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ABSTRACT

Fr

An experimental and theoretical investization of the effect
of a specific type of initial imperfection on the buckling load of a
ciicular cylindrical shell under axial compression loading was
carried out. The imperfection studieci.was-s axially symmetric in
- shape and had the form of a half sine wave in the length direction.

Both inward and outward bowing imperiections were considered,

The experiments were carried cut with shells fabricated by
a copper electroforming process. The shells had no longitudinal
seams and had unintended lmperfections of the order of the wall thick-
ness. The buckling stress for the intended imperiection studied was
only slightly influenced over a considerable range of imperfection
amplitudes.

The theoretical solution located the bifurcation points of the
prebuckled axially symmetric state, The solution showed t’imt outward
bowing shells should have the same buckling stress a.‘s a perfect
cylindrical shell and inward bowing shells should have a ldwer buckling

stress than the perfect cylinder.
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I INTRODUCTION

Problems of structural stability have been with the aeronautical
engineer ever since the first flights. The Wright brothers, who
accomplished the first successful human flight in a powered heavier-
than-air machine, were concerned with this problein., In an entry in
his diary of MNovernber 16, 1903, Orville '/right wrote:

Vie hung the rmachine on tips to test strength,

The cloth wrinkled badly, necessitating a change in

the trussing of the tips so that the strain be more

evenly carried by front and rear spars and uprights.

This requires a change in the controlling wires which

will have to be operated at the rear. The uprights

stood test of twice what will be required of then: even

though the wire connecting their centers had not been

put in place. ”

Fortunately, for the Wright brothers and other early pioneers
in aviation, the practical engineers of the day had a fairly good working
knowledge of the strength and stability of coluinns as a result of investi-
gations in other fields, But as the aircraft became more complicated
and monocoque construction was introduced, the aeroﬁa’utical engineer
found that he had to build up his own body of working knowledge in
regard to stability problems.

Puring this period of activity of the aeronautical engineer in
stability investigations, shell problems received a great deal of atten-
tion. Cutside of a few exceptions, the shell stability probler:s
investigated were directed toward furnishing the designer with the
information he needed to design airplanes. Vhile this task was per-
forrmied adequately, little heed was paid to carrying out experimental

studies that could further increace the pasic understanding of the

problerms.
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The designer again required additional infor:nation conceraing
the stability of shells when he began to be concerned with niissile and
spacecraft. The previous work done for aircraft was not of sufficient
accuracy or it was concerned with the wrong range of parameters, As
shell stability problers again became actively investigateé, ore heed
Wa s pé.id to trying to understand the phenorsenon. This has led us to
an understanding of certain types of stability problems, ?Sut in some
céses a complete understanding is far fro: attaincnent,

Of all the shell stability problems that have been the subject
of intensive investigation, the one that seeins the farthest from: resolu-
tion is the case of a circular cylindrical shell under axial compression
loading. It would seem that this case of simple geomietry and loading
would not be too cormplicated. However, at this timme not a single
explanation of the phenowm:enon can be put forth that is not open to
debate and indeed is rmore than an untested hypothesis.

This is indeed a strange situation since this stability problem
has probably been the subject of more investigation than any other
facet of shell instability. Yet, the experin:ental and theoretical resultse

are still widely varying, as will be shown in the following pages.

1. Historical Developn:ent

This section will attenipt to give a surmmmary of the progress
made in the study of the stability of a thin cylindrical shell under axial
cormpression loading. A great deal will be omitted for lack of space,

but in some instances details will be included to help clarify the ideas.
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Let us begin by developing what is called the classical huckling
load for this shell and loading. First, we require a set of linearized
differential equations governing the shell behavior. As in stability
problemis of this type, the equilibriun: equations are written in the
deformed state so that products of the constant men.brane atrésses
(arisihg from: the loading) and the deflect{ons appear in the equations,
The equations are, in general, referred to the shell after; the axial load
has been applied. Therefore, the boundary conditions becon:e horo-
geneous. It should also be mentioned that the restraint of the ends due
to any loadiag device or end plate is neglected during this loading so
that the shell still has a circular cylindrical shape of slightly larger
radius after the loading. The classical buckling load is then found by
asking for the minimum eigenvalue (axial load) of this systen: of equa-
tions. It has been shown that if the shell is reasonably long (L/R >1),
but not so long that it can buckle as a strut, the minimum eigenvalue is

given by

- 1 it

L) —
Vi3 -2%)

This eigenvalue is the smallest value of the axial loading for which a
non-trival solution of the governing differential equations exists,

A comparison of the experimental buckling stress, as given hy
several investigators, to that of the classical value is shown in Figure
1 (Ref. 2) as a function of R/t ratio. It is seen that the cormparison is
extremnely poor especially toward the higher R/t values. The scatter

in data is also quite large.
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The question then arises as to why this discrepancy occurs
and is so pronounced for axial com:pression loading. In general, it
can be said that the analytical explanations of this behavior have
progressed much farther than any experimental studies. ‘This is
largely due to the fact that a comprehensive experimental prog?am
is extr’erraely difficult and expensive to carry out.

The way for further analytical progress was largeiy pé.ved by
Donnell in 1934 (Ref. 3) with the introduction of a simnplified set of
nonlinear differential equations. These equations are similar to the
von Khrman large deflection plate equations, in that they use for
dependent variables the stress function and the deflection in the radial
direction.

Utilizing these equations of Donnell, von Karmén and Tsien
made a very significant contribution in 1941 (Ref. 4). They were able
to show that, for a cylinder under axial load, the equilibriun:;, positions
in the ?03t-buckling state exhibit a very marked difference fromn: other
types of buckling., They showed that equilibrium positions existed at
values as low as one-third of the classical buckling load. Figure 2
shows this phenomena as given by a later improvement of von K&rméan
and Teien's work carried out by Kempner {Ref. 5). It should be
mentioned that in von K&rméan and Tsien's solution and similar solutions
obtained after the original work, an energy method is used to obtain the
load deflection curve shown in Figure 2.

Seeing this phenormenon, one is immeadiately led to saying that
perhaps the classical criterion of infinitesimai distufbahces is not

sufficient in this case, since for loads much less than the classical lead
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there are equilibrium positions in the post-buckled state. This leads
to the idea of a lamp phenornenon in which the shell is subjected to a
finite disturbance, as is true in the laboratory and field, which causes
the shell to juinp from: the unbuckled state to the post-buckled state at
sor..e load less than the classical load. Up to this date this idea haz
not been expounded to any great extent. ‘This is largely due to the
difficulties of handling nonlinear differential equations. I“iowévef, one
exception should be noted.

In 1942 Tsien (Refs. 6 and 7}, in an effort to explain the low
values of buckling loads of spheres under external pressure and
cylinders under axial compression, introduced what is now called the
energy criterion of buckling. This states, in effect, that when the
potential energy of the loaded structure in the unbuckled state first
reaches the value of the potential energy of the structure in the
buckled state for the same value of the loading parameter (léad or
deflection), the structure will juinp from the unbuckled state to the
buckled state, as the result of finite disturbances which are always
present under 1a‘boratory and field conditions.

Ferhaps this can be explained more clearly by a sinple iodel
introduced by ¥, Stein (Ref. 2). In his work Stein considers a coluwn
made up of three rigid links of equal length connected by linear springs
with the z“:‘.iddle link supported by 3 cubic hard springs. There exist 2
equilibrium configurations, other than straight, of this coluwin as
shown in Figure 3. The load deflection curve is shown in Figure 4.
Considering the column loaded by an elastic spring of spring constant

I

oy the potential energy can be easily calculated as a function of S ’
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the displacemnent of the spring. This is shown in Figure 5 where the
solid lines refer to the stable branches and the dotted lines to unstable
ones.

The claesical criterion of buckling states that the column will
buckle from the syminetric mode to the antisyrminetric mode wizen 'S
reache’s ) c indicated by the point A, It is easily seen fron: this
plot that Tsien's energy criterion states that the column \x}ill buckle
when § reaches SEC indicated by point B, It is interesting to note
that the energy barrier separating the two states is given by the AR
shown in the figure. This is the difference between the potential
energy of the unstable transitional mode and stable syiruanetric mode.

This energy criterion was rejected by most people since it
lacked any theoretical basis and was substantiated only by 'buc’kling;
experiments made with colurins with a nonlinear lateral support. This
author believes that this criterion is not well founded in that'it com.-
pletely neglects the magnitude and irethod of application to the structure
of the finite disturbance which takes the structure fro:r the unbuckled
state to the buckled one.

