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Abstract of Thesis

PROPAGATION OF ELECTROMAGNETIC WAVES

INSIDE A CYLINDRICAL METAL TUBE

AND ALONG OTHER TYPES OF GUIDES

The prime purpose of this paper is to base the discussion of
the properties of propagation of electromagnetic waves inside a
metal tube upon the theory of complex functions. The general
expressions for the field components for different types of excita-
tion systems are obtained in a rigorous manner starting from that
of an electric and a magnetic dipole. The formal mathematical
generalization is achieved by means of the transformation formulae
of cylindrical functions and the results of the theory of integral
equations. The integral egquations thus obtained are expanded inte
series by aid of residual calculus for actual numerical calculation.

The residues at the poles of singularities give rise to different
"distinet modes" of propagation and thereby a comprehensive discussion
of all the important physical properties is made. At the same time,
problems arising in practical applications, say for long distance
transmission for television purposes, are analyzed and some interest-
ing conclusions obtained. The unigque and rigorous analysis is only
made possible by the free use of the resalts §§ the theory of
complex functions.

A comparison of the properties of propagation with regard

especially to the attenuations and the velocities of propagation
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inside a hollow cylindrical metal tube guide and that of a
concentric system is made. It is hoped that the conclusions
obtained therefrom will throw some light on the merits of both
systems and will point out those things which require careful

consideration in practical design.



SEGTION I.

General Mathematical Solution of Wave Equation

In Cylindrical Coordinates

In order to bring out the intrinsic characters of cylindrical
functions in the solution of wave equation, a brief sketch of the
building-up of wave function following the procedure of R. Weyrich*
will first be described. It leads naturally to a generalization,
to Sommerfeld's integral expression for all kinds of eylindrical
functions. A comprehensive grasp of the procedure and results
therefrom paves the way for attacking a vast number of problems in
mathematical physics and electrical engineering.

The fundamental partial differential equation, written in

cartesian-coordinates, is:

U U | w 2

where{ is the function to be determined together with certain
boundary and initial conditions. a2 and b are in general real con-
stants. The independent variables are the cartesian coordinates x,
¥, and z, and the time t. With different characterizing values
given to a and b, Equation (1.01) represents a great number of
different natural phenomena, such as propagation of electromagnetic
waves, displacement of longitudinal elastic strings, vibration of

membranes, diffusion of heat, etc.. In virtue of the validity of

*R. Weyrich, Die Zylinderfunktionen und ihre Anwendungen.



the application of Fourier series analysis to time variational

phenomena, we can always put:

—dw?

%:M(x,y,g) 2

where a{x%}} is a function only dependent on position and inde-
pendent of time and & is the angular frequency. Substituting the

above relation into Equation (1.01), we get:

$.82) A 4 RAE = T, Pt | Pt
¢ ) 4‘ ?xl * ‘7"—'7» -+ -—-—‘?;’_ '/ ‘42/(-4"

with {f—aafn#«) . Usually one simply calls relation (1.02) the

a

I

"wave equation" and k the "wave number"*. It is to be assumed that
both the real part I{M_and the imaginary part ’{m of k are positive.
Equations (1.01) and (1.02) can also be written in spherical polar

coordinates A1, &¥.€@ or cylindrical coordinates A jp;, , for which

the transformation formulse are:

£=Rco pdino | 7‘——/?,4«;;,}&,&,-,,9 3 ;'—"/‘?CoVQ

and X =2covgy Z.e/é,mja o E T

respectively. In these coordinate systems, the wave equation becomes:

(1.03) At +42 "aﬁ(ﬁz;“ 1 2% ?“ *{fa-:o

and  (104) putehiu=27Cs L
24 &~ 7 s afa ?/, .

* The corresponding German names are "Wellengleichung" and "Wellenzahl",



A particular solution of (1.02) can be obtained by means of the

classical product substitution:

a(x;;, 3) =X Y(// Z(3)

where)(‘Y’ 7/, are only functions of the arguments in the parentheses,
respectively. Substituting the above relation into (1.02) and divid-

ing through by ¢« , we have:

LIX , L *Y 7 *Z 2
el R . i e
X 2x* 'y 37* “E e + %" =0
or simply (‘/05%5) X/ _-—— & 4{2

=X z
Because all three terms must be independent of the arguments

x, ¥, and z, they must satisfy the following familiar differential

equations:
X 2 P ”
X =—c/”é ) _Y—Y— -—eiAh* , -Z—— =— Cz/f{z 2

while between the three arbitrary constants(, , ¢,, and &, the

following relation holds:
2
(2-96) c, + C‘: + C'; e
The integral solutions of the above differential equations are:
X “’A c, ’J%C, P
= A{ £ &£ 5; e

Y /424"7{‘}/ - .52 —‘{/’

Z- AyeRor , g oKap



with/]’, J;’ (z)’:l,z, 3) es the constants of integration. The product
XYZ can therefore be expressed as a summation of particular solu-
tions of the following type:
Llcr + g+ c
(107) b - g RlAXt Gyt laF)
On account of the relation (1.06), G, , &, and €3, can be
thought of as the direction cosines of a space unit vector &)

from the origin. Then:

C',Ih:‘;/ + 6'32, =X Cosex +?Cajﬂ 14; cosg =.-—%

ig the projection of the vector with coordinates.(,/ " ;f, on the

line 72, and one particular solution of (1.01) becomes:
(-08) % [Zé] =%g[/4.e4(7£7£ ‘wj)/z /Co.s’/zz%-—a)f)

This is the edquation of propagation of "plane waves" with 7 as the
w LA g
normal to the wave-front, Z the phase velocity, and Z the wave-
length if k is real. All points in a plane perpendicular to 2Z are
"in phase" and constitute a plane "wave front". For detailed dis-
cussion of the type of Equation (1.08) and of the building-up there-
from of a general integral solution, the reader is referred to the
first original researches of many authors among whom especially may

be mentioned Sommerfeld, Whittaker and Bateman.*

* Messenger of Mathematics, XXXVI, (1907) pp. 98-108.
Math. Ann. VII (1902) pp. 342-345.

Proc. London Math. Soc. (2) I. (1904) pp. 451-458; (2) VII (1909) pp.

Bateman's "Electrical and Optical Wave Motion".
Whittaker and Watson, "Modern Analysis", Chap. 18.
Riemann-Weber's "Differentialgleichungen der Phys."

20-89.
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From Equation (1.06) we cen also think of ¢,,c,, a2nd ¢;, as
representing the direction cosines of any point on a unit sphere

with spherical polar coordinates _?/a.nd. g’ , then:

(1-09) G =CosP'Sine’ , C = Sim@p'Sab’. G =Cos0”

Due to the linearity and homogeneity of the wave Equation (1.01)
of% and its derivatives, any linear combination of solutions

like (1.08) is also a solution of (1.01).

Hel2] = ﬁe[,4,ll,—f4 Uy + - - + A Z/a]

The corresponding solution for (1.02) is:
e = A + A4ty +--- - 7

where 4, A4, --- 4, ere the arbitrary coefficients.

Similarly, in the limit, ¢{ can Dbe represented by a definite
integral for which we can multiply the right side of (1.07) by an
arbitrary function of ¢, ¢, , and G and then integrate between
any chosen limits so far as the resultant integral exists and
differentiation under integral sign is allowable. On account of
relation (1.09),¢ , ¢ , and ¢, , are expressed in terms of ¢/ and

6’ and the definite integral takes the form:

(1.10) _ | ik [xcosp’siner gsine sine” ;
w Zz ' 76‘ ¥ Sine 7%9..7/__&;574};{9,

A rcosn. .-,é/ﬁ
= e -F{y’,’e’)e/fi/a’=/z Flyie)dpds’
i
I



where 42 is the angle included between the unit vector 72 (£ ¥ &7
and the line drawn from the origin to the field point (x’,/,; ) or
(2, & &) .
One very interesting and, at the same time, very significant

generalization of the avove expression can be realized: although
¢’ and 6" are described as the azimuthal and zenithal angles for any
point on a unit sphere, we can consider ¢’ and ¢° as complex quanti-
ties within the limited range O =Re L'Pr] = 2ar

o ZHe[6'] <« in their complex planes. The latter
restrictions assure the "uniqueness" of the integrand of (1.10) and
therefore the wave function4£. That this powerful, ingenious
generalization is always allowable can be easily shown by putting
complex quantities for ¥’ and @’ and substituting (1.09) into (1.08).
Now in (1.10), we set A (¢i9’/=Jir 8’ , then Jino'doly'=dy -

elementary area on the unit circle and (1.10) becomes:
(Z.10)a -6&=./:z //J\r'ﬂﬁld’&ldfl=/£d/€d|r
i

/’

For simplicity, we can assume the amxiliary polar-axis passing
through the field point (Xf’ 7)) or (4,&,;#/, then 7{.-: Recose” .
If the integration is extended over the whole surface of the unit

sphere, we obtain the effect due to a uniform spherical source:

27 2T
4.11) A : n«c:»( :
( e y“ = 1,‘ Rcosgmhald&,df’ =27 P /?Coréd‘l.”& ’d&’
o p (o}
_ 47 ShAhR

T A A



and

Poe [2L] =Fo freee™“" ] = %”—r/ﬁgéﬁc“aﬁ

This represents a "standing spherical wave", obtained from above
particular superposition of "plane waves", if k is real. TFor

complex k, merely a damping factor is introduced.

If, however, we choose a path of integration in the 9/—pla.ne,

as shown in Fig. 1.1, (1.10). becomes:

: ) LR
(22 tt = s [ RO ) . 27z
LE AR

and, therefore, we obtain:

(r.08) FRlLU] =T [ZF %_?_f-x. ]:_iz A (- a?)

Al

.
e
M. 1.1

This always represents a "divergent progressive spherical wave"*

* A. Sommerfeld, (Riemann-Weber) "Differentialgleichungen der Phys." p. 397.



where k may be real or complex. Such a spherical wave function
has a singularity at the "single pole" at the origin. "Multiple-
pole" spherical wave functions may be obtained by differentiations
of (1.11) and (1.13).

In the above paragraphs, starting from plane waves, we
succeeded in building up divergent symmetrical spherical waves

which, from Equation (1.13) on neglecting the unimportant multiply-

P
/q

the validity of the superposition principle, the field at any point

ing factor, can be simply represented as _¢/ — Due to

in space due to a continuous and uniform distribution of sources
along the polar-axis can be represented by the following definite

integral:

#-00
Aéﬁfﬂ AL

e = | £ e
J Xi'-/’:f 45 ,CFJ-_//,—;);

wherein_xé/E?? and Aé/@zﬁ' are the cartesien and cylindrical coordin-
ates, respectively, for the field point and CLCLJ: is the correspond-
ing coordinates for the source point. Substituting ¢ for 53—5,7 as

the new variable, the above expression becomes:

i) u’ ff’/;’ém*f ]/ - M/[M&/—*]/;

L% /¢-+j

This represents, therefore, a divergent "symmetrical cylindrical

wave function" with axis 42=p as the "line of singularity". The



convergence of the sbove improper integral is always satisfied for
real or complex k when the positive sign of the square root is used,
since the imaginary part of k is always taken to be positive. By
means of the following substitution:

$S = A Sue =

Equation (1.15) reduces to a simpler form:
-0

() . ’
+4 =0
The Hankel c¢ylindrical function of the first kind with degree zero

is then defined as: *

—n'co

A ersor

) i :
(16) K, ﬂ’"’)=jr - Ao

+x' 00

This is immedistely a particular form of Sommerfeld's fundamental
and important integral expression for cylindrical functions. £
The corresponding "convergent cylindrical wave" function, by

the same substitution and simplification is then:

_ b ek, /’M,z[,‘,e./-;]
A T ==

— ,o. ‘3—6%45000(4

o

,p.“

* Erste Hankelsche ,2ylinderfunktion mit dem Index Null.
4 A. Sommerfeld, "{lber komplehe Integraldarstillingen der
Zylinderfunktionen", Arch. d. Math. und Phys. 18, i, 1911.
G. N. Watson, "A Treatise of Bessel Functions", ed. 1927.
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and the corresponding Hankel cylindrical function of the second

kind with degree zero is defined as:

) KU = 2 / -A&Wz

Fioo

2
Hoﬁb) has, therefore, the same path of integration in & -plane
with /7’0(%4) . In order to obtain the same "integrand" for both

ﬂfy[ﬂé‘) and //f%j , we make the following substitution for //a{‘%)
; = —LAEl (o)

then A ?}ﬁ'—) becomes :

“n+< 0

(/18) M"é&j: _—f_/ f-,é,bmu,ﬂ(

T =<0
¢
Except for an unimportant multiplying constant, Hf&_ and H % )
o ]

represent divergent and convergent symmetrical cylindrical wave-
functions with "source" and Ysink" on the axis,respectively. From
their definition Equations (1.16) and (1.17), /1'6}(42) and //f’)[tea)
are complex conjugate to each other. These intrinsic close rela-
tions of Hankel functions with the cylindrical wave propazgation
cannot fail to give one an insight to that beautiful branch of
knowledge - mathematical physics. Just as "double-pole!" end
"multiple-pole" spherical wave functions can be obtained by differ-
entiating the "point source" function (1.13), so "double-axis" and
"multiple-axis" cylindrical wave functions can be reached by
differentiating the symmetrical "axis-source" function /-//“[f,z)

[/u, =/,z] along any direction 4 in the following way. Let:
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2, 7 _ L Lpr D ;
D =4z +4 F ‘fy(?;**;%)

be the complex operater, and:
*_ (202 "
29 = (/?I #a 77’) ,

then the "double-axis" or "bi-axis" unsymmetrical cylindrical wave

function becomes:

(119) p//off"’[,@),__;P,%_,LA%)%//%JL,C,WZM
5

ol

& (-f)_zﬂf #/{&%&Md&"[g_j?jag
k.

(/;I=/u2,) Q{;Lrepresents suitable path of integration.)
and similarly the "2»z-multiple axis" unsymmetrical cylindrical wave

function becomes:

(/-20) Jﬁ“vé/fQZkéﬁ) - 6;45)72L;9£fh7§i/{: AQéizaruu;;‘ﬁn(gﬁ_égiiék(
o

(Malba) (o= 8, 4 & v )

Presupposing the convergence of these integrals and the feasi-
bility of differentiating under the integral signs, it can easily be
shown that (1.19) and (1.20) do satisfy the "wave equation" (1.04)
with the function Z independent ofﬁ; .

The general Hankel function of either the first or the second

kind of degree 7 with argumentﬂév is then defined as:



1z.

7, - -
(1.22) A ﬂ[féb) = '”{4‘:"2"’"(‘" E—TJZ‘X

7 £

AN

CHELod y =B, X Do)
Putting ;;— Afﬂ Equation (1.21), we have:

2o HC3) =77//; ¥ e o T
ol

»”
(At =For 5 9w, L 3 ~mnme P
This is the Somerfeld integral expression for cylindrical functions.
The generalization of (1.21) for 72 to be a complex quantity (say .)
ig immediate, as can easily be shown also by a direct substitution

in the following way:

/p‘"&v c“d,%(d.) e = 7—,-{/2 A%mxeﬁbﬁ—géd
4 %

This, however, is not required in the present paper. Before giving
the corresponding expressions for Bessel-and Newmann, functions from
(1.21), ite convergence with respect to the different paths of
integration ('af; ; A =/.2) will be carefully considered. It
lays the foundation for discussion of certain problems of vital
importance in the present paper.

By means of Catichy's theorem on the integral of a function round
a closed contour (0() , if/pf(’éy is a function of ¢, analytic at all
points inside and on the contour /), then the following equation

always holds.*

* E. T. Wnittaker and G. N. Watson, "A Course of Modern Analysis",
Chap. V.



%45 7f}}7;{% = g

We can swing the paths given in Eguations (1.17), (1.18), and
(1.21)2 in such a way so that the function or integrand ie analytic
throughout the region enclosed between the o0ld and the new paths of
integration. The criterion for the convergence of the integral
requires that the integrand must vanish identically at the lower
and upper limits at infinity; this at the same time assures the
closing of the old and the new paths of integration. These
characters are similar to that reauired for the validity of Fourier
integral transformation and its application for asymptotic expansion
of functions.* We shall now find these new paths 42‘ (et =2 2)
for f¥€:}€7) for all 92 , real or complex, satisfying the above
requirement.

