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Abstract 

QCD interactions involving a heavy quark with energy much smaller than its 

mass can be understood in the context of an effective field theory in which the 

heavy quark velocity is held fixed while its mass is taken to infmity. Nonleptonic 

decays of hadrons containing a heavy quark further simplify when gluons 

exchanged carry small momenta compared to the heavy quark mass. 

-
Under these assumptions the ratio of rates for B-+Dp- and B-+D1t- is 

investigated. The reliability of these assumptions is tested by calculating frrst 

order, one loop QCD corrections, assuming reasonable momentum distributions for 

the quarks inside the light mesons. 
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1. 

1. Introduction 

The accepted quantum field theory describing the strong interactions is 

Quantum Chromodynamics, QCD. In contrast with Quantum Electrodynamics, the 

charge (or color) of QCD is tri-valued. More precisely, QCD is a non-abelian 

gauge theory. It has been demonstrated that non-abelian theories are 

"asymptotically" free. l) That is the coupling constant diverges below a certain 

scale. In QCD that scale is 1\QCD .... 300MeV. The implication of this is that for 

physical processes with characteristic energies significantly less than 1\QCD ordinary 

perturbation theory fails. To overcome this shortcoming, symmetries, approximate 

or otherwise, of the theory are often exploited to make predictions. 

One of the original symmetries employed was the SU(3) flavor symmetry 

of the three light quarks: the up, down and strange. The "three-fold way" was 

particularly useful in organizing the myriad of hadrons unveiled in the 1950's and 

60's. Naively, this symmetry appears to be the result of the closeness of light 

quark masses. In fact this approximate symmetry appears because the mass 

differences among the respective quarks is small compared to 1\QCD. 

In addition to ~U(j) flavor, QCD with only light quarks possesses the 

approximate SU(3)L x SU(3)R "chiral" symmetry. This symmetry is manifest in 

the limit m q .... 0 in the QCD Lagrangian; q = u, d and s. The light quarks are taken 

to be massless with respect to AQCD. Corrections to an effective theory with crural 
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symmetry can be expanded in powers of mql AQCD. In nature, theSU(3)L x SU(3)R 

is spontaneously broken to the SU(3)v vector subgroup. 

At the other end of the spectrum, QCD possesses approximate symmetries 

when one or more quarks possess masses much larger than QCD scale 

mQ>>I\QCD (1) 

Formally, these symmetries are manifest when mQ is taken to infinity in the 

QCD Lagrangian. One of these symmetries is the obvious SU(N) flavor symmetry 

among the heavy quarks, where N is the number of heavy quarks. The second and 

more powerful symmetry is an internal SU(2) spin symmetry associated with each 

of the heavy quarks. In contrast with the massless case, corrections to . this 

effective theory are expressed in powers of the dimensionless parameter 

AQCD /mQ.2> 

In a theory with only heavy quarks, the usual techniques of perturbation 

theory could be used to make physical predictions. However, there are light quarks 

as well. However, the complicated interactions of light quarks in a bound system 

containing a heavy quark won't affect the motion of the system if mQ ... oo. This 

situation is analogous to applying Newtonian laws of motion to the trajectory of a 

baseball in air. Under suitable conditions, the inextricable influences of the air can 

be ignored in determining the flight of the ball. 2> 
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The most important application of the heavy quark effective field theory is to 

semileptonic decays, e.g., 

B-Deve (2) 

Predictions regarding decays of the this type are critical in determining elements 

of the Cabbibo-Kobayashi-Maskawa matrix.3> Characterizing transition matrix 

elements corresponding. to the decay (2) is relatively straightforward in the mQ- oo 

limit. 

More challenging are nonleptonic decays 

(3) 

In this case accounting for the creation of the pion is notoriously difficult. One 

would like to consider the distinct physical processes 

-
B-D (4) 

vacuum-1t (5) 

separately. Assuming this sort of "factorization" holds, physical predictions can be 

made.4> Intuitively factorization is a reasonable conjecture if virtual gluon 

exchanges between the light quarks and heavy quarks are "soft," i.e., their momenta 

are small compared to that of the heavy quark. Corrections to factorization 

resulting from "hard" gluon exchanges can be calculated pertubatively in ordinary 

QCD. Calculation of first-order corrections to factorization for the nonleptonic 
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decay rate ratio 

- -
r(B-D p -) jr(B-D rc-) (6) 

is the subject of this thesis. 

In Chapter 2 the properties of heavy quark effective field theory are reviewed 

followed by a discussion of its applications in Chapter 3. A formal justification for 

factorization is presented in Chapter 4. In Chapter 5 the nonleptonic decay of 

interest is analyzed, followed by some concluding remarks. 
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2. Heavy Quark Effective Field Theory 

Heavy Quark Effective Field Theory (HQEFf) is an appropriate 

approximation to the full theory of strong interactions, QCD, for consideration of 

physical processes in which a heavy quark interacts with light degrees of freedom 

carrying four momenta much less than the quark mass. The effective theory can 

be formally constructed by taking the heavy quark mass to infinity while 

maintaining a frxed four velocity. 

Feynman Rules 

The Feynman rules for the effective theory are most easily derived by 

considering the Feynman rules for QCD5> in the appropriate limit. One first re­

expresses the heavy quark four momenta 

(7) 

where v 14 is the the quark's four velocity and ki-Lis the "residual" momentum which 

is small compared to the heavy quark mass. The heavy quark propagator in QCD, 

thus becomes 

i (jJa+Mr) 

(p~-m~ 
(8) 
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i <P+ 1) 

2v·k 

The QCD vertex for heavy quark-gluon interactions is 

(9) 

(10) 

where g is the strong coupling constant and Ta is an SU(3) color generator. 

