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Abstract 

The mam goal of this thesis is to investigate the input/output relationship of 

single regular-firing neocortical pyramidal neurons and how this relationship can be 

controlled by external inputs. The thesis can be divided into three main parts. First, 

a detailed single cell model was developed, based on the morphology of reconstructed 

cells and experimental values for membrane conductances and synaptic input distri­

butions. This model was used for the following investigations. 

Second, the spatio-temporal integration of single and multiple inputs was studied. 

Several measures for the efficacy and time delay of single synapses were defined and 

shown to vary dramatically. For example, a somatic synapse was only 2.2 times 

stronger than a very distal synapse using the charge attenuation measure, but more 

than 450 times stronger in the voltage attenuation measure. The effect that temporal 

synchronicity of multiple inputs had on firing rate was shown to vary with the number 

of inputs: for just-threshold input rates, synchronicity increased firing rate; for large 

inputs, high synchronicity strongly reduced firing rate, due to inputs being "wasted" 

during the refractory period. 

Third, a subset of the inputs were considered to constitute a control signal, and 

their effect on other inputs was studied for three cases. The first case considers the 
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level of synaptic background activity to be a control signal; since each synapse is a 

small conductance change, and not a voltage-independent current source, the sum 

total of all "background" synapses will constitute the lion's share of the membrane 

conductance. The background firing rate, fb, will therefore determine the electrotonic 

structure of the cell. For !b in the range of 0-10 H z, a more than 10-fold decrease 

was seen in both input resistance (50.4-5.1 MO) and membrane time constant (33.7-

1.6 msec). Electrotonic length and resting potential were similarly affected. The 

second case treats input to the apical trunk as the control signal; when this input 

was weak and excitatory, the more distal input to the apical tuft could be facili­

tated, but when this input was strong or combined with inhibition, more distal input 

were reduced. The third case involves distributing two types of active conductances 

throughout the apical dendrites. The activation curves of these conductances were 

"designed" to ensure that the current delivered to the soma was linear in the input 

rate and amplified, since a passive tree strongly attenuates large apical inputs. The 

linearization was implemented with a persistent potassium conductance in the super­

ficial layer I- III and the amplification with a persistent calcium conductance in the 

apical trunk (layer IV). The amplification gain could be set arbitrarily by modulating 

the channel density of either the potassium or calcium conductance. 
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Chapter 1 

Introduction 

Since it is the understanding that sets man above 

the rest of sensible beings} and gives him all the 

advantage and dominion which he has over them} 

it is certainly a subject} even for its nobleness} 

worth our labour to inquire into. 

-John Locke, An Essay Concerning Human Understanding 

1.1 Single neurons: A perspective 

According to the neuron doctrine, nerve cells constitute the basic building blocks of 

brains [Ramon y Cajal, 1909]. Despite a century of research, this building block is 

not fully understood. This thesis combines analytic and simulation techniques to in­

vestigate the integration of synaptic input and how this integration can be controlled. 

Neurons are complex devices. In the era of electronics, neurons have often been 

compared to switching elements, transistors, and logic gates. However, it has be­

come increasingly clear that the dendritic morphology and a spate of channel types 
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[McCormick, 1990] allow for more sophisticated computations than those electronic 

devices. While it is true that networks of simplistic neurons can show interesting be­

havior [Hopfield, 1982], models of direction selectivity and pattern recognition often 

depend crucially on the details of the neuron model [Borg-Graham and Grzywacz, 

1992, Mel, 1992]. 

This very complexity of single neurons has made the investigation technically 

difficult. The assault proceeds along several lines of attack: anatomists stain cells 

to reveal their morphologies and interconnections; physiologists record the electrical 

behavior in response to natural or artificial stimuli; biophysicists measure the prop­

erties of membrane channels and their interactions via membrane potential and ionic 

concentrations. A fourth approach, espoused in this thesis, involves analysis and 

simulation of theoretical cell models. 

Cell models range from simple to very detailed. Examples of simple models used 

in this thesis are the integrate-and-fire family of models which integrate charge onto a 

single capacitor [Knight, 1972; chapter 4] , and equivalent cylinder models that collapse 

an entire dendritic tree into a single cable [Rall, 1969; chapter 5]. The advantage of 

simple models is that they often allow for an analytic treatment that can explain a 

phenomenon in terms of one or two variables. More detailed models have become 

commonplace as the price of CPU seconds have steadily decreased over the last few 

decades. These models take into account the full morphology of dendritic trees [for 

instance, Koch et al., 1982] and the technique of compartmental modeling is now 

widely used: the dendritic tree is mapped onto a network of resistors and capacitors 

and the circuit equations subsequently solved [for instance, Segev et al., 1989]. This 

thesis centers around such a detailed compartmental cell model that complements the 

simpler models. It is used when simpler models do not suffice because the complex 

morphology is crucial to the problem under investigation and preclude an analytic 

treatment (chapters 3 and 6). It is also used to demonstrate that simplifications are 
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frequently valid and to identify finer details that are not captured by the simpler 

models. 

1.2 The dynamic neuron 

It is a central tenet of this thesis that neurons are not static, but dynamic devices, 

the properties of which may change on a sub-second time-scale. 

The (non-linear) transfer function depends in a complex way on the morphology 

of the cell, the pattern of synaptic input in space and time, and the properties of 

intrinsic membrane conductances: 

fout = fnc [t, Xi, Gmax,j] , 

where X i are synaptic inputs and Gmax,j are the amplitudes of intrinsic membrane 

conductances that may depend on time, voltage, and ionic concentration. In this 

thesis, a subset of inputs or intrinsic conductances will be conceptually separated 

from the rest and treated as control signals: 

f l f [t G I control acontroll 
out = nc 'X i , max,j Xi ' max,j · 

This allows us to treat the transfer function, f~ut' as a dynamic entity, the exact form 

of which can be set by the control signals, x'fontrol and G:~!::J1 . In this formalism, basic 

spatio-temporal integration parameters, such as input resistance, time constant, and 

electrotonic distance, can be controlled (chapters 3 and 5), receptive fields and tuning 

curves can be varied (chapters 3 and 5), and the dendritic tree can be broken down 

into separate units, the contributions of which can be gated selectively (chapter 6). 

It is easy to envision highly specific control signals that target a small number of 

inputs with high selectivity. Such schemes would put high demands on the precision 
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of wiring and run the risk of non-robustness. We therefore focus on widely distributed 

control signals that terminate throughout the dendritic tree or over large chunks of 

membrane. Examples of synaptic control signals, x'fontrol, are the average background 

activity of all synapses (chapters 3 and 5) and layer IV input to the apical trunk 

(chapter 6). The key fact underlying this work is that synapses are conductance 

changes and not current sources. In most previous analyses of the cable equation, 

the current source approximation is used [for instance, Rinzel and Rall, 1974]. This 

approximation is based on the assumptions that the conductance of a single synapse 

is small compared to the local input conductance. Then the local voltage change 

will be small compared to the driving force and the approximation is valid. Multiple 

synaptic inputs will hence add linearly. However, when gsyn is on the same order as, 

or larger than, the local input conductance, the approximation is no longer valid. The 

synapse will give a significant contribution to the membrane conductance, changing 

the electrotonic structure of the cell. It will be shown that quite low levels of network 

activity can have a dramatic impact on spatio-temporal integration. 

Neuromodular control signals, GC:::~;,:J1 , can vary the density of calcium channels 

in the apical trunk and potassium channels in the superficial layers I- III (chapter 6). 

The problem addressed in that chapter is that the axial resistance of the apical trunk 

severely limits the amount of current that superficial input can deliver to the cell 

body. This is in contrast to experimental evidence that synaptic input to layer I can 

drive pyramidal cells in the deep layers more than 1 mm away. We introduce the 

technique of deriving "optimal" activation curves for putative dendritic conductances 

that will amplify the apical signal. By modulating the density of these conductances, 

the gain can be set arbitrarily, connecting and disconnecting the apical tuft in a 

graded manner. 
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1.3 Organization of this thesis 

This thesis is organized in seven chapters. Chapters 2 through 6 are based on material 

previously published or in preparation [Bernander et al., 1991, Bernander et al., 1992, 

Bernander et al., 1993b, Bernander et al., 1993c, Bernander et al., 1993a]. They have 

been partially rewritten and reorganized to avoid excessive repetitions. 

Chapter 1 gives a brief introduction and defines terms and conventions used 

throughout the thesis. Chapter 2 gives a detailed description of two model cells, 

motivates parameter choices, compares to experimental recordings, and gives several 

examples of the basic model at work. The results presented in the following four 

chapters are largely based on this model. Chapters 3 and 4 investigate the spatia­

temporal integration of synaptic input. Chapter 3 concentrates on the efficacy and 

delay of single synapses, while Chapter 4 studies the effect of synchronization of large 

numbers of inputs on output firing rate. Chapters 5 and 6 investigate various schemes 

by which synaptic integration can be modulated and controlled by external inputs. 

Chapter 5 demonstrates the impact of background activity level on input resistance 

and time constant, while Chapter 6 describes how the apical tuft can be treated as 

a separate integrative unit, the contribution of which can be reduced, amplified, and 

linearized. Chapter 7 summarizes the contribution of the research presented here. 

Each chapter will begin with a review of previous work and define goals. 

Part of the work was done in collaboration with Drs. Rodney Douglas (chapters 2, 

5, 6), Kevan Martin (chapter 5), and Marius Usher (chapter 4) . 
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1.4 Glossary, notation, definitions, and conven­

tions 

Tables 1.1 and 1.2 summarize terms and definitions that are used throughout this 

thesis. 

Membrane potential is measured with the extracellular medium defined as 0 m V. 

The resting potential, V,.est, is therefore negative. Values of membrane potential are 

ordered with the minus sign in mind, e.g., -75 < -65, as opposed to a small minority 

of authors who use the opposite inequality. 

Units are usually not the standard SI units, but are prefixed. For example, mem­

brane resistance, Rm, is given in units of 0-cm2 rather than 0-m2 • While this has 

the disadvantage of making formulas and simulations error-prone by lack of internal 

consistency, it conforms with conventions in the literature and is the standard of 

simulation packages such as NEURON and GENESIS. 
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AMPA arnino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
agonist of the non-NMDA subtypes of excitatory synapse 

CNQX 6-cyano-7-nitro-quinoxaline-2,3-dione 
antagonist of the non-NMDA receptor 

NMDA N -methy 1-D-aspartate 
agonist of the NMDA subtype of excitatory synapse 

AP5 2-amino-phosphovaleric acid 
antagonist of the NMDA receptor 

GABA 1-amino-butyric acid 
inhibitory neurotransmitter 

TTX tetrodotoxin 
blocks sodium conductances, found in fish ovaries, e.g., puffer fish 

TEA tetra-ethyl-ammonium 
blocks potassium conductances 

4-AP 4-arninopyridine 
blocks certain types of potassium conductances 

BAPTA 1 ,2-bis( o-arninophenoxy )ethane-N-N-N'-N'-tetra-acetic acid 
chelates calci urn 

EGTA ethylene bis-(,8-arninoethyl ether)-N ,N'-tetra-acetic acid 
chelates calci urn 

Table 1.1: Commonly used acronyms. 
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II Symbol Units Comment II 
Vm mV Membrane potential 

Vrest mV Vm at rest 

Erev mV Reversal potential 

vt mV Threshold for action potential generation 
dV mV Amplitude of single EPSP 

Cm J.LF/cm 2 Membrane capacitance 
c nF Absolute capacitance 
Rm Ocm2 Passive membrane resistance 
Rm,eff Ocm2 Effective Rm, including synaptic input 

~ Ocm Intracellular resistivity 

~n MO Input resistance 
I<;; MO Local R;n at location i 
I<;j = ]{ji Mn Transfer resistance between locations i and j 
Av = I<;s/ I<;; Voltage attenuation 
Aq = I<ss/ I<;s Charge attenuation 
Tm msec Membrane time constant 
D:..T msec Desynchronization interval 

Tspike, lSI msec Inter-spike interval 
Trp msec Refractory period 
N Number of input events 

Nsp Number of output spikes 

9syn nS Synaptic conductance 
G nS Absolute passive conductance 

Gmax mSfcm2 Maxium active conductance 

Gsyn nS ·sec Time integral of 9syn 
l J.Lm Length 
d J.Lm Diameter 
). = Jd·Rm 

4·R; J.Lm Length constant, 

L = lj >. Electrotonic length 

Table 1.2: Notation and definitions used throughout this thesis. 
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Chapter 2 

Model Description 

2.1 Introduction 

This chapter gives a detailed description of a computer model of two cortical pyra­

midal neurons. The model was developed in collaboration with Rodney Douglas 

and is used throughout this thesis and other publications [Bernander et al., 1991, 

Bernander et al., 1993c, Bernander et al., 1993a] . It has been used, sometimes in 

modified form, by other investigators [Softky and Koch, 1992, Mel, 1992, Softky and 

Koch, 1993, Softky, 1993]. 

Morphologies were derived from careful microanatomical reconstructions carried 

out in Rodney Douglas' lab. In this thesis we refer to the "standard" model, which 

explicitly models all branches of the dendritic tree. The standard model incorporates 

eight active conductances in the soma and three types of synaptic inputs; the dendritic 

tree is passive and the axon is ignored. Variations on the standard model include the 

removal of active somatic conductances, addition of dendritic active conductances, 

and the addition of a fourth type of synapse, the NMDA synapse. 

Simpler models are sometimes used to allow for an analytic treatment or to demon-
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Figure 2.1: Morphologies of the two cells used in simulations. (a) Layer V cell. 
(b) Layer 11/111 cell. (c),(d) Scholl diagrams of the same cells as in (a) and (b) . 
Diameters and lengths have different scales. 

strate that a phenomenon is independent of the detailed morphology. These models 

will be described separately in the chapters where they are put to use. Such sim­

plified models include variations on the integrate-and-fire model, single cables with 

uniform membrane resistance, and a single compartment with the same set of active 

conductances as the standard model. The standard model has been implemented in 

the compartmental simulator NEURON, which was graciously made available to us 

by Hines (Hines, 1989]. 

Section 2.2 summarizes the model and is intended as a quick reference guide. Sec­

tion 2.3 gives a detailed discussion of the choice of parameters. Section 2.4 demon­

strates the model at work with several examples, compares it to experimental data, 

and discusses issues of robustness. 
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2.2 Model summary 

This section summarizes the model. It is intended to be a review and quick reference 

rather than an in-depth discussion. In the following sections we will justify parameter 

choices and give examples of the model at work. 

2.2.1 Morphology 

The morphologies were derived from typical layer V and layer II/III pyramidal cells 

in area Vl. The cells were filled with HRP during in vivo experiments in the anes­

thetized, adult cat [Douglas et al., 1991]. The 3-D coordinates and diameters of the 

dendritic trees were measured by a computer-assisted method and each branch was 

replaced by a single equivalent cylinder. The resulting morphologies have been used in 

several previous simulations studies [Koch et al., 1990, Bernander et al. , 1991, Lytton 

and Sejnowski , 1991, Mel, 1992, Softky and Koch, 1992, Bush and Sejnowski , 1992, 

Softky and Koch, 1993, Softky, 1993]. Fig. 2.1(a,b) show 2-D projections of the cells 

and fig. 2.1 ( c,d) show Scholl diagrams, with lengths and diameters preserved. The 

layer V cell, upon which most simulations were ~terformed, has a total of 163 branches, 

with the most distal tip at a distance of 1387 J.Lm from the soma (see Fig. 6.1 for a 

close-up). The soma is small, making up only 2% of the total membrane area. The 

basal dendrites, including layer V obliques off the apical trunk, account for approxi­

mately 60% of the membrane area. The apical trunk and apical tuft account for the 

remainder. Branches were further subdivided into several compartments, depending 

on the local effective membrane resistance Rm.,eff (see below). The axon (diameter d 

= 1 J.Lm) was not included in the model since its effect on the integrative properties 

of the cell was small. The small diameter of the axon ensures that it will provide a 

negligible passive load. Further, simulations indicate that the effect of active axonal 

conductances can be mimicked by increasing the channel density of the corresponding 
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Ri/2 Vm R i/2 

Ena Ek Eca Ear Eleak 

Cm 

Gna Gna,p Gdr Ga GM Gahp Gca Gar Gm 

Figure 2.2: Compartment used in simulations, representing the soma. In addition to 
passive components (Rm, R;,, and Cm), this compartment has eight active conduc­
tances. Synapses are not shown, but also are modeled with a battery in series with a 
conductance. Dendrites typically contained no active conductances. 

somatic conductances. A decomposition of the layer V cell by cortical layer is given 

in Table 2.1. Membrane area, total dendritic length, and other morphological data is 

given in Table 2.4. 

2.2.2 Compartmental modeling 

To simulate the neurons we used a compartmental model as described in [Segev et 

al., 1989]. Each branch was represented by at least one compartment, but often five 

or ten compartments would be used per branch, ensuring that no compartment was 

longer than 0.1 ,\ (length constant). Each compartment has a minimum of three 

resistances (representing axial and membrane resistance) and one capacitance (see 
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Layer Layer Layer Layer Layer Soma II 
I II III IV v 

Number branches 50 6 4 1 102 1 
Area (pm2

) 7073 2460 4773 5700 34378 1233 
Length (!-lm) 5142 689 918 409 10976 23 
Number excitatory synapses 576 200 389 463 2362 9 
Number GABAA synapses 0 0 0 12 427 61 
Number GABAB synapses 13 5 9 33 427 13 

Table 2.1: Morphological comparison of different regions of a layer V pyramidal 
neuron. Layer IV is identical to the apical trunk. Layer V includes apical obliques 
and all other processes that are proximal to the apical trunk except the soma. The 
six regions exactly cover the neuron with no overlap. 

Fig. 2.2). Active conductances and synapses are modeled with a time and voltage 

dependent conductance in series with a battery representing the reversal potential. 

2.2.3 Passive membrane properties 

The axial resistance Ri was 200 fkm and the specific membrane capacitance Cm was 

The passive leak current was defined by the membrane resistance, Rm, which was 

set to 100 kf!cm2 , throughout the cell ( Gm in Fig. 2.2). The reversal potential of this 

passive current was -66 m V. 

2.2.4 Active membrane conductances 

The following eight conductances were restricted to the soma: two sodium conduc­

tances, GNa and GNa,p, one calcium conductance, Gca, four potassium conductances, 

GvR, GAHP, GA, and GM, and a mixed potassium/sodium conductance, GAR· One 

of the potassium conductances, GAHP, was calcium dependent. 

We used a Hodgkin-Huxley-like formalism with the simplifying assumption that 
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14 

20 

lS 

AR Na,p 

Na 
:1_0 

.Passive leak 

5 
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Figure 2.3: Steady state activation curves for seven active conductances for the layer V 
pyramid, whose somatic area was 1233 J.Lm 2

• The graph shows absolute conductance. 
Since G AHP is independent of voltage, it is not included in this graph. Gm (from Rm) 
is summed over the whole neuron, while the active conductances only exist in the 
soma. GNa and GvR attain very large values above threshold (truncated in graph) . 
Their maximum steady state conductances are 100 nS and 1480 nS, respectively. 

the particle time constants did not depend on voltage1 . The active currents had the 

following form: 

fx = Gmax,x · factive,x • (V- Erev,x), 

where x stands for one of the eight conductances (e.g., G Na), !active is the fraction of 

channels that are open, and Erev is the reversal potential of the ionic species. 

!active has the form !active = ma hb, where the so-called gating particles m and h 

obey first-order dynamic equations: 

1See section 2.3.4 for a discussion of this assumption. 

0 
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dm mss -m 

dt T 

The steady state values mss and hss are sigmoids of the form 

1 
mss = ---=-=--~-:-/ ::-:-1 + e(Vl/2 - V) K . 

where VJ.;2 is the half-activation voltage, and the slope factor J( gives the steepness 

of the sigmoid, such that a small J( implies a steep curve. The parameters for the 

conductances are listed in Table 2.2. Where two values are given, the first refers to 

them (activation) particle and the second to the h (inactivation) particle. 

The steady state activation curves are shown in Fig. 2.3. 

Special case: Anomalous rectifier GAR 

The anomalous rectifier has no activation particle, but two inactivation particles with 

different time constants: 

factivc,AR = 0.8 · h1 + 0.2 · h2, 

dh1 hss,1 - h1 
dt 40 

dh2 hss,2 - h2 
dt 300 

Special case: Calcium dependent conductance GAHP 

Calcium enters the cell when Gca is active and is removed through various mechanisms 

(buffering, sequestering, and pumping). This is modeled with a leaky integrator: 

d[Ca2+] [Ca2+] 
--=---:-__:. = aG Ca - ' 

dt Tea decay 
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II 
Ion Na+ K+ Ca:t+ Na+ K+ K+ K+ K+ /Na+ 

!active m 2h m2 m2 m 2 m2 m 2h m 0 .8h1 + 0.2 h2 

Vt;2 (m V) -40/-45 -40 -25 -40 - -65/-60 -55 -82/-82 
]{ 3/-3 3 4 7 - 2/-4 10 -7/-7 

T (ms) .05/.5 2 2 2 2 20/100 20 40/300 
Erev 50 -95 115 50 -95 -95 -95 -50 

Gmax, P5(mS/cm2 ) 200 120 0.6 1 45 1 0.6 1 
Gmax , P2(mS/cm2 ) 120 72 0.2 1 45 1 0.6 1 

Table 2.2: Parameters for one passive and eight active conductances. Where two 
values are given, the first refers to the m (activation) particle, or, in the case of GAR, 
the first inactivation particle, h1, and the second to the h (inactivation) particle. 

where a= 1010 M/C and Tea decay= 50ms. The constant a depends on the volume 

in which the incoming calcium ions reside. Due to the slow pace of calcium diffusion 

within a cell, this volume is taken to be a thin shell just below the cell membrane. 

The effective shell thickness corresponding to the value of a that was chosen is 0.43 

pm. Diffusion is not explicitly modeled. 

The steady state value of G AHP, in our model, does not depend on voltage but 

on calcium concentration, [Ca2+] as follows: 

This is a sigmoidal function with half-activation occurring at [Ca2+] = 40pM. 

Special case: G A de-inactivation 

G A activates and inactivates slowly during depolarization, but de-inactivates rapidly 

upon hyperpolarization. Since no other time constants are voltage dependent in this 

model, we chose to model this fact by de-inactivating instantly upon spiking, I.e., 

h = 1, if v > 0. 

-

-

-

-

-

-66 
1 
-
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2.2.5 Synaptic input 

The cell receives 5000 synapses of four different types. Of these, 80% are excitatory, 

each activating either an AMPA conductance alone or in conjunction with a voltage 

dependent NMDA conductance, 10% are inhibitory GABAA, and 10% are inhibitory 

GABAB synapses. 

Time course of conductance change 

Synaptic inputs were modeled with a conductance directly onto the soma or dendrite. 

The current flow through the synapse is given by: 

I(t) - G(V, t) · (V(t)- Erev)· 

For the non-NMDA types, the conductance was shaped like an alpha function: 

Gsyne --'-G(t) = -- . t e ·~,.k. 
ipeak 

The function peaks at Gsyn for t = tpeak· 

The NMDA synapse depends not only on time but also on voltage: 

G(V, t) 

where r 1 = 80 msec, r 2 = 0.67 msec, 7] = 0.33 mM-I, [Mg2+] - 1 mM, 

1 = 0.06 m V-1 . The voltage- and time-dependences are separable. 

The time courses for the four synapses are graphed in Fig. 2.4(a). The voltage 

dependence of the NMDA synapse is graphed in Fig. 2.4(b). 

Distribution of synapses across the cell 
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Figure 2.4: (a ) Time courses of four types of synaptic conductances. Three of the 
conductances are alpha functions: AMPA excitatory (fast), GABAA (medium), and 
GAB AB (slow). The fourth one is the NMDA conductance, which is voltage depen­
dent, and is shown for large Vm (no Mg2+ block) . (b) Voltage dependence of the 
peak NMDA conduct ance. Both the absolute conductance and the I-V relationship, 
I= G(V - Erev), are shown. 
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The synapses are not distributed uniformly across the cell membrane; rather the 

synapse density varies with distance from the soma. For excitatory inputs, the number 

of synapses per unit area as a function of distance was modeled as a hyperbolic 

tangent: 

l 1 1 l- 40 
D( ) ex 2 + 2 . tanh 22.73 ' (2.1) 

where l is the distance to the soma in J.lffi . This function ranges between 0 and 1. Its 

midpoint is at l = 40 J.Lm, and it takes on the values 0.1 and 0.9 at l = 15 and l = 65 

J.Lm, respectively. 

For inhibitory inputs we chose the gamma distribution to model the number of 

synapses as a function of distance from the soma. The gamma distribution has the 

form: 

D l - za-1 e -lv 

a,lpeak( ) - v-a r(a) ' v = a-1 
Zpeak . 

a determines the sharpness of the distribution, which peaks at lpeak, except when a= 

1, in which case the distribution reduces to a decaying exponential. For GABAA we 

used a = 1. For GABAB we used a = 2. This distribution would rapidly approach 

zero, so in order to have some GABAB synapses distally, we added a constant term 

to this function, so that Da,lpeak(oo) = 1~ · Da,lpeak(lpeak), or in other words, the peak 

is ten times larger than the asymptote. 

The values for all parameters are listed in Table 2.3, and the three distributions 

are graphed in Fig. 2.5. 

Time-averaging of synaptic inputs 

To simulate all 5,000 synapses individually slows the simulations by about an order 

of magnitude and introduces noise. Therefore, it was often convenient to adjust 
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Figure 2.5: Distribution of synapses. The graphs show the (normalized) number of 
synapses per area of membrane, as a function of distance from the soma. 

the passive leak in each segment to incorporate the average input to that segment. 

The following formulas were used to obtain the equivalent conductance and reversal 

potential: 

where Gx are the average conductances, integrated from the time courses above. This 

yields for the non-NMDA synapses: 

Gx - [synapse density]Gsynipeakef, (2.2) 
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Number Gsyn tpeak , 71,2 Erev a lpeak 

(nS) (msec) (msec) (11-m) 

Excitatory, AMP A 4000 0.5/0.25 1.5 0 - -
Excitatory, NMDA 4000 0.5/0.25 40/0.33 0 - -

Inhibitory, GABAA 500 1.0 10 -70 1 50 
Inhibitory, GABAB 500 0.1 40 -95 2 50 

Table 2.3: Form and distribution of synapses. For AMPA and NMDA synapses, two 
values are given for Gsyn· The larger value is used when only one type of synapse was 
present and the smaller value, when the synapses were co-activated. 

where f is the average presynaptic input frequency. The time-averaged NMDA 

synapse yields a voltage dependent conductance: 

. 71- 72 
Gave(V) = [synapse density]l.05 · Gsyn · f · rM 2 J v (2.3) 

1 + TJ • _ g + · e-"~ 

Note that each compartment will have different Grn,eff and Eeff because of the non­

uniform distribution of synapses. For 1 Hz background input, Rrn,eff = 6 varied 
rn,eff 

between 6 kf2cm2 and 35 kf2cm2 and E ef f between -71 and -30 m V . 

This approximation obviates the need to average over many voltage traces and 

simplifies the investigation of certain properties of the cell, such as R;n, 7 m, attenua­

tion factors, and post-synaptic potentials, and also was used for generating discharge 

curves. The only time we saw a clear difference from this simplification was at very 

low (threshold) firing frequencies (e.g., spontaneous activity), when the simplified 

version exhibited a more regular firing pattern and occasionally fewer spikes. 

Adjusting for spines 

As we saw previously, the total area for P 5 is approximately 54,000 11-m2
• This ignores 

spines. If we assume that each one of the 4000 excitatory synapses ends on a spine 
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of area 1 pm2 this adds another 4,000 pm2 , or about 7.5%. 

Stratford et al. [Stratford et al., 1989] show how the spine membrane can be ab­

sorbed into the dendrites, by adjusting their lengths and diameters, while preserving 

the total area, input resistance, axial resistance and electrotonic length. They used 

the following transformation: 

F- Areadendrite + Areaspines 

Areadendrite 

2 

lold · F 3 , 

diamnew = diamold · F~ . 

For the layer V cell in our simulations, F is approximately 1.075, and hence length 

and diameter would be adjusted by 5% and 2.5% respectively, less than the estimated 

measurement error. These small adjustments have little impact on the qualitative 

behavior of the cell, but were still included in the model. 

2.2.6 Computer simulations 

Simulations were performed on SPARC 2 and SPARC 10 workstations, manufac­

tured by Sun Microsystems, with the simulator NEURON, developed by Mike Hines 

[Hines, 1989]. The simulator uses an implicit Euler integration scheme that is first 

order in time, second order in space, and stable under all conditions. Compartment 

size was chosen so as to ensure that no compartment had an electrotonic length larger 

than 0.1 ,\ (space constant). The time step dt was made small enough to ensure con­

vergence. This often required a time step as small as 10-20 psec, though for certain 

steady state properties, such as R;n, the stability of the integration scheme allowed 
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for arbitrarily large time steps. A typical! sec simulation with dt = 20 11-sec and 400 

compartments took about 6 minutes on a SPARC 10 workstation. For a discussion 

of compartmental modeling, see, e .g ., Segev et al. [Segev et al., 1989]. 

2.3 Discussion of parameter choices 

2.3.1 Morphology 

Two cells in striate cortex were filled with HRP during in vivo experiments in anes­

thetized adult cats [Douglas et al., 1991]. See Fig. 2.1. One cell was a layer V pyra­

midal cell and the other cell was a layer II/III spiny stellate cell with two apical 

dendrites, a subtype referred to as a modified superficial pyramid [O'Leary, 1941, 

Larkman, 1991a]. The 3-D coordinates and diameters of the dendritic tree were mea­

sured by a computer-assisted method, and each branch was replaced by a single 

equivalent cylinder. 

How typical are these two neurons on which we perform most of our simulations? 

Larkman [Larkman, 1991a] has studied 39 HRP-injected pyramids from rat visual 

cortex using a light microscope. He catalogued a long series of morphological data 

for these neurons, and in Table 2.4 we compare his findings to our two neurons. 

Larkman divided the neurons into three classes, and in the table we give the average 

for these classes, without weighing them according to the number of cells from each 

class. Sometimes only a single neuron was shown from each class, in which case we 

use that value without knowing if it was an "average" cell. 

Comparing our cells with Larkman's, we find in general that our cells are larger, 

branch more profusely, and have fewer spines. The membrane area for the layer 

II/III cell is about average for the whole population, but large for a layer II/III cell 

(average area 12,700 11-m2 ). The layer V cell is twice as large as Larkman's thick 
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Larkman Layer V Layer II/III II 
[Larkman, 1991a) 

Number basal dendrites 4.8 (3-9) 10 2 
Number apical dendrites 1 1 2 
Number basal tips 30 45 18 
Path length to basal tips (;.tm) 161 227 182 
Terminal branch diameter, basal (;.tm) 0.7 0.87 0.56 
Terminal branch diameter, apical (;.tm) 0.45 0.37 0.54 
Total dendritic length ( mm) 7.1 17.7 8.3 
Total membrane area (;.tm2 ) 18,400 53,600 19,700 
Number of spines per neuron 10,500 4,000 2,000 

Table 2.4: Morphological comparison of simulated neurons to a study by Larkman 
[Larkman, 1991a). Values are averages, except for ranges which are given in paren­
theses. 

layer V cells (average area 26,200 ;.tm2). The same thing holds for total dendritic 

lengths. Furthermore, the number of basal dendrites is ten for our layer V cell, while 

Larkman finds none with more than nine among 39 cells. Similarly, the number of 

basal tips is 50-80% higher, and the average path length (distance from soma) to basal 

tips is 40-60% higher. The diameters of terminal branches are fairly close. There 

is some variation, but Larkman points out that the measured diameters for small­

diameter branches are quite error-prone. Note that Larkman made no correction 

for tissue shrinkage or "wiggles," which may underestimate the dendritic lengths by 

20% [Desmond and Levy, 1982). See section 2.3.5 (Spine size and numbers) for a 

discussion of the discrepancy in spine numbers. 

