyrstal structure.
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TABLE 2-1-1

Ultrasonic Data for the Velocity Derivatives, Bulk Modulus,
and Shear Modulus

LM g% e

10—12 10-12 1012 1012 1012 1012

cn?/dyne cm?/dyne dynes/cm? dynes/cm? dynes/cm? dynes/cm?

Forsteritel Mg,Si0, 1,249 714 1.286 .811 -1.8 -2.6
Olivine!  Fo g3Fa g7 1.211 737 1.294 .791 -1.0 -2.5
Periclase MgO .862 +665 1.622 1.308 -0.2 -1.6
Lime* ca0 1.309 .603 1.059 .761 0.6 -3.3
Bromelite* BeO .538 L0449 2.201 1.618 6.3 -12,1
Zincitex Zn0 613  -1,138 1,394 L4462 10.3 -10.2
Corundum  Al,0; 478 .347 2.521 1.613 7.6 -5.5
Hematite* Fe,03 .591 .151 2,066 .910 7.7 -8.1
Spinel Mg0+2.6 Al,03 L494 .0762 2.020 1.153 11.1 -9.6
Trevorite?* NiFe,0, " .610 -.0082 1.823 .713 9.0 -8.4
Garnet Al-Py .919 456 1.770 .943 -1.5 -4,5
Rutile? Ti0, .825 .101 2,155 1.124 -3.9 -9.3

Finite strain parameters { and n were computed according to
equations (2-1-14), (2-1-15), and (2-1-16).
*polycrystalline

lKumazawa, M., and Orson L. Anderson [1969]

2Liebermann [1969]
3Manghnani, M. [1969]

All others from Anderson, 0. L., et al.[1968]
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TABLE 2-1-2

Finite Strain Parameters for the Lower Mantles of Several Earth Models

Model and 0th Order lst Order an Order
Interval fit Po A ks 3 = ol Sy = By
(gm/cm’) (kb) (kb) (kb) (kb) (kb) (kb)

Birch I .91 1155 1295 8254 5688  -- - -
(woo-sc0odem) 3 91 1164 1237 4532 4225 2.47 4339 1165

W

Birch II 3.96 1072 1308 5915 5380 -- = s
(1000-3000 lexn)

3.94 905 1257 -1850 4010 8.00 6941 540
Pyrolite 4.11 1327 1405 10,744 13,266  -- = -
(looc-sassbee) 4 43 1868 1279 9210 6693 -2.24 3681 3612
Eclogite 3.91 1221 1323 10,074 12,424  -- -- s
(looo-3c00km) 3 92 1428 1189 7907 5782 -1.86 3740 3545

CIT 435002 3.93 923 1302 1844 5269 = e =

L1035~ 2703 lew)

CIT 435003 3.74 -270 1193-8,132 1430  -- - -
(o3s-21034m) 413 2402 1392 49,640 8008 -57 -52,077 4.5

Parameters of the Complete lst Order Fit (P =0, T 1600°C)

Model and
depth range Lo (Vplo (V.1 A Ko D,
(gm/cm3) (km/sec) (km/sec) (kb) (km/sec)z'

Birchl 3,91 9. 19 5.76 .24 2018 51.6
Birch II 3.96 9.65 5.75 o 1944 49.1
Pyrolite 4,11 10.03 5.85 .24 2264 55.1
Eclogite 3.91 9.95 5.82 .24 2103 53.8
CIT 435002 3.93 9.50 5.78 .13 1798 39.3

CIT 435003 3.74 7.52 5.65 -.15 525 14.0
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TABLE 2-1-3

Correcting Seismic Profiles for a

Superadiabatic Temperature Gradient

From ultrasonic data:

(2tnVs/ Mm/o)P ~ 2.5

AVe= -2.0aVp AT

dAVs = —2.5a Vs &T

CQ/O"_"' - O(/O AT
Following Birch{ 196©) :
K o Ko
olo | S
Let /\ deg/km. = superadiabatic temperature gradient

= — doKo A = 0<0Ko A Si
4 < - K3

SV = 2.0 0Xe V, Ag{
? ——-K P

SVS": 2.5 42‘_539. Vsa St
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Figure 2-1-3

CORRECTING SEISMIC PROFILES

FOR OBSERVED INHOMOGENEITY

Johnson (1969) gives evidence of the following discontinuities:

Depth AVP/Vp Depth A{\/’p/Vp

830 0.0045 1540 0.0065
1000 0.0079 1910 0.0032
1230 0.0059

Assume A VS/VS ~ AVP/Vp as observed at other discontinuities.

