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ABSTRACT 

Analytical modeling of one-dimensional hysteresis and general multi-axial cyclic 

plasticity is studied, with particular emphasis on the parsimony of model parameters 

and the physical consistency of model behavior. General criteria for good models are 

proposed to provide guidelines to the modeling studies conducted in this research. 

Various one-dimensional hysteretic models are examined in detail, including both 

deteriorating and non-deteriorating models. A general formulation for modeling of 

degrading systems is presented based on the formulation of the Distributed-Element 

Model (DEM) and the introduction of a damage index function. A new class of 

deteriorating Masing models, whose behavior can be completely described by a few 

simple mathematical rules and the extended Masing rules, is also developed to sub­

stitute for a special class of deteriorating DEMs, so that their applicabilty to system 

identification studies is improved. 

The one-dimensional DEMs are extended to the multi-dimensional case for con­

stitutive modeling of cyclic plasticity, while preserving the concept of modeling plas­

ticity by an assemblage of simple ideal elasto-plastic elements. In the generalization, 

a new invariant-yield-surface theory is proposed, in which no kinematic hardening 

rule is needed to account for the subsequent yielding and strain hardening behavior. 

A general theory is also developed to elucidate some important properties of material 

behavior based on the proposed multi-dimensional DEMs. The establishment of the 

theory provides instructive insight into the elastic-plastic response mechanisms of 

real materials under complicated loading conditions. Based on the insight, the Mas­

ing rules for one-dimensional hysteresis are extended to the multi-dimensional case 

by introducing a composition of plane-geometry transformations to a response for­

mula developed for initial loading. This transformation method serves as an efficient 

way of implementing the classical multi-yield-surface theory with the Mroz kinematic 

hardening rule. Validity of the new formulations are confirmed by comparison with 

experimental results from the literature. 



v 

TABLE OF CONTENTS 

Acknowledgements ..... . .... . . ............. .... . . ..... ... .. ........ ....... iii 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1v 

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 

List of Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 

Chapter 1 Introduction ... ...... .. .. . . .. ..... ...... .. . ..... .... .. . ... ... . 1 

Chapter 2 System Identification and Modeling . . . . . . . . . . . . . . . . . . . . . . . . 6 

2.1 Introduction ...... .... .. ..... . ........ .. ....... ... .... . .. . . . . ........ 6 

2.2 Practical Considerations of System Identification . . . . . . . . . . . . . . . . . . . . . 7 

2.3 Criteria for Good Modeling .... ...... . .. .. ............... .. .......... 9 

2.3.1 An Illustrative Example of Proper Modeling ............. ..... 11 

Chapter 3 Modeling of One-dimensional Hysteretic Systems . . . . . . . . 15 

3.1 Introduction ........... .. . ..... .. ......... ... . ........ ....... ....... 15 

3.2 Modeling of Hysteretic Systems without Deterioration ... ........... . 16 

3.2.1 Hysteretic Models Described Solely by Differential Equations . . 16 

3.2.2 The Distributed-Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

3.2.3 The General Class of Masing Models ... . . .. ..... . . .... . ... ... 20 

3.2.3.1 Masing's Hypothesis and Extended Rules . . . ........... 20 

3.2.3.2 A Special Class of Masing Models .. .... ................ 22 

3.3 Modeling of Degrading Hysteretic Systems ....... .............. . ... . 23 

3.3.1 The Degrading Bouc-Wen Model .... . ....... .... .... . ... . .... 24 

3.3.2 A Class of Deteriorating Distributed-Element Models .. ....... 25 

3.3.3 A Class of Deteriorating Masing Models .. .. ..... ... ........ .. 27 

3.3.3.1 General Formulation .... . .. ... .. .............. .... . .... 27 

3.3.3.2 A Special Class of Deteriorating Masing Models ........ 29 

3.3.3.3 Yield-strength Distribution Function ...... . ..... ... .... 32 

3.3.4 Other Models for Degrading Systems . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Chapter 4 Modeling Based on Endochronic Theory . . . . . . . . . . . . . . . . . . 53 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

4.2 Endochronic Theory and Its Implementation . . . . . . . . . . . . . . . . . . . . . . . . 54 



vi 

4.3 A Modeling Technique for the Endochronic Models .................. 61 

4.4 Investigation of Cyclic Hardening Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 66 

Chapter 5 Generalization of Distributed-Element Model to Multiple 

Dimensions ... . . ... . . . ....... .. ....... ..... ... . . . . . . . .. . ... .. 72 

5.1 Introduction .... .. . . ........ .. . .. . .. . .. . ... .. ..... . . ........ . . . . .. .. 72 

5.2 A New Class of Distributed-Element Models for Plasticity . . . ... . . . . . 73 

5.2.1 Concept and Theoretical Background ............. .. ... . . . . ... 73 

5 .2.2 Mathematical Formulation . . . .................. .. . . ..... .. . . . 76 

5 .2.3 Numerical Implementation of t he New DEMs . . . ......... .. . .. 80 

5.2.4 An Application to Biaxial Loading ......... . . ... .. ......... ... 82 

5.3 Important Properties of the New Multi-dimensional DEMs ...... . ... 84 

5.3.1 General Behavior of Ideal Plasticity of A Single Element . . .... 85 

5 .3 .2 General Treatment of the Theory of P lasticity . . . . . . . . . ....... 89 

5.3.3 Geometrical Considerations of Yield Surfaces for the New DEMs 99 

Chapte r 6 Generalized Masing Rules for Cyclic Plasticity . .... . . . .. 123 

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 

6.2 Extension of 1-D Response Formulas to Higher Dimensions . . . . . ... . 124 

6.2.1 T wo-dimensional Bouc-Wen Model ......... ............ . .. . . 124 

6.2.2 A Recent P rocedure for Generalizing 1-D Hysteret ic Models . 126 

6 .3 A Class of Generalized Masing Models for Multi-axial Plasticity Model 130 

6 .3.1 A Response Formula for Initial Loading ............. ...... .. 130 

6 .3 .2 Response Formulas for Unloading and Reloading Branches . .. 133 

6.3.3 Rules for Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

6 .3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 

6.4 Comparison of the Generalized Masing models with the multi-axial DEMs 

.............. ... .......... .... ...... . ... . ...... ..... .... . ....... . .. 140 

Chapter 7 Summary and Conclusions .. . ....... .... .. . . .. .... .... .. .. 155 

References 159 

Appendix A: Operator Theory on Convex Sets . . . . . . . . . . . . . . . . . . . . . . . 164 

Appendix B: Derivation of Transformation Formulas for Generalized 

Masing Rules for Multi-Axial Cyclic R esponse B ehavior 

. . .. . .... . . .. ... ... .. . . ........... . .. .. . .... .... ... .... . . ..... 166 



Vll 

LIST OF TABLES AND FIGURES 

Figure 2.1: Comparison of response histories obtained using the fast algorithm and the 

4-th order Runge-Kutta method . ..... .. . . .. . . .. ..... . ... .. .. .. .. . .. 14 

Figure 3.1: Hysteretic restoring force behavior of (a) the elasto-perfectly plastic model 

(b) the bilinear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Figure 3.2: Response behavior of the Bouc-Wen model (a) restoring force diagram 

(b) prescribed displacement history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Figure 3.3: The unstable drift exhibited by the Bouc-Wen model . . . . . . . . . . . . . . . 41 

Figure 3.4: The Distributed-Element Model for one-dimensional hysteresis .. .... 41 

Figure 3.5: Masing's hypothesis for cyclic hysteretic loops . . . . . . . . . . . . . . . . . . . . . . 42 

Figure 3.6: Hysteretic loops for transient loading ............................ .. . 42 

Figure 3.7: Effect of the parameter n of a special class of Masing models [24] on the 

smoothness of yielding curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

Figure 3.8: Effects of the degrading parameters on the behavior of the deteriorating 

Bouc-Wen model (from [52]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

Figure 3.9: Restoring force diagram of a typical breaking element in the maximum-

displacement-controlled deteriorating DEM ... . ... . ...... . .. ........ 45 

Figure 3.10: Restoring force behavior of the maximum-displacement-controlled 

deteriorating DEM subject to an earthquake excitation (from [22]) 45 

Figure 3.11: Simulated restoring force behavior of the proposed deteriorating Masing 

model . . .. .. ... ... . ....... . ............. . . . . . .. ........ ........... 46 

Figure 3.12: Comparison of the behavior of two matching Masing models . ...... 47 

Figure 3.13: Distribution curves described by the generalized Rayleigh distribution 

function with different values of n ... ... ... .... .. . . . .. . ... .. ... . ... 47 

Figure 3.14: Plastic deformation of the Masing model based on a statistical interpreta-

tion of the Rayleigh yield-strength distribution function . .. . . . .... . 48 

Figure 3.15: Drift response of a Masing model based on the Rayleigh distribution 

function as compared with an endochronic model . . . . . . . . . . . . . . . . . . 48 



viii 

Figure 3.16: Different types of elements used in a model for hysteretic systems with 

stiffness degradation (from [13]) . . ............. . . . . ... . . . . ......... 49 

Figure 3.17: Configuration and behavior of Gates' degrading model (from [13]) . 50 

Figure 3.18: Clough's hysteretic model for stiffness-degrading behavior ...... . .. 51 

Figure 3.19: Takeda's hysteretic model for reinforced concrete structural systems 51 

Figure 3.20: Saiidi & Sozen's hysteretic model for stiffness-degrading behavior . . 52 

Figure 4.1: Behavior of the endochronic model using the kernel function defined by 

Eqn. (4.18) . . . . .. ........ . .. . .... ..... .. . .... . ... .. .. .. ............ 69 

Figure 4.2: A typical yielding curve for illustration of the proposed modeling technique 

based on the endochronic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 

Figure 4.3: Effect of the parameter p of the proposed class of endochronic models on 

the yielding behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Figure 4.4: Response behavior of a one-dimensional endochronic model and a match­

ing Masing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

Figure 4.5: Uniaxial cyclic hardening behavior of (a) a Masing model (b) a real 

material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Figure 5.1: Two different one-dimensional Distributed-Element Models (a) parallel-

series model (b) series-parallel model . ... .. .. .. . ........ .. .... . .. .. 109 

Figure 5.2: Illustration of the space-dependent yielding behavior of ideal plasticity 110 

Figure 5.3: Invariant yield surfaces nested in the element stress space . . ...... . 111 

Figure 5.4: Selection of yield constants for a finite number of elements according to 

a specified yield-strength distribution function . . . . . . ....... .. . . ... . 111 

Figure 5.5: A flow diagram showing numerical procedure for obtaining stress response 

of anN-element DEM . ... . .. .. ..... .. ... . .. .. ..... .. .. . .... . ... .. . 112 

Figure 5.6: Prescribed strain loading paths for response studies of the proposed multi­

dimensional DEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

Figure 5.7: Experimentally-observed stress response of copper to the prescribed strain 

path given in Figure 5.6(a) ... . . .. .. ..... ... ..... . .. .. . ..... . . . . . . . 114 



lX 

Figure 5.8: Experimentally-observed stress response of copper to the prescribed strain 

path given in Figure 5.6(b) ....... .. ...................... .. ....... 115 

Figure 5.9: Stress response predicted by a new DEM subject to the prescribed strain 

path given in Figure 5.6(a) ........... . .............. ... ..... . ..... 116 

Figure 5.10: Stress response predicted by a new DEM subject to the prescribed strain 

path given in Figure 5.6(b) ..... .... .. ......... ..... .............. 117 

Figure 5.11: Response predicted by different plasticity models to the strain path given 

in Figure 5.6(b): (a) von Mises' yield surface with Prager's hardening rule 

(b) Tresca's yield surface with Ziegler's hardening rule (c) Tresca's yield 

surface and limit surface with Mroz' hardening rule .... . ...... ... 118 

Figure 5.12: Response behavior of ideal plasticity under a proportional strain loading 

path (a) proportional strain path (b) stress response behavior .... 119 

Figure 5.13: Definition of the plastic-relaxation stress increment in the uniaxial case 

.... .. ............................................................ 120 

Figure 5.14: Illustration of the existence of equilibrium points associated with a big 

strain cycle (a) a strain cycle (b) the corresponding stress response 121 

Figure 5.15: A diagram showing the rotation of coordinate axes which makes the x1 

axis perpendicular to the tangent plane to the yield surface 80.0 at Qo 

.............. . ..... . .. ... ...... . ..... ..... . ...................... 122 

Figure 5.16: An illustrative diagram showing non-strict convexity of yield surfaces 122 

Figure 6.1: Hysteretic behavior of the two-dimensional Bouc-Wen model (a) propor­

tional displacement path (b) hysteretic restoring force behavior . . . . 142 

Figure 6.2: Comparison of the initial response predicted by Eqn. (6.16) and by aDEM 

........................................ . .. .... . ...... ............. 143 

Figure 6.3: The Mroz kinematic hardening rule for multiple yield surfaces .. . .. 144 

Figure 6.4: A biaxial strain path for the study of the proposed response formulas for 

initial loading ............. . .... ................ ...... . ...... .... .. 144 

Figure 6.5: Experimentally-observed stress response of copper to the strain path given 

in Figure 6.4 (from [17]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

Figure 6.6: Stress response predicted by Eqn.(6.19) with the prescribed strain path 



X 

given in Figure 6.4 •• • 0 0 • • ••• 0 0 0 0 0 •••• 0 • • 0 •• 0 0 0 •• 0 0 • • 0 0 0 0 • •• • • • 0 • •• 146 

Figure 6.7: Stress response predicted by Eqn. (6.13) with the prescribed strain path 

given in Figure 6.4 ............... .. .. .. ... .. . . . ............ . ... .. . 147 

Figure 6.8: Movement of yield surfaces with current stress state moving from A to B 

(a) initial configuration (b) current stress state A (c) current stress state 

B ...... . .. .. ... . ... ........... . .. . . . .. .. . ..... .. . ........... . .. . . 148 

Figure 6.9: Different yield surfaces and shifted 1r planes in the principal stress space 

(a) von Mises yield surface (b) Drucker-Prager yield surface .... . .. 149 

Figure 6.10: A schematic diagram showing transformation on the 1r plane . ... . 150 

Figure 6.11: Illustration of completed loops and numerical difficulty associated with 

the transformation approach . .. .... . . .. . .. ...... . . ............ . .. 151 

Figure 6.12: Geometrical considerations of transient response (a) unloading from 

point A (b) unloading from point B with new center C . . . . . . . . . . . 152 

Figure 6.13: Stress response predicted by a generalized Masing model subject to the 

strain path given in Figure 5.6(a) . . .... .. . .. ..... . ......... .. .... 153 

Figure 6.14: Stress response predicted by a generalized Masing model subject to the 

strain path given in Figure 5.6(b) ..... . ............ . ............. 154 

Figure B.1: Geometrical configurations before and after transformation .. . .... . 169 

Figure B .2: Configurations at different transformation stages . . ..... . . . . . . ... .. 170 

Figure B.3: Conditions of the principle of normality on the proposed transformation 

..... . . .. . . . . . . .. . .. ... .. ... .. ... . . .. ... ... .. .... .. .. ........ . ... .. 171 



1 

CHAPTER 1 

INTRODUCTION 

Most structures exhibit nearly linearly elastic restoring force behavior under 

moderately small loading conditions. However, when subjected to severe excitations 

such as strong earthquake ground motions, structures may respond inelastically and 

exhibit hysteretic behavior so that the restoring force at a time instant depends not 

only on the instantaneous state, but also on the past response history. The study 

of nonlinear, hysteretic behavior of mechanical systems has been of great interest to 

researchers in many engineering fields, and particularly in earthquake engineering 

[4, 9, 10, 13, 18-24]. 

Structures of simple configurations and homogeneous materials may usually be 

approximated by simplifed analytical models so that their response to complicated 

external loading can be analyzed more efficiently. For example, normal building 

structures under seismic excitations can often be modeled as shear buildings (i.e., 

chain models) so that their response characteristics, such as natural frequencies, 

maximum displacement response, etc. , can be estimated efficiently and with rea­

sonable accuracy. When such simplified models are used, the hysteretic response 

of structural systems is often described by its overall interstory force-deflection re­

lationship so as to avoid complex stress-strain calculations for which constitutive 

equations governing material behavior at a point are needed [23]. 

Although overall planar force-deflection representations in nonlinear structural 

analysis can reflect behavior of structural members or substructures as a whole, 

including both material and geometrical effects, they are not suitable for describing 

local response behavior in the case of complex mechanical systems or complicated 

loading conditions in which responses in different directions may interact signifi­

cantly with one another. For that purpose, one needs to introduce appropriate 

constitutive laws depicting stress-strain relations at different material points, from 

which local response behavior can then be derived. 
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As mentioned earlier, linear models for mechanical systems are, in general, 

sufficient to represent system response resulting from small excitations. The mathe­

matical representations of such linear models are usually simple and of clear physical 

significance. Thus, modeling of linear systems may be thought of as an easy and 

straightforward task, if considered solely from the viewpoint of forward analysis. If 

system identification is under consideration, however, the choice of a suitable class 

of linear models may become crucial to the success of the model identification from 

response data. For example, if linear models are to be used in the identification 

of structures using earthquake data, one should consider identifiable modal models 

with parameters of modal frequencies, dampings, and mode shape components, not 

the models in the physical coordinates with parameters of stiffness and damping 

matrices, as recommended by Beck (3], so that more reliable results can be obtained 

in the case of a limited number of measurement channels. Once the modal parame­

ters are estimated from the earthquake data, they can be used in a subsequent stage 

to investigate the generally nonunique inverse problem of going from the incomplete 

set of modal parameters to structural stiffness parameters. 

In contrast to linear models, nonlinear models are usually more mathemati­

cally involved, especially when hysteretic behavior is taken into account. For the 

simplified force-deflection relationship which is a one-dimensional formulation of sys­

tem behavior, numerous models have been proposed ranging from simple ones such 

as elasto-perfectly-plastic and bilinear hysteretic models to sophisticated ones like 

Takeda's and the Bouc-Wen's models [44, 51] . Among these models, the Distributed­

Element Model (DEM), developed by lwan [19], has been successfully applied to 

structural dynamic analysis because ofits physically consistent behavior. The DEM 

consists of an assemblage of simple ideal elasto-plastic elements that have different 

yield strengths governed by some distribution function. As shown by Jayakumar 

[23], the DEM formulation is mathematically equivalent to a general class of Masing 

models in which Masing's hypothesis is extended for transient behavior of general 

hysteretic response. 

An interesting problem that has not been resolved so far is how the Masing 

rules can in some way be extended to two or higher dimensions, and how would 

the general rules compare with the behavior of a general multi-dimensional DEM, 
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if available. Furthermore, how would the behavior of such general models compare 

with those based on the classical theory of plasticity? If these questions can be 

answered clearly, then modeling of general plastic behavior of mechanical systems 

can be improved and analysis of complex structures can be performed with more 

success than before. 

We remark that not all modeling of structural systems can be done based exclu­

sively on theoretical considerations. In most cases, the mathematical models are so 

complicated that an empirical approach is needed to identify an appropriate model 

from within a prescribed class of models using structural response data. Therefore, 

it is of practical importance to build new models also from the system identification 

point of view. In general, a good model should be not only mathematically simple, 

physically consistent, and computationally efficient, but also parsimonious in the 

number of parameters. 

This thesis consists of five independent, yet interrelated chapters in addition to 

Chapter 1, the introduction, and Chapter 7 in which summary and conclusions of 

this research are given. In Chapter 2, important issues and practical considerations 

of system identification are discussed with particular emphasis on the process of 

model building. Criteria of good models for mechanical systems are also proposed 

based on considerations of system identification, which provide useful guidelines for 

the modeling studies conducted in this research. 

Chapter 3 gives an extensive review and discussion of various models for mod­

eling of one-dimensional hysteretic behavior, including both the models defined by 

empirical rules and those by differential equations. In particular, the DEM and 

Masing models are described in detail, since they form the fundamental starting 

points of the present research. Hysteretic models including strength and/ or stiff­

ness deterioration are also discussed in this chapter. An extension of the hysteretic 

response rules based on Masing's hypothesis to the case where degradation effects 

are included is proposed using the distributed-element formulation and the intro­

duction of a "damage" function. Explicit mathematical rules are then derived for 

a particular class of maximum-displacement-controlled deteriorating DEMs [22] . 

With these rules, the numerical implementation of this special class of deteriorating 
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DEMs becomes simpler as compared with the direct computation of model response 

by keeping track of response behavior of all the elements constituting the model. 

As a result, identification studies based on such models can then be performed with 

more efficiency and higher accuracy. Response behavior of this new class of degrad­

ing Masing models is compared with those of other well-behaved degrading models. 

Of particular interest is the response behavior of a class of endochronic models that 

are described theoretically by integra-differential equations [46, 47]. The flexible, 

physically consistent behavior of the modified one-dimensional endochronic model 

motivated the study of the general endochronic models for cyclic plasticity in which 

complicated multi-axial loading conditions are considered. This is presented in 

Chapter 4. 

Although the behavior of the modified endochronic models is govened by some 

mathematically involved integra-differential equations, effective procedures for con­

stitutive modeling based on the theory have been established in the past so that 

numerical implemention of the models is practically feasible. A new way of modeling 

based on the endochronic theory is proposed in Chapter 4, which was inspired by 

the modeling technique used in the Masing models. With the introduction of this 

new modeling technique, the building process of endochronic models is much simpler 

and identification studies of systems modeled by endochronic theory then become 

easier in practice. Furthermore, inspired by the study of the endochronic theory 

for cyclic hardening behavior, the one-dimensional Masing models (or D EMs) are 

extended, in a very effective way, to account for cyclic hardening behavior. 

In Chapter 5, the one-dimensional DEMs are generalized to three dimensions 

( multi-axialloading case), so that they can be used for constitutive modeling of com­

plex structural systems. Although this work has been pursued by some researchers 

in the past [20, 56], limited success was achieved. In the present study, a concept of 

nested yield surfaces that are "invariant" (fixed from moving) in the stress space is 

proposed for a new class of general multi-dimensional Distributed-Element Models. 

This concept is different from that of classical plasticity theory, as will be explained 

later in detail in Chapter 5. With the new formulation of the DEM, constitutive 

modeling of general structural behavior for cyclic plasticity becomes very simple, 
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and the associated numerical scheme for implementing the solution algorithm is ef­

ficient as well. The new DEM is shown to not only provide more accurate response 

predictions for experimental results compared with models based on the classical 

theory of plasticity, but it also serves as a good physical model through which 

response mechanisms of complicated plastic behavior can be clearly pictured and 

elucidated. A rather complete mathematical work regarding the properties of the 

new DEM, such as the existence of equilibrium points and that of a limit surface, 

will also be covered in Chapter 5. 

Though the general multi-dimensional DEM provides a useful and efficient way 

of constitutive modeling for cyclic plasticity, to implement the theory only a limited 

number of elements can be introduced due to practical concerns. An interesting 

question then remaining is whether some mathematical rules can be found which 

are similar to those used in the one-dimensional Masing models so that even in the 

general multi-axial loading case, model response can be found without the need of 

keeping track of each element's behavior. This problem is solved with success in 

Chapter 6. By introducing a formula good for initial response under multi-axial 

loading, further unloading and reloading response can then be found by applying a 

composition of proper transformations to the state variables involved in the formula. 

This method is theoretically equivalent to that utilizing the classical multi-yield­

surface theory with the Mroz kinematic hardening rule [35]. However, it 's only with 

this new approach proposed here that the response behavior of a model with an 

infinite collection of yield surfaces can be analyzed. Computational efficiency is 

also preserved in the algorithmic implementation of this new theory, whose validity 

is confirmed by modeling some biaxial tension-torsion tests [17, 30) under non­

proportional cyclic loading conditions. A comparison between the models based 

on the new approach and the multi-dimensional DEMs is also made at the end of 

Chapter 6. 

A summary of this research and some general conclusions are presented in 

Chapter 7, in which suggestions for further exploration in related subjects are also 

given. 
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CHAPTER 2 

SYSTEM IDENTIFICATION AND MODELING 

2.1 Introduction 

Engineering problems may usually be classified as direct (forward) or inverse 

according to the nature and purpose of the analysis. Direct problems are those 

of finding the response of systems to specified input excitations; whereas in inverse 

problems, the output response to some input is known but either the physical process 

(the system) or the input excitation is unknown. System identification may be de­

fined as the process of systematically determining a model of a physical system from 

its observed input and output data , and so it falls obviously into the category of 

inverse problems. In general, system identification problems can be further divided 

into two categories: nonparametric identification and parametric identification. If 

the detailed mathematical description of a system is totally unknown or of little inter­

est , then we have a nonparametric identification problem or a so-called "black box" 

identification problem, in which a functional relationship between input and output 

is to be determined. On the other hand, if some knowledge of the mathematical 

structure of the system is available and the problem is that of determining unknown 

parameters within the structure, then it is a parametric identification problem. In 

engineering applications, the main interest is usually in parametric identification 

problems in which an optimal model out of a certain class of models is to be found 

for the system under consideration so that prediction of future performance of the 

system can be improved accordingly. In a parametric identification problem, the in­

troduction of model structure usually reduces statistical variability of the estimated 

model. Also, the identification problem actually becomes a parameter estimation 

problem since the mathematical structure of the model is already specified. 

In the following sections, practical considerations about system identification 

will be discussed with particular emphasis on the process of model building to which 

the chapters that follow are closely related. Criteria of good analytical models for 

mechanical systems in engineering applications will also be proposed and discussed 

in detail from the system identification point of view. 
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2.2 P ractical Consid erations of System Identification 

Identification of structural systems through the use of experimental data is of 

considerable importance in many areas of engineering studies, particularly in the 

fields of structural vibration and system control. Identification problems usually are 

considerably more difficult than forward (response analysis) problems due to the 

following reasons: 

1) The requirement of well-posed analytical models is more critical to identification 

problems than to forward problems. 

2) A characteristic feature of identification problems is that the accuracy of iden­

tification results is degraded by a combination of measurement, modeling, and 

numerical errors. 

3) The problem of existence and uniqueness of solution (i.e., identifiability prob­

lem) is usually very difficult to be resolved due to practical limitations. 

The main purpose of a system identification study is to appropriately represent 

the physical structure of a system for response prediction, not just to accurately 

reproduce the observed data. To this end, the parametric identification approach 

is usually adopted in engineering applications due to its capability of making fur­

ther predictions. Three important stages are included in a parametric identification 

problem. The first one is model selection, i.e., choosing a mathematical formula­

tion to represent the physical structure of a system. The second stage is parameter 

estimation, which is the determination of the "best" parameters for the specified 

mathematical structure for the system. The final stage is model validation, in which 

some tests on the identified model are conducted to see if the model adequately 

represents the system with respect to the desired objectives. Though the nature of 

the three stages are quite different, they are all important to the success of identi­

fication studies. Generally speaking, model selection deals with the application of 

appropriate physical laws to the systems under consideration. From these laws, some 

relations involving parameter variables follow, such as equations for constitutive laws 

in modeling of stress-strain relationships of materials. In a parametric identification 

problem, the variable parameters of the model are to be estimated based on some 

systematic approach so that a "best" model whose parameters are optimal in some 

sense, given the input/output (I/0) data, will be identified from the specified class 
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of models. Thus far, many systematic approaches have been developed for finding 

optimal parameters within a class of models. These identification methods almost 

always involve minimization of some error criterion functions. Three widely-used 

approaches based on different error criteria are as follows: 

1) Equation-error method : The discrepancy between the model equation and the 

measured I/ 0 data is minimized through a regression analysis technique. This 

method is simple and computationally effective. However, complete measure­

ments of all the state variables involved in the model equation are required for 

the method to be effective, which is usually a severe restriction in practical 

problems. 