Larkman points out that most of the branching of basal dendrites occurs close to 

the soma and that the terminal segments account for most of the dendritic membrane. 

This is true of our neurons as well. 

The neurons had axons of approximately 1 ;.tm diameter. The effect of these axons 

was ignored. The first reason for ignoring the axon was that we were only interested 
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in the behavior of the dendrites and the soma, which is where synaptic integration 

takes place. We consider the axon merely to be an output medium that connects to 

other cells, and it was not the subject of this study. 

However, because the axon is electrically coupled to the soma, it does have an 

effect on it. The input resistance is decreased by 2.5% if an axon is added to a passive 

cell, assuming a uniform Rm of 10 k0cm2 • During action potentials, the addition of 

an (active) axon will increase the spiking frequency in a way very similar to what is 

obtained if we increase Gmax,NA and Gmax,DR in an axon-less soma. These effects of 

the axon thus can be absorbed easily into the soma itself. A recent review paper on 

model development also argues that the axon can be ignored [Rall et al. , 1992]. 

When modeling realistic neurons, it is common to collapse the dendritic tree into 

one or a few compartments to make computations tractable [Stratford et al., 1989, 

Wilson and Bower, 1989, Bush and Sejnowski, 1992]. While this simplification saves 

simulation time, it is likely to be inadequate when studying the properties of single 

neurons. Dendritic trees will shape the profile of EPSPs and delay and attenuate 

them to a degree dependent on the exact location of the synapse. Due to the high 

input resistance of many dendrites, it has been predicted that local processing may 

occur, such as saturation and clustering [Mel, 1992]. A model like ours is ideally 

suited to study these effects. 

2.3.2 Passive membrane properties - Rm, Cm, Ri 

MEMBRANE CAPACITANCE, Cm 

The generally accepted value for Cm is close to 1 f-LF/cm 2 [Jacket al., 1975, 

Kuffier et al., 1984, Kandel and Schwartz, 1985, Shelton, 1985]. For a pure lipid bi-
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layer Cm has been measured to 0.8 J-LF/cm 2 [Hille, 1984]. 

Major et al. [Major et al., 1990] compare experimental impulse responses to those 

of a model and find the best fits for Cm to be 0.6-0. 7 J-LF / cm2 • However, morphological 

measurement errors are possible and to correct for tissue shrinkage and spine area is 

an error-prone procedure. Segev et al. [Segev et al., 1992) in similar simulations find 

a Cm of 1.64 J-LF / cm2 to give the best fit. 

AXIAL RESISTANCE, Ri 

Ri has traditionally been assumed to be in the range 50-100 !1cm [Koch et al., 

1982, Wilson and Bower, 1989, Zador et al., 1990, Koch et al. , 1990, Lytton and Se­

jnowski, 1991). The resistance of sea water is 20 !1cm, mammalian saline is 60 ncm, 

and frog's Ringer's solution is 80 !1cm [Hille, 1984). This would be expected to set 

a lower bound on the true value of Ri [Borg-Graham, 1987], since the cytoplasm 

contains many structures in addition to electrolyte, such as the cytoskeleton and 

various organelles. In Aplysia, Carpenter et al. reported an axoplasmic Ri equal 

that of sea water (20 ncm) and a cytoplasmic Ri - measured at the soma - of 

200 ncm [Carpenter et al., 1971). However, recent evidence suggests that the fig­

ure for central neurons should be significantly larger. Shelton [Shelton, 1985) esti­

mates Ri = 225 !1cm. He uses computer simulations of a reconstructed cerebellar 

Purkinje cell to find good fits for current clamps, pulse attenuation and input resis­

tance. Using smaller values for R; does not give accurate fits . Similarly, Stratford et 

al. [Stratford et al. , 1989) estimate Ri = 286- 378 ncm for neocortical pyramids and 

Segev et al. [Segev et al., 1992) find a value of 250 !1cm for cerebellar Purkinje cells. 

We set the value of Ri to 200 !1cm. 

MEMBRANE RESISTANCE, Rm and Rm 
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Rm is defined as the non-synaptic, non-voltage-dependent resistance of a piece of 

membrane. The passive conductance that is left when all active conductances have 

been blocked is often referred to as the membrane leak conductance, Gm = 1/ Rm· The 

molecular correlate of this leak conductance is not precisely known. In saline solutions 

a pure phospholipid bilayer has a very high resistance, up to 1015 !1cm2 [Hille, 1984] 

and oxidized cholesterol membranes measure 108 !1cm2 [Ehrenstein et al., 1970]. The 

much lower values recorded for Rm in neurons could be due to imperfect blockade, 

electrode leak, or some voltage-independent "leak" channel. 

The evidence for "leak" channels is scant. Patch-clamp studies of frog sympathetic 

neurons reveal a nearly-ohmic (linear) region between -70 and -110 mV [Jones, 1989]. 

The underlying current is insensitive to blockers that block other known currents of 

the cell. A large fraction is carried by K+ and reverses at -65 m V (after adjusting 

for a 10 mV contribution from the electrogenic Na+jK+ pump). Muscarine evokes a 

slow EPSP in hippocampal CAl pyramidal cells [Cole and Nicoll, 1984]. This EPSP 

appears to be due to the blockade of non-voltage-dependent K+ channels that carry 

a significant current at rest [Madison et al., 1987]. 

Because Rm cannot be measured directly, most reports discuss the experimentally 

· attainable R;n and Tm. For a single passive compartment (electrically compact cell) , 

both R;n and T m are directly proportional to Rm· For extended neurons this is not 

always the case for R;n, since electrotonically distant conductances contribute less to 

R;n than proximal ones [Koch et al., 1990]. In our model of a passive layer V neuron 

with Rm=lOO k!1cm2 (a fairly compact neuron), 93% of the total conductance was 

visible2 • This fraction dropped to 72% for Rm=lO k!1cm2 and 37% for Rm=l k!1cm2 • 

2 The measure of visibility used here was r = !1.m.., where G;n was the input conductance seen 
CitoC 

at the soma and Gtot was the total membrane conductance, summed over the whole neuron. In the 
limiting case of a length constant of 0 A, this ratio is 1. 
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Rin and T m are good indicators of Rm, and the discussion below of Rin and r m thus 

bears on this section. 

Recent reports suggest that Rm is high. Major et al. [Major et al., 1990] estimate 

Rm to 100-600 k0cm2 by fitting experimental recordings to a computer model of 

a hippocampal pyramid. Shelton [Shelton, 1985] uses a computer model of a cere­

bellar Purkinje cell and estimates the dendritic Rm to be 46 k0cm2 • Segev et al. 

[Segev et al., 1992] find that Rm = 110 k0cm2 gives the best fit. These reports are 

in contrast to previous estimates that give much lower values for Rm. Several reports 

on cat motoneurons give values in the range 0.5- 4 k0cm2 [Barrett and Crill, 1974]. 

Consequently, most simulations of neurons in the past use Rm=2- 20 k0cm2 [Koch 

et al., 1982, Yamada et al. , 1989, Wilson and Bower, 1989, Koch et al., 1990, Traub 

et al., 1991, Lytton and Sejnowski, 1991]. As will be discussed in detail in chapter 5, 

the effective membrane resistance, Grn,eff, may have a large synaptic contribution in 

addition to the non-synaptic Gm. 

We used a reversal potential of -66 mV, which was the measured resting potential 

in vivo. At !b = 0.5 Hz, the simulated neuron had a resting potential of -65 m V. 

INPUT RESISTANCE, R;n 

As discussed above, R;n is not an independent parameter that we set in our 

simulations. It depends on the value of Rm and the morphology of the neuron. For a 

passive neuron, R;n always increases with Rm. Recent patch-clamp studies (where we 

reduce the risk of introducing a somatic shunt due to impalement) show very large 

values for Rin· For example, Andersen et al. [Andersen et al., 1990] find values of 

500-1000 MD. for hippocampal CAl pyramids and 700- 2000 MD. for dentate granule 

cells. In another study, Spruston and Johnston [Spruston and Johnston, 1992] using 

perforated patch-clamps, find Rin ranging from 100-450 MD.. These values are three 
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to ten times larger than the values found in three other studies that used intracellular 

electrodes. Note that active conductances were not blocked. When applying Cs+ (a 

K+ current blocker) to the bath and clamping the potential to other values, Rin could 

increase by up to 100%. 

In our model, the layer V cell had an input resistance of 53 MD when there was 

no synaptic activity. When all active conductances were blocked, Rin increased to 

190 MD. When synapses were activated at a very low "background" rate of 0.5 Hz , 

R in decreased to 20 MD. In the layer II cell, these values were 80, 500, and 49 MD, 

respectively. 

TIME CONSTANT, Tm 

The time constant Tm of a cell is also indicative of Rm. For a passive cell with 

uniform Rm, Rm= Tm/ Cm. For Tm = 100 msec, this gives Rm = 100 kDcm2 • 

Anderson et al. found time constants ranging from 50- 140 msec in the Hippocam­

pus [Andersen et al., 1990). Spruston and Johnston found time constants in the range 

of 28-66 msec when active conductances were not blocked. These values are two to 

four times larger than three other studies using intracellular electrodes. When using 

Cs+ to block some conductances and depolarizing the membrane, time constants as 

large as 155 msec were recorded. 

2.3.3 Active membrane conductances: Dendrites 

So far the only voltage dependent conductance that we have put in the dendrites is 

NMDA. This is partly to simplify and speed up simulations and partly because it is dif­

ficult to find good estimates for parameters associated with other active conductances. 

There is, however, much recent evidence for active conductances in dendrites of central 
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neurons. Pockberger recorded directly from the dendrites of rat neocortical pyramids 

[Pockberger, 1991]. At distances of more than 300 11m from the soma, dendrites dis­

played fast spikes followed by slow afterdepolarizations, presumably mediated by a 

low-threshold Ca2+-conductance. Amitai et al. [Amitai et al., 1993] record very sim­

ilar potentials and conclude from a simulation study that the early fast spike is likely 

a passive artifact of a somatic spike, while the slow afterdepolarization probably is 

due to dendritic calcium channels, since it is TTX-resistant and resembles confirmed 

Ca2+ spikes in hippocampus and cerebellum. Thomson et al. [Thomson et al., 1988] 

compared the decay of EPSPs to that of injected current pulses. In several cases 

the EPSP decay would be much slower, indicating active channels in the dendrites. 

Williams and Johnston [Williams and Johnston, 1991] similarly compared EPSPs to 

injected currents shaped like alpha functions. The EPSPs decayed much more slowly 

(up to 135 msec) and showed a strong voltage dependence, while the alpha currents 

showed faster decay and little voltage dependence. They conjecture that this is due 

to dendritic calcium or sodium channels, since potassium currents should be blocked 

by intracellular cesium, and APV, an NMDA blocker, had little effect. The issue of 

active dendritic conductances will be further discussed in chapter 6. 

Simulations suggest that many dendrites are electrotonically compact in the ab­

sence of background firing, especially basal dendrites and proximal apical dendrites 

[Shelton, 1985, Bush and Sejnowski, 1992, confirmed in our simulations]. Compact­

ness implies that the voltage attenuation from the soma to the dendrites is small and 

that most of the charge injected into a dendrite will reach the soma. However, the volt­

age attenuation from the dendrite to the soma can often be large, due to high dendritic 

input resistance, Rin,dend [Zador et al., 1991, e.g.] . Large depolarizations can there­

fore be highly localized [Rinzel and Rall, 1974]. These local changes in membrane 

potential can support interesting non-linear computations, such as sublinear addition 

(OR-like saturation) for a passive dendrite, superlinear (AND-like) summation for an 
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active dendrite [Mel, 1992, Bush and Sejnowski, 1992], and even an XOR-like non­

monotonic dependence of output frequency on input strength [Zador et al., 1992]. 

2.3.4 Active membrane conductances: Soma 

Our model uses eight active conductances restricted to the soma. All eight somatic 

conductances have been observed in pyramidal cells [Stafstrom et al., 1985, Spain 

et al., 1987, Schwindt et al., 1988, Spain et al., 1991, McCormick, 1992, Schwindt 

et al., 1992]. Unfortunately, there is little detailed information about exact chan­

nel kinetics (steady state activation and time constant), density, and distribution 

throughout the cell. Parameters for the kinetics were based on data for neocortical 

cells when possible, but data from other cells (hippocampal and sympathetic gan­

glial) was also used. These parameters, as well as channel densities, were modified 

to produce desired behavior as will be discussed below for each channel separately. 

This is the approach taken by other investigators as well [Lytton and Sejnowski, 1991, 

Bhalla and Bower, 1993, De Schutter and Bower, 1993]. 

In general, we use voltage-independent time constants, and the steady state activation3 

is of the form: 

VOLTAGE-INDEPENDENCE OF TIME CONSTANTS 

3 A note on fitting data with sigmoids: Instead of using a single particle, m, a higher power is often 
used, usually m 2 . m and m 2 have very similar forms. In fact, if G(V) is fit by a single m with half­
activation vl/2 and slope factor/{, it also can be fit by m 2 with half-activation vl/2+1( ·ln( .../2-1) = 
V112 - 0.88 · J{ and slope factor 2 · ( .../2 -1) · .../2 · ]( = 1.172 ·](,conserving the half-activation voltage 
and slope at that point. 
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We have chosen to model the time constants as being independent of voltage. 

This has the advantage of simplifying fine-tuning of the conductance parameters. 

In addition very little data exists on the voltage dependence of the time constant; 

GAR, which is the best described conductance for neocortical neurons, turns out to 

have practically voltage-independent time constants! Similarly, the activation and 

inactivation time constants of a transient potassium channel in Betz cells showed no 

voltage dependence in the voltage ranges studied [Spain et al., 1991]. The same held 

true for an A-like conductance in hippocampal and spinal neurons [Segal et al. , 1984]. 

TEMPERATURE DEPENDENCE 

While the steady state activation and inactivation curves show little tempera­

ture dependence, time constants often do. The time course speeds up with a factor 

Q10 for every 10°C. Even though Q10 has been shown to vary, it often is close to 

3 [Hodgkin and Huxley, 1952, Borg-Graham, 1987], which is the value we have used 

below, whenever an experiment was not carried out at 37°C. 

ARE REVERSAL POTENTIALS CONSTANT? 

The reversal potential for a channel that is permeable to a single ionic species, X, 

can be calculated from the Nernst equation: 

RT [X]o 
Erev = zF ln [X]i , 

which generalizes to the Goldman-Hodgkin-Katz equation for multiple ions (here: 

potassium, sodium, and chloride): 
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E _ RT l PK[K+]o + PNa[Na+]o + Pci[CZ-]; 
rev - F n PK[J(+]; + PNa[Na+]; + Pci[CZ-]o' 

where PK, PNa, and PCI are the permeabilities of the three ions. The reversal potential 

depends on both intra- and extra-cellular ion concentrations and will change due to 

current flow and ion accumulation. Most obvious is the case of intracellular calcium, 

the concentration of which may transiently change over two orders of magnitude and 

cause a 50 mV reduction in driving potential [Yamada et al., 1989]. Also, potassium 

ions may accumulate transiently in the extracellular space, leading to changes in EK 

of 5-10 mV during action potentials. 

Since these changes will be very brief, we chose to ignore them for simplicity. 

The main effect of ignoring this temporary shift in Erev during action potentials will 

be that the delayed rectifier, GnR, and the calcium conductance, Gca, will deliver 

somewhat more current. Since the magnitudes of both these conductances have been 

set somewhat arbitrarily with the goal of obtaining realistic action potentials and 

spike frequency adaptation, there is no need for second-order adjustments. 

Extracellular current flow can be important under special circumstances. Syn­

chronized activity has been detected in hippocampal slices where all synaptic trans­

mission was blocked. Traub et al. [Traub et al., 1985] have shown how this coupling 

can be generated via extracellular field potentials. However, extracellular currents 

are unlikely to have a qualitative effect on most simulations. 

Detailed kinetics 

SODIUM: Transient, G Na 

This conductance underlies the regenerative phase of action potentials. The pa-
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rameters were modified from Frankenhaeuser and Huxley (FH) (1964], so as to yield 

action potentials with a threshold of approximately -50 m V and a width at half 

amplitude of about 1 msec (Hirsch and Gilbert, 1991]. 

While the Q10-adjusted FH m and h particles had time constants in the ranges 

0.0-0.2 msec and 0.0--Q.8 msec, respectively, we chose 0.05 and 0.5 msec. The steady 

state curves were made steeper by changing]{ from 10 and -4.5 m V to 3 and-3m V, 

yielding a sharper threshold. The midpoints were shifted from -36 and -63 m V to -40 

and -45 mV. An example of an action potential is given in Fig. 2.6(a) . 

SODIUM: Persistent, G Na,p 

We used two activation particles, m 2 , but no inactivation particle. m had Vi;2 = 

-40 mV, ]{ = 7 mV, and Gmax = 1 mS/cm2 • Half-activation for m 2 was hence 

-34 mV. The time constant was 2 msec. The parameters are based on two studies of 

the persistent sodium conductance. 

French et al. (French et al., 1990] studied slices and dissociated CAl pyramids 

from rat and guinea-pig hippocampus. They found a TTX-sensitive, cadmium­

insensitive current that partially inactivated (by 40%) very slowly. They found a 

]{ ranging from 5 to 9 m V and a Vi;2 close to -50 m V. Our value for ]{ is in the 

middle of the range found, while our Vi;2 is 15 m V higher. The absolute conductance 

average 7.8 nS in slice and 4.4 nS in dissociated cells. Since dissociated cells lose most 

of their non-somatic membrane (average total area was 940 J.Lm), this suggests that 

most of the conductance is concentrated at or proximal to the soma. 7.8 nS would 

translate to a density of 0.64 mS/cm2 for our layer V cell. 

Stafstrom et al. (Stafstrom et al., 1985] studied layer V pyramids in slices of cat 

sensorimotor cortex. They found a persistent sodium current, but did not measure 

detailed kinetics. They did find, however, that full activation was achieved within 2-
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4 msec at 37° C. With a time constant of 2 msec in our model, we get 86% activation 

in 4 msec. 

CALCIUM: High-threshold, 1-type, Gca 

The calcium conductance in our model carries very little current when the cell is 

not spiking. In cat sensorimotor cortex it is also apparently small; calcium spikes 

could be evoked ony after blockade of Na+ spikes, GNa,p, and !(+ conductances 

[Stafstrom et al., 1985]. Its main function is to introduce calcium into the cyto­

plasm, which in turn activates a Ca2+ dependent !(+ conductance, GAHP· Other 

purported roles for calcium include burst generation [Johnston et al., 1980, Brown 

and Griffith, 1983, Baxter and Byrne, 1991, McCormick et al., 1992], control of trans­

mitter release [Smith and Augustine, 1988], long-term plasticity [Zador et al., 1990, 

Turner et al., 1982], muscle contraction and regulation of the metabolic state of neu­

rons via second-messengers [Rasmussen, 1986]. 

Fisher et al. [Fisher et al., 1990] studied CAl and CA3 pyramids in slices of 

guinea-pig hippocampus, using patch-clamp electrodes. They found three calcium 

channels which they call small-, medium-, and large-conductance channels. They 

point out that they resemble in their characteristics the T-, N-, and 1-type of con­

ductances described in cultured chick sensory neurons [Fox et al., 1987]. They found 

half-activation values of approximately -18, -2, and 17 m V. Because of the ionic 

composition of the bathing solutions, these values are expected to shift by 10-20 m V 

to the left (in the hyperpolarizing direction) during more physiological conditions. 

They also found slope factors J( ranging from 4.3 to 7.2, from 6.3 to 7.7, and 4.7 mV, 

respectively. The three conductances showed fast, variable, and no inactivation, re­

spectively. 

Our Ca2+ current most resembles the third of these current, the 1 -type, or large-
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conductance, current with a high threshold and no inactivation. 

Since the main motivation for introducing Gca is to cause the cell to adapt, 

there was no need to explicitly model diffusion, buffering, sequestering and pumping. 

Instead we lumped all these mechanisms into a leaky integrator that was confined to 

the soma only. If Gca were present in the dendrites, diffusion might, under certain 

circumstances, become important. The time constant was set to yield adaptation 

within about 50 msec. 

POTASSIUM: Delayed rectifier, GnR 

This conductance underlies the repolarization phase of action potentials. The 

parameters were modified from Frankenhaeuser and Huxley [1964] (FH), who studied 

toad myelinated fiber in X en opus Laevis. 

While the Q10-adjusted FH n particle had time constants in the range 0.0-0.5 msec, 

we chose 2 msec. The steady state curve was made steeper by changing ]( from 8 m V 

to 3 mV. The midpoint was kept at -40 mV. 

POTASSIUM: Slowly activating and inactivating, A-type, GA 

The A current was first described in Onchidium [Hagiwara et al., 1961], but two 

A-like currents have been reported in cat sensorimotor cortex [Spain et al., 1991]. 

The A conductance in our model activates slowly ( r = 20 msec) and inactivates 

even more slowly ( r = 100 msec). For just-threshold currents, it will thus delay spike 

generation. In this way the neuron can be made to fire at very low output frequencies 

[Connor and Stevens, 1971]. Norepinephrine has been shown to reduce this current 

[McCormick, 1990]. 

Segal and Barker [Segal and Barker, 1984] studied rat hippocampal neurons m 
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culture. They describe an A-like current that reaches its peak in 3-6 msec (1-

2 msec with Q10 adjustment) and inactivates with a time constant of 20- 24 msec 

( 4-8 msec with Q10 adjustment). It de-inactivates rapidly upon hyperpolarization. 

Half-activation was at approximately -30 m V and half-inactivation at about -70 m V. 

In visual cortex there is evidence of a considerably slower GA . In response to depo­

larizing current steps, these cells often show a sag and a subsequent recovery from 

sag, consistent with a slow GA (unpublished observations). 

POTASSIUM: Slowly activating, M-type, GM 

The M conductance we used is a modified version of that described for bullfrog 

sympathetic ganglion cells [Yamada et al. , 1989]. The midpoint was shifted from -35 

to -55 m V, and for the time constant, the Q10-adjusted value over the normal range 

of operation, 20 msec, was used. 

The M conductance activates slowly during depolarization, providing negative 

feedback to keep Vm closer to Vrest· Since it activates slowly it can contribute to spike 

frequency adaptation. The M current gets its name from muscarine, since GM is 

reduced by activation of muscarinic cholinergic receptors [McCormick, 1990]. 

POTASSIUM: Calcium dependent, GAHP 

Neocortical pyramids usually show one of two distinct responses to current steps 

[McCormick et al., 1985]. Regular-firing cells initially fire at a high frequency, but 

then adapt and settle down at a much lower firing frequency, 10-20% of the ini-

tial frequency in vitro [Mason and Larkman, 1990] and approximately 40% in vivo 

[Anderson et al., 1993b]. Adaptation is complete within approximately 50 msec [Stafstrom 

et al., 1984, McCormick et al., 1985, Bush, 1989, Connors and Gutnick, 1990]. Burst-
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firing cells respond with repetitive bursts of two to five spikes, sometimes changing 

to single-spiking after a few bursts [Connors and Gutnick, 1990]. Burst-firing cells 

can in some cases be converted to regular-firing cells by depolarization of the mem­

brane in the thalamus and hyperpolarization in neocortex [McCormick et al. , 1985, 

Baxter and Byrne, 1991]. In neocortex, a Ca2+ dependent K+ current in conjunction 

with a slow sodium current underlies bursting behavior [Baxter and Byrne, 1991]. 

Also, the Ca2+ chelator BAPTA abolished a Ca2+ -dependent hyperpolarization in cat 

neocortex [Schwindt et al., 1992b]. GAHP is reduced by application of acetylcholine 

[McCormick, 1992]. 

The role of GAHP m our model, in conjunction with Gca, is to cause the cell 

to adapt. An example of an adapting spike train is shown in Fig. 2.6(b) . GAHP 

has been shown to be influenced by several putative neurotransmitters, among them 

norepinephrine, acetylcholine, serotonin, and histamine [McCormick, 1990]. These 

neurotransmitters could control adaptation rate. 

We model adaptation using a calcium dependent potassium conductance. The 

time it takes for the cell to adapt completely is approximately equal to the time 

constant of decay of internal calcium. The time constant of decay is 50 msec. 

Lancaster et al. [Lancaster et al., 1991] studied hippocampal pyramids in culture 

with patch-clamp electrodes. They found two Ca2+ dependent K+ currents. One 

had a relatively small single-channel conductance (19 pS), showed some rectification 

on the single-channel level, was insensitive to sub-millimolar concentrations of TEA, 

had closed-times ranging from 0.5 to 5 msec, and did not inactivate. The second had 

a large single-channel conductance (220 pS) , opened only at depolarized potentials, 

and was sensitive to TEA. 

G AHP in our model resembles the first, small-conductance current, in that it is fast 

(depends on [Ca]i only and not on time), has no voltage dependence, and does not 

inactivate. We chose Gmax for G AHP and Gca as well as the shell thickness a to yield 
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appropriate spike frequency adaptation. Even though 2 Ca2+ -dependent K+ -channels 

have been reported in neocortex [Schwindt et al., 1992a), only one was modeled , since 

one is sufficient to achieve spike-frequency adaptation. 

MIXED: Anomalous rectifier, GAR 

While most conductances activate upon depolarization, several studies have found 

activation upon hyperpolarization in many types of cells, including hippocampus 

and neocortex [Purpura et al., 1968, Spain et al., 1987]. This phenomenon has been 

called anomalous rectification, and when the reversal potential is positive to the rest­

ing potential, the voltage response to a current step will often display an overshoot 

and "sag." 

Spain et al. [Spain et al., 1987] studied brain slices from cat sensorimotor cortex. 

They found such an anomalous rectifier with a reversal potential of -50 m V (the 

channel was permeable to Na+ and K+ , but not cz-). Half-inactivation was at -82 m V 

and the slope factor, J(, was -7. The conductance displayed two time constants, 40 

and 300 msec, that showed no measurable dependence on voltage in the range -60 to 

-110 mV. These are the values we use in our simulation. For Gmax we chose a value 

of 1 mS/cm2 • This gives a 13-25% sag at fb = 0.5 Hz and 15- 22% at fb = 0 Hz. 

This is consistent with what has been observed in neocortical pyramids. For example, 

Mason and Larkman [Mason and Larkman, 1990] find sags from 0% to over 25%. 

A similar current has been described for cultured hippocampal neurons [Segal 

and Barker, 1984], with the same midpoint, but different reversal potential ( -75 -

-80 m V). The Q10-adjusted decay time was 30-80 msec. 

Postulated roles for GAR include keeping the resting potential closer to threshold, 

pace-maker generation [DiFrancesco, 1987], rhythmic burst-firing in thalamic relay 

cells [Baxter and Byrne, 1991, McCormick et al., 1992], oscillations in stellate cells in 
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entorhinal cortex [Baxter and Byrne, 1991] as well as contributing towards spike repo­

larization, spike adaptation and afterhyperpolarization wave forms [Spain et al., 1987] . 

Similar currents have been found and given interesting names, such as IQ for queer, 

h for hyperpolarization-activated, and !1 for funny [McCormick, 1990]. 

Another role for GAR has been suggested by Wilson [Wilson, 1992]. Due to satura­

tion effects in passive dendrites, EPSPs add sub-linearly, i.e., the first EPSP reduces 

the driving force for subsequent EPSPs. However, if GAR (with EAR < v;.est) is 

present in the dendrite, this picture will change. As the first EPSP will cause Vm to 

increase, the GAR conductance will decrease and shunt less of the synaptic current. 

Thus, while the driving force for the excitatory synapse decreases, Rin may increase. 

The addition of EPSPs will be less sub-linear or even super-linear. 

2.3.5 Synaptic input - time course, distribution, and spines 

Excitatory AMPA (non-NMDA) input 

The AMPA synapses in our model peak at tpeak - 1.5 msec, have a peak conductance 

of Gsyn = 0.5 nS and reverse at Vm = 0 mV. 

TIME COURSE 

The synaptic conductance change is modeled with an alpha function: 

Gsyne --1
-G(t) = -- . t e 1

peak. 

ipeak 

Williams and Johnston [1991) found that they could fit alpha functions very closely 

to recorded synaptic currents from proximal synapses. 

tpeak denotes the time-to-peak (or 0-100% rise time) . The 10-90% rise time, TI0-90, 
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which is often the measured quantity, will be 0.57 · tpeak or tpeak = 1. 75 · T10-90· Hence 

ipeak is nearly double the rise time. 

Experimental data derive either from voltage-clamp experiments, in which case 

currents (EPSCs) are measured, or from non-clamped intracellular recordings, m 

which case potentials (EPSPs) are measured. These waveforms will differ. 

For an isopotential cell, the EPSC waveform will exactly follow the conductance 

change, and hence it is straightforward to find tpeak and check how well the data is 

fit by an alpha function. The EPSP waveform will lag the conductance change. 

When the cell is non-isopotential, effective space-clamp is not possible, and distant 

synapses will give rise to EPSCs time courses that are slower than at source. We 

simulated excitatory synapses with tpeak = 1.5 msec at fb = 0 and found EPSC 

T10_ 90 of 0.85, 1.8, and 11.1 for inputs to the soma, halfway out on a basal dendrite 

and far out on a distal apical dendrite, respectively. Decay times were 1.7, 1.9, and 

20 msec. Thus, for the soma, G(t) is followed quite well. But for basal input there is 

some slowing of the rise time, while for the apical input the slowing is large. 

Studying EPSPs, instead, the slowing is even more marked. Rise times (T10_ 90) 

are 2.4, 4.1, and 21.7 msec, and decay times are approximately 30 msec for all (due to 

the active currents, it is difficult to fit exponentials to the decay), and the membrane 

time constant will dominate instead of the synaptic time constant. Note, however, 

that with a lower Rm, and hence a lower Tm, the EPSP rise time will follow G(t) much 

more closely. For example, at !b = 5 Hz the EPSP rise time for a somatic synapse 

will be 1.5 msec. 

The simulation studies are in good agreement with experimental data. Thomson 

et al. [Thomson et al., 1988] studied EPSPs in slices of rat cingulate and sensorimotor 

cortex. They found T10_ 90 in the range of 1-5 msec. Since any distortion in an EPSP 

is likely to slow down the time course [Williams and Johnston, 1991], the lower end 

of this range (1 msec) should be considered. If the EPSP closely followed G( t), we 
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find a T10_ 90 close to 1 msec and hence a Tpeak of 2 msec. The time constants of 

these cells were quite small (7 msec average) and thus the EPSP should be at most 

a factor 2 slower, yielding a tpeak ~ 1 msec. 

Williams and Johnston [Williams and Johnston, 1991] studied EPSCs in slices of 

rat hippocampal CA3 pyramids. They found a similar range of T10_ 90 of 1-3 msec 

for mossy fiber input (which terminate proximal to the soma; the more distal com­

missural/ associational inputs ranged from 2-5 msec ). This gives a tpeak of just under 

2 msec. 

Mason et al. [Mason et al., 1991] studied EPSPs in slices ofrat visual cortex. They 

found T10_ 90 ranging from 0.5- 3 msec. Using 0.5 msec rise times gives the fastest 

estimate so far, suggesting tpeak :::; 1 msec. However, only 3 out of 44 EPSPs showed 

T10-9o < 0.8. 

In short, estimates range from less than 1 msec to 2 msec, and so for the simula­

tions 1.5 msec was chosen. 

