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ABSTRACT

This work focusses on developing and solving the conservation
equations for a spatially homogeneous aerosol. We begin by develop-
ing the basic equations,and in doing so, a new form of the conservation
equation or General Dynamic Equation (GDE), termed the discrete-
continuous GDE,is presented. In this form, one has the ability to
simulate aerosol dynamics in systems in which processes are occurring
over a broad particle size spectrum, typical of those found in the
atmosphere. A1l the necessary kinetic coefficients needed to solve
the GDE are discussed and the mechanisms for gas-to-particle conver-
sion are also elucidated.

Particle growth rates limited by gas phase diffusion, surface
and volume reactions are discussed. In the absence of coagulation,
analytic solutions for the above particle growth rates, arbitrary
initial and boundary conditions, arbitrary sources, and first order
removal mechanisms are developed.

To account for all processes, numerical solutions are required.
Therefore, numerical techniques and the errors associated with the
numerical solution of the GDE are discussed in detail. By comparing
the numerical solution to both analytical solutions for simplified
cases and smog chamber data, it is shown that the numerical techniques

are highly accurate and efficient.
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Techniques for simulating a sulfuric acid and water aerosol are
presented. By application of the discrete-continuous GDE, the effect
of neglecting cluster-cluster agglomeration, and the effect of a
preexisting aerosol on the nucleation rate of a sulfuric acid and
water aerosol are studied. The effects of coagulation are also eluci-
dated by simulating the system with the full continuous GDE and the
analytic solution to the continuous GDE in the absence of coagulation.
Fairly good agreement between the predicted and experimentally observed
distributions is obtained.

Finally, an exact solution to the continuous form of the GDE for

a multicomponent aerosol for simplified cases is developed.
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Chapter I

INTRODUCTION

Atmospheric pollutants are often classified as being either in the
gaseous or particulate phase. Gaseous or particulate primary pollutants,
which are emitted directly into the atmosphere, can undergo chemical or
physical change resulting in what are called secondary pollutants. Much
work has been devoted to modelling the kinetics of primary to secondary
gaseous pollutants and the physical dynamics of aerosols. However, the
evolution of atmospheric aerosols from primary emissions of both gaseous
and particulate pollutants, and secondary sources is not completely
understood.

For a spatially homogeneous system, one is interested in determining
the temporal variation of gaseous pollutant concentrations and the particle
size and chemical composition distribution function. Because of the various
processes for gas-to-particle conversion, aerosol formation and growth
can be intimately related to both the homogeneous and heterogeneous
chemistry. In addition to chemical transformationswithin the particle
and gas-to-particle conversion, the aerosol is also affected by physical
processes such as particle removal and agg]omeration.* Clearly,the coupling

of chemical and physical processes adds to the complexity and difficulty of

simulating aerosol dynamics.

*
By agglomeration we mean the collision and subsequent coalescence of
two particles of any size.
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This work will be restricted to the dynamics of aerosol formation
and growth by gas-to-particle conversion, physical processes and
chemical reactions occurring in the particle phase. Thus the
determination of the generation rate and concentration of gaseous
pollutant by gas phase chemistry will not be of major concern. However,
the effects of primary and secondary gaseous pollutants on the aerosol
will be considered. Most of this work will be mainly concerned
with determining the evolution of the size distribution, independent
of the aerosol composition. The evolution of the chemical composition
distribution function will be considered only in the last two
chapters.

To establish a firm theoretical basis for simulating aerosol
dynamics, the conservation equations or the so-called General Dynamic
Equation (GDE) for a spatially homogeneous aerosol will be developed
in Chapter II. As will be shown, the basic discrete representation
of aerosol particles, although quite detailed, is impractical for
most simulation purposes. Thus, a new form of the GDE, termed the
discrete-continuous GDE will be developed. The relationship between
the discrete-continuous GDE and the often used continuous GDE will
also be discussed. Using the discrete-continuous GDE, the basic
terminology and mechanisms for particle formation and growth will
be clearly defined. The agglomeration and evaporation coefficients
will be presented and the mechanisms for particle growth by gas

phase diffusion and particle phase reaction will be discussed. A



review of previous approaches to simulating aerosol formation and
growth will also be given in Chapter II.

In Chapter III the continuous GDE is cast into dimensionless
form and solved analytically in the absence of coagu]ation.* The
particle growth mechanisms considered are gas phase diffusion, and
particle surface and volume reaction-limited growth. Arbitrary
initial and boundary conditions, arbitrary sources and first order
removal mechanisms are also considered.

For cases in which coagulation is also considered, numerical
routines are required to solve the GDE . Thus in Chapter IV,
the results of using two numerical techniques are discussed. It
is shown that, due to the nature of agglomeration processes, larger
particles are continually being formed and therefore any computational
scheme which uses a finite particle size domain can introduce what
will be called a finite domain error. This error results from
particles that grow beyond the computational domain and are artificially
lost in the computations. Thus, the influence of these large
particles on the aerosol within the computational domain is inadvertently
neglected. However, by expanding the computational domain, these
errors can be reduced so that an acceptable solution can be obtained.
Chapter IV concludes by showing that for a realistic aerosol

undergoing coagulation, and a reasonable computational domain, the

*
By coagulation we mean the agglomeration of particles larger than the
critical size particle determined by classical nucleation theory.



finite domain error is negligible and that good qualitative agreement
between the predicted and experimentally observed size distributions
can be obtained.

In Chapter V techniques for simulating the formation and growth of
a sulfuric acid and water aerosol in the presence of a preexisting
urban aerosol will be discussed. Using the discrete-continuous or
the continuous GDE, fairly good agreement between the predicted and
experimentally observed distributions are obtained. More importantly,
several of the often used assumptions in determining nucleation rates
are scrutinized and it is shown that under certain conditions the
effect of the preexisting aerosol and cluster-cluster agglomeration
can be important.

In Chapter VI analytic solutions to the continuous GDE for
a multicomponent aerosol are developed. It is shown that the
different chemical nature of the aerosol constituents can greatly
affect the evolution of the chemical composition distribution
function.

Finally, in Chapter VII this work is summarized and placed in
proper perspective relative to future work needed to simulate

atmospheric aerosol dynamics.



Chapter II

THEORETICAL DEVELOPMENT OF THE
GENERAL DYNAMIC EQUATION FOR
SPATIALLY HOMOGENOUS
AEROSOLS

ABSTRACT

Conservation equations for aerosol size distribution dynamics
are derived and compared. A new discrete-continuous conservation
equation is derived that overcomes the limitations of the purely
discrete or continuous equations in simulating aerosol dynamics over
a broad particle size spectrum. Several issues related to aerosol
formation and growth not previously amenable to exact analysis are
developed for detail study using the discrete-continuous equation:
(1) the establishment of a steady state concentration profile of
molecular clusters in the presence of a preexisting aerosol, (2) the
relative importance of nucleation, condensation, and scavenging in
gas-to-particle conversion, and (3) the importance of cluster-
cluster agglomeration relative to other processes.

The necessary kinetic coefficients are discussed and a review
of previous work on conservation equations for aerosol dynamics is

also given.



1. INTRODUCTION

The dynamic behavior of an aerosol is described by a population
balance equation. In its most general form the independent variables
in the equation are particle size and composition (1), although in
virtually all applications size is the only variable characterizing
the aerosol. The population balance equation, which can be termed the
General Dynamic Equation (GDE), can assume several forms depending on
whether the aerosol size distribution is represented as discrete or
continuous and on what physical and chemical phenomena are included.
Because of the complex processes that an aerosol may undergo, simula-
tion of the dynamics of an aerosol generally necessitates solution of
some form of the GDE.

In the most fundamental approach to deriving the GDE, particles
are represented as consisting of integer multiples of a single struc-
tural unit, typically a molecule. In these discrete equations parti-
cles differ only in the number of monomers they contain. The GDE
consists then of an infinite set of nonlinear ordinary differential
equations for the number densities of all particles. The discrete
GDE, while rigorously valid, is impractical for simulation of aerosol
behavior because of the typical wide range in particle size. A popular
alternative to the discrete GDE is the continuous GDE, in which the
particle size spectrum is taken to be continuous rather than discrete.
Whereas the continuous GDE is more tractable than the discrete version,

it suffers from the disadvantages of inaccurately representing processes



occurring among the very smallest particles, processes that are im-
portant in representing gas-to-particle conversion.

In this chapter a new form of the aerosol GDE which we term the
discrete-continuous GDE is derived. In this form the discrete repre-
sentation is used up to a certain multiplet number past which the
particle size distribution is represented as continuous. The discrete-
continuous GDE has the capability of representing the entire aerosol
size distribution from single molecules to the largest particles,
including all relevant physical phenomena occurring. A particular
benefit of the discrete-continuous GDE is the ability to simulate for
the first time the dynamics of molecular clusters in the presence of a
preexisting aerosol. Because of this, the discrete-continuous GDE
provides the opportunity to study theoretically a number of important
questions related to aerosol formation and growth in reacting gas
systems not previously amenable to exact analysis:

(1) Do the molecular clusters achieve a steady state, and if so, what
are the relative concentrations of the particles and how large is the
scavenging effect of a preexisting aerosol on the steady state
concentrations?

