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ABSTRACT 

Poly(p-phenylene) (PPP) is an insoluble rigid-rod polymer that possesses 

remarkable thermal stability, chemical resistance, and electrical conductivity when doped. 

The structural properties that make PPP such an attractive engineering material also make it 

very difficult to synthesize and process. Although many direct and precursor routes to PPP 

have been developed they have generally afforded low molecular weight material containing 

a substantial amount of structural defects that are detrimental to the properties of the final 

product. We have developed a new precursor route to PPP which offers processability as 

well as a high molecular weight, high quality polymer. 

1,4-Link:ed, stereoregular precursors to PPP were synthesized by transition-metal

catalyzed polymerization of heteroatom-functionalized 1 ,3-cyclohexadienes. cis-5 ,6-

Bis( trimethylsiloxy)-1 ,3-cyclohexadiene (TMS-CHD), a derivative of a microbial oxidation 

product of benzene, is polymerized stereospecifically by bis[(ll 3-

allyl)trifluoroacetatonickel(II)] with yields up to 96%. Not only does this polymerization 

system afford a highly 1 ,4-linked, stereoregular polymer, but it also has the potential for 

molecular weight control. The resulting polymer, [1 ,4-poly(TMS-CHD)], is a soluble, 

processable, semicrystalline material. Although 1,4-poly(TMS-CHD) cannot be pyrolyzed 

to yield PPP directly, the trimethylsilyl ethers on the polymer can be transformed to better 

leaving groups such as acetates to give the corresponding stereoregular acetoxy polymer 

(100% acetylation; 93% overall yield). Due to the low thermal stability of the 

stereroregular backbone, aromatization of this acetoxy polymer to PPP requires Lewis or 

Br~nsted acid catalysts. Acids lower the onset temperature of the acid elimination process 

to a temperature regime well below that at which depolymerization can occur. The high 

quality PPP produced by the acid-catalyzed aromatization of the stereoregular acetoxy 

polymer exhibits properties comparable to those of PPP samples in the literature. 
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However, it is completely amorphous whereas PPP samples made by other routes are 

almost always semicrystalline. Since the physical and chemical properties of PPP and 

many other conjugated polymers depend highly on sample morphology, processing 

techniques for this material will have to be developed before its optimum properties can be 

realized 
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CHAPTER 1 

Introduction: 
Synthetic Approaches to Poly(p-phenylene) 
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Poly(p-phenylene) 

Poly(p-phenylene) (PPP) (Figure 1) is a conjugated, rigid-rod polymer with 

unique structural and electronic properties. 1-4 

ppp 

Figure 1. Poly(p-phenylene). 

As an engineering material, its attractiveness arises from its relatively low density, high 

mechanical strength, excellent thermal stability, solvent resistance, and chemical 

inertness. Even though PPP only has a density of approximately 1.1-1.2 g/cm3, the 

sintered material has a tensile strength of up to 5000 psi under optimum fabrication 

conditions.5 In fact, the mechanical properties of PPP are ranked with those of the 

commercial polyimides and carbon fibers, the premier engineering polymers.5 PPP is 

also thermally stable to approximately 450 °C in air and to 500-550 °C under argon.2 

Inside an oxidizing flame, the material glows and slowly decomposes but does not burn. I 

In addition, PPP is completely insoluble and intractable, and only extremely harsh 

reaction conditions are able to effect chemistry on the polymer. I Because of its excellent 

structural properties, PPP has already been used in ceramic and carbon fiber composites, 

as a lubricant additive, and in forming high strength, light-weight, sintered parts.6 

As an electronic material, PPP's attractiveness arises from its conjugated 7t

electron system which allows it to be converted from an insulator to a highly conducting 

polymer upon doping. In its pristine state, PPP is a highly insulating material (<J S lQ-12 

S/cm)l,2 with a theoretical UV/visible absorption maximum of339 nm and a band gap of 

3.8 eV.7 However, when doped with n-type (e.g., Li) or p-type (e.g., AsFs) dopants, PPP 

forms highly conducting charge- transfer complexes with conductivities up to 500 
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S/cm.l,2 Because of these electronic properties, current attention on doped PPP has 

focused on its use as electrodes in light-weight rechargeable batteries, as polymer-based 

wires, and as solar cell components.6 Undoped PPP has been proposed for use as an 

electromagnetic shielding material and as an insulating layer in semiconductors. 6 PPP 

has also recently been utilized as the active component in a new type of polymer-based 

blue light emitting diode. 8 

Other potentially useful properties of PPP are its radiation resistance and its 

magnetic behavior. Pressed pellets of PPP can withstand high doses of f3-radiation 

without significant degradation in their mechanical properties.l,4 PPP is also intrinsically 

paramagnetic. Depending on the method of synthesis, the material contains unpaired 

electrons with spin densities of 1Ql6_1Q21 spins/gram.l The radical species present in the 

PPP matrix are extremely stable since storage of the polymer in air for over 10 years has 

little effect on the spin concentration. I 

Clearly, there is a wide spectrum of applications for PPP as both a structural 

material and a conducting polymer. Unfortunately, the development of PPP for 

commercial applications has been hampered by two factors: (1) The structural properties 

that make PPP such an attractive engineering polymer also make it difficult to synthesize 

and process. (2) The excellent mechanical and electronic properties of PPP are highly 

dependent on its structural regularity and molecular weight. All previous synthetic routes 

to PPP have been unable to produce a high molecular weight polymer with a completely 

1,4-link:ed (para) structure. 
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Direct Synthetic Routes to Poly(p-phenylene) 

Many direct synthetic routes to PPP have been developed over the years, but they 

have all met with only limited success. For example, step growth polymerizations of 1,4-

disubstituted benzenes and 4,4'-disubstituted biphenyls have been employed as direct 

avenues to PPP. The earliest approaches involved the coupling of 1,4-dihalobenzenes 

using alkali metals (the Wurtz- Fittig reaction),9,10 activated copper, or silver (the 

Ullmann reaction) (Figure 2).11-13 

n x-o-x x-tQt.x + n MX 

n 

M
0 

= Na (Wurtz-Fittig reaction) 
= Cu, Ag (Ullmann reaction) 

Figure 2. The synthesis of PPP via the Wurtz- Fittig and Ullmann reactions. 

However, the polyphenylenes made by these processes are not strictly linear.l3 

Generally, oligomers containing halogen impurities and structural defects in the form of 

sidechains and non-linear 1,3-linkages are obtained.10 Polyphenylene has also been 

obtained by the coupling of 4,4'-diazobiphenyls using Cu+ salts (Figure 3), but the 

polymers contain a substantial number of azo groups and branches due to the radical 

coupling mechanism of the reaction.I3-16 
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n NH2---o-o-NH2 n Cl-~2---o-o--~2 Cl-

CuCI 

Figure 3. The synthesis of PPP via the coupling of 4,4'-diazobiphenyls. 

More recently, attempts to synthesize PPP directly from 1,4-dihalobenzenes have 

focussed on catalyzed Grignard coupling (Figure 4),17-19 Ni-catalyzed 

electropolymerization,20-22 and Ni-catalyzed polycondensation (Figure 5).23 

n x-Q-x + (n-1) Mg 
N.2+ I 

1 comp ex 

or 1,4-dichloro-
2-butene 

x-tQ-t.x + (n-1) MgX2 

n 

Figure 4. The synthesis of PPP via the catalyzed Grignard coupling of 1 ,4-dihalobenzenes. 

n x-Q-x + ( n-1) Nilm x-tQ-t.x + (n-1) NiX2Lm 

n 

Figure 5. The synthesis of PPP via the Ni-catalyzed polycondensation of 1 ,4-dihalobenzenes. 

Although these reactions give entirely 1,4-linked products, only oligomers are produced 

because the inherent insolubility of the growing PPP chains causes them to precipitate out 

of solution before high molecular weight materials form . PPP with a number average 

degree of polymerization (DP) of approximately 24-38 has been claimect,I7,23 but it is 

more likely that only 14-16-mers are formed because extreme insolubility is reached in 

the p -oligophenyl series with only seven or eight rings. I A modification of the Wurtz

Fittig type reaction using lithium reagents has also been recently employed (Figure 6); 
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however, the final product is soluble and contains a considerable amount of 1,3-

linkages.24 

n Br~Br -
2
nt-B-uli [n Br~u] HMPA 

Br 

___1/ill_h 
~~7. X y 

Figure 6. The synthesis of PPP by Li-HMPA promoted coupling of 1 ,4-dibromobenzene. 

Poly(p-phenylene) has also been directly synthesized by high temperature Diets

Alder coupling of 1 ,4-phenyl-bis(pyrones) with 1 ,4-dialkynylbenzenes (Figure 7).25,26 

However, model reactions of the Diets- Alder polycondensation process indicate that this 

step growth polymerization yields approximately 10% 1,3-linkages 26 In addition, the 

PPP produced by this method has structural defects in the form of residual pyrone or 

carboxylic acid as indicated by the presence of a weak carbonyl band in the IR spectrum 

of the PPP formed. 25,26 
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n 0 0 + n ~ J 

0 

1 ,4-linkage 

1,3-linkage 

Figure 7. The synthesis of PPP by Diels- Aider polycondensation of 1 ,4-phenyl
bis(pyrone) with 1,4-diethynylbenzene. 

A third direct synthetic approach to PPP is the direct polymerization of benzene 

and p -oligophenyls. For example, electrochemical polymerization of benzene in strong 

acids or liquid S02 has been used to obtain PPP.27-29 Oxidative cationic polymerization 

of benzene using a variety of Lewis acid/oxidizing agent combinations (e.g., 

AlCl3fCuCl2) has also been employed (Figure 8).1 
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Figure 8. The synthesis of PPP by oxidative cationic polymerization of benzene. 

Again, the polymers obtained from these two routes quickly precipitate out of solution 

before high molecular weight materials are formed. The PPP made from the 

electropolymerization of benzene has been claimed to have a DP of approximately 3829 

whereas the material formed by oxidative cationic polymerization has been found to have 

only a DP of 13-15.1·2 In addition, the PPP materials made by both these routes contain 

structural defects in the form of polynuclear aromatic regions (Figure 9).1 ,29 

Figure 9. Polynuclear aromatic structures produced by the direct polymerization of benzene. 

Similarly, oxidative cationic polymerization of p-oligophenyls also yields low molecular 

weight material but with a large percentage of 1 ,3-linkages.l 

In general, direct synthetic routes to PPP suffer from either the lack of 1,4-

regiochemical control during the polymerization, or the premature precipitation of the 

growing PPP chains. Also, post-synthesis processing of the PPP's obtained from even the 

more successful direct methods is difficult if not impossible due to the material's inherent 

insolubility and intractability. In order to overcome these problems, soluble substituted 

PPP's have also been synthesized by the coupling of substituted 1 ,4-functionalized 

benzenes,30-36 by Diels- Alder polycondensation,37-40 and by oxidative cationic 
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polymerization of substituted benzenes. I Substituents pennit the fonnation of higher 

molecular weight polymers by allowing the growing chains to remain in solution. 

Although the direct syntheses of substituted PPP's offer higher molecular weight 

materials with improved processability, many of these routes still do not give entirely 

linear polyphenylene_30,31 ,37-40 In addition, the improved molecular weights and 

processability are achieved at the cost of many of the desirable properties of parent PPP. 

For example, the presence of pendant groups on PPP often reduces the material's thennal 

stability and chemical inertness compared to parent ppp_37-40 In addition, the steric 

effects of sidechains on the polymer backbone increases the ring torsion angle between 

adjacent phenylene units and reduces the extent of conjugation necessary for high 

electrical conductivity in the doped material. 

Precursor Routes to Poly(p-phenylene) 

In order to circumvent the synthetic limitations that result from the inherent 

insolubility of PPP, several precursor strategies have also been developed. By using a 

high molecular weight, processable intennediate polymer that can be converted to PPP, 

these strategies offer processability without sacrificing any of the desirable properties of 

the final material. 

The first precursor route to PPP employed polycyclohexadiene as a processable 

intennediate.41-44 In this strategy, the precursor polymer is obtained by cationic,42 

anionic,44 or Ziegler- Natta41,42 polymerization of 1,3-cyclohexadiene. By heating the 

polycyclohexadiene with choraniJ,41,42 or by brominating the polymer and then thennally 

eliminating HBr and H2,42-44 aromatic units are produced (Figure 1 0). 
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chloranil( 

.lF\L /~, 
--\ \___/- /n n-

- HBr 
- H2 

Figure 10. Precursor route to PPP using polycyclohexadiene. 

Unfortunately, these polymerization reactions produce precursors with low molecular 

weights,41 or with a mixture of 1,4- and 1,2-linkages.42-44 In addition, the aromatization 

processes employed have been found to be inefficient in forming phenylene units.41,42,44 

A more efficient precursor route to 90% para-linked polyphenylene has recently 

been developed by Ballard and co-workers at ICI Chemicals and Polymers.45,46 This 

process involves the radical polymerization of monomers obtained by the microbial 

oxidation of benzene. The resulting soluble polymers are subsequently converted to PPP 

by thermally-induced acid elimination (Figure 11).46 
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putida Q n 

HO OH 

RO OR RO OR 

1 ,4-units 
90% 

1 ,2-units 
10% 

AX 

base 

-ROH 

Figure 11. The ICI precursor route to PPP. 

nQ 
RO OR 

oligomers 

This process, however, only yields phenylene oligomers due to extensive chain fracturing 

during the pyrolysis step.47 Backbone fracturing is believed to arise from the 10% 1,2-

units and/or random backbone stereochemistry that result from the nonstereospecific 

nature of the radical polymerization process. 

A similar PPP precursor route to the ICI process was also developed by McKean 

and Stille.48 This route utilizes the same type of monomers, polymerization techniques, 

and aromatization methods as the ICI process; however, the monomers are chemically 

synthesized from 1 ,4-cyclohexadiene in a multistep procedure rather than microbially 

synthesized from benzene. Unfortunately, this PPP precursor route suffers from the same 

drawbacks as the ICI process. In addition, the synthesis of the monomers in this route is 

less efficient. 
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Summary 

PPP is a valuable engineering polymer and electronic material. Unfortunately, its 

full potential has not been realized due to the quality of the material available. All 

previous synthetic routes to PPP- both direct and indirect- have been unable to produce 

a high molecular weight polymer with a completely 1 ,4-linked (para) structure. They 

have either afforded either phenylene oligomers or polyphenylenes with significant 

amounts of structural defects detrimental to the properties of the final polymer. What is 

sought is a synthetic route to PPP which not only yields high molecular weight, 

completely 1 ,4-linked material but also permits processability without sacrificing any of 

the excellent properties of the final product. 
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CHAPTER2 

Transition-Metal-Catalyzed Polymerization of 
Heteroatom-Functionalized 1,3-Cyclohexadienes: 

Stereoregular Precursors to Poly(p-phenylene) 
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Introduction 

The objective of this research was to develop an efficient precursor methodology 

for the synthesis of high quality poly(p-phenylene) (PPP). In a precursor methodology, 

there are two principal steps: (1) the synthesis of suitable, processable precursor 

polymers, and (2) the conversion of these precursors to the final polymer. Ideally, such a 

route should permit processability without sacrificing any of the properties of the final 

material. The most successful precursor route to PPP to date is the ICI process developed 

by Ballard et al. (Figure 1).1·2 This process involves the synthesis of soluble precursor 

polymers (3a,b) by the radical polymerization of monomers (2a,b) derived from cis-5,6-

dihydroxy-1,3-cyclohexadiene (1), a microbial oxidation product of benzene. The 

precursors are subsequently converted to PPP by thermally-induced acid elimination. 

Radical 

Initiator 

Pseudomonas 
putida nQ 

HO OH 

1 

RO OR RO OR 

1 ,4-units 
90% 

1,2-units 
10% 

3a: R = C(O)CH3 
3b: R = C(O)OCH3 

AX 

base 

-ROH 

nQ 
RO OR 

2a: R = C(O)CH3 
2b: R = C(O)OCH3 

oligomers 

Figure 1. The ICI precursor route to PPP. 
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However, the ICI process suffers from two inherent problems as a result of the 

nonstereospecific nature of the radical polymerization process: (1) The radically 

polymerized precursors contain approximately 10% 1,2-linkages that introduce nonlinear 

defects in the final PPP.2 (2) The precursors fracture during the final pyrolysis step as a 

result of the random backbone stereochemistry and/or the presence of the I ,2-linkages.3 

In addition, the radical polymerization process provides little if any control over the 

molecular weight of the polymers. 

Our goal was to develop a superior precursor route to PPP based on the ICI 

process by synthesizing completely 1 ,4-linked, stereoregular precursor polymers. 

Specifically, what we sought was a method for polymerizing derivatives of compound 1 

that would provide three things: (1) regiochemical control to give completely 1,4-linked 

precursor polymers for 100% para-linked polyphenylene, (2) stereochemical control to 

give precursors with the optimum stereochemistry for facile acid elimination without 

chain degradation, and (3) molecular weight control during the synthesis of the polymers. 

The optimum stereochemistry for acid elimination in this case would be the 1,4-SSRR 

repeat unit structure4 depicted in Figure 2. Since the pyrolytic acid elimination from 

these precursors is believed to involve a cis-six-membered ring transition state,2 the 

precursor repeat unit should not only be 1 ,4-linked but also have the bridging C- C bonds 

in a cis relationship on the face of the cyclohexenyl ring opposite that of the pendant 

functional groups (Figure 2). 
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H~H 
RC(O)O ~O 

-2n RCOOH 

R ppp 

1 ,4-SS RR Repeat Unit 

H H 
s·~·R 

+~--+--n 
H H 

Figure 2. Thermally-induced acid elimination via a cis-six-membered ring transition state.2 

Unfortunately, few initiators offer the combination of high 1,4-regioselectivity, 

high cis stereospecificity, and the capability for molecular weight control in the 

polymerization of 1,3-dienes. As demonstrated in the original ICI process (Figure 1)1,2 

and in a similar synthetic approach used by McKean and Stille,5 conventional radical 

polymerization initiators are unable to provide this unique combination of properties in 

the polymerization of 2a and 2b. Anionic and cationic initiators have also proven to be 

unequal to the task since both of these types of initiators afford polymers with mixtures of 

1,4- and 1,2-linkages when used to polymerize 1,3-cyclohexadiene.6-8 Our strategy was 

to apply the stereochemical and regiochemical control afforded by transition-metal 

catalysts to the polymerization of derivatives of 1. The result is a high-yield, multistep 

synthesis of 1,4-linked stereoregular precursors to PPP which utilizes a transition-metal 

catalyst to provide stereochemical and molecular weight control, protecting group 

chemistry to provide catalyst/functional group compatibility, and functional group 

interconversion chemistry to provide precursors that can be easily aromatized to PPP. 
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Results and Discussion 

In the development of a transition-metal catalyst polymerization system that 

would perform stereospecific polymerization of derivatives of compound 1, two primary 

issues needed to be addressed: (1) stereochemical control during the polymerization, and 

(2) catalyst/functional group compatibility. Many transition-metal polymerization 

catalysts such as Ziegler-Natta type systems afford highly 1,4-linked polymers of 1,3-

butadiene9,10 and 1,3-cyclohexadiene.6 However, the Lewis acid co-catalysts in these 

Ziegler- Natta systems generally cannot tolerate the types of heteroatom functionalities on 

the monomers required for efficient conversion of the corresponding precursor polymers 

to PPP. Metal-7t-allyl catalyst systems are also known to give highly 1,4-linked polymers 

of 1,3-dienes.9,10 Although much work has been done with these catalysts using purely 

hydrocarbon 1,3-dienes (e.g., 1,3-butadiene and 1,3-cyclohexadiene),l1.12 little has been 

done with heteroatom-functionalized 1,3-dienes. In fact, the only examples of successful 

polymerizations of heteroatom-functionalized 1 ,3-dienes by transition-metal complexes 

have been copolymerizations with 1 ,3-butadiene.13,14 The corresponding 

homopolymerizations of the highly functionalized monomers were unsuccessful with 

these metal-7t-allyl catalysts. Since the most successful of these copolymerizations 

employed bis[(113-allyl)trifluoroacetatonickel(II)] [(ANiTFA)2J as the catalyst system, 

(ANiTF Ah was an excellent starting point for our investigations (Figure 3).14 

<{ 
Ni Ni 

Figure 3. Bis[(T{allyl)trifluoroacetatonickel(ll)] [(ANiTFA)2). 
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(A) The Catalyst Bis(113-allyl)trifluoroacetatonickel(ll)] [(ANiTFAhl 

(ANiTFAh is an air- and water-sensitive compound that can easily be prepared 

by the oxidative addition of allyl trifluoroacetate to bis(1,5-cyclooctadienyl)nickel(O) 

[Ni(COD)2] (Figure 4 ). 15,16 

Ni(COD)2 + ~OnCF3 

0 

1/2 (ANiTFA)2 + 2 COD 

Figure 4. The synthesis of (ANiTFA)2. 