MAXIMUM SYNAPTIC CONDUCTANCE 

We used a Gsyn of 0.5 nS. This produced EPSPs of amplitudes 0.1-0.3 mV for 

proximal inputs, for fb ranging from 0 to 5 H z . 

Thomson et al. [Thomson et al., 1988] found EPSP amplitudes in the range of 

0.08- 2.3 mV, with an average of 0.4 mV at Vm = -70 mV. The amplitudes did not 

seem to correlate with distance from the soma, as discerned from shape indices. Note 

that while these EPSPs arise from a single presynaptic cell, there may be more than 

one contact made. Hence the amplitude per synapse may be smaller than 0.4 m V. 

Mason et al. [Mason et al., 1991] found EPSP amplitudes in a similar range of 

0.05- 2.08 m V with a mean of 0.55 m V at Vm = -74 m V. Larkman et al. [1990] 

found quanta! EPSPs in rat hippocampal slice in the range of 0.075- 0.18 m V. 
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The total charge injected by a somatic synapse at rest in the absence of synaptic 

background activity is 140 JC. Since the cell is quite compact under these circum­

stances, the charge injected by an average synapse will on the order of 100-120 JC, 

as measured by a somatic voltage clamp. In hippocampal slice, Bekkers and Stevens 

[1989] record "minis" with an average of about 120 JC (estimated from their Fig. 3a), 

in very close agreement to our model. 

REVERSAL POTENTIAL 

Williams and Johnston (Williams and Johnston, 1991] measured Erev = -2.8 m V 

in hippocampal CA3 neurons. Several other studies [Finkel and Redman, 1983, Jahr 

and Stevens, 1987, Yakel et al., 1988] measured approximately 0 m V in motoneurons 

and hippocampal cells. 

INPUT DISTRIBUTION 

The density of spines is much reduced over the first 50-75 11m of neocortical 

dendrites [Cauller and Connors, 1992]. We use an excitatory input distribution where 

the surface density of synapses varies as a tanh function of the distance from the soma. 

The midpoint is at 1=40 11m, and the densities are 10% and 90% of maximum at 1=15 

and 1=65 11m, respectively. 

Larkman (Larkman, 1991b] found that proximal non-terminal branch segments 

have very few spines, while the long, terminal basal branches have a high density of 

spines. The terminal basal branches of our layer V pyramidal neuron start on average 

41 11m from the soma, and for the layer II/III pyramid, they start at 49 11m. Our 

distribution puts few spines on the intermediate segments, and an almost uniform 

distribution on the terminal segments. This almost uniform distribution is different 
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from the peaked distribution found in Larkman's study. The proximal end of terminal 

segments will have a density that is approximately 70% of the peak value. The peak 

occurs at approximately 40% of the distance from the proximal end. From there on 

the density decreases to about 55% at the tip of the dendrite. This distribution is 

somewhat tilted towards the proximal end, with a center-of-mass 42% of the distance 

from the proximal end (our calculations, using data from [Larkman, 1991 b, figure 

4C]) . 

SPINE SIZE AND NUMBERS 

For the two neurons, 4000 and 2000 excitatory inputs are simulated, respectively. 

We chose not to model spines explicitly for the following reasons. First, our own and 

other studies suggest that the voltage attenuation across the spine neck is less than 

20% [Segev et al., 1992]. From the point of view of the dendritic voltage, a synaptic 

conductance change, Gsyn, on a spine can be mimicked by G~yn = l+G 
0·~'R., . We 
.syn e c k 

now believe that Gneck = D 
1 ~ Gsyn· Thus a:yn ~ Gsyn within a few percent 

... "neck 

[Koch et al., 1992]. Second, the added membrane area is not very large. A spiny 

stellate cell from the same sample of neurons that ours were taken from was analyzed 

for spine size. Average spine area was 0.95 pm2 [Anderson et al., 1993b ], which would 

add less than 8% to the membrane area. 

Other estimates of spine sizes vary. Holmes and Woody [Holmes and Woody, 1989] 

modeled Betz cells (motor cortex pyramids) in cat. Their model, based on several 

anatomical studies, used spine areas in the range 1.3-2.3 pm2 • In other parts of the 

brain, spine areas have been estimated to 1.5 pm2 (neostriatum), 1 pm2 [Coss, 1985, 

fish tectum] and 4.4 pm2 [Woolf et al., 1991, mouse olfactory bulb] . Hippocampal 

spines have been modeled using a total area of 0.8 pm2 [Zador et al., 1990]. 

Larkman [Larkman, 1991b] has estimated the number of spines on rat pyramids, 
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by counting the spmes on some of the branches, correcting for obscured spmes, 

and then extrapolating to the remaining branches. He finds a spine density of 

0.5-0.6 spines/ J.Lm2
• However, we have found that there are marked difference in 

spine counts over various dendritic regions [Anderson et al., 1993a). Using 0.5 and 

extrapolating to our two neurons, we would get 26,800 and 9,850 spmes - many 

more than we use. Since Larkman did not correct for tissue shrinkage or "wig­

gle" factor, this number can be reduced by 20%. On the other hand, 15- 50% of 

the excitatory inputs are not made onto spines but directly onto the dendritic shaft 

[Peters, 1987, Anderson et al., 1993b), which could more than cancel this correction 

factor. Other studies give similar spine counts for layer II/III neurons in rat: 9,000-

10,300 [Thomas et al., 1980), 10,350-11,950 [Warren and Bedi, 1982), 10,350-15,320 

[Warren and K.S., 1984), 7,590-11,070 [Bhide and Bedi, 1984), and 9,500 [Turner and 

Greenough, 1985). 

Why do we count fewer spines? First, we used adult cats, while Larkman uses 

young rats. There may be a difference between species and with age. Absolute 

synaptic numbers come into play when we study effects of spontaneous background 

activity. The combined strength will depend on f · Gsyn · tpeak · n, where n is the 

number of inputs. If n has been underestimated, background effects will thus be even 

stronger than predicted. Also, we don' t know what fraction of all the visible spines 

actually host active synapses. If this fraction is considerably less than 1, a smaller n 

is appropriate. 

Excitatory NMDA input 

Most parameters, including the waveform, were taken from the model by Zador et al. 

[Zador et al., 1990], who in turn based their model on unpublished data by Nobre, 

Xiang and Brown, as well as Stevens. The physiological concentration of Mg2+ IS 

approximately 1 mM [Mayer and Westbrook, 1987, Jahr and Stevens, 1990) . 
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The value for the maximum excitatory conductance was chosen so that when half 

of the AMPA synapses were replaced by the same number of NMDA synapses, the 

somatic depolarization was similar. The distribution of NMDA synapses was assumed 

to be identical to that of AMPA synapses. 

Inhibitory GABAA input 

The GABAA synapses in our model peak at tpeak - 10 msec, Gsyn - 1 nS and 

reverse at Vm = -70 mV. 

Data for the time course of GABAA synapses is best described in hippocampus. 

There is much less data for neocortex, but a slower time course is suggested. 

Rat CAl neurons in vitro display a bicuculline-sensitive IPSP that peaks on av­

erage 17.4 msec after electrical stimulation of the stratum radiatum [LaCaille, 1991 ). 

This includes a usually mono-synaptic delay of a few msec and the lag between peak 

conductance and peak PSP, as discussed above for AMPA excitatory synapses . This 

suggests a tpeak of approximately 10 msec. 

Electrical stimulation of neocortical a:fferents produce an IPSP in layer V /VI that 

peaks within 20-40 msec [Douglas and Martin, 1991 ). Due to latencies and circuit ef­

fects, this is likely to be considerably slower than the underlying synaptic conductance 

change. 

Studies of hippocampal cells suggest faster time courses. Fast IPSPs in guinea-pig 

CA3 pyramids have tpeak ranging from 3 to 20 msec [Miles and Wong, 1984). 

Faster still are IPSCs in hippocampal granule cells with rise times of about 1 msec 

[Busch and Sakmann, 1990, Edwards et al., 1990]. However, the decay is much slower 

and can be fit with 2 exponentials having time constants of 2 msec and 55-66 msec, 

giving a much larger time integral than an alpha function with tpeak = 1 msec. 

The reversal potential for the GABAA conductance has been estimated in the 

range -70 to -80 m V. Rat CAl neurons in vitro display a bicuculline-sensitive IPSP 
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that reverses at Vm = -73 mV [LaCaille, 1991). In guinea-pig CA3 pyramids in 

vitro, a fast picrotoxin-sensitive IPSP reverses between -73 and -80 m V [Miles and 

Wong, 1984). 

Estimates of the peak synaptic conductance vary considerably. Kriegstein and Lo­

Torco [Kriegstein and LoTorco, 1990) made whole-cell and outside-out patch record­

ings from pyramidal cells in slices of rat neocortex. They found the average value for 

Gsyn for inhibitory synapses to be 0.457 nS. This is approximately half of the value 

we use. 

A study of quantal IPSCs in hippocampus [Edwards et al., 1990) found quantal 

conductances of 0.4-1 nS, assuming a reversal potential of -70 m V. 

Another study of unitary IPSPs in guinea-pig CA3 pyramids gives a much larger 

value of 6.7 nS [Miles and Wong, 1984). Note that even though the IPSPs were most 

likely due to input from a single pre-synaptic neuron, several synaptic contacts may 

have been made. 

Activating all GABAA synapses at Gsyn causes a conductance increase of 350 nS. 

This provides an upper limit; indeed, electrical stimulation of afferent fibers evoked 

an early IPSP with a maximal 5-20 nS conductance. 

Inhibitory synapses can be found throughout the dendritic tree, but the highest 

densities are found at or close to the soma [Douglas and Martin, 1990). GABAA 

receptors are mainly found close to the soma, while GABAB receptors are found 

more distally. 

Inhibitory GABAB input 

The GABAB synapses in our model peak at tpea.k - 40 msec, Gsyn - 0.1 nS and 

reverse at Vm = -95 m V . 

Focal application of the GABAB-agonist baclofen induced an IPSP in neocortical 

pyramids that peaked after approximately 30 msec [Connors et al., 1988). 
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Electrical stimulation of neocortical afferents produce a late IPSP in layer II/III 

that peaks within 80-140 msec [Douglas and Martin, 1991). Due to latencies and 

circuit effects, this is likely to be considerably slower than the underlying synaptic 

conductance change. Nevertheless, the duration of the conductance change must be 

a factor 10-100 times greater than that of the AMPA conductance change. 

In hippocampus, rat CAl neurons in vitro display a phaclofen-sensitive IPSP that 

peaks on average 130.6 msec after electrical stimulation of the stratum radiatum 

[LaCaille, 1991). 

The reversal potential appears to be in the range expected for a K+ conduc­

tance. In neocortical pyramids, baclofen induced an IPSP that reversed at -90 m V 

[Connors et al., 1988). In hippocampus, rat CAl neurons in vitro displayed a phaclofen­

sensitive IPSP that reversed at Vm = -108 m V [LaCaille, 1991). 

A peak conductance of 0.1 nS was chosen. Saturating doses of baclofen induced a 

total conductance change of 12 nS in rat layer II/III pyramids [Connors et al., 1988), 

while electrical stimulation of afferent fibers evoked a late IPSP with a maximal 5-

20 nS conductance. Activating all GABAB synapses in our layer II/III simulation 

yields 40 nS. This is more than twice as much, while our membrane area is only 

55% larger than the average rat layer II/III pyramid [Larkman et al. , 1990). This is 

in reasonable agreement if we take into account that neither baclofen nor electrical 

stimulation is likely to achieve 100% activation of synapses. 

For a discussion of the input distribution, see section above on GABAA· 

2.4 Model performance 

How good is the model? In one sense, it can be claimed that the model is not 

good at all. Due to tissue shrinkage and measurement errors, morphological data for 

dendritic lengths and diameters may well be off by 20% [Desmond and Levy, 1982). 
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Figure 2.6: Action potential generation and discharge (f-I ) curves. (a ) Single act ion 
potential in response to a 1 nA current clamp (at t = 5 msec). The width at half 
height is 0.9 msec. (b ) Adapting trains of action potentials in response to current 
clam p of varying amplitude, as indicated in the figure. The adaptation is due to t he 
Ca2+ dependent K+ conductance G AHP· Adaptation is complete after about 50 msec 
and the adapted frequency is about 30% of the initial frequency. ( c ,d ) Starting at 
rest , current steps of various magnitudes were injected at the soma and the time of 
action potentials recorded. Instantaneous frequency is plotted. In (c) the full model 
was used. Leftmost curve corresponds to the first lSI (inter-spike interval) and the 
r ightmost to the eighth lSI. In (d) only the first lSI is plotted and for each curve we 
used the two spike currents (FH) - G Na and G DR - either in isolation or together 
with one more current as indicat ed in the figure. 
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Estimates of basic passive parameters such as Rm and R; vary by more than a factor 

2, and the same holds for the time course and amplitude of synaptic conductance 

changes. Similarly, parameters for active conductances are not well known for cortical 

pyramidal cells, and so channel parameters from other cells were modified. 

On the other hand, the model reproduces many aspects of neuronal behavior, such 

as realistic spikes and (adapting) spike trains, f-I curves, EPSPs, sag, input resistance, 

time constant, and resting potential (with and without background noise). There is a 

risk, of course, that another set of parameters would have produced identical results 

in all those cases, but something completely different for the predictions made in the 

remaining chapters of this thesis, and that some heretofore ignored characteristic of 

pyramidal cells will turn out to be crucial for the neuronal transfer function. This 

risk unfortunately is inherent in all simulations studies. 

Nevertheless, weak spots often can be identified (such as the lack of active conduc­

tances in the dendrites). In each chapter, these weak spots are addressed, often by 

exploratory simulations of possible effects. The robustness of the model to changes 

in parameter values will be important for two reasons. First, if such robustness is 

evidenced, any predictions drawn from the model will be backed up more forcefully. 

Second, robustness is important for the credibility of any proposed neuronal mecha­

nism, since cell-to-cell variability is often large, even within a given cell class. 

Modeling choices were justified in detail in the previous section. In this section a 

few more examples will be given of the basic performance of the model as well as a 

discussion of the robustness to variations in model parameters. 

2.4.1 Action potentials and discharge ( f-1) curves 

In response to current clamps larger than 0.3 nA (rheobase), the cell fires repeti­

tive action potentials. Action potentials in the model are of a highly stereotyped 
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form with little variation from spike to spike. One action potential is depicted in 

Fig. 2.6(a). The amplitude is about 80 mV and the width at half-amplitude is 

0.9 msec. For comparison, the average amplitude given in four studies of neocor­

tical pyramidal cells in vivo and in vitro is 82 m V while spike widths vary from 0.4 

to 1.5 msec [Bindman and Prince, 1983, Spain et al., 1990, Hirsch and Gilbert, 1991 , 

Pock berger, 1991, Spain et al., 1991]. 

Fig. 2.6(b) shows the response on a longer time scale. The cell can be made to 

spike at arbitrarily low frequencies, but does not adapt in that regime (top trace) For 

larger currents the output spike rate adapts a factor 2-3 within about 50 msec. This 

is in accordance with experimental data, as discussed in section 2.3.4. 

The discharge curves (or f-I curves) were also computed (Fig. 2.6(c)). The output 

frequency is plotted against the magnitude of a sustained current step applied at the 

soma (Fig. 2.6( c)). The frequency was computed from the inverse of the inter-spike 

interval (lSI) , i.e., the time interval between two consecutive spikes. Since the spike 

rate adapts, a family of curves is obtained, one for each lSI. The curves show an 

initial, linear part that is shallow, known as the primary slope. It is followed by a 

steeper portion known as the secondary slope. Qualitatively, these curves are very 

similar to those obtained from real neurons [Douglas and Martin, 1990, e.g.]. The f-I 

curve in the adapted cell is almost linear with a slope of~ 60HzjnA. The average 

slope in one study on cat Vl was ~ 90H zjnA, somewhat larger than the model. 

Note however that the layer V cell is one of the largest cells in neocortex; the slope 

is expected to increase with input capacitance, Gin· 

The discharge curves also demonstrate the impact of individual active conduc­

tances (Fig. 2.6(d)). When only GNa and GvR are present (second from top) , the 

cell starts spiking for very small input currents, approximately 0.1 nA. Since adap­

tation only occurs when both Gca and GAHP are present, only the first lSI needs 

to be graphed. There is no primary slope. Note that arbitrarily low spike rates can 
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be obtained, as opposed to what is seen in the squid giant axon, even though low 

rates are only to be found in a narrow range of clamp currents. Adding GAR causes 

almost no shift in the curve. This is partly due to the very slow inactivation of this 

current ( 40-300 msec), and partly because of the low half-activation voltage ( -82 m V) 

which leads to 92% inactivation at rest. G Na,p (top curve) provides a general weak 

excitation, while G M (third curve from top) causes a somewhat stronger inhibition. 

The A current (second from bottom), however, not only provides inhibition, but also 

expresses the primary slope, which allows the neuron to spike at low rate over a 

much wider range of input currents. Finally, for comparison, the first lSI curve from 

Fig. 2.6( c) has been included (bottom curve). 

2.4.2 Time-averaging of synaptic inputs 

In most of our simulations, the effect of synaptic input is time-averaged. The validity 

of this procedure can be assessed by the results shown in Figs. 2.7. If the time­

course of all synapses activated by the spontaneous background activity is explicitly 

included into NEURON, the membrane potential has the jagged appearance seen in 

Fig. 2. 7 A. The somatic voltage swings approximately 3- 4 m V, in close agreement 

with intracellular recordings [Douglas et al., 1991 ]. The somatic voltage has a mean 

value (averaged over 20 sec) of -65.17 m V with a variance of 0.6 m V (lower solid line 

in Fig. 2.7 A). This noise makes it difficult to study single EPSPs and small voltage 

steps, as well as the precise timing between spikes, necessitating averaging over multi­

ple simulations. In addition, the explicit incorporation of 5,000 synapses slows down 

each simulation considerably. To speed up simulations 10- to 1000-fold, the synaptic 

conductances were time-averaged, as described above in section 2.2. When the in­

dividual transient synaptic inputs are replaced by their total time-averaged synaptic 

input (described in Section 2.2.5), the membrane potential stabilizes at -65.04 m V 
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Figure 2. 7: Time-averaging of synaptic inputs. (a) Cell at rest. All 5,000 synapses 
were explicitly simulated (jagged t race) and the average of that trace computed (lower 
fiat line). For comparison, the potential that results time-averaging the synaptic 
conductances is shown (upper fiat line). (b) EPSP. Again, all 5,000 synapses were 
explicitly simulated. On top of this background, a single somatic excitatory synapse 
was activated. The simulation was repeated 400 times and the traces averaged (lower 
trace). For comparison , the EPSP during time-averaging of synaptic input is also 
shown (upper trace). 
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(for a 0.5 Hz background activity; upper line). The membrane potential is 0.13 m V 

lower in the non-averaged case, due to saturation effects that arise when synaptic 

conductances occasionally occur together in space and time. 

A second demonstration of the validity of time-averaging synapses in a passive 

dendritic tree is given in Fig. 2. 7(b ). One somatic synapse was activated every 50 msec 

for a period of 20 sec and the resulting traces were averaged, as is commonly done 

under experimental conditions. When all synapses are explicitly modeled, the trace 

is shifted by~ 0.15 mV, but otherwise strongly resembles the top trace. Since the 

signal-to-noise ratio (SNR) is very low for a single EPSP, as many as 400 traces were 

needed. Note, however, that the SNR improves approximately quadratically with 

signal amplitude, so that a compound EPSP of ten somatic synapses would have 

required a much smaller number of traces. 

2.4.3 Robustness 

In cerebellar Purkinje cells, a segregation of different active conductances between 

proximal and distal regions has been inferred [Llinas and Sugimori, 1980a, Llinas 

and Sugimori, 1989b]. However, it is unlikely that proximal channels are confined 

strictly to the soma, without diffusing into neighboring dendritic membrane at all. 

We tested whether such diffusion of GNa and GnR had any impact on action potential 

profiles. The channels were spread over all first- and second-order branches, increasing 

the active membrane area by a factor 6. If the channel density were reduced by 

six, keeping the total number of channels constant, spike amplitude was reduced by 

10 mV. If the number of channels were increased by 50%, however, the original 

amplitude was restored. This example demonstrates that the model's sensitivity to 

the exact distribution of proximal conductances is small. 

Another way to assess the model's robustness to parameter changes is to randomly 
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Figure 2.8: Robustness to variations in model parameters. The following parameters 
were all scaled randomly by up to 20%: Gmax for each active conductance, Rm for 
each compartment, length l and diameter d (same scaling for all compartments). 
Histograms of 50 trials were collected. (a) Histogram for Rin· Average= 17.1 MOvs. 
16.5 MOin the standard model; S.D. = 1.63 MO. (b) Histogram for !out in response 
to a 1 nA current clamp. Average= 120Hz vs. 118Hz in the standard model; S.D . 
= 19.4 Hz. Only the first lSI was computed. 
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vary Gmax for all non-synaptic conductances as well as the length and diameter of 

all branches. These parameters were randomly perturbed by ±20% and a total of 50 

simulations were run. The resulting R;n and !out (first lSI only) were computed and 

histogramed in Fig. 2.8. The standard deviation of R;n and !out were only 10- 20% of 

the average value. 

The sensitivity to variations in synaptic conductances, timing of input, and density 

of active dendritic channels will be the subject of chapters 4, 5, and 6. 
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Chapter 3 

Efficacy, Delay, and Integration of 

Synaptic Input 

3.1 Introduction 

The first part of this chapter aspires to answer the question "how efficacious are 

synapses at different locations, and how large are dendritic delays?" This question 

has been asked by a large number of researchers in the past [Rinzel and Rall, 1974; 

Stratford et al. , 1989; Williams and Johnston, 1991; Zador et al., 1991; Bush and 

Sejnowski, 1992; Cauller and Connors, 1992]. Therefore, in addition to catalogu­

ing the range of efficacies and delays for different sites and studying their varia­

tion under different circumstances, we will focus on the definitions of efficacy and 

delay. Most studies use a single definition of efficacy, e.g., peak amplitude or the 

time-integral of the EPSP, with a few exceptions where multiple definitions are used 

[Koch et al., 1982, Cauller and Connors, 1992]. In this chapter, nine measures of ef­

ficacy and four measures of dendritic delay of single synaptic inputs will be defined 

and their various merits compared. Commonly used measures will be shown to differ 
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dramatically in the values they assign to a given synapse; for example, the voltage 

attenuation may vary 500-fold across the dendritic tree, while the time-integral of the 

somatic EPSP will vary only 4-fold. The computed time-delays can be used to create 

a direction-selective response. 

The second part studies the interactions of large numbers of inputs. During 

massive conductance changes, distal conductances will be less "visible," giving rise 

to several phenomena. Combined with the asymmetric distribution of inhibitory 

(more proximal) and excitatory (more distal) inputs, this will make inhibition more 

effective as network activity increases. The problem of visibility is a well-known 

electrophysiological problem during imperfect space clamping [Rall and Segev, 1985). 

It has previously been given a quantitative treatment for single synaptic inputs 

[Koch et al., 1990], while this chapter focuses on massive synaptic input. One previ­

ous study has acknowledged the importance of the more distal location of excitatory 

inputs vs. the more proximal location of inhibitory inputs [Abbott, 1991]. That study 

used a single-cable model of neurons and investigated the firing-rate problem. Below, 

we will use the full model and show the impact of input asymmetry to resting poten­

tial, negative feedback control of output firing rate, and receptive field size control. 

The full neuron model is also compared to a Hopfield neuron. 

The interaction between large numbers of inputs will be further studied in chap­

ter 4 with regard to temporal synchronicity of inputs, and in chapter 5 in the context 

of background firing rate. 

3.2 Single inputs 

Synaptic input will be investigated in two different cells and under different conditions. 

These conditions include the absence or presence of NMDA and different degrees of 

membrane leak. The membrane leak will be expressed in terms of background activity, 
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fb· A background activity of /b=0.5 Hz is the standard model, fb=O H z corresponds 

to a slice preparation (very large Rm), and fb=5 H z corresponds to a small R m· 

The background firing rate maps onto the effective membrane resistance, Rm,eff, as 

described above in section 2.2.5; chapter 5 is devoted to the impact of background 

activity on integration properties. For the purposes of this chapter, fb will only signify 

the degree of "leakiness" of the membrane. 

3.2.1 Synaptic waveforms 

Fig. 3.1 gives several examples of EPSPs. Each graph shows the response to a somatic, 

a basal and an apical synapse. In (a) the background frequency is 0 Hz, in (b) 0.5 H z 

(standard model), and in (c) 5Hz. As the background frequency increases, both input 

resistance and time constant decrease. This results in a reduced amplitude and faster 

time course of the EPSP. The amplitude of somatic inputs is reduced by less than a 

factor 2, but apical inputs are reduced more than 100-fold (compare (a) and (c)). 

Fig. 3.2 compares the local response of basal dendrites to the somatic response. 

Basal dendrites branch repeatedly within the first 50 pm from the soma (preter­

minal branches) and end in long unbranched terminal branches, 150-200 JLm in 

length [Larkman, 1991a, our observations]. In 3.2(a) the synapse was placed at a 

pre-terminal branch, within 50 pm from the soma. The local response is about 75% 

larger than the somatic response. For the center of the terminal branch (Fig. 3.2(b) 

- note different scale on y axis), the local response is 9 m V or about 40 times larger 

than the somatic response (that is to say, the voltage attenuation, defined below, is 

0.025) . For apical dendrites the local response can be over 15 m V. 
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Figure 3.1: Somatic EPSP for three different input sites at three different background 
firing rates, fb· Top trace, somatic input; middle trace, basal input; bottom trace, 
apical input. Membrane voltage is offset from resting potential which varies with fb· 
The amplitude of the apical trace for !b = 5 Hz is too low to be discerned. 
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3.2.2 Efficacy of inputs 

In artificial neural network models, the definition of synaptic efficacy is straightfor­

ward: it is the weight w used to produce a weighted sum of inputs, before applying 

a sigmoid activation function. In the linear case, !out = a(:E;w;x;), where x; are the 

inputs and a is some sigmoid function. 

For biological neurons, the notion of efficacy is more complicated. EPSPs from 

distal synapses undergo dispersion as they travel down the dendritic tree towards the 

soma, becoming broader and smaller in amplitude. The contribution of an input does 

not only affect !out at a single point in time, but is associated with a dendritic delay, 

followed by an approximately exponential decay, characterized by Tm. Due to high 

input resistance, the local response can be large in distal dendrites (10-15 mV) and 

so initiate non-linear events locally, while contributing little to the somatic potential. 

In addition, multiple inputs often summate non-linearly. As demonstrated below, the 

common measures of synaptic efficacy differ dramatically in their evaluation of distal 

synapses. 

Definition of 9 efficacy measures 

Fig. 3.3 summarizes the measures we have defined. They fall into two classes. The 

first seven measures are strength measures and are normalized with respect to somatic 

synapses, i.e., somatic synapses have an efficacy of 1 while all other synapses have 

an efficacy smaller than 1. The last two measures are distance measures, indicating 

the electrotonic distance from the soma. While a strength measure is largest at the 

soma, a distance measure is zero at the soma and positive for all other locations. A 

strength measure, Es, can be converted into a distance measure, Ed, by the transform 

Ed = -ln(E8
) and vice versa. 
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Figure 3.2: Comparison of local and somatic response. Upper trace is the local EPSP 
at the site of injection, while the lower trace is the somatic EPSP. (a) Synapse at 
a pre-terminal basal branch. (b) Synapse at the center of a t erminal basal branch. 
Graphs have different scales on the y axes. 

Peak somatic depolarization: Vpeak· EPSP amplitude has the obvious advan­

tage that it is easy to measure experimentally [Thomson et al., 1988, Andersen et al., 

1990, Larkman et al., 1990, Mason et al., 1991]. The soma is the site of most success­

ful electrode penetrations. It is also immediately adjacent to the axon hillock, where 

the action potential is initiated, and so the EPSP amplitude determines the minimum 

number of inputs required to raise membrane potential from rest to threshold. In the 

standard model, Vpeak varied from 18 to 250 J.L V. 

Steady state voltage attenuation: Av. We define the voltage attenuation 

as Av = ~:voma, where .0. "Vsoma is the steady state change in somatic potential in 
• yn 

response to .0. Vsyn, a voltage step at the synaptic site. This measure can be expressed 

in terms of input and transfer impedances as Av = ~' where 1(;5 is the t ransfer 

50 
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impedance from the synapse to the soma, and J(ii is the input impedance at the 

synapse. This measure has been used in simulation studies of retinal ganglion cells 

and neocortical pyramids [Koch et al. , 1982, Cauller and Connors, 1992). Note that 

the definition used here implies that 0 < Av ::; 1. Note that synapses which have 

different input impedances may inject approximately the same total charge but cause 

very different local depolarization and hence be assigned different values of A v. In 

the standard model, Av varied from 0.002 to 1. 

Transient voltage attenuation: Av,t· This is similar to Av, but instead of a 

steady state voltage, a transient synaptic conductance change is used and the ratio 

of peak amplitudes, somatic to local, are calculated. Thus if the EPSP amplitude is 

attenuated by a factor 100 from the input site to the soma, the voltage attenuation, 

Av, is 0.01. In the standard model, Av,t varied from 0.001 to 1. 

Time integral of somatic EPSP: Area. Although the amplitude of a distal 

synapse will attenuate, the waveform will broaden and the effect on the soma will 

linger for a longer time than for a proximal synapse. During prolonged stimulation, 

an EPSP will have a similar effect if its amplitude is halved while its time course is 

slowed by a factor two. In fact, it can be shown that for a linear cell, the EPSP area 

is directly proportional to the amount of charge that reaches the soma. The area 

measure has been used in simulations of neocortical pyramids [Stratford et al., 1989, 

Cauller and Connors, 1992). It is also straightforward to measure EPSP area experi­

mentally. The cell model displays a certain amount of "ringing" (undershoot, followed 

by overshot) and only the area up to the first zero crossing was used. In the standard 

model, Area varied from 0.59 to 2.83 msec · m V. 

Charge attenuation: AQ. Charge attenuation measures how much of the in-

J.ected charge will reach the soma: AQ = Ll.Q.o-ma [Koch et al., 1982 Cauller and 
Ll.Q •yn ' 

Connors, 1992). In terms of impedances we have: AQ = ~· It can be shown that 

this is true regardless of the time-course of charge injection [Koch et al., 1982). The 
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Figure 3.3: Definition of 9 efficacy measures. See section 3.2.2 for details. Similar 
measures have been grouped with right brackets. 
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charge attenuation is limited just like the voltage attenuation: 0 < AQ < 1. In the 

standard model, AQ varied from 0.46 to 1. 

Change in output frequency: df. This is a functional measure that tells us 

what the incremental effect of a synapse is upon the firing rate of the neuron. We 

have defined it as follows: inject a bias current into the soma so that the cell spikes 

at approximately 10Hz; activate the synapse under study every 10 msec and record 

the percent change in frequency of the first interstimulus interval after activation. 

The reason for repeated activation is that the change in frequency due to a single 

activation depends strongly on the exact time of activation: the increase in firing 

frequency is much larger if the synapse is activated shortly before the second spike 

than just after the first spike. By repeatedly stimulating the same synapse, we average 

over a range of activation times. Further, since EPSPs from distal synapses have a 

larger propagation delay than proximal synapses, the ideal time for activation varies. 

The exact values for the parameters (input and output frequencies) was an arbitrary 

choice. In the standard model, df varied from 1.42 to 6.33 Hz. 

Slope of somatic EPSP: dV/dt. The maximum slope of the rising phase of 

the EPSP is often taken as a measure of efficacy [Kauer et al., 1988, e.g.], since it is 

straightforward to record experimentally. In the standard model, dV / dt varied from 

1.3 to 137 m V/ sec. 

