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Abstract 

 

Ligand-gated ion channels are multi-subunit transmembrane proteins that 

play crucial roles in synaptic transmission in the nervous system.  These include 

the Cys-loop receptor superfamily, the ionotropic glutamate receptor (iGluR) 

family, and the purinergic P2X receptor family.  Binding of specific 

neurotransmitters at the ligand-binding site triggers a series of conformational 

changes that ultimately leads to ion channel opening.  This dissertation describes 

three molecular-scale functional studies on these receptors. 

The first project (Chapter 2) describes structure-function studies of the 

conserved Phe-Pro motif in the Cys loop of the nicotinic acetylcholine receptor 

(nAChR) of the Cys-loop superfamily.  Both residues were substituted with 

natural and unnatural amino acids.  A strong interaction between the Phe and 

Pro residues is evident, as is a preference for aromaticity at the Phe site.  

Hydrophobicity is preferred at both sites.  A correlation between receptor 

function and the cis bias at the proline backbone suggests a significant role for 

the cis proline conformer in receptor function.   

The second project (Chapter 3) concerns the key binding interaction of 

memantine, a prescribed drug for Alzheimer’s disease, on the N-methyl-D-

aspartate (NMDA) receptor of the iGluR family.  The data suggest that the 
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special property of memantine as an NMDA receptor blocker stems from the 

presence of the two methyl groups and a proper shape-matching to the binding 

site.  Comparing affinities of memantine and amantadine, a structurally related 

drug, in response to pore mutations allows an identification of the methyl group 

binding pockets on the NMDA channel pore.   

The final project (Chapter 4) involves a study of inhibitory crosstalk 

between two families of ion channels: α6β4-containing nAChRs and P2X 

receptors.  When these two distinct receptors are co-expressed, their properties 

are modulated from their normal behavior when expressed alone.  The effect is 

constitutive and does not require channel activation.  When they are co-activated 

by their respective agonists, the observed current is smaller than the sum of the 

currents evoked by individual application of their agonists.  This functional 

interaction between these nicotinic and purinergic receptors in dorsal root 

ganglion neurons is proposed to be involved in pain sensation.   
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Chapter 1 

 

An Introduction to Ligand-Gated Ion Channels and 

Summary of Dissertation Work 

 

1.1 Synaptic Transmission 

The basis of information processing in the nervous system involves both 

electrical and chemical signaling.  Neurons function by propagation of electrical 

signals across their membranes, called an action potential, traveling down a 

neuron’s axon.  Each neuron connects with one- to ten-thousand (103–104) other 

neurons through specialized junctions, called synapses.  To communicate with 

another neuron, the signal from the first neuron, called the pre-synaptic neuron, 

must move towards an axon terminal that has formed a synapse with the 

dendrite of the second neuron, called the post-synaptic neuron.  Communication 

between neurons at synapses primarily involves a chemical signal — the 

information is encoded as small molecules called neurotransmitters.  When the 

electrical signal in a pre-synaptic neuron reaches a synapse, the neurotransmitter 

is released.  The binding of neurotransmitters to their specific receptors on the 

post-synaptic neuron causes ion channels to open.  Ion conduction through the 

channels consequently alters the electrical potential across the membrane of the 

post-synaptic neuron, regenerating an electrical signal.    
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Figure 1.1.  Synaptic transmission  (A) Two neurons connect to form a synapse.  
(B) Propagation of information in the nervous system involves both electrical 
signal (an action potential) and chemical signal (a release of neurotransmitters) 

 

Activated neuroreceptors either directly or indirectly produce electrical 

signals in the post-synaptic cell.  The majority of neuroreceptors fall into two 

main classes, the metabotropic receptors and the ionotropic receptors.  

Metabotropic receptors couple to intracellular second-messenger systems 

through heterotrimeric G-proteins, and as such, they are known as G-Protein 

coupled receptors (GPCRs).  In contrast, ionotropic receptors, also known as 

ligand-gated ion channels (LGICs), contain intrinsic pores that switch 

conformation from closed to open upon neurotransmitter binding, allowing ions 

to flow.  GPCRs mediate slow synaptic transmission, acting through second-

messenger pathways, whereas LGICs mediate fast synaptic transmission.  In 

LGICs, binding of the neurotransmitter induces a conformational change in the 

protein that opens an ion-permeable pore that spans the cell membrane.  Ion flow 
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upon channel opening either encourages or discourages the firing of an action 

potential in the post-synaptic neuron, depending on whether the LGIC is 

excitatory (cation selective) or inhibitory (anion selective).   

 

1.2 Ligand-Gated Ion Channels (LGICs) 

In vertebrates, the term LGICs specifically refers to three families of 

ionotropic receptors: Cys-loop receptors, ionotropic glutamate receptors 

(iGluRs), and P2X receptors (P2XRs).  The Cys-loop family constitutes the largest 

class of LGICs.  This family includes the nicotinic acetylcholine receptor 

(nAChR), 5-hydroxytryptamine-3 receptor (5-HT3R), γ-aminobutyric acid 

receptor type A and C (GABAA/CR), and glycine receptor (GlyR).  The nAChR 

and 5-HT3R are excitatory while the GABAA/CR and GlyR are inhibitory.  iGluRs 

are activated by the neurotransmitter glutamate, mediating most fast excitatory 

transmission in the central nervous system (CNS).  Only in the case of NMDA 

receptors, glycine or D-serine is also required for activation.  Finally, the most 

recently discovered ionotropic P2X receptors are activated by ATP. 

All three families of LGICs are multimeric integral membrane proteins 

that incorporate extracellular ligand-binding sites and a transmembrane ion-

permeable channel.  A conformational change directly and very rapidly couples 

the binding of neurotransmitters to the opening of the channel, which activates 

within a few microseconds.  The process that links neurotransmitter binding to 

the open conductance state of the receptor is termed “gating.”  The result is an 
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excitatory or inhibitory change in the electrical properties of the membrane, and 

in the case of channels that conduct Ca2+, the entry of a second messenger.  The 

structural rearrangement associated with activation of the ion channel poses 

important concerns in drug-receptor interactions and molecular recognition.  

 

 

Figure 1.2.  Examples of structures for the three families of LGICs: Torpedo 
nAChR (Protein Data Bank code 2BG9) for Cys-loop receptors, rat homomeric 
GluA2 receptor (Protein Data Bank code 3KG2) for iGluRs, and zebrafish P2X4 
receptor (Protein Data Bank code 4DW0) for P2X receptors 
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An agonist of a receptor is a ligand that mimics the endogenous 

neurotransmitter by producing the same conformational change and the same 

biological response upon binding to the receptor.  Receptors can be activated by 

endogenous agonists, such as neurotransmitters, or exogenous agonists, such as 

drugs.   Efficacy of an agonist refers to the relative ability of the agonist-receptor 

complex to produce a maximum functional response.  Full agonists bind and 

activate a receptor, displaying full efficacy at that receptor, while partial agonists 

also bind and activate a given receptor, but have only partial efficacy at the 

receptor relative to a full agonist.  Receptor binding to an antagonist results in the 

inhibition of a biological response.  An antagonist is a ligand that does not 

provoke a biological response itself upon binding to a receptor, but blocks or 

dampens agonist-mediated responses. 

 

1.2.1 Cys-loop superfamily 

The Cys-loop receptors are pentamers composed of five subunits arranged 

around a central ion-conducting pore (Figure 1.2, left).  Subunits share a common 

structure consisting of a large, N-terminal extracellular domain that contains the 

agonist-binding site and also the signature disulfide loop, four transmembrane α-

helices (M1–M4) that line the ion pore, and a short extracellular C-terminus.  

Nicotinic acetylcholine receptors (nAChRs) are the best-characterized members 

of the family and are therefore generally considered the prototypical Cys-loop 

receptor (1–3).  The works described in this dissertation primarily focus on 

nAChRs.   
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The nAChRs mediate rapid synaptic transmission in the central and 

peripheral nervous systems (1, 4, 5).  They are activated endogenously by the 

neurotransmitter acetylcholine.  Nicotine, the active compound of tobacco, 

coincidentally activates these receptors.  To date, seventeen nAChR subunits 

have been cloned: α1–α10, β1–β4, γ, δ, and ε (3).  These subunits arrange as 

homo- or hetero-pentamers to form more than 20 active and pharmacologically 

distinct nAChR subtypes in humans.  Of these subtypes, the muscle-type 

(α1)2β1γδ is the best studied owing to its precise subunit stoichiometry.   

No high-resolution structure of a nAChR exists, but a significant amount 

of relevant structural information is currently available.  The identification and 

structural characterization of a family of snail acetylcholine-binding proteins 

(AChBPs) was the major advance in the early 2000s (6–11).   The AChBPs are 

soluble, pentameric proteins that share 20–25% sequence identity with the 

extracellular ligand-binding domain of the nAChRs.  Their high-resolution x-ray 

crystallography structures have served as structural templates for many 

functional studies of the residues involved in ligand binding in the nAChRs, 

including agonists, antagonists, and allosteric modulators.  However, the 

AChBPs are simply soluble proteins that evolved to contain a binding site and do 

not contain an ion channel.  As such, they offer little information about the 

activation/gating pathway of the nAChRs.  

A structure of the full-length receptor at medium 4.0 Å resolution has 

been achieved by electron microscopy (EM) studies of the nAChR from Torpedo 

electric ray (12–14).  Many amino acid side chains cannot be resolved in this cryo-
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EM structure, but it does provide a general picture of the overall topology and 

secondary structures of a full-length protein.  In 2007, a crystal structure of the 

extracellular domain of the nAChR α1 solved at 1.94 Å resolution was published 

(15).  The glycosylation patterns are well resolved at this resolution, but the key 

agonist-binding Trp residue is missing from this structure.   

The most recent advances in Cys-loop receptor research are the 

publications of x-ray crystal structures of orthologous pentameric receptors from 

bacteria and archaea, which belong to the same extended family as the vertebrate 

Cys-loop receptors called the pentameric ligand-gated ion channel (pLGIC).  The 

x-ray structure of a prokaryotic pLGIC from the bacterium Erwinia chrysanthemi 

(ELIC) at 3.3 Å resolution in the presumed close conformation was published in 

2008 (16).  A year later in 2009, two x-ray crystal structures of a proton-gated 

pLGIC from the bacterial Gloeobacter violaceus (GLIC) appeared at 2.9 Å and 3.1 Å 

resolutions, and both are believed to be in the open conformation (17, 18).  The 

expression of these bacterial channels yielded functional cationic ion channels 

(19, 20).  The first structure of a eukaryotic member of pLGIC, the anionic 

glutamate receptor from C. elegans (GluCl), was recently solved at 3.3Å 

resolution (21).   

From the available structural information, it is now well accepted that 

agonists bind at the interface of adjacent subunits in the nAChR pentamer (1, 4, 

5).  The agonist-binding site is a compact pocket comprised of amino acids from 

several noncontiguous regions from the principal (always an α subunit) and 

complementary subunits (such as the γ, δ, or ε subunits in the muscle subtype and 
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the β2 or β4 subunits in the neuronal nAChRs).  Five conserved aromatic 

residues form what is known as the aromatic binding box; e.g., α1Y93 (loop A), 

α1W149 (loop B), α1Y190 (loop C), α1Y198 (loop C), and ΥW55/δW57 (loop D) of 

the muscle type.  There are two agonist-binding sites in a receptor, and it is 

known that both must be occupied to optimally activate the receptor.  The fifth 

subunit that is not involved in the binding site formation is termed the accessory 

subunit; e.g., the β1 subunit of the muscle nAChR.   

The ion channel pore is lined by the M2 helix from each subunit of the 

pentamer. Each M2 helix contributes several highly conserved hydrophobic 

residues that constitute the channel gate.  The leucine-9’ residue (where 9’ 

represents the ninth residue from the cytoplasmic end of the transmembrane 

helix) comprises the narrowest constriction point in the Torpedo cryo-EM 

structure and is located at the approximate midpoint of the M2 helix (14).  This 

residue has been shown to play a critical role in channel gating, and when 

mutated to a more polar amino acid, the pore is stabilized in an open, ion-

conducting conformation (22, 23).  

 

1.2.2 Glutamate-gated ion channels (iGluRs) 

Tetrameric iGluRs are widely expressed in the central nervous system 

where they mediate fast excitatory synaptic transmission in the brain of 

vertebrates.  Eighteen human iGluR genes were cloned, and 4 major classes of 

iGluRs have been identified to date.  The NMDA receptors that play key roles in 
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synaptic plasticity are obligate heteromers formed by co-assembly of different 

combinations of the GluN1, GluN2A–GluN2D, GluN3A and GluN3B subunits.  

