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Abstract of Thesis 

PROPAGATION OF ELECTROMAGNETIC WAVES 

INSIDE A CYLINDRICAL METAL TUBE 

AND .ALONG OTHER TYPES OF GUIDES 

The prime purpose of t his paper is to base the discussion of 

the properties of propa~tion of electromagnetic waves inside a 

metal tube upon the theory of complex functions. The general 

expressions for the field components for different tyPes of excita-

tion systems are obtained in a rigorous manner starting from that 

of an electric and a magnetic dipole. The formal mathematical 

generalization is achieved by means of the transformation formulae 

of cylindrical functions and the results of the theory of integral 

equations. The integral equations thus obtained are expanded into 

series by aid of residual calculus for actual numerical calculation. 

The residues at the poles of singularities give rise to different 

"distinct modes" of propagation and thereby a comprehensive discussion 

of all the important physical properties is made. At the same time, 

problems arising in practical applications, say for long distance 

transmission for television purposes, are analyzed and some interest-

ing conclusions obtained. The unique and rigorous analysis is only 
0~ 

made possible by the free use of the resJ.l ts ~ the theory of 

complex functions. 

A comparison of the properties of propa~tion with regard 

especially to the attenuations and the velocities of prop~tion 



ii 

inside a hollow cylindrical metal tube guide and that of a 

concentric system is made. It is hoped that the conclusions 

obtained therefrom will throw some light on the merits of both 

systems and will point out those things which require careful 

consideration in practical design. 



SECTION I. 

General Mathematical Solution of Wave Equation 

In Cylindrical Coordinates 

In order to bring out the intrinsic characters of cylindrical 

funct i ons in the solution of wave equation, a brief sketch of the 

bailding-up of wave function following the procedure of R. Weyrich* 

will first be described. It leads naturally to a generalization, 

to Sommerfeld's integral expression for all kinds of cylindrical 

functions. A comprehensive grasp of the procedure and results 

therefrom paves the way for attacking a vast number of problems in 

mathematical physics and electrical engineering. 

The fundamental partial differential equation, written in 

cartesian-coordinates, is: 

($. .oJ.) 

where~ is the function to be determined together with certain 

boundary and initial conditions. a and b are in general real con-

stants. The independent variables are the cartesian coordinates x, 

y, and z, and the time t. With different characterizing values 

given to a and b, Equation (1.01) represents a great number of 

different natural phenomena, such as propagation of electromagnetic 

waves, displacement of longitudinal elastic strings, vibration of 

membranes, diffusion of heat, etc .. In virtue of the validity of 

•R. Weyrich, Die Zylinderfunktionen und ihre Anwendungen. 



the application of Fourier series analysis to time variational 

phenomena, we can alwqs put: 

where u(x,/}J is a function only dep endent on position and inde­

pendent of time and tV is the angular frequency. Substituting the 

above relation into Equation (1. 01), we get: 

(..i.o2} =0 

Usually one simply call s relation (1. 02) the 

"wave equation'' and k the "wave number"*. It is to be assumed that 

both the real part JM-- a:nd the imaginary part ~_,;__ of k are positive . 

Equations (1. 01) and (1. 02) can also be written in spherical polar 

coordi nates R , yt', e or cylindrical coordinates ~- y, }' , for which 

the transformat i on formulae are: 

and 

respectively . In these coordi nate systems, the wave equation becomes: 

( .:1..(>3) 

• The corresponding German names are 11 Wellengleichung" and "Wellenzahl". 
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A particular solution of (1. 02) can be obtained by means of the 

cla ssical product substitut i on: 

whereX Y Z are only functions of the arguments in the parentheses, 
' " 

respectively. Substituti ng the above relation into (1. 02) and divid-

ing through by ~ . we have: 

or simply ( /. o,f) 

Because all three terms must be independent of the arguments 

x, y, and z , they must satisfy the followi ng familiar differential 

equations: 

X" - = -c.2~2-x I ) 
) 

whi l e between the three arbitrary constants C1 , c~ , and ~ , the 

following relation hol ds: 

=1 

The integral solutions of the above differenti al equations are: 

X A, .e.-
~·~ c,.c 

8, e 
---<.~ C, X 

= -1-

y - ~ ..e "'-,(01 
-1- it -e- -l ~c.z r-

z - AJ ~ A.,.,( CJ r 
+ 4 e -"'" c~ r 



4. 

withA.r 4 {J,J-:::.J, 2~ 3) as the constants of integration. The product 

XY Z can therefore be expressed as a summation of particular solu-

tions of the following type: 

( / -07) ft - A_(!, A-·-tl (c,x + c~f-f ca ? ) 

On account of the relation (1.06), 0 , t; , and C3 , can be 

thought of as the direction cosines of a space unit vector ( n) 

from the origin. Then: 

is the projection of the vector with coordinates .C , / • J • on the 

line ?t . and one particular solution of (1.01) becomes: 

This is the equation of propagat i on of 11 plane waves" with n as the 

al h f w h ha d L7r t' norm to t e wave- ront, ~ t e p se velocity, an X ne wave-

length if k is real. All points in a plane perpendicular to n are 

"in phase" and constitute a plane "wave front". For detailed dis-

cussion of the type of Equation (1.08) and of the building-up there-

from of a general integral solution, the reader is referred to the 

first original researches of many authors among whom especially may 

be mentioned aommerfeld, Whittaker and Bateman.• 

• Messenger of Mathematics, XXXVI, (1907) pp. 98-106. 
Math. Ann. VII (1902) pp. 342-345. 
Proc. London Math. Soc. (2) I. (1904) pp. 451-458; (2) VII (1909) pp. 20-89. 
Bateman's "Electrical and Optical Wave Motion". 
Whittaker and Watson, "Modern Analysis", Chap. 18. 
Riemann-Weber's "Differentialgleichungen der Phys . 11 
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From Equation (1.06) we can al.so think of c1 , c.z. , a.nd C3 , as 

representing the direction cosines of any point on a unit sphere 

with spherical polar coordinates f-?
1 

and IJ
1 

, then: 

(f. Of) c_; = Ct>s 0" 

Due to the linearity and homogeneity of the wave Equation (1.01) 

of /t and its derivatives, any linear combination of solutions 

like (1.08) is also a solution of (1. 01). 

1?e { u J = 1?e [A, u, -+A u~ J. - -- - . . . - - + .4, ll, J 

The corresponding solution for (1.02) is: 

where _A-," 4,- -·A, are the arbitrary coefficients . 

Similarly, in the limit, ~ can be represented by a definite 

integral for which we can multiply the right side of (1 .07) by an 

arbitrary function of c; , ('~ , and ~ , and then integrate between 

any chosen limits so far as the resulta nt integral exists and 

differentiation under integral sign is allowable. On account of 

r elation (1.09), c; , C..a. , and C'3 , are expressed in terms of ¥'' and 

e" and the definite integral takes the form: 

(1.Jo) 
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where ..12.. is the angle included between the U.'li t vector '1"Z ( L !/': &-) 

and the line drawn from the origin to the field point ( x , / ' }) or 

(A-, y , (f)) • 

One very interesting and, at the same time, very significant 

generalization of the above expression can be realized: although 

f 1 and e' are described as the azimuthal and zenithal angles for any 

point on a unit sphere, we can consider <t' and B" as complex quanti-

ties within the limited r ange 

0 ~ lf..e. £ 6 1
) <:: "7(;" in their complex planes. The latter 

restrictions assure the "uniqueness" of the integrand of (1.10) and 

therefore the wave function "'U. That this powerful, ingenious 

generalization is always allowable can be easily shown by putting 

complex quantities for f' and 6 1 and substituting (1.09) into (1.06). 

Now in (1.10), we set F()P~ tY) =J',', S 1 
, then .r,;,~<::l&'clf?'=d..J' = 

elementary area on the unit circle and (1.10) becomes: 

For simplicity, we can assume the auxiliary polar-axis passing 

through the field point (X'/' J) or (-'1-, d, f') , then 1-== /iCo.T(;1' • 

If the integration is extended over the whole surface of the unit 

sphere, we obtain the effect due to a uniform spherical source: 

(i.Ji) 

= 
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and 

This represents a "standing spherical wave", obtained from above 

particular superposition of "plane waves" , if k is real. For 

complex k, merely a damping factor is introduced. 

/ 
If, however, we choose a path of integration in the & -plane, 

as sho~ in Fig. 1.1, (1.10)~ becomes: 

(..L .t.. 3) i ~l?~e ' 
M = -.zr .L /(0x1s) 

.:;1. 

and, therefore, we obtain: 

0 

Fig. 1.1. 

This alwqs represents a " divergent progressive spherical wave"* 

• A. Sommerfeld, (Riemann-Weber) "Differentialgleichu.ngen der Phys." p. 397. 
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where k may be real or complex. Such a spherical wave function 

has a singularity at the "single pole" at the origin. "Multiple-

pole11 spherical wave functi ons may be obtained by differentiations 

of (1.11) and (1.13). 

In the above paragraphs, starting from plane waves, we 

succeeded in building up divergent symmetrical spherical waves 

which, from Equation (1.13) on neglecting the unimportant multiply-

_..'-;{ R 
ing factor, can be simply represented as ~ = --!.___ Due to 

R 
the validity of the superposition principle, the field at any point 

in space due to a continuous and uniform distribution of sources 

along the polar-axis can be represented by the following definite 

wherein ~/'J and A,/'" J are the cartesian and cylindrical coordin­

ates, respectively, for the field point and o/ o/;C is the correspond­

ing coordinates for the source point. Substituting J for !J- t ) as 

the new variable, the above expression becomes: 

.f-e'(J -f..o 

(1./5} _LL (.Lj -j.ut[dl.-.7tq 4 =~ lu;[d.;_,_ ._,.:; « 
/,A ';t t ,. J- r-4 z.;. f 2. 

-~ 0 

This represents, therefore, a divergent "symmetrical cylindrical 

wave function" with axis a.:::o as the "line of singularity". The 
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convergence of the above improper integral is always satisfied for 

real or complex k when the positive sign of the square root is used, 

since the imaginary part of k is always taken to be positive. By 

means of the following substitution: 

Equat i on (1.15) reduces to a simpler form: 
-~oo 

fl N =-<.I .e-0!--v c,.,o<.. La<-
+,(, oO 

The Hankel cylindrical function of the first kind with degree zero 

is then defined as: • 

This is immediately a particular form of Sommerfeld's fundamental 

and important integral expression for cylindrical functions. f 

The corresponding "convergent cylindrical wave" funct i on, by 

the same substitution and simplification is then: 

• Erste Rankelsche Zylinderfunkti on mit dem Index Null. 
I n r A. Sommerfeld, "Uber komplene Integraldarstillingen der 

Zylinderfunktionen", Arch. d. Math. undPhys. 18, i, 1911. 
G. N. Watson, "A. Treatise of Bessel Functions", ed. 1927. 
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and the corresponding Hankel cylindrical function of the second 

kind with degree zero is defined as: 

(/.17) 

( z ) 

H 0 '?£t,j has, therefore, the same path of integration in o< -plane 

t'IJ/~ with II~ l4-A.) In order to obtain the same "integrand" for both 

11?(-b.-) and !/
0
1tJ1:tz-), we make the following substitution for 11/'~a_) 

then 117)~) becomes: 
-7r-l-.._; OD 

( 118) 1-1/''f,t,_) = :-; .. d,.,.., "'L-~ 

Except for an unimportant multiplying constant, H~~ and H~z)~) 

represent divergent and convergent symmetrical cylindrical wave-

functions with 11 source" and "sink" on the axis, respectively. From 

their definition Equations (1.16) and (1.17). H~1(b) and fi~3J(f-t) 

are complex conjugate to each other. These intrinsic close rela-

tions of Hankel functions with the cylindrical wave propagation 

cannot fail to give one an insight to that beautiful branch of 

knowledge - mathematical physics. Just as "double-pole" and 

"multiple-pole" spherical wave functions can be obtained by differ-

entiating the "point source11 function (1.13), so "double-axis" and 

"multiple-axis" cylindrical wave functions can be reached by 

differentiating the symmetrical "axis-source" function H r-Jr£A) 
[ /" ,.. I, 2} along any direction .-1-- in the following w~. Let: 



.1) ~ ~ +A. . ..2-.. 
-?... -?1 

11 . 

be the complex operator, and: 

.lJ ?(, = 

then the 11 double-axis 11 or 11bi-axis" unsymmetrical cylindrical wave 

function becomes: 

(/.If) ~ f1 ~1f'J~) = .J?D- -fA-:..2_)_!_ / --<-.-'/I/ en~ A 
J_/ 0 ( 

1 c 174 A-~ 7i J R., t£-~ 

~ 

~ (-.,/) .£ -vJ _!_! -<-~~o( A-'{«-?) 
r .e .e.- L «-

~ 
( _,)-l=f, ~) ~ represents sui table path of integration.) 

and similarly the "21!- multiple axis" unsymmetrical cylindrical wave 

function becomes: 

(/·2 0} .7)~1/t/"J{.J~) == {- ~) ~~·.,.,f _f: / -<-'-/4an.oz A-'?t(o/-.2:) _~ 
c 7T j .-£ ,e. ~ .£-o( 

~ 
( ,/"' == f., ~ ) { -;;'!.. = d / ../., ~-" -- - .. _) 

Presupposing the convergence of these integrals and the feasi-

bi1ity of differentiating under the integral signs, it can easily be 

shown that (1.19) and (1.20) do satisfy the "wave equation" (1 . 04) 

with the function ft independent of J . 
The general Hankel function of either the first or the second 

kind of degree '?f./ with argument A is then defined as: 
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This is the Somerfeld integral expression for cylindrical functions. 

The generalization of (1. 21) for '?1.1 to be a complex quantity (say ,V- ) 

is immediate, as can easily be shown also by a direct substitution 

in the following way: 

j._~·4 a-o~ l {ol) J.,. 

~ 
This, however, is not required in the present paper. Before giving 

the corresponding expressions for Bessel- and Newmannr functions from 

(1.21), its convergence with respect to the different paths of 

integration (ex:: ; /J = 1. 2. ) will be carefully considered. It 

lays the foundation for discussion of certain problems of vital 

importance in the present paper. 

By means of Caacby's theorem on the integral of a function round 

a closed contour'::£) , if /ft) is a function of ..J , analytic at all 

points inside a.nd on the contour (,{) , then the following equation 

always holds.* 

• E. T. Whi tta.ker and G. N. Watson, "A Course of Modern Analysis", 
Chap. V. 
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j ( ctJI5 = o 
~ 

We can swing the paths given in Equations (1.17), (1.18), and 

(1. 2l)a in such a w~ so that the function or integrand is analytic 

throughout the region enclosed between the old and the new paths of 

integration. The criterion for the convergence of the integral 

requires that the integrand must vanish identically at the lower 

and upper limits at infinity; this at the same time assures the 

closing of the old and the new paths of integration. These 

characters are similar to that required for the validity of Fourier 

integral transformation and its application for asymptotic expansion 

of functions.* We shall now find these new paths L 
'/"' 

for all ~ , real or complex, satisfying the above 

requi rem en t. 

It can be shown that, for the Hankel functions of the first and 

the second kind, the paths of integration can be deformed in such a 

way so that we have: 
7-''l(j 

H <,:J (ji = ; J.e kj ~oL e-'"' r«- Y J L«-0 ·22) 

and 
-{""':~ 

.2T-r-~- . · 4;) 

(1-2 J) If~"' t;J = .:,: I ~ "'J Cbc.o<--< ... .,.(«--: J L «. J 

1--'tltl 
wherein, if r is any complex quantity with phase angle f or 

• For complete mathematical treatment, the following paper is , 
recommended: A. Haar, 11Uber asymptotische Entwicklungen von 
Funktionen", Math. Ann. vol. 96 (1926) pp. 69-107. 
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, the following relation must always be observed 

for the convergence of the integral; i.e.: 

(f. 24) 0 ..::::: {{-1-!/) ...:::.. ---rr 

or -y "/ (~-jP) ...::= < 

or -'7_ < y -< ( ,__ 7) 

If; ==k is real, then (1. 24) reduces to: 

(/25) < 7< ,....,-

cl-1'/k£-
., 

Fig. 1.2 

In Fig. 1. 2, f/1 and % represent the old paths of integra­

tion for Hankel functions of the first and the second kinds, while 

~ and~ the corresponding deformed ones. The shaded regions 

are the limits within whicheL; and 4 can swing at will; i.e., 

o < { <,.- for real J . The points o< = 6 and ot=< r are fixed for 

L, and ~ , respectively. 
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In case of complex J:: /JI..e.~'.f' , the region of swing is changed 

but the range remains the same. 

