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ABSTRACT

By means of a quantum mechanical phase space distribution function
introduced by von Roos, the Schroedinger equation fof a non-relativistic
system of N identical particles with séalar interactions is transformed
into a gquantum mechanical generalization of the Licuville equation,
thereby formulating the problem in term; of a generalized density in
phase space, a quantity of primary interest in most treatments of the
corresponding classical system (or 'plasma'’). This transformation permits
a parallel development of the theories of classicai and quantum plasmas
and thus allows the quantum many-body problem to be discussed virtually
completely in classical terms. In particular, a kinetic theory of
quantum plasmas is obtained by deriving the quantum analogue of the BBGKY
hierarchy, and applying thereto approximgtion techniques similar to those
of Rostocker and Rosenbluth, and Bogoliubov. ‘The point of depafture r'rom
similar previous studies based on the Wigner distribution function is that
the proper exchange symmetry can be tractably introduced into the formalism.

Attention is first focused on the Hartree and Hartree-Fock approxi-
mations, in which case the quantum BBGKY system reduces to a simple qﬁantum
generalization of the Vlasov equation. Tbis equation is used to study
the response of spatially homogeneﬁus systems to weak external forces,
and the associated problems of plasmon and spin-wave excitations. It is
also used to derive the quantum and exchange corrected equations of
inviscid hydrodynamical transport which are then applied to the probiem
of sound propagation in the degenerate eleétron gas.

The second part of the study is concerned with the theory of the

many-electron atom in the Hertree and Hartree-Fock approximations.



The relevant quantum Viésov equations lead naturally to a ''statistical
theory of the atom which reduces 1o the Thomas-Fermi-Amaldi and Thomas-
Fermi models (respectively) as A—>0. For R¥ O , the quantum and
éxchange corrections to these models are simultaneously generated. The
quantum hydrodynamical theory developed earlier is used to determine
the influence of these corrections con the boundary conditions of the
model, and a theory of the compressed atom is consequently obtained.
Coni;idered in somewhat less detail are the effects of non-zero temperature,
net orbital angular momentum, relativity and correlations, as well as
time dependent processes.

The final part deals with the problem of the degenerate electron
gas with a uniform neutralizing background. Going beyond the Hartree-
Fock approximation, the pair correlstion functions for particles with
"parallel" and "anti-parallel" spin are obtained by neglecting three-
particle correlations. From these functions, a quantum-mechanicsal col-
lision integral is derived which differs from that obtained by Silin
and Guernsey and conjectured by Wyld and Pines in that dynamical exchange
effects are included. Also obtained from the pair correlation function
is an expression for the "eorrelation energy'' which reduces in the high
density limit to the result of Gell-Mann and Brueckner. At intermediate
densities an additional term appears iﬁ the energy due to the screening
of the exchange interaction by the dielectric properties of the medium.
It is evaluated in the high density limit and found to be -0.151 rg 1ln Ty
Ryd/electron in marked disagreement with the corresponding value obtained

by DuBois.
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I. Introduction

The classical anquuantum.approaches to the many-body problem
have undergone consliderable refinement in recert years, along markedly
different lines and at the consequent expense of an ever-widening concep-
tual gap between the two. The former, under the impetus of the increasing
technological importance of.'blasmas", has concerned itself largely with
a detailed understanding of the physical consequences of the Liouville
equation, which describes the tempbral evolution of the distribution in
phese space of the members of a representative ensemble and embodies
therein both equilibrium and nbn-equilibrium statistical mechanics and -
transport theory. The latﬁer, on the other hand, has tended to follow
the development of quantum theory as a whole, beginning with the density
matrix formulation of quantum stetistical mechanics due to von Neumann
(1) and Dirac (2) and eventually sdopting the full arsenal of quantum
field theory (see e.g. DeWitt (3)) as the formal similarity between
certain many-body problems and field theory came to be appreciated.
Indeed, Nambu's (4) recent proposal that the masses of elementary par-

ticles arise in a manner similar to that of the energy gap in the B.C.S.
Vtheory of superconductivity emphasizes both the closeness and symbiotic
nature of the present connection between field theory and the quantum
many-body problem.

An unfortunate concommitant of the‘undeniable power and formal
elegance of such field theoretic approaches to the many-body problem,

however, 1s the obscurity with which the correspondence principle is



closked by the fofmalism. Even the density matrix approach, which bears =«
a strong resemblance at many points to the classical theory, suffers in
this regard. This characteristic feature is more than merely a pedagogie
drawback for two reasons. First, there exist in nature many-body systems
which are ''quasi-classical" in the sense that the difference between
quantum and classical equations of motion and/or statistics only slightly
influences certain properties of the system and hence can be treated as

a small perturbation in their calculation.  For exsmple, the transport
properties of a weakly degenerate interacting gas and (as we shall find)
certain gross features of many-electron atoms fall into this category.

To determine quantum and'exchange* corrections to the classical theory

in such cases, one must be able to go to the correspondence limit of the
quantum many-body theory. A second, and‘perhaps more compelling reason
follows from the realization that even in intrinsically quantum-mechanical
many-body systems far from the correspondence limit, the essential theo-.
retical difficulties often arise not from quantum mechanics, but rather

from the fact that a large number of interacting particles are involved =

the very same essential difficulty faced by the plasma theorist in his
studies of classical systems. Consequently, the lack of a clear cut

path (and common conceptual framework) between the classical and quantum

*Throughout this work, we shall designate effects arising from the
difference between quantum-mechanical and classical equations of motion
as ''quantum'' effects. 'Exchange'' effects refer to the consequences
arising from the symmetry properties of the wave function under particle
interchange.



many-body theories precludes the ready adaptation to the latter of new
techniques and insights gained from a study of the classical problem.
For example, an approximation procedure Based on the quantum analogue

of the Rostocker-Rosenbluth (5) and Bogoliubov (6) treatments of the
Liouville equation ﬁay be more convenient in dealing with some aspects
of the electron-gas problem than the Rayleigh-Schroedinger perturbation
theory (with or without disgrammatic aids) or the ''random phase' approx-
imastion - a question we will come to examine in scme detail.

If the gap is to be bridged (and there seems good reason to do
s0), what clearly is needed is a new formulation of the quantum many-body
problem, one based not on the density matrix, Green's functions or second
quantization, but rather upon a quantum—mechanicai generalization of the
phase space density which underlies the élassical theory. To accomplish
this, a gquantum-mechanical phase space distribution function (q.m.d.f.)
must be defined in terms of the N-body wavefunctions of a representative
ensemble, and its dynamical equation obtained from the Schroedinger
equation. The gq.m.d.f. so chosen must not only be a normalizable c-number
from which information is obtained in the same fashion ss with classical
distribution functions (its lack of positive definiieness and observa-
bility notwithstanding), but its dynemical equation must go over to the
liouville equation vhen hh is formally set equal to zero, thereby guaran-
teeing the correct correspondence limit.

The first search for such a function was made by Wigner (T)

in 1932. He found that in fact many q.m.d.f.'s with the desired properties
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could be defined, thé choice among them to be determined largely from
the standpoint of convenience. His choice, the so-called Wigner distri-
‘bution function has been slmost exclusively used since then (we will
exhibit it later). With it, Wigner calculated lowest order quantum
corrections to the classical Boltzmann equation. It has also been applied
extensively by Kirkwood and collaborators (8) in deriving transport
equations for low density gases and to formulate a hydrodynamics of
quentum fluids. Saenz (9) also derived a transport equation for a dilute,
non-degenerate, spinless gas ﬁsing this function.

Extensive development of the theory based on the Wigner func-
tion was retarded, however, by two circumstances (probably accounting
for the relatively minor role of q.m.d.f.'s in contemporary quantum
meny-body physics). First, full exploration of the strictly classical
system of many interécting particles has only relatively recently been
undertaken, under the banner of ''plasma' physics (5,6). Comsequently,
a detailed understanding of the propexrties of q.m.d.f.'s had to await
corresponding advances in the glassical theory. A more fundamental
difficulty, however, arose from the analytic complexity of the equation
for the Wigner function in the Hartree-Fock approximation. This ihability
of the Wigner function to tractably incorporate the proper exchange
symmetry of the wave function effectively limited its usefulness to the
Hartree approximation, a severe restriction in many practical applications.

The way out of this latter difficulty was found in 1960 by

von Roos (10) (independently of an earlier, more cursory observation by



Takabayasi (11))who, pursuing Wigner's observation that many alternative
q.m.d.f.'s with the desired properties could be defined, exsmined such
possibilities in the hope that with one of them, exchange could be intro-
duced in a more natural and tractable fashion than with the Wigner func-'
tion. His efforts were successful and enabled him to derive a quantum-
mechanical generalization of the collisionless-Boltzmann (Vlasov) equation
from the Bartree~Fock equations. In a series of papers, this formalism
was used to derive lowest order quantum and exchange corrections to the
plasmon dispersion relation in low density non-degenerate plasmas (12),
the high density electron gas (13), and the electron-phonon system (1h4).
An indication that the formalism could be fruitfully applied to the time-
independent equilibrium properties of finite systems as well was given
in 1962 by the Author and von Roos (15) (see Appendix A) inla paper which
established the theoretical foundations of the Thomas-Fermi statistical
model of the atom from the Hartree-Fock equations and succeeded in
deriving quantum and exchenge corrections to this model. This paper
forms the nucleus for part of this dissertation.

Thus, the two obstacles which formerly stoocd in the way of a
q.m.d.f. approach to the quantum many-body problem are no longer present.
Recent developments in plasma physics (notably the application of the
techniques due to Bogoliubov (6), Born and Green (16), Kirkwood and col=-
laborators (8) and Yvon (17) to a classical plasma with Coulomb interac=
tions by Rosenbluth and Rostocker (5) ) have yielded insights into the
properties of distribution functions in the corresponding classical

problem and serve as a guide for a parallel development in terms of the



- gqem.d.f. Furthermore, use of the von Roos gq.m.d.f. in place of the
Wigner.function will allow the proper exchange symmetry to be introduced
in a tractable fashion. The primary purpose of this dissertation is to
carry out this development and to investigate what types of physical
situations can be effectively studied by such a formalism. In the
course of this program, we will refine and extend  von Roos' original
somewhat awkward formulation (compare, for example, our equation Iv-6L
with equation 29) of reference 10) snd will find that the method has
relevance not only to quasi-classical problems, but such intringsically
guantum systems aé the degenefate electron gas as well, leading us to
believe that the fonmalism may be applicable to a broader class of
problems than might te inferred from the specific exemples herein
considered.

In Chapter II, after a more qomplete defirnition of the problem
and an outline of the classical many-body (plasma) theory which is to
serve as a general guide to the development of the quantum many-body
theory, we introduce the von Roos q.m.d.f. and derive the quantum
Liouville equaiion, as well as the consequent analog of the BBGKY hier-
archy of coupled equations for the "reduced' q.m.d.f.'s. As in the
classicel case, this hierarchy is approsched by successive truncations
of the chain, corresponding to the inclusion of dynamical correlations
(or "collisions') between a successively greater number of particles.

The first step in this procedure, corresponding to the Hartree

approximation to the N-body wave function, is carried out in Chapter III.



In this case, the quantum B. B. G. K. Y. hierarchy reduces to a simple
generalization of the Vlasov equation which is used gb study the
respeonse of a spatially homcgeneous system to weak externsal forces.
Singularities in the response functiocn are identified with 'plasmons''
and their dispersion relation is obtained. Velccity space moments cf
the quantum Vlasov equaticn are then taken and yield the equations of
inviscid, isentroplec quantum hydrcdynamics.

In Chapter IV, the Hartree-Fock approximation is introduced and
is feund to be formally equivalent to a second generalizaticon of the
Vlasov equation, by means of which the spatially homcgeneous electron
gas at non-zeroc temperatures is studied in some detail. Its response
to week external fields is again investigated, and the exchange-
corrected plasmon equation is derived. A new mode of excitation, the
spin wave, appears naturally in the theory and its dispersion relation
is cobtained. The quantum hydrcdynamicel thecory of Chapter III is re-
derived ahd corrected for exchange effects. As an application, sound
propagation in a dégenerate electron gas is studied, and we find that
due to exchange, a critical temperature exists (at any density) such
that sound waves cannot propagate at temperatures belowrthis value.,

The formal equivalence between the Hartree-Fock equations and the
quantum Vlasov equation motivates the 'plasma theory of the many-
electron atom' presented in Chapter V, by meens of which the theoretical
foundaticns of the Thomas-Fermi, Thomas-Fermi-Dirac and Fermi-Amaldi

statistical atomic models are investigated in some detail. Guantum,



exchange and non-zero temperature correcticns are derived, and the theory
of the compressed atom is similarly corrected usiﬁg the quantum hydro-
dynamicel analysis of Chapter IV. Excitations of the atom are studied,
and ve are led to anticipate the existence of '"collisionless' modes of .
collective oscillation, the equations for which are presented but not
solved. Corrections to the model due to relativity and correlations are
also briefly discussed.

In Chapter VI, the first step bgyond the Hartree-Fock gpproximation
is taken by introducing dynamical two-particle correlations into the
theory. The consequent equations represent the starting point for an
exact kinetic theory of quantum plasmas, paralleling recent work by
Guernsey (18) which, being based on the Wigner distribution function,
does not properly include exchange effects. The particular exasmple of
the spatially uniform electron gas is studied, and the 'barallél" and
"anti-parallel" spin pair correlation functions are obtained. From them
ve derive s new quantum-mechanical collislon integral which, in the
absence of dynamical exchange effects, reduces to that recently'con-
Jectured and studied by Wyld and Pines (19)0 Finglly, we also obtain
frem the pair correlation functlons an expression for the interaction
energy of the electron gas which, when combined with the Pauli-Feynman
theorem, yields the '‘correlation energy'. At zero temperature, the
equivalence of this expression in the high density limit with the Gell-
Mann-Brueckner result is explicitly demonstrated. At intermediate

densities, a new term in the energy appears due to the screening of the
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exchange interaction by the dielectric behavior of the medium which,
when numerically evaluated in the high density limit, is in dissgree-

ment with the result obtained by DuBeis (92).



II. General Theory

A. Statement of Problem

In its full generality, the many-body problem may be defined
as that 6f obtaining a physical description of the observable prcperties
of a system of N objects, proceeding from a knowledge of the nature of the
interaction between fhe objects, their equations of motion and a detailed
understanding of the propertiés of each when isolated in vacuuo. The
system may be exposed to external influences of a prescribed or statistical
nature, but these do not represent an additional degree of freedom, i.e.
they are not affected by the behaviour of the objects comprising the
system. The classical and quantum problems are distinguished both by
different ''equations of motion' and, more fundamentally, by the different
interpretations which must be given to the phrase ''observable properties'.

For the purposes of this dissertation, we shall be dealing with
a far more restricted many-body problem, although the lines along which '
the theory can be extended to more general situations will be gpparent.
Specifically, we shall assume that the N particles are: identical,
possess no internal structure or degrees of freedom other than spin,
interact with each other and with external objects through superposable
forceé defivable from a scalar potential, and obey non-relativistic equa-
tions of motion (i.e. the Schroedinger equation). We might remark paren-
thetically that all of these restrictions save the last are made purely
for convenience and do not represent essential limitations of the theory.

Finally, we assume that the system is not ''solid-like'' in the sense that
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the N particles are more or less localizable on fixed lattice sites =
a case which must be studied by methods entirely different from those

we are about to describe.

B. OQutline of Classical Approach

A The classical theor& begins with a consideration not of a
single N-body system with fully prescribed initial conditions on the
6N generalized coordinates and momenta, but rather with a represent-
ative ensemble of macroscopicelly similar systems each described by
the same Hamiltonian. Appesl is made to the quasi-ergodic hypothesis
which states that the statistical properties of measurements of some
quantity Q performed on a single system Gai. be iPerrel than ks
trary degree of accuracy from the diétribution of the values of Q
among the members of the ensemble, simply by choosing a large enough
representative ensemble. Choosing the generalized coordinates to be
the loceation (5) in a Caitesian configuration space, and the general-
ized momenta to be the linear momenta (2), a 6N dimensional phase
space (5l,---j§N; Bl-—-jpn) is introduced, each system being repre-
sented at a given time by a point in this space. The normalized
distribution of system points in phase space at a given time,
F(N)(fl:""fui Pys=="Pys t) is defined and its dynamical equation,

the so-called Liouville equation, is obtained from the Newtonian
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equations of motion. It can be written in the form (£ () being the

N-particle Liouville operator):

()
() ™ ) .
;e F { F' H =0 (11-1)
' £B.
where the N-particle Poisson bracket of F(N) with the Hamiltonian K(N) is
defined by
) N ' ) )
W) W) o ) (N. :
F H = é ('VZ;L S v,ﬂH o VfLF Vit,_H - (1I1-2)
pg. ¢=! e S

In conformity with the remarks of the previous section, the N-body

Hamiltonian is chosen as

N 2 P/ ext
HM=§ £l + %__é¢' -Xi) +9 4 (X‘t)] i

where 82¢(,fi = f.j) is the scalar potential of interaction between par-
ticles i and Jj, 82¢ext is the extermal potential and gz the "coupling
constant' which characterizes the strength of the interéction. The system
of equations is completed by a normalization condition which may be chosen

as

3 W
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(v) ()
The ensemble average,[j({j of any function G‘ “(x ==Xy pl---pN) at a

time t is determined by direct integration with F(N)(t) over phase space:

3 ®) )
f—' (£} = gc’}%. --'o‘gx,fff' "'Jf’mG!,’S-,--’i'v,'f-,-rf»«)F(5-,--5~;f.~£.¢)-f) (1I-5)

and, by the ergodic hypothesis, is identified with the expected value of

(w)

performed on any member of the ensemble at time t.

()

a measurement of G
Two subsidiary restrictions on F must be noted. First,
because it .is a distribution function, it must be positive semi-definite,

i.e.

F (% -- E‘;’fu"f:'}*) 2 . (11-6)

Second, due to the assumed identity of the N particles, F(N) must be
symmetric under the intercnange of any two of them. This is actually a
statement about the properties of the representative ensemble chosen, since

classically the particles though identical are distinguishable. Thus

(™) | '
F* ey 25,00 B i B © (z-n

" , '
Fo (O, =2y iy s By By Py B )

-~

By means of this relation, we can illustrate the fact that the full F(N)

contains much more information than is practically required. For exumple,



‘ o)
if we wish to compute the average kinetic energy T of the system,

vy g
we set G(N) in II-5 equal toé{ Lﬁi! and by repeated use of II-7 find
i aAm

" (v
: 5&* v &p M"l gfx,olx,,ot’ﬂ---ff.,Fcf.,--zrv;f.,--gv;f)} (11-8)

Similarly, the aver e interaction energy V( j is obtained by choosing

G(N) equal to [ai é% ¢(xl d) + é% ?Sut(x- )-] yielding

P IREL
Il

Y™ = M) g SA’x Lx, &9, L, ¢ ""i){j'ax“&x Af,--lf,, F' } (11-9)
a

+ NgaSA':«x'x.f'¢€if(§|)f)ggfxl,.£xﬂfﬂ,_J}f'l F(u)

Thus, all one requires to compute the average system ~nergy, for example,
are the so-called ''reduced'' distribution functions enclosed in curly
brackets. Thié is the motivation for dealing not with the full Liouville
equation II-1 but rather with a hierarchy of coupled equations for reduced
distribution functions (the so-called BBGKY hierarchy) obtained by inte-
grating II-1 over sub-spaces of the full phase space. Specifically, if

we define the s=-particle reduced distribution functions

(s) : )
foot, X fopit) = Sd’xs';-d‘x,o\’f;;'--o\l , Pl . ~xw f - fyye) (31-10)
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then one obtains from II-1, the set of N-1 coupled equations

) (s) - g st)
P9F% 3R 4{ RO = (98 (CIA LA KIS R
It s s

p.8.

(s)

N
and normalization (II-4) as the full F(N).

It is readily verified that F has the same symmetry property (II-T)
The problem now becomes one of developing a suitable approxima-
tion scheme to apply to (II-11). The most fruitful one is suggested by
cur previous cbservation that a good deal of information is contained in
Jjust Fﬁl) and F§2), or more generally speaking, that the information
(s)

(S +1) concerns increasingly finer details

content of F not present in F
of the system as (S) increases. Since such details are generally neither
of much theoretical interest nor amenable to experimental study,rone is
led to consider successiﬁe truncations of the heirarchy (II-11). Speci=-
fically, one begins by considering only the first equation of II-11l

(i.e. (S) = 1) which connects F(l) with F(2). The resulting equation

ext

IF 4 v, me. g V 9wy

—

t . oy (11-12)

(N—*) 3"‘ Sa’xa e[, Fy 5 2 ;) -V’,fﬂsfz.-za)]

is then closed by the snssatz

FO i s6) = R ()8 AR, 8,1) o (ar3)
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(1)

and the consequent properties of FN are studied. The next step is
the retention of the first two equations of II-11 (S = 1,2) with (II-13)

replaced by

F@ (X, Xa, X3, P- ,fi 'P's t) [}_ (% *9‘: (1'1 %) P‘ 'P,,{:)

(11-14%)
o+ zc‘lc\"c ?efvnu"- Tiow O\C 5,2 3_}:,:( ‘norm«]ia-?rlon

c.ons QN

yielding coupled equations for F( ) and F§2) which are usually solved by

assuming that Fél) will differ only slightly in this case from the Fﬁl)
obtained in the first step so that perturbétion theory can be used. One
then, in principle, considers (S = 1,2,3) and so forth.

When this procedure is carried beyond (S = 1), formidable
mathematical difficulties arise in the general case, and additional
approximations are required. What one does is to rewrite the equations -
in terms of dimensionless parameters sppropriate to the problem at hand
and then develop therefrom a perturbation series in such parameters.
This generally enables one to ignore troublesome terms in the lowest
order. The Rostocker-Rosenbluth (5) procedure and Mayer "eluster eipan-
sion' (20) may be cited as examples. We do not wish to discuss such
parametrization procedures here beyond the remark that invariably the
expansion parameter is related to the ratio of the average interaction
energy to the average kinetic energy.

In spite of the foregoing simplifications, the method has enor-

| mous power. Consider, for example, the first step of the procedure.
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Combining II-12 and II-13, one cobtains for F§Il) the equation
i

) ) ‘ + s.C.F 4
3,55_') * v’,‘.. F:)'f'l vf’ F[ V 8 (‘Pex (E'f)”lﬁ (E"t)) =0 (11-15)
ot m :

¢S.C-F'

where the ''self-consistent field'" is given by

6" T = () (0 O R 2,0 B o)

(II-16)

' This can be written in more Temiliar form by noting that the average

particle density, e (x,t), is given by

(11-27)

el = N (07 B (2,09

so0 that II-16 becomes

4)5.‘&-)1?) z NT\I:! g&x__! Q(El,")f}g(’,&' .-7‘53)

(11-18)

Equation II-15, known as the collisionless-Boltzmamnn or Vliasov equation
for reasons to be discussed presently, is of fundamental importance both
to equilibrium statistical mechanics and to studies of the collective

behavior of classical plasmas. Let us explore this point in more detail.



An N-body system not subjected to time varying external forces
is said to be in statistical equilbrium if it can be described by a time-
independent (or ''stationary') representative ensemble, i.e._jSéﬂiZCD.
Setting the first term of II-15 equal to zero and solving thé):;sulting
equation, one finds the most general solution to be any functioﬁal of
the constants of the motion of a single particle in the field described
by ge(QeXt + ¢S°C‘F'), among which is the energy

o - ﬁ +'33,( qbext *'¢S.C.F.)

AT (11-19)

Hence any Fgl) = f(e) will constitute a stationary solution, but the
theory at this stage of approximation does not indicate what functional
dependence to choose, éxcept in the special situation where we are
describing an isolated conservative system. 1In this case one chooses the
so-called microcanonical ensemble defined by |

£ (€)= const «§(e-e,)

(11-20)

S'being the Dirac delta function. Of far greater importance are systems
in equilibrium with a thermostat at temperature T. To determine f(e) in
this case, the most direct procedure would be to simply require that the
proper choice is that which reproduces the (macroscopic) laws of thermo-
dynamics. Indeed, one finds that this caﬁ be achieved with the so-called

mecrocanonical ensemble
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]C(e) ¥ exr[ \%g

(11-21)

which correctly describes the macroscopic behavior of a system in themmal
equilibrium at temperature T.*

Instead of ensemble theory, one can follow ihe microscopic
kKinetic approach due 1o Boltzmann. In a sense this tries to anticipaﬁe
the résult of carrying out the second step of the approximation (i.e.
I1-14k). Since the ansatz II-13 is tantamount to the neglect of particle
collisions (each particle feeling onlyAtne average self-consistent field),
IT-1k will introduce collisiohs into the theory. Specificelly, to II-15
will be added a term which describes the rate of change of F&l) due to
fluctustions sbout this self-consistent field (which is what one means

by collisions) so that we formally anticipate II-15 to be replaced by

(1) G : S.CF 11}
o + ¥ Fu)'ﬁ 3 ($7 ) + 7 (0,1) = ARy (11-22)
at ¥, Jt Collision§

Since collisions are the mechanism by which thermal equilibrium is
established, the proper choice for f(e) is that which makes the right
hand side of II-16 vanish. From a detailed consideration of the two-

body elastic collision process, Boltzmann obtsined an expression for

* ?’ will in general be a function of the remaining constants of the motion.
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)

DF)
for 5?5 collisions

fact is found to vanish for the unique choice II-21. Alternatively, one

¥*
, the so-called collision integral, whizh in

can exploit Boltzmann's observation that by virtue of two-body collisions,

the quantity H defined by

H(+) = S&3X‘A;P‘ (Pm F:’) F:)(ggl )f.,f)

(11-22)

never increases, and that equilibrium is reached when H attains its

minimum value.. Applying the variational calculus to the consequent

SHéF 20

relation
(11-23)

leads again to the 'Maxwell-Boltzmann' distribution II-21, Ve see,
therefore, that II-15 in conjunction with either thermodynamics and
ensemble theory or the H theorem will yield classical equilibrium sta-
tistical mechanics. We shall see presently that in going to the next
step (i.e. II-lh), such outside appeals will no~ longer be necessary to
achieve this result. First, however, we wish to point out that the
utility of II-15 extends beyond equilibrium statistical mechanics:
implicitly time-dependent phenomena can be described by this equation

in two limiting cases. At one extreme, the response of the system,

*When this expression is introduced into II-16, the resulting relation
is known as the Boltzmann equation. The reason for calling II-15 a
"collisionless'' Boltzmenn equation is apparent.



initially in thermal equilibrium, to a ¢ext which is switched on at

t = o and varies in time at a rate large compared to the thermal relaxa-
tion time (or ''collision frequency'') will be obtainable.for early times
from this equation. This is eéuivalent to saying that when collisions
don't have time to act, they can be ignored. As a corollary, for certain
systems characterized by long-range interparticle forces II-15 is useful
in studying collective excitations mediated by these forces when the
excitation frequency is large compared to the collision frequency, as
pointed out by Vlasov (21) in his treatment of couiomb plesmas.

At the opposite extreme, the response of the system to external
forces that vary at a rate slow compared tc the collision frequency is
also described by II-15 since in this case, the system is in quasi-static
equilibrium, i.e. it can be viewed as passing continuoﬁsly from one
equilibrium state to another. This is what one may call the hydrodynamic
limit. Indeed, by taking fhe first three moments of II-lS in velocity
space, the continuity eguations fgr mass, momentum and energy are obtained.
Then assumption of local thermodynamic equilibrium is introduced by teking
Fﬁl) (f’t) to be given by II-21, where‘y and T are now permitted to vary
in space and time. Since II-15 contains no mechanism for dissipation,
we obtain in this fashion the equations of compressiblelinviscid hydro-
dynemics. Viscosity (or, analogously, resistivity when we deal with a
system of changes) can of course be introduced in a phenomenological
fashion. To generate these so-called transport coefficients from the

theory itself, one must go to the seccnd step of the approximation
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procedure, II-1h.
; There are, naturally, more compelling reascns for going to the
next step. Recall first that from II-9, the average interaction energy

is determined from F(e)' corrections to F(e) generated by II-14 will thus

N N

influence this energy and, as a consequence, the equation of state of
the system (i.e. the Virial coefficients). Secondly, we wish to obtain
the collision integral, not only to verify that the H theorem holds andl
that equilibrium statistical mechanics is indeed contained in the theory,
but also so that non-equilibrium processes can be studied. In particular,
such questions as the approach to equilibrium of a system prepared in an
arbitrary initial state, and the influence of collisions on collective
excitations cen now be answered within the context implied by II-1k4, viz,
that only two-body collisions (or '‘correlations'') are considered.

The progrem implicit in the second step may be described as
follows: ~Hikh sskats LI-2h, the (8 w B)- eqnablion $u TEa) wilL, e
soilved, determine Fﬁe) in terms of Fﬁl). The Eﬁe) thus derived is then
inserted into the (S = 1) equation which is now closed. Equilibrium is

established when the right hand side (the ''collision integral'') of this .

equation vanishes, a condition which determines the equilibrium value of

(2) (1)
Fy~' which, together with Fy P gives the energy (through II-8 and
II-9). Non-equilibrium processes are studied by means of the full, time-

dependent, Fél)

In attempting to carry out this program, two difficulties arise.

equation.

The first is due to the analytic complexity of the (S = 2) equation,
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necessitating a perturbation expansion in some small dimensionless para-
meter as mentioned earlier. The second is more fundamental, being related
to the question of how the Liouville equation which is derived from the
time reversible equations of motion can yield the time irreversible equa-
tions demanded by statistical mechanics. The usual prccedure is to

accept only those solutions which asymptotically become constant in time

as L—>© | rejecting other solutions as 'unphysical'. 1In Green's
function language, one chooses the ''retarded' Green's function. In
addition, one generally introduces Bogoliubov's (6) concept of a hierarchy
of relaxation times.  This is based on the assumption that the character-

istic times (’Ug ) in which the various F(S) approach their asymptotic

N
values become progressively shorter as (S8) increases. Consequently, for
times long compared to'rs , the time dependence of Fﬁs) is assumed to

arise only implicitly through the time dependence of Fés - l). Within
these restrictions, the program has been carried cut for the special case
of a spatially uniform plasma with Coulomb interactions by Rostocker and
Rosenbluth (5), Balescu (22), Lenard (23), and Guernsey (24). They find
for the collision integral an expression which may be written as (to

within a normalizing constant):

) < const,*vﬂ-gfﬁ { S % 13 5(%-(0-1)
at §:

Collision $
. (
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This is identically zero for the unique non-trivisl choice (II-21) as
anticipated. It differs from the collision integral proposed by
Boltzmann, however, in that the collision cross-section (first curly
bracket) contains the dynamic dielectric constant of the medium, K,

defined by

()
g e Coeba)u 0 T Bl v (om0
Wi - 2 L/m

where wp2 = KT f’ea/m is the plasma frequency squared and Yl_ is a
positive infinitesimal (arising from the assumed asymptotic béhavior).

. A less restricted espproach has recently been given by Guernsey
(25), in which the assumptions of spatial homogeneity ana implicit time
dependence are dropped. In their stead, he considers the initial value
problem governed by the (S = 1,2) eqﬁations where the deviations from
equilibrium of irl(‘l) and F§‘2). are sufficiently small to allow lineari-
zation. The resulting equations providerthe baesis for studies of how
plasmas approach equilibrium as well as non-eéuilibrium transport
processes.* In spite of linearization, the equations are extremely for-
. midable. Solution of the associated trensport problem has not yet been

achieved and effectively defines one of the present frontiers of the

classical theory.

*¥At low frequencies - the "hydrodynemic'' 1limit - transport properties
are obtainable from II-24 for reesons discussed previously



In view of the great difficulties cncountered in the second
stage of approximation, it appears unlikely that the program will be
carried to truncations of the BBGKY hierarchy beyond the second. 1In a
sense, there ié not much point in doing éo, gince if three body corre=
lations significantlj alter the equilibrium or transport pfoperties of
the system, one expects that four-body effects may also be important and
that consequently the whole gpproach is no longer a viable approximation
scheme. This, however, underscores a basic shortcoming of the theoc.y
since it is difficult to ,jﬁstify stopping at (S = 1,2) without at least
showing that going to the next step introduces negligable corrections.
Consequently, until techniques are available for setting bounds on the
effects due to the neglected higher correlations, the doﬁains of appli-
cability of the theory will be deteﬁmined by its agreement with experiment,
a situation which though philosophically distasteful is nonétheless not

without parallel in theoretical physics.

We have dealt with the classical theory at some length to
introduce both the language in which the forthcoming quantum theory will
largely be phrased as well as ihe underlying assumptions and limitations
whichbwill be carried over slong with-the language. We will proceed as
if the foregoing discussion were complete, and will thus use this language
without further discussion, referring the reader to the cited references
end standard texts (e.g. Tolman (26), ter Haar (27» for more incisive

treatments of those points where we have been necessarily cavalier.
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C. OQuantum Liouville Equation

We now consider a single isolated quantum mechanical N-particle
system whose classical Hamiltonian is given by II-3. The constitution of
the system is that given in Section II-A, each particle having an intrinsic
spin S. We choose a representation in spin space such that the spin pro-
jection of each particle in thet+ Z direction (0 ) is diegonal; i.e. the
basis vectors are bullt up out of single particle spinors fd , so that for

the L particle

o, (¢ g’“(i) = otiti»)‘ (11-26)

where (D;U-) is the operator corresponding to a measurement on particle
iof 02_ and ® has the possible eigen valves =S,--~+S, Theg': are also

chosen to be ortho—norma;l.:
*
fd (£) gp( Q) = Sdg _ (11-27)

In this representation, the general N-body wave function is written (in

configuration space) as

(N) m)
(- 2 \fJ - %uyt) giﬂ') (-N) (11-28)
J M = 5 s

where the (25+1)F quantities ‘i’:") satisfy the Schroedinger equation
.o-_““
N ext

2["£V£; + _g_lg ?5(76‘) -x,,,) +aa¢(5,j’t)] \F .—_L J‘t: W (11-29)

. am a k= - e ‘d
j= W



with the normalization

+5 o
3 (N) g s
. { -(‘Lsxl ‘--A Xy W “ﬁ‘xl i XNJt) k'} M A)SHJt) : & J‘ (II-}O)
,J...uu =8 ;

Thus, the quantity

(.h’) ' e ®) X) ---Xy t
Vol o 8 (11-32)

is identified as the joint probability density (azh"'ﬂ ) of finding particle
" Lat position 281 with spin projection o; at time €.

Fcllowing von Rocs (10), we define the guantum-mechanical phase-space

distribution function *(q.m.d.f.):

F (%, %w; ¥y Yujt) = (-YE.)W

--q .".ah
j&x Py X, [.Lt(w) (x. 1-) exf(m é‘u’-- ,’f‘.i % )J (11-32)
.J‘-‘l
which is seen to essentially consist of a product of the configuration and
momentum space representations cf the wave function.qjoo, multiplied by a
plane wave. Like the wave function, the q.m.d.f. is complex, unobservable,

and merely a calculational aid in the ccmputation of expectation values.

*¥We choose to work in positlon-velocity space rather than position-mcmentum
space, although retaining the name ""Dhase space . For purposes of compar-
ison, the Wigner (7) q.m.d.f., mentioned in the Introduction, is given by
the expression (in the absence of spin):

(v)

Emwek(x' Wy Ve ®) = am.) 5&7 Ay,,{‘f’ (Z,fi)’, ~Zviwt)  (I1-32)

L}/‘")(X--”' - Xv Lty t-) exp( 21}1. )]

J=1



Y
Before deriving the dynamical equation for F() from II-29, it is

instructive to derive some of its basic properties directly from the

definition II-32., First, integration of II-32 over the 3N dimensional

velocity space (v’, ‘U;, ) gives

§E (e v Al = B0, (2020
"Sfx"" " (w) ’ Ly X, )Tl—[(nt‘) ﬁve""‘" (% - x)—‘l s
But
4 ¢ it o
(%)3 53-3‘5 e":’:‘ﬂ (f;J J B 5 (’7&;“‘7&;) .
where 6( ’L‘.’L) is the three-dimensional Dirac delta function. Hence,
j ,,w:H(E'; t; 5,y ) AV Lo, = ‘i’oéif}',-"z‘fﬁ) ‘l;wlﬁ B X ) (11-35)

‘ W,
Similarly, in terms of the velocity space representation, "f’{ ),
),
of \F : : gv
(») 3N, T i
V(v t) = (1'_".. dxdx, e R~ e B
d.'-d, 4~ AT H ' N ~ (11-36)

one finds

%*
(¥ A ALk =™ (.. 3
.S-F (x.‘ Xy, ) Ak, = P ---"Ef. ) ‘f;.«gm “Tt) (11-37)



=28

Integration-of II-35 over configuration space and summation in spin space

yields, together with II-30, the normalization condition on Fw)

S s 3 3 (")
5,;;‘---& L J g (B KW W t) = L

< II-38)
d, - dy==5 (113 )

Thus, it is seen thsat Fm) has the convenient property that integra-
tion over half of phase space yields Vthe (quantum-mechanical) probability
distribution in the canonically conjugate space. This is a special case
of the following more general result.

Iét the three Cartesian components of 1'.'. and }G be denoted by x‘:i.
andqi:"' where Ki.’ ,a,3 and consider the following general real function

of the position and velocity of the N-particles:
3 N 8
T (w5 v
R e = 2 a (%) --~§mt) | ('u‘. *)
G(E'J ?.c..".) ~, ~NJt) == (N 2 2 iz G
K, Ky =\

(11-39)

where e.) FN are arbitrary non-negative integers. Integration of the
Dy o)

product ofG' and F , the complex conjugate of F'’ , over all of phase

space gives

' (m
sz Lty 4, L, G E?E": e t) F_w(,*- ) U U 1) =

3N
ja lxN \F‘N) (1,! ‘“xﬂ t—) K .(“"X‘.(;.. In ‘t)(a_rh)

| KH-‘



The right ha.nd side can then be written in the equivalent form

Si’x|.--13x,, \P‘”’ {5,020 e)(é“ 2 "“ﬂ-ﬁ—( méx ) )

Ky =

3N
() [ i, R R L
GRS % iy & - (11-M41)

Performing the velocity space integration, making use of II-34 and then
integrating over the primed configuration'space leads to the result*

jdx JZ,;'J-V “J_v' G—(?Cl ...x,.. 'V‘ 1,—— t-) Fw) (‘X. x"'j‘"‘ _,.m-t)::
s J N~ )
(11-42)

‘gsex,”‘.cfx”tl"(ﬂ) {-., Iﬂt)}:ia’ (l. - Kwt) “ (T{ 3 )p:]HD[ )(z, oA 1‘:)

_ Ay ety ¥zl cor Vom Pt lndH
It is therefore seen that the integral over phase spéce of the product of
f:”o and a function of the form II-39 is equal to the quantum-mechanical
expectation value of the '‘well-ordered'** operator obtained from II-39 by
the formal subbtitution1f-—?t'§7 Now consider the result of integrating

~ cm ..t

the produst of (5 and F™. 1In this case, II-42 would be replaced by

’ i 3 N &
50\”."“13" Ly, GF" SM. -~olx,., i £ S (‘13——) HUM(II-M)

d “dy Kkt L=

*Note that equation (14) of Reference 10 is in error on this point.

