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ABSTRACT 

f3Y means of a quan.tum mechanical phase space distribution function 

introduced by von Roos, the Schroedinger e quation for a non-relativistic 

system of N identical particles with scalar interactions is transformed 

into a quantum mechanical generalization of the Liouville equation, 

thereby formulating the problem in terms of a generalized density in 

phase space, a quantity of primary interest in most treatments of the 

( " ") corresponding classical system or plasma . This transformation permits 

a parallel development of the theories of classical and quantum plasmas 

and thus allows the quantum many- body probiem to be discussed virtually 

comple~ in classical terms. In particular, a kinetic theory of 

quantum plasmas is obtained by deriving the quantum analogue of the BBGKY 

hierarchy, and applying thereto approximation techniques similar to those 

of Rostocker and Rosenbluth, and Bogoliubov. The point of departure rrom 

similar previous studies based on the Wigncr distribution function is that 

the proper exchange symmetry can be tractably introduced into the formalism. 

Attention is first focused on the Hartree and Hartree-Fock approxi-

mations, in which case the quantum BBGKY system reduces to a simple quantum 

generalization of the Vlasov equation. Tbis equation is used to study 

the response of spatially homogeneous systems to weak external forces, 

and the associated problems of plasmon and spin-wave excitations. It is 

also used to derive the quantum and exchange corrected equations of 

inviscid hydrodynamical transport which are then applied to the problem 

of sound propagation in the degenerate electron gas. 

The second part of the study is concerned with the theory of the 

many-electron atom in the Hartree and Hartree-Fock approximations. 



The relevant quantum Vlasov equations lead naturally to a "statistical" 

theory o~ the atom which reduces tothe Thomas-Fermi-Amaldi and Thomas­

Fermi models (respectively) as "f. ~ 0 • For 1\ ~ 0 , the quantum and 

exchange corrections to these models are simultaneously generated. The 

quantum hydrodynamical theory developed earlier is used to determine 

the influence of these corrections on the boundary conditions of the 

model, ru1d a theory of the compressed atom is consequently obtained. 

Con:;idered in somewhat less detail are the effects of non-zero temperaturP., 

net orbital angular momentum, relativity and correl ations, as well as 

time dependent processes. 

The final part deals with the problem of the degenerate electron 

gas with a uniform neutralizing background. Going beyond the Hartree-

Fock approximation, the pair correlation functions for particles with 

"parallel" and "anti-parallel" spin are obtained by neglecting three-

particle correlations. From these functions, a quantum-mechanical col­

lision integral is derived which differs from that obtained by Silin 

and Guernsey and conjectured by Wyld and Pines in that dynamical exchange 

effects are included. Also obtained from the pair correlation function 

" 1 " is an expression for the corre ation energy which reduces in the high 

density limit to the result of Gell-Mann and Brueckner. At intermediate 

densities an additional term appears in the energy due to the screening 

of the exchange interaction by the dielectric properties of the medium. 

It is evalua+.ed in the high density limit and found to be -0 .151 r 5 ln rs 

Rydlelectron in marked disagreement with the corresponding value obtained 

by DuBois. 
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I. Introduction 

The classical and quantum approaches to the many-body problem 

have undergone considerab,le refinement in rece~t years, along markedly 

different lines and at the consequent expense of an ever-widening concep-

tual gap between the two. The former, under the impetus of the increasing 

tecbno2ogical importance of II , II · plasmas , has concerned itself largely with 

a detailed understanding of the physical consequences of the Liouville 

equation, which describes the temporal evolution of the distribution in 

phase space of the members of a representative ensemble and embodies 

therein both equi.bb:r:ium and non-equilibrium statistical mechanics and 

transport theory. The latter, on the other hand, has tended to follow . 

the development of quantum theory as a whole, beginning with the density 

matrix formulation of quant~~ statistical mechanics due to ·von Neumann 

{1) and Dirac (2) and eventually adopting the full arsenal of quantum 

field theory (see e.g. DeWitt (3)) as the formal similarity between 

certain many-body problems and field theory came to be appreciated. 

Indeed, Nambu's (4) r ecent proposal that the masses of elem~ntary par-

ticles arise in a manner similar to that of the energy gap in the B.c.s. 

theory of super coriducti viJ:¥ emphas izes both the closeness and symbiotic 

nature of' the present connection between field theory and the quantum 

many-body problem. 

An unfortunate concommi tant of the undeniable power and formal 

elegance of such field theoretic approaches to the many-body problem, 

however, is the obscurity with which the correspondence principle is 
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cloaked by the :formalism. Even the density matrix. approach, which b~ars i · 

a strong resemblance at many points to the classical theory, sui':fers in 

this regard. This characteristic :feature is more than merely a pedagogic 

drawback :for two reasons. First, there exist in nature many-body systems 

II . II 
which are quasi-classical in the sense that the di:f:ference between 

quantum and classical equations of motion end/or statistics only slightly 

influences certain properties o:f the system and hence can be treated as 

a small perturbation in their calculation·. . For example, the transport 

properties o:f a weakly degenerate interacting gas ana. (as we shall :find) 

certain gross :features o:f many-electron atoms :fall into this category. 

To determine quantum and exchange* corrections to the classical theory 

in such cases, one must be able to go to the correspondence limit o:r the 

quantum many-body theory. A second, and perhaps more compelling reason 

:follows :from the realization that even in intrinsically quantum-mechanical 

many-body systems :far :from the correspondence limit, the essential theo-

retical di:f:ficulties o:ften arise not :from quantum mechanics, but rather 

from the fact that a large number of interacting particles are involved -

the very same essential difficulty faced by the plasma theorist in his 

studies of classical systems. Consequently, the lack of a clear cut 

path (and common conceptual framework) between the classical and quantum 

*Throughout this work, we shall designate effects arising from the 
difference between quant~~-mechanical and classical equations of motion 
as "quantum" e:f:fects. ''Exchange" e:f:fects re:fer to the consequences 
arising :from the symmetry properties o:f the wave :function under particle 
interchange. 
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many-body theories precludes the ready adaptation to the latter of new 

techniques and insights gained from a study of the classical problem. 

For example, an approximation procedure based on the quantum analogue 

of the Rostocker-Rosenbluth (5) and Bogoliubov (6) treatments of the 

Liouville equation may be more convenient in dealing with some aspects 

of the electron-gas problem than the Rayleigh-Schroedinger perturbation 

theory (with or without diagrammatic aids) or the "random phase 11 approx­

imation - a question we will come to examine in some detail. 

If the gap is to be bridged (and there seems good reason to do 

so), what clearly is needed is a new formulation of the quantum many-body 

problem, one based not on the density matrix, Green's functions or second 

quantization, but rather upon a quantum-mechanical generalization of the 

phase space density which underlies the classical theory. To accomplish 

this, a quantum-mechanical phase space distribution function (q.m.d.f.) 

must be defined in terms of the N-body wavefunctions of a representative 

ensemble, and its dynamical equation obtained from the Schroedinger 

equation. The q.m. d. f. so chosen must not only be a nonnalizable c-number 

from which information is obtained in the same fashion as with classical 

distribution functions (its lack of positive defini~eness and observa­

bility notwithstanding), but its dynamical equation must go over to the 

Liouville equation when~ is formally set equa..1 to zero, thereby guaran­

teeing the correct correspondence limit. 

The first search for such a function was made by Wigner (7) 

in 1932. He found that in fact many q.m.d.f.'s with the desired properties 
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could be defined, the choice among them to be determined largely from 

the st~~dpoint of convenience. His choice, the so-called Wigner distri­

bution function has been almost exclusively used since then (we will 

exhibit it later). With it, Wigner calculated lowest order quantum 

corrections to the classical Boltzmann equation. It has also been applied 

extensively by Kirkwood and collaborators (8) in deriving transport 

equations for low density gases and to formulate a hydrodynamics of 

quantum fluids. Saenz (9) also derived a transport equation for a dilute, 

non-degenerate, spinless gas using this function. 

Extensive development of the theory based on the Wigner func­

tion was retarded, however, by two circumstances (probably accounting 

for the relatively minor role of q.m.d.f.•s in contemporary quantum 

many-body physics). First, full exploration of the strictly classical 

system of many interacting particles has only relatively recently been . 

undertaken, under the banner of 11plasma11 physics (5 .• 6). Consequently, 

a detailed understanding of the properties of q.m.d.f.'s had to await 

corresponding advances in the classical theory. A more fundamental 

difficulty, however, arose from the analytic complexity of the equation 

for the Wigner function in the Hartree-Fock approximation. This inability 

of the Wigner function to tractably incorporate the proper exchange 

symmetry of the wave function effectively limited its usefulness to the 

Hartree approximation, a severe restriction in many practical applications. 

The way out of this latter difficulty was found in 196o by 

von Roos (10) (independently of an earlier, more cursory observation by 
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Takabayasi {ll)) who, pursuing Wigner' s observation that many alternative 

q.m.d.f.'s with the desired properties could be defined, examined such 

possibilities in the hope that with one of them, exchange could be intro­

duced in a more natural and tractable fashion than with the Wigner func­

tion. His efforts were successful and enabled him to derive a quantum­

mechanical generalization of the collisionless-Boltzmann {Vlasov) equation 

from the Hartree-Fock equations. In a series of papers, thif:l fonnalism 

was used to derive lowest order quantum and exchange corrections to the 

plasmon dispersion relation in low density non-degenerate plasmas {12), 

the high density electron gas (13), and the electron-phonon system (14) . 

An indication that the formalism could be fruitfully applied to the time­

independent equilibrium properties of finite systems as well was given 

in 1962 by the Author and von Roos (15) {see Appendix A) in a paper which 

established the theoretical foundations of the Thomas-Fermi statistical 

model of the atom from the Ha.~ree-Fock equations and succeeded in 

deriving quantum and exchange corrections to this model. This paper 

fo~ the nucleus for part of this dissertation. 

Thus, the two obstacles which formerly stood in the way of a 

q.m.d.f. approach to the quantum many-body problem are no longer pr.esent. 

Recent developments in plasma physics (notably the application of the 

techniques due to Bogoliubov { 6), Born and Green ( 16), Kirkwood and col­

laborators (8) and Yvon (17) to a classical plasma with Coulomb interac­

tions by Rosenbluth and Rostocker (5) ) have yielded insights into the 

properties of distribution functions in the corresponding classical 

problem and serve as a guide for a parallel development in terms of the 
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q.m.d.f. Furthermore, use of the von Roos q.m.d.f. in place of the 

Wigner function will allow the proper exchange symmetry to be introduced 

in a tractable fashion. The primary purpose of this dissertati on is to 

carry out this development and to investigate what types of physical 

situations can be effectively studied by such a formalism. In the 

course of this program, we will refine and extend ··von Roos 1 original 

som~what awkward formulation (compare, for example, our equation rv -64 

with equation 29) of reference 10) and will find that the method has 

relevance not or~y to quasi-classical problerr~, but such intrinsically 

quantum systems as the degenerate electron gas as well, leading us to 

believe that the formalism may be applicable to a broader class of 

problems than might be inferred from the specific examples herein 

considered. 

In Chapter II, after a more complete defi~ition of the problem 

and an outline of the classical ma..'ly-body (plasma) theory which is to 

serve as a general guide to the development of the quantum many-body 

theory, we introduce the von Roos q.m.d.f. and derive the quantum 

Liouville equation, as well as the consequent analog of the BOOKY hier-

archy of coupled equations for the II II I reduced q.m.d.f. s. As in the 

classical case, this hierarchy is approached by successive truncations 

of the chain, corresponding to the inclusion of dynamical correlations 

(or 11collisions 11
) between a successively greater number of particles. 

The first s tep in this procedure, corresponding to the Hartree 

approx1mation to the N-bod.y wave function, is carried out in Chapter III. 
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In this·case, the quantum B. B. G. K. Y. hierarchy reduces to a si~ple 

generalization of the Vlasov equation which is used to study the 

response of a spatially homogeneous system to weak external forces. 

Singul~ities in the response function are identified with 1plasmons" 

and · their dispersion relation is obtained. Velocity space moments cf 

the quantum Vlasov equation are then taken and yield the equations of 

inviscid, isentropic quantum hydrodynamics. 

In Chapter IV, the Hartree-Fock approximation is introduced and 

is found to be formally equivalent to a second generalization of the 

Vlasov equation, by means of which the spatially homogeneous electron 

gas at non-zero temperatures is studied in some detail. Its response 

to weak external fields is again investigated, and the exchange-

corrected plasmon equation is derived. f.. new mode of excitation, the 

spin wave, appears naturally in the theory and its dispersion relation 

is obtained. The quantum hydrodynamical theory of Chapter III is re-

derived and corrected for exchange effects. As an application, sound 

propagation in a degenerate electron gas is studied, and we find that 

due to exchange, a critical temperature exists (at any density) such 

that sound vTaves cannot propagate at temperatures below this value. 

The formal equivalence between the Hartree-Fock equations and the 

quantum Vlasov equation motivates the 'plasma theory of the many­

electron atom" presented in Chapter V, by means of which the theoretical 

foundations of the Thomas-Fermi, Thomas-Fermi-Dirac and Fermi-Amaldi 

statistical atomic models are )nvestigated in some detail. Quantum, 



-8-

exchange and non-zero temperature corrections are derived, and the theory 

of the compressed atom is similarly corrected using the quantum hydro­

dynamical analysis of Chapter Dl. Excitations of the atom are studied, 

and we are led to anticipate the existence of "collisionless" modes of 

collective oscillation, the equations for which are presented but not 

solved. Corrections to the model due to relativity and correlations are 

also briefly discussed. 

In Chapter VI, the first step beyond the Hartree-Fock approximation 

is taken by introducing dynamical two-particle correlations into the 

theory. The consequent equations represent the starting point for an 

exact kinetic theory of quantum plasmas, paralleling recent work by 

Guernsey (18) which, being based on the Wigner distribution function, 

does not properly include exchange effects. The particular ey..smple ,of 

the spatially uniform electron gas is studied, and the "parallel" and 

111lllti-parallel" spin pair correlation functions are obtained. From them 

we derive a new quantum-mechanical collision integral which, in the 

absence of dynamical exchange effects, reduces to that recently con­

jectured and studied by \olyld and Pines (19). Finally, we also obtain 

from the pair correlation functions an expression for the interaction 

energy of the electron gas which, when combined with the Pauli-Feynman 

I' " theorem, yields the ·correlation energy • At zero temperature, the 

equivalence of this expression in the high density limit with the Gell-

Hann-Brueckner result is explicitly demonstrated. At intermediate 

densities, a new term in the energy appears due to the screening of the 
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exchange interaction by the dielectric behavior of the medium which, 

when numerically evaluated in the high density limit, is in disagree­

ment with the result obtained by DuBois (92). 
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II. General Tbeor;y: 

A. Statement of Problem 

In its full generality, the many-body problem may be defined 

as that of obtaining a physical description of the observable prc.perties 

of a system of N objects, proceeding from a knowledge of the nature of the 

interaction between the objects, their equations of motion and a detailed 

understanding of the properties of each when isolated in vacuuo. The 

system may be exposed to external influences of a prescribed or statistical 

nature, but these do not represent an additional degree of freedom, i.e. 

they are not affected by the behaviour of the objects comprising the 

system. The ciassical and quantum problems are distinguished both by 

different "equations of motion" and, more fundamentally, by the different 

interpretations which must be given to the phrase "observable properties 11
• 

For the purposes of this dissertation, we shall be dealing with 

a far more restricted many-body problem, although the lines aLong which 

the theory can be extended to more general situations will be apparent. 

Specifically, we shall assume that the N particles are: identical, 

possess no internal structure or degrees of freedom other than spin, 

interact with each other and with external objects through superposable 

forces derivable from a scalar potential, and obey non-relativistic equa-

tions of motion (i.e. the Schroedinger equation). We might remark paren­

thetically that all of these restrictions save the last are made purely 

for convenience and do not represent essential limitations of the theory. 

· II II Finally, we assume that the system is not solid-like in the sense that 
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the N particles are more or less localizable on fixed lattice sites -

a case which must be studied by methods entirely different from those 

we are about to describe. 

B. Outline of Classical Approach 

The classical theory begins with a consideration not of a 

single N-body system with fully prescribed initial conditions on the 

6N generalized coordinates and momenta, but rather with a represent-

ative ensemble of macroscopically similar systems each described by 

the same Ha~iltonian. Appeal is made to the quasi-ergodic hypothesis 

vhich states that the statistical properties of measurements of some 

quantity Q perfonned on a single system can be inferred to an arbi-

trary degree of accuracy from the distribution of the values of Q 

among the members of the ensemble, simply by choosing a large enough 

representative ensemble. Choosing the eeneralized coordinates to be 

the location {~) in a Cartesian configuration space, and the general­

ized momenta to be the linear momenta (p), a 6N dimensional phase -
space (x. ----x.. · p ----P..) is introduced each system being repre-

~.L' """l'i, -1 ~.N , 

sented at a given time by a point in this space. The normalized 

distribution of system points in phase space at a given time, 

F(N)(~l,---~; E1 ,---£N; t) is defined and its dynamical equation, 

the so-called Liouville equation, is obtained from the Newtonian 
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equations of motion. It can be written in the form {~ (N) being the 

N-particle Liouville operator): 

( II-1) 

where the ·N-particle Poisson bracket of F(N) with the Hamiltonian H(N) is 

definetl by 

V F .~H -V.F· 
~ · ~· ~· ~· · (II-2) ~w ( (/'1) ( Ji) (N' V H (I'J} 

.• ,.,L I L -,' ..... '-
l-""1 A .-

In conformity with the remarks of the previous section, the N-body 

Hamil toni an is chosen ·as 

(II-3) 

where g2~(~1 - ~J) is the scalar potential of interaction between par­

ticles i and j, g2~ext is the external potential and g2 the. "coupling 

constant" which characterizes the strength of the interaction. The system 

of equations is completed by a normalization condition which may be chosen 

as 

1 ( II-4.) 
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l~) 
The e~semble average r {t) of any function G(N)(x ,---x.; p ---p ) at a 

""1 ...,.l'l -1 .... N 

time t is determined by direct integration with F(N)(t) over phase space: 

and, by the ergodic hypothesis, is identified with the expected value of 

a measurement of G(N) performed on any member of the ensemble at time t. 

Two subsidiary restrictions on F(N) must be noted. First, 

because it .is a distribution function, it must be positive semi-definite, 

i.e. 

(II-6) 

Second, due to the assumed identity of the N particles, F(N) must be 

symmetric under the interchange of any two of them. This is actually a 

statement about the properties of the representative en~emble chosen, since 

classically the particles though identical are distinguishable. Thus 

(tJ) 
F (x., ··X.· ·•·X· ···X,· J) ···f· ···P· ···'. t) (II-7) .... ) ""'c.) - 'J) ... I -,I J • ) J l Itt J """ "''. ' ,... 

(~) ::: F ( x~ -. · xJ· · . -x ~ .. t" · f, · .. p. . . f · .. ~' · t) 
"\o J ""' ) "" J "" I ....! I ...,J) ') 1.. N ) 

By means of this relation, we can illustrate the fact that the full F(N) 

contains muc}J. more information than is practically required • . For example, 



if we wish to compute the 

we set G(N) in II-5 equal 

T CH) 
average kinetic energy of the system, 

pi ,., ';a. 
to.:€:" L and by repeated use of II-7 find 

i::.t ~ l'l 

Similarly, the aver~e interaction energy V(N) is obtained by choosing . 
tl - L ~ ¢ . . w ·~ ext \ 1 . 

G(N) equal to [~~;; ~ (~,-~J) +if~ ¢ (~i~ yielding 

j\t 

( II-9) 

Thus, all one requiree to compute the average system ~nergy, for example, 

are the so-called "reduced" distribution functions enclosed in curly 

brackets. This is the motivation for dealing not with the full Liouville 

equation II-1 but rather with a hierarchy of coupled equations for reduced 

distribution functions (the so-called BBGKY hierarchy) obtained by inte-

grating II-1 over sub-spaces of the full phase space. Specifically, if 

we define the s-particle reduced distribution functions 

L (S)( . ) s l l l 'l (H) ) r. 1..., •· x~~f.,···Ps;t :: cl.t --Jx c!.f.···rJ..fJ F (x., ... xN ·f, ·· fNJ·-t:) (rr-lo 
N "" ' """ .... ,., s., II \+1 '"' .,. J .... J .... J .... 



-14· 

then one obtains from II-1, the set of N-1 coupled equations 

It is res.dily verified that F~S) has the same symmetry property (II-7) 

and normalization (II-4) as the full F(N). 

The problem now becomes one of developing a suitable approxima-

tion scheme to apply to (II-ll). Tne most fruitful one is suggested by 

our previous observation that a good deal of information is contained in 

or more generally speaking, that the information 

not present in F~S) concerns increasingly finer details 

of the system as (S) increases. Since such details are generally neither 

of much theoretical interest nor amenable to experimental study, one is 

led to consider successive truncations of the heirarchy (II-11). Speci-

fically, one begins by considering only the first equation of II-11 

(i.e. (S) = 1) which connects F(1 ) with F( 2). The resulting equation 

is then closed by the ansatz 

(II-1~) 
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and the consequent properties of F~l) are studied. The next step is 

th~ retention of the first two equations of II-11 (S = 1,2) with (II-13) 

( II-14) 

yielding coupled equations for F~l) and F~2) which are usually solved by 

assuming that F~l) will differ only slightly in this case from the F~l) 

obtained in the first step so that perturbation theory can be used. One 

then, in principle, considers (S = 1,2,3) and so forth. 

When this procedure is carried beyond (S = 1), formidable 

mathematical difficulties arise in the general case, and additional 

approximations are required. What one does is to rewrite the equations 

in terms of dimensionless parameters appropriate to the problem at hand 

and then develop therefrom a perturbation series in such parameters. 

This generally enables one to .ignore troublesome terms in the lowest 

order. The Rostocker-Rosenbluth (5) procedure and Mayer "cluster expan-

sian'' (20) may be cited as examples. We do not wish to discuss such 

parametrization procedures here beyond the remark that invariably the 

expansion parameter is related to the ratio of the average interaction 

energy to the average kinetic energy. 

In splte of the foregoing simplifications, the method has enor-

mous power. Consider, for example, the first step of the procedure. 
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Combining II-12 and II-13 , one obtains for F~l) the equation 
\-

where the "self-consistent field" ~s.c.F. is given by 

( II-15) 

(II-16) 

This can be written in more familiar form by noting that the average 

particle density, r (_!;,.t), is given by 

(II-17) 

so that II-16 becomes 

(II-18) 

Equation II-15, known as the collisionless-Boltzmann or Vlasov equation 

for reasons to be discussed presently, is of ~undamental importance both 

to equilibrium statistical mechanics and to studies of the collective 

behavior of classical plasmas. Let us explore this point in more detail. 
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An N-body system not subjected to time varying external forces 

is said to be in statistical equilbrium if it can be described by a time­
!~) 

independent (or "stationary11
) representative ensemble, i.e. d frJ ::: 0, 

'Jt 
Setting the first term of II-15 equal to zero and solving the resulting 

equation, one finds the most general solution to be any functional of 

the constants of the motion of a single particle in the field described 

by g2(~ext + ~s.c.F.), among which is the energy 

e _ t t ~d. ( cf> el(t t 1> s.c.F.) 

d.m. ( II-19) 

Hence any F~l) = f(e) will constitute a stationary solution, but the 

theory at this stage of approximation does not indicate what functional 

dependence to choose, except in. the special situation where we are 

describing an isolated conservative system. In this case one chooses the 

so-called microcanonical ensemble defined by 

f (e)::: const " ~ (e -eo) 
(II-20) 

S being the Dirac delta function. Of far greater importance are systems 

in equilibr1.um with a thermostat at temperature T. To determine f(e) in 

this case, the most direct procedure would be to simply require that the 

proper choice is that ~ich reproduces the (macroscopic) la~~ of thermo-

dynamics. Indeed, one finds that this can be achieved with the so-called 

macrocanonical ensemble 
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f (e) - e"r [ t~eJ 
( II-21) . 

which cor-rectly describes the macroscopic behavior of a system in thermal 

equilibrium at temperature T.* 

Instead of ensemble theory, one can follow the microscopic 

kinetic approach due to Boltzmann. In a sense t his tries to anticipate 

the result of carrying out the second step of the approximation (i.e. 

II-14). Since the ansatz Il-l) is tantfu~Olmt to the neglect of particle 

collisions (each particle feeling only the Rverage self-consistent field), 

II-lli- will introduce collisions into the theory. Specifically, to II-15 

will be added a term which describes the rate of change of F(l) due to 
N 

fluctuations about this self-consistent field {which is wT!at one mearw 

by collisions) so that we formally anticipate II-15 to be replaced by 

Since collisions are the mechanism by which thermal equilibrium is 

established, the proper choice for f(e) is that Which ma~es the right 

hand side of II-16 vanish. From a detailed consideration of the two-

body elastic collision process, Boltzmann obtained an expression for 

* '/' will in general be a function of the r emaining constants of the motion. 



-19-

for J F''>) * ~ lli i , the so-called collision integral, whi~h in 
;) t co s ons 

fact is found to vanish for the unique choice II-21. Alternatively, one 

can exploit Boltzmann's observation that by virtue of two-body collisions, 

the quantity H defined by 

(II-22) 

never increases, and that equilibrium is reached when H attains its 

minimum value. . Applying the variational calculus to the consequent 

relation 

~HI =o 
/~F (II-23) 

leads again to the ''Maxwell-Boltzmann11 distribution II-21
1 

We see, 

therefore, that II-15 in conjunction with either thermodynamics and 

ensemble theory or the H theorem will yield classical equilibrium sta-

tis tical mechanics. We shall see presently that in going to the next 

step (i.e. II-14), such outside appeals will n0 longer be necessary to 

achieve this result. First, however, we wish to point out that the 

utility of II-15 extends beyond equilibrium statistical mechanics: 

implicitly time-dependent phenomena can be described by this equation 

in two limiting cases. At one extreme, the response of the system, 

*When this expression is introduced into II-16 , the r esulting relation 
is known as the Boltzmann equation. The reason for calling II-15 a 
"collisionless 11 Bol tzmenn equation is apparent. 



initially in thermal equilibrium, to a ~ext which is switched on at 

t = o and varies in time at a rate large compared to the thenna~ relaxa-

tion time (or "collision frequency11
) will be obtainable for early times 

from this equation. This is equivalent to saying that when collisions 

don't have time to act, they can be ignored. .Pt.£ a corollary, for certain 

systems characterized by long-range interparticle forces II-15 is useful 

in studying collective excitations mediated by these forces when the 

excitation frequency is large compared to the collision frequency, as 

pointed out by Vlasov (21) in his treatment of coulomb plasmas. 

At the opposite extreme, the response of the system to. external 

forces that vary at a rate slow compared to the collision frequency is 

also described by II-~5 since in this case, the system is in quasi-static 

equilibrium, i.e. it can be viewed as passing continuously from one 

equilibrium state to another. This is what one may call the hydrodynamic 

limit. Indeed, by taking the first three moments of 11~15 in velocity 

space, the continuity equations for mass, momentum and energy are obtained. 

Then assumption of local thermodynamic equilibrium is introduced by taking 

F~l) (_;, t) to be given by II-21, where 'J' and T are new pennitted to vary 

in space and time. Since II-15 contains no mechanism for dissipation, 

we obtain in this fashion the equations of' compressible inviscid hydro­

dynamics. Viscosity (or, analogously, resistivity when we deal with a 

system of' changes) can of' course be introduced in a phenomenological 

fashion. To generate these so-called transport coefficients from the 

theory itself', one must go to the s econd step of the approximation 
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procedure, II-14. 

There are, naturally, more COffiPelling reasons for going to the 

next step. Recall first that from II-9, the average interaction energy 

is determined from F~2); _ corrections to F~2) generated by II-14 will thus 

influence this energy and, as a consequence, the equation of state of 

the system (i.e. the Virial coefficients). Secondly, we wish to obtain 

the collision integral, not only to verify that the H theorem holds and 

that equilibriun statistical mechanics is indeed contained in the theory, 

but also so that non-equilibrium processes can be studied. In particular, 

such questions as the approach to equilibrjum of a system prepared in an 

arbitrary initial state, and the influence of collisions on collective 

excitations can now be answered within the context implied by II-14, viz. 

that only two-body collisions (or "correlations") are considered. 

The program implicit in the second step may be described as 

follows. With ansatz II-14, the (S = 2) equation in II-ll will, when 

solved, determine F(2) 
N in terms of F~l). The F( 2 ) thus 

N derived is then 

inserted into the (s = 1) equation which is now closed. Equilibrium is 

established when the right hand side (the "collision integral") of this 

equation vanishes, a condition which determines the equilibrium value of 

(2) (1) 
FN which, together with FN equil.' gives the energy (through II-8 and 

II-9). Non-equilibrium processes are studied by means of the full, time­

dependent, F~l) equation. 

In attempting to carry out this program, two difficulties arise. 

The first is due to the analytic complexity of the (s = 2) equation, 
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necessitating a perturbation expansion in some small dimensionless para-

meter as mentioned earlier. The second is more fundamental, being related 

to the question of how the Liouville equation which is derived from the 

time reversible equations of motion can yield the time irreversible equa-

tions demanded by statistical mechanics. The usual procedure is to 

accept only those solutions whichasymptotical~ become constant in time 

a.s t~oo , rejecting other solutions as 11unphysical11
• 

. I 
In Green s 

function language, one chooses the 11retarded11 Green's function. In 

addition, one generally introduces Bogoliubov1 s (6) concept of a hierarchy 

of relaxation times. This is based on the assumption that the character­

istic times ( 't'5 ) in which the various F~S) approach their asymptotic 

values become progressively shorter as (S) increases. Consequently, for 

times long canpared to 'rs , the time dependence of F~S) is assumed to 

arise only implicitly through the time dependence of F~S- l). Within 

these restrictions, the program h~ been carried out for the special case 

of a spatially uniform plasma with Coulomb interactions by Rostocker and 

Rosenbluth (5), Balescu (22), Lenard (23), and Guernsey (24). They find 

for the collision integral an expression which may be written as (to 

within a normalizing constant): 

(II-24) 
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This is identically zero for the unique non-trivial choice {II-21) as 

anticipated. It differs from the collision integral proposed by 

Boitzmann, however, in that the collision cross-section {first curly 

bracket) contains the dynamic dielectric constant of the medium, K, · 

d~fined by 

){_(~ w)-
,) 

(rr-25) 

2 ~x where t&) = "'rr e e . is the plasma frequency squared and Vl is a 
p "r1'\. "l 

positive infinitesimal {arising from the assumed asymptotic behavior). 

A leas restricted approach has recently been given by Guernsey 

(25), in which the assumptions of spatial homogeneity and implicit time 

dependence are dropped. In their stead, he considers the initial value 

problem governed by the (S = 1,2) equations where the deviations from 

equilibrium of F~l) and F~2>. are sufficiently small to allow lineari­

zation. The resulting equations provide the basis for studies of how 

plasmas approach equilibrium as vell as non-equilibrium transport 

processes.* In spite of linearization, the equations are extremely for-

midable. Solution of the associated transport problem has not yet been 

achieved and effectively defines one ·of the present frontiers of the 

classical theory. 

II,_ II *At low frequencies - the n.ydrodynamic limit - transport properties 
are obtainable from II-24 for reasons discussed previously 



In view of the great difficulties ~ncountered in the second 

stage of approximation, it appears unlikely that the program will be 

carried to truncations of the BBGKY hierarchy beyond the second. .In a 

sense, there is not much point in doing so, since if three body corre­

lations significantly alter the equilibrium or transport properties of 

the system, one expects that four-body effects may also be important and 

that consequently the whole approach is no longer a viable approximation 

scheme. This, however, underscores a basic shortcoming of the theo~ y 

since it is difficult to justify stopping at (S = 1,2) witho~t at least 

shoving that going to the next step introduces negligable corrections. 

Consequently, until techniqueo are available for setting bounds on the 

effects due to the neglected higher correlations, the domains of appli­

cability of the theory vill be determined by its agreement with experiment, 

a situation which though philosophically distasteful is nonetheless not 

without parallel in theoretical physics. 

We have dealt with the classical theory at some length to 

introduce both the language :!.n which the forthcoming quantum theory will 

largely be phrased as well as the underlying assumptions and limitations 

which will be carried over along vi th the language. We vill proceed as 

if the foregoing discussion were complete, and will thus use this language 

without further discussion, referring the reader to the cited references 

e.nd standard texts (e.g. Tolman (26), ter Haar (27)) for more incisive 

treatments of those points where we have been necessarily cavalier. 
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C. ~anturn Liouville Equation 

We now consider a single isolated quantum mechanical N-particle 

system whose classical Ha~iltonian is given by II-;. The constitution of 

the system is that given in Section II-A~ each particle having an intrinsic 

spin s. We choose a representation in spin space such that the spin pro­

jection of' each particle in the+~ direction (0"~ ) is diagonal; i.e. the 

basis vectors are built up out of' single particle spinors ~~ ~ so that for 

·th the t, particle 

<IJ.:(l.) c (t) 
2 s"' (II-26) 

where m; C. i.) is the operator corresponding to a measurement on particle 

i of ~ and eX. has the possible eigen valves -s ~ ---+S. T'ne t are also 

chosen to be ortho-normal: 

( II-27) 

In this representation, the general N-body wave function is written (in 

configuration space) as 

(II-28) 

N wtw) 
where the (~+1) quantities 1 

.... ··lltrJ 
satisfy the Schroedinger equation 
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with the normalization 

1 (II-30) 

Thus, the quantity 

(II-31) 

is identified as the joint probability density (i,=lJ··•N ) of finding particle 

L at position ~t with spin projection c(;, at time t. 

Following von Roos (10), we define the auantum-mechanical phase- space 

distribution function *(q.m.d.f.): 

( II-32) 

which is seen to essentially consist of a product of the configuration and 

\IJ(N) 
momentum space representations of the wave function T , multiplied by a 

plane wave. Like the wave function, the q.m.d.f. is complex, unobservable, 

and me r ely a calculational aid in the computation of expectation values. 

*We choose to work in position-velocity space rather than position-momentum 
space, although retaining the name 11phase space". For purposes of compar­
ison, the Wigner (7) q.m.d.f., mentioned in the Introduction, is given by 
the expression (in the absence of spin): 
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(II) 
Before deriving the dynamical equation for f from II-29~ it is 

instructive to derive some of its basic properties directly from the 

definition II-32. First, integration of II-32 over the 3N dimensional 

velocity space (V, · ··101 ) gives _, ,., 

~
. (fl) 3 J ~ (tJ) f (1-r ... xr~·-..r. ... '\1"111't) ft v; ... J V: (x.~ · ·•X"' -t) 

c{ • ·d. - J ,.... :J -) - J ~ I I'J cJ. • .. o[ ,.._ ) - ' 
' "' . I ri 

. f- rJ 3 • I 

5 '1 t 13 1 \JJ(JJ) ( I 
1 )lT l ( YY\ )} 3 u~ l1j •(X:j -X.•)~ x. fx ·· · a 't-11 1 z~ ···X." t - J v:- e 1i ~ ,.. .._J 

I o( • .. rJ... J - J • ant J 
I ~ J:t . ( II-33) 

But 

(II-34) 

where & {.!d-) is the three-dimensional Dirac delta function. Hence~ 

(II-35) 

1./) (Ji). Similarly, in terms of the velocity space representation, l , 

of \}' (N) : II 

(11) 31 -L'tl\.~ 1fj •itj (N) 
tp ( Y. .. . 'lf"N t) =- (~ '\ cl.3.x. ... JX. e 1\ j:."" -v 'f c ~~ ... ~rl t-' 

o/1 "oLJI J - J • d.lJ't, J I /II f(l"o/"' ) ,.., J ') 
(II-36) 

one finds 

* 
S {It) ( 3 J lfl"') ( ) lf'PI) F x., ... x,.v; ... v-., · t)-l.-t·~c:tx. =- ~ ... v"'t (v; ... 11': t) 

o/ .. t[ - J ,.. J - ) "' ) I "' e( • .. IJi J "" J ..J _w - J -"'J 
, N I ftl "'• •-.,.rt (II-37) 
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Integration of II-35 over configuration space and summation in spin space 

F (11) •• yields, together with II-30, the normalization condition on 

~+S s 3 ,3 3 Jl F(N) ) c).t."·a.t-NJ.:...r ... V,.., (-x,, ... t,,·v;,,,'Vr~)' t = 
I I q

1 
•••o{ll ,_ J .-. ) - J ,.. 1 

r:~,· · ·~,---s 
( rr-38) 

FCI't') 
Thus, it is seen th&t has the convenient property that integra-

tion over half of phase space yields the (quantum-mechanical) probability 

distribution in the canonically conjugate space. ~'his is a special case 

of the following more general result. 
I( • 

Let the three Cartesian components of X.~ and 'XJ. be denoted by ~- " 
~ ' 

and'l1~t where 1< . ~1,~J3 and consider the following general real :function 
I. " 

of the position and velocity of the N-particles: 

3 w ~ 
::.. <: Q ( f•J ,.. ~H) t)J\ ( V:W:~) ~ 

<. K, ... K, C.~l (. 
K, .. ·Kii ""l 

(II-39) 

where ~,J ... ~tl are arbitrary non-negative integers. Integration of the 

product of (7 and F (II)* , the complex conjugate of F (rJ) , over all of phase 

space gives 

(II-4o) 
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Pe rforming the velocity space integration, making use of II-34 and then 

integrating ove r the primed configuration space leads to the result* 

J 3 3 ~ 3 G-( Pi). 
cl.x, ... J t,J.v; ... J.v;., ~';'"~,.,·)!! ···"11; · -r) Fe (x., ... x~·vi ... '\Tr~·t)= 

) J -J q.,,J"""J -J ... , ""J 
I "11\1 

i= ( II-42) 

Y ) J.3 ~ (JOI) { )h~3 A (;(.I '••XrJ t) -~"~ (-+- .... ~~J• ~ (f/) '"" "' X. J(,, "•trJ.t: ........ -.I ..._I .... d ( ;t;1 .., .J.) 
0."'1 . pi ...,. I -~ J "• ... ICJII • -:--"' --.c • ""- I • • •1\./11 I< 

11/, .. •c{,J 11:1 .. •\:,J-:.1 Ll:l (.)'I\ ~x.. " c( "'Ol~• ""I 
. (. I ,.., 

It is therefore seen that the integral over phase space of the product of 

* F(li) 
and a funct i on of the form II-:?9 is equal t o the quantum-mechani~al 

expectation value of the "well-ordered"** operator obtained from II-39 by 

the fonnal substitution~ ~1i '{Z • • 
- im !:• 

Now consider the result of integrating 

the produ~t of G and f Cll). In this case, II-42 would be replaced by 

5' ) 3 J3 (1.1) c1 ~ . ... J. .x:,., c1 ~ ... v,., & F = Sl~ . .. tl \.LI (II) ;, a. --~11\ ~-t d ~~~ (tl)-#: 
o.X. tJ. X.w I. <.....: K, ... ~~:,., -. -- UJ 

' (:l, ... c~,., K,···k,J-:.1 i-..1 "'II\ Jx~· I. (II-43) 
" illl·"ci,J 

*Note that equation (14) of Reference 10 is in error on this point. 