We can then estimate (A® /P );

/O

(d,o /dP) = 1/@ so each A@ihas the effect of decreasing (d/o/dp)

relative to the homogeneous case.

Correcting for Johnson's @ increases the slope of/o by ~ 0.07 gm/cm3
in the region 800-3000 km.
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Figure 2-1-4.

4.6
p, g/cm3

Seismic parameter versus density for olivines, pyroxenes,

and garnets assuming both molar volumes and seismic
ratios are molar averageable (after Anderson and Jordan,

1970).

The effect of correcting seismic profile

CIT 435002 for a superadiabatic temperature gradient
according to Table 2-1-3 is shown by the dashed line.
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Figure 2-2-1. (following page) Compressional velocity versus density
for various oxides and silicates. The dark circles are
minerals with mean atomic weight near 20. The light
dashed lines are pressure trajectories calculated from
finite strain theory and the parameters of Table 2-1-1.
The solid lines with arrows show the effect of a 1000°C

rise in temperature (after Anderson, et al., 1971).
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Figure 2-2-2. Shear velocity versus density for various oxides and
silicates. The effect of pressure is shown by the light
dashed lines; of temperature, by the solid lines with
arrows (after Anderson, et al., 1971).
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III. THE DEFINITION AND MEANING OF ELASTIC CONSTANTS

AND METHODS FOR THEIR CALCULATION

This chapter has three objectives. The first is to establish the
reference states, coordinate systems, and strain measures necessary to
discuss elastic constants in a prestrained elastic medium. The second
is to compare methods of calculation based upon finite strain expansions
of the internal energy with those methods which assume a specific
functional form for the two-body, central, interatomic forces. The
third is to develop the interatomic potential model using Born's (1923)
method of long waves, obtaining general expressions for the volume

dependence of the elastic constants of ionic crystals.

This chapter develops the theoretical framework used to investi-
gate the potential and predict the elastic properties of geophysically

interesting structures in the following chapters.

3-1. Effective vs. Thermodynamic Elastic Constants

Before proceeding to an atomistic formulation of the elastic con-
stants, it is important to review their definition in the context of con-
tinuum mechanics. There are as many different ways to define the
elastic constants as there are different tensor measures of the strain,
but only one definition gives the "'effective'' constants. The '"'effective
elastic constants are defined as those constants which control the propa-
gation velocity of small amplitude waves in a medium which has undergone

a finite homogeneous prestrain. It is these ''effective'' elastic constants
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for the case of a hydrostatic prestrain which we wish to compute and
average for comparison with the seismically determined velocity

profiles in the earth.

There have been several recent papers dealing with the distinc-
tion between thermodynamic and effective elastic constants, most
notably Thurston (1964, 1965) and Wallace (1965, 1967). The following
discussion is a brief review of their work. It serves the dual purpose
of comparing the various definitions of the elastic constants and estab-
lishing the notation to be used in the remainder of this thesis. Only the
results are presented in the following text; the mathematical derivations

have been relegated to Appendix 1.

As pointed out by Thurston (1965), the elastic constants may be
defined in at least three different ways: ''(l1) as second derivatives of
the internal energy with respect to some tensor measure of the deforma-
tion; (2) as first derivatives of the stress tensor with respect to some
tensor measure of the deformation; (3) as coefficients in a linearized
equation of motion or, equivalently, as coefficients in formulas for the
propagation velocities of small amplitude waves.' Further, the elastic
constants defined by each of these methods depend upon the specific
measure of the deformation. The coefficients of the stress-strain
relation depend upon the choice of a reference state from which the
strains are measured, the tensor measure of the deformation with respect
to which the derivatives are taken, and the choice of a stress tensor. The
coefficients of the linearized wave equation depend upon the coordinates

used in the equation of motion.
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Reference States

In order to sort out the various possibilities, consider the three
states as diagrammed in Figure (3-1-1). Again following Thurston (1965)
call these the ''natural'’ unstressed state, the ''initial'' homogeneously
deformed state, and the ''present'' or current state. Denote the density
of the natural state by /?5 and the position of a material particle by a,
(i=1, 3). Denote the density of the initial state by F , the position of a
material particle by Xi (i = 1, 3), and the associated stresses by —T-ij'
Denote the density of the present state by/o » the position of a material

particle by X, (i =1, 3), and the stresses by Tij' The coordinates a;

Xi , and xi are referenced to the same cartesian axes.