Their ion channels are Ca2+ permeable ion and are blocked by extracellular Mg2+.  

Other subfamilies of iGluRs are not sensitive to Mg2+ block.  GluA1–GluA4 are 

co-assembled to form homomeric or heteromeric AMPA receptors that mediate 

fast excitatory synaptic transmission at the majority of central synapses.  Kainate 

receptors regulate neuronal excitability and are formed by co-assembly of 

GluK1–GluK5.  GluD1 and GluD2 have not been shown to form functional 

channels. 

The first crystal structure for a full-length iGluR is the structure of the 

GluA2 homotetramer, solved at a resolution of 3.6 Å (24).  The crystal structure 

of the full-length AMPA receptor reveals that each AMPA receptor subunit is 

organized into four discrete regions: the amino terminal domain (ATD), the 

ligand-binding domain (LBD), the transmembrane ion channel pore domain 

(TMD), and the cytoplasmic domain (Figure 1.2, middle).  The transmembrane 

segments are organized in the expected 4-fold symmetry found in voltage-gated 

ion channels, but with inverted topology.  Each subunit has 3 membrane-

spanning helices plus a pore helix.  The third transmembrane helix from the four 

subunits forms a bundle crossing, which acts as a barrier to ion permeation and 

forms the lining of the pore.  The extracellular domains form 85% of the mass of 

an iGluR core.  The extracellular domains are loosely packed assemblies with 

two clearly distinct layers of ATDs and LBDs, each of which has both local and 

global 2-fold axes of symmetry.  Different subunit pairs form dimer assemblies in 
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the ATD and LBD layers — this subunit crossover was entirely unexpected prior 

to the publication of this crystal structure.   

In addition to the full-length structure, it is possible to express the 

extracellular domains of iGluRs, both ATD and LBD, as soluble proteins 

genetically excised form the ion channels.  Several x-ray crystal structures of the 

ATD and LBD are currently available at high resolution.  The LBD appears to 

have a clamshell-like shape that is formed by two domains, D1 and D2, and the 

ligands bind in the cleft between the two domains (25).  Because of the difficulty 

of expression and crystallization of a full-length receptor, the crystal structures 

derived from these soluble proteins continue to provide valuable structural 

insights into binding of ligands, mechanism of activation, as well as allosteric 

modulation by drugs and endogenous ions.   

 

1.2.3 P2X receptor family 

P2X receptors are non-selective cation channels gated by extracellular 

ATP.  They are widely expressed in many tissues and are believed to play key 

roles in various physiological processes such as nerve transmission, pain 

sensation, and the response to inflammation (26–31).  There are seven P2X 

receptor subunits in mammals: P2X1–P2X7.  They co-assemble into a homomeric 

or heteromeric trimer (Figure 1.2, right).  The ATP sensitivity and functional 

properties of P2X receptors vary widely, including the ATP affinity, ion 

permeability, and desensitization kinetics (32).   
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Crystal structures of P2X receptors only became available very recently.  

The first publication of the x-ray crystal structure of zebrafish P2X4 in 2009 

represents the greatest breakthrough (33).  Very recently, a structure for P2X4 in 

the ATP-bound form was published (34).  The structures confirm several findings 

from previous mutational studies.  The ATP-binding site is identified to be 

interfacial between two subunits (35–40), and the channel gate is located at the 

external portion of the second transmembrane helix (41, 42).   

No P2X-receptor related protein has been identified in the genomes of D. 

melanogaster, C. elegans, yeast or prokaryotes (43), unlike the other two families of 

LGICs, which makes their evolutionary origins a mystery. 

 

1.2.4 Crosstalk between LGICs 

 Fast neurotransmitters such as GABA–Glycine (44), ATP–GABA (45, 46), 

and ATP–acetylcholine (47–49) are co-released during synaptic transmission.  

Interaction between their respective receptor channels is likely to play a critical 

role in shaping the synaptic responses.  In fact, cross interaction between two 

structurally and functionally different LGICs has been demonstrated in the form 

of non-independent receptor function, both in cultured neurons and 

heterologous expression systems.  Co-activation of both receptors in an 

interacting pair typically leads to a cross-inhibitory interaction that translates 

into non-additivity of the recorded currents.  For example, a number of P2XR 

subtypes were shown to interact with members of the Cys-loop receptor family, 
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including nAChRs, 5-HT3R, and GABAA/C receptors (50–63).  Furthermore, 

interactions between GlyR and GABAA receptors (64, 65), as well as between 

AMPA receptors and NMDA receptors (66), have been reported.  Evidence 

supporting physical association between these receptors is also available (52–54).    

 

1.3 Methods for Investigation of Ion Channel Function 

1.3.1 Two-electrode voltage-clamp recordings on Xenopus oocytes 

We used Xenopus oocytes, egg cell precursors from an African frog, for 

expressing and investigating the function of LGICs.  These cell are very large in 

size, ~ 1 mm in diameter, which allows a physical injection of RNA and other 

materials into the cells.  Upon mRNA injection, the cell synthesizes, folds, 

assembles, and transports the protein to the surface of the cell membrane.  

When an agonist is applied to an oocyte expressing an LGIC, ion pores 

open, allowing current to flow across the cell membrane.  Current recordings on 

oocytes are conducted in a whole cell two-electrode voltage-clamp mode (Figure 

1.3).  In this setup, one electrode measures the voltage difference across the cell 

membrane, and the other electrode injects current into the cell to hold it at a 

particular voltage, typically at −60 mV.  A feedback circuit connected to the 

voltage electrode is used to determine the current required to maintain this 

potential.  The current electrode must inject current equal to that passing through 

the open channels, and therefore, the required current is a direct measure of the 

sum of all ion channel gating in the cell.   
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Functions of wild-type and mutant LGICs are evaluated in this setup by 

measuring the current response to agonists or antagonists applied to the cell.  

Increasing concentrations of agonists induce increasing current magnitudes (up 

to saturation) because more ion channels are open.  Increasing concentrations of 

antagonists produce the opposite effect.  Across wild-type and mutant receptors, 

we use EC50 as a convenient metric to compare ion channel functions and IC50 to 

compare receptor sensitivity to antagonists.  Agonist EC50 and antagonist IC50 are 

determined by fitting the dose-response data to the Hill equation, and these values 

are the effective concentrations at the midpoint of the dose-response curves.   

 

 
Figure 1.3. Current recording from a Xenopus oocyte on a whole-cell two-
electrode voltage-clamp setup 

 

1.3.2 Unnatural amino acid mutagenesis 

Unnatural amino acids (UAAs) are synthetic amino acids that are not 

found in nature.  Site-specific incorporation of unnatural amino acids permits 

systematic probing for structure-function correlations at the chemical scale.  This 

technique offers much greater precision compared to the conventional 
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mutagenesis technique, which is limited by the natural twenty amino acids, 

because one has a rational control over the modification introduced into the 

protein of interest.   

Several methods are available for incorporation of unnatural amino acids 

into proteins.  In the present work, we employed the in vivo nonsense-

suppression methodology (67–70).   This method allows for the site-specific 

incorporation of a synthetic amino acid into a protein expressed in a living 

Xenopus oocyte.  The procedure begins with replacing the amino acid position of 

interest with a non-coding codon (nonsense codon), usually a stop codon, by 

conventional site-directed mutagenesis (Figure 1.4).  This would typically result 

in the premature termination of the protein’s biosynthesis, but it is not the case 

here because we supply the translation system with a suppressor tRNA, a tRNA 

whose anticodon recognizes the nonsense codon.  We pre-couple the suppressor 

tRNA with a desired unnatural amino acid enzymatically.  The suppressor tRNA 

is designed to be orthogonal, which means it is not recognized by any of the 

endogenous aminoacyl-tRNA synthetases.   

Once we inject both the mRNA and the tRNA-UAA into Xenopus oocytes, 

the translation then proceeds with the unnatural amino acid incorporated into 

the protein at the site of interest.  Two different stop codons are utilized for site-

specific incorporation of two unnatural amino acids into a receptor, as 

demonstrated in Chapter 2 of this thesis.  Alternatively, one may employ a 

closely related strategy for unnatural amino acid incorporation in Xenopus 
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oocytes, which is known as frameshift suppression (71, 72).  This technique utilizes 

a four-base codon (GGGT or CGGG) instead of a nonsense codon.  

 

 
Figure 1.4.  The nonsense-suppression methodology for incorporating unnatural 
amino acids into ligand-gated ion channels expressed in Xenopus oocytes 

 

 

1.4 Summary of Dissertation Work 

This dissertation describes three studies involving all three families of the 

LGICs.  We demonstrated that the intrinsic receptor structures, drug-receptor 

interactions, and receptor-receptor crosstalk are determinants of receptor 

function and ion channel activities. 
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Chapter 2 describes a detailed structure-function investigation of the 

conserved Phe-Pro motif in the Cys loop of the muscle-type nAChR.  This motif 

is universally conserved among the pentameric receptor channels.  Both residues 

were substituted with natural and unnatural amino acids.  In the receptor, a 

strong interaction between the Phe and Pro residues is evident, as is a strong 

preference for aromaticity and hydrophobicity at the Phe site.  A similar 

influence of hydrophobicity is observed at the proline site.  We also observed a 

correlation between receptor function and cis bias at the proline backbone across 

a simple homologous series of proline analogs, which could suggest a significant 

role for the cis proline conformer at this site in receptor function.   

Chapter 3 concerns the key binding interaction of memantine, a 

prescribed drug for Alzheimer’s disease, on the NMDA receptor.  The data 

suggest that the special property of memantine as a potent NMDA receptor 

blocker stems from the presence of the two methyl groups and a proper shape-

matching to the binding site.  Comparing affinities of memantine and 

amantadine, a structurally related drug but lacking the methyl groups, in 

response to pore mutations enables us to identify the methyl group binding 

pockets for memantine on the NMDA channel pore.   

Chapter 4 describes an investigation of the inhibitory crosstalk between 

α6β4-containing nAChRs of the Cys-loop superfamily and P2X2, P2X3, and 

P2X2/3 receptors.  When the two distinct receptors are co-expressed in Xenopus 

oocytes, their biophysical properties are modulated from their normal behavior 

when expressed alone.  The effect is constitutive and does not require channel 
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activation.  When they are co-activated by their respective agonists, the observed 

current is smaller than the sum of the currents evoked by individual application 

of their agonists.  Proposed molecular mechanisms for the cross interaction are 

also discussed. 
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Chapter 2 

 

Chemical-Scale Studies of the Phe-Pro Conserved 

Motif in the Cys Loop of Cys-Loop Receptors1 

 

2.1 Introduction 

The Cys-loop superfamily of neurotransmitter-gated ion channels 

includes the nicotinic acetylcholine receptor (nAChR)2, the 5-HT3 serotonin 

receptor, the GABAA and GABAC receptors, and the glycine receptor (1, 2).  

Together, these receptors mediate both excitatory and inhibitory fast synaptic 

transmission throughout the central and peripheral nervous systems.  The 

eponymous Cys loop, a disulfide-linked sequence Cys-Xaa13-Cys, is located at the 

interface between the extracellular and transmembrane domains of the receptor 

(Figure 2.1A), and many studies have established that the Cys loop is essential 

for receptor function.  Not part of the agonist binding-site, the Cys loop probably 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This chapter is a reproduced excerpt, with minor editing, from Limapichat, W.; Lester, H. A.; 
Dougherty, D. A. Chemical scale studies of the Phe-Pro conserved motif in the Cys loop of Cys 
loop receptors. J. Biol. Chem. 2010, 285, 8976–8984.  Copyright 2010 by the American Society of 
Biochemistry and Molecular Biology, Inc. 
2 The abbreviations used are: nAChR, nicotinic acetylcholine receptor; ACh, acetylcholine; SuCh, 
succinylcholine; Pip, pipecolic acid; Aze, azetedine-2-carboxylic acid; Dhp = 3,4-dehydroproline; 
Mor, morpholine-3-carboxylic acid; c-4F-Pro, cis 4-fluoro-proline, t-4F-Pro, trans 4-fluoro-proline; 
3-Me-Pro, trans 3-methyl-proline; 2-Me-Pro, 2-methyl-proline; Cha, cyclohexylalanine; F-Phe, 4-
fluorophenylalanine; F3-Phe, 3,4,5-trifluorophenylalanine; Me-Pro, 4-Me-phenylalainine; Me2-
Phe, 3,5-dimethyl-phenylalanine; Fmoc, N-(9- fluorenyl)methoxycarbonyl; NVOC, O-
nitroveratryloxycarbonyl; MS, mass spectrometry	  
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plays a key role in receptor gating, transmitting structural changes initiated by 

agonist binding to the ion channel region of the receptor (3–7). 