2) Output-error method: The difference between the output of a system and that 

of the model in response to some input is minimized by some functional min­

imization technique. This is probably the most widely-used approach in prac­

tical system identification problems due to its great flexibility and moderate 

mathematical tractability. 

3) Combined method: One can take a combined equation-error/output-error ap­

proach to perform the identification analysis, such as the Kalman filter method 

[25, 28] developed for optimal sequential estimates of parameters and states of 

a system. These kinds of sequential estimation methods are good for modern 

control problems which require real-time (on-line) analysis capability. 

An important aspect of the different identification approaches is that they can 

be formulated within a unifying statistical framework [6]. For example, the estimate 

obtained from the classical output-error least-square method used extensively in 

earthquake engineering can be shown to be equivalent to the classical maximum­

likelihood estimate [33], and to that based on Bayesian statistical inference [7], 

under the assumption that the output error can be modeled as a Gaussian white 

process. 

Probably, the most difficult and important issue of parametric identification is 

the problem of identifiability of parameters, which refers to the capability of uniquely 

determining the parameters of a model from the available I/ 0 data. The problem of 

identifiability can exist even in some of the simplest cases of identification due to the 

limitation of available measurement data. For example, when linear models are to be 
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estimated from seismic excitation and response histories, the stiffness and damping 

matrices of the system may not be determined uniquely in typical situations, as 

pointed out by Beck [3]. Instead, modal models consisting of dominant modes in 

the response should be used for the identification purpose, and if estimation of 

system parameters in the physical coordinates is of interest, a further analysis can 

always be done in a separate stage utilizing the original data as well as the modal 

data already obtained. 

Recently, Beck and Katafygiotis [7] addressed the issues of model identifiability 

versus system identifiability of optimal parameters from a class of models. For a set of 

parameters to be "model identifiable" (globally or locally), there must exist at most 

a finite number of sets of parameter values which give "output-equivalent" models 

under a specified input. In contrast, the parameters that are "system identifiable" 

determine a finite set of optimal models in which the parameters take the most 

probable values out of a class of models given a set of I/ 0 data. The problem 

associated with system identifiability is obviously much more difficult than that of 

model identifiability due to the additional considerations of modeling error involved 

in the approximate analytical model and measurement noise contaminated in the 

response data. 

In this thesis work, we are mainly concerned with modeling of general non­

linear mechanical systems. Although there will be no original theory regarding 

system identification techniques proposed herein, some new modeling theories to be 

presented later are based on practical considerations of system identification. More­

over, the system identification approach is usually the best way to perform model 

validation. For this purpose, one could use a set of test data to identify an optimal 

model out of the class of proposed models, and then make predictions of response 

behavior observed in another experiment using the identified optimal model. In the 

next section, some criteria for good analytical models are proposed and discussed 

mainly from the identification point of view. 

2.3 Criteria for Good Modeling 

In engineering problems, direct or inverse, a good model is always of crucial 

importance to the success of investigations. Although models for different problems 
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depend significantly on the nature of the systems under consideration and may vary 

considerably from case to case, there are some general rules that may be consid­

ered as modeling criteria for most practical mechanical problems. The criteria are 

proposed as follows: 

1) Mathematical Simplicity 

A model is a mathematical realization of a physical system which may, in gen­

eral, have rather complicated behavior. However, considering practical issues such 

as mathematical tractability, a good model should always be as simple as possible 

so that it can have greater applicability to widely-spread engineering problems. For 

example, in system identification problems, parsimony in parameters of a model not 

only makes numerical computation more easy, but also reduces possible identifiabil­

ity problems. 

2) Physical Reality: 

A good model should be able to capture most of the important features observed 

in the physical system to be modeled. Exhibition of abnormal, nonphysical charac­

teristics can sometimes lead to numerical instability even when the model is used 

for numerical solution of well-posed physical problems [40]. Following this criterion, 

parameters selected in a good model should all have clear physical significances. 

3) Modeling Versatility: 

A class of models should be able, or can be easily extended, to account for 

various effects exhibited by the physical systems of interest. A versatile mathe­

matical model may also possibly serve different purposes in different engineering 

applications. 

4) Computational Efficiency : 

Practical implementation of a good model should be reasonably simple and 

computationally efficient so that applicability of such a model will not be limited 

by practical concerns. Computational efficiency for numerical implementation of a 

model is of particular importance from the identification points of view, since identi­

fication processes usually require a large amount of iterations of response calculation. 

5) Robustness: 
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The sensitivity coefficients* of the parameters involved in a model should be 

neither too high nor too low under practical considerations. This property is referred 

to as robustness of a model. If the sensitivity of some parameters is too high, the 

result of a forward response analysis may be significantly degraded by model error; 

on the other hand, if it is too low, nonunique result of identification may be obtained. 

It should be mentioned that in practice it may be difficult to find a model that 

meets all the criteria listed above. For example, the widely-used Bouc-Wen model 

[51, 52], which is described solely by a differential equation, can be viewed as both 

efficient and versatile since it can model various characteristics of hysteresis, and can 

be easily extended to include the effects of strength and/or stiffness deterioration. 

Furthermore, the model is applicable to response analysis, including random vibra­

tion problems, as well as system identification studies [16, 42). However, this model 

may not be simple and realistic enough from some practical points of view. For 

example, the model may be, in some case, overparameterized such that appropriate 

choice of the parameter values and identifiability problems can be very tough, as 

will be discussed later in the chapters that follow. Nevertheless, if a model is always 

built with the aformentioned criteria in mind, then reliable behavior and practical 

applicability of the model can always be expected. 

2.3.1 An Illustrative Example of Proper Modeling 

To make the above ideas clearer, in the following we pose an example to show 

that a simple, efficient model for forward analysis may lack robustness for identifi­

cation. 

Accurate and efficient algorithms have been developed [5] for computing the re­

sponse of a single-degree-of-freedom linear oscillator subjected to an arbitrary forcing 

function, in which any desired response quantity can be computed through the use 

of a discrete recursive formula based on Duhamel's integral and linear interpolation 

* The sensitivity coefficient of a parameter is defined as the change of some re­

sponse quantity relative to the change of the parameter value. 
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for the excitation between discrete points sampled uniformly in time. For example, 

if acceleration response i(t) of a linear oscillator described by 

i + 2~w0x + w3x = r(t) (2.1) 

is of interest, where ~ and w0 are damping ratio and natural frequency of the system, 

one can use the following recursive formula: 

(2.2) 

(2.3) 

to compute the acceleration time history, where subscript i denotes the timet= ti, 

and the expressions for the coefficients can be found in [5) . In particular, the two 

coefficients b1 and b2 are selected such that the transient response due to initial 

conditions is determined exactly. This yields 

(2.4) 

where no= woflt and Dd = )1- eno. Another interpretation of this choice of b1 

and b2 is that it ensures that the poles of the transfer function of the oscillator are 

also poles of the transfer function of the algorithm [5). It may be noted that this 

model based on the algorithm given by Eqns. (2.2), (2.3) is highly computationally 

efficient and, in addition, it gives very accurate results. A comparison of a response 

history obtained using the fast algorithm and that using the 4-th order Runge-Kutta 

method is shown in Fig. 2.1 for a system with w0 =2Hz and~= 5% subjected to a 

scaled El Centro ground motion. The superiority of this algorithm over the Runge­

Kutta method is also prominent in other case studies. Suppose now that this model 

is used for an identification study in which the input/ output data, i(t) and r(t) , 

are given, and the system characteristics ~ and w0 are to be identified. According 

to Eqn. (2.2), the coefficients b1, b2 , and c1 can be found easily using regression 

analysis technique such as the least-square method. Thus, based on Eqn. (2.4) we 

can solve for~ and w0 from b1 and b2 as follows : 

~= 
1 a1 

1 + ( ~) 2 ) wo = ~ flt ) (2.5) 
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where 

(2.6) 

This method of identification is also computationally efficient, since there is no 

nonlinear optimization process involved in the parameter identification procedure. 

However, the identification results using the model based on the foregoing discrete 

recursive algorithm will be significantly degraded when there is some noise present. 

This is due to a numerical ill-conditioning inherent with the model. It follows from 

Eqn. (2.4) that for lightly damped systems, the two coefficients satisfies 

(2.7) 

1.e., b1 is close to but less than 2, and b2 is close to but greater than -1. If the 

identified b1 and b2 satisfy the relations given in (2.7), then the system parameters 

~ and wo can have reasonable values. However, due to the presence of measurement 

noise or numerical error, it is very possible that the values of b1 and b2 identified 

using the least-square method do not meet (2. 7). As a result of this, the parameters 

~ and wo computed using (2.5), (2.6) may become totally unrealistic due to the 

logrithmic function involved in Eqn. (2.6). For example, if we have b1 = 2.000, 

b2 = -1.001 and 6.t = 0.01 sec, then by Eqns. (2.5), (2.6) we find~ ~ 1% and 

wo ~ -0.42 Hz, where the negative frequency does not make any sense in reality. 

Besides, since ~ and 6.t are usually small in practical dynamic analyses, the error 

of wo computed using Eqn. (2.5) may become quite large even if the error of the 

identified a1 is small. 

Through the above example we realize that a model which is simple and compu­

tationally efficient may lack robustness for identification due to the high sensitivity 

of its parameter values to "noise." However, we remark that if the output-error 

method, instead of the equation-error method, is used with the discrete recursive 

model, i.e., the optimal parameters ~ and w0 are obtained directly by minimiz­

ing some error function associated with output variables without first finding the 

coefficients b1 and b2 , then the lack of robustness of the model vanishes and as 

demonstrated by Beck [3], the model actually works well in the modal identification 

of multi-degree-of-freedom linear structural systems. 
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CHAPTER 3 

M ODELING OF ONE-DIMENSIONAL HYSTERETIC SYSTEMS 

3.1 Introduction 

Linear models, though mathematically simple, are only good for representing 

structure response resulting from small loadings. When subjected to severe excita­

tions such as strong seismic ground motions, structures usually respond inelastically 

so that nonlinear analytical models are required to adequately represent the struc­

tural behavior. In most cases, the response of a system that is stressed beyond 

its "yield point)) into the nonlinear regime depends not only on the instantaneous 

state, but also on its past history. The history-dependence phenomenon is generally 

referred to as hysteresis. The study of analytical modeling of nonlinear, hysteretic 

behavior of mechanical systems has thus been a research area of great interest. 

In this chapter, we are concerned with one-dimensional hysteretic models that 

can be used to describe nonlinear restoring force-deflection behavior or uniaxial 

stress-strain relations of structural systems. The more general modeling of con­

stitutive laws of materials will be discussed later on in the following chapters. 

The simplest hysteretic models are probably the elasto-perfectly-plastic model and 

the bilinear model, as sketched in Fig. 3.l(a) and (b), respectively. These models 

have been used extensively in many engineering applications due to their analytical 

tractability. However, they are often too simple to yield good approximation to 

real systems. Previous studies [23, 51] indicated that the deviation from linearity 

around the yield point of a structural system should have a smooth transition in 

general as it reflects the effect of the yielding in an assemblage of many structural 

members. Furthermore, these simple models do not account for the hysteretic en­

ergy dissipation at small-amplitude cyclic response after the occurrence of yielding, 

which can lead to a higher predicted response level than the actual response [39]. 

Various mathematical models have been proposed for modeling of hysteretic 

behavior of structural systems. A thorough understanding of these models helps fur­

ther modeling processes involved in building up new more general models. However, 

a comprehensive review of existing nonlinear models will not be presented herein, 
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since many good references on this topic are readily available, for example, [23, 

45] . Instead, we will concentrate on those models that can give smooth transition 

from linear into the nonlinear regime. These models include those described solely 

by differential equations involving "hidden variables", physically-based Distributed­

Element Models [19, 20], and the Masing models which are formulated based on 

Masing's hypothesis and some extended rules [23] . 

Since the inelastic response of a structural system is usually accompanied by 

stiffness and/ or strength deterioration, it is important to extend the hysteretic mod­

els to account for these effects so that they can be used for modeling of degrading 

systems. This will also be investigated in this chapter. A new class of deteri­

orating Masing models will be proposed for identification purposes to substitute 

for a class of maximum-displacement-controlled deteriorating Distributed-Element 

Models proposed by Iwan and Cifuentes [22]. 

3 .2 M o d e ling of H yst er etic System s without D et eriora tion 

3.2.1 H yster etic M ode ls D escribed Sole ly by Differential Equations 

Analytical hysteretic models that are described solely by differential equations 

in general have the advantage of good mathematical tractability. A well-known 

model in this category is the Bouc-Wen model which was originally proposed by 

Bouc and later generalized by Wen [51], who also applied this model to random 

response analysis of structural systems [52]. The model is completely described by 

the following first-order, nonlinear ordinary differential equation: 

(3.1) 

where r is the hysteretic restoring force and x is the displacement of a system. 

The parameters A, a, {3, and n control the slope, amplitude, and shape of the 

hysteretic loops and the smoothness of yielding. This model can be shown to exhibit 

an exponential type of curvilinear behavior. A simulated response of the Bouc­

Wen model is shown in Fig. 3.2(a) , where the model is subjected to a prescribed 

displacement history of growing sine waves as shown in Fig. 3.2(b). Note that the 
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Bouc-Wen model is actually a rate-independent model as Eqn. (3.1) can be put into 

the form 

~: = A ± (a ± ,B) Tn , (3.2) 

depending on the signs of x and T. 

Some special cases of the Bouc-Wen model are noteworthy, as they form the 

basis of later investigations on constitutive modeling for the general multi-axial 

loading cases. One is the Ozdemir's model without "back-stress" [36) which can be 

described by the differential equation: 

r x I x I ( T )n 
To = xo - xo To ' (3.3) 

where To is the yielding force and x0 the yielding displacement of a system. Another 

way to write Eqn. (3.3) is 

(3.4) 

Note that To/xo represents the linear (small-amplitude) stiffness of the system. 

Another special case of Eqn. (3.1) can be found by putting A= E , a= 1/Z, ,B = 0 

and n = 1 to yield 
1 

r =Ex- zlxiT, (3.5) 

or 
1 

dT = Edx- z ldx iT. (3.6) 

Equation (3.6) describes a simple endochronic model* [46, 47) as shown by Bazant 

and Bhat [2). The merit of these models described by differential equations lies in 

that they are completely defined by a single differential equation so that their ap­

plications to various engineering problems can be made more easily. For instance, it 

is possible to find the closed-form solution of the stochastic equivalent linearization 

coefficients for the Bouc-Wen model given by Eqn. (3.1) under some mild assump­

tions of a joint Gaussian distribution on the variables involved [52). This is the 

main reason why this model has been widely used in random vibration analysis of 

hysteretic systems. 

* A detailed description of the endochronic model will be given in Chapter 4. 
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Although the foregoing hysteretic models described solely by differential equa­

tions have already had many engineering applications, they commonly exhibit some 

unrealistic characteristics that are inconsistent with the physical behavior of many 

materials or structural systems. The main problem from a practical point of view 

is the unstable drift exhibited by these models when subjected to small cyclic exci­

tations. This kind of unrealistic behavior may be attributed to the lack of physical 

motivation in formulating the models. To examine in detail this unrealistic model 

behavior, we note that Eqn. (3.6) can be rewritten as 

(3.7) 

where the minus sign corresponds to the loading case, while the plus sign corre­

sponds to the unloading case. Also, in Eqn. (3.7), we put EZ = r0 , the ultimate 

strength of the model, since we have dr / dx --+ 0 as r --+ r0 . Thus, we may observe 

from Eqn. (3.7) that the unloading stiffness of the system, given by E(1 + r /r0 ), 

can be much larger than the tangent stiffness of loading, given by E(1- r jr0 ) . This 

property yields artificial drift, and also leads to the violation of Drucker's stabil­

ity postulates, since under small cyclic loading, the force-deflection loops are wide 

open, as shown in Fig. 3.3, which means that energy is generated instead of being 

dissipated through hysteresis. As shown by Sandler [40), such nonphysical behavior 

will also lead to numerical instability when the models are used for the numerical 

solution of well-posed mechanical problems. 

3.2.2 The Distributed-Element Model 

In 1926, Masing [31) proposed the so-called Masing's hypothesis for one-dimen­

sional hysteretic behavior of materials by thinking of a hysteretic system as con­

sisting of a collection of many ideal elasto-plastic elements, all of which have the 

same elastic stiffness but different yield levels. Later in 1959, Whiteman [54), based 

on the same idea, derived the uniaxial stress-strain relation of such a model by 

introducing the concept of the "frequency" distribution function of the yield levels 

of elements. By postulating a suitable distribution function for the yield levels of 

elements, he found that the changes in the hysteresis loops are similar to those that 

occur in reality, and the Bauschinger effect can be appropriately accounted for. It 
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was Iwan [19] who first referred to such models as the Distributed-Element Models 

(DEMs) and applied them to structural dynamic analysis. He constructed a model 

composed of a set of N elements connected in parallel, each of which consists of 

a linear spring with stiffness k/N in series with a slip element (Coulomb damper) 

of strength ri / N , as shown in Fig. 3.4. Each element in the assemblage is thus 

an ideal elasto-plastic element that has a force-deflection behavior as described in 

Fig. 3.1(a). The DEM has been considered as physically motivated, as many real 

materials or mechanical systems can be thought of as having a similar structure. 

For example, real materials may have a crystalline structure that is made up of a 

distribution of slip-planes or dislocations of different slip strengths. Therefore, the 

behavior of such a class of models can be expected to be physically consistent, with­

out exhibiting unrealistic characteristics. The restoring force of a DEM consisting 

of N elements can be found to be given by 

(3.8) 

for initial loading, where n is the number of elements in the yielding state. When 

the total number of elements N becomes very large, the summation in Eqn. (3.8) 

may be replaced by an integral so that Eqn. (3.8) becomes 

i k x 1oo 
r = r* </>(r*) dr* + k x </>(r*) dr*, 

0 kx 
(3.9) 

where ¢(r*) dr* denotes the fraction of the total number of elements with strengths 

in the ranger* ~ ri ~ r* + dr* , and the yield-strength distribution function ¢(r*) 

satisfies 100 

</>(r*) dr* = 1. (3.10) 

When the loading is reversed after initial loading (i.e., unloading occurs), the force­

deflection relation can be found similarly by keeping track of response behavior of 

elements in different states (yielded or elastic) . This procedure can be carried on to 

trace out the entire history of hysteresis without the need to introduce additional 

rules for different loading conditions. The adaptability of the DEM to transient 

loading problems was considered as one of the important advantages of the model. 

However, evaluation of the integrals involved in the procedure, such as those shown 
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in Eqn. (3.9), may not be efficient for numerical solutions. Thus, in practical ap­

plications using the DEM, such as the system identification study performed by 

Cifuentes and Iwan [9], one has to introduce a finite number of elements so that 

their response can be traced with reasonable computation effort. This would, some­

how, degrade the results of analysis (e.g., the hysteretic yielding response curves 

become non-smooth), and, moreover, make the parameter identification more dif­

ficult, unless some additional assumptions are made regarding elements' behavior 

so that the number of parameters involved in the model can be appropriately re­

duced. It is important to note that the DEMs actually fall within the general class 

of Masing models whose behavior can be described by the Masing's hypothesis and 

some extended rules [23]. This will be elucidated in the next section. 

3.2.3 The G en eral Class of M asing Models 

3.2.3.1 M asing' s H ypothsis and E xtended Rules 

In his original paper titled "Self Stretching and Hardening for Brass" [31], 

Masing asserted that if the force-displacement curve for a system at the initial 

loading is described by 

f(r,x)= O, (3.11) 

were r is the restoring force and x the displacement of the system, then the unload­

ing and reloading branches of the steady-state hysteretic response of the system are 

geometrically similar to the initial loading curve except for a two-fold magnification, 

and are described by 

f( r- ro x- xo) = 0 
2 ' 2 ' 

(3.12) 

where (x0 , r0 ) is the load reversal point for that particular loading branch. Note 

that the function f should satisfy 

f ( -r, -x) = f(r, x) (3.13) 

so that the initial force-deflection curve is symmetric about the origin. The above 

assertion is usually referred to as Masing's hypothesis for steady-state cyclic hys­

teretic response. A schematic diagram illustrating Masing's hypothesis is shown 

in Fig. 3.5. The model behavior obtained using Masing's hypothesis is consistent 
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with some experimental observations of the Bauschinger effect occurring in some 

metals, which indicates that an initial plastic deformation in one direction reduces 

the resistance of the material with respect to a subsequent plastic deformation in 

the opposite direction. This effect is usually attributed to the residual stresses left 

in the material due to initial loading or to the anisotropy of the dislocation field 

generated by loading processes [26]. Some properties of response behavior using 

Masing's hypothesis were summarized in [23] and are not reiterated here. One 

major concern associated with the original Masing's hypothesis is that it is useful 

only for steady-state cyclic response or loading between fixed limits. In the case of 

transient response, or loading between variable limits, the hypothesis was consid­

ered to be of no help. However, Jayakumar [23] proposed an extension of Masing's 

hypothesis by stipulating two general hysteresis rules so that simple and physical 

behavior for transient hysteretic response can be obtained accordingly. The two 

rules are as follows: 

Rule 1: Incomplete Loops 

The equation of any hysteretic response curve, irrespective of steady-state or 

transient response, can be obtained simply by applying the original Masing rule to 

the virgin loading curve using the latest point of loading reversal. 

Consider, for example, the hysteretic loops shown in Fig. 3.6. If the virgin loading 

curve OA is characterized by Eqn. (3.11), then applying Rule 1, the equation for 

the branch curve CD will be 

f ( r - r c X - Xc) = 0 2 ' 2 . (3.14) 

Based on Eqn. (3.14), it is easy to show that if the reloading curve CD in Fig. 3.6 had 

been continued, it would have formed a closed hysteresis loop given by ABCDA. 

Rule 2 : Completed Loops 

The ultimate fate of an interior curve under continued loading or unloading is 

such that once the interior curve crosses a curve described in a previous load cycle, 

the force-deformation curve follows that of the previous cycle. 

Based on Rules 1 and 2, if the transient unloading curve DE in Fig. 3.6 is continued, 

it will reach point C and then follow the curve ABC. 
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An effective algorithm for numerical implementation of these extended Masing 

rules was proposed by Thyagarajan [45], and this algorithm has been adopted in 

the present study for response simulation of Masing models. In the algorithm, 

two load reversal points are removed from the memory list each time an interior 

response curve crosses a curve described in a previous load cycle. One important 

result regarding the extended Masing rules is that the hysteretic behavior of a 

DEM can be completely described by these rules without the need of tracing each 

element's behavior. This has been proven by Jayakumar [23], who then proposed a 

general class of Masing models based on the extended Masing rules. To specify any 

particular model in this class, only its initial loading curve need be prescribed. The 

complete hysteretic behavior of this general class of Masing models is then governed 

by the extended rules 1 and 2 stated above. 

Thus, aDEM can be equivalent to a general Masing model if the yield-strength 

distribution function ¢(r*), along with the stiffness constant k, of aDEM is chosen 

to match identically the initial loading curve for a general Masing model. Con­

sidering the equivalence of the two classes of models, one may prefer to use the 

Masing models in practical applications, since the implementation of the Masing 

models is much simpler and more efficient than that of the DEMs. In particular, for 

applications, such as system identification studies, that involve a large number of 

iterations of model response calculations, numerical efficiency is of vital importance 

in the choice of models, provided that the models do not exhibit any unrealistic or 

unstable behavior. 

3.2.3.2 A Special Class of Masing Models 

Following the general class of Masing models based on the extended Masing 

rules for transient response, Jayakumar and Beck [24] proposed a special class of 

Masing models by defining the restoring force-deformation relation for the virgin 

loading by the differential equation: 

(3.15) 

where k, ru and n are three model parameters which provide sufficient flexibility 

to capture the essential features of hysteretic behavior of most structural systems. 
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The parameters k and ru, respectively, represent the small-amplitude stiffness and 

the ultimate strength of the system to be modeled. The additional parameter n is 

introduced to model different degrees of smoothness around the yielding point, as 

shown in Fig. 3.7, where the case n--+ oo corresponds to the elasto-perfectly plastic 

model. 

Based on the extended Masing rules, the force-deformation relation for any 

loading branch other than the virgin curve is thus defined by the following equation: 

dr = k [1 -I r- ro In]. 
dx 2ru 

(3.16) 

It should be noted that the structure of Eqn. (3.15) is similar to those used in 

many other models, including the Bouc-Wen, Ozdemir, and the simple endochronic 

models as introduced in Section 3.2. The major difference, though, is that for 

the special class of Masing models, Eqn. (3.15) is used only for virgin loading, 

not for the complete response history. The major advantage of introducing the 

supplementary hysteresis rules is that unrealistic cyclic behavior, such as unstable 

drift and nonclosure of hysteresis loops, can be eliminated. 

This special class of models has been applied to system identification studies 

using inelastic pseudo-dynamic test data from a full-scale, six-story steel structure 

[24]. Even though a shear-building approximation was used in the modeling of the 

pseudo-dynamic test structure, good results obtained confirm the applicability of 

this class of hysteretic models to real structures. Some other special classes of Mas­

ing models can also be proposed by choosing particular yield-strength distribution 

functions that satisfy Eqn. (3.10) and are characterized by suitable parameters. 

More will be said about this in the next section when the Masing models are ex­

tended to account for the effects of strength and stiffness degradation. 

3.3 Modeling of Degrading Hysteretic Systems 

The response of mechanical systems to strong excitations can usually be char­

acterized by inelastic behavior through which energy is dissipated due to hysteresis. 

Frequently, however, the inelastic response of a structural system is accompanied 

by stiffness and/ or strength deterioration due to damage accumulation under cyclic 

loads. The effects of deterioration of a system usually include: 
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1) a loss of stiffness, which often results in an increase in the period of vibration, 

2) a decrease in energy dissipation capacity, 

3) a redistribution of internal forces, and 

4) a reduction of ultimate strength. 

Iemura and Jennings [18] have observed a stiffness degradation of more than 

50%, based on the change of natural frequencies, by analyzing measurements from 

Millikan Library Building, located on the campus of California Institute of Tech­

nology, Pasadena, during the 1971 San Fernando earthquake. Therefore, structures 

under strong environmental loads are expected to undergo nonlinear and time­

dependent degrading behavior. The analysis of such a problem is also important 

in many other engineering areas, such as damage detection of space structures and 

adaptive control of mechanical systems. The difficulty of modeling such hysteretic 

degrading systems often lies in the fact that the exact nature of system degradation 

depends not only on the structural materials but also on the detailed configurations, 

and may vary considerably from system to system. 

In this section, we will investigate the extension of the three types of one­

dimensional hysteretic models described in the previous section to account for the 

effects of deterioration observed in actual structural systems. 

