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PREFACE

Analyticai studies in elastic-plastic fracture mechanics have been
mainly directed at identifying certain fracture parameters such as the
J-integral, the crack tip opening displacement or angle. Although the
above approach has been widely adopted and applied with some success in
predicting the bebavior of stable crack growth (e.g. using the J-
resistance curve), it fails to provide a framework for studying in
further depth the effects of the failure mechanisms in the crack tip

zone on the global behavior of crack growth.

Specifically, one does not fully understand how damage-induced
softening behavior of the crack tip material - which varies in charac-
teristics with the microstructural failure mechanisms - affects the
stability of the crack. In metals, cracks advance with varying degrees
6f ductility depending on the loading and on the environmental condi-
tions. If the fracture is relatively brittle, the crack surfaces
separate in such a way that little plastic deformation is induced in
the material surrounding the crack path. On the other hand, when the
crack faces are formed through void nucleation, growth and coalescence,
the 'effective' fracture energy turns out to be substantially higher
than the fracture energy for brittle fracture; the extent of plastic
deformation in the material adjacent to the path traversed by the crack
is, correspondingly, much greater than when the fracture is brittle.
Thus, the material separation characteristics and toughmess reflecting
the failure mechanisms at the crack tip directly control the energy

expenditure and the stress and strain fields around the crack front.

Seen in this light, it is clear that fracture analyses are neces-
sarily incomplete without incorporating the proper separation laws
which describe the failure modes at the crack tip; in spite of the fact
that one-parameter fracture criteria serve and have served very useful
purposes they seem to be of somewhat limited virtue for understanding

fracture as a fundamental process.



iv

The study reported in this thesis is focused on these aspects of
fracture discussed above. The present investigation is confined to
planar geometriés (two-dimensional problems). Three problems have been
examined. The first two are detailed analyses of the Barenblatt-Dugdale
type where the cohesive forces are represented by arbitrary nonlinear
force-displacement relations; these are presented in two seperate

parts.

Part I analyzes the model of a beam on a nonlinear foundation
appropriate to a double cantilever beam (DCB) specimen whose material
is elastic with the nonlinear damage-softened material confined to a
thin interlayer on the crack plane. The finding indicates that it is
possible to estimate the nonlinear behavior of the damaged cohesive

interlaver.

Part II examines the problem of a crack with a nonlinear cohesive
zone of the Barenblatt-Dugdale character embedded in an infinite elas-
tic medium subjected to symmetrical loading; the analysis allows the
cohesive zone to be of arbitrary size and thus is appropriate for
modeling crazes in polymers with the nonlinearity confined to the
description of craze fibril material. These two analyses vyield a
number of interesting findings which show that the damage-induced
softening material behavior at the crack tip plays a central role in

determining the global behavior of crack propagation.

The third problem studied represents an attempt to extend the non-
linear cohesive zone model to the case where the material adjoining the
cohesive 'boundary layer' along which the crack propagates is not sim-
ply elastic. In this case, the material surrounding the Qrack is
allowed to deform plastically according to the incremental theory of
plasticity thus introducing an additional dissipative mechanism. For
this purpose, a finite element model in which a row of nonlinear
softening springs model the behavior of cohesive layer is employed. We

encounter a numerical difficulty which seems to require as remedy the



imposition of additional constraints on the manner by which the springs
are allowed to deform. The finding and discussion regarding this

attempt are documented in the Appendix.
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PART I

THE ROLE OF DAMAGE-SOFTENED MATERIAL BEHAVIOR IN
TOUGHNESS AND FRACTURE OF COMPOSITES AND ADHESIVES



NOTATION
Lower case:
b = beam width
d = foundation (cohesive layer)
thickness

= beam height (thickness)
k = elastic foundation spring stiffness

= c¢rack length

g = q(w) = cohesive (foundation) restoring
force per unit beam length
w = w(x) = vertical displacement of the beam
X = horizontal cocrdinate (measured
along the undeformed beam length)
Upper case:
A,B = constants
C=46/p = (secant) compliance
E = elastic modulus of the beam
Eb = beam bending energy
Ec = elastic modulus of the cohesive
foundation
Fc = critical nodal force at which
unloading starts
G = energy release rate
I= bhs/ 12 = moment of inertia of the beam section
KI = Mode-I stress intensity factor
L = beam length
M = M(x) = bending moment
Mc = bending moment at the crack tip
N = power law exponent (in the equation

C=alN)



P = applied end load
S = S(x) = shear
SC = gshear at the crack tip
W = work done by the end load P
Wé = work done against the interface
forces (in the ideal case)
= energy dissipated in the
cohesive interlayer
greek:
o = gize of the yield zone
1
= (k/4E1)?
= fracture energy = area
under g-w curve {(exact value)
§ = fracture energy as calculated
from equation (2.16)
8 = end displacement of the beam

n = potential energy



Subscript:
)c = | )Crack (for propagating crack)

( )t = | )tip (for stationary crack)

{ )u = { )unloading

Gy = Ulyierq

Superscript:

[ LA S L G L { )(4) = first, second, third and
fourth derivatives of ( )
with respect to x, respectively

{ )* = dimensionless form of ( ).

= x/d g =qd¥/E

w = w/d P* = sz/EI

€K

1 = 1/d M = Md/EI

h = h/d y* = vds/EI

b* = b/d Y5 = 4a8/E1

[E 1
_ - £{(d13

8§ = 8/d c, =12{EJ!W



ABSTRACT

Failure méchanisms of materials under very high strains experi-
enced at and ahead of the crack tip (such as the formation, growth and
interaction of microvoids in ductile materials, microcracks in brittle
solids or crazes in polymers and adhesives) are represented by one-
dimensional, nonlinear stress-strain relations possessing different
post-yield softening (unloading) behaviors. These reflect different
ways by which the material loses capacity to carry load up to fracture.
A DCB type specimen is considered in this study. The nonlinear
material is confined to a thin strip between the two elastic beams
loaded by a wedge. The problem is first treated as a beam on a non-
linear foundation for which the pertinent equation is solved numeri-
cally as a two-point boundary value problem for both the stationary and
the quasi-statically propagating crack. A finite element model is then
used to model the problem in more detail to assess the adequacy of the
beam model for reduction of the experimental data.

It is found that the energy release rate1
G = 2(yb) = {(3P25)2/ EI}l/3 derived by assuming the built-in condi-
tions at the crack tip could be used to calculate the fracture (sur-
face) energy more accurately and conveniently than the conventional
scheme even in cases where the built-in assumption is invalid. Results
for the deformations of the beam prior to or during crack growth sug-
gest wéys to approximately characterize the complete material stress-
strain behavior, including loading and strain-softening characteris-

tics.

1. See table on Notation for definitions of symbols.




1. INTRODUCTION

The double cantilever beam (DCB) specimen has been extensively
used in crack propagation studies due to its simple geometry which is
attractive from both the experimental and theoretical standpoints.
Berry [1] investigated the implications of the Griffith fracture cri-
terion for the DCB specimen and showed that for the built-in beam,
fracture initiated when the moment at the crack tip reached the criti-
cal value M_ = PI = \|2EIyb and that 3P%6 = (2yb)®? \|EI. Bilek and
Burns [2] in their dynamic analysis derived the same equations through
the application of Hamilton's principle for nonconservative systems.
Similar results were also obtained by Steverding and Lehnigk [3] using
a different approach. Xanninen [4] emploved a beam on an elastic foun-
dation model to relax the built-in constraint and later [5] extended
his analysis to the dynamic case introducing a Timoshenko beam on a
generalized elastic foundation model to account for shear deformation

and rotary inertia.

In the present work, we generalize the foundation to a nonlinear
one characterized by an initial linear elastic stress-strain relation
and an unloading tail reflecting loss of load carrying ability. Subse-
quently, fracture occurs at some critical strain where the foundation
stiffness drops to zero. Thus the model allows the crack to propagate
without any additional prescription of a failure criterion, so that the
nonlinear DCB analysis becomes a potential tool for determining the
nonlinear material characteristics of the bond-interlayer. As complete
stress-strain characterizations of real materials are not yet avail-
able, we resort first to some idealized (hypothetical) material models
in an attempt to extract from the solution of the problem certain
measurable macroscopic quantities that might allow us to char;cterize
the complete material behaviﬁr in the continuum sense: In this we
assume that a sufficiently large number of microveids, microcracks or
craze fibrils are present in each tiny volume element under load at the

"crack front" such that the damage-induced 1loss of load carrying



capacity can be meaningfully averaged and represented as a continuum
response; Studies involving porous and damaged materials are numerous,
for instance McClintock [6], Gurson [7] who developed approximate vield
criteria and flow rules for dilatant ductile materials; Needieman [{8],
Berg {[9] who proposed a continuum model for plastic deformation of
microporous metal aggregates; Rice and Needleman [10] studied metals
with constitutive dependence on hydrostatic stress (which promotes wvoid
nucleation and growth) in sheet metal forming processes; Xrajcinovic
{11] presented a constitutive model for material containing flat planar
microcracks such as concrete; see also Dougill {12], Rudnicki [13] and
Bazant [14]. In our studies we are primarily interested in the non-
linear response of homogeneous or multiphase polymers such as those

used in advanced composites and adhesives.

To simulate crack propagation in our finite element study, we
employ a scheme different from the ones proposed thus far. The usual
node release methods proposed by Andersson {15], Kfouri & Miller [16],
Rydholm et al [17] and Malluck & King [18, 19] permit only a single
node to be released at a time by reducing the reaction force at the
crack tip node over several steps in some prescribed manners when a
fracture criterion, such as a critical crack tip opening displacement
(CTOD) or crack tip opening angle (CTOA), is reached. These methods
require continual external monitoring and interruptions of the computa-
tions which become very time-consuming and inconvenient for simulation
of crack growth over distances of ten or more elements. Hoff et al.
[20] introduced a technigue employing spring and gap elements to cir-
cumvent this problem, the method requires a subroutine to control the
openings of the gap elements and thus does not put crack propagation
under total control of the external loadings. In this étudy, we use
nonlinear springs that have no restraining forces beyond a. certain
critical strain to imitate the failure characteristics of the cohesive
material in the interlayer. Thus when a nonlinear spring joining a
node along the crack path to the foundation 'fails', a node is released

and the crack advances. 1In this way, crack propagations over distances



of tens qf elements (or more} are easily simulated requiring no exter-
nal monitoring‘whatsoever. Clearly, this 'nonlinear spring' technique
can be advantageously adopted as a node release mechanism in more gen-
eral situations provided the nonlinear characteristics of the "springs"
are properly chosen. As an example, to release one node at a time when
a critical nodal force FC is reached (Kanninen et al. [21] showed FC to
be relatively constant during stable crack growth), the springs should
be made infinitely stiff for nodal forces below FC and may be given any
unloading characteristics desired.2 We have attempted to model gquasi-
static crack growth in elasfic—plastic materials characterized by the
32 incremental theory of plasticity but without much success. The dif-
ficulties encountered are documented in the Appendix. 1In dynamic (not
necessarily steady-state) problems, this method is still applicable so
long as the separation of the crack faces is monotonic (so as not to
generate spurious vibrational behaviors). In this event, the loading
history directly and fully dictates the crack growth history, i.e.,
initiation, growth and arrest. Lastly, for springs with finite initial
stiffness such as the ones used in this study, the proposed method
allows several nodes to be simultaneously released and thus simulates

crack growth in a continuous and realistic manner.

The present problem is considered as a precursor to the more gen-
eral one wherein a yield criterion based on a strain softening material
is used. 1In that more general case one needs to be concerned with the
highly triaxial stress state at the crack tip as well as with the
consequences of locally unstable material behavior on global stability.
In cases where the process zone is 'narrow' compared to the size of the
specimen considered, a ‘'boundary layer' type model in which the

damage~softened material behavior is confined to a thin layer adjacent

2. The wunloading tail ({force-displacement relation with the force
decreasing from F_ to zero) might be patterned after any of the
usual node release” schemes. Note also that for cases where we do
not have a cohesive layer, the springs must be infinitely stiff in
compression since the nodes along the crack path cannot have nega-
tive vertical displacements by virtue of symmetry.



to the crack plane may prove toc be a realistic and yet computationally
inexpensiﬁe scheme for studying crack growth. Certain rubber toughened
materials seemtto obey this model very closely. O0Of course, much work
remains before the appropriate continuum models for enigneering materi-
als of interest are experimentally identified and numerically verified

under a wide range of loading conditions.

In Section 2, we discuss the problem of the beam on a nonlinear

foundation, its numerical solution schemes and the results for both

3

stationary and propagating cracks. The finite element model is

presented in Section 3 and is followed by comparisons with the bean
equation model in Section 4. Applications of the findings are demon-

strated in Section 5, with conclusions summarized in Section 6.4

3. 1In the present investigation, no inertia (dynamic) effects are con-
sidered, therefore 'propagation' refers to 'guasi-static' propaga-
tion throughout.

4. A few other relevant works are given at the end of the list of
references.
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2. THE BEAM ON A NONLINEAR FOUNDATION MODEL

The model and relevant problem definitions are depicted in Figure
1. The equation for a Bernoulli-Euler beam (with constant EI) resting

on a nonlinear foundation is

4
E1 4.¥ -
ah + gq(w) =0 (2.1)

where E is the Young's modulus of the beam, I = f%bha (for rectangular
cross section), w is the vertical displacement of the beam neutral
axis, and g(w) is the nonlinear restoring force per unit length of the
foundation. We consider q(w) such that, typically, the small strain
response corresponds to an "elasticity" modulus that is approximately

an order of magnitude smaller than that of the beanm.

Equation (2.1) is to be solved subject to boundary conditions at
the loading end and at a distance far away from the loading end where
the conditions are those of a semi-infinite beam on a linearly elastic
foundation. This may always be assumed if the 'uncracked portion' of
the beam is longer than two to three times the exponential decay length

{1/B; see equation (2.2)).
2.1. Solution Schenmes

The eqgquation to be solved is nonlinear and involves boundary con-
ditions at two points. A standard technique is the shooting method
[22], which seeks the proper boundary conditions at one end point that
also satisfy the boundary conditions at the other end point by Newton's
iteration based on the Jacobian matrix formed by the miss—hitg at the
other end point and the current boundary conditions chosen at the first
end point. The usual difficulty encountered is in obtaining conver-
gence without requiring an excessive number of iterations; the rate of

convergence depends strongly on the proximity of the initial guess of
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Figure 1. Problem definition of the geometry and material parameters.
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the boundary conditions at the first end point to the correct boundary

conditions.

In the present problem, we take advantage of the existence of the
solution for the beam on a linear foundation by starting the integra-
tion ‘from the region where the foundation response is linear and an
analytical solution is available. We integrate up to the crack tip
beyond which the beam is free of surface tractions except for the very
end. For this unloaded section a simple solution can again be
exploited. For convenience ﬁe set up our coordinate system as shown in

Figure 2.

The solution for a semi-infinite beam on an elastic foundation

(i.e., g(w)=kw in (2.1)) with boundary conditions
W(e) = wife) = w'(e) = w''(e) =0
is of the form

w(x) = e BX(AcosBx + Bsingx) (2.2)

and A, B = constants.

To start the integration of equation (2.1) from the elastic foun-
dation region, we observe that the choice of the starting point is
arbitrary; for convenience we may, therefore, choose x to be zero such

that
w(0) = w (2.3a)
w'(0)=0 (2.3Db)

which yields A = B = w0 and



[ ] — 2
w''(0) = -28 W, (2.3c)
W'tt(0) = 4p8 W (2.3d)

Note that it is fastest to integrate from W, < 0 into the nonlinear
region (see Figure 2), and that W, has to be such that no yielding
occurs in compression at the starting point x = 0. In this work, we
assume that the yield strain in compression is equal to the yield
strain in tension. It should be pointed out that by starting the
integration from conditions derived from (2.2), we are guaranteed an
exponentially decaying solution as x + + «; this would not necessarily
be the case if one were to start the integration from the loading end
as any small error in the initial guess could cause the components of
solution with terms proportional to eBX to enter and make the solution
unbounded as x + + «. Thus a poor initial guess at the loading end

could result in extremely slow convergence or no convergence at all.
2.1.1. Stationary (Non-propagating) Case

For this case we seek the solution for a geometry with a pre-cut
crack of length 1 under increasing load P to the point where crack pro-

pagation is imminent.

We obtain the solution by integrating5 until g = ig = 1 (with less
than 0.1% error), here S is the shear for the free part of the beam, P
is the end load, and M is the moment. We then obtain the rest of the

solution from (see Figure 2)

3 .
8 = g%f WL+ W (2.4)

5. The subroutine MODDEQ of the Caltech Computing Center which employs
the Runge-Kutta-Gill method is used to solve a system of four
first-order differential equations equivalent to equation (2.1).
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Figure 2 Solution Schemes
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where We = Weip S Wg o jw'¢| is the slope of the neutral axis at the
crack tip. When w, - W, , we reach the point where the crack is about
to grow.