The intervening residues of the Cys loop show considerable conservation 

across the family (Figure 2.1B).  Specifically, a completely conserved Phe-Pro 

motif (followed by Phe or Met) lies at the apex of the Cys loop.  (These are 

residues 135 and 136 in the α1 subunit of the muscle-type nAChR, which is the 

system studied here.)  Proline residues are unique among the 20 natural amino 

acids in several ways.  Of particular interest here is the much greater tendency of 

prolyl peptide bonds to exist in the cis conformation (8–12).  The presence of the 

Phe in the Phe-Pro motif makes this possibility more enticing.  It is well 

established that an aromatic amino acid N-terminal of a proline enhances the 

likelihood of a cis conformation, roughly doubling the contribution of the cis 

peptide in the conformational equilibrium (12).  Indeed, previous studies of the 

analogous motif in the 5-HT3 receptor using conventional mutagenesis led to a 

postulation that the Pro was in a cis conformation (13). 

Currently available structural information related to Cys-loop receptors 

adds to the intrigue (Figure 2.2).  (Note that the acetylcholine-binding protein, 

arguably the most valuable structural model for the extracellular domain, does 

not contain a Cys loop and does not contain the Phe-Pro sequence (14).)  In the 

medium resolution electron microscopic structure of the Torpedo nAChR (Protein 

Data Bank code 2BG9), the proline of the α1 subunit is in the trans conformation, 

and there is clearly no structural interaction at all between the side chains of 

Phe135 and Pro136 (15).  In contrast, in the high-resolution x-ray crystal structure 
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of the mouse muscle nAChR α1-subunit extracellular domain complexed to α-

bungarotoxin (Protein Data Bank code 2QC1), the proline is in its cis form, and 

the Phe-Pro rings are stacked (16).  (The Torpedo and mouse muscle receptors 

show very high sequence identity/similarity throughout their structures).  

Additionally, an NMR study of the isolated Cys loop of the nAChR found a 

roughly 1:1 mixture of cis and trans conformers, a ratio that can be modulated by 

glycosylation (17). 

 

Figure 2.1.  Topology of the Cys loop. (A) Structure of the extracellular and the 
transmembrane interface of the Torpedo nAChR (Protein Data Bank code 2BG9). 
Only the α-subunit (red) and the γ-subunit (grey) are shown.  The Cys loop is 
highlighted in purple, β1-β2 in yellow, and M2-M3 in green.  The Phe-Pro-Phe 
motif in the Cys loop are shown in blue, and the Pro8* in the M2-M3 loop is 
shown in orange.  (B) Sequence alignment of the Cys loop from various subunits 
of the Cys-loop superfamily 
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nAChR !1 CEIIVTHFPFDEQNC 
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In recent years, several pentameric prokaryotic channels that are clearly 

related to the Cys-loop receptors have been discovered and crystallized.  The 

prokaryotic channels contain a Phe/Tyr-Pro motif although they lack the 

cysteines of the Cys loop, and x-ray crystal structures confirm that the loop is still 

clearly in place.  In a structure of the ELIC bacterial channel, which is believed to 

be a closed state (Protein Data Bank code 2VL0), the proline is in the trans 

conformation, and the Phe-Pro side chains are stacked (18).  Two structures of 

the GLIC bacterial channel have appeared, and both are thought to be an open 

state of the channel.  Both structures contain a completely stacked Tyr-Pro motif, 

but in one (Protein Data Bank code 3EAM), the proline is cis (19), and in the other 

(3EHZ) the proline is trans (20).  The most recent crystal structure of the 

invertebrate glutamate-gated chloride channel from C. elegans (GluCl channel) 

reveals the Cys loops with a Tyr-Pro motif, and the proline appears to have the 

trans conformation (21). 

Together, the structural data strongly indicate that (i) in the highly 

conserved Phe-Pro motif at the apex of the Cys loop of Cys-loop receptors, both 

cis and trans conformations around the prolyl amide bond are viable, and (ii) an 

interaction between the Phe and Pro side chains is possibly involved in the 

conformational preference.  Although it is true that the three-dimensional fold of 

a protein may influence the cis preference of any given residue, the intrinsic 

conformational bias of the residue itself can still be expected to play an important 

role in determining structure and thus function of the protein (12). 
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Figure 2.2.  Images of the Phe/Tyr-Pro-Phe unit from five different relevant 
structures.  Pro136 appears to have the trans conformation in the Torpedo nAChR 
(Protein Data Bank code 2BG9), ELIC bacterial channel (Protein Data Bank code 
2VL0), and one GLIC bacterial channel (Protein Data Bank code 3EHZ) structures.  
However, crystal structures of the mouse muscle nAChR α1-subunit extracellular 
domain (Protein Data Bank code 2QC1) and the other GLIC bacterial channel 
(Protein Data Bank code 3EAM) show Pro136 in the cis conformation. 

 

The feasibility of both cis and trans conformations at Pro136 presents the 

tantalizing opportunity that cis-trans isomerization of this conserved proline in 

the Cys loop, facilitated by the adjacent Phe, might be involved in the receptor 

gating mechanism.  Such a cis-trans isomerization at a different proline has been 

shown to be essential to channel gating in the 5-HT3 receptor (5). 

In the present work, we have used a variety of tools to probe the Phe-Pro 

motif of the muscle-type nAChR, including unnatural amino acid mutagenesis, 

electrophysiology, and NMR spectroscopy of model peptides.  We find evidence 

for a strong interaction between the two residues and an important role for the 

aromatic nature of the Phe.  At both sites, side-chain hydrophobicity is favorable 
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to the receptor function.  In addition, the results reveal a correlation between 

receptor function and cis bias at the proline backbone across a simple 

homologous series of proline analogs.  This suggests a significant role for the cis 

proline conformer at this site in receptor function. 

 

2.2 Results 

2.2.1 Mutational Studies at Pro136 

A previous study of the muscle-type nAChR in HEK293 cells showed that 

P136G mutations in the β and γ subunits prevented receptor assembly, whereas 

analogous mutations in the α or δ subunits prevented trafficking of receptors to 

the cell surface (22).  Similarly, in previous studies of the analogous proline in the 

homopentameric 5-HT3 receptor, the P136A mutant revealed no surface 

expression in HEK293 cells (13).  In the more permissive Xenopus oocyte 

expression system, the muscle-type nAChR containing the αP136A mutation 

produces < 10% of the current levels seen for wild type.  Surprisingly, this mutant 

receptor has an ACh EC50 value similar to that of the wild type.  As discussed 

below, this result can be interpreted in several different ways; we therefore 

anticipated that the more subtle mutations enabled by unnatural amino acid 

mutagenesis would provide a more revealing analysis of the role of this residue. 
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Pip Aze Dhp Mor 

    

c-4F-Pro t-4F-Pro 3-Me-Pro 2-Me-Pro 

   

Cha            F-Phe           F3-Phe 

  

Me-Phe Me2-Phe 

Figure 2.3.  Structures of unnatural amino acids used in this study 

 

Several unnatural analogs of proline (Figure 2.3) (5) were incorporated 

into the receptor using the in vivo nonsense-suppression method.  These 

unnatural proline analogs have varying ring size, side-chain substitution, and 

intrinsic preferences for the cis conformer when probed in model systems (Table 

2.1).  The wild-type rescue experiment (i.e., incorporating Pro by nonsense 

suppression) displays the full phenotype of the wild-type receptor, including 
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ACh EC50 value, Hill coefficient, and current traces.  This indicates that the 

nonsense suppression methodology is viable at the 136 site.  Interestingly, Pro 

analogues at position 136 are generally gain-of-function (lower EC50), the sole 

exception being 2-Me-Pro, which gives essentially wild-type behavior.  Similar to 

the Ala mutation mentioned above, the current levels from experiments 

involving 2-Me-Pro are < 10% of those seen in comparable experiments with 

other mutations.  Despite the relative subtlety of the mutations, the gain-of-

function effects can be substantial, as seen with Pip and 3-Me-Pro, which show 

13- and 22-fold decreases in EC50, respectively, relative to wild type. 

 

Table 2.1.  EC50 and Hill constant values of mutant receptors containing 
unnatural amino acid at α136 

Residue 

α136 

Reported 
percentage cisa 

ACh EC50 
EC50(mutant)/ 

EC50(wild type) 
Hill Constant n 

 % μM      
Pro 5 23 ± 0.2 1 1.5 ± 0.02 35 
Prob 5 22 ± 0.2 1 1.6 ± 0.03 8 
Pip 12 1.8 ± 0.1 0.1 1.7 ± 0.08 7 
Aze 18 5.8 ± 0.2 0.3 1.7 ± 0.07 10 
c-4F-Pro ~5 12 ± 0.2 0.5 1.5 ± 0.04 6 
t-4F-Pro ~5 10 ± 0.2 0.5 1.7 ± 0.04 7 
3-Me-Pro ~5 1.0 ± 0.02 0.04 1.7 ± 0.04 7 
2-Me-Pro 0 25 ± 0.7 1 1.6 ± 0.06 10 
Dhp NRc 18 ± 0.3 0.8 1.6 ± 0.03 10 
Mor NRc 8.7 ± 0.4 0.4 1.7 ± 0.05 9 
a Ref. (5,8) 
b Data obtained by suppression mutation 
c NR, percentage cis values for these residues have not been reported in the literature. 
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Correlation between the cis-trans energy gap and the energy of channel 

activation could be expected if the receptor gating mechanism involves cis-trans 

isomerization of Pro136.  However, no simple correlation is found (Table 2.1).  

For example, although both Pip and Aze show a stronger inherent cis preference 

than Pro and a lower EC50, 3-Me-Pro shows a conformational bias very similar to 

that of Pro but a greatly diminished EC50.  Before analyzing these results in 

greater detail, however, we must consider the role of Phe135. 

 

2.2.2 Mutational Studies at Phe135 

Previous single channel studies have shown that the F135A mutation in 

the nAChR alters the gating mechanism, leading to two uncoupled open states 

that produce independent gating reactions from the diliganded closed state (23).  

In our studies of the nAChR, we found that the F135A mutation nearly 

obliterates receptor function; only very weak ACh-induced currents are observed 

despite normal surface expression levels (Figure 2.4). 
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Figure 2.4.  A Western blot analysis of Phe135Ala mutant receptor surface 
expression levels in comparison to the wild type.  The experiment allowed 
visualization of the hemagglutinin epitope (HA) tag that had been incorporated 
into the α-subunit.   

 

Seeking a more insightful analysis of the role of this residue, we probed 

the Phe135 site with an extensive series of Phe analogs.  Again, the wild-type 

rescue experiment displays the full characteristics of the wild-type receptor.  The 

Phe135 site is sensitive to even very subtle mutations, as shown in Table 2.2.  

Similar to what is observed with Pro136, Phe analogs consistently produce gain-of-

function mutants.  ACh sensitivity increases with the volume and number of 

hydrophobic substituents on the aromatic ring.  For example, Me-Phe has a lower 

EC50 than F-Phe, and Me2-Phe has a lower EC50 than Me-Phe.  Surprisingly, 

cyclohexylalanine (Cha), which is similar to Phe in size and shape but is not aromatic 

(24), produces functional receptors with a small perturbation; EC50 is near the wild-

type value.  Given that the F135Cha mutant receptor is functional, aromaticity at 

position 135 is not an absolute requirement for the receptor to function. 

!
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To further explore the possible role of Phe135 in receptor gating, wild-

type and mutant receptors were probed with the partial agonist succinylcholine 

(SuCh).  Compared with ACh, SuCh produces only 14% of the maximal current 

under saturating drug concentrations in the wild-type receptor (Table 2.2).  This 

indicates that upon receptor activation by SuCh, the channel open-closed 

equilibrium is shifted toward the open state, but to a much lesser extent relative 

to ACh activation.  If a mutation produces a gain-of-function effect as a result of 

enhanced receptor gating, one could expect the mutation to improve the efficacy 

of a partial agonist like SuCh. 