3.3.1 The Degrading Bouc-We n Mode l 

The versatile nature and simple analytic form of the Bouc-Wen model as de­

scribed by Eqn. (3.1) has attracted considerable attention from researchers in many 

related engineering fields. To make it even more general, Wen [52] extended the 

original model to include the effects of strength and stiffness deterioration. T he 

modeling technique for incorporating system degradation consists of the introduc­

tion of more control parameters and the selection of a response index on which the 

rate of degradation is based. Wen extended Eqn. (3.1) to 

(3.17) 

where the two additional parameters rJ and v are introduced to control the stiffness 

and strength degradation, respectively, by assuming that they are functions of a 
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properly-chosen response index. In his original work, Wen also chose the parame­

ter A that controls the response amplitude to be a function of the response index 

so that the model thus defined can achieve the maximum flexibility in modeling 

general hysteretic behavior, including strain hardening or softening effects. The 

response index on which the degrading parameters depend should be able to reflect 

the severity and duration of the system response and is usually selected as the max­

imun displacement experienced by the model or the total energy dissipated through 

hysteresis, depending on the specific structural system being modeled. Fig. 3.8 il­

lustrates the effects of the degrading parameters on the model behavior, in which 

the parameters A, 'fJ, v are defined as 

A( e) = Ao- DA e, 

'fJ(e) = 1.0 + 871 e, v(e) = 1.0 + Ov e, 

where e denotes the accumulation of the dissipated hysteretic energy, and the 8's 

are constants specified for the desired rate of degradation. Although the degrading 

hysteretic model given by Eqn. (3.17) is general and flexible, and it has closed­

form stochastic equivalent linearization coefficients as well, it is in general over­

parameterized, which causes difficulties in choosing appropriate parameter values 

because of lack of identifiability when the model is applied to system identification 

studies. For example, as reported in the paper by Sues et al. [42], the parameters 

identified from simulated response can have values very different from those origi­

nally used in the simulation of response histories, though the response generated by 

the identified parameters was found to be almost identical with that generated with 

the original set of parameters. Another problem with the model is, as stated earlier 

in this chapter, that it exhibits unrealistic drift behavior when subjected to small 

cyclic excitations, which leads to a violation of Drucker's postulates of stability. 

3.3.2 A Class of Deteriorating Distributed-Element Models 

In order to apply the physically-motivated Distributed-Element Model (DEM) 

to practical structural problems encountered in earthquake engineering, Iwan and 

Cifuentes [22] presented a class of deteriorating DEMs for the overall restoring force 

behavior of reinforced concrete structures. This deteriorating model consists of the 
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same ensemble of linear springs and Coulomb slip elements as shown in Fig. 3.4; 

however, some of the elements are allowed to "break" if the absolute value of the 

displacements of an element exceeds some value, say J.LYi , J.L ~ 1, where Yi is the 

slip (yield) displacement of the element. Once the element "fails", it no longer 

contributes to the overall restoring force. Fig. 3.9 illustrates the restoring force 

diagram of a typical "breaking" element, and Fig. 3.10 shows an example of the 

overall response behavior of such a model subjected to a real earthquake excitation. 

Note that the parameter J.L acts as the maximum ductility ratio of an element defined 

as the ratio of maximum possible displacement response to the yield displacement of 

an element. It was also assumed for simplicity that all the elements of a model have 

the same value of J.L. This deteriorating model was shown to be capable of describing 

the major features of the restoring force behavior of concrete structures [22] while 

still maintaining the inherent simplicity of the original DEM. This model has also 

been applied to system identification studies of real structures using earthquake 

data [9] to assess the damage suffered by a structure and to predict its future 

performance. 

Although satisfactory identification results were obtained using this special 

class of deteriorating DEMs, some additional assumptions were made in [9] pertain­

ing to the relations among parameters and to the number of elements so that the 

actual number of parameters of the model was low enough for reliable identification. 

The introduction of these additional assumptions on the class of deteriorating DEMs 

reduces the generality and physical reality of the otherwise physically-consistent 

models. This point motivated the extension of the Masing rules described in the 

previous section to the case where degradation effects are of interest. If we can de­

rive a general class of deteriorating Masing models within which the aformentioned 

deteriorating DEMs fall, then not only the numerical implementation of the models 

can be greatly simplified, but also the problem of parameter identifiabilty can be 

resolved without sacrificing the flexibility and accuracy of the model behavior. 
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3.3.3 A Class of D eteriorating Masing Models 

3.3.3.1 General Formulation 

We have mentioned in Section 3.2 the equivalence between the classes of DEMs 

and Masing models such that a class of DEMs may be replaced by a class of Masing 

models in system identification applications in which parameter identifiability is of 

major concern. The extended Masing rules on which the behavior of the general 

class of nondegrading Masing models are based provide an effective way of imple­

menting numerically the model behavior. In the case where degradation effects 

are to be taken into account, can we still find some appropriate rules so that the 

behavior of the DEMs can be found without the need of keeping track of elements' 

behavior? This question is answered affirmatively in this section for the class of 

maximum-displacement-controlled DEMs mentioned in the previous section. 

To begin with, we propose a general formulation for modeling of degrading 

systems. Following the integral formulation of the DEM, such as that given by 

Eqn. (3.9), a damage index function a = a(r*,x) t can be introduced so that 

at displacement x, the fraction of the total number of elements which are "un­

damaged" and with yield strengths in the range [r*, r* + dr*] can be denoted as 

a(r*, x)</>(r*) dr* :j:. Thus, for initial loading, the restoring force can be represented 

as 

1oo 1kx 
r(x) = kx </>(r*)dr* + r*a(r* ,x)</>(r*)dr*, kx 0 

(3.18) 

where we assume that a( r*, x) = 1 for r* 2 kx, which means that elements that 

are unyielded must be undamaged. The second term on the right-hand side of 

Eqn. (3.18) is the contribution from elements that are yielded at deformation x, 

and the first term denotes the contribution from elements that are still in the 

elastic state for which a(·, ·) = 1. 

t In general, a can be a function of the history of x, not just x(t). 
:j: (1-a) could be viewed as the fraction of elements in the yield range [r*, r*+dr*] 

which have failed and completely lost their strength, or that (1-a) is the "average" 

partial loss of strength of each element in the yield range [r*, r* + dr*]. 
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Similarly, for unloading from x0 , we have for -x0 ::; x::; x0 , 

1oo ~kxo 
r(x)=kx ¢>(r*)dr*+ [r*-k(xo-x)]a(r*,x)¢>(r*)dr* 

k k (xp-x) 
Xp 2 

k(xp - x) 

+1 

2 

-r* a(r* , x) ¢>(r*) dr*, (3.19) 

and for x < -xo, 

loo 1-kx 
r(x) = kx ¢>(r*)dr* + -r*a(r*,x)¢>(r*)dr*. 

-kx 0 
(3.20) 

Very similar equations can also be derived for reloading. Equations (3.18), (3.19) 

and (3.20) can be differentiated with respect to x to get equations for the model 

"stiffness" as follows: 

dr = k r oo ¢>(r*)dr* +1kx r* aa(r*,x) ¢>(r*)dr*, 
dx l kx 0 ax 

(3.21) 

for initial loading, 

dr 1 oo jkxo 
-d =k ¢>(r*)dr*+k a(r* ,x)¢>(r*)dr* 

X k k (x -xp) 
Xp 2 

k k(xp-x) 

+ r Xp [r*- k(Xo- x)] aa(r* l X) ¢>(r*) dr* -1 
2 

r* aa(T*, X) ¢>(r*) dr* l J ~(xp-x) ax 0 ax 
2 

(3.22) 

for unloading from xo with -xo ::; x ::; x0 , and 

dr = kloo ¢>(r*)dr*- r -kx r* aa(r*,x) ¢>(r*)dr*, 
dx -kx l o ax 

(3.23) 

for unloading from xo with x < -xo. 

We may note that the equations for r and dr / dx in the case of unloading from 

x0 with x < -x0 (Eqns. (3.20) and (3.23)) are the same as those for initial loading 

in the negative direction (cf. Eqns. (3.18) and (3.21)) . This is consistent with the 

extended Masing rule 2 regarding completed loops for transient response, as stated 

in the previous section. Based on the above general formulation for modeling of 

degrading systems, we can propose different classes of degrading models by suitably 
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choosing the damage index functions a. A specific example of choosing a as a 

Heaviside step function will be given in the next section to illustrate the above 

formulation. 

3.3.3.2 A Special Class of Deteriorating Masing Models 

To gain more insight into the above general formulation, we consider the special 

case where a specific damage index function is chosen for modeling deteriorating be­

havior of hysteretic systems. If, for example, the maximum-displacement-controlled 

deteriorating DEM described in the previous section is to be derived from this gen­

eral formulation , we can choose the following damage index function: 

( * ) H(kxm(t) *) a r ,x = 1- - r , 
J-i 

(3.24) 

where H(-) is the Heaviside step function, xm(t) - ~~: lx(T)I, which is the maxi­

mum displacement magnitude experienced by the model, and J-i is the parameter of 

maximum ductility ratio of the model. Note that the maximum possible displace­

ment of an element with yield strength r* is given by J-Lr* jk. Using Eqns. (3.21), 

(3.22), and (3.23) with a given by Eqn. (3.24), and defining the "stiffness" function 

f(x)- k r= ¢(r*)dr*, 
Jkx 

which is assumed to be differentiable, we can find 

dr 1= ( *) * k
2
x (kx) ( ) x f'(x) - = k ¢r dr--2 ¢- = fx+2 -, 

dx kx J-i J-i J-i J-i 

for initial loading, 

dr = k r XJ if>(r*) dr* = f(XQ ), 
dx } !::..rL J-i 

1-' 

(3.25) 

(3.26) 

for unloading from x 0 with lf~2 x0 ::; x < x 0 , where we note that f(xo/J-L) is a 

constant so that the restoring force r is linear over this portion, 

dr = k r= if>(r*) dr* = f(XQ- X), 
dx } ~<:z:o-:z:> 2 

2 

(3.27) 
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for unloading from xo with -x0 ~ x < ~-'~2 xo, and 

dr ;= ( *) * k
2
x (-kx) ( ) x '(-x - = k ¢> r dr + - ¢> - = f -x - - f -) 

dx -h ~ ~ ~ ~ 
(3.28) 

for continued loading where X < -xo. Note that in the derivation oaf ox is zero 

unless Xm is increasing during the loading branch under consideration. The above 

results lead to the following remarks pertaining to the behavior of the special class 

of degrading Masing models: 

1) By symmetry of the force-deflection response about the origin, we require that 

the stiffness function f be even, i.e., f( -x) = f(x ), and as a result, f'(x) must 

be an odd function of x. 

2) By comparing with the formulation of the nondegrading case, we can find 

that the term -;r f' ( ~) signifies the effect of stiffness deterioration due to the 

breaking behavior of elements. One can also find the corresponding term for 

strength deterioration from equations for the restoring-force function r(x). 

3) Eqn. (3.28) is equivalent to Eqn. (3.25) with x replaced by -x, which is consis­

tent with the extended Masing rule 2 on completed loops as mentioned earlier. 

4) It can be shown that for the case of reloading from -x0 , the result will be 

identical to those derived for unloading from x 0 , except for that the term xo;x 
is replaced by x-.to . 

5) The steady-state response behavior of the maximum-displacement-controlled 

deteriorating DEM can be summarized as follows for the case of cycling between 

displacement [-xo, xo] with previous maximum displacement amplitude Xm: 

dr __ f(x) + _x f'(-x) ( ) for initial loading , 
dx ~2 ~ 

= J(Xm), if 0 - 0 f'2x { x >x>x-~ 

~ -xo < x ~ -xo + ~ 
(for unloading), 

(for reloading), 

__ f(xo- x), 1.f 2xm ( ) 
2 

Xo - ----,;:- > x 2: -Xm unloading , 

__ f(x- xo), .f 2xm ( ) 
2 

I - Xo +----,;:- < x ~ Xm reloading , 

=same as initial loading, if lxl = Xm with lxl increasing. 

(3.29) 
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6) The results given in Eqns. (3.29) can also be obtained by directly keeping track 

of elements' behavior at different response stages. 

7) The behavior for the transient response of the model can be similarly derived 

and can be shown to be completely consistent with the extended Masing rules 

1 and 2 proposed by Jayakumar (23] for the case of no degradation. 

8) Typical behavior of the model response for different loading branches is shown 

in Fig. 3.11, where the effects of strength and stiffness deterioration can be 

clearly observed. The model is based on a Rayleigh distribution for the yield­

strength distribution function ¢(r) (cf. next section) with k = 20,ru = 1.2, 

and J-L = 5. 

In summary, we have derived a special class of degrading Masing models, which 

is equivalent to the maximum-displacement-controlled deteriorating DEMs pro­

posed by Iwan and Cifuentes (22]. This class of degrading Masing models, however, 

can be completely defined by specifying the stiffness function f (or the initial load­

ing curve) and J-L, and the response behavior for other loading branches will follow 

the rules given in (3.29) and the two extended Masing rules for transient response 

given in Section 3.2. In this way, we not only simplify the numerical implementation 

of the special class of DEMs, but also solve the problem of parameter identifiability 

without introducing additional assumptions regarding model behavior. In other 

words, the applicability of such models to practical engineering problems is greatly 

increased. 

As a final remark, we note that by choosing other damage index functions 

(which is equivalent to choosing some particular element behavior of the DEMs) 

based on theoretical results or physical observations, one can come up with different 

classes of degrading models that may be suitable for particular structural systems. 

An important feature of this modeling approach is that the models thus derived are 

all based on the behavior of distributed elements, which is supposed to be physically 

consistent, i.e. , will not exhibit any unrealistic characteristics or introduce any 

physical or numerical instabilities. 
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3.3.3.3 Yield-Strength D istribution Function 

Similar to the general class of nondegrading Masing models, a class of degrading 

Masing models can be completely defined by specifying the initial loading curves 

with some appropriate functions. This can, in general, be accomplished in two 

ways. One way is to specify the "stiffness" function f(x) as shown in (3.29) directly 

in terms of x , or in the form of a differential equation, such as the special class of 

Masing models proposed by Jayakumar [24]. This special class of Masing models is 

described by the following differential equation for initial loading: 

(3.30) 

where only three parameters k, Tv. and n are needed for modeling general yielding 

behavior. However, the function f(x) cannot, in general, be found explicitly from 

Eqn. (3.30) except for the cases where n = 1 and n 2, which results in the 

following relationships: 

(3.31a) 

for n = 1, and 

(3.31b) 

for n = 2. 

Another way of specifying the initial loading curve can be done by choosing 

appropriately the yield-strength distribution function </>(T*) . One may have noted 

that the distribution function </>(T*) behaves the same as a probability density func­

tion does, as suggested by Eqn. (3.10) . In this study, we propose the use of Rayleigh 

distribution described by 

1r T ( -7r T
2

) </>(T) = -- exp --
2 T2 4 T2 ' 

1.1. 1.1. 

0::; T < oo. (3.32) 

And by definition we can find the corresponding "stiffness" function given by 

1
00 

* [-1r kx 2] f(x) = k </>(T )dT* = kexp - (-) , 
kx 4 Tv. 

(3.33) 



33 

which is expressed explicitly in terms of x . Also, we can find that the corresponding 

restoring force is given by 

rx ( .fii kx) 
T(x) = Jo f(~) d1, =Tv. erf T Tv. , (3.34) 

where the error function erf(·) is defined as 

We remark that the parameter Tv. represents the ultimate strength of the model, 

since by Eqn. (3.34), T(x) ---+ Tv. as x ---+ oo (since erf(oo) = 1). The choice of the 

Rayleigh distribution is thought to be a natural one, since it distributes within [0, 

oo) and has only one single parameter, as Tv. in Eqn. (3.32). From Eqn. (3.34), we 

note that the Masing model derived using the Rayleigh distribution involves only 

two parameters k and Tv., which is similar to Eqns. (3.30) and (3.31) corresponding 

to fixed values of n. It can be shown, by numerical calculation, that the model 

using the Rayleigh distribution is very close to Jayakumar's special class of Masing 

models with n = 2.5, as illustrated in Fig. 3.12, where initial loading curves of the 

two models with the same values of k and Tv. are compared. 

A more general distribution function can be proposed, based on the Rayleigh 

distribution, as follows: 

2n T2n-l exp [- (7r4TT;2 )n J' 
¢(T) = (~T;r 0 :::; T < oo, n > 0, (3.35) 

which may be referred to as the generalized Rayleigh distribution. The additional 

parameter n is introduced to control the smoothness of transition from elastic to 

plastic state. When n = 1, Eqn. (3.35) reduces to the Rayleigh distribution given by 

Eqn. (3.32). A plot of the distribution curves described by the generalized Rayleigh 

distribution function for different values of n is shown in Fig. 3.13. We find from 

Eqn. (3.35) that 

f(x) = kexp [- (~ k
2

~
2

)n], 
4 Tv. 

(3.36) 

and the restoring force can also be found in closed form as 

2 ( 2n + 1) 2n 
T(X) = .fii Tv. r VX

2
n, 

2
n + k X e-1/X , (3.37) 
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where we defined v = ( ~k; )n and 
ru 

(3.38) 

which is the Incomplete Gamma function with parameter a. 

Thus, we have defined a general class of degrading Masing models based on the 

generalized Rayleigh distribution function. Some major advantages of this class of 

models are as follows: 

1) There are only 3 parameters k, ru. and n needed for modeling general one­

dimensional non-degrading, hysteretic behavior. For modeling of degrading 

systems governed by maximum displacement response, only one additional pa­

rameter J.l is needed. The parsimony and clear physical significance of param­

eters make this class of models excellent for identification purposes. 

2) Explicit closed-form representations in terms of x can be obtained for the stiff­

ness function f and the restoring force r. This feature makes the numerical im­

plementation of this class of models computationally efficient, especially when 

the displacement history x(t) is prescribed. 

3) The mathematically tractable form of the stiffness function f(x), given by 

Eqn. (3.36) in terms of the exponential function, allows this formulation to 

be handled more easily in the case of system deterioration, since the extended 

hysteretic rules for degrading behavior, described by (3.29), involve f'(x) in 

addition to f(x). 

4) The specification of the yield-strength distribution function ¢(r*) facilitates 

the computation of some response quantities of the model based on statistical 

results. For example, if the drift (plastic deformation) response d(t) of a non­

degrading DEM based on the Rayleigh distribution is of interest, then we 

can simply find the mean (expected) value of the drifts of all the distributed 

elements constituting the model. Thus, for initial loading with x > 0, 

d(t) = rkx (x- ~) ¢(r) dr 
lo k 

1kx r 1fT ( 7rT2) 
= ( x - -) - exp - - dr 

o k 2r~ 4r~ 
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= x- ru erf ( .Jiikx) 
k 2ru 
r(x) 

-x---- k . (3.39) 

This "statistical" interpretation of plastic deformation is thus equivalent to 

the conventional formulation of the total-deformation theory, as illustrated in 

Fig. 3.14. Also, for unloading or reloading from x0 , 

kJo:-o:p l 

d(t) =do± fo 2 

( lx- xo l - ~) </>(r) dr 

_ d [I I 2ru f (.Jii klx - xo i)J - o ± x - xo - - er - ___:_ __ _.:. 
k 4 ru 

[ ru ( .fiikx)] = do ± 2 x - k erf 2;:::- (x _ lx ~ xol) 

[
- r(x)] =do±2 x- k, (3.40) 

where "+" and "-" correspond to the cases where i; > 0 and i; < 0, respec­

tively, and d0 denotes the drift response corresponding to xo. From Eqn. (3.40), 

we can derive 

(3.41) 

Comparing (3.41) with (3.39), one can realize that with the statistical formulation 

of the Masing models (or the DEMs), the Masing rules for restoring force response 

also apply to the drift response or possibly other response quantities. 

Thus, with the formulas given in Eqns. (3.39) to (3.41), we can compute ef­

fectively the drift response history, in addition to other response quantities, of a 

hysteretic system modeled by the special class of Masing models. A numerical sim­

ulation using these formulas* is performed for a DEM and the result is shown in 

* The numerical implementation of the error function is done by using the Hast­

ing's formula [15]: 

where 
1 

t = , a1 = 0.254829592, a2 = -0.284496736, 
1 + 0.3275911x 
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Fig. 3.15, where the comparison has been made to a one-dimensional endochronic 

model which will be investigated in detail later in Chapter 4. The good agreement 

of the drift response histories between the models again indicates the validity of the 

"statistical" formulation based on the "probabilistic" distribution function ¢(r) of 

the yield strengths of distributed elements. 

Based on the previous experience with identification of structural systems us­

ing the general class of Masing models [23], it should be noted that, in practice, 

more reliable results of identification can be obtained by fixing the value of the pa­

rameter n in the general model so that the interactions among parameters can be 

greatly reduced, which implies that model identifiability is much improved. This is 

particularly important for the identification studies in which the system response is 

not driven far into the strongly inelastic regime. Therefore, although there is some 

loss in the flexibility of the model , it is proposed in later identification studies to 

fix the value of n based on appropriate engineering judgement. 

3.3.4 Other Models for D egrading Systems 

There have been many other models than those described above for modeling 

of degrading systems. For earthquake motions, building structures made of rein­

forced concrete often exihibit stiffness deteriorating behavior. Iwan [21] presented 

a hysteretic model for stiffness degrading systems which may be thought of as a 

subclass of the distributed-element model. This model consists of three types of 

basic elements, including theE-type (elastic elements), theY-type (elasto-perfectly 

plastic elements), and the C-type (elements exhibiting cracking and crushing like 

behavior), as shown in Fig. 3.16. Gates [13] applied this model to earthquake re­

sponse analysis of deteriorating systems by using only one element from each of the 

three basic types. The model configuration and its response behavior are shown 

in Fig. 3.17, where the contributions from each type of element are also included. 

Although this model is capable of modeling a wide range of deteriorating structures, 

the model characteristics and its response behavior are considered to be too com­

plicated as far as system identification is concerned. An attempt at deriving the 

a3 = 1.421413741,a4 = -1.453152027,a5 = 1.061405429. 

This formula is accurate over [0, oo) to within ±1.5 x 10- 7
. 
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corresponding response rules for the model as was done earlier for the maximum­

displacement-controlled DEM was made. However, the result was too complicated 

for practical applications, as a complete description of the model behavior required 

too many mathematical rules for different response branches. 

Clough [10) proposed a stiffness-degrading hysteretic model based on the bilin­

ear hysteretic model. The model behavior is shown schematically in Fig. 3.18. In 

this model, stiffness degradation is introduced only as "load reversal" occurs (i.e., 

when the restoring force r changes its sign). This is not completely consistent with 

experimental observations which show that stiffness degradation occurs also during 

unloading behavior. Takeda et al. [44) presented a rather complicated degrading 

model based on their experimental results regarding reinforced concrete behav­

ior. The model behavior is based on a trilinear primary curve which represents the 

three stages of uncracked, cracked, and post-yielding response of concrete structural 

members. The general behavior of the model is sketched in Fig. 3.19. However, a 

complete description of the model behavior requires more than a dozen rules gov­

erning different response branches. In contrast to Clough's model, Takeda's model 

takes account of stiffness degradation at both unloading and load reversals. The 

slope of an unloading curve after yielding occurs is given by the empirical equation 

(

X )0.4 
kunloading = k' x: , (3.42) 

where k' is the slope of a line joining the yield point in one direction to the cracking 

point in the opposite direction (cf. Fig. 3.19), and Xy and Xm denote, respectively, 

the yield deformation and maximum deformation experienced by the system in the 

direction of current loading. Although the model was built based on observations 

made in many experimental studies on reinforced concrete members, it is, in general, 

too complicated for practical applications, especially for identification studies. 

A simplified version of Takeda's model was developed by Saiidi and Sozen [38) 

in which the trilinear primary curve is replaced by a bilinear curve as shown in 

Fig. 3.20. To simplify the model behavior, the largest excursion point in both 

directions is viewed as the largest excursion point in either direction. This model 

takes into account hysteretic energy dissipation during low-amplitude deformation 

if the model has yielded in at least one direction . This is true also for Takeda's and 
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Clough's model, but not for the elasto-perfectly plastic or bilinear models. This 

characteristic is important as reported in [39] for accurate prediction of response 

peaks and frequency content of hysteretic systems subject to earthquake excitations. 

The unloading slope in the inelastic region of the Saiidi and Sozen's model 

is similar to that given by Eqn. (3.42) except that k' is replaced by the initial 

elastic slope of the response. It was shown in [39] that Saiidi and Sozen's hysteretic 

model incorporates the principal features of hysteresis presented in Takeda's model, 

including: 

1) dependence of unloading stiffness on the maximum deformation experienced 

by the system, 

2) stiffness degradation during load reversals, and 

3) hysteretic energy dissipation for small-amplitude deformation after yielding. 

But the model is considerably simpler than Takeda's, which makes this model more 

suitable in practice for determining hysteretic response, or for identifying system 

characteristics of reinforced concrete structures. 

The investigation of the preceding degrading models is to gain better insight 

into the behavior of degrading hysteretic systems and to provide some justification 

for the aforementioned degrading Masing models. The maximum-displacement­

controlled degrading Masing model possesses all the three response features stated 

above without the need to introduce any additional empirical approximations re­

garding its hysteretic behavior. This indicates that the proposed Masing model 

has a physically consistent behavior and is good for modeling of reinforced concrete 

structural systems. Another interesting hysteretic model based on endochronic 

theory will be presented in the next chapter. This generally-formulated model for 

multi-axial cyclic plasticity also serves as a comparison basis for the Masing models 

or the DEMs, as we did in Fig. 3.15 for the drift response of a Masing model. Be­

sides, the general, consistent behavior of the endochronic model also motivates the 

generalization of the DEMs into multi-dimensional representations for constitutive 

modeling of stress-strain relations of materials. This will be covered in the next two 

chapters. 



I 

I 

I 

39 

r 

I 

(a) 

r 

(b) 

X 

X 

Figure 3.1 Hysteretic restoring force behavior of (a) the elasto-perfectly 

plastic model (b) the bilinear model 
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Figure 3.2 Response behavior of the Bouc-Wen model 
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Figure 3.3 The unstable drift exhibited by the Bouc-Wen model 
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Figure 3.4 The Distributed-Element Model for one-dimensional hysteresis 
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Figure 3.5 Masing's hypothesis for cyclic hysteretic loops 
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Figure 3.6 Hysteretic loops for transient response 
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Figure 3.8 Effects of the degrading parameters on the behavior of the deteriorating 
Bouc-Wen model (from (52]) 
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Figure 3.9 Restoring force diagram of a typical breaking element in the maximum­
displacement-controlled deteriorating OEM 
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Figure 3.10 Restoring force behavior of the maximum-displacement-controlled 
deteriorating OEM subject to an earthquake excitation (from [22]) 
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Figure 3.14 Plastic deformation of the Masing model based on a statistical 
interpretation of the Rayleigh yield-strength distribution function 
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Figure 3.15 Drift response of a Masing model based on the Rayleigh distribution 
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Figure 3.17 Configuration and behavior of Gates' degrading model (from [13]) 
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Figure 3.18 Clough's hysteretic model for stiffness-degrading behavior 
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Figure 3.19 Takeda's hysteretic model for reinforced concrete structural systems 



52 

r 

-Xm 

Xm X 

a=(Xy/Xm) 0.4 

Figure 3.20 Saiidi and Sozen's hysteretic model for stiffness-degrading behavior 
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CHAPTER 4 

MODELING BASED ON ENDOCHRONIC THEORY 

4.1 Introduction 

A simple endochronic model described by a differential equation has been intro­

duced in Chapter 3 (cf. Eqn. (3.5)) as a special case of the Bouc-Wen model. The 

original endochronic theory was proposed and developed by Valanis in 1971 [46], and 

modified later in 1980 [47] for constitutive modeling in cyclic plasticity. The en­

dochronic theory can be viewed as a generalization of the theory of viscoelasticity in 

which the real time variable is replaced by an auxiliary variable, called the intrinsic 

time, which is a monotonically increasing measure of deformation history of a mate­

rial. The constitutive law developed based on the endochronic theory can adequately 

characterize hysteresis, and strain hardening behavior of some metals, without re­

sorting to the definition of yield conditions, flow rules, or any hardening rules. The 

original endochronic theory, of which the model described by Eqn. (3.5) serves as a 

special case of a one-dimensional formulation, was shown to violate Drucker's pos­

tulates of stability, as discovered by Sandler [40]. This discovery led to a major 

modification of the theory in which the intrinsic time was defined in the plastic­

strain space, instead of the total-strain space [47]. This makes the stiffness at the 

onset of unloading identical to the "small-amplitude" stiffness of the initial loading, 

and the resulting endochronic formulation shows proper hysteresis-loop closure and 

hence more realistic response behavior. Although the endochronic theory was orig­

inally developed for modeling material behavior of some metals, extensions of the 

theory have been made for modeling of some other materials, such as concrete [2] 

and soils (48]. 
The major contribution of the endochronic theory is t hat the theory provides a 

unifying approach of describing the elasto-plastic behavior of materials without the 

requirement of introducing a yield surface and a loading function which distinguishes 

between loading and unloading. In the next section, the basic formulation of the 

modified endochronic theory and an effective algorithmic implementation of the the­

ory will be described. Moreover, some inherent properties and difficulties associated 

with the endochronic model will also be mentioned from some practical points of 
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view. In Section 4.3, a very effective modeling technique for models based on the 

endochronic theory will be proposed to simplify the otherwise complicated modeling 

process. Comparison of simulated responses between the endochronic models and 

the Masing models will also be made for the uniaxial loading case to examine further 

the model behavior. Finally, cyclic hardening behavior exhibited by real materials 

and issues pertaining to the modeling of such behavior will be discussed. 