2.1.2. Quasi-static Propagation Case

Here the scheme is to integrate along x until w = W, (with less

than 0.001% error) and then calculate the crack length and end condi-

tions from: (see Figure 2)

P = -S,,
M
c
1=p’
P13
8 = Gp7 + W' Il + W, (2.5)

where Sc and Mc are the shear and moment at the crack tip, respec-

tively. |wé| is the slope of the beam at the crack tip.

Other quantities such as the bending energy in the bean, Eb , the

total work done, W, the work done on the interlayer, Wc the size of

the yield zone, o = IxC - xyi , and the 'secant' compliance, C = &/p ,
are readily computed. Note that for a nonlinear system, such as the

one we are dealing with, it is appropriate to define the compliance C

as C = gg ; however in the present study, we intend to compare our
results with previous findings in other studies where C has always been
defined as the secant compliance which, strictly speaking, is only
correct for linear systems. As there is no obvious advantage in employ-

ing the more general definition here, the usual definition is used.
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2.2. Nondimensionalization

For presentation of the results it is useful to non-dimensionalize

pertinent parameters. We choose the cohesive layer foundation thick-

ness, d, as the natural length scale. For the elastic foundation

region, we have

AW = b - (Eg epp) = Eg[g) b

where E. is the elastic (small strain) modulus of the cohesive founda-

tion. Equation (2.1) becomes

(E_ b)
EI W(4) + §-Ee] w=20
¢ d
q
w/d
pra(od) L, o m
d(x/d)4 a3
Define
oW ¥ _X
e
so that (2.1a) becomes
(4)
w® "1w*=0»

with

Other dimensionless quantities are easily formed; they are

{2.1a)
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8" = 8/4, ¥ = 1/d, n* = n/d, b* = b/d
* _ga® p* - pd? M* = Md x _ &
a = %1 = EI’ = ED ¢ = o

3
*
and ¥y = %ﬁf is the non-dimensionalized fracture energy (= area under

the g-w curve).
2.3. Results and Discussions

. The following set of data is used throughout: E is chosen as the
Young's modulus for Aluminum 2024 which is equal to 10.6 x 108 psi.

Ec' the small strain modulus of the cohesive interlayer, is taken to be

* —_
1.41 x 10% psi. Also h® = h/d = 10.0. These yield, C, = 1.6 x 10 4,

2.3.1. Stationary Crack Results

Here we present results for two subcases. In the first case, the
materials studied possess the same fracture energy. In the second
case, materials with more varied -w characteristics but different

fracture energies are used.
(a) Different material models with same 'y*

The material models® ghown in Figure 3 are intended to examine the
effects of various nonlinear material characteristics on the measurable
macroscopic guantities. The results are presented in Figures 4-8. In
Figure 4, the dashed lines exhibit the effects of the high compliance
due to initial low foundation resistance which subsequently increases
and becomes fairly constant as the yield zone, o , grows. (Thus the

compliance decreéses and then levels off.) These dashed portions are

6. The solution technigue is capable of handling general nonlinear
g{(w), even though we only consider here piecewise-linear material
models.
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Ma’rerial Models

(All models have the same )’*)

q) ]
q‘; Wy= 1.0%
) W*C = |0.0°/o
olo 10.0 w’x(%)
* o
W y = |.O Yo
w', = 5.5%
W”c = |4,5°/o
O‘I.O 55 14.5 V?(%)
q!
ay wy =w’ = 1.0%
i w% = 19.0%
: =
C1|£) 19.0 Vv*(eéﬂ
*
q W*y = 0.5%
q*
d w. =19.25%
H —
O‘—O-S |9.25 w* (o/o)

Figure 3. Material models (1, 2, 38 and 4).
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approximately éxtrapolated based on the compliance values from Figure

5. Clearly, the existence and the gradient of an unloading tail (as in
materials 2 & 8) can be easily identified in any of these five plots as
the onset of crack growth is approached, i.e., as w* -+ w:. This fact

t
can be used to approximately characterize g(w) from experimental data.

1

* Ed

In general, the compliance, C , the slope at the crack tip, —wt , and
* .

the size of the yield zone, o , are all monotonically increasing func-

%
tions of Wc.

We shall discuss the application of this finding in connection

with the characterization of g(w) in more detail in Section 5.2.
*
(b) Additional material models with different vy

Here we examine the material models A, B, and C in Figure 9, and
show the gqualitative results7 in Figures 10-14. The figures exhibit

the same features as discussed in Section 2.3.1a.
2.3.2. Quasi-static Propagation

Before dealing with the nonlinear case we consider first certain
results for the idealized situation where neither the interlayér nor
the elasticity of the beam allows rotation of the 'built-in' end. We
first derive the equations mentioned in Section 1 for the built-in bean
case. Here the coordinate system is such that the load P is applied at
X =0, w{o) =38 and w(l) = w'(1) = 0. We have for this "idealized"

case,

3 .
6 = == . (2.6)

7. The curves are from actual computations but the scales for each
curve A,B, and C are somewhat different and hence no scales are
included in the Figures.
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Material Models
(Al models have different y*)

W;= 1.0%
wi=12 %

we= 30.0%

W*o/o
. W= 10%
qu - *
: w,=17.0%
, ; we= 27.0%
9y fr | R
I,
0/1.0 {70 270 W%
% .
q
y ‘ W;= 1.0%
wy= 5.0%
wi=35.0%
* |
E’:qy i
* !
Wy o -
o/[l0 5.0 35.0

w %

Figure 9. Material models (A, B and C).
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. and
3
B - MElg o 2 24 2200
b £ 2E1 2ET 7 BEI (2.7)
Griffith Condition: The energy release rate, G, is obtained from

the potential energy nm of the system (both beams of the DCB specimen

considered and hence the factor two) as follows

P213

- _On ) d .
G = - e —_ = —m=l- =
31 = “372lE,-P8] = —55(-2 %5 2vb

Thus one has

G = 57— = 2vb
Hence the moment at the crack tip required for crack growth Mc is

M. = P1 = \|2EI¥b (2.8)

with the dimensionless form

M: = \|2y*b* : (2.8a)
Upon writing (2.6) as
3
3 = {P1)
3EIP®
and using (2.8) one has
3

M 3/2
5 o e _ (2y) ™/ A\)ET

3EIP2 3p
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from which follows that
3P2§ = (2yb)3/2 \|ET (2.9)

Rewriting (2.9), one obtains

1/3
2y = 1 {‘3226!2 1
b EI (2.10)

or, in dimensionless form

* _ 1 *2,%,2/3
2y g; (3P €8 °) (2.10a)

In order to study how a certain quantity changes as the crack pro-
pagates quasi-statically, we denote the derivative with respect to
crack length 1 by géjl|qs. Note that P is not constant as 1 increases
but decreases such that gquasi-static crack growth is maintained.
Adopting this convention and using (2.7) and (2.8), there follows (here

only half of DCB specimen is considered)

Mf‘;l b
-t = (YD
b~ eEr - (3)1
whence
dE
_b b
dl lqs = %T (2.11)

For this ideal case let us call W. the work done against interface

forces® which is related to the fracture energy vy by

8. When we deal with the cohesive interlayer, W_ denotes the energy
. - c
dissipated in the interlayer.



We = (¥b)1
therefore
dw,
‘d‘flqs = vb (2.12)
. . 6
Let W be the total work done by P, i.e., W = ! Pdé , or dW = Pdé. Then
0
in view of (2.6)
M 12
3§ = -C
3EI
hence
a, %l
di'qgs 3EI
consequently,
2M_P1 2M2
c I

dw| _ ngl _ - .
gqs ~ "dl'qs = S3EI 3EI

In view of (2.8),

4

Combining now (2.11), (2.12), and (2.13) yields

o, 1 aw,

dl 'as ~ 4 dl'gs

aw

) - 3 dW

dl ‘qs T4 dllqs (2.14)



-3d

Thqs‘we find that for the idealized (built-in) case, 25% of the
total work done is stored in the beam as bending energy while 75% is
dissipated as fracture energy at the interface. Note in passing that

in this idealized case the stress intensity factor is
Rp = (2\[307%2)p1 = (2\(307%2)n_ (2.15)

But by (2.8), Mc = f{vy,EI), therefore KI is a constant as is G (the

energy release rate).

Having considered this ideal case we move now to consider the
situation where the nonlinear foundation allows both the displacement
and the slope at the crack tip to be different from zero. The numeri-
cal results® in Figure 15 show that the P-8 relation depends only on vy

and EI as suggested by equation (2.9) derived for the idealized case.

Figure 16 indicates that Mz depends weakly on w: and on the existence
of a strain softening tail. The slope at the crack tip, —wz' , is
plotted in Figure 17 as a function of l*/ h*. It is seen that —w2'
depends strongly on w:. The yield zone size a* is shown to decrease

* * *®
and become constant as 1 /h increases in Figure 18. Also, «

increases monotonically with w:, In Figure 19, P*B*% is shown to
approach a constant value as 1*/h* increases. In view of eguation (2.9)
and the behavior of P*(S*s'z exhibited in Figure 19, it seems possible
that the fracture energy y may be approximated by equations of the same
form as (2.10) and (2.10a). With this in mind, let

1/8
ey st

9. Here material #2 was not investigated, as we did not expect the use
of its characteristic to contribute any more insight into the prob-
lem.
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S* _ 1 *¥2 . %,9/3
&y = oF (3P°%87) (2.16a)

In Figure 20, we show the ratio of §*, the fracture surface energy as
computed using equation (2.16a), to the exact value 7* as calculated
from the area under the gq-w curve of the input data. Note that the
vertical ordinates in Figures 19 and 20 encompass very narrow ranges of

values.10

In these non-ideal cases, it is found that equations (2.9)-(2.14)
remain valid with small errors which decrease rapidly with increasing
crack length. The reason for this behavior is that the crack propaga-

tion has reached a steady state (or asymptotic condition) in the sense

. ]
that neither o nor ~W, is changing much. To see this consider the fol-

lowing argument:

For the idealized case, equation (2.10) can be written in func-

tional form as
F(P, 8, v, EI) =0 (2.17)

Note that the crack length 1 does not appear explicitly as it is
already fixed by specifying both P and 8. In the event that the sup-

port rotates (the nonlinear foundation case), the only additional phy-

1

sical parameter 1 .that could be invelved in (2.17) is wé, however

dwc

:frlqs << 1 for 1/ h 2 5 (see Figure 17). 1In other words, the slope at
the crack tip hardly changes as the crack propagates. Therefore (2.17)

10. The accuracy of these results is demonstrated in Section 2.3.3.

11. Note that we may disregard W_ a5 an additional parameter since it is
a constant for a given q(w) tnder consideration. It should alsc be

pointed out that in all cases considered |w'1 is very small (<
0.014) i.e. less than 0.80° in rotation at the crack tip, but the
contribution of this small slope to the end displacement 8 is not at
all negligible, for instance, by equation (2.5) for 1/ h = 10,
h/ d = 10; $WC|1 = 0.38.
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still holds.(approximately) for 1/ h =2 5.

One could also think of the built-in case as a special case where
q(w) = yé(w) = a delta function of magnitude vy and wé = = 0. Thus
for general q(w), we only need to reach steady state (asymptotic condi-
tions. for long crack) where Wé and o« are approximately constant for

equation (2.17) to hold.
2.3.3. The Long Crack Limit (Asymptotic Conditions)

The rate with which one approaches the asymptotic conditions is
exemplified in Table I below. Material 1 with characteristics shown in
Figure 3 is used. Let the subscript i denote the number of cases in
the table. We take case 5 (1/ h = 60.0, see Table I) as approximating

the asymptotic conditions when 1/ h tends to infinity; this is reason-

(M) ¥
able since c’S 0.97 and L 1.00007 where
(MC)oo Y
M _ _ ~ . . .
( C)oo = (Mc)idealized = \tZEIyB and vy is computed wusing equation
(2.16). Also, for convenience, let Ri = (pal/z)i
Table I
' ~
i l1/n oA (wg)y Mgy Ry LES
% (w' (M.)s  Rg ”
c)s ¥s
1 2.0 1.21 0.80 0.53 1.02 1.03
2 5.0 1.11 0.90 0.75 1.006 1.008
3 10.0 1:05 0.95 0.87 1.002 1.003
4 20.0 1.02 0.98 0.94 1.0004 1.0005
5 60.0 1.0 1.0 1.0 1.0 1.0

Clearly, o and Wé approach their asymptotic values at about the
same rate which is about two to three times faster than that for Mc
whereas § as computed by using equation (16) reaches its correct value

with less than 1% error far sooner than «, wé, and M.. Therefore y can



be determined with high accuracy and great convenience from equation

{2.16) even for the case where 1/ h = 2.
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3. FINITE ELEMENT MODEL

The finité element program ABAQUS (version 4) running on a VAX-
11/780 was used to model the beam and the nonlinear foundation. We use
4-noded bilinear plane elements to model the beam, and nonlinear
springs restraining vertical motion of the beam to model the founda-
tion. The 4-noded element is chosen for convenience in discretizing
the foundation and in interpolating to 1locate the crack tip. The
force-displacement relations of the nonlinear springs are patterned

precisely after the material models shown in Figure 3.

The discretization of the foundation is accomplished by attaching
two identical nonlinear springs with total restraining forces equal to
that of a continuous foundation to the bottom two nodes of each element
of the beam at the interface. (For 8-noded biquadratic elements, this

simple scheme would not work.)

The three meshes used for the beam are shown in Figure 21. Mesh
#1 has 402 elements, 67 springs, 476 nodes, and a total of 952 degrees
of freedom with the smallest element size of 0.1h x 0.05h. Mesh #2 has
540 elements, 90 springs, 637 nodes, and 1274 degrees of freedom with
the same smallest element size as Mesh #1. Mesh #3 has 480 elements,
120 springs, 605 nodes and 1210 degrees of freedom with smallest ele-
ment size of 0.25h x 0.1h. (For Mesh #2, an iteration takes approxi-

mately 75 CPU seconds and each increment requires 2 or 3 iterations.)

Mesh #1 is designed to capture the displacement details around the
crack tip for 1*/ h* = 10.0 while mesh #2 is intended to study a
shorter specimen and shorter crack lengths, i.e., 1*/ h* < 3.5. Mesh #3
is a more uniform mesh than the previous two and gives better results
for a larger range of l*/ h* (from 0.0 to 10.5). It is of interest to
note here that for identical end displacements (6*/ h* = 0.29), mesh #3
renders l*/ h* = 9.65 while Mesh #1 gives l*/ h* = 10.05, an error of

4%:. More on this in Section 4.
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Beam on Nonlinear Cohesive Foundation

Finite Element Meshes

h
p L=17h
Mesh # |
h
=) L =9h
Mesh #2
h
P L=16h
WA | Mesh #3
ot
0 X

Figure 21. Finite element meshes.
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The loading is done by prescribing the end displacement (8) at the
first node on the bottom line of the beam; the reaction force is then
equél to P. The - crack length is obtained by linear interpolation
between a node where w > W, and an adjacent node where w < w,. (This
convenience would be lost if 8-noded biquadratic elements were used.)
Convergence is considered attained when all forces at all nodes except
those with prescribed displacements fall below 0.2% of the typical
actual force values (in this case P). Since the beam is linearlybelas~
tic and the nonlinear springs simply supply the proper boundary condi-
tions, the typical residuals for the convergent solutions are

_ 10—14

P which were much smaller than the set tolerance.
Besides the results presented in Section 4, the contours for the
stresses in the beam were also plotted. We omit them in this report as

they do not contribute to any new insights.
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4. COMPARISONS OF RESULTS OBTAINED FROM THE BEAM EQUATION
AND FROM THE FINITE ELEMENT STUDY

In this section, the effects of including shear deformations
accounted for in the finite elementvmodel but neglected in the beanm
equation model are examined. The finite element results show that,
excepting the beam end where the point force is applied, the stress
components 612 and Gog in the beam are always less than 10% of the max-
imum value of 611. The maximum equivalent (von Mises) stress in the
beam only reaches a value = 0.53 Gy'where ¢ is the yield stress for

Aluminum 2024 = 50. x 10°

psi. For beams that are made of materials of
low yield stress one must ensure that no vyielding occurs for the

present analysis to be applicable.

All comparisons shown here are for material model 3 only (see Fig-
ure 3). In Figure 22, the displacement contours of the top center and
bottom of the beam are compared with the solution to the beam equation
{(the neutral axis or center line displacement) at the same crack length
to determine if experimental measurments can be taken at the top of the
DCB specimen instead of at the bottom (interlayer) where it would be
more difficult to measure without incurring unacceptable errors. Fig-
ures 23 and 24 give the actual and the percent differences of the two
results. It should be noted that the percent differences increase
rapidly for x*/ h* > 11.0 where w* is very small and the mesh becomes

coarse.

The P*—B* relationships obtained from both methods are compared in
Figure 25. The finite element results for Mesh #2 and #3 give also the
P*—é* points before crack propagation commences ( the peak in the upper
left hand corner). The best matching is obtained by using a uniform
mesh (#3). Figure 26 shows comparison for P* versus l*, and Figure 27

% *
d versus 1 .
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The stress distributions in the cohesive foundation are compared
in Figuré 28 and again show good agreement. The stress distributions
with the crackztip'as the origin for different crack lengths are com-
pared in Figure 29, and it is clear that with increasing crack length

the size of the yield zone decreases.