*¥An operator is said to be well-ordered if it is written in a form where
the gradients {i.e. momentum operators) stand to the right of the scalars
(i.e. position operators) end hence act first on the wave function. The
reverse situation we shall call "'anti well-crdered'.
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Integrating by parts and ignoring the surface terms in the usual fashion
(recall that we are using an infinite volume in ccnfiguration space), II-L43

beccomes

(n') :w) (v)
(oot Lol GED = [, " [a e AR A

(II-4Y)

Thus, integration of G-with F( )yields the expectation value of the cor-

responding anti well-ordered operator. Noting that: {,) the sum of the

well-ordered and anti well-ordered operators appearihg in II-42 and II-J-m

is precisely the Hermitean operator which in a quantum-mechanical system
"corresponds''* to the classical function II-39; ié) the foregoing derivation
can be trivially extended to the case where (3 is an infinite sum of terms

of the form II-39 (i.e. a Taylor series in velocity space); and LLL) in
view of the symmetric role played by the configuration space and momentum
space representations of ‘{’(") in the definition of F(”), we could Jjust as -

well have considered aG—of the form

F N
G— (39',"-7.5"} 1):.' '\_J‘",.J t) i q, (1)". e Y"_.f)_-ﬂ- (X.x‘)su
' =) o

K, K"’l

)
and used the momentum space representation of \f" ), we are led to the fol-

lowing desired result:

*¥In this regard, viz. the manner by which one constructs Hermitean quantum-
mechanical operators which are the analogues of classical functions of
coordinates and momentz, formal ambiguities can sometimes arise as pointed
out, for example, in Bohm's Quantum Theory, p. 186. Although no physical
situations have yet been found which are capable of experimentally distin-
guishing between alternative Hermitization procedures, this may not always
be the case. We therefore emphasize our assumption that the Hermitean
quantum operator analogue of II-39 is given by Z 5 the sum of the opera-
tors occurring in II-42 and II-Lk.
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let G—[E.J--'Egj Vo Yr, t) be any real function of
the N single-particle coordinates and velocities which
possesses a Taylor series expansion in either (the 3N
dimensional) velocity or configuration space and let
(B-be the gquantum-mechanical Hermitean operator which
corresponds* to the observable E}, then Eln Dirac no-
tation):

‘S’dx olx,,J.VmJU;JG‘FM <LP IG""PMH) (11-45)

oy

where Re denotes ''real part''.

The foregoing result illustrates a very useful advantage of Fm) over the
wave-function, viz. that not only can operatpr averages be obtained by the
direct integrations wi;ch F(N) of classical C-number quantities, but also
that one neecd never go through the intermediate process of constructing
the appropriate cuantum-mechanical Hermitean operator (although the caveat
containedl in the footnote must be ‘borne in mind). We now turn to the deri-
vation of the dynamical equation for F‘") %

Differentiating the definition II-32 with respect to time and replac-
ing @1 PAd and Q‘P by the corresponding left hand sides of the Schroedinger

ot o
equation II-29 gives

ﬂ, = ﬂ.'é:' (i?ﬁjw (2[-£V3+3 ZQS(L ;) +9 ¢ (l.f:)] ---4,,)

Pl X QA )=
L3l J=1
ot , J'!H.

N
x S L, exf['ﬂ -iln'(f«'—"x"’)]kl’m‘ o \j,l») 5 sz & rx;

nndN

* e"f[‘"‘i"' (% ")}{[ Ry +‘3 295(1 X)+3 ¢(xut)] lf’“‘)(x. S }(H'%)

The first term in II h6 can be J*written (temporarily dropping the spin

*See footnote on page 30.



indices) using the identity 1
N

(N) 3 ' Bsis (N) ' L
( \P ) 5& 3 7—,, [exp %_. 2: v _(5‘ -Eo)] (5"’,_ 5,,)%) =

—(\V’"’v;rag;?‘”’-vs;)( &) A%y [exp%gv (5 -2:)| W ,',())(H-hﬂ

in the form

( \P(N))SCL ' »\x,, EXP[_""‘ZV‘ (X, "?C‘,] \{/(N)(' X £) =

(V;—-_\g\_ S+ :__'U' v )(\i}“")&}f’ { n(,lx exf[ i'U— (l -X } \VM(" Xn:{-))

-r\a
(11-48)

Furthermore, two partial integrations in the primed configuration space in

a
the second ¥ term of II-L46 lead to

Wiy > "*
7 j&r, &LN exFIL—QV (K I,,_] V_: ?"gx,' ~--X~' t)

—
—

'U' th)53 / lx ex?]-_ iV A% -X)]\f"") iy

which cancels a similar term in II 48, Thus, II-46 can be rewritten as

] 4 (V) . ‘-- ext )
R +£'”' V,,,..,N "tiv. 4y (arﬁ) {L{ qg(x"ﬂtt""

xja%'...fx’ exr[%ir (x5 )]Y ] ) —q’m A e"f’[‘“‘i"' Lt

L=

ex (* !‘
?St H’mh. %,6) "'éi[ﬁ—d’(" H’ Sax-g\x,exp(—“lg 64 ))

(11-49)

L=l d l
> v) m = ! 3wt 1) (11-50)
\.}) ) [n “-u £ ) - \P g ax exP i (Z:I. .x,l))g:¢(5‘ -}d)‘{:fﬁ""iﬂi}
y e
Consider first the terms containing e t. In the second term, éxpand

ext 5
¢ {Z: t) in a Maclaurin series about X.:

t ext '
¢.xt(xa t) ex(n t‘) + -96”1' t) -(X;'-I{) NSRS

ih 3?5(7(‘{)(1 X‘)(X X)

LELI) AT 08

(11-51)
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where summation over the Cartesian indices K,L e is understood, and note

that the general term can be re‘-rritten via the relation

‘)(X + Xw {')XAXH\AI,; EXF[LMZV X xﬂ(%" D¢?§:t) {?«’- l) [X ) )YJ‘:) .Iyl:)

b h’ DXKJxI. i

YL
’(397(;'?32.? (’;{")DV DU‘ ( l~)a B exr[ ﬁv‘ (x -xJ‘hx ))(11_52)

If we then define the operator:

L—exp[ ;zi VE =, ]] (A(x. ViV f))(B(L wXw Y ...dﬂ-f)

(& "'

SRk S R e 2(2 tiaa)g{...
A -8 2 g Ga L (E (£2:50)

a2 vt II-
L KL= xo % (11-53)

where ‘the spatial gradients are understood to act onA alone and the veloc-

ity gradients onB alone, it is easily shown that the first two terms on

the rh.S5. of II-50 can be concisely written as
. N 4
: ext (V)
e l o EKP[‘L’E?VJ{'VV’ (} é X_ )‘&) (F (Kl "Kh/ Vl Vy ‘f:)) (11-54)
t. Moy ~ At N
Similarly, in the last term of II-50 , expand ¢('Z£’-XJ’) about the point
(xi-%5)s
/ ’ . . : / s < . iy
P2y = prti-x) + [%;sb(zﬁ;i‘j)-(}a-&) VG, PU :.J)"}Jt’.‘o)]

% [aqb(xc-xJ)
Ql R )

(1 -x)" (x]-x) r 3L O PL-T) (%2 (x-%;)"
Dx";x'-

+g ¢(x; xd) ()( )() (x ...x‘) + -t) ¢(x x.}) ‘X)( ‘})J
QX )XL 'Jx Qt‘("
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Then, proceeding analogously to II-52, one finds that the remaining terms

on the Mh.S. of II-50 become simply

~L {l —exy[—tt gv v, ]J (s Ji‘kélqb(x —x,b))(F Q4w 3 _-,j}n 56)
k)

Combining II-50, II-S4 and II-56 leads to the desired result which we can

express in an elegant fashion by defining the Generalized Poisson Bracket

(W)
{A B} in terms of the operator II-t£3
')

i

U"‘;‘“g‘”;“‘)

{A(x. '--Xujlﬂj--.y,,;t)‘) BLX~Xn: ¥ _
, P8,
_—é-[eﬁP[—iﬂg’%;'@;ﬂ((A)(B) -~ CB)(A)) Sl
Note that the first term of II-57, :
—‘—%(VA-VB—VA-VB) |
man b A Y T G (11-58)

is Jjust the usual Poisson Bracket; the remaining terms are O("ﬁ)a_nd vanish
‘n the classical limit. In terms of the G:P.B. , then, we find after trivial
algebra that II-50 becomes simply

w)

)

(5.’--;2.:515‘...15,31:) =0 111-59)

(u)
d
Fd 1_ E (") (i\.""iﬂ ; "u—", ...1:”;*-) H
e e )

]
where H ) is just the classical Hamiltonian:

| : -
Hm XY V) ;i( mit +3 ¢(x‘t)+ 32{{)[: KD (X160
€21 g2

Cﬁn--m
)
o¥i

G.P.B.
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Thus, we are led to the striking result that the Schroedinger equation
for an isolated N-body system can be written in a form which closely re-
sembles the classical Liouville equation (c.f. equation II-l) and, in fact,

becomes identical to the Liouville equetion whenh <0. Recalling that the

Liouville equation describes a statistical ensemble of clessical systems,

whereas II-59 was derived for a single isolated system, it might seem,
therefore, that the statisﬁical character of quantum-mechanics persists,
in some sense, in the classical limit. This touches on some fundamental
issues concerning the interpretatibn Of.quantum—mechanics, which continue
to be much discussed (23) and which we choose to avoid. One observation,
however, is ir. order. We shell see presently that when the transition to
quantum statistical mechanics is made (by introducing a representative
ensemble and averaging F(") over its members), the ensemble averaged F:(N)
satisfies precisely the same equation (II-59) as one obtains for an isolated
system. Thus II-59 appears to contain both quantum mechanics and quantum
statistical mechanics, depending on how one wishes to interpret F(N) and
what assumptions one makes about its initial or asymptotic time behaviour.
Putting it another way: although every soluticn of the Schroedinger egua--
tion II-29 leads to an F"' ) (through the definition II-32) which satisfies
II-59, the converse is not true -- II-59 admits solutions which cannot be
interpreted as characterizing a single isolated system.

To illustrate this point, consider an isoclated system in an energy

) (N)

.eigenstate, Ea, with eigenfunctiontlptL . Since the time dependence of “

¢ ebBet
is contained solely in a factor g & /5 , one sees from the definition

II-%2 that the consequent fff)is time independent and consequently satis=-
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fies the equation
(v)

(v) (V) e
F. : ‘H e . (II-61)
&.P.B,

v -

Sinse TERL4b linean in ET7, 1t siirgise be setislfed by aL(F‘”).”—“") 3
a 5

where b corresponds to a different energy eigenstate. This quantity, how-

ever, arises from a wave function

| ;¢ (ﬂ i¢b !ﬂ) ¥
—{e™ re oY (11-62)
JE{ ( F*CL » - b

where the phases ¢n and db are random and thus characterizes not a single system
but rather a (staticnary) statistical ensemble of systems.

Now in this dissertation we shall be concerned with two general cate-
gories of problems: é) a description of the energy eigenétates of isolated
systems (the so-called ''pure case’’), aﬁd t¢) the statistical mechanics of
systems in contact with a thermostat (''mixed case'’). The second type of
problem will be handled naturally by the intro@uction of representative
macrocanonical ensembles along lines parallel to the development sketched
in section II-B. To treat the first category, however, we need a prescrip-
tion for distinguishing those solutions of II-61 which properly represent
an isolated system from those appropriate to a stationary ensemble since,
as we have noted, both situations aré contained in this equation. The requi-

site condition is obtained simply from the relation II-45 by requiring that

the energy calculated from Fan should be ''sharp'’, i.e. if

E—- z Rg gplq'xi‘.,fxﬂ,}au;.,.fvﬂ H‘")Fm) (11-63)
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then :
—_— : £l
3 5 3 ) e (e = )
(AE)Q E &9 gclﬂ,-"cﬁ!,,w( 'U" "‘J V;’ ( H( )"' E) r g 3] O , (II"6I+)

for a ‘‘pure state''. It is readily verified that II-64 will not hold, for
example, in the case F(y)zé(ﬂlv)i' Fbm) considefed previously. In many
cases, particularly those where we wish to study the ground state of an
isolated system, it will not be necessary to make explicit use of II-64
since we can simply pass to the limit of zero temperature in the corre-
sponding statistical quantum mechanical problem. Alternatively, since an
isolated system in an energy eigenstate is equivalent to a microc.anonical
ensemble, we can without loss of generality deal exclusively with ensemble
averaged %;m.l.ffs in the forthcoming formalism, choosing a microcanonical
ensemble in the pure case and the macrocanonical ensemble in the mixed
case. At zero temperature, the macrocanonical ensemble becomes identical
to a microcanonical ensemble of systems in the ground state.

The transition to quantum statistical mechanics can now be easily
madc as follows: ©Recall that a single'system is in general described by
the(aSH).N quantities ff,(,r{).q," , each of which satisfies II-59. Represent-

|}
ing the totality of such quantities symbolically as Fd(m, consider an
‘ensemble of N-body systems, the (:ﬂ‘ member of which is characterized by
‘:)( ¢) end a normalized statistical weight W; . The quantum mechanical

o~
ensemble distribution function, de, is then defined simply as*

=W _ s, =),
Fo = iidi B (11-65)

*Note that in the usual formulation of gquantum statistical mechanies, one
averages the wave function over an ensemble whereas we average the %.M.J-'F.
which is bilinear in the wave function. It is readily shown that the two
approaches are equivalent if the wave functions are averaged with random
phases so that interferences between different members of the ensemble
vanish, an assumption which is always made.
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(v )
Since II-59 is linear in F; ) and the\JL are just numbers, we see that F;CN

o~

Sty FM

. satisfy precisely the same equation as mentioned earlier.

Equation II-59, therefore, when written in terms of ?iui represents
the starting point of our quantum many-body theory, which will proceed from
this equation in more or less strict analogy to the development of the class;
ical theory from the Liouville equation, as sketched in section II-B. The
first step of this development is the introduction of ''reduced" %;th.f.g
and the derivation of the quantum analogue of the B.B.G.K.Y Hierarchy.

Before proceeding, however, one final question must be discussed, viz.
the symmetry properties of the E:”). The necessity for this arises from the
fact that the Schroedinger equation 1I-29 dces not in itself ccmpletely de-
termine the wave function II-23. To it must be adjoined the symmetry pro-
‘perty

™, T hed
qj (L rortyeesfoent) = 8 ?l)(lJ...JJ”laJ'"N)

(11-66) |

where the + sign obtains if S is integral, - if half integral. This ccn-

dition will likewise impose certain restrictions on the FJ")

2 (and conse-

=
quently the F; ) which we now investigate.

In terms of the q’m)

8, s viiliy (see II-28), II-66 can be written

(v) ) 3 ) )
L"’ (5:,---{;,"'_},,,---5#,{-) = ¥ \{/(' (% EJ)-.-f;‘--\EﬂJf)

d ---d. CEEY- S LAl ST - &
‘) L) dJ, .q“ ‘{.J dJ’ d“.--d“

(11-67)

Using this equation and the definition II-32, we find that interchange of

the spatial cocrdinates of particles L andlj leads to

F“"‘ (Koo &gy Kl X3 W oV 0 k) = (_,.) +)ll/ (ac. LK Xy t)
% s ""w i e R

' ]
xexf[ ‘U'. ST AT T FE T Uy IN)]SJ.K "JK EKf[E.!‘:(V X4 Vi s 13: f&*"gt'fﬂ]

‘ (11-68)

ot tx! ool et oxl 8)
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Interchange of the dummy variables xX;: and x- leads to the desired relation

(y) ] . oas A .
F (_Z‘JJ--EJ‘).‘X“XN '\J" ‘U' 'U' V' t) F ',“5&,"&,,"5”,"5,"5: }{") y\.-"')t)

"(u"di,"dj)“d et "l B TR (11-69) -

In the special case where OJL =d; , however, a stronger condition can be de-

riw;d ‘ I'l 1/' ‘U‘) (r‘ -X)
v . o = n v \|‘u-‘ e . — A »~
F (E':"fh'.é":“ﬁ”) 1{'3 V“J WY 1’-,*)--.1’6“
d‘n..daf‘d\j-"“”
(v) - , g " ‘ : - (11-70)
x QR R R e K Y UV Y &) .f oy = ol

d- ;-d;)--d‘;...qw

b
Similarly, interchange of the velocity coordinates of particles (, a.nd'j

yields in general
N
Sl

él d x(. "'XJ “xﬂ Vi .o .\'U—L -nvﬂ‘t =
~
dl,"dg -d' q,l

v )~y M WY

II-71)
(v) : e s . " (
P& (B %, R B B U V5 L)
d‘,"‘(j"'di, dy

and in the special case Q{‘::NJ gives the stronger requirement

‘” : v X o s 1 . - . . - !
F )(”E"“Z{“" i, EN’Y-'J"V‘ “‘:';)“1:”;%) :'!-et%[:f" 3‘-") (Xe }")

3
d-," q;."ﬂ:j.c\ ",ﬂ ;JJ
- (1I-72
XF L'x.i' \\Kl. “x\),‘~'xvﬂ)~|’ “b, -U:"’..‘U',,, f) "F d‘: :dlj ( 7 )
o ] s Lty S

Finally, intercha.nge of the spin indices O(L and 0(5 gives

N ¥ H ' d . 5
Ft ) (E“"“}‘c}'".f")“iﬂ) nv;)“z:'ang" "Y.;';*) =
Aol

(,J) t alh X . 'V s e ‘U'
F,,( (%, "§J, E'-,‘ L P 5,"‘{, J,*)(II 73)
l) “N")"dd,“q'ﬂ
Thus it is seen that in general, spin, position and velocity play identical
roles in the symmetry properties of E;h‘): an interchange among one is equal

to the simultaneous interchange among the other two. In the specfal caée of

equal spin indices, the more powerful conditions II-T70 and II-T2 apply.
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D. Quantum BEGKY Hierarchy

i —
The basic equations of the theory are II-59 (written in terms of FZ:N))

and the symmetry conditions II-69 - II-73. We propose to attack them by
deriving the quantum analcg of the B.B.G.K.Y hierarchy II-11. To this end,

define the reduced q.m.d.f.'s
+S cl

j'ax J.Jc cl [: (x..,r~ U, Unst)
a*; VS (11-74)

—~
(R) . i
E( ol (Z'C'l.tuép‘z ,,,',“E?{,t)

%R

mn

Integrating II-59 over the subspace (xRﬂ” X ) and summing over

~N ; E‘RH.‘

the spin indices d « - o, yields the equation
(R)

(R) (R
(R '
o % . L Iy I <okl H (2, 20,5, 1%, t)

o,
at R : 6.P.B

p N)
2 exp|-th¥ -V (I,(x Y
é S"lxnﬂ AX,,, R "4V {i‘h [ o '\ "‘ “w/(II-75)
¥en Ay -
where surface terms have been dropped as usual in the. requisite partial in-
tegrations in position and velocity space. Using the symmetry condition

o~
IT-7% (which holds as well for Fd(")), the sum over k can be collapsed in

II-75 to yield the desired analog of II-1l:

(R) o , ; (R)
humy % {E{(R: (X, Xg; %, Wz, ®) Hm("' SR U, TR E)
ot R . &.PB.
L"'\ - P 27 (R+D
0002 £ (0, el 2oy b2 ED ) o
) )

31 s

To this eq_uation must naturally be added the appropriate symmetry properties
which are derived straightforwardly from II-69 - II-T3. The results are
simply represented by replacing N by R in these equations so we will not

repeat them here.



-4~

of particular interest are the R=1,2 equations of II-76. Writing out

the generalized Poisson Brackets exp11c1tly, we flnd for R=1:

=) cxf
DE‘, +2J:'.VX-,E.” __;_—va. ﬁd'(ll —‘&2 _)11_ (-'___) ¢ X, +) D F {x;v‘t)

Qt s [ ~ 1 ™/ Dxlﬂgx - Dv,g)v:,__.
= (v-)g éfdx &, z ﬁ) e B (5%, w;¢)
o ‘—-—-'———-______...___.
A anh el 97" I\ e I E JYT (11-77)

where summation over the Cartesian indicesK,L, --- is implied. .We will find
it convenient in some applications to rewrite this equation in a somewhat
different but equivalent form. To this end, we introduce the Fourier trans-

forms of the interaction and external potentials:

4’(*""1)* = XA% s x’){:(t)

$™ (%0 2 A '%'E'{ex*
) 2~ £ -78
(m)SS b (§,4 e
In ?$rms of these transforms, it is easily shown that II-77 becomes
QFG' 1r v o 1,-\ o - il % _ext ~
LTI % by s V & S& o'k ~f¢ t{F(( Thq€) - '
E R A L LR (L DR
5 4 c§e(x-x3) @)
: g L [ X1 Xa: Vi Va't)
= b (N-1) aé 3 f\rcl . F (X Xa; Vi Va 't
et g‘“‘ a“h g Eq’fgﬁiﬂﬂﬁﬁ)"ﬁ}ﬂ 4 T 1m79)

In a similar fashion, we find for the R=2 equation the two equ1valent forms:

N t
9 +1fo +V Ve, siv:~ctv _;;_iL(”‘) 34’“ t))
~ Am. ~' gm B T S T

_ l -k 4’“(7( B o P
: ‘i“l( m) D“—-—i— 2 JF;,(:)(X-. Xa v, NER t)_-.
a e = Y

~ )~ )~

E_é_ énl‘l,(ﬂ%) [(3;;( J;v*f ;%? )(l T ) J((‘)(x'—m F (I'J"’vva t))

XAV ax l.g-u-...
. n
+(M Degt gja\xj i %‘) L R F,(“) 05,5, % %
% o(s-—s ") } TS

319‘ © AVE e,
gl &
f)-’l " 4>(x;—x3) 3 Fu 21)143(3;' 2,0, Va V3 +)
e o MEWS JgK yx T T T
-S A A ;)Va... (11-80)
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= i 3 5%‘ (AI A ~(2)
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1 (am) Wy
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These equations, then, together with the associated symmetry conditions

JW

(obtained by setting N=1,2,3 in II-69 - II-T73) represent the quantum ana-
logues of the first two members of the classical B.B.G.K.Y. hierarchy.
Aside-from the more complicated operators involved>(i.e. the difference be;
tween Generalized and ordinary Poisson Brackets), they differ from thé clas=-
sical equations in two significant respects. The first arises from the
presence of the spin indices. whereas in the classical case, only a single
FJ? = g is required, here we have in general (25+O ??“)3 o (23+Dq
??(H)S, ahd so forth.* The second difference is the presence of the auxil-
iary symmetry conditions which, being far more stringent than the classical
relation II-T7, severely restrict the possible forms of the q.m.d.f. Thus,
while we might be tempted to try an approximatioh scheme based on successive
ansatzes of the form II-13 and II-1Lk, we would find ourselves in violation
of the symmetry conditions II-70 and II-T72 at each stage of approximation.

This will be shown to be tantamount to the neglect of exchange effects, and

*The (’c}.SH)R Tiie are, of course, not independent, being related by the
symmetry conditions as well as the constraints on the total spin of the
system (21) and its = projection (éig which commute with the Hamiltonian
and hence can be considered as prescribed for each member of the ensemble.
Examples of such constraints are-

i de L, F (x.v- &) = = 4 = /N

o= =5

and

Fd =0 | f d'+----+o(,,,:}: Slz

‘..-d~
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leads to a description of systems of particles cbeying Maxwell-Boltzmann
statisties. While this may not be a serious limitation in some situations,
a more involved scheme of successive approximations is clearly required in
the géneral case.

The procedure we shall adopt is as follows. The first stage of approx-
imation is to close (theR=I) equation II-79 with the ansatz

=)

(3) o)
dq(zg) Xa v % t) d (X.'U'f) F (72,19){.) (11-82)

~

Fa
which, whiie in conformity with the symmetry conditions II-69, II-71 and
II-73, is nevertheless in conflict with II-70 and II-T2 whend.:dh. I1-82
is the direct analogue of II-13 and corresponds to the negleect of all two-
body correlations. For reasons to be discussed presently, we call this
the statistical Hartree approximation.

At the second stage, we étill deal only with II-79, but choose a de-

N

> (3)
composition of T ~in terms of Fln

S which explicitly satisfies the full
set of symmetry conditions. It is readily verified that this can be achieved

by the ansatz

Lo d

( -
At P RESR'RD F (7:1 Vi t) f o E
F (0 %Y Y 4) = e
o .o [Fd )c ) F{l]( Ka vn .l-) + e t ) -~ ,‘:l)

* E,,: (% V2 ¢) aa(ﬁa wo] f dizdy

where C is a normalizing constant and the + sign obtains if S is integral,

(11-83)

- if 8 is half-integral. As an aside, we also exhibit the appropriate de-

=3 m

composition of F ~ in terms of F which, while not needed at this
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point, will guide us in going to the third stage of approximation:
~(3)
F

(% %a %W ¥a VU3 ;) =
o, dlydy

”(x. v, £) ;- m vy £ F (30 i Aty #ols
-Y—n- 'U- 2) ‘zl"zl) =0
'F‘ Al

Fd E Xa, V5 t)

C'[ "0 F (x;xr”)+c
Fmnn  F dcdatd

("’M&‘oaous +"V‘m5 I'F °’.-‘—Q'3 #dg and ofa :-ol3 ;ﬁo{,‘)

—

—

—
—
— — — = — — — —

n N(j)
'l B e, Bl o %0 Bl o 7
S (1 VR )- (% -Xa) O Fo
b e (Y1) (1. {a) J(x 'U‘) 115)53113,5)
—-!‘— R * l‘x l
s R GBYEL) B ’(ze',uf,») F”(an..s By (712, 7)

-t [V -Va)s (Ra-X3) 2 (n)
tgt»ﬁl,.,a Ua)s (%a-%a " (%a vs)?“(xsva) (7" V)

<2 (1-Y)-Xa 'L—“-"(Va‘vz)'xs mm-w) 2 )
L = o E: (%1, %) F (Xa v) (x, 1)

2 [v's'V})-7(3 - (v -Ya) X g SBT3 X,
% F (f_' 1{;))’ (7’(:\ VI)F (%3 V’ﬂ

l{ o, = ﬂ‘q e . (II"SLI')

Since the second stage II-83 (or the 'Hartree-Fock' approximation as we
shall call it) still is confined to a consideration of only theR=] equa-
tion, dynamical two-body correlations (i.e. ‘‘collisions'’) are consequently
ignored and, as in the classical case, one must ultimately appeal to an
explicit choice of the representative ensemble or to a quantum-mechanical
H-theorem to remedy this neglect. Nevertheless, again as in the classical

case, this approximation (as well as the 'Hartree'' approximation) has
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considerable physical content and utility. In the next two chapters, we
will explore these agpproximations in some detail and, in the prccess, will
establish contact with conventional approximation schemes based on assump-

tions as to the form of theN -particle wave function. The reasons for the

nomenclature ''statistical Hartree'' and 'Hartree-Fock'' as well as the form
of II-8% and II-84 will 'then- be made clear.

Proceeding further, in the third stage of approximat.ion- we introduce
two-body correlations explicitly by working with both theR=] and R=3
equations, closed by an ansatz expressing ?(3) in terms of ?‘h)'s é.nd I:v(a)‘s *
As should now be apparent, we do not at this point force }?(9 to expliecitly
embody the full symmetry conditions. This is left to the fourth stage of
approximation where we still deal only with the R=) ana R:Q equations,
but with the proper symmetry, in the fashion of II-83 vis-;-vis I1-82.

Specifically, the third approximation is defined by taking

=@ . - ~) Al e
L v, Vi t) = D} @)
Fd|d;d3( 4.‘, n-a) Q.J ~ 14{:‘, < ).t) ar ( o d & ) + F (%, 1’-',&) 6.4 ( ZC‘_:! 23 g U-l Va .t)
% | d, ~, ™ o 2d ) A, A7)
eq . I-84 3
~) > (@) y ovh) )
Xava) & (N X3 U-4) + X, Ag- V, Vit
+ Fda lﬁa,ﬂ_‘h) d.d3 ~ ) ) ) -\?Jt) 63 15’3,1{?,*) %lqas —‘-l, f\-a ) =y NatI?["BS)

where the correlation functions, a(:;‘a), represent the improvement of this
approximation over 'Hartree-Fock''s At the fourth stage, II-SSV is amendet_i
bf explicit symmetrization of theﬁ') g‘%)erms in the ma.rﬁaer of II-8h.

Thus, it is seen that in princ?iple the quantum B.B.G.K.Y. hierarchy
is attacked by including correlations between a successively greater num-

ber of particles, but in twice as many distinct steps as ccmpared to the
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classical case. In general, the (R-|)th approximation represents the
first introduction of R-body correlations, but without concern about the
proper explicit symmetrization of‘ETR?O -- a symmetrization which takes
place in the Q.Rth approximation.

We will return to the third stage of spproximation in Chapters VI
and VII where a specific example, the uniform electron gas, is treated in
some detail and should élarify the foregoing ideas. We should state in
advance, however, what one expects to accomplish in general by going beyond
the 'Hartree-Fock'' approximation. The answer is clear from a consideration
of the classical situation cutlined in II-B. First, a quantum-mechanical
generalization of the ''collision integral'' IT-24 is cobtained which serves
both to determine the equilibrium value of‘?ﬂn (thereby obviating the
necessity for an outside appeal to the H-theorem or ensemble theory) as
well as the non-equilibrium and transport properties of the system.
Furthermore, the conseguent correctioﬁs to ?;(T)vdll.lead to a more accur-

ate expression for the intermel energy of the system and other thermody-

namic quantities.
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Chapter III. The Statistical Hartree Approximation

A. (Ceneral Remarks

Before investigating the consequences of the ansatz T1-82, we wish to
explore its connection with the so-called Hartree(&ﬂ) or "self consistent
field" approximation in'quantum mechanics. For simplicity, we shall assume
we are dealing with a spinless system.

The Hartree approximation is characterized by the assumption that the

(N)

N-bedy wave function, g? , can be adequately represented as the direct

product of N single partigle wave functions:
(N) ‘
? (fl)“ --in )-{-) = H(ﬁl,t) l}a{i:}t) o YN ( ENJ t_) (III_l)

where the‘ﬂ' are in general different and normalized to unity. Although

in manifest violation of the requisite symmetry condition II-66, this approx-
imation, by virtue of its inherent simplicity, represents the usual starting
point in studies of quantum mechenical many-body systems. wﬁen inserted into
the Schroedinger equation II-29, III-1 yields a set of N coupled eqﬁations
for the 42 » each of which has the form of a single particle Schroedinger
equation whose interaction term is the sum of the external field (if any)

and the potential arising from the charge density of the.other particles.

Consider the "pure case'" of an isolated system described by a wave

function of the form III-1. It follows directly from the definitions II-28

and II-32 that the consequent N-particlé g.m.d.f. is

(V) Y .
Fle, 0% = TR (Km0 (1r1-2)
: =3
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where
- (x-x)

ot 9= ) LR T

(111-3)

Now since the observable properties of the system do not depend on the
labelling of the particles, we can without loss of generality consider an
ensemble of N:! systems, each of which has a product decomposition of the
form III-2, but which differ in the way the pérticles are numbered. Spe-

cifically, let

= W) =
F @y gy )z L - %)T”j‘f,‘f,*) (T11-})

where the summation is over the N! permutations of 1,2,---N. Integrating

III-4 over (f},”'zﬁl‘“,-"H? ), we find

/i'%/m(x. X2,V Vaot)a 2 i F (%) v ) F (%2,%,t) (111-5)
N(v-1) L3 J¢'¢,

Integration of (III-5) over ( XQ v;) gives

=

F0 v = i = (’(' J, ) (I11-6)
) J ) J
N L3y
Thus, from III-6 and III-5,
= 0) ) vy
FO 0 9Ftan o = gai 2 F %y RIS
o ¢z )=

:N4qudﬂmﬁ) ZF&mﬂme

N ~aa L ) (11I-7)

Since the last term of (III-7) is of order‘vN compared to the other terms,
‘we find that
N(i) =) =~f) (III"B)

gis ~ (
F G avnt)=F (%, % ) F (% v t)

N —> o0
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. We have therefore demonstrated the equivalence of the Hartree approx-
imation and the ansatz II-82 in the limit of a many-body system. Note that
III-8 could have been cbtained for any N if the l‘UL in TII-1 had all been
equal. Physically, this is equivalent to describing each particie with the
same generic wéve function -- representing an average over the actual be-
havior of the N particles. For this reason, we refer to I1-82 in general
as a statistical Hartree approximation although it should be borne in mind
that for large N it becomes équivalent to the Hartree approximation in the

usual sense.

B. First Quantum Vlasov Eguation

Proceeding now to an investigation of the consequences of II-82, we

insert it into II-T76 (with R=1) to obtain

%F % v t) H”(x, v t)}

G—PB
3 ~1) =
t[exr[ SRR QEATRRACREIES P

(111-9)

Since spin plays no role in this approximation, the spin indices are

excess baggage. We therefore sum III-9 over nl‘and define

7 r0 |
o, . (111-10)

-
]

Furthermore, recalling that

8 k)

N \dv F (XU ¢) = < (’(ZS,’C)> , (111-11)
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where A:Q(th> is the (ensemble averaged) expectation value of the parti-

: CF
cle density at (x + ), we define the self-consistent field, 4)5 :

cp“’ (%,6) = (V- n)i S43Xa4"’a F (xa V2, 8) P (X —Xa)

“/1 (111-12)
which, by virtue of III-11 is equivalent to
ScF 5
CP (Xot)= M Soﬁxa £0(xa, ) P %1 -X3)
N (111-13)

We find, therefore, that III-9 when summed over <¥| can be written concisely

as

~ (1) S el “)
S {F”Qg‘, ), Ho (% 152) =1 i
k5 e TR GPB. (III-14)

where the self-consistent field Hamiltonian, HScF) is given by
= 2 afext SCF
/
Ryee 5,02 4mu™+ 93700 9 + ¢ 00 0)

cE Ty~
(II1-15)

Finally, writing out the G.P.B. explicitly, we obtain the gquantum analogue

of the Vlasov equation¥*, II-15,

L S LA - v B

ot %

cE (] S YE T
L R IREIX- -~ DU’"‘DV;L--- (III-16)

*In the next chapter we will derive another quantum analogue of the Vlasov
equation based on the more realistic ansatz II-83 which will differ from
III-16 in that additional ("exchange") terms occur within the brackets.

We refer to the two cases as the first and second quantum Vlasov equations
respectively.
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An alternative form of III-16 is obtained by introducing the spatial Fourier

ext ScF
transforms of ¢ and ¢

e Qe X xt
¢e*t(2€)f) ?-.(;'1‘1:)3 So\a o“ &5 £° (% ,t)
(I11-17)
cFX ser
¢ (x,e) = S & & TR padi)
(;nr) b ' o (III1-18)

in which case III-16 becomes

D’F’(I) V,c s S ‘% ext SCF
_57:_ -i'” FY anV -cg S’d e (1C ;ﬁ,f)-l-{:(ﬁ,{-))
$ (amy3

K[Fm(l’.n ‘U’+t t) (X. 'U‘.t)] '®)

5 2 (ITI-19)

From this point on, a discussion of the physical significance and.util-
ity of III-16 would directly parallel that given for the classical case in
Section II-B. In view of this redundance, we need only sketch the general
types of.physical problems which can be fruitfully studied by means of this
equation.

First, the time independent form of III-16, obtained by setting 9':}5t
equal to zero, yields an equation that ??&) must satisfy if it is.to repre=-
sent a stationary ensemble. The characteristics of this equation for a
given (time-independent) c%ext(af) are the quantum analogues of the "con-
stants of the motion" in the classical case, among which is the single part-
icle energy in the self-consistent field. This quantity will differ from

the classical expression II-19 in that an explicit dependence on the grad-

ients of (Pe‘t will occur by virtue of the bracketed terms in III-16. Any
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functional of these charactefistics will satisfy the time~independent form
of III-16. Next, one appeals to a quantum-mechanical H-theorem or ensemble
theory to determine this functional. Since this appeal goes beyond the con-
‘tent ofIIII-l6, there is no harm in introducing the appropriate quantum
statistics at this point, even though it is not embodied in II-83. Thus,
generally speaking; the tinm-independent form of III-16, when augmented with
a gquantum-mechanical H-theorem, yields a description of the system in therﬁo—
dynamic equilibrium. In the limit of zero temperature, one obtains an approx-
imate description of the ground state. We defer further discussion of this
class of problem to Chapter V where a specific case, the many-electron atom,
is treated in some detail.

A second type of problem concerns fhe response of a system, initially
in thermodynamic equilibrium, to & weak external field which varies in time
at a rate large compared to the'collision frequency. For systems with long-
range interparticle forces, self-sustained collective modes of oscillation
will be included in this category, appearing as poles in the response func-
tion. In Section C, we shall treat this case for an infinitely extended
spatially homogeneous system.