Then the Sommerfeld definition of Bessel function,with arbitrary 

complex argument, becomes: 

(/26) 

1
../'J..~« ~·n(ot-T~ 

=- ..€. t? ..£- ;a. .J 
2. 7T (A 

~~ 
and that for Neumann function: 

( 1·2'1) 

From the above definitions (1.26) and (1.27), we see that Jn IJ-) , 

also called Bessel function of the first kind, and 'Y, t }J = N, fJ} 

also called Bessel function of the second kind, are real quantities 

forming in fact the real and the imaginary parts of Hankel's func-

tiona, respectively; i.e.: 

H C:..' (1.) -r ( ) \./ ) ,. 17 - .tn J -+ ~ l;,fJ j ( £or real J' ) (1.;;.8) 

With observance of the relation (1. 24), a great number of trans-

formation formulae can be obtained from (1.22), (1.23), (1.26), and 

(1. 27). • 

• For excellent treatment of these transformations, the reader is 
referred to two books: G. N. Watson, "A Treatise on Bessel Functions". 

a. Weyrich: loc. cit . 
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It should be noticed here that the Hankel and Neumann functions 

have a singularity at-;?= o , but the Bessel function is regular at 

) ::=: o • This important property serves as a guide for choosing 

suitable cylindrical functions for the problem at hand. It can be 

shown easily that for integral-degree ~ . the Bessel function 

Jn (') is a unique and entire function of l and is usually 

defined with /.::.; (Fig. 1.2) according to Bessel. This relation 

(1.24) immediately specifies: 

/ 

or g.- must lie in positive-real half plane. The Hankel functions 

with integral-degree, however, are not entire functions of 1 , for 

which we have eventually: 

( 1-2.9} 

These relations •ill be used in later discussions of the wave 

potential functions from the point of view of theory of complex 

functions . 

With the help of the above discussions, we can now try to find 

a general expression for the solution of the wave Equation (1.04) 
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in cylindrical coordinates. By means of the classical product 

substitution, 

in (l. 04) and dividing through by U:. , we have: 

On rearranging, there results: 

where )LJ is an arbitrary constant, real or complex, independent of 

the variables -( y and J . Therefore, (1. 31) reduces to the follow­

ing two equations: 

.2 

where JT, being independent of ..1.- and J' (also;--), may be any arbitrary 

quantity, real or complex. The second relation again reduces to: 

( 1-J 3) 

and 

(131) 

The general integrals for the differential equations (1.32), (1.33), 

and (1.34) are then: 
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z A,e 
A,. A)' 

1- fi.2 
--<->-;r 

- e 

{ 
. 

( I ·JJ) ~ = 8 .,l.ff!/' + B.z. 
-~Vy:' 

I .€- .P-

R 
(') rl-} 

- c; R .,.r (A-.(,.1~ A~) ..;- c:.z If .v- (4-n! )._ L J 
(1) r~J 

where If Jr and If v- are any t wo sui table cylindrical functions 

defined in (1.22) , (1.23), (1.26) , and (1.27) . Due to the proper-

ties of linearity and homogeneity of t he wave function , a seri es 

summation of the products of these functions is also a soluti on of 

( 1. 04) ; i. e. : 

1't 

(/.:J£) AL = z ({Jm (.L -4')..J + 4nt ~-~).;)(~~v~ 4, e.4·vy) ( /i';'~ C'" /f'::1 ) 

Jn:1 

where Q, , 4, , 4 , C:, , being independent of t h e variables A. , J' , 

and } , m~ be arbitrary functions of ~ and v . Consequently in 

the limit for n~ oo , assuming differentiation under integral sign 

permissible, we have the following definite integral form: 

( A 'A.J ~pjP {, Cl} ~} - l 7 
{/·37) ,~.{ =.;_/::t&fv-.e __e L/j(,f_,;-}~{4-/;f~A.._).;/;_(~,1/f;,~./-'~A.aJ; 

~ 
where /{(.:{,,-) and ~ (A../y) are arbitrary functions of -::L and v and 

L can be any chosen four-dimensional region of the complex planes 

of;t and ;/. Equati on (1.37) is then the most general integral 

solution of the wave Equation (1.04). In practical cases, there 

alw~s exist some symmetrical relations and simplifications which 

will probably bring Equation (1.37) into a manageable form for 

determination of the characteri sties of the phenomena. Alth ough 
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some authors* had tried with certain successes in finding the proper-

ties of propagation of electro-magnetic waves under certain boundary 

conditions starting from Maxwell's field equations without referring to 

• (1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Lord Rayleigh: "On the Passage of Electric Waves through 
Tubes or the Vibration of Dielectric Cylinders", Phil, Mag. 
Vol. 43, (1897), pp. 125-132. 

A. Sommerfeld, 11 Uber die Fortpflangung elektromagnetischer 
Wellen langs eines Dr~tes", Ann. der Phys. Bd. 67, (1899). 

" 
Hondros und Debye, "Elektromagnetische Wellen an dielek­
trischen Dr8hten11 , Ann. der Phys., Bd. 32, (1910), S. 405-476. 

Zahn, 11Uber den Nach-weis elektromagnetischer Wellen an 
dielektrischen Dr&hten", Ann. der Pbys . , Bd. 49, (1916), 
s. 907-933. 

Shriever, "E1ektromagnetischen Wellen an dielektrischen 
Dr8hten 11 , Ann. der Pbys., Bd. 63, (1920) S. 645-673. 

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, 11iiyper­
frequency Wave Guides - Mathematical Theory", 
G. C. Southworth, "Hyper-frequency Wave Guides - General 
Considerations and Experimental Resul ts 11 , Bell System Tech. 
Journal, APril, (1936). 

W. L. Barrow, "Transmission of Electromagnetic Waves in 
Hollow Metal Tubes 11 , Proc. I. R. E. , Vol. 24, No . 10, Oct. 
(1936). 

L. Brillouin, "Propagation d' ondes Electromagnetiques dans 
un Tuyan", Revue Generale d 1Electricite, Vol. 22, .Aug. (1936), 
pp. 227-239. 
L. Brillouin, "Theoretical Study of Dielectric Cables", 
Electrical Communication, Vol . 16, APril (1938), pp. 35Q-372. 

Lan-Jen Chu, "Electromagnetic Waves in Elliptic Hollow Pipes 
of Metal", Journal of Applied Phys., Vol. 9, No. 9, Sep t. 
(1938). 
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any exciting system; an attack of some simple excit i ng system will 

bring to light certain specific characteristics from the point of 

view of physical reality in a much more rigid analytical way, and 

this is the aim of the present paper. The method is not new. R. 

Weyrich* trea~ed in a formal mathematical way the cases of an 

electric dipole, a linear antenna and a magnetic dipole placed 

along the axis of symmetry in a conducting metal tube. Some admir-

able experimental check of Weyrich 1 s theoretical work had been 

conducted by L. :Berg}Ilann and L. K:rugelf. A very comprehensive 

formal discussion of all the physical properties, which is lacking 

in the above-mentioned papers, forms one purpose of this paper. 

The second purpose is to use the addition theorems in cylindrical 

functions to achieve an analytic mathematical formulation for 

certain practical exciting systems; Weyrich's results thus become 

special cases of some of the more general formulae derived here and 

serve at the same time as a check. The third purpose of the present 

9aper is to use the standard method developed with regard to the 

manipulations of the cylindrical functions to the analyses of wave 

propagation over a plane earth and along concentric transmission lines; 

some new and interesting phenomena are believed to have been brought 

out in a rigorous manner. 

* R. Weyrich, 11 Uoer einige Randwertprobleme insbesondere der Elektro­
dynamikll, Jour. r\ir reine und angewandte Ma th. 1 :Bd. 1721 (1934) 
s. 133-150. 

f L. :Bergmann und L. Krllgel 1 
11Messungen 1m Strablungsfeld einer in 

}tnern eines metallischen Hohlzylinders erntgten Linear .Antenne11 
I 

Ann. der. Pbys. :Bd. 21 1 (1934). 
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SIDTION II. 

An Electric Dipole (or an Elementary Current Element) 

Inside an Infinite Cylindrical 

Hollow Metal Tube - Integral Solutions 

The idea of an electric dipole and that of an infinitesimally 

small current element can be used alternately for the same phenomenon. 

The latter leads naturally in its generalization to a linear physical 

antenna with any possible current distribut ~on along it. In order 

to describe the field components due to such an exciter in a simple 

but unique way, we shall introduce here the "general magnetic vector 

potential"~. whose curl gives the magnetic induction. Before 

going to the mathanatical formulation, a list of t h e notations to 

be used in the following analysis will be tabulated: (Ge.ussian 

Units are used here.) 

= Vector magnetic field intensity with components~, 

H,_. andf/y• in e.m.u. (Gaussian units ) . 

= Vector electric field intensity with components~ , 

7 
E~, andEJ'' in e.s.u. (Gaussian units.) 

= Dielectric constant, dimensionless in Gaussian unit 

used throughout. 

~ = Permeability of medium. 

u = Conductivity of medium. 

C = Velocity of light in vacuum space, equals approx. to 

3 X lolo I em. sec. 
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U = General magnetic vector potential with components~. 

4.,i.-~ , and-a')'. (Relation of definition being/!f- =VXZ{ ) 

ulft, = General electric vector potential with components uti. 
JL

771
;z. • and ,U"' y . (Relation of definition being 

&G = v..ru"' ). 
= Poynting vector with components~ , /~ • and ~ . 

' I = Vector conduction current with components/; , /-t-- • 
I 

and /,1' . 

:t • -1.. • .f = Cylindrical coordinates of field point. 

) .A;,. f?, = Cylindrical coordinates of source. 

a = Inner radius of the cylindrical hollow metal tube in em. 

f = Charge density. 

The general Maxwell field equations, in Gaussian units, are: 

(2.oi ) 

) 

The general magnetic vector potential U , called by some authors 

the Her tzian function, is defined as: 

(_?.o.?) 

The following analysis is based upon an electric dipole or an 

infinitesimally short current element placed at any position inside 
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an infinite cylindrical metal tube with axis of the dipole or the 

current element parallel to that of the tube. The primary potential 

function z.{ has then only a ) -component ~ • From Equ.ation (1.13), 

we have, on suppressing the time factor~ -~eui" : 

(~ .o3) Z7 = ~" = 

where the subscript J is replaced by 0 , to signify a primary 

source function. 

Since the characteristic constants £ '/ , and er- , are discon­

tinuous at A,::a..., we shall call the dielectric air medium ( A.-<a... ) 

as medium 1; and the conducting metallic medium ( -1. >a. ) as medium 2. 

Although any practical hollow metal tube bas a finite thickness, we 

shall consider, however, the outer radius of this tube extending to 

infinity. T"his is justified on account of the fact that the electro-

magnetic waves at very high frequencies (as is necessary here) can 

rarely penetrate a fractional part of one centimeter of the metal 

sheath. • 

The field components due to a dipole placed at ( 5' ... A-a ., Yo) 

inside the cylindrical tube are: 

H; = o / t = ~ / E..-1- / Ey 

To get formal relations between these components, we expand the 

vector Uaxwell field Equations (2.01): 

• Abraham and Becker, "Electricity and Magnetism" , p. 190. 
Smythe, 11Static and Dynamic Electricity", pp. 452-453. 
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. __!. r _2 r~~ ) - 'JI-h} - 4rr- E + c ? £; 
,1/ 9' /L "'.! '7 Y' - -c- ""cJ c 'Jf 

- ?lift' 
~ E~ + _g_ ;:}' E-"1-= oJ c c ;?;:t: 

?ll,z, 
= 4~r£y -+__£ ;;FsP 

~ c ---;;;E 

- _!_?..§_ ?EJP = - ~ ;l /1/L 
4 ?J" ~:? c ;;~.r 

-;}£/)_ 7£} - r4- ')- 1-/JP - - = ?) ;;a- c. iJr 

From the definition (2.02), we have then: 

{ 
--;...U =-- _, 
i)4-

(a) 

(b) 

(c) 

(d) 

(e) 

Introducing the time factor e4.4J;C into the above equations, 

there result: 

(2.o6) 

Zl = ~ [ ~ e -"·w.L J == /ez_ £ .-U ~-.~-·w~ j 

Hy = ~ {-; ;~ LZ-~wL j 

If~ = /[e. l _!_ '),U.. -~·4)_&} 
~/1- ~ fl' ~ 

I) = 0 

I=; = ;e_ [ ;'; 



and 

(2. o7) 

where 

(2-o8) 
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A :2 = cv;z.~/L- -+_,c. ' 4r"lr wo-~ 
c_.2. 

In (2.06) and (2.07), ~ is the resultant potential function or 

the sum of the primary source function and the secondary disturbance 

function due to the presence of the cylindrical metal sheath. All 

field components (2.06) are the resultant ones obtained from the 

resultant potential function 

In order to avail ourselves of the integral expression (1 . 37), 

we shall first effect a formal mathematical transformation of 

Equation (2. 03) for the primary source function by means of the 

classical Fourier integral theorem,* which may be written as: 

with certain properties which must be satisfied by the function 

involved. 

• R. Courant und D. Hilbert, "Methoden der Math. Pbys. 11 , s. 65-70. 
E. c. Titcbmarsh, "Introduction to the Theory of Fourier Integral". 
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Let now: 
OC' 

G{>t) =I _a,{f} £ -_;_), t d[ 

-DC 

where 

.z-t~ {{) (t=;->J 

(2 .fo) G-o..) =;:-.<.A.£ .e-x/[ 4/ /'"-' f•] ..L f 
-~ ...rl'.z. -1- € Z-

oe 

/~ A.i- n;r~L~~:z._,;:p-1. d 
-1/'Z ~ { _..., f 

From the following established relation• : 

If we put X:o • we obtai n the desired integral result for cf-{A.) : 

Substituting this into (2 . 09), the corresponding integral expression 

of the type (1.37) is obtained: 

o.c 

ft. (X)= :j£ ~'Ax II.''Yf'/;(«;>..• ).I-I_ 
_..., 

or 

• Riemann - Weber, 11Differentialgleichungen der Pbys. 11 , s. 541-550. 
R. Weyrich, 11Uber das strahlungsfeld einer endlichen Antenne 
zwischen zwei Ebenen", .Ann. der Phys., 1929. 
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for the field point and for the source element, respectively. 

