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ABSTRACT

This thesis contains the results of two investigations: one into the nature of
stars with degenerate neutron cores and the other into the interpretation of the
phenomenology of luminous low-mass X-ray binaries (LMXBs) displaying slow
quasi-periodic oscillations (QPOs) in their X-ray flux.

A star with a degenerate neutron core would be a red giant or supergiant. In
this thesis we investigate the structure of such a supergiant, particularly examining
the energy production and seeking an identifying observational signature. This
star is convective from near the photosphere down to the base of the envelope just
outside the degenerate core (radius 10 km). The star’s luminosity comes from
the rp-process in a convective burning region within 100 km of the base of the
envelope. The convection brings fuel for the rp-process into the burning region
from throughout the envelope and deposits the products of rp-burning back into
the envelope, including the photosphere. After about 10° years, the abundances
of Br, Rb, Y, and Nb at the surface of the star will be about 200 times greater
than their solar abundances, and that of Mo, over 1000 times solar. A suitable
observational signature would be the strong enhancement of absorption lines for
these elements in the star’s spectrum. As many as 10 of the nearest 100 red
supergiants (those within 5 kpc) could have neutron cores.

The other investigation concerns a model of rapid accretion onto an unmag-
netized neutron star with radius somewhat less than 6GM/c?. This model is
applied to the phenomenology of a class of LMXBs displaying slow (~ 6 Hz)
QPOs in X-ray flux. These sources are highly luminous (approximately Edding-
ton) and display what appears to be three modes (“branches”) of accretion. In
this model, at low accretion rates, the neutron star lies within the inner edge of
the accretion disk, and matter is dripped onto the neutron star from the inner
edge. As the accretion rate increases, the transition from the “horizontal branch”
to the “normal branch” occurs when the disk thickens and its inner edge touches
the star and forms a boundary layer. The formation of a boundary layer changes

the structure of the inner disk and the spectral character of the escaping X-rays.
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The transition from the normal branch to the “flaring branch” occurs when the
boundary layer covers the whole surface of the neutron star and radiation escapes
primarily through convective instabilities. This thesis presents an exploration of
this model, with an emphasis on establishing the plausibility that a neutron star
could indeed lie inside an accretion disk accreting at the observed rate and that a
change of mass accretion rate could push the inner radius onto the surface of the

star.
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Chapter 1

Introduction

Short history of the discovery of degenerate neutron matter

In 1932 Chadwick brought to a favorable end the speculation about the ex-
istence of neutrons by producing them in his laboratory. Shortly thereafter two
groups independently proposed the existence of gravitationally bound neutron
degenerate matter (i.e., what we now call a neutron star) in two astrophysical
contexts. Baade and Zwicky (1934) proposed (prophetically, it turns out) that
a supernova marks the transition from an ordinary star to a neutron star, and
Landau (1937) proposed that a degenerate neutron core could lie in the sun and
that the sun’s energy could derive from matter falling onto this core (accretion).
As a model for the sun, this idea has not prevailed, but we will have plenty to say
in this thesis about neutron cores in the center of stars.

During the next thirty years, before any explicit identification of a neutron
star, there was some small but sustained theoretical interest in neutron stars in
the context of determining the destiny of massive stars. Less massive stars, like
our sun, end up as lumps of gravitationally bound electron degenerate matter,
but not all stars can end up this way. It slowly became clear that more massive
stars end up as neutron stars and the most massive stars as black holes. (But
they are not part of our story.) Oppenheimer and Serber (1938), Tolman (1939),
and Oppenheimer and Volkoff (1939) worked out an approximate structure of a
neutron star and set bounds on the minimum and maximum allowable masses.
The destiny of stars interested J. A. Wheeler, Ya. B. Zel’dovich, and others in
the 1950s and 60s, and they sought to improve the nuclear equation of state and
refine the calculation of the structure of a neutron star.

Confirmation by observation was to take longer for neutron stars than for

neutrons, and it is difficult to point to a single event as the first definitive ob-
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servation of a neutron star. For instance, although Baade (1942) and Minkowski
(1942) correctly identified the power source of the Crab nebula, they incorrectly
identified it as a white dwarf, this despite the fact that the Crab nebula was known
to be a supernova remnant and Baade proposed in 1934 that a supernova produces
a neutron star. A turning point in neutron star observation came in 1962 when
Giacconi et al. announced the discovery, using Geiger counter detectors aboard
an Aerobee rocket, of non-solar X-rays. The source is now known to be Sco X-1,
a bright low-mass X-ray binary (LMXB) (and we will have more to say about
LMXBs in this thesis as well). This discovery fueled interest in neutron stars,
since many theorists thought (incorrectly) that the X-rays could be coming from
a cooling neutron star.

The discovery of a pulsar in 1967 (Hewish et al. 1968) and its subsequent
identification as a magnetized rotating neutron star brought about an explosion
of interest in neutron stars. Since then there have been some thousands of pa-
pers written on almost every imaginable aspect of a neutron star’s existence: on
their creation in supernovae (and possibly in accretion-induced collapse of white
dwarfs), on their structure, on their evolution, including magnetic field decay, spin
down, and star quakes, and on their behavior in binary systems and in interstellar
encounters.

The chapters in this thesis represent a small part of the interest generated by
neutron star observations. The first three chapters are concerned with Landau’s
idea of a degenerate neutron core in the center of a star, this time applied not to
the sun but to red supergiants. The fourth is concerned with the phenomenology
of certain X-ray sources, those in which the neutron star has a low-mass companion

and whose X-ray luminosity displays slow quasi-periodic oscillations.

Stars with degenerate neutron cores

In the thirty years following 1932, while several researchers slowly developed
the proposal of Baade and Zwicky, that is, a neutron star as an end stage in a
star’s life, everyone more or less forgot the idea of Landau. One reason was that

Oppenheimer and Serber (1938) showed that the sun could not possibly contain a
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degenerate neutron core. Soon the idea prevailed that nuclear fusion provides the
energy of the sun (Bethe 1939). Furthermore, as researchers were struggling to
understand the events in the life of a star, at no time did a star with a degenerate
neutron core appear in their calculations. Except for Fermi’s speculation in the
1950s, that such a star—if it existed—would be a red giant, there is no mention
of the idea that anyone recalls before the 1970s.

Then in the early 1970s B. Paczynski suggested to A. Zytkow that she use
formalism developed for the study of red giants to investigate the idea of a star
with a degenerate neutron core. She enlisted the aid of K. Thorne to work out the
relativistically correct stellar structure equations, and together they worked out
the details of the interface between the neutron degenerate region and the envelope
(Thorne and Zytkow 1975, 1977). For this reason these objects are now called
Thorne-Zytkow objects or TZOs. They actually found two classes of solutions for
the structure of such stars: TZ giants and TZ supergiants.

T7Z giants function more or less like Landau had envisioned. A large tenuous
envelope lies on top of an electron degenerate region surrounding a neutron de-
generate core. Material gradually accretes onto the core and thus releases energy,
and the resulting radiation pressure holds up the envelope. Thorne and Zytkow
constructed models for stars with a core mass of 1 M and total mass between 3
Mg and 9 M. For total masses less than about 3 M the envelopes are proba-
bly not stable to radial oscillations, and there is no equilibrium solution with the
above description for stars with total mass greater than 9 M.

They found that if there existed a solution for the structure of such a star
with mass greater than 9 Mg, (a TZ supergiant), then it would have to have the
following unusual properties: The envelope would be deeply convective, almost
all the way down to the neutron core. Nuclear burning would occur in the lowest
several convective cells in the envelope, those hot enough to have a profusion of
electron-positron pairs, and this nuclear burning would provide most (~ 90%)
of the luminosity of the star. After a parcel of material had burned its nuclear

fuel, it would generally be swept by convection back into the envelope rather than



accreting onto the core.

Interest in TZOs began to grow in the 1970s for several reasons. By this time
theorists were becoming pretty confident of the story of the life history of a star,
at least in outline, and so some theorists were beginning to turn their attention to
the more complicated stories of binary systems and of stellar encounters. Besides,
more data on binary systems was becoming available from X-ray observations
made by satellites launched in the 1970s; these provided evidence for the existence
of binary systems consisting of a neutron star and an ordinary star in a close orbit.
It became natural to ask the question, what is the destiny for a system like Cen
X-3? Cen X-3 consists of a neutron star (~ 1.4 M) and an ordinary star (~
20 M) with an orbital radius (P = 2.1 days) which is much smaller than the
radius of a red giant. The ordinary star must eventually enter a red giant phase.
What will happen then? Ostriker and Paczynski (1975, private communication)
suggested that this star might engulf the neutron star, which then would spiral to

the center, forming a star with a degenerate neutron core.

It now looks as if the fate of a star which swallows a neutron star depends
on when the star swallows it. Taam et al. (1978) used a one-dimensional hydro-
dynamic code with dynamic friction and traced the evolution of a star’s envelope
(16 M) from the time when a point mass (the neutron star, 1 M) has just
entered the envelope to the time when it is very close to the center. (The initial
and final stages are far more difficult to study.) They found that if the initial
orbital period is less than about 120 days, then the envelope is always able to
radiate energy away as fast as the neutron star deposited energy into it. If, how-
ever, the initial period is greater than 120 days, then the star is somewhat evolved
when its surface encounters the neutron star and the interior envelope density is
lower than in the previous case. During the last stages of spiral-in, the density is
too low to efficiently carry away the deposited energy, and the energy goes into
ejecting the envelope. It seems likely, then, that a system like Cen X-3, with a
period of 2.1 days, would eventually form a TZO. Further studies in the process of

spiral-in, using a two- and three-dimensional analysis, are currently being carried
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out (Taam, 1992, private communication) and these should clarify the issue.

Also in the 1970s, Fabian, Pringle, and Rees (1975) introduced the idea of
producing exotic objects (in their case, X-ray sources) in stellar collisions or near-
collisions (with tidal effects) in globular clusters. Hills (1976) extended this idea
to the interaction of a field star and a binary system. Hut and Paczynski (1984)
suggested that TZOs could result from such an encounter. In their model the
field star perturbed the binary in such a way as to cause runaway mass transfer
and coalescence. Krolik (1984) discussed the creation of massive nonequilibrium
accretion disks about neutron stars and analyzed the number and appearance
of such systems. Ray, Kembhavi, and Antia (1987) return to the idea of nearly
colliding single stars, this time a neutron star and ordinary star. Among the
possible outcomes they include a detached binary, an X-ray binary, a neutron star
with an accretion disk, and a TZO. Recently Davies, Benz, and Hills (1991) have
used smooth particle hydrodynamics (SPH) to investigate the collision between a
point mass (e.g., a neutron star) and a red giant and have found that the system
often forms a common envelope, possibly resulting in a TZO. It is possible that
the TZOs could eventually become millisecond pulsars, which are observed in
globular clusters and whose origin has been controversial. Whereas T 7.0s formed
in binary systems are likely to be massive, the TZOs formed by a collision in a
globular cluster are light and possibly subject to instabilities.

So interest grew in TZOs during the 1970s, but not everyone welcomed the
reintroduction of stars with degenerate cores into scientific thought. In 1984,
Bisnovatyi-Kogan and Lamzin took issue with the boundary condition at the
neutron star-envelope interface used by TZ, saying that the idealized boundary
condition artificially suppressed the production of neutrinos in TZ giants. They
claimed that an envelope about a neutron star would necessarily collapse onto the
neutron star in a shower of neutrinos and that there are not equilibrium solutions
to the stellar structure equations once neutrino production is taken into account.

Eich et al. responded in 1989 with a more careful treatment of the neutron

star-envelope interface, demonstrating the existence of an equilibrium solution for
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T2 giants. Questions of stability are still open, however, and some people still
believe that a TZO would collapse in a shower of neutrinos (G. S. Bisnovatiyi-

Kogan and S. Colgate, private communication).

Meanwhile, M. Zimmermann (1979) was working on a more serious flaw in
the models of TZ supergiants. When they constructed their supergiant models,
T7Z used a standard expression for nuclear energy production which was derived
assuming that a parcel of material had a constant density and temperature and
that 1N + p — 150 + v was the limiting reaction. Because the burning region in
T7Z supergiants is convective, so that a parcel of material experiences rapid change
in density and temperature, and because the timescales for convective turnover
and beta decay are longer than for proton addition onto *N, the expression used
in TZ was clearly not applicable. (TZ were aware of this flaw, but they produced

models in order to give some idea as to how they might look.)

Zimmermann searched for a consistent model for a T Z supergiant with total
mass 16 Mg and a 1 Mg core. He addressed the problem of modeling a convec-
tive burning region by solving the physical structure (density and temperature as
a function of radius) and the nuclear-abundance structure (nuclear abundances
as a function of radius) separately. An integration of the stellar structure equa-
tions yields a one-parameter family of envelopes in the (Lpn,Tpn) plane which
have a 1 My core. Given a particular envelope, he first determined the physical
structure. He then determined the nuclear-abundance structure using diffusion
equations, setting a generalized diffusion constant (to order of magnitude) equal
to the product of convective velocity and pressure scale height (as a function of
radius). The boundary condition at the base of the envelope was determined in
a complicated way using an extensive nuclear reaction network (hot CNO) for
the isotopes with Z < 11. Given a nuclear-abundance structure, he calculated
the luminosity produced at the base of the envelope Lyy.. A consistent model is
obtained if Lpyc = Lpn for one of the envelopes. He found that as long as he kept
the temperature at the base of the envelope less than 2 x 10° K (above which
the hot CNO reactions are not applicable) he always obtained Lyyc < 0.05Lpy, so



that he did not find a consistent model.

Chapter 2 of this thesis continues the search for a consistent model for a T Z
supergiant. We use Zimmermann’s stategy of solving the physical structure and
nuclear-abundance structure separately, but we now employ a nuclear reaction
network appropriate for a hydrogen-rich environment with T' > 10° K, that is, the
rp-process (Wallace and Woosley 1981). In this model convection carries down fuel
(C, N, O, and H) from the outer envelope. In the burning region at the base of the
envelope the temperature and density are high enough that the CNO fuel nuclei
break out of the CNO cycle into the rp-process. In the rp-process nuclear seeds
(initially C, N, and O) undergo alternately proton addition and positron decay
until heavy elements are produced (heavier than Fe). In the star this happens like
this: Convection carries down a seed nucleus (any nucleus with Z > 10) to the
burning region at the base of the envelope. It quickly burns by proton addition
to a proton-rich species at the proton drip line. Since no further strong reactions
may occur, convection sweeps the seed back out into the cooler portions of the
envelope. It random walks around (because of convection) until it decays. If the
decay time is short, then the decay probably occurs at a small radius, and the
seed is likely to random walk back to the burning region to add more protons
and produce more energy. On the other hand, if the decay time is long, then the
decay probably occurs at a large radius, and the seed is more likely to random
walk to the surface of the star than back down to the burning region. Chapter 2
answers in the affirmative the question, is this process efficient enough to produce
the energy required to maintain the distended envelope? That is, we present a
model for which Lyye = Lph.

The convection of some long-lived proton-rich species to the surface of the
star, although bad news for sustaining the rp-process and producing energy, is
good news for providing an observational signature for a T 7 supergiant. The re-
action network used in Chapter 2 was adequate to predict the dominant source
of energy for the star, but in order to predict surface abundances on a T Z super-

giant, we needed to improve the nuclear physics. In Chapter 3 we present part of
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the improvement in the nuclear physics: a calculation of the halflives of several
proton-rich beta-unstable species using the random phase approximation with the
quasiparticle formalism. In Chapter 4 we use the new halflives and improve other
nuclear physics in order to predict the surface abundances of elements heavier
than Fe.

In Chapter 4 we determine that the abundances of Mo, Ru, Rh, Pd, and Agon
the surface of a TZ supergiant should be over 1000 times their solar abundances.
The abundances of these elements determines the strength of absorption lines
in the star’s optical spectrum. Current technology in optical spectroscopy can
easily achieve the spectral resolution necessary to measure these abundances and
determine whether a red supergiant has a nondegenerate core (i.e., a “normal”
supergiant) or a neutron degenerate core (i.e., a TZ supergiant). It is hoped that

this work will lead to an observational project which will identify a T ZO.

Low-mass X-ray binaries exhibiting quasi-periodic oscillations

Whereas the subject of TZOs consists of theory but no direct observations
(yet), the subject of low-mass X-ray binaries is rich in observations and phe-
nomenology but lacking in a comprehensive theory which would explain the ob-
servations. In the early 1980s it became clear that there were two populations
of galactic X-ray sources. (See White and Mason 1985 for an early review.) The
one population consists of about 150 sources (100 of which are transient) whose
ratio of X-ray luminosity to optical luminosity is less than 1, which have longer
periods (2-300 days), which are found in the galactic disk among older (Popula-
tion I) stars, and which occasionally have X-ray pulsations and eclipses. It was
soon realized that the companion in these systems is a massive (2 16 M) main
sequence star (O, B, or Be), hence the name high-mass X-ray binary (HMXB).
The other population consists of about 100 sources whose X-ray luminosity far ex-
ceeds their optical luminosity by a factor of 10-1000, which are faintly blue in the
optical, which have short periods (4-48 hours), which are found primarily in the
galactic bulge but also in globular clusters among younger (Population II) stars,

and which do not eclipse or pulse. In these systems the companion is a low-mass
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(<1 Mg) (F, G,) K or M star, hence the name low-mass X-ray binary (LMXB).
Because LMXBs show no pulsations, it is generally assumed they have small mag-
netic fields (< 10! gauss); however, several have shown cyclotron lines, indicating
a ~ 10'? gauss magnetic field (Her X-1, Mihara et al. 1990; 4U 0115463, Nagase
et al. 1991; 4U 1538—52, Clark et al. 1990; V 0332453, Makishima et al. 1990;
Cep X-4, Mihara et al. 1991; among others)

The origin of LMXBs has proved quite a puzzle: How can the orbital radius
lie not only within the radius of the red giant precursor to the neutron star but
often within the radius of the massive main sequence precursor to the red giant?
One creation scenario (van den Heuvel 1983) begins with a wide binary with
stars of somewhat disparate masses. When the more massive star becomes a
red giant, it swallows the less massive star, which spirals toward the center and
ejects the red giant envelope during the final stages of spiral-in, thus forming a
helium star and the less massive main-sequence star. The helium star undergoes
supernova, and the resulting binary system circularizes via tidal interaction. A
LMXB forms when the main-sequence star overflows its Roche lobe. A second
creation scenario begins with a similar wide binary which becomes a white dwarf
and main-sequence star after the spiral-in and envelope ejection. When the main-
sequence star overflows its Roche lobe, the white dwarf accretes enough matter to
exceed the Chandrasekhar limit and it collapses to a neutron star, thus forming a
LMXB after circularization. The third creation scenario (Eggleton and Verbunt
1986), also the most exotic, begins with a triple system: a massive close binary
and a circumbinary low-mass main-sequence star. The massive close binary forms
a TZO in a way we have discussed before. This TZO swallows the low-mass star,
which spirals in and ejects the TZO envelope, thus forming a LMXB.

The LMXBs naturally divide into two luminosity clases (van Paradijs and
Lewin 1986): The lower-luminosity objects (103¢-37 erg s—1) are generally bursters
(which produce continuous X-rays punctuated by bursts) and soft X-ray tran-
sients. The ~10 higher-luminosity objects (> 1038 erg s~!) are continuous sources

of a wide spectral range of X-rays. Of these 10 there are 6 whose X-ray flux dis-
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plays quasi-periodic oscillations (QPOs) at 6-60 Hz. The fifth chapter of this
thesis is concerned with this final class of objects.

The following picture of LMXBs with QPOs gradually emerged in the years
1971-1987: When the X-ray flux from an individual source is plotted on a two-
color diagram over a period of 1-10 hours, the flux traces a one-parameter locus
resembling a stylized Z (see Figure 1 of Chapter 5 or Figure 1 of Hasinger 1988).
Actually, most sources trace only two strokes, or “branches”, of the Z, but Cyg
X-2, Sco X-1, and GX 1742 have shown activity on all three branches. It turns
out that the phenomenology of a source depends on what branch of the Z it is
on: the horizontal branch (HB, the top stroke), the normal branch (NB, the cross
stroke), or the flaring branch (FB, the bottom stroke). It is believed that the
position on the Z is governed by the mass accretion rate, and that accretion rate
increases in the direction one would normally draw a Z (Vrtilek et al. 1991). The
mass accretion rate is on the order of the Eddington limit, and the full range of
the Z represents about a factor of 2 in mass accretion rate.

The Fourier spectrum of the X-ray intensity roughly follows a power law from
1072-102 Hz on all three branches. In addition, however, on the HB there is an
excess of power in the range 0.1-10 Hz, called the low-frequency noise (LFN). And
there is a low-Q (Q ~ 4-9) quasi-periodic oscillation (HB QPO) whose frequency
varies from 10 to 60 Hz positively correlated with the mass-accretion rate. This
oscillation has been seen on occasion at the top of the NB (Hasinger et al. 1990).
A possible clue to the origin of these QPOs is the fact that the hard X-ray photons
trail the softer X-ray photons by 0.2-4 ms (“hard lag”). It is believed that some
softer photons are scattered up in energy by hot electrons. (See Hasinger 1986
and van der Klis et al. 1987.)

On the NB there is no LFN; in fact, the LFN cuts off abruptly and dramati-
cally (< 200 s) as a source moves from the HB to the NB (Hasinger 1988). On the
middle and lower portion of the NB there is a ~ 6 Hz quasi-periodic oscillation
(NB QPO). That there are two mechanisms for these oscillations was confirmed

by the occasional simultaneous observation of both (Hasinger et al. 1990 and ref-
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erences therein). In the case of NB QPOs the hard photons trail the softer X-ray
photons by about 80 ms. Also, most of the oscillation occurs in the harder pho-
tons (2 9 keV). (See Mitsuda and Dotani 1989.) On the FB there is sometimes
a QPO which, it is conjectured, has the same mechanism as the NB QPO. The
correlation of QPO frequency (6-10 Hz) with intensity is, however, erratic. There
is no LFN.

Two (related) theories have been developed to explain the QPOs on the HB
and NB. In the beat-frequency model (BFM) (Alpar and Shaham 1985, Lamb et
al. 1985, Shibazaki and Lamb 1987), which applies to the HB QPO, the neutron
star has a magnetic field and matter is accreted from lumps which form by some
instability at the Alfvén radius. Accretion is facilitated when the magnetic field
lines up with a lump, so that the QPO frequency is given by the difference of the
orbital frequency at that radius and the neutron star spin frequency (hence, the
beat frequency). As the accretion rate increases, the Alfvén radius shrinks and the
QPO frequency increases. A problem with this theory is that the fundamental
spin frequency has not been observed in the QPO sources. Also, the lumps of
material need to have a lifetime of at least several orbital times, and it is difficult
to see how they could avoid getting sheared into smoothness in much less than an
orbital time.

Another theory, applying to the NB QPO, holds that the neutron star is
surrounded by a hot spherical corona, in addition to a thin accretion disk (Lamb
1989, Fortner et al. 1989, Miller and Lamb 1992). The mass accretion rate from
the corona is modulated by an overstable variation in opacity in the corona at a
radius of about 300 km. That is, an increase in accretion rate causes a shower of
photons at the neutron star surface. These photons stream outward and interact
with the infalling matter at ~ 300 km, choking off the inflow and decreasing the
accretion rate. This happens in an overstable manner in order to create the NB
QPO. It is not clear how much tuning is needed in this model in order to obtain the
relatively constant ~ 5-7 Hz observed among several sources. Other models have

been proposed (Alpar et al. 1992) involving slow oscillations in a thick accretion
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disk.

In Chapter 5 we propose a different model from the above. In this model
the three branches of the Z represent three modes of accretion, and transitions
among branches correspond to changes in the interface between the star and the
accretion disk. We propose that the neutron star lies within the inner radius of
the accretion disk on the HB, and matter is dripped onto the neutron star from
the inner edge. (See Kluzniak and Wagoner 1985, Kluzniak and Wilson 1991,
Sunyaev and Shakura 1986, and Shakura and Sunyaev 1988.) As the accretion
rate increases, the transition to the NB occurs when the inner edge of the accretion
disk touches the neutron star and forms a boundary layer. As the accretion rate
increases further, the boundary layer becomes thicker. The transition from the
NB to the FB occurs when the boundary layer covers the whole surface of the
neutron star and radiation escapes primarily through convective instabilities.

Chapter 5 is an exploration of this model, with an emphasis on establishing
the plausibility that a neutron star could indeed lie inside an accretion disk accret-
ing at the observed rate and that a change of mass accretion rate could push the
inner radius onto the surface of the star. We also speculate as to how this model

could produce the observed spectral pattern (Z shape on the two-color plot).
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Chapter 2
High-Mass Stars with Degenerate Neutron Cores

Garrett T. Biehle

Adagio
Except for the addition of several paragraphs and tables in this thesis, this chapter
originally appeared in Astrophysical Journal, 380, 167 (1991).
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1. Introduction and summary

Work on stars with degenerate neutron cores has waxed and waned ever since
these stars were proposed in the 1930s. Early work includes that of Gamow (1937)
and Landau (1937). Later (c. 1950), Fermi (unpublished) speculated that such
stars would be red supergiants. The first detailed analysis of steady-state models
of massive stars with degenerate neutron cores was performed by Thorne and
Zytkow (1977, hereafter TZ). They confirmed Fermi’s speculation, finding that
such stars with masses between 3 and 25 My would have luminosities between
30,000 and 130,000 L and surface temperatures between 2600 and 3100 K. These
features are common to any star with a 1 M compact core and inner temperatures
hot enough to ignite nuclear burning. Such a star would look very much like a
red giant with a degenerate electron core, residing in the HR diagram just on the
stable side of the Hayashi forbidden region.

In their work Thorne and Zytkow built successful models (which they called
“giants”) for stars with total mass less than 9 M and a core mass of 1 M. The
luminosity of these giant stars was produced almost entirely by gradual, steady
accretion of the envelope onto the core, though there was a small contribution
from nuclear burning.

Thorne and Zytkow did not, however, succeed in building fully satisfactory
models for stars more massive than 9 M g with 1 M neutron cores. They showed,
however, that such stars (which they called “supergiants”) (1) must have lumi-
nosities in excess of 70,000 Ly, (2) cannot produce their required luminosities
primarily by gradual, steady accretion onto the core, and (3) might be able to
produce their luminosities primarily by nuclear burning, but only if convection
extends continuously from the base of the nuclear burning region (just above the
core) out to the star’s photosphere. (In §2.1 we shall review the Thorne- Zytkow
proof of these properties.) Thorne and Zytkow built a set of admittedly flawed
models of such stars, based on normal CNO burning without proper account of
the convection sweeping material into and out of the burning region. These mod-

els had masses greater than 12 M. No models were found in the “mass gap”
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between 9 and 12 Mg.

Zimmermann (1979) tried to correct this flaw in TZ by building supergiant
models based on the hot CNO cycle and a convective burning region, but these
models failed. (See also the summary of Zimmermann’s work in Eich et al. 1989.)
The failure had two causes: (1) The fuel was cycled into and out of the burning
region so rapidly that there was inadequate time for the hot CNO cycle’s beta de-
cays to go to completion in the burning region. By the time the beta decays were
complete, most of the fuel was back up at such great radii and low temperatures
that it could not undergo the strong-interaction part of the cycle. (2) This imped-
iment to the hot CNO cycle was partially circumvented (the energy generation
was increased) by pushing the burning region to higher and higher temperatures,
but long before the energy generation was great enough to support the star, the
temperatures were so high that the burning broke out of the hot CNO cycle and
into the rp-process (i.e., the rapid-proton process) (Wallace and Woosley 1981).