Tsien later saw that there was sonie inconsistency in his
criterion in that it set a very arbditrary amplitude of disturbance that
could cause the structure to buckle. IHe revised his éri‘terion in a little
referred to paper (Ref. 9) so as to remove this inconsistency. e
states that the structure will buckle when the loading parameter first
reaches the value where another buckled stable equilibrium state exists

with the same value of the loading parar:eter., Referring again to the

=

columin model, this value is seen to he g T
"l

indicated by point T,
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Again this does not say anything about the azuplitude of the disturbance,
but it removes the arbitrariness of the original energy criterion. The
energy barrier in this case is given by AE#..

Another line of approach has been developed niore fully. This
is the consideration of the fact that any shell that is tested in the
laboratory or used in the field is imperfect in its geometrical form to
a greater or lesser degree. Therefore, when one éetermineé the
maximum load-carrying capacity, this initial inmiperfection must be
taken into account.

The first attempts to do this were based on the linearized
equations from: which the classical buckling load was obtained. This
was done by considering the initial imperfection to consist of a devia-
tion in the radial direction and adding the appropriate term to the
differential equations, thereby making them inhomogeneous. The
solution of this problem shows that the deflection of the shell goes
to infiﬁity as the axial load approaches the eigenvalue of the honio-
geneous problem whose eigenfunction is of the sanie form as the initial
imperfection inrthe radial direction. Therefore, if the shell remains
elastic, the initial immperfection considered in this manner does not
lower the maximum load-carrying capacity of the shell

In 1934, Donnell (Ref. 3} considered the effect of initial imper-
fections, using the nonlinear equations which he had developed. In this
work he assurmed that the deflection of the shell in the radial direction
and the initial imperfection maintain the same spacial dependence
during the loading. He assumed‘a form of the radial deflection, solved

a compatibility equation for the in-plane stresses and utilized an energy



theorem to approximate a solution of the radial equilibrium equation.
The criterion of instability that was used was that a certain point of
the shell surface enters into the yielding region of the material. Due
to the complexity of the problen:, the parameters in the assurmed foro.
of the radial deflection were held to a mininwrm.

In 1951 Donnell and Wan (Ref. 2) inade a very significant
irmmprovement on Uonnell's initial attem:pt to show the effect of initial
irmsperfections. In this work the same assumption on the spacial
dependence of the initial imperfection was retained. The major
inprovements were in the form: of the radial deflection utilized and,
in this case, the possibility of elastic 'imckling was included,

The form of the radial deflection assumed was the same as
von FArnidn and Tsien used in their paper on the post-buckled states
of a shell under axial comupression. 7The solution was obtained in the
same manner as in the earlier work of Donnell. The n zzabef of
constants to be determined by the energy theorer: was five.

The buckling point determined in this work is a function of an
"unevenness facf;cr” U which is related to the initial iinperfection in

the following manner:

) .
- L5 2
v =a® om
Q i
where -‘ko is the amplitude of the initial inperfectionand n and m
are the axial and circumferential wave nuin.bers respectively. The

effect of this irmperfection on the equilibriumr positions of the shell is

shown in Figure 6.
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Buckling as a result of yielding of the material can also be
taken into account in the same manner as in DUonnell's original paper,
The comparison of this theory with some experimental results is
shown in Figure 7. It is seen that, in general, the comparison is
favorable. However, it must be remembered that the theory of initial
Jimperfections as developed so far is unable to predict the buckling load
for a specific type of initial imperfection as measured froﬁfs ekperiments.
However it has been felt to be very significant in that it shows the great
sensitivity of a cylindrical shell subjected to axial compression to
initial imperfections.

So we see that there are essentially two different schools of
thought on the problem. The first one states that the great discrepancy
between the experimental values of the buckling load and the classical
load is due raostly to the fact that the classical criterion of buckling is
not the proper criterion to be applied. What rnust be considevr'ed is the
shell subjected to finite disturbances so that it can "jump'’ {rom the
unbuckled state to the buckled state. Tsien's encrgy criterion is an
cutgrowth of this idea. To show that this is the correct answer by an
analytical study one must study the nonlinear dynamical equations of a
shell subjected to external forces. The problems inherent in an
experimental program are likewise formidable,

The second line of reasoning on this problem is directed to the
idea that the reason for the discrepancy between theory and experiment
is that the cylinders tested are not the perfect shells that the theory
assumes. LThe spirit of this school of thougnt 16 that very small initial

deviations of the proper kind can cause large reductions in the maximmum
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load carrying capacity of the shell. To develop this theory from an
analytical point of view, one can study the static nonlinear equations
for a shell with a specific type of initial imperfection. This is a
difficult task in most cases. The experirnental approach would be to

test shells with a known amount of initial imperfection.

2. forward

The work that will be described in the main part of this thesis
is an atterpt to determine the effect of a specific type of initial
imperfection on the buckling load of a circular cylindrical shell under
axial comipression loading. To determine this experimentally, a great
deal of care must be exercised in order not to hide the results in the
experimental inaccuracies. This immediately dictates that the test

specimens must be within very close tolerances of the shape desired

mens. It was decided that this could most easily be done by
manufacturing the test shells by electroforming. In this rmanner a
seamless cylin&er can be produced that is essentially stress free and
which has any form: for which a2 rnandrel can be produced.

The method of testing rust also be such that repeated results
can be obtained with identical test specimens. It was decided that
a testing rachine that controlled end displacement et this demand.
In addition the load distribution must be n:onitored during the loading
to assure that the load distribution is uniforr:. This must be done in

such a rmanner that the shell iz not disturhed.



11
Mext a type of initial imperfection muust be chosen. As stated
earlier it must pe such that a rnandrel of this shape can be accurately
produce&. In this work a very simple type of imperfection is consid-
ered, consisting of an axial symmetric imperfection which has the
shape of a half sine wave in the lengthldirection. Both inward énd
outward deviations iron: a perfect cylindrical shape are considered.

A few imperfections which are an arc of a circle are also considered,
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The experimental part of this work consists of the fabrication
of the test specimens, n:easurement of the initial iniperfection and

carrying out the buckling tests.

1. Iabrication of the Test Specimens

The shells that were used for this testing prograa: were
fabricated by an electroforiiing process. In this manner a very uni-
forn. thickness shell without the complication of a sear can be
obtained. In the following section the process will be described in
detail. |

Since it was necessary to fabricate shells of other than cylin-
drical shape, the forr: that was to be used had to be non-perv.anent
in order to remrmove the {inished shell. It was decided that a wax
form would mmeet all the requirernients, The wax used was a two o
one mixture of refined paraffin and lobile Cerese Wax 2305, This
wax was uced since it had been shown (Fef. 10) to have the proper
r:achining characteristics and could be cast free of air bubbles., &
three-fourths inch layer of wax was first cast on a seven inch diam eter
water-cooled mandrel, After the wax had hardened it was rachined to
the shape of shell desired. I'igure & shows the niandrel and a finiched
wax forin. The plate at the top of the inandrel was used to carry the
electrical current to the surface of the wax form,

As stated earlier, all the shells tested in this study were shells

of revolution. A rnandrel of this shape was obtained using a standard
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lathe on which the in-and-out w:otion of the carriage was controlled
while traversing the length of the mandrel. This was accomplished
by utilizing the taper attachinent and a follower. 1\ ten-inch tew.plate
wag cut to the desired shape of the shell generator and attached
rigidly to the taper attachuent rmounts. % ball bearing was attached
to the tongue of the carriage and held against the terniplate by weights.
Enough weight was used so that the carriage followed the tég::;(éla”ce
quite accurately., 7#igure 9 shows the lathe set-up with a »andrel in

place.

=
ir

fter the desired forn: was obtained, the wax was spray
painted with a silver paint thinned with toluene, The electrical
resistance of the paint was reasured so as to assure that the paint
was thick enough and was unifor:: over the mandrel, The paint must
cover the current carrying plate at the top of the mandrel.

The plating was carried out in a2 Copper ['luoborate bath, A
circular rolled copper anode 15 inches in diamieter was used which
extended in the bath to the bottorn: of the imandrel. Copper was chosen
for several reasons. It has been found that of all the u.aterials suited
for thic type of experimental worl, copper has the lowest internal
stresses developed during the plating process {(Ref. 11). Cther more
desirable materials {rom a testing standpoint sonietirnes develop quite
%iig%m internal stresses and are more difficult to electroforr:, Because
of the lirmited experience with electroforiing and simplicity of the
copper process, copper was chosen as the plating m:aterial. Control
consisted of a pil nmeasurement with standard vcalorimetric paper 1o

control the acid content and a density n.easurer:ent to control the
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copper concentration. During the plating, the bath was agitated boih
by the roving cathode and by forced air. The anode was bagged with
a Dlynel fabric to collect the anode sludge that would otherwise
accumnulate in the tank. Batch filtration was used after each cylinder
was plated. The bath was also treated occasionally with activat‘eé
charcoél to remove organic impurities that can cause a rough brittle
plate if not rernoved. A standard transforiner-rectifier aﬁd powerstat
was used to give a uniformly varied current up to 130 arips. At full
power the current density was about 55 anps per square foot. The
plating time was approxirnately 20 minutes per €. 001 inches of plate.
The plating was carried out at roorn ten:perature.