In order to fit the boundary conditions at 1 =a on the inner 

surface of the metal tube, we must expand 

according to the addition theorem of cylindrical functions. We 

have, in fact, • : 

i H: {A-o/ft~~l )J, {A-/~1__).,~:} .fl-i, ~('f-~) 

={ ~-;/;: (•/i!>J).J;, ( 4.&~ ).') e ~"'iff.! 
?11=-0D 

Exactly similar expansions hold true f o r H~'' (!~~ ).~ ) , 

J;,{ .1'/l~).!) and Y:,{//l~;._z.} =: ~(/~!)._l ) Substi-

tuting (2. 12) into (2.11) , we obtain the general primary potential 

function at r;, 4 , yJ due to an electric dipole at ( 1} -4-o~ ~) : 

(,1. /]) 

,e. -t.,d ./' ~ r;-;fP 

/.fJ~I- f)-!) a 

• Riemann - Weber, "Differentialgleichungen der Phys. 11 , Bd. 2, 
s . 491. 
G. H. Watson, "Treatise on Bessel Functions", Chap . XI., 
The factor t/;,. in Watson 1 s book should be unity - .; Schelkunoff 
used similar theorem in finding mutual impedance and radiation 
resistance; "Modified Sommerfeld Integral", Broc. I.R. E. (1936). 
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= r ~ ._.'mlr-~~>_f.?A (J ' ! 1-C; (4._a~ A" ).1,;. 0-/tW )l ,1 

..!:..-"""' A- 1n{~f:,f;_)Jg-rJ , / ~ )urf/, fh\:)1::~ 
2 .LJ .t- .£ ~mLA-•/-t~){ f'm t-1-l~=t\2.- '\ 

"'t1f=-o# 

for A_ >-1-o 

-
With help of the relations (2.13) and (1.37), we can set up 

the integral equation for the res-ultant potential function for 

medii l, and 2, respectively: 

(2 -14-) 

U. = ;_,}; i"''r-nj)>-7<>15 MH,J~"~) h for /.2 > ~ 

-<XI 

Now if we assume finite conductivity for the metal tube, the 

bo-lllldacy condi tiona regarding the tangential components of f and 

{$ which must be satisfied at ,a == 4. yield: 

(2-16) 

The solution of two unknowns .!;(A.) and 0 (JL) from three 

equations, with the last two incompatible, is evidently impossible. 
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This, however, is not merely a mathematical paradox, since the 

eddy currents produced in the metal sheath give rise to the co-exist-

ence of -'t£4.- and -Uy with the primary function~ and, therefore, 

~ ,which is neglected in the beginning. The above reasoning can 

be put into mathematical form but the l abor involved would be 

prohibitive and is not warranted here. This, however, gives a 

definite physical reason why II;- and 7 must coexist for unsymmetrical 

dissipative case. It is simply due to the fact that the eddy current 

in the metal sheath creates two new components u"" and dy of 

the general mSE";netic potential function zt' . 
The above difficulty is overcome if we assume that the conduc-

tivity of the metal tube is very high and that we could find the 

limiting boundary conditions when the tube cooductivity (er;;) 

approaches infinity. This requires the vanishing of the tangential 

electric field components for medium 1. at ,1. ::: Cl- ; i.e.: 

or 

E 31 I = o ~ l~:=a. 

Ct/ .;-~: )u, = ( ,~,~ x)afo 
1.:,._ 

The above two relations give the same result: 

or (2 ./1 ) F (l..) - -~· .£,(/l,o/AJJf)l/::(~} 
-" ( d../::J.} - ). 1 ) 

while u2. needs not be considered. 
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Substituting (2.17) into (2.14), we obtain: 

( 2 -!8 ) «.t = 
- "'. ~ -t-ln tf-f'o/OtJ~'). g-o_ ·~ ' 
- 2 LJ £ .£ ~a,A,).Tn,{A f;j tt). 

?tl:t- t:IO _..., 

where 

~(~A) = Xn (.rf, )Jt:/0-r,) -lf;j(of;).k, (~ft) 
.> , 

J;. ( Cl£) 

From the general expression (2.18), it would be easy to obtain 

integrals for the case with circumferentially arranged dipoles 

on a circle of radius ~0 , or other irregular setups. 

In case the location of the dipole is at (f-' o/ o) , then 

Equations (2.18) degenerate into one single relation: 

By aid of the transformation relations (1.29) , it can be 

shown that the integrands of (2.18) and (2.19) are all meromorphous 

functions of the arguments involved, or, in other words, there is 

no "branch point" in the whole complex :::\. -plane. Their evaluation 

thus reduces to formal expansion by the theory of residues. The 
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symmetrical case (2.19) with dipole along the axis is simply one 

term of the infinite series for the unsymmetrical case (2.18), 

which may be called eventually a "cylindrical harmonic expansion". 

It consistutes consequently a formal analogy to thefamiliar 11 circular 
J 

harmonic expansion". Just as a trigonometric function, cosine or 

sine, has an infinite number of roots, so does the Bessel function 

Jm(X} = 0 Equations (2.18), after evaluation of the residues 

at the poles, yield a double infinite series, each term of which 

represents a "distinct mode" of propagation. The attenuations and 

velocities of these double infinite "modes" are different from 

each other and would be independent upon each other if the trans-

mission system is "uniform and homogeneous". The resultant field 

at any point is thus a superposition of all the modes. 

The field components corresponding to the potential function; 

1A• .. (2.18)~ can be found by substituting (2.18) into (2.06). 

The above discussion reveals the fact that a deviation from 

the symmetrical field configuration by an off-axis location of the 

exciter causes the total energy emitted to be divided among the 

different 11 modes 11 thus created for different m in (2.18). The 

energy for each mode is thereby decreased and so do the correspond-

ing field components. It would be of interest to see what form 

expressions (2.18) assume for a slight off-axis location. According 

to the theory of complex functions, the integrals are to be expanded 

into series by evaluating the residues at the poles corresponding 
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When A 0 <<a and ~ .. X..,, << .:f_ 
a-

for the first few roots, which and 

which only need be considered, then -t/1. becomes approximately: 

The potential f"Wlction is proportional to ("'!.:)~for each mode of 

propagation. The correspondi ng energy is therefore proportional to 

( -::~ )2'"" ._... for all modes with same ~ • From this we get a fair 

picture of the energy distribution among the different modes. Or 

we may group together the energies for all modes for the same ~ 

under a single unit, then the energy unit distribution for different 

-?Jv~ has the following shape: 

---

Fig. Il-l. 

Energy Distribution. 
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Curves (.A) and (B) give a general idea of a 11 sharp" and a "broad" 

distriu~tion, respectively. The smaller is the value{~) , the 

sharper is the distribution,and the greater is the concentration 

of energy at -m=o . (.A) degenerates into (C) for the symmetrical 

case when all energy emit ted resides in the single unit ..,..... =O . 

Because in practical application we can not use all the 

different modes of propagation with different attenuations and 

velocities, which i~ fact vitiates the reception, it is then 

evident that the axially symmetrical operation is the most 

efficient one for transmission and reception. This is immediately 

a conclusion of considerable practical importance. 

The above development so far has been limited to the condition 
d irec+ 

of perfect conducting metal tube. From this noArigorous method can 

be obtained for accurate calculation of the most important quantity -

attenuation constant of propagation. Fortunately rigorous field 

functions can be derived for metal tube of finite conductivity if 

the field configuration is symmetrical about the axis. This pro-

cedure is at the same time necessary and important, because with 

air as the dielectric medium, attenuation is primarily due to the 

finite conductivity of the metal sheath. That, opposite to the 

is 
off-axis case, this mathematically possible, at once finds its ,... 

physical substantiation. With a dipole or linear antenna placed 

along the axis, the eddy current produced in the metal sheath by 

the symmetrical field would not give birth to new components of the 

potential function U except the J -component as the source 
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possesses. The interpretation given above is believed to have 

answered in a unique way the question raised by some authors, 

relating to the field structure for dissipative and non-

dissipative cases. 

Now we shall consider the symmetrical case with the hollow 

tube of finite conductivity. Then the primary function 2~4 

becomes, (refer to (2.11) ) 

-u,(Af$1 = ;j:·).t;-<J H;'~("-~)h 
-co 

( 2 . .21} 

·;~ ,,1 I = (.. Ctr<tA.t; -f) It b { A/'17;.. >... L ) A 
6 

(2 ·22) 

This is of the form (1.37). Therefore, the resultant general 

magnetic vector potential or Hertzian function in the dielectric 

air medium .1 (/l < t1) is: 

(2. 23) 

where for the disturbance of the metal sheath Jo (1. /,(•-),.z) is 

used because it must not be infinite for 4. =o . 

It can also be reasoned from the physical side: Since the 

Bessel function represents a standing wave in radial direction, it 

is the proper function to be used for the "additional" or "disturb-

ance" solution in medium 1; while l-/;')0/-k 2_)...z) , the Hankel 

function of the first kind represents a divergent symmetrical 

cylindrical wave, it is the proper function to be employed for the 
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solution in medium 2 . Thie includes the case of perfect conducting 

hollow metal tube and lossless dielectric medium 1. 

Consequently, for medium 2, the general magnetic potential or 

Hertzian function, except for an unimportant multiplying factor, is: 

oO 

(2->4-) P 2 ~; L ~-D-CJ- < 1 F;(A) If'! (~.M,·->.:) ,!-,._' 

; ~~c- :>or.J-d F. f?o.) H:'1{fo&;-A•) ~ 
0 

The Maxwell theory requires that at the boundary surface of 

discontinuity of media, the tangential components of the magnetic 

field intensity f and that of the el ectric field in tensity /5 
on both sides must be equal. We have then from (2.04) and (2 .. 06), 

for the present syrr~etrical case: 

Substituting ~ and ~ from Equations (2. 23), (2.24) into the 

above relations gives: 

{

), -il'A'fff,'4(aj{}:ji)1-F,{~)J(a-P,'-;,')) =;. B:- A' F; (;..)J-!,'fa~) 

_,l/.- /I "l.[ ' (/) 1..2 1. --l: ~He (a;,.r:;:-)+F (>.J;;,(a/~:-A.t)j = :i_~A 1i (/\) 11:-{tt~) 
.z. 

Solving (2.2:b) for F;b.) and !;{?-.) , we obtain: 
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(Z>7) ~ 
~ {J.) == ~61: (J,~ >.z) fjo{a/l[J.t) H/fa/l:J .. )-J; {a fiJI~) l-l;''{a/IJ1z) J 

/l;-l-z [t,i:!G-~1 1 Z~li;-r JH;'td/A;-J. 1 J fP;,I./jj}-;.1-.J;(aJG.:--;.~)tt;'iP&£-11. J] 

The last relation is obtained on account of the Wronskian 

determinant:• 

..2~· --

Thus substituting the expressions obtained for n(~) and 

~{?.) into Equations (2.23), (2.24), since all the boundary condi-

tions are satisfied, we obtain the complete solutions of Equation 

(2. 07{ wi tb 1, = 0] for media 1 and 2. These give the most general 

analytic expressions for the general magnetic potentials or Hertzian 

functions for any two media of constants.~ •!'' , if'; , and £,.., /'1 , tJi_ , 

respectively, with a cylindrical separating surface at -1.= a.. • These 

integral expressions must be transformed, by means of the theory of 

residues, into convenient forms for a.ctua.l computation. An investi-

* R. Weyrich, 11 Zylinderfunktionen und ihre Anwendungen", p. 75. 
Jahuke and Emde, Functional Tables, p. 144. 
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gation of the equations for u, and ~ shows that besides the 

ordinary singularities at the poles of the in tegrends, there 

exist also four branch points at 'A= :t--tl, and "A =:i'-'z. . For the 

general case that both tr( and d-;_ are finite, the actual integra-

tion processes are very laborious and do not admit of immediate 

physical interpretation. 

For the specific problem at hand, however, these expressions 

are susceptible to considerable simplification. The conductivity 

of the air medium is always negligibly small while that for the 

metal tube is usually very large. Then: 

~ 2 
= _w_

2

_r,....,~.' ~:..._'_+_...(.,_._4_r"Tr __ w_O;'-=~:..,L-3_1_ 
c~ . 

{J) ... £.z6 ~o.c:;.-nr 4J tf'j ~~ ~ -c.' 4 ?r41 ~ _//z. 
c~ c~ 

(very large) 

(very large) . 

From the asymptotic expansions of cylindrical functions of 

large argument. we have: • 

for '?'f..= 0/ 1 , 2 / .) 

~ H~'(J) ·z 
and .c,..a.. ' 

JJf~oo - ~ = -(/ 

H~')fJJ 

' • Jaru1ke and Emde, Functional Tables, pp. 137-139. 
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Then Ft {').) and .n; 0.) become, after dividing the numerator and the 

den om ina tor by H ~'f a_,l,.l}J:.) : 

(2-2.8) n (?.J = -~· ~~-': .M;-'>.~ H;1(all»f )-~;u2.1//i:-fll/'raj;ffjz) 
A~; /-1/-l' J;; ( tt//,2-~i} --'/:-~--#, 'l/II--J, (alA:-~~-) 

If ~I} (d. .ffJT'-) 

J0 ( a (~J-l•) 

Substituting (2.28) and (2.29) into (2.23) and (2.24), respec-

tively, we have: 
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The integrands of the above two expressions are then both 

meromorphous functions of the arguments involved. Their integra­

tion reduces to a formal contour integral. But it should be 

pointed out here that for ~2 (2.31) the closed contour cannot be 

effected since an integration along an infinite semi-circle yields 

infinity. Relations (2.30) will be used to calculate the attenu­

ation constant in Section IV. in a logical and quite rigorous 

manner. 

The uniform convergence of (2.30) and (2.31) assures the 

differentiation under the integral sign and we can thus substitute 

Equations (2. 30) and (2.31) into (2.06) to obtain the field compon­

ents, remembering, however, for the present symmetrical case ;~ = 0 
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SIDTION III. 

Linear Antenna Placed Parallel to the Axis 

Inside an Infinite Cylindrical Metal Tube . 

From the expressions obtained above for an ideal electric 

current element, it is possible to generalize for the practical 

case of a linearly excited resonanting antenna. From a mathe-

matical point of view, in the theory of i ntegral equations, the 

expressions for -lA-1 and -u-.2. obtai ned before serve as Green functions 

and the general solution becomes: 

o .o.t. ) !
~~ 

~ ~ ~)T( A-,J-$>/{tJL> 
>, 

( p-= I ~ 2- ) 

where f ( S) is a function of position ( } , 4-., , 5P,) of the infini tesi-

mal current element. In the above equation, the time factor ~-i.4J~ 

is suppressed. This general formulae corresponds to an antenna of 

finite length extending from 5, to f.z parallel to the axis with an 

a r bitrary distribution of current along its whole extension. It is 

known in practice that the antenna is usu.ally excited in its funda-

mental or harmonic wave length. For an antenna wire of very small 

dissipating resistance the length of the antenna bears a fractional 

integer relation to the free-space wave length of oscillation. 

Therefore, if we assume 1 to be the length of the antenna, extend­

ing f r om - { L;, + { parallel to the axis and also consider a 

sinusoidal distribution of current. then we have, for zero current 

amplitude at both ends: 
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sin 'n7T~ for even ~ -z- - - -- -

fr}J { 
.. 

(3.02.} = 

cos '7l7T ~ - - - - - - - - - - - for odd --?-!/ 

7 

where -n-== 1 gives a half wave length antenna, 7't=2 , a full wave 

length antenna, etc .. The entire space is thus divided into three 

regions: ') > -f 1 ; and ) < - f. . For the 

first and the third regions, the expressions for the Hertzian func-

tion are identical when n is odd and only differ in sign when n is 

even. For the middle region, the solution is a little more 

complicated. 

The general expressions for the potential functions due to a 

linear antenna will be derived for the following cases: 

(1). Center of .Antenna at ( o / Ao J ,%): 

For this case, we must limit ourselves to the case of perfect 

conducting cylindrical ~~be for the reason stated before. From 

Equations (2.18), (3.01) and (3.02), upon performing the integra-

tion along the antenna, we notice that the expressions of the 

potential function for an antenna differ from that for a dipole 

only by a factor which, although being a function of the argu-

ments involved, however, does not introduce any additional 

singularity to the integrand. The latter fact justifies mathe­

matically the legitimacy of the formulation of (3. 01). Thus we 

have: 

in the 
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integrands of (2.18) is simply changed to: 

(i) rvle(n,AiJ")=4117T (-}nC¢11}..:j 

L (~)~-~.z. 

for even harmonics (n ""' I, 2, ---- - ) 

and 

for odd harmonics. (~ = O J .L , .2 , -------) 

(b) for -1 <j < d , the integration (3.01) must be broken up 
.2 2 

in to two parts, from - j to J and from J tot{. The term 
/Ji~('J-5) 
~ ~ in the integrands is then changed to: 

·-I 
. 2 A4uu27T~} - (-)-x_ 27T_:-.eA~z:~~ r-

(1) fV1 e ( -n-, ). j J) = -:- --~z.:'-:;:::::---:----=.-c-~-----=":..._ 
.v ( .2 :;n.} :z_ - A. 2. 

for even harmonics (?-V= 1 , .2_.------ -- ) 

and 

for odd harmonics. ( 'H. == 0 1 2 ----- -- - -) / , / 

(2) Center of Antenna at Origin ( o, o , o J : 

The same changes for the tenn ..,eA·>.r; -)) are to be made for this 

symmetrical case with the potential functions £{, and {,L2 given 

by (2.23) and (2.24) for the general case with finite conduc-

tivity for the metal sheath. 

