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ABSTRACT

Biologically active and structurally complex natural products provide a powerful
driving force for the development of novel reaction methodology. Major advances can
reshape the way chemists approach the construction of challenging chemical bonds.

In this work, we begin by describing the development of a catalytic asymmetric
synthesis of five and seven-membered rings containing all-carbon quaternary
stereocenters. Enantioselective Pd-catalyzed decarboxylative allylic alkylation reactions
of P-ketoester substrates afforded a variety of chiral seven-membered o-quaternary
vinylogous esters. Initial attempts to convert these compounds to Yy-quaternary
cycloheptenones led to the discovery of a two-carbon ring contraction reaction, which
provided isomeric y-quaternary acylcyclopentenes. Subsequent adjustment of reaction
parameters provided divergent access to the originally targeted cycloheptenones.
Numerous synthetic applications of the two versatile product types are demonstrated.
The methodology expands on our previous investigations of six-membered ring scaffolds
and provides additional chiral building blocks for asymmetric total synthesis.

The ring contraction approach to acylcyclopentenes was further developed in the total
synthesis of the presilphiperfolanols, which are important intermediates in sesquiterpene
biosynthesis. Key to our synthetic route to the tricyclic core was the application of
intramolecular Diels—Alder and Ni-catalyzed 1,4-hydroboration reactions. From these
efforts, the enantioselective total synthesis of presilphiperfolan-1$3-ol was achieved.
Future research efforts seek to extend the synthetic route to presilphiperfolan-9a-ol and

study the synthetic compounds in biomimetic carbocation rearrangement processes.
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CHAPTER 1

The Construction of All-Carbon Quaternary Stereocenters Using Pd-

Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis’

1.1 INTRODUCTION AND BACKGROUND

Complex natural products serve a vital role in chemistry as a driving force for the
invention of novel chemical transformations.! The fundamental synthetic challenges
posed by all-carbon quaternary stereocenters” contained in many natural products have
inspired the development of novel synthetic methods for the enantioselective construction
these important motifs. In particular, the research area of Pd-catalyzed asymmetric
allylic alkylation®* has significantly advanced in response to synthetic limitations
identified during efforts toward complex molecules (Figure 1.1). Modern catalytic
enantioselective methods of this type have led to the development of novel strategies for
the efficient and direct assembly of challenging cyclic core structures in many natural

products and additionally provided powerful, broadly applicable tools for the

" A similar version has been published. See: Hong, A. Y.; Stoltz, B. M. Eur. J. Org. Chem. 2013, Early
View, DOI: 10.1002/ejoc.201201761.
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functionalization of highly substituted ketone-derived enolates. In this short review, the
direct construction of all-carbon quaternary stereocenters at nucleophilic enolates via Pd-
catalyzed allylic alkylation reactions will be discussed within the broader context of
challenges derived from total synthesis. An all-carbon quaternary stereocenter, which is
composed of a central carbon atom bound to four carbon substituents, should be
distinguished from a heteroatom-substituted tertiary center, which bears one heteroatom
and three carbon substituents (Figure 1.1). In the following discussions, particular
attention will be given to reported syntheses that have appeared since the most recent
reviews.” Total syntheses featuring enantioselective tertiary stereocenter formation® or

catalyst-controlled diastereoselective transformations’ will not be discussed in detail.

Figure 1.1. Natural Products as an Inspiration for The Development of Asymmetric Catalysis

O = all-carbon quaternary
stereocenter

= heteroatom-substituted
tertiary center

Zoanthenol Communesin B
(2 (3)
OJLO
o ﬁ @/
7
oTMS % 4 N o o j

E-  + Pd-catalyzed (o}
asymmetric allylic
alkylation
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1.2 REACTION DESIGN AND MECHANISTIC CONSIDERATIONS

Pd-catalyzed allylic alkylation reactions have found increasingly wide synthetic
applications due to the continued evolution of the methodology. The invention of highly
enantioselective transformations for the assembly of all-carbon quaternary stereocenters
has facilitated the efficient asymmetric synthesis of numerous complex natural products.
While a number of factors have been instrumental to the success of these Pd-catalyzed
reactions in complex settings, advances in substrate scope and identification of suitable
chiral ligands for these substrate types have had a direct impact on the general utility of

these reactions.

1.2.1 GENERAL ASPECTS OF Pd-CATALYZED ALLYLIC ALKYLATION

In a typical allylic alkylation reaction, a Pd(0) complex undergoes initial olefin
coordination and subsequent oxidative addition to an allyl electrophile (Scheme 1.1).
Expulsion of the leaving group leads to a cationic Pd(Il) m-allyl complex. Upon
combination with an enolate in the reaction mixture, subsequent C—C bond formation can
lead to the a-quaternary ketone product and regenerate the initial Pd(0) complex. The
precise reaction mechanism can vary based on the choice of ligand, palladium precursor,

substrate, allyl source, additive, and solvent.
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Scheme 1.1. General Mechanism for Pd-Catalyzed Allylic Alkylation Reactions

)
R
@/ <—Pd"L L,Pd® + iﬁ/\/
x "
H X

PdL,
X = leaving group

1.2.2 DEVELOPMENT OF METHODS FOR ENOLATE GENERATION

Various methods have been employed for the generation of ketone enolates for Pd-
catalyzed asymmetric allylic alkylation reactions, but important advances in the past
decade have rendered these transformations more practical and useful for the preparation
of complex molecules. An unavoidable and general problem in the allylation of
differentially substituted ketones with multiple acidic sites is the formation of isomeric
enolates, which can proceed to different products in the presence of a palladium s-allyl
complex (Scheme 1.2A).

In order to circumvent this problem, many groups have employed substrates that
contain either a'-blocking groups to shield undesired sites of deprotonation or c.-electron
withdrawing groups to greatly reduce the pK, of the desired site of deprotonation
(Scheme 1.2B). While both of these strategies have afforded control of regioselective
deprotonations in asymmetric alkylation reactions and enantioselective transformations

d 89,10,11

on these types of substrates have been documented, this approach can introduce

unwanted functional groups into cyclic ketone scaffolds. The modification or removal of
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this vestigial functionality from the a-quaternary ketone products can greatly diminish

the general application of these compounds in total synthesis.

Scheme 1.2. The Enolate Alkylation Problem and Approaches to Selective Enolate Formation

A
o] o- o- ; o Z 0
allylic R
é/ R base ﬁj/ R é/ R alkylation R
_— > + _— > +

B shielded enolates stabilized enolates

o) 0 ﬁ o) o)
, CO,Et
a | o _CO,Et SN\ F
— > — >
o o o} 0o
a' a _Ph o =
N A NN F
—_— —_—

The general synthesis of chiral a-quaternary ketone building blocks using Pd-
catalyzed asymmetric allylic alkylation reactions of non-biased unstabilized enolates
constituted a major synthetic challenge until the past decade. The lack of established
methods for the preparation of relatively simple compounds such as ketone 4 (Figure 1.1)
in high ee presented a significant obstacle to the synthesis of complex natural products
with all-carbon quaternary stereocenters.

Alternative methods for selective enolate generation could be found in the work of
Tsuji and co-workers from the 1980s (Scheme 1.3). Using either enol acetate'* or silyl
enol ether'” substrates in the presence of appropriate additives, it was possible to unmask

the latent enolates as a single isomer. Subsequent allylic alkylation provided o-
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quaternary ketone product without ancillary group incorporation. Additionally, Tsuji’s
work showed that it was possible to incorporate allyl fragments into the substrate by
using allyl enol carbonates'* or allyl B-ketoesters.'>'® The in situ formation of both an
allyl electrophile and an enolate nucleophile could be conveniently initiated by a Pd(0)
catalyst with both of these substrate types. With all of these methods explored by Tsuji,
the enolates formed under the reaction conditions maintain high regiochemical fidelity
and smoothly proceed to the corresponding allylation products. While these methods
provided promising strategies for generating enolates in a widely applicable manner,

asymmetric variants of these transformations did not surface until over 20 years later.

Scheme 1.3. Tsuji Reactions for the Allylation of Non-Shielded, Non-Stabilized Enolates

(o]
OTMS
non-shielded Pd(0) OJLOM

unstabilized

F-
N enolate ~ -co,

o —_
6
7
OAc 12 o (o]
BusSnOMe -~ ’ N Pd(0)
@/ iﬂ)(o/\/
8

l allylation -CO,

o

4

1.2.3 DEVELOPMENT OF ASYMMETRIC ALLYLATION REACTIONS

In the past decade, contributions from predominantly the Stoltz and Trost groups have

helped address the difficulty of performing Pd-catalyzed asymmetric allylic alkylations
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on non-stabilized unbiased enolates to give a-quaternary ketones. In the earliest report
by Stoltz in 2004, numerous chiral bidentate ligands were screened for their ability to
promote high asymmetric induction in reactions with allyl enol carbonate and silyl enol

ether substrates (Scheme 1.4).'”

Ultimately, it was found that treatment of these
substrates with the combination of (§)--Bu-PHOX (13) and Pd,(dba), provided the
highest degree of enantioenrichment in the a-quaternary ketone products. Other P,N-
and P,P-chelating ligands were investigated, but they proved to be less effective under
the optimized conditions. Carbocyclic substrates with various ring sizes could undergo
the transformation to give products in high ee. Examples of benzannulated and non-
benzannulated substrates were reported.

Shortly afterward, a study from the Trost group in 2005 described the development of
a different catalyst system for the decarboxylative allylic alkylation of allyl enol
carbonates (Scheme 1.4)."® A screen of various Trost bis-phosphine ligands with
modified diamine backbones and arylphosphines revealed that ligand (R,R)-17 was most
effective for this transformation. Complexation of this ligand with Pd,(dba),”CHCI,
provided an effective catalyst for the synthesis of chiral a-quaternary ketone products
with various ring sizes. While most of the examples consist of benzannulated substrates,
two examples of non-benzannulated ketones were presented. Notably, several cyclic

ketones with incorporated heterocycles could also be prepared. The catalyst system was

additionally shown to be applicable for the formation of a-tertiary ketones.
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Scheme 1.4. Pd-Catalyzed Asymmetric Allylic Alkylation Reactions with Allyl Enol Carbonate, Silyl

Enol Ether, and -Ketoester Substrate Classes
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Figure 1.2. Selected Chiral Ligands for Pd-Catalyzed Asymmetric Allylic Alkylation Reactions
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Subsequent work by the Stoltz group extended the asymmetric alkylation
methodology with the PHOX ligand system to B-ketoester substrates (Scheme 1.4).'"¢
Since the starting materials are racemates, the destruction and reconstruction of
stereochemical information through the intermediacy of a prochiral enolate must take
place in order for these compounds to form asymmetric alkylation products in what has
been termed a stereoablative process.'” Despite this key mechanistic difference, these
substrates demonstrated similar yields and levels of asymmetric induction compared to
the silyl enol ethers and enol carbonates. The development of reactions for this class of
substrates had practical advantages since various o-substituents could be introduced
under relatively mild conditions, and -ketoester substrates typically have higher thermal
and chemical stablility than silyl enol ether and enol carbonate substrates.

The bis-phosphine and phosphinooxazoline-type ligands described in the examples
above have enjoyed notable success in the construction of challenging all-carbon
quaternary stereocenters to prepare key intermediates for natural product synthesis
(Figure 1.2). Trost ligands® possess C, symmetry and equivalent donor atoms as well as
amide functionality capable of hydrogen bonding. To date, numerous ligands with
modified backbone scaffolds and arylphosphine substitution have been reported.
Structural modification of these ligands has led to changes in reactivity in cases with
multiple possible asymmetric alkylation pathways. PHOX ligands,”’ which were
pioneered by Pfaltz, Helmchen, and Williams, have also proven to be useful ligands for
asymmetric allylic alkylation reactions. These ligands possess C, symmetry and non-

equivalent donor atoms. This lack of symmetry has important ligand design implications
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since the oxazoline and arylphosphine regions of the ligand can be tuned somewhat
independently. Overall, the ligand classes have unique and complementary steric and
electronic features that make them particularly useful and adaptable for Pd-catalyzed

asymmetric allylic alkylation reactions in total synthesis.

1.3 CATALYTIC ASYMMETRIC SYNTHESIS OF NATURAL PRODUCTS

The development of Pd-catalyzed asymmetric allylic alkylation reactions of non-
biased unstabilized enolates for the synthesis of a-quaternary ketone products has
provided a powerful tool for total synthesis. The following case studies not only
illustrate important advances in synthetic chemistry, but also provide examples of how
broader, long-standing problems in the field have been identified and overcome in the

process of constructing complex molecules.

1.3.1 TOTAL SYNTHESES OF HAMIGERAN B AND ALLOCYATHIN B,

The synthetic potential of Pd-catalyzed allylic alkylation reactions for the assembly of
all-carbon quaternary stereocenters was illustrated by the early enantioselective syntheses
of hamigeran B (27)** and allocyathin B, (37)* by the Trost group (Scheme 1.5 and
Scheme 1.6). The common component for both of these syntheses was enantioenriched
exocyclic vinylogous ester 19. In order to form the requisite quaternary stereocenter, the
development of an effective asymmetric allylic alkylation reaction for exocyclic
vinylogous ester 18 was needed. The treatment of this compound with allyl acetate as the

allyl source, LDA as base, trimethyltin chloride as Lewis acid, and [(n’-C;H)PdCl], and
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chiral ligand (S,5)-15 as catalyst precursors in DME at 0 °C provided a-quaternary
ketone (R)-19 in 93% yield but only 12% ee. Extensive reaction optimization revealed
that the use of ~-BuOH as an additive greatly improved asymmetric induction and
provided optimized reaction conditions leading to the formation of product 19 in 87%
yield and 91% ee. Additionally, it was found that reduced catalyst loadings could also be
employed to obtain similar results. The exocyclic vinylogous ester functionality not only
served an important purpose as an o'-blocking group to prevent the formation of isomeric
enolates, but also enabled subsequent transformations later in the synthetic sequence.

The convergent synthetic approach to hamigeran B (27)”* sought to unite an aryl
fragment with a cyclopentenyl fragment containing an all-carbon quaternary stereocenter
(Scheme 1.5). Subsequent formation of the central six-membered ring would provide the
core of the target. In order to proceed toward hamigeran B (27), it was necessary to
obtain the (S)-enantiomer of 19 generated from the optimization studies. By application
of Trost ligand (R,R)-15 under otherwise identical reaction conditions, vinylogous ester
(5)-19 was obtained in 77% yield and 93% ee. Subsequent treatment with lithium
dimethylcuprate in Et,O led to the formation of cyclopentanone 20 bearing an all-carbon
quaternary stereoenter. Triflate formation and oxidative cleavage of the allyl group
provided aldehyde 21. Nucleophilic addition of the aryllithium of 22 followed by
oxidation of the intermediate alcohol with Dess—Martin periodinane and selective
monodemethylation with BCl; gave ketone 23. Enol triflate reduction under palladium
catalysis, formation of the aryl triflate 24, and application of Heck cyclization conditions
using Pd(OAc),, dppb, and K,CO,; in toluene afforded a mixture of isomeric

disubstituted, trisubstituted, and tetrasubstituted olefinic tricycles. Following BBr;-
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induced demethylation, phenolic trisubstituted olefin 25 could be isolated from the
mixture in 51% yield over 2 steps. The selection of appropriate hydrogenation conditions
proved crucial to the formation of the remaining stereocenter. Treatment of alkene 25
with Pd/C in ethanol with 1500 psi H, led to the undesired C(6)-epimer, while
hydrogenation with Ir black in ethanol directly provided desired tricycle 26. Late stage
diketone formation with SeO, and acetic acid in p-dioxane followed by regioselective

arene bromination led to hamigeran B (27).
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Scheme 1.5. Total Synthesis of Hamigeran B
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Reaction Conditions: (a) (CH;),Culi, Et,O, =20 °C (89% yield). (b) LDA, THF, —-78—0 °C; then
PhN(Tf), (87 % yield). (c) OsO, (3.77 mol %), NMO, THF, H,O; then NalO,. (d) iodoarene 22,
DME, =55 °C; then aldehyde 21. (e) Dess—Martin periodinane, NaHCQO;, CH,Cl,, 75% yield (3
steps). (f) BCl;, CH,Cl,, —20 °C (85% vyield). (g) Pd(OAc), (10 mol %), dppf (20 mol %),
HCO,H, ELN, DMF, 70 °C (94% yield). (h) THO, CH,Cl, pyridine, 0 °C (94% yield).
(i) Pd(OAc),, dppb, K,CO;, PhCH;. (j) BBr;, CH,Cl,, —78 °C (51% vield, 2 steps). (k) Ir black, H,
(1500 psi), EtOH (>99% yield). (I) SeO,, cat. AcOH, p-dioxane (90% vield). (m) NBS, i-Pr,NH (5

mol %), CH,Cl, (85% vyield).
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By employing the enantiomeric chiral intermediate (R)-19, the Trost group completed
the synthesis of allocyathin B, (37) shortly after their investigations of hamigeran B (27)
(Scheme 1.6). The challenging central cyclohexane ring bearing two all-carbon
quaternary stereocenters presented an opportunity to test the group’s methods for Ru-
catalyzed enyne cycloisomerizations. Exocyclic vinylogous ester 19 underwent a double
organocuprate addition to give ketone 20 as in the earlier synthesis of hamigeran B (27).
Triflation and Sonagashira coupling provided alkyne 28. Oxidative olefin cleavage,
aldehyde reduction, and terminal alcohol substitution provided iodide 29. Lithium-
halogen exchange and zincation enabled a Negishi coupling with iodide 30.
Esterification of the alkyne and alcohol deprotection provided enyne 32. Treatment of
this compound with the group’s previously developed conditions for Ru-catalyzed
cycloisomerization® provided a mixture of E and Z olefin isomers. An investigation of
various ester groups found that the terz-butyl ester provided the best ratio of E:Z olefin
isomers. Ultimately, the E isomer could be isolated and advanced to unsaturated lactone
35 by a hydroxylative Knoevenagel reaction with phenylsulfinyl acetonitrile.”
Hydrogenation of the least hindered disubstituted double bond, hydride reduction, and
aldol cyclization completed the total synthesis of allocyathin B, (37). The preparation of
this compound also constituted a formal synthesis of erinacine A (38) based on the prior
work of Snider.”® By applying their asymmetric alkylation methodology, the Trost group
achieved the divergent total syntheses of hamigeran B (27) and allocyathin B, (37) with

exocyclic vinylogous ester 19 as the common precursor.
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Scheme 1.6. Total Synthesis of Allocyathin B, and Formal Synthesis of Erinacine A
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+ Z isomer 2 steps =
(ref. 26)

(+)-Erinacine A (38)
(R = 1-B-D-xylose)

Reaction Conditions: (a) (CH;),Culi, Et,O, =20 °C (89% yield). (b) LDA, THF, —-78—0 °C; then
PhN(Tf), (96% vield). (c) Pd,(dba);-CHCI; (2.5 mol %), PPh; (20 mol %), Cul (5 mol %), TMS-
acetylene, n-BuNH,, 50 °C (85% vyield). (d) OsO, (1 mol %), NMO; then NalO, (87 % yield).
(e) NaBH, MeOH (94% vyield). (f) PPh;, I, imidazole, (97% yield). (g) t-Buli, ZnCl,, THF,
—-78 °C—rt; then Pd(PPh;), (5 mol %), vinyl iodide 30. (h) K,CO;, MeOH (74% yield, 2 steps).
(i) n-Buli, THF, -78 °C; then Boc,O, -78—rt (99% vyield). (j) TBAF, THF, (52-55% yield).
(k) CpRu(CH;CN);PFs (20 mol %), DMF (1 equiv), 2-butanone, rt (48% yield of 35, or 55%

combined vyield, 6.7:1 E:Z ratio). (I) PhS(O)CH,CN, piperidine, PhH (75% yield). (m) 10% Pd/C,
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EtOAc, H, (1 atm) (83 % yield). (n) DIBAL, CH,Cl,, =78 °C. (o) KOH, MeOH, 60 °C (51% yield,

2 steps).

1.3.2 TOTAL SYNTHESES OF DICHROANONE AND LIPHAGAL

Following the development of a Pd-PHOX catalyst system for the catalytic

construction of a-quaternary cyclic ketones,'™

the Stoltz group sought to prepare the
unique and highly substituted carbocyclic structures of dichroanone (46)”’ and liphagal
(56)*® (Scheme 1.7 and Scheme 1.8). Central to their divergent synthetic approach to
these natural products was the preparation of bicyclic enone 41, which contains two
quaternary carbons in close proximity in the cyclohexane ring (Scheme 1.7). The
synthetic routes toward both of these natural products began with the Pd-catalyzed
asymmetric decarboxylative allylic alkylation of cyclic enol carbonate 39. The addition
of this compound to a solution of Pd,(dba), and (§)-~-Bu-PHOX (13) in THF (or TBME)
led to enantioenriched ketone 40 in 83% yield and 92% ee. The presence of the o'-
methyl groups in the substrate did not appear to impede catalysis. By performing Wacker
oxidation and intramolecular aldol cyclization according to previously developed
protocols,'” bicyclic ketone 41 could be obtained in 74% yield over 2 steps. The key
enone possesses a prevalent substitution pattern found in not only dichroanone (46) and
liphagal (56), but also many other terpenoid natural products.

The (S)-enantiomer of bicyclic enone 41 was advanced toward dichroanone (46) by
the de novo construction of the fully substituted quinone nucleus. A Robinson annulation
sequence followed by vinyl triflate formation and Pd-catalyzed Kumada coupling with

isopropenyl magnesium bromide led to isopropyl arene 44. The reaction likely proceeds
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through coupling product 43, which can undergo facile aromatization to give the
benzannulated ring system. Titanium-mediated formylation of the aromatic ring
proceeded smoothly to give an intermediate aldehyde, which was converted to the
corresponding phenol 45 by means of a Baeyer—Villiger oxidation. Careful generation of
a reactive intermediate o-quinone could be achieved by the treatment of the tricycle with
IBX. Subsequent trapping of the reactive intermediate with pentafluorothiophenol,
reoxidation with NaOH/MeOH/O,, and hydrolysis with aqueous HCl completed the
synthesis of dichroanone (46). Notably, the total synthesis proceeded without the use of
protecting groups and provided an asymmetric route to this family of quinone

norditerpenoids.

Scheme 1.7. Total Synthesis of Dichroanone

(5)-13 (6.25 mol %)
Y /m Pd,(dba)s (2.5 mol %) Wacker oxidation :
/k > e (o}
(o] o THF, 23 °C aldol cyclization
39 83% yield (a-b)

(S)-40 (S)-41
92% ee

s — ol [

Robinson
annulation

Kumada coupling aromatization

() L

(c—d)

5.6:1dr
aromatic
oxidation
—_—
(9-h) 0]

(+)-Dichroanone
(46)
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Reaction Conditions: (a) PdCl, (5 mol %), Cu(OAc),-H,O (25 mol %), O, (1 atm), DMA/H,O
(7:1), 23 °C, Parr-shaker (77% vyield). (b) KOH (0.45 equiv), xylenes, 110 °C, Dean-Stark (96 %
vield). (c) LIHMDS, THF, 0—23 °C; then methyl vinyl ketone, —78 °C; then ag NH,Cl, -78—=23
°C (72% yield). (d) powdered KOH (2 equiv), xylenes, 110 °C, Dean-Stark (80% vyield). (e) LDA,
THF, =78 °C; then PhN(Tf),, —78—23 °C. (f) isopropenylmagnesium bromide (2 equiv), Pd(PPh;),
(5 mol %), THF, 23 °C; then 6 M aq HCl, 23 °C (65% vield, 2 steps). (g) C,HCOCH,. TiCl,,
CH,Cl,, =78 23 °C (79% vyield). (h) aq H,0,, ag H,SO,, THF/MeOH/H,O (2:5:1), 23 °C (74%
vield). (i) IBX (1.2 equiv), CHCl;, 23 °C; then C¢F;SH (4 equiv), 23 °C; then O, (1 atm), NaOH

(10 equiv), MeOH, 23—75 °C; then 6 M aq HCl, 23 °C (35% yield).

While the route toward dichroanone demonstrated the utility of bicyclic enone 41 in
o-functionalization reactions, the synthesis of liphagal® (56) demonstrated further
synthetic applications for this bicyclic scaffold. With enone (R)-41 available by allylic
alklation of substrate 39 with (R)--Bu-PHOX (13), a photoinduced [2+2] cycloaddition
with TMS-acetylene was performed (Scheme 1.8). Treatment of the crude cycloadduct
with BF;-OEt,, followed by TBAF, led to cyclobutene 47. The strained ketone underwent
a-arylation with 4-bromoveratrole (48) under microwave irradiation to give highly
functionalized tricycle 49. Arene bromination of this compound proved to be remarkably
chemoselective as the strained cyclobutene remained intact during the transformation.
Subsequent microwave-assisted thermal ring expansion provided conjugated
cycloheptadienone 50. Selective hydrogenation of the less substituted double bond
followed by base-mediated epimerization led to bicycle 52 after two equilibration cycles.
LDA-mediated methylation of the non-conjugated cycloheptenone and DIBAL reduction

provided alcohol 53. Treatment of this compound with LDA led to a reactive aryne
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intermediate, which could react intramolecularly with the adjacent lithium alkoxide to
provide dihydrobenzofuran 55. Hydrogenation of the remaining olefin provided the
necessary stereochemistry at the junction of the six- and seven-membered rings.
Dihydrobenzofuran oxidation followed by arene formylation and phenol demethylation
provided liphagal (56). Taken together, the two syntheses demonstrate the unique
synthetic utility of bicyclic enone 41, which is formed from the decarboxylative

asymmetric allylic alkylation of enol carbonate 39.

Scheme 1.8. Total Synthesis of Liphagal
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Reaction Conditions: (a) TMS-acetylene, UV-B lamps, acetone. (b) BF;-OEt,, CH,Cl,. (c) TBAF,
THF (68% yield, 3 steps). (d) Pd(P(t-Bu);), (5 mol %), 4-bromoveratrole, NaOt-Bu, THF, uwaves,
120 °C (67 % yield). (e) Br, (1.8 equiv), CHCl; (65% vield). (f) uwaves, o-dichlorobenzene, 250
°C (68% yield). (g) PtO, (20 mol %), H, (1 atm), EtOAc (69% vield). (h) NaOMe, MeOH, 65 °C
(78% vield, 3 cycles). (i) LDA, THF, -78—0 °C; then CH;l, -78—0 °C (68% vield). (j) DIBAL,
PhCH; (91% yield). (k) LDA (3 equiv), THF, =20 °C (83% yield). (I) Pd/C (19 mol %), H, (1
atm), EtOH, 21 °C (97% vield). (m) NO*BF,, CH;CN, 0 °C (70% vyield). (n) n-Buli, TMEDA,

THF, 0 °C; then DMF, 0—21 °C (70 % vyield). (o) Bl;, CH,Cl, (45% yield).

1.3.3 TOTAL SYNTHESES OF ELATOL, a-CHAMIGRENIE,

LAURENCENONE C

After successfully demonstrating the utility of the allyl enol carbonate approach'” for
enolate generation in the asymmetric construction of quaternary stereocenters, the Stoltz
group sought to extend the scope of the asymmetric decarboxylative allylic alkylation
reactions in order to gain access to the chamigrene family of natural products® (Scheme
1.9). These compounds are distinguished by the central all-carbon quaternary
stereocenter connecting two highly substituted six-membered rings, as evidenced by the
structures of laurencenone C (63) and a-chamigrene (64). The halogenation patterns for
members such as elatol (66) presented additional synthetic challenges. In order to arrive
at these natural products, a flexible synthetic route was needed.

The gem-dimethyl group adjacent to the desired site of alkylation in substrates 57 and
58 presented a formidable challenge for the decarboxylative allylic alkylation

methodology with the Pd-PHOX catalyst system. The investigation of enol carbonate and
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B-ketoester substrates with (§)--Bu-PHOX (13) led to product in 81% ee, but
conversions were consistently poor in both cases. Faced with these synthetic difficulties,
ligand modifications were explored to promote the desired C—C bond forming step in the
catalytic cycle. By employing the electron-deficient PHOX derivative 14, it was
reasoned that the increased electrophilicity of the derived Pd m-allyl complex could
override the steric constraints imposed by the substrate. The combination of electron-
deficient PHOX ligand 14 with Pd(dmdba), in toluene or benzene ultimately provided the
most effective conditions. Vinylogous ester 59 could be obtained in 87% yield and 87%
ee while the analogous chlorinated vinylogous ester 60 could be obtained in 82% yield
and 87% ee. In the presence of catalyst, these substrates could be converted to product
below ambient temperature. In addition to these two substrates, the reaction conditions

could be applied to numerous co.-substituted analogs as well.



CHAPTER I — Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis 22

Scheme 1.9. Total Syntheses of Laurencenone C, a-Chamigrene, the Proposed Structure of

Laurencenone B, and Elatol

A

ring-closing
conditions metathesis
(aorb) .
FBuO FBuO
™\
57 (X=H) (S)-14 (11.3 mol %) (R)}-59 (X = H) N_ _N (R)}-61 (X = H)
Pd(dmdba), (10 mol %) 87% yield \gm
PhCHg, 0 °C 87% ee C|’R|u =
58 (x=Cl) (R)-14 (11.3 mol %) (S)-60 (X =ClI) \(o (5)-62 (x =cClI)
Pd(dmdba), (10 mol %) 82% yield
PhH, 11 °C 87% ee
69
1,2-addition and
rearrangement deoxygenation
(c) (d-e)
(-)-Laurencenone C (-)-a-Chamigrene
(63) (64)

1,2-addition and bromination

rearrangement and reduction

(f) (g-h)
(5)-62 proposed structure of
(+)-Laurencenone B (+)-Elatol
(65) (66)

Reaction Conditions: (a) substrate 59, Grubbs—Hoveyda 3rd generation catalyst (69) (5 mol %),
PhH, 60 °C (97% vyield). (b) substrate 60, Grubbs—Hoveyda 3rd generation catalyst (69) (5 mol
%), PhH, 60 °C (97 % yield). (c) Meli, CeCl;, THF, =780 °C; then 10% aq HCI, 0—23 °C (80%
vield). (d) BF;OEt,, HSCH,CH,SH, MeOH, 23 °C (92% vyield). (e) Na(0), Et,O/NH;(l),
—60—reflux (44% yield). (f) Meli, CeCl;, THF, -78—0 °C; then 10% aq HCl, 0—23 °C (89%

vield). (g) Br,, 48% aq HBr, AcOH, 23 °C. (h) DIBAL, THF, -78—60 °C (32% vyield, 2 steps).
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From enantioenriched vinylogous esters 59 and 60, it was envisioned that a ring-
closing metathesis to a trisubstituted or tetrasubstituted olefin would provide the
spirobicylic core of the chamigrene natural products (Scheme 1.9). Unfortunately, the
application of commonly used ruthenium metathesis catalysts 67 and 68 (Figure 1.3)
provided unsatisfactory results. The use of the metathesis catalyst 69, which was
concurrently developed by the Grubbs laboratory, proved to be an effective solution.
Trisubstituted olefin 61 and chlorinated tetrasubstituted olefin 62 were both formed in
excellent yields. Notably, the advances enabled by ruthenium complex 69 provided one
of the first examples of the effective ring-closing metathesis to form highly substituted

halogenated olefins.

Figure 1.3. Ruthenium Olefin Metathesis Catalysts

o \<°b \(b

67 68 69

With the spirocyclic core of the target natural products secured, short sequences
enabled the synthesis of various chamigrene natural products. The addition of
methyllithium to spirocycle 61 in the presence of CeCl; activator followed by acid
workup provided laurencenone C (63). Formation of the corresponding thioketal
followed by dissolving metal reduction provided a-chamigrene (64) in only two

additional steps. The application of the same methyllithium addition and acidic workup
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conditions to vinylogous ester 62 enabled the formation of enone 65, which represents a
chlorinated analog of 63. Although this structure was reported as laurencenone B, the
spectra did not match those of the published compound. Nevertheless, the compound
was brominated and reduced with DIBAL to obtain elatol (66). Overall, three spirocyclic
natural products in the family were prepared using this unified asymmetric

alkylation/ring-closing metathesis strategy.

1.3.4 FORMAL SYNTHESIS OF PLATENCIN

Maier completed a formal synthesis of platencin (82)’' by employing a
decarboxylative allylic alkylation reaction to build the substitution around a central
quaternary carbon atom that joins three different rings (Scheme 1.10). Beginning from
vinylogous ester 70, formylation and allyl enol carbonate construction provided rapid
access to allylic alkylation substrate 71 as a mixture of E and Z isomers. Treatment with
catalytic Pd(OAc), and PPh; provided allylation product (+)-72. Subsequent Luche
reduction and rearrangement under acidic conditions provided enone 73. Esterification of
the primary alcohol and silylation provided silyl dienol ether 74. Aerobic oxidative
cyclization according to Toyota’s conditions’” afforded [3.2.1] bicycle 75. The addition
of silyl ketene acetal 76 provided conjugate adduct 77. Subsequent tosylhydrazone
formation and skeletal rearrangement led to [2.2.2] bicycle 78. Weinreb amide formation
and treatment with methyllithium gave hemiacetal 79 as an inconsequential mixture of
diastereomers. Reduction and oxidation of this compound provided the ring-opened
ketoaldehyde 80. A straightforward aldol cyclization completed the advanced

intermediate 81 employed in numerous syntheses of platencin (82).”
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In order to provide asymmetric entry into this route, Maier returned to the allylic
alkylation step with a focus on the development of an enantioselective variant. Treatment
of (2)-71 with catalytic Pd,(dba),”CHCI; and ligand (S,5)-17 in THF at 0 °C provided
access to a-quaternary product 72 in 78% ee. Further optimization revealed that
decreasing the reaction temperature to —20 °C provided improved results with the desired
compound isolable in 95% yield and 87% ee. As observed in Trost’s initial studies on
decarboxylative alkylations of allyl enol carbonates,” the chiral diamine scaffold of
ligand 17 proved effective for quaternary stereocenter formation. As a demonstration of
the essentially neutral conditions of the decarboxylative alkylation reaction, the
potentially sensitive aldehyde functionality underwent minimal side reactions following

quaternary stereocenter formation.
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Scheme 1.10. Formal Synthesis of Platencin
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Reaction Conditions:  (a) NaH, HCO.,i-Bu, 0 °C;

(b) Pd(OAc), (1.3 mol %), PPh;, THF, 20 °C (92% vyield, 2 steps).

MeOH, 0 °C; then p-TsOH, H,O/Et,O, rt.
equiv), CH,Cl,, rt (94% yield, 2 steps).
THF, -80 °C—rt (88% yield).
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then CICO.allyl, cat.

(f) O, Pd(OAc), (5.8 mol %),
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KH, THF, 0 °C.

(c) NaBH,, CeCl;:7H,0,

(d) PivCl (2 equiv), pyridine (4 equiv), DMAP (0.05

(e) LDA (1.5 equiv), TBSCI (2 equiv), HMPA (1 equiv),

DMSO (85% vyield).

-80 °C, (88% vyield).
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(h) TSNHNH, (1.3 equiv), MeOH, 60 °C (95% vyield). (i) NaCNBH;, ZnCl,, MeOH, 60 °C (60%
vield). (j) HCI-NH(OMe)Me (6 equiv), Me;Al (5 equiv), CH,Cl,, 0 °C. (k) Meli (6 equiv), Et,O,
-80—-30 °C. (I) LiAIH, (1 equiv), Et,0, -80—0 °C (85 % vyield, 2 steps). (m) (COCI), (5.8 equiv),
DMSO (9 equiv), -80 °C, Et;N (73% vyield). (n) NaOH (6.5 equiv), EtOH, 20 °C, 20 h, 87 %

yield).

1.3.5 FORMAL SYNTHESIS OF HAMIGERAN B

A report from the Stoltz group outlined an intramolecular aldol strategy for the
construction of the tricyclic framework of hamigeran B (27).* The synthetic plan
targeted the early construction of an a-quaternary tetralone fragment through a Pd-

72 (Scheme 1.11). Facile access to

catalyzed decarboxylative allylic alkylation reaction
enol carbonate 83 enabled rapid evaluation of reaction conditions for the construction of
the key quaternary stereocenter. The initial evaluation of (S)--Bu-PHOX (13) and
Pd,(dba), as catalyst precursors in THF provided functionalized tetralone 84 in 71% yield
and 88% ee. The application of the electron-deficient ligand 14 provided greater levels
of asymmetric induction with the product isolable in 83% yield and 94% ee. Subsequent
olefin cross-metathesis with methyl vinyl ketone provided enone 85 for the evaluation of
the planned tandem conjugate reduction and aldol cyclization. Treatment of the
compound with Stryker’s reagent ([Ph,PCuH],) gave desired p-hydroxyketone 86 along
with the uncyclized reduction product. Dehydration of compound 86 led to a tricyclic
enone 87, which was previously reported by Miesch,” and completed an asymmetric

formal synthesis of hamigeran B (27). The synthesis provides another example of the

beneficial effect of electron-deficient PHOX ligand 14 in enantioselective allylic
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alkylation reactions. When taken together with Trost’s earlier total synthesis,” the value
of asymmetric allylic alkylation reactions can be seen in the different chiral ketone

synthons available for the construction a common natural product target.

Scheme 1.11. Formal Synthesis of Hamigeran B

OMe OMe o OMe
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aldol 6 steps
cyclization
(ref. 35)
(b)
86 (+)-Hamigeran B
(27)

Reaction Conditions: (a) methyl vinyl ketone (10 equiv), Grubbs—Hoveyda 2nd generation catalyst
(68) (10 mol %), PhH, 35 °C (66 % yield). (b) [Ph;PCuH], (0.5 equiv), PhCH;, —40 °C. (c) SOCI,

(15 equiv), DMAP (30 mol %), pyridine, 0 °C (62% yield).

1.3.6 TOTAL SYNTHESES OF CARISSONE AND CASSIOL

The dual syntheses of carissone (99)*° and cassiol (105)’’ by the Stoltz group were
enabled by the unique synthetic potential of vinylogous thioester-derived p-ketoester

substrates (Scheme 1.13 and Scheme 1.14). While Stoltz developed the first asymmetric
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allylic alkylation reactions for cycloalkanone-derived B-ketoester substrates'”® (Scheme
1.4), Trost succeeded in extending the substrate scope to vinylogous thioester-derived [3-
ketoester substrates (Scheme 1.12).** Under the influence of chiral ligand 17, -
quaternary vinylogous thioesters such as 89 were prepared in high ee. These products
could be readily converted to y-quaternary enone derivatives through Stork—Danheiser-
type transformations. While vinylogous ester derived [-ketoester substrates were also
evaluated, conversion was typically sluggish due to the greater orbital overlap of oxygen

relative to sulfur.

Scheme 1.12. Extension of p-Ketoester Substrate Scope to Vinylogous Thioester Scaffolds

fo) o X (R,R)-17 (5.5 mol %)
Pdy(dba);-CHCI3 (2.5 mol %) H MeLi, 0—25 °C
o L B =
p-dioxane, 23 °C then
5% aq KHSO,
PhS 75% yield PhS
88 89

100% ee

Concurrent work in the Stoltz group sought to develop a PHOX-based catalyst system
for the preparation of these useful compounds and their further application in the total
synthesis of natural products. While the investigation of P-ketoester and enol carbonate
derivatives of a'-substituted isobutyl vinylogous esters provided low conversions and
unsatisfactory ee values, the asymmetric allylic alkylation of vinylogous thioester-derived
B-ketoester substrate 91 with Pd,(pmdba); and (S)--Bu-PHOX (13) in toluene led to
enantioenriched product 92 in 85% yield and 92% ee.

Further manipulations provided a novel asymmetric synthetic route toward

eudesmane sesquiterpenoids such as carissone and a-eudesmol® (Scheme 1.13). The
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addition of Grignard reagent of bromide 93 followed by acid-promoted ketone
transposition led to enone 94. Ring-closing metathesis with Grubbs 2nd generation
catalyst (67) led to fused bicycle 95. Selective hydrogenation of the less-substituted
double bond and desilylation provided hydroxy enone 96. Oxidation of the alcohol
followed by carboxylate methylation led to enone 97. Subsequent Luche reduction of the
enone and dimethylation of the ester led to diol 98. Allylic alcohol oxidation provided
carissone (99). Notably, the assembly of diol 98 also completed a formal synthesis of

(-)-a-eudesmol (100) by interception of Aoyama’s route.”

Scheme 1.13. Total Synthesis of Carissone and Formal Synthesis of a-Eudesmol
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OH OH
(ref. 39)
(-)-a-Eudesmol 98 (+)-Carissone
(100) (99)

Reaction Conditions: (a) allylic bromide 93, Mg(0), 1,, 0—23 °C (94% yield). (b) Grubbs 2nd

generation catalyst (67) (3 mol %), PhH, 40 °C (99% yield). (c) Rh/ALO; (5 mol %), H, (1 atm),
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MeOH. (d) HCl, THF (56% vyield, 2 steps). (e) Dess—Martin periodinane, CH,Cl,, 0—23 °C.
(f) NaClO,, NaH,PO,, 2-methyl-2-butene, t-BuOH/H,O; then CH,N, (87% vyield, 2 steps).
(g) CeCl;:7H,0O, NaBH, MeOH, —45 °C. (h) MeMgBr, THF, 0—26 °C (73% vyield, 2 steps).

(i) MnO,, 4A MS, CH,Cl,, (100% yield).

The concise synthesis of cassiol (105)"" also illustrated the utility of a-quaternary
vinylogous thioesters formed from decarboxylative asymmetric allylic alkylation
reactions (Scheme 1.14). The key enantioenriched vinylogous thioester 92 was subjected
to palladium-catalyzed olefin isomerization, oxidative olefin cleavage, and aldehyde
reduction steps to provide alcohol 103. Treatment of this compound with the
vinyllithium of 104 followed by aqueous acid workup led to cassiol (105) in a concise
sequence. Both of the syntheses completed by the Stoltz group illustrate the conversion
of a-quaternary vinylogous thioesters to y-quaternary cyclohexenones in a unified

catalytic asymmetric strategy toward natural products.

Scheme 1.14. Total Synthesis of Cassiol
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Reaction Conditions: (a) PdCl,(CH;CN), (10 mol %), PhH, 60 °C (99% vield, 13:1 ratio 101:92).
(b) OsO, (10 mol %), DABCO, K;Fe(CN),, K,CO;, t-BuOH/H,O (1:1), 35 °C. (c) Pb(OAc),, PhH,
30 °C (70 % vyield). (d) Li(Ot-Bu);AIH, THF, 0 °C (85% vield). (e) vinyl iodide 104, t-Buli, Et,O,

-78 °C; then vinylogous thioester 103; then aqg HCI, TBME (36% vield).

1.3.7 TOTAL SYNTHESES OF FLUSTRAMIDES A AND B, FLUSTRAMINES

AAND B

Trost devised a novel and concise strategy for the synthesis of highly substituted
pyrroloindoline and pyrroloindolone-type alkaloids such as flustramines A and B and
flustramides A and B (111-114) (Scheme 1.15).** His group sought to develop reactions
based on chiral Pd w-prenyl complex 108, which can undergo regioselective asymmetric
alkylation by an oxindole enolate to forge either the linear prenylated product or the
branched reverse prenylated product. Past work has shown that C—C bond formation
predominantly occurs at the less substituted allyl terminus,*' favoring linear product 109,
but the successful modification of reaction conditions would provide branched isomer
110, which would be difficult to form by alternative means given the proximity of two
quaternary carbons.

With this overall problem in mind, a variety of reaction conditions were evaluated to
provide potential access to the linear or branched prenylated products. Carbonate 107
was identified as an excellent prenyl source and masked alkoxide base, generating one
equivalent of each following oxidative addition and decarboxylation of the substrate by
Pd(0). With carbonate 107, chiral phenyl bis-phosphine ligand 15, and Pd,(dba),-CHCl,

in toluene, a 1:2 ratio of branched:linear products was observed, and the linear product
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109 could be isolated in 66% yield and 94% ee. Conversely, combination of the napthyl
bis-phosphine ligand 16, Pd,(dba),-CHCI,, and catalytic TBAT in CH,Cl, led to a 5.7:1
ratio of branched:linear products with the branched product 110 isolable in 58% yield and
greater than 99% ee. These results show that the careful choice and modification of the
chiral ligand can greatly influence the regioselectivity of the asymmetric alkylation event
leading to all-carbon quaternary stereocenters. Additionally, the general method could be
extended to geranylation reactions,” providing impressive access to vicinal all-carbon
quaternary stereocenters. The studies performed by Trost show that it is possible to exert
control over the regioselectivity, enantioselectivity, and diastereoselectivity of
asymmetric alkylation reactions with their chiral ligand systems.

The adoption of Kawasaki’s reductive amide cyclization route*” provided access to
the highly substituted flustramine and flustramide alkaloids. Oxindole reduction of linear
alkylation product 109 and branched alkylation product 110 with alane-
dimethylethylamine complex at low temperature provided (+)-flustramide A (111) and
(+)-flustramide B (113). Treatment of these compounds with additional reductant
ambient temperature effected lactam reduction to give (+)-flustramine A (112) and (+)-
flustramine B (114). The synthetic route powerfully enables divergent access to C(3)-
quaternary prenylated and reverse prenylated oxindole scaffolds by appropriate choice of
chiral ligand. In general, examples of the catalytic, asymmetric synthesis of vicinal

quaternary stereocenters are quite rare.
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Scheme 1.15. Total Syntheses of Flustramides A and B, Flustramines A and B
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Reaction Conditions: (a) AlH;-NMe,Et, THF, —15 °C (95% vyield). (b) AlH;NMe,Et, THF, rt (97 %

vield). (c) AIH;-NMe,Et, THF, —15 °C (92 % vield). (d) AIH;-NMe,Et, THF, rt (90% yield).
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1.3.8 TOTAL SYNTHESES OF CYANTHIWIGINS B, F, AND G

The previously described investigations of Pd-catalyzed allylic alkylations in total
synthesis sought to establish one quaternary stereocenter at a time. The highly
substituted cyclohexane core of the cyathane diterpenoids motivated the Stoltz group to
develop novel double asymmetric decarboxylative allylic alkylationreactions for efficient
construction of multiple all-carbon quaternary stereocenters on a single molecule of
substrate. These efforts culminated in the efficient total syntheses of cyanthiwigins B, F,
and G (124, 126, and 127) (Scheme 1.17).%

The Stoltz group investigated reactions of substrate 115 in a mixture of catalytic
Pd(dmdba), and (S)--Bu-PHOX (13) in Et,0 (Scheme 1.16)."”" After two sequential
asymmetric alkylation events, diketone 116 could be obtained in 76% yield, 92% ee, and
4:1 dr. Studies on the related bis-f3-ketoester double alkylation substrate 117 provided
product 118 in 78% yield, 99% ee, and 4.4:1 dr.® These impressive levels of asymmetric
induction can be explained by statistical amplification resulting from multiple

#4 The efficiency of these

asymmetric transformations occurring in sequence.
transformations for the assembly of two all-carbon quaternary stereocenters within the
same ring system provided an excellent foundation for further synthetic efforts toward the
cyathane diterpenoids.

With double alkylation product 118 in hand, the synthesis of numerous members of
the cyanthiwigin family could be completed (Scheme 1.17). Desymmetrization of the
diketone was achieved by triflation and Negishi coupling to give enone 120. Subsequent

ring-closing metathesis and cross-metathesis with Grubbs—Hoveyda 3rd generation

catalyst (69) in the presence of vinylboronate 121 provided aldehyde 122. Radical
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cyclization completed the remaining cyclopentane ring. Subsequent triflation and

Kumada coupling afforded cyanthiwigin F (124).

Scheme 1.16. Double Enantioselective Decarboxylative Allylic Alkylation Reactions
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(/ (o] Ph,P NIJ
OJJ\O at-Bu

i j (S)-13 (5.5 mol %) °
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Diketone 123 was further functionalized to related natural products cyanthiwigin B
(126) and cyanthiwigin G (127) in a short, concise sequence (Scheme 1.17). By
performing a Tsuji oxidation*® and treating the intermediate enone with isopropyllithium
in the presence of a CeCl, activator, adduct 125 could be formed as an inconsequential
mixture of diastereomers. Oxidative transposition of the tertiary allylic alcohol enabled
the completion of cyanthiwigin B (126). Reduction of the ketone and enone moieties
with NaBH, followed by reoxidation of the allylic alcohol afforded an intermediate
alcohol, which could be eliminated using Martin’s sulfurane to give cyanthiwigin G
(127). The unified approach to these natural products was enabled by the development of

a doubly enantioselective and diastereoselective allylic alkylation of a single molecule of
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substrate. The efficient synthetic route provided unique access to the highly substituted

cyclohexanoid core of the cyathane diterpenoids.

Scheme 1.17. Total Syntheses of Cyanthiwigins B, F, and G
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Reaction Conditions: (a) KHMDS, PhN(Tf),, THF, =78 °C (73% vyield). (b) Zn(0), TMSCI, 1,2-

dibromoethane, alkyl iodide 119, THF, 65 °C; then Pd(PPh;), (5 mol %) (78% yield).
(c) vinylboronic ester 121, Grubbs—Hoveyda 3rd generation catalyst (69) (10 mol %), PhH, 60 °C;

then NaBO;, THF/H,O (51% yield). (d) t-BuSH, AIBN, PhH, 80 °C. (e) KHMDS, PhN(Tf),, THF,
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-78 °C (60% yield). (f) i-PrMgCl, CuCN, THF; Pd(dppf)Cl, (10 mol %) (41% yield). (g) KHMDS,
THF -78 °C; then allyl chloroformate. (h) Pd,(pmdba); (5 mol %), CH;CN, 80 °C (57 % yield, 2
steps). (i) CeCls, i-PrLi, THF, —78 °C (76 % yield, mixture of diastereomers). (j) PCC, CH,Cl, (86%
vield). (k) NaBH,, MeOH/CH,Cl,, 25 °C. () MnO,, CH,Cl, (15% vyield, 2 steps). (m) Martin’s

sulfurane, CDCl; (48 % vyield).

1.4 CONCLUSION AND OUTLOOK

The pursuit of complex targets has provided inspiration for the development of Pd-
catalyzed asymmetric allylic alkylation reactions for the construction of challenging all-
carbon quaternary stereocenters. The synthetic methods developed in the past ten years
have provided chemists with useful tools for the assembly of densely substituted ring
systems, and consequently, the total synthesis of complex natural products. While major
advances have been made, broader examination of reaction scope, development of novel
catalyst systems, and coupling of palladium enolate chemistry to other powerful bond-

forming processes can reshape the future of the field.
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CHAPTER 2

Catalytic Asymmetric Synthesis of Cyclopentanoid and Cycloheptanoid

Core Structures Using Pd-Catalyzed Asymmetric Alkylation”

2.1 INTRODUCTION AND BACKGROUND

The stereoselective total synthesis of polycyclic natural products depends greatly on
the available tools for the efficient preparation of small and medium sized rings in
enantioenriched form.! Facile means to elaborate these monocyclic intermediates to
fused, bridged, and spirocyclic architectures found within many natural ring systems
would significantly contribute to modern synthetic methods. While many strategies have
been developed for the preparation of six-membered rings and their corresponding
polycyclic derivatives, approaches toward the synthesis of five- and seven-membered

rings would benefit from further development.