This paper takes up the next step, constructing models with a convective
burning region based on the rp-process. These models are spherically symmetric,
nonrotating, nonmagnetic, nonaccreting, and Newtonian. As such, the models
have systematic errors of about 10% and are meant to elucidate only the essential
features of such a star. The bottom line of the analysis is that rp burning can
indeed provide the required luminosity when the envelope mass is above the upper
edge of a mass gap (Meny > Mypper ~ 16 Mg). More specifically, the analysis
produces self-consistent stellar models with the following type of structure:

Near the base of the envelope, temperatures are on the order of 10° K; densi-
ties, 10* g cm™3; and typical turbulent (convective) velocities, 107 cm s~!. Con-
vective mixing brings fresh material down from the outer layers of the envelope
and takes burned material and reaction intermediates away from the inner layers.
In the hot, innermost several tens of kilometers of the envelope, temperatures and
densities are such that protons are rapidly pushed onto the nuclei, thereby build-
ing up heavier and heavier metals in a nonequilibrium process. Enough energy is

thereby produced to maintain the convection and supply the luminosity radiated
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from the photosphere.

The convection, which extends from the base of the burning region all the way
out to the photosphere, carries rp-process reaction products into the photosphere,
where they might be observable. The most promising spectral feature of these
reaction products is the rotational structure of absorption lines from hydrides of
certain heavy, proton-rich nuclei. A promising example is #¢SrH. Observation of
such a molecule on the surface of a red supergiant star would be strong evidence
that the star has a degenerate neutron core rather than an degenerate electron
core. Another diagnostic would be an overabundance of several elements with
32 < Z <40 on the surface of the star, although precisely which elements would
be difficult to determine. (However, see Chapter 4 of this thesis.)

The prospects for discovering such stars depend on their rate of formation
and their lifetimes. The formation of such stars (if they ever form at all) is poorly
understood. The most promising mode of formation is in massive binary systems,
where the more massive star evolves into a neutron-star state and then might be
captured by and sink into the core of its companion. See Taam, Bodenheimer,
and Ostriker (1978); Taam (1979); Hut and Paczyniski (1984); Cameron and Iben
(1986); and Ray, Kembhavi, and Antia (1987) for some discussion. The formation
rate by this process is presumably far lower than the rate of formation of normal
red supergiants, i.e., with degenerate electron cores.

The rp burning phase terminates with exhaustion of the envelope’s supply
of light metals (12C, !N, and '60), which act as seeds for the rp-process. If the
envelope abundances are Population I (say, 2% light metals by mass), then the
duration of the rp burning would be about 1 x 108 yr for a 16 Mg star (roughly
the same as the life of a red supergiant with degenerate electron core). If earlier
phases of evolution have enhanced the light-metal abundance beyond Population
I, the rp phase would be correspondingly longer.

The star’s fate, after exhausting its light metals, is far from clear. If no
other source of energy can be tapped, then the envelope presumably will collapse

onto the core, and the star, as a red supergiant, will be extinguished; however,
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(as E. Salpeter 1990, private communication, has pointed out) the star might be
able to tap its huge store of gravitational energy by means of nonsteady and/or
nonspherical accretion of the envelope onto the core, an accretion in which the
inner portion of the envelope might undergo relaxation oscillations, while the
outer envelope remains little changed from the earlier, rp burning phase. If this
happens (and if the envelope has not long been driven away by stellar winds),
then its lifetime as a star with peculiar abundances could be extended by an
additional ~ 2 x 107 yr. It is unlikely that these lifetimes are enough larger than
those of a normal red supergiant with degenerate electron core to compensate for
a far smaller formation rate. Accordingly, at most only a small fraction of the red
supergiants in our Galaxy are likely to have degenerate neutron cores.

Almost all of this paper is devoted to building models for the envelope of a
star with total mass 16 M and with a 1 Mg core. We begin, in §2, by laying
foundations for the model building. Specifically, we sketch a derivation of the
three properties of such a star that were discussed in the third paragraph of this
section. Then we argue that if we want to establish that such a star can be
supported by nuclear burning, then we need not build models for the full star
but only build models of the envelope, from the base of the burning region (just
above the degenerate neutron core) out to the photosphere. We argue that an
appropriate stategy will entail splitting the envelope’s structure into two parts:
its physical structure and its nuclear-abundance structure with associated nuclear
energy generation.

In §3 we build a one-parameter family of models for the physical structure
(density, temperature, turbulent velocity, and so on) of the star’s envelope under
the idealized assumption that the star’s luminosity is all generated in an infinites-
imally thin region at the base of the convective zone (bottom of the envelope).
Each model is for a 15 M envelope that joins smoothly onto a 1 Mg core. The
models differ slightly in their total luminosities but differ greatly in the tempera-
ture and density of the energy-generation region.

In §4 we build a first model for the nuclear-abundance structure and its nu-
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clear energy generation for each of the envelopes constructed in §3. Zimmermann’s
models failed because the long beta decays required by the hot CNO cycle pre-
vented sufficient energy generation. Consequently, in this section we investigate
whether the rp-process is plagued by the same difficulty. Energy generation is
assumed to occur in the infinitesimally thin base of the convective zone, and the
radial distribution of nuclear abundances is computed using a simple diffusion
equation for material transport and using a simplified rp reaction network. From
the radial distribution of abundances, we compute the total nuclear energy gener-
ation. One envelope is found (with luminosity 88,600 L) which is self-consistent,
that is, the computed nuclear energy generation is equal to that required by the
model’s physical structure. We argue that the long beta decays do not prevent the
rp-process from producing the required energy, even when the model’s idealizing
assumptions are relaxed.

In §5 we relax one of the idealizing assumptions in §4, that is, that the energy
is produced in an infinitesimally thin region. Using the physical envelopes of §3, we
compute the radial distribution of the energy generation by letting the rp-process
occur at several radii in the envelope. (In order to keep the model tractable, we
no longer consider all the beta decay parents of §4, thus idealizing what we once
investigated.) We find the local luminosity as a function of radius and discover
that the resulting local luminosity is still everywhere in the envelope great enough

to power the convection (this is a vital check on self-consistency).

In §6 we input the local luminosity function from §5 back into our calculation
of the physical model, thereby relaxing the physical model’s idealization of energy
generation in an infinitesimally thin region. The new physical model is then
used as the foundation for a new nuclear-abundance model, and the new nuclear-
abundance model is found to be nearly the same as that in §5. This means that
we have achieved our goal: We have constructed mutually consistent physical and
nuclear-abundance structures for a 16 M star with a 1 M core with properties
consistent with the discussion in §2. Several properties of this model are briefly

discussed.
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In §7 we discuss the possibility of using spectral lines from the hydrides of
rp-process nuclei to distinguish such a star from one with a degenerate electron

core. Finally, in §8 we give a brief, concluding summary.
2. Foundations of supergiant models

This section describes general features that any supergiant star with a de-
generate neutron core must have and sketches a general strategy for constructing
such models.

We seek spherically symmetric, nonrotating, Newtonian models without mag-
netic fields, which are in slowly evolving steady states (i.e., which have density,
temperature, and nuclear abundances varying on time scales long compared with
the star’s hydrodynamic and thermal diffusion times). Specifically, we seek such
models for a star of mass 16 Mg with a 1 Mg core. Constructing such a model
consists of determining density, temperature, and nuclear abundances as functions
of radius (and only weakly as functions of time). We shall see that it is enough to
determine these quantities for the region extending from just outside the core to
the surface of the star. We will define the “edge of the core” to be the radius at
which significant energy production and thus convection begin (called the “knee”
in TZ).

2.1. General features

First we ask the question, if a model of the type described above is to exist,
what features must it incorporate? We will find that a model must have the
following characteristics: 1) The local luminosity L, (luminosity flowing across a
shell of constant radius 7) must rise very quickly to about the star’s full luminosity
just outside the degenerate region of the core. 2) Most of this luminosity must be
provided by nuclear reactions. 3) Convection must extend from the photosphere
into the hydrogen burning region, so the nuclear reactions are in nonequilibrium.
These three characteristics can be seen from the following arguments, summarized

from TZ.
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The force balance equation for the plasma gas is

dP;, GM;p kpLred
dr 72 + 4mer? = (1)

where r is the radius, Pg is pressure due to the plasma (gas), M, is the mass
contained in radius 7, p is the density, k is opacity (due to Compton scatter-
ing), Li*d = L, — L™ is local radiative luminosity, and LS°™Y is the convective
luminosity. This force balance equation can be rewritten as follows:

dP,  GM,p ( A L;=d>

dr o Lgrit

(2)

where LMt = 47rcG M, /k. The symbol L&t is the Eddington critical luminosity,
that is, the luminosity at which radiation pressure balances gravitational attrac-
tion. Using the ideal gas equation
i
p, = Pl
ey

where kg is the Boltzmann constant, p. is the mean molecular weight (unitless),

and my; is the mass of the hydrogen atom, we obtain for the pressure scale height

! Fe
pres = T 4P, /dr

_ex10-t) (<T) (1) (r) (M) T (o BT
=R r)(109K)(pe)(10km)(M@> l_Lgfit ‘

In order to have an extended envelope, we must have /;;es be on the order of r. In

(3)

order for this to happen, just outside the region of electron degeneracy LI*¢ must
rise to nearly LS™t. Such a rise will trigger convection, which will easily carry a
luminosity somewhat larger than L¢*. We can approximate L¢ft by substituting

1 Mg for M, and the opacity due to the low-energy Thomson cross section for «:

LE* o Sl Meom 30,000 L.
KThomson
A better estimate can be obtained by substituting the opacity due to the Comp-
ton cross section at a temperature just below that required to produce electron-
positron pairs. In that case we obtain L%t ~ 80,000 L. In the models of TZ this

luminosity was provided by gravitational energy release and by nuclear burning.
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The second and third requirements (luminosity due largely to nuclear burn-
ing and convection from burning zone to photosphere) come out of the follow-
ing considerations: Consider integrating the stellar equations inward from the
photosphere toward the center. The local luminosity L, begins at a high value
(~ 10% L) at the photosphere and must somehow decrease to zero (to satisfy the
boundary condition in the interior: L, = 0 at »r = 0). Refer to Figure 1, in which
are shown the results from two models in TZ. Local luminosity is plotted versus
temperature, along with the Eddington critical luminosity. (The script R is a
general relativistic correction; the Thorne- Zytkow models included the effects of
general relativity, but ours will not.) For low temperatures LSt is approximately
constant because the opacity, due mainly to electron scattering, is constant. In
this figure we see LCMt rise with increasing T as relativistic corrections to the
Thomson cross section become significant. At log7T ~ 8.7 the temperature be-
comes great enough to produce electron-positron pairs, the opacity « then rises
because of the increased number of scatterers, and L&t plummets. Thus, there is
a local maximum in L&t at log T ~ 8.7.

Now, there are two mechanisms by which the actual luminosity L, could
be turned off as r decreases (and T increases): 1) At some radius the critical
luminosity may rise above the local luminosity; then convection turns off and
the gravitational energy of accreting matter is converted to heat. (As long as
the total luminosity is greater than the critical luminosity, there is convection,
which is nearly adiabatic, and little gravitational energy is converted to heat.) 2)
Temperatures and densities may become high enough to initiate nuclear burning,
which causes L, to turn off with decreasing r.

The former mechanism dominates in stars less than 9 M ¢ (called “giants” in
TZ). For stars greater than 9 M (called “supergiants” in TZ) the luminosity at
the photosphere is greater than the maximum LSt (i.e., the local maximum in
Figure 1), so LSt never rises above L, and the former mechanism fails. If a model
is to be found in this mass range, it must employ the second mechanism, which

means that nuclear burning must turn on while the envelope is still convective.
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Fig. 1-Local luminosity L, and Eddington critical luminosity L<rit plotted as
functions of temperature T for two models: a 5 Mg giant model and a 12 Mg
supergiant model constructed by TZ. (The script R is a general relativistic cor-
rection.) The L, curves are parameterized by the radius r in kilometers. The

edge of the core occurs where L, goes subcritical (r ~ 10 km).
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Hence, for a 16 Mg star, say, we know that at least a portion of the nuclear
burning zone is convective. Also, because the LSt falls so quickly as T increases,
and because the various nuclear mechanisms turn on somewhat after log T' exceeds
8.7, Let will be comparatively small when L, finally decreases enough to equal it.
Thus nuclear energy generation must account for most of the luminosity (~ 90%),
with gravitational energy release accounting for the remainder (~ 10%).

To summarize, if a spherical, steady-state model for a 16 M  star is to exist,
it must entail an envelope (1) which is convective from the photosphere almost
to the neutron star surface, (2) in which nuclear reactions occur predominantly
in the convective cell nearest the neutron star surface, and (3) in which these
nuclear reactions provide most of the luminosity. Because the nuclear reactions
in the envelope produce most of the luminosity, for the purpose of finding out
whether supergiant models can exist and determining their overall features, it is
enough to describe this envelope and to approximate it as nonaccreting.

The connection of the envelope to a several-meter-thick isothermal halo below
it and then onto the degenerate neutron region was done well in TZ and in Eich
et al. (1989) and is independent of the manner in which L, turns off, so these
issues will not be explored here. Instead, we shall focus on the issue where T Z
was defective: the details of the nuclear burning region and its connection to the

convective envelope above it.
2.2. General strategy

The above discussion suggests dividing the problem of constructing a model
into two parts which largely decouple: the physical structure and the nuclear-
abundance structure. The former consists of density, temperature, internal en-
ergy, convective velocity, and mass inside a shell as functions of radius; these
are governed by the stellar structure equations. The latter consists of the nu-
clear abundances as functions of radius; these are governed by a set of diffusion
equations and appropriate boundary conditions given in part by nuclear reaction
equations. These two parts almost decouple because the stellar structure equa-

tions make almost no reference to the details of nuclear abundances. (There is
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some coupling due to the way the nuclear reactions affect the distribution of lu-
minosity production. This is treated in §6. There is also a slight coupling because
the opacity and the equation of state depend somewhat on composition.)

We will see in the next section that, from the stellar structure equations
and an idealization that all energy generation occurs at the envelope’s base, it is
possible to construct a one-parameter family of envelopes each with the same total
mass, core mass, and photospheric abundances, but differing from the others in its
assumed photospheric luminosity. For each choice of photospheric luminosity we
get a definite physical structure for the envelope, and from this we can determine
the radial distribution of nuclear abundances. From the distribution of abundances
we can determine how quickly the various nuclear species are diffusing into the
burning region at the envelope’s base to be burned. The luminosity resulting
from this burning we will call the nuclear luminosity. The envelope for which the
photospheric luminosity and the nuclear luminosity agree is a viable model. This

is the basic strategy used to construct models in §§3 and 4.

3. Physical structure
3.1. Assumptions and theory

The envelope (i.e., the tenuous, nondegenerate, convective region above the
edge of the core) was built by integrating the stellar structure equations using
GOB, a computer program described by Paczynski (1969), which calculates static,
Newtonian stellar envelopes with extended atmospheres. After we set a total mass
M and photospheric abundances Xn, Yph, Zph (mass fractions of hydrogen, he-
lium, and all heavier elements, respectively), GOB allows two degrees of freedom:
the photospheric luminosity Lpn and the photospheric temperature T,,. One
constraint is that we want a 1 Mg compact object for the core within a radius
of 10 km. (Here we assume that the edge of the core lies at about 10 km.) This
constraint reduces the two free parameters Lpn, Tpn to one, giving us the one-
parameter family of envelopes discussed in the previous section. We assume (for
now) that the local luminosity is constant all the way down to near the neutron

star surface, that is, that all the luminosity is produced at the edge of the core.
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Because the densities and temperatures near the core turn out to be on the
order of 10* g cm™2 and 2 x 10° K, it was necessary to modify GOB to take into
account production of electron-positron pairs. This was done using the theory
from Chapter 24 of Cox and Giuli (1968). Briefly, p and T' were used to find a
degeneracy parameter 7 by a table lookup (see Fig. 24.6 of Cox and Giuli 1968).
Phase-space integrals were then performed at each integration step in GOB to
find pressure, internal energy, and their derivatives with respect to  and 7', and
a change of variables was made back to p and T'. Pains were taken to cope with
numerical errors, so that the final derivatives were accurate to better than 5% near
the tricky regime where pairs turn on and to better than 1% in all other regimes.
Pressures and internal energies were accurate to better than 1% in all regimes.
This procedure assumes that the envelope is everywhere in local thermodynamic
equilibrium. This assumption turns out to be reasonable, since the longest time
scales for pair production to occur are of order of 0.001 s in this model, while
the time scale for turnover of convection cells is of order of 0.1 s or longer. GOB
was also modified, in the manner described by T Z, to take account of relativistic
corrections to opacity.

In integrating the stellar structure equations, about 500 to 1000 steps were
taken from the photosphere to the core, with a higher concentration taken at the

largest and smallest radii.
3.2. Results

Table 1 gives details of several envelopes with total mass M = 16 M and
core mass Mcore =1 Mg.

In this table Ly is the photospheric luminosity input into GOB, Ty}, is the
photospheric temperature, defined as the temperature of the envelope where op-
tical depth i1s 0.667. The density po and temperature Ty are given at 7o = 10 km,
i.e., at the edge of the core. The time scale for turnover of the largest turbu-
lent eddies at rg is tyurp (defined as viyrn/lpres, the ratio of the average turbulent
velocity, as computed from the mixing length formalism for convection, to the

pressure scale height). The ratio n4/n. is the ratio at ro of positron density to
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TABLE 1

Physical Data for Various Envelopes®

Lon(Le) Ten(K) po(g em™2) To(10°K) tiumm(s) n4/ne L§H(Le)

86000 3030.40 2.58 x 10° 6.026 0.14 20. 12300
87000 3031.80 7.00 x 10* 4.408 0.09 25. 6900
87500 3032.56 3.02 x 10* 3.619  0.07 28. 5000
88000 3033.33 1.23 x 10* 2.948  0.05 29. 3800
88500 3034.10 3.98 x 103 2.291  0.03 31. 2900
88600 3034.24 2.79 x 103 2.120 0.03 31. 2700
89000 3034.80 7.59 x 10?2 1.605  0.02 29. 2600
89500 3035.64 1.06 x 102 1.062  0.01 12. 4000

® The envelopes correspond to a star with M = 16 Mg and M¢re = 1 Mg.

the density of ionization electrons. The last column contains the value L§ft of
Lemit at ro. Table 1A shows some details of the internal structure of the envelope
with L = 88,600 L (the envelope which will produce the viable model in §5).
Figure 2 shows a graph of T' versus p for envelopes with L = 88,600 Ly and
L = 86,000 L.

Figure 3 shows the locus of points in the (Lpn, Tph)-plane which satisfy the
constraint that the core be 1 M. The parameter Z will be explained in the
last paragraph of §4. We note (Table 1A) that the maximum sound speed is
given approximately by v, =~ (%P/p)l/2 ~ 6.1 x 10° cm s™! &~ 0.2c¢ near the
surface of the core, where P =~ %aT“. Also, the maximum of vy, /vs occurs near
r = 1.226 x 10'? cm, so that we may estimate this ratio as 0.23. A more precise
calculation gives the maximum v¢y,p/vs = 0.18. These values are large enough to

be disturbing, but not so large as to invalidate this approximate model.

4. Nuclear-abundance structure—first model
4.1. Assumptions and theory

From the physical structure we know how p, viurb, and lyres vary with » for
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TABLE 1A

Physical Structure of one Envelope®

P Vturb teurb Lerit
r(em) (gem=?) (ems ) lpw/r () T(K) nifne  (Lo)
1.004(6) 2.74(3) 8.04(6) 0218 2.7(—2) 2.11(9) 3.42(1) 2.74(3)
1.134(6) 1.78(3) 8.56(6) 0218 2.9(—2) 1.87(9) 2.93(1) 2.92(3)
1.279(6) 1.15(3) 9.14(6) 0.219 3.1(—2) 1.66(9) 2.42(1) 3.24(3)

(—2)
)

1.444(6) 7.38(2) 9.78(6) 0.222 3.3 1.48(9) 1.90(1) 3.76(3)
1.663(6) 4.42(2) 1.06(7) 0.227 3.6(—2) 1.28(9) 1.34(1) 4.83(3)
1.916(6) 2.67(2) 1.14(7) 0.234 3.9(—2) 1.12(9) 8.35(0) 6.85(3)
2.209(6) 1.64(2) 1.21(7) 0.241 4.4(—2) 9.71(8) 4.57(0) 1.09(4)
2.548(6) 1.03(2) 1.25(7) 0.247 5.0(—2) 8.45(8) 2.03(0) 1.96(4)
2.879(6) 6.99(1) 1.22(7) 0.251 5.9(—2) 7.49(8) 7.39(—1) 3.36(4)
3.320(6) 4.53(1) 1.02(7) 0.254 8.3(—2) 6.52(8) 1.68(—1) 6.13(4)
3.829(6) 2.97(1)  6.74(6) 0.255 1.4(—1) 5.66(8) 1.72(—2) 8.16(4)
4.417(6) 1.95(1)  7.94(6) 0.255 1.4(—1) 4.92(8) 1.30(—3) 7.86(4)
5.006(6) 1.28(1)  9.47(6) 0.250 1.4(—1) 4.28(8) 5.06(—5) 7.38(4)
5.882(6) 8.42(0) 1.08(7) 0.256 1.4(—1) 3.72(8) 1.15(—6) 6.93(4)
(_

6.791(6) 5.53(0) 1.20(7) 0.257 1.5(—1) 3.23(8) 1.40(—8) 6.53(4)
7.845(6) 3.64(0) 1.32(7) 0.258 1.5(—1) 2.81(8) 0. 6.18(4)
1.347(7) 7.64(—1) 1.71(7) 0.257 2.1(—1) 1.67(8) O. 5.22(4)
3.176(7) 6.96(—2) 2.29(7) 0.274 3.8(—1) 7.48(7) 0. 4.46(4)
7.930(7) 6.40(—3) 2.83(7) 0.298 8.4(—1) 3.35(7) 0. 4.12(4)
2.210(8) 6.14(—4) 3.15(7) 0.341 2.4(0) 1.49(7) O. 3.95(4)
7.444(8) 6.60(—5) 2.97(7) 0.408 1.0(1) 6.59(6) O. 3.88(4)
3.291(9) 8.90(—6) 2.16(7) 0.495 7.5(1) 2.88(6) O. 3.81(4)
1.964(10) 1.63(—6) 1.17(7) 0.578 9.7(2) 1.25(6) 0. 3.74(4)
1.487(11) 4.06(—7) 4.92(6) 0.650 2.0(4) 5.35(5) 0. 3.54(4)
1.226(12) 1.38(—7) 1.88(6) 0.743 4.8(5) 2.28(5) 0. 2.39(4)
1.005(13) 5.81(—8) 6.80(5) 1.215 1.8(7) 1.02(5) 0. 9.92(3)
4.860(13) 2.02(—8) 3.34(5) 0.311 4.5(7) 4.82(4) 0. 1.51(4)
6.801(13) 9.07(—9) 3.74(5) 0.106 1.9(7) 2.20(4) O. 1.20(4)
7.607(13) 4.92(—9) 2.66(5) 0.030 8.7(6) 9.97(3) 0. 7.39(3)
7.722(13) 6.76(—9) 6.80(3) 0.011 1.2(8) 4.57(3) 0. 3.55(7)

® The envelope corresponds to a star with M = 16 Mg, Mcore = 1 Mg, and
Ly, = 88,600 Lg.
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Fig. 2-Temperature versus density plotted (solid line) for the interiors of two
candidate envelopes corresponding to total mass 16 M, core mass 1 Mg, pho-
tospheric abundances Xpn = 0.7, Ypn = 0.28, Z,n = 0.02 and to photospheric
luminosities 86,000 L, and 88,600 Lg, respectively. The terminus at the lower
left corner corresponds to the photosphere, i.e., where optical depth 7 = %, while
the terminus at the upper right corner corresponds to the base of the envelope
(radius 7o = 10 km), where local luminosity becomes subcritical and convection
ceases. The upper dotted line shows where the density of positrons is equal to
the density of ionization electrons (see the Appendix of TZ for its calculation),
and the lower dotted line shows where the radiation pressure and gas pressure are

equal.
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Fig. 3-Photospheric luminosity versus photospheric temperature shown for the
one-parameter family of envelopes that have a 1 Mg compact core. The “consis-
tent model” of §4 corresponds to a point parameterized by Z = 0.02. If we imagine
photospheric metallicity Z to be a parameter, then the curve is parameterized by
Z, the photospheric metallicity for which the envelope corresponds to a consistent

model. The details are given in §4.
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several trial envelopes. The task is to determine how the various Y; vary with »,
where Y; is the abundance (in moles g=!) of a nuclear species z. To solve for Y;
we will use an approximation investigated by Despain (1976), which is based on
the mixing length theory of diffusion. Thus we say that Y; satisfies a modified

diffusion equation:

_ BN 1 B RN e e
“W*;?E(’ DE)"ﬁ‘Y‘“LﬁJY" (4)

Here we are assuming that species 7 decays via beta decay into species z with time
constant 3; and that species 7 decays with time constant 3;. The variable D is a
generalized diffusion coefficient which is set to viyrblpres and thus is a function of
r. (Hence we are setting the mixing length to one pressure scale height. Models
with a different ratio of mixing length to scale height did not produce qualitatively
different results.) By making this approximation we are introducing modest errors,
since the turbulent turnover time scale will often be on the order of the strong
reaction time scales. Note also that this analysis assumes that beta decays may
occur anywhere in the envelope.

Equation (4), with ¢ running over the various species, is a set of coupled
ordinary differential equations which the Y; must satisfy. We must augment these
equations by boundary conditions. We will assume that at the surface of the star
the nuclear abundances have the standard Population I values, except that we
will simplify the analysis by lumping all the “metals” (12C, 1*N, 160, and other

elements with A > 12) into '2C, again introducing modest errors. Thus, we have

Yig(rpn) = 0.7000,  Yagge(rpn) = 0.0700

(5)
Yi:c(rpn) = 0.0017, Yi(rpn) = 0.0000 otherwise.

(Multiply by atomic weight to convert these abundances to mass fractions.)

For the models of this section, we will assume that the strong reactions occur
only at 7o, that is, at the edge of the core, and that they go to completion. An
example will illustrate the translation of this assumption into boundary conditions.

Consider the strong reaction which starts off the rp-process:

RO 49YH +*He — ®Ne.
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The nucleus ®Ne cannot be burned but must wait for a beta decay. For the
boundary conditions we have
Ync(’ro) =10, (6)

inzc(’ro) dKaNe(To)

47r2pD
TToP dr dr

= —4nripD

The former equation expresses the idea that '2C is completely burned at the edge
of the core. The left-hand side of the latter equation is the flux of '2C into the
shell at radius 7o in moles s~! (see eq. [4]), and the right-hand side is the flux of
18Ne out of this shell. Of course, this simplifies to

dch(To) - _szNe(TO) (7)
dr dr )

In the two reaction networks (hot CNO and rp), each species i considered was
either the product or the reactant of a strong reaction, and so equations (6) and
(7) are prototypes for all the boundary conditions we shall meet.