Not only does this catalyst exhibit a partial tolerance to heteroatom functionalities in 1,3-

butadiene polymerizations, 14 but it has also been used for the "living" polymerization of 

butadiene, exhibiting >98% 1 ,4-regioselectivity .17 In addition, the polymerization of 1,3-

dienes by nickel-n-allyl complexes such as (ANiTFAh has been found to exhibit high cis 

stereospecificity and to proceed by a syn-coordinative insertion mechanism.IS-20 This 

unique combination of characteristics makes (ANiTFAh ideal for the synthesis of highly 

1,4-linked, stereoregular precursors to PPP from derivatives of compound 1. However, 

no work has yet been done with this catalyst with cyclic 1,3-dienes or highly 

functionalized cyclic dienes. 

(B) Polymerization of 1,3-Cyclohexadiene by (ANiTF Ah as a Model System 

Initial experiments with (ANiTFAh focussed on its ability to polymerize 1,3-

cyclohexadiene (CHD). The purpose of these initial experiments was two-fold: (1) to 

determine whether the catalyst could polymerize the 1,3-cyclohexadiene moiety, the 

polymerizable functionality of derivatives of 1, and (2) to determine whether the high 
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1,4-regioselectivity exhibited by the catalyst in butadiene polymerizations17 is retained in 

the polymerization of 1,3-cyclohexadienes. CHD was found to be readily polymerized 

by (ANiTFA)2 at a temperature of 50 °C or higher in a variety of non-coordinating 

aromatic solvents with yields between 70 and 90%. The resulting polycyclohexadiene 

[poly(CHD)] is an insoluble white powder that precipitates rapidly out of the reaction 

mixture during the course of the polymerization. In general, the more polar aromatic 

solvents (e.g., chlorobenzene and a -dichlorobenzene) were found to enhance catalyst 

activity and provide the highest yields of poly(CHD). 

The regiochemistry of the poly(CHD) synthesized using (ANiTFA)2 was 

determined by 1 H NMR analysis on soluble oligomers extracted from the mostly 

insoluble polymer matrix. The relative amounts of 1 ,4-and 1 ,2-linkages in poly(CHD)s 

can be determined by examining the integrals of the proton resonances at approximately 

1.6 and 2.0 ppm, which are due to methylene protons in non-allylic (J3) and allylic (a) 

environments, respectively (Figure 5).12 

H H H H 

1 ,4-Unit 

H H H H 

1,2-Unit 

Figure 5. The 1,4- and 1,2-linked repeat units possible for poly(CHD). 

For example, a polymer comprised of entirely 1,2-units would be expected to have a ratio 

of J3 to a protons of 1:1, whereas a completely 1,4-linked polymer would be expected to 

have a ratio of 2:1. Thus, the fraction of 1 ,4-units (m) can be deduced from the integrals 

of the peaks at 1.6 and 2.0 ppm (N) by using Eq. 1.12 



m = 
3(N-1) 

(N+1) 
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IIJ 
N =-

Ia 
(1) 

The IH NMR spectrum of the soluble oligomers obtained using (ANiTFA)2 (Figure 6) 

indicates approximately 90-95% 1,4-linkages in the poly(CHD). 

The highly 1,4-linked structure for the poly(CHD) made using (ANiTFA)2 

inferred from 1H NMR analysis was also supported by powder X-ray diffraction (PXRD) 

and thermal analysis of the polymer. PXRD analysis of the insoluble poly(CHD) 

revealed three sharp reflections at 5.291, 4.517, and 3.907 A, indicating a highly 

crystalline material (Figure 7). Differential scanning calorimetry (DSC) and thermal 

gravimetric analysis (TGA) on the poly(CHD) revealed that the polymer is thermally 

stable under inert atmosphere to approximately 320 °C and possesses no observable glass 

transition (T g) or melting point (T m) prior to that temperature. Such high thermal 

stability in poly(CHD) has only been exhibited by material containing >90% cis-1,4-

linkages made using a similar nickel catalyst.IO,ll In contrast, poly(CHD) containing 

structural irregularities is typically a soluble, amorphous material with a significantly 

lower thermal stability.6,7,11,12 Clearly, not only can (ANiTFA)2 polymerize the 1,3-

cyclohexadiene moiety, but the high 1,4-regioselectivity exhibited by the catalyst in 1,3-

butadiene polymerizations is also retained in the polymerization of 1,3-cyclohexadienes. 

(C) Catalyst/Functional Group Compatibility Studies 

Once it was determined that (ANiTFA)2 could polymerize the 1,3-cyclohexadiene 

moiety with very high 1,4-regioselectivity, experiments were then performed to 

determine whether the catalyst could polymerize the bis(acetyl) (2a) and 

bis(methoxycarbonyl) (2b) derivatives of compound 1. All attempts to polymerize these 

two monomers using (ANiTFA)2 under similar conditions to those employed in the CHD 
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Figure 6. 400 MHz 1 H NMR spectrum (in CDCI3) of soluble poly(CHD) oligomers made using 
(ANiTFA)2. 
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Figure 7. PXRD profile of poly(CHD) made using (ANiTFA)2. The weak reflection at 4.110 A is 
a diffractometer artifact. 
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polymerizations proved unsuccessful. 1 H NMR analysis of the resulting reaction 

mixtures revealed that instead of initiating polymerization, the catalyst aromatizes a 

stoichiometric amount of the monomers 2a and 2b. It is believed that the acid or alcohol 

eliminated during the aromatization of these monomers decomposes the catalyst (Figure 

8). 

Q 
RO OR 

2a: R = C(O)CH3 
2b: R = C(O)OCH3 

(ANiTFA)2 0 + ROH 

RO 

Figure 8. Aromatization of the monomers 2a and 2b leading to decomposition of (ANiTFA)2. 

Subsequent investigations revealed that not only is the aromatization of 2a and 2b 

a problem for (ANiTFA)2, but carbonyl containing groups in general are incompatible 

with the catalyst. For example, the addition of a small amount of purified ethyl acetate to 

the active CHD/(ANiTFA)2 polymerization system resulted in dramatically lower 

polymer yields or no polymer formation at all. Most likely, the Lewis basic carbonyl 

groups compete with the 1,3-diene moieties to coordinate to the electrophilic nickel 

centers of the catalyst. Evidently, the functionalities best suited for facile conversion of 

the precursor polymers to PPP (i.e., esters and carbonates) are completely incompatible 

with the catalyst. 

Additional catalyst/functional group compatibility studies revealed that compound 

1 itself and many of its other common derivatives are also incompatible with the 

(ANiTFAh catalyst. Attempts to polymerize 1 directly using (ANiTFA)2 were 

unsuccessful and only resulted in aromatizing the monomer to phenol and water. Use of 

the acetonide (2c) and silyl acetonide (2d) derivatives of 1 (Figure 9) did not result in 

immediate decomposition of the catalyst; however, the two monomers could not be 
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polymerized. 

Q Q Q Q oxo 0 .,0 CH30 OCH3 R02SO OS02R 
'Si ' · .• ~ ~ 

2c 2d 2e 2f 

Figure 9. Other derivatives of 1 that cannot be polymerized by (ANiTFA)2. 

Attempts to synthesize simple alkyl ether derivatives of 1 (e.g., 2e) in sufficient purity for 

polymerization/compatibility studies with (ANi1FA)2 were unsuccessful using literature 

preparations.2 Hence, simple compatibility studies of 1 ,2-diethers with the catalyst were 

performed by adding small amounts of purified 1 ,2-dimethoxyethane (DME) to an active 

CHD/(ANiTFA)2 polymerization reaction. The addition of DME to a CHD 

polymerization reaction quickly resulted in catalyst decomposition and afforded only 

very low polymer yields. A plausible rationale for this incompatibility is that 1 ,2-diethers 

chelate to the electrophilic nickel centers to deactivate the catalyst (Figure 1 0). 

Figure 10. Possible chelation of (ANiTFA}2 by 1,2-dimethoxyethane. 

Due to the difficulty of synthesizing bis(sulfonic ester) derivatives of compound 1 (2f), 

similar compatibility studies were performed for sulfonic esters using ethyl tosylate as an 

additive. Only a small amount of poly(CHD) formed, probably because of a similar 

coordination effect by the S=O groups to the electrophilic metal catalyst. 

More exotic derivatization of 1 (e.g., substitution of the hydroxy groups with 
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halides) was not attempted due to the thermal and hydrolytic instability of the material. 

Compound 1 spontaneously aromatizes to form phenol and water in the presence of acid 

or at temperatures in excess of 60 °C.2 In fact, 1 must be stored as a solid at sub-zero 

temperatures or as solution in organic base (e.g., pyridine) to minimize aromatization. As 

a result, derivatization of this substrate is limited to procedures using relatively low 

temperatures under basic or near neutral conditions.2 

(D) cis-5,6-Bis(trimethylsiloxy)-1,3-Cyclohexadiene: A Compatible Monomer via 

Protecting Group Chemistry 

A derivative of 1 which is compatible with (ANiTFAh was synthesized by 

applying protecting group chemistry to the parent monomer. cis-5,6-

Bis(trimethylsiloxy)-1 ,3-cyclohexadiene (4) was prepared by reacting compound 1 with 

two equivalents of chlorotrimethylsilane (TMSCl) in a mixture of pyridine and methylene 

chloride using 4-dimethylaminopyridine (DMAP) as a catalyst (Figure 11). 

Q 
HO OH 

2 TMSCI, py, DMAP 

Q + 2 py • HCI 
CH2CI2 

91% TMSO OTMS 

1 TMS = Si(CHs)s 4 

Figure 11. Preparation of cis-5,6-bis(trimethylsiloxy)-1,3-cyclohexadiene (4), a derivative of 1 
which is compatible with (ANiTFA)2. 

By masking the hydroxy groups on 1 as trimethylsilyl (TMS) ethers, monomer 4 can be 

polymerized in high yields by (ANiTFAh at a temperature of 50 °C or higher in a variety 

of aromatic solvents or in neat monomer.2I Chlorobenzene was found to be the best 

solvent system for the polymerization reaction in terms of polymer yield and catalyst 

activity. Typically with a monomer-to-catalyst ratio of 80:1 and a monomer 
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concentration of 1.5 M in chlorobenzene, the polymer is obtained in 93% yield with a 

number average degree of polymerization (Mn) of 38,000 and a polydispersity index 

(PDI) of 1.64, as determined by Viscotek GPC analysis.22 Under these reaction 

conditions, the initial clear orange solution of (ANiTFAh and 4 in chlorobenzene 

changes first to a dark red solution and then to an opaque coffee-colored mixture over a 

period of approximately 15- 20 minutes at 50 °C. The active reaction mixture then 

remains black for the duration of the polymerization, becoming progressively more 

viscous until a gel forms (usually after 24 hours). The resulting TMS ether polymer (5) is 

a white powder which is completely soluble in solvents such as hexanes and THF. 

Monomer 4 is believed to be compatible with the catalyst unlike the other 

derivatives of compound 1 for two reasons: (1) the steric bulk of the large TMS 

protecting groups effectively prevents the oxygen atoms of the monomer from 

coordinating to the catalyst and interfering with the polymerization, and (2) the TMS 

ethers are very poor leaving groups compared to the esters and carbonates so monomer 

aromatization leading to catalyst decomposition is inhibited. It is also believed that the 

bulky TMS groups play a secondary role in the polymerization by directing the attack of 

the catalyst on the monomer. The bulky TMS groups not only sterically shield the 

oxygen atoms, but they also effectively block one face of the cyclohexadiene ring of 

monomer 4, thus permitting approach of the catalyst from only the unhindered opposite 

face away from the TMS ethers. These steric shielding effects can clearly be seen by 

examining the computer-generated space-filling model of 4 presented in Figure 12. This 

1t-facial selectivity afforded by the TMS ethers on the monomer, together with the cis 

stereospecificity in butadiene polymerizationl8-20 and the 1,4-regioselectivity in 

cyclohexadiene polymerization afforded by the (ANiTFA)2 catalyst, should yield the 

resulting polymer 5 as a completely 1,4-linked, stereoregular polymer with the 1 ,4-SSRR 

repeat unit depicted in Figure 13. 
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Figure 12. Edge-on view of a space-filling (CPK) model of 4. The oxygen atoms are in red. 
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(ANiTFA)2 

chlorobenzene, 50 oc 
93% 

·-{Q)~ 
TMSO OTMS 

5 

H H 
s·~·R 

+~-+--n 
H H 

1 ,4-SSRR Repeat Unit 

Figure 13. Stereospecific polymerization of monomer 4 using (ANiTFA)2. 

(E) Characterization of Polymer 5: Confirmation of the Inferred 1,4-

Stereoregular Structure for the Polymer 

The completely 1,4-linked structure for 5 as inferred from the factors discussed 

above was confirmed by lH NMR analysis. lH NMR analysis is the primary method of 

determining the relative amounts of 1,4- and 1,2-linkages in PPP precursor polymers.2,5 

1,2-Units in radically synthesized polymers of compound 1 derivatives typically exhibit a 

proton resonance at 1.8- 2.1 ppm that is not found in 1,4-units. This assignment is 

inferred from IH NMR analysis of a model compound of a 1,2-unit (Figure 14).5 

OC(O)Me 

~h 
1.8- 2.1 ppm 

Figure 14. Model compound of a 1,2-linkage in polymers of compound 1 derivatives.
5 
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As can be seen from the lH NMR spectrum of 5 (Figure 15), the polymer does not exhibit 

any proton signals in this region, thus suggesting a completely 1 ,4-linked structure for the 

polymer. Further support for this assignment was provided by comparing the IH NMR 

spectrum of 5 made using (ANiTFA)2 (Figure 16a) with the lH NMR spectrum of 

radically polymerized oligomers of 4 (Figure 16b).23 Only the radically polymerized 

oligomers exhibit a proton signal at 1.9 ppm indicative of 1,2-units. 

Although lH NMR analysis suggests a highly 1,4-linked regioregular structure for 

5, this technique was not able to furnish any further information on the tacticity 

(stereochemistry) of the polymer backbone. For a completely stereoregular polymer, the 

symmetric 1,4-SSRR repeat unit inferred for polymer 5 (Figure 13) can be connected in 

two ways: (1) the same throughout (an isotactic structure), and (2) a perfectly alternating 

fashion (a syndiotactic structure) (Figure 17).24 Since there is usually rapid half-chair

half-chair conformational interconversion (i.e., "ring-flipping") for cyclohexene 

molecules in solution,25 there should be a plane of symmetry passing through each repeat 

unit of the two possible stereoregular structures on the NMR timescale (Figure 17). The 

number of nonequivalent IH and 13C NMR signals should be the same in both cases from 

symmetry arguments: four unique carbons in total and three unique protons on the 

cyclohexene ring. Consequently, NMR spectroscopy would not be able to distinguish 

between the isotactic and syndiotactic structures possible for polymer 5 simply from the 

number of unique lH and 13C signals exhibited. However, the lH NMR spectrum of 5 

(Figure 15) shows different chemical environments for each of the six protons on the 

cyclohexenyl ring of the repeat units. In addition, variable temperature lH NMR analysis 

of 5 in dg-toluene revealed no coalescence of the six ring proton resonances even up to 

100 °C. Attempts to use 13C NMR analysis to obtain more information on the 

stereochemistry of 5 were completely unsuccessful. 13C NMR analysis of polymer 5 

using a variety of different solvents (e.g., C@)6, CDCl3, dg-THF) and concentrations only 

yielded spectra with extremely poor signal-to-noise and poor resolution. 
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Figure 15. 400 MHz 1 H NMR spectrum of polymer 5 in CDCI3. 
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Figure 16. 500 MHz 1H NMR spectra of (a) polymer 5 and (b) radically polymerized oligomers of 
4 in da-THF. 
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1,4-SSRR Repeat Unit for 5 

lsotactic structure 

By symmetry: (a) All junctions are identical: RS. 

. . . . 
H ! :11=!-0T 

H l H . 

(b) Three chemically nonequivalent ring protons . 

Syndiotactic structure 

n/2 

By symmetry: (a) RR and SS junctions are enantiomers and therefore 
equivalent by NMR spectroscopy. 
(b) Three chemically nonequivalent ring protons. 

Figure 17. The symmetry of the isotactic and syndiotactic structures for a conformationally 
nonrigid, polymer 5 with the 1 ,4-SSRR repeat unit. 
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In order to further elucidate the structure of polymer 5, the material was also 

analyzed by a combination of secondary analytical techniques. Wide angle PXRD 

analysis of 5 revealed that the material is partially ordered, exhibiting a single diffraction 

peak at 9.725 A (Figure 18). This PXRD profile is typically exhibited by rodlike 

molecules such as nematic liquid crystals.26 Additional support for a rodlik:e secondary 

structure was provided by STM imaging of 5 on highly oriented pyrolytic graphite 

(HOPG).27 STM imaging showed rodlik:e polymer chains on the surface of the substrate 

(Figures 19a and 19b) with longitudinal dimensions that agree well with chain lengths 

inferred from Viscotek GPC analysis. 28,29 This unexpected rodlike secondary structure 

for polymer 5 is likely the source of the difficulties encountered in obtaining a good 13C 

solution NMR spectrum of the polymer. The rodlike conformation of the polymer chains 

probably makes tumbling in solution extremely slow on the NMR timescale, resulting in 

severe chemical shift anisotropy and poor signal-to-noise and resolution. This 

assumption is supported by the fact that solutions of polymer 5 are often thixotropic. 

That is, the initially nonviscous polymer solution often forms a gel upon standing, but 

returns to its original fluid state with subsequent agitation. 

What we infer from all these results is that polymer 5 probably has a stereoregular 

structure (either isotactic or syndiotactic) with the symmetric 1,4-SSRR repeat unit 

expected from the stereospecificity of the polymerization catalyst (Figure 13). However, 

the polymer chains adopt a rodlike secondary structure in which each polymer repeat unit 

is conformationally locked into a half-chair conformation. The loss of the normally rapid 

conformational (i.e., "ring-flipping") equilibrium removes the expected plane of 

symmetry in the repeat units of these two stereoregular structures on the NMR timescale, 

resulting in six types of ring protons in the 1 H NMR spectrum instead of the three 

expected. Both the rodlike secondary structure and the resulting locked half-chair repeat 

unit inferred for 5 are most likely the result of large steric interactions from the 
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Figure 18. PXRD profile of polymer 5. The reflections at 4.110 and 3.723 A are diffractometer 
artifacts. 
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Figure 19a. STM image of rodlike chains of polymer 5 on highly oriented pyrolytic graphite 
(image dimensions: 280 x 280 nm). 
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Figure 19b. STM image of a small cluster of chains of polymer 5 on highly oriented pyrolytic 
graphite. (image dimensions: 880 x 880 nm). 
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bulky TMS ethers on the polymer. (These assumptions on the stereoregular structure and 

conformation of polymer 5 are all confirmed in a subsequent section in this chapter.) 

Computer-modeled images of the locked 1 ,4-SSRR repeat unit and the rodlike 

secondary structure suggested by NMR, PXRD, and STM analysis of polymer 5 are 

presented in Figures 20 and 21, respectively. It should be noted that the images presented 

in Figures 20 and 21 are of a local energy minimum conformation for the isotactic 

structure of 5 shown in Figure 17, modeled using Biograf and MM2 force-field 

parameters. 30 Similar modeling of the corresponding 1 ,4-SSRR syndiotactic structure of 

5 (Figure 17) afforded an elongated helix rather than a rod as in the isotactic case. 

Although molecular modeling at this very simple level cannot be used to deduce the 

actual tacticity of 5, the fact that one of the possible stereoregular structures has a local 

energy minimum that is a rodlike molecule helps to substantiate our initial assumptions 

on the structure and conformation of the polymer. 

(F) Preliminary Kinetic Analysis of the (ANiTF Ah/Monomer 4 Polymerization 

System 

The (ANiTFAh/monomer 4 polymerization system in chlorobenzene exhibits a 

strong dependence on monomer concentration. At a monomer-to-catalyst ratio of 80:1, 

the yield of polymer 5 increases asymptotically (up to 93%) with increasing initial 

monomer concentration. Below a critical monomer concentration (0.14 M), however, 

polymerization does not proceed (Figure 22). 
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Figure 20. The locked half-chair conformation for polymer 5 with the 1 ,4-SSRR isotactic 
structure, as suggested by computer modeling. 
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Figure 21. The rodlike secondary structure for the 1,4-SSRR isotactic structure of polymer 5, as 
suggested by computer modeling. 