Next, we compare the finite element and beam equation results to
examine discrepancies in the calculated crack lengths and end loads for
the same end displacements. It is found that the beam equation
predicts crack lengths slightly larger than the finite element values
by less than 2% for 2.5 < l*/ h* < 8.5. This 1is expected because
shearing in a real beam {(as modeled by finite element) allows more
vertical deformation (sagging) than in the Bernoulli-Euler beam mrodel

where shearing is neglected. (See Figures 30 and 31).

In Figures 32 and 33, the errors in the predicted end loads
required to obtain the same end displacement are plotted versus the
actual end displacement and crack length (finite element results)
respectively. Here the shear stress allowed in the finite element
model makes the structure stiffer and thus higher end 1load P is
required to displace the end to a given displacement 6 than for a beam

under pure bending without shear deformation.
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5. APPLICATIONS

We now discuss two practical applications of the findings, one is
a simpler method for determining the fracture surface energy, the other

which is the primary goal of this study, is the characterization of

q(w).
5.1. Surface Energy Determination

As the results for the propagating crack in Section 2.3.2 suggest
(see Figure 20), equation (2.16) can be used to calculate y more con-
veniently and accurately than the conventional scheme proposed by Berry

[23], outlined as Method (A) below, even when the built-in conditions

are not valid.
Method (A): Assume

al

e
i
"oioe
I

where a is a function of EI. Plot log C versus log 1 and determine the

slope N. Then the energy release rate G is

G = 2yb = NP3
1
Here, we shall adopt the notations

Apparently, one needs to measure several sets of P,8 and 1 to be

able to determine N accurately from the plot of log C versus log 1.
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Method (B): The method we propose is simply the application of equation

(2.16),12'i.e. we henceforth let,

(2,218
{ EI J (B)

where V(B) is simply & defined by (2.16).

For comparison, both schemes are applied to experimental data on
composite delamination taken from H.Chai's Ph.D. thesis [26]. The

details are given below:

12. This method was proposed and used earlier in [24,25] for cases where
the 'built-in' conditions are assumed to be valid.
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7

Material: Composite T300/5208, E = 1.9 x 10' psi

Set A #1:.N = 2.68, h = t/2 = 0.119 in, b = 0.205 in.

Y aa -5 . 4 ~ .2
I =2.88 % 10 in~, (EI)A#1 = 547.0 1b-in
(A) () | a2y
1/h P(1b) 1(in) 8(in) 2y 2y L
2y (B)
22.83 3.05 2.65 0.105 1.58 1.22 1.30
24.9 3.12 2.96 0.135 1.86 1.49 1.25
33.8 2.31 4.02 0.220 1.65 1.38 1.20
44.9 1.75 5.34 0.375 1.61 1.36 1.18
47.6 1.82 5.67 0.425 1.78 1.56 1.14
52.5 i.50 6.25 0.480 1.51 i.31 1.15
56.9 1.42 6.77 0.540 1.48 1.31 1.13
62.8 1.37 7.47 0.690 1.65 1.47 1.12
2'Yave_(lb/in) i1.65 1.39
Standard
Deviation 0.12 0.10
(A)
2y
—2aV€ _ 4 190
2y (B)

ave
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ave

Set A #2: N = 2.85, h = t/2 = 0.118 in, b = 0.217 in.
v -5 . 4 _ . 2
I = 2:97 x 107 in®, (EI),,, = 564.5 1b-in
(A)
1/h P(1b) 1(in) 8(in) 2y (A) 2y (B) 2y~
gn (B)
¥y
23.1 3.70 2.72 0.115 2.05 1.57 1.31
30.7 2.65 3.62 0.170 1.63 1.31 1.24
39.6 1.85 4.67 0.250 1.30 1.05 1.24
45.9 1.62 5.42 0.350 1.37 1.10 1.25
53.8 1.43 6.35 0.475 1.40 1.14 1.23
59.7 1.38 7.05 0.625 1.61 1.30 1.24
66.5 1.29 7.85 0.770 1.66 1.37 1.21
ZVave(lb/ln) 1.57 1.26
Standard
Deviation 0.24 0.17
2V g0
-"rgs = 1.25
27ave
Sets A #1 and A #2
(A) (B)
27, (1b/in) | 1.61 | 1.33
Standard
Deviation 0.19 0.15
(A)
2'Yave
—“TET = 1.21
2y
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To check the validity of Berry's assumption, we plot 10g10 c* Vs
log10 (1*/h*) in Figure 384, it is seen that the straight line approxi-
mation as propbsed by Berry is valid only for a finite range of
log10 (1*/h*). This can be seen more clearly by plotting N versus
Figure 35 shows that N increases with l*/h* and approaches
N = 3 which corresponds to the idealized case (see equation (2.6)) as

* %
1/h » w,

We also calculate G based on method (A). Using a continuously
varying N (as shown in Figure 35), the results are very accurate but

still less accurate than the straight forward application of equation

oA (3

* %*
(B). As an example, for 1 /h = 60,—?;— = 1.001 and . 1.0001,

where G = 2vb.

When we simply pick an intermediate value of N and use equation

(A), it is obvious that greater errors would result. 13 Keeping this in

g3 L. (8)
= —~— in the last column of the Appendix. The
6(A) 5y (a)

%k
surprisingly monotonic decreasing trend with increasing 1 of the above

mind, we compute

ratio in both data sets A#1 and A#2 suggest that somehow high values
for N's (N = 2.68 and N = 2.85) corresponding to long crack length were
obtained from the log C versus log 1 plots.

A word of caution is in order, as the experiments from which the
data are taken were done on nonsymmetric DCB speciments, i.e., the
heights of the two beams were not necessarily equal, due to lack of
more detailed data, we assume 6 to be the average of the sum of the 6's
of each beam. Figure 36 taken from reference 26 illustrates the points

made. A fractured specimen is shown in Figure 837.

13. The fact that we find N in Berry's method to be a function of 1
indicates that the power law assumption is erroneous (as should be
the case since a theoretical basis is lacking in the first place)
and that our proposed method is inherently more accurate.
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5.2. Characterization of q(w)

We next discuSs how the nonlinear characteristics of g(w) may be
determined to first-order based on. information gathered from basic
material testings and DCB specimen tests. The properties of q(w) we

are interested in are Ec’w W.,Y as well as the existence and gradient

y
of an unloading tail. We outline below the methodology by which the

characterization may proceed:

<4}

Ec and w_ can be directly taken from uniaxial tests. .

y

b. wc may be obtained from ultimate strain tension tests or optical

measurements of the displacement contour from the DCB specimen

tests.14

c. <y is easily computed using equation (2.16) or equation (B) as dis-

cussed at length in Section 5.1.

d. The existence and the gradient of an unlioading tail can be identi-

1
Yt
using DCB specimen test results for the stationary crack case (see

fied and estimated by plotting C, w and o as a function of P

Section 2.3.1a, Figures 5-8).

All these properties are sufficient to give a bound on the shape
of g(w). Refinements of this approximate characterization can then be
obtained by solving15 the beam equation for various assumed g(w)'s

(within the above bound) to better match the experimental results.

urements can be conveniently taken at the top surface of the beam
with less than 3% error over most portion of the beam.

15. We mention in passing that the solutions of the beam equation are
relatively inexpensive compared to the finite element solutions.
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| 6. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

We have shown how the problem of a beam on a nonlinear foundation
can be solved economically and that the simple model renders results
which compare well with more elaborate finite element models. We gain
insights into how the behavior of the system is affected by the non-

linear material behavior of the cohesive foundation.

The finding suggests a simple way to determine the fracture
energy. It also shows the shortcoming of the conventional method. The
approximate characterization of the complete shape of g(w) appears to

be possible.

As discussed in the introduction, the c¢rack propagation scheme
using nonlinear springs can be employed in more general situations with
great promise for example it can be used to investigate how brittle or
ductile material behavior (modeled by the spring characteristics)
affects the dependence of the stress intensity factor on the crack
velocity. (See the Appendix for further discussion on and results of
one such attempt.) It is also interesting to study crack growth  for
materials that soften (after an appropriate amount of hardening) and
fail under high strain using yield criteria and flow rules that account
for the failure mechanisms involved (in the continuum sense). Many
other problems along this line readily come to mind, all centered
around determining the proper continuum constitutive models for damaged

materials and applying the models to engineering problems of interest.
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PART 11

A NONLINEAR ANALYSIS OF AN EQUILIBRIUM CRAZE IN AN
INFINITE MEDIUM SUBJECTED TO SYMMETRICAL LOADING
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NOTATION

Dimensional Variables:

[ T

&3]

=1

M O EOE < < A4 v =2 =N

<

crack length

craze length

Young's modulus of the elastic medium
H(C,X,T) = Kernel defined by (2.11)

the integral defined by (2.6)

Mode-I stress intensity factor

M{(C,X,T) = kernel defined by (2.5)

cohesive stress or fibril restoring force
dummy variable

net vertical displacement of the craze/crack
boundary = W - wo

critical crack tip opening displacement (CTOD)

actual craze contour

: primordial craze contour

horizontal coordinate measured along the craze
major axis
vertical coordinate

far-field applied stress in the Y-direction

temperature

Reference Parameters (used for non-dimensionalization):

Cref

z:ref

ref

= Co = reference craze length
= E/2 for plane stress
= E/2{(1 - vz) for plane strain

2 .
= C & = refe SN E
ot pef reference energy
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Dimensionless Variables:

a = A/C

o
aO =, initial crack length of the precut crack in Section 7
¢ ' = C/C
0
or = gritical craze length defined by equation (7.1)
d = half Jength dimension of the infinite (large) plate
e = natural logarithm base
G = energy release rate
h(c,x,7) = the Kernel in equation (2.10a)
I{c,7) = the kKernel in equation (2.19)
m{c,x,T) = the kernel in equation (2.18)
b B P/Zref
Dm = Dugdale cohesive stress
R = the exponent in equation (2.13)
T =T/ C
o
Up = elastic strain energy in a plate with
no crack or craze
UC = energy required to form a craze of length 2¢
with an internal crack of length 2a
v = V/C
o
Ve = V¢/C,
w =W/ C
o
w = wO/Cq
X =X/ C
0
y =Y/ C
o = ¢-a = craze zone size
; _ ™
2pm
Ve
¥ = I p(v)dv
o
= area under the p-v curve
= fibril fracture energy
o’ =

Zw/zref



oy NS

I '= potential energy
Superscript:
{ } = time derivative of ( )
( )° = the initial guess of ( )
£
( )k = the k“? approximation of ( )
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ABSTRACT

This study investigates the effects of nonlinear fibril behavior
on the mechanics of craze and crack growth. We developed a numerical
method for determining the equilibrium shape of a craze in an infinite
elastic plane whose fibrils exhibit very general nonlinear force-

displacement (P-V) behavior, including strain softening characteris-

tics.1
The problem formulation is based on the superposition of the
relevant elasticity Green's function. The solution is effected by

using Picard's successive approximation iterative scheme. Both field
equilibrium and the Barenblatt condition for vanishing stress and
strain singularities (KI=0) are satisfied simuitaneously, rendering the
craze tip profile cusp-like as observed experimentally. The formula-
tion allows the stress distribution profile and the corresponding P-V
relation to be computed from experimentally measured craze/crack con-

tours with certain advantages over the methods proposed to date.

Further numerical investigations indicate that only certain
ciasses of the fibril P-V relations are consistent with realistic craze
profiles, i.e., profiles with nonnegative displacements at all points.
In addition, it is found that for a givén P-V relation, nontrivial

2

solutions® exist only for certain ranges of craze lengths depending on

the P-V characteristics under consideration.

Quasi-static growth of a craze with a central crack is analyzed
for different nonlinear P-V relations for the craze fibrils. A 'criti-

cal crack tip opening displacement' (CTOD) or more precisely, 'critical

1. See 'Notation' table for definitions of symbols.

2. The 'trivial solution' refers to the solution corresponding to a
fully closed craze, i.e., zero displacements throughout or, simply:
No craze exists.
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fibril extehsion' is employed as the criterion for fracture. The P-V
relation is fupther assumed to be invariant with respect to the craze
and crack lengths.. For comparison purposes, the results are compared
and contrasted with the Dugdale model. The craze zone size and the
energy dissipation rate are shown to approach asymptotic values in the

1imit of long cracks.

The problem of craze growth from a precut crack under increasing
far-field loading is then studied. - Instability is shown to occur in
the case where the P-V relation is monotonically softening: The crack
could start to grow unstably before the crack tip opening displacement

reaches its critical value.
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1. INTRODUCTION

When glassy'polymers are subjected to strains larger than about
0.2%, they begin to exhibit local 'plastic' deformation. Two distinct
procésses of plastic deformations have been observed, one being mainly
a shearing phenomenon such as diffuse shear yielding and localized
shear band formation, and the other being caused by cavitation and void
growth commonly called 'crazing'. The latter process is characterized
by a loss of intermolecular cohesion, molecular flow and reorientation
as well as a significant decrease in local density [1]. 1In this work,

we shall concern ourselves only with the phenomenon of crazing.

The subject of c¢razing has been extensively studied by both
material (polymer) scientists and applied mechanicians. Literature
addressing various aspects of crazing can be found in references 1
through 8. We shall discuss here briefly the pertinent physical con-

cepts and the motivations leading to the present investigation.

It has been recognized for some time that fracture in thermoplas-
tic polymers is usually preceded by the formation of crazes. Crazes
are formed in the bulk polymer along planes normal to the direction of
maximhm principal tensile stress. Crazes tend to nucleate at micro-
defects or inclusions and grow by the formation of fibrils from the
bulk polymer [4,5]. They thicken through a combination of two distinct
mechanisms: 'surféce drawing' and 'creep'. In surface drawing, new
polymer is drawn from the bulk into the craze in the form of fibrils.
In the creep mechnism, existing fibrils are simply stretched, mostly
locally around the weak portions. Note that although ‘'creep' impli-
citly signifies a time dependent process, we will exclude time con-
sideration from this work.3 For our purpose it is sufficient to recog-

nize that the interplay of these two mechanisms gives rise to an

3. For an analysis accounting for these two basic mechanisms, see a
recent paper by Kramer and Hart [9}.
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effective force-displacement (P-V) behavior which we consider to be
initially' prescribed. Here 'force' represents the cohesive stress
exerted by the fibril on the craze/bulk polymer boundary. 'Displace-
ment' refers to the net displacement of the craze boundary (see Section

2.1 for details).

Electron microscopy shows that the typical craze thickness is on
the order of 1 um and the length to thickness (aspect) ratio is approx-
imately 102 to 103. Crazes generally consist of a network of fibrils
between 10 to 40 nm in diameter, interspersed by voids of similar
dimensions. The transition boundary between a craze and the bulk poly-
mer where surface drawing takes place is very thin, i.e., less than 2
nm. Craze fibrils have been shown to exhibit considerable strength
[7,8]. Therefore, crazing could, under certain conditions, substan-
tially enhance the toughness of bulk polymers. However the presence of
crazes does not necessarily enhance the strength of the overall struc-
ture. In many instances, uncontrolled craze growth tends to induce
fracture, causing structures to fail 'prematurely'. For more in-depth
discussions on microstructures and properties of crazes, see references

5 and 8. Figure 1 shows a typical craze and its tip region.4

We next review briefly the analytical approaches that have been
attempted in modelling the crazing phenomenon to date. Barenblatt con-
sidered the problem of equilibrium cracks in brittle fracture [10];
even though the analysis was carried out in the context of cracks, the
basic propositions and concepts apply to crazes equally well. His pro-
position eliminates the infinite stresseé and strains at the crack tip
by incorporating cohesive stresses distributed over a cohesive zdne of
finite 1length such that the crack is in 'equilibrium' and th? stress
intensity factor vanishes. Assuming constant cohesive (yield) stress

in this cohesive zone, Dugdale derived a simple relationship between

4. The ;Ecrographs were taken by L. Berger and made available to us by
Professor E.J. Kramer.



(b)

Figure 1  Electron micrographs of a craze (a)
and its tip region (b).
(Courtesy of L. Berger and E.J. Kramer.)
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its size and the applied stress [11]; this study was then considered by
Rice in .greater detail wusing the rigid-plastic strip model [127.
Goodier and Fiéld calculated the rate of plastic work dissipation for
the same model with an added assumption that a crack propagates with a
self-similar geometry {13]. In this, the authors assumed that the
far-field stress remained constant during gquasi-static crack propaga-
tion; however, this assumption will be shown to be incompatible with
the critical crack tip opening displacement criterion employed in the

present work (see Section 6).