Electrotonic distance: L. The length constant of a cable segment is >. = J?lfif 
and its electrotonic length is L; = l;/ >. = l; · lf.![f, where li is its physical length. 

By summing up the individual L; on the path from the soma to the synaptic site, we 

arrive at L = "'EiLi [Bernander et al., 1991). In the standard model, L varied from 

0 to 1. 7 >.. 

Negative logarithm of steady state voltage attenuation: -ln(Av ). For 

an infinite unbranched cable of uniform diameter and membrane resistance, Rm, the 

length constant, >., is the distance over which the steady state membrane potential 
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Figure 3.4: Efficacy histograms for all cell locations. The x axis shows the efficacy 
and the y axis, the number of data points. "Ratio" refers to the ratio of the strongest 
to the weakest synapse. "Mean" is the average strength. Units are m V (Vpeak), 
mV·msec (Area), mVjmsec (dV/dt), ,\ (L), percent (df), and unitless (AQ, Av, A v,t, 
and -ln(Av)). For "normalized mean" the measure has been normalized so that the 
largest value is 1. The scale for the abscissa is from 0 to 1 for the first 7 histograms 
in each row, and from 0 to the largest value for the last 2 histograms. Top to bottom: 
(a) Standard model (fb=0 .5 Hz, no NMDA synapses). (b) Layer 2/3 cell, standard 
model. (c) Mixed AMPA and NMDA. (d) AMPA, fb=O Hz. (e) AMPA, fb=5 H z . 
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decays by a factor e. In other words, V(x) = V0 · e-x/>.. By solving for x we find 

-ln v~:) = x j >. = L [Zador et al., 1991]. Thus, L = -ln Av and so this measure 

and the previous measure should be identical. For a branched cable structure this 

is not the case. In the standard model, -ln(Av) varied from 0 to 6.17. Similarly, 

one can define the measure -ln(AQ ), which is also identical for an infinite cable, but 

which will differ for our model cells. 

Comparison of efficacy measures 

The results are summarized in Fig. 3.4. 

A synapse was placed at the center of each dendritic branch and the efficacy 

measured according to all nine measures. Since only one synapse was placed at each 

branch regardless of its size, data points were binned multiple times in proportion to 

branch area. The resulting histograms thus show the efficacy distribution assuming 

a uniform density throughout the dendritic tree and soma. 

Three numbers are printed below each histogram. "Ratio" refers to the ratio of 

the largest to the smallest value. "Mean" refers simply to the average value and 

"normalized mean" to the average after all synapses have been normalized to give 

the strength of 1 for a somatic synapse. The weakest synapse will therefore have a 

normalized strength 1/ratio. The mean is useful to compare the same measure for the 

five different cases (rows), while the normalized mean compares different measures 

for the same case (row). If two measures have similar ratios and the histograms look 

alike, the two measures are approximately equivalent.1 

Some of the measures group together, giving similar results in most cases. Below, 

1 While it is theoretically possible that synapse A is stronger than synapse B using one measure, 
while A is weaker than B using another measure, this is almost never the case. When plotting 
a correlogram, that is a scatter diagram of synapse with the two measures used as coordinates, 
the points normally line up close to a straight line with correlation coefficients greater than 0.9 . 
(Correlograms not shown.) 



68 

soma 

I I I I I I I I 

basal branchiL ________ L_ ______ _L ________ b========-========L_ ______ _L ______ ~ 
apical branch 

Aq df Area Av Av,t Vpeak dV/dt 

Figure 3.5: Comparison of 7 strength (non-distance) measures for three locations. 
The locations are (1) at the soma, (2) at the center of a terminal basal branch, and 
(3) at the center of a terminal apical branch. The height of the bars correspond to 
efficacy, and all synapses are normalized to give an efficacy of 1 at the soma. 

these measures will be discussed together. 

AQ-like measures: AQ, df, and Area. AQ is the fraction of injected charge 

that reaches the soma. The time-integral of the somatic EPSP is proportional to the 

total charge reaching the soma. Therefore, if the synapses were current inputs, AQ 

and Area would assign the same (normalized) efficacy to every synapse. However, 

since synapses are conductance changes, they will inject less charge if the membrane 

is depolarized. Distal dendrites are indeed more depolarized due to the asymmetric 

distribution of inputs. In addition, the higher input resistance of distal dendrites will 

cause a larger local depolarization, further reducing the driving force. Thus, while a 
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distal synapse may deliver half of its injected charge to the soma, only half the total 

charge is injected, giving it only one quarter the strength as measured by df and 

Area. As the histograms demonstrate, the Area measure assigns a smaller efficacy 

to distal synapses than the AQ measure does. For the standard cell the difference is 

only about a factor 2, but during intense stimulation (fb = 5Hz, more strongly 

marked saturation) the difference increases to a factor 4. dj, on the other hand, 

correlates very strongly with Area. This is to be expected since Area corresponds to 

the total charge delivered to the soma. This charge is available for bringing the cell to 

threshold faster and thus increasing the firing rate. Since df is a functional measure 

correlating very closely with Area, these two measures are the most appropriate for 

prolonged, unsynchronized inputs. AQ is not only impractical to measure, but also 

fails to capture saturation effects, though it still provides a decent approximation in 

many situations. In all cases, the average synapse is assigned a value larger than 0.5 

for all three measures. 

Av-like measures: Av, Av,t· These two measures assign very small efficacies to 

most synapses, and so the histograms are strongly skewed to the left. On average, 

the efficacy is never larger than 0.25. Several effects conspire to cause the very 

small Av for distal synapses. Due to dispersion, the somatic amplitude will decrease 

dramatically (see discussion of Vpeak below) and the concomitant widening of the 

EPSP is ignored. Further, the local input resistance is often 10-20 times larger in a 

thin dendrite than at the soma, giving a large local boost in potential. Thus these two 

measures are not of much use. At best, a very small Av indicates a large local input 

resistance which may enhance local, non-linear effects, especially in the presence of 

active conductances. This can be seen when comparing the AMPA with the NMDA 

case (rows 1 and 3): the ratios are smaller in the NMDA case, indicating that distal 

synapses get an extra boost. Only in an infinite, unbranched cable will Av equal AQ. 

In a branched structure the two measures differ dramatically. 
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EPSP amplitude: Vpeak· As mentioned previously, Vpeak is a useful measure 

when the input is synchronized, since the cell will spike only if it reaches threshold. 

Since the dispersion of distal synapses is not taken into account, a much larger spread 

in assigned efficacies is seen than for the AQ-like measures, though not as large as for 

Av and Av,t· Vpeak is not found to correlate well with any other measure. 

Slope: dVjdt. This measure, which is popular because it is straightforward to 

measure for large EPSPs, does not correlate well with any other measure. It tends 

to underestimate the strength of distal synapses even more than Vpeak does, since a 

reduced amplitude is often accompanied by a slower time course. Since distal synapses 

have very small slopes, they may in fact be difficult to detect experimentally. The 

measure may still be useful when measuring change in efficacy of the same synapse, 

as is often done in LTP studies [Kauer et al., 1988]. 

Distance measures: L and -ln(Av ). These two measures differ from the 

previous ones in that they measure the "electrical distance" from the soma. Proximal 

synapses thus have smaller values than distal ones, and the distance of a somatic 

location is zero. As can be seen in the figure, they have little in common. The 

shapes of the histograms differ strongly and the means are off by a factor 3- 7. The 

L measure gives smaller values than the -ln(Av) measure since it simply adds up 

the electrotonic lengths of individual branches, ignoring a sub-tree at every branch 

point. These sub-trees provide considerable loads, draining away much of the charge. 

As was noted above, Av does not equal AQ in a branched structure. Neither does eL 

(not shown), and L can therefore not be considered a useful measure. 

Fig. 3.5 compares the 7 non-distance measures for three locations. The three 

locations are the soma, the center of a basal terminal dendrite and the center of an 

apical terminal dendrite. Normalized measures are graphed, and thus they all give 

an efficacy of 1 at the soma. The Av-like measures decrease the fastest with distance 

from the soma, dVjdt and Vpeak decrease at an intermediate rate, and the AQ-like 
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measures decrease only by a factor 2- 4. 

Comparison of the 5 different cases (rows in Fig. 3.4) shows that the average 

efficacies drop when /b is increased. This is due to a decrease in input resistance and 

time constant. Comparison of the layer 5 cell with the layer 2/3 cell shows that the 

second "hump" that often appears for the former cell often is absent for the latter. 

The second hump represents the apical tree which is much more distant than the basal 

tree. Even though the layer 2/3 cell actually has two apical trees, these are much 

shorter, only about twice as long as the basal trees. Finally, the effect of NMDA is 

to boost distal synapses. The large local input resistance of distal synapses increases 

the local voltage and activates the voltage-dependent NMDA synapses. Hence, using 

the Area measure, the most distal synapse is only one third as efficacious as one at 

the soma, as opposed to one fifth in the AMPA case. 

In response to the question "how strong is synapse A" or "how much stronger is 

synapse A than synapse B," the AQ-like measures are the most useful ones for studying 

prolonged input, especially Area and df, while Vpeak is the most relevant measure for 

highly synchronized input. Note, however, that if we only ask "is synapse A stronger 

than synapse B," then almost any measure will do, because it rarely happens that A 

is stronger than B in one measure while B is stronger than A in another. Further, if 

we only ask the question "did the efficacy of synapse A change over time," then any 

strength (non-distance) measure will be useful. 

3.2.3 Delay of inputs 

Experimentally, the most common form of measured delay is latency. This delay is 

from stimulation of a. presynaptic cell to the onset of the somatic EPSP. The latency 

typically involves propagation delays down one or several axons as well as diffusion of 

transmitter across the synaptic cleft. The resultant EPSPs are usually the compound 
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Figure 3.6: Histograms of delay measures. (a) Three different measures described in 
text. The standard model of the layer 5 cell was used. (b) Only the delay measure 
Tpeak was used for five different cases. 
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of different synapses at several locations on the cell. 

Since this paper focuses on single cells, we will only study dendritic delays. We 

define the dendritic delay as the time from onset of conductance change to one of the 

following: 

• Tpeak, the peak of the somatic EPSP. 

• Thalf, the time at which the time-integral of the somatic EPSP has reached half 

its maximum value. 

• Tzero , the time at which the time-integral of the somatic EPSP has reached 

its maximum value. This is the time when the EPSP undershoots the resting 

potential. 

• TeaM, the centroid or center-of-mass (COM) of the somatic EPSP: 

[Agmon-Snir and Segev, 1992]. 

t·v( t)dt 

v( t)dt 

Tpeak is a useful measure for highly synchronized input. This measure can be useful 

for wiring up a direction-selective cell, as discussed below in section 3.3.2. Thalf is 

the time at which the synapses has had, in a sense, half its total effect on the soma. 

This will yield a larger value than T peak, since EPSPs are typically not symmetric, 

but skewed to the left. Tzero marks the time when the EPSP is "over." Since EPSPs 

often have long tails and, for a passive neuron, may never cross the resting potential, 

T zero is not a very practical measure, but was included for completeness. Due to 

asymmetry, Tzero will be more than twice as large as either Tpeak or Thalf· 

Similarly to the case of efficacy measures, synapses were placed on every branch, 

and the measured delays were binned multiple times to correct for branch area. The 

resulting histograms are shown in Fig. 3.6. In (a) the four measures are compared 

for the standard model. The histograms have very similar forms, but are scaled on 

the time axis. The means for Tpeak, Thalf, Tzero, and TeaM are 9.9, 13.0, 34.5, and 
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8.9 msec, respectively. For the Tpeak measure, about three quarters of the synapses 

are clumped below 10 msec, corresponding to basal and proximal apical synapses. 

The remaining one quarter are spread between 12 and 25 msec, corresponding to 

the apical tuft. TeaM is almost identical to the "total delay" as defined by Agmon­

Snir and Segev [Agmon-Snir and Segev, 1992). Using the centroid as the "time of 

occurrence" of a signal leads to a series of theorems and useful properties for passive 

trees. For example, the propagation delay between two points is independent of the 

waveform and is equal in the two directions. However, it turns out not to be very 

useful in our model where active currents are present. While TeaM for distal synapses 

are 3-4 msec larger than Tpeak, TeaM can be less than 1 msec for proximal synapses. 

This is because the undershoot of the EPSP is significant and weighted strongly in the 

integral f t · v(t)dt. As a result the average TeaM is smaller than the average Tpeak, 

which would not be the case in a passive cell and could possibly become negative. 

The Tpeak measure was studied for the same five cases as were the efficacy measures. 

Delays for the much smaller layer 2/3 cell were all below 10 msec with a mean of 

5.8 msec. Substituting NMDA for half of the synapses resulted in slightly larger 

delays, with the mean increasing from 9.9 to 10.8 msec. Changing the background 

frequency stretched the histograms in expected directions. For !b=O Hz, the time 

constant increased and the mean was 14.1 msec. For /b=5 Hz, the time constant 

decreased and the mean was 6.3 msec. 

To conclude, Tpeak and Thalf are both useful measures, while Tzero may be impossi­

ble to measure and TeaM breaks down if non-linear conductances are present in high 

densities. 
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Figure 3. 7: Visibility of membrane conductance for a passive neuron. Gin is the input 
resistance measured at the soma. The top curve is for a lumped neuron, modeled 
with a single compartment. The bottom curve is for the layer 5 cell. Gtot is the total 
parallel conductance, summed over the en tire neuron. (a) Gin increases su blinearly 
with Gtot· (b) ddGGin is the derivative of the curve in (a). Gtot = 5.6, 56, and 560 nS 

tot 

correspond to Rm = 100, 10, and 1 k0cm2
, respectively. 

3.3 Interaction between multiple inputs 

So far we have only been concerned with the effect of single synapses. The only facet 

of multi-synapse interactions explored was the impact of background frequency, which 

reduces the efficacy of distal synapses more than proximal ones. 

In this section we will investigate several forms of synaptic interactions. The 

emphasis will be on how distal inputs are partially "screened" by proximal inputs 

and how this selects for inhibition (which is more proximal than excitation) during 

massive inputs. We will also investigate the importance of the temporal sequence of 

activation of large number of inputs. 

500 
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3.3.1 Conductance screening 

A classical problem in experimental neurophysiology IS the imperfect space clamp 

[Rall and Segev, 1985). While neuronal membrane in close proximity to the clamp 

electrode will follow the command potential well, electrically distant sites will not. 

Thus, if there is a change in conductance, 6..G, at a distant location, a smaller value, 

6..G*, will be "visible" from the soma, when measured with current or voltage steps. 

Visibility, r, is defined as the fraction of 6..G that can be measured: 

r 6..G* 
6..G' 

For small conductance changes in an infinite cable, the visibility r falls off approxi­

mately exponentially with a space constant of ~ [Koch et al., 1990) 2 : 

r -2:r 
e---x-. 

The visibility r is the fraction of the conductance change that is measured at the 

recording site. Obviously the visibility must decay, since an infinite cable has a finite 

input resistance, while the total parallel conductance is infinite. 

Visibility of uniform membrane conductance 

To demonstrate this effect we simulated the layer 5 cell with uniform Rm 1 
Gm 

and no active conductances. Fig. 3.7(a) graphs input conductance, G;n, versus the 

total membrane conductance, Gtot = Area/ Rm. If a single compartment is used to 

model the cell (lumped neuron), then G;n is identical to Gtot (top curve). However, 

when simulating the dendritic morphology, the measured G;n can be considerably 

2The factor 2 arises from the fact that the injected current must propagate from the electrode 
site to the synapse and then back again. 
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Figure 3.8: Inhibition screening out excitation: Resting potential at three locations as 
a function of background activity. The more distal the location, the more excitation 
dominates over inhibition. The broken curve represents the somatic resting potential 
when the excitatory synapses were driven at twice the frequency of inhibitory synapses 
(marked on the x axis); between 1.1 and 6Hz the cell spikes and hence the resting 
potential is undefined. 

smaller than Gtot· The visibility, now defined not for a single synapse as an average 

over the total cell conductance, r = GGjn ' can be used to quantify this effect. For 
tot 

Rm=100kDcm2 , r is 0.93, suggesting a fairly compact neuron. As Rm increases 

to 10kDcm2 , r falls to 0.71, and for Rm=1kDcm2 f=0.37. Fig. 3.7(b) graphs the 

derivative of the curve in (a). They axis tells how much of an additional conductance 

change will be visible. For the same Rm quoted above, this differential visibility 

is 88%, 58%, and 22%. In this simplified and reduced model, the most obvious 

manifestation of the interaction of multiple inputs is conductance screening. 

5 0 
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Figure 3.9: Inhibit ion screening out excitation: balance between excitation and inhi­
bition at threshold. Ae and ! b,i refer to the frequency at excitatory and inhibitory 
synapses respectively; Jb,i lumps both GABAA and GABAB. (a) Inhibitory back­
ground frequency needed to keep neuron just below threshold as a function of exci­
tatory background frequency. (b) Derivative of graph in (a.). The derivative corre­
sponds to the amount of additional inhibition needed to counteract one additional 
Hz of excitation. 

Resting potential 

Inhibitory synapses are more proximal than excitatory ones on average [Holmes and 

Woody, 1989, White, 1989, Douglas and Martin, 1990, Larkman, 1991b]. Since prox­

imal conductances are more visible than distal ones, we expect inhibitory synapses 

to be more effective than excitatory ones. Specifically, the balance will shift in favor 

of inhibition during massive stimulation when the effective Rm decreases. 

We activated all synapses at background frequencies, fb, from 0 to 50 H z and 

recorded the potential at the soma, at a basal tip, and at an apical tip. For 0 H z 

background the cell is compact and almost isopotentia.l at -67 - -68 m V. The rest ing 
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potential is a compromise between the reversal potential of the uniformly distributed 

passive leak current, -66 mV, and partially activated currents in the soma (mainly 

potassium at -95 m V and anomalous rectifier at -50 m V) . As the background fre­

quency increases, the total synaptic conductance will dominate over the leak and the 

somatic active currents. For low /b , when the cell is still fairly compact, the high re­

versal potential of excitatory synapses will pull up the resting potential. For larger fb 

the more distal excitation is screened out by more proximal inhibition and so the so­

matic potential is pulled down again. Note that the potential at more distal locations 

stays high because excitation dominates locally. The asymptote for somatic potential 

was -71 m V. The broken curve represents the case when the excitatory synapses were 

activated at twice the inhibitory frequency. In the interval 1.1- 6 H z the cell fired 

repetitively, creating a "window of firing," where the resting potential was undefined. 

The results are in qualitative agreement with experimental data. In vivo record­

ings show somatic resting potentials between -40 and -60 mV [Holmes and \Voody, 1989, 

Douglas et al., 1991 , Pockberger, 1991] except in one study where it was -81 mV 

[Bindman et al., 1988], while in vitro recordings (no synaptic background activity) 

give lower values, ranging between -65 and -85 mV [Bindman et al., 1988, Thomson 

et al. , 1988, Mason and Larkman, 1990, Spain et al., 1990, Mason et al., 1991 , Spain 

et al., 1991 , Cauller and Connors, 1992]. The larger depolarization in the dendrites 

also has some support. While it is technically difficult to record in dendrites, ex­

cept for the apical trunk [Wong et al., 1979, Woody et al., 1988, Pock berger, 1991, 

Amitai et al., 1993], Ferster deduced this result [Ferster and Jagadeesh, 1992]. He 

recorded compound EPSPs from the soma and found that the amplitude decreased 

by a factor five during visual stimulation. The most likely explanation for this is a 

reduced driving force, as the dendritic potential approaches the reversal potential of 

the excitatory synapses. 
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Balance of inhibition and excitation at firing threshold 

One obvious role for inhibition is to keep a neuron from firing. The question therefore 

arises of how much inhibition is needed to keep the neuron just below threshold, for 

a given amount of excitation. 

We stimulated the cell with different background frequencies. Initially, the exci­

tatory and inhibitory frequencies, h,e and fb}, were set to the same value. Next, Jb,i 

was slowly decreased until the cell fired. The fh.; at which this occurred was recorded. 

The result is shown in Fig. 3. 9( a). At an !b,e of 5 Hz, 2. 7 Hz of inhibition is needed, 

or 54%. At an Jb,e of 50 Hz, 17.6 Hz of inhibition is needed, or 35%. Vve see that, 

in a relative sense, inhibition becomes more powerful for large inputs. In Fig. 3.9(b) 

the derivative of the curve in (a) is graphed. The derivative gives the additional 

inhibition needed to counteract an additional Hertz of excitation. This curve gives a 

more dramatic demonstration of the asymmetry between the distributions: over the 

graphed range this amount decreases from 0.94 Hz to 0.24 Hz - a factor 4. 

We thus conclude that the asymmetric input distributions serve to provide a 

form of negative feedback, keeping the cell from firing out of control. The same 

conclusion was reached by Abbott [Abbott, 1991] who solved the cable equations 

analytically for a simpler model constisting of a soma and a single cable. Note that 

for an unstructured, compact ("single-compartment") neuron, the curve in Fig. 3.9(a) 

would be linear. 

Comparison to Hopfield neuron 

A pressing question for researchers studying artificial neural networks is how well a 

"Hopfield" neuron approximates a biological cell. A Hopfield neuron sums its in­

puts linearly and computes a continuous output !out. which can be thought of as 

3 /b,; refers to the input frequency at both GABAA and GABAB synapses. 
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Hopfield neuron Lumped mode I Fu ll model 

Fbe (Hz) Fbe (Hz) f be (Hz) 

Figure 3.10: Inhibition screening out excitation: f;n - f out curve. 2-dimensiona.l con­
tour plots of !out as a function of inhibition and excitation as independent va ri<1 hles 
(Jb,e and Jb,;). The output firing rate is 7.:ero in the top left corner, but increases 
sigmoidally along the diagonal towards the bottom right corner; a diagonal cut would 
th11s reveal a sigmoid. (a) Hop:field neuron. (b) Layer 5 pyramid, lumped. (c) Layer 
5 l'.namid, full dendritic tree. For (b) and (c) the spacing between contours is 20 Hz. 
Note that the contours in (c) are non-parallel due to screening of excitation. 
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"instantaneous" frequency: 

where a- is some sigmoid function, usually bound between 0 and 1 (Hopfield, 1984, 

Rumelhart and McClelland, 1986]. We > 0 and w; < 0 are the weights for the excita­

tory and inhibitory inputs, fe and f;. 

A Hopfield neuron lacks features such as dispersion, dendritic delays, adaptation, 

and fractionation of the dendritic trees into subunits (Koch et al., 1982]. We are left 

with the sigmoid and the linear sum of inputs. 

As we showed in the previous chapter (Fig. 2.6), !out is a sigmoid in input current 

over the normal range of operation4
. 

But just how linear is the sum? A contour plot of !out as a 2-dimensional function 

of Ae and !b,i is shown for a Hopfield neuron in Fig. 3.10(a). A diagonal cut from the 

upper left corner (small !out) to the lower right corner (large !out) yields a sigmoid. 

Linearity is revealed in the fact that all contours are straight and parallel, so that 

w; · f; +We · f e is constant along straight lines. 

Fig. 3.10(b) shows the contour plot for a single-compartment model of the layer 5 

cell. Even though a diagonal cut still yields a sigmoid, it is asymmetric: for f; > fe 

the cell doesn't spike at all. The contours are almost parallel, reflecting quasi-linear 

summation of inhibition and excitation over the range studied. The wiggles seen 

especially for small !out arise from grid sampling. 

Fig. 3.10(c) shows the contour plot for the full model of the layer 5 cell. The 

contours are much less parallel, reflecting the non-linear summation discussed in pre­

vious sections. Note also that !out is lower for a given input, which is a consequence 

4 For very large inputs the spiking mechanism becomes dysfunctional and the membrane potential 
"locks up" at some intermediate value between the action potential peak and the resting potential. 



(J) 
(I) 

c 
0 
0. 
(I) 

& 

-1 

-6 -4 - 2 
Position 

v 
(mV) 

83 

Position Posit ion 

Figure 3.11: Control of receptive field profile. (a) A "Mexican hat" (Difference of 
Gaussians) receptive field is constructed using two Gaussians with amplitudes 3 and 
1 and a a of 1 and 3. (b) Receptive fields when the background frequency varied from 
0 to 5Hz. Total excitatory conductance peaked at 9e = 1.1 nS, and the inhibitory 
conductance peaked at g; = 1.46 nS. (c) Same as (b) , except that the conductances 
were increased to 9e = 4.8 and g; = 6.4 nS for fb = 0.5 H z and to 9e = 60 and 
g; = 80 nS for fb = 5 Hz. The ratio of excitatory to inhibitory conductance stayed 
the same. 

of the low visibility of distal excitatory conductance inputs. 

Control of receptive field size 

As will be demonstrated in chapter 5, the background activity fb can change the 

tuning curve of the neuron for synchronization sensitivity. Here we will briefly 

study how the width of a "Mexican hat" receptive field can change with background 

activity, as a result of the different input distributions of excitation and inhibi­

tion. This dynamic change in receptive field size has been postulated by theories 

for visual attention [Olshausen et al., 1992] and has been measured experimentally 

tPettet and Gilbert, 1992] (see below). 

Fig. 3.11(a) shows how a Mexican hat receptive field can be constructed using a 
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narrow Gaussian of large amplitude for excitatory input and a wide, shallow Gaussian 

for inhibitory input. The y axis, labeled "response" in the graph, was taken to be a 

conductance change, spread out across the cell according to the input distributions 

described in section 2, with a ratio of g;j 9e = 4/3. In other words, the cell receives 

conductance inputs that are a function of the position x of the stimulus: 

9e(x) 

g;(x) = 

1 x 2 
--~ 9e 0 e 2 "e 0 

The inhibitory conductance was split evenly between GABAA and GABAB. Since 

excitatory inputs are more distal, their efficacy will decrease faster with fb than will 

the efficacy of inhibitory inputs. Thus the positive part of the Mexican hat will drop 

faster than the negative part, resulting in a smaller and narrower ON-center "bump." 

The somatic voltage response (from rest) is graphed in Fig. 3.11(b). The con­

ductance inputs, 9e and g;, were held constant as the background activity, fb, was 

increased from 0 to 0.5 to 5 Hz. Since the input resistance decreases, the total re­

sponse decreases, but the width of the receptive field, as measured by the intersection 

with the x axis, decreases by more than a factor two. 

In Fig. 3.11(c) the conductance input was changed from trial to trial to normalize 

for input resistance, keeping the ratio g;j 9e constant. The narrowing of the receptive 

field shows up more clearly. The positive central region decreases by a. factor 2.45. 

For a. 2-dimensiona.l receptive field , this corresponds to a. factor (2.45)2 = 6. 

There is much evidence that the response of neurons is influenced by stimuli lying 

outside the classical receptive field (RF) [Nelson a.nd Frost, 1985, Allman et al., 1985, 

Gulyas et a.l., 1987]. Pettet a.nd Gilbert demonstrate how the RF of neurons in ca.t 

V1 will expand in a.rea. by about a. factor 5 when a.n artificial scotoma covers the RF 
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[Pettet and Gilbert, 1992]. The scotoma is simply a blank spot in the visual field 

while the surround is stimulated. Upon stimulation of the RF, it will collapse to its 

original size. Assuming that the neuron receives a lower level of synaptic activity 

during the scotoma, our model is consistent with the results.5 

This form of receptive field size control has been proposed for a model of visual 

attention in which retinal information is shifted and rescaled as it is routed to higher 

cortical areas [Olshausen et al., 1992, Olshausen et al., 1993]. At this higher level 

of representation, all objects are centered and appear at the same size, allowing 

position- and scale-invariant pattern matching. The number of templates that needs 

to be stored is thus dramatically reduced. We have shown that a very simple control 

signal, diffuse input, can accomplish the scaling, but not the shifting, of the receptive 

field. Using a more elaborate wiring scheme that controls inhibition and excitation 

separately could result in more precise control and eliminate the effect that the smaller 

receptive field is less sensitive to inputs. 

3.3.2 Sequencing of excitatory input 

As shown in Fig. 3.1 the EPSP from a somatic excitatory synapse has an amplitude of 

approximately 0.25 m V. Since the action potential threshold is approximately 16 m V 

above the resting potential, we expect that a minimum of 60-70 somatic synapses are 

necessary to bring the cell to fire6 • A larger number is required if the synapses are 

spread out in space (across the dendritic tree) or time (desynchronized, see chapter 4). 

For a small or moderate number of synapses, the peak somatic response is larger 

if inputs are synchronized. This will be further discussed in chapter 4. Fig. 3.12 

(bottom trace) shows the response to 100 synapses, distributed at 20 locations and 

5 Note however, that in the absence of stimuli outside the scotoma, no expansion occurs. 
6 The exact number turns out to be 66 for the standard model. 
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activated in a random sequence over a time interval T. For a moderate spread in 

time of 20 msec (~ rm) the response is 5-6 mV, but then drops rapidly as the input 

is more desynchronized. 

The time-to-peak delays, Tpeak, of these synapses varied from 3.8 to 22.7 msec. If 

stimulated in sequences, so that the individual EPSPs peak at the same time, a larger 

response is obtained (Fig. 3.12 (top trace)). The curve peaks close to the calculated 

optimal delay ofT = 22.7- 3.8 = 18.9 msec and then drops slowly, not dipping 

below 5 m V until T = 65 msec. In the null direction (middle trace) the response is 

initially smaller than for random input, but for T > 20 msec it is larger. This may at 

first seem surprising, but can be understood as follows: Of the 20 locations, 13 are in 

the apical tree. These synapses are considerably weaker (in the Vpeak measure) than 

the basal synapses. Activation in the null direction will activate the stronger basal 

synapses during a small part ofT, while for random activation these basal synapses 

are spread out over the full time interval. Comparing the preferred and null direction, 

we notice that the response in the preferred direction is only about 40% larger. This 

is consistent with intracellular sub-threshold recordings that show a remarkably small 

difference between the two directions [Douglas et al., 1991). 

3.4 Conclusions 

In this chapter we have investigated the efficacies and delays of single synapses as 

well as integration of large numbers of synapses under different conditions. 

A comparison of nine measures of efficacy showed that commonly used measures 

differ dramatically in the relative values they assign to different synaptic locations. 

The AQ-like measures (AQ, Area, and df) have the smallest spread across the dendritic 

tree (2- 4 for the layer 5 cell and less than a factor 2 for the smaller layer 2/3 cell). 

These measures are also the most relevant for sustained input. Vpeak has a considerably 
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Figure 3.12: Sequenced excitatory input. 100 AMPA synapses were distributed at 20 
locations. They were activated during a time interval T (x axis), either sequentially in 
the preferred direction (top), sequentially in the null direction (middle), or randomly 
(bottom). Vpeak (y axis) is the maximum somatic deflection from V rest· 
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larger spread, but is still a useful measure for t ransient or synchronized inputs. The 

rising slope, dV j dt, has a larger spread still. While not very meaningful for comparing 

t he efficacies of different synapses, it can be used for measuring changes in efficacy 

for a single synapse. The Av-like measures strongly underestimate distal synapses. 

Four measures of dendritic delay were compared. Two intuitively useful measures, 

Tpeak and Thalf, assigned similar values to synapses. Delays ranged approximately 

from 5 to 30 msec for the layer 5 cell and from 4 to 10 msec for the layer 2/3 cell. The 

centroid measure, TeaM, is not very meaningful in the presence of phenomenological 

inductances (undershoot in EPSPs), yielding delays as small as 1 msec. However, 

TeaM has been shown to be analytically tract able for passive trees, possessing such 

useful properties as symmetry and additivity [Agmon-Snir and Segev, 1992]. 

Both efficacies and delays will be reduced in the presence of large synaptic back­

ground activity. This is due to changes in input resistance and time constant, as will 

be discussed in chapter 5. 