4.2 Endochronic Theory And Its Implementation 

The endochronic theory was originally derived based on the internal variable 

theory of irreversible thermodynamics and the concept of intrinsic time which acts as 

a proper measure of material memory of its past deformation history. AB mentioned 

earlier , the endochronic theory can be viewed as a generalization of the theory of 

viscoelasticity. To demonstrate this, let us consider the one-dimensional Maxwell 

model in viscoelasticity [11], given by 

1 (}' 
dE= E dCY + EZ dt, (4.1) 

or equivalently, 

1t - ( t-T) 8E 
(}' = E e z -a dT, 

0 T 
(4.2) 

where E is Young's modulus and Z is the relaxation time of the material being 

modeled. If we replace the time differential dt by a differential of the intrinsic time 

d(, which is defined by 

(4.3) 

then we get the simple endochronic model given by Eqn. (3.5), or equivalently by 

{ ( ( ') 8E 1 

CY = Jo P (- ( 8(' d( , (4.4) 

where 

p(() = Ee=i. (4.5) 

The integro-differential form of Eqn. (4.4) , in which p(() represents a material func­

tion, is typical for general endochronic models. 
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A complete set of constitutive equations for plastically incompressible, rate inde­

pendent materials based on the modified endochronic theory [47) can be summarized 

as follows: 

and 

1
z d P 

I fij I 
s · · = p(z - z ) - dz 

'I.J d I l 
0 z 

(4.6) 

(4.7) 

(4.8) 

where tii and Efj are, respectively, the elastic and plastic components of the total 

strain tensor Eij, and Sij is the deviatoric stress tensor defined as 

and 

1 
s · · - CJ · · - -Cikk8· · 'I.J- 'I.J 3 'I.Jl 

d7] 
dz = f(7J), !(7J) > 0, 

d'Tl = (d€1? . d€1?.) 112 
., 'I.J 'I.J ' 

(4.9) 

(4.10) 

(4. 11) 

where p(z) and f(7J) are material functions called the kernel (or memory) function and 

the (cyclic) hardening function, respectively. The differential quantity d7J represents 

the distance between two consecutive plastic-strain states, so that 'T} defines a memory 

path in the plast ic-strain space through which history-dependent effects of a material 

are introduced into the endochronic model. Note the resemblance of Eqn. ( 4.8) to 

Eqn. (4.4), where the total-strain increment is replaced by the plastic-strain increment 

so as to make the model behavior more physically consistent [47). In the case of 

isotropic materials, Eqn. ( 4.6) becomes 

Ev e ~ 2G e 
Ciij = (1 + v)(1 - 2v) fkk Uij + Eij ' 

(4.12) 

where E is Young's modulus , v Poisson's ratio, G = E / 2(1 + v), the shear modulus, 

and 8ij denotes the Kronecker delta function, i.e., 8ij = 1, if i = j, and 8ij = 0, 

otherwise. 

By introducing different forms for the two material functions p(z) and f(TJ), 

various types of elasto-plastic behavior of materials can be adequately modeled. An 
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important feature of the kernel function p(z) in Eqn.(4.8) is that the function must 

be singular at the origin, that is 

p(O) = oo, (4.13) 

so that the model can account appropriately for the elastic behavior at the onset 

of initia l loading and unloading response. There are basically two major types of 

endochronic models based on the assumed form of the kernel function p(z), which 

are now described. 

The first one utilizing the Dirac delta function 6(z) is given by 

p(z) = s~ 6(z) + P1 (z), (4.14) 

where p1 (z) is a regular function and s~ is a material constant that has the physical 

significance of the initial yield stress in simple tension. This formulation leads from 

Eqn. (4.8) to 

(4.15) 

where rz I dEfj I 

r ij ( z) = } 
0 

Pl ( z - z ) dz1 dz . (4. 16) 

Note that Eqns. (4. 10), (4.11) and (4.15) imply 

ll s (z)- r (z)ll = s~ f('f]), (4.17) 

where s and r denote respectively the two tensors Sij and rij, and lls ll - (sij Sij)112
. 

Note, however, that when z = 0, i.e., in the process of initial loading and lls ll < s~, 
the model response is governed by purely elastic behavior, such as that given by 

Eqn. ( 4.12) in the case of isotropic materials. From Eqn. ( 4.17), it can be deduced that 

this formulation results in a generalization of the classical theory of plasticity in such 

a way that the hardening function f ( "7) signifies isotropic hardening behavior (yield­

surface expansion), while the tensor r ij ( z) denotes kinematic hardening behavior 

(yield-surface translation). Furthermore, it can be shown (50] that by a suitable 

choice of p1 (z) as a sum of exponential functions, the theory becomes similar to the 

classical multiple-yield-surface theory in which nested yield surfaces translate in the 

stress space according to some kinematic hardening rule. 
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Although the above formulation that uses the Dirac delta function in p(z) led 

to a generalization of the classical plasticity theory, the original idea of avoiding the 

concept of yield surfaces and hardening rules was not completely preserved. Thus, 

another type of formulation of the endochronic theory has been developed [49] by 

assuming the kernel function as 

00 

p(z) = L cke-crkz, 

k=l 

where the non-negative constants Ck and ak satisfy 

00 

L Ck =oo, 
k=l 

(4.18) 

(4.19) 

so that Eqn. (4.13) is satisfied and the integrability of p(z) can also be guaranteed. 

An effective numerical algorithm for implementing the endochronic theory can be 

derived based on the assumption of Eqn. ( 4.18) for the kernel function [17]. Suppose 

that the loading process is divided into many small steps and in each step no load 

reversal occurs, t hen Eqn. ( 4.8) can be written as 

1Zl df..'f! . 1 Z2 df..'f!. 
Sij(z) = p(z- z') d t~ dz' + p(z- z') d t~ dz' + ... 

0 Z Zl Z 

df..'f!. 1Z1 dif_ . 1 Z2 ~ dtJ I p(z- z') dz' + dtJ I p(z- z') dz' + .. . , 
Z z=O 0 Z z=z1 z 1 

(4.20) 

where an approximation has been made by assuming that dcfj / dz is constant within 

each loading step. With the kernel function defined by Eqn. (4. 18), (4.20) can be 

manipulated further to obtain 

(4.21) 

where tlzi _ Zi - Zi - l and the subscript m denotes the m-th loading step. Note 

that in Eqn. (4.21), the infinite sum over k has been approximated by a finite sum 

of n terms as a practical consideration. In order to avoid the numerical difficulty of 
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small numbers involved in the term e-ak(zm-z,_l), one can, based on mathemat ical 

induction, convert ( 4. 21) into a recursive formula: 

n 

Sij(Zm) = L st(zm), ( 4.22) 
k=l 

and 

( 4.23) 

It should be noted that the aforementioned approximate numerical scheme will result 

in an exact solution to the constitutive equations based on the endochronic theory if 

the material being modeled does not exhibit cyclic hardening behavior (i.e., f (TJ) = 1), 

and the deformation history follows a piecewise linear path in the plastic-strain space, 

such as the uni-axial loading case. Equations (4.6) to (4.11), with (4.8) replaced by 

(4.22) and (4.23), provide a set of recursive formulas for computation of the response 

of models based on endochronic theory. The advantage of using this numerical scheme 

is that only the values of the response states at the end of the previous loading step 

need be stored. Once the loading increment (b.Efj)m (or (b.sij)m) is given, (st)m can 

then be determined by referring to (sfj)m-l· Hsu, et al. [17] proposed two efficient 

schemes following the above algorithm for either stress-controlled or strain-controlled 

response simulations, by making a few more algebraic manipulations on the foregoing 

formulas. 

In the following, we address some important points regarding the general behav­

ior and properties of the endochronic model. With the kernel function defined by 

Eqn. (4.14), Watanbe and Atluri [50] introduced the concept of "limit surfaces" as­

sociated with the endochronic models. When the hardening function f ( TJ) saturates 

to a limit value, a limit surface exists which can move around in the stress space, as 

can be deduced from Eqn. (4.17). As indicated by experimental observations [30], 

however, materials such as metals, which have been cyclically stabilized, in general 

exhibit response behavior with "fixed" limit surfaces, beyond which the stress state 

never goes. Thus, we reject Eqn. (4.14) and it is interesting to see whether the en­

dochronic model based on the alternative formulation of the kernel function given by 

Eqn. (4.18) can exhibit such a physical behavior. 
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Note that Eqn. ( 4.23) may be rewritten as 

k [ Ck .6-t:fj I k J -a:- l:!.z (.6-S ·· )m= --- -S ·· (Zm I) (1-e k "') 
t] ak .6-z m tJ - . ( 4.24) 

If the stress state reaches an "equilibrium state", at which the stress increments 

approach zero for appreciable unidirectional strain increments (30], i.e., 

(.6-s:j)eq = 0 V k = 1, 2, ... , n, (4.25) 

then by Eqn. (4.24) we have 

(4.26) 

or 

( 4.27) 

From Eqn. (4.27) , we see that the stress state will remain at the equilibrium 

state until the plastic-strain path changes its direction. Noting that in the case of no 

cyclic hardening, (.6.z) 2 = .6.t:fj .6.t:fj, we get, from Eqn. (4.27), 

( 4.28) 

where ku is a finite model constant (see Eqn. (4.19)) that can be related to some ma­

terial constant, as will be done later. Equation (4.28) signifies that all the equilibrium 

states ( Sij) eq form a hypersurface in the six-dimensional stress space (considering the 

symmetry of a stress tensor). This hypersurface is actually a limit surface associ­

ated with an endochronic model based on the kernel function given by Eqn. (4.18). 

This can be shown as follows: Considering the cyclically stabilized behavior (i.e., 

f(7J) - 1), from Eqns. (4.10) and (4.11) we can put 

(4.29) 

where nij(z) ~ 1 and satisfies 

( 4.30) 
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Thus, it follows from Eqn. ( 4.8) that 

Using the tensorial product, we get 

Sij(z) Sij(z) = foz p(z- z') nij(z') dz' foz p(z- z") nij(z") dz" 

= foz foz p(z-z')p(z-z")nij(z')nij(z")dz'dz" 

:::; fo z foz p(z- z')p(z- z") llnij(z')llllnij(z")ll dz'dz" 

1
z 2 

= [ 
0 

p(z - z') dz'] . 

Now if the kernel function p(z) is given by Eqn. (4.18), then 

1z 2 1z 00 
2 

[ p(z- z') dz'] = [ L Ck e-ak(z-z')dz'] 
0 0 k=l 

Thus, from (4.32), (4.33) we obtain 

(4.31) 

(4.32) 

( 4.33) 

(4.34) 

This proves that Eqn. ( 4.28) represents a limit surface associated with an endochronic 

model so that no stress state of the model can lie outside the limit surface. In other 

words, the set of the stress points associated with different equilibrium states of an 

endochronic model represents the limit surface of that model. The issues of existence 

and uniqueness of equilibrium states and the associated limit surface will be addressed 

in detail in the next chapter where the Distributed-Element Model is generalized to 

a multi-dimensional representation. 



61 

Another interesting point about the endochronic model is the resemblance of 

Eqn. ( 4.28) to the von Mises yield criterion in the classical theory of plasticity, given 

by 
2 2 

Sij Sij = 3 a0 , ( 4.35) 

where ao is the yield stress of a material in the uniaxial tension test. Actually, 

considering the uniaxial tension case where s11 = 2a11/3 = -2s22 = -2s33 , and 

Sij = 0, i =I j , Eqn. ( 4.28) implies 

since we have (a11 )eq = a0 . Thus, we obtain the relation: 

(4.36) 

which relates the model constants to the material constant a0 . Equation (4.36) 

provides a guideline for choosing the model constants ck and ak, in addition to 

the constraints given in (4.19). This relation motivates a new effective modeling 

technique for endochronic models based on the formulation of the kernel function 

given by Eqn. (4.18), as will be presented in the next section. 

4.3 A M odeling Technique for the Endochronic M odels 

So far we have formulated a complete set of constitutive equations based on the 

endochronic theory which is ready for numerical calculation of model response under 

general cyclic loading conditions. To apply an endochronic model to simulation stud­

ies, however, one needs to choose proper values for those model constants involved in 

the definition of the kernel function in the model, as given by Eqn. (4.18). Accord­

ing to the previous experience with modeling of the kernel function [17, 49], at least 

three exponential terms in the series representation of p( z) are required to adequately 

represent the smooth yielding behavior of hysteretic systems. T he response behavior 

of a one-dimensional endochronic model based on Eqn. ( 4.18) is illustrated in Figure 

4.1, where hysteresis loops of model response using one, two, or three exponential 

terms are plotted together for comparison. It can be observed that the one-term 
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formulation of the kernel function leads to elasto-perfectly-plastic behavior, and the 

three-term model gives a smooth yielding behavior as desired. In previous studies, 

for example [17, 49], the model constants involved in the three-term kernel function 

were chosen exclusively based on a trial-and-error procedure, which may be very 

difficult and inefficient in practical situations. Furthermore, from a system identifi­

cation point of view, such a model involving at least eight model parameters (ck and 

ak, k = 1, 2, 3, in addition to at least two other parameters of elasticity, E and v 

say) would definitely violate the criteria of simplicity, physicality and robustness for 

a good model, as stated in Chapter 2. Thus, it is very desirable that the modeling 

procedure for the kernel function of an endochronic model be simplified. In the fol­

lowing, an efficient modeling technique is proposed to define the kernel function of an 

endochronic model based on Eqn. (4.18) so that the number of parameters involved 

can be reduced. 

As mentioned above, in practice, a three-term representation for the kernel func­

tion p( z) is sufficient to yield a smooth yielding curve for general hysteretic response. 

Thus, consistent with Eqn. (4.36) , we may introduce the following additional condi­

tions regarding the model constants: 

v k = 1,2,3. (4.37) 

The generality of the model behavior is not lost by introducing these conditions 

because it is the ak that primarily control the shape of the hysteresis loops. In order 

to satisfy approximately the first condition in (4.19), we can always choose a 1 to be 

a very large number, say 

( 4.38) 

Moreover, as suggested by results of numerical simulations, we may fix the ratio of 

a 2 to a 3 so that a smooth yielding curve can always be attained, regardless of the 

shape of the hysteresis loops. For this, we can set 

(4.39) 

as suggested by numerical simulations. Equations ( 4.37) to ( 4.39) provide five equa­

tions for the six constants Ck and ak , k = 1, 2, 3, in which only one model parameter 

ku is required. 
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To completely define the six constants, we need one more equation to determine 

the absolute magnitude of the constant a3 (or a2). We note that since we defined 

a 1 > a2 > a3 in our modeling based on Eqn. (4.18), a 3 controls the final portion 

of the yielding curve near the ultimate stress, as illustrated by the portion ABC in 

Fig. 4.2. Thus, we can choose the value of a 3 to match appropriately that portion 

in a uniaxial initial loading curve so that it is related to other model parameters. In 

the one-dimensional case, using the three-term representation for the kernel function 

based on Eqn. (4.18), we can derive the following equation for the n-th branch of the 

response curve: 

(4.40) 

for z > Zn, where Zn corresponds to the n-th load reversal point. Thus, for initial 

loading curve ( n = 0) , we have 

( 4.41) 

where we made use of Eqn. ( 4.36). For the final portion of the initial loading curve, 

i.e. , a ---7 a0 , t he variable z, which is a measure of accumulated plastic deformation, 

will not be small and hence, by Eqn. ( 4.37), 

(4.42) 

where we assumed that e-o1 z, e-o2 z « e-o3 z, since a 1 and a 2 are considerably 

larger than a 3 . Thus, by (4.41) and (4.42), we can derive 

(4.43) 

where we use the fact that dz = V3fi dt:P for the initial loading in the positive 

direction of the uniaxial case. Thus, for a given yielding curve, we can find the value 

of a 3 by matching some point, say B in Figure 4.2, in the final portion of t he curve. 
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For example, if at point B , as= 0.95a0 and E~ = 1ao/E where 1 > 0, as shown in 

Fig. 4.2, then by ( 4.43) we have 

which yields 
1.549 E 

1 ao 

For yielding curves of different shapes (but with the same E and a-0 ) , we may thus 

define 
1.549 E E 

a3 = --- = (2.Q)P-, 
1 ao ao 

(4.45) 

where p is an alternative parameter to 1 for controlling the degree of smoothness 

of yielding. This is demonstrated in Figure 4.3, where we note that as p - oo, a 

yielding curve corresponding to the elasto-perfectly-plastic behavior is obtained. 

To summarize, we have the following result for modeling of the kernel function 

using three exponential terms: 

3 

p(z) = L Ck e-akz, 

k=l 

(4.46) 

(4.47) 

(4.48) 

Thus, only three parameters, E, a-0 , and p, are needed in the modeling process 

for general uniaxial hysteretic behavior, as before when the generalized Rayleigh 

distribution function was used for the one-dimensional Masing models. In the case 

where multi-axial response behavior of isotropic materials is of interest, only one 

additional parameter, the Poisson's ratio v, is needed for the endochronic models 

based on the preceding formulation. This makes the modeling of endochronic models 

much easier so that they become widely applicable to general multi-axial response 

problems of cyclic plasticity, especially in the case where system identification is of 

interest. 
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Note that the parameter a 0 should have been defined as the ultimate stress (or 

force) in the uniaxial (or one-dimensional) case where only cyclically stablized be­

havior is to be accounted for. This definition of a0 may be viewed as an extension 

of defining ao as the yield stress of simple tension, since for engineering applications, 

structural systems do not, in general, exhibit hysteretic behavior with prominent 

yielding point [23]. Another point to remark regarding the identifiability of param­

eters of this class of endochronic models is that under the circumstance where the 

model response is not driven into a strong nonlinear regime, the two parameters a0 

and p may not be identified accurately due to their interactive effects on the sys­

tem response. As a consequence, in practical identification studies, we tend to fix 

the value of the parameter p (or a0 ) so that more reliable identification result can 

be achieved. For most structural systems, the value of p can be set to be around 

1.0 (which yields an endochronic model having uniaxial response behavior close to 

that of a distributed-element model based on the Rayleigh distribution for the yield­

strength distribution function, as will be shown later in Fig. 4.4), so that only two 

parameters E, ao are left in the one-dimensional models based on the endochronic 

theory. These two parameters, E and a0 , have clear physical significance since they 

represent the initial stiffness and ultimate strength of a system in the context of the 

generalized one-dimensional force-deflection behavior, or the Young's modulus and 

the simple-tension yield stress in the context of general plasticity. The two-parameter 

endochronic model (excluding Poisson's ratio) based on the three-term kernel func­

t ion formulation can thus be summarized as follows: 

E 
a2 = 6.0 -, 

ao 

E 
a3 = 2.0-, 

ao 

c2 = ~aoa2, 

C3 = ~aoa3. 

(4.49) 

It should be noted, however, that the numerical values defined in (4.49) for a2 and 

a3 may vary slightly for particular applications in practice so as to reach the best 

results. 
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The main idea presented here is that Eqns. ( 4.46) to ( 4.48) set up a simple class of 

models based on the endochronic theory that is generally applicable to plasticity prob­

lems. Even in the general multi-axial loading case, modeling of isotropic materials 

based on such a class of endochronic models can be based only on the uniaxial initial 

loading curve of the material being modeled, as long as the Poisson's ratio is given. 

As a special case of the above general formulation, the one-dimensional hysteretic 

behavior can be modeled with the tensorial quantities replaced by scalar quantites. 

Thus, the uniaxial plastic strain response (or, equivalently, the drift response) using 

the endochronic model is readily obtained through the recursive solution procedure 

introduced above. A comparison of the drift response of an endochronic model to 

that of a Masing model has already been shown in Figure 3.15. A simulated restoring­

force response of a one-dimensional endochronic model based on (4.49) (i.e. , p = 1) 

and that of a matching Masing model subject to a prescribed cyclic displacement his­

tory are also compared, as shown in Fig. 4.4, where excellent agreement of response 

behavior between the two models is observed. In the example, the two models were 

chosen to have the same E and u0 , and the Masing model was based on a Rayleigh 

yield-strength distribution function. It can be noted, however, that the endochronic 

model exhibits slightly different response characteristics from those of the Masing 

model. The main differences are that for the endochronic model, the small cyclic 

loops of transient response may not be "strictly" closed (i.e., the loops may not go 

through the associated unloading points even though they are closed), and the geo­

metrical shape of the unloading or reloading branches is not the same as that of the 

virgin loading curve in contrast to the Masing model. Nevertheless, the behavior of 

the two differently-formulated models is essentially consistent as far as the overall 

response is concerned. 

4.4 Investigation of Cyclic Hardening Behavior 

In the previous section, modeling based on the endochronic theory was mainly 

conducted for cyclically stablized behavior of materials, for which the hardening 

function in the formulation was taken as unity, i.e., f("l) ::::: 1. To model material 

behavior including cyclic hardening (or softening) based on the endochronic theory, 

one must appropriately define the hardening function f('fJ) , which should be positive, 
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and a monotonically increasing function in the case of hardening, or a monotonically 

decreasing function in the case of softening. The effect of the hardening function 

f ( TJ) is to stretch or compress the memory path defined through TJ in the plastic­

strain space, as can be deduced from Eqn. (4.10). Also, from Eqn. (4.17), we see that 

if f(TJ) is a monotonically increasing function of ry, the corresponding yield surface 

will expand accordingly, which signifies the hardening behavior of materials. 

Some particular forms for the hardening function of an endochronic model have 

been previously proposed. Valanis and Fan [49] proposed a form described by : 

(4.50) 

But the harding behavior of such a model in relation to the two parameters {31 and 

fJ2 is not very clear. Another form of the hardening function has been proposed [43], 

which is described by : 

(4.51) 

This function form involves only two parameters and exhibits appropriate and gen­

eral hardening behavior with f(O) = 1 and f(oo) = {31 . Physically, the parameter 

{31 denotes the ratio of the two ultimate strengths of the model after and before 

hardening occurs, and {32 accounts for the rate of hardening. 

An important property of the cyclic hardening behavior, as observed from the 

experimental result shown in Fig. 4.5(b), is that only the ultimate stress au is changed 

during the cyclic process, while the Young's modulus E which governs the initial un­

loading or reloading slope of the response curves almost stays invariant. Based on 

this idea, we can extend the Masing models (or D EMs) to account for the cyclic 

hardening behavior in a very effective way by utilizing the hardening function given 

in (4.51). For example, if the special class of Masing models based on the Rayleigh 

distribution function (cf. Sec. 3.3.3.3), which involves only two parameters E and 

au, is to be extended to model cyclic hardening behavior, we need only make the 

parameter au an appropriate function of some response quantity, such as the accu­

mulated plastic deformation, so that the ultimate strength au of the model changes 

with cyclic response. Fig. 4.5(a) shows a simulated cyclic hardening behavior of a 
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Masing model based on a Rayleigh yield-strength distribution function, in which the 

parameter CJ u is modeled as 

Clu(17) = CJo J(17), (4.52) 

where CJo is the initial strength of the model and !(77) is given by Eqn. (4.51). Note 

that in Eqn. (4.52), 17 is defined as the accumulation of plastic deformation, i.e. , 

77 j ldcPI. (4.53) 

Recall that the plastic deformation of a Masing model based on a Rayleigh yield­

strength distribution function can be found through Eqns. (3.39) and (3.40). In the 

example, the material constants used for the model are E = 16, 700 ksi, CJo = 5 ksi, 

and {31 = 4.4, !32 = 14.0. It is clearly demonstrated in Fig. 4.5 that the behavior of 

the Masing model based on Eqn. (4.51) for cyclic hardening effect is almost identical 

to the experimental result. 

Another issue in modeling for cyclic hardening behavior is the effect of non­

proportional (or "out-of-phase") hardening exhibited by real materials. According 

to experimental observations, the peak normal stress resulting from nonproportional 

hardening is about 40 percent higher than that after uniaxial cycling [30, 43). This 

phenomenon is physically complicated and, as a consequence, modeling of this behav­

ior is much more difficult considering the very limited experimental results currently 

available. Sugiura, et al. [43) proposed a modified model based on the endochronic 

theory that can adequately predict the nonproportional hardening behavior of mate­

rials by introduing a nonproportionality function, which depends in some empirical 

way on the nonproportional plastic-strain response path. However, further explo­

ration on this topic is beyond the scope of the current study. 

The purpose of this work is not to investigate extensive material behavior in 

depth, but to get some physical insight regarding mathematical modeling of general 

plasticity behavior of materials. Based on these insights, one can possibly extend the 

Distributed-Element Models or the Masing models to account for various hardening 

effects, as we did above for cyclic hardening behavior. Also motivated by the close 

similarity between the behavior of the one-dimensional endochronic models and that 

of the Masing models, generalization of the Distributed-Element Models and Masing 

models to a multi-dimensional representation becomes of great interest. These are 

to be investigated in the next two chapters. 
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Figure 4.1 Behavior of the endochronic model using the kernel function defined by 
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Figure 4.2 A typical yielding curve for illustration of the proposed modeling 
technique based on the endochronic theory 
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CHAPTER 5 

GENERALIZATION OF DISTRIBUTED-ELEMENT MODEL 

TO MULTIPLE DIMENSIONS 

5.1 Introduction 

The one-dimensional Distributed-Element Models (DEMs), introduced by Iwan 

[19] for structural dynamic analysis, have been investigated in detail in Chapter 3 

for both deteriorating and non-deteriorating hysteretic behavior. In order to ex­

tend the one-dimensional DEMs to multiple dimensions for constitutive modeling of 

general plasticity, Iwan [20] introduced the concept of a collection of nested yield 

surfaces associated with a DEM, which move around in the stress space according 

to some kinematic rules so that the Bauschinger effect could be accounted for in a 

more realistic way. This class of multi-dimensional models for plasticity based on 

the distributed-element formulation provided a conceptual generalization of the cus­

tomary formulation of the incremental theory of classical plasticity. However, the 

numerical implementation of such a class of multi-dimensional models involves trac­

ing subsequent yield surfaces and hence is quite difficult and computationally ineffi­

cient. Yoder [56] proposed an alternative version of plasticity theory formulated in 

the strain space. That t heory, based on a different class of DEMs from that used by 

lwan, is closely parallel to the traditional theory of plasticity, but interchanges the 

roles of stress and strain. In contrast to lwan's multi-dimensional model, the model 

proposed by Yoder consists of a collection of yield surfaces formulated in the strain 

space. However, the same problem pertaining to the numerical implementation of the 

model behavior arises. 