Internal factors of 
1

; V associated with incoming/outgoing heavy quark lines will 

always appear sandwiching the vertex in the effective theory 

- ig C 1 +11 y C 1 +t) ra = - ig v ra(1 +P) 
2 ~ 2 ~ 2 

(11) 

Further, the action of factors of(};+ 1) from the vertex in (11) and in the numerator 

of propagators yield factors of 2 when acting on on-shell spinors. This reduces the 

Feynman rules for the effective theory to: 

ifv·k heavy quark propagator (12) 

heavy quark-gluon vertex (13) 
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Field Theory 

Alternatively, the effective theory can be developed by considering the 

Lagrangian of the full theory. 6> The quark field portion of the QCD Lagrangian is 

Q(il/)-m~Q (14) 

where Q is the heavy quark field and l> is the QCD covariant derivative. One 

begins by re-expressing the heavy quark field with the momentum scaled out: 

(15) 

The fields h~Q) and X~Q) must satisfy the constraints 

"'·h (Q) =h (Q) r v v 

"'·x<Q) = - x<Q> r v v 

(16) 

One then uses the h!Q) part of Q as a suitable approximation to the 

fundamental field in the mQ-oo limit. Plugging into the Lagrangian (14) yields 



8. 

(17) 

By inserting factors of ( 1 
;
1) the abov~ can be simplified to 

(18) 

The propagator obtained in the previous section is now apparent in this 

effective Lagrangian. The contribution of the X~Q) part of Q is suppressed by a 

factor AQCJmQ so it may be ignored as mQ ... oo. 

Note that the effective theory does not contain pair creation. The heavy 

quark field, h!Q), destroys a heavy quark of velocity v but does not create an anti-

quark. Therefore, it is not necessary to include an anti -quark field. 

The Lagrangian of the effective theory (18) clearly violates Lorentz­

invariance as it picks out a particular velocity v. Lorentz in variance can be 

recovered by taking a superposition of effective Lagrangians 7) or by viewing the 

four-velocity as also transforming. 
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Of course this lack of Lorentz in variance is not surprising since the effective 

theory was constructed on the premise that the heavy quark four velocity remains 

fixed while interacting with the light degrees of freedom. However, the effective 

theory should not be regarded as a nonrelativistic approximation to the full theory. 

One can consider the situation where two heavy quarks are moving relativistically 

with respect to one another.2> . . ··· 

New Symmetries 

The effective theory contains symmetries not apparent in the full theory. 

These new symmetries provide a great deal of the predictive power of the effective 

theory. 

Because there is no pair creation in the effective theory, there is a global 

U(l) symmetry associated with heavy quark conservation. The effective 

Lagrangian (18) is left unchanged by the infinitesimal transformation 

(19) 

where e0 is an arbitrary parameter. 

More importantly the effective theory contains an SU(2) symmetry 

associated with heavy quark spin conservation.7> The lack of gamma matrices in 

the heavy quark-gluon vertex (13) makes this symmetry readily apparent. This 
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SU(2) symmetry can be explicitly demonstrated by first introducing a set of three 

orthonormal four-vectors (ea
11

) that are orthogonal to the heavy quark's four 

velocity 

a,b = 1,2,3 (20) 

(21) 

One then constructs the three SU(2) generators by defming the matrices 
j 

Sa = i L e abc [~ 'tc ] 
b,c=l 

(22) 

which satisfy the SU(2) Lie algebra. The effective Lagrangian (18) is then left 

unchanged by the infinitesimal transformation 

3 
h(Q) .... h(Q) + i" e S h(Q) 

" " L.J aav 
a=l 

where e a are arbitrary perameters. 

(23) 

Finally, since the heavy quark masses don't appear in the effective theory 

(mQ .... oo), there is a flavor symmetry among heavy quarks moving at the same 

velocity. An effective Lagrangian containing N heavy quarks 



11. 

N 

Lv = L h~0 v·D h~0 (24) 
i=l 

does not distinguish between quarks of different flavors. Thus the SU(2) 

symmetry associated with spin conservation is more generally an SU(2N) spm­

flavor symmetry. 
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3. Applications of HOEFT 

The physical processes of particular interest are the heavy meson non­

leptonic decays: 

-B .... D1t- (25) 

(26) 

More generally, the new symmetry of heavy quark effective theory can be used to 

establish properties for decays of the type 

(e.g., B ... i*) (27) 

and transition elements 

-
(e.g., B ... D) (28) 

Spectroscopic Notation 

In order to specify the state of a _physical system containing a single heavy 

quark and light degrees of freedom, it is useful to go to the heavy quark's rest 

frame. 2> The total angular momentum of the light degrees of freedom is 
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(29) 

where S is the total angular momentum. Since S1 and ~ are conserved by strong 

interactions (sQ, mQ, s1, m) are a set of good quantum numbers. Thus, for a 

system containing a single heavy quark there are two distinct total spin states which 

are degenerate in mass specified by the quantum numbers 

s± = s1 ± 1/2 (30) 

For the case of heavy meson systems where a heavy quark is bound to a 

single light quark q with zero orbital angular momentum, so that s1 = .!. , we have 
2 

the spin 0 , s_ state denoted by IP Q> and the spin 1, s+ state IP ~>. These are 

the B, D and B "', D"' mesons respectively. The effective theory predicts that theP Q' P ~ 

states are degenerate in mass. 
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Transition Matrix Elements 