During massive synaptic input, distal conductance change will be only partially 

visible [Koch et al., 1990]. Since inhibitory synapses are on average located closer to 

the soma than excitatory synapses, inhibition will gain in relative strength during 

strong stimulation. This effect can be useful in keeping the network from locking up 

at high firing rates [Abbott, 1991] in addition to other mechanisms such as spike rate 

adaptation of excitatory cells [McCormick et al., 1985, Mason and Larkman, 1990, 

Anderson et al., 1993b] and negative adaptation of inhibitory cells (output frequency 

increases with time) [McCormick et al., 1985] . It also provides for a possible mecha­

nism of receptive field size control, by reducing the excitatory center ON-field. 

A direction-sensitive cell was simulated by stimulating 100 synapses sequentially 

according to the calculated delay T peak· The sensitivity was not very strong, giving 

only a 40% larger response in the preferred direction. 

Integration of massive synaptic input will be further discussed in chapters 4 and 5. 
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Chapter 4 

Synchronization 

4.1 Introduction 

It has long been postulated t hat the synchronous firing activity of cortical neurons 

is a crucial stage underlying perception. The psychologist Milner [1 974] first pro­

posed that neurons responding to a "figure" fire synchronously in time, while neu­

rons responding to another figure or to the "ground" fire randomly: the "primitive 

unity of a figure" would be defined at the neuronal level by synchronized firing ac­

tivity. Several years later, von der Malsburg formulated his influential correlation 

theory of brain function on the basis of the importance of synchronized activity 

and demonstrated how this theory could be used to temporally segregate patterns 

[von der Malsburg and Schneider, 1986]. Using computer simulations, they showed 

that from an initially totally interconnect ed set of tonotopic neurons, two distinct 

groups of neurons-corresponding to two distinct voices- arise. The mechanism of 

this segmentation is the temporal synchronization of simultaneously active cells using 

a fast Hebbian synaptic modulation mechanism. This idea has been extended by 

Crick and Koch [Crick and Koch, 1990, Crick and Koch, 1992], who postulated that 
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synchronized and oscillatory firing activity in a subset of cortical neurons constitutes 

the neuronal correlate of visual attention and awareness. 

Electrophysiologists have studied the synchronized electrical activity among two or 

more simultaneously recorded neurons in the cortex of cats and monkeys [for instance, 

Ts'o et al., 1986, Aertsen et al., 1989, Nelson et al., 1992, Kreiter and Singer, 1992]. In 

some of these studies, cross-correlation among two cortical cells reveals a central peak 

with a width of less than 1 msec. Further, Gray et al. [Gray et al., 1989] showed that 

the oscillatory responses of cells can become temporally synchronized in a stimulus 

dependent manner. In the cat, the oscillations can be phase-locked with a phase-shift 

of ±3 msec around the origin at distances up to 7 mm [Engel et al., 1992]. 

The principal idea underlying theoretical studies is the belief that synchronized 

neuronal firing in large populations of pyramidal cells causes a higher firing rate in 

postsynaptic target cells (after suitably accounting for axonal and synaptic delays). 

This, in fact, is already inherent in the McCullough and Pitts neuron: if one such 

binary "unit" has a threshold of two, the simultaneous activity of two presynaptic 

neurons is required to bring the unit above threshold [McCullough and Pitts, 1943]. 

However, it has rarely been asked to what extent more realistic and biophysically 

plausible models of neurons prefer synchronized to desynchronized, excitatory synap­

tic input. Are there physiologically meaningful conditions under which temporally 

synchronized input leads to less effective postsynaptic firing than less synchronized ac­

tivity? This is the question we address here, and we find that under many conditions 

synchronized firing is not good for the cell in terms of generating the largest number 

of spikes. The principal- and most limiting-assumption we make here is that the 

dendritic tree of cells is passive and does not contain special, fast voltage-dependent 

nonlinearities, which are limited to the cell body. 

To our knowledge, only a single paper has investigated the possible "negative" ef­

fect of synaptic synchrony on postsynaptic firing frequency [Murthy and Fetz, 1993]. 
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Their numerical study varies the fraction of cells, r, that are perfectly synchronized 

among each other, concluding that synchronization only increases the postsynaptic 

firing frequency under certain conditions. In our more general investigation, we use 

both an analytically treatable neuron model (from the family of integrate-and-fire 

models) as well as computer simulations of the detailed model described in chapter 2 

to investigate the effect of single-shot and repetitive synaptic input at various syn­

chronization levels. Our main finding is that if the number of inputs, N, is much 

larger than the minimum number of inputs needed to reach threshold, Nt, then it 

is better to desynchronize the input temporally over some non-zero interval T. The 

simplified intergrate-and-fire models demonstrate that this effect can be explained by 

a combination of the membrane leak, G, which favors small T, and the refractory 

period, Trp, which favors large T. 

The degree of synaptic correlation m the input vanes m accordance with two 

independent factors: the temporal spread of synchronization, T, referred to as the 

desynchronization interval and the fraction of neurons that are synchronized, r. As we 

shall see, these two factors affect the postsynaptic firing frequency in different ways. 

In the first two sections of this chapter, we will investigate the effect of the desynchro­

nization interval on the firing rate, assuming that N synapses are each activated only 

once, under two extreme assumptions: i.) the input is Poisson distributed throughout 

T with on average N synaptic inputs and ii.) the input is constant, approximating 

the situation of regular input activity every T / N msec. In the section 4.4, we will 

deal with the added complication arising from repetitive synaptic input. 

4.2 Synchronicity in integrate-and-fire models 

We will first consider different variants of the integrate-and-fire (I&F) model neuron 

[Knight, 1972; Fig. 4.1), under the assumption that N synapses are activated only 
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once (single-shot case). 

In its simplest version, discrete synaptic inputs arriving at times t; place an iden­

t ical charge Q 0 onto a capacitance C, charging up the membrane potentia l across the 

capacitance by ~V = Q 0 /C. \ iVhen the voltage reaches a fixed threshold value, Vi, 

a point-like pulse is generated and the potential V(t) is reset to 0. Two important 

modifications to this model include a membrane leak conductance G and an abso-

lute refractory period Trp· The leaky or fo rgetful integrate-and-fire model has finite 

memory: since the membrane potential decays exponentially between synaptic inputs 

(with time-constant Tm = C /G), events that occurred in the past are less effective 

than more recent ones. The effect of Trp is to hold the potential V(t) to 0 for t he 

duration Trp after the model has generated a spike, rendering all synaptic inputs inef­

fective during this time. The main virtue of this family of models is their simplicity, 

allowing us to study some of their properties analytically. 

4.2.1 Regular synaptic input 

For "regular" synaptic input we assume that the synaptic input arrives at a constant 

rate >. = N JT; in other words during the interval T , N synaptic inputs a rrive in a 

regular manner, spaced TjN msec apart. Let Tspike be the time required to charge 

up the membrane from rest (V = 0) to vt. The total number of output spikes, Nsp, 

generated during this interval T will be the largest integer n for which 

n · Tspike + (n- 1) · Trp < T, ( 4.1 ) 

that is 

[ T + Trp ] 
Nsp = Floor T T , 

spike + rp 
( 4.2) 
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Case 1 v Case 2 v 

c c Gsyn 
Isyn Spike Spike 

Esyn 

Case 3 v Case 4 v 

c G 
Isyn Spike 

G c Gsyn 
Spike 

Esyn 

Figure 4.1: Four versions of the integrate-and-fire model. The model includes an 
optional membrane leak G (cases 3 and 4). Synaptic input can be either modeled as 
a current source lsyn (cases 1 and 3) or as a conductance change, Gsyn (cases 2 and 
4). The spike mechanism resets the potential V to 0 m V and includes a refractory 
period, Trp, during which Vis clamped to 0 mV; Trp may be set to 0 msec. 
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II Case I Model Synaptic Input Tspike 

1 I&F Current 10 = C A~ V ~ 
2 I&F Conductance -~ln(1- _2L) 

:AG.,m E.,m 

3 leaky I&F Current Io = C A~ V -T ln(1 - E• ) m 'Tm A 

4 leaky I&F Conductance - ln(1 - v,li - _2L) 
G+:AG,un :AE.,mG•yn E•yn 

Table 4.1: Analytic expressions for the time Tspike required for constant synaptic input 
arriving at rate A = N /T to reach threshold, assuming a continuous approximation 
of the discrete input. See appendix A for derivation. 

where Floor[x] is the largest integer smaller than or equal to x. For an analytical 

treatment it is more convenient to use a continuous approximation without the Floor[] 

function: 

N 
_ T+Trp 

sp-
Tspike + Trp 

( 4.3) 

The only quantity that needs to be evaluated in eq. ( 4.3) is Tspike · Case 1 is an 

integrate-and-fire model with a constant rate A = N /T of identical synaptic input 

pulses, each one dumping the charge Q0 = C~V onto the capacitance. This is 

equivalent to injecting the constant current Io = C A~ V onto the capacitance. In the 

third case, the same current 10 is injected into the leaky integrate-and-fire model. In 

the other two cases, the input is treated as conductance input Gsyn > 0 nS · sec 

in series with a synaptic battery Esyn = 70 m V, for the standard (case 2) or for the 

leaky I&F model (case 4). This is equivalent to a single effective conductance of value 

AGsyn that is activated during the interval T. 

We first derive an analytic expression for Tspike in the fourth and most general 

case (see Table 4.1). Tspike is the time it takes for a constant conductance input, 

AGsyn, to charge the membrane from 0 to vt in the leaky integrate-and-fire model 

(case 4 in Table 4.1). The input is approximated by a constant synaptic conductance 

increase in series with a synaptic battery Esyn (here, EsynGsyn = C ~ V) . Replacing 
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the two parallel conductances G and >..Gsyn with a single equivalent conductance 

G' = G + >..Gsyn and replacing the battery Esyn withE'= EsynAGsyn/G', we arrive 

at a first-order, ordinary differential equation: 

C · ~~ + (V - E') · G' = 0. 

Solving this and setting V to vt and t = Tspike leads to 

which can be rewritten as 

T C ln(1- vtG 
spike = - G + 'Gsyn 'E G /\ /\ syn syn 

-~). 
Esyn 

The expression for current inputs (case 3) can be obtained as a limiting case by 

setting Io = >.. · C · t:t. V = >.. · Esyn · Gsyn and letting Gsyn _. 0 and Esyn _. oo, keeping 

Gsyn · Esyn constant. Tspike for the nonleaky I&F model (cases 1 and 2) can be simply 

obtained by setting the membrane leak G to 0 (and exploiting ln( 1 + dx) = dx for 

small values of dx ). While conductance inputs are more relevant to the physiological 

situation where massive synaptic input fires the pyramidal cell at high rates (see 

chapter 5), further analysis is simplified if current inputs are used. 

We evaluated eq. 4.3 for the case of conductance inputs to the I&F model with 

N = 1, 000 inputs and either no or a fixed refractory period (Trp = 2 msec; see 

Fig. 4.2) and used values for G, C, Trp and Nt that mimic the values observed in 

cortical pyramidal cells (see below). 

For the standard integrator (with Trp = 0 and G = 0; top curve), the number of 

output spikes, Nsp, is independent ofT. In fact, Nsp is always independent of the 

arrival times of the input, but only depends on the total number of inputs: Nsp = 
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a Integrate and fire model 
b Compartmental model 

No leak, Trp = 0 

Nsp 

Leak, Trp = 2 

100 200 

T (msec) T (msec) 

Figure 4.2: Temporal dispersion of synaptic input and its effect on firing rate for 
different single cell models. A fixed number of identical excitatory inputs N is evenly 
distributed along the interval T and the number of output spikes Nsp is computed 
as a function ofT. (a) Leaky integrate-and-fire model with N = 1, 000 conductance 
inputs. The leak conductance G is either 0 or 58.8 nS, and the refractory period 
Trp is either 0 or 2 msec. The membrane leakage "pulls down" the right end of 
the curve, while the refractory period pulls down the left end of the curve. ~ V = 
0.25, Vt = 15 m V, Tm = 17 msec and Nt = 60. These parameters are similar to those 
of the detailed model. The optimal value of T, Tapt, is marked on the bottom curve. 
(b) Compartmental model of layer V pyramidal cell. N = 200- 1,000 excitatory, 
fast AMPA synapses were distributed throughout the cell. Nt = 66 synchronized 
somatic synaptic input are required to trigger one action potential. For N = 1, 000 
the I&F model with refractory period and conductance inputs is in good qualitative 
agreement with the compartmental model. The principal result of our study is that 
for N > > Nt, synchronization of synaptic input causes the cell to fire fewer spikes 
than if the synaptic input is temporally dispersed (i.e., the optimal T > 0). 
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N / Nt for the I&F model with an infinite memory. When a membrane leak G is 

introduced, the number of output spikes decreases with T because earlier inputs leak 

away with a time constant Tm ~ C JG. This is at the heart of the traditional argument 

for the advantage of synchronizing synaptic input in terms of eliciting the maximum 

number of postsynaptic spikes: temporal dispersion of synaptic input reduce their 

effectiveness [e.g., Abeles, 1982]. However, when a refractory period, Trp is introduced 

into the leaky I&F neuron (lower curve in Fig. 4.2a), the initial part of the curve is 

"pulled down," so that for small desynchronization intervals T, Nsp will increase with 

T. The reason for this "overcrowding" effect is that synaptic input in excess of Nt will 

be "wasted." Synaptic inputs arriving during the refractory period do not contribute 

to the excitability of the cell. Thus, for N > Nt, desynchronized synaptic input 

increases the spiking rate, or, high synchronicity of massive synaptic input reduces 

firing rate. The optimal T is a compromise between the effects of G and Trp and is 

about 60 msec for N = 1, 000 as shown in Fig. 4.2. 

Substituting current inputs for conductance inputs had only a minor effect on the 

I&F models. If the parameters were adjusted to give similar values of Nap for small 

T, then current inputs give slightly larger values for large T (graphs not shown). 

It is conceivable that the peaked form of Nsp could be due to synaptic saturation. 

Rather than inputs being "wasted" during the refractory period, an increased resting 

potential would reduce the driving force Erev- V(t) for the excitatory synapses. Such 

saturation effects only exist if the synaptic input is treated as a conductance change 

and could, in principle, reduce Nap for high input rates A = N /T and small values of 

T. However, dNap/dT < 0 for case 4 with Trp = 0 msec, independent of Eayn , and 

therefore no peak can occur (see monotonically decreasing curve in Fig 4.2a). 
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Topt /Trp 

Figure 4.3: The optimal value ofT, Topt, in units of ToptfTrp, in the leaky integrate­
and-fire model for current input as a function of the normalized number of inputs 
N j Nt and normalized time-constant r m/Trp· Topt is almost linear in N for N > > 
Nt = 60; e.g., if the number of inputs N doubles, they should be spread out over 
twice as long an interval T as before in order to maximize firing frequency. 
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4.2.2 Optimal desynchronization interval 

How does Topt, the optimal value ofT, that is the desynchronization interval at which 

Nsp is maximized, depend on the various parameters? To find Topt, we compute 

dNspl dT for the leaky I&F model with current inputs and set this derivative to zero. 

For current inputs, the number of output spikes is 

( ) 
T + Trp 

Nsp T = T - l (1 - !!J.L). rp Tm og TmN 

( 4.4) 

If we define the dimensionless variables a 1 = NIN~, a2 = TmiTrp, andy= NtTI(NTm ), 

take the derivative of eq. (6) and set the resulting expression to zero, we obtain 

y + ~ = _!__ - log( 1 - y) 
1- y a2 

( 4.5) 

Note that y depends only on the two dimensionless quantities a 1 and a 2 • No closed­

form expression exists for the solution of y(ai. a 2), which was therefore solved numer­

ically. The numerically obtained value of Topt is shown in Fig. 4.3. Note that all three 

axes are in dimensionless variables: ToptfTrp, T miTrp, and N INt. 

As can be seen, T is almost exactly linear in N I Nt, except for values of Nl Nt 

in the neighborhood of 1. This is not too surprising, since at high input rates Topt 

becomes much larger than Tm and a dynamic steady state condition prevails during 

most of the single-shot. It can also be seen when y(ai. a 2 ) is graphed (not shown): y is 

almost independent of a 1 except for small values of a 1 . In other words, for N > > Nt 

there exists an optimal input rate hn = NfT. For our parameter values in the leaky 

I&F model, this rate is approximately 10 inputslmsec. If fin is increased above this 

10 kHz rate, the refractory period will reduce N 3 p, while if fin is decreased below 

10 kHz, the membrane leak causes a reduction in Nsp· 

Topt increases with Tm = C IG but not in a linear fashion due to the opposing 
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Poisson vs. constant input 
6 r----,.----,.----,----~----~-----.-----r-----r-----.----~ 

Nsp 

200 
55 T (msec) 

Figure 4.4: Number of output spikes for Poisson distributed (thin lines) and for con­
stant synaptic input (thick lines) for the leaky integrate-and-fire model with current 
input (see case 3 in Table 4.1) as a function of the desynchronization interval T. The 
different curves are for different values of N, i.e., the average number of synaptic 
inputs arriving during the interval T. For N < Nt = 60 or forT> Tcut-off, fluctua­
tions in the random input can always push the potential above threshold, while the 
model ceases to respond to constant input. For T < Tcut-of f and N > Nt, i.e., for 
large input rates .A = N /T, the two models agree closely. For N :=:; Nt, the analytical 
approximation deviates significantly from the numerical one due to truncation error, 
and only the latter is shown for N = 55 and 60. 

effects of Trp (favoring larger values of Topt) and G (favoring smaller values) . 

4.2.3 Synchronicity for Poisson-distributed input 

Up to now we considered synaptic input to arrive at a constant rate. Let us now 

analyze the more realistic situation of Poisson distributed current inputs with a mean 

rate .A = N jT to the leaky integrate-and-fire model over a fixed temporal interval 

of duration T. Intuition has it that if the stimulation is intense, driving V towards 
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vt much faster than Tm, the fine structure of the input should not matter, only its 

average rate. However, if the stimulation is less intense so that V approaches vt very 

slowly, then the random fluctuations of a Poisson process may matter. In the extreme 

case where the asymptote for V is below threshold, regular input will never cause the 

neuron to spike, while Poisson fluctuations will effect occasional spikes. 

An analytic expression for Tspike was obtained by M. Usher [Bernander et al., 1993c) 

and Nsp was obtained using eq. ( 4.3. for large N of 100 and 500. For small N (55 

and 60) the continuous approximation formula, eq. ( 4.3, breaks down, and instead 

simulations were used to compute the curves. The resulting Nsp as a function of T 

are graphed in Fig. 4.4 together with the curves for regular (constant) input. We can 

see two important differences at the two extremes of the axes. One difference is when, 

on average, less than Nt inputs are present. For constant synaptic input, no spikes 

are generated for N < Nt = 60 and Nsp f:. 0 only forT= 0 at N = 60. However, for 

Poisson distributed input, there always exists a non-zero probability that stochastic 

fluctuations in the input will carry the potential above threshold. Likewise, Poisson 

input can in principle, for large values ofT, always exceed the threshold Nt , while 

this is not possible for regularly timed input (where the cutoff value ofT is given by 

Tcut-off = TmN/Nt), resulting in a "tail" for large values ofT. For all other values of 

T < Tcut-of 1 and N > Nt, the constant synaptic input closely approximates Poisson 

distributed input. In other words, for large enough values of the synaptic input rate 

A= N jT, Poisson input can be approximated by constant input (case 3 in Table 4.1). 
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Synchronicity in a detailed model of a pyra­

midal cell 

To what extent are our results due to the very simple neuronal model we have been 

using? After all, I&F neurons have a fixed threshold, no dendritic tree, no voltage­

and time-dependent conductances and no synaptic dynamics. 

We simulated the detailed compartmental model of the layer V pyramidal cell. 

A simulation was run on the full model for N = 200 to 1, 000 fast, excitatory, 

voltage-independent AMPA synapses distributed throughout the dendritic arbor in 

accordance with the known anatomical distribution (Fig. 4.2b) . For N = 1, 000 

the same basic effect is observed as in the leaky I&F model with refractory period. 

In the case of total synchronization, T = 0, only two spikes are produced due to 

overcrowding. A maximum of 5 spikes is obtained for T = 25 - 65 msec and the 

response decreases to 0 spikes forT= 200 msec. When N is reduced to 300 synapses 

or less, the peak in Nsp disappears. Note, however, that now N ap is essentially fiat 

around the origin, implying that the cell is not highly tuned to small T (for the 

Tm = 17 m s ec used here). 

To assess to what extent this behavior is due to the fact that synaptic input 

increases the membrane conductance-rather than injecting a current into the cell­

we approximated this condition by reducing the synaptic conductance change Gmax 

for each synapse by a factor 10, while increasing the driving force Erev- V by a factor 

10. This removed any saturation in the dendritic tree, and thus more current was 

injected during stimulation (curves not shown). The main difference was that a few 

more spikes was obtained at every T, while the Nsp still peaked for approximately 

the same values ofT. 

Substituting NMDA synapses for half of the AMPA synapses had the effect of 
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broadening the peak, as well as making it less pronounced. This can be explained by 

the much slower time course of the NMDA synapses (rmdecay = 40 msec), which is 

conceptually similar to desynchronizing the much faster AMPA synapses. No obvious 

cooperative effects were seen due to the negative input conductance of the NMDA 

synapses. 

4.4 Correlated synaptic input 

In the previous sections, we assumed that N independent synapses were each activated 

only once (single-shot case). However, synaptic input is repetitive (cells fire more than 

once) and can be correlated. How are our previous results affected by such correlated 

activity? The degree of correlation in the input may vary in accordance with two 

factors: the temporal spread of synchronization (T as expressed by the width of the 

cross-covariance function between input neurons), and the fraction of neurons, r, that 

are synchronized. By varying each of the factors independently, one can interpolate 

between a fully synchronized and a fully desynchronized input. 

If each of the N input neurons is firing with a Poisson probability distribution 

with mean rate f;n, two extreme situations can be considered: 

• If none of the neurons are correlated (r = 0), the input consists of a single 

Poisson process of events of height .6. V and rate,\ = N fin· The mean interspike 

interval and output firing rate can then be estimated equation for Poisson inputs 

and will be denoted by fout,O· 

• When all (r = 1) neurons are perfectly correlated (T = 0), the input is equiv­

alent to a. single Poisson stream of events of height N .6. V and rate ,\ = fin· 

Assuming N > Nt (otherwise the neuron will rarely fire), each synchronized 

event triggers one spike (the refractory period prevents multiple spikes for such 
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synchronized input currents) and the output frequency is equal to the input 

frequency fin· 

The intermediate situation (rN neurons perfectly correlated with T = 0, and the 

rest independent) interpolates between these two limiting cases as shown in Fig. 4.5. 

Thus increasing the number of perfectly synchronized and correlated neurons is only 

advantageous if the response in the uncorrelated case is lower than fin, that is if 

fout ,o(N, J;n) < fin· We derive the border between these two domains by finding 

those values of N and fin where this inequality turns into an equality. As we saw 

in section 4.2.3, if A is large enough, the value of Tspike for Poisson input is well 

approximated by that of constant input given by case 3 in Table 4.1. Using this 

latter result as well as fout,o = 1/(Tspike + Trp) and A = N hn we arrive at 

( 4.6) 

This expression, then, demarcates the two domains. For values of Nand fin below 

and to the left of this border (Fig. 4.5a), increasing the number r N of correlated 

neurons enhances the output rate while above and to the right of this curve increased 

synchronization reduces the output rate. The latter effect is due to the fact that at 

higher N and fin, input spikes are rendered ineffective due to the refractory period. 

For low values of the input frequency relative to the leak term, i.e., when J;n << 

1/Tm, the fin term in the exponent in the right hand of eq. 4.6 side can be neglected, 

leading to an inverse relationship between N and fin and to a hyperbolic curve for 

small values of J;n in Fig. 4.5a. 

What effect does the temporal width of the cross-covariance function T have on 

postsynaptic firing frequency? We approached this question by numerically evaluating 

!out for a variety of different settings in the relevant 4-dimensional space spanned by 

r, T, Nand fin · In the simulations shown in Fig. 4.5b,c, we compute ! out as a function 
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Figure 4.5: Simulation results for the response rate ! out of a leaky I&F neuron with 
current input ( T m = 17 msec, Trp = 2 msec, and Nt = 60) to a varying fraction 
r N of correlated inputs out of a total population of N = 200 input neurons. Bold 
curves in (b) and (c) highlight the response when the correlated neurons are perfectly 
synchronized (T = 0), while thin lines correspond to non-zero values of the desyn­
chronization interval T as indicated. (a) Border in the fin-N plane delimiting the 
parameter range for which perfect synchronization at T = 0 reduces the firing rate 
from the opposing situation (see eq. (5), diamonds represent simulation results) . For 
small values of either N (as long as N > Nt) or fin, synchronization always increases 
!out· (b) For J;n =5Hz, synchronization (in r) always increases the firing frequency. 
(c) For larger values of the input frequency, here fin= 20Hz, too much or too li ttle 
temporal synchronization decreases !out· 
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of the number of synchronized inputs using the leaky I&F model with current inputs. 

Fig. 4.5b shows the response rate for a population of N = 200 input neurons, 

all firing with a mean input rate fin = 5 Hz. We are here well in the domain (see 

the lower cross in Fig. 4.5a) where perfect (T = 0) synchronization will lead to an 

increase in the firing rate. If none of the inputs are correlated, we are in the first 

of the limiting cases discussed at the beginning of the section with fout,o = 0. As 

r N increases, the unit starts to fire. At perfect levels of temporal synchronization, 

!out steeply rises in the neighborhood of r N :::::: Nt and saturates for large values of 

rN at the firing rate fin (second limiting case discussed above), since all 200 inputs 

fire at once, causing only a single postsynaptic spike per input volley. For a finite 

desynchronization interval, here T = 10 and 20 msec, the steep rise in !out occurs 

at somewhat larger values of rN than for perfect synchronization. However, as r 

continues to increase, the firing rate increases to almost twice the frequency compared 

to perfectly synchronized input (T = 0), expressing the fact that two spikes are fired 

on average per input volley (due to the temporal spread of all 200 inputs over 10 or 

20 msec). For larger desynchronization intervals (here 50 and 200 msec), the leaky 

membrane limits the response of the I&F unit and the postsynaptic response remains 

small. 

Fig. 4.5c illustrates the reverse case when the input rate is so high (here fin = 

20 Hz), that temporal synchronization leads to a reduction in postsynaptic response 

(see the upper cross in panel a) . Here, increasing the fraction of perfectly synchronized 

neurons r N causes a drop in !out, except when a T = 10 msec desynchronization 

interval is being used for large values of rN. The fact that when all neurons are 

correlated at the endpoints rN = 200 of Fig. 4.5b,c, the optimal desynchronization 

interval is between 10-20 msec can be understood from our analysis of the single-shot 

case in section 2. 
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4.5 Discussion 

A number of proposals for linking neuronal firing with higher-level "emergent" prop­

erties explicitly or implicitly assume that synaptic input synchronization always leads 

to an increase in postsynaptic firing frequency compared to the desynchronized case 

(see the Introduction). We investigated this hypothesis in detail. Before we summa­

rize and interpret our results, let us state the principal limitations of our study. We 

investigated the firing properties of two distinct neuronal models: the analytically 

treatable integrate-and-fire (I&F) family of integrator models [Knight, 1972] as well 

as a biophysically detailed compartmental model of an anatomically reconstructed 

cortical pyramidal cell. This model assumes that no voltage-dependent membrane 

currents are present in the dendrites (with the exception of the voltage-dependent 

NMDA synaptic input). We did not consider bursting cells that can generate two or 

more fast spikes in response to an appropriate synaptic input nor voltage-dependent 

sodium or calcium currents in the dendritic tree. Both situations render any anal­

ysis such as the one carried out here considerably more complex. Sufficiently fast 

and strong dendritic nonlinearities, such as postulated by Softky [Softky, 1993], can 

in principle render the cell susceptible to specific temporal arrangements of synaptic 

input (i.e., specific values ofT) and would invalidate our analysis. This was beyond 

the scope of the present study; we provide the baseline against which the performance 

of more complex neuronal models need to be evaluated. 

We assume that synaptic input is either constant or distributed according to a 

Poisson process. Detailed analysis of the power spectrum, interspike interval distri­

bution and firing variability of non-bursting cortical cells in the awake and behaving 

monkey firing at high rates supports the Poisson hypothesis [Softky and Koch, 1993, 

Bair et al., 1993]. Finally, we only consider the effect of excitatory synaptic input, 

neglecting the effect of synchronization of inhibitory synaptic input. However, in as 
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far as steady-state conditions are met (i.e., for large enough values of..\), the current 

due to the inhibitory synaptic input can be subtracted from the excitatory current, 

yielding a net effective input current (or input rate) and all of our arguments apply. 

Both the I&F models as well as the detailed biophysical model display the same 

behavior: if the entire excitatory synaptic input is correlated (r = 1; single-shot case), 

temporal synchronization (small values ofT) only increases the output firing rate if the 

average number of spikes (as characterized by a Poisson process with rate,\= N/T) is 

on the order of the number of inputs Nt needed to reach threshold (Fig. 4.2). For rates 

significantly larger than Nt/T, there will be a non-zero, optimal desynchronization 

interval. As witnessed in Fig. 4.3, this optimum interval increases linearly with N / Nt 

and sub-linearly with Tm/Trp· For desynchronization intervals larger than Topt, the 

response is reduced due to temporal dispersion induced by the membrane leak, while 

the refractory period limits the usefulness of high synchronization. Any neuronal 

model with a refractory period will display such a tendency against overcrowding of 

synaptic inputs. It should be noted that such overcrowding can occur at what is 

believed to be physiological levels of synaptic input. 1, 000 synaptic inputs impinging 

onto our pyramidal cell within 50 msec give rise to twice the number of spikes than 

the same number of inputs applied instantaneously (T = 0). 

Because of the similarity between the I&F and the detailed models, we only use 

the former when we investigate the more complex situation arising during repetitive 

input when only a fraction r of theN input synapses are correlated (with the width 

of the central peak in the cross-covariance function characterized by T). This is the 

situation Murthy and Fetz (1993) studied. Assuming always T = 0, they conclude 

that synchronization is only useful when N, ~ V or fin are not too large. We quantify 

(Fig. 4.5a) and extend their results to non-zero desynchronization intervals, explaining 

the effect in terms of the membrane leak and the refractory period. We explicitly 

found (Fig. 4.5a) the domain inN, fin space for which correlated inputs enhance the 
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response. For values of fin and N below the border displayed in Fig. 4.5a, and if the 

number of correlated inputs rN < Nt (Nt is about 60 as estimated by biophysical 

parameters from our reconstructed neuron), perfect temporal synchronization (with a 

zero-width peak) is advantageous (Fig. 4.5a) . In this regime, the assumption that high 

levels of firing synchronization-as expressed by sharp peaks in the cross-covariance 

function-plays a significant role in various perceptual processes is valid [Milner, 197 4, 

Abeles, 1991, Gray et al. , 1989, Crick and Koch, 1990, Kreiter and Singer, 1992]. If 

rN > Nt, perfect synchronization ceases to be optimal due to overcrowding. In this 

regime, small enough values of the average input frequency f;n in combination with 

small desynchronization intervals (T ~ 5- 10 msec; Fig. 4.5c) enhances the response 

rate compared to perfect or no temporal synchronization. Thus, cross-covariance 

functions with pronounced but wide peaks can indeed be more advantageous than 

extremely narrow central peaks in the cross-covariance (e.g., cell pairs of the T type 

in [Nelson et al., 1992]. We conclude that (in the absence of fast and powerful active 

dendritic conductances) if the synchronization of the firing of cortical cells is indeed a 

crucial signal underlying higher-level perceptual processes, the brain must take care 

to assure that only some minimal number of neurons are simultaneously active. 
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Chapter 5 

Synaptic Background Activity 

Controls Spatia-Temporal 

Integration 

5.1 Introduction 

The standard one-dimensional Rall cable model of nerve cells assumes that their elec­

trotonic structures do not change in response to synaptic input [Rall, 1964, Rall, 1969, 

Rinzel and Rail, 1974, Rail et al., 1992]. This model is used in a great number of both 

theoretical and anatomical-physiological structure-function studies. In particular, the 

membrane time constant, T m, and the somatic input resistance, Rin, are used to char­

acterize single cells and are often thought of as static properties of the neuron. In 

this chapter we will show that the total synaptic conductance is likely to overshadow 

the intrinsic conductances, even at rest when only a low spontaneous background 

firing rate is present. The two key assumptions are that Rm is much higher than 

previously thought, and that a large number of synapses are modeled as conductance 
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Figure 5.1: Model assumptions. (a) Two models of synaptic input. The current 
source always injects the same current, independent of membrane potential, and is 
more amenable to analytic treatment. (b) Schematic of the relative contributions 
to the membrane conductance Gm,eff = Gm + Gm,syn · Traditionally, the synapt ic 
conductance was assumed small compared to the membrane leak. 
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changes, not current sources as in most previous analyses [for instance, Rinzel and 

Rall, 197 4]. Significant parts of this work have previously been published elsewhere 

[Bernander et al., 1991]. 