Measures of the Strain

The strain tensor may be referenced to either the natural state,
the initial state, or the present state. If it is referenced to the natural

state, we make the following definitions (Murnaghan, 1951)

ig,. = OB S f..= ox./ da,

1 1 1 1] 1 3

. aui/ aaj (3-1-1)
1 1

My = 7 Ealieg ~ O45) = T W5y 0y H iy )

The nij are called the Lagrangian or material strains. If the strain

tensor is referenced to the present state we make the definitions

&ij Bl 2%,
1

7 (835 = Bk Bk

€ ij

[3=1-2)
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The €.y are called the Eulerian or spatial strains. If one wishes to
express the internal energy as a Taylor series in the strains, the
question naturally arises as to which tensor should be used. Since either
expansion must be truncated, this decision' should be based upon which

is more rapidly convergent. Thomsen (1970a, b) considers the gquestion
in some detail and concludes that the Lagrangian expansion is to be pre-
ferred for two reasons. First, it gives a more accurate prediction of the
observed shear instability (C44 = 0) in NaCl. Second, and more important,
the Lagrangian formulation is consistent with the Mie-Grlineisen treat-
ment of the vibrational energy. This point is discussed further in
section 3-2. The distinction between Eulerian and Lagrangian strains

is not important in the interatomic potential approach because the elastic
constants are derived in closed form. They are defined by comparing
the long-wave limit of the lattice vibrational equation with the continuum
equation of motion for plane wave propagation in the initial (stressed)
state. In this case, since we are dealing with small displacements from
the initial state Ux = x« - Xx , the displacement gradient U“B =

o Uy / axp is the natural measure of the strain as required by the
Lagrangian. Also, it is most convenient to reference the atomistic

expressions to the initial (equilibrium) state.

Elastic Constants

Limiting the discussion to Lagrangian strains, the following

definitions are made :
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1 - /) Mg
3 2t ~ F IE
Ciet = (370 T\
¥ . s F
thl-’-’-(g—t—‘)‘ (*"‘"’7)
I % cl)zm T /° Mt aﬂk‘)
where E = internal energy per unit mass
F = Helmholtz free energy per unit mass
S = entropy
T = temperature _

All derivatives are evaluated in the natural state.

(3-1-3)

The tij were named the thermodynamic tensions by Truesdel

and Toupin (1960). They are introduced to remove the complications

arising from the fact that the strains are usually referenced to the

natural state while the stress is usually defined per unit area of the

deformed body. By definition they are the conjugate variables to % //'5;

ives, tijd’}z 3 is the differential of work per unit of original volume done

by stretching the body. The expansion for E and F are therefore:
- o~ 5
P E("Z.Lé',s) = P E(0,3) + t}’z’) +%z, Ciyra ?ZU T+ .

BFOGT)= B FOT) £+ Jo Cops Ty o *

(3-1-4)

In the lattice calculation it will be shown that it is more convenient

to reference the strain to the initial state.

strains:

Working again with Lagrangian
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U = x;, -X; Fiy= 3x./3%,

Uy = oUi /9% (3-1-5)
Sy = ( (R =84) = Y2 (U Ug + UnUsy) )

"“zﬁ(af/as )y = B (3F/354), R

Gl = (i}jﬂ; P (;QQS;EQS;')S S
CEm:—(ggi)T' F’(é%ff%)r

In these expressions all derivatives are evaluated in the initial

state. Expansions for E and F about the initial state have the form
- — — -
PE(S4,S)= PEOS « TySy+ hCimSudu
(3-1-7)
pF 535) = AF(O,T)+ &)S‘J G B ® ...

The elastic constants Cijkl and Cijkl are called the thermodynamic

elastic constants.

The energy density may also be expanded in powers of the dis-

placement gradients Ui x

/‘3 E(X,V,,95) - /55(1,0,5) +SyUy + 2 S Ul * ... (3-1-8)
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Since this was the expansion originally used by Huang (1949), Wallace

(1967) has named Sij 1 the Huang coefficients. By casting the

k
Lagrangian expansion (3-1-7) in terms of the displacement gradients and
identifying terms, one gets the following relation between the Huang
coefficients and the thermodynamic elastic constants (see Appendix 1 ).
S 5 —
S5=Ch =T
(3-1-9)
s — s
Sajkl. = _Gl b, ¥ C“N
The definition of the elastic constants as the second derivatives of

the energy density has led to three sets of elastic constants c.. C

ijkl” “ijkl

and S, . each corresponding to a different reference state or mcasure
i

jk1’

of the strain.

