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Abstract 

The Cosmic Ray Subsystem aboard Voyager 2 measured large fluxes of trapped ener

getic protons and electrons in the inner magnetosphere of Neptune during the 1989 flyby; the 

protons above 1.9 MeV observed by the Low Energy Telescopes are analyzed in this thesis. 

Proton events are extracted from pulse-height distributions dominated by low-energy electron 

pileup noise, and fluxes are calculated with corrections for discriminator deadtime. Theoreti

cal models for satellite absorption of charged particles are adapted to the large gyroradii of 

energetic protons, and model magnetospheres are constructed that involve diffusion of par

ticles in the presence of this absorption; parameters of t11ese model magnetospheres are 

adjusted to reproduce the observations. The inward-diffusing proton flux is limited by 

absorption due to the moon 1989N I (Proteus), with absorpHon at high magnetic latitudes 

(whence high Ls) proving to be most important. The proton radial diffusion coefficient is an 

order of magnitude less than that inferred elsewhere for the electrons; this prevents protons 

from diffusing inward past 1989N 1 before tlley are absorbed, and in fact tlle proton flux 

returns to background levels witltin a limit well outside the minimum L-shell of 1989Nl, 

while electrons can diffuse past this satellite so tllat their flux recovers before they are 

absorbed by the other moons and rings closer to the planet. The rate of proton radial 

diffusion, in comparison with t11at for electrons, is consistent witll t11e diffusion being driven 

by electric fields from wind fluctuations in tlle ionosphere of Neptune. Radial diffusion 

alone, however, produces too much pitch-angle anisotropy as particles wit11 mild anisotropy 

in tlle outer magnetosphere are transported inward, and pitch-angle diffusion must be invoked 

to reduce the excess anisotropy and reproduce tlle observations. The pitch-angle distributions 

at different Ls are consistent witll tlle diffusion coefficient for tltis process being comparable 

in magnitude to that for radial diffusion inside L of about 6.8, though still much less than the 

strong-diffusion limit, and negligible outside tllat L. 
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1.1. Planetary Magnetic Fields 
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Chapter 1 

Introduction 

The eight planets that have so far been observed at close range by spacecraft fall into 

two major groups, separated by the asteroid belt, when classified by a number of measures. 

Size and composition are the most obvious; in addition, we can draw several general distinc

tions between the magnetic fields of the terrestrial (inner) planets and the giant (outer) 

planets. As shown in table 1.1 below. of the four terrestrial planets only Earth has a substan

tial magnetic field, while all four giant planets possess huge magnetospheres, within which 

Table 1.1 Planetary Magnetic Fields 

(mostly after Lanzerotti and Krimigis (1985)) 

Rp ko angle between typ. magnetopause 
Planet 

(103 km) (GaussxR)) k0 and O.p distance (Rp) 

Mercury 2.42 = 3x10-4 = 100 1.1 

Venus 6.10 <3x10-4 -- 1.1 

Earth 6.37 0.31 11.5° 10 

Mars 3.38 6.5x 10-4 (?) (?) (?) 

Jupiter 71.4 4.1 9.6° 60-100 

Saturn 60.4 0.4 < 10 20-25 

Uranus 25.6 0.23 60° 18 

Neptune 24.8 0.13 45° 26 
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their magnetic fields largely shrug aside the solar wind. (Uranus data are from Ness et al. 

(1986), and Neptune data from Ness et al. (1989) and Ness (1990).) Rp is the planet's 

radius, k 0 is the magnetic dipole moment, and Op is the planetary rotation vector; the sun

ward magnetopause distance varies with solar wind strength, but its typical size is a measure 

of the size of the planet's magnetosphere (in the case of Venus, the distance quoted is to the 

subsolar ionopause, as the solar wind interacts directly with the planet's ionosphere). Present 

and upcoming spacecraft visits to the giant planets are listed in table 1.2; Galileo will enter 

into orbit about Jupiter and drop a probe into its atmosphere, where all previous spacecraft 

have conducted flybys. This thesis makes use of observations from the 1989 Voyager 2 Nep

tune encounter. 

Table 1.2 Exploration of the Outer Planets 

Spacecraft Planet Launch Arrival 

Pioneer 10 Jupiter 2 Mar 72 3 Dec 73 

Pioneer I 1 Jupiter 5 Apr 73 2 Dec 74 

Saturn 1 Sep 79 

Voyager 1 Jupiter 5 Sep 77 5 Mar 79 

Saturn 12 Nov 80 

Voyager 2 Jupiter 20 Aug 77 9 Jul 79 

Saturn 26 Aug 81 

Uranus 24 Jan 86 

Neptune 25 Aug 89 

Ulysses Jupiter 6 Oct 90 8 Feb 92 

Galileo Jupiter 18 Oct 89 7 Dec 95 
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1.2. Satellites in the Magnetospheres of the Outer Planets 

1.2.1. Moons as Charged Particle Sources 

Besides their sheer size, the magnetospheres of the giant planets differ from that of 

Earth in that each of the four outer planets has rings and several satellites that orbit well 

within their magnetospheres; Earth's moon is sufficiently distant that it enters the magnetotail 

(the extension of the magnetosphere swept "downstream" by the solar wind) only briefly each 

month. These satellites have a large impact on the charged-particle populations of the mag

netospheres. as both sources and sinks. Plasma in Earth's magnetosphere can come from the 

ionosphere or from the solar wind, and energetic particles can be generated from the plasma 

by various acceleration processes or injected directly through decay of neutrons spalled from 

the atmosphere by cosmic rays (CRAND, for Cosmic Ray Albedo Neutron Decay, protons 

from interactions with ring material were also observed by Pioneer 11 and Voyager 2 at 

Saturn (Schardt and McDonald 1983)); at the outer planets, where satellites are present within 

the magnetosphere, they can also become a source of charged particles (or of neutral atoms 

which can then become ionized by interaction with sunlight or with charged particles already 

present). 

The moons Titan at Saturn and Triton at Neptune have atmospheres, in the case of 

Titan denser than Earth's at the surface. Neutral hydrogen from dissociation of methane in 

Titan's atmosphere maintains a hydrogen torus about the moon's orbit, which in tum supplies 

plasma to the magnetosphere (Broadfoot et al. 1981; Sandel et al. 1982), whence energetic 

protons can be accelerated (Vogt et al. 1981); Titan may also be a source of low-energy 

nitrogen ions (Bridge et al. 1981). Triton' s atmosphere also puts hydrogen and nitrogen 

plasma into Neptune's magnetosphere (Richardson et al. 1991); nitrogen from this moon was 

also observed at higher energies (Mauk et al. 1991). Solid moons can also contribute plasma 

to their planets' magnetospheres; oxygen sputtered from the icy inner moons and rings of 

Saturn by energetic particles has been observed (Armstrong et al. 1983). The most dramatic 

case of a moon contributing matter to the magnetosphere, however, is that of the volcanic 

moon Io at Jupiter, which is the source of a plasma torus of sulfur, oxygen, and sodium 

(Broadfoot et al. 1979; Bridge et al. 1979); these ions are also observed at energies up to 
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several MeV per nucleon (Krimigis et al. 1979; Vogt et al. 1979). 

1.2.2. Moons as Charged Particle Sinks 

Charged particles can depart a magnetosphere by striking the planet's atmosphere (or 

surface, in the case of Mercury) or by escaping to interplanetary space. In the case of the 

outer planets, where there are satellites and rings within the magnetosphere, these can also 

absorb particles. Because the position and size of such solid matter can (usually) be deter

mined better than, e.g .• those of a plasma torus, the rate and distribution of charged particle 

losses to satellites and rings can be calculated more precisely; observations of the particle 

population in the magnetosphere can then be compared with models that incorporate satellite 

sweeping along with other aspects of magnetospheric dynamics in order to draw conclusions 

about those other aspects. For example, the location of a satellite "signature," a reduction of 

charged particle flux due to sweeping, can give new information about the shape of the mag

netic field when it is noted that the position along the spacecraft's trajectory where the signa

ture is observed (which position must be on a field line accessible to particles which have 

encountered and been depleted by the moon) differs from the location predicted from a model 

of the planetary magnetic field (Vogt et al. 1981; Selesnick 1992a). lllis process can be 

reversed: if an absorption signature is observed that cannot be accounted for by known satel

lite material, it can indicate the presence of unseen rings or moons (Simpson et al. 1980; Van 

Allen et al. 1980; Fillius et al. 1980; Chenette and Stone 1983; Cuzzi and Bums 1988). 

Since moons and rings deplete the charged particle population in their vicinity, particles 

observed near them must be replenished by a local source, by diffusion from other parts of 

the magnetosphere, or by both. Given a calculation of the loss rate due to satellite sweeping, 

the replenishment rate from models of sources and diffusion can be compared with observa

tions; this can be done on the basis of a single recent encounter of the moon with the par

ticles being observed, yielding a "rnicrosignature," or in a time-average over many 

encounters, resulting in a "macrosignature." lllis thesis presents analysis of the macrosigna

ture in the few-MeV proton population due to the small inner moons and satellites of Nep

tune, in particular 1989N 1 (Proteus). 1l1e magnetic fields of Uranus and Neptune, if approxi

mated by a dipole field as in table l.l, are substantially different from those of the other 
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magnetized planets in that the tilt of the dipole moment relative to the rotation axis is much 

greater; in addition, the dipole centers are offset from the centers of the planets by .31 

Uranus radii (Ness et al. 1986) and .55 Neptune radii (Ness et al. 1989; Ness 1990) respec

tively. These large tilts and offsets in the approximate dipole models are indicative of the 

complexity of the real fields, with higher-order magnetic moments making a large contribu

tion to the field; in terms of the interaction of satellites with charged particles in the magneto

sphere, the large tilt indicates that particles will be swept from populations that will be 

observed at distances from the planet much greater than that of the sweeping material, as will 

be shown in chapter 4, so that the macrosignature can be expected to be broad and it should 

be possible to probe diffusion with some sensitivity well away from the absorbing satellite. 

Indeed, as will be seen, the proton macrosignature is so broad that the flux of protons in the 

energy range studied drops below detectability well outside the region where the magnetic 

field lines intersect the moon's orbit near the magnetic equator, which is the only place where 

absorption occurs at all in a dipolar field concentric with the planet and aligned with its rota

tion axis. Diffusion can widen the macrosignature about this region in the simple field, but 

the tilt of the magnetic field of Neptune, combined with other effects peculiar to energetic 

ions with their large gyroradii, results in an extreme case where the rate of absorption away 

from this region can be larger than the rate of absorption in it. Thus the energetic proton 

population at Neptune is subject to effects absent at Jupiter and Saturn as well as at Earth 

(they are present at Uranus, but the higher proton fluxes there obscure them somewhat), and 

so we have another instance to contrast with previous experience, which is of course the 

whole point of comparative planetology and a large part of the reason for space exploration 

in general and tl1e Voyager mission in particular. 
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Chapter 2 

Instrumentation and Event Analysis 

2.1. Instrument Description 

2.1.1. The Cosmic Ray Subsystem 

An overview of the Voyager Cosmic Ray Subsystem (CRS) appears in figure 2.1; the 

CRS is mounted near the root of the Science Boom (about 13 inches, or the approximate 

width of the CRS itself, from the lip of the High Gain Antenna, with the top of the electron

ics box about even with the lip) on each of the two Voyager spacecraft. HET 1 is on the 

side of the CRS closest to the antenna dish and HET 2 on the side farthest from it. Each 

Voyager' s CRS consists of seven silicon solid-state particle telescopes: The Electron Tele

scope (TET) consisting of eight 3mm lithium-drifted detectors and six tungsten absorbers, 

optimized to measure electrons from approximately 5 to 110 MeV in interplanetary space, 

though special calibrations have been done to extend measuring capability below 1 MeV in a 

planetary magnetosphere (Selesnick & Stone 1991a); two double-ended High Energy Tele

scopes (HETs) consisting of two surface-barrier and nine lithium-drifted detectors of varying 

configurations, with some sensitivity to 3 to 10 MeV electrons but mostly observing ions 

from hydrogen to beyond iron from about 4 to 500 MeV/nucleon, using two gain modes; and 

four Low Energy Telescopes (LETs), described below. Some 101 single-detector and 

detector-coincidence rates are accumulated and read out; two parallel redundant blocks of six 

buffers (two event types for a pair of LETs, three for one HET, and one for TET, per block) 

accumulate pulse-height-analyzed particle events, with serial polling so that rare events in 

some buffers will not be overwhelmed by more common events in others. Details about the 

CRS are given by Stone et al. (1977) and Stilwell et al. (1979). 
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2.1.2. The Low Energy Telescopes 

2.1.2.1. Shielding and Geometry 

The LETs observe low-energy ions; for protons, the sensitivity is from approximately 

1.9 to 8.4 MeV for particles depositing energy in at least the first two detectors, with protons 

down to approximately 500 keV able to trigger the first detector's discriminator (and incre

ment its rate counter). A single LET is shown in figure 2.2; the diagram shows a typical 

longitudinal cross section, including most of the material that acts as shielding for the detec

tors. There are four silicon surface-barrier detectors in each LET; nomina11y, L1 and L2 are 

35J1.m thick, and L3 and L4 are 450J1.m thick. The first three detectors are pulse-height 

analyzed, while L4 is norma11y used as an anticoincidence element to ensure that a particle 

entering through the front of the telescope actually stopped in the pulse-height-analyzed stack, 

and therefore that all of its energy has been measured and accounted for. 

The minimum shielding around most of the LET is .020 inches (508J1.m) of aluminum, 

with a stopping power of several MeV for normally-incident protons (see, e.g., Deamaley & 

Northrop (1966)). The collimator at the front of the LET is made of Delrin with a minimum 

thickness of .020 inches (508J1.m), but particles passing through this thin section to strike the 

detectors would have to travel at an oblique angle and thus traverse a much longer distance in 

the Delrin, so stopping power is even greater. Thus for protons up to several MeV, it can be 

assumed that only those that enter through the 3J1.m aluminum window (stopping power :::::300 

keV for norma11y-incident protons) attached to the collimator will be observed. This defines 

a geometry factor of G ::::: 4.5 cm2 sr for particles striking the active area of L 1; for particles 

that trigger both L1 and L2, and that are thus constrained to pass through the active areas of 

both, the geometry factor is G ::::: 0.44 cm2 sr (see, e.g., Sullivan (1971)). Particles that 

trigger Ll, L2, and L3 will have the same geometry factor, as the 25° acceptance cone 

defined by the active areas of Ll and L2 imposes a tighter constraint than that imposed by 

the additional requirement that the particle pass through the active area of L3. 

The CRS is covered by a multilayer blanket for thermal and micrometeoroid protection. 

The penetrating nature of electrons allows the TET to look out through this unimpeded; 
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Figure 2.1 

The Voyager Cosmic Ray Subsystem (CRS) prototype (after Stilwell et al. (1979)); flight 

units on both Voyagers are similar. except for HET 2 pointing directions (Voyager l's resem

bles this, Voyager 2 has HET 2 B-end pointing more to the left). TI1e High Gain Antenna 

would be to the right, aimed upward, in this view of a mounted flight unit, and the Scan Plat

form would be to the left. 



CD 

f-
w 
r 

~\ w 
:r: 

CD 
(\J 

f-
w 
:r: 

- 9 -

Figure 2.1 

1-
w 
f--



- 10-

Figure 2.2 

Typical longitudinal section of a CRS Low Energy Telescope (LET), showing detectors and 

bulk construction (electrical contacts, washers, shims. etc. are not shown). Detector active 

areas are indicated by heavy lines. 
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Figure 2 .2 
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windows consisting of fewer layers are provided for each end of each HET, and the fronts 

of the LETs are outside the blanket altogether, so that only the 3Jlm (nominal) aluminum 

window shields the Ll detector in each LET. 

2.1.2.2. Coincidence Logic and Operating Modes 

The LET PHA's are triggered by detector coincidence states called LZ3 or LZ3*; the 

former is for ions heavier than helium, the latter for hydrogen and helium. The normal 

operating mode is for the LZ3 or LZ3* trigger to be tripped when Ll, L2, and L3 are trig

gered and L4 is not. Nominal thresholds of the discriminators are 200 keY for L1 and L2, 1 

MeV for L3, and 300 keY for L4. The status of the other detector discriminator levels is 

checked about 4 JlSec after the Ll discriminator fires (Gehrels 1981). as is that of a discrimi

nator fed a linear combination of signals in Ll. L2, and L3. called the "slant" discriminator 

or SL (SL = Ll + 0.42L2 + 0.20L3. with a threshold of 9.6 MeV). which is used to identify 

particles heavier than helium (Z~3). If Ll, L2, and L3 discriminators have been triggered 

and L4 and SL have not. then the LZ3* rate counter is incremented and PHA "gates" are 

opened to measure the energy loss signal in Ll, L2, and L3; if the above conditions are met 

except that SL is triggered, LZ3 is incremented and PHA gates again open. TI1e coincidence 

logic is alterable by remote command to delete L2 and/or L3 terms from the PHA analysis 

conditions; thus pulse-height analysis (of all three detectors) can be triggered by Ll alone 

("singles" mode) or by L 1 and L2 only ("doubles" mode). in addition to the normal ("tri

ples") mode. These are minimal triggering conditions, so an event triggering Ll, L2, and L3 

would be analyzed in all three modes, and an event triggering only L1 and L2 would be 

analyzed in singles as well as in doubles mode. 

During the Uranus and Neptune encounters. the CRS basic time unit was 96 seconds 

long. A 4-bit subcommutator (in addition to the gain bits for the HETs) determines which of 

the 101 CRS rates is counted in and read out from each of the 29 accumulators; the basic 

unit of time resolution is the period it takes this to step through its 16 states. Also in this 

period, 400 pulse-height-analyzed events are read out from the PHA buffers (a "null" event is 

read out if all buffers in both blocks are empty when polled). The command system of the 

Voyager 2 spacecraft was set to instruct the CRS to change operating states every two 
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subcomm cycles; of the four LETs, the mode changes affected only C and D, switching 

them (together) from doubles to triples mode and back. The ground data-processing time 

unit, the "volume", was set equal to one subcomm cycle for the Uranus and Neptune 

encounters; hereinafter the two terms "volume" and "subcommutator cycle" will be con

sidered equivalent. The Ll detector of Voyager 2's LET B ("LBl," and similarly, 

hereinafter) was damaged by the high radiation dose absorbed during the spacecraft's 1979 

ftyby of Jupiter, and has become noisy; thus its preamplifier has been turned off permanently 

so it cannot generate false PHA triggers to use up the buffer space it shares with LET A, 

which was left in singles mode throughout these encounters. Because of the possibility of 

spurious coincidences in the high-count-rate environment of a planetary magnetosphere, LA4, 

LC4, and LD4 were turned off, so that real events would not be suppressed due to the L4 

anticoincidence term in the LET analysis trigger equations; LB4 was left on. Thus the LET 

data from these encounters consists of continuous LET A singles, and LET C and D doubles 

and triples data alternating along a 15-step chain (each step is two volumes): 

323232323232323 323232323232323 323232323232323 etc. 

Note the adjacent triples modes occurring every 30 volumes (48 minutes). 

2.2. Particle Identification 

2.2.1. Energy 

The information returned to Earth by the CRS consists of logarithmically-compressed 

rate counts (number of times during the accumulation period (one or more subcomm states) 

that a given detector or combination of detectors was triggered) and PHA event information 

(tags to identify which telescope the data was from and in some cases other information, and 

channel numbers from each PHA). The Space Radiation Laboratory receives this data, 

stripped out from the downlinked stream from the whole spacecraft, from the Deep Space 

Network and the Jet Propulsion Laboratory via Goddard Space Flight Center on an "encyclo

pedia tape" that also includes information on time intervals: for instance, if downlink noise 
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obscures some of the PHA events in a 96-second volume, the amount of time that the data 

in that volume was intelligible is noted. For the LETs, nominal PHA channel widths are 75 

keV for Ll and L2, and 500 keV for L3. The large width of the channels in L3 (resulting 

from the large energy range, 2.048 GeV full-scale, necessary to measure the =1.5 GeV that 

could be deposited in this thicker detector by an iron nucleus) limits the number of "bins" 

into which a proton spectrum can be divided, since a maximum of 7 to 8 MeV (depending on 

angle of incidence) will be deposited in L3. The procedure for dividing up particle events 

into energy spectra in this work largely followed that used at Uranus, with existing programs 

modified as described below. 