In this section general properties of transitions between various heavy meson 

states are established. The matrix elements corresponding to these transitions are 

directly related to the V ub and Vcb elements of the Cabibbo-Kobayashi-Maskawa 

matrix.2) 

First consider the matrix element between the unexcited heavy meson states IP Q, > 

(31) 

The form factors /± are functions of the relativistic invariant v-v'. The 

factor JmP* mp appears in the denominator of (31) in order to have the 
Qj Qi 
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expression independent of the quark masses. The conventional normalization of 

these heavy quark meson states in the full theory is 

(32) 

The factor JmP* mp in (31) cancels the energy dependence in (32). 
Qj Ql 

By contracting the right-hand side of (31) with (v-v')ll and using the fact 

Q Q -Q -Q 
that Phv 1 

= hj/ 1 
and hl,/j/ = hv/ we see that 

J_ = 0 (33) 

For the particular case of v=v 1
, i.e., v·v 1 = 1, the Jl = 0 component of (31) 

is simply unity. This reflects heavy quark number conservation. Thus, 

(34) 
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It is important to note that the light degrees of freedom of the initial and 

fmal states carry momenta of order AQCDv and AQCvv' respectively. So the 

invariant momentum (squared) transfer between the light degrees of freedom is 

order kocv (v·v 1-l) which for lv I~ I v 'I is much less than the heavy quark mass. 

We next. consider .. the matrix element corresponding to transitions between 

(35) 

where e specifies the polarization (i.e., spin) of the excited meson. 

In addition to (35), there are non-zero transition matrix elements having an 

insertion of 'Y 5 · 
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<P ~,(v 1,e) Iii~? y 11 y 5 h~i) IP Qi(v)> = ]<v-v')e: +a+(v-v')(e *-v)(v+v')
11 

.Imp• mp +a_(v-v')(e *-v)(v-v')., v Qj Qi .. 

(36) 

The form factOrS, g, j, a+' and a_ are all functions Of v·v I and all Can be 

related to the function /+ . To see this consider the matrix elements 

(37) 

and 

<P*(v 1 e)jhv) rh<i)IP (v'> 
Q, ' v' v Q, J (38) 
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where r is any collection of gamma matrices. 

Now introduce a four by four matrix containing the heavy meson fields 

H<Q>(v) (j+ l) [P "'~-'y -P y 1 
2 Q " Q SJ 

(39) 

where the field P ~11. destroys the state jP ~> and the field P Q destoys the state 

IP Q> . The heavy vector meson field satisfies the constraint vllP~ 11 =0 . 

Under a heavy quark spin transformation 

(40) 

where S is an element the SU(2) group of heavy quark spin transformations. 

Under Lorentz transformations A 

H<Q> - D(A) n<Q> D(A) -l (41) 

where D(A) is the usual 4 x 4 Dirac representation of the Lorentz group. One can 

think of n<Q)(v) as representing the bispinor combination of fields 
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(42) 

It is also convenient to introduce 

(43) 

which transforms as JjQ)(v) - JjQ)(v)S-1 under SU(2) spin transformations and 

as Jl.Q)(v) - D(A) HQ)(v) D(A-1) under Lorentz transformations. 

Now the matrix elements of (37) and (38) are calculated from 

(44) 

where ~ is a universal function of V"V I The fact that r occurs between the two 

H 's is a consequence of heavy quark spin symmetry. On the outside of the H 's 

there could occur a factor of 

(At+ Bfl) 

But because 
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(45) 

(46) 

it can be reduced to the form in equation ( 44) 

Performing the trace over the gamma matrices for r=y 
14 

andr=y 
14 
y 5 

gives3
•
8> 

J+ = ~ 'J_ = 0 
J = (1 +v-v')~ 

(a+ +a_) = -~ , a+ -a_ = o 
g = ~ 

Renormalization 

(47) 

In this section renormalization in the full theory of QCD is reviewed and 

then compared to renormalization in the effective theory. The QCD Lagrangian is 

N A 

L = -1/4 G ;v Ga"v + iL ~ y11(a
11 

+ igA;rra)q1 
}=1 

(48) 



21. 

the SU(3) structure constants). The bare fields and coupling, denoted by hats in 

( 48), are related to the renormalized fields and coupling via 

1 A 

'q. = -q. 
' ff ' yZq 

1 _r.{1. " g = -j.L g 

IZs 

(49) 

(50) 

Perturbative ultraviolet divergences are controlled by dimensional 

regularization. 9) The dimension of spacetime is taken to be n = 4-e . The 

subtraction point J.1 is introduced so that the renormalized coupling g is 

dimensionless in n dimensions. Physical quantities are independent of J.1 • 

The renormalized Lagrangian is 

N 

L = -1/4 ZA G;v Gallv+zq L iq1yll{au+igj.Lef2A;rra)q1 
j=l 

N 

= -1/4G:v Ga11v + L iq1y11{a11 +igllef
2A:~)q1 + counterterms 

j=l 

(51) 
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The counterterms are chosen to cancel regulated divergences. Using the 

method of minimal subtraction (no finite subtractions) the Z 1s have an expansion 

in 1/e: 

00 z(p>(g) 
Z(g,e) =I:-~ 

p=l eP 
(52) 

The z(p>(g)1s also have an expansion in terms of the coupling constant g and 

are determined order by order in perturbation theory. 