It can be shown that, for the Hankel functions of the first and
the second kind, the paths of integration can be deformed in such a

way so that we have:
7—¢'b

(1-22) H_f:)(;) = _,-ﬁ/e wFlresl Ant-T) [,

N At

and

74:49
(1-23) ﬁN// —/ G g An(-T) [ s

-AM
wherein, if 7 is any complex quantity with phase e.nglef or

* For complete mathematical treatment, the following paper is
recommended: A. Haar, "Uber asymptotische Entwicklungen von
Funktionen", Math. Ann. vol. 96 (1926) pp. 69-107.
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2 =/jle <% , the following relation must always be observed

for the convergence of the integral; i.e.:

(1-24) 0 = (7+5ﬂ) -

oE =9 = 47 < (:ZV—.jﬂ)

or _7 < 5? = (q;-,_7)

If;-.—»)ép is real, then (1.24) reduces to:

Pig, 1.2

In Fig. 1.2, 7/ and % represent the old paths of integra-

tion for Hankel functions of the first and the second kinds, while
44 and,(;, the corresponding deformed ones. The shaded regions
are the limits within which/; and . can swing at will; i.e.,

o < 7:7;- for real;. . The points o =¢ and o= 7 are fixed for

.{: and ’(‘.z , respectively.
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In case of complex ;.—.—/;/,e“’f, the region of swing is changed
but the range remains the same.
Then the Sommerfeld definition of Bessel function,with arbitrary

complex argument, becomes:

/) 3
(126 J,3) = F [ Hym + HYip]
/ £FCow [yl ) ‘ ;
# e=f o ;' & ;Jd ,é_j_’,//;,cima(éowé(,{%
A %

and that for Neumann function:
A oo / (2
w2n) P EN, P =gs [ 1) — K]

From the above definitions (1.26) and (1.27), we see that 73, (g) ,
also called Bessel function of the first kind, and Y,(3) = A, )
also called Bessel function of the second kind, are real quantities
forming in fact the real and the imaginary parts of Hankel's func-
tions, respectively; i.e.:
) - .
Hay ) = Jnlg) + <« ¥, 03)
(1-28) } (Zor real 2 )
(3 3
Hod) = To) = < g

With observance of the relation (1.24), a great number of trans-
formation formulae can be obtained frem (1.22), (1.23), (1.26), and

(1.27). *

* For excellent treatment of these transformations, the reader is
referred to two books: G. N. Watson, "A Treatise on Bessel Functions".
R. Weyrich: 1loc. cit.
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It should be noticed here that the Hankel and Neumann functions
have a singularity at;;= o , but the Bessel function is regular at
;a=o . This important property serves as a guide for choosing
suitable cylindrical functions for the problem at hand. It can be
shown easily that for integral-degree 7, the Bessel function
Jn(3) is a unique and entire function of 3 end is usually
defined with '7.—-—2”5 (Fig. 1.2) according to Bessel. This relation

(1.24) immediately specifies:

&
z =

or 3. must lie in positive-real half plane. The Hankel functions
with integral-degree, however, are not entire functions ij? , for

which we have eventually:
7, 3 n @)
H:(Za'””' ) =) [H,,1 lg) —2mJ, (;)]

H:f’(zzm’r") = c—)"m[ Hff(;) +2m, [;)]
(qu) ) T <) 2)
H(3e7) = H, (3 — 2003 = —#,(3)

HEGE™) = HZG) + 27,000 = HG)+24, 1)

These relations will be used in later discussions of the wave
potential functions from the point of view of theory of complex

functions.

With the help of the above discussions, we can now try to find

a general expression for the solution of the wave Equation (1.04)
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in ecylindrical coordinates. By means of the classical product
substitution,
L = /?(/L)Z(Z>_§(f)
in (1.04) and dividing through by¢< , we have:
2 2

On rearranging, there results:

(131) 4 a/r /;/?)

2 g

2 —'/ 2 Lr 2
;E/;, 7)” +-4€ = ;? = A’

vhere A° is an arbitrary constant real or complex, independent of

the variables 4, ¢ and; . Therefore, (1.3l1) reduces to the follow-

ing two equations:

2

2 2R 2 2 s P
(anf )4/1,(»5/1 = ‘}}pzz)j'

(132)

P 4
where ) being independent of 2 andf (a.lso;,). may be any arbitrary

quantity, real or complex. The second relation agzain reduces to:

(1-33) 2

‘Jyz » _E = O

and

(734)

TR+ 1L [ehay - 2R

The general integrals for the differential equations (1.32), (1.33),

and (1.34) are then:
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T = g 4 4T

(/-35) F = 3 L_,a'ﬂ'y & B a —z.ty

R = ¢ REGT) + G AL ()

)
where /‘i’;’.’ and /‘?;_' are any two suitable cylindrical functions

defined in (1.22), (1.23), (1.26), and (1.27). Due to the proper-

ties of linearity and homogeneity of the wave function, a series

summation of the products of these functions is 2lso a solution of

(1.04): i.e.}

i ¢ -4,' ' b &y,
(1-34) ,¢¢=Z ., (;2-;*4”'1 1;)(8,4&4’6-4»})(/?’/*@’?;#)
mn=t

where q" : 4-.’ A » C,, » being independent of the variables.2, ¥,
and} , may be arbitrary functions of A and »~ . Consequently in
the limit for 7+ 00, assuming differentiation under integral sign

permissible, we have the following definite integral form:

(1-37) /‘/:t,/u'e £ ["(J f)/i’ (”f/%— )+ I, /ﬁJ/

where F,'/,{,,) and /Z (A,») are erbitrary functions of A and y~ and
,é' can be any chosen four-dimensional region of the complex planes
of A and 4. Equation (1.37) is then the most general integral
solution of the wave Equation (1.04). In practical cases, there
always exist some symmetrical relations and simplifications which
will probably bring Equation (1.37) into a manageatle form for

determination of the characteristics of the phenomena. Although
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some authors* had tried with certain successes in finding the proper-

ties of propagation of electro-magnetic waves under certain boundary

conditions starting from Maxwell's field equations without referring to

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Lord Rayleigh: "On the Passage of Electric Waves through
Tubes or the Vibration of Dielectric Cylinders", Phil, Mag.
Vol. 43, (1897), pp. 125-132.

A. Sommerfeld, "Uber é}e Fortpflangung elektromagnetischer
Wellen langs eines Drates", Ann. der Phys. Bd. 67, (1899).

Hondros und Dehye, "Elektromagnetische Wellen an dielek-
trischen Drdhten", Ann. der Phys., Bd. 32, (1910), S. 465-476.

Zahn, "ber den Ngch—weis elektromagnetischer Wellen an
dielektrischen Drahten", Ann. der Phys., Bd. 49, (191s8),
S. 907-933.

Shriever, "Elektromasgnetischen Wellen an dielektrischen
Drahten", Ann. der Phys., Bd. 63, (1920) S. 645-673.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, "Hyper-
frequency Wave Guides - Mathematical Theory",

G. C. Southworth, "Hyper-frequency Wave Guides - General
Considerations and Experimental Results", Bell System Tech.
Journal, April, (1936).

W. L. Barrow, "Transmission of Electromagnetic Waves in
Hollow Metal Tubes", Proc. I.R.E., Vol. 24, No. 10, Oct.
(1936).

L. Brillouin, "Propagation d'ondes Electromagnetiques dans
un Tuyan", Revue Generale d'Electricite, Vol. 22, ang. (1938),
pp. 227-239.

L. Brillouin, "Theoretical Study of Dielectric Cables",

Electrical Communication, Vol. 16, April (1938), pp. 350-372.

Lan-Jen Chu, "ZElectromagnetic Waves in Elliptic Hollow Pipes
of Metal", Journal of Applied Phys., Vol. 9, No. 9, Sept.
(1938).
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any exciting system; an attack of some simple exciting system will
bring to light certain specific characteristies from the point of
view of physical reality in a much more rigid analyticel way, and
this is the aim of the present paper. The method is not new. R.
Weyrich* treated in a formsl mathematical way the cases of an
electric dipole, & linear antenna and a magnetic dipole placed
along the axis of symmetry in a conducting metal tube. Some admir-
able experimental check of Weyrich's theoretical work had been
conducted by L. Bergmann and L. Krugelf. A very comprehensive
formal discussion of all the physical properties, which is lacking
in the above-mentioned papers, forms one purpose of this paper.

The second purpose is to use the addition theorems in cylindrical
functions to achieve an analytic mathematical formulation for
certain practicel exciting systems; Weyrich's results thus become
special cases of some of the more general formulae derived here and
serve at the same time as a check. The third purpose of the present
vaper is to use the standard method developed with regard to the
manipulations of the cylindrical functions to the analyses of wave
propagation over a plane earth and along concentric transmission lines;
some new and interesting phenomena are believed to have been brought

out in a rigorous manner.

* R. Weyrich, "Uber einge Randwertprobleme insbesondere der Elektro-
dynamik", Jour. Fur reine und angewandte Math., Bd. 172, (1934)
S. 133-150.

# L. Bergmann und L. Krigel, "Messungen im Strahlungsfeld einer in
Jnern eines metallischen Hohlzylinders errdgten Linear Antenne",
Ann. der. Phys. Bd. 21, (1934).
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SECTION II.

An Electric Dipole (or an Elementary Current Element)

Inside an Infinite Cylindrical

Hollow Metal Tube - Integral Solutions

The idea of an electric dipole and that of an infinitesimally
small current element can be used alternately for the same phenomenon.
The latter leads nmaturally in its generalization to a linear physical
antenna with any possible current distribution along it. In order
to describe the field components due to such an exciter in a simple
but unique way, we shall introduce here the "general magnetic vector
potential"j%ﬁ , whose curl gives the magnetic induction. Before
going to the mathematical formulation, a list of the notations to
be used in the following analysis will be tabulated: (Gaussian

Units are used here.)

é%;' = Vector magnetic field intensity with components}t;.
H, and/%?, in e.m.u. (Gaussian units).

5;7 = Vector electric field intensity with componentsfij
E;_, andﬁip. in e.s.u. (Geussian units.)

€ = Dielectric constant, dimensionless in Geussian unit

used throughout.
Permegbility of medium.

= Conductivity of medium.

a 9 ™:
i

= Velocity of light in vacuum space, eguals approx. to

3 x 1010 em./sec.
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X

General magnetic vector potential with componentsé? »
" a . Relati - 4 i i bei =

¢, , an '“f (Relation of definition elng/a-; Vx%)

%” = General electric vector potential with components 447,
B a.ndzzmj, . (Relation of definition being

e ~vally ).
% = Poynting vector with componazts/y » Na » and /L;
Vector conduction current with components ' , ',
ot St AF
and /,}" .

2/ Ay P Cylindrical coordinates of field point.

n

5 v, # = Cylindrical coordinates of source.

@

&

The general Maxwell field equations, in Gaussian units, are:
/ P
= = 4 A .—-___/ ~ 2
V’? c(ﬂTJ-*E?f ) =Z (e F Egtg)
(201) = 5
V& g = —/-E: =
v-//;)=a ) 7-(55)——-447

The general magnetic vector potential% , called by some authors

1}

Inner radius of the cylindrical hollow metal tube in cm.

Charge density.

the Hertzian function, is defined as:

(2.02) /u,f = gx2/

The following analysis is based upon an electric dipole or an

infinitesimally short current element placed at any position inside
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an infinite cylindrical metal tube with axis of the dipole or the
current element parallel to that of the tube. The primary potential
function/Z has then only a/-componentﬂ . From Equation (1.13),

7

we have, on suppressing the time factor._e"‘“’r :

(2.03) Z? = iy = e

where the subscript / is replaced by g , to signify a primary
source function.

Since the characteristic constants ¢ ,/4 , and &~ , are discon-
tinuous at 4=« , we shall call the dielectric air medium (2 <a )
as medium 1; and the conducting metallic medium ( 2 >2 ) as medium 2.
Although any practical hollow metal tube has a finite thickness, we
shall consider, however, the outer radius of this tube extending to
infinity. This is justified on account of the fact that the electro-
magnetic waves at very high frequencies (as is necessary here) can
rarely penetrate a fractional part of one centimeter of the metal

sheath. *

The field components due to & dipole placed at (¢ .2, , &)

inside the cylindrical tube are:

;:”f,#d) /'(}:a/'g=§/£/b/£f

To get formal relations between these components, we expand the

vector Maxwell field Equations (2.01):

* Abraham and Becker, "Electricity and Magnetism", p. 190.
Smythe, "Static and Dynamic Electricity", pp. 452-453.
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B _?/ _
/p[’j,';(/"/'{y’) 7% = 4‘7’6"" E) + _cf_ _g?@ (a)
- 24y drr £, 4 _E FEa (v)
‘2; c ZL
D - - F o (e)
(204) o5 — LT Er = 257
2 ?_T.J_EJ . PP 2 a
137 " %3 T S b
25 _ 2E; o 2 (e)
22 72 C o

From the definition (2.02), we have then:

ety == 257

(2.05) [
o ity
/‘L /7/"’ = )?

Introducing the time factor 4"bt into the above equations,

there result:

ZZ =/zqg[,é‘£/e"‘.“’j]_._. m[ﬂﬂ_‘-@t‘]




and

2

> 3
(2.07) ;“J—fzf:f el 2, 2ot , 424 = 0

——

A A P = Vi 2‘?’; ?—iz—

where

(2.08) A e B S e

C'Z

In (2.06) and (2.07), Z¢ is the resultant potential function or
the sum of the primary source function and the secondary disturbance
function due to the presence of the cylindrical metal sheath. All
field components (2.06) are the resultant ones obtained from the
resultant potential function .

In order to avail ourselves of the integral expression (1.37),
we shall first effect a formal mathematical transformation of
Equation (2.03) for the primary source function by means of the

classical Fourier integral theorem,* which may be written as:

(z.09) da“’):gﬁ//,} ﬂo(g)e—.é)(g—x)aég

-]

pos a0
; 56 AE
=J_/7; ~3+A’AIA AL(E) 2 Lf

—_—ad e

with certain properties which must be satisfied by the function

involved.

* R. Courant und D. Hilbert, "Methoden der Math. Phys.", S. 65-70.
E. C. Titchmarsh, "Introduction to the Theory of Fourier Integral'
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Let now:
<A E
G(2) :/ 4, (E) 2 LE
where ;
2o () = .éiz'? _ A LA ] » (Emg-2)
% Vs

(2g0) .. GEA) = SHAE &%[J%J/Z*f‘],gg

L0 4/2—#€2—

A /’ig‘

From the following established relation* :

[{Qaﬁ(z—g)]
Cov ) £ - LE = s A, 232 ) oo A X
/ e )

If we put X=0 , we obtain the desired integral result for G-(2):

(2.-10)a GA) =i f?’m(/’vg > )

Substituting this into (2.09), the corresponding integral expression

of the type (1.37) is obtained:

My (X) = _/ AX 1 R ) A4

- el

or

* Riemann - Weber, "Differentialgleichungen der Phys.", S. 541-550.
R. Weyrich, "Uber das strabhlungsfeld einer endlichen Antenne
zwischen zwei Ebenen", Ann. der Phys., 1929.
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RGO P
f/?fﬂ;_-i)* ’3/’2”9'“%%/%-‘-)«‘)/4

s
vhere P = [a 143 —2440 Comc-) ] and
(;, 2, %) and (¢, 4, %) being the cylindrical coordinates

(z-1) f{/a(ﬂ;';) -

for the field point and for the source element, respectively.

In order to fit the boundary conditions at 2=« on the inner
surface of the metal tube, we must expand Hy (PIRT )
according to the addition theorem of cylindrical functions. We

have, in fact, * :

(2./2) H :'){/’/;‘:‘AT-) - How( e vy ) /A" )

> A (T )T (T )7 L,

M= -c0

5, Ay RIS o,

2/
Exactly similar expansions hold true for H(a (P/RE X2 ) ,

BOP/RENZ) end Yo(P/RERT) = No(f/EnE ) - Substi-
tuting (2.12) into (2.11), we obtain the general primary potential

function at {/, 4. ) due to an electric dipole at (/;; Ao, %)
e 4'///_/"-'# C;-J’)’

/'pa.*/‘;-!)a

@.132) W, (ﬂ;—:) =

* Riemann - Weber, "Differentialgleichungen der Phys.", Bd. 2,
S. 491.
G. H. Watson, "Treatise on Bessel Functions", Chap. XI., —
The factor // in Watson's book should be unity -;Schelkunoff
used similar theorem in finding matual impedance and radiation
resistance; "Modified Sommerfeld Integral", Proc. I.R.E. (1936).
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m=-at
= —s0

- Z;""‘r—ﬁf LGOI, R t0r 4 <,

& e (A%, NG
2 y:"fi LAY =i L

With help of the relations (2.13) and (1.37), we can set up
the integral equation for the resultant potential function for

medii 1, and 2, respectively:

V& imtpegy [ NGO,
EZI. o ?%f_c J AHym ”olg,zi‘)+€ﬂ\ﬁé&w/f‘\or0£a<4,
-0

(24) U= ™7

_5' ""’”‘"7 “AlF: ‘[J(A,,?i?)// }(K—)ff/l[(dff—)]for 2,<A<a

M=o s
oo

(73 __1'” m(-)w- i
ZZ 7% x”kg")gélﬁé)(/b@)/l for 2 > a

-0
Now if we assume finite conductivity for the metal tube, the
boundary conditions regarding the tangential components of % and

% which must be satisfied at, 2=« yield:

9 G e = 4 (22) .

5. 2244,
) & ({44‘7’ e (42 2; yin i
?df 28,
ﬁg (;/359)’L=4 -fz (g;;f A=a

The solution of two unkmowns 4 (A) and A (A) from three

equations, with the last two incompatible, is evidently impossible.
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This, however, is not merely a mathematical paradox, since the

eddy currents produced in the metal sheath give rise to the co-exist-
ence of ﬂ/b and ‘“f with the primary function,{éj and, therefore,

/—9 ,which is neglected in the beginning. The sbove reasoning can
be put into mathematical form but the labor involved would be
prohibitive and is not warranted here. This, however, gives a
definite physical reason whyfﬁ a.ndi; must coexist for unsymmetrical
dissipative case. It is simply due to the fact that the eddy current
in the metal sheath creates two new components Md' and ﬂf of
the general magnetic potential function% .