Actual thicknesses of the LET detectors were measured before final assembly. Actual 

thresholds and PHA channel widths and offsets were also measured using an electronic pulser 

before launch, but these were correct only relative to an input capacitance (which converts 

deposited charge, proportional to energy loss in the detector, to a voltage signal); these nor

malizations were determined in flight by calculating energy deposits in each detector for par

ticles of different energies and incidence angles, and adjusting these parameters to obtain the 

best match of theoretical energy deposits with the PHA channels observed for solar flare par

ticles (Cook 1981). Right calibrations were also done to determine the thickness of the dead 

layer burned into the front of each LET's Ll detector by the large dose of radiation absorbed 

during the Jupiter flyby. With this information, we can calculate from the PHA channel 

numbers the energy deposited in each detector, and we can then compare each pulse-height

analyzed event with the energy deposits expected for different ions at different energies to 

identify particle species and energy. The full Voyager cruise analysis programs employ a 

generalized six-parameter range-energy relation fitted to flight data by Cook (1981) to calcu

late an estimate of the ion nuclear charge Z from the energy deposited in the Ll and L2 (or 

L2+L3) detectors, and in the case of a triples event another estimate of Z from the energy 

deposited in L2 and L3. The two Z estimates for a triples event can be compared for con

sistency, and all Z estimates can be required to be within some small distance of a single 

whole number, in order for an event to be accepted. Application of this procedure to Nep

tune LET data resulted in perhaps two or three credible nitrogen and oxygen, and a few more 

helium, events; essentially all the nuclei the LETs observed were hydrogen. Since the 
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Figure 2.3 

LET C doubles events observed in the inner magnetosphere of Neptune (from hour 20 of day 

236 to hour 13 of day 237): crossplot of energy deposited in detectors LC 1 and LC2 for par

ticles not triggering LC3, as converted from PHA channel data with a uniformly-distributed 

random number between zero and one added to the channel number before energy calibration 

was applied. Solid tracks represent theoretical energy deposits for protons of different ener

gies incident along the LET axis (lower curve) and at 25° to this axis (upper curve). Pairs of 

points on the two curves (connected and labeled) are for protons of the same energy when 

incident on the LET's window: (A) 1.9 MeV, (B) 2.1 MeV, (C) 2.4 MeV, and (D) 2.9 MeV. 

Tracks end at the point where protons would deposit 1 MeV in LC3, thus triggering it and 

being logged as triples events. A plot for LET D would look similar, but would have more 

events. 

Figure 2.4 

Crossplots of LET C triples events observed over the same time period as in figure 2.3, for 

(a) LCl vs. LC3 and (b) LC2 vs. LC3. A random number is added to the PHA channel 

number as for doubles events, and the two solid curves are for the same incidence angles as 

in that figure. Labeled pairs of points are for incident energies of (A) 3.2 MeV, (B) 3.7 

MeV, (C) 4.3 MeV, and (D) 5.0 MeV. A plot for LET D would look similar, but would 

have more events. 
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Figure 2.4 
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hydrogen and helium tracks calculated on a crossplot of energy deposits in two detectors are 

widely separated, even by comparison with the broadened observed proton track width shown 

hereinafter, we can just look at protons henceforth. 

Figures 2.3 and 2.4 show the problem before us in identifying and sorting protons by 

energy: the data set is extremely noisy. The solid lines in these figures are nominal tracks 

calculated for protons incident normally and with maximum obliquity (25°) on the LET C 

front window, and in interplanetary space the observed proton energy deposits are not spread 

out much beyond this nominal band. However, in the high-count-rate environment of a 

planetary magnetosphere, particle incidence rates can overwhelm the operating timescales of 

an instrument optimized, as was the CRS. to measure rare events in interplanetary space. A 

clue to the nature of the smearing-out of the proton band is the dense patch of events at the 

lowest energies in each detector in each crossplot: if we ignore the events that lie near the 

nominal proton band, and are likely to be real protons, the remaining set of events is sharply 

peaked toward low energies (thresholds of detectors reduce, but do not eliminate, numbers of 

events recorded in the very lowest PHA channels). Moreover. many of these events involve 

energy deposit in L2 and L3 as well as Ll, indicating that some of the causative particles are 

penetrating to these detectors, either through the detector(s) above or through the walls of the 

LET. These traits are consistent with the cause being a pileup of low-energy electrons: if, 

say, ten 20-keV electrons fall on the Ll detector within its ::::4Jlsec shaping time, they will 

collectively look like a single pulse of up to 200 keV and can trigger the discriminator. 

Other possibilities considered include piled-up low-energy protons and the rare higher-energy 

electron that deposits all or most of its energy in one detector (an energetic electron will usu

ally deposit very little energy in detectors as thin as Ll and L2, but electrons experience 

much more straggling in energy deposit than ions and also experience more deflection due to 

scattering, and a rare event could result in all the energy of, say, a 200-keV electron appear

ing in Ll). However, simple models of pileup were applied, based on the low-energy elec

tron and proton measurements from the Low Energy Charged Particle (LECP) experiment 

aboard Voyager 2 (Krimigis et al. 1989), and the results were compared to the CRS LAZ3* 

(shown in figure 2.8(b) later), LAl, LCI. and LDl rates. Also, the detection efficiencies for 

electrons (with energies well above the most-probable energy deposit) of Lupton and Stone 
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(1972) were applied to the LECP observations of electrons in the vicinity of the Ll thresh

old energy, and the same comparison was made. Only the multiple pileup of low-energy 

(tens of keV) electrons could reproduce the count rates observed; the other two candidates 

were one to two orders of magnitude smaller. 

If the Ll counting rates are dominated by electron pileup, then the pileup energy depo

sits will also be present when a real proton strikes the LET; due to the high rate of pileup 

events and the AC coupling of the preamplifiers to the measurement electronics, the baseline 

from which the PHA measures pulse heights wiii shift so that its value averaged over pileup 

events will be zero. Then the proton energy deposit will be measured relative to this average 

baseline, with fluctuations in the pileup resulting in deviations in reported energy deposit both 

above and below the real value. Thus the proton bands in figures 2.3 and 2.4 will be 

smeared out both above and below their nominal positions, as observed, even though the 

electron energy deposits are (of course) only positive. It is impossible to identify precisely 

the energy of a particular proton event, even in the absence of noise, because of the finite 

energy resolution of the PHA channels; in normal data processing (for observations in inter

planetary space), a random number between zero and one is added to the (whole) number of 

each detector's PHA channel before energy calibration is applied, and then the set of proton 

events is divided up into energy bins in such a way that the input spectrum is not distorted, 

i.e., if the finite energy resolution causes a proton from one bin to be erroneously assigned to 

another then on average a proton will also be misidentified in the other direction. In the 

noisy data set presented here, a different set of energy bin identifiers will need to be derived, 

and in order to test candidates it will be necessary to model the noise distribution. 

Figures 2.5 show the PHA channel crossplots from LET A; these are approximately to 

the same energy scales as figures 2.3 and 2.4, but because of the vastly greater number of 

pulse-height-analyzed events in LET A compared to LET C (since all events triggering LET 

A's Ll, not just those that also involve a triggering of L2 and/or L3, are candidates for 

analysis) the events are left in channels rather than being randomized and converted to ener

gies as in those figures. Some trace of the proton tracks is evident in figures 2.5, but the vast 

majority of the events are low-energy noise that we have attributed to piled-up electrons, and 

the vast majority of these occur in channels 0 of LA2 and LA3. This is clearer in figures 
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2.6, wherein a spectrum of pulse heights in each LET A detector is plotted, summing over 

all pulse heights in the other two detectors. The falloff at the lowest channels of LAl is due 

to the requirement that its discriminator be triggered, which is not required of LA2 or LA3 in 

singles mode. Even if we ignore the less-steep tail in higher channels of LAI, which may be 

attributable to real protons, it is clear that the LAI noise distribution is much broader (meas

ured in channels) than that in LA2 or LA3, and thus we assume that the dominant noise dis

placement of a proton event in any of the LETs is in the Ll energy. This is to be expected 

anyway if the main source of noise is piled-up electrons, as relatively few would penetrate Ll 

to reach L2 or L3 (and indeed, most of the events in figures 2.5 fall in channels 0 of LA2 

and LA3, as noted above). 

In interplanetary space, the proton band is not much broadened beyond the pair of nom

inal tracks shown, so we might split it into energy bins by cutting it along the labeled lines in 

figures 2.3 and 2.4, which are lines of constant incident proton energy at different incidence 

angles. In practice, it is assumed that energy losses in the window and the Ll dead layer are 

about the same for all incidence angles (relative to total proton energy), and therefore that the 

total energy deposited in the pulse-height-analyzed detectors plus this lost energy is the 

incident total energy. In effect, this assumes lines A, B, and C in figure 2.3 to be at 45°, 

which is not a bad approximation; the assumption that losses are the same over the accep

tance cone is even better for triples events in figures 2.4, as the lost energy is a smaller frac

tion of the total energy. A correction needs to be applied to "foldback" events such as those 

at points D in figure 2.3, on the part of the track where L2 energy decreases with decreasing 

L1; these represent particles that penetrated L2 but did not deposit enough energy in L3 to 

trigger its discriminator and register as triples events. The foldback track in figures 2.4, 

representing particles that penetrate L3, would largely be eliminated by the L4 anticoin

cidence term in normal operations, as only about 300 keY would have to be left after pene

tration of L3 before L4 was triggered and the event was suppressed. At the Uranus and Nep

tune encounters LA4, LC4, and LD4 were turned off, so figure 2.4(b) in particular shows a 

strong foldback track; tJ1ese tracks overlie one another for different elements, so it is not pos

sible to differentiate protons from heavier species, and in fact the foldback (positive slope) 

part of the track extends to higher energies than protons can achieve, indicating the presence 
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Figure 2.5 

Crossplots of LET A PHA events observed over the same time period as in figures 2.3 and 

2.4, for (a) LAl vs. LA2 and (b) LAl vs. LA3. Scales approximately match in energy those 

of figures 2.3 and 2.4(a) respectively. Area of the circle at each point is proportional to the 

number of points in that pair of channels; channel pairs with more than 1000 events in them 

are plotted as open circles. The smallest points are a single PHA event in a channel pair, 

while there were 16,111 events in channel 7 of LA 1 and channel 0 of LA3 over this time 

period. 

Figure 2.6 

Pulse-height distribution for each LET A detector, summed over all pulse-heights in the other 

two: (a) LA1, (b) LA2, and (c) LA3. Channel widths are approximately 75 keV for LAl and 

LA2, 500 keV for LA3. 
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Figure 2.6 
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of these high-energy heavy cosmic ray nuclei. 

1llls scheme for binning proton energies was tried on Monte Carlo data sets generated 

by assuming different incident energy spectra, generating events, and adding on varying 

amounts of Gaussian Ll noise (keeping the mean of the distribution at the "real" value of Ll 

energy for the event) and smaller amounts (about one energy channel width) of L2 and L3 

noise before binning the particles. The dominant Ll noise systematically promoted low

energy events into higher-energy bins when the interplanetary energy-binning scheme was 

tried, distorting the ftux-vs.-energy spectrum by up to several tens of percent. Other schemes 

were tried, and in the end it was found that the best way to reproduce an input spectrum for 

different energy slopes and amounts of noise was to ignore Ll energy altogether, once the 

identification of the event as part of the proton band had been made. For doubles events this 

meant making bin divisions based on the L2 energy calculated for some mean incidence 

angle (== 13°, the average for an isotropic incident proton distribution), and for triples it 

involved using L2 and L3 energies to calculate an expected L1 energy and reset the energy in 

L1 to this value before making the total energy cut. Energy bins were chosen from those 

used at Uranus, for more direct comparison with those observations (Stone et al. 1986). 

Because the width of the doubles track is such as to make the foldback portion indistinguish

able from the direct part, all doubles protons with L2 energies higher than 2.1 MeV (points B 

in figure 2.3) were assigned to a single bin, so that we have two doubles bins: 1.9 to 2.1 

MeV, and 2.1 to 2.9 MeV. Protons from 2.9 to 3.2 MeV, depending on incidence angle and 

thus energy deposit in L3, can register as doubles or triples events; an attempt to measure this 

energy bin with a reduced effective geometry factor was made at Uranus (Stone et al. 1986), 

but it is not included in Ul.is work. Triples protons were divided at Uranus into energy bins 

of roughly one or two L3 channel widths; the first three such bins are shown in figures 2.4, 

and these are all that will be used in this work, since beyond point D (5.0 MeV) the direct 

track runs into the foldback track in L2 vs. L3 (these two tracks and the low-energy noise are 

not readily separable anywhere in the Ll vs. L3 data set). Thus we have three triples bins to 

which we can assign protons: 3.2 to 3.7 MeV, 3.7 to 4.3 MeV, and 4.3 to 5.0 MeV. Pro

grams to implement these cuts on the set of pulse-height-analyzed events were adapted from 

those used at Uranus; in addiUon, approximately a dozen events in the doubles data set and 
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another dozen in the triples were removed by hand because tl1ey appeared to lie on or near 

the L4 foldback track but were accepted by the programs. 

2.2.2. Fluxes 

The methods discussed above allow us to construct a spectrum with the right shape, but 

some other information is needed to obtain the normalization, since the PHA polling system 

is not guaranteed to catch every proton passing through the telescope and satisfying the coin

cidence conditions (if the summed rates of all types of pulse-height-analyzed event exceed 

400 per volume, then something will definitely be left out). The PHA triggering rates, LZ3*, 

should catch every such proton; however, these too will be less than the real rates of proton 

incidence because of discriminator deadtime. We calculate corrections in two stages: if 

NpHA is tJ1e number of PHA events in the encyclopedia tape for one volume, N 1rig is the 

number of PHA trigger-rate counts in the same volume, and Tree is the livetime recorded on 

the encyclopedia tape for that volume (leaving out stretches of time during which downlink 

noise obscured data so as to reduce Nrrig ). then 

T = T [NPHA ]- NPHA PHA rec -
Nrrig ru3• 

(2.1) 

is the effective livetime for the PHA events being analyzed, assuming that the triggering rate 

has no deadtime. r123• is the observed rate of LZ3* events; if there is some deadtime, we 

need to calculate the true rate R123• and use that instead. 

To correct for LZ3* rate deadtime, we employ LET A. The Ll rate in each LET is an 

order of magnitude or more larger than tlle rates of the other detectors entering into the LZ3* 

trigger condition throughout the planetary encounter; thus we expect LZ3* deadtime to be 

dominated by Ll discriminator deadtime, so we can write 

(2.2) 

where rL 1 is tlle observed L I rate and 'tu is some average deadti me tl1at must pass before 

the L 1 discriminator (and thus the PHA-gate strobe) can be retriggered after a previous 
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trigger. -rL 1 is an average over all events; it is observed that the retrigger time between 

pulses will depend on the heights of the two pulses. A matrix of these retrigger times has 

been measured by Gehrels (1981), so that if Rj and rj are the real and observed rates respec

tively of events in PHA channel j, and 't;j is the retrigger time that must pass after an event 

in PHA channel i before an event in channel j can fire the Ll discriminator, then 

r · 
R· = J 

J 1-D · X't·· I IJ 

(2.3) 

With LET A in singles mode throughout the encounter, we have a pulse-height spectrum { rj } 

for LA1, and we can convolve it witJ1 the retrigger times to obtain 

(2.4) 

using equation 2.3 for Rj. We cannot perform this calculation directly for LETs C and D, 

because the set { rj } is incomplete due to the requirement that L2 or L2 and L3 be triggered 

before the PHA gates open, and most particles triggering L 1 (and contributing to its dead

time) will not satisfy this requirement. However, we can plot C vs. the observed LAZ3* rate 

(which is, in effect, the LAl rate sampled every 6 seconds rather than every 96 seconds), and 

to the extent that we can put a smooth curve through the points we can then read off C for 

LETs C and D vs. their Ll rates. Figure 2.7 shows this relation; the points are as calculated 

for LAl PHA data using equations 2.3 and 2.4, during the volumes when LETs C and D 

were in triples mode. (Though LET A does not change state, it shares PHA's with HET 1, 

which is toggling between high and low gains when LETs C and D are in doubles and triples 

modes respectively. When HET I is in high gain mode, residual signals from its detectors 

can contaminate the measurement of LAl charge deposit and distort this calculation, so only 

data taken witl1 HET 1 in the low gain state is used to calculate C.) Several volumes had 

LCl or LDl rates higher than the highest LAZ3* rate in this set; the C-vs.-rate relation was 

extended up to ==8.6xl03 sec-1 (for LET D around 06:30 on day 237) by using equation 2.2 

with a constant value of 'tL 1 = 92 J.l.Sec. The results are plotted vs. time in figure 2.8, along 

with the LAZ3* rate (LC I and LD I profiles are similar); two TET electron rates are included 
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for future reference. Then with the correct geometry factors G for LETs C and D (actual 

active areas and separations of detectors were measured before launch), the flux in an energy 

bin k of width !l.Ek is 

(2.5) 

for Nk the number of counts out of the set of N PHA pulse-height-analyzed events that are 

assigned to bin k . 

2.2.3. Results 

Figures 2.9, 2.10, 2.11, and 2.12 show the fluxes for LETs C and D derived from the 

above analysis, as a function of time through the encounter, for the five energy bins (two 

doubles. three triples) from which points will be selected for fitting to magnetospheric models 

below. Closest approach to the planet is at 03:56 UTC on 25 Aug 89 (day 237), almost at 

the center of the figures. "One-sigma" error bars are as approximated for Poisson statistics 

by Gehrels (1986): for N particles observed, the mean J..l is estimated to lie within 

N- ~N-! < J..1. < N + ~N +! + 1; (2.6) 

straight vertical lines are upper limits (J..l < 1 + 13/4) where no counts were observed in a 

two-volume interval. These errors are strictly statistical; assuming the 't;j measured by 

Gehrels (1981), we can estimate the fractional error in C. and the resultant fractional error in 

j, from the spread of the LET A points about the adopted line in figure 2.7. It should be 

negligible compared to the statistical errors except perhaps along the extension to high LD1 

rates. A larger source of systematic error in fluxes is likely to be the cuts used to assign par

ticles to energy bins; this might be up to 20%, which is small compared to the statistical 

errors in all of the energy bins at most times. In any case, the modeling approach employed 

in chapter 5 will not prove to be sensitive enough that errors of this size will make much 

difference in the quality of the resultant magnetospheric model. 
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Figure 2.7 

Correction factor C in equations 2.2 and 2.4, plotted vs. LAZ3* rate or LCI or LDI rate, as 

appropriate. Points are calculated from two-volume samples of LAl PHA data as described 

in the text, and the dotted line is the continuous curve adopted to read out C using the LCI 

or LDl rate. Solid curves are extensions for higher rates calculated using equation 2.2 for 

different values of 'tL 1, as labeled; 92 microseconds was the value adopted for use in 

analysis. 

Figure 2.8 

(a) Correction factor C in equations 2.2 and 2.4 (dotted line for LET A, dashed for LET C, 

and solid for LET D) and rate plots in the inner magnetosphere of Neptune, in sec-1
: (b) 

LAZ3* and (c) TET 01 and 02. LAZ3* responds primarily to piled-up electrons of tens of 

keY energy; the TET electron rates are included for later reference. 01 responds to electrons 

above =1 MeV, while 02 measures electrons above =2.5 MeV; the curve for 02 is lowered 

by one decade for clarity in the figure. 
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Figure 2 .7 
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Figure 2.8 
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Figure 2.9 

LET C proton fluxes observed in the inner magnetosphere of Neptune, in the two doubles 

bins: (a) 1.9 to 2.1 MeV and (b) 2.1 to 2.9 MeV. Fluxes are in (cm2 sr sec MeV)-1
. Verti

cal lines extend downward from upper limits. 

Figure 2.10 

LET D proton fluxes in the two doubles bins. as in figures 2.9. 