Although the subtraction point has no physical significance it is interesting 

to see how the renormalized coupling g depends on f.L • In background field gauge 

(53) 

gluon wave-function renormalization to one-loop yields 

(54) 

The procedure for calculating the gluon wave function renormalization 

constant in (54) is well established. One frrst employs the Feynman trick for 

combining denominators 
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lfab = (
0

1 
dx 

J( [a.x+b(l-x)]2 
(55) 

After appropriate shifts of momenta, the final integration can be performed using 

the formula, 

n n r(a +-)r ((}-a--) 
2 2 (56) 

The differential dependence of the renormalized coupling on 1-1 is then given 

by 

d d (ll-e/2)" 1-1- g = 1-1- -- g 
d1-1 d1-1 zg (57) ' 

= -eg/2 - IJ.(_!!__ lnZ )g 
dl-1 g 

Taking e -0 and expanding lnZg in powers of g we have 
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u_E_g = (3(g) = -(33-2N)g3/48rt2 + higher order (58) 
dJ.L 

Finally, integrating (56) gives1> 

(59) 

AQCD is the characteristic scale of strong interactions and has a value of 

-300MeV. When doing perturbative calculations, it is convenient to choose a 

value of J.L close to physically relevant energy scale, E. Then logarithms of 

E 2 fJ.L2 don't appear in the perturbative expansion in «/E). 

The result for quark wave function renormalization to one loop is 

(60) 

One may also be interested in the renormalization of composite operators, 

Green's functions of which may not be finite. For example, consider the scalar 

operator 

(61) 
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To one loop, the renormalization procedure gives 

(62) 

where 

(63) 

The vector and axial currents in the full theory do not requrre 

renormalization. Charges formed from these current are generators for the 

SU(N)L x SU(N)R chiral symmetry. Matrix elements of these (bare) charges must 

be J.l independent. 

In the effective theory, the bare Lagrangian 

A A 

Lv = iii~0 vll(all +igTaA;)h~0 
(64) 

becomes 

L = ih({)vll(a +iguef2raA a)h(i) + counterterms 
v v ll t"' ll v 

(65) 

after the usual redefinitions including 
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(66) 

The procedure for calculating ZQ differs from wave function renormalization 

in the full theory because Green's functions contain logrithmic dependence on the 

quark masses.2> Since mQ-oo in the effective theory, these contributions are 

divergent and impose different conditions on the choice of counterterms in ( 65) 

than in the ordinary theory. The result for ZQ to one-loop is 

(67) 

Renormalization of the composite operators 

(68) 

(69) 
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where r is any collection of gamma matrices, is done in the usual fashion using 

the dimensional regularization with minimal subtraction scheme yielding 

(70) 

and 

(71) 

(72) 

Renormalization of Or and Tr is independent of the Lorentz structure of the 

gamma matrix because of the heavy quark spin symmetry. While the axial and 

vector currents don't require renormalization in the full theory, in the effective 

theory they do. The v·v 1 dependence of Zr is not very surprising sinceh~? , h!0 

represent different fields. Finally note that at v·v' = 1 , Tr does not require 

renormalization. This is a manifestation of heavy quark flavor symmetry in the 

effective theory. 
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Operators in QCD vs. Operators in HQEFT 

In order to compare matrix elements calculated in the effective theory to 

experimentally measured quantities one must relate operators in the effective theory 

to those in the full theory QCD. 

Consider the vector current in the full theory 

(73) 

versus the renormalized vector current in the effective theory 

0 = q-.y h(i) + counterterms 
Yv } V V 

(74) 

Roughly speaking, virtual loop momenta less than the subtraction point 1.1. 

are included in the finite part of (7 4) while contributions at momenta greater than 1.1. 

are subtracted away. If we take 1.1. = mQ then the following relationship holds 

(75) 
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Large logarithms of mQJ AQCD appearing in matix elements of Or" (mQ) can 

be transferred to a coefficient by scaling the subtraction point down to the QCD 

scale. In leading logarithm approximation 

(76) 

At J.l. = mQ,, equation (75) implies 

(77) 

Using the fact that Vv is independent of lJ. and the renormalization constant 

Z0 given in (70), differention of (76) with respect to J.L yields the renormalization 

group equation 

(78) 

. ' 

where 



30. 

Yo(g) (79) 

Integrating (79) and using the matching condition (77) gives 

C ( ) = as<ma) (80) 
. - -··· -- ·. -···· ··--···--·· ........ ... -···- ·· ...... [ .. ..... ]~(33~2N) -· ·-···-···-··-- ..... ·-- . ·-····-····. 

t 1.1 as(I.L) 

" The coefficient relating the axial current in the full theory, ~ y v y 5 Qi, to that 

in the effective theory, ~Yv y 5 h~i) + counter terms, is also given by (80). 

The matrix elements discussed previously in this chapter involved operators 

of the form iiY/rh~0 . Relating these operators to bare operators in the full theory 
v 

is particularly relevant. To leading logarithmic approximation 

" Q rQt = Cft(I.L) (h~/rh~0 + counter terms) 
(81) 

A "two-step" application of the renormalization group procedure gives 
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[
a (m )] [a (m )JIXL(v-v~ c = s Q s Q, 

ji(Jl) a (m . ) ( ) 
s Of as J.1 

(82) 

where 

aL(v·v~ = 8/{33-2N)[v·v 1r(v·v~-1] (83) 
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4. Factorization 

Heavy Quark Effective Field Theory, developed in the last two chapters, is 

particularly useful in calculating decay rates for semileptonic processes like 

B ... Deve. In the notation of equations (31) and (82) we have 

(84) 

The leptonic degrees of freedom naturally "factorize." That is knowledge of 

the weak mixing angles, along with the calculation of (31) give experimentally 

relevant results for these decays. 