**An operator is said to be well-ordered if it is written in a form Where 
the gradients (i.e. momentum operators) stand to the right of the scalars 
(i.e. position operators) and hence act first on the wave function. The 
reverse situation we shall call "anti well-crdered". 



Integrating by parts and ignoring the surfac~ terms in the usual fashion 

(recall that we are using an infinite volume in configuration space), II-43 

becomes R * 3 w ,. 

r 1 3 1 J3 
r_p(IJ) =J•3 J'3 \U

1
") L( -.-,--II (+- J )" J t'"') ,,, X. J. V: "' V: \.7 a.X. ... X J. . ..!l.. -J,tl J tJ I tJ "~"'q"' I ,J fl,.<( ~~~ . "\ I'~ ~~···K.., cl···~~~~ 

I I rJ k, ... 'l:l,p\ £..I'll rJ1.• I 
· · L (II-44) 

Thus, integration of G- with f (II) yields the expectation value of the cor­

responding anti well-ordered operator. Noting that: i) the sum of the 

well-ordered and anti well-ordered operators appearing in II-42 and II-44 

is precisely the Hermitean operator which in a quantum-mechanical system 

"corresponds"* to the classical function II-39; i.i) the foregoing derivation 

can be trivially extended to the case where G- is an infinite sum of terms 

of the form II-39 (i.e. a Taylor series in velocity space); and i.i.i.) in 

view of the symmetric role played by the configuration space and momentum 

Ul (111) . • • F(t.~) 
space representations of 1 in the defin~t~on of , we could just as 

well have considered a G of the fol"Ul 

\Ut¥) 
and used the momentum space representation of 1 , we are led to the fol-

lowing desired result: 

*In this regard , viz. the manner by which one constructs Hermitean .quantum­
mechanical operators which are the analogues of classical functions of 
coordinates and momenta~ formal ambiguities can sometimes arise as pointed 
out, for example, in Bolun's Quantum Theory, p. 186 . Although no physical 
situations have ye t been found which are capable of experimentally distin­
guishing between alte rnative Hermitization procedures, this may not always 
be the case. We therefore emphasize our assumption that the Hermitean 
quantum operator analogue of II-39 is given by ( ~ ) the sum of the opera­
tors occurring in II-42 and II-44. 



Let G-(~•/"~tlj Y:J···~"'j t) be .any real function of 
theN single-particle coordinates and velocities which 
possesses a Taylor series expansion in either (the 3N 
dimensional ) velocity or configuration space and let 
(G-be the qua.ritum-mechanical Hermitean oterator which 

corresponds* to the observable, G-; then in Dirac no­
tation): 

where Re denotes "real part". 

-CN) 
The foregoing result illustrates a v·ery useful advantaee of r over the 

wave-function , viz. that not only can operator averae;es be obtained by the 

direct integrations with f=C~) vf classical C-number quantities, but also 

that one need never go through the intermediate process of constructing 

the appropriut.e o_uantl..un-mechanical Hermi tean operator (although the caveat 

contained in the footnote must be borne in mind). We now turn to the deri­

vation of the dynamical equation for F Cl'l) • 

Differentiating the definition II-32 with respect to time and replac­

ing d 'f' and d cp* by the corresponding left hand sides of the Schro.edinger 
dt ~t 

equation II-29 gives 

(") 

d F.;,···ct, 
"dt 

*See footnote on page 30. 
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Furthermor e> two partial integr ations in the primed configuration space in 

il 
the second \7 term of II-46 lead to 

'~'s 1 I • ~ I r " I ~ l. , ~ d.lC~ · ··~X.N expi!!!:~Vc.·(;t~-X~) v__ l!lliJ) I 1:) _ 
... ~ ·i.:.t - "' ... ~: 1 (~I) '"..5"'" v 

. ... ~; (II-49) 

-'VI\' a.wi"')J l ' ,3 ' ['m ~ . . ! - ·~ t~o~> I - v~ 1 J: "t. ....... Xu exo !:.- :<.. v" {%,. XL '\' l I .., .L.) 
+;a. I ·~ I -+- • ... "" ... ll • . ,.rJ " 
"' " '':.I "'I' ~ > 

which cancels a similar term in II-48. Thus, II-46 can be rewritten as 

"' F'"') ~ (AI) • .._ ~ l. (tl) . ('In )'3fi[z,J, ~ eJCt llol) 
(j d ~ + z 11':·. "- F - L h ~ v_ F. - -t. - q J.. ( • ) t _..;_, .. _. " . ...." ~~ ~.··tl"' ""- :-., x; q ''""' - .;::- ~1J1l . a 'f ~'/ Cl·«~ ... d t £. :.J ... II 0. v ~ "' I 1'\ (. ':.t I P 

pi I ~ • () Jl 

5 3 I l 3 / [' '1'1\. ( , ( • ·) 'I' hi) I I ~ ill ) 3 1 l I [ · ~ I )~ x J;x; ···a.~ exp ~<.'V'c.· x.~.-x, pc, .. x,.,t)- J:x ... Jx exP ~<.1/i.·(x.-t; 
I rJ h ·. 1 "' ,.. - fi .. J-, ""J fi,.•,, I AJ I -to._"' ..,' ... 

" f.• I OIJo# I q,., , 1'\ (. .J 

~ ~they,f: I l!JC~· I I ~ ~ l ~rl_ fill) 1/ I ~· 
\~. j r c~~)t) -r,.., .... ~~· ... ~,t) ~ z.<.. ~ -rC~~-~j) t ·tl \J~K; ... l~: e~r(~~.£~·C!~-~~) 

(..::.1 ~~~· .. •• ,.,j "'&.':.1 

" J\~ rl ~ .. ~ . 
l(lV' .. >tx' XI-+) t,~,lll) }•"'' ''\I (i"'.fY~·Ct!-x;),~th(x_!.x ·')w<a!l, '1 (II-50) 

1. -·.--..:-, - L ~I( ... ax~ eJCp ~ ._ ... - 'J-r " v T <-t. •. x .. 
C/, .. .. ., <4j· e(" • i;~t a - ... ct,.:-tl;., ~ 

Consider first the t erms containing ~ . In the second term, expand 

in a Maclaurin series about X~ : 
- -

(II-51) 
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If we then define the operator: 

[e~<o[-~t; r V • V ]~(A (x, '"XN · v, ... v" ·t)'\(B (1, --·~ j 'f.J ... ~ j t ~ 
J ~ • "t~ V"~ ...... ) "' ) "'"' '""'"' J 1) I I J ':., "' ... 

:: A B -~ i 'Z. A • \7 . B + _!_ (-~ t\)1_ ( ~ ~~ :L \( ~ :t L L\ A B + • • • 
m.l:., ~ ... ~ dl "M- i.:,:lx . Jlf.t-)~ .... '~"~Jv.) ·(II-53) 

. o K L -:.1 " " 1J J 
J 

where ·the spatial gradients are understood to act on A alone and the veloc-

ity gradients on B alone, it is easily shown that the first two terms on 

the r.h.S. of II-50 can be concisely written as 

Similarly, in the last term of II-50 .• expand ~(~/-!J) about the point 

(I:~ ~~j): 

¢c:/-~j,) = <?t!.; -~j) + [ !::<ftt~-!j)·C~!-3J +S1>c~,-~~)·c~f-!J~ 

t . . . 



Then , proceeding dnalogously to II-52, one finds that the remaining terms 

on the r.h.S. of II-50 become simply 

express in an e l egant fashion by defini ng the Gene1·a lized Poisson Bracket 
f ) (li) 
LAJB) in terms of the operator II-~3 : 

~P.S. 

f 
c~) 

A(-t, ... x"' ·v: ... vl'l;t) 6(x, · ·· XN · v; ··•trr~J·t)1. 
- J - ) ... .) - .) - J "" J .... J - J~ . 

. ~~~ 

~-[ e><pl-~ ~.~·~.]( (A)(B) - Cs)(A)) 
Note that the first tenn of II-57, 

N 
_!_ ~ ( V_ A ·V. B 
)'lt · X· v. 

(.::.1 "'" _, 
(II-58) 

is just the usual Poisson Bracket; the remaining terms are ()(~)and vanish 

: n the classical limit. In terms of the &. P.B. , then, we find after trivial 

algebra that II-50 becomes simply 

;} F.:~~.. + f F ( "\~ .... !!!' ; !- .... ~; t )) 1-l'ci ...... 11; ... ,._ . • )) (N)"' 0 
d t ( o(, · ··~I'J I I ..., J "'I ~-) 1 

. G-.P.8. 
where H(N) is just the classical Hamiltonian: 

(II-59) 

(II-60) 
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Thus,we are led to the striking result that the Schroedinger equation 

for an isolated N-body system can be written in a form which closely re-

sembles the classical Liouville equation ( c.f. equation II-I) and, in fact, 

becomes identical to the Liouville equation when h ~o. Recalling that the 

Liouville equation descr~bes a statistical ensemble of classical systems, 

whereas II-59 was derived for a single isolated system, it might seem, 

therefore, that the statistical character of quantum-mechanics persists, 

in some sense , in the classical limit. This touches on some fundamental 

issues conce1~ing the interpretation of quantum-mechanics, which continue 

to be much discassed. (23) and which we choose to avoid. One observation, 

however, is ir. order. ·,o/e shall see presently that when the transition to 

quantum statistical mechanics is made ( by introducing a representative 

F(ll) (f'J) 
ensemble and averaging over its members), the ensemble averaged F · 

satisfies precisely the same equation (II-59) as one obtai ns for an isolated 

system. Thus II-59 appears to contain both quantum mechanics and quantum 

statistical mechanics , depending on how one wishes to interpret F(~) and 

what assumptions one makes about its initial or asymptotic time behaviour. 

Putting it another way: although every solution of the Schroedinger equa­

tion II-29 leads to an Fe~ (through the definition II-32) which satisfies 

II-59, the converse is not true -- II-59 admits solutions which cannot be 

interpreted as characterizing a single isolated system. 

To illustrate this point, consider an isolated 

rh'"> .eigenstate, Ea, with eigenfunction 1'"' . Since the 

system in an energy 

TTTC"') time dependence of Jr, 
. -te"q,t/ 

is contained solely in a factor e 1; ' one sees from the definition 

Il-32 that the consequent f ~tJ) is time independe nt and consequently satis-



fies the equation 

{ t-.~) 

H '"'] . "'o 
<;-. p, B. 

( II-61) 

f (ll) . . 1 ( C~) -CN)) Since II-61 is linear in ' it \nll also be sat~sfied by - F -t r ' 
~ ~ h 

where b corresponds to a different energy eigenstate. This quantity, how-

ever, arises from a wave function 

I -fa 
( II-62) 

where the phases ~~ and 9b are random and thus characterizes not a single system 

but rather a (stationary) statistical ensemble of systems. 

Now in this dissertation we shall be concerned with ~wo general cate-

gories of problems: ~) a description of the en~rgy eigenstates of isolated 

systems (the so-called "pure case"), and i.i,) the statistical mechanics of 

systems in contact with a thennostat ("mixed case"). The second type of 

problem will be handled naturally by the introduction of representative 

macrocanonical ensembles along lines parallel to the development sketched 

in section II-B. To treat the first category, however, we need a prescrip-

tion for distinguishing those solutions of II-61 which properly r epresent 

an isolated system from those appropriate to a stationary ensemble since, 

as we have noted, both situations are contained in this equation. The requi-

site condition is obtained simply from the relation II-45 by requiring that 

the energy calculated from fCII) should be "sharp", i.e. if 
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then 

0 ( II-64) 

for a "pure state". It is readily verified that II-64 will not hold, for 

example, in the case F (1'1) = ~ (F/") + Fbl">) considered previously. In many 

cases. particularly those wher e we wish to study the ground. state of an 

isolated system, it will not be necessary to make explicit use of II-64 

since we can simply pass to the limit of zero temperature in the corre-

spending statistical quantum mechanical problem. Alternatively, since an 

isol ated system in an energy eigenstate is e~uivalent to a microcanonical 

ensemble, we can without loss of generality deal exclusively with ensemble 

averaged ~.l'l'l. J.. {. 's in the forthcoming forme.lism, choosing a microcanonical 

ensemble in the pure case and the macrocanonical ensemble in the mixed 

case. At zero temperature , the macrocanonical ensemble becomes identical 

to a microcanonical ensemble of systems in the ground state. 

The transition to quantum statistical mechanics can now be easily 

made as follows: Recall that a single system is in general described by 

the (as+ l)111 
quanti ties E (rJ) ' each of which satisfies II-59. Represent-

o( • ooo(JI . 

• < w) 
ing the totality of such quantities symbolically as f~ , consider an 

ensemble of N -body systems, the {,tJJ. member of which is characterized by 

.....(N) 
l'"'ce. ( i) and a normalized s tatistical weight w~. The quantum mechanical 

......,cw> 
ensemble distribution function, FCI(. is then defined simply as* 

F.t(AI) £ i.) ( II-65} 

*Note that in the usual formulation of quantt~ statistical mechanics , one 
averages the ~~ function over an ensemble whereaF. we average the ~.~.J.~. 
which is bilinear in the wave function. It is readily shown that the two 
approaches are equival ent if the wave functions are averaged with random 
phases s o that interferences between different members of the ensemble 
vanish, an asswnption whi~h is always made. 
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Since II-59 is linear in Fo{CII) and the 'v/~ are just numbers, we see that Fa, c.v> 
,........ (II) . 

and Fot satisfy precisely the same equation as mentioned earlier .• 
~(II) 

Equation II -59, therefore , when written in terms of rc( , represents 

the starting point of our quan~um many-body theory, which will proceed from 

this equation in ~ore or less strict analogy to the development of the class-

ical theory from the Liouville equation, as sketched in section II-B. The 

first step of this development is the i ntroduction of ''reduced" <b.WI.J.f. 1
5 

and the derivation of the qu.antum analogue of the B.B.G .K.Y Hierarchy. 

Before proceeding, however, one final question must be discussed, viz. 

M 
the syrr~etry properties of the F~ . The necessity for this arises from the 

fact that the Schr-;edinger equation II-29 does not in itself completely de-

termine the wave function II-23. To it must be adjoined the symmetry pro-

perty 

1f 
{fl) . 

(1 ... ;, ' "J• ... N) 
' .1 ) , 

(II-66) 

where the + sign obtains if S is integral, - if half integral. This con­

dition will likewise impose certain restrictions on the ~IN) (and conse­
,..v 

quently the Fd.c-n) which we now investigate. 

wt"> In terms of the Ttl, ... 
111111 

(see II-28), II-66 can be written 

(II-67) 

Using this equation and the definition II-:;2, we find that interchange of 

the spatial coordinates of particles ;__ and j leads to 

) 311 ( ) 

F(f/ , ( ~·J • • I(.J•J .. t~ .. 't.11J· V. .. 11"; .. ,.;J ... 'ITt~ . t) :::. (~) (:t) \11 " (~• • ·~~ .. Xj .• '(_, t-) 
"' - J "" - ' - ) ' - J a1T"' 1. ..... ' , ... ' .... , J, .. ct.)··el· "«-· - 1'\ J, •. JJ• .. .,. " ripJ 

I C. JJ rr 1 J c.) 

.x eJ< rf-~("• ·X,+ • • V: ·X~+ .. '\1"1. x, + .. lrrJ, X N)~ r lx'" J~.: exo[~ll\.(v; •X,
1
t •• ~ •X/ + • ·V:J :xi t--V,.~;) L h ..... ,., --" ,. .,J .._,J .,., """' ..., IJ J I ,. I 1\ ·"' ., - • '\. .... ""' IV 

f 1 I I 1 · ( II-68) 
.. 1+\\j)M (1(., _ •• ltj,HX: . . ••X.II .-b) 
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I I 
Interchange of the dummy variables x, andXj leads to the desired r e l ation 

F ca~) U·• · · xJ· . · x, · ·XN · v; .. 11"~ .. v: .. v-.., ·t) = Fr~> Cf•, · · :Si..) .. x.,;/ · ~)· ~~ · · ~, ·· ~~ ,· · !{"'j t) 
-.,) ...... ) - J -) ,......, - ,J J.J ...., J .. 

ol · · II( • • • ct • • · o1 ... et,J • • «; · · ol i. • • tl/ tJ ( II -69 ) · 'J r._, JJ r.J ul 1 

In the special c ase where ~~=~j , however, a stronger condition can be de-

rived . ( ) ( ~._m. Vi -10 • r~ -X.') 
Fu .. ) ( X., •. i(.'J• •• X~ .. ;(.N . v. .. v; .. VJ .. 'V;,·t).:: -r e ~ ..... - ,.. ~J 

....... ' - J ·- J - ) ..,• J ..... J .. J - ) ·.-
ol, ··ot: -·otJ· .. o(I'J • ... J , 

X f(w} t ~· .. ~~ .. ,X: • • 'X."' . 'II; •• v-, ··Vj .. 1./"1'1' t) 
) - ) ... • J ... ) _, ... ) .... ) - J 

at,· .. a/~ .. o~, ... <:( •• 
I J Jl "' 

( II-70) 

Similarly , interchange of the velocity coordinates of pa:r:ticles c.. andj 

yields in general 

F(N) ( ~ ... X~ .. X:j •• "l...., • v; .. vJ• •• ~ • ·'\T~~~· t) 
-, ""'J ,..,I"").-..-.~) ""'J ""'" 

al,, .. o/~ .. cit · ·t~," · (II -71) 
J ". l Pt1) • 

f ( ~' .. x..; .. :t~. .. xi'i . v; .. Vi .. v:J· .. ,.., ·-t) 
) - J - ) ,.., ) _, ... ) .... -1 .... J 

d,, .. "'J ... IIi., ··ot., . 
and in the special case ol;,, olj gives the stronger r equirement 

Flw) ( ;(, •. t~ .. Xj, .. xftl · v; ,.. .. v:· 1J:, . t) _ i.m. {v~ -11j). { x,· -~J) 
-:-• """""'- ...... , __ J' ' J, _~.~l··~TY~ -+e"'..,... <tlilti .-..., 

ol,, • • o{ .... "'.; ... -1" -

£1o1) • \. xF ('X.' .. x~.) .. ~j .. x,.,·v; .. v-i ··Vj .. v-,..·tJ 
,.., J """' ~ I ,_ ) ..., J """ 1 ""\ooo ) ,.., .) 

ol, .. a/~ • • ., ... ~,.., . 
I J iJ I 

. ( II-72) 

Finally, interchange of the spin indices ~~ and ~j gives 

.cllll) ( 'X.• .. XC, .. J(J ··Xu' lf; .. "Lr- • • 'lf'lJ· ·· Vu · t-) -r a - ' . ...... ) - ) .... ) - J -" .) J ..r J -
c:i •• o(• . .. q. ""'" -I I J) C..) . 

FftJ) (i(., .. ~j · ·X.i •. x.,., ·Va ··Vi .. v-~ ""d ·t'(II-73) 
..... ) ...... J .- ) .... ) - ) ~J ,., ) ... ,J '} 

o(, ··Ol;. ··ol: · · olrJ ) J .,, 

Thus it is seen that in general, spin, position and velocity play identical 

roles in the symmetry properties of ~fli) : an inte rchange among one is equal 

to the simultaneous interchange among the other two. In the spec:fal case of 

equal spin indices, the more powerful conditions II-70 and II-72 apply. 



-40-

D. Quantum BEGKY Hierarchy 
i 

The basic equati ons of the theory are II-59 (written in terms of ~(tJ)) 
Ol 

~d the symmetry conditions II-69 - II-73· We propose to attack them by 

deriving the quantum analog of the B.B.G~K.Y hierarchy II-11. To this end , 

define the reduced q.m.d.f. 1 s 
,....., +5 3 11 J.l J3 _,-...;feN> ) 
F CR) (X., . . i(. . ;r, .• v;: · t).:: Z Sct.~ " ctX.., ~+i .. ~- (~·~·-!N~ ~) .. ~~i-

...... J - R .1 - .J -R J <:_ R-tl ,.. o( •• c/,, -ol . .. I(R •,.. 
• ex: .• ·ol -=--S . 

1\~1 il ( II-74) 

Integrating II-59 over the subspace (X - • X · V":R -- ~ ) and .summing over 
""'R"I ....,.N J "' +I "" 

tegr ations in position and velocity space~ Using the symmetry condition 

II-73 (which holds as well for~(~)), the sum over k can be collapsed in 

II-75 to yield the desired analog of II-11: 
,...., co) [ · ~(R) a E " """<R) . (R) 

q, .. 4R + f:: (X, .. ,tR;Y. . : v-~J· t) H ("(, ··XR·v; ,,,-,.·t) J t '4,. •df\ ..... ' .... .I - J ..... J .... J- , ...... ) 

6 .P.S. 

= (N-R)q'- ~ ~z, ra\: lv i.rx~f-i.1;'\7~.·v.,.,J-~(J..cx·-x )'(F''R+t>) <rr-76> 
d • ~ < J' R+1 Rtt t 'l m .!;J ~j ~ 't' ;.;.; ... Rtl ~ a( •• a._ 

. J:. I ~ti-:.•S I ~+I 

To this equation must naturally be added the appropriate symmetry properties 

which are derived straightforwardly from II-69 - II-73· Tne results are 

simply represented by replacing N by R in these equation~ so we will not 

r epe at them here. 
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Of particular interest are the R=l,2 equations of II-76. Writing out 

the generali zed Poisson Brackets explicitly , we find for R=l: 
-( J ~ . )~ '\ ~ ,+,tl<t "' -...1{1) "J Fe( I + v. . v. ,....F(IJ - ~ t t7-:t r-'F''l - i q a.< ..!... (-c. ii cJ -r c !ri) ;;> e fk, v. t-) 
-I .-' ;c., "'· - vx,, ol, ::_a. <. )t I l'"ll. , . , ""I J ~ ) 

;; t - d m .... 1; n =• • 'J x, K ;r<'- · · · d v- 1<- ) lf: L ••• 
· I I 

. -rS e>O • "'1\ '1\ 1. ) "'\ '1\ ,-...J{~) 

) 
a~JdJ J3 ~ '· (-i "h) I d 11'(~, -~., rJ f:. ... (X.r )(,_ • v; 'Vt- · t) - (111-1 q ~ v: -lo<.. - - '"'•"'a .... , ..... > "'' "'J 

- d ~ J h )'Yl. )t/ '"'h•~' 'XL ,_ -
o(.l :; - S . l1: I 0 d 'f d I • • • d 1f". /<. d v; -. . (II -77.) 

where sununation over the Cartesian indices K~ t.., • · · is implied . . we will find 

it convenient in some applications to rewrite this equation in a somewhat 

diffe rent but equivalent form. To this end, we introduce the Fourier trans-

(II-78 ) 
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(obtained by SP.tting N=l,2,3 in II-69 - II-73) represent the quantum ana-

logues of the first two members of the classical B.B.G.K.Y. hierarchy. 

Aside from the more complicated operators involved (i.e. the difference be~ 

tween Generalized and ordinary Poisson Brackets), they differ from. the clas-

sical equations in two significant respects. The first arises from the 

presence of the spin indices . Whereas in the classical case, only a single 

F(l) F(~) •.. ........,(•) I 
(~Stl)~ ) ) is required, here we have in general (~S-t-1) F 5 ' 

:pc~)\ ' and so forth.* The second difference is the presence of the auxil-

iary symmetry conditions which, being far more stringent than the classical 

relation II-7, severely restrict the possible forms of the q.m.d.f. Thus, 

while we might be tempted to try an approximation scheme based on successive 

ansatzes of the form II-13 and II-14, we would find ourselves in violation 

of the symmetry conditions II-70 and II-72 at each stage of approximation. 

This will be shown to be tantamount to the neglect of exchange effects, and 

*The (aStlt f'LR> >5 are, of course , not independent, being related by the 
symmetry conditions as well as the constraints on the total spin of the 
system ( ~) and its ~ projection ( ~~ which corrunute with the Hamiltonian 
and hence can be considered as prescribed for each member of the ensemble. 
Examples of such constraints are: 

~ 5 ') ') -(•l 
..::::.._ o.!, c!A:, l v; Fot, c~,)~ )t) -= 

o(, ':. -!> 
and 
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leads to a description of syster~ of particles obeying Maxwell-Boltzmann 

statistics. \Vhile this may not be a serious limitation in some situations, 

a more involve~ scheme of successive approximations is clearly required in 

the general case. 

The procedure we shall adopt is as follows. The first stage of approx-

imation is to close (theR~t) equation II-79 with the ansatz 

( II-82) 

which, while in conformity with the symmetry conditions II-69, II-71 and 

II-73 , is nevertheless in conflict with II-70 and II-72 whenc:( ~c1~. II-82 

is the direct analogue of II-13 and corresponds to the neglect of all two-

body correlations. For reasons to be discussed presently, we call this 

t he statistical Hartree approximation. 

At the second stage , we still deal only with II-79, but choose a de-

~c;a) """t•l l 
composition of r in terms of F S which explicitly satisfies the full 

set of symmetry conditions. It is readily verified that this can be achieved 

by thP. ansatz 

where C is integral, 

- if s is half-integral. As an aside, we also exhibit the appropriate de­

composition of f (l) in terms of fb> \ which, while not needed at this 
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point , will guide us in going t o the third stage of approximation: 

F n) (x, x.:l x, · 11'. '\1',. '\1'3 · t) = 
ol,clad3 -) ...... J,...) "'' ..... > .~ J 

-- - --

Si nce the second stage II-83 (or the 'nartree-Fock" approximation as we 

Ahall call it) still is confined to a consideration of only the R-=-1 equa­

tion , dynamical two-body correlations (i.e. ' ·coll~sions") are consequently 

ignored and, as in the classical case, one must ultimately appeal to an 

explicit choice of the representative ensemble or to a quantum-mechanical 

H-theorem to remedy this neglect. Nevertheless, again as in the classical 

case, this approximation (as well as the "Hartree" approximation) has 
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considerable physical content and utility. In the next two chapters, we 
i 

will explore these approximations in some detail and, in the process, will 

establish contact with con·rentional approximation schemes based on as sump-

tions as to the form of theN -particle ~ function. The reasons for the 

nomenclature "statistical Hartree" and '~i.artree-Fuck" as well as the form 

of II-83 and II-84 will then be made clear. 

Proceeding further, in the third stage of approximation we introduce 

two-body correlations explicitly by working with both the f?-=-1 and R-=- ~ 
......... (:~) . ~·>' 

equations, closed by an ansatz expressing f in terms off S 
. """"Ca)' 
and f S. 

-c3) 
As should now be apparent, we do not at this point force F to explicitly 

embody the full symmetry conditions. This is left to the fourth stage of 

approximation where we still deal only with the R::.J and R ;~equations, 

' but with the proper symmetry, in the fashion .of II-83 vis-a-vis II-82. 

Specifically, the third approximation is defined by taking 
,..,....(3) . . 
F..~ l "' x ... X} .J v. Va. ,.~ ,· -t) -
"'•c/~ q} -I ...,. ) "'- · -I ..., ) "" 

where the correlation functions, e~~ represent the improvement of this 

approximation over "Hartree-Fock". At the fourth stage, II-85 is amended 

Of theci•> ""G(at>erms 84 by explicit symmetrization r in the manner of II- • 

Thus, it is seen that in principle the quantum B.B.G.K.Y. hierarchy 

is attac~ed by including correlations bet~en a successively greater num-

ber of particles, but in twice as many distinct steps as compared to the 
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classical case. In general, the (~R-1 )th approximation represents the 

first introduction of R-body correlations, but without concern about the 
~(A+I) 

proper explicit symmetrization of r -- a symmetrization which takes 

place in the a R ~ approximation. 

We will return to the third stage of approximation in Chapters VI 

and VII where a specific example, the uniform electron gas, is treated in 

some detail and should clarify the foregoing ideas. We should state in 

advance, however, what one expects to accomplish in general by going beyond 

the 'Tiartree-Fock" approximation. The answer is clear from a consideration 

of the elassical situation outlined in II-B. First , a quantum-mechanical 

generalization of the "collision integral" II-24 is obtained which serves 
-::::-ca) 

both to determine the equilibrium value of ~ (thereby obviating the 

necessity for an outside appeal to the H-theorem or ensemble theory) as 

well as the non-equilibrium and transport properties of the system. 
. ~<2) 

Furthermore' the consequent corrections to r will lead to a more accur-

ate expression for the internal energy of the system and other thennody-

namic quantities. 
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Chapter III. The Statistical Hartree Approximation 

A· General Remarks 

Before investigating the consequences of the.ansatz II-82, we wish to 

explore its connection with the so-called Hartree(alf) or "self consistent 

field" approximation in quantum mechanics. For simplicity, we shall assume 

we are dealing with a· spinlesE system. 

The Hartree approximation is characterized by the assumption that the 

· lTJ<N) N-body wave funct1on, :L , can be adequately represented as the direct 

product of N single particle wave functions: 

CN) 
~TJ (x., ···X.N t) ==-t.(;<,t)~{X~t)···· 'f. (Xfl t) 
I ,...J ...,) •--J ~""') "'-' (III-1) 

where the~~ are in general different and normalized to unity. Although 

in manifest violation of the requisite symmetry condition II-66, this approx-

imation, by virtue of its inherent simplicity, represents the usual starting 

point in studies of quantum mechanical many-body systems. When inserted into 

the Schroedinger equation II-29, III-1 yields a set of N coupled equations 

for the ~i , each of which has the form of a single particle Schroedinger 

equation whose interaction term is the sum of the external field (if any) 

and the potential arising from the charge density of the other particles. 

Consider the "pure case" of an isolated system described by a wave 

function of the form III-1. It follows directly from the definitions II-28 

and II-32 "that the consequent N-particle q.m.d.f. is 

. (1'1) 
F (t.a · · ·Xw · 1F; · ··'11"111 • t) 

""J ""J-• ,..J 
(III-2) 
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where . , ) 
3 J t t.hlV'"·(X-X 

F (X 1f t) = (~ \ tp ( ~ t) J ~ 1 I''· ( X1 t) e 1; "' - -
{ i.) ,.. J .,. J ~lf l\) ., , I" ' . (III-3) 

Now since the observable properties of the system do not depend on the 

labelling of the particles, we can without loss of generality consider an 

ensemble of N! systems, each of which has a product decomposition of the 

form III-2, but which differ in the way the particles are numbered. Spe-

cifically, let 

,-.....J) N F (tJ (x, ,. ·X.rJ · v, . -\rrJ · t) ~ ~~ ~ T\ F. (x~ 1fi t) 
,, ....., ) ""'' "") L.....CJ . J ,... ) ""') Nl p·)~.::, 

• 
(III-4) 

where the summation is over the N! permutations of 1,2,---N. Integrating 

III-4 over ( .(1 · ·· Xt~ ,· "1 ... V"w ) 1 we find 
~~ ,.... ........ , ,._ 

---~) ~ ~ F ) -F (X 'X~ · 'V" '\f t\- I ..C. <._ · (')(, Vi t \-. (X~ 1/"a, t) 
I ""- ) I il ' ) - - • (. ""') - J J - ) "" ) 

"'
1 

"'
1 

"" ' N(IV-1) i:::r ~:•. 
(HI-5) 

J.,.t.. 
Integration of (III-5) over ( X.~ v~) gives -, .... 

('I . 

F(i) (X, v: -t) -= j_ £ F. ( 1' v; t) 
..... I "" J • f., J ,.... J 

N L':J . 

(III-6) 

Thus, from III-6 and III-5, 

,..... (I) ....,(,) I !!-- ~ F ( F. F (x, v, t) F c~~ tra t) = - :z_ L · x, v, t) . (~a. ~ t) 
.-) N , .... ) "'" J Nit ._ . t- ,... J "" ) .J I - ) 

l-J J :J 

rJ (1) ( ) rJ 
N:l F x., x~ · v; 1f":. t + _!_ ~ F. (x, ,., t) F.(~~ v~ +) ( ) 
N ..... , .... ,_,_, N1..- (; .... , .... , t.. -J-) III-7 

t.:J 

Since the last term of (III-7) is of order '/N compared to the other terms, 

we find that 

(III-8) 
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We have therefore demonstrated the equivalence of the Hartree approx-

imation and the ansatz II-82 in the limit of a many-body system. Note that 

III-8 could have been obtained for any N if the'/'~ in III-1 had all been 

equal. Physically, this is equivalent to describing each particle with the 

same generic wave function -- representing an average over the actual be-

havior of the N particles. For this reason, we refer to II-82 in general 
'• 

as a statistical Hart ree approximation although it should be borne in mind 

that for large N it becomes equivalent to the Hartree approximation in the 

usual sense. 

B. First QuantwH Vlasov Equation 

Proceeding now to an investigation.of the consequences of II-82, we 

insert :i.t into II-76 (with R=l) to obtain 

~ [e "!'[-~ v~, v d -J ((N -0'J:~ ~: lJv~ J;'~'~!'/'.:•, t) ~ (~, -~·V( ~.(•! 1!£•, ljj ,t~ 
~ (III-9) 

Since spin plays no role in this approxirration, the spin indices are 

excess baggage. We therefore sum III-9 over ol, and define 

s 
£_ 

(III-10) 

Furthermore, recalling that 

(III-11) 
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where <.. e (X t)) 
... , is the ( ensemble averaged) expectation value of the parti­

~ sc.F the self-cons i s t ent fi eld, ~ : 

(III-12) 

which, by virtue of III-11 is equivalent to 

(III-13) 

We find, therefore, that III-9 when s ummed over o(
1 

can be written concisely 

as 

(III-14) 

where the self-consistent field H&~ltonian, HscFJ is given by 

(III-15) 

Finally, writing out the G.P.B. explicitly, we obtain the quantum analogue 

of the Vlasov equation*, II-15, 

lf•> + '\f;, \1 f'b> -..!- 'V. "l.( f ext+ 4>scF )· Vv: p-C•J -[~ v:. fN 
;> t ""' :· rn. ~ • o -· . an\ .... 

(III-16) 

*In the next chapter we will derive another quantum analogue of the Vlasov 
equation based on the more realistic ansatz II-83 which will differ from 
III-16 in that additional ("exchange") terms occur within the brackets. 
we refer to the two cases as the first and second quantum Vlasov equations 
respectively. 
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An alternative f orm of III-16 is obtained ·oy introducing the spatial Fourier 

,h~)(t 
transforms of i 

j,.SC .f 
and 't' 

in which case III-16 becomes 

..,..... a ,-JF C•) +- ~ ~F t•> 
V 1 • Y7(. - 1- h 1'7 , _v.,. 

,..... ~ "'\ ""' o(YI'\ ,.. 

[ 
,--..;(•) ""'C•) J 

'I{ f= ( x.. v, +! tl- t' - F ( x, v; t) - o ,...)_ ~£.>:./ .... , ... , -

(III-17) 

. (III-18) 

(III-19) 

From this point on, a discussion of the physical significance and util-

ity of III-16 would directly parallel that given for the classical case in 

Section II-B. In view of this redundance, we need only sketch the general 

types of physical problems which can be fruitfully studie'd by means of this 

equation. 

'.-vFr·~ 
First, the time independent form of III-16, obtained by setting d /Jt 

.......... (1) 
equal to zero, yields an equation that F must satisfy if it is to repre-

sent a stationary ensemble~ The . characteristics of this equation for a 

given (time-independent) teJCt ('~,) are the quantum analogues of the "con-

stants of the motion" in the classical case, among which is the si:ngle part-

icle energy in the self-consistent field. This quantity will differ from 

the classical expression .II-19 in that an explicit dependence on the grad­

ients of q>eJCt will occur by virtue of the bracketed terms in III-16. Any 
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functional of tPese characteristics will satisfy the time-independent form 

of III-16. Next, one appeals to a quantum-mechanical H-theorem or ensemble 

theory to determine this functional. Since this ·appeal goes beyond the con­

tent of III-16, there is no harm in introducinB the appropriate quantum 

statistics at this point, even though it is not embodied in II-83. Thus, 

generally speaking, the time independent form of III-16, when augmented with 

a quantum-mechanical H-theorem, yields a description of the system in thermo­

dynamic equilibrium. In the limit of zero temperature, one obtains an approx­

imate description of the ground state. We defer further discussion of this 

class of problem to Chapter V where a specific case, the many-electron atom, 

is treated in some detail. 

A second type of problem concerns the response of a system, initially 

in thermodynamic equilibrium, to a weak external field which varies in time 

at a r&te large compared to the collision frequency. For systems with long­

range interparticle forces, self-sustained collective modes of oscillation 

will be included in this catego1~ 1 appearing as poles in the response func­

tion. In Section C, we shall treat this case for an infinitely extended 

spatially homogeneous system. 