Figure 2.11 

LET C proton fluxes in the three triples bins: (a) 3.2 to 3.7 MeV, (b) 3.7 to 4.3 MeV, and (c) 

4.3 to 5.0 MeV. Fluxes are in (cm2 sr sec MeV)-1
• Vertical lines extend downward from 

upper limits. 

Figure 2.12 

LET D proton fluxes in the three triples bins. as in figures 2.11. 
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Figure 2.9 
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Figure 2.10 
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Figure 2 .11 
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Chapter 3 

Particle Motions and Classification 

3.1. Periodic Motions and Adiabatic Invariants 

3.1.1. Particles in a Dipolar Magnetic Field 

In the preceding chapter, we considered incident protons as isolated particles impinging 

on the LETs. without regard to their relation to one another or to the magnetic field of the 

planet that holds them in its vicinity (other than to establish a time sequence of the observa

tions). This magnetic field organizes the charged particles in its grip, however, in such a way 

that we can probe and draw conclusions about the entire magnetosphere based on observa

tions made during a single pass through it as we fly by the planet. 

As a first approximation to a planetary magnetic field, consider a dipolar field: in polar 

coordinates centered on and aligned with the magnetic dipole moment k0• 

2k0 . k0 
Br = - 3-smA., Bt.. = - -

3 
cosA, B~ = 0, 

r r 
(3.1) 

where k 0 is the magnitude of k0. Discussion below largely follows that of Roederer (1970), 

with some corrections of formulae. and Schulz and Lanzerotti ( 1974). Field lines are of the 

shape shown in figure 3.1; it is convenient to specify position in the magnetic field in terms 

of the magnetic latitude A above and r 0 or L. where r 0 is the width of the field line at its 

widest point (at the magnetic equator) and L is this distance divided by Rp. the planetary 

radius. In these coordinates. the magnitude of the field is 

B = ko _1_ ..j4 - 3cos2A. 
Rj L 3 cos6A 

Bp ..J4 - 3cos2A. 

L3 cos6A. 
(3.2) 

(If the dipole is at the center of the planet, Bp is the magnetic field strength at the surface on 
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the magnetic equator.) 

A charged particle in such a field will execute three periodic motions: first is the usual 

cyclotron motion, wherein the particle describes a helix whose axis is parallel to the local 

magnetic field B, with a period 

'tc := 21t = 2rrym oC = 
(J)c qB 

(3.3) 

where y is the usual relativistic factor and m 0 is the particle's rest mass, q is its charge, and 

c is the speed of light. Associated with a periodic motion we may define a canonical angular 

momentum or action integral that will be adiabatically conserved, i.e., it will be conserved 

when the external parameters (in this case. the local magnetic field) vary slowly on the time

scale of the periodic motion: if q and n are canonical coordinates (position and momentum) 

for the system, then 

1 =pndq (3.4) 

is such a conserved quantity, where the integral is taken over one complete cycle of the 

periodic motion (see, e.g., Goldstein (1950)). For a magnetostatic problem, the momentum 

canonically conjugate to the ordinary position vector r is 

n = p + !l....A, 
c 

(3.5) 

where p here is the ordinary momentum and A is the vector potential of the magnetic field. 

Let a be the pitch angle of the particle's helical trajectory. ranging from 0° for a particle 

moving parallel to B to 90° for one moving perpendicularly; then the integral in equation 3.4 

for cyclotron motion is (after a little algebra) 

2nm 0c 
lql M 

(3.6) 

p 2sin2a 
where M = is usually called the first adiabatic invariant or the magnetic moment, 

2moB 

and is related to the action integral J 1 by the constant factor shown; units used herein for M 

are MeV per Gauss. 
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The second periodic motion is the "bounce" motion, wherein the particle travels up and 

down the magnetic field line, trapped between the strong-field regions near the magnetic 

poles as in a "magnetic bottle." To the extent that this motion is on a timescale much slower 

than the cyclotron period, we can consider the local magnetic field at the particle's position 

(which changes as the particle travels up and down the field line) to be slowly varying on the 

timescale of the cyclotron period, so that M is conserved. We can then consider the "guiding 

center," the instantaneous center of curvature of the particle's helical path, to move along the 

field line at a speed v 11 = _E_cosa. where a is related to the magnetic latitude through 
rmo 

equation 3.2 and the constancy of M: in a static magnetic field (on the timescale of the 

bounce motion) the particle's energy (whence p) is conserved, so conservation of M implies 

sin2a 1 sin
2et.o -- = constant = -- = 

80 
, 

B Bmirr 
(3.7) 

where B,;rr is the magnetic field strength at which a = 90° and motion along the magnetic 

field stops (and reverses. or "mirrors") and the subscript zeroes indicate quantities measured 

at the magnetic equator. Then for A,;rr the magnetic latitude of the mirror point, the period 

of the bounce motion is 

A mJrr ,------;:--

= 2n _ tfi..1!_ _ 4Rp L J cosA V4 - 3cos2A = 4Rp L . (3.8) 
'tb - - 'j' - A [ l ~ d A - A H (A,lTT ). 

rob vII ...,c 1 - B (A) ...,c 
B (Amirr) 

H(A,;rr) ranges from rr;: = 0.740 for A,;rr = 0° to 1 + log(2 + ..f3) = 1.380 for 
2..f3 

Amirr = 90°. Integrating equation 3.4 along the field line over one cycle of the bounce 

motion. we find the next action integral 
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= 2pl = 2--j2moM K. (3.9) 

I is a field-geometric quantity (that is, it is defined without reference to the particle's p or 

M), and is convenient to use when considering a single field line; it ranges from 0 for 

Amirr = 0° to 2LRpH(90°) for J...mirr = 90°. For processes that conserve 1 1 (whence M) and 

J 2, K is a convenient field-geometric quantity that is conserved even when p is not con

served (for example, in the radial diffusion processes considered in chapter 5); figure 3.1 

shows lines of constant K (in units of Rp --.'Gauss) in a dipolar magnetic field. Finally, J 2 is 

commonly called just J. the second adiabatic invariant. 

The third periodic motion of a particle in a dipolar field is a drift in azimuth around the 

axis defined by the magnetic dipole k0. 1ltis is due partly to "gradient" drift, wherein the 

radius of gyration tightens when the particle's cyclotron motion takes it toward the planet into 

a stronger field and loosens when it moves away, and partly to "curvature" drift, wherein the 

"centrifugal force" of the particle's motion along the curved field line has an effect like that 

of an electric field directed outward from the planet (for positive particles), producing a drift 

in the direction of the cross product of the electric and magnetic fields. ll1e drift period is 

(3.10) 

where 

2 
_ B('A) 

,,A 2 2 A,.,;rr '\ 
3 rpmoc L J 1 - sin4A. B(,...,mirr) d'~ 

~~= 4 --------- Fl. 

2qBpRp 0 (4-3cos2A.)'-5 
[ B(A) ]~ 
1 

- B (Amirr) 

3yf3moe2L 2 
- -----F(A. . ) 

2qBpRp mm 
(3.11) 

is the magnetic longitude interval drifted in one bounce period -rb; F(A.,rirr) ranges from 

8 4H (0°) for A.,rirr = 0° to 3 H (90°) for Amirr = 90°. If the drift motion is slow relative to the 
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Figure 3.1 

Azimuthal section showing L and K for a dipolar magnetic field: field lines are shown as 

solid lines for L = 4 to 20 by steps of 4, while labeled (dotted) curves are lines of constant 

K. Labels are the values of K in Rp -vG for a magnetic moment of k 0 = 0. 130 G Rft. as 

adopted for Neptune; these values would scale with the square root of Bp = ko I Rl The 

heavy circle represents the planet, and the vertical scale is labeled in units of Rp . 
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Figure 3.1 
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bounce motion, the contribution from the p term to the integral in equation 3.4 is negligible 

relative to that from the A term for this periodic motion. which, by Stokes' Theorem, is pro

portional to the magnetic ftux through the surface enclosed by the path of integration, so the 

action integral for this periodic motion is 

(3.12) 

<l> is sometimes called the third, or ftux, adiabatic invariant. We now have a trio of canonical 

angular momenta which (with their associated angle variables, the phases of their respective 

periodic motions) can be used to identify particles completely; hereinafter reference will usu

ally be made toM. K, and L. which are an equivalent set. 

3.1.2. Particles in a Complex Magnetic Field 

A real planetary magnetic field will generally have a form involving higher-order mul

tipolar field components (beyond the dipole). due to the complex distribution of the dynamo 

currents that generate the planet's internal magnetic field. External currents from the region 

of the magnetopause or from plasma within the magnetosphere can also contribute to the 

magnetic field; wherever the planet's internal higher-order terms are the dominant contribu

tions to the non-dipolar part of the magnetic field, however. the above invariants can be used 

to map the trapped particle distribution onto a dipolar field. 

M is defined at the point of observation in equation 3.6. in terms of the local values of 

the magnetic field magnitude B. particle momentum p. and pitch angle a; this makes no 

reference to the dipolar or non-dipolar nature of tJ1e magnetic field. The relations in equation 

3.7 between values of a and B during the particle's bounce motion likewise follow only 

from the adiabatic assumptions leading to conservation of M. and should hold in the real 

field; in particular, Bmirr can be deduced from tl1e values of <X<) and 8 0. 

Given B,11rr and tl1e choice of a particular field line. the field-geometric quantity I (or 

K) can be calculated directly using equation 3.9. using tJ1e real relation of B and the distance 

s along the real field line. In a dipolar field. equation 3.9 shows that I is LRp times an 

increasing function of the mirror latitude, which is in turn an increasing function of the 
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3 3 Bmirr 3 Bmirr 
dimensionless parameter Q = L Rp --; therefore I -- is Q times this function of Q, 

ko ko 

and we can invert to obtain Q as a function F[/3 B;;' l· which has been tabulated and 

parametrized by Mcilwain (1961, 1966). Fixing Rp and k 0, this gives L as a function of 

Bmirr and I; the value of L determined thus for particles mirroring at a given point in a non

dipolar field is called the Mcilwain L. The usefulness of this borrowing of the relation F 

from the dipolar field follows from the fact that most of the contribution of the integrand in 

equation 3.9 for I comes from near the magnetic equator on the field line, which is the 

region most distant from the planet and which is therefore where the higher-order internal 

terms in the magnetic field (which fall off with distance more rapidly than the dipole contri

bution) are smallest relative to the dipole. Thus, if we start with a dipolar field close to the 

real field and pick a field line with magnitude B 0 and a particle with pitch angle ao at the 

magnetic equator, and then tum on the higher-order terms of the real field, the positions of 

the mirror points (near the planet) will change substantially but the equatorial field will 

change little. B 0 and <Xo and therefore B,irr will be nearly the same, as will I; thus 

Mcilwain's L value will be nearly the same for all particles initially mirroring along a given 

field line. As these particles drift around U1e planet, conservation of K and M implies that 

they will stay on lines with the same L s; in a magnetic field with azimuthal asymmetry, the 

field lines traversed by particles with different values of B,irr will diverge as U1e particles 

drift, so that drift shells osculating at one longitude will be split at others (Stone 1963). 

However, Mcilwain's L labels the drift shells of different particles in a way that provides a 

simple mapping back to the more-easily-visualized dipolar field in which such shells, near 

one another in the real field, would be degenerate (Roederer 1970). 111e choice of a magni

tude k 0 for the calculation in U1e non-dipolar field must be consistent Ulfoughout, but its exact 

value is not crucial. 
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3.2. Observations at Neptune 

Preliminary analysis of Neptune charged particle data used an Offset (from the planet's 

center), Tilted (relative to the rotation axis) Dipole model (0ID2) of the magnetic field (Ness 

1990); because Voyager 2 passed within 0.18 Neptune radii of the cloud tops, well into the 

near-field region where higher-order terms were not diluted by distance, the field model 

(Connemey et al. 1991) to fit the whole data set of magnetometer observations required inter

nal spherical harmonic terms to order 8, and also included a weak uniform external field; it is 

referred to as 18El. This magnetic field model was supplied to other Voyager instrument 

teams before publication, and Selesnick (1990) calculated from it the trajectory of Voyager 2 

in magnetic coordinates (B and Mcllwain L), and also the orientation of the CRS telescopes 

relative to the local magnetic field and to the gradient of its magnitude. 

LETs C and D typically observed particles which mirrored at latitudes away from the 

spacecraft; moreover, the large gyroradii of protons at CRS energies in the weak planetary 

magnetic field typically meant that the field line on which the guiding center of the particles 

was located was not one at the same L as the spacecrafl. Rather than go through the calcula

tion described above for the particles observed at a given time by each telescope, the mag

netic field was approximated locally by a section from a dipolar magnetosphere: given L and 

BIB0 for the spacecraft in the real field (as represented by the 18El model), we can place the 

spacecraft in a model dipolar magnetic field at the appropriate L and magnetic latitude /.., , 

and given the orientation of the telescope axis with respect to the real field and to its gradient 

we can use the same angles to orient it relative to these vectors in the dipolar field. Assum

ing a proton of a given energy flying into the telescope, we have a velocity, which with the 

local magnetic field gives an acceleration, which in turn allows us to calculate the instantane

ous magnitude and direction of the curvature of the proton's path; this is, of course, just the 

vector between the proton and its gyrocenter, so we can place the gyrocenter in the dipolar 

model and calculate its L directly. One source of error in identification of the L -shell by this 

method is shell-splitting, whereby particles whose guiding centers cross the magnetic equator 

at the same point but which have different pitch angles ao may not lie on a common drift 

shell, with the mirror point of one parHcle farther in toward the planet than the corresponding 

point on the field line whereon the oU1er mirrors. This was calculated by Selesnick and 
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Stone (1991b) (by the method of Stone (1963)) to be less than 1% in the range of L where 

the CRS observations took place. Thus losing information about the mirror point of the par

ticle by using the simplified method described here introduces a negligible error; furthermore, 

since distortion of the magnetic field lines from the dipolar model is what causes magnetic 

shell splitting, the local approximation of the field as a gyroradius-sized piece of a dipolar 

field should also be good enough. Finally, another source of error in identification of the L

shell observed is that for large gyroradii the instantaneous center of curvature does not 

remain exactly on a given magnetic field line, as implicitly assumed above; however, an exact 

calculation of the orbits of equatorial protons (whose large gyroradii should show this effect 

most strongly) in the CRS energy range, using the formulae of appendix 2, shows that the 

fractional error in L is at most a couple of percent. Thus we can use the method described 

to identify the L -shell observed by each LET, and save a lot of calculation. 

M doesn't require a model, just the local B and p for the proton, to calculate; it 

remains to find K. We need B 0 for the guiding center field line; we have B 0 and L for t11e 

spacecraft from the 18El field model, so assuming a dipole-like L - 3 dependence for B 0 we 

can find B 0 at tl1e L of the guiding center. M gives us B,irr, and t11at with B 0 for the guid

ing center field line gives us J...,irr, which witl1 L yields K via equation 3.9. The values of 

L, K, and M for protons of energy 3.45 MeV (approximately in the middle of our energy 

range) entering LETs C and D are shown as a function of time in figures 3.2, along with the 

values for particles with guiding centers at the spacecraft's L that mirror at the spacecraft's 

position on the field line. Plots for other energies would look qualitatively similar; the dis

placement in L of the LET points from the spacecraft curve in figure 3.2(a) would increase 

with energy, which would have smaller effects on K (which depends on L and B 0), and the 

normalization of the curves for M would change in direct proportion to the energy (for non

relativistic protons). The time period in t11ese figures is t11e same as that in figures 2.9, 2.10, 

2.11, and 2.12; closest approach to the planet is again near the center of the time axis. 

Features to note are the turnaround in L on the inbound leg of the trajectory, caused by an 

excursion to high magnetic latitudes as the spacecraft approaches the planet (as is most 

clearly seen in the plot of K), and the abrupt shift in the K and M observed by tl1e LETs 

just before 0600, which is due to a spacecraft roll maneuver tl1at changes the local pitch 
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Figure 3.2 

Values of (a) L, (b) K, and (c) M for 3.45 MeV protons observed by LETs C (circles) and 

D (crosses), in the 18El model. Continuous dotted lines are for particles of tttis energy on 

the spacecraft's L -shell, mirroring at the position of the spacecraft 
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Figure 3.2 
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angle observed by each LET (another roll maneuver is seen from about 0830 to 0900). The 

effect of this roll maneuver is visible in the particle rates plotted in chapter 2, as a step in the 

rates for D1 , D2, and LAZ3* in figures 2.8, and as an abrupt jump in the LET D rates in 

figures 2.10 and 2.12. This jump, and the absence of such a drastic jump in LET C rates in 

figures 2.9 and 2.11, will prove particularly important to the magnetospheric models 

developed in chapter 5. However, it renders suspect one point on each of the subfigures, the 

particle events for which were accumulated during the roll maneuver and as such cover a 

wide span of adiabatic invariants; the doubles points are the ones centered on 05:48:48, and 

the triples points are centered on 05:52:00. With these exceptions, points chosen for com

parison with the results of magnetospheric models in chapter 5 were those between the times 

listed in table 3.1; these were the continuous sequences (minus a few data gaps, and the roll 

maneuver) within which there were no two adjacent points comprising fewer than two proton 

counts in the energy bin (as determined by the ana1ysis in chapter 2, results of which appear 

in figures 2.9, 2.10, 2.11, and 2.12), with the further exception that the inbound doubles data 

sets were cut off a little earlier because, first, the flux had declined to the point where back

ground subtraction (heretofore ignorable) would be necessary, and second, the spacecraft was 

getting very close to the planet at high magnetic latitudes, where the magnetic field model 

was presumed to be least accurate. All told, 210 spectral points (44 LET C inbound, 32 LET 

C outbound, 76 LET D inbound, and 58 LET D outbound) were selected to be fit. 

Table 3.1 Times for Model Fitting (Day 237, 1989) 

Energy LETC LETD LETC LETD 

(MeV) inbound inbound outbound outbound 

1.9-2.1 0:43:12-2:25:36 0:04:48-2:25:36 5:40:48-6:38:24 5:53:36-7:20:00 

2.1-2.9 0:52:48-2:25:36 0:04:48-2:25:36 5:34:24-6:51:12 5:5 3:36-7:20:00 

3.2-3.7 1:2:24-2:28:48 0:14:24-2:28:48 5:37:36-6:22:24 5:56:48-7:29:36 

3.7-4.3 --- 0:43:12-2:00:00 5:37:36-6:09:36 5:56:48-7:04:00 

4.3-5.0 --- --- 5:44:00-6:06:24 5:37:36-6:48:00 
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Chapter 4 

Satellite Absorption of Charged Particles 

4.1. The Diffusion Equation 

In this chapter and the next we construct models for the absorption and diffusive trans

port of protons in Neptune's magnetosphere, and attempt to reproduce the observed fluxes. 

A more fundamental quantity than the observed flux j is the phase-space density f, the 

number of particles per unit volume in the six-dimensional phase space of position r and 

ordinary momentum p, which is related to the observed flux by 

f = _j_ 
2' p 

(4.1) 

Because the transformation from r and p to the canonical position r and momentum n of 

equations 3.5 has unit Jacobian, and because the ratio between volume elements (and there

fore the inverse of the ratio between phase-space densities) in two different coordinate sys

tems is just the Jacobian, the phase-space density f in ordinary phase space is numerically 

equal to the phase-space density in canonical phase space (Schulz and Lanzerotti 1974). The 

three action integrals J 1, h· and J 3 as defined in chapter 3, together with their conjugate 

angle coordinates, are related by a canonical transformation to r and 1t, from which they were 

generated; since the volume element in phase space is conserved by a canonical transforma

tion (the Jacobian of the transformation is again unity) (Goldstein 1950), the phase-space 

density in the system of the l;s and their conjugate angles is again numerically equal to f . 