 

Table 2.2.  EC50 and Hill constant values of mutant receptors containing 
unnatural amino acid at α135 

ACh  SuCh Residue 

α135 EC50 Hill Constant n  EC50 Hill Constant n 
Efficacya 

 μM    μM    
Phe 23 ± 0.2 1.5 ± 0.02 35  59 ± 1 1.3 ± 0.03 13 0.14 ± 0.01 
Pheb 23 ± 0.4 1.5 ± 0.03 8  NAc NAc NAc NAc 
F-Phe 2.6 ± 0.03 1.6 ± 0.02 7  32 ± 0.8 1.4 ± 0.04 9 0.54 ± 0.02 
F3-Phe 1.0 ± 0.02 1.5 ± 0.05 15  8.1 ± 0.2 1.6 ± 0.05 8 0.86 ± 0.02 
Me-Phe 1.0 ± 0.02 1.6 ± 0.04 12  11 ± 0.2 1.5 ± 0.04 11 0.82 ±0.02 
Me2-Phe 0.22 ± 0.01 1.6 ± 0.07 9  1.6 ± 0.06 1.5 ± 0.07 7 0.93 ± 0.04 
Cha 16 ± 0.2 1.6 ± 0.02 15  60 ± 1 1.6 ± 0.03 9 0.10 ± 0.01 
a Determined by the average of Imax(SuCh)/Imax(ACh) 
b Data obtained by suppression mutation. 
c NA, data not available. 

 

The EC50 trend of SuCh (Table 2.2) parallels that of ACh, implying that the 

mutants respond to both drugs in the same way.  As anticipated, all of the Phe 
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analogs that show a lowered EC50 do increase the relative efficacy of SuCh with 

respect to ACh.  This suggests that mutations at position 135 primarily affect 

receptor gating.  Note that the non-aromatic analog Cha shows essentially wild-

type EC50 for both ACh and SuCh and that this mutation has no strong effect on 

the relative efficacy. 

 

2.2.3 Interaction between Phe135 and Pro136 

There is considerable evidence supporting a specific interaction in a Phe-

Pro sequence that stabilizes the cis form of the Pro.  This could possibly involve a 

polar–π interaction in which polarized C–H bonds (Cδ−–Hδ+) on the proline 

interact favorably with the negative electrostatic potential on the face of the Phe 

side chain stacked on the Pro (9, 11).  We investigated the possibility of a Phe-Pro 

interaction in this system by testing double mutant receptors in which Phe135 

was substituted with the non-aromatic Cha and Pro136 was substituted with 

either Pip or 3-Me-Pro, the two mutations that cause the largest EC50 shifts.  

These experiments required consecutive incorporation of two different unnatural 

amino acids, an unprecedented experiment for receptors expressed in a living 

cell that was made possible by recent advances in tRNA design (25, 26).  The 

resulting current signals (1–4 μA) were quite sufficient for quantitative analysis. 

The F135Cha mutation substantially diminishes the large effects of the 

mutations at Pro136.  As shown in Figure 2.5, the 13- and 22-fold drops in EC50 

for Pip and 3-Me-Pro, respectively, seen in a wild-type Phe background fall to ∼ 
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2.5-fold in the presence of F135Cha.  A standard evaluation of double mutants 

employs a mutant cycle analysis, which has been used successfully with EC50 

values for Cys-loop receptors in several instances (27–30).  For the interaction of 

F135Cha with P136Pip and P136(3-Me-Pro), we find coupling parameters (Ω) of 5 

and 10, respectively, which correspond to coupling energies (RTln(Ω)) of 1.0 and 

1.3 kcal/mol, respectively.  These energies are significant for such subtle 

mutations and are indicative of a strong interaction between these two residues. 

 

 
Figure 2.5.  ACh EC50 results from single and double mutation experiments at 
residues 135 and 136 in comparison with the wild-type value.  For 
F135Cha/P136Pip, EC50 = 6.5 ± 0.2 μM, Hill constant = 1.7 ± 0.07 μM, n = 9.  For 
F135Cha/P135(3-Me-Pro), EC50 = 6.9 ± 0.2 μM, Hill constant = 1.5 ± 0.06 μM, n = 12. 

 

Having established a strong interaction between Phe135 and Pro136, we 

considered whether the intrinsic cis-trans equilibrium reported for proline and 

the proline analogs would be altered because of the preceding Phe.  This would 

indicate that the percentage cis values used previously (31) and reported in Table 
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2.1 may not be appropriate for the present system because no aromatic amino 

acid was involved.  As such, we set out to determine percentage cis values that 

are more appropriate to the Phe-Pro motif. 

 

2.2.4 Determination of Inherent cis Preferences of Model Peptides Containing 

Proline Analogs Preceded by Phe 

In order to determine whether the data in Table 2.1 reflect the innate cis 

preference of residue Pro136, it is necessary to measure the cis-trans energy gap 

(ΔG(c-t)) for each unnatural amino acid substituted at this site, taking into 

account the aromatic–proline interaction.  In fact, ΔG(c-t) for the Gly-Phe-Pro-Gly 

and Gly-Phe-Pip-Gly peptides have been reported (32).  Using a similar solution 

NMR technique, it should be possible to determine ΔG(c-t) values for our series 

of unnatural analogs of proline following a Phe residue in model peptides. 

Model peptides Gly-Phe-XPro-Gly, where XPro represents Pro, Pip, Aze, c-

4F-Pro, Mor, 3-Me-Pro, and 2-Me-Pro, were synthesized via standard solid-phase 

peptide synthesis methods.  These peptides were then subjected to solution NMR 

experiments similar to those in Ref. (32).  Protons were assigned by two-

dimensional gCOSY and/or TOCSY experiments.  The proportion of each of the 

two conformers in solution was measured by integration of a corresponding, 

well-resolved peak after base-line correction.  Representative sample spectra are 

shown in Figure 2.6.  Conformational assignments were based on known 

chemical shifts of the Gly-Phe-Pip-Gly peptide reported in Ref. (32). 
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Figure 2.6.  Samples of one-dimensional 1H NMR spectra of Gly-Phe-Pro-Gly (top) 
and Gly-Phe-(c-4FPro)-Gly (bottom) peptides showing the amide and Cβ

PheH2 
regions.  t denotes peaks from trans peptide.  c denotes peaks from the cis peptide.  

 

The results from the solution NMR experiments (Table 2.3) show that the cis 

preferences are indeed higher than the reported values in model peptides lacking 

the aromatic residue (Table 2.1).  Note that for the Gly-Phe-(2-Me-Pro)-Gly 

peptide, the cis form was not observed.  The model peptide containing Mor has a 

very high cis propensity; nearly 50% of the peptide is in the cis form.  Moreover, 

one of the protons attached to the Cβ of the Mor ring displays a large upfield shift 

in the cis peptide compared with that of the trans peptide (Table 2.4), as has also 

been reported with the structurally similar Pip (32).  In the Pip-containing peptide, 

the chemical shifts of Cβ protons are 1.72 and 2.15 ppm in the trans conformation 

and 0.35 and 1.90 ppm in the cis conformation.  Likewise, for the Mor-containing 

peptide, the chemical shifts change from 3.74 and 4.37 ppm in the trans 

conformation to 2.10 and 3.74 ppm in the cis conformation.  Most importantly, the 

!
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Phe residue can alter the trends in cis-trans preferences, as shown for the simple 

homologous series Aze, Pro, Pip (Table 2.1 compared with Table 2.3). 

 

Table 2.3.  ΔΔG(c-t) calculated from the percentage of cis results of solution NMR 
experiments for each amino acid and the ΔΔG(EC50) calculated from 
electrophysiology results of mutant receptors containing the corresponding 
amino acid at α136 

XPro Percentage cis ΔΔG(c-t)a ΔΔG(EC50)
b 

 % (kcal.mol-1) (kcal.mol-1) 
Pro 17 0 0 
Pip 39 0.65 1.5 

Aze 30 0.42 0.81 
c-4F-Pro 32 0.49 0.38 
3-Me-Pro 12 -0.24 1.8 
2-Me-Pro 0 - -0.056 
Mor 48 0.87 0.57 

a ΔΔG(c-t) = RTln(% cis(Pro analogue)/% cis(Pro)). 
b ΔΔG(EC50) = RTln(EC50(Pro analogue)/EC50(Pro)). 
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Table 2.4.  Proton chemical shift assignments in 90% H2O/10% D2O at pH 5, 
298K for both the trans and the cis conformers of GAXProG peptides 

Xpro  trans cis 

Pro  α 4.43 3.81 

 β 1.96, 2.28 1.74, 1.93 

 γ 2.00, 2.03 1.70, 1.73 

 δ 3.58, 3.86 3.37, 3.53 

Aze α NAa,b 3.96 

 β 2.25, 2.60 2.10, 2.27 

 γ 4.01, 4.36 3.73, 3.87 

c-4F-Pro α 4.68 3.91 

 β 2.44, 2.54 1.70, 2.38 

 γ 5.40 5.24 

 δ 3.96, 4.05 3.66, 3.80 

2-Me-Pro -CαCH3 1.51 NAa 

 β 1.98, 2.13 NAa 

 γ 2.00, 2.03 NAa 

 δ 3.71, 3.92 NAa 

3-Me-Pro α 4.00 3.54 

 β 2.31 2.30 

 -CβCH3 1.15 0.75 

 γ 1.70, 2.17 1.31, 1.92 

 δ 3.55, 3.90 3.26, 3.45 

Pip α 5.11 4.61 

 β 1.72, 2.15 0.35, 1.90 

 γ 1.46, 1.68 1.22, 1.44 

 δ 1.55, 1.68 1.10, 1.58 

 ε 3.20, 3.93 2.46, 4.32 

Mor α 5.00 4.40 

 β 3.74, 4.37 2.10, 3.74 

 3.90, 3.95 3.76, 4.06 
 

δ, εc 
3.47, 3.62 2.95, 3.10 

a NA, data not available 
b Possibly overlapping with the suppressed water peak 
c Unable to make a definite assignment 
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2.3 Discussion 

Cys-loop neurotransmitter-gated ion channels are remarkable molecular 

machines.  In response to the binding of a small-molecule ligand, these large 

proteins undergo a global conformational change, opening a selective ion 

channel and thereby converting a chemical event (i.e., ligand binding) to an 

electrical signal.  The precise mechanism of this process is a central issue in 

molecular neurobiology.  Recently, chemical-scale studies have provided 

valuable insights into the structure and function of these receptors, yet 

significant challenges still remain. 

Here we have evaluated the highly conserved and structurally intriguing 

Phe135-Pro136 motif of the prototypic Cys-loop receptor, the nAChR.  Proline is 

well appreciated to display novel conformational behaviors compared with all 

other natural amino acids.  Additionally, it has been proposed that prolines 

might play a key role in the conformational changes that are essential to the 

function of many types of receptors (33).  Several lines of evidence establish that 

local amino acids flanking proline can influence proline conformational 

preferences (9, 11, 12, 34).  In particular, an aromatic residue preceding the 

proline is found to enhance the fraction of the cis isomer for peptides in solution 

(12).  As shown in Figure 2.2, Pro136 can exist in both cis and trans 

conformations, and the two crystal structures with a cis peptide bond — the α1 

extracellular domain (Protein Data Bank code 2QC1) and the GLIC bacterial 

channel (Protein Data Bank code 3EAM) — show stacking of the Phe-Pro side 

chains.  Given the complete conservation of the Phe-Pro motif and the available 
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structural data, it seemed reasonable to speculate that the cis conformer of Pro136 

could be involved in receptor function. 

Our primary measure of receptor function is EC50, the effective 

concentration of agonist required to achieve half-maximal response.  Agonist 

binding to a receptor induces step-by-step conformational changes that lead to 

opening of the ion channel; therefore, EC50 is a value that reflects the composite 

effect of the agonist-binding affinity and the sequential gating events.  The Phe-

Pro motif is remote from the agonist-binding site, and the Cys loop is firmly 

established to play an essential role in gating (35).  In addition, we find that a 

number of mutations at residue 135 greatly increase the efficacy of the partial 

agonist SuCh, supporting the notion that this residue participates in the gating 

mechanism.  As such, we interpret changes in EC50 to reflect primarily, if not 

exclusively, changes in receptor gating.  

The involvement of the Phe-Pro motif in gating is further supported by a 

previous single channel study on the F135A mutation, which indicated that the 

gating mechanism is modified as a result of this mutation (23).  The new 

mechanism appears to be much less efficient at coupling agonist binding to 

channel opening, consistent with our macroscopic observations of greatly 

reduced current for this mutant. 

Conventional mutations at Pro136 also have strong effects on the receptor. 

When expressed in HEK293 cells, both Gly mutants in the nAChR subunits and 

an Ala mutant in the related 5-HT3 receptor (13) gave receptors that were 

substantially impaired in the ability to assemble and/or traffic to the surface.  In 
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the Xenopus oocyte system, we find that the P136A mutant gave < 10% of the 

current levels seen from wild type, again suggesting a disruption of assembly 

and/or trafficking or a disruption of gating. 