Finally, at the opposite extreme where the system varies in time at a 

rate slow compared to the collision frequency, one assumes that local thermo­

dynamic equilibrium is maintained by the collisions and obtains from III-16 

the quantum analogue of the equations of inviscid hydrodynamics. This will 

be carried out in Section o. 
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c. Response of a Spatially Uniform System to Weak External Forces 

Consider a system of N particles each having mass~, spinS, where 

the particle-particle interaction potential,~~~(~-_z'), is given and has 

the Fourier transform: 

(III0:20) 

Let the system be exposed to an e xternal field of the following form: 

(III-21) 

where q,ttt is a static field* which confines the particles to a volume 
·v 

in such a fashion that the particle 
~ext 

ly uniform for t<O. ~ 'f, (~ ... t) 

number density, )t , within V is spatial-

represents an arbitrary additional field 

which is switched on at t = o, whose strength is characterized by the dimen­

sionless number ~ • Assume that N and V are sufficiently large that sur­

face effects can be ignored so that for all intents and purposes the system 

can be regarded as spatially infinite with finite constant density)\. For 

t<O the system is assumed to be in thermal equilibrium at some temperature 

T ""'F c,., • We wish to find for this problem. 

J..ellt 
is (by the definition of ~" ) spatially con-

stant so that III-16 reduces to 

+ 

*In the case where the system 
in a fully ionized plasma or 

.nut exampl~, '1'v represents the 
respectively. 

. (III-22) 

in question consists of the free electrons 
the conduction electrons in a metal, for 
smeared out effect of the ions or lattice 
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Therefore, any FC•) which does not depend on X will be constant in time and 

hence characterizes a stationary ensemble. Since we have assumed that the 

system is initially in thermodynamic equilibrium at temperature T, we de-

scribe it by means of a quantum-mechanical macrocanonical ensemble and find 

from any text on statistical mechanics that 

(III-23) 

where the + sign is chosen if S is half integral, - if integral and }J('"-J T) 

is determined by the normalization condition 

(III-24) 

Fort ~o , let 

""'(•> . a . ) F .l"! 1[ t):= _!_ fo(v) -r j_ \ G (~ 1 1l} 
I ) N N 

t~o 

(III-25) 

so that F. represents the departure from the equilibrium distribution caused 
I 

by the perturbing potential J,..extc,~ t) . The self-consistent field A.Sc.F(( t) 
~ ) . . ' 'f, ... , ' 

due to F, is given by (III-12) 

(III-26) 

Using the form III-19 for the quantum Vlasov equation, we find that ~ satis-

fies the equation 

;.aaa ) ~ i.t.-~( eltt" scF ~ 
- .::...rl.S clt e "" f, ct t) t-f, lt, t) 

t; ( ;!lf)3 "' ) .\!. ) 

+ B ( F. l ~ 1r + ~ ~ t) - F l ~ '\C t)\l ::. o 
\ I -) .., Wt ! J \ I I ~ 

(III-27) 
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f ext f ScF · · where 
1 

and 1 are the spatial Four1er transfonns (III-17 and III-18) 

of ~' e*t and ~.scf , and F, has the initial value 

F (X V~) :::o 
I ""I "'I (III-28 ) 

For weak fields (i.e. ~L"- I ) we ignore the tenn quadratic in ~ to obtain 

the linearized equation 

· l. ( 3 ~~-X( e~t r5<F ) 
-~ )dt e "'"' f, r,t;t) +t, (rJt) 
i; (;nr)l . ..... 

X L r-0 ( r.,. ~ ~) - Fo ( 1[)] ::: 0 
(III-29) 

.To solve this equation, we introduce the following Fourier transfonns: 

e><> i(~¥ ·X -Wt) or 
~ l!, ll/) : (;;)ll ~d3t 5J"' e - - .T (~) 1£} w) 

-GlO (III-30) 
01' 

e.xt- .... lf' }(I w e_i,wt:a.ext(t) w) f, ( t' t) = Cll d-
...,) 

-00 (III-31) 

(III-32) 

in terms of which III-29 becomes 

(-iw • < lf·j- • ~!. '!r") 'f,- "-f[ F.,(!tk :rJ-F.l'!:il( fft,wl ·~.·'Ct,"'V~o 
(III-33) 

Furthennore 1 due to III-26 and III-20 we have 

(III-34) 
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Equations III-33 and III-34 are easily solved to yield the desired result. 

where e is a positive infinitesimal arising from causality (i.e. III-28) •. 

III-35 and III-23 solve the problem. 

We observe that the response function becomes singular if 

(III-36) 

or 

r I - t f{'jJI.'v' [F. ( :!!"1 

+ ~ t)- F. (JC'JJ } 

L "t\ -W- i., €. + J[1
• ~ -t-~ :1 

il)lo\. 

0 
(III-37) 

which therefore correspond to modes of excitation of the system. III-36 

describes single particle excitations (and de-excitations) where a particle 

of momentULl'm1!"is scattered into the momentum state ( »"~:![ r'h,t' ) with a 

change in energy 1\w . III-37 is the dispersion relation for collective 

oscillations of the system brought about by the interparticle interaction 

f ( ~ ). The vanishing of the real part of the bracketed term gives the lo­

cation of these modes in the t.J;t plane. The imaginary part, obtained by 

means of the identity 

(III-38) 
€~0 
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yields the lifetime of these excitations. For a system with Coulomb inter-

actions: 

(III-39) 

III-37 is the quantum-mechanical dispersion relation for plasma oscillations. 

It is easily shown that in the classical linut, the real part gives the ordi-

nary plasma dispersi~n relation and the imaginary part gives the so~called 

"Landau" damping (29a) 

Of particular interest -is the zero-temperature electron gas in which 

case 

0 
(III-40) 

where the Fermi velocity, lJf , is related to the density by 

~ = ( ~n)'/3~ 
(III-41) 

Introducing III-38 - III-41 in III-37 yields after some algebra 
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This is seen to be just the Bohm-Pines ( 30) ''plaE!".on" dispersion relation 

which is extensively discussed in the literature (31). The left-hruld side 

of III-42, which can be shown to be identifiable with the frequency and 

wave-number dependent dielectric constant for the system, is identical to 

the dielectric constant as computed in the so-called Random Phase Approxi-

mation (R.P.A.) by Nozieres and Pines (32). It was first obtained by Lind­

hard (33) from time-dependent perturbation theory. 

It should be emphasized that the general result III-35 is only appJ~-

cable for times short compared to the collision time or equivalently, for 

frequencies large compared to the collision frequency. 

D. Quantum Hydrod;ynamics 

Within the context of the neglect of exchange effects, the exact equa­

tion for FC•} can be formally written as 

·df'C•} 

dt 
+ f,....J,f(o) )1(~ ](a) 

.) sc: F 

G-.P. 8 

- ( ";}F'') - -
~t . . . 

· C:oi\JSiol\S . 

(III-43) 

where the left-hand side is that of quantum Vlasov equation III-14, and the 

right-hand side represents the effect of all dynamic collision processes. 

If we imagine configuration space to be divided in cells each of which has 

linear dimensions large compared to the collision ''mean free path", then 

from the fact that the collision process* conserves number of particles, 

momentum and energy we observe that macroscopic conservation laws for these 

*Recall that it was initially assumed that the particles have no internSl 
degrees of freedom. Furthermore, we assumed ·that the effect of objects 
external to the system can .be represented as a scalar, veloci·ty-independ­
ent potential, ~ext • Thus, such processes as electron-ion collisions in 
a plasma or electron-phonon interactions in a metal lie· outside the scope 
of the present discussion. 
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quantitie!J (which apply to the whole of each such "coarse-grained" cell) 

can be derived from III-14, since the contribution of the collision term 

is zero. · In the classical situation, for example, it is well known that 

the first three velocity-space moments of the Vlasov equation yield res:pec-

tively the continuity equations for mass, momentum and energy. We wish to 

derive the corresponding equations from the quantum Vlasov equation. 

We :proceed from III-16 written in the form 

] :: 0 (III-44) 

where the repeated Cartesian indices K>LJ··· are understood to be summed 

from l ·to 3 and 

(III-45) 

Integrating III-44 over all velocity space , and integrating by :parts 

where necessary yields 

(III-46) 

Next multiplying TII-44 by '1'1\'\fH (r•h\oi)~ ) and integrating over veloc-

ity space leads in a similar fashion to the vector equation with components 

(III-47) 

( M ::IJ~J 3) 
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F i nally, multiplying b y J..""rnV'-;;t and int e gr a ting over v e locity s p ace g ives 
~ 

t h e scala r equation 

;t [~J.3v- 1lnva r=(•>J + Y·L\a\r)! (imv~rc•) - ~! yJd~(~mv~)'Fc'j 

( III-48) 

It is now necessary to r e l ate the b r acket e d quantities in these equa-

tions to the expecta t ion value s of phys ical obse rvables. This is a simple 

matter for the quantity JFI•l lv , ·which by virtue of II-35 is just 

(III-49) 

wh e re <l'l.) is the ( e nsemble ave r ae;ed) expectation value of the particle 

(number) density a t ex. -t ) and N-' arises from our choice of normalization • 
.-.J J 

. _, 
Since this N factor will occur in every term and thus can be divided out 

of .III-46 - III-48 , we will h enceforth i gnore it. 

The remai ning bracke ted terms cannot be treated so simply, and we must 

go back to the basic theorem II-44. Conside r first the classical expres-

sion 

f ( :c-') = 'M_ )[ s (~-~I) 
~ (III-50 ) 

which, when integrated over all of phase space with the classical dist~-

tion function F (~ tr ), gives the average value of the momentum at the point 
""""•~ . 

I 1 The quantum-mechanical Hermitean operator which in configuration 
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space corresponds to the ~unction III-50 is 

(III-51) 

This is now written in "anti well-ordered" form (see p. 29) by performing 

the necessary commutations: 

(III-52) 

Thus, from II-44, the phase space function 

(III-53) 

..-. (•} 
when integrated over all of phase space with F will yield the quantum 

mechanical expectation value of the operator III-51 which in turn corre-
, 

spends to a measurement of the momentum at X • Performing this integra--
tion, we find 

(III-54) 

where < f (~/)) is the (ensemble averaged) quantum mechanical expecta-

tion value of the momentum at (X: "t ) • _, With the definition 

(III-55) 

where(~) is the convective or "drift 11 velocity, III-46 becomes 

(III-56) 

which is identical to the classical mass continuity equation. 
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In equation III-47 , another integral 

(III-57) 

occurs which must be similarly treated. The classical tensor-rr- with ele-

ments 

(III-58) 

when integrated over phase space with the classical distribution function 

II · 11 I gives the ~otal stress tensor at the point ~ • The quantum-mechanical 
. ....... 

Hermitean operator analogue of III-58 is 

which in anti well-ordered form becomes 

1f ' M ~ .L ( ].. \a L ~ ( ~ -~· ) 
m ~ J ~x,:Jx"' 

Thus, from II-44, the phase space function 

(III-59) 

(III-60) 

( III-61) 

when integrated with r (•) yields the expectation value of III-59· Performing 

I 



the integration gives 

is the {ensemble averaged) expectation value of 

the total stress tensor at (~ t ). 
""J 

Introducing III-62, III-54 and III-55 into III-47 and m~~ing use of 

III-56 gives finally 

. (III-63) 

where the elements at the tensor -rr- are given in III-62. 

This is the momentum continuity equation. The first three terms are 

recognized to be just the usual classical expression. The last term repre-

sents the quantum correction to this equation. 

Deferring for a moment the consideration of III-48, we now introduce 

the underlying assumption of hydrodynamics: The system is assumed to va:ry 

in time sufficiently slowly to allow collisions to establish local thermo-

dynamic equilibrium. This means that if we locally transform to a refer­

ence frame moving with the drift velocity < ~ (~,t)) then in this frame, 
..-{I) F is the solution of the time-independent quantum Vlasov equation appro-

priate to a (quantum) macrocanonical ensemble characterized by the local 
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temperature T ( ~' -t ) and density <. 'Yl (~/;) ) 

be the solution of 

I 

Specifically. let pN 

(III-64) 

appropriate to this ensemble, with 

( III-65) 

Then, the ansatz of local thermodynamic equilibrium takes the . form 

. ,.....,() I . 

Ra F I . ~ .r-.-(1) 
. ( ~ J[ t) = F I X 1T- ( u. {X t)) t) 

) ) L """' ..,.. IV "-J J 
. ) (III-66) 

. I 

whereRe_f'l•J is now a known function.* The real part is taken because it is 

only necessary that the observable local properties (which by the basic 

("::!' 

theorem II-45 are contained in R.. F ) should transform according to III-66. 

By means of III-66, the V. ( lf) term in III-63 can now be expressed 
. . I 

in terms of .( -n) < lA-'-J ,.., / 
and quanti ties calculable from Re f'bJ • To 

*In Chapter V we shall find from a perturbation expansion in powers of ~ 
that to order ~~ and neglecting exchange: 

I . 

~ pC•l (~ > 1l}) = [ Fo {e:) - ~ (v'l~"<f>r) ££! -~(v· V 1r·Vq~ .J.. 
l.j 'Yr\ J € a G "" ,... "' ~~< o '~'T 

(III-67) 

where 

(III-68) 

and }' is determined from III-65. 
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this end, we first take the real and imaginary parts of III-54 to obtain 

{using III-65 and III-66) 

I . s d.)w X! ~ 'f'C•Jt~,'-1/) :::.0 ( III-69) 

and 

ck ~ a ~v ¥ 'f(•) ( ~) r) ~) ::: .:t y.~ n > 
. ~~ 

( III-70) 

Next, ·ta.l<ing the real and imaginary parts of III-62 and making use of III-66, 

III-69 and III-70 gives 

and 

where 

( III-73) 

and by virtue of II-45 is identified with the (ensemble averaged} expecta-

tion value of the local kinetic stress tensor as computed in the moving 

(Lagrangian) frame. 

Introducing III-71 into III-63 gives, after some manipulation, the 

final form of the momentum equation: 

-m..("Yl.>L;t +<tt>·YJ<~> + ~·<-n-'> 

+ ~ ~ ( V~< n)) = 0 
'im ...... 

Crrr-74) 
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In this equation, it is understood that the kinetic stress tensor<(lf~is 

to be expressed in terms of < 'Y\) , T and cPr by means cf an explicit 
,...,' 
-{1) ( 6 ) J. form for Re r such as III- 7 : and, furthermore, that 'rr is related 

to .( n) vi~ 

( III-75) 

Turning finally to the energy equation, we ta.'l<e the real part of 

III-48 and, making use of the foregoing relations, obtain after some manip­

* ulation the result 

'rtt <( "'n) [1- t < ~ >. ~J ( < E /;>IN- l; ~ V'l<-n> \ 
~t 'illta<.n) J 

+ ~ (v>:c.")) ~·<'Z> + X:·<@'> = o 
(III-76) 

where the (ensemble averaged) expectation value of the kinetic energy per _ 

unit mass is defined by 

(III-77) 
I --r /. -n-' > - •ra..ce '•• 

'Jm~Y\.) 

and the (ensemble averaged) expectation value of the thermal current is 

(III-78) 

Now one can show quite generally from the form of III-64 and the fact that 

'(/ ,._ I 
when "\; --. o J F 1 must be real that the real part of F(') is unchanged by 

* See Appendix B 
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a reflection in velocity space and ccnsequently that ( ~J) ....., vanishes • 

We formally retain it in III-76 for reasons to be discussed presently. 

In the Hartree approximation , therefore, the equations of inviscid 

isentropic hydrodynamics are III-56, III-64 , III-74 and III-76 (with 

<~'> ~o ). It is important to note that these equations differ from 

the classical case in two respects. First, there are the new terms de­

pending explicitly on ha, vmich arise because the sL~ultaneous s~ecifi-

cation of particle position and velocity implicit in hydrodynamical equa-

·tions violates the uncertainty principle. Thus in III-74, the last term 

represents a zero point pressure which must be added to the expectation 

value of the kinetic stresses when density g radients exist. Similarly 

III-76 states that only the excess of kinetic energy over and above a 

zero point energy can ' be taken to represent heat. 

In addition to these explicit quantum corrections, further modifica-

/~) I I(IJII tions arise from the fact that ...._ 11 and (E: ) are related to < Y\) 

and gradients of ~T (i.e. the equation of state) via the quantum mechan­
'V/ 

ical equation III-64 for fM • One can see from III-67, for example, that 
a . 

the equation of state will be modified by terms of order "\; when exter-

nal forces act on the system. 

The exact equations of hydrodynamical transport will depart from the 

foregoing in two ways. First, irreversible effects will enter when colli~ 

sions are properly taken into account (i.e. by adding to III-44 the quan­

tum-mechanical collision integral and abandoning III-66). As in the clas~ 

sical case , we expect that this deficiency can be approximately remedied 
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by addi ng to the k i netic stress t ensor(-n;), a viscous stress tensor , <(~) , 
given by 

( III-79) 

where yt is a phenomological coefficient, and further, by introducing entropy 

production via 

- ct 'VJ.. - K. VT 
"" 't'T IV (III-8o) 

When long range interparticle forces exist, a s econd modification due 

to exchange effects must also be made. In the next chapter, we will intro-

duce the Hartree-Fock approximation, from which the s econd quantum Vlasov 

equation will be derived. Velocity space moments of this equation will 

then lead to the correct equations of inviscid isentropic hydrodynamics. 

Our motivation for having derived the admittedly incomplete hydrodynamical 

equations of this section is that exchange effects be yond those included 

in the use of quantum statistical ensembles (i.e. III-68) are often unim-

portant so that the forP.going equations should be a good approximation in 

those cases. Furthermore, it is instructive to s ee what new consequences 

are brought in at each stage of approximation to the many-body theory. 

Finally, it should be emphasized that the results of the present chapter, 

being derivable equally easily from the Wigner distribution function, do 

not represent a demonstration of any intrinsic merit of an approach based 

on the von Roos q.m.d.f. This will no longer be the case When we go to 

the Hartree-Fock approximation. 
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Chapter IV The Hart r ee-Fock Approximation 

i· 

A. General Remarks 

As in the previous chapter, our first objective is to i.nvestigate the 

f or m of the N-particle wave function (for a pure case ) which i~ i mplied by 

the ansatz II-83. This s tep is not, of course, essential to the logical 

development of the theory and is taken primarily f or t he purpose of estab-

lishing contact with conve nt ional approximation procedures. For reasons 

of simplicity, we shall limit this discussion t o toe case of particles with 

spin zero and spin 1/2. 

In the latter instance, consi6er a system of N spin 1/2 particles in 

an energy eigenstate, E, whose total spin -project i on in the +Z direction 

is (m-p) 1/ 2 where m3 p and m+ p = N. The s o-called Hartree-Fock (34) 

approximation is characterized by the ass~~ption t hat the N particle wave 

TI7CI'J) function lr can o e r epresented as a single Slater det erminant of sinele 

particle space and spin wave functions with the specific form 

~ E't 
Col\St e. t. 

' I 
U.~(~,)~{•) ... - s.,-a. 

. . .. .. . ... . 

vJ I ("~,) S (I) - -
I -'/1. 

(IV-1) 



-:70-

where the functions$ ( i) and. ~ (~) are "up" and "down" spinors respectively, 
'J,_ 5_1,~ 

h e nceforth to be denoted simply as 1'. and ~ . • From the properties of deter-• c. 

minants, non-tri vi ali ty of o/'11
) demands that the . functional sets ~ tti.J and 

\W;J be individually linearly independent. Aside from this requirement, 

the functions U. ~ and W;. are arbitrary.* 

We first observe that without loss of generality, the ~ u~J and~wq 

may be ta.'-<en to orthonormal: 

Sa\ U.j, ("X) U.•(X) .. "' ... 
::. ~;j 

(IV-2) 

Si\ W~!~)WJ(l) -:. ~~j 

This follows from the fact that by virtue of the linear independence of the 

~ ll~ l and ~ w;. J ' orthonormal sets ~ u.'d and~ w{f can be constructed from 

linear combinations of { Ll~~ and ~ \V~! by the Schmidt procedure . Inverting 

this transformation , one has in general 
Yl\. , 

-:::. <: C·· U·£X) 
:C- "J J -
J~l 

f. I 

'W~ Ll):: .2.. J~j W; ll) 
1,)-:., 

which when inserted into IV-1 gives 

Clil) 

lJ' (I, · ··,N) =!. ccnst ;!t r fr £ c~)r-f 1J.JtJ 
u~· .l~• ~Lh-:., 1~1 :J 

(IV-3) 

I I 
u.,(~,)t,- . -- -1.4-ll~.,)t., 

I I 

I 

I 

I I 
' I • 

U. I {lC.t)f ' • - • • ·Ll-l~~~) t 
11\. "'" I '" "' t/ (rv-4) 

w'cx:,)l - .. ---W'(-x,)t. 
•, ,., t", •, ~ <t~tw 

I I 
I . I 

w[ll1)•, - - .. -v.tf(~H)~,. 

*A "restricted" Hartree-Fock scheme in which m = p and u, =W~ (i.~IJ ... )Tf'l ) 

is often used as an approximation to the ground state of a normal many­
fermion system. 
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where use has been made of the fact that the magnitude of a determinant is 

unchanged by the interchange of two rows. Since IV-4 is again of the form 

IV-I, the result is proved. From IV-2, the nonnal ization constant in front 

of IV-l is trivially found to be ( N I )-l/ 2 • 
• 

The problem is now to cornp1.1te from IV-l and the definitions II-32 and 

4 F {~) l•) F lt) _t-(1.'\ F(•) 
II-7 , the six quantities: F 

tt ) ~.J. ) 1'-t ) ~t ) t 
Introducing the definitions 

.f:tk) =.f. (x.h v-.Jt.) ~ (~)3u.~(xfc)5J3v',.~cv') e~: }[Jc·(i-l.~z) 
v J " J ,... ) - 'llT~ "' ,.. ""J ~ 

and noting that by virtue of IV-2, 

we find by direct computation that 

"f)\ f. 
F{z.) [x. x1. · V\ 'IJ-..\::. -' L :t_ .t.C') .~. £:~) 

1t>. I ...,. l "' J "'-) .... ') ( )( :\ <_ z &. t. _, " 
'I ..... N N-lJ L.-:., ~':.\ 

..1•) 
and r"' . 

(IV-5) 

(rv-6) 

(IV-9) · 
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and 

(1.) ~ f 
F, -f\ (~, -x.l. ,, ""~) :: .-!__ 2_ ~ ·l (t).f.l~J 

"' I ) "' J "" ) "' ~~ -c~'-1) • • II (. J J 
IY 1'1 t,::q J:::J 

(IV-10) 

Inte3rating over (X~ v~) and Surr@ing over the second spin index gives 
..... , .... 

(1) Yl\ 

F •. l~J J[).: l. <. . -f. (x v) 
., N .~" " ~>-

~.,., 

(IV-ll) 

and 

(1) f . F. {-x v-) ~ l_ < . a ·(X v) 
..., ,.., ) N N .z " d r. ,.. J .... 

t.:::.l . 

(IV-12) 

Direct multiplication of IV-ll and IV-12 and comparison with IV-9 and IV-10 

leads to the f irst two desired relations 

(IV-13) 

and 

(t.) r I t ( "(, Xa . v-, '\]" l.) ::. N 
.. ->"'-J""J"' 

(IV-14) 

N-J 

Next, we note from IV-ll that 

(IV-15) 

Now, it is trivially shown from the definition IV-5 that 
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+ <.f. (•).f. le2)] .<-" " c. t.. 
c..=l 

(IV-17) 

Suotracting IV-17 from IV-15 and comparing with IV-7 leads to the desired 

result 

(IV-18 ) 

Similarly, 

(IV-19) 

We have proved, therefore, that for . a pure s tate, the ansatz II-83 is 

equivalent to the assumption that the N particle wave function is a single 

Slater determinant. In a similar fashion one can readily demonstrate that 

rr-84 also follows from this assumption. 

The fact that the nonnalization constant in .the preceding equations is 

( N /u-1 ) rather than unity has a rather interesting consequence which we 

now examine. Adding equations IV-13 and IV-18 .and integrating over ( IC~ 1fi ) 
""" J~ 
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where use has been inade of the normalization 'condi t1on 

(IV-2l) 

(IV-22) 

After a little algebra, this result can be rewritten in terms of the oper-

(IV-23) 

(1) 
It should be emphasized that IV-23 (and an analogous relation for f-" ) 
follows as a direct consequence of the form of the wave function IV-1 and 

involves no other assumptions or approximations. The physical content of 

this equation is best explored in the case of a spatially homogeneous 

system where the gradient terms vanish. Solving IV-23 in this case gives 

0 (IV-24) 
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which is the familiar result that for each spin species , a cell i n phase 
3 

space of volwne h has occupation number 0 or 1. The state of lowest 

k i neti c energy consistent with IV- 24 and the normal izat ion 

(IV- 25 ) 

(where Ylt is the number density of spin up particles ) is obviousl y the 

Fenni sphere 

Fe.) 
[ 

-m.l v- ~. ~1' - tJ (~1fl\)3 -
t 

'IT> 1/f.'t 0 

( IV- 26 ) 

where 
\} ·~ 

\Ji'l' = (~~)3l~) ytt ( I V-27 ) 

Thus , we conclude that IV-23 is just the exclus ion principle written i n 

q .m.d . f. l anguage for a general pure state descr ibed by a wave function 

of the f orm IV-1. Further conse quences of the N /N~t factor will be d i s -

cussed i n Chapter v. 

Turning now to the Bose case of spinless particles , the situati on i s 

some•,.rhat more compl ex. The analog of IV-1 for this case is 

\11 (N()IJ . . . J ••) -- C:il ~ T ,.. c oYis+ e -t. L:... u.t. ( ~·) u.J (~~) ., - - u.k £~,) ( IV-28) 

P. . IL. "J ... .f"(. 

wher e the sum is over the N ~ permutations of the singl e partic l e wave func-

tions U,1 - -- u. 111 among the N parti cle s ·. The compl exit y occur,; bec ause 

t he )tt~~ in general are not r equired t o be or thonormal ; no exclusion 
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principle acts to prevent multiple occupation of the same state. We are 

therefore unable to treat the Bose pure case with the same generality as 

the previous discussion of Fermions. If we limit ourselves, however, to 

certain restricted examples of the form IV-23, some insight into the re-

lation between (the Bose form of) II-83 and T/-23 can be obtained. 

Specif'ically, we distinguish two limiting cases: the ''nondegenerate'' 

limit characterized by the property that the N functions u· are distinct 
" 

and orthono1~al so that no two particles occupy the same state; and the 

''totally degenerate" limit where the U.~ · are identical, corresponding to 

the "Bose condensation" of all particles into the same state. 

The nondegenerate case is quite similar to the Fermi case treated 

earlier, and i n fact can be represented as 

u., ( ~·) - - - - - u... ' l ~ .. ) 
I 
I 

I 

I 
I 
I 
I 
I 

Ut.~{'~,~)-- --Llt-~(~~~~) 

(IV-29) 

( +) 

where the so-called "permanent", I I , is obtained from the correspond­
(+) 

ing determinant by taking all N~ terms with a positive sign. The compu-

tation of t- <•) is straightforward and yields 

(IV-30) 
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where the . f' s are defined in IV-5. Integration over · (X;~. '\r'l.) - ) ...... 
leads to 

( IV-?1) 

From IV-?1 and the theorem IV-16, we find 

FC•) -r•) -i=rv.-v~)·(x,-x2.) f,,, 
w.o.c~'> ";(•) r~.l)_{l•J yl) + e n "' ,... "' - F: I (1) N.D. {~~J 1£•) J=AI.D_(~,J ~~) 

'N pJ 

~ ~ r £ ~ ( ~t ~ {•) j+./;j) + j .f.})/~(~) + i, f/1)~ f/Zl) + ./l(l\fj (;n) 
L "~' J>~ . 

( IV-?2) 

Thus, 

(IV-??) 

Since the last term is seen to be of order ~N , we are led to the result 

(IV-?4) 



-78-

It is not difficult to show that if we had permitted a slight deviation 

from nondegeneracy by allowing m of the U.~ to be identical,· with vn <:< N 

then to IV-33 would be added terms of order"Y'fi/N • Since the result IV-34 

is unaltered in this case, we are led to the conclusion that the Bose form 

of_ II-83 correctly describes a pure state characterized by ry-28 in the 

limit of large N if most of the particles are in distinctly different 

states. 

let us now explore the opposite extreme cf complete or near-complete 

degeneracy. At complete degeneracy, all particles are described by the 

same wave function so that 

o~) 
\!J (1---N)::: I C.t>. ) 

Ccnse quently, 

and 

Thus 

. Et: 
k--e ~ 

which can also be written as 

( IV-35) 

-f (1) f t~j 
I \ I I ( IV-36) 

-f (•) 
I I ( IV-37) 

( IV-38) 

(IV-39) 
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New consider a _slight departure from coffiplete degeneracy such that one 

particle is in a state specified by a wave
1 

function, U.~ , ortho5onal to 

U. 1 • In this case (distinguished from complete degeneracy by the subscript 

Then 

and 

From IV-42 we find 

l.. \ (!V-a) + r•) f (;).) 
N L I' I' 

+ -f {•) f ca} J 
11- •• 

+ _l /a (a) 
N 

(1) f1) -i.~ (1;(,-'![4)·{~-;._,.) C•) I•) 
Fn {~,> 1!j) f 

0 
c~ J "!?-) + e F0 (~,.> '\(}) Fn (~,, ~) 

+ N::1 \ f h) f l:l) 
Nell'' :t;1 

( IV-40) · 

( IV-41) 

( IV-42) 

( IV-43) 
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Using IV-41 and IV-36, we have finally 

(IV-44) 

Thus, it is seen that a completely degenerate Bose pure state of the form 

IV-35 is properly described by the Hartree approximation (or, equivalently 

though unnecessarily, by the Hartree-Fock ansatz II-83 with C = 1/2) while 

slight deviations from this state are not in general subsumed u11der II-83, 

the proper (pure state) modification in the latter case being 

\ . l~) ( F(•) -Cl) 
IY'f'l F ( ~'J ~:t ). y. J 1[2-) ::. {l\, ,.,) 1- {X~ 11'1.) W->oo ~ .... , .... I """ J A 

(IV-45) 

The foregoing results have a certain bearing on the types of physical 

situations where II-83 et Geq. constitute a viable approximation to the 

mixed case (i.e. statistical mechanics). Recall that the "normalization" 

constant, C, appearing in II-83 has not yet been specified. Clearly, how­

ever, it must be close to unity if dynamical exchange effects (i.e. those 

corrections to the particle interactions occasioned by the requisite sym-

metry properties) are to be treatable as relatiyely small corrections to 

the Hartree approximation. For nondegenerate systems (in the statistical 

sense), _where particles behave in an essentially classical fashion, exchange 
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effects are negligible and C assumes its classical value of unity. At 

low temperatures, however, C must ·approach the value appropriate to the 

(pure) ground state, since the pure and mixed cases merge at zero temper-

ature . Appreciable variation from unity of this value is, therefore, in-

dicative of a brea..~down in the applicability of the approximation scheme. 

For the Fermi case, we have shown that no such difficulty arises in the 

Hartree-Fock approximation, and that the appro.priate value for C is N /tJ-l 

for degenerate systems, and (of course) unity for nondegenerate systems --

a negligible distinction in the limit of large N. With Bosons, however, 

the limiting pure case value of C = 1/2 indicate~ that a single ansatz of 

the form II-83 (and, subsequently, II-84 and II-85 ) cannot be expected tc 

adequately represent a Bose system over the whole r ange of temperature.* 

Indeed, we have shown that at zero temperature, the Hartree and Hartree-

Fock approxj~ations are equivalent so that one can bypass the.second stage 

of approximation entirely in this limit. The implication*, therefore, is 

that the proper forms of II-83 et seq. must undergo a discontinuous change 

at the temperature of Bose-Einstein condensation, and that these equations, 

if not so modified, can only be applied to systems appreciably above this 

temperature. In view of this circumstance, low temperature Bose systems 

lie beyond the proper scope of the present work, although there are indi-

cations (e. g. IV-45) the formalism need not be radically altered to include 

them as well. We therefore will sacrifice some of the generality maintained 

to this point by limiting our subsequent considerations to spin 1/2 systems. 

*That some modification of the formalism should be required at very low 
temperatures is, of course, a reflection of t ne radical changes which 
occur below the temperature of Bose-Einstein condensation -- a phenom­
enon which · in a sense has been anticipated by the ass~mption that the 
ground state in the absence of correlation is described by IV-35· 
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B. Second Quantum Vlasov Equation 

Proceeding analagously to Section III-B, we introduce II-83 into 

II-76 (with R=l). Since our main concern will be with degenerate Fermi 

systems, the constant C in II-83 is taken to be N/N-1 as discussed pre­

viously. The resulting equations f or the ''spin up " and. "spin Down" f(l) ~ 

are 

) r-v(r) (I) . }(•) 

+ L F'T' ) H (~,J Y·;t) 
6--P.B . 

. { N ~ jJ~.lu-~ (~·h.' ::-•,tl +If~\~., r·A fc~. -~~ ~[ •) ( ~·. 1!:· ,tv . 
-~ N~ay'x. J'tra. [e~r[-;~ %· vr] -~ (~< ~ -~·)) 

( IV-46) 

and an identical equation obtained from the above by the substitution 
,.....,F <•> ,._F Cl) 

1' ~ ~ Compari:wn with III-9 shows that aside from factors of 

NJN-\ , the departure from the Hartree approximation is contained in the 

last term on the r.h.s. of IV-46 which represents the so-called "exche.!"'ge 

interaction" between particles of parallel spin. This term can be con-

siderably simplified by means of the identity 

( IV-47) 



where f(1r) , the Fourier transform of the interaction potential, p , is 
..... 

(rv-48) 

(IV-49) 

I 
Perfonning the Cfr and X-a, integrations reduces this to 

-v ...., 

(IV-50) 
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(IV-51) 

which in turn becomes 

(IV-52) 

,as 

(IV-53) 

and the self consistent field 

(IV-54) 

we see from the foregoing and the definition (II-56) of the Generalized 

Poisson Bracket, that IV-46 becomes simply 

(IV-55) 
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where the Hartree-Fock Hamiltonian, H~) , is given by 

Ll(•) )- ~ ~;..~xt ~J_5CF +. ~thtKc~ 
IT't (~, '\f, t = .L 'YI'l 'lr, t q i (X., t) t ~ 'f (;(, t) q T (X.

1 
lT, t:) 

IN) 'i). d -J -) (J t "'J "".1 

are the desir ed forms of the second quantum Vlasov e auation. We observe 

• II . 11 II . II 
that the sp1n up and do~~ subsystems are coupled only through the self-

cons istent field and, of cours e , the normalization condition 

-1 (IV-58) 

Since, however, the ·2 component of totai sp.in, 2,~, i s a conserved quan­

.....,l•)) 
tity, the two f 5 obey in fact independent normalizations 

(IV-59) 

( rv-6o) 

where 

( IV-61) 

( rv-62) 

Of particular interest in many situations is the special case* where 

a = b = 1/2 and, more restrictedly, 

"""(•) ...-.(1) 

F ~ F 
t .j, 

.L f=(•> 
- 2 WofVI\ 

*See footnote page 70. 
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• For this so-called "normal11 system where both spin species behave ident-

ically, a single quantum Vlasov equaticn replaces IV-55 and IV-57: 

+ ~ '"'"'F (I) ( x, v, i) 
(_ Nofi.M "" I "'I ) ( IV-64) 

where 

( IV-65) 

and 

• 
( IV-66) 

Various equivalent fo:-ms of IV-55, IV-57 and IV-64 are often a more 

convenient starting point than these compact equations. We list them here 

for future reference: 
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""""(r) il - F (x, 1fi t) T ""J "'J 

( rv-68) 

where the f 1 s are defined in III-17, III-18 and II-78. The corresponding 
,.._(1) 

equations for f~ 
. .-v (t) 
and FNOR~ ere trivially obtained from the above. 

The discussion of Section III-B can now be taken over in toto and 

applied to the significance and utility of the second quant'l!ll Vlasov equa-

tion. Since such repetition is of little value, we shall proceed directly 

to illustrative applications of this equation. In Section C, the spatially 

homogeneous system .:!onsidered in III-C will be re--examined in detail. .Qf 

particular interest is the appearance of a new mode of excitation, the 

spin wave, which is brought about by the exchange potential much in the 

same fashion as "plasma oscillations" are sustained by the self-consistent 

field. In Section D, we reconsider the macroscopic equations of quantum 

hydrodynamic transport and obtain additional terms arising from the ex-

change interaction. 



-88-

An especially povrerlul application of the second quantwn Vlasov equa-

tion will be given in Chapter V, where the formal e quivalence of the time-

independent form of IV-64 and the Schroedin~er equation for a stationary 

pure state of the form IV-1 is exploited to study the ground state of 

spatially inbomogeneous i'oany-Fermion systems -- the many-electron atom in 

particular. Furthermore, the fact that the very same IV-64 applies to 

systems at non-zero temperature, leads readily to the thermodynamic pro-

perties of such systems. 

c. Spatially Homogeneous Systems 

He consider the problem. formulated in III-C, specialized to the case . 

of spin 1/2 particles. For t <o, both spin subsystems are assumed to be 

spatially uniform and in thermal equilibrium at temperature T. We permit, 

however, an unequal population of spin states e.s described by IV-59 through 

rv-62, which in the present case ta..l{e the form (cf. III-24) 

( rv-69) 

and 

(IV-70) 

The first problem, therefore, is to obtain a description of the consequent 

equilibrium situation. 

Since the self-consistent field is spatially constant, the two spin 

subsystems decouple and may be treated independently. Concentrating on 
~{I) f.,. , the second quantum Vlasov equation (IV-55) again reduces to an 
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equation of the form III-22, a time independent solution to which is pro­

""(•) 
vided by any spatially independent ft . Instead of introducing a micro-

\ · 

cancnical ensemble and going through the somewhat cumbersome machinery of 

-(I) 
ensemble theory to detennine ~ ... we appeal to the quantum mechanical 

H-theorem which_, for the present problem_, states that in thennal equilib-

riu."ll, the entropy is extremal viz. 