Finally, the adiabatic invariants M, J, and <I> differ from J 1, h. and h only by multiplicative 

constants. TI1us if random perturbations to the system result in non-conservation of one or 

more of the J;s. so that we can write a diffusion equation for the phase-space density in these 

variables, then we can write for f the diffusion equation 
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ar 1 
~ = -V·(GD·VJ) + S at G 

(4.2) 

(Haerendel (1968), borrowing notation from Selesnick and Stone (199la)). G is the Jacobian 

of the (not necessarily canonical) transformation from the three adiabatic invariants to the 

coordinates in use (which differs only by a multiplicative constant from the Jacobian of the 

transformation from J 1, h. and h to the coordinates in use), and the diffusion tensor D and 

gradient are relative to the new coordinates; S is the net source of protons. Haerendel (1968) 

actually derives this equation for a phase-space density averaged over the phases of the three 

periodic motions; as we will see, residence times for protons in the magnetosphere are con

siderably longer than the longest (drift) periodic timescale for all models considered, so we 

can assume that the absorption of particles and observations of flux take place under condi

tions of thorough phase mixing, and we need deal only with the phase-averaged f anyway. 

For a well-phase-mixed population of protons, we can calculate (for each choice of M , 

J , and <I>, or whatever set of coordinates we need) a fractional rate of absorption per unit 

time, i.e .• an inverse lifetime against satellite sweeping. We then seek solutions to equation 

4.2 that are constant in time, i. e., solutions to 

(4.3) 

The right-hand side of the equation is -S . which here includes no internal source of protons 

and losses due only to satellite absorption. 

4.2. Losses 

4.2.1. Satellites of Neptune 

Paonessa and Cheng (1987) present a theory for calculation of the particle sweeping 

rate 't;;1 for a moon in a circular, equatorial orbit about a planet whose magnetic field has the 

form of a dipole offset from the planet's center and tilted with respect to its rotational axis 

(OTD); we largely follow their prescription, with modifications as noted. The six newly

discovered small satellites of Neptune have circular, prograde orbits near the planet, with 

inclinations of< 1° (except the innermost, 1989N6, at 5~ (Stone and Miner 1989); Triton's 
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orbit is circular, inclined, and retrograde, and Nereid's is eccentric and inclined, but these 

moons do not enter the region of the magnetosphere where the protons in the CRS energy 

range were detected. The following discussion will focus on 1989Nl, outermost of the 

newly-discovered satellites; as we will see, this is the only one that has a perceptible effect 

on our proton observations. The satellites are as described in table 4.1; a is the sernimajor 

axis of the orbit. 

Table 4.1 Satellites of Neptune 

(after Stone and Miner (1989), Table 3) 

Discovery a a Period Diameter 
Name 

Designation (103 km) (RN) (hours) (krn) 

1989N6 Naiad 48.0 1.94 7.1 54±16 

1989N5 TI1alassa 50.0 2.02 7.5 80±16 

1989N3 Despina 52.5 2.12 8.0 180±20 

1989N4 Galatea 62.0 2.50 10.3 150±30 

1989N2 Larissa 73.6 2.97 13.3 190±20 

1989N 1 Proteus 117.6 4.75 26.9 400±20 

-- Triton 364.8 14.33 141.0 2705±6 

-- Nereid 5513.4 222.65 8643.1 340±50 

In a magnetic field that is not a simple centered, aligned dipole, even a moon in a circu

lar, equatorial orbit traces out a complicated motion in L and magnetic latitude and longitude 

0-, and <!>, ). If the moon's orbit is circular and equatorial, however, the motion is periodic; 

figure 4.1 presents one orbital period of 1989N 1 in magnetic coordinates L, 'A,, and $, for 

the 18El magnetic field model. Because the magnetic field corotates with the planet, the 

cyclic period is the moon's synodic period 

T = 2
7t ::: 40.2 hours. 111 inK-f2pi 

(4.4) 
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Figure 4.1 

Magnetic coordinates for 1989N1 in the 18El field model for approximately one orbital 

period around Voyager 2's closest approach to Neptune (Selesnick 1991): (a) L, (b) latitude, 

and (c) longitude. 
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Figure 4.1 
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n.K is the Keplerian angular velocity of the moon in an inertial frame, positive for a prograde 

orbit. and O.p is the planet's (positive) rotational angular velocity. 

4.2.2. Absorption Rate 

4.2.2.1. Absorption by a Satellite in a Complex Magnetic Field 

To calculate 'ts-:;1, consider a population of protons at given M, J, and «1>, or 

equivalently at given K, L, and M . As can be seen from figure 4.1(a), during a single 

synodic period particles at a given L can be absorbed during either two or four (depending 

on L) "sweeping episodes," when the moon is near that L . 1l1e particles drift in magnetic 

longitude at a bounce-averaged angular velocity rod as given in equation 3.10, which is posi

tive for protons at Neptune (since the dipole moment of Neptune has a positive projection on 

the rotational axis, opposite to the situation at Earth). The moon has an angular velocity in 

magnetic longitude 0.111 , t11e time derivative of <l>m in figure 4. l(c), which is negative for a 

moon outside the radius for a synchronous orbit. Assuming particles are uniformly distri

buted around the L -shell, i.e., assuming t11orough drift-phase mixing. the probability that a 

particle will be absorbed during a single sweeping episode is 

(4.5) 

and if we consider the absorption to take place over the entire orbit rather than in two or four 

discrete episodes, then the average probability per unit time is 

-1 1 ~ p 
'tss =- ~ I· 

Tm 2or4 
(4.6) 

!::.t is the duration of the sweeping episode, i.e .• the time during which the moon is in a posi

tion at which it can absorb particles of the specified L. The moon's effective radius for par

ticle absorption, the distance from gyrocenter to moon center within which there is some 

chance for a particle to hit the moon's surface. is 

(4.7) 

where R111 is the moon's physical radius and p
8 

is the local gyroradius. Thus !::.t is the time 
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during which the moon's center is within a distance rm of the L-shell in question. We will 

divide the orbit into four "legs," each corresponding to a journey from one local extremum of 

L in figure 4.1 to the next; thus near an extremum the single sweeping episode will be 

divided between two legs. Pa is the probability that a particle which drifts past the moon 

during !::.t actually hits it Pa is not always unity, in fact for the particles considered in this 

work is often not even close to unity, for two reasons related to the large gyroradii of ener

getic protons in Neptune's middle magnetosphere. First, the larger the gyroradius the smaller 

the separation of the three timescales of particle motion, so that in the time it takes a particle 

to bounce from the moon's magnetic latitude Am to a mirror point Amirr and back again, it 

can drift so far in magnetic longitude that its guiding center will move from more than r m 

"upstream" to more than r"' "downstream" of the moon, i.e., it will not come close enough to 

the moon to be absorbed (the "leapfrog effect"). Second, when Pg is not small relative to 

Rm, the moon can actually fit within the empty spaces in the (locally) helical trajectory of a 

particle, and thus the particle can move past the moon even if its guiding center passes within 

r m of the moon's center (the "corkscrew effect"). 

Paonessa and Cheng (1985) calculate Pa and thence 'ts"_;1 for an aligned, centered dipole 

magnetic field, and Paonessa and Cheng ( 1987) generalize the calculation to an offset, tilted 

dipole with offset in the z direction only, i.e., parallel to the planet's rotation axis (ZOTD), 

which is a good approximation at Uranus. ll1e latter generalization is further generalized 

here by finding quantities like A
111

, Q
111

, and (indirectly) !::.t numerically from the orbit in 

figure 4.1 rather than from closed-form expressions; we still use dipolar-field values for such 

quantities as rod and Amirr, transforming K, L. and M into these quantities as for a dipole 

field of moment 

k0 = 0.130 GaussxRJ (4.8) 

(from the second preliminary field model (0TD2) for Neptune (Ness 1990)). 
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4.2.2.2. Duration of A Sweeping Episode 

Except near the extrema in L of the orbit, where dL/dt approaches zero, we can read 

Am and dL/dt for the moon at each L from figure 4.1, calculate r m given L. Am. and the 

particle's K and M. and write 

for 

t:.t = 2M 
dL 
dt 

(4.9) 

(4.10) 

The trigonometric terms in equation 4.10 were introduced by Selesnick and Stone (1991a) to 

account for the fact that away from the magnetic equator the moon covers a larger range in L 

as the field lines (and L -shells) bunch together near the poles. Near the extrema in L. where 

equation 4.9 breaks down, Paonessa and Cheng ( 1987) took advantage of the small electron 

gyroradius and therefore small t:.L to use a constant value for t:.t within t:.L of Lmin; Cooper 

(1990) and Selesnick and Stone (1991 a) gave a more exact variable expression inside 

L = 1.01 Lmin• but still one that uses the ZOTD formulae for the moon's magnetic coordi

nates. These papers only consider the minimum L of the moon (there is only one for a 

ZOTD model). where most electron absorption occurs. but for energetic protons absorption 

around the secondary maximum L (Lmax ::::: 7.8) is actually more important, as we will see. 

We approximate the extrema of figure 4.1(a) by parabolae, i.e., make L a quadratic function 

of time with second derivative equal to that of the orbit in figure 4.1(a) at the extremum, and 

can then write a closed expression for t:.t. At a minimum in L. 

(4.11) 

for Lmin - t:.L :5 L :5 L min + t:.L. and 

(4.12) 
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for Lmin + M s; L s; Lmin +2M. At a maximum in L, 

(4.13) 

for Lmax + M <::: L <::: Lmax- M, and 

(4.14) 

for Lmax- M <::: L ~ Lmax- 2M. The large proton gyroradius means that we must use 

these expressions over a much larger region in L than is necessary for electrons before we 

can go back to equation 4.9; on the other hand, the parabolic approximation to the orbit 

deteriorates away from the extremum. TI1e choice made, i.e., to go a distance 2M from the 

extremum (rather than 0.01Lmin• as did Cooper (1990) and Selesnick and Stone (199la)), 

works well at Lmax::::: 7.8 (we have no proton data in the energy range considered beyond 

L ::::: 10, so we need not calculate 'ts-:;1 near Lmax ::::: 12.7), but some discontinuity at the 

changeover is evident near the two Lmins. However, as we will see, errors in the region 

inside of L ::: 6 have little effect on our simulated data for the range of models considered. 

Figures 4.4(a), 4.5(a), and 4.6(a) present !lt as a function of L for three pairs of K, M; the 

dotted lines are the contributions for the four legs of the orbit, and the solid line is the sum. 

Each leg's contribution is cut off at the L at which t11e particle mirrors below the moon's A., . 

If these were electrons, for which Pa is very nearly unity, 1:~1 would be roughly proportional 

to this L-shell contact time (only t11e variation in rod in equation 4.5, approximately as L -YJ 

for relativistic particles (as L -2 for non-relativistic) at constant K and M, would change the 

proportionality); the effect of variable Pa for protons can be seen by comparing these figures 

with figures 4.6(b), 4.5(b), and 4.6(b). Figures 4.4 and 4.6 are near the limits of K that we 

need to calculate to model our observations; figure 4.5 is at an intermediate K with the worst 

mismatch seen between equations 4.9 and 4.12, resulting in the discontinuities (up to about 

30%) in !lt at the Ls indicated by the short vertical lines in figure 4.5(a). 
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4.2.2.3. "Leapfrog" and "Corkscrew" Effects 

The last step remaining is to calculate Pa, the fraction of particles encountering a moon 

during a sweeping episode that are actually absorbed by it. Consider the set of particles at 

the K, L, and M of interest whose guiding centers will enter the zone of radius r m about the 

moon's center in the next bounce period 'tb; in a plane perpendicular to the magnetic field at 

the J..m of the moon, these will form a band as shown in figure 4.2(a) (the area labeled A, 

which does not include the crosshatched area within r m of the moon), where 

(4.15) 

is the drift distance relative to the moon in time 'tb. During each interval of 'tb in l!.t, 

another patch like this will drift by the moon; thus it suffices to calculate the Pa for one 

patch. (By calculating absorption probabilities for particles with gyrocenters at different posi

tions and the moon's center fixed at the L of interest, rather than placing the moon's center 

at all the different Ls it will occupy during a sweeping episode for particles at a fixed L, we 

are ignoring variations in p
8

• J.., for the moon, and other relevant quantities on a scale of 

M .) Pa will be the average over area A of the probability P; that a particle first crossing 

the plane in figure 4.2(a) at a point i will actually be absorbed by the moon. Assuming an 

equal number of particles moving up the field line and down it, we must average the proba

bility P; calculated for both directions of travel. Particle paths are shown schematically in 

figure 4.2(b); thus we move the particle rightward in figure 4.2(a) in alternating short and 

long steps of length 

(4.16) 

and 

(4.17) 

and averaging over travel directions amounts to averaging over P; as calculated with the 

short hop first and with the long hop first. Paonessa and Cheng (1987) approximate <Pda and 

<!>db by assuming the drift rate in longitude is constant with latitude, so 
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(4.18) 

where the integral is a partial integral of H (A.mirr) as defined in equation 3.8; c1>da is the 

difference between cjld1 and cjldb. Actually, it is not calculationally necessary to average over 

the entire area A, nor over both directions, as can be seen from figure 4.3, which shows 

several cases of relative sizes among Yda. Ydb, and 2r m . In each case, only particles that start 

out in the letter-labeled areas upstream of the crosshatched zone near the moon will actually 

enter the zone and encounter the moon. For the case in figure 4.3(a) with 2r m < Yda < Ydb. 

particles whose guiding centers start in areas A or B will encounter the moon once, with 

equal P; at corresponding points whether B is Yda downstream from A as shown or Ydb 

downstream. Figures 4.3(b) and 4.3(c) show the case Yda < 2r111 < Ydb• with the two choices 

of which step to take first: the areas labeled the same in each of these two figures have ident

ical histories, i.e., they first enter the crosshatched zone at the same place and after the same 

size step, and thus have the same P; at corresponding points. The same holds in figures 

4.3(d) and 4.3(e), which show the case Yda < Ydb < 2r111 • Thus we do not have do the full 

averaging discussed above: it suffices to set P; = 0 in the unlabeled areas shown (the larger 

these areas are, the greater the magnitude of the leapfrog effect) and to choose, say, the short 

step to be taken first. 

At each point i, we move the guiding center rightward by alternating-size steps until it 

comes within 2r m of the moon's center; at this point we calculate the probability ag that it 

will hit the moon on that bounce through the moon's A111 , which is a function of the impact 

parameters by which the guiding center trajectory misses the moon's center. If the next step 

does not take the particle out of the crosshatched zone, as will be the case for area B in 

figures 4.3(b) and 4.3(c) and for most of areas A and B in figures 4.3(d) and 4.3(e), we cal

culate ag for the new guiding center position, and so on, building up the product 

l- P; = Il[l - ag(sj)]. 
j 

(4.19) 

There may be only one term in the product, for a point in areas A or C of figure 4.3(b), say. 

Paonessa and Cheng (1985) follow individual particle trajectories to calculate ag numerically; 
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Figure 4.2(a) 

Area "upstream" of moon, over which P; is to be integrated, after Paonessa and Cheng 

(1987), figure 2(b). Particle drift motion is to the right 

Figure 4.2(b) 

Geometry for modeling absorption probability during a single drift encounter of particles with 

a moon, after Paonessa and Cheng (1987), figure 2(a). Dashed line indicates magnetic lati

tude of moon. 
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Figure 4 .2(a) 

A 2rm 
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Figure 4 .2(b) 
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Figure 4.3 

Various cases of "leapfrog" effect: (a) 2rm < Yda < Ydb; (b) Yda < 2r m < Ydb, long hop first; 

(c) Yda < 2r m < Ydb, short hop first; (d) Yda < Ydb < 2rm. long hop first; (e) Yt~a < Ydb < 2r m, 

short hop first. 
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Figure 4.3 
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a set of closed formulae for this quantity are derived in appendix 1. (A large corkscrew 

effect results in a reduced O.g and P; .) 

4.2.2.4. Results for 't9-:;
1 

Some results of the above calculation of 't9-:;
1 are shown in figures 4.4(b), 4.5(b), 4.6(b), 

with contributions from each of the four legs of the orbit again shown as dotted lines. In 

contrast to !!..t for the same K s and M s, as in figures 4.4(a), 4.5(a), and 4.6(a), -r;/ is 

strongly peaked around the high-L end of each of the dotted curves; this is because the pro

tons there are being absorbed near their mirror points, and the increasingly flat spiral at the 

high local pitch angle reduces the corkscrew effect. Some additional irregularities are visible 

in the vicinity of the changeover from equation 4.9 to 4.12 or 4.14: the two legs meeting 

there suddenly start to diverge. Tilis is because A., is read at the moon's extremal value of 

L from figure 4.1 for use in equations 4.12 and 4.14, while it is calculated from the particle's 

K and L for use in equation 4.9; tllis can produce a noticeable difference in Pa. Like the 

mismatch in !!..t, this has the biggest effect at low L s, and thus little effect on simulated data 

for the models considered. 

For comparison, figures 4.4(c), 4.5(c), and 4.6(c) show 'ts~1 for electrons (calculated 

assuming Pa = 1) at the same values of K and M. The absorption is much more sharply 

peaked at the extremal values of L for the moon, since the electrons' gyroradius is so much 

sma11er than the protons', so that the region of high !!..t does not extend to L s much away 

from the extremal value at the turnaround; also, the constancy of Pa removes the high-L 

enhancement apparent in the proton curves. !!.t is actually about tenfold less for electrons 

than for the corresponding protons due to t11e reduced r,, and at the same K, L, and M, rod 

in equation 4.5 scales inversely as the relativistic factor y and does not depend separately on 

particle mass; tlms if Pa were the same for protons as for electrons, 'ts~1 would be more than 

an order of magnitude larger for protons t11an for electrons. TI1e importance of the leapfrog 

and corkscrew effects for protons is seen in t11at it is actually less. 
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4.2.2.5. Contributions To 't9-:;
1 Not Included 

Several modifications to the above method were considered but not used, as in all cases 

the resulting changes in 't9-:;
1 either were concentrated in the region L < 5, and thus there 

would be little or no alteration to the data simulated in the range of models considered, or 

were tried out in simulations and found directly to have little effect, or both. First, the 

smoothing implicit in the use of figure 4.2(a) and parenthetically noted near that figure is 

generally better for particles absorbed away from the magnetic equator, i.e., at higher Ls; and 

in particular, the method described above would give 't9-:;
1 = 0 for equatorial particles. A 

more exact calculation of 'ts-:;1 is possible for these particles, and is given in appendix 2; a 

comparison of figure 4.4(b) witl1 figure A2.2(c) is most direct, as the particles in tllese two 

figures are at the same M. The peaks in figures A2.2 are due to enhanced absorption when 

tile moon is near x 1 or x 2 in figure A2.1; tile averaging implicit in the above discussion 

would suppress these, even if !::.t weren't assumed to vanish because the moon center is 

above Am = 0 for all but an instant. This approximation would be calculationally difficult to 

remove, and as noted it is suspect mostly in a region with little effect on simulated data. 

An approximation that could be removed easily is that made by Paonessa and Cheng 

(1987) in calculating <Pdb (equation 4.18). Rather than assuming an angular drift rate constant 

in A., , we can write the drift longitude directly as a partial integral of F (A.mirr) as defined in 

equation 3.11. Another approximation is that in the calculation of ag (s) t11e particle was 

assumed to be bouncing along the field line. This means that the guiding center motion on 

each pass through the plane of figure 4.2(a) is perpendicular to that plane. But if bounce and 

drift timescales are not well separated. as would cause a significant leapfrog effect, then the 

motion will be more like that diagrammed in figure 4.2(b) (which was meant to be 

schematic), i.e .• tile crossing of the moon's A., might take place at a significant angle to tile 

vertical. This would be a stronger effect for particles absorbed nearer the equator, i.e., at low 

L s; t11e stronger field at high "-m reduces Pg and separates the local timescales, so that the 

sinusoids in figure 4.2(b) should actually be sharply cusped near the mirror points. Still, an 

improvement on the approximation can be made by reducing s. the impact parameter of the 

guiding center trajectory past the moon's center, by an amount derived geometrically by 

angling the trajectory by the appropriate amount relative to t11e perpendicular at each point in 
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Figure 4.4 

(a) 1989Nl proton sweeping episode duration, (b) proton absorption rate, and (c) electron 

absorption rate forK = 10-2·
25 RN..JG, M = 104

.4 MeV/G. 

Figure 4.5 

Same as figure 4.4, for K = 10-1 RN..JG, M = 104·2 MeV/G; in figure 4.5(a), L values at 

changeover from equation 4.9 to equation 4.12 for each leg of the moon's orbit are indjcated 

by short vertical lines. 