~Goodier and Kanninen introduced a crack propagation model using
noniinear atomic separation laws and indicated how the cohesive stress
distribution changed as the crack extended [14]. Atkinson proposed an
iterative scheme for solving axially symmetric problems relating to
cracks opening under a displacement-dependent internal stress without,
however, satisfying the Barenblatt condition [15]. Andersson and
Bergkvist solved a crack problem using a strip model [16]. The strip
material behavior was piecewise-linear with a ‘'linear softening'
characteristic; the strip extended to infinity and the displacements
decreased gradually to zero, so that the stresses were bounded every-
where, similar to reference 14. E. Smith derived a class of acceptable
force-displacement relationships by starting with displacement profiles
chosen so as to yield simple solutions to the integral equation relat-
ing the displacement and stress within the cohesive zone [17]. In this
instance, the smodth closure (Barenblatt) condition was satisfied a
priori. The resulting class of the P-V relations is in general agree-
ment with our present findings. Some of the P-V relations (normalized)

are excerpted in Figure 2.5

In addition to these stress analyses, there are a number of con-
tributions concerned with the mechanics of craze growth. In 1965,

Knight [18] employed the Fourier transform method [19] to calculate the

-

3. Taken~from reference 17.
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Some 'acceptable' p-v relations from reference 17:
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stress distribution along a craze, but due to the erroneous craze pro-
file used, the resulting stress distribution was incorrect. Knauss
presented a boundary-layer model (formulated for a semi-infinite crack)
which is extendable to account for rate-dependent cohesive stress-
displacement behavior {[20]. The critical strain (displacement) cri-
terion was employed and it was found that for materials with softening‘
force-displacement characteristics, the crack tip c¢ohesive stress
decreased rapidly to zero while the size of the cohesive zone rose
sharply as the critical strain was approached at the crack tip. Figure
3a illustrates the cohesive stress and strain employed and TFigures

3b,c, the results discussed.6

Verheulpen-Heymans and Bauwens presented a modified Dugdale model
with a constant cohesive stress acting over a short distance behind the
craze tip and a lower constant cohesive stress acting over the rest of
the craze length [21]. Lauterwasser and Kramer performed experiments
in which accurate measurements of the density of the craze materials
together with the craze profile permitted the determination of the
stress distribution profile [5] through use of the Fourier transform
technique {19]. They also demonstrated conclusively that surface draw-
ing was the dominant process in craze thickening. As we shall see
later; this finding is of general significance in determining the
appropriate P-V relations for craze fibrilé. Subsequently, Wang and
Kramer employed a distributed dislocation model to calculate the far
field applied streés as well as the surface stress profile along the
craze from the experimental displacement profile in the craze zone
[22j. The method gave results in good agreement with the Fourier
transform method. The only disadvantage of this method lies in the
inherent errors associated with the computation of the derivative of
the experimentally determined displacement profile required in applying
the scheme. The stress profiles obtained in this way for polystyrene

and polycarbonate exhibited stress concentrations at the crack tip as

6. fTaken from reference 20.
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well as at 'the craze tip and approximately constant stress in between.
Donald and Kramer later studied five polymers and obtained similar

qualitative results [23] which we reproduce in Figure 4.

‘Attempts to determine stress distribution profiles for given dis-
placement profiles by using other methods such as finite element and
boundary element analyses were made by Bevan [24] and Sun and Hsiao
[25], where the latter authors also allowed yielding in the bulk poly-
mer in their finite element study. Although the results of both stu-
dies agreed generally (within 5%) with fhose obtained by Kramer et al
{5] through the Fourier transform method, the accuracy and efficiency

seems lacking.

So far we have reviewed studies in which the stress distribution
along the craze boundary is calculated from the experimental displace-
ment profile using various analytical techniques. The main purpose of
the present study is, however, to address the more difficult problem
where one seeks solutions for both the stress and displacement profiles
together with the far-field applied stress, given a craze length and a
nonlinear fibrii P-V relation, such that the Barenblatt's condition is
also satisfied. This problem has thus far not been solved correctly.
Recently, Walton and Weitsman presented a solution scheme for the spe-
cial case in which the fibril P-V relation is linear [26] and later
Weitsman [27] extended the analysis to include the case where the P-V
relation is nonlinear. The analyses in references 26 and 27 are, how-
ever, deficient in several aspects. For instance, in reference 26 the
solution did not satisfy the Barenblatt condition but had to be
'corrected' later by imposing additional cohesive stresses in a small
'tip zone' to make the stress intensity wvanish. This arbitrarx correc-—
tion is artificial and results in stress distribution profiles incon-
sistent with those deduced experimentally as illustrated in Figure 5.
In reference 27, Weitsman attempted to extend his analysis to the non-
linear case and made use of the stress-strain relations obtained by

Kambour as the P-V relations for craze fibrils [7]. 1In view of the
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Figure 5. Comparisons. between actual stress distribution profiles and
those derived from analyses in reference 26.
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fact that_Kambour performed his experiments using 'dried' polycarbonate
and observed no surface drawing whatsoever [28], it is clear that one
could use the reéulting stress-strain relations as fibril behaviors
only when the crazes thicken solely by creep (fibril stretching). In
contrast and as mentioned earlier, Kramer found that crazes thicken and
grow mainly by fibrillation and surface drawing {5]. It is clear that
the incorrect choices for the fibril P-V relations invalidated the
results of the analyses in references 26 and 27. In addition, the
'energy release rate' as calculated: in [27] by summing the contribu-
tions of the artificial stress intensity factor (which should be zero)
and the plastic work release rate, are devoid of any physical meaning.
This is because no consistent fracture criterion was applied, therefore
the variation of the crack length without varying the craze length as

was done in [27] was totally arbitrary and incorrect.

In view of these past contributions, it becomes clear that an
analytical and computationally efficient method for determining the
displacement and stress profiles of a craze with prescribed nonlinear
fibril P-V behavior under satisfaction of both equilibrium and the
smooth-closure conditions is still lacking. The primary objective of
this work is to present such an analysis and to use it in the study of
various aspects of the mechanics of craze and crack growth in thermo-

plastic materials.

In the following sections, we discuss the model for representing a
craze. The idealizations made to model the problem are explained in
Section 2.1. The mathematical formulation including non-—
dimensionalization and discretization for final implementation then
follow in Sections 2.2, 2.3 and 2.4. In Section 3, two alternate
methods for computing stress distribution profiles from craze displace-
ment contours are presented for the case of a full craze and for a
craze with a central crack. Because of their simplicity, these methods
are both computationally more efficient and inherently more acourdte

(for the same degree of discretization) than those used in the past by
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other investigators.

In Section 4.1, the general applicability and performance of the
solution algorithm are examined and assessed. Some characteristics of
the fibril P-V relations that are inconsistent with realistic craze
profiles are identified in Section 4.2. The existence and uniqueness
of solutions are addressed; certain interesting conclusions are drawn

through use of heuristic arguments.

We next employ the solution scheme. developed in Section 2 +to
investigate how the nonlinear fibril P-V characteristics affect the
mechanics of craze and crack growth. The critical crack tip opening
displacement (CTOD) is employed in a natural way as a fracture cri-
terion. The applicability of this CTOD criterion to crazes containing
cracks is based on experimental evidence and is discussed in the Sec-
tion 5. We further assume that under quasi-static conditions the
fibril P-V relation does not change its character as the craze and
crack propagate. This assumption is made for lack of experimental data
and because of an inadequate understanding of the fibril behavior at

the present time.

Quasi-static propagation of a craze with a central crack is stu-
died in detail in Section 6. 1In Section 7, ﬁe examine the problem of a
craze initiating from an existing (precut) crack with special interest
on the effect of }softening' fibril behavior on crack stability. In
both analyses, the results for several nonlinear P-V relations are com-
pared and contrasted with the Barenblatt-Dugdale model. Finally, con-

clusions and suggestions for further work are given in Section 8.
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2. PROBLEM FORMULATIONS AND SOLUTIONS

In this section, we reduce the physical problem to a mathemati-
cally manageable one through suitablée approximations. The resulting
equations are non-dimensionalized and solved through a numerical algo-

rithm based on Picard's iteration.
2.1. Geometric and Mathematical Idealization

We consider first the geometry of the problem as depicted in Fig-
ure 6a. A craze of length C with an (internal) central crack of length
A is embedded in an infinite plate subjected to a remote and uniform
tensile stress I applied normal to the major axis of the craze. X,Y
are the coordinates and W(X) denotes the Y-displacement of the craze
contour. We 1let P(X) represent the cohesive force (stress) distribu-

tion exerted by the fibrils.

As shown by Lauterwasser and Kramer, a craze is formed from a pri-
mordial craze, characterized by a contour Wo(x); this contour contains
the bulk polymer material which is subsequently transformed into craze
fibrils through the surface drawing process [5]. Thus the dashed con-
tour WO(X) in Figure 6b is displaced in the drawing process to the
solid contour W(X) due to the application 6f Zm. Since we know from
experiments that W (X) is much smaller than C and that the slope,

W'O(X), is also very small everywhere, we can recast the geometry of

the problem as shown in Figure 6c¢c where V(X) is the net displacement of
the craze profile caused by the applied stress as measured from Wo(x)
so that V(X) = W(X) - W (X). Cast in this light, the force-
displacement (P-V) relation may be represented schematically as shown
in Figure 6d. Keeping in mind .that V < 0 corresponds to the primordial
craze under small strain prior to fibrillation, the dashed portion of
the P-V curve is assumed linear with a slope equal to Young's modulus,
E,  for the bulk polymer. At V=0, the threshold (or fibrillation)

stress Po is reached and henceforth the P-V relation is nonlinear.
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. Three P-V relations are illustrated, curve #1 is representative of a
craze that doeg not contéin a crack. We shall later refer to such a
craze as a 'full-craze'. Curve #2 allows for continued hardening
before softening to failure (fibril degradation and rupture) at Vc_
Curve #3 is typical of a craze with a central crack; this rehardening

behavior may be understood in the context of the midrib behavior [5].7
2.2. The Mathematical Formulation

Consider a mathematically sharp crack of length 2C embedded in an
infinite elastic medium loaded symmetrically as shown in Figure 7a, by
using the Westergaard stress function method ({29], the following

Green's solutions are obtained

2 2. |22
Vi) = (k) P log | v|c?-x2e\ [c3or I

i \lc2-x2-\]c2-12 (2.1)
K; = 2r  __C

where 9 = (%;%) for plane stress and (3-4rv) for plane strain; v=
Poisson's ratio; p= shear modulus = E/2(1+v). K; is the mode-I stress
intensity factor, and V(X) is the displacement due to the load P
Note that V(X) is singular at X=T.

Turning now to the problem at hand depicted in Figure 7b, the

solutions to the problem can readily be written down by superposition8

7. The midrib is formed initially at the craze tip due to fibril draw-
ing at high stress. As the craze grows, the midrib is unloaded as
it becomes part of the mature (developed) craze. The introduction
of a crack in the craze causes the stress at the crack tip to rise,
so that the midrib is reloaded and therefore must sustain higher
stress.

8. Huang independently employed an identical formulation in studying
the size of the crack tip cohesive zone based on an interatomic
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¢ 22\ |22
' = Co-X“+\|C°-T
V(X) = (14%'1) %g (£_-P(T)) log | Xl l | dr
| | \|c2-x2-\ | c2-12 (2.3)
= fc = -pP(T) 1
-2l T 7
Kp =2z |/ ——— dr :
L \'Ca-—T2 ] (2.4)
It is convenient to denote the kernel in equations (2.3) by
2_,2 2 .2
M(C,X,T) = 1 1og | \Jc?-x2n\|cB7 !
\|c2-x2\|cB-72 (2.5)

This kernel is integrable in closed-form which proves to be a very use-

ful property in numerical implementation (see Section 2.4). Denoting by

Iy, the integral of M, one has

[ c2-x2+\ | c2-12

Iy = I M(C,X,T)dT = | Tlog | | - 2\'02~x2303‘1(%)

L \|c2-x2-\|c2-12

A

+

Xlog | o | c®-r2-1\ | c2-x2

‘n
b
1

X\ | c2-12+m\ | c2-x2 (2.6)
Equations (2.3) and (2.4) can be simplified to
V(X) = (31) [ = |62—x2 _ ¢ M(X,C,T)P(T)dT ]
g7 o0\ ! 'L (2.7)
- C
K. =g \|nC - 2 |C ! P(T) _ gt :
: ” M 2 .2 (2.8)
\{c2-7 S

Clearly, for P(T) = 0, we recover the familiar crack solutions

potential [30].
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KI = Z, \{nC
For the stress at the craze tip to be finite, or equivalently, for
the craze tip to close smoothly, i.e., V'(C) =.0, it is necessary and

sufficient that KI vanish. Then (2.8) gives

“J;E%E: aT
\ICZ—TZ (2.9)

™M

I

= R
[e B N ]

Substituting X from (2.9) into (2.7), one obtains

C { |c2_y2 }

vix) = () ¢ 2 S e, x,m) | p(T) ar

or
1+Zl ¢

V(X) = (?ﬂl) i H(C,X,T) P(T) dT (2.10)

where
|22
H(C,X,T) = & %= - M(C,X,T) \
T \]C2—T2 (2.11)

The formulation is completed by specifying the fibril force-

displacement behavior

P(X) = P[V(X)] (2.12)°

Equations (2.10) and (2.12) must be solved simultaneously. This is

9. The more general case, P(X) = P[V(X),X] can be handled within the
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accomplished by using Picard's method of successive approximation out-

lined below10

We start with an initial guess of the form,

R

vo(x) = =2(c - X) (2.13)

where 23 and R are to be appropriately chosen. Of course, other forms

of VO(X) are also acceptable.

. The kJch approximation is given by
vE(x) = (35 ? HC,X,T)P(VE1(T))dT ; Kk =1,2
) o r ’ (2.14)
We consider that a solution has been attained when Vk(X) differs
from vk‘l(x) at all (discretized) points by 0.1% or less. The conver-

gence of the scheme is found to be relatively insensitive to the choice

of the initial guess of Zg and R as will be demonstrated in Section

3.1.

It is worthwhile to note that in the case where a crack is present
as determined by the critical crack tip opening displacement (CTOD)

criterion (see Section 4 for further discussion), the crack length is

11

not fixed a priori but is obtained as part of the solution. We next

non-dimensionalize the relevant parameters prior to discretization for

framework of our formulation using the same solution scheme. A P-V
relation with explicit dependence on X is a more realistic candi-
date; however due to lack of any such data, we confine our attention
to the form (2.12).

10. As it turns out, this simple scheme is more efficient than the New-
ton iterative scheme which was also implemented and yielded the same
results.

11. In all past contributions, the crack and craze lengths were fixed a
priori as no consistent fracture criterion was employed.
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numerical implementation.
2.3. Non-dimensionalization

.For presentation of the results, it is helpful to non-
dimensionalize pertinent parameters. We let a craze length Co be the
reference length scale. The stresses are scaled by (f%%); in this
fashion, the Poisson's ratio is absorbed for both cases of plane stress
or plane strain. In short,

C = C

ref o] .
Zref = p(1+v) = 2 for planestress
(1€V) = E 2 for plane strain
2(1-»%)

We shall use lower case letters for dimensionless quantities and

define
= C = A = X = X
c=t a=cr *Tt YET
0 &) 0 o
- W o \4 T
W = — = T = - = ——
c_ “W=¢cr YEc: TE¢
; o 0 o
and, GNEE—?"O—, pEZP
ref ref

Thus, in dimensionless forms, eguations (2.9), (2.10), and (2.12)

become

o, =27 R4
0 \|g2_,2 (2.9a)
C
v(x) = r h(c,x,7)p(7)dr (2.10a)
(s}
p(x) = plv(x)] " (2.12a)

Other equations can be easily non-dimensionalized by simply replacing
each upper case letter by a lower case one and removing (%ﬁ?). Having

done this, we are ready to discretize the equations for numerical
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implementation.
2.4. Discretization and the Resulting Algorithm

‘Because the kernels M(C,X,T) and H(C,X,T) defined by (2.5) and
(2.11) can be evaluated in closed forms, the integration of these
'singular' integrals can be performed very accurately without requiring

12 We discretize the domain of

excessive subdivisions of the domain.
integration into n equal intervals of length Ax as shown in Figure 8,

where
AX = AT = ¢/n

and x.,'r.,vi,pi are evaluated at the center point of each interval.

i*'i
With this in mind, an integral I(x) can be approximated as13

C _ -
I{x;) = £ flc,x,,7) pl7)d7r = fj(c,xi)pj = fijpj (2.15)
where
Tj+AT/2
f. .= E.(c,x.) = I f(C.X-,‘r) dT
ij J i Tj-AT/Z 1 (2.186)