(2) Can one estimate the relative importance of nucleation and con-
densation as routes for gas-to-particle conversion and will a particle
burst be detected as a result of nucleation?

(3) How large is the error of neglecting cluster-cluster agglomeration?



Because in many cases the assumptions inherent in basic aerosol balance
equations have not been clearly stated in the past, we hope additionally
to clarify the 1imits of validity of commonly used aerosol equations.

In order to present a well organized and detailed discussion of
the GDE and the processes it governs, this chapter is divided into five
sections. We begin with the fundamental discrete representation of
aerosol dynamics. Based on the discrete representation, the discrete-
continuous GDE 1s derived. Next, the relationship between the discrete-
continuous and the often used continuous GDE is elucidated. In the
third section the discrete-continuous GDE is used to develop the
theoretical framework needed to determine the relative importance of
all physical processes, such as nucleation, condensation and scavenging
for aerosol formation and growth. In the fourth section, the necessary
kinetic coefficients for the GDE are presented, and growth laws based
on surface and volume reaction=limited growth are developed. The
boundary condition needed only for the continuous GDE is also developed
in the fourth section. Having defined the assumptions inherent in each
GDE, in the fifth section a review of previous work on the GDE is
given. Because of the diversity of terminology used in the literature,

the review is postponed until the final section.



2s GENERAL DYNAMIC EQUATIONS

2.1 Discrete General Dynamic Equation

We consider the following phenomena to be occurring: (1) agglom-
eration of two particles, (2) evaporation or escape of a monomer from
a particle, and (3) homogeneous particle generation or removal pro-
cesses apart from those that occur as a result of evaporation and
agglomeration. As noted in the Introduction, we restrict our attention
to size distribution dynamics and do not consider particle composition
as an independent variable. Thus, the aerosol may be considered as
chemically homogeneous for the purposes of deriving the governing
dynamic equation.

For a spatially homogeneous aerosol the quantity of interest is
the concentration of particles containing i monomers, where i > 1.
Assuming an i-mer has a volume Vis the concentration of i-mers,
N(vi,t), will vary with time due to agglomeration, evaporation, gen-
eration and removal processes. The rate of agglomeration of i-mers
with j-mers is equal to the rate of formation of (i+j)-mers, and is

given by

BV, -vj)N(vi ,t)N(vj.t)

L+ 853

faF = 1 [1]
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where 5i j is the Kronecker delta and B(vi.vj) is the kinetic coefficient

of agglomeration of two particles of volumes Vs and vj. The functional
form of B(vi.vj) will be discussed later. If i is equal to j, we must
divide by 2, so as not to count the agglomeration twice (2,3,4). The

rate of evaporation of i-mers is

where E(vi) is the evaporation coefficient. The rate of formation of
i-mers by agglomeration is the sum of all agglomerations resulting in
an i-mer and is given by

i-1

1 S
a5 JZI]. B(Vi-j‘vj)N(vi—j’t)N(vj't) LS Vs [3]

The factor of one-half is introduced because 8 is a symmetric function

of its arguments and therefore the summation counts each agglomeration
twice for i-j not equal to i. However, if i is an even integer, the

term B(Vi/2’Vi/Z)N(Vi/Z’t)N(Vi/Z’t) is only counted once in the summation,
but the factor of one-half is still required as given in Eq. [1]. The
rate of depletion of i-mers by agglomeration with all other particles is
given by

N(Vi’t) j=1 B(V,iivj)N(vj!t) i 11 [4]

For j equal to i, the agglomeration rate is divided by 2 as given in

Eq. [1], but because each agglomeration removes two i-mers, the rate is



-11-

also multiplied by 2, thereby cancelling the factor of one-half. The

rate of formation of i-mers by evaporation from (i+l)-mers is
(148 IE(vi IN(v0t) 0 21 [5]

For i = 1, the dissociation of a dimer leads to the formation of two
monomers, therefore the Kronecker delta is used in Eq. [5]. The rate

of depletion of i-mers due to evaporation is given by,
E(vi)N(vi,t) f %2 (6]

combining Eqs. [3]-[5], and [6] the net rate of formation of monomers

is

dN(v;,t) —
—at - N(vl,t)j_z_; B(v sV IN(vy,t)

. J}__; (146, JE(VIN(V,E) + Sp(vyat)

- Sl[vl,t,N(vl,t)] [7]

and the net rate of formation of i-mers for i > 2 is

dN(v, ,t) i-1
— =% JZI: B(v;_32V5IN(Y; 5 tIN(Y o t)
- N(vyst) D0 BV, NV, t)
j=1

+E(vi+1)N(vi+1,t) - E(vi)N(v1,t)

+so(vi!t) - Sl[vi’t'N(vi’t)] [8]



=12

where S0 and S1 represent all homogeneous generation and removal pro-

cesses, respectively. Combined with the appropriate initial conditions,
(i.e. N(vi,O), i >1), Egs. [7] and [8] constitute the discrete GDE for
a spatially homogeneous aerosol. Because agglomeration constantly pro-
duces larger particles, Egs. [7] and [8] are an infinite set of coupled

ordinary differential equations.

2L Discrete-Continuous General Dynamic Equation

Although the discrete GDE is an accurate description of aerosol
dynamics, the number of equations needed to simulate actual aerosols
can be immense. For large particles the difference in size between
an i-mer and an (i+1)-mer is relatively small. Thus, for particles
that contain k+1 or more monomers, where k>>1, the discrete concen-
trations can be represented by n(v,t), which is a continuous function

in the limit as v1/vk + 0, defined by

vi+v1/2
N(v;st) = f n(v,t) dv f>2k+1 [9]

V.i'VI/z

" We now divide the distribution into two regimes. For particle volumes
smaller than or equal to Vi the discrete representation is used, and
for particle volumes greater than or equal to Vsl a continuous repre-

sentation is used. Using Eq. [9], Eq. [7] becomes
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dN(vl.t) k R
i 1 N(vl,t) iza B(vl,vj)N(vj.t) + B(vl,v)n(v.t) dv
Vke1™V1/2

(=]

ke
+ 3 {1+ 62 j)E(vJ.)N(vj,t) + fE(v)n(v,t) dv

J=2
Vk+1-V1/2
and for 2 < i < k, Eq. [8] becomes
dN(vi.t) 1 i-1
il iy jzi B(vi_j,vj)N(vi_j,t)N(vj,t)
k
- N(vi.t E: B(V ,v N(v ot£) + 8(v1,v)n(v,t) dv
vk+1—v1/2
vk+1+v1/2
+
'I.Eﬂv)n(v,t) dv i=k
v +1'V1/2

= E(Vi)N(vi’t) * SO(vi’t) - Sl[vi’t’N(vi't)]' [11]



oy

To derive the governing equation for n(v,t) in the continuous
regime, substitute n(v,t)dv for N(v,t) in Eq. (8], for v > v . - v,/2.

Assuming conservation of volume,-such that vy = dvys for Vs S Vy £ Yoy

d[n(vi,t)dv] i-k-1

It = 5 B(Vi'vj’vj)N(vj’t)"(vi'vj’t) dv. i >k +2
1 k
t 3 J;%Lk B(vi-vj,vj)N(vi-vj,t)N(vj,t)
k 0
- n(vi,t)dv & 6(v1,vj)N(vj,t) + s(vi,u)n(u,t) du
Vk+1‘V1/2
+ E(vi+v1)n(vi+v1,t) dv - E(vi)n(vi,t) dv
+ S4(vsist) - S&[vi,t,n(vi,t)]. (12]

For v > v2k + v1/2,

d[n(v,t)dv] _ é&

T B(v-vj,vj)N(vj,t)n(v-vj.t) dv

J=1
v-vk+1+v1/2

+ %-.l.B(v-u,u)n(v-u,t)d(v—u)n(u,t) du

Vk+1'V1/2
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B(v, v N(v ,t)n(v,t) dv

]
n'[v] =

n(v,t) dv B(v,u)n(u,t) du
Vi1 V172

4

E(v+v1)n(v+v1,t) dv - E(v)n(v,t) dv

+

Splvst) = Sy Ivatan(v,t)l, [13]

where

S Ivatan(v,t)] = S (v, t.N(v,t)]. (14]