The above difficulty is overcome if we assume that the conduc-
tivity of the metal tube is very high and that we could find the
limiting boundary conditions when the tube conductivity (7 )
approaches infinity. This requires the vanishing of the tangential

electric field components for medium 1. at 4= , i.e.:

Ef. =0 & Huf =o

or (/{/Z"L%; )”/=(¢€f).l)ﬂ/=o & (?;i;f =-272) %A/M:a

doa

The above two relations give the same result:
: 7
idy, (2o f&E% ) H,, @[Ex ) + ()T, (A7) = o

or (2.17) FO0) = - o (/) 1, ()
I (8SEI 5 )

while 7/, needs not be considered.



Substituting (2.17) into (2.14), we obtain:

A i) (3-$) )
£ 37T 2G5 I @) H o€, )T, (o8, ) H (25,
2.4l T T (2 £ )dA

.4',' = <mip- o AL
(218) U, = =5 ik f’] rroy (@A) T, (46,) 4 %'44/2,

Wz 0
~ o0

r ;»zﬁjgg s’[],',,(aﬁ)f/ Yag) -1 @)7, (r f)]J— (1o£)d0

I (2E)
_ ;(,_ Z_e4.m!¢—$) a:)/;—f) W( " A
s Z 2 V (2-2) 7, ( £ ) % 2>,

—_—d

= [Zin | W (e )=t @8I, 0E) -, (e, (15)
T (2 £, )
From the general expression (2.18), it would be easy to obtain

integrals for the case with circumferentially arranged dipoles
on a circle of radius 4, , or other irregular setups.
In case the location of the dipole is at (¢, o,0) , then

Equations (2.18) degenerate into one single relation:

(219) 1, x/ A ”[J(afw"’(/za -J&La)ﬁ‘”(af,]a
Ji(2ag,)

By aid of the transformation relations (1.29), it can be

shown that the integrands of (2.18) mand (2.19) are all meromorphous
functions of the arguments involved, or, in other words, there is
no "oranch point" in the whole complex A -plane. Their evaluation

thus reduces to formal expansion by the theory of residues. The
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symmetrical case (2.19) with dipole along the axis is simply one
term of the infinite series for the unsymmetrical case (2.18),
which may be called eventually a "cylindrical harmonic expansion".
It consistutes consequently a formal analogy to thefamiliar"circular
harmonic expansion". Just as a trigonometric function, cosine or
sine, has an infinite number of roots, so does the Bessel function
Jm(X) =0 . Equations (2.18), after evaluation of the residues

at the poles, yield a double infinite series, each term of which
represents a "distinct mode" of propagation. The attenuations and
velocities of these double infinite "modes" are different from
each other and would be independent upon each other if the trans-
mission system is "uniform and homogeneous". The resultant field
at any point is thus a superposition of all the modes.

The field components corresponding to the potential function;
Us., (2.18), can be found by substituting (2.18) into (2.06).

The above discussion reveals the fact that a deviation from
the symmetrical field configuration by an off-axis location of the
exciter causes the total enerzy emitted to be divided among the
different "modes" thus created for different 7 in (2.18). The
energy for each mode is thereby decreased and so do the correspond-
ing field components. It would be of interest to see what form
expressions (2.18) assume for a slight off-axis location. According
to the theory of complex functions, the integrals are to be expanded

into series by evaluating the residues at the poles corresponding
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to roots of 7, (2§ ) ""'.7;(‘1*2:—3") = Jm(Zm) =0,

88 Xy  Xmz . Kinz , =------ Xiprg o~ -

/

15 dmPeh) o Ak, (53 S (X
G O e YRR

When .2,<<z and f%ﬂz;h << 7 for the first few roots, which and
which only need be considered, then //, becomes approximately:

-] ' a0
(2_20) /él/ =121264%[¢-&)Z //}ww; %] X,,,,, )( ) ")J (4
Mae N=o m ] “"/\ LA, ») "'h)
The potential function is proportional to (ng) for each mode of
propagation. The corresponding energy is therefore proportional to
Ag 2 .y & .

( ;;_) for all modes with same 772 . From this we get a fair
picture of the enerzy distribution among the different modes. Or

we may group together the energies for all modes for the same -me.

under a single unit, then the energy unit distribution for different

A has the following shape:

AT cs,.,%,md

FPig. II-1.

Energzy Distribution.
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Curves (A) and (B) give a general idea of a "sharp" and a "broad"
distribution, respectively. The smaller is the value (;%7 , the
sharper is the distribution,and the greater is the concentration
of energy at m =0 . (A) degzenerates into (C) for the symmetrical
case when all energzy emitted resides in the single unit »» =0.

Because in practical application we can not use all the
different modes of propagation with different attenuations and
velocities, which in fact vitiates the reception, it is then
evident that the axially symmetrical operation is the most
efficient one for transmission and reception. This is immediately
a conclusion of considerable practical importance.

The above development so far has been limited to the condition

direct+

of perfect conducting metal tube. From this no,rigorous method can
be obtained for accurate calculation of the most important guentity -
attenuation constant of propagation. Fortunately rigorous field
functions can be derived for metal tube of finite conductivity if
the field configuration is symmetrical about the axis. This pro-
cedure is at the same time necessary and important, because with
air as the dielectric medium, attenuation is primarily due to the
finite conductivity of the metal sheath. That, opposite to the
off-axis case, thigf%athematically possible, at once finds its
physical substantiation. With a dipole or linear antenna placed
along the axis, the eddy current produced in the metal sheath by
the symmetrical field would not give birth to new components of the

potential function 7/ except the’?/-component as the source



possesses. The interpretation given above is believed to have
answered in a unique way the question raised by some authors,
relating to the field structure for dissipative and non-
dissipative cases.

Now we shall consider the symmetrical case with the hollow
tube of finite conductivity. Then the primary function Z¢,

becomes, (refer to (2.11) ) :

(2.21)  44,(n.3-5) = zi'/g"’vi TR ) 42

- 00

®©

This is of the form (1.37). Therefore, the resultant general
magnetic vector potential or Hertzien function in the dielectric

air medium 7 /1<a) is:

(223 =S %,“*?"Z;W,’ZL,/Z?,\T}»LF/AU; xR ) |2

20
where for the disturbance of the metel sheath _];@,Q;’Tz) is
used because it must not be infinite for 2=0o .

It can also be reasoned from the physical side: Since the
Bessel function represents & standing wave in radial direction, it
is the proper function to be used for the "additional" or "disturb-
ance" solution in medium 1; while H:”ﬁf,g{—y) ,» the Hankel
function of the first kind represents a divergent symmetrical

cylindrical wave, it is the proper function to be employed for the



solution in medium 2. Thie includes the case of perfect conducting
hollow metal tube and lossless dielectric medium 1.
Conseguently, for medium 2, the genersl magnetic potential or

Hertzian function, except for an unimportant multiplying factor, is:

o0

(224) 4L, =2_//e,ilfi'wf)g(g)/?t;’/@/z})‘x)jk.

= / w%g—r)ﬂfz)Hf’(/z.@:&*)ﬁ&

The Maxwell theory requires that at the boundary surface of
discontinuity of media, the tangential components of the magnetic
field intensity % and that of the electric field intensity £
on both sides must be equal. We have then from (2.04) and (2.66),

for the present symmetrical case:

(i‘t(:l)/:,za, = '_/- (242)424,

2z
Z: (»{24&,4-_2_}_4[/) s (45;%427_;‘_52)&:

(2-25)
= 76’

Substituting £/, and Z<Z, from Equations (2.23), (2.24) into the

above relations gives:

iR R )+ OVT )] - 2 B 5 ) /)
(2-26)

%")[ Hy T )+ £ (5) o (47537 )] = ‘! 2 £ H Y e/ )

2

Solving (2.2b) for £ (x) and /-';,'[?\) , we obtain:
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F{;‘)___._A,; /“:%;mH;U@%‘—T‘)H:V(dm) 70244’7'/2;‘)1/7{!0(6@1),7.3}@@")

P TN To GlBN) 1, )~ 4 TR T (4 ZET M (@ RET)

(221)
B0y - i) R F) T CRET)H R |
TZF [ T T REX I R ) ok v T, T |
2 p £y /EER"
e [T pk BN, e [RRIH U )14 T [ (ol T) H, k=)
The last relation is obtained on account of the Wronskian
determinant:*

LG HYG) -J,G) HY (3) = —-%

Thus substituting the expressions obtained for F() and

FE() into Equations (2.23), (2.24), since all the boundary condi-
tions are satisfied, we obtain the complete solutions of Egquation
(2.07)[w‘1th -% =oJ for media 1 and 2. These give the most general
analytic expressions for the general magnetic potentials or Hertzian
functions for any two media of constants & V/ﬂ' 9%, and £, 4, , 45,
respectively, with a e¢ylindrical separating surface at A =2 . These
integral expressions must be transformed, by means of the theory of

residues, into convenient forms for actual computation. An investi-

* R. Weyrich, "Zylinderfunktionen und ihre Anwendungen", p. 75.
Jahuke end Emde, Functional Tables, p. 144.
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gation of the equations for (¢ and z¢ shows that besides the
ordinary singularities at the poles of the integrands, there
exist also four branch points at A=#-4, and A=#A4,. For the
general case that both g7 and g7 are finite, the actual integra-
tion processes are very laborious and do not admit of immediate
physical interpretation.

For the specific problem at hand, however, these expressions
are susceptible to considerable simplification. The conductivity
of the air medium is always negligibly small while that for the
metal tube is usually very large. Then:

%2= w‘f}j’[ +‘(’l 4’#@)6‘2‘/{1 e w?—g,ﬁ, q)z.
/ = _ e = %a

2 o wtfz :ﬁ#wﬁ B "47"‘-)‘;‘/”2
4‘; = S — //1== ==

(very large)

and (4{’;_)‘)&,[;_ (very large).
From the asymptotic expansions of cylindrical functions of

large argument, we have: *

«@) _ 4'( —-3—_/ Tr— 4§ 7
H (3 _1/;%4 j =T F7) [1+06G]

* Jehnke and Emde,' Functional Ta’bles.l pp. 137-139.
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Then £, (A) and A (A) become, after dividing the numerator and the

denominator by lff7114€}2{):

) = -o PR T T )= TN, (/BT
A AETT T2 (4 JF) -, A, T )

/fzu 4-¥2;L)t)

(2-28)

To (2 /REX)
2 A, A

(227) £(3) =
TETEX p A ST TR 5 A BT, T (e

2 2

e B TG TT) | Ta . BT K ek

Substituting (2.28) and (2.29) into (2.23) and (2.24), respec-

tively, we have:

P / 2 TR TP HIGRTI TR

o Jo(a ﬂf_“n)
3 lyn L[ PGS HTOAEN) ¥
2 P 2 . o — ,1
oo BN, (@A), (2522

L A / R
Tk, K lah) To (4 /7573
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The integrands of the above two expressions are then both
meromorphous functions of the arguments involved. Their integra-
tion reduces to a formal contour integral. But it should be
pointed out here that for £&, (2.31) the closed contour cannot be
effected since an integration along an infinite semi-circle yields
infinity. Relations (2.30) will be used to calculate the attenu-
ation constant in Section IV. in a logical and quite rigorous
manner.

The uniform convergence of (2.30) and (2.31) assures the
differentiation under the integral sign and we can thus substitute
Equations (2.30) and (2.31) into (2.06) to obtain the field compon-

ents, remembering, however, for the present symmetrical case a4l

o



SECTION III.

Linear Antenna Placed Parallel to the Axis

Inside an Infinite Cylindrical Metal Tube.

From the expressions obtained above for an ideal electric
current element, it is possible to generalize for the practical
case of a linearly excited resonanting antenna. From a mathe-
matical point of view, in the theory of integral equations, the
expressions for €, and ¢£, obtained before serve as Green functions

and the general solution becomes:

)
(3.01) U}; =/ u,(/»,;-g)/(;)dg (r-.: /,z)
51

where %(;) is a function of position (£, 2-.%) of the infinitesi-
mal current element. In the above equation, the time factor 4"".“"{
is suppressed. This general formulae corresponds to an antenna of
finite length exiending from s, to ¢, parallel to the axis with an
arbitrary distribution of current along its whole extension. It is
known in practice that the antenna is usually excited in its funda-
mental or harmonic wave length. For an antenna wire of very small
dissipating resistance the length of the antenna bears a fractional
integer relation to the free-space wave length of oscillation.
Therefore, if we assume ,f to be the length of the antenna, extend-
ing from -! ,é +’£ parallel to the axis and also consider a
sinusoidal distribution of current, then we have, for zero current

amplitude at both ends:



4].

‘‘‘‘‘ ¥ " for even 7¢

>

(3.02) 3!(;) "

cos 27¢ for odd ¢

vhere 7¢ = I gives a half wave length antenna, 7-_> , a full wave
length antenna, etc.. The entire space is thus divided into three
regions: §>+é : —f.:}‘.a-é :andjc—zj. For the
first and the third regions, the expressions for the Hertzian func-
tion are identical when n is odd and only differ in sign when n is
even. For the middle region, the solution is a little more
complicated.

The general expressions for the potentizl functions due to a
linear antenna will be derived for the following cases:

(1). Center of Antenna at (O, 2s, %):

For this case, we must limit ourselves to the case of perfect
conducting cylindrical tube for the reason stated before. From
Equations (2.18), (3.01) and (3.02), upon performing the integra-
tion along the antenna, we notice that the expressions of the
potential function for an antenna differ from that for a dipole
only by a factor which, although being a function of the argu-
ments involved, however, does not introduce any additional
singularity to the integrand. The latter fact justifies mathe-
matically the legitimacy of the formulation of (3.0l). Thus we

have:

(a) for ?>;_‘_’ or;<-2/f , the term e;)«(/-g) in the
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integrands of (2.18) is simply changed to:

() Me(n,X;3)=4n7T ) “ers X £ 2AF
A (z-rn _ 22

for even harmonics (9 & J. @, winem )

and (1) Moy(n,1;3) =2 (zr+m ) cou X _,é 2_4‘}\7
£ _(LEU_’E 2>

for odd harmonics. FH = B, F 2. covss - .

s -

(v) for ’!‘j‘% , the integration (3.01) must be broken up
into two parts, from- j to; and from;, tor"[ The term

AX(; s)
in the integrands is then changed to:

(D M (n,2;3) = 2 Adi 22 _ )" -2-’2‘ A,d;—

< (2;‘/172. - q.z
for even harmonics (9. = F, .2 oo 3
Aée (zn+/};r; )T ,u}z
and (i) My(reAij) = 2 D7 TGy
s (;.7;4-/!’11 — RE
l‘-
for odd harmonics. P — )

(2) Center of Antenna at Origin (0.0,0):
;‘A? el B

The same changes for the termm , are to be made for this
symmetrical case with the potentiael functions ¢, and ¢¢, given
by (2.23) and (2.24) for the general case with finite conduc-
tivity for the metal sheath.

The modifications for linear antenna from the original expres-

sions for current element change both the amplitude and the

phase of each "mode" of propagation. One interesting possi-



bility arises if we could make the factors [(@)Z—Aj.]
and [’(27"”/2 L._ )Lj,—] in the denominators as small as
possible; then the intensity for that special mode ( /M
mode) will be greatly augmented, constituting a "real reson-
ance" for the case of a linear antenna. This might be of
considerable practical significance in long distance trans-

mission. This will be discussed in the next Section.



SECTION IV.

Characteristics of Propagation of

An Electric Dipole or Linear Antenna.