In the hot CNO cycle, '2C is a catalyst for the reaction

A'H —s *He + 2w,

which provides about 21 MeV per cycle. The limiting reaction is the decay of 1°0
which takes 176 seconds (mean lifetime).
In the rp-process (Wallace and Woosley 1981), a 12C nucleus is used as a

“seed” for a reaction chain summarized by
B0 4 *He 4 80 H — **Pd 444 v,

which produces about 500 MeV per seed nucleus. The burning region of our star
looks approximately like this: A seed nucleus is swept into the burning region,
burned (mainly by dripping on protons) to a proton-rich species, and swept back
out into the envelope. It random walks around awaiting beta decay, decays, and
then random walks back to the burning region, where protons are dripped on to
form another proton-rich species. This continues until heavy nuclei are built up.

Instead of following all the isotopes in the rp-process, we shall identify a smaller
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number of species 7, such that finding Y; as a function of » gives us a good idea
of the physics in the star. We note that in Zimmermann’s analysis the problem
was that the burning region became clogged with long-lived beta-unstable species
which could not undergo any further strong reactions. For us also, the main
question will be, how badly do the incomplete beta decays hinder the rp-process?
To answer this question, we must track the following nuclear species: 12C (which
is the initial seed), the long-lived beta-unstable species, and their decay products.

For the hot CNO cycle the chosen species (see §3 of the Appendix) are 12C,
150, and the daughter of *0: *N. Our chemical structure thus consists of Yi2¢,
Y150, and Yisy as functions of . The simplified reactions are given in Table 1B.
The first and third reactions (being strong reactions or fast beta decays) occur
very quickly at 7o, and the second (being a long beta decay) occurs throughout
the envelope. The second column, F,x,, is given by the mass difference of the
nuclides. The third column gives the total energy released in beta decays, and the
fourth column gives the approximate heat energy made available to the envelope.
We assume that about half the beta decay energy is lost to neutrinos, so that
Frest = Epn — %Eﬁ. The boundary conditions, deduced in accord with the
prototypes (6) and (7) above, become

ch(‘ro) = O, (80,)
KSN(TO) = 0, (Sb)
—Yiso(ro) = Yisg(ro) + Yien(ro)- (8¢)

The first two equations express the idea that >N and !2C are burned at 7o; and
the third, that the flux of reactants into the shell of radius r¢ is equal to the flux
of products out.

The Appendix (§§1 and 2) gives full details as to why certain species were
chosen for the rp-process network. These species are those in the third and fourth
columns of Table 2, plus '2C; and our nuclear-abundance structure consists of
their Y;. Shown in column 2 is the reaction at the core edge which produces the

parent. For each of the long-lived beta decays that we track, the mean life of the
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TABLE 1B

Simplified hot CNO Cycle

Erxn Eg FEheat

reaction (MeV) (MeV) (MeV)
12C4+3H — 0 +et +v 17.848 445 15.6
150 — BN+et+v  1.620 1.620 0.8

15N +1H — 2C + *He 4.966 0.000 5.0

parent species is given by the 7 in column 5. In column 6 is shown the total energy
of this reaction, plus the beta decay energy released when the parent decays into
the daughter, plus the energy released by the annihilation of positrons. Column 7
gives the total energy due to all the beta decays in the reaction in column 2 and
the decay of the species in column 3. Column 8 is the total heat energy available
to the envelope once the reaction in column 2 and the subsequent beta decay have
occurred. Again we assume that about half of the beta-decay energy is lost to
neutrinos, so that Eypeat = Frxn — %Ep.

The boundary conditions on the rp-process abundances, deduced in accord

with the prototypes (6) and (7), are

Yizg(ro) = 0, (9a)
Yiene(T0) = —=Yiaa(r0), (9b)
Yp(ro) =0, (9¢)

Yg k41(ro) = =Yp (o), (9d)

where P and D refer to parent and daughter species in Table 2.

Once we have solved the set of coupled equations represented by equation (4)
subject to the boundary conditions (8) or (9), we can then calculate the luminosity
produced by the nuclear burning, L pyc, as follows: Assume k is a species, that

is, either 12C or a beta decay daughter, which is burned at the edge of the core
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TABLE 2

Data for Simplified rp-Process

Erxn Eﬂ Epeat

k reaction parent daughter 7(s) (MeV) (MeV) (MeV)
1 13C4+2!'H 4 *He — 18Ne 18Ne 18F 2.41 16.131 4.447 14.0
2 18p 4 41H — 2Mg + et + v 22Mg ?2Na 5.57 35.210 17.888 26.3
3 22Na+4'H — ?6Si+et +v 2657  26A] 3.17 36.185 17.805 27.3
4 26A1+4'H —3°S et +v 805 a0p 1.70 37.145 19.934 27.2
5 30p 4 381H — %8Se 4 19et + 191 8Se  68As 140 315.55 176 228
6 68As +41H — "2Kr+ et +v T2Kr T"2Br 25.1 29.32 15.1 21.8
7 "2Br + 51H —77Sr+ 2et +2» 7St  "Rb 13 42.63 25.3 30

8 T"TRb+4'H — 81Zr et +v 817y Bly 900 32.1 i7 24

9 81y + 1H — 827y 827y 83y 800 Tl 6 4
10 82Y + 4'H — 8Mo + et + v 86Mo 8Nb 30 31.9 16 24
11 8Nb+5'H — %1Ru+2et +2v 91Ru  91Tc¢ 30 40.7 25 48

12 NTec 4+ 51H — 9%Pd + 2et +2v 9Pd 9%Rh (end) 47.5 27 34
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yielding energy Fheat,k. Then Ly, is given by

Lnuc = 4777'02 Po DO EYIé(TO)Eheat,k; (10)
k

where po and Dy are the values of p and D at ro. We recognize 4nrpoDoY{ (o)
as the flux of species k into the shell of radius 7o, and FEjeat r is the energy in
column 8 of Table 2. Since FEjeat r includes the heat released by the eventual
beta decay, which actually occurs somewhere above r¢, in equation (10) we are
artificially putting that beta decay heat into the star at rg.

The solution of equations (4), (9), and (10) for the rp-process is presented in

84.3. Several ingredients are involved, which are discussed in §4.2.
4.2. Numerical methods
For the various parent species ¢, the diffusion equation (4) and boundary
conditions (9) take the forms

1
L (DY) - pi¥i =0, (11a)

Yilren) = 0. (118)

We shall embody the solution of these homogeneous equations in the ratio
ni = —Y{(ro)/Yi(ro). (11c)

We compute numerically the n; for our various parent species by the standard
technique of “shooting”: We first set Y;(ro) to 1 and choose trial values of Y} (ro)
until we satisfy equation (11b).

We also introduce a function Z(r) (useful for 2C and daughter species),

defined as the solution to these equations:

1 -
F(przD::.’)' = (,

E(ro) = 0, (12a)

E(rpn ) = 1.



39

The computation of Z(r) is easily reduce to quadratures:

/' dr
0 T2pD

re TPD
In analogy to 7; defined above, we define
s = E'(0). (12¢)

In §4.3, we will see that these ingredients (eqs. [11] and [12] and associated
numerical calculations) are sufficient to determine all the abundances Y;(r) and

from them L,,. and hence to obtain a viable model.
4.3. Results

When this formalism was applied to the hot CNO network, no self-consistent
model was found. More specifically, for all the envelopes we studied, each with
a Tpn and Lpy along the curve in Figure 3, this formalism produced values of
Lyyc far smaller than Lpy. The lowest values of Tpn and Lpy in Figure 3 produce
envelopes with the lowest pg and Ty at the edge of the core, and correspondingly
the lowest Lpyc/Lph. As Tpn and Lpy were raised, po, To, and Lpyc/Lpn went up.
Eventually, however, at Tpn = 3034.80 K and Ly = 89000 L, po and Ty became
so high (cf. Table 1) that the nuclear burning could easily break out of the hot
CNO cycle and into the rp-process. At this point the hot CNO cycle produced its
maximum luminosity, Lpyc/Lpn = 0.07. This is in accord with results obtained
by Zimmermann (1979); see also Eich et al. (1989).

When the hot CNO cycle failed to produce enough luminosity, we turned
attention to the rp-process. We might fear that for the rp-process the above
formalism would produce a large number of hopelessly coupled equations. On the
contrary, it turns out that the equations are easy to solve and interpret. Let us

consider the first part of the rp chain:

204204+ *He — laNe,
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1BNe —s ¥F L et 4 v;

cf. Table 2.
Consider first '2C, for which we must solve equation (4) with 8; = 8; = 0

subject to equations (5) and (9a). Clearly the solution is
Yisolr) = Yo 5(), (13)

where Y7 is the molar concentration of 12C at the surface of the star, i.e., 0.0017
moles g~!. Figure 4 illustrates this function.

Consider next ®Ne, for which (because it is a beta decay parent) we must
solve equation (11) with Y5y given by equation (9b). By the method in §4.2,
we find 718 = —Y/sn.(70)/Yisne(70). The quantity Yo (70) is determined by the
boundary condition (9b) and the solution for Yi2¢ to be

YIIBNe(TO) = _YTUJ-

From the definition of 7,3 we then obtain

Finolre) = Viprie, (14)
718

We can obtain Yisn.(7) at other radii » by multiplying the function Y; (calculated
as described in the first paragraph of §4.2) by the factor Yis ne(ro); however, our
primary goal is to obtain Lyyc, for which we need only information at r.

Next consider the sum
Yia(r) = Yiene(r) + Yisp(r), (15)

which satisfies

1
p?(/""zDYfa)’ =0,
Y1s(r0) = Yisne(70) + Yisp(r0) = Yisne(70),

yrls("'ph) = 0.
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(Here Yisp(ro) = 0, just like Yi2g(ro) = 0, because 18F, like 12C, is a reactant in

a strong reaction.) Clearly, then, Y34 is given by

Y15(r) = Yasne(ro)(1 — E(r)), (16)

from which we obtain the following, by differentiating and using equations (15)
and (16):
Yiep(ro) = YrnsCisne, (17)

where (1sye = 1 — 15/m18. Figure 5a shows Yisye and Yisp versus logr. (Yisp is
obtained by solving for it in eq. [15] and substituting eq. [16] into it.)

Let us pause to consider what we have done. Expression (10) for Ly, uses
Y{>c(r0) and Y/sp(70). The former is given by Y77, and the latter by Y7n,(isne.
The flux 47rZpoDoYisp(ro) of °F into the burning region thus is the same as
the flux of 12C into the burning region 4773 poDoY,(r0) multiplied by the easily
calculable hindrance factor (isye = 1 — 75/718, which depends on the mean time
for 18Ne to decay. This hindrance factor provides a good handle on the amount of
“damage” done by a particular beta decay, since it gives the fraction of daughter
species which make it back to the burning region to be burned. We similarly work
our way down the chain. The next link (reaction 2 in Table 2, followed by its beta
decay) yields

},2’21\1&(7'0) = YT’?sC”NeC“Mg;

where (22pmg = 1 — 75/722. Similarly, the flux of any other daughter species into
the burning region is the product of Y77, and all the hindrance factors for parent
species which precede it in the chain. By a repetition of the above steps we can
calculate all the hindrance factors, and from them all the quantities Y{}(r¢), and

we can then substitute these into equation (10) to obtain Ljyc. The result is

k—1
Laiic = 471'1‘02 Po Do YT Ms E (Eheat,k H Ct) ) (18)
=0

k=1

where we set (o = 1. Figure 5b shows Y22z and Y22y, versus logr, and Figure 5¢

shows a parent and daughter much later in the chain: Ya: 7, and Ya1y versus logr.
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Fig. 4-The concentration of 12C plotted as a function of » for a typical envelope.
The nucleus 2C is burned near the edge of the core (r = ro = 10 km), hence its
zero concentration there. Near » = 10'° cm the nucleus 12C attains almost its

Population I abundance. Thus most of the envelope has nearly the Population I

abundance of 12(C.
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Fig. 5(a)-The concentrations of the nuclei '®*Ne (beta-decay parent) and 'F (its
daughter) shown as functions of . The former is produced in the hot burning
region near the core, while the latter is consumed there. Parents, having been
produced near the edge of the core, random walk in the envelope until their decay
and possible return to the burning region for further strong reactions. The nucleus

18Ne has a mean lifetime of 2.41 s.
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Fig. 5(b)-Concentrations of 22Mg (parent) and ??Na (daughter) as functions

r. The nucleus ?2Mg has a mean lifetime of 5.57 s.
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Fig. 5(c)-Concentrations of 81Zr (parent) and *'Y (daughter) as functions of r.
The nucleus 81Zr has a mean lifetime of 900 s, so that it random walks far into
the envelope before its eventual decay, and little of the 81Y makes it back to the
burning region (17.3% = (s1z,; cf. Table 3). Long decays such as this one tend to

cut off the rp-process.
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There is a similarity in shape among the three graphs of parents and daughters in
Figure 5. Note, however, that Yaiy is quite small and Ya1z, is large at greater radii
than the other parents, approximately » = 10° cm. An average turbulent turnover
time in this region is 1 s, and the decay time for 81Zr is 900 s. If we assume the
817r random walks for 900 s, we would expect to find it +/900 s/1 s =~ 30 random
walk steps from its origin, that is, (noting that a pressure scale height is about
.257) at a radius (10% ¢m)1.25%° ~ 10° cm, in agreement with the figure.

In Table 3 we present the hindrance factors for the model envelope with
L = 88,600 Le and Tpn = 3034.24 K. Notice that for parent species with decay
time less than 6 s, the daughter species generally (~ 90%) make it back to the
burning region where they are burned. For parent species with decay time greater
than 20 s, the hindrance factor becomes more prohibitive (~ 0.5). When these
quantities are used to calculate Ly for the envelopesin Table 1, we get the results
in the first three columns of Table 4.

What can we conclude from this analysis? First, we can be assured that
we can find a viable model. For the last five envelopes in Table 4 (those en-
velopes which do not have dangerously high temperatures at 7 (see the Appendix)
Lyuc/Lpn ranges from 0.14 to 1.97, which guarantees an envelope which is consis-
tent, i.e., for which Lyu./Lpn = 1, even if we were to include all the beta decays
and correct the systematic errors (effects of about 10%) that we have made in this
analysis. We will be taking a closer look at the envelope with L = 88,600 L in
the subsequent section, since it is the one lying closest to Lyyc/Lpn = 1. Second,
we note (see eq. [18]) that the expression for Ly, is proportional to Y. This
means that if we were to change the value of Y7, we could go to Table 4 and
easily point to the envelope which would yield a model. (Recall that Yr = Z/12.)
The last column of Table 4 tabulates this quantity as Z;eq (i.e., the photospheric
metallicity required to have a consistent model). In Figure 3 each envelope is la-
beled with the value of Z (photospheric metallicity) for which it is a viable model,
Z is calculated as 0.02Lphn/Lpyc. Third, we note that beta decays on the order

of seconds, such as at the beginning of the rp-process, do little to hinder the rp-
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TABLE 3

Nuclear-Abundance Results for an Envelope®

species 7 (s) Ton (e

18Ne 241 0.2744 0.954
22Mg 5.57 0.1571 0.920
2851 3.17 0.2285 0.945
08 1.70 0.3464 0.964
68Se 140 0.0247 0.494
2Ky 25.1 0.0600 0.792
TSe 13 0.0904 0.862
Kl 7= 900 0.0151 0.173
827« 800 0.0154 0.187
86 Mo 30 0.0593 0.684
#1Rn 30 0.0539 0.684

® The envelope corresponds to a star with M = 16 Mg, Mcore =
1 Mg, and Ly, = 88,600 L.

b The quantity ( is the fraction of fuel returning after the given
beta decay. It is called the “hindrance factor” in the text and

determines the nuclear burning luminosity L py. through equation

(18).

process, while decays on the order of tens of seconds begin to choke it off. It thus
makes sense to say that the rp-process is pushed not to 2°Ba, as we would surmise
if the rp-process were limited by proton addition (see §2 of the Appendix), but

stops at about ®®Se because of several long beta decays. (However, see Chapter 4

of this thesis.)
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TABLE 4

Nuclear-Abundance Data for Various Envelopes®

Low(Le) T07s Lovus] Eogts® Lyesi®

86000 0.00312 8.46 0.0021

87000 0.00450 4.59 0.0038

87500 0.00579 3.05 0.0058

88000 0.00774 1.97 0.0089

88500 0.0112 133 0.016

88600 0.0125 0.92 0.019

89000 0.0109 0.46 0.038

89500 0.0322 0.14 0.133
® These envelopes correspond to a star with M =16 Mg and M ore =
1 Mg .
b A viable model is one for which this parameter is 1 (for metallicity
Z = 0.02).

¢ This is the “required surface metallicity” for which the envelope is
a viable model, if we think of letting the surface metallicity Z be a

parameter.

5. Nuclear-abundance structure—second model
5.1. Assumptions and theory

In §4 we assumed that all of the strong reactions occurred at 7y and all the en-
ergy generation occurred at ro, whereas in fact the beta decay energy is deposited
throughout a large portion of the envelope and the energy of strong reactions is
deposited throughout the first several pressure scale heights of the envelope (~
several km). In this section we will address this flaw of §4 by creating a model in
which the energy is deposited at four specific radii and by then interpolating the
local luminosity as a function of radius. We would like to be assured that indeed

the local luminosity does exceed the critical luminosity for all » > ry. If this is
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so, then it is not important to know exactly how the local luminosity depends
on radius, for the structure of the envelope is not much affected by changes in
luminosity. If this turns out at any radius not to be so, then the model is neces-
sarily inconsistent, since this condition is necessary to maintain convection, and
we have assumed all along that convection is the main mechanism for heat and
material transport. This is the motivation for this section. The cost of this “more
nearly complete” analysis is that we will no longer track individually the various
beta-unstable parents as in §4, having been assured that these decays do not cut
off the rp-process.

Although energy is deposited throughout the lower portion of the envelope,
we will approximate this by placing the nuclear burning at the four discrete radii
ro, 71, T2, and r3. We take 7o to be the edge of the core. We let r; be the radius
at which “breakout” from the hot CNO cycle is likely to occur, that is, the radius
at which the time required for *0 + *He — '°Ne + 7 (the reaction that breaks
out of the CNO cycle) is about the same as the turbulent turnover time. We let
rs be the radius at which the critical luminosity attains a local maximum, and 7,
we arbitrarily choose to be the geometric mean of »; and r3.

The first several kilometers of the envelope, which comprise the burning re-
gion, consist of a complex, turbulent mixture of nuclei, resembling a kind of nuclear
soup of proton-rich nuclei, with turbulent turnover, beta decays, and strong reac-
tions all occurring on about the same time scales, about 0.1 to 10 s. How shall we
idealize this situation in order to obtain a tractable model? First, let us picture
a situation in which breakout from the hot CNO cycle is facile and beta decays
are immediate, so that the limiting reactions are the proton additions. In this
situation a seed nucleus random walks from the outer envelope inward, and as it
reaches hotter, denser portions of the envelope, it becomes easier for protons to
overcome the Coulomb barrier and build up heavier nuclei. Energy is released
throughout the proton addition region.

Next, let us turn on the shorter beta decays, those less than, say, 1.5 s. (See

Fig. 7.) This does not change the picture very much, since a nucleus Nu; is about
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as likely to random walk from 7o to 7; before decay and further proton addition as
it is likely to random walk from r; to r¢ before decay and proton addition. Thus
the distribution of luminosity production is not much changed from the scenario
we had in the previous paragraph, except that it is smeared over a slightly larger
region and the rp-process is slightly less efficient (since, with several seconds of
cumulative beta decay time, some of the seed escapes).

Next, let us turn on the longer beta decays, greater than 10 s, which occur
later in the chain, that is, ®®Se and beyond. As noted in the last paragraph of §4,
these tend to carry the seed nuclei out of the burning region and into the envelope,
whence they do not return. Thus the hotter, denser regions of the envelope do
not push the seed nuclei as far along the rp chain as we surmised when we were
considering proton addition as the limiting process. The result is a decrease of
the amount of energy produced near the edge of the core.

Finally, let us consider the beginning of the rp-process in more detail. (See §1
of the Appendix.) The first step, breakout from the hot CNO cycle, is not facile
but occurs only when *He can overcome the Coulomb barrier in being added to
150. This happens deep in the burning region at ;. The product quickly burns to
21Mg, decays, and burns to 22Mg, which, after a longer decay of 5.57 s, becomes
22Na. This decay distributes the species 22Na throughout the burning region. As
the rp-process proceeds, the longer decays of 2¢Si (3.17 s) and 3°S (1.70 s) further
distribute seed nuclei throughout the burning region. Adding these details alters
somewhat the distribution of luminosity production in the previous paragraph.

To summarize thus far, in creating a model in this section, we will be guided
by several principles: (1) Proton addition (in the rp-process) does not proceed
as far in cooler portions of the envelope as it does in hotter portions. (2) The
rp-process generally stops at ®8Se because of long beta decays. (3) Long-lived
beta-decay parents random walk to large radii and deposit energy there (energy
both from beta decay and from the subsequent proton addition which can occur
in the region of the beta decay).

Considering the first two principles, in §2 of the Appendix we discuss to what



51

extent proton addition pushes the rp-process at our four radii 7,,. At each r,, the
reaction network looks like Figure 7 (see the Appendix), except that at 73 burning
proceeds only to **Cl and at 7, burning proceeds only to *°Ti, in accordance with
the first principle above. At 7o and r; the burning would proceed very far (to
120Ba at 7) except that (see second principle above) beta decays prevent it from
going much past ®8Se, which eventually decays to %8Zn.

Considering the third principle above, we are especially concerned with how
much energy is deposited outside r3 (where L' is maximized), since if too much
energy is deposited there, the local luminosity L, will drop below LcSft at 73
and the model will be rendered inconsistent. The most dangerous candidate for
depositing energy outside r3 is 22Mg, since its mean lifetime (5.57 s) is longer than
those for 26Si and 3°S (3.17 s and 1.70 s) and it can be burned up to **Cl. (The
Appendix discusses this issue somewhat more thoroughly.)

This whole discussion suggests that we follow in detail the following abun-
dances: Yi:g, Y2y, (long-lived beta-decay parent), Yz:n, (its daughter), Yascy,
Yaor;, and Yeez, (end products of the rp-process at different radii). The reaction
network is summarized as follows: (1) The hot CNO cycle, breakout, and the first
portion of the rp-process are replaced by 2C burning to 22Mg. This is idealized as
all occurring at 71, since breakout is here the limiting reaction, and it occurs pre-
dominantly at 7;. (2) The nucleus Mg, which is produced solely at 7, diffuses
upward and downward from there as it decays to ?22Na. (3) The nucleus ??Na is
produced throughout the envelope by that decay and continues to diffuse. The
22Na diffusing into r3 is burned to **Cl. (4) The ?2Na diffusing into r, is burned
to *°Ti. In addition, any 33Cl diffusing into 7, (from r3) is burned to *°Ti. (5)
The ?2Na diffusing into r; is burned to ®8Zn. Any *°Ti diffusing into r; is burned
to 68Zn. (6) The 22Na diffusing into 7o is burned to ®*Zn.

After we have determined Y} for these six species, it is a simple matter to
determine the flux of these species into r,, and thus the luminosity produced there.

In §5.2 we show details of how these calculations were done.
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5.2. Method of solution

The algebra for obtaining this model is not dissimilar to that in §4. Yi.¢ is
nonzero for r; < r < 7pn. Because Yia¢ solves equation (4) with 8; = B; = 0,
we know it is of the form Yi:g(r) = A + BE(r), where A and B are constants we

determine from knowledge of = and from the boundary conditions,
ch(’l‘l) = 0, (19a)

Visplre]= Yo (196)

Because ?2Mg is beta unstable with mean lifetime 5.57 s and is created solely
at r; after breakout happens there, we can find the function Y22, up to a constant
factor by noting that it solves equation (4) with 8; = 0 and 8; = 1/5.57s =
0.18 s7! for 7o < 7 < 7, and for r; < 7 < rpy. Also

Yzleg(To) = 0, (200.)

Yarng(rpn) = 0. (200)

The function can be integrated in two pieces and will have a discontinuous deriva-

tive at ;. The final factor we can determine from the boundary condition
}/1'20(1‘1) = El?Mg(Tl)— = Yzleg('f'l )+, (200)

where the — and + refer to the left-hand- and right-hand-derivative, respectively.
This equation expresses the fact that the flux of 2C into r; is the same as the
flux of 22Mg out since 2C is completely burned to 22Mg at r;. Thus we obtain
Yiac and Yazpqg.

We can solve for 8Zn by noting that it is a beta stable species created at
ro and 71, so that it solves equation (4) with 8; = 8; = 0 for ro < r < r; and
71 < 7 < rph. The function Yesz, is of the form A; + B1E(r) for ro <7 < 7; and
of the form A, + ByE(r) for r; < r < rpn. We may determine the constants from

the following boundary conditions:

Yeezn(rpn) = 0, (21a)
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Yesza(r1) = Y7 — Yazpgg(r1), (21b)
}feszn(ro) = YT — }fzzMg(ro). (216)

The last two equations are derived from the fact that the following equation holds

at all radii:
Yic + K’Mg + Yaan, + Ysscp + Yaop; + Yesg, = Yo (22)

Also, of the functions Y%, only Y2:)p; and Yesz, are nonzero at ro and r;, since
the other species are quickly burned at these radii.

Similarly, Yast; solves equation (4) with 8; = 8; = 0 forr; < r < 7, and
ry <7 < rph. (Note that Yier; = 0 for r < r;.) It is of the form Az + B3=(r) for
r1 <1 <7y and Ag + B4E(r) forry <7 < Tph, Where we determine the constants

from the boundary conditions:

Yaoqi(rpn) = 0, (23a)
Yaori(r2) = Y7 — Yeszn(r2) — Yaamg(r2), (230)
Y;sTi(Tl) = (. (236)

Similarly, Yssc) solves equation (4) with 8; = 8; =0forr; <r <rsandrz <r <

Tph, such that

K«)sc](‘l‘ph) = 0, (24(1)
)/3501(7'3) - YT —_— }’eszn(’r;;) — Y;aTi(’r‘s) —_— )fzzMg(’l‘s), (24b)
)/35(31(7'2) = (I; (246)

Last, we determine Y22y, from equation (22).

After we have determined Y}, we determine the flux of these species into 7,
that is, 4nr2p,D,Y}, where p and D are evaluated at r,, to give p, and D,,. The
luminosity produced at 7, is then calculated by a formula similar to equation (10),

with Lpyc replaced by L, and r¢poDy replaced by r2p,D,. Again the energy is
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TABLE 5

Some Physical Data and Luminosity Produced at Several Radii®

Tn P Vturb lpres T L:.rit Lnb
a (em) (gam?) (ams) (om) (K) nefne (L) (Lo)
0 1.004(6) 2.74(3) 8.04(6) 2.19(5) 2.11(9) 3.42(1) 2740 13300
1 1.663(6) 4.42(2) 1.06(7) 3.78(5) 1.28(9) 1.34(1) 4830 51900
2
3

2.548(6) 1.03(2) 1.25(7) 6.30(5) 8.45(8) 2.03(0) 19610 20300
3.829(6) 2.97(1) 6.74(6) 9.75(5) 5.66(8) 1.72(—2) 81600 11300
® This is for a model with M =16 M@, Mcore = 1 M, and Ly, = 88,600 L.