‘The mandrel was rotated during the plating so as to assure
uniformity of thickness of the finished shell. Figure 10 shows the
plating installation.

After the plating was completed, thre mandrel was rinéeé
thoroughly and the shell then cut to the desired length while it was
still on the mandrel. The shell was then removed fror: the mandrel
by melting out the wax. Care had to be exercised 50 as not to damage
the shell since the wax underwent a large expansion when it was
heated to the melting point. This could cause a warping of the shell
if it became trapped under the surface. The removal was accomplished
by pouring hot wax over the shell 0 as to imelt a thin layer of wax
directly under the surface. Then the mandrel was inimersed in a bath
of hot wax. The excese wax and silver paint was removed frorm the

shell with benzene. Figure 11 shows a cori:pleted test shell.
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a. vwall Thickness

The plated shell was about three inches longer than the desired
shell length. 7o assure uniformiity of thickness, the finished shell was
cut from the ruiddle of the plated shell. This was done since the plate
tended to build up to a greater thickness at the ends of the mandrel. It
was fodnd that this influence of the ends only extended about one inch
frow: the ends of the mandrel therefore, by utilizing only the middle
section of the shell, quite uniforn: thickness could be obtained.

The average thickness of the shell was determined before the
buckling test by weighing the shell. The variation of thickness was
determined after the buckling test by punching out discs fromn: the shell
and determining the weight of the discs. It was found that if a micro-
meter was used to neasure the thickness, errors resulted since the
outside surface of the shells was somewhat rough. The specific gravity
used in the calculation of thickness was 8. 9. The thickness of the
shells was found to be quite uniforin, the error being less than + 3 per
cent. Tablel shows son:e typical nieasurements of thickness
distribution.

1

b, Iiaterial Properties

The plated copper was sormmewhat soft in nature, This was
undesirable from the buckling part of the experiment; bat the advan-
tages of copper stated in the preceding paragraphs were paramount
in the decision to use copper. Another factor to be considered was
that in the buckling of the shell, the post-buckled state was not of
interest in this study and the stresses at the initiation of buckling were

quite low.
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Tests to determine the characteristics of the plated copper
were carried out in uniaxial tension. This was done by utilizing long
strips of the copper that were soldered into one-eighth inch thick
plates that were in turn claniped into the jaws of an Instron testing
r:achine. The strips had length to width ratios greater than 15.‘ The
head diéplacement of the testing machine was used as the measure of
strain and the load read frou: the instron load cell. A typiéal stress-
strain curve is ghown in Figure 12. The results of the tests are shown
in Table II. The value of Young's modulus used in this work was
13.0x 106 l‘b/inz.

A determination of Poisson's ratio was not atten.pted since its
influence in the reduction of the buckling data is of secondary irn:por-

tance. A value of 0. 30 was used for this purpose.

2. Test Procedure

The buckling tests were carried out in the controlled displace-
raent testing n.achine shown in Figure 13. This ruachine was designed
to be rigid in comparison with the test specimen and capable of
subjecting the test cylinder to very sinall increments of end displace-
ment. The relative displacement of the two end plates of the testing
m:achine was controlled by three screws, One complete turn of the
screws gave a displacement of 0. 025 inches., The screws could be
operated independently to give the proper load distribution on the shell
and then simultaneously to increase the load to the buckling point. The
springs shown in the figure were used to preload the testing rrachine

when rnounting the test specimen in the machine and securing it to the



17
end plate of the testing machine. The testing was carried out when the
machine was in the position shown in Figure 13. The end plate with
the gear drive rested on pins and the opposite end rested on a set of
rollers, Figure 14 shows the details of the displacement controlling
screws.

The load d.istri’-;)ution was monitored anc.i total load was obtained
on the load nieasuring cylinder shown in Figures 15 and 16.. This
consisted of a seamless brass cylinder which was 0. 0107 inches thick,
2. 5 inches long and 8 000 inches in diameter. Twenty-four foil-type
strain gauges were mounted on the cylinder equally spacecj around the
circummference., The ones on the inside were directly opposite to
those on the outside. The ring which acted as a mount for the test
specinien was designed such that it was resistant to inplane rmotion
but more flexible in out-of-plane motion. This was done so that the
load would be reliably transmitted through the ring to th;e load r.easur-
ing cylinder. This cylinder was secured to the end plate of the testing
rmachine with a thin layer of Devcon. Devcon is a plastic-like
material in a pﬁtty state which hardens in several hours after the
addition of a hardening agent.

"In order to see if the strain being measured in the load measur-
ing cylinder corresponded to the strain in the test shell, the following
test was carried out. A test cylinder was instrun:ented with strain
gauges that were located at every other circumferential position as
those on the load nieasuring cylinder. The test shell was.mounted in
the load rueasuring cylinder and both sets of gauges read as the shell
was eccentrically loaéed. Two typical readings showing the

correspondence of the measured strains are shown in Figure 17.
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“When carrying out the buckling tests the gauges on the inside
were connected in series with the ones directly opposite on the outside.
This gave the compression in the load :measuring cylinder directly. It
was found that the bending strain occurring in the load reasuring
cylinder ammounted to only one or two per cent of the compres sional
strain. Fach set of gauges was connected into a W heatstone bridge
which has an initial balance. The output of the bridge was émpflified
by a factor of 5 using a Leeds and Northrup amplifier whose output was
monitored on a Leeds and Northrup potentiometer. |

The test cylinder was cast with a low melting temperature alloy
into an end ring and the other end was secured to the load measuring
cylinder in the same rmanner. After this operation was cormpleted-the-
the shell was measured to determine the initial imperfection.

a, Initial Imperfection Measurements

In this series of tests the initial imperfection that was measured
was the deviation of the generators of the shell fromn: a straight line.
This measurement was carried out at nine stations around the circum-
ference., The measurements were made with a reluctance type pick up
consisting of an iron core coil through which passéd a 100,000 cps
signal. The impedance of the coil to this signal changed as the
electromagnetic field of the coil was disturbed by the éddy currents
generated in an external conducting surface. By determining the change
" in im:pedance of the coil the position of the external surface could be
measured quite accurately. The signal was read on a standard dc
voltm.eter. The output of the pickup was about 25 volts per inch with

a working range of approximately 0. 200 inches. The noise level and
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drift were such that deflection of 10 ~ inches could be accurately read

without ever n.aking contact with the measured surface,
The measurements were carried out by ruounting the sensing

head of the pickup in a slide which traveled on a guide. The guide was

el

carefully lapped to insure that it was as straight as possible, Figure

18 shows the pickup and guide. 7The puide was attached to the end rings
of the shell to be measured and readings were taken at 32 éﬁaﬁe}ﬂs along
the generator. Iigure 19 shows the initial imperfection measuring
equipment in position on a cylinder,

]

b, Duckling Procedure

After the initial immperfections were raeasured, the end ring was
then secured to the end plate of the testing machine with a thin laver of
Devcon, Aiter hardening of the Devcon was complete, the cylinder was
ready for testing.