52 



53 

100 

80 

"0 60 G) 

> ... 
Q) 

E 
>-
0 
Q. 40 
';/?. 
0 

20 

• 
0 L---~-L------L-----~----~------~----~------~----~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 .6 

[monomer 4] (M) 

Figure 22. Plot of % polymer yield vs. initial monomer concentration for the (ANiTFA)2/monomer 
4 polymerization system in chlorobenzene. (Polymerization temperature= 50 °C; monomer-to
catalyst ratio = 80:1; reaction time = 24 h.) 

The kinetic behavior of the (ANiTFA):zfmonomer 4 polymerization system in 

chlorobenzene, toluene, and neat monomer was investigated by examining the % 

conversion of 4 as a function of time and the M n of the polymer as a function of % 

conversion of monomer, using a constant monomer-to-catalyst ratio of 75:1. The two 

sets of relationships for the polymerization system are presented in Figures 23 and 24. 
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Figure 23. Plots of% conversion vs. time for the (ANiTFA)2/monomer 4 polymerization system: 
(a) neat; (b) in toluene, (4] = 2.0 M; (c) in chlorobenzene, (4) = 0.7 M. All polymerizations were 
performed at 50 oc with a monomer-to-catalyst ratio of 75:1. 
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Figure 24 Plots of Mn of polymer 5 vs. % monomer conversion for the (ANiTFA)2/monomer 4 
polymerization system: (a) neat; (b) in toluene, [4] = 2.0 M; (c) in chlorobenzene, [4] = 0.7 M. All 
polymerizations were performed at 50 oc with a monomer-to-catalyst ratio of 75:1. Mn values 
were determined by Viscotek GPC, except for those of (c), which are referenced to polystyrene 
molecular weight standards. 

As can be seen from Figure 24, the M 0 vs % conversion relationship in each case is not 

linear, but rather the polymer Mn rises quickly at small % conversion and levels out for 

the remainder of the polymerization. These M n vs. % conversion relationships are 

characteristic of a typical chain addition polymerization, suggesting a non-"living" 

process_31,32 

Despite its non-"living" kinetics, this system does appear to have the potential for 

molecular weight control. Blocking experiments, performed by fresh aliquots of 
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monomer to the propagating system at approximately 75% conversion, resulted in 

predictable molecular weight increases in the resulting polymer without broadening the 

PDI or producing a multimodal molecular weight distribution (Table 1). 

Table I. Blocking experiment: The effect of adding fresh aliquots of monomer to the 
active (ANiTFA~ /monomer 4 polymerization system in chlorobenzene. 

Polymer 5 
Equiv. of Fresh a 

Mn Monomer 4 Added 
(Viscotek G PC) DP PDI 

75 1.78 X 104 69 2.06 
70 3.31 X 1o4 129 1.84 
247 b 5.14 X }()4 200 2.03 

(a) Addition of fresh aliquots of monomer performed at approx. 75% conversion of previous aliquot. 
The monomer aliquots were diluted to maintain an initial monomer concentration of 0. 7 Mat each 
addition. 
(b) A larger amount of 4 was required at this point in the experiment due to increasing viscosity in 
the reaction mixture. The lower than expected M n from this final blocking experiment is a result of 
gel formation stopping the reaction prematurely before all the added monomer can be consumed. 

This observation suggests the presence of a "living" endgroup during the course of the 

reaction. Additional evidence for a "living" endgroup was obtained by examining the 

molecular weight of the polymer as a function of increasing monomer-to-catalyst ratio at 

a constant monomer concentration. The Mn of the polymer increases with increasing 

monomer-to-catalyst ratio (Table II). However, the relationship is not a direct one, and 

lower polymer yields are generally obtained with increasing monomer-tcrcatalyst ratios at 

a constant monomer concentration of 1.5 M. 
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Table II. The effect of increasing monomer-to-catalyst ratio on theM n and % yield of 
polymer 5 for the (ANiTFA)2/monomer 4 polymerization system in chlorobenzene. 
([ 4] = 1.5 M; reaction time = 24 h; polymerization temp. = 50 °C) 

Monomer-to-
PolymerS 

Catalyst Ratio Mn 
(Viscotek G PC) OP POI %Yield 

50:1 2.22 X 104 87 1.75 80 
100:1 2.73 X 104 106 2.00 83 
200:1 3.47 X 104 135 1.84 66 

These lower than expected Mn values and lower polymer yields are likely due to the rapid 

gel formation observed during the reaction. This gel formation results from the rapid 

buildup of polymer under the concentrated reaction conditions employed, and it stops the 

reactions prematurely before all of the monomer can be polymerized. By diluting the 

reaction mixtures with more solvent, not only can this same trend of increasing M 0 with 

monomer-to-catalyst ratio be observed more definitively, but higher polymer yields can 

also be obtained as result of reduced gelling (Table III). 

Table III. The effect of increasing monomer-to-catalyst ratio on theM n of 5 for the 
(ANiTFAh/monomer 4 polymerization system in chlorobenzene under optimum yield 
conditions. (reaction time = 48 h; polymerization temp.= 50 °C) 

Monomer4 to PolymerS 

(ANiTFA)2 
[monomer 4) 

(M) Mn DP POI %Yield Ratio 
(Viscotek G PC) 

80:1 1.5 2.09 X 10: 81 1.53 93 
140:1 1.2 5.31 X 10 207 1.31 96 

The exact nature of this system's unique combination of non-"living" and "living" 

characteristics has not yet been determined. We do know that the rate-determining step 

in chain-transfer and termination in this system is not a conventional 13-H elimination of a 
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propagating metal-allyl species, as suggested by Teyssie et al. for the 

(ANiTFA)2/butadiene system .I 7 If 13-H elimination were the rate-determining step in 

chain transfer and termination, a difference in Mn should be observed in the two polymers 

made from ring deuterated 4 and perprotio 4 as a result of a kinetic isotope effect. The 

Mn and POI of the polymers made by the (ANiTFA)2-catalyzed polymerization of ring

deuterated 4 and perprotio 4 under identical reaction conditions are identical (Figure 

25).33 

Unfortunately, a more detailed examination of the dark brown-black active 

species responsible for this behavior was not possible. Attempts to analyze the 

propagating species by 1 H NMR spectroscopy only afforded spectra with extremely 

broad lines and poor signal-to-noise. Possibly, the active species is a paramagnetic nickel 

complex or a fluxional species which is responsible for the difficulties during NMR 

analysis. Attempts to isolate the black active species were also unsuccessful due to its 

high solubility in solvents typically used precipitate organometallic intermediates (e.g., 

pentane and hexanes) and its instability in coordinating solvents. 

(G) Thermal Analysis and Pyrolysis of Polymer 5 

Although the (ANiTFA)2/monomer 4 polymerization system produces a 

completely 1,4-linked polymer and possesses the potential for molecular weight control, 

the resulting polymer 5 does not yield PPP upon pyrolysis. DSC and TGA of 5 revealed 

that the polymer is thermally stable up to approximately 327 °C under argon, exhibiting 

neither aT g nor a T m prior to its decomposition temperature. IR analysis of the pyrolysis 

product after heating 5 past its decomposition temperature revealed the absence of any 

bands indicative of PPP in the 650-850 cm-1 region.34,35 In addition, elemental analysis 

of the pyrolysis residue of 5 revealed a substantial amount of Si remaining in the 

material. Apparently, the poor leaving ability of the TMS ethers prevents monomer 4 
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Figure 25. Viscotek GPC plots of the polymers made by the (ANiTFA)2-catalyzed polymerization 
of ring-deuterated 4 and perprotio 4 under identical reaction conditions. ([ds-4] = [4] = 1.6 M in 
chlorobenzene; monomer-to-catalyst ratio = 40 :1 ; reaction time = 24 h; polymerization 
temperature = 50 °C.) 
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from aromatizing under the polymerization conditions, but it hinders the pyrolytic 

aromatization of the resulting polymer 5 to form PPP. In order to overcome this obstacle, 

the TMS protecting groups on polymer 5 were transformed to better leaving groups. 

(H) Functional Group Transformations on Polymer 5 

Few efficient functional group interconversions on polymers are documented;36-

38 however, two methods were found to completely convert the TMS ethers of polymer 5 

to more facile leaving groups such as acetates. The first method involved treating the 

polymer with acetyl chloride using ZnCh as a catalyst (Figure 26). 

+Qi 
TMSO OTMS 

5 

2. Ac20, py, DMAP 

100% acetylation; 
73% over all yield 

+Q·t 
AcO OAc 

6 

Figure 26. Acetylation of polymer 5 using acetyl chloride and ZnCI2. 

The combination of an acid chloride and ZnCl2 has been used to provide almost 

quantitative conversion of TMS ethers to ester groups in one step in the case of small 

molecules.39 When applied to polymer 5, these reagents completely transform the TMS 

ethers to approximately 96% acetate groups and 4% unreacted TMS ether groups that are 

hydrolyzed to hydroxy groups upon workup. The fully acetylated polymer (6), is 

obtained by treating the crude material with acetic anhydride in the presence of pyridine 

and DMAP. Complete acetylation is indicated by the disappearance of the proton signal 

at 3.9 ppm due to residual hydroxy groups in the lH NMR spectrum of the polymer. The 

overall yield of this two-step procedure is 70% with 100% acetylation. 

The second procedure for transforming the TMS ether groups of 5 to acetate 
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groups was inspired by the retreatment process employed in the first procedure. Instead 

of attempting to convert the TMS ethers to acetates in one step, 5 is fust deprotected by 

tetra(n-butyl)ammonium fluoride (TBAF) and methanol to give the corresponding 

hydroxy polymer 7.36,37 Polymer 7 is then completely acetylated to give polymer 6 by 

treatment with a mixture of pyridine, acetic anhydride, and DMAP at 80 °C (Figure 27). 

This second procedure affords polymer 6 with 93% recovered yield over two steps. 

+Q·t 1. TBAF, THF 

2. MeOH +Q·t +Ql DMAP, 80 oc 
TMSO OTMS HO OH AcO OAc 

5 7 6 

100% acetylation; 93% overall yield 

Figure 27. Conversion of polymer 5 to polymer 6 by deprotection followed by acylation. 

Both procedures result in 100% conversion of the TMS ethers to acetate groups 

without affecting any of the stereocenters on the polymer. The acetoxy polymer 6 is, in 

fact, a completely 1,4-linked, stereoregular analogue to the radically polymerized acetoxy 

functionalized PPP precursor 3a, originally used in the ICI process (Figure 1 ). 

Unfortunately, the first procedure (Figure 26) appears to be limited to acetyl substitution. 

The use of other acyl chlorides such as benzoyl chloride did not produce the 

corresponding benzoate polymer from 5. The second procedure (Figure 27) appears to be 

a much more general process for the synthesis of ester derivatives of 4. Treatment of 

polymer 7 with pyridine, DMAP, and the appropriate acid anhydride afforded the 

corresponding 1,4-linked benzoate, propionate, and hexanoate polymers (Figure 28).40 
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+Q)~ 
Ph(O)CO OC(O)Ph 

benzoate propionate 

hexanoate 

Figure 28. Other ester-functionalized stereoregular PPP precursors accessible via the acylation 
of polymer 7. 

The synthesis of the latter two derivatives has not yet been optimized. It was not possible 

to synthesize the stereoregular analogue to the radically polymerized methoxycarbonyl 

polymer 3b using methyl chloroformate or dimethyl pyrocarbonate by either of the 

aforementioned procedures. 

(I) Characterization of Polymer 6: Confirmation of the 1,4-Stereoregular 

Structure 

Polymer 6 was characterized by a combination of NMR spectroscopy, Viscotek 

GPC analysis, low angle laser light scattering (LALLS) analysis, PXRD analysis, and 

STM imaging. 

Unlike in the case of polymer 5, a highly 1,4-linked, stereoregular structure for 

polymer 6 (Figures 26 and 27) could be confirmed by NMR analysis. Superficially, a 

stereoregular structure for polymer 6 is suggested by comparison of its I H and 13C NMR 

spectra with those of its radically polymerized counterpart 3a, which has 10% 1,2-units 

and random backbone stereochemistry. As can be seen from comparing Figures 29a,b 
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and 30a,b, 6 has 1 H and 13C resonances with chemical shifts identical to those of its 

radically polymerized analogue 3a; however, the individual resonances are much 

narrower and more symmetric as would be expected for a stereoregular polymer. 

Unfortunately, lH NMR analysis of polymer 6 cannot directly detect the presence 

of any 1,2-units in the polymer. The proton signal from the acetate protons masks the 

1.8- 2.1 ppm region where protons from 1,2-linkages normally appear (see Figure 29a).5 

However, the lH NMR spectrum of the stereoregular benzoate polymer, which was 

similarly derived from polymer 5, does not exhibit any proton signals in this region 

(Figure 31 ). This observation further confirms that polymer 5 and its derivatives such as 

6 are completely 1,4-linked. 

With respect to the stereoregularity of the polymer, both the sharpness and the 

number of unique signals in the 1 H and l3C NMR spectra of 6 suggest two things about 

the polymer: (1) It has a highly tactic (i.e., stereoregular) structure with a plane of 

symmetry within each repeat unit. (2) It is conformationally nonrigid. As can be seen 

from Figures 29a and 30a, polymer 6 exhibits four sharp 1 H NMR signals and five sharp 

13C NMR signals, thus indicating the presence of only four unique protons and five 

unique carbons in the polymer. This fact implies that there must be a plane of symmetry 

bisecting each repeat unit of the polymer in order make both halves of the cyclohexene 

rings equivalent by NMR analysis throughout the polymer. There are only two possible 

regular tacticities for polymer 6 with the 1 ,4-SSRR type repeat unit (as inferred from the 

parent polymer 5) that maintains a symmetry plane through each repeat unit: ( 1) an 

isotactic structure, and (2) a syndiotactic structure (Figure 32).24 If the polymer is 

conformationally flexible and the repeat units undergo rapid half-chair- half-chair 

conformational interconversion (i.e., "ring-flipping") as expected for cyclohexene 

molecules in solution,25 each repeat unit of these two structures would possess a plane of 

symmetry on the NMR timescale (Figure 32).41 This conformational flexibility and 

repeat unit symmetry would make the protons and carbons on each half of each 
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Figure 29. 400 MHz 1 H NMR spectra of (a) stereoregular acetoxy polymer 6 and (b) its radically 
polymerized analog 3a in CDCI3. 
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Figure 30. 100 MHz 13c NMR spectra of (a) stereoregular acetoxy polymer 6 and (b) its radically 
polymerized analog 3a in CDCIJ. 
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Figure 31. 400 MHz 1 H NMR spectrum of the benzoate derivative of polymer 5 in C~CI2. 
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1 ,4-SSRR Repeat Unit for 6 

lsotactic structure 

By symmetry: (a) All junctions are identical: RS 
(b) Four chemically nonequivalent protons. 
(c) Five chemically nonequivalent carbons. 

n/2 

Ac = C(O)CH3 1 a= plane of symmetry 

Syndiotactic structure 

By symmetry: (a) RR and SS junctions are enantiomers and therefore 
equivalent by NMR spectroscopy. 
(b) Four chemically nonequivalent protons. 
(c) Five chemically nonequivalent carbons. 

Figure 32. The symmetry of the isotactic and syndiotactic structures for a conformationally 
flexible polymer 6 with the 1 ,4-SSRR repeat unit. 
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cyclohexene ring equivalent throughout the polymer. Thus, the I H and 13c NMR spectra 

of these two structures would exhibit exactly four chemically nonequivalent protons and 

five chemically nonequivalent carbons, as is observed experimentally for the polymer. 

All other possible repeat sequences containing the 1 ,4-SSRR repeat unit for 6 

would not exhibit the four unique protons and five unique carbons observed for the 

polymer by NMR analysis. Although many other possible regular sequences with the 

same repeat unit would possess symmetry planes and C2 axes, they all would not have the 

plane of symmetry within each repeat unit required to make the two halves of the 

cyclohexene rings equivalent throughout the entire molecule (Figure 33). Consequently, 

they would all exhibit more chemically nonequivalent protons and carbons than the four 

and five observed. Although an isotactic or a syndiotactic structure consisting of 1,4-

RSRS repeat units (Figure 34) would give the same number of observed NMR signals, it 

is highly unlikely that polymer 6 consists of these 1,4-RSRS repeat units, considering the 

n-facial selectivity afforded by the TMS ethers of 4 during the synthesis of the parent 

polymer 5 (see Section D). 

~ 
n 

AcO OAc 

Figure 34. Two representations of a~ ,4-RSRS repeat unit for 6. 

Polymer 6 definitely cannot be an atactic polymer (random backbone stereo

chemistry) with the 1,4-SSRR repeat unit, or a polymer containing a substantial amount of 

1,2-units or trans (1,4-SSRS or 1,4-RSRR) repeat units if it exhibits the observed NMR 

spectra. These structures would have many more chemically nonequivalent protons and 

carbons than that observed for the 1 ,4-SSRR isotactic and syndiotactic cases because the 

symmetry of these systems would be considerably lower (Figure 35). 
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Figure 33. Examples of repeating sequences with the 1 ,4-SSRR repeat unit for 6 that would not 
have the symmetry observed in the 1 H and 13c NM R spectra of the polymer. 
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75 

1 ,4-RSRR repeat unit 1 ,4-SSRS repeat unit 

No symmetry in repeat unit, 
1 0 unique carbons each 

Figure 35. Repeat units that do not possess the symmetry to generate the 1 H and 13c NMR 
spectra observed for polymer 6. 

Thus, the lH and 13C NMR spectra for these latter structures would be much broader and 

more asymmetric. This is indeed the case for radically polymerized 3a, which is atactic 

and has a combination of all three structures as a result of the nonstereospecific nature of 

the radical polymerization process (see Figures 29b and 30b). Consequently, polymer 6 

must have a highly isotactic or syndiotactic structure with the 1,4-SSRR repeat unit, as 

shown in Figure 32. 

In order to conftrm that the sharpness and symmetry of the signals in the 1 H and 

13C NMR spectra of 6 (Figures 29a and 30a) are the result of a stereoregular structure and 

not the result of very low molecular weight material, the absolute molecular weight of the 

polymer 6 was determined by Viscotek GPC and LALLS analysis.42 The results of these 

analyses are presented in Table IV and compared to similar data obtained from radically 

polymerized 3a. 

Table IV. Comparison of absolute molecular weight data for polymers 6 and 3a. 

Polymer 
Viscotek G PC analysis LALLS analysis 

Mo Mw POI Mw 

4 4 4 
6 2.68 X 10 4 4.17 X 104 1.56 4.94 X 10 S 
3a 3.57 X 10 9.32 X 10 2.61 1.10x10 
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The molecular weight of 6 is approximately one-half the molecular weight of 3a. These 

molecular weight values for 6 are in good agreement with the number average degree of 

polymerization obtained for polymer 5 from which it was derived. Consequently, the 

differences observed between the 1 H and 13C NMR spectra of 6 and 3a cannot be 

attributed to low molecular weight material but instead must be attributed to differences 

in stereochemistry. 

The conformationally flexible secondary structure inferred for 6 from the 

symmetry of its NMR spectra was also supported by both PXRD analysis and STM 

imaging of the polymer. Whereas the rodlike structure of 5 was supported by the 

presence of nematic order in its PXRD profile (Figure 18), PXRD analysis of 6 revealed 

an absence of reflections, thus suggesting that the polymer has an amorphous, flexible 

backbone instead. In fact, the PXRD profile of 6 is similar to that of its radically 

polymerized analogue 3a, which is reported to be completely amorphous and have a 

coiled chain structure.2 In addition, STM imaging of 6 on HOPG43 did not show any of 

the rodlike structures seen during the STM imaging of 5. Instead, only amorphous, 

globular structures were observed which appear to have been swept aside by the scanning 

tip (Figures 36a and 36b). Unfortunately, computer molecular modeling44 of the 1,4-

SSRR isotactic and syndiotactic structures inferred from NMR analysis of 6 provided 

little information on the secondary structure of the polymer. At a low level of theory 

(MM2), elongated helical chains were generated by modeling. Without performing 

detailed dynamic molecular mechanics analysis, these simple structures cannot be used to 

deduce any information on the conformational flexibility of the polymer. 

The fact that NMR, PXRD, and STM analysis all support a conformationally 

flexible, highly 1 ,4-stereoregular structure for polymer 6 also supports all of our original 

assumptions made for the structure and conformation of the parent TMS ether polymer 5. 

It was originally assumed that the parent polymer 5 is completely stereoregular with 

either a 1,4-SSRR isotactic or syndiotactic structure (Figure 17) and that its unusual IH 
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Figure 36a. STM image of amorphous, globular structures observed during STM imaging of 
polymer 6 on highly oriented pyrolytic graphite (image dimensions: 210 x 210 nm). 
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Figure 36b. Close-up view of the globular structure observed during STM imaging of polymer 6 
on highly oriented pyrolytic graphite (image dimensions: 52 x 52 nm). 