Figure 4.6 

Same as figures 4.4 and 4.5, for K = 10--{)·25 RN..JG, M = 103.3 MeV/G; each short vertical 

line jn figure 4.6(a) indicates changeover L as in figure 4.5(a) for one pair of legs. 



- 67-

Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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the crosshatched area in figure 4.2(a); this would keep the particle's trajectory as a helix 

with axis along the guiding center trajectory, rather than reproducing the more complicated 

path actually followed, but still it should give an idea of the magnitude of the effect (in addi

tion to allowing us to continue to use the formulae of appendix I). Both changes noted here 

were made; the difference in -rs-.;1 was at most a few percent in the region beyond L=5, and 

the data simulated were not noticeably different; thus the approximations from Paonessa and 

Cheng (1987) as detailed above were retained. 

Another modification would be to add the other five small inner moons listed in table 

4.1. The result is shown in figure 4.7 for the K s and M s corresponding to figures 4.4, 4.5, 

and 4.6. Even for the highest K. the moons inward of I989N I are just beginning to absorb 

outside L = 5, contributing a small amount over the absorption due to I989NI alone; at the 

two lower K s. the highest L swept by the inner moons is less than the lowest swept by 

1989Nl. TI1e absorption, of course, extends farther inward in L than for I989NI alone. A 

model calculation of simulated data was made using all six moons; again, no noticeable 

change from that found using only 1989N 1 was seen. There are also four rings about Nep

tune, from approximately the orbit of 1989N4 inward; Paranicas and Cheng (1991) present a 

theory for calculation of the particle sweeping rate due to planetary rings. They find that ring 

absorption can exceed moon absorption in the region where it is effective; but again, this is 

too far inward in L to have an effect on the data simulated from the range of models con

sidered here. llms we consider only absorption due to I989NI hereinafter. 

Figure 4.7 

Proton absorption rates for all six inner small moons for (a) K = 10-2·25 RN..JG. 

M = 104
.4 MeV/G, (b) K = 10-1 RN..JG. M = 104·2 MeV/G, and (c) K = 10-0·25 RN..JG• 

M = 103
·
3 MeV/G; solid line is I989NI, dotted lines are other moons. heavy solid line is 

sum. 1989N 1 is distinguishable from the sum only in figure 4.7(c); in the other two figures, 

its absorption is disjoint in L from that of the other moons. 
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Figure 4.7 
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Chapter 5 

Models of the Energetic Proton Distribution 

5.1. Radial-Diffusion Models 

5.1.1. Theory 

A charged particle trapped in a static near-dipolar magnetic field will execute a motion 

determined by the values of the three adiabatic invariants. as described in chapter 3. If a 

variable electromagnetic field is present that changes on a timescale rapid enough to break 

down the "adiabatic" assumptions used to derive these invariants, these values may be 

changed. Since the variable fields will distinguish among particles with the same values of 

the invariants but with different phases of one or more of the periodic motions (e.g .• geomag

netic sudden impulses will not distinguish among particles with different cyclotron or bounce 

phases, but will affect particles with different drift phases differently). phase-mixing of the 

affected particles will randomize the effects of the variations and cause the changes in the 

value(s) of the invariant(s) to be diffusive, describable by equation 4.2 (Schulz and Lanzerotti 

1974). 

The nature of the perturbing field(s) will determine which of the invariants cease(s) to 

be invariant; some mechanisms for diffusion will be discussed in chapter 6. TI1e longest of 

the three time scales of periodic motion discussed in chapter 3 is the drift time T.d; thus per

turbations occurring on a characteristic timescale comparable to or somewhat shorter than T.d 

(but longer than T.b or -r.8 ) can be expected to violate the invariance of J 3 (or «<> or L ). This 

one-dimensional variation is referred to as radial diffusion. Let us label particles by M. K, 

and L; for radial diffusion, M and K remain invariant, while L varies. Then the Jacobian G 

in equation 4.3 is proportional to L -z (Haerendel 1968), the diffusion tensor D has only the 

one component Du. and the diffusion equation becomes 
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L z_E_ [ Du !!f_] - _f_ 
dL L 2 dL - 'tss ' 

(5.1) 

which is to be solved for f as a function of L at each pair of K and M. 

5.1.2. Fits 

5.1.2.1. Boundary Conditions 

Equation 5.1, a second-order differential equation, requires two boundary conditions to 

define a solution; we choose to put one at each end of the interval of interest in L . For an 

inner boundary condition. we note (from the L vs. time relation in figure 3.2(a) and the pro

ton flux as a function of time in figures 2.9, 2.10, 2.11, and 2.12) that there was no 

significant proton flux seen at L much less than 6. so we set f = 0 at L = 3 (which is far 

enough inward that we should see any model-dependent effects around the minimum L of 

l989N l--as will be seen. the flux vanishes even farther out than this for all models con

sidered). For an outer boundary condition. we specify a spectrum in M and K at L = 10 

(outside of which the observed proton flux is again negligible, so the phase-space density will 

not be constrained by data). It is convenient to assume a pitch-angle distribution of form 

(5.2) 

where the last equality follows from equation 3.7, and which implies that the power law form 

in sin2a is the same at all magnetic latitudes along the field line. with only the normalization 

varying. Leaving n free as a fit parameter. it suffices to define the spectrum f F(M), or 

equivalently h(E). at one particular fiducial KF (and L = 10). Then we find f at other Ks 

by matching M at the K of interest with that MF which at KF has the same value of E 

(whence p 2 in equation 5.2), and setting the ratio off to f F(MF) in accordance with equa

tion 5.2 using the equatorial pitch angles <XQ corresponding to K and KF. We choose 

KF = 0.3 RN--IG, which is close to the values observed by LET C at most of the points 

chosen for fitting on the outbound leg of the trajectory (see figure 3.2(b)). 
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To set f F(M), we assume that the modifications to the boundary spectrum as it diffuses 

inward and suffers absorption are reasonably smooth as a function of K, L, and M. Then 

we can treat each two-volume, two- or three-point doubles or triples spectrum as a segment 

from the boundary spectrum at the K observed, preserving the spectral slope though reduced 

in magnitude. Further, if n in equation 5.2 is not a function of M (or E) we can consider 

that segment to be itself a segment from f F• at a different MF and magnitude but again 

preserving the spectral slope. Thus, finally, we can shift each segment to its points' MFs, 

then attempt to splice the segments together (by shifting each one's magnitude, both or all 

three of its points by the same amount) into a single spectrum. This will give us the shape 

of the overall spectrum; the normalization can be left to float as another fit parameter, or set 

to have the flux calculated from f F agree with that observed near L = 10. 

Figures 5.1 show the phase-space densities calculated from the observed proton flux 

points (for those selected out in chapter 3 to be fit), each plotted at its MF; figures 5.2 show 

the results of the shifting process described above. As seen in the latter figures, we can 

move all the segments to lie close to a single spectrum (with some outliers), which is shown 

in each of the figures as a solid line. The shifting was done by eye, as was the drawing of 

the adopted f F(MF), which has breakpoints at 1600 and 2200 MeV/G, with power law 

indices of -3, -7, and -10 in M (the indices of j (E) in E are -2, -6, and -9). Normaliza

tion is chosen to reproduce the fluxes seen by LET C (at about KF) at the highest Ls in the 

outbound leg of the trajectory (in which region absorption has reduced phase-space densities 

but little from the values at L = 10). 

5.1.2.2. Results 

We now seek a prescription for Du such that f derived by solution of equation 5.1 

reproduces the observed proton fluxes as well as possible; we also find the best value of n in 

equation 5.2. Equation 5.1 is solved by converting it to a finite difference equation on a grid 

spacing of 0.01 units in L, which is solved with a sparse matrix inversion algorithm 

(SOL VDE) from Press et al. ( 1988) as specialized to the linear case by Selesnick. A 

maximum-likelihood fit was done, but using 
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Figure 5.1 

Proton phase-space densities as observed. plotted at MF as calculated for each point: (a) 

LET C inbound, (b) LET C outbound. (c) LET D inbound, (d) LET D outbound. Solid line 

in each graph is the boundary-condition spectrum f F as described in the text. 

Figure 5.2 

Observed proton phase-space densities shifted to line up in one spectrum. plotted at MF as 

calculated for each point: (a) LET C inbound, (b) LET C outbound. (c) LET D inbound, (d) 

LET D outbound. Solid line in each graph is the boundary-condition spectrum f F as 

described in the text. 



- 76-

Figure 5.1 

MF, GeV /G (in) MF, GeV /G (out) 
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Figure 5.2 

10 
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(5.3) 

(Baker and Cousins 1984) for Poisson statistics instead of the usual Gaussian :x?; Jl; is the 

expected number of counts calculated from the model (and considerations such as livetime, 

geometry factor, energy bin width, etc.) for a given energy channel at a given time period, 

the set of which is varied by adjusting the model parameters to give the best fit to the 

observed numbers of counts N;. Du was taken to be a power law in L; thus the fit parame

ters were the normalization and exponent of this power law, and the exponent n in equation 

5.2. The minimum of X~ was sought using a conjugate gradient algorithm (FRPRMN) from 

Press et al. (1988). The best fit achieved is shown in figures 5.3; for this, 

[ ]

9.6 

Du = 1.7xl0-8 ~ sec-1 and n = 0.44. (5.4) 

Fluxes in individual energy bins are plotted on the same scale, spread by lOx for easier visi

bility. Outbound fluxes are plotted against guiding center L; inbound fluxes are plotted 

against time because of the turnaround in L apparent in figure 3.2(a). 

The model behind the calculated fluxes in figures 5.3 is illustrated in figures 5.4. Fig

ure 5.4(a) shows phase-space density as a function of L for several K s and M s chosen to 

have approximately the same energy at each L (and exactly the same at L = 10); figure 

5.4(b) shows contours in the L-CJ.{) plane of the phase-space density in figure 5.4(a), and also 

shows the gujding center Ls and equatorial pitch angles of the particles that comprise the 

observations in figures 5.3. The relatively good agreement in figures 5.3(a) and 5.3(c) 

between model and observations in both LETs' later inbound data implies that the model 

does a good job of reproducing the real pitch angle distribution as the LETs sample a wide 

range of equatorial pitch angles around L = 8 (as the turnaround in L occurs and the space

craft goes to high latitudes). In particular, note that the last several points (at the highest K s 

or lowest O{JS) should reflect the reduction, indeed reversal, of the pitch-angle arusotropy as 

seen in figure 5.4(b) in that as fJ.{) approaches 0 the contour lines bend back sharply, becom

ing nearly vertical in the vicinity of the observations; this is reflected in figure 5.4(a) by the 

fact that the lowest two phase-space density curves (for K = 0.50 RN .,[(] and K = 0.73 RN ...fG) 
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cross and recross from L = 7.8 to 9.0. while the curves for all other pitch angles are spread

ing out. The explanation for this feature of the model follows from the orbit of the moon, 

shown as a heavy dashed line in figure 5.4(b): note that inside of our outer boundary at 

L = 10 the moon does not travel to latitudes above the mirror points of particles with 

CXo = 17°, or K = 0.50RN..fG (and it does not go much higher at Ls outside our boundary, so 

the effect is not strongly dependent on the choice of that boundary). Thus, considering a 

higher K than that, at a given L particles diffusing inward from higher Ls will not have 

suffered additional absorption at Ls where particles with K = 0.50RN..fG would not have 

been absorbed: both Ks will have been absorbed at Ls all the way out to the boundary, 

since the moon absorbs a fraction of all particles with mirror points above its latitude, and its 

latitude is below the mirror points of the high-K particles considered at all L s inside the 

boundary. Thus there is not increased absorption of particles as K increases beyond 

K = 0.50RN..fG; in fact, absorption is reduced: the steeper pitch angle at a given Am (whence 

L for the absorbing moon) for a higher K increases the corkscrew effect so 'ts~' is smaller at 

a given L for a higher K. Thus the contour lines in figure 5.4(b) become nearly vertical 

above the moon's highest point, and then bend back as the reduced 'ts~1 has its effect at lower 

aos. In terms of our observations. this means that the calculated fluxes are relatively insensi

tive to the pitch-angle distribution assumed at the boundary and to any errors in identifying 

the K of the particles, so that the relaHvely good agreement of model and observations for 

these points reflects mostly on the choice of Du in that region. A further discussion of the 

sensiHvity of the fit to different parameters in different regions is presented in appendix 3. 

Qualitatively, in terms of locations of maxima and minima, the model fluxes agree 

worst with the observations in the LET C outbound data set, which not coincidentally sam

ples the lowest values of L. Of particular interest is the jump in flux evident in the model, 

but not in the observations, from L > 7 to L < 7 in figure 5.3(b); this is the location of the 

spacecraft roll maneuver mentioned in chapter 3. This jump is even more prominent in a 

model (with higher exponent in DLL) resulting from a fit with boundary condiHon normaliza

tion left to float. The reason for the jump is evident in figures 5.4: absorption by 1989Nl 

extends to higher L s at higher K s (except as noted above for very high K s). so phase-space 

densities of particles mirroring farU1er from the equator are eroded more drastically at a given 



- 80-

Figure 5.3 

Observed and simulated proton fluxes; from top to bottom in each figure are plotted 1.9-2.1 

MeV, 2.1-2.9 MeV, 3.2-3.7 MeV, 3.7-4.3 MeV, 4.3-5.0 MeV (some figures lack the one or 

two highest-energy bins). The lowest-energy bin is normalized correctly, but each subsequent 

curve is reduced by a factor of 10 relative to the previous one, to improve visibility. Figures 

are (a) LET C inbound, (b) LET C outbound, (c) LET D inbound, (d) LET D outbound. 

Points with error bars are observed fluxes; open points are from a radial-diffusion model with 

[ ]

9.6 

Du = 1.7xl0-8 ~ sec-1 and n = 0.44, 

with boundary condition normalization as in figures 5.1 and 5.2. 
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Figure 5.3 
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Figure S.4(a) 

Proton phase-space densities for the model of figures 5.3, plotted for fixed K and M. The 

K s and M s plotted are chosen for most direct comparison to later figures, and to have the 

same energy (1.3 MeV) at L = 10 for all curves. ForK in RN..fG and M in GeV/G, from 

top to bottom (in order at the L = 10 boundary) are plotted K = 0. M = 10; K = .0035, 

M =9.6; K = .016, M =8.4; K =.045, M =6.4; K =.13, M =3.6; K = . 18, M =2.775; 

K = .27, M = 1.9; K =.50, M = 0.975; K = .73, M = 0.591. 

Figure S.4(b) 

Contour plot in plane of equatorial pitch angle vs. L of the phase-space densities produced 

by the same model, for K s and M s that have a constant energy ( 1.3 MeV) at L = 10. 

Curves are from log1of = -12 to -16Vz by steps of Vz (in units of (em MeV/c)-3) from lower 

right to upper left. Closed circles (LET C) and crosses (LET D) represent the <Xo and L 

values of the data points in figures 5.3; heavy dashed line is the orbit of 1989N1, with the 

moon's magnetic latitude converted to U1e ao of particles mirroring at that latitude. 
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Figure 5.4 
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L inward from the boundary at L = 10 than are particles mirroring nearer the equator. 1ltis 

results in extreme pitch-angle anisotropy by L = 7 in the range of K sampled by our data, as 

seen in figure 5.4(a) by the spreading-out of the curves and in figure 5.4(b) by the crowding

together of the contour lines in that region. LET C would be expected to observe this aniso

tropy as the roll maneuver changes its pointing direction (LET D on the Jow-L side of the 

roll samples even steeper pitch angles, so it gives qualitative evidence of the anisotropy as 

well by its vanishing count rate there; this is where the data points end in figure 5.3(d)). But 

while there is evidence in the observations for anisotropy in that LET C in figure 5.3(b) 

shows higher fluxes at L < 7 than at L > 7 at most energies, as contrasted with the decline 

shown by LET D in figure 5.3(d) around those Ls (which reflects the general decrease in f 

with decreasing L, rather than pitch-angle variaHons), the large jump in the model fluxes in 

figure 5.3(b) shows that the model clearly produces too much pitch-angle anisotropy in the 

region observed near the roll maneuver. 

Finally, the large exponent on L and small normalization of Du are reflected in the 

relatively sudden onset of the decline in f (whence j) with decreasing L observed on the 

outbound leg, and also in that the proton fluxes do not recover inward from the minimum L 

of 1989N 1 as do the electron fluxes in figure 2.8(c) (the minima in the TET D 1 and 02 rates 

are at about 05: 10; as can be seen in figures 2.9, 2.10, 2.11, and 2.12, the proton flux is 

down to background levels at that point). A larger value of Du is associated with more 

filling-in and widening of an absorption feature; thus the small normalization and large 

exponent in the power law assumed for Du, which result in a very small Du at lower Ls, 

suggest that as protons diffuse inward, once the flux starts to be cut into by 1989Nl it will 

not recover. As Du approaches 0, phase-space density profiles like those in figure 5.4(a) 

would become flatter outside the cutoff L where particles at each K first encounter the moon, 

and the cutoff would become sharper; in a contour plot like figure 5.4(b), vanishing Du 

would result in all the contour lines bunching up on top of the dashed line indicating the 

highest-L leg of the moon's orbit. In fact, this is a good description of the model at lower 

L s (with lower D us), and is not a bad approximate description at all L s. In contrast, the 

electrons at CRS energies, for which Selesnick and Stone (1991 b) found 

Du ~ 5xto-'[ ~ ]'sec-1
• (5.5) 
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show the absorption signature largely filled in outside L = 6 (by which point the CRS pro

tons have vanished altogether), and their flux recovers inward of L = 4.75 before finally 

being cleared out by the satellites and rings inward from 1989N 1. (Modeling the proton dis

tribution with the same Du also produces a recovery of flux inside the minimum L of 

1989Nl.) That this occurs, despite the more rapid absorption of electrons evident in, e.g., 

figures 4.6(b) and 4.6(c), clearly implies that the proton data cannot support this much 

diffusion. A comparison of models with more and less diffusion than that of the nominal 

model above in appendix 3 indicates that the normalization of Du. at L = 8 is probably 

correct within a factor of about 3, while the electrons have about 30 times as much diffusion 

at L = 8. The exponent on L in the assumed power law for Du is not as well constrained 

by the observations. A large exponent, in addition to cutting Du. at low Ls and thus helping 

explain the lack of a recovery of flux inward of l989N 1, would result in a high value of Du 

at high Ls and would thus flatten the phase-space density profiles of figure 5.4(a) there at K s 

for which the absorption signature of l989N l extends that far out. However, as our observa

tions sample those Ls only at relatively low Ks where there is no absorption anyway, the 

dependence of the expected flux from the model at the points observed on this exponent is 

weak there, and on the whole this parameter is not very well constrained by the observations; 

as argued in appendix 3, we can say with confidence only that it is between about 5 and 15. 

The third parameter of our fit, n in equation 5.2, results in models consistent with the obser

vations if it is between about 0 and 1.2; this is also not a very good constraint. 

In summary, the radial-diffusion model presented here seems to explain several qualita

tive features of the proton observations, and to give good quantitative results from L = 8 out

ward, but inward of L == 7 it produces too much pitch-angle anisotropy. 

5.2. Combined Radial- and Pitch-Angle-Diffusion Models 

5.2.1. Theory 

In order to decrease the pitch-angle anisotropy produced by the model just discussed, 

we now introduce pitch-angle diffusion into our models. whereby the more-abundant particles 

at lower K s act as a source to repopulate the more-effective) y-swept higher K s. Elastic or 
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nearly-elastic pitch-angle scattering will cause protons to diffuse in both K and M . which 

will require us to solve equation 4 .3 in three dimensions. To simplify the task to two dimen

sions, Walt (1970) changes variables from (M. J. tP) or (M. K. L) to (~. x. L) (within a 

constant multiplying ~). where 

X= COS(CXQ) =: ~ (5.6) 

and 

(5.7) 

x is approximately conserved in radial diffusion at constant K and M (that is, to the degree 

that the lines of constant K in figure 3.1 approximate lines of constant magnetic latitude Am. 

whence x for particles mirroring there); and ~ is conserved in pitch-angle scattering at con

stant energy, and is approximately conserved in radial diffusion to the same extent as is x. 