Consider now those constants which relate the stress to the strain.
If the stress tensor in the present state is expanded in terms of the dis-

placement gradients U one can define a set of elastic constants

kl’

Aqu = ( .}Ta-)/,)U,,.,)x (3-1-10)
The associated Taylor series is:
Ty = T+ Aget Un | (3-1-11)

The tensor Ukl may be decomposed into symmetric and antisymmetric

parts
Uu_""' en, + Wk

Cer= % (Upg +Uni) (3-1-12)

Wk = %(Uu-Uih) )
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Note that ¢, is the infinitesimal of Skl defined in equation (3-1-5). A
new set of constants may be defined as the tensor elements relating
stress in the present state to these infinitesimal strains. Wallace (1967)

has named these the Birch coefficients defined as:
This is just the differential form of Hooke's Law. The associated Taylor
series expansion for the stress is

5 (3-1-13)
—ES= Ty + Bigkr € + (ITy/ 000 Wy + )

The Birch coefficients are related to the thermodynamic elastic

constants (proof given in Appendix 1 ) as

. . _ _ . (3-1-14)
Bire = Yo ( Tiw S50+ Tig S+ T Sie + Ty S 2T S ) + Cie
Elastic Waves in a Prestressed Crystal
We have now defined five different elastic constants c.,, ., C.., .,
ijkl ijkl
Sijkl’ Aijkl’ Bijkl’ each corresponding to a specific reference state and

strain measure. The question now is which, if any, of these elastic
constants defines the propagation velocity of infinitesimal elastic waves
in the initial (strained) state? It is these ''effective elastic constants'
which we ultimately wish to compute for the case of a finite hydrostatic

prestress.

Following Huang (1950, Appendix 6) we form the Lagrangian

density for the displacement field Ui(xj)‘
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;_(X-L,U;,Uis) = 72/5 Ifjll- E (3-1-15)

Using the expansion in terms of the displacement gradients (3-1-8) for the

potential energy density gives
L= REIUIM + 3E(F,0,8) —Z 839 _ 1 T Sy Ui _ (3-1-16)
) 2X; ijel a%; AFy | .

By the usual variational technique (i.e., see Moiseiwitsch, 1966,

Chapter 3), the Euler field equations are obtained in the form

2 _ 3 o >z _ ad(aat\ =0 Gieg® B
AU, =A%y QU /X)) At \ 9T

Which, upon differentiating (3-1-16), become

5U; = 2 2 § S5+ Vo Z ( Sgwt + Sueyy) 2
fes ‘?sti 3 /z'u( 3 "‘J) X,
In order that the strain energy function existg, we must have (see, i.e.,

Love (1944), $66) Sijk1 = Siyzj- Upon differentiating , we aet

_62.’: Z Z S.‘,-hl QU isi2a (3-1-18)
F *‘(5‘ ’ axsaxl) :

For a plane elastic wave

i y X - twt

U= T e (3-1-19)

equations (3-1-18) become

s e - 5 3-1-20
/ow" uy ™ 4—’\‘(“% % Sasu. Ys y,} Wp L=hZ2 3 ( )
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Hence it is the Huang coefficients which are the effective elastic
constants. The sum over j and § means that it is only the symmetric
combination (Sijkl + Silkj) which is observed in experiments. Note that
the wave equation (3-1-20) has exactly the form of a wave equation in an
unstressed medium; the only difference being that the Sijkl are, in
general, of lower symmetry than the corresponding elastic constants in
a stress-free medium. By requiring rotational invariance, Huang (1950)
derived the following symmetry relations for the elastic constants in a

prestressed medium.

S;_" = S.’)"

(3-1-21)
Sip Sjk — Sj¢ Sik +Syer +Sjike = O

Note that in a stress-free medium, Sij = 0 and equation (3-1-21) gives
the familiar symmetry relation Sijkl =

Siin

Hydrostatic Prestress

The various elastic constants and their interrelationships have

been defined above for the case of an arbitrary finite prestress Ti' - Si"

In the application to the earth's interior, it is generally assumed that :
the pressure is hydrostatic.

__LJ- = -PSy (3-1-22)
In this case the symmetry relations (3-1-21) become
P(5520ik =St Sk ) + Sykt — Sjig = O (3-1-23)

and we see that even in the case of hydrostatic pressure the Sijkl lack
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the familiar symmetry. However, if we define new elastic constants

Bijxe  such that

Bire = PSS SiaSx) + Syme (3-1-24)

where it is easily seen that

Aljhl +/6J-lkj = Sa'.jh,{ * S“'hj (3-1-25)

then the éijkl can replace the Sijkl in the equation of motion (3-1-20) the
two are therefore equivalent. However, by using equation (3-1-24) in the
symmetry relations (3-1-21), we see that for the case of a hydrostatic

prestrain

Bigra = Bins (3-1-26)
and the )5 ikl therefore have the full symmetry of the elastic constants.