We noticed in the development in the preceding Section that
the integral expression for a linear antenna differs from that for
an electric dipole only by a factor in the integrand. Since this
multiplying factor does not introduce any additional singularity
(or pole) in the expansion of the integral expression according
to the theory of residues, the general characteristics of propaga-
tion, with respect to the fundamental properties of attenuation
and phase velocity, are identical for a linear antenna and for an
electric dipole. Consequently we need only consider the latter
case without losing sight of the properties of a physical antenna.
This will be further justified later.

Comparing the expressions (2.18) for a dipole placed off-center
at (§ As,%) with that (2.30) for a dipole at (g 0,0), it
is evident that (2.30) constitutes merely one term of the infinite
series of (2.18); ie., for =0 . Although the roots of Bessel
functions of different order give rise to a superposition of
different "modes" of waves, the description for each wZ is of the
same physical character and of similar mathematical procedure.
Thege different "modes" propagate with different attenuations and
different velocities and are eventually independent of each other.
Consequently, we shall limit the discussion to one mode of the

symmetrical case.



The present Section can be divided into two mein parts: (4)
the first part comprises the formal mathematical transformation
of the integral expression (2.30) by the theory of residues; (B)

the second part consists of an extensive discussion of the physical

properties of propagation.



Part (A). Transformation of the Integral (2.30).

The integral expression (2.30) for the Hertzian function can
be transformed into an infinite series according to the theory of
residues of complex functions. In order to have a unique defini-
tion of (2.30), we must limit ourselves to certain restrictions
of the arguments according to the definitions of cylindrical funec-
tions and the uniform convergzence of the integral.

Firstly, we shall assume:
(j-5) = o

corresponding to measuring the field at one side of the dipole,
then we must limit A to the upper half plane with a positive
imaginary component, for otherwise the field intensity will

increase with distance, an impossible phenomenon. That is,
(4.02) P, ey ) < =

Secondly, we shall assume:

(4.02) - T < 547 iy < z

gince the Bessel function [ (r) is defined with 7:-5’21' .* This
restriction can be removed if necessary since the Bessel function

is periodic in)( .

* Section I.
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Also, because of the relations (1.26) (1.29), the denominator
Jo (2 £ ) and the numerator [\]‘;(45) H;'}(JLE,) —.]-a(fL?: )Hg)@g)]are
unique and meromorphous functions of g, — ma , the integrand
of (2.30) consists, therefore, only of the singularities at the
poles corresponding to the roots of J;, (4—@?_)?): O . Thus by
Cauchy's theory we can complete the contour by a semi-circle of
infinite radius in the upper half A -plane and evaluate the integral
by finding the residues at the poles. The integrand of (2.30)
vanishes identically for [} [— 6= , but not for (2.31).

Now we will take all the roots of Jo(X) = O ,£X, 2X, , ---4X,, ---
as real,* and on account of (4.02) only the positive real roots
X, %5, ------ X --. , can be used. Then at any root X, "

we have:

S (X)) =Jo(a /N, ) =2,

‘
(403) /2
41—

and the corresponding residue becomes:

s £ A (38D

A AL

A= A
T (4. JE%)

7 ] -
j( /;—)/‘/ (}’)a‘lp]'(x,,)

2me [-To( 2 %) H‘o”( X))

N

A(F-$)
~M7

* The roots of J,/x/)=care: X, =2.4048 , X, =S 520L X3=8.6537, -.-

Jahnke und Emde..Functiona.l Tables,’ p. 166.



since

L@Z%) [ 3xCER)

DT A—Ap - %i (A’)y) N g

[-22EF g f?‘r)l = aAeZ (o)

Therefore, summing over all these residues, we have:

4A
ho0) 4,2 TS AN 2 B )
In order that this infinite series actually represents the field,
it must be a uniformly convergent series except at 4 =0 and
;:; , corresponding to the location of the point source. For

A=0 but;#/g , the series should still be convergent uniformly.

From asymptotic expansions of cylindrical functions, the ratio:

aﬂw/_H‘_’(xtz =M, =/

remains finite for increasing large argument. (4.04) will,

therefore, be uniformly convergent if:

ILA;(A}H‘AI')(J—S)‘ !y_,_, MJ)H'XV ’ |
Xp» M s

for any(;-s‘)

This essentially reduces to the criterion that if:

= /9)" +4 ‘x}"' ’ k}.;.( = A"’CI +4 aﬁ".&l

The value of Jj(X) for the first few roots of J,( X)) = © are:
Jx)=+0519L , T () =—0.3403 ,J (X)) =to-27i5 ,
.];(14) 8 . 0.29BE , e na
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then (4o5) [ 4y, — o, ] > d should hold.

It can be shown that this inequality (4.05) is always satisfied by
finding the values of A, ‘¢ from (4.03) for corresponding values
7/

of L, 2 . Yowlet Ap = HB,+4< % , then from (4.03)

there result:

1 a 2
(Bt 5 o) A= 55 (L X ) oo tmmer
ab CI.

or
(4.06) /9; -~ o} = w's M -y
c* a*
(#07) % fo . BT DT
c:—

If¢’>0 , then (4.07) is an equilateral hyperbola with its two

branches lying in the first and the third guadrants. a;’ is

usually very small but always positive. While for (4.06) there
wie, 2

are two cases: (a) when ——Cﬁ— > _EA;: , the hyperbola
crosses the real 15 -axis; (b) when _@*'& 4 );-g-i .
C‘

it crosses the imaginary o -axis.

The equilateral hyperbola (4.07) is independent of the roots
lﬂ;—and is, therefore, stationary, while the curve (4.08) travels
for different roots X~

The followingz graph shows the curves for (4.06) and (4.07).
The graph gives two sets of intersections of (4.06) and (4.07) in

the first and the third quadrants, respectively. But for the present



case, (;—5) >0 A must have a positive imaginary part, only
those values of ) 1lying in the first quadrant can be used.
Generally there are only a few hyperbolas for (4.06)a or even
none, while (4.06)b gives values of X approaching the positive
imaginary axis (e¢) as a limit. It is then evident that the
criterion of inequality (4.05) is always satisfied. o/ is in
fact, a monotonically increasing function of X . The series for
¢, (4.04) is, therefore, uniformly convergent and gives the required
solution. Although for o7 0 , the resultant Hertzian function
4, becomes an infinite series; in practical calculation only a
few terms are necessary because of its rapid convergence at any
considerable distance.
If, instead of (4.01), we measure the field at other side of

the source, or:
(-2 =o0

)
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then we have merely to use the roots of X lying in the third
quadrant. Because the roots in the first and the third quadrants
of Fig. 4.1 are symmetrical with respect to the origin, we have
then in general the same Eguation (4.04).

From (4.04), we have, therefore, for the Hertzian function:

44,, -wl H
t90) flfu /L[ B ST 2 1) L0 72 x)]

The first exponential term represents, in general, the propaga-
X K X0)

Ao J (X))
stands for the amplitude and the "phase" relation between

tion with certain damping; the second ratio term

different modes of propagation corresponding to different roots

A /e ; and finally the last term Jo(zﬁ‘ ) depicts
the relative intensity distribution of standing waves along the
radial direction. Standing waves exist in the radial direction,
since J;,(‘-;f:)-}) is always real. However, before discussing the
characteristics of propagation, we shall study one interesting
case for o7 —» o

If in the limiting case gr >0 , then the curve (4.07) becomes

0(/5= O and coincides with the axes. The solutions for
therefore are the intersections of (4.06) with the real axis and
the imaginary axis, respectively. When, say, KE’# > gﬁi
the intersections are on the real axis, Ry, are real. This
represents then propagation down the tube without damping. When

_“_’_‘% - _:_:i ( » =) , the intersections lie on the

imaginary axis. Then the field is damped with increasing distance
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but no "propagation phenomenon" exists and at any considerable
distance it identically vanishes. Consequently the result is

greatly simplified and ¢¢, becomes a finite terminating series:

A2 2. HYx,
(407) ), = Z Z.e" s frl B A () e
& Y=/ A T (X) Vrh(;z ﬂ;) !

For the special case that no root of A is real; i.e.,:

7 2
wEL X _ (2#048)° _ 57823
C‘ d‘ ﬂ" d"

or s ¥

(4./2) / - ;rza-:«g_z = LLE pp 7&/«4
then no propagation exists. This represents a complete "cut-off",
as it may be called. It will be discussed in detail in the second
part. One case of great importance occurs if we adjust either the
frequency 7{» or the radius a of the tube so that:

cu‘£<,1 f: _ ;fz,

Then we have A, — o and ¢, increases without limit for that
special limiting "mode" of propagation. Mathematically, u, (4.04)
is no more a solution, since it loses requirements for uniform
convergence. But physically such a phenomenon is of greatest
importance; it represents "resonance" between the exciting system
and the response of the dielectric medium inside the cylindrical
metal tube. Whenever such an ideal resonance happens, the absolute
amplitude becomes infinite but no propagation phenomenon exists

corresponding to that root of Iy (X,) =0 ., since then , is inde-
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pendent of the distance (;-s) from the source. However, it must
be remembered that this "ideal" case occurs only when 07 — oo
and 6/— o . In any physical case neither can actually reach the

extremal value. Then we have approximately from (4.06) and (4.07):

ﬂ, = MJ = 2’7"&)0’! E[

c:.

which indicates that for this special adjustment both the attenuation

Constan+
constant and the phase,are very small. The velocity for this mode

is:
= _ Y A7
which approaches infinity as a limit when 07—> o0 . The group

velocity, or the velocity of energy propagation is (refer to(4.29)):

V = C‘ _, = __C_ Zr e
Pl e;‘, oz 2res

which becomes zero when ¢y becomes zero. The physical picture of
this is fascinating. It corresponds to a greater and greater concen-
tration of energy which drifts along at a slower and slower velocity
wheng; » o0 . This"mode" will then play a dominating role in
reception. The nearer the equilateral hyperbola approaches the axes
(Fig. 4.1), the more accurate expression (4.09) represents even the
general case, since then terms corresponding to Ay for V>
are completely negligible at any considerable distance in comparison
with those for = » . 1In conclusion, we need therefore only

compute a few terms for ¢f , since in any practical case even with



54.

wavelength of the source of a few centimeters and with considerably
large tube radius, only the first few smallest roots of J (¥%»)=o0

satisfy the relation:

w? € U, 2
(4.11) L L 5 X
c a>

With the above discussions and restrictions, not only the labor in
computation is greatly reduced but also the difficulty with the
peculiar phenomenon of "resonance" is overcome.
Now we can substitute (4.04) into Equations (2.06) to obtain
the field components:
P [Ap(3-5)— a)JJ HY(,
Hy, =R{Z; 5 %0 e HEOW) (4 y,)
e A Ty (%)

r =/

< - wt
(412) 4‘ En =/€e{11; 7 ; A 1‘.’],'1'1(1)(')] (; ’qu)}

. V4 a
E}l =ﬁz{-d—;, TZ-‘ [/\/j‘() =] J 1,: Ha)(lv) (7:4‘]”)}

V=1 Ar Ty (f»)

As discussed before, it is only necessary to use the first few

terms for which (4.11) holds.



Part (B). Characteristics of Propagation.

The formel mathematical development in Part (A) lays down the
foundation for the discussions of the physical properties of
Propagation. Although the rigorous expressions for F,(}) and Fz()\)
(2.22) zive rise to branch points at A =2-#, =nd X =:t1€,_ which
encumber carrying out the integration for (£ and (¢, , fortunately
& practical approximation with sufficient accuracy had been attained
for the case of very large 6 (conductivity of the metal tube). The
resultant formula (2.30) is tius free from branch points and its
eXpansion is given in (4.04). The corresponding field components
for the air medium are given in (4.12). The number of terms of
these expressions equals the number of roots of Je(x)=0 for
which the right side of (4.08) is positive or equal to zero. It
should be noted that every such root gives rise to a distinet
"mode of propagation" with its attenuation, phase relation, and
Velocity different from 211 others. The resultant field at any
point along the system is thus a superposition of all these "modes",
while each "mode" propagates down the tube guide as if it exists
alone. 1Inp fact, there is no interaction whatsoever between the
different modes, if the transmission system is perfectly uniform.
With the above visualization, it suffices to discuss the character-
istics of propagation of any of these modes.

(1) Attenuation Constant.

From the researches of Rohde, Schwarz and Handrek* on dielectric

* Zeits. f. Techn. Phys., Band 16. No. 12, (1935), S. 637.
Band 15. No. 11, (1934), S. 491.
Hochfrequenztech u. Elektroakust, Band 43, No. 5, (1934), S. 156.
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loss of various materials at very high freouencies (from 106 cycles

per sec. up to 500 x 106 cycles per sec.), we are justified in

reaching the conclusion that air is probably the only medium which

can be used in tube guide. The loss in the air medium is practi-

cally negligible and the attenuation is thus completely due to the

loss in the metal tube sheath. With this condition we shall assume

then 0, = O and the curve (4.07) collapses into the real and

imaginary axes | L frr = o] . Thus corresponding to root
of Jo,(¥X)=0 , we have:

(4.13) ANp =0, +£0

It is obtained from the intersection of the hyperbola (4.06) on the

positive real axes; i.e.:

2 -
(4-14) = WEM  Xp _ a2t XS
s -2 = 5

J

= @ gp-5l= CGE)TH£]

where I-_—é’-_‘_‘.) may be called the cut-off velocity, and:
X

41)a  fp = X Ve

27 a.

the corresponding cut-off frequency, where vV, = =
JSE

the velocity in free air space. The phase velocity for "»=44 mode"

being

is simply:
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(4-15) v, =2 = %
Vs /— (£2)*

Therefore from the function 4¢, , only the velocity can be
obtained. The attenuation constant must be derived from the
relations of energy propagations in the two mediums. With the
help of Equations (4.12) it will be possible here to obtain
rigorous esnalytic expression for the attenuation. In measuring
the energy propagated or lost, we are interested in the time average
values. Thus according to the rules for complex conjugate gquanti-

ties, we have:
Fel ]ﬁe[G']=.L( + Fy i s e E £
/ z(Fr7 ) #GG)E(3G7¢%6 7 F)
In taking the time average:
f?=a ,/"‘_6_-20 & /?‘Z(f"é)'
Hence

(416)  felq]felG] = -2-’,%[;5,"]

Thus we shall form the complex Poynting vectors* for the energy
propagated in the axial direction inside the tube and for the power
lost in the radial direction in the metal sheath. From these the
attenuation will be defined in such a way that 42; . {{é , and all

the field components ((4.04) - (4.12)) are modified by a factor

* Abraham and Becker, "Classic Theory of Elec. and Magnetism",
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~& 3z
L '9/}.) thus making up together with the phase constant ﬁr

obtained from (4.06) a complex "propagation constant":

The energy propagated in the axial direction may be divided up into
two parts: one residing in the air medium (-2 <a ) constitutes the
major part and also the only part which can be picked up by certain
receiving device; the other taking place in the metal sheath (2 >a2)
is very small compared with the first and not utilizable. According

to (4.16), we form the complex Poynting vector (time average):

4-18) ft_=;j—,[/%[gjn%f;1j == fe [g’r%t/

and integrate over a closed surface. In order to make this comply

with the definition of Poynting's theorem, the closed surfacehay be
taken as the cylindrical surface at 2=2 with bases at.:l';’ . Here
the Poynting's vector % has two components, the a.xia.l/\é, through
the two bases ati-;- and the radial A/ through the cylindrical
surface. /\} represents the useful part and/\é the loss in metal

sheath. We have then:

— * £
(4/9) Ny = %ﬁe[gr;,} =25 Re [ Eu Hpi]
& 2 # @), @, #
=R v x5 MG 2
ar e[//’“‘ A’ J\: (‘(J;(JS-)/T [‘7’(714‘2})] ]

T W

“Ge i (EEF (nan)f




59.

Integrating over the bases a.tiZf , ¥e get the time averaged value

of the utilizable energy propagated in the axial direction:

(4.20) W, =z do =T wf» Yo(xy

23] I ,,- 2z
4}7 & g (0] /;’,54 %17’ = (%)}

The last expression is obtained by using the relations (4.14) and

(4.14)a. This also shows that only for i)%y is there a real
flux of energy leaving the cross-sections ati—;/ corresponding to
the "%} mode" of propagation. The total energy is simply the super-

position of (4.20) for all &2 ; i.e.:

n
2

4200 W = a® wxf () 1
(4200 W 54/4‘4#/& { Yo}

n

- % 4/2 T #
G 7o {Yil5)}
where %zf:o

The corresponding r-component of /-Z; is:
S #*
#21)  No =g el g !; . == e lE Hp l,_.