Here and elsewhere the number in parentheses is the power of ten by which to
multiply the preceding number.

b This is the luminosity produced at radius r, in the model described in §5.

given by the mass difference between products and reactants, less half the beta

decay energy.
5.3. Results

The results are shown in Table 5 and in Figure 6. L, is the energy per
time produced at shell n (not the total luminosity at that radius). Although the
sum ), L, = 96,800 L is somewhat greater than L,y = 88,600 Lg, it is close
enough to Lpy for this study. In Figure 6, the curve labeled L, is the cumulative
sum of L,, normalized by a factor of 88,600/96,800. Also shown in Figure 6 is an

interpolated curve Li* which is a very rough approximation to our model’s L.

2 (1 - (g)z) , (25)

where a = 9.5 km. This choice of Li* reflects several considerations. The value of

It is given by

Lint at rg reflects the idea that about half of the energy Ls is actually produced
outside 73 and half is produced inside. We deduce this half-and-half split by

noting that Y3, (rs)+ = —2 x 107® moles g=! cm™! and Y35, (rs)- =3 x 10~

1 1

moles g~ cm~?! are approximately equal in magnitude, that is, the fluxes of 22Na
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Fig. 6-Local luminosity L, plotted versus r (solid jagged curve) for the model
described in §5 corresponding to a star with total mass 16 M o and photospheric
luminosity 88,600 Ly, where we are here assuming that nuclear burning occurs
throughout the lower portion of the envelope. The quantity Li*t is an interpolation
of local luminosity fitted to L,. It is given by Lpy (1 — (9.5 km/r)?). The critical
luminosity LEM* is also shown. Note that Li™ is greater than LS™t for r greater
than about 10 km, as we would hope in order to have a consistent model. The
dashed jagged curve is the second-order-corrected local luminosity versus radius

whose calculation is detailed in §6.
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from outside and inside of r3 into 73 are approximately equal. Also, expression
(25) is chosen to make Li** much steeper near 7o and r; than the curve L,. This
is because the model in §5.1 tends to underestimate the luminosity produced at
T9, since it does not adequately take into account the smearing of luminosity
production by shorter-lived beta-decay parents, which carry energy from r; to g
(see the fourth paragraph in §5.1). Nevertheless, the final model is insensitive to
the exact choice of Li**, as we shall see in §6.

A viable model requires that L, > L¢f* for all » > ro. This is true of Litt;
however, Li® gets uncomfortably close to L&t at r3. Is this a problem? It could
be, since inclusion of other effects (general relativity, accretion, proper treatment
of convection, and so on) could affect the luminosity curve by, say, 10% in either
direction. A more nearly complete model with general relativity, accretion, and
inclusion of other nuclear species might clear up the issue.

For stars with greater masses, the margin between L, and L&t is larger. For
example, a star of 20 M with a 1 Mg core and Z = 0.02 on the surface gives a
consistent model with L = 103,500 L. In this model the shape of Y; versus r is
almost unchanged from that of the model with M =16 M, and thus L, versus r
is almost unchanged except for a factor of 103,500/88,600 compared with Figure
6. The quantity LcMt still has a maximum at 80,000 L and so L, easily clears
it everywhere in the envelope. Thus, although we may be a little insecure about
the existence of a consistent model for M = 16 M, we can be sure about the
existence of models for greater masses. The small margin by which L, clears Li*
in this model leads us to believe that the upper limit of the mass gap (mentioned

in §1) is around 16 M.
6. Iteration and thus a consistent model

6.1. Iteration

Now that equation (25) gives us an idea of the dependence of local luminosity
on radius, we will use that equation for L, in GOB (instead of setting L, to

L,4) and thus modify the physical structure. With this second-order physical
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structure we will obtain a second-order nuclear-abundance structure. Table 6 gives
some details as to the resulting second-order physical structure of the envelope.
(Actually this second-order physical structure looks almost the same as the first-
order one, except that the turbulent velocity is less where L, is smaller, decreasing
in some places by about a factor of 3.) Table 7 shows the results of using this
physical structure and the methods of §5 to get a second-order nuclear-abundance
structure. The values of L, have changed little from their values in Table 5, so
that we may say that the model is insensitive to the exact choice of Li**. The
values of L,, have not changed enough to cause us to re-evaluate our original rough
estimate, equation (25). Thus the iteration has converged.

This model still vastly simplifies the physical situation. Besides systematic
errors listed in §1, what physics have we omitted? Most important, perhaps, is
the fact that in the hottest regions (at 7' 2 1.5 x 10° K) alpha addition reactions
can compete with beta decay (the reaction rates are somewhat uncertain):

22Mg + *He —2°A1 + 1H,

26Gi 4 4He —2°P 4 H,

308 +*He —*¥Cl 4+ 1H.
(Alpha addition onto nuclei larger than 3°S is rare, because of the Coulomb bar-
rier.) In models constructed with the first of these reactions included, the main
effect is that luminosity is produced at smaller radii, so including the reactions

would cause Li* to exceed LMt by a greater margin than that shown in Figure 6.
6.2. Stability against radial adiabatic perturbations

Because the equation of state is very soft for much of the star, especially for
the small region where electron-positron pairs are present (I' = (0ln P/01lnp) g ~
1.2) and for the huge radiation dominated envelope (I' — 3 &~ 2 x 1073), there
is some danger that the star might be unstable against radial perturbations. A
test for stability was therefore performed under the idealizing assumption that
the perturbations are adiabatic. The test used the method outlined in Chapter
27 of Cox and Giuli (1968). The test involves the function

ér —iwt
T = {('r)e )
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TABLE 6
Physical Structure (Second Order) of a Modified Envelope®

p Vturb tiurb Lee T
r(cm) (g em™®) (cms™) lpes/r ()  T(K) ny/ne  (Lo) (Lo)
1.004(6) 2.74(3) 3.60(6) 0.221 6.1(—2) 2.11(9) 3.42(1) 2.74(3) 9.27(3)
1.133(6) 1.78(3) 5.62(6) 0.218 4.4(~2) 1.87(9) 2.93(1) 2.92(3) 2.63(4)
1.279(6) 1.15(3) 6.93(6) 0.219 4.0(—2) 1.66(9) 2.42(1) 3.24(3) 3.97(4)
1.443(6) 7.38(2) 8.03(6) 0.222 4.0(—2) 1.48(9) 1.90(1) 3.76(3) 5.02(4)
1.663(6) 4.42(2) 9.22(6) 0.227 4.1(—2) 1.28(9) 1.34(1) 4.83(3) 5.97(4)
1.916(6) 2.67(2) 1.03(7) 0.234 4.3(—2) 1.12(9) 8.36(0) 6.84(3) 6.68(4)
2.208(6) 1.64(2) 1.12(7) 0.241 4.7(—2) 9.71(8) 4.57(0) 1.09(4) 7.22(4)
2.547(6) 1.03(2) 1.17(7) 0.247 5.4(—2) 8.45(8) 2.03(0) 1.96(4) 7.63(4)
2.878(6) 6.99(1) 1.15(7) 0.251 6.3(—2) 7.49(8) 7.39(—1)3.36(4) 7.89(4)
3.319(6) 4.53(1) 9.20(6) 0.254 9.1(—2) 6.52(8) 1.68(—1)6.13(4) 8.13(4)
3.828(6) 2.97(1) 4.05(6) 0.255 2.4(—1) 5.66(8) 1.72(—2)8.16(4) 8.31(4)
4.415(6) 1.95(1) 6.64(6) 0.255 1.7(—1) 4.92(8) 1.30(—3) 7.86(4) 8.45(4)
5.004(6) 1.28(1) 8.76(6) 0.256 1.5(—1) 4.28(8) 5.07(—5) 7.38(4) 8.55(4)
5.879(6) 8.41(0) 1.04(7) 0.256 1.5(—1) 3.72(8) 1.16(—6)6.93(4) 8.63(4)
6.788(6) 5.53(0) 1.17(7) 0.257 1.5(—1) 3.23(8) 1.41(—8)6.53(4) 8.69(4)
7.842(6) 3.63(0) 1.30(7) 0.258 1.6(—1) 2.81(8) 8.4(—11)6.18(4) 8.73(4)
1.347(7) 7.64(—1) 1.71(7) 0.262 2.1(—1) 1.67(8) 0. 5.22(4) 8.82(4)
3.175(7) 6.95(—2) 2.20(7) 0.274 3.8(—1) 7.48(7) 0. 4.46(4) 8.85(4)
7.927(7) 6.40(—3) 2.83(7) 0.298 8.3(—1) 3.35(7) 0. 4.12(4) 8.86(4)
2.210(8) 6.13(—4) 3.16(7) 0.341 2.4(0) 1.49(7) 0 3.95(4) 8.86(4)
7.442(8) 6.60(—5) 2.97(7) 0.409 1.0(1) 6.59(6) O. 3.88(4) 8.86(4)
3.201(9) 8.90(—6) 2.16(7) 0.495 7.5(1) 2.88(6) 0 3.81(4) 8.86(4)
1.964(10) 1.63(—6) 1.17(7) 0.578 9.7(2) 1.25(6) O. 3.74(4) 8.86(4)
1.487(11) 4.06(—7) 4.92(6) 0.650 2.0(4) 5.35(5) 0. 3.54(4) 8.86(4)
1.226(12) 1.38(—7) 1.88(6) 0.743 4.8(5) 2.28(5) 0. 2.39(4) 8.86(4)
1.005(13) 5.81(—8) 6.80(5) 1.137 1.8(7) 1.02(5) O. 9.92(3) 8.86(4)
4.860(13) 2.02(—8) 3.34(5) 0.311 4.5(7) 4.82(4) 0. 1.51(4) 8.86(4)
6.801(13) 9.07(—9) 3.74(5) 0.106 1.9(7) 2.20(4) O. 1.20(4) 8.86(4)
7.607(13) 4.92(—9) 2.66(5) 0.030 8.7(8) 9.97(3) 0. 7.39(3) 8.86(4)
7.722(13) 6.76(—9) 6.80(3) 0.011 1.2(8) 4.57(3) O. 3.55(7) 8.86(4)

& This corresponds to a star with M = 16 Mg, Mcore = 1 Mg, local luminosity

given by equation (25), and Ly, = 88,600 L.
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TABLE 7

Physical Data and Luminosity Produced at Several Radii(Modified envelope)®

Tn P Vturb lpres T Lert b

(m) (gem=) (ems=) (om) (K) ny/me (Lo)  (Lo)
1.004(6) 2.74(3) 3.60(6) 2.19(5) 2.11(9) 3.42(1) 2740 17000
1.663(6) 4.42(2) 9.22(6) 3.78(5) 1.28(9) 1.34(1) 4830 52100
2.547(6) 1.03(2) 1.17(7) 6.30(5) 8.45(8) 2.03(0) 19610 11900
3.828(6) 2.97(1) 4.05(6) 9.75(5) 5.66(8) 1.72(—2) 81600 10500
& This corresponds to a star with M = 16M g, Mcore = 1 M@, and local luminosity
given by equation (25), Ly = 88,600 Lg.

w N = of 3

b This is the luminosity produced at radius r, in the model described in §6.

where §r is the radial displacement of a fluid element from equilibrium. This

displacement and its eigenfrequency w satisfy the following eigenvalue problem:

1 d 4df 1 d 2
i (PP g) i OT -0 Ple=ote e
subject to

d
_éz() at r =10, (B)
dr

Tphdf 1 w2rp?1

e Y i o ) Y | tr =

£ @ r[GM Gr-9| atr=rp (©)

[cf. equations (27.57), (27.59) and (27.62) of Cox and Guili (1968)]. The model
is unstable if the smallest eigenvalue w is negative. The radial instability (by
contrast with nonradial, convective instabilities) is a global phenomenon. A star
can have its adiabatic index I" much less than the “critical value” of % over small
regions and still be stable if I' is sufficiently larger than % in adjacent regions.
Thus, to test for stability, we must take proper account of the influence of the

4

regions with I' > 3

both below the dangerous electron-positron pair region and

above it. Our model envelopes include the region above but not the region below.
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Accordingly, to test stability we spliced the envelope with Meny = 15 Mg and
L = 88,600 Ly onto two models for a neutron star (Arnett and Bowers 1977,
models L and B), one with a hard equation of state (Pandharipande and Smith
1975) the other with a soft equation of state (Pandharipande 1971; Baym, Pethick,
and Sutherland 1971; Baym, Bethe, and Pethick 1971). (The details of splicing
in no way affected the final result.)

The value of w@ for our envelope plus neutron-star core was then computed
by trial and error (“shooting”). We set £(0) =1 and £'(0) = 0, chose a value of
w?, and integrated equation (A) from r = 0 to rpy. If £ was positive for all » and
the outer boundary condition was satisfied, then w@ = w?; if ¢ was positive for
all » and the left hand side of equation (C) exceeded the right hand side, then
w@ > w?; otherwise w@ < w?. Subsequent integrations allowed us to converge on
w. Table TA displays the results. Models 3-5 are obtained by using the structure
of the neutron star derived from the soft equation of state, but with the neuton
star’s I in equation (A) artificially replaced by the shown value (and the correct
I’ retained in the envelope). This is included to show just how soft the neutron
star must be to allow this sort of instability. The last column is the period 27 /w
for the longest oscillation.

The entries in the third column of Table TA are the same not only to three
digits shown but to all digits in this eight-byte integration (FORTRAN double
precision). This indicates that the core has almost no influence on the oscillations.
The reason is the poor impedance match in equation (A) between the dense, high-
pressure core and the tenuous, low-pressure envelope with the result that the value
of ¢ is negligibly small in the core compared to its value in the outer envelope
(r 2 100 km). The pressure of a poorly impedance matched core below the region
with pairs and a radiative envelope above it with I' — 2 ~ 2 x 10~% > 0 is enough

3

to counteract the destabilizing influence of the pair region.
6.3. Lifetime

[This section is presented as it was originally published. The discussion is

superseded by the discussion in Chapter 4 of this thesis.]
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TABLE 7TA

Fundamental Mode for Radial Adiabatic Oscillation

model eos for neutron star® wd(s?) T
1 hard 3.13 x 10~1® 1300 days
2 soft 3.13 x 1075 1300 days
3 soft(I’ = 1.334) 3.13 x 1071% 1300 days
4 soft(I' = 1.3333334) 3.13 x 10~!® 1300 days
5  soft(l =1.333333334)  —2.25

& See §6.2. for details of these equations of state.

The star should remain in this rp stage until it has exhausted its supply of
light metals needed as seed. We can set an upper limit on the time this takes
by dividing the total nuclear energy available to the star by a typical luminosity.
The number of 2C atoms is approximately MenyZL/12, where Meyy is the mass
of the envelope, Z is the initial metallicity, L is Avogadro’s number, and 12 is the
atomic weight of carbon. If each '2C atom is burned to ®8Se, then it yields about
Eheat = 320 MeV, and thus (using Z ~ 0.02) the total time the star spends in this

phase of its life is not longer than
Tiite =~ 1.4 x 10%yr. (26)

This is roughly the same as the lifetime of a normal red giant. (Note that one
scenario of creation for this star involves the coalescence of a neutron star and
a normal star in a close binary system. In this case the normal star might have
acquired considerable material from the supernova which created the neutron
star, resulting in an enhancement of metallicity. If one solar mass of metals was
transferred to the envelope, we might have Z ~ 1 M5 /16 Mg ~ 0.06. In this case
Tiite would be ~ 6 x 107 yr. By this time, however, stellar winds will have blown
off much if not all of the envelope.)

The rate at which matter accretes onto the core is also easily estimated. We
consider Lt at the edge of the core (call it L§¥t), since it is this luminosity

that must be produced by release of gravitational energy in order to splice a core
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onto the envelope we have constructed. A parcel of matter of mass Am releases
approximately £ = GM_ ;e Am/ro by accreting onto the core, so that the mass
accretion rate is given by

GMCOTC ) =~

To

M = Lcrit
= )

~13x107° Mg yr 1,
where we have used L§"t ~ 2700 L from Table 1. The time to accrete about 1
Mg, at which point the core will exceed the Oppenheimer-Volkoff limit and will be
in danger of collapsing, is about 8 x 108 yr, which is a factor of 600 larger than the
Tite calculated above. Thus, the accretion should not modify Tj¢e significantly,

and equation (26) is a reasonable estimate.
7. Possible observations

[This section is presented as it was originally published. The discussion is
superseded by the discussion in Chapter 4 of this thesis.]

Because our models are convective from the burning region to the photo-
sphere, we may predict that there will be an accumulation of reaction products
at the surface of the star. A signature for these stars would be a large quantity of
an rp-process isotope which is produced in only small quantities in normal stellar
processes. If we can observe on a normal red supergiant absorption lines of a
molecule containing a heavy metal atom, then the corresponding absorption lines
observed on a supergiant with a degenerate neutron core should be shifted, due
to the peculiar presence of the rp-isotope.

The following candidates are rp-process isotopes which are not produced by
the r- or an s-process and are not the most prevalent isotope of the element in

normal Population I abundances:
5001‘, 54F€, 7486, 78KI‘, 8481‘, 92M0, 96Ru’ 102Pd, IOGCd.

Because of the environment at the surface of the star (hydrogen rich, relatively

warm for molecules), the best candidates for observation are diatomic hydrides
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TABLE 8

Transition for StH

electronic  vibrational bandhead isotopic
transition (v',v") band () shift> (A)
A%l « X2% (0,0) P, 7508 ~ 0.0095
(0,0) PQiz 7505 ~ 0.0095
(0,0) QP 7348 ~ 0.0094

(0,0) Q2 7346.7 ~ 0.0094
& This shift is for 84SrH relative to 8 SrH. In this column
the shift in the line represented by J' = 9% — K" =101s

shown. The shift here is entirely due to rotational structure;

the vibrational shift in P; and P Q3 is comparable.

with high dissociation energies. If we narrow the list to those elements which have
spectra of diatomic hydrides documented in the literature, then only "%Se, 84Sr,
and 1°6Cd remain ("*Se: Bollmark et al. 1978, Bollmark, Lindren, and Sassenberg
1980; 84Sr: Rosen 1970, Watson and Fredrickson 1932; 1°6Cd: Svenson 1929). Of
these hydrides, StH has transitions (see Table 8) in an easily observable portion

of the spectrum (without many TiO and VO lines).

Shifts in vibrational and rotational structure of an electronic transition de-
pend on the reduced mass of the molecule (and thus on the isotope of the metal),
as described by Herzberg (1950). Current capability includes the ability to re-
solve rotational lines but not to resolve isotopes, so that a study of absorption
line centroids should reveal the ratio n (3Sr) /n (®%Sr) on the surface. Currently a
study motivated by this work is underway by Jeremy Mould to determine whether
SrH can be observed at all on the surfaces of cool stars. If 8*Sr were found with
far greater abundance than expected through normal stellar processes, then this
would be strong evidence for some abnormal rp-process producing the material
on the surface of the star and for the presence of a degenerate neutron core.

Another diagnostic would be an overabundance of elements with 32 < Z < 40
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on the surface of the star, since the rp-process will be very efficient in converting
C, N, and O into species in this range. This should be easier to observe since it
involves measuring the strengths of atomic or ionic lines instead of searching for a
small shift in absorption lines of a molecule. Table 2 suggests an overabundance
in species with A = 68, 81, and 82 (i.e., ®®Zn, ®!Br, and 82Kr), but this prediction
could be completely changed by improved information concerning nuclear masses,
beta decay lifetimes, and branchesin this paper’s simplified rp network. However,
the qualitative prediction of an overabundance of elements with 32 < Z < 40

seems rather firm.
8. Conclusion

This study continues a project begun by TZ and answers in the affirmative
the question, can we construct a consistent model for a supergiant which real-
istically includes a turbulent burning zone? It also provides a prediction for an
observational signature for such a star: the presence of rp-process elements on the
surface.

Specifically, a one-dimensional equilibrium model has been constructed in
which convection transports material and energy from the edge of the core to the
surface of the star and in which energy generation occurs through rp burning.
This feature provides the most probable avenue for observing these stars. A
strong presence of rp-process elements on the surface of the star would indicate
the presence of a degenerate neutron core. The molecule 84SrH is presented as a
candidate.

The situation is clearly more complicated than that presented in this pre-
liminary study. A more nearly complete treatment would require performing an
envelope analysis for each change in core mass as the core accretes, provision for
changes in envelope composition as time progresses, and a detailed analysis of
the burning region, as well as relativistic effects and effects of envelope accretion.
(Cannon et al. 1991 addresses many of these issues.) Also not addressed in this

study are issues of the stability and uniqueness of the solution, the effects of a
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magnetic field associated with the core, and the approach to steady state. Our
present simple analysis merely provides some semi-quantitative indication of the
features of such a star.

The largest question left unaddressed by this study is, of course, whether a
star with a degenerate neutron core can actually form in nature. A full study of

this has not been done, but for some insights into it see the references given in §1.

This work would not have been possible without the suggestions and guidance
provided by Kip Thorne. The author wishes to thank Jeremy Mould for numerous
discussions which formed the substance of §7. The author would also like to thank
Stanford Woosley for helpful discussion of the rp-process and other miscellaneous
topics. This research was supported in part by National Science Foundation Grant

AST-8817792.

Appendix

In this Appendix we shall justify the assumptions made in determining the
nuclear-abundance structure, that is, we shall justify the reaction networks used
and the choices of nuclear species which we followed. The Appendix is divided into
three sections, the first exploring the rp-process used in §4, the second treating

the rp-process of §§5 and 6, and the third treating the hot CNO cycle.

A.1l. rp-process in §4

In this section we will consider how to simplify the rp-process for the calcu-
lation in §4. We will keep in mind that we can ignore any reaction (besides beta
decays) that takes longer than about 0.1 s (the time for turbulent turnover near
the edge of the core).

All the rates for the proton addition reactions were obtained from Woosley
et al. (1978) where available or else from Caughlin and Fowler (1988) or from the
Hauser-Feshbach theory (eq. [30] of Woosley et al. 1975). Woosley et al. (1975)
suggest dividing the Hauser-Feshbach rates by 2, and we have done this here,

although thisis generally a trivial correction for our purpose. The reverse reactions
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were calculated from equation (10) in Woosley et al. (1978), given as equation
(A10) below. The factor REV in their equation (10) was estimated to be 10%°
when it was not otherwise given. Masses of nuclei were taken from Lederer and
Shirley (1978) where available. Otherwise masses were estimated from the semi-
empirical mass formula with estimated shell corrections, as explained in Myers
and Swiatecki (1966; see especially §7.10). Beta decays were taken from Lederer
and Shirley (1978) where available or else from Takahashi, Yamada, and Kondoh
(1973).

To gain some understanding of the rp-process in this hot convective region,
consider a seed nucleus (12C, although *N or O works similarly) which random
walks from the surface of the star toward the burning region. As the density and
temperature rise, the initial seed nucleus participates in the reactions (Al) and
side reactions (A2) of the hot CNO cycle (Audouze, Truran, and Zimmermann
1973):

2C(p,7)*N(p,7)'*0(,8)"*N(p,7)"*O( , 8)'*N(p, @)**C, (A1)

1*0(e, p)'"F(p,7)'*Ne( ,8)*F(a,p)'°0. (A2)

[Note that the completed CNO cycle contributes negligibly to the energy of
the star. To see this, we can get a quick estimate of the contribution of the hot
CNO cycle to the luminosity by assuming the following: The beta decay of %0
is the limiting process for the hot CNO cycle, so all the seed nuclei (those not
having undergone breakout) are in the form *O between ro and r5, where 75 is
the radius at which *N(p,7)'°0O becomes facile. (At cooler temperatures than
those at s the CNO goes hardly at all.) The concentration of %0 is given by
Y7E(r) between 7y and 75, where Z(r) is the function defined in equations (12),

and the total amount of 30 is given by
Nois = / Yr E pdnridr = 1.9 x 10*® moles.
To

If the total energy of the hot CNO cycle Ecno = 21 MeV is released upon a decay
of 150, then the total luminosity is given by

Leno = NoiwsEcnoL /71015 = 56 L,
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where L is Avogadro’s number and 7015 is the mean lifetime of 50, 176 s. This
is negligible.]

As a result of reactions (Al) and (A2), the seed is most likely to be in the
form %0, the major hangup of the CNO cycle. At some radius r; near the edge
of the core the density and temperature become such that the breakout reaction
130(a,y)'?Ne occurs in about 0.1 s. In the envelope with L,,. = 88,600 L that
we look at in §4, breakout occurs when 7' = 1.3 x 10° K and p = 440 g cm ™3,
and we will be using this temperature and density in most of our reaction rate
calculations.

Once the seed breaks out of the hot CNO cycle, proton addition and the
reverse reaction occur very quickly (~ 107® s), bringing the following reactions
into equilibrium:

19Ne X 20Na L2 21)fg. (A3)
b =p

The corresponding reaction rates are given in Table 9 and are defined by the

following: If we consider a single equilibrium
Nu; +p = Nu; + 17, (A4)

then the reaction rates R4, are given by

dYNul
dt

= —R-I—pYNulYH = _R+pYNu1XP (A5)

for proton addition (where X is the mass fraction of hydrogen in the burning
region, p is the density, and Yg = Xp since the molecular weight of *H is 1 moles

g™ !) and by
dYNu2

di = —R—pYNuZ (A6)
for proton emission. Later we will estimate characteristic times for these processes
given by

YNul -1
typ = ————— = X
+p YR /dt (R+P P) ’ (A7)
VS -
tp=—c = (R_p) 7", (A8)

 dYnua2/dt
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TABLE 9

Reaction Rate Data for First Equilibrium?®

equilibrium Ry, R_,
Nu; i‘;—g Nu, (g mole™! s71) (s71) YNuz/ YNu1

19Ne f‘—_‘; 20N 9 x 10* 1.3x10® 5 x 10-2
20N, f_i_f; 2Mg 4 x 10% 12x102 9x10-®

® This is the first equilibrium of nuclei connected by proton
addition in the rp-process, calculated at radius r; = 16.63 km,
T =1.28 x10° K, p = 442 g cm ™~ inside the envelope of Table
6.

If we assume equilibrium, then the forward and reverse rates are equal and we

calculate, from setting equations (A5) and (A6) equal,

YNu2 R+p
= Xp. A9
YNul R-—p ¢ ( )

This ratio and the accompanying reaction rates are given in Table 9.

By taking all the reactions (A3) into account and setting time derivatives to
zero, we can determine the equilibrium concentrations of the species in this little
chain. In this way we find that 2*Mg will be the predominant species. After the
beta decay of 2! Mg (about 0.18 s), a new set of equilibria is established among
the next series of isotopes connected by proton addition and terminated by a beta
decay. This equilibrium is treated in the same way, and the process is continued
until nuclei of large mass are produced. When the nucleus reaches the size of "°Br,
proton addition takes about as long as turbulent turnover at this radius of the
envelope (where breakout occurs). Near the edge of the core where T' = 2.1x10° K
and p = 2700 g cm 3, the mass of the nuclei can be pushed up further, up to
120Ba, when again the time for proton addition is about as long as turbulent
turnover.