The modifications for linear antenna from the original expres-

sions for current element change both the amplitude and the 

phase of each "mode" of propagation. One interesting possi-
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bility arises if we could make the factors [ ( 2 '!e_··n-)
2 -"A:-] 

,..,.,d [(z?t+:>;r•_ "\. ~-- } ~ ;; ~- in the denominators as small as 

possible; then the intensity for that special mode ( ;d,. 
mode) will be grea. tly augmented. cons ti tu ting a 11 real reson-

ance11 for the case of a linear antenna.. This might be of 

considerable practical significance in long distance trans-

mission. This will be discussed in the next Section. 
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SECTION IV. 

Characteristics of Propagation of 

An Electric Dipole or Linear Antenna. 

We noticed in the development in the preceding Section that 

the integral expression for a linear antenna differs from that for 

an electric dipole only by a factor in the integrand. Since this 

multiplying factor does not introduce any additional s i ngularity 

(or nole) in the expansion of the integral expression according 

to the theory of residues, the general characteristics of propaga­

tion, with respect to the fundamental properties of attenuation 

and phase velocit~, are identical for a linear antenna and for an 

electric dipole. Consequently we need only consider the latter 

case without losing sight of the properties of a physical antenna. 

This will be further justified later. 

Comparing the expressions (2.18) for a dipole placed off-center 

at ( 5, A-o , y.,) with that (2.30) for a dipole at ( ) , o, o), it 

is evident that (2.30) constitutes merely one term of the infinite 

series of (2 .18) ; i.e .• for ?n = o Although the roots of Bessel 

functions of different order give rise to a superposition of 

different "modes" of waves, the description for each ~ is of the 

same physical character and of similar mathematical procedure. 

These different "modes 11 propagate with different attenuations and 

different velocities and are eventually independent of each other. 

Consequently, we shall limit the discussion to one mode of the 

symmetrical case. 
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The present Section can be divided into two main parts: (A) 

the first part comprises the formal mathematical transformation 

of the integral expression (2. 30) by the theory of residues; (B) 

the second part consists of an extensive discussion of the physical 

properties of propa@ation. 
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Part {A). Transformation of the Integral (2.30). 

The integral expression (2.30) for the Hertzian function can 

be transformed into an infinite series according to the theory of 

residues of complex functions. In order to have a unique defini-

tion of (2. 30), we must limit ourselves to certain restrictions 

of the arguments according to the definitions of cylindrical func­

tions and the uniform Convergence of the integral. 

Firstly, we shall assume: 

= 0 

corresponding to measuring the field at one side of the dipole, 

then we must limit A. to the upper half plane with a positive 

imaginary component, for otherwise the field intensity will 

increase with distance, an impossible phenomenon. That is, 

(4.01.) 

Secondly, we shall assume: 

• This since the :Bessel function); ( x) is defined with J= 1" 
restriction can be removed if necessary since the :Bessel function 

is periodic in 1 

• Section I. 
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Also, because of the relations (1.26) (1.29), the denominator 

J;,(a.f,) and the numerator [J;,(a.f,) H:''(t f,)-Jo{-L.E, )H1{ar.J]are 
unique and meromorphous functions of i , = ~~ -).a. , the integrand 

of (2.30) consists, therefore, only of the singularities at the 

poles corresponding to the roots of Jo (ct...£t..~-).'-) == o Thus by 

Cauchy's theory we can complete the contour by a semi-circle of 

infinite radius in the upper half A -plane and evaluate the integral 

by finding the residues at the poles. The integrand of (2.30) 

vanishes identically for / A. /--+ o.o , but not for (2. 31). 

Now we will take all the roots of Jo( J:.) = 0 _1-X, J Xz / -- ·.fX.v,-- · 

as real,• and on account of (4.02) only the positive real roots 

.r, , x~ / - -- -- - .X;r , --· , can be used. Then at any root Xp-

we have: 

( 4.o3) I 

and the corresponding residue becomes: 

. ' 
Jahnke und Emde, Functional Tables, p. 166. 
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since 

Therefore, summing over all these residues, we have: 

(4-.04) 

In order that this infinite series actually represents the field, 

it must be a uniformly convergent series except at ~ = o and 

) =). , corresponding to the location of the point source. For 

4:: o but J*J , the series should still be convergent uniformly. 

From asymptotic expansions of cylindrical functions, the ratio: 

remains finite for increasing large argument. (4.04) will, 

therefore, be uniformly convergent if: 

l
j{AJ4., -)p)() -sJ_ Xv-~ot tvlv-1-1 · ).......- I < i 

X; /VI v- A.y-., 

This essentially reduces to the criterion that if: 

The value of.J; (X} for the first few roots of J 6 ( Xy} = o are 

:J,(X,)=-10·5/ql ~ It ( Xd=- " ·34-03 / J;(X~) =+o-2715"" J 

J,{l.,) = -o -232.!"" J -- . --
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then (4.oS) { ol Y + 1 should hold. 

It can be shown that this inequality (4.05) is always satisfied by 

finding the values of Av ~ from ( 4. 03) for corresponding values 

/ of x_, At-

there result: 

Now let , then from (4.03) 

( rJ_p- + "'. ~;>-)~=~~-X~ =r~·£,/",- XJ,.)+--<. 4.,-ev(f';'..!':' 
t1 c:• e:z.. c&. 

or 

( fo7) 

If r7>o , then (4.07) is an equilateral hyperbola with its two 
I 

branches lying in the first and the third quadrants . C!( is 

usually very small but always positive. While for (4.06) there 

are two cases: (a) when 

crosses the real 
1
.g -axis; (b) when 

it crosses the imaginary o( -axis . 

> 
X,) 
_e 

.::;t .1 

t.V l. Ei/ 1.// 

c ... 

• the hyperbola 

<= xe-
a.. .. 

The equilateral hyperbola (4. 07) is independent of the roots 

Y;r and is, therefore, stationary, whil e the curve (4. 06) travels 

for different roots Xp- • 

The following graph shows the curves for (4.06) and (4. 07). 

The graph gives two sets of intersections of (4.06) and (4.07) in 

the first and the third quadrants, respectively. But for the present 
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Fig 4.1. 

case, (}-5) ;:.o , ..::\. must have a positive imaginary part, only 

those values of ~ lying in the first quadrant can be used. 

Generally there are only a few hyperbolas for (4.06)a or even 

none, while ( 4. 06 )b gives values of ). approaching the positive 

imaginary axis (pt) as a limit. It is then evident that the 

criterion of inequality (4.05) is always satisfied. ci is in 

fact, a monotonically increasing function of ~? . The series for 

U, (4.04) is, therefore, uniformly convergent and gives the required 

solution. Although for o-:~ o , the resultant Hertzian function 

~, becomes an infinite series; in practical calculation only a 

few terms are necessary because of its rapid convergence at any 

considerable distance. 

If, instead of (4.01), we measure the field at other side of 

the source, or: 
(;t - <;) 

) 
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then we have merely to use the roots of ~ lying in the third 

quadrant. Because the roots in the first and the third quadrants 

of Fig. 4.1 are symmetrical with respect to the origin, we have 

then in general the same Equation (4.04). 

From (4.04), we have, therefore, for the Hertzian function: 

The first exponential term represents, in general, the propaga­

tion with certain damping; the second ratio term Xu lfr;.I(Xu) 

~"'" J, (X;) 

stands for the amplitude and the 11phB.se 11 relation between 

different modes of propagation corresponding to different roots 

AJ!" ~ ; and finally the last term };, {: Xp-) depicts 

the relative intensity distribution of standing waves along the 

radial direction. Standing waves exist in the radial direction, 

since Jo(:f.XJ.>) is always real. However, before discussing the 

characteristics of propagation, we shall study one interesting 

case for o-:- o 

If in the limiting case C"j-7>0, then the curve (4.07) becomes 

o< / = 0 and coincides with t he axes. The solutions for .A 

therefore are the intersections of (4. 06) with the real axis and 

the imaginary axis, respectively. When, say, 

the intersections are on the real axis, ~ are real. This 

represents then propQ€ation down the tube w1 thout damping. When 

, the intersections lie on the 

imaginary axis. Then the field is damped with increasing distance 
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but no "propagation phenomenon" exists and at any considerable 

distance it identically vanishes. Consequently the result is 

greatly simplified and t£1 becomes a finite terminating series: 

For the special case 

CtJJ£, /' 
ca < 

or (4./tJ) I < 

that no root of A. is real; 1. e . , : 

.l 
{.2 . .t~o 4 8) z. ;X/ ~7823 -tt• 

c . 2 -404-t!J 

...2 .,- a .( &,~, 

= 
t::t"- a;). 

/-/F N ~ ~ 
r= --a:- /0 !I 1,-i . 

then no propagation exists. This represents a complete "cut-off", 

as it may be called. It will be discussed in detail in the second 

part. One case of great importance occurs if we adjust either the 

frequency f or the radius tL of the tube so that: 

Then we have A y = o and~, increases without limit for that 

special limiting "mode" of propagati on. Ma theme. tically, U 1 ( 4. 04) 

is no more a solution, s i nce it loses requirements for uniform 

convergence. :But physically such a phenomenon is of greatest 

importance; it represents "resonance" between the exciting system 

and the response of the dielectric medium inside the cylindrical 

metal tube. Whenever such an ideal resonance happens , the absolute 

amplitude becomes infinite but no propagation phenomenon exists 

corresponding to that root of Jo ( Xy) =O , since then u 1 is inde-
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pendent of the distance r;-s) from the source. However, it must 

be remembered that this 11 ideal" case occurs only when 02 ~ oo 

and ~- ~ In any physical case neither can actually reach the 

extremal value. Then we have approximately from (4.06) and (4.07): 

which indicates that for this special adjustment both the attenuation 
(!cr'lshzn J. 

constant and the phaseAare very small. The velocity for this mode 

is: 

which approaches infinity as a limit when cr; ~ c The group 

velocity, or the velocity of energy propagation is (refer to(4.2i ) ): 

which becomes zero when 6/ becomes zero. The physical picture of 

this is fascinating. It corresponds to a greater and greater concen-

tration of energy which drifts along at a slower and slower velocity 

when tr(- o This11modett will then play a dominating role in 

reception. The nearer the equilateral hyperbola approaches the axes 

(Fig. 4.1), the more accurate expression (4.09) represents even the 

general case, since then terms corresponding to A)!' for Y >-a 

are completely negligible at any considerable distance in comparison 

with those for Y'~ n- . In conclusion, we need therefore only 

compute a few terms for~ , since in any practical case even with 
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wavelength of the source of a few centimeters and with considerably 

la.rge tube radius, only the first few smallest roots of J: (Kv) = o 

satisfy the relation: 

(4 . 11) 

With the above discussions and restrictions, not only the labor in 

computation is greatly reduced but also the difficulty with the 

peculiar phenomenon of "resonance" is overcome. 

Now ~e can substitute (4.04) into Equations (2 . 06) to obtain 

the field components: 

(4.12) E ILl 

£.1/1 = 0 

As discussed before, it is only necessary to use the first few 

terms for which (4. 11) holds . 
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Part (B). Characteristics of Propagation. 

The formal mathematical development in Part (A) lays down the 

foundation for the discussions of the physical properties of 

propagation. Although the rigorous expressions for F, (>.) and F2 {).) 

(2. 22) give rise to branch points at ). = ± ~1 and :A = +J2. which 

encumber carrying out the integration for U, and 4
2 

, fortunately 

a practical approximation with sufficient accuracy had been attained 

for the case of very large 0:: ( conductivity of the metal tube). The 
2. 

resultant formula. (2.30) is thus free from branch points and its 

expansion is given in (4.04). The corresponding field components 

for the air medium are given in (4.12). The number of terms of 

these expressions equals the number of roots of J 11 (X) = o for 

which the right side of (4.06) is positive or equal to zero. It 

should be noted that every such root gives rise to a disti11ei. 

11 mode of propagation'' with its attenuation, phase relation, and 

velocity different from all others. The resultant field at any 

point along the system is thus a superposition of all these 11modes 11 , 

while each "mode" propagates down the tube guide as if it exists 

alone. In fact. there is no interaction whatsoever between the 

different modes. if the transmission system is perfectly uniform. 

With the above visualization, it suffices to discuss the character-

istics of propagation of any of these modes . 

(l) Attenuation Constant. 

From the researches of Rohde, Schwarz and Handre~ on dielectric 

• Zeits. f. Techn. Phys., Band 16. No. 12, (1935), s. 637 . 
Band 15. No. 11, (1934), s. 491. 

Hochfrequenztech u. Elektroaknst, Band 43, No. 5, (1934). s. 156. 
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loss of various materials at very high frequencies (from 106 cycles 

:per sec. up to 500 x 106 cycles per sec.), we are justified in 

reaching the conclusion that air is probably the only medium which 

can be used in tube guide. The loss in the air medium is practi-

cally negligible and the attenuation is thus completely due to the 

loss in the metal tube sheath. With this condition we shall assume 

then a-(= o and the curve (4.07) collapses into the real and 

imaginary axes Thus corresponding to root 

of Jo (t)= 0 , we have: 

( 4-.JS) A v- = (3? +--<-- o 

It is obtained from the intersection of the hyperbola (4.06) on the 

positive real axes; i.e.: 

( 4. /4) 

or (3y = ~tJ1-{fJZ 
il 

where V..=~ may be called the cut-off velocity, and: 
v XF 

l4 ./4)a_ 

the corresponding cut-off frequency, where being 

the velocity in free air space. The phase velocity for 'Y-114. mode" 

is simply: 
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Therefore from the function ~, , only the velocity can be 

obtained. The attenuation constant must be derived from the 

relations of energy propagations in the two mediums. With the 

help of Equations (4.12) it will be possible here to obtain 

rigorous analytic expression for the attenuation. In measuring 

the energy propagated or lost, we are interested in the time average 

values. Thus according to the rules for complex conjugate quanti-

ties, we have: 

In taking the time average: 

=0 

Hence 

Thus we shall form the complex Poynting vectors* for the energy 

propagated in the axial direction inside the tube and for the power 

lost in the radial direction in the metal sheath. From these the 

attenuation will be defined in such a w~ that a, , V..z , and a11 

the field components ((4.04) - (4.12)) are modified by a factor 

• Abra.hsm and :Becker, "Classic Theory of Elec. and Magnetism", 
pp. 193-196. 
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-~y-t) 
~ 'II ~ thus making up together with the phase constant l".tr 

obtained from (4.06) a. complex 11 propa.ga.tion constant": 

( Lf. 17) 

The energy propagated in the axial direction may be divided up into 

two parts: one residing in the air medium (A< a.) constitutes the 

major part and also the only part which can be picked up by certain 

receiving device; the other taking place in the metal sheath (--1. :>a..) 

is very small compared with the first and not utilizable. According 

to (4. 16), we form the complex Poynting vector (time average): 

and integrate over a closed surface. In order to make this comply 

with the definition of Poynting's theorem, the closed surfa.c~ey be 

taken as the cylindrical surface at /l.=a- with bases a.t .:t-)"" . Here 

the Poynting's vector ;;e; has two components, the axial~ through 

the two bases at .t J' and the radial /\( through the cylindrical 

surface. tj. represents the useful part and~ the loss in metal 

sheath. We have then: 
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Integrating over the bases at .:!. ;r , we get the time averaged value 

of the utilizable energy propagated in the axial direct i on: 
2:rr a,.. 

(4.:zo) Wv = 2.1 Jr{Nff frd-v =___::r:_6 ;;xt [Yo(XpJl1/j/A .lp)jz. Lv-
o o 2;1'ra ' (3)! {Ji (h) J o ti((L fo 

2 4- 2. 

= ~ ~ x~ [Y:,{Xp)j = ~4 -/fr [Yo(-XPJ}z. 
y,cr~ ~~~y ?/Vo ~~2. 