-
However purely hadronic decays such as B ... D 1t- are, in general, very 

difficult to calculate. Formally, one would like to write4
) 

(85) 

where 

(86) 
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and jll is the usual V-A current. 

If (85) holds then the purely hadronic decays rates are tractible. Equation 

(31) gives the heavy meson transition matrix element, while the pion decay 

constant, !"' , defmed by 

(87) 

is known and has a value of .-..132 MeV. 

It is possible to justify (85) to all orders of perturbation theory in a particular 

kinematic limit.3> Specifically, in the case where the light quarks are nearly 

colinear and the heavy quark masses are taken infinity, diagrams with "soft" gluon 

exchanges do not contribute to the matrix element in question. The contribution 

of "hard" gluon exchanges can be computed order by order in perturbation theory 

as corrections to factorization. 

The crucial idea is that the large energy transferred to the light quarks is 

provided, to leading order, by the four-quark operator (i.e., W exchange) rather 

than by the gluon exchange. 
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Soft Gluon Exchange 

To demonstrate that factorization holds for large energy transfer, we consider 

the light quark propagator in this limit. One first takes the momenta of the light 

quarks to be px and p(l-x), O<x< 1, where p is the pion momentum. The energy 

transferred to the light quark system is then 

E = vp (88) 

It is convenient to re-express (91) in terms of a fixed null vector, n, with 

v·n = 1 (89) 

so that 

p =En (90) 

Consider now a gluon, with a small momenta q, exchanged between a light 

and heavy quark. The light quark propagator, with mq taken to be zero, 

i(xjJ +fl. )f(xp+qi (91) 

becomes 
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ij /2p·q = ij f2n·q (92) 

under the appropriate assumptions. Namely, the pion is taken to be lightlike 

(93) 

and gluon exchanges are "soft" 

(94) 

Note that the propagator in (92) is independent of the energy transferred as well as 

the momentum fraction x. 

It should also be noted that the propagator (92) leads to an effective theory 

which forms a natural addendum to HQEFf.4
) Following arguments similar to 

those discussed in Chapter 2, the Feynman rules for the expanded effective theory 

can be expressed in a more concise fashion. Since vertices will always be 

sandwiched between factors of j , we have 

i : light quark propagator (95) 
n·q 
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-iqTan t.L: quark-gluon -quark vertex (96) 

These rules are analogous to those of HQEFf with the substitution of the 

timelike vector v by the null vector n. The absence of gamma matrices in (95, 96) 

further expands the SU(2N) symmetry of HQEFf to include the intema1SU(2) 

spin symmetry of the light quarks. 

To see that factorization holds for matrix elements involving the operators 

(97) 

(98) 

one need only consider the gauge 

n~ = 0 (99) 
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In this gauge the light quarks decouple and factorization holds trivially. This 

result can also be shown in ordinary covariant gauges where for 0 1 a cancellation 

occurs between the gluon coupling to the quark and anti-quark propagators. 

For the octet operator 0 8 the cancellation is not quite so straightforward. 

The sign difference between the effective propagators will yield a commutator ofSU(3) 

color generators. However, since fmal states are color singlets, there can be no 

contribution from these diagrams. 

Finally, it should be apparent that once factorization holds for one-loop soft 

gluon exchanges, it also holds at higher orders by recursively arguing away each 

gluon exchange. 

Hard Gluons 

The effects of hard gluon exchange can be evaluated systemically, order by 

order in perturbation using the full theory, QCD. Formally, these perturbative 

corrections can be contained in a hard scattering amptitude integrated against the 

fmal meson wavefunction. In HQEFf this hard scattering amptitude should be 

function of mb, as it does have perturbative expansion in «s(m.J, as well as the 

momentum fraction x. The fmal meson wavefunction, although not known, should, 

in an intuitive sense, reasonably describe the momentum distribution between the 

two light quarks. 
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The Heavy Quark Effective Field Theory along with the complimentary idea 

of factorization developed in the previous chapters allow us to make definite 

predictions on the nonleptonic decays of heavy mesons. To understand the 

expected level at which factorzation holds it is important to understand the 

corrections. Nonperturbative AQCD /mQ corrections are not computable, however, 

perturbative corrections of order as(m,) can be computed. 

Consider the specific nonleptonic decays 

(100) 

(101) 

We are also interested in the excited decays 

(102) 
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(103) 

Experimentally the ratio of decay rates for the processes (100) and (101) is 11> 

(104) 

Both the excited and non-excited decays are governed by the effective 

Hamiltonian 

where 

[ 
(l+ys) -(l+ys) l 

0 1 = (c 
2 

y ~b)(d 
2 

y~u) (mJ) (106) 

(107) 



4{)_ 

Spinor induces on the quark fields and SU(3) color operators in the above opertors 

have been suppressed. Vcb is the b ... c element of the Cabbibo-Maskawa matrix. 

G F is the fermi constant, 

(108) 

The coefficients C1 and C8 are given by12> 

(109) 

(110) 

These coefficients as well as the four quark operators 0 1 and 0 8 are evaluated at 

the scale mb. The running of these coefficients sums up leading logarithms of 

(mwfmb) coming from virtual gluon exchanges between the heavy and light quarks. 