Similarly, in an earlier study of Pro308 in the M2-M3 loop of the 5-HT3 

receptor, in which a compelling correlation between cis propensity of 

incorporated proline analogs and receptor function was demonstrated, structural 

disruption by conventional mutagenesis produced ambiguous results (5).  In that 

study, Ala, Cys, Gly, Lys, Val, and Gln conventional mutants gave nonfunctional 

receptors. More recently, studies of an orthologous 5-HT3 receptor showed that 

His and Trp mutants did give functional receptors (36).  We note that aromatic 

amino acids, such as His and Trp, are more than twice as likely to be in a cis 

conformation as other non-proline natural amino acids (37).  Again, the 

implications of the conventional mutagenesis results are open to debate. 

Using conventional mutagenesis to probe the role of the cis conformation 

of a highly conserved proline is, in our view, unlikely to produce compelling 

results.  Such studies frequently assume that simply seeing a functional receptor 

with a non-proline natural amino acid incorporated rules out a role for the cis 

conformer.  However, previous studies have demonstrated that in some cases, 

when a cis proline is mutated to an alanine, the main-chain cis bond is preserved, 

presumably because the three-dimensional structure favors the cis conformation 

(11).  In such cases, the Pro to Ala mutation often reduces the stability of the 

protein, which could manifest as lower expression levels, as we see with the 

P136A mutant.  In addition, as with Pro, the presence of an aromatic amino acid 
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(such as Phe) N-terminal to an aliphatic residue (such as Ala) doubles the 

probability of a cis conformation (37).  Alternatively, replacement of a proline 

with another natural amino acid could produce functional receptors via a 

different gating path that has become more energetically accessible, parallel to 

what is seen with the F135A mutation (23). 

When studying such a structurally distinctive motif as Phe-Pro, the 

benefits of unnatural amino acid mutagenesis are amplified.  The subtle 

perturbations allow one to maintain the essential motif while probing its intrinsic 

features.  We have used unnatural amino acids to probe several aspects of the 

Phe-Pro motif, including the importance of Phe aromaticity, the roles of side-

chain hydrophobicity and volume, and the possibility of cis-trans isomerization 

at the proline backbone. 

Several intriguing observations emerge from the unnatural amino acid 

mutagenesis studies.  Considering Pro136, subtle mutations produce noticeable 

changes in EC50.  For example, simply adding a methyl group (3-Me-Pro) can 

lower EC50 22-fold, and adding a single CH2 group to the ring (Pip) can lower 

EC50 13-fold.  Mutations are generally gain-of-function; EC50 decreases.  The only 

residue that is not gain-of-function but instead gives nearly wild-type EC50 is 2-

Me-Pro. Similar to Ala, 2-Me-Pro also produces much smaller whole cell 

currents. 

As with the proline, subtle mutations of Phe135 can produce substantial 

changes in EC50; a 100-fold shift arises from just the addition of two methyl 

groups fairly remote from the protein backbone (Me2-Phe).  Paralleling the 
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proline results, all of the unnatural amino acid mutants are gain-of-function.  

Moreover, an interesting trend is evident; Figure 2.7 shows a plot of log(EC50) for 

the receptor versus the side-chain logP, a measure of its hydrophobicity.  

Although the cyclohexyl compound (Cha) is clearly an outlier, a significant 

correlation is seen among the aromatic side chains.  These results indicate that 

hydrophobicity is an important determinant at position 135, with an increase in 

hydrophobicity making the channel easier to open.  This is consistent with a 

molecular dynamics simulation of the α7 nAChR that places Phe135 in a 

hydrophobic pocket in an open state (38).  In addition, the logP analysis (Figure 

2.7) highlights the role of aromaticity at residue 135 because Cha has essentially 

the same hydrophobicity as both Me-Phe and F3-Phe but a much higher EC50.  As 

such, the F135Cha mutant, being more hydrophobic than the wild-type Phe but 

lacking the aromaticity, appears to have a nearly wild-type ACh EC50. From these 

data, we conclude that both hydrophobicity and aromaticity at position 135 are 

important in receptor function. 
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Figure 2.7.  Correlation between EC50 and logP for mutations at Phe135.  Note 
that the Cha point was not included in the linear fit. 

 

The results of our double mutant studies have confirmed an important 

interaction between residues 135 and 136; the large effects caused by mutation at 

Pro136 are attenuated when Phe135 is simultaneously mutated to the non-

aromatic Cha (Figure 2.5).  Mutant cycle analysis shows significant coupling 

energies between residues 135 and 136. 

We noted above the intriguing possibility that cis-trans isomerization at 

Pro136 is involved in receptor gating.  In the present work, we did not see a 

simple correlation between EC50 and previously reported innate percentage cis 

values of the Pro analogs.  However, there is ample precedent showing a 

deviation of percentage cis from the innate value when the preceding residue is 

aromatic (12).  To probe the impact of the Phe residue on the present system, we 

used NMR spectroscopy to evaluate the cis-trans preference in the model 

peptides Gly-Phe-XPro-Gly, where XPro represents Pro, Pip, Aze, c-4F-Pro, Mor, 3-
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Me-Pro, and 2-Me-Pro. Because the cis form of the Gly-Phe(2-Me-Pro)-Gly 

peptide was not observed, we cannot comment on the role of Phe in this system.  

In all other cases, comparisons are possible, and the Phe does increase the 

percentage cis at the adjacent Pro analog.  The substantial upfield chemical shift 

of the Cβ proton in the cis conformer supports the existence of the putative 

interaction between the proline ring and the aromatic ring of the phenylalanine 

residue (Table 2.4). 

In Table 2.3, we report ΔΔG(c-t), the extent to which the proline analog 

shows an increased bias for the cis form relative to proline.  To facilitate 

comparisons, we also convert each EC50 shift into an energy term, ΔΔG(EC50).  We 

first considered the homologous series of unsubstituted rings Aze, Pro, and Pip, 

in which the ring size expands from 4 to 5 to 6.  The percentage cis and EC50 

values track each other; EC50 is Pip < Aze < Pro, whereas percentage cis is Pip > 

Aze > Pro (Figure 2.8, solid line).  Note that in this simple series, the Phe 

substituent is critical because the inherent percentage cis sequence absent the Phe 

is Aze > Pip > Pro (Figure 2.8, dotted line).  Having an aromatic residue adjacent 

to the proline alters the cis bias differentially across this homologous series, and 

the EC50 values for the receptor mirror this effect.  These data suggest that proline 

cis-trans isomerization at this site may play a role in receptor gating. 
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Figure 2.8.  Relationship between EC50 values and cis-trans preferences for Pro and 
analogs at position 136.  All values are relative to Pro.  Solid line and open circles, 
Pro, Aze, and Pip using cis-trans values determined in the present study for the 
Gly-Phe-Xaa-Gly sequence (Table 2.3).  Dashed line and open diamonds, Pro, Aze, 
and Pip using cis-trans values previously determined for sequences that do not 
have an aromatic N-terminal to the Pro analog.  Solid squares, data points (c-4F-
Pro, Mor, and 3-Me-Pro) that deviate from the trend set by the solid line 

 

Concerning the more dramatic proline mutations, a simple percentage cis 

correlation is not evident.  It is clear from the Phe135 mutational studies that 

receptor function is highly sensitive to side-chain polarity at the 135 site (Figure 

2.7), with increased side-chain hydrophobicity lowering EC50.  It seems reasonable 

to expect a similar effect at the adjacent Pro136 because Phe and Pro interact, as 

shown by the mutant cycle analysis.  Indeed, our results suggest a preference for 

side-chain hydrophobicity at the Pro136 site as well.  Mor is structurally very 

similar to Pip, but it does not fit into the Aze-Pro-Pip correlation.  We propose 

that EC50 for Mor is anomalously high because of the increased polarity relative 

to Pip.  Similarly, c-4F-Pro has a significantly higher percentage cis than Pro but 
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only a modest decrease in EC50, apparently due to the increased polarity of the 

fluorine substituent.  In fact, a second linear correlation can be seen in Figure 2.8 

involving the Pro-(c-4F-Pro)-Mor series, although the structural variation across 

this series is less consistent than in the Aze-Pro-Pip trio.  3-Me-Pro shows a 

smaller percentage cis than Pro but the lowest EC50 among the amino acids at the 

136 sites.  Interestingly, adding a single CH3 group to Pro136 has the same effect 

on EC50 as adding a single CH3 group to Phe135 (3-Me-Pro and Me-Phe show the 

same EC50).  Inspection of simple molecular models leads to an observation that 

the two CH3 groups could point into nearly the same region of the receptor when 

the proline is in the cis form.  Perhaps each CH3 fits into a hydrophobic pocket, 

stabilizing the open state of the receptor and lowering EC50. 

As shown Figure 2.8, in the most conservative structural series (Pro, Pip, 

and Aze), we do find a trend that is suggestive of cis-trans isomerization at 

Pro136.  Importantly, this trend is seen only when the perturbing effect of the 

Phe residue is included, justifying the consideration of the Phe-Pro unit as a 

single motif.  Residues that involve more complex changes do not fit the 

correlation, but generally the deviation is consistent with the notion that 

increasing side-chain hydrophobicity lowers EC50.  From our data, we propose 

that both cis propensity and side-chain hydrophobicity at Pro136 simultaneously 

are determinants of nAChR function.  Moreover, the possibility of cis-trans 

isomerization at Pro136 being involved in gating cannot be ruled out. 

In summary, the subtle mutations enabled by unnatural amino acid 

mutagenesis have allowed a detailed study of the Phe-Pro motif in the Cys loop 
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of a Cys-loop receptor.  Mutant cycle analysis reveals a strong interaction 

between the two residues and a strong preference for an aromatic residue at 

position 135.  In addition, a clear trend is evident whereby increasing 

hydrophobicity at either Phe135 or Pro136 lowers EC50.  Although the analysis of 

residue Pro136 is complex, the data provide evidence supporting a role of the cis 

conformer in receptor function. 

 

2.4 Materials and Methods 

Synthesis of dCA-amino acids 

The preparations of amino acids coupled to the dinucleotide (dCA) have 

been described previously (39) with the exception of dCA-Dhp and dCA-Mor.  

(S)-3-morpholinecarboxylic acid HCl was purchased from Tyger Scientific, Inc. 

(Ewing, NJ), and 3,4-dehydro-L-proline (Dhp) from Chem-Impex International 

Inc. (Wood Dale, IL).  The amino groups were protected as the O-

nitroveratryloxycarbonyl (NVOC) group.  NVOC-Cl was purchased from 

Aldrich.  (NVOC)-3,4-dehydroproline cyanomethyl ester and (NVOC)-

morpholine cyanomethyl ester were prepared according to the representative 

protocol reported in Ref. (40).  Products were characterized by NMR 

spectroscopy.  The NMR spectra, both 1H and 13C, are complicated because each 

compound shows two distinct conformations in the solution.   

(NVOC)-3,4-Dehydroproline cyanomethyl ester.  1H NMR (500 MHz, CDCl3) 

δ3.95–4.03 (m, 6H), 4.34–4.43 (m, 2H), 4.69–4.87 (m, 2H), 5.20–5.21 (m, 2H), 5.43–
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5.67 (m, 2H), 5.76–5.83 (m, 1H), 7.01 (s, 1H), 7.71 (m, 1H).  13C NMR (125 MHz, 

CDCl3) δ49.20, 49.23, 53.57, 54.20, 56.54, 56.57, 56.87, 64.66, 65.08, 65.92, 66.28, 

108.34, 108.37, 110.07, 111.25, 113.96, 113.98, 123.46, 123.71, 127.44, 127.85, 130.37, 

130.49, 139.88, 139.92, 148.32, 148.43, 153.39, 153.76, 153.81, 153.96, 168.41, 168.83.  

High-resolution MS analysis (FAB+) calcd for C17H18N3O8 m/z = 392.1094, found 

392.1109.   

(NVOC)-Morpholine cyanomethyl ester.  1H NMR (500 MHz, CDCl3) δ3.24–3.48 

(m, 1H), 3.51 (dt, 1H), 3.69–3.75 (m, 1H), 3.83–3.95 (m, 2H), 3.94–3.95 (m, 3H), 

3.99–4.02 (m, 3H), 4.33–4.41 (m, 1H), 4.63–4.85 (m, 3H), 5.41 (dd, 1H), 5.69 (dd, 

1H), 6.88–6.97 (m, 1H), 7.66–7.70 (m, 1H).  13C NMR (125 MHz, CDCl3) δ41.22, 

41.73, 49.39, 49.45, 54.53, 55.05, 56.53, 56.60, 56.81, 64.91, 65.31, 66.29, 66.73, 66.99, 

67.34, 108.32, 108.36, 109.91, 111.13, 113.84, 113.89, 126.93, 127.66, 139.78, 140.11, 

148.32, 148.53, 153.66, 153.81, 155.14, 156.04, 168.69, 168.89.  High-resolution MS 

analysis (FAB+) calcd for C17H20N3O9 m/z = 410.1199, found 410.1180. 