- < A Lw Xy M) K
Ir ﬁe’[,d’l cz A:f H %X‘F)M‘Eﬁ()’r)]

whose real part is zero if the conductivity of the air medium is
assumed negligible. Even if we assume a finite conductivity for
the air medium, the integration over the cylindrical surface at
/2 =& still gives zero. This, however, is a natural result,

since the expression (2.30) for 2¢, is obtained for 4z —» oo
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All energy emitted by the source resides in the air medium within
the metal sheath.

Consequently, we are forced to seek another means of finding
the loss in the conducting medium 2. This can be achieved since we
know from (4.12) all the field components at the inner surface
(A =a)of the metallic tube. General formulae taking into account
the finite thickness of the metal sheath can be obtained. We shall
treat, therefore, in the general sense. (2.31) for £, fails to
give us a series solution for the different "modes" and their field
components, becsuse of the impossibility of forming a closed contour
of integration according to Csuchy's theorem. The gist of the
present method lies, therefore, in setting up series solutions for
the field components in the metal sheath (medium 2) and finding the
"corrections" for the roots of J,(¥)=0 to take into account of
the effect of "finite conductivity" of the metal tube.

Referring to (4.12) and (2.06), we have immediately the desired
forms of series solutions for the field components in medium 2,

considering, however, only the " mode":

E;z _ ﬁe[‘[’\"/ :)-w/f][c Hwﬁ )+ g\];(,z*/gz 3 )]j»

(4_12) E’?a = ﬁe[ A[Av;‘f) Uxé] -4 AJ)‘ [C, mévr)'fczuf(”’m )]f

He. - R [;’[,\,,( -s)-wi] chy ¢ HY T ) 4G, (o ”)J,
2 = fle| NG 7,”—:————%[ B )G O )|
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The above relations are for the metal sheath of finite thickness.
Since, however, we realized that the metal sheath is electrically
very thick for high frequencies, we shall put C, = 0 in order
to simplify the mathematical manipulations without impairing the
accuracy of calculation. The boundary conditions at p —¢ require
the equality of the tangential components ofg md% from (4.12)

and (4.22). Thus there result:-

) = & )
& H @y —%j;g ML 1)
Y

@)
) o
g O X

I

where X,/ and A; with primes indicate the "corrected" values for
taking account of the effect of finite conductivity of the metal

sheath. From (4.23), we obtain then:

4-24) C T i) Xp (U(X;) J;(I;) = M5 1#1.(4)/2—'—1 H(’({Yr)
PR T8 Wlafgm) N ekt AT

The last two terms give the "relation of compatibility", from which

/
the "corrected root")j, is to be found. Fortunately, we do not need
an explicit solution of these Xu:,é from the above complicated transcen-
dental equation. What we need in calculating the attenuation constant

is the ratio:

/

/ JolX3) ARNE L
135) 22— A 2l
( ~ 4K (a/‘ N T AT 4 HYamR)
or

Js (X3)
Lo Ma YRR HOGSTDE) o it ad?
J—('Er) /’UT\- H’”(df—} ﬁ_—
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l‘ .
from the relation ,‘: >> 1> end the asymptotic expansions for
Hankel functions. (Section II.). Substituting the above corrected
relations into (4.21) for the energy flux in the radial direction,

we get, at2-a

(421) N, = e [frr ;wIXii (v :&A_:.]

-“)T/I;Xu- X
= Re J/‘",U‘Il’ [%X)fJ

= — Mo x;4c

‘ YoOp) }*
e pu,"at A.ZJ‘ 2Ty { 4
Since /{;‘ o AAT VT sy
e
/{z = (/<) Jare s 4, :3 >
—L = c /.. “'
% .f.a'wd;/l/; 2z

From (4.25) , we realize that the "corrected™ rootxy, is very nearly
equal to Xy from Joliv) =m0 where X)» is a real quantity.

Thas putting X,. Xy in (4.21)a, we obtain:

4
(4204 N, =T Xr & [yix,))*

182 ] [rrae

Integrating (4.21)b over a cylindrical surface of unit length, we

get the loss in medium 2 per unit length along the axis for the

"Wah mode":

it 5[y g o
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According to the definition of attenuation constant in

(4.17), we have:

- F - -anTE

Substituting from Equations (4.20) and (4.26), we succeed in find-

ing an explicit expression for the attenuation constant for the

%4, modet.

(£27) &, = —7':" C/"'a/'{z _ /I/,Te,i%
Ve A

For a uniform and homogeneous transmission system, the different

"modes" propagate down the axis independent from each other. We
must, therefore, calculate the attenuation for each "mode" separately
as derived above. (4.27) is obtained in a quite rigorous manner
although in a somewhat novel way. It agrees with Kelvin's result
derived from the general skin effect without referring to any execit-
ing system and serves as a proof of the latter's validity for the
'wfl.mode" and for the “fﬁ{mode" only.

The total loss for all "modes" of propagation is then a super-

position of (4.26).

—_— n

@
(4.28) @ = e —’Tl":ﬂztdc.x,- £ (X 2z
J’é: Z—r V=] 8/{&‘/‘: 27"@0;/!/;, [Y[ D)‘]

o .
=3 52/ o] ez

By means of (4.14) and (4.27), we obtain thereby the complete

expression of the "propagation constant":
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(4.17) Ap = fo+ Lot
for the "4 mode". Substituting (4.17) and (4.24) into (4.09),
(4.12) and (4.22) gives us complete analytical description of the
general potentigl function and the field components in the two
media.

The attenuation /o{y ) is infinite at the cut-off frequency

{/;.ﬁ,_}, beyond which it firstly decreases and reaches a minimum

value.
£ /
oﬁ'm “Zdv /”’ : 3 ’ 3/ /f/ 1/2)’,:_6]
4& / a3
a L3 Fu - '_il/u, er whic

it increases monotonically with frequency.

(2) Phase Constant, Phase Velocity, and Group Velocity.

From what has been discussed before, we notice that the phase
constant /{ﬁ’_) is practically independent of the attenuation effect.
The phase constants for the different "modes" of propagation corre-
sponding to the different roots of J;04) =o are distinct.

Rewriting (4.14) and @4 15), we have:
L. = “"ff‘”/._X}»- o, 2
(4.45) cw A
Z, = 2% S /g:‘),]
where%)_ is the cut-off frequency for the “y"f/, mode". The phase

velocity for the “/f/ mode" is infinite at /:-%,_ and decreases as
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the freauency increases, approaching the velocity of light in air
medium (2 ) at/__.,o . There are as many distinct phase veloci-
ties as there are "distinct modes" of propagation.

Group velocity, which is of importance when modulated signals
are to be transmitted, can be obtained from the Equation (4.14) by
differentiating ) against /5‘,, , keeping in mind that _';_'Z:' is a

constant for the ™44 mode", we obtain:
0 = ._E,;l_' 2L /{d == 2/5‘,,
c* ;z’
The group velocity ié; corresponding to ﬁhe'b&g{mode" is then: *

4.29)

2 Z
7T Zg @ .
/A"
It is, therefore, zero at the cut-off frequency¢) and approaches
the velocity of light as a limit as the frequency continually
increases. There are also as many "distinct group velocities" as
there are "distinct modes of propagation". Curves for the phase

and group velocities are given in the appendix.

(3) TFrequency Spectrum.

From the above discussion, we see that corresponding to each
mode, both the attenuation and the velocities of propazation change
with frequency, & phenomenon very undesirable for wide band modu-
lated signal transmission. For high quality television purposes

then, only those parts with very flat characteristics can be used.

* Max Planck, 'Theory of Light.’”
F8rsterling, "Lehrbuch der Optik’
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The freguency characteristics are distinct for the "distinct
modes" of propagation if the transmission system is uniform and
homogeneous. When the applied frequency is higher than the first
cut-off fregquency %, — 2404825 put less than the second cut-

Zra

off frequency ﬁ — J-520/2% , then only one single "mode" of
Zra

propagation exists.

For a modulated television signal with a frequency band cover-
ing many million cycles (usually 6 M.C.), if they lie completely
within % a.nd/; , then there is only one single "mode" for the
whole band. If, however, they lie within_f} and?g’ , there would
be two distinct "modes" with different attenuations and velocities.

So with the whole modulated signal within %b and there would

AL
be "n distinct modes" with different attenuations and velocities.
For transmission of a modulated signal, we must limit the
reception to "one mode" only, since different distinct modes cause
interference and distortion of the original composition. Thereby
a unigue conclusion is reached: That is, we must design the trans-
mission system in such & way sothat the whole modulated band lies
within% a.nd%; . In other words, we must have "single mode"
transmission.
Take the case of a cylindrical metal tube guide with a radius
of 10 cms., then:
%/ = /. /8 & s0? cycles per second,
%2 = 2638 ¥ sa? cycles per second,

and the allowed freguency band is approximately:
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A% /- 488 x 07 cycles per second,

which is amply sufficient for present day television purposes.

The above conclusion is not only of practical importance, but
also of theoretical interest. Since then we need only consider the
first term of (4.04) and (4.12).

(4) Phase Displacement and Enerzy Propagation.

The phase displacement for the field components due to a
dipole (electric) is extremely simple. From (4.12), rewriting the

expression for £, , we have (for ".J/ mode"):

7
- ATWA > ‘)A[kiiﬁfLaiéJ 1}— <7§})
7 /?z d.‘cl’ / /pj,()) j//l /;)]

in which the attenuation constant Ay is to be calculated from

(4.27). Since:

Hol) =705 +4 %5 (%) = < v;000)
we obtain for real part of E;_,:
(4.30) E, ——TwXs o)

7 catd?, T, 00 Coa (w?- 2 [5-¢/)

There is, therefore, no phase displacement due to the multiplying

J-[,,_),V) r/;' f)

factor. The amplitude, at definite 2 varies according to the
factor:

-] E

Z

w
442, = =
o "{//51’ a?w D B o @L
&= a*
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This shows that the amplitude is infinite at %= %,_ , & phenomenon
called "resonance" by some writers. Such a resonance is ascribed

to cause a "localization"of energy without propagation, and can
actually be detected by any disturtance "dislodging® this localiza-
tion of energy. In fact a much more instructive physical depiction
can be derived from this phenomenon. On writing out the other field

components from (4.12):

1 _ ’W‘-x Y (o
(4 BI) A./f _/u, a—/”_ (2/ ))j(A ) oj’/ !)/d"‘[w’!‘/}/’f)]
:L/} = fa =0

4 _ TTEXe Y ( Xy o 4 wa el
e Z_jj(z’)) JGn)e *P P i ot . 1500

one notices that 'L{f’ also contains a factor:
A

25
43/’ ‘7@-’%/—_?}3

which becomes infinite at% % While £ =, remains finite except

atf=o . Thus such a "localization" of energy at %;ff;— (fz =0)

means a "readiness" to start propagation as soon asf; becomes

greater tm%, . The latter can only be accomplished if there is
a "stored" amount of energy in space ready for the push. The idea

of "localization" of energy is therefore physically and mathe-
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matically justified and is susceptible to experimental verification.

(5) Characteristic Impedance and Radiation Resistance.

The conception of characteristic impedance is helpful due to
its frequent occurrence in conventional electric circuit theory.
It is always defined with respect to some current flowing in the
circuit. So we shall follow the same logic procedure in defining
the "characteristic impedance" offered by an infinite hollow metal
tube guide to an electric dipole as the "ratio of the time averaged
surface integration of the complex Poynting's vector, (Equation
(4.18)) to the time averaged square of the current flowing in the

metal sheath in the axial- oz7-direction" : %
o ¥
X == ﬁe[?p’*%]

._C

(432 7; e [% %]Jvz:—_—

%U-KJS
] rY-g chmwfga g{ é/g]dt

= W+24w(d,,7_—éé/f) = TN 42 wll
P 1is therefore a complex quantity whose real part represents the
mean Joule heat developed per second and whose imaginary part
twice the amount of the difference of the mean magnetic energy and

the mean electric energy. Thus, ifd}— is the total current of the

* Abraham and Becker, "8lassic Theory of Electricity and Magnetism",
pp- 196-.
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system, we define:
._zL ~ / ./* e
/

* 2

The second equation is true because we assumed that the system is

(4.34) {

dissipative. For a non-dissipative system 7/ =¢ and N =0 .

The current can be easily found from the following relation:

2 +
_[ Ha 24y =‘7%‘£

)
435 [} = Q;/?,,['W EAACE

-, / ;}.‘[ / 5/3-9]
Wi /

o e [;Tg ;: Héa/[)})l"”y//V’f)e—t‘[@?é/%g-f)]]

(43%) et 2E ryp 1l RS w2t Ry
// rr /5’[)’(1)] e [in)]”

From (4.20) we bave, considering only one mode:

72wk -2, (3-5)
Yol X
W, = e 5 [Yetry] 2%

and Z_Z s B

) e — Z?V‘_; == 2 [Pr = _£ z - #2
O i M=l =2 = 2L
and X S —

The reactive component is nearly zero since the attenustion

is small as discussed before. The characteristic impedance has
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practically only a pure resistive component, which may properly
be called the "radiation resistance" of the system for "f%_ mode!
of propagation. There are as many distinct "radiation resistances"
as there are "distinct modes" of propagation. If only the first
"mode" is considered, then:
- 38) = 205 f teids )

-'*Jrfd /97

3 . . 2 2 J2 :
At the point of minimum attenuation, )‘? e d)—‘é,—fé: for air

dielectric medium.
The radiation resistance /,- is then zero at %_—.74. and

increases as the frequency increases. It approaches the limit

e B 4
Ao = CI4 = frmge 4ttt = 600 oAoms

when %>>%, . This casts some light on the design of couplings
or absorbers for matching purposes. At minimum attenuation the

radiation resistance becomes:

ﬁy/fkn;oc) == /_,55"0 = #7° "é“‘"
At %;.—% ; /f/becomes:
/7//// =2/Z (. Z’ ofim(22222) — 5o huce

The variation of the "characteristic impedance" /), is therefore
comparatively small for the whole usable range of frequency. For

a band of a few megacycles per second, it is practically constant.
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(8) Field Structure.

We shall limit the study to the field structure in the
dielectric medium. Referring to Equations (4.12), we see that
along the axisl- or ?-direction all field components have a sinu-
soidal distribution with a gradually but very slowly decreasing
amplitude due to the attenuation factor ..e"d"f; %) . The spatial

wave length in the air medium is then:

(4.39) 05 /5
- n

Corresponding to each mode of propagation, 'ohe apparent wave length
ig thus infinitely long when %:—fy— and decreasing and approaching
that in free space only when f_._-oo -

The equations for the lines of magnetic intensity (/{W) are
simply concentric circles around the axis and the distribution of
intensity in the radial direction () is proportional to Bessel's

function of the first order; i.e.:
Hyr A~ T, (4 X.)

where X, is the/#4. Toot of Jo(X)=0 . Because the zero roots of
JolX)=0 and J,(x)=o0 are alternate; i.e., between two roots of
JolX)=0o ,there is a root for 7, (%/=o and vice versa, J}‘/%x’.)
has, therefore (+~s) modes for the range o <_2<a . We have, in
fact, a standing wave in the radial direction in the air medium; the
amplitude of this standing wave changes sinusoidally with time but

its nodes remain fixed.
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Similer discussion applies to the configuration of AE;,.
The structure for ﬁ}/ is, however, proportional to J;(%Xp) H
it has then one node at the inner surface of the metal sheath and
(¥#~s) nodes for the range O =.2<a- . The equation of the lines
of electric intensity can be obtained from solving the following

differential equation:

(4-40) ,_ffZ_ = _féf;

or
TW Xy T (2%

APk’ Fix) c"“[ﬂ - wt+ % [ 7

Z
— =T W X

- olz ) [ —Y—r
atek’s J[)’,,j y bl + B[
where the phase displacement angle ﬁ. is given by:

& = m&.@[y{fy)] =_72_7‘

Jo (X

The above differential equation then simplifies to: *

To (45 L(2x) = An[prty-s)-i]
T, () %) @[/,,7—5’)_@;,‘] //ﬂ’f)

or /[47[24);,‘;(-;—11,’}]}: -4 [/7 loa [ /21317 —a,t]j

Integrating gives:

* Jahnke and Emde, "Functional Tables", p. 145.
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/;v[—le 5.7 (2%)] = —%{m[/yg—f)w;ﬁ]] e

() [ERFER)] Oofpoyn-ot] = C

This gives the equation of the electric lines of force for any
time t. The second cosine term indicates that it is propagated
along the?—direction with a phase velocity—af . The first term
[ Jd.(% Y,)] represents a standing wave distribution
in the radial direction for the range g = _.2 < « . Equa-
tion (4.4f) is for the yafvmode only. There are as many distinct
field structures as there are "distinct modes" of propagation.
The integration constant (¢ in (4.4f) can be determined from the
given exciting strength. Since the field configuration is
independent of the azimuthal angle‘jﬂ (4.4}) holds for all planes

passing through the axis.