The buckling test was carried out in the {ollowing rmanner. The
cylinder was initially loaded to about one-third of the expected buckling
load, and the circumferential load distribution was made as uniforn as
possible oy adjﬁtﬁs‘eing the three screws of the testing machine, The load
was then gradually increased in sinall increments by turning the three
screws simultaneously, After each increase the load distribution was

again., 7This was carried out up to about two~thirds of the

&

adjusted

3 s,

expected buckling load. After this point the load distribution was not
adjusted so as to prevent buckling occurring during one of the adjust-
wments, The load was increased in s:nall increments and the strain

gauges monitored until buckling occurred.
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3. Test Results

A

4As stated in the introduction, it was the purpose of the experi-
mental study to investigate the effect of an axially symmetric
imperfection on the buckling load under axial compression. Most of
the imperfections had the shape of a half sine wave in the length
direction. However, a few shells that had an imperfection that was
part of a circular arc were also tested. A total of 34 shells were
tested. Table III shows the intended imperfection of the shells and
Figures 20 through 37 show the measured imperfection o.f these shells.
These figures show the shell generator at nine locations equally spaced
around the circumference. It will be noted that some of theée figures
show pronounced deviations from the intended imperfection. It is
believed that these defects were caused during the removal of the shell
from the wax mandrel.. During this operation, the shell can become
deformed since the wax has a much higher coefficient of expénsion than
the copper. Shells with an initial imperfection greater than 0.050
inches were not measured in detail since the initial imperfection
measuring equipment was not designed to measure this large an imper-
fection. Table III also shows the wall thickness of the shells tested.
All shells had a base diameter of 8 inches and a length of 10 inches.
Table III shows that some of the shells had an initial buckling.
This initial buckling consisted of the formation of one wave on the surface
of the shell. This would cause the load distribution to fall off in the
neighborhood of the one wave without appreciably affecting the distribution
over the rest of the circumference of the shell. After the initial buckling,

the load was increased until general collapse occurred without attempting
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to alter the load distribution. General collapse occurred in the same
manner as for the shells that did not have an initial buckling.

Ceneral collapse consisted of a snap-through as characteristic
of this type of testing. In all but a few cases the post-buckled state
consgisted of 2 to 3 rows of buckles that extended completely aréund
the circumference. The number of circumferential waves is noted
in Table III. All of the shells that had an initial imperx’ectioa amplitude
greater than 0. 010 inches buckled at one end or the other. This
buckled state consisted of 2 to 3 rows of buckles that started quite
close to one end and extended about one-third of the way up the shell.
There did not seem to be a preferred end for this buckling to take
place. The other shells with small positive imperfection, negative
imperfection, and no intended imperfection buckled over the middle
third of the shell, Again this consisted of 2 to 3 rows that extended
- completely around the circumference. |

As Stated in the previous section, the load distribution was
adjusted to be as uniform as possible with the three testing machine
screws. The adjustment was carried out by equalizing the strain in
the load measuring cylinder at the 30°% 150° and 270° positions., This
adjustment was not attempted after about 75 per cent of the expected
buckling load was obtained. Table III gives the maximum variation in
load distribution near buckling. The average maximum variation in
load distribution for all the shells tested was 18,7 per cent. In most
cases the average stress was nearer the mazximum stress rather than
the minimum. Figures 38 through 42 show typical load distributions

as measured on the load measuring cylinder. Several distributions
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are given in these figures as the load on the shell was increased,
Figures 43 through 4§ give the load distribution on the shells at the
last reading before buckling, The position of the one wave formation
is quite evident from the load distribution of shells X and 0 as
given by Figures 39 and 41.

The results of the buckling tests are given in Table III and
shown in Figure 49 as a function of initial imperfection an*iplit’ude
aolt. The shells that underwent an initial buckling are so indicated in
the figure. However, all the points shown are the generél collapse
points for the shells,

As Figure 49 shows, all of the shells tested that c;:'ntaineé an
intended imperfection of small amplitudé buckled at a lower value of
stress than the shells with no intended imperfection. However, it was
noticed that the shells with large positive amplitude of initial imper-
fection show a definite trend to higher values of buckling stress. To
investigate this trend further, two shells with an initial iraperfection
amplitude ao/t of approximately 44 were éested. These imiperfections
were a part of a circular arc. From the recults shown in Figure 49
one would be inclined to say that this upward trend with increasing ao/t
stops and the buckling stress approaches some constant w}alue. Of
course, this point would have to be further investigatéd to make a
definite statement to this effect.

Figure 49 shows that all of the shells tested have a very high
buckling stress as compared to other tests carried out in the past,
Figure 1 shows that the maximum values of k obtained in the tests

presented in Reference 2 for this range.of R/t ratio is about 0. 30,
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The reason for the high values of buckling stress is not completely
understood, however the following items could be influential.
(1} All of the shells tested had no seams. The effect of the seam on
the buckling load is an uninvestigated effect. In the tests carried out
in the past, it was usually assumed that if the buckling did not appear
to initiate at the seam and the seam did not interfere with the post-
buckled state then the seam had no effect. The validity of this
assumption is not known.
(2) The influence of the testing machine is again an unkfaown parameter
~at this time. It has been assumed that this did not make a great deal
of difference in most previous buckling tests. Certainly lif the classical
criterion of stability is believed this factor can not be of importance.
Tsien's energy criterion of buckling accounts for this influence of the
testing machine while the imperfection theory as developed by Donnell
and Wan does not directly consider this effect but attempts to lump it
_into the "'unevenness factor'. The only ekperimental work that the
author could find on this subject as applied to the testing of shells was
carried out by N, J. Hoff (Ref, 20), HHowever, the preliminary tests
carried out in Hoff's work were inconclusive. The testing machirne
used in the tests presented here is nonlinear largely due to the bhall ’
bearings used in the screw assembly. The spring constant of the test-
ing machine in the range of buckling loads is about 400, 000 1b/in.
" (3) The influence of load distribution is likewise an unknown factor,
Very little data has been published on this aspect of buckling tests.
The data that has been published bsr FPonsford {(Ref. 21) and by Lo,
Crate, and Schwarts (Ref. 22) show about the same order of magnitude

of variation in load distribution as reported in the author's tests.



{4) Finally, there is the effect of the initial imperfections, A study
of the data given here shows that the shells had an unintended initial
imperfection of about the order of magnitude of the thickness, Not
much can be said how this compares with the initial imperfection of
other shelle tested in axial compression due to the lack of this type
of data. In shells tested by Goree and Nash (Ref. 23) that had
longitudinal seams, the maximum imperfection varied from avout

1/2 the wall thickness to 3 times the wall thickness.
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III, THEORY

In an effort to deteriuine the effect of the axial symmetric
imperfection which has the shape of a half sine wave in the length
direction, a theoretical solution of the buckling problem: was carried
out. The method of soiution is as follows:

1. Determine the stresses and deflections in the shell that
occur before buckling duriag the loading,

2. Counsider the stresses and deflections occurring during the
buckling as small perturbations about the solution of step 1 and
linearize the equations.

3. Solve the eigenvalue problem obtained iﬁ 2 and determine

the siallest eigenvalue,

1. Development of the Equations

The equations that will be used for the solution of this problem
are the shallow shell equations of iMarguerre (Ref, 12). While these
equations might not be as accurate as one n:ight desire, the ‘complication
inherent in more exact equations prohibits any siraple solution. How-
ever, it should be mentioned that as the number of circumferential
waves on the shell surface increases, the accuracy of the shallow shell
equations increases.

Utilizing the coordinate system: shown in Figure 50, the shallow

shell equations of Miarguarre are:



VE =Bt |w' ew w +2w _ W _ -W_ __ W =W W
xy X% Yy OXYy Xy oxx  yy XX OYY (1a)

4 e _ ‘
DViw = F YY(WXX + woxx) - Zny(wxy + Woxy) + Fxx(Wyy + woyy} {1bd

where W is the initial deviation from the flat plate and I is the stress

function defined as:

o F . 9°F &°F
2 2 ’ ’
1554 v oy x ox3y =y
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e ox

Equation la is a compatibility relation and equation 1b is the equilibrium
equation in the direction perpendicular to the xy plane.

For a circular cylindrical shell:

2

w, = 2—%« (y“ - v, ) {3}

If this is substituted into equations la and 1b, the following set of equa-

tions is obtained:
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(4)

This set of equations is the one which was originally derived by
Donnell and utilized in his study of initial immperfections and by
von Karmén and Tsien and other authors in the examination of the
cylindrical shell in the post-buckled state.