Thus on the assumption of nearly-elastic pitch-angle scattering at constant L. we can consider 

the diffusion tensor D in equation 4.3 to have only components DLL and Dxx• and solve the 

resulting equation at constant ~· 1l1en the Jacobian 

(5.8) 

where T (y) equals H (Amirr) from equation 3.8 expressed as a function of y. and equation 4.3 

becomes 

(5.9) 

(Schulz and Lanzerotti 1974). A test of the quality of the approximate conservation of x and 

~ under radial diffusion (at constant K and M) is to redo the solution of the diffusion equa

tion in the previous section using equation 5.9 with Dxx set to zero, using the same numerical 

procedure as for equation 5.1 at fixed x and ~ rather than K and M; the result of this is 

shown in figures 5.5 as dotted curves (U1e previous solution is shown as solid curves). The 

difference amounts to a small displacement of each curve, which will certainly produce a 

small difference in the fit compared to other sources of error. 
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To solve equation 5.9, Walt (1970) suggests expanding the solution f at each L in a 

series of eigenfunctions of the x differential operator in the second term. If Dxx is assumed 

not to depend on x and if the derivative with respect to x of T(y) is ignored (T(y) varies by 

less than a factor of 2 over the whole range of y), then they can be taken outside the partial 

derivative, and the eigenvalue equation becomes (Schulz and Lanzerotti 1974) 

Dxx a [ ag;] 
-- x- = -A·g·(x) 

X ax ax 1 1 
(5.10) 

with boundary conditions 

g;(1) = 0 (5.11) 

(assuming a small loss cone, i.e .. near x = I. of pitch angles with such high A,urr that they 

will intersect the planet's atmosphere within -rb; this is appropriate for the L range covered 

by the proton observations) and orthonormalization 

I 

Jxg;(x)gj(x)d.x = oij . 

The eigenfunctions are 

!h lo(k;x) 
g;(X) = 2 Jl(k;) ' 

where J 0 and J 1 are the Bessel functions of orders 0 and 1, and the eigenvalues are 

(5.12) 

(5.13) 

(5.14) 

where k; is the ith root of J 0: k 1 = 2.405. k2 = 5.520. k3 = 8.654, etc. (e.g., Abramowitz and 

Stegun 1964). Then for each ~ we can expand 

f(x,L) = L,a;(L)g;(X) (5.15) 

and use equation 5.12 to break equation 5.9 into a set of coupled linear ordinary differential 

equations 

(5.16) 
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Figure 5.5(a) 

Proton phase-space densities for the model of figures 5.3 and 5.4, plotted for fixed x and ~. 

Solid curves match the curves in figure 5.4(a) at L = 10, but inward from there they assem

ble solutions of equation 5.1 at the appropriate (slightly different) K s and M s to match the 

selected xs and~ at each L. ~ = 104 MeV/G for all curves, and from top to bottom (in order 

at the L = 10 boundary) are plotted x = .0, x = .2, x = .4. x = .6, x = .8, x = .85, x = .90, 

x = .95, and x = .97. Dotted curves are for the same xs and ~. but calculated directly for 

fixed x and ~ rather than K and M. using equation 5.9 rather than equation 5.1. 

Figure 5.5(b) 

Contour plots of the calculations above, plotted as in figure 5.4(b) except that ~ = 104 

MeV/G is held constant as in figure 5.5(a). Again, solid lines are calculated using equation 

5.1 and dotted lines using equation 5.9. 
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Figure 5.5 
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where 

1 

't;"~/ = J'ts~1 (x)xg;(x)gj(x)dx (5.17) 

(Selesnick and Stone 1991 a). 

5.2.2. Fits 

5.2.2.1. Boundary Conditions 

We need two boundary conditions for each of the coupled equations 5.16; as in the 

radial diffusion fit of §5.1, we assume that f, whence each a,, vanishes at L = 3, and set a 

pitch-angle distribution and spectrum at L = 10. The spectral shape assumed is the same as 

in that calculation, with overall normalization left as a fit parameter, and a pitch-angle distri

bution of the form of equation 5.2 is also assumed, i.e., 

f (x .L=lO) oc sin2n ao = (l - x 2r; (5.18) 

using equation 5.12, this means that 

1 

a;(L=lO) oc [x(l- x 2
)" g;(x)dx, (5.19) 

with proportionality constant determined from the spectrum in ~· In a region of no absorp

tion, equations 5.16 will decouple and each mode g, will diffuse independently, with A, as 

an inverse lifetime against scattering into the loss cone. Since A, increases with n, the 

lowest mode is longest-lived, and thus it should be the dominant contribution to f where 

pitch-angle diffusion operates in the absence of satellite losses. Where pitch-angle diffusion 

dominates satellite absorption as a mechanism for shaping the pitch-angle distribution, this 

should also be approximately true. g 1(x) is approximately proportional to a pitch-angle dis

tribution of the form of equation 5.18 wit11 n = 1.4 (Selesnick and Stone 1991a); thus if 

pitch-angle diffusion operates on protons in our K and M range in the region between the 

outer range of absorption by 1989Nl and the minimum L (and inner edge of absorption) of 

Triton, we might expect the best fit to have n of approximately this value at our boundary of 
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L = 10. Since we expect our solution to resemble that of the radial-diffusion model near 

this boundary (as it reproduced the observations there pretty well), and since the best-fit value 

of n was well below 1.4 for that model, we already have an indication that pitch-angle 

diffusion is not significant for protons at CRS energies at these higher Ls. This, of course, 

assumes that the lowest pitch-angle eigenmode is well-represented by g 1(x), i.e., that Dxx is 

approximately independent of x as assumed in the derivation of equations 5.10 to 5.12; one 

could construct an x-dependent Dxx which would produce a lowest eigenmode with a 

different form, say, one with n = 0.44, so this is not a conclusion independent of the assump

tions in our simple model. 

5.2.2.2. Truncation of the Series 

Selesnick and Stone (1991a) found that numerical solutions of equations 5.16 for CRS 

electrons around the Uranian satellite Ariel required only terms up to i ,j = 6 for stability of 

the modeled data. However, the observations being reproduced were made with single detec

tors of U1e TET, and as such had a broad acceptance cone; thus the counting rates and energy 

spectra were dominated by the more-abundant Iow-x fluxes, which require fewer terms in the 

series to model. The LETs are highly directional, however, and thus sample only a narrow 

range of xs; and simulation of our proton observations requires calculation of phase-space 

densities to x = 0.97. It was found that there was little difference between the fluxes calcu

lated with 16 terms and 20 terms, so the results below use 20 terms in the series. However, 

the use of a finite number of terms and the fact that the integral in equation 5.17 for 't;j1 was 

done numerically witll a finite resolution (d.x = 0.02) result in some errors in tlle solution, as 

detailed in appendix 4; in particular, phase-space densities are not forced to be nonnegative 

by tlle construction of tlle equations, as is tlle case for equation 5.1, and some model calcula

tions resulted in phase-space densities at high x s that were negative. This is not a problem 

for tlle range of models discussed below, however, and other limitations of the parametriza

tion below overshadow the difficulties described in appendix 4. 
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5.2.2.3. Results 

A power law dependence of Du on L is predicted for several possible forms of pertur

bation of the magnetic field, as will be discussed in chapter 6; however, the need for a 

nonzero Dxx inside about L = 7 and zero outside does not suggest any particular parametriza

tion. Accordingly, we fit a model to the data by assuming a constant value for Dxx inside 

some particular L = L 0, and zero outside; actually, the numerical procedure used to solve 

equations 5.16 (the same as used for equations 5.1 and 5.9 with Dxx = 0, but with 20 coupled 

equations to cover all x s at each ~. rather than one uncoupled equation for each x and ~) 

became confused in the region of L 0 if the turn-on of Dxx was too abrupt, so a Fermi-like 

function was used to smooth the transition: 

Dxx oc -:--:---
L -L0 

e Ill. +1 

(5.20) 

Thus the fit had seven parameters: the normalization and exponent in L of Du; the normali

zation of Dxx, and the location L0 and width D.L of the transition from zero; and the pitch

angle exponent n at L = 10 and the normalization of the boundary spectrum, as before 

assuming the shape to be proportional to f F · 

The best fit achieved is shown in figures 5.6 and 5.7; for these, 

[ ]

10.0 [ L- 6. 8 l-1 

Du = 1.2x 10-8 ~ sec-1, Dxx = 1.3x 10-8 e ----o.!5 + 1 sec- 1, and n = 0.63, 

(5.21) 

with normalization reduced to 0.56 times f F . The phase-space densities are plotted as in 

figures 5.4, and the fluxes as in figures 5.3. Comparing the latter with figures 5.7, we see 

that the agreement of the two models with the inbound observations is similar, while the out

bound LET C agreement is much improved (with the exception of the one point in the lowest 

energy bin at L ::: 6.5, which looks like a statistical fluctuation). The lower-energy channels 

in LET D outbound actually agree worse with the observations than in figure 5.3(d); looking 

at figure 5.6(a), we see that this region of L, and also the region where LET C outbound 

agreement is worst, is just where the transition from pitch-angle diffusion to no pitch-angle 
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Figure 5.6 

Proton phase-space density (a) traces and (b) contour plot as in figures 5.4 and 5.5, from a 

model with combined radial and pitch-angle diffusion with 

[ ]
10.0 [ L-6.8 ]-I 

Du = 1.2x l0-8 ~ sec-•. Dxx = l.3x lo-s e ---o:t5 + 1 sec-•. and n = 0.63, 

with boundary condition normalization 0.56 times that in figures 5.1 and 5.2. ~ = 104 

MeV/G throughout, and xs in figure 5.6(a) are as in figure 5.5(a). 

Figure 5.7 

Observed and simulated proton fluxes plotted as in figures 5.3, from the model of figures 5.6. 
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Figure 5.6 
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Figure 5.7 

Hr. of day 237 (in) IBEl L (out) 
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diffusion is taking place, i.e., in the region of the dips in the phase-space density curves for 

the higher x s. where filling-in via Dxx from lower x s starts to dominate the absorption losses. 

In figure 5.6(b), this region is visible in that the contour lines lose their doubled-back form 

(as in figures 5.4(b) and 5.5(b)) and all become roughly parallel to one another, indicating 

predominance of g 1 (x) as absorption-induced anisotropy is reduced. 1llis is, of course, the 

region most sensitive to the details of our rather simple pitch-angle diffusion model, and thus 

disagreement here should not undermine the conclusions that we made about Du and n at 

the boundary using the radial-diffusion-only model, and which continue to be supported here, 

as argued in appendix 3; or the general conclusions about Dxx. namely that it is comparable 

to or larger than Du in the region of its applicability, and that the transition is rather abrupt 

at L :::: 6.8. In appendix 3, a comparison of models differing in the parameters related to 

pitch-angle diffusion, namely L0• tlL. and the normalization of Dxx. leads to the conclusions 

that, as with Du. we have determined the amount of pitch-angle diffusion within about a 

factor of 3; that the location L 0 where pitch-angle diffusion comes into play is accurate 

within about ±0.4 units of L; and that the turn-on is abrupt on the scale of tllis uncertainty. 

More generally, to demonstrate that even a small amount of pitch-angle diffusion in the 

region outside L :::: 8 is too much, figures 5.8 and 5.9 present another model with combined 

radial and pitch-angle diffusion, but with a uniform value of Dxx = 1.2xl0-9sec-1 in the 

entire region of L considered. and other parameters as in the fit result above. 1llis is about 

ten times less than the value of Dxx inside L 0 for the fit; nonetheless. it is enough to fill in 

most of the anisotropy developed at high x s in that model outside L 0 . 1llis is evident from a 

comparison of figures 5.8 with 5.6. where the dip in figure 5.6(a) does not have a chance to 

develop in figure 5.8(a) and the contour lines in figure 5.8(b) never have the doubled-back 

form mentioned above in figure 5.6(b); and of figures 5.9 with 5.7. where the later inbound 

data in figures 5.9(a) and 5.9(c) lack the pronounced dip present in figures 5.7(a) and 5.7(c). 

Indeed, the pitch-angle distribution appears to approximate g 1(x) from the region of the 

secondary maximum L of 1989N 1 (Lmax:::: 7.8) out to nearly L = 10 (where the boundary 

condition of n = 0.63 comes into play). indicating that even tllis small amount of pitch-angle 

diffusion is enough to dominate satellite absorption there and force the pitch-angle distribu

tion to match t11e assumed form of g 1(x). Even if t11e real form of g 1(x) is different from 
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this, the fact that Dxx of this magnitude forces the pitch-angle distribution to conform to 

g 1 (x) in this range of L should remain true in the real case, and since the observations seem 

to require the pitch-angle distribution to vary it seems that we can conclude that the pitch

angle diffusion really must be negligible there, and that it does turn on fairly sharply in the 

region stated. 
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Figure 5.8 

Proton phase-space density (a) traces and (b) contour plot as in figures 5.6, from a model 

with combined radial and pitch-angle diffusion with 

Du = 1.2x10-•[ ~] 
10

sec-1, Du = l.2x l0-osec- 1
, and 11 = 0.63, 

wiU1 boundary condition nonnalization 0.56 times that in figures 5.1 and 5.2. 
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Figure 5.8 
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Figure 5.9 

Observed and simulated proton fluxes plotted as in figures 5.3 or 5.7, from the model of 

figures 5.8. 
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Figure 5.9 
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Chapter 6 

Discussion 

6.1. Comparison with Other Planets' Energetic Ion Populations 

The Cosmic Ray Subsystems aboard the two Voyager spacecraft have observed ener

getic ions trapped in the magnetic fields of all four of the giant planets in the course of their 

mission. Each magnetosphere has presented a very different population, and just as the giant 

planets' magnetospheres differ qualitatively from that of Earth, those of Uranus and Neptune 

exhibited some systematic differences from those of Jupiter and Saturn. Jupiter's magneto

sphere is extensive enough to trap ions other than hydrogen from the solar wind at CRS ener

gies, either ions from flares or lower-energy particles accelerated within the magnetosphere, 

and it also has a substantial internal source of energetic heavy ions accelerated from the Io 

plasma torus (Vogt et al. 1979). Saturn's contains, in addition to accelerated inward

diffusing protons, an internal source from cosmic ray interactions with the ring material 

(Schardt and McDonald 1983). Uranus' and Neptune's magnetospheres contain, in the CRS 

energy range, only protons that have diffused inward from the outer magnetosphere. 

The morphologies of the magnetospheres are also very different; first, the two larger 

planets' magnetospheres are much more shaped by the presence of plasma than are those of 

the two smaller worlds. ~. the ratio of plasma pressure to magnetic pressure B 2/81t, was 

greater than unity throughout most of Jupiter's magnetosphere outside 10 Jovian radii 

(Krimigis et al. 1981) and in much of Saturn's outer magnetosphere as well (Krimigis et al. 

1983); in particular, Jupiter's magnetosphere extends to a much greater distance sunward than 

would be expected solely from the strength of its internal magnetic field because it is inflated 

by plasma. Uranus and Neptune, by contrast, have relatively empty "vacuum" magneto

spheres with ~ of much less than unity (Krirnigis et al. 1986; Krimigis et al. 1990), and 

therefore magnetic fields mostly reflective of the planets' internal dynamos. Also, those 



- 103 -

internal fields are more complex at the two more distant planets, as reflected in harmonics of 

higher than dipolar order or in the large tilts and offsets in the dipolar approximations in table 

1.1. 

Finally, Neptune stands alone in having a well-defined inner edge to its energetic proton 

population; CRS proton fluxes at other planets in the energy range analyzed here increased as 

far inward as the spacecraft ventured. Of course, Voyager 2 passed closer to Neptune by far 

than either Voyager came to any other planet since launch; however, in terms of L-shells (or 

distance in Rp ), all Voyager flybys except Voyager 2 at Jupiter came within the distance 

from Neptune at which CRS proton flux disappears. Satellite absorption signatures were 

observed in the proton fluxes at other planets, both macrosignatures and microsignatures, but 

the relatively simple system (Iow-13 plasma, energization by inward radial diffusion, and 

(effectively) one absorber and no internal sources in our energy range) for energetic protons 

at Neptune has allowed us to model the situation globally with some degree of completeness. 

6.2. Radial Diffusion 

As remarked in chapter I, the presence of satellites within the magnetospheres of the 

outer planets allows additional sources and sinks for charged particles besides those operative 

in the magnetosphere of Earth; in addition, the in situ observations starting with Pioneer 10's 

visit to Jupiter have generally indicated that the mechanisms producing radial diffusion at the 

outer planets differ from those effective in Earth's magnetosphere. These mechanisms leave 

their mark in the radial dependence of Du, with a stronger variation observed at Earth than 

at the outer planets. Diffusion coefficients can be derived by calculating the effect on par

ticles with a drift period 'td = 27t/rod of an oscillatory perturbation to the electromagnetic field 

with a frequency in resonance with the drift motion (which therefore might violate conserva

tion of the third adiabatic invariant, while preserving the first two), and relating this to the 

power spectrum with respect to frequency of the field fluctuations. At Earth, one mechanism 

of importance is a compression or expansion of the magnetosphere as a whole in response to 

changing conditions in the incident solar wind; this has been modeled (HUthammar 1968; 

Schulz and Lanzerotti 1974) to give 

Dtf oc L 10roJB (rod), (6.1) 
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where iJ (w) is the power spectrum of the perturbations to the magnetic field and the propor

tionality accounts for the magnitudes of the undisturbed field and of the disturbance, and for 

dependence on the equatorial pitch angle of the particles in question. If the compression 

takes the form of a sudden onset followed by a recovery to the unperturbed state on a time

scale long compared to 'td, then iJ is just inversely proportional to the square of the fre

quency, and the rod dependence cancels out, taking with it any energy or M dependence of 

D/1 . In this case D/1 oc L 10
, with a pitch-angle dependence of about a factor of 10 across 

the range of CXo· Another mechanism that gives a similar L dependence to Du is due to 

sudden changes in the magnetospheric electric field; in this case (FlUthammar 1968; Schulz 

and Lanzerotti 1974) 

(6.2) 

where Em (L ,w) is the power spectrum of the (time-varying) m th azimuthal harmonic of the 

electric field at L . For the case of variations of the m = 1 convection electric field with time 

variation as described above for magnetic compression (sudden onset, slow decay), the power 

spectrum is again inversely proportional to w2; since at constant K and M. rod is proportional 

to L-2
• equation 6.2 again gives Dfr oc L 10 for diffusion with K and M conserved. (Since 

the energy and pitch-angle variation of rod is approximately proportional to M /sin2exo. Dfr 
has weak dependence on exo. but depends on kinetic energy (for non-relativistic particles) 

approximately as E-2.) 

At the outer planets. analysis of charged particle phase-space densities suggests weaker 

dependence of D u on L. Mechanisms that result in a proportionality to L 3 at low particle 

energies are flux tube interchange due to centrifugal instability of corotating plasma with a 

negative radial gradient of mass per unit flux shell, invoked to explain Voyager observations 

in the vicinity of the Jovian moon Io (Siscoe and Summers 1981), and electric field variations 

driven by winds in the planetary ionosphere. suggested before the first spacecraft visits to the 

outer planets in order to explain the the distribution of decimetric synchrotron radio emission 

at Jupiter (Brice and McDonough 1973). This weak L dependence of Du is indicated at 

Saturn as well (Hood 1983), though the balance between the two mechanisms is less clear; at 

Uranus, the configuration of the cold plasma ruled out centrifugal interchange, but phase-
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space density profiles of protons and electrons with energies from tens to hundreds of keV 

suggested a similar weak dependence of D u on L (Hood 1989), and likewise at Neptune 

(Cheng et al. 1992). At Neptune, Selesnick (1992b) considered a wind-driven model with 

fluctuations in wind speed BW that turn on suddenly and decay on the timescale of the 

planet's rotation, so that 

(6.3) 

in equation 6.2, for 

(6.4) 

the mean electric-field fluctuation projected into the magnetosphere; this gives 

(6.5) 

At low particle energies, the ratio of angular velocities in the denominator is small, so for 

BW == 50 m/sec, 

(6.6) 

which is close to the estimates from the Voyager 2 Plasma (PLS) (Richardson et al. 1991) 

and Low Energy Charged Particle (LECP) (Cheng et al. 1992) experiments' observations of 

ions, both of which are of order Du == w-7L 3sec-1• At high energies, the ratio becomes 

much greater than unity, so for 

(6.7) 

(within a factor of 1.5 variation with CJ.o), we have 

D w = P == 2 10- 1.2 !:_ 10 MeV/G - I (BW)2.Q L3 [ ]7[ 3 ]2 
u 22 x r r sec . 