We henceforth call Xijkl the effective elastic constants.

By using equation (3-1-9), the effective elastic constants may

be related to the thermodynamic elastic constants.

"5"3“- = S"iskl" St Sjk_ S_',!.S'-k) + CL_‘,hl. (3-1-27)

Further, by specializing equation (3-1-14) to the case of hydrostatic

prestress and comparing with (3-1-27), it is easily seen that

3-1-28
Biyxr = Dy . ( )
As mentioned in the introduction, most of the relations given in

this section have previously been given by Thurston (1964, 1965) and

Wallace (1965, 1967). To facilitate comparison with their work,
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Table 3-1-1 compares the notation used here with the notation in their

papers.

Having established notation and defined the various elastic con-
stants, the next section reviews the various methods of actually cal-
culating and extrapolating the effective elastic constants for compariscn

with the seismic profiles.

3-2. Calculation of the Elastic Constants -- Finite Strain

and Interatomic Potential Models

It was shown in the previous section that the effective elastic con-
stants may be calculated as the second derivatives of the free-energy
density with respect to the strains. An expression for the free energy is
now required such that it can be appropriately differentiated. This is
usually handled in one of two ways.

(a) The free energy may be expanded as a Taylor series in the
strains, the coefficients evaluated from the measured elastic
constants and their pressure and temperature derivatives at
the '"natural''zero pressure state.

(b) The free energy may be expressed as the sum of atomic inter-
actions of assumed functional form. Parameters in the poten-
tial are fixed by data in the natural state. The elastic constants
may be computed either by direct differentiation (method of
homogeneous static deformation) or by a direct comparison
between the long-wave limit of the lattice vibration equation

and the continuum wave equation (3-1-20) (method of long waves).
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We will call (a) the finite strain approach and (b) the interatomic poten-

tial approach.

The Finite Strain Approach

The formulation presented here was first given by Leibfried and
Ludwig (1961) and has more recently been applied by Thomsen (1970a, b)
to the sodium chloride data. Since the approach will only be sketched
here, the reader is referred to these works for a more detailed

development.

The free energy is written
F= Qo+ (3=2=1)

where CPG is the potential energy of the static lattice and Fs is the

vibrational energy.

“thw; /kT
_ AT _ s (3-2-2)
R ?[ hi + kT (1 - € )|

In this approach the potential energy of the static lattice is

expanded to fourth-order in the Lagrangian strain /g
G, = G 1o T Z Tpa Mymy +
)

~ ~ —2-
* I/SEV Z C"JMM 'Qij Ku'ﬂm\ + & 3)
AN

| Y E‘: i3
+ AI V “Z% “umﬁ"t)nunmmn +
The super-tilde denotes evaluation in the fixed reference state; this

reference state is chosen such that d), is 2 minimum.
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The thermal energy Ky is expanded to second-order in the

strains

R(1T)=Fs(0;T)+ z( ) Wi+ Ve 2, Ma“u) g+ ... (3729)
J i

Applying the Grtineisen approximation that the strain derivatives of all

frequencies are the same,allows equation (3-2-4) to be written

UlT) (T) * USZ 1'_\ ’Yl“ (3'2-5)

+ s ;Z;_; [“7\13&;05 ¥ E;iu(US’T Ev)] Wis M + .

where
T g e o
- (25, -
A= Vo (Lm0 LY (3-2-7)
J%LJ;?{,&L e '))Zkl. ~s
5 |
Us = Z #w (Ve + ;m’T) (3-2-8)

2- ‘F\VT 2' Jﬁvk-r
N (e AT PR (3-2-9)

Com = k(B

Substituting equations (3-2-3) and (3-2-4) into (3-2-1), the free energy is

given (in Voigt notation) by:
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FILT) = FOT) +V Z /e Cpfltp +

P

" '\7‘5;L /31 kanmp'q/‘ e (3-2-10)

o VA/ﬁZ/‘v \/41. CK/@MV 47,( %/5 ”[/(47))
= UM 2 haa +

A~

t 3[R Us M+ Y LU -TC ) o, + .
£ 2[ Ay ’ [ 1M+ ...

Equation (3-1-27) defines the effective elastic constants under

hydrostatic prestrain as

ﬁiﬂ*‘"": Cijkm+ P( S‘l_')gkm "’Sim SJ\\ - SiK S‘,m) i (3'2'11)

Changing the coordinate system from the initial to the natural so that the

free-energy expansion (3-2-10) may be used

éi}km"' —_%-' 'S:ir iC Cﬁ{ugthgum + 'P(S;SS,M —-gimg“)k

(3-2-12)
— Sk S;)m)

RET).
Cestu = QAYlrs dNtw
Thomsen (1970t has evaluated this expression for a cubic crystal.