7 Finally, at the opposite extreme where the system varies in time at a
rate slow compared to the collision frequency, one assumes that local thermo-
dynamic equilibrium is maintained by the collisions and obtains from III-16
the quantum analogue of the equations of invisecid hydrodynamiecs. This will

be carried out in Section D.
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C. Response of a Spatially Uniform System to Weak External Forces

Consider a system of N particles each having mass m , spin § , where
) ] ;
the particle-particle interaction potential,a ¢ UKiE ), is given and has
~

the Fourier transform:
[}

3 efl%-%

)
1 ~ o~
(x-x)z L \dg e~ £ ()
(I1I-20)
Iet the system be exposed to an external field of the following form:
ext ext ext
0 = (x) + B¢ (x4

v (I1I-21)

t : ;
where (be* is a static field¥* which confines the particles to a volume

v y
in such a fashion that the partiele number density, N1 , within V is spatial-

ext
1y uniform for t<O. @ 41 (E,t) represents an arbitrary additional field

which is switched on at t =0, whose strength is characterized by the dimen-

sionless number @ . Assume that N andf\f are sufficiently large that sur-
face effects can be ignored so that for all intents and purposes the system
can be regarded as spatially infinite with finite constant density M\ . For
t <0 the system is assumed to be in thermal equilibrium at some temperature
T. We wish to find TEH‘ for this problem.

e £ e ¢ext +_(#5‘F is (by the definition of 4&;#) spatially con-
stant so that III-16 reduces to
=<0) 9

3 L+ v-%F =o ' tco
2t g “frr1-22)

*In the case where the system in question consists of the free electrons
in a fully i?nized plasma or the conduction electrons in a metal, for
example,'cllex represents the smeared out effect of the ilons or lattice
respectively.
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Therefore, any T—_’M which does not depend on ’?\C’ will be constant in time and
hence characterizes a stationary ensemble. Since we have assumed that the
system is initially in thermodynamic equilibrium at temperature T, we de-
scribe it by means of a quantum-mechanical macrocanonical ensemble and find

from any text on statistical mechanies that

Y 5 () =1 [@se) m of EmvtepnT)
teo N (2“)3 3 E f’( P ) _] (111-23)

where the + sign is chosen if S is half integral, - if integral and }J(n)Tj

I

is determined by the normalization condition

”Sfff(wal’v égﬁ,(v)l‘v =

(I11-24)
For t 20 , let
~1) - :
Frux,xt)z LEM) +LER(x YY) t20
N N (I11-25)

so that Fi represents the departure from the equilibrium distribution caused
by the perturbing potential ‘b“\?x,t) . The self-consistent field, ct)s‘F(K,i‘) »
s : i
due to F, is given by (III-12)
33 31
0™ xp = @SJ x'dv 1,O¢ (X-X)
' 2 (I11-26)

Using the form III-19 for the quantum Vlasov equation, we find that Fi satis-
fies the equation

3"‘ : EVxF.—-bT{@VF o e J Lo Xs ext ScF
9 ¢ am #T%‘ET):’S %’C (f (§,6) +f, {ﬁ,,{-))

x ( (L+E ¢) -F ) Q Hwi«i, t) - 251[,.*)) =0

(11I-27)
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A .
where {aex and §‘SIF are the spatial Fourier transforms (III-17 and III-18)
f c!)nt and c#f‘F , and 1:, has the initial v.allue
]

F (X, U4 =o £ 20
: : (I11-28)

For weak fields (i.e. %ccl ) we ignore the term quadratic in @ to obtain

the linearized equation

‘-\ — e L?)'fu
- +’U” Vxl‘ L’R |— :(S ga%,e ({ (tt) +¥ ((b,tJ)
any

JACE SR ] =o I

To solve this equation, we introduce the following Fourier transforms:
(G - X —ot)

o0 b(
— G 3 i
e (})y)f) = (al";)q go\xﬁ—j,lw e ?J(i’) v, w)

(111-30)
ext _lwt ext
‘FI (@}t) = a'ﬂ' S"Qw g' (ﬁ” <3 (1 )
. III-31
oo s
S¢R ~cwt ser :
{;(%ﬂs;}dwe »g;(@w) it

in terms of which III-29 becomes

. R =
(o rivg +ibe)T - R Rl Tgo +f G w)-

am
| {111-34)
Furthermore, due to III-26 and III-20 we have
SCF 3
w) = v f (¢ v w
£| (i/’ ) {(Cb-) gd OI i"’ 4 (II1-34)
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Equations III-33 and III-34 are easily solved to yield the desired result.

T ext
”}T[jﬂ[)w): L R(Trag) - )] ﬁ.ex(j«) w)

_.&J—Le+g-cb; +E£ {‘.—g 1((%) J.sv"[ (v ’+ )"E(EJ)J
- -W-i€ +vhe +RET
f2 i ™m
(111-35)

where € is a positive infinitesimal arising from causality (i.e. III-28).

I

III-35 and III-23 solve the problem.

We observe that the response function vecomes singular if .

—Wr g rhg o 5 R(Xthe) - R(¥) 0
ot m ~ (1II1-36)

or

=)

| — j}f(‘ﬁ')jfvl [R(r'+E ) - F(xh]
b —W-reE +35"f(’.’+5—‘&1
am

which therefore correspond to modes of excitation of the system. III-36

(111-37)

describes single particle excitations (and de-excitations) where a particle
of momentum MmUY~ is scattered into the momentum state ( my +fﬁjr ) with a
change in energy hw . III-37 is the disperéion relation for collective
oscillations of the system brought about by the interparticle interaction
f‘(Tr). The vanishing of the real part of the Bracketed term gives the lo-
cation of these modes in theCDJ%- plane. The imaginary part, obtained by

means of the identity

Y ri€ P(Tlc) - Tty (I11-38)

/-
€ >0
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yields the lifetime of these excitations. TFor a system with Coulomb inter-

actions:
9Q= e:'

f(g) = 4L | (111-39)

III-37 is the quantum-mechanical dispersion relation for plasma oscillations.
It is easily shown that in the classical limit, the real part gives the ordi-
nary plasma dispersion relation and the imaginary part gives the so-called
"ILandau" damping (29a)

Of particular interest is the zero-temperature electron gas in which

case
E oty =1 l"-_? ‘ &V
4T3 3 o v >y (11I-L0)

where the Fermi velocity, 1& , 1s related to the density by

Il["

3n) 3 s
Al

(i m . (III-41)

Introducing ITI-38 - III-41 in ITII-37 yields after some algebra

a
—en 1, . s 2,27
T BV [ty (v 5
A RWL
(vew;)

TN B N ' :
e W[ Sle-v'y-ig) —S(w+y-@+‘§.ﬂ} =0

(111-42)
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This is seen to be just the Bohm-Pines (30) '‘plasmon'' dispersion relation
which is extensively discussed in the literature (31). The left-hand side
of III-k2, which can be shown to be identifiable with the frequency and

wave-number dependent dielectric constant for the system, is identical to

the dielectric constant as computed in the so-called Random Phase Approxi=-

mation (R.P.A.) by Nozieres and Pines (32). It was first obtained by Lind-
hard (33) from time-dependent perturbation theory.

It should be emphasized that the general result III-35 is only appli=-
cable for times short compared to thé collision time or equivalentl&, for

frequencies large compared to the collision frequency.

D. GQueantum Hydrodynamics

Within the context of the neglect of exchange effects, the exact equa-

tion for FJO can be formally written as

F = ,—Jm 7 Ry 2SR YEY
{ sc F} o S‘_E' , (ITI-43%)
G.P.8 : collisions.

where the Ieft-hand side is that of quantum Vlasov equation III-14, and the
right-hand side represents the effect of all dynamic collision processes.
If we imagine configuration space to be divided in cells each of‘which has
linear dimensions large compared to the collision 'mean free path",.then
from the fact that the collision process* conserves number of particles,

momentum and energy we observe that macroscopic conservation laws for these

*Recall that it was initially assumed that the particles have no internal
degrees of freedom. Furthermore, we assumed that the effect of objects
external to the system can be represented as a scalar, velocity-independ-
ent potential, $%*t . Thus, such processes as electron-ion collisions in
a plasma or electron-phonon interacticns in a metal lie outside the scope
of the present discussion.



quanfities (which spply to the whole of each such ''coarse-grained' cell) ‘
can be derived from III-1k, since the contribution of the collision term |
is zero. In the cléssical situation, for example,rit is well known that
the first three velocity-space moments of the Vlaesov equation yield respec-
tively the continuity equations for mass, momentum and energy. We wish to
derive the corresponding equations from the quantum Vlaéov equation.

We proceed from III-16 wfitten in the form

DF? £ aE" — 9 3 3FY f‘['g; >EY
)t DX.K ™ ’;x_*‘ e am Qxxgxxv

% " =0 ‘
L(-iK) ¢ 3 F A ‘
%‘E_“-Q_M( )éx K AX"~ av Jvut-- =0 . (ITI-4L)

where the repeated Cartesian indices KyL o+~ ave understood to be summed

from 1 to 3 and

$ (x,9)= 4>e"*cz,t) + 5t

(ITI-L5)

Integrating III-LL over all velocity space, and integrating by parts

where necessary ylelds

3 T (. =0 d e T g A=
5;:[9” } tV [_SJV}IF —%YS“F ]—-O (ITI-46)

Next multiplying TII-LbL by’nﬂf” (M=1,2 .3 ) and integrating over veloc=-

ity space leads in a similar fashion to the vector equation with components

b 3 MN(.{} + 9 3 K ME® 3 3 mel)
-—j't[SA-U'MU' F TK[_SAVMV i e %ﬂ"g rv F

g &, 3, 0 : ’ (III-47)
E % [.gA ] - (M=13,3)
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Finelly, multiplying byﬁ%wnmra and integrating over velocity space gives.
the scalar equation

~ 3 /"[l) q 3 ~
2 2wt PO O+ Ve S-A‘U‘U’(—lmv")F e cl'ti‘(émv’a) =

AHIPAT] - A E 0

It is now necessary to relate the bracketed quantities in these equa-
tions to the expectation values of physical observables. This is a simple

] ~nh) ,3
matter for the quantity.th)A1r , which by virtue of II-35 is Just

S ’F-’m r).31r o £ YL(Z‘.:)t)>
N

vhere {m) is the (ensemble averaged) expectation value of the particle

(11I-49)

(number) density at (29)* ) and PJ_larises from our choice of normalization.
Since thié Nnl factor will occur in every term and thus can be divided out
of III-46 - III-48, we will henceforth ignore it.

The remaining bracketed terms cannot be treated so simply, and we must
go back to the basic theorem II-4lii., Consider first the classical expres=-
sion

P (x)z my Slx-%)

~ (111'50)
which,-when integrated'over all of phase space with the classical dist:: a=
tion function F (%;Q'L gives the averasge value of the momentum at the point

' : ;
}; « The guentum-mechanical Hermitean operator which in configuration
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space corresponds to the function ITI-50 is

’?=§{My¥ﬁ2¢+5wyy@ﬂ

e r~ : ~
L

L (II1-51)

This is now written in "anti well-ordered" form (see p. 29) by performing

the necessary commutations:

’ﬁ b %_ Y" 5(2’(,}’) +7 [%‘- (Y:S(Z‘;-}'))]

v (11I-52)
Thus, from II-bh, the phase space function
P(Ey) = myster) i (7 s(x-%))
% (111-53)

when integrsted over all of phase space with ’ﬁ'(') will yield the quantum
mechanical expectétion value of the operator III-51 which in turn corre-
sponds to a measurement of the momenfum at 2\('.' « Performing this integra-
tion, we find

de‘U'Ffl)x,l{t) —~ck xSJ-U'F(XV-L-) = <’P( 0>

) a ~ ~y®y

(111-54)

where </P(}\L',{:)> " is the (ensemble averaged) quantum mechanical expecta=

tion value of the momentum at (E.f ). With the definition

LLPD =" ny )
18, (III-55)

where(%> is the convective or "drift'' velocity, III-4L6 becomes

L ny + 7 (4w
ot

(111-56)

which is identical to the classical mass continuity equation.
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In equation III-L47, another integral

3 K.rM =0
- g et
S‘l e (111-57)

occurs which must be similarly treated. The classical tensor |] with ele-

ments

= XXMV ¥V
g = B (~ o ) (111-58)
when integrated over phase‘space with the classiceal distribution function

: ’
gives the total "stress temsor' at the point X . The quantum-mechanical

Hermitean operator enalogue of III-58 is
A .a :

L (3(1 e )ax At E (%)59;%1"5(5‘}')) ¥

which in anti well-ordered form becomes
C Q

KH

LI P {ENEALLD)
o ( 3. six-x)) — 4 (Dz S(x-;‘)) |
Jr;M(L) ( ) am \x* X" : (111-60)

Thus, from II-Lk, the phase space function

'TKH = wmr M S(x-x) ik (.«I-L S (x- x))

2
7y = 3 )
iy (9— s(m) m(%{?g_xns(x-;,)

(I11-61)

when integrated with [ yields the expectation velue of IIT-59. Performing



the integration gives

3 KoM ¢ 3 ~
Stlv' WU VEF U wy) - ok 9 Solu' v"Flx v )
. L Ixk i

gt o 1 N\ 3 e KM
%iﬁ SJvu— Foxue) -R 3 WwEx e =< T ‘-’ZS:*)>
% Ay K yym oot (111-62)
KM
where <i—r‘ (}ﬁﬂ:) is the (ensemble averaged) expectation value of
the total stress tensor at (X ¢t ).
Introducing III-62, III-54 and III-55 into III-L7 and meking use of

ITI-56 gives finally

33_‘: (m(n)(yg)) + Vo) + <“>Y3a¢-r +£ V(V’<n}) = &

ym ~
(111-63)

where the elements at the tensor || are given in III-62.

This is the momentum continuity equation. The first three terms are
recognized to be just the usual classical expression. The last term repre=-
sents the quantum correction to this equation.

Deferring for a moment the consideration of III-U8, we now introduce
the underlying assumption of hydrodynamics: The system is assumed to vary
in time sufficiently slowly to‘allOW'collisions to establish local thermo-
dynamic equilibrium. This means that if we locally transform to ﬁ refer-
ence frame moving with the drift velocity <:%(§;)>' then in this frame,

~ 1)

F is the solution of the time-independent quantum Vlesov equation appro=-

priate to a (qQuantum) macrocanonicel ensemble characterized by the lccal
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temperature T(z,{: ) and density {n(gg){:) > . Specifically. let /f\:’("
be the solution of

; ¢ .
=) b e
{ Frx, e e Hs.:r(*x‘[:*)% =0

) (I11-64)
G.P.B.

appropriate to this ensemble, with

3 !-) -
SAV Flixze = {nxnd (111-65)

Then, the ansatz of local themodynamic equilibrium ta}ces the - form

Re Folz ) = = iy & X Y- <w(xe)> t)

(II1-66)

_ e L : :
whereR,_ Fm is now a known function.* The reel part is taken because it is
only necessary that the observable local properties (which by the basic
~t
theorem II-45 are contained in ReF ) should transform according to III-66.
By means of III-66, the V7. T ) term in III-63 can now be expressed

: 7
in terms of £ m) ” { WS - and quantities calculable .from Re F¥ |, oo

*In Chapter V we shall find from a perturbation expansion in powers of { -
that to order %* and neglecting exchange:

/
f TP 46) :[ > (€) ~ ( 124,); B ‘t‘—(‘}{-vlrv‘
'-lm .

Ae 6 %¢T
& e} CRE Lo
L (y d°F —-ji v.yah) dh
+m 9 T))Ae" 8 (" 2%4)7)0\64 (111-67)

where

(111-68)

F(e) (C;;S‘g :3 [axp(e +Ptze} 3 Ij“l

and )) is determined from III-65.
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this end, we first take the real and imaginary parts of ITII-54 to obtain

(using III-65 and III-66)

/ . i
3 ) .
,gaW w R_!?'“(E’\j)t) =0 (111-69)

Ao, SAvv o ) = Y(ﬂ.)

(1IT-70)

Next, taking the real ahd imaginary parts of III-62 and making use of III—66,

II1-69 and III-70 gives

<T 4 ﬂ> <T'K[} t)> + o {Wix Wl BT LO) CiT 41

and

o@mg‘l’v U PO v = R0 cndcuty 42 <ndCuEs
- | 2 | 5x® IxM (11I-72)

where

LT 4 B {Rggc!w W w F”(XJ,,)

(111-73)

and by virtue of II-45 is identified with the (ensemble averaged) expecta-
tion value of the local kinetic stress tensor as compuied in the moving

(Lagrangian) frame.
Introducing III-71 into III—G} gives, after some manipulation, the

final form of the momentum equation:

m<n>L3 F LUy VJ<U-> + 0T 4 <“>SZ%4’

+£fY(V<ﬁ9
" (11I-71)
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In this equation, it is understood that the kinetic stress tensor<‘ﬂ'")is
to be expressed in terms of {Mm» , T and d)_r by means cf an explicit
/7

e
form for Re \,(-) (such as III-67), and, furthermore, that 42,. is related

to 4M> Via .

X t) = bt 3 ! -x'
b8 = ¢ 00+ (0 anidod lx-x) (I11-75)

Turning finally to the energy equation, we take the real part of
ITI-48 and, meking use of the foregoing relations, obtain after some manip~
ulation*the result

m <> [ 2+ L. VJ (( A e ﬁ_yl<“>) + LD ZLU>
4m3<n)

A (7 % |
,,_.-(Véh,) 2‘(‘;&> : Y-(g} -
n (111-76)

where the (ensemble averaged) expectation value of the kinetie energy per - °

unit mass is defined by

/ KIN ey 7
ey = L _Be (A 1wt PO w
< 7 m<-ncn)> g" i (E"\_”’t)
: (ITI-7T)
= ——I——- Tfﬁce <Tr >
amdn

and the (ensemble averaged) expectation value of the thermal current is
’ -’ /\o‘ ’
= D)

L@y =Re (B (3mw) Folguey

Now one can show quite generally from the form of III-6L4 and the fact that

(11I-78)

""w’ —~ !
when H =, F¥ must be real that the real part of F(') is unchanged by

* BSee Appendix B
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a reflection in velocity space and ccnsequently that <:fgl>» vanishes.
We formally retain it in III-76 for reasons to be discussed presently.

In the Hartree approximation, therefore, the equations of inviscid
isentropic hydrodynamics are III-56, III-64, III-T4 and III-76 (with
<Q.’> =0 ). It is important to note that these equations differ from
the classical case in two respects. First, there are the new terms de-
pendiﬁg explicitly on'hag which arise because the simultaneous sﬁecifi—
cation of particle posi‘cion and velocity impli'.cit in hydrodynamical equa-
‘tions violates the uncertainty principle. Thus in III-T&, the last term
represents a zero point pressure which must be added to the expectation
value of the kinetic stresses when density gradients exist. Similarly
III-76 states that only the excess of kinetic energy over and above a
zero point énergy can bte teken to represent heat.

In addition to these explicit quantum corrections, further modifica-
tions arise from the fact that <> =and (E’)Kw are related to < nd
and gradientsrof ¢% (i.e. the equation of stéte) via the quantum mechan=-
ical equation III-64 for Fﬁf. One can see from III-67, for example, that
the equation of state will be modified by terms of order ta wheh exter-
nal forces act on the system. |

The exact equations of hydrodynamical transport will depart from the
foregoing in two ways. First, irreversible effects will enter when colli-
sions are properly taken into account (i.e. by adding to III-L4 the quan-
tum-mechanical collision integral and abandoning III-66). As in the clas-

" sical case, we expect that this deficiency can be approximately remedied
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by adding to the kinetic stress tensor(Trs. a viscous stress tensor,d /D,
given by

LR SN T ‘
(I11-79)
where\\, is a phenomological coefficient, and further, by introducing entropy
production via

{aD>=z -aV¢ -KYyT
(111-80)

When long range interparticle forces exist, a second modification due |
to exchange effects must also be made. In the nex£ chepter, we will intro-
duce the Hartree-Fock approximation, from which the second quantum Vlasov
equation will be derived. Velocity space moments of this equation will
then lead to the correct equations of inviscid isentropic hydrodynamics.
Our motivation for having derived the admittedly incomplete hydrodynamical
equations of this section is that exchange effecté_beyond those included
in the use of quantum statistical ensembles (i.e. III-68) are often unim-
portant so that the foregoing equations_should be a good approximation in
those cases. Furthermore, it is instructive to see what new consequences
are brought in at each stage of approximation to the many-bédy theory.
Finally, it should be emphasized thai the results of the present chapter,
being derivable equally easily from the Wigner distribution function, do
not represent a demonstration of any intrinsic merit of an approach based
on the von Roos q.m.d.f. This will no longer be the case when we go to

the Hartree-Fock approximation.
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Chapter IV The Hartree-Fock Approximation

A. (General Remarks

As in the previous chapter, our first objective is to investigate the
form of the N-particle wave function (for a pure case) which is implied by
the ansatz II-83. This sﬁep is not, of course, essential to the logical
development of the theory and is taken primarily for the purpose of estab-
lishing contact with conventional approximation procedures. For reasons
of simplicity, we shall limit this discussion to the case of particles wiﬁh
spin zero and spin 1/2.

In the la£ter instance, consider a system of N spin 1/2 particles in
an energy eigenstate, E, whose total spin projection in the + Z direction
is (m-p) 1/2 where m2p and m+p = N. The so-called Hartree-Fock (34)
approximation is characterized by the assumption that the N particle wave

(N
function T17 ) can pe represented as a single Slater determinant of single

particle space and spin wave functions with the specific form

(¥) VEE | (%')g.

()« --eee -u,(;_,,)g‘:n)
IP‘“:"';”) = comst & h h

W (6§ - - - -7 "W (D )

(1v-1)
W, (E.)g(l) w e i U ARSET W.(.},,J)g_‘,thl){
%

. g v,c,-)g_g;:) . wf(ic_,,)f_gw)



o

where the functions g’lii) and 5":.&) are "up" and "down" spinors respectively,
henceforth to be denoted simply as 1‘; and LL . From the properties of deter-
minants, non-triviality of IPW) demands that the.func{:ioné.l_sets fq,;_;. and
iw;; be individually 1inea£ly independent. Aside from this requirement,

the functions W; and W; are arbitrary.*

We first observe that without loss of generality, the guii and ‘;wi]

may be taken to orthonormal:

&y W (x) welx S- .
5 #)150x) - (1v-2)

W\

s
SO\X W;[gg)w‘;(;) 3,0

This follows from the fact that by virtue of the linear independence of the
gu;i and 2w£] , orthonormal sets gu,'l.'; andiw;'{ can be constructed from
linear combinations of Eu.;; and {w,_i by the Schmidt procedure. Invefting
this transformation, one has in general

v Vs i)

¢y J

3

Wy (x) =

s
n

3 (Iv-3)
JL") W (%)

[\l\-b

W, ‘R =

W

which when inserted into IV~1l gives

: ’ '

(v) LEt - v wm £ P w,xy4 - - - - - u )T

(1,.--N)= tconst € ™ LII ica\i! Tzl v " e
L2132 k=) g=) :

LL;:.(E')T. ro e ‘u;\(,{l‘) r" (IV'I*)
WOLEN, - - oW,
. ]

L] : f
W (XY, - - < Wp )]

*A "reetricted" Hartree-Fock scheme in which m = p and U; =W; (cz),--+,m )
is often used as an approximation to the ground state of a normal many-
fermion system.
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where use has been made of the fact that the magnitude of a determinant is
unchanged by the interchange of two rows. Since IV-4 is again of the form

Iv-1, the result is proved. From IV-2, the normalization constant in front

of IV-1 is trivially found to be (N! )‘1/2.

The problem is now to compute from IV-1l and the definitions II-32 and

II-74, the six quantities: F'P(:) 3 F‘ﬂ') Fm = F(: and F(;) :
)

™oy kH‘ )

Introducing the definitions

_F(k) =i (2, 7a) 2 (awh “i (x*‘)Sax ws (x) cm Yee(X %)

LJ -~
(Iv-5)
3 <2V (%~ %)
3 (k)= ‘jdlz)z,lf'k) ( )wh(zgh)ijwzye R
and noting that by virtue of Iv-2,
33 o 3 3 ‘ o ' B
S’clxrs\vawc‘.)(?&,l{ deévi‘%lz,l) 5 5;‘\5 (1v-6)

we find by direct computation that

?)

[_—_-(1) (X, X2 % ) = i 2 [{. 0! -F(z) + g(.)f @) - JFh) {- (a) — f(-) & (aj
" = (N)(N \) L=y :) (IV 7)
5 | ' 9q( M) q ) —9m4 12) — ‘3 Q) 3 1
Fo ey = L £ 2 030 +pa S0 i

(NY(V-1) i=v d>L

'F(z) (%) %2 V)= L gg £.0.9. )

R M e o




and

® 5
FH‘ (5%, % n)= L . i 90,6 @ (1v-10)
931 :

L ¢ £ (x7) (1v-11)
NGah e

and

: (1v-12)
21 -

Direct multiplication of IV~-11l and IV-12 and comparison with IV-9 and IV-10

leads to the first two desired relations

S 1) ) ¥ .
Fry (0,57 %) :NLYI F—}(\ (% v) F, (%, 1) e
and
(1) 1 (]
F&’f (,’('..i,ia;‘.ﬁ, ";’:a) = _’__J_ F:’)(f(.'.'\,g) F,:)(ﬁ‘,‘ft) (Tv-14)
N-| |

Next, we note from IV-11l that

() =) oy HF g
F‘f (%l} 15_) F Py ('X‘}) 1!:1.) = ﬁ’ai:i { ( L'Fb(.)j‘fjta) +d-F le{&(aﬁ +(;£ u{b(') c;.Fl‘:n)]
4 =\

>
(1v-15)

Now, it is trivially shown from the definition IV-5 that

-L%n_(g.—lfa)-{ig- ~ZXa) 5 ' '
s 1) W BT = f ~')4JCJI§"Y‘) (1v-16)
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Hence,
i () KR Sl 2 e,
g F’l‘ ffE-,Y}) F‘!" QS"JV' = e 22( 'F - .F (@)

21 §>¢

: ‘ : o (1v-17)
s bﬂ()i).!:)) ,,é £,0F. la):[

Subtracting IV-17 from IV-15 and comparing with IV-T7 leads to the desired

result
. Fr 0] 0) ""m("f- “Va)e (X~ %
F’r? l?-(.. ) ~9. U-a) NNI F (X| 'U—|) F (xn v:) ell: o R Q)
() » F:ﬂ) |
F’l‘ (,."',\[a) Y (,752,1,{:) (1v-18)
Similarly,
Fuy (% X1, 75) = i s ~L (1 -10): (% -K3)

m £ (x.m)F(Xava) —e®

¢ F 0 1) F‘"(m )]

(1v-19)

We have proved, therefore, that for a pure state, the ansatz II-83 is

equivalent to the assumption that the N particle wave function is a single

Slater determinant. In a similar fashion one can readily demonstra.te that
II-84 also follows from this assuinptiori.

The fact that the normalization constant in the preceding equations is
(N/u_| ) rather than unity has a rather interesting consequence which we

now examine. Adding equations IV-13 and IV-18 and integrating over (253’1"
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gives

SYICIRD

1

5, 4 ) ‘ M -
gaxa J~l\r:l( FT’r (E"'JE":'E)E‘) T ,_'N‘ a("'; 55";'}5';{‘))

(iv-zo)
- —-(X —Xa)* (‘U'n )

F”(Xa v'.)F % \r,)]

where use has been made of the normalization condition

LF”(X, D SAX Y, e

S ) 't ) 3 a3
) Pl b = [ Ry + g o] B b =1 ]

Solving IV-20 leads to
) 3 —om (Xn-xz) (V: —'U';)
SRR ®
Fp G, ~_) = N SAxJAv' e Ff\)(~a,15) F,f')(x.,\{a) (1v-22)

After a little algebra, this result can be rewritten in terms of the oper-

ator II-53 as follows:

0] '
Fa o) = (2 5Y N exp -““ Vs, Y‘U‘]]( Fﬁ:g.g{,))(Fb(t. 11"9

™3 (1v-23)

y -
(a4) 0 s ) 0)
m NU FT(’—‘-"E')) “%‘ Yx-F;'Y"-ﬂ & ]

- (v
It should be emphasized that IV-23 (and an analogous relation for fi:

Wi

follows as a direct consequence of the form of the wave function IV-1l and
involves no other assumptions or approximations. The physical content of
this equation is besi explored in the case of a spatially homogeneous

system where the gradient terms vanish. Solving IV-23 in this case gives

Fm B R e s : | (Tv-2k4)
N (ams)
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which is the familiar result that for each spin species, a cell in phase
: 3
space of volume »\ has occupation number O or 1. The state of lowest

kinetic energy consistent with IV-24 and the normalization
. ) '
N g F‘P AN B Ny : (1v-25)

(where YlT is the number density of spin up particles) is cbviously the

Fermi sphere

3 3 v
( ™ LV
FT') = N___( 111'1\)3 L3 (Tv-26)
o _v>%*

where

A 2343 (?_TI_E) YLVB (1v-27)
fp 7 (qu) w) T |

Thus, we conclude that IV-23 is just the exclusion principle written in
g.m.d.f. language for a general.pure state described by a wave function
of the form IV-1l. Further consequences of the N/ﬁ‘l factor Qill be dis-
cussed in Chaptér Ve ,

Turning now to the Bose case of spinless particles, the situation is

somewhat more complex. The analog of IV-1l for this case 1is

(v) LEEt
(l)-'-,ﬂ) = Cth'} e ® 2 u‘,',(&‘)udtxl)""u_h(}n) (1v-28)

sz.ugl

where the sum is over the N' permutations of the single particle wave func-
tions LL,----LL~ among the N particles. The complexity occurs because

the stLal in general are not required to be orthonormal; no exclusion



-76-

principle acts to prevent multiple occupation of the same state. We are
therefore unable to treat the Bose pure case with the same generality as
the previous discussion of Fermions. if we limit ourselves, however, to
‘certain restricted examples of the form IV-23, some insight into the re-
lation between (the Bose form of) II-83% and IV-23 can be obtained.
Specifically, we distinguish two limiting cases: the 'nondegenerate"
limit characterized by the property that the N functions w, are distinect
and orthonormal so that no two particles occupy the same state; and the
"totally degenerate' limit where the W,  are identical, corresponding to
 the '""Bose condensation' of all particles into the same state.
The nondegenerate case is quite similar to the Fermi case treated

earlier, and in fact can be represented as

- (¥) LEE
\f (Y, - N) -1 e h u.(x)-“-- L{,'(XN)
|
i (ﬁi- } :
; 1 (1v-29)
! 1
| )
I 1
) 1
Upl%)- - - -‘Uw(’&w) (+)
where the so-called ''permanent', I I( y is obtained from the correspond-
Y

ing determinant by taking all N. terms with a positive sign. The compu-

()

tation of [ is straightforward and yields

F(Q) (% %2 ’\rn ‘U’; = __’__ é [ {: " -f (a) + -F ) f % 5 £.10) .F'(]) + 'G(‘) {_ “1)
Mo, e P A T L VL by
_ N(N-) 021 35

(1v-30)
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where the. f's are defined in IV-5. Integration over ('ﬁ;) ‘U';) leads to

) N
AT (Iv-31)
FN.D.Q"\D o ‘h‘}' i L{L(') :
Ly

From IV-31 and the theorem IV-16, we find

F () — ) ~L 3 {'V -"U'a) [X: ‘7(1)

y AL 1 ) i :
y@w hoe v + e 20,1 FM;_(%,) ) =

N N
f0 L@ + 4? b ) ol
Na[ii ( 0 f. () +L{Jr)6{£:a) +J{L(x)b-lii(q)

L=l J.>b
Y ,fam.‘c.m]
L=y "

(Iv-32)
Thus,
e S
. v’| = N ) L (v -13)-(%-X
r-M.D.(ZS s %) = N- IK‘F X -)F (M V) +e T
) N
}- L %) F o (% vl)] - 2 .0 f.2) (1-33)

NIN-1) iz b “'_

Since the last term is seen to be of order '/N » we are led to the result

; @
.:\}w\ EID)(Q,).(J',‘K' 1!:1) = lK;‘lﬁ) F (7(1. Va) b (Tv-34)
- 00 R ; :
_f.m (1/'. »v,) (% -%a) (.)

ND~’~) l" (7(1,1‘{9.)

+
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It is not difficult to show that if we had permitted a slight deviation
from nondegeneracy by allowing m of the W; to be identical, with m<< N
then to IV-33 would be added terms of order“fﬂ./N . Since the result IV-3h

is unagltered in this case, we are led to the conclusion that the Bose form

of TII-83 correctly describes a pure state characterized by IV—28 in the

limit of large N if most of the;garticles are in distinctly different
states. :

ILet us now explore the opposite extreme cf ccmplete or near-complete
degeneracy. At complete degeneracy, all particles are described by the

same wave function so that

) et
LPC_D.(-I)'-- N) = e + u|(§|)ut(§,1) - -—-. ul(?,()/) (IV-5S)
Consegquently,
®) ; ,
FC D, ( Xl ‘1"{1) = a_F\m ‘F‘Q) (1Iv-36)
and
._[\) ! ‘F
7(. Vi - (')
}-c-o, ("» %) (Iv-37)
Thus
= @) A m
R (8,00, %) = B 6%) R o.(4,%) (1v-38)

which can also be vi'itten as
F(:z (5%;0,%)= L] F o, = e (1v-39)
R ) A~y o~ —2_ ) D. 1- 1.) 5

23 C,-cm( ) (% %) Fm(,‘lfa) F c.D "-: 4-)]
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Now consider a slight departure from cbmplete degeneracy such that one
particle is in a state specified by a wavg‘function,ua , orthogonal to

W,. In this case (distinguished from complete degeneracy by the subscripf

IIDII) !
B S ‘
Q’D () -=--N) ~Fh7 £ Wy RIU (x2) -, (%) + W)Uy (%) - -, tXw)
e u,(a‘)u.(b)----ult?_&u)J
(1Iv-L0).
Then
2
F;)(i‘,i“}‘f',‘{*) % RIJ“I'(M'-"\) A0 £ = SR AC B AL N
FADED n‘;“’a“.‘a)l
(1v-k1)
and
e, S e A T
D E’:%) s ij‘ ‘{:‘_(') +’,U 2 ) (av-ha;

From IV-L2 we find

: . 2 (B (%% 0
Folx %) Fy g, %) + € Fo (%2,%) Fy (6, 1)

ey a\R 2 ‘ ¥
= &(".’N—‘) F0) £ () +Ji a—FI()Q-Fa(:) +N;§;%X‘§‘m={=“)

T 2_(3(‘) \{\ o B 142(‘) 5.F\ e I ‘;-F-\(O ffa ll)J (IV-43)
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Using IV-41l and IV-36, we have finally

()('L. LAY ‘Ua) ¥ H__l t_c(o (25\ 1 Va) = Fm(x. ‘U‘.) F (7& v2)
N J J )

~i¥ (VG -Ya) (% =%
+e ™ (¥ 1) fx 3,0 F [x. ’lf,.) + ("‘fvw\s o{‘on\tril,—a)

(Iv-lk)

Thus, it is seen that a completely degene;rate Bose pure state of the form
IV-35 is properly described by the Hartree approximation (or, equivalently
though unnecessarily, by the Hartree-Fock ansatz II-83 with C = 1/2) while
slight deviations from this state are not in genersl subsumed under II-83,
the proper (pure state) modification in the latter case being

: e s .. N L T -

lJ‘:;oo F )(35‘4 25,0 = ( Pt a,%a) + e ‘i (5-1) 0% %)

~(1) 0y _.0) s 1}
< P, w) Fw,«,@)) —F 8% T, 00 %)

(1v-15)
The foregoing results have a certain bearing on the types of physical
situations where II-83 et seq. constitute a viable approximation to the
mixed case (i.e. statisticél mechenics). Recall that the "normalization"
constant, C, appearing in II-83 has not yet been specified. Clearly, how-
ever, it must be close to unity if dynamical e_xcha,nge effects (i.e. those

corrections to the particle interactions occaesioned by the requisite sym-

metry properties) are to be treatable as relatively small corrections to
the Hartree approximation. For nondegenerate systems (in the statistical

sense), where particles behave in an essentially classical fashion, exchange
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effects are negligivble and C assumes its classical value of unity. At

low temperatures, however, C must -approach the wvalue appropriate to the
(pure) ground state, since the pure and mixed cases merge at zero temper-
ature. Apprecieble variation from unity of this value is, therefore, in-
dicative of a breakdown in the applicability of the approximstion scheme.
For the Fermi case, we have shown that no such difficulty arises in the
Hartree-Fock approximation, and that the appropriate value for C is Nyh-l
for degenerate systems, and (of course) unity for nondegenerate systems --
a negligible distinction in the limit of large N. With Bosons, however,
the limiting-pure case value of C = 1/2 indicates that a single ansatz of
the foanII-83 (and, subsequently, II-84% and II-85) cannot be expected tc
adequately represent a Bose system over the whole range of temperature.¥*
Indeed, we have shown that at zero temperature, the Hertree and Hartree-
Fock approximations are equivalent so that one can bypass the.second stage
of approximation entirely in this limit. The implication*, therefore, is
that the proper forms of II-83% et seq. must underge a discontinuous change
at the temperature of Bose-~Einstein condensation, and that these equations,
if not so modified, can only‘be applied to systems appreciably above this
temperature. In view of this circumstance, low temperature Bose systems
lie beyond the proper scopé of the pfesent work, alfhdugh there are indi-
cations (e.g. IV-L45) the formalism need not be radically altered to include
them as well. We therefore will éacrifice some of the generality maintained

to this point by limiting our subsequent considerations to spin 1/2 systems.

*That some modification of the formalism should be required at very low
temperatures is, of course, a reflection of the radical changes which
cccur below the temperature of Bose-Einstein condensation -- a phenom-
enon vwhich in a sense has been anticipated by the assumption that the
ground state in the absence of correlation is described by IV-35.



B. Second Quantum Vlasov Equation

Proceeding analagously to Section III-B, we introduce II-83 into
II-76 (with R=1). Since our main concern will be with degenerate Fermi
systems, the constant C in II-83 is taken to be N/N'l as discussed pre-

o~
viously. The resulting equations for the ''spin up' and "spin Down' F(l)
5

are () ;

~(n ~(1) ! : - y
QF + { F H(Jh Tt )} = L exf[-‘QEVK_-V] ~ 1
ot G-P.B, h B g 1

i Ngj;‘x QU’ F (7‘1 at) +E“%X%Egﬁ)‘#f}_l’?§l) IF;(I)(X' 2 t))"

- i_Nga\)(fxl J;Va [exp[—% % V]’J] -—lj] (4)( X —52))

~CB (V1) (X -Xa) ~= (1)
x(e * 2) -~ H (% 113.'&)]"— (7(11"'0)

(Tv-46)
and an :‘Ldentical equation obtained from the above by the substitution
/‘-’(.)