Co\or range 
5.9 nrn 

52 nrn 



81 

NMR spectrum and physical properties are due to a rodlike secondary structure in which 

all the 1 ,4-SSRR repeat units are conformationally locked (Figures 20 and 21 ). By simply 

changing the bulky TMS ethers on the polymer to acetate groups, the resulting polymer 

exhibits spectroscopic properties expected for a conformationally flexible, stereoregular 

polymer, despite the fact that the backbone stereochemistry remains the same. This 

observation clearly indicates that the unusual I H N MR spectrum and physical properties 

of 5 are not the result of an unusual backbone stereochemistry but rather the result of 

conformational effects due to the TMS ether sidechains. The increase in conformational 

flexibility upon transformation of 5 to 6 is probably the result of a reduction in steric 

interactions on going from bulky TMS ethers to less sterically demanding acetate groups. 

In summary, NMR, PXRD, and STM analysis all suggest that 6 is a 

conformationally flexible, highly 1 ,4-linked, stereoregular polymer with one of the two 

tacticities shown in Figure 32. Unfortunately, there is no simple spectroscopic method 

for directly determining which of the two tacticities the polymer backbone actually has 

because of the similar symmetry of the two structures. Fortunately, in the production of 

high quality PPP, the actual tacticity of the polymer is not important as the 1,4-

regioregularity of the polymer and stereochemical relationships within each precursor 

repeat unit. The linear structure of the PPP depends entirely on the 1 ,4-regioregularity of 

the precursor polymer, whereas the ease of the acid elimination should depend on just the 

stereochemical (cis) relationship between the pendant ester group and the adjacent 

bridgehead proton within each repeat unit (the 1 ,4-SSRR repeat unit; see Figure 2). The 

stereocenters on the precursor polymer backbone are lost upon pyrolytic acid elimination 

to PPP regardless. All spectroscopic analyses performed on 5 and 6 suggest that the 

polymers are highly 1 ,4-linked and have repeat units with the optimum geometry for 

conversion to PPP. Both the 1 ,4-SSRR isotactic and syndiotactic structures for polymer 6 

(Figure 32) meet these two criteria for the formation of high quality PPP. 
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(J) Preliminary Pyrolysis Studies on Polymer 6 

In order to demonstrate that the stereoregular acetoxy polymer 6 could be easily 

converted to PPP, preliminary pyrolysis experiments were conducted on thin films of the 

material. Thin films of 6 were coated onto NaCI crystals and aromatized by heating 

under argon at 310-340 °C. The IR spectra of the resulting brown films (Figure 37) did 

not show any band at 1745 cm· l due to residual acetate groups. Instead, they were 

dominated by a strong band at 807 cm· l, which is characteristic of the C- H out-of-plane 

bending of the 1 ,4-linked repeat units of ppp_34,35 The relative intensity of this band was 

much stronger than the intensities of the two bands at 760 and 696 cm·l, which are 

characteristic of the C-11 bending modes of monosubstituted aromatic endgroups. This 

observation is a qualitative indication that the PPP films made from 6 consist of long 

polymer chains. 

In contrast, IR analysis of thin films made from the pyrolysis of 3a gave 

inconsistent results. Occasionally, the IR spectra of the pyrolyzed films revealed repeat 

unit and endgroup bands with relative intensities indicative of 1 ,4-phenylene chains 

(Figure 38a). At other times, the IR spectra of the pyrolyzed thin films exhibited relative 

intensities of repeat unit and endgroup bands characteristic of PPP oligomers plus an 

additional band at 789 cm· l attributable to the C- H bending of 1 ,2-phenylene units35 

(Figure 38b). 
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Figure 37. IR spectrum of a PPP film obtained by the pyrolysis of a thin film of 6 on NaCI. 
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Figure 38. Two IR spectra of polyphenylene thin films made by pyrolysis of thin films of 3a on 
NaCI, showing (a) PPP oligomer and (b) polyphenylene oligomers with a substantial fraction of 
1 ,2-units. 
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Figure 39. Stereoregular precursors to PPP via transition-metal-catalyzed polymerization: 
Summary of the process. 

1 ,4-Linked stereoregular precursor polymers to poly(p-phenylene) (PPP) were 

synthesized by the transition-metal -catalyzed polymerization of heteroatom-

functionalized 1 ,3-cyclohexadienes (Figure 39). cis-5,6-Bis(trimethylsiloxy)-1 ,3-

cyclohexadiene (4), a derivative of a microbial oxidation product of benzene, was 

polymerized exclusively in a syn-1 ,4-fashion by bisf(TJ3-allyl)trifluoroacetatonickel(TI)] 

f(ANiTFA h l with yields up to 96%. This polymerization system not only affords a 

highly 1 ,4-linked, stereoregular polymer, but it also has the potential for molecular 

weight control. The resulting stereoregular polymer 5 is a soluble, processable, partially 

crystalline material which unfortunately does not yield PPP upon direct pyrolysis. 

Polymer 5 was subsequently transformed to the corresponding stereoregular acetoxy 

polymer 6 (100% acetylation; up to 93% overall yields). NMR analysis of polymer 6 
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confirms that the polymer has either a highly isotactic or syndiotactic structure with the 

symmetric repeat unit depicted. Preliminary pyrolysis studies on thin films of 6 cast on 

on N aCl crystals yielded PPP as indicated by IR analysis. 
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Experimental Section 

General Considerations 

All manipulations of air- and/or water-sensitive compounds were performed using 

standard high vacuum or Schlenk techniques. Argon was purified by passage through 

columns of BASF R3-11 catalyst (Chemlog) and 4A molecular sieves (Linde). Solids 

were transferred and stored in a nitrogen-filled Vacuum Atmospheres drybox. All 

distillations were performed under argon flush. All solvents and liquid reagents were 

degassed by repeated freeze- pump-thaw cycles and stored under argon in flasks fitted 

with PTFE valves. Solid reagents and monomers were degassed in vacuo and stored in 

the drybox prior to use. 

Materials 

(a) Solvents 

All solvents were purchased from Aldrich, EM Science, or Fisher Scientific. n

Pentane, toluene, benzene, diethyl ether, THF, and DME were vacuum transferred from 

sodium/benzophenone. n-Pentane and n-dodecane were made olefin-free prior to vacuum 

transferring by successively stirring over concentrated H2S04 and washing with 

deionized water until the acid layer became colorless. n-Dodecane was vacuum-distilled 

prior to use. Methylene chloride was vacuum transferred from calcium hydride. 

Chlorobenzene, and a-dichlorobenzene were distilled from calcium hydride. Ethyl 

acetate was purified by distillation. Anhydrous methanol was obtained by distilling over 

Mg powder. Methanol and hexanes for polymer precipitations, and HPLC grade hexanes 

and THF for STM sample preparations were all used without further purification. 

(b) Reagents 

1,3-Cyclohexadiene, chlorotrimethylsilane, acetyl chloride, acetic anhydride, 
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tetrabutylammonium fluoride (TBAF) monohydrate, 2,6-di-tert-butyl-4-methylphenol 

(BHT), 4-dimethylaminopyridine (DMAP), and ZnCl2 were all purchased from Aldrich. 

1,3-Cyclohexadiene was distilled from sodium borohydride or calcium hydride prior to 

use. Chlorotrimethylsilane was purified by distillation from magnesium filings. Acetyl 

chloride was simply distilled prior to use whereas acetic anhydride was distilled from 

anhydrous sodium sulfate. TBAF monohydrate (98%), BHT (99+%), DMAP (99%), and 

ZnCl2 (99.999%) were all used without further purification. Benzoic anhydride (97%) 

was obtained from Sigma and just degassed in vacuo prior to use. Pyridine was 

purchased from Baker Chemicals and purified by distillation from calcium hydride. Allyl 

trifluoroacetate was prepared according to a literature synthesis by refluxing distilled allyl 

alcohol and trifluoroacetic acid (Aldrich) together in a reverse Dean- Stark apparatus.l5 

Bis(l ,5-cyclooctadienyl)nickel(O) [Ni(COD)2] was obtained from the Strem Chemical 

Company and recrystallized from toluene prior to use. cis-5,6-Dihydroxy-1,3-

cyclohexadiene (1), its acetyl (2a) and methoxycarbonyl (2 b) derivatives, and the 

corresponding radically polymerized polymers (3a, 3b) were all donated by ICI 

Chemicals and Polymers Ltd., Runcorn, U.K. Compound 1 was obtained as a 50 wt% 

solution in pyridine. It was purified by removing the pyridine in vacuo, precipitating the 

crude material from pentane, and recrystallizing from 30 °C ethyl acetate using charcoal 

as a decolorizer. The acetyl and methoxycarbonyl derivatives 2a and 2b required no 

further purification. All three monomers were stored under anhydrous, sub-zero 

conditions and degassed in vacuo prior to use. The radically polymerized PPP precursors 

3a and 3b also required no further purification prior to use. 

(c) Filtration Materials 

Basic alumina (Fluka) was dried under dynamic vacuum at 130 °C for 24 h prior 

to use. Millex-SR Luer-Lok syringe filter units for non-aqueous solutions were obtained 

from the Waters- Millipore company. Glass microfibre paper (Whatman) for cannula-



91 

filtrations was oven-dried prior to use. 

Instrumentation 

NMR spectra were recorded using a JEOL GX-400 (399.65 MHz IH, 100.40 

MHz 13C) spectrometer. Infrared spectra were recorded using a Perkin-Elmer 1600 

series Ff-IR spectrometer. Gas chromatography was performed using a Hewlett- Packard 

HP 5890 Series II Gas Chromatograph equipped with 30 m SE-30 (OV-1) capillary 

column and an HP 3396 Series II Integrator. General gel permeation chromatograms 

were obtained on a home-built system consisting of two American Polymer Standards 

columns and a Waters Ultrastyragel column, an Altex Model 110A pump, and a Knauer 

differential refractometer using HPLC grade methylene chloride (Burdick and Jackson) as 

the eluant at a flow rate of 1.0 mL/min at room temperature. Viscotek gel permeation 

chromatograms were obtained on a system consisting of a set of three Polymer Labs 

mixed B columns (300 mm, 5 ~m) and a Viscotek differential refractometer/viscometer 

detector using THF as the eluant at a flow rate of 1 mL/min at 35 °C. Low angle laser 

light scattering (LALLS) analysis was performed on a Chromatrix KMX-6 light 

scattering apparatus using THF as the solvent. Powder X-ray diffraction work was 

performed on a Scintag/USA PAD V powder X-ray diffractometer using CuKa radiation. 

Differential scanning calorimetry and thermal gravimetric analysis were performed on a 

Perkin-Elmer PC Series DSC7 and TGA7, respectively. Scanning tunneling microscopy 

was performed using a Digital Instruments Nanoscope II. Molecular modeling 

calculations were performed on a Silicon Graphics Iris 4D/220GTX computer employing 

Biograf Version 2.20 and BatchMin Version 3.1d programs. Space-filling (CPK) images 

of the modeled structures were displayed using MacroModel. Elemental analysis was 

performed at Oneida Research Services Inc., Whitesboro, NY. 
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Preparation of Bis[(113-allyl)trifluoroacetatonickel(li)] [(ANiTFAh1 

In the dry box, recrystallized bis( 1 ,5-cyclooctadienyl)nickel(O) [Ni(COD)2] (5.00 

g, 18.2 mmol) was ground to a fine powder using a mortar and pestle and loaded into a 

250-mL Schlenk flask containing a stirbar. The canary-yellow powder was suspended in 

100 mL of rapidly stirred diethyl ether and then added to a 250-mL Schlenk flask 

containing allyl trifluoroacetate (5.60 g, 35.4 mmol) at 0 °C as 10-mL aliquots via a 

wide-bore cannula over a period of 10 min. The mixture was stirred in the absence of 

light at 0 °C for 90 min, or until all of the yellow Ni(COD)2 was consumed. The 

resulting clear dark-red solution was then quickly filtered into another Schlenk flask 

using a cannula with a plug of glass microfibre at one end (cannula-filtration). Three

quarters of the solvent was pumped off with the mixture maintained below room 

temperature in order to induce precipitation of the (ANiTFA)2. An equal volume of 

olefin-free pentane at - 78 °C was then added to precipitate out the remainder of the 

catalyst as a red-brown powder. The product was washed with 2 x 10-mL aliquots of 

olefin-free pentane at - 78 °C and dried in vacuo overnight. Yield: 3.43 g (89%) of 

(ANiTFA)2. lH NMR (400 MHz, Q>D6): o 4.80-5.30 (lH), 2.45 (2H), 1.60-1.90 (2H). 

(It is important to perform this synthesis as quickly as possible in one session to minimize 

the amount of time the product remains in solution.) 

A Typical Polymerization of 1,3-Cyclohexadiene using (ANiTF Ah 

In the d.rybox, (ANiTFA)2 (0.010 g, 0.024 mmol) was weighed out into a vial and 

dissolved in 2.3 mL of solvent (e.g., benzene, chlorobenzene, or o-dichlorobenzene) to 

give a clear orange solution. (If the catalyst solution was slightly turbid, it was 

subsequently filtered through a 0.2 ~m syringe filter unit (Millex-SR) using a gas-tight 

syringe.) This catalyst solution was then transferred to a 50-mL capacity, thick-walled 

glass Schlenk tube containing a stirbar and fitted with an 8 mm PTFE valve. 1,3-

Cyclohexadiene (1.1 mL, 0.89 g, 0.011 mol) that had been filtered through a short plug of 
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basic alumina was then syringed into the orange catalyst solution. After approximately 5 

min, the initially clear orange reaction mixture became turbid due to polymer formation at 

room temperature. The reaction vessel was then sealed, brought out of the drybox, and 

placed under an atmosphere of argon after repeated freeze-pumJrthaw cycles. The 

turbid orange reaction mixture was placed in a 50-51 °C oil bath and rapidly stirred for 

24 h. During that period, the polymerization mixture became progressively more difficult 

to stir due to the rapid buildup of insoluble polymer until finally at the end of the 

reaction, an immobile orange solid mass was obtained. The crude polymer was purified 

by first suspending it in methanol (25 mL) containing a grain of BHT and then isolated 

by suction-filtration. The resulting light orange powder was subsequently re-suspended 

in benzene (50 mL) and re-isolated from methanol as before. After drying overnight in 

vacuo, the polymer was obtained as an off-white powder. Yield: 0.79 g (88%) of 

polycyclohexadiene. lH NMR (400 MHz, C6D6): 8 5.6-5.8 (2H), 1.9-2.1 (2H), 1.4-1.7 

(4H). PXRD: 5.292, 4.517, 3.907 A. Anal. Calcd for (C6Hs)n: C, 90.00; H, 10.00. 

Found: C, 85.34; H, 9.49. 

Preparation of cis-5,6-Bis(trimethylsiloxy)-1,4-cyclohexadiene (4) 

cis-5,6-Dihydroxy-1 ,3-cyclohexadiene (1) (20.00 g, 0.178 mol) and a catalytic 

amount of DMAP were dissolved in a mixture of methylene chloride (650 mL) and 

pyridine (43.2 mL, 0.536 mol) in a 2-L round bottom flask containing a stirbar. While 

rapidly stirring under argon with the temperature moderated using a cool water bath, 

chlorotrimethylsilane (50.0 mL, 0.393 moles) was added dropwise to the pale yellow 

solution using a pressure-equalizing addition funnel. After stirring for 1.5 h, olefin-free 

pentane (200 mL) was cannulated into the cloudy white suspension to completely 

precipitate the pyridinium hydrochloride salts, which were subsequently removed by 

filtration. The solvent was removed from the filtrate in vacuo to yield a pale yellow oil. 

High vacuum distillation of the oil using a short path distillation apparatus and an 80 °C 
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oil bath yielded as a viscous, colorless, clear liquid (bp: 47 °C at ca. 10 J..Ul1 Hg pressure). 

The final product was stored at sub-zero temperatures in the d.rybox freezer. Yield: 41.6 

g (91%) of monomer 4. lH NMR (400 MHz, C6D6): 8 5.73-5.88 (4H), 4.12 (2H), 0.14 

(18H). 

A Typical Polymerization of cis-5,6-Bis(trimethylsiloxy)-1,4-cyclohexadiene (4) 

using (ANiTF Ah 

In the d.rybox, (ANiTFAh (0.140 g, 0.329 mmol) was dissolved in chlorobenzene 

(10.2 mL) to give a dark orange-red solution. This solution was flltered via a gas-tight 

syringe through a 0.5 J.lm porosity, Millex-SR, non-aqueous filter unit into a 50-mL 

capacity, thick-walled glass Schlenk tube containing a stirbar and topped with an 8 mm 

PTFE valve. To this catalyst solution was added monomer 4 (6.75 g, 26.3 mmol) that 

had been passed through equal volume of dry, basic alumina to remove trace impurities. 

(This monomer filtration step is optional with freshly distilled monomer that has been 

checked by GC analysis for purity.) The clear orange reaction mixture (monomer-to

catalyst ratio = 80:1; monomer concentration = 1.5 M) was freeze-pump-thaw degassed 

and sealed under an argon atmosphere. The reaction mixture was placed in a 50-51 °C 

oil bath and rapidly stirred for 24 hours. The initial clear orange solution became deep 

red-brown after a period of 5 min. After approximately 30 min, the reaction mixture 

became opaque and coffee-colored. After 48 h, a dark brown gel was usually obtained. 

The polymer gel was dissolved in an equal volume of hexanes or THF and precipitated 

into rapidly stirred methanol (800 mL) containing BHT. The resulting off-white powder 

was isolated by suction-filtration, washed with fresh methanol, and dried in vacuo 

overnight. Yield: 6.25 g (93%) of polymer 5. lH NMR (400 MHz, CDCl3): 8 5.1- 6.2 

(2H), 3.3-4.1 (2H), 2.7- 3.2 (lH), 2.1- 2.6 (lH), -0.4-0.5 (18H). IR (neat): 2957, 2898, 

1251, 1111, 1087, 1046, 837, 748 cm-1. PXRD: 9.725 A and an amorphous halo 

centered at 5.5 A. Anal. Calcd for (C12H2402Si2)n: C, 56.19; H, 9.43; Si, 21.90. Found: 
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C, 55.91; H, 9.34; Si, 22.21. 

A Typical Experiment for Determining theM 0 vs. % Conversion Relationship of the 

(ANiTF Ah/Monomer 4 Polymerization System 

For a typical molecular weight vs. % conversion experiment, a preliminary 

calibration for quantitative GC analysis was initially performed by determining the 

relative response factor for the monomer (4) and the internal standard (n-C12H26). A 

standard solution was made up by diluting a mixture of olefin-free n-C12H26 (0.0188 g, 

0.110 mmol) and monomer 4 (0.0423 g, 0.165 mmol) with methanol to 1.00 mL in a 

volumetric flask. A range of diluted standards were made up from this stock solution by 

transferring 1- 8 ~L of the stock solution to several 1.00-mL volumetric flasks and 

diluting with methanol quantitatively to the marks. Each diluted standard was then 

analyzed by GC on a HP 5890 II using a 1.0-J..LL injection volume, an injector temperature 

of 160 °C, a detector temperature of 250 °C, an initial temperature of 80 °C, an initial 

time of 2 min, a ramp rate of 10 °C/min, a final temperature of 200 °C, and a final time of 

4 min. The relative response factor (C) between the monomer and the internal standard 

(std) was determined by averaging the ratio of the integral of the monomer over that of 

the standard over several concentrations and several injections and then applying it to Eq. 

2. 

C = ( (monomer] ) ( 

[std] 

area monomer ) 

area std 
(2) 

Using the GC conditions described, a typical relative response factor between the 

monomer and the internal standard was found to be 1.06 ± 5%. 

A polymerization reaction was then set up by the procedure described previously 

on a scale large enough to permit repeated sampling. For example, for a polymerization 
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system in toluene with a [4] of 2.0 M, and a monomer-to-catalyst ratio of 75:1, 

(ANiTFA)2 (0.110 g, 0.259 mmol), monomer 4 (5.00 g, 19.4 mmol, 5.43 mL), toluene 

(3.44 mL), and n-C12H26 (0.664 g, 3.90 mmol) were combined in a 50-mL Schlenk tube. 