S ~a\r[ ( Ng r;~)tq( ~: ~'l) t ( /-~; f~l)~ (1-~ ~f·~J = 0 

(IV-71) 

"""'(•) where the symbol S stands for an arbitrary variation of F, ... subject_, how-

ever_, to IV-69 and the additional constraint 

( IV-72) 

L -M where c't is the total energy density expressed as a functional of F 
1 

• 

As this quantity has not yet been derived_, we take this opportunity t o do so. 

In general _, the ( ens enble averaged) expectation value of the total 

energy is obtained from II-63 and II-60_, written in tenns of f=lN). Specif-

ically_, we find for the combined energy of both spin subsystems the general 

expression 

( IV-73) 
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( IV-74) 

In the p~sent exa~ple, IV-74 leads to the desired result for the energy 

density: 

C: t ~ F..r, ( 1 "'v,' )(tJ p;J f!•l) - fJi'v, J 'v-, f ( i ( ~ -1[a)) 

>< ( N f~•) l!t)) ( N r:;·> l ~~)) 
(IV-75) 

Returning to IV-71, we perform the indicated variation, using the method 

of Lagrange multipliers to include the constraints IV-69 and IV-72. The 

result is the integral equati~n* 

r;•)(!) ~ ~ r~p(itnV?.- ~~Jcl\...'f(ily--~'l)(wr=:/t~'J) 
tV h1 l ..hI 

) 

-1 
- p., +I J (IV-76) 

where the Lagrange multipliers have been identified with the temperature 

and chemical potential, P.,. , in the usual fashion. The latter quantity is 

determined by IV-69. Note that in the absence_ of the exchange term, IV-76 

reduces to the usual Fermi-Dirac distribution function. 

*Equation IV-76 has received rather scant attention in the literature. 
It was first derived in 1947 by Koppe (35), and subsequently studied by 
1-/ohlfarth (36) and Lidiard ~7). These investigations were limited to the 
case of a degenerate electron gas and were motivated by the fact that the 
solution to IV-76 leads to an expression for the low temperature specific 
heat which is significantly less than the Sommerfeld free-electron value. 
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Because of the complexity of N-76, we must limit its discussion to 

the case of Coulomb interactions. First, we observe that at zero temper-

ature, ~ solution of this equation is provided by the zero temperature 

Fermi-Dirac distribution, N-26. To demonstrate this, we insert IV-26 
a. 

into the r.h.s. of rl-76 with ca .and f given by III-39· The integration 
I 

over V is strirlghtfonrard and ive find that the r.h.s. of N-76 becomes 
~ 

~ [ ~ -) ~ e.~ ( 1 ""v ~- e 7'1\ 'l/f.,. r I - u. ~-I .Q., I ~I] - H ) J N h 3 p . 1i ioi ~ lA 1- u. ~ + I 

k-r 
(IV-77) 

where U. = 1rj1fi,
1 

• It is readily seen that a necessary and suf'ficient con­

dition for this expression to approach IV-26 at zero temperature is that 

the function 

u, a + ( L ) ( u .. :~-1) ~ /' ~ L(. I 
~lf Vf.t u, 1-u-

( IV-78) 

be monotonically increasing for U..~O. Setting d3/J..u.. equal to zero leads 

to the equation 

a. ?. u. 'l e - -- - (IV-79) 
~ 1T'Vft ((.(.~+I\~~ )+~( \ -~u. 

, 1-"'-

which has no solution for positive l-l, thereby guaranteeing the monotonicity . 

of ca ( tl) for all 1'f 1' 0 Thus' we have shown that at zero temperature' the 

effect of exchange is merely to alter the relation between the chemical 

potential and the Fermi velocity (i.e. the density), the new relation being 

~ 
.....1- "m '\f:f ;;} t 

(IV-8o) 
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At non- zero temperature, the situation is naturally more 

complicated. Lidinrd (37), hovrever, has shm·m that at very lou 

temperatures, an c>.pproximate solution of IV-76 is provided by the 

* Fermi-Dirac distribution appropriate to an effective t er.1perature , "t'1' 

dif ferent from the act ual t emperature, T. Specificall y, he finds 

(IV-81) 

where t'11 is related to T via the transcendental equation 

(IV-82) 

anCl. is deterrained from IV-69. 

Thus, IV- 81, IV-82, and IV-26 in the llinit of zero teMperature 
""""(•} 

are the desi r ed equil ibrium dist~.butions for f~ ~n the Coulomb case . It 

should be emphasized, houever, that their validity hinges on the c>.ssUJnption 

that tl:ey are unique solutions t o the integral equat ion IV-76. Due to 

the compl~~ty of this equation, such uniqueness is by no means apparent 

and can only be e stablished by a more detailed analysis which lies beyond 

the s cope of the present vmrk. 

Completing the description of the equilibrium situation, ·we 

nOiv compute the total energy ·ctensi ty from IV-75 and the appropriate 

equilibri~~ distribution functi on. The velocity space integrations, 

whil e trivial at zero temperature, e.re somewhat involved .forT~ 0 and 

*Equivalently, one can speak of a (temperature dependent) effective mass. 
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nre given by Lidiard (3 7) and Yokota (3 8). The result for the average 

total energy per particle is 

~ = •+~TE• = ; [;~~ (W )'~]['a~ ( Cl!/3(l+& ;c:) t (1-..fiJ('• ~ x:J) J 
-~ [ e~ (W)'I,] [et YJ ( ~v~ (I+~ _a..( fro)) ;- Q-oJ3 (I;-¥ D..( ~~o)~ 

(IV-83) 

vrhere a is defir.ed in IV-69 andi(.1' and X.., are determined from the 

relations 

if ,h.T _ -
( IV-84) 

and 

lTk.T 

(IV-85) 

It is interestinG to note from IV-83 that a critical density, Y'lc. ( T} 

exists such that belmv this value, the l Q.\-= I (or "ferromagnetic") 

* state has 10\.J"er energy than the a = 1/2 (or "paramagnetic") state • 

' 

* At zero temp erature, it is easily shovm that the energy is minimal at one 
of these triO values. 



At T o, X:-l-:: X~=O and i<7e find for Y\.c;. 

Y\.c. ( T-:.o) ::: 1 ";l S 1'YI 'l e' 
J ~ lf ~ ( ~ .~ T I) 3 i; ' (IV-86) 

a value first derived by Bloch (3q). HoHever, as noted by Seitz (40), 

we expect this result to be sig~ificantly altered wi1en correlation effects 

are taken into account. In . any event, vmen w-e subsequently limit our 

considerations to a = 1/2, it is understood that the density is assumed 

to be sufficiently large to insure that tr~s is indeed the state of 

lo•.rer· energy. 

Turning noYT to the response of the system to weak external 

forces, we proceed in strict analogy to III-25 et ~' the basic equation 

now being rv-68 instead of III-19. After a little manipulation, "re find 

that III-33 is replaced by the pair of equations ( i<Tith obvious notation) 

- ~ L ~'cy..-1i 'lr) - Fo ... C1r)l 
~ W\."' ;Y'J 

+ f t tlJi,.'( J;tctJ JC~w) + T,~c!, r>,V] 
-f [r ,t',.' f (; C;!!-Y'lJ( f,t(]['<-!, 1')- F.,tl'.!:'~ [ J,1-tt~ w~ 

(IV-87) 
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c-y.J. The physical content of these equations and a similar equation for £I • 

· . = 1/2 and define . . f • e consider the spec1al case ' a , becomes cl earer 1 '' · . 

- ~t + r~ 
r:J... I I 

(rv-38) 

(IV-89) 

and 

(- ·w ~Y·'tr+~"j 7,-- _r-rrJ'Jv'f(~(y-;/>)(f.:(!'+~ :rl-F.!y'~l 
- ~~ ~tU ~ ~ · ~ 

(IV-90) 
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The first of these equations determines the fluctuations in density 

caused by the external field and represents the exchange-corrected form 

of III-33. In the case of Coulomb interactions, it has been used by 

von Revs and Zmuidzinas (13) to obtain corrections to the dispersion 

relation, III-42, in the long 1-ravelength ( lf--:) o) limit. IV-90, on 

the other hand, describes a new mode of collective excitation, uncoupled 

from the density fluctuations, which are spin density >-Taves and r~present 

spatially periodic asymmetries in the relative population of the two spin 

states. Of particular interest are standing spin density waves ( W ~o) 

the potential importance of 1-lhich has been emphasized by Overhauser(41) 

for the electron gas. Indeed, he has claimed that . such waves lovTer the 

system er.ergy •nth renpect to that of the spatially uniform state-even 

in the high density limit. If this is true, the spatially uniform state 

Hould be unstable "1-.'i th respect to the formation of standing spin density 

.. mves ar.d the equilibrium distribution function, IV-81, would have to be 

correspondingly modified. 

The question of the stability of standing spin density vraYes, 

at l east insofar an correlation effects are ignored, is in principle 

ansHerable from IV-90 ( 1-:ith t.) = 0). Hhen solved, this equation yields 

the eigenvalues, ~i.. and eir,en functions "'!:'- ( ){ ~~ w) characterizing 
""' Cl"l J,.,) 

the standing spin \·raves. By symmetry, 1 1 and T, .J, for each mode 
I I 

are obtained from 

(IV-91) 
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and the consequent change in energy density is computed from IV-74 

disreearding, of course, terms quadratic in the T 1s . Unfortunately, 

due to the complerity of IV-90 in the case of Coulomb interactions, 

this program has not yet been carried out. In view of this circumstance, 

the repulsive long- range Coulomb interaction :i !3 often replaced by a 

repulsive (short-range) delta function interaction - a case 1.ffiich can 

be solved. Since the Coulomb interaction is actually shielded at large 

distances by the dielectric behaviour of the mediUl'l, it is hoped that 

some features of the true situation are contained in th~s counterfeit 

model. Hith 

(IV-92) 

equation IV-90, ~1en integrated over velocity space, yields the eigenvalue 

equation 

\lv- Fo(J{+~'t)-Fo(1[) 
j !'!- +~a 

~m. 

At zero temperature, this reduces to 

I 1-A -A' 
I -Jr.~ ~ 11 t.k I 
J .h. 1-k 

where A/ is a positive constant times A, and 

-

:::o 
( IV-93) 

(IV-94) 

(IV-95) 
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From IV-94, it is seen that a sinele solution, 'b-(A) , exists. for all 

r epulsive interaction strengths, A, in excess of some ~in' with no 

solution for v1eaker or attractive interactions. The corresponding 

eigen function is 

(IV-96) 

The energy calculation for this case has been ·carried out by Yoshimo1'i (42), 

who finds that the energy increases for all interaction strengths . capable 

of supporting a standing spin ,.,ave. Thus, .for delta-functio!'l interactions 

at least, the spin uave state is unstable. Further work is clearly 

r equired to settle this issue. In particular the change in the 

"correlation energy" (see Chapter VII) attendine ·a spin vrave must also 

be taken into account. 

In conclusion, 1ve have seen that the introduction of exchange 

vastly increases the ccmplexity of the equilibrium and non-equilibrium 

properties of spatially homogeneous systems. Thus, ~nen we subsequently 

describe the equilibrium state of a spatially uniform or quasi-uniform 

system by IV-81, and assume it to be paramagnetic, we do so vnth some 

reservation. The system may in fact be ferromagnetic, be descr ibed by 

another solution to IV-76, or even possess standing spin density waves 

under certain conru.tions of density, temperature and interaction 

strength. 
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D. Quantum Hydrodynamics 

The next topic of interest is how the exchanee terms in the second 

quantum Vla sov equation modify the hydrodynamical transport equations 

derived in Section III-D. To explore this question, it is only neces sary 

to compute the ~irst three velocity space moments of these terms and add 

t hem to t he corresponding equations: III-46, III-47 and III-48. For 

simplicity, we i gnore the queGtion of spin transport a nd deal with the 

11 r!Ormal" case defined in IV-63. 

Us i ng the form rv-68 of the second quantum Vlasov equation, we can 

easily show that the mass conservat ion equation {III-56 ) is unchanged when 

exchange is included. Introducing IV-63 i nto IV-68 and integrating over 

"\T, yields the exchange t erm {droppinc; the subscript "norm") ,.., 

-~~(Vi-!'- -t ~)·(x.-~~.--FN ~M u 
- e 1; "" rn '"" ""' (~, 1T1. -t) r (X~ 11"", t) 

"'J,_) "'-J-.) 

(IV-97) 

vrhich . should be a.dded to III-46. HOi·iever, making the variable change 

in the firs t term of IV-97 reveals that this expres-

sian is identically zero. Thus III-56 stands. 

The momentum equation (III-74), on the other hand, is altered by 

exchange and in a some1;hat complicated fashion. I'rultiplying IV-68 by the 

"" momentum component -m 11"1 

change correction 

and integrating over v-, leads to the ex-,.... 
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to III-47. The conplexity arises from the non-locality of this term which 

cn.n be made apparent by repea·ting the cclculation vi th the equivalent form, 

IV-67, of the second quantum Vla.sov equation. I n this •ra.y 1-re find that 

(IV-99) 

•fhere 

:: -!::!.- A v f ~ (v-v.) F rx., v t) ,, ) 3 I ( 1 ) rJ(1) 1 

do l\ N,.., "")"'-'J (IV-100) 

Due to the velocity dependence of the exchn.nee potential, spatial_9eriva-

t ives of all (odd ) orders contribute to ~1-99, which is tanta~ount to non-

locality. 

Considerable simplificat ion naturally results if 1re restrict our 

attention to systems which are spatially slowly varying so thdt only the 

Y\ ~I term in IV-99 need be retained. Such a restriction is in the spirit 

of the macroscopic nature of the hydrodynamic ~quations and, in fact, m~ 

be thought of as a redefinition of what .re mean by macroscopic. 

Thus, in place of IV-99 1re consider 

(IV-101) 

l1aking use of IV-100, this reduces (after a few manipul ations) to 

ddx.• [~ )J',-J.'v' 1r "'f(~IJ['-:rl) (N fl•l I~,'.!">>) ;,)N f'1'1t~, y> t~ 

+ L r £ C~'v-J.\r' f(~lv'-v)\(N Fe(~ V 1 t)'(N r(·~1( Vt)'] 
~xMltN) ~,., "''J ... ,..,J 1 -J-, J 

(IV-102) 
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Follovrine; the developme::1t of Section III-D, 1-re now introduce the 

o.nsa tz, III-66, of loca.l thermodynamic equilibrium. In so doing, >·re must 

;;:::"' (1) 
mal~e use of the fact that the imac;inary part of r , beint:; of quantum 

mechanical o:cie;i:1, is a function of spatial cradients of the Hamiltonian, 

rv·- 65 , and. vanishes if these gradients vanish . This may be deduced from 

the structure of the Generalized Poisson Bracket and irlll be explicitly 

demonstrated in Chapter v. Thus , in the spirit of the quasi- homogeneous 

hypothesis implicit in our retention of only the "YI:::. I term of I V- 99*, -vre 

~l·) are justified in replacing , by Re f:'l•) ir1 IV- 102, thereby enabling 

us to apply III- 66 directly . By the same token, in wzkinG the association, 
'VI 

III. "'"' ,, .... 1 • · .... • - • t t Fe•) f -'-h 1m f · · - oo, on.....J l, 1e grao.J..en" J.naepenaen par , - 0 . , a· · l, • • e Oi·m unc-vJ.on, 
I .,.._,.., 

,.- , should be used . 

cla ssical Po::..sson Bracket equation 

be the solution of the 

( IV-10 3 ) 

appropriate to a local t~mperature -,- (!J t) and density < Y\ (~~t)) 
{I) 

i-li th H tJORM given by rv- 64. Then, in IV- 102, -vre make the association 
, 

~c•) ~c•J 

' 

F l~.~}) = fo (~) y- < ~ c~~t-J)_, t) (rv~lo4) 

Since the eradient- iP.dependent solution of IV- 103 must be identical to that 
,...,{ I 

of a spatially uniform syster!l, we can urite dmm f 'J immediately from the 
() 

results of the previous section. It is j'~st the ( normal) s::>lution t o IV- 76, 

-vrhich in 
I 

,J(I) 

Fo 

the Coulomb case is 

·>~-This "quasi-homoe:;encous" assumption corresponds to tree.ting the exchange 
part of the Hr.r!liltonian "classically" , since the intcc;rand of IV-99 is 
{'fC•) cp•JCc.H2(1) the first term of which is just the classical Poisson Bracket. 

1 JG-PS 
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ivhere 

T -

1:' 
+ 

( IV- 106) 

Introducing IV-10!~ into IV- 102, vre find af·ter some a l gebra that t he exchange -

corrected fox~ of t he momentum equation III- 74 is 

I 

i·rhere the e:cchn.nr.;e pres sure , <f eKctt) , i s ciefined as 

< r' """(~, •l > = s J' w [ ~ w' d F.l~. '1, •J + t For~. '1, tlJ 
d(~W\w~) 

x[~'Fw' f(fC~'-~J) F.(~,~; t-)J 

( IV- 107) 

( IV-108 ) 

and Fo is given by («N) times the solution of IV- 76 in general, by IV- 105 

in the p articular case of Coulomb interacti ons . Tne k i netic stre ss tensor, 
I . 

<lf), is computed as before from III-73, using the srecific form III -67 for , 
Re 'fl•) ·* 

To expl ore the nature of the exchange pressure, i·re concentrate on t he 

Coulomb case, i·lher e IV-108 b ecomes 

< 'cxc!-1) c» [ ' f = ~J w' L(11'W~ ~ d F.{~. ~.t) 
0 6 J ( ~ m w~) 

(IV-109) 

·*I n so doinr.; one mus t use the ( exchan~e-corrected ) ro jus t defined in 
p l ace of I I I-68, as wlll b e shoiVn in Chapter v. 
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Integrating the first term by parts leads to the result 

(-p'e,c'H> = -~[(iv/ 'fll'Wtt~(~ ':::'t)l ~lf~e2.ta.Gw'w'l,.jw+v/J. F(x v/t)~ 
""J ) 'L mawJ' , o .... J,..,J 

. o 
0 

w-w 

(IV-llO) 

The second tern of IV-110 vanishes by symrnetric integre.tion. From Dl-75:~ 

the first term is recoe;nized to be just 1/3 the exchanc e enera per unit 

volume . U0ing IV-83, ;.;e obtain the desired dependence of the exchange 

pressure on density and te~perature 

(IV-lll) 

,,>here the p aremeter X, is defined 'uy 

X<<l (Dl-11.2) 

It is of interest to compare the {negative ) e~change pressure with the 
I . 

(positive) kinetic stress term f\1• (1f > as computed from III-73 and III-67. 
,y 

In the absence of spatial gradients of the self-consistent field , V • <1r') 
I ""' 

. K•~ I becomes the Gradient of the kinetic pressure, . f , given by 2 3 the 

kinetic enerGY per unit volume {cf. rv-83): 

(IV-113) 

\· 
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Addition of' IV-lll ::uld lV-113 show-s that ~~he total pressure vanishes when 

(lt) 
f:::o (IV-114) 

and goes negative for lm-rer densities. Such behaviour of the equation of 

state is generally inc.Hcative ·of either a phas e transition, a breakdown in 

the viability of the approxilnation procedure, or (more l ikely) both. For · 

the electro:1 c;as, "Hhose d e nsity is conventionally expressed in ·terms of 

the d:Lr.;.ensionless parameter 

(rv-115) 

the criterion IV-114, 1-1hen e valuated at zero temperature (x7o) becomes 

fs) 
f=O 

4.8 (IV-ll6) 

a value approx~ately characteristic of the conduction electrons in aL~li 

:r.;etals ~lithium= 3.22, cesium= 5-57). -x-

Turning fina D..y to the ener& transport equation, we must consider in 

place of IV-101 the exchange correction 

(IV-117) 

to III-48 . Proceeding analozously to the treatr.1ent of the r.:omentum correc-

tion, we find (dele13ating the len13thy but straightfonmrd calculational 

details to Appendix B) that the exchangc -corrected_form of the energy 

·:<·Speculation u s to 1·Thether such trun::;port anomalies a re to be taken seri­
ously in the case of mete..ls must naturally a-vndt "~he introduction of 
entropy production via the coJ_lision intesral derived in Chapter VII~ 
and , more :ir.lportantly, the inclusion of ~.:.he e lectron-phonon intera ctJ.on. 
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transport equa·tion, III-76, is 

m<n)[2- + <~> .. X'J(<E)t<HJ_i;~ V~n.)l + <1f')•2<~) 
dt 1 hta<.n.) ) 

+ ~ V~n) X:·(~) + < f'ex'ti) X·<~> -r < 6 'ex'">Y·<~> 
+ I · < ~' ) ·:::. a (IV-llG) 

vhere <E.'~~,..,) , the (ensemble e.veraced) e:-::pectation value of the exchanee 

enerw per u.J.it voltune in the mo·rine; (Lac.cangia:1) fr2..rne is c;iven by lV-75: 

(IV-119) 

the remainder of the notation beinG identical to that of III-76. 

Equc-,.tion I'l-llo is a rather Stl.!'p:::-ising result in viev of the 1-ray the 

exchanse enerey enters. The ano:r.taly ca:1 be nade mor-e manifest by using 

the nass continuity relation III-56 in the fonn. 

(IV-120) 

to re1-rrite the exchance energy tem as: 
I < 6 c )C~ ). V. < u.) ::=. )Vl < 't\. >[~ + ( u) • "] ( < t.' e_u. .. >) 

""' - di: ""' "" 
YY\ {. Yl') 

- L 1 + i.~)· ZJ < e'<x<•) (IV-121) 

The first term of IV-121 is just the total derivative of the exchance energy 

per unit nass 11hich is i-lhat one would naturally expect to be added t.o the 

first tem of IV-118. The second term of IV-121 is wholly unexpected • . 

While a full study of the implications of I'l-118 lies beyond the scope 

of the present ;.rork, we will take a step in that direction by deriving from 

this equation the adiabats of a quasi-homogenous degenerate system with 
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CoUlomb interactions. In the absence of sienificant inhomoce11ei.ty, the 
, . 

kinetic stress tensor <11) is diaeonal, the elements being just the 

kinetic pressure IV-113. Using IV-111, D/-113, IV-120, and the notation 

D 
Dt: 

IV-118 can be vrritten in the form ( droppinc; the primes) 

D 
Dt 

where 

< E e><cH > ::: - .z_ e ~ ( 3~Y\>)'.lJ ( 1 + x 01 ~ (~ )) 
4h\ 1Y 6 , ,do 

3 1r2.~1 ( 3 <n>)J.~ ( I + .£ x~) 
1o 'n\a. .1r . 1a 

(IV-122) 

(IV-123) 

(IV-124) 

( IV-125) . 

?G being defined in IV-112. IV-123 is then integrated to yield the desired 

relation bet 1reen X o.nd ..(~) 

define the adiabat and use has been made of t he small-

ness of X. at low temperatures. 

For comparison, 1re can recover from IV-126 the adiabat in the absence 

of exchange by setting e-:t: 0 and obs.erving from IV-112 that 

(IV-127) 
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yiel<ling just the usual free particle result 

or -, - (IV-128 

r;, 
,.. . ' . A particularly strik:l.ng feature of IV-12o Y1.s- a - v1.s IV-128 is noted by co::J.-

centrating on the adiabat defined by J;, -:.. 0 

absence of exchange, IV-128 states that this ::>ii.iabat is a l so an isotherm, 

meaning that the c2.·ound states of the system at different densities are 

adiabatically connected. IV-126, on the other hand, indicates that l·rhen 

exchange is incli..l.decl, this apparently is no longer the c:::3e. Further study 

of this point is c l early re~uired. 

As an application of IV-126, vre vill conclude this section by comput-

ing the effect of e;~chane:;e on sound propagation in an electron gas . He 

co!:"lsicler a uniform cas at ambient density t1
0 

arii. temperature T
6

, ;.rith a 

conse~uent X as implicitly defined in 1Y-ll2. By linearizing the three 
0 

hydroci.yn8Llic e~ue.tions about these values , we obtain in the usual fashion 

a ;.rave e~uation for the density perturbation, n., 

Ylo 
I 

~ V n 1 

Where the S~Uare Of the S0lli1Q velocity iS BiVen by 

~ 
"m. C (n. 'K.o' :::: 

) ') ~ 

(IV-129) 

(IV-130) 

The total pressure appearing in IV-130 is the sum of the kinetic and ex-

change pressures as defined in IV-111 and IV-113. ~ is connected -to )t via 

the adiabatic e~uation of state IV-126. ~~king use of these relations and 
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t he definition IV - ll5, vre obtain the desired result : 

cd. 
+ §_ X-6;}.. 3 t5, l I x.} j_,.( (~~;S) J - ::: + 

c~ ta 4''l rr-. - l 

f 3' 

+ f:~ L ,· +2m(( ~Y)] ( IV- 131) 
So 

~ 'i) 'f Lf ~,3 

~ 
i-There (.f , the square Of the zero-temperature SOnic ve1ocj_ty j_n the absence 

of exchan5e, is Biven by 

c~ 
f ( IV- 132) 

The second term of IV- 131 repre sents the no~-zero temperature correction to 

this value 1-rhich 1-rould occur in the absence of e;whange. T'ne remaining 

terms are exchange corrections ~ The most noticeable fe::.ture of these ex-

change terms is the loGarithmic sing..llari·ty of the last tem at zero tereper­

ature (Xo ~ 0) , vhich has the consequence th::.t at any density, a critical 

temperature Tc exists such that sound v1aves cannot uroua5ate ( i.e . C~< 0) 

for T., <. Tc To obt::.in .,-c:; as a _function of yS , ;ye first obtain the 
• 

root of IV-131 vrhich, for small X , occurs at 

"'s.) 
....., t.t'~tr~ ( IV-13.3) 

J~(~) :l c :::.o 

I nserting this relation into the definition IV- il2 leads to the desired 

r esult: 

. ~ 

-c( 

e [t +rX. ( IV-134) 
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( IV-135 ) 

J;; is a g_uite sensitive function o:f r as may be seen in Table 1. 
s. 

r 
s 

0 

TABLE 1 

Der.sity Dependence of Tc 

2 3 4 

1~ . 4 X 10- 21 -6 7.4 1.1 X 10 ..r.. 

5 6 

10- 2 10. 8 135 

It shoulC. be emphasized that the i'oresoing result will most likely be 

significantly altered "~en correlations are taken into acco~~t ( i.e . the 

third stage of approximation). This alteration 1rill arise from two sources . 

First, viscosity and heat flm• terms vrill appear in the hydrodynamic eq_ua-

tions . Second , the total pressure ifill contain a new term arising from the 

density and temperature dependent "correl ation energy " considered in Chap-

ter VII. Since it is impossible to estL~te the nature of such correl ation 

effects at this point, the foregoing calculation should be interpreted a s 

merely an indication of possible anomalies in the transport properties of 

an e l ect r on gas at extremely low t e:rr.perat.ures . I t is nevertheless inter-

esting t o have observed how t he i nclusion of exchance can radically alter 

the macroscopic behaviour of a mar~-Fermion sy stem. 
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With the possible exception of the present section, the results ob­

tained thus far are for the most part· not new. In addition to the basic 

papers of von Roos ( I o J r "3 1 '+ ) , quantum mechanical Boltzmann equations 

have been studied, for example, by Landau ( 4 3 ) , Goldstone and Gottfried 

Ct.t1 ), and Ehrenreich and Cohen (45), although the scope and depth of 

such studies are qui·te limited in comparison to the present work. In the 

remainder of the dissertation, we will break fresh ground by applying the 

formalism thus far developed to a detailed study of two problems of wide­

spread theoretical interest -- the statistical model of the atom and the· 

properties of a spatially uniform electron gas . As will be pointed out 

in the concluding chapter, these applications apparently just scratch 

the surface of potential utility of the forinalism. It is hoped that the 

degree of generality maintained to this point (and henceforth to be 

abandoned ) together with these two illustrative examples will facilitate 

further applications of the theory. 
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Chapter V Plasma Theory of the Many-Electron Atom 

A. Introduction and Background 

Some thirty-five years ago, Thomas {4b) and Fermi {~7) independently 

proposed a model of the atom which, although based on a number of simpli-

fying assumptions, has proved extremely useful in the calculatj.on of many 

properties of complex atomic systems. The success of the consequent 

Thomas-Fermi {TF) statistical model* and the fact that alternative ap-

preaches based on a consideration of an N-electron Schroedinger equation 

involve a prohibitively greater degree of labor have led many investigators 

to attempt improvements of the model. Until recently, such improvements 

have been generally proposed on the basis of plausible extensions of . the 

TF "approach", which we shall now briefly review. 

The atom, assumed for simplicity to be sperically symmetric, is 

vie1red in the TF model as consisting of spherical shells over which the 

electrostatic potential is approximately constant but which contain a 

sufficient number of electrons so that statistical methods can be applied. 

For an isolated atom in its ground state, the electrons in each shell are 

then assumed to constitute a totally degenerate electron gas at zero 

. 11:11'1( ) temperature, whose kinetic energy density, E. r , is related to the 

particle density, Y\. ( r) , by the usual relation 

lv-1) 

*Comprehensive reviews of the TF model and its various elaborations may be 
found in the tracts of ~mrch (~S), Gombas {~~), and Corson (SO). 
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The electrostatic potential at r has two components: the nuclear poten­

tial <Pr~ C-r) , and a self-consistent field, <f>sc.F (Y") , related to Yl (r) by 

.Poisson's equation. 

"l-7 ~ th -- ) v l:lc.F 411 e )t(r (V-2) 

'Ihe total energy of the atom is then assumed to arise from t hese three 

sources, and thus to be given by the volume integral 

(V-3) 

Minimiza~ion of the total energy with respect to arbitrary variations of 

Y\(V") ; subject, however, to the differential constraint V-2 and the normal-

ization condition 

(1 Y\(r.) . s l '3y (v-4) 

leads directly to the TF relation between the density and total electro-

static potential 

)\(r) (V-5) 

(<flo being a Lagrange multiplier determined from v-4) which wen combined 

with V-2 defines the model. 

A first modification was proposed by Fermi and Amaldi (51) who, ob-

serving that the Poisson equation V-2 implies -an interaction of each 

electron with itself, suggested in effect that this equation be replaced 

by 

.rL -.!_ 4 if' e "n. C r) 
N 

Which approximately remedies this situation. 

(v-6) 
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Dirac (5a) added to the energy V-3 a term representing the exchange 

energy density and obtained in this fashion a modification of V-5: 

(V-7) 

where 

(V-8) 

The so-called Thomas-Fermi-Dirac (TFD) model 'Which results has been exten-

sively applied. Arguments for ignoring the Fer.mi-Amaldi correction if 

exchange is included have bee~ given by Jensen (53). 

In the same vein, still another energy term, the so-called "correla-

tion energy", representing the difference between the exact energy density 

of a (spatially homogeneous) electron gas and that given by the kinetic 

and exchange energy terms, has been added to V-3 by various authors. 

Since expressions for the correlation energy are only available in the 

high (Gell-1-1ann and Brueckner (S"4)) and low (Wigner (55)) density limits, 

an interpolation formula must be used a~ intermediate densities as in · 

the work of Lewis (56). The Fermi-Amaldi correction is genera.lly ignored 

in such calculations for reasons similar to those advanced in the TFD 

model. 

Relativistic effects, which may be expected to play a significant 

role for very heavy atoms, have been explored (independently of other 

corrections) by several authors. Gilvarry {5"7), for example, considers 

in place of V-5 the relation 

3/ { n ( t") := !_1( ( a:rn e)~ E _ rn c.. -a 
3\·? 0 

. 3/d.. 

+ [< £0 ->no'+e+t4- (H #)~](~"'<')} 

(V-9) 
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( £o being a Lagrange multiplier determined from the normalization), which 

is based on an expression for the density of' states derived from the single­

particle Dirac equation by Rudkjpbing (58). 

In studies of the equation of' state of highly compressed atoms, exten­

sions of the TF model to non-zero temperatures are required. A modification 

of' V-5, obtained by deriving the low temperature correction to V-1 from the 

non-zero temperature Fermi-Dirac distribution, was given by Marshak and 

Bethe (S<f) and was subsequently used in the equation of state work of Feyn­

man, Hetropolis and Teller (€,0). A similar treatnent of the exchange cor­

rection was presented by Yokota (38) which, being based on the Fermi-Dirac 

distribution rather than IV-81, is incomplete. This state of affairs was 

corrected by Umeda and Tomishima (61 ). 

It should be noted that the foregoing modifications all share a common 

defect with the TF model: they are quasi-classical inasmuch as quantum 

mechanics enters only via the use of' Fer.mi-Dil~ statistics in determining 

the dependence of' the energy density on ·n(r) • Indeed, quantum mechanics 

per se is never introduced, only quantum statistics. This neglect is a 

consequence of' the u_~derlying assumption of the TF approach, viz. that the 

electrons wzy locally be considered as equivalent to a uniform gas at the 

same density, the wave functions of which are just plane waves. Due to 

the presence of' potential gradients, however, plane waves are not an ade­

quate approximation as was pointed out by Weizsacker (6a) 1 'Who proposed a · 

modification of' V-5 containing terms explicitly dependent on density gra­

dients. The quantum {or "inhomogeneity" correction as it is often called) 

correction of' Weizsacker was cha.llenged on various grounis by several 

authors. Most detailed numerical studies of' the TF model have consequently 



-115-

ignored the question of quantum corrections, not because they are expected 

to be unimportant but rather because of the uncertainty as to the proper 

one to choose. 

This unsatisfactory state of affairs emphasized the need for a syste­

matic derivation of the model ana its corrections from a complete quantum 

many-body theory, ana resulted in a recent renewed interest in the theo­

retical foundations of the statistical model. 

The first step in this direction had been taken by Dirac (5a), who 

rewrote the Hartree-Fock equations in terms of the density matru ana, by 

making certain plausible assumptions about the distribution of electrons 

in phase space, succeeded in obtaining the TF model with an additional 

exchange term (the TFD model mentioned previously) in the limit of vanish­

ing inhomogeneity. Subsequent investigations, most notably those of 

Kompaneets and Pavlovskii (E>3) and Golden ('lf ), have generally followed 

Dirac's lead in the sense that quasi-classical approximations to the 

density matrix are studied. In particular, systematic expansions in 1:; 

have been developed ~i.hich simultaneously generate both exchange and ~xan­

tum corrections -- a procedure first suggested by Theis (65). A somewhat 

different but equivalent scheme was proposed by Kirzhnits {b6). By assum­

ing that the occupation number of each single-particle state depended on 

the expectation value of the Hamiltonian in that state, he was able to 

derive the TF model at non-zero temperatures. 

Since these approaches were rooted in the Hartree-Fock approximation, 

however, they were unable to include cor1~lation effects; i.e. deviations 

from Hartree-Fock. This defect motivated Baraf'f and Borowitz (67) to 

attack the problem from the standpoint of the Green's function formulation 

·I 
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of the quantum many-body problem. Expansion of the Green's function in 

powers oflh led indeed to the TF model in lowest order and to the quan­

tum and exchange corrections in higher orders. Their work was limited to 

zero temperature, although use of the techniques due to Hartin and Schwinger 

(66) can presumably allow an extension of the method to non-zero tempera­

tures. In a subsequent paper, Baraff ('9) attempted to include correlation 

effects by abandoning the ansatz that the two-particle Green's function can 

be decomposed into a (symmetrized) product of single-particle Green's func­

tions, in close analogy to the quantum BBGKY hierarchy underlying our 

method. His results were later refu.ted by Du'Bois and Kivelson (70) who, 

also using a Green's function approach, concluded that the Lewis procedure 

mentioned earlier was in essence correct. Non-zero temperatures were for­

mally included in the Du£ois-Kivelson approach, but no attempt was made to 

derive the consequent corrections to the model, and it appears difficult to 

do so. In common with the previous studies based on the density matrix, 

relativistic effects were totally excluded. 

There are, we feel, several unsatisfactory features in the foregoing 

studies. First, the role of the Fermi-Amaldi self-energy correction is 

nowhere discussed. This is particularly difficult to do in the Green's 

function approaches since they are based in essence upon a consideration 

of a spatially infinite though inhomogeneous electron gas, appearances to 

the contrary notwithstanding. Second, the question of how quantum, ex­

change, correlation, etc. corrections influence the boundary conditions 

on the model is generally ignored. To amplifY this remark, it must be 

noted that the TF equation for the self-consistent electrostatic potential, 

even when corrected for various effects, possesses a family of solutions 
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corresponding to atoms in various states of compression. To single out 

the solution appropriate to an isolated atom, for example, one must be 

able to compute the vressure at the atomic bounda~J for each member of the 

family, the desired solution being that characterized by a vanishing of 

this quantity. Consequently, alterations of the boundary conditions play 

a marked, if indirect, role in practical applications of the theory. 

Third, the perturbation procedure by which corrections to the TF potential 

are obtained is inconsistent inasmuch as the self-consistency of this 

potential is violated in each stage of approximation -- a point we will 

clarify later. Fourth, extensions of these methods to non-zero tempera­

tures ha.ve only been achieved at the expense of considerable and, we feel, 

undue effort. This is a manifestation of what is perhaps the greatest 

drawback of approaches which proceed from inherently quantum mechanical 

formulations of the many-body prcblem and attempt to study quasi-classical 

physical situations, viz., the obscurity with which the correspondence 

principle is ~leaked by the formalism. An unfortunate r.onsequence of this 

obscurity is the sacrifice of the analytical and conceptual simplicity 

inherent in the ThOm.as-Fermi approach. As a result, the procedure for 

obtaining quantum and exchange corrections in more complex situations 

(such as atoms with net orbital angular momentum, for example) is a very 

difficult task, in spite of the fact that the TF model in such cases can 

be immediately written down from simple physical considerations. 