Integrals of the form (2.16) in this study are easily evaluated in

closed forms; specifically, from (2.7) and (2.6), one obtains

- f m(C,Xi,T)p(T)dT

or

12. For contributions about the singular points, the Cauchy Principal
values of the integrals are used.

18. Repeated indices indicate summation from 1 to n.
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o je_2 =
_ vj = cm\lc xi mijpj (2.17)
where
_ Tj+AT/2 4 7J+A7/2 \{cz—x +\|c 2
mlj = I m(C,Xi,T)dT == ! log | |odT
Tj—AT/Z Tj—AT/Z \lcz—x \iC 2
or
[
_ 1 | \{cz—x?+\l02—72 3 2 i 7
= — 1 —_— — _J' —
mij = { T log | ! — ' ] Z\lc X;cos (C)
1 \l X -\l¢
]7 75 +AT/2
xi\‘cz—vz—f\icz—xi |
+ X.log | — b
* 2 2 |
X, \’c —72er 1 62-x° =T, -AT/2 (2.18)
\j i
Similarly, (2.9) may be written as
c -
g = i{c,7 T)dT = 1.p.
o0 g ( )P( ) | JpJ (2.19)
where 1(c,7) = % 1 and
\|cz—
TJ+A7/2 5 4 ]T=Tj+AT/2
I, = ) l1(c,7)dt = £} sin ( -)
] TJ.-—AT/Z 7T[ 7= TJ—AT,/z (220)

In view of (2.17)-(2.20), (2.10), and (2.11), we obtain in compact

form,
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c
v = vixg) = i hic,x.,7)p(7)dr = 4P (2.21)
where
Tj+AT/2
h.. = I h(c,x,.,7)p(7)dT
1J T.~AT/2 *
J
Tj+AT/2 —
_ . 2 , ;
= f L \‘C —xi l(CvT) - m(CpXi,T) 1 ar
T.~AT/2
J
_ 2 2~ - 14
h,. = -X. . - M. .
13 \IC xl lJ mlJ {(2.22)
i
[ Icz—x?—\lcz—'r2
R .1 D
ij =& ; T log | |
(2 2. .|.2_.2
1 \IC xi+\|c T
}T=Tj+AT/2
xi\|02—72+7\{02—X? !
+ Xilog i P
2_.2 . {.2_2 |___
xi\'c T T\'C X3 17775 AT/2 (2.23)

It turns out that, from equations (2.18), {(2.20), and (2.23), Ij

is independent of ¢ while mij and h; . are homogeneous in c. These pro-

J
perties prove to be very useful when we employ the numerical algorithm
to study craze and crack growth in Sections 6 and 7. In concise form,

one has

14. Note that the matrix Hi' is singular, i.e., given a displacement
profile v(x), the cohe31&e stress profile can only be determined up
to an additive constant. This, however, does not affect the vali-
dity of our algorithm.
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Tj = Ij(c,n) = lj(l,n) , {(2.24)
_ij = ;ij(c,n) =C . ﬁij(l,n) {2.25)
By, = Eij(c,n) =G - Hij(l,n) (2.26)
Thus, for a given degree of discretization n , Tj’ aij and gij only
need to be computed once for c¢=1 and stored for later use. In the

simulation of craze and crack growth in Sections 6 and 7, ¢ increases
continually, thus the properties exhibit in (2.24)-(2.26) reduce the
computation time substantially. Note that Tj’ aij and Bij are indepen-

dent of the p-v relation considered.

The algorithm can now be summarized. Given a craze length ¢ and a
p-v relation, we seek solutions in the foérm of p(x), v(x) and o

according to the following procedure:

Prescribed p-v relation : p(xi) =p; = p(v(xi)) = p(vi) (2.27a)
initial guess : vo(xi) = v? = Gg(c—xi)R (2.27b)
k™-iteration : vK - v(x,) = gij‘c,n)p(vg_l) (2.27¢)

P = p(v%) (2.27d)
ok - ij§ (2.27e)

Convergence is considered achieved when the minimum change for any Vj

is less than 0.1% between two successive iterations.
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3. SCHEMES FOR DETERMINING STRESS PROFILES FROM
DISPLACEMENT PROFILES

As mentioned in the introduction, for the case of a full craze,
the stress distribution profile p(x) may be obtained from the measured
displacement profile v(x) and ¢_ using the Fourier transform method
[19]; However, for a craze with a central crack, only the displacement
profile in the craze zone is needed to determine both p{(x) and 0 using
a distributed dislocation scheme [22]. Here we present two alternative
methods for determining the stress pfofiles based on the formulation in
the previocus section; one method is suitable for a full craze, the
other for a craze containing a central cfack. Both schemes have been
fully tested and found to be numerically more efficient than the

methods previously proposed [5,22,24,25].

First we discuss the method suitable for the problem of a full

craze. Given V(Xi) and ¢, equation (2.17) can be rewritten as

m,.p. = (ow\%cz—x. - v,) (3.1)

Equation (3.1) is a system of n linear equations from which pj can be
determined either by Gaussian elimination or by inverting aij . In the

latter case, (3.1) and (2.25) gives

- -1 2 ¢ _ _
pj mij(c,n) (aw\lc X, Vi) {(3.2)
where
ﬁ‘l(c n) = ﬁ‘l(1 n)/c ’ (3.3)
R ij L ij » .

Note that Egi(l,n) only needs to be computed once and stored for later

use.
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For demonstration purposes, this scheme is applied to v(x) and g
as presented %n reference 5 (see Figure 9). The resulting cohesive
force distribution'p(x) shown in Figure 10 and that derived in [3]
through the Fourier Transform method are virtually identical. The p-v
relation obtained by combining Figures 9 and 10.is plotted in Figure

i1.

This method is, of course, also applicable to a craze with an
internal crack. However, since the measured displacement profiles in
the crack region are usually not reliable on a point-by-point basis
(see [22]), an alternative scheme using only the displacement profile
in the craze zone as boundary data is preferable. Such a method has
been presented by Kramer and Wang [22]; however, the method requires
differentiation of the experimentally measured displacement profile
which incurs additional error. In view of this shortcoming, we present
here a scheme which requires as inputs only the displacement Vj in the
craze zone and the crack tip location. The outputs are the stress pro-
file p(x), the applied stress ¢  and the displacement in the crack

region.

Let it be such that the fibril cohesive force at the ith station

is

p; = 0 for i< ie
P, # 0 for 1z {(3.4)

Given the displacement in the craze zone, vi for i 2 it’

and vy for 1 < i

we wish to
find ¢ and p; for i 2x1i

{(2.21),

Consider equation

t t

i,j=1,2,...,n (2.21)

In light of (3.4), (2.21) reduces to
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v, =0 ; 1=1,2,... 01 (3.5a)

v = By 1k = 1,801, .,n (3.5b)

Equation (3.5b) can be solved for P, k = i,,...,n, by Gaussian elimi-
nation. Then by (2.1i9) and (2.21)

6 = ijj = Ikpk , k = it,...,n (3.6)

v, = Eikpk , i=1,...,4-1 and k = i,...,n (3.7)

This completes the presentation of the two alternative schemes for com-

puting p(x) from v(x).
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4. THE CHARACTERISTICS OF THE ALGORITHM AND THE p-v RELATION

We examine next two aspects of the craze problem from a general
viewpoint. First we report on the convergence characteristics of the
algofithm and attempt to give some broad criteria on its applicability
and effectiveness. Then two models of p-v relations are studied with
the aim of determining how the existence of a solution depends on the
nonlinearity of the p-v relation. The findings indicate that there are
restrictions on the characters of the p-v relations if realistic craze
profiles are to result, i.e., profiles with nonnegative (non-

interpenetrating) displacements at all points.
4.1. The Convergence of the Algorithm

Having discussed the algorithm and the convergence criterion in
Sections 2.2 and 2.4, we proceed to consider the characteristics of the
algorithm as applied to specific problems. 1In Figures 12-15, we show
how the solutions v(x) and p(x) for a half-cosine p-v relation15 are
approached using two different initial guesses of the form

vo(x) = GZ(C - x)}

where in these examples, the initial guesées are 62 = 0.05 and 0.01
with R = 1.5. For Gg = 0.05, nine iterations are required for conver-
gence and the resﬁlts are presented in Figures 12 and 13. In Figures
14 and 15, 02 is 0.01 and twelve iterations are needed for convergence.
(Each iteration takes about 1.2 CPU seconds on a VAX 11-780.) The solu-
tion for ¢ is 0.0176. Again, a displacement tolerance of 0.1% is used
as the convergence criterion. For n=200, we find that checking for
convergence at only 20 or 100 equi-spaced points give identical results
to checking at all 200 points. This is because the convergence is

guite uniform for most p-v relations as is illustrated in Figures 12-

15. Specifically, the p-v relation #1 in Figure 28 is used.
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15. Throughout this work, we conservatively use 100 checkpoints far

n=200. 18

With regard to the general applicability of the algorithm, we find
that the initial guess does not need to be very close to the correct
solution for the scheme to work as illustrated in Figures 12-15. It is
found that the exponent 'R' in equation (2.27b) for the initial guess

VO(

x) may range from 0.5 to 2.0 but R = 1.5 seems to work best in most
instances. When there is no solution such as those situations to be
discussed later in Section 4.2, the algorithm quickly diverges for a
wide‘range of initial guesses. For p-v relations which soften ini-
tially and then reharden such as model #6 in Figure 28, the convergence

could be very slow and 30-70 iterations may be required, depending on

the initial guess.

In cases where the algorithm did not converge, the Newton itera-
tive scheme was tried but did not yield convergence either. Per itera-
tion, the Newton scheme takes about 250 times the CPU time needed for
Picard's method (for n=200). For all cases studied Picard's iterative

scheme yielded the same results as the Newton method.
4.2. The Characteristics of Admissible p-v Relations

In the following, we examine how the various characteristics of a
given nonlinear p—V relation affect the existence of a solution. This
issue is of considerable importance as little is known regarding the
fibril p-v behavior that is consistent with observed craze displacement
profiles. When improper p-v behaviors are used, the results obtained
are necessarily incorrect as discussed in Section 1 concerning recent
works in references 26 and 27. (E. Smith [17] and Knauss [20]

presented some admissible p-v relations for the crack tip cohesive

16. We tried n=50, 100, 200, 300, 400, 500 and found n=200 to be the
best compromise between the integration accuracy (within 0.0001%)
» and the computing time.
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zone. )

in the present study, we find that there are certain restrictions
on the p-v relations for the algorithm to converge. Heuristic argu-
menté, such as the ones presented in connection with the findings (1)
and (2) below, were used to demonstrate that the proposed algorithm is
capable of seeking out a solution for a given p-v relation and craze
length, if such a solution exists. Otherwise, our numerical studies
show it to be most 1likely that algorithm divergence indicates the

absence of a solution. The question of uniqueness is then addressed.

Consider the two families of p-v relations depicted in Figure
16.17 The two models are designated A and B respectively. Analyti-
cally, they are given by

Model A:

‘ v

l P, * (pm - po)(;‘) for 0 s v < Vo

| m

e

plv) = pp(5757) for v, <V <V,

‘ m C

I o for v 2 v_

t ¢ (4.1)
Model B:

17. Note that in both models, the fibril stress vanishes for displace-
ments greater than a critical value v_ ; we thus deal with a criti-
cal crack tip opening displacement {CTOD) criterion which can be
justified on physical grounds as is discussed at length in Section
5.1.
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Model A

Model B

Figure 16. Two p-v relations used in studying characteristics of 'admis-
sible' p-v relations. )
(a) piecewise-linear model

{(b) cosine model



p(v) =

o
=2
[
Qo
]
<
v
<

(4.2)

Both models are designed so as to allow the relative amount of
hardening and softening in the p-v behavior to be adjusted by varying a
few parameters. It is easy to see that v scales with ¢, thus we need
only study the case ¢ = 1. Based on the convergence criterion stated
at the end of Section 2.2, the findings regarding the restrictons on

the p-v relations are summarized below:

Case A.1: by, = p, = 1.0, Vn = 0 ; vary v,

for 0 < VC < 0.36 : convergence to solutions with cracks

for VC > 0.387 : convergence to the trivial solution where
p(x) = 1.0 and v(x) = 0.0 for all x

Case A.2: po = 0.5, by = 1.0, Vi = 0.05 ; vary v,

for 0 < VC < 0.11 : convergence to solutions with cracks

for vC > 0.12 : divergence - no solution

Case A.3: = = . = .

rase A.o Dm 1.0, Vi 0.15 ; Ve 0.3 ; vary pg

for P, 2 0.97 : convergence to solutions with cracks

for p, £ 0.96 : divergence - no solution

Case B.1: pm = 1.0, Vi = 0.0 ; vary v.

for 0 < Vo £ 0.85 : convergence to solutions with cracks

for v, 2 0.36 : convergence to the trivial solution
as in Case A.1

Case B.2: P, = 1.0, Ve = 0.3 ; vary v

for 0 < VS 0.058 : convergence to solutions with cracks

for vm > 0.059 : divergence - no solution
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All these variations are presented graphically in Figure 17. Qualita-

tively, the following conclusions are drawn:

(1) Monotonically softening p-v relations as in cases A.1 and B.1:

We observe that when Ve exceeds certain values, only the trivial solu-

tion results, otherwise a nontrivial solution exists. In other words,

(v./c)
the parameter ————— determines the existence of a nontrivial solution.
o}

To support the above conclusion, consider the following heuristic
argument: When the algorithm yields the trivial solution for a
prescribed p-v relation and a given craze length, there exist only two

possibilities.

(v_./c)
The first possibility is that as the parameter ———— increases
0

(VC increases), we have a craze with a shorter and shorter crack or no
crack at all and there no longer exists a nontrivial pair of p(x) and
v(x) that simultaneously satisfies equation (2.21) and the prescribed
p-v relation. This simply tells us that a different p-v relation or a
p-v relation with explicit dependence on X must be considered for the

short crack and the full craze solution regimes.

The other possibility is that while a nontrivial solution may
exist, our algorithm fails to seek it out. Such a solution, if it
indeed exists, must correspond to a very thin craze with a slowly vary-
ing stress distribution as depicted in Figure 18a, yielding a displace-
ment field (obtained using (2.21)) as shown in Figure 18b. Combining
p(x) and v(x) from Figures 18a & 18b results in a p-v relation as plot-
ted in Figure 18c. It is .seen that the fibril stress, p, has to drop
sharply at large values of displacement, v (circled area). Such
behavior is not present in either the linear (case A.1) or the half-
cosine (case B.1) p-v relation prescribed, thus, it is most unlikely

- that such a solution exists. Several other stress distributions



Figure 17.

Case A.|

Case B.2 P

Case A.2

Case A.3

Case B.|

Illustrations of the study of bounds on the p-v relations
Section 4.2.

in
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(a) :
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: craze tip
0 X
v
(b)
craze tip
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p
Nf
(c)
0 v

Figure 18. Demonstration of the nonexistence of nontrivial 'full craze'

solutions for cases A.1 and B.1. See discussion in Section
4.2.
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covering a wide range of possible solutions are tested by the same pro-
cedure and vield no prospective solution consistent with the prescribed
p-v relation. KThis demonstrates quite clearly that one cannot 'force!
a prescribed p-v relation on a given craze length and expects a non-

trivial solution to always exist.

The above heuristic argument is not a proof that establishes our
conclusions rigorously but represents the our best effort in trying to-
gain some insights into the behavior of the nonlinear problem at hand.
The arguments presented here were conceived in connection with the
extensive experience acquired through the course of the study which
adds confidence to the conclusions we drew. We will resort to this
line of argument on a few more occasions in later investigations mainly
to assure ourselves of the nonexistence of a solution when the algo-

rithm fails to seek out one.

(2) p-v relations with hardening followed by softening as in cases

A.2, A.3 and B.2: It is seen that only a 'limited' amount of hardening

prior to softening is permissible for a solution to exist.

To demonstrate this finding, consider another heuristic argument
illustrated in Figures 19a-e. Let us first assume that a reasonable
craze profile, i.e., a profile v{(x) that is continuous and has zero
slope and displacement at its tip, as shown in Figure 19a is the result
of prescribing a p-v relation in Figure 19b. Then, without considering
continuum mechanics, the corresponding p(x) deduced from v(x) in Figure
19a and the p-v relation in Figure 19b would be of the character shown
in Figure 19c. However, on mechanical ground, i.e., using (2.21), this
p(x) gives rise to a displacement profile ;(X) as shown in Figure 19d
which exhibits interpenetration in the craze tip region unlike the
assumed v(x) in Figure 19a. The p—G relation (Figures 19e) derived
from figure 19c and 19d also bears little resemblance to the assumed
p-v relation in Figure 19b. Thus through this somewhat roundabout

argument, we conclude that when the prescribed p-v relation hardens by
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x O v

(a) | (b)

)
(a)8& (b)
= =

<

0 x O e x
(c) (d)
p
(c)&(d)
E d
0 v
(e)
Figure 19. Demonstration of the nonexistence of solution for cases A.2,
See dicussion in Section 4.2.

A.3 and B.2.
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an 'appreciable' amount prior to softening (as in Figure 19b) and our
solution algorithm diverges {i.e. cannot find a solution) for a wide
range of trial initial guesses, there is no solution for the p-v rela-

tion prescribed.
Before moving on to Section 5, three comments are in order:

{a) 1In all cases studied the Picard's iterative scheme yields the

same results as the Newton method with much less CPU time.

{b) From the arguments presented above and experimental observa-
tions that crazes/cracks exist in continuum spectra, we can conclude
that the p-v relations can only be invariant with respect to a 'lim-
ited' range of craze lengths. (See the discussion on the 'first possi-
bility' associated with the finding (1) above regarding monotonically

softening p-v relations.)