After placing the reaction mixture in a 50-51 °C oil bath, aliquots of the reaction mixture 

containing varying proportions of polymer and unreacted monomer were withdrawn at 

various times. Typically, 0.6--0.7 mL samples were withdrawn under argon flush using a 

1.00 mL gas-tight syringe and a long, wide-bore needle. Each aliquot was then injected 

into 10 mL of methanol with 0.1 wt % BHT to precipitate the polymer. After mixing the 

resulting suspension well and then allowing the polymer to settle, 5- 10 J.1L of the green 

supernatant was transferred to a 1.00 mL volumetric flask and diluted with more 

methanol. The amount of unreacted monomer in each aliquot was then determined by 

quantitative GC analysis on each diluted supernatant solution using the GC conditions 

described above. The amount of unreacted monomer can be calculated using Eq. 3 by 

comparing the area of its GC trace with that of the internal standard. 

Moles of monomer 
remaining ( 

area monomer ) 
= c (initial moles of std) 

area std 
(3) 

The precipitated polymer 5 from each sample aliquot was individually purified 

and isolated by first centrifuging the crude material, then washing it with fresh methanol, 

then redissolving it in THF (1 mL), and finally precipitating it into methanol and 

centrifuging it down. The Mn of each polymer sample was determined by Viscotek GPC 

analysis at ICI, Runcorn, U.K. By plotting the% conversion of 4 vs. time and the Mn of 

polymer 5 against the % conversion of monomer at that point, the relationships shown in 

Figure 23 and 24 were obtained. 

Preparation of the Stereoregular Acetoxy Polymer 6: Method l 
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A 500-mL capacity Schlenk flask was charged with polymer 5 (2.41 g), 

anhydrous zinc chloride (2.69 g, 19.7 mmol), and a stirbar in the drybox. On the Schlenk 

line, diethyl ether (250 mL) was cannulated into the reaction vessel under argon flush. 

The mixture was rapidly stirred at ambient temperature for 1 h to completely dissolve the 

zinc chloride. Then, acetyl chloride (5.62 mL, 79.0 mmol) was syringed in as a neat 

liquid to the colorless clear solution. The mixture was stirred at room temperature for 18 

h during which time a pale yellow gelatinous solid formed. Subsequently, the reaction 

mixture was decanted into methanol (1600 mL) to precipitate the polymer as a white 

powder. The polymer was isolated by suction-filtration, washed with fresh methanol, and 

dried in vacuo overnight. Yield: 1.43 g (78%) of crude acetoxy polymer 6. 

This crude polymer 6 typically has a small percentage (4%) of hydroxy groups as 

indicated by a signal at 3.9 ppm in its 1H NMR spectrum. These residual hydroxy groups 

were acetylated by treating the crude polymer with pyridine and acetic anhydride: A 50-

mL capacity, thick-walled glass Schlenk tube fitted with a 8 mm PTFE valve was charged 

with a stirbar, the crude acetoxy polymer 6 (1.13 g), and a grain of DMAP. The solids 

were degassed in vacuo, placed under an argon atmosphere, and dissolved in methylene 

chloride (10 mL). To this clear pale yellow solution was added pyridine (1.72 mL, 21.2 

mmol) and acetic anhydride (1.72 mL, 18.2 mmol) as neat liquids by syringe under argon 

flush. The flask was sealed, and the reaction mixture was stirred at 40 °C for 13 h. After 

the mixture was cooled to ambient temperature, the volatiles were removed in vacuo. 

The remaining light orange, glassy solid was dissolved in methylene chloride (50 mL) 

and washed sequentially with saturated aqueous NaHC03 (2 x 50 mL), saturated aqueous 

NaCl (2 x 50 mL), and deionized water (50 mL). The organic phase was dried over 

anhydrous Na2S04, concentrated to approximately 10 mL, and added dropwise to stirred 

hexanes (100 mL) containing BHT to precipitate the polymer. The white precipitate was 

isolated by suction-filtration, washed with more hexanes, and dried in vacuo overnight. 

Yield: 1.02 g (90%, based on the crude material) of fully acetylated polymer 6. The 
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resulting polymer 6 has the same lH NMR spectrum as the material made via acetylation 

of polymer 7: no hydroxy proton signal at 3.9 ppm after retreatment of the impure 

polymer. 

Preparation of the Stereoregular Acetoxy Polymer 6: Method 2 

(a) Preparation of the Stereoregular Hydroxy Polymer 7 from Polymer 5 

A 1-L Schlenk flask was charged with a stirbar and TBAF monohydrate (34.7 g, 

0 .133 mol). The TBAF monohydrate was dried in vacuo at room temperature for 2.5 h, 

placed under an argon atmosphere, and then dissolved in THF (250 mL). A filtered 

solution of dry, degassed polymer 5 (5.00 gin 80 mL dry TIIF) was added dropwise over 

30 min to the rapidly stirred solution of TBAF monohydrate. A thick yellow gum 

immediately precipitated from the reaction mixture. After rapidly stirring for 6.5 h at 

room temperature, anhydrous methanol (100 mL) was then syringed into the reaction 

mixture. The resulting cloudy suspension was stirred for a further 36 h under argon 

before the off-white solid was isolated by suction-filtration using a medium porosity glass 

frit. Mter washing with methanol (2 x 10 mL) and hexanes (2 x 10 mL), the precipitate 

was dried in vacuo for 48 h to afford quantitative yields of polymer 7 as an amorphous 

off-white polymer which is insoluble in common solvents. Consequently, it has not been 

well characterized spectroscopically. Polymer 7 is extremely hygroscopic and should be 

stored in dessicator. PXRD: amorphous (no sharp reflections). Anal. Calcd for 

(C6Hs02)n: C, 64.27; H, 7.19. Found: C, 62.20; H, 7.84; N, 0.55; Si, below detection 

limit (100 ppm). 

(b) Acetylation of Polymer 7 

A 50-mL capacity, thick-walled glass Schlenk tube with a 8 mm PTFE valve was 

charged with a stirbar, finely powdered polymer 7 (0.553 g), and a grain of DMAP. The 
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solids were degassed in vacuo, placed under an argon atmosphere, and suspended in 

pyridine (6.0 mL, 74 mmol). Acetic anhydride (2.6 mL, 28 mmol) was added by syringe, 

and the slurry was stirred at 80 °C for 1.5 h, or until the reaction mixture cleared. The 

resulting clear yellow-orange mixture was then cooled to ambient temperature, and the 

volatiles were removed in vacuo. The remaining yellow glassy solid was dissolved in 

methylene chloride (50 mL) and washed sequentially with saturated aqueous NaHC03 

(25 mL) and saturated NaCl (25 mL) solutions. The organic phase was dried over 

anhydrous Na2S04, concentrated to approximately 5 mL, and then added dropwise to 

stirred hexanes (150 mL) containing a grain of BHT to precipitate the polymer. The pale 

yellow precipitate was isolated by suction-filtration, washed with more hexanes, and 

dried in vacuo overnight. Yield: 0.968 g of completely acetylated polymer 6 (93% over 

two steps, based on starting polymer 5). lH NMR (400 MHz, CDCl3): o 5.6-6.0 (2H), 

5.0-5.4 (2H), 2.5- 2.9 (2H), 1.8-2.2 (6H). 13C NMR (100 MHz, CDC13): o 169 (C=O), 

127 (C=C), 71 (C-OR), 36 (C-C=C), 21 (CH3). Anal. Calcd for (CwHt204)n: C, 61.22; 

H, 6.16. Found: C, 60.45; H, 6.14. IR (neat): 1745, 1233, 1054, 1024 cm-1. PXRD: 

amorphous (two amorphous halos centered at 10.4 and 18.9 A.) 

Preparation of the Stereoregular Benzoate Derivative of Polymer 7 

A 50-mL capacity, thick-walled glass Schlenk tube fitted with an 8 mm PTFE 

valve was charged with a stirbar, finely powdered polymer 7 (0.103 g) and a grain of 

DMAP. The solids were degassed in vacuo and placed under an argon atmosphere, and 

suspended in pyridine (5.0 mL, 60 mmol) to give a light grey slurry. Degassed benzoic 

anhydride (2.09 g, 9.20 mmol) was then quickly added to the reaction vessel under a light 

argon flush. The flask was sealed, and the reaction mixture was stirred at 80 °C for 18 h. 

During that time, the suspended polymer in the initial slurry dissolved, affording a clear 

pale yellow solution. The mixture was then cooled to ambient temperature, and the 

volatiles were removed in vacuo. The remaining glassy solid was dissolved in methylene 
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chloride (25 mL) and washed successively with saturated aqueous NaCl (2 x 25 mL), 

deionized water (2 x 25 mL), saturated aqueous NaHC03 (25 mL) and deionized H20 (2 

x 25 mL). The organic phase was dried over anhydrous Na2S04, concentrated to 

approximately 5 mL, and added dropwise to stirred hexanes (50 mL) containing a grain 

of BHT to precipitate the polymer. The pale yellow powder was re-precipitated by the 

same procedure, isolated by suction-filtration, washed with more hexanes, and dried in 

vacuo overnight. Yield: (97%) of the benzoate derivative of polymer 7. lH NMR (400 

MHz, CD2C12): 87.2- 7.9 (lOH), 6.3 (2H), 5.6 (2H), 3.2 (2H). PXRD: amorphous. 
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CHAPTER3 

Aromatization of Poly(p-phenylene) Precursors: 
The Effects of Precursor Stereochemistry and Acid 

Catalysts 
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Introduction 

In the previous chapter, we described the synthesis of a 1,4-linked, stereoregular 

precursor to poly(p-phenylene) (PPP) using transition-metal-catalyzed polymerization. I 

This stereoregular acetoxy polymer (1)2 should yield 100% para-polyphenylene whereas 

a similar precursor (2) with irregular backbone stereochemistry made by radical 

polymerization3-5 only affords polyphenylene oligomers (Figure 1).6 

·+Q}~ 
AcO OAc 

1 

m 

AcO OAc AcO OAc 

1 ,4-unit 
90% 

2 

1,2-unit 
10% 

Figure 1. The 1 ,4-linked stereoregular PPP precursor 1 made by transition-metal-catalyzed 
polymerization and the irregular PPP precursor 2 made by radical polymerization. 

This chapter examines the second part of the precursor process: the conversion of the 

intermediate polymers to the final material. In this case, the conversion of the two 

precursors 1 and 2 to PPP involves the thermally-induced elimination of acetic acid 

(Figure 2). 

-2n AcOH -fQt 
AcO OAc ppp 

1 or 2 

Figure 2. The thermal conversion of precursors 1 and 2 to PPP. 
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Since this elimination reaction is believed to proceed via a cis-six-membered ring 

transition state,4 the 1 ,4-stereoregular structure of polymer 1 should be much better suited 

for the facile formation of high quality PPP (Figure 3) than the irregular structure of 

polymer 2. 

Figure 3. The optimum repeat unit stereochemistry for the cis-pyrolytic elimination of 
acetic acid. 

Unfortunately, we have discovered that thermal conversion of these two PPP precursors 

is not a straight-forward process. Studies on the bulk pyrolysis process revealed that two 

competing reactions occur during the pyrolysis of the PPP precursors: (1) thermally

induced acid elimination leading to PPP formation and (2) thermal depolymerization 

leading to chain fracturing. The relative rates of these two reactions ultimately determine 

the molecular weight of the PPP formed. They depend heavily on the stereochemistry of 

the precursor polymers, but they can be altered by the presence of acid catalysts. 

Characterization of the polyphenylenes made by the acid-catalyzed and uncatalyzed bulk 

pyrolysis of these two PPP precursors revealed that only the 1,4-stereoregular precursor 1 

pyrolyzed in the presence of acid catalysts affords high quality PPP. This chapter 

describes the effect of precursor stereochemistry and acid catalysts on the rates of these 

two competing pyrolysis reactions and on the quality of the PPP formed. 
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Results and Discussion 

Preliminary pyrolysis studies of thin films of polymer 1 cast on NaCl crystals 

initially demonstrated that this stereoregular PPP precursor consistently affords high 

quality PPP films (see Chapter 2).1 The IR spectra of the resulting PPP films typically 

showed an intense band at 806 cm-1 due to the C-H out-of-plane bending of 1,4-

phenylene repeat units and only very weak bands at 760 and 697 cm-1 due to similar C-H 

bending modes in monosubstituted phenyl endgroups.7 In contrast, pyrolysis of similarly 

processed films of polymer 2 gave inconsistent results.1 The IR spectra of the resulting 

PPP films often exhibited repeat unit and endgroup bands with relative intensities 

characteristic of oligomeric material. In addition, an additional band at 789 em -1 

characteristic of 1,2-units was also often observed in the IR spectra.? However, 

drastically different results were obtained when the bulk pyrolysis of the two polymers 

was monitored by thermal gravimetric analysis (TGA). 

Thermal gravimetric analysis monitors the weight loss of a material as a function 

of increasing temperature. Ideally, both acetoxy polymers 1 and 2 should lose 61.2% of 

their original weight if complete conversion to PPP occurs during the heating process. 

However, TGA of pressed pellets or free-flowing powders of 1 revealed that the polymer 

typically loses between 76 and 89% of its original weight during pyrolysis (Figure 4a). 

In addition, IR analysis of the TGA product revealed that only PPP oligomers are 

produced during bulk pyrolysis. An IR band at 1717 cm-1 due to residual carbonyl 

groups is also often observed in the bulk pyrolysis product of 1, indicating that acid 

elimination is incomplete despite the fact that excessive weight loss is observed. In 

contrast, the radically polymerized analogue 2 loses only slightly more weight than 

expected for complete PPP formation (Figure 4b). IR analysis of the TGA residue of 2 

confirmed that only PPP oligomers are formed. Additional TGA and IR analysis 

experiments with polymers 1 and 2 containing 10 wt% NaCl indicated that the presence 
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Figure 4. TGA profiles of (a) stereoregular PPP precursor 1 and (b) radically polymerized PPP 
precursor 2. 
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of NaCl in the polymers does not improve the excessive mass loss or the quality of the 

final products. Consequently, NaCl itself does not appear to be responsible for the 

discrepancies observed between bulk and thin film pyrolysis.8 

These TGA and IR results indicate that other reactions besides aromatization must 

be occurring during the bulk pyrolysis of the two PPP precursors. In addition, the 

stereochemistry of the precursors has a profound effect on the nature and extent of these 

side reactions and the quality of the PPP produced. 

(A) The Effect of Polymer Stereochemistry on the Pyrolysis Process 

In order to elucidate the nature of the differences between the TGA proflles of 

polymers 1 and 2, the bulk pyrolysis of the two acetoxy polymers was examined by 

thermal gravimetric analysis- mass spectrometry (TGA- MS).9 TGA- MS analysis not 

only monitors the weight loss of a material as a function of increasing temperature, but it 

also identifies the volatile compounds lost during the heating process using a mass 

spectrograph. The TGA-MS profiles of polymers 1 and 2 are presented in Figures 5 and 

6, respectively. The TGA- MS profile of polymer 1 (Figure 5) shows that the 

stereoregular polymer 1 loses approximately 89% of its weight upon heating to 500 °C. 

More importantly, it shows that the major elimination products are small aromatic 

compounds such as benzene and phenol rather than the desired product, acetic acid. On 

the other hand, the TGA- MS profile of 2 (Figure 6) shows that this radically polymerized 

polymer only loses approximately 65% of its original mass upon heating to 500 °C and 

that the major elimination product is acetic acid. The elimination products from 2 still 

contain a substantial fraction of benzene and phenol, but the proportion of these aromatic 

side-products is significantly smaller than in the case of 1. 

From these TGA- MS results, two things can be inferred: First, the pyrolysis of 

the two PPP precursors does not involve just a single process. Instead, there appear to 
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Figure 5. TGA-MS profile of polymer 1. 
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Figure 6. TGA-MS profile of polymer 2. 
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be two types of competing reactions occurring during pyrolysis: (1) thermal 

depolymerization resulting in backbone fracturing and the evolution of small aromatic 

molecules, and (2) thermally-induced acid elimination resulting in PPP formation and the 

evolution of acetic acid (Figure 7). 

-fQ* Telim 

AcO OAc 

Oligomers 
+ 

Volatile 
aromatics 

+ 

I Acetic acid I 

(a) 

(b) 

Figure 7. The two competing processes in the pyrolysis of 1 and 2: (a) thermal 
depolymerization; (b) aromatization (thermally-induced acid elimination). The boxed items are the 
compounds detected by mass spectrometry in TGA-MS analysis. 

Second and most important, the relative rates of these two competing reactions are highly 

dependent upon the stereochemistry of the polymers. For the completely 1,4-link:ed 

stereoregular polymer 1, the rate of depolymerization is much greater than the rate of acid 

elimination during pyrolysis. For polymer 2 with its random backbone stereochemistry 

and 10% 1,2-units, the reverse is true. In other words, by virtue of its stereoregular 

structure, the onset temperature for backbone fracturing (T f) 10 for 1 is lower than the 

onset temperature for acetic acid elimination (T elim). Consequently, as 1 is heated to 

higher temperatures, it undergoes a greater amount of backbone fracturing relative to PPP 

formation. In contrast, the irregular backbone stereochemistry of 2 apparently elevates Tf 

slightly above T elim so that aromatization is the dominant process as 2 is heated to higher 
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temperatures. However, significant backbone fracturing still occurs as indicated by the 

presence of benzene and phenol in the MS profile (Figure 6). 

Although we have managed to synthesize a highly 1 ,4-linked, stereoregular PPP 

precursor with the optimum stereochemistry for cis-elimination, the inherent thermal 

instability of the stereoregular backbone results in depolymerization before substantial 

aromatization can occur. 

(B) The Effect of Acids on the Pyrolysis Process 

In order to produce high quality bulk PPP from polymer 1, aromatization catalysts 

were employed to lower Teiim below Tr by selectively accelerating the acid elimination 

reaction. Inorganic Lewis acids such as ZnCl2 were found to catalyze the aromatization 

process. ZnCh was a trace contaminant in early batches of 1 made using the 

ZnC12facetyl chloride process. II These samples containing approximately 1.6 wt % 

ZnCl2 exhjbited TGA weight losses consistent with complete conversion to PPP. The 

effect of small quantities of ZnCl2 on the TGA-MS profile of polymer 1 is quite 

pronounced. For example, the addition of 2 wt % ZnCl2 to a sample of 1 made by a Zn

free routel2 has a dramatic effect on both the mass loss and the composition of the 

volatiles evolved during pyrolysis (Figure 8). Instead of losing 89% of its weight upon 

pyrolysis as in the case of the pristine material, the polymer containing ZnCh only loses 

approximately 60% of its original weight (cf. Figures 5 and 8). This weight loss value is 

close to that expected for complete conversion to PPP (accounting for the amount of 

ZnCh in the mixture). In addition, the only elimination product generated in the presence 

of ZnCl2 is acetic acid, thus indicating that only aromatization is occurring. As can be 

seen from the MS profile in Figure 8, benzene and phenol are barely detectable during the 

pyrolysis. Apparently, ZnC12 selectively accelerates the acid elimination (aromatization) 

reaction and lowers its onset temperature below that of thermal depolymerization. This 
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Figure 8. TGA-MS profile of polymer 1 containing 2 wt % ZnCI2. 
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temperature reduction effect is small with only 2 wt % ZnCh in the polymer (cf. Figures 

5 and 8), but it becomes more pronounced with increasing wt % of ZnCh (Figure 9). 