MNote that the Jacobian for the transformation from (v-u,u) co-
ordinates to (v,u) coordinates is unity, and therefore du d(v-u) = du dv
in the first integral on the right hand side of Eq. [13]. Substituting
this expression into Eq. [13] and dividing both Eqs. [12] and [13] by
dv results in

dn(vi,t) i-k-1

- jz& BV;=V5 sV IN(V tIn(v -vist) T 2k + 2

B(vi-vj,vj)N(vi-vj,t)N(vj.t)

k
1
ty 3

J=i-k ¥

1

{ee]

k
n(v;,t) ;E B(vi,vj)N(vj,t) + J 8lvsuin(u,t) du
‘V1/2

Vk+1
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+ E(v1+v1)n(vi+v1,t) - E(vi)n(vi.t)

+ §0(v1.,t) - §1[v1,t,n(v1.,t)1 [15]

A

for Vel S V5 £ Vopo SO = SO/vl’ and S1 = Sllvl. For v > ¥, + v1/2

2k
k

an(v,t) _ _ ~

3t 2> B(v vj,vj)N(vJ.,t)n(v vj,t)

+ %fs(v-u,u)n(v-u,t)n(u.t) du

Vk+1~V1/2

k
n(v,t) j};l 8(v,vj)N(vj.t)

@

- n(v,t) f B(v,u)n(u,t) du + E(v+v1)n(v+v1,t)

vk+1-v1/2

E(v)n(v,t) + Sy(vst) - S (v, t,n(v,t)] [16]

Because agglomeration of two particles from the discrete regime
can only introduce new particles in the continuous regime smaller than
or equal to Vo the continuous regime is divided into two sections.
The first section contains particles of volume v, where vk+1-v1/2 <V <

Vok + v1/2, and the second section contains particles larger than
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Vo * v1/2. In the first section n(v,t) is governed by Eq.[15], which
is at most a system of k equations. Note that the second term of Eq.
[16] is evaluated only for v > 2vk+1 % Wiy Combined with the appro-
priate initial conditions, Egqs. [10], [11], [15] and [16] constitute

the discrete-continuous GDE.

2.3 Continuous General Dynamic Equation

If N(vi,t) is neglected for 2 < i < k, Egs. [15] and [16] become

V=Vi+1*V1/2

ané:%&l_ = %_ B(V—U,U)H(V'ust)n(u’t) du
Vie1 V172

n(v,t) f B(v,u)n(u,t) du + §0(v,t) - §1[v,t,n(v,t)]

Vk+1-V1/Z

+

n(V'Vl|t)S(V'V1’v1)N(v1!t)

n(v,t) [B(v,v IN(vyst) + E(V)]

-

E(v+v1)n(v+v1,t). [17)
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In the 1imit as v1/v + 0, the last three terms of Eq. [17] reduce to

. %; I[B(V’VI)N(vl’t) - E(v)]vln(v,t)}
(18]
+ L [B(V.V

2
vln(v.t)l
av?

PIN(vyst) + E(v)]
For most aerosols it has been shown (5) that the second term of [18] can
be neglected. Therefore Eq. [17] becomes

an(v,t) _ %_ ,/. 8(v-u,u)n(v-u,t)n(u,t) du

ot

Vi1 ™V1/2

- n(v,t) f B(v,u)n(u,t) du + Sp(v,t)
Vir17V1/2

E §1[V,t,ﬂ(V,t)]

_3[I(v,t)n(v,t)] (19]

v
where I(v,t) = [B(v.vl)N(vl,t) - E(v)]vl. As shown elsewhere (5),
I(v,t) is the net growth rate of a particle of volume v due to conden-
sation and evaporation of monomers, and is commonly called the con-
densation growth rate or the growth law (6-9). Notice that Eq. [19] is

defined only over the domain v > v, ,-v9/2, and all information on
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the distribution below this size is Tost. One usually resorts to
nucleation theory (10-12) to provide the generation rate of particles
at v = Vi+1® thus supplying the boundary condition for Eq. [19]. A
detailed discussion of the boundary condition will be given later.

Notice that the first integral on the right hand side of Eq. [19]
is not evaluated in the region [vk+1-v1/2, 2vk+1]. This is because
agglomerations that form new particles in this region are neglected,
(except for the agglomeration of monomers with k-mers, which is accounted

for in the boundary condition.)
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3. GENERAL ASPECTS OF AEROSOL FORMATION AND GROWTH

A major current problem in atmospheric science is developing a
fundamental understanding of the dynamic behavior of air pollution
aerosols. The qualitative picture of polluted tropospheric aerosols
that has emerged is that primary aerosols, both natural and anthro-
pogenic, provide the surface upon which secondary species ultimately
condense. The principal source of secondary aerosol constituents is

the primary gaseous pollutants, such as SO NOx and hydrocarbons. A

29
major route for formation of secondary aerosol species is conversion

of primary pollutant species to secondary gaseous species, followed

by condensation of the secondary vapors on existing particles or
nucleation to form fresh particles. It is still under debate whether
nucleation or condensation is the dominant mechanism for gas-to-particle
conversion in the atmosphere. To determine the nucleation rate

one can supposedly measure the total number concentration of particles
above the detectable size range of an instrument. (Although in reality
the detection 1imit is probably not so precise as to be able to dis-
tinguish particles differing by only a single molecule, one can

assume that for the ideal instrument only particles larger than a

fixed size can be detected.) After correcting for the coagulation,
generation and removal of particles larger than the detectable limit,

the net observed increase in number concentration can be attributed to

the flux of particles into the detectable size range.
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However, the observed flux can be the result of the growth of small
preexisting particles initially below the detectable 1imit or by the growth
of particles formed by nucleation. Since current instrumentation (13,14),
is probably not capable of detecting a typical critical size particle,
no measurements have been reported in which the two mechanisms can be
distinguished.

Because we wish to be precise in our definitions of condensation
and nucleation as routes for gas-to-particle conversion, we will define
clusters as particles containing i monomers, where 2 < i < k, and
aerosol particles as particles containing k+1 or more monomers. In
developing the discrete-continuous GDE, the only constraint on k is
that it be a large number. Thus, one can consider a k-mer to be the
critical size particle for nucleation or that just below the lower size
limit of detection. In either case the discrete-continuous GDE can be
used to determine the net rate of formation of particles smaller and
larger than k-mer. Thus, condensation will be defined as the net
agglomeration rate of monomer and clusters with aerosol particles.
Nucleation will be defined as the net formation rate of aerosol
particles by the agglomeration of two particles from the discrete
regime. Classical nucleation is then a special case of nucleation,
in which the k-mer is the critical size particle. (Howevér,
classical nucleation theory neglects cluster-cluster agglomerations in

determining the nucleation rate.) When we speak of the scavenging of an
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i-mer by a j-mer, we mean the net agglomeration rate of the two parti-
cles where j>>i.

The general aspects of the gas-to-particle conversion process
are depicted in Figure 1. Monomer, the secondary gaseous species,
may either condense on aerosol particles or agglomerate with another
monomer to enter the path involving molecular cluster dynamics. The
molecular clusters may themselves be scavenged by aerosol particles
or continue to grow to the point at which an aerosol particle is formed,
the nucleation route. It is of interest to be able to estimaté the
relative importance of the two gas-to-particle conversion paths, direct
condensation and nucleation, as a function of the generation rate of
monomer and the quantity and size distribution of preexisting aerosol.
In fact, there are several questions that arise in considering the
general gas-to-particle conversion process:
(1) Is a steady state concentration profile of molecular clusters
achieved, and, if so, how does the profile differ in the absence and
presence of a preexisting aerosol?
(2) Can the relative importance of condensation, nucleation, and
scavenging be estimated to determine the qualitative evolution of
the aerosol, given knowledge of the monomer generation rate and the
quantity and size distribution of preexisting aerosol?
(3) What is the importance of cluster-cluster agglomeration relative
to the other processes influencing the cluster concentrations and the

evolving aerosol size distribution?



cC

ca

Figure 1

Routes for gas-to-particle conversion. R;; is the net agglomeration
rate of particle type i with particle type”j where m is monomer, c is
cluster and a is aerosol.
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The discrete-continuous GDE implicitly accounts for all the
processes referred to in these questions, and, on that basis, its
solution provides quantitative answers to them. In this section the
theoretical analysis needed to address these questions for general
gas-to-particle conversion systems will be presented. Subsequently,
in Chapter V, the analysis developed in this section will be used
to answer the above questions for the particular experiment simulated.