(¢) The question of the uniqueness of solution will not be
answered rigorously here. As is the case in most nonlinear problems,
uniqueness is very difficult to establish. Nevertheless, based on the
extensive experience acquired during the course of this study, we are
convinced that for a given craze length and ¢_, the solution p(x) and
v(x) found using Picard's algorithm is unique. However we find that
for a given craze length, there may be two different values of ¢ and
two corresponding' sets of p(x) and v(x) which form soclutions: The
solution with the higher ¢  corresponds to a full craze or a craze with
a very short internal crack, while the other one with the lower,aoo is
invariably the solution of a craze with a 'longer' central crack.

These aspects are discussed in more detail in Section 6.
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5. THE TWO BASIC ASSUMPTIONS

In this section we discuss the 'crack tip opening displacement'
criterion (CTOD) and the 'invariance' assumption regarding the fibril
p-v behavior as the craze and crack grow in the 1light of existing
experimental results before employing them in the study in the follow-

ing sections. Of these separate issues we address first
5.1 The CTOD Criterion

When a central crack is present within a craze, the crack may or
may not propagate as the far-field load 6 is increased. If the crack
does not propagate, it is clear that the fibril at the crack tip can
sustain additional growth (lengthen) though not necessarily higher
stress or strain. This is the consequence of two physical mechanisms
that operate simultaneously, namely, surface drawing and fibril
creep.18 If surface drawing alone operates a fibril will never break
and the crack will never advance. This possibility is contrary to
experimental observations since cracks do grow within crazes. As can
be explained in terms of craze and fibril microstructures, a crack that
propagates quasi-statically through a craze either runs right along the
midrib where the fibrils are weakest or propagates in a 'patch' or
'mackerel' pattern {5,8]. In the first .situation, the heightened
stress at the crack tip causes the previously unloaded midrib to
stretch until the iocal extension ratio exceeds the maximum sustainable
by the bundles of polymeric molecule chains that constitute the fibril,
thus leading to fracture. In the latter event, usually observed at
higher crack velocities {8}, the high crack tip stress causes fibrils
at the craze-polymer interface to be drawn at high local strains [5].

One observes then that the crack, in this case, prefers to run along

18. Surface drawing is the process by which bulk polymer is converted
(drawn) into fibrillar craze material. Fibril creep is simply the
stretching of an existing fibril without drawing additional polymer
material into the craze from the bulk.
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either interface where the fibrils are Jlocally weaker than at the
midrib, cfeating the familiar mackerel pattern {5,81. 1In either case,
the above situétioﬁs support the use of a critical crack tip opening
displacement {(or a critical fibril extension). This is also confirmed
by experiments performed by Doll et al {31,32] who found further that
the CTOD is relatively constant for a wide range of crack velocity.
Specifically, these authors showed that the maximum craze widths at the
crack tip (critical CTOD or V. in our notation), measured for PMMA com-
pact tension specimens for crack speeds ranging from 10—8 to 20 mm/sec,
are essentially constant with a standard deviation of about 8% .19
Their findings suggest that the fibrils spanning the tip of the crack
can only sustain a limited, relative, displacement of their ends. An
interpretation of the experimental result in terms of molecular
behaviors is given in reference 32; such discussions are beyond the
scope of the present work. For our purpose, it suffices to assume that
the surface drawing mechanism is somehow constrained at the crack tip
and creep invariably gives rise to fibril breakage at a roughly con-
stant CTOD.20 We assume in this study, therefore, that for a given

polymer, a critical CTOD exists and is constant.
5.2 Comments on the Invariance of the p-v Relation

To study craze and/or crack growth, one-needs to know whether the

p-v relation changes as propagation proceeds and if so, how ? The

19. In private communication Professor Kramer indicated the observation
that under a low crack speed of about 1 micron/sec the critical CTOD
increases substantially. This casts some doubt on the validity of
the number 10™° mm/sec given in references 31 and 32. However, for
the speed range between 10 ° and 20 mm/sec, the constancy of the
CTOD (for PMMA) appears acceptable. See the introduction of refer-
ence 9 for further discussion on this point.

20. It is worthwhile to note that cracks are observed to form in 'full'
crazes at the polymer/craze interface and not at the midrib. The
locations of the first formed crack in a full craze are also not
necessarily at the center part of the craze where the fibrils are
longest.
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gquestion cah only be answered by experiments, i.e., by measuring v(x)
for. crazes with or without cracks of various lenths and compute p-v
relations for each.craze length. Since no experimental data on this
particular topic exist, we feel free to assume further that the p-v
relation is 'invariant' with respect to both the craze and the crack
lengths for quasi-static propagation under a 'controlled' environ-
ment.21 As it turns out, on the basis of the previous (see comment (b)
in Section 4.2) and subsequent studies {see Section 6), this assumption

can only be valid over a limited range of craze and crack lengths.

21. Temperature, pressure, moisture content, chemical environment {such
as the presence of alcohol or any chemical agents affecting fibril
drawing and creep) are all kept unchanged.
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6. NUMERICAL SIMULATIONS OF CRAZE AND CRACK PROPAGATION

We proceed noﬁ to apply the solution scheme to study how the non-
linear fibril (cohesive) p-v characteristics affect the mechanics of
crazé and crack growth. Given a craze length and a p-v relation for
the fibrils, the problem is to find p(x),v(x) and o6_ such that both
equilibrium and the smooth closure (Barenblatt's) condition are satis-

22

fied simultaneously. The solution scheme has been presented in Sec-

tion 2.

Quasi-static craze and crack growth is simulated by varying the
craze length ¢ continuously. Based on the discussion in Section 5, we

assume the fibril fdrce—displacement relation of the form

p(x) = plv(x)] (6.1)

The effect of several p~v relations will be examined. We start by
first reviewing the Barenblatt-Dugdale model [10,11] shown in Figure
20a. The critical CTOD Ve is used as the fracture criterion
throughout; the physical justifications of which have been discussed at
length in Section 5.1. It is worth emphasizing that the invariance of
the p-v relation with respect to the crack and craze lengths as impli-

citly assumed in using equation (6.1) is only a conjecture as discussed

in Section 5.2. However, this assumption may be a good approximation

over a 'limited' range of crack and craze lengths.

22. In this paper, the (net) stress intensity factor is always-zero and
thus does not enter the discussion as a pertinent parameter. The
external loading is completely characterized by 6 which_is related
to the 'loading' stress intensity factor by K, = 6, \|mc . Note
that the stress states at both the crack tip and the craze tip are
determined by the nonlinearity of the fibril p-v relation rather
than the ‘usual' K-field.
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6.1. The Bdrenblatt—Dugdale Model

This simplesf model assumes the cohesive (fibril) stress to be
constant throughout the cohesive (craze) zone as denoted by p, in Fig-
ure 20a. The problem has been analyzed by Rice [12] and Goodier and
Field [13], we summarize below the pertinent results. These are

obtained directly from the equations presented in Section 2.

The Barenblatt condition requires

2 -1,a
0, = 5 Pycos (c) (6.2)
The displacement v{(x) is
f 2 2.]2 2 2 2 2 2 |
vim) = 2B | arge g Melile®al | o0 mlefatalete? )
n | |
L \|c2—x2—\lc2—a2 x\lcz—azm\lcz—x2 1(6'3)

At x=a, v equals Vc the critical CTOD, thus applying L'Hospital's rule,

one obtains

2pm c
via) = vC =5 @ log(a) (6.4)
Equation (6.4) may be rewritten as
nv
- aeb/a = L
¢ = ae” ", B_me (6.5)

Note that B= constant for a given set of values of vc and Py

Let w denote the size of the craze (yield) zone, i.e.,
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w=¢ - a= a(eﬁ/a - 1) (6.6)

Another quantity of interest is the aspect ratio, o , defined by
(using equation (6.3))

p 2_.2
aEMl:;m(%)loglgﬂlg_:g.l

° c—\‘cz—a2 (6.7)

By analyzing the data for six polymers in references 5 and 23, we
find that the dimensionless parameters pm and Vo have values in the

ranges of

.1

(=]
(=]
fory
A
b ]
=]
N
o

0.001 £ v
Cc

1A

0.01

We shall use these numbers later as guidelines for bounding the various
parameters in the p-v relations to be studied so that the results of

our analyses will be quantitatively realistic.

Further, let vy be the 'fibril fracture energy' (or 'the surface
energy') which is the work expended in pulling a fibril from v=0 to

V=Vc' For the Dugdale model, we have thus

YEPpV (6.8)

To study how p, and v, affect the behaviors of the solutions, it

c
is best to keep y (which characterizes the energy dissipation of the

system) constant. In Figures 20b-f, five sets of P, and v, are con-

sidered, i.e.,
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‘ P
ol 0.0
Pm
0 ™ v 0 0.002 v
(a) | (b)
P P
0.05
0.033
0 0,004 v 0 0.006 v
(c) (d)
P p
0.025 0.02
0 ~0.008 v 0 0.010 v
(e) (f)

Figure 20. The Barenblatt-Dugdale models.
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pm VC v
0.1 0.002 | 2 x 1074
0.05 | 0.004 | 2 x 1074
0.033 | 0.006 | 2 x 1072
0.025 | 0.008 | 2 x 107%
0.02 | 0.01t0 | 2 x 107%

Using (6.5), ¢ can be plotted as a function of 'a' as shown in Figure
21. Note that there is a minimum in the craze length ¢ for each curve.
' dc

The minimum can be obtained by setting da = 0, yielding the coordinates

of the minimum point as

(a ) = (B, Be)

min’ Cmin

where 'e' is the natural logarithm base.

The branch on which a < ain is plotted as a broken line, it is
'nonphysical’' in the sense that as 'a' increases, ¢ decreases, which is
not possible since craze formation is an irreversible process (a craze
cannot 'shrink' unless heated externally tp 'heal', which we do not
consider here). Note that as a » 0, ¢ + «, this is necessary to main-
tain v(a) = v and physically we have a thin long 'full' craze in the

c
limit of a = 0.

For a > amin’ we see that 'a' and ¢ increase together. This is
the branch on which we will concentrate our attention as it describes

the propagation of a crack within a growing craze.

The craze zone size w is plotted as a function of 'a' in Figure
22. Note that the craze zone w decreases and tends asymptotically to B
as 'a' increases; see equation (6.6). Observe also that w is an

increasing function of v . Figure 23 shows that ¢ /p, decreases as 'a’
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increasesf whereas, as a function of ¢, am/pm increases on the 'nonphy-
sical' branch qnd decreases with ¢ on the 'physical' branch as shown in
Figure 24. This illustrates the comment (c) made at the end of Section
4.2 that, for a given craze length, there may be two solutions. The
one corresponding to the higher ¢ represents a craze with a very short

crack. (< a the other, at a lower ¢, is a craze with a longer

min)’

crack (> a ). The displacement at the center of the craze, v(o), is

min
shown in Figure 25 to increase monotonically as 'a' increases. Observe
that v(o) is relatively insensitive. to vc, The aspect ratio o ( =
v(o)/c) 1is plotted versus 'a' in Figure 26. o tends to zero as 'a'
tends to zero since in this limit ¢ becomes unbounded (see Figure 21).

The aspect ratio exhibits a maximum at a value of 'a' that slightly

exceeds amin and then decreases as 'a' (and c) increases. Note that «

is a decreasing function of VC,

We examine next the energy release rate of the system. Let U
represent the elastic energy of the system. In general, the energy

release rate G is defined as23

- - o
6= -3 (6.9)

Consider the case where the plate is clamped at infinity so that no
external work is done during the course of crack propagation. The
potential energy I of the system is then equal to U, and equation (6.9)

reduces to

G =- 2= (6.10)

23. To comply with conventional usage, here G, I, U and U  are dimen-
sionless even though upper case letters arg used. The non-
dimensionalization factor U is simply C°Z . The dimensionless

. . . 2 sf o ref
strain energy density is g /4.
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Now U is given by the elastic energy stored initially in the plate
(planar body), Up, minus the energy U. which is required to form a
crack of length 2a and two craze zones of length w each. (This energy
comes from the unloading of the plate as the craze boundaries are dis-

placéd and work is done against the fibrils.) We have then
Uu=1 - Uy (6.11)
(6.12)

where we let 2d denote the dimension of this 'infinite' square plate,

i.e., d is very large compared to c. UC is given by

c
Uy =4l va + i ppv(x)dx ] (6.13)
where the factor of four arises because all 4 quadrants have to be

accounted for. Substituting v(x) from (6.3) and making use of (6.2)

and (6.4), one obtains after some lengthy algebra

Y
U, = 4al v + 5 { o, \|[cB-a® - 2v )] (6.14)

Using (6.11) and (6.12) in (6.10) yields

aq ou

G = -20, g% ( 5= >

+ Ha {6.15)

At this point an important question enters our discussion:  What

is the criterion for crack propagation (fracture} ?

Goodier and Field [13] assumed that the crack grows in a self-

similar manner, such that
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3c
S (6.186)

oo

This condition is the consequence of assuming 6 to be constant as the

iy
crack and craze grows. Under these conditions, Sa vanishes and G
oU
becomes, in view of (6.15), 75?, which is the 'plastic' (cohesive) work

rate. However, the crack tip opening displacement v(a) = VC as given
by (6.4) becomes a linear function of 'a'. Thus the CTOD in Goodier
and Field's model increases as the crack grows. This behavior is
inconsistent with experimental observations as discussed in Section

5.1.

In the present model, the critical CTOD, Vc’ is kept constant;

this condition in turn requires that ¢, decreases as 'a' increases (see

Figure 23), in order to maintain the quasi-static condition, i.e.,

8 |y <0 (6.17)

Viewing (6.15) in this light, it is evident that G becomes unbounded if

oC oU

d is unbounded, no matter how small Gw(?EF) may be, since ?ﬁf is always

finite.

Therefore, in this geometry, a crack the tip displacement of which

24 This statement can

has reached the critical value is always unstable.
be directly verified from Figure 28 which indicates that unless o is
reduced as 'a' increases in the manner shown, quasi-static crack and
craze growth cannot be maintained. To this result we only need to add
the reminder that for a clamped infinite (very large) plate, a small
enlargement of an internal crack would hardly affect the far—}ield o

sufficiently to keep the crack and craze growing quasi-statically.

24. If the tip displacement is less than v_, the crack does not grow as
the tip fibril is not broken. For softéﬂing p-v relations, however,
instability may occur before v _ is reached (see Section 7.2).
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Therefore once a crack {(with or without a cohesive zone) starts grow-
ing, and the fracture criterion such as a critical CTOD is satisfied,
catastrophic failure ensues. We shall see in the next section that the

converse is not true.

It is of interest to see how the plastic work dissipation rate,

au
3&?' changes as the crack grows. Making use of (6.5), the constancy of

Vc requires

¢ _ ¢y _ B
e = o1 -5) (6.18)

Also, differentiating (6.2) and using (6.18) yields

2__ 2 {(6.19)

Differentiating (6.14) and using (6.18) and (6.19), there results

ou

‘e 2a2 -
oa 4y + me { GM(Z\IC a

2
_._Q,_ﬁ._._) _ 3VC 1

a\‘cz—a2 (6.20)

This plastic work rate calculated using the CTOD criterion differs
markedly from the result obtained by Goddier and Field under the
assumption of self-similar growth [13]. The work rate given by (6.20)
in this work is piotted in Figure 27; note that the plastic work rate
increases as 'a' increases and  approaches the constant value 4y
rapidly. Physically, for a short crack, one has a relatively large
craze (yield) zone w ; to advance the crack by Aa, very little energy
is needed since ¢ increases more slowly than 'a' (i.e. w shrinks). For
longer cracks, the size of the yield zone tends toward a constant value
and thus the craie zone simply translates as the crack propagates. 1In
this latter case, the dissipated energy is thus 4y per unit crack

advance.
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6.2. Generai p-v Models

Next we examine six different p-v relations labeled #1 through #6
in Figure 28 and compared the results to the Dugdale model labeled 'D'.
Models #1 and #2 are of the half-cosine form given by (4.2) with

\%
m

Vy = 0. The p-v relation #5 is hypothetica1.25 It is designed with the

intention to examine the effects of a highly-softening fibril behavior

[}

0. Models #3 and #4 ére linear~softening defined by (4.1) with

coupled with subsequent mildly-softening behavior on the mechanics of
crack and craze growth. The last model (#6) is of a 'bi-parabolic'
form, i.e., the initial softening with subsequent rehardening behavior
is modeled by two parabolic curves (joined at the transition point with
zero slopes). The motivation for this design is based on the experi-
mental findings of Kramer et al. {[22,23] as reproduced in Figure 4.
The model should approximate the realistic p-v behaviors of craze
fibrils as it is known today reasonably well. As a check, we employ
this model to simulate craze and crack growth. The resulting craze con-
tours and stress distribution profiles are depicted in Figures 29 and
30 respectively. They do closely resemble the experimental v(x). and

p(x) obtained by Kramer and his coworkers.