In the following sections, a new class of plasticity models, also based on the 

distributed-element behavior, will be proposed, in which yield surfaces of different 

yield levels are introduced for the elements involved in a model. The main idea be­

hind this new class of DEMs is t hat the yield surfaces are defined in the "element" 

stress space and are "invariant" , i.e., fixed from moving in t hat space, no matter how 

the model response varies. Due to the invariant characteristics of the yield surfaces 

thus defined, the theoretical formulation of such models is so simple that there is 
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no need for any kinematic hardening rules for subsequent yielding behavior. Fur­

thermore, the numerical implementation of the new model is straightforward and 

highly efficient, even though quite a few elements are needed for the model to yield 

good results in applications. What might be more interesting is that t he behav­

ior of this new class of DEMs provides us with a physical model for understanding 

complicated response mechanisms in cyclic plasticity. Some experimentally-observed 

material behavior can be adequately elucidated by t he model through the establish­

ment of some relevant properties of t he model behavior. The validity of t his new class 

of Distributed-Element Models is confirmed by comparison with experimental results 

from the literature. Excellent response predictions using the new models have been 

obtained under complicated multi-axial loading conditions. 

5.2 A New Class of Distributed-Element Models for Plasticity 

5.2.1 Concept and Theoretical Background 

Before looking into the generalization of the one-dimensional (1-D) DEMs to 

higher dimensions, let us examine two different classes of 1-D DEMs that have been 

used before. The two classes of models are composed of collections of elasto-perfectly­

plastic elements in either a parallel-series (P-S) or a series-parallel (S-P) combination, 

as shown in Fig. 5.1(a) and (b), respectively. It can be shown [20] that when the 

number of elements become very large so that the element strengths a; are described 

in terms of some distributed function </>(a*), where </>(a*)da* denotes the fraction of 

the total number of elements that have a slip stress between a* and a* + da*, then 

the model behavior can be described by 

(5.1) 

for t he P-S model, or 

E = 100 

E(a*) ¢(a*) da* (5.2) 

for the S-P model. It should be noted, however, that for the S-P model to be physically 

consistent, the distribution function has to be singular at the origin , i.e. , </>(0) ~ oo, 

so that dEj dait=O =/= 0; otherwise we will have da/dEit=O = oo, which means that the 

initial slope of the stress-strain curve is infinitely large. Thus, from both physical and 
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mathematical points of view, the S-P model is considered to be not so good as the 

P-S model for which the distribution function ¢>(CJ*) can be any function that satisfies 

100 ¢>(CJ*) dCJ* = 1, (5.3) 

even though both models can be shown to exhibit Masing type of behavior [45]. 

In the following, we will extend the 1-D P-S model to t he general multi-dimen­

sional case so that they can be used for constitutive modeling in cyclic plasticity 

problems. The generalization of the S-P model will not be done here, though it can 

be treated in a similar way. More will be said about this later. 

To account for the general multi-axial response behavior, we need to first define 

the basic kinematic behavior of the distributed elements constituting the model. In 

this study, we postulate the following rules for the new multi-dimensional DEM : 

1) Each element in the model is subject to the same total-strain response as expe­

rienced by the model itself. 

2) Each element has the response behavior of ideal plasticity so that its associated 

yield surface remains "invariant" in the stress space. In other words, the yield 

surface associated with an element is described by a function that depends only 

on the element stress. 

3) All the elements have the same elastic properties and the associated yield func­

tions have the same mathematical form, but they have different yield constants 

which are governed by some distribution function. 

4) The stress state of the model is defined as the average of the stress states of all 

the elements. 

Following these rules, the overall stress of the model can be expressed in terms of the 

element stress states as follows : 

a-(t) _ 1oo a(k, t) ¢>(k) dk, (5.4) 

where a denotes the tensor CJij, and a(k, t) is the corresponding stress state of the 

elements having yielding constant k governed by a distribution function ¢>(k). Note 

the resemblance of Eqn. (5.4) to Eqn. (5.1). The constant k is related to the yield 

function associated with ea.ch element in the model so that the equation 

F(a(k), k) = o (5.5) 
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represents a yield surface associated with an element of yield constant k in the element 

stress space. Note that without loss of generality, we can choose 

k = CJo(k), (5.6) 

where CJo(k) is the uniaxial yield stress of the associated element. The definition of 

the yield function defined in Eqn. (5.5) is conceptually the same as that used in the 

classical theory of plasticity so as to characterize the general behavior of materials 

under multi-axial loading conditions. However, in this new formulation, the yield 

surfaces are defined in the element-stress space, not in the model-stress space as in 

the classical theory of plasticity. Moreover, since each element in the model has the 

behavior of ideal plasticity, the yield surfaces associated with the elements will remain 

"invariant" in their space of definition, no matter how t he model behaves. Also, the 

stress response of each element remains linearly elastic until yielding occurs, after 

which the element stress state will move on the associated yield surface during plastic 

flow and will never go beyond it. An important remark regarding the overall model 

behavior is that the stress state of the model may possibly lie outside some of the 

yield surfaces associated with the elements, which makes the new model distinctive 

from those based on classical multi-yield-surface theory. It is also this formulation in 

the "invariant-yield-surface" space that makes this new model mathematically simple, 

physically realistic, and computationally effective, in contrast to the aforementioned 

multi-dimensional DEMs proposed by lwan and Yoder (20, 56]. 

The theoretical background of this new formulation lies in the deduction that 

corresponding to a yield surface in the stress space, there should be a yield surface in 

the strain space regardless of what model is being considered. Consider, for example, 

the case of ideal plasticity where a yield surfa~e formulated in the stress space always 

stays invariant throughout the deformation history. However, the corresponding yield 

surface formulated in the strain space has to move around, along with the current 

strain state of the model, so as to account adequately for the Bauschinger effect 

exhibited by real materials under cyclic plastic deformations. This space-dependent 

yielding behavior is illustrated in Fig. 5.2 for the one-dimensional (uniaxial) case. 

With this concept in mind, the formulation of plasticity in either stress or strain 

spa~e can be made equivalent to that in the other space, as long as appropriate 
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kinematic behavior of the yield surfaces is taken into consideration. However, it is 

obvious that the formulation without the need of kinematic hardening rules (such as 

the stress-space formulation in the foregoing example) would be much easier than the 

other, especially in the case where multiple yield surfaces are needed in obtaining 

model response, as for the models based on distributed elements. 

5.2.2 Mathematical Formulation 

As mentioned above, the behavior of the new class of multi-dimensional DEMs 

for plasticity is based on the element behavior formulated in stress space, instead 

of in strain space, so that complicated kinematic hardening rules can be avoided for 

response after initial yielding. Thus, the yield surfaces associated with the elements 

stay invariant in the stress space under the assumption of ideal plasticity, and they 

are nested within one another in the element stress space due to the different yield 

strengths of the elements. This is illustrated in Fig. 5.3, where concentric circles of dif­

ferent radii represent yield surfaces of different yield strengths in the two-dimensional 

(biaxial) case. 

If the yield surface associated with an element with yield constant k is described 

by Eqn. (5.5), then under the assumption of ideal plasticity, we have that when 

F(a-(k), k) = 0, the plastic flow takes place without limit, and therefore, 

(5.7) 

for plastic flow. Then, from the normality rule of plastic flow given by the classical 

theory of plasticity, which specifies that the direction of a plastic strain increment is 

normal to the yield surface at the current stress point, we have the flow rule for an 

element of yield strength k: 

(5.8) 

where d>.k is a coefficient of proportionality, whose value can be determined as follows. 

Firstly, we introduce the general stress-strain relation in incremental form as 

(5.9) 
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where Cijmn denotes the tensor of elasticity constants and it has been assumed that 

all elements in the model have the same elasticity constants and identical total-strain 

response so that the dependence of Cijmn and dtmn on k can be dropped. Based on 

Eqns. (5.7), (5.8) and (5.9), we can find the expression for the coefficient of propor­

tionality as: 

(5.10) 

Summarizing from the above, we arrive at the following set of constitutive equa­

tions for the new Distributed-Element Model for general plasticity formulated in the 

"invariant-yield-surface" space: 

and 

If 

and 

a= fooo a(k) <P(k) dk, 

F(a(k) , k) :::; o 

F(a(k), k) = o, 

always. 

fJF 
dF = fJaij(k) daij(k) = 0, (never> 0) 

fJF 
then daij(k) = Cijmn(dtmn - OO"mn(k) d>.k), 

where d>.k is given by Equation (5.10). 

If Equation (5.11c) or (5.11d) is violated, then 

(5.11a) 

(5.11b) 

(5.11c) 

(5.11d) 

(5.11e) 

(5.11!) 

Throughout the above, all the derivatives involving F are to be evaluated at the 

current value of a(k). Eqn. (5.11!) signifies that the instantaneous element response 

will be linearly elastic if the element is not yielded (F(a(k), k) < 0) , or it is subject 

to a condition of unloading (dF < 0). 

Through the equations in (5.11), the model behavior is completely defined as 

long as the mathematical forms of the two material functions , the yield-strength 

distribution function <P(k) and the element yield function F(a(k), k), are specified. 

The way to define the distribution function ¢(k) is similar to that used for the one­

dimensional DEMs, or Masing models , since the general multi-dimensional model 
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should reduce to the one-dimensional case as the loading is restricted to be uniaxial. 

Thus, similar to Eqn. (5.3), the distribution function satisfies 

1= </>( k) dk = 1. (5.12) 

Also, by Eqn. (5.11a), using V k a11 (k) = k and aij (k) = 0 if i # 1 or j # 1 (which 

signifies that every element is in yielding state under the uniaxial loading condition), 

we have 

(5.13) 

where au denotes the ult imate uniaxial stress of the model. Eqns. (5.12) and (5.13) 

provide two conditions for the yield-strength distribution function </>(k) to satisfy. As 

a consequence, </>(k) can be chosen as any probability density function that has the 

mean value au as a parameter. To this end, the Rayleigh distribution, defined as 

1f k ( -1f k
2

) </>(k ) = -- exp -- , 
2 a 2 4 a 2 

u u 

(5.14) 

serves as a good candidate for ¢( k), as already demonstrated in Chapter 3. Addi­

tional parameters may be incorporated in the definition of </>(k) so that more general 

response behavior can be modeled. For example, if the degree of smoothness of yield­

ing behavior is to be modeled accurately, then the generalized Rayleigh distribution, 

as given by Eqn. (3.35), can be used with the introduction of one additional parameter 

n. 

As mentioned earlier, the definition of the yield function associated with each 

element is the same as that used in classical theory of plasticity. There have been 

many yield criteria proposed in plasticity theory for various materials. Among them, 

t he von Mises yield criterion described by 

(5. 15) 

is probably the most widely recognized criterion for modeling yielding behavior of ma­

terials due to its physical consistency and mathematical tractability. In Eqn. (5.15), 

Sij denotes the deviatoric stress tensor defined as 
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where bij is the Kronecker delta function. In the present study of constitutive mod­

eling, however, the yield function can be chosen appropriately for the material under 

consideration based on any criterion used in plasticity theory or any empirical condi­

tion observed experimentally. 

In addition to the two material functions discussed above, one needs to specify 

the elastic constants Cijmn involved in the constitutive equations of the model. It is 

noted that these constants, assumed to be identical for all elements, are essentially 

the same as those of the model itself. This can be proven as follows. When the system 

response is very small, the model and all its elements can be assumed to be in purely 

elastic states, then, from (5.11a), we have 

C7ij = 100 

C7ij(k) </>(k) dk 

= 100 

Cijmn Emn(k) </>(k) dk 

= Cijmn Emn 100 

</>(k) dk 

where we used Eqn. (5.11) and Emn(k) = Emn V k. This property makes the modeling 

of this class of multi-dimensional DEMs very straightforward, since the elastic con­

stants associated with various materials have been well documented, or can be found 

through simple experiments. 

It should be pointed out that although we assume that all the elements in the 

DEM are subject to the same total strain increment as experienced by the model 

itself, i.e. , dEij(k) = dEij V k, the plastic strain response of the model is given by 

as can be derived using Eqns. (5.4) and (5.9) , where dEfj(k) is to be found from 

Eqns. (5.8) and (5.10). 

In summary, this class of DEMs formulated in the "invariant-yield-surface" space 

for cyclic plasticity involves only very few parameters that have clear physical signif­

icance. In the case where isotropic materials are of interest, only four parameters 

are sufficient to represent general multi-axial elastic-plastic response behavior: two 
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parameters (cru and n) are used for describing various shapes of hysteresis loops; 

and another two (E and v) are for elastic behavior. As discussed in Chapter 3, the 

Rayleigh distribution serves as a good model for the yield-strength distribution func­

tion ¢(k) in many engineering applications. In this case, only three parameters (n is 

fixed to be 1) need be specified (or identified, in identification studies), which makes 

the modeling process or t he identification procedure even simpler and more efficient. 

5 .2.3 Numerical Implementation of the New Distributed-Element Model 

The theoretical background and mathematical formulation of the new class of 

multi-dimensional DEMs formulated in the invariant-yield-surface space have been 

presented in the previous sections. In theory, the model may consist of an infinite 

number of elements whose yield strengths distribute according to the specified dis­

tribution function ¢(k), and the model response is found by keeping track of all the 

element behavior (cf. (5.11)). However, to numerically implement the formulation, 

one has to introduce a finite number of elements so that the solution algorithm is prac­

tically feasible. In order to preserve the advantages of this simple, physical model, it is 

proposed that the introduction of the finite number of elements be made according to 

the specified yield-strength distribution function ¢(k), so that the number of parame­

ters involved in t he model does not increase with the number of elements introduced. 

In the case where the Distributed-Element Model consists of a finite number of, say 

N, elements, the integral operation in Eqn. (5.11a) is replaced by the summation 

operation as follows 
N 

o- = L a(ki) 'lj;(ki), (5. 16) 
i=l 

where the "weighting function" '1/;(ki) satisfies 

N 

I: 'lj;(ki) = 1, (5.17) 
i=l 

in place of Eqn. (5.11). Also, Eqn. (5.12) becomes 

N 

L ki 'lj;(ki) = CTu· (5.18) 
i=l 
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In order to obtain smooth response curves, one can choose, without loss of generality, 

1 
'1/;(ki) = N 'V i = 1, ... , N, (5.19) 

and the yield constants ki, i = 1, ... , N are selected based on the specified distribution 

function ¢(k), k E [0, oo), so that each time a new element yields, the model loses 

1/ N of its initial stiffness. This can be done by dividing the region below the curve 

described by the distribution function into N equal-area portions, and selecting ki as 

a representative value for the i-th portion, so that Eqns. (5.18) and (5.19) are satisfied, 

that is 
N 

Lki = N O"u· (5.20) 
i= l 

The aforementioned modeling procedure is illustrated schematically in Fig. 5.4. For 

most applications, it suffices to use ten elements or so in representing the new model 

in order to get a reasonably smooth hysteresis curve. For example, the yield constants 

for the ten elements corresponding to a Rayleigh distribution can be defined as: 

k1 = 0.2638, k2 = 0.4601, k3 = 0.6097, k4 = 0.7448, k5 = 0.8767, 

k6 = 1.0128, k1 = 1.1612, k8 = 1.3347, k9 = 1.5630, k10 = 1.9732, 

where we define ki- ki / D"u· 

(5.21) 

The numerical procedure for obtaining the stress response of anN-element model 

based on the invariant-yield-surface formulation, subject to some prescribed strain 

path, can be best described by a flow diagram as shown in Fig. 5.5, where we assume 

that the strain increment in each loading step is small; otherwise, some subdivision 

of 1::1€ is needed to assure that Eqn. (5.11b) is satisfied appropriately. As can be 

seen from the flow diagram in Fig. 5.5, the numerical implementation of this new 

multi-dimensional class of DEMs is surprisingly simple and computationally efficient, 

due to the formulation in the invariant-yield-surface space, which avoids the usually 

complicated kinematic hardening rule required for accounting for the Bauschinger 

effect in cyclic plasticity. 
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5.2.4 An Application to Biaxial Loading 

A series of simulation studies on the response of the new model to some prescribed 

strain paths are conducted to examine the model behavior in the biaxial tension­

torsion case, for which published work is readily available for comparison. Lamba and 

Sidebottom [30] conducted a series of biaxial tension-torsion tests on copper in which 

cyclic, nonproportional axial-torsional strain paths were applied to examine material 

response behavior. The test samples used were thin-walled hollow cylindrical shafts 

and were loaded with combined axial force and torsion. In the experimental studies, 

the state of axial stress and shear stress resulting from the applied axial force and 

torsion respectively was considered to be uniform in the test region at every t ime 

instant. We have the following tensors of stress and strain in the biaxial loading case: 

(5.22) 

where the coefficient 1 represents the Poisson effect which is a variable when inelastic 

deformations are involved in the response. It can be shown [14] that if we assume 

incompressibility of plastic deformation, then we have the following expression for 1: 

1 1 1 duu 
I = -- -(-- v)-, 

2 E 2 dcu 
(5.23) 

where v is the Poisson's ratio for linear elasticity. 

In the simulation studies, the model used consists of ten distributed elements, 

and the Rayleigh distribution is used for describing the yield-strength distribution 

in the formulation, so that Eqn. (5.21) defines the yield constants of the elements. 

The model parameters used are E = 16,700 ksi, v = 0.33, and u0 = 30 ksi. The 

prescribed strain loading paths are shown in Fig. 5.6, for which the corresponding 

experimentally-observed stress responses are available [30], as shown in Figures 5. 7 

and 5.8. Note that the loading path sequence in Fig. 5.6(a) is 0-1-0-2-0-3-0-.. . , so as 

to study the property of erasure-of-memory. Also, the stress path resulting from the 

repetition of path 0 each t ime is not plotted in Fig. 5.7(a) for clarity. 

The stress responses predicted using the DEMs are shown respectively in Figures 

5.9 and 5.10, where both von Mises' and Tresca's yield criteria were used in the simu­

lations for comparison purposes. In general, the results obtained in all cases are both 
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qualitatively and quantitatively consistent with those observed experimentally, and 

Tresca's yield condition gives slightly better results than von Mises' does considering 

the value of the ultimate shear stress predicted. Note that Fig. 5.9(a) contains t he 

full stress path whereas Fig. 5.7(a) does not. It can be clearly seen in Figures 5.7 and 

5.8, that there exists equilibrium points corresponding to those uni-directional strain 

paths, at which the stress increments approach zero for appreciable strain increments 

that remain uni-directional. In addition, it can be deduced that there exists a limit 

surface in the stress space in each of the two loading cases so that stress states can 

never go beyond it. Moreover, the property of erasure-of-memory is clearly demon­

strated by the DEM, as one can see that the model is always brought back to the 

same state every time the path 0 in Fig. 5.6(a) is t raced. 

Other important response features in cyclic plast icity, such as smooth yielding, 

nonlinear strain hardening and multi-axial Bauschinger effect are also well demon­

strated by the new DEMs. The computational effort involved in ob taining t he re­

sponse based on the new model is low, since no kinematic hardening rule is required 

to account for the subsequent yielding behavior of materials. We remark that models 

based on the classical theory of plasticity in general do not predict response behavior 

so well as the DEMs do, as we can see in Fig. 5.11, where different yield conditions 

together with different kinematic hardening rules were employed to predict the re­

sponse to t he strain loading path given in Fig. 5.6(b) (30]. The dashed curve in each 

plot of Fig. 5.11 represents the locus of the center of the yield surface, which is irrel­

evant to the discussion made here. A clear deficiency of the first two models, which 

use respectively the von Mises yield condition with the Prager hardening rule and 

the Tresca yield condition with the Ziegler hardening rule, t is that the axial stress 

predicted does not return to zero. In more specific terms, these two models fail to 

demonstrate the behavior of equilibrium points and a limit surface exhibited by real 

materials. In Fig. 5.1l(c), a much more elaborated model is used , which employs a 

Tresca yield surface, a Tresca limit surface, the Mroz kinematic hardening rule, and 

t The Prager hardening rule specifies that the yield surface translates in the direc­

tion of the outward normal at the current stress point, while the Ziegler hardening 

rule specifies that t he yield surface moves in t he same direction as the line joining the 

center of the yield surface to the current stress point [30]. 
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an empirical nonlinear strain hardening assumption [30), so as to give the plasticity 

model a maximum chance of success. Although the result shown in Fig. 5.11(c) is 

much better than those shown in Fig. 5.ll(a) and (b), it is still not so good in accu­

racy as that predicted by the DEM, as justified by the experimental result shown in 

Fig. 5.8(a) . 

It should be noted that in the preceding examples, we did not use any system 

identification technique to choose optimally the model parameters. Instead, the values 

of the three parameters E , v , cr0 were specified directly from the corresponding exper­

imental results [30). This advantage is obviously due to the physical consistency and 

the parsimony in parameters of the proposed DEM for cyclic plasticity. In the case 

where complex structural systems are of interest, the parameters may be optimally 

identified using structural response data. Furthermore, we can treat some constants 

in the yield condition required for the model as parameters to be identified, so that 

the "best" result may be achieved in practice. 

In the next section, we will address some important properties associated with the 

new class of DEMs for general plasticity. Thorough understanding of these properties 

helps to explain some material properties and complicated material behavior under 

cyclic loading conditions. As a final remark, we note that the new Distributed-Element 

Model for multi-dimensional plasticity can be viewed as a statistical mechanical model 

which is a generalization of the classical formulation of plasticity theory. In the new 

theory, the yield condition for elasto-plastic response characterization and the flow 

rule for prescribing plastic strain increment are treated in a statistical sense, so that 

the model response is the statistical average of the element response, each of which 

follows from the classical theory of plasticity. 

5 .3 Important Properties of the New Multi-dimensional DEMs 

In the foregoing simulation studies, we have seen the existence of equilibrium 

points and a limit surface associated with a new multi-dimensional DEM. Further­

more, the property of erasure-of-memory exhibited by real materials is also demon­

strated by the new model so that excellent results of response prediction have been 

obtained when compared to experimental observations. It is of great interest to fur­

ther investigate these general properties of material behavior from a theoretical point 
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of view, which will surely help the study of complicated response behavior of cyclic 

plasticity. A thorough understanding of these properties may also provide useful 

insight and guidelines for validating analytical models and for performing analyti­

cal/experimental studies in the related areas of plasticity. 

5.3.1 General B ehavior of Ideal Plasticity of a Single Element 

In view of the physically consistent behavior of the multi-dimensional DEM, 

we would like to further study some relevant properties of the new model, which 

consists of a collection of distributed elements of different yield strengths. Before 

doing this, let us examine in detail the response characteristics of a single element. 

Each element in the model exhibits the behavior of ideal plasticity, and so is governed 

by the constitutive equations given in (5.1lb) to (5.11!). If we rewrite the incremental 

stress-strain relation (5.9) as 

(5.24) 

then based upon the normality principle of plastic strain increment, we can derive for 

a yielding state from (5.8) and (5.10): 

(5.25) 

where d>.. 2:: 0 is a constant of proport ionality and F is the yield function. 

In order to characterize the complicated elasto-plastic behavior more easily, we 

consider the biaxial tension-torsion loading case and employ the well-recognized von 

Mises yield criterion. If we denote the axial stress and strain components as cr and 

€, and the shear stress and strain components as T and 1, respectively, then we can 

derive the following set of equations from the general formulation: 

8F 
8cr = 2cr, 

dn = E(d€- d€P), 

8F 
8T = 6T, 

dT = G(dl- diP), 

(5.26) 

(5.27) 

(5.28) 

(5.29) 
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where d>.. = 0 in the elastic state (F < 0), while in the yielding state (F = 0): 

d>.. = (2a)Edc. + (6T)Gd--y 
E(2a)2 + G(6T)2 

(5.30) 

An important remark regarding the biaxial formulation is that in the above we have 

defined c. = en, a = au, 1' - 2c.12 = 2c.211 whereas T - a 12 - a21. It is more 

convenient and consistent to adopt these definitions due to the fact that in the general 

flow rule given in Eqn. (5.25), the yield function F is considered as a function of nine 

stress components, counting a 12 and a 21 as separate variables. Note that the above 

definitions imply that 

(5.31) 

SO that dc.P = (8Fj8a) d).. and d--yP = (8Fj8T) d>... 

In order to understand the detailed behavior of an element after yielding occurs, 

we first consider a simple case where a proportional strain loading path is prescribed, 

as the path 0 - 1 shown in F ig. 5.12(a). The response of an element having perfect 

plastic behavior to such a loading path can be depicted in a correponding stress space 

as shown in Fig. 5.12(b). If the element yields at point P on path 0- 1, then the 

corresponding stress state will just reach the yield surface at, say, P' in the stress 

space. As the loading is continued, the stress state will move around on the yield 

surface without going beyond it. But then an interesting question arises concerning 

which direction the point P' will move under further loading. To answer this, we 

have to look back at the constitutive equations which govern the response behavior. 

Combining (5.28), (5.29) and (5.30) we get 

12EGT 
da = E(2a)2 + G(6T)2 (3Tdc. - ad--y), 

-4EGa 
dT = ( ) 2 G( )2 (3Tdc.- ad--y). E 2a + 6T 

(5.32) 

Thus, given strain increments de. and d--y , we are able to determine the direction of 

stress increments at a yield state by using (5.32), which leads to the following rules 

for response behavior: 
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(I) If 3Tde > crd"(: 

dcr "' T, dT"' -CT, (5.33) 

dcr = dT = 0, (5.34) 

(III) If 3Tde < CTd"(: 

dcr "' - T, dT "' CT, (5.35) 

where ""'" means "proportional to". In Rule (II) we have the sit uation that if the 

ratio of de to d1 is kept fixed (e.g., in the case of proportional loading ) and the 

stress state satisfies cr /3T = de/ d1, then the stress state will remain invariant unless 

t he strain path changes its direction. In t his case, we say t hat the response state 

reaches an "equilibrium state"* associated with that particular uni-directional strain 

path. Mathematically, it can be shown that if the current state is governed by (I) 

or (III), then it will approach a state described by (II). Thus, physically, the above 

rules signify that a response state of a yielded element moves on the yield surface in 

a direction toward an equilibuium state corresponding to the prescribed strain path. 

Following the rules we can find that in Fig. 5.12(b), the response state at P' will 

move in t he direction of P' Q' and will finally stop at the equilibrium state at Q', 

as shown schematically in the figure. Similarly, we can determine the directions of 

stress increments corresponding to the strain paths in different quadrants as shown 

in Fig. 5.12(b), provided that the initial strain loading path remains uni-directional 

in each of t he cases. It should be noted, however, that the direction of a stress 

increment corresponding to a stress state on the yield surface may be different from 

those given in Fig. 5.12(b) in case of a strain loading path that is not virgin loading 

or uni-directional. Nevertheless, the direction of a stress increment at a given yield 

state can always be determined based on t he foregoing rules. 

An important property regarding the element behavior is the existence of equi­

librium states associated with different uni-directional strain paths. The equilibrium 

states can be defined as the st ates at which the stress increments approach zero 

for a ppreciable strain increments that remain uni-directional. This proper ty of re­

sponse in cyclic plasticity has actually been observed in experimental studies of some 

* A more rigorous definition for equilibrium states will be given later in this chapter. 
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materials [30]. Each equilibrium state thus defined is associated with a particular 

uni-directional strain path. The mathematical aspects of the existence and unique­

ness of an equilibrium state will be treated later on within a general formulation of 

plasticity. However, we remark here that the existence and uniqueness of equilibrium 

states leads to another important material property called the property of erasure­

of-memory. The property of erasure-of-memory is also deduced from experimental 

observations [30] and can be stated as follows: If a material has been stabilized by 

"out-of-phase" cycling (i.e., loading with non-proportional strain cycles) and if the 

subsequent strain paths remain in the region enclosed by the out-of-phase cycling, 

then one "big" strain cycle, which is sufficiently smooth and long so that t here exists 

at least one equilibrium state associated with it, will always bring the material back to 

the particular equilibrium state that is unique to that big strain cycle. This property 

is very useful in conducting experiments on cyclic plasticity, since a single specimen 

can always be brought back to the same reference state, and so can be used repeatedly 

in charactizing material response to various loading paths. This ensures that more 

reliable results can be obtained with considerably less labor and cost. 