" This work was performed in collaboration with Dr. Michael R. Krout, Dr. Thomas Jensen, Nathan B.
Bennett, and Dr. Andrew M. Harned. These works have been published. See: (a) Hong, A.Y.; Krout, M.
R.; Jensen, T.; Bennett, N. B.; Harned, A. M.; Stoltz, B. M. Angew. Chem. Int. Ed. 2011, 50, 2756-2760.
(b) Bennett, N. B.; Hong, A. Y.; Harned, A. M.; Stoltz, B. M. Org. Biomol. Chem. 2012, 10, 56-59.
(c) Hong, A. Y.; Bennett, N. B.; Krout, M. R.; Jensen, T.; Harned, A. M.; Stoltz, B. M. Tetrahedron 2011,
67,10234-10248.
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Guided by our continuing interest in the preparation of polycyclic systems bearing
all-carbon quaternary stereocenters using Pd-catalyzed asymmetric alkylation

chemistry,>>**¢

we sought to prepare various chiral cyclic ketone building blocks for
total synthesis (Figure 2.1). Our investigation of six-membered ring substrates has
allowed us to achieve the enantioselective total syntheses of a number of complex natural
products.” Given our earlier success, we aimed to generalize our approach and gain

access to natural products containing chiral cyclopentanoid and cycloheptanoid ring

systems as a part of a broader synthetic strategy.

Figure 2.1. Application of Cyclopentanoid, Cyclohexanoid, and Cycloheptanoid Cores Toward

Stereoselective Natural Product Synthesis
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Our efforts led to the development of general strategies for the preparation of -

quaternary vinylogous esters and their conversion to y-quaternary cycloheptenones using

Stork—Danheiser transformations (Figure 2.2).*

During the course of this work, we

observed the unusual reactivity of [3-hydroxycycloheptanones and exploited a two-carbon

ring contraction to provide a general synthesis of y-quaternary acylcyclopentenes.” With

access to the isomeric five- and seven-membered enones, we prepared diverse synthetic

derivatives and polycyclic systems that can potentially provide different entry points for

synthetic routes toward complex natural products.

Figure 2.2. General Access to Enantioenriched Cyclopentanoid and Cyclohexanoid Cores
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¢ focused on six-membered rings, while transformations of

larger rings were less thoroughly investigated. We hoped to extend our work by
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exploring asymmetric alkylations of seven-membered vinylogous esters. The feasibility
of various types of substrates for our asymmetric alkylation chemistry suggested that
vinylogous ester 147 could be transformed into silyl enol ether, enol carbonate, or [3-
ketoester substrates, but we chose to prepare P-ketoesters due to their relative stability
and ease of further functionalization. To access a variety of racemic a-quaternary (-
ketoester substrates for Pd-catalyzed asymmetric alkylation reactions, we required multi-
gram quantities of 1,3-cycloheptanedione (146). Dione 146 is commercially available,"
but we typically prepare it from cyclopentanone by the route of Ragan and co-workers to
facilitate large scale synthesis.'” Treatment of 146 with i-BuOH and catalytic PPTS
under Dean—Stark conditions produced vinylogous ester 147 (Scheme 2.1)."" Acylation
of 5 with allyl cyanoformate following deprotonation with LDA enabled facile
installation of the requisite allyl ester functionality. Subsequent enolate trapping with a
variety of electrophiles under basic conditions provided substrates containing alkyl,
alkyne, alkene, 1,3-diene, vinyl chloride, nitrile, heteroarene, aldehyde, fluoride, silyl
ether, and ester functionalities in 61-88% yield over two to four steps (148a—n). With
these quaternary [3-ketoesters in hand, we evaluated the scope of Pd-catalyzed
asymmetric alkylation reactions on seven-membered ring vinylogous ester substrates,

focusing on methyl/allyl substituted 148a for our optimization efforts.
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Scheme 2.1. Synthesis of Parent Vinylogous Ester 147 and [3-Ketoester Substrates 148
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A survey of several electronically differentiated PHOX ligands combined with
Pd,(pmdba),">'* in a number of different solvents using methyl-substituted [-ketoester
148a identified the optimal parameters for this transformation (Table 2.1). Initial
conditions employed (S)--Bu-PHOX*" (13, 6.25 mol %) and Pd,(pmdba), (2.5 mol %)
in THF and gave vinylogous ester 149a in 94% yield and 84% ee (entry 1).'"° Application
of the same catalyst system in other ethereal solvents, such as p-dioxane, 2-methyl THF,
TBME, and Et,0 led to only slight improvements in the enantioselectivity of the reaction
to give the desired product in up to 86% ee (entries 2-5). Switching to aromatic solvents
provided modest increases in asymmetric induction, furnishing 149a in 91% yield and
88% ee in the case of toluene (entries 6 and 7).

We next examined the impact of other PHOX ligands (14 and 150) in this medium.
Electron-deficient ligand 14’*"" improved enantioselectivity at the cost of higher catalyst

loading and lower yield (entry 8). Structural modification of the aryl phosphine
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backbone was evaluated with ligand 150, but this proved to be less effective, giving

reduced yield and ee (entry 9). Of the three ligands, 13 furnished the best overall results.

Table 2.1. Solvent and Ligand Effects on Enantioselective Decarboxylative Allylation®

o O o
ligand (6.25 mol %)
0" F  Pdy(pmdba); (2.5 mol %) W\ F
o
-BuO solvent, 30 °C i-BuO
148a 149a
entry ligand solvent yield (%)? ee (%)
1 13 THF¢ 94 84
2 13 p-dioxane 86 84
3 13 2-methyl THF® 75 85
4 13 TBME® 88 85
5 13 Et,0 93 86
6 13 PhH 84 86
7 13 PhCH; 91 88
8d 14 PhCH,4 57 90
9 150 PhCH; 77 72

4 Conditions: B-ketoester 148a (1.0 equiv), Pdy(pmdba)s (2.5 mol %), ligand
(6.25 mol %) in solvent (0.1 M) at 30 <C; pmdba = 4,4
methoxydibenzylideneacetone. ? Isolated yield. ¢ Determined by chiral
HPLC. “Increased catalyst loadings were required to achieve full conversion:
Pd,(pmdba); (5 mol %), 14 (12.5 mol %). ¢ THF = tetrahydrofuran, 2-methyl
THF = 2-methyl tetrahydrofuran, TBME = tert-butyl methyl ether.

P @@J '

Ph,P

A~ A~ -

13 14 150
(S)}-t-Bu-PHOX 3

With optimal ligand and solvent conditions in hand, we explored asymmetric
alkylation reactions of a variety of a-substituted [-ketoesters (Table 2.2). Simple alkyl
substitution performed well under our standard conditions (entries 1 and 2). A variety of
aromatic and heteroaromatic functionality was well tolerated by the reaction (entries 3,

9-10). Additionally, unsaturated functionality such as alkynes, alkenes, and 1,3-dienes
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did not suffer from competitive reaction pathways (entries 4-6). In the case of vinyl
chloride 148g, no products derived from oxidative addition into the C—Cl bond were
observed (entry 7). Gratifyingly, N-basic functionality such as nitriles and pyridines
could be carried through the reaction without noticeable catalyst poisoning (entries 8 and
9). Perhaps the most intriguing result was the observation that substrate 148k with an
unprotected aldehyde could be converted to the enantioenriched product 149k in 90%
yield and 80% ee, highlighting the essentially neutral character of the reaction conditions
(entry 11). Tertiary fluoride products could also be obtained efficiently in 94% yield and
91% ee (entry 12). Although most substrates underwent smooth asymmetric alkylation,
several substrates such as silyl ether 148m'® and benzoate ester 148n'"’ were not formed

as efficiently due to unproductive side reactions (entries 13—14).
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Table 2.2. Scope of the Pd-Catalyzed Enantioselective Alkylation of Cyclic Vinylogous Esters®

(o) o [0}

R (S)-+-Bu-PHOX (13) (6.25 mol %) R
0/\/ Pd,(pmdba); (2.5 mol %) -~ W\ F
BuO PhCHy, 30 °C -BuO
148 149
entry substrate 148 R product 7149 yield (%) ee (%)°¢
1 148a —CH3 149a 91 88
2 148b —CH,CH,4 149b 89 92
3 148c —-CHyPh 149c 98 86
4 148d —CH,C=CH 149d 88 89
5 148e —CH,CH,CH=CH,  149¢e 95 87
X
6 148f I 149f 90 90
7 148g Ac, 149g 99 86
8 148h —CH,CH,CN 149h 926 87
A N
9 148i o 149i 97 85
ITs
N
10 148; /[@d 149j 98 83
H (o]
1 148k /\/r 149k 90 80
12 1481 -F 149/ 94 91
13 148m -CH,OTBDPS? 149m 66 58
[o]
14 148n o oen 149n 75 57

@ Conditions: p-ketoester 148 (1.0 equiv), Pdy(pmdba)z (2.5 mol %), (S)-t-Bu-PHOX (13) (6.25
mol %) in PhCH3 (0.1 M) at 30 °C; pmdba = 4,4-methoxydibenzylideneacetone. ? Isolated
yield. ¢ Determined by chiral HPLC or SFC. 9Ts = 4-toluenesulfonyl, TBDPS = tert-
butyldiphenylsilyl.

2.3 OBSERVATION OF THE UNUSUAL REACTIVITY OF 8-

HYDROXYCYCLOHEPTANONES

With an assortment of asymmetric alkylation products in hand, we next sought to

perform a carbonyl transposition using methods developed by Stork and Danheiser.”
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Earlier experiments on the hydride reduction of six-membered vinylogous ester 151 with
subsequent acid treatment gave enone 152 as expected (Scheme 2.2A). To our surprise,
application of identical reaction conditions to the seven-membered analog (149a) gave
poor yields of cycloheptenone 137a (Scheme 2.2B). Only minor quantities of elimination
product were observed even after prolonged stirring with 10% aqueous HCl. Closer
inspection of the reaction mixture revealed P-hydroxyketone 154a as the major product,
suggesting that these seven-membered ring compounds display unique and unusual

reactivity compared to their six-membered ring counterparts.*' >’

Scheme 2.2. Observation of the Unusual Reactivity of p-Hydroxycycloheptanone 154a
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o S t-BuOH, 40 °C
135a 53% yield

Without initial success using acidic conditions, we reasoned that -hydroxyketone
154a** could potentially provide cycloheptenone 137a under basic conditions through a
[-elimination pathway (Scheme 2.2B). However, attempts in this regard did not produce

enone 137a, but instead gave isomeric enone 135a that appeared to be formed through an
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unexpected ring contraction pathway. Notably, this transformation serves as a rare
example of a two-carbon ring contraction.”**°

Upon consideration of the reaction mechanism, we believed that this process occurred
through an initial deprotonation of the hydroxy moiety, followed by retro-aldol ring
fragmentation to a ketoaldehyde enolate (Scheme 2.3). Subsequent isomerization to the
more substituted enolate and aldol cyclization could lead to the observed two-carbon ring
contraction product 135a. Attempts to isolate the intermediate ketoaldehyde 156a were
unsuccessful, but aldehyde peaks could be observed by '"H NMR in reactions that did not
proceed to full conversion.  Subsequent experiments on more substituted f3-

hydroxyketones enabled isolation of linear uncyclized intermediates and provided

additional support for this reaction mechanism (Scheme 2.6).

Scheme 2.3. Proposed Ring Contraction Mechanism
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To explore the general stability and reactivity of [3-hydroxycycloheptanones, we
briefly examined simplified analogs that do not possess the c-quaternary stereocenter
(Scheme 2.4). Following hydride reduction, elimination to cyclohexenone 157 was
observed for the six-membered vinylogous ester 70, while 3-hydroxycycloheptanone 160
and volatile cycloheptenone 159 were observed for seven-membered analog 147. In the
seven-membered ring case, a higher proportion of elimination product was observed
when compared to the substituted analog 149a. A milder aqueous acid work-up may
suffice to hydrolyze the isobutyl enol ether and enable isolation of the 3-hydroxyketone
in higher yield in this case. The ring contraction of P-hydroxycycloheptanone 160 under
basic conditions proceeded smoothly to give volatile acylcyclopentene 161. These
observations suggest that the unusual two-carbon ring contraction appears to be a
reactivity trend associated seven-membered rings and motivated the development of the

ring contraction chemistry as a general approach to obtaining chiral acylcyclopentenes.

Scheme 2.4. Attempted Stork-Danheiser Manipulations on Unsubstituted Rings
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2.4 RING CONTRACTION STRATEGY FOR PREPARING y-

QUATERNARY ACYLCYCLOPENTENES

Intrigued by our findings, we sought to develop a robust route to y-quaternary
acylcyclopentenes with many substitution patterns. Exploring a number of bases,
additives, solvents, and temperatures for the ring contraction of f-hydroxyketone 154a
provided insight into the optimal parameters for the transformation (Table 2.3). Given
our early result using LiOz-Bu, we examined numerous aldol cyclization conditions with
a variety of non-nucleophilic bases. We observed that several fert-butoxides in -BuOH
and THF gave conversion to the desired product (135a) in good yields (entries 1-4), but
noted that the rate of product formation was comparatively slower with LiOz-Bu than
with NaOrz-Bu or KO#-Bu. The use of various hydroxides revealed a similar trend, where
NaOH and KOH generated acylcyclopentene 135a in 4 hours with improved yields over
their respective tert-butoxides (entries 5 and 6). The relatively sluggish reactivity of
LiOH may be due to the lower solubility of this base in THF, providing 135a in low yield
with the formation of various intermediates (entry 7).

To improve the yield of the reaction with LiOH as base, we investigated the effect of
alcohol additives to facilitate the production of mild, organic-soluble bases under the
reaction conditions to increase the efficiency of the transformation. The combination of
t-BuOH and LiOH in THF increased the yield of 135a to a similar level as that observed
with LiOz-Bu, although the reaction still proceeded slowly (entry 8). Application of more
acidic, non-nucleophilic alcohols such as hexafluoroisopropanol (HFIP) and

trifluoroethanol (TFE) demonstrated exceptional reactivity in combination with LiOH
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and efficiently afforded 135a in high yields (entries 9 and 10).”” In particular, TFE
enabled the production of 135a in 96% yield. Comparable results with preformed
LiOCH,CF,*® suggest that this alkoxide could be the active base under the LiOH/TFE
ring contraction conditions (entry 11).

Concurrent investigation of cesium bases reinforced the importance of alcohol
additives for the in situ formation of organic-soluble bases in ring contraction reactions.
With CsOH-H,0 and Cs,CO;, product formation was inefficient due to low yield or
sluggish reactions (entries 12 and 13). The addition of TFE afforded acylcyclopentene
135a in yields comparable to those of the LIOH/TFE conditions (entry 14). Notably, ring
contraction with Cs,CO,/TFE can also be performed in acetonitrile as an alternative, non-
ethereal solvent with high efficiency (entry 15). Additional combinations of bases,
additives, solvents, and temperatures were evaluated, but these conditions were generally

less effective (entries 16-21).%
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Table 2.3. Ring Contraction Reaction Optimization®

HO
NP conditions )\Q/ SNF
o —_—® g s R o
154a 135a 137a
not observed
entry base additive solvent T(°C) conversion (%) time (h) yield (%)?

1 LiOt-Bu —_ t-BuOH 40 100 9 7
2 LiO#-Bu —_ THF 40 100 8 60
3 NaOt-Bu —_ THF 40 100 5 81
4 KOt-Bu — THF 40 100 5 85
5 NaOH — THF 60 100 4 89
6 KOH _ THF 60 100 4 87
7 LiOH — THF 60 78 24 199
8 LiOH t-BuOH THF 60 98 24 78
9 LiOH HFIP¢ THF 60 99 12,5 87
10 LiOH TFE® THF 60 99 12.5 96
11 LiOCH,CF; — THF 60 — 10 90°
12 CsOH-H,0 — THF 60 100 4 48
13 Cs,CO; — THF 60 67 24 61f
14 Cs,CO; TFE® THF 60 100 12.5 86
15 Cs,CO; TFE® CH3CN 60 100 12.5 100
16 NaOt-Bu t-BuOH THF 40 100 8 52
17 KOt-Bu t-BuOH THF 40 100 8 57
18 LiOH t-BuOH THF 40 87 24 77
19 LiOH TFE® THF 40 73 24 73
20 LiOH HFIP® THF 40 84 24 81
21 CsF — CH3CN 60 86 24 10

@ Conditions: B-hydroxyketone 154a (1.0 equiv), additive (1.5 equiv), base (1.5 equiv), solvent (0.1 M) at
indicated temperature for 9—24 h. © GC yield using an internal standard at = 98% conversion unless otherwise
stated. ¢ HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol; TFE = 2,2 2-trifluoroethanol. 9 Several reaction
intermediates observed by TLC and GC analysis; proceeded to 78% conversion. € Isolated yield. T Reaction did
not reach completion at 24 h; proceeded to 67% conversion.

While a number of bases are effective for the production of 135a in excellent yields,
we selected the combination of LiOH/TFE as our standard conditions for reaction scope
investigation due to the lower cost and greater availability of base. The data from our
study further recognize the unique properties of these mild bases and suggest their

30,31

application may be examined in a broader context. Importantly, none of the



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 60

conditions surveyed for the ring contraction studies generated the 3-elimination product,
cycloheptenone 137a.

With the optimal base-promoted conditions in hand, we investigated the scope of the
ring contraction chemistry with a variety of substitution patterns® (Table 2.4). Simple
alkyl, aromatic, heteroaromatic substitution performed well under our standard conditions
(Method A) in 84-95% yield (entries 1-6, 10). Additionally, vinyl chlorides, nitriles, and
indoles could be incorporated into the target acylcyclopentenes in 85-92% yield (entries
7 and 8). Further studies revealed that alternative aluminum hydrides such as DIBAL
could be employed in the generation of the intermediate P-hydroxyketone by enabling
more precise control of hydride stoichiometry. The use of these modified conditions
followed by oxalic acid work-up in methanol (Method B) facilitated the preparation of
pyridine-containing acylcyclopentene 135i in higher yield compared to Method A (entry
9).

While various compounds could undergo the ring contraction sequence with high
efficiency, other substrates with more sensitive functionality required slight modification
of the reaction conditions. To this end, we investigated the use of milder reduction
conditions developed by Luche® to further increase the reaction scope. Silyl ether
substrate 149m™ could be converted to the corresponding acylcyclopentene 135m in 86%
yield using the LiAlH, protocol (Method A), but application of Luche reaction conditions
using (Method C) enabled an improvement to 91% yield (entry 11). The same conditions
provided the related silyl ether-containing acylcyclopentene 1350 with a longer carbon

chain in 85% yield (entry 12).
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Table 2.4. Ring Contraction Reaction Substrate Scope®™

61

HO
R R2 reduction R R2 LiOH
conditions CF;CH,0H R!
i-BuO A B CorD o THF, 60 °C o) g2
149 154 135
entry substrate 149 reduction conditions R! R? product 135¢ vyield (%)"
1 149a A —CHj, —CH,CH=CH, 135a 84
2 149b A —CH,CH; —CH,CH=CH, 135b 20
3 149c A -CH,Ph -CH,CH=CH, 135¢ 86
4 149d A —CH,C=CH —CH,CH=CH, 135d 95
5 149e A —CH,CH,CH=CH, —CH,CH=CH, 135e 87
X
6 149f A | —CH,CH=CH, 135f 91
7 149g A ALC' —-CH,CH=CH, 1359 92
8 149h A ~CH,CH,CN ~CH,CH=CH, 135h 85
Z N
9 149i B U —CH,CH=CH, 135i 80
; -
N
10 149j A /EQ ~CH,CH=CH, 135j 87
1 149m c -CH,OTBDPS' —CH,CH=CH, 135m 91
12 14909 c ~(CH,);0TBDPS’  _CH,CH=CH, 1350 85
13 149p" A 0)\@ N 135p 81
14 149q¢ A g N 1359 87
15 149n D -OH ~CH,CH=CH, 135n 25
16 1491 A -F ~CH,CH=CH, 1351 0

a Reduction Conditions A: vinylogous ester 149 (1.0 equiv), LiAIH,4 (0.55 equiv) in Et,0 (0.2 M) at 0 °C, then 10% aqueous HCI
quench. ® Reduction Conditions B: (1) vinylogous ester 149 (1.0 equiv), DIBAL (1.2 equiv) in PhCHj (0.03 M) at 78 °C; (2) oxalic
acid-2H,0 in MeOH (0.02 M). ¢ Reduction Conditions C: vinylogous ester 149 (1.0 equiv), CeClz-7H,0 (1.0 equiv), NaBH, (3.0
equiv) in MeOH (0.02 M) at 0 °C, then 10% aqueous HCl in Et,O at 0 °C. ¢ Reduction Conditions D: (1) vinylogous ester 149 (1.0
equiv), DIBAL (3.3 equiv) in PhCH3 (0.03 M) at —78 °C; (2) 10% aqueous HCl in Et,0 at 0 °C. € Ring Contraction Conditions E: -
hydroxyketone 154 (1.0 equiv), CF3CH,OH (1.5 equiv), LIOH (1.5 equiv) in THF (0.1 M) at 60 °C. lIsolated yield over 2-3 steps.
9 Prepared from 149k. See Experimental Section. " Prepared from 149a. See Experimental Section.  Ts = 4-toluenesulfonyl,
TBDPS = tert-butyldiphenylsilyl, DIBAL = diisobutylaluminum hydride.
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Our success in performing ring contractions with a variety of substituents at the
quaternary stereocenter encouraged studies aimed at determining whether additional
substitution patterns could be introduced into the acylcyclopentene products. While most
substrates involved a variable group and an allyl fragment positioned on the quaternary
center, we were intrigued by the possibility of performing the ring contraction chemistry
with other groups. Investigation of methyl and trans-propenyl substituted vinylogous
ester 149p using the standard LiOH/TFE conditions showed that the chemistry was
unaffected by modification of the allyl fragment, giving product in 81% yield (entry 13).
Additionally, the reaction of spirocycle 149q also proceeded without complications and
afforded the desired product in 87% yield (entry 14).

Although many compounds performed well in the ring contraction sequence, certain
substrates posed significant challenges. Application of DIBAL reduction conditions with
10% aqueous HCl work-up (Method D) and ring contraction of a-benzoate ester 149n
enabled access to tertiary hydroxyl acylcyclopentene 135n, but the yield was relatively
low compared to other substrates (entry 15). Attempts to prepare the corresponding
tertiary fluoride 1491 were unsuccessful as no desired product was observed (entry 16).
Under the reaction conditions, both vinylogous esters led to more complex product
mixtures from unproductive side reactions in contrast to the typically high yielding
transformations observed for other substrates.

To obtain more functionalized acylcyclopentene products and extend our
methodology, we sought access to [3-substituted acylcyclopentenes by replacing the
hydride reduction step with the addition of an organometallic reagent and applying the

ring contraction chemistry on the resulting tertiary P-hydroxyketones. We selected a
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simple system for our initial investigations and evaluated the reaction of n-butyl
nucleophiles with vinylogous ester 149a. Unfortunately, the addition of n-BuMgCl or n-
BuLi afforded a complex mixture of products and proceeded slowly without reaching
completion, consequently converting unreacted starting material to dione 162 upon work-
up with strong acid (Scheme 2.5A).** This low reactivity could be understood from the
electron-rich and sterically-crowded nature of the carbonyl electrophile. Gratifyingly,
excellent reactivity was achieved by introducing CeCl, to the reaction with the Grignard
reagent,” although a fair amount of the corresponding enone was produced in the
transformation (Scheme 2.5B).*  Nevertheless, the CeCl,-supplemented addition
furnished a significantly improved overall yield of addition products with good

selectivity for B-hydroxyketone 154r.

Scheme 2.5. Organometallic Addition to Vinylogous Ester 149a
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then 10% aq HCI
B CeCl; Activated Reaction
0 CeCl,, n-BuMgCl nBu n-Bu_ OH
“\\\/ THF, 23 °C “\\\/ +
S -_— g A
0, —
£BuO then 10% aq HCI o o \—
149a 137r 154r
28% yield 65% yield
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We next examined the ring contraction sequence with [-hydroxyketone 154r
(Scheme 2.6). Treatment of alcohol 154r with the optimized ring contraction conditions
using LiOH/TFE yielded linear dione 156r without any of the [3-substituted
acylcyclopentene. Even though the conditions did not afford the desired product, the
isolation of stable uncyclized intermediate 156r supports our proposed retro-aldol
fragmentation/aldol cyclization mechanism (Scheme 2.3). By employing a stronger base
such as KO#-Bu, both steps of the rearrangement could be achieved to give
acylcyclopentene 135r. Furthermore, significantly higher yields and reduced reaction

times were achieved with microwave irradiation.

Scheme 2.6. Ring Contraction Screen on B-Hydroxyketone 154r

(o]

n-Bu OH dit P n-Bu
conditions W
/. - n-Bu N +
\— o KPS
o
154r O 156r 135r
LiOH, CF;CH,0H, THF, 60 °C, 3 h 71% yield not observed
KO#Bu, THF, 60 °C, 22 h not observed 65% yield
KOt-Bu, THF, 85 °C, uwaves, 5 min not observed 73% yield

With a route to form a variety of acylcyclopentenes that possess different substitution
patterns, we were interested in increasing the enantiopurity of these potentially useful
intermediates. Formation of the corresponding semicarbazone 163 enabled us to obtain
material in 98% ee after two recrystallizations (Scheme 2.7A). A high yielding
hydrolysis afforded enantioenriched acylcyclopentene 135a. Further functionalization of

semicarbazone 163 with 4-iodobenzylamine provided crystals that allowed verification of
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absolute stereochemistry by X-ray crystallography.”” To demonstrate the viability of our
method for large-scale enantioselective synthesis, we performed the asymmetric
alkylation and ring contraction transformations on multi-gram scale (Scheme 2.7B).
Gratifyingly, our route proved to be robust and reliable. Using 50 mmol of substrate (15
g), we were able to achieve a 94% yield and 88% ee of our desired asymmetric alkylation
product. Notably, the increased reaction scale permitted reduced catalyst loadings (1.25
mol % Pd,(pmdba); and 3.12 mol % (S)--Bu-PHOX, 13) and higher substrate
concentrations (0.2 M). B-Ketoester 148a underwent the asymmetric alkylation and ring
contraction protocol to furnish the desired acylcyclopentene in 69% overall yield over the

three step sequence.
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Scheme 2.7. Confirmation of Absolute Stereochemistry and Multi-Gram Scale Reactions

A  Enrichment of ee and X-ray Structure Determination

H
_N_ _NH,
(o] N \"/ Q/\NHZ
semicarbazide*HCI © |
—_—
- NaOAc, H,0, 60 °C - m-xylene, 150 °C
/J recrystallize twice = 89% yield
135a 63% yield 163
88% ee 98% ee
6 M aq HCI N
THF, H,0, 23 °C - \17\( 7
1 5
o]
93% yield o 164
B Ring Contraction Sequence on Multi-Gram Scale
(o}
Q (S)-+-Bu-PHOX (13) (3.12 mol %) a
0/\/ Pdy(pmdba); (1.25 mol %) SN F
o
i-BuO PhCHg, 30 °C i-BuO
148a 94% yield, 88% ee 149a
reduced catalyst loading
higher concentration (0.2 M) o
LiAlH, HO
Et. ° i
20,0 °C |~ s LiOH, TFE

then 10% aq HCI THF, 60 °C w

(0}
81% yield 91% yield /J
154a 135a

15 g, 53.5 mmol scale

69% overall yield
3 steps

2.5 SYNTHESIS OF ACYLCYCLOPENTENE DERIVATIVES USING SITE-

SELECTIVE TRANSFORMATIONS

With the ultimate goal of applying our methodology toward the total synthesis of

complex natural products, we set out to probe the synthetic utility of various
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acylcyclopentenes prepared using our ring contraction strategy. While acylcyclopentenes
135 are chiral fragments with low molecular weights, they possess an array of useful
functionality that can be exploited for synthetic applications through site-selective
functionalizations (Figure 2.3).  Acylcyclopentenes 135 possess hard and soft
electrophilic sites, a nucleophilic site, a functional group handle in the form of an allyl
group, and a variable group which can be installed through asymmetric alkylation.
Additionally, all of the acylcyclopentenes we have prepared bear an all-carbon quaternary
stereocenter or a fully substituted tertiary center.

We aimed to perform site-selective functionalizations to demonstrate that a variety of
derivatives could be prepared by recognizing the rich functionality present in
acylcyclopentene 135 (Figure 2.3). Selective functionalization of site A enabled access
to tertiary alcohols, oximes, and hydrazones in 74-92% yield (165-167). Manipulation
of site B through olefin metathesis reactions with methyl vinyl ketone or crotonaldehyde
provided intermediate bis-enone or enone-enal compounds in 90-95% yield as trans
olefin isomers. Chemoselective hydrogenation with Wilkinson’s catalyst reduced the less
substituted and less sterically hindered olefin in these systems to form mono-enones 168
and 169 in 90-93% yield. Using the insights gathered from these manipulations, we
found it was possible to perform chemoselective Heck and hydrogenation reactions to
provide acylcyclopentene 170 bearing a pendant phenol in 86% yield over two steps.
Through modification of site C, access to Weinreb amides and divinyl ketones could be
achieved (171-172). Additionally, functionalization of site D gave rise to epoxide 173.
Functionalization of this site was also demonstrated with B-substituted acylcyclopentene

135r (Scheme 2.6). Lastly, variations at site E were accomplished by installing the
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appropriate groups at an early stage during the asymmetric alkylation step (Scheme 2.1

and Table 2.2).

Figure 2.3. Selective Functionalizations on Sites A—E of Acylcyclopentenes 135

hard electrophilic site (A) \o

quaternary

stereocenter .\
\o (D) soft electrophilic site

functional (B) /J \'
group handle 135 (E) variable group

__— (C) nucleophilic site

[0}
_NHTs
(A) OH
w @)\ @)\ “ r ) ® "
OH
165 166 167 169 170
92% yield 90% yield 74% yield 92% yleld 80% yield 86% yield
2 steps 2 steps 2 steps

o (©) [0} (C) (o} [0}
o (E)
w (D) w w Ts
/J 2 /J
171 172 173 135r 135j
77% yield 34% yield 96% yield see see
2 steps 3 steps 1.1:1dr Scheme 2.6 Table 2.4

To further increase the potential of these chiral building blocks, we performed
manipulations on a combination of reactive sites to arrive at more advanced synthetic
intermediates (Scheme 2.8). Hydroxydiene 175 was obtained from acylcyclopentene
135a by performing a carbonyl epoxidation followed by fragmentation in 55% yield over

two steps (Scheme 2.8A). Spirocyclic systems such as enones 176 and 177 can be
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obtained by performing an intramolecular Diels—Alder using 135f or a ring-closing
metathesis of 135g using Grubbs—Hoveyda 3rd generation catalyst (Scheme 2.8B and
Scheme 2.8C). Additionally, phenolic indane 179 was generated in 57% yield over four
steps by exploiting an intermolecular Diels—Alder reaction with DMAD (Scheme 2.8D).
To arrive at synthetic intermediates that bear a stronger resemblance to natural products,
we formed the triflate of Heck product 170 using Comins’ reagent® and subjected the
compound to a subsequent intramolecular Heck reaction using the Herrmann—Beller
palladacycle 182% to obtain tricycle 183 with the cis-ring fusion (Scheme 2.8E). This
key tricycle contains all of the carbocyclic core of hamigerans C and D with correct
stereochemistry at the ring fusions.

Overall, our general strategy has enabled the synthesis of valuable chiral building
blocks by taking advantage of the rich functional group content embedded in
acylcyclopentenes 135.  Site-selective manipulations at regions A-E can produce
monocyclic and polycyclic compounds with a large degree of structural variation. Our
studies have provided valuable insight into the nature of these compounds and we aim to
apply our knowledge of these promising synthetic intermediates in the total synthesis of

complex natural products.
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Scheme 2.8. Functionalization of Multiple Acylcyclopentene Reactive Sites
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2.6 CARBONYL TRANSPOSITION APPROACH TO y-QUATERNARY

CYCLOHEPTENONES

While pleased to discover the unusual reactivity of vinylogous esters 149 that led to
the synthesis of various acylcyclopentenes, we maintained our original interest in
preparing enantioenriched y-quaternary cycloheptenones 137 and began reexamining
reaction parameters to this end. Initially, we identified conditions to obtain
cycloheptenone 137a in two steps by activation and elimination of the hydroxy group at
elevated temperatures, but ultimately desired a more direct route from vinylogous ester
149a (Scheme 2.9A). After considerable experimentation, we fortuitously discovered
that reduction and elimination using Luche conditions effectively furnished enone 137a
with minimal (-hydroxyketone 154a (Scheme 2.9B). A number of factors may
contribute to the reversed product distribution, with methanol solvent likely playing a
large role.” With an effective route to enone 137a, we also sought to prepare [3-

substituted cycloheptenones through the 1,2-addition of organometallic reagents.
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Scheme 2.9. Stepwise and One-Pot Formation of Cycloheptenone 137a

A “‘\‘\/
o
o LiAlH, H
° 137a
nZ Et,0,0°C N NaOAc-3H,0 P
. then Ac,0, 110 °C
i-BuO 10% aq HCI HO H (o]
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149a '\ _ 2 steps 137a
o
154a
B
o CeCly7H,0 H HO H
NaBH, MeOH, 0 °C .
W\ F abH,, e - RN~ " N F
£BuO then 10% aq HCI o o
149a 137a 154a
82% yield 1% yield

We again investigated the addition of n-BuMgCl to vinylogous ester 149a with CeCl,
additive, focusing on the impact of various quenching parameters. While our previous
studies showed that the formation of [(3-hydroxyketone 154r was favored over
cycloheptenone 137r (Scheme 2.10, and Scheme 2.11, path a vs path b), we reasoned that
elevated temperatures would promote dehydration of B-hydroxyketone 154 to form
cycloheptenone 137 as the major product and simplify the product mixture (Scheme 2.11,
path ¢). Subsequent heating of the reaction to 60 °C after acid quench led to complete
consumption of [-hydroxyketone (Scheme 2.10). However, the desired cycloheptenone
137r was isolated as a minor product along with the non-conjugated enone 184 in 76%
yield as a single olefin isomer. The prevalence of non-conjugated enone 184 again
emphasizes the unusual reactivity of these seven-membered ring systems. To revise our
approach, we extensively screened mild acidic work-up conditions to minimize the

formation of side products such as isomer 184. We ultimately discovered that a sodium
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phosphate buffer quench followed by treatment of the crude enol ether*' with dilute HCI

in acetonitrile exclusively afforded desired cycloheptenone 137r (Scheme 2.10).

Gratifyingly, a number of sp’-hybridized carbon nucleophiles can be employed under

these conditions, permitting the preparation of allyl,”

cycloheptenones (Table 2.5, entries 1-6, Method F).

Scheme 2.10. Synthesis of B-Substituted Cycloheptenones

n-Pr
n-Bu n-Bu OH |
NP conditions SNF /. . WNF
+BuO o) ) — o
149a 137r 154r 184
CeCls,ﬂf;;alqMogAC;h T;'gl’ 23°C 28% yield 65% yield not observed
CeCly, n-BuMgCl, THF, 23 °C 4% yield not observed 76% yield

then 10% aq HCI, 23—60 °C

CeClj3, n-BuMgCl, THF, 23 °C
then NazPO, buffer (pH 6.5) 84% yield not observed not observed
then aq HCI (6 mM), CH;CN

Scheme 2.11. General Reaction Mechanism for Carbonyl Transposition
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Table 2.5. Scope of Organometallic Addition/Elimination®

o CeCl; R-M R
.‘\“\/ THF, 23 °C .‘\\‘\/
S —" .
. then work-up
FBuO conditions 0
149a 137
entry R M work-up conditions? product 137 yield (%)°
1 NN -MgClI F 137r 84
2 P —-MgBr F 137s 73
3 )\, ~MgBr F 137t 93
4 NN -MgBr F 137u 90
5 \[/\/ —MgBr F 137v 82
6 O —MgBr F 137w 92
79 Ph X -Li G 137x 84
8 — -MgBr H 137y 97
9¢ —MgBr H 137z 66
Y

10 ® —Li G 137aa 72

(o]
1 S —MgCl G 137ab 84

S

@ Conditions: vinylogous ester 149a (1.0 equiv), CeCls (2.5 equiv), RMgX or RLi (3.0 equiv) in
THF, 23 °C then work-up by Method F, G, or H. © Method F: (1) pH 6.5 NagPO, buffer; (2) 6
mM HCI, CH3CN; Method G: 10% w/w aqueous HCI, 60 °C; Method H: 2 M H,SO,, 60 °C.
°Yield of isolated product. ¢ Performed without CeCl; additive. € Product was a 1.9:1 mixture
of atropisomers.

We then turned our attention to sp- and sp>-hybridized carbon nucleophiles as part of
our goal to prepare variably substituted cycloheptenones 137. Attempts to apply the
buffer and dilute acid quenching parameters provided poor selectivity and often led to
complex mixtures of products. A thorough evaluation of work-up conditions revealed
that the desired unsaturated [3-substituted cycloheptenones could be obtained by

quenching the reactions with concentrated strong acid followed by stirring at elevated
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temperatures. Although investigated for sp’-hybridized carbon nucleophiles, the strong
acid work-up conditions are more suitable for these reactions because the only possible
elimination pathway leads to conjugated enone 137. In this manner, the initial mixture of
enone and [3-hydroxyketone could be funneled to the desired product (Scheme 2.11, paths
b and ¢). By employing a HCI (Method G) or H,SO, quench (Method H), the synthesis
of vinyl,” alkynyl,* aryl, and heteroaryl substituted enones was achieved in moderate to
excellent yield (Table 2.5, entries 7-11). Particularly noteworthy was entry 9, where
addition of an ortho-substituted Grignard reagent produced sterically congested
cycloheptenone 137z.%

These results demonstrate that application of the appropriate quenching parameters
based on the type of carbon nucleophile employed is required for successful carbonyl
transposition to (-substituted y-quaternary cycloheptenones (Scheme 2.12). For sp’-
hybridized carbon nucleophiles, reaction work-up with buffer and dilute acid maximizes
enone yield and minimizes formation of non-conjugated enone isomers. In contrast,
reactions using sp- and sp>-hybridized carbon nucleophiles require strong acidic work-up
with heating for best results. Careful application of these general protocols (Methods F-

H) provides access to diverse 3-substituted y-quaternary cycloheptenones 137.
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Scheme 2.12. Different Work-Up Conditions for Carbonyl Transposition Reactions Employing sp’

versus sp/sp’ Carbon Nucleophiles

A Buffer and Dilute Acid Parameters: sp® carbon nucleophiles

o CeClz, RMgX or RLi R

““\\% THF, 23 °C - “‘\\\/
. then NazPO, buffer (pH 6.5)
i-Bu0 then aq HCI (6 mM), CH;CN o
149a R = alkyl 137

B  Strong Acid Conditions: sp and sp? carbon nucleophiles

0 CeCl,, RMgX or RLi R
e~ P THR,23°C L~
149a R = alkenyl, alkynyl, aryl 137
2.7 SYNTHESIS OF CYCLOHEPTENONE DERIVATIVES USING

TRANSITION-METAL CATALYZED CYCLIZATIONS

Having produced a variety of cycloheptenones, we next turned our attention to the
preparation of a series of bi- and tricyclic structures that would be valuable for total
synthesis applications. The incorporation of alkene functionality at the [-position
allowed rapid access to a series of [7-n] fused ring systems through ring-closing
metathesis with the <y-allyl fragment (Table 2.6). This transformation enables the
formation of disubstituted bicycles (185x, 185s, 185u, and 185w) from terminal alkenes
in excellent yields (entries 1, 3, 5, and 8). Trisubstituted bicycles (185y, 185t, and 185v)
are also accessible through enyne ring-forming metathesis (entry 2) and ring-closing
metathesis with 1,1-disubstituted alkene 3-substituents (entries 4 and 6). Additionally,
both atropisomers of cycloheptenone 137z converge to the [7-7-6] tricyclic enone (185z)

under the reaction conditions (entry 7).
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Table 2.6. Formation of Bi- and Tricyclic Systems Through Ring-Closing Metathesis®

C|’R|S )
\(o i

R n(
SN\ F Grubbs-Hoveyda 2nd
generation (68) (5 mol %)
o » 0
PhH, 50 °C
137 185
(n =0-3)
entry substrate 137 R! product 185 R? yield (%)®
R2

1€ 137x Ph X 185x R2=H 93

@ 185y  Re= _.{ %
RZ
3d 137s PO 185s R2=H 91
20 137t A 185t R2=CH, 90
. R
5 137u A Y 185u R2=H 90
6 137v Y\, o 185v R2=CH; 98
7 137z @/ ‘ 185z — 9
e

8 137w NN g 185w —_ 99
o

@ Conditions: cycloheptenone 137 (1.0 equiv) and Grubbs—Hoveyda 2nd generation catalyst (68, 5.0
mol %) in PhH, 50 °C. ° Yield of isolated product. ¢ Conditions: cycloheptenone 137 (1.0 equiv) and
Grubbs 2nd generation catalyst (68, 0.2 mol %) in CH,Cl,, reflux. < 1,4-benzoquinone (10 mol %)
added. € Performed in PhCHg.

2 137y e o

With two [7-6] bicyclic structures in hand, we next investigated the preparation of

other such bicycles with variable olefin positions. Addition of 3-butenylmagnesium
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bromide to trans-propenyl vinylogous ester 149p followed by ring-closing metathesis

furnished bicycle 186 with the alkene adjacent to the quaternary stereocenter (Scheme

46

2.13A). Following the precedent of Fuchs,” we envisioned accessing bicycle 188

through a base-mediated migration from enone 185s. However, treatment of skipped
diene 185s with an amine base at ambient temperature unexpectedly afforded diene 187
instead (Scheme 2.13B). In the end, the alkene could be migrated in the desired direction
to generate diene 188 by performing the reaction in the presence of microwave
irradiation. Overall, these methods allow for the preparation of [7-6] bicycles with

variable olefin substitution.

Scheme 2.13. Synthesis of Additional [7-6] Bicycles and [7-5-5] Tricycles

NMgBr

1. CeClj, THF, 23 °C
o then NazPO, buffer (pH 6.5)
then HCI (6 mM), CH3;CN
“‘\\\/ > =
2. Grubbs-Hoveyda 2nd
i-BuO generation (68) (5 mol %) (o)
PhH, 50 °C

A

149p 186

70% yield, 2 steps

conditions

185s 187 188
DBU, CH;CN, 23 °C 73% yield not observed

DBU, CH;CN, 180 °C, uwaves 16% yield 59% yield

If C0,(CO)q
THF, 23 °C

o

then DMSO, 60 °C
o 90% yield
137y 3:1dr

189a 189b
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Recognition of the proximal enyne functionality of cycloheptenone 137y prompted an
investigation of a Pauson-Khand reaction to form more complex ring systems.
Treatment of enone 137y with dicobalt octacarbonyl in the presence of
dimethylsulfoxide*’ generated the [7-5-5] tricycle in a 3:1 diastereomeric ratio of 189a to
189b (Scheme 2.13C). Overall, our organometallic addition and elimination strategy
combined with the appropriate work-up conditions facilitated the preparation of
numerous bi- and tricyclic systems with a wide array of substitution patterns that may

prove useful in the context of natural product synthesis.

2.8 UNIFIED STRATEGY FOR THE SYNTHESIS OF COMPLEX

POLYCYCLIC NATURAL PRODUCTS

Our divergent approaches to the synthesis of acylcyclopentenes 135 and
cycloheptenones 137 from enantioenriched vinylogous esters 149 have provided the
foundation for the preparation of complex polycyclic molecules based on cyclopentanoid
and cycloheptanoid core structures (Figure 2.4). Both [5-6] and [5—6-7] fused polycyclic
structures could be obtained from acylcyclopentenes.  Synthetic elaboration of
cycloheptenones provided access to [7-5], [7-6], [7-7], [7-8], [7-7-6], and [7-5-5]
fused structures. Additionally, [5-5], [5-6], and [7-6] spirocyclic structures could be
obtained using our synthetic approaches. These examples significantly add to the
collection of polycyclic architectures accessible by elaboration of chiral six-membered
ring carbocycles or heterocycles 136.” We have applied previously developed

methodology toward a number of polycyclic cyclohexanoid natural products’ (Figure 2.5)
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and similarly plan to exploit the ring contraction and ketone transposition methodology in
future efforts toward cyclopentanoid and cycloheptanoid natural products. The work
presented in this chapter will provide the foundation for future efforts and enable a

broader synthetic approach to complex natural product targets.

Figure 2.4. Chiral Fused and Spirocyclic Structures Prepared by Asymmetric Allylic Alkylation
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Figure 2.5. Pd-Catalyzed Asymmetric Allylic Alkylation in the Total Synthesis of Natural Products

Laurencenone C a-Chamigrene
(63) (64)

§OQ

Carissone Dichroanone
Cassiol (99) (46) Liphagal
(105) (56)

Sl S 0@0

(o) o o (o)
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(126) (124) (128)
2.9 CONCLUSION

We have successfully developed general, enantioselective synthetic routes toward -
quaternary acylcyclopentenes (135) and y-quaternary cycloheptenones (137). The key
stereoselective component unifying this chemistry is the Pd-catalyzed asymmetric
alkylation of seven-membered vinylogous ester substrates to form a-quaternary
vinylogous esters, for which we have demonstrated a broad substrate scope with a variety
of all-carbon and heteroatom-containing functionality. These enantioenriched products

were transformed in a divergent manner to either facilitate a two-carbon ring contraction
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to acylcyclopentenes or a carbonyl transposition to cycloheptenones. Further synthetic
elaboration of these products has enabled access to five- and seven-membered ring
systems that are poised for further functionalization to bi- and tricyclic ring systems.
Overall, the described strategies provide broader access to polycyclic ring systems and
thus complement our previous work with six-membered ring building blocks. Efforts to
expand the scope of these reactions, understand the key reaction mechanisms, and apply
the chiral products to the total synthesis of natural products are the subject of future

studies.
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2.10 EXPERIMENTAL SECTION

2.10.1 MATERIALS AND METHODS

Unless otherwise stated, reactions were performed in flame-dried glassware under an
argon or nitrogen atmosphere using dry, deoxygenated solvents. Reaction progress was
monitored by thin-layer chromatography (TLC). THF was distilled over
sodium/fluorenone or dried by passage through an activated alumina column under
argon™ prior to use. p-Dioxane was distilled over sodium or dried by passage through an
activated alumina column under argon prior to use. Methanol was distilled over
Mg(OMe), prior to use. Other solvents were dried by passage through an activated
alumina column under argon. Diisopropylamine and triethylamine were distilled over
CaH, prior to use. lodomethane, iodoethane, acrylonitrile, methyl vinyl ketone, and
acrolein were distilled prior to use. Furan was distilled over KOH and hydroquinone
prior to use. Purified water was obtained using a Barnstead NANOpure Infinity UV/UF
system. Brine solutions are saturated aqueous solutions of sodium chloride. MePh,PBr
was purchased from Sigma-Aldrich and stored in a glove box prior to use. NaH (60% wt.
dispersion in mineral oil) was purchased from Sigma-Aldrich and purified by trituration
with hexanes under a N, atmosphere and removal of residual solvent under vacuum.
Grignard and organolithium reagents were purchased from Sigma-Aldrich unless
otherwise stated and titrated according to the method of Love.”” LiOCH,CF, was
prepared according to the method of Shreeve. Allyl cyanoformate was prepared
according to the method of Mander’™ or Rattigan.”"® Gramine methiodide was prepared

according to the method of Armen.”® The procedure of Maruyama and Naruta was used
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to prepare 1-chloro-24-pentadiene (92:8 E:Z).> Phosphinooxazoline (PHOX) ligands
(5)-t-Bu-PHOX (13)™* and (S)-p-(CF;),---Bu-PHOX (14)” were prepared by methods
described in our previous work. Tris(4,4’-methoxydibenzylideneacetone)dipalladium(0)
(Pd,(pmdba);) was prepared according to the method of Ibers®® or Fairlamb.®
Herrmann—Beller’s catalyst (182) was prepared according to a literature procedure.”” All
other reagents were purchased from Sigma-Aldrich, Acros Organics, Strem, or Alfa
Aesar and used as received unless otherwise stated. Reaction temperatures were
controlled by an IKAmag temperature modulator. Microwave-assisted reactions were
performed in a Biotage Initiator 2.5 microwave reactor. Glove box manipulations were
performed under a N, atmosphere. TLC was performed using E. Merck silica gel 60
F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, p-
anisaldehyde, or KMnO, staining. SiliaFlash P60 Academic Silica gel (particle size
0.040-0.063 mm) or ICN silica gel (particle size 0.032-0.0653 mm) was used for flash
column chromatography. Automated flash column chromatography was performed on a
Teledyne Isco CombiFlash R, system. 'H NMR spectra were recorded on a Varian
Mercury 300 MHz, a Varian 400 MR 400 MHz, or a Varian Inova 500 MHz
spectrometer and are reported relative to residual CHCI, (8 7.26 ppm) or C¢H, (0 7.16
ppm). Variable temperature 'H NMR experiments were performed on a Varian Inova
500 MHz spectrometer and are reported relative to residual DMSO (8 2.50 ppm). “C
NMR spectra were recorded on a Varian Mercury 300 MHz, a Varian 400 MR 400 MHz,
or a Varian Inova 500 MHz spectrometer (at 75 MHz, 100 MHz, and 125 MHz
respectively) and are reported relative to CHCI, (& 77.16 ppm) or C;H, (& 128.06 ppm).

“F spectra were recorded on a Varian Mercury 300 MHz or a Varian Inova 500 MHz
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spectrometer (at 282 MHz and 470 MHz respectively) and are reported without the use of
a reference peak. Data for '"H NMR are reported as follows: chemical shift (8§ ppm)
(multiplicity, coupling constant (Hz), integration. Multiplicities are reported as follows:
s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet,
dm = doublet of multiplets, br s = broad singlet, br d = broad doublet, app = apparent.
Data for "C and ""F NMR are reported in terms of chemical shifts (8 ppm). IR spectra
were obtained using a Perkin Elmer Paragon 1000 or Perkin Elmer Spectrum BXII
spectrometer using thin films deposited on NaCl plates and reported in frequency of
absorption (cm™). Optical rotations were measured with a Jasco P-1010 or Jasco P-2000
polarimeter operating on the sodium D-line (589 nm) using a 100 mm path-length cell
and are reported as follows: [a]," (concentration in g/100 mL, solvent, ee). Melting
points were measured using a Thomas-Hoover capillary melting point apparatus and the
reported values are uncorrected. Analytical chiral HPLC was performed with an Agilent
1100 Series HPLC utilizing a Chiralcel AD or OD-H column (4.6 mm x 25 cm) obtained
from Daicel Chemical Industries Ltd. with visualization at 254 nm. Analytical chiral
SFC was performed with a Mettler Toledo SFC supercritical CO, analytical
chromatography system with a Chiralcel AD-H column (4.6 mm x 25 cm) with
visualization at 254 nm/210 nm. Analytical chiral GC was performed with an Agilent
6850 GC utilizing a G-TA (30 m x 0.25 mm) column (1.0 mL/min carrier gas flow).
High-resolution mass spectra (HRMS) were obtained from the Caltech Mass Spectral
Facility (EI+ or FAB+) or on an Agilent 6200 Series TOF with an Agilent G1978A
Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical

ionization (APCI+), or mixed ionization mode (MM: ESI-APCI+).
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2.10.2 PREPARATIVE PROCEDURES

2.10.2.1 PREPARATION PARENT VINYLOGOUS ESTER 147

o 1. TMSCI, Et;N, Nal TMSO cClI 3. 2Zn, AcOH, H,0 i
? CH,CN, 23 °C cl i-PrOH, -10->23 °C
> :
2. CI,CHCOCI, Et;N 4. PPTS (1.5 mol %) i-BuO
hexanes, 23 °C H © BUOH, PhCH;
190 reflux, Dean-Stark 147

66% yield, 4 steps

Vinylogous ester 147. Nal (157 g, 1.05 mol, 1.25 equiv) was placed in a 3 L 3-neck
round-bottom flask, dried under high vacuum at 90 °C for 12 h, and allowed to cool to
ambient temperature under N,. CH,CN (1.3 L) was added to dissolve the Nal. To the
solution was added cyclopentanone (74.3 mL, 0.84 mol, 1.00 equiv), followed by Et;N
(146 mL, 1.05 mol, 1.25 equiv). The flask was fitted with an addition funnel, and the
funnel was charged with TMSCI (122 mL, 0.96 mmol, 1.14 equiv), which was added
dropwise over 30 min. The resulting suspension was stirred for an additional 1 h at
ambient temperature. Pentane (1.0 L) was added, and the biphasic system was stirred
vigorously for 10 min. The phases were separated and the CH,CN layer was extracted
with pentane (3 x 400 mL). The combined pentane phases were washed with H,O (2 x
500 mL) and brine (500 mL), dried over Na,SO,, filtered, and concentrated under
reduced pressure to afford the desired product (131 g, quantitative) as a colorless oil.