Dhp and Mor cyanomethyl esters were coupled to dCA following the protocol in 

Ref. (40).   

dCA-Dhp.  ES-MS calcd for C34H40N10O20P2  m/z 970.2; found (M - H)− m/z 969.0, 

(M+Na−2H)− m/z 991.1, and (M+Na−H)− m/z 992.0.   

dCA-Mor.  ES-MS calcd for C34H42N10O21P2  m/z 988.2; found (M - H)− m/z 987.0, 

(M+Na−2H)− m/z 1009.0, and (M+Na−H)− m/z 1010.0. 
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Molecular Biology  

Subunits of embryonic mouse muscle nAChR were in pAMV vectors.  The 

α subunit contains the hemagglutinin epitope (HA) tag in the M3-M4 loop.  

There is no significant shift in EC50 caused by the insertion of the HA tag at this 

location.  Site-directed mutagenesis was performed using the Stratagene 

QuikChange protocol.  For single unnatural amino acid incorporation, the site of 

interest was mutated to an amber stop codon.  For double unnatural acid 

incorporation, the 135 site was mutated to the opal stop codon and the 136 site 

was mutated to the amber stop codon.  Circular cDNA was linearized with NotI 

or KpnI.  After purification (Qiagen), linearized DNA was used as a template for 

runoff in vitro transcription using T7 mMessage mMachine kit (Ambion).  The 

resulting mRNA was purified (RNAeasy Mini Kit, Qiagen) and quantified by 

UV-visible spectroscopy.  

THG73 (41) and TQOpS’ (25, 26) were used as amber suppressor tRNA 

and opal suppressor tRNA, respectively.  Conjugated dCA-amino acid was 

ligated to 74-nucleotide tRNA as previously reported (39).  Crude tRNA-amino 

acid product was used without desalting, and the product was confirmed by 

MALDI-TOF MS on 3-hydroxypicolinic acid (3-HPA) matrix.  Deprotection of the 

NVOC group on tRNA-amino acid was carried out by 5-minute photolysis 

immediately prior to injection. 
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Microinjection 

Stage V–VI Xenopus laevis oocytes were employed.  For wild-type receptor 

and receptors containing conventional mutations, quantified mRNA of all 

subunits were mixed in a ratio of α:β:γ:δ  = 2:1:1:1 by mass.  If an unnatural 

amino acid was to be incorporated into the α subunit, the mRNA stoichiometry 

was α:β:γ:δ  = 10:1:1:1 by mass.  Total amount of injected mRNA was 0.5–5 ng per 

cell for the wild type, 5–50 ng per cell for conventional mutations, and 25–125 ng 

per cell for suppression mutations.  More mRNA was used in the double 

mutation experiments and with some mutations that gave abnormally low 

expression level.  Equal volumes of the mRNA mixture and unprotected tRNA-

amino acid were mixed prior to injection.  Approximately 15ng of tRNA per cell 

was used in the single suppression experiments and 50 ng in the double 

suppression experiments.  Each oocyte was injected with 50 nL of RNA solution, 

and cells were incubated for 18–72 hours at 18 °C in culture media (ND96+ with 

5% horse serum).  In the case of low-expressing mutant receptors, a second 

injection was required.  As a negative control for all suppression experiments, 76-

nucleotide tRNA (dCA ligated to 74-nucleotide tRNA) was co-injected with 

mRNA in the same manner as fully charged tRNA.   
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Western blot analysis 

The injected oocytes were incubated for 48 hours in ND96+ with 5% horse 

serum.  The vitelline/plasma membranes were isolated by physical dissection 

after the oocytes were incubated in hypotonic solution (5 mM HEPES, 5 mM 

NaCl) with 50 μL membrane solubilization solution (50 mM Tris, pH 7.5, 10 mM 

EDTA, 4% SDS w/v, 1mM phenanthroline, 10 μM pepstatin A) for 10 minutes.  

Following 5-minute centrifugation at 4 ºC and removal of the supernatant, the 

pellets were mixed with 10 μL smashing buffer (4.7 μL of exchange buffer (100 

mM NaCl, 50 mM Tris, pH 7.9), 300 μL 10% SDS, 89 mg DDM, and 1 protease 

inhibitor tablet) and 10 μL of 2x loading buffer.  The experiment was performed 

using SDS-PAGE with 15% Tris-Cl ReadyGels (BioRad Laboratories).  10 oocytes 

were used in each lane.  The samples were subjected to a Western blot analysis 

using antihemagglutinin antibody, and visualized using an ECL detection kit 

(Amersham).     

 

Electrophysiology 

Acetylcholine chloride and succinylcholine dihydrate were purchased 

from Sigma-Aldrich/RBI.  Drug dilutions were prepared from 1M stock 

solutions in the calcium-free ND96 buffer.   

Ion channel function in oocytes was assayed by current recording in two-

electrode voltage-clamp mode using the OpusXpress 6000A (Axon Instruments).  

For dose-response experiments, 1 mL of each drug solution was applied to the 
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cells, and between 12 and 16 concentrations of drug were used.  Oocytes were 

clamped at −60 mV.  Cells were perfused in calcium-free ND96 solution at flow 

rates of 1 mL/min before agonist application, 4 mL/min during agonist 

application, and 3 mL/min during wash.  Drug application was 15 seconds in 

duration.  Data were sampled at 125 Hz and filtered at 50 Hz.   

 

Data Analysis 

All dose-response data were obtained from at least 5 cells and at least two 

batches of oocytes.  Data were normalized (Imax = 1) and averaged.  EC50 and Hill 

coefficient (nH) were determined by fitting averaged, normalized dose-response 

relations to the Hill equation.  Dose-responses of individual oocytes were also 

examined and used to determine outliers.  Individual dose-response data with nH 

> 2 or nH  < 1 were discarded.   

Coupling parameter (Ω) between any two mutations at residue 135 and 

136 was calculated from Equation 1, 

Ω = [EC50(double mutation)×EC50(wild type)]/ 

[EC50(135 mutation)×EC50(136 mutation)]                      (Eq.1)                                               

Side chain logP values were obtained using the ChemDraw program 

(CambridgeSoft Corporation). 
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Synthesis of Fmoc-Protected Amino Acid 

Fmoc-Cl was purchased from Fluka.  (S)-3-morpholinecarboxylic acid HCl 

was purchased from Tyger Scientific, Inc. (Ewing, NJ), (2S,3S)-3-

methylpyrrolidine-2-carboxylic acid (3-Me-Pro) from Acros Organics USA (Morris 

Plains, NJ), α-methyl-L-proline (2-Me-Pro) from Fluka, and 3,4-dehydro-L-

proline (Dhp) from Chem-Impex International, Inc. (Wood Dale, IL).  The amino 

acids were coupled to the Fmoc protecting group using the following protocol. 

L-amino acid (0.06 mmol) was dissolved in 10% Na2CO3 in water (2 mL), 

resulting in a solution with pH ~ 9.  To this solution was added Fmoc-Cl (1.5 eq) 

in dioxane (2 mL) at room temperature.  DIPEA was added dropwise while the 

reaction was stirred.  Typically, the reaction was complete within 6 hours.  The 

reaction mixture was diluted by addition of brine (20 mL).  This was extracted 

with ether (5 mL) 5 times.  The aqueous layer was acidified with 6 N HCl to pH 

of ~ 1 (solution became cloudy), and extracted with ether (5 mL) 3 times or until 

the organic layer was clear.  The combined organic layers were dried over 

Na2SO4, and the solvent was removed under reduced pressure.  Crude product 

was dried under vacuum overnight and was used in the next step (solid-phase 

peptide synthesis) without further purification.   

N-Fmoc-2-methyl-proline.  1H NMR (500 MHz, CDCl3) δ1.26–1.62 (m, 3H), 1.75–

1.98, (m, 3H), 2.15–2.42 (m, 1H), 3.51–3.63 (m, 2H), 4.13–4.56 (m, 3H), 7.27–7.41 

(m, 4H), 7.55–7.61 (m, 2H), 7.70–7.77 (m, 2H).  13C NMR (125 MHz, CDCl3) δ22.31, 

22.72, 22.83, 23.42, 39.23, 41.11, 47.48, 47.58, 48.28, 48.91, 65.00, 66.28, 67.25, 67.65, 
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120.12, 120.20, 124.92, 124.95, 125.30, 125.35,127.27, 127.29, 127.30, 127.74, 127.78, 

127.93, 141.54, 141.56, 141.60, 141.62, 144.05, 144.17, 144.21, 144.43, 154.86, 155.35, 

178.42, 179.54.  High-resolution MS analysis (FAB+) calcd for C21H22NO4 m/z = 

352.1549, found 352.1534.   

N-Fmoc-3-methyl-proline.  1H NMR (500 MHz, CDCl3) δ1.17–1.28 (m, 3H), 1.49–

1.63 (m, 1H), 2.01–2.15 (m, 1H), 2.40–2.49 (m, 1H), 3.50–3.68 (m, 2H), 3.85–3.97 (m, 

1H), 4.12–4.28 (m, 1H), 4.33–4.46 (m, 2H), 7.27–7.40 (m, 2H), 7.53–7.62 (m, 2H), 

7.69–7.77 (m, 2H).  13C NMR (125 MHz, CDCl3) δ18.65, 18.91, 31.58, 32.50, 38.24, 

39.70, 45.92, 46.29, 47.27, 47.30, 65.59, 66.07, 67.72, 67.77, 119.94, 119.97, 120.04, 

125.05, 125.11, 125.16, 125.24, 127.10, 127.13, 127.15, 127.68, 127.78, 127.79, 141.27, 

141.34, 141.36, 141.39, 143.80, 143.84, 144.07, 144.12, 154.75, 155.46, 176.79, 177.69.  

ESI MS on an LCQ ion trap mass spectrometer (positive ion mode) calcd for 

C21H21NO4 m/z = 351.1, found 351.9.   

N-Fmoc-morpholine.  1H NMR (500 MHz, CDCl3) δ3.04–3.92 (m, 6H), 4.20–4.68 

(m, 5H), 7.27–7.34 (m, 2H), 7.36–7.42 (m, 2H), 7.48–7.60 (m, 2H), 7.71–7.77 (m, 

2H).  13C NMR (125 MHz, CDCl3) δ41.16, 41.73, 47.27, 54.45, 54.84, 66.37, 66.75, 

67.32, 67.72, 67.77, 68.12, 120.11, 120.14, 124.79, 124.89, 125.13, 127.19, 127.25, 

127.27, 127.86, 127.90, 141.37, 141.42, 141.45, 141.48, 143.78, 143.82, 143.94, 155.91, 

156.58, 174.83, 175.02.  ESI MS on an LCQ ion trap mass spectrometer (positive 

ion mode) calcd for C20H19NO5Na m/z = 376.1, found 376.3. 
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Solid-phase peptide synthesis 

All peptides were synthesized by solid-phase methods from Fmoc-

protected amino acids using HBTU (Fluka) as a coupling reagent.  Fmoc-L-

proline (Fmoc-Pro) was purchased from Sigma, Fmoc-L-pipecolic acid (Fmoc-

Pip) from Peptech Corporation (Burlington, MA), Fmoc-L-Azetidine-2-carboxylic 

acid (Fmoc-Aze) from Fluka, Fmoc-cis-2-fluoro-L-proline (Fmoc-c-4F-Pro) from 

AnaSpec, Inc. (San Jose, CA), N-Fmoc-glycine (Fmoc-Gly) from Aldrich, and 

Fmoc-L-phenylalanine (Fmoc-Phe) from Sigma.  All chemicals were used as 

purchased without purification. 

PAL resin (Sigma-Aldrich, estimated 0.4–0.8 mmol/g loading, 1 % cross-

linked with divinylbenzene, 100–200 mesh) was used to afford carboxy terminal 

primary amides.  For conventional amino acids, couplings were performed with 

3 equivalents of Fmoc amino acid, 3 equivalents of HBTU, and 6 equivalents of 

diisopropylethylamine (DIPEA).  For unnatural amino acids, couplings were 

performed with 2 equivalents of Fmoc amino acid, 2 equivalents of HBTU, and 4 

equivalents of DIPEA.  The reaction time for each coupling step was 1-2 hours.  