The last expression is obtained by using the relations (4.11 ) and 

(4.14 )a. This also shows that only for fr>~~ is there a real 

flux of energy leaving the cross-sections at .:t ~ corresponding to 

the 'Wh. mode" of propagation. The total energy is simply the super­

position of (4. 20 ) for all ff~ ; i.e. : 

The corresponding r-component of /t: is: 

(4-.:u) 

whose real part is zero if the conductivity of the air medium is 

as~ed negligible . Even if we assume a finite conductivity for 

the air medium, the integration over the cylindrical surface at 

fi-= a... still gives zero. This, however, is a natural result , 

since the expression (2. 30) for u 1 is obtained for d2..- oc • 
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All energy emitted by the source resides in the air medium within 

the metal sheath. 

Consequently, we are forced to seek another means of finding 

the loss in the conducting medium 2. This can be achieved since we 

know from (4.12) all the field components at the inner surface 

(/L =a.-) of the metallic tube. General formulae taking into account 

the finite thickness of the metal sheath can be obtained. We shall 

treat, therefore, in the general sense. (2.31) for ~z fails to 

give us a series solution for the different 11modes" and their field 

components, because of the impossibility of forming a closed contour 

of integration according to Cauchy's theorem. The gist of the 

present method lies, therefore, in setting up series solutions for 

the field components in the metal sheath (medium 2) and finding the 

"corrections" for the roots of Jo (X)=O to take into account of 

the effect of "finite conductivity" of the metal tube. 

Referring to (4. 12) and (2.06), we have immediately the desired 

forms of series solutions for the field components in medium 2, 

considering. however, only the n;;.l mode": 
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The above relations are for the metal sheath of finite thickness. 

Since, however, we realized that the metal sheath is electrically 

very thick for high frequencies, we shall put C2 = 0 in order 

to simplify the mathematical manipulations without impairing the 

accuracy of calculation. The boundary conditions at ,-2 =<Z- require 

the equality of the tangential components of 8 and; from (4.12) 

and (4.2~). Thus there result:-

where x; and A.;;, with primes indicate the "corrected" values for 

taking account of t he effect of finite conductivity of the metal 

sheath. From (4.23), we obtain then: 

C, = 7r i~ x~J tl~l[;rfJ Jo (~JJ = p. T :t~ -~.'cvf7JX,; H~txt.) 
tf4-c:I/.\p J,{ X») HC:{tzfo;X:) fl, a 3 )..;. ~.,e.~ H;'{d/lff;,) 

The last two terms give the "relation of compatibili tyn, from which 

/ 
the "corrected root 11 ~ is to be found. Fortunately, we do not need 

an explicit solut:.on of these x; ft. from the above complicated transcen-

dental equation. What we need in calculating the attenuation constant 

is the ratio: 

( 4 .'A5) 

or 

Hf't:r)l:-).;; ) ~ A-/ .. a .I, 2 

H:'1( ttiJ;-~9 A ~ x_; 
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from the relation ,.J.,/ >> ~ ,; and the asymptotic expansions for 

Hankel functions. (Section II.). Substituting the above corrected 

relations into (4. 2 1) for the energy flux in the radial direction, 

we get, at ./1 =a.. 

(4 .21 )a.. 

Since 

c 

" From (4. 2~) , we realize that the 11 corrected11 root Xv is very nearly 

equal to x~ from Ji> (X,) = o , where .)'~ is a real quantity. 

Tl:ru.s putting xp! =X~ in (4. 2 1 )a, we obtain: 

l4·21)J, 

Integrating (4.2 l )b over a cylindrical surface of unit length, we 

get the loss in medium 2 per unit length along the axis for the 

'!l'~. mode" : 



63 . 

According to the definition of attenuation constant in 

(4.17) , we have: 

Substituting from Equations (4.20) and (4.26 ) , we succeed i n find-

ing an explicit expression for the attenuation constant for the 

11.Yt-1. mode". 