A portion of the above trimethylsilyl ether (89.7 g, 0.57 mol, 1.00 equiv) was placed
in a 3 L 3-neck round-bottom flask fitted with a stopper, an addition funnel, and an
overhead stirrer. Hexanes (900 mL) was added, followed by Et;N (111 mL, 0.80 mol,
1.39 equiv). Dichloroacetyl chloride (66.4 mL, 0.69 mol, 1.21 equiv) was dissolved in

hexanes (400 mL) and added dropwise over 9.5 h. After 18 h of stirring at ambient
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temperature, the brown suspension was filtered, rinsing with EtOAc (3 x 500 mL). The
clear brown solution was concentrated under reduced pressure and then filtered through a
pad of Al,O; (7 x 18 cm, neutral) using EtOAc as eluent. The solution was concentrated
under reduced pressure to afford the desired product (125 g, 0.47 mol, 82% yield) as a
brown oil that crystallized in the freezer (20 °C).

A portion of the above dichlorocyclobutanone (53.4 g, 0.20 mol, 1.00 equiv) was
placed in a 3 L 3-neck round-bottom flask fitted with a thermometer, an addition funnel,
and an overhead stirrer. Isopropyl alcohol and purified water (170 mL each) were added
and the suspension was cooled to —10 °C (internal temperature) using a MeOH/ice bath.
Zn dust (58.8 g, 0.90 mol, 4.50 equiv) was added in four portions (5 min between each)
and AcOH (63 mL, 1.10 mol, 5.50 equiv) dissolved in H,O (130 mL) was added
dropwise while keeping the internal temperature below 0 °C (usually added over 1.5 h).
The reaction was stirred for an additional 30 min at —10 °C (internal temperature) before
the cooling bath was removed and the reaction was allowed to warm to ambient
temperature. After 8.5 h, the reaction was filtered, rinsing with isopropyl alcohol (100
mL). The mixture was cooled to 0 °C and neutralized by portionwise addition of K,CO,
(74.6 g, 0.54 mol, 5.50 equiv). The viscous suspension was filtered, rinsing with H,O
(100 mL) and EtOAc (300 mL). The biphasic system was concentrated under reduced
pressure to ca. 200 mL and extracted with CH,Cl,. The combined organics were dried
over MgSO,, filtered, and concentrated under reduced pressure to afford the desired
product (24.2 g,0.19 mol, 96% yield) as a pale orange oil.

To a solution of 1,3-cycloheptanedione (35.8 g, 0.28 mol, 1.00 equiv) in toluene (280

mL) in a 1 L flask fitted with a reflux condenser and Dean—Stark trap was added
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isobutanol (208 mL, 2.27 mol, 8.11 equiv) and pyridinium p-toluenesulfonate (1.07 g,
4.26 mmol, 1.50 mol %). The solution was immersed in an oil bath at 130 °C and
monitored by TLC. When the starting material was consumed (typically within 4-6 h),
the reaction was allowed to cool to ambient temperature. The resulting dark orange
solution was washed with sat. aqueous NaHCO; (200 mL). The aqueous phase was
extracted with EtOAc (3 x 150 mL) and the combined organics were washed with brine,
dried over MgSQO,, filtered, and concentrated under reduced pressure to afford a thick
dark orange oil. The crude oil was flushed through a silica gel plug (SiO,, 7 x 9 cm,
1:4—3:7—1:1 Et,0O-hexanes) to afford vinylogous ester 147 (43.5 g, 0.24 mol, 84%
yield, 66% yield over 4 steps) as a pale orange oil; R, =0.22 (2:1 hexanes:EtOAc); 'H
NMR (500 MHz, CDCl,) 6 5.37 (s, 1H), 3.49 (d, J = 6.6 Hz, 2H), 2.60-2.56 (m, 4H),
2.00 (sept, J = 6.6 Hz, 1H), 1.88—1.77 (m, 4H), 0.96 (d, J = 6.8 Hz, 6H); ""C NMR (125
MHz, CDCl,) 6 202.5, 176.6, 106.0, 75.0, 41.9, 33.1, 27.9, 23.7, 21.5, 19.3; IR (Neat
Film NaCl) 2958, 2872, 1646, 1607, 1469, 1237, 1190, 1174 cm™'; HRMS (El+) m/z

calc'd for C,;H;sO, [M]*: 182.1307; found 182.1310.

2.10.2.2 PREPARATION OF B-KETOESTERS 148

1. LDA, THF, -78 °C

0 then o o} (o)
NCJI\OM . o/\/
i-BuO 2. CHgl, Cs,CO3 i-BuO
CH,CN, 80 °C
147 148a

79% yield, 2 steps
B-Ketoester 148a. To a solution of diisopropylamine (6.46 mL, 46.1 mmol, 1.20 equiv)

in THF (180 mL) in a 500 mL round-bottom flask at 0 °C was added »n-BuLi (17.2 mL,
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44.2 mmol, 2.57 M in hexanes, 1.15 equiv) dropwise over 15 min using a syringe pump.
After 15 min of stirring at 0 °C, the mixture was cooled to —78 °C using an
acetone/CO,(s) bath. A solution of vinylogous ester 147 (7.01 g, 38.4 mmol, 1.00 equiv)
in THF (20 mL) was added dropwise over 20 min using a syringe pump. After an
additional 1 h of stirring at —78 °C, allyl cyanoformate (4.60 mL, 42.2 mmol, 1.10 equiv)
was added dropwise over 10 min. The mixture was stirred at —78 °C for 2.5 h, quenched
by addition of sat. aqueous NH,Cl and H,0O (30 mL each), and allowed to warm to
ambient temperature. The reaction was diluted with Et,0 (100 mL) and the phases were
separated. The aqueous phase was extracted with Et,0 (2 x 100 mL). The combined
organic phases were dried over MgSQ,, filtered, and concentrated under reduced pressure
to afford a pale orange oil.

The crude oil was dissolved in CH;CN (130 mL) in a 500 mL round-bottom flask and
treated with CH,I (7.2 mL, 115 mmol, 3.00 equiv) and Cs,CO; (16.76 g, 49.9 mmol, 1.30
equiv). The flask was fitted with a condenser, immersed in an oil bath, and heated to 80
°C with vigorous stirring. After 12 h of stirring at 80 °C, the reaction was allowed to
cool to ambient temperature, diluted with EtOAc (100 mL), dried over MgSQO,, filtered,
and concentrated under reduced pressure to afford an orange oil. The crude product was
purified by flash column chromatography (SiO,, 5 x 15 cm, 19:1—9:1 hexanes:EtOAc,
dry-loaded using Celite) to afford p-ketoester 148a (8.51 g, 30.4 mmol, 79% yield over 2
steps) as a pale yellow oil; R,=0.43 (4:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,)
0 5.86 (dddd, J = 17.1, 10.7, 5.6, 5.6 Hz, 1H), 5.39 (s, 1H), 5.29 (app dq, J = 17.1, 1.5
Hz, 1H), 5.20 (app dq, J = 10.5, 1.4 Hz, 1H), 4.62 (dddd, J = 13.3, 5.6, 1.2, 1.2 Hz, 1H),

4.56 (dddd, J =13.4,5.6,1.2, 1.2 Hz, 1H), 3.54-3.42 (m, 2H), 2.59 (ddd, J = 17.8, 9.8,
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3.9 Hz, 1H), 2.45-2.38 (m, 2H), 2.02-1.94 (m, 2H), 1.84-1.75 (m, 1H), 1.70 (ddd, J =
14.4, 7.3, 4.4 Hz, 1H), 1.43 (s, 3H), 0.94 (d, J = 6.6 Hz, 6H); "“C NMR (125 MHz,
CDCI;) 6 199.1, 174.0,173.5,132.0, 118.4,105.2,74.8, 65.8, 59.1, 34.3,33.9,279, 24 .2,
21.4,19.3; IR (Neat Film NaCl) 2959, 2936, 2875, 1734, 1650, 1613, 1456, 1384, 1233,
1170, 1115, 994 cm™; HRMS (EI+) m/z calc'd for C,;H,,0, [M]*: 280.1675; found

280.1686.

1. LDA, THF, -78 °C

(o) then o (o) o
NCJ\O/\/
2, CH;CH,l, NaH > o
j-| - CH3CH,l, Na i-B
FBuO THF, 0--55 °C FBuO =

147 81% yield, 2 steps 148b

B-Ketoester 148b. To a solution of diisopropylamine (0.92 mL, 6.58 mmol, 1.20 equiv)
in THF (27 mL) in a 100 mL round-bottom flask at 0 °C was added n-BuLi (2.56 mL,
6.30 mmol, 2.46 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.00 g, 5.48 mmol, 1.00 equiv) in THF (2 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (0.67 mL, 6.02 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (8 mL), and allowed to warm to ambient temperature. The reaction was
diluted with Et,0 (25 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (3 x 25 mL). The combined organic phases were dried over Na,SO,,

filtered, and concentrated under reduced pressure to afford a pale orange oil.
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The crude oil was dissolved in THF (8 mL) in a 100 mL round-bottom flask, cooled
to 0 °C, and stirred vigorously as hexane-washed NaH (158 mg, 6.58 mmol, 1.20 equiv)
was added in one portion. Evolution of gas was observed and the reaction was stirred at
0 °C for 30 min to give a yellow-orange solution. CH,CH,I (1.31 mL, 16.4 mmol, 3.00
equiv) was added dropwise. The reaction was allowed to warm to ambient temperature
and stirred for 4.5 h. The mixture was heated to 45 °C and stirred for 1.5 h. Additional
CH,CH,I (0.65 mL, 8.22 mmol, 1.50 equiv) was added dropwise and the mixture was
stirred at 45 °C for 6 h. A third portion of CH,CH,I (0.33 mL, 4.11 mmol, 0.75 equiv)
was added dropwise and the reaction was warmed to 55 °C and stirred for 1.5 h. The
flask was cooled to ambient temperature and quenched by addition of 50% sat. aqueous
NH,CI (10 mL). The phases were separated and the aqueous layer was extracted with
Et,0 (3 x 15 mL). The combined organic phases were washed with brine, dried over
Na,SO,, filtered, and concentrated under reduced pressure. The crude product was
purified by flash column chromatography (SiO,, 5 x 20 cm, 9:1—6:1—3:1—2:1
hexanes:EtOAc) to afford B-ketoester 148b (1.31 g, 4.44 mmol, 81% yield over 2 steps)
as a yellow oil; R, = 0.53 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 5.85
(dddd, J=17.5,10.2,5.7,5.7 Hz, 1H), 5.35 (s, 1H), 5.29 (app dq, J = 17.2, 1.5 Hz, 1H),
5.19 (app dq, J = 104, 1.3 Hz, 1H), 4.62 (dddd, J = 13.2, 5.7, 1.4, 1.4 Hz, 1H), 4.54
(dddd, J =13.2,5.7, 1.4, 1.4 Hz, 1H), 3.57-3.34 (m, 2H), 2.60 (dddd, J =17.9,9.9, 3.7,
1.2 Hz, 1H), 2.49-2.26 (m, 2H), 2.12-1.85 (m, 4H), 1.85-1.57 (m, 2H), 0.93 (d, J = 6.7
Hz, 6H), 0.84 (t, J = 7.5 Hz, 3H); ""C NMR (75 MHz, CDCl,) & 198.7, 173.7, 173.2,
1320, 118.5, 105.5, 74.7, 65.7, 63.1, 34.1, 31.0, 30.6, 27.9, 22.0, 19.3, 9.0; IR (Neat

Film NaCl) 3085, 2960, 2937, 2876, 1731, 1663, 1613, 1471, 1461, 1453, 1424, 1383,
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1369, 1328, 1304, 1278, 1229, 1199, 1170, 1121, 1006, 988, 931, 875, 858, 813 cm™';

HRMS (MM: ESI-APCI+) m/z calc'd for C,,H,,0, [M+H]": 295.1904; found 295.1918.

1. LDA, THF, -78 °C

(o) then o (o] Pho
NCJ\O/\/
2. PhCH,Br, NaH > o
= . 2 r, Na =
i-BuO THF, Ga33 °C i-BuO _\=

147 88% yield, 2 steps 148¢c

B-Ketoester 148c. To a solution of diisopropylamine (0.92 mL, 6.58 mmol, 1.20 equiv)
in THF (27 mL) in a 100 mL round-bottom flask at 0 °C was added n-BuLi (2.56 mL,
6.30 mmol, 2.46 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.00 g, 5.48 mmol, 1.00 equiv) in THF (2 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (0.67 mL, 6.02 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (8 mL), and allowed to warm to ambient temperature. The reaction was
diluted with Et,0 (25 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (3 x 25 mL). The combined organic phases were dried over Na,SO,,
filtered, and concentrated under reduced pressure to afford a pale orange oil.

The crude oil was dissolved in THF (8 mL) in a 100 mL round-bottom flask, cooled
to 0 °C, and stirred vigorously as hexane-washed NaH (197 mg, 8.22 mmol, 1.50 equiv)
was added in one portion. Evolution of gas was observed and the reaction was stirred at
0 °C for 30 min to give a yellow-orange solution. Benzyl bromide (1.96 mL, 16.44

mmol, 3.00 equiv) was added dropwise. The reaction was allowed to warm to ambient
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temperature and stirred for 3 h. The reaction was quenched by addition of 50% sat.
aqueous NH,CI (10 mL). The phases were separated and the aqueous layer was extracted
with Et,0O (3 x 15 mL). The combined organic phases were washed with brine, dried
over MgSOQ,, filtered, and concentrated under reduced pressure. The crude product was
purified by flash column chromatography (SiO,, 3 x 23 cm, hexanes—10:1
hexanes:EtOAc) to afford (-ketoester 148¢ (1.72 g, 4.83 mmol, 88% yield over 2 steps)
as a pale yellow oil; R;=0.26 (10:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) &
7.30-7.15 (m, 3H), 7.15-7.06 (m, 2H), 5.85 (dddd, /= 17.1, 10.4, 5.8, 5.8 Hz, 1H), 5.36
(s, 1H), 5.30 (app dq, J = 17.2, 1.5 Hz, 1H), 5.21 (app dq, J = 10.4, 1.3 Hz, 1H), 4.63
(dddd,J=13.2,5.7,1.3,1.3 Hz, 1H), 4.52 (dddd, J=13.2,5.8, 1.3, 1.3 Hz, 1H), 3.42 (d,
J=6.5Hz,2H),3.30 (d,J=13.5 Hz, 1H), 3.23 (d, J = 13.5 Hz, 1H), 2.54 (ddd, J = 12.1,
10.0, 3.5 Hz, 1H), 2.38-2.18 (m, 2H), 2.04-1.83 (m, 2H), 1.81-1.64 (m, 2H), 0.92 (d, J =
6.7 Hz, 6H); "“C NMR (75 MHz, CDCL,) & 198.0, 174.0, 172.7, 137.0, 131.8, 130.7,
128.1, 126.8, 118.8, 105.7, 74.8, 66.0, 64.0, 43.1, 34.0, 31.3, 27.9, 22.0, 19.2; IR (Neat
Film NaCl) 3085, 3062, 3029, 2959, 2934, 2873, 1736, 1732, 1661, 1652, 1611, 1495,
1471, 1454, 1423, 1383, 1368, 1270, 1235, 1173, 1088, 1007, 957, 992, 930, 862, 815,

741 cm™; HRMS (APCI+) m/z calc'd for C,,H,,O, [M+H]": 357.2060; found 357.2051.

1. LDA, THF, -78 °C

(o) then o
NcJ\
@ 2 provaray ‘a'z';;’% N
147 83% yield, 2 steps 148d

B-Ketoester 148d. To a solution of diisopropylamine (0.92 mL, 6.58 mmol, 1.20 equiv)

in THF (27 mL) in a 100 mL round-bottom flask at 0 °C was added n-BuLi (2.56 mL,
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6.30 mmol, 2.46 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.00 g, 5.48 mmol, 1.00 equiv) in THF (2 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (0.67 mL, 6.02 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,ClI (8 mL), and then allowed to warm to ambient temperature. The reaction
was diluted with Et,0 (25 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (3 x 25 mL). The combined organic phases were dried over Na,SO,,
filtered, and concentrated under reduced pressure to afford a pale orange oil.

The crude oil was dissolved in THF (8 mL) in a 100 mL round-bottom flask, cooled
to 0 °C, and stirred vigorously as hexane-washed NaH (197 mg, 8.22 mmol, 1.5 equiv)
was added in one portion. Evolution of gas was observed and the reaction was stirred at
0 °C for 30 min to give a yellow-orange solution. Propargyl bromide (1.22 mL, 10.96
mmol, 80% wt in toluene, 2.00 equiv) was added dropwise and the reaction was allowed
to warm to ambient temperature and stirred for 5.5 h. The reaction was quenched by
addition of 50% sat. aqueous NH,CI (10 mL). The phases were separated and the
aqueous layer was extracted with Et,0 (3 x 15 mL). The combined organic phases were
washed with brine, dried over Na,SO,, filtered, and concentrated under reduced pressure.
The crude product was purified by flash column chromatography (SiO,, 3 x 24 cm,
hexanes—20:1—15:1—=10:1 hexanes:EtOAc) to afford -ketoester 148d (1.38 g, 4.53
mmol, 83% yield over 2 steps) as a pale yellow oil; R,=0.55 (4:1 hexanes:EtOAc); 'H

NMR (300 MHz, CDCl;) 6 5.85 (dddd, J =17.2,10.4,5.7,5.7 Hz, 1H), 5.38 (s, 1H), 5.29
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(app dq, J = 17.2, 1.5 Hz, 1H), 5.19 (app dq, J = 10.4, 1.3 Hz, 1H), 4.63 (dddd, J = 13.2,
5.6,1.4,14Hz, 1H),4.56 (dddd, J=13.2,5.7, 1.4, 1.4 Hz, 1H), 3.56-3.38 (m, 2H), 2.79
(dd, J=2.7,0.6 Hz, 1H), 2.72-2.32 (m, 4H), 2.15-1.89 (m, 4H), 1.89-1.71 (m, 1H), 0.93
(d, J = 6.7 Hz, 6H); C NMR (75 MHz, CDCL,) & 196.5, 174.8, 171.7, 131.7, 118.7,
105.0, 80.2, 74.9, 714, 66.1, 62.0, 343, 312, 279, 27.5, 21.7, 19.2; IR (Neat Film
NaCl) 3289, 3085, 2959, 2933, 2874, 2120, 1740, 1735, 1654, 1649, 1470, 1452, 1424,
1402, 1384, 1369, 1309, 1291, 1272, 1232, 1187, 1173, 1133, 1085, 1066, 1007, 968,

930, 863, 820 cm™'; HRMS (EI+) m/z calc'd for C,H,s0, [M+H]": 305.1753; found

305.1746.
1. LDA, THF, -78 °C
th
o en ° KOt-Bu
/@ oS MePhsPBr

i 2. acrolein, Et;N PhCH
B 3 -BuO 3 -BuO
BuO CH,Cl,, 040 °C iBu "= 023 °C Bu "=

147 77% yield, 2 steps 148k 79% yield 148e

B-Ketoester 148k. To a solution of diisopropylamine (1.49 mL, 10.63 mmol, 1.20
equiv) in THF (43 mL) in a 250 mL round-bottom flask at O °C was added n-BuL.i (4.74
mL, 10.19 mmol, 2.51 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.61 g, 8.86 mmol, 1.00 equiv) in THF (3 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (1.06 mL, 9.74 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (12.9 mL), and then allowed to warm to ambient temperature. The

reaction was diluted with Et,0 (50 mL) and the phases were separated. The aqueous
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phase was extracted with Et,0 (3 x 100 mL). The combined organic phases were dried
over Na,SO,, filtered, and concentrated under reduced pressure to afford a pale orange
oil. The crude oil was purified by automated flash column chromatography using a
Teledyne Isco CombiFlash R; (SiO,, 25 g loading cartridge, 330 g column, hold 0% [3
min]—ramp to 20% [10 min]—hold 20% [10 min]—ramp to 50% [4 min]—hold 50%
EtOAc in hexanes [5 min]) to afford the intermediate B-ketoester (2.02 g, 7.58 mmol,
86% yield).

A portion of the intermediate (-ketoester (990 mg, 3.72 mmol, 1.00 equiv) was
dissolved in CH,Cl, (10 mL) in a 100 mL round-bottom flask, cooled to 0 °C, and treated
with Et;N (0.518 mL, 3.72 mmol, 1.00 equiv). Acrolein (0.248 mL, 3.72 mmol, 1.00
equiv) was added dropwise and the reaction was allowed to warm to ambient
temperature. After 51 h, the reaction was cooled to 0 °C and an additional portion of
acrolein (0.125 mL, 1.86 mmol, 0.50 equiv) was added. After 100 h, the reaction was
concentrated under reduced pressure, dissolved in Et,O, and filtered through a cotton
plug to remove salts. The filtrate was concentrated under reduced pressure and the crude
product was purified by flash column chromatography (SiO,, 3 x 25 cm, 10:1—6:1—4:1
hexanes:EtOAc) to afford p-ketoester 148k (1.07 g, 3.34 mmol, 90% yield, 77% yield
over 2 steps) as a clear oil; R;=0.23, broad (4:1 hexanes:EtOAc); '"H NMR (300 MHz,
CDCl)  9.73 (t, J = 1.3 Hz, 1H), 5.86 (dddd, J = 17.1, 104, 5.8, 5.8 Hz, 1H), 5.36 (s,
1H), 5.30 (app dq,J =17.2, 1.5 Hz, 1H), 5.22 (app dq, J = 10.4, 1.2 Hz, 1H), 4.63 (dddd,
J=13.1,5.7,1.3,1.3 Hz, 1H), 4.55 (dddd, J = 13.2, 5.8, 1.3, 1.3 Hz, 1H), 3.55-3.40 (m,
2H), 2.66-2.29 (m, 5H), 2.29-2.08 (m, 2H), 2.08-1.89 (m, 2H), 1.89-1.59 (m, 2H), 0.94

(d, J = 6.7 Hz, 6H); "C NMR (75 MHz, CDCL,) § 201.6, 1979, 1739, 172.7, 131.7,
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119.0, 105.3, 74.9, 66.0, 61.8, 39.7, 34.2, 32.1, 29.6, 27.9, 21.5, 19.2; IR (Neat Film
NaCl) 3084, 2960, 2936, 2875, 2829, 2723, 1727, 1649, 1611, 1471, 1454, 1422, 1403,
1385, 1369, 1306, 1270, 1234, 1191, 1173, 1104, 1004, 990, 931, 877, 862, 822 cm™';

HRMS (FAB+) m/z calc'd for C,;H,,05 [M+H]": 323.1858; found 323.1860.

B-Ketoester 148e. MePh,PBr (1.33 g, 3.72 mmol, 1.26 equiv) was suspended in toluene
(20 mL) in 100 mL round-bottom flask and cooled to 0 °C. KO¢Bu (0.348 g, 3.10
mmol, 1.05 equiv) was added in one portion and the bright yellow mixture was stirred at
0 °C for 30 min, warmed to ambient temperature, and stirred for an additional 2 h. The
mixture was cooled to 0 °C and a solution of aldehyde 148k (0.95 g, 2.94 mmol, 1.00
equiv) in toluene (2 mL) was added to the reaction using positive pressure cannulation.
The mixture turned brown. The reaction was maintained at 0 °C for 1.5 h, warmed to
ambient temperature, and stirred for 4 h. The reaction was quenched by addition of 50%
sat. aqueous NH,Cl (4 mL). The phases were separated and the aqueous phase was
extracted with Et,0 (3 x 100 mL). The combined organic phases were dried over
Na,SO,, filtered, and concentrated under reduced pressure. The crude product was
purified by flash column chromatography (SiO,, 3 x 25 cm, 20:1—15:1 hexanes:EtOAc)
to afford -ketoester 148e (747 mg, 2.33 mmol, 79% yield) as a pale yellow oil; R; =
0.66 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 5.85 (dddd, J=17.2,10.4,5.7,
5.7 Hz, 1H), 5.84-5.69 (m, 1H), 5.35 (s, 1H), 5.29 (app dq, J = 17.2, 1.5 Hz, 1H), 5.20
(app dq, J = 104, 1.3 Hz, 1H), 5.08-4.96 (m, 1H), 4.96-4.87 (m, 1H), 4.62 (dddd, J =
13.1,5.7,14,14 Hz, 1H), 4.54 (dddd, J = 13.1,5.7, 1.4, 1.4 Hz, 1H), 3.53-3.38 (m, 2H),

2.59 (dddd,J=179,98,3.7, 1.1 Hz, 1H), 2.51-2.29 (m, 2H), 2.09-1.87 (m, 6H), 1.87-
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1.66 (m, 2H), 0.94 (d, J = 6.7, 3H), 0.94 (d, J = 6.7, 3H); "“C NMR (75 MHz, CDCl,) §
198.4,173.7,173.0, 138.2, 131.9, 118.6, 114.9, 1054, 74.8, 65.8, 62.6, 36.8, 34.1, 31.5,
28.8,27.9, 220, 19.3; IR (Neat Film NaCl) 3078, 2959, 2935, 2874, 1732, 1662, 1612,
1471, 1453, 1423, 1401, 1384, 1369, 1307, 1270, 1231, 1194, 1170, 1091, 993, 913, 874,

817,766 cm™'; HRMS (EI+) m/z calc'd for C,(H,;0, [M]*": 320.1988; found 320.1977.

1. LDA, THF, -78 °C

[0} then o
/@ NCJLOM
- '
2 <hlore 2 pentadine
147 84% yield, 2 steps 148f

B-Ketoester 148f. To a solution of diisopropylamine (0.406 mL, 2.90 mmol, 1.20 equiv)
in THF (12 mL) in a 50 mL round-bottom flask at O °C was added n-BuLi (1.10 mL, 2.77
mmol, 2.51 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of stirring at
0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A solution of
vinylogous ester 147 (0.44 g, 2.41 mmol, 1.00 equiv) in THF (2 mL) was added dropwise
using positive pressure cannulation. After an additional 1 h of stirring at —78 °C, allyl
cyanoformate (0.288 mL, 2.65 mmol, 1.10 equiv) was added dropwise over 10 min. The
mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat. aqueous NH,Cl
(4 mL), and then allowed to warm to ambient temperature. The reaction was diluted with
Et,0 (15 mL) and the phases were separated. The aqueous phase was extracted with
Et,0 (3 x 15 mL). The combined organic phases were dried over Na,SO,, filtered, and
concentrated under reduced pressure to afford a pale orange oil. The crude oil was
purified by automated flash column chromatography using a Teledyne Isco CombiFlash

R; (SiO,, 5 g loading cartridge, 40 g column, hold 0% [1 min]—ramp to 20% [8
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min]—hold 20% [5 min]—ramp to 50% [4 min]—=50% EtOAc in hexanes [6 min]) to
afford the intermediate P-ketoester (590 mg, 2.21 mmol, 92% yield).

A portion of the intermediate (-ketoester (250 mg, 0.94 mmol, 1.00 equiv) was
dissolved in THF (5 mL) in a 50 mL round-bottom flask, cooled to 0 °C, and stirred
vigorously as hexane-washed NaH (33.8 mg, 6.58 mmol, 1.50 equiv) was added in one
portion. Evolution of gas was observed and the reaction was stirred at 0 °C for 30 min to
give a yellow-orange solution. 1-chloro-24-pentadiene® (144 mg, 1.41 mmol, 1.50
equiv) was added dropwise and the reaction was allowed to warm to ambient temperature
and then heated to 40 °C. After 10.5 h, an additional portion of 1-chloro-2.4-pentadiene
(144 mg, 1.41 mmol, 1.50 equiv) was added and the reaction was heated at 50 °C for 11.5
h. The flask was cooled to ambient temperature and the reaction was quenched by
addition of 50% sat. aqueous NH,Cl (2 mL). The phases were separated and the aqueous
layer was extracted with Et,0 (3 x 10 mL). The combined organic phases were washed
with brine, dried over Na,SO,, filtered, and concentrated under reduced pressure. The
crude product was purified by flash column chromatography (SiO,, 3 x 25 cm,
20:1—15:1—10:1 hexanes:EtOAc) to afford (-ketoester 148f (286 mg, 0.86 mmol, 91%
yield, 84% yield over 2 steps) as a pale yellow oil; R,=0.59 (4:1 hexanes:EtOAc); 'H
NMR (300 MHz, CDCl,) 6 6.25 (ddd, J = 16.7, 10.3, 10.3 Hz, 1H), 6.11-5.98 (m, 1H),
5.83 (dddd,J=17.2,104,5.7,5.7 Hz, 1H), 5.58 (ddd, J = 15.1,7.7,7.7 Hz, 1H), 5.36 (s,
1H), 5.27 (app dq, J = 17.2, 1.5 Hz, 1H), 5.18 (app dq, J = 10.4, 1.2 Hz, 1H), 5.08 (dd, J
=169, 1.6 Hz, 1H), 4.96 (dd, J = 16.9, 1.6 Hz, 1H), 4.60 (dddd, J = 13.2,5.8, 1.4, 1.4
Hz, 1H), 4.52 (dddd, J = 13.2, 5.8, 1.4, 1.4 Hz, 1H), 3.57-3.35 (m, 2H), 2.65 (d, J = 7.7

Hz, 2H), 2.56 (ddd, J = 12.7, 6.8, 2.3 Hz, 1H), 2.48-2.19 (m, 2H), 2.10-1.85 (m, 2H),
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1.85-1.63 (m, 2H), 0.92 (d, J = 6.7, 3H), 0.92 (d, J = 6.7, 3H); "“C NMR (75 MHz,
CDCl,) 6 1979, 1740, 172.7,136.9, 134.6, 131.9, 129.7, 118.6, 116.1, 1054, 74.8, 65.9,
629,410, 34.1,31.4, 279, 21.8, 19.2; IR (Neat Film NaCl) 3085, 2959, 2933, 2874,
1733, 1650, 1612, 1471, 1453, 1434, 1402, 1384, 1369, 1307, 1272, 1234, 1194, 1171,
1093, 1006, 968, 955, 929, 900, 864, 822, 761 cm™'; HRMS (FAB+) m/z calc'd for

C,,H,,0, [M+H]": 333.2066; found 333.2052.

1. LDA, THF, -78 °C

(o} then 0

il 2. 2,3-dichloro-1-propene

i-BuO NaH, TBAI, THF, 040 °C Buo _\_
147 84% yield, 2 steps 148g

B-Ketoester 148g. To a solution of diisopropylamine (0.92 mL, 6.58 mmol, 1.20 equiv)
in THF (27 mL) in a 100 mL round-bottom flask at 0 °C was added n-BuLi (2.56 mL,
6.30 mmol, 2.46 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.00 g, 5.48 mmol, 1.00 equiv) in THF (2 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (0.67 mL, 6.02 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (8 mL), and allowed to warm to ambient temperature. The reaction was
diluted with Et,0 (25 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (3 x 25 mL). The combined organic phases were dried over Na,SO,,

filtered, and concentrated under reduced pressure to afford a pale orange oil.
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The crude oil was dissolved in THF (8 mL) in a 100 mL round-bottom flask, cooled
to 0 °C, and stirred vigorously as hexane-washed NaH (197 mg, 8.22 mmol, 1.50 equiv)
was added in one portion. Evolution of gas was observed and the reaction was stirred at
0 °C for 30 min to give a yellow-orange solution. 2,3-dichloro-1-propene (1.00 mL,
10.96 mmol, 2.0 equiv) was added dropwise and the reaction was allowed to warm to
ambient temperature. After 10 h, TBAI (202 mg, 0.548 mmol, 0.10 equiv) was added
and the reaction was heated to 40 °C. After 41 h, the reaction was cooled to ambient
temperature and quenched by addition of 50% sat. aqueous NH,CI (10 mL). The phases
were separated and the aqueous layer was extracted with Et,O (3 x 15 mL). The
combined organic phases were washed with brine, dried over Na,SO,, filtered, and
concentrated under reduced pressure. The crude product was purified by flash column
chromatography (SiO,, 3 x 25 cm, 20:1—15:1 hexanes:EtOAc) to afford -ketoester
148g (1.57 g, 4.61 mmol, 84% yield over 2 steps) as a yellow oil; R; = 0.60 (4:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCL,) 8 5.87 (dddd, J = 17.1,10.4, 5.8, 5.8 Hz,
1H), 5.38-5.25 (m, 3H), 5.25-5.16 (m, 2H), 4.65 (dddd, J = 13.2, 5.8, 1.3, 1.3 Hz, 1H),
4.52 (dddd, J =13.1,5.8, 1.3, 1.3 Hz, 1H), 3.45 (ddd, J = 21.1, 9.3, 6.5 Hz, 2H), 3.04 (s,
2H), 2.71 (dddd, J = 18.2,10.2, 3.0, 1.3 Hz, 1H), 2.62-2.47 (m, 1H), 2.39 (ddd, J = 17.2,
6.9, 2.6 Hz, 1H), 2.10-1.90 (m, 2H), 1.89-1.65 (m, 2H), 0.94 (d, J = 6.7 Hz, 3H), 0.94 (d,
J=6.7Hz, 3H); "C NMR (75 MHz, CDCl;) 8 196.6, 174.8, 172.1, 138.1, 131.7, 118.8,
117.1, 104.9, 74 .8, 66.2, 62.2, 46.1, 33.9, 30.7, 27.8, 22.6, 19.2; IR (Neat Film NaCl)
3085, 2960, 2935, 2875, 1737, 1662, 1610, 1471, 1452, 1427, 1384, 1369, 1298, 1272,
1229, 1198, 1171, 1153, 1079, 1008, 967, 930, 890, 862, 813 cm™'; HRMS (El+) m/z

calc'd for C,{H,;0, [M-CI]": 305.1753; found 305.1742.
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NC
1. LDA, THF, 78 °C
(o) then o o o
NC)I\OM
2. acrylonitril > 0
i . acrylonitrile i
i-BuO NaH (25 mol %) i-BuO \—

THF, 0—-23 °C
147 148h

65% yield, 2 steps

B-Ketoester 148h. To a solution of diisopropylamine (1.53 mL, 10.93 mmol, 1.20
equiv) in THF (45 mL) in a 250 mL round-bottom flask at O °C was added n-BuL.i (4.17
mL, 10.47 mmol, 2.51 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (1.66 g, 9.11 mmol, 1.00 equiv) in THF (2 mL) was
added dropwise over 10 min. After an additional 1 h of stirring at —78 °C, allyl
cyanoformate (1.09 mL, 10.0 mmol, 1.10 equiv) was added dropwise over 10 min. The
mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat. aqueous NH,CI
(13.5 mL), and then allowed to warm to ambient temperature. The reaction was diluted
with Et,0 (50 mL) and the phases were separated. The aqueous phase was extracted with
Et,0 (3 x 100 mL). The combined organic phases were dried over Na,SO,, filtered, and
concentrated under reduced pressure to afford a pale orange oil. The crude oil was
purified by automated flash column chromatography using a Teledyne Isco CombiFlash
R; (SiO,, 25 g loading cartridge, 80 g column, multi-step gradient, hold 0% [2
min]—ramp to 20% [4 min]—hold 20% [15 min]—ramp to 50% [7 min]—hold 50%
EtOAc in hexanes [5 min]) to afford the intermediate B-ketoester (2.08 g, 7.80 mmol,
86% yield).

One third of the intermediate (-ketoester (694 mg, 2.60 mmol, 1.00 equiv) was

dissolved in THF (5 mL) in a 50 mL round-bottom flask, cooled to 0 °C, and stirred
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vigorously as hexane-washed NaH (15.6 mg, 0.65 mmol, 0.25 equiv) was added in one
portion. Evolution of gas was observed and the reaction was stirred at 0 °C for 30 min to
give a yellow-orange solution. Acrylonitrile (0.256 mL, 3.90 mmol, 1.50 equiv) was
added dropwise and the reaction was allowed to warm to ambient temperature. After 40
h, the reaction was diluted with Et,O (30 mL) and washed with H,O (5 mL) and brine (5
mL). The aqueous layer was extracted with Et,O (3 x 20 mL). The combined organic
phases were washed with brine, dried over Na,SO,, filtered, and concentrated under
reduced pressure. The crude product was purified by flash column chromatography
(Si0,, 3 x 25 cm, 10:1—=6:1—4:1 hexanes:EtOAc) to afford B-ketoester 148h (620 mg,
1.94 mmol, 75% yield, 65% yield over 2 steps) as a clear, colorless oil; R, =0.29 (4:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCL,) 8 5.87 (dddd, J = 16.2,10.4, 5.8, 5.8 Hz,
1H), 5.38 (s, 1H), 5.32 (app dq, J = 17.2, 1.4 Hz, 1H), 5.25 (app dq, J = 104, 1.1 Hz,
1H), 4.67 (dddd, J = 13.0, 5.8, 1.2, 1.2 Hz, 1H), 4.58 (dddd, J = 13.1, 59, 1.2, 1.2 Hz,
1H), 3.57-3.39 (m, 2H), 2.58 (ddd, J = 13.1, 9.6, 3.9 Hz, 1H), 2.51-2.32 (m, 4H), 2.32—
2.11 (m, 2H), 2.11-1.90 (m, 2H), 1.90-1.64 (m, 2H), 0.95 (d, J = 6.7 Hz, 6H); “"C NMR
(75 MHz, CDCl,) 8 196.9, 1744, 1720, 1314, 119.7, 119.3, 105.1, 75.0, 66.3, 61.5,
34.1,33.1, 320, 279, 21.4, 19.2, 13.3; IR (Neat Film NaCl) 3081, 2959, 2936, 2875,
2247, 1733, 1648, 1609, 1471, 1454, 1423, 1403, 1385, 1369, 1297, 1269, 1235, 1192,
1173, 1096, 996, 932, 874, 824, 764 cm™'; HRMS (EI+) m/z calc'd for C ;H,;O,N [M]*:

319.1784; found 319.1777.



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 104

1. LDA, THF, -78 °C
then o)

[0}
O NP~
i-BuO 2. NaH, THF, 0—»23 °C i-BuO _\_

Br
147 | _N-HBr 148i

71% yield, 2 steps
B-Ketoester 148i. To a solution of diisopropylamine (3.54 mL, 25.27 mmol, 1.20 equiv)
in THF (108 mL) in a 250 mL round-bottom flask at 0 °C was added n-BuLi (10.26 mL,
2422 mmol, 2.36 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of
stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath. A
solution of vinylogous ester 147 (3.84 g, 21.06 mmol, 1.00 equiv) in THF (10 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (2.52 mL, 9.74 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (30.7 mL), and then allowed to warm to ambient temperature. The
reaction was diluted with Et,0 (100 mL) and the phases were separated. The aqueous
phase was extracted with Et,0 (3 x 100 mL). The combined organic phases were dried
over Na,SO,, filtered, and concentrated under reduced pressure to afford a pale orange
oil. The crude oil was purified by automated flash column chromatography using a
Teledyne Isco CombiFlash R, (SiO,, 32 g loading cartridge, 330 g column, multi-step
gradient, hold 0% [2 min]—ramp to 20% [10 min]—hold 20% [6 min]—ramp to 50% [3
min]—hold 50% EtOAc in hexanes [11 min]) to afford the intermediate 3-ketoester (4.66
g, 17.50 mmol, 83% yield) as a pale orange oil.

A portion of the intermediate p-ketoester (1.00 g, 3.75 mmol, 1.00 equiv) was

dissolved in THF (25 mL) in a 100 mL round-bottom flask, cooled to O °C, and stirred
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vigorously as hexane-washed NaH (90 mg, 3.75 mmol, 1.00 equiv) was added in one
portion. Evolution of gas was observed and the reaction was stirred at 0 °C for 30 min to
give a yellow-orange solution. Additional NaH (202 mg, 8.43 mmol, 2.25 equiv) was
added, giving a thick yellow suspension. After 5 min, 4-(bromomethyl)pyridine
hydrogen bromide (996 mg, 3.94 mmol, 1.05 equiv) was added portionwise and the
reaction was allowed to warm to ambient temperature. After 14 h, the reaction was
quenched by addition of 50% sat. aqueous NH,Cl (16 mL) to give a brown biphasic
mixture. The phases were separated and the aqueous layer was extracted with Et,O (3 x
25 mL). The combined organic phases were dried over Na,SO,, filtered, and
concentrated under reduced pressure. The crude product was purified by flash column
chromatography (SiO,, 3 x 25 cm, 1:1—=1:4 hexanes:EtOAc—EtOAc) to afford -
ketoester 148i (1.16 g, 3.23 mmol, 86% yield, 71% yield over 2 steps) as a yellow oil; R,
=0.28, broad (1:2 hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) § 8.44 (dd, J=4.4,1.6
Hz, 2H), 7.06 (dd, J = 4.4, 1.6 Hz, 2H), 5.82 (dddd, J = 17.1, 10.4, 5.8, 5.8 Hz, 1H), 5.37
(s, 1H), 5.28 (app dq, J = 17.2, 1.5 Hz, 1H), 5.21 (app dq, J = 10.4, 1.2 Hz, 1H), 4.61
(dddd,J=13.1,59,1.3,1.3 Hz, 1H), 4.50 (dddd, J=13.1,5.9, 1.3, 1.3 Hz, 1H), 3.42 (d,
J=6.5Hz,2H),3.27 (d,J=13.3 Hz, 1H), 3.18 (d, J = 13.3 Hz, 1H), 2.54 (ddd, J = 17 .2,
9.3, 3.0 Hz, 1H), 2.38-2.21 (m, 2H), 2.03—-1.86 (m, 2H), 1.83-1.59 (m, 2H), 091 (d, J =
6.7 Hz, 6H); "“C NMR (75 MHz, CDCL,) 8 197.0, 174.3, 172.3, 149.6, 146.1, 131.4,
126.0, 119.2, 105.6, 74.9, 66.1, 63.5, 42.4, 339, 31.5, 27.8, 21.8, 19.2; IR (Neat Film
NaCl) 3072, 3026, 2959, 2935, 2874, 1733, 1660, 1608, 1557, 1496, 1470, 1452, 1415,
1384, 1369, 1293, 1272, 1232, 1201, 1172, 1095, 1074, 1005, 994, 956, 935, 862, 823,

773 cm™; HRMS (EI+) m/z calc'd for C,,H,;O,N [M]*: 357.1940; found 357.1945.
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1. LDA, THF, -78 °C

fo) then o
NcJ\o/\/ NaH, TsCI, THF
>
LBuO 2. NaH, THF, 0—23 °C 0-23 °C
iFBuO
91% yield

NMe;l
147 @E\g

N

H

71% yield, 2 steps
Indolyl B-Ketoester 148ac. To a solution of diisopropylamine (3.54 mL, 25.27 mmol,
1.20 equiv) in THF (108 mL) in a 250 mL round-bottom flask at 0 °C was added n-BuLi
(10.26 mL, 24.22 mmol, 2.36 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15
min of stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath.
A solution of vinylogous ester 147 (3.84 g, 21.06 mmol, 1.00 equiv) in THF (10 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (2.52 mL, 9.74 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,CI (30.7 mL), and then allowed to warm to ambient temperature. The
reaction was diluted with Et,0 (100 mL) and the phases were separated. The aqueous
phase was extracted with Et,0 (3 x 100 mL). The combined organic phases were dried
over Na,SO,, filtered, and concentrated under reduced pressure to afford a pale orange
oil. The crude oil was purified by automated flash column chromatography using a
Teledyne Isco CombiFlash R, (SiO,, 32 g loading cartridge, 330 g column, multi-step
gradient, hold 0% [2 min]—=ramp to 20% [10 min]—hold 20% [6 min]—ramp to 50% [3
min]—hold 50% EtOAc in hexanes [11 min]) to afford the intermediate 3-ketoester (4.66

g, 17.50 mmol, 83% yield) as a pale orange oil.
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A portion of the intermediate p-ketoester (0.85 g, 3.19 mmol, 1.00 equiv) was
dissolved in THF (32 mL) in a 100 mL round-bottom flask, cooled to 0 °C, and stirred
vigorously as hexane-washed NaH (84 mg, 3.51 mmol, 1.10 equiv) was added in one
portion. Evolution of gas was observed and the reaction was stirred at 0 °C for 30 min to
give a yellow-orange solution. Gramine methiodide™ (1.06 g, 3.35 mmol, 1.05 equiv)
was added portionwise to give a suspension. After 11.5 h, the reaction was a brown-
orange solution. Additional gramine methiodide (212 mg, 0.67 mmol, 0.31 equiv) was
added. After 30 min, the reaction was quenched by addition of 50% sat. aqueous NH,Cl
(4.3 mL) to give a brown biphasic mixture. Volatiles were removed under reduced
pressure. The residue was extracted with EtOAc (3 x 40 mL), dried over Na,SO,,
filtered, and concentrated under reduced pressure. The residue was dissolved in a
minimal amount of 1:1 hexanes:EtOAc and filtered through a silica gel pad (1.5 x 10 cm,
1:1 hexanes:EtOAc). The filtrate was concentrated under reduced pressure. The crude
product was purified by flash column chromatography (SiO,, 5 x 20 cm, 6:1—4:1—2:1
hexanes:EtOAc) to afford B-ketoester 148ac (1.09 g, 2.75 mmol, 86% yield, 71% yield
over 2 steps) as an orange-brown semi-solid; R,=0.21 (4:1 hexanes:EtOAc); 'H NMR
(300 MHz, CDCl,) 6 8.08 (s, 1H), 7.67-7.54 (m, 1H), 7.38-7.29 (m, 1H), 7.21-7.04 (m,
2H), 7.00 (d, J = 2.4 Hz, 1H), 5.84 (dddd, J = 17.2, 104, 5.7, 5.7 Hz, 1H), 5.37 (s, 1H),
5.29 (app dq, J = 17.2, 1.5 Hz, 1H), 5.20 (app dq, J = 10.4, 1.3 Hz, 1H), 4.60 (dddd, J =
13.2,5.6,1.4,1.4Hz, 1H),4.50 (dddd, J=13.2,5.8, 1.4, 1.4 Hz, 1H),3.52 (dd, J = 14.3,
0.5 Hz, 1H), 3.47-3.31 (m, 3H), 2.63-2.34 (m, 2H), 2.28 (ddd, J = 17.8,7.7,4.0 Hz, 1H),
2.02-1.63 (m, 4H), 0.90 (d, J = 6.7 Hz, 6H); “C NMR (75 MHz, CDCl;) & 198.8, 173.7,

1732, 135.8, 1319, 128.8, 124.3, 121.8, 119.5, 119.2, 118.6, 111.1, 111.0, 106.0, 74.7,
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65.9, 64.3, 34.0, 32.8, 31.6, 27.8, 21.7, 19.2; IR (Neat Film NaCl) 3785, 3584, 3392,
3079, 3057, 2958, 2930, 2874, 1729, 1641, 1607, 1457, 1457, 1433, 1423, 1384, 1368,
1341, 1233, 1191, 1174, 1127, 1085, 1010, 932, 879, 863, 822, 742 cm™'; HRMS (EI+)

m/z calc'd for C,,H,,O,N [M]*": 395.2097; found 395.2097.

Tosylindolyl B-Ketoester 148j. To a solution of indole 148ac (250 mg, 0.63 mmol, 1.00
equiv) in THF (9 mL) in a 100 mL round-bottom flask was added TsCl (241 mg, 1.26
mmol, 2.00 equiv). The mixture was cooled to O °C and stirred vigorously as hexane-
washed NaH (61 mg, 2.53 mmol, 4.00 equiv) was added in one portion. The reaction
was maintained at 0 °C for 5 min before warming to ambient temperature. After 24 h, the
white suspension was cooled to 0 °C and additional TsCl (241 mg, 1.26 mmol, 2.00
equiv) was added, followed by hexane-washed NaH (121 mg, 5.06 mmol, 8.00 equiv) in
one portion. The reaction was allowed to warm to ambient temperature. After 46 h, the
reaction was quenched by addition of 50% sat. aqueous NH,CI (3 mL). The phases were
separated and the aqueous phase was extracted with Et,0O (3 x 15 mL). The combined
organic phases were dried over Na,SO,, filtered, and concentrated under reduced
pressure. The crude product was purified by flash column chromatography (SiO,, 3 x 25
cm, 10:1—=6:1—4:1 hexanes:EtOAc) to afford p-ketoester 148j (317 mg, 5.76 mmol,
91% yield) as a yellow foam; R, = 0.40 (4:1 hexanes:EtOAc); 'H NMR (300 MHz,
CDCly) 8 7.97-7.89 (m, 1H), 7.75-7.66 (m, 2H), 7.53-7.44 (m, 1H), 7.35 (s, 1H), 7.31-
7.13 (m, 4H), 5.77 (dddd, J = 17.1, 10.4, 5.8 Hz, 1H), 5.39 (s, 1H), 5.25 (app dq, J =
17.2,1.5 Hz, 1H), 5.18 (app dq, J = 10.4, 1.2 Hz, 1H), 4.52 (dddd, J = 13.1,5.7, 1.3, 1.3

Hz, 1H),4.42 (dddd, J =13.2,59, 1.3, 1.3 Hz, 1H), 3.48-3.32 (m, 3H),3.26 (d,J =144
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Hz, 1H), 2.52 (ddd, J = 17.7, 9.2, 3.3 Hz, 1H), 2.41-2.19 (m, 5H), 2.02-1.82 (m, 2H),
1.78-1.58 (m, 2H), 0.92 (d, J = 6.7 Hz, 6H); "*C NMR (75 MHz, CDCL,) § 197.8, 174.0,
172.8, 144.8, 1354, 134.9, 132.1, 131.6, 129.9, 127.0, 125.8, 124.6, 1232, 119.9, 118.9,
118.0, 113.7, 105.9, 74.8, 66.1, 63.6, 34.1, 32.2,31.7, 279, 21.7, 21.6, 19.2; IR (Neat
Film NaCl) 3854, 3401, 2959, 2931, 2874, 1731, 1657, 1650, 1609, 1448, 1368, 1279,
1233, 1188, 1173, 1121, 1098, 1087, 1019, 1007, 992, 976, 938, 864, 813, 748 cm'';

HRMS (FAB+) m/z calc'd for Cy,Hy ON [M+H]": 550.2263; found 550.2250.

1. LDA, THF, -78 °C

(o] then o o . 0
NCJLOM o/\/
Hauo@ 2. TiCl, (9.0 mol %) > ,._Buo,©/“\
Selectfluor, CH;CN
147 41% yield, 2 steps 1481

B-Ketoester 148l. To a solution of diisopropylamine (0.92 mL, 6.58 mmol, 1.20 equiv)
in THF (27 mL) in a 100 mL round-bottomed flask at 0 °C in an ice/water bath was
added n-BuLi (2.56 mL, 2.46 M in hexanes, 6.30 mmol, 1.15 equiv) dropwise over 10
min. After 15 min of stirring at 0 °C, the mixture was cooled to —78 °C using an
acetone/CO,(s) bath. A solution of vinylogous ester 147 (1.00 g, 5.48 mmol, 1.00 equiv)
in THF (2 mL) was added dropwise using positive pressure cannulation. After an
additional 1 h of stirring at —78 °C, allyl cyanoformate (0.67 mL, 6.02 mmol, 1.10 equiv)
was added dropwise over 10 min. The mixture was stirred at —78 °C for 2.5 h, quenched
by addition of 50% sat. aqueous NH,CI (8 mL), and then allowed to warm to ambient
temperature. The reaction mixture was diluted with Et,O (25 mL) and the layers were

separated. The aqueous phase was extracted with Et,0 (3 x 25 mL). The combined
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organic layers were dried over Na,SO,, filtered, and concentrated under reduced pressure
to afford a pale orange oil.