F F « Comparison with III-9 shows that aside from factors of

N /N-\ , the departure from the Hartree approximation is contained in the
last term on the r.h.s. of IV-46 which represents the so-called ''excharge

interaction' between particles of parallel spin. This term can be con-

siderably simplified by mcsans of the identity

jd?‘a')"'a[e*ﬂ e %, v} ]] qp(x,—x,))(A(x. Xa: v, vg))

= _\_3511 A% Cc%- (X=X J;(%)[A(x, 7(:1"!7;+E%_ u;,)

(ar)

SRR 79315,@)]
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where £(§) , the Fourier transform of the interaction potential, $ ,

defined in II-78. Then,

NTE [l o o], vy "] ( bly-T))(e F E B

=0 g
X F; (29, 1_{'9-’*) F,r ffz,‘{s}f) = olX.; JU" c! F(%‘)
(:an :

- (3 B ) .
x[c Vi) F”(x. 59 iy )

-Lm v, - Ua -5 =X )
¥ A ( %—)(x x)”{ n‘U‘ch)F”(Ka 'U'.*)J

is

(1Iv-48)

ﬁow, by means of a change in variable and a Maclaurin expansion, one finds

g 3 ~im (1, ~ Vi)« (K, ~Xq) 20
§, o dy fLg) R0 ~‘)FT’(Q.JzaJt)?""(zC,a,1§+:n‘“g,,f)

= "F\B Sk 3 3,3 éf(,'-{x,—x =0) ‘
8 [ s o] (e E 5 B0, 05 )

( F q(?}.,l,vj)‘t))

(Iv-49)

!
Performing the % and X5 integrations reduces this to

-~/

(am)’ [exf[‘% %, ~JJ (5& F(‘é‘- - )F {x,vfa(F (% U".t))

(1v-50)



Similarly,

3 K V-1 -5 ) A
{1, L By £lg) & R\E D) (x - %) B 1, F;}%mﬂ

:.7%;3 [%P[—L& %, -vﬂ] (’[E;')(i,,xﬁjt)) (S 3,,[1; J%{(t) oy (1{- )

/v(l) 7
F (X| ’U-;’t))
(1v-51)

which in turn beccmes

(3’ [exf'[‘%} Y 'V}:-]J [ F:l)(in,ig)t))( (s (e (3{'-'";.9 Fl, )1[:1&))

exch
Thus, if we define the exchange notential,q)f (% U?Jt) oo
~y o~

exch
4)? (X, %) = —Ngal'tr F( (v -v'.)) E" (% v )
! (1v-53)

and the self consistent field

CPSC F(Z(C‘Jt)- 2N Sa“’xa Aaﬁ:l( F’I‘ (X2, Va )+ (X‘-l Vi t)) ‘MZ‘J ‘Zﬁa)

(Iv-54)
we see from the foregoing and the definition (II-56) of the Generalized

Poisson Bracket, that IV-46 becomes simply

F 3 Pl 2 g
A Al‘-‘t‘l_’.,t)) H'r (ﬁ."t[)t)} =0 (1v-55)
G-PB,
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(1)

where the Hartree-Fock Hamiltonian, H , is given by

2
() :
= 2, g3 ext a | SCF 3 g exch
My 02,0 24 m U™+ 99000 + 7970 + 90 v v
(1v-56)
Equation IV-55 and the precisely similar result for r[:—lf) 5
o) ()
aF‘h "“’(‘) (‘)
i SR Fotxiwn, ¢ (% Vi & =0
Jt + (x,%, )) H4' M7 : GPB (1Iv-5T7)

are the desired forms of the second quantum Vlasov ecuation. We observe

that the spin "up' and "down" subsystems are coupled only through the self-

consistent field and, of course, the normalization condition
3 3 ~n) ly -
X =
j“ % d o ( Ff ("") 1{‘:*) % F-lr QS') Y-')t)) 1 | (1v-58)

Since, however, the Z component of total spin, éz, is a conserved quan-

~)
tity, the two Fl')S obey in fact independent normalizations

N(n)
5, B PO o) =4
Sﬁ p(8,%5,¢) (1v-59)
3 0 T o k) = b
SJX‘AU—' Fy (3,%,%) (1v-60)
where
a +b =1
(1v-61)
N ol e il
2 {d=kXs 22 ' (Iv-62)

Of particular interest in many situations is the special case* where

a =b=1/2 and, more restrictedly,

—

oufly - e .- L -‘f::(.)
FT F:L a NORM (IV‘63)

*See footnote page TO.



-86-

For this so-called "normal' system where both spin species behave ident-

ically, a single quantum Vlasov equaticn replaces IV-55 and IV-57:

i) :

3 P +%F~[2RM(,.~ 6,0, Y 0y, )} =0

2t G.P.B. (1v-64)
where

0} 2 xt
Hn Rmil"" t) = -Lm'U‘ + 9 4’c0‘n t) '1-3 (P (x.{-) +9 4) (£|’m{)

“+

(1v-65)
and ‘
exch
) A —-_ N N(‘) ) 't
¢Nomﬁx Ut) = _é-go‘ (1; (v- v,)) P i 2, )
(1v-66)

Various equivalent forms of IV-55, IV-57 and IV-64 are often a more
convenient starting point than these' compact equations. We list them here

for future reference:

~) ~\)
D Flr + 1{! 'Vx' F -

— PII o

Ve 3 (74%7) Uy B =

B
d m
t L SCF n 20
ik T 7ok 12 !_(—_L_ﬁ)“ " ($7%4T) 'R
_T-'l ’l‘l * _—3- e ni b DK.K 27(""- - Dﬂu"‘ )U;L"'
th n=q e )
- . ch . N '
rif gL (-»_z)“[a" T ) e oo
"o M S VIV IuR vt DX."JK.L"-

(1v-67)
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and
~ 1)
ofr + v .V Em _Ltvqf:(‘) — ia® Wik S
5 A A L
~ i
(£ 75,0 + ffrﬂ)[ gyt — Yoo, 1,0
"—‘?\—-(V - K-—X)N{l
A U3 )+ (X -%Xa }~ (%, ,t)F (x,v.+5%_,f)

z @ﬁ gyxaah ¥ £ e .
_t,ii(V' 15'-5-@[) (X |
i~

?X
X
»

j—

Xa) 26 O 2
i (ﬁn)t{})t) Fp li*,",’,?)t)] = Q

(1Iv-68)

where the f's are defined in III-17, III-18 and II-78. The corresponding

~i

F
NORM

The discussion of Section III-B can now be taken over in toto and

equations fori%:) and ere trivially obtained from the above.
applied fo the significance and utility of the second gquantum Vlasov equa-~
tion. Since such repetition is of little vélue, we shall proceed directly
te illustrative applications of this equation. In Section C, the spatially
homogeneous system considered in III-C will be re-exemined in detail. Of
particular interest is the appearance of a new mode of excitation, the

spin wave, which is brought about by the exchange potential much in the
seme fashion as ''plasma oscillations' are sustained by the self-consistent
field. In Section D, we reconsider the macroscopic equaticns of gquantum
hydrodynamic transport and obtain additional terms arising from the ex-

change interaction.
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An especially powerful application of the second quantum Vliasov equa-

tion will be given in Chapter V, where the formal equivalence of the time-

independent form of IV-6L4 and the Schroedinger equation for a stationary
pure state of the form IV-1l is exploited to study the ground state of

spatially inhomogeneous many-Fermion systems -- the many-electron atom in

particular. Furthermore, the fact that the very same IV-6L4 applies to
systems at non-zero temperature, leads readily to the thermodynamic pro-

perties of such systems.

C. Spatially Homogeneous Systems

We consider the problem formulated in III~C, specialiized to the case
of spin 1/2 particles. For t <o, both spin éubsystems are assumed to be
spatielly uniform and in thermal equilibrium at.temperature T. We permit,
however, en unequal population of spin states as described by IV-59 through

IV-62, which in the present case take the form (cf. III-24)

{

=~  SagEn . et
NSF¢(!,t<°)JV amn =N, Fop s

and :
N Sf:“:"(g)uo)fu- - (-edn = m,
- (Iv-70)
The first problem, therefore, is to obtain a description of the consequent
equilibrium situation.
Since the self-consistent field is spatially constant, the two spin
subgystems decouple and may be treated independently. Concentrating on

L
F;O , the second quantum Vlasov eguation (Iv-55) again reduces to an
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equation of the form III-22, a time independent solution to which is pro-
vided by any spa‘ua.lly independent F‘r) « Instead of introducing a micro=-
cancnical ensemble and going through the somewhat cumbersome machinery of
ensemble theory to determine ’f\i“) , we appeal to the quantum mechanical
H-theorem which, for the present problem, stateé that .in thermal equilib-
riuin, the entropy is extremal viz.

s (e R () + (- PPt (-8 - 0

™m

(1v-11)

=~0)

where the symbol 8 stands for an arbitrary varietion of PQ , subject, how-

ever, to IV-69 and the additional constraint
e 7)o

where é’l‘ is the total energy density expressed as a functional of ?/Tf-).
As this quantity has not yet been derived, we take this opportunity to do so.
In general, the (ensemble averaged) expectation value of the total

=~ V)

energy is obtained from II-63 and II-60, written in terms of [ Specif-

ically, we find for the combined energy of both spin subsystems the general

expression S
+ N
R.o,{ A‘ m'U' (2 E{. ~)~Jt))
o=-S
0D 3 o, o, 3’4;(35.—:5:)( s B2 sy Va,fﬂ
d.Jdar.-S
£ N SAz 3, 9 " ° (x.t)(g ~m(39,1£.)t))
o=-S

(1v-73)
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which, in the Hartree-Fock approximatidn, becomes

= B NGk (1) F0e,,0 + s, )

. - 2 1 ext 2, SCF
r (0%, <nyben =g b0 (47 + 299, 0)
S8 (4 -1)+ (% - Xa)

» A, i)

~ ~\ ) Nll) ~(1)
X[ F()(Kl a 't) F )(53)‘\-5)'&) - F‘L (’il) 1{1)‘&) F& [7&_2) 15‘)'&) .

_ (Iv-7h)
In the present example, IV-TLh leads to the desired result'for the energy

density: :
g, = Sf"-(i‘“"-“)(”ﬂ"“ﬁ)) ! g_ajrﬁ,‘yﬁ (2 (%)

—~(1) o)
< (v Fom) (VB o)
(Tv-75)
Returning to IV-T71l, we perform the indicated variation, using the method
of Lagrange multipliers to include the constraints IV-69 and IV-72. The
result is the integral equation¥*
r~ 3/ ~1)

(1) 3 Lt RSV Mt S ,
Ffp('f) 2 expl 3™V PRVHFENR @) -h)
v b KT
where the Lagrange multipliers have been identified with the temperature

-|

(Iv-76)

and chemical potential, P1 , in the usual fashion. The latter quantity is
determined by IV-69. Note that in the absence of the exchange term, IV-T76

reduces to the usual Fermi-Dirac distribution function.

*Equation IV-T76 has received rather scant attention in the literature.
It was first derived in 1947 by Koppe (35), and subsequently studied by
Wohlfarth (86) and Lidiard (7). These investigations were limited to the

case of a degenerate electron gas and were motivated by the fact that the
solution to IV-T76 leads to an expression for the low temperature specific
heat which is significantly less than the Sommerfeld free-electron value.



-91~

Because of the complexity of IV-76, we must limit its discussion to
the case of Couwlomb interactions. First, we observe that at zero temper-
ature, a solution of this equation is provided by the zero temperature
Fermi-Dirac distribution, IV-26. To démonstra‘te this, we insert IV-26
into the r.h.s. of IV-T76 with %a. and £ given by III-39. The integration

1]
overlr is straightforward and we find that the r.h.s. of IV-76 becomes

3 s

m 2 de €MV T L uia) 1

ﬁs e*?(?“ T [' %:‘DMI,-;*—;':J“H)H]
rT

(wv-77)
where U = 'U'/%T « It is readily seen that a necessary and sufficient con-
dition for this expression to approach IV-26 at zero temperature is that

the function

(W= u? et quf:_l,) 1+W e
9 Yz w +(W_U:(1)( = In = (Iv-78)

be monotonically increasing for W20. Setting 3w equal to zero leads

to the equation

a
e 2 = 80P
§ ol 2 (1Iv-79)
\ﬁ'ﬂ"\&,‘. (u.qa-\)ﬂm.l ’I_:‘.:\ -qu

which has no solution for positive W , thereby guaranteeing the monotonicity
of 3(“-) for all ’U}T . Thus, we have shown that at zero tempersture, the
effect of exchange is merely to alter the relation between the chemical

potential and the Fermi velocity (i.e. the density), the new relation being

a 2
Ja—mvh —e'“vfe=}1,,
THh (1v-80)
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At non-zero temperature, the.situation is naturally more
complicated. Lidiard (37, however, has shown that at very low
temperatures, an approximate solution of IV-76 is provided by the
Ferml-Dirac distribution appropriate to an effective temperature*, 1jp

different from the actual temperature, T. Specifically, he finds

~i) ;
Fp(nT) = = 1&?( gm(vi-% "'*:'rm’)) +\:| (v-61)
de Ty (T)

wherefr’:is related to T via the transcendental egquation

R e O iy
’tq, " sz(“ﬁﬁ") 5 A

(Iv-82)

and ‘U}"r (7“,’ % ) is determined from IV-69,

Thus, IV-81, IV-82, and IV-26 in the limit of zero terperature
are the desired equilibrium distributions forisl)-in the Coulomb case, It
should be emphasized, however, that their‘validity hinges on the assumpticon
that they are unique solutions to fhe integral equation IV=76, Due to
the complexity of this equation, such uniqueness is by no meané apparent
and can only be established by a more detailed analysis which lies beyond
the scope of the present work, 7

Completing the description of the equilibrium situation, we
now compute the total energy density from IV-75 and the appropriate

equilibrium distribution function, The velocity space integrations,

while trivial at zero temperature, are somewhat involved for | ¥O and

¥Equivalently, one can speak of a (temperature dependent) effective mass,
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are given by Lidiard (37) and Yokota (38). The result for the average

total energy per particle is
€ z enter = 3T (Y4 %( o H-_5.7(.) 1=, 5
T = g[m(w) ! ( i ) 4’)

(1Tv-83)

*%[ca(%ﬁ)"’][ '/( /3(1 hgn(zl)) +(l-a.) (H’iﬂﬂ(:;o))j

where a is defined in IV-69 and)(,r. and X,,, are determined from the

relations

, 2
Th;i' a;3 = P el X,,J)M(_?_C_@__

20) TR (30 3a)" k ! M
(o.) am(F) @a) 1-,'[]’( )3 Ly (Tv-8Lt)
and

TRT = =%, - &m ’Cw@"(m) |

" s.ﬁlaﬁa Y = LN 3] .IH'_-

(30-) e (i)' (30-) | B ()’ [

' (1v-85)

Tt is interesting to note from IV-83 that a critical density, nG(T)
exists such that below this value, the |al|= (or- "ferromagnetic")
= 1/2 (or "paramagnetic") state .

state has lower energy than the a

At zero temperature, it is easily shown that the energy is minimal at one

of these two values,
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At T = 0O, Xy = Xy=0 and we find for wn,

N, (T=0) = 125 m>e®

ay Trg(;’é +;)3#‘ . (1V-86)

a value first derived by Bloch (39). However, as noted by Seitz (40),
we expect this result to be significantly altered when correlation effects
are teken into account, In.any event, when we subsequently limit our
considerations to a = 1/2, it is understood that the dens:.tj is assumed
to be suff‘lc:lently large to insure that this is indeed the state of
lcwer energy,

Turning now to the response of the system to weak external
forces, we proceed in strict analogy to III-25 et seq, the basic equation
now being IV-68 instead of III-19,. Ai;t.er a little manipulation, we find

that IITI-33 is replaced by the pair of equations (with obvious notation)

CERES R DY AL ~ 3[R ¥ - K]
Lo (g0 *374(,‘@3 l’i‘*’))]

Cl
+%‘. [ R (reng) - F, M]U“ e "”)?f?rm ] B

(Tv-87)
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+
and a similar equation for ?Jl « The physical ccntent of these equations

becomes clearer if we consider the special case, a = 1/2, and define

e S R

w\-

c~— T

-=F S

"

g
449
|
oo

(Tv-88)

Then, we have

3 + el s AR
(-0 +1g FEJZ’. 2 [ Rrsg -Rw)] [ £ 7w
*“F(ﬁ—) v (¢ v’ w)] _ 92T,
5 £ stpenyaieigo )
X ( }'lLLd) +31 ' /
§ 3 [Reag) -Rup| (i b)) Ty v'w) = o
(Iv-89)

and

Pl 5 31 ! s / 1
(0 g s’ ) F *§[§AV11(§(~-E))( (s ﬂ)—ﬁ(ﬂ,,r))]

L[R2 R ek (20er) Bl =0

(IV-90)
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The first of these equations determines the fluctuations in density
caused by the external field and represents the exohange-corrected form
of ITTI-33. In the case of Coulomb in.teractions,' it has been used by
von Reos and Zmuidzinas (13) to obtain corrections to the .dispersion
relation, ITI-i2, in the long wavelength (:1!——90) limit, IV-90, on
the other hand, describes a new mode of collective excitation, uncoupled

from the density fluctuations, which are spin density waves and represent

spatially periodic asymmetries in the relative popuiat.ion of the two spin
.states. of par*bicular interest are standing spin density waves (&) —90)
the potential importance of which has been emphasized by Overhauser(41)
for the electron gasr. Indeed, he has claimed that such waves lower the
system erergy with respect to that of the spatially uniform state-even
in the high density limit., If this is true, the spatially uniform state
would be unstable with respect to the formation of standing spin density
waves and the equilibrium distribution function, IV~81, would have to be
correspondingly modified,

The question of the stability of standing spin density waves,
at least insofar as correlation effects are ignorred, is in principle
answerable from IV-90 (with W = 0), When solved, this equation yields
the eige;qvalues, %L and eigen functions ?l—('g) 3’,’5)“’) characterizing
lthe standing spin waves. By symmetry, ‘;-FT and "}" v for each mode

are obtained from

T 40,0 = ~F 00,9 =2 F (4 45,w)

(Iv-91)



and the consequent change in energy density is computed from IV-ThL
disregarding, of course, terms quadratic in theiEdS +« Unfortunately,
.due to the complexity of IV-20 in the case of Céulomb interactions,

this program has not yet been carried out., In view of this circumstance,
the repulsive long-range Coulomb interaction is often replaced by a
repulsive (short-range) delta function interaction = a case which can

be solved, Since the Coulomb interaction is actually shielded at large
distances by the dielectric behaviour of the medium, it is hoped that
some features of the true situation are ccntained in this counterfeit

model, With

i Sl T

equation IV-20, when integrated over velocity space, yiélds the eigenvalue
equation
Q/\ 3 ;
|+ 3A (P RlrEg)-Fo)

~ W~

=0

Ak (17-93)
L g7 ¢
P
At zero temperature, this reduces to
t:lif = 1 - 2* | th
A’ Ak th} Ii:j;: (IV-9L)

where A is a positive constant times A, and

b= he (Iv-95)
Am U

(Iv-92)
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From IV-94, it is seen that a single solution, %,(A) s exists. for all
repulsive interaction strengths, A, in excess of scme A sns With no
solution for weaker or attractive interactions. The corresponding

eigen function is

”}’- = const [ F(V+E%) -—F.',(-\r)]
1 ™m ~ %
V¢ + kK A

.
~

am

(1v-96)

The energy calculation for this case haé been carried out by Yoshimori (42),
who finds that the energy increaseg for all interaction strengths. capable
of supporting a standing spin wave, Thus, for delta-function interactions
at least, the spin wave state is unstable. Further work is clearly
required to settle this iésue; In particular the change in the
"correlation energy" (see Chapter VII) attending a spin wave must also

be taken into account,

In conclusion, we have seen that therintroduction of exchange
vastly increases the complexity of the equilibrium and non-equilibrium
properties of spatially homogenecus s&stems. Thus, when_we subsequently
describe the equilibrium state of a spatially uniform or quasi-uniform
system by IV-81, and assume it to be paramagnetic, we do s§ with some
reservation, The system may in fact be ferromagnetic, be described by
another solution to IV-76, or even possess standing spin density waves
under certain conditions of density, temperature an& interaction

strength,
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D, Quantum Hydrodynamics

The next topic of interest is ﬁow the exchange terms in the second
quantum Vliasov equation modify the hydrodynamical transport equations
derived in Section ITI-D. To explore this question, it is only necessary
to compute the first three velocity space moments of these terms and add
them to the corresponding equations: III-U6, ITI-47 and ITI-48. TFor
simplicity, we ignore the question of spin transport and deal with the
"normal"” case defined in IV-63.

Using the form IV-68 of the second quaﬁtum Vlésov equation, we can
easily show that the mass conservation equation (III-56) is unchanged when
exchange is included. Introducing IV-63 into IV-68 and integrating over
35! yieldé the exchaﬁge term (dropping the subscript "norm")

' 3aN . R T —uvm (v, V) (X -X3) 220)
= = Pv,alxaolviol%ﬂﬁ)['e_ = F % v,

22(1) (V- Va K §)e (X -%3) 20 =0
L4 {-. (51)1{. ‘i‘% th) -8 b =L L A -) -~ )F(:E',E’ut) - C.«K..'l,)?:')-b)J

(xv-97)
which should be added to III-46. However, making the variable change
'\A{.I = U T -E 'ib: in the Tirst term of IV-9T reveals that this expres-
sion is identically zero. Thus III-56 stands.

The momenfum equation (III-~Th4), on the other hand, is altered by
exchange and in a somewhat complicated fashion. Multiplying IV-68 by the

M
momentum component Tn‘U] and integrating over }fn leads to the ex-

change correction

_A' 2 3- B —-Lm U, -Ta-5 ) (% Xi) oy, o
IL(WA;:; A, dx dvy dg f(g) E%ﬂe ZU-Ta-h§)-(x ”)F”(;s.,g;)f:(()zg;,g)
(1v-98)
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to III-4T7. The complexity arises from the non-locality of this term which
can be made epparent by repeating the calculation with the equivalent form,
IV-67, of the second qpantum Vlasov equation. In this way we find that

IV-98 can also be written

e | n  exch n ~n
gl - o S 3‘u' vV, Z (-—L.‘h) 3 4’ Cflof‘\,t) 3 F (2(_1, Vi, t)
1 ' nl

e e s R SR L T - Tk
= 3“498&“(7&., 7,t) . b ,va(zg;) v, ¢)
FECAWE e 7 e Bagkinl (1v-99)

where
exch -

—~
47 (% U t) = Sav %(m Lr,)) Fm(x. v't)
R ¥ S (Tv-100)
Due to the velocity dependence of the exchange potential, spatizsl deriva-
tives of all (odd) orders contribute to IV-99, which is tantamount to non-
locality.

Considerable simplification naturally results if we restrict our
attention to systems which are spatially slowly varying so that only the
Y\=47 term in IV-99 need be retained. Such a restriction is in the spirit
of the macroscopic nature of the hydrodynamic equations and, in fact, mey
be thought 6f as a redefinition of what we mean by macroscopic.

Thus, in place of IV-G9 we consider

exch =) exch ~0
"‘QQSASV vn(;q,’“ IFE". . ')FO} (Tv-101)
Anr L ayt P b

Making use of IV-100, this reduces (after a few manipulations) to

9 wm = . )
2B e v WP 2, s )

N R L0 (L 0 )

(1v-102)



-101-~

Following the development of Section IiI—D, we now introduce the
ansatz, ITI-66, of local thermodynsmic equilibrium. In so doing, we must
make use of the fact that the imaginary part of ’Fum » being of quantum
mechanical origin, is a function of spatial gradients of the Hamiltoaian,
IV-65, and vanishes il these gradients vaﬁish. This may be deduced from

he structure of the Generalized Poisson Bracket and will be explicitly
demonstrated in Chapter V. Thus, in the spirit of the gquasi-homogeneous
hypothesis implicit in our retention of only the M= term of IV-99%, we
are Jjustified in replacing ':Fal') by Re ’lflm .in IV-102, thereby enabling
us to apply III-66 directly. By the same token, in meking the association,
STTB6, aly e gredtant indepattiu gty oL b e tamen Fusotion,
,r:'!w’ should be used. Specifiecally, let /I}Z'), be the solution of the

2

el ical Poisson Bracket equation

(1) :
F (~.~,) HNQM(, ’t)}PB:O e

appv'opriate to a local ‘c,émperature T(}E A t) and density < Y\Q\(_;{-)) 2

with HNORH given by IV~-6k. Then, in IV-102, we make the association

= =)

Floet) = B (x v - <aixe,4) (1v-10%)
Since the gradieﬁt—inﬁependent solution of IV-103 must be.identical to .tha.t
of a spatially uniform system, we can write down 'F';f') ‘ irmediately Trom the
results of the previous section. It is just the (normal) solution to IvV-76,
which in tﬁe Coulomb case is 7

~ 4
F = LR - 3_'1’[ P{f'ﬂ(ﬂ' -W(“‘l‘:“‘”‘”’)))
| N AR Sh sl

-*'I‘hi" qua.fa?—ho*nogeneouo" assumption corresponds to treating the exchange
part of the Hamiltonian "eclassically”, since the integrand of IV-99 is
{""" q;"‘“ D the first ter of Which is just the classical Poisson Bracket.

P8
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: ]
Uil T N “5 m’l}}_((vo'z‘ z0)
T NV (<n3, ’f:o) ) ( ) (1v-106)

Introducing IV-10l into IV-102, we find afier some algebra that the exchange-

corrected form of the momentum equation IIT-T4 is

m<n>( +<u>. v)<u,> + Ve <T> + V<1’“°">
+ LD 23A¢T +J:_ﬁ;_nz(v"§<n>) =0 (Iv-107)

’
where the exchange pressure, <f> cxcn> s is defined as

‘<f ‘e = 5&3\«/[“"“’ dF (%% Y +J~EQEE’*3]
g gl

>Camw)

X {gaSJBW' f(%(y'—‘!)} % (X, ‘,‘L’,’ *f)] (1v-108)

and f, is given by (QN) times the solution of IV-T6 in general, b.y IV-105
in the particular case of Coulomb interactions. The kinetic stress tensor,
('ﬂ'f), is coniputed as before from III-T3, using the specific form III-6T7 for

Re IF’") : oF
To explore the nature of the exchange pressure, we concentrate on the

Coulomb case, where IV-103 becomes

<chcﬂ> :go‘w wa;[u‘-\ap ,U-,t) + LE(Xx we )]

6 2 (Fmw?d) Mo

x STerj’oqupJn]W¥w

mdw

(5 ~) ”} (Iv-109)

*#¥Tn so doing one must use the (exchange-corrected) o Just defined in
place of III-63, as will be shown in Chapter V.
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Integrating the first term by parts leads to the result

R LS T a 2 ’-Jﬁam : )
] !
R we)R(% v, t)

i (R

& m - (zv-110)

oo 00
3 2,
Liades JJW du' Wiw
2 o0 wa_wl

The second term of IV-11l0 vanishes by symmetriec 11'1'{;6&2‘?1.',.]_01’1. From IV-T5,

the first term is recognized to be Just l/3 the exchange energy per unit

volume. Using IV-83, we obtain the desired dependence of the exchange

(|+_759m(61‘<,50))

pressure on density and temperature

< et N T = L e® n
P e, T +e<n>(%_>)

1/3

= _|3 < 6’EK¢H>

(1v-111)
where the paremeter X is defined by
weT 2
T =% e m [N '
T (3¢ny a’S] i-revsnay. (Tl—‘i 240 O T
- (32) LENEDR '

It is of 1ntere.>t to compare the (ner*ative) exchange pressure with the
(positive) kinetic stress term V <'“'> as computed from III-73 and ITI-6T.

In the absence of spatial ngienus of the self~-consistent field, Z- <TI">

- /
becomes the gradient of the kinetic pressure, «FKW sy glven by 2/3 the

kinetic energy per unit volume (cf. IV-83):

<f’z:ﬂ>:%<é’nw> <“>(3~i__“>)9/3(l +;§x3)

)
5 _Ff ™ (Tv-113)
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Addition of IV-11ll and IV-113 shows that the total pressure vanishes when
3 b 2 2
{n> =135 me | +_Z‘=.J()m(l§.)
=0 IGI rvs.kb 6 6'30
' B
(i

(Tv-11k)

and goes negative for lower densitiés. Such behaviour of the equation of‘
state is generally indicative'of either a phase transition, a breakdown in
the viability of the epproximation prdcedure, or (more likely) both. For

the electron gas, whose density is conventionally expressed in terms of

the dimensionless parameter

| s
Y, = (AT \3 me? Y
it e

the criterion IV-11lk, when evaluated at zero temperatureék—ico becomes

rs) = 4,8 (1Iv-116)
ot

a value approximately characteristic of the conduction electrons in alkali
metels {1ithium = 3.22, cesium = 5.57).%

Turning finally to the energy transport equation, we must consider in
place of IV-101 the exchange correction

a exth ~ =0 excHh ~ ~0
= gaSlaar i -l 3<P D F~) ALy + 3 F
e P 3 v-11

to ITII-U8. Proceeding analecously to the treatment of the momentum correc=-
tion, we find (delegating the lengthy but straightforward calculational

details to Appendix B) that the exchange-corrected form of the energy

*Gpeculation as to whether such transport anomalies are to be taken seri-
ously in the cace of metals must naturally ewait the introduction of
entropy production via the collision intesral derived in Chapter VIII
end, more importantly, the inclusion of the electron-phonon interaction.
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transport equation, III-T76, is ‘

mCad & v Cusepl{cEn %<“§a<n> # <T>eyLRD {

] a /
+Z}‘E,;_V<n> Z.(ﬁ) + <Flc><cn> v <ud> +<e exru>g.<,::>

: o T N \
A S e . (Iv-118) !

: ’ : g : - " i
vhere {g ™M} , the (ensemble averaged) expectation value of the exchange

energy per unit volume in the moving (Lagr Huiuﬂ) freme is given oy IV-T75:

| <€fexcu> = —-_‘!}_S LW, F (% wjt)[% SA w 15 (u/—WJ) (x w{)] (Tv-119)

the remainder of the notation being identical to that of III-T6.
Equation IV-118 is a rather surprising result in view of the way the
y °

exchange energy enters. The anomaly can be made more menifest by using

the mass continuity relation III-56 in the form

V'< = '——L J ] . | -
v .‘,:9> <n>\[_;{_ +4ud Y_](n) (1Tv-120)

to rewrite the exchange energy term as:

/
<é c;“—ﬂ> Z.<%> = m{n) —;9;*'(%)'17'}((5'9“5)

mLnD

__.Lg,__.t + 4%>. Z]< E'Cxcu> - .(IV—lE'l)

The first term of IV-121 is just the total derivative of the e::chaﬁge energy
per unit mass which is \-zﬁat one would naturally expect to be addéd to the
first term of IV-118. The second term of IV-121 is wholly unexpected. .
While a full study of the implications of IV-118 lies beyond the scope
of the present work, we will teke a step in that direction by deriving from

this equation the adiabats of a quasi-homngenous degenerate system with
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Coulomb interactions. In the absence of significant inhomogeweity, the
3 S o e :
kinetic stress tensor {T' D is diagonal, the elements being just the

kinetic pressure IV-113. Using IV-111l, IV-11l3, IV-120, and the notation

_D.. e Zuy.,
R v D 2SS (1v-122)
IV-118 can be written in the form (dropping the primés)_
3 ' :
D — K\ ‘A _ — €xch
52%<6 > —(I +a<e 2\ D pagnd (Tv-123)
& g v > DE
where .
— eXeH nay pdr R L I/3 b
= Sy FRLN S x 7.4
3 2= o o (20 % Bn(aa)) (Tv-124)
CE™™) = 2v% (m3<“>)a/3 (1 +r&£x) o oz
1o w5 L AT 13

X being defined in IV-112., IV-123 is then integrated to yield the desired

relation between X and <n> :

e
A et = a2 (1P
X2 |+ X002 w2 L3 lemys <n)
il (e.ao)

where ( XQJ <h,).‘) define the adisbat and use has been méde of the small-
ness of X at low temperatures.

For comparison, we can recover from IV-126 the adiabat in the absence
of.‘ exchange by setting e‘-’t=o and observing from IV-112 that

sl WhT
o (zv-127)

{w‘t" ( 3<n>)"‘/3:[
am ™
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yielding just the usual free particle result

. a
£ %oa or B ( LnD 3 ; (Iv-128
To <no> -

A
A particularly striking feature of IV-126 vis-a-vis IV-128 is noted by con-
centrating on the adiasbat defined by I, =0  (for a given<n). In the
absence of exchange, IV-128 states that this adisbat is also an isotherm,

meaning that the ground states of the system at different densities are
g

adiabatically connected. IV-126, on the other hand, indicates that when
exchange is included, this aspparently is no longer the ccse. Further study
of this point is clearly required.

As an dpplication of IV-126, we will conclude this section by comput=-
ing the effect of exchange on sound propagation in an electron ges. Ve
consider a uniform ges at ambient density n, and temperature'T;, with a
consequent X; as implicitly defined in IV-112. By linearizing the three
hydrodynamic equations about these values, we obtain in the usual fashién
a vave equation for the density perturbation,n, :

n,
at*

where the square of the sound velocity is given by

" -
e C ( Ylo’ xo) Va n-| (IV"'129)

2 total + -}—'
o ‘r"‘q !
m C (T\.)Xo) = alaf (m,x) R Df, ofa % D’P ot Ax (1v-130)
m
TR U o St B A e (e
X=x, .x:xa

The total pressure appearing in IV-130 is the sum of the kinetic and ex-
change pressures as defined in IV-111 and IV-113. X is connected ton via

the adiabatic equation of state IV-126. Making use of these relations and



~108-

the definition IV-115, we obtain the desired result:

a ;

B 2 _ 31 2

——I 3 I ‘+£E xb Y. 22 ' + _2&_ QML( 2&5)1) i

: L Q;A i O [ Eend (zv-131)
w43 (( é-ao) :

where C: » the square of the zero-temperature sonic velocity‘ in the absence
cf exchange, is given by
2 e PR |
el g g 32’ e | (1v-132)

3RSk
The second term of IV-13L represents the non-zero temperature correction to
,tﬂis value which would occur in the absence of exchange. The remaining
terms are exchange -corrections. The most noticeable feature of these ex-
change terms is the logarithmic singulari.ty of the last term at zero temper-
ature (Xa —>0) ., which has the consequence that at any density, a critical

temperature | c exists such thet sound waves cannot provagate (i.e. Ca<o)

for To < Tc.

. To obtain T as a function of Y5, we first obtain the

root of IV-131l which, for smallX , occurs at
l/ )
43 s (1v-133)

L

Inserting this relation into the definition IV-112 leads to the desired

2

~
—
—_

(o]

result:

AT
}a-rc = ".(a & . [I + ot + ﬂwl.l‘f—] e
w e I3 oL

a#\a)
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where
Y- a
o= 4 W — 157 4 (1v-135)
s, Ys ‘

'T; is a quite sensitive funetion of Y; as may be seen in Table 1.

TABLE 1

Density Dependence of Ta

6

. % | hbox 1072 1.1 x 10° | 7.4 x 1072 10.8 | 135

It shouléd be emphasized that the foregoing result will most likely be
significantly altered when correlatiéns are taken into account (i.e. the
third stage of approximetion). This alteration will arise from two sources.
First, viscosity and heat flov terms will eppear in the hydrodynamic equa-
tions. Second, the total pressure will contain a new term arising from the
density and temperature dependent "correlation energy” considered in Chap-
tef VII. Since it is impossible to estimate the nature of such correlation
effects at this point, the foregoing calculation should be interpreted as
merely an indication of possible anomalies in the transport properties of
an electron gas at extremely low temperatures. It is nevertheless inter-
esting to have observed how the inélusion of exchange can radically alter

the macroscopic behaviour of & many-Fermion system.
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With the possible exception of the present section, the results ob-
tained thus far are for the most part not new. In addition to the basic
papers of von Roos ( 10,13,14), quantum mechanical Boltzmann equations
have been studied, for example, by Landau (43 ), Goldetone and Gottfried
(44 ), and Ehrenreich and Cohen (45), although the scope and depth of
such studies are quite limited in comparison to the present work. In the
remainder of the dissertation, we will break fresh ground by applying the
formalism thﬁs far developed to a detailed study of two problems of wide-
spread theoretical interest -~ the statistical model of the atom and the
properties of a spatially uniform electron gas. As will be pointed out
in the concluding chapter, thesé applications apparently just scratch
the surface of potential utility of the formalism. It is hoped that the
degree of generality maintained to this point (and henceforth to be
abandoned) together with these two illustrative examples will facilitate

further applications of the theory.
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Chapter V  Plasma Theory of the Many-Electron Atom

A. TIntroduction and Background

Some thirty-five years ago, Thcemas (46) and Fermi (47) independently
proposed a model of the atom which, although based on a number of simpli-
fying assumptions, has proved extremely useful in the calculation of many
properties of complex atomic systems. The success of the consequent
Thomas-Fermi (TF) statistical model¥* and the fact that alternativé ap-
proaches based on a consideration of an N-electron Schroedinger equation
involve a prohibitively greater degree of labor have led many investigators
to attempt improvements of the model.‘ Until recently, such improvements
have been generally proposed on the basis of plausible extensions of the
TF "approach", which we shéll now briefly review.