For the six agglomeration processes (1) monomer-monomer (mm),
(2) monomer-clusters (mc), (3) monomer-aerosol (ma), (4) cluster-
aerosol (ca), (5) cluster-cluster (cc), and (6) aerosol-aerosol (aa),
shown in Figure 1, the net rate of agglomeration of particle types

iand j, Rij i8S

Rom = 5 B(v15v1) IN(V4£)]2 = E(V,)N(v,t) [20]

Yir1™1/2

Rmc = B(vl,vz)N(vl,t)N(vz,t) - ,IP E(v)n(v,t) dv [21]

Yk+17V1/2

k
+ ;);23 [8(vyaV;)N(vyst) = EQv;)IN(v;,t)

B ™ J/.[B(U.VI)N(vl.t)n(U.t) - E(u+v1)n(u+v1,t)]du [22]

Vk+1‘V1/2
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k P
Ros ™ ;E% N(v.,t) B(vj,u)n(u,t) du [23]
Vk+1-V1/2
k k
Ree = %- > T B(vi,vj)N(vi,t)N(Vjst) [24]
j=2 j=2

aa 5 8(v,u)n(u,t)n(v,t) dudv.[25]

e
I
[

k___\s

Vis1V1/2 VppqVv1/2

The net nucleation rate is,

2k k
" 1 " .
Rnuc :E: > :E: B(v1 Vj’vj)N(vi vj,t)N(vj,t)
i=k+1 j=i-k
Vk+1+V1/2
- E(u)n(u,t) du [26]
Vk+1-V1/2

If a k-mer corresponds to the critical size particle, then Rnuc is the
classical nucleation rate, generalized to include cluster-cluster ag-
glomeration. The net nucleation rate divided by the net condensation

rate of particles in the discrete regime is
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Rnuc

E =g [27]
Rma+Rca
If £<<1and £ >> 1, condensation and nucleation, respectively,are the
dominant mechanisms.

It is also of interest to determine the net number of monomers

nucleating, given by

2k k

Rm'nuc =.Z .Z.' B(vi-vj’vj)N(Vi'Vj:t)N(Vj,t)
1=k+1 J:]_k

NI -y

Vk+1+V1/2
- (k+1) f E(u)n(u,t) du [28]

vk+1-v1/2

The net number of monomers from the discrete regime condensing on aerosol

particles is

k

Rn-cond = Z jN(vJ.,t) f B(Vj,u)n(u,t) du
= Vise1~V1/2
- fE(u)n(u,t) du [29]

Vke1*V1/2
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Thus the fraction of the total flux of monomer entering the continuous

regime by condensation is

R
3= —cond [30]
m-nuc m-cond

Although the nucleation rate may be comparable to the monomer
and cluster condensation rate, due to the scavenging of the small aero-
sol particles, no significant particle formation may be observed just
above the detection limit. Since it has been experimentally observed
(15,16), and theoretically predicted in Chapter V, that after a
short time lag a burst of new particles should form just above the
detection limit, it is also important to determine if such a phenomenon
will occur in general. Because nucleation can only introduce new
particles of size Vis where k+l1 < i < 2k, for a burst of new particles
to be detected dn(vi,t)/dt must be positive as given by Eq. [15] for
some k+l < i < 2k, t > 0, and a detectable Timit of v ,.
Technidues for obtaining a priori estimates of the rates dis-

cussed in this section will be presented in the analysis of the experi-

mental simulation discussed in Chapter V.
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4. KINETIC COEFFICIENTS AND BOUNDARY CONDITION

4.1 Agglomeration Coefficient

For typical atmospheric aerosols the dominant mechanism for
agglomeration is Brownian motion. Usually when the agglomerating
particles are larger than the critical size particle, the process is
termed Brownian coagulation. (The term agglomeration is used here for
the collision and subsequent coalescence of any size particles, and thus
coagulation and condensation are special cases of agglomeration.) The
functional form of 8 for Brownian coagulation is highly dependent on
the sizes of the coagulating particles, relative to the mean free path
of the medium, A. Thre Knudsen number, is defined as Kn =2)/D, where
D is the particle diameter.* For particles with Kn>>1 or Kn<<l the
coagulation processes is said to be in the free molecule or continuum
regime, respectively. If, for one particle Kn<<l and the other Kn>>1,
the coagulation process is essentially classical diffusion or conden-
sation. For these three 1imiting cases the functional form of B is
well known and is given in Table 1 (17), where BD(Di’Dj) = B(vi,vj).
@ is the particle diffusivity usually determined from the Stokes-
Einstein expression (18), k is the Boltzmann constant, T is the abso-
lute temperature, n is the viscosity of the medium and m is the mass

of the particle. For Kni>>1 and Kn.<<1 the continuum expression reduces

J

to the correct form since @j <<@1 and D1.<<D In the transition regime,

J--

*
It is usually assumed that the particles are spherical.
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where Kn is of order one, the slip correction for the particle diffusivity
can be based on either Millikan's (19) or Phillips' (20) correction. Both
expressions are similar and are given in Table 1. Since Phillips' ex-
pression is more recent, it was used in this work. For determining 8 in
the transition regime the interpolation formula of either Fuchs (21) or
Sitarski and Seinfeld (17) can be used. As shown in Figure 2,both
formulae are very similar but since Fuchs' formula with either slip
correction goes to the correct limits for all three cases it will be
used in this work unless stated otherwise. Fuchs' formula is given in
Table 1 for the transition regime. In plotting Figure 2,Phillips' ex-
pression was used, and thus the plotted Fuchs formula is called the
Fuchs-Phillips interpolation formula. Note that BD is a symmetric
function of its arguments, (i.e. BD(Di,Dj) = BD(Dj’Di)°)

If the particles are the size of a molecule it would probably be

better to determine the diffusivity from kinetic theory (22), and thus*

(m,+m_)KkT s
2= m%«%fﬁ%[—-——:.lmi ] .

. a
where P is the total pressure, S = z:(Dl+Dbfi mys My and Dl’ Db are
the masses and diameters of the diffusing particle and the background
gas respectively, and 0 < A < 0.132, (the maximum value of A is attained

for hard spheres with greatly different masses.) As will be shown in

*It should be noted that Eq. [31] is only an approximation for & and
one often uses a simpler expression which will be given in Eq. [34].
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x Sitarski—Seinfeld
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Figure 2

Agglomeration coefficient for spherical particles in air using
Phillips' slip correction.
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Chapter V the diffusivity as a function of particle size, determined
from kinetic theory and the Stokes-Einstein expression intersect.
Thus one can construct a diffusivity which is continuous with particle

size and reduces to the correct limits.

4.2 Evaporation Coefficient

The evaporation coefficient is usually determined from the ag-
glomeration coefficient at equilibrium conditions (10,23), and is

given by,

V7 KR i oo el U G20 ] S €2
] exp T

E(v) = B(v,vy) N+[ "

kT

where N, is the gas phase concentration of condensible species in
equilibrium over a flat surface and o is the surface tension. A major
difficulty with this formulation arises in using bulk properties such
as surface tension for particles containing only a few molecules. Hill
(24) reports that work has been presented in the literature on the
variation of surface tension with particle size, but there is even
disagreement whether the surface tension increases or decreases with
decreasing particle size. Unfortunately, for small particles the
evaporation coefficient is highly dependent on the surface tension.

Forv>>vr one often uses a two term expansion for (v-v1)2/3 in the
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exponential to obtain

4ov
E(v) = B(v,vl)N+ exp(ﬁ-ﬁ—l—) [33]

The exponential factor is then interpreted as the pressure rise due
to curvature effects and the phenomena is often called the Kelvin

effect (8,9).

4.3 Growth Laws

For most atmospheric aerosols, gas-phase diffusion is believed
to be the rate determining step for particle growth (7). However,
there is also evidence that heterogeneous chemical reactions in-
volving gaseous species and the surface or interior of particles
may serve as the rate determining step in gas-to-particle conversion
(25-28). The particular mechanism of growth has an important influ-
ence on the rate at which particles of a certain size grow. Since
temperature changes resulting from condensational growth of atmos-
pheric aerosols are considered to be negligible (8,29), it will be
assumed that isothermal conditions prevail. In this part of section
4, growth law expressions for I(v,t) in the cases of diffusion-,
surface-, and volume reaction-controlled growth are presented.

We consider the growth of a particle resulting from condensation
of a single species A on the particle. In the case of diffusion-

controlled growth, we restrict ourselves to the case in which A is
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condensing on a particle of pure A or on a particle consisting of
several species but for which the vapor pressure of A is independent

of the particle's composition. In the cases of surface reaction- and
volume reaction-controlled growth, A is presumably converted to another
species B. It is assumed that in these two cases the equilibrium con-
centration of A above the particle surface is linearly related to the
concentration of A in the particle. This condition can probably be
expected to be valid as long as the concentration of A in the particle
is small.

Because comparisons of the various growth laws are best made in
terms of dimensionless variables, a detailed discussion of the growth
laws is postponed until Chapter III. The dimensional form of all
growth laws and the derivation of all reaction-controlled growth laws

will be given in this section.