The crude oil was dissolved in CH,CN (55 mL) in a 100 mL round-bottomed flask
under N, and TiCl, (53.7 uL, 0.49 mmol, 9.0 mol %) was added dropwise, giving a dark
purple-brown mixture. After 10 min, Selectfluor (2.33 g, 6.58 mmol, 1.20 equiv) was
added in one portion. After 3.5 h, the reaction mixture was an orange suspension. The
reaction was concentrated under reduced pressure and the orange residue was partitioned
between water (25 mL) and Et,0 (25 mL). The layers were separated and the aqueous
layer was extracted with Et,O (3 x 25 mL). The combined organic layers were washed
with brine, dried over Na,SO,, filtered, and concentrated under reduced pressure. The
crude product was purified by automated flash column chromatography using Teledyne
Isco CombiFlash R, (Si0O,, 25 g loading cartridge, 120 g column, 10% EtOAc in hexanes)
to afford p-ketoester 1481 (639 mg, 2.25 mmol, 41% yield over 2 steps) as a pale yellow
oil; R,=0.44 (4:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl) 6 5.86 (dddd, J = 17.1,
10.7,5.6,5.6 Hz, 1H), 5.39 (s, 1H), 5.29 (ddd, J =17.1, 2.9, 1.5 Hz, 1H), 5.20 (app d, J =
10.5 Hz, 1H), 4.59 (dddd, J = 19.0, 13.2, 5.6, 1.2 Hz, 2H), 3.50 (dd, J = 9.3, 6.8 Hz, 1H),
347 (dd,J=93,6.6 Hz, 1H), 2.59 (ddd, J = 17.8, 9.8, 3.9 Hz, 1H), 2.45-2.38 (m, 2H),
2.02-1.94 (m, 1H), 1.84-1.75 (m, 1H), 1.70 (ddd, J = 14.4,7.3,4.4 Hz, 1H), 1.43 (s, 3H),
0.94 (d, J = 6.6 Hz, 6H); "C NMR (75 MHz, CDCl;) § 192.1 (d, Jo = 24.1 Hz), 178.0,
167.6 (d, Jor = 25.4 Hz), 131.3,119.0, 102.0 (d, Jox = 1.1 Hz), 99.3 (d, Joz = 193.5 Hz),
75.3,66.6,34.0 (d, Jor = 2.1 Hz), 319 (d, Jo = 22.5 Hz), 27.8, 20.7 (d, Joz = 1.7 Hz),
19.1; ""F NMR (282 MHz, CDCl,) § —148.54 (dd, J = 35.4, 20.7 Hz); IR (Neat Film

NaCl) 3086, 2960, 2938, 2876, 1752, 1654, 1649, 1603, 1471, 1453, 1422, 1403, 1385,
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1369, 1282, 1249, 1229, 1204, 1176, 1137, 1095, 1045, 991, 953, 927, 874, 862, 843,
829, 795, 758 cm™'; HRMS (EI+) m/z calc'd for C,sH, O,F [M]*: 284.1425; found

284.1424.

1. LDA, THF, -78 °C
OTBDPS

[o) then o
Jj\ imidazole
NC TBDPSCI
0,

97% Id
> yie 148m

147 83% yield, 2 steps 148ad
Hydroxy p-Ketoester 148ad. To a solution of diisopropylamine (1.84 mL, 13.15 mmol,
1.20 equiv) in THF (54 mL) in a 250 mL round-bottom flask at O °C was added n-BuLi
(5.12 mL, 12.60 mmol, 2.51 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15
min of stirring at 0 °C, the mixture was cooled to —78 °C using an acetone/CO,(s) bath.
A solution of vinylogous ester 147 (2.00 g, 10.96 mmol, 1.00 equiv) in THF (4 mL) was
added dropwise using positive pressure cannulation. After an additional 1 h of stirring at
—78 °C, allyl cyanoformate (1.34 mL, 12.06 mmol, 1.10 equiv) was added dropwise over
10 min. The mixture was stirred at —78 °C for 2.5 h, quenched by addition of 50% sat.
aqueous NH,Cl (16 mL), and then allowed to warm to ambient temperature. The reaction
was diluted with Et,0 (200 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (3 x 100 mL). The combined organic phases were dried over
Na,SO,, filtered, and concentrated under reduced pressure to afford a pale orange oil
(292 g).

Half of the crude oil (1.46 g) was dissolved in THF (10 mL) in a 50 mL round-bottom
flask and cooled to 0 °C. KHCO; (1.65 g, 16.44 mmol, 3.00 equiv) and 37% wt. aqueous

formaldehyde (2.81 mL, 37.73 mmol, 6.9 equiv) were added. The reaction was allowed
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to warm to ambient temperature. After 11 h, the reaction was diluted with H,O and
CH,CI, (25 mL each). The phases were separated and the aqueous layer was extracted
with CH,Cl, (4 x 12 mL). The combined organic phases were dried over Na,SO,,
filtered, and concentrated under reduced pressure. The crude product was purified by
flash column chromatography (SiO,, 3 x 25 cm, 4:1—2:1—1:1 hexanes:EtOAc) to afford
B-ketoester 148ad (1.35 g, 4.55 mmol, 83% yield over 2 steps) as a pale yellow oil; R, =
0.21 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 5.89 (dddd, J=17.2,10.4,5.7,
5.7 Hz, 1H), 543 (s, 1H), 5.32 (app dq, J = 17.2, 1.5 Hz, 1H), 5.23 (app dq, / =104, 1.3
Hz, 1H), 4.76-4.54 (m, 2H), 3.93-3.72 (m, 2H), 3.51 (d, J = 6.5 Hz, 2H), 3.59-3.45 (m,
1H) 2.68-2.50 (m, 1H), 2.50-2.35 (m, 1H), 2.31-2.12 (m 1H), 2.10-1.91 (m, 2H), 1.91-
1.71 (m, 2H), 0.96 (d, J = 6.7 Hz, 6H); "C NMR (75 MHz, CDCl,) § 200.2, 175.1,
1719, 131.6, 118.9, 105.6, 75.1, 68.7, 66.1, 63.6, 33.7, 28.6, 27.9, 20.9, 19.2; IR (Neat
Film NaCl) 3448, 3083, 2959, 2937, 2875, 1733, 1646, 1608, 1471, 1457, 1420, 1404,
1385, 1369, 1298, 1235, 1195, 1171, 1099, 1044, 998, 928, 869, 825 cm™'; HRMS

(FAB+) m/z calc'd for C,(H,sOs [M+H]": 297.1702; found 297.1715.

Siloxy p-Ketoester 148m. Alcohol 148ad (895 mg, 3.02 mmol, 1.00 equiv), DMAP
(553 mg, 4.53 mmol, 1.50 equiv), and imidazole (308 mg, 4.53 mmol, 1.50 equiv) were
dissolved in DMF (11 mL) in a 20 mL scintillation vial with magnetic stir bar and septum
fitted screw cap. TBDPSCI (0.942 mL, 3.62 mmol, 1.20 equiv) was added dropwise.
The stirred mixture turned into a turbid white suspension within 5 min. After 54 h, the
reaction was poured into H,O (35 mL) and 2:1 CH,Cl,/hexanes (75 mL). The phases

were separated and the aqueous layer was further extracted with 2:1 CH,Cl,/hexanes (4 x
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35 mL). The combined organics were dried over Na,SO,, filtered, and concentrated
under reduced pressure. The crude product was purified by flash column
chromatography (SiO,, 5 x 25 cm, 40:1—20:1 hexanes:EtOAc) to afford siloxy [3-
ketoester 148m (1.567 g, 2.93 mmol, 97% yield) as a clear, colorless oil; R, =0.58 (4:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) § 7.70-7.61 (m, 4H), 7.47-7.32 (m, 6H),
5.86 (dddd, J =17.1,10.5,5.7, 5.7 Hz, 1H), 5.39 (s, 1H), 5.29 (app dq, J = 17.2, 1.5 Hz,
1H), 5.19 (app dq,J = 10.4, 1.2 Hz, 1H), 4.65 (dddd, J = 13.2,5.7, 1.3, 1.3 Hz, 1H), 4.52
(dddd,J=13.3,5.7,1.3,1.3 Hz, 1H), 4.15 (d, J = 9.6 Hz, 1H), 4.05 (d, J = 9.6 Hz, 1H),
347 (d,J=6.5 Hz, 2H), 2.80-2.51 (m, 2H), 2.43 (ddd, J=11.0,7.4,2.9 Hz, 1H), 2.17-
1.89 (m, 3H), 1.89-1.68 (m, 1H), 1.04 (s, 9H), 0.95 (d, J = 6.7 Hz, 6H); "“C NMR (75
MHz, CDCl,) 6 197.5, 174.8, 171.6, 135.8, 135.7, 133.3, 133.2, 131.89, 129.8, 129.7,
127.8,127.7,118.5, 105.8, 74.8, 69.0, 65.9, 65.1, 34.5, 30.0, 27.8, 26.8, 21.9, 19.4, 19.2;
IR (Neat Film NaCl) 3460, 3071, 3049, 2958, 2931, 2890, 2857, 1738, 1650, 1609, 1472,
1429, 1384, 1362, 1299, 1236, 1200, 1173, 1113, 1007, 998, 936, 864, 822, 740 cm™';

HRMS (FAB+) m/z calc'd for C;,H,;0,Si [M+H]": 535.2880; found 535.2880.

(0]
1. LDA, THF, -78 °C Ph
(o] then o o o (o)
’@ i > o
i 2. benzoyl peroxide, NaH i-B
HBuo PhCHj, 0--23 °C BuO
147 87% yield, 2 steps 148n

B-Ketoester 148n. To a solution of diisopropylamine (1.84 mL, 13.15 mmol, 1.20
equiv) in THF (54 mL) in a 250 mL round-bottomed flask at O °C in an ice/water bath
was added n-BuLi (5.12 mL, 2.51 M in hexanes, 12.60 mmol, 1.15 equiv) dropwise over

10 min. After 15 min of stirring at 0 °C, the mixture was cooled to —78 °C using an
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acetone/CO,(s) bath. A solution of vinylogous ester 147 (2.00 g, 10.96 mmol, 1.00
equiv) in THF (4 mL) was added dropwise using positive pressure cannulation. After an
additional 1 h of stirring at =78 °C, allyl cyanoformate (1.34 mL, 12.06 mmol, 1.10
equiv) was added dropwise over 10 min. The mixture was stirred at —78 °C for 2.5 h,
quenched by addition of 50% sat. aqueous NH,CI (16 mL), and then allowed to warm to
ambient temperature. The reaction mixture was diluted with Et,O (20 mL) and the layers
were separated. The aqueous phase was extracted with Et,0 (3 x 10 mL). The combined
organic layers were dried over Na,SO,, filtered, and concentrated under reduced pressure
to afford a pale orange oil (2.92 g).

Half of the crude oil (1.46 g) was dissolved in toluene (30 mL) in a 100 mL round-
bottomed flask, cooled to 0 °C, and stirred vigorously as hexane-washed NaH (197 mg,
8.22 mmol, 1.50 equiv) was added in one portion. Evolution of gas was observed and the
reaction mixture was stirred at O °C for 30 min. Benzoyl peroxide (1.99 g, 8.22 mmol,
1.50 equiv) was added slowly portionwise, giving a thick, pasty suspension. The reaction
was warmed to ambient temperature and diluted with toluene (20 mL) to give a more
freely stirring turbid yellow mixture. After 30 min, the reaction was diluted with toluene
(50 mL) and washed with H,O (2 x 5 mL) and brine (2 x 5 mL). The aqueous layers
were combined and extracted with EtOAc (2 x 25 mL). The combined organic layers
were dried over Na,SO,, filtered, and concentrated under reduced pressure. The crude
product was purified by flash column chromatography (SiO,, 5 x 13 cm, 10:1
hexanes:EtOAc) to afford B-ketoester 148n (1.85 g, 4.79 mmol, 87% yield over 2 steps)
as a pale yellow oil; R, = 0.46 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) §

8.09-7.99 (m, 2H), 7.64-7.53 (m, 1H), 7.50-7.38 (m, 2H), 5.89 (dddd, J = 17.2, 10.5,
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57,57 Hz, 1H), 5.42 (s, 1H), 5.31 (app dq, J = 17.2, 1.5 Hz, 1H), 5.20 (app dq, J = 10.4,
1.3 Hz, 1H), 4.80-4.62 (m, 2H), 3.57 (d, J = 6.5 Hz, 2H), 2.87-2.46 (m, 4H), 2.12-1.85
(m, 3H), 0.96 (d, J = 6.7 Hz, 6H); *C NMR (75 MHz, CDCl,) & 192.1, 175.9, 168.0,
165.1, 133.6, 131.7, 130.0, 129.6, 128.6, 118.7, 102.2, 88.8, 75.2, 66.6, 33.8, 31.2, 27.9,
21.2,19.2,19.2; IR (Neat Film NaCl) 3070, 2960, 2937, 2875, 1753, 1727, 1661, 1605,
1471, 1452, 1423, 1384, 1369, 1315, 1280, 1222, 1206, 1175, 1107, 1097, 1070, 1044,
1026, 1002, 933, 849, 792 cm™; HRMS (El+) m/z calc'd for Cp,H, O, [M]*: 386.1733;

found 386.1729.

2.10.2.3 SYNTHESIS OF PHOX LIGANDS

Ligands (S)--Bu-PHOX (13)** and (S)-p-(CF,);-+-Bu-PHOX (14)>° were prepared
according to previously reported procedures. The preparation of ligands 192 and 150 are

described below.

@\'r 1. H2N(CH2)2°H, Nach;, Q/
CH,Cl,, H,0, 23 °C
Cl (. fo)
- MsCl, Ef3N, CHyCl |
LT epgaeoe L)
64% yield, 2 steps 191
2-(2-Bromo-phenyl)-4,5-dihydrooxazole 191. To a solution of ethanolamine (1.32 mL,
21.9 mmol, 1.20 equiv) in CH,Cl, (60 mL) in a 250 mL round-bottom flask was added a
solution of Na,CO,; (5.80 g, 54.7 mmol, 3.00 equiv) in H,O (45 mL). Neat 2-
bromobenzoyl chloride (4.00 g, 2.38 mL, 18.2 mmol, 1.00 equiv) was added dropwise via

syringe to the vigorously stirred biphasic system. The reaction flask was capped with a

yellow plastic stopper and stirred for 7.5 h at 23 °C. The layers were separated and the
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aqueous phase was extracted with CH,Cl, (2 x 25 mL). The combined organics were
dried over Na,SO,, filtered, and concentrated under reduced pressure to afford a white
solid. The crude product was dissolved in CH,Cl, (50 mL) and hexanes (10 mL) was
added. The solution was concentrated to ca. 25 mL under reduced pressure resulting in
precipitation of the intermediate amide (4.02 g, 16.4 mmol, 90% yield) as a white solid.
The intermediate amide (2.0 g, 8.2 mmol, 1.00 equiv) was dissolved in CH,Cl, (62
mL) in a 100 mL round-bottom flask equipped with a reflux condenser. Et;N (3.43 mL,
24.5 mmol, 3.00 equiv) was added and the solution was cooled to 0 °C by use of an
ice/water bath. Methanesulfonyl chloride (952 uL, 12.3 mmol, 1.50 equiv) was added
dropwise. The reaction mixture was stirred at 0 °C for 30 min and heated to 40 °C in an
oil bath. After 5 h of stirring, the resulting yellow solution was allowed to cool to
ambient temperature, diluted with CH,Cl, (25 mL), and washed with H,O (2 x 25 mL)
and brine (25 mL). The organic layer was dried over Na,SO,, filtered, and concentrated
under reduced pressure to afford a thick, pale yellow oil. The crude oil was purified by
flash chromatography (SiO,, 5 x 10 cm, 6:2:2 hexanes:EtOAc:toluene) to afford 2-(2-
bromo-phenyl)-4,5-dihydrooxazole 191 (1.31 g, 5.79 mmol, 71% yield); R;=0.45 (9:1
CHCI,;:MeOH); 'H NMR (500 MHz, CDCl,) 6 7.72 (dd, J = 7.8, 2.0 Hz, 1H), 7.65 (dd, J
= 8.1, 1.0 Hz, 1H), 7.35 (app dt, J = 7.6, 1.2 Hz, 1H), 7.29 (app dt, J = 7.6, 1.7 Hz, 1H),
4.46 (t,J =9.6 Hz, 2H), 4.12 (t,J = 9.6 Hz, 2H); "C NMR (125 MHz, CDCIl,) & 164.0,
134.1, 131.8, 131.5, 129.8, 127.2, 122.0, 67.8, 55.5; IR (Neat Film NaCl) 3390, 3070,
2966, 2904, 2868, 1729, 1646, 1589, 1432, 1362, 1328, 1272, 1243, 1093, 1026, 938

cm™'; HRMS (EI+) m/z calc’d for CaHBrNO [M]*: 224.9789; found 224.9779.
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Cul (2 mol %), Ph,PH
N,N'-dimethylethylenediamine (10 mol %)
[0} ' 0,
|\> Cs,C03, PhCHa, 110 °C |\>
N Ph,P N

Br

86% yield

191 192

PHOX Ligand 192. A 250 mL Schlenk flask was charged with Cul (66.7 mg, 0.35
mmol, 2 mol %), Ph,PH (3.85 mL, 22.1 mmol, 125 equiv), N,N’-
dimethylethylenediamine (191 mL, 1.77 mmol, 10 mol %), and toluene (18 mL). The
solution was stirred at 23 °C for 20 min. 2-(2-Bromo-phenyl)-4,5-dihydrooxazole 191
(4.0 g, 17.7 mmol, 1.00 equiv) was azeotroped with toluene (2 x 5 mL) under reduced
pressure, dissolved in toluene (18 mL), and transferred quantitatively to the Schlenk flask
by use of positive pressure cannulation. Cs,CO, (8.65 g, 26.5 mmol, 1.50 equiv) was
added in one portion and the flask was evacuated/backfilled with Ar (three cycles). The
teflon valve was sealed and the yellow heterogeneous reaction mixture was stirred
vigorously, immersed in an oil bath, and heated to 110 °C. After 20 h of stirring at 110
°C, the mixture was allowed to cool to ambient temperature and filtered through a pad of
Celite using CH,Cl, (2 x 50 mL). The filtrate was concentrated under reduced pressure to
afford a clear orange oil. The crude oil was flushed through a plug of silica gel (Si0O,, 5 x
10 cm, hexanes—9:1 CH,Cl,:Et,0) to afford PHOX ligand 192 (5.03 g, 15.2 mmol, 86%
yield) as a colorless viscous oil that crystallized upon standing; R, = 0.50 (7:3
hexanes:EtOAc); 'H NMR (500 MHz, CDCl;) 8 7.85 (dd, J = 7.6, 3.4 Hz, 1H), 7.37-
7.26 (comp. m, 12H), 6.89 (dd, J = 4.1, 7.6 Hz, 1H), 4.08 (t,J = 9.5 Hz, 2H), 3.78 (t,J =
9.5 Hz, 2H); “C NMR (125 MHz, CDCl,) 6 164.5 (d, Jo, = 2.8 Hz), 139.1 (d, Jop = 24.9
Hz), 138.0 (d, Jop = 11.5 Hz), 134.1 (d, J» = 20.7 Hz), 133.7 (d, Jo» = 1.8 Hz), 131.9 (d,
Jop =189 Hz), 130.5, 1299 (d, J» = 2.8 Hz), 128.7, 128.5 (d, J» = 7.4 Hz), 128.1, 67 .2,

55.0; *'P NMR (121 MHz, CDCl;) 8 -3.99 (s); IR (Neat Film NaCl) 3053, 3000, 2971,
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2901, 2876, 1650, 1585, 1562, 1478, 1434, 1354, 1326, 1248, 1133, 1089, 1070, 1041,
974, 942, 898, 743 cm™'; HRMS (FAB+) m/z calc'd for C,,;H,,NOP [M+H]": 332.1204;

found 332.1218; mp =99-101 °C.

sol

1) Na,cOo, Br ©

HN_ A~ CH,Cl,, H,0, 23 °C
)} -
/T\ 2) MsCl, EtsN, CH,Cl, I 0
0—40 °C Br N \)

>

82% yield, 2 steps 193 /r

Dihydrooxazole 193. (S)-tert-Leucinol (1.02 g, 8.66 mmol, 1.00 equiv) was placed in a
250 mL round-bottom flask and dissolved in CH,Cl, (14 mL). Na,CO, (2.75 g, 26.0
mmol, 3.00 equiv) in H,O (27.0 mL) was added dropwise via syringe to the vigorously
stirred biphasic system. To the biphasic mixture was added a solution of 1-
bromonaphthalene-2-carbonyl chloride (2.68 g, 9.96 mmol, 1.15 equiv) in CH,Cl, (15
mL). The reaction was stirred vigorously at 23 °C for 9.5 h. The phases were separated
and the aqueous phase was extracted with CH,Cl, (4 x 50 mL). The combined organics
were stirred with KOH (10 mL, 10 mmol, 1.0 N in MeOH) for 30 min then transferred to
a separatory funnel. H,O (10 mL) was added and the mixture was neutralized with HCI
(6.0 M in H,O). The phases were separated and the aqueous phase was extracted with
CH,CI, (4 x 50 mL). The combined organics were dried over MgSO, and concentrated
under reduced pressure to afford the intermediate amide (3.03 g) as a pale yellow solid.
The intermediate amide (3.03 g) was dissolved in CH,Cl, (43.3 mL) in a 100 mL 3-
neck round-bottom flask fitted with a reflux condenser. The solution was cooled to 0 °C

by use of an ice/water bath and Et;N (2.90 mL, 20.8 mmol, 2.40 equiv) was added.
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Methanesulfonyl chloride (0.77 mL, 9.96 mmol, 1.15 equiv) was added dropwise. The
reaction mixture was stirred at 0 °C for 30 min and heated to 40 °C in a water bath. After
21 h of stirring, the mixture was allowed to cool to ambient temperature and saturated
aqueous NaHCO; was added. The biphasic system was stirred vigorously for 5 min and
the layers were separated. The aqueous phase was extracted with CH,Cl, (2 x 50 mL).
The combined organics were washed with brine (50 mL), dried over MgSO,, and
concentrated under reduced pressure to afford a pale yellow oil. The crude oil was
purified by flash chromatography (SiO,, 3 x 15 cm, 9:1 hexanes:EtOAc) to afford 193
(2.36 g, 7.12 mmol, 82% yield over two steps) as a pale yellow oil that solidifies when
placed in a —20 °C freezer; R,=0.73 (9:1 CHCI;:MeOH); 'H NMR (300 MHz, CDCl,) 6
8.41(dd,J=7.7,0.5 Hz, 1H), 7.85-7.81 (m, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.60 (app dt,
J=28.2,13 Hz, 1H), 7.56 (app dt, J = 6.9, 1.3 Hz, 1H), 4.46 (dd, J = 104, 8.5 Hz, 1H),
433 (dd, J = 8.5, 8.0 Hz, 1H), 4.17 (dd, J = 10.4, 8.2 Hz, 1H), 1.05 (s, 9H); "“C NMR
(125 MHz, CDCl,) & 163.8, 134.9, 132.3, 128.8, 128.3, 128.3, 128.0, 127.8, 127.7, 126 .9,
123.2,76.9,69.2,34.1,26.1; IR (Neat Film NaCl) 3065, 2956, 2899, 2863, 1667, 1620,
1594, 1556, 1499, 1476, 1463, 1393, 1372, 1362, 1339, 1321, 1300, 1238, 1264, 1210,
1161, 1104, 1024, 977, 956, 920, 817,752 cm™'; HRMS (EI+) m/z calc'd for C,,H,;ONBr

[M]*™: 331.0572; found 331.0583; [a]p""* ~64.0 (c 0.92, CHCL,); mp = 66-68 °C.
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Cul (2 mol %), Ph,PH
N,N'-dimethylethylenediamine (10 mol %)
O, > [0}
| o |
Br N Cs,CO3, PhCH3, 110 °C Ph,P N

86% yield

193 AN 150 N\

PHOX Ligand 150. Prepared by the typical method as described for 192 above by

employing 193 (830.6 mg, 2.50 mmol). After 24 h of stirring, the reaction mixture was
filtered through a plug of Celite, eluted with CH,Cl, (2 x 25 mL), and concentrated under
reduced pressure. The crude oil was passed through a short plug of silica (SiO,, 2.5 x 8
cm, hexanes—9:1 CH,Cl,:Et,0) to afford a bright yellow oil. The crude oil was purified
by flash chromatography (SiO,, 2.5 x 25 cm, 19:1 hexanes:acetone and then 2.5 x 21 cm,
9:1—6:1 hexanes:EtOAc) to afford PHOX ligand 150 (950.8 mg, 2.17 mmol, 87% yield)
as a bright yellow foam; R;=0.21 (9:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,) &
797 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.0 Hz, 2H), 7.72 (dd, J = 8.3, 2.9 Hz, 1H), 7.45
(app dt, J =7.8, 1.7 Hz, 2H), 7.41-7.38 (m, 3H), 7.29-7.22 (m, 6H), 7.16 (ddd, J = 8.3,
6.9, 1.0 Hz, 1H), 4.17-4.15 (m, 2H), 3.91 (dd, J = 9.8, 8.8 Hz, 1H), 0.97 (s, 9H); “C
NMR (125 MHz, CDCl;) 8 165.6 (d,Jo = 5.1 Hz), 137.5 (d, Jo» = 33.1 Hz), 136.8, (d, Jp
=14.7 Hz), 136.5 (d, Jop = 14.7),134.9, 134.7 (d, J» = 33.6 Hz), 133.1 (d, J»= 26.7 Hz),
1322 (d, Jop = 17.5 Hz), 132.1 (d, Jop = 17.5 Hz), 131.5 (d, Jop = 0.9 Hz), 129.1 (d, Jp =
7.4 Hz), 129.0, 128.4 (d, J» = 6.0 Hz), 127.8 (d, J» = 8.3 Hz), 126.6 (d, J, = 8.7 Hz),
126.4 (d, Jop = 40.5 Hz), 76.8, 69.0, 34.1,26.3; *'P NMR (121 MHz, CDCl,;) § -9.33 (s);
IR (Neat Film NaCl) 3054, 2954, 2867, 1665, 1584, 1478, 1434, 1364, 1244, 1094, 1026,
986, 962, 922, 824 cm™; HRMS (FAB+) m/z calc'd for C,H,,NOP [M]*: 437.1908;

found 437.1908; [a],™*' —38.2 (¢ 1.59, n-hexane).
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2.10.2.4 ENANTIOSELECTIVE Pd-CATALYZED DECARBOXYLATIVE

ALKYLATION SCREENING PROTOCOL*?

(o] [o] o)
ligand (6.25 mol %)
0" \F  Pdy(pmdba); (2.5 mol %) SN\ F
>
-BuO solvent, 30 °C i-BuO
148a 149a
entry ligand solvent yield (%)? ee (%)
1 13 THFe 94 84
2 13 p-dioxane 86 84
3 13 2-methyl THF® 75 85
4 13 TBME® 88 85
5 13 Et,0 93 86
6 13 PhH 84 86
7 13 PhCH; 91 88
8d 14 PhCH,4 57 90
9 150 PhCH; 77 72

4 Conditions: B-ketoester 148a (1.0 equiv), Pdy(pmdba)s (2.5 mol %), ligand
(6.25 mol %) in solvent (0.1 M) at 30 <C; pmdba = 4,4
methoxydibenzylideneacetone. ? Isolated yield. ¢ Determined by chiral
HPLC. “Increased catalyst loadings were required to achieve full conversion:
Pd,(pmdba); (5 mol %), 14 (12.5 mol %). ¢ THF = tetrahydrofuran, 2-methyl
THF = 2-methyl tetrahydrofuran, TBME = tert-butyl methyl ether.

CF,

Ph,P N'J m«@—p NI\? o) Nl\o)
13 14 150
(S)-t-Bu-PHOX CFs
Enantioselective Allylation Screen to Produce Vinylogous Ester 149a (0.20 mmol
scale). To a 25 mL flask was added Pd,(pmdba); (5.00 umol, 2.5 mol %) and ligand
(12.5 umol, 6.25 mol %). The flask was evacuated/backfilled with N, (3 cycles, 5 min
evacuation per cycle). Solvent (most of total volume, 0.1 M final concentration) was
added and the black suspension was stirred for 30 min at 30 °C using an oil bath. A

solution of P-ketoester 148a (0.20 mmol, 1.00 equiv) in solvent (remainder of total

volume) was transferred to the catalyst solution using positive pressure cannulation.
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When judged complete by TLC analysis, the reaction was filtered through a small plug of
Si0,, eluted with Et,0, and concentrated under reduced pressure. Purification by flash
column chromatography (SiO,, 1.5 x 15 cm, 9:1—6:1 hexanes:EtOAc) or preparative
TLC (Si0,, 2:1 hexanes:EtOAc) provided vinylogous ester 149a for analysis. HPLC
conditions: 1% IPA in hexanes, 1.0 mL/min, OD-H column, t; (min): major = 6.30,

minor = 7.26. (For characterization data, see p. 124)

2.10.2.5 PREPARATION OF CHIRAL VINYLOGOUS ESTERS 149

Non-enantioselective reactions were performed using Pd(PPh;), (5 mol %) or achiral
PHOX ligand 192 (6.25 mol %) and Pd,(pmdba), (2.5 mol %) in toluene at 30 °C. For

the synthesis of ligand 192, see p. 115-117.

o)
a Pdy(pmdba); (2.5 mol %) Q
0" Z  (S)+Bu-PHOX (13) (6.25 mol %) W\ F
>
BuO PhCHj, 30 °C BuO
148a 91% yield, 88% ee 149a

Schlenk Manifold Method: Asymmetric Allylic Alkylation
Vinylogous Ester 149a. Pd,(pmdba), (5.0 mg, 4.5 umol, 2.5 mol %) and (§)-#-Bu-PHOX
(44 mg, 11 umol, 6.25 mol %) were placed in a 1 dram vial. The flask was
evacuated/backfilled with N, (3 cycles, 10 min evacuation per cycle). Toluene (1.3 mL,
sparged with N, for 1 h immediately before use) was added and the black suspension was
immersed in an oil bath preheated to 30 °C. After 30 min of stirring, B-ketoester 148a
(50.7 mg, 0.181 mmol, 1.00 equiv) was added as a solution in toluene (0.5 mL, sparged

with N, immediately before use) using positive pressure cannulation. The dark orange
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catalyst solution turned olive green immediately upon addition of -ketoester 148a. The
reaction was stirred at 30 °C for 21 h, allowed to cool to ambient temperature, filtered
through a silica gel plug (2 x 2 cm, Et,0), and concentrated under reduced pressure. The
crude oil was purified by preparative TLC (SiO,, 4:1 hexanes:EtOAc) to afford
vinylogous ester 149a (38.8 mg, 0.164 mmol, 91% yield, 88% ee) as a pale yellow oil.

(For characterization data, see p. 124).

Pd,(pmdba); (2.5 mol %)
(S)-+-Bu-PHOX (13) (6.25 mol %)

PhCHj, 30 °C

98% yield, 83% ee

Glove Box Method: Asymmetric Allylic Alkylation
Vinylogous Ester 149j. A 20 mL scintillation vial was loaded with 3-ketoester 148
(447 mg, 0.81 mmol, 1.00 equiv). A separate 20 mL scintillation vial was loaded with
Pd,(pmdba), (19.7 mg, 0.051 mmol, 6.25 mol %), (S)-t-Bu-PHOX (22.3 mg, 0.020 mmol,
2.5 mol %), and magnetic stir bar. The two vials and a teflon-lined hard cap were
evacuated/backfilled with N, in a glove box antechamber (3 cycles, 5 min evacuation per
cycle) before being trasnsferred into the glove box. Toluene (5 mL) was added to the vial
containing Pd,(pmdba), and (S)-#-Bu-PHOX. The vial was capped and heated to 30 °C
for 30 min. During this time, the mixture developed a dark orange color. (-Ketoester
148j was dissolved in toluene (3 mL) and added to the catalyst solution dropwise,
causing the solution to turn olive green. The solution was stirred at 30 °C in a heating

block. The capped vial was removed from the glove box after 29 h of stirring. The crude
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product was concentrated under reduced pressure and purified by flash column
chromatography (SiO,, 5 x 25 cm, 15:1—=10:1—8:1—=6:1 hexanes:EtOAc) to afford
vinylogous ester 149j (403 mg, 0.796 mmol, 98% yield, 82.9% ee) as a thick, white semi-

solid. (For characterization data, see p. 131).

(o}

‘.‘\‘\/
-BuO

149a
Vinylogous Ester 149a (Table 2.1, entry 1). Prepared using Schlenk Manifold Method.
38.8 mg, 0.164 mmol, 91% yield. Preparative TLC (SiO,, 4:1 hexanes:EtOAc). R; =
0.31 (3:1 hexanes:Et,0); 'H NMR (500 MHz, CDCL,) § 5.72 (dddd, J = 16.6, 10.5, 7.3,
7.3 Hz, 1H), 5.31 (s, 1H), 5.05-5.00 (m, 2H), 3.50 (dd, J =9.3,6.6 Hz, 1H), 3.47 (dd, J =
9.3, 6.6 Hz, 1H), 2.53-2.42 (m, 2H), 2.38 (dd, J = 13.7, 7.1 Hz, 1H), 2.20 (dd, J = 13.7,
7.8 Hz, 1H), 1.98 (app sept, J = 6.6 Hz, 1H), 1.86-1.70 (m, 3H), 1.62-1.56 (m, 1H), 1.14
(s, 3H), 0.95 (d, J = 6.6 Hz, 6H); "“C NMR (125 MHz, CDCl,) § 206.7, 171.3, 134.6,
1179, 105.0, 74.5, 51.5, 454, 36.1, 35.2, 28.0, 25.2, 19.9, 19.3, 19.3; IR (Neat Film
NaCl) 2960, 2933, 2873, 1614, 1470, 1387, 1192, 1171, 998,912 cm™; HRMS (EI+) m/z
calc'd for C,sH,,0, [M]™: 236.1776; found 236.1767; [a],”°® —69.04 (¢ 1.08, CHCI,,
88.0% ee); HPLC conditions: 1% IPA in hexanes, 1.0 mL/min, OD-H column, t, (min):

major = 6.30, minor = 7.26.
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(o]
,&\\;7
i-BuO

149b

Vinylogous Ester 149b (Table 2.1, entry 2). Prepared using Schlenk Manifold Method.
226.3 mg, 0.90 mmol, 89% yield. Flash column chromatography (SiO,, 3 x 24 cm,
20:1—15:1—10:1 hexanes:EtOAc). R; = 0.43 (10:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCl,) 8 5.82-5.62 (m, 1H), 5.29 (s, 1H), 5.06-4.98 (m, 2H), 3.48 (dd, J = 11.1,
6.6 Hz, 1H), 3.45 (dd, J = 11.2, 6.6 Hz, 1H), 2.49-2.42 (m, 2H), 2.40 (dddd, J = 13.8,
7.1, 1.2 Hz, 1H), 2.23 (dddd, J = 13.8, 7.7, 1.1, 1.1 Hz, 1H), 1.97 (app sept, J = 6.7 Hz,
1H), 1.84-1.44 (m, 6H), 0.98-091 (d, J = 6.7 Hz, 6H), 0.79 (t, J = 7.5 Hz, 3H); "C
NMR (75 MHz, CDCl,) & 206.2, 171.0, 135.1, 117.6, 105.5, 74.4, 54.8,41.9, 36.1,32.3,
31.3, 28.0, 20.0, 19.3, 8.6; IR (Neat Film NaCl) 3073, 2960, 2933, 2876, 1617, 1613,
1459, 1400, 1387, 1369, 1314, 1220, 1190, 1173, 996, 969, 954, 912, 883, 873, 856, 782
cm™'; HRMS (EI+) m/z calc'd for C,;H,,O, [M]*: 250.1933; found 250.1909; [a],>?
+25.83 (¢ 1.04, CHCl;, 91.6% ee); HPLC conditions: 0.25% IPA in hexanes, 1.0

mL/min, AD column, t; (min): minor = 16.23, major = 18.08.

0 Ph

,&\\;7
iFBuO

149c
Vinylogous Ester 149¢ (Table 2.1, entry 3). Prepared using Schlenk Manifold Method.
172.5 mg, 0.552 mmol, 98% yield. Flash column chromatography (SiO,, 3 x 24 cm,
20:1—15:1—10:1 hexanes:EtOAc). R; = 0.50 (10:1 hexanes:EtOAc); '"H NMR (300

MHz, CDCl,) & 7.28-7.14 (m, 3H), 7.14-7.08 (m, 2H), 5.85-5.68 (m, 1H), 5.31 (s, 1H),



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 126

5.104.99 (m, 2H), 3.44 (dd, J = 14.7, 6.6 Hz, 1H), 3.41 (dd, J = 14.7, 6.6 Hz, 1H), 3.14
(d, J = 13.3 Hz, 1H), 2.71 (d, J = 13.3 Hz, 1H), 2.51 (dddd, J = 13.7, 6.8, 1.2, 1.2 Hz,
1H), 2.45-2.32 (m, 2H), 2.16 (dddd, J = 13.7,79, 1.1, 1.1 Hz, 1H), 1.93 (app sept, J =
6.7 Hz, 1H), 1.83-1.56 (m, 4H), 0.92 (d, J = 6.7 Hz, 6H); ""C NMR (75 MHz, CDCl,) §
205.5,171.4,138.3,134.5,130.8, 128.0, 126.3, 118.2, 106.3,74.5,56.2,44.1,43.9,36.3,
31.3,27.9,19.5, 19.3; IR (Neat Film NaCl) 3072, 3061, 3027, 3002, 2957, 2931, 2871,
1610, 1495, 1471, 1454, 1422, 1403, 1387, 1368, 1318, 1280, 1217, 1189, 1173, 1081,
1031, 1007, 969, 957, 913, 875, 856, 831, 760, 746, 733 cm™'; HRMS (EI+) m/z calc'd
for C,,H,,0, [M]*: 312.2089; found 312.2083; [a],”” +2.91 (c 0.98, CHCl,, 86.3% ee);
HPLC conditions: 0.5% IPA in hexanes, 1.0 mL/min, OD-H column, t, (min): minor =

13.96, major = 15.70.

=
WN\F

BuO

149d

Vinylogous Ester 149d (Table 2.1, entry 4). Prepared using Schlenk Manifold Method.
2247 mg, 0.86 mmol, 88% yield. Flash column chromatography (SiO,, 3 x 25 cm,
20:1—15:1 hexanes:EtOAc). R, = 0.44 (10:1 hexanes:EtOAc); '"H NMR (300 MHz,
CDCl,) 6 5.74-5.59 (m, 1H), 5.32 (s, 1H), 5.12-5.02 (m, 2H), 3.50 (dd, J = 14.9, 6.5 Hz,
1H), 3.47 (dd, J = 14.7, 6.6 Hz, 1H), 2.53-2.48 (m, 4H), 2.46 (dddd, J = 13.7, 7.3, 1.2,
1.2 Hz, 1H), 2.35 (dddd, J = 13.7,7.6, 1.1, 1.1 Hz, 1H), 2.09-1.67 (m, 5H), 1.57 (s, 1H),
0.95 (d,J = 6.7 Hz, 6H); "C NMR (75 MHz, CDCl;) § 204.0, 171.7,133.7, 118.5, 105.0,

81.7,74.6,70.8,54.2,429, 36.1,32.5,28.0,27.1,20.0, 19.3; IR (Neat Film NaCl) 3301,
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3075, 2957, 2930, 2873, 2116, 1612, 1471, 1457, 1435, 1423, 1402, 1387, 1368, 1320,
1221, 1191, 1175, 995, 969, 916, 874, 845 cm™'; HRMS (EI+) m/z calc'd for C,,H,,0,
[M]*: 260.1776; found 260.1737; [a],”” —26.51 (¢ 1.03, CHCl,, 88.5% ee); HPLC
conditions: 0.5% IPA in hexanes, 1.0 mL/min, OD-H column, t; (min): major = 12.35,

minor = 13.43.

149e

Vinylogous Ester 149e (Table 2.1, entry 5). Prepared using Glove Box Method. 287.5
mg, 1.04 mmol, 95% yield. Flash column chromatography (SiO,, 2 x 25 cm, 20:1
hexanes:EtOAc). R;=0.44 (10:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 5.84—
5.64 (m, 2H), 5.30 (s, 1H), 5.09—4.87 (m,4H), 3.49 (dd,J=11.2,6.6 Hz, 1H), 3.46 (dd, J
=11.1,6.6 Hz, 1H), 2.54-2.37 (m, 3H), 2.27 (dddd, J = 13.8, 7.7, 1.2, 1.2 Hz, 1H), 2.07-
1.89 (m, 3H), 1.86-1.45 (m, 6H), 0.95 (d, J = 6.7 Hz, 6H); “C NMR (75 MHz, CDCl,) &
205.8, 171.1, 1389, 134.8, 117.9, 114.5, 105.5, 74.8, 54.4, 42.3, 38.0, 36.1, 32.7, 28.6,
28.0,19.9, 19.3; IR (Neat Film NaCl) 3076, 2958, 2932, 2874, 1639, 1614, 1471, 1455,
1434, 1424, 1402, 1387, 1368, 1317, 1280, 1216, 1190, 1174, 1086, 996, 969, 955, 910,
878, 853, 829, 771 cm™; HRMS (EI+) m/z calc'd for C,{H,0, [M]*: 276.2089; found
276.2060; [o],>? +15.28 (¢ 0.97, CHCl;, 86.9% ee); HPLC conditions: 0.8% IPA in

hexanes, 2.0 mL/min, AD column, t; (min): major = 5.03, minor = 6.06.
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149f

Vinylogous Ester 149f (Table 2.1, entry 6). Prepared using Schlenk Manifold Method.
232.9 mg, 0.81 mmol, 90% yield. Flash column chromatography (SiO,, 3 x 25 cm,
20:1—15:1 hexanes:EtOAc). R, = 0.45 (10:1 hexanes:EtOAc); '"H NMR (300 MHz,
CDCl,) 6 6.30 (dt,J = 16.9, 10.3 Hz, 1H), 6.04 (dd, J = 15.1,10.4 Hz, 1H), 5.82-5.53 (m,
2H), 5.31 (s, 1H), 5.15-4.92 (m, 4H), 3.48 (d, J = 6.5 Hz, 2H), 2.55-2.36 (m, 4H), 2.30—
2.16 (m, 2H), 1.98 (app sept, J = 6.7 Hz, 1H), 1.84-1.67 (m, 4H), 0.95 (d, J = 6.7 Hz,
6H); ""C NMR (75 MHz, CDCL,) & 205.3, 171.4, 137.2, 134.5, 134.1, 130.8, 118.0,
115.5, 105.5, 74.5, 55.1, 43.1, 41.6, 36.1, 32.5, 28.0, 19.9, 19.3; IR (Neat Film NaCl)
3075, 3036, 3007, 2958, 2931, 2873, 1726, 1635, 1611, 1471, 1456, 1436, 1402, 1387,
1368, 1312, 1277, 1219, 1190, 1173, 1085, 1005, 954, 911, 874, 831 cm™'; HRMS
(FAB+) m/z calc'd for C,,H,,0, [M+H]": 289.2168; found 289.2172; [a],”" —20.62 (c
1.05, CHCl,;, 89.6% ee); SFC conditions: 5.0% IPA in hexanes, 2.5 mL/min, AD-H

column, t; (min): minor = 6.31, major = 6.99.

149g

Vinylogous Ester 149g (Table 2.1, entry 7). Prepared using Schlenk Manifold Method.
259.5 mg, 0.87 mmol, 99% yield. Flash column chromatography (SiO,, 3 x 25 cm,

20:1—15:1 hexanes:EtOAc). R, = 0.36 (10:1 hexanes:EtOAc); '"H NMR (300 MHz,
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CDCl5) 6 5.78-5.62 (m, 1H), 5.36 (s, 1H), 5.25 (s, 1H), 5.14 (s, 1H), 5.11-5.01 (m, 2H),
3.54-3.43 (m, 2H), 2.95 (dd, J = 144, 0.7 Hz, 1H), 2.54-2.41 (m, 4H), 2.25 (dddd, J =
139,79, 1.1, 1.1 Hz, 1H), 2.07-1.89 (m, 2H), 1.88-1.70 (m, 3H), 0.95 (d, J = 6.7 Hz,
6H); "C NMR (75 MHz, CDCl,) 6 204.3,171.6,139.4,133.9,118.7,116.6, 105.9, 74.6,
54.7, 46.7, 43.7, 36.3, 31.5, 28.0, 19.6, 19.3; IR (Neat Film NaCl) 3075, 2958, 2934,
2874, 1612, 1471, 1458, 1424, 1403, 1388, 1368, 1339, 1321, 1297, 1222, 1192, 1175,
1082, 1010, 995, 968, 956, 916, 875, 847, 746 cm™'; HRMS (FAB+) m/z calc'd for
C,,H,0,Cl [M+H]": 297.1621; found 297.1623; [a],”" +4.20 (¢ 1.02, CHCI,, 85.7%
ee); HPLC conditions: 0.1% IPA in hexanes, 1.0 mL/min, OD-H column, t; (min): minor

=24.19, major = 27.22.

149h

Vinylogous Ester 149h (Table 2.1, entry 8). Prepared using Schlenk Manifold Method.
292.8 mg, 1.06 mmol, 96% yield. Flash column chromatography (SiO,, 3 x 25 cm,
20:1—10:1—8:1—6:1 hexanes:EtOAc). R,;=0.39 broad (4:1 hexanes:EtOAc); '"H NMR
(300 MHz, CDCl,) & 5.75-5.58 (m, 1H), 5.31 (s, 1H), 5.15-5.04 (m, 2H), 348 (d,J=6.5
Hz, 2H), 2.51 (t, J = 6.1 Hz, 2H), 2.40 (dddd, J = 14.0, 7.0, 1.2, 1.2 Hz, 1H), 2.35-2.22
(m, 3H), 2.11-1.93 (m, 2H), 1.93-1.62 (m, 5H), 0.96 (d, J = 6.7 Hz, 6H); ""C NMR (75
MHz, CDCl,) 8§ 203.9, 172.1, 133.1, 120.3, 119.2, 104.9, 74.7, 53.6, 41.8, 36.1, 33.9,
32.8,28.0,19.8,19.3, 12.8; IR (Neat Film NaCl) 3076, 2958, 2933, 2874, 2246, 1635,

1609, 1472, 1458, 1420, 1404, 1388, 1368, 1319, 1281, 1214, 1192, 1175, 1084, 1003,
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917, 880, 854, 827, 766 cm™'; HRMS (EI+) m/z calc'd for C,;H,sO,N [M]*": 275.1885;
found 275.1893; [a],”” —20.97 (¢ 1.06, CHCl,, 87.4% ee); HPLC conditions: 5.0% IPA

in hexanes, 1.0 mL/min, OD-H column, t; (min): major = 10.67, minor = 14.66.

149i

Vinylogous Ester 149i (Table 2.1, entry 9). Prepared using Glove Box Method. 339.6
mg, 1.08 mmol, 97% yield. Flash column chromatography (SiO,, 3 x 20 cm, 1:1—=1:4
hexanes:EtOAc—EtOAc). R, =0.28, broad (1:2 hexanes:EtOAc); '"H NMR (300 MHz,
CDCI,) 6 8.45 (dd, J = 4.5, 1.5 Hz, 2H), 7.05 (dd, J = 4.5, 1.6 Hz, 2H), 5.84-5.66 (m,
1H), 5.31 (s, 1H), 5.15-5.02 (m, 2H), 3.44 (dd, J = 15.1, 6.3 Hz, 1H), 3.41 (dd, J = 15.0,
6.3 Hz, 1H), 3.20 (d, J = 12.9 Hz, 1H), 2.60 (d, J = 12.9 Hz, 1H), 2.48 (dddd, J = 13.8,
6.9,1.2,1.2 Hz, 1H),2.43-2.29 (m, 2H), 2.23 (dddd, J=13.8,7.8, 1.1, 1.1 Hz, 1H), 1.94
(app sept, J = 6.7 Hz, 1H), 1.84-1.67 (m, 2H), 1.67-1.51 (m, 2H), 0.92 (d, J = 6.7 Hz,
6H); ""C NMR (75 MHz, CDCL,) & 204.4, 171.8, 149.5, 147.6, 133.7, 126.2, 118.9,
106.0, 74.6, 55.8, 43.8, 43.5, 36.2, 31.5, 27.9, 194, 19.3; IR (Neat Film NaCl) 3072,
3024, 2957, 2931, 2873, 1608, 1558, 1496, 1471, 1458, 1438, 1415, 1388, 1368, 1320,
1220, 1190, 1173, 1072, 994, 957, 916, 876, 844,796 cm™'; HRMS (EI+) m/z calc'd for
C,H,,0,N [M]*: 313.2042; found 313.2045; [a],”" +22.44 (c 1.16, CHCl,, 84.6% ee);
HPLC conditions: 5.0% EtOH in hexanes, 1.0 mL/min, AD column, t, (min): major =

13.22, minor = 15.13.
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Vinylogous Ester 149j (Table 2.1, entry 10). Prepared using Glove Box Method. 403
mg, 0.796 mmol, 98% yield. Flash column chromatography (SiO,, 5 x 25 cm,
15:1—10:1—8:1—6:1 hexanes:EtOAc). R;=0.49 (4:1 hexanes:EtOAc); "H NMR (300
MHz, CDCl,) § 7.96 (dm, J = 8.4 Hz, 1H), 7.70 (dm, J = 8.4 Hz, 2H), 7.48 (dm, J = 7.9
Hz, 1H), 7.31-7.13 (m, 5H), 5.86-5.68 (m, 1H), 5.32 (s, 1H), 5.13-5.00 (m, 2H), 3.42
(dd, J =170, 7.7 Hz, 1H), 3.38 (dd, J = 17.0, 7.6 Hz, 1H), 3.20 (dd, J = 14.2, 0.7 Hz,
1H), 2.73 (d, J = 14.1 Hz, 1H), 2.51 (dddd, J = 13.7, 6.9, 1.3, 1.3 Hz, 1H), 2.44-2.15 (m,
6H), 1.92 (app sept, J = 6.7 Hz, 1H), 1.76-1.46 (m, 4H), 0.92 (d, J = 6.7 Hz, 6H); "C
NMR (75 MHz, CDCl,) & 205.2, 171.7, 144.8, 135.4, 135.0, 134.1, 1324, 129.8, 126.9,
1254, 124.5,123.2,120.1, 119.6, 118.6, 113.8, 106.4, 74.6, 55.9, 44.1, 36.3, 33.0, 31.9,
27.9,21.7,19.5, 19.3; IR (Neat Film NaCl) 3584, 3401, 2068, 2958, 2930, 2873, 1609,
1494, 1470, 1448, 1422, 1402, 1368, 1306, 1279, 1215, 1188, 1174, 1120, 1097, 1020,
975, 916, 876, 813, 782, 747 cm™'; HRMS (FAB+) m/z calc'd for C,)H;;O,NS [M+H]":
506.2365; found 506.2358; [a],”? +9.10 (¢ 1.00, CHCl,, 82.9% ee); HPLC conditions:

5.0% EtOH in hexanes, 1.0 mL/min, AD column, t; (min): major = 11.11, minor = 16.64.
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149k

Vinylogous Ester 149k (Table 2.1, entry 11). Prepared using Glove Box Method. 77.3
mg, 0.278 mmol, 90% yield. Flash column chromatography (SiO,, 2 x 25 cm, 6:1—4:1
hexanes:EtOAc). R;=0.35, broad (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) &
9.73 (t, J = 1.5 Hz, 1H), 5.78-5.61 (m, 1H), 5.29 (s, 1H), 5.11-5.02 (m, 2H), 3.47 (m,
2H), 2.54-2.33 (m, 5H), 2.28 (dddd, J = 14.0, 7.6, 1.2, 1.2 Hz, 1H), 2.07-1.73 (m, 5SH),
1.73-1.56 (m, 2H), 0.95 (d, J = 6.7 Hz, 6H); “"C NMR (75 MHz, CDCl,) & 205.0, 202.3,
171.7, 1340, 118.5, 105.2, 74.6, 53.6, 42.1, 394, 36.1, 33.1, 30.3, 280, 19.9, 19.3; IR
(Neat Film NaCl) 3075, 2958, 2931, 2719, 1724, 1611, 1471, 1458, 1421, 1403, 1388,
1368, 1213, 1191, 1175, 998, 915, 878 cm™; HRMS (FAB+) m/z calc'd for C,,H,,0,
[M+H]*: 279.1960; found 279.1969; [a],”” +15.37 (¢ 1.03, CHCl;, 79.5% ee);
Compound 149k was derivatized using procedure below to determine ee using the

corresponding chiral HPLC assay for vinylogous ester 149e.