Zinc chloride also catalyzes the aromatization of polymer 2. As can be seen from 

Figure 10, the addition of 10 wt % ZnCl2 to polymer 2 lowers the aromatization 

temperature and stabilizes the weight loss of the material during pyrolysis as in the case 

of polymer 1. This catalytic effect on both PPP precursors is also exhibited by the other 

zinc halides (i.e., ZnBr2 and Zni2). Unfortunately, the one drawback in using the zinc 

halides as aromatization catalysts is the fact that these compounds are difficult, if not 

impossible, to remove from the insoluble PPP matrix even by repeated washing.l3 

Organic Br(~Sn sted acids were also found to catalyze the aromatization of both 

polymers 1 and 2. Recently, Wilson and co-workers discovered that nonvolatile, strong 

Br(~Snsted acids such as 3,4-dichlorobenzenesulfonic acid (DCBSA) and p-toluenesulfonic 

acid are able to reduce the aromatization temperature and improve the mass loss during 

the pyrolysis of the radically polymerized PPP precursor 2 (Figure 11).14 However, they 

did not observe any difference in the IR spectra of the thin PPP films made by the 

catalyzed and uncatalyzed pyrolysis of 2. When the same organic acids were added to the 

stereoregular PPP precursor 1, a similar catalytic effect was also observed. As can be 

seen from the TGA profiles in Figure 12, the addition of 5 wt % DCBSA to 1lowers the 

T elim of the polymer from approximately 330 °C, where a combination of 

depolymerization and acid elimination simultaneously occurs in the pristine material, to 

approximately 180 °C. This temperature regime is well below the temperature where 

volatile aromatics are evolved (Figure 5). The observed weight loss (65%) during the 

pyrolysis of 1 with 5 wt % DCBSA approaches the value expected for complete 

conversion of 1 to PPP, assuming that all of the organic acid catalyst is also boiled away 

during the pyrolysis. Unfortunately, the addition of larger amounts of DCBSA does not 

lower the Tetim of either PPP precursor much below 170 °C. However, there are two 

advantages in using organic Br(~Snsted acids over inorganic Lewis acids such as ZnCl2: 



121 

Figure 9. A plot of onset temperature of acid elimination (T elim) as a function of the wt % of 
ZnCI2 added to polymer 1. 
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Figure 10. TGA profiles of (a) pristine polymer 2 and (b) polymer 2 containing 10 wt % ZnCI2. 
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Figure 11. TGA profiles of (a) pristine polymer 2 and (b) polymer 2 containing 5 wt% DCBSA. 
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Figure 12. TGA profiles of (a) pristine polymer 1 and (b) polymer 1 containing 5 wt% DCBSA. 
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(1) The catalytic effect is more pronounced with the organic acids than ZnCl2 on both a 

per weight and a per mole basis (see Figures 9 and 12b).15 (2) The organic acids can be 

easily removed from the final product by simply heating the resulting PPP to higher 

temperatures.13,16 

It should be noted that Lewis acids and Br0nsted acids also catalyze the 

aromatization of some of the other derivatives of polymers 1 and 2 mentioned in Chapter 

2.17,18 However, the acid-catalyzed aromatization of the acetoxy polymers 1 and 2 

provides the most efficient route to PPP in terms of overall mass loss upon conversion to 

polyphenylene 17 and in terms of the quality of the final product 18 

(C) The Effect of Precursor Stereochemistry and Acid Catalysts on the Quality of 

the Poly(p-phenylene) Formed. 

m Analysis 

IR analysis is generally used to determine the structure and molecular weight of 

PPP samples.19-22 Typically, the regiochemistry and the molecular weight of 

polyphenylene chains can be qualitatively determined by comparing the relative 

intensities of two sets of bands in the IR spectrum of the material: (1) a band at 

approximately 810 cm-1, which is due to the C- H out-of-plane bending of the 1,4-

substituted benzene repeat units, and (2) two bands at approximately 760 and 697 cm-1, 

which are due to the C- H out-of-plane bending modes of the monosubstituted benzene 

endgroup units of the polymer (Figure 13). 



H H 

~ 
H H 

PPP repeat unit 

(C-H) o-o-p bend: -810 cm-1 

130 

PPP endgroup unit 

(C-H)o-o-p bends: -760, 697 cm-1 

Figure 13. The repeat and endgroup units of PPP: Characteristic IR bands. 

For high molecular weight, completely 1,4-lin.k:ed polyphenylene chains, the intensity of 

the 810 cm-1 band should be much greater than the two endgroup bands. In addition, as 

the number of consecutive 1,4-linked phenylene units increases, the position of the IR 

band due to the PPP repeat units shifts to lower wavenumbers. These two trends can be 

seen in theIR spectra of a series of three p-oligophenyls (Figure 14). 

Although initial TGA and TGA- MS studies indicated that Br0nsted and Lewis 

acids catalyze the thermally-induced acid elimination of both acetoxy polymers 1 and 2, 

IR analysis of the products revealed that high molecular weight, completely 1,4-

polyphenylene is formed only by the acid-catalyzed aromatization of the completely 1,4-

link:ed precursor 1. As can be seen from Figures 15a and 15b, theIR spectra of the PPP 

samples made from the DCBSA- and ZnC12-catalyzed aromatization of 1 are dominated 

by an intense band at 806 cm-1. The two endgroup bands at 760 and 696 cm-1 are 

extremely small in comparison. In sharp contrast, the IR spectra of the polyphenylene 

samples prepared from polymer 2 using the same catalysts exhibit repeat unit and 

endgroup bands with relative intensities characteristic of only very short runs of 1,4-

phenylene units (Figures 16a and 16b). Furthermore, they both exhibit an additional IR 

band at 789 cm-1 which is characteristic of the C- H bending of 1,2-lin.k:ed phenylene 

units.7 Apparently, the irregular stereochemistry of polymer 2 results in the formation of 

substantial amounts of 1,2-phenylene units when aromatized in the presence of the acid 
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Figure 14. TheIR spectra (KBr mull) of (a) p-terphenyl, (b) p-quaterphenyl, and (c) p-sexiphenyl. 
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Figure 15. TheIR spectra (KBr mull) of the polyphenylene samples made from the bulk pyrolysis 
of polymer 1 containing (a) 5 wt % DCBSA, (b) 10 wt% ZnCI2, and (c) no aromatization catalysts. 
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Figure 16. TheIR spectra (KBr mull) of the polyphenylene samples made from the bulk pyrolysis 
of polymer 2 containing (a) 5 wt% DCBSA, (b) 10 wt % ZnCI2. and (c) no aromatization catalysts. 
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catalysts. On the other hand, the IR spectra of the PPP samples produced from the bulk 

pyrolysis of the pristine polymers 1 and 2 indicate that they are only oligomeric in nature 

and contain no 1,2-units (Figures 15c and 16c). Judging by the relative intensities of the 

repeat unit and endgroup bands, the molecular weights of these PPP oligomers are only 

slightly higher than p-sexiphenyl (Figure 14c). These observations are consistent with 

the earlier TGA- MS results obtained on the pristine precursors. Although acids catalyze 

the thermal aromatization of both precursor polymers, it is the regiochemical structure of 

the precursor that determines the structure of the polyphenylene formed. 

It is interesting to note that in earlier studies on the organic acid-catalyzed 

pyrolysis of 2, Wilson et al. found that the acid-catalyzed product was not significantly 

different by IR analysis from material obtained by the pyrolysis of the pristine polymer 

when thin films were compared.I4 However, our current IR studies indicate that the 

polyphenylene samples produced by the acid-catalyzed bulk pyrolysis of 2 are 

structurally very different from the samples made using the pristine polymer. These 

differences suggest that in thin films where the surface area-to-mass ratio is very high, 

even the relatively nonvolatile organic acids used sublime away before reaching the 

temperatures required for catalyzed acid elimination. In pressed pellets or powders where 

the surface area to mass ratio is much smaller, the organic acid is better confined and 

unable to sublime away during the heating up cycle. Consequently, organic acids 

apparently have no effect when used in the pyrolysis of thin films. This assumption is 

supported by the fact that the IR spectra of thin polyphenylene films obtained from 2 with 

and without 5 wt % DCBSA were found to be virtually identical, whereas a film made 

from 2 containing ZnCl2 (which is extremely nonvolatile (bp = 732 °C)) exhibits the 

same four band pattern in the 650-810 cm-1 region of theIR spectrum as samples made 

from the acid-catalyzed bulk pyrolysis of 2 (cf. Figures 17a, b, c). 
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Figure 17. The IR spectra of polyphenylene films on NaCI crystals made from the pyrolysis of 
thin films of 2 containing (a) 5 wt% DCBSA, (b) 10 wt % ZnCI2, and (c) no aromatization 
catalysts. 



139 

697 

764 

765 

699 

813 

808 

807 

756 
(a) (b) (c) 

1000 1000 1000 



140 

Morphology 

The acid catalysts used to catalyze the aromatization of 1 and 2 also have a 

dramatic effect on the morphology of the final products. When pressed pellets of 1 and 2 

containing DCBSA or ZnCh are pyrolyzed, both the high quality PPP made from 1 and 

the irregular polyphenylene made from 2 are formed as resilient black foams (Figures 18a 

and 19a), which are completely amorphous by powder X-ray diffraction (PXRD) 

analysis. The foams have roughly the same shape as the original pressed pellets, but their 

dimensions are larger due to added interior void volume produced by the rapid evolution 

of acetic acid. Often, the interior of these polyphenylene foams are filled with lustrous, 

flaky fibers (Figures 18a,b). In contrast, when pressed pellets of the pristine precursors 

are pyrolyzed, the resulting PPP oligomers are obtained as brittle orange-brown ftlms 

which are semicrystalline by PXRD analysis (Figures 20a and 20b). Apparently, without 

acid catalysts to accelerate the aromatization reaction, the pristine precursors flow and 

lose their original shape as they undergo a combination of acid elimination and 

depolymerization. 

To our knowledge, the high quality PPP samples made by the acid-catalyzed 

aromatization of 1 are the only examples of completely amorphous PPP. PPP made by 

previous synthetic routes have been almost always semicrystalline.I8-21 Because of this 

difference in morphology, the molecular weight of the PPP samples made by the acid

catalyzed aromatization of 1 may actually be substantially higher than that of previous 

PPP samples if compared by IR analysis. The intensities of the IR bands used for 

determining the relative amount of phenylene endgroups actually shrink relative to the 

intensity of the repeat unit band when semicrystalline PPP samples are annealed to higher 

crystalline perfection)9,23 Since higher crystallinity favors weaker endgroup bands, the 

chain lengths of our amorphous, high quality PPP samples may actually be 

underestimated by IR analysis compared to semicrystalline materials. 
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Figure 18. Scanning electron microscope photographs of the cross-section of a high quality PPP 
foam made from the bulk pyrolysis of a pressed powder pellet of 1 containing 5 wt % DCBSA: (a) 
low magnification; (b) high magnification. 
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Figure 19. Scanning electron microscope photographs of the cross-section of a high quality PPP 
foam made from the bulk pyrolysis of a pressed powder pellet of 1 containing 10 wt % ZnCI2 (a) 
low magnification; (b) high magnification. 
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Figure 208. PXRD profile of the PPP oligomers obtained from the uncatalyzed bulk pyrolysis of 
polymer 1. The peaks at 4.149 and 3.747 A are diffractometer artifacts. Assignments for the 
observed reflections can be found in reference 4. 
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Figure 208 . PXRD profile of the PPP oligomers obtained from the uncatalyzed bulk pyrolysis of 
polymer 2. Assignments for the observed reflections can be found in reference 4. 
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13C CPMAS Solid-State NMR Analysis 

In order to confirm the differences in chain length inferred from IR analysis, the 

polyphenylene samples made from 1 and 2 were also analyzed by Be cross-polarization 

magic angle spinning (CPMAS) NMR spectroscopy. Due to the inherent insolubility and 

chemical inertness of PPP, the number of physical and chemical techniques for 

characterizing the material other than IR analysis is rather limited. Recently, Be 

ePMAS solid-state NMR spectroscopy has been used by several research groups to 

characterize and determine the approximate molecular weight of PPP samples.24-27 

Typically, both PPP and p-oligophenyls are characterized by two signals at 128 and 139 

ppm in their t3e solid-state NMR spectra. These resonances are due to the protonated 

and nonprotonated aromatic carbon atoms in the compounds, respectively (Figure 21). 

H H 

H H 

128 ppm 

139 ppm 

H H 

KH 
139ppm ..7)=.< 128 ppm 

H H 

Figure 21. The two types of aromatic carbons observed by 
13

C CPMAS NMR spectroscopy 

for PPP and oligophenyls. 

Ideally, the ratio of the integrals of these two Be resonances can be used to semi

quantitatively determine the chain length of PPP and p -oligophenyls.24 As shown in 

Table I, the ratio of protonated to nonprotonated aromatic carbons (r) decreases with the 

number of consecutive phenyl rings in the chains (n) according to Eq. 1. 
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Table I. The ratio of protonated to nonprotonated aromatic carbons as a function of 
the number of phenyl rings for a series of p-oligophenyls. 

Compound 

biphenyl 
p-terphenyl 

p-quaterphenyl 
p-sexiphenyl 

Chain Length (n) 

2 
3 
4 
6 

r = 2n+1 
n- 1 

Ratio of protonated to 
nonprotonated carbons (r) 

(1) 

5.0 
3.5 
3.0 
2.6 

For an infinitely long PPP chain, r should approach a minimum value of 2. 

Consequently, the integral ratio of these two carbon resonances in the 13C NMR 

spectrum can be used to extrapolate the average chain length of the sample. However, 

this technique loses precision with longer chain lengths because the relationship between 

rand n is asymptotic. Thus, this method cannot be used to precisely gauge PPP chain 

lengths above n = 6, but it can be used to differentiate between low oligomers and chains 

longer than p -sexiphenyl. 

Only five of the six polyphenylene samples made by the catalyzed and 

uncatalyzed pyrolysis of 1 and 2 were analyzed by 13C CPMAS NMR spectroscopy. The 

polyphenylene sample made by the pyrolysis of pristine 1 was not analyzed by this 

technique because TGA-MS and IR analysis revealed that this sample is obviously 

oligomeric in nature. Also, because of the large amount of chain fracturing that occurs 

during the uncatalyzed bulk pyrolysis of 1 (Figure 5), it was difficult to synthesize 

enough of the resulting PPP oligomers to pack an NMR sample rotor (10-15% pyrolysis 

yield). 

Initially, 13C CPMAS NMR experiments were performed on p -quaterphenyl and 

p -sexiphenyl as NMR standards in order to determine pulse parameters that would give 

accurate integral ratios. The 13C NMR spectra of the five polyphenylene samples taken 

with these pulse parameters (10 ms contact pulse, 6 ms lH 90° pulse) and a pulse delay of 
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5 s are presented in Figure 22. All five polyphenylene samples exhibit only the two sets 

of Be resonances at 128 and 139 ppm characteristic of PPP and p-oligophenyls. (The 

small signals on either side of the main resonances are spinning sidebands.) There are no 

signals due to residual carbonyl groups (160-190 ppm) or saturated carbon centers (10-

50 ppm). Unfortunately, the linewidths of the 13C peaks are so broad that it is only 

possible to differentiate between protonated and nonprotonated carbons but not identify 

any carbon centers belonging to 1,2-, or 1,3-linked aromatic units. Thus, it is not possible 

to confirm the regiochemical differences observed by IR analysis between the 

polyphenylene samples using this technique. However, two distinct sets of differences 

can be seen in the five spectra. First, the spectra of the four polyphenylene samples made 

by acid-catalyzed aromatization of precursors 1 and 2 (Figures 22a-d) have extremely 

poor resolution and signal-to-noise compared to that of the PPP oligomers made from the 

uncatalyzed pyrolysis of 2 (Figure 22e). Second, the spectra of the two high quality PPP 

samples made by the acid-catalyzed aromatization of 1 (Figures 22a and 22b) show an 

integral ratio of nearly 1:1, which is below the theoretical minimum value expected for 

PPP. The spectra of the other three samples (Figures 22c-e), on the other hand, exhibit 

approximately the expected 2:1 integral ratio. The 13c integrals of the five spectra are 

listed in Table ll. 

Table ll. The integral ratios ofprotonated (128 ppm) and nonprotonated (139 ppm) 
carbons in the 13c CPMAS NMR spectra in Figure 22. 

Polyphenylene 
13c CPMAS Spectrum 

Figure 2la 
Figure 21b 
Figure 21c 
Figure 2ld 
Figure 21e 

Composition 
of Precursor 

1+5 wt%DCBSA 
1 + 10 wt% ZnC12 
2 + 5 wt % DCBSA 
2 + 10 wt % ZnCl2 

pristine 2 

Integral Ratio a 
(1128 ppm/1139 ppm) 

1.05 
1.22 
1.84 
1.75 
1.91 

(a) Integrals were obtained by the standard integration procedures on the NMR spectrometer. 
These values were checked by deconvoluting and curve-fitting selected spectra to obtain more 
accurate integral values. 
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Figure 22. 13c CPMAS NMR spectra of the polyphenylene samples obtained from the bulk 
pyrolysis of (a) polymer 1 containing 5 wt % DCBSA, (b) polymer 1 containing 10 wt% ZnCI2, (c) 
polymer 2 containing 5 wt % DCBSA, (d) polymer 2 containing 10 wt% ZnCI2. and (e) pristine 
polymer 2 . 
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phenomenon. The irregular polyphenylene samples made from the acid-catalyzed 

aromatization of 2 and the PPP oligomers made by the uncatalyzed pyrolysis of 2 all 

exhibit a nearly 2: 1 integral ratio using the same pulse parameters. In addition, even 
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The first difference observed in the five spectra was of instrumental origin and 

can be attributed to the difference in morphology between the acid-catalyzed 

polyphenylene samples and the PPP oligomers. The acid-catalyzed polyphenylene 

samples are all completely amorphous while the PPP oligomers are partially crystalline. 

Since the original pulse parameters were optimized on semicrystalline p-quaterphenyl and 

p -sexiphenyl standards, they were probably not ideal for the amorphous samples. 13C 

CPMAS NMR Spectra with better signal resolution and signal-to-noise were obtained 

for the two amorphous polyphenylene samples made from the DCBSA-catalyzed 

aromatization of 1 and 2 by using a much shorter contact pulse of 1 ms (Figures 23a and 

23b). Proton spin-lattice relaxation time (1 H Tt) experiments indicated that these two 

amorphous samples have 1H T1 values of 0.64 and 0.15 s, respectively, so the 5 s pulse 

delay initially employed was more than enough to permit complete relaxation of the 

magnetization between pulses.28 Unfortunately, even with the updated pulse parameters, 

better quality spectra and accurate 1 H T 1 values could not be obtained for the two 

polyphenylene samples made by the ZnCl2-catalyzed aromatization of 1 and 2 . Possibly, 

the large amount of residual ZnCl2 in the samples (approximately 25 wt %) may have a 

detrimental effect on the quality of the spectra obtained. 

The second anomaly, involving lower than theoretical integral ratios for the two 

types of aromatic carbons, has been also been encountered by other researchers using 13c 

CPMAS NMR spectroscopy to characterize PPP.26 The cause of these anomalous 

intensity distributions has been attributed to either instrument problems24 or a high 

degree of 7t-conjugation in the polymers.26 It is unlikely that the cause of the anomalous 

intensity distributions observed in our study is instrumental in origin since only the two 

high quality PPP samples made by the acid-catalyzed aromatization of 1 exhibit this 

phenomenon. The irregular polyphenylene samples made from the acid-catalyzed 

aromatization of 2 and the PPP oligomers made by the uncatalyzed pyrolysis of 2 all 

exhibit a nearly 2:1 integral ratio using the same pulse parameters. In addition, even 



155 

Figure 23. Improved 13c CPMAS NMR spectra of (a) the amorphous, high quality PPP obtained 
from the DCBSA-catalyzed bulk aromatization of 1 and (b) the amorphous, irregular 
polyphenylene obtained by the DCBSA-catalyzed bulk pyrolysis of 2 . Both spectra were taken 
with a contact pulse of 1 ms and a recycle delay of 5 s. 
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with the pulse parameters optimized for amorphous samples, the anomalous intensity 

distributions do not change significantly (Figure 23a). More likely, the cause of this 

anomaly must be molecular in origin because IR analysis has established that the PPP 

samples made by the DCBSA- and ZnCl2-catalyzed aromatization of 1 are predominantly 

1 ,4-linked and much higher molecular weight than the other polyphenylene samples 

analyzed. Whether this structural difference and the observed anomalous intensity 

distribution implies a higher degree of conjugation in the samples has yet to be proven. 

Although the conclusions that can be drawn from this preliminary 13C CPMAS 

NMR study are rather limited, it is quite obvious that the high quality PPP samples 

identified by IR analysis behave very differently in the NMR spectrometer compared to 

the other polyphenylenes. 

Thermal Stability 

Although different combinations of precursor and acid catalyst produce different 

qualities of polyphenylene, the thermal stabilities of the samples are quite similar. The 

thermal stabilities of the six polyphenylene samples made by the catalyzed and 

uncatalyzed bulk pyrolysis of 1 and 2 were determined by TGA, and are summarized in 

Table III. 
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Table Ill. Thermal stabilities of the polyphenylene samples made by the catalyzed and 
uncatalyzed bulk pyrolysis of polymers 1 and 2. 

Polyphenylene Preparation 

Precursor Composition 

1 + 5 wt% DCBSA 
1 + 10 wt% ZnCl2 

pristine 1 
2 + 5 wt % DCBSA 
2+ 10wt%ZnCl2 

pristine 2 

Pyrolysis 
Conditions a 

A 
B 
A 
A 
B 
A 

Polyphenylene Thermal Stability b 

% WtLoss 
@ 500 oc 

3-5 
15 
6 
5 
16 
4 

Onset of 
Decomposition (°C) 

545 
418 
487 
526 
434 
549 

(a) A: 100 °C (1 h)-> (2 °C/min) -> 300 °C (5 h) - > (2 °C/min) - > 400 °C (0.1 h). 
B: 100 °C (1 h)-> (2 °C/min) - > 340 °C (5 h). 

(b) TGA was perfonned with a ramp rate of 10 °C/min from 100 °C to 700 °C. 