4.3.1 Diffusion-Controlled Growth

As shown in section 2.3 the growth law, I(v,t) for diffusion-
controlled growth can be determined from the agglomeration and evapora-
tion coefficients. Just as for the agglomeration coefficient, the
functional form of I(v,t) is highly dependent on the Knudsen number
of the particle. For particles in the continuum and free molecule
regime, I(v,t) is given in Table 2 in terms of the particle diameter.
Although in the transition regime, one can use the interpolation

formula for B(v,vl) given in Table 1, it is more convenient to use
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one of two interpolation formula for I(v,t) as given by Fuchs' flux
matching formula (30) or Sahni's formula (31), (for convenience, the
curve fit of Fuchs and Sutugin (6) is used for Sahni's formula). As
shown in Table 2, both formulae for I(v,t) are very similar. For Fuchs'
growth law,a is the number of mean free paths from the particle surface

at which the flux matching condition is imposed. If

@=3{gg]”2

3 | m [34]

then a=b = 4/3 for Fuchs' growth law, which is close to values of a
and b given by Fuchs and Sutugin. Fuchs' growth law reduces to the
correct form for Kn<<l and Kn>>1, and the growth law of Fuchs and
Sutugin will reduce to the correct limiting form if & is given by
Eq. [34]. However Fuchs' growth law has only a second order correction
in kn"! as kn » », (6,8).

Although both expressions are valid in the limits of Kn large
and small, difficulties arise when applying the formulae to situations
in which the monomer is condensing on a particle not much larger than
the monomer itself. The growth laws can be corrected for monomer con-
densation on an i-mer by multiplying the expressions by the terms,
(13711321 (1+1)7i31/2 (23). wWith this correction, I(v,t)/N(v,,t)
approaches B(v,vl) for E(v)=0. Figure 3 shows B(v,vl) obtained from the
growth law relative to the Fuchs-Phillips formula for Brownian coagulation.

Particle diffusivities were calculated based on kinetic theory for small
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particles and the Stokes-Einstein expression for large particles.

The transition point between the two theories was chosen such that the
diffusivity is a continuous function of particle size as previously
discussed. Notice that the approximate formulae are very poor for
large Kn without the correction factor. Also notice that even the
corrected Sahni expression significantly differs from the Fuchs-

Phillips coefficient unless@ is given by Eq. [34].

4.3.2 Surface Reaction-Controlled Growth

If surface chemical reaction is the rate-determining step for
particle growth, then the rate at which reactants diffuse to the particle
must equal the rate of reaction on the particle surface. Therefore,

assuming the molecular volumes of the reactant and product to be identical,

3 2 4ov
2, WY - 21D (D +2a)D") 1
(D"+2bAD+4a)r")

where kS is the surface reaction rate constant, Ns is the concentration
of reactant on the surface of the particle, and y is the order of the

surface reaction. If
N, = H_N [36]

where Hs is constant, then by substituting Eq. [36] into Eq. [35] and
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rearranging, we obtain the following equation for Ns’

4ov

__1) +20)
W s ZNSHS(D+2aA)®exp(DkT ) 2N_(D+2a)) @ - (37]

s K S(DZ+2bAD+4aA2) kg (D%+2bAD+4aA%)

For surface reactions of order v,

20 Y
I(v,t) = mDPv k NT. [38]

The growth laws are given in terms of the particle diameter for

y =0, 1/2, 1, and 2 in Table 3.

4.3.3 Volume Reaction-Controlled Growth

If chemical reaction occurring throughout the volume of particle
is the rate-determining step for growth, then the equating of diffusion

and reaction rates gives

1% WY = 212(0%+2a00%) [N - exp(“‘”ﬁ) (39]
6 vV (pPe2bapesar?) [t \DKT

where kv is the volume reaction rate constant, and Nv is the concen-

tration of reactant in the particle. Assuming

N, = HN [40]

where Hv is a constant, then by substituting Eq. [40] into Eq. [39]
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and rearranging, we obtain the following equation for Nv’

4cv1
12HV ( D+2a) )P Nvex DKT

NY +
242bAD+4ax%)

v
k,D(D

12N_(D+20)) D

. -0
ka(Dz+2bAD+4aA2) [41]

For volume reactions of order y the growth law is then

3
I(v,t) = Eg— v k NY. [42]

The growth laws for y = 0, 1/2, 1, and 2 are given in Tatle 3.

4.4 Boundary Condition

To determine the boundary condition at v = vk+1-v1/2, we note that
implicit in Eq. [9] is constancy of n(v,t) in the regions [vk+1-v1/2 +
2v1, Vsl + v1/2 + 2v1], where & is a positive integer or zero.
(Although n(v,t) is actually a series of step functions, because the
spacing of the steps is so small relative to v, n(v,t) can be used as a
continuous function.) Thus, at the boundary, n(vk+1-v1/2,t) is given

by N(vk+1,t)/v1. Using Eq. [15] and neglecting the clusters we have,
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- N(vk+1.t) B(vk+1,u)n(u,t) du [43]
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where J is equal to B(vl,vk)N(vl,t)N(vk,t). Dividing Eq. [43] by v,

results in the boundary condition

dn(vk+1-v1/2,t) J

dt T N(Vippot) [ E(Vpyq) + B(Vk+1’\'1)N(V1’t):]

= n(vpqst) [ BV qsuln(u,t) du [44]
T e
There are difficulties associated with determining J and hence the
boundary condition. As will be shown in Chapter V, due to the scaveng-
ing by particles in the continuous regime, the discrete profile, and
hence the nucleation rate is dependent on the continuous distribution.
Therefore, if the profile in the discrete regime is affected by
scavenging, J will vary as the continuous regime evolves and can not

be determined in the absence of knowledge of the dynamics in the con-

tinuous regime.



<43

5. LITERATURE REVIEW

Previous work on the General Dynamic Equation involved solutions
to some form of either the discrete or continuous GDE. For the process
of coagulation only, Drake (32) has given an extensive survey on the
work of the so called Coagulation Equation in both the discrete and
continuous form. Some of the more recent works on the full discrete
and continuous GDE are listed in Tables 4 and 5, respectively.

For the discrete GDE to include all dynamic mechanisms, the
number of differential equations must be equal to the largest multiplet
number. As will be shown in Chapter V, if a single molecule is taken
as the monomer, then a particle 1 umin diameter contains approximately

1010 molecules. C]ear]y,lolo

differential equations are far beyond the
capacity of modern computers. Based on the reported solutions given
in Table 4, only several hundred differential equations are feasible.*
Therefore, most discrete solutions are of Timited value in simulating
atmospheric aerosols.

Since particle size spacing differing by only a single monomer
is not practical, solutions to approximate discrete equations, which
will be called sectional approximations to the discrete equations have

been reported. In these equations one usually breaks up the particle

size domain into sections. Within each section all particle sizes are

*The work of McMurry (34) will be discussed in Chapter V.
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Table 4. Reported Solutions to the Discrete GDE
Investigator Dynamics Remarks
Rice and coagulation exact solution

Whitehead (33)
McMurry (34)

Courtney (35)
Hidy (36)

Mockros, Quon,
and Hjelmfelt
(37)

Takahashi and
Kasahara (38)

Suzuki, Ho, and
Higuchi (39)

Abraham (40)

Sutugin and
Fuchs (41)

Gillette (42)

condensation and
removal

nucleation

coagulation

coagulation and
generation

coagulation and
removal

coagulation

nucleation

agglomeration and
evaporation

coagulation and
removal

steady state assumption,
several thousand parti-
cle sizes

~100 particle sizes

400-600 particle sizes,
Runge-Kutta-Gill and
Hamming's method for
time integration

100 particle sizes,
Runge-Kutta and Adam's
method for time
integration

~100 particle sizes

100 particle sizes,
Runge-Kutta and
Hamming's method for
time integration

~100 particle sizes,
Fowler-Warten method
for time integration

126 unequally spaced
particle sizes, Runge-
Kutta method for time
integration

91 logarithmically
spaced particle sizes,
Runge-Kutta method for
time integration
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Dynamics

Reported Solutions to the Discrete GDE (Continued)

Remarks

Yoshida, Okuyama,
Kousaka, and
Kida (43)

Bauer and
Frurip (44)

Hamill, Toon,
and Kiang (45)

coagulation

nucleation

coagulation

100 unequally spaced
particle sizes, Runge-
Kutta-Merson method
for time integration

80 particle sizes,
Gear's method for
time integration
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represented by a single particle size, taken as some mean size of the
section. Since the initial sections for the smallest particles can
contain very few particle sizes, reasonable representations of the
smallest particle concentrations may be obtained. In order to span

the larger sizes, the sections are usually progressively increased in
extent. Thus one may not be obtaining a completely accurate and detailed
description of the entire aerosol with these approximations. Since
sectional approximations are hardly ever derived from the basic discrete
equation, it is unclear what assumptions are made in using sectional
approximations. In this thesis, the appendix presents a rigorous
derivation of a proposed sectional approximation to the discrete GDE.

As will be shown, two assumptions must be made, one on the concentration
profile within a section and one on the appropriate agglomeration co-
efficient between particles of different sections. Further testing of
sectional approximations by comparison to the discrete or discrete-
continuous GDE is required before one can be confident that a reasonable
approximate solution to the discrete GDE is obtained.