In the case of interest here as shown in Figure 51:

1 2 ,
wo=?-‘-—§-(y -y)-ao sm-—%. {z)

Substituting W, into equations la and 1b, the following set of equations

is obtained:

dn g 2 ™2 . X 1
V*F = £t [wxy " Woa¥yy T 20 (E) sinyTw. -x§ Wx:% ' (¢)
4 _ ma WX ~ - | | Q-
pViw ( +a_ (=) 51n——L)-Zi*xywxy-!:ixxwyyi-?{&xx.

vy Wxx o L

* #
Let ¥ , and w Dbe the solutions of the axial symmetric problem
before the buckling occurs., Let F and W be the perturbation stress

function and radial deflection occurring during the buckling, Then

* = *
F =F +F W T W + W {7)
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Substituting this into equation é and remembering that the * state is

axially symmetric, one obtains:

XX

& % Kt % 4= — % e ., T
V E +'ﬁ”wmz + V F 4+ Et [wyy(w +ao(i) smT) %

4 %
d w % ™ w ¥ 1 = b —
D dxé} - Fy‘y {(w_+a (E) sin —I-) -F .= + Dv w o+ {2)
= % ™ *o— = i L .
- - - - &
{w a, QZ) sin 'f) FYY w x & b2 WYY

Since F' and ,W* are the solutions for the pre-buckled state, the
terms that are underlined are equal to zero. Also, since we are only
interested in the bifurcation points of the solutions, the perturbations
may be considered arbitrarily small and all nonlinear terms in ¢ and

w can be dropped. This leaves us with the following set of equations:

(9
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It is at once easily seen that the equations given above have a

solution of the form:

W:E(X)sin%, F = E(x)sin%}%. {10)

This solution satisfies the necessary periodic conditions in the circum-
ferential direction when ™ is 2 whole number. The joverning

equations then becomn.e:

=V M2 ~u myd= - EZ— % ma ., WX 17y
N =27 iz =Et [(R) b tw  ta ) snsz}——ﬁ_S

p [g"- 2@ + %) -m @iwlta @l ay

1 w0z

P LA e w
T yy 5 ﬁn Y3 xxg

where

§/=~a—-—d§ . /- dn
dx ALY 3

2. Solution Before 3uckling

The axially symmetric solution must satisfy the following set

of equations:



4% By #
v = + -»§ VJX}{ =0 (lza)
4 % .
- 4w L * T2 L1574 1 %
¥ — ‘:;,‘ ¥4 4 ; 3 Paduing TN E‘ = , R I 3
D dx“l _)”j(x e, (i) sin J) T Py 0 {12b)

a. iBoundary Conditions

It will be assurced that the shell is free to expand radially at the
ends during the loading and that the edges of the shell are supported in
a pinned manner as the shell expands radially, This expansion is due

. . , 1) Ro ) ]
to the Poisson ratio and is equal to ——?::94 ,» where v, is the applied

stress.

b 4, - . . $
Therefore, the boundary conditions on w are as follows:

w - = =0, w =@ at x =0,L {13)
The boundary conditions on ¥ are given by:

= N = gt at x = 0,L {14)

Cbviously, these are not enough to completely define the problem,
therefore other conditions must coine from the symmetry of the
problem. I'or the axially synumetric probleinn we know that u and w

« 3 * . :
rnust be independent of y and that v rmust be identically zero.
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b. Solution of the Equations

The problem will be solved in the following manner. Assume

o
4

ks
that w can be represented by the following expansion which satisfies

3}1
the necessary boundary conditions on w

©
* % RG'0 s
- = & sin == 5
W = E b sin ==, {18)
k=l . ,

-1* « - - L3
Substitute this into the equation for ¥ and obtain a particular solution:

o)
) =Z (E%)Z bk % sin }-{%. ‘ {16)

%
¥
P
k=1

For the homogeneous solution we will take the following in order to

satisfy the boundary conditions:

% 1
}:‘h = '-2- ¢ t} . ““?)
After the constants bk are deterrmined, it must be shown that this
* *
solution also satisiies the other conditions on u and v.
% % '
Substituting F and w into equation 12b, one obtains:
T4 A =t . A . wX
‘:D(i) + Got(i) + ;;;Ej] Jl - U'Ot ao(l—j 8in T +
{15)

[e9)
2
2 g T 4 I ¢ It L CRwx
+ l})ﬁ—ﬂ—) + (oot (—I‘) + ;—-—2} bk. sin ¥ = (.
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It is easily seen that this equation is satisfied if

4)
b =0, kR=2,3,4, ...; by, = ol . (19)

L
m{) + ot + =3

c

H”

Therefore, the solution of the axial synunetric problem is given by:

o) T2
Ws%: - j)'{(“’o'o + got ao(ﬁ sin X
- ) 4 w2 , fut T
Bl + oty +
R
{20)

. 2 o t a -

o= "i"(‘rot v o+ 2 jon -‘?% sin%.
= D(——) + 0 t(L) t = -
R
G N . ;
Ve must now look at u and v. Referring to Marguerre we
find the strain displacement relations are given by:
2
&

# _ gu 9 Yo % 1 6w
€ g = = 5 Wt 2( )

) Bx ox ax

14
82w * @y

¥ 8v® o % 1,8w .2
€ - - 3 W ¥ éf’( ) .

b4 gy 3y 8y

Utilizing the stress~strain relations,

ES 1 _:*:z ] B
€x * % {Gx“ugy}' € =-,}—.§{a‘ ~V€>‘:}, {22}
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i ias . . * %
the definition of the stress function, and w_ one finds for u and v:

¥z
g-%-— = E}t— iF:y -9 Fix} + ao(%)z sin %w* - -},:— (Vv’::)z.
(23)
ov. _ 1 (% * 1% 1, %2
.5;,_.=E_€{hn..y£w 5 W —Z(wy).
Substituting in the solution for w' and P one obtains:
e
-%Z—-» = -;—O + f{x)
(24)
Bv*
9y =0

where f is a function of x only. Therefore, we see that the solution
for F* and w* satisfies the necessary symmetry conditions of the
problem, |

The quantities that are of interest that occur in the coefficients

of the perturbation equations are the following:

T4
w* = G.ot %o (—ﬂ sin >
- 2 Bt UL
HX D(%)“ + Got(-E) + =5
R
gt a -
¥ _ o o Zt mé . mx -

Dip* + ot + =3

n
q
-

bas
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Let us now examine the denominator of b, which can be

1

written in the following forma:

> v
Et? Rt m2, oA UVIR a/s0.0?) (g)z}
>/ L Et Rt T

214 3(1-2)

(26)

®*- -
3{(1-27)

The middle term is equal to two when o, is the classical ‘buckling
stress and the first and last terms are reciprocals of each otﬁer. The
value of the last term, for the shells that were tested in the experimental
part of this work, is 1832, Since the v, of interest is always of the
order of the classical buckling stress the denominator can be approxi-
mately rewritten as Et/RZ. Therefore, the quantities of interest can

be written as:

€
!

¢ 2 Ty ip'e
= T?‘R a (I) Sii’l—ﬁ,

= 2 . mx .
Fo, = =0 Rt aoiﬁ) sin =, (25b)
e
r = ¢ t.
vy o

$ B
It is noticed that W, occurs in the coefficient of the perturba-
. a . ™ P
tion equations always in combination with ao(w/L) sin %y— . Therefore,

thie coefficient can be written as:

o
a, (%)2' sin —T% gl - -uﬁ-?— (BI:E)Z} 7 {27)
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For the shells of concern here, R is of the order of L and v ig

9

mmuch lese than K. Therefore, this second term in the brackets can

e neglected in cornparison with one, This amounts to neglecting the
additional curvature of the shell in the x-direction caused oy the

loading in cornparison with the initial curvature of the shell in this

¢. Hermbrane Solution

it would be interesting to compare the results calculated for

Y, °

the stressces in the preceding manner with those calculated from

men.brane theory., The appropriate equations for a mernbrane solution

“:":z o
.53: * oam=0 Z28a)
.«'»1 & Z
Al
i 1 cin 8 - : .
— + = W, -,) =0 2Eb
Ri B ', ( 1 a) { )
(]
2.3/2
-~ {1+ ! )3/
", = r yl+r! {2e¢)
2 ‘
%5 TX dr
- 4 T o
T hsﬁ. P "E_a,:‘ sin -I:' s T ax
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where 2‘(1 and Iv, are the longitudinal and circua:ferential mernbrane
b

stresses, 1’21 and IL, are the principal radii of curvature of the shell

surface and & is shown in Figure 52, egquations 48a for IV,

b

1,

and suostituting this into equation 255 one obtainsa:
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This leaves us with the following equation fox

(Y

2 -
o,8mi , wx
- (—m—“) G311 =y
wv i s
- ). | (31)
N W
1+ —-,:-» 3in %

In the range of parameters of concern here, the secound terrs in the

1. u

braciets can be neglected in comparison with one. The equation is then
easily integrated and the proper boundary condition applied at x = 0,

-l W
ana fv.,l

This gives the following results for Hy
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“gain, if the second term in the denominator of NI is neglected in
comparison with unity, the results are the same as those obtained

in the preceding manner.