Kaiser test was performed to monitor the progress of the reaction.  After each 

coupling step, unreacted free amine was acetylated (5% acetic anhydride and 5% 

pyridine, and 90% DMF) for 8 minutes, followed by deprotection of Fmoc-

protected amine groups (20% piperidine/DMF, 15 minutes).  In the last step, 

after Fmoc deprotection, the peptides were acetylated at the N-termini on the 

resin using a solution of 5% pyridine, 5% acetic anhydride, and 90% DMF.  

Peptides were cleaved from the resin by treatment with trifluoroacetic acid (TFA) 
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and water (95:5) for 2 hours.  After filtration to collect the filtrate, solvents were 

removed as much as possible under reduced pressure.  Following addition of 5% 

acetic acid solution, this solution was lyophilized to dryness.  The peptides were 

purified by preparative-scale reversed-phase high-pressure liquid chromatography 

(HPLC) with gradient elution using an A-B gradient (buffer A 0.05% TFA in 

water; buffer B 20% water and 0.05% TFA in acetonitrile) and the flow rate of 15 

mL/min.  Peptide identity was characterized by ESI MS on an LCQ ion trap 

mass spectrometer (positive ion mode).  

GFProG  (M+Na)+ expected 440.2, observed 440.3.   

GF(2-Me-Pro)G  (M+Na)+ expected 454.2, observed 454.3.   

GF(3-Me-Pro)G (M+Na)+ expected 454.2, observed 454.4.   

GF(c-4F-Pro)G  (M+Na)+ expected 458.2, observed 458.4.   

GFAzeG  (M+Na)+ expected 426.2, observed 426.2.   

GFPipG  (M+Na)+ expected 454.2, observed 454.3.   

GFMorG  (M+Na)+ expected 456.2, observed 456.2.   

Note that the synthesis of Gly-Phe-Dhp-Gly peptide did not give the 

desired product in the first trial, and no further attempt has been made to obtain 

the product.   
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NMR Spectroscopy of Model Peptides 

The peptide samples were dissolved in 5mM phosphate buffer with 25 

mM NaCl in 90% H2O/10% D2O at pH 5.  Samples for NMR experiments were 

between 2 and 5 mM.  NMR spectra were acquired on a Varian 600 MHz 

spectrometer, and the temperature was set to 298 K.  The water signal was 

suppressed by presaturation.  Sequential assignments were achieved using 

gradient selected correlated spectroscopy (gCOSY) and total correlation 

spectroscopy (TOCSY) experiments.  Spectra were all internally referenced to 3-

(trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt (TSP, ~ 200 μM final 

concentration) at 0.0 ppm.  The fraction of cis conformer was determined by 

integrating well-resolved peaks in the one-dimensional 1H NMR spectra.  NMR 

data were processed using the MestReNova software version 5.1.0 (Mestrelab 

Research S. L.). 
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2.6 Supplemental Figure 
 

 
 

 

Figure 2.S1.  Sample current traces from wild-type and mutant nAChR at 
saturating doses of ACh or SuCh 
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Chapter 3 

 

Key Binding Interactions for Memantine in the 

N-Methyl-D-Aspartate Receptor1	  

 

3.1 Introduction 

N-Methyl-D-aspartate (NMDA) receptors are members of the ionotropic 

glutamate receptor (iGluR) family, which also includes AMPA and kainate 

receptors (1-3).  These are fast, excitatory, ligand-gated ion channels activated by 

the agonist glutamate and, only in the case of NMDA receptors, a co-agonist such 

as glycine or D-serine (4, 5).  The NMDA ion channel is highly permeable to Ca2+ 

and is blocked by Mg2+ in a voltage-dependent manner (1, 6).  The NMDA 

receptor is thought to play a central role in learning and memory and is essential 

to the normal function of the central nervous system (7, 8).  Overactivation of the 

receptor has been implicated in many neurological disorders, such as 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic 

lateral sclerosis, schizophrenia, epilepsy, and neurodegeneration following 

stroke (2, 9–11).   Several neuroprotective drugs have been developed to block 

the NMDA receptor, preventing overactivation.  However, most of them cause 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This work was performed in collaboration with Wesley Yu and Emma Branigan as part of their 
Summer Undergraduate Research Fellowships at Caltech.  A version of this chapter has been 
submitted for publication. 
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debilitating side effects due to the critical roles that NMDA receptors play in 

brain function (12).   

Memantine (Namenda®) is the unique exception and is currently 

approved for use in moderate to severe Alzheimer’s (13–15).  Memantine is 

thought to function by preferentially blocking open NMDA channels (an 

uncompetitive antagonist) (16, 17), and hence, a balance between open and 

closed channels can be achieved by adjusting dosage (12, 14, 18).  The interaction 

between NMDA receptors and memantine is reversible, and the mechanism of 

block has not been fully elucidated (19).   

In this study, we prepared mutants in the pore loop and the third 

transmembrane (TM3) domain of the GluN1/GluN2B NMDA receptor and 

measured how these side-chain modifications affect memantine block.  Side-by-

side comparison of the IC50 for memantine and amantadine (Figure 3.1), a 

structurally related drug, enabled us to identify the hydrophobic binding pockets 

for the two methyl groups on memantine.  While adding two methyl groups to 

amantadine to produce memantine improved affinity greatly, we also found that 

adding a third methyl group to produce the symmetrical trimethylamantadine 

(TMAm) diminished affinity (Figure 3.1).  Our results provide a better understanding 

of chemical-scale interactions between memantine and the ion pore of NMDA 

receptor, which will potentially benefit the development of new drugs for 

neurodegenerative diseases involving NMDA receptors.  
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                     Memantine       Amantadine           TMAm 

 
Figure 3.1.  Structures of memantine, amantadine, and trimethylamantadine (TMAm) 

 

 

3.2 Results 

3.2.1 Homology models of GluN1 and GluN2B transmembrane domains 

 The structure of the transmembrane domain of the NMDA receptor is not 

currently available.  It was proposed some time ago that the transmembrane 

domain of iGluRs is homologous to the pore region of potassium channels, but 

with the opposite orientation with respect to the membrane (20, 21).  This has 

been confirmed by a crystal structure of a full-length AMPA receptor (22), but 

unfortunately, the image is of a closed channel and is missing a significant 

number of residues in the pore loop.  Therefore, we created a homology model of 

GluN1 and GluN2B transmembrane domains, based on the crystal structure of 

the open-form Kv2.1 paddle–Kv1.2 chimera potassium channel (Protein Data 

Bank code 2R9R) without any optimization (Figure 3.2) (23).   
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Figure 3.2.  Homology model of the transmembrane region of GluN1 (left) and 
GluN2B (right) subunits of NMDA receptor.  The relative position of the two 
subunits are currently unknown.  

 

3.2.2 Mutational scanning 

We first performed a mutational scanning on the pore loop, TM3, and 

post-TM3 regions of the GluN1/2B NMDA receptor using both conventional and 

unnatural amino acid mutagenesis.  Mutations that shift the IC50 greater than 5 

folds are deemed significant.  The data suggest that no point mutation deeper in 

the pore than residue GluN1-N616 had a significant effect on memantine 

blockade, and only mutations at residues V644, A645, and V656 in the TM3/post-

TM3 regions of GluN1 had a meaningful impact on the memantine block (Figure 

3.3).  These preliminary results provided the groundwork for further investigation. 
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Figure 3.3.  Memantine fold shifts (IC50(mutant)/IC50(wild type)) of mutant 
NMDA receptors containing a conventional or an unnatural mutation in the 
transmembrane region.  Abbreviation used are F4W, 2,3,4,5-fluoro-Trp; Cha, 
cyclohexylalanine; hGln, homoglutamine; F3-Phe, 3,4,5-fluoro-Phe.   
*, Conventional mutations performed through the nonsense-suppression method. 

 

3.2.3 Comparison of memantine and amantadine block 

 In the present study, we sought to define the scope of the memantine 

primary binding site by identifying the residues that directly contact the two 

methyl groups (Figure 3.1).  To probe for the methyl group binding pockets of 

memantine on the NMDA receptor, we considered amantadine, a common 

antiviral agent that is known to block the channel of NMDA receptors, but with a 
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lower affinity than memantine (24–30).  Amantadine has the same basic core 

structure as memantine (Figure 3.3), the only difference being that amantadine 

lacks the two methyl groups present on memantine.  Comparing memantine to 

amantadine, the affinity gained from the presence of the methyl groups is 

evaluated by IC50(amantadine)/IC50(memantine), referred to as the methyl effect 

throughout this chapter.  In spite of the small structural difference, the affinity of 

memantine is 75-fold higher than amantadine in the wild-type receptor (Table 

3.3, Figure 3.4), indicating that the two additional methyl groups play an 

important role in antagonism.   

 If these two antagonists bind at the same location and orientation in the 

NMDA channel pore, mutations at residues that interact with the methyl groups 

are expected to cause a larger IC50 shift for memantine than amantadine, thus, 

reducing the methyl effect.  Smaller methyl effect means the mutant receptor is 

less sensitive toward the methyl group.  Other mutations should affect binding of 

the two antagonists in a similar way.  In fact, memantine and amantadine show 

similar responses to the GluN1(N616Q) and the GluN1(N616D) mutations 

(Figure 3.4) — a residue that is thought to anchor the ammonium group through 

an electrostatic interaction (12, 31).  Mutations at the analogous residues in 

GluN2, N615D and N616D, produce relatively modest effects (Figure 3.4).  The 

GluN2(N615D) mutation is unique in that it affects amantadine binding more 

than memantine.  All the data are consistent with the notion that the two drugs 

block the channel at the same general location.   
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Figure 3.4.  Memantine and amantadine dose response curves for the wild-type 
and the GluN1(N616Q) mutant NMDA receptors (top).  The respective methyl 
effects are shown above the curves.  Memantine IC50, amantadine IC50, and the 
methyl effect for wild-type and mutant NMDA receptors containing a mutation 
at GluN1-N616, GluN2B-N615, or GluN2B-N616 (bottom).  The values for IC50 ± 
s.e.m. are shown in Table 3.3.  The methyl effect values are shown above the 
corresponding columns. 

 

3.3.4 Mapping the methyl group binding site on GluN1 

 Since we are probing for a hydrophobic binding pocket for the methyl 

groups, our strategy was to make hydrophobic side chains more hydrophilic.  
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Therefore, we mutated these three residues to Asn.  The impact of mutations in 

the GluN1 subunit on IC50 values of both memantine and amantadine are shown 

in Figure 3.5 and Table 3.3.   

 

 
Figure 3.5.  Memantine IC50, amantadine IC50, and the methyl effect for wild-type 
and mutant NMDA receptors containing a mutation at the residue V644, A645, 
or V656 in GluN1.  The values for IC50 ± s.e.m. are shown in Table 3.3.  The 
methyl effect values are shown above the corresponding columns. 

 

The mutation V644N impacted the binding of memantine significantly 

more than amantadine.  The IC50 ratio between the two drugs decreased to 12-

fold, compared to the 75-fold effect seen in the wild-type receptor (Figure 3.5).  

The adjacent A645N mutation showed an even larger effect, with only a 4.4-fold 

difference between memantine and amantadine IC50.  The mutation V656N causes 

only a moderate 4.4-fold shift in IC50 for memantine and a modest 2.3-fold shift for 

amantadine.  Interestingly, this mutation causes a nearly 10-fold shift in glutamate 

EC50 (Table 3.1), which may imply a strong perturbation to receptor gating.  
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Although the effects of Asn mutations at GluN1 residue 644 and 645 on 

glutamate EC50 were much smaller than the effects on blockage, the A645N 

mutation did show the significant reduction in Glu EC50, approximately 6-fold 

(Table 3.1).  In order to determine whether the V644N and A645N data in Figure 

3.5 resulted from an unwanted structural perturbation, we tested V644T, V644L, 

A645V, and A645L mutations.  All of these mutations shift glutamate EC50 less 

than A645N (Table 3.1).  The additional mutations at residue 644 did not have a 

considerable impact on memantine IC50, amantadine IC50, or the ratio between the 

two (Table 3.3).  Neither did the Val mutation at residue 645 (Figure 3.6, Table 3.3).  

In contrast, the A645L mutation had a significant impact on memantine IC50, while 

essentially no effect is seen with amantadine IC50 (Figure 3.6, Table 3.3).   