The present formulation of the quantum many-body problem, due to its 

manifest exploitation of classical concepts and language, is particularly 

well suited to the present problem. Furthermore, since statistical mechan­

ics has been introduced from the start, considerations of temperature are 
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already included. In Section B, the TF and TFD models are immediately 

obtained from the first and second quantum Vlasov equations (respectively) 

by going to the classical limit and thus replacing the Generalized Poisson 
' 

Brackets by ordinary Poisson Brackets. The role of the Fermi-Amaldi cor-

rection in these models is also clarified. A straightforward expansion of 

the q.m.d.f. in powers of~ generates the quantum corrections to these 

models. In Section C, the hydrodynamic equations developed in Chapter IV 

are used to obtain an expression for the pressure at the atomic boundary 

which yields the equation of state for the atom and, as a special case, the 

boundary condition appropriate to an isolated atom. In Section D, a pertur-

bation method is introduced by wnich approximate numerical solutions of the 

model can be obtained in terms of quadratures of tabulated functions. Ex-

pressions are derived for the radii of isolated atoms and the zero tempera-

ture equation of state of cowpressed matter in terms of these quadratures. 

Section E calls attention to Appendix A, where the efficacy of our approach 

is demonstrated by calculating for the first time the quantum and exchange 

corrections to the TF model of atoms With net orbital angular momentum. A 

new problem, plasma oscillations of a many-electron atom, is formulated but 

not solved in Section F. The relation of this problem to the bydrodynamical 

studies of Wheeler and Fire:m.an (71) and Wa.kano (7~) is briefly discussed. 

Although correlation an& relativistic effects are not included in the pres~ 

ent 'WOrk, we indicate in the .final section the lines along which the formal.- -

ism can be extended to these cases. While lowest order relativistic correc~ 

tions can probably be iricluded quite readily, a connection between the cor-

relation question and contemporary difficulties in classical pla~ theory 

emerges which is difficult to reconcile with the simplicity of the procedure 

employed by Lewis and apparently justified in the study of DuBois and Kivelson. 
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B. Derivation of Model 

He shall begin by showing how the TF-Amaldi and TFD models follow 

immediately from the classical limits of the first and second quantum 

Vlasov equations respectively. It should be recalled that these equations 

are formally equivalent at zero temperature to the Schroedinger equation 

in the Hartree and Hartree-Fock approximations. 

The time independent* first quantum Vlasov equation appropriate to a 

spherically symmet~ic neutral atom consisting of i: electrons and an in-

finitely heavy point nucleus is obtained from III-14, III-15, and III-13. 

It is simply 

(V-10) 

where (in opherical coordinates) 

Hs,F = . ~ Jet. 
I )n V" - !;:.__ 
1 V' 

(V-ll) 

and 

(V-12) 

If, for simplicity, we introduce the definitions 

F C!) Y) - ~ FC•) (c. -v:J 

u ( '~') ::: _ E!-... + e 1- ~ sc F ( '(') 

r (V-13) 

:.. J. W\ 11" ~ 
d. 

+ u (Y') 

*The time independent form is used because the atom is assumed to be in 
thermal equilibrium. Non-equilibrium processes will be discussed later. 
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and operate on V-12 with the Laplacian, one obtains 

(I) 

[ FJ E.J,;:.r.6. "'o 
(V-14) 

and 

= (V-15) 

'Where 

u u·) (V-16) 

The normalization of F is 

(V-17) 

so that at the boundary of the atom ( '/"::R) integration of V-15 yields 

(V-18) 

If we now take the classical limit of V-14, the Generalized Poisson 

Bracket becomes an ordinary Poisson Bracket as sho~~ earlier. The solution 

(F
0

) of V-14 in this limit is, as is well known, any functional of the 

single-particle energy, e. Tb determine which fUnctional to choose, one 

appeals (as in Chapter III) to the quantum-mechanical H-theorem or ensemble 

theory and obtains, naturally, the Ferm!-Dirac distribution: 

. (V-19) 

Equations V-15, V-19 and the associated boundary conditions are precisely 

the Thomas-Fermi-Amaldi model generalized to non-zero temperature. We have 
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demonstrated, therefore, that this model i s nothing mo:ce or l e ss than treat-

ing the atom as a spatially inhomogeneous cla.ssical plasma obeying Fermi-

Dirac statistics -- hence the title of the present chapter. The pressure 

at the boundary of the atom is obtained s:imply from the hydrodynamic equa­

tion III-74 which states that in the classical limit, (~~o), the stress 

tensor defined by 

(V-20) 

must be equal to the externally applied stresses at the boundary if hydro-

static equilibrium is to be attained. Since F0 , as given by V-19, is spher-

ically symmetric in velocity space, this tensor is diagonal and isotropic. 

The consequent hydrostatic pressure at R is obtained trivially from V-20 

and V-19 if t..~e temperature of the boundary, T, is sufficiently low so that 

. the electrons at the surface are still highly degenerate. The result is 

where U(R,T) is the solution of V-15, V-16 and V-18. The isolated atom is 

obtained by letting I ~0 and demanding that the pressure vanish at the 

boundary, yielding simply 

U \ R) -= A. (V-22) 

or, equivalently, that the density vanishes at the surface • . 

:rD. precisely the same fashion, we may obtain the TFD model from the 

classical limit of the second quantum Vlasov equation.* Comparing IV-64, 

IV-65 and IV-54 with III-14, III-15 and III~l3, ·we note first that the 

Fermi-.Ama.ldi l-1 / '2. factor no longer occurs so that V-15 ar:d V-17 are 

*We assume the spin-density to be everywhere zero. 
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replaced by 

(V-23) 

and 

(V-24) 

respectively. Furthermore, it is seen that in going to the classical limit 

by replacing the G.P.B. by an ordinary Poisson bracket, the equation deter-

mining the consequent F0 is nov 

(V-25) 

where the exchange-modified single-particle energy is given by 

(V-26) 

the Fourier transform (III-39) of the Coulcmb interaction having been in­

serted into the exchange term rv-66. 

As before., any functional of ETYt> will satisf'y V-25, the choice again 

to be determined, in general, by statistical considerations. Local maximi-

zation of the entropy subject to the constraint of constant total energy 

yields in place of V-19, the relation (cf. rl-76) 
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whiCh, when combined with V-23, constitutes the TFD as generalized to arbi­

trary temperature by Umeda and Tomishima (&I). Concentrating ror simplicity 

on the zero-temperatUre case, we have already shown in Section IV-C that 

V-27 can be solved in this limit to yield* 

a~ 
\-.~ (V-28) 

0 

where in place IV-80, we have 

=t . 
e '('1'1 'lf'f -t U (t"') - A ::;.. o - (V-29) 

Trl; 

Solving this quadratic equation ror ~ (keeping only the positive square 

root in the usual rashion -- see Plaskett (73)); we obtain rrom V-28 an 

expression ror the density 

which constitutes the TFD mOdel, V-7. The presstxre at the atomic boundary 

is again obtained fiom the hydrodynamic momentum equation -- IV -107 in the 

present case. The net stress tensor now contains a contribut~.on rrom. the 

exchange pressure 

(V-3l) 

which has been evaluated ror the Fermi-Dirac distribution in IV-lll. The 

kinetic part of the stress tensor is trivially evaluated and we find (using 

*As is to be expected, V-28 can be obtained 'Without recourse to . statisticu 
mechanics. We have already demonstrated (see IV-24) that this is a direct 
consequence of the form, IV-l, of the Rartree-Fock wave fUnction coupled 
'With the requirement that the energy be minimal. The same result was ob­
tained by Theis ('5) as a consequence of the "idempotency" of the density 
matriX. 
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V-30) that the total surface pressure is 

(V-32) 

where N(R) is related to U(R) through V-30. Since N(R) is always greater 

than zero {see V-30), the pressure can only vanish if 

(V-33) 

a condition which could have been anticipated from IV-114. 

The TFD model has t."lus been found to follow directly :from the "class-

ical" limit of the second quantum Vlasov equation -- classical in the sense 

that only the lowest order spatial gradients occurring in the Generalized 

Poisson Bracket are retained. To generate quantum corrections to the fore-

going models, one has only to include in a systematic fashion progressively 

higher o~er constituents of the G.P.B. The procedure for doing so is 

immediately apparent from the for.m IV-67 of the second quantum Vlasov equa-

(V-34) 

'Where 

(V-35) 
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and 

(v-36) 

Noting that the right hand side of' V-34 contains all powers o:f 1; starting 

with the :first, ire introduce the f'ormal expansions 

(V-37) 

into this equation, considering U, :for the moment, to be a given potential. 

Matching the coef'f'icients of' equal powers of' h leads to the chain of' equa-

tions: 

Oth order 

(V-38) 

lst order 

(V-39) 

2nd order 

(v-4o) 

t
ro\ ~L 

T7 \7 1: ~ .. co . v.,. 4> .. ,... ... -t v~ 0 • Yr. f 0 - v'\, r: I 

~ ""' .... 0 

etc., which generates all the F~ as f'unctionals of' (the as yet unspec:i.fied) 

F
0 

and various gradients of' u. The potential, u, is then rendered seu•­

consistent by means of' V-36. 

Genera.lly, the series V-37 are truncated at some power of'~ • Defin­

ing the f th approximation to F as follows (we indicate here the explicit 
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dependence of the F~ on U) 

(f) 
F ( U· r v-) 

) .... ) ... (v-4~) 

the corresponding approximation, U lf) , to the potentiaJ. is then determined 

(V-42) · 

a procedure which guarantees its self-consistency at every state of approxi­

mation. The normalization of the F lf) and boundary conditions on U (f) are 

naturally the same :for a.l.~ f , viz. 

(V-43) 

and 

(v-44) 
) 

All that remains then is to speci:t'y F.. This, however, is a trivi~ 

question since F
0 

is just the distribution function which one would have 

in the absence of quantum or exchange corrections; nameq, that 'Which ia 

appropriate to the Thomas-Fenni mode~ considered previousq (without, of 

course, the Fermi-Amaldi correction). 

Thus 

F. (V-45) 

A few points must be noted. Firs·t, the chemicaJ. potenticl.1 A,, occur­

ring in V-45 is :iJIIp~icitq dependent on"t:; • It is carried through the 
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calculation as an unspecified constant, eventually to be determined from 

V-43. Thus, v-4~ and v-42 shorud be more properly written as 

F ( tl ( u · A. "r v) 
J ) -) "" 

-(v-46) 

and 

(V-47) 

It is readily seen that the homogeneous so~utions to V-39, V-4o, etc. cor­

respond simply to the corrections to ).. of order i; , 1; ~, etc. - Second, 

it is important to call attention to the fact that in our s cheme, the ~ow-

est order equations correspond to the TF rather than the TFD mode~. An 

alternative chain of equations for the Fn corud have indeed been obtained 

by postponing the cons ideration of the ~ dependence of the exchange po-

tential in the same manner as that of the se~-consistent fie~d. Although 

the two approaches are fo~ equivalent if one goes to infinite order 

in ~ (i.e. f ---? 00 in v-4~), the effect for any finite f is to intro­

duce, in the ~atter approach, exchange corrections of order higher than hf. 
Since we shall presently find that the quantum corrections in any order 

contain terms of the same form and magnitude as the exchange correction in 

that order, it is artificial to treat the two types of corrections differ­

ently -- notvithstanding the fact that they arise from different physical. 

origins. A conc~usive justification for our procedure is obtained by re­

writing V-34 in terms of the dimensio~ess variab~es appropriate to the 

prob~em (to be introduced shortly). For the present purpose, ve need only 

note that the characteristic distance scales as z. -l./3, vel.ocity as z213, 

energy as Z 4/ 3, and 

Fl\ c( '2 -~3 
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Introduction of these relations into V-34 reveals that our procedure is a 

-1/3 
consistent expansion in a dimensionless parameter proportional to ~ , 

wer~as a method . proceeding from the TFD model is not. This is an import-

ant point since the TFD solutions have physically unrealistic features 

(such as the finite density V-33 at the boundary of a free atom) which are 

not expected to persist when quantum effects are taken into account. 

In the present rrork, we l:!.mit our considerations to order}; 2 , and 

hence must solve V-39 and V-4o. ~1e solution of these equations is alge-

braicly straightforward a.'1d thus relegated to Appendix C. There we con-

sider in fact the more general problem characterized by a single particle 

Hamiltonian wilich is an arbitrary :function of r and '\.r rather than V-l3. ,.., -
Our motivation :for doing this is both to :facilitate application of the 

formalism to a wider class of problems and to iP.dicate how solutions can 

be obtained to higher orders in~ • T'ne result for F(2 ) (not to be con­

fused with 'fCZ·) , the doublet q.m.d.f.) is 

(v-48) 

were 

(V-49) 
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Inserting this result into the Poisson equation V-42 a nd performing the 

angular integrations in velocity spa ce, yields, after some algebra, 

V~U~~) = -1e;a.("J.m)3f;t fr.3 (u'~)_jl~T) -J2 \7~U(~)I {d~~X1)T) 
31fi;"3 ( :ll /b'm. - 1/~ ) 

a . ~ . 
- ~ ( v~ url>) T ( ur1>- f~>T) + 

6 'IY'I\ - -). J 
.;t 

~ ,,~ J 3e (~'M) [I, ( u~)-X2.~ T)J 
-a 1T" 1\ . '~ . J 

(V-50) 

where the Fermi-Dirac integrals, In, are def'ined as 

(V-51) 

and have the low temperature expansions 

I,..(")£ J T) "' (- x.)'' [ I + f~l\ (n-1) c~ /-1- 0 (( ~rtn (V-52) 

l ~) . 
Solving V-50 f'or V U gives 

(V-53) 
. 2 

Since the denominator ef'f'ecti vely introduces terms of' order beyond 1:; , we 

must expand it to obtain the f'inal result 

(V-54) 
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which is the TF model generalized to arbitrary t emperatures, and corrected 
. 2 

for quantum and exchange effects to order t\ • The physical origin o:f the . 

correction terms is a s indicated. In particular, note that a quantum cor-

rection appears .which has the same form at zero temperature as the exchange 

correction but is smaller by a factor 1/9. To establish contact with pre-

viously published results, ~ pass to the limit of zero temperature and let 

V(~) =: Uo + 1;a U4 {V-55) 

where U0 is the solution o:f the TF equation: 

(V-56) 

Then, assuming ~ ~ Vl.. .( <. \)0 so that only lo~st order terms are kept, ~ 

find for V ~ the eq:uation 

(V-57) 

"Which is identical, for example, to equation 4.15 o:f reference (' 7). We 

note and take exception to the fact that the perturbation procedure used 

to obtain V-57 from V-54, 'While no doubt justifiable as a method to facil-

itate numerical solution of the equations, nevertheless destroys the self-

consistency o:f the model. 

Finally, we make use of V-52 to obtain the lowest order temperature 
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In discussions of the TF model, it is customary to introduce the 

dimensionless variables 

(v-6o) 

where we have introduced the additional definitions 

«=-' (")1~::: 
~~ l~'!> ~ 

(V-61) 

The boundary conditions on q, are 

<f>lo) ~1 (V-52) 

and 

(V-63) 

where X is the dimensionless radius of the atom. 

To complete the model, it is necessary to determine the pressure at 

the atomic boundary since a one parameter* family of solutions to v-6o 

exists which is consistent with the two point boundary conditions V-62 and 

V-63. This family characterizes the a-tom in different states of compression, 

the free atom being described by that (zero temperature) solution or v-6o 

whose surface pressure vanishes. 

*Corresponding to different values of f ( o) , or, equivalently, the chem­
ical potential. 
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C. Theory o:f the Compressed Atom 

The calculation o:f the pressure which must be exerted on the boundary 

o:f an atom in order to confine it to a sphere o:f radius R is greatly :facil-

itated by the hydrodynamic theory developed in Chapter IV as has already 

been demonstrated in the case of the :far simpler TF and TFD models. This 

is a particular advantage, we feel, of the present :formulation since in 

conventional treatments (4~), even in the absence o:f quantum corrections, 

one must compute the total energy o:f the atom as a function o:f R and then 

obtain the pressure :from the derivative o:f ~his quantity • . As one would 

expect on physical grounds, the volume integrals involved in such a pro­

cedure are ultimately reduced (generally after some labor) to surface in-

tegrals, thus enabling the pressure to be expressed entirely in terms. o:f 

quantities evaluated at the atomic boundary. Our method circumvents this 

unnecessary and elaborate procedure. 

Since we have shown ·that exchange corrections first appear in order 

~ "h , the hydrodynamic theory o:f Chapter IV which retained only the lowest 

order exchange term is correct to this order. In going to higher orders, 

more terms o:f IV-99 would naturally have to be introduced into the a.na.lysis, 

the procedure for doing so being clear :from our previous work. It should 

be emphasized, however, that the exchange-independent quantum corrections 

to the hydrodynamic equations as developed in Section III-Dare correct .to 

all orders in ~ • 

We proceed from the momentum equation IV-107 which, when the. convec-

tive velocity L... ~) is set equal to zero, becomes the equation o:f hydro-

static eq~ilibrium. It is immediately apparent from this equation that at 

the atomic boundary (~)the net stress tensor whose divergence must be 
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balanced by external forces (contained in the "V <f>,.. term) is given by 

--rr;:T ( 5) ~ F,....,.• 1fj Fe f!, !:) + a ;j ( ( f·'"~~) > + ~ v'.( n( I'll)) 

(v-64) 

~o avoid unrewarding complications we will evaluate this quantity at zero 

temperature, the generalization to non-zero temperatures being straight­

' forward.* Recalling that ( f()(c\, ( ~n) and (nC8)) are obtained from F, a 

i; ~ little care must be taken to insure that only corrections of order to 

the net stress tensor are included. We therefore rewrite v-64 as 

~ ij ( .( 1'''"" (F.(~' 1CJ)) \:. V'"< Yi. ( f.c B, '!l))) 

(V-65) 

so there 'Will be no confusion. 

The leading contribution to lr canes from the Fo piece of the first 

term of V-65. Straightforward evaluation yields 

L7. -;;.'~J..,.,.,3'~ ( ~'J.>_J~>cru)5JJ. ~ C:j 

· /51f~ i\3 

wich is just the TF term, V-21. 

(v-66) . 

Exchange corrections to T come :from two sources -- directly through 

the exchange pressure and indirectly through the exchange contribution to 

the kinetic stress tensor {i.e. the first term of V-65). The exchange 

pressure has already been computed for a Fermi-Dirac distribution in IV-lll 

and is 

.<f
1

('1CCit> *On~ note o:f caution, however. In using IV-lll :for , the para-
meter X must be taken to be 

X.:::. 1l" Jt T r X')- ut:a.)] -I 

rather than tha.t obtained :from the :full IV-112. Use o:f IV-112 would intro­
duce higher order corrections. 
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The exchange correction to the kinetic stress tensor as obtained f'rom V-48 

(v-68) 

Before computing the remaining (inhomogeneity) contributions, it is of 

val.ue to collect the terms obtaineC:. thus far. Combining v-66, v-67 and 

+ inhomogeneity correction (V-69) 

It is readily verif'ied that these terms are in agreement with those obtained 

to the same order f'rom the TFD expressions V-32 and V-?fJ, which serves as 

a convenient check. 

Turning finall.y to the quantum corrections, we will make extensive use 

·of the boundary condition V-24 which enables us to ignore aJ..l. terms propor­

tional. to J..u • Thus, the l.ast term of V-65 reduces to 
d.r 

~~Jsv~<:::'r'l.lFu)) ~~ij~ ('Jw.)11~ lv~(X~-uc~cR>J1a.] == ~~~i;~(~,..)'~ [-}.(~·~u"!)),~v~d~~ 
"\"' tm 1.11'~~1 L 4m ~1T1 "\;3 ;t J 

~R 

(V-70) 

'Which, by virtue of the Poisson equation V-54, becomes 

(V-71.) 

terms of higher order having been dropped. 
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Similarly, we need only consider two of the inhomogeneity corrections to 

the kinetic stress tensor: 

(V-72) 

(V-73) 

since the others vanish at the boundary. 

Evaluation of V-72 is straightforward and we find 

V-73, on the other hand, is somewhat more involved. First, we note 

that as a consequence of the vanishing of J u"'> • h . 

(V-75) 

Inserting this result into V-73 reveals that this tensor, though diagonal 

in a spherical coordinate s,ystem, is not isotropic, there being an addi-

· tional purely radial stress component. Evaluating V-73 (making use as 
'2 (~) 

before of' the leading term for V U from V -54), we find 1 t becomes 

-8 .,•ea( )/'l_ui>)(A))' a Oj L I +<I ~·1] 
q ·n .. ~ "n 'i . . 

(V-76) 
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where we have referred the stress tensor to a spherical coordinate s.ystem, 

1\ " " the indices (1, 2, 3) now corresponding to the ~ r , ~6 , ~jlf respectively. 

The consequent radial stress is thus 

(V-77} 

Combining V-71, V-74 and V-77 yields the striking result that the in-

, ~ 

homogeneity correction to the surface pressure vanishes in order ~ • It 

should be noted that the three terms whose mutual cancellation* produces 

this result are each of the same magnitude as the exchange contributions 

v-67 and v.l68. 

{t)(R''" The final desired result for the surface pressure f 'J is thus con-

tained in V-69 and is 

fl~) ( R) = J..j . ;~''~ "'m "h ( Xl>- U<,) { R)) ~)~[J t- J ~ -e ~"M.'/'J... J 
, s- 1r • t 3 J 4 a·'~ rr 1\ ( itr1.>- ul:~>tR) )''=t 

(V-78} 

In +.,erms of the dimensionless variables V-59, this beccmes 

The boundary condition appropriate to the isolated atom is thus seen 

to be 

~(X) :: 0 

X 
(V-8o) 

*This cancellation does not persist at non-zero temperatures, the sum of 
these terms then being 

~ ~ I ~~ 
Pinhomo ~ -~ · J. \..h. TJ 

~'4 ' 
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which, from v-6o, is tantamount to zero density at the surface.* 

The result, V-79, disagrees with the corresponding expression obtained 

by Kalitkin (74), ,.Tho employed the method of Kirzhnits (6b) to obtain quan-

tum and exchange corrections to the TF mo:lel from the density matrix formal-

ism. In particular, he concludes that the pressure vanishes for a non-zero 

value of the surfac~ density which 1rould result in a somewhat smaller radius 

of ·the isolated atom than would be obtained from V-80. While the equation 

for the electrostatic potential which-he obtains is apparentLy eqQivalent 

to V-57 {as it must be), his expression for the pressure is obtained "with 

the help of' equations analogous to the virial theorem in the TF model." 

The vagueness on this point and the extreme conciseness of his paper makes 

it difficult to evaluate the point of departure between our work and his. 

D. Perturbation Technique for Approximate Solution of Model 

Detailed numerical solution of the model lies beyond the scope of the 

present investigation since it is difficult to justify the extensive requi­

site computer time until the lowest order correlation and (for large~) 

relativistic corrections have also been included. Although we shall pres-

ently show that approximate solutions can be relatively simply obtained in 

terms of quadratures of tabulated functions from a perturbation analysis of 

V-6o, there is some doubt as to the adequacy of this approximati~n since 

the corrections to the self consistent field become comparable to the unper-

turbed (TF) solution near the edge of the free atom. We therefore will 

formally carry out such an analysis, leaving the actual numerical evaluation 

of the quadratures to the interested reader. 

*That is, assuming that the f:tnal term of v-60 does not blow up at large X;, 
an assumption 'Which is borne out if one uses the asymptotic :form+~ dj 1 

of the TF potential to approximately evaluate it. X'~ 
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Restricting our consideration to the case where temperature corrections 

can be ignored, the basic equation of the model is V-6o: 

with the general boundary conditions 

q>co) -=1 

and in the particular case of the free atom (see V-80) 

I 

cp(Xo) = Xo ~(X.) = 0 

(V-81) 

(V-82) 

(V-83) 

(V-84) 

where X and Xo are the dimensionless radii of the compressed and free atom 

respectively. 

Turning first to the free atom, let ~0 be the TF function defined by 

tro): I (V-85) 

and define "Yt : 

"r\_(o)-:::0 
I 

'Y\. Co) :.J 
(V-86) 

in terms of ~0 • Both t\>
0 

and "rl, , as well as their first derivatives, have 

been tabulated by Gombas (p. 358 of reference (75) ). 
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Setting 

(V-87) 

we find from V-81 that to lowest order in~, Jt(x) satisfies the equation 

I II I t I 
.-n. + a 'l\. ..fl. - (v-88) 

'\. 

Before integrating this equation, certain difficulties at very small)C 

must be cited. Examination of V-81 reveals that for )C less than a critical 

value, X~ , approximately given by 

X ,..; o( 
(.. ,_ -..,. (V-89) 

the inhomogeneity correction drives the right-hand side negative which is 

tantamount to a (meaningless) negative density. Since V-89 corresponds to 

a distance of about 1.5% of the radius of the K-shell, the number of elec-

trons contained in a sphere of this radius is certainly so small that the 

application of a statistical approach in this region is clearly insupport-

able. Relativistic effects also become important in this region. The break-

down then is not to be taken seriously. We therefore adopt the procedure* 

of only applying V-81 for )C ~ Xc , with a consequent alteration of V-82 

equivalent to excluding electrons from the region X .(. :ic • The effect of 

this procedure on the model at reasonable values of X is negligible. . . 

Integrating V-88 and determining the integration constants from the 

boundary conditions V-82 and V-84 results in the following expression for 

*For convenience, we will continue to formnl1y integrate V-81 from the 
origin with t.he understanding that the above modification is to be made 
in any actual numerical integration. 
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the free-atom solution: 

S
x . 

lo o< 'Yl_ (:t) " ~ (x') Jx' 
. X 1l.~{X) 

where 

and V (a<) is implicitly determined from the· relation ~0 

d.- cPoC.Xo)Yl_'(XJ- yt(Xo)cP,'rxo) 

I o d CXo) 

(V-91) 

. (V-92) 

(V-93) 

For the compressed atom, we require an expression for . ~(X) which 

when combined with V-79 yields the pressure as a function of atomic volume. 

Straightforward combination of V-83, V-87 and V-88 leads to 

(V-94) 

It is therefore seen that the equation of state of compressed matter 

can be obtained for all atomic numbers in this approximation by evaluating 

the -single quadrature V-92. The convergence difficulties a·t small X men-

tioned earlier do not, incidentally, create any problems in computing~ • 

Formal integration to the origin introduces an error in ~ of the order 

. I '/~ -40 of.. which negligibly alters V-94. 
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Since all physical properties of the model are derivable from F(~) 

which, in turn, is dete~mined by ~ and its first derivative, the problem 

is thus formally solved within the framework of the perturbation approxima-

tion. 

E. Application of .Method to Other ProblelM 

The quasi-classical statistical methods developed in this chapter can, 

of course, be applied to a study of the equilibrium properties of spatially 

inhomogeneous interacting systems with more degrees of freedom and complex-

ity than the spherical atom. Generally speaking, wherever the TF approach 
. l~) 

has been fruitfully applied, the expression for F derived in Appendix C 

coupled (if necessary) with the hydrodynamic analysis ~iven earlier enables 

one to immediately correct the model for quantum and exchange effects. Fur-

·thermore, the :uncorrected TF model itself (i.e. fo ) is obtained by the simJ·le 

procedure of finding that functional of the classical constants of the single-

particle motion which maximizes the (quantum-statistical) entropy* subject 

to the constraints on the system. The analogue of the TFD model is similarly 

obtained by computing the "exchange potential" from the (given) particle 

interaction using IV-53 and applying a similar approach to the pseudo-class­

~ J.. ti(Ctt 
ical problem defined by ( H classical -t ~ '1" ) • Above all, it should be 

re-emphasized that the 1mcorrected TF "approach" to any problem is fully 

equivalent to viewing the system in question as a classical correlationless 

plasma obeying quantum statistics. The consequences of this observation 

will be discussed further in Sections F and G. 

As an example of the efficacy · of our approach, we have included in 

Appendix A a reprint of our origina~ paper which forms the basis for the 

*More properly, one should speak of minimizing the free energy. 
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present discussion. In it the quantum and exchange corrections to the 

statistical model of an atom with non-~ero net orbital angula~ ~omentum 

has been derived for the first time. The motivation for this application 

was a remark in ~~rch's (48) review article indicating that such correc­

tions may significantly alter the results of Sessler and Foley (76) who 

employed the TF and TFD models approprlate to such atoms to compute the 

quadrupole coupling constant and the maenetic field at the nucleus due to 

the orbital motion of the electrons. vfuile a treatment which assigns sue~ 

a manifestly "single-particle" property as the net orbital angular momentum . 

"collectively" to the entire atom violates the shell structure known to 

characterize atoms and thus is a highly dubious approach, the necessary 

equations for those inclined to extend their work appear in O\~ article. 

There is, however, a more intriguing question which could be answered from 

our results. Instead of arbitrarily requiring the atom to have zero net 

orbital a.Il.ouu.l.a.r momentum as is usually done, one should allow the model to 

generate net angular momentum if a state of l~ver energy is thus obtained. 

Specifically, one should compute the total energy of the atom as . a function 

of L and then locate the minimum. While it is most likely that a non-rotat­

ing atom in fact has lowest ener13Y, this is not manifestly obvious due to 

the complexity of the· quantum and exchange corrections. 

For the sake of completeness, it must be pointed out that the Fermi­

Amaldi factors which appear in Appendix A are in error as the analysis of 

Section IV A in the present work was not available at the time it was writ­

ten. Similarly unavailable was the general result of Appendix C which would 

have immensely simplified the algebra occasioned by the centrifugal potential. 



Finalzy, it should be observed that in the spirit of viewing net orbi­

tal angular momentum as a collective property of the atom, one might also 

choose to treat the net sEin in the same fashion. The method for generaliz­

ing our model to this case is simply to treat the two spin species as inde­

pendent systems coupled through the net self-consistent field as shown in 

Chapter IV. The result of such a procedure would be the introduction of a 

new parameter -- essentially the ratio of the chemical potentials of the 

two species -- which ><Ould again be chosen from the standpoint of minimizing 

the total energy. In view of IV-86, it is hi~;hzy likezy that such a general­

i zation would lend to a net non-zero spin density locaU.zed in the outer 

regions of the atom. 

F. Non-Eauilibrium Processes and Excited States 

In addition to the ground state of a many-electron atom, the nature of 

the excited states is also of theoretical interest. Certainzy the most 

important excited states are single-particle excitations in which the exci­

tation energy is given to one or, less frequentzy, a few electrons. While 

such states are pure quantum mechanical and must be calculated from the 

Schroedinger or Dirac equations, the statistical model is still of great 

value in determining the potential to be used in such calculations. The 

work of Latter t/7), for example, based en the TF and TFD potentials . could 

thus be refined using the model derived herein. 

The fact that- the many-electron atom appears to be describable in its 

gross features as a classical plasma obeying Fermi statistics suggests the 

interesting possibility that modes of collective excitation may also exist 

in which the excitation energy is jointly shared by all or most of the 
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electrons. One such class of excitations has actually alreaqy been implic-

itly treated when the statistical model was generalized to non-zero temper-

atures. In contrast to these thermal excitations, however, modes of collec-

tive oscillation can also be anticipated. Such excitations have been studied 

in the hydr~ynamic limit by several authors, most recent~ by Wheeler and 

Fireman (71) and Hakano (72.). In these studies, the _cla ssical hydraqynamic 

equations have been applied to an inhomoeeneous electron gas whose ambient 

density is that given by the TF model and whose equation of state is that 

characteristic of a totally degenerate free electron gas (i.e. IV-113). 

The restlits of this analysis enabled wneeler and Fireman to compute a uni-

versal photo absorption cross-section for far ultraviolet and soft x-radia-

tion due to such excitations. While their -;.:-ork can obviously l:>e improved 

by using the quantum and exchange-corrected hydraqynamics developed in IV-D 

as well as the improved density expressions derived in the present chapter, 

there appear to be good reasons to doubt the validity of the hydrodynamic 

approximation itself -- a point wh!ch does not seem to have been considered 

by these authors. Specifically, as we discussed earlier, the criterion for 

the validity of hydr~-na.mics as applied to time-dependent processes is that 

the frequency of thermalizing (i.e. large momentum transfer) collisions 

should be large compared to the characteristic frequencies of these processes. 

A simple calculation reveals this not to be the case. 

The characteristic oscillation frequencies are of the order of the 

classical plasma frequency appropriate to the mean electronic density in 

the atom. In particular, one finds (Jensen t7~) 

(V-95) 
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The characteristic collision frequency can be estimated from the 

Rutherford cross-section for large angle scattering of an electron whose 

velocity is of the order of the average Fermi velocity: 

w 
GoLL 

(v-96) 

Thus 

I 

r 
4(<1 (V-97) 

Wo!>G 

which contradicts the assumption W >""'" W C.oLL. ; OS' 
Even more impor-

tant is the fact that the exclusion p~inciple vastly inhibits collisions in 

a degenerate electron gas, effectively restricting them to occur between 

particles in the i~~ediate vicinity of the Fermi surface. The net result 

of the exclusion principle would thus be to sreatly enhance the inequality 

V-97· 

Finally, there is the curious result obtained in IV-D, viz. that adia-

batic inviscid oscillations in a zero temperature quasi-homogeneous electron 

gas are apparently impossible when exchange effects are included. 

It seems clear, therefore, that collective oscillations of a many-

electron atom m\m1.. :.--· studied in the collisionless rather than hydrodynamic 

approximation, a suggestion which to the best of our knowledge has not been 

made before. 

The basic equation describing such plasma oscillations of the many-

electron atom is the time-dependent second quantum Vlasov equation obtained 

by simply adding d F /'dt to the left-hand side of V-34. Furthermore, 

since the oscillations are assumed to be a small perturbation to the equi-

librium configuration, the linearized form should be used. Specifically, 
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let F (!;: 
1 
1t ) and U ( r) denote the solutions of the time-independent V-34 

and V-36, and let 

_ V ( r) 

where 

Also let -- cPel(')lcr.v:) + <fcKc"tr:,r)t) 

where 

and 

Then we find for f the equation 

- :>"' ~ e¢tt i' f 
()V"~v&:.. ~x"~x~-

_ ~on«fe'l(cM 

;>VKd'1J". · 

(v-98) 

(V-99) 

(V-100) 

(V-101) 

(V-102) 

(V-103) 

(V-104) 
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Considering U and~ to be given functions, we expand as before 

00 . 

f = i_ ~l\fY\ (V-105) 

'n-:.o 

and find the s equence of equations 

dfo + ){· Vr fo - .l V"' U•'Y1rfo -J. V..,.M• tz, f(uJf- v):o( 
6

) 
d t "" W\. "- 1'- WI - ~ 0 1 

"' V -10 

-e~~ . 
etc., where the FY\ (and thus cF

0 
) !>.ave been computed up to Yl-: ;it in y;.48. 

Truncating the chain at order 1\ .p and defining 

fcf) ~ t 1\f ff (M. i !, ~.~e) 
t\":.C) 

(V-109) 

~ is then rendered self-consistent to this order 

in direct analogy to the formalism of Section V-B. 
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Due to .the fact that the classical problem of plasma oscillations in 

a strongly inhomogeneous system represents one of the frontiers of current 

research, the solution of even V-106 presents sufficient difficulty to 

probably render the calculation of quantum and exchange corrections to fo 

unworthy of the effort involved. Since (in analogy to the static case) 

such corrections are likely to be small, most of the physics of the problem 

should be contained in V-106 together with an ad hoc quantization of the 

harmonic oscillator-like solutions deriv~d therefrom. 

G. Relativistic and Correlation Corrections 

As indicated in Section D, one must be sure that all corrections to 
~ 

the model of order comparable to the ~ quantum and exchange terms :thus 

far derived are included before a detailed numerical investigation can be 

justified or, indeed, considered meaningful. While such filigree as retar-

dation effects and spin-spin and hyperfine interactions can be rejected 

out-of-hand by the crudest order of magnitude estimates, small though sig-

nificant corrections due .to relativity and correlations (i.e. the inadequacy 

of the Hartree-Fock approximation) may be anticipated. The former of these 

effects alters the model in the inner regions of high Z: atoms, the latter 

(most likely) in the low density outer regions of moderate and low ~ ele-

ments. 

Proceeding on the assumption that these ef~ects will be small, we can 

compute them independently of the quantum and exchange corrections and hence 

need only concern ourselves with the problem of appropriately modifying the 

simple TF model with the understanding that all corrections will be linearly 

superposed in the final analysi·s. Specifically, what we strive for is a 
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corrected equation v-6o of the form 

'I ,l] + c;t(~)[Jo(!) a._J_ ( 4>-X<fl) 
4> 4 ~4>3 . 

(V-111) 

where f rt 1. and f c. .. rr are the as yet undetermined relativistic and corre­

lation corrections which result to lowest order in the appropriate dimension­

less perturbation para.'!leters @ and "6 • 

The realization tha.t the TF model is equivalent to treating the atom as 

a classical inhomogeneous plasma obeying Fermi statistics considerably sim-

plifies the foregoing task since one need only inquire how classical plasmas 

are corrected to lowest order for these effects. 

Turning first to the relativistic question, we note that a relativistic 

genoralization of the classical Vlasov equation (neglecting retardation) has 

been given by Clemmow and Wilson (7q)* which, in the absence of magnetic 

forces, can 'be written as 

where we now work in a covariant phase space defined by ~ and the reduced 

velocity, _!6. , given by 

(V-113) 

*I am indebted to Dr. P. Burt for calling this paper to my attention. 



-150-

It is easily verified that any functional of the a rgument 

+ U{£) (V-114) 

is a time-independent solution of V-112, a result which could certainly have 

been anticipated on intuitive grounds. 

In the entropy maximization, relativistic Fermi statistics must now, 

naturally, be emplqyed. One then f inds (see e. g . Ter Haa r (~7)) that 

(V-115) 

.At zero temperature, the case of interest here, V-115 yields for the 

density 

where the r educed Fermi velocity is determined from 

,_ 'I 
me.'( I+~)~ + U(r)- Wlc' :::).. . 