P MePPh;Br, KOt-Bu
THF, 0 °C

81% yield
149k 149e

Vinylogous Ester 149e. To a solution of MePh,PBr (323.2 mg, 0.905 mmol, 0.84 equiv)
in THF (14.0 mL) in a 50 mL round-bottom flask at 0 °C was added KO#-Bu (84.6 mg,
0.754 mmol, 0.699 equiv) to give a bright yellow suspension. Aldehyde 149k (299.9 mg,

1.078 mmol, 1.00 equiv) in THF (2 mL) was added to the suspension using positive
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pressure cannulation and maintained at 0 °C. The reaction faded to an off-white
suspension. After 1.5 h of stirring, an additional portion of Wittig reagent was prepared
in a 20 mL scintillation vial. MePPh,Br (323.2 mg, 0.905 mmol, 0.84 equiv) was added
to the vial. The vial was sealed with a septum, evacuated/backfilled with N, (3 cycles, 5
min evacuation per cycle). Anhydrous THF (3 mL) was added and the vial was cooled to
0 °C. KOr-Bu (84.6 mg, 0.754 mmol, 0.699 equiv) was added in one portion, giving a
bright yellow suspension which was added to the reaction flask using positive pressure
cannulation. The tan suspension was stirred at 0 °C for 1 h. An additional portion of
Wittig reagent using MePPh,;Br (323.2 mg, 0.905 mmol, 0.84 equiv), KOz-Bu (84.6 mg,
0.754 mmol, 0.699 equiv) and THF (3 mL) was prepared at 0 °C and added using
positive pressure cannulation as previously described. The reaction showed a persistent
yellow color. After 30 min of stirring at 0 °C, the reaction was quenched by addition of
sat. aqueous NH,Cl (5 mL) and stirred for 30 min while the mixture was allowed to warm
to ambient temperature. The mixture was extracted with Et,0 (3 x 20 mL), dried over
Na,SO,, filtered, and concentrated under reduced pressure. The residue was purified by
flash column chromatography (SiO,, 3 x 25 cm, 1%—2%—>3%—>5% EtOAc in hexanes)
to afford vinylogous ester 149e (243.7 mg, 0.882 mmol, 81% yield) as a yellow liquid;
HPLC conditions: 0.8% IPA in hexanes, 2.0 mL/min, AD column, t, (min): major = 4.39,

minor = 3.17. (For characterization data, see p. 127).
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(o}

F
,&\\;9
i-BuO

1491
Vinylogous Ester 1491 (Table 2.1, entry 12). Prepared using Schlenk Manifold Method.
172.5 mg, 0.552 mmol, 98% vyield. Flash column chromatography (SiO,, 3 x 24 cm,
20:1—15:1—10:1 hexanes:EtOAc). R; = 0.59 (4:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCl,) 8 5.89-5.72 (m, 1H), 5.28 (s, 1H), 5.18-5.08 (m, 2H), 3.53 (dd, J = 10.6,
6.5 Hz, 1H), 3.50 (dd, J = 10.6, 6.6 Hz, 1H), 2.80-2.46 (m, 3H), 2.46-2.33 (m, 1H),
2.22-1.67 (m, 5H), 0.97 (d, J = 6.7 Hz, 3H), 0.96 (d, J = 6.7 Hz, 3H); “C NMR (75
MHz, CDCl,) 8 198.2 (d, Jo = 249 Hz), 1769 (d, Jo = 1.8 Hz), 131.9 (d, Jo = 4.4 Hz),
119.3,101.7, 101.2 (d, Jo = 180.6 Hz), 75.0,42.1 (d, Jor = 23.2 Hz), 34.4 (d, Jo = 23.2
Hz),34.1 (d, Jos = 2.4 Hz), 27.9,21.7 (d, Jos = 2.1 Hz), 19.3,19.2; "F NMR (282 MHz,
CDCI5) 6 —145.81 (m); IR (Neat Film NaCl) 3086, 2960, 1752, 1654, 1649, 1603, 1471,
1453, 1422, 1403, 1385, 1369, 1282, 1249, 1229, 1204, 1176, 1137, 1095, 1066, 145,
991, 927, 873, 843, 795, 758 cm™'; HRMS (EI+) m/z calc'd for C,,H,O,F [M]*:
240.1526; found 240.1524; [a],”? +0.61 (¢ 1.02, CHCl,, 91.2% ee); HPLC conditions:

1.0% IPA in hexanes, 1.0 mL/min, OD-H column, t; (min): minor = 8.05, major = 8.80.

OTBDPS

(o]
SN\ F
i-BuO

10m
Vinylogous Ester 149m (Table 2.1, entry 13). Prepared using Glove Box Method.
242.0 mg, 0.493 mmol, 66% yield. Flash column chromatography (SiO,, 3 x 25 cm,

2%—>5%—>10% EtOAc in hexanes). R, = 0.44 (10:1 hexanes:EtOAc); '"H NMR (300
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MHz, CDCl,) § 7.67-7.61 (m, 4H), 7.46-7.33 (m, 6H), 5.78-5.60 (m, 1H), 5.32 (s, 1H),
5.08-4.96 (m, 2H), 3.78 (d, J = 9.7 Hz, 1H), 3.67 (d, J = 9.7 Hz, 1H), 3.46 (dd, J = 14.7,
6.5 Hz, 1H), 3.43 (dd, J = 14.6, 6.5 Hz, 1H), 2.49 (dddd, J = 13.7, 6.6, 1.3, 1.3 Hz, 1H),
2.48-2.41 (m, 2H), 2.33 (dddd, J = 13.8,7.8, 1.2, 1.2 Hz, 1H), 2.09-1.88 (m, 2H), 1.82—
1.65 (m, 3H), 1.04 (s, 9H), 0.95 (d, J = 6.7 Hz, 6H); “C NMR (75 MHz, CDCl,) 6 204.5,
171.5, 1359, 135.8, 134.7, 133.7, 133.5, 129.7, 127.8, 127.7, 117.8, 106.1, 74.5, 69.0,
574, 41.0, 36.3, 30.3, 28.0, 27.0, 20.0, 19.5, 19.3; IR (Neat Film NaCl) 3071, 3050,
2957, 2930, 2857, 1731, 1614, 1472, 1428, 1402, 1388, 1368, 1315, 1261, 1222, 1190,
1174, 1112, 1007, 998, 969, 955, 938, 914, 880, 824, 810, 740 cm™'; HRMS (FAB+) m/z
calc'd for C,;,H,,0,Si [M+H]": 491.2982; found 491.2993; [a],”" —6.72 (¢ 1.09, CHCl,,
57.8% ee); HPLC conditions: 0.2% IPA in hexanes, 1.0 mL/min, OD-H column, t,

(min): major = 21.74, minor = 25.53.

Ph
(o}

o/go
‘_\\\v/

149n

Vinylogous Ester 149n (Table 2.1, entry 14). Prepared using Schlenk Manifold
Method. 589.8 mg, 1.72 mmol, 75% yield. Flash column chromatography (SiO,, 5 x 13
cm, 20:1—15:1—10:1—6:1 hexanes:EtOAc). R, =0.57 (4:1 hexanes:EtOAc); '"H NMR
(300 MHz, CDCl,) 8 8.03-7.96 (m, 2H), 7.55 (t,J = 7.4 Hz, 1H), 7.42 (t,J = 7.5 Hz, 2H),
5.96-5.78 (m, 1H), 5.27 (s, 1H), 5.19-5.08 (m, 2H), 3.42 (dd, J = 9.4, 6.6 Hz, 1H), 3.39
(dd,J=9.4,6.5 Hz, 1H), 3.06 (dddd, J = 14.8,6.7, 1.4, 1.4 Hz, 1H), 2.83-2.67 (m, 2H),

2.55-2.34 (m, 2H), 2.10-1.74 (m, 4H), 0.80 (dd, J = 6.6, 4.7 Hz, 6H); "“C NMR (75
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MHz, CDCl;) 6 198.1, 174.3, 165.5, 133.1, 132.5, 130.6, 129.7, 128.5, 119.2, 102.1,
88.6, 74.9, 40.8, 34.0, 27.7, 21.9, 19.1, 19.0; IR (Neat Film NaCl) 3073, 2959, 2934,
2873, 1718, 1672, 1649, 1613, 1479, 1451, 1421, 1382, 1368, 1315, 1291, 1258, 1231,
1199, 1174, 1108, 1070, 1026, 1004, 919, 866, 820, 801, 762, 715 cm™'; HRMS (EI+)
m/z calc'd for C,,H,,O, [M]*: 342.1815; found 342.1831; [a],>° +79.72 (¢ 1.02, CHCl,,
57.1% ee); HPLC conditions: 1.0% IPA in hexanes, 1.0 mL/min, OD-H column, t,

(min): major = 18.28, minor =22.01.

1. NaBH,;, MeOH

_—
2. imidazole
TBDPSCI, DMF

149k 85% yield, 2 steps 1490

Vinylogous Ester 1490. A round-bottom flask with magnetic stir bar was charged with
aldehyde 1490 (40.2 mg, 0.14 mmol, 1.00 equiv) and MeOH (3.0 mL). The flask was
cooled to 0 °C and NaBH, (5.5 mg, 0.14 mmol, 1.00 equiv) was added slowly
portionwise. The mixture was stirred for 1 h at 0 °C. Sat. aqueous NaHCO, (3 mL) was
added, followed by CH,Cl, (10 mL). The mixture was stirred vigorously for 5 min. The
phases were separated and the aqueous layer was extracted with CH,Cl, (3 x 10 mL).
Combined organic phases were dried over Na,SO,, filtered, and concentrated under
reduced pressure. The crude alcohol was used directly in the next step without further
purification. R;=0.29 (2:1 hexanes:EtOAc).

To a 2 dram vial with a solution of crude alcohol and imidazole (11.8 mg, 0.17 mmol,
1.20 equiv) in DMF (0.7 mL) at 0 °C was added TBDPSCI (39.6 uL, 0.14 mmol, 1.00

equiv) dropwise. After 2 h of stirring, the reaction was quenched by addition of H,O (0.3
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mL) and extracted with Et,0 (5 x 5 mL). The combined organics were dried over
MgSO,, filtered, and concentrated under reduced pressure. The residue was purified by
automated flash column chromatography using a Teledyne Isco CombiFlash R; (SiO,, 12
g loading cartridge, 80 g column, multi-step gradient, hold 2% [2 min]—ramp to 5% [10
min]—hold 5% [10 min]—ramp to 10% [32 min]—hold 10% Et,0O in hexanes [5 min]) to
afford vinylogous ester 1490 (63.3 mg, 0.12 mmol, 85% yield over 2 steps) as a pale,
white oil; R,=0.42 (10:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 7.69-7.62 (m,
4H), 7.46-7.33 (m, 6H), 5.82-5.62 (m, 1H), 5.29 (s, 1H), 5.08-4.96 (m, 2H), 3.61 (t,J =
6.1 Hz, 2H), 3.48 (dd, J = 13.7, 6.6 Hz, 1H), 3.45 (dd, J = 13.7, 6.6 Hz, 1H), 2.50-2.43
(m, 2H), 2.40 (dddd, J = 13.8, 7.0, 1.2 Hz, 1H), 2.25 (dddd, J = 13.9, 7.8, 1.1 Hz, 1H),
1.98 (app sept, J = 6.7 Hz, 1H), 1.86-1.38 (m, 8H), 1.04 (s, 9H), 0.95 (d, J = 6.7 Hz, 6H);
"C NMR (75 MHz, CDCl,) 8 206.0, 171.0, 135.7, 134.9, 134.1, 129.6, 127.7, 117.7,
105.2,74.4,64.4,54.2,42.1,36.1, 34.8, 32.8, 28.0, 27.3, 27.0, 20.0, 19.3; IR (Neat Film
NaCl) 3071, 3051, 3013, 2998, 2956, 2930, 2858, 1614, 1471, 1428, 1401, 1387, 1368,
1311, 1214, 1188, 1174, 1111, 1028, 1007, 998, 966, 913, 872, 823, 780, 740, 725 cm™';
HRMS (FAB+) m/z calc'd for C;;H,,0,Si [M+H]": 519.3295; found 519.3275; [a],>*

+9.06 (¢ 0.95, CHCl,, 78.4% ee).

o) o)
wn PUCHSCN)CL, (5 mol %)> o
CH4CN, PhH, 75 °C
BuO +BuO
92% yield
149a 149p

Vinylogous Ester 149p. Pd(CH,CN),Cl, (49.1 mg, 0.189 mmol, 5 mol %) was placed in

a 50 mL round-bottom Schlenk flask and evacuated/backfilled with N, (3 cycles, 5 min
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per cycle). Benzene (10 mL) was added, followed by acetonitrile (90 uL.). A solution of
vinylogous ester 149a (895 mg, 3.79 mmol, 1.00 equiv) in benzene (5.0 mL) was added
using positive pressure cannulation. The resulting orange solution was heated to 75 °C in
an oil bath. After 11 h of stirring, the reaction was cooled to ambient temperature,
filtered through a Celite plug (eluted with Et,0), and concentrated carefully under
reduced pressure, allowing for a film of ice to form on the outside of the flask, to afford a
pale yellow oil. The crude oil was purified by automated flash column chromatography
using a Teledyne Isco CombiFlash R, (SiO,, 25 g loading cartridge, 80 g column, linear
gradient, 0—=10% EtOAc in hexanes [33 min]) to afford vinylogous ester 149p (823.6
mg, 3.48 mmol, 92% yield) in a 20:1 ratio to isomeric starting material 149a.
Analytically pure samples could be obtained using the above column conditions; R; =
0.56 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) § 5.56 (dq, J = 15.7, 1.4 Hz,
1H), 5.41 (dq, J = 15.7, 6.2, Hz, 1H), 5.34 (s, 1H), 3.48 (d, J = 6.5 Hz, 2H), 2.63-2.33
(m, 2H), 2.04-1.91 (m, 1H), 1.90-1.70 (m, 4H), 1.67 (dd, J = 6.2, 1.4 Hz, 3H), 1.22 (s,
3H),0.95 (d, J = 6.7 Hz, 6H); "“C NMR (75 MHz, CDCl,) § 205.3, 171.6, 136.5, 123.9,
105.2, 74.5, 53.9, 36.2, 33.3, 28.0, 27.2, 20.2, 19.3, 18.4; IR (Neat Film NaCl) 3022,
2960, 2873, 1614, 1471, 1455, 1423, 1402, 1387, 1370, 1212, 1192, 1173, 1120, 967,
883, 858, 827 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C,sH,s0, [M+H]"

237.1849; found 237.1848; [a],>° +4.05 (¢ 1.39, CHCI,, 88.0 % ee).
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0 ) =

z Grubbs-Hoveyda 2nd a Eg
: N generation (68) (5 mol %) :
i-BuO PhH, 50 °C i-BuO

149e 99% yield 149q

Vinylogous Ester 149q. Vinylogous ester 149e (100 mg, 0.362 mmol, 1.00 equiv) was
added to a 50 mL 2-neck flask fitted with a rubber septum and oven-dried reflux
condenser. The flask was evacuated/backfilled with Ar (3 cycles, 5 min evacuation per
cycle). Dry degassed benzene (36.2 mL, sparged with N, for 1 h immediately before use)
was added. Grubbs—Hoveyda 2nd generation catalyst (11.3 mg, 18.1 umol, 5 mol %)
was added to the reaction, giving the solution an olive green color. The mixture was kept
under Ar, stirred until homogeneous, and heated to 50 °C using an oil bath. After 30 min
of stirring, the reaction was cooled to ambient temperature and several drops of ethyl
vinyl ether were added. After 30 min, the reaction developed a deep brown color. The
mixture was concentrated under reduced pressure and filtered through a silica gel plug (3
x 5 cm, 1:1 hexanes:Et,0). The solvents were removed under reduced pressure and the
residue was purified by flash column chromatography (SiO,, 3 x 25 cm,
20:1—15:1—10:1 hexanes:EtOAc) to afford vinylogous ester 149q (89.2 mg, 0.359
mmol, 99% yield) as a white solid. R; = 0.39 (10:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCI;) 6 5.69-5.58 (m, 2H), 5.30 (s, 1H), 3.49 (dd, J = 144, 6.5 Hz, 1H), 3.46
(dd, J = 143, 6.5 Hz, 1H), 2.70-2.57 (m, 1H), 2.54-2.44 (m, 2H), 2.08-1.91 (m, 3H),
1.91-1.57 (m, 7H), 0.95 (d, J = 6.7 Hz, 6H); “"C NMR (75 MHz, CDCl,) § 207.2, 171.3,
125.6, 1254, 104.0, 744, 50.5, 35.9, 33.9, 32.3, 32.2, 28.0, 22.4, 20.6, 19.3; IR (Neat

Film NaCl) 3050, 3023, 2981, 2958, 2928, 2890, 2874, 2837, 1726, 1633, 1610, 1470,
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1457, 1435, 1416, 1406, 1392, 1364, 1327, 1295, 1270, 1218, 1178, 1189, 1117, 1096,
1045, 1028, 1003, 953, 935, 917, 888, 850, 837, 807, 758, 731 cm™'; HRMS (EI+) m/z
calc'd for C,H,,0, [M]": 248.1776; found 248.1774; [a],>° —32.18 (¢ 0.97, CHCL,,

78.4% ee).

2.10.2.6 SYNTHETIC STUDIES ON THE REDUCTION/REARRANGEMENT
OF SIX- AND SEVEN-MEMBERED VINYLOGOUS ESTERS

1. LDA, THF, -78 °C
then o (o} (o]

o

NCJ\O/\/ o ANF
. 2. 032C03, CH3| R
i-BuO CH,CN, 80 °C i-BuO
70 194

84% yield, 2 steps

B-Ketoester 194. To a solution of diisopropylamine (0.49 mL, 3.47 mmol, 1.17 equiv)
in THF (10 mL) in a 50 mL round-bottom flask at O °C was added n-BuLi (1.70 mL, 3.40
mmol, 2.1 M in hexanes, 1.15 equiv) dropwise over 10 min. After 15 min of stirring at O
°C, the reaction was cooled to —78 °C using an acetone/CO,(s) bath. A solution of
vinylogous ester 70°* (0.50 g, 2.97 mmol, 1.00 equiv) in THF (5.0 mL) was added
dropwise using positive pressure cannulation. After an additional 1 h of stirring at —78
°C, allyl cyanoformate (0.37 mL, 3.40 mmol, 1.15 equiv) was added dropwise. The
reaction was stirred at —78 °C for 2.5 h, quenched by addition of sat. aqueous NH,Cl and
H,O (5 mL each), and then allowed to warm to ambient temperature. The reaction was
diluted with Et,0 (25 mL) and the phases were separated. The aqueous phase was
extracted with Et,0 (2 x 25 mL) and the combined organic phases were dried over

MgSO,, filtered, and concentrated under reduced pressure to afford a pale red oil.
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The crude oil was added to a 25 mL Schlenk flask and dissolved in CH,CN (10 mL).
CH,I (0.56 mL, 8.90 mmol, 3.00 equiv) was added, followed by Cs,CO, (1.26 g, 3.90
mmol, 1.30 equiv). The flask was sealed with a teflon valve, immersed in an oil bath,
and heated to 80 °C. After 14 h of vigorous stirring, the suspension was allowed to cool
to ambient temperature, diluted with EtOAc (25 mL), dried over MgSO,, filtered, and
concentrated under reduced pressure. The crude product was purified by flash column
chromatography (SiO,, 3 x 20 cm, 19:1—=9:1—4:1, hexanes:EtOAc) to afford -ketoester
194 (0.67 g, 2.52 mmol, 84% yield over 2 steps) as a pale yellow oil; R; = 0.36 (4:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCL,) 8 5.81 (dddd, J = 17.2,10.7, 5.5, 5.5 Hz,
1H), 5.30 (s, 1H), 5.22 (app dq, J = 17.2, 1.5 Hz, 1H), 5.14 (app dq, J = 10.5, 1.3 Hz,
1H), 4.65—4.46 (m, 2H), 3.55 (d, J = 6.5 Hz, 2H), 2.60-2.23 (m, 3H), 1.97 (app sept, J =
6.6 Hz, 1H), 1.89-1.70 (m, 1H), 1.35 (s, 3H), 0.91 (d, J = 6.7 Hz, 6H); “C NMR (75
MHz, CDCl,) 6 1964, 176.7, 172.5, 131.9, 118.0, 101.7, 74.9, 65.5, 52.3, 31.7, 27.7,
26.3,20.6, 19.0; IR (Neat Film NaCl) 2961, 2937, 2876, 1733, 1660, 1608, 1457, 1427,
1406, 1385, 1369, 1346, 1319, 1248, 1199, 1176, 1113, 1039, 991, 928, 837, 818, 772,

751 cm™; HRMS (EI+) m/z calc'd for C;sH,,0, [M]*: 266.1518; found 266.1510.

0
Ph,P N|\>
='t-Bu
(o] (o]

(S)-+-Bu-PHOX (13) (6.25 mol %) °
MOM Pd,(pmdba); (2.5 mol %) ﬁ“.\\\/
(.
i-BuO PhCHg, 50 °C i-BuO

194 97% yield, 86% ee 151

Vinylogous Ester 151. B-Ketoester 194 (180 mg, 0.68 mmol, 1.00 equiv) in a 20 mL

scintillation vial and a septum-fitted screw cap were evacuated/backfilled with N, (3
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cycles, 5 min evacuation per cycle) in a glove box antechamber before being transferred
into a glove box. A separate 20 mL scintillation vial in the glove box was loaded with
(8)--Bu-PHOX (16.4 mg, 0.042 mmol, 6.25 mol %), Pd,(pmdba), (18.5 mg, 0.017 mmol,
2.5 mol %), and a magnetic stir bar. Toluene (4 mL) was added and the black suspension
was stirred at 30 °C in a heating block for 30 min. B-Ketoester 194 was dissolved in
toluene (2.8 mL) and added to the orange catalyst solution, causing an immediate color
change to olive green. The vial was capped with the septum-fitted screw cap and the
edges were sealed with electrical tape. The vial was removed from the glove box,
connected to a N,-filled Schlenk manifold, and immersed in a 50 °C oil bath. After 22 h,
the reaction was an orange-brown solution. The mixture was concentrated under reduced
pressure and purified by flash column chromatography (SiO,, 2 x 25 cm, 20:1—10:1,
hexanes:EtOAc) to afford vinylogous ester 151 (146 mg, 0.66 mmol, 97% yield) as a
clear, colorless oil; R;=0.57 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 5.81—
5.63 (m, 1H), 5.22 (s, 1H), 5.08-4.98 (m, 2H), 3.56 (d, J = 6.5 Hz, 2H), 2.40 (app t, J =
6.4 Hz,2H), 2.33 (dddd, /= 13.8,7.6, 1.0, 1.0 Hz, 1H), 2.16 (dddd, J = 13.8,7.6, 1.0, 1.0
Hz, 1H), 2.00 (app sept, J = 6.7 Hz, 1H), 1.90 (ddd, J = 134, 6.6, 6.6 Hz, 1H), 1.68 (ddd,
J=136,62,62 Hz, 1H), 1.06 (s, 3H), 0.95 (d, J = 6.7 Hz, 6H); “C NMR (75 MHz,
CDCI5) 6 203.5,176.1,134.4,117.9,101.4,74.8,43.3,41.6,31.9,27.9,26.0,22.3,19.2;
IR (Neat Film NaCl) 3074, 2962, 2932, 2875, 1655, 1611, 1470, 1464, 1429, 1404, 1384,
1368, 1327, 1307, 1299, 1240, 1195, 1178, 1123, 1080, 1032, 996, 968, 951, 913, 862,
840, 806, 786, 736 cm™'; HRMS (EI+) m/z calc'd for C,,H,,0, [M]*: 222.1620; found
222.1627; [a]y”? =10.67 (¢ 0.98, CHCl;, 86.3% ee); HPLC conditions: 5% IPA in

hexanes, OD-H column, t; (min): major = 5.80, minor = 6.53.
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(o}
ﬁ..\\‘\/ LiAlH,, Et,0, 0 °C ﬁm\\\/
—_—
BuO then 10% aq HCI o
151 92% yield 152

Cyclohexenone 152. A 50 mL round-bottom flask was charged with Et,O (11.1 mL) and
cooled to 0 °C in an ice/water bath. LiAIH, (13.6 mg, 0.36 mmol, 0.55 equiv) was added
in one portion. After 10 min, a solution of vinylogous ester 151 (146 mg, 0.66 mmol,
1.00 equiv) in Et,0 (2.0 mL) was added dropwise using positive pressure cannulation.
After 30 min of stirring at 0 °C, an additional portion of LiAIH, (2.5 mg, 0.066 mmol,
0.10 equiv) was added. After 60 min of stirring, the reaction was quenched by slow
addition of aqueous HCI (1.0 mL, 10% w/w). The resulting biphasic system was allowed
to warm to ambient temperature and stirred vigorously for 8.5 h. The phases were
separated and the aqueous phase was extracted with Et,0O (3 x 15 mL). The combined
organic phases were dried over Na,SO,, filtered, and concentrated under reduced
pressure. The crude product was purified using flash column chromatography (SiO,, 2 x
25 cm, 10:1—4:1—1:1—1:2 hexanes:Et,0) to afford cyclohexenone 152 (90.5 mg, 0.60
mmol, 92% yield) as a yellow oil; R;=0.51 (4:1 hexanes:EtOAc); '"H NMR (300 MHz,
CDCl,) 6 6.67 (d,J =10.2 Hz, 1H), 5.88 (d, /= 10.2 Hz, 1H), 5.79 (dddd, J = 16.8, 10.3,
74,74 Hz, 1H), 5.20-5.01 (m, 2H), 2.54-2.36 (m, 2H), 2.29-2.10 (m, 2H), 2.05-1.89
(m, 1H), 1.85-1.69 (m, 1H), 1.14 (s, 3H); ""C NMR (75 MHz, CDCl,) & 1994, 158 .4,
133.4,127.6,118.6,45.2,35.7,34.1, 33.6, 24.7; IR (Neat Film NaCl) 3077, 3005, 2960,
2917, 2868, 2849, 1682, 1639, 1616, 1459, 1419, 1390, 1373, 1332, 1250, 1223, 1193,
1115, 996, 961, 918, 871, 803, 757 cm™; HRMS (El+) m/z calc'd for C,H,,O [M]*:

150.1045; found 150.1056; [a],™° +26.72 (¢ 1.02, CHCl;, 86.3% ee).
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0 HO
SN LiAH,, E1,0, 0 °C SNF LW\ F
i-BuO then aq 10% HCI o * (0}
149a 137a 154a
6% yield 87% yield

Cycloheptenone 137a and pB-Hydroxyketone 154a. For procedure and characterization

data, see General Method A (Section 2.10.2.8, p. 155-155).

SN LiOH, TFE
) THF, 60 °C o "X
154a 96% yield 135a

Acylcyclopentene 135a. For procedure and characterization data, see General Method E

(Section 2.10.2.8, p. 156).

o
LiAIH,
Et,0, 0 °C /J/f)
—>
. then
i-BuO 10% aq HCI o
70 40% yield 157

Cyclohexenone 157. A 25 mL round-bottom flask with magnetic stir bar and LiAlH,
(22.8 mg, 0.60 mmol, 0.60 equiv) was charged with Et,0O (4 mL) and cooled to 0 °C in an
ice/water bath. After 10 min, a solution of vinylogous ester 70 (168.23 mg, 1.00 mmol,
1.00 equiv) in Et,0 (1 mL) was added dropwise using positive pressure cannulation.
After 30 min of stirring at 0 °C, the reaction was quenched by slow addition of aqueous
HCl (2.60 mL, 10% w/w). The resulting biphasic system was allowed to warm to
ambient temperature. The phases were separated and the aqueous phase was extracted

with Et,0 (3 x 10 mL). The combined organic phases were dried over MgSQO,, filtered,
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and concentrated carefully under reduced pressure in an ice/water bath. The crude
product purified using flash column chromatography (SiO,, 2 x 25 cm, 5:1—4:1
hexanes:EtOAc) to afford cyclohexenone 157 (39.4 mg, 0.41 mmol, 40% yield) as a
volatile pale yellow oil. Spectra for the compound match data for commercially available

material.

(o] HO
LiAlH,, Et,0, 0 °C
i-BuO then 10% aq HCI 0@ * (o]
147 159 160
24% yield 46% yield

Cycloheptenone 159 and p-Hydroxyketone 160. A 50 mL round-bottom flask with
magnetic stir bar and LiAIH, (806 mg, 21.2 mmol, 0.60 equiv) was charged with Et,O (8
mL) and cooled to 0 °C in an ice/water bath. After 10 min, a solution of vinylogous ester
147 (328.2 mg, 1.80 mmol, 1.00 equiv) in Et,0 (2 mL) was added dropwise using
positive pressure cannulation. After 30 min of stirring at O °C, the reaction was quenched
by slow addition of aqueous HCI (4.73 mL, 10% w/w). The resulting biphasic system
was allowed to warm to ambient temperature. The phases were separated and the
aqueous phase was extracted with EtOAc (3 x 10 mL). The combined organic phases
were dried over Na,SO,, filtered, and concentrated carefully under reduced pressure in an
ice/water bath. The crude product purified using flash column chromatography (SiO,, 2 x
25 cm, 6:1—=4:1—2:1—=1:1—>1:2—1:4 hexanes:EtOAc) to afford p-hydroxyketone 160
(107.1 mg, 0.84 mmol, 46% yield) as a pale yellow oil and cycloheptenone 159 (47.9 mg,

0.44 mmol, 24% yield) as a colorless oil.
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Cycloheptenone 159: Spectra for the compound match data for commercially available

material.

HO

O

160
B-Hydroxyketone 160: R, = 0.26 (1:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,) 6
4.18-3.97 (m, 1H), 2.89-2.67 (m, 2H), 2.55-2.35 (m, 2H), 2.10 (br s, 1H), 1.95-1.69 (m,
5H), 1.65-1.49 (m, 1H); "“"C NMR (125 MHz, CDCl,) § 212.6, 67.5, 51.8, 44 .4, 38.8,
24.4,23.8; IR (Neat Film NaCl) 3420, 2930, 2861, 1696, 1449, 1410, 1349, 1263, 1196,
1157, 1109, 1043, 1016, 929, 878, 829, 752, 710 cm™'; HRMS (EI+) m/z calc'd for

C,H,,0, [M]*: 128.0837; found 128.0828.

HO
LiOH, TFE
0 THF, 60 °C 0)\©
160 31% yield 161

Acylcyclopentene 161. Alcohol 160 (101.3 mg, 0.79 mmol, 1.00 equiv) was dissolved
in THF (7.9 mL) in a 20 mL scintillation vial with magnetic stir bar. The solution was
treated with 2,2 2-trifluoroethanol (86.4 uL, 1.19 mmol, 1.50 equiv) and anhydrous LiOH
(28.4 mg, 1.19 mmol, 1.50 equiv). The headspace of the vial was purged with N, and the
vial was capped with a teflon-lined hard cap and stirred at 60 °C in a heating block. After
16 h of stirring, the suspension was allowed to cool to ambient temperature, diluted with
Et,0O (150 mL), dried over Na,SO, (30 min of stirring), filtered, and concentrated

carefully under reduced pressure in an ice/water bath. The crude product was purified
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using flash column chromatography (SiO,, 2 x 20 cm, 15:1—10:1 hexanes:Et,0) to
afford acylcyclopentene 161 (27 mg, 0.25 mmol, 31% yield) as a colorless fragrant oil.

Spectra for the compound match data for commercially available material.

2.10.2.7 RING CONTRACTION SCREENING PROTOCOL*?

HO
SANS conditions )\Q/ SNF
o —_—® g s R o
154a 135a 137a
not observed
entry base additive solvent T(°C) conversion (%) time (h) yield (%)?
1 LiOt-Bu —_ t-BuOH 40 100 9 7
2 LiO#-Bu —_ THF 40 100 8 60
3 NaOt-Bu —_ THF 40 100 5 81
4 KOt-Bu — THF 40 100 5 85
5 NaOH — THF 60 100 4 89
6 KOH _ THF 60 100 4 87
7 LiOH — THF 60 78 24 199
8 LiOH t-BuOH THF 60 98 24 78
9 LiOH HFIP¢ THF 60 99 12,5 87
10 LiOH TFE® THF 60 99 12.5 96
11 LiOCH,CF; — THF 60 — 10 90°
12 CsOH-H,0 — THF 60 100 4 48
13 Cs,CO; — THF 60 67 24 61f
14 Cs,CO; TFE® THF 60 100 12,5 86
15 Cs,CO; TFE® CH3CN 60 100 12.5 100
16 NaOt-Bu t-BuOH THF 40 100 8 52
17 KOt-Bu t-BuOH THF 40 100 8 57
18 LiOH t-BuOH THF 40 87 24 77
19 LiOH TFE® THF 40 73 24 73
20 LiOH HFIP® THF 40 84 24 81
21 CsF — CH3CN 60 86 24 10

@ Conditions: B-hydroxyketone 154a (1.0 equiv), additive (1.5 equiv), base (1.5 equiv), solvent (0.1 M) at
indicated temperature for 924 h. © GC yield using an internal standard at = 98% conversion unless otherwise
stated. ¢ HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol; TFE = 2,2 2-trifluoroethanol. 9 Several reaction
intermediates observed by TLC and GC analysis; proceeded to 78% conversion. € Isolated yield. T Reaction did
not reach completion at 24 h; proceeded to 67% conversion.

Ring Contraction Screen to Produce Acylcyclopentene 135a (0.10 mmol scale, Table

2.3, entries 1-15). A benzene solution of B-hydroxyketone 154a was transferred to a dry
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1 dram vial and concentrated under reduced pressure to obtain a starting mass. To this
vial was added a magnetic stir bar and 1,4-diisopropylbenzene (internal standard). The
contents were solvated in either +-BuOH or THF (0.1 M). After complete solvation, an
appropriate additive (--BuOH, TFE, or HFIP; 1.50 equiv) was added, followed by base
(1.50 equiv). The head space of the vial was purged with N, and the vial was capped
with a teflon-lined hard cap and stirred at the appropriate temperature (40 or 60 °C) in a
heating block. Reaction progress was initially followed by TLC analysis and when
necessary, aliquots were removed and flushed through a small SiO, plug with EtOAc for
GC analysis. GC conditions: 90 °C isothermal for 5 min, then ramp 10 °C/min to 250 °C,
DB-WAX column, t; (min): 1,4-diisopropylbenzene = 5.3, acylcyclopentene 135a = 9.3,
B-hydroxyketone 154a = 17.1 and 17.2 (two diastereomers). (For characterization data,

see p. 155-156).

HO
N\ LiOCH,CF,
o THF, 60 °C o ; ; K
154a 90% yield 135a

Ring Contraction using LiOCH,CF; (Table 2.3, entry 11). p-Hydroxyketone 154a
(30.0 mg, 0.16 mmol, 1.00 equiv) was measured into a 1 dram vial with magnetic stir bar
with a septum-fitted screw cap. LiOCH,CF,” (26.0 mg, 0.25 mmol, 1.50 equiv) was
measured into a separate 1 dram vial, capped with a septum, evacuated/backfilled with N,
(3 cycles, 5 min evacuation per cycle), and dissolved in THF (0.5 mL). The solution was
cannulated into the vial containing 3-hydroxyketone along with additional THF rinses (2
x 0.5 mL). The yellow solution was stirred at 60 °C in a heating block. After 10 h, the

reaction was cooled to ambient temperature. The turbid brown solution was diluted with



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 149

Et,0 and stirred with Na,SO, for 30 min. The reaction was filtered and concentrated
under reduced pressure at O °C in an ice/water bath. The residue was purified by flash
column chromatography (SiO,, 1 x 20 cm, 15:1 hexanes:Et,0) to afford acylcyclopentene
135a (24.4 mg, 0.149 mmol, 90% yield) as a clear, colorless oil. (For characterization

data, see p. 156).

Additional Conditions. Additional reaction conditions are listed in Table 2.3, entries

16-21.

Unsuccessful Conditions. No reaction was observed using the following bases, with or
without TFE additive: DBU, TMG, Na,CO,, K,CO;, BaCO,, CaH,. DBU = 18-

diazabicyclo [5.4.0Jundec-7-ene, TMG = 1,1,3,3-tetramethylguanidine.

2.10.2.8 PREPARATION OF B-HYDROXYKETONES AND

ACYLCYCLOPENTENES

Full characterization data is reported for acylcyclopentenes 135, cycloheptenone
137a, and B-hydroxyketone intermediate 154a (mixture of diastereomers). For all other
B-hydroxyketone intermediates (154b—j, -0, mixtures of diastereomers), R, IR, and
HRMS data are reported and 'H NMR and IR spectra are provided for reference in
Figures A1.130-A1.160. For acylcyclopentenes 135a, the ee value was unchanged from

corresponding vinylogous ester 149a. For all other acylcyclopentenes (135), ee values
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are assumed to be unchanged from the corresponding vinylogous esters (149).

Representative procedures for General Methods A-E are described below.

0 HO
SN LiAH,, E1,0, 0 °C SNF LW\ F
i-BuO then 10% aq HCI o * (0}
149a 137a 154a
6% yield 87% yield

General Method A: LiAlH, Hydride Reduction / 10% Aq. HCI Hydrolysis
Cycloheptenone 137a and f-Hydroxyketone 154a. A 500 mL round-bottom flask with
magnetic stir bar was charged with Et,0 (150 mL) and cooled to O °C in an ice/water
bath. LiAlH, (806 mg, 21.2 mmol, 0.55 equiv) was added in one portion. After 10 min,
a solution of vinylogous ester 149a (9.13 g, 38.6 mmol, 1.00 equiv) in Et,0 (43 mL) was
added dropwise using positive pressure cannulation. The grey suspension was stirred for
40 min and additional LiAlH, (148 mg, 3.9 mmol, 0.10 equiv) was added in one portion.
After an additional 30 min of stirring at O °C, the reaction was quenched by slow addition
of aqueous HCI (110 mL, 10% w/w). The resulting biphasic system was allowed to
warm to ambient temperature and stirred vigorously for 8.5 h. The phases were separated
and the aqueous phase was extracted with Et,0O (3 x 100 mL). The combined organic
phases were dried over Na,SO,, filtered, and concentrated under reduced pressure. The
crude product was azeotroped with toluene (3 x 20 mL) and purified using flash column
chromatography (SiO,, 5 x 15 cm, 9:1—3:1 hexanes:EtOAc, dry-loaded using Celite) to
afford B-hydroxyketone 154a (6.09 g, 33.41 mmol, 87% yield, 1.3:1 dr) as a colorless
semi-solid and cycloheptenone 137a (387 mg, 2.36 mmol, 6% yield) as a colorless oil.

(For characterization data, see p. 155-155).
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1. DIBAL, PhCH3, =78 °C

2. oxalic acid-2H,0, MeOH

89% yield, 2 steps

149i 154i

General Method B: DIBAL Reduction / Oxalic Acid Hydrolysis
B-Hydroxyketone 154i. A 25 mL pear-shaped flask was charged with vinylogous ester
149i (29.4 mg, 0.094 mmol, 1.00 equiv) and toluene (3.0 mL). The solution was cooled
to —78 °C using an acetone/CO,(s) bath. A 1.0 M solution of DIBAL in toluene (112.6
uL, 0.113 mmol, 1.00 equiv) was added dropwise and the solution was stirred for 10 min.
MeOH (180 uL), Na,SO,-10H,0 (1.08 g), and Celite (360 mg) were added. The reaction
was stirred vigorously and allowed to warm slowly to ambient temperature. The mixture
was filtered through a Celite plug (3 x 3 cm, EtOAc), and concentrated under reduced
pressure. R;=0.28, broad (1:2 hexanes:EtOAc).

The crude hydroxy isobutyl enol ether was added to a 25 mL round-bottom flask and
dissolved in MeOH (4.0 mL). Oxalic acid dihydrate (354.9 mg, 2.82 mmol, 30.0 equiv)
was added in one portion. After 1 h of stirring, the reaction was neutralized to pH 7 with
1 M aqueous pH 7 NaH,PO,/Na,HPO, buffer (6 mL). The biphasic mixture was stirred
vigorously for 10 min and the phases were separated. The aqueous layer was extracted
with Et,0 (4 x 15 mL). The combined organic phases were dried over Na,SO,, filtered,
and concentrated under reduced pressure. The crude product was purified using flash
column chromatography (SiO,, 1.5 x 25 cm, 4:1—2:1—1:2 hexanes:acetone) to afford {3-

hydroxyketone 154i as a mixture of diastereomers (21.6 mg, 0.083 mmol, 89% yield over



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 152

2 steps, 2.8:1 dr) as a clear, colorless residue which solidified upon standing. (For

characterization data, see p. 165).

0 OTBDPS HO OTBDPS
(oo e (o
i-BuO 2. 10% aq HCI, Et,0, 0 °C > o
149m 95% yield, 2 steps 154m

General Method C: Luche Reduction / 10% Aq. HCI Hydrolysis

B-Hydroxyketone 154m. A 100 mL round-bottom flask with magnetic stir bar was
charged with vinylogous ester 149m (65.6 mg, 0.134 mmol, 1.00 equiv) and anhydrous
MeOH (8.3 mL). The solution was cooled to 0 °C in an ice/water bath. CeCl,;-7H,0
(78.2 mg, 0.21 mmol, 1.56 equiv) was added in one portion and the mixture was stirred
for 5 min. Addition of NaBH, (23.8 mg, 0.63 mmol, 4.70 equiv) led to the evolution of
gas and a turbid solution that became clear after several minutes. The reaction was
stirred at 0 °C. After 15 min, the reaction was diluted with CH,CI, (20 mL) until turbid,
filtered through a Celite plug (3 x 3 cm, CH,Cl,), and concentrated under reduced
pressure. The residue was taken up in CH,Cl,, filtered through a Celite plug (3 x 5 cm,
CH,Cl,), and concentrated under reduced pressure a second time. R; = 0.33 (10:1
hexanes:EtOAc).

The crude hydroxy isobutyl enol ether was added to a 25 mL round-bottom flask with
a magnetic stir bar and dissolved in Et,O (3.8 mL). The vigorously stirred solution was
cooled to 0 °C and aqueous HCI (384 uL, 10% w/w) was added dropwise via syringe.
After 30 min, the reaction was allowed to warm to ambient temperature and extracted

with Et,0 (3 x 5 mL). The combined organic phases were dried over Na,SO,, filtered,
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and concentrated under reduced pressure. The crude product was purified using flash
column chromatography (SiO,, 1.5 x 25 cm, 6:1—4:1 hexanes:EtOAc) to afford (-
hydroxyketone 154m as a mixture of diastereomers (55.6 mg, 0.13 mmol, 95% yield over

2 steps, 3.5:1 dr) as a colorless oil. (For characterization data, see p. 168).

0“‘\‘\0/ 1. DIBAL, PhCH,3, -78 °C - OI-!\\/
. 2. 10% HCI, Et,0, 0 °C
i-BuO o

38% yield
149n 154n

General Method D: DIBAL Reduction / 10% Aq. HCI Hydrolysis
B-Hydroxyketone 154n. A 50 mL pear-shaped flask was charged with vinylogous ester
149n (100 mg, 0.292 mmol, 1.00 equiv) and toluene (9.5 mL). The solution was cooled
to —78 °C using an acetone/CO,(s) bath. A 1.0 M solution of DIBAL in toluene (963 uL.,
0.963 mmol, 1.00 equiv) was added dropwise and the mixture was stirred for 15 min.
MeOH (1.0 mL), Na,SO,-10 H,O (6.0 g), and Celite (1.2 g) were added and the mixture
was stirred vigorously and allowed to warm slowly to ambient temperature. The mixture
was filtered through a Celite plug (3 x 3 cm, EtOAc), and concentrated under reduced
pressure. R,=0.30 (2:1 hexanes:EtOAc).

The crude hydroxy isobutyl enol ether was added to a 50 mL pear-shaped flask,
dissolved in Et,O (10 mL), and cooled to 0 °C in an ice/water bath. Aqueous HCI (0.835
mL, 10% w/w) was added dropwise and the biphasic mixture was stirred vigorously at 0
°C. After 40 min or stirring, additional aqueous HCI (0.835 mL, 10% w/w) was added.
After 1.5 h, the layers were separated and the aqueous layer was extracted with Et,O (5 x

15 mL). The combined organic layers were dried over Na,SO,, filtered, and concentrated
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under reduced pressure. The crude product was purified using flash column
chromatography (SiO,, 1.5 x 25 cm, 10:1—=6:1—4:1—2:1—=1:1—1:2 hexanes:EtOAc) to
afford B-hydroxyketone 154n as a mixture of diastereomers (20.3 mg, 0.110 mmol, 38%

yield over 2 steps) as a clear, colorless oil. (For characterization data, see p. 172).

(o)

HO
N\ LiOH, TFE
154a 96% yield /J 135a

General Method E: -Hydroxyketone Ring Contraction
Acylcyclopentene 135a. Alcohol 154a (6.09 g, 33.4 mmol, 1.00 equiv) was dissolved in
THF (334 mL) in a 500 mL round-bottom flask. The solution was treated with 2,2,2-
trifluoroethanol (3.67 mL, 50.1 mmol, 1.50 equiv) and anhydrous LiOH (1.20 g, 50.1
mmol, 1.50 equiv). The flask was fitted with a condenser, purged with N,, and heated to
60 °C using an oil bath. After 18 h of stirring, the suspension was allowed to cool to
ambient temperature, diluted with Et,O (150 mL), dried over Na,SO, (30 min of stirring),
filtered, and concentrated carefully under reduced pressure, allowing for a film of ice to
form on the outside of the flask. The crude product was purified using flash column
chromatography (Si0O,, 5 x 15 cm, 15:1 hexanes:Et,0) to afford acylcyclopentene 135a
(5.29 g, 32.2 mmol, 96% yield) as a colorless fragrant oil. (For characterization data, see

p. 156).
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“\‘\ \/
0o

137a

Cycloheptenone 137a. Prepared using General Method A. 387 mg, 2.36 mmol, 6%
yield. Flash column chromatography (SiO,, 5 x 15 cm, 9:1—3:1 hexanes:EtOAc, dry-
loaded using Celite). R, = 0.54 (7:3 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,) §
6.04 (dd,J=129,0.7 Hz, 1H),5.82 (d,J =129 Hz, 1H), 5.75 (dddd, J = 17.1, 10.3, 7.8,
7.1 Hz, 1H), 5.10 (dddd, J = 10.3, 1.2, 1.2, 1.2 Hz, 1H), 5.08-5.03 (m, 1H), 2.65-2.52
(m, 2H), 2.19 (app dd, J = 13.7, 6.8 Hz, 1H), 2.11 (app dd, J = 13.7, 8.1 Hz, 1H), 1.84—
1.76 (m, 3H), 1.68-1.63 (m, 1H), 1.10 (s, 3H); "C NMR (75 MHz, CDCl,) § 204.7,
152.5,133.8,128.6,118.6,47.2,45.1,42.7,38.2,27.1, 18.4; IR (Neat Film NaCl) 3076,
3011, 2962, 2934, 2870, 1659, 1454, 1402, 1373, 1349, 1335, 1278, 1208, 1172, 997,
916, 874, 822, 772 cm™'; HRMS (EI+) m/z calc'd for C, H,;O [M]*: 164.1201; found

164.1209; [a]p™” —9.55 (¢ 1.07, CHCl;, 88.0% ee).

HO

o \/
(0}

154a

B-Hydroxyketone 154a (Table 2.4, entry 1). Prepared using General Method A. 6.09
g, 33.41 mmol, 87% yield, 1.3:1 dr. Flash column chromatography (SiO,, 5 x 15 cm,
9:1—3:1 hexanes:EtOAc, dry-loaded using Celite). R,= 0.23 (7:3 hexanes:EtOAc); 'H
NMR (500 MHz, CDCl;) § major epimer: 5.88 (dddd, J = 15.1, 9.0, 7.6, 7.6 Hz, 1H),
5.12-5.08 (m, 2H), 3.70 (dd, J = 4.9, 3.9 Hz, 1H), 2.86 (dd, J = 15.6, 1.7 Hz, 1H), 2.65

(dd,J=15.6,7.3 Hz, 1H), 2.54-2.43 (m, 2H), 2.24 (dd, J = 13.7, 7.8 Hz, 1H), 2.07 (dd, J
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=134,7.3 Hz, 1H), 1.99 (dd, J = 15.9, 44 Hz, 1H), 1.82-1.69 (m, 2H), 1.45-1.41 (m,
1H), 0.96 (s, 3H); minor epimer: 5.83 (dddd, J=14.9, 10.3,7.6,7.6 Hz, 1H), 5.12-5.06
(m, 2H), 3.68 (dd,J=4.1,2.4 Hz, 1H) 2.80 (dd, J = 154, 2.4 Hz, 1H), 2.74 (dd, J = 15 4,
8.1 Hz 1H), 2.46-2.38 (m, 2H), 2.18 (dd, J = 13.9, 7.3 Hz, 1H), 2.09 (dd, J = 12.9, 7.8
Hz, 1H), 1.82-1.65 (m, 3H), 1.50-1.47 (m, 1H), 1.02 (s, 3H); "“C NMR (75 MHz,
CDCl,) 6 major epimer: 213.2, 1350, 118.1, 72.9, 46.7, 44.9, 442, 41.0, 36.3, 21.9,
18.9; minor epimer: 212.6, 134.2, 118.3, 73.3,47.2, 42.8, 41.0, 35.9, 22.6, 18.7; IR
(Neat Film NaCl) 3436, 3074, 2932, 1692, 1638, 1443, 1403, 1380, 1352, 1318, 1246,
1168, 1106, 1069, 999, 913, 840 cm™; HRMS (EI+) m/z calc'd for C,,HO, [M]*:

182.1313; found 182.1307; [a],™* —57.10 (¢ 2.56, CHCl,, 88.0% e¢).

o]

&

135a
Acylcyclopentene 135a (Table 2.4, entry 1). Prepared using General Method E. 5.29 g,
32.2 mmol, 96% yield. Flash column chromatography (SiO,, 5 x 15 cm, 15:1
hexanes:Et,0). R;=0.67 (8:2 hexanes:EtOAc); 'H NMR (500 MHz, CDCI,) 8 6.45 (app
t,J =1.7 Hz, 1H), 5.76 (dddd, J = 164, 10.7, 7.3, 7.3 Hz, 1H), 5.07-5.03 (m, 2H), 2.59-
2.48 (m, 2H), 2.30 (s, 3H), 2.21-2.14 (m, 2H), 1.85 (ddd, /= 12.9, 8.3, 6.3 Hz, 1H), 1.64
(ddd, J = 12.9, 8.5, 6.1 Hz, 1H), 1.11 (s, 3H); “C NMR (125 MHz, CDCl,) & 197.5,
1519, 143.8,134.9,117.8,50.0,45.3,36.0, 29.7, 26.8, 25.6; IR (Neat Film NaCl) 3077,
2956, 2863, 1668, 1635, 1616, 1454, 1435, 1372, 1366, 1309, 1265, 1213, 1177, 993,

914,862 cm™; HRMS (EI+) m/z calc'd for C,,H,;O [M+H]*: 165.1279; found 165.1281;
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[a]y"* +17.30 (¢ 0.955, CHCL,, 88.0% ee); GC conditions: 80 °C isothermal, GTA

column, #; (min): major = 54.7, minor = 60.2.