Probably because of its simplicity many solutions have been
reported to the continuous GDE as given in Table 5. Al1 analytic
solutions which include coagulation, however, are only for simplified
coagulation coefficients and thus cannot be used for most atmospheric
aerosols. Their utility lies primarily in serving as test cases for
numerical routines. If the coagulation integrals are neglected, exact

solutions can be obtained for realistic growth laws, and particle
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Table 5. Reported Solutions to the Continuous GDE
Investigator Dynamics Remarks
1. Golavin (46) coagulation exact solution
2. Scott (47) coagulation exact solution
3. Brock (48,49) condensation, exact solution
generation, and
removal
4. Drake (50) coagulation exact solution
5. Drake and coagulation exact solution
Wright (51)
6. Ramabhadran, coagulation and exact solution
Peterson, and condensation
Seinfeld (5)
7. Peterson, Gelbard, coagulation, exact solution
and Seinfeld (52) condensation,
generation, and
removal
8. Gelbard and condensation, exact solution
Seinfeld (9) generation, and
removal
9. Mulholland, Lee, coagulation asymptotic solution,
and Baum (53) log-normal initial
distribution
10. Twomey (54) coagulation and 80-100 differential
condensation equations
11. Spigler, Morgan, coagulation, 80-100 differential

Greenfield, and
Koontz (55)

generation, and
removal

equations
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Table 5. Reported Solutions to the
Continuous GDE (Continued)
Investigator Dynamics Remarks
12. Berry (56) coagulation logarithmic rescaling,
Lagrangian 3-point
interpolation
13. Willis, Kerker, coagulation
and Matijevic (57)
14. Huang, Kerker, coagulation and
and removal
Matijevic (58)
15. Cohen and coagulation, log-normal distribution,
Vaughan (59) generation, and asymptotic and numerical
removal solution
16. Lindauer and coagulation and 5 point Newton-Cotes
Castleman (60) removal quadrature, Runge-
Kutta and Adam's
method for time
integration
17. Burgmeier, coagulation trapezoidal rule,
Blifford, and generation, and linear interpolation,
Gillette (61) removal finite differences for
time integration
18. Ualter (62) coagulation and Simpson's rule, Euler-
constant genera- Cauchy polygon method
tion rate
19. Wadden, Quon, coagulation, logarithmic rescaling,
and Hulburt (63) condensation, and overlapping parabolas,
generation Runge-Kutta and
Hamming's method for
time integration
20. Singh and coagulation weighted residuals;

Ramkrishna (64)

orthogonal collocation

and the method of
moments
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Reported Solutions to the
Continuous GDE (Continued)

Dynamics

Remarks

21.

22.

Middleton and
Brock (65)

Gelbard and
Seinfeld (66)

coagulation,
condensation,
generation by
homogeneous
nucleation

coagulation,
condensation,
generation and
removal

logarithmic rescaling,
cubic spline inter-
polation Runge-Kutta
method for time
integration

logarithmic rescaling,
cubic splines and
orthogonal collocation
on finite elements
interpolations, Guass-
Legendre quadrature,
Adam's method for time
integration
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sources and sinks (9,48,49). The details of these solutions are given
in Chapter III. For those cases in which the coagulation integrals are
retained in the continuous GDE, numerical routines are required for
realistic coagulation coefficients, growth laws, and initial and
boundary conditions. Because the details of solving the continuous
GDE numerically are given in Chapter IV, only a few brief statements
on the various techniques reported by others will be given in this
section.

Nearly all reported techniques employ the method of collocation
(66), in which certain points in the particle size domain, called
collocation points, are chosen at which the GDE is to be satisfied.
One then proceeds to determine the temporal variations of the
distribution at these points by evaluating the right hand side of
Eq. [19] at the collocation points. Thus the partial-integrodifferential
equation is converted to a system of coupled nonlinear ordinary differ-
ential equations. The major difference among the techniques is the
method used to evaluate the right hand side of Eq. [19]. Assuming
convergent integration techniques are used for both the coagulation
integrals and the time integration, 1f a sufficient number of properly
located collocation points are used, nearly all techniques should con-

verge to the same solution. Therefore, the essential difference among

the techniques appears to be the amount of computation needed for a

convergent solution.
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For numerical solution, Berry (56) was probably the first to
report the success of using a lTogarithmic rescaling in particle size,
which was later employed by Middleton and Brock (65) and then by
Gelbard and Seinfeld (66). It was found that such a rescaling pro-
vided the so-called "stretching" of the particle size domain.

For nearly all techniques an interpolation method is needed to
evaluate the coagulation integrals. As can be seen from Table 5, a
wide variety of techniques have been reported, and as concluded in
Chapter IV it is difficult to state conclusively which technique is
best in all cases.

In special cases, for which one somehow has a priori knowledge
of the shape of the resulting distribution, techniques to capitalize
on this knowledge have been reported (59,64). In general such knowledge

may not be available.
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NOTATION
D particle diameter, um
@D diffusivity, en’ sec”]
E(v) evaporation coefficient, sec™!
H, defined in Eq. [36], cm !
Hv defined in Eq. [40]
Ilv,t) growth law, um3 sec”!
J defined on page 42, sec™! em™3
k Boltzmann constant, erg deg'1
kS surface reaction rate constant, meY'z sec-1
kv volume reaction rate constant, um3Y'3 sec'1
Kn Knudsen number
m particle mass, gm
N(vi,t) number concentration, em™3
N, gas phase concentration of condensible species, cm'3
N, equilibrium gas phase concentration of condensible
species, cm™3
n(v,t) number distribution function, em™3 um'3
Rij net agglomeration rate of particle types i and j, sec'1 cm_
Sg homogeneous particle generation rate, sec™) em3
S1 homogeneous particle removal rate, sec'1 c:m'3

T temperature, deg
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t time, sec

v particle volume, Um3

Vs particle volume of a particle consisting of i monomers,
um3

Greek Letters

a fraction of the total flux of monomer entering the con-

tinuous regime by condensation

B8 agglomeration coefficient, cm3 sec-1

Y reaction order

n viscosity, poise

A mean free path, um

E net nucleation rate divided by the net condensation rate
of particles in the discrete regime

p density, gm cm™3

o surface tension, dyne em !

Subscripts

a aerosol particle

c cluster

cond condensation

m monomer

m-cond monomer condensation

m-nuc monomer nucleation

nuc nucleation
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Chapter III

EXACT SOLUTION OF THE GENERAL DYNAMIC EQUATION
FOR AEROSOL GROWTH BY CONDENSATION

ABSTRACT

Exact solution of the General Dynamic Equation for aerosol growth
by condensation is obtained in dimensionless form for particle growth
occurring by gas phase diffusion-, surface reaction- and volume reaction-
controlled processes. Analytic expressions for the size distribution of
an aerosol undergoing growth by gas-to-particle conversion and influenced
by homogeneous source and removal processes are presented over the com-
plete range of particle Knudsen number, Kn. Numerical results are pre-
sented to show the effect of the different growth mechanisms on size

distribution dynamics.
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1. INTRODUCTION

The dynamic behavior of a spatially homogeneous aerosol under-

going growth by condensation and coagulation is described by the General

Dynamic Equation,

3nD(D.t) i} ‘a[ID(Dst)nD(D’t)]

at aD
D/21/3 i ) i i
+ 02 [ ef@3-0%) 35, 1(03-0%)1/2, t1ny (D, t)dD
Dy @ - i7)e=
oL
- ng0st) [ gp(D.D)ny(D,t)D
Da
+  Splng(D,t),D,t] (1]

where nD(D,t) is the size distribution density function at time t, D is

the particle diameter, BD(D,B) is the coagulation coefficient for particles

with diameters D and 5, ID(D,t) = dD/dt, the rate of particle growth from

condensation, SD[nD(D,t), D,t] represents the net influx of particles in

the size range [D, D+dD] from all homogeneous sources and sinks, and Db

and Da are the upper and lower bounds of the size domain, respectively.
Although no exact solutions of Eq. [1] for physically realistic

initial conditions and coefficients of coagulation and condensation have
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been obtained, considerable progress in investigating the nature of

solutions has been made by simplifying both the initial condition and
the coefficients to the point that an exact solution can be obtained.
If only the coagulation integrals are retained on the right hand side

of Eq. [1], the so-called Coagulation Equation results which has been

solved for simplified forms of BD and initial conditions (1,2,3). If
particle growth, sources and sinks are present, exact solutions for
simplified forms of Eq. [1] have also been obtained (4,5). However, to
solve the General Dynamic Equation, Eq. [1] for realistic coagulation
and condensation coefficients, BD and ID’ and initial conditions,
numerical routines are required (6,7). Much of the difficulty in
solving Eq. [1] either analytically or numerically is due to the coagu-
lation integrals. For cases in which coagulation can be neglected,
exact solutions of Eq. [1] have been reported for simplified forms of
I5(D,t) (8,9).