He gives (in Voigt notation) for hydrostatic stress:
/3 ~ 54 i =~ -
)54/6 (V,T) == (%_/—-) { Qq',g + N ;Q;?a/u_*” y&%% C.(/,/a,v
~ ~ ~ ~ ‘5 B
_ U514ﬁ+742‘p(us‘TCv)§’ pgt (3-2-13)



45

) kL
where gx =¢ = gi) Spy * g,sguﬁ i gns

1- /z.l -]

He changes from isothermal to adiabatic constants using the relation

& -8y = TE AL

(3-2-14)

The expressions for the adiabatic constants are given by Thomsen as:

B (Y= ()" § By - 3R s 28R Ao

#%g[x“-T‘&gqg-

The pressure is given by'

Py = - 3R ( iﬂ AN IS VIV

;‘K[ (T OTg}

The constants are defined as

| - 4
r;‘pz_s'ﬁz’&%“‘ M T;Fr;;d
_ | S 2 0
Ausg" “91;\%}80}9/(\) A= 7 a% /\pys _

These constants are evaluated from data near T =

(3-2-15)

(3-2-16)

(3-2-17)

Toe P =0,

~

Thomsen gives six simultaneous equations for the unknowns V. K, 3.,

", A in terms of six experimental quantities Vo' K:, X o’

(aKs/ aT)P:O' ( OK®/ BP)T s | aZKB/ BPZ)TO . An additional four
o
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~
simultaneous equations give the unknowns )8*, )\% ; [7,(/3 : /\D(IG in
s, a
terms of the measured quantities )8,(/6 s I 9/6.(/5 / T)on - 8)3,:/6 /o P),I.o ;
2 2
and (0 ,5,,, /o P )To .

In the finite strain approach as outlined above, all the relevant
data is used to determine the coefficients in the Taylor series expan-
sion of the free energy and to determine the Grtlneisen parameters. The
crucial question in using this approach to extrapolate elastic constants is
how rapidly does the above expansion converge? Questions such as how

3
1 is M2 D lative to the other t i atio
arge is /3! 77, a(/g/uyg relative to the other terms in equation

(3-2-13) must be faced.

In a geophysical context, this theory provides the most straight-
forward means of extrapolating the elastic constants and density for those
materials for which the 16+ pieces of data discussed above are available,
and is thus limited to discussions of the upper mantle. For those
materials in the transition region (400-700 km) and below, it has not
been experimentally possible to measure the elastic properties required
for such a finite strain approach. For these transition region and lower-
mantle minerals, a theory with some ability to make predictions is
required — the atomistic approach based upon two-body interatomic
potentials is such a theory. By replacing the input data required by the
finite strain approach with a physically-motivated interatomic potential,
the elastic properties of the lower mantle oxides and silicates may be

discussed.
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Atomistic Approach Based on Two-Body Interatomic Potentials

Instead of expanding the free energy as a Taylor series in the
strains, it may be written as the sum of interactions between the atoms.
If the functional form of the two-body potential between each pair of atoms
in the solid is known, the free energy may be expressed in closed form.
Thus the convergence problem facing the finite strain approach does not
arise; it is replaced by the problem that the functional form of the inter-

atomic potential is poorly known.

The problem of formulating a physically reasonable potential
with the minimum number of empirical parameters will be deferred to
the next chapter. In the remainder of this chapter the method of long
waves will be reviewed in considerable detail as it yields expressions
for the volume dependence of the effective elastic constants in terms

of the interatomic potentials.

3-3. The Method of Long Waves

In the method of long waves one uses a perturbation expansion to
solve the vibration equation of the lattice in the limit of long wavelengths.
The elastic constants are then identified by comparing the resultant
vibration equations with wave equations of macroscopic elasticity theory
(3-1-20). The method was first developed by Born (1923) and Begbie and
Born (1947). Although in their formulation the method is not applicable
to ionic crystals, since they are,in general,piezoelectric, Huang (1949)
used Ewald's theta-function transformation to separate out the macro-

scopic electric field associated with the elastic wave,and was thus able



48

to formulate the method of long waves in convergent form for ionic

solids.

In this section Huang's formulation (also given in Born and Huang,
1962) will be developed. There is no original work except for the exten-
sion to the case of hydrostatic prestress, which turns out to be trivial.
The objective is rather to lay the theoretical framework for the geo-

physical applications to follow.