3. Solution of the Ferturbation Equations

Incorporating the results of the preceding section, the perturba-

tion equations become:

72t e @t s B (3 Bfa 7 e £
(33)

D {j/v_ ’(%)25 );} +a"t5”+ ﬁﬂ + o t( ) (L) a Rsm—f_5+

m.2,n . —
4«‘-‘-) <L> a, sxn% 7.

a. Boundary Conditions

As stated in the previous section, we have neglected the addition-
al deflection of the shell caused by the loading. This will allow us to
use the same strain displacement relations in order to find the relation-
ship between the boundafy conditions on the dependent variables w and
F and the boundary conditions on the in-plane displacements u and v,
However, in this case we will neglect the quadratic terms involving the
radial deflection since we are only interested in the bifurcation points

of the solution. Referring to equation 23 we obtain the following:
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8-1? _ 1 - = A WK — o
3x Lt {"‘ gy~ ¥F xx} tagtig)” sin o w (34a)
v _ 1 (= = 1 — .

After the initial load is applied, the ends of the shell are assumed

to be pinned with respect to the radial direction. This implies

2%w
w o= — =0 at x=0,L
&
ar since
- % . m .
w = % sin 7 (35)
g = g’ = 3 at x =0,L

or since

57}]
1]
=

o
fato
o

¥

AN (3&)
n =0 at x =0,L

=

n

7

These conditions on ¥ imply that at the ends of the shell the stress in

the axial direction and v are equal to zero.
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This is seen as follows:

N o= r o= D2 . my- _ ,\
N, o= Foy = x) sin 77 =0 at x =0, L, {37)

To see that these conditions also make v equal to zero, we use
eguation 34h.

y -
v = {El—l: //+7/( :l ﬁﬁ} j sin%&y-&-f(;{) : (32)

The arbitrary function of x can be set equal to zero since it corre-
sponds to a rigid rotation of cach cross section. Since 7 = E//= E =0
at x =0,L, thenalso v=0 at x =0,L. Iquation 34a shows that in
general u is not equal to zeroat x =0,L butis a periodic fﬁnction
of v.

These boundary conditions are commonly used in shell stability
analyses because of their simiplicity. They can be looked upon as
allowing the ends of the shell to warp freely in the axial directvion‘, con-
straining the circumferential moverent, and giving a pinned support

with respect to the radial direction.

b. Solution of the Equations

MNow let us introduce the nondimensional quantities as follows:

3 — 2y3{(1~ . — L
S=%/t, 3 =q —-—5;%-—13—)4, ;=x%, m =m e

(39)

G’R >
E—-z 3{1-2D7).

a?.\/?:(lp) /) 1-2)

ay = 2 = 230

L -t‘
i 1t _-)

Using these, the differential equations for the perturbations become:
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”
V= Zrﬁz *q"-i- znéq =—a$% +a :mzj sin ¢

1
(40)
gl ;3:;:‘.125”-%' méﬁ =-Xas’+an’- ) almzf sing -almzn sin £,

For a cylindrical shell with no imperfection 2, = 0. The

resulting equations are:
" e
7V - 2m” o + mén =-a%”

(41)
w 2.7 4 v V4
5’-2"115’+m§=-\35’+an.

A solution to these equations which satisfies all the boundary conditions
is given by:

n=Asinni, 9 =Bsinnt. {42)

Substitution into equation 41 yields:

B 2 i
- an a A
mn
- - 2 2.2
=0, amn—(m +n )",
& n T hN anZ anZ 5
18
— - — : (43)
For a non-trival solution to exist:
ana qran 4mn
= :‘—"— + - o= B 4
>\ mn a 2 ! A=D 2 {44)
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where n and m = mwR/L must be integers.

2
(>‘ mn)minimunz =2 when :n =1
ran
For al not equal to zero the solution of the equations is sormie~
what more difficult. For this reason the solution given here will be an
approximate one which satisfies the compatibility eq;.lation exactly and
the équilibrium equation approximately. The procedure is as follows,
1. Assume a suitable form of ¥ which contains a
number of arbitrary constants and satisfies exactly
the necessary boundary conditions.
2. Substitute £ into the compatibility equation and
solve for v making sure that 7, satisfies all the
necessary boundary conditions,
3. Substifute 2 and n obtained in the first two steps
in the equilibrium equation and determine the un-
known constants in such a manner so as to |
minimize the error by the Galerkin method.
It is assumed that & can be represented by the following series

which satisfies the necessary boundary conditions:

i1

S = E Aj sin j £. {45)

j=1
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Solving the compatibility equation for +n gives

0 > 2 n
Jla a, R . -
= Z %l..w A, sinjt + 12 § A {co:(}-l)@ _ cis(ﬁl)gz
j=1 1] J j=1 J mijel mjtl )
(46)
+ Cl sinhm £ + CZ coshim & + C~ sinhm £ + {_v:i‘ coshw

where Cl to C‘% raust be determined in such a manner that the

boundary conditions are satisfied. This gives the following values for

O
n

2m sinh mw

L ; {Y\l (choshmwsimhnxwé- mZ“) ~X—:‘3ﬁ &

-
+ & 3(— 2 sinh imw - .‘f?{ia‘ﬂ‘ coahmn’) * T cosh z‘:::'rr}

\
[
Y

e

= ‘E
e L )2 ;
3 2m o E E
C, = -»——-l—-—-—-—— -T mzcosh Fees 4 +T cosnmiv +T mg -;
4 2m o sinhmw 1 - 2 o 3 4

2
j((;_l) {j+1) }
nj-1 as‘mjﬁ-l

O
'

(47)
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._1 J

T:lm A_Mg‘l{l R ;T e {11} (+1)>
3oe L 2mj-1 Fmj+l Pial Pl
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Next )’ and % are substituted in the equilibrium equation which is
written in the following manner:

3

/v ; " &4 2 N . A - ”
53 -Bu,af -:—ztnij + A aj”- an’t 2 2y o8 smg-&alm“z} sini = E . (48)

ban

£ represents the error resulting from the fact that this equation is not
identically satisfied, The unknown constants are determined so that this

error is equal to zero "in the mean' in the following manner:
©

/«— sinig d§ =0, 1i=1,2,... n ' {4£9)

The result'mg equations for the f‘a_j's then become:

2 2
+ |-=Aa nz- ca am” l— - 1a, am (j+1) l + ! I:l—(-l)ﬁ—}ﬂ] +
S | 1 a_ . itj+l  i-j-1
mj it )
1 2.1 2 51 2(-1F71 1 1 i+j¥1
- [E)alm + Zalmzf‘ a-iw-é- T 8 am aJ- ] i+j-1+ i-jH] [1-(-—1)1 ] ] +
N mj mj-1L : .
a 2 1}1? 2. : 2
o3 aa .m0 .
Skl R S WY SO T
& e )= a:%:::j-l i,2-] a*xj 1 i) a’-zj+1 oL a'm:s.j--»l
’ 2 3
2 2 N 2 sy s ] ool
(3+1) ) 1 +,'1~;ia _o_m +(Jj-1§» _ it )1 ][1_(."1)14-3{-1* ay [} Zn;z )
\ 2
myH /2 i a’z;; 1 az’nj-l-l ah’:j—i aﬁ'zj-:vl Ani J - i

2 2
N 1 _ 1 ) + ii-l)z-rmzq nio 1’112 + {j-1) _ (j'i'l)z)} [1_(_1}i+j+ 1]
ah}j -1 % j+1 8ni-1 % i-1 2 j+l B j=1  “mj+l

2 3 2
- il - A \ -
8 Znit1 Anj-1  Anj+l 2witl  Zmj-1 Pmjel

mj-1  Fmij+l

+ aL(j-l)?‘_ (+1)° }}[1 _(_”i+j+1] . ' (50)
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This can also be written in the form:
{K.,- X‘é,l A =0 i=1,2,...n (51)
i) 1} J

If one looks closely, it is observed that every term of gij and

51_] ‘is multiplied either by [1 - (-l)i+j+1] of by S ij° This means
that every termn in the A and B matrices whose sum of indices is odd
is equal to zero. One, therefore, further observes that the even and odd
problem can be sepafated. thereby greatly reducing the amount of
necessary calculations. ‘Therefore. the buckling problem reduces to
finding the minimum eigenvalue of the following problem:

Z}(A - A B, )A; =0 i,j both even or odd, O (52)

j=

. where

el
EN

g ‘ a.ll'ﬂ
243 ij = bg5 - o) 3

mj, ajo am - i |
Ay [“2’“’ "“’“‘Z‘ mJJ TR L T N R ¥ kmj-i-‘l] *

m

Ail

1
- 4a 1% [giq-—?. amj-l— gi 2-j a__. . 1j-1 gi j+2 alﬁ_’] *

Zalmz [ngmj em'] alzm3 [ 2 ]
+ - == — .h_ ., -2m~d _.g .
ri ami ‘/;m_i ) mil m) "mi

Zral
(niaz-i-jz)z\,b = ,1 + ! c.. = 1 + 1

o
"

mj ij  itj-l 7 1341 ' Tij 0 itj+l 0 i-j-1
1 j-1 +

dmj * 3 : T a ¢ Sy T zij ) -3 1’ f'm::a,1 *3 ;

o mj-1 mj+] } mj-1 m3+1 mj+l “mj-l
gmj = 1 - 1 hrng = emj B mz dm_]

‘/amj-l JPmit
2 2 2 Y-/

k = o + ‘i‘l) k = _d {j+1)

mj-1 a_ . a ’ mj+l a '

mj mj-1 mj amj-!—l



minimum eigenvalue will be dependent on the nuiniber of
circumferential waves ¢ as well as the parameters of the problem
and 2 which are the anplitude of the initial rrperfection and
the properties oi the shell. The solutions of the eigenvalue problem

toad 2

090 dizital computer. The results wil

el

were found Ly
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be discussed in the following zection.