HO
o \/
(0}

154b
B-Hydroxyketone 154b (Table 2.4, entry 2). Prepared using General Method A. 111.5
mg, 0.57 mmol, 95% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
hexanes:EtOAc). R;=0.36 (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.133; IR (Neat Film NaCl) 3448, 3073, 2965, 2933,
1832, 1696, 1691, 1673, 1459, 1413, 1381, 1352, 1334, 1323, 1306, 1269, 1252, 1269,
1252, 1172, 1138, 1111, 1084, 1071, 1050, 997, 955, 930, 912, 876, 825, 777,737 cm™';

HRMS (EI+) m/z calc'd for C,,H,,0, [M]*: 196.1463; found 196.1480.

135b
Acylcyclopentene 135b (Table 2.4, entry 2). Prepared using General Method E. 21.8
mg, 0.12 mmol, 95% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R,=0.73 (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 6.44 (dd,
J =138, 1.8 Hz, 1H), 5.80-5.64 (m, 1H), 5.08-5.04 (m, 1H), 5.03-5.00 (m, 1H), 2.55-
2.46 (m, 2H), 2.30 (s, 3H), 2.19-2.16 (m, 2H), 1.81-1.68 (m, 2H), 1.52-1.41 (m, 2H),

0.85 (dd, J=7.5,7.5 Hz, 3H); "C NMR (75 MHz, CDCl,) 6 197.4, 150.7, 144.6, 134.8,
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117.7, 54.0, 43.1, 32.9, 31.3, 30.1, 26.9, 9.1; IR (Neat Film NaCl) 3075, 2962, 2922,
2878, 2855, 1669, 1639, 1617, 1459, 1437, 1372, 1319, 1266, 1207, 1052, 995, 913, 868,
784 cm™; HRMS (EI+) m/z calc'd for C,,H,;O [M+H]": 179.1436; found 179.1401;

[l +7.06 (¢ 0.98, CHC,, 91.6% ee).

Ph

HO
o \/
(o}

154c

B-Hydroxyketone 154c (Table 2.4, entry 3). Prepared using General Method A. 109.9
mg, 0.43 mmol, 89% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
hexanes:EtOAc). R, =0.11 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.135; IR (Neat Film NaCl) 3443, 3072, 3028, 3003,
2930, 2865, 1696, 1692, 1685, 1636, 1601, 1582, 1495, 1453, 1413, 1400, 1352, 1340,
1255, 1182, 1163, 1118, 1058, 1031, 995, 970, 916, 885, 848, 809, 754 cm™'; HRMS

(EI+) m/z calc'd for C,,H,,0, [M]™": 258.1620; found 258.1642.

135¢
Acylcyclopentene 135c¢ (Table 2.4, entry 3). Prepared using General Method E. 22.7
mg, 0.094 mmol, 97% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R;=0.54 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) & 7.30-7.18
(m, 3H), 7.14-7.08 (m, 2H), 6.45 (dd, J = 1.8, 1.8 Hz, 1H), 5.78 (dddd, J = 16.3, 10.8,

7.7,7.0 Hz, 1H), 5.13-5.10 (m, 1H), 5.07 (dddd, J=9.1,2.2,1.2,1.2 Hz, 1H), 2.79 (d, J
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= 133 Hz, 1H), 2.73 (d, J = 13.3 Hz, 1H), 2.43 (dddd, J = 16.5, 8.6, 5.7, 1.7 Hz, 1H),
2.27-2.17 (m, 3H), 2.21 (s, 3H), 1.91-1.75 (m, 2H); "*C NMR (75 MHz, CDCL,) &
197.1,150.1, 144.9, 138.2, 134.7, 130.4, 128.1, 126.4, 118.3, 54.6, 45.2, 43.3, 33.3,30.0,
26.9; IR (Neat Film NaCl) 3061 3027, 3002, 2920, 2853, 1668, 1638. 1617, 1495, 1453,
1442, 1371, 1314, 1264, 1197, 1089, 1030, 995, 914, 861, 734 cm™; HRMS (EI+) m/z
calc'd for C;Hy,O [M]™: 240.1514; found 240.1530; [a],>° —20.63 (¢ 0.83, CHCL,,

86.3% ee).

=
R \/

154d

B-Hydroxyketone 154d (Table 2.4, entry 4). Prepared using General Method A. 117
mg, 0.56 mmol, 98% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
hexanes:EtOAc). R;=0.35 (10:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCIl,) mixture
of two diastereomers, see Figure A1.137; IR (Neat Film NaCl) 3434, 3295, 3074, 3002,
2932, 2114, 1690, 1684, 1637, 1447, 1354, 1252, 1166, 1124, 1064, 977, 917, 886, 838

cm™'; HRMS (EI+) m/z calc'd for C;H, O, [M]*": 206.1307; found 206.1311.

135d

Acylcyclopentene 135d (Table 2.4, entry 4). Prepared using General Method E. 22.5

mg, 0.12 mmol, 97% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
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hexanes:Et,0). R,=0.74 (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 6.51 (dd,
J=18,1.8 Hz, 1H), 5.73 (dddd, J = 169, 10.2, 74, 7.4 Hz, 1H), 5.13 (dm, J = 10.2 Hz,
1H), 5.10-5.07 (m, 1H), 2.66-2.46 (m, 2H), 2.34-2.33 (m, 1H), 2.33-2.32 (m, 1H), 2.32
(s, 3H), 2.32-2.30 (m, 2H), 1.99 (dd, J = 2.7, 2.7 Hz, 1H), 1.93—-1.75 (m, 2H); “"C NMR
(75 MHz, CDCl,) 197.3, 148.6, 145.2, 133.9, 118.6, 81.4, 70.3, 53.2, 42.4, 33.4, 30.0,
28.5,26.9; IR (Neat Film NaCl) 3298, 3075, 3001, 2924, 2857, 2116, 1669, 1639, 1617,
1457, 1437, 1372, 1318, 1265, 1222, 1204, 996, 919, 867 cm™'; HRMS (EI+) m/z calc'd

for C,;H,;O [M]*": 188.1201; found 188.1211; [a],”" —58.65 (¢ 0.71, CHCl,, 88.5% ee).

154e

B-Hydroxyketone 154e (Table 2.4, entry 5). Prepared using General Method A. 116.7
mg, 0.52 mmol, 97% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
hexanes:EtOAc). R;=0.15 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.139; IR (Neat Film NaCl) 3447, 3075, 3001, 2975,
2931, 2866, 1827, 1693, 1639, 1456, 1415, 1352, 1336, 1250, 1169, 1116, 1073, 995,
910, 855, 763, 714 cm™; HRMS (EI+) m/z calc'd for C 3 H,;0, [M]*": 276.2089; found

276.2060.
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135e

Acylcyclopentene 135e (Table 2.4, entry 5). Prepared using General Method E. 19.1
mg, 0.093 mmol, 90% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R, =0.62 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 6.45 (dd,
J=1.8, 1.8 Hz, 1H), 5.79 (dddd, J = 16.8, 10.2, 6.5, 6.5 Hz, 1H), 5.72 (dddd, J = 16.8,
9.5,73,7.3 Hz, 1H), 5.09-5.07 (m, 1H), 5.05-4.97 (m, 2H), 4.94 (dm, J = 10.2 Hz, 1H),
2.56-2.49 (m, 2H), 2.30 (s, 3H), 2.23-2.17 (m, 2H), 2.15-1.91 (m, 2H), 1.85-1.70 (m,
2H), 1.58-1.50 (m, 2H); “C NMR (75 MHz, CDCl,) § 197.3, 150.4, 144.6, 138.8, 134.6,
1179, 114.6, 53.5, 43.6, 38.1, 33.3, 30.1, 29.2, 26.9; IR (Neat Film NaCl) 3076, 3001,
2976, 2919, 2854, 1670, 1640, 1618, 1437, 1372, 1314, 1265, 1204, 995,911, 865 cm™;
HRMS (EI+) m/z calc'd for C,,H,,O [M+H]": 205.1592; found 205.1588; [a],>? -30.08

(c 0.92, CHCl;, 86.9% ee).

154f

B-Hydroxyketone 154f (Table 2.4, entry 6). Prepared using General Method A. 117.5
mg, 0.50 mmol, 96% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
hexanes:EtOAc). R, = 0.19 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.141; IR (Neat Film NaCl) 3448, 3075, 3035, 3007,

2972, 2929, 2865, 1700, 1696, 1691, 1685, 1648, 1637, 1600, 1449, 1415, 1352, 1333,
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1245, 1171, 1120, 1068, 1052, 1005, 969, 954, 912, 855, 838, 817, 720 cm™'; HRMS

(FAB+) m/z calc'd for C,sH,;0, [M+H]": 235.1698; found 235.1697.

135f
Acylcyclopentene 135f (Table 2.4, entry 6). Prepared using General Method E. 25.2
mg, 0.12 mmol, 95% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R, =0.65 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 6.45 (dd,
J=138,1.8 Hz, 1H), 6.30 (ddd, J = 16.9, 10.2, 10.2 Hz, 1H), 6.08 (dd, J = 15.0, 10.4 Hz,
1H), 5.73 (dddd, J = 164, 11.6, 8.9, 7.5 Hz, 1H), 5.63 (ddd, J = 15.0, 7.6, 7.6 Hz, 1H),
5.14-5.09 (m, 2H), 5.06-5.02 (m, 1H), 5.00 (dm, J = 10.1 Hz, 1H), 2.54-2.46 (m, 2H),
2.30 (s, 3H), 2.25-2.17 (m, 4H), 1.80-1.74 (m, 2H); "“C NMR (75 MHz, CDCl,) §
197.3,150.0, 144.8,137.0, 134.5, 134.3, 1304, 118.1, 115.9,54.0, 43.3,42.0, 33.2,30.0,
26.9; IR (Neat Film NaCl) 3079, 3006, 2929, 2857, 1735, 1670, 1640, 1617, 1439, 1371,
1318, 1267, 1201, 1175, 1084, 1004, 952, 912 cm™'; HRMS (FAB+) m/z calc'd for

C,sH,,0 [M+H]*: 217.1592; found 217.1568; [c]y,>>" —32.14 (¢ 1.26, CHCL,, 89.6% ee).

154g

B-Hydroxyketone 154g (Table 2.4, entry 7). Prepared using General Method A. 114.9

mg, 0.47 mmol, 93% yield. Flash column chromatography (SiO,, 2 x 25 cm, 10:1—3:1
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hexanes:EtOAc). R;=0.15 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.143; IR (Neat Film NaCl) 3436, 3075, 2931, 2869,
1695, 1627, 1452, 1414, 1352, 1297, 1251, 1222, 1151, 1064, 1021, 997, 974, 915, 887,

839 cm™'; HRMS (EI+) m/z calc'd for C,;H,,0,Cl [M]*: 242.1074; found 242.1063.

w

A

Cl
135g

Acylcyclopentene 135g (Table 2.4, entry 7). Prepared using General Method E. 23.8
mg, 0.11 mmol, 99% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R,=0.55 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 6 6.61 (dd,
J=18,1.8 Hz, 1H), 5.73 (dddd, J = 159, 11.1, 7.9, 7.3 Hz, 1H), 5.29 (d, J = 1.2 Hz,
1H), 5.15-5.14 (m, 1H), 5.11-5.10 (m, 1H), 5.08-5.04 (m, 1H), 2.56-2.48 (m, 4H), 2.31
(s, 3H), 2.28-2.25 (m, 2H), 1.93 (ddd, J = 13.3, 8.4, 6.6 Hz, 1H), 1.84 (ddd, J = 13.3, 8.1,
6.4 Hz, 1H); "“C NMR (75 MHz, CDCL,) 8 197.3, 149.6, 144.4, 139.4, 134.0, 118.7,
1164, 53.4,48.0, 43.4,33.3,29.8, 26.9; IR (Neat Film NaCl) 3076, 2946, 2857, 1669,
1629, 1434, 1372, 1320, 1266, 1230, 1206, 1167, 996, 917, 886 cm™'; HRMS (EI+) m/z
calc'd for C,3H,;OCI [M+H]": 225.1046; found 225.1053; [a],” +46.29 (¢ 1.06, CHCl,,

85.7% ee).



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 164

154h

B-Hydroxyketone 154h (Table 2.4, entry 8). Prepared using General Method A. 72.4
mg, 0.33 mmol, 90% yield. Flash column chromatography (SiO,, 2 x 25 cm,
4:1—2:1—1:1 hexanes:EtOAc). R, = 0.40, broad (1:1 hexanes:EtOAc); "H NMR (300
MHz, CDCl,;) mixture of two diastereomers, see Figure A1.145; IR (Neat Film NaCl)
3468, 3075, 2932, 2871, 2247, 1696, 1458, 1437, 1420, 1352, 1319, 1252, 1169, 1122,

1070, 999, 921, 853, 754 cm™'; HRMS (EI+) m/z calc'd for C,;H,,O,N [M]*: 221.1416;

0
W
/J
CN

135h

found 221.1411.

Acylcyclopentene 135h (Table 2.4, entry 8). Prepared using General Method E. 19.4
mg, 0.095 mmol, 94% yield. Flash column chromatography (SiO,, 1 x 20 cm,
2:1—3:2—1:1 hexanes:Et,0). R, = 0.84, broad (1:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCl,) § 6.42 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (dddd, J = 16.4, 10.6, 7.4, 7.4 Hz,
1H), 5.15-5.12 (m, 1H), 5.15-5.06 (m, 1H), 2.60-2.52 (m, 2H), 2.37-2.22 (m, 2H), 2.32
(s, 3H), 2.23-2.20 (m, 2H), 1.93-1.82 (m, 3H), 1.73 (ddd, J = 13.6, 8.2, 7.0 Hz, 1H); "C
NMR (75 MHz, CDCl,) 6 196.8,147.2, 146.0, 133.3, 120.0, 119.0, 53.2,43.5,34.2, 32.7,

30.2,27.0, 13.1; IR (Neat Film NaCl) 3074, 2923, 2857, 2245, 1667, 1640, 1618, 1423,
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1373, 1308, 1264, 1202, 1090, 996, 918, 867 cm™'; HRMS (EI+) m/z calc'd for C;H {NO

[M+H]": 204.1388; found 204.1385; [a],>° -31.11 (¢ 0.90, CHCl,, 87.4% ee).

154i

B-Hydroxyketone 154i (Table 2.4, entry 9). Prepared using General Method B. 21.6
mg, 0.083 mmol, 89% yield over 2 steps. Flash column chromatography (SiO,, 1.5 x 25
cm, 4:1—2:1—1:2 hexanes:acetone). R, = 0.10 (2:1 hexanes:acetone); '"H NMR (300
MHz, CDCl,;) mixture of two diastereomers, see Figure A1.147; IR (Neat Film NaCl)
3391, 3201, 3073, 2929, 2865, 1699, 1636, 1603, 1557, 1497, 1456, 1418, 1352, 1332,
1297, 1258, 1222, 1187, 1161, 1113, 1069, 1005, 995, 972, 915, 886, 851, 802, 735 cm™";

HRMS (FAB+) m/z calc'd for C,H,,0,N [M+H]*: 260.1650; found 260.1649.

135i

Acylcyclopentene 135i (Table 2.4, entry 9). Prepared using General Method E. 15.7
mg, 0.065 mmol, 90% yield. Flash column chromatography (SiO,, 1.5 x 16 cm, 2:1—1:1
hexanes:acetone). R, = 0.47 (2:1 hexanes:acetone); 'H NMR (300 MHz, CDCI,) & 8.49
(br d, J = 3.8 Hz, 2H), 7.04 (d, J = 5.7 Hz, 2H), 6.40 (dd, J = 1.7, 1.7 Hz, 1H), 5.75
(dddd, J = 17.3, 10.3, 7.3, 7.3 Hz, 1H), 5.16-5.04 (m, 2H), 2.77 (d, J = 13.0 Hz, 1H),

2.71(d,J=13.0Hz, 1H), 2.52-2.39 (m, 1H), 2.33-2.35 (m, 1H), 2.28 (s, 3H), 2.24-2.20
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(m, 2H), 1.85-1.80 (m, 2H); "*C NMR (75 MHz, CDCL,) § 196.8, 149.6, 148.6, 147 3,
145.4,134.0, 125.7, 118.8,54.2, 44.4, 43 .3, 33.3,30.0, 27.0; IR (Neat Film NaCl) 3401,
3071, 3025, 2922, 2856, 1668, 1640, 1618, 1600, 1557, 1495, 1441, 1415, 1373, 1318,
1277, 1265, 1220, 1194, 1071, 994, 917, 874, 844, 810, 763 cm™; HRMS (EI+) m/z
calc'd for C,H,,ON [M]*: 176.1467; found 176.1458; [a],>° —8.58 (c 0.77, CHCL,,

84.6% ee).

154j

B-Hydroxyketone 154j (Table 2.4, entry 10). Prepared using General Method A. 300.1
mg, 0.67 mmol, 94% yield. Flash column chromatography (SiO,, 3 x 25 cm,
4:1—3:1—2:1—1:1 hexanes:EtOAc). R; = 0.20, 0.26 (two diasterecomers) (2:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture of two diastereomers, see Figure
A1.149; IR (Neat Film NaCl) 3436, 3068, 2930, 2873, 1693, 1639, 1597, 1494, 1447,
1365, 1402, 1365, 1279, 1211, 1188, 1172, 1133, 1121, 1095, 1063, 1020, 995, 975, 913,
813,778,747 cm™'; HRMS (FAB+) m/z calc'd for C,sH;,0,NS [M+H]*: 452.1896; found

452.1896.
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Acylcyclopentene 135j (Table 2.4, entry 10). Prepared using General Method E. 55.7
mg, 0.10 mmol, 93% yield. Flash column chromatography (SiO,, 2 x 25 cm,
10:1—8:1—6:1—4:1 hexanes:EtOAc). R, =0.67 (2:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCl;) 6 7.98 (br d, J = 8.2 Hz, 1H), 7.63 (dm, J = 8.4 Hz, 2H), 7.40 (dd, J = 7.3,
0.8 Hz, 1H), 7.33 (br s, 1H), 7.30 (ddd, J = 8.2, 8.2, 1.3 Hz, 1H), 7.21 (ddd, J=7.5,7.5,
1.1 Hz, 1H), 7.17 (dm, J = 8.2 Hz, 2H), 6.35 (dd, J = 1.8, 1.8 Hz, 1H), 5.75 (dddd, J =
169, 103, 7.7, 6.9 Hz, 1H), 5.13-5.10 (m, 1H), 5.10-5.04 (m, 1H), 2.82 (s, 3H), 2.44
(dddd, J =14.7, 8.8, 5.9, 1.7 Hz, 1H), 2.33 (br s, 2H), 2.31-2.18 (m, 3H), 2.16 (s, 3H),
1.86 (ddd, J = 14.6, 8.6, 6.1 Hz, 1H), 1.79 (ddd, J = 14.8, 7.6, 5.8 Hz, 1H); C NMR (75
MHz, CDCL;) 6 196.9, 149.9, 145.1, 1449, 135.2, 135.1, 134.3, 131.9, 130.0, 126.7,
124.8, 124.7, 123.2, 119.9, 1194, 118.5, 113.9, 54.5, 43.5, 33.8, 33.4, 30.0, 26.8, 21.7;
IR (Neat Film NaCl) 3316, 3129, 3101, 3068, 3001, 2974, 2922, 2855, 1667, 1639, 1618,
1597, 1562, 1493, 1448, 1400, 1372, 1307, 1293, 1277, 1211, 1188, 1174, 1121, 1094,
1020, 978, 916, 853, 813, 747 cm™; HRMS (El+) m/z calc'd for C,iH,,O;NS [M]*:

433.1712; found 433.1694; [a],™? +0.35 (¢ 1.09, CHCl,, 82.9% ee).
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OTBDPS

HO
‘.‘\‘\/
(0}

154m

B-Hydroxyketone 154m (Table 2.4, entry 11). Prepared using General Method C.
55.6 mg, 0.13 mmol, 95% yield over 2 steps. Flash column chromatography (SiO,, 1.5 x
25 cm, 6:1—4:1 hexanes:EtOAc). R, = 0.22, 0.28 (two diastereomers) (4:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture of two diastereomers, see Figure
A1.151; IR (Neat Film NaCl) 3468, 3072, 3050, 2999, 3013, 2931, 2895, 2858, 2248,
1960, 1891, 1823, 1772, 1698, 1638, 1590, 1472, 1462, 1446, 1428, 1391, 1361, 1337,
1260, 1222, 1186, 1172, 1158, 1113, 1088, 1030, 1006, 999, 976, 914, 841, 823, 810, 740

cm™'; HRMS (FAB+) m/z calc'd for C,;H;,0,Si [M+H]*": 437.2512; found 437.2517.

w

/J OTBDPS

135m
Acylcyclopentene 135m (Table 2.4, entry 11). Prepared using General Method E. 32.6
mg, 0.078 mmol, 96% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R;=0.60 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 8 7.67-7.60
(m, 4H), 7.47-7.34 (m, 6H), 6.50 (dd, J = 1.8, 1.8 Hz, 1H), 5.71 (dddd, J = 17.0, 10.1,
7.8,6.9 Hz, 1H), 5.12-5.08 (m, 1H), 5.06-5.02 (m, 1H), 3.57 (d, J = 9.8 Hz, 1H), 3.53 (d,
J=9.8 Hz, 1H), 2.54-2.48 (m, 2H), 2.38 (ddd, J = 13.8, 6.9, 1.1 Hz, 1H), 2.31-2.25 (m,
1H), 2.29 (s, 3H), 1.81-1.72 (m, 2H), 1.07 (s, 9H); ""C NMR (75 MHz, CDCl,) & 197.2,
148.5, 145.7, 135.8, 135.7, 134.5, 133.6, 133.6, 129.9, 1299, 127.8, 118.0, 69.1, 56.5,

40.4, 30.7, 30.0, 27.0, 26.8, 19.5; IR (Neat Film NaCl) 3072, 3050, 2999, 2956, 2931,
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2896, 2857, 1671, 1639, 1618, 1472, 1463, 1427, 1367, 1320, 1266, 1232, 1188, 1112,
998, 936, 915, 864, 824, 740 cm™'; HRMS (EI+) m/z calc'd for C,,H,,0,Si [M]*:

433.1712; found 433.1694; [a],”° —17.58 (c 0.94, CHCl,, 51.4% ee).

1540

B-Hydroxyketone 1540 (Table 2.4, entry 12). Prepared using General Method C.
110.6 mg, 0.24 mmol, 92% yield over 2 steps. Flash column chromatography (SiO,, 2 x
25 cm, 6:1—4:1 hexanes:EtOAc). R, = 0.15 (4:1 hexanes:EtOAc); '"H NMR (300 MHz,
CDCl;) mixture of two diastereomers, see Figure A1.153; IR (Neat Film NaCl) 3436,
3071, 3050, 3013, 2999, 2931, 2896, 2859, 1960, 1891, 1826, 1694, 1638, 1589, 1472,
1461, 1428, 1390, 1360, 1325, 1307, 1251, 1218, 1188, 1168, 1111, 1092, 1007, 998,
973, 934, 914, 823, 798, 740 cm™'; HRMS (FAB+) m/z calc'd for C,0H,,0,Si [M+H]":

465.2825; found 465.2810.

OTBDPS
_

1350
Acylcyclopentene 1350 (Table 2.4, entry 12). Prepared using General Method E. 92.2
mg, 0.21 mmol, 92% yield. Flash column chromatography (SiO,, 2 x 25 cm, 15:1

hexanes:Et,0). R;=0.64 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 8 7.71-7.64

(m, 4H), 7.48-7.35 (m, 6H), 6.44 (dd, J=1.7, 1.7 Hz, 1H), 5.81-5.65 (m, 1H), 5.10-5.07
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(m, 1H), 5.05-5.02 (m, 1H), 3.69-3.64 (m, 2H), 2.55-2.49 (m, 2H), 2.31 (s, 3H), 2.20-
2.18 (m, 2H), 1.84-1.67 (m, 2H), 1.53-1.48 (m, 4H), 1.07 (s, 9H); "“C NMR (75 MHz,
CDCl,) 6 197.3,150.7, 144.4, 135.7, 134.7, 134.0, 129.7, 127.7, 117.8, 64.3, 53.3, 43.5,
34.8, 33.3, 30.0, 28.0, 27.0, 26.8, 19.3; IR (Neat Film NaCl) 3071, 3050, 3013, 2999,
2931, 2897, 2857, 1670, 638, 1618, 1589, 1472, 1461, 1448, 1428, 1388, 1372, 1316,
1263, 1201, 1157, 1111, 1093, 1030, 1008, 998, 937, 915, 865, 823, 803, 741, 726 cm™;
HRMS (FAB+) m/z calc'd for C,sH,,0,Si [M—C,H,]*: 389.1968; found 389.1958; [a],>°

—-14.19 (¢ 0.92, CHCl;, 78.4% ee).

o \/
(0}

154p
B-Hydroxyketone 154p (Table 2.4, entry 13). Prepared using General Method A.
429.5 mg, 2.36 mmol, 87% yield. Flash column chromatography (SiO,, 3 x 20 cm,
9:1—3:1 hexanes:EtOAc). R;=0.14 (4:1 hexanes:EtOAc); 'H NMR (400 MHz, CDCl,)
mixture of two diastereomers, see Figure A1.155; IR (Neat Film NaCl) 3449, 3027,
2963, 2928, 2873, 1694, 1454, 1404, 1350, 1320, 1251, 1170, 1066, 969 cm™'; HRMS

(MM: ESI-APCI+) m/z calc'd for C,,H,,0, [M+H]": 165.1274; found 165.1278.

4

135p
Acylcyclopentene 135p (Table 2.4, entry 13). Prepared using General Method E. Due

to the volatility of acylcyclopentene 135p, the work-up solvent (Et,0) was removed using
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ambient pressure distillation (50—80 °C). 323.8 mg, 1.97 mmol, 93% yield. The crude
oil was purified by automated flash column chromatography using a Teledyne Isco
CombiFlash R, (Si0,, 32 g loading cartridge, 80 g column, linear gradient, 0—30% Et,0
in pentane [33 min]) and solvent was removed using ambient pressure distillation (60
°C). R;=0.55 (4:1 hexanes:EtOAc); 'H NMR (400 MHz, CDCl,) § 6.41 (dd,J=1.7,1.7
Hz, 1H), 5.50 (dq, J = 15.5, 1.3 Hz, 1H), 5.39 (dq, J = 15.6, 6.2 Hz, 1H), 2.58-2.52 (m,
2H), 2.31-2.28 (m, 1H), 2.30 (s, 3H), 1.91 (ddd, J = 12.8,7.4,7.4 Hz, 1H), 1.74 (ddd, J =
12.8,7.2,7.2 Hz, 1H), 1.68—-1.64 (m, 2H), 1.19 (s, 3H); "“C NMR (100 MHz, CDCI,) &
197.5,151.4,143.8,137.5,122.3,51.5,38.1, 29.6,26.8, 25.4, 18.2; IR (Neat Film NaCl)
3022, 2958, 2859, 1674, 1617, 1451, 1377, 1365, 1310, 1271, 1229, 1165, 967 cm™';
HRMS (MM: ESI-APCI+) m/z calc'd for C,;H;;O [M+H]": 165.1279; found 165.1278;

[a], > +89.82 (c 1.04, CHCl,, 88.0 % ce).

HO=\
(o}

154q
B-Hydroxyketone 154q (Table 2.4, entry 14). Prepared using General Method A. 29.1
mg, 0.150 mmol, 96% yield. Flash column chromatography (SiO,, 2 x 20 cm, 9:1—3:1
hexanes:EtOAc). R, =0.09 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture
of two diastereomers, see Figure A1.157; IR (Neat Film NaCl) 3436, 3021, 2922, 2873,
2842, 2697, 1692, 1656, 1436, 1402, 1353, 1318, 1256, 1202, 1184, 1172, 1152, 1093,
1071, 1050, 1000, 981, 970, 949, 932, 876, 850, 834, 798, 750 cm™'; HRMS (EI+) m/z

calc'd for C,,H;sO, [M]*: 194.1307; found 194.1315.
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135q

Acylcyclopentene 135q (Table 2.4, entry 14). Prepared using General Method E. 21.7
mg, 0.123 mmol, 91% yield. Flash column chromatography (SiO,, 1 x 20 cm, 15:1
hexanes:Et,0). R, =0.65 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) § 6.58 (dd,
J=1.8,18 Hz, 1H), 5.72 (dm, J = 10.0 Hz, 1H), 5.65 (dm, J = 10.0 Hz, 1H), 2.59-2.52
(m, 2H), 2.30 (s, 3H), 2.13-2.04 (m, 2H), 2.02-1.98 (m, 2H), 1.77-1.70 (m, 2H), 1.69
(ddd, J = 12.8, 6.3, 6.3 Hz, 1H), 1.56 (ddd, J = 12.8, 6.5, 6.5 Hz, 1H); “C NMR (75
MHz, CDCl;) 6 197.8,151.4, 1439, 127.0, 125.5,48.7,35.8,35.8, 32.5, 289, 26.8, 23.1;
IR (Neat Film NaCl) 3320, 3023, 2918, 2856, 1704, 1669, 1616, 1436, 1371, 1436, 1371,
1316, 1269, 1231, 11945, 1116, 1086, 1045, 1020, 980, 962, 935, 864, 763 cm™'; HRMS
(EI+) m/z calc'd for C,H ;O [M]™: 176.1201; found 176.1234; [a],>° —=10.42 (¢ 1.08,

CHCl,, 78.4% ee).

154n
B-Hydroxyketone 154n (Table 2.4, entry 15). Prepared using General Method D.
20.3 mg, 0.110 mmol, 38% yield over 2 steps. Flash column chromatography (SiO,, 1.5
X 25 cm, 10:1—=6:1—4:1—2:1—1:1—1:2 hexanes:EtOAc). R, = 0.19 (1:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCI,) mixture of two diastereomers, see Figure

A1.159; IR (Neat Film NaCl) 3369, 3077, 3011, 2947, 2924, 1688, 1641, 1469, 1439,
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1343, 1268, 1216, 1193, 1128, 1108, 1079, 1052, 1032, 1019, 999, 966, 909, 889, 808,
731 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C,,H,;0, [M-—OH]*: 167.1067; found

167.1066.

0

o

W
/JOH

135n
Acylcyclopentene 135n (Table 2.4, entry 15). Prepared using General Method E. 12.2
mg, 0.073 mmol, 67% yield. Flash column chromatography (SiO,, 1.5 x 25 cm,
10:1—=4:1—2:1—1:1 hexanes:EtOAc); R,=0.44 (1:1 hexanes:EtOAc); "H NMR (500
MHz, CDCl;) § 648 (app t, J = 1.9 Hz, 1H), 5.91-5.77 (dddd, J = 16.5, 10.7, 7.4, 74
Hz, 1H), 5.23-5.15 (m, 2H), 2.67 (dddd, J = 17.0, 8.9, 4.1, 1.7 Hz, 1H), 2.50-2.40 (m,
3H), 2.33 (s, 3H), 2.14 (ddd, J = 13.7, 8.5, 4.1 Hz, 1H), 2.03 (br s, 1H), 1.91 (ddd, J =
13.7,9.0, 5.8 Hz, 1H); “"C NMR (125 MHz, CDCl,) 8 197.5, 145.9, 145.5,132.9, 119.8,
85.2,44.9,374,29.1,27.0; IR (Neat Film NaCl) 3400, 3077, 3004, 2961, 2929, 2856,
1841, 1668, 1622, 1428, 1372, 1295, 1267, 1228, 1205, 1173, 1070, 1057, 1016, 998,
966, 935, 917, 862, 831, 776 cm™; HRMS (MM: ESI-APCI+) m/z calc'd for C,,H,;0

[M-OH]*: 149.0961; found 149.0967; [a],”" —22.45 (¢ 1.22, CHCl;, 57.1% ee).
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2.10.2.9 LARGE SCALE SYNTHESIS OF ACYLCYCLOPENTENE 135a

0 o 0

Pd,(pmdba); (1.25 mol %)
0/\/ (S)-+-Bu-PHOX (13) (3.12 mol %) SN\ F
>
-BuO PhCH,, 30 °C -BuO
148a 94% yield, 88% ee 149a

Vinylogous Ester 149a. Pd,(pmdba); (733.1 mg, 0.67 mmol, 0.0125) and (S)-7-Bu-
PHOX (647.0 mg, 1.67 mmol, 0.0312 equiv) were placed in a 500 mL round-bottom
flask. The flask was evacuated/backfilled with N, (3 cycles, 10 min evacuation per
cycle). Toluene (222 mL, sparged with N, for 1 h immediately before use) was added
and the black suspension was immersed in an oil bath preheated to 30 °C. After 30 min
of stirring, P-ketoester 148a (15.0 g, 53.5 mmol, 1.0 equiv) in toluene (46 mL, sparged
with N, immediately before use) was added using positive pressure cannulation. The
dark orange catalyst solution turned olive green immediately after the addition of -
ketoester 148a. The solution was stirred at 30 °C for 32 h, allowed to cool to ambient
temperature, filtered through a silica gel plug (2 x 5.5 cm SiO,, Et,0), and concentrated
under reduced pressure. The crude oil was purified by flash column chromatography
(Si0,, 8 x 12 cm, 19:1 hexanes:EtOAc, dry-loaded using SiO,) to afford vinylogous ester
149a (11.83 g, 50.1 mmol, 94% yield, 88% ee) as a pale yellow oil. (For characterization

data, see p. 124).

(o} HO

SN\ LiAlH,, E4,0, 0 °C WNF
—_—
i-BuO then 10% HCI o
149a 81% yield 154a

B-Hydroxyketone 154a. A 500 mL round-bottom flask with magnetic stir bar was

charged with Et,0O (150 mL) and cooled to 0 °C. LiAlH, (1.04 g, 0.0275 mol, 0.55 equiv)
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was added in one portion. After 10 min, a solution of vinylogous ester 149a (11.83 g, 50
mmol, 1.0 equiv) in Et,0 (50 and 25 mL for quantitative transfer) was added dropwise
using positive pressure cannulation. The grey suspension was stirred for 60 min after
which LiAIH, (190 mg, 5.0 mmol, 0.1 equiv) was added in one portion. After an
additional 10 min of stirring at 0 °C, the reaction was quenched by slow addition of
aqueous HCI (143 mL, 10% w/w). The resulting biphasic system was allowed to warm
to ambient temperature and stirred vigorously for 10 h. The reaction was diluted with
Et,0, the phases were separated and the aqueous phase was extracted with Et,O (3 x 150
mL). The combined organic phases were dried over Na,SO,, filtered, and concentrated
under reduced pressure. The crude product was azeotroped with toluene (50 mL) and
purified using flash column chromatography (SiO,, 8 x 13 cm, 9:1—3:1 hexanes:EtOAc,
dry-loaded using Celite) to afford B-hydroxyketone 154a (7.25 g, 39.8 mmol, 81% yield)

as a colorless semi-solid. (For characterization data, see p. 155).

HO i
LWNF LiOH, TFE
o THF, 60 °C w
154a 91% yield /J 135a

Acylcyclopentene 135a. Alcohol 154a (7.25 g, 39.8 mmol, 1.0 equiv) was dissolved in
THF (400 mL) in a 1 L round-bottom flask. The solution was treated with 2,2,2-
trifluoroethanol (5.99 g, 4.36 mL, 59.7 mmol, 1.5 equiv) and LiOH (1.43 g, 59.7 mmol,
1.5 equiv). The flask was fitted with a reflux condenser, purged with N,, and heated to
60 °C using an oil bath. After 18 h of stirring, the suspension was allowed to cool to

ambient temperature, diluted with Et,0 (200 mL), stirred with Na,SO, for 30 min,
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filtered, and concentrated carefully under reduced pressure, allowing for a film of ice to
form on the outside of the flask. The crude product was purified using flash column
chromatography (SiO,, 8 x 12 cm, 15:1—9:1 pentane:Et,0) to afford acylcyclopentene
135a (5.93 g, 36.1 mmol, 91% yield) as a colorless fragrant oil. (For characterization

data, see p. 156).

2.10.2.10  INITIAL SYNTHETIC STUDIES ON THE ORGANOMETALLIC

ADDITION/REARRANGEMENT OF 149a

(o} 0

““\\/ 10% aq HCI .“‘\\/
. THF, 23 °C
iFBuO (o}
90% yield
149a 162

Cyclic Dione 162. A 20 mL scintillation vial equipped with a stir bar was charged with
vinylogous ester 149a (144.6 mg, 0.61 mmol, 1.00 equiv), THF (1 mL), and aqueous HCI
(1 mL, 10% w/w, 2.87 mmol, 4.69 equiv). After 4.5 h of vigorous stirring, the solution
was diluted with H,O (5 mL) and transferred to a separatory funnel where the aqueous
phase was extracted four times with Et,0. The combined organics (70 mL) were dried
over MgSO,, filtered, and concentrated. ~The crude oil was purified by flash
chromatography (SiO,, 27.5 x 2 cm, 100% hexanes—10% EtOAc in hexanes) to afford
cyclic dione 162 (99.4 mg, 0.55 mmol, 90% yield) as a pale yellow oil; R,=0.48 (30%
EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) 8 5.69 (d,J = 14.0 Hz, 1H), 5.12-5.04
(m, 2H), 3.72 (d,J = 14.0 Hz, 1H), 3.53 (d, J = 14.0 Hz, 1H), 2.48 (t, J = 6.6 Hz, 2H),
240 (dddd, J =139, 7.1, 1.2, 1.2 Hz, 1H), 2.22 (dddd, J = 13.9, 7.7, 1.1, 1.1 Hz, 1H),

2.02-1.75 (m, 4H), 1.15 (s, 3H); "“C NMR (125 MHz, CDCl;) & 208.4, 203.7, 133.1,
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119.1, 57.6,50.9, 435,429, 36.7, 21.9, 19.8; IR (Neat Film NaCl) 3076, 2972, 2935,
2871, 1719, 1695, 1639, 1463, 1417, 1378, 1337, 1210, 1160, 1112, 1059, 1026, 921
cm™'; HRMS (EI+) m/z calc’d for C, H,;0, [M]": 180.1150; found 180.1165; [a],>*

—19.38 (¢ 1.00, CHCl;, 88.0% ee).

0 CeCl,, n-BuMgCl n-Bu nBu OH
"“\\/ THF, 23 °C “‘\\\% + -
Y —
£BUO then 10% aq HCI o o \—

149a 137r 154r
28% yield 65% yield

Cycloheptenone 137r and -Hydroxyketone 154r. CeCl,-7H,0 (419 mg, 1.13 mmol,
2.55 equiv) in a 100 mL round-bottom flask was immersed in a preheated oil bath at 150
°C and placed under vacuum for 4 h while stirring. The flask was cooled to ambient
temperature, backfilled with N,, and charged with THF (4 mL). After 15 h of stirring,
additional THF (4 mL) and n-butylmagnesium chloride solution (1.2 mL, 1.86 M in THF,
2.23 mmol, 5.02 equiv) were added to the flask. The resulting slurry was stirred for 4.25
h before vinylogous ester 149a (105 mg, 0.444 mmol, 1.00 equiv) dissolved in THF (1
mL) was added using positive pressure cannulation followed by two THF rinses (2 x 0.5
mL). After 45 min of stirring, the reaction was quenched by addition of 10% w/w HCI
(10 mL). The phases were separated and the aqueous layer was extracted with ethyl
acetate (3 x 15 mL). The combined organic phases were washed with brine, dried over
Na,SQO,, filtered, and concentrated under reduced pressure. The residue was purified by
flash column chromatography using a Teledyne Isco CombiFlash R; system (SiO,, 25 g
loading cartridge, 12 g column, multi-step gradient, hold 0% [1 min]—ramp to 10% [5

min]—hold 10% [31 min]—100% EtOAc in hexanes [10 min]) to afford cycloheptenone
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137r (28 mg, 0.13 mmol, 28% yield) and B-hydroxyketone 154r (69 mg, 0.29 mmol,

65% yield) as pale yellow oils.

Cycloheptenone 137r. R, = 0.68 (30% EtOAc in hexanes); 'H NMR (500 MHz,
CDCl5) & 5.89 (s, 1H), 5.63 (dddd, J = 16.9, 10.3, 7.9, 6.7 Hz, 1H), 5.10-4.98 (m, 2H),
2.61-2.54 (m, 2H), 2.37 (dddd, J = 14.1, 6.7, 1.3, 1.3 Hz, 1H), 2.18-2.03 (m, 3H), 1.85-
1.72 (m, 3H), 1.66-1.56 (m, 1H), 1.53-1.43 (m, 2H), 1.37 (app. septuplet, J = 7.3 Hz,
2H), 1.15 (s, 3H), 0.92 (t, J = 7.3 Hz, 3H); ""C NMR (125 MHz, CDCl,) § 205.4, 163 .0,
134.2, 128.7, 118.1, 45.7, 45.3, 44 4, 38.8, 34.0, 324, 25.7, 23.0, 17.6, 14.1; IR (Neat
Film NaCl) 3076, 2957, 2933, 2872, 1652, 1611, 1467, 1414, 1379, 1342, 1263, 1218,
1178, 1109, 1072, 996, 962, 914, 841, 780, 713 cm™'; HRMS (MM: ESI-APCI+) m/z
calc’d for C,sH,sO [M+H]*: 221.1900; found 221.1905; [a],>° -33.17 (¢ 1.17, CHCl,,

88.0% ee).

B-Hydroxyketone 154r. R, = 0.48 (30% EtOAc in hexanes); '"H NMR (500 MHz,
CDCl;) mixture of two diastereomers, see Figure A1.212; IR (Neat Film NaCl) 3502,
3073, 2956, 2871, 1695, 1638, 1468, 1404, 1380, 1341, 1286, 1181, 1125, 1052, 1028,
998, 913, 868, 796, 732 cm™'; HRMS (MM: ESI-APCI+) m/z calc’d for C,sH,,0,

[M+H]": 239.2006; found 239.2013.



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 179

o
m-Bu, OH LiOH, CF5CH,OH Yz
1 ’ K
kel iGN - T o
\ THF, 60 °C, 3 h
o
71% yield o
154r 156r

Linear Dione 156r. A 50 mL round-bottom flask equipped with a magnetic stir and
fitted with a water condenser was charged with -hydroxyketone 154r (56.9 mg, 0.24
mmol, 1.00 equiv), THF (3 mL), TFE (60 uL, 0.83 mmol, 3.50 equiv), and LiOH (17.3
mg, 0.72 mmol, 3.03 equiv). The flask was backfilled with argon and lowered into a
preheated oil bath (60 °C). After 3 h, the reaction was removed from the bath, allowed to
cool to room temperature, dried over Na,SQO,, filtered, and concentrated under reduced
pressure. The crude oil was purified by flash chromatography (SiO,, 3 x 21 cm,
10%—20%—30% EtOAc in hexanes) to afford linear dione 156r (40.1 mg, 0.17 mmol,
71% yield) as a pale yellow oil; R, = 0.57 (30% EtOAc in hexanes); 'H NMR (500 MHz,
CDCl,) 6 5.68-5.57 (m, 1H), 5.06-4.98 (m, 2H),2.43 (t,J =7.3 Hz,2H), 2.39 (t, /=6 .4
Hz, 2H),2.31 (dddd, J = 14.0,7.3, 1.2, 1.2 Hz, 1H), 2.18 (dddd, J = 14.0,7.7, 1.2, 1.2 Hz,
1H), 2.11 (s, 3H), 1.63-1.34 (m, 6H), 1.33-1.24 (m, 2H), 1.10 (s, 3H), 0.89 (t,J = 7.3 Hz,
3H); “C NMR (125 MHz, CDCl,) & 214.9, 208.6, 133.9, 118.1, 50.9, 44.0, 42.6, 37 4,
374, 30.1, 259, 22.6, 21.1, 18.7, 14.1; IR (Neat Film NaCl) 3076, 2958, 2933, 2873,
1718, 1701, 1639, 1465, 1409, 1378, 1360, 1256, 1230, 1174, 1142, 1120, 1029, 994,
916, 766, 728 cm™; HRMS (MM: ESI-APCI+) m/z calc’d for C,sH,,0, [M+H]"

239.2006; found 239.2005; [a]p,>° +5.57 (¢ 1.17, CHCl,, 88.0% ee).
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n-Bu OH n-Bu

KOt-Bu
Ll % 4
\—  THF,60°C,22h o) "R
o)
65% yield
154r 135r

Acylcyclopentene 135r. A 25 mL round-bottom flask equipped with a stir bar and fitted
with a water condenser was charged with B-hydroxyketone 154r (91.5 mg, 0.38 mmol,
1.00 equiv), THF (4 mL), and KO#-Bu (66.5 mg, 0.59 mmol, 1.55 equiv). The flask was
lowered into a preheated oil bath (60 °C) and stirred overnight. Additional THF (4 mL)
was added after 19 h of heating. After an additional 3 h, the reaction was removed from
the bath, allowed to cool to room temperature, dried over Na,SO,, filtered through a silica
gel plug, and concentrated under reduced pressure. The crude oil was purified by flash
chromatography (SiO,, 3 x 27 cm, 100% pentane—2%—>5%—=10% Et,0 in pentane) to
afford acylcyclopentene 135r (55.1 mg, 0.25 mmol, 65% yield) as a pale yellow oil; R, =
0.81 (30% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) 8 5.77-5.65 (m, 1H), 5.08—
5.00 (m, 2H), 2.60-2.49 (m, 2H), 2.45-2.37 (m, 1H), 2.24-2.17 (m, 4H), 2.15-2.10 (m,
2H), 1.85(ddd,J=12.8,7.7,6.2 Hz, 1H), 1.60—1.51 (m, 1H), 1.47-1.34 (m, 4H), 1.06 (s,
3H),0.93 (t,J = 7.1 Hz, 3H); "C NMR (125 MHz, CDCl,) 6 198.8, 164.2, 135.0, 134.7,
117.6, 52.6, 43.8, 35.0, 32.1, 31.5, 304, 27.6, 24.7, 23.8, 14.0; IR (Neat film NaCl)
3075, 3002, 2957, 2930, 2870, 2859, 1677, 1653, 1639, 1602, 1456, 1432, 1373, 1355,
1311, 1275, 1258, 1188, 1141, 1089, 995, 959, 913, 848, 801, 726 cm™'; HRMS (MM:
ESI-APCI+) m/z calc’d for C,sH,;O [M+H]*: 221.1900; found 221.1900; [a],”° —1.44

(c 1.35,CHCl;, 88.0% ee).
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n-Bu OH n-Bu

KOtBu
fon —_— /
\—  THF, 85 °C, 5 min o] KIS
(0] uwaves
154r 73% yield 135r

Acylcyclopentene 135r. KO#-Bu (32 mg, 0.283 mmol, 1.62 equiv), THF (1.75 mL), and
B-hydroxyketone mmol, 1.00 equiv) were added to a 0.5-2.0 mL microwave vial with a
magnetic spin vane. The pale yellow solution was subjected to microwave irradiation in
a Biotage Initiator microwave reactor (temperature: 85 °C, sensitivity: normal). After 5
min of irradiation, the crimp cap was removed and Na,SO, was added to the vial. The
contents were filtered through a silica gel plug with Et,O, concentrated under reduced
pressure, and purified by flash column chromatography (5% Et,O in pentane) to yield

acylcyclopentene 135 (31 mg, 0.14 mmol, 73% yield) as a pale yellow oil.

2.10.2.11 PREPARATION OF ACYLCYCLOPENTENE DERIVATIVES

N NH. H
- 2

Cl - N
HCI - H,N \n/

0 o hig
NaOAc o
—_—
H,0, 60 °C
_ _J

recrystallize twice —
135a 63% yield 163
98% ee

Semicarbazone 163. A 15 mL round-bottom flask was charged with sodium acetate
(150 mg, 1.83 mmol, 1.20 equiv), semicarbazide hydrochloride (204 mg, 1.83 mmol,
1.20 equiv), and a magnetic stir bar. Purified water (1.7 mL) was added and the mixture
was stirred until all the solids had dissolved. Acylcyclopentene 135a (250 mg, 1.52
mmol, 1.00 equiv) was added neat and the mixture was heated to 60 °C for 4 h. The

slurry was allowed to cool to ambient temperature while stirring and vacuum filtered
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(water aspirator). The white solid was dried under reduced pressure to afford
semicarbazone 15 (311 mg, 1.40 mmol, 92% yield). The ee of the semicarbazone at this
point was found to be 91% (measured by hydrolysis to ketone 135a, GC conditions: 80
°C isothermal for 90 min, G-TA column, t, (min): acylcyclopentene 135a = 54.98).

The semicarbazone 163 (300 mg, 1.36 mmol) was transferred to a round-bottom
flask, the solids were suspended in toluene-hexanes (50:50), and the mixture was heated
to 90 °C while stirring. After a few min of stirring, the solids had dissolved completely
to afford a clear, colorless solution. Heating was discontinued and the stirring mixture
was allowed to cool to ambient temperature while still immersed in the oil bath. After 10
h had elapsed, the slurry was vacuum filtered to afford 163 (246 mg, 1.11 mmol, 82%
yield, 63% overall yield after recrystallizing twice). The ee at this point was found to be
94.5% (measured by hydrolysis to ketone 135a). A second recrystallization following the
above procedure employing 163 (241 mg, 1.09 mmol) afforded 163 (201 mg, 0.91 mmol,
83% vyield). The ee at this point was found to be 97.9% (measured by hydrolysis to
ketone 135a); R;=0.30 (9:1 CHCI;-MeOH); 'H NMR (300 MHz, CDCI,) & 8.52 (br s,
1H), 6.06 (br s, 1H), 5.85 (app t, J = 1.6 Hz, 1H), 5.76 (dddd, J = 16.7,9.3,7.4,7.4 Hz,
1H), 5.47 (br s, 1H), 5.06-4.98 (m, 2H), 2.67-2.49 (m, 2H), 2.15-2.12 (m, 2H), 1.98 (s,
3H), 1.82 (ddd, J = 12.8, 8.2, 6.9 Hz, 1H), 1.62 (ddd, J = 12.8, 8.5, 6.4 Hz, 1H), 1.07 (s,
3H); "C NMR (75 MHz, CDCl,) & 158.1, 145.0, 141.7, 141.2, 135.6, 117.2,49.2, 459,
36.2,30.8, 26.3, 12.8; IR (Neat Film NaCl) 3473, 3266, 3189, 2946, 2858, 1698, 1579,
1478, 1437, 1377, 1349, 1321, 1130, 1109, 993, 910, 845, 768 cm™'; HRMS (ESI+) m/z
calc'd for C,,H,,N;O [M+H]*: 222.1606; found 222.1610; [a],° +39.80 (c 0.84, CHCI,,

97.9% ee); mp = 145-146 °C (1:1 toluene-hexanes).
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o 6 M aq HCI
—_—
h THF, H,0, 23 °C n
yh J

— 93% yield —
163 135a

Acylcyclopentene 135a. A solution of semicarbazone 163 (191.8 mg, 0.867 mmol, 1.00
equiv) in THF (1.92 mL) was treated with aqueous HCI (3.84 mL, 6.0 M, in H,0O) was
added. The resulting biphasic mixture was stirred vigorously at ambient temperature for
30 h. The reaction was diluted with Et,O (10 mL), the phases were separated, and the
aqueous phase was extracted with Et,0 (2 x 10 mL). The combined organics were dried
over MgSQO,, filtered, and concentrated carefully under reduced pressure, allowing for a
film of ice to form on the outside of the flask. The residue was filtered through a short
silica gel plug (1 x 10 cm SiO,, 4:1 hexanes:Et,0) to afford acylcyclopentene 135a
(132.6 mg, 0.81 mmol, 93% yield); [a],”® +39.80 (¢ 0.84, CHCl,, 97.9% ee). (For

characterization data, see p. 156).

|
N
(0}
m-xylene, 150 °C -

/J 163 89% yield /J 164

(X-ray)
Iodoarene 164. To a solution of semicarbazone 163 (50 mg, 0.23 mmol, 1.00 equiv) in
m-xylene (2.2 mL) was added 4-iodo-benzylamine (63 mg, 0.27 mmol, 1.17 equiv). The
resulting pale yellow solution was immersed in an oil bath and heated to 150 °C. After 9

h of stirring at 150 °C, the reaction was allowed to cool to ambient temperature and
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concentrated under reduced pressure to afford a pale yellow solid. The crude solid was
purified by flash column chromatography (1.0 x 15 cm SiO,, 9:1—7:3 hexanes:EtOAc) to
afford iodoarene 164 (88 mg, 0.20 mmol, 89% yield) as a white solid. X-ray quality
crystals were obtained by slow vapor diffusion of pentane into a chloroform solution of
164; R,=0.52 (9:1 CHCL-MeOH); 'H NMR (500 MHz, CDCl,) 8 7.88 (s, 1H), 7.66—
7.64 (m, 2H), 7.08 (d, J = 8.5 Hz, 2H), 6.50 (t, J = 6.1 Hz, 1H), 5.86 (app t, J = 1.5 Hz,
1H), 5.76 (dddd, J = 16.9,9.0, 7.6, 7.6 Hz, 1H), 5.04-5.01 (m, 2H), 4.46 (d, J = 6.3 Hz,
2H), 2.60-2.49 (m, 2H), 2.18-2.10 (m, 2H); 1.95 (s, 3H), 1.82 (ddd, J = 12.9, 8.5, 6.3 Hz,
1H), 1.62 (ddd, J = 12.9, 8.5, 6.1 Hz, 1H), 1.07 (s, 3H); “C NMR (125 MHz, CDCl,) &
156.3,144.5,141.5,141.4,139.2,137.8,135.6,129.4,117.2,92.6,49.3,45.9,43.2,36.2,
30.9, 26.3, 12.5; IR (Neat Film NaCl) 3411, 3194, 3075, 2946, 2920, 2863, 1677, 1528,
1486, 1401, 1323, 1259, 1142, 1114, 1057, 1000, 913, 845 cm™'; HRMS (FAB+) m/z
calc'd for C,yH,sN;OI [M+H]*: 438.1043; found 438.1036; [a],”? +31.43 (¢ 0.36,

CHCl;, 91.0% ee); mp = 123-124 °C (CHCl;-n-pentane).