Since this development so closely parallels that given in Born
and Huang, it is convenient to change to their notation, thus saving the
reader the rather bothersome task of effecting the change. We shall
drop the distinction between natural and initial states; henceforth all
coordinates will be referenced to the initial state and, following Born
and Huang, the coordinates in this state will be donated by x;rather
than Xi. Further, u will be used to denote displacements from the initial
state rather than U,and a, will now be used to denote the lattice basis
vectors. It should be emphasized that the initial state is an equilibrium
state but not necessarily a stress-free state, and that the assumption

that it be stress-free will not be made in the following development.

Following the notation in Born and Huang (1962) let:

e 15 1P

lattice cell index

n = number of particles in basis
k(0...n-1) = base index

2, 2, 23 = lattice basis vectors

,tll, _b_z, ’13'3 = basis vectors of reciprocal lattice

my = mass of particle k in the basis
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va = wvolume of the lattice cell

() = x(R) + x(k)

lattice point occupied by particle (k)
in the initial state

lattice vector

20) = L'z + L8, + La,

|
vector connecting particle (&,) to

g’y _ :
z(kk') - ﬁ) = (ﬁ') particle ({é )

u( }’t) = small displacement vector of (f{)
@ = lattice energy of entire lattice to be
normalized later (see B ¢ H, p.219),

Expanding the lattice energy in terms of ion displacements from

the initial state

@ Z @ ( Ux.& + Z. Z. @o(/d kh' u‘(&)uﬁ(ﬁ) +

2 e h g S

ik - 57 ®v‘/53( kk'“)ui(h)uﬁ JUglie) +
299"

kk'k”
The coefficients are given by

k)= ( ‘;@,) = O,

& L/Ld{k) o

D)= ( o) = B ) =5

TN 33@ B (SU B
@ufs'f iiﬁ“) - (;uo((&)‘)(’sd(g')JUI ’E.')) - @d/ﬂ’(#k‘ L ) )

The coefficients are written on the right-hand side in a notation which

explicitly shows that the linear term is independent of L , the quadratic
term depends only on the relative coordinates L-1' of the two particles,

and so on.
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Under the assumption that every particle is in its equilibrium
position (which is distinct from the assumption that the configuration
corresponds to vanishing stresses), the linear coefficients @M(k). are

equal to zero. The potential energy of the system is then, to second-

order, @= Yz < @cxp( uu)u, (k.) u}s(k' . The kinetic energy
#
is s %% éﬂ’nk[\u,( k)] where the dot indicates a time

derivative. The Lagrangian for the system is

. “ |
Is T"V = Va%‘l/mki:uot(i)] ‘—'yZ iﬂ @0(/6 kk_' (L)ufﬂ(i‘)

and Lagrange's equations of motion are

i( 3L )_ > - O A=1,1,3
&Um(i) Jua((i)

which for the crystal are

i, (R) + Z D, (M) u/j(ﬁ:) = £ £=1,2,3,... (3-3-3)
& /6 ok=1,23
k=0n-1

Assume a plane wave solution to be a Bloch function of the form

" :mL;pz_(-'.) —lwt
Uyl k) = r—,\z\/(lel He (3-3-4)
where y is an arbitrary wave number vector and j =0,..., 3 n-1 indexes

the 3n solutions for a given y. For this assumed solution the equations

of motion become
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-7 -1(%{;&:)
—wlwd(k-) = @d/@ ) L e * \m//efk')

Lk/s Tm Mg My

—ri ¥ (A tR) =% (R)

{3=3=5)

-2“&_}’. (2‘:“ X“))
= ZW(‘Q)@
/5

cr Wmne M

@dﬂ l: k! )

which can be written in the form

w* Wy(k)=Z C.,(f;(w) Wy (k') k=0, m- X=1,2,3 (3-3-6)
16
where
_orA v L Xtey-% (Y] 4t 1m¥ % (¢)
Cafs(w)- c ! @# (3=3=T)
VM e

Note that the original infinite number of equations of motion (3-3-3) have
been reduced to the 3n equations (3-3-6). This was possible because
éwp(hh‘ does not depend on both £ and X', but only on the relative
index A-4' . Hence in equation (3-3-7) it has been assumed, without

loss of generality, that A= 0.

Following Huang (1949), let

B = L1 (54 B (35,

The second term is due solely to the coulombic interactions while the
first term includes the rest. This separation allows the C“/&(ﬁ') to

be separated into its coulombic and non-coulombic parts:

—ani y - X () C o g pull xvl&
Qip(‘i')z &Fﬂ % @a(/a (kw) c a .
/mp/mb.’