Figure 7 summarizes the results of this calculation, showing the rp-process

through ?6Pd. (At this point, as we see in §4, the beta decays have become long
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enough to turn off the process.) Notice from this figure that there are four species
with A < 39 which take longer than 1.5 s to decay, species with 40 < A < 67
have very short beta decay times (< 0.8 s), and many species with A > 67 have
quite long beta decay times (> 100 s). Species with mean lifetimes greater than
1.5 s were included in the simplified reaction network of §4 (Table 2) if A < 39,
and species with mean lifetimes greater than 10 s were included if A > 67. (See,
however, Chapter 4 of this thesis in which Figure 7 is superseded.)

We have been looking at the rp-process at the radius »; where breakout oc-
curs. If we perform the same analysis at different radii in the burning region, we
find that we reproduce Figure 7 with very few changes, except that the rp-process
terminates sooner at cooler temperatures. This statement is borne out by the sim-
ilarity even in detail between Figure 7 here and Figure 3 in Wallace and Woosley
(1981), calculated at a different temperature and density. (In some envelopes the
temperatures and densities are great enough to initiate 22Mg(ca, p)2°Al and other
alpha addition reactions, but separate calculations including these reactions did
not change the results significantly.)

This simplified reaction network should remain more or less valid until the
temperature reaches some maximum value at which photon-induced proton emis-
sion begins to dominate, that is, the equilibria represented by reaction (A4) (such
as reactions [A3]) shift significantly to the left. We can estimate this temperature
Tmax by looking at equation (10) in Woosley et al. (1978) for the relationship

between the forward and reverse reaction rates in equation (A5) and (A6),

—11.605Q>

91 3/2
R_,=REV=—T,""R
P 92 9 +p €XP ( T

(A10)

Here g; is the statistical weight of Nu;, Q is the energy of the reaction in MeV, and
Ty is T/10°K. The shift leftward in equation (A3) occurs when t4, = t_p, i.e.,
when R ,Xp = R_;, (cf. eqs. [A7] and [A8]). We can compute the temperature
Ty at which the shift occurs by combining this relation with equation (A10). In so
doing, we estimate g; = g, and REV = 10'° for a typical proton addition reaction,
and we substitute in typical values X ~ 0.7 and p ~ 10* g cm~3. For Q we use a

typical energy of reaction for proton addition. This can be obtained by adding the
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Fig. 7-Simplified rp reaction network as derived in the Appendix, §A.1, and used
in §§4, 5, and 6 of the text. The solid dark line along the left border of the diagram
is the proton drip line, so that isotopes to the left of the line are subject to protons
spontaneously dripping off. The hot CNO cycle is shown (eq. [A1]) along with the
side chain (eq. [A2]) and the breakout reaction (connecting 0O and '°Ne). The
boxes shaded a light gray correspond to beta-unstable parents which take longer
than 1.5 s to decay, while the boxes shaded a dark gray correspond to parents
which take longer than 10 s.to decay. The latter have the effect of cutting off the

rp-process in the star.
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energies in column 6 of Table 2, subtracting the energies in column 7, and dividing
by the number of protons consumed, i.e., Q =~ (672 —354)MeV /80 ~ 4 MeV. The

result of using these estimates in R4, Xp = R_; and equation (A10) is
Bonez 8 50 10" K. (A11)
Note that this excludes the first three envelopes of Table 1.

A.2. rp-process in §§5 and 6

In this section we will fill in some of the detail behind the principles spelled
out in §5.1. In §1 of this Appendix we presented a simplified rp network for
T =1.3x10° K and p = 440 g cm 3 (i.e., at 71). If we perform the same analysis
at the radii 7o, ro, and rs defined in §5.1, then we get the same network as in
Figure 7 except that at cooler temperatures the proton addition does not proceed
as far, that is, the proton addition time exceeds ~ 0.1 s at a lower atomic number.
(By comparison, the turbulent turnover time varies little from 0.1 s for the various
radii.) This is the idea behind the first principle in §5.1.

For each radius r,, we need to know approximately at what species the rp-
process stops, that is, the first species for which the proton addition time is longer
than the turbulent turnover time. The proton addition times at r3 are shown in
Table 10. By comparing with the turbulent turnover time (0.14 s), we deduce that
the rp-process stops at about **Ar (which decays eventually to 3*Cl). Similarly,
we determine that at 7, the rp-process stops at about **Mn (which decays to
49Ti); at r1, at about "°Br; and at 7o, at about '2°Ba. At ro and at ry, however,
we will say that the rp-process stops at ®8Se (which decays to 68Zn) because, as
we stated in the last paragraph of §4, the long beta decay times prevent the rp-
process from going much past 68Se. Thus we have filled in the details behind the
first two principles in §5.1.

We also stated in §5 that we needed to look at long-lived beta-decay parents
which deposit energy beyond r3. We claimed there that the most dangerous species

to deposit energy beyond r3 is 22Mg, and in the remainder of this Appendix we
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TABLE 10

Reaction Rate Data for Proton Addition?

process time(s)
turbulent turnover 0.14
19Ne(p, 7)2°Na 8 x 10~
20Na(p, )2 Mg 2 x 10—4
21Na(p, v)22Mg 2 x 10—
22Na(p,7)**Mg 2% 10~—%
23Mg(p, 7)24 Al 6 x 104
24 Al(p,v)?Si 2x 103
25 A1(p,v)?®Si 2x 1073
26 Al(p, )27 Si 4% 103
275i(p, )28 P 4 %103
28P(p,7)*?S 1 % 10~=
2 Plny 1) 8 1x10-2
0P (p,v)%18 1x10-2
315(p, 7)32Cl 3 x 10-2
32C1(p, v)** Ar 8 x 102
33C1(p,v)**Ar 8 x 10—
34Cl(p,7)*°Ar 7 x 1072
35Ar(p,7)%¢K 2 x 10~
36K (p;v)* Ca 5% 10—
3TK(p, )% Ca 5 x 101
38K (p, 7)**Ca 5 x 10~1

® This is the mean time ¢ ,, as defined in equa-
tion (A6), for proton addition at radius r3 =
38.28km, T = 0.6 x 10° K, p = 30 g cm™*

inside the envelope of Table 6.
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shall substantiate that claim. We shall do so by estimating an upper bound to
the luminosity deposited outside r3 due to several beta-decay parents.

Consider first the beta decay of 22Mg. The nucleus 22Mg is created near 7,
and random walks about 5.57 s before decay. If it decays outside r3, the daughter
nucleus can undergo further proton addition and burn up to 3%Ar (as we noted
above), which decays to **Cl. We can estimate the energy deposited outside r3 by
22Mg by looking at the flux of 22Mg past rs, 4nrps D3 Y,’,Mg(r;; ), and multiplying
by the energy Ea2ppq released upon its decay and further burning to 3°Cl. Yaapg,
is the function described in §5. The energy E:2)g is given by the total energy of
burning ?2Na to 35Cl less the energy that goes into neutrinos, which we estimate

as half the energy of beta decays. Thus Ea2p\g =~ 90 MeV, so that we have
LMg22 = 47!"!'32p3D3Y;’2Mg(1‘3)E22Mg = 8600 L@, (A12)

where Y,’,Mg(rs) =1.77 x 107! moles g=! cm™1.

Consider next the beta decay of 26Si. Those 22Mg that decay inside 73 will
quickly burn to 26Si, which then can random walk out past 73 before decaying and
producing subsequent burning. To estimate the amount of energy 26Si thereby
deposits outside 73, we can consider an imaginary species created at ro with mean
lifetime 5.57 + 3.17 s (the sum of the ?Mg and 2°Si lifetimes). We determine
Yimag subject to Yimag(rpn) = 0 and Y;.,, (r0) = —Yiac(re). Then

imag

Lsize = 4nripsDs [Y};Mg(ra) = Y:';Mg('ra )] Ezeg; = 230 Lo, (A13)
where Yi,, . (rs) = 1.84 x 1071 mol g=! cm~! and E:s5; = 63 MeV. In this
expression we take the difference in brackets in order to avoid twice counting
energy taken out by 22Mg.

Last, consider some of the longer-lived beta-unstable isotopes which deposit
their beta decay energy outside 73, such as ®8Se and 8'Zr. We use the functions
Y; which were computed in §4, and set the energies released to half the beta decay
energy. Then

Lsegs = 47rr32p3D3Y6'ase(1'3 )Essse = 210 Lo, (A14)
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where Yesg.(r3) = 1.69 X 107! mol g~! cm™! and Fssg. = 2.3 MeV. Also
Lerl = 47”'32/’3D3Y8'121(7"3 )Eslz, = 220 L@, (A15)

where Yaiz,(r3s) = 9.34 X 10712 mol g~ cm™! and Fsiz, = 5 MeV. Other species
are even less dangerous than these. All the other species deposit < 10% of the
energy that 22Mg deposits beyond 73, and so we will use just 22Mg as an indicator
of how much luminosity is deposited beyond r3. Synthesizing these concepts, we
arrive at the set of assumptions spelled out in the second to last paragraph of

§5.1.

A.3. Hot CNO cycle

In this subsection we shall give the details of idealizations of the hot CNO
cycle which lead to the simplified network in Table 1B. Most of our idealizations
will go in the direction of increasing the efficiency of the hot CNO cycle, so that
when we find that Lypyc/Lpy is much less than 1, we will know that the full hot
CNO cycle would not lead to a consistent model.

The usual summary of the reactions of the hot CNO cycle (Audouze, Truran,
and Zimmermann 1973) is given by (Al). For the purpose of determining if the
hot CNO network provides enough energy to maintain an extended envelope, we
can ignore most of the side reactions. An exception is the branch (A2) occurring
at higher temperatures (7' 2 5 x 10%) which bypasses the long *O decay (102 s).
By comparison, ®Ne has a decay time of 2.41 s.

We will simplify the hot CNO cycle by saying that the strong reactions all
occur instantaneously at ¢ (so we will ignore strong reaction intermediates, such
as 13N) and, because the ®Ne decay is much faster than the 0O decay, that
the 8Ne decay occurs instantaneously. It is enough, therefore, to determine the
functions Yi2¢ (the initial seed), Yiso (a long-beta-decay parent), and Yisy (its
daughter), with the boundary conditions given in equations (5) and (8). This is

the simplified reaction network used in §4 and given in Table 1B.
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Chapter 3

Calculation of Beta-Decay Halflives
of Proton-Rich Nuclei of Intermediate Mass

Garrett T. Biehle and Petr Vogel

Intermezzo

This chapter originally appeared as Physical Review C, 46, 1555 (1992).
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Ever since Takahashi et al. (1973) calculated estimates for the beta-decay
halflives of virtually all beta-unstable nuclei, there has been a large effort to
improve these estimates for neutron-rich nuclei because of applications in r-process
theory and in the fate of fission products (see Staudt et al. 1990). The theoretical
effort to improve the estimates of halflives of proton-rich nuclei has not been
commensurate, although Hirsch et al. (1991) and Muto et al. (1991) presented
calculations for light nuclei (Z < 30). (See, however, also Suhonen 1991, Borzov
et al. 1990, and Staudt et al. 1990.) In this report we present the results of
an effort to improve the estimates for halflives of several proton-rich nuclei of
intermediate mass. These halflives play a role in rp-process theory (Wallace and
Woosley 1981), that is, the process in which protons are quickly added onto C,
N, O, and other “metals” with intervening fast positron decays resulting in heavy
proton-rich nuclei. This process occurs in certain astrophysical contexts in which
the temperature is greater than about 5 x 10® K. In particular, this process is
predicted to occur in massive stars with degenerate neutron cores (if they exist)
(Biehle 1991, i.e., Chapter 2 of this thesis), and information about the longer-lived
(> 1 s) beta-unstable nuclei would allow one to predict the nuclear abundances
on the surfaces of these stars. For this reason we undertook the calculation of
halflives of some proton-rich even-even nuclei of intermediate mass.

We are interested in even-even nuclei which have 0% ground states, so that
the calculation is relatively simple. The positron-decay halflife ty is given by the
following formula: —

1 B(GT),,g

& =;W";Af(AEm:Z)» (1)
where m labels the accessible 11 states in the daughter nucleus, B(GT'),, is the
Gamow-Teller B+ strength (equivalent to |(m|o7 1) |2 in this case), g, is the axial-
vector-current coupling constant (which we set to 1.25), and f(AE.,,Z) is the
Fermi function (including Coulomb and relativistic corrections), which describes
the size of phase space.

We obtain energy levels of the daughter nucleus and evaluate B(GT') using
the random phase approximation based on the quasiparticle formalism (QRPA).
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(The generalization of the QRPA to charge-changing modes is due to Halbleib and
Sorensen 1967. Particle-particle interactions were first included in the QRPA by
Cha 1983.) The formalismis described in detail in Vogel and Zirnbauer (1986) and
in Engel et al. (1988). In these papers the authors use the §-force as the residual
interaction and describe the following four parameters: ag, a; (the particle-hole
interaction constants in the S = 0 and S = 1 channels, respectively), a{, and
o) (the particle-particle interaction constants). Although these constants are
theoretically related, the authors present an argument that they can be treated
independently in this calculation. Using the values given in Engel et al. (1988),
we set gpair = —270 MeV fm® when we solve the BCS equations, and we set
ag = —890 MeV fm?® and a; = —1010 MeV fm?® for the RPA portion of our
calculations. Because we are looking at positron decay of proton-rich nuclei, our
results do not depend on aj in the RPA calculations. Our results do, however,

depend strongly on the value of a!, so we must take care to choose it carefully.

We divide the nuclei into two categories those with 74 < A < 80 and those
with 80 < A < 96. For the heavier nuclei in our study, we calibrated a} using
the known decay halflives of 8 Mo, °*Mo, °?2Ru, and °4Pd. In order to calculate
these halflives, we identified the lowest lying 17 state in the daughter nucleus with
the ground state given by the QRPA calculation. (This determines the values of
AE,,, used in the phase space integrals.) Our calculation is for positron-decay
only, i.e., no electron capture. In three of the calibration nuclei positron-decay
dominates over electron capture; however, 75% of the decay of °*Mo is due to
electron capture. In that case we, therefore, use the proper partial decay rate. In
our calculation, almost all (2 90%) of the predicted decays occur into the lowest
lying 17 state. Figure 1 shows the log (base 10) of the ratio of calculated positron-
decay halflife to experimental halflife versus o). From this figure we see that o
may be anywhere within a window from —324 MeV fm?® to —333 MeV fm?® and
yield values of halflives correct to within a factor of 3. A value of &} = —329 MeV
fm?® yields a least x2 4 equal to 0.22, where x% 4 = [% > (log(Tcalc/Texp))z]llz.

Thus we predict that our results in Table 1 are accurate to about a factor of
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log (Tcalc/Texp)

o) (MeV fm?3)

log1o (Tealc/Texp), where T refers to the positron-decay halflife, versus o} the
particle-particle interaction strength. The window of values for a! which yield
results correct to within a factor of 3 is shown. Note that ignoring the residual

particle-particle interaction (i.e., setting a} to 0) results in prediction of halflives

approximately 3 to 10 times too small.
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TABLE 1
Predicted Beta-Decay Halflives

AE,—o®* halflife® Takahashi et al.

nucleus  (MeV) (s) halflife(s)

e 9.6 0.5 0.03
76Sr 4.5 8 3

8 Zx 10.5 0.06 0.03
80Zr 5.0 7 3
8¢Mo 5.2 6 0.8
86 Mo 3.9 90 16

% Ru 5.8 1.2 0.8
®°Ru 4.7 16 5
i 6.8 0.9 0.4
o 8.0 0.6 0.3

® This is the maximum total energy of the positron for
a transition to the lowest 17 daughter state.
b The estimated accuracy is a factor of 2. See the ex-

planation in the text.

1022 = 1.7. By comparison, the x? ., for these four nuclei using results from
Takahashi et al. (1973) is 0.59, yielding an estimated accuracy of a factor of
10059 = 4.

In order to calculate halflives of the nuclei listed in Table 1, we need to know
the positron-decay energies. Since the masses of the positron-decay parents (and
often those of the daughters as well) are not known, we use the predicted masses
of Janecke and Masson (1988). (These seem to reproduce best the known masses
of proton-rich nuclei.) We set AE,,—, that is, the maximum total energy of the
positron, to the difference of parent and daughter masses less 0.2 MeV. The 0.2
MeV represents a typical value for the energy difference between the ground state

and the lowest lying 17 state of the daughter nucleus. (For these decays, however,
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AE,,—o is large enough that the correction is trivial.) The results are shown in
Table 1. As stated in the previous paragraph, these values are accurate to within
a factor of about 2. Electron capture is negligible in these nuclei, contributing less
than 3% because of the large decay energies involved. (See Lederer and Shirley
1978.)

Similarly we use the known halflives of °Se, ?Kr, "Kr, and 8°Sr to calibrate
o} and calculate halflives for several nuclei with A < 80. In this case we obtain
a} = —327 MeV fm?® for the best fit, yielding a least x? _; equal to 0.32. The
results are also shown in Table 1. We estimate that the results are accurate to

0°-32 = 2, and again electron capture is negligible.

within a factor of about 1

Also shown in Table 1 are the predicted halflives of Takahashi et al. (1973).
It is encouraging that our results are consistent with theirs, which are calculated
by a different method; most of the difference is due to different Q-values (i.e.,

AE,,—), especially in the case of "Sr.

The authors wish to acknowledge support from National Science Foundation

Grant AST-8817792 and U. S. Department of Energy contract no. DE-F603-40397.
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Chapter 4

Observational Prospects for Massive Stars

with Degenerate Neutron Cores

Garrett T. Biehle

Allegro
This chapter has been submitted to Astrophysical Journal.
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1. Introduction and summary

In the 1930s Landau (1937) and Gamow (1937) independently proposed the
possibility of stars having degenerate neutron cores; however, forty years would
pass before detailed models of such stars were worked out (Thorne and Zytkow
1977, hereafter TZ; Bisnovatyi-Kogan and Lamzin 1984; Eich et al. 1989; Biehle
1991, hereafter Paper I; Cannon et al. 1992; Cannon 1992). [Paper I is Chapter
2 in this thesis.] Although these models certainly do not apply to the sun (as
Landau and Gamow proposed) or indeed to any stage in single star evolution, it
is possible that stars with degenerate neutron cores (or Thorne- Zytkow objects,
or TZOs) form in other contexts. Three scenarios have been proposed: In the
first scenario TZOs may result from the collision of a neutron star and a normal
star in a globular cluster (see Ray, Kembhavi, and Antia 1987). This would form
light TZOs. In the other two scenarios the TZO is a stage in the evolution of a
close binary system. In the second, the initially more massive star evolves first,
transferring much of its envelope onto the companion and eventually becoming
a neutron star in a supernova. When the companion exhausts its hydrogen fuel
and begins to expand, it swallows up the neutron star, which then spirals to the
center, forming a TZO. (See §3 of this paper and §1 of Cannon et al. 1992 for a
more detailed discussion.) In the third scenario, a supernova in a binary system
“kicks” the forming neutron star into its companion (Leonard, Hills, and Dewey
1993). In addition, TZOs have been invoked to describe a creation scenario for
low-mass X-ray binaries (Eggleton and Verbunt 1986). And recently they have
been proposed as a source of p-process nuclei (Cannon 1992).

To date, however, no star has been identified as a TZO. This is because
TZOs look much like normal red giants or red supergiants, only slightly redder.
In this paper we develop the idea that such a star might be identifiable by peculiar
nuclear abundances on its surface (TZ). We present predictions for the surface
abundances (Tables 1 and 2) of the more massive TZOs and list some spectral
lines for determining abundances in candidate stars (Table 3).

In their paper TZ constructed spherically symmetric, nonrotating, nonmag-



86

netic, fully general relativistic models which naturally fall into two classes: TZ
giants and TZ supergiants. The models for the former class describe stars with a
core mass of 1 M and total mass less than 9 M. Gradual, steady accretion of
the envelope onto the core accounts for almost all the luminosity, while nuclear
burning makes a small contribution.

The models for TZ supergiants describe stars with core mass 1 Mg and total
mass greater than 12 M. (Cannon 1992 argues that this lower bound should
be 14 M.) These stars have the following properties: Nuclear burning provides
most of the luminosity (~ 90%). The envelope is almost entirely convective, so
that the convection includes the nuclear burning region and extends to the surface
of the star. From the outside this star would look like a spectral type M I star,
i.e., a red supergiant.

These properties of the TZ supergiant model imply that products from the
nuclear burning region are convected to the surface of the star. In Paper I we
showed that the nuclear burning in TZ supergiants proceeds by the rp-process
(i.e., rapid-proton-process, see Wallace and Woosley 1981), in which a nuclear seed
(initially C, N, and O) undergoes alternately proton addition and positron decay
until heavy elements are produced (Z 2 26). The scene near the burning region
looks like the following: Convection carries a seed nucleus down into the burning
region at the base of the envelope. The seed quickly burns (mainly by proton
addition) to a proton-rich species at the effective proton drip line (at T~ 10° K).
Since no further proton addition can occur, convection sweeps the seed back out
into the envelope where it random-walks around (because of convection) until it
undergoes positron decay. If the decay time is short, not many times the timescale
of convective turnover, then the seed decays at a small radius and is likely to be
carried back down to the burning region to be burned again. If the decay time
is long, then the seed decays at a large radius and is likely to be carried to the
surface of the star where its daughter endproduct can be seen. This endproduct
is the stable or long-lived (> 1000 yr) daughter after a series of positron decays.

In §2 we make this description quantitative by modifying the formalism which
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was presented in Paper I. The reaction network in that paper, although sufficiently
accurate to predict the energetics of the star, was not accurate enough to predict
surface abundances. We remedy this deficiency in §2.1, producing a simplified rp
reaction network which is good enough to predict the abundances of the major
species on the surface. (See Cannon 1992 for a calculation which includes time
dependence and a full rp reaction network.) In §2.2 we present the formalism
which yields the fluxes of peculiar species (rp products) to the surface. We thus
predict surface abundances in Tables 1 and 2 of §2.3. Not surprisingly, the species
which are most represented are those associated with the rp-process “waiting
points” | particularly the semi-magic and nearly semi-magic nuclei with Z ~ 50.
The rp-process slows down at this point and the resulting decay products are
carried to the surface of the star. In particular the abundances of Br, Rb, Y, and
Nb are enhanced by a factor of 200 over solar abundances; and that of Mo (and
perhaps of Ru, Rh, Pd, and Ag), by a factor of 1000. This provides a strong
distinction between “normal” red supergiants and those with degenerate neutron
cores.

In §3 we briefly discuss the problems involved in determining surface abun-
dances from absorption spectra in red supergiants and present a list of lines which
should prove useful in obtaining abundances of several elements. In §4 we esti-
mate the number of TZ supergiants in the solar neighborhood. This we do in
several ways because the lifetimes of the progenitors (high-mass X-ray binaries)
are uncertain. We find that of the ~ 100 red supergiants within 5 kpc, perhaps

several are TZ supergiants. §5 contains a brief conclusion.
2. Surface nuclear abundances

2.1. Reaction network

In order to obtain predictions for surface abundances of TZ supergiants, we
first obtain a more nearly accurate reaction network than that used in Paper
I. To do this we use more accurate atomic masses in the formalism presented

in the Appendix of Paper I. We obtain atomic mass estimates from the NNDC



88

(National Nuclear Data Center) where available. We especially note the mass
of 57Cu (Gagliardi et al. 1986) and that of ®Zn (Seth et al. 1986). Where
experimental masses are not available we use semi-empirical mass estimates of
Janecke and Masson (1988), since these are accurate to +0.15 MeV for nearby

known proton-rich intermediate-mass nuclei.

As in Paper I proton-addition rates are taken from Woosley et al. (1978)
where available, or else from Caughlin and Fowler (1988) or from the Hauser-
Feshbach theory (eq. [30] of Woosley et al. 1975). The reaction rates for nuclei
with Z < 44 are calculated assuming 7' = 1.3 x 10° K and p = 440 g cm ™3 (the
conditions in the envelope at which breakout from the hot CNO cycle becomes
fast compared to the convective turnover timescale). Those for nuclei with 44 <
Z < 50 are calculated assuming 7' = 1.7 x 10° K and p = 1200 g cm ™3, and those
for nuclei with Z > 50 are calculated assuming 7' = 2.1 x 10° K and p = 2700
g cm—3. We do this because the reactions involving more highly charged nuclei

turn on only in the hotter regions of the envelope.

We take positron-decay halflives from the NNDC where available. For 1°2Sn,
we refer to Barden et al. (1988). For "8Sr, 8°Zr, 8¢Mo, ®8Ru, and °2Pd, we
refer to Biehle and Vogel (1992). For °°Fe, *Ni, ¢3Ge, ¢7Se, "5Sr, "®Y, 8 Mo,
89Ru, and °*Pd, we refer to Takahashi et al. (1973), except that we use Q-values
calculated from Janecke and Masson (1988), in accordance with the method given

in Takahashi et al. (1973).

The resulting reaction network is shown in Figure 1, which supersedes the
reaction network in the Appendix of Paper I. We especially note that, because
of shell effects, Ni and Sn stand out as waiting points in Figure 1. Also, the
isotopes of Sn have comparitively long halflives, so that we expect there to be
large abundances on the stellar surface of endproducts from the positron decays

of these isotopes.

Because of uncertainties in the nuclear masses, this prescription is not suffi-

cient, however, to decide the dominant species in two of the equilibria (Appendix



89

;; Qv— -
N L=
w N
~ -
& N
] N ¢ <« Q
<
~~ <=
£ e
& 3
D < ¢ <
ol o= = )
= | ] Rt ®
- < © -
m O
< o < L N
<k <
3 o - < < o
== i < - < 3
<= - - @
< & o} = "o O - <] &
F O B e
o| e < <= <«
25 3
i
|”) o - @~
< o 4
D S B
NP o<« 2 <k
< o & = L wl=
-_— ] o« 9
- <= b =Y |- <
S <
< ¢ <
b o o
¥ A i g2
aals S - o <
‘22 i i i N RS
= ) < <} <
=
- )
<« < oj || I
<+ -} O -
Rl (G &) -
-+ ¢ < i e i ™ N
= @
<t -8 Sis}
5 <+
S~ < & o i )
- "3
5B ~ o < <
—
L]
- <~ o o ”
20 - > 2 at- @l @
o S Zz O
7 o o ‘T
)
-
7 < <t
L <o ©°
| ®© - et
ip o o I ] § O >E 4
ZZw O zZ O =

Fig. 1-Simplified rp-network used in §2. The CNO network and breakout into
the rp-process are shown schematically by a few representative reactions. In §2
they are idealized as happening quickly. Note the waiting points due to shell
effects for Z ~ 28 and especially Z = 50. The rp-process comes virtually to a halt
at 56Ni since this nucleus is double magic (two closed shells), so that a dashed
arrow shows the reaction *¢Ni(p,7y)*"Cu (see §2.2). About half of the seed which
continues the rp-process comes from “primordial” Fe, as shown. In other places
in the diagram where there are dashed arrows, the nuclear data is insufficient to
determine definitely the correct reaction pathway, and so both possibilities are
worked out in Tables 1 and 2.
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of Paper I). The equilibrium involving nuclei with N = 39:

>4

Ty = Ty X TRgy (1)

—-P

o

is very sensitive to the temperature at which it is established. We will assume
that ®Y predominates, although Tables 1 and 2 contain also results obtained by
assuming that either 77Sr or "®Zr predominates. We treat the following equilibria

involving nuclei with N = 46, 49, and 52, respectively, in the same way:

Ry & 1 92pq (2)
—P —P ’

“pd B 2 *704q (3)
-P —P ’

1000 18 I’ 1025, (4)
=P =p

Generally, however, we will assume that °°Ru, °Pd, and 1°°Cd, respectively, dom-
inate these equilibrium. We include results which come from different assumptions
about the nuclear physics in order to show how sensitive our predictions are to the
uncertainties in the input nuclear physics. The equilibrium involving °¢Ni (i.e.,
the equilibrium among species with N = 28) deserves special consideration, as

discussed at the end of §2.2.
2.2. Formalism

As a first step in predicting the surface abundances of nuclear species, we
construct a steady-state model in which the abundances on the surface are con-
stant and equal to their Population I abundances. In the context of this model we
determine the distribution of nuclear species throughout the envelope, and in par-
ticular we determine the flux of various exotic nuclear species toward the surface
of the star from the burning region. In §2.3 we will relax the assumption of con-
stant surface abundances and present predictions based on the fluxes calculated
in this section.