To compare the results for all these different p-v relations, it
is necessary to have a benchmark. For this purpose we use a Dugdale
model {(labeled 'D' in Figure 28) with P, = 0.025 and v, = 0.008. All
the p-v models are designed so that the area under each p-v curve, v ,
is constant and equal ZXI0_4, the same as that of the Dugdale model
employed. This is done to 'filter out' the possible effects on the
results that may be caused by the differences in the values of fracture

toughness among the various p-v models.

25. Meaning, no experimental evidence suggests the existence of such a
form of p-v relation.
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P
0.025
0 0.008 v
p Pl
0.0393 ® | ®
0.025
Q 0.008
0,055 v 0 0.0126 v
P P
0.025
0 0.008 0
0.050 v 0,06 v
P p
® 0.035
0.025
0125 0.015
|

0 0004 006 v O 0005000 v

Figure 28. p-v models used in the nonlinear craze and crack propagation
studies in Sections 6 and 7. All models have the same vy .
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The numerical procedures have been presented earlier in Section

2.4, Heré a few remarks are in order: First, the computation time is
cut substantialiyvby employing relations (2.24)-(2.26) in the evalua-
tions of integrals involved for the wide range of craze lengths stu-
died. The craze length is varied from the ¢=0.0 to ¢=10.0, the incre-
ment Ac ranges from 0.01 to 0.2. Smaller increéements for Ac are neces—
sary to capture the behavior of the system for short crack lengths,
oU |

particularly in calculating the rate of plastic dissipation, ?E?.ZG
During the course of these craze growth simulations, it was found that
convergence is generally attained in fewer iterations if vi(c) is used
as the initial guess of v.(c+Ac). (This is not the case for p-v model

#6, however.)

In Figure 31 and 32, ¢ and w are plotted as functions of 'a',
respectively. The general behaviors for all p-v models are the same as
those of the Dugdale models shown in Figure 21 and 22. Note that w is
primarily dependent on v, but also depends weakly on the character of
the p-v relation. In Figure 33, ¢_ is normalized by p, = 0.025 of the
Dugdale model and plotted against 'a'. We see that p-v relations with
the same VC (1&3 and 4&5) yield identical curves, i.e., ¢ decreases
monotonically as 'a' increases with the short crack length behavior

controlled by \A and P, (p at v = 0).

In Figure 34, the far-field stress ¢ normalized by Pp = 0.025 is
plotted versus c¢ for the various p-v models. Except for the 'nonphysi-
cal' branch of the Dugdale model shown by the dashed line, the remotely
applied stress decreases monotonically as the craze/crack grows which
is necessary to maintain gquasi-static growth. This confirms the con-
clusion reached in Section 6.1 from the energy release rate analysis

that once the critical CTOD is reached the crack will grow unstably if

26. Uc is obtained by %ptegrating numerically

v
UC = 4[ ya + [ ev(v(x))dx] where ev(v) = [ p{v')dv'
a )
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the remotely applied stress is maintained constant. An interesting
feature is exhibited by the dash-dot curve which represents a 'full
craze' (a=0) sélution branch and is present only in the p-v model #6
(among all models studied here). This unusual behavior merits further

elaboration:

One finds that for the craze length ¢ < 0.8, the algorithm con-
verges to the trivial solution in which the craze is fully closed (v{x)
= 0) at all points (see Figure 46 for better details). For c greater
than 0.8, there exists a 'full craze' solution regime up to ¢ = 2.2.
At ¢ = 2.2, the solution shows that v(o) is approximately 0.006 and
thus p{x) has a minimum at v{x) = 0.005 (see Figure 28). For ¢ larger
than 2.2, there is no full craze solution (the algorithm 'jumps' and
converges to solutions with cracks, i.e., a # 0). This behavior can
again be explained using a contradiction-type argument similar to the
ones used earlier in Section 4.2 (and illustrated in Figures 18 and

19). 1In the present case, consider the following heuristic argument:

With a little exaggeration, let us assume that for a craze length
greater than 2.2, a solution exists with p(x) as shown in Figure 35a.
The corresponding displacement profile v(x) and the p-v relation,
derived through use of equation {2.21), would be as depicted in Figures
35b and ¢, respectively. Evidently, the va behavior in Figure 35¢
hardly resembles that of model #6. Thus it is unlikely that a solution

consistent with p—v model #6 and ¢ > 2.2 exists.

On the‘other hand, for crazes with nonzero crack lengths, it is
found that for ¢ < 1.87 and a < 0.98, there is no solutionvwith nonzero
crack length 'a'. As c is decreased below 1.87, a transition in the
character of the solution occurs; the solution 'jumps' from the branch
on which 'a' is nonzero to another branch on which a = 0 or the full
craze solution branch. Note that for 1.87 < ¢ < 2.2, the solutions are

not uniqgue, i.e., for a given ¢ in this range, we either have a full

craze solution at a higher ¢ or a crack/craze solution at a lower
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Figure 35. Demonstration of the nonexistence of nontrivial 'f{111 craze'
solutions for p-v model #6 for ¢ > 2.2. See discussion in
Section 6.2.
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27

As an assurance, we now check the conclusion that for ¢ < 1.87 and
a < 0.98, there is no solution with a = 0. This is achieved through
another heuristic argument. Assuming that a solution with a short
crack length exists, a fibril stress distribution p(x) of the form
plotted in Figure 36a seems reasonable. The resulting v(x) and p-v
relation are shown in Figures 36b and ¢. As before the p-v relation
needed for such a solution to exist is quite different from the

prescribed p-v relation in model #6

The above result indicating the lack of solutions for the
prescribed p-v relation (#6) over some ranges of craze and/or crack
lengths may seem, at first sight, contradictory to our physical intui-
tion that crazes and/or cracks of different sizes exist in a continuous
size ‘'spectrum', This seeming contradiction is easily resolved by
recognizing that, most probably, the p-v relation is not 'invariant’
with respect to all values of the crack and craze lengths as initially
assumed.28 More elaborate modelling of the fibril p-v characteristic is

therefore needed; see Section 8 for further discussion.

Figure 37 indicates that v(o) increases monotonically with 'a' and

is an increasing function of V.- In Figure 38, the aspect ratio « is

shown to behave essentially as for the Dugdale counterparts (cf. Figure

aU
26). The plastic work dissipation rate, 7%?’ approaches the asymptotic

limit 4y fairly quickly as illustrated in Figure 39.29

27. This non-uniqueness situation is qualitatively different from that
of the Dugdale model (see Figure 24 for comparison).

28. Note that this conclusion is based solely on mechanics analysis.

29. The curve representing p-v model #6 has been smoothed out for
a > 2.5. TFor this particular p-v relation, to get accurate v_ in
the craze zone (whose size equals 0.8 for a > 2.5), finer discr%ti—
zation is required to capture the steep rise and fall of the stress
distribution in the craze zone.
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Figure 36. Demonstration of the nonexistence of 'short crack' solutions
for p-v model #6 for ¢ < 1.87. See discussion in Section 6.2.
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7. CRAZE GROWTH INITIATING FROM A PRECUT CRACK

In this section, we consider the problem of a craze growing from a
precut slit as shown in Figure 40. Under the assumption of a CTOD cri-
teridn, one would expect the crack to start advancing when the far-
field applied stress ¢ is high enough to make the crack tip displace-
ment v(a) reach the value V.- Thereafter the crack and craze would

grow unstably as discussed in the previous section.

However, it is conceivable that for certain p-v relations, ¢, may
reach its maximum value before the crack tip displacement reaches its
critical value Ve thus resulting in instability before the CTOD cri-
terion is satisfied. We shall show that this is indeed the case for
p-v relations that soften monotonically up to fracture (fibril break-
age). To start, let us first study the Barenblatt-Dugdale model for

later reference.
7.1. The Barenblatt-Dugdale Model

We start with a precut crack of length 2aO . Initially, this
'initial' crack length, a., is equal to the initial craze length, i.e.

at the moment c = ao and w = 0. We then increase ¢ gradually until

v(a) reaches VC. By equation (6.5) when v(a) = Ve the ‘'critical'
craze length Ccr 1§

. ) B/a0 g = nv,

cr - 3o° ’ h 2p (7.1)

Hence for a, <c¢ < Cop: the remotely applied stress ¢ can be obtained

from (6.2), i.e.,

2p a
¢ = —;m cos_l(??), a <¢ <c¢ (7.2)

oG

Based on (7.1) and (7.2), we can plot the applied stress 6, as a



-164-

Infinite - U 1
plate

. A r % 4 A
Infinite
plate
(b)
% >0
a=aq,
(b) a<Cc<Ce
O<vla) <y,
¥ v T v \
Infinite
plate
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Figure 40. Craze growth initiating from a precut crack

(a) Initial precut crack, no far-field loading.
(b) Increasing far-field loading, no crack growth.
(c) Critical CTOD reached, crack growth imminent.
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function of ¢ for constant a = aD as shown in Figure 41. Five initial
crack lengths are used (a0= 0.3, 0.6, 0.9, 1.2, and 1.3). The curve
representing qﬁasiéstatic crack and craze growth referred to subse-
quently as the 'master' curve on which the CTOD always attains its
critical value is also identified. On the 'master' curve, the craze
and crack growth is unstable in the sense that 6 must be reduced con-
tinually in order to maintain quasi-static.

0

3 ] . .
min)’ ¢, increases from zerc at point A monotoni-

cally to point B which lies on the nonphysical branch. As neither ¢

For a,=0.3 (< a

nor 'a' can decrease (physically), one cannot follow the guasi-static
equilibrium curve (henceforth the master curve) by gradually increasing
or decreasing 9. A jump is necessary to get back on the 'master’
curve; this is achieved by dropping ¢  abruptly from point B to point
C. In practice, quasi-static equilibrium will be difficult to maintain
since ¢, must be known as a function of the craze length c in advance,
and then prescribed and controlled. Most likely, the crack and craze
would grow unstably from point B on. For ao 2 a .,
follow the master curve after Cop is reached and maintain quasi-static

it is possible to

growth with no 'jump'.
7.2. General p-v Models

Next let us consider the same problem as in Section (7.1) using
p-v relations #1,3,5, and 6.31 In contrast to the Barenblatt-Dugdale
model, we find that for p-v relations that soften monotonically up to
the point of fracture (models #1 through #5), instability may occur
before the critical CTOD is reached at the crack tip. Briefly, the
numerical analysis proceeds in the following sequence:

nv,.
30. Here 8 in = B = §E~ = 0.503

=

31. The p-v relations #2 and #4 are not considered as they are of the
same form as #1 and #3 respectively. (No new qualitative results
are expected.) »
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i. Start with an a, which corresponds to a 'c..' that lies on the

master curve.

ii. Increase c gradually from a toc in such way that the crack tip

cr
"falls exactly on a discretized point Xg (see Figure 8). This

avoids unnecessary interpolation.

iii. Find the solution, pre-specifying that p(x) wvanish for x < ao_
The solution would automatieally have v(a) < vC as long as
c < Cop
As is evident from Figures 42 and 43, the results are very similar
for p-v models #1 and #3. From the insets, one sees that, for
ao = (0.3, instabilities occur for both p-v models #1 and #3.
Specifically, let us consider a stress-controlled experiment (i.e.
the far-field stress ¢ is prescribed). As ¢ is increased from zero up
to point B, the CTOD, i.e., v(a) approaches the critical CTOD, Vc' At
point B, any further increase in 6 will cause the crack and craze to
grow unstably since quasi-static growth will no longer be maintained at
that stress level. If one reduces 0 instead, keeping in mind that the
craze length ¢ cannot decrease while a = a, remains constant, point C

could then be reached quasi-statically. Therefore, at point B, any

small positive perturbation in ¢ or in a, would cause the crack and

craze to grow in an unstable manner. Note that the solution cannot
'jump' spontaneously from point A to point C because more work has to
be done to further develop to craze zone and this is achieved by fol-
lowing the path ABC as discussed. Note that, if upon reaching point B,
6., is maintained constant, the solution cannot simply jump across to

point D on the master curve at the same level of 6 . This is because

point D corresponds teo a < a  and the crack cannot shrink from its ini~

tial length as no 'crack healing' is allowed.
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What happens, if at point A, one perturbs the system by cutting a
fibril at-the crack tip making ao increase infinitesimally ? As dep-
icted in Figure‘42 (inset), the solution will simply jump from point A
to a nearby point E which corresponds to a0 = 0.3+ and stop. Thus the
craze and crack at point A is stable since a small perturbation in ao

does not lead to total failure.

All the above discussions apply equally to p-v relation #5 with
even more pronounced instability regimes. Figures 44 and 45 exemplify
the various points made excellently. We see that for a p-v relation
that softens sharply before leveling off and fails at relatively high
VC as in model #5, the instability occurs for a larger range of a,-
Note in passing that the unstable behavior is more pronounced for the

shorter initial crack lengths.

We ‘turn next to the results for p-v model #6 which rehardens after
the initial softening and fails abruptly as in the Barenblatt-Dugdale
model. In Figure 46, one sees that the unstable character observed in
softening p-v models is clearly absent which closely resembles the
result for the Barenblatt-Dugdale model shown Figure 41. These results
indicate that in cases where craze fibrils fail in abrupt manners (as
opposed to gradual softening to rupture), instability does not take

place until the CTOD reaches its critical value vc

To summarize{ it has been shown that, for fibril {(or cohesive)
force—displacement relationships with softening characteristics up to
fracture, instabilities could occur before the critical crack tip open-
ing displacement is reached at the crack tip especially for short ini-

tial crack lengths.
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8. CONCLUSICNS AND SUGGESTIONS FOR FURTHER WORK

We have showh that the problem of a craze (with or without an
internal crack) in an infinite plane under symmetrical loading may bhe
solvéd exactly. The formulation and solution scheme are simple and
straightforward. The implemented Picard's algorithm is effective and
more economical than the Newton's method. The formulation can also be
used, with definite advantage over the presently available schemes, to
determine stress distribution profiles and the p-v relations from

experimental displacement profiles.

Quasi-static crack and craze growth is investigated in detail.
Six nonlinear p-v relation models are considered in the propagation
study. Craze growth starting with a precut crack is also presented,
instabilities are observed for softening p-v models. Energy dissipa-
tion rate consistent with the critical CTOD criterion is derived and

computed.

As emphasized earlier, not enough is known about the p-v charac-
teristics of the craze fibrils. Further investigation into the inter-
play between the surface drawing and creep mechanics should shed some
light on how the p-v characteristics of fibrils change as the craze and
crack grow; a first attempt along this line has been undertaken by Kra-
mer and Hart [9].‘ On another front, experiments such as those per-
formed by Kramer et al. [5,22,23] should be done for a wider range of
craze and crack lengths to determine if the fibril p-v relation is

invariant of ¢ and 'a'. (And if so, to what extent ?)

Lastly, one should recognize that the present analysis may,
equally well, be applied to the analysis of cracks. In such case, the
p-v relation represents the crack tip cohesive stress-strain charac-

teristics, thus generalizing the Dugdale model.
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ABSTRACT

This appeﬁdix'summarizes the results of an attempt to generalize
the nonlinear cohesive zone model analyzed previously to the case where
plastic deformation is not only confined to the crack path but spans
the material surrounding the crack. Failure is, however, still allowed
only along the prescribed crack path. The problem examined is formu-
lated in terms of a compact tension specimen loaded by a displacement
controlled machine. The material is. elastic-plastic and is character-
ized by the classical J, - flow theory of plasticity. The specimen is
modeled by a finite element mesh while the damaged-softened 'boundary
layer' along which the crack is to propagate is represented by a row of
nonlinearly softening springs. The springs' initial stiffness is
(nearly) infinite, and the onset of softening occurs when a critical
nodal force is reached and failure takes place at a critical separation

distance.1

When a spring fails, the crack advances by an increment
equal to the dimension of the finite element adjoining the crack path
much like in the case of the beam on a nonlinear foundation studied in
Section 3 of Part I. The fracture energy is equal to the area under
the spring's separation characteristics; material toughness would
include the energy dissipated in plastic deformation. The definition

of the problem is complete and no extra fracture criterion is needed,

i.e., crack growth is totally controlled by the external loading.

The finite element program ABAQUS is employed for this purpose.
The studies indicate that the solution is extremely sensitive to the
size of the loading increment used, i.e., prescription of the solution

path2 is critical in avoiding erroneous results. More importantly, a

1. For the motivation of this spring design, see Section 1 of Part I
and the discussion to follow in the introductory section of this
appendix.

2. By 'solution path', we mean the loading history which proceeds in
small increments. in problems where plastic deformation is
described by the flow theory of plasticity, different sizes of
increments taken to arrived at the same prescribed loading could



-181=-

numerical difficulty is encountered as the spring at the crack tip
starts to soften. The investigation suggests that additional con-
straints may need to be imposed on the manners by which the softening

springs representing the 'boundary layer' are allowed to deform.

On another aspect of this study, we attempt to devise a proper
scaling scheme for the springs so as to be able to derive consistent
results from the finite element analyses independent of the mesh sizes
employed. It was found that the fracture energy must vanish as the
crack tip element size is decreased to zero, otherwise, the finite size
of the fracture process zone must be accounted for by recognizing that

the crack grows in discrete steps.3

yvield different results.