The primary object of this chapter is to obtain exact solutions
to Eq. [1] for situations in which coagulation can be neglected relative
to the other phenomena influencing the size distribution. In particular,
we will derive exact solutions to,

anD(D,t) 5

—3t—— = - 5y [Ip(Dst)ng(D,t)] + Sylngy(D,t),D,t] [2]
for physically realistic forms of ID(D,t) and SD[nD(D.t),D,t] for atmos-
pheric aerosols. Previously,the only solutions to Eq. [2] available

have been based on simplified forms of I, and S, (8,9). Expressions,
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or growth laws, for ID(D,t) based on diffusion and surface and volume
reactions are presented, 1.e. we consider the particle growth to occur
as a result of either gas-phase diffusion of condensing species, a sur-
face reaction-controlled mechanism, or a particle volume reaction-
controlled mechanism.

We begin by presenting the dimensionless forms of the growth Taws,
ID(D.t), for the three particle growth phenomena. Then, Eq. [1] is cast
into dimensionless form for Brownian coagulation and for the three forms
of ID(D,t). Next, for those situations in which coagulation can be
neglected, Eq. [2] is solved in dimensionless form for arbitrary initial
and boundary conditions, arbitrary sources and first-order removal mech-
anisms, and for the forms of ID(D,t) representing growth by diffusion-,
surface-, and volume-controlled mechanisms. The nature of these solutions
is discussed in detail, including aspects such as the time needed for
the size distribution in a domain to become independent of the initial
conditions and the role of the Kelvin effect in diffusion-controlled growth.

As a consequence of the solutions presented here, exact analytical
expressions for the size distribution of an atmospheric aerosol under-
going growth by gas-to-particle conversion and influenced by homogeneous

source and removal processes are now available.
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2. AEROSOL KINETIC COEFFICIENTS

In this section we will present dimensionless forms of the growth
law, ID(D,t), based on diffusion-, surface reaction-, and volume reaction-
controlled mechanisms. We also introduce a dimensionless form of the
coagulation coefficient BD(D,B) for Brownian coagulation.

For a particle in a fluid the characteristic length scale that
determines many of the transport properties of the particle is the mean
free path of the medium X. Thus, all aerosol kinetic coefficients will

be expressed in terms of the Knudsen number, defined as Kn = 2X/D.

2.1 Particle Growth

The dimensionless form of the growth laws given in Tables 2 and
3 of Chapter II are summarized in Table 1 of this chapter. The dimen-
sionless groups Ci and Ei’ (i=0,1,2) are the ratios of characteristic
rates of diffusion to the rate of reaction. For reaction-limited
growth,which depends on the concentration of the reactant, the maxi-
mum growth rate occurs when the reaction rate is so fast relative to
diffusion that all of the reactant that diffuses to the particle
reacts immediately. Hence, the maximum growth rate must be given by
the diffusion=Timited growth law with no particle vapor pressure.

Therefore, as Ci or E;»0, (i=0,1,2) for y = 1/2, 1 and 2, ID(D,t)
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approaches the gas phase diffusion-l1imited growth law with D = 0.*
Conversely, as Ci or Ei+ o, the reaction rate is much slower than the
diffusion rate. Sfnce growth is reaction limited, ID+0 in this case.
For zeroth order kinetics the reaction rate is independent of the
reactant concentration. In that case the growth rate is not con-

strained by diffusion.

2.2 Coagulation

Existing expressions for Brownian coagulation coefficients are
tabulated in the literature (10). Because Fuchs' formula (11) has the
correct 1imiting form for large and small values of Kn, it will be used

here. In dimensionless form BD(Di’Dj)n/kT is equal to,

BKn(Kni,Kn‘j)n - ZQ(piKni+pJKnj)/3 [3]
Kn.+p.Kn.
kT Q X nA(pIKn1 pJKnJ7
Q+(Hf+H?)1/2 2Q(Kn3+kn3)1/2
J 1 J
where
Q= & - (4]
Kni Knj

*
[f however, the molecular volume of the product is greater than that
for the diffusing species, reaction-limited growth for y>0 may exceed
the growth rate for diffusion-limited growth.



-67-

kn3/2 (2 A, )3 (4 Azp'f.’)y2 2
H, = + i [f ey PP [5]
1 GApi K"i Kny2 Kn? Kn. Kn .
1 1 1 1
1/2
8pkT
A2z .
277°n"A
& Kni[1.257 + 0.4exp(-1.1/Kni)] (Millikan) [7]
P; =
5+4Kni+5Kn?+18Kn?
L > A (Phillips) (8]
5-Kni+(8+w)Kni
Kni = ZA/Di [9]

and where p is the particle density, n is the viscosity of the suspending
medium, and T is the absolute temperature. Since there are two existing
slip corrections to the particle diffusivity, Eq. [3] is written such
that either Millikan's (12) or Phillips' (13) correction can be used,

as given in Eqs. [6] and [7], respectively. Notice that the only para-
meter which is dependent on the physical properties of the medium or

the particle is A. For typical atmospheric aerosols, A is approximately
0.075. In Figure 1, BKnn/kT is shown, using Eq. [8] (using Eq. [7]

similar results are obtained). The set of solid lines correspond to
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Figure 1

Dimensionless Brownian coagulation coefficient, using Fuchs-Phillips
formula, A = (8pkT/27n2n2A)1/2,
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A =0.01 and the set of broken lines correspond to A = 1.0. Since

BK is a symmetric function of its arguments, only values of Knj g_Kni

n
are shown. The lower envelope corresponds to the coagulation coeffigient
of two particles with identical Knudsen numbers. In the continuum

regime, where Knj<<1, BKn is proportional to kT/n, therefore Figure 1
shows that BKnn/kT is insensitive to large variations in A in this regime.
However, in the free molecule regime, where Kni>>1 and Knj>>1, BKnn/kT

is very sensitive to variations in A.

2.3 Sources and Sinks

For a typical atmospheric aerosol there are many sources of part-
icles with varying production rates and sizes. For the solutions pre-
sented here to be as general as possible, Eq. [2] will be solved for
an arbitrary source term SO(D,t).

Particle losses are generally represented as a first order removal
process, and a review of the so-called "wall loss constant" is available
in the literature (14). Since the exact functional form of the wall loss
constant varies with the particular system we will assume the general

removal term, SI(D.t)nD(D,t).



T

3. NONDIMENSIONALIZATION AND SOLUTION OF THE GENERAL DYNAMIC EQUATION

To nondimensionalize Eq. [1] characteristic length and time scales
must be chosen. As discussed previously, the mean free path of the
medium, A, is the appropriate length scale. The characteristic time
scale can be based on coagulation, growth, source or sink mechanisms.
For the solutions given, growth will always be present, and, since the
mechanism for transport to the particle is diffusion, Azﬂz,can be
chosen as the characteristic time scale. Defining a dimensionless time,
T =£Et/A2, and substituting into Eq. [1] results in the dimensionless
form of the General Dynamic Equation,

an(Kn,t) . Az(t)a[i(Kn,t)Kn?I]
9T oKn

21/3Kn

- o \4
+ E_I'B(Kn",Kn')ﬁ(Kn",r)ﬁ(Kn',r)(%%—) dKn'

Knb

Kna
& EJ. B(Xn,Kn*)n(Knit)n(Kn,t) dKn' -

Knb

- §0(Kn,r) - SI(Kn,T)ﬁ(Kn,T) [10]
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where
2
ﬁ(Kn,T) =-MLK—nL‘5L-@)- [11]
NmKn
B(Kn,Kn') = BKn(Kn,Kn')n/kT [12]
1/3
W 1
Kn® = [13]
[1/Kn3 - 1/Kn'3]
) ZSO(ZA/Kn,rAZ/@)As
3y (Kn,y7)= - [14]
EENmKn
) s1(23/kn, A% /@))?
§;(Kn,1) = [15]
D
AP Nka}\z
- M e
Kn, = ZA/Db Knb = ZA/Da [17]

To account for any temporal variations in ID,;(r) is introduced as an
arbitrary positive function of t. MNotice that the definition of A
will vary depending on the specific growth mechanism, and ¢ is defined

in Table 1 for each mechanism.
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At relatively small aerosol number densities, such as those fre-
quently prevalent in ambient atmospheres, coagulation can often be
neglected relative to condensation in influencing the temporal varia-
tions in n. Brock (8) has termed particles with radii greater than
0.1um as being in the "non-coagulating" size range. Thus, if other
processes dominate one might be able to neglect coagulation. Even in
situations in which coagulation cannot be neglected the pure conden-
sation solution is useful to assess the effect of condensation alone
on the distribution.