A steady-state model for the distribution of nuclear species in the envelope
was worked out in §4 of Paper I, so in this section we will briefly discuss the

assumptions made in that model and present the modifications necessary to obtain
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the results in §2.3. We make an approximation investigated by Despain (1976)
which is based on the mixing length theory of diffusion. In particular, the nuclear
abundances Y; (in moles g=!) of species i are given by the following modified

diffusion equation:

ov; 1 8 (, _08Y; V. 3
O—W—-p—r;-—a-; (’I‘ DE>—ﬂtK+ﬁJY31 (5)

where D is a generalized diffusion coefficient which is set to viurblpres, Vturb is the
large-scale turbulent (convective) velocity, and l,.es is the pressure scale height.
We are assuming that species j decays into species ¢ with time constant 3; and
that species 2 decays with time constant f;.

Equation (5), with 7 running over the various species, is a set of coupled
ordinary differential equations which must be augmented with boundary condi-
tions. The boundary conditions at the base of the envelope are determined by
the reaction network, as described in §4.1 (eq. [9]) of Paper I. In the steady-state
approximation we assume that the abundances on the surface of the star are con-

stant and equal to their Population I abundances, except that we lump C, N, and

O into 12C:

ch(rph) = (}’uc - Y'I4N + Kso)pop = Yseed, (6a)
Yi(rpn) =(Y3) pop 1, (6b)

where 7}, is the radius of the photosphere, and abundances are taken from Anders
and Grevesse (1989). The model in this section differs from that in §4 of Paper Iin
three ways: 1) We do not lump all the “metals” into 2C but use equation (6). 2)
We consider beta decays of all nuclei more massive than 2! Mg, not just the decays
of those with long halflives. 3) We idealize the breakout reaction (responsible
for breakout from the CNO cycle) and subsequent proton-addition as happening
quickly:

12C +*He 4+ 5 'H —2! Mg. (7

As in Paper I, all of the strong reactions are idealized as occurring at the base

of the envelope, whereas the beta decays occur anywhere in the envelope. These
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assumptions are sufficient to specify the boundary conditions at the base of the
envelope for equation (5).

We calculate the fluxes of species out of the burning region as follows: Con-
sider first the burning products from burning only C, N, and O. From §4.3 of
Paper I, we know that the flux of C, N, and O (which we lump into 2C) into the

burning region is given by
Fiag(ro) = 47762 poDoYaeed s, (8)

where po and Dy are the values of p and D at 7y, the radius at the base of the
envelope (i.e., the radius of the core), and n,(~ 1.25 x 1078 cm~!) is a constant
defined in Paper I, of no importance in this paper. This flux in equation (8) is
also equal to the flux of 22 Mg out of the burning region, since we are idealizing the
breakout reaction (7) as occurring quickly. After 2 Mg convects into the envelope

and decays to 2!Na, the flux of ?!Na into the burning region is given by
FnNu('ro) = 471'7'02P0D0},seed7]s<21Mg, (9)

where (2104, defined in §4 of Paper I, depends only on the halflife of 2*Mg (and
on the physical parameters of the envelope) and is called the “hindrance factor”.
It can be thought of as the amount of “damage” done by the required decay of
21Mg, since (21 gives the fraction of the daughter species ! Na which makes it
back to the burning region. Conversely, the flux of 2! Na outward to the surface

of the star is given by
leNa("') = 47r1‘2pDY;eed7]_, (1 — C“Mg) , (]_O)

where 79 < 7 < rpp and rpy is the radius of the photosphere. Here p and D are
functions of 7, but Fsiy, is nearly constant if » > 7o (so that the positron decays
are completed). (However, 2!Na is not stable but decays to ?!Ne, so that eq. [7]
actually gives the flux of 2! Ne toward the surface of the star.)

After 2!Na is burned to 22Mg in the burning region, and that 22Mg decays

to 22Na in the envelope, the flux of 22Na back into the burning region is given by

FzzN&(‘r‘o) = 47r7‘02p0D0}’seed'r],CnMngzMg, (11)



93

and the flux of 22Na (or rather 22Ne) toward the surface of the star is given by

FzzNa(T) = 47”'2PDY;eed77.sC’1Mg (1 = C"Mg) ’ (12)

where 1o < 7 < rpn. In general the flux of any positron-decay daughter to the

surface is given by

k—1

Fp i = 4nr? pDY;eeans lH Ci] (1—dk), (13)
1=0

where 7o < r < 7pp, and we set (o to 1 (cf. eq. [18] in Paper I). The subscript k

refers to the value in column (1) of Table 1.

So far we have only been considering the original C, N, and O which gets
convected to the burning region, i.e., equation (6a). Addition of the other species
in equation (6b) does not complicate the formalism, in that all the new stable
species are treated in the same way as 12C in the previous two paragraphs, except
that they are injected later in the rp-process. The fluxes of the burning products
from all these “fuels” are added together, and these sums of outward fluxes are
used in §2.3.

The equilibrium involving *¢Ni,

6Ni 1 57Cu, (14)

deserves special attention. The halflife of 56Ni is so long (6.10 d) that, after its
decay, very little ({sen; ~ 0.002) gets convected back to the burning region. Also
the above equilibrium is shifted far to the left, so that

K"Cu
Ysen;

~2x 1074, (15)

where we used p = 270 g cm ™3 and 7' = 1.12 x 10° K (see Appendix of Paper I).
Nevertheless the small amount of 3"Cu that is in the burning region has such a
short halflife (233 ms, or mean lifetime 0.34 s) that some of it has time to decay
before it is swept into the cooler portions of the envelope, where the rp-process

cannot continue. After the decay of 3"Cu, the equilibrium (14) shifts again to
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the right to produce more ®"Cu. The result of this is that about 5% of the 56Ni
which gets created at the burning region gets further processed to 57Ni (from the
decay of 57Cu) and continues the rp-process. We can set the hindrance factor
(sen; to an effective value of (g = 0.05. Thus about 95% of the *6Ni which gets
created escapes to the surface of the star. Much of the seed which gets processed
to elements heavier than Fe comes from primordial 5¢Fe.

[To get (s = 0.05, we need to compare the rate (in moles/s) that *"Cu decays
to 57Ni, dNs7y;/dt, to the rate that ®6Ni is convected out of the burning region

FssNi — 47!‘1'02p0D0)’5’5Ni(1‘0), (16)

using notation from §4 of Paper I. We note that

dN”Ni )fssNi 1
g My Yoopg——
dt R SN YssNi Tgo

; (17)
Cu

where My, is the mass of that portion of the envelope which is hot and dense

enough to maintain the equilibrium (14), and 7, is the mean lifetime of °Cu,

C
which is 0.34 s. Using Hauser-Feshbach reaction rates (Woosley et al. 1975) we

obtain that the radius at which the envelope becomes too cool to maintain the

equilibrium is about 7ot =~ 22 km. Thus we obtain
Mot = 4mpory’ In(Thot /7o), (18)

where we have used the approximation p = po(ro/r)%. According to the definition

of Tyepp We have

Yeoni(ro) = _nseNi‘_l},‘IGNi(ro) ~ =1 Yeoni(ro), (19)
where the approximation holds because of the long lifetime of *¢Ni. Combining
equations (15), (16), (17), (18), and (19) yields

dNs7y; /dt _To ln(rhot /1‘0)(}’57011/}’551\13)

=~ 0.05. 20
Fsen poDons ( )

Thus we obtain (. = 0.05.]
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The beta decay parents which hinder the rp-process are shown in column (1)
of Table 1. Their daughters are shown in column (3), their halflives in column (4),
and corresponding hindrance factors in column (5). The eventual decay products
are shown in column (6). These are the products which are convected to the
surface with a flux proportional to the value in column (7) (which will be further

explained in §2.3).
2.3. Results

In §2.2 we assumed that the nuclear abundances on the surface of the star
were constant, and we derived the fluxes of various products (column 6 of Table
1) out of the burning region. In a real star the surface abundances are of course
not constant, but instead the original fuels become depleted and the burning
products become enhanced, depending on the age of the star in its rp burning
phase. In this section we assume that the surface abundances of the burning
products are proportional to the outward fluxes (eq. [13] calculated in §2.2. (See
§2.4 for further discussion of this assumption.) When a T 7 supergiant is about
one third way through its rp burning stage, it has burned about one sixth of its
CNO fuel and processed it to exotic products. (See §4 for a discussion of this
statement.) Note that at the time when one sixth of the original CNO has been
burned, one sixth of all the other original species (including Fe) has been burned
as well. This is because the flux of the original seed into the burning region is
always proportional to the abundance of that seed in the outer envelope. See, for
example, equation (8), in which we could replace Fizc with Fiep, and Ygeeq with
Y¥e seed- At this time the nuclear species shown in column (6) of Table 1 have the
abundances show in column (7), denoted by N, 3. That is to say, the abundances
in column (7) are proportional to the fluxes in equation (13) with an overall factor
corresponding to the assumption that one sixth of the original species have been
burned.

(continued page 98)
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TABLE 1
Surface Abundances for rp-isotopes
halflife Final Ny;3*

k Parent Daughter (s) ¢ Product (10° Si)
n @ (4) (5) (6) (7)

1 21Mg ?!Na 0.123 0.991 21Ne 5.5 x 10*
2 22Mg 22Na 3.86 0.920 22Ne 5.3 x 10°%
3 2551 25A1 0.22 0.988 Mg 7.3 x 10%
4 *55i 26 A1 2.21 0.945 26Mg 3.5 x 10°
5 98 9p 0.19 0.989 296G 6.5 x 10*
6 308 i 1.3 0.963 3083 2.2 w 10°
7 38Ar 331 0.18 0.989 338 6.3 x 10*
8 Ay %00 0.844 0.971 #5 1.7 x 10°
9 Wia MK 0.173 0.989 37C1 6.2 x 10*
10 38Ca K 0.44 0.981 38Ar 1.1 x105
11 Wa WK 0.86 0.971 ¥Ca 1.6x10°
12 QT 25¢ 0.20 0.988 42Ca 6.5 x10*
13 “BCr Yy 0.05 0.979 8 1.1 x 10°
14 16Cr 40V 0.26 0.986 BT  T7.3x10*
15 9Fe 4°Mn 0.075 0.994 *T 3.1 x10*
16 50Fe  3°Mn 0.16 0.991 00r 4.5x10*
17 51Fe  51Mn 0.305 0.985 iy 7.5 % 10%
18 54Ni  %%Co 0.08 0.994 54Fe 3.0 x 10*
19 SiNi 55Ch 0.212 0.988 Mn 6.0 x 10*
20 56 Ni 58Co 5.3 % 10° 0.0026 5¢Fe 4.6 x 108
21 59Zn  %°Cu 0.184 0.989 59Co 2700

22 60Zn  %°Cu 143 0.416 60Ni 2.3 x 10°
23 63Ge %Ga 0.32 0.984 63Cu 2700

24 64Ge %Ga 63.7 0.579 64Zn 7.0 x 10*
25 67Se  67As 0.16 0.991 67Zn 860

26 68Ge  68Ag 96 0.494 687n 4.8 x 10%
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Surface Abundances for rp-isotopes (continued)

halflife Final Ny ®
k Parent Daughter (s) ¢ Product (10° Si)
n @ O (4) (5) (6) (7)
27 Kr T™Br 0.097 0.993 Ga 330
28 RBRr T'Br 17.2 0.793 2Ge 9700
29 58r SRb 0.16 0.991 75 As 340
30 TSy 8Rb 8 0.869 76Se 4900
31 TTgs® TSRb 13 0.862 TiSe 4400
31 s L 1 0.968 Kr 1000
31 gy Ty 0.4 0.986 " Br 450
32 80Zr b 7 0.883 80Kr 3700
33 817Zr Yy 15 0.808 81Brc 5300
34 84Mo 84Nb 6 0.891 < 2400
35 8Mo 85Nb 3.2 0.926 85Rb 1500
36 BRa %Tec 1.2 0.964 88 Sy 660
37 #¥Ru *Tc 2.0 0.947 9wy 940
38 MRS T 23 0.802 /3 3300
38 92pdd 92Rh 0.9 0.970 92Mo 500
39 “Wpd 9 Rh 1.0 0.968 %3Nb 430
40 4Pd °4Rh 9.0 0.862 Mo 1800
41 #Ppd* 9Rh 13.3 0.823 %Mo 2000
41 97Cde 97Ag 3 0.936 " e 720
42 8Cd 98Ag 8 0.869 ?®Ru 1200
43 ®WCd "Ag 16 0.802 ®Ru 1600
44 1000Qd 100A, 491 0.629 1Ry 2400
44 102Gnd 1027, 2 0.947 102pq 340
45 1036 9 {f 0.883 103Rh 470
46 WHEn WAh 20.8 0.768 104pd 830
47 o8 100 31 0.708  1%5Pd 800

48 106Gy 106]p 126 0.441 106Cd 1100
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Surface Abundances for rp-isotopes (continued)

halflife Final Ny °
k  Parent Daughter  (s) ¢ Product (10° Si)
1y @ 3 (4) (5) (6) (7)
49 Wisn a 174 0.377 107Ag 530
50 108G 108]p 618 0.174 108Cd 270
51 iTe i8p 19.3 0.778 e | 13
52 12Te 1128 120 0.455 1138n 24
53 UiTe 148k 102 0.480 13n 10
54 MO R 108 56 0.603 1158n 3.9
55 Nixe 49 61 0.587 WiSn 2.4
56 118Xe 118] 228 0.325 1188n 2.4

® Formally these abundances are relative to 10 original Si atoms. Since
Si is slightly depleted from the envelope, whereas H is hardly depleted, it
may be more helpful to think of these numbers as relative to 2.8 x 101° H
atoms.

b The interaction among the species 7"Sr, ®Y, and "°Zr is uncertain. See
the discussion in §2.1 (eq. [1]).

¢ The halflife for 81 Kr to decay to 8! Br is 2.1 x 10° yr.

d The equilibrium involving °°Ru and °?Pd is uncertain. See the discus-
sion in the last paragraph of §2.1 (eq. [2]).

¢ The equilibrium involving °*Pd and °7Cd is uncertain. See the discus-
sion in the last paragraph of §2.1 (eq. [3]).

f The equilibrium involving 1°°Cd and 1°2Sn is uncertain. See the discus-

sion in the last paragraph of §2.1 (eq. [4]).

In Table 2 we sum the contributions of various isotopes in Table 1 to yield
elemental surface abundances. The third column, log N,;3 — log Ng, gives the
comparison to solar system abundances (i.e., Population I abundances). In Table
2 we include only the elements which are produced in large quantities, so that we

do not list any elements with Z < 26. Notice that Fe has an abundance greater
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than solar by a factor of 5, and for Mo, Ru, Rh, Pd, and Ag the factors are over
1000.

Some of these abundances depend rather sensitively on the details of the
reaction network and thus on the details of the (semi-empirically determined)
nuclear masses and reaction rates. For instance, the presence of Tc depends on
the position of the equilibrium given in equation (3), and the presence of Ar
depends on the position of the equilibrium in equation (2). These uncertainties
are indicated by a range of values in parentheses. In addition, the abundances
of elements with Z > 42 (i.e., heavier than Mo) may be lower than indicated in
Table 2. Cannon (1992) has presented models of TZOs with lower temperatures
(T ~ 1.6times10° K) at the base (“knee”) of the envelope (c¢f. T' ~ 2.1 x 10° K
in Paper I), so that the burning region would produce less of the heavier elements
than shown in Table 2. Nevertheless, the abundances of elements with 26 < Z <
42 should depend only weakly on the temperature at the base (as long as it is
greater than 1.6 x 10° K), so these abundance estimates in Table 2 should be
reliable.

2.4. Timescale for establishing steady-state

In §2.2 we used a steady-state model in order to calculate the outward flux of
burning products. In §2.3 we relaxed the assumptions of §2.2 and assigned surface
abundances proportional to the fluxes by the methods in §2.2. This reasoning is
appropriate if the following conditions hold: 1) The timescale for setting up a
steady state Tys is long compared to the halflives of the species shown in column
(2) of Table 1. 2) This steady-state timescale is short compared to the lifetime of
the TZ supergiant. 3) And the “hindrances factors” (j are of order 1.

Let us look at the first two conditions. The timescale for setting up a steady
state is approximately the same as the timescale for convecting a species from
the burning region to the surface, Tq;x. One way to calculate this quantity is to
assume there is an imaginary species with mean lifetime 7in.g, which is produced

at the burning region. We assume a steady-state model, so that the abundances
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TABLE 2
SURFACE ABUNDANCES OF HEAVY ELEMENTS
N a,b c b

%, Rpeies (16{‘3&) (1](;,6@&) log1o (%)
26 Fe 4.6 x 108 9.0 x 10° 0.71
28 Ni 2.3 x10° 4.9 x 10* 0.67
29 Cu 2700 522 0.71
30 Zn 1.2 x 10° 1260 1.98
31 Ga 330 37.8 0.94
32 Ge 9700 119 1.91
33 As 340 6.56 1.71
34 Se  4900(9300)4 62.2 1.90(2.17)4
35 Br  5300(5800)° 11.8 2.65(2.69)¢
36 Kr  4700(3700)f 45 2.02(1.91)f
37 Rb 1500 7.09 2.28
38 Sr 3100 23.5 2.12
39 Y 940 4.64 2.31
40 Zr  3300(0)8 11.4 2.46(2 0)8
41 Nb 430 0.698 2.79
42 Mo  3800(1800-4300)* 255 3.17(2.85-3.23)k
43 Tc 0(720) e e
44 Ru  5200(2800) 1.86 3.45(3.18)
45 Rh  470(710)) 0.344 3.14(3.31)
46 Pd  1600(2800) 1.39 3.07(3.30)
47 Ag 530(800) 0.486 3.04(3.22))
48 Cd  280(2100) 1.61 2.57(2.74))
49 In 10(16)! 0.184 1.74(1.94))
50 Sn 33(49)) 3.82 0.93(1.11)

2 See explanation in Table 1.

b These estimates may be high for elements heavier than Mo. See the
last paragraph in §2.3.

¢ These are from Anders & Grevesse (1989).

d This is the result if 77Sr dominates the equilibrium in equation (1).

¢ This is the result if "®Zr dominates the equilibrium in equation (1).

f This is the result if 7®Y does not dominate the equilibrium in equation
(1).

& This is the result if °?Pd dominates the equilibrium in equation (2).

b The abundance of Mo lies in this range depending on the equilibria (2)
and (3).

i The presence of °"Tc depends on equilibrium (3).

J This is the result if 1°2Sn dominates the equilibrium in equation (4).
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of the parent and daughter at the photosphere are zero,
Yp (rpn) = YD (rpn) = 0, (21a)

but the fluxes at ry, are nonzero. At the burning region we have a finite Yp (o),
so that we have

Y% (7o) = constant Y5 (re) = 0. (21b)

We ask, what is the value of Tjmag such that
Yp (rpn) = Yp (Tpn), (21¢)

that is, such that half the unstable parent species remains when it arrives at the
photosphere. A simple application of the formalism of §4.2 of Paper I yields the
result Tymag = 1900 yr, so that we estimate Tq;s ~ 1000 yr.

Another way to calculate Tgif is to consider the random walk which brings
nuclei from the burning zone to the surface. The outermost 10 pressure scale
heights have turnover timescales on the order of 1 yr, so we may estimate Tqig ~
10%(1 yr) = 100 yr. We obtain the same answer if we consider all the pressure
scale heights and turnover times given in Table 6 of Paper I. That is, if we perform
a time-dependent simulation in which an imaginary species is injected into the
burning region and determine how long it takes before a substantial amount builds
up on the surface, then again we obtain about 100 yr. The similarity of these
results is convincing that the time for setting up a steady state is about 100-1000
yr.

We note that Ty;¢ ~ 1000 yr is much longer than the positron-decay halflife
of the longest-lived parent in column (2) of Table 1, that is, the 6.1 d halflife
of 56Ni. We also compare Tg;g to the lifetime of the T2 supergiant, which is
calculated in §4 to be 6 x 10° yr.

Now for the decay of ¢ Ni and for several other entries in Table 1 with A > 60
we no longer satisfy the condition 3) above, that is, we have (x < 1. The result
of this is that Tables 1 and 2 may underestimate the production of very heavy
metals (Z > 48), especially at late times in the star’s lifetime (c¢f. Cannon 1992).
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For the elements in which we are interested (26 < Z < 42) this effect is much

smaller then the uncertainties due to the nuclear physics (¢f. Table 2 and §2.1).

3. Absorption spectroscopy

In §2 we demonstrated that TZ supergiants produce a flux toward the surface
of metals heavier than Fe, especially Br, Rb, Y, Nb, and Mo (Table 2). Identi-
fication of TZ supergiants involves detecting these abundances (relative to solar)
through absorption spectroscopy. This project is complicated by the presence of
a preponderance of neutral metal lines and TiO molecular bands in the spectra of
these cool stars. It is impossible to find absorption lines for the elements in Table
2 which are not blended to some degree with other lines, but it is possible to find
absorption lines from which approximate abundances can be determined.

The lines in Table 3 are chosen so that they do not occur near to (and to
the red of ) the band heads of TiO and do not appear strongly blended with other
metal lines. The three optical Sr lines and the lines of Rb (7800 A), Y, Zr, and Mo
are distinguishable in the solar spectrum (Delbouille, Roland, and Neven 1973)
and in the spectrum of Arcturus (Griffin 1968). They are also distinguishable in a
spectrum of BS 6039, a M4 III star, taken at resolution 15000 by M. Rich (1990,
private communication) with a coudé spectrograph (built by J. McCarthy) at
Palomar Mountain. The Ru line is not visible in the solar spectrum, but it seems
to be weakly visible in Arcturus and in BS 6039. Again, if the Ru abundance is
enhanced, then this line should be strongly visible.

R. Kurucz (private communication) has produced synthetic spectra which
indicate that a resolution of 2 15000 is sufficient to distinguish a factor of 10
in abundances of those elements showing lines in the optical spectrum (all those
shown in Table 3 except for Sr). This is illustrated in Figure 2, which displays
superimposed synthetic spectra (resolution 15000) with the abundance of Mo equal
to solar and equal to 10 times solar.

For the three Sr lines in the infrared we need enough resolution to distinguish

the metal lines from the “noise” of TiO bands all of which shade to the red. The
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TABLE 3

Lines of Heavy Elements

Z Line A (A) x (ev) remarks
37 Rb1I 7947.63 0.00 1
Rb I 7800.23 0.00
38 Srl 4607.34 0.00 2
SrII 4077.72 0.00
Sr I1 4215.54 0.00 2

SrII 10036.66 1.80
Sr II 10327.31 1.83
Sr1II 10914.88 1.80

39 YII 4883.69 1.08
40 Zr 1 6172.48 0.15
Zr1 6143.18 0.07
42 Mo I 5570.40 1.33
44 Rul 5309.27 0.92 3
REMARKS:

1. This may be obscured by atmospheric H,O.
2. Line is distinct from, but blended with, nearby Fe I line.
3. Line is not visible in the solar spectrum but is perhaps

visible in the spectra of Arcturus and BS 6039. It should be

clearly visible in a TZ supergiant.

synthetic spectra of R. Kurucz indicate that a resolution of 2 20000 is needed to
determine Sr abundance to about a factor of 10.

Although it may be possible to identify a candidate list of TZ supergiants
by simple inspection of the line strengths in the spectra of red supergiants, a full
analysis would involve comparing observed spectra with realistic synthetic spectra.
Otherwise it could involve comparing the spectrum of a candidate TZ supergiant
with a star with similar surface conditions (temperature and surface gravity) (cf.

Tomkin and Lambert 1983).
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Fig. 2-Portion of a synthesized spectrum (light lines) for a red supergiant
with Population I abundances and with Mo abundance times 10, respectively.
The arrow points to a Mo line. Shown for rough comparison is a portion of the

spectrum of BS 6039 (J. McCarthy, private communication), a red giant.
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4. Number of TZ supergiants in the solar neighborhood

TZ supergiants are spectral type M I stars, that is, red supergiants. Jura and
Kleinmann (1990) report about 21 stars within 2.5 kpc which are red supergiants,
that is, with luminosity 2 10° Lg. There are on the order of 100 red supergiants
with 5 kpc of the sun (M. Jura 1993, private communication). In this section we
will obtain an estimate for the fraction of these stars which are TZ supergiants
based on a counting of likely progenitors. We assume the progenitor of a TZ
supergiant is a binary system of a massive star and a neutron star which are close
enough to each other that, once the neutron star is engulfed, it spirals in to the
center without envelope ejection.

Taam, Bodenheimer, and Ostriker (1978) calculate critical binary periods
such that a binary system with a shorter period undergoes coalescence without
envelope disruption. In these binaries the neutron star is engulfed during core
hydrogen burning, during shell hydrogen burning, or shortly after the onset of
core helium burning. Most of the energy of the spiral in is deposited at the
base of the envelope; however, the convective energy transport in this relatively
tightly bound envelope is efficient enough to transport this energy to the surface
where it is radiated away. A binary system which has a period greater than the
critical period has a less tightly bound envelope after the onset of spiral in. More
importantly, the density of the envelope at its base is less than that in the former
case and convection is inefficient. The envelope is therefore ejected. These critical
periods are reproduced in Table 4.

These binaries of a massive star and a neutron star appear in the sky as
high-mass X-ray binaries (HMXBs) of which there are two categories: those with
a Be star companion (called Be systems) and those with a supergiant (OB star)
companion (called MB, or massive binary, systems). Whereas the Be systems
derive X-rays from a stellar wind falling on the neutron star, the MB systems may
be wind fed or fed by Roche lobe overflow (also called disk fed). The lifetimes for
all three kinds of systems are rather uncertain, and for this reason we work out

an estimate of the number of TZ supergiants in several ways.
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TABLE 4
Critical Orbital Periods
for Spiral in

Companion Approximate Pb_c,;tb
Mass (Mg) Spectral Type® (d)
8 B5 48
16 BO 8 g
24.24 o7 ¢

® This is the spectral type of the companion before spiral
in. P Systems with smaller period than the critical pe-
riod will coalesce without envelope disruption, assuming

a 1 Mg neutron star (Taam et al. 1978).