0 OH
CeCly, MeLi
—_—
THF, 7823 °C
W W
J 92% yield J
= ==
135a 165

Alcohol 165. CeCl, (187 mg, 0.759 mmol, 2.50 equiv) was weighed out in a glove box
and placed in a 25 mL round-bottom flask. The flask was sealed with a septum and
removed from the glove box. THF (3 mL) was added to the flask, the suspension was

cooled to —78 °C using an acetone/CO,(s) bath, and MeLi (326 uL, 0.912 mmol, 2.80 M

in DME, 3.00 equiv) was added in a dropwise manner. The resulting pale brown
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suspension was stirred at —78 °C for 30 min. Acylcyclopentene 135a (50.0 mg, 0.304
mmol, 1.00 equiv) was added neat to the reaction in a dropwise manner. After 30 min of
stirring at —78 °C, the reaction was quenched by dropwise addition of sat. aqueous NH,Cl
(1.0 mL), the cooling bath was removed, and the reaction was allowed to warm to
ambient temperature. The reaction was diluted with Et,0O (10 mL) and H,O (10 mL), and
the phases were separated. The aqueous phase was extracted with Et,O (3 x 15 mL), and
the combined organic phases were washed with brine (10 mL), dried over MgSQO,,
filtered, and concentrated under reduced pressure. The crude product was purified by
automated flash column chromatography using a Teledyne Isco CombiFlash R, (SiO,, 5 g
loading cartridge, 12 g column, multi-step gradient, 5% [5 min]—10% Et,O in pentane)
to afford alcohol 165 (50.4 mg, 0.280 mmol, 92% yield) as a pale yellow oil; R;=0.31
(4:1 hexanes:EtOAc); 'H NMR (400 MHz, CDCI;) § 5.78 (dddd, J = 14.7,11.8,9.3,7.4
Hz, 1H), 5.34 (dd, J = 1.8, 1.8 Hz, 1H), 5.04-5.00 (m, 1H), 5.00-4.97 (m, 1H), 2.45-2.29
(m, 2H), 2.18-2.00 (m, 2H), 1.81 (ddd, J = 12.7, 8.3, 6.0 Hz, 1H), 1.60 (ddd, J = 12.7,
8.5,6.1 Hz, 1H), 1.44 (br s, 1H), 1.34 (s, 6H), 1.02 (s, 3H); “"C NMR (100 MHz, CDCl,)
0 149.7, 136.21, 131.6, 116.7, 70.9, 48.2, 46.2, 36.9, 30.9, 29.3, 29.3, 26.5; IR (Neat
Film NaCl) 3370, 3077, 2973, 2943, 2859, 1637, 1454, 1412, 1367, 1328, 1254, 1212,
1162, 1137, 997, 960, 940, 910, 853, 806 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for

C,,H,, [M-OH]": 163.1481; found 163.1482; [a],>° +5.34 (¢ 1.16, CHCl;, 88.0 % ee).
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_OH
(o) N
H,NOH
3 M aq NaOH
-——>
\ MeOH \
w w
/J 90% yield /J
135a 166

Oxime 166. A 1 dram vial with magnetic stir bar was charged with acylcyclopentene
135a (40.0 mg, 0.24 mmol, 1.00 equiv), MeOH (0.24 mL), 50% wt aqueous
hydroxylamine (47 uL, 0.76 mmol, 3.13 equiv), and 3 M aqueous NaOH (125 uL, 0.376
mmol, 0.51 equiv). After 9 d, the reaction was diluted with Et,0 (10 mL) and H,O (2
mL) and stirred vigorously for several minutes. The layers were separated and the
aqueous layer was extracted with Et,O (5 x 10 mL). The combined organic layers were
dried over MgSQO,, filtered, and concentrated under reduced pressure. The residue was
taken up in CH,Cl,, filtered through a cotton plug, and concentrated under reduced
pressure. The residue was purified by flash column chromatography (SiO,, 1.5 x 20 cm,
20:1—15:1 hexanes:EtOAc) to afford oxime 166 (39.3 mg, 0.21 mmol, 90% yield) as a
clear oil; R;=0.52 (4:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) 8 9.73 (br s, 1H),
590 (brt,J = 1.5 Hz, 1H), 5.85-5.66 (m, 1H), 5.02 (m, 2H), 2.70-2.45 (m, 2H), 2.14 (m,
2H), 2.05 (s, 3H), 1.85 (ddd, J = 12.9, 8.1, 6.6 Hz, 1H), 1.65 (ddd, J = 12.8, 8.3, 6.3 Hz,
1H), 1.08 (s, 3H); “"C NMR (75 MHz, CDCl,) 6 154.0, 141.8, 139.1, 135.6, 117.2, 48.9,
459, 36.3, 30.6, 26.2, 11.3; IR (Neat Film NaCl) 3272, 3233, 3075, 3003, 2952, 2925,
2864, 1639, 1455, 1437, 1414, 1379, 1322, 1280, 1103, 1010, 995, 913, 850, 828, 756,
715 cm™; HRMS (EI+) m/z calc'd for CgH,,NO [M—C;H,]": 138.0919; found 138.0960;

[alp”? +21.34 (¢ 1.57, CHCl,, 88.0% ee).
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_NHTs
(o} N
CH3(CH,)15N(CH;)3Br
KOH, TsNHNH,
L.

» CICH,CH,CI \

" -
/J 74% yield /J

135a 167

Tosylhydrazone 167. A 25 mL flask with magnetic stir bar was charged with
acylcyclopentene 135a (40.0 mg, 0.24 mmol, 1.00 equiv), 1,2-dichloroethane (2.7 mL),
cetyltrimethylammonium bromide (26.6 mg, 0.073 mmol, 0.30 equiv), KOH (136.7 mg,
2.44 mmol, 10.0 equiv), and TsHNNH, (271.9 mg, 1.46 mmol, 6.00 equiv), forming a
thick white suspension. After 43 h, the reaction was quenched by the addition of sat.
aqueous NH,CI (5 mL). The mixture was extracted with CH,Cl, (5 x 10 mL) and the
combined organic layers were dried over Na,SO,, filtered, and concentrated under
reduced pressure. The residue was purified by flash column chromatography using a
Teledyne Isco CombiFlash R, system (SiO,, 3 x 25 c¢m, 4:1—3:1 hexanes:EtOAc) to
afford tosylhydrazone 167 (196.7 mg, 0.94 mmol, 74% yield) as a clear oil; R, =041
(2:1 hexanes:EtOAc); '"H NMR (300 MHz, CDCl;) & 7.86 (d, J = 8.3 Hz, 2H), 7.54 (br s,
1H), 7.31 (d, J =8.0 Hz, 2H), 5.85 (app t, J = 1.6 Hz, 1H), 5.81-5.62 (m, 1H), 5.06-4.92
(m, 2H), 2.58-2.48 (m, 2H), 2.43 (s, 3H), 2.19-2.00 (m, 2H), 1.89 (s, 3H), 1.85-1.71 (m,
1H), 1.71-1.50 (m, 1H), 1.03 (s, 3H); “"C NMR (75 MHz, CDCl,) 6 151.5, 144.1, 142 4,
141.6,135.5,135.4,129.5,128.3,117.2,49.3,45.8,36.2,30.7, 26.1,21.7, 12.9; IR (Neat
Film NaCl) 3217, 3072, 2953, 2924, 2864, 1706, 1639, 1618, 1598, 1495, 1454, 1401,
1337, 1307, 1292, 1212, 1185, 1168, 1094, 1059, 1029, 996, 914, 870, 850, 830, 813, 706
cm™'; HRMS (EI+) m/z calc'd for C,sH,,O,N,S [M-C,H,]*: 291.1167; found 291.1181;

[a]y”? +34.25 (¢ 1.05, CHCl,, 88.0% ee).
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(0} Grubbs-Hoveyda 2nd
generation (68) (5 mol %)
methyl vinyl ketone \ Rh(PPh3);Cl (10 mol %) \
L wt - W
o PhCH,, 50 °C CH,Cly, H, (1 atm)

=
/J 99% yield 93% yield
135a (o) 195 (o) 168

Bis-enone 195. To an oven-dried reaction tube with magnetic stir bar was added
acylcyclopentene 135a (50 mg, 0.304 mmol, 1.00 equiv). The headspace was purged
with N, and dry degassed toluene (2.0 mL, sparged with N, for 1 h immediately before
use) was added, followed by methyl vinyl ketone (124 uL, 1.53 mmol, 5.03 equiv).
Grubbs-Hoveyda 2nd generation catalyst (9.5 mg, 15.2 umol, 5 mol %) was quickly
added to the reaction, giving the solution an olive green color. A reflux condenser was
attached and the reaction was inserted into a 50 °C heating block. The solution quickly
developed a dark brown color. After 2 h, the reaction was cooled to ambient temperature.
The solution was filtered through a short silica gel plug (2 x 4 cm, Et,0). The filtrate was
concentrated under reduced pressure and the brown residue was purified by flash column
chromatography (SiO,, 2 x 25 cm, 10:1—=4:1—2:1—1:1 hexanes:EtOAc) to afford bis-
enone 195 (62.3 mg, 0.30 mmol, 99% yield) as a brown liquid; R, = 0.31 (2:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) § 6.71 (ddd, J = 15.5, 7.6, 7.6 Hz, 1H),
6.42 (s, 1H), 6.10 (d, J = 15.8 Hz, 1H), 2.68-2.40 (m, 2H), 2.33 (dd, J = 7.6, 0.9 Hz, 2H),
2.28 (s,3H),2.22 (s, 3H), 1.84 (ddd, J = 14.7,8.2, 6.6 Hz, 1H), 1.70 (ddd, J = 13.1, 8 4,
6.1 Hz, 1H), 1.14 (s, 3H); "“C NMR (75 MHz, CDCl;) § 198.1, 197.1, 150.2, 144.3,
143.8, 133.8, 50.1, 43.7, 36.2, 29.8, 27.3, 26.8, 25.7; IR (Neat Film NaCl) 3584, 3318,

2956, 2866, 1697, 1669, 1626, 1454, 1429, 1365, 1308, 1254, 1182, 1098, 1021, 982,
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937, 867 cm™'; HRMS (EI+) m/z calc'd for C,;H 3,0, [M]*": 206.1307; found 206.1303;

[alp?? +47.61 (¢ 1.02, CHCl,, 88.0% ee).

Mono-enone 168. An oven-dried 2-neck flask fitted with a magnetic stir bar, rubber
septum, and glass T-joint with 14/20 adapter was charged with bis-enone 195 (50.0 mg,
0.24 mmol, 1.00 equiv) and evacuated/backfilled with N, in a glove box antechamber (3
cycles, 5 min evacuation per cycle) before being transferred into the glove box. CH,Cl,
(2.5 mL) and Rh(PPh,),Cl (22.4 mg, 0.024 mmol, 10 mol %) were added to the flask,
giving a red solution. The flask was sealed with a septum on one neck and T-joint (set to
the closed position) on the other neck and carefully brought out of the glove box. A H,
balloon was attached to the T-joint and the flask was gently evacuated/backfilled with H,
(3 cycles, 2 min evacuation per cycle). After 10 h of stirring, the brown reaction mixture
was filtered through a short silica gel plug (2 x 4 cm, Et,0) and concentrated under
reduced pressure. The residue was purified by flash column chromatography (SiO,, 2 x
25 cm, 10:1—4:1—2:1 hexanes:Et,0) to afford enone 168 (46.8 mg, 0.23 mmol, 93%
yield) as an orange liquid; R;=0.40 (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,)
0 643 (app t,J = 1.7 Hz, 1H), 2.65-2.46 (m, 2H), 2.40 (t, J = 7.1 Hz, 2H), 2.27 (s, 3H),
2.11 (s, 3H), 1.88-1.72 (m, 1H), 1.71-1.46 (m, 3H), 1.46-1.29 (m, 2H), 1.08 (s, 3H); “C
NMR (75 MHz, CDCl,) 8 208.8, 197.5, 152.0, 143.6, 50.0, 44.2, 40.4, 36.1, 30.1, 29.7,
26.8,25.6,19.4; IR (Neat Film NaCl) 2998, 2953, 2866, 1716, 1667, 1616, 1456, 1427,
1367, 1308, 1270, 1225, 1190, 1170, 1103, 1058, 1021, 841, 871, 726 cm™'; HRMS
(EI+) m/z calc'd for C;H,,0, [M]*: 208.1463; found 208.1460; [a],™° +25.55 (¢ 1.46,

CHCI,, 88.0% ee).
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a’|

\(b o) 0

(o} Grubbs-Hoveyda 2nd
generation (68) (5 mol %)
crotonaldehyde \ Rh(PPh3)3Cl (10 mol %) \
' w ' w

W PhH, 50 °C CH,Cl,, H, (1 atm)

=

— 90% yield 90% yield
135a o 196 (o) 169

H

Bis-enone 196. To a 2-neck round-bottomed flask with magnetic stir bar and attached
reflux condenser was added acylcyclopentene 135a (100 mg, 0.608 mmol, 1.00 equiv).
The flask was evacuated/backfilled with N, (3 cycles, 30 s evacuation per cycle). Dry
degassed benzene (8.0 mL, sparged with N, for 1 h immediately before use) was added,
followed by crotonaldehyde (251 uL, 3.06 mmol, 5.03 equiv). Grubbs—-Hoveyda 2nd
generation catalyst (19.0 mg, 30.4 wmol, 5 mol %) was quickly added to the reaction,
giving the solution an olive green color. The flask was immersed in a 50 °C oil bath.
The solution quickly developed a dark brown color. After 2 h, the reaction was cooled to
ambient temperature. Several drops of ethyl vinyl ether were added and the reaction
mixture was stirred for 5 min. The mixture was concentrated under reduced pressure and
the brown residue was purified by flash column chromatography (SiO,, 2 x 25 cm,
10:1—4:1—2:1 hexanes:EtOAc) to afford bis-enone 196 (105.4 mg, 0.55 mmol, 90%
yield) as a brown oil; R; = 0.38 (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) &
9.50 (d,J=7.8 Hz, 1H), 6.76 (app dt,J = 15.4,7.6 Hz, 1H), 6.42 (app t, J = 1.8 Hz, 1H),
6.13 (app ddt, J = 15.5, 7.8, 1.3 Hz, 1H), 2.68-2.50 (m, 2H), 2.45 (dd, J = 7.6, 1.3 Hz,
2H), 2.28 (s, 3H), 1.85 (ddd, J = 13.1, 8.4, 6.5 Hz, 1H), 1.72 (ddd, J = 13.1, 8.5, 6.0 Hz,

1H), 1.16 (s, 3H); "C NMR (75 MHz, CDCl;) 8 197.0, 193.5,154.0, 149.7, 144.5, 135.6,
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50.1, 43.9, 36.1, 29.8, 26.8, 25.8; IR (Neat Film NaCl) 3359, 3317, 3041, 2957, 2928,
2867, 2820, 2743, 2708, 1691, 1668, 1636, 1618, 1456, 1431, 1378, 1369, 1341, 1308,
1269, 1203, 1162, 1149, 1109, 1093, 1036, 1013, 978, 936, 893, 868 cm™; HRMS
(FAB+) m/z calc'd for C,,H,;O, [M+H]": 193.1229; found 193.1224; [a],>° +46.07 (¢

1.13, CHCl;, 88.0% ee).

Mono-enone 169. An oven-dried 2-neck flask fitted with a magnetic stir bar, rubber
septum, and a glass T-joint with 14/20 adapter was charged with and bis-enone 196 (42.8
mg, 0.22 mmol, 1.00 equiv) and evacuated/backfilled with N, in a glove box antechamber
(3 cycles, 5 min evacuation per cycle) before being transferred into the glove box.
CH,CI, (2.5 mL) and Rh(PPh;),CI (10.3 mg, 0.011 mmol, 5 mol %) were added to the
flask, giving a red solution. The flask was sealed with a septum on one neck and T-joint
(set to the closed position) on the other neck and carefully brought out of the glove box.
A H, balloon was attached to the T-joint and the flask was gently evacuated/backfilled
with H, (five cycles, 2 min evacuation per cycle). After 20 h of stirring, an additional
portion of Rh(PPh,),Cl (10.3 mg, 0.011 mmol, 5 mol %) in CH,Cl, (0.5 mL) was added
to the reaction using positive pressure cannulation. After 1.5 h of stirring, the reaction
was diluted with Et,0O, filtered through a short silica gel plug (2 x 4 cm, Et,0), and
concentrated under reduced pressure. The residue was purified by flash column
chromatography (SiO,, 2 x 25 cm, 10:1—4:1 hexanes:Et,0) to afford enone 169 (39.2
mg, 0.20 mmol, 90% yield) as an pale colorless oil; R; =0.48 (2:1 hexanes:EtOAc); 'H
NMR (300 MHz, CDCl,) 6 9.75 (t, J = 1.5 Hz, 1H), 6.44 (app t, J = 1.7 Hz, 1H), 2.59-

248 (m, 2H),2.43 (td,J = 7.1, 1.4 Hz, 2H), 2.28 (s, 3H), 1.88-1.73 (m, 1H), 1.73-1.51
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(m, 3H), 1.51-1.33 (m, 2H), 1.09 (s, 3H); “C NMR (75 MHz, CDCl;) § 202.3, 197.5,
151.7, 143.8, 50.0, 445, 40.4, 36.1, 29.8, 26.8, 25.6, 17.8; IR (Neat Film NaCl) 3427,
3314, 3042, 2951, 2865, 2721, 1723, 1665, 1616, 1457, 1411, 1378, 1367, 1340, 1308,
1269, 1193, 1156, 1105, 1060, 1034, 1020, 970, 942, 867, 801 cm™'; HRMS (El+) m/z

calc'd for C,H,0, [M]*: 194.1307; found 194.1321; [a],° +32.50 (¢ 0.69, CHCL,,

88.0% ee).
(o} 0 o
NaOH, 1,, KI OH CDI, CH,CI, N,o\
—_—_— —_—
- H,0, p-dioxane - then - !
0—23 °C MeHNOMe-HCI
= = =
77% yield
135a 197 2 steps 171

Carboxylic acid 197. A 50 mL round-bottom flask with magnetic stir bar was charged
with acylcyclopentene 135a (200 mg, 1.22 mmol, 1.00 equiv) and p-dioxane (10 mL).
The solution was cooled to 0 °C and 5 M aqueous NaOH (10 mL) was added dropwise.
The white suspension was stirred for 5 min at 0 °C. A dark brown solution of I, (1.37 g,
5.40 mmol, 4.40 equiv) and KI (2.09 g, 12.59 mmol, 10.50 equiv) in purified H,O (10
mL) was added to the reaction dropwise, causing the reaction to become a yellow
suspension. After 6.5 h of stirring at O °C, an additional portion of I, (343 mg, 1.35
mmol, 1.11 equiv) in p-dioxane (2 mL) was added to the reaction. After 30 min of
stirring at 0 °C, the reaction was acidified to pH 2 using 2 M aqueous HCI. The reaction
was extracted with Et,0 (3 x 30 mL) until the organic layer was clear. The combined
organic phases were washed with sat. aqueous K,S,0; (2 x 10 mL), H,O (2 x 10 mL), and
brine (2 x 10 mL). The combined organic phases were dried over Na,SO,, filtered, and

concentrated under reduced pressure to give a yellow semi-solid. The residue was taken
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up in EtOAc, filtered through a silica gel plug (3 x 3 cm, EtOAc), and concentrated to
give carboxylic acid 197 as a pale yellow oil which was used directly in the next step; R,
= 0.35, broad (2:1 hexanes:EtOAc); 'H NMR (300 MHz, CDCl,) 8 6.69 (app t,J = 1.9
Hz, 1H), 5.89-5.62 (m, 1H), 5.11-4.99 (m, 2H), 2.68-2.47 (m, 2H), 2.26-2.09 (m, 2H),
1.91 (ddd, J =130, 8.2,7.0 Hz, 1H), 1.69 (ddd, J = 13.0, 8.2, 6.2 Hz, 1H), 1.10 (s, 3H);
"C NMR (75 MHz, CDCl;) 6 170.7, 154.3, 134.8, 133.9, 117.8, 49.8, 45.2, 36.3, 30.3,
25.5; IR (Neat Film NaCl) 3076, 3004, 2956, 2926, 2865, 2610, 1687, 1634, 1454, 1424,
1374, 1348, 1306, 1280, 1216, 1180, 1083, 995, 915, 745, 720 cm™'; HRMS (EI+) m/z
calc'd for C,;H,0, [M-C,;H,]": 125.0603; found 125.0629; [a],”° +1.43 (c 0.80, CHCI,,

88.0% ee).

Amide 171. A 50 mL flask with magnetic stir bar was charged with carboxylic acid 197
(202.7 mg, 1.22 mmol, 1.00 equiv) and anhydrous CH,Cl, (4.0 mL). To the vigorously
stirred reaction was added 1,1’-carbonyldiimidazole (217 mg, 1.34 mmol, 1.10 equiv) in
a portionwise manner. After 15 min, anhydrous N,O-dimethylhydroxylamine
hydrochloride (143 mg, 1.46 mmol, 1.20 equiv) was added portionwise. The reaction
became turbid after several min. After 21 h, an additional portion of N,O-
dimethylhydroxylamine hydrochloride (14.3 mg, 0.146 mmol, 0.12 equiv) was added. At
23.5 h, the reaction was transferred to a separatory funnel, washed with 0.25 M HCI (2 x
2 mL), sat. aqueous NaHCO,;, and brine. The combined organic phases were dried over
Na,SO,, filtered, and concentrated under reduced pressure. The residue was purified by
flash column chromatography (SiO,, 3 x 25 cm, 4:1—3:1 hexanes:EtOAc) to afford

amide 171 as a clear oil (196.7 mg, 0.94 mmol, 77% yield over 2 steps); R, =0.41 (2:1
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hexanes:EtOAc); 'H NMR (300 MHz, CDCL,) 8 6.26 (app t, J = 1.9 Hz, 1H), 5.87-5.68
(m, 1H), 5.09-4.97 (m, 2H), 3.63 (s, 3H), 3.23 (s, 3H), 2.77-2.55 (m, 2H), 2.21-2.11 (m,
2H), 1.83 (ddd, J = 12.8, 8.3, 6.4 Hz, 1H), 1.62 (ddd, J = 12.7, 8.4, 6.0 Hz, 1H), 1.08 (s,
3H); "*C NMR (75 MHz, CDCLy) & 167.5, 147.0, 135.4, 1353, 117.4, 61.2, 49.4, 45 4,
35.9, 333,329, 25.6; IR (Neat Film NaCl) 3584, 3401, 3078, 2954, 2930, 2864, 1641,
1609, 1454, 1441, 1414, 1378, 1329, 1198, 1177, 1152, 1105, 1043, 997, 969, 914, 812,
723 cm™; HRMS (EI+) m/z calc'd for C,,H,,NO, [M+H]": 210.1494; found 210.1498;

[alp?? +1.41 (¢ 0.98, CHCI,, 88.0% ee).

(o} [0}
N /o\ \/ MgBr |
I —_—>
- THF, =15 °C -
/J 45% yield /'
171 Z 172

Divinylketone 172. A 25 mL round-bottomed flask with magnetic stir bar was charged
with amide 171 (97.0 mg, 0.46 mmol, 1.00 equiv), evacuated/backfilled with N, (3
cycles, 5 min evacuation per cycle), dissolved in THF (3.0 mL), and cooled to —15 °C
using an ethylene glycol/CO,(s) bath.  The yellow solution became cloudy.
Vinylmagnesium bromide solution (1.38 mL, 1.0 M in THF, 1.38 mmol, 3.00 equiv) was
added dropwise. The solution was maintained at —15 °C for 20 min before the flask was
allowed to warm to ambient temperature. The reaction was quenched by addition into
sat. aqueous NH,Cl (2.0 mL) using positive pressure cannulation. The mixture was
extracted with Et,0O (3 x 10 mL), dried over Na,SO,, filtered, and concentrated under
reduced pressure. The residue was purified by flash column chromatography (SiO,, 2 x

25 cm, 0%—>1%—>2%—>3% Et,0 in hexanes) to afford divinylketone 172 (36.2 mg, 0.21
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mmol, 45% yield) as a pale yellow liquid; R; = 0.68 (4:1 hexanes:EtOAc); 'H NMR
(300 MHz, CDCl,) 8 6.88 (dd, J = 17.1, 10.5 Hz, 1H), 6.53 (app t, J = 1.7 Hz, 1H), 6.28
(dd,J=17.1, 1.9 Hz, 1H), 5.85-5.65 (m, 1H), 5.69 (dd, J = 10.5, 1.9 Hz, 1H), 5.11-4.99
(m, 2H), 2.76-2.50 (m, 2H), 2.29-2.09 (m, 2H), 1.87 (ddd, J = 12.9, 8.2, 6.8 Hz, 1H),
1.67 (ddd, J =129, 8.3, 6.3 Hz, 1H), 1.13 (s, 3H); “"C NMR (75 MHz, CDCI,) 6 188.9,
152.1, 143.7, 134.8, 132.6, 127.7, 117.8, 50.3, 45.3, 35.8, 30.1, 25.5; IR (Neat Film
NaCl) 3584, 3400, 3078, 2955, 2927, 2866, 1622, 1606, 1453, 1440, 1408, 1374, 1348,
1308, 1255, 1204, 1169, 1059, 981, 956, 915, 783 cm™'; HRMS (EI+) m/z calc'd for

C,H,,0 [M-C,H;]*: 135.0846; found 135.0810; [a],”° +0.84 (¢ 0.81, CHCl;, 88.0% ee).

(o} (o}
LiOH, H,0,
—>
MeOH (o]
W "
J 96% yield J
= 1:1.1dr =
135a 173

Epoxide 173. A solution of acylcyclopentene 135a (100 mg, 0.609 mmol, 1.00 equiv) in
MeOH (6.1 mL) in a 25 mL round-bottom flask was treated with LiOH (7.3 mg, 0.30
mmol, 0.50 equiv) in one portion. Aqueous H,O, (75.0 uL, 83.3 mg, 2.00 equiv, 50% in
H,0) was added dropwise. After 12 h of stirring at ambient temperature additional
aqueous H,0O, (75.0 uL., 83.3 mg, 2.00 equiv, 50% in H,O) was added. The reaction was
stirred for an additional 8 h, diluted with CH,Cl, (10 mL), sat. aqueous NaHCO; (1.0
mL), and water (1.0 mL). The phases were separated and the aqueous phase was
extracted with CH,Cl,. The combined organic phases were dried over Mg,SO,, filtered,
and concentrated carefully under reduced pressure. The crude product was purified by

automated flash column chromatography using a Teledyne Isco CombiFlash R; (SiO,, 12
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g loading cartridge, 25 g column, linear gradient, 5%—30% Et,0 in pentane [15 min]) to
afford epoxide 173 (106 mg, 0.588 mmol, 96% yield) as a colorless fragrant oil and as a
1.1:1 mixture of diastereomers; R, = 0.54 (4:1 hexanes:EtOAc); '"H NMR (400 MHz,
CDCI5) 6 5.90-5.68 (m, 2H), 5.14-5.01 (m, 4H), 3.32 (s, 1H), 3.30 (s, 1H), 2.35-2.21 (m,
4H), 2.07 (s, 3H), 2.07 (s, 3H), 2.05-1.99 (m, 2H), 1.96-1.85 (m, 2H), 1.54-1.49 (m,
1H), 1.33-1.29 (m, 2H), 1.20-1.16 (m, 1H), 1.13 (s, 3H), 0.91 (s, 3H); “C NMR (100
MHz, CDCl,) 6 205.8, 205.6, 134.7, 133.6, 1184, 117.8, 70.3, 70.2, 69.4, 69.3, 42.7,
42.7,42.4,42.3,41.3,319,314,25.0,24.8,24.1,21.7,20.5; IR (Neat Film NaCl) 3072,
3002, 2958, 2878, 1706, 1642, 1459, 1444, 1419, 1397, 1360, 1325, 1286, 1261, 1115,
922, 856, 831 cm™; HRMS (MM: ESI-APCI+) m/z calc'd for C, H,, [M+H]*: 181.1223;

found 181.1226; [a],>° —6.94 (c 1.40, CHCI,, 88.0 % ee).

i Me;SI, NaH LDA, THF
@)‘\ DMSO, THF, -5 °C -78—23 °C
J““ J 55% yield J
= e 2 steps =
135a 174 175

Allylic alcohol 174. NaH (36.5 mg, 0.91 mmol, 3.0 equiv, 60% w/w in mineral oil) was
suspended in DMSO (1.2 mL) in a 25 mL round-bottom flask. After 20 min of stirring at
ambient temperature, THF (3.7 mL) was added and the resulting mixture was cooled to
-5 °C using a water/NaCl/ice bath. Me,SI (192.3 mg, 0.95 mmol, 3.1 equiv) was
dissolved in DMSO (1.2 mL) and added dropwise to the stirred reaction. After an
additional 5 min of stirring, acylcyclopentene 135a (50 mg, 0.30 mmol, 1.0 equiv) was
added neat dropwise. After 1.5 h of stirring at —5 °C, the reaction was diluted with Et,O

(15 mL) and quenched by pouring the reaction over 10 g of ice. The phases were



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 197

separated and the aqueous layer was extracted with Et,0 (2 x 10 mL). The combined
organic phases were washed with brine (10 mL), dried over MgSO,, filtered, and
concentrated carefully under reduced pressure, allowing for a film of ice to form on the
outside of the flask, to give the volatile crude epoxide 174 as a colorless oil; R, = 0.60
(4:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,) mixture of two diastereomers, see
Figure A1.259; "C NMR (100 MHz, CDCIl,) mixture of two diastereomers, see Figure
A1.260; IR (Neat Film NaCl) 3072, 3037, 2953, 2923, 2864, 1637, 1451, 1437, 1385,
1370, 1338, 1259, 1140, 1105, 1066, 994, 910, 856, 846, 806, 730 cm™'; HRMS (APCI+)
m/z calc’d for C,,H,,O [M+H]": 179.1435; found 179.1430.

To a solution of diisopropylamine (0.11 mL, 0.76 mmol, 2.5 equiv) in THF (2.0 mL)
in a 10 mL round-bottom flask at 0 °C was added n-BuLi (370 uL, 0.76 mmol, 2.05 M in
cyclohexane, 2.5 equiv) dropwise over 10 min. After 15 min of stirring, the reaction was
cooled to —78 °C using an acetone/CO,(s) bath and crude epoxide 174 in THF (1.0 mL)
was added dropwise using positive pressure cannulation. The cooling bath was allowed
to warm to ambient temperature and the reaction was stirred for 18 h. The reaction was
diluted with Et,0 (10 mL) and quenched by addition of a 50:50 (v/v) mixture of sat.
aqueous NH,Cl and water (2.0 mL each). The phases were separated and the aqueous
phase was extracted with Et,0 (2 x 10 mL). The combined organic phases were washed
with brine (10 mL), dried over MgSQ,, filtered, and concentrated carefully under reduced
pressure, allowing for a film of ice to form on the outside of the flask, to afford a pale
yellow oil. The residue was purified by flash column chromatography (SiO,, 1 x 22 cm,
20% Et,0 in pentane) to afford allylic alcohol 175 (29.9 mg, 0.17 mmol, 55% yield over

2 steps) as a colorless oil; R;=0.25 (4:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,)
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$ 5.82-5.72 (m, 1H), 5.60 (dd, J = 1.7, 1.7 Hz, 1H), 5.22 (app q, J = 1.4 Hz, 1H), 5.05—
5.04 (m, 1H), 5.04-5.01 (m, 1H), 5.01-4.99 (m, 1H), 4.33 (br s, 2H), 2.58-2.45 (m, 2H),
2.17-2.08 (m, 2H), 1.82 (ddd, J = 12.7, 8.8, 5.9 Hz, 1H), 1.62 (ddd, J = 12.7, 8.8, 5.8 Hz,
1H), 1.51 (br s, 1H), 1.06 (s, 3H); "*C NMR (125 MHz, CDCL,) & 143.6, 139.1, 136.0,
135.9, 1169, 111.9, 64.3,49.3, 46.2, 35.9, 32.0, 26.4; IR (Neat Film NaCl) 3325, 3071,
3032, 2948, 2859, 1639, 1600, 1451, 1437, 1414, 1370, 1320, 1226, 1194, 1078, 1029,
994, 910, 848 cm™; HRMS (MM: ESI-APCI+) m/z calc'd for C,H,, [M—OH]":

161.1325; found 161.1324; [a],”° +17.59 (c 1.38, CHCl,, 88.0% ee).

PhCI
250 °C, uwaves
90% yield

2:2:1:1 ratio of
isomers

135¢ 176
Cyclohexene 176. Acylcyclopentene 135f (25.2 mg, 0.12 mmol, 1.00 equiv) was added
to a 2.0-5.0 mL microwave vial with magnetic stir bar and sealed with a septum-fitted
crimp cap. Chlorobenzene (5 mL) was added via syringe. The clear, colorless solution
was subjected to microwave irradiation in a Biotage Initiator microwave reactor
(temperature: 250 °C, sensitivity: low). After 2 h of irradiation, the vial was uncapped
and the solvent was removed under reduced pressure. The yellow residue was purified
by flash column chromatography (SiO,, 1.5 x 15 cm, 15:1 hexanes:Et,0) to afford
cyclohexene 176 as a yellow oil (22.5 mg, 0.104 mmol, 90% yield); R; = 0.65 (4:1
hexanes:EtOAc); 'H NMR (500 MHz, CDCI,) mixture of four diastereomers (2:2:1:1),

see Figure A1.265; "C NMR (125 MHz, CDCl;) mixture of four diastereomers, see



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 199

Figure A1.266; IR (Neat Film NaCl) 3014, 2921, 2855, 1666, 1611, 1448, 1437, 1369,
1339, 1303, 1268, 1190, 1093, 1075, 1051, 1037, 1024, 935, 868, 798, 733, 703 cm';
HRMS (EI+) m/z calc'd for C;sH,,0 [M]*: 216.1514; found 216.1518; [a],>° =15.57 (¢

1.01, CHCl;, 88.0% ee).

Grubbs—Hoveyda 3rd
generation (69) (25 mol %)
'
PhH, 50 °C
J 59% yield

Cl
135g cl 177

Spirocycle 177. A 2-neck flask fitted with rubber septum and reflux condenser under N,
was charged with Grubbs—Hoveyda 3rd generation catalyst (2.2 mg, 0.035 mmol, 6.1 mol
%). Dry degassed benzene (4 mL, sparged with N, for 1 h immediately before use) was
added to give a pale green solution. The flask was evacuated/backfilled with N, (3
cycles, 5 min evacuation per cycle). Acylcyclopentene 135g (14.2 mg, 0.063 mmol, 1.0
equiv) in dry, degassed benzene (4 mL) under N, was added to the catalyst solution using
positive pressure cannulation. The flask was rinsed with benzene (2 mL) and washes
were added into the catalyst solution. The reaction was immersed in a preheated 50 °C
oil bath and stirred for 44 h. An additional portion of Grubbs—Hoveyda 3rd generation
catalyst (4.4 mg, 0.070 mmol, 12.2 mol %) in degassed benzene (2 mL) was added into
the reaction using positive pressure cannulation. After stirring for an additional 15 h, a
third portion of Grubbs—Hoveyda 3rd generation catalyst (2.2 mg, 0.035 mmol, 6.1 mol

%) in degassed benzene (2 mL) was added into the reaction using positive pressure
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cannulation. After 31 h, the reaction was treated with several drops of ethyl vinyl ether
and allowed to cool to ambient temperature. The solution was diluted with Et,O (15 mL)
and filtered through a short silica gel plug (2 x 10 cm, Et,0). The orange filtrate was
purified by flash column chromatography (SiO,, 2 x 25 cm, 1%—3%—>5%—6.5% Et,0
in hexanes) to give volatile spirocycle 177 (7.3 mg, 0.0376 mmol, 59% yield); R,=0.49
(4:1 hexanes:EtOAc); 'H NMR (500 MHz, CDCl,) 8 6.61 (app t, J = 1.7 Hz, 1H), 5.64
(app p,J = 2.2 Hz, 1H), 2.66 (ddd, J = 16.2, 4.5, 2.1 Hz, 1H), 2.62-2.53 (m, 3H), 2.51
(ddd,J=16.2,4.6,2.4 Hz, 1H), 2.43 (ddd, J = 16.3,4.6,2.4 Hz, 1H), 2.31 (s, 3H), 2.09-
1.95 (m, 2H); "“C NMR (125 MHz, CDCl,) 6 197.3, 150.2, 144.2, 130.7, 125.2, 56.2,
49.7,44.3,39.4,29.6, 26.8; IR (Neat Film NaCl) 2929, 2845, 1726, 1668, 1616, 1436,
1370, 1340, 1314, 1276, 1193, 1079, 1052, 990, 966, 936, 905, 866, 822, 804 cm™;
HRMS (EI+) m/z calc'd for C,;H,;0CI [M]*: 196.0655; found 196.0655; [a],> —19.80

(c 0.53, CHCl;, 88.0% ee).

0 1) Et;N, TBSOTf OTBS OH
CH,Cl,, 0 °C 1) DDQ, PhCH,
_—
2) DMAD, PhCH, 2) TBAF, THF
w uwaves, 160 °C W' CO,Me
J 57% yield
= 4 steps — CO,Me
135a 178 179

mixture of diastereomers
Phenol 179. A 15 mL flask with magnetic stir bar was charged with acylcyclopentene
135a (50 mg, 0.274 mmol, 1.00 equiv) and anhydrous CH,Cl, (3.0 mL). The flask was
cooled to 0 °C and Et;N (152.8 uL, 1.096 mmol, 4.00 equiv) was added, followed by
dropwise addition of TBSOTf (125.8 uL, 0.548 mmol, 2.00 equiv). The reaction became
a pale yellow solution. After 1 h of stirring at 0 °C, the reaction was quenched by the

addition of sat. aqueous NaHCO, and slowly allowed to warm to ambient temperature.
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The mixture was extracted with CH,Cl, (3 x 10 mL) and the combined organics were
dried over Na,SO,, filtered, and concentrated under reduced pressure. The residue was
filtered through a silica gel plug (2 x 3 cm, 5:1 H:Et,0) and concentrated under reduced
pressure to give crude silyl enol ether as a pale yellow oil. R, = 0.79 (10:1
hexanes:EtOAc).

The silyl enol ether was added to a 2.0-5.0 mL microwave vial with magnetic stir bar
and sealed with a septum-fitted crimp cap. Toluene (5 mL) was added, followed by
dimethyl acetylenedicarboxylate (101 uL, 0.822 mmol, 3.00 equiv). The clear, colorless
solution was subjected to microwave irradiation in a Biotage Initiator microwave reactor
(temperature: 160 °C, sensitivity: low). After 2.5 h of irradiation, the vial was uncapped
and solvent was removed under reduced pressure. The yellow residue was purified by
flash column chromatography (SiO,, 3 x 25 cm, 15:1—10:1—4:1—2:1 hexanes:EtOAc)
to afford siloxydiene 178 as a mixture of diastereomers. R,=0.31 (10:1 hexanes:EtOAc).

A 20 mL scintillation vial with magnetic stir bar was charged with siloxydiene 178
and toluene (3.0 mL). DDQ (63.5 mg, 0.280 mmol, 1.02 equiv) was added portionwise.
Upon complete addition, the solution became a turbid red suspension. After 2 h, the
reaction was diluted with CH,Cl, and filtered through a Celite plug (2 x 3 cm, CH,Cl,).
The clear yellow solution was concentrated under reduced pressure. The residue was
purified by flash column chromatography (SiO,, 2 x 25 cm, 20:1—15:1—10:1—4:1—-2:1
hexanes:EtOAc) to afford the intermediate silyl aryl ether. R, = 0.31 (10:1
hexanes:EtOAc).

A 20 mL scintillation vial with magnetic stir bar was charged with silyl aryl ether.

The vial was evacuated, and backfilled with N,. Anhydrous THF (3 mL) was added and
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a TBAF solution (300 ul, 1.0 M in THF) was added dropwise, giving a bright red
solution. After 10 min, the reaction was quenched by the addition of sat. aqueous NH,Cl
(600 uL) and H,0O (600 uL). The mixture was stirred vigorously for 20 min and
extracted with Et,0O (3 x 5 mL). The combined organics were dried over Na,SO,, filtered,
and concentrated under reduced pressure. The residue was purified by flash column
chromatography (Si0O,, 2 x 25 cm, 5:1—4:1 hexanes:EtOAc) to afford phenol 179 as a
pale yellow oil (52.6 mg, 0.173 mmol, 57% yield over 4 steps); R, = 0.11 (2:1
hexanes:EtOAc); 'H NMR (300 MHz, CDCl;) 6 7.30 (s, 1H), 5.89 (br s, J = 1.9 Hz, 1H),
5.66 (dddd, J = 17.3, 10.2, 7.9, 7.9 Hz, 1H), 5.09-4.91 (m, 2H), 3.88 (s, 3H), 3.83 (s,
3H), 2.76 (t, J = 7.3 Hz, 2H), 2.47-2.26 (m, 2H), 2.24-2.08 (ddd, J = 12.0, 7.0, 7.0 Hz,
1H), 1.85-1.70 (ddd, J = 12.7, 7.6, 7.6 Hz, 1H), 1.26 (s, 3H); "C NMR (75 MHz,
CDCl,) 6 1704, 166.7, 152.5, 150.0, 135.8, 135.3, 128.3, 124.0, 117.7, 1154, 52.7,52.5,
494, 44.1, 38.3, 26.1, 25.6; IR (Neat Film NaCl) 3401, 3075, 2953, 2871, 1723, 1639,
1588, 1435, 1418, 1376, 1330, 1311, 1258, 1192, 1175, 1142, 1047, 995, 964, 916, 884,
857, 794, 769, 738, 719 cm™'; HRMS (EI+) m/z calc'd for C,;H,,05 [M]™: 304.1311;

found 304.1317; [a],”° —45.63 (¢ 0.91, CHCI,, 88.0% e¢).
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o)
TBAI, Et;N, 2-iodophenol
Pd(OAc); (2.5 mol %) Rh(PPhs);CI (10 mol %)
> >
DMF, 100 °C - HO PhCHg, H, (1 atm)
/J 90% yield \ 95% yield
135a (E/2)-180

Ar Ar

N7
OO
Pd
o |
I R 0e0

\
N\ N‘Tf Ar/ Ar

| \l/(Ar = 0-CHy-CgH,)
(o} =
cl Herrmann—Beller O
Comins' reagent catalyst (182) (10 mol %)
> om > M Q
- HO DMAP, CH,Cl, k) TBAA, DMA, 115 °C
94% yield 77% yield O 183
170 tricyclic core of

0 181 Hamigerans C and D

Phenol 180. DMF (1.52 mL) was sparged with N, in a 25 mL Schlenk flask for 1 h.
Et;N (0.849 mL, 6.09 mmol, 5.0 equiv), TBAI (450 mg, 1.22 mmol, 1.0 equiv) and 2-
iodophenol (282.2 mg, 1.28 mmol, 1.05 equiv) were added, followed by Pd(OAc), (6.84
mg, 0.030 mmol, 2.5 mol %). The flask was carefully evacuated/backfilled with N, (3
cycles, 1 min evacuation per cycle) followed by addition of acylcyclopentene 135a (200
mg, 1.22 mmol, 1.0 equiv). The suspension was immersed in an oil bath at 100 °C. The
reaction turned orange within 15 min of stirring. After 5 h of stirring, the reaction was
allowed to cool to ambient temperature, diluted with EtOAc (10 mL), and poured into
aqueous HCI (10 mL, 1.0 M). The phases were separated and the aqueous phase was
extracted with EtOAc (2 x 10 mL). The combined organic phases were washed with
brine (10 mL), dried over MgSQ,, filtered, and concentrated under reduced pressure. The
crude oil was purified by flash column chromatography using a Teledyne Isco
CombiFlash R, system (SiO,, 12 g loading cartridge, 40 g column, linear gradient,

5%—30% EtOAc in hexanes [25 min]) to afford styrenyl phenol 180 as a mixture of
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olefin isomers (283.0 mg, 1.10 mmol, 90% yield) as a colorless oil. R; = 0.17 (4:1
hexanes:EtOAc).

Rh(PPh;),CI (22.2 mg, 0.024 mmol, 0.10 equiv) was weighed out in a glove box and
added to a long reaction tube with magnetic stir bar. Styrenyl phenol 180 (61.5 mg,
0.240 mmol, 1.0 equiv) was dissolved in toluene (4.8 mL) and added to the reaction tube
using positive pressure cannulation. H, was bubbled through the suspension for 5 min
and the reaction tube was fitted with a balloon containing H, (1 atm). The reaction was
stirred for an additional 6 h at which point TLC analysis indicated complete conversion
of the starting material. The resulting clear orange reaction mixture was adsorbed onto a
12 g Isco loading cartridge and purified by flash column chromatography using a
Teledyne Isco CombiFlash R, system (SiO,, 12 g loading cartridge, 24 g column, linear
gradient, 5%—=50% Et,0 in hexanes [40 min]) to afford phenol 170 (58.9 mg, 0.228
mmol, 95% yield) as a pale yellow oil; R;=0.18 (4:1 hexanes:EtOAc); '"H NMR (300
MHz, CDCl,) 6 7.13-7.04 (m, 2H), 6.87 (t, J = 7.4 Hz, 1H), 6.75 (d, J = 7.9 Hz, 1H),
6.46 (app t,J = 1.7 Hz, 1H), 4.82 (bs, 1H), 2.60 (t, J = 7.3 Hz, 2H), 2.56-2.50 (m, 2H),
2.29 (s, 3H), 1.87-1.75 (m, 1H), 1.71-1.42 (m, 5H), 1.09 (s, 3H); "“"C NMR (125 MHz,
CDCI,) 6 197.9, 153.6, 152.8, 143.4, 1304, 128.4, 127.3, 120.9, 115.3, 50.1, 40.8, 36.2,
30.8,29.7, 26.8, 25.8, 25.5; IR (Neat Film NaCl) 3344, 3054, 3039, 2951, 2863, 1651,
1610, 1592, 1507, 1455, 1377, 1365, 1313, 1272, 1238, 1179, 1155, 1127, 1106, 1042,
907, 853, 752 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C,,;H,;0, [M+H]"

259.1693; found 259.1691; [a],>° +28.73 (¢ 0.74, CHCI,, 88.0% ee).



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 205

Triflate 181. To a solution of phenol 170 (104.2 mg, 0.40 mmol, 1.00 equiv) in CH,Cl,
(8.0 mL) in a 20 mL vial was added DMAP (97.8 mg, 0.80 mmol, 2.0 equiv) in one
portion, followed by N,N-Bis(trifluoromethylsulfonyl)-5-chloro-2-pyridylamine (172.8
mg, 0.44 mmol, 1.1 equiv). After 15 min of stirring at ambient temperature, TLC
revealed full conversion of phenol 170. The reaction mixture was adsorbed onto a 12 g
Isco loading cartridge and purified by flash column chromatography using a Teledyne
Isco CombiFlash R; system (SiO,, 12 g loading cartridge, 40 g column, linear gradient,
5—20% EtOAc in hexanes [25 min]) to afford triflate 181 (146.2 mg, 0.374 mmol, 94%
yield) as a clear, colorless oil; R;=0.44. (4:1 hexanes:EtOAc); '"H NMR (500 MHz,
CDCl,) 6 7.32-7.30 (m, 2H), 7.28 (dd, J = 8.5, 4.0 Hz, 1H), 7.24 (dm, J = 7.8 Hz, 1H),
6.44 (app t, J = 1.8 Hz, 1H), 2.69 (t, J = 7.7 Hz, 2H), 2.61-2.46 (m, 2H), 2.29 (s, 3H),
1.80 (ddd, J =13.0, 8.7, 6.5 Hz, 1H), 1.66 (ddd, J = 11.8, 8.0, 5.2 Hz, 1H), 1.64-1.45 (m,
3H), 1.50 (ddd, J = 11.4, 7.5, 5.1 Hz, 1H), 1.10 (s, 3H); "“C NMR (125 MHz, CDCI,) §
197.6, 152.0, 148.1, 143.7, 135.1, 131.3, 128.5, 128.0, 121.5, 118.7 (q, J = 320 Hz, 1C),
50.0, 40.7, 36.1, 30.8, 29.8, 26.8, 25.8, 25.7; IR (Neat Film NaCl) 3032, 2958, 2868,
1671, 1617, 1486, 1454, 1420, 1365, 1303, 1251, 1217, 1140, 1100, 1073, 893, 814, 767
cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C,H,,F;0,S [M+H]": 391.1188; found

391.1193; [a],”? +22.00 (¢ 1.31, CHCI,, 88.0% e¢).