The atom, assumed for simpliecity to be sperically symmetric, is
viewed in the TF model as consisting of spherical shells over which the
electrostatic potential is gpproximately constant but which contain a
sufficient number of electrons so that statistical methods can be applied.
For an isolated atom in its ground state, the electrons in each shellvare
then assumed to constitute a totally degenerate electron gas at zero
temperature, whose kinetic energy density, E"N(r) » 1s related to the

particle density, M (¥) , by the usual relation

KIN ‘ -(V-l)

Yy a2 5f
€ty =3 (3N K N
lo L ;

*Comprehensive reviews of the TF model and its various elaborations may be
found in the tracts of March (48), Gombas (49), and Corson (50).
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The electrostatic potential at Yy has two components: +the nuclear poten-
tial ¢, (r) , and a self-consistent field, ¢ _(v) , related to M(r) by

.Poisson's equation.
A _
ViP.. = 4Tenr) - (v-2)

The total énergy of the atom is then assumed to arise from these three

sources, and thus to be given by the volume integral

_ (3 ‘ : A 4
ETc‘rnL - g‘i ¥ {GKW(V') = & nir) 4:N(r) ‘T:IT en(r) s:;w} (v-3)

Minimization of the total energy with respect to arbitrary variations of
M(v) ; subject, however, to the differential constraint V-2 and the normal-

ization condition
3
Sdr wnir) =N (V1)

leads directly to the TF relation between the density and total electro-

static potential

32 B 3/
Mn(r) =:.§5_;1”£3 (ame) * (¢ —-4,) | )

(¢, being a Lagrange multiplier determined from V-4) which when combined
with V-2 defines the model. |

A first modification was proposed by Fermi and Amaldi (51) who, ob=-
serving that the Poisson equation V-2 implies.an interaction of each
electron with itself, suggested in effect that this equation be replaced
by

‘s = N-1 gire ntr)
v 4’5:.- N h 3 ‘ (v-6)

which approximately remedies this situation.
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Dirac (5d) added to the energy V-3 a term representing the exchange
energy density and obtained in this fashion a modification of V-5:

n(r) = 31 (:).\rnc:)z/1 La. r (¢ -, fa.’)"ZJB

312 (v-7)

where

e
4 o B A (v-8)

The so-called Thomas-Fermi-Dirac (TFD) model which results has been exten-
sively applied. Arguments for ignoring the Fermi-Amaldi correction if
exchange is included- have beea given by Jensen (53).

In the same vein, still another energy term, the so-called "correla-
 tion energy", representing the difference between the exact energy density
of a (spatially homogenecus) electron gas and that given by the kinetic
and exchange energy tenris ,- has been added to V-3 by various authors.

Since expressions for the correlation energy are only available in the
high (CGell-Mann and ﬁrueckner (54)) and low (Wigner (55)) density limits,
an interpolation formula must be used at intemedia;te densities as in
the work of ILewis (56). The Fermi-Amaldi correctionr is generally ignored
in such calculations for reasons similar to those adhnced in the TFD
model.

: Relativistic effects, which may be expected to play a significant
role for very heavy atoms, have been explored (independently of other
corrections) by se%reral authors. Gilvarry (57), for example, considers

in place of V-5 the relation
3
4T 3 : | = 2 rdd ] et /Q.
n(r) :é—ﬁ Ame)") £, ~m + edw + I:(Eo“'“"‘-'— reto) - (e dr) ](lmc)

(v-9)
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( Eo being a Lagrange multiplier determined from the normalization), which
is based on an expression for the density of states derived from the single=-
particle Dirac equation by Rudkjfbing (58). |

In studies of the equation of state of highly compressed atoms, exten=
sions of the TF model to non-zero temperatures are required. A modification
of V-5, obtained by deriving the low temperatm'é correction to V-1 from the
non-zero temperature Fermi-Dirac distribution, was given by Marshak and
Bethe (1) and was subsequently used in the equation of state work of Feyn-
man, Metropolis and Teller (60). A similar treatment of the exchange cof- i
rection was presented by Yokota (38) which, being based on the Fermi-Dirac
distribution rather than IV-81, is incomplete. This state of affairs was
corrected by Uméde. and Tomishima (61 ).

It should be noted that fhe foregeing modifications all share a common
defect with the TF model: +they are quasi-classical inasmuch as quantum
mechanics enters only via the use of Fermi-Dirac statistics in determining
the dependence of the energy density on n(r) . Indeed, quantum mechanics
per se is never introduced, only quantum statistics. This neglect is a
consequence of the underlying assumption of the TF approach, viz. that the
electrons may locally be considered as equivalent to a uniform gas at the
same density, the wave functions of which are Jjust plane waves. Due to
the presence of potential gradients, however, plane waves are not an ade-
quate approximation as was pointed out by Weizsacker (6), who proposed a’
modification of V-5 containing terms explicitly dependent on density gra-
dients. The quantum (or "inhomogeneity" correction as it is often called)
correction of Weizsacker was challenged on various grounds by several

authors. Most detailed numerical studies of the TF model have consequently
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ignored the question of quantum corz_'ections, not because they are expected
to be unimportant but rather because of the uncertainty as to the proper
one to choose.

This unsatisfactory state of affairs emphasized the need for a syste=-
matic deriﬁtion of the model and its corrections from a complete quantum
many-body theory, and resulted in a recent renewed interest in the thec-
retical foundations of the statistical model.

The first step in this direction had been taken by Dirac (53), who
rewrote the Hartree-Fock equations in terms of the density matrix and, by
maeking certain plausible assumptions about the distribution of electrons
in phase space, succeeded in obtaining the TF model with an additional
exchange term (the TFD model mentioned previously) in the limit of vanish-
ing inhomogeneity. Subsequent investigations, most notably those of
Kompaneets and Pavlovskii (63) and Golden (64), have generally followed
Dirac's lead in the sense that quasi-classical approximations to the
density matrix are studied. In particular, systematic expansions in 1
have been developed which simultaneously generate both exchange and guan-
tum corrections -- a procedure first suggested by Theis (65). A somewhat
different but equivalent scheme was proposed by Kirzhnits (66).. By assum-
ing that the occupation number of each single-particle state depended on
the expecta.i:ion value of the Hamiltonian in that state, he was able to
derive the TF model at non-zero temperatures.

Since these approaches were rooted in the Hartree-Fock approximation,
however, they were unable to include correlation effects; i.e. deviations
from Hartree-Fock. This defect motivated Baraff and Borowitz (67) to

attack the problem from the standpoint of the Green's function ;f.’ormuJb.tion
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of the quantum many-body problem. Expansion of the‘Green's funetion in
powers of b . led indeed to the TF model in lowest order and to the quan-
tum and exchange corrections in higher orders. Their work was limited to
zero temperature, although use of the techniques due to Martin and Schwinger
(6®) can presumably allow an extension of the method to non-zero tempera-
tures. In a subsequent paper, Baraff (69) attempted to include correlétion
effects by abandoning the ansatz that the two-particle Green's function can
be decomposed into a (symmetrized) product of single-particle Green's func-
tions, in close analogy to the quantum BBGKY hierarchy underlying our
method. His results were later refuted by DuBois and Kivelson (70) who,
also using a Green's function approach, concluded that the ILewis procedure
mentioned earlier was in essence correct. Non-zerc temperatures were for-
mally included in the DuBois-Kivelson approach, but no attempt was made to
derive the consequent corrections to the model, and it appears difficult to
do so. In common with the previous studies based on the density matrix,
relativistic effects were totally excluded.

There are, we feel, several unsatisfactory features in the foregoing
studies. TFirst, the role of the Fermi-Amaldi self-énergy correction is
nowhere discussed. This is particularly difficult to do in the Green's
" function approaches since they are based in essence upon a consideration
of a spatially.infinite though inhomogeneous electron gas, appearances to
the contrary notwithstanding. Second, the question of how quantum, ex-
change, correlation, etec. corrections influence the boundary conditions
on the model is generally ignored. To amplify this remark, it must be
noted that the TF equation for the self-consistent electrostatic potential,

even when corrected for various effects, possesses a family of solutions
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corresponding to atoms in various states of compression. To single out
the solution appropriate to an isolated atom, for example, one must be
able to compute the éressure at the atamic boundary for each member of the
family, the desired solution being that characterized by a vanishing of
this quantity. Consequently, alterations of the boundary conditions play
' a marked, if indirect, roie in practical applications of the theory.
Third, the perturbaticn procedure by which corrections to the TF potential
are obtained is inconsistent inasmuch as the self-consistency of this
potential is viclated in each stage of approximation -- a point we will
clarify later. Fourth,'extensions of these methods to non-zero tempera-
tures have only been achieved at the expense of considerable and, we feel,
undue effort. This is a manifestation of what is perhaps the greatest
drawback of approaches which proceed from inherently quantum mechanical
formulations of the many-body prcblem and attempt to study quasi-classical
physical situations, #iz., the obscurity with which the correspondence
principle is 2loaked by the formalism. An unfortunate consequence of this
obscurity is the sacrifice of the analytical and conceptual simplicity
inherent in the Thqmas—Ferﬁi approach. As a result, the procedure for
obtaining quantum and exchange corrections in more complex situations
(such as atoms with net orbital angular momentum, for example) is a very
difficult task, in spite of the fact that the TF model in such cases can
be iﬁmediately written down from simple physical considerations.

The present formulation of the quantum many-body problem, due to its
manifest exploitation of classical concepts and language, is particularly
well suited to the present problem. Furthermore, since statistical mechan-

ics has been introduced from the start, considerations of temperature are
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already included. In Section B, the TF and TFD models are immediately
obtained from the first and second quantum Vlasov equations (respective;y)
by going to the classical limit and thqs replacing the Generalized Poisson
Brackets by ordinary Poisson Brackets. -The role of.the Fermi-Amaldi cor-
rection in these models is also clarified. A straightforward expansion of
the g.m.d.f. in powers of R generates the quantum corrections to these
models. In Section C, the hydrodynamic equations developed in Chapter IV
are used to obtain an expression for the pressure at the atomic boundary
which yields the equation of state for the atom and, as a special case, the
'boundary condition appropriate to an isolated atom. In Section D, a pertur-
bation method is introduced by which approximate mumerical solutions of the
model can be obtained in terms of quadratures of tabulated functions. Ex-
pressions are derived for the radii of isolated atoﬁs and the zero tempera-
ture equation of state of coupressed matter in terms of these quadratures.
Section E calls attention to Appendix A, where the efficacy of our approach
is demonstrated by calculating for the first time the quantum and exchange
corrections to the TF model of atoms with net orbital angular momentum. A
new problem, plasma oscillétions of a many-electron atom, is formulated but
not solved in Section F. The relation of this problem to the hydrodynamicel
studies of Wheeler and Fireman (7() and Wakano (73) is briefly discussed.

Although correlation and reiativistic effects are not included in the pres-

ent work, we indicate in the final section the lines slong which the formal- "

ism can be extended to these cases. While lowest order relativistic correc-
tions can probably be included quite readily; a connection between the cor-
relation question and contemporary difficulties in classical plasma theory

emerges which is difficult to reconcile with the simplicity of the procedure

employed by Lewls and apparently justified in the study of DuBois and Kivelson.
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B. Derivation of Model

We shall begin by showing how the TF-Amaldi and TFD models follow
immediately from the classical limits of the first and second gquantum

Vlasov equations respectively. It should be recalled that these equations

are formally eguivalent at zero temperature to the Schroedinger equation
in the Hartree and Hartree-Fock approximations.

The time independent* first quantum Vlasov equation appropriate to a
spherically symmetric neutral atom consisting of Z electrons and an in-

finitely heavy point nucleus is obtained from III-14, III-15, and III-13.

It is simply
{ Fa 1), H 3
(L R i 8 = 0
ay ~ ScE ™ (v-10)
. -~ JePrB.
where (in spherical coordinates)
_ : F : z © | SCF .
Hs:;:r' Sk R ZL p e CP (r) (v-11)

-

¢5(F(f‘) = £ lg jd vz F‘ (IJE ' (V-lz)
% lr‘-r[

-

If, for simplicity, we introduce the definitions

Fieo) = 2 Foogy)
o e SCF
rl .7 Ee + "¢t (v-13)
£ A ém'\r + UL(Y)

*The time independent form is used because the atom is assumed to be in
thermal equilibrium. Non-equilibrium processes will be discussed later,
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and operate on V-12 with the Laplacian, one obtains

(1)
| G.7-B. |
and
iy = -umet 21 Sf«r’ Fle,¥) + amrze®s(r)  (va1s)
g
where
ulr) = - zet (v-16)
r->o v :

The normalization of F is

9
(v dv FiLw =z (v-17)
so that at the boundary of the atom.( P=F§) integration of V-15 yields
V) 4
dv = & . (v-18)
ar ?a.
r=R ‘

If we now take the classical limit of V-1l4, the Generalized Poisson
Bracket beccmes an ordinary Poisson Bracket as‘shown earlier. The solution
(F,) of V-14 in this limit is, as is well known, any functional of the
single-particle energy, €. To determine which functional to choose, one
appeals (as in Chapter III) to the quantum-mechanical H-theorem or ensemble

theory and obtains, naturally, the Fermi-Dirac distribution:

u' |
F; (e} = 3.'_"_3 exp( €E-AY) + ]] " (v-19)
| e [ P(hT

Equations V-15, V-19 and the associated boundary conditions are precisely

the Thomas-Fermi-Amaldi model generalized to non-zero temperature. We have
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demonstrated, therefore, that this model is nothing more or less than treat-
ing the atom as a spatially inhomogeneous classical plasma obeying Fermi-
Dirac statistics =-- hence the title of the present chapter. The pressure

at the boundary of the atom is obtainéd simply from the hydrodynamic equa-
tion III-T4 which states that in the classical limit, (—>0), the stress

tensor defined by
)> S.JU'M'V‘ ‘U‘JFCV‘V) (v-20)

must be equal to the externally applied stresses at the boundary if hydro-
static equilibrium is to be attained. Since F,, as given by V-19, is spher=-
ically symmetric in velocity space, this tensor is diagonal.and isotropic.
The consequent hydrostatic pressure at R is cobtained trivially from V-éO

and V-19 if the temperature of the boundary, T, is sufficiently low so that

.the electrons at the surface are still highly degenerate. The result is

o A
(R,T) = . um ) 5w (v-21)
JP 15n’ 1; (l : ') [‘ e % (A—umn”

where U(R,T) is the solution of V-15, V-16 and V-18. The isolated atom is

obtained by letting T—>0 and demanding that the pressure vanish at the

boundary, yielding simply

U(R) = X P

or, equivalently, that the density vanishes at the surface.

In precisely the same fashion, we may obtain the TFD model from the
classical limit of the second quantum Vliasov equation.¥* Comparing IV-6l,
IV-65 and IV-54% with TII-1%, ITI-15 ard III-13, we note first that the

Fermi-Amaldi :Z—1/EE factor no longer occurs so that V=15 and V=17 are

*We assume the spin-density to be everywhere zero.
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replaced by

ViU = ~qfreagfv’ F(Ly) + u4mze's(y) (v-23)
and
v\ Lo '
AP) % (v-2l)

respectively: Furthermore, it is seen that in going to the classical limit
by replacing the G.P.B. by an ordinary Poisson bracket, the equation deter-

mining the consequent F, is now

7.8,

where the exchange-modified single-particle energy is given by

(v-26)

I

) ]

, R 3 A
e B Lwmy? § Ulr) = 2aWe R t‘a SA\J" Folr,v)
: m na
\Y-Xl
. the Fourier transform (III-39) of the Coulcmb interaction having been in-
serted into the exchange term IV-66.

As before, any functional of € will satisfy V-25, the choice again

TFD
to be determined, in general, by statistical considerations. Iocal maximi-
zation of the entropy subject to the constraint of constant total energy

"yields in place of V-19, the relation (cf. IV-T6)

=
Fo(enny) = B [exp(Smmas2) +1 ]

(v-21)
= Qm’ n uer) _.an‘g__ Vo' Fo (&g (07
e exr( '+ S TF_D?F’FJ =21 .,

kT
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which, when combined with V-23, constitutes the TFD as generalized to arbi-
trary temperature by Umeda and Tomishima (61). Concentrating for simplicity
on the zero—temperatﬁre case, we have already shown in Section IV-C that

V-27 can be solved in this limit to yield*

Fonv) = avﬁ; e (v-28)
| o Uz Vi)
where in place IV-80, we have -
ﬁmﬂédébwifuw)—xio ‘ (v-29)

™K
Solving this quadratic equation for ’V_}_ (keeping VonJQr the positive square

root in the usual fashion -~ see Plaskett (73)); we obtain from V-28 an

expression for the density

] : ‘ 3
nir) = W L“?”lr{,’, & BT (;!Wi)?"a (em)"‘ e:1 + {]__Q\_gq + x-Um . (v-30)
3 h? w10 W -\ h?

which constitutes the TFD model, V-T. The pressure at the atomic boundary
is again obtained from the hydrodynamic momentum equation -- IV-10T in the
present case. The net stress tensor now contains a contribution from the

excharige pressure
L) 3 ol o3 7 4
(TS - omrsipisn + (35

which has been evaluated for the Fermi-Dirac distribution in IV-11ll. The

kinetic part of the stress tenmsor is trivially evaluated end we find (using

*As is to be expected, V-28 can be obtained without recourse to statistical
mechanics. We have already demonstrated (see IV-24) that this is a direct
consequence of the form, IV-1, of the Hartree-Fock wave function coupled
with the requirement that the energy be minimal. The same result was ob-
tained by Theis (65) as a consequence of the "idempotency”" of the density
nmatrix. ;
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V-30) that the total surface pressure is

58

f(RJ—;o) = T & (3)5/[nm)] ( ) [an)] (v-32)

15 wm

where N(R) is related to U(R) through V-30. Since N(R) is always greater

than zero (see V-30), the pressure can only vanish if

N(R) = E_Eﬁi‘ié (v-33)
192 TS H*
a condition which could have been anticipated from IV-1llk,
The TFD model has thus been found to feollow directly from the "class-
- dcal"” limit of the second quantum Vliasov equation -- classical in the sense
that only the 1owést order spatial gradients occurring in the Generalized
Poisson Bracketn are retalned. To generate quantum corrections to the fore-
going models, one has only to include in a systematic fashion progressively
higher order constituents of the G.P.B. The procedure for doing so is
immediately epparent from the form IV-6T of the second guantum #lasov equa-
tion, which in the present problem becomes ‘ ;
E'VLF—%\'V'.U‘VVF =, _l_,_Eva +Lg_l— (“_‘:__.)n Q“L ')"F
o am B onag e ¥ IxKaxt QU avt.

. oo R
$ L _n(-gn)" Fo™ IF Sl 3y
LN LV A PO DU"DU‘-- JVFIVE. axFIx-
(v-34)
where
3 ) ’
t%)em?r G —Q"ng\j SA v l—(~,.7f) S
' m? 1Z-%')?
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Noting that the right hand side of V-34 contains all powers of 1 starting

with the first, we introduce the formal expansions
&0 [~ ]
. n exch a n | Cxch
F el b ¢ = hZ b ¢, o 3D
Nzo n=o :

into this equation, considering U, for the moment, to be a given potential.
Matching the coefficients of equal powers of 1t leads to the chain of equa-
tions:

Oth order

(v v -2 VLU-Vg) F =20 (v-38)
1lst order

UE% =S U %) F = SR LB S ] e

am
2nd order

a “~LZULVAE =t 1‘—-1331) PN

(07 £ %0 %)F, =b [F -1 TR
. 3 x g
| exch o

= ﬂ3 2V D |'° + V CP VT‘ At V ,_o .Vrd)?xc"l
Em3 JxF XXM vk utw™ ¥ ~To

etc., which generates all the F,, as functionals of (the as yet unspecified)
F, and various gradients of U. The potential, U, is then rendered self-
consistent by means of V-36. A

Generally, the series V-37 are truncated at some power ofT\ « Defin-

ing the f th approximation to F as follows (we indicate here the explicit
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dependence of the F,, on U)

J

| | . -
F(f)(U‘r,Lr) = Z’ﬁ (VU5 L v) (v-l1)
N=o

the corresponding approximation, U(f) , to the potential is then determined

from

VU = e (O FO ey (v-12).

a procedure which guarantees its self-consistency at every state of approxi-
mation. The normalization of the F(P) and boundary conditions on U(P) are

naturally the same for all f , viz.

y&avfr F‘P)(u‘”m;r,w) = 7 (v-43)
and
P = -z - 4_9,) . (v
P T X ar reR

All that remains then 1s to specify F,. This, however, is a trivial
question since F, is just the distribution functioﬁ which one would have
in tﬁe absence of guantum or exchange corrections; namely, that which is
appropriate to the Thomas-Fermi model considered previously (ﬁthou‘b, of

course, the Fermi-Amaldi correction).

Thus
3. -1
AR R Ll g (v-45)
h T -

A few points must be noted. First, the chemical potential, }, occur-

ring in V-45 is implicitly dependent on'h « It is carried through the



calculation as an unspecified constant, eventually to be determined from

V-43. Thus, V-41 and V-42 should be more properly written as

(?) . . e P n " . i -
3 (U)A)I“’l[) :nét F“(UJAJI:"‘[ (v=46)
and
- ) .
g‘fv”\%r FP Lo 2 80 5 (V-47)

It is readily seen that the homogeneous solutions to V-39, V-LO, etc. cor-
respond simply to the corrections to A\ of order JF, ¥ ‘ha , ete.  Second,

it is important to call attention to the fact that in our scheme, the low-
est order equations correspond to the TF rather than the TFD model. An
alternative chain of equations for the F % could have indeed been obtained
by postponing the consideration of the t, dependence of the exchange po-
tential in the same manner as that of the self-consistent field. Although
the two approaches are formally equivalent if one goes to infinite order
inh (i.e. p—>° in V-41), the effect for any finite £ is to intro-
duce, in the latter approach, exchange corrections of order higher than hf.
Since we shall presently find that the quantum corrections in any order
contain terms of the same form and magnitude as the exchange correction in
that order, it is artificial to treat the two types of corrections differ-
ently -- notwithstanding the fact that they arise from different physical
origins. A conclusive justification for our procedure is obtained by re-
writing V-34 in terms of the dimengionless variables appropriate to the
problem (to be introduced shortly). For the preseﬁt purpose, we need only

-1/3 22/3,

note that the characteristic distance scales as £ , velocity as

energy as Zh/3, and

Fod 23
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Introduction of these relations into V-34 reveals that our ;procedure is a
consistent expansion in a dimensionless parameter proportional to Z-l / 3,
wheréas a method proceeding from the TFD model is not. ‘This is an import-
ant point since the TFD solutions have physically unrealistic features
(such as the finite density V-33 at the boundary of a free atom) which are
not expected to persist when quantum effects are taken into account.

In the present work, we limit our considerations to order}'\a, a.nd.‘
hence must solve V-39 and V-0, The solﬁtion of these equations is alge-
braicly straightforward and thus relegated to Appendix C. There we con-
sider in fact the more general plfo'biem characterized by é. single particle
Hamiltonian which is an ar't;itra_zz function of { and '}{ rather than V-13.
Our motivation for doing this is both to facilitate application of the
formalism to a wider class of problems and to indicate how solutlions can

be obtained to higher orders int . The result for F(2) (not to be con-

=)
fused with F , the doublet q.m.d.f.) is

A de Hm ) 2
I 5 4
-b ARl v (vovu) + L (gu)? Wd (v
—_— 5 € = e 2 V.U
s dE [ cpeo] -£d% g
g R CCAR T2
™ & l,u._vvlll -
& -:.,'-;M‘U' +Up (v-148)
where
-1
= am; E-X = 3 '
{8 o {e*p(ﬁ) +\] :)FE-} £ (€) (v-19)
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Inserting this result into the Poisson equation V-42 and performing the

angular integrations in velocity space, yields, after some algebra,

w32 U(a) o —1}61(1\'")3/1 T ( o' (2) -,-) j__ @) () u)
i Ty X FURT (u ,T)
33 g lem

P |
-k (Vaum) T (™= Q’T) + 3e fzm) U _ A
— -— ——— — T
£ %( aTR il = %] )2
(v-50)

n» are defined as

I“(x,f) = ——QWW { [ev ‘“_-I)z (v-51)

s X+WwW

where the Fermi-Dirac integrals, I

and have the low tempera.ture expansions

I (%,T) = (-%) [) § I n - n)(*’“-) O (J‘T))J (v-52)

Solving V-50 for V U ok gives

(Jm) I., (x,m) P T,
SO } ._.._1__. -—13 \V ~3,%T)
VQU{ - —'43 (Qm) _L ( ._X T) 1 'ﬂ""h __3/ X7 é4m )

T

L3 xm

§ o %(%hﬂhI_.,afi,T)
L J
(s A

Since the denominator effectively introduces terms of order beyond 1 2, we

must expand it to obtain the final result

" LVREY 8 —
U= —4e’am) ) T a(u' A,T) ’+3c (R"‘) [Ivz +1 _L_.,JJ _.‘k?(vuﬂ))i]:_a,a

3TRS e
la 3’;
T.F EXCH. QUANTUM QRUANTUM

(v-54)
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which is the TF model generalized to arbitrary tempera‘dures , and corrected
for quantum and exchange effects to order }h 2. The physical origin of the
correction terms is as indicated. 1In particular, note that a quantum cor-
rection appears which has the same form at zero temperature as the exchange
correction but is smaller by a factor 1/9. To establish contact with pre-

viously published results, we pass to the limit of zero temperature and let
U = U, +8uy

where U° is the solution of the TF equation:

(v-55)

Y
Vi, = -4et [am(x v.)] < (v-56)
31‘!“‘53
Then, assuming -h“ Ul £ <& U, so that only lowest order terms are kept, we

find for U,; the equation

r

-y, = ‘-ivne [;\MD\ u‘,y;‘u:l = ?maeq (),_-Uo)

T TR

g me \'_lm(J\-Uo)] ' [q 72U, + (A-ud) ' (7 Vo) J
nm"a
(v-5T7)

which is identicel, for example, to equation 4,15 of reference (7). We
note and take exception to the fact that the perturbation procedure used
to obtain V-57 from V-54, while no doubt justifiable as a method to facil-
itate numerical solution of the eq_uations, nevertheless destroys the self-
consistency of the model.

Finally, we make use of V=52 to obtaln the lowest order temperature

corrections and find

VU () = -y e am R (R ) ( +1‘(£ ):) {' e
8 yR

R - 3k (P-uR)

* (v-58)
x| -_Z'n’a' £T 1) _‘b‘i (V Um) ‘D:l »
( 4o (){"-u“’) eqm ( o u®) -4 ( Am UW)
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In discussions of the TF model, it is customary to introduce the
dimensionless variables

)El) m ZC ¢ r
r

w

T
3 = s ﬂrj 3| = 0.93534 1:,
* b 4 ( )V\;Tl Z b h;_;‘a. (V-59)

in terms of which V-58 beccmes simply

T4~ () a2 -2 2]

’ -6
-4 ooxd )T :tx ieles
4 X 4,3
where we have introduced the additional definitions ‘
. £y : 1
T:(a%e )t o = 1 (_g_)é:o.oms (v-61)
™ J'c A Ja 2% \ > 2z
The boundary -conditions on 4: are
(b (e) =1 (v-52)
o ;
d(x) —X ¢x)=o0 _ (v-63)

where X is the dimensionless radius of the atom.

To complete the model, it is necessary to determine the pressure at
the atomic boundary since a one parameter¥* family of solutions to v-60
exists which is consistent with the twb point boundary conditions V-62 and
V-63. This family characterizes the atom in different states of compression,
the free atom being described by that (zero temperature) solution of V=60

whose surface pressure vanishes.

*Corresponding to different values of @ (o) , or, equivalently, the chem-
ical potential.
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C. Theory of the Compressed Atom

The calculation of the pressure which must be exerted on the boundary
of an atom in order to confine it to a sphere of radius R is greatly facil-
itated by the kwdrodynsmic theory developed in Chapter IV as has already
been demonstrated in the caese of the far simpler TF and TFD models. This
is a particular advantage, we feel, of the present formulation since in
conventional treatments (49), even in the absence of quantunm corrections,

one must compute the total energy of the atom as a function of R and then

obtain the pressure from the derivative of this quantity. -As one would
expect on physical grounds, the volume integrals involved in such a pro-
cedure are ultimately reduced (generally after some labor) to surface in-
tegrals, thus enabling the pressure to be expressed entirely in terms. of
quentities evaluated at the atomic boundary. Our method ;::irctmwents this
unnecessary and elabcrate procedure.

Since we have showﬁ‘that exchange corrections first appear in order
'F\a , the hydrodynamic theory of Chapter IV which retained only the lowest
order exchange term is correct to this order. TIn going to higher orders,
more terms of IV-99 would naturally have to be introduced into ‘the ana.iysis 3
the procedure for doing so being clear from our previous work. It should
be emphasized, however, that the exchange-independent quantum corrections
to the hydrodynamic equations as developed in Section III-D are correct to
all orders in .

We proceed from the momentum equation IV-10T which, when the convec-
tive velocity LW is set equal to zero, becomes the equation of hydro-
static equilibrium. It is Immediately apparent from thié equation that at

the atomic boundary (g)t‘he net stress tensor whose divergence must be



-133-
balanced by external forces (contained in the \74’1- term) is given by

NET "'

TFL"‘ R) de-mv v? F(R ) g ((Pe’“" RYD + ‘E V'Yn(ﬂ)))

(v-6l)
2o avoid unrewarding complica.tions we will evaluate this gquantity at zero
temperature, the generalization to non-zero temperatures being straight-
forward.* Recalling that <‘Pc“"'m)> and {n(R)) are obtained from F, a
little care must be taken to insure that only corrections of order 'h to
the net stress tensor are included. We therefore rewrite V-64 as
(:z)
T per (B SA vt Fige o+ §° (<1°"“"(ﬁ,t51r))> r 8 7Cn(R ‘“"D))
(v-65)
so there will be no confusion.

The leading contribution to M comes from the Fo piece of the first

term of V-65. Straightforward evaluation yields

= W3y, 513 ¢ 4
So\‘v R S Lujj_: (X UM(R)) 'S (v-66).
5 I R3

*which is just the TF term, V-21.

Exchange corrections to || come from two sources -- directly through
the exchange pressure and indirectly through the exchange contribution to
the kinetic stress tensor (i.e. the first term of V-65). The exchange
pressure has already been computed for a Fermi-Dirac distribution in IV-111l

and is
! exen o 1’-3"3 %—_—-em %
< (R = ;e (%.) LNFY) ha et (X v m) (v-67)

*0On= note of caution, however. In using IV-11l1l for <f‘ "‘"} » the para=
meter X must be taken to be

R T hT [ A("’—Un,] -1

rather than that obtained from the full IV-11l2. Use of IV-112 would intro-
duce higher order corrections.
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The exchange correction to the kinetic stress tensor as obtained from V-i48

is
- - 2 .
—lﬁﬁlﬁagdyv ‘m'U‘tUJAE"(G) gaz‘u_r FOLR,I;:’) {,"{_1‘[1].‘1 W qezma (lﬁ}" Uh)(R)) SLJ
™2 de D ok '
e=2mvy | YRy , (v-68)

Before computing the remaining (inhomogenéity) contributions, it is of
value to collect the terms obtained thus far. Combining V-66, V-6T and

V-68, we have

b , 5 g i
_“_L") ) > Sud q‘a}l_mya (A(_-L) U[?JCR)) /Q , % 15 GQWI a )
ey IS TAR3 4. QBT (- UB(R)7R

+ inhomogeneity correction (v-69)

It is readily verified that these terms are in agreement with those obtained
to the same order from the TFD expressions V-32 and V-30, which serves as
a convenient check.

Turning finally to the quantum corrections, we will make extensive use
of the boundary condition V-24 which enables us to ignore all terms propor-

tional to %il . Thus, the last term of V-65 reduces to

r
L " b 2!
95 pientry = sV 5 am 2 [V (PfR] = STR " T3 gy ptys
im hm TR 4 31!’“%3 &
=R
(v-70)
which, by virtue of the Poisson eguation V=54, becomes
. " a :
S )4, a(m(m) = qmet (#‘Lu t R)) (v-T1)

l-]m 31\‘3*\4

terms of higher order having been dropped.
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Similarly, we need only consider two of the inhomogeneity corrections to

the kinetic stress tensor:

ga’v mr"'v:‘(-_‘f v P A ) (v-72)
4m d e?
g=tmvi+ gt
and
g a, () 2.
S,fv w.v“tﬂ(‘:ﬁ}v v 9 U Z_PJE( ) (v-73)
‘ 3
6 o axt e eoimrts U

since the others vanish at the boundary.
Evaluation of V-T2 is straightforward and we find
. 2 () () 2 ':\‘) N
) = Y& (?\.)—U (@S (v-74)
33

E=trav™+ R
3

SAU’M’U‘ v"(‘)“ v Umcl Fo
E Lo Je

V-T3, on the other hand, is somewhat more involved. First, we note

] R)
that as a consequence of the vanishing of é_‘_"_ :

ar
K'U’l 0‘1 U(-n = () _ (2{ B)a (v=75)
kot % My
Ao PaRk R

Inserting this result into V-T3 reveals that this tensor, though diagonal
in a spherical coordinate system, is not isotropic, there heing an addi-
tional purely radial stress component. Evaluating V-T3 (ma.king use as
before of the leading term for V:‘U(a) from V-54), we Pind 1t becomes

_8we wiad P Um(ﬂ)) s‘J { R sbl] (V-76)
q 7R
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vhere we have referred the -stress tensor to a spherical coordinate system,
A A A
the indices (1,2,3) now corresponding to the f{;r > Use , W respectively.

The consequent radial stress is thus

~8 et (A¥- u®R)*
3 'F'*k“'

Combining V=71, V=Tk and V-TT ylelds the striking result that the in-

(v-17)

hcmogeneity‘ correction to the surface pressure vanishes in order ‘ha « It

should be noted that the three terms whose mutual cancellation* produces

this result are each of the same magnitude as the exchange contributions

V-67 end V268, l
The final desired result for the surface pressure ffd(FD'is thus con-

tained in V-69 and is

-ftt)(r%) 428w (- (R) - [) poIgem® o
T e 4R (AU m)"
| (v-78)
In terms of the dimensionless variables V-59, this bscomes
10f ¢ 5) |
x) = 272 e (4_)_@):1 | + 49«(X )'7"
o (3e53)t F1 A X $X)
5 ' y (v-79)
= 1.5 x10” th[ﬂ.@) a[l"'ﬂéd(:&)“ dynes
\ X 3 \g) o

The boundary condition appropriate to the isolated atom is thus seen

(R '
(b-—-—-x S da (v-80)
*¥This cancellation does not persist at non-zero temperatures, the sum of

these terms then being a 2
Pinhomo =2 -'7“‘f -l()sz
+H
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which, from V-60, is tantamount to zero density at the surface.*

The result, V=79, disagrees with the corresponding expression obtained
by Kalitkin (74), who employed the method of Kirzhnits (66) to obtain quan-
tum and exchange corrections to the TF model from the density matri;c formal.-
ism. In particular, he concludes that the pressure vanishes for a non-zero
value of the surface density which would result in a somewhat smaller radius
of the isclated atom than would be obtained from V-80. While the equation
for the electrostatic pétential which he obtains is apparently equivalent
to V=57 (as it must be), his expression for the pressure is obtained "with
the help of equations analogous to the virial theorem in the TF model."
The vagueness on this point and the extreme conciseness of his paper makes

it difficult to evaluate the point of departure between our work and his.

D. Perturbation Technique for Approximate Solution of Model

Detailed numerical solution of the model lies beyond the scope of the
present investigation since it is difficult to Justify the extensive requi-
site computer time until the lov;'est order correlation and (for largeZ)
relativistic corrections have aléo been included. Although we shall pres=-
ently show that approximate solutions can be relatively simply obtained in
terms of quadratures of tabulated functions from a perturbation analysis of
V-60, there is some doubt as to the adequacy of this approximaticn since
the corrections to the self consistent field become comparable to the unper-
turbed (TF) solution near the edge of the free atom. We therefore will
formally carry out such an analysis, leaving the actual numerical evaluation

of the quadratures to the interested reader.

*That is, assuming that the final term of V-60 does not blow up at large X,
an assumption which is borne out if one uses the asymptotic form +_> 144 ,
of the TF potential to approximately evaluate it. X3
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Restricting our consideration to the case where temperature corrections
can be ignored, the basic equation of the model is V-60:

L6 =g =4 X\ (4-x¥)
£ 8 o[- g o]

]
H

= ¢ | (v-81)
— I+ o F(X,4,9)
x'/; el
with the general boundary conditions
(o) =
q) ) | (v-82)

/
PX)-X ¢(X)=o0 (v-83)
and in the particular case of the free atom (see v-80)

b)) =X, $ (X)) =0

(v-8k)

whereX and Xo are the dimensionless radii of the compressed and free atom

respectively.

Turning first to the free atom, let 43 be the TF function defined by

¢ 3 ;
A b1 Lm d(9=0

v-8
X '3 X Do ( 5)

and define*l:

"3 4’:‘ by o
AEg (';gh)n R agar | (v-86)

in terms of 4% . Both d% and'q- ;> as well as their first derivatives, have

been tabulated by Gombas (p. 358 of reference (75)).
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Setting

bx) = ¢, + a kN (v-87)

we find from V-81 that to lowest order in ¢ , }a(x) satisfies the equation

, , 3,
b s a% R o= 0 fix,6,4)) (v-88)
nxk

Before integrating this equation, certain difficulties at very small X
must be cited. Examination of V-8l reveals that for X less than a critical

value, X, , approximately given by

o i (v-89)
X = &

the inhémogeneity correction drives the right-handlside negative which is
tantémount to a (meaningless) negative density. Since V;89 corresponds to

a distance of about 1.5% of the radius of the K-shell, the number of elec;
trons contained in a sphere of this radius is certainly so small that the
épplication of a statistical approach in this region is clearly insupport-
able. Relativistic effects also become important in this region. The break-
down then is not to be taken seriéusly. We therefore adopt the procedure*

of only applying V-81 for 22X , with a consequent alteration of V-82
c

¢ (X)) =1 (v-90)

equivalent to excluding electrons from the region X A:]Cc . The effect of
this procedure on the model at reasonable values of X is negligible.
Integrating V-88 and determining the integration constants from the

boundary conditions V-82 and V-84 results in the following expression for

¥For convenience, we will continue to formally integrate v-81 from the .
origin with the understanding that the above modification is to be made
in any actual numerical integration.

(]
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the free-atom solution:

tf)()t) = 4>D{7() - ch’(xo) - toonl(x) X"gw) Jx)

) M0 s
where
rd (474"
3= (e - nhorb) i
A : %0 (X4 AR
and X (o) 1is implicitly determined from the relation
o= BEIMIX) - L) b (%) B

o ‘QCXJ

For the compressed atom, we require an expression for,(P(}C) which
when combined with V-T9 yields the pressure as a function of atomic volume.