G 

(V-116) 

(V-117) 

Combining V-116 and V-117 gives the following expression for the dens-

ity 

)') ( v-) (V-118) 

which, when introduced into Poisson's equation, leads to the relativistic 

TF model: 

3) . 3/~ 
( >..-V) ~) I + (:t-Uj 2 

{_ ~~c-a.) (V-119) 
v~u :::: -c.fe~ 
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In terms of the dimensionless variables V-59, this becomes 

-J X.~ 

4>3/~ -x''~ 
. ,, 

[ I + j @lC) ! J < (V-120) 

where 

(V-121) 

To lowest order in ~ , we therefore have 

(V-122) 

which gives the desired relativistic piece of V-111. 

The model V-119 was first obtained by Vallarta and Rosen (aO) but was 

generally rejected because the resulting density is not normalizable, going 

-3 
as r for small ~ , a difficulty which does not persist in V-122. This 

rejection, we feel, is poorly founded because it is based on too literal an 

interpretation of the model at extremely small distances from the nucleus. 

The relativlstic correction becomes significant at X ze , which at i! =CJa 
is x- .oa For this case, the number of electrons contained in a 

sphere of radius .02 (as given by the uncorrected TF model) is about 2, 

clearly too few to treat statistically. Furthermore, since V-120 contains 

~ to all orders, it should certainly not be taken literally due to the 

neglect of higher order~ terms (i.e. higher order in~c) in deriving V-112. 

It is therefore felt that the expanded form V-122, which as we just noted 

does not have convergence difficulties, can be confidently used. 

There is, however, one reservation which must be resolved before the 

foregoing result can be considered definitive. Comparing V-119 with V-9, 
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we note that Gilvarry's equation differs from ours in the term ( e 'f' # )2 

which, incidentally, removes the convergence difficulty just cited. The 

origin of this term is Rudkj pbing 's (66) analysis of the Dirac equation and 

pres~~ably repres ents a spin-orbit interaction effect. If this is the case, 

it is difficult to understand why the electron magnetic moment and thus ~ 

does not appear in front of this term. The way to settle the question is 

clear: the relativistic analog of the first quantum Vlasov equation must 

be calculated starting from the Pauli equation rather than the Schroedinger 

eq\~tion and its classical limit taken in precisely the same fashion as 

before. Attention need only be focused on the spin-orbit terms in the Pauli 

Hamiltonian since it is readily verified that the Kinetic and potential 

energy terms give exactly V-114. We have not as yet carried out this rela-

tively straiGhtforward program. 

The correlation correction, even in lowest order, cannot be obtained 

so simply in spite of the fact that the formal procedure for obtaining it is 

well defined. vfuat one must do is to go to the third stage of approximation 

(see II-85) in the quantum BBGKY hi~rarchy and thus deal with the coupled 

-Q) ,..,F C•) . .........(.t) 
equations for F and • In principle, one then solves for F in terms 

,...,.(1) . 
of F and computes the right-hand side of II-77. The classical limit of 

~(,) . 

the resulting F equation is then taken and solved by assuming that the 

new ~·) only slightly differs from its uncorrected (or TF) value. In carry-

ing this program out, recourse to an expansion in some small dimensionless 

parameter will certainly be required. It is therefore advisable to introduce 

at the outset the dimensionless variables appropriate to the TF model. 

Without actually going through this procedure, we can anticipate sane 

general features of the result. The problem will become formally similar to 

that of obtaining the doublet distribution function in a classical inhomogeneous 
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plasma whose singlet function in the absence of correlations is the Fermi 

distribution. Quantum effects will, however, persist in the "classical" 

limit ~ -7o in two guises. First, the 

hand side of II-77) will be modified by 

collision integral (i.e. 

the usual [ 1- N ~ p 11
'] 

:J.m~ 

the right-

factors 

characteristic of the exclusion principle* and demanded, in fact, if the 

collision integral is to be in accord with the H theorem appropriate to 

Fermi statistics. Second, factors like the N/N-l term which arose in 

Secticn IV-A as a consequence of the Hartree-Fock approximation will gen-

erate corrections to pl~J of the form J.:. 'F'1 fC') Indeed, an unpublished 
N 

study of the problem by the author and von Roos (81) indicated the possi-

bility that the Fermi-Amaldi correction, which, it may be recalled, was 

removed by the Hartree-Fock approximation, is to some extent put back by 

correlations in accord with a similar observation by Jensen (53). Care 

must therefore be taken-x·ltto keep track 0f terms of order \ { N , a point 

which. appears to have been disregarded in the field-theoretic studies 

( b 9) 70 ) of the correlation question cited earlier. 

This ~ormal equivalence between the introduction of correlations into 

the TF model and what is essentially a problem in classical plasma physics 

is a cause for some despair since the problem of correlations in a class-

ical inhomogeneous plasma is still unsolved ( ~SJ3~). It will therefore 

most likely be .necessary to introduce a further simplification, viz., that 

F ta.). of disregarding the inhomogeneity of the plasma in the computation of 

Since the overall effect on the model of the correlation correction is 

likely to be small, this procedure, which preserves the main physical. 
,...,(a) 

features of the correlation corrections to F , is surely adequate. For 

*Since Fl•) is of order h -3 1 it is seen that this term would persist when 
'n-'> () • 

f*In this regard, it should perha ps be mentioned that the normalization 
constants C' and C" occurring in II-84 have been evaluated by the method 
of Section IV-A and found to beW/(N·l)• 
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this reason, the results of the next chapter where we actually compute the 
,..._.,~) 

correlation corrections to f in an infinite spatially homogeneous elec-

tron gas should greatly facilitate the r emoval of this final barrier to a 

unified statistical model of the atom. 
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Chapter VI Correlations and Collisions in the Uniform Electron Gas 

A. Introduction 

The spatially homogeneous electron c;as vith a uniformly smeared out 

back~round of immobile r.eutralizing positive charge is a commonly used 

idealization of the conduction electrons in a metal and bas thus received 

extensive theoretical attention.* Althoueh most practical problems require 

the inclusion of the lattice degrees of freedom (i.e. the phonon field) as 

well, it is clear that a detailed theory of the electron gas itself is a 

necessary prerequisite to an understanding of. the more complete problem. 

Due to the formal similarity of the Fermi sphere and the "vacuum" of 

field theory, the zero-temperature electron gas has been a particularly 

fertile ground for the application of field-theoretic techniques. H~Never, 

due to the fact that the "couplinr; constant" of the problem is the parameter 

fs defined in IV-115 which for metals lies in the range 2-5, we have, in 

effect, an intermediate to strong coupling problem. Consequently, the 

field-theoretic approaches 1vhich are in essence based on a perturbation 

expansion in 'f'~ are of value only in vhat may be called the "academic" 

limit '('$ << 1 Indeed, since the shielding of the bare Coulomb inter-

action by the dielectric behaviour of the electron gas is a dominant feature 

of the problem} one must in effect sum part of the perturbation series to 

all orders in rs to retrieve even the simplest physical processes. In the 

Gell-:t-'lann-Brueckher (5'4) calculation of the "correlation energy" of the 

*A fairly comprehensive survey of this aspect of the many-body problem may 
be found in Pines (93). 
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electron gas (i.e. the true Ground state energy minus that obtained in the 

Hartree-Fock approximation) for example, formally divergent contributions 

from all orders of perturbation theory must be summed to yield the (finite) 

leading contributions for small fs . 

In view of the manifest inadequacy of perturbation theory at realistic 

densities, attention has been focused on what may be termed "non-perturbative" 

approaches. 
.... 

An early example is the e legant formalism of Nozieres and Pines 

('3a) ,.,herein the ground state energy and pair correlation function are re-

la"i..ed on general grounds to the dielectric constant of the system. W'nen the 

dielectric constant as computed in the Hartree approximation (i.e. III-42) 

is fed into their expression, one obtains the result of Gell-i-1ann-Brueckner, 

neglecting, however, the exchange contributions. ·This neglect of exchange 

is unfortunately a serious drawback s ince at metallic dens ities the exchange 

interaction is expected to play a siGnificant role. The method nevertheless 

has value inasmuch as an i mproved calculation of the dielectric constant may 

be an easier task than a direct energy calculation.* 

Another non-perturbative approach has recently been used by von Roos 

(~4) to calculate the effect of correlations on the dielectric constant. 

In analogy to the first T~~-Dancoff approximation in meson theory, he re-

tains all intermediate states which contain a single-particle hole pair, 

neglecting all others. Use of second quantization obviates exchange diffi-

culties. His results for the shift in the zero of the dielectric constant 

(i.e. the plasmon energy) are in encouraging agreement with experiemental 

results at metallic densities indicating the possible viability of the 

*One might expec~, for example, that use of the Hartree-Fock dielectric 
constant as obtained from IV-89 would mitigate the exchange difficulty 
to some extent. 
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method, perhaps in co~junction with the Nozieres-Pines formalismJfor the 

computation of other details of the system. 

In Chapters III and IV, we have 'already studied the electron gas in 

the Hartree and Hartree-Fock approximation. We now go beyond Hartree-Fock 

to the third stage of appruximation in the quantum BBGKY hierarchy as out-

lined in Chapter II. In so doing, we are in effect introducing another 

non-perturbative approach to the problem wi~h the unique property, however, 

of being phrased entirely in classical terms. Furthermore, since we pro-

ceed from the Hartree-Fock approximation, the effect of correlations on the 

exchange interaction is automatically included at least to "lowest order". 

The quotation ITarks underscore a drawback which our method shares vith all 

non-perturbative approaches. Unlike perturbation theory where bounds can 

at least be set on the next term in the series (notwithstanding the fact 

that knowledge of the next term in a slowly convergent series is of some­

what dubious value), we have as yet fo~~d no w~y of even estimating how 

our results \vould be altered in the ·fourth and higher stages of approxima-

tion. All we can offer ~s the qualitative consideration that if correlations 

between more than two particles are an important feature of the problem, the 

system is more characteristic of a liquid than a gas and entirely different 

techniques must be applied. 

With this reservation in.mind, we proceed in Section B to the third 

stage of approximation to the quantum BBGKY hierarchy and derive an equation 

relating the "correlation -(~) ( ~(:l) ) 
functions" ( 1. e • f" - F.o( ti Ha:rt F k) 

C{,~,. • ~ ree- oc 

to p'') . In so doing, we directly parallel a. recent study by Guernsey (18) 

which, being based on the Wigner q.m·. d. f., does not properly include exchange. 

Indeed, we obtain Guernsey's result plus an additional term which describes 

the correlation modification of the exchange interaction. Fortunately, the 
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resultant singular integral equation for the correlation function still 

belongs to. the general class of equations solved by Guernsey .i_n an earlier 

paper {aS), thereby enabling us to make direct use of his result with a 

consequent saving of labor. Due to this circumstance, his contribution to 

the present problem cannot be minimized, notwithstanding the fact that the 

integral equation in question is apparently of a fairly standard type. 

Raving obtained the correlation function expressed in terms of ~(9 , 

,...,p(•} . 
in Section C we introduce 1 t into the - equation to obtain the "colli-

sion integral". The vanishing of the collision integral is a necessary 

condition on p') if it is to represent a system in equilibrium. The modi-

fications of the collision integral wrought by exchange {which we believe 

to be a new result) may, due to the added c~~plexity of the total expression, 

lead to equilibriUlll Jt•) 's other than the Fermi distribution. We neglect 

this possibility, however, in Section D where we compute the correlation 
. ,_.(•) 

energy at zero temperature, assuming F ·to be the Fermi sphere. The equiv-

alence of our result with that of Gell-~~n a nd Brueckner (GB) is explicitly 

demonstrated in the hi6h density limit ( fs. .( <. \ ) by means of an analytic 

continuation similar to that used by Sawada et al (85). We then go beyond 

the GB result to compute the excha.nee contribution to the f's \1>3 rs terYTtin 

the energy, which arises from the screening of the exchange interaction by 

the dielectric behaviour of the system. 
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B. Solution for the Pair Correlation ~Jnction 

The basic equations of the theory are the time-independent* forms of 

II-79 and II-81 which, for the problem at hand, become 

L t.J ~ < t 5 J.'x~ J '-.r:~. J;. 
h (:l'll')~ ~J - .. 1, 

"'l- l. 

d 'Fe')) ~. :: 0 -)-t. 
ColllsioY\s 

(where use has been mad~ of the spatial homogeneity of F(') ) and 

(VI-1) 

*The time-independent equations are used because the system is assumed to 
be in equilibrium. In the third stage of approximation, however, we are 
actually developing a kinetic theory of an isolated system rather than a 
statistical description of an ensemble as discussed in Chapter II. It is 
therefore necessary to introduce the concept of equilibrium in a dynamical 
sense by formally considering the time denendent quant~~ BBGKY hier~chy, 
viewed as an initial value pr~lem, and defining equilibrium in terms of 
the asymptotic values of the F(S) as t ~oo. This procedure, which in­
troduces irreversibility into the otherwise reversible theory, has been 
extensively discussed in the literature (aS)~B>Sa), so we will not burden 
the present development with such considerations. Instead, we will follow 
the conventional practice of dealing with the time-independent equations, 
with the understanding that ambiguities in the interpretation of dynamical 
singularities in the solution for F'(~) are to be resolved f'rom its time 
dependent equation by imagining it to be multiplied by e6 't where B is a 
positive infinitesimal. This can be viewed either as a causality require­
ment in the initial value :problem approach or as Bogoliubov's ( 6) condi­
tion that all correlations must vanish in the infinite past. The net 
result of this procedure are the factors of ~ ~ in VI-20 et ~ Finally, 
it should be noted that for time denendent processes in which ~~ varies 
at a rate slow comnared to the char~cteristic . relaxation time of F~ (i.e. 
the hydrodynamic lfmit), we can assume that p(~) depends on time only im­
plicitly via its dependence on 'j:(l) and thus that the solution for f:'C~'l 
obtained from the time-independent equations is still valid. 
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(VI-2) 

f{~) and 
~ 

~ 
~ are given by their Coulomb values, III-39, but for the sake 

vf convenience and generality will be kept arbitrary in the ensuing develop-

ment. Due to the fact that N i s for~Blly infinite, we eve~~here i gnore the 

distinction between ( W·", N- ';). · , etc.) and N. 

The third staee of approximation to the quantum BBGKY hierarchy is 

characterized by the following assumptions about ~(~) and f=Cl) (see Chapter 

....... ~) 
~ ("• X1. ·'Vi v,.) =. 
I If'~ "'-I ~ I ,... I -

(VI-3) 

+ J_ G ( x. -x.,. · v; v:l) 
...... -J-J-

4 . 
(vr.:.4) 



-16o-

and 

c=-f'l (~, x1. -,c\ · v, v-l v:) :: 1 - e 1; "' - ~ ... ,-i' ~' FA f!a) G. {'!(3) 
) L -~~ l1fi-1r,)·{~,-x.,.~ C'",tv:) ,...M ....... [t, 

I 1'1'~ - l""' 1 ~ J ""I.., ) •• ! T 'V 

+
4
' ~·)(Vi) G ( X1 -x1 · "'1 \r.,) + .L ~~) (11",.) (;-( ~ -x.J j f., 1£~) +_L f~:>l1j) H (~ -x~; ~ tra) 

. • . ,., ~ ""' ) """" I N i .. ,. .N . ....... . 4 v ~ A J "' 

(VI-5) 
F.('l) (x, t, )(.1. 1lj V'a ,.,) ::. r -~ ~ (:!) -Y'l). (~· -~~) e- ~~ (~-!J) ·. { 1• -~l) 

1t1' ~ J -, ... J ,.. , .... , .... L I - e i\ - ... --

-i.~l,l-V"l)·l'X.1. -X1) -~~[(vt-V.)•X:l -t- {~-y~)'~'l 4 ('y, -"'£l)·~•] 
- e 1\ - - - - + .e 1\ - AJ ... 

-~ ~ f..C'11'3 -"'I",)·'Xl .... {V, -va.) .x, ... ( v1.-v1) .xl]J -c(•ltv.J p""'(l)(v-.• ) pr·>(11 .. ) + e .,.. - .. - .... ... "' - .... ... r -t -· t ...... ...~ 

(VI-6) 

etc., where implicit use has again been made of the spatial homogeneity of 

the system. It is important to note that the anti-parallel and Parallel 

snin "correlation functions", G and H (respectively), which r e•present the · 

deviation from the Hartree-Fock approximation, do not explicitly embody the 

requisite exchange symmetry nor is the correlation part of j:~) explicitly 

excluL~e symmetrized. As pointed out in Chapter II, these symmetrizations 

take place in the fourth stage of approximation. 

We shall restrict our considerations to the "normal" or paramagnetic 

case defined in IV-63. We therefore define 

(VI-7) 

the normalization of 

(VI-8) 
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whereY\ is the electron density. Then, summing VI~l over the spin index 

and using VI-3 and VI-4 leads to the collision integral 

df{•)(v-)) ::: 
d -t. c.,nls,"ons 

x[~(~(~,-x,.Jtr,+!~)v-;2\ + H(:t,-x~ ·v;'+'t<t,v.t)~ -~ (G-(x,.x-t·r. tr,.)t-H(x,-x2·1!, v,J'\1 
C( ...... - ""... - ') ..,. ... j- -;;; .9 ~ ~ ~ -v .... J ..J J... ...... ...... J ..... '-')_J 

(VI-9) 

We are thus led to consider in place of G and H the more convenient 

quantities 

(VI-10) 

and 

(VI-11) 

The equations for J and K are simply obtained from VI-2 through VI-6. 

Thus sununation of VI-2 over <X, and Olil yields for J: 

( y. · v~, + !'- · ~~ -~ V~, -~ v~,.) J ( ~· -~1. ~Xi, Y;.) = i1 J~ e - ..... .f ( ~) ~ ~ a ·y ~ ~\.(K,-X-;1) 

t (~n')l IJ .... 

• [[t•h. ,~·; !o .. !t J 1!• -Hl -t~~ .. ~, '!,, '!·~ + L J(~-~·; '!! 4-H '~-H) 
- J(~,-~~ j !•, '!:,.)]l + ~ N ,~ ( J ~3 /~ J ~ f (t,.) f e ~ ~·(~ -~)fj(f(3}(~, X1. X1• V:t+~ u: tr\ 

) i; (~11')3 J . - [ ~ 0 ,,..,,..J.,.' :;;~J ... lJ~?.J 

- ¥o(l) (~, '!~.) 11; !·. !l, 'b)) + ( rr·)~~· t ~ t) _ ~r·>(~ )) J (~l- ~3 ~ ·~) J ~) 

~ ( J(x, -X3·J 'If; tii q .. )~) -J"(~r-tCl · V, 11'1)'\ F(l~a) 
..... ~- ~.ll ... ""}"'l"'~ 

+ L J ( ~·-~·i r··th~·)- J(~-~· j r- ,'I[}J) r·Jt~J] -r f 1-~J} 

(VI-12) 
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- (~) ,.,.,fl) 
where the spin-s uwmed <~~correlated) quantities r0 and fo ar e defined 

(VI-13) 

_ ~ l!l ( 1li -1!1) . ( ;:(., - X 1 ) - ~ 'C!l. ( 'V1. -V 3) • {X~ -X 1) 1 ~ M ) -f M . ) :::: M ) 
+ e ~ ... "" . ... - + e i\ .. ~ .... - j r- l -r· tY:t r f}[1 

+-- 1\ "" 4 ... - """'" """" ...... ,... At ~j 1\ Lw~ ,., .,... """ - ""' ~ 41\1 I 

[ 

-i~[('V-.-li",)·Xl + ('V"J -tra)•X:3 -tlv;-V3).t,1 -t~r{tf:t_.v,) • X3 -t- (V.-lf'l)·~,+l~-Vl)~ 
4 e +e 

"'::;:(\) """II) -h) 
x r Cy,) F {~) F (~1) 

(VI-14) 

Si milarly, the K equation is obtained by deriving from VI-2 the equa-
~l) ~~) -r~) .-o.) 

tion for ( F.,., -t r ..J.~ - f.u, - ~t ) . The result is • 
L«f.•(X,-){~) 

[ '}[. · ~. + ~ · \7;(). - i. t v;, -- L"\i ~~J K ( x., -i(~. v. '\f1.. \ = ~~ ~ )~~i e- ~ .ffo) 
"' ,2m. · d. PI "' "' - .J ""' ) ~ ) - 3 U b . ~ . . t~ -

X [[ t> {?'_,' ~·; y. t! ~ ):!"·-!G) - A(•)(~ •• ~ ~ r. J ![.~ 
+ [ \((~, -~-:~. V. +~ ~ -v-1-~ 4o) - K (X, -x~ · 1f: v: )]) 

) ""' W\..,. )"" Wa"' ""' ...... J -'J _,. J 

_[ ~ O.XJ~'V30.~ {~ c"' .... - B,d, (~,J~Ol.J~Jj~Tt!)1f~,~ t iNg~ ~ ,, h'J \~ f )[ Z~·(X,-.X))~( {3) 

~{~ro ~ 

-~t~\~,xJ.~J · ~ r~ Vl)~ +(K(X.-X~·V";t:k 0 712.'\ 
~~ J ""' J ~ ' ... I ""' J ""' ') - ...._ ) "" 'It) "" J .,.l) (VI-15) 

-l<e~·-~~;~.1[2VFc.,(,.1)] + [t~:lJ] 



where 

{~) ) -~ f l:J -~) ·l~J -~~ -ft 
A (~I X~). v; v, = l e F ) ) ;"'-'F {I){. r..,) 

"' ) ,.. ""'I "" - J (1/, - V;, (vr-:;..6) 

and 
(>) 3 tx, ;(aJ x 3 · v;- tr,. v-,) 
1-;). - J ""'" "" } - ) - J -

(VI-17) 

Equations VI-12 a nd VI-15 are most conveniently attacked by introducing 

the Fourier transforms: 

(VI-18) 

and 

(VI-19) 

in terms of which the left-hand s ide of VI-12 becomes 

(VI-20) 

(a precisely similar result naturally is obta ined for the l.h.s. of VI-15) 

where € is a positive infinitesimal whose origin is discus sed in the foot-

note on pagel58. 

The consequent r eductions of the right-hand sides of VI-12 and VI-15 

are perfectly straightforw~- d though sufficiently lengthy to render unpro­

fitable an exhibition of the details. We shall therefore just quote the 
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resulting equations for ~and X. We find 

"'-l ( ;c, -~. ,_~ !t )·~ !t -"~~I~, f., '£•) = N ~lf t~{Ft~-~~>-Ftr.J 

'~~\-~~ t~,l!: y,) + N ~~ft1t.J[ F6}y, t! !>) - f'9t:':•)J~J3vJ f.:!.•, Yi)l!') 

t \ S (! J v, v~) - ..!- S (VI\ tv; -V~) -.h. v; v,_)\1 L .... , ... a 1;-- "")""'J-U 

+ [(~) 3 ~Y'O- f I PLJ ( ~-.h ~ -~ \ J :C• '"! ~)-~ ( ~ -~) ':!i, 1!:•l]] 
(VI-21) 

where 

S l1,?; > 1£•, !?. ) = d~f l_..tr.)\ Fc•> t!t _;; !;) F t·}v~ + .t~) [1- N h3 f(1v)l 1- N ~ ;:=~>v.~ 
(:?il')3 L .... ~ 'tt\ am.' 1L .dYtl3 a 

. . 

- r t--v.) F cv-:~) 1-~ F L'V", -~ -b-JJI ,_ wh F''>(v~+.t: 1.) ~(•) -(1) [ '3 ,..,,,) '[ 3 - ~ 
"lvn1 ,.. 'rn ~yn~ "" ..,.. "' 

(VI-22) 

Similarly, for X we obtain simply 

(VI-23) 

We now focus attention on the curly-bracketed terms in VI-21 and VI-23 

which, it will be noted, drastically complicate these equations. They orig-

inate from the correlation corrections to the first terms on the right-hruld 

side of VI-12 and VI-15. Since the ~~corrected contributions to these terms 
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(i.e. those arising from fo(.1) in VI-12 and A{1.) in VI-15) are non-vanishing, 

one would suspect that the troublesome terms in some sense represent higher-

order corrections and. hence can be ignored. Indeed, by inserting a formal 

expansion parameter (eventually set equal to unity) in the quantum BBGKY 

hierarchy, Guernsey (I~) has shown that these terms do not appear in lowest 

order. While we could, of course, have followed the sam~ somewhat arbitrary 

procedure, we choose instead to argue these terms away by demonstrating that 

they are of the same form and magnitude as those additional terms which 

enter in the fourth stage of approximation to the BBGKY hierarchy. 
. 1"-"(l) ....... (~) 

To illustrate this·' l et us first . choose a typical F , say fi ff , 
and see what modific&tions of the appropriate ansatz VI-5 would be required 

in the fourth stage of approximation. It is readily verified that the ex-

change symmetry requirements II-70 and II-72 are satisfied if 

r:~t t~ •• t', ~; ~· ,'!.' ,"!!) = [1 - /fly,- r•l·<~· -~·)J Ft( ..... > r;'tv:.) ~·h·,) 
-::;:-(1) [ ) ( ( . ) ~·} 

+ t r-:t -v;). l:f ~· -~3 ~ y, J ~ + f f-t t1f~) G( ~· -~}. ~ Y., ~J 

+ f..l. r:-:~·J(V.) H \X~-X:s·1f.,. 11"3) [J.. e-~~ly~-!6)·(1,.,-i!_l)[H (v _Y • .. r vJ"""'r."> 
V' ....,. ....,. ) ~ I .-.; 4 1\.) 'I. 1.) V;t 1 . {",.) 

""' ~ -1 J ... ~ v, 

+ G {~,-~4 ~ ~, Y1) ~(t}v:l) + G-. (~, -~3;~, y~) f.,C•J,,3)1J 
~ (VI-24) 

where the term in curly brackets r epresents the new contribution. Inserting 

it into VI-2, we would obtain, among others, an additional term of the form 

-~Wf }'1 ,~V: J, f(IL)ei.}·(~,-~3\.L. eif[~,.-~)·l~;},-~3)~t·l 
)~ o.X3 iJ. J ~ u 

8 
r {'V"l) 

"\) L~1r - . 

x [ G (A:• -~"} ~ y, +!}) v:t) - & (~, ~z3 ~ r., ~~J 

(VI-25) 
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(VI-26) 

Performing the integr als over · x, and \1;, , vre find after a few manipulations 
/'W ,., . 

As a result, a term would be added to VI-21 of the form 

-_i_ r ~ 'F "> ( 'lf:t1" t ~ 9 \ c1 ~ f { ~) (JJ t -tt ~a- tr. -~ t- ~) -1Jt ~ ~~ 1r, !olY 
4-LJrr)~ La.W\~ ,... w. J J o v .... ,.. )- ~ ... > .,.L .. , / 

(VI-28) 
'\ ~h) 