3. The size of this 'discrete step' is a material characteristic and is
determined physically by the failure mechanisms prevalent in the
crack tip process zone.
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1. INTRODUCTION

In this appendix, an attempt is made to extend the use of the non-
linear cohesive zone model of the Barenblatt-Dugdale type to simulate
crack growth in elastic-plastic materials. The motivation for the
approach taken here is based on certain physical observations described

below.

It is well recognized that cracks grow in different materials with
varying degrees of ductility depending on the 1loading and on the
environmental conditions. If the fracture process is relatively brit-
tle; the crack surfaces separate in such a way that little plastic
deformation is induced in the material surrounding the crack path. On
the other hand, when the crack faces are }ormed through void nuclea-
tion, growth and coalescence, the ‘'effective' fracture energy turns out
to be substantially higher than in brittle fracture because the extent
of plastic deformation iﬁ the material adjacent to the path traversed
by the crack is much greater. Thus, the material toughness and separa-
tion characteristics reflecting the failure mechanisms at the crack tip
directly control the energy expenditure and the stress and strain

fields around the crack front.

In view of the above discussion, it is clear that fracture ana-
lyses are necessarily incomplete if they do not incorporate the proper
'separation laws' which characterize the failure processes at and ahead
of the crack tip. Let us consider that two distinct and interacting
deformation modes exists: One is the plastic deformation described by
the continuum theory of plasticity which occurs in the material sur-
rounding the crack tip. The other mode of deformation incorporates the
failure mechanisms caused by the interaction of microvoids in £he frac-
ture process zone resulting in eventual surface separation. In many
instances, this process is confined to a very thin 'boundary layer'

along the crack path.
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It is‘natural to introduce a fracture model in which this 'boun-
dary layer' is‘represented by a row of nonlinear springs whose charac-
teristics reflect this separation mode of deformation discussed above
while allowing the material surrounding the crack to respond plasti-
cally to the external loading and the crack-tip constraints imposed

through the boundary layer.

The model discussed above is supported by the findings of Kanninen
et al [1]. 1In these studies, fracture experiments were performed on
center-cracked panels and compact tension specimens made of the 2219-
T87 aluminum alloy or the A533-B steel. The experimental measurement
of the applied load (or displacement) and crack growth history was then
used as inputs to a finite element analysis from which a number of can-
didates (such as the crack tip opening displacement and angle) for
stable crack growth parameters were extracted. This experimental-
computational process termed the 'generation-phase' analysis involved
imposing the known loading history in the finite element analysis and
enforcing the corresponding crack growth history by gradually releasing
the crack tip node one by one to simulate the experimental measure-
ments. From their generation-phase analyses, it was found that the
critical nodal force, Fc , at which the nodes were released and the
fracture energy, vy ,4 were relatively constant during crack propaga-
tion.5 Based on these findings, the softenihg springs employed in our

6

model are designed to of 'infinite' initial stiffness™ with the soften-

ing starting at a critical nodal force, Fc , and the complete failure

4. Or the area under the curve of the crack tip nodal force versus the
nodal displacement which is the work done by the system in order to
generate new crack surfaces.

5. In private communication with Dr. Kanninen, he informed us that each
node release generated approximately the same nodal forée versus
nodal displacement curve yielding the same fracture energy.

6. In this study, we make this initial stiffness equal 103 to 105 times
the Young's modulus of the elastic-plastic material, the results to
be discussed is insensitive to the exact value of this 'infinite'
initial stiffness of the springs in this range.
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at a critical separation distance, 6C. Figure A-la illustrates a typi-

cal 'nonlinearly—softening' spring.

Having laid down the motivation for introducing the 'boundary
layet' model discussed above, we describe in the upcoming section its
implementation through finite element modeling. The results of the
finite element studies are summarized and interpreted in Section 3; the
numerical difficulty encountered is discussed in detail. When the size
of the finite elements along the crack path is decreased, it is neces-
sary to scale the nonlinear springs accordingly in a proper manner so
that the results from analyses using different finite element meshes
are consistent. An attempt to find such a consistent scaling scheme is
discussed in Section 4. Suggestions for overcoming some of the diffi-

culties encountered in the study then follow in Section 5.
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Very high stiffness (10%E)

Very high stiffness (10% E )

~(b)

Figure A-1. Nonlinear springs used to model the behavior of the damage-
softened 'boundary layer'.

{a) Nonlinearly-softening spring
(b) Linearly-softening spring
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2. THE FINITE ELEMENT MODEL

In this section, we describe the specific problem we choose to
study first. We rely on reference 1 for the input data, i.e., for the
specimen dimensions, the material property as well as the 'generation-

phase' fracture parameters used in designing the nonlinear springs.

We tested the model by attempting to duplicate the results in
reference 1 using the data given there for the design of the finite
element mesh and the softening springs. The experimental data and the
values for Fc (see Figure A-1) and vy obtained from the 2219-T87 alumi-
num compact tension specimen tests were chosen. The problem was
analyzed under the plane-stress conditions. The stress-strain behavior
of the aluminum was approximated by a piecewise-linear hardening curve
as is given in reference 1. The finite element program ABAQUS (version
4.5) running on an FPS-164 array processor with a VAX-11/780 as its
host machine was employed for this purpose. Four-noded bilinear
plane~stress elements were used to model the compact tension specimen.
Nonlinear springs were used to restrain the vertical motion of the
nodes along the crack path simulating the damage-softened 'boundary

layer'.

The finite element mesh used in this stﬁdy is shown in Figure A-2a
with the detailed crack tip mesh in Figure A—2b.7 The mesh consists of
385 elements, 12 ‘identical springs, 429 nodes, and a total of 858
degrees of freedom with the smallest element size being 1.5 mm by 1.5
mm.8 The crack path is modeled by a row of 'linearly-softening' springs

the force-displacement behavior of which is shown in Figure A-1b. 9 The

7. By symmetry, only half of the specimen needs to be modeled. Also,
throughout this study the plastic zone is always well contained
within the boundary of the detailed mesh in Figure A-2b.

8. The element size of 1.5 mm by 1.5 mm is chosen for the initial stu-
dies as it adequately captures the deformation in the crack tip zone
while keeping the computing time reasonable.
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LOAD| PON T+@

=~ See (b) —
<L for details —
Y
X (a)
Y
X Initial Crack tip

(b)

Figure A-2. The finite element mesh for the compact tension specimen.
(a) The overall mesh
(b) The detailed mesh of crack tip zone
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rest of the nodes along the line of symmetry are fixed. The loading is

accomplished through prescribing the displacement, A, at the node A,

the reaction force at A then equals the applied load, P. The solution

is effected by the usual Newton's iteration; a solution is considered

attained when all residual nodal forces except at the nodes with

prescribed displacements fall below 0.1% of the actual force values (in

this case, P).10

10.

We used 'linearly-softening' springs in this initial attempt for
convenience as Dr. Kanninen indicated that the actual nodal unload-
ings in the analyses in reference 1 consistently followed a curved
path just slightly below the linear path employed here. However the
ABAQUS code is capable of handling general piecewise-linear springs.

Details of the ABAQUS code can be found in the ABAQUS Theory Manual
published by Hibbitt, Karlsson and Sorensen, Inc., Providence, Rhode
Island.
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3. THE FINDING AND ITS INTERPRETATION

We next discuss a number of findings and attempt to give a suit-
able interpretation of the numerical difficulty encountered. Sugges-

tions for improvement are left for the last section.

First of all, it is important to discuss the sensitivity of the
results on the solution path (or loading history), in particular, the
increment size of the loading employed in reaching a solution. 1In the
initial attempts, an automatic incrementation scheme was employed. 1In
this process, the step size of the displacement (loading) increment was
adjusted continually in order to minimize the computation time: When
convergence was judged unlikely for the current incremental step size
based on the residual nodal forces at the end of each iteration, subdi-
vision of the incremental step size took place until convergence was
attained. On the other hand, when convergence was obtained twice and
easily for the current step size, the step size would be increased. 1In
most problems, this automatic scheme led to the same solution as would
direct user control of the incremental step size. 1In this problem, the
initial results obtained under the automatic incrementation scheme were
very encouraging as we were able to simulate crack propagation very

effectively.

It is necessary to verify these initial results by ensuring that
they are independent of the particular solution path chosen by the
automatic incrementation scheme employed. Attempts to duplicate the
above results by directly controlling the incremental step size were
unsuccessful as completely different results were obtained.11 When the
step size was kept very small and constant, we found that as the nodal
force at the first sprihg (located at the crack tip) approached its

critical value, FC , the solution no longer converged. Moreover, at

11. The constant incremental step size used was the smallest step size
needed for convergence when the automatic scheme was employed.
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. this stage, the applied displacement and load had far exceeded the
values at'which the result obtained through the automatic incrementa-
tion scheme ind&catEd that crack propagation should occur. For exam-
ple, at the load level at which the result of the automatic scheme

indicated crack growth over a distance of 15 mm,lz

direct control of
loading incrementation yielded a solution where the nodal force at the

first spring was only approaching Fc'

In hindsight, it is not difficult to see why these initial
attempts at using the automatic incrementation scheme fail: Consider a
stage in the solution when the nodal force at the crack tip spring
reaches, say, 90.0% of FC , i.e., at point A in Figure A-3. If a large
step is taken in the next increment, the convergent solution obtained
could easily increase the crack tip nodal displacement such that a jump
from point A to point B takes place. When this happens, the force-
displacement relation of the spring is 'clipped' and is effectively
different from what we prescribed, and an incorrect solution is
obtained. Needless to say errors such as this propagate as the solu-
tion progresses, making subsequent results meaningless. Thus, in order

to obtain the correct solution, one needs to ensure that the incremen-

tal step size is always small enough so that behavior such as illus-

trated in Figure A-3 is ruled out. In other words, the solution path
must be taken such that the information contained in each spring is

fully used.

Having recognized the above point, we continued the investigation

by imposing a very small upper-bound on the incremental step size and

13 It turned

allowing for smaller step sizes to be used when necessary.
12. Ten springs had been broken and the crack had propagated over ten
elements' length. ‘

13. Note that when the initially chosen small step size was fixed, we
had no convergence as the crack tip spring started to soften; it is
therefore necessary to allow for further subdivisions of the initial
step size.
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Figure A-3. Illustration of how an incorrect solution results when a large
loading increment is taken.
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out that extensive subdivisions of the step size occurred again once
the softening of the crack tip spring started. The step size was

4

allowed to decrease down to as low as 10 - of the already small initial

step size and the solution would still not converge.

To see if the onset of softening in the crack tip spring caused
the non-convergence, we fixed all the nodes along the crack path leav-
ing only the single spring at the crack tip active. Upon loading the
system as before, the spring at the crack tip softened and was broken
without further need for any subdivision of the step size; in this
case, the spring was traced out fully in small steps as initially
prescribed. The result of this test indicated that the numerical dif-
ficulty was likely to be caused by the interactions between the row of

nonlinear springs and the plastically deforming solid.

It is very difficult to rigorously prove the above conjecture
that, somehow, the coupling of these nonlinear softening springs and
the elastic-plastic body is the source of the numerical problem encoun-
tered. However, we suspect that the model, in its present form, allow
the springs representing the cohesive 'boundary layer' to deform too
freely. 1In other words, it is 1likely that the problem is 'ill-posed'
in its present form, and additional constraints need to be imposed in
order to properly generalize the cohesive zbne model to the case where
the material body is elastic-plastic. An argument supporting this con-

jecture is given next.

Since its invention, the idea of a 'cohesive zone' has been used

exclusively in connection with elastic solids the constitutive property

14

of which imposes a 'smoothness' condition on the deformed profile of

the interface between the cohesive zone and the solid body. In our
present model, however, the 'smoothness' condition does not exist since

the elastic-plastic body is much more flexible in its freedom to deform

14. More precisely, the cohesive interface cannot exhibit a kink.
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at the cohesive interface. This implies that the nonlinear cohesive
layer doés not necessarily need to possess a unique distribution of
cohesive forceé in order to satisfy all field equations. Therefore the
non-convergence experienced when softening takes place at the crack tip
spring possibly reflects the fact that at that stage in the solution
process the newly formed stiffness matrix cannot seek out a consistent
path which the incremental deformation of the system must follow, due
to the excess of freedom in the present model. Before suggesting some
possible remedies for this difficulty, let us digress for a moment to
address another aspect of the present model which poses some further

unresolved questions.
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4. SOME COMMENTS ON FINITE-ELEMENT SCALING

In this seétidn, we turn to another issue of importance in ensur-
ing the self-consistency of the model proposed earlier. The issue is
how one scales the nonlinear softening springs so that analyses using
different element sizes along the crack path (which define the discrete
incremental steps by which crack growth is simulated) yield the same

results.

If the solid body is simply elastic and the c¢ohesive behavior is
such that a critical crack tip opening displacement is the proper cri-
terion for fracture independent of the discretization of the crack
path,15 the scaling is very simple (see for instance, Section 3 of Part
I). In the present model, however, no simple and consistent 'scaling'
rules exist. The difficulty encountered is discussed below in its his-

torical perspective.

In 1966 Rice showed that a Griffith-type energy balance for crack
growth led to paradoxical results for solids that are modeled as
elastic-plastic continua, since such solids provide no energy surplus
in continuous crack advance to egquate to a work of surface separation
(or fracture energy) [2]. In essence, it was shown that when the
material stress-strain relation entails the saturation of the flow
stress to a finite value at large strain, there is no singularity in
recoverable energy'dénsity at the crack tip. Thus there is no surplus
external work over the plastic dissipation to furnish the required
fracture energy, and therefore the crack cannot grow which is in con-
tradiction to experimental observation. The paradox was_resolved by

the recognition that, in the real world, cracks grow in 'discrete' and

15. This is the case in the model of a beam on a nonlinear foundation
analyzed in Part I. The critical crack tip opening displacement is
independent of the incremental crack growth step since it is the
product of the thickness of the cohesive interlayer and the critical
strain both of which do not depend on the size of elements along the
crack path.
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'"finite' steps the size of which is determined by the mode of failure

in the crack tip process zone [3].

In reference 3, it is shown that the energy release rate {which is
equivalent to our 'fracture energy') vanishes as the crack growth
increment is decreased to zero. This conclusion is confirmed by exten-
sive finite element analyses (see reference 4, for example). This
means that the fracture energy calculated from a force-displacement
diagram of a spring (such as Figure A-1) must not be interpreted as a
physical guantity; but rather, as a value derived from the generation-
phase analyses which depends on the size of the crack growth steps
employed. According to the study of scaling conducted in reference 1,
the critical nodal force, FC , scales with the crack increment size,
Aa, in an almost linear fashion whereas the fracture energy, v,

decreases as Aa is decreased but not quite as linearly as for Fc'

From the above discussion, it is clear that the scaling of the
nonlinear springs representing the behavior of the cohesive 'boundary
layer' is not based on any set of simple.rules. As the findings in
reference 1 suggest, the first attempt might be by linear scaling of
both Fc and 60 which would scale 7y linearly as well. Subsequent
refinements would have to be done through trial and error since the
scaling is most 1likely nonlinear. We >have, therefore, another
unresolved issue in addition to the numerical difficulty described in
Section 3. The pfoblem of obtaining solutions from the present model
which are independent of both the solution path and the finite element

mesh has yet to be resolved.
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- 5. SUGGESTIONS AND CONCLUSIONS

In this last section, we discuss a number of possible measures
that may help overcome the numerical difficulty described in Section 3.
At the present time, the suggestions given below cannot be implemented
in the finite element program ABAQUS since it is proprietary and the

FORTRAN source code is unavailable.

Based on the studies conducted thus far, we believe additional
constraints have to be imposed on the model. In particular, the row of
nonlinear softening springs must be controlled so that the resulting
coheéive interface retains some degree of 'smoothness'. This can be
accomplished in several ways, as discussed below. The most appropriate
choice wogld be judged by how well each candidate performs in eliminat-
ing the numerical difficulty as well as in being able to closely simu-

late experimental measurements.

The simplest scheme is to freeze the movements of all the springs
ahead of crack tip as soon as the crack tip spring reaches the criticail

nodal force FC and allow only this one spring to break before re-

activating the rest of the springs to continue the analysis. This
method is, perhaps, too restrictive, and is not very different from
releasing the crack tip node one at a time; thus it is rather ineffi-
cient as far as allowing crack growth to be completely controlled by
external loading d4s we originally hoped to do. An alternative is to
require that the extensions (or the vertical displacements) of the
springs be monotonically decreasing starting from the first spring at
the crack tip. This should ensure that the cohesive interface is
fairly 'smooth'. Additionally, we may allow only positiVe increments
in the extension of each spring, this would ensure that the sbftening
of the damaged 'boundary layer' as modeled by the springs progresses
monotonically and no artificial unloading occurs during the solution
process. Other similar measures can also be tried provided the system

is not perturbed excessively so as to result in erroneous solutions.
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It is premature to claim the viability of the generalized cohesive
zone model proposed here considering all the unresolved difficulties
discussed in the previous two sections. Further investigations are

needed to pass the final verdict on the potential of this model.
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