The lifetime of a TZ supergiant is calculable by considering the time it takes
for the star to exhaust its fuel, that is, the C, N, and O which act as seeds for the
rp-process. It turns out that the star will cease its rp-burning stage when about
half its fuel is burned. Thisis true for the following reason: A T Z supergiant begins
its existence with Zg,e1 = 0.02 (although this may be larger if the supernova which
produced the neutron star enhanced the metallicity of the companion). By the
time Zg,e1 becomes 0.01, the temperature at the base of the envelope is about
3 x 10° K (see the fourth entries of Tables 1 and 4 of Paper I) and the rp-process
becomes inefficient (see §1 of the Appendix of Paper I). Thus we estimate the
lifetime of the TZ supergiant to be the time needed to burn half its fuel. The
number of seed atoms is given by MenvZ Lavo/12, where M.y, is the mass of
the envelope, Z is the metallicity, Layo is Avogadro’s number, and 12 is the
atomic weight of carbon. The heat energy liberated from burning 2C to 3¢Ni
is AFEyeat = 263 MeV (the energy of reaction less half the beta decay energy to

neutrinos). The lifetime is given by

_]_- Menv ZLAvoAEhea,t
2 12L

Ty ~ =§ % 107 yr. (22)

If we assume that the rate of star formation in the solar neighborhood has
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been approximately constant (Schmidt 1959), then we may write

T'rz

Npj = Nprog T
prog

(23)

where Np; and Nprog are the numbers of TZ supergiants and progenitors, respec-
tively, within 5 kpc, and Trp; and Tprog are respective lifetimes. Table 5 shows
the observed nontransient HMXBs which have sufficiently short orbital period
to preclude envelope disruption during spiral in (Nagese 1989). (Questions of
completeness are controversial, so we may be underestimating their number.)
Consider first the suitable Be systems known to be within 5 kpc, of which
there are 5. We estimate the lifetime of these systems to be less than but on the
order of the main sequence lifetime of the Be star, that is, 3 x 10® yr. Thus we
obtain
Ty

6 x 10% yr
Nop; ~ N, = —
2 N NBe * = 33 T08 yr

(24)

TZ supergiant within 5 kpc. Note, however, that Rathnasree and Ray (1992)
estimate a lifetime of 3 x 10° yr for these Be systems, assuming that the star
creating the wind is somewhat evolved, leading to N; =~ 10.

Consider all the suitable MB systems which have been found, of which there
are 7. The orbits of two MB systems are decaying at a known rate, that is, P,/ P, =
—1.8 x 10~8 yr~! for Cen X-3 (Kelley et al. 1983) and Py/P, = —3.36 x 10~°
yr~! for SMC X-1 (Levine et al. 1992). Levine et al. (1992) make the case that
the orbital decay is due to tidal interaction. If this is true (their conclusion is
controversial), then we can apply the derived lifetime of 4 x 10° yr to all the MB

systems. In this case we have

T.
Ny, = N, ﬁzs(
TZ MBTMB

5 kpc )2 6 x 10° yr
13 kpc/ 4 x 105 yr (25)
Npz = 2
T7Z supergiants within 5 kpc. We have used 13 kpc for the radius of the Galaxy,
and we use an inequality because our list of MB systems is probably not complete.
Consider the MB binary systems in which the X-ray source is fed by Roche
lobe overflow. Although there is only one (Cen X-3) that is definitely so identified
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TABLE 5
Possible TZ Supergiant Progenitors

Toulse Py D
Source Companion  (s) (d) (kpc) remarks®
4U 01154634 O-Be 3.61 24.31 3.5 Be
V 0331+530 Be 4.37 34.25 2-4 Be
(Cen X-3) 1119-603  O6-8f 484 2087 8  MB(RLO)
1E 1048—-593 Be 6.44 ~30° 3 Be
2S5 1553—-542 Be 9.29 31 --+  Be
2S 1417—-624 Be? 17.6 ~15 .-~ Be?
OAO 1657—41 OB 38.2 10.4¢ 1-5 MB
EXO 20304375 Be 41.8 ~46 ~5 Be
A 05354262 BO ITI-Ve 104 111 24 Be
(Vela X-1) 4U 0900-403 B0.5Ib 283 8.965 20 MB
E 1145.1-614 B2 I-Ila 297 5.648 8 MB
4U 19074097 OB 438 8.38 7 MB
4U 1538—-522 BOI 529 3.730 7 MB
GX 301-2 B1.51a 696 41.50 1.8 MB

® Here Be refers to a Be star companion. MB refers to a massive binary, i.e., with
OB star companion. RLO refers to Roche lobe overflow.

b This is an estimate based on the correlation of pulsar spin period and orbital
period in wind-fed systems. See Waters and van Kerkwijk (1989) and references

therein.

¢ This comes from Finger et al. (1992).

in this Galaxy, there is also one in the LMC (X-4) and one in the SMC (X-1). The
lifetime for such a system is estimated to be ~ 10* yr (Levine et al. 1992, Verbunt

and Rappaport 1988; see however also Savonije 1979, 1980). If we assume there
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is one RLO system in the Galaxy, on average, then

Ty i 5kpc \? 6 x 10° yr
Trro 13 kpc/ 1 x 10% yr

N1z = Nrro =9 (26)

T7Z supergiants within 5 kpc.

On the other hand, Meurs and van den Heuvel (1989) estimate the Galactic
number of quiescent close binary systems containing a neutron star and a massive
companion (M > 16 Mg) to be ~ 3000 (see also Rappaport and van den Heuvel
1982). If this is so, and we estimate the lifetime of the main sequence companion

as 107 yr, then we obtain

kpc \? .
5pc) 6 x 10 T _ o (27)

Try
Nep % Nprog y =~ S0 (13 kpc/ 1x107 yr

prog

T7Z supergiants within 5 kpc. This is an overestimate because we have not excluded
all the systems with periods which are too long to allow coalescence without
envelope disruption. Correction for this might revise the estimate downwards by
a factor of several or perhaps 10 (see Meuers and van den Heuvel 1989).

Thus we estimate that out of the 400 nearest red supergiants, i.e., those

within 5 kpc, several are probably i it/ supergiants.

5. Conclusion

A star with a degenerate neutron core and mass greater than about 14 M,
that is, a TZ supergiant, would appear spectroscopically like a red supergiant,
that is, spectral type M I. In this paper we have shown that a TZ supergiant can
be distinguished from a “normal” supergiant by the large surface abundances of
Mo (1000 times solar) and of Br, Rb, Y, and Nb (greater than 200 times solar),
as shown in Table 2. In particular the large abundances of Rb, Y, and Mo can be
detected using the absorption lines shown in Table 3. The abundances in Table
2 should be sufficient to distinguish a T'Z supergiant not only from an ordinary
red supergiant but also from two other possibilities: 1) an AGB star (misclassified
as supergiant) dredging up s-process elements and 2) a supergiant with s-process

element dumped on by a companion (cf. a Ba star, Tomkin & Lambert 1983).
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Although T7Z supergiants are likely to be rare, nevertheless there should be
several, perhaps as many as 10 (see eq. [26]), within 5 kpc of the sun. In this
case there would be several TZ supergiants near enough that one could take a
spectrum and determine surface abundances. We conclude that the prospects for
identifying a TZ supergiant with present technology are good.

Future avenues of possible research include topics mentioned in Paper I. Can-
non (1992) has addressed some of these issues by producing a time-dependent
model with a full rp reaction network. In addition he has explored the effect of
varying some of the assumptions involved in convective mixing, and he obtains 14
Mg, for lower limit of the mass of a TZ supergiant, so that there is still a mass
gap in which there are no steady-state models. It has been suggested (E. Salpeter
1990, private communication) that there might be solutions for the structure of a
TZO in the mass gap involving relaxation oscillations at the base of the envelope,
tapping into the store of gravitational energy, but the nature of such a solution

remains to be worked out.
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Hard Apex Transition in Quasi-Periodic Oscillators—

Closing of the Accretion Gap

Garrett T. Biehle and Roger D. Blandford

Finale

This chapter will appear in the Astrophysical Journal.
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1. Introduction

It is generally accepted that the phenomenon of Quasi-Periodic Oscillations
(QPO), first reported by van der Klis et al. (1985), contains important clues about
the mode of accretion in Low Mass X-ray Binary sources (LMXBs). QPO are the
~ 10 Hz broad peaks observed in the power spectra of these X-ray sources. In the
six years since this discovery, a detailed phenomenological understanding of QPO
and of the sources’ spectra has emerged (van der Klis 1989). In the six so-called
Z-sources, the X-ray fluxes from individual sources can be plotted on a two-color
diagram and are found to trace a one-parameter, Z-shaped curve, varying on a
timescale ~ 1 — 10 hr (Hasinger 1987). (See Figure 1.) We will be concerned
exclusively with these sources in this paper. Schulz & Wijers (1991) introduced
the parameter a, called the spectral rank, which measures distance along the
curve. The parameter a increases in the direction that one would normally draw
a Z, such that we have 0 < a < % along the upper stroke, called the Horizontal
Branch (HB), we have § < a < 2 along the diagonal, called the Normal Branch
(NB), and we have % < a < 1 along the lower stroke, called the Flaring Branch
(FB). It is generally believed that mass accretion rate increases monotonically
with o (Hasinger 1988), and good evidence for this has been given by Vrtilek et
al. (1991) for Sco X-1. (However, see Tan et al. 1992.)

The low Q pulsations, by which QPO sources are distinguished, are strongly
correlated with a. As a increases on the HB, the primary frequency increases over
a range ~ 20 — 50 Hz. In several sources, a characteristic frequency ~ 6 &1 Hz, is
measured on the NB. The primary frequency then increases again to ~ 10 —20 Hz
along the FB, increasing also in width and prominence. The transition from the
HB to the NB is also marked by a cutoff of low frequency noise (LFN) associated
with the HB. In Cyg X-2 the strength of the LFN increases with a on the HB and
rapidly decreases with a on the NB (Hasinger 1991, see also Hasinger et al. 1990).
This cutoff and on of LFN has been observed to occur in less than about 200 s
and has been likened to a phase transition (Hasinger 1988). It is the purpose of
this paper to interpret the “hard apex”, the transition from the HB to the NB, in
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Hard Apex

H/M

Soft Apex

M/L

Fig. 1-QPO Z-diagram, with H representing the high energy band 6-20 kev; M,
the medium band 3-6 kev; and L, the low band 1-3 kev. An individual object
traverses this locus on timescales of about hours. The parameter a, introduced
by Schulz and Wijers (1991), is believed to increase monotonically with mass
accretion rate. The point a = } represents the Hard Apex, while a = 2 represents

the Soft Apex.
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terms of a particular model of neutron star accretion.

Almost immediately after the first reports of this phenomenology, an inge-
nious model was devised to account for QPO (Alpar & Shaham 1985). In this
model, the observed HB oscillation is associated with a beat between the spin
frequency of a pulsar magnetosphere and the orbital angular frequency of a Kep-
lerian disk. The correlation of primary frequency with accretion rate then reflects
a motion of the Alfvén surface. A concern with the “beat frequency model” is that
the fundamental rotation frequency of the star has never been observed. This is
usually explained by appealing to electron scattering in an optically thick cloud of
plasma surrounding the source, and, indeed there is evidence for Comptonization
in the delay of the arrival of hard photons, known as the “hard lag”, and in the
width of the 6.7 keV Fe line. (White et al. 1986) The ~ 6 Hz oscillation on the
NB is associated with a non-linear oscillation of a radial accretion flow driven by

radiation pressure (Fortner et al. 1989, Miller & Lamb 1992).

In this paper, we explore some aspects of an alternative model of accretion
in Z-sources, wherein an accretion disk extends close to the surface of an unmag-
netized neutron star, and the three branches are associated with changes in the
disk-star interface. The neutron star must be compact enough to lie within the
marginally stable circular orbit of an accretion disk, so that an “accretion gap”
exists (Kluzniak & Wagoner 1985, Sunyaev & Shakura 1986) during the low ac-
cretion rate of the HB. The gas then drips from the inner edge of the disk and hits
the star with mildly relativistic speed at grazing incidence. More than half the
total power is released in the surface layer of the star in a relatively hard spectrum
(Kluzniak & Wilson 1991). As the accretion rate increases, the disk inner edge
shrinks until it touches the star surface. The closing of the accretion gap and
forming of a boundary layer marks the transition from the HB to the NB. As the
accretion rate further increases, the boundary layer thickens until it covers the
whole surface of the neutron star. This marks the transition to the FB, where the
accretion rate is super-Eddington and radiation escapes primarily through large-

scale convective instabities. Although we shall defer discussion of these matters to
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a subsequent paper, we tentatively associate the HB oscillation with disk modes
(cf. Nowak & Wagoner 1991, 1992) and the NB and FB oscillation with non-radial
normal modes in the star.

In §2 we outline simple thick accretion disk models and show how the inner
radius, that is, the inner-cusp radius, varies with accretion rate M. These mod-
els represent accretion on the horizontal branch. We use the cusp radius as an
estimate of the location of the disk inner edge in a real accreting system. (This
estimate is discussed in §4.) We conclude that it is possible that a neutron star lie
within the inner edge of an accreion disk with nearly critical (Eddington) accretion
rate and that this accretion gap close with increasing M.

In §3, we speculate upon the changing character of the boundary layer as
an object moves along the Z in a two-color diagram, and we relate the changing
boundary layer to the changing spectral phenomenology. In §4, we consider the
constraints on the neutron star mass-radius relation and, by extension, on the
equation of state of nuclear matter, if the hard apex transition is, as we hypoth-
esize, identifiable with closing the accretion gap. We discuss some observational

ramifications in the concluding section.

2. Slender accretion disks

Some neutron star equations of state allow the star radius to lie within the
marginally stable orbit, that is, the inner radius of a thin accretion disk, at » = 6m
(see, e.g., Kluzniak & Wagoner 1985). In this section we consider slender accretion
disks of the type believed to form around LMXB’s which produce QPO.

For illustration purposes, we consider an axisymmetric disk composed of a
perfect fluid with negligible self-gravity. We assume that the fluid is in hydrostatic
equilibrium and is radiation-pressure dominated. [If we naively apply a-disk the-
ory (Novikov & Thorne 1973) to a 1.45 Mg star accreting at 0.1 Lgqq, then
Pgas/Prad ~ 0.02 at 7 = 12m, the radius within which most of the luminosity is
produced.] If dynamical instabilities interchange rings of constant specific angular
momentum ! (= —u4/uo) in the inner disk, then we expect both I and s (entropy

per baryon) to be roughly constant in the inner disk. (Compare with Seguin 1975
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in which s is argued to be roughly constant in a deep convective zone.) In addi-
tion, it is easy to derive that the equation of state of radiation-dominated matter
with constant s is barotropic. We will neglect the radial component of velocity u..,
where u is the 4-velocity of the fluid. (This idealization is discussed in §5.) Near
the star our model resembles a slender accretion disk, while far from the star it
resembles a thin disk. In particular, the specific angular momentum ! = —u 4/u,
is approximately constant near the star, while far from the star the angular veloc-
ity becomes Keplerian. We then estimate the disk luminosity an observer would
observe as a function of disk model and the angle { she makes with the disk polar
direction. Here and throughout we use units in which G = ¢ =1, and we use the
standard Schwarzschild coordinates t,7, 0, ¢.

By a model, we simply mean the function relating @w = r sin 6 to the “height”
above the equatorial plane of the zero-pressure isobar zgy,y = 7 cosf, plus the
functions relating w to the values of the specific energy e = —u,, the specific
angular momentum [/, and the components of acceleration a, and ag at the surface
of the disk. For purposes of finding how the luminosity varies with the inner radius
of the disk, we need not be concerned with the internal structure of the disk. The
disks are parameterized by 7i,, the inner radius of the disk. For a given r;, we find
lo, the fluid specific angular momentum near the star and calculate the observed
luminosity LS, = 4nD?Fg2, , where Fg2, is the flux from the disk observed at
distance D. Eventually we determine (§4) that, even when L, approaches the
luminosity of bright X-ray sources, some neutron star equations of state allow the

neutron star radius to lie within r;,.

2.1. Slender accretion disk models

We construct a one-parameter family of disks by modifying standard mod-
els of slender disks with constant I. As documented elsewhere (Abramowicz et
al. 1978, Jaroszynski et al. 1980, Chakrabarti 1985), these disks of constant [ are
toroids with a cusp at inner radius r;,. The surface can be described as the func-
tion zsyrf(w) which attains a maximum zmax at @Wmax. The disks we construct

have a surface coinciding with the surface of these slender toroids for w < @ nax;
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for @ > Wmax our disks have a surface given by zsurf(@w) = Zmax. (See Figure 2.)

This prescription is equivalent to choosing a function {(Q2) which satisfies

=1, near the star; 1
() . r“3/2, far from the star, (1)

that is, asymptotically Keplerian. A convenient parameter to choose is the cusp
radius 7;, which lies in the interval [4m,6m|. We discuss this prescription further
below.

Following Abramowicz et al. (1978), we define
e = —uyo, l=—ug/uo, Q= u?/u’. (2)

The invariant length u,u® = —1 implies that e, [, and (2 are related by

s <3-11_2’S—l/’")1/2. (3)

The equation of motion can be written as follows:

___Ps _ Qg
ag = P+P _(lne);ﬁ I_Ql’ (4)

where 3 is r or 6, p is density, p is pressure, and a is acceleration. This equation,
together with our assumptions about the disk, governs the dynamics of the disk.
In particular, the term (Ine) g is an exact differential, and the term p g/(p + p) is
an exact differential for a barotropic equation of state, so that the final term is an
exact differential and surfaces of constant {2 coincide with surfaces of constant [
(Abramowicz 1971). Usually [ is a single-valued function of 2, and we can derive
that function from equation (4) given the shape of an isobar of the disk. Or else
we can derive the shape of the disk given the function I().

In the inner region, where | = Iy = const, we find from equation (4) that e
is constant on the disk surface and equal to its value at the inner cusp r;,. The
location of the cusp corresponds to the unstable circular orbit, so that we readily

obtain

Iy = ml/zrisn/2 (rin — 2m)_1 (5a)

eo = €(Tin) = (in — 2m)'r'i;1/2 (rin — 3m)~1/2 (5b)
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Fig. 2-The dotted line shows the zero-pressure isobar of a toroid with I = const =
3.70m, where m is the mass of the star. The solid line shows how this isobar is
extended in §2.1 to form a more nearly realistic accretion disk model. The other
two solid lines show accretion disks whose specific angular momenta near the star
are 3.75m and 3.80m, respectively. The neutron star surface shown corresponds to
a 1.45 M, star calculated with one of fhe softer equations of state (Moszkowski).
In this case of lp = 3.80m, the luminosity from the star exceeds the Eddington
limit (see Table 2). In this case the luminosity may drive an outgoing wind, so

that the observed luminosity is less.
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(see, e.g., Shapiro & Teukolsky 1983, p. 346, where their I and E correspond to

our le and e). Now, by definition, we have in general

w? = p? 52 (1—2m/r)l  e21*(r — 2m)
o o Q T re2 —r+2m’

(6)

The equation of the disk surface in the constant angular momentum region can

then be computed from equations (3), (5), and (6), so that we have

dmr + 2mriy — TTin

1/2
> (1‘ == rin) ) Tin <7 < Tmax- (7)

Zsurt () = (

4mr + 21,2 — rrinp — 6mri,

We obtain wpax and zmax by setting % = 0. After some algebra, we obtain

31‘1!2: — 12mriy + 16m?2 — Tind 1/2
(Tin = 4m)(rin —4m + d)
_ Tin(ria — d) [12m o = 3,.in] 1/2

P = 2(rin —4m) | rin —4m +d

Wmax — Tin [

(8)

where d = [(57in — 12m)(7ia — 4m)]}/? and 4m < r;, < 6m.
In the outer region, both the specific energy e and the specific angular mo-
mentum [ will vary along the disk surface. By definition we suppose that z = zax.

Combining equations (3), (4), and (6), we obtain

(5e=s) == ©)

where the p subscript denotes a derivative along an isobar. Eliminating Q0 from

equations (3) and (6), we obtain in general
P=w?[(1-2m/r)"! —e7?], (10)

and combining with equation (9) yields
=2 0 w? _ r?(r — 3m) + mz2,,
Ow? \1-2m/r )|, r(r — 2m)? ’ (11)

Q = m!/2,-3/2

where we have used ( 5;2,) =1 for a disk of constant thickness. Equations (11)
P

furnish the specific energy and angular velocity variation over the disk surface in

the outer region, and equation (10) gives the specific angular momentum.
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We need the components of acceleration on the disk surface for both the inner
and outer region. This is obtained by substituting Q/(1 — Q) = e2l/w? (obtained
from eqs. 3 and 6) into equation (4), so that

ag = —82—2 [(}2)'3 + % (lz)ﬁ] , (12)

To obtain the surface acceleration, we differentiate equation (10) and substitute

w = rsinf to obtain
1 (r—3m)e?

r  (r—2m)2’

2
aoz—i[l— e2r ]

Ay =

(13)

™ r—2m
Note that these equations obtain for both the inner and outer regions. Now we

know how to calculate [, e, a,, and ag on the accretion disk surface.

2.2. Disk luminosity

In the previous subsection we constructed a family of disks parameterized by
Tin. In §2.2 we calculate the apparent luminosity observed far away at an angle
¢ with respect to the polar axis of the disk, that is, the luminosity she would
calculate L$,, = 4nD?*F53, We do this by tracing geodesics from the observer
to the disk surface and relating the intensity at the observer to the intensity
in a frame co-moving with the disk. Since the disk is radiation-dominated, a co-
moving observer near the disk surface would observe an isotropic radiation field in
the outgoing direction with flux equal to the local Eddington flux. By integrating
intensity over impact parameter, we calculate numerically the quantity L3, as a
function of 7j,.

Let us say the observer is located at (r,0,¢) = (D, (,0), where D > m. We
introduce a second system of coordinates (7,x,%) rotated relative to the coor-
dinates (7,0, ¢), such that x and 1 are the azimuthal and polar angles defined
relative to the axis connecting the origin and the observer. (In equations (19)
and (20) we will refer to the new coordinate basis as the “primed” basis, so no

confusion will result.) See Figure 3.
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4

observer

Fig. 3-Geometry for calculating null geodesics in §2.2. The z-axis is the symmetry
axis for the accretion disk, and the observer is located far away along the z'-axis at
an angle { from z. The integration to obtain flux in §2.2 is over impact parameter

b and angle .
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Photons arrive at the observer’s telescope parallel to the z'-axis and are char-
acterized by an impact parameter b = Dsinx and angle 9. We can write the

apparent luminosity as follows:
Ly =4nD?FR, = 4n //I°°(b,¢)b db di. (14)

where F52, is the observed flux from the disk and I°°(b,%) is the frequency-
integrated intensity of photons in the 2’ direction characterized by impact param-
eter b and angle 7.

In order to relate I°°(b,7) to the conditions on the disk, we first trace a
null geodesic with impact parameter b back to the accretion disk. The tracing

along a geodesic is accomplished by numerically integrating the equations (see,

e.g., Misner et al. 1973, hereafter MTW, pp. 672-673)

d*u
aoF (83mu — 1)u,
u(x =0) =0, (15)
du 1
'd—;(x == ) 31

where v = 1/r. At eachintegration step we convert (7, x, ) to coordinates (r, 6, ¢)

and check if we entered the disk, that is, we have entered the disk if

elll(r —2m)

1‘602 —r+2m

r?sin? 6 > (16)

(see eq. 6) orif
rcosfl < Zgax and rsinf > Wnax. (17)

Thus each ordered pair (b,%) is related to a point on the disk (7,6, ¢) by a single
geodesic, and from §2.1 we know the values of [, e, a,, and ag there. For the rest
of this section 7, 6, and ¢ will be functions of b and 7 corresponding to the point
where the null geodesic labeled by b, 1 intersects the surface of the disk.

We can now relate I°°(b,) to known parameters on the disk as follows:

We know that I, /v® is a Lorentz invariant and a constant along a null geodesic



126

(Liouville theorem, see, e.g., MTW, pp. 583-588). Thus we have

o\ 4 poo\ 4
I*(b,y) = /du°°I,‘,’2, (b,%) = (Vco) /du“I,f?o(b,t[)) = (Vco) I°°(b,),

(18)
where v is the frequency of a photon observed by the observer at infinity, v°° is
the frequency of that photon observed by a person co-moving with the disk and
I¢° is the corresponding integrated intensity. Next we derive an expression for the
ratio v°°/u>®. We note that, since 2 and 3% are Killing vector fields and k (the
photons’ wave vector) satisfies the geodesic equation V ik = 0, ko and k4 must be

constant along the geodesics (see, e.g., MTW, pp. 650-651). Thus, we evaluate
v® = —u® .k = —ky, (19)

where we have used ©v*° = (1,0,0,0), and

co __ co | kCO - er k le

P
r—2m w2

k¢1 (20)

where we have used uo = (—¢,0,0,le).
We find a relationship between k4 and »*° by making a transformation from
the coordinates (t,7,60,¢) to the coordinates (t,7,x,%) which we will call the

“primed” coordinates. Thus we have
kg =L} by (21)

Now L‘;’ — LJ' = 0 and ky = 0 and k,» = bv*>°, as can be seen from Figure
3. We evaluate L¢x, by taking the partial derivative of x with respect to ¢ and

evaluating at the location of the observer, so that
L;" = sin( sin . (22)

Combining with equations (19), (20), and (21) yields

er lebsin ( siny

(23)

v>® r—2m w3
Because the disk is radiation-pressure dominated, we assume an observer co-

moving with the fluid sees an isotropic radiation field whose flux provides the



127

force required to maintain stationary orbits at the surface of the disk. (This is
analogous to a local Eddington limit.) Thus
Feob,9) _ la| _ (a-a)il?

I*°(b,$) = —— = =~ (24)

where F'*°(b, 1) is the total flux observed by a co-moving observer near the surface
of the disk, & is the opacity due to Thomson scattering, and |a| is the magnitude
of the acceleration 3-vector in the co-moving frame, which in this case is equivalent
to (a-a)!/?, since a is orthogonal to u. [Again, a-disk theory (Novikov & Thorne
1971) indicates that Thomson scattering dominates the opacity.]

We evaluate LS, (¢, 7in) by numerically integrating the expression in equation
(14). We obtain I*°(b,1) by combining equation (18) with equations (23) and (24).
For the resulting expression we need 7, 6, [, e, a,, and ag evaluated at the point
where the geodesic corresponding to (b,%) touches the disk. These are obtained
by the procedure described in the fourth paragraph of this subsection and from

the procedures outlined in §2.1.

2.3. Results for disk luminosity

The results of these calculations are shown in Tables 1 and 2. Table 1 shows
the quantity LS, /Lgad as a function of 7i, and (, where Lgqq = 47rmn,r_1. The
first 6 columns of Table 2 show parameters discussed in §2.1 (column 4 shows
the position of the pressure maximum), while column 7 contains the value of
L., /Lgaa which is a weighted average over ( of the values in Table 1. (Columns
8 and 9 will be discussed in §2.4.) Especially note the relationship between ri,
and LS., /Lgad, that ri, decreases as LY, and L{ (column 9, calculated in
§2.4) increase. This is a general feature of any family of disks in which the specific
angular momentum is constant near the neutron star, which we expect if the inner
region has rapid mixing of rings of fluid without strong viscous torques.