As can be seen from Table Ill, the thermal stabilities of the polyphenylene 

samples made by uncatalyzed and DCBSA-catalyzed aromatization of l and 2 are 

virtually identical. They all begin to slowly decompose near 500 °C. These 

decomposition temperatures are in good agreement with the thermal stabilities of PPP 

samples made by other routes in the literature.19 However, the high quality PPP and the 

irregular polyphenylene made using ZnCl2 exhibit lower thermal stabilities. This may be 

the result of the approximately 25 wt % ZnCl2 residue in the two samples. The 

interaction of a strong Lewis acid such as ZnCl2 with the 1t -electrons of the 

polyphenylenes may cause the polymers to decompose at a significantly lower 

tern perature. 

Magnetic Measurements 

Magnetic measurements were performed on the six polyphenylene samples made 

from 1 and 2 in order to determine their intrinsic free spin densities.29 All PPP samples 

synthesized by other methods have been found to exhibit high free spin densities on the 

order of 1016_ J018 spins/gin the undoped state.19 Higher spin densities have been 
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correlated with increasing chain length in p-oligophenyls19 and shorter lH Tt values in 

PPP samples and p-oligophenyls.24 Thus, determining the concentration of intrinsic 

paramagnetic defects in our polyphenylene samples may provide more information on the 

structure and chain length of the materials as well as the anomalous intensity distributions 

observed by 13c CPMAS NMR analysis on some of the samples. 

Magnetic measurements were performed on the six polyphenylene samples using 

a superconducting quantum interference device (SQUID) magnetometer. Only two of the 

six polyphenylene samples made from 1 and 2 were found to be intrinsically 

paramagnetic. The high quality PPP made from 1 with 5 wt% DCBSA and the PPP 

oligomers made from pristine 2 have spin densities of IQ19 and 1Q20 spins/g. respectively. 

These spin densities are comparable to those observed by electron spin resonance (ESR) 

spectroscopy for other PPP materials in the literature.19 However, the magnetic 

measurements on these two materials reveal very high cooperativity between the unpaired 

spins. The spin states of the two samples were calculated to be 3.4 for the high quality 

PPP made from DCBSA-catalyzed aromatization of 1 and 6.5 for the PPP oligomers 

made from pyrolysis of pristine 2.30 In addition, the PPP oligomers made by the 

pyrolysis of pristine 2 demonstrated hysteresis at low temperature. This behavior is 

indicative of long range ordering of the spins enforced by the 1t-network. These 

surprising results for the two materials were reproducible over several different batches of 

the polymers. 

The exact nature of the extremely stable paramagnetic species found in PPP has 

been a matter of great speculation. Factors as chain length, steric factors, the formation 

of charge-transfer complexes, and the presence of structural defects such as polynuclear 

aromatic structures have been found to influence the concentration of unpaired spins in 

PPP.19 Although the paramagnetic behavior of PPP is a very complex phenomenon, 

three things can be inferred from correlating the SQUID results on our six polyphenylene 
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samples with data obtained by IR analysis and 13C CPMAS NMR spectroscopy. First, 

the presence of diamagnetic impurities such as ZnC12 in the material appears to have a 

detrimental effect on the spin density of the sample. Both the high quality PPP samples 

made by the DCBSA- and ZnCl2-catalyzed aromatization of 1 are similar in structure and 

morphology by IR and PXRD analysis; however, only the former displays a high spin 

concentration. The only difference between the two high quality PPP samples is that the 

latter sample contains approximately 25 wt % ZnCl2 as a residue from the ZnC12-

catalyzed aromatization reaction. The PPP made using DCBSA as the aromatization 

catalyst, on the other, is virtually free of catalyst residues because the organic acid is 

removed during the pyrolysis process by heating to elevated temperatures. Second, the 

presence of structural defects such as 1 ,2-units in the polyphenylene also appears to have 

a detrimental effect on the spin concentration. Both samples made from the DCBSA- and 

ZnCh-catalyzed aromatization of 2 contain a significant amount of 1,2-units as indicated 

by IR analysis; however, both are diamagnetic despite the fact that the former sample 

does not contain residual ZnCl2. In addition, PPP oligomers having no 1 ,2-units but 

made from the uncatalyzed pyrolysis of the same precursor display a very high spin 

density. Lastly, it appears that crystallinity favors higher spin concentrations and a higher 

overall spin state. Although IR analysis has shown that the high quality PPP made by the 

DCBSA-catalyzed aromatization of 1 is composed of longer PPP chains than the PPP 

oligomers made from the uncatalyzed pyrolysis of 2, the PPP oligomers have a spin 

density nearly 20 times higher. The only difference between the two materials other than 

chain length is that PPP oligomers are semicrystalline while the high quality PPP is 

completely amorphous. The increased order of the semicrystalline PPP oligomers may be 

partially responsible for the higher spin density and higher degree of cooperativity 

between the unpaired spins despite its lower molecular weight. It should be noted that 

doped C60 has also shown cooperative magnetic behavior;31 thus 7t-stacking interactions 

may act to establish a ferromagnetic exchange field in a number of systems. 
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UV-Visible Absorption Spectroscopy 

UV- visible absorption spectroscopy was also used to characterize the different 

polyphenylene samples made from the PPP precursors 1 and 2. The position of the UV

visible absorption maximum (Amax) of PPP samples has been used to gauge the 

approximate molecular weight and the extent of conjugation of the materials, and detect 

the presence of structural defects.19,20,22 The Amax of p-oligophenyls increases 

asymptotically with increasing chain length.l9 The maximum value that Amax can reach 

has been calculated to be 339 nm for an infinitely long PPP chain_32,33 Unfortunately, 

the Amax can only be used to extrapolate the approximate chain length of higher p 

oligophenyls because the relationship between Amax and linear chain length loses 

precision with higher molecular weight materials.l9 Also, structural defects in runs of 

1,4-phenylene units are also known to shift the Amax of PPP samples and oligophenyl 

compounds. For example, excessively large Amax values as high as 379- 395 nm have 

been measured for PPP samples made by the Kovacic method and have been attributed to 

the presence of polynuclear aromatic defects.l9 In contrast, the presence of 1,2- and 1,3-

phenylene units in oligophenyls is known to lower the Amax and the extent of conjugation 

compared to the completely 1,4-linked analogues.22,34-36 

Because of the opaqueness of our bulk polyphenylene samples, the UV- visible 

absorption spectra of the materials were obtained using thin transparent films of the 

materials baked onto quartz transmission windows. The spectra are presented in Figures 

24 and 25. Some unexpected observations can be made from a quick comparison of these 

spectra: (1) Both the polyphenylene samples obtained by the DCBSA- and ZnC12-

catalyzed aromatization of 2 have been shown by IR analysis to contain a substantial 

amount of 1,2-units; however, only the ZnCl2-catalyzed thin film (Figure 25c) exhibits 

the lower Amax expected from these non-linear defects. (2) Both the PPP films made 
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Figure 24. UV- visible absorption spectra of polyphenylene films made from the pyrolysis of thin 
films of polymer 1 containing (a) 5 wt % DCBSA, (b) 10 wt % ZnCI2, and (c) no aromatization 
catalysts. The wavelength scale is in nanometers. 
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Figure 25. UV-visible absorption spectra of polyphenylene films made from the pyrolysis of thin 
films of polymer 2 containing (a) 5 wt % DCBSA, (b) 10 wt % ZnCI2. and (c) no aromatization 
catalysts. The wavelength scale is in nanometers. 
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from the DCBSA- and ZnCl2-catalyzed aromatization of the stereoregular precursor 1 

have approximately the same Amax (305- 310 nm) as the PPP oligomers made from the 

pyrolysis of the pristine precursors. This observation is unexpected because IR analysis 

has confirmed that the PPP samples made by the acid-catalyzed aromatization of 1 have a 

higher molecular weight than the oligomers made by pyrolysis of the pristine precursors 

(see IR analysis section). Judging from the Amax values, these PPP samples only have a 

linear chain length and an extent of conjugation comparable to that of p-sexiphenyl (Amax 

= 318 nm).35 

However, caution must be used when interpreting these results obtained from 

samples made by thin film pyrolysis. First of all, samples made by pyrolysis of thin ftlms 

of the precursors containing organic acids (e.g., DCBSA) to catalyze the aromatization 

process are probably not representative of the polyphenylenes made using the same acids 

in a bulk pyrolysis process. That is, organic acid catalysts have been shown to have no 

effect on the quality of the resulting polyphenylene in thin film pyrolysis of the 

precursors. These results have been previously observed in studies by Wilson et al.l4 and 

in our IR studies. Apparently, the organic acid catalysts tend to sublime away 

prematurely before the onset of aromatization in thin films. Although IR analysis has 

shown that bulk pyrolysis of 2 containing acid catalysts produces material with a 

substantial percentage of 1,2-units, only the polyphenylene film made from 2 containing 

ZnCl2, an extremely nonvolatile catalyst, exhibits the lower Amax expected for a material 

with substantial 1,2-units (Figure 25b). In all likelihood, both the polyphenylene films 

made by the DCBSA-catalyzed thin film aromatization of 1 and 2 are probably the same 

materials as that obtained by uncatalyzed pyrolysis of the two precursors. Thus, UV

visible analysis on thin films is not a reliable technique in this case. 

Secondly, higher Amax values for even the high quality PPP films made with an 

extremely nonvolatile acid catalyst such as ZnCh may not be possible due to 

morphological limitations. The Amax of some conjugated polymers has been observed to 
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shift depending on the order in the material. For example, the Amax of poly(l,4-

phenylene-vinylene) (PPV) is related to the degree of long range order and crystallinity of 

the materiaJ.37,38 Thus, the reason why even the high quality PPP film made by ZnC12-

catalyzed aromatization shows the same or slightly lower Amax than the PPP oligomers 

may lie in the fact that the ZnCl2-catalyzed material is completely amorphous while the 

oligomers are semicrystalline (cf. Figures 24b and 24c). Unfortunately, the inherent 

intractability of PPP made by direct routes and the poor quality of materials made from 

previous precursor routes 19 have made it difficult to determine whether changes in 

morphology and crystallinity have as dramatic an effect on the Amax of PPP as they have 

for that of PPV. With our new precursor methodology ,which affords high quality PPP, it 

may be possible to do this in the near future. 

Because of the inherent problems in acid-catalyzed thin film pyrolysis and the 

likely dependence of Amax on morphology and crystallinity, UV-visible spectroscopy on 

thin films of the polyphenylenes reveals little about the structure and molecular weight of 

the bulk materials. 

Preliminary Doping and DC Conductivity Measurements 

Poly(p-phenylene) forms highly conductive charge- transfer complexes upon 

doping with strong electron acceptors (e.g., AsFs) and electron donors (e.g., alkali 

metals)_l9,20 In fact DC conductivities of up to 500 S/cm have been measured for AsPs

doped pressed pellets of PPP made by the oxidative cationic polymerization of 

benzene_l9,20 In order to compare the conductivities of the polyphenylene samples made 

by our route, preliminary doping experiments were performed and conductivity 

measurements were taken. 

Usually, doping and DC conductivity experiments on PPP samples are performed 

on pressed powder pellets due to the intractable nature of the materiaJ.20 Unfortunately, 
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due to the unique morphology of our acid-catalyzed polyphenylene samples, void-free, 

pressed pellets could not be obtained.39 Consequently, preliminary doping and 

conductivity experiments had to be performed on two types of polyphenylene samples. 

That is, the acid-catalyzed polyphenylene samples were all doped and analyzed as the 

foams obtained directly from bulk pyrolysis of pressed pellets of the precursors. On the 

other hand, the PPP oligomers obtained by uncatalyzed pyrolysis of land 2 were doped 

as spin-coated films on quartz. It was not possible to process all of the samples into a 

single form for a truly comparative study because only the acid-catalyzed samples form 

foams whereas the samples made from the pristine precursors flow into films. Studies 

were not performed on thin films of all the samples because it has been observed that thin 

film pyrolysis of the precursors containing organic acids does not give PPP representative 

of that obtained in the catalyzed bulk process. 

The six polyphenylene samples were doped by exposing them to approximately 

240 torr of AsPs for 50-60 minutes. During the doping process, only the flaky interior of 

the high quality PPP foam made from the DCBSA-catalyzed aromatization of precursor l 

changed from a lustrous tan color to a deep blue-green color. The interior of all the other 

polyphenylene pellets became slightly darker but did not lose all of their lustrous 

appearance. The PPP oligomer films baked onto quartz discs did not exhibit any color 

change. Only the high quality PPP sample made from the DCBSA-catalyzed 

aromatization of stereoregular precursor l was found to exhibit an appreciably high 

electrical conductivity of approximately I0-2- 1 o-I S/cm. All of the other five doped 

polyphenylene samples made from l or 2 were found to be highly insulating (!5; 1 o-7 

S/cm). Because of the amorphous, void-filled structure of the sample, the conductivity 

value measured should be considered a lower limit.20 Significantly higher conductivities 

may well be possible if the sample is doped for longer periods of time, or if it can 

processed into an oriented, void-free form.40 
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Summary 

The quality of the poly(p-phenylene) (PPP) produced from the thermal conversion 

of two acetoxy-functionalized polymers 1 and 2 (Figure 1) depends on the 

stereochemistry of the polymer and the presence of aromatization catalysts. The thermal 

conversion of these precursors to PPP involves two competing reactions: (1) thermal 

depolymerization of the polymer, and (2) thermally-induced acid elimination resulting in 

PPP formation. The relative rates of these two processes, which ultimately determine the 

molecular weight of the final product, depend heavily upon the stereochemistry of the 

polymer backbone. For the 1,4-linked, stereoregular precursor 1, made by transition

metal-catalyzed polymerization, the rate of thermal depolymerization is much faster than 

the rate of acid elimination during the pyrolysis process. Consequently, this material 

fractures to a greater degree than it aromatizes during heating despite the fact that the 

stereochemistry of the polymer is ideal for facile cis-pyrolytic acid elimination. On the 

other hand, for the radically polymerized analogue 2, containing random backbone 

stereochemistry and regiochemical defects, the reverse relationship is true. Although 

depolymerization still takes place during the pyrolysis of the radically polymerized 

polymer, the thermal stability of the irregular polymer backbone is greater so the relative 

amount of backbone fracturing is less than that of aromatization. Br~~Jnsted and Lewis 

acids are able to overcome this problem by selectively catalyzing the acid elimination 

reaction of both precursor polymers. They lower the onset temperature of the 

aromatization process to temperatures well below that at which thermal depolymerization 

can occur. However, characterization of the resulting polyphenylene materials indicates 

that the regiochemical structure of the polyphenylene produced by the acid-catalyzed 

aromatization process depends entirely on the stereochemistry of the precursor polymer. 

Only the the acid-catalyzed aromatization of the 1,4-linked, stereoregular polymer 1 

yields high quality, high molecular weight PPP. 
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The high quality PPP produced by the acid-catalyzed aromatization of 1 exhibits 

properties similar to those of PPP samples in the literature. However, it is completely 

amorphous whereas PPP samples made by other routes are almost always semicrystalline. 

Since the physical and chemical properties of PPP and many other conjugated polymers 

depend highly on sample morphology, processing techniques for this material will have 

to be developed before its optimum properties can be realized. Our new precursor route 

to PPP employing polymer 1 is ideal for these studies since it offers processability as well 

as a high quality product. 
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Experimental Section 

General Considerations 

All manipulations were performed in the air unless otherwise specified. Reagents, 

gases, and solvents were used without further purification unless otherwise specified. 

Drying of polymers prior to pyrolysis or analysis was performed on a Schlenk line using 

conventional vacuum line techniques. Air- and/or water-sensitive compounds were 

stored in a nitrogen filled Vacuum Atmospheres drybox. 

Materials 

Solvents such as THF and hexanes were obtained from Fisher Scientific or EM 

Science. 3,4-Dichorobenzenesulfonic acid (DCBSA) was purchased from Eastern 

Chemicals. Zinc chloride (99.999%) was purchased from Aldrich and stored in the 

drybox. p -Toluenesulfonic acid, 2,6-di-tert-butyl-4-methylphenol (BHT) (99+%), p

terphenyl, p-quaterphenyl were all purchased from Aldrich. p-Sexiphenyl was purchased 

from TCI America. Argon (UN1006) for tube furnace pyrolysis and TGA experiments 

was obtained from Liquid Air. Arsenic pentafluoride was purchased from Ozark

Mahoning. NaCl, KBr, and quartz transmission windows (25 mm x 2 mm discs) were all 

purchased from Wilmad. Polymer 1 was synthesized according to the procedures 

outlined in the previous chapter. Polymer 2 (batch 12871/80) was graciously donated by 

ICI Chemicals and Polymers Ltd., Runcorn, U. K. 

Preparation of PPP Precursor/Catalyst Mixtures for Pyrolysis and TGA Studies 

Typically, a mixture of PPP precursor containing a specified wt % of acid catalyst 

was prepared by dissolving the appropriate amount of precursor polymer in THF, 

syringing in the appropriate amount of catalyst in the form of a stock solution in THF, 

and coprecipitating the two dispersed components by decanting the mixture into a 



172 

nonsolvent (e.g., pentane or hexanes). For example, to prepare a mixture containing 10 

wt % of ZnCl2 in polymer 1, frrst the polymer (0.360 g) was dissolved in THF (6 mL). 

With rapid stirring, 1.20 mL of a 0.033 g/mL stock solution of ZnCl2 in dry 1HF was 

syringed into the polymer solution. The pale yellow polymer/catalyst solution was then 

added dropwise to approximately 75 mL of rapidly stirred hexanes containing a grain of 

antioxidant (BHT). The resulting off-white precipitate was isolated by suction-filtration, 

washed with fresh hexanes, and then dried overnight in vacuo. The off-white powder was 

stored in a vial with a PTFE-lined cap and parafilmed to exclude atmospheric moisture. 

The amount of ZnCl2 (or any other acid catalyst added) was confirmed by elemental 

analysis of the mixture at Oneida Research Services, Inc., Whitesboro, NY. 

Preparation of Supported Thin Films of Precursor/Catalyst Mixtures for Pyrolysis 

An approximately 15 wt % solution of a pristine PPP precursor or a 

precursor/catalyst mixture was prepared by dissolving 0.100 g of the powder in 0.6 mL of 

1HF. The viscous polymer solution was then clarified by passing through a small plug of 

glass microfibre paper (Whatman) in a transfer pipette. Four to five drops of the clarified 

solution were then placed on top of a 25 mm x 2 mm disc (NaCl, KBr, or quartz), and 

spin-coated at 1.6-1.7 x 103 rpm for 30 s using a Headway Research spin-coater. Thirty 

seconds of additional spinning after initial film formation was usually employed to dry 

the films. Transparent films (up to 10 J.lm in thickness) were typically obtained on the 

substrate discs by this procedure. 

Preparation of Pressed Pellets for Bulk Pyrolysis 

The pristine PPP precursor or a precursor polymer/catalyst mixture (100-150 mg) 

was loaded as a fine powder into a 1.3 em J.D. KBr pellet die (Aldrich). The die was 

placed in a Carver Laboratory Press (Mini "C", 12 ton capacity), and 10000 lbs load was 

applied to the die under light vacuum for approximately 0.5-1 min to obtain a firm free-
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standing pellet approximately 1 mm in thickness. 

Bulk Pyrolysis of PPP Precursors 

Pyrolysis of supported thin films or pressed pellets of the PPP precursors 

polymers was performed using a Lindberg Model 55437 Moldatherm, three-zone, hinged 

tube furnace with a 3 in I.D. by 43 in long quartz tube insert. Temperatures within the 

three zones were controlled by a Eurotherm 818 Controller/Programmer to control the 

middle zone and two Eurotherm 847 Digital Controllers for the two end zones acting as 

slave terminals in a feedback loop with the middle controller. 

Pressed pellets and supported thin films were placed on flat glass supports inside 

the quartz tube near the center of the furnace heating area. All samples were dried at 100 

°C for 1 h under argon flush prior to the actual pyrolysis run which is also performed 

under argon flush. The temperature program for the pyrolysis of pristine PPP precursors 

or precursors containing organic acids as aromatization catalysts is as follows: 

100 oc (1 h) - > (2 °C/min) - > 300 °C (5 h)-> (2 °C/min) - > 400 °C (0.1 h) - > (10 

°C/min) -> 50 oc (0.5 h). 

A slightly different temperature program was usually employed for PPP precursor 

mixtures containing ZnCl2 as the aromatization catalyst: 

100 °C (1 h) - > (2 °C/min) -> 340 °C (5 h) - > (10 °C/min) - >50 °C (0.5 h) 

Both temperature programs yield the same quality product. 