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 206

Acylcyclopentene 183. To a solution of triflate 181 (30.0 mg, 0.077 mmol, 1.0 equiv) in
dry DMA (1.54 mL) in a 4 dram vial was added TBAA (57.9 mg, 0.19 mmol, 2.5 equiv,
stored and weighed out in a glove box). The resulting clear, colorless solution was
degassed by bubbling Ar though the solution for 1 h. Herrmann's catalyst’’ (7.2 mg, 7.7
umol, 0.10 equiv) was placed in a reaction tube which was subsequently
evacuated/backfilled with Ar (3 cycles, 1 min evacuation per cycle). The solution
containing triflate 181 was added to the catalyst using positive pressure cannulation. The
resulting pale green-yellow solution was immersed in an oil bath at ambient temperature
and heated to 115 °C. After 2 h of stirring, the reaction was allowed to cool to ambient
temperature, diluted with EtOAc (10 mL), and poured into aqueous HCI (1.0 M, 5.0 mL).
The phases were separated and the aqueous phase was extracted with EtOAc (10 mL).
The combined organics were washed with brine (5.0 mL), dried over MgSQO,, filtered,
and concentrated under reduced pressure. The crude product was purified by flash
column chromatography using a Teledyne Isco CombiFlash R, system (SiO,, 2.5 g
loading cartridge, 4 g column, multi-step gradient, hold 5% [10 min]—hold 10% [4
min]—hold 20% [3 min]—hold 60% EtOAc in hexanes [3 min]) to afford
acylcyclopentene 183 (14.3 mg, 0.0595 mmol, 77% yield, 62% yield over 4 steps) as a
pale yellow solid. The relative stereochemistry was assigned based on strong NOE
interaction between H* and H’; R, = 0.46 (4:1 hexanes:EtOAc); 'H NMR (500 MHz,

CDCl,) 8 7.17-7.06 (m, 3H), 6.95 (app t,J = 2.4 Hz, 1H), 6.63 (bd, J = 6.2 Hz, 1H), 3.86
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(s, 1H), 2.92-2.84 (m, 1H), 2.66 (app dd, J = 13.5, 7.9 Hz, 1H), 2.41 (s, 3H), 2.32-2.18
(m, 2H) 1.84 (app ddt, J = 13.5,7.7, 5.6 Hz, 1H), 1.58-1.43 (m, 1H), 1.30 (ddd, J = 14.0,
5.1,2.3 Hz, 1H), 1.18 (s, 3H), 0.85 (app dt, J = 13.5, 5.6 Hz, 1H); "*C NMR (125 MHz,
CDCl,) 6 196.7, 146.2, 144.6, 139.6, 139.2, 128.5, 126.7, 126.2, 125.0, 55.5, 48.4, 43.9,
34.1,30.6,26.9, 259, 21.4; IR (Neat Film NaCl) 3062, 3012, 2933, 2893, 2859, 1659,
1617, 1476, 1456, 1446, 1370, 1278, 1266, 1244, 1199, 1123, 997, 935, 794, 757, 752,
730 cm™'; HRMS (MM: ESI-APCI+) m/z calc'd for C,,H,,0 [M+H]*": 241.1587; found

241.1591; [a],” +3.88 (c 1.43, CHCI,, 88.0% e¢).

2.10.2.12  REVISED APPROACH TO THE REDUCTION/REARRANGEMENT

AND ORGANOMETALLIC ADDITION/REARRANGEMENT OF 149a

H
o \/
(o]

LiAIH, H

o}

o 137

o~ EuO.0°C 3+a NaOAc-3H,0 o~
—_— > —_ " =

) then Ac,0, 110 °C

-BuO 10% aq HCI HO H (o]

80% yield

149a ’@'\ . 2 steps 137a

o

154a

Cycloheptenone 137a. A round-bottom flask charged with vinylogous ester 149a (367.0
mg, 1.55 mmol, 1.00 equiv) and THF (5 mL, 0.3 M) was cooled in a 0 °C ice/water bath
and LiAIH, (34.0 mg, 0.90 mmol, 0.58 equiv) was added. After 25 min of stirring, the
reaction was quenched at 0 °C with the addition of aqueous HCI1 (10 mL, 10% w/w) and
transferred to a separatory funnel where the aqueous phase was extracted with EtOAc (3

x 10 mL). The combined organics were dried over Na,SO,, filtered, and concentrated
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under reduced pressure. To the resulting crude oil was added Ac,0O (3.8 mL) and
NaOAc-3H,0 (1.28 g, 9.43 mmol, 6.08 equiv) and the mixture was lowered into a
preheated oil bath (110 °C). After 15 h of heating, the reaction was allowed to cool to
ambient temperature and quenched with K,CO; (5.59 g, 40.5 mmol) and water (10 mL).
After an addition 30 min of stirring, the solution was transferred to a separatory funnel
where the aqueous phase was extracted with EtOAc (4 x 10 mL). The combined organics
were dried over Na,SO,, filtered, and concentrated under reduced pressure. The crude oil
was purified by flash chromatography (SiO,, 2 x 16 cm, 20:1 hexanes:EtOAc) to afford
cycloheptenone 137a (203.9 mg, 1.24 mmol, 80% yield) as a pale yellow oil. (For

characterization data, see p. 155-155).

o CeCl3-7H,0 H HO H
U““\/ NaBH, MeOH, 0 °C - ’d‘\/ , U.
BuO then 10% aq HCI o 0 \=
149a 137a 154a

82% yield 1% yield

Cycloheptenone 137a and p-Hydroxyketone 154a. A 100 mL round-bottom flask with
magnetic stir bar was charged with vinylogous ester 149a (186.8 mg, 0.79 mmol, 1.00
equiv) and anhydrous MeOH (14 mL). The solution was cooled to 0 °C (water/ice bath).
CeCl;-7H,0 (294.5 mg, 0.79 mmol, 1.00 equiv) was added in one portion and the mixture
was stirred for 5 min. Portionwise addition of NaBH, (89.7 mg, 2.37 mmol, 3.00 equiv)
at 0 °C led to the evolution of gas and a turbid solution that became clearer after several
minutes. TLC analysis indicated that no starting material remained after 2 min.
Consequently, the reaction was quenched by dropwise addition of aqueous HCI (2 mL,

10% w/w) at 0 °C. After an additional 10 min of stirring, the reaction was diluted with
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CH,CI, (60 mL) and H,O (2 mL). The layers were separated. The aqueous layer was
extracted with CH,Cl, (6 x 5 mL). The combined organic layers were washed with sat.
aqueous NaHCO, (2 x 5 mL) and brine (2 x 5 mL), dried over Na,SO,, filtered, and
evaporated to give a pale yellow oil. The crude mixture was purified using flash
chromatography (SiO,, 2 x 25 cm, 20:1—15:1—3:1 hexanes:EtOAc) to afford volatile
enone 137a (1069 mg, 0.645 mmol, 82% yield) as a pale yellow oil and -
hydroxyketone 154a as a mixture of diastereomers (1.4 mg, 0.0077 mmol, 1% yield,

3.5:1 dr) as a colorless oil. (For characterization data of 137a and 154a, see p. 155-155).

n-Pr
(o] n-Bu |
N CeCly, m-BuMgCl, THF, 23 °C SaNS SNF
L +
i-BuO then 10% aq HCI, 60 °C (o) o
149a 137r 184
4% yield 76% yield

Cycloheptenone 137r and Cycloheptenone Isomer 184. An oven dried 15 mL round-
bottom flask equipped with a magnetic stir bar was cycled into a glove box. The flask
was loaded with anhydrous cerium chloride (130.4 mg, 0.53 mmol, 2.49 equiv), fitted
with a septum, removed from the glove box, and connected to an argon-filled Schlenk
manifold. A portion of THF (5.5 mL) was added, rinsing the cerium chloride to the
bottom of the flask. As the resulting thick white slurry was stirred, a solution of n-
butylmagnesium chloride (340 uL, 1.89 M in THF, 0.64 mmol, 3.03 equiv) was added
and the mixture turned pale yellow. After 45 min of stirring, neat vinylogous ester 149a
(50.2 mg, 0.21 mmol, 1.00 equiv) was added to the flask. The slurry maintained the
yellow color with the addition. TLC analysis indicated that no starting material remained

after 5 min. After an additional 10 min of stirring, the reaction was quenched with
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aqueous HCI (1 mL, 10% w/w) and lowered into a preheated oil bath (60 °C). After 17 h,
the yellow suspension was removed from the bath, cooled to ambient temperature, and
transferred to a separatory funnel where the aqueous phase was extracted four times with
Et,0. The combined organics (75 mL) were dried over MgSO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (SiO,, 1 x 27 cm, 100% hexanes—>2%—>10% EtOAc in hexanes) to
afford moderately contaminated cycloheptenone 137r and pure alkene isomer 184 (35.4
mg, 0.16 mmol, 76% yield) as an orange oil. Additional purification by flash
chromatography (SiO,, 1 x 27 cm, 100% hexanes—2%—>5% EtOAc in hexanes)
furnished cycloheptenone 137r (1.7 mg at 95% purity, 0.0076 mmol, 4% yield) as a

yellow oil. (For characterization data of 137r, see p. 178).

n-Pr H?

184
Cycloheptenone Isomer 184. R; = 0.76 (30% EtOAc in hexanes); The relative alkene
stereochemistry was assigned based on NOE interactions of H* proton; 'H NMR (500
MHz, CDCI;) 6 5.66 (dddd, J = 16.9, 10.6, 7.9, 6.6 Hz, 1H), 543 (t,J = 7.1 Hz, 1H),
5.03-4.97 (m, 2H), 3.20 (d, J = 14.6 Hz, 1H), 3.13 (d, J = 14.6 Hz, 1H), 2.47-2.38 (m,
1H), 2.36-2.26 (m, 2H), 2.15-1.95 (m, 3H), 1.82-1.69 (m, 2H), 1.66-1.58 (m, 1H), 1.58-
1.50 (m, 1H), 1.40-1.32 (m, 2H), 1.07 (s, 3H), 0.88 (t, J = 7.4 Hz, 3H); "C NMR (125
MHz, CDCI,) 6 210.0, 136.2, 135.1, 130.0, 117.2,44 .8, 43.3,43.3,41.8,41.1,30.2, 25.0,

22.9,19.6,13.9; IR (Neat Film NaCl) 3074, 3042, 2959, 2929, 2871, 1706, 1638, 1457,
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1436, 1378, 1351, 1302, 1262, 1231, 1163, 1098, 1069, 996, 953, 912, 805, 776, 729
cm™; HRMS (EI+) m/z calc’d for C,sH,,0, [M]*: 220.1827; found 220.1780; [ot],2°

-10.92 (¢ 0.76, CHCl,, 88.0% ee).

(o] n-Bu

1. CeCly, n-BuMgCl, THF, 23 °C
SNF then Na,PO, buffer (pH 6.5) WNF
»
-BuO 2.6 mM aq HCI, CH;CN o
149a 84% yield 137r

Cycloheptenone 137r. A 50 mL round-bottom flask equipped with a magnetic stir bar
was cycled into a glove box. The flask was loaded with anhydrous cerium chloride
(260.8 mg, 1.06 mmol, 2.50 equiv), fitted with a septum, removed from the glove box,
and connected to an argon-filled Schlenk manifold. A portion of THF (8.5 mL) was
added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick white
slurry was stirred, a solution of n-butylmagnesium bromide (680 uL, 1.87 M in THF,
1.27 mmol, 3.00 equiv) was added and the mixture turned grey. After 30 min of stirring,
vinylogous ester 149a (100.0 mg, 0.42 mmol, 1.00 equiv) was added neat from a
Hamilton syringe and the needle was rinsed with a small portion of THF (2 mL; total
THF added = 10.5 mL, 0.04 M). The color of the slurry initially transitioned to yellow
with the vinylogous ester addition before turning back to grey. TLC analysis indicated
that no starting material remained after 15 min. After an additional 10 min of stirring, the
reaction was quenched with pH 6.5 Na,PO, buffer (8§ mL). A thick grey emulsion
formed. The mixture was transferred to a separatory funnel where the aqueous phase was
extracted four times with Et,0. The combined organics (125 mL) were dried over
MgSO,, filtered, and concentrated under reduced pressure. The crude oil was transferred

to a 20 mL scintillation vial and concentrated under reduced pressure. A stir bar, CH,CN
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(1.0 mL), and 6 mM aqueous HCI (1.0 mL) were added to the vial. The resulting cloudy
solution was stirred vigorously for 5 min before being transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organics
(100 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
The crude oil was purified by flash chromatography (SiO,, 3 x 30 cm, 100%
hexanes—2%—5% EtOAc in hexanes) to afford cycloheptenone 137r (82.4 mg, 0.35

mmol, 84% yield) as a pale yellow oil. (For characterization data of 137r, see p. 178).
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2.10.2.13 GRIGNARD AND ORGANOLITHIUM REAGENTS?®

Table 2.7. Sources of Crignard and Organolithium Reagents

entry reagent molarity (M) obtained from

1 A~ MgEr 0.86 M in Et,0 Sigma-Aldrich

2 )\/MgBr 0.39 M in THF Sigma-Aldrich

3 A" NgBr 0.44 M in THF Sigma-Aldrich
4 )\/\ 0.41 M in THF )\/\

MgBr Br

5 N\ MoBr 0.35 M in THF OB
MgBr

6 / 0.25 M in THF Sigma-Aldrich

7 Ph L N/A® Ph g
Br

MgBr
8 0.40 M in THF
= =
~ Li =
9 N/AP O
\ 0 \ (o)
MgCl c
10 = 0.44 M in THF ==
\_s

2 Titrated using method of Love (see ref. 49). © Not titrated.

z
(%)

Grignard and Organolithium Reagents. Reagents were purchased from Sigma-Aldrich
or prepared according to procedures listed below. Reagents were titrated according to the

method of Love.*



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 214

)\/\ Mg(0), DIBAL (4 mol %) )\/\
'
Br THF MgBr

0.41 M in THF

(3-Methylbut-3-enyl)magnesium bromide (7able 2.7, entry 4). A 250 mL Schlenk
bomb (14/20 joint off of a 12 mm Kontes valve) equipped with a magnetic stir bar, fitted
with a rubber septum, and connected to a Schlenk manifold was flame-dried three times,
backfilling with argon after each drying cycle. Once cool, magnesium metal (2.04 g,
83.79 mmol, 2.50 equiv) was added. After three argon backfilling cycles, the flask was
charged with THF (50 mL, 0.7 M) and neat DIBAL® (150 uL, 1.29 mmol, 4 mol %) and
stirring was initiated. The stirring was stopped after 10 min and 4-bromo-2-methylbut-1-
ene® (5.00 g, 33.57 mmol, 1.00 equiv) was added via syringe with the needle in the
solution directly above the magnesium. The mixture was heated to reflux, sealed by
closing the Schlenk valve, and stirred vigorously. The flask was occasionally heated
back to reflux and then allowed to cool to room temperature (23 °C). The reaction color
became amber over time. After 30 min, an aliquot was removed and titrated following

the procedure of Love (0.41 M in THF).* See p. 227 for use of this reagent.

Mg(0), DIBAL (4 mol %)

B > N MeBr
Z THF Z

0.35 M in THF
Pent-4-enylmagnesium bromide (7able 2.7, entry 5). A 250 mL Schlenk bomb (14/20
joint off of a 12 mm Kontes valve) equipped with a magnetic stir bar, fitted with a rubber
septum, and connected to a Schlenk manifold was flame-dried three times, backfilling
with argon after each drying cycle. Once cool, magnesium metal (614.4 mg, 25.27

mmol, 2.53 equiv) was added. After three argon backfilling cycles, the flask was charged
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with THF (20 mL, 0.5 M) and neat DIBAL> (50 uL, 0.43 mmol, 4 mol %) and stirring
was initiated. The stirring was stopped after 10 min and 5-bromopent-1-ene (1.18 mL,
9.98 mmol, 1.00 equiv) was added via a syringe with the needle in the solution directly
above the magnesium. The mixture was heated to reflux, sealed by closing the Schlenk
valve, and stirred vigorously. The flask was occasionally heated back to reflux and then
allowed to cool to room temperature (23 °C). The reaction color became amber over

time. After 30 min, an aliquot was removed and titrated following the procedure of Love

(0.35 M in THF).” See p. 217 and p. 229 for use of this reagent.

t-BuLi (1.7 M in pentane)
Ph\/\Br > Ph\/\L_
Et,0, 78 — 23 °C !

(E)-Styryllithium (Table 2.7, entry 7). See p. 231 for the synthesis and use of this

reagent.

Br Mg(0), DIBAL (18 mol %) MgBr
>
= THF =

0.40 M in THF
(2-Vinylphenyl)magnesium bromide (7Table 2.7, entry 8). A 250 mL Schlenk round-
bottom flask (14/20 joint off of a 12 mm Kontes valve) equipped with a magnetic stir bar,
fitted with a rubber septum, and connected to a Schlenk manifold was flame-dried three
times, backfilling with argon after each drying cycle. Once cool, magnesium metal
(491.3 mg, 20.21 mmol, 2.53 equiv) was added. After three argon backfilling cycles, the

flask was charged with THF (16 mL, 0.5 M) and neat DIBAL>® (170 uL, 1.46 mmol, 18

mol %) and stirring was initiated. The stirring was stopped after 10 min and o-
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bromostyrene (1.00 mL, 7.98 mmol, 1.00 equiv) was added with the needle in the
solution directly above the magnesium. The mixture was heated to reflux, sealed by
closing the Schlenk valve, and stirred vigorously. The flask was occasionally heated
back to reflux and then allowed to cool to room temperature (23 °C). The reaction
became amber over time. After 2 h, a small portion of the reaction was removed and

titrated following the procedure of Love.” See p. 234 for use of this reagent.

B n-BuLi Li
@ >
o Et,0, -15 — 23 °C o

Furan-2-yllithium (7Table 2.7, entry 9). Prepared following a procedure similar to

Sauers and Hagedorn.®' See p. 236 for the synthesis and use of this reagent.

~ Cl Mg(0), D|BAL(4mo|%)> x MgCI
\_s THF \_s

0.44 M in THF
Thiophen-2-ylmagnesium chloride (Table 2.7, entry 10). A two neck 50 mL round-
bottom flask equipped with a magnetic stir bar, fitted with a rubber septum on one neck
and a water condenser on the other neck, and connected to a Schlenk manifold (through
the condenser) was flame-dried three times, backfilling with argon after each drying
cycle. Once cool, magnesium metal (635.0 mg, 26.12 mmol, 2.60 equiv) was added.
After two argon backfilling cycles, the flask was charged with THF (20 mL) and neat
DIBAL> (50 uL, 0.43 mmol, 4 mol %) and stirring was initiated. The stirring was
stopped after 10 min and 2-chlorothiophene (930 uL., 10.04 mmol, 1.00 equiv) was added
via a syringe with the needle in the solution directly above the magnesium. The mixture

was heated to reflux. A small piece of I, (size of a spatula tip) dissolved in THF (1 mL)
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was cannula-transferred into the mixture after 12 h and 13.5 h. The flask was allowed to
cool to room temperature (23 °C). After 15 h, an aliquot was removed and titrated
following the procedure of Love (0.44 M in THF).* See p. 218 and p. 238 for use this

reagent.

2.10.2.14 CARBONYL TRANSPOSITION TO y-QUATERNARY

CYCLOHEPTENONES

Representative procedures for General Methods F—H are described below.

o~ MaBr
lo) 1. CeClg, THF, 23 °C =z
|~ :gﬁnG%?3P04 buffer N
BuO 2.6 mM aq HCI, CH;CN > o)
149a 92% yield 137w
General Method F:

Organometallic Addition / Na,PO, Buffer Quench / Dilute HCl Workup
Cycloheptenone 137w. A 100 mL round-bottom flask equipped with a magnetic stir
bar was cycled into a glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), fitted with a septum, removed from the glove box,
and connected to an argon-filled Schlenk manifold. A portion of THF (13 mL) was
added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick white
slurry was stirred, a solution of pent-4-enylmagnesium bromide (8.6 mL, 0.35 M in THF,
3.01 mmol, 3.01 equiv) was added and the mixture turned grey. After 30 min of stirring,

vinylogous ester 149a (236.3 mg, 1.00 mmol, 1.00 equiv) was cannula-transferred to the
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slurry from a flame-dried 10 mL conical flask using several THF rinses (3 x 4 mL; total
THF added = 25 mL, 0.04 M). TLC analysis indicated that no starting material remained
after 5 min. After an additional 10 min of stirring, the reaction was quenched with pH
6.5 Na,PO, buffer (20 mL). A thick grey emulsion formed. The mixture was transferred
to a separatory funnel where the aqueous phase was extracted four times with Et,0. The
combined organic (150 mL) were dried over MgSQO,, filtered, and concentrated under
reduced pressure. The crude oil was transferred to a 20 mL scintillation vial and
concentrated under reduced pressure. A stir bar, CH,CN (2.0 mL), and aqueous HCl (2.0
mL, 6 mM) were added to the vial. The resulting cloudy solution was stirred vigorously
for 30 min before being transferred to a separatory funnel where the aqueous phase was
extracted four times with Et,0. The combined organics (75 mL) were dried over MgSO,,
filtered, and concentrated under reduced pressure. The crude oil was purified by flash
chromatography (SiO,, 3 x 30 cm, 100% hexanes—1%—>2%—>5% EtOAc in hexanes) to

afford cycloheptenone 137w (214.2 mg, 0.92 mmol, 92% yield) as a clear colorless oil.

~-Macl
o T %

W\  CeCl;, THF, 23 °C W\ F
'
FBuO then 10% aq HCI, 60 °C (o]

149a 84% yield 137ab

\

General Method G: Organometallic Addition / Aq. HCI Quench
Cycloheptenone 137ab. A 100 mL round-bottom flask equipped with a magnetic stir
bar was cycled into a glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), fitted with a septum, removed from the glove box,

and connected to an argon-filled Schlenk manifold. A portion of THF (13 mL) was
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added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick white
slurry was stirred, a solution of thiophen-2-ylmagnesium chloride (6.8 mL, 0.44 M in
THF, 2.99 mmol, 2.99 equiv) was added and the mixture turned dark grey. After 30 min
of stirring, vinylogous ester 149a (236.4 mg, 1.00 mmol, 1.00 equiv) was cannula-
transferred to the slurry from a flame-dried 10 mL conical flask using several THF rinses
(3 x 4 mL; total THF added = 25 mL, 0.04 M). TLC analysis indicated that no starting
material remained after 25 min. After an additional 5 min of stirring, the reaction was
quenched with aqueous HCI (5 mL, 10% w/w) and lowered into a preheated oil bath (60
°C). After 20 h, additional aqueous HCI (5 mL, 10% w/w) was added. After 26 h, the
yellow solution was removed from the bath, cooled to ambient temperature, treated with
sat. aqueous NaHCO; solution (25 mL), and transferred to a separatory funnel where the
aqueous phase was extracted four times with Et,0. The combined organics (150 mL)
were rinsed once with sat. aqueous NaHCO,, dried over MgSO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (Si0,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to afford

cycloheptenone 137ab (206.1 mg, 0.84 mmol, 84% yield) as a yellow/orange oil.

MgBr

o A Il

RN CeCl3, THF, 23 °C -
BUO then 2 M aq H,SO,, 60 °C o

97% yield
149a °vie

<

137y
General Method H: Organometallic Addition / Aq. H,SO, Quench
Cycloheptenone 137y. A 100 mL round-bottom flask equipped with a magnetic stir bar

was cycled into a glove box. The flask was loaded with anhydrous cerium chloride
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(616.2 mg, 2.50 mmol, 2.50 equiv), fitted with a septum, removed from the glove box,
and connected to an argon-filled Schlenk manifold. A portion of THF (13 mL) was
added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick white
slurry was stirred, a solution of prop-1-ynylmagnesium bromide (12 mL, 0.25 M in THF,
3.00 mmol, 3.00 equiv) was added and the mixture turned yellow. After 30 min of
stirring, vinylogous ester 149a (236.4 mg, 1.00 mmol, 1.00 equiv) was cannula-
transferred to the slurry from a flame-dried 10 mL conical flask using several THF rinses
(3 x 4 mL; total THF added = 25 mL, 0.04 M). The slurry maintained the yellow color
with the addition. TLC analysis indicated that no starting material remained after 5 min.
After an additional 10 min of stirring, the reaction was quenched with 2 M H,SO, (5 mL)
and lowered into a preheated oil bath (60 °C). A white precipitate formed within several
minutes. After 12 h, the yellow suspension was removed from the bath, cooled to
ambient temperature, treated with sat. aqueous NaHCO, solution (50 mL), and
transferred to a separatory funnel where the aqueous phase was extracted four times with
Et,0. The combined organics (175 mL) were rinsed once with sat. aqueous NaHCO,,
dried over MgSQ,, filtered, and concentrated under reduced pressure. The crude oil was
purified by flash chromatography (SiO,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in
hexanes) to afford cycloheptenone 137y (195.4 mg, 0.97 mmol, 97% yield) as a yellow

oil.
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/\/\MgBr
o 1. CeCl, THF, 23 °C
K = o =
~F then pH 6.5 NagPO, buffer ~~
-BuO 2.6 mM aq HCI, CH;CN o
84% yield

149a 137r

Cycloheptenone 137r (Table 2.5, entry 1). Prepared using General Method F. A 50
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(260.8 mg, 1.06 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (8.5 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick
white slurry was stirred, a solution of n-butylmagnesium bromide (680 uL, 1.87 M in
THF, 1.27 mmol, 3.00 equiv) was added and the mixture turned grey. After 30 min of
stirring, vinylogous ester 149a (100.0 mg, 0.42 mmol, 1.00 equiv) was added neat from a
Hamilton syringe and the needle was rinsed with a small portion of THF (2 mL; total
THF added = 10.5 mL, 0.04 M). The color of the slurry initially transitioned to yellow
with the vinylogous ester addition before turning back to grey.

TLC analysis indicated that no starting material remained after 15 min. After an
additional 10 min of stirring, the reaction was quenched with pH 6.5 Na,PO, buffer (8
mL). A thick grey emulsion formed. The mixture was transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organics

(125 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
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The crude oil was transferred to a 20 mL scintillation vial and concentrated under
reduced pressure. A stir bar, CH,CN (1.0 mL), and 6 mM aqueous HCl (1.0 mL) were
added to the vial. The resulting cloudy solution was stirred vigorously for 5 min before
being transferred to a separatory funnel where the aqueous phase was extracted four
times with Et,0. The combined organics (100 mL) were dried over MgSQO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (SiO,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to afford
cycloheptenone 137r (82.4 mg, 0.35 mmol, 84% yield) as a pale yellow oil. (For

characterization data, see p. 178).

2~ MgBr
o) Z =
I !\/ 1. CeCly, THF, 23 °C - o~
. then pH 6.5 NazPO, buffer
FBuO 2.6 mM aq HCI, CHy,CN 0
149a 73% yield 137s

Cycloheptenone 137s (Table 2.5, entry 2). Prepared using General Method F. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.3 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick

white slurry was stirred, a solution of allylmagnesium bromide (3.49 mL, 0.86 M in Et,0,
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3.00 mmol, 3.00 equiv) was added and the mixture turned initially orange and red over
time. After 30 min of stirring, vinylogous ester 149a (236.6 mg, 1.00 mmol, 1.00 equiv)
was cannula-transferred to the slurry from a flame-dried 10 mL conical flask using
several THF rinses (3 x 4 mL; total THF added = 25 mL, 0.04 M). The mixture faded
back to orange with the addition.

TLC analysis indicated that no starting material remained after 5 min. After an
additional 10 min of stirring, the reaction was quenched with pH 6.5 Na,PO, buffer (20
mL). A thick grey emulsion formed. The mixture was transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organics
(250 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
The crude oil was transferred to a 20 mL scintillation vial and concentrated under
reduced pressure. A stir bar, CH,CN (2.0 mL), and 6 mM aqueous HCI (2.0 mL) were
added to the vial. The resulting cloudy solution was stirred vigorously for 30 min before
being transferred to a separatory funnel where the aqueous phase was extracted four
times with Et,0. The combined organics (75 mL) were dried over MgSQO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (Si0,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to afford
cycloheptenone 137s (148.6 mg, 0.73 mmol, 73% yield) as a pale yellow oil; R;=0.68
(30% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) & 5.88 (s, 1H), 5.75 (dddd, J =
169, 10.1, 6.8, 6.8 Hz, 1H), 5.64 (dddd, J = 17.0, 10.3, 7.8, 6.8 Hz, 1H), 5.14-5.00 (m,
4H), 2.96-2.84 (m, 2H), 2.62-2.54 (m, 2H), 2.38 (dddd, J = 14.2, 6.8, 1.3, 1.3 Hz, 1H),
2.10 (dddd, J = 14.2,7.8, 1.1, 1.1 Hz, 1H), 1.84-1.76 (m, 3H), 1.67-1.57 (m, 1H), 1.17

(s, 3H); "C NMR (125 MHz, CDCl;) & 205.2, 160.3, 136.0, 134.0, 130.0, 118.3, 117.9,
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455,452, 44.4,38.8, 38.5,25.7, 17.6; IR (Neat Film NaCl) 3077, 2976, 2939, 2872,
1654, 1612, 1458, 1412, 1380. 1342, 1290, 1250, 1217, 1177, 1106, 996, 916 cm™;
HRMS (MM: ESI-APCI+) m/z calc’d for C,,H,,0 [M+H]*: 205.1587; found 205.1587;

[a]p” —34.64 (¢ 1.55, CHCl,, 88% ee).

)\/MgBr
(o}

? !\/ 1. CeCly, THF, 23 °C -
. then pH 6.5 NazPO, buffer
FBuO 2.6 mM aq HCI, CH;CN 0

149a 93% yield 137t

§

Cycloheptenone 137t (Table 2.5, entry 3). Prepared using General Method F. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick
white slurry was stirred, a solution of (2-methylallyl)magnesium bromide (7.7 mL, 0.39
M in THF, 3.00 mmol, 3.00 equiv) was added and the mixture turned initially yellow and
eventually orange with time. After 30 min of stirring, vinylogous ester 149a (236.2 mg,
1.00 mmol, 1.00 equiv) was cannula-transferred to the slurry from a flame-dried 10 mL

conical flask using several THF rinses (3 x 4 mL; total THF added = 25 mL, 0.04 M).
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TLC analysis indicated that no starting material remained after 5 min. After an
additional 15 min of stirring, the reaction was quenched with pH 6.5 Na,PO, buffer (20
mL). A thick grey emulsion formed. The mixture was transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organics
(150 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
The crude oil was transferred to a 20 mL scintillation vial and concentrated under
reduced pressure. A stir bar, CH,CN (2.0 mL), and 6 mM aqueous HCI (2.0 mL) were
added to the vial. The resulting cloudy solution was stirred vigorously for 30 min before
being transferred to a separatory funnel where the aqueous phase was extracted four
times with Et,0. The combined organics (75 mL) were dried over MgSQO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (Si0,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to afford
cycloheptenone 137t (202.9 mg, 0.93 mmol, 93% yield) as a pale yellow oil; R;=0.65
(30% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,) § 5.89 (s, 1H), 5.65 (dddd, J =
16.9,10.3,7.8, 6.8 Hz, 1H), 5.09-5.01 (m, 2H), 4.94-4.91 (m, 1H),4.78 (dd,J/=1.9,0.9
Hz, 1H), 2.85 (q, J = 16.2 Hz, 2H), 2.63-2.55 (m, 2H), 2.37 (dddd, J = 14.1,6.8, 1.3, 1.3
Hz, 1H), 2.10 (dddd, J = 14.2, 7.8, 1.1, 1.1 Hz, 1H), 1.85-1.75 (m, 3H), 1.68 (s, 3H),
1.66-1.59 (m, 1H), 1.16 (s, 3H); "“C NMR (125 MHz, CDCl;) § 205.3, 159.1, 142.8,
134.0, 1295, 118.3,115.2,454, 450,44 .4,42.7,38.8, 25.6, 22.2, 17.6; IR (Neat Film
NaCl) 3075, 2970, 2939, 2872, 1661, 1652, 1612, 1455, 1376, 1342, 1309, 1249, 1218,
996, 914, 893 cm'; HRMS (MM: ESI-APCI+) m/z calc’d for C,sH,;O [M+H]":

219.1743; found 219.1740; [a],>° -35.09 (¢ 0.95, CHCl,, 88% ee).
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o NMgBr A
o~z 1-CeCly THF,23°C - o~
i then pH 6.5 NazPO, buffer
FBuO : ;‘ 2.6 mM aq HCI, CH;CN o
149a 90% yield 137u

Cycloheptenone 137u (Table 2.5, entry 4  Prepared using General Method F. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting white
mixture was stirred, a solution of but-3-enylmagnesium bromide (6.82 mL, 0.44 M in
THF, 3.00 mmol, 3.00 equiv) was added, generating a thick grey slurry. After 30 min of
stirring, vinylogous ester 149a (236.4 mg, 1.00 mmol, 1.00 equiv) was cannula-
transferred to the slurry from a flame-dried 10 mL conical flask using several THF rinses
(3 x 4 mL; total THF added = 25 mL, 0.04 M).

After 20 min, the reaction was quenched with pH 6.5 Na,PO, buffer (20 mL). A thick
grey emulsion formed. The mixture was transferred to a separatory funnel where the
aqueous phase was extracted four times with Et,0. The combined organic (150 mL)
were dried over MgSQ,, filtered, and concentrated under reduced pressure. The crude oil
was transferred to a 20 mL scintillation vial and concentrated under reduced pressure. A

stir bar, CH,CN (2.0 mL), and 6 mM aqueous HCI (2.0 mL) were added to the vial. The
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resulting cloudy solution was stirred vigorously for 5 min before being transferred to a
separatory funnel where the aqueous phase was extracted four times with Et,0. The
combined organics (80 mL) were dried over MgSO,, filtered, and concentrated under
reduced pressure. The crude oil was purified by flash chromatography (SiO,, 3 x 30 cm,
100% hexanes—2%—=5%—>10% EtOAc in hexanes) to afford cycloheptenone 137u
(196.6 mg, 0.90 mmol, 90% yield) as a yellow oil; R;=0.67 (30% EtOAc in hexanes);
'H NMR (500 MHz, CDCl,) & 5.88 (s, 1H), 5.86-5.77 (m, 1H), 5.63 (dddd, J = 16.9,
10.3,7.8, 6.8 Hz, 1H), 5.08-4.96 (m, 4H), 2.59-2.54 (m, 2H), 2.36 (dddd, J = 14.1, 6.7,
1.3, 1.3 Hz, 1H), 2.28-2.17 (m, 4H), 2.08 (dddd, J = 14.1, 7.9, 2.1, 1.0 Hz, 1H), 1.83—
1.73 (m, 3H), 1.65-1.57 (m, 1H), 1.15 (s, 3H); "C NMR (125 MHz, CDCl;) § 205.2,
161.6,137.7,134.0,128.9,118.2,115.4,45.7,45.2,44.3,38.7,34.0,33.4,25.7,17.6; IR
(Neat Film NaCl) 3076, 2975, 2938, 2872, 1652, 1611, 1465, 1452, 1415, 1379, 1342,
1263, 1218, 1177, 1109, 1069, 996, 914, 877, 841, 764, 714 cm™'; HRMS (MM: ESI-
APCI+) m/z calc’d for C;sH,,O [M+H]": 219.1743; found 219.1742; [a],”° -34.11 (¢

1.21, CHCL,, 88% e).

o MgBr

|| !\/ 1. CeCl,, THF, 23 °C -
. then pH 6.5 Na;PO, buffer
FBuO 2.6 mM aq HCI, CH;CN 0

149a 82% yield 137v

§

Cycloheptenone 137v (Table 2.5, entry 5). Prepared using General Method F. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon

after each drying cycle. The hot flask was placed into a glove box antechamber, which
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was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick
white slurry was stirred, a solution of (3-methylbut-3-enyl)magnesium bromide (7.3 mL,
0.41 M in THF, 2.99 mmol, 2.99 equiv) was added and the mixture turned yellow. After
30 min of stirring, vinylogous ester 149a (236.4 mg, 1.00 mmol, 1.00 equiv) was
cannula-transferred to the slurry from a flame-dried 10 mL conical flask using several
THEF rinses (3 x 4 mL; total THF added = 25 mL, 0.04 M).

TLC analysis indicated that no starting material remained after 5 min. After an
additional 10 min of stirring, the reaction was quenched with pH 6.5 Na,PO, buffer (20
mL). A thick grey emulsion formed. The mixture was transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organic
(150 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
The crude oil was transferred to a 20 mL scintillation vial and concentrated under
reduced pressure. A stir bar, CH;CN (2.0 mL), and 6 mM aqueous HCI (2.0 mL) were
added to the vial. The resulting cloudy solution was stirred vigorously for 5 min before
being transferred to a separatory funnel where the aqueous phase was extracted four
times with Et,0. The combined organics (75 mL) were dried over MgSQO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash
chromatography (Si0,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to afford

cycloheptenone 137v (191.1 mg, 0.82 mmol, 82% yield) as a clear colorless oil; R; =
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0.69 (30% EtOAc in hexanes); 'H NMR (500 MHz, CDCI,) 6 5.89 (s, 1H), 5.64 (dddd, J
=169,10.3,7.8,6.8 Hz, 1H), 5.09-4.99 (m, 2H), 4.77-4.73 (m, 1H), 4.72-4.69 (m, 1H),
2.59-2.56 (m, 2H), 2.38 (dddd, J = 14.1, 6.7, 1.3, 1.3 Hz, 1H), 2.31-2.14 (m, 4H), 2.10
(dddd, J =14.1,7.8, 1.1, 1.1 Hz, 1H), 1.83-1.75 (m, 3H), 1.75-1.74 (m, 3H), 1.66-1.57
(m, 1H), 1.17 (s, 3H); “C NMR (125 MHz, CDCL,) 8 205.3, 162.1, 145.1, 134.0, 129.0,
118.3, 110.6, 45.8, 45.3, 44.3, 38.8, 38.3, 32.5, 25.7, 22.7, 17.6; IR (Neat Film NaCl)
3075, 2968, 2938, 2873, 1652, 1611, 1455, 1415, 1377, 1342, 1262, 1218, 1181, 1109,
1069, 996, 915, 887 cm™; HRMS (MM: ESI-APCI+) m/z calc’d for C,;H,;O [M+H]":

233.1900; found 233.1896; [a],> -32.57 (¢ 1.32, CHCl,, 88% ee).

MgBr
o NN Z
NP 1. CeCl3, THF, 23 °C - W\
. then pH 6.5 NazPO, buffer
FBuO : ;‘ 2.6 mM aq HCI, CHyCN 0
149a 92% yield 137w

Cycloheptenone 137w (Table 2.5, entry 6). Prepared using General Method F. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick

white slurry was stirred, a solution of pent-4-enylmagnesium bromide (8.6 mL, 0.35 M in
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THF, 3.01 mmol, 3.01 equiv) was added and the mixture turned grey. After 30 min of
stirring, vinylogous ester 149a (236.3 mg, 1.00 mmol, 1.00 equiv) was cannula-
transferred to the slurry from a flame-dried 10 mL conical flask using several THF rinses
(3 x 4 mL; total THF added = 25 mL, 0.04 M).

TLC analysis indicated that no starting material remained after 5 min. After an
additional 10 min of stirring, the reaction was quenched with pH 6.5 Na,PO, buffer (20
mL). A thick grey emulsion formed. The mixture was transferred to a separatory funnel
where the aqueous phase was extracted four times with Et,0. The combined organic
(150 mL) were dried over MgSQO,, filtered, and concentrated under reduced pressure.
The crude oil was transferred to a 20 mL scintillation vial and concentrated under
reduced pressure. A stir bar, CH,CN (2.0 mL), and 6 mM aqueous HCI (2.0 mL) were
added to the vial. The resulting cloudy solution was stirred vigorously for 30 min before
being transferred to a separatory funnel where the aqueous phase was extracted four
times with Et,0. The combined organics (75 mL) were dried over MgSQO,, filtered, and
concentrated under reduced pressure. The crude oil was purified by flash chromatography
(Si0,, 3 x 30 cm, 100% hexanes—1%—2%—>5% EtOAc in hexanes) to afford
cycloheptenone 137w (214.2 mg, 0.92 mmol, 92% yield) as a clear colorless oil; R; =
0.65 (30% EtOAc in hexanes); 'H NMR (500 MHz, CDCI,) 6 5.88 (s, 1H), 5.79 (dddd, J
=169,10.2,6.7,6.7 Hz, 1H), 5.67-5.57 (m, 1H), 5.07-4.96 (m, 4H), 2.60-2.53 (m, 2H),
2.35(dddd, J = 14.1,6.7,2.5, 1.2 Hz, 1H), 2.20-2.04 (m, 5H), 1.83-1.73 (m, 3H), 1.66—
1.53 (m, 3H), 1.14 (s, 3H); "“C NMR (125 MHz, CDCl,) § 205.3, 162.6, 138.2, 134.1,
128.8, 118.2, 115.3, 45.7, 45.2, 44 .3, 38.7, 33.8, 33.5, 29.3, 25.7, 17.6; IR (Neat Film

NaCl) 3076, 2975, 2937, 2870, 1652, 1611, 1456, 1415, 1380, 1343, 1257, 1218, 1179,
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1110, 1071, 994, 913 cm™'; HRMS (MM: ESI-APCI+) m/z calc’d for C¢H,;O [M+H]":

233.1900; found 233.1900; [a],>° -34.96 (¢ 1.46, CHCl,, 88% ee).

Ph
\/\BI‘

1. +-BuLi, Et,0
o -78-23 °C X

then 149a
‘o“\/ [— .
2.10% aq HCI
iFBuO THF/H,0, 50 °C o

149a 84% yield 137x

Ph

<

Cycloheptenone 137x (Table 2.5, entry 7). Prepared using General Method G. A
flame-dried round-bottom flask equipped with a magnetic stir bar and fitted with a rubber
septum was connected to a Schlenk manifold. The flask was charged with (E)-p-
bromostyrene (1.5 mL, 11.69 mmol, 1.98 equiv) and Et,O (13 mL) and lowered into a
dry ice/acetone bath (=78 °C). After dropwise addition of #-butyllithium (13.5 mL, 1.7 M
in pentane, 22.95 mmol, 3.88 equiv), the solution was stirred for 2 hours (at —78 °C),
warmed to room temperature (30 min stir at 23 °C), and placed back into the dry
ice/acetone bath. Vinylogous ester 149a (1.40 g, 5.92 mmol, 1.00 equiv) was transferred
to the round-bottom flask by two Et,O rinses (2 x 3 mL, total Et,0 added = 19 mL, 0.3
M). The flask was stirred at —78 °C for 25 min before being transferred to an ice/water
bath (0 °C).

TLC analysis indicated that no starting material remained after 2 h. Consequently,
the reaction was quenched with 10% w/w aqueous HCI (10 mL). After 20 min of
stirring, the mixture was transferred to a separatory funnel where the aqueous phase was
extracted three times with Et,0. The combined organics were dried over MgSO,,
filtered, and concentrated under reduced pressure. A round-bottom flask was charged

with the crude oil, THF (20 mL), and 10% w/w aqueous HCI (0.5 mL) and lowered into a
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preheated oil bath (50 °C). After 2 h, the reaction allowed to cool to room temperature,
concentrated under reduced pressure, diluted with water (10 mL) and Et,0 (20 mL), and
transferred to a separatory funnel where the aqueous layer was extracted twice with Et,O
(2 x 20 mL). The combined organics were dried over MgSQ,, filtered, and concentrated
under reduced pressure. The crude oil was purified by flash chromatography (SiO,, 3 x
23 cm, 20:1—15:1—10:1 hexanes:EtOAc) to afford cycloheptenone 137x (1.33 g, 4.99
mmol, 84% yield) as a yellow oil; R;=0.67 (30% EtOAc in hexanes); "H NMR (500
MHz, CDCl,) 8 7.42 (d, J = 7.3 Hz, 2H), 7.35 (d, J = 7.4 Hz, 2H), 7.28 (d, J = 7.3 Hz,
1H), 6.90 (s, 2H), 6.30 (s, 1H), 5.67 (dddd, J = 16.8, 10.3, 8.1, 6.5 Hz, 1H), 5.09-5.02
(m, 2H), 2.71-2.57 (m, 2H), 2.46 (dddd, J = 14.1, 6.5, 1.3, 1.3 Hz, 1H), 2.14 (dddd, J =
14.1, 8.1, 1.1, 1.1 Hz, 1H), 1.92-1.79 (m, 3H), 1.72-1.64 (m, 1H), 1.27 (s, 3H); "C
NMR (125 MHz, CDCl,) 6 204.7, 158.5, 136.7, 133.9, 133.3, 129.2, 128.9, 128.5, 127.1,
127.1, 118.4,46.2,44.5, 44 4, 38.7, 26.8, 17.6; IR (Neat Film NaCl) 3075, 3059, 3002,
2966, 2936, 2869, 1640, 1581, 1573, 1495, 1449, 1414, 1379. 1343, 1303, 12.77, 1250,
1217, 1178, 1109, 1082, 1028, 996, 963, 916, 839, 799, 752, 718 cm'; HRMS (MM:
ESI-APCI+) m/z calc’d for C,,H,;0 [M+H]": 267.1743; found 267.1755; [a],”" —44.99

(c 0.81, CHCl;, 88% ee).

MgBr

A I
o)
o~s CeCly THF,23°C - o~
) then
FBuO 2 M aq H,S0,, 60 °C o
149a 97% yield 137y

Cycloheptenone 137y (Table 2.5, entry 8). Prepared using General Method H. A 100

mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
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and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (3 cycles, 5 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.2 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick
white slurry was stirred, a solution of prop-1-ynylmagnesium bromide (12 mL, 0.25 M in
THF, 3.00 mmol, 3.00 equiv) was added and the mixture turned yellow. After 30 min of
stirring, vinylogous ester 149a (236.4 mg, 1.00 mmol, 1.00 equiv) was cannula-
transferred to the slurry from a flame-dried 10 mL conical flask using several THF rinses
(3 x 4 mL; total THF added = 25 mL, 0.04 M). The slurry maintained the yellow color
with the addition.

TLC analysis indicated that no starting material remained after 5 min. After an
additional 10 min of stirring, the reaction was quenched with 2 M H,SO, (5 mL) and
lowered into a preheated oil bath (60 °C). A white precipitate formed within several
minutes. After 12 h, the yellow suspension was removed from the bath, cooled to room
temperature (23 °C), treated with sat. aqueous NaHCO; solution (50 mL), and transferred
to a separatory funnel where the aqueous phase was extracted four times with Et,0. The
combined organics (175 mL) were rinsed once with sat. aqueous NaHCO,, dried over
MgSO,, filtered, and concentrated under reduced pressure. The crude oil was purified by
flash chromatography (Si0,, 3 x 30 cm, 100% hexanes—2%—>5% EtOAc in hexanes) to

afford cycloheptenone 137y (195.4 mg, 0.97 mmol, 97% yield) as a yellow oil; R,=0.65
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(30% EtoAc in hexanes); 'H NMR (500 MHz, CDCl,) & 6.20 (s, 1H), 5.70 (dddd, J =
16.8,10.5,8.2, 6.6 Hz, 1H), 5.10-5.01 (m, 2H), 2.65-2.49 (m, 3H), 2.16 (dddd, J = 13.8,
8.2,1.0, 1.0 Hz, 1H), 2.01 (s, 3H), 1.83-1.75 (m, 3H), 1.66-1.59 (m, 1H), 1.24 (s, 3H);
"C NMR (125 MHz, CDCl,) § 203.5, 145.6, 135.0, 134.3, 118.3,92.9, 80.7, 46.5, 45 4,
44.6, 37.3,27.0, 17.6, 4.7; IR (Neat Film NaCl) 3076, 2969, 2937, 2219, 1652, 1580,
1455, 1415, 1377, 1346, 1255, 1225, 1184, 1110, 998, 916, 893, 866, 813,784,716 cm'';
HRMS (MM: ESI-APCI+) m/z calc’d for C,,H,,O [M+H]": 203.1430; found 203.1428;

[alp,?? —49.25 (¢ 1.21, CHCl,, 88% ee).

MgBr
c
(o}

i!\\/ CeCl3, THF, 23 °C
] then
-BuO 2 M aq H,S0,, 60 °C

149a 66% yield 137z

Cycloheptenone 137z (Table 2.5, entry 9). Prepared using General Method H. A 100
mL round-bottom flask equipped with a magnetic stir bar, fitted with a rubber septum,
and connected to a Schlenk manifold was flame-dried three times, backfilling with argon
after each drying cycle. The hot flask was placed into a glove box antechamber, which
was evacuated/backfilled with N, (4 cycles, 1 min evacuation per cycle) before the flask
was brought into the glove box. The flask was loaded with anhydrous cerium chloride
(616.4 mg, 2.50 mmol, 2.50 equiv), refitted with the septum, removed from the glove
box, and reconnected to the argon-filled Schlenk manifold. A portion of THF (13 mL)
was added, rinsing the cerium chloride to the bottom of the flask. As the resulting thick
white slurry was stirred, a solution of (2-vinylphenyl)magnesium bromide (7.5 mL, 0.40

M in THF, 3.00 mmol, 3.00 equiv) was added and the mixture turned yellow and green
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over time. After 30 min of stirring, vinylogous ester 149a (236.3 mg, 1.00 mmol, 1.00
equiv) was cannula-transferred to the slurry from a flame-dried 10 mL conical flask using
several THF rinses (3 x 4 mL; total THF added = 25 mL, 0.04 M). The reaction color
returned to yellow with addition of vinylogous ester 149a.

TLC analysis indicated that no starting material remained after 40 min. After an
additional 30 min of stirring, the reaction was quenched with 2 M H,SO, (5 mL) and
lowered into a preheated oil bath (60 °C). A grey precipitate formed within several
minutes. After 26 h, the yellow suspension was removed from the bath, cooled to room
temperature (23 °C), treated with sat. aqueous NaHCO; solution (50 mL), and transferred
to a separatory funnel where the aqueous phase was extracted four times with Et,0. The
combined organics (175 mL) were rinsed once with sat. aqueous NaHCO,, dried over
MgSO,, filtered, and concentrated under reduced pressure. The crude oil was purified
first by flash chromatography (SiO,, 3 x 30 cm, 100% hexanes—2%—=5% EtOAc in
hexanes) and then by flash chromatography using a Teledyne Isco CombiFlash Rf system
(Si0,, 12 g loading cartridge, 40 g column, multi-step gradient, hold 0% [2 min]—ramp
to 85% [17 min]—hold 85% CH,Cl, in hexanes [2.5 min]—ramp to 100% [3 min]—hold
100% CH,CI, [5 min]) to afford cycloheptenone 137z (176.7 mg, 0.66 mmol, 66% yield)
as a pale yellow oil; R;=0.74 (30% EtOAc in hexanes); 'H NMR (500 MHz, CDCl,)
and "C NMR (125 MHz, CDCI,) mixture of two atropisomers isomers (1.9 : 1 ratio), see
Figure A1.307 for 'H NMR (in CDCl;) and Figure A1.308 for variable temperature 'H
NMR data (in DMSO-d, at 25, 50, 75, and 100 °C); IR (Neat Film NaCl) 3060, 3007,
2973, 2936, 2936, 1669, 1626, 1604, 1594, 1476, 1464, 1443, 1413, 1379, 1356, 1338,

1307, 1281, 1251, 1214, 1177, 1136, 1109, 1095, 1057, 1020, 996, 915, 864, 818, 769,



CHAPTER 2 — Synthesis of Cyclopentanoid and Cycloheptanoid Core Structures 236

743 cm’'; HRMS (MM: ESI-APCI+) m/z calc’d for C,gH,;O [M+H]": 267.1743; found

267.1751.

Li
e g
\J o
o NS

o~  CeCly THF,23°C -
3 then
BuO : ;‘ 10% aq HC, 60 °C 0

149a 72% yield 137aa

{

Cycloheptenone 137aa (Table 2.5, entry 10). Prepared using General Method G. A
100 and a 25 mL round-bottom flask each equipped with a magnetic stir bar, fitted with a
rubber septum, and connected to a Schlenk manifold were flame-dried three times,
backfilling with argon after each drying cycle. The hot 100 mL flask was placed into a
glove box antechamber, which was evacuated/backfilled with N, (3 cycles, 5 min
evacuation per cycle) before the flask was brought into the glove box. The flask was
loaded with anhydrous c