(7) Terminal Device.

It will be shown here that for certain simple terminal devices
it is possible to make a rigorous mathematical analysis. Up to
now the development has been based upon the case of an infinitely
long metal tube. But in any practical set-up the transmitting and
the receiving ends must be terminated by some device which, of
course, should be so designed as to increase the efficiency of

transmission and reception.
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For a linear axial antenna the simplest efficient termination
at the transmitter end is a closed end made of perfect conducting
material. The existence of such an end simply introduces an image
situated the same distance behind the end as the exciter is situ-
ated in front of it. Then the resultant potential function
(Equation (4.04)) becomes (See (8.02)a.)

Ao - AA /
(#42) U, Z[ Ao ., ’\/’”‘]'x‘;f;gj T2x,)

Ay X Aﬁ%cﬂc) A
%;?;;; 1; Jbabzﬂkjy tift}f?}igkz;ééﬁg})

which reduces to:

_2r S AiF x5 HY
ws =SSN LM 5 2

fo;fa:o when the dipole is placed infinitely close to the perfect
reflecting end. The intensity is thus simply doubled everywhere.

The same procedure immediately follows for any physical linear
antenna since every element of the antenna has a corresponding
image behind the closed end. Such a type of ending is considered
as the most simple and at the same time the most efficient termin-
ation for transmission purposes.

Other irregular terminal devices disturb the configuration of
the field and make any attempt for rigid analysis impossible.

The terminal device to be used at the receiving end is

definitely much more difficult to design. Any scheme except that
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with the same "characteristiec impedance" of the transmission system
(i.e. complete absorption of the inecident energy) causes the form-
ation of a standing wave which may be undesirable and even a nuisance
for high quality transmission. A standing wave in the present case
eventually represents an interference between the exciting and the
receiving devices. The paramount requirements for a satisfactory
receiving termination are thus: (&) maximum pick-up of the incident
wave to be fed to the detection device, snd (b) complete absorption
of the incident energy to avoid forming of any standing wave. A
detailed analysis of devices achieving complete absorption of
incident energy forms a distinct subject by itself and will not be
attempted here. The general principle outlined above might be of
some value in practical design.

(8) Stability Problem.

The problem of stability arises when the transmission system
becomes heterogeneous or deviating from the ideal straight, circular
cylindrical tube. For long distance transmission the two main
unavoidable deviations from the ideal system are: (a) cross-section
not being circular all along the length, some portion may assume oval
or elliptic shape, and (b) bending of the tube at certain locations
as found necessary in installation. For a linear exciter, a slight
deviation from circular cross-section is of no serious consequence;
although a small yJ-component of electric intensity E&, may be
introduced at such locations but the magnetic intensity remains

essentially circular (Hp). the attenuation constant and velocity of
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propagation might have undergone a negligible modification. A

bending of the tube especially at sharp angle, however, may intro-
i

duce a strong new field configuration dependingz on a2 £ s -factor

and many lesser intense field configurations depending on factors

AT (= 3, F, e ) . (These kinds of field

ey . . Ny
configurations depending on g for witc 2, F.~- , are
called by some writers £, , £, , £z, -----waves.) This means at the

same time a great reduction of the original symmetrical field inten-
sity. From the above approximate qualitative argument we may con-
clude that, for carefully designed transmission system, bendings,
even if not completely avoidable, should be performed with as small

a curvature as possible and the less frequent the better.
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SECTION V.

A Magnetic Dipole Placed at Point (£,4,, %)
W

With Its Axis Parasllel to the 4—axis
v

Inside an Infinite Cylindrical Hollow Metal Tube

The postulate of the existence of a magnetic dipole with two
infinitely large fictitious "magnetic charges" of opposite polarity
at an infinitely small distance apart from each other, dated back
to the ancient conception of a magnet. Later researches, however,
discredited the physical existence of "true magnetism" and unified
the old parallel independent theories of electricity and magnetism.
But the physical argument of reality does not penetrate into the
mathematical analysis, since with proper care the hypothesis of an
ideal magnetic dipole gives us a formal mathematical analogy to the
case of an ideal electric dipole. And only through such a hypothesis
can we obtain the corresponding analytical expressions for the field
components due to a current loop of finite dimension in a simple
way. A current loop of finite dimension is thus thought of as a
magnetic shell whose boundary coincides with the loop. The postulate
of a magnetic shell is not new and its properties have been discussed
by many authors. What is attempted here is to use the idea of a
magnetic shell as a mathematical intermediate bridge to reach an
analytical expression in proper coordinates for the field of a
current loop with uniform spatial current distribution along the loop,

and thenceforth gensralize for a non-uniform current distribution by
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means of a scheme similar to that used in obtaining the "z-multiple
axis" unsymmetrical cylindrical waves functions (1.20).

Sommerfeld* first used the idea of a magnetic dipole antenna
for a formal mathematical formulation of the corresponding Hertzian
function with the dipole situated above a perfect conducting earth.

Analogous to the introduction of a "general magnetic potential
2L for the case of an electric dipole (2.06), we shall now define

a new function, say%“, for the case of a "magnetic dipole" so

that:

t§ o) £F =Vx Uy

This fu.nction,”m, may be proposedly called "general electric
potential®, since its curl gives the electric field'g maltiplied
by the dielectric constant € .
For the present discussion the magnetic dipole is supposed to
be placed at (¢, 2., %) with its axis parallel to that of the cylindrical

gaiding tube of radius a. Thus %m has only a/— component, or:

From the analogous formula derived in Section II., (2.11), we obtain,

for the primary "source" general electric potential function, the

following expressions:

* Riemann-Webers, "Differentialgleichungen der Physik", S. 564-565.
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(509  Flaes = £l o
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=—;:~/ AP )

— oS

where e
J = of AT s Coa (P-1)
On expanding the integrand according to the addition theorem

of cylindrical functions, we have, omitting subscript »e:

Go4) 2, =§,,=Zw.fmrm/ NG Fu BT Hy g )
%f Aﬂ < /,'O

—0d

(509 "\ gu, — % ;_', P / DG T (rofFENE) H (L ) AN

= %oy A > A,

For the present case, the field components are:

25? = by By, £i] we 2 2§§7== }Z?/ He, /éw,

and the corresponding Maxwell field equations become (in Gaussian

units):
Y H 2H

(» L -
(5-06) 2y 7 £

el f[%("gr '%? - &2y




E ”

(4) a ?a; = __/4_0_22 d
YEr _

(e) S - %}7?

Since all quantities must be real, we have:

M :.-'ﬁﬂ[‘bL&-‘:a)t]
| £y = o] -4 24 e#%7 ]
Er=ite [ 55 B t]
(5.07) fj - D

Hy =fo[gpsar Kur 522 ) 2%]

l Ha =/‘?e,[€/bw) 7;?; _e""’,w’t]

v e o
ﬁf =/‘?&[ f/,u,w/i- ;;7y “ \]

and

2

0 IM L9 L P , P _
(5.08) ?4‘+~7/v+* 7 77 + A% =0

Therefore, the system of field configuration is unique and Equations
(5.04) and (5.05) are the formal solutions of (5.08) for .4 <.4, and
A > Ao , respectively.

As discussed before in II., the above field configuration with

E;:ocan only be realized for perfect conducting metal tube and we

shall limit ourselves to such a case.
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The disturbance function for medium 1 (/L<&) must be finite
and, therefore, only the Bessel function ‘7;”/4,2_’31) can be
used. We obtain then for the total "general electric potential

in medium 1:

Z’;m(ffﬂ/&/\/ S’)[J- @{)/‘/mﬂof}ffﬂ,y—ébf]g//\

(509) Ulpg-o)= Jor A<Ao (@)

o
o0
7 amlffo)| EA(3-%)
2 Eﬂ / / A (0 )H, (1 }..cF(/u]'(x«fJA
—as
{/%Y 2> Ao (5)
That for medium 2 (2 >2) need not be considered.
The boundary condition at 2 —= @~ requires that the tangential

component of electric field intensity must be zero, thus from (5.07)

we have:
7/
Tin (Ao fBERNT) My (2fZFAT)
I (2 2737 )

F0) =

where the prime indicates differentiation with respect to the argu-

ment involved. Equations (5.09), and (5.09), then become, respectively:

mlp-33) ” E)HO (1€ *7 4 £
/JZ f"/,o/\/ﬁJm(a) /)(‘i:f’ )ﬂ(@éﬁfjﬁ
(5-/0) M{ﬁ/'!k - %m,«/z, ca)
‘,Z .«.W(Vﬂ,y,‘/\(]«;) (Aaf/)]— (df)/'/,,,(/lfjj{/l,f)/‘fa(ﬂg}_l:ﬂg)
=0 A J (‘tg)

Sorrony o
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The field components can then be obtained by substituting the above

two equations into Equations (5.07).

Now we shall consider the special case of a magnetic dipole
placed at origin (9.9, t’), then ¢=02, Ay=0, y7=0 end (5.]0)a and

(5.10) g reduce to:

=

(511 U =2 / o TG H0E) - HI@E) T, (8

Yoo To (<€)
I [:}"/‘/ J@B) ol §)— HH=EITo (4 8) 4,
4 J; (4 €)

From the functional relations (1.29), it can easily be shown that
(5.10)a, (5.10)b, and (5.11) are all meromorphous functions and
their formal integration can be carried out by expanding into an

infinite series according to the theory of residues.
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SECTION VI.

A Circular Magnetic Shell (Current Loop)

Of Radius b with Center at (0.0 )

Inside an Infinite Cylindrical Metal Tube

Just as the expression of a current element serves as the
Green's function for integrating along the axis of the extension
of a linear antenna, so does the expression of a magnetic dipole
for integrating over the plane area occupied by a uniform current

loop. We obtain, therefore, the potential function as follows:

(6-01) U ===/u %(4’., £) d S,

where, for 2{ , expressions (5.10) are to be used for 2</2, and
2>Ae , respectively. At first glance, it seems impossible to use
the idea of a "masgnetic shell" to obtain the effect of a current
loop with an arbitrary distribution of current along the loop,
because the conventional magnetic shell is usually thought of as a
uniform one.

Two new methods are described here. Each of them has its own
physical realization. The first one is for perfect general arbi-
trary current distribution and includes eventually the second method
as a special case. But due to special significance of the second
method, it will be considered as a separate one.

(1) Pirst Method - Arbitrary Current Distribution.

The gist of this method lies in the fact that a linear arbitrary

current distribution along the loop corresponds to two types of distri-
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bution of the strength of the magnetic shell elements over the
"area" bounded by the loop. Referring to Figure VI-1 and using
polar coordinates for the

plane area of the loop ,

JS:, is constant along radial

direction for fixed y}, as

29 e the two types of distribution
o So '9, are: Tfirstly, the strength of
/
K/; 1 the magnetic shell element

dﬁ_, 0 ; and, secondly, the

strength of the element S,
Fig, VI.-1. follows the same distribution as
the current for different % at any 2, . Consequently, for a
circulaer loop /{4o,ﬁ} in (6.01) is independent upon ,2, and may
properly be written as/{ﬂ/ , which is just the function for the

current distribution along the loop. We have then:

(602) Uf/.ﬂ/(ﬁ//‘r’ =//‘,4(///(ﬁ//bu&dt,

where the integration with respect to2, can be performed first with
given & = a(;,/l,j;-;,d,};l leaving the integration with respect to
jl‘ depending upon the current distribution. It should be noticed
that for a loop of arbitrary shape, //,4‘,, x) is always a function
of bothpy and ¢, . The above argument also shows that Equation
(6.01) is perfectly general for any shaped closed loop with any

arbitrary current distribution. This idea can also be used to find



rigorous analytic expressions for the "electric potential function"
for, say, rectangular or circular loop placed parallel above the
earth surface.

From the above general consideration, we shall, however, limit
the digcussion to a circular loop with its plane orientated perpendi-
cular to the axis and its center at (¢ 0,0) . Then, substituting

Equationg (5.10) for € in (6.02), there result:

. m' b y n
.‘:'/Z'f”(f'ﬁ%ﬂ} & [ /,, 97%) [ TR o8) Tnl5)1 25,
2Z|'m < a2

Tl (2,) "Aﬁ”{”ﬁ) i’
(63) (/= %r A<,

Jr 00
<m(P-f5) A3~ b 7 e
2 2 ”/ﬁ)%%[fx"‘ff : [ f J,,(/z.f,»m]f»”%iféié«f)d;hﬁ) k) 4
[ M 74 7

Unfortunately, there is no formal simple way of carrying out the
indicated integration with respect to 2, for general integer value

of y# except form=o0. The failure of this general method for mcx o
compels us to leave it as it stands until some new scheme of integra-
tion is to be devised.

For m=0 , however, we obtain immediately:

Zr o2
r g A3~ . s /, p/ 2 ;
< / %fﬂ%ﬁ 0 T f}’% )

Zév/l <As

g pln aa' ; ,
G [0 TR,
2 -6 7 Jr (X Ef

%y A>As

(603) U=
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Integrating again with givenjégg) yields therefore only one term of
the infinite series, becausezﬁkﬁg) can always be resolved into
Fourier harmonics.

If the current distribution around the circular loop is uniform,

then Equation (5.03) reduces to:

L[ G0 Tlae)withe)-Tbe)H s
; / 7 a1/ A

0604) Z]; _“ Zf&yzt<’¢o P

%/ 4,1/3 J(af)//(’fé,f)-f[/bf)//m(ﬁ)
& Ti(ag) f" s o

Except for an unimportant multiplying factor, (6.04) zives the
complete solution for the potential function due to a uniform
current loop inside an infinite cylindrical metal tube.

(2) Second Method - Trapezoidal Current Distribution.

The generalization from (6.04) to cases with trapezoidal
current distribution can be accomplished by the same scheme used to
obtain the general cylindrical waves functions, (1.19) and (1.20).
Thus for a "bi-axis" current loop with current in the two halves of
the circular loop "opposite in phase" but of "same magnitude",
(trapezoidal in shape) the potential function at the field point

becomes:

(625) U, = DU = (fg #525)0 = K52 )

= DU = i35 )=~V Gy 125 )
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where [/ is to be substituted from (6.04), and [, and D refers
to operations upon the "source" and upon the "field point",

respectively.

(=€) T (1§,) A
(605) % = 744 <o,

\. 4 A7, AGS) Jat)H]GE)-T (18K (k)
rrf[z A v Tilbe) )

%'/ﬂ)/to »

zfﬁﬁ f,4AGS) S (% W e)-THE) 28

or

J(a€)
[{'05)4 U{;}z_ %‘/ a<2s ,
‘ P o Wk)-J(rE)H (2 )
- L ;/j,’(df//ﬁ;ﬁﬁ) Ji(» [ ] ,{g p/A
o
—- A >4

The factordujﬂis used in the last form for a trapezoidal

o Mﬁ% Ay~ Ja 6T AT

current distribution which is positive \or negative) for -%2 ¥ < 2”_"
and negative (or positive) for g<5/<%1”' . Equations (6.06) are
formal solutions of the differential Equation (5.08). Similarly we
can obtain the potential functions for "quadruple-axis" current
loop, "sextuple-axis" current loop, etc.. The corresponding

expressions for '"2n -multiple axis" current loop is:
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< - »
fgz; Je ] T, dég (.Zf)f»/ ﬁfgf ik

&on) [ = - fora<e,
s 6 T Ty,

J,(ag)
74»4 - T

The integration of (6.04), (6.06), and (6.07) can be carried
out by a formal expansion at the poles of the integrand according
to Cauchy's theory since they are all meromorphous functions of

the arguments involved.
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SECTION VII.

Characteristics of Propagation of a Current Loop
Ingside a Cylindrical Metal Tube

In this section we shall limit our discussion to the case of a
uniform current loop. Equations (6.04) zive the potential functions
forn<p and p>5b , respectively. The characteristics with trape-
zoidal current distribution can be obtained from that for the
symmetrical case with only slight modifications. The procedure in
the present section follows along parallel lines as that in
Section IV..

Part (A) Transformation of the Integral Expressions (6.04).

Since relations (6.04) are unique and meromorphous functions of
A and the argument of the cylindricel functions, a formal solution
can be obtained by aid of the calculus of residues. According to
Cauchy's theory, the closed contour is to be achieved by means of an
infinite semi-circle above the real axis in the ) -plane. This is
permissible since integration along this semi-circle yields nothing.
Reletions (4.01), (4.02) and some of the discussions there hold true
word for word for the present case.