We remark that for the existence of erasure-of-memory, the out-of-phase stabi­

lization is a prerequisite conditiont since experimental results have shown that the 

peak stress (or yield stress) resulting from out-of-phase hardening is about 40% higher 

than that from uniaxial cycling, as already discussed in Chapter 4. Hence, if a mate­

rial has not yet been out-of-phase stabilized, its yield condition becomes variant and 

depends on the non-proportionality of the loading path. This phenomenon cannot 

be characterized by conventional plasticity models+ unless special treatment is made 

[43]. 

t As shown later, t he property of erasure-of-memory is closely related to the exis­

tence and uniqueness of equilibrium states, which in turn depends upon the associated 

yield condition. 
t Most constitutive theories of cyclic plasticity are concerned with cyclically sta-

bilized behavior. One reason for this is that crack initiation predictions are generally 

based on cyclically stabilized states [8]. 
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5.3.2 General Treatment of the Theory of Plasticity 

In the following, a general treatment of the classical incremental theory of plas­

ticity is presented and some properties of the formulation are summarized. The 

general formulation will then be used to derive important properties associated with 

the new class of multi-dimensional DEMs 

Let a - ( O"ij) be the total stress tensor and f = ( Eij) the total strain tensor 0 

Define the elastic component and the plastic-relaxation component of the stress 

increment tensor, dO-e and d(iP, respectively by: 

(5.36) 

(5.37) 

where C[jkl is an elastic modulus tensor which is independent of response states. The 

above definitions can be better understood through the schematic diagram shown in 

Figure 5.13, where the uniaxial stress-strain relation is considered. 

Introduce a plastic modulus reduction tensor A ijkl so that 

(5.38) 

then following from the incremental stress-strain relation: 

(5.39) 

we can derive that 

and 

(5.40) 

Note that the plastic modulus reduction tensor is, in general, a function of not only 

the current state, but also the load increment. 

The above equations can be put in a vector form as follows. Since O"ij and Eij 

are symmetric second-order tensors, they can be written as vectors ~, £ E ~6 defined 

by 

(5.41) 
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(5.42) 

so that the values of the inner products between tensors and between vectors are 

preserved, and where the superscript T denotes matrix transpose, i.e., 

Thus, Eqn. (5.40) becomes 

(5.43) 

and Eqn. (5.39) can be rewritten as 

(5.44) 

where A and c e are the matrices corresponding to the fourth-order tensors A i jkl 

and Cfikt so that the equations defined accordingly are consistent, and I is t he 

6 X 6 identity matrix. The elastic modulus matrix c e is symmetric because of 

the symmetries associated with the tensor Cfikt for elastic behavior. Also, it is a 

constant matrix under the assumption that the elastic behavior of the material is 

linear . It is positive definite if the material is stable to small strain perturbations 

(or if a Drucker's postulate holds), which we assume is the case. Equation (5.44) 

can be reformulated as 

(5.45) 

where CP c e A can be referred to as t he plastic modulus matrix. 

Equation (5.44) (or (5.45)) gives the general formulation of the basic constitutive 

law that we will use in the following, where we establish some theorems pertaining to 

the properties of the formulation. With these theorems, some important properties 

associated with the new class of multi-dimensional DEMs can then be derived and 

presented in a more efficient way. 
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[Theorem 1]: Within the classical formulation of plasticity*, the plastic modulus 

reduction matrix A and the plastic modulus matrix C P are both of rank one or zero, 

corresponding to yielding and elastic behavior respectively. 

[Proof]: If the classical theory of plasticity is considered, the yield function can be 

assumed to be of the form : 

(5.46) 

where both isotropic and kinematic hardening are taken into account. In the case 

of ideal plasticity, a = Q and k = constant throughout the response history. Based 

on the "associated flow rule," which states that the yield function is the same as the 

plastic potential function which defines the directions of the plastic strain increments, 

we have 
p oF d' dci1. =d).~, "'~ 0. 

UC7ij 
(5.47) 

During plastic deformation we require F = 0, and so dF = 0, i.e., 

oF oF p _ 
~ duij + £l P de - 0. 
UC7ij uf.ij 

(5.48) 

Define 

(5.49) 

where the vector gradient of a scalar function is defined by 

oF oF oF T 
V'~F(1f,~, ... ) = ( ~'~· ... '!:I") 

UU! UU2 UUn 
(5.50) 

if 1f =< u 1 , u2 , .. . , Un >T . Ftom Eqns. (5.47), (5.48) and (5.49), and the incremental 

stress-strain relation 

(5.51) 

* By classical formulation of plasticity we mean that the elastic-plastic response 

behavior is characterized by a yield condition, a flow rule, and a strain hardening 

rule. The flow rule relates the increment of plastic strain to the current state and 

the stress increment. The strain hardening rule specifies how the yield surface is 

changed during plastic flow. 
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it follows that 
d).. = { 0: QT ds_ if QT ds_ > 0; 

0 if QT ds_ ~ 0, (5.52) 

where Q- CeQ and 0: = 1/(fl? Q + QT g), which is just a scalar, and hence 

(5.53) 

Therefore, by comparing (5.53) with (5.44), and using the fact that c e is invertible, 

we find 
A= { O:QQT if Q~d£ > 0; 

0 if Q d£ ~ 0. 
(5.54) 

Thus, we may conclude that A is a 6 x 6 matrix of rank one (only one independent 

row or column ) or zero. Also since 

(5.55) 

CP is of rank one or zero, too. Since yielding is equivalent to a non-zero plastic 

strain increment ds_P, from Eqn.(5.43) we see that A and CP are both of rank one 

during yielding and are both zero during elastic behavior. We remark that even if a 

non-associated flow rule is used, the same conclusion can still be made. 

The practical significance of Theorem 1 in the theory of plasticity may be stated 

as another theorem as follows. 

[Theorem 2] : Within the context of classical plasticity, the incremental plastic 

deformation, if it exists, only occurs in a one-dimensional subspace (which changes 

with the current yielding stress state) of the six-dimensional space of the total strain 

increment. 

[Proof]: \Ve know from Theorem 1 that the plastic modulus reduction matrix A is 

a 6 x 6 matrix of rank 1 during plastic flow. Thus, there exists {~i : i = 1, 2, ... , 5} 

forming a basis for the 5-dimensional null space of A , i.e., 

A x. =0 -l , "i/ i = 1, 2, ... , 5. (5.56) 
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Equations (5.43), (5.44) and (5.56) imply that there always exists five linearly­

independent strain increment vectors ds_i = dJ.Li~i' dJ.Li > 0, i = 1, . .. , 5, such that 

da · = c ede . and dc1? = A de . = 0 '--' ,; - 1 2 5 
-l ~l .!:.l .!:.l ' y ~ - ' ' • •• ' ' (5.57) 

and the corresponding plastic-relaxation stress increment satisfies 

(5.58) 

Thus, purely elastic behavior always occurs in, at least , a 5-dimensional subspace of 

the six-dimensional space of the total strain increment, and then the conclusion of 

Theorem 2 follows. 

We remark that in the case of ideal plasticity, the plastic modulus reduction 

matrix takes the form (cf. Eqn. (5.54) with d = Q. in a) 

a bT 
A (a, E, da , dE )= - T--- - - Q Q 

(5.59) 

during plastic deformation, where Q, fl. are defined as before. Thus, as a result 

of Theorem 1, the eigenvalues Ai, i = 1, . .. , 5, of A are zero, and the remaining 

eigenvalue ,\6 must be 1, since 

6 ~6 
' "'""' ' T (A) w i=l aibi "'6 = L......t "'i = r = T = 1, 

i =l Q Q 

(5.60) 

where Tr(·) denotes the trace of a square matrix. Let the corresponding eigenvectors 

be ds_i, i = 1, ... , 6, where ds_i, i = 1, ... , 5, give purely elastic behavior, as in the 

proof of Theorem 2, then, 

which implies 

dE.B = d~, or ds.6 = Q.. (5.61) 

Thus, we get purely plastic strain increment in a one-dimensional subspace. In the 

case where strain hardening is taken into account, however, dE.B will not, in general, 

be fully plastic, since ..\6 may be less than one, as can be deduced from Eqn. (5.54) 

and Theorem 1. 
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[Theorem 3]: If an associated flow rule is used in the formulation based on the 

classical theory of plasticity, the plastic modulus matrix CP is symmetric. Also, in 

general, Drucker's postulates of stability imply that C P is positive semi-definite. 

[Proof): From Eqns. (5.54) and (5.55) we get 

since Q - ce~. Thus, we have 

i.e., CP is a symmetric matrix. Drucker's postulate requires that 

(5.62) 

so by Eqns. (5.43) and (5.44), we have 

===} d.£T(l - A)C e A d.£~ 0 

===} d.£r(CP- A T c eA ) d£ ~ 0 

===} d.£TC Pd.£ - d.£T A Tee A d.£~ 0. 

Since c e is posit ive definite, we may conclude that 

(5.63) 

i.e., CP is posit ive semi-definite . Note that actually (5.63) does not hold for all d.£, 

only Q.T d.£ > 0, but C P is itself zero otherwise. 

[Theorem 4): The plastic modulus reduction matrix A, formulated based on an 

associated flow rule, has, at most , one nonzero positive eigenvalue whose value is 

never greater than one. 

[Proof]: Define S = ( c e) - l / 2 , which is a symmetric, positive-definite matrix, since 

ce is symmetric and positive definite. Now consider the eigenvalue problem: 
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Following from Theorem 3 which claims that C P is symmetric, positive semi-definite 

if an associated flow rule is used, we have .A ~ 0. Let 11.. = S .;£ then 

{::=::} scp'J!.. = .AS-1JL 

{::=::} (Ce)- 1CPJ! = AJ! (since 8 2 = (Ce)-1 ) , 

I.e. , 

(since CP = ce A ). 

Hence, the eigenvalues of A are non-negative. Furthermore, by Drucker's postulate: 

we can derive 

ds_T[Ce(l- A) ds_J ~ 0, 

==} ds_T ( c e - C P)ds. ~ 0, 

which implies that the symmetric matrix ce- C P is positive semi-definite. Thus, 

det(I- A) ~ 0, 

where det( ·) designates the determinant of a matrix. Since the determinant is a 

product of all the eigenvalues of the matrix and Theorem 1 implies that A must 

have 5 zero eigenvalues, it follows from the above results that there is at most one 

nonzero eigenvalue A6 such that 

We remark that as in the proof leading to Eqn. (5.61), the case A6 = 1 corresponds 

to the behavior of ideal plasticity. 

With the general formulation introduced above, we are now in a position to 

derive some important properties of the multi-dimensional DEMs. To begin with, 

we introduce the following theorem regarding the plastic behavior of the DEMs. 
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[Theorem 5]: For aDEM, the plastic modulus matrix C P is symmetric and positive 

semi-definite, and the eigenvalues of the plastic modulus reduction matrix A are all 

non-negative. Besides, 

0 ~ Tr(A) ~ 1. (5.64) 

[Proof]: In the formulation of the DEM with a finite number of elements, the plastic 

strain increment of the model is given by 

N 

dcP = "' n/o. dc'f! - 0 'f/1. - f., 
i=l 

(5.65) 

which can be easily derived from the basic assumptions of the kinematic behavior 

of the DEM and the incremental stress-strain relation. By Eqn. (5.43) and the 

definition of the plastic modulus matrix, we have 

N 

A (Q., d~) = L 1/Ji A i (Q.i' d~) (5 .66a) 
i=l 

and 
N 

CP(Q., d~) = ce A(Q., d~) = L 1/Ji Cf(Q.i, d~) . (5 .66b) 
i =l 

where Ai and Cf are matrices associated with each of the elements in the DEM. 

From the result of Theorem 3, it follows that Cf, \;/ i = 1, ... , N , are symmetric 

and positive semi-definite, and so therefore is C P. Also, as in the proof of Theorem 

4, we can show tha t all the eigenvalues of A are non-negative. In addition, since 

each element in the DEM has the behavior of ideal plasticity, we have Tr(Ai) = 0 

or 1, depending on whether the element state is elastic or yielded, and then by 

Eqn. (5.66a) 
N N 

0 < Tr(A ) L 1/Ji Tr(A i) < I: 1/Ji 1. 

i=l i=l 

In order to develop a mathematically rigorous theory on the properties of the 

DEM, we make the following definition regarding the "state of equilibrium": 
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[Definition 1]: An "equilibrium point (state)" is a response state associated with 

a uni-directional strain path ds_ = ~ dt, with ~ =1- 0 and dt > 0, at which 

{5.67) 

1.e., 

[I - A(Q.,f,Q,~)]~ = 0, (5.68) 

where the dependence of A on dt is dropped since we are mainly concerned with 

rate-independent plasticity in this research. 

The uni-directional strain path that defines an equilibrium point is referred 

to as the reference path associated with that equilibrium point. From (5.68), the 

reference path is an eigenvector with eigenvalue unity corresponding to A evaluated 

at the equilibrium state. The term "equilibrium point (state)" was used because if 

we consider the following system 

(5.69) 

(5.70) 

is an equilibrium point of the system described by the ordinary differential equation 

(5.69). 

One important property associated with equilibrium states follows from the 

definition and can be stated as follows. 

(Theorem 6]: At an equilibrium state for aDEM (or a classical plasticity model), 

the plastic modulus reduction matrix A is of rank one, and the only nonzero eigen­

value of A has a value of one. 

[Proof] : By Eqn. (5.68), we know that the matrix I - A(Q., f, Q, ~) must be singular at 

an equilibrium state associated with the reference path~. so that A has an eigenvalue 

of 1. As a consequence, we may conclude that the matrix A(Q.iq,f:.iq,Q,~) must have 

5 zero eigenvalues and an eigenvalue of 1 (Theorem 5), regardless of what ~ might 

be. This concludes the proof. 
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The physical significance of this property is that strain hardening effect must vanish 

as an equilibrium state is approached. This can be deduced from the result of 

Theorem 4. Furthermore, Theorem 6 implies the following corollary. 

[Corollary): Purely plastic deformation at a state of aDEM occurs only in a one­

dimensional subspace of the 6-dirnensional strain-increment space if and only if the 

state is an equilibrium point. 

This property of the DEM is different from those of the models based on the classical 

theory of plasticity, by which purely plastic deformation always occurs in a one­

dimensional subspace due to the use of the principle of normality. 

We remark that at an equilibrium state (for any plasticity model) corresponding 

to some reference path f, the work done over any strain loading increment d£ = f dt 

must be zero, since dq_ is identically zero. This remark, which seems trivial, turns 

out to be useful later in deriving the properties associated with the DEMs. 

It should be noted that although an equilibrium point is defined to be associated 

with a uni-directional strain path, a strain cycle which is sufficient smooth and long 

may also have particular equilibrium points associated with itself, as mentioned 

earlier in the description of the property of erasure-of-memory. This situation is 

illustrated in Figures 5.14(a) and (b) , where the ellipse in the E- 'Y strain space 

denotes the prescribed strain cycle with discrete increments, and the corresponding 

stress response calculated for a DEM shows two equilibrium points on the ellipse in 

the CJ- T stress space with the densest stress increments around them. A big smooth 

strain cycle is needed to get the stress response on the limit surface, then whenever 

a strain increment matches the direction of the normal to the limit surface at the 

current stress point, an equilibrium state is reached. 

Two important issues pertaining to the equilibrium points are the existence and 

uniqueness of an equilibrium point given a specified reference path. Mathematically, 

it is difficult to show directly the existence of an equilibrium state considering the 

rather complicated formulation of plasticity involved. Instead, we use some simple 

energy arguments to solve the problem, as presented in the following theorem. 
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[Theorem 7] : For stable materials which have bounded elastic strain energy, given 

a specified uni-directional strain path, a corresponding equilibrium point always 

exists. 

[Proof]: Define the elastic strain energy of a system as 

W e _ 1 e ce e 1 ( e)TCe e 
= 2€ij ijkl Ekt = 2 £ £ · 

By assumption, we is bounded so that the elastic strain response Eij is also bounded. 

Along a uni-directional strain loading path £ = _g t f Q, where, by definition t is 

monotonically increasing (dt > 0) , the elastic strain energy would never decrease 

after a certain state at, say, t = k Thus, it requires for all t > t i 

(5.71) 

For bounded elastic strain energy we must have dWe(t) - 0, as t - t0 , where t0 

corresponds to some state at which dWe(t) = 0, possibly to = oo. By (5.71), we 

must have* 

i.e., 

daij(to) = Cfjkt dEkt(to) = 0, V i,j. 

Thus, following from the definition of an equilibrium point, as in Eqn. (5.67), exis­

tence of the equilibrium state associated with a reference path £ = ~ dt =/= Q is always 

guaranteed . 

The issue of uniqueness of an equilibrium point associated with a reference path 

will be discussed later after we have introduced the concept of the limit surface and 

its associated properties. 

5.3.3 Geometrical Considerations of Yield Surfaces for the New DEM 

In defining the kinematics of an element in the DEM, we introduced a yield 

condition for characterizing the general multi-axial elasto-plastic behavior of the 

* We can rule out the possibilty that d£e becomes orthogonal to c e£e, since in 

(5.71), we have neglected the high-order terms, which never vanish unless d£e = 0. 
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element. The yield condition has been defined in the same sense as done in the 

classical theory of plasticity. In other words, the yield condition for a given material 

is essentially the extension of a single yield point in the uniaxial (or one-dimensional) 

case to a hypersurface in the six-dimensional stress space (considering the symmetry 

of stress tensors). Since the DEM consists only of ideal plasticity elements, we may 

concentrate on the corresponding formulation, so that a yield condition is simply 

described by 

F(aij(k), k) = 0, (5.72) 

where k represents a yield constant corresponding to some particular element. For 

isotropic materials, since rotating the axes does not affect the yielding behavior, we 

can choose the principal stress axes for defining the coordinate system so that Eqn. 

(5.72) may be rewritten as 

F(at (k), a2(k), a3(k), k) = 0. (5.73) 

In the (ai. a2, a3) coordinate system, which represents a stress space sometimes 

referred to as the Haigh-Westergaard stress space, Eqn. ( 5. 73) specifies a normal 

three-dimensional surface that one can easily picture. As discussed in many text­

books of plasticity, e.g., [26, 34], the yield locus that a yield surface intersects with 

the 1r plane, a plane passing through the origin and perpendicular to the hydrostatic 

axis for which a 1 = a 2 = a 3, must be symmetric in the principal stresses. If one 

further assumes equal yielding in tension and compression, then the yield locus can 

be divided into twelve symmetric sectors, each of 30 degrees. In the following, we 

will formulate some important properties related to the yield surfaces of a DEM 

based on some basic principles in operator theory. 

Recall that we defined a DEM as consisting of a collection of elasto-perfectly­

plastic elements whose yield surfaces are nested within one another and are governed 

by yield functions of the same mathematical form so that the yield surfaces may have 

similar shapes. To make it clearer, we introduce the following definition. 

(Definition 2]: Two hypersurfaces S 1 : F(q_, k1 ) = 0 and S2 : F (q_, k2) = 0 are said 

to be similar (in shape) with dimension ratio kifk2 , if any ray from the origin that 

passes through S 1 at q_1 intersects S2 at q_2 such that 
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Mathematically, if the dimension ratio of two similar surfaces S2 and S 1 is c > 0, 

then by definition we have 

F(Qo, ko) = 0 <==> F(CQo, cko) = 0. (5.74) 

Thus, we have the following theorem regarding the condition for similar surfaces. 

[Theorem 8]: A set of yield surfaces S defined by S = {o- : F(Q., ck0 ) = 0, c > 0} 

are all similar with dimensions proportional to c, if the yield function F( ·, ·) is 

homogeneous (of any order). 

[Proof]: IfF(-,·) is homogeneous of some order, say m, and 

F(Qo , ko) = 0, (i) 

then 

F(CQo, cko) = c= F(Qo, ko) = 0 Vc > 0. (ii) 

By (5.74) we may conclude that all surfaces are similar with dimensions proportional 

to c. 

Based on the above result we now assume that the yield function used to define 

the yield surfaces of a DEM is homogeneous so that the nested yield surfaces are 

all similar in shape with dimensions proportional to the yield constants k' s. Thus, 

the domain of elasticity, ni, in the element stress space for an element with yield 

constant ki, defined by 

(5.75) 

can be expressed as 

k0 = 1, (5.76) 

or 

(5.77) 

where flo is the domain of elasticity of some element with yield constant ko = 1, and 

it is assumed to be a bounded, convex set. The boundedness follows from the fact 

that any real material has finite ultimate strength (peak stress) , and the convexity 
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follows from the well-known result that a yield surface is convex if Drucker's postu­

lates hold [12, 34]. Since the model response of aDEM can be written as (using the 

formulation of a finite number of elements): 

N 

Q. = ~ 1/JiQ.i, (5.78) 
i=l 

where N is the total number of elements and 

N 

I: '1/Ji = 1, '1/Ji ;::: o, (5.79) 
i=l 

by operator theory on convex sets [27], the set of all model stress points, denoted as 

the domain n, is given by 

N N N 

n = L:('I/Ji n i) = ~('1/Ji kino)= ( ~ '1/Ji ki)no (since no is convex and ki '1/Ji > o) 
i=l i=l i=l 

N 

= kuno (ku = L 'I/Jiki)- (5.80) 
i=l 

In the derivation we used some fundamental theorems in operator theory on convex 

sets. The relevant theory is summarized in Appendix A. By (5.80), the existence 

of n is guaranteed as long as ku < oo in the case where N ---+ oo, which may 

again be thought of as a condition of finite ultimate strength for any real materials. 

FUrthermore, we may conclude that n is similar in shape to no. Thus, the boundary 

of n, an, defines a limit surface of aDEM, which can be described by 

F(Q., ku) = 0, (5.81) 

such that a model stress state can never go beyond the limit surface associated with 

the model. This proves the following theorem specifying an important property of 

the DEM: 

[Theorem 9] : There exists a limit surface associated with a DEM, described by 

F(Q., k,J = 0, 
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where ku = E~1 '1/Ji ki, and ki, i = 1, ... , N, are the yield constants of theN elements 

constituting the model. The limit surface is similar in shape to the yield surfaces 

associated with each of the distributed elements. 

In the following, we will derive some important properties related to the equi­

librium points and the limit surface associated with a DEM. First of all, we note 

that, from Definition 1 and Theorem 6, at an equilibrium state corresponding to a 

reference path d£. = f dt, the plastic-strain response increment will be the same as 

the prescribed strain increment, i.e. , 

Thus, we have the following theorem pertaining to the equilibrium states of aDEM. 

[Theorem 10]: At an equilibrium state of aDEM, all elements in the model are 

in corresponding equilibrium states, which lie on the associated yield surfaces at 

points having the same outward normal direction as the reference strain path, and 

conversely (all elements in equilibrium states implies DEM in equilibrium state). 

[Proof): Converse is trivial since if each element is in an equilibrium state, we have 

Vi dg:_i = 0 for d§. = fdt , then dg:_ = E~1 '1/Ji dg:_i = 0. 

Now, if a DEM is in an equilibrium state corresponding to a reference path 

f, then the work done over any strain loading increment df = f dt must be zero, 

as we remarked earlier. Since the DEM actually consists of an assemblage of ideal 

plasticity elements that are subject to the same total strain increment, the sum of 

the work done by all the elements must also vanish. Thus, since the incremental 

work done by each individual element is non-negative (Drucker's postulate) , we may 

conclude that 

dg:_f df = 0 Vi= 1, ... , N. (5.82) 

Also, by the assumption of ideal plasticity for each element, we have [34) 

oo'!' del!= 0 Vi= 1, .. . , N. 
-t -t (5.83) 

It follows from (5.82) and (5.83) that 
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Since c e is positive definite, we must have d£f = Q Vi, and hence dq_i = Q Vi, which 

shows that each element is in an equilibrium state corresponding to reference path 

_g. Furthermore, each d£f = _g dt, so by the principle of normality for each element, 

the outward normal at each element's equilibrium point is in the direction of _g. 

[Theorem 11]: If all the element stress states of aDEM lie on the associated yield 

surfaces and line up in the stress space on a ray from the origin, then the stress state 

of the DEM is on the associated limit surface. 

[Proof]: Firstly, we note that each yield surface associated with an element is t he 

boundary, ani , of the domain of elasticity ni of that element, i.e. , 

(5.84) 

From Eqn. (5.76), we have 

(5.85) 

that is, each yield surface is described by 

(5.86) 

Also, from Theorem 9, the limit surface is the set given by 

80. = {kuQ{}: Q.o E 80.o}. (5.87) 

Thus, if all the element stress states of a DEM lie on the associated yield surfaces 

and line up in the stress space on a ray from the origin, then the element stress 

states must be proportional to one another with proportionality constants of yield 

strengths, i.e., 

CI · = k•Cio 
- l ·-' 

(for some Q{) E 80.o) 

and hence we have 
N N 

Q_ - "L VJi Q_i = "L VJi ( ki Q{)) 

i=l i=l 

N 

= ( L ki VJi)Q{) = ku Q{)· 

i=l 
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From Eqn. (5.87), the conclusion of the theorem follows. 

It is of great importance to note that the limit surface to aDEM is like the yield 

surface to a model of ideal plasticity as far as the plastic behavior is concerned. This 

can be deduced from the following important theorem which relates the equilibrium 

points to the limit surface of aDEM. 

[Theorem 12): If the admissible stress region bounded by the limit surface is 

convext, then the limit surface associated with aDEM is the set of all the equilibrium 

points corresponding to all possible reference paths. 

(Proof): It is equivalent to showing that a stress state of a DEM is an equilibrium 

state if and only if it lies on the limit surface, which is convex, of the model. 

Sufficiency: If Q. is a stress state of aDEM on the limit surface, then from Eqn. (5.87) 

Q. = ku Q.o (for some Q.o E ono). (i) 

Also, by definition, we have 

N N 

Q. = L 'I/Ji!Z.i = L'I/Jiki~i) (~i) E no Vi= l , .. . ,N). (ii) 
i=I i=I 

If we rotate the coordinate axes so that the XI axis in the stress space is perpendicular 

to the tangent plane to the yield surface on0 at the point Q.o, as shown in Fig. 5.15, 

and define the XI coordinate of Q.o , (Q.o)I, to be a, a> 0, then from (i) 

N 

(Q.)I = ku (Q.o h = Q ku = Q L ki '1/Ji · (iii) 
i=I 

Since each yield surface is convex and so the region no lies completely on one side 

of any tangent plane of ano, we can deduce 

(iv) 

t This is equivalent to the earlier assumption that no is convex, which is actually 

a consequence of Drucker's postulates. 
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It follows from (ii), (iii), (iv) that 

i.e. , Qj,i), Vi = 1, ... , N, lie on the tangent plane x 1 = a. Thus, it follows from the 

shape similarity of the yield surfaces that all the element stress states are on the 

associated yield surfaces at the points having the same outward normal direction 

(perpendicular to the tangent plane). By the principle of normality for each ele­

ment, the corresponding plastic strain increments of elements are all in the same 

direction, say f , and so is the plastic strain increment of the DEM at Q. (following 

from Eqn. (5.65)). This shows that the principle of normality holds for a state of 

the DEM on the limit surface. Now if the total strain increment prescribed is in 

the direction of f, then the elastic strain increment at Q. must be zero under loading 

condition (otherwise, the stress increment will point outward so that the stress state 

goes beyond the limit surface), and so therefore is the stress increment. Thus, by 

definition, the state Q. must be an equilibrium point associated with the reference 

path f. 