Running to the scale m c is ignored. 
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The matrix elements of the operaters for the decays B -+ D 1t- and B -+ D p­

simplify in the limit in which the relevant quark masses are taken to infinity but 

their ratio 

(111) 

is held fixed. Specifically in this limit the outgoing meson is light -like and the 

matrix elements with "soft" gluon exhanges from the heavy or spectator quarks to 

the light quarks will factorize. 13
> What remains is to calculate the perturbative 

corrections to this coming from "hard" gluons. To first order in 1\QCD/mb, 

1\QCnfmc, and 1\QCD/(mb -mJ, these corrections can be written as a sum of the 

product of matrix elements of operators in the effective heavy quark theory6> with 

an integral over the meson "wavefunction" <l>(x,m,) multiplied by a "hard 

scattering" amplitude T(x,r,m,) where x is the fraction of the meson momentum 

carried by the up quark and (1-x) is the fraction carried by the down quark. This 

wavefunction can be thought of as the amplitude for the up quark to carry a 

momentum fraction x of the meson wave function. 

The transition matrix elements of interest can thus be written as 
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1 

= _!_<D(v') lhchblB(v)>mJ1t (1-r) J dx 1i(s)(x,r,m~<f>1t (x,m~ 
4 0 

(112) 

1 

+_!_ <D *(v') I hey 5hb IB*(v)> mJn(l +r) J dxrjP) (x,r,m,)<f>1t (x,m~ 
4 0 

-
Here he and hb are the heavy quark fields in the effective theory. The amplitudes 

7i(s), TfP> correspond to transitions between unexcited, excited heavy meson states 

respectively. Equation (112) does not presume factorization. Rather, the QCD 

corrections to this nonleptonic weak decay are incorporated in the hard scattering 

amplitudes, T?' p) • The pion decay constant, f1t , is defined by 

(113) 

All the non-perturbative physics which goes into creating 1r is absorbed in 

f1t. The factors mb(l-r) and mb(l +r) in (112) arise by substituting 

(114) 
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-
For the decay B .... Dp- the transition matrix element in the heavy quark 

theory becomes 

1 

= _!_<D(v') lhchbjB(v)>mJ/1-r) J dxrjs> (x,r,m,)ri1t (x,m,) 
4 0 

(115) 

1 

+ _!_<D *(v') I hey shbl B*(v)>mJ/1 +r) J dxT?> (x,r,m,)ri1t (x,m,) 
4 0 

The decay constant, fP , is defined by 

(116) 

If we assume that the p is light-like so that its polarization is dominated by 

the longitudinal component, we have 

(117) 
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Zeroeth Order 

To zeroeth order in as(m/) the ratio of decay rates simplifies.15•16) To this 

order hard gluon exchanges are ignored and factorization holds exactly. Explicitly 

<D< •>(v ')XI 0 1 iB<•>(v) =<D <•>(v ') ICr" (1 ~y sl biB <•> (v)> (118) 

and 
x <Xidrf~Ys}IO> 

(119) 

where X is either n· or p·. In terms of the hard scattering amplitudes, Ti, equations 

(118) and (119) imply 

(120) 

and 

(121) 

To zeroeth order in as(m/) the ratio of decay rates, R, is 
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(122) 

The heavy meson matrix elements in (122) do not cancel exactly. In general, 

the v·v' dependence of these transition matrix elements is given by the universal 

function ~(v·v'). Since mrt :~=mP, the argument of the universal functon must differ 

in the two transitions we are considering. Treating the pion as massless, the 

following kinematic relations hold10> 

2 2 2 
= mb+mc-mp 

2mbmc 
(123) 

(124) 

The ratio of the transition matrix elements in (122) thus differs from unity 
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by a term of order m:fmcmb which can be ignored in the heavy quark limit 

so that 

(125) 

to zeroeth order in a.
8
(m,). Here we are ignoring the difference in phase space 

factors for the two decays. To leading order we have 

phase space !!! 1- (126) 

This factor differs from unity by roughly 5%, which is well within the experimental 

uncertainty. For notational simplicity we shall ignore it in the following discussion. 

Taking fp e! 190 MeV and ftt = 132 MeV we have R e! 2. Empirically the 

ratio of decay rates is 

(127) 
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The large uncertainty in the experimental value of R makes it difficult to 

ascertain the reliability of the zeroeth order calculation. By calculating first order 

corrections to factorization, we can at least judge whether the prediction (125) is 

"perturbatively" sound 

as(m/) Corrections 

In terms of the relevant hard scattering amplitudes, ns>(x,m,r)' and the 1r 

and p- wave functions, the ratio of rates is 

R = (J.r 
1 ~ l 

JdxT(s) .f... + _8 fdxT.(s) .f... 
l 'flp c 8 '+'p 

l 

2 

(128) 

Expanding (128) to first order in as<ml) yields 

(129) 
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The first-order perturbative corrections to T}s) come from Feynman graphs 

with gluon running between either the heavy quark or the light quarks. In the first 

case, the corrections are independent of the momentum fraction carried by the light 

quarks and so drop out of the ratio. In the second case, they are absorbed into the 

definition of /ft , /p and the respective wave functions. Thus we are left with 

(130) 

to order as(mJ. 

Perturbative corrections to T~s) come from the Feynman diagrams in Fig. 1. 