As mentioned in chapter 2, it was previously thought that the passive membrane 

resistance was on the order of 2-20 kflcm2 and values in this range were typically 

chosen in modeling studies [Koch et al., 1982, Yamada et al., 1989, Koch et al., 1990, 

Traub et al. , 1991 , Lytton and Sejnowski, 1991]. Recent patch-clamp recordings and 

modeling studies have suggest~d much larger values of 100-600 kflcm2 [Shelton, 1985, 

Andersen et al., 1990, Major et al., 1990, Spruston and Johnston, 1991 , Segev et 

al. , 1992]. This, in conjunction with the fact that neocortical pyramidal cells re­

ceive on the order of 5,000-20,000 synapses [Thomas et al., 1980, Larkman, 1991 b, 

Anderson et al., 1993b] forms the basis of our thesis that synaptic background activ­

ity will overwhelm the intrinsic conductances. A brief counting example will demon­

strate this. The total area of the layer 5 cell is 55,000 11m2 • Assuming the older 

estimate of Rm=10 kflcm2 , the total leak conductance will be Gleak,abs =55 nS. To 

obtain the same conductance from synaptic input, Gsyn,abs, we need 27,500 inputs 

per sec. Ignoring background activity, this is obtained, for example, by 275 synapses 

firing at 100 H z . Inputs of this magnitude have rarely been studied in the past and 

therefore it was logical to model inputs as current sources (see Fig. 5.1(a)). On the 

other hand, if Rm=100 kflcm 2 , Gleak,abs is only 5.5 nS corresponding to only 2,750 

inputs per sec. If background activity is not ignored, then all 4,000 excita tory inputs 

need to fire at only 0.69 Hz to match Gleak,abs · Note that 4,000 is a conservative 

estimate and that additional inhibitory inputs will add to the background activity. 

To summarize, the effect ive membrane conductance derives from two components: 
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while it was previously assumed that Gm > > Gm,syn, we argue in this chapter for 

the opposite inequality, Gm < < Gm,syn· Fig. 5.1(b) shows this schematically; in 

traditional models, a factor 2 change in Gm,syn has a small impact on Gm,eff, while in 

our model it has a large effect. 

Previous work along these lines is very recent. Holmes and Woody study the effect 

of inhomogeneous input distributions, carefully adjusting the input level to yield a 

constant somatic input resistance and resting potential (except in one case where 

the input rate is reduced). They do not focus on fb as the parameter to vary, and 

changes in electrotonic structure is therefore less compelling. Simultaneously and 

independently of us, Abbott noted "the synaptic conductance may be comparable 

to or even larger than the membrane conductance" [Abbott, 1991]. He uses a single 

cable model to study the firing rate problem and notes that electrotonic length L will 

depend on Gm,syn· However, the impact on spatiotemporal integration in terms of R;n 

and Tm is not discussed. Finally, Rapp et al. did a simulation study independently 

of us, using a very similar approach for cerebellar Purkinje cells [Rapp et al., 1992]. 

They find similar dependencies on fb for R;n, Tm, V,.est, and L. 

5.2 Methods 

5.2.1 Measuring input resistance, Rin 

The input resistance, R ;n, can be defined either as an instantaneous resist ance, R in,inst , 

or as a steady state resistance, Rin,ss· 

Assume, for a moment, that the cell is highly compact and can be approximated 

with a single compartment. A voltage clamp is used to make a small voltage step, 

.6. Vm, and the change in clamp current, .6.1, is measured. Assume further that the 

voltage clamp is much faster than any of the time constants of the active conduc-
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Figure 5.2: Comparison of two definitions of input conductance: instantaneous, 
G;n,inst, and steady state, G;n,ss. See text for definitions and details. 

tances. !::l.I will initially jump and then slowly change as active conductances relax. 

!::l.Iearly and !::l.Ilate denote the instantaneous (not including the capacitive transient) 

and steady state changes in clamp current. The instantaneous input conductance is 

then defined as the total parallel conductance: 

where most of the G;(Vm) are voltage-dependent, but also include the passive "leak" 

conductance. However, in an extended, branched cable structure where a high-quality 

space clamp is impossible, the equalization time constant may be larger than the 

particle time constants, as is the case in our model. It will then be impossible to 

measure !::l.Iearly· Instead, the steady state value, !::l.hate, can be used to define the 

steady state input conductance: 
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G 
.().]late dilate [G ( ) dG; ( )) 

in,ss = .(). Vm ~ dVm = ~i i Vm + dVm · Vm- Erev,i . 

The apparent conductance for channel type i is thus a sum of the steady state con­

ductance, G;(Vm), and a correction term, ;g,;. · (Vm - Erev,; ) . The magnitude of the 

correction term can often be much larger than the steady state conductance and 

also force it to become negative. If the net sum of all conductances is negative, a 

regenerative (positive feedback) condition occurs, and the membrane potential runs 

off. 

Fig. 5.2 compares the two definitions of input conductance for a single-compartment 

version of the standard model. For very hyperpolarized potentials, all active conduc­

tances are either turned fully on or off. At this point, the correction term is zero and 

the two definitions give identical Gin· For larger values of Vm, they differ more, and 

as threshold for spike generation is approached, the difference is dramatic. Note that 

while G;n,inst is always positive, G;n,ss may be either positive or negative. 

Throughout this thesis, the steady state conductance, G;n,ss is used to compute 

input resistance Rin = 1/Gin,ss · 

5.2.2 Measuring the membrane time constant, T m 

The membrane time constant, Tm, is a measure of how fast the cell reacts to electrical 

changes and for how long the cell "remembers" information. 

It is straightforward to measure Tm in a passive, noise-free cell. Unfortunately, 

neurons have a limited passive region at best, and the membrane potential as well as 

the recording equipment are bedeviled with noise that drowns out small exponential 

transients. Even in simulations, the precision of the arithmetic eventually deteriorates 

for very small transients. 
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Figure 5.3: Measuring time constants by fitting exponentials to impulse response. (a) 
Impulse response in passive pyramidal cell with uniform Rm=30kflcm2 • (b) Peeling 
of first two time constants of curve in (a). Note semi-log plot. (c) 3-point fit to 
curve in (a). (d) 3-point fits for active pyramidal cell at different levels of synaptic 
background activation. · 
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Exponential "peeling" 

The impulse or step response can b e decomposed into a series of exponentials: 

where To > T1 > T 2 ..•• For a passive neuronal structure with uniform Rm, the largest 

time constant, To, equals the membrane time constant Rm ·Cm . This expansion forms 

the basis for the method of "peeling," a method originally used by physicists studying 

multiple radioactive decay, but also widely used among neurophysiologists after an 

in-depth treatment by Rall (Rall, 1969). The peeling method is illustrated in Fig. 5.3. 

Fig. 5.3(a) shows the voltage transient following a delta current input (a small charge 

was deposited in the soma at t=lO msec). Fig. 5.3(b) shows the same curve in a 

semi-log plot (top curve). The tail of the curve is linear and thus the decay is at 

this point dominated by a single exponential. A least-squares fit to this part of the 

curve yields a time constant of To = 29.6 msec, which is close to the calculated value 

Rm · Cm = 30 msec. Next, this exponential is subtracted and the resulting curve is 

plotted (bottom curve in Fig. 5.3(b) ). The slope of the linear tail of this second curve 

gives a time constant of T1 = 9. 7 msec. Yet higher time constants can theoretically 

be extracted, but in practice, noise often prohibits this. 

For a cylinder with sealed ends, To and T1 can be used to find the electrotonic 

length of the cylinder1
: 

lThis expression is easily derived by solving the cable equation, v_;x = V + v;, using the 
separation of variables technique. Solutions are of the form V(X, T) = (A sin aX + B cos aX) · 
e-(1+ <>2

)T. The sealed-end boundary condition forces a to take on discrete values an = mr / L, 
where n is a non-zero integer. 
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This formula is often used to estimate the compactness of a neuron, even though a 

dendritic tree can rarely be collapsed to an equivalent cylinder and one end is not 

sealed but attached to the soma. 

There are several practical problems that may arise. First, due to noise, the tail of 

the impulse response can only be used up to some limited value oft, often in the range 

of 20-40 msec [Laurent, 1990, e.g.]. At this point there might still be contamination 

from higher time constants. For example, in Fig. 5.3(b ), if only the time interval 

10-20 msec is used to fit To, it is underestimated to be 24.6 msec, even though this 

region appears deceivingly linear in a semilog plot. T1, meanwhile, decreases from 

9. 7 to 2.3 msec, changing the estimate of L from 2.2 to 1.0 A. While the estimate 

of To is still reasonably accurate, the estimates of T1 and L change by factors of 4 

and 2, respectively. Fig. 5.3( c) shows how 3-point fits2 will give different values of 

To as t increases. Thus, time constants might often be larger than estimated in the 

literature. 

Another problem is posed by the presence of active conductances. Many cell 

membranes, such as the squid giant axon originally studied by Hodgkin and Huxley 

[Hodgkin and Huxley, 1952] have a linear region of membrane voltage where a passive 

analysis is valid. Our model cell does not have such a linear region, except for 

unphysiological values of Vm, such as above -10 mV and below -110 mV. Sample 

step responses are given in Fig. 5.4. At rest (Fig. 5.4(a)), the response overshoots 

and sags, indicative of a phenomenological inductance. The tail displays "ringing/' 

that is, the response is a damped oscillation that crosses zero repeatedly, and hence 

cannot be fitted by a single exponential. 3-point fits are shown in Fig. 5.3( d) for 

different background activations. In these curves, T m never levels out to a constant 

2 A 3-point fit uses only three consecutive data points to fit a line to the semilog plot. While this 
is straightforward in a noise-free simulation, it will rarely be practical for experimentally recorded 
traces. 
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Figure 5.4: Sample current step responses. (a) Standard model (fb=0.5 Hz). (b) 
Standard model without active conductances. (c) Standard model, depolarized to 
-60 mV. (d) Standard model, depolarized to -55 mV. Note different time scales. 



Tau,m 
(msec) 

10 

A Passive neuron 

10 

120 

B St andard mode l 
100.-----.-----r-----.-----,-----, 

Tau,m 
(msec) 

10 

10 

Fb (Hz) Fb (Hz) 
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model. Top to bottom: To,/ate, Tstep, TRmC.,., ;~,peak' T~.ss ~ 

value, but decreases to zero and goes negative. As an estimate of To (defined below) 

in this active case, we chose the maximum value for the 3-point fit . As was seen in the 

passive case, this is likely to be an underestimate, but will have to serve as a working 

definition. For some depolarized values of Vm, the response was non-inductive, as in 

Fig. 5.4( c,d). The latter part of these curves are fitted by very slow exponentials on 

the order of 1 sec. This effect disappears when the A current, !A, is removed. 

5 definitions of Tm 

We now proceed to define five different measures of the time constant. For a leaky 

integrator, that is , a single passive R-C compartment, all measures give the same 

value, but they will be shown to vary for extended and active structures. 
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Impulse response Step response 

Figure 5.6: Five definitions of 'Tm· See text for details. 

• rs. Impulse response: fit exponential to tail. 

• 'Tstep · Step response: fit exponential to tail. 

• 'T!. peak Step response: time at which V( t) has reached (1-!.) of the peak response. 
e' e 

• 'T~,ss· Step response: time at which V( t) has reached (1 - ~) of the steady state 

response. 

• 'TJ4nCm · The average value of the product Rm,eff · Cm throughout the cell, 

weighted by area. (Rm,eff includes a contribution from the average synaptic 

activation.) 

These measures are all illustrated in Fig. 5.6. 

For a passive, lumped cell model both the impulse response and the step response 

will give a single exponential, which reaches (1 - ~) of its final value after one time 

constant of decay. All five measures will be identical. 
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Figure 5.7: Effect of NMDA on T 0 as a function of (a) Vm, and (b) fb· When NMDA 
synapses were used, they were substituted for half of the AMPA synapses. 

For a passive, extended structure with uniform Rm, the initial decay will be faster, 

involving smaller time constants (T1, T 2 , etc.). The tail of the impulse and step 

responses will still equal TRmCm, but T~,peak and T~,ss will give smaller values, since 

the (1- ~)point will be approached faster. Further, if Rm,eff is not uniform throughout 

the cell, TRmCm may be different from T 0 and Tstep· 

When active (non-linear) conductances are introduced and linearized, they give 

rise to phenomenological capacitances and inductances [Mauro et al., 1970, Koch, 1984]. 

A capacitance will tend to slow down the response of the cell, while an inductance will 

speed it up and cause an overshoot and sag in the step response. This is commonly 

seen in neurons [Mason and Larkman, 1990, e.g.]. When the response overshoots, 

T!. eak and T!. u will obviously differ, the former always being larger than the latter. 
e ,p e' 

Fig. 5.5(a) compares the different measures of Tm for a passive neuron that receives 

a background synaptic activity that varies from 0 to 10 Hz (x axis). The top two 
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curves are almost indistinguishable and correspond to Tstep and a fit to the late part of 

r s . Below is a fit to the early part of rs, giving smaller values for the time constant due 

to contamination of higher time constants, as discussed above. TR.nc= gives smaller 

values than Ts and Tatep, except for the case f b = 0 Hz, when Rm,eff = Rm is uniform. 

For all non-zero values of fb, the effective membrane resistance varies from branch 

to branch and the average Rm,eff • Cm underestimates Ts. This seems to be true for 

any non-uniform membrane, whether the proximal membrane has a larger Rm than 

the distal membrane or vice versa. Finally, r~ ,peak and r~,ss give smaller values still. 

This is especially true when the electrotonic length, L , increases (large !b), since the 

amplitude of the second exponential, C1 , becomes larger relative to C0 and the 1-1/ e 

is approached more rapidly. 

Fig. 5.5(b) similarly compares the 5 different measures of r m for the standard 

model with an active soma. The same ordering is found , except that rs is somewhat 

larger than Tstep and T~,peak is larger than T~,ss due to the inductive overshoot. Also, 

the ratio of any two measures varies little with fb· For example, the largest measure, 

r6 , consistently yields an estimate that is approximately 6 times larger than the 

smallest measure T!. ss· 
e' 

Dependence of Tm on Vm and NMDA 

As was shown above, different measures of T m can vary by a factor 6 or more. The 

two extremes were T!. ss> which measures how fast the (1 - 1/e) point of the steady 
e' 

state step response is reached, and r s, which fits an exponential to the tail of the 

impulse response. While the former measures the reaction speed to a sudden change, 

the latter indicates how long information is retained. Since r s therefore is a more 

appropriate measure for studying temporal synaptic integration, it will be the default 

measure used below. 

Fig. 5.7(a) shows the variation of Tm (alias r s) with membrane voltage. The passive 
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case is not shown, since T m will not depend on voltage. When half of the AMP A 

synapses are replaced by NMDA synapses, Tm is consistently larger. At hyperpolarized 

potentials, where non-linear effects are small, this is due to the voltage-dependent 

block of NMDA synapses, effectively reducing Rm,eff · Cm. At depolarized potentials, 

Rm,eff · Cm is approximately equal for the two cases, but T m is still larger due to the 

non-linear nature of the NMDA conductance. The total variation is small, however, 

at most 25%. 

Fig. 5.7(b) shows the variation of Tm with background frequency. For a passive 

cell the time constant will equal Rm · Cm = 100 msec at fb=O Hz (Rm uniform). It 

drops to 30 msec at fb=0.5 Hz (standard model) and keeps dropping to 4.1 m sec 

at fb=10 Hz. For the active cell, Tm drops from 33.7 to 14.7 to 1.6 msec. Again, 

the NMDA curve gives values that are up to 50% larger. While the variation with 

Vm was rather small, the variation with fb is on the order of 20-25 times over the 

range studied. In cat visual cortex the spontaneous range is usually smaller, less 

than 2.5 Hz [Leventhal and Hirsch, 1978], but in other areas, such as motor cortex, 

spontaneous firing rates of 10 Hz are common [Woody et al., 1984). 

To conclude, different definitions of the membrane time constant, T m, will give the 

same value for a compact passive cell, but will differ up to 10-fold when an extended , 

active cable structure is considered. Throughout the remainder of this thesis, Ts, that 

is an exponential fit to the impulse response, will be taken as the definition of Tm . 

Since the (3-point) fit varies with time, the largest value before the first zero-crossing 

was used (Fig. 5.3( d)). 

5.3 Results 

5.3.1 Basic effect on Rin' Tm, L, and Vrest 
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Figure 5.8: Effect of fb on (a) somatic input resistance, (b) membrane time constant, 
(c) electrotonic distance from soma to a distal site, and (d) somatic resting potential. 
The single cable approximates the full cell as described in the text. The passive 
neuron is identical to the active neuron, except that all active conductances have 
been removed from the soma. 
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The basic effect of varymg background activity can be studied analytically in a 

very simplified model. The neuron was approximated using a single passive ca-

ble with length l 3060 {Lm and diameter d 5. 7852 ftm. These dimen-

sions preserve membrane area and input resistance (for the passive case) in the ab-

sence of background activity. The length constant of this cable is >. = d·Rm,eff 
4·R; 

where the effective membrane resistance includes a component from the synapses, 

1/ Rm,eff = 1/ Rm + 1/ Rm,syn· The resulting electrotonic length is: 

l 
L = >:· 

According to Rall [Rall, 1989], the input resistance at one end of this cable will be: 

R;n = Rm,eff 
1rd.A coth L · 

The time constant was calculated as the product of the effective membrane resistance 

and capacitance: 

and the resting potential was the weighted average of the reversal potentials of the 

passive leak and the synapses 

v. _ GmErev + Gm,synEsyn 
rest - G G 

m + m,syn 

Asymptotic expressions for large /b are easily obtained by setting Gm=O or, equiva­

lently, setting Rm,eff= Rm,syn= 1/Gm,syn· 

These four parameters all depend monotonically on the background activity via 

Gm,syn or Rm,eff· The basic results are shown in Fig. 5.8 (bold solid lines marked "single 

cable"). As the background activity varies from 0 to 10 Hz, the input resistance 
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decreases from 193 to 12.1 Mn, clearly demonstrating that synaptic conductance 

tends to dominate for moderate and high background activation rates. Similarly, the 

time constant decreases from 100 to 2 msec. Both Rin and Tm have asymptotes that 

depend inversely on fb· The electrotonic length of the cable increases from 0.47 to 

3.3 A with an asymptotic square root relationship for large fb· The resting potential 

at fb=O Hz is identical to the leak potential, -66 m V, and approaches asymptotically 

the average synaptic potential of -54 m V. 

This simple cable model captures most of the essential characteristic of the effects 

of increasing fb· When replacing the cable with the full morphology of a pyramidal 

cell, and then adding active conductances, the same qualitative behavior is retained 

for the most part as will be discussed next. 

Fig. 5.8 also shows the case of a passive cell with full morphology (thin dashed 

curves marked "passive neuron"). The cable model was constructed to mimic the 

passive cell at fb=O Hz as is evident in the graphs. However, for larger values of fb 

the curves deviate. This can largerly be explained by the inhomogeneous distribution 

of synaptic inputs. Inhibitory synapses are concentrated in proximal regions and 

therefore the effective membrane resistance, Rrn,eff, is smaller close to the soma. This 

causes the somatic input resistance to decrease faster than for the cable model. As 

for the time constant, it may at first seem logical that the same effect should be 

noted since Rrn,effCm is smaller in the vicinity of the soma. However, the opposite 

effect is seen: the measured time constant is larger than for the homogeneous cable 

model. The best explanation for this phenomenon is that even though distal portions 

of the membrane are far from the soma, they still make a small contribution to the 

exponential tail. Since Rrn,effCm is larger than the average for this distal contribution, 

a larger time constant is observed. L was calculated by summing up the electrotonic 

lengths of all cylinder segments between the soma and a location in the apical tuft 

in layer 1 that had a distance of 0.47 A at fb=O Hz. Because most of these segments 



128 

are far from the soma and hence receive a less dense innervation than the average for 

the cell, L increases more slowly than for the cable. If we had chosen a basal location 

(none were at a distance of 0.47 >.), L would have increased faster than for a cable. 

Finally, the resting potential is more hyperpolarized than a cable for large fb· This is 

due to the screening effect discussed in chapter 3: inhibitory innervation dominates 

close to the soma. 

The full model with an active soma is shown in thin unbroken lines marked "active 

neuron." The total contribution of the active somatic conductance is positive and re­

duces the input resistance most markedly at small fb· The effect on the time constant 

is likewise to reduce it. Electrotonic distance L is not affected since no conductances 

were added to the dendritic tree. The resting potential is further hyperpolarized , but 

does not display a "peak" in this interval, in contrast to the passive case. However, 

for very large values of !b the potential declines to an asymptotic value of -70.9 m V 

(not shown in graph) . 

5.3.2 Control of spatial integration 

That background activity can strongly effect spatial integration was pointed out in 

chapter 3 where efficacy measures were discussed. In the previous section, R in and L 

were the parameters indicative of spatial integration. Two more examples of how the 

electrotonic structure changes with !b are given in Fig. 5.9. 

The first illustration uses the morpho-electric transform visualization technique 

pioneered by Zador et al. [Zador et al., 1991 , Zador, 1993]. Each branch is "stretched" 

or "shrunk" so that its physical length is proportional to its electrotonic length, L. 

The small neuron on the left corresponds to the case when no background activity is 

present. Note the short length of the dendritic trunk (which has a large diameter) and 

the relatively long apical dendrites (many of which have diameters of about 0.35 J.Lm ). 
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A B 

50 100 150 200 250 

t !rnsecl 
Figure 5.9: Spatial integration. (a) Morphoelectric transform at background frequen­
cies fb= 0 (compact cell) and 2 Hz (large cell). (b) Attenuation of EPSPs. Synapses 
were activated at three locations: soma, basal dendrite, and apical dendrite. For each 
location, there were three different levels of background activity. 
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The most distal location is about 1.2 >. from the soma. As fb is increased to 2 Hz, 

the cell stretches and becomes much less compact. The most distal location is now 

2.6 >. from the soma. Note that the basal dendrites tend to stretch more than their 

apical counterparts due to the more dense innervation in the basal region. 

A second illustration is the attenuation of EPSPs with increasing Jb(Fig. 5.9(b) ). 

A synapse was activated at three different locations: the soma, a basal dendrite, and 

an apical dendrite (leftmost three superposed curves) and the potential recorded in 

the soma. The basal EPSP is only slightly smaller than the somatic one at fb=O Hz, 

while the apical EPSP is strongly reduced in amplitude, but has a much larger half­

width. As fb increases to 0.5 and 5 Hz, the amplitude of somatic and basal EPSPs 

decrease by a factor 2-3. The amplitude of the distal apical EPSP decreases much 

more dramatically; for fb=5 Hz, almost no deviation from baseline is seen. Also note 

that the time course is sped up, as witnessed by the smaller half-widths. 

5.3.3 Control of temporal integration 

In section 5.3.1 the membrane time constant, Tm, was used to demonstrate how tem­

poral integration can be controlled. Chapter 3 also showed how different measures of 

synaptic delay were affected by background activity. Two more examples are given 

in this section. 

A single burst of excitatory synaptic inputs were activated throughout the cell. 

The activation was either simultaneous or distributed over a 25 msec time interval, 

T, analogous to the case studied in chapter 4. For each value of fb, the minimum 

number of cells required to fire one action potential, Nt, was found by simulation and 

graphed in Fig. 5.10(a). For simultaneously activated inputs (T = 0 Hz), Nt varies 

only by about a factor 2 (from 115 to 260) as fb varies from 0 to 7Hz. For temporally 

desynchronized inputs, however, Nt varies more than 6-fold (from 145 to 917). The 
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Figure 5.10: Background activity changes the tuning for synchronicity. (a) N 
synapses were activated throughout the cell in addition to a variable background 
firing rate. TheN synapses were either fired simultaneously (thin line) or spread out 
over a 25 msec interval, T (bold line). The minimum number of synapses needed to 
fire a single action potential is plotted on the y axis. (b) N = 150 synapses were 
activated at 40 Hz for 8 cycles. In one case all synapses were perfectly synchronized 
(thin line), while in the other case they were distributed over a 25 msec interval (bold 
line) . 
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neuron therefore changes from being only marginally selective for synchronization for 

small ]b to being highly selective for large fb· ]b can be viewed as a control signal 

determining the tuning. 

A second example is shown in Fig. 5.10(b). N=150 excitatory synapses were acti­

vated at 40Hz for 8 cycles. The inputs were either perfectly correlated (T = 0 msec) 

or dispersed throughout a 25 msec interval, resulting in a uniform temporal distri­

bution. In the former case, seven out of eight cycles resulted in an action potential, 

while in the latter case only one spike was fired towards the end of the eight cycles. 

If the desynchronization interval was half a period (T = 12.5 msec), two spikes were 

generated (not shown). 

5.3.4 Effect of NMDA on input resistance 

In general, if a passive synaptic conductance is opened, such as AMPA or GABAA 

or GABAB, the input resistance decreases.3 However , if the (synaptic) conductance 

itself is voltage dependent, it may end up decreasing the input resistance. This can 

easily be shown analytically. Consider a simplified version of the case in section 5.2.1 

with only one voltage-dependent conductance G(V). 

I= G(V) · (V- Erev) 

dl dG 
Gin = dV = G(V) + dV · (V- Erev) 

Gin is a sum of the steady state conductance and a correction term. This correction 

term will be negative if 

3Jt is of course possible that the synapses forces the potential into a region where active conduc­
tances more than compensate for the increased synaptic conductance. 
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10 

Figure 5.11: NMDA reduces input resistance. (a) Sample trac~ of voltage response 
to somatically injected current pulse. At t 500 msec, NMDA synapses were 
activated in addition to the background activity of AMPA. 0.05 nA current pulses 
were injected at t = 250 msec and t = 750 msec. Note that when measuring R;n, 
longer current pulses were used to ensure convergence to a steady state asymptote. 
(b) Input resistance as a function of background activity. The standard case (from 
Fig. 5.8( a)) is shown in bold . The x axis gives the activity of AMPA synapses, as 
in previous graphs, while the curve labels give the ratio fNMDA/ fAMPA · There were 
4,000 synapses of both the AMPA and NMDA types. For fNMDA/ !AMPA = 0.55 (top 
curve, broken) the cell spiked for 2 ~ fb ::::; 5 Hz and the input resistance was not 
measured for that range. 
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sign(~~)· sign(V- Erev) 

is negative. The correction term will be negative for an activating current ( dG j dV > 

0) with a reversal potential above Vm, such as a sodium or calcium current, or for an 

in-activating current with a reversal potential below Vm, such as certain potassium­

dependent anomalous rectifiers. If the correction term is negative and, in addition, 

of larger magnitude than the steady state term, G(V), the contribution of that con­

ductance to the input conductance will be negative. For NMDA, as modeled in our 

cell, this occurs at potentials negative to about -27 m V. 

Fig. 5.11(a) demonstrates how the cell was stimulated with a small (-0.05 nA) 

current pulse (first bump) when ]b=2 Hz. Next, 4,000 NMDA synapses were added 

at an input rate of fNMDA = 0.8 Hz. When the current step was re-applied, the 

resulting voltage deflection was approximately twice as large. This was partially due 

to the negative input resistance of NMDA and partially to the drift in membrane 

potential, which opens and closes somatic active conductances. 

Fig. 5.11(b) repeats the simulation described in the previous paragraph for many 

values of ]b and fNMDA· The bottom curve is for ]NMDA = 0 Hz and is identical 

to the bottom curve in Fig. 5.8(a). As ]NMDA is increased, the input resistance is 

dramatically increased over a large range of background frequencies, often doubling 

or even tripling. 

NMDA can therefore have the paradoxical effect of increasing Rin, even though, 

on a biophysical level, more channels have opened. 
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5.4 Discussion 

The main contribution of this chapter is to show that the total synaptic conductance 

of background firing can have a dramatic impact on spatia-temporal integration. 

The effective membrane conductance has two passive components, Gm,eff = H!:-:; = 
m,eff 

Gm + Gm,syn and the two key assumptions are that Gm = 1/ Rm is much smaller than 

previously thought and that the number of synapses onto a single cell is so large that 

even at a low spontaneous firing rate, synapses cannot be approximated with current 

sources. We demonstrated the basic effect of how R;n and T m will vary more than 

10-fold and L more than 4-fold over a physiologically plausible range of fb= 0-10 H z . 

Experimentally recorded values of fb in primary visual cortex vary between 0.3 

and 2.5 Hz [Leventhal and Hirsch, 1978]. There is also a gradient found in that su­

perficial layers displayed lower fb than middle and deep layers. Larger values of Jb, on 

the order of 5-10Hz have been measured in extra-striate areas such as cat motor cor-

tex [Woody et al., 1984], rat sensory-motor cortex [Bindman and Prince, 1983], and 

auditory cortex in cat, rhesus monkey, and baboon [Abeles, 1982]. We found no data 

that separates the background activity into excitatory and inhibitory components, 

and so the components were assumed to be equal: !b,e = !b,i = fb · 

To our knowledge, no experiment has been made where the background activity 

IS varied as an experimental parameter. However, background activity is typically 

absent in slice preparations, corresponding to fb= 0 Hz. Since the largest effect is 

seen for fb< 2Hz, it is worthwhile to compare in vivo and in vitro experiments. 

One study directly compares rat sensory-motor cortex in vivo and in vitro [Bind­

man et al., 1988]. R;n was found to be about twice as large in slice (35.9 vs. 18.4 Mf2) 

while the time constant was 40% larger (9.4 vs. 6.8 msec) . While this supports our 

results, the difference is not as large as expected. Note however that the investigators 

used sharp electrodes, which are believed to cause a significant leak due to impale-
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ment injury. For example, the perforated patch-clamp introduces a minimal leak and 

gives values of R;n and Tm that are 3- 10 and 2-4 times larger than other studies 

[Spruston and Johnston, 1992]. A significant leak will have the effect of reducing the 

percentage difference between slice and in vivo. 

The resting potential differs significantly between slice and in vivo preparations. 

In four studies, the reported values of Vrest in vivo fall in the range -81 --57 m V, with 

an average of -64.5 m V [Bindman and Prince, 1983, Bindman et al., 1988, Holmes 

and Woody, 1989, Pockberger, 1991]. Eight studies in vitro give a range of -84 -

-67 m V, with an average of -74 m V [Bindman et al., 1988, Thomson et al., 1988, 

Mason and Larkman, 1990, Spain et al., 1990, Hirsch and Gilbert, 1991, Mason et 

al., 1991]. 