4, fesulis

In 21l the calculations carried out the parameter containing the

1%,

shell dimensions was fixed at the value corresponding to the e:
rmental i:eat cylinders, 7This value of a was 1832, |

Let us first consider the case where the shell is bowed inward.
Jhis implies that a, < 0. The calculations were carried out in such a
mmanner that the nwnber of terms in the approximating function for the
radial deflection was arbitrary. This was done so that throughout the
calculations the convergence of the solution to the proper eigenvalue
could be checked by increasing the numiber of termis holding all othesr
parameters constant and determining the effect on the niiniviun eizen-
value, The maximum nun.ber of terms used was 20, It should be
remieabered that this corresponds to 40 termig in the expansion since
the even and odd problemis have been scparated, It was found that for
2, { 0 that the maxirmum nuniber of terms needed was 10, The differ-
ence between this nurcber and 20 terms affected the eigenvalue only in
the 6th significant ficure,

“The computing procedure was to fix the value of the initial

deflection parameter and calculate the minimurr eigenvalue throughout
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the whole range of circuinferential wave nuimmber m. In all cases the
namber of approximating terms was adiusted so as to insure the
correct minimun: eigenvalue. Both the even and odd problems were
computed., 'The results of this calculation for five values of 2, ( 0
are shown in igure 53. The classical value for the perfect shell
corresponds to 1. The numbers on the curves correspond to the pre-
dominant teri: in the eigenvector. It should be noted that as the
circumferential wave numiber increases, the pre&ominam_ term in the

eigenvector increases. Another important point is that for a fixed ay

.

the local minimums that occur for each predominant term in the
eigenvector are always increasing as m increases.

The absolute rminimum eigenvalue over the whole range of the
circumferential wave number is easily found from these curves as well
as the corresponding circumferential wave number. The mode shape of
this minimum is seen to be the first mode. This means that the buckling

roy

shape for ay { 0 has the form sin — in the axial direction. The

it
hizher modes contribute only about n 2 per cent correction to this

[aaa)

pattern. ‘he number of circuinferential waves varies from: é to & as

a, varies from -100 to 0.

1
I.et us now discuss the case where the shell bows outward which
meane &, is greater than zero. The computations were started in the

1 18

saie z':;aanncr, but it was soon realized that this case was entirely
different. It ic seen frorn Figure 53 for the case of a, { 0, that the
decrease of the eigenvalue below the classical value is accomplished by
the lowering of the minimums of the curves that correspond to dorniinant

terms of the eigenvector. As expected these minimuins increase to
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values above the classical value when 2, becomes greater than zero,

1
A in the previous case, the minicua corresponding to the cigen-
vector where the {first terin is dorninant is affected the most and

increases mozre than that where the second term is dominant and 5o
forth. This meanc that as the circumferential wave nurmber increaces
these rminimume approach the classical value of | {rom above and
exhibit no absolute rminimium., s if this state of affairs were not
enough another cowmplication occurs,

in this case where ay> 0, the eigenvalues correspounding €0
eizenvectors whose predominant terins are of high axial wave nuinber
lie below the eigenvalues corresponding to eigenvectors of low axial
wave number, This was not possible in the case ay £ 0 since the local
meinimums shown in Figure 53 were always increasing wita predominant
terms in the eigenvectors. The result of this is that for any circur-
ferential wave nusiber an eigenvalue can be found ar bitrarily close to
the classical value of one, but it is always larger than one. U course
this may correspond to an unreasonabdly high axial wave nuinber, but
the differentialrequations by then:selves put no upper limit on this,
Therefore, the conclusion for the calculations for the case of ay > o
ast be that the classical value of 1 ic a lower bound of the eizenvalues
for all values of ay > 0. The closencss to which one'approach 25 this
value is dependent on how hard one loolis for the proper eigenvalue.
Utilizing 20 ter:us in the approximating function for the case a; = 20,
the value 1 can be approached to within 0. 1< per cent.

The description of the eigenvector does not rmake too much

=

senge in this case since convergence is not obtained, This is because



increasing the numiser of approximating terms only allows one to find

an eigenvalue closer to 1 which was not found for the smaller problein
since it corresponds to an axial wave nuii.ber not included in the smaller
problem.

Figure 54 shows the variation of the buckling stress with initial
imperfection amplitude., The numbers on the curve correspond to the
nurnber of circuinferential waves.

The theoretical solution as developed in the preceding section
determines the effect of one specific type of initial lnperfection. Any
other initial imperfaction that may occur is ignored in the solution,
The value of the "unevenness factor' as given by Donnell for this
specific initial imperfection is equal {o zero.

ihe analysis is different from: that of Donnell and wan in that
the imperfection considered does not have the same spacial variation
as the final nuckled form. Donnell and ¥Wan did not attempt to deter-
mine the effect of this type of iruperfection. The contention of their
analysis is that the initial imperfection that has the form of the final
huckling deflection is the most important iniperfection in the reduction
of the buckling load from the claesical result. They do not say that
all other immperfections can not cause a reduction in the buckling load.
flowever, if it could be shown that there are imperfections quite
different fror the final buckling foru: that are just as influential in the
reduction of the buckling load as that which does have this forn: the
analysis of Donnell and Van would be in doubt.

The theoretical solution given here also contains other asununp-

tions that should be discussed. The effect of the assumptions on the
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boundary conditions of the axially syrunietric solution is not completely
understood at this time., In most cylindrical shell stability analysis

the expancion due to Feisson's ratio or to other loading was usually

ignored when computing the nomibrane stress state. This wap done on
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However, there is some evidence that the restraint caused by the end

plates of the shell may be more important than has usually been

assures
The boundary conditions on the perturbations are also causze for

concern, I'or a shell without imperfections having the diiiensions of

concern here, it has been shown that the boundary conditions {sir:;
support or clamped) are not irnportant in the calculation of the buckling
stress, Fowever, in these solutions the mwurnber of waves in the axial

direction i usually large. Dor the solution given here for a, L 4, the

ouckling mode has a half wave in the axial direction. Therefore, the
influcnce of the boundary conditions wmay be wmore mportant than wae

anticipated.
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IV, CONCLUSION

The comparison between the theory and experinient is shown
in Figure 55. ror a £ 0 the trend is the same but the reduction in
buckling stress given by the theory is much greater than that of the
buckling tests. The mode shape given by the theory contains roughly

one half the nuinber of circumferential waves observed in the post-

el

&

suckling state of the shells that were tested. he axial variation is

@
L4

in disagreement in that the theory predicts one long wave from top
to bottorn while the tests show that in the post-buckled state the
waves are roughly of aspect ratio one.

Eince the difference between the theory and experiment is so
pronounced for the case of a.o< 0, the following coraparison was
made. The value of the buckling stress was found that corresponded
to approximately the same nurnber of waves in tﬁe circumferential
direction as that found in the tests. The comparison for a, U is

o

shown in Figure 56, The numbers on the curves correspond to the

predominant term in the eigenfunction expansion, and those at the
ends of the curves to the number of circumferential waves, It is
seen that the decrease in buckling stress with increasing negative
imperfection amplitude is less as the circumferential wave number
increases. The buckling mode shape is also more in line with the
experimental results., The eigenfunction has miore axial waves as
the number of eircumferential waves increa‘ses and the ar:plitude of
the waves at the center of the chell is greater than the amplitudz of

the waves at the edges. Again, this is nearer the experimental resulis,
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For a,> ¢ the theory predicts that the Luckling stress should

g
be independent of a The tests show that there is a definite decrease
of the buckling stress for simnall positive a. However, there is some
indication that this buckling stress for large positive a, would
increase to about the same value as that for no intended linpariection.