These one-loop graphs have gluons running between the heavy quarks and light 

quarks. Taking the momentum fraction carried by the up quark to be x while the 

down quark carries a fraction (1-x), the hard scattering amplitude is 

,...,(s) 2as(mJ 1 1 
1.;8 (x) = [a/11(a)--b/11(b)+c / 11(c)--d/11(d) 

91t ' 2 ' ' 2 ' 
1 1 1 

+/20(a)--(1 +r) /20(b)+l2,0(c) --(1 +-) 12,0(d) 
• 2 · 2 r 

(131) 

1 1 1 1 
+-J(a) --J(b) +-J(c) --J(d)], 

2 8 2 8 



where 
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a =x(1-r2
) 

b = (1 -x)(1-r2) 

b c=--
r2 

d= _!!._ 
r2 

= -l(1-a) (a+-1-Znlal) 
2 1-a 

/2,0 (a) = -
1-(1 +-a-lnla!) 

2(1-a) 1-a 

J(a) = -alnlal 
2(1-a) 

(132) 

(133) 

(134) 

(135) 

All terms that do not show an x-dependence have been dropped since they do not 

contribute to the ratios. 

In calculating the Feynman diagrams leading to (131), there is a certain 

dependence on the scheme for the renormalization of 0 8 . To know what scheme 
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to use one must match, at one loop, the theory in which the W is integrated out 

with the theory in which it is not and then scale down to mb to two-loop order. 

However, in mass independent subtraction any such scheme dependence is x 

independent and so drops out of the ratio of rates along with other x independent 

terms. We have also ignored any imaginary parts coming from terms in (133, 134, 

135) that flx the branch of logarithms; these terms do not contribute to the ratio of 

rates in the order we are working. 

The expressions for the wave functions may now be substituted into the 

expression for the ratio. To get an idea of the magnitude of the ratio we substitute 

reasonable guesses for the "wavefunction" <t>1t and <I>P and then integrate them 

against the hard scattering amplitude rJs>. 

The wavefunction 

(136) 

is a reasonable guess in accordance with the phenomenological quark inodel. The 

wave function 
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(137) 

is analogous to the wave function of ref. (8) when the scale of their wave function 

is taken to infmity. In addition, the "constant" wavefuncu·ons: ""' (or "" ) - 1 '1',. 'I' p -

were considered to get an idea of the spread of 

r 1 dx( <I> -<P )T.(s) 
Jo P ,. s (138) 

The result of these computations, which were evaluated using Mathematica, 

is a 1% contribution to the ratio of rates reB .... Dp -) jr (B-+ Dn -) 2! if rlf,.)2 at order 

as<mJ). For the various choices of wavefunctions, the results, at fixed r, varied 

by less than a factor of 2. These correctons are in fact smaller than those discussed 

in the previous section coming from the kinemetric differences in the two decays. 

The quantity 

(139) 
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gives rise to a 5% correction. The exact value of (139), to leading order in 

m: I mbmc , depends on precise knowledge of ~(v-v')B-D1t- . 

Excited Decays 

-
The formalism applied to the nonleptonic decays B-Dn- and B-Dp- can 

be used for the excited decays 

(140) 

(141) 

Indeed, the symmetries of the heavy quark effective theory naturally relate 

spin 0 and spin 1 heavy quark mesons of the same flavor as discussed in the 

second chapter. The heavy meson transition matrix elements are again fully 

described by the universal function ~ . In terms of the hard scattering amplitude, 

Tr> we have 
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Calculation of rr> is performed in the same fashion as in the scalar case. Explicit 

factors of 1 +r in (131) are replaced by 1-r . For reasonable wavefunctions the 

order as<m,) correction to the zeroeth order prediction 

(143) 

are again about 1%. The experimental data shows 
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6. Conclusion 

The Heavy Quark Effective Field Theory along with the complimentary 

notion of factorization predicts that to zeroeth order in the coupling a8(m~ the 

- -
ratio of decay rates for the nonleptonic processes B-+Dp- and B-+D1C- is 

r(B ... Dp -)r(B-D1C -) e! ifplf1t)2 
(144) 

e!2 

- -
This result also applies to the excited heavy decays B-+D*p- and B-+D*1t- . 

First-order corrections to this prediction arise from the one-loop Feynman 

diagrams with hard gluons being exchanged between the light and heavy quarks. 

The contribution of these corrections is small. We find for a reasonable spread of 

1r and p- wave functions corrections to be of order 1%. 

There are additional corrections to (144) due to kinematical differences 

between the two decays. These corrections are of order 5%. 
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Experimentally the ratio of decays is 

(145) 

The zeroeth order prediction falls within the range of experimental 

uncertainty. It is reassuring to discover that this prediction withstands the one loop 

a.s(m,) corrections calculated in this thesis although AQCn /mb corrections may 

disrupt this picture.. It would appear that the strong interactions, in particular the 

nonleptonic decays discussed herein are well approximated by an effective field 

theory in which the heavy quark masses are taken to infinity (keeping their ratios 

fixed) and matrix elements between hadronic final states factorize. 

Nonetheless, until improvements in the experimental uncertainty for the 

decay rates are made, the reliability of this approach cannot be conclusively 

ascertained. 
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Appendix 

The expression for the hard scattering amplitude Tis) in equation (131) is 

·computed from the Feyman diagrams in Figure 1. The details of this calculation 

are presented in this section. 