Since _!ih !- is of order unity, it is clear that VI-28 is of the same 
~~~ . . 

magnitude and similar structure as the last term of VI-21, which we set out 

to demonstrate. 

Having disposed of the troublesome terms, VI-23 is immediately solved 

to yield 

(VI-29) 

Turning to VI-21 (minus the last term) we make the convenient variable 

change 

(VI-30) 
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+ [ s'rt, ~·.Y:t)-- i 5'( ~-~-_t)r. )'![~) 

[ (~~- ~ +f) ·.t _;, eJ 
where 

and 

(VI-3l) 

(VI-32) 

Inteerating VI-31 over !• , and maki ng use of the obvious symmetry 

(VI-34) 

we obtain the equation 

- Q l})r.) 
(VI-35) 



where 

and 

Q( Vi l " ~J.~'lj. [ s' rt. Y..!~)- { s' (y.-~· "'!' r., '[]. J] 
[ ( ~ -1[. -T!) ·f - ~ € J 

From VI-37 and the fact that 

pl•) ( ~) ;:. Fh) (I ~I) 
one finds 

so that VI-35 b ecomes finally 

(VI-36) 

(VI-37) 

(VI-38) 

(VI-39) 

(VI-4o) 

(VI-41) 

At this point 1ve compare VI-41 with the corresponding equation obtained 

by Guernsey from the quantum BBGKY hierarchy for the Wigner q.m.d.f. After 

making the proper notational transformations, we find that it differs from 

our equation only in that in place of VI-38 he obtains 

Q C.i'J t•) (VI-42) 
G-U~lUJs'Y 
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and thus ignores the exchanee contribution to Q. It i s worth noting, how­

ever, that he included enough of exchange to obtain the f } - W h! F1~j 
. L ~ 'M~ 

factors in VI-33 which are characteristic of the exclusion principle. 

Equation VI-41 has been solved for general Q by Guernsey in earlier 

paper (a~). The method consists of first integrating it over the compon-

ents of ~ normal to 1: to obtain a one dimensional equation. The introduc­

tion of Hilbert transforms then reduces i t a form amenable to standard tech-

niques from the theory of singular. integral equations. 

Introducing the notation* 

.. jJV D l t, r'J 
..n.. -r t·Cy'-$) +it-

we find from equation 61 of referen~e (~!) that (in our notation) 
()0 

(?(t,~,) =.Q(j:,~) 

6 { 'fr) y, ·J-) 
+ bit;'!:•) GIL cj> ( }, "-) ~ _l [cu.-~ ·_!-+ !'J-L6}l6i'lr, ~<•.fJI 

~ (VI-44) 

where 

-J-. (oo J.~'- (J\/~(1.(.'-i·!')G(!)Y'+!) 
;2i'i L ) ~ -lA. + i. ~ ) . . ~ 

-rP (VI-45) 

Using the well known relation 

(VI-46) 

*Note that A is simply related to the R.P.A. (i.e. Hartree) dielectric 
constant € • ( 'fr, W) defined in III-37: 

b('b-,.n.) ~Eo (~~>f-(..0..-~~)J 
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we ~an rewrite VI-45 a s 

(VI-47) 

To simplify t his expression ,.,e must GO back to the defini t ion (VI-38) 

of Q. Noting firs t t ha t fr om VI-33 

f r om which we deduce t he symmetry pr operty 

, ,, 
s (4 t.-t! 1f~)=-S{-t 11·-l V1.-rt) 

~) - ) ...... ,..,; """ ')..)""" -- ~ . 

(VI-49) . 

Then 

Q(h~·t) =- fv, Slt,!o~~>~. = -~.i'v, SL-~,'!(;-J,h~~?) 
(~'), -y. +i)'t -L~ l ~: -!t -r!JJ·! -,£-

~ .... 

= \d'3-v-:l' S(-1> r·~t,~)~{) 
J -( y; -~ -$.fa J · t -t- ~ l:- . ,..., 

(VI-50) 
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where * denotes complex conjugation. Thus, 

c? t1, u.) ::- J_ r; J\r' _J_ , ~ Q_ ( t x'-r ~ 1~) 
11 ) ~-t·r _) 

,. 

+ ~J..,v' <a ( U.- ~· y') ~ Q.( ~J 3C'+j/:l) 

which, by virtue of VI-46 may be simply '\-Tritten as 

,h { t ~) = I ... > ;,. .J,. L ~ J'l,r' G. ( 1-, ~·-t ~~~)] 
t.<.-t·:l[-L-f .,... 

• l 

(VI-51) 

(VI-52) 

Finally , inserting this expression in VI-44 and making a variable change 

gives the desired result 
Of' 

T D(~,y;lJu.. I . :l J. L. u. ~y, ·! -" l:] l D.c t > u.) I 
-d' 

~;~[)A' Qr~,(J ] 
u.-t·!-Le - (VI-53) 

The full can now be recovered from VI-53 and VI-31. 

VI-29 and a Fourier inversion yield the original correlation functions G and 

H. Since, as we shall presently find, we only need for 

the applications in Sections C and D, VI-53 'fill suffice. Indeed, its r~al 

part leads to the correlation energy, its imaginary part to the collision 

integral. 
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C. The Collision Integral 

The collision intesral is given in VI-9. Written in terms of r (% tr1 ) 
,_)""'-

it becomes simply 

'N;:-rn; F~ {' (; t-)[ ~r V5 t J)- ~rl,lLi~ 
(VI-54) 

In our subsequent work, it will be convenient to deal with dimensionless 

quantities. We therefore measure all v.elocities (and 'jJ') in terms of the 

Fermi velocity III-41. Furthermore, define 

rc·> ~ ~ \"1\; """(') -----. f 
r.J "'~ 

(VI-55) 

(VI-56) 

and 

(VI-57) 

Then introducing the specific (Coulomb) interaction via VI-32, we obtain 

(VI-58) 

where, from VI-53 and related dafinitions, 

(VI-59) 
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ali quantities now being dimensionless. In the above, 

{VI-6o) 

and 

~C~).n.)~ 1 +\i\,.'JJc~)tr'> · 
J _a_ -t 1r ·ly'- _i) +.: €: 

. ,., 

{VI-62) 

where f's is defined in IV-115. 

After relatively straightforward though somewhat tedious algebra, one 

can establish from v~-59 - VI-62 the symmetry property 

{VI-63) 

s o that VI-58 becom~s simply 

(vr-64) 

It is slightly more convenient to deal with f (--j.) Y) than f ( 1 J '!!" ) , 
so the latter form of VI-64 will be used. Employing . VI-46 and performing 

.. 
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t he Ll integration i n VI-59 l eads a f ter some man i pulation to 

+ L ~J'v-' a.t- ~,r,-J!') J[ S lv" ~ ( ll:•Y'+ 1J. ~) ,& (-.L y' ~ 
(X-t!+_!) ·} . 

- [ )J'v' 5 ( tr'•x + l)· 1-J cu-p·,-y'~ Ulv-" JJ C -!,r' J J 
. (y;+y; tt)·~ 

+ JJ (-~~ 1[) L JFv·lv· ~( rr-l!:'J· !) a.~-},:;-~·')] 
· . lV +11' t-t)·t 

. ....... """"" ....... ........ 

(VI-65) 

Turni ng firs t to the l ast term of VI- 65 , we note from t he definit ion 

VI-6o that it may be written 

xl~-r·l:=r·)J[,-f'''l1l">J _rrtv-·Jt-"~(h!'~y"i-~) ·jJ[_L- j__ .lr·). -(·l., 

. JJ l1C'-J[).~ ~:1 il{y'-r)l"-t-j)j (~).f(~) 
x[J-~h)c;~'.,.~l][J-f">cy'~.U]} . .., (vr-66) 

, m n ~ 

.M.aking the variable changes y s -y -.! a nd X :: -! -! converts 

the sec ond term of VI-66 into 

(VI-67) 
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which by virtue of the delta function can be rewritten as 

- ~\c!\r"'J\r''" ~( <r'"..-y''"+2lJ) l..L~ , l -c•J """"'''> 
. ( J!'"' -1!)·! t -Jl!"'-+y"'~-~-!)':_l f (1!~~~i-J)-f r:r'''~!) 

>( \. \ -t~·('')] L I- f'"'t!'"'0 (VI-68) 
,,, J ,,, " 

Finally, changing d'I..Ullilzy" variables V ----7 V , 1f ~ V , reveals - """ -
that VI-68 exactly cancels the first term of VI-66 so that the last term of 

VI-65 vanishes identical~. 

In treating the remainder of VI-65, it is both instructive and conven-

ient to separate the exchange and non-exchange contributions. Specifically, 

let 

(VI-69) 

and introduce the shorthand 

c+(~:) ""'(•l t -f I•) >] T ~ - f ' (Yij) )- · (1! 

~- (~) - :rl•) (~) l \- fh) {y +lJ] 
(VI-70} 

Then making use of VI-6o and VI-61, we obtain for the non-exchange component 

(VI-71) 
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Similarly, for the part originating from exchange collisions we obtain 

~ f• (-~>!) = ..1r- . (-±)\lu-'£"U~'+ri-~Jo!)[.f•tvJfCv'J-f(xJfcv'il 
IAt-t,-Y·!>/" j (t'-tJC'+t)ll - - - -

. ""' 

~~':t-v.011 ;:. (- ~) r [£lv' ft~r:''J- fi!Df?iJ ][(J~"a{(Yt!~1J ·.!)(/cy)-f(t1D 
I ... -- b c 'j Cy+.r~j);t ty-r.YTjJ'~ y ~ 

_ [~J\r'$ ((y1 
.. ){+,t_) · ~ )( -t+c0 f+(l£')- f-ry)f-f)l:'11[1J'v" f1l}- f-()[_'?7 

N ( y-f ~ I ... _!)~ ~ (~-ry''~l) '! 

t l t+l.'! l - f -l.!!l] ~fu-' J.' v" :i (r:-Y:· 3) ( + ... c.~·J :·~.r::- f( !H i'!'J J) 
ex -ry .,.1 )~ c~ +x ~J·l j 

(VI-72) 
·~ -

We consi der fir st VI-71, and obs erve that by virtue of the delta func-

t i on the last term can be rewritten as* 

(VI-73) 

Then, making the variable change reduces this to 

L f\~)- f-(~)J [ ( )l~11"'" ~ {Cyo~-y'''-r~)·l) .f-(.~"'}) ( ~a\r" _f 1'c37,"l ) 
. (1£~Y. -t-J.l-t 

- (\J ~" .. , ~ ( t:r~!"'+~ )·1) f+r1L"D ( 1 J'\,,, .f -~~'J )] 
{y-r! +-j)'! 

{VI-74) 

*This s eparation of the double integral into a product of single integrals 
will not be possible in the corresponding term of VI-72, a circun1s tance 
which underlies our separate treatment of exchange. 
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The terms occurring within the curly bracket of VI-71 can now be com-

bined and one eas ily finds that they all mutually cancel. Thus 

J.,w.. foC-t)!)-= 1Y -};. (i~v'~( ~~·~~-rJJ-!_JI .fry)f~~(J -{r~){(!)1 
- \Al-t)-1f·~JI'l b J l J 

(VI-75) 

Before evaluating the exchange contribution, VI-72, it is worth\·thile . 

to collect the results obtained thus far. Inserting VI-75 into VI-64 and 
I I 

changing from V ~ - V' yields ""' _, 

(VI-76) 

The physical significance of this result is clarified if we fi.rst re-

call that 

~ (-tt,, -Y· ~)::. to(-: t J -= (Y.l -t-r )) :: 6.~o.(· t~~" ~(v·t -t-\~)) (VI-77) 
n ._ .. i; bJ 1\ .. .. ;: 

where €
0 

(.k) W ) is the ivave number and frequency dependent dielectric con­

stant of the electron gas as computed in the Hartree (or "Random Phase") 

approximation (see III-37): 

(VI-78) 

Then if we switch from velocity space to wave vector space 

~·J el -b) JJ f lf) ~ f ::. .f tv) 1r 
(VI-79) 



and introduce the kinetic energy 
~ 1. 

ECf) =- ~ 
;l~ 
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we find that VI-76 becO!JJ.~s (in dimensional time) 

.(VI-8o) 

~'fr',<f)) == -~11'.(l) · )cl'lf' fl~ \ 41Te~ j4 
~ t Coil, . 1; c;;)l )(;!~)l t~co(itJt(£lftj)-£(fJ)) 

l( ~ L f" ( fi-1) + E (l .. !) -elf)- f( r')] 1{ [ f (•)(fJ .f(')t(J [ 1- r(·~r~pf- f'h}!~!~ 

- .t·~f•l 1 'f"1r(! l L 1- f'''lfl]t 1-T'1ct'JJ] 
(VI-81) 

+ C:)(.c~"""lC ta""' 

Neglecting for the moment the extra factor of two, this is recognized 

to be just the "golden rule" for the transition probability per unit time 
I I 

for the scattering of electrons from states ( J f ) to ( f-t-f f- ~ ·) 
. J..o~ ..... .X) -

(less , of course, the inverse process) where the matrix element is g iven by 

(f. f' l M l f~! J {'! > :: . . ~ 1Te ~ 
~:t co(ftJ~( E"(_t~j)-f:(;f)J) 

(VI-82) 

' e ' the matrix element £., • for Coulomb scattering divided by the dynamical 

dielectr:f.c constant of the medium. 

Thus, on the basis of the plausible con,jecture that correlation effects 

sim}:ly screen the basic scattering process in .the manner given by VI-82, the 

collision integral in the absence of exchange interactions could have been 

written down at once, as indeed was done in a recent paper by wyld and Pines 

( ' 9 ) • The first derivation of VI-76 was apparent.ly given by Silin (86) ... 
using methods similar to ours. It was also obtained 'by Guernsey (I 8 ) despite 



-179-

a sic;nificant error* in his derivation. The exchange contribution vrhich 

we are about to derive, on the other hand, has not (to our knmvledge) been 

~revious~r calculated nor, as we shall see, do the dielectric properties 

of the medi1~ enter in so transpar~nt a f ashion. 

Retu:ning to VI-72, the first and third ter~s can be immediately com-

bined. to yield 

(VI-83) 

But from the definition VI-62, t"ue term in curly brackets is seen to 

Rene~ VI-83 becomes 

I II 
:Making the variable changes V ~ 1r in the second term of VI-62 .... ,., 

and 
,, ,, 

' 1l ~ -y -t - in the last term yields the remaining 

contribution 

*Equation (46) of his paper should read 

{c u,h) := ,· (-(.(._. -~) 
and his _expression {47) for the correlation function is consequently both 
incorrect and incapable of yielding his (correct) collision integral. 
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' Na.king the variable chane;es 
I I • If II .,r _.,.. -1r ,., ~ -'V ·in VI-84 and VI-85 v --T _ J ·v ~ .,..._ ,-- .,..., .,., 

and combining them with VI-76 leads to final desired result for the total 

collision integral: 

(VI-86) 

where 

(VI-87) 

The :physical significance of the new terms are easily understood. Those 

in the second set of curly brackets represent ordinary Coulomb scattering 

("dressed", hmrever, by the dielectric behaviour of the system in the fashion 

of VI-82) with a virtual exchange scattering (via the "bare" Coulomb inter-

action) between one of the two incoming (or outgoing) particles and a third 

particle of the system. 

The additional term in the first set of curly brackets can be clarified 

if' we momentarily ignore the dielectric constant and consider the spin 
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averaged matrix element (squared) for the Coulomb scattering of two free 

electrons, taking account, however, of exchang e (i.e. "Mott" scatteri~). 

For initial velocities1[ and momentum transfer t , we have in Born 
...... 

Approximation: 

I ' I ll \ < 1£) 1e I M. I !-r 1 ) '£- ! "> ;:;. 

~ 

+ t ( 1=t + ~ l)J· = ('-111e 1. )~[. j_ t (t-~ {"i) . b ~ 

( "'n~\) 
(VI-88) 

By symmetry, the first two terms of VI-88 g ive eq"t"lal contributions to 

the collision integral so we have, in effect, "Mott., t~ r .... 

~ 

~ z ~~ ':':-y' .. j) J 
(VI-89) 

Recalling the extra factor of 2 in VI-81, we see that in the limit 

6. --71 VI-89 yields exactly the first group of terms in VI-86. This, 

of course, must be so since we could have written dOT..m (using the "golden 
-f•) 

rule") the formal p erturbation series for 1:f. , the lcrwest order terms 
dt . 

of which are just VI-89. What CO'..l.ld not have been anticipated, however, 

is the peculiar fashion in which the dielectric constant enters in the 

"Mott" term of VI-86. 

Setting VI-86 equal to zero yields an equation for the equilibrium 
-(I) 
f . It is easily shown that 

(vr-~Y 
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'"'"'II) 
if f has the Fermi form 

~ ) ] _, 
[ e'l'p (A!J" -B +I (VI-91) 

so that the first curly bracketed term of VI-86 does indeed identically 

vanish for the Fermi distribution, thereby redeeming an earlier promise 

that VI-91 can be obtained without recourse to an H-theorem or ensemble 

theory. The second cur~v bracketed term, hmvever, does not apparently 

vanish for VI-91* and we are thlm led to the expectation that VI-86 will 

Generate an 'fs dependent modification of the Fermi distribl-.-rtion. That 

exchange effects do indeed "smear out " the Fermi surface, even at zero 

temperature, is kn01m from field theoretic studies (87) of the problem. 

In the high density limit: 

(VI-92) 

I I 
the collision integral which becomes simply (changing 1r-> -V 

~ 
for -

convenience) 

-~ 

(VI-93) 

does, as has been observed, vanish for the Fermi distribution. Due, however, 

to the added "l.fott" term which has been shown to arise from the interference 

between direct and exchange scattering, the interesting possibility arises 
. .-..J fr) 

that VI-91 may no longer*'be the only f which makes the collision ir.tegral 

*This is not in conflict with the H-theorem since it represents in effect a 
three-body collision process. 

t. "In the absence of the "Mott" term, the uniqueness of VI-91 followG directly 
from the non-negativity of 
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vanish. If indeed this is the case, the ground state of the system would 

be that solution of VI-93 ,.,hich has the lowest total energy. Since the 
""(I) 

kinetic and exchanc;e energies have a different dependence on both f . and 

~~ , the possibility would then arise that the ground state of the system 

miBht have a structure different from VI-91 for some values of ~ , even in 

the absence of the three-body terms in VI-86. Inclusion of the di-

electric constants in VI-93 would even fu..rther complicate the equation and 

make the uniqueness of the Fermi dist.rtbution correspondingly more suspect. 

Thi s conjecture seems particularly worthy of further study since, for a 

given ~ the "Mott" term of VI-93 is s een to r epresent an effective at--
tractive interaction which is strongest for pairs of particles the sum of 

whose velocities is - 1:" , an interaction similar in some respects to that 

between "Cooper pairs", postulated on entirely different physical grounds 

in the BCS (88) theory of superconductivity. 

D. The Correlation Energy 

The interaction energy density of the system is obtained, in general, 

from the second term of IV-73· Using III-20, VI-3, VI-4, VI-7, VI-10, VI-18 

and VI-36, one finds it can be concisely written as 

E: •~t - ~ [-f VII", J',., f(; 1'!()·1£•0 ( NP"l1[.l)( N F61t~!) 

+ ~~ N~.,~ (J1~; J'~1T f(~t) ~(~ ~) 1 
J. i;l ) I> 1\ ,.,) 5 (VI-94) 

where the first term is the exchange energy density and the second is the 

change* in the interaction energy caused by correlations. The electron-

'*The formally infinite energy density arising from the "self-consistent field" 
is cancelled by that due to the uniform charge background. 
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electron interactions also change the kinetic energy density due to the 

~Fi'' fact that will be altered when all correlations are properly taken 

into account. For a system in an energy eigenstate, however, a powerful 

theorem credited to Pauli and independently discovered by (among others) 

(VI-95) 

where the first term is the energy density in the absence of interactions, 

i.e., the kinetic energy density of free particles. 

N i d t 1 t c · t h a s'pecific form for ..-..Jf{') ow, n or er o eva ua e ~ i"'t ·' we mus ave 

Since ,.,e have shown in the previous section that aside from higher order 

three-body processes the Fermi-Dirac distribution leads to the vanishing of 

the collision integral, this is what will be used. It must be emphasized, 

however, that the uniqueness of the Fermi distribution has not yet been 

established and, furthermore, that a more exact calculation of the energy 
Q. .......,(1) 

must take account of the ~S (i.e. ~ ) dependent alterations of f caused 

by the three-body terms in the collision integral. 

4 
Since the Fermi distribution is independent of ~ 1 the ordinary ex-

change energy density (the first term of VI-94) is linear in ~~ and hence 

is not chaneed by the integration in VI-95· Thus, if we define the corre­
a 

lation energy density, E corr' as the difference between E total (' ) and 

*We assume, of course, a constant volume system. Since VI-95 holds for any 
system in an energy eigenstate, it will be true for each member of a canon­
ical ensemble and hence applies at non-zero temperatures where the £ 's 
are then understood to represent ensemble averaged quantities . See, e. g ., 
Englert and Brout {ql). 
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that given by the Hartree-Fock approximation (see Chapter IV), we then have 

(vr-96) 

where 

(VI-97) 

Furthermore, since 

6 ( G :l) ::. E CO'ft" (q 2 ) 
CoU' 4 i nt d + (VI-98) 

L corr where ~ kin is the change in kinetic energy density caused by correlations, 

then 

~ 

= [ )' J. ~~~ (of'r ,2~ _ Coff' ( 2) e. (q J E- , 
----,: "" t d' C..tl't . ~ 

0 , 

(VI-99) 

the potei!tial utility of which will be discussed at the end of the chapter. 

Having thus dis:pensed with the preliminaries, we now turn to the eval-

uation of VI-97, using the expression VI-53 for~ and the Fermi distribution 

""f•) 
for f · . Noting firs t that the vanishinG of the (two body. part of the) 

collision integral for the Fermi distribution is tantamount to (see Section 

c) 

(VI-100) 

a fact which can also readily be established from the definitions VI-38, VI-46 

and VI-48, ·We have 

(v"'-101) 
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PerforminG the Ll integration in VI-53 yields 

I? c ~, "£) " Qr pel + orvn V""' __ Q._( "'::....:q, ,:._Y_' J ___ _ 

. .6{ L ::J) [cr~!J ·! -~ €] 1 ~{t)yjll:t 
(VI-102) 

Then, integrating VI-102 over 1r and interchanging tr and ~ 1 in the second ,.., .., ....., 

term yields 

(VI-103) 

But from the definition, VI-43, 

6.* { ~ y, t) ::: \ + C J \r' D ( 1' t' J 
,.., ...... ,... J (v'~v--t)·t-~~ 

""'-" N,.,;t'V 

(VI-lo4) 

Changing I '' 1r ~ -v +-t - - - in VI-104 and noting from the definition (VI-37) 

of D that 

D ( t tr''J .....,,..., (VI-105) 

we obtain 

(VI-106) 

Thus 

r d~v Q(l,)'![) 

) l6(gJy-•$)ll 

(VI-107) 
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'-There Q and/::::... are defined by VI-38 7 VI-43 a nd VI-1!-8, and, for Coulomb 

interactions7 

f(f t) 
(VI-109) 

The problem is thus formal~ solved. 

He now apply VI-108 to the electron cas at zero temperature. For con-

venience ¥Te deal first with VI-97. Converting to dimensionless variables 

and us in~ the explicit forms for G. , 6 and F(r} .. (i.e. the Fermi sphere), 

we find after a few w~nipulations that the correlation-interaction energy 

(VI-11.0) 

where 

(VI-lll.) 

It is quite interesting to note that VI-110 is precisely twice the re-

sult obtained for the total correlation energy per ~lectron in second order · 

perturbation theory*, with the difference that the ''bare" Coulomb interaction 

*c.f'. equations (8) and (9) of' Gell-.Mann-Brueckner (5'4). 
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(both for the direct and exchane;e terms) is "dressed" by the dynamical 

(Hartree) dielectric constant. 

It is convenient to split VI-110 into three parts : the "direct" contr i-

0 
bution (E"Q,. ), the exchan~e contribution (e!:l) in the hie;h density limit Us~o), 

and the additiona l exchane;e contributicn ( ~ c.b ) at non-zero f's • Specifi-

cally, _ let 
- corr 
E. t = c.~ 

(VI-112) 

i·;here (in obvious notation) 

r -· ta 
l ,~ 

(VI-li4) 

and · 

b.~~=. .l. ( J\ rJ~v r~\·' --
?> 1f~ J tl ) ( t -t~ .-!') ~ 

\!l'\ \'(11£1 N 

(VI-115) 

\t~ll;>l l't~!)"> I 
We shall now show that €.._ and 6: lead (through VI-96) to precisely the 

correlation energy obtair.ed by G-B. A e b , arising from the screening of 

the exchanee interaction, goes beyond G-B and corresponds ·to the summation of 

an infinite ser~es of diagrams less divergent in each order of perturbation 

theory than those contributing to their result • .. 
Turning first to Eb since it is just a constant times the Rydberg, it 

.. 
is proportional to e . The integration in VI-96 then brings in a factor 
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of 1/2 and we find 

(VI-116) 

(:t) 
This is just what G-B call 11 6 b 11 ..,;hich they have evaluated by the Monte-

Carlo method., with the result 
., 

:::. ,, E (~> 
b 

o. 0~ c. .:!: o. 00 ;;t 
(VI-117) 

Considerably les s manifest is the connection between E4. and the re-

mainder of the G-B result. In VI-ll3, let us introduce the new variables 

(vt-ll8) 
I 

~ 
I 

1!. f 
...... ...... 

The integrand is then seen to depend only on .Jl. 's and lfr • The (strictly . 

geometrical) anGular inteerations can now be performed. Defining the geo-

metrical factor <J. (.It J ~ ) : 

(10 

~ ~ (..n..,'j,-).Ln. :: 
0 

0 <: 'lr< \ . 

-tv-... ~\~.~ .. n:. ~ tv- +tl~ . 
...n_ ~ 1- vl. 

d. 

(VI-119) 

(where the limits of integration have been obtained from trl<l and 
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I 1[+!) > \ ) 1 we find that VI-113 becomes 

oO 60 ~ 

E" = ~;f . ~Trl~~ VIL w,~l [ - ~ JA' ~~"'~ ~) _;_+A, 
c II + ~~ (J .a.'' q (.A:~)( I II • + I )j ~ 

Tf;)ga j' rj Jt+.!l. ·H ~ _n.''-..Q.-iE-
0 

(VI-120) 

To proceed, we adopt a method suegested by the . paper of Sawada et al 

. (~5) wherein the connection between the G-B result and a meson-theoretic 

treatment of' the same problem by Sa1-1ada ('10) is explored. Specifically 1 

we define the following function of complex ~ 

¢ 

- ~.,.s ( ~ (.a.'~) [ ~ 
1l" ~ t l ~ a- ) ...n.' + .n, 

0 

+ _!___ J j ..a.' 
-A'- ..n. 

(VI-121) 

I ts analytic properties are readily established fro~ the definition VI-119: 

for 
. 2 

~ ~ a 1 it has a single branch cut from ( -'-~- t/~ ) to ( ' T f'l~ ) ; 
for t >~ , the cut splits into two parts, one extending from ( -~- ~~~ ) 

to ( - tj
2 

t f.- ) and the other from ( ~ j~- ~ ) to ( ~ i~ ~ t- ) . 
Now from VI-121 and the theorem VI-46, one readily establishes the 

relation 

(VI-122) 

where use has been made of' the fact* that 

(VI-123) 

*This relation does not hold at non-zero temperatures. 
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Then, from VI-120, VI-121, and the identity 

If we ncm define another function of complex .....(1_ 

oO 

f ( 12. -{·f) 1 
I+ f (...0..-iE-D 

(VI-124) 

(VI-125) 

h ( J1.) '(r) =. (~(.a.~ t) ~ (VI-126) 
J c) .12.-tA. 

and note that 

then 
00 \ a.n.[ + (.il-tl.f:-~ 
j I+ f(...ct -tt.~) 
0 

If Rt..n.~o (VI-127) 

oo-tie ()10-i.e :: ( -f [ ~ hl-a.)lJ.cL J I + f{.Jl.) J . 
O+ZG o-t. t. 

(VI-128) 

In order to 1-rrite the r.h.s. of VI-128 as a contour integral, we must 

explore the analytic properties of the inteGrand in the right half plane. 

Since h · is ana.l,ytic there, the integrand has the branch cut of f cited 

earlier and a (possible) pole at. the zero of I + f • Now ( I + f) is the 

R.P.A. dielectric constant whose analytic properties are ·well known (S5). 
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(I .f
,-1 

For small~ , + 1 ha s a l egitimate pole at the real plasmon frequency 

Jl..f...Q ( ~). For ~ > t *'et.X . , hmrever, where 
.,_ 

t,, .. = ~s [( ~ -t~_.J~ ( 1 + t:.J _ -;~] (VI-129) 

the zero of ( 1 + .f ) enters the branch cut and hence ceases to be a true pole • 

In a ny event, since ..fl..f.t (1,-=-0) is finite, we can f or any t write VI-128 · 

as 

r .f(..n.) hl.ll) Jn 
J I + +t.n.) (VI-130) 

where the contour c1 is defined in fig. l. 

Figure 1: Contours for evaluation of VI-128 

Closing the contour as indicated in the figure, and noting from the 

known properties of f that the contribution from c
3 

vanishes, we obtain 

_f ~ J.n. 
J l+f 
c~ 

+~00 00 

::: r ~J.n. ::: i r .fli't)t) hli~)~) J. r 
j IT{. J I-\- f(C:.~ ~) 

-C: 00 -CO l lr 

(VI-131) 
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All that now remains is thus to explore the analytic continuation of 

~ to the imaginary axis. Note first from the definition of f that 

Then 
00 

-t ( -.11.) ~ + ( .tL) 

co 

(VI-132) 

( -tli.~)4)hli~)t)J-? 

j I + f( ~~/P 
-oo 

~ ~ f tt~.tl [ h l c,.
1
t) + hH r, t->}h 

0 H· flil,tJ) 

But from VI-126 and VI-122, 

. (\'"I-133) 

'*" _!_ 1 J .. n.'' 
..n..'-i. ~ 

(VI-134) 

which, by virtue of the symmetry of the integrand under the interchange 

"' ~- ,..1 J c. --, ~""' , can be written 
()() . 

h ( i. i J~) + ~(~i.~) tr) = -rrlt.~ . ~ . 1. ( L f (.a.' i i ~)- f(.n.'-.:E:>J r .1, . + +. ]J..n.' 
llolfs ;tt. a j L..n.+c.:r ..a.-a.-c 

-~ 

(VI-135) 

VI-135 is now expressible as a contour integral: 

(VI-136) 

as indicated in figure 2. 
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Figure 2: Contours for evaluation of VI-136 

Closing the contours and evaluating the residues leads to the desired 

result 

'n{i.~)t) + h(-i1!)t) - '!.ti~ flil) . 
o< ,..s 

where use has been made of VI-132. 

(VI-137) 

(VI-138) 

The function .f is easily shown from VI-121 and VI-119 to be connected to 

the function Q" ( U..) defined by G-J, (eq. 18) via: 

(VI-139) 
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Inserting VI-139 into VI-138 and doing the integral over the coupling 

constant leads to the final result . 
oO oa 

( Etoa )._ ::: ]_ ~ ~ \J~~~( [ ~ (' +~ Q (u)l- o( (s Q_(14.)l J ((_ 
. 41\ol fs J~ _l TT~~:i t ) 11tl~~ t j 

(VI-140) 

which is identical to the result obtained by G-B in series form (equation 

(19) in G-B). VI-140 has been evaluated n~werically by. G-B in the high 

density limit and they find 

o. o b ~ ~ r.s - o. o 9 b + 0 ( rs ~ rsJ R -d 
. el~c+t'"o)\ 

(VI-141) 

Going beyond G-B, we nmr evaluate the leading contribution to the cor-

relation energy in the hiGh density limit arising from VI-115. Doing the 

coupling constant integration first, we obtain 

where 

f - cl(l 

1f~t~ 

,.,.,<-I 
"\. 

\ 1,('' ... ~ I ) I 

I . ) + . 

l~·~y >-i-t~ -

(VI-142) 
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Expanding the term in curly brackets about 'f's ~ o , we obtain in lowest 

order 

(VI-144) 

The integral diverges logarith~ically at small~. As is evident from 

the work of C-B, ·hmrever, retention of the full VI-142 effectively screens 

the Coulomb interaction at larse distances -- tantamount to cutting off the 

. . ( t) 'J 'fr integration for ~ ~ t.,.,~"" .-. CO'tiS • V"'S ~ • Thus, proceeding anal-

ogously to G-B, all we need do is find the stre~th of the logarithmic 

divergen\!e of VI-144. \ole can therefore expand everything in VI-144 for 

small I(( and retain only the leading terms. After son1e straightforward 

algebra, we first obtain 

- [ I I :11T 

(6c.,~~b:: -~; r ¥ ~~p ~ )J})'p'G~' -h, 
0 • ... ·~ 0 0 r I+ •.• " ~~"'~"" r, o "' fV 

(VI-145) 

which displays the logarithmic divergence. Taking its streneth and perform-

' I ing the y and ¢ integrations yields 

c E, ... ),." '" ~~fs f ~1r~~~ {1-~~(~m~(o/)- ~~1) 
(VI-.146) 



-197-

The integrals conT-ributing to A could all be done analytically, with 

the exception of' 
\ 

~ J.d •. (i- P) L~- .Q., ( H-p ~ ::::: 1. ~ - o. c, ~ (, 
0 

which was numeri.call~l evaluated by means of' a rapidly convergent series·. 

He obtain for A 

(VI-148) 

and thus 

(VI-149) 

VI-149 is in marked disaereement with what is apparently* the only other 

calculation of this quantity -- that of DuBois (q~). He obtained the numer­

ical value ( - .00045) for the coefficient of ( fs 1)'1 f.s ) which is two to 

three orders of ma~nitude s~aller than ours. Hhile the actual numerical 

value of this coefficient is of little (if any) practical value, the dis­

crepancy, if real, would be indicative of the inadequacy of VI-108 beyond 

the high density limit. He can offer a few reasons to doubt the :plausibil­

ity of DuBois I value. First, the coefficient of the "direct" rs '"' fs term 

(obtained from VI-14o) was formd by Dubois to be + · .0052, a value ten times 

larger than the exchange term, in marked contrast to Hubbard's (~3) estimate 

that exchange should play a quite significant role. Second, the value given 

by Du&ois is two orders of magnitude s~aller than the exchange ·contribution 
. (~) . 

to the constant term in the correlation energy (i.e. Eb ). It is diffi-

cult to imagine that Nat,~e is so convergent. In any event, the discrepancy 

*D. Dubois (:private co~nrunication). Dr. Dubois also indicated that his nu­
merical value has never been fully checked althOUGh he has the fullest con­
fidence in the analytic expression from which it "IoTaS obtained. 
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has not been at all explored as it certainly must ultimately be. For if 

we are actu.a.lly in agreement, this vould offer a strong motivation to numer-

ically evaluate VI-108 at metallic densities. 

In sum, if we adopt Dt18ois' value for the "direct" rs In f's term, we 

obtain 

(VI-150) 

as compared to his net result 

(VI-151) 

He conclude this chapter with a speculation occasioned by VI-99· Since 

r corr 
~ int as given by VI-97 and VI-107 is in the form of an integral over ~ 

space, we can fonnally rewrite VI-99 as 

(VI-:J-52) 

But, by definition, · 

(VI-153) 
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vhere 6, 'fft) . is the change in fCt) due to correlations. It is therefore 
CO('(' 

qui·~e tempting to identify the two curly brackets ·Hi th each other although, 

of course, there is no loe;ical necessitJ' to do so. If true, this would be 

a trivial method for evaluating the "smearing out" of the Fermi surface, at 

least to lmvest order. Thus, ins erting the specific form VI-38 for Q , 

and converting to the usual dimensionless variables, we are led to the con-

jecture: 

"""(I) ? 
~ fcv) 

lot(' 

CJ 
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- Chapter VII Suw~ary and Conclusions 

Our original motivations for undertaking the present study were 

twofold. First , to formulate the quantum theory of many-body systems 

in a fashion which bears maximum resemblance to the corresponding 

classice.l theory, and second, to explo.re the utility and limitations 

of such a formulation. 

In the first of these aims, we have been generally successful. 

The discovery that the classical and quantum problems can be unj_fied 

via the Generalized .Poisson Bracket, together with conveniently form­

ulated subsidiary conditions on the phase space distribution function 

as demanded by the .symmetry properties of the wave function under 

particle exchange, has, we feel, a certain formal elegance and con­

ceptual simplicity. The particular circumstance that the Hartree-Fock 

theory can be rewritten in the form of a simple generalization of the 

Vlasov equation is especially appealing in view of the analytical 

complexity introduced by exchange in many other approaches to the 

problem. 

Elegance and simplicity, however, are naturally a question of 

taste, and the value of the present formulation depends, in the final 

analysis, on what it enables us to calculate and with how. much effort. 

For this reason, we have included many results (e.g., the exchange­

corrected plasmon dispersion relation; spin-waves, the non-zero 

temperature electron gas in the Hartree-Fock approximation, etc.) 

which are admittedly not new but which serve to give some indication 

of the applicability and scope of the method. 
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There is certainly no doubt that our fonnalism is particularly 

applicable to the pro"blem of correcting the classical many-body theory 

for lowest order quantum and exchange effects, as has been demonstrated, . 

for example, in our treatment of hydrodynamic transport. In the study 

of the many-electron atom, we have been able to both r esolve the problem 

of the theoretical foundations of the statistical model, and derive its 

many corrections in a detailed and systematic fashion. We have also 

indicated the manner in which the last remaining corrections, due to 

relativity and correlations, can be calculated, after which this unduly 

overworked subject could be properly laid to rest. Furthermore, the 

recognition that the success of the statistical model is indicative 

of the fact that the atcm behaves in many ways like a classical in-

homogeneous plasma obeying Fermi statistics, has led us to anticipate 

the existence of collective collisionless modes of excitation. 

That our approach should, after all, be convenient in the descrip-

tion of quasi-classical systems is, of course, no surprise due to the 

manifest ease with which the correspondence limit of the theory can 

be taken. What we have failed. to achieve) however, is a thorough under-

standing of what classes of many-body systems cannot be fruitfully 

approached. With the exception of low temperature Bose systems where 

a possibly trivial modification of the formalism has been shown to be 

required, it appears that any reasonably homogeneous quantum system 

in which dynamical correlations between more than two particles can 

effectively be ignored, should be amenable to a q. m. d. f. approach. 

I. 
I ' 1 
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Even at the opposite extreme of a system so strongly correlated that . 

it exhibits liquid-lL~e behavior, the quantum hydrodynamical theory 

which we have developed should be of value in studying its transport 

properties. 

Particularly gratifying has been our apparent success in com­

puting the correlation energy of the free electron gas, a problem which 

bad hitherto been the exclusive province of the field theorist. It 

should be recalled that the energy could be written down immediately, 