Precise mass losses during the bulk pyrolysis of pressed pellets using the 

aforementioned temperature programs were obtained by either measuring the mass of the 

pellets before and after heating, or by using thermal gravimetric analysis, mimicking the 
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temperature programs used with the TGA 7 thermal analysis system 

Thermal Gravimetric Analysis (TGA) 

Thermal gravimetric analysis was performed on powders or pieces of pressed 

pellets using a Perkin- Elmer PC Series TGA 7. Conventional % weight loss vs . 

temperature profiles were obtained using PC Series TGA 7 Multitasking Software, 

Version 2.1. TGA conditions for these profiles involved heating the samples under argon 

flush in a platinum sample holder from 50 or 100 °C at a ramp rate of 10 °C/min to a final 

temperature of 350, 450 or 700 °C. All TGA samples were dried for 30 min at 100 °C 

under argon flush in the apparatus prior to analysis. 

Thermal Gravimetric Analysis-Mass Spectrometry (TGA-MS) 

TGA- MS analysis was performed at ICI Chemicals and Polymers, Runcorn, U. 

K. using a Netzsch STA/QMA- System: 409/429-403. Samples were analyzed under a 

flow of helium (60 cc/min) in a platinum crucible. Samples were typically heated from 

ambient temperature at 10 °C/min to a final temperature of either 500 or 600 °C. 

Scanning Electron Microscopy (SEM) 

Scanning electron microscope images of the PPP pellets were obtained on a 

CamScan scanning electron microscope. PPP pellets were generally cut in two by a razor 

to expose the interior of the pellet. The cleaved pellets were then mounted onto stainless 

steel stubs with graphite paint and gold-coated prior to loading into the SEM sample 

chamber. 

Powder X-Ray Diffraction (PXRD) 

Wide angle powder X-ray diffraction on PPP samples was performed on ground

up pellets using a Scintag!USA PAD V diffractometer. Sample preparation involved 
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adhering powdered samples onto one side of 25 x 2 mm glass disc mounts with petroleum 

jelly. The mounted samples were spun and step-scanned for 5 or 10 seconds every 0.04 

degrees over the 28 range of 5 to 50 degrees. The PXRD spectra obtained by this 

procedure were all background corrected. 

Infrared (IR) Analysis 

IR spectra of PPP samples and p-oligophenyls were obtained using a Perkin

Elmer 1600 Series Ff- IR Spectrometer over the spectral range 4400-450 cm-1 with a 

resolution of 2 cm-1 . Spectra were taken under a stream of nitrogen on thin films on 

NaCl or KBr crystals , or KBr mulls. All spectra were background corrected by 

subtracting the spectra of either a blank NaCl or KBr disc, or a blank KBr pellet from the 

sample spectra. 

13C CPMAS Solid-State NMR Analysis 

13C CPMAS solid-state NMR spectra were obtained on a Bruker MSL-200 

(200.13 MHz lH, 50.32 MHz 13C) spectrometer. NMR samples were prepared by 

powdering the samples with an agate mortar and pestle and packing them into 0.5 em 

O.D. zirconium oxide rotors mated with Kel-F caps. If insufficient sample was available 

to pack a rotor completely, the sample was diluted with alumina (Fluka). Rough 

shimming of the spectrometer field prior to the runs was performed on a static sample of 

H20 in a rotor. The Hartmann- Hahn condition was tuned by optimizing the shape of the 

free induction decay trace of a sample of adamantane, followed by further shimming of 

the field on the adamantane sample. 13C CPMAS NMR spectra of PPP and p

oligophenyls were obtained on samples spun at 3.4-3.5 kHz at a temperature of 300 K. 

Common pulse parameters employed for all samples were a lH 90° pulse of 6 JlS and a 

dwell time of 4 JlS. Typically, 800-7000 scans were taken. Spectra of semicrystalline 

PPP and p-oligophenyl samples were obtained using a contact time of 10 ms and an 
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acquisition time of 100 ms, whereas optimum spectra of amorphous PPP samples were 

obtained using a contact time of 1 ms and an acquisition time of 200 ms. A recycle delay 

time of 5 s was more than adequate for all the PPP samples, but longer recycle delays on 

the order of 100-400 s were required for p-quaterphenyl and p-sexiphenyl because of 

their much longer lH Tt values. Generally a line broadening factor of 50 Hz was applied 

to all FID's prior to Fourier transformation to improve the signal-to-noise level in the 

displayed spectra. 

lH Tt values were calculated for some of the PPP samples using the inversion

recovery method.24,41,42 For each sample, several spectra were taken with different 

variable delay times ('t) but with the same number of scans using the following pulse 

sequence: 

180°- 't- (cross-polarization pulse sequence) 

For the series of spectra, the absolute intensity of the peak at 128 ppm as a function of 't 

was curve-fitted to extrapolate a value for lH Tt. 

Magnetic Measurements 

Magnetic measurements on PPP samples were performed using a Quantum 

Design Model MPMS Magnetic Property Measurement System. Samples were ground 

up using an agate mortar and pestle and loaded into 0.65 em O.D. x 18 em long delrin 

sample tubes in the drybox to exclude oxygen. Magnetic measurements on the samples 

were typically made over the range of 0-55 kG at constant temperature (1.8 K) and over 

the temperature range of 1.8- 300 K at constant external field (5 kG). A control 

experiment performed on a sample of precursor polymer 1, which was not expected to 

have significant spin density, did not show any magnetic behavior. 
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UV-Visible Absorption Spectroscopy 

UV-visible absorption spectra were taken with a Hewlett- Packard Model 8452A 

Diode Array Spectrophotometer. Samples were prepared by spin-coating 6-8 drops of 

filtered precursor or precursor/catalyst solutions (20 mg in 0.5 mL THF) onto 25 x 2 mm 

quartz discs using a spinning speed of 1000 rpm and a spinning time of 30 s. The 

supported thin films were then pyrolyzed according to the procedure outlined in the 

pyrolysis section. UV-visible absorption spectra of the resulting transparent, light brown 

films were taken in the air over the spectral range of 190-820 nm, using a blank quartz 

disc as the background correction. 

AsFs Doping 

AsFs doping of the PPP samples was performed according to the procedure of 

Swager.43 Due to the toxicity of the dopant, a dedicated single-manifold vacuum line in 

a high-speed fumehood containing a charcoal filter was used. All valves on the line were 

constructed of PTFE, and all connections for attaching glassware were Viton 0-ring 

seals. The 0-rings were coated with Halocarbon grease (Halocarbon Products Corp.) to 

provide extra resistance to strong oxidizers. Pressure in the line was measured using an 

electronic gauge system specially designed for use with corrosive gases: a MKS 

Instruments AA01000A pressure transducer and a PDRC-1B readout/power supply unit 

with a precision of 0 .1 torr. Both the pressure transducer and the AsFs tank were 

connected to the line via separate metal-to-glass seals. Samples for exposure to AsFs 

were loaded in thick-walled glass, wide-bore doping chambers containing 0-ring seals 

and a PTFE valve to control gas flow. 

A typical doping experiment first involved degassing the entire line under 

dynamic vacuum up to the AsFs tank while heating the glass sections with heat guns. 

Under static vacuum, 300 torr of AsFs was slowly admitted into the line. The dopant was 

then condensed into a cold finger immersed in liquid nitrogen and degassed for 15 min 
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under dynamic vacuum. With the AsPs still frozen in the cold finger, the doping 

chambers containing the polyphenylene samples were attached to the line and thoroughly 

degassed under dynamic vacuum for approximately 30 min. With the entire system 

under static vacuum, the AsF s in the cold finger was allowed to slowly warm up to room 

temperature and fill the manifold and the doping chambers with a total pressure of 238 

torr of dopant. After approximately 50 min of exposure, the excess AsPs was condensed 

back into the cold finger. The cold finger was then detached from the line, and the excess 

AsPs was quenched with acetone while still in the solid or liquid state. The doped 

samples were degassed for a further 8- 10 h under dynamic vacuum to remove any traces 

of excess dopant before transferring them to the drybox for DC conductivity 

measurements. 

DC Conductivity Measurements 

All DC conductivity measurements on doped polyphenylene samples were 

performed in the drybox using a four-in-line probe system20 consisting of a Signatone 

four-in-line probe head (probe spacing of 0.15 em), a Signatone combination sample 

support/probe arm, two Kiethley Model 197 Autoranging Digital Multimeters, and a 

Power Designs Model 605 Precision Power Source. DC conductivity values (cr) were 

obtained by placing the four probes on the surface of the doped pellets or films, 

measuring the resulting current (i) and voltage drop (v), and applying these measurements 

to Eq. 2:20 

27tS v 
(2) cr = x 

This equation applies for samples thicker than the probe spacing (S).20 Sample 

thicknesses were measured with a Fowler Digitrix II electronic caliper for the pellets, or a 

Dektak 3030 profilometer for the supported thin films. Reported DC conductivity values 
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were an average of a series of measurements taken over a range of applied voltages (0.1-

1.5 V) from the power supply. Initial measurements were performed on a commercial Si 

wafer (a= 100-200 S/cm) to confirm the accuracy of the detection circuit prior to actual 

measurements on the doped samples. Generally, conductivity values lower than 1Q-7 

S/cm could not be measured accurately due to the limitations of the detection circuit. 

References and Notes 

(1) For a brief overview of this synthesis, also see: Gin, D. L.; Conticello, V. P.; 

Grubbs, R. H. J. Am. Chern. Soc. 1992, 114(8), 3167. 

(2) Polymer 1 is believed to be a highly isotactic or syndiotactic polymer with the 

repeat unit depicted in Figure 1. See Chapter 2 for the assignment of the structure 

of1. 

(3) Ballard, D. G . H.; Courtis, A.; Shirley, I. M.; Taylor, S.C. Macromolecules 1988, 

21,294. 

(4) Ballard, D. G. H.; Courtis, A.; Shirley, I. M.; Taylor, S.C. J . Chern. Soc., Chern. 

Commun. 1983,954. 

(5) McKean, D. R.; Stille, J. K. Macromolecules 1987,20, 1787. 

(6) Internal report from ICI Chemicals and Polymers Ltd., Runcorn, U.K., based on 

neutron-scattering analysis of the PPP performed at Durham University. 

(7) Gordon, A. J.; Ford, R. A. The Chemist's Companion; John Wiley and Sons: New 

York, 1972; p 189. 

(8) The differences observed between thin film and bulk pyrolysis of the PPP 

precursors may be the result of a surface effect. The crystalline surface of the 

NaCl transmission windows may enhance the aromatization of the thin precursor 

films. 

(9) TGA- MS analysis was performed by George Wilkinson at ICI Chemicals and 



180 

Polymers Ltd., Runcorn, U.K. 

(10) This onset temperature for backbone fracturing or depolymerization (Tr) is very 

similar to the ceiling temperature (T c) observed for many radically polymerized 

polyolefins. Tc is the temperature at which the opposing rates of polymerization 

and depolymerization are equal, and the monomer is in equilibrium with the 

polymer. (See: Odian, G. Principles of Polymerization, 2nd ed.; Wiley

Interscience: New York, 1981; pp 268-271.) In the case of the PPP precursors, 

however, use of the term T c is technically incorrect because at the temperatures 

employed for the pyrolysis process, any monomer regenerated by 

depolymerization is immediately decomposed to the more stable aromatic analog, 

as observed by MS. Consequently, once depolymerization begins, it is a one-way 

process, and a monomer-polymer equilibrium does not exist. 

(11) The preparation of 1 by treatment of the corresponding trimethylsilyl ether 

derivative with acetyl chloride and ZnCl2 is described in Chapter 2 of this thesis. 

(12) The preparation of polymer 1 by a Zn-free route is also described in Chapter 2 of 

this thesis. 

(13) Elemental analysis of thoroughly washed polyphenylene samples made using 10 

wt % ZnCl2 as an aromatization catalyst showed that the samples contain a large 

percentage of material which is neither carbon nor hydrogen and is assumed to be 

ZnCl2. Zinc analysis could not be performed on these samples due to their 

insolubility. 

(14) Wilson, D. R.; Jathavedam, H.; Thomas, N. W.; Contemporary Topics in Polymer 

Science; Salome, J. C.; Riffle, J. S., Eds. ; Plenum: New York, 1991; Vol. 7. We 

thank D. R. Wilson for a preprint of this article. 

(15) The greater temperature reduction effect observed for DCBSA is probably due to 

the fact DCBSA (dihydrate) melts at 71- 72 °C-and is thus better able to diffuse 

through the precursor polymer matrix at a lower temperature- than ZnCl2, which 



181 

melts at 283 °C. See: CRC Handbook of Chemistry and Physics, 65th ed.; Weast, 

R. C.; Astle, M. J.; Beyer, W. H., Eds.; Chemical Rubber Company: Baton 

Rouge, 1985; p C-122 and p B-159. 

(16) Elemental analysis of polyphenylene samples made using 5 wt% DCBSA showed 

that these samples contain only trace amounts of residual sulfur and chlorine (less 

than 0.5 wt %) after heating to a maximum temperature of 400 °C during 

pyrolysis. Also, TGA of DCBSA revealed that this acid is completely sublimed 

or boiled away at temperatures higher than 300 °C. ZnCl2 cannot be removed 

from the polyphenylene samples in the same manner because it boils at 732 °C, 

above the decomposition temperature of PPP itself. See: CRC Handbook of 

Chemistry and Physics, 65th ed.; Weast, R. C.; Astle, M. J.; Beyer, W. H., Eds.; 

Chemical Rubber Company: Baton Rouge, 1985; p B-159. 

(17) Lewis acids and BnJSnsted acids were also found to generally catalyze the 

aromatization of other ester-functionalized derivatives of 1 and 2, such as the 

stereoregular benzoate derivative of 1 described in Chapter 2. However, in terms 

of mass loss upon conversion to PPP, use of the acetoxy polymers 1 and 2 is still 

the most efficient route to PPP because acetic acid is the smallest acid that can be 

eliminated in the series of possible ester derivatives for the best weight yield upon 

aromatization. 

(18) Nonvolatile Lewis and Br~nsted acids were also tested on the other functionalized 

derivatives of polymers 1 and 2 mentioned in Chapter 2. They either have no 

beneficial effect on the pyrolysis process, or they only produce low quality PPP. 

For example, DCBSA and ZnCl2 have no effect on the pyrolysis of the 

methoxycarbonyl derivative of polymer 2 made by the ICI process (see references 

3 and 4). This pyrolysis of this derivative is base-catalyzed (see references 4 and 

14). ZnCl2 has no effect on the pyrolysis of the trimethylsilyl ether derivative of 

polymer 1, but strong Br~nsted acids catalyze the thermal hydrolysis of this 



182 

polymer to the corresponding stereoregular hydroxy polymer in the presence of 

trace amounts of water. Both DCBSA and ZnCh catalyze the thermal 

dehydration of the stereoregular hydroxy derivative of 1, but IR and TGA 

analyses indicated that only low quality PPP oligomers are formed by this 

process. 

(19) Kovacic, P.; Jones, M. B. Chem. Rev. 1987, 87, 357, and references therein. 

(20) Elsenbaumer, R. 1.; Shacklette, L. W. In Handbook of Conducting Polymers; 

Skotheim, T. A., Ed.; Marcel-Dekker: New, York, 1986; Vol. 1, Chapter 7, and 

references therein. 

(21) Speight, J. G.; Kovacic, P.; Koch, F. W. J. Macromol. Sci., Rev. Macromol. 

Chem. 1971, C5(2), 295, and references therein. 

(22) Noren, G. K.; Stille, J. K. Macromol. Rev. 1971,5, 385, and references therein. 

(23) Yaniger, S. I.; Rose, D. J.; McKenna, W. P.; Eyring, E. M. Macromolecules 1984, 

17,2579. 

(24) Murray, D. P.; Dechter, J. J.; Kispert, L. D. J. Polym. Sci., Polym. Lett. Ed. 1984, 

22, 519. 

(25) Barbarin, F.; Berthet, G.; Blanc, J. P.; Fabre, C.; Germain, J. P.; Hamdi, M.; 

Robert, H. Synth. Met. 1983,6, 53. 

(26) Brown, C. E.; Khoury, 1.; Bezoari, M D .; Kovacic, P. J. Polym. Sci., Polym. 

Chem. Ed.1982, 20, 1697. 

(27) Brown, C. E.; Jones, M. B.; Kovacic, P . J. Polym. Sci. , Polym. Lett. Ed. 1980, 18, 

653. 

(28) Typically, recycle delays of at least five times lH Tt are required to ensure 

complete relaxation of the magnetization between scans. See: Sanders, J. K. M.; 

Hunter, B. K.; Modern NMR Spectroscopy, A Guide for Chemists; Oxford 

University: Oxford, 1987, p 43. 

(29) Magnetic measurements were performed by S. Josh Jacobs at the California 



183 

Institute of Technology. 

(30) Carlin, R. L. Magnetochemistry; Springer- Verlag: New York, 1986; Chapter 1. 

(31) Allemand, P.-M.; Khemani, K. C.; Koch , A.; Wudl, F.; Holczerk, K.; Donovan, 

S.; Gruner, G.; Thompson, J. D. Science 1991,253, 301. 

(32) Davydov, A. S. Zh. Eksp. Teor. Fiz. 1948,18,515. 

(33) Suzuki, H. Bull. Chem. Soc. Jpn. 1969,33,109. 

(34) lbuki, E.; Ozasa, S.; Fujioka, Y.; Kitamura, H. Chem. Pharm. Bull. 1980, 28(5), 

1468. 

(35) Ozasa, S.; Hatada, N.; Fujioka, Y. ; Ibuki, E. Bull. Chem. Soc. Jpn. 1980, 53(9), 

2610. 

(36) lbuki, E.; Ozasa, S.; Murai, K. Bull. Chem. Soc. Jpn. 1975, 48(6), 1868. 

(37) Stenger-Smith, J. D.; Lenz, R. W.; Wegner, G. Polymer 1989, 30, 1048. 

(38) Bradley, D. D. C. J. Phys. D: Appl. Phys. 1987,20, 1389. 

(39) Attempts to fonn void-free, pressed powder pellets of the DCBSA- and ZnCh

catalyzed polyphenylene samples using a KBr pellet die and 1 os lbs applied load 

were unsuccessful. The powders could be compacted under pressure, but the 

resulting pellets would not hold together. Attempts to fonn void-fre.e pellets of 

the DCBSA- and ZnCl2-catalyzed polyphenylene samples by pyrolyzing the 

precursor/catalyst mixtures under pressure in a heated KBr pellet die also failed. 

The samples were simply extruded out of the pellet die as they aromatized. 

(40) Conductivities measured for compacted powder pellets of a polycrystalline 

material can be up to 100 times lower than that of a completely space-filled, 

single-crystalline material. See reference 20. 

(41) Kowalewski, J.; Levy, G. C.; Johnson, L. F.; Palmer, L. J. Magn. Reson. 1977,26, 

533. 

(42) Sullivan, M. J .; Maciel, G. E. Anal. Chem. 1982,54, 1615. 

(43) Swager, T. M. Ph.D. Thesis, California Institute of Technology, 1987. 



184 

SUMMARY OF THE PROCESS 

A New Route to Poly(p-phenylene): 
Stereoregular Precursors via Transition-Metal

Catalyzed Polymerization 
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1,4-Linked, stereoregular precursors to PPP are synthesized by transition-metal

catalyzed polymerization of heteroatom-functionalized 1 ,3-cyclohexadienes. cis-5,6-

Bis(trimethylsiloxy)-1 ,3-cyclohexadiene (TMS-CHD), a derivative of a microbial oxidation 

product of benzene, is polymerized stereospecifically by bis[(T\ 3_ 

allyl)trifluoroacetatonickel(II)] with yields up to 96%. Not only does this polymerization 

system afford a highly 1,4-linked, stereoregular polymer, but it also has the potential for 

molecular weight control. The resulting polymer, [1 ,4-poly(TMS-CHD)], is a soluble, 

processable, semicrystalline material. Although 1,4-poly(TMS-CHD) cannot be pyrolyzed 

to yield PPP directly, the trimethylsilyl ethers on the polymer can be transformed to better 

leaving groups such as acetates to give the corresponding stereoregular acetoxy polymer 

(100% acetylation; 93% overall yield). Due to the relatively low thermal stability of the 

stereroregular backbone, aromatization of this acetoxy polymer to high quality PPP 

requires Lewis or Br~nsted acid catalysts. Acids lower the onset temperature of the acid 

elimination process to a temperature regime well below that at which depolymerization can 

occur. The high quality PPP produced by the acid-catalyzed aromatization of the 
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stereoregular acetoxy polymer exhibits properties comparable to those of PPP samples in 

the literature. However, the material is completely amorphous whereas PPP samples made 

by other routes are almost always semicrystalline. Since the physical and chemical 

properties of PPP and many other conjugated polymers depend highly on sample 

morphology, processing techniques for this material will have to be developed before its 

optimum properties can be realized. Fortunately, our new route to PPP offers 

processability as well as a high quality product. 