The discrepancy between the theory and experiment can de
traced to several sources. OUne source of errov in the theory is the
negiect of the end constraint during the loading. The effect of this
constraint is not completely understood but there is sorne evidence
that it may be more important than previously anticipated.

Another source of error in the theory is the absumption on the
boundary conditions of the perturbations. This n:ay be particularly
true since the boundary conditions chosen allow the eigenfunction of
the minimum eigenvalue to have alimost the same axial variation as
the initial imperfection. If other boundary conditions were adopted,
the minimum eigenvalue might be found corresponding to a higher
axial and circumferential wave number.

The most important experimental errors were the unintended

initial imperfection and the nonuniformity of loading. In most of the

£

shells tested the unintended imperfection was of the order of magni~

tude of the thickness of the shell. This imperfection was usually not
of axially syimnmetric shape but a deviation of the cross section from
a true circle. The influence of this imperfection and the nonuniforin

loading is not known.
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[

The two Lmperfections studied did not have a very great in-
fluence on the buckling load of the shells tested. For all of the shells
the value of k varied from C.460 to 0. 267, This ammount of spread
for even supposedly identical test specirmens is not uncommon in shell
stability studies. %hile there are definite trends established wiﬁh
increasiﬁg and decreasing 3, for this specific type of imperfection,
the overall effect of the immperfection is small for iz';.'ﬁperfec'c.ion'
amplitudes of the order of the wall thickness., This tends to lend
support to Donnell's contention that iruperfections that do not have the
shape of the buckled form: are unimportant. However, the buckling
tests carried out for the shells with no intended imperfection also
dernonstrate that a substantial percentage of the classical buckling

load can be achieved with test specimens that are quite imperfect,



%,

10.

53

REFERENCES

Flugge, W.: Stresses in Shells. Julius Springer, Berlin (196C).

Donnell, L. ., and Wan, C. C.!: Zffect of limnperfections on
Buckling of Thin Cylinders and Colurins under Axial Comnpression,
Journal Appl Mech., Vol. 17, No. 1, p. 73 {1950}

Donnell, 1. il.: A New Theory for the Duckling of Thin Cylinders
under Axial Compression and Bending, Trans. of the unerican
Soc. of Mech., Eng., Vol. 36, p. 795 (overnber 193],

¥irmén, T., von, and Tsien, ¥, &,: The Buckling of Thin
Cylindrical £hells under Axial Compression., Journal Aero.
Sciences, Vol. &, No. &, p. 302 {(June 1941).

Kempner, J.: Postbuckling Behavior of Axially Ca*"s;pr essed
Circular Cylindrical Shells., Journal Aeronautical Sciences, Vol
21, No. 5, p. 329 {May 1954).

Tsien, H. &.: Buckling of a Column with Nonlinear Late:}"al
Supports, Journal Aeronautical Bciences, Vol. §, No. 4, p. 119,
{February 1942).

Tsien, H.8,: A Theory for the Buckling of Th
Aeronautical Sciences, Vol. 9, No. 10, p. 373

Stein, 2i,: The Phenomenon of Change in Buckle Fatiern in
Elastic Structures, NASA TR R-39 (1959).

Tsien, H. S.: Lower Buckling Load in the Non-linear Buckling
Theory for Thin Shells, Cuart. Appl. Math., Vol. 5, p. 43¢,
{1947).

Thompson, J. M, T.: Making of Thin Metal Shells for Model
Stress Analysis., Journal Ilech, Eng., Sciences, Vol. 2, No. 2,

{1960).

Gray, A. G.: Modern Electroplating., John Wiley and Soas,
New York {1953).

Marguerre, K.: Zur Theorie der gekrummten Platte grosser
Formanderung. Proc. 5th Lu.ternatlonal Congrese Appl ech. ,
p. 93 {1938l

Donnell, L. H,: Stability of Thin-Walled Tubes under Torsion.
NACA Rep. No. 479 {19233),

Hoff, M. J.: DBuckling and Stability. The Forty-first
Wilbur Wright & namorxal Lecture. Journal Royal Aerorautical
Society, Yol. 58, p. 3 (January 1954).



16,

19.

54

lLieggett, D, bi. A,, and Jones, R, P. N.: The Behavior of a
Cylindrical Ehell under Axial Compression when the Buckling
Load has been Exceeded. British Aeronautical Resesarch
Coramittee Rand M 2190 (August 1942),

Michielsen, H, F.: The Behavior of Thin Cylindrical Shells
After Buckling under Axial Compression. Journal Aeronautical
Sciences, Vol. 15, p. 738 {1948).

Timoshenko, S.: Theory of Elastic Stability, McGraw-Hill
Book Co., New York (1936).

Mushtari, Kn., M., and Galimev, K. Z.: Non-Linear Theory
of Thin Elastic Shell, Translated by ldorgenstern, J., and

Schorr-%hon, J. J., lsrael Program: for Scientific Translations,

Fang, Y. C., and Sechler, E. E.,: Instability of Thin Elastic
Shells, Structural Mechanics, Proc, of First Symaposiun on
Naval Structural Mechanics, Pergamon Press (1960).

Hoff, N, J.: Buckling of Thin Shells, Stanford University
SUDAER No. 114 {August 1961)

Ponsford, H, T.: The Effects of Stiffeners on the Buckling of
Cylinders with Moderate Wall Thickness., Doctoral Thesis,
California Institute of Technology {1953).

Lo, Hsu, Crate, H,, Schwartz, E. B,: DBuckling of Thin
Walled Cylinder under Axial Compression and Internal Pressure,
NACA Report 1027 (1951).

Goree, W. S., and Nash, W. A,: Elastic Stability of Circular
Cylindrical Shells Stabilized by a Soft Elastic Core. University
of Florida Tech, Rep. No. 4 {lviay 1960).



P

TABLE 1

THICKNESS VARIATION OF SHELLS

S b W BN e

7 3 9 10 16 17
11
iz
i3
14

15

< r—

Thickness measured at the positions on the shell surface indicated above.

Position

Thickness inches x 103

Shell Shell Shell Shell Shell
‘no. % no. 3 no. 4 no. A no. J
1 4.32 4.58 4,58 4.65 4,38
2 4.30 4.59 4.55 4.64 4,32
3 4,29 4,62 4,53 4.64 4,30
4 4,26 4.61 4,46 4.62 4,20
5 4.33 4. 60 4.44 4.62 4.15
6 4.32 4. 60 4.47 4.61 4. 16
7 4,29 4. 56 4,55 4.64 4.32
8 4.31 4.52 4.54 4.61 4,31
9 4.55 4.64 4.61 4,28
10 4.32 4.57 4,55 4.59 4.37
11 4,35 4.53 4,56 4.62 4.31
12 4,34 4.58 4,54 4.62 4.16
13 4,35 4,50 4.46 4.62' 4.16
14 4,35 4,50 4,45 4.62 4,27
15 4.35 4,51 4,59 4,20
16 4,32 4.55 4,61 4.65 4,38
17 4,31 4.55 4,62
Average 4,32 4. 56 4.53 4,62 4.27
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TABLE I

YOUNG'S MODULUS TESTS I'OR PLATED COFPPER

Test Thickness Orientation E lb/inz x 1@6
inches x 10 :

1 4. 54 Axial 12,7
2 4. 54 Axial 12.5
3 4. 54 Axial 12.4
4 4, 54 Circumferential 12.7
5- 4, 54 Circumferential 12,8
o 4, 54 Circumisrential 13.2
7 4,21 Circumferential 12.9
3 4. 14 Circumierential 15.0
9 4, 16 Circumferential 13,1
10 4, 84 Circumferential 13.2
11 4.86 Circumferential 13,7
12 4. 90 Circumferential 13.7
13 4.90 Circumferential 12.8
14 4,83 Circumferential 12,7
Average 13.0
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FIG. 2 - VARIATION OF AVERAGE STRESS WITH UNIT
END SHORTENING FOR A CYLINDER UNDER

AXIAL COMPRESSION (KEMPNER,REF. 5 )
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Fig. 8. Mandrel and Finished Wax Form

Fig. 9. Lathe Setup



68

Fig. 10. Plating Installation

Fig, 11. Test Shell
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Fig. 13. Testing Machine
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Fig. 18. Initial Imperfection Measuring Equipment

Fig. 19. Initial Imperfection Measuring Equipment
in Position on a Cylinder
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FIG. 50 - COORDINATE SYSTEM FOR SHALLOW SHELL
EQUATIONS
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FIG. 52 - COORDINATE SYSTEM FOR MEMBRANE SOLUTION
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