Straightforward combination of V—83,_V-87 and V-88 leads to

dX) . X)) E & - SEMX) + 102 g(X)
X n (%) -X V(X)

(v-ok)
It is therefore seen that the equation of state of compressed matter
can be cbtained for all atomic numbers in this approximation by evaluating
the -single quadrature V-92. The convergence difficulties at small XX men-
tioned earlier do not, incidentally, create any problems in computings, .
Formal integration to the origin introduces an error in 3 of the order

. l/
‘iLo o ‘2 which negligibly alters V-9l.
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Since all physical properties of the model are derivable from f:GU
which, in turn, is determined by 4) and its first derivative, the problem
is thus formally solved within the framework of the perturbation approxima-

tion.

E. Application of Method to Other Problems

The quasi-classical statistical methods developed in this chapter can,
of course, be applied to a study of the equilibrium propefties of spatially
inhomogeneous interacting systems with more degrees of freedom and complex-
ity than the spherical atom. Generally speaking, wherever the TF approach
has been fruitfully applied, therexpression for Fﬁn derived in Appendix C
coupled (if necessary) with the hydrodynamic analysis given earlier enables
one to immediately correct the model for quantum and exchange effects. Fur-
‘thermore, the uncorrected TF model itself (i.e.f, ) is obtained by the simrle
procedure of finding that functional of the classical consﬁants of the single=
particle motion which ma.ximizes. the (quantum-statistical) entropy* subject
to the constraints on the system. The analogue of the TFD model is similarly
obtained by computing the "exchange potential"” from the (given) pérticle
interaction usiﬁg IV-53 and applying a similar approach to the pseudo-class-

exch
). Above all, it should be

1
ical problem defined by (Hclassical +9 ¢
re-emphasized that the uncorrected TF "approach" to any problem is fully

equivalent to viewing the system in question as a classical correlationless

plasma obeying quantum statistics. The consequences of this cbservation

will be discussed further in Sections F and G.
As an example of the efficacy-of ouwr approach, we have included in

Appendix A a reprint of our original paper which forms the basis for the

*More properly, one should speak of minimizing the free energy.
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present discussion. In it the quantum and exchange corrections fo the
statistical model of an atom with non-izero net orbital angular momentum

has been derived for the first time. The motivation for this application
was a remark in March's (49) review article indicating that such correc-
tions may significantly alter the results of Sessler and Foley (76) who
employed the TF and TFD models appropriate to such atoms to compute the
gquadrupole coupling constant and the.magnetic field at the nucleus due to
the orbital motion of the electrons. While a treatment which assigﬁs such

a manifestly "single-particle" property as the net orbital angular momentum .
"collectively" to the entire atom violates the shell sﬁructure known to
characterize atoms and thus is a highly dubious approach, the necessary

' equations for those inclined to extend their work appear in our-article._
There is, however, a more intriguing question which could be answered frdm
oﬁr results. Instead of arbitrarily requiring the atom to have zero net
orbital angular momentum as is usually done, one should allow the model to
generate net angular momentum if a state of lower energy'is thus obtained.
Specifically, one should compute the total energy of the atom as a function
of L and then locate the minimum. While it is most likely that a non-rotat-
ing atom in fact has lowest energy, this is not manifestly obvious due to
the complexity of the quantum and exchange corrections.

For the sake of completeness, it must be pointed out éhat the Fermi-
Amaldi factors which appear in Appendix A are in error as the analysié of
Section IV A in the present work was not availeble at the time it was writ-
ten. Similarly unavailable was the general result of Appendix C whlich would

have immensely simplified the algebra occasioned by the centrifugal potential.
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Finally, it should be observed that‘in the spirit of viewing net orbi-
tal angular momentum as a collective property of the atom, one might also
choosé to treat the net spin in the same fashion. The method for generaliz-
ing our model to this case is simpiy to treat the two spin species as inde=-
pendent systems coupled throuéh thé net self-consistent field as shown in
Chapter IV. The result of such a procedure would be the introduction of a
new parameter -~ essentially the ratio of the chemical pbtentials of the
two species -~ which would again be chosen from the standpoint of minimizing
the total energy. In view of IV-86, it is highly likely that such a general-
ization would lend to a net non-zero spin density localized in the outer

regidns of the atom.

F. Non-Equilibrium Processes and Excited States

In addition to the ground state of a many-electron atom, the nature of
the excited states is also of theoretical interest. Certainly the most’

important exclted states are single-particle excitations in which the exci-

tation energy is given to one or, less frequently, a few electrons. While
such states are pure quantum mechanical and must be calculated from the
Schroedinger or Dirac equations, the statistical model is still of great
value in determining the potential to be used in such calculations. The
work of Tatter (77), for example, based cn the TF and TFD potentials. could
thus be refined using the model derived herein.

The fact that the many;electron atom appears to be describable in its
gross features as a classical plasma obeying Ferml statisties suggests the

interesting possibility that modes of collectlive excitation may also exist

in which the excitation energy is Jjointly shared by all or most of the
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electrons. One such class of excitations has actually already been implic-
itly treated when the statistical model was generalized to non=-zero temper-
atures. In contrast to these thermal excitations, however, modes of collec-

tive oscillation can also be anticipated. Such excitations have been studied

in the hydrodynamic limit by several authors, most recently by Wheeler and

Fireman (71) and Wakano (72). 1In these studies, the classical hydrodynamic
equations have been applied to an inhomogeneoué electron gas whose ambient
density is that given by the TF model and whose equation of state is that
characteristic of a totally degenerate free electron gas (i.e. IV—113).
The results of this analysis engbled Wheeler and Fireman tc compute a uni-
versal photo absorption cross-section for far ultraviolet and soft x-radia-
tion due to such excitations. While their srork can obviously he improved
by using the quantum and exchange-corrected hydrodynamics developed in IV-D
as well as the improved density expressions derived in the present chapter,
there appear to be good reasons to doubt the validity of the hydrodynamic
approximation itself -- a point which does not seem to have bgen considered
by these authors. Specifically, as we discussed earlier, the criterion for
the validity of hydrodynamics as applied to time-dependent processes is that
the frequency of thermalizing (i.e. large momentum transfer) collisions
should be large compared to the characteristic frequencies of these processes.
A simple calculation reveals this not to be the case.

The characteristic oscillation frequencies are of the order of the
classical plasma frequency appropriate to the mean electronic density in

the atom. In particular, one finds (Jensen (78))

~ T et o TN 4
Wase = e %E«E _ (v-95)
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The characteristic collision frequency can be estimated from the
Rutherford cross-section for large angle scattering of an electron whose

velocity is of the order of the average Ferml velocity:

= T v o) o~ Howe!
ol = WV T Ve, ©>45°) (v-96)
3 E3
Thus
w "
cotl o~ | <<l (v-97)
W ose :
which contradicts the assumption LUCOLL:$> Ldosc . Even more impor-

tant is the fact that the exclusion principle vastly inhibits collisions in
a degenerate electron gas, effectively restricting them to occur between
particles in the immediate viecinity of the Fermi surface. The net result
of the exclusion principle would thus be to greatly enhance the 1nequali£y
V-97.

Finally, there is the curious result obtained in IV-D, viz., that adia-
batic inviscid oscillations in a zero temperature quasli-homogeneous electron
gas are apparently impossible when exchange effects are included.

It seems clear, therefore, that collective oscillations of a many=-

electron atom musv © studied in the collisionless rather than hydrodynamic'

approximatién, a suggestion which tc the best of our knowledge has not been

made before.

The basic equation describing such plasma oscillations of the many-

electron atom is the time-dependent éecond quantum Vlasov equation obtained

by simply adding EF/M to the left-hand side of V-34. Furthermore,
since the oscillations are assumed to be a small perturbation to the equi-

librium configuration, the linearized form should be used. Specifically,
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let F({:‘yv' ) and U( ¥ ) denote the solutions of the time-independent V=34

and V-36, and let

F et 2 FIGY) + £ (L) (v-98)
Udr gy =00 o Mr[‘t‘f) (v-99)
where ;
< 3 ext
Viw = -4re SJU' U0 Y,8) +4TE @ (L,%)  (vo100)
Also let
cpeuu.la[ y,t) = ‘I’-e“"([ v) ey (v-101)
~) S - rl!.)t) Sl
where
L exeH o 2 43 o
cb = —ame h gal‘,‘{l', Fir,vh (v-102)
e 1¢-27 3
and
Exen
= ':nre‘t" ' f, L
\{ Sol F Rl e (V-103)

TR

Then we find for £ the equation
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Considering U and AL to be given functions, we expand as before
00 5
£= 5 % F (v-105)
-3 n
h=o

and find the sequence of equations

ofe 1+ —yJ;\va-v,[fo -

oy (v-106)
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+V‘,{ ‘bow 'V}‘: ‘Fo + V}[ Lf, d v!: F Vv f’o Vr (144, X Vg 'Fo 7 cb‘excr-l_.

excd
ete., where the Fh (and thus ¢L )hawe been computed up to M= a in V-L8.

Truncating the chain at order'h and defining

{_-H” = Z ‘ﬁff (u;L,¥,%) (v-109)

=0

JA is then rendered self-consistent to this order

] ext
viﬁ(f) - _._,mago\'sv .g(f)(u.tf); L,U%) + uTe e (£,%) (v-110)

in direct analogy to the formalism of Section V-B.
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VDue to the fact that the classical problem of plasma oscillations in
a strongly inhomogeneous system represents one of the‘frontiers of current
research, the soiution of even V-106 presents sufficient difficulty to
probably réﬂ&er the calculation of quantum and exchange corrections to fo
unworthy of the effort involved. Since (in analogy to the static case)
such corrections are likely to be small, most of the physics of the problem
should be contained in V-106 together with an ad hoe quantization of the

harmonic .oscillator-like solutions derived therefrom.

G. Relativistic and Correlation Corrections

As indicated in Section D, cne must be sure that all corrections to
the model of order comparable to the 151 quantum and exchange terms thus
far derived are included before ardetailed numerical investigation can be
justified or, indeed, considered meaningful. While such filigree as retar-
dation effects and spin-spin and hyperfine interactions can be rejected

out-of-hand by the crudest order of magnitude estimates, small though sig-
nificant corrections due .to relativity and correlations (i.e. the inadequacy
of the Hartree-Fock approximation) may be anticipated. The former of these
effects alters the model in the inner regions of high Ef étOms, the latterr
(most likely) in the low density outer regions of moderate and low Z ele-
ments.

Proceeding on the assumption that these effects will be small, we can
compute them independently of the quantum and exchange corrections and hence
need only concern‘ourselves with the problem of appropriately modifying the
simple TF model with the understanding that all corrections wili be linearly

superposed in the final analysis. Specifically, what we strive for is a
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corrected equation V-60 of the form
a

|+ &% +d£a)[iozf_/ (_i;__-"‘“]
Axl 'I; A ¢1 ¢ 4 ’)64)3'

P B@ £, (G870 + F@D E, (6,80 3

(v-111)

where fru. and {carr are the as yet undetermined relativistic and corre-
lation correction.s which result to lowest order in the appropriste dimensidn-
less perturbation parameters @ and ;.

The realization that the TF model is equivalent to treating the atom as
a classical inhomogeneous plasma dbeying Fermi statistics considerably sim-
plifies the foregoing task since one need only inguire how classical ple.smab
_are corrected to 1OWest order for these effects.

Turning first to the relativistic question, we note that a relativistie
gencralization of thé classical Vlasov equation (neglecting retardation) has
been given by Clemmow and Wilson (79)%* which, in the absence of magnetic |
forces, can be written as

3F 4 OJ_u.J R uaFlre) - Ly ULV, FILY) =0 (y110)
ot i <

where we now work in a covariant phase space defined by X and the reduced

velocity, W , given by

w =Y : (v-113)
s

|~

5

*I am indebted to Dr. P. Burt for calling this paper to my attention.
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It is easily verified that any functional of the argument

_ Fl
el L nY et isge + ULL) =" me g UAL) (v-11k)

p ]-v?

c?

is a time-independent solution of V-112, a result which could certainly have
been anticipated on intuitive grounds.
In the entropy maximization, relativistic Fermi statisties must now,

naturally, be employved. One then finds (see e.g. Ter Haar (37)) that

Flgu)= %3 eKP(MCQCH—C":;)‘Iz + U(E)—Mc‘—ﬁ) -H]#I
LT
(v-115)

At zero temperature, the case of interest here, V-115 yields for .the

density

) ;T o -
witl= % {;"; ugCr) (V-116)

where the reduced Fermi velocity is determined from

a a "1 A
me (Hi{—i) + Ul(r) = me* = (v-117)

Combining V-116 and V-11T7 gives the following expression for the dens=-

ity

3 . 3 | '
ney = (3m (A-vin)) R g |+ Q;_%Jl} > (v-118)

3T 43 am c*

which, when introduced into Poisson's equation, leads to the relativistic

TF model:

3
VU = -4e (A—U)mé iy 3 -

3T R Amect (v-119)
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In terms of the dimensionless variables V-59, this becomes

A _ ™ Pl
T T R L (-

where

o = (5)' 28

oy (v-121)

To lowest order in @ » we therefore ﬁave

2 33
¢ = p° [l s @[a)é (v-122)
X

imn

axt %A

which gives the desired relativistic piece of V- |,

The model V-119 was first obtained by Vallarta and Rosen ('80) but was
generally rejected because the resultiné density is not normalizable, going
as r‘3 -for small ¥ , a difficulty which does not persist in V=122, This
; rejection, we feel, is poorly founded beqause it is based on too literal an
iﬁterpretation of the model at extremely small distances from the nucleus.
The relativistic correction becomes significant at x 5@ , which at Z =92
is X~ .02 . For this case, the number of electrons contained in a
sphere of radius .02 (as given by the unéorrec£ed TF model) is about 2,
clearly too few to treat statistically. Furthermore, since V-120 contains
Q to all orders, it should certainly not be taken literally due to the
neglect of higher order Q terms (i.e. higher order in‘&&) in deriving V-112.
It is therefore felt that the expanded form V-122, which as we Just noted
does not have convergence difficulties, can be confidently used.

There 1s, however, one-reservation which must be resolved before the

foregoing result can be considered definitive. Comparing V-119 with V-9,
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wé note that Gilvarry's equation differs from ours in the term (6"# )2
which, incidentally, removes the convergence difficulty Jjust cited.- The
origin of this term is Rudkjfbing's (58) analysis of the Dirac equation and
presumably represents a spin-orbit interaction effect. If this is the case,
it is difficult to understand why the electron magnetic moment and thus T
does not appear in front of this term. The way to settle the question is
clear: +the relativistic analog of the first quantum Vlasdv equation must
be calculated starting from the Pauli eguation rather than thé Schroedinger
equation and its classical limit taken in precisely the same fashion as
before. Attention need only be focused on the spin-orbit terms in the Pauli_
Hamiltonian since it is readily verified that the Kinetic and potential
energy terms give exactly V-114. We have not as yet carried out this rela-
-tively straightforward program.

The correlation correction, even in lowest order, cannot be obtained
s0 simply in spite of the fact that the formal procedure for obtaining it is
well defined. What one must do is to go to the third stage of approxim;tion
(see ITI-85) in the quantum BBGKY hierarchy aﬁd thus deal with the coupled
equations for ?Fa) and ?rn). In principle, one then solves for ??HJ in terms
of ??h) and c0mpu£es the right-hand side of II-7T7. The classical limit of
fhe pasiiing P eansbion is Ghow boimn aal solved by assusiog ot e
new ?dﬂ only slightly differs from its uncorrected (or TF) value. In carry-
ing this program out, reccurse to an expansion in some small dimensionless
parameter will certainly be required. It is therefore advisable to introduce
at the outset the dimensionless variables appropriate to the TF model.

Without actually going through this procedure, we can anticipate some
general features of the result. The problem will become formally similar to

that of obtaining the doublet distribution function in a classical inhomogeneous
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plasma whose singlet function in the absence of correlations is the Fermi
distribution. Quanfum effects will, however, persist in the "classical"
1imit h —o in two guices. First, the collision integral (i.e. the right-
hand side of TI-77) will be modified by the usual [|_ %:33 rgmj A
chafacteristic of the exclusion principle¥* and demanded, in fact, if the
collision integral is to be in accord with the H theorem appropriate to
Fermi statistics. Second, factors like the N/k—l term which arose in
Secticn IV-A as a consequence of the Hartree-Fock approximation will gen-

Pt
erate corrections to r(?) of the form R,Lfm ?m

+ Indeed, an unpublished
study of the problem by the author and von Roos (81) indicated the possi-
bility that the Fermi-Amaldi correction, which, it may be recalled, was
‘'removed by the Hartree-Fock approximation, is to some extent put back by
correlations in accord with a similar observation by Jensen (53). Care
must therefore be taken**to keep track of terms of order\[N , & point
which appears to have been disregarded in the field-theoretic studies
(69, 70 ) of the correlation question cited earlier. 7

This fofmai equivalence between the introduction of correlations into
the TF model and what is essentially a problem in classical plasma physics

is a cause for some despair since the problem of correlations in a class-

ical inhomogeneous plasma is still unsolved ( R5,82). It will therefore

most likely be necessary to introduce a further simplification, viz., that

¢
f disregarding the inhomogeneity of the plasma in the computation of F i)'

Since the overall effect on the model of the correlation correction is
likely to be smail, this procedure, which preserves the main physical

~d
features of the correlation corrections to !=l), is surely adequate. For

*since T 1s of order h~3, it is seen that this term would persist when
h—>0 -
£%In this repgard, it shcould perhaps be mentioned that the normalization

constants C' and C" occurring in II-84 have been evaluated by the method
of Section IV-A and found to be N/(nv-a) -
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this reason, the results of the next chapter where we actually compute the
o~

correlation corrections to [ in an infinite spatially homogeneous elec-

tron gas should greatly facilitate the removal of this final barrier to a

unified statistical model of the atom.
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Chapter VI Correlations and Collisions in the Uniforn Electron Gas

A, TIntroduction

The spatially homogeneous electron gas with a uniformly smeared out
backesround of immobile neutralizing positive charge is a commonly used
idealization of the conduction electrons in a metal aﬁd has thus received
extensive theoretical attention.* Although most practical problems require
the inclusion of the latticé degrees of freedom (i.e. the phonon field) as
well, it is clear that a detailed theory of the electron gas itself is a
necessary prerequisite to an understanding of the more complete problem.

" Due to the formal similarify of the Fermi sphere and the "vacuum" of
field theory, the zero-temperature electron gas has been a particularly
fertile ground for the application of field-theoretic techniques. However,

due to the fact that the "coupling constant”

of the problem is the parameter
f} defined in IV-115 which for metals lies in the range 2-~5, we have, in
effect, an intermediate to strong coupling problem. Consequently, the
field-theoretic approaches which are in essence based on a perturbation
expansion in Ys are of value only in what may be called the "academic"
limit Yg <<1 . Indeed, since the shielding of the bare Coulomb inter=-
action by the dielectric behaviour of the electron gas is a dominant feature
of the problem, one must in effect sum part of the perturbation series to

all orders in Yg to retrieve even the simplest physical processes. In the

Gell-Mann-Brueckner (§54) calculation of the "correlation energy" of the

*A fairly comprehensive survey of this aspect of the many-body problem may
be found in Pines (83).
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electron gas (i.e. the true ground state energy minus that obtained in the
Hartree-Fock approximation) for example, formally divergent contributions
from alllordefs of perturbation theory must be summed to yield the (finite)
leading contributions for small Yg .

In view of the manifest inadequacy of perturbation theory at realistic
densities, attention has been focused on what may be termed "non-perturbative™
approaches. An early example is the elegant formalism of Noziéres and Pines
(3?) wherein the ground state energy and pair correlation function are re-
laied on general grounds to the dielectric constant of the system. When the
dieleétric constant as computed in the Hartree approximation (i.e. ITIT-L42)
is fed into their expression, one obtains the result of Gell-Mann-Bruecknér,
neglecting, however, the exchange contributions. This neglect of exchange
is unfortunately a serious drawback since at metallic densities the exchange
interaction is expected to play a significant role. The method nevertheless
has value inasmuch as an improved calculation of the dielectric constant may
be an easier taék than a direct energy calculation.*

Ancther non-perturbative approach has recently been used by von Roos
(34) to calculate the effect of correlations on the dieiectric constant.

In analogy to the first Tamm-Dancoff approximation in mesén theory, he re-
tains all intermediate states which contain a single-particle hole pair,
neglecting all others. Use of second quantization obviates exchange diffi-
culties. His results for the shift in the zero of the dielectric constant
,(i.e. the plasmon energy) are in encouraging agreement with experiemental

results at metallic densities indicating the possible viability of the

*One might expect, for example, that use of the Hartree~Fock dielectriec
constant as obtained from IV-89 would mitigate the exchange difficulty
to some extent.



-156-

method, perhaps in conjunction with the Nozieres-Pines formalism, for the
computation of other detalls of the system.

In Chapters ITII and IV, we have already studied the electron gas in
the Hartree and Hartree-~Fock approximation. We now go beyond Hartree-Fock
to the third stage of.appruximation in the quantum BBGKY hierarchy as out-
lined in Chapter II. In so doing, we arelin effect introducing another
non-perturbative approach to the problem with the unique property, however,
of being phrased eﬁtireLy in classical terms. Furthermore, since we pro-
ceed ffom the Hartree—Fock‘approximation, the effect of correlations on the
exchange interaction is automatically included at least to "lowest order".
The quotation marks underscore a drawback which our method shares with all
non;perturbatiQQ approaches. Unlike perturbation theory where bounds can
at least be set on the next.term in the series (notwithstanding the fact
that knowledge of the next term in a slowly convergent series is of some=
what dubious value), we have és yet found no way of even estimating how
our results would be altered in the fourth and higher stages of approxima-
tion. All we cén offer is the quali%ative consideration that if correlations
between éore than two particles are an important feature of the problem, the
system is more characteristic of a liquid than a gas and entirel& different
techniques must be applied.

With this reservation in mind, we proceed in Section B to the third

stage of approximation to the quantum BBGKY hierarchy and derive an equation
( fﬁ.’(?) )
= %93 )] Hartree-Fock

~“)

to F ' . In so doing, we directly parallel a recent study by Guernsey (|8)

~
relating the "correlation functions" (i.e. Ef?
: o

which, being based on the Wigner q.m.d.f., does not properly include exchange.
Indeed, we obtain Guernsey's result plus an additional term which describes

the correlation modification of the exchange interaction. Fortunately, the
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resuitant singular integral equation for the correlation function still
belongs to the general class of equations solved by Guernsey in an earlier
paper C&S), thereby enabling us to make-direct use of his result with a
consequent saving of labor. Due to this circumstance, his contribution to
the present problem cannot be minimized, notwithstanding the fact that the
integral equation in question is apparently of a fairly standard type.

Having obtained the correlation function expfessed in terms of f?@ 3
in Section C we introduce it into the TEI) equation to obtain the "colli-
sion integral". The vanishing of the collision integral is & necessary
condition on ?HO if it is to represent a syétem in equilibrium. The modi-
fications of the collision integrallwrought b& exchange (which we believe
to be a new result) may, due to the added complexity of the total expression,
lead té equilibrium ?EO)'S other than the Fermi distribution. We neglect
this possibility, however, in Section D where we compute the correlation
energy at zero temperéture, assuming T?b)'to be the Fermi sphere. The equiv=-
alence of our result with that of Gell-Mann and Brueckner (GB) is explicitly
 dembrstrated in the high density limit (fg £<| ) by means of an analytic
continuation similar to that.used by Sawada et al (85). We then go beyond
the GB result to compute the exchange contribution to the rs ‘ba G Termin
the energy, which arises from the screening of the exchange interaction by

the dielectric behaviour of the system.
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B. Solution for the Pair Correlation Function

The basic equations of the theory are the time-indepéndent* forms of

TI-79 and II-81 which, for the problem at hand, become

ngi LQ" (x‘l x;‘_) ~() .
2 Z“Vg:xla Aau e )| R, (%, %; %5 +5 %, 1)

—~ l‘)
Ef: (X; 'xa Vi 'U":.)] = ;F — = (e, = i‘,‘/a)
2
t
9 Collisiong Wil

(where use has been made of the spatial homogeneity of F'? ) and

*The time-independent equations.are used because the system is assumed to
be in equilibrium. In the third stage of approximation, however, we are
actually developing a kinetic theory of an isolated system rather than a
statistical description of an ensemble as discussed in Chapter II. It is
therefore necessary to introduce the concept of equilibrium in a dynamical
sense by formally considering the time demendent quantum BBGKY hierarchy,
viewed as an initial value problem, and defining equilibrium in terms of
the asymptotic values of the F(8) as t —200 . This procedure, which in-
troduces irreversibility into the otherwise reversible theory, has been
extensively discussed in the literature (35,28,82), so we will not burden
the present development with such considerations. Instead, we will follow
the conventional practice of dealing with the time-independent equations,
with the understanding that ambiguities in the interpretation of dynamical
singularities in the solution for ?ﬂ are to be resolved from its time
dependent equation by imagining it to be multiplied by e where B is a
positive infinitesimal. This can be viewed either as a causality require-
ment in the initial value problem approach or as Bogoliubov's (6) condi-

tion that all correlations must vanish in the infinite past. The net
result of this procedure are the factors of L€ in VI-20 et seq. Finally,
it should be noted that for time dependent processes in which F varies
at a rate slow compared to the characteristic relaxation time of F (1.e.
the hydrodynamic 1limit), we can assune that ) depends on time only im-
plicitly via its dependence on F® and thus that the solution for ?ﬂ"
obtained from the time-independent equations is still valid.
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(v1-2)

-F(i,) and 92 are given by their Coulomb values, III-39, but for the sake
of convenience and generality will be kept arbitrary in the ensuing develop-
ment. Due to the fact that N is formally infinite, we everywhere ignore the
distinction between (N-\, N-3 , ete.) and N.

The third stage of approximation to the quantum BEGKY hiéra.rchy is

=) £ (3)
characterized by the following assumptions about F'" and [ (see Chapter

II):

- —im (V.-‘U';l) (%) -%a)

F,:j: (0% % v) = (‘ 22 ) ) OYALA *zp“f’-‘- RPN
(vi-3)

~Q)

~ ()
vy % X1 V) = Fp (W) ?‘l"’a) + L G(E' “Xa, Y 1_"1)
ol Ra s ) A f * 4 )

(v1-k)
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and
—t."\ (%- VR) [7(,

- ~f) ~f) - i)
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(vI-6)

ete., where impliecit use has again been made of the spatial homogeneity of

the system. It is important to note that the anti-parallel and parallel

spin "correlation functions", G and H (respectively), which rapresent the

deviation from the Hartree-Fock approximation, do ﬁot explicitly embody the
requisite exchange symmetry nor is the correlation part of ?Eb) explicitiy
exchange symmetrized. As pointed ocut in Chapter II, these symmetrizations
take place in ﬁhe fourth stage of approximation. .

We shall restrict our considerations to the v"norma.l“ or paramagnetic

case defined in IV-63. We therefore define
o~ ""“I P
’ (l) F ) ey (I)

F,,~ wA =EF | (vI-7)

the normalizetion of ) being

NSX’V Flev) = m Erente
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where?\ is the electron density.‘ Then, summing VI-1 over the spin index
and using VI-3 and VI-4 leads to the collision integral

~(1) ¢ xi x:.)
19 “”) = P, L dg e ¥ (
o+ Collvsrons F [aﬂ') S %‘ 'F 8’)

= 6% - ~1 . =
: 5(6(?1‘ EK’E"L’EE"Y&) +H(% 'Z‘JE+§§JEI) 2 (G(ib"i*ﬂ};‘f‘) tH(X%s; 1[’;%)]

(vi-9)
We are thus led to consider in place of G and H the more convenient

gquantities

i

Tz 4G +H] s

and ‘
Kz 2Te-H] S
o]
The equations for J and K are simply obtained from VI-2 through VI-6.

Thus summation of VI-2 over®, and &, yields for J:

. - O 2 i 3 "% (K.-Xﬂ
(495 + 5%, ‘5%5- T -BV0) Tek5,m) = 180 (g
t(a )

~a) ~A2)
{F o, 10 551 R, v, +[J‘(a'-a<.x;\5+£g,%-iﬂ
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~ Q) =)
where the spin-summed (uncorrelated) quantities F, and Fo " are defined

; <
y B, 5,5) = B Fli) =% edctmm%)mhm?{&r.) Fva)
(vI-13)
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(VI-1k)
Similarly, the X equation is obtained by deriving from VI-2 the equa-

tion for (’va,: ¢N¢? ?'1{1) ’F;?r) ; The result is

t‘,:& -Xa)
[4,5 U, + MV, - ik ‘_71(. =EE v; J K(x. e A ROE Sa%ge fy)
‘ ‘k(:n:) i
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where
Rk 2279 1) = 1 5 R |
A [~“ a,% Va) = ;i_e FN) r l‘fa) (vi-i6)
and (3) _tn(y -Kﬂ)‘(ﬁl —Xa)
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(vI-17)
Equations VI-12 and VI-15 are most conveniently attacked by introducing

the Fourier ‘Eransforms:
b (%X
Tl 55 ,3) = Sal HED L un) s

and ]
K% *a; Vi 1) = gé)m )){u;. Y 1) (VI-19)

in terms of which the left-hand side of VI-12 becomes

2 3, B (2a-X)

gamg b e F P neie) 55 i) (kg,w] (v

mY
(a precisely similar result naturally is obtained for the l.h.s. of VI-15)
where € 1is a positive infinitesimal whose origin is discussed in the foot-
note on pagelS8.
The consequent reductions of the right-hand sides of VI-1l2 and VI-15

are perfectly straightforward though sufficiently lengthy to render unpro-

fitable an exhibition of the details. We shall therefore just quote the
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resulting equations for g.and'K. We find

m] Ca -y rsby sl —Le]}(ie,}&,x&) = Nyt Fiysh)-7 mr.]
Solj' 3 ,),:h) + Ng HJL_)[ F (v +$}z) -F (1’:)}50‘”}”" ~b~
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(vi-21)
where
Sk W)= Q‘H ) 'N(') [V, -% L =t 34—.'.1

- %’ (V) F (\f;) [] - Nk Fhmr —E\ 41)7[ e {Va +E h)})
m?*
(vi-22)

Similarly, for X we obtain simply

m{(l{“—?& fgé).a'&_ie] }( ’h ’U-' va)= ES(D-[V ‘U‘a) h)'l'{.')’l‘@)

+f gt {0 g X1k g, 5 ﬁ;"ﬁ*é—ﬂ‘*“ﬁ‘ﬁr,‘ﬁ,“{aﬂ}

(v-23)

We now focus attention on the curly-bracketed terms in VI-21 and VI-23

which, it will be noted, drastically complicate these equations. They orig-

inate from the correlation corrections to the first terms on the right-hand

side of VI-12 and VI-15. Since the uncorrected contributions to these terms
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(i.e. those arising from‘??a) in VI-12 and F$Q in VI-15) are non-vanishing,
one would suspect that the troublesome terms in some sense répresent higher-
order corrections and hence can be ignored. Indeed, by inserting a formal
expansion parameter (eventually set equal to unity) in the quantum BBGKY
hierarchy, Guernsey (13) has shown that these terms do not appear in lowest
order. While we could, of course, have_followed the samz somewhat arbitrary
procedure, we choose instead to argue these terms away by demonstrating that
they are of the same form énd magnitude as those additional terms which
enter in the fourth stage of approximation to the BBGKY hierarchy.

To illustrate this, let us first‘cﬁoose a typicalifb), say ?3ﬁ;? 5
and see what modifications of the appropriate ansatz VI-5 would be required
in the fourth stage of approximation. It is readily verified that the ex-

change symmetry requirements II-TQO and II-T2 are satisfied if

F Lx. X; £3:% 4 '\r,) D ..m.('\!'; Vi) (Xa «X:)]FJ’ ) F-r {‘v“,) }5;6)(*11',)
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. ~) X3 =h
+m}qgmmﬁm)+QEPﬂ$”ﬂ@B (vI-24)

where the term in curly brackets represents the new contribution. Inserting

it into VI-2, we would obtain, among others, an additional term of the form

...LN - S‘Px A.;U; j’l"%’ {_(%)eb‘ﬁ"(zl"‘f}) L'n{v-:l_..}) lx:. x-‘SJ N(n
3

l.e
% (am)? Ol 2

x| Glem, v+58,%) — 6 (% 5,1, )]

(vI-25)
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or, in terms of the Fourier transform,(3f), of G

N L (- %) —b“(Va-Vs) (x;-x,) h(X3%)
H%PBSQ@JUJ%JkQ%)e

ﬂ(,)
X h Ty V. v,
P bk 55, - b1k y,5)]
(vI-26)
Performing the integrals over 2;’:3 and:é , ve .find after a few manipulations

that VI-26 can be written as

o s (X=X r—n ]
g e S R L BT R

htm? |
. }j {’!,..7:'}_ ,E',%))] | (vI-27)

As a result, a term would be added to VI-21 of the form

Nh) ’5
" 3 {-U\" (V T—E-D?:)] jc\.% ‘F[B.)(-%['&L 6- v, -£ %, 'U‘:) —-,?JHZ "B 'U'n ‘V'a)
4(am)?
' (vI-28)

N
Since _N'bs [—- ) is of order unity, it is clear that VI-28 is of the same

Am ) ‘
magnitude and similar structure as the last term of VI-21, which we set out
to demonstrate.

Having disposed of the troublesome terms, VI-23 is immediately solved

to yield
Nibm - 1 SEIEDE Y
T { ey s b ~ie]

(vI-29)

Turning to VI-21 (minus the last term) we make the convenient variable

change

Phz¢ (vI-30)
M 2 iy -
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and write- this equation as

9,(% ‘U'l 'Ifa = ]\}3 £(2 ‘B[I’(‘u‘-_ﬁ_ - F /412'1—;]'0'311"3 {gz 3_: ‘U';_)
, i
La Vg -ie]  J v

R "’L‘) =
+ N3 £ (2¢)  F 3
LEEOL P 7] (04 (g v, )
wm [Q{a-?{'-}-j),ir -—t: EJ k J
/ v gl
t [S(ﬁﬁnvﬂ Eg(kﬁﬁlJJ)fﬂ
[ (%Y%) ¢ éJ beria)
whefe
e q]’]‘i AR
€)== J.= e (vi-32)
X
and
St nwva) = 92 (= ~0) _
o) = TR [ Flep Pla refius 7o
\ \ 3""(\)
1w Fm | - Tl Fl- W Fly-p [ -5 F er)]}
. (VI-33)
Integrating VI-31 over \_{1 , end making use of the obvious symmetry
Yl m) = g my) (v-34)

we obtain the equation

[ - (Fa DUe®) AP y) - D(ir,wgfﬁ Bl-5,%)
(aring)g-ie 2 (-G Tg) g-ie

Qg 5)

(vi-35)
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vwhere
= v, v,
(A2 & 355, %) (v1-36)
Dig,%) = ;WM%qf(gq;)[?’"’(z—,‘cr)-?"’w.)] ot it
and
QU ) = (P, [543 - 45 (5% ¢ %,5)]
‘\3,4' = A 1y A A ) N (VI-38)
[(G%)e -ie]
From VI-37 and the fact that
FOlw) = FO141) '
g = e | - (v1-39)
one finds
D(-4,¥) = D( ir)-l,f) (VI-ko)

so that VI-35 becomes finally

[t +Sa’vl D(g,15) Plg) —Dig, ) go\ﬁ P-4 1)

C“.{"\Mﬁ "})"6‘4' ve —'V'-f%-:) X -.,(.

= Qlgw

~) ~ : (vI-h1)

At this point we compare VI-41 with the corresponding equation obtained
by Guernsey from the quantum BBGKY hierarchy for the Wigner q.m.d.f. After
making the proper notational transformations, we find that it differs from

our equation only in that in place of VI-38 he obtains

Q (£,5) = Sav S 00 (vI-k2)
GUERNSEY [(21‘*16 *ﬁ')'j“ie_]
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and thus ignores the exchange contribution to Q. It is wortﬁ noting, how-
ever, that he included enough of exchange to obtain the {.]—' hg hﬂ{}
factors in VI-33 which are characteristic of the exclusion principle.

Equation VI-L1 has been solved for general Q by Guernsey in earlier
paper (35). The method consists of first integrating it over the compdn-
ents of-E: normal to 3: to obtain a one dimensional equaﬁion. The introduc-
tion of Hilbert transforms then reduces it a form amenable to standard tech-
niques from the theory of singular. integral equations.

Introducing the notation*

Alg, )=z | + 4’ Dig, ¥ - (vz-n3)
Mt ge(v-gy+ie

we find from equation 61 of reference (25 ) that (in our notation)

Pl v) = .,MQ(T' LA D(w)J u A
ol") [(u__.v’ 1_4.% ).—LG}‘A(%‘ '-'-"‘l )l

%X+l €&

(VI k)
where : ’
- ! 3 ! ! ! %'
=L\ du T —g W
b (g, w) amg;j:fjé P§(«-grialy, £-g)
Tad (prg-prHals v )
2“"—"\& U.“"-E ‘ . a (VI-]'I-S)
Using the well known relation
1 = PL) - L § (%) (VI-46)
‘X '3 .