2Rp rod 8 .., 
(6.8) 

1llis is in reasonable agreement with the result for CRS electrons of Selesnick and Stone 
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(199lb), quoted in equation 5.5 as 

DU z sxw-'[ ~r·ec-1 , (6.9) 

for ~ ranging from one thousand to a few thousand MeV/G for most of the particles observed 

(the agreement is exact for ~::: 1300 MeV/G at the minimum L of 1989Nl, kinetic energy 

about 500 keY). As noted in the previous chapter, the models considered for CRS protons 

are not sufficiently sensitive to the exponent of the L dependence of DfL to allow us to con

strain it well at all, though the observations are certainly consistent with an L 7 dependence. 

More noteworthy, however, is the normalization of DfL, which is found to be 

(6.10) 

near L = 8 as quoted in equation 5.21, an order of magnitude less for protons than for elec

trons; this fits with the dependence on -( in equation 6.8 for particles that have approximately 

the same ~. as did CRS protons and electrons, in that those electrons were relativistic, with y 

of about 3 for a 1-MeV electron at the CRS threshold, whereas CRS protons are non

relativistic. Thus Dlf for electrons should be at least an order of magnitude greater than for 

protons, as is indicated by the observations, and thus the CRS proton observations appear to 

be consistent with this model and with the CRS electron observations. 

6.3. Pitch-Angle Diffusion 

Pitch-angle diffusion can readily be caused by interactions of energetic particles with 

plasma waves; candidate waves will have a frequency below the cyclotron frequency roc of 

the particle, and will be Doppler-shifted into resonance with the cyclotron motion (thereby 

violating the adiabatic assumption leading to conservation of M. as required for pitch-angle 

diffusion at constant energy) by the particle's motion along the field line. Electrons can 

resonate with whistler waves, which propagate along the field lines below the cold (non

relativistic) electron cyclotron frequency, and protons with ion-cyclotron waves, which pro

pagate similarly below the proton roc. For these processes the assumption of diffusion at 

constant energy is a good approximation; nonetheless. some energy will be exchanged 

between the particles and the waves. and under conditions of sufficient intensity (above a 
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certain threshold energy) and anisotropy of the energetic particle ftux, energy can be sys

tematically transferred to the plasma wave population (Kennel and Petschek 1966; Schulz and 

Davidson 1988), causing spontaneous excitation of whistler or ion-cyclotron waves. At 

Uranus and Neptune, in parts of the magnetosphere these conditions were met by electrons 

above a threshold energy of order keV, and at Uranus intense whistler amplitudes were 

observed by the PWS (Plasma Wave Subsystem); at Neptune, very low amplitudes were 

observed, but the amplitude necessary to produce strong pitch-angle diffusion (calculated 

using formulae of Thorne (1983)) was only about ten times the upper limit on the observed 

amplitude at L = 10 (Krimigis et al. 1990). Strong diffusion is the situation when particles 

are so thoroughly mixed in pitch angle that the distribution nears isotropy, including in the 

loss cone, so that a fraction of tl1e particles equal to the solid angle in the loss cone divided 

by 4n steradians is lost to the atmosphere every bounce period; this is as fast as pitch-angle 

diffusion can proceed (though non-diffusive processes that preferentially scatter particles into 

the loss cone could conceivably cause faster particle losses). The proton cyclotron frequency 

was below the lowest frequency observable by the PWS (10 Hz) except for the period of 

about one hour on each side of closest approach (Gurnett et al. 1989), as the equatorial value 

is only 200 ~z • so it is not possible to compare the amplitude of these waves with the value 
L 

required for Dxx as modeled. We can, however. compare this value of Dxx with the amount 

necessary under conditions of strong pitch-angle diffusion: in this case, 

(6.11) 

for large L. where aL is the equatorial pitch angle at the edge of the loss cone (approxi

mately ....fV2L -3 radians) (Thorne 1983). For a 2-MeV proton at L = 6.8, strong diffusion 

requires Dff = 10-4sec-1; the value resulting from the model in chapter 5, and quoted in 

equation 5.21 as 

(6.12) 

is four orders of magnitude less than this. 
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6.4. Summary 

The energetic proton population at Neptune displays positive radial phase-space gra

dients throughout most of the observed region, indicating transport inward from a source out

side L :::: 10. The radial diffusion coefficient is approximately an order of magnitude less 

than that for energetic electrons, though its L -dependence is not well constrained; this is con

sistent with a model for radial diffusion caused by ionospheric winds varying on a timescale 

much longer than the particles' drift periods. Pitch-angle diffusion is necessary to explain the 

pitch-angle profiles inside L = 6.8; the diffusion coefficient is comparable in magnitude to 

that for radial diffusion in Ulis region, and is much less than the coefficient needed for strong 

pitch-angle diffusion. Finally, as we approach the planet the energetic proton flux drops 

below detectability well outside the minimum L -shell of 1989N I, indicating the importance 

of the hlgh-latitude absorption that extends the radial sweeping range of a satellite in a mag

netic field far from aligned with the planetary rotation axis, and of the enhanced high-L 

absorption peculiar to energetic ions with large gyroradii. This combination of factors 

enables a single small moon to empty the planet's inner magnetosphere of energetic protons, 

a situation unique among the planets. 
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Appendix 1 

Closed-Form Calculation of a
8 

a8 , the probability that a particle spiraling past a moon will be absorbed by it. was cal

culated by Paonessa and Cheng (1985) by numerically following the trajectories of particles 

distributed uniformly in gyrophase as they pass the moon, and noting what fraction of them 

actually intersect the moon. lllis appendix presents formulae for direct calculation of tllis 

quantity. 

Figure Al.l(a) defines the quantities and coordinate system used below: a ring of par

ticles with a common guiding center and gyroradius p8 travels past a moon of radius Rm in 

the ±Z direction, with the guiding center passing the moon's center at (positive) impact 

parameter s. The set of helical trajectories of individual particles (with common local pitch 

angle a) defines a cylinder; labeling points on tllis cylinder by axial distance z from point 0 

in figure Al.l(a) and azimuth e from the .X axis, the curve of intersection of the moon's sur

face with the cylinder is defined by 

(Al.l) 

From tllis we confirm the geometrical conclusions that if s > Rm + p8 or s < p8 - Rm then 

there is no solution of equation Al.l, i.e., the cylinder and sphere are disjoint and no par

ticles hit the moon; and if s < Rm - p
8 

then there is a solution for every e. i.e., at z = 0 the 

section of the cylinder lies witllin the sphere and all particles hit the moon. 

An intermediate case is shown in figure Al.l(b), in which the cylinder is unrolled; the 

intersection is the heavy solid line. On a diagram such as tllis, a ring of particles uniformly 

distributed in gyrophase becomes a uniformly-populated line at a given z; the individual par

ticles' trajectories at a given pitch angle become a family of parallel lines defined by 

e - eo = __Ltan (J. . 

Pg 
(Al.2) 
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Figure A l.l(a) 

Geometry for modeling absorption probability during a single bounce of particles past a 

moon, after Paonessa and Cheng (1985), figure 2(a). 

Figure Al.l(b) 

Unrolled gyrocylinder and calculation of ea . (Example has a= 45°, Pg = s = 0.1xRm .) 
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Figure Al.l(a) 
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The trajectories that do not hit the moon's surface lie between the two dashed lines in the 

figure. The e-intercepts of the boundaries of this subset are extremal values of e0 from equa

tion A1.2, subject to equation A1.1: i.e., ea in the figure is the smallest value of e0 calcu

lated for e and z lying on the right lobe of the intersection curve. Then the fraction of par

ticles absorbed by the moon is 

(A1.3) 

To find ea, calculate e0 from equations Al.l and A 1.2 as a function of z along the first

quadrant portion of the intersection curve, and find the minimum with respect to z: this is at 

(A1.4) 

the position shown by the dot in figure Al.l(b). Then ea is the value of e0 calculated for 

this z; if ea :::;; 0 then ag = 1. otherwise ag is found from equation A1.3. (By symmetry, 

this value is correct for particles moving with either helicity, i.e .• of either charge, and in 

either direction of z, i.e., going up or coming down the magnetic field line.) 
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Appendix 2 

Calculation of -r~1 for Equatorial Particles 

Let AM (L) be the latitude of the moon corresponding to L for a given leg of the trajec

tory in figure 4.1. -rs-:;1 for equatorially-mirroring particles, as calculated by the method dis

cussed in chapter 4, is identically zero (except at the precise L values where the moon 

crosses the magnetic equator) because the moon is assumed to absorb the particles at a given 

L as if the moon were always at AM (L ), and equatorial particles, of course, always mirror 

below this latitude. Actually, for a dipolar magnetic field the moon absorbs particles at lati

tudes above AM (L) (in absolute value) when it is less than one effective radius r111 (see equa

tion 4. 7) outward from the L -shell of interest, and below AM (L) when it is less than r m 

inward; the range of latitudes absorbed is also slightly extended by the small latitudinal width 

of the moon. Thus there can be a finite amount of absorption even of equatorial particles, as 

the time during which the moon is in a position to absorb is not infinitesimal. Because we 

can write closed expressions for an equatorial particle's trajectory, we can dispense with 

some of the approximations in chapter 4 and calculate a better value than zero for -r~1 • 

We use a set of equations due to Stoermer (see, e.g., Rossi & Olbert (1970)): let 

2 lq lk0 rs =--
p 

(A2.1) 

(the Stoermer radius), where p and q are the momentum and charge of the particle, and 

rs 
'Ys =- 2LRN • (A2.2) 

which for trapped particles is always less than -1; then the path of a particle in polar coordi

nates (r, A,. <j>) centered on and aligned with the magnetic dipole k0 will obey 

[ ]
2 l ft - rs rs 2"fs - r 

rcosA, d - - cosA, +- A = li[-.A111 s r r cos , rs 
(A2.3) 
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and 

(A2.4) 

where s is the arc length along the trajectory. Equation A2.4 implies that h must be between 

-1 and 1, defining an allowed region for particles in Am and r about the drift shell labeled by 

L (the locus of h = 0 is exactly the drift shell, as is implied by the definition of h in equa

tion A2.3). Setting Am to zero, we see that at the magnetic equator these bounds in r are 

given by 

(A2.5) 

where h = 1 and 

(A2.6) 

where h = -1. 

Rossi and Olbert (1970) integrate equations A2.3 and A2.4 to get an exact solution for 

the polar coordinates r and $ of an equatorial particle. Using the transformations 

and 

r cos 2\jf = h (-) =II (x) 
rs 

k2= __ 2_ 
1 + rl ' 

they write the trajectory parametrically as 

and 

where 

I _/ 2 - = ~'Ys + cos 2\jf - 'Ys 
X 

(A2.7) 

(A2.8) 

(A2.9) 

(A2.10) 
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(A2.11) 

is Legendre's elliptic integral of the first kind. For 1 ~ h ~ -1, we have 0 ~'If~ rt/2 and 

r 1 ~ r ~ r 2 (as defined in equations A2.5 and A2.6) or x 1 ~ x ~ x 2 (dividing by rs). Let

ting 'If run from 0 to rt/2 traces the outbound half of one cyclotron gyration, say from point d 

to point c in figure A2.1; the other half is symmetrical in (j> about the longitude 'l>d of point 

d. 

To calculate 'ts~1 for equatorial particles. we still need a few approximations. For each 

of the two crossings of the magnetic equator by the moon. we assume L is constant (good 

since these are near the minimum L values. where dL!dt is small) and that the moon's d(j>ldt 

is negligible relative to the particle drift velocity wd (good by a factor of at least 100 for the 

particles of interest). Also. we assume that the moon is small relative to the particle's 

gyroradius (good by a factor of at least 10). Finally, we use an effective radius for the 

moon: at a given instant the intersection of the moon with the equatorial plane is a circle, 

and the time-averaged radius of this circle (normalized to rs) is 

(A2.12) 

Then at each L we can calculate Ys and r 5 from equations A2.1 and A2.2. and construct a 

diagram like figure A2.1. placing the moon in turn at the positions of each of its two equa

torial crossings at L 1111 = 4.4642 and L1112 = 4.8140, i.e .• at 

RN 1 L,u 
X · =L ·-=-----

IIU nu rs 2Ys L 

. 
(A2.13) 

for i = 1, 2. The solid and dashed curves define trajectories for particles that just graze the 

moon at points a and a'; all particles between these two curves will be absorbed in one 

gyroperiod. We can calculate the gyroperiod exactly by integrating dt = ds lv along the tra

jectory, but for Ys < -1.69 the value differs by less than one percent from 

2 Ys F( !i.,k) + !i. 
~I+ yf 2 2 

(A2.14) =-

for wd calculated in the guiding center approximation (as equation 3.10), and all particles in 
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Figure A2.1 

Geometry for modeling absorpUon of equatorial parUcles; arcs labeled by x and II are of cir

cles concentric with the dipole, and magnetic longitude cj> increases in the direcUon from point 

c to point b. (Example has Ys = -1.5.) 
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this work have 'Ys < -1.75. The ratio, for the record, is 

'tg 
(A2.15) 

'tg exact 

where <llb - <llc is given in equation A2.14 and l is the path length along the curve from point 

d to point c. given by 

c x2 

l lf f dx ---ds-
rs - rs d - x 

1 
-11 - h 2 

(A2.16) 

Then in time 't8 • the moon will absorb a fraction 

(A2.17) 

of the particles at that L; however, if the drift rate is very slow, some of these particles will 

already have been absorbed in the previous gyroperiod, and only those particles newly drifted 

into that region will be absorbed, so we use 

(A2.18) 

if it is smaller than the value derived from equation A2.17. The absorption takes place only 

during a fraction 

2R, 
f E = -----;----'---;-- (A2.19) 

dJ..., 
LRN ~ T, 

of one moon synodic period T,, where dA.,Idt is the moon's angular velocity in magnetic 

latitude; then, averaging over a synodic period, the particle absorption probability per unit 

time is 

(A2.20) 

All we need now is to calculate <)ld - <)ld ' for equation A2.17. 
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In figure A2.1, we can use the definition of h in equation A2.3 and the assumption that 

dxme is small relative to x 2 - x 1 to write 

(A2.21) 

(A2.22) 

and 

--.j 2 dxme <l>a - <Pa' = 2 1 - h (X,.;)--, 
Xmi 

(A2.23) 

where xa is the value of x at point a. etc. If xa and Xa' are both within the band from x 1 to 

x2• we can solve equation A2.9 for 'l'a and 'l'a'• given equations A2.21 and A2.22. Then we 

use equation A2.10 to get 

(A2.24) 

and 

(A2.25) 

and finally we combine equations A2.23 through A2.25 to get a value for <l>d - <!>d' to put 

into equation A2.17 for fA. which is the last quantity needed to find 'ts~1 from equation 

A2.20. 

For large gyroradii, the L regions swept during the two equator crossings overlap; in 

the overlap region we add the values of '!5~1 • Figure A2.2 plots 'ts~1 for three values of M in 

the range of interest, showing the width of the swept regions increasing with M. By requir

ing that Xa and Xa' both be within the region from x 1 to x2, i.e., that the moon be entirely 

within the gyrocircle, we ignore partial sweeping in Rm!RN = 0.016 units of L on each edge 

of each swept zone. The substitution of equation A2.18 for equation A2.19 is only operative 

witJtin a comparable width in L for the lowest of the M s shown. cutting the heights of the 

peaks at the edges of the swept zones by up to a third. 
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Figure A2.2 

Inverse satellite sweeping lifetimes due to 1989N 1 for equatorial particles with (a) M = I<Y·6 

MeV/G, (b) M = 104
·0 MeV/G, and (c) M = 104

·
4 MeV/G. 
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Appendix 3 

Sensitivity of Models to Fit Parameters 

3.1. Statistical Errors 

In a fitting process that attempts to reproduce observations by varying a set of parame

ters of a model, one can usually obtain "error bars" on the parameters that give the best fit to 

the data by taking crf for parameter Pk to be the k th diagonal element of the inverse of the 

curvature matrix: 

2 [ -1] crk = a kk (A3.1) 

for 

a ·· =_!_ a7} . 
'
1 2 ap;aPj • 

(A3.2) 

then changing the model by crk either way from the best-fit value of Pk should increase x2 by 

approximately one (Bevington 1969). 1ltis can be interpreted as stating that, for a large 

ensemble of observers making the same set of measurements, with observed values (here, 

numbers of counts) distributed around the true value (expected number of counts) according 

to an appropriate distribution function (Poisson), and each fitting a model to his own set of 

measurements, at least 68% of the observers would derive a value for Pk within crk of the 

true value (Gehrels 1986). 

However, this definition of the "one-sigma confidence limits" on the parameters 

assumes that one has a model which fits the data well enough that the biggest deviations 

from the observations will be due to statistical fluctuations in U1e observations themselves; if 

this is the case, then the value of x2 should be close to the expected value N - n, where 

there are N data points and n fit parameters. 1ltis is not the case for the models presented in 
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this thesis; N = 210 for the subset of the observations selected for fitting, and n = 3 or 7 

respectively for models with radial diffusion only or radial and pitch angle diffusion, but the 

values of xi (from equation 5.3) calculated for the two best-fit models are 753 and 1057 

respectively. Clearly systematic effects dominate, as can be seen by a glance at figures 5.3 

and 5.7: the deviations of the observed data points from the model points are not randomly 

up or down, but rather in certain regions the model systematically passes either above or 

below the observations. Several attempts were made to find a way to assign a value to sys

tematic errors and include them in calculating a revised x2 from which more realistic errors 

on the parameters could be derived, such as adding an estimated systematic error in quadra

ture with a Gaussian approximation of the statistical errors; these led to very different "best 

fits" in some cases, as the structure of the observations in areas where the models in chapter 

5 are actually able to do a good job of matching them was smeared out by the added errors 

to the point that the fit was equally bad everywhere. Thus in this appendix the observations 

are compared with several models differing in one parameter at a time from the best-fit 

models of chapter 5 by showing these models as an envelope around the nominal one, and 

thus showing which parameters' values are most tightly constrained by which subset of the 

observations. This presentation of alternative models allows one to distinguish between con

straints that reflect qualitative features of the data, such as the lack of a sharp pitch-angle 

anisotropy in the vicinity of the roll maneuver, and ones that simply amount to making the 

best of a bad fit. This distinction is the reason that the model with pitch-angle diffusion is 

claimed to be an improvement over the one without, despite its higher value of xJ. 

3.2. Radial-Diffusion Models 

Figures A3.1 show the dependence of the radial-diffusion model on the normalization of 

Du. for one of the five energy bins (the others are qualitatively similar), and figures A3.2 

show the dependence on the exponent of Du versus L . Generally, the models differ most at 

low Ls, where the differing values of Du resulting from different normalizations and L

dependences for it lead to large differences in the sharpness of the downturns in phase-space 

density with decreasing L; since the LET C data set samples the lowest Ls, it is most 

strongly affected, and therefore it most strongly constrains the fit. Unfortunately, as noted in 
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Figure A3.1 

Fluxes in the 2.1-2.9 MeV energy bin, for radial-diffusion models differing in Du(L=8); 

models are plotted as lines, points with error bars are observations. Each point, of model or 

observation, is normalized by the value at the same point of the model of figures 5.3 and 5.4; 

the models plotted have Du (L=8) that is 1110, 115, 1/3, 112, 1, 2, 3, 5, and 10 times that of 

the nominal model (1.7xl0-8 sec-1
), in order from the dashed line to the dotted one. The 

subfigures are (a) LET C inbound; (b) LET C outbound; (c) LET D inbound; and (d) LET D 

outbound, as in figures 5.3, 5.7, and 5.9. 