The results are not strongly dependent on the exact details of the model; this 

is in part evidenced by the fact that the three models (single cable, passive neuron, 

active neuron) all yield very similar results with only minor variations. Since the 

time-averaged conductance of a synaptic type is proportional to the product of Gmax, 

tpeak, and the number of synapses, an error in the estimation of either of these three 

parameters will only have the effect of scaling the curves in Fig. 5.8 along the x 

axis. If the relative contributions of excitation vs. inhibition varies, the only curve to 

be seriously affected is Vrest· When excitation was doubled (by doubling any of the 

parameters), the cell would spike for fb in the range 1.1-6 Hz. However, for values 

of fb outside this range, Vrest displayed the same tendency to decrease for very large 

and very small firing rates. 

Examples were given above of potential uses for this dynamic control over integra­

tion properties. By changing L, distal EPSPs can be differentially more attenuated 

than proximal ones and the width of a Mexican-hat receptive field can be controlled 

(chapter 3). By changing Tm, the sensitivity to synchronization can be varied. It 

is likely that the tuning of direction- and stereo-selective cells can be changed in a 
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similar manner, though this has not yet been investigated. 

Also note that the change in R;n and Tm embodies two forms of automatic gain 

control. First, if a low-contrast stimulus gives a weak input, it is desirable to integrate 

over a longer time to improve the signal-to-noise ratio (SNR); the model predicts that 

a weaker input will give rise to a larger time constant. Second, when input rates are 

high, the noise variance is likely to be high (proportional to the square root of the input 

rate) . By reducing the input resistance, each input will give a smaller contribution 

and thus reduce the absolute noise variance. 

The overall background activity, Jb, is a very simple and unsophisticated control 

signal. While simplicity has many advantages, more complex and selective control 

signals could implement more sophisticated control mechanisms. A first step would 

be to differentially control the amount of background excitation and inhibition, which 

could, for example, keep Vrest constant, while varying R;n and Tm or vice versa. The 

extreme case of highly selective control would be to gate inputs locally on dendrites, 

an approach that is likely to allow the neuron to switch between arbitrary response 

profiles. 

In the next chapter we will investigate somewhat more complex control signals 

that allow for precise control of the gain of apical inputs. 
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Chapter 6 

Control of Apical Synaptic Input 

6.1 Introduction 

This chapter deals with the effect exerted on layer V pyramidal neurons by their 

apical tufts-the distal part of the apical dendrite located in layers I-III. The apical 

tuft comprises about 25% of the dendritic membrane area in deep-layer neocortical 

pyramidal cells and receives a correspondingly large number of inputs. Dendrites 

in these layers are the targets for numerous projections, in particular non-specific 

projections from the thalamus as well as backward projections from other cortical 

areas. The latter ones appear to follow principle of reciprocity [Zeki and Shipp, 1988, 

Felleman and Van Essen, 1991]: if cortical area A sends a projection to cortical area 

B, another projection originates in B and returns to A. The forward projection ter­

minates most heavily in layer IV (and to some extent layer III), while the backward 

connections avoid middle layers and terminate most heavily in layer I and II. In the 

case of the feedback projection from V2 to V1 in monkey, Rockland and Virga [1989] 

trace single fibers that run horizontally within layer I over 1-4 mm. In the primary 

somatosensory cortex of rats, Cauller and Connors [1993] find that many of the back-
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ward projections course over many millimeters within layer I. Given the importance 

that feedback projections have in many theoretical models of brain function [see the 

articles in Koch and Davis, 1994], it is important to study the biophysical properties 

of superficial input to single pyramidal cells. 

From the point of view of electrotonic length, the apical tuft is far removed from 

the cell body; in the absence of stimulation (slice preparation) , the tuft is about 0.5 >. 

from the soma, while for in vivo conditions the distance increases to 1- 2 >. due to 

the additional synaptic input (see chapter 5). In addition, the axial resistance of 

the apical trunk severely limits the current that can be delivered to the soma. In 

our model, in the absence of any voltage-dependent membrane conductances in the 

apical tree, synapses in all three superficial layers jointly can only deliver ~ 0.65 nA 

of current to the soma. Yet Cauller and Connors [1992] showed that synaptic input 

onto layer I dendrites of layer IV and V pyramidal cells in somatosensory cortical slice 

can evoke action potentials. Cauller and Connors show that complete depolarization 

of the distal apical dendrites of a passive compartmental model of such a pyramidal 

cell will lead to EPSPs no larger than 2 m V. On the strength of this discrepancy 

between experimental evidence for a powerful layer I input yet weak effect in a passive 

model, they and others [Spencer and Kandel, 1961, Amitai et al., 1993, De Schutter 

and Bower, 1993] argue for the existence of active currents in the apical tree able to 

amplify the synaptic input. 

The aim of our theoretical investigation is to study at the single neuron, compart­

mental model level t he need for voltage-dependent K+ and Ca2+ conductances in the 

dendrites and their required properties. In particular, we examine the properties of a 

K+ conductance that linearizes the response to apical input, counteracts saturation, 

and extends the operating range of the input as well as a Ca2+conductance that am­

plifies dendritic input, in a more graded manner. Our approach allows us to "design" 

specific conductances in a controlled manner, helping us to understand their function 
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Figure 6.1: Input regions of layer V cell. Layers I-V are marked in alternating 
black and grey. The superficial layers I- III make up 26% of the membrane area, layer 
IV makes up 10%, and layer V, 62% (see Table 2.1 for morphological data) . The 
boundaries between superficial layers are not exact, but are rough estimates and were 
chosen at branch points; a few basal dendrites may reach into layer VI. Axon not 
shown. 
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within the overall context of dendritic information processing. 

We only investigate steady state conditions, including the dynamic steady state 

that occurs when the cell spikes, but the firing rate has adapted. Further, the con­

ductances that we derive have no inactivation kinetics. This is in contrast to the 

slow spikes that have been observed in intradendritic recordings (see Discussion), 

but is consistent with the presence of NMDA in the apical trunk, for which there is 

some evidence [Cauller and Connors, 1993], or the presence of a persistent sodium 

conductance. 

6.2 Results 

Fig. 6.2A shows the conventional f-I curve for the first eight inter-spike-intervals 

(ISis). This is the same set of curves that was shown in chapter 2; it is repeated 

because many of the results below center around the f-I relationship. A current step 

of constant amplitude I was injected into the soma and the inverse of the first , second 

and so on interspike intervals are plotted. Rheobase (the sustained threshold current 

to initiate spikes) is 0.3 nA and the primary slope of the first lSI, between 0.3 and 

0.6 nA, is about 50 H z/nA. The shallow slope of this early portion of the curve 

becomes much steeper if the A current is removed. The f-I curve associated with 

adapted spike-trains (bold trace) is relative linear, with a slope of 55 HzjnA. 

The details of the f- I curve are strongly dependent on the density and kinetics of 

the spike-generating and adapting currents. For instance, increasing the d ensity of 

IM smoothly increases the sustained current necessary to initiate spiking (rheobase), 

moving the f-I curve to the right, without any change in its slope, while increasing 

the density of IAHP reduces the slope of the adapted portion of the f-I curve with no 

effect on the threshold current (see below and figure 6.4B,C) . 

Fig. 6.2B describes the net effect of all currents involved in expressing and control-
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ling somatic spiking. We injected a sustained current of fixed amplitude into the soma 

and computed the average membrane potential after adaptation was complete. This 

average includes action potentials, sampled every time step, dt. What is remarkable 

is that once the firing threshold is reached at about 0.3 nA, the averaged somatic 

membrane potential increases by only about 10 m V as the adapted firing frequency 

increases over its full range from 0 to about 95 Hz. The slope of this curve can 

be interpreted as a "dynamic" input resistance, Rin,dyn = dV / dl. Near the origin, 

Rin,dyn ~ 23 MD, which is close to the value of the somatic input resistance, but above 

firing threshold it decreases by a factor 8 to 3 MD over the expected operating range 

of input currents, I S 3nA. The inverse of R;n,dyn can be considered to be a total 

conductance that increases with increasing steady-state membrane potential levels. 

The spike mechanism thus resembles a voltage-gated hyperpolarizing conductance 

that is able to shunt large input currents and thereby stabilize the somatic voltage, 

similar to an imperfect voltage clamp. 

Due to the low-pass filtering of the dendritic membrane, the high-frequency voltage 

components associated with the rapid up- and down-stroke of the somatic action 

potential are prevented from propagating antidromically very far into the dendritic 

arbor. Therefore, the time-averaged somatic potential shown in Fig. 6.2B is closer to 

the voltage "seen" at distal sites away from the soma than Vsoma(t) itself. 

6.2.1 Passive shunting of apical inputs 

We will begin by studying how the already small contribution from apical layers 

can be shunted by passive conductances. Non-voltage dependent synaptic inputs are 

conductance changes that will lower the effective Rm and increase the electrotonic 

length of cable segments and therefore attenuate propagating signals [Abbott, 1991 , 

see also chapters 3 and 5]. This is demonstrated in figure 6.3(a). A brief current pulse 
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Figure 6.2: Characteristics of the spike-generating mechanism. A: f- I curve 
for the first 8 inter-stimulus intervals (ISis) . Bold line (bottom curve) is the adapted 
f-I curve. B: The average somatic potential in response to somatic current injection. 
The cell spiked for !clamp > 0.3 nA and the average includes the brief excursions of 
the potential to above 0 m V during action potentials. Wiggles are due to sampling 
error. 

(100 pA, 1 msec) was injected at the distal end of the apical trunk, the juncture of 

layers 3 and 4. The resulting EPSC (during voltage clamp) was measured at the 

soma. When the trunk received no excitatory input, the EPSC peaked at 22 pA. As 

all 463 excitatory synapses on the trunk were activated at 10, 20, 40, and 100 H z, 

the amplitude decreased to 20, 17, 14, and 8 pA. In addition, the width decreased, 

and so the EPSC area is reduced even more with !trunk· A current injection was 

chosen rather than activation of a synapse in order t o avoid the confoun ding effect s 

of saturation; the injected current and the resulting EPSCs will be independent of 

the reversal potential of the layer 4 synapses. 

P aradoxically, layer 4 input can under certain circumstances facilitate apical input. 

Figure 6.3B shows the output spike rate, ! out , as a function of the input rate, !apical, 

of 500 synapses in layers 1- 3. To simplify the investigation, lea was removed and the 

cell did not adapt but spiked at a constant frequency. The lowest curve represents the 
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case when the trunk receives no additional input and !out levels out at about 5 H z . 

The I-f curve in figure 6.2A gives that this corresponds to about 0.45 nA. When the 

trunk receives an input !trunk = 20 Hz (middle curve), the firing rate varies from 9 

to 60Hz, a swing of 51 Hz. According to the f-I curve, this is a swing from 0.5 to 

0. 75 nA. Even though the extra current delivered by layers 1- 3 is only 0.25 nA, about 

half as much as before, the neuron is now biased to operate on a much steeper part 

of the f-I curve, where the slope is about 250 H zjnA. If !trunk is further increased to 

40 or 100 Hz, the swing again decreases since the cell moves to a less steep part of 

the f-I curve in addition to the attenuation growing stronger. 

In order to move the cell response onto the steep part of the f-I curve, the neuron 

was biased with an excitatory background activation of 1. 7 Hz. This excitation 

caused the cell to spike at 11 Hz, and the paradoxical facilitation no longer occurred. 

The experiment in figure 6.3B was repeated in figure 6.3(C, 4 upper curves) with 

the addition of the excitatory bias. As layer 4 is stimulated, the cell response increases, 

but the impact of layers 1- 3 decreases, as is witnessed by !out changing less with fin· 

The paradoxical initial increase in apical efficacy is no longer present, due to the bias. 

Figure 6.3(D, top 2 curves) shows a cut of 6.3C at !apical = 100 Hz, with !trunk 

on the x axis. For comparison, all 2362 basal synapses were activated at 1.24 H z , 

resulting in the same !out = 11 Hz in the absence of layer 4 input. This response 

is somewhat larger than for apical input, suggesting screening of apical inputs, even 

though layer 4 excitation dominates. 

To remove the confounding effects of excitation, inhibition was added to the apical 

trunk at approximately twice the excitatory frequency so as to keep the neuron spiking 

at a biased rate of 11 H z in the absence of apical input. The combined effect of 

excitation and inhibition is that of on-the-path shunting inhibition [Koch et al., 1982]. 

The result is shown in figure 6.3( 4 lower curves); the order of the curves (top to 

bottom) is reversed as compared to case of excitatory input only, and the shunting 
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clamp) in response to brief current pulses injected at the distal end of t he apical trunk. 
As 463 excitatory synapses on the trunk are activated, EPSC amplitude and duration 
are reduced. B: !out = fnc(fin) for various levels of excitatory input to the apical 
trunk. Even though fin reduces the current contribution, a paradoxical facilitation is 
seen, because the layer IV input biases the cell to a steep portion of the f-1 curve. C: 
Similar to B, but the cell was biased to spike at 10 Hz by a diffuse excitatory input. 
This removes paradoxical facilitation. Layer IV received either excitation alone (top 
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except layer IV activity is shown on the ordinate. For comparison, two curves are 
shown when layer V synapses were stimulated instead of layer I- III synapses. IAHP 

was removed for all f-I curves in this figure, and so the cell did not adapt. 
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effect shows up clearly. In figure 6.3( C, lower 2 curves) it is shown that layer 5 input 

is virtually undisturbed by the layer 4 input while apical input is strongly reduced. 

6.2.2 A new measure of synaptic efficacy 

As will become apparent momentarily, we seek to study the input-output relationship 

of pyramidal cells, in particular for input to the distal parts of the apical tree. To 

this purpose, we introduce a new measure of synaptic efficiency that emphasizes the 

current flow in response to synaptic input and downplays the role of the membrane 

voltage in controlling the output of the cell. 

The key idea is that the contribution by a group of synapses can be best char­

acterized in terms of the current lsyn,s that they deliver to the soma rather than by 

more conventionally defined measures of synaptic efficacy such as electrotonic dis­

tance or voltage attenuation all of which have serious drawbacks (see chapter 3). In 

particular, almost none of these measures take into consideration synaptic conduc­

tance changes, voltage saturation, active conductances in the dendrites as well as 

the spike-generating mechanism at the soma. lsyn,s combines the effects of dendritic 

parameters, such as the synaptic conductance change, attenuation, saturation, and 

active dendritic conductances, into a single measure that directly translates an input 

firing frequency into a current flowing into the soma. Assuming steady-state condi­

tions, this somatic current in response to synaptic input can then be converted into 

a firing rate using the measured f-1 curve (Fig. 6.4A). The f-1 curve is a function of 

somatic parameters, such as R;n and active somatic conductances. In other words, 

we have 

(6.1) 

We measure the total synaptic current at the soma generated by groups of synapses 

located in various regions of the dendritic tree. A population of excitatory, AMPA 
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synapses in, say, layer I, were activated at a particular input rate fin using the time­

averaged technique expressed in eq. 2.2. In order to derive a measure of lsyn,s in­

dependent of spiking activity, the somatic potential was clamped to - 50 m V, the 

average somatic potential for moderate inputs (Figs. 6.2D and 6.4). Clamping the 

soma to this potential corresponds to a sustained output firing frequency of 55 H z . 

Two methods were used to measure the somatic current, I syn,s. The first method 

records the current flowing from the apical tree via the axial resistance into the soma. 

The second method measures the clamp current required to hold the somatic poten­

tial at -50 m V for a fixed synaptic input minus the clamp current needed to hold 

the soma at -50 m V in the absence of any synaptic input. The second method has 

been used to experimentally measure Isyn,s in a motoneurons [Powers et al., 1992). 

In our simulations, the two methods gave almost identical values for lsyn,s· 

Isyn,s as a function of presynaptic firing rates f;n, evoked by various groups of 

synapses, is shown in Fig. 6.4B. 500 excitatory synapses, spatially distributed ac­

cording to eq. 2.1 were activated in one of the following regions: the soma, layer 

V (excluding the soma, but including apical obliques), layer IV (the apical trunk), 

and layers I-III. When the entire input was concentrated at the cell body (an un­

physiological situation), l syn,s was linear in fin up to very high input rates due to the 

relative low somatic input resistance. An input rate of 100 Hz delivered an unphys­

iologically high amount of current (> 5 nA). A similar result is obtained when the 

500 synapses were distributed throughout layer V, that is, within the basal dendrites. 

Saturation becomes evident when the synaptic input is distributed along the layer IV 

portion of the apical tree and becomes severe for inputs in the superficial layers, even 

when input rates are low. In this case, lsyn,s is always less than 0.65 nA, even when 

all 500 synapses are activated every 2 msec. This saturation is caused by the high 

input resistance in the distal dendrite which drives the membrane potential towards 

the synaptic reversal potential (the most distal unitary EPSPs have local amplitudes 



(Hz) 

... 
:f_out •o 

(Hz) 

148 

A 

;,j c-=. 
f_:ln (HZ) 

;.J ~ _k_ ~ V~-----
I ( n.A) J:"_.:t..n (Hz) 

B f-I curve: modula tion by I _ M Cu rrent delivered to soma 

Laye r IV 

(nAJ 

Layers I- I I I 

Cl amp curren~ (nA ) ! _ in (H z ) 

curve: modulat i on by I_AHP E Detail of D 

Clamp current (nAJ f _ in ( H Z) 

Figure 6.4: Current delivery as a measure of efficacy. A: Schematic demon­
strating the composite function f ov.tUin) = f ov.t(Isyn,sUin) · The intermediate value 
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parameters, while the inner function, I(J;n) is a function of d endritic parameters . 
B: The M current shifts the f-I curve. The (adapted) f-I curve for the standard cell 
model is plotted in bold. The channel density of IM was multiplied by (top to bottom) 
0, 0.5, 1, 2, 5, and 10. C: lAHP determines the slope of the f-I curve. The channel 
density of IAHP was multiplied by the same values as in B. D: Current delivered by 
500 synapses stimulated in one of four different regions of the neuron. The soma was 
clamped to -50 m V and the clamp current current recorded . E: Detail of D for small 
values of hn· The "Layers I- III" curve above has been broken down into three curves . 
The fact that the contribution of synaptic input to the superficial layers saturates at 
0.65 nA constitutes the central problem this study addresses. 
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over 20 m V). No amount of additional input can increase the membrane potential 

beyond Erev,e· Even if the membrane leak is removed, i.e., for Rm ---t ex:>, saturation 

of the apical tuft ensures that the asymptote of lsyn,s is 0.66 nA, increasing by only 

2% above base level. 

It is important to note that if synaptic input behaves as a current source (rather 

than a conductance input), no saturation would occur. The saturation effect is 

even stronger when the synaptic input is restricted to layer I and II or layer I only 

(Fig. 6.4C). In both cases, lsyn,s is reduced almost by about a factor 2 and reaches 

asymptotes of a mere 0.2- 0.25 nA. This is in stark contrast to experimental evidence 

showing that layer I synaptic input is sufficient to drive the cell [Cauller and Connors, 

1992]. 

This, then, is the nub of the problem to be addressed in the remainder of this 

paper- how is it that inputs to the apical tuft can provide a larger functional effect 

than traditional passive models of the dendrite permit? One possible explanation 

of the influence of apical inputs is that their effect is modulated by more proximal 

inputs to the neuron. Fig. 6.2E shows that apical inputs can be conditioned by other 

sustained inputs. Whereas 0.5 nA of injected current alone causes the cell to fire at a 

maintained rate of 7.5 Hz, if other synaptic inputs delivers 1 nAto the soma thereby 

causing the cell to fire at 41 H z, the additional 0.5 nA current increases this rate to 

68Hz. 

To illustrate the composition of !out and lsyn,s we activated 500 synapses on the 

apical trunk in layer IV at fin = 40 H z. According to Fig. 6.4D, this results in 

fsyn,s = 1.01 nA of current being delivered to the soma. Using the f-I curve (Fig. 6.2E), 

this should give an output rate ! out = 41.0 Hz. The simulation gives a slightly higher 

value of 42.6 Hz. The discrepancy is small and can be explained in part by the fact 

that at 1 nA the average somatic potential is -51.4, not -50, increasing the synaptic 

driving force. Subsequently a 1 nA current clamp was added to the soma, giving a 
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total of 2.01 nA. According to the curves, this should result in !out = 94.15 Hz and 

the simulation gives 93.9 Hz, again in very close agreement. 

In this paper we focus on ways of altering the dendritic function Isyn,s(fin) and 

assume that the somatic function, the f-1 curve fout(Isyn,s), is fixed. It is worthwhile 

to note, however, that the f-1 curve can be controlled by modulating active somatic 

conductances. Fig. 6.4B shows the effect changing the density of theM current from 

0 to 10 times its normal value. The result is a shift of the f-1 curve with the slope 

almost intact. In Fig. 6.4C the density of IAHP was varied, which caused a change in 

slope of the f-1 curve, while keeping rheobase constant. A similar shift was obtained 

by changing the passive membrane leak, while the slope could also be altered by 

changing the density of lea (graphs not shown). The same effect of IM and IAHP 

on the f-1 curve was found in a very detailed model of bullfrog sympathetic ganglion 

cells [Yamada et al., 1989]. 

6.2.3 Linearization and amplification of apical inputs 

Anatomical and physiological data reviewed above suggests that the apical tuft inputs 

should have a much greater effect than shown in Fig. 6.4C. 

One explanation of this disparity is to appeal to the presence of active conduc­

tances in the dendritic tree, as argued by the evidence in the section 6.3. But simple 

voltage amplification has disadvantages. If the voltage gain is high, the apical den­

drite loses its proportional response and becomes more digital in quality. Second, 

the apical synapses run even more easily into saturation. Therefore, we explore an 

alternative possibility in which the active membrane conductances both linearize as 

well as amplify the current flowing in response to synaptic input. 

In particular, we propose to prevent synaptic saturation by the presence of a K+ 

conductance, GK,lin· As the membrane potential increases and approaches Erev,e, the 
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K+ conductance is activated. The effect of this conductance is to pull the potential 

to hyperpolarizing levels, close to EK. In a second step, this linearized response is 

then amplified by the introduction of CaH channels into the apical trunk through 

which the synaptic current must flO\'>" prior to reaching the soma. The active CaH 

conductance decreases the effective axial resistance, R;, so that current flows more 

easily from the apical tuft into the soma. 

Rather than using trial-and-error to understand what type of conductances have 

these two types of effects, we derive the form of their voltage-dependency. That 

is , given a particular functional relationship between fsyn ,s and fin, we derive the 

relationship between membrane potential and G K,lin and Gca,amp that will yield the 

required !ttyn,tt· 

Three Compartment Model 

Let us study the principle behind our construction by using a highly simplified three 

compartment model of a pyramidal cell (Fig. 6.5A): the leftmost node represents the 

soma and is clamped to -50 mV; the middle node represents the apical trunk with 

an active CaH conductance and the rightmost node represents the apical tuft with 

a synaptic input in parallel with a K+ conductance. We assume for simplicity that 

the membrane leak, Rm , is infinite. Because we study steady-state behavior, the 

membrane capacitance can be ignored. 

Fig. 6.5B shows the relation between total synaptic conductance applied to the 

apical tuft and the somatic current that this input evokes. The passive response, in 

which G K ,lin and Gca,amp are set to zero (dashed thin line) , corresponds to Fig. 6.2E. 

Here ! 11 yn,s saturates for a moderate input of about 50 nS. Let us linearize this 

response over the range 9ttyn = 0-200 nS (solid bold line). Since this curve lies below 

the passive response for the most part, a hyperpolarizing conductance is needed to 

induce the linearity and a K+ conductance was chosen for this role. The third curve 
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Figure 6.5: Linearization and amplification in a three-compartment model. 
A: Circuit diagram. The somatic compartment was clamped to V3 oma = - 50 m V 

with Eca = 115 mV, EK = -95 mV, E~yn = 0 mV, and G = 40 nS. The mem­
brane capacitance was ignored, since only steady state properties were studied , and 
membrane leak was not included for simplicity. g~yn was varied from 0 to 200 nS 
(independent variable) and G ca,amp and GK./in were derived (dependent variables), 
given the constraint of the target curves shown in B. B: Passive response to synaptic 
input and (active) target curves. The passive response in the absence of G ca.amp and 
G K.lin is shown with a thin dashed line. Also shown are the targets for the linearized 
curve with constant = 5 mV (using GK,/in: ! A, solid bold line); the amplified curve 
(gain = 2, using GK,Iin and G ca,amp, thin line); and the curve that resul ts when 
the ':monotonized" GK,/in is used (" IM ," dashed bold line). C: Derived activation 
curves for Gr:,lin and G ca,a.mp (thin line) using the target curves in B. The version of 
Gl\.,lin termed IA (solid bold line) was derived for the linear target curve in A, while 
the "monotonized" version termed h1 (dashed bold line) was used to further derive 
Gca.,amp· 
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(solid thin line) represents the linearized response amplified by a factor 2. This 

amplification requires a depolarizing conductance; either f\a+ or Ca2+ would suffice. 

Ca2+ was chosen because of the strong evidence for it being present in the apical 

dendrite. 

To obtain the conductances required to achieve the ideal responses indicated in 

Fig. 6.5B, we derive GK,Iin by applying Ohm's law of current conservation to the one 

node (labeled by voltage V in Fig. 6.5A and setting Gca.ampto zero for now. Adding 

the desired proportionality between input and current at the soma 

l,,yn,~ = constant· 9syn (6.2) 

from Fig. 6.5B, the resulting two equations have a unique solution for G K,lin that 

is a fractional polynomial in V: 

GK,Iin(V) = 
2 ·constant 

(V - VMma)(V - E~yn +constant) 
-=------

EK-V 
G 

(6.3) 

Solving for the "dendritic" membrane potential yields 

v (6.4) 

The voltage-dependency for the potassium conductance is graphed in Fig. 6.5C for 

constant = 5 m V. 

At V = Esyn -constant = -5 m V, the potassium conductance is zero and the 

system reverts back to the passive case. This corresponds to t he point in Fig. 6.5B 

where the two fs yn,s curves intersect. At more positive membrane potentials, the 

]{+ conductance becomes negative (see Fig. 6.5C). Because this is unphysiological, 

GK,Iin was set to zero for more positive voltages as well as for V < V~oma (half-wave 
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rectification). 

The positive part of GK,lin corresponds to g,11n=0-180 nS, which is the range of 

inputs for which the target curve is below the passive curve (Fig. 6.5B); since the 

potassium conductance is hyperpolarizing, it can never amplify the signal without 

taking on negative values. The '·activation'' curve is parabolic. similar to a transient 

(inactivating) potassium current, and was therefore labeled " ]A." The parabolic curve 

parallels the difference between the passive and linearized curves in Fig. 6.5B: G K ,lin 

is switched off for small inputs, but activates rapidly to counteract saturation as the 

input increases. For large g,11n, the linearized curve gains on the passive response 

and hence GK,Iin inactivates. Note that the latter part has a negative derivative 

dG j dV , which provides a negative contribution to the local input resistance. This can 

easily lead to an instability in which the apical potential depolarizes to, and latches 

up at. the synaptic reversal potential. Such instability would make the dendritic 

amplification mechanism unreliable. The problem can be cured by "monotonizing'' 

the voltage dependence of G K,lin, that is, the activation curve levels out after reaching 

its peak rather than return to zero. This modification will cause 1,11n,,(g,11n) to be 

slightly sub-linear for large g,11n , but the benefit is that stability is obtained. Moreover, 

the amplification mechanism can make up for the sublinearity. In the final analysis, 

therefore, GK,Iin shows no steady-state "inactivation" and is labeled " ]M" (Fig. 6.5B, 

dashed bold line). 

Once G K,lin was derived, the circuit equations were agam solved, this time for 

Gca,amp· The G K ,lin element was retained in the circuit and the current flowing from 

the synapse into the "soma" compartment was amplified by a positive gain factor: 

(6.5) 

where gam typically was set to 2 or 4. The circuit element GK.Iin adds consid-
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erable complexity to the equations, especially since it has to be treated p1ecew1se 

due to monotonization and half-wave rectification. The resulting equation specifying 

Gca.amp as a function of V is complex lo the point where it provides no further bio­

logical insight and so is not shown, but the associated calcium "'activation'· curve is 

graphed in Fig. 6.5C. It has the characteristics of a non-activating calcium conduc­

tance. Simulations (not shown) verified that the resulting l syn,s attained the target 

function with high fidelity and stability. The voltage dependency for Gca,amp is flat for 

values above 0 m V, since we did not attempt to amplify lsyn,s beyond the associated 

conductance input of 200 nS. 

The circuit equation, eq. 6.5, can, in principle, be solved for any explicit somatic 

current function, given a single conductance, e.g., Gca,amp, rather than using two 

distinct conductances (one Ca2+ and one ](+) as we do here. This , however, leads 

to two problems. First, the conductance would have to take on negative values 

if it must enhance the response for some values of 9syn 1 but suppress it for others. 

Second, if the local apical response is not linearized, the input voltage to the amplifier 

will change little over most of the 9syn input range. Under these conditions, the 

amplification mechanism would have to be extremely sensitive to small variations 

in V, and consequently sensitive to noise. Dividing the task between two separate 

conductances solves both problems. 

Detailed Model 

In this and the following sections, we extend the concept of deriving conductances 

to our model of the layer V pyramidal cell. We assess robustness and control issues, 

as well as compare the derived conductances to experimentally measured activation 

curves. 

While GK,lin was spread uniformly (per membrane area) throughout layers I- III 

of the pyramidal cell dendrite, Gca,amp was placed in at different locations along the 
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Figure 6.6: Linearization and amplification in the detailed model. A and B: 
Activation curves for numerically derived voltage-dependent conductances. A: The 
potassium conductance, G K,tin, is located in superficial layers I - III and linearizes the 
cell's response to synaptic input. B: The calcium conductance, G c a,amp· was located 
in the center of the apical trunk and amplifies the response. Activation curves are 
shown for gains of 2 and 4. C: Post-synaptic firing rate, ! out. as a function of the 
input rate of 500 synapses, f;n , computed by simulating the cell without voltage clamp 
(bold) and by evaluating f out(I&yn,8 ) for the desired targets (thin). The passive case 
(dashed) is shown for reference. 
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apical trunk: in the center or at either end. The default case that is used for most 

illustration is the first case, in which G c a,amp was placed in a single compartment at 

the center of the apical trunk. 

Two problems arise when moving from the three compartment model to the full 

model. First, the circuit is too large and complicated for a purely analytic deriva­

tion of the voltage dependencies of G K,lin and Gca,amp from the shape of the desired 

l 8 yn,8 (j;n) function. Instead a simulation approach must be used. The second prob­

lem arises from the fact that G K,lin and Gca,amp are distributed over more than one 

compartment. Since the voltage of each compartment will be different from its neigh­

bors, there will be multiple bids on what the relationship between conductance and 

voltage should be, over-determining the function. Vve therefore adopted the follow­

ing procedure for designing GK,Iin and Gca,amp· The independent variable is hn· the 

firing rate of 500 synapses that were located throughout layers I-III , rather than the 

synaptic conductance, g8yn· At first , Gca,amp is set to zero and GK.Iin is obtained in 

the following manner: 

1. For a specific value of fin and the associated desired value of the current l 8yn,8 , 

we clamp the soma to the mean somatic potential obtained in response to l syn .s· 

This value can be read off from Fig. 6.2D. 

2. A non-voltage dependent G K was inserted uniformly throughout layers I - III. 

3. The neuron was simulated until steady state was reached and then l 8 yn,s was 

measured. lsyn ,s was taken as the clamp current during synaptic stimulation 

minus the clamp current in the absence of stimulation. A bisectioning scheme 

was used to adjust G K until lsyn,8 was within 0.01 % of the target current. 