(3-3-9)
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The lattice vibration equation (3-3-6) becomes

w? W, (Rl %)=%C:P(il) Walk'1Y) + (50

+“'— Z @dﬂ(u) W,s(ki*) +

—2n1¥-£(“) , mi}-zi’;)
e Wy ('] ¥
+€dfm)< Z%‘ ®/ ( )W P(k\‘))e

Note that the terms giving the coulombic restoring force on a particle
due to its own displacement have been written separately in the second
term. The prime on the summation in the third term indicates that the
X =0, k = k' term has been omitted. This third term gives the cou-
lombic force on particle (g) due to the displacements u(&l,) of all the

other ions.

Written explicitly, the coulombic contribution to @ is

@(\_ _ ya Z 5 Cr o (3~-3-=11)
e | X0sum -x@E)-ud]
Uk
For the case A # 0, k # k' direct differentiation gives
@C (ﬁlw) e e“e"'i Eh —'———z (3-3-12)
4 Ded¥a TX1 ) x=x (he)

For the case £ = 0, k = k', the coulombic field change experienced by

ion k due to its displacement ‘1_,{_(2) can be expressed as the change in the
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coulombic field at (g) due to a displacement -U(g) of all the other ions

in the lattice.

0 & g (3-3-13)
@o(p(hk) R g €4 i‘ax«axp 1X) % ()

Substituting equations (3-3-12) and (3-3-13) into the lattice vibration

equation (3-3-10) gives:

L N x— 1
wz(gnw.‘mg‘)—écﬁe(w\\,{d(k\f) *

+ €y ZW : Z __"'_-._{ 2 ‘ } T
=k P (3-3-14)
Tm, P RV, (X% | (- X] s

"'Z“L 7(11) I 2T _?\_(::i
— Cae t ZZ Er %(h'\¥) ¥ iﬁi :
e e Lk W: QX4 ¥ X ¥

A straightforward application of the method of long waves is not

possible at this point because certain terms in the wave-number expan-
sion are divergent. The physical problem is that ionic crystals are in
general piezoelectric; one must specify both the strain and the macro-
scopic electric field before one has completely specified the forces
acting on the particles. Huang (1949) resolved this problem by reco.g-
nizing the analogy between (3-3-14) and the electric field in a dipole
lattice, and then using Ewald's theta-function transformation to separate

the macroscopic electric field from the effective coulombic field.
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Analogy Between Vibration Equation and the Electric Field in a
Dipole Lattice

It is interesting at this point to note that the second two terms in
equation (3-3-14) have the exact form of the electric field in a dipole
lattice. The field at a point x due to a dipole p() at x({) is given by

(far-field approximation)

£00= vV =V [P0 V(g ] (3-3-15)

in component form

Ex(X)= Z Py(p) 22 _ % | (3-3-16)
= P ad%e L X-x { |
In a Bravais lattice of such dipoles
pw = Tt (3-3-17)

the field at x is given by

awLy - X
£ (x)= Z Pg, D 'Z e (3-3-18)
axﬂb)(p | x(8)-x\

Returning to equation (3-3-14), we see that the last term is just the

Field at E(ﬁ) created by the displacements

amiy % ()

Uy i) = 'J_:: W, (k1Y) € (3-3-19)

Mk| ﬂ
which is seen, by comparison with (3-3-18), to be equivalent to the field

at x (k) due to a lattice of dipoles

¢y ; S L) 3-3-20
(k) = SR Wo(k|T) ( )
Pe =R



55

when the dipole at x(k) is excluded. Ewald (1921) called this the
""exciting field'. The second term in equation (3-3-14) is the exciting
field at (1.(:) due to displacements E-(LS') = -E(E), which is equivalent to
the exciting field in a lattice of dipoles
oolh) - S WalkiY). (3-3-21)
Tmye
Hence, as pointed out by Huang (1949) and Born and Huang (1962), the

key to the solution of the vibration equation (3-3-14) is the formulation

of the exciting field in the dipole lattice.

Ewald's Theta-Function Transformation

The use of Ewald's theta-function transformation in equation
(3-3-14) accomplishes two purposes. First, it allows a separation
from the vibration equation of a term corresponding to the macroscopic
electric field. Second, it allows the coulombic sums to be written in

more quickly convergent form.

Using the integral representation of 1/{x(%) - x|

o~ -x1"p
j _ g_& e cQ./o (3-3-22)

in equation (3-3-18) we obtain
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