The poles of (6.04) are the roots of
ey x Ti(2dki ) = 4 (g =0 which

will be denoted by 7=7’,/%/ 7‘/ __.I.z’_’-... ‘

* The first few roots of.],'[/j:a are: 7,:0 ,/,:_7.3}/7,7;:%0/5‘{’%./4.”;:-’
... Jahnke and Emde, "Functional Tables", p. 166.
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Corresponding to the V7. root, 7, , we have:

l
2
P o - 5L i),z 47‘4): 2
Let ’)\v =/51’ 4. Olur , then we have:
¥ 3
(7-01) /3;_ - = _f_fé/_f’__’_ jd-f‘ )

dy/y =M -

== =
The two branches of the hyperbola (7.01) cross the real (/gy_)
or the imaginary (&f,-) axis according to the right side being posi-
tive or negative. Those of the hyperbola (7.02) lie in the first
and third quandrants, and practically coincide with the axes for
the case 07 2 0
The residue at/ =o 1is a little different from that at others
and is to De evaluated by means of the expansions of the cylindrical

function at very small argument.

Lime T, (2E) =~ 1

[,—00

"""“g.,,ﬂw =~ &

E—)n //M(A’EI) = Z‘i%ﬂzé}r
HLew 110/ '

e 11,(28) 7[‘1"’?45’7’4 =

Lo TOEIHbE)-T(56) HY 2 ,)
£-° & Ti(ag) 4

> F d_éf,
SeIES Ayt~ +&
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s “4»" (dl A") A(d‘é‘)[
2ratb £} - Tabk, ~A,-A —,Z#J./

Residue for the first equation of (6.04) then becomes at_A,::d{ :

/C?&S.[/\,=¢é] . —24’:;3‘_52)“‘;(;[ -£)

The residues at the other poles for the first equation of

(6.04) are all of the following form:

= e A 8 27l | ( o ’J; e
fles A=As [ = (imahifoms) | Tk ¥ 4’ SO’ res T /T

- - 2% T /r///(//y)f Gpo
T

Since

Z:. A—A" _ / / _7”_

XeXo Ja/FAD) (2 ETE) (N, . d’zlulz’yr)

For the second equation of (6.04), we have:

0&«, T @&)HYE) -J(nk) H (2 §)
£ f,],(d,f)') LU (4€)

~ "jlé Ak _aé
T2 [ A~ =5

¢,
~ 2 7y il
fes. [A=4] = —‘5—7':,%:4"”‘6//—!/

41

Res- [ =] _(,47‘4/)62722)[ Ji ('éZr)/” Z’f,/j (77 ’/2—’/\, A f\v-
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_ —2m*b T, g )T bd )
= As Vz”?;ﬁwﬂ

Therefore, the series expansions for (6.04) become:

2 (@28) AGS) 7 Hrf )W)
24, “ g “ /L:]f- /(/1’) J; éﬂl ik
(702) [L- Y adaid

//]p?‘f)

r A 22 ik v, .
LGN 5 S G ) e
7 - a (2
Y=/ AVJ;/ffr) 2 ;:,ﬁ"
%2/2),;’_
The two expressions, therefore, only differ in the first term
corresponding to the zero root?‘,;o . All the discussions for
Equation (4.04) in Section IV. can be applied here with slight
modifications. In practical computation, only the first few terms

7
of the summation are necessary for which Ay« are real and the

following relation holds:

2 2
(77.04) —q—)—g’ﬁi/' > __’gf

The expressions for the field components for the air medium can be
obtained by substituting (7.03) for/Z in (5.07), remembering
}%’7;—_0 for the present symmetrical case. They are:

) LS 2 T ) Bgo-wt]
E}q [Te, g,g 2 ——/i%_—/(/—r)z-%j(f/r j
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In the above expression for /1}, , the first term before the summa-
tion sign is neglected because they are lacking in the expressions

for Eﬁ and /{2/ and consequently plays no physical role.
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Part (B) Characteristics of Propagation.

The formal mathematical development in the previocus section and
the transformation formulae obtained in Part (A) lay the foundation
for a rigorous discussion of the physical properties of propagation
due to a circular loop antenna inside a conducting cylindrical metal
tube. Similar to the case of a linear antenna, each root, sayz?gp 5
of JU[%Z}::O gives rise to a "distinct mode" of propagation. The
"attenuations" and "velocities" for different modes are different
from each other and would be independent upon each other if the
transmission system is uniform and homogeneous. In fact, each
"distinct mode" propagates down the tube guide as if it exists alone.
We shall, therefore, limit the discussion to the characteristics of
one mode. As pointed out before’for satisfactory operation only
one mode could be allowed.

(1) Attenuation Constant.

With loss in the dielectric air medium negligible, attenuation
in the system is completely due to the finite conductivity of the
metal sheath. We have, in fact, 65 — o0 but J3 3¢ oo . This
can be taken into account by the same scheme developed in Section IV.

Consider, say, the)buﬂ mode, its phase constant is computed from:

2
o = BT — g

N RN /2 7

25
where ﬁ = —?;Td_—' may be called the "cut-off" frequency of

the "Jp4. mode". Its attennation constant of. can then be found by
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setting up the field expressions in the second medium and obtaining
therefrom the "corrected rootsﬁ/ ", Thus the 2 -component of the
Poynting vector represents the useful part of energy transmitted

and the A -component of the same stands for the loss in the metal

sheath. We have then:

(7:27) /\7; =5‘7—r-ﬁ’e[:g’;7} = % ﬁe[Ey//‘/m*]

4

2 2w «, 7 2 =
=57 R gt ) k) Zm"}—%ﬁ/ /

-8 %) [T (2 8% )]
—87;,‘:/1,10 (Zragd Fr[—ﬁ_ﬂll‘]:};'z;{:jy - )]

Integrating over the bases at _-f-;/. the time averaged value for

energy propagetion becomes:

2. a
— 2
>

.08 = AT - - % ’J/'é"é" /l"1¢4 A
(7°8) W, = 2 [ e i (ﬂggj;—p[_%/%ﬁ)/ /prg_ﬂlm

(-4

= & oY 4L [T )]
4_———(5;”@ e e 1}/;3] 77

for the )ff;{—mode. The total energy propagated is simply & super-

position of those for all "modes".

(7.09) W:i’p\?:j 741";'Jc2[$(7:éj’) )//C/VM(7¢) g
s B Bl eal T

where (7.04) holds for »= s .

The corresponding A-component of the complex Poynting vector is:
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c710) Mo = g RLEXE ], ==/ ] En 4]
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This is zero if /7, is the root of J,'[/) = © , which results from

the assumption that 4;, —2 o z 03 —oc . In order to find the

n"corrected root ;‘/”" for 6 large but not infinite, we formulate

the series expressions for the field components for the second
medium, which is assumed electrically thick. Referringz to (5.07),

we obtain:

Iy -¢ )yt
T = ) s

(1)
- C A ') 3 Z 12 "[‘”/ 'f)'wf]
Has = fe 7%__}0:[  HolhJgias ) 4 T, (”f";"‘”j‘ . }

Hpz = He {—————w}\; H ;ﬁ}{”m) ""/41\7;( A@Z]z“;&b{/{) —(ﬂ‘]f

Here only the term for the ;f-ﬁ(.mode is written. Awill be taken
identically egual to zero, ,4;;-'0 , for the high fregquencies
involved.

The boundary condition at A -2 requires the continuity of the

tangential components of the electric and magnetic field. This gives:

;o HGGTT) = 3L (2mbdle) HIGM GBI

(7./2) 3 T )

l ¢ fiAr //" 2 =_=C ZWJ/ "’_‘ <1/ 97 Py -
SANCRR)= =l L
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where 7,,/ and /{; with primes are the "corrected values" taking into

account the effect}of the finite conductivity of the metal sheath:

(113 . M, = —zmbgl BAGITELITE)
a4 LK) # )

= g 25 K h)
e =

The transcendental eguation to be solved for the "corrected roots"

/’/, is then:

(718) () = —Lge M G/TTR)
/ a,am HU{AR\) -.7‘(70-)

Substituting _],'(;;) from above into Equation (7.10), since 71,1’

is very nearly equal to f)— , we have:

(745) No=2% ,/?[f/lw(

Ge )i
VAL < 476'

—C //z j/j,

= TS ) ) (1) 77
45;//,(0’@/5’ [ NZZR /]

To obtain the loss in medium 2 per unit length along the axis, we

integrate the above equation over a cylindrical surface at 2= a

of unit length:
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zm
(716) j%;_i/C&;;4,9¢== ::¢ifchﬁféif$f /EKQ}QZjﬂﬂ%igJJG(g%3y72
g 2€ M wB, A% o g, L g

The attenuation constant per unit length of the metal sheath for the

7%, mode is then:

(717). ol = "___zl" . cﬂ:p&i

2
g £/ i

a Moz ;;;E7j;;r_-:

For a uniform and homogeneous system of transmission, the atten-
uation constants for the different "distinct modes" of propagation
are different from and independent of each other. Formula (7.17),
thus obtained in a formal manner, is of great importance in the dis-
cussion of propagation phenomenon especially for long distances.

The attenuation for a current loop antenna (7.17) follows a different
law as compared with that for a linear antenna (4.27). It is infinite
at the cut-off fregquency 2{2}5, and is monotonically decreasing as

the frequency increases.

As pointed out before, for practical satisfactory operation
without interference or distortion, probably only "one mode" of
propagation can be utilized. Taking the example of a metal tube
with an inner radius of 10 cms., the first and the second cut-off

frequencies are:
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/o
10
4 = AT = s8z k00

/6
(4
and 7! = _;ZLflf_L. = ;ﬂjx_IVJ'y qralksnpef SecC,

8 i -

7

qycA&:/um’.iut_

respectively. The frecuency band available is thus:

A%-xr %—% = S 52 !/or cjc/es,xr.mc.

For 7‘;74, , the variation of attenuation ig fairly slow
except at the first cut-off value‘?gigy. Because the freguency
must be kept belowuf{_for single (first) "mode" operation, the
monotonically decreasing character of the attenuation constant
6¥) is not so fascinating as it might appear at first glance. The
slightly lower attenuation of (7.17) compared with (4.2%) for the
available range is, however, an advantage for long distance trans-
mission.

(2) Phase Constant, Phase Velocity, and Group Velocity.

The phase constant is computed from (7.66). The phase velocity

and group velocity for the “yﬁ{mode" are given as:

(77.18) 2oy = —‘f—i - Ze
=y 1%

and  (7./9) 2os w LV 24/~ %;‘
,{ %;; ()

respectively. The cut-off frequency is calculated by means of

Equation (7.06)a.
There are as many distinct phase constants as there are

"distinct modes" of propagation.
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(3) Frequency Spectrum.

The discussion in Section IV. can be used here word for word.

(4) Phase Displacement and Energy Propagation.

Slightly modified development from that given in Section IV.
can be spplied here.

(5) Characteristic Impedance and Radiation Resistance.

These will not be discussed here, since the definition is
artificial and its physical significance not evident.

(6) Field Structure.

It is completely described by the Equations (7.05) for the
field components. The spatial wave length in the air medium inside

the tube guide is:

(1.20) f. =27 _ __Ze
o /g)’ - 2

z7
where 2/, =%//, and /,. » the cut-off frequency. The electric

lines form concentric circles. The differential equation for the

maznetic lines% , for the /ﬁ/,mode, is:

45
(7.21) —? a7

i Fel2fr) 411 ) - AdodXls-2)-wi]
Ji(Zpr) &1 G«t[/bgv}—fvf]

Integrating gives:

’%[f’ rf@}:/r)/r- —A%foa/—/ly?‘f)awf] +
(722) .. [ ,I(g,-t/,)]cnﬂ,%;;-w;] - 7

7))
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It is, therefore, the same as (4.37).

(?) Terminal Device.

Just opposite to the case discussed in Section IV., a perfect
conducting disc end weakens the resultant potential function when
the loop antenna is placed near to it. Referring to (7.03) and

(8.16), we have, for the resultant potential function:

(7.23) {7 -24> 2mb HQATEL) . 0\ h3 .
i Ty PG 4l 5

which becomes zero when {=¢ . The first unimportant term in (7.03)
is neglected here. It is therefore desirable to adjust the distance,

; , of the loop before the end plate so that:
X5 =fos < SZIL[r T = eninE:
L B, 2 o )

then we have /é,n,),; = AT

(8) Stability Problem.

Remarks in Section IV. hdd true here with slight modifications
and with the interchange of the roles of the electric and the
magnetic fields. But the effect of disturbance due to any non-
homogeneity of the transmission system is slightly greater for the
present case of a loop antenna than that for the case of a linear

antenna.
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SECTION VIII.

Propagation over Plane Earth Surface

Only & brief formulation by means of the standard procedure
developed above will be attempted. This problem has been subject
to close theoretical study and experimental investigation by a
great number of scientists during the past two decades. The
pioneer work of Sommerfeld was followed by Poincare, Nicholson,
Watson, Epstein, Reyrich, Van der Pol, and many others. The com-
plete references can be found in the various papers by these
authors.

Here two cases will be considered: an electric dipole

(vertical antenna) and a magnetic dipole (current loop).

Part (A) Electric Dipole Placed at ( £, %2, /%) Above an Infinite

Plane Earth Surface (73=ol.

From (2.13), we obtain the expressions for the primary general

magnetic vector potential (or Hertzian function) at any point °

(fa/k_??;fOTZ?'{g , we have:

g; —z&M(r‘jg) ﬁ)ﬁ'&(ﬂ, T—i/“ )H‘”(,ﬂ@v 7—:’./‘ /l//\ %/ p—

=~a0

(8.01) Uy = —

T ad ‘7”(.?" ) °p. » .
$ O " /xf"‘? {ifnézogzgz )H;/ CJRENDA] % /2572
M=—ad

—ao
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for3<5 , we have:

od
Jor AmPE)[ _ixgs-
IZL ” /;’ /)‘9 %mgﬁ};)/f:’/(mﬁm—b)/,‘ %4{/},,
(Jadfjd, le-: il

—00

Mz -0

,zblzo:o’éc?ﬂ(fﬂ‘)/e"/(:)g'}?j)’"(/b Q?E—Az)//:/@ Z'_—%!{/I % 2>

We shall denote air medium (j; o) by 1 and the earth medium by 2.
For the general case of plane earth of finite conductivity, the
disturbance due to its presence can be taken into account by the

following expressions: (consider2>.2. only) forj>j 3

(62) UL -£5 " f‘f [AG0: e o (T BT

Wiz =00
—cd

for 0<;<5

893) 28,502 S R TI A

M=cs

and for ;-c (7]

a
L y
8.04) U,==S S 7B D0 ~A o/
(£08) U=z 5 8™ o051 0™V I, o BT 2 0T
—_ag

The boundary conditions at/ ~og require that the tangentiasl com-
ponents of the magnetic and electric field intensities must be

equal for the two mediums; i.e.:



(8-0%)
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(a) Hy/ = Hyp.: (v) Hu = Haiz
(¢) Ear = Enz (a) Ey, = Ey’z

On referring to (2.06), we have:

€, ! [0 “AS . FO) T, (o €N GE)= £ 7 ‘*5 Fé]/ (b )H7 28,
® [ e GOV T o€ M) (06) = i fe +50) [ (e E)HL (15, )
(©) G e e p QL %)= B L™ 500, crtp? a6

(L LN B ) H 06) = [ F O o)

Since it is impossible to solve for two unknowns from the four
simultaneous equations, we conclude that the assumption of /_9/'=0
is not legitimate due to the existence of eddy current in the earth
medium.

However, if we assume the limiting condition of a perfect con-
ducting earth, then the boundary conditions for the vanishing of the
tangential components of electric intensity at;_—_-g give rise to a

single relation for any A :
[—44/‘; + AN ]

or 50) = &*AS

Substituting this into (8.02) and (8.03), we have; for N>, ¢

(802) T Z J”"ff A}[AJ -&J]I {AW//{/{&F)A

Fr 7>
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Following the same method used in (III.), we can obtain the
expressions for a linear antenna with arbitrary current distribu-
tion along it. Although this constitutes merely a formal integra-
tion using (8.02)a, (8.03)a, as the Green's functions, yet the
practical evaluation is rather prohibitive.

For the simple case with the dipole situated at (¢, 0,.0),

(8.02)a and (8.03)a become:

(8.06) 1L =,é/,¢“")cu.\;/7’f'l(ﬁﬂ,‘il\*)'ll f»f 3>

(807) W, =4 ef’ucwl/ H:”(A.J,?,z_)*)ﬂe\ %’ FE

—ad

Further, if ¥ =o , with dipole at origin, (8.06) and (8.07)

reduce into a single expression:

(638) U= ,ﬁ""‘] H B =)y =24 el W (e JBEF )X
oo 0

Comparing with (2.11), we see that this simply means doubling
of the field everywhere due to the presence of the perfect conducting
earth.