*Note that A\ is simply related to the R.P.A. (i.e. Hartree) dielectric
constant € ,(q., W) defined in ITI-3T:

AleS) = € (26 2(21)
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we _ca.ﬁ rewrite VI-U5 as

¢ (4, u) =;1—1‘Fu g [%v u] [&( jg{%) Q(j;)yuif_)J

(vI-k7)

To simplify this expression we must go back to the definition (VI—38)

of Q. DNoting first that from VI-33

S'14,%, )= S(g, %, %) -5 gy 0y = 9° E(i‘%)"i’c(f’l""*‘

m(am)>?

b
X{ (V- %) F (f;+5)[i~N“3F(v)][ —y,‘fF(v,)
3

d'm

Tf‘(’")ﬁ'lm[l o>y m][ L F(va-rn]}
Yﬂ

(vi-48)
from vhich we deduce the symmetry property
N
Su % +i )= -5 [—t)‘[‘-i)@ *i 3 (VI-k9)
Then
3
QR(f,5+%)= Se\‘fa Sig, %5, %) _gﬁ,— Sl V-4 a+g)
) e | 2 = 2_- ~ ) )+ A
(Va=Vi+})q-ie (Va~Yird) g —ce
a -»
(vI-50)

') . - o
& gd vy S(-%, % $h,%) =@ (= )1'{'_}'/3)
"(M; ~ i’a)% e

==,
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where % denotes complex conjugation. Thus,

¢($ w) ’_‘? 5‘ Vu.,_q_,’"' JJMQ{%)}C*%/;)

+ (4 S(u-4v) @8 v'+8h)

(vi-51)

which, by virtue of VI-II-6 may be simply vritten as
g, J’"‘ igJ v h_%’__,i[iL). - (vI-52)
% 1; ~Lé ,

Finally, inserting this expression in VI-44 and making a variable change

gives the desired result

(o
(P(i:_,*[;) Q(T’ CEE) 4 Digm) e — 2
,,,»1;) - J [u-Y-g-ie]lalg,wl
w- t,’tf'—ié : (VI-53)

The full 9 [il 1’:"‘\{3) can now be recovered from VI-53 and VI-3l.
VI-29 and a Fourier inversion yield the original correlation functions G and
H. Since, as we shall presently find, we only need P(f‘ij K‘n) for
the applications in Sections C and D, VI-53 will suffice.- Indeed, its real
part leads to the correlation energy, its imaginary part to £he collision

integral.
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C. The Collision Integral

The collision integral is given in VI-9. Written in terms of P (C() ,‘U", )
— )

it becomes simply

X%\ - N
at> 42 SA?“G 7’)[0)(3 g)-Mew)|

(_o“_

(VI-54)
In our subsequent work, it will be convenient to deal with dimensionless
quantities. We therefore measure all velocities (and cbr) in terms of the

Fermi veloeity III-L1. Furthermore, define

FY 2 aw> QO

e (vI-ss5)

(P(i)”») - ( eam3 , f(?,. 1{}) (VI-56)

2 b NV i
and ) .
- 5 y
T = f— Ryd, = ;_5% (VI-57)

Then introdueing the specific (Coulomb) interaction via VI-32, we obtain

o (m)
p e

g SJ “"[1’(+ L) — Pt V)] S

where, from VI-53 and related definitions,

Coll.

Y = ? ' ! -
f)&-)m) g (a"(f—)y.'zy) - 5 ob( 'V-) alu —
LRhE 25 52 ) uy g [at,op
A(%'J?‘-'_.j) = Y
&) ol g L'’ g5 : GL(%,,.
1¥ il ot %%
w-pvie ) (f -1f+3z)-i-~e (v-59)
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all quantities now being dimensionless. In the above,

Ay, % v')s= (E:’-‘ ‘aﬁ;’,‘ﬁﬁ){”f}v 4§ (wgﬂ!—{:}g}][l—f?!ﬂ
_':F*l')(\i_') f!')( 1}.’)[, _fF' (l"';@)][l 4 f'{lr'+j)]}

(vi-60)

@(i,“{‘) 2 ﬂa{’ff‘)(v %_) :F“ ) D(E(%T.)'/g

= 7 ~[) ~ 1) (vI-61)
e % {‘F (Vs z)[] W'.)] -4 (-y:q[l—-{ (Eﬂﬁ)]} . |

and
A(4,0) = | +Sa‘v’ Dlg,y) T
QL+ §e(r-§) +ie

where Y is defined in IV-115.
Affer relatively straightforward though somewhat tedious algebra, one

can establish from VI-59 - VI-62 the symmetry property
f (%, v f % v (vI-63)
so that VI-58 becomes simply

D?b)(v) = 2 Jdm ‘f A 3 =
X J ~ Sﬁf%’y) M‘%}s e 0

Call.

(vr-64)
It is slightly more convenient to deal with f ("‘1 ,r) than {) (i X 1

so the latter form of VI-64 will be used. Employing VI-L6 and performing
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the U integration in VI-59 leads after some manipulation to

oQ/M- P("E,%) = {ga"v'g(fy'+l"*i)'imf(‘§ V-V

|A(-¢,-¥ )]

X_Eg v dl- ‘L,H,—E)][Splv S(lr+y’rg) %)08( 5 e A )]

('vww;) ][

- [S(fv' g((g'+k+k).}3Ql-i,Y‘YJ[ "°B( ~)~) %] (ﬁ-65)

+ CB(—’?‘,’E)X'SXJ}W”‘?V' g((!—mg) a( 1:,,.', ;:)]

+ D, )Ugavaww

Turning first to the last term of VI-65, we note from the definition

((v+1r+%) 3)61(? )J}

_4/-) t

VI-60 that it may be written

D (-4 E){ Sl SO - 1 Jge, o,
) gg v —-—-——————[%a ]

L‘l}:'—'}{)'? J{'j_f'-rxl‘?&) LV"'j)'F (V"'%)

Ty 1 Tl L S )3
-] [ sty

~  ~
w-Try LY ey +3)]*‘”““""’

x[’ —{ (‘}{*ri)}[l-{ l}[-r;‘ﬂ}_ (vI-66)
Making the variable changes 1{’5 ‘Im"i and lrﬂ-z' -'U'm—z converts
the second term of VI-66 into _
0 nn " m . ;
ggfﬁ o S ("™ 1) 3) [ = = -L“'“’“‘]

] n
( ,!_m‘_,x_l).i “

¥ ﬁ} (vz-67)

P Pt -Fl- )
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which by virtue of the delta function can be rewritten as

__Sgaa m&%fm S((V +V +%)1)

("™ -¥) 3

<K \ _?m(qr"')] [) e w"")J _ . (vI-68)

i ]

Finally, changing dummy variables 1f —> U' s ¥ -—4>1f , reveals

1 —1)

[iLa o £ (V,'rf)-F('V'"" %)

203"+ g )

that VI-68 exactly cancels the first term of VI-66 so that the last term of
VI-65 vanishes identically. 7
In treating the remainder of VI-65, it is both instructive and conven-
| ient to separate the exchange and non-exchange contributions. Specifically,
let : 7
dn p (3,002 dnf,(-3,8) + Lef 1,7 (v1-69)
and introduce the shorthand

£ oz -]

Then making use of VI-60 and VI-61, we obtain for the non-exchange component

v ﬂ) % V) = i 8&31}"5((1":'-\-}[*'%)-;@)[4?2) {+{g')- F_(g){-(g'J

w

(vI-70)

& 5, ‘ij,)l‘

" . gl olfs
INZE =k g* (_

3”4“)“V)‘M‘Wﬂ{ﬂ$$wq%p24&V4hﬂ
‘g (’\r«v +fL) i g ( .)( ; £

) + S o - 3w Moy vt
= [g‘y" S((rrg)-g)(f (1)4(‘\_{)-{(3)4(‘!)}{ dv (4;;1{2)%;)(?)

+ (‘F () - § (V))Sg&vo\v"g((v-v) ‘L) () - ) )
)t

(vi-71)
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Similarly, for the part originating from exchange collisions we obtain

GQ/W\. (—% 'U') = ' 1 3 ¢ ! 3 _ [;
l b d 2 gt S S (V)8 e ,

v 4! - iy
(X+u'+g)

+ 7 o, 30y i e i " " o\ _Er
L _F%a (#_’_ll.)({[ L' ff (') - £ WF(Y) ]UA’V 5[(z+g+£).ﬂ(f(g)-f(g"ﬂ

(E+y'+i)1 ljf""y'"})'t

,[ga’v'g(@twy-ij( W)Jﬁﬁr" E‘il:iii)]

( Y"’l‘r‘*.&)i O{‘l’”f}_).z

L - F] e B Dl -y

r§) ¢

P

(xx'+y Y (v'+y

-——— - . ‘,1
(vI-T2)

We consider first VI-Tl, and observe that by virtue of the delta func-
tion the last term can be réwritten as¥*

[4*(1{) o -{_(L[)}[( gJEV’ 5((.‘!“Hj)iﬁ)‘f(}’.’))(fyvz%t

- (v (i) Fh) ( (0% £ ) )]

(vry'rg )l (VI-73)

; :
Then, making the variable change :\! —> —-j[m—- 4+ reduces this to

X_'Fr(}f) o JF-(}[)][ (gfv" g ((E*‘[m"'_é)'},) Fd(lr_m)) (@Asv_uﬁw—')

s e w h(w::"*j)‘i
— (@v"s () Fa)(§Av W) )]

(vav™§)

(vi-Td)

¥This separation of the double integral into a product of single integrals
will not be possible in the corresponding term of VI-T2, a circumstance
which underlies our separate treatment of exchange.

(""\
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The terms occurring within the curly bracket of VI-71l can now be com-

bined and ovne easily finds that they all mutually cancel. Thus

b .08 - v 1 ) - £ £ 0

(VI-75)
Before evaluating the exchange contribution, VI-T2, it is worthwhile -
to collect the results obtained thus far. Inserting VI-T5 into VI-64 and

' )
changing from M —> -V jyields

Qf()) e TR LAY
2T teln, ok go\ggo\\f

xéf?v)ff (u')[l v 1,)] ~“Vt):( = {')C;U?[()v )i Fv ["WV')]}

£ exchanye Ferm

: I L bt |
DNEEY S((r=¥+1)g)

(vI-76)
The physical significance of this result is clarified if we first re-

call that

3
A0 rg) = €[4 REI D))= €20y o)) ()

where E;(lz,u’) is the wave number and frequency dependent dielectric con-
stant of the electron gas as computed in the Hartree (or "Random Phase")

approximation (see ITI-37):

E(k,w) = [—dfs _"fg,; v’ :Fvwl ) = v'ik ) (vI-78)
Th R ) Ok o5k e
am

Then if we switch from velocity space to wave vector space

3 o
tﬁ;w\g f{}p)a'-{’ = ¢ ‘U’)o"U" (VI-79)
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and introduce the kinetic energy
2L
Ecp) = 51 ' (vI-80)

a2y

we find that VI-T6 becomes {in dimensional time)

Ef"_‘f’) = -2l (3. ga\‘f' gaz
ot Col) B (am)? (aw)?

yre? 2

, 0 E(2Y, L(Er -E(P)
xS[E(f?i)-l—E[r Z) E(f) E(f)J {'F”(f)f [fJ[l rﬁ}ff})]}_?(:)(r{-p}

{f”'(fmf lf z)[“\‘ “”][' d ‘f’p
l ) (vI-81)
+ C:(c\\\“jt Term

Neglecting for the moment the éxtra factor of two, this is recognized
to be just the "golden rule" for the transition probability per unit time
/ !
for the scattering of electrons from states (’f f ) to ('P‘rﬁ f-% )
)~ ~ } ~

(less, of course, the inverse process) where the matrix element is given by

CLE M fop Sen MR il Crzde)
g (24,5 (ECpr)-ELR))

L, e. , the matrix element for Coulomb scattering divided by the dynamical

dielectric constant of the medium.

Thus, on the basis of the plausible cénjecture that correlation effects
simrly screen the basic scattering process in.the manner given by VI-82, the
collision integral in the absence of exchange interactions could have been
written down at once, as indeed was done in a recent paper by Wyld and Pines
(19 ). The first derivation of VI-T6 was apparently given by Silin (86)

using methods similar to ours. It was also obtained by Guernsey (18 ) despite
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a sirnificant error* in his derivation. The exchange contribution which
we are about to derive, on the other hand, has not (to our knowledge) been
previously caleculated nor, as we shall see, do the dielectric properties
of the medium enter in so transparent a fashion.

Returning to VI-T2, the first and third terms can be immediately com-

bined to yield

X B
o 3 Sty )i)
* ot ey S e 5

[+a) - ¢ £10)]

(v»v +1,)°~

(vz-83)

x{ | - x5 g;* £ o)

(v +y”+ 1‘,) 3

But from the definition VI-62, tine term in curly brackets is seen to
be just R [A("i, "}{j)] . Hence VI-83 becomes

e B | 3 % 3 - =
—F:— R (A(— “Yg ) g& ¥ S((E*f?’) Lj[f?v)f‘}fv')"'ffx)‘? (V'J_]
i, ‘,’ (Y*Y'ri)a ~ B ~

(vI-84)
] o
Making the variable changes 1('*”’1[ in the second term of VI-62
! ' / )
and Y~ -¥-f , ¥ ~¥-¥'~§ in the last term yields the remaining
contribution

.—’T r " +- "y = = [/
2 f:,;"' T-—TT_l SM‘ S((vw‘rﬂ L){[f - (y ,]Sp\sv' £ W )£ (e
N (8 P T,

+Y_.( v) £ (v)]ScQT -FCV){ (V') £ (‘V)'F('E

(v *f.) (v "+ +j) i fiami

*Equation (46) of his paper should read

% ) <¥ (-, -JL)

and his expression (hT) for the correlation function is consequently both
incorrect and incapable of yielding his (correct) collision integral.
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i ' ) - "
Making the varieble changes 7 —»-¥ , ¥ —»-¥ in VI-84 and VI-85
P

P

and combining them with VI-T6 leads to final desired result for the total

collision integral:

D:F(.'__.)(‘")) = -2 Sﬁ So\ 5 hmr+) E
BT L ol v) [gq IRl

e | ' i ;
Q (— } Ty s
%Q(V’V"ﬁl (A(’EJ‘Y‘,@) e o [av | algrr ) ]

‘ [ () - Plg-g) " TR L)
(- v ) (v-v™g) g

+(F) - Firpy) ga F T 1,3)

(v"- 1J'+f) (v" ‘V ,@ P,
where
Ty = P 0] - w1 - 7005
~(I)- ~y : ' = =
=) FutpD) - FoulD- o]
(vz-87)

The physical significance of the new terms are easlly understoocd. Those
in the second-set of curly brackets represent ordinary Coulonmb scattéring
("dressed", however, by the dielectric behaviour of the system in the fashion
of VI-82) with a virtual exchange scattering (via the "bare" Coulomb inter=-
action) between one of the two incoming (or outgoing) particles and a third
particle of the system.

The additional term in the first set of curly brackets can be clarified

if we momentarily ignore the dielectric constant and consider the spin
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averaged matrix element (squared) for the Coulomb scattering of two free
electrons, taking account, however, of exchange (i.e. "Mott" scattering).

: I
For initial velocities}{\,ﬂ and momentum transfer ﬁ , we have in Born

Fasd

Approximation:

’ I 4 e ¥
\<u,y g, -] (red) {7‘3}'(%’1 s *)1

cf—::‘»rz)

2
+/'("‘*~—l—~ ) = Mywe™ Y Fdin:1 l
AR gy (e} PO

5T
G (vI-88)
By symmetry, the first two terms of VI-88 give equal contributions to
the collision integral so we have, in effect, “M,-i-l-" Term
| ey 2
< Inl v xhes) = (We‘)-n-{ ol
Aar 2
8 gy

(vI-89)
Recalling the extra factor of 2 in VI-8l, we see that in the limit
A —>| VI-89 yvields exactly the firsf group of terms in VI-86. This,
of course, must be so since we could have written down (using the "golden
rule”) the formal perturbation series for é?%ﬁ)_, the lowest order terms
of which are just VI-89. What could not have been anticipated, however,
is the peculiar fashion in which the dielectric constant enters in the
"Mott" term of VI-86.
Setting VI-86 equal to zero yields an equation for the equilibrium

~h)

4 . It is easily shown that

S(g: (x-r'+y) T(L,2,8) =0 (vz-50)
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i

if { ; has the Fermi form

) = Texp (Ari-s) S50 VLG
so that the first curly bracketed term of VI-86 does indeed identically
vanish for the Fermi diéfribution, thereby redeeming an earlier promise
that VI-Ol can be obtained without recourse to an H-theorem or ensemble
theory. The second curly bracketed term, howéver, does not apparently
vanish for VI-91l* and we are thus led to the expectation that VI-86 will
generate an Y; dependent modification of the Fermi distribution. That
exchange effects do indeed "smear out" the Fermi surface, even at zero
temperature, is known from field theoretic studies (87) of the problem.

In the high density limit:

r,— o AN —> | : (vI-92)

’ '

the collision integral which becomes simply (changing ¥V —2 =1 ‘for
o~

convenience)

) .
2T (v)) Ry % Sﬁ.—'g q.(V 13"+ g) [J_ B
T gy RE 9D ¥ (pizn) 81 agtwy)’

~)

) ~0 ~ : o0 ~0) ~ ~b
X$Lwf ){v')Il—{”(y-ri)M_l*‘{ )(y *j.)} - -Fn[y'»rj) {”(lr +j)[1—f'(1r)][l~£§b')}

(vI-93)
doés, as has been observed, vanish for the Fermi distribution. Due, however,
to the added "Mott" term which has been shown to arise from the interference
between direct and exchange scattering, the interesting possibility arises

~t)

that VI-91 may no longer¥*¥be the only -f which makes the cbllision integral

%¥This is not in conflict with the H-theorem since it represents in effect a
three-body collision process.

L %In the absence of the "Mott" term, the uniqueness of VI-91 follows directly
from the non-negativity of .
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vanish. If indeed this is the case, the ground state of the system would
be that solution of VI-93 which has the lowest total energy. Since the
kinetic and exchange energies have a different dependence on both @Il) and
f; , the possibility would then arise that the ground state of the system
might have a structure different from VI-9l for some values of (; s even in
the absence of the ~ three-body terms in VI-86. Inclusion of the di-
electric conétants in VI-93 would even further complicate the equation and
make the uniqueness of the Fermi distribution correspdndingly more suspect.

This conjecture seems particularly worthy of further study sinée, for a

given ¢ the "Mott" term of VI-93 is seen to represent an effective at-

~

tractive interaction which is strongest for pairs of particles the sum of

whose velocities is ”ZE » an interaction similar in some respects to that

between "Coover pairs", postulated on entirely different physical grounds

in the BCS (88) theory of superconductivity.

D. The Correlation Energy

The interaction energy density of the system is obtained, in general,
from the second term of IV-T3.  Using III-20, VI-3, VI-h, vIi-7, VI-10, VI-18

and VI-36, one finds it can be concisely written as

ine = Re {‘f gd’v. I, F(%ﬂtg'ia))(nl?“%g.))(m F o)

4-
+ PN (0% L grm
L (e ()P, ) o

where the first term is the exchange energy density and the second is the

change* in the interaction energy caused by correlations. The electron-

%The formally infinite energy density arising from the "self-consistent field"
is cancelled by that due to the uniform charge background.
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electron interactions also change the kinetic energy density due to the
fact that T?“, will be altered when all correlations are properly faken
into account. TFor a system in an energy eigenstate, however, a powerful
theorem credited to Pauli and independently discovered by (among others)
Feynman (Bq) and Sawada (qo) relates the total energy density of the system

to an integral of the interaction energy over the counling constant, g;l .

Specifically¥,
31
GToThL (32) o, ETO_‘_M_(%“:O) * e;nt(s'a) i g'a (vI-95)
1 2 :

poted?

where the first term is the energy density in the absence of interactions,
i.e., the kinetic energy density of free particles.‘

Now, in order to evaluate €:nt » we must have a specific fdrm for Ff“)
Since we have shown in the previous section that aside from higher order
three-body processes the Fermi-Dirac distribution leads to the vanishing of
the collision integral, this is what will be used. It must be emphasized,
however, that the uniqueness of thé Fermi distribution has not yet been
established and, furthermore, that a more exact calculation of the energy
must teke account of the Vg (i.e. 82 ) dependent alterations of Fﬂd caused
by the three-body terms in the cﬁllision integral.

Since the Fermi distribution is independent of gl , the ordinary ex-
change energy density (the first term of VI-94) is linear in gl and hence
is not changed by the integration in VI-95. Thus, if we define the corre-

i 2
lation energy density, € , as the difference between €, . . (j ) and

corr

*We assume, of course, a constant volume system. Since Vi-95 holds for any
system in an energy eigenstate, it will be true for each member of a canon-
ical ensemble and hence applies at non-zero temperatures where the € 's
are then understood to represent ensemble averaged quantities. See, e.g.,
Englert and Brout (41).
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that given by the Hartree-Fock approximation (see Chapter IV), we then have
a

€. {9%) = gj i'i'{( Y 4 ; (VI-96)
ol 5
where
& i e gt = f. 3 W™ go@ Bohr F("‘ OD(Z ) (vI-97)
A't
Furthermore, since
Crue gl s i i) x & FEE (v1-58)
where € PO°T 1s the change in kinetic energy density caused by correlations,
then
Ef?ﬁf‘j’) = ]: gaol 33 cort oA | o
Kin S; ak L R a7 .37 Gz

the potential utility of which will be discussed at the end of the chapter.
Having thus dispensed with the preliminaries, ﬁe now turn to the eval-
vation of VI-9T7, using the expression VI-53 foroj and the Fermi distribution
for T—{Q) . Noting first that the vanishing of the (two body part of the)
collision integral for the Fermi distribution is tantemount to (see Section

c)
co/m Q(E,'E) 2D (VI-100)

a fact which can also readily be established from the definitions VI-38, VI-i6

and VI-U8, we have

43
v

Gol\m Si"u" Q(,g)-v.) = A‘slf’ S(&-t-y’) Q(S’E'J (vI-101)
..z' -t & ~

V~
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Performing the W integration in VI-53 yields

Ptg, 0= ALY, D) (4 v Qlg )

/\.

) 2
[(r=1) 5 -ce] [alg,y'y)l
(vI-102)
Then, integrating VI-102 over \J7 and interchanging 1‘{ and 1r’in the second
el ~

term yields

3 = ‘ 3
§0c, 0 = (¥ el S NG, r) + (0 Dler)

\Att,f‘j” C.U._v—’)'% L
(vI-103)
But from the definition, VI-L3,

A (¢ vi)= | 4 gf«r' Dig,¥) (VI-104)

~)~ ["V/,.;.%’—Z)-/gv-(:é

Changing if’..a ‘Ef”fﬁ in VI-10Lk and noting from the definition (VI-37)
of D that ‘ ey
D(E,’X*EB =L Lg,g” : (vI-105)
we obtain
A g1 = 1= (& D) (72-106)
: (V’U') %‘05 ‘
Thus
(g = (4 QLD o
P
| a8, v}
aﬁd we obtain from VI-96 and VI-9T7 the desired result:
€ orr (39) = N: SAg &8 £(zg) AULE; 3D (or-308)

; |a (e, re90)]”
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where (3 and A, are defined by VI-38, VI-43 and VI-48, and, for Coulomb

interactions,

flpy) = ey (209
- ™ > 161
The problem is thus formally solved.

We now apply VI-108 to the electron gas at zero temperature. For con-
venience we deal first with VI-97. Converting to dimensionless variables
and using the explicit forms for @ , & and [ =) (i.e. the Fermi sphere),
we find after a few manipulations that the correlation-interaction energy
" per marticle is given (in Rydbergs) by the expreésion

direct exchange
A A~

- Cor?t __ tor? n
€ int * €int = ‘15 J% As“-" J.‘V' [ g _L
. " 70 _
wighr) A £ argaverh?

el ly'lel
\*EI>1 v

\ R ?—‘——& szq - | ~-&
‘T\"af," (E."*!-T,%)'}."i & W-V)§-ie {

"<l
" g1>0

(vI-110)
where

< (3" HE e

It is quite interesting to note that VI-110 is precisely twice the re-

H

sult ohtained for the total correlation energy per electron in second order

perturbation theory*, with the difference that the "bare" Coulomb interacticn

*c.f. equations (8) and (9) of Gell-Mann-Brueckner (54).
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l(both for th.e direct and exchange terms) is "dressed” by the dynamical
(Hartree) dielectric constant.

It is convenient to split VI-110 into three parts: the "direct" contri-
bution (€, ), the exchange contribution (£:) in the high density limit (Ig—o),
and the additional exchange contributicn (A-éb) at non-zero fg . 'Specifi4

cally, let

— CofT

P _
Ea Tt €, + AE, (vi-112)

unt

where (in obvious notation)

€, = qfrfg% ga’u— ga"u" é& ) . __j__ 7 (vI-113)
‘ 7]l \E-'“l [Y*E{-S)'L l la
I]c*i])l \Vl‘"ﬂ >
2 (B (e L (1)
85 J g2 P lowrplg

171 1¥'I<l
> (v

gat g‘av{'av ———“-— . I (—-‘_‘ ~ (vI-115)
37 g2 _) (+g~y ) (wayrg)g ) i

X140 1y'le

A2 1>
We shall now show that €, and éb lead (through VI-96) to precisely the

and

A€,

n)

correlation energy obtaired by G-B. /_\6 b » arising from the screening of

the exchange interaction, goes beyond G~-B and corresponds to the summation of
an infinite series of diagrams less divergent in each order of perturbation
theory than those contributing to their result.

Turning first to 6; since it is just a constant times the Rydberg, it

4
is proportional to & . The integration in VI-96 then brings in a factor
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of 1/2 and we find

iy o (] ]
(ecnrr)b ——}E;gu gA‘U' Clv T e P

0 Ci+!*yl)2 (wv'+—g)-g (vi-116)
-~ A -~ ~
ATy
W AV PY:
This is just what G-B call " é(b:n " which they have evaluvated by the Monte-
Carlo method, with the result
) ‘” = 0,04t * 0.002
Lorf T (VI-llT)

Considerably less manifest 1Is the connection between €, and the re-

mainder of the G-B result. In VI-11l3, let us introduce the new variables

.= v 5 4-3’/1 |
(vI-118)

’

L1

]

1[ *5/1

The integrand is then seen to depend only on N 's ana ?f . The (strictly
geometrical) ancuwlar integrations can now be performed. Defining the geo-

metrical factor ‘é_ (—n—)‘ba):

0
ok Aav vdv A0
S‘é“""(‘)_‘m = g 3 &
° o<re| (vI-119)
e YA RN A ﬂ'l/-l'
Eo NS T 4
&

(where the limits of integration have been obtained from |{[<| and
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l'}f*-’g] >V ), we f£ind that VI-113 becomes

o0 &0 o / ) |
T e it e g ) da'giele) 2
L“T{ o—{i ) ) = —_—
i SR IO SO 4
] g 9“’ 3“‘%)(4&&”46 +me)l
0

(vi-120)
To proceéd, we adopt a method suggested by the paper of Sawada et al

(85) wherein the connection tetween the G-B result and a meson-theoretic
treatment of the same problem by Sawada (90) is explored. Specifically,'

we define the following function of complex (1. :

0 :
= oY ’
{0 =90 (aaigla_ o 1 T4a
253 /
0 % £ +a .ILL-Jl
0
_ - (vi-121)
Its analytic properties are readily established from the definition VI-110:
for ‘Gf_ a > it has a single branch cut from ( '-%.-ﬁ}l ) to ( 1 <)-3:'/2 );
for % > » the cut splits into two parts, one extending from (—‘ﬁ - 52/1 )
—¢ 2 ; s
o ( f'/2+g" ) and the other from ( %/a- z_ ) to (%/a +G_).

Now from VI-lQl and the theorem VI-46, one readily establishes the

relation
9,4 = T3 .(.{Z(_Q«rie)——-F{_a__[e)) (VI-122)
Tl Al

where use has been made of the fact¥* that

3(-0,4) =0 i

¥This relation does not hold at non-zero temperatures.
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Then, from VI-120, VI-121, and the identity

( L )( ‘ ) = | T f@ry ()
L £a+ie)/\ 1x £ (1-C€) [f(nrie) — ¢ (_Q_-éeﬂ | 4 £(LL+0€) | + £ (L-C€)
(vI-124)
we find that VI-120 becomes
: 80
e, =-3 .ur. " 2 xie) n-le) : ;
© 4w % a5 g‘m'[ﬂ - f—(""‘— ] W
e Yy [ +£(0+€) |3 f(--L€) it
o
(vI-125)
If we now define another functic;n of complex _(L :
h (0,¢) = g‘é(ﬂ— $) A d-a’ ' -~ (vi-126)
_f)_-fn,
and note that
h{f4) = h{fzieq) ¢ Ry QL 20 (vi-127)
t::en o0 orle 00-ie
Sa'”‘ f(n+ie) f(a-le) qaipda’ = | - £(2) | (a) J.ﬂ_
I+ flare ) +fle-te ]| T 1 ¥ £(0)
A S O+iE o-ie
(vI-128)

In order to write the r.h.s. of VI-128 as a contowr integral, we must
explore the analytic properties of the integrand in the right half plane.
Since h -1is analytic there, the integrand has the branch cut of -F cited
earlier and a (possible) pole at the zero of | +f. Now (1 + f) 1is the

R.P.A, dlelectric constant whose analytic properties are well known (35 ).
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For small % , (1 ++ }—l has a legitimate pole at the real plasmon frequency

——n-f_q (). For ¢ > Gwax , hovever, wherg

fowe = 25 [ (217, ) In (! e

the zero of (| +4) enters the branch cut and hence ceases to be a true pole.

(vi-129)

In any event, since ..n_f,_t (%:0) is finite, we can for any 5 write VI-ll28

as

£fa)hia) 1o :
| + £(0) | W-aaa)

where the contour Cl is defined in fig. 1.

Figure 1: Contours for evaluation of VI-128

Closing the contour as indicaﬁed in the figure, and noting from the

known properties of f that the contribution from 03 vanishes, ﬁe obtain

] +L00 : o0
£hodn = —Sf-_b_,l_n_ ={ fnan = ¢ €uggp iz
gl-r{ [+§ IT(: % : 2.2 &'77."

e, - Cs, . 5 |+ £0C2,9)

(vI-131)
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All that now remains is thus to explore the analytic continuation of

lh to the imaginary axis. Note first from the definition of -F that

f(-n) = fra) (VI-132)
Then
e ‘
g famghtgpde - g_tt}_j,_ [ htizg) r hi-izp]de
ENL £0iz,9) 1+ £lizg)
(vI-133)

But from VI-126 and VI-122,

- & 2 .
Wiig,g) +hl-izg) = T '6 ok g[{(aﬂe) -F(JL-LG)J[ el da’
‘ ' -ITd\'rs Q,b :

_Q,+LE “cz
-}

(vI-134)

which, by virtue of the symmetry of the integrand under the intercha.nge

_.ﬂ. —» —.n’ » can be written

h(iz,q) +h(-t2)4) = g2 ¢ -l
Pabling) = TE 1.0 (L#atsio-siat g LE]M
—=00

(vI-135)
VI-135 is now expressible as a contour integra.lﬁ '

h(it, ) +hi-in) = T 1 dn’ {cﬂ’[ —l_]
Talg 2L R alsiz n'-iz

C.

(vi-136)
as indicated in figure 2.
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Fipure 2: Contours for evaluation of VI-136

Closing the contours and evaluating the residues leads to the desired

result

Wiz g) + h(-12,4) = ﬂjﬁ’;dz). (VI-137)

A Cg

where use has been made of VI-132.

Combining VI-137, VI-133, VI-128 and VI-125 gives

3 e ¢ 3
5, i -
€a SR g‘l%‘ %ag Y, = Jf_f f (w'%"%') du
‘ - ) Wz2Z 4.”4 oy (w
B e l+§(¢.%,%_) % |+F( )

(vi-138)
The function + is easily shown from VI-121 and VI-119 to be connected to
the function qu (W) defined by G-F (eq. 18) via:

fllopn= 25, QW (v-139)
%
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Inserting VI-139 into VI-138 and doing the integral over the coupling

constant leads to the final result
(%2}

(B = o o¥ g’jf,%‘ {:,OM.(' +af Qlu)) Afs Q%(u) dw

ﬂaﬂ

(vr-1ko0)

which is identical to the result obtained by G-B in series form (equation

(19) in G-B). VI-140 has been evaluated numerically by G-B in the high

density limit and they find

——

—

-]

(6“") = (6&#‘() + (6£°rr) = 00622 Infs — 0,09¢ +O(f$ﬂnl}) _Rl_ﬂ
| (Y X b elechron

(vr-1%1)
Going beyond G-B, we now evaluate the leading contribution to the cor-
relation energy in the high density 1imit arising from VI-115. Doing the

coupling constant integration first, we obtain

O ‘ 3
. 3 3 1
(eaofp g ket g; - (o0 : |

2 v\ ; 1
§ et w'ia T‘)’t ¥ i)' {£+E I‘)
\lr»r@m |E'+i|>|
£ 1) —
g . % ‘F:fz‘(i-‘QM(H;) PMH;"‘))} ‘ (VI-1k2)

where

3 ’ | l :
-F ':- ._,__01{5 a ‘U-' ( n " " A (VI~1L3)
T3¢ s qaie  (V-U)f-i€
i<l i

L+ 1>
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Expanding the term in curly brackets about Yg=o© , we obtain in lowest

order

(: ) = - l JU' S&lr ' : ;
cort ),y 4‘1}5 E‘q ?,-rv'ﬂl') ’E ' [t-}j{'-i-l/"')

Wil i <
g1 1y,
§J i , + ) ATs (VI-1Lk)
@-w+t)t (=48 /| 2 _
W Kl
ly"+31>)

The integral diverées légarithmically at smaliz_. As is evident from
the work of G=B, however, retention of the full VI-1Lk2 effectively screens
the Coulomb interaction at large distances -- tantamount to cutting off the
cﬁ_ integration :tor %( %m (const.) L3 R . Thus, proceeding ana.l-
ogously to G-B, all we need do is find the strength of the logarithmic
divergence of VI-144k, We can therefore expand everything in VI-1Lk4 for
small %, and retain only tﬁe leading terms. After some straightforwa;d
algebra, we first obtain

(é-:r)m _ _ad"s[ (_5 gdppga\v' '9?‘ — [a* ,Q,,('_ﬂ)]

%nm"'r.'a' & 8 I+ ‘ "V P'”’ =P/

(vI-145)
which displays the logarithmic divergence. Taking its strength and perform-

/
ing the r' and ¢ integrations yields

ore 3 = ¢ Dhr P)— 4l‘
(Gzo«)éb °f—%-q-—§ v c!y P[Q - ':'::)]P“(%‘) |+v]}
= ofs InVs A i
(e '

]..
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The integrals contributing to A could all be done analytically, with
the exception of
\ _
I G
(4 0R] £ - (199)] 3 dua — 0.cac (rz-21)
P
. :
which was numerically evaluated by means of a rapidly convergent series.

We obtain for A

- —29%. :
A 1 (vI-148)

and thus

LE (°(‘{)A\> & =L 15) rS B“ Ts R‘lcl/e 1fc+ﬂw\ (vi-1L9)

VI-149 is in marked disagreement with what is apparently* the only other
calculation of this quaﬁtity -- that of DBois (§2). FHe obtained the numer-
ical value ( - .00045) for the coefficient of (Vg Iwfs ) which is two to
three ordefs of magnitude smaller than ours. While the actual numerical
value of this coefficient is of little (if any) practical value, the dis-
crepancy, if real, would be indicative of the inadequacy of VI-108 beyond
the high density limit. We can offer a few reasons to doubt the plausibil-
ity of DuBois' value. First, the coefficient of the "direct" r;!nf3 term
(cbtained from VI-140) was found by Dubois to be +‘.OO5é, a value ten times
largef than the exchange term, in marked contrast td Hubbard's (93) estimate
that exchange should play a gquite significant role. Second, the value given
by DuBois is two orders of magnitude smaller than the exchange -contribution
to the constant term in the correlation energy (i.e.tffn I). It is diffi-

cult to imagine that Nature 1s so convergent. In any event, the discrepancy

%D, Dubois (private communication). Dr. Dubols also indicated that his nu-
merical value has never been fully checked althouzh he has the fullest con-
fidence in the analytic expression from which it was obtained.
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has not been at all explored as it certainly must uwltimately be. For if
we are actually in agreement, this would offer a strong motivation to numer-

jically evaluate VI-108 at metallic densities.

In sum, if we adopt DuBois' value for the "direct" rsin g term, we
obtain

c =o0.062alnly —0.096 —0.04b g mly  +(J(r R‘Id/

etorr OO‘: 2 5 s 5 O S) e’fC+V°n

(vI-150)

as compared to his net result
Crper = 0,063 InTs —0.096 +0,0047 G lars +O(1) RVQ/e!,,hon

(vi-151)

We conclude this chapter with a speculation occasioned by VI-99. Since

E.;ﬁir as given by VI-9T and VI-10T7 is in the form of an integral over ¥~

space, we can formally rewrite VI-99 as

1-'5

mr"(cf) o g,)';.u' m? »Lv at?g ‘ﬁ-ﬂ )

a

3 y 2
o Caungh a9’ | g2 Glg1s9)
RISTRTR Gk 180¢, 78,991

(vI-152)

But, by definition,

of " o V "y 5
BT GO (0.7
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where ACE:_') is the change in ’f:'/m due to correlations. It is therefore
guice tempting to identify the two curly brackets with each other although,
of course, there i$ no logical necessity to do so. .If true, tﬁis would be
a trivial method for evaluating the "smearing out" of the Fermi surface, at
least to lowest order. Thus, inserting the specific form VI-38 far(Q_

and converting to the usual dimensionless variables, we are led to the con=-

Jjecture:
M S 3% ( ~ ol 70
Cone —-——"' X F(vn)\;l—; v | Av (vw)[:—- (lr')

=

¥ = -
Q'K‘U}_'ﬁ' : tﬂ

@)y

3,70, --H(‘) h
x| L - L :} '—N”cv)[l ~(|Z1r+g) dv' £ v)Li - ("V'L).l

3 A{Vr » +

b i ](,ﬂ;) e i') ~ (vI-154)
K{.J'i e ] A LA e (3,0 "

] s Ll o b n
© Awag'egy ra | i A" f -5 |
[}

K[ | Bt [ 473

(g e (y'-_g).i;;,i l l
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-Chapter VII Summary and Conclusions

Our original motivations for undertaking the present study were
twofold. First, to formulate the quantum theory of many-body systems
in a fashion which bears maximum resemblance -to the corresponding
classicel theory, and second, to explore fhe utility and limitations
of such .a formulation. ‘

In the first of these aims, we have been generally successful.
The discover& that the classical and quanﬁum problems can be unified
via the Generalized Poisson Bracket, together with conveniently form-
uléted subsidiary conditions on ﬁhe phase space distribution function
as demanded by the .symmetry properties of the wave function under
particle exchange, has, we feel, a certain formal elegance and con-
ceptual simplicity. The particular circumstance thaf the Hartree-Fock
theory can be rewritten in the form of a simple generalization of the
Vlasov equation is especially appealing in view of the analytical
complexity introduced by exchange in many other approaches tc the
problem.