( 4:2'T) = C~.zd,L = _I m d~ 
~~~~P,f2rr'<)~a. .2a ,_P, tr; ji-(1j )z. 

For a uniform and homogeneous transmission system, the different 

"modes" propagate down the axis independent from each other. We 

must, therefore, calculate the a t tenuation for each 11 mode" separately 

as derived above. (4. 27) is obtained in a qu ite rigorous manner 

although in a somewhat novel way. It agrees with Kelvin's result 

derived from the general skin effect without referring to any excit-

ing system and serves as a proof of the latter's validity for the 

"J'I/,. mode" and for the 11.J'Hmode 11 only. 

The total loss for all "modes" of propagation is then a super-

position of (4.26). 

expression of the "propagation cons tan t 11 : 
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(4./7} ).v = ;sp + A-. O(.J>-

for the "..Y~ mode". Substituting (4.17) and (4.24) i::1to (4.09), 

(4.12) and (~ . 22) gives us complete analytical description of the 

general potential function and the field components in the two 

media. 

The attenuation ( o<.r ) is infinite at the cut-off frequency 

(~-~) . beyond which it firstly decreases and reaches a minimum 

value. 

at fi C.Xv-
..27T .I!{.... I~~, 

it increases monotonically with frequency. 

, after which 

(2) Phase Constant, Phase Velocity, and Group Velocity. 

From what has been discussed before , we notice that the phase 

constant r;1p-J is practically independent of the attenuation effect. 

The phase constants for the different "nodes" of propagation corre-

sponding to the different roots of J4{X~) = o are distinct. 

Rewriting ( 4.14) and (415), we have: 

(4-14) (3v ==r/ 41~1~u/_ ;J: = 2~~~!-(YJ2 

l/ - aJ - ,y [.1- f#).ll -%-
~- - ;B.v- - .(/ b tJ J 

where£ is the cut-off frequency for the 11/rh. mode". The phase 

velocity for the 11 /rJ mode" is infinite at -/= ;l:r and decreases as 
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the frequency increases, approaching the velocity of light in air 

medium (1/;) at /= 00 • There are as many distinct phase veloci­

ties as there are "distinct modes" of propagation. 

Group velocity, which is of importance when modulated signals 

are to be transmitted, can be obtained from the Equation (4.14) by 

differentiating w against ~JY , keeping i n mind that 

constant for the nM_ mode", "e obtain: 

0 

is a 

The group velocity Jj/ corresponding to the n_yn{_ mode" is then: • 

...,,. ~a) /1 .-,J-~ ~ 

14--<'fJ /" = -¥.u- = r~: ;:· = ;. -

It is, therefore, zero at the cut-off frequency (tC) and approaches 

the velocity of light a.s a. limit as the frequency continually 

increases. There are also a.s many "distinct group velocities" a.s 

there are "distinct modes of propagation". Curves for the phase 

and group velocities are given in the appendix. 

( 3) Frequency Spectrum. 

From the above discussion, l'l'e see that corresponding to each 

mode, both the attenuation and the velocities of propagation change 

with frequency, a. phenomenon very undesirable for wide band modu-

lated signal transmission. For high quality television purposes 

then, only those parts with very flat characteristics can be used. 

~ q • Max Planck, Theory of Light. 
F~rsterling, 11Lehrbuch der Optik:' 
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The frequency characteristics are distinct for the "distinct 

modes" of propagation if the transmission system is uniform and 

homogeneous. When the applied frequency is higher than the first 

cut-off frequency j, = 2.4°4 8 u; but less than the second cut-
27Ta..-

off frequency /z = S -5.20/2/,; then only one single "mode" of 
2.,-a...-

propagation exists. 

For a modulated television signal with a frequency band cover-

ing many million cycles (usually 6 M.C.), if they lie completely 

within J and t , then there is only one single "mode" for the 

whole band. If, however, they lie within~ and~ , there would 

be two distinct "modes" with different attenuations and velocities. 

So with the whole modulated signal within t and-fo-r; , there would 

be "n distinct modes" with different attenuations and velocities. 

For transmission of a modulated signal, we must limit the 

reception to "one mode" only, since different distinct modes cause 

interference and distortion of the original composition. Thereby 

a unique conclusion is reached: That is, we must design the trans-

mission system in such a way sotbat the whole modulated band lies 

within/t andp . In other lt'Ords, we must have "single mode" 

tranSiliission. 

Take the case of a cylindrical metal tube guide with a radius 

of 10 ems., then: 

II = 1-148 ..Y/0'1 cycles per second, 

/z = 2-636 .)' J(11 cycles per second, 

and the allowed frequency band is approximately: 
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cycles per second, 

which is amply sufficient f or present day television purposes . 

The above conclusion is not only of practical importance, but 

also of theoretical interest. Since then we need only consider the 

first term of (4.04) and (4.12). 

( 4) Phase Displacement and Energy Propagation. 

The phase displacement for the field components due to a 

dipole (electric) is extremely simple. From (4. 12) , rewriting the 

expression f or Ej , we have (for 11;/,./ mode"): 

£. :::= /fe-[rflw.J: _; "{,p-~~~I~fJ-J J-w~ J. :£;_ ;-;;'/(X;r) J:.(A X. )l 7 
/ ct.

4
G ~; ~v J; (X;) 0 

a.- :/.' '.J 

in which the attenuation constant ot~ · is to be calculated from 

( 4. 27). Since: 

we obtain f or real part of ~ : 

3 

EI = -'lru},Xy- Yt,(Yp-) T (--1. X,) -olyr;--~~ ~ / .f- ~ /. - '!) 
!I c £L ~ "/-"v- J; {)fp) J" «. tr .e l ttJ. ;-Jr{! f. 

(4-30) 

There is, therefore, no phase displacement due to the multiplying 

factor. The amplitude, at definite ,.,z, varies according to the 

factor: 

4~:Z 
tL API /.v-
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This shows that the amplitude is infinite at ;{=~~ , a phenomenon 

called 11 resonance 11 by some writers. Such a resonance is ascribed 

to cause a "localization11 of energy without propagation, and can 

actually be detected by any disturbance "dislodging" this localize.-

tion of energy. In fact a much more instructive physical depiction 

can be derived from this phenomenon. On writing out the other field 

components from (4.12): 

(4. 3J) 

1-1; = fl~ =- 0 I 

(4·3_2) 

F-.r == 0 J 

one notices that ~ also contains a factor: 

"7r 'Yo 

a3 /~ 2t:L:jj;-dfY 
which becomes infinite at/:::~ . While £,.,_, remains finite except 

e.t f=o Thus such a 11 locali ze.t ion 11 of energy at /=£ {If, = 0 ) 

means a 11 rea.diness 11 to start propagation as soon as /- becomes 

greater tba~ . The latter can only be accomplished if there is 

a 11 stored11 amount of energy in space ready for the push. The idea. 

of "localization11 of energy is therefore physically and mathe-
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matically justified and is susceptible to experimental verification. 

(5) Characteristic Impedance and Radiation Resistance. 

The conception of characteristic impedance is helpful due to 

its frequent occurrence in conventional electric circuit theory. 

It is always defined with respect to some current flowing in the 

circuit. So we shall follow the same logic procedure in defining 

the "characteristic impedance" offered by an infinite hollow metal 

tube guide to an electric dipol e as the 11 ratio of the time averaged 

surface integration of the complex Poynting's vector, (Equation 

(4.18)) to the time averaged square of the current flowing in the 

metal sheath in the axial- or; - direction" • 

]:' = ~ Jv· ['& •'tj1}L-e = 13';,_1 L~Yfj. n_ d-f, 
y }S 

=~to 't ·-t* )r.f~.:wjHfriff~ 8~1(-g'jd"' 
= VV + .?~·w(l/"71 -U_d.) = W -u~· {<)a 

P is therefore a complex quantity whose real part represents the 

mean Joule heat developed per second and whose imaginary part 

twice the amount of the difference of the mean magnetic energy and 

the mean electric energy. Thus, if~ is the total current of the 

• .Abraham and Becker, 116lassic Theory of Electricity and Magnetism", 
pp. 196-. 
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system, ~e define: 

'I'he second equation is true because we assumed that the system is 

dissipative. For a non-dissipative system z/ =0 and X =O • 

The current can be easily found from the following relation: 

(4·35) 

From (4.20) we have, considering only one mode : 

and 

and 

u 
- ..?~ = 

;;~ 

X, = o 

The reactive component is nearly zero since the attenuation 

is small as discussed before. The characteristic impedance has 
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practically only a pure resistive component, which may properly 

be called the "radiation resistancen of the system for "/~. mode 11 

of propagation. There are as many distinct "radiation resistances" 

as there are "distinct modes" of propagation. If only the first 

11 mode11 is considered, then: 

(4·38) 

At the point of minimum attenuation, for air 

dielectric medium. 

The radiation resistance f?.v- is then zero at f fr and 

increases as the frequency increases. It approaches the limit 

- 6oo 

when I >>{v- This casts some light on the design of couplings 

or absorbers for matching purposes. At minimum attenuation the 

radiation resistance becomes: 

, ~ becomes: 

The variation of the "characteristic impedance" If'~ is therefore 

comparatively small for the whole usable range of frequency. For 

a band of a few megacycles per second, it is practically constant. 
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(6) Field Structure. 

We shall limit the study to the field structure in the 

dielectric medium. Referring to Equations (4.12) , we see that 

along the axial- or J -direction all field components have a sinu­

soidal distribution with a gradually but very slowly decreasing 

amplitude due to the attenuation factor ..P-"'~~'IJ-5) The spatial 

wave length in the air medium is then: 

( 4 .31} 

Corresponding to each mode of propagation, the apparent wave length 

is thus infinitely long when / = / v- and decreasing and approaching 

that in free space only when I== 1>0 • 

The equations for the lines of magnetic intensity ( lly1 ) are 

simply concentric circles around the axis and the distribution of 

intensity in the radial direction (A) is proportional to Bessel's 

function of the first order; i.e.: 

where X;r is the;/~. root of h {X).:::o . Because the zero roots of 

Jot.KJ:: o and .;; (X):o are alternate ; i.e . , between two roots of 

Jo {X)= o , there is a root for J, (Jt)::o and vice versa, J7 (::;i- x.,....) 

has, therefore (,t}:.,) modes for the range o ~A< a We have, in 

f act, a standing wave in the radial direction in the air medium; the 

amplitude of this standi ng wave changes sinusoidally with time but 

its nodes remain fixed. 
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Similar discussion applies to the configuration of E,z.,1 • 

The structure for ~j-1 is, however, proportional to ,J; {:f_ Xp) 

it bas then one node at the inner surface of the metal sheath and 

(/-/) nodes for the range 0 ~--1...-< a...--. The equation of the lines 

of electric intensity can be obtained from solving the following 

differential equation: 

(4.4-o) = 

or 

where the phase displacement angle J1r is given by: 

The above differential equation then simplifies to: • 

.;; ({fYr-J c1 (-_/2 x;,) = 4[&rJ-t)-cv.t j p/ (, 
.Tt f1Xy} a- ~ C f;rfj- fJ-w,f-J ~~ J) 

or J { L;l -;;rrxf-;i x,;)j =- L { 7 ~[t9 .. 'J-o -w;tJj 

Integrating gives: 

• Jahnke and Fmde, "Functional Tables", p. 146. 
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or 

This gives the equation of the electric lines of force for any 

time t. The second cosine term indicates that it is propagated 

along the J -direction with a phase velocity ;;... . The first term 

[-4-x~'J,(1 Y,.J J represents a standing wave distribution 

in the r adial direction for the range o ==:- .....-2- < a..- Equa-

tion (4. ~/ ) is for the y~ mode only. There are as many distinct 

field structures as there are 11 distir.ct modes" of propagation. 

The integration constant C in (4.4-J ) can be determined from the 

given exciting strength. Since the field ~onfiguration is 

independent of the azimuthal angle f (4.4/) holds for all planes 

passing through the axis. 

(7) Terminal Device. 

It will be shown here that for certain simple terminal devices 

it is possible to make a rigorous mathematical analysis. Up to 

now the development has been based upon the case of an infinitely 

long metal tube. But in any practical set-up the transmitting and 

the receiving ends must be terminated by some device which, of 

course, should be so designed as to increase the efficiency of 

transmission and reception. 
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For a linear axial antenna the simplest efficient termination 

at the transmitter end is a closed end made of perfect conducting 

material. The existence of such an end simply introduces an image 

situated the same distance behind the end as the exciter is situ-

ated in front of it. Then the resultant potential function 

(Equation (4.04)) becomes (See (8.02)a.) 

(4-- 4~) 

which reduces to: 

for;r= c when the dipole is placed infinitely close to the perfect 

reflecting end. The intensity is thus simply doubled ever,rwhere. 

The same procedure immediately follows for any physical linear 

antenna since every element of the antenna has a corresponding 

image behind the closed end. Such a type of ending is considered 

as the most simple and at the same time the most efficient termin-

ation for transmission purposes. 

Other irre~ar terminal devices disturb the configuration of 

the field and make any attempt for rigid analysis impossible. 

The terminal device to be used at the receiving end is 

definitely much more difficult to design. Any scheme except that 
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with the same "characteristic impedance" of the transmission system 

(i.e. complete absorption of the incident energy) causes the form­

ation of a standing wave which may be undesirable and even a nuisance 

for high quality transmission. A standing wave in the present case 

eventually represents an interference between the exciting and the 

receiving devices. The paramount requirements for a satisfactory 

receiving termination are thus: (a) maximum pick-up of the incident 

wave to be fed to the detection device, and (b) complete absorption 

of the incident energy to avoid forming of any standing wave. A 

detailed analysis of devices achieving complete absorption of 

incident energy forms a distinct subject by itself and will not be 

attempted here. The general principle outlined above might be of 

some value in practical design. 

(8) Stability Problem. 

The problem of stability arises when the transmission system 

becomes heterogeneous or deviating from the ideal straight, circular 

cylindrical tube. For long distance transmission the two main 

unavoidable deviations from the ideal system are: (a) cross-section 

not being circular all along the length, some portion may assume oval 

or elliptic shape, and (b) bending of the tube at certain locations 

as found necessary in installation. For a linear exciter, a slight 

deviation from circular cross-section is of no serious consequence; 

although a small ~ -component of electric intensity Ey may be 

introduced at such locations but the magnetic intensity remains 

essentially circular {H.f) , the a t tenuation constant and velocity of 
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propagation might have undergone a negligible modification. A. 

bending of the tube especially at sharp angle, however, may intro­

duce a strong new field configuration depending on a _e'!f -factor 

and many lesser intense field configurations depending on factors 

(These kinds of field 

.i11!f' configurations depending on ~ for ?t.. = I... .r _, 3 _, - -- · , are 

called by some writers &, , £~.,~ ... --· ·- aves.) This means at the 

same time a great reduction of the original symmetrical field inten-

si ty. From the above approximate qualitative argument we may con-

elude that, for carefully designed transmission system, bendings, 

even if not completely avoidable, should be performed with as small 

a curvature as possible and the less frequent the better. 
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SIDTION V. 

A Magnetic Dipole Placed at Point l (' ,A~ ,. ~ ) 
/ 

With Its Axis Parallel to theJ=axis 

Inside an Infinite Cylindrical Hollow Metal Tube 

The postulate of the existence of a magnetic dipole with t~o 

infinitely large fictitious "magnetic charges" of opposite polarity 

at an infinitely small distance apart from each other, dated back 

to the ancient conception of a magnet. Later researches, however, 

discredited the physical existence of "true magnetism" and unified 

the old parallel independent theories of electricity and magnetism. 

But the physical argument of reality does not penetrate into the 

mathematical analysis, since with proper care the hypothesis of an 

ideal magnetic dipole gives us a formal mathematical analogy to the 

case of an ideal electric dipole. And only through such a hypothesis 

can we obtain the corresponding analytical expressions for the field 

components due to a current loop of finite dimension in a simple 

way. A current loop of finite dimension is thus thought of as a 

magnetic shell whose boundary coincides ~ith the loop. The postulate 

of a magnetic shell is not new and its properties have been discussed 

by many authors. What is attempted here is to use the idea of a 

magnetic shell as a mathematical intermediate bridge to reach an 

analytical expression in proper coordinates for the field of a 

current loop with uniform spatial current distribution along the loop, 

and thenceforth generalize for a non-uniform current distributi on by 
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means of a scheme similar to that used in obtaining the 1~/l-mul tiple 

axis" unsymmetrical cylindrical waves functions (1.20). 

Sommerfeld* first used the idea of a magnetic dipole antenna 

for a formal mathematical formulation of the corresponding Hertzian 

function with the dipole situated above a perfect conducting earth. 

Analogous to the introduction of a "general magnetic potential" 

~ for the case of an electric dipole (2.06 ) , we shall now define 

a new function, sa:y a"'""' . for the case of a "magnetic dipole" so 

that: 

( 5"· b/) 

This function, tf-.. , may be proposedly called If general electric 

pa>tential", since its curl gives the electric field $ multiplied 

by the dielectric constant e . 

For the present discussion the magnetic dipole is s apposed to 

be placed at (5/ 'to,fi) with its axis parallel to that of the cylindrical 

guiding tube of radius a. Thus K~ has only a ; - component, or: 

(J-02) =0 

From the analogous formula derived in Section II., (2.11), we obtain, 

for the primary 11 source" general electric potential function, the 

following express i ons: 

* Riemann-Webers, 11Differentialgleichungen der Physik", s. 564-565. 
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U'111o 
_ ~ -v4f R _ ~.A-~ .J/.2--1- fj- .>J2-

R - I~~ {?-f)1 

= i/~).r;-oll~'f.t}J!'x' )JA. 
-oo!l 

where 

On expanding the integrand according to the ad.di tion theorem 

of cylindrical functions, we have, omitting subscript ~ : 

{S. o4) v.. = <~~ .i 'n<'f-J.1) ~IJ- tJ J, ?<R!). •) H:/ {A-..{;?~ >.• )d), 
~ 

For the present case, the field components are: 