From the exponential forms of (8.02)a, (8.03)a, (8.06) and (8.07),
the disturbance of the earth simply constitutes an image radiating

dipole situated at same distance below the earth surface.



(8/3)

The characteristic properties of propagation over plane earth
surface of finite conductivity can be taken into account for the
symmetrical case with dipole at (¢,0,0) . For this purpose, we
must transform the original source function for a dipole with
respect to the argument of integration so as to facilitate satisfy-

ing the boundary conditions.
ﬂz’e / e ¢ - >
(8oA) g, = £ g//*g ACEBDY
. - X 42 H(‘z)/ﬁ) --M’iﬂ,‘(;‘!)
- z_f., Iper 2 La s
417 nols f g o HERGE g
Z 7 < <5
[ P Hitens Sk

With the help of the above formula, we can now formulate the

expressions taking account of the presence of the earth.

g ey g
(8 ,/0) _Z_I',f H:I}@A),L A“ l; —A-%T J-F';(A)]Jk };;
Ry

2= =
(8./) ZI_-[, /_/5'/(,,»;4 (“37;[_—15;\;@§+5[Q]A o<z <¢

gt PR -Atk:e

The boundary conditions at;.—.—a require,

/

ALy
(a) Her= Hep 2 or /Zl'-, % = 1 22

7/ 2 Vi 2
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From (8.11) and (8.12) we have then:

e ¥ -
@ LA p)] - 4 [AT TR

(o) ____J?;f_gf[o 4 Fz(x\)].—:%; [ o+ Fz'/))\/

Since differentiation of the primary function uagainst/ is zero; i.e.:

72[ ’{R] /Z ¢,{g .

Solving (a) and (b) for Q) and /S (A) , we obtain:

(J/4) /—’[))-_ )z‘( /I )z z.ej—z'!// E e"ﬂz;
PR e
AO) = ABE [ /PR, g e PH S
oAA4: i T i, R AR

Substituting these into (8.10), (8.11)

(8- 14)e

, and (8.12), one gets the

complete solutions, whose integrations are, however, complicated by
the presence of branch points at \:1"){; and ] =4 74 &

If in the above discussed case ;.—:a for a dipole at origin,

(8.14) and (8.14)a reduce to:

2
8./ V7149, =_££_ AT — e XA
8-/%) / //Iﬁ Z: /‘7{’;@_/4’{2;/47_2-’;

E8-/5)a B = /g e, m—_//“/—zz
C Y Yy I >

This corresponds to the case discussed by Sommerfeld.*

* T.oc. eclt.
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Before concluding, it might be of use to mention that from
(8.02)a, (8.03)a, it is possible to derive a quite general
expression for many dipoles arranged in a certain way to obtain

directional effect.
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Part (B) Magnetic Dipole at (§. Ao, ¥o) Above an Infinite Plane

Earth Surface (3=0).
[

The primary functions are given in (5.04) and (5.05) and are
identical to (8.01) and (8.01)a. The secondary disturbance can be
taken into account by exactly the same formulae (8.02), (8.03), and
(8.04). The vanishing of Fyp and £, (refer to (5.07)) at the surface

9=0 of a perfect conducting earth gives rise, however, to:
Vi

L»U’f_ ) = o

Thus:

- 00 o 7] Y3 - 4} 0
SSRGS pos

(8-16) U ={ ™= .
- 00 ,J.'mcf-f) 08, 5 . l
’Eiélo /[&ﬂ(;/l_bb)/}*{)]];(n, QEF_—A‘) ;)(/Lg—f_/‘,M , 0<3<€

The above expressions indicate that neither the transmitter nor
the detector should be located too close to the earth surface, since
the integrands contain factors M)} and /da;/]; , respectively.
Corresponding to each ., there is a "distinct harmonic mode" of
propagation. The resultant field at any point is just a superposition
of all these harmonics. For a current loop of radius A with center

at (g' 0,0) » we obtain immediately:

om /ﬂm WEURTH R ZR)h 2o
(8.17) U=] o

zﬂfﬂ&wp(x—’m)/ﬁ"(tm)/% o< 5
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The integrands are not unique and meromorphous functions of the
arguments of the cylindrical functions. Besides completing the
closed contour by means of a semi-circle above the real axis, we
must draw a branch cut through X =-+4L. . The writer intends at
some later time to make a detailed analysis of wave propagation
over plane and spherical earth surface by the present method for

a physical antenna.
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SECTION IX.

Propagation Characteristics

Of Concentric Transmission Lines

The prime purpose of this section is to obtain a simple,
explicit expression for the propagation constant of a concentric
transmission system so that a clear view of the relative merits
of the concentric system compared with a hollow tube guide can be
grasped. By means of the asymptotic properties of the cylindrical
functions, the desired result can be obtained in a very straight-
forward manner.

Because of the explicit relations of .the current and voltage
between the two conductors, the method of attack follows in a
general sense that used for "conventional transmission line
circuits", but at the same time guided by Maxwell's field equa-
tions, so that we will be aware of the approximations which can be
made without impairing the accuracy desired. The circuit diagram

is shown in Fig. IX-1. The current in the central conductor is

GD : -iy — " I4483 ()
7 7

o 1 V| 1% | 2

® " . g
15544

ry
‘.,‘ . .
i #, 3 ..?;.,‘._v'-—-
I
|
I

Fig. IX-1.
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assumed in the positive j;—direction and the return path is formed
by the outside hollow tube. For the present symmetrical field

configuration, Maxwell equations reduce to:

4 Bl . ure 58 ?E}_ cﬁéz

(9-01) - IHe s "y 2
L 4T g, + £ 280 - A‘Zﬁ E.
E_ B _ _ udte _ s
2y a4 T 2 ?ar = L& Hf’

where %g = g%?) s, ﬁ%,==o 3 %gz;= }{p_, ﬁ$==/¥i:=a

The assumptions to be made in the present analysis can be

summarized as follows:

7’

z ' 2
(a) %ﬁ——-—ﬁ‘”i,wﬂ—“’%‘# g LEL 7o
(0) A= WLy ATOOI o ATOEL r-.£7b

(¢) Outside conductor electrically thick.

These coincide with those used for the hollow tube guide in
Sections II. - IV. and are nearly realized in practice. The case
that o7 is not equal to zero can be taken into account very easily.

Now we shall find the relations between the current —5% , the
voltage L/'. and the field intensities. 68}15 used to represent the
total current within a circular cross-section of radius r, and-%}’
that in the central conductor of radius b. Integrating[4?,around

a circular path at radius r gives:

(9.02) L Hy = 23
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Substituting (9.02) into (9.01) yields, with assumed time factor
_.xjwt

o E - IR 138
(7-04) E, — =2 o'w’;ﬂ /2
o c2 L3 I;}&:

(7.08) dEr  sawd ¢ 2E;
7;— i A 4/; e 247

The voltage difference Vfa_between the two conductors is then simply,

since é-_—.{; remains constant for.£=<a<a

Foa /E,,,h ;zﬁf’/—’/é;f—‘;)fa

or (7-26) 4= "C% Fhn ==Y “Fia

3‘} La s,
where —"'C ZgT 05 ——-,(, d()'é‘l
..’w,b’f 57 -
SR R Al bl = = +*“3;7£T
%

This is immediately the definition of the shunt admittance for the
concentric transmission system. The shunt conductance and the
shunt capacitance per unit length are:

27Ty
&
/[7 5

(9-67) Gz ,mul C=—2——€’——

respectively.

Similarly, by integrating (9.05), we obtain:

* The star signs are used here to indicate the complex conjugate
values of Y and Z. These are necessary because time factor
2-*®% ig used here.
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2 L
& / a,
%L54u=——£2 s by T +/; 2L 4

°T (9.08) 3;{“ Ly é;——- + [5(4) -E @]

Equations (9.06) and (9.08) are formally analogous to the partial

differential equations of the conventional transmission lines.

Now the question is ‘now%

to resort to Maxwell's field Equations (9.01). Referring to

(a)and§ (&) can be evaluated. This has

Equations (4.12), we see that the solutions of the field components

for the different rigions can be written as:

(a) for o= = 6 inside the central conductor
o4 v #
E“} =ﬁe,[ ,e-iw}_&l& - A’I (A‘ JZ‘;'A; )]

(.q‘oq) o :f'
= Re[ 57 5407 dy 1»— T |

Hf Re [ é ,euw" < L;—/‘ ; :273; Ao T (R f,)]

(b) for b<.r<a in the dielectric air medium

E; =26 SN B, LR B M e RER) f]

(70){ E, ﬁe[ pt e, B}l {ﬂﬂ(/iﬁ'— )b K CRET; »)f]

SEX

Hp = fe ie”{"iﬁ C{q 4JM—)*A;*” r)j]

(¢) for @ <a<eo inside outer conductor

_ﬁc[Z_é"b "A’f D,ﬂ"’(di_,)]

Abi il W
1) \ E = /?e[Zf- A }/L“_/?,f/’( )]
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H? = /Te e[ ’=] ""'w}‘/’-"} //;Z{;;__ 1 "pf M(%@Z/

where ,\yj_are the eigenvalues corresponding to different modes of
propagation and are to be determined from the boundary conditions
at 2=-a and /),:é . Integrating /-/7 in (9.09) around a circle at

y/) i ,» we obtain:

27 - ‘ ' 2 4’_'_1_,
[7] = A za)JZ‘, (> *c—i‘,_

This shows that .2;;, muist also be comprised of the same number of
different "modes".
This determines thedr2 . If we substitute the above relstion

in /-‘} , there results:

"/Z)a. b =" 7 W fof TS \75(&152;"‘5 % A
(74 5 g ,,5 c4; T (HEFETL) b

Similar integration of H’p in (9.11) arcund a circle at 2=a_gives:

,,.ut,l P by DHY XL < r T
-/3 = ’J’ c z_ 2 4 r.
(7/)v/p;ﬂ s =Zr 1/, ﬂ)ﬂz_ (h‘z y LJ yzl;_éci

This then determines the J,%. Substituting intoE;; , we have:

(G130 E (@)= > s HTy HMES) 22,
Y=/ C‘{z ,L/{’/(dlzz/] ) ZC

One criticism might be raised here about the deduction of the

Equations (9.12)a, and (9.13)a. On the left-hand sides of (9.12)
_4),,2’
and (9.13), there is the factor .2 assumed for the field com-

ponents; while on the right-hand sides of both, the ;—dependence
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for.éy is still unknown. We shall suppose for the present, that
_%}a.lso has such an exponential factor _ea"/' . Although A is
involved in the expressions for é(aj and %(é) , and can only be
rigorously determined from the boundary conditions at Z=4 and
A =4 ; fortunately for most practical cases the conductivity of
the conductors is so high that the relation (542%;>/Lf>) holds.

Then g[ﬂ} and /5';,’/5) assume the following simple forms:

) Eh = 2Lz L (6A) Sr o -2l
e 3 T R e S i m A

wily (1—+7)
p—a I
7

bc frmwa; th

and

) = ; 2 //(’/(aé} o 2
(7./5) £E4(a) = —2a 02 /7y ~ 2w £
7 acd, WAk BT S aog G

o 4 (1~ £) Pe
46{2706/h

since *:

Lo Jo(b#s)
Gree J (b 4;)

and . H2A)
05 »e6 h’f’?aé} -

from the asymptotic properties of cylindrical functions. Now we

can substitute (9.14) and (9.15) into (9.08) and obtain:

* Jahnke and Emde, "Functional Tables", pp. 264-266.
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(7080 2V [Aﬁwﬂ/ﬁigqﬁ ) wnd=)
2} c? ¢tC,Q,1“5”‘ 5CU&E;2;E. ’

_ ,_[ = (7- g T 2@%‘?,_+_Z,_. /_ )/%'

P 4
=-Z*L,

where the series impedance of the transmission system is defined as:

S e C—A‘_,/;,,——w,* G-z l"[m‘{é ’—'zﬂr/’ s 2/

The series resistance and the series inductance per unit length

are then:
(4.16) R= 22— (2 1)
‘:f4277104§>l/z
and 2 4 /"2 .
= C‘ ; C/zmewas t: (F-z/
respectively.

After the determination of these circuit constants, we can
proceed to solve the propagation characteristics in the manner used
for conventional transmission eircuits. From relations (9.06) and

(9.08)a, we have immediately:

321.;3__ R ;

2
= /A iy Z
and 2 Vba 7 *Y*Vég )ZZ‘

72}”
The solutions of (9.17), for an infinitely long concentric trans-

mission system, are:
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A 4-4"‘} ~ A &H‘,If

I, =
cwa)[ ?
. — >% Az
Via = Bl A, Y — [ 24, 7

whereU«-—-—/Z”Y* and 4, f,;fz are to be determined from the excit-
ing and the receiving conditions. A is the explicit propagation

constant and comprises a real and an imaginary component:
;] -,-,/)' Lot ol
we have then:
{ = B =G — w2 s £

2 (B = RwC + G wls

Solving the above simultaneous equations for « and/ﬁ , we obtain

in general:

=7 [.(wir—ﬁ'ci) #H (L - RG) 7R toctG-l )* j

(7-44)

= £ [~ (RG-wle)~fiReaT) i Cpucigutr®]

The characteristic impedance of the concentric transmission system

is simply:

Now if we use the assumptions (a) and (b) stated at the beginning,

g =o0 G‘:O
then E_,Z%and[ﬁ_’ - W

The attenuation constant and the phase constant become:
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(72200 =[2 8 wd = w/IC
respectively.

Substituting into (9.20) the values obtained before for/~7? , €,

and /. , neglecting the second term in (9.16) forZ. , then we have:

2

_ L ey s L -

(42 <=4 Ve (G 3 7z
and (7.22) f= co Lo -27/'@ approximately.

The phase velocity of propagation is thus essentially equal to

that in free space:

-23) e R L
(7-23 2 Y. =

independent upon the frequency of excitation. Comparing (9.23)
with (4.74) for the Mmode, we see that the concentric system has
a decided advantage over the hollow tube guide which has a phase
velocity varying widely when the frequency is near to the cut-off
value.

When the frequency is very high (,’)7 f,j , however, (9.23)

and (4./5) are practically equal, since:

(q.za) y /—7—2
e =L =B ~ L fu o
(48 75, f ;-) >4
The attenuation constants for the two cases for the same inner

radius, a, of the metal tube have the following ratio:

(%2l

el e T// -($)*
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In general near the cut-off frequency-zg_, the hollow tube guide has

a higher attenuation than the concentric system. When Zfép;ﬁi» :

=

Hw 4 o~ S
}ﬁ£v4~ Oﬂ’ ‘fléy'j?

which varies between 0.6 to 2.0 for the probable range °fj££ from

(7-25)

1.5 to 10. It is expected that the attenuation constant (9.21) for
a concentric system will be increased somewhat due to the insertion
of regular separating insulators used to keep the central conductor
in position. Conseguently in order to keep down this unavoidable
increase of attenuation, it is strongly recommended that only high
quality material should be used for the insulators. If this can
be realized, a concentric transmission system compares favorably
with a hollow tube guide so far as attenuation is concerned.
Besides, a concentric system possesses some decided advantages
for usual transmission purposes cver a hollow guide. They are:
(1) Ease of matching the transmitter and the receiver to the
transmission system.
(2) Nearly hundred per cent efficiency of reception which can
never be realized for a hollow guide.
(2) stability of operation and of field configuration when the
physical construction deviates from the ideal case of a straight
cylindrical system with uniform circular cross-section. (Compare
with the discussion at the end of Section IV.).
Let us, however, not attempt to discredit a hollow tube guide too

much, since the economy of engineering application always plays a
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very important'role and further it might find some other fields

of use due to its specific physical character.

The following is a rather incomplete list of references for this

section:-

(1) S. A. Schekunoff, "The Electromagnetic Theory of Co-axial
Transmission Lines and Cylindrical Shields", Bell System
Tech. Jour., Oct., 1934.

(2) E. Kruse und 0. Zinke, "Currents in Layered Cylindrical Con-
ductors", Hochfrequenztech. u. Elektroskustik, 44, S. 195-203,
Dec., 1934.

(3) H. Kaden, "Television Cables", Arch. f. Elektrat. 30, S. 691-
712, Nov., 1936.

(4) BR. Redus, "Co-axial Cables, Their Employment at H. F. for
Television", Onde Elec. 17, pp. 325-337 July; pp. 399-426,
August, 1938.

(5) J. R. Carson and Gilbert, "Transmission Characteristics of
Submarine Cables", Jour. Franklin Inst., Dec., 1921.

(6) J. R. Carson and Gilbert, "Transmission Characteristics of

Submarine Cables", B. S. T. J., July, 1922.
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