Elegance and simplicity, however, are naturally a Question of
taste, and the value of the present formulation depends, in the final
enalysis, on what it enables us to calculate and with how much effort.
For this reason, we have included many results (e.g., the exchange-
corrected plasmon dispersion relation, 8pih-waves, the non-zero
temperature electron gas in the Hartree-~Fock epproximation, ete.)
which are admittedly not new but which serve to give some indication

of the spplicability and scope of the method.
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There is certainly no doubt that dur formalism is particularly
applicable to the problemvof correcting the classical many-body theory
for lowest order quantum and exchange effects, as has been demonstrated,
for example, in our treatment of hydrodynamic transpért. In the study
of the many-electron atom, we have been sble to both resolve the problem
of the theoretical foundaticns of the statistical model, and derive its
many corrections in a detailed and systematic fashion. We have &lso
indicated the mahner in which the last remaining corrections, due to
relativity and correlations, can be calculéted, after which ﬁhis unduly
overworked subject could be properly laid to rest. Furthermore, the
recognition thﬁt the success of the statistical model is indicative
of the fact that the atcm behaves in many ways like a classical in-
hcomogeneous plasme obeying Fermi statistices, has-led us to anticipate
the existence of ccllective collisionless modes of excitation.

That our approach should, after all, be convenient in the descrip-

tion of quesi-classical systems is, of course, no surprise due to the

manifest ease with which the correspondence limit of the theory can

be taken. What we have failed’to achieve, however, is a thorough under-
standing of what classes of many-body systems cannot be fruitfuily‘
apprcached. With the exception of low temperature Bose systems where

a possibly trivial modification of the formalism has been shown to be
required, it appears that any reasonably homogeneous guantum system

in which dynamical correlations between more than two particles can

effectively be ignored, should be amenable to & q. m. 4. f. approach.
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Even at the opposite extreme of a system so strongly correlated thap‘
it exhibits liquid-like behavior, the quantum hydrodynamical theory
which we have developed should be of value in studying its transport
properties.

Particularly gratifying has been our apparent success in com-
puting the correlation energy of th? free electron gas, a problem which
had hitherto been the exclusive province of the field theorist. It
should be recalled that the energy could be written down iﬁmediately,
once the pair correlation function had been obtained. The only '
analytical complexity arose iﬁ establishing the connection between
our work and that of the G-B. Further Study of the appafent discrepancy
with DuBois' extension of the G-B result is clearly required, however,
before we can confidently hope to apply our expression at metallic
densifies. A calculation of the low temperature specific heat of the
electron gas would aiso be §f significant value é;nce'approximéte
experimental and theoretical (94) results at these densities are
available.

Perhaps our most significant result, however, is the collision
integral derived in VI-C. Recalling that the collision integral is
the starting point for an exact kinetic thebry of gases, we are now
in a position to correct such theories for qunatum and exchange
effects. Correlation corrections to the theory of plasmsa oscillations;
and the calculation of the effect of exchange on hydrodynamical trans-

port coefficients come immediately to mind as possible applications.
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One might alsco Qope to obtain a better understanding of transport
processes in the-degenerate électron gas by means of an improved
equation of state as derived from the pair correlation function
together with a hydrodynamic analysis based on the collision integral.
Lattice effects can probably be introduced in a relatively straight-
forward fashion. Of particular interest is whether the low temperature
anomaly in the propagation of scund in the electron gas, as found in
Chepter IV, pefsists in the more exact treatment. This is but one of
thé (unfortunately meny) loose ends which have arisen in the present
study and which, due to obvious limitations, we have not been able to
fully explore. We have tried, héwever, to call attention to fhem as
they arose and hope that the present formalism'will aid in their

resolution.
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A new approach to the niany election aton, based on the formal cquivalence hetween the Hartree-Fock
cauations and a quantumemechanical generadization of the collizionless Boltzmann (Viasov) equation, is

presented. ‘This equivalence casts the problem into the framework of conventional plasma theory, the

Viasov equation being mercly replaced by its quantum-mechanical analog. The quantum Viasov cquation
permits a straightforward expansion of the quantum-mechanical phase space distiibution function in
poweis of & The first step of this expansion, corresponding physically to a classical correlationless plasma
obeying Fermi statistics, leads to the Thomas-Fermi madel. Successive steps generate quantum and exchange
corrections. The method is applied to the case of the “statistical” correlationless atom {or ion), generalized
for the first time to arbitrary temperature and nonzero total orbital wngular mementum, with quantum

and exchange effects being included to order A2

I. INTRODUCTION

HIS Thomas-Fermi statistical model' provides an

approximate description of a broad dass of
spatially inhomogencous polyclectronic systems, with
a degree of success which is surprising in view of its
analytical and conceptual simplicity. Attempts to
understand this success as well as to improve the model
Ly remedying some of its more obvious shortcomings,
have led naturally to investigations of its theoretical
foundations.

The first step in this directicn was taken by Dirac?
who, realizing that the Thomas-Fermi model represents
in come sense a classical limit of the Hartree-Fock?
theory, rewrote the Hartree-Fock equations in terms
of the density matrix, and succeeded thereby in aug-
menting the Thomas-Fermi model to approximately
take account of clectron exchange. Subsequent investi-
gations' have generally followed Dirac’s lead, in the
sense that quasi-classical approximations to the density
matrix are studied. In particular, systematic expansions
~in 7t have been developed which lead both to exchange
and so-called “inhomogencity” corrections.

‘These approaches, however, suffer from two draw-
backs: (1) Since they are rooted in the Hartree-Fock
approximation, corrclation effects are excluded; and
(2) the conceptual simplicity of the Thomas-I"ermi
model is destroyed, with the consequence that while the
ordinary ‘Thomas-Fermi model can be trivially general-

VThe most recent comprehensive review articles dealing with
the Thomas Fermi niodel are those of 10 Gombas in Handbu b
der Physil, edited by S, l"lﬂgf;c (Springer-Verlag, Derling, 19506),
Vol. 30; and N. II. March, in Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd,, London, 1957), Vel 6, p. 1.

11 A M. Ditac, Proc. Cambaidge Phil. Soc, 26, 376 (1430),

2 1), Hartree, Proc, Cambridge Phal. Soc. 24,89 (1928); V. Fodk,
Vhys 7. Sowjctunion 1, 747 (1932,

AW, IR Theis, 7. Physik 142, 503 (1955); A, S, Kompancets
and F, S, Pavlovskii, Soviet Phys— JETE 4, 328 (1957); D. A.
Kirzhaits, Soviet Phys —JETP 5, 64 (1957); 5. Golden, Revs.
Modern Phys. 32, 322 (1900).

ized, for example, to arbitrary temperutures” or nonzero
total orbital angular momenta,® the procedure for
systematically obtaining quantum and exchange correc-
tions in these cases is somewhat obscure.

Recently, an attempt to remedy the former of these
difiiculties by supplanting the density matrix formalism
with the more powerful techniques of field theory has
been reported.” While such methods hold promise for
progress on the correlation question, they unfortunately
lead to an aggravation of the scecond difficulty, since
they are based on a formulation of quantum statistical
mechanices which is even further conceptually removed
from the traditionad statistical approach underlying
the Thomas-Fermi model than is the density matrix.

In the present paper, thercfore, we step in the
opposite direction and attempt to establish maximal
contact with conventional statistical mechanics by
dealing divectly with @ quantum-mechanical generaliza-
tion of the phase space density, which turns out, in fact,
to be essentially the Fourier transform of the density
matrix. This difference, although apparently trivial from
a formal standpoint, enables us to cast the problem
entirely into the familiar charged-particle statistical
mechanies, or “plasma” theory. As a consequence,
difficulty (2) vanishes and, although we do not concern
ourselves here with (1), i.e., the inclusion of correlation,
a close connection between this problem and contempo-
rary difliculties in plasma physics emerges.

Our method is best introduced by brictly outlining
the traditional statistical approach to the problem of
N identical particles which interact hoth mutually and
with a fixed oppositely charged “nudleus” via their
instantancous Coulomb forces, One begins with the
0NV dimensional phase space distribution function,

1, Sakad, Proc. Phys. Math, Soc, Japan 24, 254 (1942)3
R. P Feynman, No Metropolis, and K, Teller, Phys. Rev, 75,
1501 (1949).

5 A, M. Sessler and 11 M. Foley, Phys Rev. 96, 366 (1954).

* G. A, Baralf and 8. Borowitz, Phys. Rev. 121, 1704 (1961).
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I (ryra s Ty PLPys P &) whose dynamical (Liou-
ville) equation is ohtained from the Newtonian equa-
tions of motion. Singlet, doublet, ete, distribution
functions are then defined as the integral of Fy over
N—1, V=2, cte,, dimensional phase subspices. The
{coupled) dynamical equations for these quantitics,
the sco-called BBGKY?® hicrarchy, are obtained by
integrating the Liouville equation over appropriate
phase subspaces. To proceed further, this system of
cauations is approximated by trancating the chain at
some point, The simplest such approsination is to as-
sume that the doublet distribution is piven simpiy by the
product of singlet fune tons, corresponding to the negect
of all correlations, o “collisions.™ A is well known,? this
procedure leads to the “collisionsless”™ Boltzmann, or
Viasov™ equation for the singlet distribution function,
Fy(r,p,t). The Vlasov cquation is satisfied identically
by the sct {7} of functionals of the constants of the
‘motion of a single particle in the average field of all the
others. The neglect of collisions is then approximately
remedicd by the ansalz that their effect is to single out
that member of {7} which maximizes the entropy,
subject to the constraints on the total system (ie,, total
energy, number of particles, angular momentum, cte.).
(Tothe extent that only two hody callisions are impor-
tant, this procedure s validated by the JI theorem.)
Higher approximations, corresponding to 1 more exact
treatment of correlations, leiad to formidalle analytical
difficulties which are currently heing attacked on
various fronts."

The question now arises as to how this procedure is to
be quantum-mechanically  generalized. The simplest
generalization is to merely introduce the appropriate
quantum statistics into the entropy maximization. This,
we find, leads to the Thomas-T'ermi model (with
Fermi-Amaldi** correction). It is clear, however, that the
Vlasov equation must also be quantum-mechanically
augmented. This has been done by one of us® in a
previous paper along lines analogous to the derivation
of the Viasov cquation sketched above, A quantum-
mechanical phase space distribution function (q.m.d.f.),
Fa(ry,tays Ty PPy - pa; 1), is defined which ap-
proaches the dassical distribution function as 2 — 0.
The quantum analog of the Liouville equation for Py
is then obtained from the Scliroedinger equation for
the .V-particle wave function, ¥x. Decomposition of
Fx into singlet, doublet, ete., functions leads to the
quantum counterpart of the BBGKY chain, which is
then truncated, as before, by neglecting correlations.
This truncation is equivalent to replacing ¥ by a single

® A sct of equations derived independently by N. N. Bogolubov,
M. Born, H. L Green, J. G. Kirkwood, and J. Yvon.
¥ M. Rosenbluth and N. Rostoker, Phys. Fluids 3, 1 (1960).
WA Viasov, J. Phys. (USSR) 9, 25 (1945).
DR D. Fried and H. W, Wyid, Jr., Phys. Rev. 122, 1 (1961).
21 Permi and 1. Amaldi, Menr. acead. Ttalia 6, 117 (1934).
10, von Roos, Phys. Rev. 119, 1174 (1960).
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Slater determinant, so that the quantum  Vlasov
cquation thus obtained is formally cquivalent to the
Hartree-Fock equations. The resulting partial differen-
tial equation for the singlet q.m.d.f, /¥, is introduced in
Sec. IL It has the convenient property of permitting
a straightforward expansion of I in powers of £,
thercby unambiguously gencrating quantum and ex-
change corrections from the zeroth-order (Theomas-

“[Fermi) solution,

We illustrate this method by considering an atom (or
jon) at arbitrary temperature, with nonzero  total
orbital angular momentum. In See. 111, the Thomas-
Fermi model for this case is derived from the Vlasov
cquation along the lines sketched above. The quantum
and exchange corrections to order £2 are then obtained
from the quantum Vlasov equation in Sec. IV. In the
limit of zero temperature and zero orbital angular
momentum, our result agrees with that obtained by
others' via the density matrix. In the concluding
scction, we briefly re-examine the correlation question
from the plasma-theoretic point of view developed in
this paper.

II. QUANTUM VLASOV EQUATION

The quantum Vlasov equation has been derived by
one of us in a previous paper,” where it was written in
a form facilitating its application to the study of quan-
tum corrected longitudinal plasma oscillations. Since
in the present paper we shall be dealing with A electrons
(mass m, charge —ie]) in the field of a fixed point
nucleus {(charge +.Zle}), rather than the extended
homogeneous plasma considered previously, a few
trivial modifications are required: (i) the elimination of
the action of an electron on itself; (i) appropriate spin
space averaging of the exchange term.” The resulting
cquation for the singlet q.m.df, F(r,v,f), can be
written as

a 1
(-—+ vV, ——V,U- \",)F
ot m

ih 1 o f—il\" 2 S
=—-{ VA ——3 (-———) — (V- V) UF
2m mn—o \ m / (n4+2)!

ie?h N—1
— —— [ @ exp(il-v) f(1,10)

-

2m? N

? 1 1/ 1
X [ ~F(r+——l, v, l)———
l m

2x?

d*'

it o o
ft a
>’<F(r+——l, v, :)} (1)
m

1 0. von Roos and J. S. Zmuidzinas, Phys, Rev. 121, 941 (1961).
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where ;
N—1
V= —-trre'f——\-;—- fr!’v F(r,v,0), (2)

Ze?
lim == =)
re=( o r

(Z—=N+1)e?
sl b b

Ui s .

r—+m
r

P(ev,)=(2x) * f a4 J(r ) explil-y),  (4)

ol
Sapuasdis ®)

?
- O, dnye - -

an
(vr . vr) "l_,’iv‘gz s
Trte -

(7, 7, - -+ are Cartesian indices running from 1 to 3)

[ [lpfl{nl' F(r, \',l) = .\., (()l)

Gaussian units and the convention that repeated indices
are to he summed are used throughout. Information is

. 5 . .
obtained from ¥ (@ nonobservable) by integration over
configuration and velocity space, i.e.,-if G(r,v) is any
function of r and v, then

[ Glr) Fle)irPe=1GI00), ()

where G is the operator ohtained hy well-ordering
G(r,hV,/im), and ¢(r,0) is the single particle Hartree-
‘Fock wave function for the system. Conscquently, the
quantum-mechanical expectiation value of the electron
number density p(r,f) and kinetic energy K () of the
system, for example, are given by

p(rt)= [IT(r,\',f)d’r, (8)

and

K- [ [ [ 3mm? |B (e, v, 0drd, (")

Since we shall be interested only in the ground state
of the system, the time dependence of the above
equations will henceeforth be suppressed. Consideration
of time dependent effects (e.g., collective oscillations)
will appear in subsequent papers.

The left-hand side of Eq. (1) is the usual Vlasov
operator acting on I, The first term on the right will
generate quantum (“inhomogencity”) corrections, while
the second term represents the cffect of exchange.

Expansion in %

Equations (1)-(3) are conveniently solved by the
following iterative cxpansion in A: First, in Eq. (1),

209

" is assumed to be given, and the expansion

P= 3 fnr,

=g

(10)

is introduced. F(r-+01"m, v), appearing in the exchange
term of (1), is expanded in a Taylor series:
F(rd-ilm, v) = Fe,v)4- (51 m) -V, P (e, 0) 4+ . (1)

Introducing (10) and (11) inte (1) and chuting
coellicients of similar powers of & leads to the following
chain: '

0Oth order

: [¥: = (1) V07V, =00, (12
1<t order .
[v-¥,— (1/m)V UV, )

= (2m)[ V20— (1) (V,- VU F], (13)

2nd order

: 1
(-.-- Ay 8 v.)z-‘2

m

1 1 1
= — [V,"Fl ——(V,- \"..)?I,'l-‘,]—~ — (V- VRUF,
Gmd

2m L 18
2re* N—1 :
e e [V Vo= TuFo-Tyge], (14)
m N ’
where
e = [ 5Py, (15)
D v—vie

etc. The potential energy 7 is then rendered self-
consistent by introducing into (2) and (3) the quantity
F(U; 1,v). (We indicate here explicit dependence of F
on [7.)

Generally, the sceries (10) will ‘only be partially
summed. Defining the pth approximation to P

»
PO 0v)= 32 WP o(U; 1,v),

n~

(16)

the corresponding approximation " to the potential
is then determined from

\4

VP e — dyrpl

i [d'-‘r- Foum; ry), (17)

Ze? (Z—=N+1)e?
lm U= e, U A T (18)
re) r re.o r

a procedure which guarantees the self-consistency of
the potential at every stage of approximation.
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Solution to Second Order

In this paper, we chall consider only corrections to
order 2 and hence will require 7, Before proceeding
to the consideriation of special cases, it is uscful to
point certain simplifications of the relevant equations
[(12)—-(1D)] which can be made in general. First,
making use of (12), it is not diflicult to show that (13)
can be immediately solved to yield

Fy={—1i/2m)V2F,, 9

(20)

where
Verdty= 0"’/“.;/0.1‘.01’.‘.

Second, again making use of (12), one can establish
the identity

(Vr S Fo= 2m[ S22 F) — (1/m) (V,- VU V2]

Fom[v-U (VA0 = (1) C UV AV, A1) ], (21)
where -
Vet lfg = 3'F/dxx,00 dv;. (22)
Introducing (19) and (21) into (14), there follows
Fo=—(1/8m")V ' Fy4-Ga, (23)
where :
1 1 ‘
(V 3 vr—h_vrlj : v')GE: AT —(Vr' V,):!UFQ
m 24m3.
211’!": .'\'—'l
proeem e [ Wopn Voly~ ViFe Vogo).  (24)
m N

Thus, all that remains is to determine 7. Since we
are concerned here with the ground state of the system,
the Fg we seck is that solution of the Vlasov equation
(12) corresponding to minimum total cnergy and
maximum ¢ntropy.

III. ATOM OR ION WITH NONZERO ORBITAL
ANGULAR MOMENTUM :

As is well known, the most general solution to the
Viasov cquation is any functional of the constants of
the motion of a particle moving in the potential 7 (r).
We consider an atom or jon with total orbiral angular
momentum J L, where Lois a unit vector. It is clear
that the potential in this case has rotational symmetry
about L, i.e.,

V.U X L=0. (25)

A particle moving in such a potential has only two
constants of the motion: the total energy $m?4 U (r)
and the projection of the orbital angular momentum

along L, i.e., mrXv- L. Thus, the most general solution

to the Vlasov equation in this case is any functional of
the form

Fo== Fy(3m2-F-U (r), mrX v L). (26)

LEVINE AND O, VON ROOS

To minimize the total cnergy, S S[Em*+T(r)]
XEo(r,v)dPrd®, we clearly seck that distribution in
velocity space which locally minimizes (m/2) f/22F(r,v)
Xd% subject to the constraints of fixed spatial density
S Pl and fixed local momentum density S mvEF oy,
It is casily shown that this requirement is met if /g
possesses spherical symmetry in velocity space (about
some displaced origin), i.e.,

Fo=F([v—d(nT, ¢(r)), (27)
where d and ¢ are arbitrary functions of r. Combining
(26) and (27) lcads to a unique form of the minimum
energy solution to the Vlasov cquation

Fo=F(U(r)-+1mvi—mwrXv- L), (28)

where w is a constant, Note that this implies uniform
rotation with angular frequency w. If we transform to
the rotating frame, the transformed density function
1"0’ is
Fo=F/(U ()42t —dmet (' X L)2), (29)
and is therefore a function solely of the cnergy ¢, in
the rotating frame, where the effective potential
cnergy is . :
U =0 ()=t (' X L)~ (30)

The entropy maximization in the rotating frame

yiclds, of course, the Iermi distribution, i.e., -

romriorm YT o

The function Fy is therefore determined, and we have
finally

m 3
)
h

U(r)+3me*—mwrX v L—X e Ty
PP e W P

The Thomas-Fermi (Amaldi) model, generalized to
nonzero angular momentum and nonzero temperature,
follows from (32), (17), and (18) if p=0, i.c., if we
use only the lowest order approximation to F. In the
limit of zero temperature, this leads to the equations
first derived and studied by Sessler and Foley.® For
zero angular momentum, we obtain the usual finite-
temperature Thomas-Fermi model.®

"IV. QUANTUM AND EXCHANGE CORRECTIONS

Using the Fo given by (32), we shall now go to second
order in and compute F'®, From (19), (25), and (32)
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there follows immediately R 1 Pl v m[ V(v VD)
. it e Al rU—gl'0 VeV VeV,

Pi=(—i/2)[v- VT +metvX L- LX e ], (33) 4m
where the primes indicate differentiation of /% with _1_ g P Sy
respect to its argument, i.e., +mV'U V.U }" oy LXV'U iF
' N1
d g m\? X{v-V,[U—~2maw?*(LX1)* ]}--~—-~—*l‘o
I .
¥ ¥ dl-
3 r=X 1 d b4 [ Fo(r,v'),  (35)
}(ll:x]\(— ) I‘l] l (31) I\-\ I
e kil : vl At —per Xv- L. .

Introducing (32), (34), and (35) into (17) and (18)

The solution of (23) and (24) for /o, while simple  and performing the angular integrations in velocity
and straightforward in the absence of angular momen-  space [keeping in mind the symmetry condition (23)]
tum, is somewhat involved in the general case and is  leads after some dlbLbl‘d to the followi ing equation for

therefore delegated to the Appendix. The result is AL
42(2m)!t N —1,3 ; ®
T A -* = [ dw wt fy(o+ U -1 ?Hu:'(l,)( )4 *V U‘"’f dw 1wt fo' e+ U — ime?(L.X1)?)
3pe N 12/, om 0
i . . =
- --{-)[ VIO . CUE— T (LX)~ Imo' [V (LX1)? J']f dww ) o - U= Emw? (v XX L)%)
Sl 0
3eQ2mBA N—1 > 7
S —-—-]i/ dw w fo(o+ U™ = Imw® (LX r)‘):l ], (36)
Sﬂ‘fl ."V 1]
where
o=[exn(“2 )+ ] | a7
x)=| exp| —-— ]+ ,
’ kT J
and U® satisfies the boundary conditions b -
U ~ —(Z~-N+1)e¥r, : (38)
lim U= —Ze2/r, . (39)
r={ :

In the limit of zero temperature, the integrals nc«:urring in (30) can be easily performed, yvielding
de? V-—l
V’:U(!) —
T it N

72
-—-D\ U +Imw{LXr)? ]“l: VUD . YU - U@ . V(LXr)?— ‘mw‘[T(LXr)’]:]
m

3e* (Zm)‘ ’\'— 1
27r?‘1 N

23

-{2m[A— U('"-{-‘mw"(LXr) ]]’{ I—EF-—V U""D\ U +ime* (LX) ]2

[A— U+ et (LX 1)? r'} (40)

To establish contact with previously published  Assuming h2LU7p<&l/q so that only the lowest order
results,® we pass to the limit of zero angular momentum  terms are kept, (40) becomes
(w—>0) in (10) and let

Ime? N—1
U®=Uy+h, (41) “V”/'z-l*-—}‘— —-—"]:2"1(7\ Uo) U
= N
where Uy is the solution of the usual Thomas-Fermi S 7N —1 et N
. c miet N — me* |
(Amaldi) equation: i ( ) A== Ug) ———s __.__['),,,()\ Uyt
4e? N—-1 ht N N 1275 A

7 A S Ut 12
v UO -nwf" Ar [:21?1(& 0)] ( ) XE‘}V"UU"}' ()‘_ Uo)*1VUo- v(/rg]' (43)
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“which is the usual quantum and exchange correction
to the Thomas-T'ermi model,'* augmented by the Fermi-
Amaldi (V—=1)/.V factor. Note that the perturbation
procedure used to obtiain (43) from (10) destroys lhc
sclf-consistency of the potential,
auations (36) and (37) contain two constants which
require some discussion. The chemical potential X is
essentinlly determined hy the bonndary condition (38),
The determination of the angular frequency w depends
on the problem being studied. That iy, if the total
angular momentum J is put in s an ad foc (mhlrnnl{
then' w is determined from

J=f[rﬂr(ﬁv mrX v (r,v).

On the other hand, in the spirit of the statistical
approach to the atom, onv may determine w from the

(44)

model iteelf, as that which minimizes the total energy,

This point will he explored more fully elsewhere.

V. CORRELATIONS

The “quantum plasma” approach to the statistical
atom presented here, establishes a connection between
‘contemporary problems in plasma physics and the
difficult problem of introducing correlations into the
Thomas-Fermi model. Correlations are introduced in
claggical plasma physics by higher order truncations
of the BBGKY hicrarchy. Thus, for example, instead of
decompuosing the doublet distribution function into a
product of singlet functions, the friplet distribution
function is decomposed inte products of singlet and
doublet functions. This results in a complicated set of
coupled equations for the singlet and doublet distribu-
tions.? A precisely analogous procedure can be carried
through for the q.m.d.f. An expansion of the singlet and
doublet q.m.d.f. in powers of & can then be performed,
leading to cssentially the classical equations in lowest
order. Recalling that the Thomas-Fermi “approach”
is wholly tantamount ts the solution of these Jowest
order equations, it is clear that to infroduce correlations
into the Thomas-Fermi niodel, one must begin by finding
the classical doublet distribution function for a spatially
inltomogenecons plasma whose singlet function is the
Fermi distribution. ‘This problem is as yet unsolved.

APPENDIX. SOLUTION FOR F,
We present here the solution of (23) and (24), where
Fo=Fo(U (x)+ mi? — mwy- LX 1), (A1)

Let
Fa== FyA - Fy B4 Fy

13 See, for example, Fiq (4.15) of reference rj8
1# Morc properly u"" m the sense of the definition (16).

- (A2)

AND O. VON ROOS

where
1 -
o= ——— Y A A3
8m? - (43%)
1 1
(v Vy—---.U-V ) g ez — e (V- V )’UI' (AY)
m 24md
and |
1
m
2re* N—1
= (Vego: Vel?o—V,Fo-V,g0).  (AS)
m N

In solving these equations, use is continually made of
the symmetry condition (25) and related identities like:

veU(EX e T ) = L eV (LXr-V,07)=0, (A6) "

ete, to reduce the complexity of the multiple vector
and tensor products which formally arise. As space
does not permit these manipulations to he-exhibited in
detail, we present only the skeleton of the calculation.

(A- 3) involves oni) the straig ditforward evaluation
of V.. I, and we find

Por=—(1/8m)F¢'VU —LF""[v-V,(v-VU')
+ (1/m) (VU ]+ 4l v- LX YU
%0 F V(LX) VU dnes ™
X (¥R L= Fo™" (v VU= dme?(LX )20}
A — el - X)), - (A7)

The last term in curly brackets being a solution of
the homogencous (Vlasov) cquation is then deleted
since we are only interested in the (inhomogencous)
terms gencerated directly by the right hand side of (14).
Its appearance in (A7) is a formal consequence of the
shorteut (21), and care must conscquently be taken
when evaluating (A3) to delete these spurious terms.

The only real algebraic complexity arises in (A4).
Straightforward evaluation of the right-hand side yields.

1
— (VYU Fy
Zlm’
:.—-—{[v—w(l Xr)] VYU

1
-—2—l(v-wl,>< ), (v—owLXr),(v—wLXr),

+ o B e
X T » el 3

dx,0x,01y
It is not difficult to show that as a consequence of (25),
LXr -V, (V,2U)
;U
=0= (LX l’)-’(LX T),(LX l')r.-""-‘—"".

102028

(A9)
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Consequently, (A8) becomes

1 -
— (Y, V) UF
24m‘( ) ’

1 1
= [ v V(V) " —= [ vV, (v- Ve (v- VU)) ]I
Sm 24

] ?*U
+‘;l,b.‘ ( L)( rj,v,-u»———-—]v'g”'»— iw“(LX l’). ( LX I’)Jl'j
x,-ax,a.r.
‘ *U
——I’.  (A10)
Ox, 020

The contribution of the first two terms of (A10) to
F.® is immediately found, since it is readily verified
that

1 —1 1
[ [y
71 8m 24

X[V-Vr(v-\‘-b’)+i_tvw=})

1i3

1 1
= ——[v- T (V)" — —
8m[ ( ) 22

&

XV V[V V(v VU) ", (Al1)

The contribution arising from thd remaining terms of
(A10) proceeds as follows. Using the identity

v-V,[v:-V(LXv-VU)]=0, (A12)
one finds
Jau
L (LX), - =10
A dxjoy
=y X LV (v-VU)F". (Al3)
This leads to a contribution to Fj® of
1wF"vX L-VU, (A14)
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which can be wverified by direct substitution into the
left-hand side of (A4). :
In a similar fashion, use of the identity

LXre YV, (v-V,(LX1-VU))=0. (A15)
leads, after some :ﬁgchru, to the relation
;U
(LX) (LXr)u -~
dx ;0.1' 5 0 Xk
=3v-V,[V(LX1)2-VU]-V,(Lxv)?-V,U. (A16)

The contribution to I»® arising from the last term of
(A10) is immediately apparent and is

=@l V(LX) VU4 2m (LK v)E]. (AL7)
Collecting terms, there follows for 4,8

1 1 1
o7 S YL 1"u"’[v-V,(v-VU)-{--——(VU)“]

&m 24 91

1wk VX L VU~ motF o (LX¢v)?
— V(LX) VU, (AL8)

Finally #:€, the contribution arising from exchange, is

rcadily obtained since the right-hand side of (AS5)
becomes

2re* N—1 : 1
[ v-¥Vige——V,U: vau]l"o'

m: N "

2we? N—1

W LXr Vo= vX LV )7, (ALY)
m: N X

1t is not difficult to show that the sccond term of

(A19) wvanishes identically. Censequently, we have
immediately 3
Ft me*N—-1 (
Co= o — —— oy, A20
: m: N s )
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Appendix B.

Derivation of Exchange-Corrected Energy Transport Eguation

This Appendix is devoted to the derivation of equation IV-118. The

starting point is equation III-U8 with the additional exchange term IV-11T.
g P &

Specifically,
tat g - [9 vF«-)] +‘;3;f ch [ 7]
I* oV SvE  oxk T

Denoting the last term temporarily oy YCXC\E , we introduce the ansatz

III-66 and take the real purt of B-1 to obtain

2 [@.lgc‘sWﬁh( +<{u ) F '5 t)] + V [R.ng,j"’w(w+<u>)l.m(w+(u>_) F (5 w,t)

-l-i_ voimgcl‘xr Lt F (iY,*)] 'f'ﬁ Ve RLSJW(W+<“>) F” X, W€

+ Re gexchl =
| (8-2)

Next, meking use of III-69, III-T2 and III-T3, a5 well as III-h9,_converts

this equation into

Z)D-;‘: [ —m<“> <)t 'Tr<T>]

+ < u.">.'.‘n<n>(u> +4’&;L = (SZ- (<n><5>)) * R#Sf‘" WKﬁ“waE('](E.‘ﬂ,*J}

{<u- ST 5 9 < ut >.'.T..<1r>

DXZ

% 31(Y¢T.<g_.>)<n) + R,_ iexck( =0

(B-3)
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Introducing the definitions III-TT7 and III-78 and employing the mass con-
tinuity equation (III-56) yields

- ¢ ’
m<n>( 2 448> v) CED" + LTS Teuy + pocals

2
Jt (q-w\

i 2 L 3 LU o
Lut >9x"¢_“_ > t 9 dn> <UDV é + Ry iexh)?..o

—

v )) + 9 (““(n)(to)) ¥ V-(u._Lrn<n><u.>‘)

(B-L)
Finally, noting that since by virtue of ITI-56
D (m 3 4 7 (DL mandCud ) = M A <UL (2 +Lude )y
2 (gameey )y (g 4>’) W (2 +<8>Y)Ku>

(8-5)
we can replace these two terms by the scalar product of L W™ and the
momentum conservation equation (IV-lOT). The end .result of this operation

is the equation

—_ ¥ ’
mand] 24 LTI T 4T g + 74 @)

- ):'a%c ¥ <&>I-'),7'] (iﬁ 7and) — <u>T PN + R, {exa]=

(2-6)
which can also be written as RS
g = ) S ’
mLnS>| 2+ LuSN.v e e V<">) -1 . uw
L3 +<e>-P](<&77-5; T LT p >

e L xch '
Y (k) T ¢+ ge<@> —<e TP +Refexd} =0

(B-7)

In the absence of exchange, this is equation III-T6.
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Turning finelly to Re gcxcl.s , we first integrate by parts to obtain

e = -3 i 4 2 22 a__.«#“"’.a:r:-:f’)]'

Ix% vk UK oxk
- q i
= RO *3 A gd;‘U'J-'U'Q Hck;F”’ , ? ‘U' excl

Hext, introduction of the ansatz IV-104k together with the fact that F, (X w,t
e - ) ~

' xth
(as defined in IV-105) and, consequently, cl)e (X w

X, %, t) depend. only

on the magnitude of W lead to
b e

Ra feskd = =3'2, [ 1 (4 <) 4 U 2Bl5m)

A (5mw?)
-9 Saw (ws<uy) b %, W) AR, (3, w,9) (-9)
, 3 XK
3 [(w > ,)w mw 4; {x w{,)DF } —§2< u.")jcﬁw(#:x(‘;,w,{)_aro(,’!'%f)
7 (—‘-MW DXK

Inserting the definition (I\T-lOO) of the exchange potential, we arrive at

ivd = X o[eo Pl 28 000t rg o)

6 J(imw?)

+LuD>-V ,fw F;(ZW:t) LB ' 5 '
e (9 go‘w \‘(f-(w-w)) rc,(zs,w,f))

(B-10)
‘ Making use of IV-108 and IV-;ll9, we obtain i‘inall&
g éx“ lexeh lexe
Rgiexcls‘ = <‘;,'->',\Z<'f’ > +(<f3 O o )Y.<%>
; (B-11)

which, when inserted into B-T, yields IV-118.
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Appendix C

Solution of Time-Independent Quantum Vlasov Equation to Order h 5

We consider in this Appendix the methed for obtaining a solution of

the equation

of the formr
F (£,¥) ZFN ‘ah (c-2)

where E is an arbitrary single-particle Hamiltonian. Both the first and
second time-independent quantum Vlasov equations are thus included in this
category. Ve ignore for the moment the fact that H itself may depend on

17\ either explicitly or implicitly via a dependence on F, and consider it

to be some given function.

Introducing the convenient notation

E A A“’" y: (c-3)

—_— T ————

(3% 28 (W)

(m+n)

L

byo-ee

A space derivatives

where L,b , K, 2 , . . « are Cartesian indices, and the opemmr$:
hL-- - By ,
LA T e%A (c-1)
UJ = J 3 BET 7
we £ind from the definition of the G.P.B (II-5T and II-53) that F , F,, and

F, satisfy the equations

N T L R

J

1l
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L -tR =& (1-3) By, HT

(c-6)
A TIAE B 22 faale pil by g e g Gl
w (I7NR R =< (=R, 1™+ L ( x)cjkl(?T)

where repeated Cartesian indices are understood to be sumed.
As is well known, the solution of C-5 is any functional of the con-
stants of the motion, C .,y (£ ,¥), defined by

$ Co =0 | (c-8)

P.B.
one of which is the Hamiltonian function itself. For simplicity, we shall

assume that F, is a function only of the Hamiltonian:
Fo = Fo(H) (c-9)

The generalization of the method to cases where F, depends on other con-
stants of the motion as well should be gpparent from the ensuing develop=-
ment.

From (C-9) it follows that

F. J = Fo HJ (c—lo)

Fa:).". = Fo H\i Hh + Fp Hdh (c..l_]__)

Fong = Fo tht e+ Fo (BjbuetByphip+Hthy) + "i'c}ji’ég
where

F.; = ‘_Slfﬂ e te. (c-13)

A H
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Using C-10 and C-11, C-6 becomes
I aNE ud = o YA ik L ik
~ OO F;H == (0 DR B B 4 7 By B7) ey

Since in general

g |
=% A'L'dk -0 (c-15)
LJ R :
C-14 becomes simply
;{: (1- JA/) F'f) B = ‘:_F_O ( |— @)1( Hhﬁk‘)dH&] (c-16)
am?
Making use of the identity
L= (AmB) po = AG) (1-3)B, B’ )
[ vvL J
the solution of C-16 is immediately obtained:
FI = —-;:‘ :l:.o HJLH‘Q _ . (c-18)
a2 :

Inserting this- result into C-T and making extensive use of C-15 leads after
some straightforward aigebra to the Fp equation
—1_ - _ 5 _ ae hQ 3
- (1=3) haH = K -9 By (")
4wm?
see hg 'l. ’
*F (1-3) # (HnHeH +Hy g K (cm9)
ém? 3
Tl (1=3) By (Huhy htAY)
w3 ‘
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which is immediately solved using C-1T:

F = -—Fo (H Hh!) = (H‘ ” H & e ’l e
" h + H, H +H H H
L k2 e £ b f1g P u)

% (n*ty,n,)

B3 (c-20)

The general method for obtaining F,, should now be clear. One simply
manipulates tzxe right hand side of its equation into a sum of terms each
of which is of the form of a derivative of F times the Poisson Bracket of
the Hamiltonian with a scalar formed from tensor products of the Hamiltonian.
In view of fhé regular structure of C-18 and C-20, it is no doubt possible
to write down a six@le general solution for Vany F,- Indeed, it is apparent

from these results that

an ‘
Em: (_L,_)“'_l_ i le o“PFo x (scalar formed fromp H's) (C-21)
"I Mpa AM

but we have not pursued this line of investigation.
To apply the foregoing results to the problem formulated in Chapter V,

we let H be the Hamiltonian

He Lmvta Um-wg:—mz)av .
[-¥'[R

Expanding it in powers of 12 3

L W {c-23)
= 3 %" H, |
h=0
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we have :
2
Ho =2 v+ u(r)

(c-2k4)
Hy= 2ue” C g/ (e, v)d!

wq
-yt
Then, to order 'Fil, there follows

. . N fp
@ _ F, (Ho) — FO(HO)‘Aue:t.lg'}:o()-}o(r,‘lr')) Py 1k F (k) H, le
- (v-v')? e o

bl

(h) H -
Fﬁ) 0 Mo "ﬁ F(o)[ b, H“H + H"th‘:.HoQ

Ll'

sadp

ropkpt T
Ha H, Ho.h.l-] —‘; F CHO)[HQ’ Ho Hok Ho,[

(c-25)
The derivatives of H are particularly simple in the present =xample

and the result quoted in the text follows trivially from C-25.