Figure A3.2 

Fluxes in the 2.1-2.9 MeV energy bin, for radial-diffusion models differing in the exponent 

of D u versus L. plotted as in figures A3.1. For D u oc Ll3. the models plotted have P = 3, 

5, 8, 10, 12, 15, and 17, in order from the dashed line to the dotted one. 

Figure A3.3 

LET C outbound fluxes for four energy bins, for the radial-diffusion models of figure A3.2. 

The subfigures are (a) 1.9-2.1 MeV, (b) 2.1-2.9 MeV, (c) 3.2-3.7 MeV, and (d) 3.7-4.3 MeV. 
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Figure A3.1 
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Figure A3.2 
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Figure A3.3 
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chapter 5, this is the subset of the observations worst fit by the model; the observations also 

have some of the worst statistics. From figure A3.1 (b) it might appear that a substantial 

increase in the normalization of D u, as represented by the dotted line, would improve the fit 

at all but one of the points in this figure; looking at the LET C outbound observations in 

other energy bins, however, as presented in figures A3.3, we can see that this is just due to 

the small number of counts in the lowest-L point in the 2.1-2.9 MeV energy bin. The 

models presented in figures A3.3 are the same as those in figures A3.2, which differ from the 

nominal model in the exponent of the power-law dependence of Du on L; from them we 

can see that the model is not sensitive enough to this parameter that the observations con

strain its value very tightly. As noted above, it is difficult to quote an error margin on 

parameters in the absence of a good overall fit; let us take as our criterion that a value of a 

parameter is consistent with the observations if a model that uses the revised value no more 

than doubles the size of the logarithmic residual of the worst-fit points in the region of the 

model sensitive to that parameter. That is, renormalizing figures like A3.1 to A3.3 so that 

the model with the revised parameter is the straight line at 10° results in an envelope around 

the observed points that is no more than twice the size (on t11e logarithmic scale, in the most 

sensitive region) of one that encloses them in a figure normalized to the nominal model. 

With this criterion, figure A3.1 shows that models varying the normalization of D u up or 

down a factor of about 3 remain consistent with the observations. Figures A3.2 and A3.3, 

however, show that a wide range of exponents result in models consistent with the observa

tions, perhaps from 5 to 15. In neither case does varying these parameters allow the model 

to reproduce the lack of a jump in the observed flux across the roll maneuver; this is the 

motivation for introduction of pitch-angle diffusion in §5.2. 

Figures A3.4 show the dependence of the model on n, the exponent in the pitch-angle 

distribution at L = 10. This parameter is constrained by sections of the observations, notably 

the early inbound data and the more distant LET 0 outbound data, that sample the flat parts 

at high L of the phase-space density curves of figure 5.4(a) and that are thus little affected in 

the model by the changes above in Du. Conversely, this parameter is therefore fairly well

constrained by the observations, which are fit by the nominal model better in these areas than 

in the subset that constrains Du above, and we can conclude that the pitch-angle distribution 



- 129-

really is nearly isotropic near L = 10, as in that model; using the criterion for consistency 

described above, n should be between about 0 and 1.2. 

3.3. Combined Radial- and Pitch-Angle-Diffusion Models 

The dependence of the model of §5.2, with pitch-angle diffusion added to radial 

diffusion, on the two parameters of Du is shown in figures A3.5, A3.6, and A3.7. which 

show roughly the same range of models as figures A3.1. A3.2, and A3.3 respectively. (The 

models with very low Du that drop off the bottom of the scale in figure A3.5(c) are an 

artifact of the calculation, which cannot reproduce extreme pitch-angle anisotropies at high 

values of x, as detailed in appendix 4.) 1l1e dependence of this model on these parameters is 

very similar to that of the model with radial diffusion only; the lack of an observed jump in 

flux across the roll maneuver at L = 7 in the LET C outbound data is better reproduced here 

than in that model, of course, since pitch-angle diffusion is allowed, but the range of parame

ters consistent with the data is most sensitive to the lowest-L points rather than to the jump 

or absence thereof, and thus the parameters are comparably constrained: normalization of 

Du is correct within about a factor of 3, and the exponent of its L-dependence is probably 

between 5 and 15. 

The dependence on the pitch-angle parameter n , shown in figure A3.8, is also similar to 

that of the previous model. except for an increased sensitivity at L less than about 8 in the 

outbound data due to the cancellation of different amounts of pitch-angle anisotropy in 

models with different u at L = 10, once pitch-angle diffusion cuts in. The nominal model 

does not produce much difference in the simulated fluxes relative to the radial-diffusion-only 

model, in the regions most sensitive to u ; thus by the criterion above we can again say that n 

at the boundary should be between about 0 and 1.2. 

Because equation 5.9 is linear in f. the dependence of the models on the normalization 

of the phase-space density at the L = 10 boundary is trivial; this leaves the three parameters 

involved in pitch-angle diffusion: the nonnalization of Dxx• and the locaHon L 0 and width 

U of its onset. Figures A3.9, A3.10, and A3. ll show the dependence of the model on 

these parameters. Only the LET C outbound model fluxes across the roll maneuver show 

much sensitivity to the normalization of Dxx• but they constrain it rather Hghtly: too much or 
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Figure A3.4 

Auxes in the 2.1-2.9 MeV energy bin, for radial-diffusion models differing in the pitch-angle 

exponent 11 of equation 5.2, plotted as in figures A3.1. The models plotted have n = 0, 1/4, 

112, 1. 2, 3, and 4 times that of the nominal model (0.44), in order from the dashed line to 

the dotted one. 
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Figure A3.4 
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Figure A3.5 

Fluxes in the 2.1-2.9 MeV energy bin, for models with combined radial and pitch-angle 

diffusion differing in Du (L=8), plotted as in figures A3.1 but normalized relative to the 

model of figures 5.6 and 5.7. The models plotted have Du(L=8) that is 1110, 115. 113, 112, 

1, 2, 3, 5, and 10 times that of the nominal model (1.2x10-8 sec-1). in order from the dashed 

line to the dotted one. 

Figure A3.6 

Fluxes in the 2.1-2.9 MeV energy bin. for combined-diffusion models differing in the 

exponent of Du versus L, plotted as in figures A3.5. For Du oc L~. the models plotted 

have P = 3, 5. 8. 10, 12. 15. and 17, in order from the dashed line to the dotted one. 

Figure A3.7 

LET C outbound fluxes for four energy bins, for the combined-diffusion models of figure 

A3.6. The subfigures are (a) 1.9-2.1 MeV. (b) 2.1-2.9 MeV, (c) 3.2-3.7 MeV, and (d) 3.7-

4.3 MeV. 
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Figure A3.5 

10 

Hr. of day 237 (in) IBEl L (out) 



> 
Cl) 

~ 
0 
lt:l 
C\l 

·~ 

- 134-

Figure A3.6 
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Figure A3.7 
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Figure A3.8 

Fluxes in the 2.1-2.9 MeV energy bin, for combined-diffusion models differing in the pitch

angle exponent n of equation 5.2, plotted as in figures A3.5. The models plotted have n = 
0, 1/4, 1/2, 1, 2, 2 1/2, and 3 times that of U1e nominal model (0.63), in order from the 

dashed line to the dotted one. 
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Figure A3.8 
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Figure A3.9 

Fluxes in the 2.1-2.9 MeV energy bin. for combined-diffusion models differing in Dxx, plot

ted as in figures A3.5. The models plotted have Dxx = 1/10, 1/5, 1/3, 1/2, 1, 2, 3, 5, and 10 

times that of the nominal model (1.2x10-9 sec-1), in order from the dashed line to the dotted 

one. 

Figure A3.10 

Fluxes in the 2.1-2.9 MeV energy bin. for combined-diffusion models differing in location of 

pitch-angle diffusion turn-on L 0• plotted as in figures A3.5. The models plotted have L 0 = 
6.0, 6.4, 6.8. 7.2, and 7.6. in order from the dashed line to the dotted one. 

Figure A3.11 

Fluxes in the 2.1-2.9 MeV energy bin. for combined-diffusion models differing in width of 

pitch-angle diffusion turn-on !!.L. plotted as in figures A3.5. The models plotted have !!.L = 
1/3, 1/2, 1, 2, and 3 times that of the nominal model. in order from the dashed line to the 

dotted one. 
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too little pitch-angle diffusion results in very different pitch-angle distributions and also in 

different amounts of loss at all pitch angles due to more- or less-efficient coupling to higher 

pitch angles where satellite absorption takes place. By the criterion above, the nonnalization 

of Dxx is, like that of Du. correct within about a factor of 3. The other two parameters, 

however. have effects in the model on all the observed regions. and in a coupled manner: a 

larger (or smaller) M at fixed L 0 has an effect similar to a higher (or lower) L 0 in extending 

(or diminishing) the region where pitch-angle diffusion is effective. If it begins too far in, 

the resulting model retains the extreme pitch-angle anisotropy of the radial-diffusion-only 

model inward past the roll maneuver. resulting in a jump in the simulated LET C outbound 

fluxes there. while if it begins too far out the fonn of the pitch-angle distribution sampled by 

the later inbound observations is smoothed too much, as in the model of figures 5.8 and 5.9. 

Thus. despite the rather suspicious proximity in L of the onset of pitch-angle diffusion and 

the roll maneuver, it appears that the observations do in fact constrain the location and 

abruptness of that onset to be close to those in the model of §5.2. L 0 is probably correct to 

within about ±0.4 units in L; since the range of M consistent with the observations accord

ing to our criterion is smaller than or comparable to this uncertainty. it is not possible to 

separate it from L 0, and all we can say is that the turn-on of pitch-angle diffusion is abrupt 

on the scale of the uncertainty in L 0. 
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Appendix 4 

Limitations of the Pitch-Angle Eigenfunction Method 

To solve equation 5.9 exactly by means of the eigenfunction method of equation 5.16 

would involve an infinite number of terms in the series of equation 5.15, even ignoring the 

approximations leading to equation 5.10; the choice made in this work was to truncate the 

series after the twentieth term. To see what the consequences of this are, first we look at the 

degree to which a 20-term series can approximate an arbitrary pitch-angle distribution. Fig

ures A4.1 show partial sums up to twenty terms of the series for a sin2
n e = (1 - x 2t pitch 

angle distribution, as was assumed at the boundary at L = 10, for n from 0 to 4 and for 

x = 0.90 and x = 0.97; this latter is as high as we need in order to simulate our observations. 

Two trends immediately apparent are that more terms are needed for accuracy at a higher x, 

and that more are usually needed for a more anisotropic pitch-angle distribution. Twenty 

terms seems to be good enough for these n s and x; we note in figure 5.4(a) that the pitch

angle distribution becomes much more anisotropic than in this figure at low L s, but by intro

ducing pitch-angle diffusion we are expecting to reduce this anisotropy in order to reproduce 

better the observations at the spacecraft roll , so the models for which this method is intended 

should not be so extreme. That this method is insufficient for the anisotropies of the radial

diffusion model is apparent in figures A4.2, where equation 5.16 is solved for Du as in that 

model and for A.; = 0: the phase-space density is no longer even positive definite in the solu

tion. Nonetheless, where the anisotropy is not too extreme the solution is at least qualita

tively similar to those of figures 5.4 and 5.5; the apparent smoothing of the phase-space den

sity contours in figure A4.2(b) where those of figures 5.4(b) and 5.5(b) break sharply can be 

attributed to the loss of "high-frequency" terms due to the truncation of the series of equation 

5.15. 

Figures A4.3 show a further approximation implicit in our solutions of equation 5.16. 

't;j1 as defined in equation 5.17 is an integral, which was done numerically at a grid spacing 



- 144-

Figure A4.1 

Partial sums of the series implied by equaHon 5.19, which should approach 

sin2ne = (1- x2t at each x. x = 0.90 in figure A4.l(a), and x = 0.97 in figure A4.l(b); 

curves are partial sums of the series 

}:.a;g;(x) 
i=l 

for n = 0 to 11 = 4 (from top to bottom) in steps of '12 and points at right margin are exact 

values. 



..... 
0 
.....-! 

0 
0 
.....-! 

..... 
I 
0 
.....-! 

- 145-

Figure A4.1 

C\l 
I 
0 
.....-! 

10 
I 
0 
.....-! 

(/) 

(/) 



- 146-

Figure A4.2 

Proton phase-space densities plotted as in figures 5.6 and 5.8 for the model (with radial 

diffusion only) of figures 5.3, 5.4, and 5.5, but calculated using equation 5.16 (with A; = 0). 

Figure A4.2(a) presents traces at ~ = 104 MeV/G and the same xs as before; figure A4.2(b) 

presents a contour plot, but with curves only from logHlf = -12 to -14 by steps of Yz (in 

units of (cmMeV/c)-3) from upper right to lower left, since as seen in figure A4.2(a) the 

model produces garbage below the lowest of these levels. 
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Figure A4.2 
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Figure A4.3 

Inverse absorption lifetime matrix elements 1:;)1; lighter. more jagged line is as calculated, 

heavier line is smoothed as described in the text. -cii is the nonnegative-definite pair of 

curves, -c4i is the other. Figure A4.3(a) is plotted on a linear scale, and figure A4.3(b) is 

plotted on a logarithmic scale; ~ = 104 MeV/G for both. 
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Figure A4.3 
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of 0.02 in x; the results of this calculation for ~ = 104 MeV /G, j = 8, and i = 4 and 8 are 

shown as the jagged lines in these figures. The jaggedness is caused by the sharp cutoffs in 

'ts-;1(x) at the high-L end of each leg of the moon's trajectory, when it passes above the mir

ror latitude of the particles in question. These cutoffs are closely-enough spaced in L for the 

lower xs that it was felt safe to approximate the (smooth) integral by applying a low-pass 

fast Fourier transform filter (SMOOFf, from Press et al. (1988)) with a cutoff at a 

wavelength of 0.2 units of L, as shown in these figures by the heavy smooth curve. (The 

algorithm used to solve the differential equation had had some difficulty with sharply and 

rapidly varying components of the equation, so it was thought necessary to smooth 't;j1
.) At 

higher xs, however, the endpoints of absorption become farther apart in L, and smoothing is 

not likely to give a much better approximation to the actual integral; for example, the spikes 

at L == 8.1 and 8.6 in figure A4.3(b) are due to the the cutoffs on two legs of the moon's tra

jectory for x = 0.92, and those at L == 8.9 and 9.3 are due to cutoffs for x = 0.94, and they 

are not cleaned up very much by the FFf smoothing. However, the phase-space density 

profiles in this region of L are pretty ftat for the models considered, and the absolute value of 

the inverse lifetime 't;j1 is much reduced. so it should make little difference to the models cal

culated. 

A test of this is shown in figures A4.4 and A4.5. where 'ts-:;1 is regenerated from 't;j1 for 

~ = 104 MeV/G and three different xs; figure A4.4 is from the set represented by the jagged 

lines in figures A4.3, while figure A4.5 is from the smoothed. The heavy solid line in these 

figures is 't~1 as calculated directly; the lighter lines are regenerated as follows: let bi be the 

set of coefficients that reproduce a function that is identically unity for x from 0 to 1, i.e., for 

allx 

1 = 'Lbjgj(x), 
j 

which by the orthonormalization shown in equation 5.12 implies that 

I 

bj = [x dx gj(x). 

Then we seek the set of coefficients a; such that 

(A4.1) 

(A4.2) 
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Figure A4.4 

Inverse lifetimes 'ts~1 for ~ = 104 MeV/G, and (a) x = 0.20, (b) x = 0.60, and (c) x = 0.95. 

Heavy solid line is calculated directly as in chapter 4; lighter line is regenerated from the 

matrix of •;"~/ as in equations A4.4, with dotted segments being negative (logarithm of -•s~1 is 

plotted). 't;j1 here is as originally calculated. and shown in figures A4.3 as the lighter jagged 

lines. 

Figure A4.5 

Inverse lifetimes •;:;1 as in figures A4.4, but with regenerated -r.;:;1 calculated from the 

smoothed version of 't;j1 shown in figures A4.3 as heavy smooth lines. 
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Figure A4.4 
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Figure A4.5 
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(A4.3) 

Using the definition in equation 5.17, 

I 

"1;Pj't;j1 = J;.bj rx d.x g;(x)gj(x)'ts-:;1(x); 
J J 6 

(A4.4(a)) 

using equation A4.3, 

I 

7bj't;j
1 = 7bjJx d.x g;(x)gj(x) takgk(x); (A4.4(b)) 

rearranging integrations and summations, 

I 

¥j't;j
1 = ta*[x d.x g;(x)gk(x) ¥jgj{x); (A4.4(c)) 

using equation A4.1, 

I 

L,bj't;j1 = Lak rx dx g;(x)gk(x); 
j k 6 

(A4.4(d)) 

and using equation 5.12, 

L_bj't;j1 = L_akoik =a;. (A4.4(e)) 
j k 

so we can put this into equation A4.3 and recover 'ts-:;1(x) from 't;""/. Overall magnitudes are 

about right for the regenerated 'ts-:;1s, and the absolute value drops by at least an order of mag

nitude where each directly-calculated 't~ 1 vanishes. sometimes going negative (dotted lines); 

the details of the peaks and valleys of the direct 'ts-:;1s are reproduced at a resolution compar

able to that of the matrix 't;j1• It could be expected, then, that the calculated model for the 

eigenvalue method would resemble that of a direct solution with correct 'ts-:;1s at about this 

same level. 

Figures A4.6, A4.7, and A4.8 show a comparison for the same ~ and xs as in figures 

A4.4 and A4.5 of the different contributions to equation 5.9; we may rewrite that equation as 

(A4.5) 



- 155 -

at each ~. x, and L. Dividing by-! as calculated from equation 5.15 using a; from a model 

solution, we may express this equation as a sum of inverse lifetimes, each corresponding to 

one term of the equation; if we use the directly-calculated value of ;;s-;1 for the third term, the 

left-hand side of this equation will not necessarily add up to zero, so we express the right

hand side error as an inverse lifetime;;;;.~ as well: for 

-1- 1 ~, ( )Lt a [L-tD aa;(L)l 'tL ---~·X - u---
f ; ' aL aL (A4.6(a)) 

and 

(A4.6(b)) 

we have 

-1 + -1 -1 -1 
'tL 'tpa + 'tss = 'terr· (A4.7) 

;;z1 and ;;;;d are positive when there are net losses of particles to other Ls and pitch angles, 

respectively, and negative when there is a net influx; ;;s-;1 is always nonnegative. Figures 

A4.6, A4.7, and A4.8 begin at L = 5 because inward from there f is reduced enough that 

dividing by it produces numerical errors. Looking at these figures in tum, which are calcu

lated for the nominal combined-diffusion model of figures 5.6 and 5.7. we note that the 

behavior is qualitatively as expected: at low x there is a net loss to higher xs via pitch-angle 

diffusion (where it is in operation), which must be made up through inflow from other Ls; at 

a higher x where satellite absorption extends to L :::: 5.6. there is inflow both from other Ls 

and from other x s to make up loss to the satellite, and outside there the situation is as for the 

lower x; and for the highest x, where satellite absorption is present throughout the range of 

L. the inflow via both diffusion mechanisms is present almost everywhere. In all three cases 

the error is typically an order of magnitude or more down from the dominant contribution to 

the left-hand side of equation A4.7, though this gets worse as x increases. Thus we can 

expect that the errors in the phase-space densities calculated using the eigenfunction method 

will be down a comparable amount relative to the calculated values; certainly, as seen from 

figures 5.7, the systematic errors resulting from a too-simple model will be larger than these. 
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Figure A4.6 

Inverse-lifetime representations of the components of equation 5.9 as in equation A4.7, for 

~ = 104 MeV/G and x = 0.20, and the model of figures 5.6 and 5.7: (a) pitch-angle diffusion, 

(b) radial diffusion, and (c) error. 

Figure A4.7 

Inverse-lifetime representations of the components of equation 5.9 as in figure A4.6, for 

~ = 104 MeV/G and x = 0.60. 

Figure A4.8 

Inverse-lifetime representations of the components of equation 5.9 as in figure A4.6, for 

~ = 104 MeV/G and x = 0.95. 
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Figure A4.6 
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Figure A4.7 
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Figure A4.8 
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