Necessity: If Q. is an equilibrium point corresponding to a reference path f, then 

according to Theorem 10, every element state must lie on its associated yield surface 

at the point corresponding to the outward normal direction f . Note that, however, 

without the assumption of strict convexity+ of the yield surfaces, we cannot conclude 

that all element stress states are on a line from the origin (so that by Theorem 11, 

the model stress state is on the limit surface). Nevertheless, we can still argue as 

follows. Let~ denote the subset on a yield surface of contant ki, in which all points 

correspond to the same outward normal direction, i.e. , ~ lies on a hyperplane in 

the stress space, which may be described by a linear function in Q.i, so 

6 

~ = {fli: F(Q.i) - l:=aj(Q.i)j = ki and F(Q.i,ki) = 0}, (5.88) 
j=l 

t A region D and its boundary 8!1 are said to be strictly convex, if 8!1 is convex 

and there are no two points on 8!1 that have the same outward normal direction. 
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where j denotes the j-th component of a vector, so that the vector gradient '\1 !!...F is 

a constant vector throughout the region ~. T hus, it follows from Theorem 9 that 

the subset Ron the limit surface, corresponding to~, can be described by 

6 

R = {f[: F(a) = L aj(f[)j = ku and F(f[, ku) = 0}. (5.89) 
j=l 

From Eqn. (5.78), it follows that 

6 6 N N 6 

L: a;(f[); = L ai[ L V;i(f[i)i] = L V;i[ L a;(f[i)i] · (5.90) 
j=l j=l i=l i=l j=l 

Now if f[i E ~, t hen by Eqns. (5.88) and (5.90) 

6 N 

L aj (f[) j = L V;i ki = ku. 
j=l i=l 

Following from (5.89), we conclude that f[ lies in R, which is on the limit surface. 

[Corollary]: T he principle of normality holds for any state of a DEM on the limit 

surface. 

The existence of equilibrium points has been assured by employing the concept 

of bounded elastic strain energy. Now we are in a position to address the problem 

of uniqueness of an equilibrium point associated with a reference strain path. T his 

is given as the following theorem. 

[Theorem 13]: An equilibrium point assocated with a reference strain path is 

uniquely defined (regardless of past response history) if and only if the admissible 

stress region bounded by the limit surface is strictly convex 

The proof of Theorem 13 can be done simply by considering the schematic diagram 

shown in Figure 5.16, where the yield surfaces (and the associated limit surface) are 

not strictly convex. Given a uni-directional strain path following different previous 

histories, we may end up with different equilibrium points as points 1 and 2 shown 

in the figure. If, instead, the admissible stress region is strictly convex, then corre­

sponding to a reference strain path, there is only one point on the limit surface that 
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has the outward normal in that direction. Thus, following the flow rule based on 

the principle of normality, the equilibrium point is uniquely defined. 

With the theorems presented above, we may now investigate in detail the prop­

erty of erasure-of-memory that is exhibited by real materials (30]. It may be deduced 

that the existence and uniqueness of equilibrium points associated with different ref­

erence paths are the necessary and sufficient conditions for a DEM to exhibit the 

property of erasure-of-memory, since then every time a "big" smooth strain cycle 

is prescribed, the system will be brought back to the particular equilibrium states 

associated with that strain cycle, regardless of what the previous history is. This 

leads to the following important theorem. 

(Theorem 14]: A DEM possesses the property of erasure-of-memory if and only 

if its admissible stress region bounded by the associated limit surface is bounded 

and strictly convex, from which the existence and uniqueness of equilibrium points 

follow. 

In summary, if the yield functions used in the definition of aDEM is homoge­

neous and strictly quasi-convex* so that the limit surface exists and forms a strictly 

convex region, then the DEM can exhibit the property of erasure-of-memory. Ac­

tually, as can be deduced, the conditions stated in Theorem 14 serve as the general 

criteria for any plasticity model to demonstate the property of erasure-of-memory 

that real materials have. FUrthermore, establishment of the above theorems provides 

us with clear insight into the elastic-plastic response mechanisms of real materials 

under complicated cyclic loading conditions, which surely helps further studies on 

the related subjects of general plasticity. 

* Mathematically, it can be shown [12] that if a yield function is strictly quasi­

convex, then the associated yield surface forms a strictly convex region. A scalar 

function F(Q.) is strictly quasi-convex at Q.1 if 

V Q. =a Q.1 + (1- a) Q.2 , 0 < a < 1. 
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Ai=A/N 

(a) Parallel-Series Model 

EN, LN 

...... 

Li=UN 

(b) Series-Parallel Model 

X = f. L 

Figure 5.1 Two different one-dimensional Distributed-Element Models 
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(I) Region enclosed by the invariant yield surface in the stress space 

(II) Region enclosed by the initial yield surface in the strain space 

(III) Region enclosed by the subsequent yield surface in the strain space 

Figure 5.2 illustration of the space-dependent yielding behavior of ideal plasticity 
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T 

Figure 5.3 Invariant yield surfaces nested in the element stress space 

<b( k) 

k2 k3 k 

Figure 5.4 Selection of yield constants for a fmite number of elements 
according to the specified scrength discriburion function 
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.Y 
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Figure 5.5 A flow diagram showing numerical procedure for obtaining srress 
response of an N-element DEM 
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Figure 5.13 Definition of the plastic-relaxation stress increment 
in the uniaxial case 
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Figure 5.14 Illustration of existence of the equilibrium points 
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Figure 5.15 A diagram showing the rotation of coordinate axes which makes the 
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yield surfaces 

Figure 5.16 An illustrative diagram showing non-strict convexity of yield surfaces 
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CHAPTER 6 

GENERALIZED MASING RULES FOR CYCLIC PLASTICITY 

6.1 Introduction 

In the previous chapter , we have extended the one-dimensional Distributed­

Element Models (DEMs) to a multi-dimensional representation, so that they can 

be used for constitutive modeling within the context of general plasticity. While 

the formulation of the multi-dimensional DEMs provides a useful and realistic way 

for analysis of general multi-axial cyclic response behavior, efficient numerical im­

plementation of the theoretical formulation requires that only a limited number of 

elements be introduced. FUrthermore, the model response has to be found by keep­

ing track of each element's behavior throughout the response history. Recall that in 

Chapters 3 and 4, we gave the extended Masing rules for response of one-dimensional 

DEMs with or without deterioration. As a result , the response of a DEM can be 

found without the need to trace each element 's behavior. An interesting question 

can then be raised: can we possibly find some mathematical rules similar to those 

previously used in the one-dimensional Masing models so that general multi-axial 

response of the models based on the distributed-element formulation can be obtained 

without keeping track of ea.ch element's behavior. If such mathematical rules gov­

erning multi-axial cyclic response exist, then based on these rules we may be able 

to come up with numerical schemes t hat are more efficient and more accurate than 

those based on a finite number of distributed elements. 

In the following sections, it will be shown that by introducing a response for­

mula good for initial loading, further unloading and reloading response to a general 

loading can then be found by applying a composition of proper transformations 

to the state variables involved in the initial loading formula. This method can be 

shown to be conceptually equivalent to the classical multi-yield-surface theory using 

the Mroz kinematic hardening rule. However, the idea proposed here can actually 

work out the response of a model with a collection of an ( uncountably) infinite num­

ber of yield surfaces and with proper kinematic hardening rules taken into account. 

Even though the proposed formulation based on the transformation rules is not ex­

actly mathematically equivalent to that of the generalized three-dimensional DEM 

presented in the previous chapter, it still provides us with an alternative way of 
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obtaining complicated cyclic response in general plasticity. Furthermore, the trans­

formation rules that govern the response behavior corresponding to different loading 

branches also give instructive insight into the physics of material behavior in cyclic 

plasticity. 

6.2 Extension of 1-D Response Formulas to Higher Dimensions 

In the one-dimensional case, there have been many response formulas or math­

ematical models proposed for describing nonlinear, hysteretic response behavior of 

structural or material systems, such as those presented in Chapters 3 and 4. The 

problem of extending such one-dimensional models to the much more involved multi­

dimensional case has been a task of great challenge among researchers in the related 

fields, and very little success has been attained on this subject. 

6.2.1 Two-Dimensional Bouc-Wen Model 

The theory of plasticity provides the theoretical background for analyzing gen­

eral multi-axial hysteretic response of mechanical and structural systems. However, 

such an entirely theoretical approach would be usually computationally impracti­

cal for studying structural systems. Park, Wen, and Ang [37) proposed a two­

dimensional hysteretic model for random vibrations of structures subject to biaxial 

excitations, which is an extension to the well-known Bouc-Wen model introduced in 

Chapter 3. The one-dimensional non-deteriorating Bouc-Wen model, described by 

(6.1) 

was extended to the biaxial case so as to account for the interaction of the restoring 

forces in two different directions. It was proposed [37] that for structural systems 

with "isotropic" restoring force behavior, the forces rx and ry in the two directions 

are described by the following coupled differential equations: 

(6.2) 

(6.3) 
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where x and iJ are the velocities in the x andy directions respectively. The hysteretic 

behavior given by Eqns. (6.2) and (6.3) can be illustrated by considering a simple 

uni-directional displacement path for which it is assumed that 

r x = r cos (), r y = r sin (), x = u cos (), y = u sin (), (6.4) 

where rand u are, respectively, the uni-directional force and displacement, and() is 

held constant on loading or unloading. Substituting (6.4) into Eqns. (6.2) and (6.3) 

we can show that each of (6.2) and (6.3) reduces to Eqn. (6. 1) with n = 2. This 

illustrative situation is sketched in Fig. 6.1 for easier understanding. Note that the 

ultimate strength r u of the one-dimensional model with n = 2 can be found to be 

(6.5) 

which may serve as a guideline for choosing the model parameters. 

For an orthotropic system, whose stiffness and strength in two orthogonal direc­

tions are different (Ax vs. Ay, (rx)u vs. (ry)u), Eqns. (6.2) and (6.3) can be replaced 

by 

. A . Ax I . I {3 Ax . 2 Ay I . I {3 Ay . (6 6) rx = xX - a -( )2 xrx rx - -( )2 xr x - a-( )2 yry rx - -( )2 yrxry , . 
rx u rx u ry u ry u 

. A . Ay I . I {3 Ay . 2 Ax I . I {3 Ax . (6 7) ry = yY - a-( )2 yry ry- -( )2 yry- a-( )2 xrx ry- -( )2 xrxry , . 
Ty u Ty u Tx u Tx u 

where we require a+ (3 = 1. For example, in the biaxial tension-torsion loading 

case, Eqns. (6.6), (6.7) can be written in terms of stress and strain components as: 

where CJ u and T u represent respectively the ultimate axial stress and the ultimate 

shear stress of the system being modeled. An important feature of Eqns. (6.6) and 

(6.7) is that under the transformation 

(6.8) 
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Eqns. (6.6), (6.7) will reduce to Eqns. (6.2), (6.3) of the isotropic case. 

The foregoing formulation of the two-dimensional Bouc-Wen model is phe­

nomenological in nature; however, the new models exhibit reasonable biaxial hys­

teretic behavior as justified by some experimental results [37, 53]. This may be 

attributed to an implicit assumption of the model behavior on the "yield" condi­

tion. From Eqns. (6.4) (using fy = rsinO and treating r and 0 as general polar 

coordinates) and (6.8) , it follows that 

(f= -( r) ). 
Tx u 

(6.9) 

Thus, since rx ~ (rx)u and ry ~ (ry)u we may conclude that the two-dimensional 

Bouc-Wen model actually employs the concept of a limit surface of elliptic shape in 

the biaxial "stress" space. 

An important advantage of the two-dimensional Bouc-Wen model is that it is 

versatile and amenable to analytical treatment, and thus can be applied to systems of 

considerable complexity and under random excitation. However , the biaxial model 

inherits the disadvantage of the one-dimensional model in that it exhibits unstable 

drift under small cyclic excitations, as explained in Chapter 3. Moreover, there is 

another unrealistic response feature inherent in the model due to the "empirical" 

formulation given above. That is, under proportional (displacement) loading, the 

biaxial restoring force response is also proportional at all times, even if the response 

is in plastic state. This can be easily deduced by noting that when :i; = cfJ in 

Eqns. (6.2) and (6.3) , we obtain rx = cry . This behavior is not consistent with the 

theory of p lasticity or experimental observations. Another major disadvantage of 

the model is that it is difficult to extend it to higher dimensions, due to a lack of 

sound theoretical basis, to allow for a general analysis of cyclic plasticity. 

6 .2.2 A R ecent Procedure for G eneralizing 1-D Hysteretic M od els 

Recently, Graesser and Cozzarelli (14] presented a systematic procedure for ex­

tending a one-dimensional model of hysteresis to a multi-dimensional tensorial repre­

sentation provided that the model behavior is governed by some simple power laws. 

In particular, they considered the generalization of the one-dimensional Ozdemir 

model which was proposed originally for hysteretic behavior of yielding structures 

(36]. However, due to some unrealistic characteristics associated with the original 
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one-dimensional Ozdemir model, as discussed in Chapter 3, the extended multi­

dimensional model will inherently exhibit some nonphysical behavior, which may 

lead to violation of Drucker 's postulates of stability. The inconsistency of these 

generalized models (Bouc-Wen and Ozdemir models) with real behavior can be at­

tributed to their simplified mathematical formulation and lack of physical motiva­

tion. Nevertheless, the approach used in the derivation of the generalized Ozdernir 

model still provides useful guidelines to the generalization of one-dimensional hys­

teretic models to the general multi-dimensional case, and is discussed in the follow­

ing. 

The one-dimensional Ozdemir model with zero backstress can be described by 

[36] 

(6.10) 

and 

(6.11) 

where E denotes Young's modulus (i.e., initial stiffness), and ay represents the 

simple-tension yield stress of the model. The corresponding multi-dimensional model 

can be found to be [14]: 

(6.12) 

and 

(6.13) 

where we define 

and Sij denotes the deviatoric stress components. We may observe the close rela­

tionship between the sets of Eqns. (6.10), (6.11) and (6.12), (6.13), and note that 

(6.12) and (6.13) reduce to (6.10) and (6.11) in the uniaxial (one-dimensional) load­

ing case. In the derivation of Eqns. (6.12) and (6.13), incompressibility of plastic 

deformations has been assumed and the term 3J2 j a~ can be seen to be analogous 

to the von Mises yield criterion in t he theory of plasticity. 

Our aim here is to find multi-dimensional response formulas that can adequately 

predict general, physically consistent elastic-plastic response behavior. In the one­

dimensional case, !\lasing's hypothesis and the extended rules given by Jayakumar 

[23] provide the theoretical basis for the Masing models, which have been shown 
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to be equivalent to the associated Distributed-Element Models (DEMs). A special 

class of Masing models, proposed by Jayakumar (24] for modeling hysteretic behavior 

of structures, uses the following one-dimensional response formulas in addition to 

Eqn. (6.10): 

(6.14) 

for initial loading, and 

(6.15) 

for other response branches, where n is a parameter that controls the smoothness 

of transition from elastic to plastic state, a0 the stress state corresponding to the 

latest unloading point , and au. is the ultimate stress (strength) of the model. Based 

on the generalization rules used in Eqns. (6.10) to (6.13), one can find the following 

general formula corresponding to Eqn. (6.14) for initial loading: 

(6.16) 

We remark that Eqns. (6.11) and (6.14) are identical for initial loading, yet their 

generalizations to multiple dimensions (Eqns. (6.13) and (6.16)) are quite different, 

even in the case of initial loading. This is because that when applying those gener­

alization rules, which were developed for general response of plasticity, we treated 

Eqns. (6.11) and (6.14) as general formulas valid for all response branches. The 

formula given by Eqn. (6.16) is mathematically simple; however, it predicts that 

the plastic strain increment is always proportional to the total strain increment 

at a given stress state, which is obviously incorrect, as suggested by the behavior 

of the multi-dimensional DEMs, or demonstrated by the classical theory of plas­

ticity. Fig. 6.2 shows a comparison example where biaxial stress responses under 

proport ional strain loading were simulated using both a multi-dimensional DEM 

and Eqns. (6.12), (6.16). A deficiency of the model behavior based on Eqns. (6.12) 

and (6. 16) is that the stress response never decreases in each of the two components 

under the prescribed proportional strain path. This is inconsistent with the result 

using the DEM or models based on the classical theory of plasticity. In addition to 

the aforementioned problem, there are some other difficulties with the generalization 

of Masing rules based on Eqns. (6.14) and (6.15), which are stated as follows: 
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1) In the general multi-axial case, it is very difficult to specify appropriately the 

virgin loading curve (or the "skeleton" curve) due to the path-dependent chara­

teristic of hysteretic response. We may note that the path-dependent property 

actually invalidates the use of a scalar quantity (3h/ k~)n12 in Eqn. (6.16), since 

otherwise two response histories with identical histories of (3h/ k~)nf2 will have 

the same stress response according to the formula (6.16). 

2) To extend the Masing rules given in Eqns. (6.14), (6.15) to higher dimensions, 

one has to characterize the response history into different branches including 

initial loading, unloading and reloading cases. Based on the classical t heory of 

plasticity, characterization of different loading cases can be done by introducing 

a loading function F, such as the "yield" function F(q_) = 3J2 - k~ implicitly 

used in Eqn. (6.16). Thus, in t he case of neutral loading (F = 0 and dF = 0) 

where 3J2jk~ stays invariantly at the value of one, the stress state should still 

vary with the change of the prescribed strain path. But t his is again not true 

if Eqn. (6.16) is used for describing the response to initial loading, which may 

possibly include the neutral loading case. 

Considering the response behavior of the multi-dimensional DEM proposed in 

the previous chapter and the difficulties mentioned above, one can see t hat t he 

task of finding simple mathematical formulas for describing general multi-axial hys­

teretic response is formidably challenging. Before we present an innovative idea of 

generalizing response formulas for multi-axial plasticity, let us compare two similar 

formulations based on different concepts of multiple yield surfaces. The first one is 

associated with the new class of mult i-dimensional DEMs in which a collection of 

yield surfaces is defined in the element stress space so that the yield surfaces stay 

invariant in the space regardless of the change of the model response. Another for­

mulation with multiple yield surfaces is based on the classical theory of plasticity 

using t he Mroz kinematic hardening rule [35]. In the second formulation, the yield 

surfaces are defined in the model stress space and they move around with the model 

response so that the current stress state of the model never lies outside any of the 

yield surfaces. The Mroz kinematic hardening rule specifies t hat the "active" yield 

surfaces on which the current stress state lies will translate in the same direction 

as the line joining the current stress point to the point on the outer yield surface 

corresponding to the same direction of outward normal [35]. This rule is sketched 

schematically in Fig. 6.3, where the point Pis the current stress state on the active 
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yield surface Fm and Q is the point on the outer surface Fm+l corresponding to 

the same direction of outward normal. The translation of the surface Fm (as well 

as the inner surfaces, such as Fm-l) will follow the direction given by the line PQ. 

The Mroz hardening rule ensures that the inscribed yield surfaces have a common 

tangent at the current stress point. Based on the theorems given in Chapter 5, it 

can be shown that models based on the Mroz hardening rule exhibit correct response 

behavior in the sense that the properties associated with equilibrium points and a 

limit surface can be adequately demonstrated. Other often-used kinematic hard­

ening rules, such as the Prager and the Ziegler kinematic hardening rules, fail to 

exhibit such physical properties of response behavior shown by real materials (30] . 

While the Mroz rule leads to good response predictions, its numerical implementa­

tion has been thought to be too involved and inefficient for complicated structural 

analysis [30, 32]. 

It is noted that the response of a multi-dimensional DEM is governed by the 

response of its elements, while response behavior of a model based on the classical 

formulation of plasticity is determined mainly by t ranslation of yield surfaces. A 

comparison of the detailed response behavior between the two multi-yield-surfa.ce 

models reveals that mathematically it is easier to deal with the classical model than 

with the DEM in generalizing 1-D response formulas for general plasticity. Effective 

response formulas for plasticity based on the classical multi-yield-surface theory will 

be proposed in the following sections. It will be shown that these well-proposed 

response formulas provide a very efficient way of implementing the classical multi­

yield-surface theory using the Mroz kinematic hardening rule. 

6.3 A Class of Generalized Masing Models for Multi-axial Plasticity 

6.3.1 A Response Formula for Initial Loading 

To find mathematical rules similar to Masing's hypothesis for govening response 

behavior in cyclic plasticity, one has to first define a formula good for response 

of initial loading, and then find corresponding formulas for describing subsequent 

response behavior. By initial loading here, we mean that no unloading defined 

according to the classical theory of plasticity* has ever occurred. 

* In the classical theory of plasticity, the characterization of different loading cases 

for strain hardening materials is done by introducing a loading function (which is 
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As noted above, the initial loading formula (6.16), derived from extending a 

special class of 1-D Masing models, or the formulas (6.14) and (6.15) based on 

Ozdemir 's model (which was proposed for complete history of response) do not 

yield proper response behavior for cyclic plasticity. This kind of deficiency may be 

attributed to lack of physical insight in formulating the general response behavior, 

so that the formulas may lead to unrealistic or even unstable response behavior. 

A new response formula for initial loading is proposed here based on the response 

behavior of ideal plasticity and the introduction of a "damage" function. The theory 

of classical plasticity is formulated mainly based on experimental observations, and 

hence a model showing the behavior of ideal plasticity can be thought of as physically 

motivated. Based on the insight obtained in developing the multi-axial DEM which 

consists of a collection of elements of ideal plasticity, we extend the "ideal plasticity" 

model to account for strain hardening behavior as follows. 

Recall that by Eqn. (5.43), the plastic strain increment in a yielding state of 

perfectly plastic behavior with a corresponding yield function F can be expressed 

in a vector form as 
dfP = A(~, df) df_, 

= { ~o(~) df if dF = 0; 
if dF < 0, 

usually the same as the yield function) defined by F(aij) = k so that when 

(1) F = k, 

it is called loading. When 

(2) F = k, 

it is called neutral loading. When 

(3) F = k, 

it is called unloading. 

aF 
dF =-a dCTij > 0, 

CTij 

aF 
dF = -a daij = 0, 

CTij 

aF 
dF = -a daij < 0, 

CTij 
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where dF is a function of both the current state and the load increment, and A is 

the plastic modulus reduction matrix and 

(6.17) 

where Q is defined in (5.49). Note that in the above, dF is never greater than zero 

and A = 0 corresponds to the case where response is purely elastic. 

For our purpose of developing a general response formula for init ial loading, a 

modulus-reduction function which signifies the "degree of yielding" can be introduced 

as 

D (f!_) = ( 3:z2 ) ~ , 
u 

(6. 18) 

where h = !smn Smn is the second invariant of the deviatoric stress tensor and 

the parameter n is introduced to control the smoothness of yielding. The response 

formula (6.17) for ideal plasticity in the case of initial loading is then modified by 

including the modulus-reduction function D as 

(6.19) 

By Eqn. (6.19) , when the response is small, 3J2 « k~, and we have dEP ~ Q; when 

3h = k~, the response state reaches the limit surface associated with the model 

and the response behavior becomes perfectly plastic as loading is continued. In the 

biaxial tension-torsion case where von Mises yield criterion is used, Eqn. (6.19) gives 

dcf1 = C [Esi1 dcu + 4Gsus12dE12J 

dcf2 = C [Esus12dcu + 4Gsi2dEI2]' 

h C - (3h( k,..)nf 2 d . th d . t . t w ere = E 2 +4G 2 an Sij IS e ev1a one stress ensor. 
8 u 8 12 

(6.20) 

A simulation study of the response behavior based on the formulas (6.19) and 

(6.13) , respectively, was conducted to get an idea of how the formulas perform in 

complicated loading conditions. The prescribed loading path under consideration is 

the strain loop 0-1-2-... -8 as shown in Fig. 6.4. In the simulation, the strain loop was 

traced twice, while only the response corresponding to the second loop is considered 

in order for comparison with the experimental result shown in Fig. 6.5, where only 

cyclically stablized behavior is demonstrated. The corresponding response curves 
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are presented in Figures 6.6 and 6.7, where we can see the superiority of Eqn. (6.19) 

in response prediction of initial loading to Eqn. (6.13), as justified by the exper­

imental result and the response predicted by a DEM. The response predicted by 

Eqn. (6.19) shows correct behavior in terms of the positions of equilibrium points 

and the associated limit surface. We remark that all the loading branches in the 

above example are treated as initial loading so t hat only Eqn. (6.19) (together with 

Eqn. (6.12)), which is derived for response of initial loading only, is used throughout 

the response history. 

In summary, we note that there are three important features of the response 

formula (6.19) derived for initial loading: 

(i) The model based on Eqn. (6.19) preserves all the equilibrium points of a per­

fectly plastic model so that it always leads to stable and physically consistent 

response behavior. 

(ii) Analogous to the multi-dimensional DEM, there is no special restriction on the 

yield condition (or modulus-reduction function) needed in the formula for initial 

loading. In general, we should replace Eqn. (6.18) by 

(6.21) 

where F(q_) = ku is the equation of the limit surface associated with the model 

and can assume any appropriate form. Note that F(q_) is also the "loading" 

function controlling the cases of loading or unloading. FUrthermore, the power 

law employed in Eqn. (6.21) may be replaced by some other function forms so 

as to provide more general, flexible response behavior. 

(iii) The key point in the new formula for initial loading is that the modulus­

reduction function D(q_) repla.ces a conventional yield condition and subsequent 

hardening rules, so that continuous yielding behavior on initial loading is ade­

quately modeled. 

6.3.2 Response Formulas for Unloading and Reloading Branches 

With the initial loading formula defined in Eqn. (6.19) , we then want to find 

corresponding mathematical rules that can govern appropriately the response be­

havior of unloading and reloading branches, so that complete response history to 
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any multi-axial loading path can be calculated accordingly. Recall that loading and 

unloading correspond to dF;::::: 0 and dF < 0 respectively, where F(g:) is the loading 

function as employed in Eqn. (6.21). 

It can be recognized that Masing's hypothesis implies mathematically that the 

behavior of unloading response can be found from that of virgin response by intro­

ducing a proper transformation on t he state variables describing the response. Mo­

tivated by this concept and the behavior of the classical multi-yield-surface model 

using Mroz' kinematic hardening rule (cf. Fig. 6.3), we propose t he idea of in­

troducing a composition of t ransformations on the state variables involved in the 

initial loading formula (6. 19), so that unloading response can be found based on 

the same formula as for the response of initial loading. Based on this idea, we have 

t he following formula , corresponding to Eqn. (6.19), for unloading and reloading 

branches: 

(6.22) 

where q_1 denotes t he vector of transformed stress state, which is a function of not 

only the current response state, but also the past history. 

To determine the effective transformation required for our purpose, we remark 

that for the classical multi-yield-surface model, the yield surfaces reached by the 

current stress state must be carried along with t he response state instead of stay­

ing invariant, so that they all have the current stress point as a common tangent 

point. The movement of the yield surfaces along with the current state is illus­

trated schematically in Fig. 6.8, where the circles represent yield "surfaces" in a 

two-dimensional stress space and points A, B denote two instantaneous stress states. 