and the corresponding Maxwell field equations become (in Gaussian 

units): 

(a) 

(b) 

(f·06} 

(c) 



r (d) 

(e) 
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_ ~ I= Y' ~ _ ./-!: ""J HA. 
? '3 C- J;t 

J- E,t - - ~ ~JifiJ 
o'j" - I c.- ?;t-

Since all quantities must be real, we have: 

-~~ = 0 

H, ~ - I) { c. (lzp r ~~ ) ..e -~ ttJ.i} 
P -11e ~...c. ttJ ?J). 

and 

Therefore, the system of field configuration is unique and Equations 

(5.04) and (5.05) are the formal solutions of (5.08) for A</to and 

4 ~/to , respectively. 

AS discussed before in II., the above field configuration with 

fJ ~ocan only be realized for perfect conducting metal tube and we 

shall limit ourselves to such a case. 
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The disturbance function for medium 1 ~<tL) must be finite 

and, therefore, only the Bessel function J, ( .-1....);{!). 1.) can be 

used. We obtain then for the total "general electric potential" 

in medium 1: 

<><) 

;_J_!"'rt-?lj.f'~fJ·f J f.;;,c,. ~ JH:;: {t.t;)rfi P)J;,C<-r, 1/JA 
-<>6 

That for medium 2 {A. >a) need not be considered. 

The boundary cond.i tion at ,.;!.-= a..... requires that the tangential 

component of electric field intensity must be zero, thus from (5.0?) 

we have: 
/ 

Ft (~) - -.-i:J;,(~,./A/->/·)H:;: (a/~j-),~.) 

.k /(~~~:-~"") 

where the prime indicates differentiation with respect to the argu-

ment involved. Equations (5. 09)a and (5. 09)h then become, respectively: 

(s--lo) 

., 
ff / 111tf·fo l_;J.~ -J~ J;, ( /J~ €;).T,.(ttf,)H~4 ft)d;,(A~ J!t:f ~t)[/A-~ ~ 
}If~--. j..J Jm (a-ft) 

-Db 

rA.>A~. (b) 
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The field components can then be obtained by substituting the above 

two equations into Equations (5.07). 

Now we shall consider the special case of a magnetic dipole 

placed at origin (0/ ~/ Cl ), then )=o./ A 0 :r=oJ rn:::o and (5. /0)e and 

(5.10) b reduce to: 

(.f . / I} -u.. = -;;:")J. J,{a~) H;f--tt;) -:::Y{at;)J;, (--t£)dA. 
~ J;, (a.€,) 

= i_ j:"'".AJ'. .Jj(a4)H~'{dJ-!I:'fa€,)J.(-<-f/) Ll._ 
-- J; (tt- €;) 

From the functional relations (1 . 29) , it can easily be shown that 

(5. /0)a, (5.10)b , and (5.11) are all meromorphous functions and 

their formal integration can be carried out by expanding into an 

infinite series according to the theory of residues. 
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SIDTION VI. 

A Circular .Magnetic Shell (Current Loou) 

Of Radius b with Center at (~o--o ) 

Inside an Infinite Cylindrical Metal Tube 

Just as the expression of a current element serves as the 

Green's function for integrating along the axis of the extension 

of a linear antenna, so does the expression of a magnetic dipole 

for integrating over the plane area occupied by a uniform current 

loop. We obtain, therefore, the potential function as follows: 

where, for U , expressions (5.10) are to be used for fi < flo and 

-1 >- A...o , respectively. At first glance, it seems impossible to use 

the idea of a n~etic shell" to obtain the effect of a current 

loop with an arbitrary distribution of current along the loop, 

because the conventional magnetic shell is usually thought of as a 

uniform one. 

Two new methods are described here. Each of them has its own 

physical realization. The first one is for perfect general arbi­

trary current distribution and includes eventually the second method 

as a special case. But due to special significance of the second 

method, it will be considered as a separate one. 

(1) First Method- Arbitrary Current Distribution. 

The gist of this method lies in the fact that a linear arbitrary 

current distribution along the loop corresponds to two types of distri-
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bution of the strength of the magnetic shell elements over the 

"area" bounded by the loop. Referring to Figure VI - 1 and using 

polar coordinates for the 

plane area of the loop , 

the two types of distribution 

are: firstly, the strength of 

the magnetic shell element 

cf Sc is constant along radial 

direction for fixed ~ as 

and, secondly, the 

strength of the element otSo 

Fig. VI . -1. follows the same distribution as 

the current for different ':fo at any /2.-
0 

• Conseq:uen tly, for a 

circular loop f!Ao~ fl) in (6.01) is independen.t upon A-0 and may 

properly be written as;f/~; , which is just the function for the 

current distribution along the loop. We have then: 

(6.o2) 

where the integration with respect to.J2,., can be performed first with 

given tL = ,(,{ {j/~~} A .. J!l leaving the integration with respect to 

~ depending upon the aurrent distribution. It should be noticed 

that for a loop of arbitrary shape, /fAc_, Y:) is always a function 

of both;l-0 and ~ . The above argument also shows that Equation 

(6.01) is perfectly general for any shaped closed loop with any 

arbitrary current distribution. This i dea can also be used to find 
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rigorous analytic expressions for the "electric potential functionn 

for, say, rectangular or circular loop placed parallel above the 

earth surface. 

From the above general consideration, we shall, however, limit 

the discussion to a circular loop with its plane orientated perpendi-

cular to the axis and its center at { ) / OJO). Then, substituting 

Equations (5.10) for lt in (6.02), there result: 

indicated integration with respect to ~6 for general integer value 

of m except for 111= o . The failure of this general method for m ::t 0 

compels us to leave it as it stands until some new scheme of integra-

tion is to be devised. 

For m=o , however, we obtain immediately: 
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Integrating ~n with given;ic~) yields therefore only one tPrm of 

the infinite series, because~!~) can always be resolved into 

Fourier harmonics. 

If the current distribution around the circular loop is uniform, 

then Equation (6.03) reduces to: 

Except for an unimportant multiplying factor, (6.04) gives the 

complete solution for the potential function due to a uniform 

current loop inside an infinite cylindrical metal tube . 

(2) Second Method - Trapezoidal Current Distribution. 

The generalization from (6.04) to cases with trapezoidal 

current distribution can be accomplished by the same scheme used to 

obtain the general cylindrical waves functions, (1.19) and (1.20). 

Thus for a. 11bi-a.xis 11 current loop with current in the two halves of 

the circular loop "opposite in phase" but of "same magnitude", 

(trapezoidal in shape) the potential function at the field point 

becomes: 

(b.oS) v;J = JJc[7 = (-.Jx" +~ifJU=.£-~fi(ftl~~) [/ 

=-_]}[7 =-f?z ~~-7 )!/: _.._-<)! {--f;; .f-<*r }!7 
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where V is to be substituted from (6. 04), and ])0 and _L) refers 

to operations upon the "source" a.nd upon the "field point" , 

respectively. 

or 

C)6 

rl-ent&j)J-P. J,{tt€,)1(~ft}-J,(J2-{,)~1ra ti!;;(l.r,;h 
j.l< J(tlft) 

-~ r A-.>.-1., 

The factor &,t.J' is used in the last form for a. trapezoidal 

current distribution which is positive\or negative) for -:J.:.ff7<-:­
and negative (or positive) for :J' <f'< 7" Equations (6.06) a.re 

formal solutions of the differential Equation (5.08). Similarly we 

can obtain the potential functions for 11 quadruple-a.xis 11 current 

loop, 11sextuple-axis 11 current loop, etc.. The corresponding 

expressions for '!..?n -multiple axis" current loop is: 
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The integration of (6.04), (6. 06 ), and (6.07) can be carried 

out by a formal expansion at the poles of the integrand according 

to Cauchy's theory since they are all meromorphous functions of 

the arguments involved. 
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S]XjTION VI I. 

Characteristics of Propagation of a Current Loop 

Inside a Cylindrical Metal Tube 

In this section we shall limit our discussion to the cese of a 

uniform current loop. Equations (6.04) give the potential functions 

for /2- < 6 and .-2>b , respectively. The characteristics with trape-

zoidal current distribution can be obtained from that for the 

symmetrical aa.se 1Fi th only slight modifications. The procedure in 

the present section follo1Fs along parallel lines as that in 

Section IV .. 

Part (A) Transformation of the Integral Expressions (6.04). 

Since relations (6 .04) are unique and meromorphous functions of 

,X and the argument of the cylindrical functions, a formal solution 

can be obtained by aid of the calculus of residues. According to 

Cauchy's theory, the closed contour is to be achieved by means of an 

infinite semi-circle above the real axis in the A -plane. This is 

permissible since integration along this semi-circle yields nothing. 

Relations (4.01), (4. 02) and some of the discussions there hold true 

word for word for the present case. 

The poles of (6.04) are the roots of 

aH/-XZ J; (a I -Af->t2 ) == 1 J;f;J = o 

will be denoted by t -== 1" / j / 1~ -' _ - ~·;r , -· .. 
which 

• 

• The first few roots of.J; fJf =o are: 1"=" " /t=3-8)1'/;'l=f"IS"~/'=/P./7Jr~ 

Jahnke and Emde, "Functional Tables", p. 166. 
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Corresponding to the Wh . root, f.P- , we have: 

Let ~ = ~~ f. ,L' cty- • t h en \ve have: 

(3.:-- olp~ CV~C'~! tf -
C"" ./ 

otp / ;/' 2 7Twtr"(_,P, 
~ " · e~ -

The two branches of the hyperbola (7. 01) cross the real ( ~.P- ) 

or the imaginary (~-) axis according to the right side being posi-

tive or negative. Those of the hyperbola (7.02) lie in the first 

and third quandrants, and practically coincide with the axes for 

the case cr, ~ o 

The residue at/ ":: o is a little different from that at others 

and is to be evaluated by means of the expansions of the cylindrical 

function at very small argument. 

~ J., ( /L €,) ~ _j 
t,-o 

~ fi... €1 
[ , ~ 0 J; { A- ft ) 

........_ -- :z_ 
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Residue for the first equation of (6.04) then becomes at ).1 =_,t; 

The residues at the other poles for the first equation of 

(6.04) are all of the follo~ing form: 

= - :;; r1trJ ll:r [v)J; (-: eJ 
Since 

. Ji "'( j'u--) 

- -:.- .J;(: /,iJB LAP' - -j'r 

For the second equation of (6.04), we have: 

-.. -i~ [ I + / ] 
........ -ra.~/1, -~-~ j.,.A. 

/{es. [A.=~] == A-·;:;i L ~ "~ fJ-f_/ 

fi'ef. [.A ~~7 =(A-7raJ)~?C<){-.];{-feJII?f-pJJ,{.j1?J~ [/\-Ar} 
(r J:>t~A,LJ(aA:-~ i.J 
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= _ 2.-,r2 b ~r-i eJH:/)(frJJ;~p-J 
a, ;\;- J:c;-~) 

Therefore, the series expansi ons for (6.04) become: 

The two expressions, therefore, only differ in the first term 

corresponding to the zero root f" = o • All the discussions for 

Equation (4.04) in Section IV. can be applied here with slight 

modifications. In practical computation, only the first few terms 

of the summa tion are necessary for which A;...t are real and the 

following relation holds: 

The expressions for the field components for the air medium can be 

obtained by substituting (7.03) for~ in (5.07), remembering 

-&- = o for the present symmetrical case. They are: 

E. 
1 
=11~{-=f £ .nr~6 J;(.jjPJ/-0(~). ::frr /A'/. lfltp-o-wry r I Yet ~ ~y- J;"/{lv) a.,J 1 (d, f P;,P-
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( n ,J:') I M' =ITer- c. ~ (J.J._A~).2-r-J..;;fifdrl:lfe)_T/-41/. )~kJ;j-.fJ-tvi}J 
,. o.~ t?J L'ii/'~w~ ' p; d. },JrJ//t!pJ J"(-ptlv/ £ j 

11/j,f= !?e. r ~ . y .zg&J{jpJif:~)T/A;q_) A~{fJ/-wfj7 
/..~U-w )f;t a2 J,-'itf.vJ .. h <atf.JI" ~ _; 

In the above expression for ~1 • the first t erm before the summa-

tion sign is neglected because they are lacking in the expressions 

for Ey>; and 1{
1 

and consequently plS\VS no physical role. 
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Part (B) Characteristics of Propa~tion . 

The formal mathematical development in the previous section and 

the transformation formulae obtained in Part (A) lay the foundation 

for a rigorous discussion of the physical properties of propagation 

due to a circular loop antenna inside a conducting cylindrical metal 

tube. Similar to the case of a linear antenna, each root, sayJY~ , 

of .];{?J==o gives rise to a "distinct mode" of propagation. The 

"attenuations" and "velocities" for different modes are different 

from each other and would be independent upon each other if the 

transmission system is uniform and homogeneous. In fact, each 

11 distinct mode" propagates down the tube guide as if it exists alone. 

we shall, therefore, limit the discussion to the characteristics of 

one mode. As pointed out before
1
for satisfactory operation only 

one mode could be allowed. 

(1) Attenuation Constant. 

With loss in the dielectric air medium negligible, attenuation 

in the system is completely due to the finite conductivity of the 

metal sheath. We have, in fact, t1j = o but tG :\= co 'i'his 

can be taken into account by the same scheme developed in Section IV. 

Consider, say, the~nl. mode, its phase constant is computed from: 

;&? = 2~/1/--rfi;~ 

.,..here f; = ?'ezl;, 
27Ttl. 

may be called the "cut-off 11 frequency of 

the 11J'li. mode". Its attenuation constant d'.r can then be found by 
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setting up the field expressions in the second medium and obtaining 

therefrom the "corrected roots 1: ". Thus the J -component of the 

Poynting vector represents tLe useful part of energy transmitted 

and the ~-component of the same stands for the loss in the metal 

sheath. We have then: 

(1·"7) fl; = 8C,.f1~[:bxfJ; - -8~ fie.[ Ey, rt./J 
.:1 

= __s ;rJ , c f.ar'l 17'1tt;;rJ[H:t,u!}{:!r1ev;rtte_JI] 
8~ L -£,"/"" Ul~ d 1 J: (ll?) 1 

Integrating over the bases at _:!: r , the time averaged value for 

energy propagation becomes: 

1-tr tL 4 21 IN_ h4£~- .,c ~ r~.,.~Jtif..4t1tvJ¥fkJlf;;;rt-'1'7:A 
0 tJ )"' -7 ~£1-;Aw a '/-:1...:..:. J,~/P) j jf.J, ~~vlf'l 

" 

for the Y"d..-mode. The total energ propagated is simply a super-

position of those for all "modes". 

The corresponding).L-component of the complex Poynting vector is: 
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( 7./o) ('111- = 8 ;,_ /?e[-$'xf% = 9; /i'e[ Eft?~ 1-j/f~ =a 

~ :..£.1fe[; c . (.2ff~J.;r~J11JirlfoJJ:(eJ)j;{Y. y.;rr~)l 
871 e;~,tp ttAj)' l~ J;/Cf~ J', (/}/'. I ~J 

This is zero if ~_,... is the root of J:fj) = o • which results from 

the assumption that cfi ~ o £ o; ~.e:>t:~ • In order to find the 

"corrected root ~~" for o; large ·but not infinite, we formulate 

the series expressions for the field components for the second 

medium, which is assumed electrically thick. Referring to (5.07), 

we obtain: 

Here only the term for the y-.lf.mode is written. A. will be taken 

identically equal to zero, A.z::: 0 , for the high frequencies 

involved. 

The bounde.I7 condition at A= a.. requires the continuity of the 

tangential components of the electric and ~ gnetic field. This gives: 
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where ;/ and .A;' with primes are the "corrected values" taking into 

account the effectof the finite conductivity of the metal sheath: 
.) 

{'J.IJ) 4,:::. -z.,zi:t: ll:f/fJJt(-Jf(JJ(f/) 
€, a~ (3)- J:YJ';/) 11/fd./i~z-~J-) 

The transcendental equation to be solved for the "co rrected roots", 

;/ , is then: 

Substituting ~{/;} from above into Equation (7.10) , since ~~ 

is very nearly equal to j ..r , we have : 

( 'l l!/ 

To obtain the loss in medium 2 per unit length along the axis, we 

integrate the above equation over a cylindrical surface atfi = .:L 

of unit length: 
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_..rd . mode is then: 

( '/.17}. 

For a uniform and homogeneous system of transmission, the atten-

uation constants for the different "distinct modes" of propagation 

are different from and independent of each other. Formula (7.17), 

thus obtained in a formal manner, is of great importance in the dis-

cussion of propagation phenomenon especially for long distances. 

The attenuation for a current loop antenna (7.17) follows a different 

law as compared with that for a linear antenna (4. 27). It is infinite 

at the cut-off frequency ;(=~ and is monotonically decreasing as 

the frequency increases . 

As pointed out before, for practical satisfactory operation 

without interference or distortion, probably only 11 one mode 11 of 

propagation can be utilized. Taking the example of a metal tube 

with an inner radius of 10 ems. , the first and the second cut-off 

frequencies are: 
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/D 

II= ~ J ~ ~~ 7 cycks ;17er s~c. 
,;! 7r JO = / -83 .{I() 

and f 
/C 

~ $ J: /b ..-J . .Y J .Y / /!) ., c;c.les 17er ~c. - -.2..,.. /b 

respectively. The frequency band available is thus: 

? = ;. j..z .)" /1) 

For (>f/ , the variation of attenuation is fairly slow 

except at the first cut-off value (/:/J . :Because the frequency 

must be kept below £ for single (first) "mode" operation. the 

monotonically decreasing character of the attenuation constant 

{«) is not so fascinating as it might appear at fi r st glance. The 

slightly lower attenuation of (7 . 17) compared with (4.21) for the 

available range is, however, an advantage for long distance trans-

mission. 

(2) Phase Constant , Phase Velocity, and Group Vel ocity. 

The phase constant is computed from (7 .66). The phase velocity 

and group velocity for the "r..n/. mode" are given as: 

(IJ./8) p;, w v. =- -
~P- I 1-("tJ'" 

and ('!./?) ljp v-: ~~/-(;.pz - lfv -

respectively. The cut-off frequency is calculated by means of 

Equation (7.06)a. 

There are as many distinct phase constants as there are 

Hdisti nct modes" of propagation. 
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(3) Frequency Spectrum. 

The discussion in Section IV. can be used here word for word. 

(4) Phase Displacement and Ener gy Propagation. 

Slightly modified development from that given in Section IV. 

can be applied here. 

(5) Characteristic Impedance and Radiation Resistance. 

These will not be discussed here, since the definition is 

artificial and its physical significance not evident. 

(6) Field Structure. 

It is completely described by the Equations (7 . 05) for the 

field components. The spatial wave length in the air medium inside 

the tube guide is: 

(7·20) 
-I /i-fj'J 1 

where and /; • the cut-off frequency. The electric 

l in es form concentric circles. The differential equat ion for the 

magnetic linesf , for the ;rt/. mode, is: 

or 

Integrating gives: 

-7 {:f;rJ:(4/rJ} = -7Cc.z£A,.9 0-rd] 1- C/ 

{1(22) · · · ~~ J~.Tt(:t/sr)J ~Pp-p-~}-w~j = C 



101. 

It is, therefore, the same as (4.J1 ). 

(7) Terminal Device. 

Just opposite to the case discussed in Section IV., a perfect 

conducting disc end weakens the resultant potential function when 

the loop antenna is placed near to it. Referring to (7.03) and 

(8.16), we have, for the resultant potential f-~ction: 

('/·2 I} 

is neglected here. It is therefore desirable to adjust the distance, 

~ , of the loop before toe end plate so that: 

~~; =f~s = )~~~1-/j!;z = (2n +tJ-7 

( ~ = 0 / ..L/ .2/ ------ -) 

/ . \ ,.. /_)on.- • then we have ~ ./1y- .> = l · 

(8) Stability Problem. 

Remarks in Section IV. hcld true here with slight modifications 

and with the interchange of the roles of the electric and the 

magnetic fields. But the effect of disturbance due to any non-

homogeneity of the transmission system is slightly greater for the 