once the pair correlation function had been obtained. The only 

analytical compl~xity arose in establishing the cor~ection between 

our work and that of the G-B. Further Study of the apparent discrepancy 

with Duaois' extension of the G-B result is clearly required, however, 

before we can confidently hope to apply our expression at metallic 

densities. A calculation of the low temperature specific heat of the 

electron gas would also be of significant value since approximate 

experimental and theoretical (94) results at these densities are 

available. 

Perhaps our most significant result, however, is the collision 

integral derived in VI-c. Recalling that the collision integral is 

the starting point for an exact kinetic theory of gases, we are now 

in a position to correct such theories for qunatum and exchange 

effects. Correlation corrections to the theory of plasma oscillations, 

and the calculation of the effect of exchange on hydrodynamical trans­

port coefficients come immediately to mind as possible applications. 
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One might also hope to obtain a better understanding of transport 
:.· 

processed in the degenerate electron gas by means of an improved 

equation of state as derived from the pair correlation function 

together with a hydrodynamic analysis based on the collision integral. 

La~e effects can probably be introduced in a relatively straight-

forward fashion. Of particular interest is whether the low temperature 

anomaly in the propagation of sound in the electron gas, as found in 

Chapter IV, persists in the more exact treatment. This is but one of 

the (unfortunately many) loose ends which have arisen in the present 

study and which, due to obvious limitations, we have not been able to 

fully explore. We have tried, however, to call attention to them as 

they arose and hope that the present formalism will aid in their 

resolution. 
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:\ II.L'\\ approach to> thr ll l:tll)' drdtooll at .. m, l.a:.,·tl .,ll tlu· f<ll lll:t l l'llli \:.J,·tu·l·lu·tiiiTil t lt~· ll:trtn·c: · h><' k 
t'•Jll.itlo~J :; a.nd. a qu.l_ntlllll ·lHlThanic al ~~ '' lll ' ra lil.a t inn <,f t1w ro1li:. icudl·:--~ t:,,ttziH:tllll t VI.t se~v) rquati .. n, is 
p_n ·~rntnl. l ~n.; cq~uvak11rc rasts th l' pn•l ·kllt into tlw fr:tlllt'll'lllk of , olll'l' ll li••n:d pbs111a tlt,·orv, the 
\- laso_,. tquat10~1 hctng mndy tq>l~rcr.J · I:y it;: qu;u> t lllll · lllCrltallir~l ~nalnr. The 'lll;llltlllll \'b~uv cq;tation 
pcrnuts a st;~•gh tforw~rd np:tn>um ul the qu:tll tUill ·lllt'<·h:utical ph:ts~ ~parT •listt il.utiun funrtion in 
f'IJWr_rs of /r. ~he f~rs~ ~l!·p of this C\)lallsion, n.rrc:<pu:Hiin~ physi<a11.1· to a rlas,;i,,tl ~orrclatio11kss plasma 
~hryn1~ I· en.''.' statJ~t •cg, 1_1·ar.ls I • ~ the Thnmas-Ftrmi nHlikl. !'11cet·"in· qq,,; g<·tH-rat<· quantlltn'lml c':t hang<· 
CllrrcctJu!l". l!tc mctho<_l_ts apphtd to tht case uf the ·', tati>ti• ·al" ,·orrcbti••llkss atu1n (or ion). ~:cnl'faii?.cu 
fur the llr:<t llmc to art:ttr~ry tcn1pnatmc a11d Hunz•·ru total orbital ,,;,gular lllvlllL'Il tll m, \\ith quant 11 m 
and exchange cficcts Lcu1g tnrludcr.l to onkr 112• 

I. INTRODUCTION 

'1.-"\ll E Tht~tnas-Fc.:rmi ~ t a~ is t ita! model' 1 •r•,vidcs nt~ 
apprnxunatc d cscnptl<m of a broad da~~ uf 

. spati ally inhr11nogtncous polydcrt ro~;i..: systems, wit h 
a ckgr..:e of sucrc:-os whidt is surpri•;ing in view of it s 
:malytical ancl cOIH eptual simpl icity. At tcmpls to 
undcr:<L..t ntl this success as well as to impruvc tltc model 
by. n:nH:clying ~om~: of its mor..: obYious shortLomin~s, 
have led naturally to invc.:stigations of its thc:ureti<:al 
fountla tions. 

The first s tep in this directicn was t aken by Dirac: 
who, real izing th:tt the Thomas-Fermi tllndc\ renrescnts 
in 'ome scn~c a da%ical limit of th ~: ll ar~r~·c-Fock; 
theory, rewrutc the llartrn·-Fock equation~ in terms 
oi th~ 11Ln~ity matrix, and stHTectlccl tltcrtl>y in aug­
nwntlilg tht: Thomas-Fermi moud to approximatt·ly 
take :ttnHJJJ t of d crtron cx1 hangc. ~ubscqu<·u t inq·sti­
gat ion~' haYe gnH'rally foll"wcd I >irar's !tad, in tlte 
scn~e tha t tjlt :tsi-da~sical appro:-.imat ious to tht: dl'nsi ty 
matrix arc stutl icd. ln particular, syst<·ma ti c exp:msions 

. in h h :tYe been tlevclopc:J which lead both to c.:xchangc 
and so-callccl ''inhomogeneity" corrt:nions. 

These approaches, howeYc.:r., suffer from two draw­
backs: (1) Since they arc rooted in the H ar trce-Fock 
approxima tion, corrdatinn effects nrc exdtH.lrd; and 
(2) tl1c col!Ccptu :-~ 1 simplici ty of the Thomas-Fermi 
model is clt:s t royu l, wi th the cr•nsrqul'n<t· that wh il..: the 
ordinary 'J'ItOJi ta<>- Fl·rm i motld can lH~ trivially gr·neral-

1 '~ 'lw llu>~ t .rl"l c!d <'Oilljlrt'ht:ll'•ivc .n·virw arti.-lt·s •kaling 11 ith 
the lllllt ll!lS l·crtnt 111otld arc ll u>''<' of 1'. (;.,tnl,;~:. in lllllld/.u, II 
<i;r l 'hy~il: , cr.lit1·d loy,'>. Fl iiRf:l' tSprillf;l'r· ~1t· tl;•.:. !In lin ~ .l'l .'i lo) , 
\ ol. .Jr., nncl N . II . . liard>, 111 . l d .·.u11rs til }'/rnrrs t••h tu l by 
N . F. ~!loll (Taylor a11d Fran,·i,., l.td., J..,t,.lon, !'i.'i7), Vol.(,, p . I. 

2 1'. A . ~-1. !Ji, ;u·, l't.,<:. Cn,,,J,tidg•· l'hi l. s,., .. 2f,, .i i (, ( 11J.Itl) . 
: H . I I art 11·<: , l' t'><·. < · :u nl•rid~~· l'hd. S1••·. 2·1 I\1J i l1l.l!l) · V. hu k 

J•J,y ,_ Z. !).,wj•·lllllioll I, /47 (l'l.ll). ' · ' ' 
'W. H. Tki<, Z. l 'hy~ik 1-12,503 ( I 'JS.'.) ; A. S. """'l"""·•·t,; 

nnrl E. S. l'avl •. v~kii, Sovi1·t l'lty ;.- .JI ·.TI' ·1, 32!! ( 11>57); I I . A. 
Kirl.hnit!;, Sovil'l l'hys.- JETl' 5, (,-1 (l'JS7); S. Coldcn Rev~. 
M odern l'hy~. :\.?, 322 (1960). · ' 

ized , for example, to arbitrary tempt raturc:s !· or nonzero 
t otal orbita l :t~Jgular morm·ntn,~ the procedure for 
syslema titally ol,taiuin~: quantum anti exchange correc­
t ion!; in thc!,r ca~es is ~ -OnH.:wh;; t oh~cure . 

I~eccntly, an att c111p1 to rcrncJv the f"rmcr (;[these 
difiicul ti cs Ly ~uppl ant ing the den~i ty matrix formali sm 
with t he mor~: powerful tc,hniqw;s of field theory has 
b een reportcd. 7 While such mctltotls hold promise for 
progress on the \..Orn:bti .. n question, they unfortuna tely 
leacl to an aggr:rvation of thc.: !'c:contl difficulty, since · 
they arc ha~rd on a fo rmula ! itm of quantum statistical 
me..:h;mics w!Ji, h is _cv,·n fmth c:r con1.t.:pt ually removed 
from the li aditi•m.tl ,; t a ti ~ti ,·a l approac·h underlying 
the Thomas-F..rm i modd tItan i:; the density matrix. 

In the prl'~l· nt paper, therdon·, w~: s tep in the 
opposite tlire• I i•111 and at tem pt to e,; tal rli :-.h Illaxima l 
nmtn. t with t OII\'ctlliunal ~tati·. t i<-al mc1 hanks by 
<kali ng dirc!'l ly wil lt :: qu:tnt um-run :hanio ·al gt:tH' r:di ;.a­
tioll of th<' plt:,.e ~p:l<'e cl cn o.ity, wlt i, j, turn:; nu t, in fact, 
t o b t: cssenti:tlly the Fourier tran~form of the <lcnsity 
matrix. This dificn..:n rc, although app:m·ntly trivial from 
a formal s tandpoint, enables us t o cast the problem 
entirely inlo the familiar charged-particle statis tical 
mechanics, or " plasma.'' thc.:ory. As a conseCJuence, 
diffi culty (2) Yanisht<; and , nlthou~h \H.: do not concern 
oursdves here wit h (1), i.c.:., the inchr~ion of correlation, 
a clo:;e ronn<·t tiun bctwt·cn tltis prolJh·m nnrl contempo­
rary clirTJCttlt i1·!; in plasma phy~ics <·mtr~es. 

( lur tlH·iltod is lH·s t i11t roducrrl l>y bri<:tly out lining 
t lte t rarlit ional st:ll b t i1 al appr11ach tu tlte prol>lem of 
,\ · idl'lJiir;tlpartic h:s whit 1t intcrad both mutually n.ml 
with a 1!:-:td "JllH>·•ilely tltargl'cl ''mulcus" via their 
instautanccnts Coulruul> forrcs. One bc·gins wilh the 
(,,\' diulC'usional pha:-.e !;pare distribution function, 

• '1'. Sabi, l'r.,.·. l'hy, . :\lath. Soc. _lu pa 11 21, 25·1 (l'l·ll ); 
H: 1'. F•·.V'"":Ill, ~ - .\11 ''"1''''' '•, and 1·:. T1·lkr l'hr~ R•·v. 75 
1 Sl• I (l 'J·l'J 1. ' . ' 

1 :\ . ?.!. s~~·.kr .1 111 1 H. :'11. Fulr·y, l'hy~ l~cv. %, .lM (19S-t). 
1 c;. II.. llar;tlf and S. Hnruwit/. 1 l'hy~ . i{cv. 1:?1, 1704 (1961). 
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Fs(r, , r~ , · · · t ,v; p ,, p,,· · · Ps; t) whose dyn:ll nical (Liou­
ville) cqHation is ol .ta irwd fr<>rn the 0:ewtnni:m 'cqtra­
ti<,ns o f motion. Singh:t, dmthh:t , t:tc., di~trihutinn 

fun ction ::. an· then tJ ,·tincd a-> 1 he inl<'gral of F.v o\'t:r 
.\' - 1, Y- 2, cl c., dimt·n~i· •n:t l l'lr a:-;t· suhsp:tLTS. The 
(roupkcl) dynamiral •·quatinns for tln·sc qua nt ities, 
the ~o-rallul BIH;K \'~ hil'r:m·hy, arc ohtainccl by 
intcgratin~ tht· Liouville c•ptation O\'t'r :tppropriat~ 

plw~c: ~ul,~p: tt ' t ·s . To (l!'lli'L'I'd furtlll' r, tl1is ~y!'tcm of 
t'IJII:tlio tJ •; i-> appto\itn:tll'd J.,· lnttl<'a li ng tlr•· dt :tin at 
sona· poinl. Till' s i111 pl• sl ~~~· h :q•pln\itlla lion i:; to :1';. 

~ l llll t'llut thetl•lltl.kt di·;tril•l tlinn i:.gi\'1' 11 :-, inlpiy Ly th•: 
prodtl<'l of ~- i11~lt ·t. fun. I io11s, • lll' l"l · - pott<l i n)~ I o tire : JH·gll'l'l 
(•f all<orrl'lal ions , or··, olli'-i"IIS." .his \\'I'll kn••wn,~ this 
procl'olllrt: lt-atb to tht· "·•·oll i:--ions lc ·'-s" l!oltt.tn:tnn, o r 
\'l:t~flv 1 '' cquati11n fo r t11t' singlet .ol istri l.uti<•n fundinn, 
F 1(r,p,l) . The \'la~o\' t'<ptation is sa!islit·cl identiL·ally 
by the ~ct {Fi} of funrtiun:d,.: of the ··on,.,tanh of the 

· mnt i•m oi a ~ingle p:1 rt iclc in the :\\ cragc: lie lei of all the 
others. The n•: gk l't ,,f colli sions is then approxirna tely 
rc:meoi('o by the •IIHil/: that their l'ltcct is to single out 
that member of {Fi} whi rh maximizes the cn.tropy, 
~ul,jet · t I n the constraints on the tot :tl syst em (i.e. , to tal 
!'lll'T;~y. nullllwr of J•artir l• ·s, angubr l1111tllt'lltllm, ctr.). 
(Tot he t'\lt't lt that <lilly 1\\' <• 1 .. 1dy • · olli ·, ion ~ an· inq .. •r­
tant, tl1i·> J•l'>tt n lnrc i ~ , ·alid ;tl td l1y the // th .. nrl'lll .) 
Jlighn :q•prn\im:t tintl", rnrn·:' JI"lltling t•1 :1 lllt>l'e c~a•· t 
trl':ttlll cnt of • orrel.tti•n t ~, !..ad to fnrrnitlal,lt• analytical 
rliflicult .it·s whit h ;trc currl'n tl\' hting at tacked or; 
nniou;; front s.n - ' 

The qu e::; I i"n now :1ri:-es a~ to hnw this procedure is to 
he quantum-mechanically generalized. The sirnplc~t 

gtntralizat ion i<; l0 merely in trc•tluce tht~ :q•propriate 
quantum 'tati~tics into the eli I ropy maximization. This, 
we fmd, leads to the Thoma;;-h·rmi model (with 
Fermi- :\mald i 1 ~ rorn:.-tion). It is clear, howen·r, that the 
\'laso\· equat inn nnr~t :1lso he quantum·merh:tn irally 
;nrgmcntt·rl. This has l ll't·n done by one of us13 in a 
prc\'ious paper alr•ng litH'S analogous t<1 the derivation 
(Jf the \'la~ov equation sk<:tthcrl above. :\ rruanturn­
mcrh:,nir:d pha~c sp:we di~t rilnttion function (rpn .d .f.), 
P.v ( r ~o r~ , · · · r ,· ; P~o P~,· · · ps; 1) , is defi ned which ap­
proadu.:s the das~ical cli~tribution funct ion ns h - •0. 
The quantuni analog of the Liouville equat ion for P .v 
is then ohtaine<l from the Srl1roedingcr equation for 
the .\'-particle waYe function, !Jt,, .. J>ccomposition of 
F.v into singlet., doublet , ct.c. , functions lea(b to the 
quantum count erpart of tlt c BB(7KY chain, whirh is 
then tmnratt'd, as bc.:fur~, by neglecting correlations. 
This t mn•·ation is ('(pti\'alent to replacing VtN by a single 

'!\ ~ct of C<(~ l at!"'" dt•riv~d i.'!dcptlld<·n tly loy N . N. Dogoluhov, 
M . Horn , H. S. (,rccn, J. (,. Kirkwood , and J. Yvon. 

'\L Ho~t'n!.hnh :mrl N. H<•st<ohr, l'hys. Fluids 3, 1 (1960). 
'" A. Vlasr•v, J. Phys. (tiSSR) 9, 25 (1945). 
II B. n. F ric· l :11 1'1 ll . w. W ylol, Jr., l'h i'S. Rev. 122, 1 (1961) . 
"E. Frrrni and E. At11aldi, :'lftnL acca.f. Italia ti, 117 (19.34). 
"0. von Runs, Phys. Rev. 11'>, 1174 (1%0). 

S later <h-tnminant, so that the quan tum \'lasov 
f'quation thus obtainrtl is for mally ('ljUi\'alent to the 
Il artree-Fork equations. The resulting partial dificrcn­
tial equation for the singlet q .m.cl.f. , P, is introduced in 
Sec. Jl. It has the r·onnnient proRerty of permitting 
a straightforward cxp:tnsion of /· in powers ('f li, 
thert'hy unambiguou:;iy generating quantum and ex­
change corrections from the zeroth-onler (Thomas­

. Fermi) solution. 
WI' illw;tratt' th is rnctho.t by ronsiclning an atom (or 

ion) at :J rb itr;try l t'l11Jirr;llun·, with nnnzcro total 
orbi tal angular monH'll tll m. In St·t·. Ill , t h•: Tltomas­
F,. rmi model for this case i ~; tlerivt:tl fr!ltn the \'lus•JV . 
<'•Illation alnng the li ne:; ~kctrht•tl ab(JYe. The quantum 
and exchange corrections to order~~~ arc then ·obtained 
from tbc quantum \'lasuv equation in Sec. I\'. In the 
limit of zero temperature and zero orbi tal angular 
monH:ntum, our result agrees with that ohtained by 
~ ~tite rs·' \'ia the den:;ity matrix. In. the concluding 
~cc tion, we brid1y re-examine the correlation question 
from the plasma-theoretic point of view nc\'clopeu in 
th is paper. 

Jl. QtlANTUM VJ.A:-;OV EQUATION 

The quantum Vlasnv equation h;t'l hl'c·n rl l' ri vcd hy 
nne of us in a previou'i pa)'er,13 where it was written in 
a forrn facilitat ing its applic-ation to the study of quan­
tum corrected longitu(lin:tl plasma o~rilhttions. Since 
in the p rcscnt paper we ~h all be deal ing with .:-..· electrons 
(ma~s m, r h:trge - ic!) in the field of a tixcrl point 
nurleus (rharge +:~ ! e l), rath('r than the extended 
homogeneous pbsma. considered previously, a few 
triv ial modifications arc requirctl: (i) the elimination of 
the action of an electron on it ~clf; (ii) <tppropria.tc ~pin 
space averaging of the exrhangc tnm.11 The resu lting 
l''Jllation for the singlet q .m.d .f., F' (r,v,t), c:m be 
writ ten as 

( 
() 1 ) 
--+ v·V'.- -V',U·\'. P 
iJt m 

=if~ { tJ,'P- .!_ f. (-ift)"-2-(\', · "·)"+~uP} 
2m m .. -o m (n+2) I 

ic2f:N- 1 f +- -- rf3l cxp(il· v)J(r,l,t) 
2m' N 

{ 
1 ( 'h ) 1 f lPv' X -P r+- 1, v, I --
l m Z1r2 I v- v' 11. 

"0. vnn Hoos and J. S. ZmuiclzinM, Phy5. Rev. 121,9-U {1961). 
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where l ' is a ssumccl to l>e given, and the expansion 

N-1 f . 
'P(.' = -·lrrc~---- d3t•P(r,v,t), 

.\" 
(2) 

(10) 

7.c2 (X- ,Y+1)c2 

lim U= ---, U "' ------· --
~o r r 

(3) is intr()(luccd. F(r-!-lil. 'm, v), appl":1ring in the exc hn;1gc 
t erm of (1), is expanded in a Taylor series: 

P(r,v,t) ~ (2:r) :'f,r•t }(r ,l,l)exp(i l· v), (4) 

a··u u"F' 
('Vr· 'il.)"VP~ ----, 

.J.r,il.rr 0 0 ut•,ilt·r 0 0 

(S) 

(i, .f, · · · arc Carll"sian intlirt:s running from 1 to ·') 

P(r-l· ltl:'m, v) -=-· P(r,v)-1- (hl.'m)· v,P(r,v)+ .. . . ( t t) 

Tntnulucing (10) ancl (11) into (1) ancl CCJUating 
roctlicic.:n ts of similar pm\T rs of f1 l<'acl~ to the fullowint: 
chain: 

Oth order 

[ v · \' ,- (1 / m ) \,f."· \,.]F0 cc · r,, (1 2) 
1st c>nlcr 

((J) [v· \r- (1 / m)\rU · v.]F1 

(;aussian units and tht: ronYrntionthat rq>eated indices 
a re to be ~umnwd are ust:d throughout. Information is 
ohta!ncd from P (:t nonohslTYabk) hy integration oYer 
con figuration ancl velocity 'space, i.e. , .if G(r, v) is any 
fun ction of r and Y," t hl"n 

(i) 

where ~ is tl1e npt:rator ohtninecl hy. well-ordering 
G( r,h 'V./ im), :ltlcl >f ( r,l) is the !'ingle ·particle lfartrce­

. Fock wa\"c function for tht: sys tem. Cons~:quently, the 
quantum-mcch;mic:ll npect:ttiun \'alue of the electron 
number d t:ns ity p(r,l) and kinetic energy /\(1) of the 
syst em, for l'Xample, arc gin·n by 

p(r,l)= /P(r,v,/)tflt·, (S) 

nne! 

!\ ( t) · - r r [ + ~ 11tt·~ Jf.' ( r, v ,:),PrtPt•. 

Sin('e we shall be interc~tc(l only in the ground state 
of the syslt'm, the time clcpt:ndence of the alJOYe 
equat ions will h~:ncdorth be suppressed. ConsiJeration 
of time dependent ctTccts (e.g., collective oscillations) 
will appear in subsequent papers. 

The ldt-hancl s ide of Eq. (t) is the usual \"lasov 
operator acting on t:'. The first t erm on the right will 
gcnuate CJUant tim ("inhomogem:ity") corrections, while 
the second term repn:~cnts the effect of exchange. 

Expansion in ft 

Equations (1) - (3) arc ronvc.:niently solved by the 
following iterative expansion in It: First, in Eq. (1), 

,. (i :2m)['V,2F,- ( l:'m)(\r· \ ,)TF0"j, (13 ) 

2nd order 

( v·v _.2_'il l '·\' )F· r r • _ 

m 

i 1 1 
,-: -· [\' .~F~- ·- (\1 , · \,,Fl."F,]- ·-(\ ,· \',.)3l' Fu 
~" m 6~ 

wh ere 

r rf'v' 
go(r ,v)= --- - --F 0 (r,,·') , 

. I v- y' l~ 

( l·l) 

(15) 

etc. The potential !"nergy l' is then rendered self­
< ·•m~i stc.:nt hy introclucing into (2) and (3) the CJUantity 
F'(l: ; r,v). (\\"c.; indicate h ~: rt: '.'xplicit ch-penrkn rc of P 
on U.) 

( ;cncrally, the series (10) will ·only h e partially 
s \lllllll<'ll. Defining thc: f•th approxima tinn toP 

,. 
f.'Crl (U; r,\•) ·-~ L lt"Fn(U; r,v), (16) 

n ... n 

the C<>rrespomJing approximation [-" <rl to the JlOil'ntiaJ 
is t he1i net ermined from 

7.c2 
lim U'•·>= ---, 
r•o() r ,.._.,. 

(17) 

(18) 
r 

a procedure which guarantees rhc self-consis!t:ncy of 
the potential at every s tage of approximation. 
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Solution to S e cond Order 

In th is paper, we ::!)all ccmsidcr only corrections to 
order ft~ a nd hence will require P(~> . Jk forc proceedin" 
to the considnation of special casl·s, it is useful t~ 
J~nint n·rt;ti:t simpliliralions of the rdevant equations 
I_( I ~) -· (11)] wl1irh ··an be made in general. First, 
mak in;; usc of (12), it is not dif1inilt to show t hat (13) 
c:m h e immediately St>ln:d to yicl<l 

(19) 
where 

(20) 

Second, again making usc of .(12), one can cstabli:-:h 
the iden tity 

(\', · \,.)'l ' Fe ~ · 2m[\,~(\,~F •. )- (1/ m)(\', · 'V,)·~u\',.,2Fc] 

+m[v · \ , (\,..'F .. )-- ( t .'m) \,l' · v,.(\,.,:1F 11)l, (2 1) 

where · 

Introducing (19) and (2 1) into (1-1), there follows 

F2=- ( 1 /Sm~)\,.•Fo+G~, 

where 

2rrr:1 :V-1 

(22) 

(23} 

·+· ... - · -· -[ v l'n· v Fo- \ Fo· \ g0] (2·1) 
tll3 .'\ ' . - r ,' r ' . r . • 

Thus, :tl! that remains is to dete rmine F0• Since we 
arc con.cerned hen! with the ground s ta te of the system, 
the Fo we !'Cck is that srJiutirm of t he \'la!>OV equat ion 
(12). correspond ing to minimum total energy and 
max1mum entropy. 

III. ATOM OR iON WITH NONZERO ORBITAL 
ANGULAR MOMENTUM 

As is wdl k :10wn, I he niosl general solnt i~n to the 
Vlasov erp 1ati•m is any fu> ll'tinnal of the cons tants of 
the m otion of a pa rt it lc nu•ving in the polentiall'(r). 
\\'e ron"idc r a n a tom o r ion \\' ith total orloiral angular 
momen tum .! L, v:he re L is a unit vert or. ll is clear 
that the potential in this ca.sc has rotational sym metry 
ahout L, i.e., 

\,U · rx L= O. (25) 

A p a rt icle moving in such a potential has only two 
con;;tants of the motion: the total energy ~mt.!!+C(r) 
and the project ion o{ the orbital angular momentum 
along L, i .e. , m rX v · L. Thu-;, I he most general solutio n · 
to the Vlasov equation in this rase is any functional of 
the form 

Fu ~= Fo(~m'!? · /- li(r), mrXv· L). (26) 

'1.'<> minimize the total tncrgy, ffnm 1.2+l.'(r)] 
X 1· .. ( r, v)d"rrf'z·, \\'C d early seek t hat dis triloution in 
velocity space which !orally minimizes (m/2).f;~F0 ( r, v) 
~'!:v snhject to the constraints of fixed spatia l dc·nsity 
./J•,d'v a n<! fi xt:d lor:tlmoriltn lum dt:P:;ity fmvFe~Pv. 

I t is easily ~hown that th is rl'(j\li rement is met if Fo 
posscsst·s spherical symmt:try in velocity spare (aho•.1 t 
some Jisplare{l origin), i.e., . 

F o=Fo([v- d (r}]1, c(r)), (27) 

where d and c arc arbitrary functions of r . Combin ing 
(2(>) ar11l (27) leads to a imirpte form of the minimum 
energy solut ion to the \ 'lasov equ a tion 

Fo=Fu(C(r)+ ~m\·~-mwrXv· L), (28) 

where'" is a constant. :\otc tha t th is implies uniforr.1 
rotation with angular frequency w. If we tra nsform to 
the rota t ing fr;>mc, the t rancforme<l densi ty function 
Fu' is . 

F~' = Fu'(l:' ( r')+ }m;.~- ~ mu?(r'X Lr>, (29) 

and is therefore a function ~olely of the energy t', in 
t he rotating frame, where the dTcct iYe potential 
energy is · 

u .. rr' = C(r')- ~1/IW~( r'X Lr. (30) 

'l~he entropy maximization in the rotating fra me 
)ilelds, o f course, the Fermi distributio n, i.e., · 

( m)![ (e'-X) Jt Fo'(t')=Fu(t')=2 -,; cxp kT +1 . (31) 

The function Fo is therefore d etermined, and we have 
finally · · 

[ (U(r)+~mv2-mwrX v · L-X) Jt 
X cxp - ------- +1 . 

kT 
(32) 

The Thomas-Fermi (1\maldi) moLh·l, ~t:nerali1.ed to 
non zero anb'lllar momentum and nonzero t emperature, 
follo\\'s from (32) , (17), ar11l (18) if p= 0, i.e., if we 
usc only the lowest orcler approximation to [:'. In the 
limi t of zero t emperature, Ibis leads to the equations 
lirs t derived and stud ied by Sessler :\nd Foley.8 For 
zero angular momentum, we obtain the usual finite­
t emperature Thomas-Fermi model.~ 

. IV. QUANTUM AND EXC HANGE CORRECTIONS . 

Using the Fo given by (.12), we shall now go to second 
order in and compute P <z>. From (19), (25), and (32) 
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there follows immediately 

where the primes indicate d ifft-rcntiation of Fo with 
respect to its argument, i.e., 

[. (.r-·X) J·'l X exp .. - 1- 1 
- k'f ·' -1' -flmt·' -m~· r Xv- L. 

(.H) 

The solution of (23) ami (2-l) for F~. while simple 
and s traightfon1·ard in the ab~t·nre of angula r momt·n­
tum, is sumcwhat inYoh·t·d in the general c:tse and is 
therefore clckgatctl to the Appendix. The result is 
-----·---------- --- ------ -

where 

and U<2l satisftcs the boundary conditions 

1 J w + - V',U · \l,U + ·-Fo"'v · LXV,U - -~Fo"" 
m 2 . · 

21Tc~ N-1 
X {v· V',[U -~mw~(LXrr]p---- - - - Fo' 

m1 .V 

(35) 

Introducing (32), (3-t), a nti (35) into (17) ant! (18) 
and pt'rforming the angular integrations in velocity 
>p:tre [keeping in mind the symmetry condition (25)] 
leads after some a lgeLra to the folloll'ing equation fo r 
[:<~! : 

(36) 

(37) 

um "" -(i-N+l)e~/r, (3_8) ,...., 

lim U<21 = -7.e2/ r. (39) 
r~ 

In the limil of 1.ern temperature, the int egrals occurring in (3(t) can he ca~ily perfurmed, y ielding 

4e2 N -1 ·- · { f12 · 

v~u<2l = - - - - - - -{2m[>.- u<~•+~mw~(LxrrJl' 1--v-~um[x- u<~l+~mw2(Lxrr:t' 
T-o 37rfl3 N 16m -

To estahli!-.h nmtacl with previously puhii shecl 
results,• we pa~;s to till~ limit of l.l'rtl angular rnotm:ntum 
(w - ~ 0) in (·10) unci let 

(41) 

where U 0 is the solutio n of the us ual Thomas-Fermi 
(Amaldi) equation: 

4c2 N-1 
r:P U 0 = - ·- - - [2m(X- Uo)]l. · (42) 

37!'f~1 N 

(40) 

Assuming !t~L' 2«llo so that only the lowest order 
!l'rm'i arc kept, (40) hec:orncs 

4mr.1 N--'.1 
_t;nf!~+--- ---- [2m(X-U0)J'U, 

1rN .V 

Sm~c•(.Y- 1)2 me~ N -1 · -
= - -- (X-llu)--·- - --[2m(X- Uo)jt 

1T~fl& i\' 127rl~1 _,,. 

X[4'il~Uo+(X- Uo)- 1\'Uo · VUo], (43) 
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·which is the usual qu:~nt um anrl exchange correction 
to theThomas-Fcnni motl<:\,15 augment<:d by thc Fcrmi­
,\maldi (.\' -1)/ .Y fartor . .!'\ote th :~ t the perturbation 
procedure t1sc<l to obtain (•13) from (·10) destroy~; the 
!iclf·e<m!.i!;t •:ncy of I he pott'nt ial. 

Equations(.~(,) and (:n) conti1in two constants which 
re• 111ire !iiJIIle di::rn ~::• ion. The 1 hcmiml potential >-. is 
c :scnti:dly dctrrmincd hy tl1 e l>lllllHlary mndition (3S). 
The dcll'nninat!on of tl1e angnhr fn·iJIII'llry 111 dcpl'IHIS 
on the problem bring ~:tudinl. That i~, if the tot al 
:lllgular monlcnltllll J i:; put in :1'; an .rd hoc constraint , 
then'~ w is tlttcrminc<l from · 

On the other h:ln<l, in the !'pirit of the statistical 
apprn:11:h to the :tlom, one may dctcnnine w from the 
mi.Jdd it!:elf, as that whi1 h minimizes the total energy. 
This point will he explored more fully elsewhere. 

V. CORRELATIONS 

The "quantum plasma" approach to the !'latistical 
atom pr·:~entcd here, cstahli~IH·s a connection Lclwcen 

· contcmpor:~ry problems in p~asma phy:;ics anrl the 
difficult problem of introdu.:ing correlation:; into the 
Thomas-Fermi modrl. Correia 1 ions :ue int roduccd in 
rla~~ical pl;;~ma physics hy higher order t mncations 
0f tht: Hn<;K\' hierarchy. Tl111s, for example, instc:Hl of 
clcnllnl" '"illg the dnnlJld di-.1 ril>ut inn fnnl'l ion into a 
product of si n~~lr:t fun rti•m:;, t'IH: lriplrt di•;trihnti11n 
function is dcc<llll] Hl~l ·•l in t•· products of sin;.;kt and 
doulJlet functions. This rc:::ult s in a c•)mplicatcd set of 
coupled e•tnat ions for the ~in~lel an<l doublet <li~t rilm­
tions.g A precisely analog0us procc1lnrc can be rarri•:d 
through far the q.m.d .f. :\n cxp:ms!on of the !'inglet and 
Jouhlet q.n .. <l.f. in pow<:!:) of fz can then be p t· rformul, 
leading to e!'s<:n1 ially the cla~sical cqna t ions in lowest 
order. Recalling t hal the Thumas-F<:rmi "appro;u h" 
is wholly tantamount t•} the solution of these lowest 
order equations, it is clear that to intrvducc correlativn.s 
i11lo t!:c Thomas-Fermi u:vdel, one m;tsl begin by jiwling 
the dassic,Jl d,.ul>/ct dislrilnttiun. function for a spatially 
in!tumugmrous jJ!,nma <chose sin;;ld function. is tire 
Fermi distrill/ltion. This problem is as yet unsolved. 

APPENDIX. SOLUTION FOR Fs 

We present here the solution bf (23) and (U), where 

F 0 = F o(U (r)+~mv~-mwv· LX r). (A1) 

l.et 

" Sc.:, for 1:xan:plc. E'l . (·1.15) of rcfcrl'ltcc 7 ... 
"~lor~ properly will, til the sctt:<c ,[ I he Ul'fimhon (16) . 

where 

nn<l 

( v·v - .. ~- \1 U·\ )p,c r r " ... 
Ill 

2r.c~ N-1 
=---(v.go · \',Fo- v.Fo· \1,go). (AS) 

m3 N . 

In solving these equations, usc is continu:J.l!y made of 
the symmet ry condition (25) and reb ted irlenti t i~:s like: 

v · \',.(J.x r· \ ,lJ) =LX r · \',(J.X r · \',l ' ) = 0, (:\6) 

etc., to reduce the complexity of the . multiple \'ector 
and ten~0r product.; \';hich furnully ari~ e . A<: ~]•ace 
dol'S r·wt permit the~c man:pulatiuns to hc·~:xhibited in 
<kt:1il, we present only the sk!'l eton of the cak ubtion. 

(:\-3) in\'olYcs only the s!r,tightforwanl C\':l1uation 
of \'"~Fo, and .wc find 

Fz·1 = - (t j 8m)Fo"v2li- kFo'"[ v · \ ,(v · \ C) 
+ (1/m) (\0')2]+~u.:Fo"',,. I. X \f.i 
+ -/,;w~Fo"'\' ,(f.X r)~ · \ F -!-~mw~Fo'" 

X (vX 1.)2
- Fo''1' { v · \,[f! -smw2(LX r)=JF . 
. +{!n:(~2 (/·\,"-c,Fo"'v· I.Xr)}. · (i\7) 

Tlte la~t term in curly bracket s being a ~olution of 
the homogenernl'l (\'la::•Jv) equation is then ddetcll 
since we arc onlv interested in the (inhomogeneous) 
terms generated directly J,y the right hand sid:: of (14). 
It s appearance in (11.7) is a formal con~cC)ucncc of the 
~hort cut (21), :md care mu:;t conseC)UCntly be taken 
,·;hen. evaluating (r\3) to cielete these spurious terms. 

The only real algebraic complexity ariscs in (r\,1). 
Straightforward evaluation of the right-hatH! side yields. 

1 
--(\1,· v.)*UFo 

2·lm3 

1 
= --([v-w(I.Xr)} \1,[v,2U]}Fu'' 

Rm 

1 
--- ( v-wi.X r),( v-wl.X rM v-wi.X r)t 

2·1 
• c13U --- .. x-· ---~F~'":-· (,\8) 

iJ:r:,u:riJ:r. 

It is not difficult to show that as n. consequence of (25), 

I.Xr· V,(V,'U) uau 
= 0= (I.Xr),(LXrMlXr). . 

u:r ,.iJx,.iJx. 
(A9) 

· , 
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Consequently, (AS) becomes 

1 1 
= - -- [ v · V(V~U)]Fo"- - [v · V,(v· V.(v · VU))]Fo'" 

8m 24 

J3U 
+!w(LX r),VF.~o----·-Fo111 -tc~2 ( LX r),( L X r),t•• 

ux,iJxiJ.r. ,,au 
X------Fo". 

iJx;iJx,iJx• 
(AlO) 

T he contribution of the first t wo t(' rms of (AlO) to 
F~8 is immcuiatdy found, since it is readily verified 
that 

( 1 )(-1 1 . v · \,---\,U· v. - Fo"V2U-- Fo"' 
m 8m U 

x[ v· V,(v · VU)+ '~' ('vU)']) 
1 1 

= - --[v· \(\-1U)]Fo"- -
8m 24 

X v · V,[ \' · V,(v · VU)]Fo'". (All) 

The contribut ion ari5in;; irom thG remaining t erms of 
(:\10) prOl'('CUS as follows . Using the identity 

v· V,[v· V,(LXv· Vl')]= O, (:\12) 
uuc JinJs 

iYU 
&·--·( tx r),t·,v. - -- - ··Fo'" 

iJ .r ,{) .ri'l.r. 

= i wvX L·\,(v· VU)Fo'". (AU) 

Thi:; leads to a contribu t ion to F2
9 of 

i wFo"'vX L · VU, (A14) 

which can be verified by direct substitution into the 
left-hand side of (A4). 

In a similar fashion, use of the identity 

L X r · V,(v· V,(LX r· VU)) = O. 

lca<ls, after some algrhra, to the relat ion 

c}' l/ 
(I. X r) ,( LX r)it'k -- - • - ·· 

ux,-iJ.ri<'-'"k 

(AlS) 

= ~v- V,[V,(LXr/ · VU]- V.( L XvP· v.u. (Al6) 

The contriLution to F: 8 arising from the last term of 
(:\10) is immediatc:ly appan:nt and·is 

-/.,-.:.N"o" '[V, (LX r)Z· VL' + 2m (L X vn. (:\17) 

Collecting tums, there follows for F 2
8 : 

F/1 = --1-Fo"v~u _.!. Fo'"[v· v,(v· \'U) +-~ (\U)l] 
8m 2· ~ m 

Finally F~c:, the cuntriiJHtion arising from exchange, is 
readi ly obtaine<l since the righ t-hand side of (AS) 
becumcs 

21rc
1 _v -1 [ · 1 J 

- - . -- v-.V,gc- -·-\,U · V.go Fa' 
tw N m . 

lt is not <liJ1j, ul t to ::.how tl.a t the st·roJH\ t erm o£ 
(:\ 19) vanish ~:~ identically. ConscqHc·nt ly, we have 
immediately 

(A20) 
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Appendix B· 

Derivation of E.'Xch2.:1ce -Corrected Enerr;y Transport Equation 

TI1is Appendix is devoted to the derivation of equation IV-118. The 

star~ing point is equation III-48 with the additional exchange tenn DT-117. 

Specifically, 

;t [ ) a\r ~ M "~ 'F(')] + f. [ )J\r }[ i mv-
4 F(l) _az: ~ )J~ i mv~ F''j 

+ ~ :t ~<t>T • [ )J\,. t 'f''>J + 0}J v~<PT [ )J3
u- rr·>J 

- ~~ ( J\r Jr~( ~rYL~ ll(l)- 'dctlf.C ... ;;)f,')) -:::: o 
J ~ 'dx~ ;;v~ ~v" ?X" (B-1) 

Denoting the l ast tem teEporarily 'by }txc."J , we introduce the .L. . ansavz 

III-66 and take the real part of B-1 to obtain 

d [rf) \ ' . ~ .....,(./ ,l [ 0 r ) ( :t ·- I 
;)t IJU..JdW~M(~+<~>) F (~)~Jt)J + rz· N.)Jw ~+<~>)t~'~'~(~-t<~p) pC·}~,~,t) 

, 
-t- ~ ~ ~ tPr · ~ )J5w (~ +<~>) fl•Jt~, ~,t) 

(B-2) 

Next, ma.1dng use of III-69, III-72 and III-73, .as well as III-49, converts 

this equation into 

}_ [ -!;Ttl. <.u.."/" < n) -+.!. Tr < 1r>] + 2.. f< t.c.l )(1r'l(~ + ( u. ~).!. Tr(lf') 
;)t "' .. ~ JXI< ~ 

~ a a · . ' 
+ ( u. ) * 'IW\ (Y\)4( 'Z > +_ :h: 1- ( 'Sl· ( <V\"> < J&>)) + R.._ (~1w WK.J. WlWtt F<•J(" w t)1 

.. "ll'W\. ~xK 1 J ~ . -· _, j 

+ d'a.(yc\>T·~~">)<~"> + ~ ~ tl(C.~{ ~ 0 

(B-3) 
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Introducine; the definitions III- 77 a.nd I II- 78 and employine; the mass con-

tinuity equation ( III- 56) yiel ds 

m..<'t\.>(~t +<~>·!')<E.')"~ ... <-r'>·z<~> + z·<g.'> 

- ~ (~ v-a<'t\.>) + 1- ( ~ <n)< !.(,)~) + 0'· ( u. .L m<l'\) < t.t>~) 
cit 1--M. Jt l ...... """' .... -. ,.. 

+-<u.\.>1- <:v'~<'-) + q~<.YL) <u.>·v<k 0 ~ ~1 
,;))(K Q N - I + ~ \ (!'l(c.. ) = 0 

(B- 4) 

Finally, noting that since by vi rtue of III- 56 

2(~<.n><u.'~) -t \1• (<c..t.).!.m<'l\)<\.t)~) = "'rv\.<.n)(\.(.)·(L t<(t.t.)·V)<t.t> 
Jt ;>. - " "" ...., .l ""' ""' ) e ..... . ,.., · "" 

(B-5) 

;.re can replace these tivo tems by t he s cA.l ar product of <: ~) and the 

momentum conservation e quation ( rJ- 107). The end .result of this operation 

is the equatio!l 

m. < 't\.) r 1-. -r ~ ~ '> ~ Y1 < E., >j:l, + < v '> . 'V < lL' + v. <. Q '> L d~ . · . ""' .v/ - .... 

(B-6) 

(B-7) 

I n the ab sence of exchange , t his i s e quat i on III-76 . 
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Turning finally to l\e ~ t'l((.~ ~ , 1·re first i nteerate by parts to obtain 

Rt ~exc~\ = ~[ -~~SJv~v~( ~vi'<~ ;L_' _ ~cf>e)(~~_2F'{'))1 
;;> x ~' dv" d v.c ~ ~" J 

= f(; [-~~1.." r d JV" J. 1r~ t tXc~ ;)F{J) - ~ ~o1v ~ Kt eKe~ J ~'] 
· .Jx J ;;> d vi(. J "J x.t<· (:8-8) 

Next , introduction of the ansatz IV-104 toge"~her vith the fact that f"o(;( wt) .... ) ... , 
( as defi ned in IV -l05) and, c onsequently, .J., e)(t\.. (X W -t) depend only . 'fo .... , "" ) 

on the magnitude of VJ l ead to -

(B- 9) 

Ins erting the definition ( IV-100) of the exchange potential, ve a rrive at 

~~e~) = f·[ <~> (~\.,~~ ~ (~:t(J~w'-f(~lw~wJ)F<x w'~))7 
. ) b ~(imwl) ) 1\ - " o A.J J )j 

+ <'Z > · 2' yw F. (r,t) ( ~~)J\/ { (~ (:l-~l) F.Cz., w;-tJ) 

(B-10) 

].laking use o f IV-108 and IV-119, we obta in .finally 

1-rh ich, "\vhen inserted int o B-7, y iel ds IV -118. 
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Appendix c· 

Solution o~ Time-Independent Quantum Vlasov Equation to Order~< 

We consider in this Appendix the method ~or obtaining a solution o~ 

(C-l) 

o~ the f'orm 
C)O 

~ ( ! J 'll ) -= ;E_ FV\ (!, ![ _l 1:\ rt (C-2) 
t'\~o 

where R is an arbitrary single-particle Hamiltonian. Both the ~irst and 

second time-independent quantU!!l VJ.asov equations are thus included in this 

category. Vle ignore ~or the moment the ~act that R itsell may depend on 

t) either explicitly or impiicitly via a dependence on F, and consider it 

to be some given f'unction. 

Introducing the convenient notation 

( ;}Xe, )x; ... . ) (Jtr~ }V~ • ·• ) 
t 

ll\. space derivatives 

lt.L· .. . 
A .. 

".) .... 
(C-3) 

were ~, j , X, t , ... are Cartesian indices, and the operator~: 

! A ~.t··. 
"J . . - . 

:: · (c-4) 

we f'ind f'rom the de~inition o~ the G.P.B (II-57 an:1 ll-53) that F
0

, F, , and 

F~ satis:fy the equations 

=o (C-5) 
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(c-6) 

where repeated Cartesian indices are 'l.ll1rlerstood. to be summed. 

As ls well known, the solution of C-5 is any functional of the con-

stants of the motion, c(i.) (f. ,y), defined by 

~ 
(•) 

cr._>) ~ J == o 
P.$. 

(c-8) 

one of which is the Hamiltonian function itself'. For simplicity, we shall 

assume that F o is a function ~ of the Hamiltonian: 

Fo :: fo ( H) (C-9) 

The generalization of' the method to cases where F depends on other con-o 

stants of the motion as well should be apparent from . the ensuing develop-

m.ent. 

From ( C-9) it follows that 
• 

F: j - Fo H~ (C-10) 

•• • 
Foj.k. ~ Fo ~j ~.h. + Fe) H~.lt (C-ll) 

where 

• 
Fo etc. 
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Using C-10 and C-11, C-6 becomes 

(C-14) 

Since in general 

(C-15) 

C-14 becomes s:llnply 

(c-16) 

Making use of the identity 
• 

~ { I - $) ( A C H) B). H j = A C 14) ( 1- t) B ~ H J 
..J . W\. 

(C-17) 

the solution of C-16 is ~~ediately obtained: 

(C-18) 

Inserting this result into C-7 and making extensive use of C-15 leads after 

some straightforward algebra to the F2 equation 

•• • 
_F:, (l- t) ltj (HJL! B ttQ)J 

t-m') 

•••• 
+~ (1-t)Hj (HAH.t~llH~)j 

8'M3 

(C-19) 
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'Which is innnediately solved using C-l7: 

F:t = 

.... -

(C-20) 

The general method for obtaining Fn should now be clear. One simply 

manipulates the right hand side of its equation into a sum of terms each .. 
of which is of the form of a derivative of F

0 
times the Poisson Bracket of 

the Hamiltonian with a scalar :formed :from tensor products o:f the Hamiltonian. 

In view o:f the regular structure o:f C-la and C-20, it is no doubt possible 

to write down a simple general solution 1or any Fn• Indeed, it is apparent 

:fro::n these results that 

d.Y\. f 
f~-:: (~ r ~I {_ a_f <!._ ~ x {scalar formed :from f H' s) (C-2l) 

• f:; ~ J. 1-Ho 

but we have not pursued this line of investigation. 

To apply the :foregoing results to the problem :formulated in Chapter V, 

we let H be the Hamiltonian 

(C-22) 

.(C-23) 
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we have 

(C-24) 

. l. 
Then, to order h , there follows 

(C-25) 

The derivatives of' H are particularly s:!Jnple in the present example 

and the result quoted in the text follows trivially f'rom C-25. 