Neglecting the coagulation integrals in Eq. [10], we obtain

Mn.t) = Ag(e)ge- [A(Kn,©)kn?T] = Sy(kn,t) = S, (Kn,T)(Kn,T) (18]

The characteristic equations for Eq. [18] are

% = -AKn2c()1 [19]

= 2-
dndgfn,'f_l_ = [AC(T) ga(%‘—!l- = gl(Kﬂ.T)]ﬁ(Kn,'t)

[20]
- SO(Kn,T)

We note that Eq. [19] is simply the dimensionless growth law. Integrating

Eq. [20] on the characteristic we have



Y

) = I§O(Kn,T)Kn2fexp[f§1(Kn,T)dT]dT+c
n(Kn,t) =

= [21]
Kn Iexp[fSl(Kn,T)dT]

where C is determined from the initial or boundary condition, and Kn is
given by Eq. [19]. Integrating Eq. [19] for some of the growth laws
given in Table 1, we have the characteristic growth curves as given in
Table 2.

For gas phase diffusion-limited growth a two term expansion of
the exponential term for BKn<<l is required, as originally pointed out
by Davies (15), however if D = 0 or B = 0, entry 1 of Table 2 is exact.
For all other solutions given in Table 2 no approximations were required
to evaluate the integral. Physically, the characteristics given in
Table 2 represent the change in Knudsen number of a particle as a func-

T

tion of A[ z(t)dT. Given the Knudsen number, Kn, of a particle at
T
0

T = 0, the dimensionless time for a particle to grow to Kn, < Kn,,

1 0
can be determined for different mechanisms from Table 2.
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Table 2. Characteristic Growth Curves*

dKn
Controlling Mechanism anf(Kn)
Gas phase diffusion Py an Kn + szn'l + w3Kn-2

+ w4ﬂ.n(1+aKn) - wszn(l-ﬁ-ﬁakn)

Surface reaction

zeroth order (y=0) -kn~1

first order (y=1) %%E - %‘K"-z # (az‘ba+a)2"(}fgkn)

i & J
<c.kn"1eBKN 4 ¢ g [on kn + 3 (BKR)
: : =1 g

Volume reaction

zeroth order (y=0) 2n Kn

first order (y=1) ab _ Ln2 4 (az-ba+a)£n(;f;Kn)

. J
+E1[ann+ZLmL]
dJ

191
< 33t

% = [DBra(B-1))0B+b(1-D))+(1-D)%(a®a) |, . (1-D)(a-b)-DB
1 == , Ao
(1-D) (1-D)
by = —_— - |
’ 2(5-1) - uga-ba+u2)
4 - -
e 08{0B[b(D-1)-DB]-a(P-1)%} a(D-1)-DB
5

(1-0)3[DB+a(1-D)]
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4. CHARACTERISTIC GROWTH CURVES

In Figure 2 the characteristic growth curves for diffusion-
limited growth, using the Fuchs and Sutugin coefficients,D = 0,
z(t) = 1, and Knb = 100 are shown. The solid line characteristic
originating from Kn = KnD and At = 0 divides the At - Kn plane into
two major regions, and it will be called the major characteristic.
The broken line characteristics all originate from the Kn axis, hence
the solution n(Kn,t), below the major characteristic is determined
from the initial condition n(Kn,0). The dot-dashed characteristics
all originate from the At axis, hence n(Kn,t) above the major character-
istic is determined from the boundary condition. Since the lower set
of characteristics is a plot of entry 1 of Table 2, one can trace the
growth of a particle as a function of dimensionless time. Note that
the smaller particles that have large Knudsen numbers grow relatively
fast, and hence their Knudsen numbers decrease with time. For all
mechanisms, given a domain [Kna,Knb], the dimensionless time required
for the solution in that domain to be independent of the initial condi-
tions is given by the intersection of the major characteristic with
the Tine Kn = Kna.

For positive values of D, a critical particle size, given by

2n(D) (22]

Kn . » =
crit B
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Characteristic growth curves for diffusion-limited growth, D = 0,

a
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exists such that no growth occurs, i.e. dKn/dt = 0. For Kn > K"crit

the particle vaporizes due to the Kelvin effect, and for Kn < K"crit
the particle grows. Integrating entry 1 in Table 1 numerically for
D=0.1and B = 0.1, we obtain the rapid Vaporization of particles

with Kn > Kn in Figure 3. Note that in the region to the right

crit
the major characteristic, n(Kn,t) can be determined either from the
boundary condition at Knb = 1000 or from the initial condition, but

not from both conditions. Also note that due to the exponential term,
Figure 3 shows that the time scale for vaporization is very short com-
pared to growth as given in Figure 2.

Figures 4 and 5 show the characteristic growth curves for first
order surface reaction- and volume reaction-limited growth, respectively.
In these plots B = 0.01 and a,b and o are for the Fuchs and Sutugin
coefficients. The solid lines correspond to maximum growth rate, that
is C1 = 0 for surface reaction and E1 = 0 for volume reaction. As C1
increases to 2 (as given by the broken Tines) and 10 (as given by the
dot-dashed lines), the growth rate decreases. Similarly, as E1 in-
creases from 0.2 (as given by the broken lines) and 0.6 (as given by
the dot-dashed lines), the growth rate decreases.

For zeroth order kinetics the particle growth rate is independent
of the concentration of reactant; therefore the growth rate is not
limited by mass transfer, as in the case of first order kinetics. Using

the Fuchs and Sutugin coefficients, the maximum value of I is less than 1.

Therefore, the dimensionless growth rate for surface reactions and zeroth
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order kinetics is always greater than diffusion-limited growth. For
zeroth order volume reaction-limited growth, I + 0 as Kn + =, and

I > = as Kn + 0, therefore large particles will grow faster than small
particles. Figure 6 shows the characteristic growth curves for diffusion-
limited growth as solid lines, zeroth order surface reaction-1imited
growth as broken lines, and zeroth order volume reaction limited growth

as dot-dashed Tines. Notice that for large values of Kn, particle

growth by volume reaction is slowest, but for small values of Kn, volume

reaction is the fastest growth rate.
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5. S1ZE DISTRIBUTION DYNAMICS

A common situation is 51 constant, §0 =0 and z(t) = 1. Then

n(Kn,T) along the characteristic is given by

KnZT(KnO)

n(kn,t) = A(Kny.74) exp[-gl(T-To)] [23]

kn®1 (Kn)
Although Eq. [23] is valid for any I, we will demonstrate the simplicity
of the solution for diffusion-1imited growth with the Fuchs and Sutugin
coefficients and D = 0. To determine n(Kn,t) we find the point (Kn,At)
in Figure 2. If this point is below the major characteristic, we trace
the characteristic that crosses the point (Kn,At) back to At = 0. The
intersection with the Kn axis determines Kno. Entering Figure 7 with
Kn and Kno we read off the values of 1(Kn) and T(Kno) for a = 1.33 and
b=1.71. Since the initial condition ﬁ(KnO,O) is known, we merely
substitute into Eq. [23] to determine n(Kn,t). If the point (Kn,At)

is above the major characteristic, we trace the characteristic that
crosses the point (Kn,At) back to Kn = Knb to determine At,. Then we

0
enter Figure 7 with Kn and Kn. = Kn, and read off the values of I(Kn)

0 b
and I(Kno) for a = 1.33 and b = 1.71. Since the boundary condition,
ﬁ(Knb,ro) is known, we substitute into Eq. [23] to determine n(Kn,t).
For reaction-limited growth, plots of I are given in Figures 8 - 13.
Although a more accurate numerical technique (as given in the appendix)

can be used, the graphical technique is useful for quick estimates of

the solution.
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Figure 7

Dimensionless particle growth rates for diffusion-limited growth.
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Dimensioniess particle growth rates for half order surface reaction-
limited growth, a = 1.33, b = 1.71, @ =1.0 and B = 0.



0.8 Ll ‘1"'".“' L L ‘l""'l . v ""“‘I’ A AR
b
0.6

H 0.4r

02r

().() il S R TT Y I S W T | i daaes
102 10! 10° 10! 107
Kn

Figure 9

Dimensionless particle growth rates for first order surface reaction-
lTimited growth, a = 1.33, b = 1.71, a = 1.0 and B = 0.
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Dimensionless particle growth rates for second order surface reaction-
limited growth, a = 1.33, b = 1.71, a =1.0 and B = 0.
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Dimensionless particle growth rates for half order volume reaction-
limited growth, a = 1.33, b = 1.71, a =1.0 and B = 0.
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Dimensionless particle growth rates for first order volume reaction-

limited growth, a = 1.33, b = 1.71, a =1.0 and B = 0.
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Dimensionless particle growth rates for second order volume reaction-
limited growth, a = 1.33, b = 1.71, « =1.0 and B = 0.
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An unlimited number of cases can be studied from the exact
solution; for convenience we will 1imit ourselves to diffusion-controlled
and zeroth order volume reaction-controlled growth. In both cases the
same log-normal initial distribution with no sources or removal mechan-
i