present case of a loop antenna than that for the case of a linear 

antenna. 
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SECTION VIII. 

Propagation over Plane Earth Surface 

Only a brief formulation by means of the standard procedure 

developed above will be attempted. This problem has been subject 

to close theoretical study and experimental investigation by a 

great number of scientists during the past two decades. The 

pioneer work of Sommerfeld was followed by Poincare, Nicholson, 

Watson, Epstein, Reyrich, Van der Pol, and many others . The com-

plete references can be found in the various papers by these 

authors. 

Here two cases will be considered: an electric dipole 

(vertical antenna) and a magnetic dipole (current loop). 

Part (A) Electric Dipole Placed at ( f~ A.,_. f'o) Above an Infinite 

Plane Earth Surface ( "J = o ). 
j) 

From (2. 13), we obtain the expressions for the primary general 

magnetic vector potential (or Hertzian function) at any point · 

(?;.A./ !f); for J > _s , we have: 

i..#:"""'y-yft:J. (~t-il'-A' ) 11:: (it. I,{!-;. )/A j!v n < "'* 
(8.ol) lh, -~ 

e.'!' 

tfi""w:-"'jJ) :;r ~ ?z.JJ! A· )H:! (-t-P= >.~)d), j.- .a.> A, 

-(JO 
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for J<5 , we have: 

(8.11/)(L. i
ii f"'tf' ~) (,) ~- f_!;;, (II/;{! ~·JJ-1! ( A--/J!:A~)~ /A.- <A.c 

~ ~~ ;~ ~ ~ 
4

== 1f/,Cf-Y.j3-~)..~-0;.,(A~)fl:/ftlt'-?/)d~ ;. ~>~ 
'ttl::-¢ - «' 

We shall denote air medium (j ;.- o) by l and the earth medium by 2. 

For the general case of plane earth of finite conductivity, the 

disturbance due to its presence can be taken into account by the 

following expressions: (consider ft...> A• onl y) for J> 5 : 

oc 

(8. ~) a =i}}!"?nlf-fj;;..ilr;-rJ' F,(,j)« _,_').J ).I. ('./iF-F )!I,~(A Jl~;;:j~ ' 
-06 

for : 

06 

( 8. a 3) ll, = fi _c'>nifjlj {!').f)-fj fi fl;.:~NJ; -A'}!I,::'{tlll;-~;) I,-\ J 

Jllr- -()II 

and for J < 0 

~ 

( 11- o4) l/p ift'mlffljp-;AfJf~ 15 &\)e -;J.lft, ~Iii.-~· J-'C~I(:-,r-M 
-.o 

The boundary conditions at} :=a require that the tangential com­

ponent s of the magnetic and electric field intensities must be 

equal for the two mediums ; i.e. : 
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(b) 

(c) l==.-1,1 - E/Lz (d) E y1 = Ef'z.. 

On referring to (2. 06), we have: 

. / . 
. (a) ?; [~-'A$+ n (~J)J;, (/Jb~J/1::~~)-;:~.e;.~fiV,~(A,of;Jf(:/fz~) 

<b);, f.-i) J-1- r, r~J}Jm (4-D E; J!l:! ~~ J Af~).>+;; P.Y};;, r /k ft)JI:; (-tfz J 

(c) !fr [~ ~·JJ -1-n V.J}J;,(A-"Et )f/:{/1-€;} =}; f~~~f_ I; ~JjJ;, (kf~)f/;jf--t f.z) 

(d) "jf~,._).~ h{){JjJn,(mf;JH;% {/tfi) = ~;£-.e ~~~ !i{Afj.;;n(/UJE;)fl/:f~~) 

Since it is impossible to solve for two unknowns from the four 

simultaneous equations, we conclude that the assumption of ~=o 

is not legitimate due to the existence of eddy current in the earth 

medium. 

However, if we assume the limiting condition of a perfect con-

ducting earth, then the boundary conditions for the vanishing of the 

tangential components of electric intensity at~;d give rise to a 

single relation for any A.- : 

or 

[ -£_ ~Af -+ ,fi(;>.; j - e? 

p;(J) =- .e Aj$ 

Substituting this into (8.02) and (8.03), we have; for /l..>--1-. : 

""' 
( I-•.Z 1-.. IL =2-<.:f..../"''f-J'j.i' ~,. ~! .e ••JJ. ("·/"'l9 II! (A-11/~;;A 

-fllll r ?>$ 
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QO 

($.d3)~ U, ::if .e~:7t'Cf-:flJ( [e-"·).r;~t~.~_ .t·U~~ Jl:,{A6Jii-~ .. ) Jt:/,(11-JAf-11 )JA 
7W><-«> } J Jln -- r- ~<J<> 

Following the same method used in (III.) , we can obtain the 

expressions for a linear antenna with arbitrary current distribu-

tion along it. Although this constitutes merely a formal integra-

tion using (8.02)a, (8 . 03)a, as the Green's functions, yet the 

practical evaluation is rather prohibitive. 

For the simple case with the dipole situated at (), o/o) , 

(8.02)a and (8.03)a become: 

Cit> 

(8.o6) U = ,i j.JJ A').}-~ l)ll:'~/11/:.~-a) ~>. 
_.,.. 

Db 

(8."1) U, =~·; ~'AJCtxtAJ H;I){A,~":-J.a.));. 
-00 

Further, if 5 = o , with dipole at origin, (8 . 06) and (8.07) 

reduce into a single expression: 

06 Q:) 

( B-•8) U = ~.fo~·l,J H ;'( A./7, "-li)./;. =2 ~C.. >.j II :•(4-/lj)t ) .1;, 
-~ 0 

Comparing with (2.11), we see that this simply means doubling 

of the field everywhere due to the presence of the perfect conducting 

earth. 

From the exponential forms of (B . 02)a, (8.03)a, (8.06) and (8.07), 

the disturbance of the earth simply constitutes an image radiating 

dipole situated at sam e distance below the earth surface. 
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The characteristic properties of propagation over plane earth 

surface of finite conductivity can be taken into account for the 

symmetrical case with dipole at ((, o, o) . For this purpose, we 

must transform the original source function for a dipole with 

respect to the argument of integrat~on so as to facilitate satisfy-

ing the boundary conditions. 

(fJ.oqJ >U, = .._ "";.e = :_/:"-~g-o fl:'fA.fi."-A.' ).I~ 
~ 

With the help of the above formula, we can now formula te the 

expressions taking account of the presence of the earth. 

(8 / O) 

{B./I) 

(8./~) 

(a) Hc.tt= !-ly;2. 

( 8./3)[ 
(b) ;=_/1-, = EA-z 

or 
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From (8.11) and (8.12) we have then: 

(a) 

(b) 

Since differentiation of the primary function t4 against/ is zero; i.e . : 

_Lf £, c-:if?l =/f_L /£ -t:i!f)j 
73 /? VJ- fi iJI( ( :_ I? 
~ ~ =- ;=--- = 0 

Solving (a) and (b) for t=ib.) and ~ (~) , .,e obtain: 

(J./4-) 
h{).} = ).,/,~ A.ffil[~ -/U:J_/?~ ~ -&:~,z f. 

/A~"' 1 

_/.; -/:fA~:t j_;, ~ :f ~~:},2 
(8.!4)-t- r-; {>..) - ). -t~: 

j;.z-J; 

~ ./u.Jzl' -~~ 
h,Y/1-"/t( ..e. -y/1- z >- b~ .e - I 

SUbstituting these into 

_/'z 11, 'lJ~If; -
1

/,:tf~.:z ~~~:J: 
(8 . 10), (8.11), and (8 . 12), one gets the 

complete solutions, whose integrations are, however, complicated by 

the presence of branch points at '\ := d" and ~ =.1 -lz . 
If in the above discussed case { ::::o for a dipole e.t origin, 

(8.14) and (8.14)a reduce to: 

(8./j} ?;(A.) = >. I,;}. ?,f~!:)/-/z. /l.~#l~ 
j;) ~'J: . /"z. .J,.z. /A~,4; -_/1, _,lz~ /.1Z:.. =ti: 

J=; (>..) = l-tf/ c-'1 ~-/z.J~; 
/ ;>..! ;e ~ ,(, 2 /i!Zt -~ -/zz /)&!-.,/: 

(8.JJ'}tL 

Thi s corresponds to the case discussed by Sommerfeld.• 

• Loc. cit. 
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Eefore concluding, it might be of use to mention that from 

(8.02)a, (8.03)a, it is possible to derive a quite general 

expression for many dipoles arranged in a certain way to obtain 

directional effect. 
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Part (B) Magnetic Dipole at ( CAo ... y:'o ) Above an Infinite Plane 

Earth Surface ( 7r:::: o ). 
v 

The primary functions are given in (5.04) and (5. 05) and are 

identical to (8.01) and (8.0l)a. The secondary disturbance can be 

taken into account by exactly the same formulae (8.02), (8.03), and 

(8 . 04). The vanishingof .E"y:> and £-1.- (refer to (5. 07)) at the surface 

-~::::0 of a perfect conducting earth gives rise, ho'W'.ever , to: 
( I 

Thus: 

U ={ ~3~Lr-r11:i~ -~~ ~ _.){JH :p;,. (/1../l,~F )!1:0&,'-j• )J~ , j > J 

;X:. :"'•J'-flj f-'l (j-,J ~ L ;_ V}tJj.r,. (A•Jk;.f);f,;/{!-pj-}()/). ' o·c_r _$ 
--<>d 

The above expressions indicate that neither the transmitter nor 

the detector should be located too close to the earth surface, since 

the integrands contain factors~AJ and A_,.\j , respectively. 

Corresponding to each ]11,, there is a "distinct harmonic mode" of 

propagation. The resultant field at any point is just a superposition 

of all these harmonics. For a current loop of radius ~ with center 

at (~, 0, o) , we obtain immediately: 

C() 

{ 

br I ..i~t _4.;, ~5 J, {) /i,'--F) II :'1(4/;l:- X'-) h 
(8./'7) ZL= -"" 

00) 

2rr j .e ;;!tf .-Jw,)>,)J,(J /1:--l') H~~ (tfl,'-~'-) h 
--0.6 
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The integrands are not unique and meromorphous functions of the 

arguments of the cylindrical functions. Besides completing the 

closed contour by means of a semi-circle above the real axis, we 

must draw a branch cut through A::::. +J., The writer intends at 

some later time to make a detailed analysis of wave propagation 

over plane and spherical earth surface by the present method for 

a physical antenna. 
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SECTION IX. 

Propagation Characteristics 

Of Concentric Transmission Lines 

The prime purpose of this section is to obtain a simple, 

explicit expression for the propagation constant of a concentric 

transmission system so that a clear view of the relative merits 

of the concentric system compared with a hollow tube guide can be 

grasped. By means of the asymptotic properties of the cylindrical 

functions, the desired result can be obtained in a very straight-

forward manner. 

Because of the explicit relations of the current and voltage 

bet~een the two conductors, the method of attack follo~s in a 

general sense that used for "conventional transmission line 

circuits", but at the same time guided by Ma.xwell 1 s field equa-

tiona, so that we will be aware of the approximations which can be 

made without impairing the accuracy desired. The circuit diagram 

is sho~n in Fig. IX-1. The current in the central conductor is 

~ ~- b ;rl- .I @ 
-· -- '~ -~ - ~-r- - ·--l ~- --· 

I I 

Fig. IX-1. 
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assumed in the positive Jr -direction and the return path is formed 

by the outside hollow tube. For the present symmetrical field 

configuration, Maxwell equat ions reduce to: 

_L "J("V/-Iif) 
--=- /.f=rrr E -+ ~ d' /3..J- ci/- £ -.l'l- ~.-1.... C J e -=j;E- ~CtJ~ }-

- )!/~ - L.l-7ro G/1, ~ ..£ "d5t = el, 
~}' c..- C/M- ~EA.; .A,W 

(q 01) [ 

)EA._ 4 f5J. -A)I:ft I -- - = ,v~p J/tp IJ- ;1'4- c- ct 

where ~=- t=.J J G/1. , ~=r = o j fl.= H!f _, ~ = f4 =-o 

The assumptions to be made in the present analysis can be 

summarized as follows: 

(a) 

(c) Outside conductor electrically thick. 

These coincide with those used for the hollow tube guide in 

Sections II . - IV. and are nearly realized in practice. The case 

that of is not equal to zero can be taken into account very easily. 

Now we shall find the relations between the current ~ , the 

voltage ~a,' and the field intensities. ~Jris used to represent the 

total current within a circular cross-section of radius r, and ~JV 

that in the central conductor of radius b. Integrating Hr around 

a circular path at radius r gives: 
J-Tr j Hlf A-k = 2-,r-1--1-/'t' -

t> 

(lf.o2) Hr =-~ 
C-A...-
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Substituting (9.02) into (9.01) yields, with assumed time factor 

-~lU;t-
~ 

(for>) 

The voltage difference 7/Ja.. between the two conductors is then simply, 

since };=..Ij. remains constant for .-t-5. ..-t..~tL. : 

a.. • 
-r7 -! ~ _ -.2~f.I)A /A713:.. )I~ 
r 6a. - b &A-- - c.l4l: ,-f 6 'tl 

or ('1-t>b) _l;!j = A-. c.~: 7/ia. =- y"*·f:,?ju~-
tlJ ..2o/t~ 

:; · c.Z ~2. • I C' 

whexe y = -..<- ~~ = 2/ffo-; -A- 2 we, 
.i'tV.Pt Zj-f ~ 

or y ~ , · P 2-rrd/ - € = \.:f --A.. w L- = ~a. -/-.-<.. ~ ~ a. 
tf-z;- 2/b 

This is immediately the definition of the shunt admittance for the 

concentric transmission system. The shunt conductance and the 

shunt capacitance per unit 1 ength are : 

('l -tV!) 

respectively. 

Similarly, by integrating (9.05), we obtain: 

• The star signs are used here to indicate the complex conjugate 
value~ of Y and z. These are necessary because time factor 

_e.--<-to£ is used here. 
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_L rL£3 lA, = 2 A.. (,{)A 11'nj ~ .:r 2 + t A.-() E ~- , . 
7,.}h 4 ~~ ,~, b tT J;, ~ ~ 

or (foB) ~~" = 2-'';(" 7: .X, -f [iytJ)- Ej cJ;j 

Equations (9.06) and (9.08) are formally analogous to the partial 

differential equations of the conventional transmission lines. 

Now the question is how~ (a) and7 (b) can be evaluated. This has 

to resort to Maxwell's field Equations (9 . 01). Referring to 

Equations (4.12), we see that the solutions of the field components 

for the different rigions can be written as: 

(a) for O!:"/l-~6 inside the central conductor 

E~ === R~[ f.e~·w~"'~}- -"'·:lv- A~J,(A,J;/;-~:rJ] 
~=' n.:-lv-

Hy = Re { Z .[~~·">.;!. (!~z A.t>-J"(A-JJ:-).zvJ] 
~:;-/ y~ CtJ,f,l;-J,tr-

(b) for b </1. <a- in the dielectric air medium 

(f. It>) 

(c) for a. </1<c:oo inside outer conductor 

('!·II) 
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J' = o [z.e:A.·tv~ A!);tf'. c.~z ..1/y-11'~1~,-;AZ J 7 
Nlf 11e Y;/ ~~aJn~~-,Ap_ I 2 V(j 

where )ur~ are the eigenvalues corresponding to different modes of 

propagation and are to be determined from the boundary conditions 

at A:.:a.- and A-=b . Integrating f/y in (9.09) around a circle at 

fi = b , we obtain: 

21T 2 ~ 4-t-r:Z:,. 
(1-12 ) f~-~~~b"f =-277-trz~~/#t~/.pr. c.,~z 4pxr,;~~)j-2z p(j +~ 

0 'Lir .N,P'~w/A;-.A~ "J J- Z 4rr.Iifv-
~r +-C. 

This shows that ~ must also be comprised of the same number of 

different "modes". 

This determines theA,~. If we substitute the above relation 

in ~ , there results: 

Similar integration of tfr in (9.11) around a circle at A.=,:t_ gives: 

This then determines the PP~• Substituting into ![; , we have: 

One criticism might be raised here about the deduction of the 

Equations (9.12)a, and (9.13)a. On the left-hand sides of (9.12) 
-"Apr 

and (9 . 13), there is the factor ...e. assumed for the field com-

ponents; while on the right-hand sides of both, the ~-dependence 
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for~~ is still unknown. We shall suppose for the present, that 

') 
~ also has such an exponential factor ..e.J- v? . Although -\v. is 

involved in the expressions for Ejfa} and !fJf /;) , and can only be 

rigorously determined from the boundary conditions at /l- =a.. and 

/l =b ; fortunately for most practical cases the conductivity of 

the conductors is so high that the relation (~2>>/1;:") holds. 

Then ~ {a) and .EjtJJ assume the following simple forms: 

( tj-14) 

and 

{ 'f-/Jj 

since •: 

and 

£1,1~~ {/-A.') 

b c ~~-,no ~ / tA ..Ij 

LJ{I/ j" / od £; {a) - -.2_,.: co_,-U. II" (t2 'fl,.) EI ~ 
ac~.,l.2 1-/~YaZ);r::t "Jv-

cv_,P .. (I-A') L 

- tl <! 12..,. UJ(li /1- (}-

~ Jo(bJz,) 
<G.-too J, { b ~:~.) 

t/~1/{alJ 
li~'fa-I~J 

from the asymptotic properties of cylindrical functions . Now we 

can substitute (9.14) and (9 . 15) into (9.08) and obtain: 

• J ahnke and Emde . "Functional Tables", pp. 264-266. 
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= - f c ;;:;,.Y', ( j-; )--< f';: '7-f'-c"/:f!:-.,<JJ j -f)/:;,-
=- z*Ir 

where the series impedance of the transmission system is defined as: 

The series resistance and the series inductance per unit length 

are then: 

(4-16) 

and 

respectively. 

After the determination of these circuit constants, we can 

proceed to solve the propagation characteristics in the manner used 

for conventional transmission circuits. From relations (9.06) and 

(9.08)a, we have immediately: 

('1 ·11) 
-;2_r 

z>~y~ -A.z-ZJ-_J - -
')~ 

and ?~Ua. z"*Y*J?iL = - '>..
2 l/:P--

'J--
The solutions of (9.17), for an infinitely long concentric trans-

mission system, are: 
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(1{-18) l 
-r/. F7"'A -.-(.)J- g; ..,.4-A~ 
r oa. = E.. , ..e. - y .4z ..1!- 17 

t/Y~ 

where i) =/z~y* and A, f ../2 are to be determined from the exci t-

ing and the receiving conditions. ). is the explicit propagation 

constant and comprises a real and an imaginary component: 

we ha.ve then: 

l 
o(~- fl .. = !fo/ - co 2L c. 

2p(j3 =RtuC-1-($--tvL 

Solving the above simultaneous equations for o< and jJ , we obtain 

in general: 

f olz = i[-twiC -/((j) +,Y {tv 1LC-tfEJ-Jf(/f wC--1-6-wLJ.zj 
tr.;o L 

(J .,= ;_ {- ( lf'(j- tu 2.Lc)-/r P,tT-t:v-y_c):.( /(wC-fqwL)z} 

The characteristic impedance of the concentric transmission system 

is simply: 

Now if we use the assumptions (a) and (b) stated at the beginning, 

then { IIi f. 0 
and [ ;:- = 0

_. /M 
6";__, ~ /I - ~ 

The attenuation constant and the phase constant become: 
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(f.2o) 

respectively. 

Substituting into (9. 20) the vaJ.ues obtained before for fl , C , 

and L- , neglecting the second term in (9.16) for~ , then we have: 

_t. 

(f:l!J ~ = _L j..u~£, {_!_ _ _!_)~ 
4 /",a;_ ,6 a ~ -j-

and (tf·ZZ) · A= cu ltifo = cv approximately. 
/'"' c:. v;, 

The phase velocity of propagation is thus essentially equal to 

that in free space : 

{ f-23) 

independent upon the frequency of excitation. Comparing (9.23) 

with (4. /t') for the d .mode, we see that the concentric system has 

a decided advantage over the hollow tube guide which has a phase 

velocity varying widely when the frequency is near to the cut-off 

vaJ.ue. 

When the frequency is very high ( / >7 /vJ , however, (9.23) 

and (4. /5) are practically equal, since: 

The attenuation constants for the two cases for the same inner 

radius, a, of the metal tube have the following ratio: 

(fj-.24} 
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In general near the cut-off frequency 'J{r , the hollow tube guide has 

a higher attenuation than the concentric systEm. When /-»/ r 

which varies between 0. 6 to 2. 0 for the probable range of : from 

1 . 5 to 10. It is expected that the attenuation constant (9.21) for 

a concentric system will be increased somewhat due to the insertion 

of regular separating insulators used to keep the central conductor 

in position. Conse~ently in order to keep down this unavoidable 

increase of attenuation, it is strongly recommended that only high 

quality material should be used for the insulators . If this can 

be realized, a concentric transmission system compares favorably 

with a hollow tube guide so far as attenuation is concerned. 

Besides, a concentric system possesses some decided advantages 

for usual transmission purposes over a hollow guide. They are: 

(1) Ease of matching the transmitter and the receiver to the 

transmission system. 

(2) Nearly hundred per cent efficiency of reception which can 

never be realized for a hollow guide. 

(3) Stability of operation and of field configuration when the 

physical construction deviates from the ideal case of a straight 

cylindrical system with uniform circular cross-section. (Compare 

with the discussion at the end of Section IV.). 

Let us, however, not a t tempt to discredit a hollow tube guide too 

much, since the economy of engineering application always plays a 
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very important role and further it might find some other fields 

of use due to its specific physical character. 

The following is a rather incomplete list of references for this 
section:-

( l ) S. A. Schekunoff, liThe :Electromagnetic Theory of Co-axial 
Transmission Lines and Cylindrical Shields 11 , Bell System 
Tech. Jour., Oct., 1934. 

(2) H. Kruse und 0. Zinke, "Currents in Layered Cylindrical Con­
ductors", Hochfrequenztech. u. :Elektroa.kustik, 44, S. 195-203, 
Dec., 1934. 

(3) H. Kaden, "Television Cables", Arch. f. Elektrat. 30, S. 691-
712, Nov., 1936. 

(4) R. Redus, "Co-axial Cables, Their :Employment at H. F. for 
Television", Onde Elec. 17, pp. 325-337 July; pp. 399-426, 
August, 1938. 

( 5) J. R. Carson and Gilbert, "Transmission Characteristics of 
Submarine Cables", Jour. Franklin Inst., Dec., 1921. 

(6) J. R. Carson and Gilbert, "Transmission Characteristics of 
Submarine Cables", B. S. T. J., July, 1922. 
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