First consider the amplitude associated with the Feyman diagram where a 

gluon, with momentum q , is exchanged between the outgoing anti-up quark and 

the incoming bottom quark: 

(A1 
) 

Here pb, Pu' PtP and Pc are the respective quark momenta. The 

incomoing/outgoing spinors, the quark/ gluon propagators, and quark-gluon-quark 

vertex factors follow from the Feynman rules for ordinary QCD. Note that we are 

ignoring the up quark mass. 
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ya and Tb are SU(3) color generators satisfying 

oab 
Trace[TaT~ =-

2 

(A2) 

(A3) 

thus yielding an overall color factor of % for this and all other diagrams. Factors 

of y v(l-y 5) appearing in (A1) are due to the chiral structure of the effective 

operator 0 8 given in equation (110). 

In massaging (A1) one first employs the Feynman trick for combining 

denominators: 

After shifting the loop momenta integration 

q--q-pyz-p,;y 
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the expression for the amplitude becomes 

where M 2 =(p17-+p,;y)2 
• At this point it is useful to have an expression with a 

chiral structure that most closely resembles that of the transition matix element. 

We would like an expression in which only factors of Yv(l-y s) appear between 

the heavy quark and light quark spinors. To achieve this the various ("slashed") 

momenta terms in (AS) must be commuted through y 
11 

thus allowing them 

to act on the spinors. Using the anti -commutator relation 

(A6) 

and the action of pb, Pu on spinors 
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The result is 

(~) 4ig2fdz dyf d"q 1 
9 (2tt)" (q2-M2)3 

x [u(pc)Yv(l-y 5)(zmJJu -2zpup~u(pJ[u(pd)yv(l-y s)v(pu)l 

X [u(pc)Y v(l-y s)u(pJ[u(p d)yv(l-y s)( -2ypupb -zmJv(pu)] 

X [u(pc)Yv(l-y s)fu(pJ[u(pd)yv(l-y s)fv(pu)l 

(A7) 

(AS) 

We are now in a position to work on the integrals, or at least re- express 

them in a more manageable form. The integration over q ,ignoring the f f 

piece for the moment, can be handled using 

d"q 1 _ -i(M2)-1 

J (2tt)" (q 2-M2) 3 2(16tt2) 

(A9) 
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We also define the "generalized" integral form 

I ~ (a) = ( 1 dz ( l-z.dy z "y P 
"· Jo Jo (z2+ayz) 

(AlO) 

The dimensionless variable a contains all the relevant kinematic information , 

i.e., x-dependence, and equals 

The t/. t/. contribution to the amplitude gives rise to the divergent integral 

(All) 

Taking n=4 -e 

Jdnq q2 2 1 
- - - y+1n(41t)-1n(M2)+order(e) 

(21t)" e 2 
(Al2) 

where y is an Euler constant. Fortunately, the infinite part of (Al2) is 

independent of x , the momentum fraction carried by the up quark, so it does not 

contribute to the ratio of rates (recall that the hard scattering amplitude is integrated 
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against the meson wave functions which are normalized to unity). Similar;y, the 

flnite terms in (Al2) can be ignored since all the x-dependence is contained in 

M 2 
• Defming 

rl rl-y 
J(a)=Jo dyJ

0 
dz ln(zZ+ayz) (Al3) 

the amplitude for hard gluon exchange between the up and bottom quarks reduces 

to 

(A14) 

The amplitudes corresponding to the remaining three diagrams in Figure 1 are 

calculated in a similar fashion. For gluon exchange between the down and bottom 

quark we obtain 



where b= 
2
Pb:d • 
mb 
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(AlS) 

Although we computed the amplitudes for each diagram separately, gluon 

exchange between the light quarks and the charm quark is completely analogous 

to the case of the bottom quark if we let 

Explicitly, substituting the kinematic variables 

-2p p 
c= e d 

2 
me 

-2n p d= re u 
2 

me 

(A16) 

for a, b m (A14, AlS) yields the full amplitude. The kinematic variables 
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a, b, c, and d can be straightforwardly related to the parameters x and r 

where 

(A17) 

These relationships are given in equation (132). 

What remains is to relate these amplitudes computed in the full theory QCD 

to the expession for the heavy meson transition in terms of the hard scattering 

amplitude rJs) (equation (112)). One frrst makes the identification: 

(A18) 

We now use the approximations of the heavy quark effective theory and re­

express the pion (or pho) momentum in terms of the heavy quark momenta: 

(A19) 

Further, we identify the heavy quark spinors with the heavy quark fields of the 
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effective theory: 

(A20) 

Factors of y 
11 
vfl and y 

11 
v 111 act on the heavy quark fields according to the 

constraint equations: 

(A21) 

The contribution to 'Tis) from the amplitude (A14) Is now easily deduced. 

Ignoring the y 5 piece (this contributes to rr> , the hard scaterring amplitude for 

the excited heavy meson decays) we have 
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2a(mb) 
s [a/1 1(a) +12,0(a) +-V(a)] 
9n ' 2 

as the contribution from up- bottom gluon exhange, where as<mb) = g
2 

• 
4n 

(A22) 

For down-bottom gluon exchange, massaging the amplitude (A15) into a 

form which corresponds to equation (112) is only slightly more invloved. After 

performing the kinematic manipulations, we extract 

(A23) 

as the contibution to Tis) . Finally, the full amplitude is obtained by substituting c, d 

for a, b in (A22,A23) and adding the four contributions together. The result 

is equation (131). 
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Figure 1 

b-+ b-+ 

Feyman diagrams contributing to r:,s> and Tr> at order «.
8
(m.J. 
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