This feature is preserved even if we perturb the inner region somewhat from

the condition [ = constant. We used the relation

by = elft — 5} (25)
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TABLE 1

Apparent Disk Luminosity®

Tin /M
¢ 5.63 5.51 5.27 5.15 4.97 4.84 4.58
0° 0.021 0.037 0.089 0.128 0.216 0.317 0.648
30° 0.018 0.033 0.080 0.115 0.195 0.288 0.593
45° 0.018 0.033 0.080 0.115 0.193 0.284 0.568
60° 0.017 0.031 0.075 0.108 0.179 0.261 0.513
88° 0.004 0.008 0.031 0.046 0.066 0.109 0.177

® This is equivalent to L, ({,min) = 47 D?*F2, ({,7in), where

Fg2, is the flux at infinity coming from the disk, ¢ is the angle

the observer makes with the axis of the disk, and r;, is the inner

radius of the disk.

TABLE 2

Parameters and Luminosities Associated with Disk Models

M) @ B @ G 6 M 6 M
563 3.68 09434 6.41 0.16 649 0014 0.042 0.056
551 3.685 0.9439 6.57 0.27 6.72 0.026 0.079 0.105
527 3.70 09455 6.92 0.60 7.33 0.066 0.209 0.275
515 3.71 09466 7.11 0.84 7.72 0.095 0.309 0.404
497 373 09491 743 135 852 0.156 0.540 0.696
484 3.75 09518 7.72 196 940 0.232 0.861 1.093
4.58 3.80 0.9592 8.35 8.09 16.33 0.454 2.07  2.53




129
TABLE 3

Observed Disk Luminosity
for Perturbed Models®

Tin/mM

€ 5.63 4.84 4.58
0 0.017 0.261 0.513

0.01 0.014 0.251 0.477

0.1 0.013 0.241 0.471
® These disk luminosities L, are calu-

lated for { = 60°. (See eq. 25 in §2.3.)

to build the initial toroids which were then extended to infinity in the same way
as before. In equation (25) lo and 2, are the values of [ and Q at the inner
radius of the disk, and € is a small perturbation parameter. We calculated the
disk luminosity L3, ({ = 60°), and the results are shown in Table 3. Variations

in € are seen not to cause large variations in L§,, /Lgad.

2.4. Neutron star luminosity

We can obtain an estimate for the luminosity coming from the star if we
make some simple idealizations. We assume that material drips from the inner
radius of the disk onto the nonrotating star, and we assume the internal energy
advected by the material onto the star is negligible, since most of this energy is
in the photon field and is released before the material contacts the star. Then the
specific energy of the material at the inner radius is ey (see Table 2), and that of
the material at the surface of the star is estar = (1 — 2m/R)'/2, so that ey — estar
is the energy released per mass after the material is dripped from the disk. If we

ignore reprocessing by the disk of photons from the star, we may simply write

Lytar €0 — Estar
_ , 26
Lagisx 1l—eg (26)

where we will use Lg5,, from column 7 of Table 2 as an average value of flux from

the disk. For the calculation of estar, we use m = 1.45 M and a radius given by
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Arnett & Bowers (1977) for the Bethe-Johnson V equation of state (that is, D, in
their paper) R = 10.6 km. We tabulate the resulting estimates of LS, /Lgdq and
L, /Lgdq in columns 8 and 9 of Table 2.

The thing to note in Table 2 is that r;, decreases as LS, increases, so that,
for example, the decrease between the first and fourth entries of the table is on the
order of 0.48m ~ 1 km for a 1.45 M neutron star. This feature, that the inner
edge of the accretion disk moves inwards as luminosity increases, is a feature also
of some a-disk models with low Shakura-Sunyaev parameter o (see Matsumoto et
al. 1984 and Abramowicz et al. 1988). In these latter studies it is the sonic point

which moves inward as the luminosity increases.

3. Boundary layer formation

In the previous section, we showed that the inner radius of the accretion disk
is a decreasing function of mass accretion rate for a star and an accretion disk
with an accretion gap. We now consider what happens when the disk touches
the star and a boundary layer forms and speculate upon the implications for the
two-color diagram.

The published two-color diagrams are the result of convolving the X-ray spec-
trum arriving at earth with the variable instrumental responses in the different
energy channels. It is not possible to infer the emitted spectra unambiguously
(van der Klis 1991, private communication; see, however, Hasinger et al. 1990).
Furthermore, there is variation in the Z-diagrams from source to source. For
this reason we shall make a very simple model in which there are three spectral
components, of low, medium and high characteristic X-ray energy, and describe
qualitatively their expected variation. The low energy component (~ 1-3 kev),
which we call L, we associate with the accretion disk. We can calculate an ap-
proximate upper bound for temperature on the surface of the disks by finding the
maximum flux in equation (24) and assuming approximate local thermodynamic
equilibrium. For the disk with r;, = 5.27m in Table 2, using m = 1.45 M, we ob-
tain Tmax ~ 12 x 10 K, so that typical photon energies are < 3 kev. The medium

energy component (~ 3-6 kev), which we call M, we associate with the stellar
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surface. The high energy component (~ 6-20 kev), H, we presume to originate
from either the impact of falling material or from the boundary layer. (Compare
with Sunyaev & Shakura 1986.)

When the source is on the HB, and the accretion rate is low enough for
an accretion gap to form, we envisage that instabilities in the inner disk allow
irregular, non-axisymmetric radial flow in the vicinity of the marginally stable
orbit. Short streams of gas are accelerated toward the stellar surface. Since the
accretion gap is likely to be quite small, the tangential velocity greatly exceeds the
radial velocity, and the gas therefore strikes the stellar surface with near grazing
incidence. A hard component arises when the accreting matter is decelerated
through Coulomb collisions with the atmospheric electrons. In this case, a hot
(~ 20 kev), optically thin layer is formed at the top of the atmosphere, which
Comptonizes the softer X-ray flux emerging from below (cf. Zel’dovich & Shakura
1969, Fig. 1, Alme & Wilson 1973). This effect is amplified when the infalling
matter enters at an oblique angle (¢f. Kluzniak & Wilson 1991). Hot electrons
may also be produced through shocks in the infalling matter. (See, however, also
Walker 1992.) The resulting hard photons make up the H component. We propose
that a fixed fraction, of order half, of the hard radiation is partially thermalized
and re-emitted by the star as the M component. (The relative fluxes observed will
depend upon the orientation.) On the HB, the M and H components therefore
both increase with a relative to the L disk component. (See Figure 4.)

A boundary layer forms on the NB. The structure of accretion disk boundary
layers is a difficult and controversial issue. Early analyses appropriate to white
dwarf interfaces in cataclysmic variables (e.g., Pringle 1977, Pringle & Savonije
1979, Tylenda 1981) led to the estimate A ~ h%/R for the boundary layer thick-
ness, where h is the disk thickness. This estimate comes about from balancing the
centrifugal force with the pressure gradient. If the viscous stress scales linearly
with the density and has a coefficient of kinematic viscosity v, then the radial

velocity through the boundary layer adjusts to a value ~ v/A.

The structure of the boundary layer above a critically accreting neutron star
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Fig. 4-Three modes of accretion onto a neutron star: a) Horizontal branch: Parcels
of gas fall at irregular intervals through a narrow accretion gap onto the surface
of the star emitting hard X-rays. b) Normal branch: The inner edge of the disk
touches the star and forms a boundary layer. As the accretion rate increases, the
disk thickens, the X-rays soften, and the proportion of stellar thermal radiation
decreases. c) Flaring branch: The accreting gas envelops the star, supported by
radiation pressure in a thick, convectively unstable atmosphere. The radial flux
at the stellar surface may exceed the Eddington limit and drive a stellar wind.
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is even more complex. As mentioned in §2, the fluid will be radiation pressure
dominated and quite optically thick to Thomson scattering. (Fujimoto & Hoshi
1985, Shakura & Sunyaev 1988). The transport of radiation will be largely re-
sponsible for determining the thickness. We suspect that the boundary layer will
be turbulent with a laminar viscous sublayer close to the neutron star in which
radiative viscosity is responsible for lateral momentum transport. On dimensional

grounds, we propose that

A~h~(LL )R, (27)

Edd

where Lgaq is the Eddington luminosity. Therefore, the boundary layer covers an
increasing fraction of the stellar surface, as the spectral parameter a increases.
The energy released within the boundary layer will propagate outward through
the disk by either radiative transport or the application of viscous torque. The
radiation is likely to be softened by repeated Compton scattering. Much of the
energy released by the boundary layer will therefore emerge in the M and even
the L band instead of the H band. This can account for the abrupt decline in
H/M, and the slight decline in M/L. The NB presumably ends at the soft apex
when the star is mostly covered.

Finally, on the FB, H band radiation produced close to the stellar surface in
the strong shear flow may be able to escape directly via convective overturn. The L
component decreases as the accretion rate increases and the effective temperature
increases. Again, qualitatively, these two effects can account for the FB portion

of the Z-diagram (cf. van der Klis 1989 and references cited therein).

4. Mass-radius relationship for a neutron star

Kluzniak and Wagoner (1985) catalogued equations of state which would
allow a 1.4 Mg neutron star to have a radius less than 6m. They concluded that
indeed neutron stars may lie within the marginally stable Keplerian orbit and
that a theory of LMXB’s involving an accretion gap would then be appropriate.
Alternatively, they argued that, if we find evidence for the existence of an accretion

gap, then we can draw definite conclusions about the softness of the equation of
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state for neutron star material. In this study we take into consideration the fact
that for the luminous LMXB’s which exhibit QPO’s we expect the accretion disk
to be a slender disk (not thin), so that the inner radius of the disk is smaller than
6m. This is a more restrictive criterion for determining what equations of state
may allow an accretion gap to exist. This is illustrated in Figure 5, in which is
shown neutron star mass versus radius for several equations of state from Arnett
& Bowers (1977). Also shown are the lines representing m = 1.45 Mg, r = 4m,
and r = 6m, as well as lines of constant L{3, for several entries in Table 2. If
we make the reasonable assumption that the accretion disk has a luminosity at
least 0.4 Lggqq at the hard apex, and if the neutron star has a mass on the order
of 1.45 Mg, then the equations of state which allow an accretion gap are Arp,
Pandn, Mos, and BJV, i.e., those softer than BJI.

There are several effects which we have not considered which make us cau-
tious about the preceding result, and we discuss these effects in the remaining
paragraphs of this section. The former two effects tend to decrease our estimate
of rin, while the latter two tend to increase it.

First we consider the effect of rotation of the neutron star. To date, no
Z-source has exhibited a neutron star rotational frequency. If rotation is ever
detected, then rotational flattening may further restrict the conditions for the
existence of an accretion gap. We use the calculation in Hartle & Thorne (1968)
to estimate the marginal increase of equatorial radius as

§R . P\
— ~6x10 (10ms> : (28)

assuming a Bethe-Johnson V equation and m = 1.45 M. Also the position of the

(co-rotating) marginally stable circular orbit is less than 6m in the Kerr geometry,

)’1 . (29)

(See Kluzniak & Wagoner 1985 and also Hartle & Thorne 1968 for the calculation
of a.)

A second effect is the displacement of the cusp from our calculated value

so that

P
ns — =—-0.28k
r 6m 0.28 m(lOms

due to the presence of central radiation. In Appendix 1 we estimate the size of
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Fig. 5-Mass versus radius for a neutron star calculated from various softer equa-
tions of state. The mass m = 1.45 Mg, (i.e., 2.2 km) is shown, as well as the
radius of the marginally stable circular orbit 7 = 6m, the radius of the marginally
bound orbit » = 4m, and lines of constant 7;, /m for several entries in Table 1.
These last lines are labeled by the total apparent luminosity from the system L §3,.
Mass accretion rate M is related to L, by LS, = M(l — estar), Where egtar is
the specific energy of material on the surface of the star. The key for the equa-
tions of state (with Arnett-Bowers notation in parentheses) is as follows: Pandh
(B): Pandharipande (1971b), Reid soft core, hyperons included; Arp (F): Arponen
(1972), Thomas Fermi interaction; Pandn (A): Pandharipande (1971a), Reid soft
core, neutrons only; Mos (E): Moszkowski et al. (1974), Reid soft core; BJI (C):
Bethe, Johnson I (1974), Reid soft core; BJV (D): Bethe, Johnson V (1974), Reid
soft core; Bow (O): Bowers, Gleeson, Pedigo (1975), relativistic.
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this effect by determining the location of the marginally stable circular orbit in an
optically thin regime with central isotropic radiation. We find that the marginally

stable circular orbit moves to smaller radii, such that
Tms ~ 6m — 2.1ém, (30)

where 7, is the radius of the marginally stable circular orbit and { = k. L /471m
is the coefficient in column (9) of Table 2. For a 1.4 M star and { = 0.275 (third
entry of Table 2), we obtain Ar ~ 1.2 km.

Thus far we have been idealizing the inner radius of the accretion disk to lie
at the location of the cusp. Unlike the surface of the star, the surface of the disk
is somewhat fuzzy, especially since the effective potential near the cusp is soft.
Thus we suspect that the actual inner edge of the disk is displaced from the cusp.
It is difficult to model when true contact is made at the hard apex, since this
depends sensitively on the structure of the accretion disk. We present here two
effects which would result in the displacement of the inner edge from the cusp.

The third effect, this also due to central radiation, has the effect of moving
the inner edge of the accretion disk outside the cusp radius. The central radiation
will scatter off the material on the inner edge of the disk, producing a radiation
drag and an inspiral of material at the cusp (cf. the Poynting-Robertson effect in,
e.g., Rybicki & Lightman 1979). We can estimate the effect this has on the inner
edge of the disk by looking at the Thomson penetration depth into the disk. This
gives an idea as to where the disk is “thick” enough to be unaffected by radiation.
Inside the inner edge of the disk particles will be spiraling inward and transferring
angular momentum to the radiation field, so that radiation reaching the disk will
no longer be isotropic. Appendix 2 gives an estimate of the penetration depth, so
that for m = 1.45 Mg,

p — Tin ~ 0.6 km, (31)

where 7 is the equatorial radius at which the scattering optical depth approaches
1 and 7j, is the cusp radius. This difference does not change our conclusion that a
neutron star may lie inside of a thick accretion disk, although it will alter slightly

our prediction as to which equations of state are allowable if our model is correct.
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Also, as for the fourth effect, it is possible that these slender accretion disks
do not fill equipotentials up to the equipotential which contains the cusp. If the
star accretes not by material dripping over the cusp but by material being slung
into the star from the inner disk due to some instability, then again the inner
radius of the disk may lie at a greater radius than we have been using.

So far we have been referring to the Newtonian Eddington limit Lgqq =
47rmnT—1. The general relativistic Eddington limit can be calculated for a given
radius 7 by setting the local luminosity to the local acceleration of a stationary

observer multiplied by 4772k, . The resulting luminosity at infinity is given by
L&R paa = 4mm (1 - 2m/r)'/? Ky '~ 0.8Lpda (32)

for  on the order of the neutron star radius for the softer equations of state. If
the star luminosity L, gets much larger than this, then the neutron star surface
can no longer be said to be at the Arnett-Bowers value, so that we have restricted

the entries in Table 2 to having LS, < 0.8Lgaq.

5. Discussion

In this paper, we considered the hypothesis that QPO sources be identified
with slowly rotating, weakly magnetized (B < 107 G) neutron stars undergoing
near critical accretion. We proposed that the hard apex is associated with closing
of the accretion gap. This proposal requires that a neutron star lie within the
inner edge of a slender accretion disk radiating at a substantial fraction of the
Eddington limit. We showed that for a typical stellar mass of 1.45 Mg and
a system radiating at 0.7 Lgqq, the star will lie within the inner edge of the
accretion disk if the equation of state is not significantly harder than the Bethe-
Johnson V equation of state. Substantially harder equations of state would not
be consistent with this model. By specifying a simple analytical prescription for
the disk angular momentum and calculating the luminosity of the system as a
function of inner disk radius, we established that the inner edge of the disk moves
inward as mass accretion increases. Thus it is reasonable that the accretion gap

would close as mass accretion increases from the HB to the NB. To account for the
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gross phenomenology of the two color diagram, we proposed a three component
model for the spectrum involving the star, the disk and the impact emission from
gas falling through the accretion gap.

This physical description of the accretion flow is simplistic and ignores many
complications which may be features of real flows. Specifically, in creating disk
models we assumed that the specific angular momentum [ is roughly constant in
the inner disk. This assumption is valid if dynamical instabilities interchange rings
of constant ! in the inner disk, thus rendering ! roughly constant (see discussion
at the beginning of §2.) In §2.3 we perturbed the distribution of ! in the disk
and found that the calculated luminosity was surprisingly robust. These models
depend on only one parameter, 7i,, which can be directly related to the mass
accretion rate. One could construct a more general class of models having inde-
pendent parameters rpres (the radius of the pressure maximum) and zmax (the
height) in addition to 7j,. It may be possible to contrive models in which rj,
increases with M, which would be incompatible with our picture of the various
modes of accretion. We propose, however, that physical disks have the qualitative
property that 7, decreases with increasing M.

Another concern is that we have neglected the magnetic stress associated
with a magnetosphere. A surface field strength of less than ~ 3 x 108 G will en-
sure that the Reynolds’ stress associated with orbiting disk overwhelms magnetic
stress. The Low-Mass X-ray Binaries, from which QPOs are drawn, are an old
population and there is no physical difficulty with supposing that any primordial
dipole moment will have long decayed. The observational position, however, re-
mains quite ambiguous. Some millisecond pulsars have estimated surface dipole
magnetic field as small as ~ 3 x 10® G (e.g., Bhattacharya & van den Heuvel
1991), whereas fields greater than 10'? G are reported for some v-ray bursters
(Murukami et al. 1988) (that is, if these are indeed old Galactic neutron stars at
all, Meegan et al. 1992). If our model is verified, this would place a strong limit
on the stellar magnetic fields in QPO sources.

In computing our disk models and locating the disk cusp, we have supposed
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that the gas is accelerated by radiation escaping solely from the disk, ignoring the
influence of the radiation originating from the star. We have sought to estimate
the size of the effect of radiation from the neutron star on the location of the inner
radius of the disk. In Appendix 1 we estimate that radiation drag reduces the
radius of the effectively marginally stable orbit, by ~ 1 km, which will probably
bring the optically thin portion of the disk closer to the star. In Appendix 2
we estimate the effect of radiation stripping away the inner surface of the disk by
radiation drag, so that the “hard” surface of the disk lies ~ 0.6 km outside the cusp
radius. This enlarges slightly the class of neutron star equations of state which
would allow an accretion gap to form. These effects are not large enough to change
the qualitative aspects of our discussion, although they do change somewhat the

class of neutron star equations of state which will allow for an accretion gap.

We have not addressed the topic of instabilities in these models. Thick disks
have been shown to be subject to instability of global nonaxisymmetric modes
(Papaloizou & Pringle 1984, Goldreich, Goodman & Narayan 1989). We found
that our disks are surprisingly thin. The extent to which these instabilities are
relevant to thin disks is unclear (Hawley 1991). This is certainly an issue which
deserves more attention.

Neither have we discussed the phenomenology of low-frequency oscillation
and noise which is associated with these objects. Our model provides a natural
site for the production of low-frequency noise observed on the HB. It is natural
to associate the noise with the impact emission, reflecting the stochastic dripping
of gas through the accretion gap. This is replaced by a steadier inflow as the
boundary layer forms and thickens on the NB.

The constancy of the frequency of the NB oscillation (6-8 Hz) among sev-
eral sources and its relative stability with respect to changes in mass accretion
rate make it natural to associate the NB oscillation with stellar modes, since the
properties of the disk and of the accretion gap depend more sensitively on M.
The frequencies of most stellar modes are ~ 1 kHz, far in excess of the observed

oscillation frequency, although the oscillation may be associated with some lower
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frequency g-modes or with some nonadiabatic dynamical process, such as the
progress of a nuclear burning front or the breaking of a wave of material over the
stellar surface. In either case there are two major considerations: the excitation
and damping of the mode and the coupling of that mode to the production of
luminosity so that it can be observed. The excitation of stellar modes may be
strongly connected to the presence of a boundary layer, and so this may explain
why the NB oscillation is not observed on the HB. The coupling of the mode
to the production of luminosity is necessary because the energy contained in the
modes themselves is far too small to account for the ~ 2% oscillation of X-ray
flux. It may be that the mode acts as a kind of clock which modulates some pro-
cess which creates or amplifies photons. For instance, the pulsation may involve
a radial displacement which perturbs the boundary layer. The emission from the
boundary layer is probably enhanced by the Doppler shift of photons emitted from
gas moving at mildly relativistic speeds, particularly if the object if observed at
low latitude. Modulations of the Doppler factor may give rise to ~ 2% oscillation
in the observed flux.

The most striking characteristic of HB oscillation is the correlation of fre-
quency with the magnitude of the flux (and thus mass accretion rate). In our
model, this translates into requiring that the preferred frequency increase in a
reproducible manner as the inner edge of the disk approaches the star. One possi-
bility is that the HB oscillation is attributable to orbital Lense-Thirring or Newto-
nian precession in the nonspherical spacetime around a rapidly spinning neutron
star. Modulation of the Doppler factor again may provide a natural amplifier. It
is difficult, however, to account for the full variation in HB QPO frequency in this
manner.

Perhaps the best hope for testing this assignment of QPO sites observationally
lies with characterising the oscillatory components at different X-ray wavelengths.
In principle, this should be a good diagnostic since, if we associate the HB os-
cillation with the gap and the NB oscillation with the star, then we expect that
the former should have a harder spectrum than the latter. If, further, the softest
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X-rays originate from the star, then they should be relatively unmodulated. How-
ever, electron scattering may blur some of these distinctions. We plan to assess
the relative merits of different explanations for the HB and NB oscillations in a

more general manner in a forthcoming paper.
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Appendix 1

To obtain a measure of the size of the effect which radiation pressure from
the star may have on the location of the inner radius of the accretion disk, we will
consider a parcel of plasma moving in a Schwarzschild geometry and introduce
radiation pressure as a perturbation. Then we will look for the marginally stable
orbit.

If the luminosity of the central object at infinity is L, then a stationary
observer at radius r observes flux

< -1
Fst — L (1 _ 2_m) : (Al)

472

where one factor of (1 — 2m/r)~1/2 comes from the time dilation factor and
the other from the gravitational redshift. The parcel moves with velocity u, =
(—e,0,0,1le) in t,7,6, ¢ coordinates. If we boost into the frame of the parcel of

plasma, we obtain the flux

s 2 1/2 —~1/2
Frles — (1 4 l—:—) e (1 - 2—'”) =, (A2)
T

r

where the factor e (1 - 2—:_—"—)—1/ ? comes from the relativistic Doppler shift of the

1/2
photon energy and the factor (1 -4 %ﬁ—i) comes from the geometry. Given the
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magnitude and direction of the flux, we may calculate an acceleration vector and

derive the following equations of motion:

de om\ ~?
E = —fm(le)zer (1 = T) ) (A3)
d(le) _ o2m\ 2
i —Em(le)e’r™? (1 = T) ; (A4)
—2
32—7_2+—(1+i—22) - (1—27"‘) ljjz = Emer—? (1_??) . (A5)

where { = Kk L*° /4mm is a dimensionless parameter.

The first two equations express the Poynting-Robertson effect, which we will
not consider in this calculation, assuming !l and e are constant on timescales long
compared to an orbit time. This assumption will break down when ¢ < 1. We
multiply equation (A5) by 29Z, add equation (A4) multiplied by 2le (1 — 22) »—2,
and add equation (A3) multiplied by —2 to obtain

() (- 2) (o) - toao- )

where the term —¢52 d" log (1 — 2"‘) (which is second order in ¢) has been dropped
from the right hand side. We obtain an energy equation by integrating, so that

(2) o (1-22) (14 22) v (1-22). (a

For a marginally stable orbit, we set to zero the first and second derivatives of the

right hand side with respect to r. This yields

Tms — 6m = —¢
r

2m? 2m 2
;';er (1 - —m) ~ —2.1 mé. (A8)

In this case the presence of central radiation decreases the marginally stable radius,

so that, for instance, at L* = 0.1Lgqq we have rps = 5.8m.
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We may estimate the extent to which the central radiation modifies the in-
ner radius of the accretion disk by estimating the penetration depth of radiation
from the star, that is, by estimating the radius 7, at which the optical depth for
Thomson scattering becomes 1, calculated radially from the cusp radius. In order
to do this, we consider some of the details of the interior of the disk (treating I
and s as constant). In the following discussion p, p, and e are their equatorial
values as a function of r. Consider the third entry of Table 2, and assume the

density of material at the pressure maximum is about
Pmax ~ 107 gcm ™3, (A9)

(This density can be determined accurately only by knowing the details of the
mechanism for angular momentum transport. We have chosen a density to be
compatible with our assumption that the disk is optically thick, that is, so that
Pmax Kp Zmax > 1.) The pressure at pressure maximum can be obtained by setting

I3 =0 and pc? + p = pc? in equation (4). After using the equation of state
p = pop*/® (A10)
and integrating, we obtain
4p03/4p1/4 =c?In(eo/e), (A11)

where we have restored c¢? for this calculation only. (In order to obtain e at

the pressure maximum, we note that the pressure maximum coincides with the

stable circular orbit with | = l;. Thus e can be obtained by standard methods;

see, e.g., Shapiro & Teukolsky 1983, p. 346.) Combining e(p = pmax) = 0.9447

with equations (A9), (A10), and (All) yields po ~ 4 x 10'7" g='/3cm3s~2 and
3

Pmax ~ 2 X 101%erg cm™3.

We obtain the radius . by setting 7 ~ 1, so that

np np 34 6 [mr 3
P (o €p
KT/T pdr ~ K / (p—o) & s ;:Pos /r [ln (:)] dr, (A12)
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where the integration is radially outward from the cusp, and we have used equa-

tions (A10) and (A11). At the equator, the invariant interval —1 = u - u becomes
el =(1-2m/r)"! - 102/7_2)1/2 g (A13)

We integrate equation (A12) numerically using equation (A13) to obtain r =
5.57m. Thus for m = 1.45M we obtain

Tp — Tin ™~ 0.6 km. (A14)

This calculation also allows us to perform a consistency check for this model
of the accretion disk. We idealized the radial component of the velocity in the
disk u, to be negligible. This idealization is reasonable as long as the velocity u ,
is much less than the other velocities in the disk, especially the speed of sound v,.

Consider the third entry in Table 2 with p ~ 10~ gecm™3 (cf. eq. A9). Then

. M
T 2nrhp
~ 15 x 1052 M 10% cm 10°% cm 10~ gem—3
- s \9x1015gs—1 T h P) ‘

(A15)
We can compare this to the sound speed v5 ~ [(4/3)Pmax/Pmax)*/? ~ 5x10% cms™?
As long as h > 5 x 10® cm we have u, < v,. If material is slung from a point on
the disk outside the radius where h ~ 5 x 10® cm, then the radial velocities should

remain small compared to the velocity of sound, and we are justified in ignoring

iy
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