4. At this point, the average V in layers I-III was obtained. 

5. The values of GK and Vm,average defined one point on the Gh·(V) curve. 
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6. This entire procedure is repeated for many values of f m and the final function 

G K.lin obtained by interpolation. 

The function Gca.amp was then obtained in a similar manner in the presence of 

G K ,lin· In spite of the above-mentioned problem with non-uniqueness that arises 

because of the widespread distribution of G K.lin, the procedure works remarkably 

well. Unfortunately, it is time consuming because 20- 30 iterations are required to 

obtain each point on the GK(V) curve {a typical curve can be computed in about one 

hour). 

The resulting conductances are shown in Fig. 6.6A.B. Increasing the gain had two 

effects on Gca,amp· First, it took on slightly larger values for Vm < - 20 m V. The 

small difference suggests sensitivity to channel density, as will be discussed below. 

Second, the activation curve was much more shallow, extending from -60 to about 

+20 mV. 

For verification, simulations were run with G /\,lin and Gca,amp inserted. The re­

sulting curves of !out as a function of hn are displayed in Fig. 6.6C along with the 

desired target curves. The target curves are reproduced with high fidelity. The passive 

case in shown for comparison (dashed). 

\Ve computed the resulting output rate in response to input rate (Fig. 6.6D). For 

passive input, superficial input by itself can at most drive the cell to fire a few spikes 

per second {dashed). Furthermore, the response is almost all-or-none. In the presence 

of the two active currents, superficial input can smoothly vary the output rate in a 

linear manner over at least 50 H z. !out was computed in two ways, by applying the 

f-I curve (Fig. 6.2E) to the desired target current (thin lines), and by simulations 

incorporating the derived activation curves (bold lines). 

It is inst ructive to study the distribution of voltage m the apical tree during 

the linearization and amplification process. The schematic in Fig. 6. 7 A shows five 
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Figure 6.7: Voltage profiles A: Schematic of t he detailed model, showing three 
locations (1- 3) along the apical trunk, one in the middle of layer I (location 4) and 
one at a distal tip (location 5). B: Voltage distribution along the five locations. The 
three groups of curves correspond to (left to right): passive dendrite, GK,Iin present. 
both G K,lin and Gca,amp present. The three curves within each group correspond to 
(top to bottom): fin = 200, 100, and 10 Hz, respectively. 
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locations at which the voltage was tapped. Locations 1- 3 are situated along the apical 

trunk, and locations 4 and 5 are in layer I. Layers 1- 3 were stimulated at hn = 10, 

100, and 200 Hz. The three leftmost curves in Fig. 6. 7B is for a passive dendrite. 

The voltage drop across the apical trunk is almost linear and saturation is evident 

from the close spacing of the curves. vVhen G K,lin is inserted in the tuft (middle three 

curves) , the voltage drop is still linear, but saturation is strongly reduced. The main 

effect of adding G ca.,amp to location 2 (center of trunk) is to cause the t runk voltage to 

follow the tuft voltage; while layer I is hardly affected , the depolarization of the tuft 

spreads far into the t runk. The voltage gradient between locations 1 and 2 increases 

and a larger axial current is the result. 

R obustness and Gain C ontrol 

Since the exact channel density is difficult to measure in a real cell, it is important to 

know how sensitive the model is to variations in G. Therefore, simulations were run 

where the density of GK,Iin was varied by a factor 2 and G ca.,a.mp by 10%. Fig. 6.8A 

shows the resulting change in !out· Two points are worth noticing. First, the curve 

changes in a well-behaved way, staying fairly linear, while only varying the slope and 

the point of saturation. Thus. by modulating the channel density, the slope can be 

set arbitrarily. Second, the cell is much more sensitive to changes in G ca,amp than in 

G K ,hn· This sensitivity is due to the positive-feedback nature of t he Ca2+ current. 

This suggests that the K+ channels should be modulated to achieve a graded cont rol 

of the amplification gain , while the Ca2+ channels provide a mechanism for possibly 

switching the contribution made by the apical tuft on or off 

Fig. 6.8B shows the sensitivity to the exact location of Gca,a.mp· The activation 

curve for a location at the center of the trunk was used and ! out was computed 

(curve labeled "Control") . Subsequently the same activation curve was used , but the 

location was moved by 40 J.Lm (10% of the length of the apical trunk). As G c a. ,amp was 
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Figure 6.8: Robustness to variations in G K,lin and Gca,amp· A: The density of 
channels (GK and Gca) was varied 10-100% and the resulting ! out was graphed for 
gain = 4. B: The location of Gca.,a.mp was moved more proximal or more distal by 
40 pm (10% of the length of the apical trunk). The activation curve was derived for 
a central location and gain = 4. C: A straight line was fit to the central portion 
(10-90%) using the root-mean-square fit. The resulting slope, 1/ ]{ , and midpoint, 
Vha./f, were used to define a Boltzmann sigmoid: 1/(1 + e(V"a'rV)/1<) . Solid curves: 
derived activation curves; dashed curves: Boltzmann fits. D: Simulation results using 
the Boltzmann fits in (C) . Maximum deviation was < 6 Hz; average deviation was 
3.6 Hz. 
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moved closer to the soma, !out decreased. This may seem paradoxical at first since 

the more proximal location ensures less attenuation. However, the distance to the 

tuft has increased and so Gca,amp senses a lower membrane potential and becomes 

less activated. 

Both GK,lin and G c a,amp are sigmoidal in shape (monotonically increasing with V, 

but bound by two asymptotes), but their derived shapes are different from the Boltz­

mann sigmoidal relationship often used to fit activation curves: 1/( 1 + e (VhatrV)fK ) 

[Hille, 1992]. The Boltzmann formalism can be justified biophysically and is con­

venient to use because only two parameters determine the shape of the activation 

curve: the inverse slope J( and the midpoint Vhalf. Therefore, we chose to fit G !\,lin 

and G c a,amp with Boltzmann sigmoids. A root-mean-square fit was performed on 

the central portion (10- 90% of G) and the resulting slope and midpoint were used. 

Fig. 6.8C shows the two derived conductance functions for a gain of 2 and their 

Boltzmann fits . The performance of the pyramidal cell was then simulated using the 

Boltzmann fits rather than the derived original functions. The resulting ! out differed 

little from the target and was off by less than 5Hz for G c a,amp and 1Hz for G K.lin · 

Background synaptic activity was modeled using the steady state approximation 

described in chapter 2. This approximation may not be valid along the trunk where 

G c a,amp will amplify any changes in membrane potential. To test this, we ran sev­

eral simulations comparing Poisson synapses with the steady state approximation 

(fig. 6.10B). The top trace in each pair shows the spike times for the Poisson case, 

while the bottom trace shows the steady state approximation. For three different 

input rates (top three pairs), a small amount of noise was added in the Poisson case, 

but the average ! out changed by less than 1%. For the bottom trace pair, G K.lin was 

removed. The cell did not spike in the absence of stimulation in either case, but for 

very small input rates (1 Hz in the figure) , the spike mechanism was triggered and 

spiked at the same !out in both cases. 
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Selectivity of amplification 

If the amplification mechanism ( Gca,amp) were located in the soma, all inputs would 

be expected to be amplified by the same amount, independent of location. Since 

one aim of this study was to explore ways in which apical inputs can be amplified 

specifically, Gca,a.mp was placed in the apical trunk. \ iVhile this ensures that apical 

inputs are selected for over basal inputs , it is important to assess how strong this 

selectivity is. 

To explore this, the relative amplification of apical vs. basal inputs was compared. 

First, G K ,Iin and Gca.,a.mp were removed; synapses were activated either in the apical 

tuft or in the basal dendrites (layer 5) at different fin so as to produce an output 

firing rate (Jpa88ive) in the range 0-{) Hz. Next, GK,Iin and Gca.,a.mp were re-inserted 

and the same inputs applied. The new firing rate, !active, was higher because of the 

amplification. Fig. 6.10A is a parametric plot of !active (y coordinate) vs. fpas 8 ive (x 

coordinate); the independent variable was fin (not shown). 

\ iVe computed !out for two different calcium conductances. One version of Gca,a.mp 

was derived when the calcium channels were placed in the middle of the apical trunk 

(bold curves) while a second version, with a different voltage-dependency, was derived 

when the Ca2+ channels were located at the distal end of the apical trunk (thin 

curves). We t hen either activated apical synaptic input (continuous lines) or basal. 

layer Y, synaptic input (dashed lines). As expected, the response to apical input 

depends little on whether Gca.,a.mp is located in the middle of the trunk or at the 

distal end of the trunk, since the exact form of Gca.,amp was derived to deliver the same 

current to the soma. The amplification of basal inputs, however, depends strongly on 

the position of Gca.,a.mp· \iVhen Gca.,amp was placed in the center of the trunk (bold 

dashed curve), the response was significantly elevated by approximately 3 H z above 

the Identity curve for a passive dendritic tree. \Vhen Gca,a.mp was placed at the end 
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of the trunk (thin dashed curve) . however, ! out was practically identical to fm· In 

other words, the more distal the location of apical calcium channels, the more specific 

the amplification. 

6 .3 Discussion 

We have demonstrated that the presence of two types of voltage-dependent conduc­

tances in the apical dendritic tuft and trunk can serve to linearize and amplify the 

cell's response to apical input. This mechanism is robust to variations in the potas­

sium conductance, but is sensitive to variations in the calcium conductance. This 

difference provides a mechanism for controlling the level of amplification of apical 

input simply by modulating channel densities. Modulation of potassium channels 

achieves a graded control of amplification gain, whereas the calcium channels provide 

a mechanism for switching the amplifier on or of. 

For simplicity, the concept of deriving optimal conductances was proven on a min­

imal three-compartment model. Then the same strategy was successfully applied to 

a physiologically detailed and biologically realistic cell model. However , several as­

sumptions were made in the realistic case. One principal assumption was that the 

dendrites contain no active conductances other than the two that were specifically 

derived, G K,lin and Gca,amp· In this study we have explored the derivation of con­

ventional voltage-gated channels only. However, in principle, it is possible to derive 

a synaptic conductance such as the NMDA conductance. Background activation of 

NMDA synapses can be time-averaged just like the AMPA conductance in eqs. 2.2 

and 2.3, and will yield a voltage-dependent conductance. 

The presence of more than two active conductances is not expected to alter the 

results, since the objective of the algorithm is to derive optimal conductances for a 

given target function, regardless of the morphology and electronic structure of the cell. 
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However, if other dendritic conductances are strongly non-linear and present in high 

enough concentrations. stability may be affected. We tested the effect of additional 

conductances by incorporating a generic conductance, Gte:Jt to the apical trunk. co­

localized with G c a,amp· The conductance had a single activation ( m ) particle with 

Vhalf = -30 m V and I< = 7 m V, ensuring a significant non-linearity in the critical 

range of membrane voltage. Gmax was set to 1/3 of that of Gca,am p in the absence 

of the test conductance, the reversal potential was set to either 50 m V (sodium) 

or -95 m V (potassium). and the particle time constant was arbitrarily set to either 

5 or 50 msec (which made little difference). The re-derived G c a,amp deviated only 

little from the original (graphs not shown) and the resulting lsyn.s = fnc(fin) did not 

change at all and showed no instability. When the soma was un-clamped and left to 

spike, however. the resulting output firing rate, ! out. demonstrated a larger change. 

When Gte:Jt was a potassium conductances, the cell became somewhat less excitable 

and the !out curve shifted by about 10 Hz. vVhen Gte:Jt was a sodium conductance. 

! out approached its maximum value much more rapidly, for hn = 80 Hz rather than 

200Hz. Note, however, that G c a,amp was derived according to a given target function 

for !:1yn,s· If the target function instead was given for ! out (which is computationally 

much more expensive), !out is expected to show as little variation as !:1yn,s in the 

example described above. 

A further assumption is that we have only considered sustained (steady state) 

inputs. This is a reasonable simplification since stimuli used in physiological experi­

ments typically last for several hundred msec or even seconds, which is longer than 

the t ime constants of most conductances as well as the membrane time constant, 

Tm. The N- and 1-type Ca2+ channels , which most resemble G ca .amp, show either 

no inactivation, very slow inactivation (up to many seconds) or variable and par­

tial inactivation [Fisher et al., 1990, Sayer et al. , 1990). This is consistent with our 

model, as long as there is some residual Ca2+ current. Only the T-type Ca2+ channel 



166 

consistently shows rapid and complete inactivation. 

6.3.1 Experimental evidence for active dendrites 

Experimental data suggests that not only do the soma and axon hillock harbor actiYe. 

voltage-dependent conductances, but that dendrites do so as well [for reviews see 

Llinas, 1988 and Mel, 1993). These experiments have demonstrated the existence and 

the ionic selectivity of these conductances, but little is known about their kinetics 

and densities. The evidence for such dendritic excitability in cortical pyramidal cells 

comes from three different sources: indirect inferences from EPSP amplitude and time 

course, direct recordings from dendrites, and imaging of internal ionic concentrations. 

Early evidence for active dendrites were found in intracellular recordings from 

motoneurons and hippocampal cells [Eccles et al., 1958, Spencer and Kandel, 1961). 

Millisecond time scale depolarizations, termed "fast prepotentials." were seen usually 

at the beginning of the action potential, but sometimes in isolation. These prepoten­

tials were thought to reflected the electrotonic propagation of dendritic spikes. ~lore 

recently, Williams and J ohnston [1991) compared EPSPs to somatically injected cur­

rents shaped like alpha functions in hippocampus. The EPSPs decayed slowly (79-

135 msec) and showed a strong voltage dependence, while the alpha currents showed 

faster decay (32- 37 msec) and little voltage dependence. Since the membrane time 

constant was ~ 30 msec, the dendritic synapses apparently activated a local con­

ductance that could not be reached by the somatically injected current. In these ex­

periments, potassium currents were blocked by intracellular cesium, and the NMDA 

antagonist APV had lit tle effect, suggesting that the putative conductances were cal­

cium or sodium dependent. Similar discrepancies between the decays of EPSPs and 

current injections have been found in rat neocortical slices [Thomson et al., 1988). 

Recently, further evidence for active dendrites have been obtained from somatic 
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recordings in the presence of TTX and TEA which block the action potential mech­

anism and so enhance the visibility of underlying active processes [Reuveni et al.. 

1993]. The multiple plateau potentials that are seen under these conditions are best 

explained by CaH channels of the same type spatially segregated throughout the 

distal parts of the dendritic tree, rather than somatic CaHchannels of different types. 

Several reports describe int radendritic recordings from dendrites of hippocampal 

neurons [Wong et al., 1979, Benardo et al., 1982, Masukawa and Prince, 1984, Poolos 

and Kocsis, 1990, Wong and Stewart, 1992]. In some of those experiments, the soma 

had been cut off from the apical dendritic tree (isolated preparation). Both fast 

and slow spikes were seen. The slow spikes were insensitive to TTX, and so likely 

to be mediated by a CaH conductance. In neocortex, cell-attached patch clamp 

recordings revealed comparable densities of Na+ current at the soma and on the 

dendrites [Huguenard et al., 1989]. However, the cells were immature with dendrites 

being shorter than 100 J.Lm and thus still quite close to the soma. Somatic recordings in 

the presence of TTX and TEA, which blocked fast spikes and K+ channels, reveal Ca­

dependent spikes [Franz et al. , 1986]. Direct recordings from histologically confirmed 

apical dendrites reveal both fast and slow spikes [Pockberger. 1991, Amitai et al.. 

1993]. Slow spikes were not observed in somatic recordings, are insensitive to TTX 

and resemble CaH spikes in hippocampus and cerebellum. 

Calcium imaging of hippocampal pyramids reveal high [CaH]i concentrations in 

the proximal half of the apical dendri te, with very low concentrations in the distal 

half and at the soma [Regehr et al., 1989] in response to synaptic activation. CaH is 

likely to enter the dendritic trunk through voltage-gated calcium channels, rather than 

through synaptic NMDA channels, since AP5 had only a minimal effect on the evoked 

CaH. Another study has found somewhat higher concentrations in distal dendrites. 

though still considerably lower than proximal dendrites, with similar results for [J\a+] 

[Jaffe et al., 1992] . 
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In summary, there is strong evidence that Ca2+ channels are present in dendrites 

and able to generate spikes. Unfortunately, details about kinetics and densities are 

lacking. There is less evidence for the presence of dendritic K a+ and K + channels. 

and the question of regenerative Na+ spikes is still open. 

6 .3.2 Comparison with known activat ion c urves 

How well does Gca,amp compare to activation curves measured in real cells? Once 

again, it is convenient to use the Boltzmann parameters ]( and Vhalf to characterize 

the conductances. Figure 6.9A shows the loci in J( - Vhalf space for Gca(v) for five 

different locations of the conductances as described in section 6.2.3 as well as in the 

figure legend. This is compared to the activation curves of seven channels described 

for chick dorsal root ganglion cells [Fox et al. , 1987], bullfrog sympathetic ganglion 

cells [Yamada et al. , 1989], and guinea-pig hippocampus [Fisher et al., 1990]. 'While 

the midpoints are roughly in the right range, the slopes 1/ I< are up to a factor 3 too 

shallow. ]( factors of more than 10 have rarely been described in any preparation. A 

possible solution to this problem is to use two different Ca2+ conductances in parallel 

with different act ivation thresholds and, in a sense, '·concatenate" their activation 

curves. Such multiple Ca2+ conductances have been described in several cell types 

[Fox et al. , 1987, Fisher et al. , 1990, Sayer et al. , 1990]. Figure 6.9B shows the sum of 

two activation curves, both with](= 7, but with different midpoints and amplitudes 

(see figure legend). This concatenated activation curve provides a better fit t han the 

single Boltzmann sigmoid used in Fig. 6.8C. A third Ca2+ conductance with a yet 

higher threshold, can be added to obtain even more shallow curves. It is interesting to 

note that the activation curves become much more shallow for larger gains, extending 

into more positive potentials. If calcium channel types are differentially modulated, 

reducing the higher-threshold type, ! out will saturate at different values , keeping the 
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slope of f outUin) constant. 

A Boltzmann fit toG K,lin has a midpoint Vhalf = -51 m V and a slope factor I\ = 

3.9 mV. Little data exists on the activation curve for IM . In bullfrog sympathetic 

ganglion cells, Vhalf is::::::::: -35 mV [Yamada et al., 1989), the same as a very slowly 

inactivating (> !Osee) K+ current in neocortex [Spain et al., 1991 , Fig. 4D], while 1\ 

was ::::::::: 10 m V. The delayed rectifier described by Frankenhaeuser and Huxley [1964] 

has a Vhalf of -40 m V and ]( = 8.7 m V. While both these examples of K+ currents 

are less steep than GK,Iin, other channel types have been described with]( of about 

4 [Fisher et al., 1990]. 

6.3.3 Variations of the amplification m echanism 

It was shown in the previous section that the parameters of Gca ,amp vary with the 

location at which the channels are inserted as well as with the gain of amplification 

(fig .6.9A). As the location of Gca,amp is moved further distally, a larger depolarization 

is needed to deliver the same current, and so the activation curve reaches into higher 

voltages. Similarly, as the gain is increased, more current is needed. 

Gca,amp was derived for other conditions as well. The first case involved reducing 

t he cross-sectional area of the apical trunk by a factor 2. This would correspond to 

t he smaller values reported for trunk diameters in rat [Larkman, 1991a]. The slimmer 

trunk will have a larger axial resistance, and, again. a larger depolarization is needed 

to deliver the same current (Fig. 6.10C). 

Throughout this chapter, the amplification mechanism has been a calcium conduc­

tance with a reversal potential of 115 m V . Other ionic selectivities can be specified 

simply by changing the reversal potential to 50 m V (sodium) or 0 m V (NMDA). 

Fig. 6.10D compares the activation curves for reversal potentials of 0 and 115 m V. 

The curves span the same domain of membrane potentials, but the "NMDA" conduc-
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Figure 6.10: A: Selectivity of amplification. The output frequency was plotted para­
metrically in the absence of GK,Iin and Gca,amp (x coordinate) as well as in their 
presence (y coordinate). This was repeated for apical (solid) and basal (dashed) in­
put as well as for two locations of Gca,amp: center of trunk (bold) and distal end of 
trunk (thin). For the apical input, both locations of G ca,amp result in approximately 
the same output firing frequency. The output rate for basal input is almost identical 
to the rate for a purely passive membrane (the associated Identity curve coincides 
and so is not shown) for a distal placement of Gca,amp and elevated by about 3 Hz 
for the more proximal one. gain = 2. B: Poisson background activity. Background 
synapses were either replaced with their average steady state activation (top trace 
in each pair) or were explicitly modeled (bottom trace in each pair) and t he time of 
output spikes were marked with horizontal lines. Top three trace pairs: gain = 4 
and (top to bottom) fin = 50, 100, and 150 Hz. Bottom trace pair: G h',lin was 
removed and lin= 1 Hz (no spikes occurred for lin= 0 H z). C: The diameter of 
the apical trunk was reduced by a factor 1.414 and G ca,amp was rederived. D: The 
reversal potential of the amplification mechanism v1·as set to 0 mV (NMDA) rather 
than 115 m V and Gca ,amp was rederived. 



172 

tance has a higher density, since the driving force, Erev-Vm, is smaller. A persistent 

sodium conductance has been observed in neocortical cells [Stafstrom et al. , 19 5] 

though its distribution is unknown, and there is evidence for Nl\'IDA being present in 

the apical dendrite [Cauller and Connors, 1993]. 

The work presented in this chapter has assumed (dynamic) steady-state condi­

tions and the derived conductances do not inactivate. This would fit well with the 

amplification mechanism being either a persistent sodium conductance or 1'\MDA. It 

would also be consistent with calcium channels of the N- and 1-types, which show 

either partial or no inactivation, as discussed above. However, intradendritic record­

ings have revealed the presence of a spike mechanism in some cells [Pockberger, 1991, 

Amitai et al., 1993]. It is beyond the scope of this chapter to model the effects of such 

a spike mechanism, but an interesting avenue for future research is suggested. The f-I 

curve of this spike mechanism is likely to be crucial for the results presented here. If 

the f-I curve is similar to the one described for squid axon [Hodgkin and Huxley, 1952] 

in that it displays a discontinuity and a very limited range of frequencies, then ampli­

fication will take on an all-or-none character, rather than a graded one. On the other 

hand, if the f-I curve resembles the almost linear somatic spike mechanism modeled 

here, then it would still be possible to achieve a graded response to apical inputs. As 

far as we know, there is no description of an f-I curve for dendritic calcium spikes. 

However, the procedure for deriving Gca,amp could be modified to generate an f-I 

curve rather than a single activation curve. 

6.3.4 Modulation of active conductances 

Our results suggest a simple mechanism for controlling the gain of apical inputs: par­

tially inactivate either the layer IV calcium conductance or the layer I- III potassium 

conductance. The apical tuft can be viewed as a separate integrative region. and the 
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impact of this region on cell output behavior can be controlled. 

Calcium channels that activate upon depolarization give a negative contribution 

to the input conductance and provide positive feedback for changes in membrane po­

tential. They are therefore relatively sensitive to channel density. Consequently. Ca2+ 

channels in the apical trunk provide a possible mechanism for connecting or discon­

necting more distal input in an ali-or-none fashion. This gating may be graded as well, 

but there would be relatively high demands on the precision of the neuromodulatory 

control of these channels. 

Block and modulation of Ca2+ currents by various transmitters is well established 

in sensory and sympathetic neurons (Plummer et al., 1991, Swandulla et al., 1991, Cox 

and Dunlap, 1992) as well as in central neurons [Sayer et al., 1992]. In hippocampus, 

adrenergic and muscarinic agonists cause changes in L channel activity by as much 

as 8-fold [Fisher et al., 1990]. 

Two crucial aspects of our model conductance, Gca,amp, are thus consistent with 

experimental evidence: Ca2+ conductances are indeed present in the apical trunk and 

Ca2+ channels can be modulated by specific inputs. 

Potassium channels that activate upon depolarization have positive input conduc­

tance and are negative feedback in nature. This is often expressed electrophysiolog­

ically as a phenomenological inductance or "sag" in response to current steps. The 

effect of K+ channels is therefore less sensitive to channel density and a more graded 

control can be exerted by putative modulators with less demand for high precision. 

Their location in the model is in conjunction with the apical inputs themselves, in 

layers I- III. 

TheM current, IM, has been named for its sensitivity to muscarine, and is an obvi­

ous candidate for G K,lin· In human neocortex, it is reduced by activation of muscarinic 

receptors by either acetylcholine (ACh) or serotonin [McCormick and Williamson, 

1989]. While little is known about the spatial distribution of l(+ channels, labeling 
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studies of muscarinic fibers have demonstrated particularly dense innervation of layer 

I [Bear et al., 1985, De Lima and Singer, 1986], an area that contains few somata; 

confirmed extrinsic sources are nuclei in the basal forebrain, intralaminar and mid­

line nuclei of the thalamus, including the LGN, as well as the striatum and reticular 

formation [Bear et al., 1985, De Lima and Singer, 1986]. 
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Chapter 7 

Conclusions 

Of making many books there is no end, and much study 

is a weariness of the flesh. - Ecclesiastes 12:11 

7.1 Why simulations? 

This thesis studies the input/output relationship of neocortical pyramidal cells and 

how this relationship can be controlled in various v-:ays. A simulation approach is 

used. Consequently, the longest chapter in the thesis (chapter 2) is devoted to the 

development of a very detailed and biologically plausible cell model. This model 

is subsequently used to investigate four different problem domains. Note that very 

simplified models are introduced to demonstrate proof of concept and allow for an 

analytic treatment (chapters 4, 5, 6). The detailed model is then applied to show that 

the simplification was valid and to point out complications arising from the dendritic 

morphology and the presence of active or non-uniformly distributed conductances. 

The model was tuned by replicating certain current clamp experiments from the 

literature (see chapter 2). The model thus demonstrates realistic spikes and f-I cun·es. 
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including spike adaptation and a primary slope, as well as overshoot, sag, and proper 

input resistance and time constant. The most important electrophysiological piece of 

evidence. that has not been incorporated into the standa rd modeL is the demonstra­

tion of calcium spikes either as inferred by somatic recordings [Franz et al., 1986] or 

intradendritic recordings [Pockberger. 1991, Amitai et al.. 1993]. It is the premise of 

this thesis, however, t hat an understanding of passive dendritic trees is a necessary 

stepping stone to investigating active dendritic t rees. In addition, exploratory studies 

of the possible effects of active dendrites were often undertaken by adding NMDA, or 

were the main subject as in chaper 6. 

There are many obvious advantages of using simulat ions over real experiments. 

Parameters can be exactly controlled; noise can be eliminated or added at will; the 

specific effect of various conductances can be investigated; the sensitivity to parameter 

variations can be assessed ; simulations can be reproduced with identical conditions, 

varying only a single parameter; etc. 

T here are also serious disadvantages with a simulation approach. The most crit­

ical one is the lack of hard data for model parameters, especially the exact kinetics 

of channels and their distributions. Further, the nature and sequence of inputs in 

behaving animals is not well known, making it difficult to ask the right questions. 

The lack of hard data was addressed in several ways. Many of these were discussed 

in conjunction with model development (chapter 2), such as the sensitivity to channel 

densities or errors in the measurement of morphological data. Further, a given phe­

nomenon was investigated under different conditions, such as different background 

activity (slice, "standard ," and intense act ivity) , in a different and smaller cell (layer 

II/ III pyramid), or in the presence of l\~1DA input. Errors in synaptic parameters 

( G.,yn, tpeak, total number of synapses) are all lumped together since t he t ime-averaged 

background activity involves the product of these parameters; the investigation in 

chapter 5 is therefore qualitative and any error would result in a scaling along the x 
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axis (fb)· In chapter 6, where activation curves were derived. the sensitivity of firing 

rate to the density and shape of these currents was assessed by bracket ing. This not 

only served to study the robustness of the model but also indicated a mechanism for 

controlling the cell 's sensitivity to apical input. 

7.2 What hav e we learned? 

We used a detailed compartmental model to investigate synaptic integration of single 

excitatory inputs. Kine measure of efficacy and four measures of delay were defined. 

Using these measures , the range of efficacies and delays throughout two model cells 

were histogramed. A careful comparison of these measures showed that they will 

assign dramatically different values to distal synapses. Current-related measures of 

efficacy, such as EPSP area, charge attenuation. and differential change in output 

spike rate, were found to be useful measures, while voltage-related measures , with 

the exception of EPSP amplitude, were of little value. 

Integration of large numbers of synapses were investigated in the context of syn­

chronization. It was found that for moderate number of inputs, more output spikes 

were produced when the inputs were temporally synchronized. For large number of 

inputs, however, it was advantageous to de-synchronize the inputs. This observation 

is of great consequence for many higher-level models that depend on detecting syn­

chronized input activity. An important caveat, however, is that our model only used 

a passive dendritic tree; the presence of active dendritic conductances may change 

the results. 

The main thrust of this thesis is to consider the neuron not as an inflexible, 

static device with a fixed input-output relationship, but as a flexible unit with a 

dynamic transfer function that can be changed according to various control signals. 

These control signals are rather crude, either encompassing the whole cell (background 
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activity) or restricting t hemselves to one or more layers. The signals take the form of 

synaptic conductance changes or a modulation of the densi ty of active conductances. 

Vve made two major departures from classical cable t heory. The first is that we 

treat synapses as conductance changes and not current sources. The total passive 

membrane resistance in the absence of synaptic input, is only on the order of 5 nS, 

while the peak conductance of a single excitatory A~PA synapse is 0.5 nS. This 

is why large numbers of inputs will directly and dramatically affect the electrotonic 

structure of the cell. The membrane time constant, Tm, which is a measure of tempo­

ral integration, varied by more than an order of magnitude as the background activity 

ranged from 0 to 10 H z. Similarly, R in and L , which are indicat ive of spatial in te­

gration, varied by factors of more than 10 and 4, respectively. This control over Rin, 

L , and T m provides a means for modulating receptive field profiles and tuning curves. 

A second departure from classical cable theory is to de-emphasize voltage as the 

important parameter, and focus on current. In chapter 6, the current del ivered to 

t he soma by a group of synapses, l 8 yn,8 , is taken as a measure of their efficacy. ]8 yn,s 

is then translated into an output firing rate by the spike-generating mechanism. It is 

t hus possible to go from an input rate to an output rate via current as an intermediate 

variable, without dealing with voltage. To use mathematical formalism, !out is the 

composition of two functions: 

The outer function, f out {18 yn,8 ), describes the spike generation mechanism and is 

mainly a function of somatic parameters. By modulating channel densities of so­

matic conductances, this function can be changed: increasing the density of I M shifts 

the function to the right , while increasing I AHP or l ea reduces the slope. The inner 

function , lsyn,sUin ), measures the efficacy of a group of synapses. This measure takes 
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into account features of the dendrites, such as saturation, attenuation. and actiYe con­

ductances, and the morphology of the dendrites. By varying dendriti c parameters. 

especially the densities of active dendritic conductances, l,yn,,(J;n) can be changed 

selectively for one group of synapses. Chapter 6 sho,-.·ed specifically how f syn.s for 

layer I-III inputs could be linearized and amplified, with only a moderate influence 

on f syn,, for layer V inputs. 

The brain remains one of the most intriguing unsolved mysteries facing man. It 

has tickled the intellectual curiosity of vast numbers of researchers for more than a 

century and has been the subject of both philosophical treatises and works of fiction 

[for instance, Bernander, 1991 b] . To understand how information is processed in 

our brains, to know the neural correlates of love and hate, to understand why one 

pattern of neuronal firing is music to our ears while another makes us remember a 

dear friend-those are the ultimate goals of neuroscience. The work presented in this 

thesis aspires to be one small step on the long path that lies ahead. 
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