Thus, the response behavior corresponding to the unloading branch from a point B 

can be found by transforming the geometrical configuration in Fig. 6.8(c) back into 

that in 6.8(a), so that Eqn. (6.22) can be used effectively for response calulation 

of any unloading (or reloading) branches. Care must be taken in performing the 

transformations so that not only the transformation of geometrical configurations is 

appropriately done, but also t he normality rule for determining increments of plastic 

strain is preserved (cf. Appendix B). In the following, we will be concerned only with 

t he two-dimensional loading case so that we need only deal with transformations of 

planar configurations. An effective transformation formula for "steady-state" cyclic 
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response (i.e., loading between points symmetric to the origin) that is derived from 

a composition of a series of proper transformations can be found as follows: 

-r1 ·o I+ · I _ -l 4 a tT -
2 

. (} e , 
sm 2 

(6.23) 

where (a', T 1
) denotes the transformed stress state, and 

1 (T- TO) (}1 =tan- , 
a- ao 

(}0 = tan- 1 (;~) , (6.24) 

In (6.24), (a, T) is the current actual stress state and (a0 , To) is the actual stress 

state corresponding to the latest unloading point. The detailed derivation of the 

transformation rules (6.23), (6.24) is given in Appendix B. Note that in the derivation 

of the transformation rules we assumed that the yield surfaces in the 2-D space can be 

represented by circles which are initially concentric. This, however, does not put any 

limitation on applications using the above idea, since according to the well-known 

Riemann 's Mapping Theorem [55], a simply-connected region of arbitrary shape can 

always be mapped onto a circle through a conformal mapping.* Therefore, the yield 

surfaces in the 2-D space can be of any shape and the transformation rules (6.23), 

(6.24) will still work, as long as we can find the transformation whose existence is 

guaranteed by Riemann's theorem so that the yield surfaces of arbitrary shape can 

be transformed into circles. 

The transformation approach mentioned above works, in principle, only for the 

2-D case. However, it is also applicable to the general multi-axial plasticity provided 

that isotropic materials are considered and the plastic deformation can be treated 

as independent, or as some simple function, of the hydrostatic stress state. Many 

real materials exhibit approximately these kinds of behavior, such as metals and 

soils. In this case, we can always convert a stress state (which is a symmetric two 

* The Riemann Mapping Theorem has also been extended to the case where a 

region bounded by two simple closed curves, one inside the other, is mapped into a 

region bounded by two concentric circles [41}. 
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tensor) into a corresponding principal stress state (a diagonal two tensor) for which 

the shear stress components vanish, and apply the 2-D transformations to the stress 

state projected on a shifted 1r plane which is perpendicular to the hydrostatic axis 

o-1 = o-2 = o-3 in the principal stress space. This is shown in Fig. 6.9(a), and 6.9(b), 

in which the circular cylinder and cone represent the yield surfaces corresponding 

to the von Mises and Drucker-Prager yield conditions [1], respectively. A schematic 

diagram illustrating this idea of transformation on the 1r plane is shown in Fig. 6.10. 

6.3.3 Rules for Transient Response 

With the initial response formula (6.19) and the transformation rules (6.22) to 

(6.24) for other response branches, we are able to determine the steady-state cyclic 

response of a system characterized by multiple yield surfaces without the need to 

calculate the response of elements or to trace the motions of yield surfaces. However, 

in the general cyclic loading case, we still need to extend the foregoing formulas to 

account for transient behavior of cyclic response, as Jayakumar [23] did in the one­

dimensional case for extending the Masing's hypothesis for hysteresis. 

Recall that in the one-dimensional case, we had the rules for incomplete loops 

and completed loops of transient response (cf. Sec. 3.2.3). In the multi-dimensional 

case, however, the cyclic loops between fixed strain points may not be "strictly 

closed" in general. Here, by "strictly closed" we mean that a stress-strain loop is 

closed at a load reversal point so that this point is both the starting and the ending 

point of the loop. Based on geometrical considerations of multiple yield surfaces and 

the Mroz hardening rule, we can modify the definitions for incomplete and completed 

loops and deduce corresponding rules for them in the general multi-axial case. 

Firstly, we define a completed loop as a "loop" along which the outermost yield 

surface that contains the latest point of load reversal is reached again during the 

loading process. Otherwise, the loop is said to be incomplete. For example, in 

Fig. 6.11, the stress response "loop" ABC is incomplete, while the "loop" BCE is a 

completed one since the outermost yield surface (level curve 2) containing the latest 

point of load reversal Cis reached at E. With these definitions we can propose the 

following two rules for transient response of cyclic plasticity: 

Rule 1 : Incomplete loops 
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The equation of any response curve can be obtained simply be using Eqn. (6.19) 

and applying the q_-q_' transformation, as given by Eqns. (6.23) , (6.24) to the latest 

point of load reversal (a-0, To) and the outermost yield surface on which (a-0, To) lies. 

For example, the response curve CE in Fig. 6.11 can be found by applying the 

transformation rule to point C and "level curve" 2. 

Rule 2: Completed loops 

Once the stress state reaches the outermost yield surface on which the latest 

load reversal occcurs, the transformation rule is applied to the previous point of load 

reversal and the corresponding outermost yield surface. 

For example, in Fig. 6.11, as the loop BCE is completed atE, the transformation 

rule is then applied to point B and level curve 4 for the response that follows. Note 

that Rule 2 for completed loops is different from that in the one-dimensional case 

where two points of load reversal are erased at a time when an interior curve crosses 

a curve from a previous load cycle. This rule for one-dimensional hysteresis can 

be shown to be actually a special case of the two-dimensional rule, in which only 

proportional loading is taken into account. 

We remark that in the case of transient response, the geometrical configuration 

of yield surfaces is different from that of a steady-state case, not only in the position 

of the active point of load reversal, but also in that 80 in (6.24) is measured by 

reference to a new center point , which may be different from the origin of the stress 

space. Therefore, the 00 in (6.24) should be replaced by the more general formula 

B -l (To- TC) 
0 = tan , 

a-o- a-c 
(6.25) 

where ( a-c, Tc) represents the coordinates ofthe center of the current reference circle 

(the outermost yield surface that the latest unloading point is on). This situation 

is illustrated in Fig. 6.12. Fig. 6.12(a) shows the process of initial loading from 

the origin 0 to point A and then unloading from there. Fig. 6.12(b) shows t he 

geometrical configuration corresponding to the transient response of unloading from 

point B , where point C represents the center of the current reference circle. The 

coordinates of the new center point C can be generally found as 

(6.26) 
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where r A and r B denote the radii of the outermost "active" circles on which points 

A and B lie respectively, and ( CT C', TC') represents the coordinates of the center of 

the previous reference circle (C' coincides with the origin 0 for the case in Fig. 6.12). 

Based on the preceding rules, numerical implementation of the foregoing algorithm 

requires for each point of load reversal to store in a list both the strength constant 

(radius) and the coordinates of the center point of the outermost yield surface on 

which the reversal point lies. Every time the yield surface with the smallest strength 

on the memory list is reached, its corresponding point of load reversal and center 

of reference is erased from memory. This phenomenon may be viewed as an addi­

tional attribute of the property of erasure-of-memory, and is the counterpart to the 

property of unraveling of interior loops in the one-dimensional case. 

While the mathematical manipulation involved in the above approach based on 

transformation formulas is simple and effective, a major problem of implementing 

the above rules for multi-axial transient response exists. This problem is associated 

with the numerical ill-conditioning which occurs when the response formulas are 

applied to states near the points of load reversal, which are singular points of the 

corresponding transformations as can be deduced from the derivation of the trans­

formation formulas. To illustrate this, we consider the following example. When 

unloading occurs from a point, say the point B or C in Fig. 6.11, the "yielding 

value," 3J2 (.Q:'), at any point on curve BC or CE is computed by reference to the 

corresponding unloading point B or C. After a transient loop is completed, such as 

the loop BCD or BCE in Fig. 6.11, the yielding value at D orE should be calcu­

lated by reference to the previous unloading point B , according to the Rule 2 stated 

above. However , when the point at which a transient loop is completed is very close 

to the previous unloading point (such as point Din Fig. 6.11 which is close to point 

B), due to the singular behavior at an unloading point ,the yielding value cannot be 

found accurately (as we can see in Fig. 6.11, all the level curves signifying different 

yielding values pass through point B). In other words, the calculation of Q:
1 from the 

transformation formulas is numerically ill-conditioned. In the one-dimensional case, 

we can get around this problem by always erasing two points of load reversal when­

ever a loop is completed; but in the more general case, special care must be taken in 

doing so in order not to introduce significant error. A remedy for dealing with the 

problem is that two latest points of load reversal, instead of just one (Rule 2) , will be 
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erased every time a loop is completed if the current yielding value with reference to 

the previous point of load reversal is found to be considerably less than the yielding 

constant of the active yield surface on which the latest point of load reversal lies. 

For example, in Fig. 6.11, t he points D and E, which both lie on the level curve 2, 

should always have the same yielding value, say 2, no matter which unloading point 

is referenced. But due to the singular behavior around the unloading point B , the 

yielding value at D may be found numerically as much less than 2, e.g., if point D 

coincides with (or very close to) the unloading point B, the yielding value will be 

found zero there. In this case, we may erase two latest points of load reversal, i.e., B 

and C in Fig. 6.11, so that the active reversal point becomes A and then the yielding 

value at D with reference to A will be found to be about 4 (corresponding to the 

level curve 4), which is correct for continued response from D. On the other hand, 

if the response curve goes from C to E at which the yielding value with reference 

to point B is close to the yield constant of the active yield surface (level curve 2) , 

then only one point of load reversal (point C) will be removed from the memory. 

6.3.4 Simulation Studies 

Thus far , based on the classsical formulation of ideal plasticity and multi-yield­

surface t heory, we have derived a class of "generalized Masing models" based on 

the response formula (6.19) for initial loading, together with the transformation 

formulas, (6.22) to (6.24), and the rules governing the rest of a response history 

for general multi-axial cyclic loading. It is of interest to examine t he performance 

of such a model that is actually composed of an infinite number of yield surfaces 

moving in t he stress space according to the Mroz kinematic hardening rule. In t he 

following, the model performance will be evaluated under the same biaxial tension­

torsion loading conditions as before. 

The results of response predictions using a generalized Masing model for dif­

ferent prescribed strain paths, given in Figures 5.6(a) and (b), are shown in Fig­

ures 6.13 and 6.14 respectively, where t he response predicted by a DEM is also 

included for comparison . Recall that t he loading sequence in F ig. 5.6(a) is 0-1-

0-2-0-3-0-.. . , so as to demonstrate the property of erasure-of-memory exhibited by 

real materials. In t he simulations, Tresca's yield criterion has been adopted for the 
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modulus-reduction function defined in Eqn. (6.21), and the model parameters used 

are E = 16, 700 ksi, v = 0.33, o-0 = 30 ksi, and n = 2.5. A comparison between the 

model predictions and the experimentally-observed results, given in Figures 5.7 and 

5.8, l~ads to the following remarks. It is immediately recognized that the response 

behavior described by the initial loading formula (6.19) (or (6.20) for the biaxial 

case) and the transformation rules (6.22) to (6.24) is in good agreement with the 

experimental results in almost every aspect. Transition from elastic to plastic regime 

is smooth and well-behaved, while the complicated biaxial Bauschinger effect is also 

well accounted for. Moreover, t he model behavior clearly shows the existence of 

equilibrium points and a limit surface, as well as the property of erasure-of mem­

ory. One may thus conclude that the behavior of the generalized Masing model is 

physically consistent. In addition, the computational effort in making response pre­

diction based on the above response-formula approach is even less than that using 

a ten-element multi-dimensional DEM, which is already computationally efficient 

compared with models based on the classical theory of plasticity. The excellent 

accuracy of the model in response prediction may be attributed to the formulation 

based on a collection of an uncountably infinite number of yield surfaces and the well­

formulated Mroz kinematic hardening rule.* The numerical efficiency of the model 

is due to the proposed transformation method which avoids costly bookkeeping of 

the movement of multiple yield surfaces involved in the model. 

6 .4 Comparison of the Generalized Masing models with the DEMs 

In the above, we have proposed two constitutive models for plasticity based on 

different multi-yield-surface theories. As shown in the simulation studies, both mod­

els are physically consistent and parsimonious in parameters . It is thus of interest 

to see whether these two models can become equivalent under general situations. 

The generalized Masing models utilize yield surfaces defined in the model stress 

space, together with the Mroz hardening rule to account for the Bauschinger effect 

in cyclic plasticity, yet the DEMs use invariant yield surfaces defined in the element 

* Response behavior based on the Mroz kinematic hardening rule has been shown 

to be consistent with t hose observed from real metals [30]. Besides, it has been shown 

mathematically that the rule never results in intersection of two yield surfaces [32]. 
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stress space. Even though it may be possible to choose the distribution of the 

yield surfaces in a generalized Masing model to match that in aDEM so that they 

exhibit the same kinematic hardening behavior, for the two models to be completely 

equivalent, we need also take into a.ccount the flow rules adopted. 

The flow rule used in the formulation of the multi-dimensional DEMs specifies 

that the current plastic strain increment of the model is given by the average of the 

corresponding plastic strain increments of the elements, and is not a simple function 

of the model state itself. As for the generalized Masing models, the current plastic 

strain increment is solely determined by the corresponding model stress state (using 

the principle of normality). Thus, we may conclude that in general, the two models 

with different formulations cannot be made exactly equivalent. Also, we remark that 

for response analysis based on the proposed multi-dimensional DEMs, we need not 

distinguish model response into different loading cases, such as loading or unloading; 

however, for the generalized Masing models based on the proposed plane-geometry 

transformation method, we have to keep track of all the unloading points throughout 

reponse histories. 

As a final remark, we mention that although the numerical implementation 

of the generalized Masing models avoids costly bookkeeping of the movement of 

multiple yield surfaces or the response behavior of distributed elements, it requires 

in practice smaller load increments than those needed for the implementation of the 

proposed DEMs, in order to achieve satisfactory accuracy. 
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Figure 6.1 Hysteretic behavior of the two-dimensional Bouc-Wen model 
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Figure 6.3 The Mroz kinematic hardening rule 

j 

3 
0.6 - ? 

-o.5 ... 4Jl .. 
5 8 0.5 

€ ( %) 

1 

6 ....._--1~--=-7 ;- 0 . 6 

Figure 6.4 Prescribed strain path for response of initial loading 
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Figure 6.5 Experimentally-observed stress response of copper to the prescribed strain 
path given in Figure 6.4 (from [17]) 
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Figure 6.6 Stress response predicted by Eqn. (6.19) with the prescribed strain path 
given in Figure 6.4 (Eqn. (6.19) -. DEM--- -) 
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Figure 6.8 Movement of yield surfaces with current stress 
state moving from A to B 
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(b) Drucker-Prager yield condition 

Figure 6.9 Different yield surfaces and shifted 1r planes 
in the principal stress space 
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Figure 6.10 Transformation on the 1r plane where A' is image of A 
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Figure 6. 11 Illusrrarion of completed loops and numerical difficulty 
associated with the rransformation approach 
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(a) unloading from point A 

(b) unloading from point B with new center C 

Figure 6.12 Geomerrical consideration of transient response 
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Figure 6_13 Stress response predicted by a generalized Masing model subject to the 
prescribed strain path given in Figure 5_6(a) 

(Masing -- , DEM- - - - , both using Tresca's yield criterion) 
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Figure 6.14 Stress response predicted by a generalized Masing model subject to the 
prescribed strain path given in Figure 5.6(b) 

(Masing -- , DEM - - - - , both using Tresca's yield criterion ) 
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CHAPTER 7 

SUMMARY AND CONCLU SIONS 

Analytical modeling of one-dimensional hysteresis and general multi-axial plas­

ticity is studied in this research, with particular emphasis on the parsimony of model 

parameters and the physical consistency of model behavior. Based on the previous 

chapters of this thesis, a summary and some conclusions drawn from the results are 

presented as follows: 

(1) Practical considerations of system identification and its implications for system 

modeling are studied, so that criteria of good models for mechanical systems 

can be used to provide guidelines for general modeling. A model which is good 

for forward (response) analysis is not necessarily good for identification studies, 

unless it is parsimonious in its parameters and robust to model error as well as 

measurement noise. 

(2) Various one-dimensional hysteretic models are examined in detail, including 

both deteriorating and non-deteriorating models. Several models described 

solely by differential equations have been shown to exhibit unrealistic behav­

ior which violates Drucker's postulates of stability. A general formulation for 

modeling of degrading systems is presented based on the formulation of the 

Distributed-Element Model (DEM) and the introduction of a damage index 

function. A new class of deteriorating Masing models, whose behavior can 

be completely described by a few simple mathematical rules and the extended 

Masing rules, is also proposed to substitute for a special class of maximum­

displacement-controlled deteriorating DEMs. The modeling procedure and nu­

merical implementation of this class of Masing models is much easier than that 

of the DEMs, so that its applicability to system identification studies is im­

proved. 
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(3) The endochronic theory, which provides a unifying approach for plasticity with­

out the need to introduce yield conditions, is studied and implemented for re­

sponse simulation. A very efficient modeling technique based on the endochronic 

theory is proposed to make the model more suitable for identification applica­

tions. Besides, inspired from the study of cyclic hardening behavior, the ex­

tension of a DEM to account for cyclic hardening (or softening) behavior can 

be effectively done by simply making the ultimate strength of the model an 

appropriate function of plastic deformation. 

( 4) The one-dimensional DEMs are generalized so that they can be applied to the 

case where multi-dimensional loading conditions are considered. In the gener­

alization, an invariant-yield-surface theory is proposed, in which no kinematic 

hardening rule is needed to account for the subsequent yielding and strain hard­

ening behavior. The numerical implementation of the new DEMs is simple and 

efficient, and the model behavior is physically consistent, as justified by compar­

ison of predictions with experimental results from the literature. An important 

advantage of this new DEM for plasticity is that for an isotropic material, if 

the yield condition has been appropriately chosen, then the general model needs 

only two parameters, in addition to Young's modulus and Poisson's ratio, which 

can be identified simply from a uni-axial virgin loading curve of the material. 

In addition, we may choose some constants involved in the yield condition as 

parameters to be identified, so that through system identification techniques, 

the "best" yield condition for a complex structural or material system can be 

found. 

(5) Important properties of material behavior in cyclic plasticity are discussed, and 

a new theory is presented to elucidate the properties based on the behavior of the 

proposed multi-dimensional DEMs. The establishment of the theory provides 

us with instructive insight into the elastic-plastic response mechanisms of real 

materials under complicated loading conditions. 
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(6) Generalized Masing rules for cyclic plasticity are proposed based on a plane­

geometry transformation method. When combined with a response formula 

valid for initial loading, they provide an alternative model for cyclic plasticity 

to the multi-dimensional DEMs, which require the introduction of a substan­

tial number of elements in response calculation in order for sufficient accuracy. 

This new approach actually provides a highly efficient way of implementing the 

classical multi-yield-surface theory with Mroz' kinematic hardening rule, which 

is otherwise computationally impractical. The proposed transformation rules 

governing general multi-axial cyclic response again give better insight into the 

physical mechanisms of response in cyclic plasticity. 

The original motivation of this research was to develop general classes of inelas­

tic models that could be used in system identification of structural systems from their 

response data. However, the models proposed in this study are of interest themselves 

in that they are simple, parsimonious models which give remarkably good results 

of response predictions for copper and presumably for other materials or structural 

systems (some minor modification or extension may be needed though). Further­

more, the proposed models involve only a few physically-based parameters so that 

in general, no special identification technique is needed for determining appropriate 

parameter values for a particular system of interest, although better result might be 

obtained if system identification procedures were used. 

In light of the above summary, a few suggestions for future exploration in related 

subjects may be made as follows: 

(I) In the study of degrading hysteretic systems, new damage index functions, 

which should be physically consistent in nature and mathematically tractable, 

could be proposed to improve the modeling of various effects of degradation, 

such as the pinching behavior exhibited by reinforced-concrete structures. 

(II) Further tests of the validity of the generalized multi-dimensional Masing models, 

which employ the proposed plane-geometry transformation method, could be 

I 
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performed in multi-axial plasticity problems. This additional verification could 

be done by comparing with experimental observations obtained from higher­

dimensional loading tests , when available, or by comparing with some other 

well-behaved models, such as the new multi-dimensional DEMs and the modi­

fied endochronic models. 

(III) Further study could be made of the interactive effects of multi-dimensional 

loading on the response behavior of structural systems, such as their ductil­

ity, ultimate strength, and hysteretic energy dissipation, using the proposed 

physically-consistent models. 

(IV) The multi-dimensional DEMs or Masing models could be applied to identifica­

tion studies using response data from structural systems subject to multi-axial 

real or laboratory-simulated earthquake excitations. By treating some constants 

in the yield conditions required for the models as parameters to be identified, 

we may also find the "best" yield conditions for different complex structural 

systems. 

(V) An investigation could be made of possible extensions of the proposed theory 

of multi-dimensional DEMs and Masing models for rate-dependent plasticity, 

creep, relaxation, deterioration and other such material behavior. 
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APPENDIX A 

Operator Theory on Convex Sets 

Some results from the operator t heory on convex sets are summarized here to 

provide a theoretical basis for the derivation of important properties of the multi­

dimensional Distributed-Element Models given in Chapter 5. A more complete pre­

sentation of operator theory can be found in Reference [27]. 

We define in the following some basic operations of point sets. 

[Definition Al] : (Addition and Multiplication) 

If X {x: x EX} andY- {y: y E Y} , then 

X+ Y = {x + y: x E X,y E Y} , aX= {ax: x EX}. (A. 1) 

[Definition A2] : (Convex Combination) 

A vector q_ C Rn is said to be a convex combination of N elements, q_k , k = 

1, 2, ... ,N, if 
N 

q_ = L akq_k , 
k = l 

[Definition A3]: (Convex Set) 

N 

ak > 0, L ak = 1 
k=l 

(A.2) 

A set n c Rn is said to be convex if it contains every convex combination of 

two elements inn, i.e. , 

Based on the above definitions, we have the following important theorems re­

garding convex sets. 

[Theorem Al]: 
n 

A convex set n contains every convex combination L ak q_k of elements q_1 , q_2 , 

./ k= l 
... , q_n of n , for all positive integers n. 
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[Proof]: By mathematical induction on n, i.e. , assuming 

n-1 n-1 

2::: a~ Q~ En, for any La~ = 1, a~ > 0, Q~ E n v k = 1, 2, ... 'n- 1, 
k=1 k=l 

then given 2.:":~= 1 ak = 1 with each ak > 0, 

n-1 

= a1Q1 + ( a2 + a3 + ... + an) L a~ Q~ 
k=l 

since b1 + b2 = 1 and ;£, '}!_ E f!, since l:~::i a~ = 1 by choice of the a~. 

[Theorem A2): 

A set D is convex if and only if 

[Proof]: 

[Corollary]: 

a1D + a2D = D, (all a2 2: 0) 
a1 +a2 

aD+ (1 - a)O = n, (0 < a < 1) 

{=::} a;£+ (1- a)'}!_ ED, V;£,'}!_ E 0, 

{=::} n is convex. 

n n 

(A.4) 

Dis convex {=::} L(akf!) = ( L ak)D, ak 2: 0 Vk = 1, ... , n, n positive integer. 
k=l k=1 

This corollary has been used in the derivation of Eqn. (5.80). 



166 

APPENDIX B 

Derivation of Transformation Formulas for Generalized Masing Rules 

for Multi-Axial Cyclic Response Behavior 

In the following, we will derive the transformation formulas (6.23), (6.24) based 

on the classical multi-yield-surface theory and the Mroz kinematic hardening rule. 

In the derivation, yield surfaces associated with a model are treated as circles in 

the two-dimensional u - r stress space. The validity of this simplification has been 

discussed in Sec. 6.3.2. 

In order to employ the same response formula (e.g., Eqn. (6.19)) for all re­

sponse branches in the multi-axial cyclic (strain) loading case, the stress state vari­

ables Q. involved in the response formula should be modified by a suitable transfor­

mation, as suggested by Masing's hypothesis for cyclic hysteretic response in the 

one-dimensional case. The transformation must be able to characterize the change 

of situations among different response branches so as to appropriately reflect var­

ious behavior corresponding to different loading conditions. Recall that Masing's 

hypothesis for one-dimensional hysteresis implies that the response of an unloading 

or reloading branch corresponding to some particular response of initial loading can 

be obtained by introducing the transformation: 

( , ') = ( x- xo r - ro) 
x ,r 2 ' 2 (B.1) 

to the state variables (x, r) involved, where x0 and r0 represent the displacement 

and the restoring force corresponding to a load reversal point for that particular 

response branch. Based on the ideas behind Masing's hypothesis, we want to find a 

transformation that can adequately reflect the difference between response of initial 

loading and that of subsequent load reversals. Consider the two response situations 
I 

in Fig. B.1(a) and (b), in which the multi-axial yielding behavior is accounted for by 

the classical multi-yield-surface theory with Mroz' kinematic hardening rule. The 
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idea proposed here is that if we can find a transformation formula that maps the ge­

ometrical configuration in Fig. B.l(a) to that in B.l(b), then we can use a response 

formula, which is good for initial loading, to describe the response corresponding 

to subsequent unloading or reloading branches. To transform the geometrical con­

figuration in Fig. B.l(a) to that in B.l(b), or vice versa, we introduce a series of 

mappings as follows: 

(I) w1 = z- (ao +iTo) : 

This mapping is a translation of ao +iTo, as defined in Fig. B.l(a), so that the 

unloading point A gets mapped to the origin in the w1 plane. 

The second mapping is a counterclockwise rotation of ~- ()0 , where ()0 is defined 

in Fig. B.l(a). After the two transformations w1 , w2 , the geometrical configuration 

in the z plane (Fig. B.l(a)) is mapped into that in the w2 plane, as shown in 

Fig. B.2(a). 

2 
(III) W3 = -: 

W2 

This mapping maps the circles in the w2 plane into horizontal lines in the w3 

plane, as shown in Fig. B.2(b). 

This mapping maps the horizontal lines in the w3 plane into concentric cir­

cles in the w4 plane, as shown in Fig. B.2(c). Note that there may be some other 

mappings that can do the same job as W4 does for transforming the overall geo­

metrical configurations, but care must be taken in choosing the mapping so that . 
the direction of a plastic strain increment, which is determined using the normality 

principle, is preserved after transformation. To make the idea clearer, let us look 

at the two graphs in Fig. B.3(a) and (b), which show respectively the geometrical 

configurations after and before transformation. In order to meet the normality rule, 
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we need that the points A, B, G, and Din Fig. B.3(b) be mapped to A', B', G', and 

D' in Fig. B.3(a) so that they have exactly the same outward normal direction. 

Thus, by geometry we require that 

1 
Lx = 2Ly, Ly = (}0 - B. (B.2) 

It can be easily shown that the transformation formula w4 given in (IV) satisfies 

the conditions required by (B.2). 

1 
(V) w = - : (w = CJ

1 +iT') 
W4 

The geometrical configuration after the transformation can be found to be just 

the one shown in Fig. B.l(b), in which the coordinates of the unloading point A' is 

the same as those of point A in Fig. B.l(a). 

With the above transformations, the overall transformation which maps the 

configuration in Fig. B.l(a) to that in Fig. B.l(b) can be found by composition rule 

as 
_ -r1 -i94 

w-
2

.
0
e, 

Sill 2 

which is the formula given in Eqn. (6.23), and where 

(} - l ( T- To) 
1 = tan , 

CJ- CJo 

as given in Eqn. (6.24). 
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T 

a 

z-p lane 

(a) configuration before transformation 

a' 

w-p l ane 

(b) configuration after transformation 

Figure B.l Geometrical configurations before and after transformation 
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liE .. -
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(c) 

Figure B.2 Configurations at differem transformation stages 
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w-p I ane 
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Figure B.3 Conditions of the principle of nonnality on the proposed transfonnation 