 

 

Figure 3.6.  Memantine IC50, amantadine IC50, and the methyl effect for wild-type 
and mutant NMDA receptors containing a mutation at the residue GluN1-A645.  
The values for IC50 ± s.e.m. are shown in Table 3.3.  The methyl effect values are 
shown above the corresponding columns. 
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A trend is seen in which the methyl effect is reduced with increasing the 

side-chain volume (Ala > Val > Leu) and side-chain polarity (Leu > Asn) at 

residue 645 (Figure 3.6).  These results suggest that the residue A645 on GluN1 

contributes to the methyl group binding site of memantine, while the residue 

V644 is located in close proximity. 

 

3.3.5 Mapping the methyl group binding site on GluN2 

 Models of the NMDA receptor heterotetramer indicate that both GluN1 

and GluN2 contribute to the channel region being probed.  To probe for 

contributions to a methyl group binding site by GluN2B, however, it is not safe 

to assume that the residue GluN2-A644, which would typically be considered to 

align with GluN1-A645 (21, 32), also contributes to a methyl group binding site.  

A previous study by the substituted cysteine accessibility method (SCAM) on 

GluN1/GluN2C suggests that there may be an offset by four residues in the TM3 

regions between the GluN1 and GluN2C (21, 32, 33).  Accordingly, we 

considered the aligning residues, L643 and A644, as well as the residues A639 

and V640 which are one helix turn lower in the structure (Figure 3.2).  The 

A639N and V640N mutations had a negligible effect on memantine and 

amantadine binding (Figure 3.7).  In contrast, L643N and A644N substantially 

impaired memantine blockade.  Similar to what is seen with GluN1, 

GluN2(L643N) shows a modest differentiation between memantine and 

amantadine, while GluN2(A644N) shows a quite substantial effect (Figure 3.7).   
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Figure 3.7.  Memantine IC50, amantadine IC50, and the methyl effect for wild-type 
and mutant NMDA receptors containing an Asn mutation at the residue A639, 
A640, L643, and A644 in GluN2B.  The values for IC50 ± s.e.m. are shown in Table 
3.3.  The methyl effect values are shown above the corresponding columns. 

 

Parallel to the study in GluN1 subunit, we also mutated GluN2-A644 to 

the hydrophobic side chains Leu and Val.  All these mutations resulted in 

minimal changes to glutamate EC50 (Table 3.1).  Adding volume to this side chain 

(Ala > Val > Leu) lowered amantadine IC50 while leaving the memantine IC50 

unaltered (Figure 3.8).  Thus, the trend in the methyl effects is similar to that seen 

for mutations at GluN1-A645, in which there is a reduction in the methyl effect as 

the side-chain volume or the side-chain polarity is increased (Figure 3.8).  

Overall, these results suggest these two residues — GluN1-A645 and GluN2-

A644 — play similar roles in shaping the memantine methyl binding site.    

 

0.1

1

10

100

1000

1

10

100

W
ild

 ty
pe

G
lu

N
1/

2B
(A

63
9N

)

G
lu

N
1/

2B
(V

64
0N

)

G
lu

N
1/

2B
(L

64
3N

)

G
lu

N
1/

2B
(A

64
4N

)

Memantine
Amantadine

Methyl Effect

75

39 42

22

3.7

IC
50

 (µ
M

)

A

M
ethyl Effect

Wild
 ty

pe 
GluN1/2

B(A
63

9N
) 

GluN1/2
B(V

64
0N

) 
GluN1/2

B(L64
3N

) 
GluN1/2

B(A
64

4N
) 



	   77	  

 

Figure 3.8.  Memantine IC50, amantadine IC50, and the methyl effect for wild-type 
and mutant NMDA receptors containing a mutation at the residue GluN2B-
A644.  The values for IC50 ± s.e.m. are shown in Table 3.3.  The methyl effect 
values are shown above the corresponding columns. 
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Table 3.1.  Glutamate EC50 ± s.e.m. and Hill constant of wild-type and mutant 
NMDA receptors 

NMDA Receptor Glutamate EC50 Hill Constant n EC50(mutant)/EC50(wild type) 

 μM    

Wild type 1.94 ± 0.04 1.7 8 1.00 

GluN1 Mutants       
N616Q 0.47 ± 0.01 1.6 11 0.24 
N616D 1.3 ± 0.02 1.8 14 0.65 
V644T 2.0 ± 0.03 1.6 11 1.01 
V644L 1.3 ± 0.02 1.5 10 0.67 
V644N 1.7 ± 0.03 1.6 12 0.89 
A645V 0.93 ± 0.03 1.6 8 0.48 
A645L 0.60 ± 0.02 1.3 9 0.31 

A645N 0.33 ± 0.01 2.1 7 0.17 

V656N 0.20 ± 0.01 2.3 7 0.10 

GluN2B Mutants       
N615D 2.9 ± 0.06 1.7 5 1.01 
N616D 2.8 ± 0.04 1.5 6 1.45 
A639N 0.63 ± 0.02 1.5 9 0.32 
V640N 2.8 ± 0.10 1.6 9 1.42 
L643N 1.2 ± 0.03 1.5 9 0.64 
A644V 0.61 ± 0.05 1.2 5 0.31 
A644L 0.76 ± 0.05 1.5 11 0.39 
A644N 0.73 ± 0.01 1.7 9 0.37 
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3.3.6 Investigating trimethylamantadine blockade 

 To further probe the possible role of methyl groups and asymmetry in the 

binding region, we considered the molecule trimethylamantadine (TMAm, 

Figure 3.1).  The additional methyl group of TMAm introduces a 3-fold rotation 

axis that is absent in memantine.  We found that this molecule blocks the NMDA 

receptor with an IC50 of 3.4 μM (Table 3.2), intermediate between the values for 

memantine (0.54 μM) and amantadine (41 μM).  However, the GluN1(N616Q) 

mutation that displays a substantial shift in both memantine and amantadine IC50 

does not have any effect on TMAm block (Table 3.2).  Similarly, Asp mutation at 

GluN2-N615 or GluN2-N616 do not shift the TMAm IC50 from the wild-type 

value.  TMAm is sensitive to GluN1(A645N) and GluN2(A644N) mutations, but 

the mutations have a significantly smaller effect on IC50 shifts for TMAm 

compared to memantine.  These data imply that the TMAm molecule interacts 

with the ion pore in a different orientation than memantine and amantadine.   

 

Table 3.2.  TMAm IC50
 ± s.e.m. for wild-type and mutant NMDA receptors 

NMDA Receptor TMAm IC50 n IC50(mutant)/IC50(wild type) 

 μM   

Wild type 3.4 ± 0.4 10 1.0 

GluN1(N616Q)/2B 2.0 ± 0.08 9 0.6 

GluN1(V644T)/2B 3.1 ± 0.4 10 0.9 

GluN1(A645N)/2B 180 ± 11 12 53 

GluN1/2B(N615D) 5.4 ± 1.1 13 1.6 

GluN1/2B(N616D) 2.9 ± 0.4 8 0.9 

GluN1/2B(V640N) 0.72 ± 0.1 8 0.2 

GluN1/2B(A644N) 100 ± 7.4 11 30 
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3.3 Discussion 

Memantine is currently prescribed as a treatment for moderate to severe 

Alzheimer’s disease (13-15), and the drug also displays clinical potential for 

treatment of other neurodegenerative disorders (18, 34, 35).  Memantine is 

believed to function by blocking the NMDA receptor, a glutamate-gated ion 

channel in the brain, but the key binding interactions between drug and receptor 

are not fully elucidated (16, 17, 19).  Further understanding of the chemical-scale 

interactions between the NMDA receptor and memantine will contribute some 

insight into the detailed mechanism of memantine blockade that underlies its 

high clinical potential.   

Previous studies suggested that memantine can block the NMDA receptor 

at multiple sites, and the primary binding site (the one with the highest affinity 

or lowest IC50) involves an interaction between the ammonium group of 

memantine and the side chain of an Asn residue (residue 616, the N/Q site) in 

the GluN1 subunit (Figure 3.2) (12, 31).  This residue is located at the tip of the 

pore loop, which forms the narrowest constriction of the NMDA pore (1, 20, 21).  

Our preliminary mutational scanning results suggest that no point mutation 

deeper in the pore than residue Asn616 had a significant effect on memantine 

blockade (Figure 3.3), consistent with a previous report that memantine cannot 

block NMDA receptors from the intracellular site (36).  Furthermore, Kashiwagi 

et al. previously suggested that mutations at residues on the TM3 and post-TM3 

regions of GluN1 had a considerable impact on memantine IC50s (37).  When we 

map these residues onto our homology model (Figure 3.2), we found some of 
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them to be distant from the Asn residue that anchors the ammonium of 

memantine.  It seemed very unlikely that a small molecule like memantine 

would interact directly with all these residues.  For these reasons, we aimed to 

search for the methyl group binding pockets that would serve as the definite 

upper boundary of the memantine primary binding site.  

The highest memantine concentration used in all IC50 experiments was 100 

μM to minimize complications involving the secondary (lower affinity) binding 

site (12, 29, 30, 38) and/or antagonist trapping (27, 39, 40).  Though this choice 

prevented completion of full dose-response curves for some mutations, meaningful 

IC50 values (unlike EC50 values) can be obtained from such plots.  The EC50 for 

glutamate was measured for all the mutant receptors to ensure that (i) the mutant 

receptors are functional and (ii) a saturating dose of glutamate (4 or 10 μM) was 

applied to activate the mutant receptors in the IC50 experiments (Table 3.1). 

In order to identify the residues that interact with the methyl groups, we 

employed a structurally related NMDA antagonist, amantadine, from which the 

methyl groups are absent.  Mutations at the residues in contact with the methyl 

groups should have a larger effect on memantine affinity than amantadine, while 

other mutations should have a comparable effect on the two antagonists.   

 Probing wild-type vs. a mutant receptor with two different antagonists 

sets up an opportunity for a mutant cycle analysis as a way to evaluate 

meaningful interactions.  The basic scheme is shown in Figure 3.9.  The coupling 

parameter defines the deviation from additivity of the two “mutations”:  the 

change to the receptor and the removal of the methyl groups of memantine to 
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make amantadine.  Significant coupling suggests an important interaction 

between the protein side chain being mutated and the methyl groups.  The 

coupling parameter, Ω, can be converted to a free energy by the equation ∆∆G° = 

−RTln(Ω).  We consider meaningful interactions to have values of Ω ≥ 3 (or ≤ ⅓), 

corresponding to |∆∆G°| > 0.6 kcal/mol. 

 

 
 

Figure 3.9.  Examples of mutant-cycle analysis.  (A) The GluN1(N616Q) mutation 
showed no coupling at all to the methyl groups of memantine, producing  Ω ≈ 1 
and ∆∆G° ≈ 0 kcal/mol.  (B) The GluN1(A645L) mutation strongly coupled to the 
methyl groups as shown by the substantial coupling energy ∆∆G°. 

 

Memantine and amantadine show similar responses to the GluN1(N616Q) 

and GluN1(N616D) mutations, indicating that the two drugs block the channel at 

the same general location and with the same orientation (Figure 3.4).  Stated 

differently, these two mutations, which are thought to probe the ammonium 

group binding site, show no significant coupling to the memantine/amantadine 

pair (∆∆G° < 0.4) (Table 3.3), which is a probe of methyl group binding. 

Therefore, comparison of the IC50 shifts between the two drugs is a valid strategy 

for probing the residues that are interacting with the methyl groups of 

memantine.  
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Table 3.3.  Memantine and amantadine IC50
 ± s.e.m., Ω, and ΔΔG° for wild-type 

and mutant NMDA receptors 

NMDA Receptor Memantine IC50  Amantadine IC50  Ωa ΔΔG° b 

 μM n  μM n    

Wild type  0.54 ± 0.03 18  41 ± 5.6 6    

GluN1 Mutants             

N616Q 5.9 ± 0.5 6  490 ± 73 10  1.1 −0.06 

N616D 14 ± 1.3 7  590 ± 21 5  0.55 0.35 

V644T 0.26 ± 0.06 13  44 ± 15 13  2.2 −0.48 

V644L 0.26 ± 0.09 15  26 ± 6.5 11  1.3 −0.17 

V644N 12 ± 3.2 7  150 ± 27 8  0.16 1.1 

A645V 0.60 ± 0.06 9  21 ± 0.8 14  0.46 0.47 

A645L 4.8 ± 0.4 9  53 ± 4.4 9  0.15 1.1 

A645N 240 ± 16 11  1000 ± 68 11  0.06 1.7 

V656N 2.4 ± 0.2 8  94 ± 14 7  0.53 0.38 

GluN2B Mutants             

N615D 1.3 ± 0.3 7  300 ± 17 9  3.1 −0.67 

N616D 1.0 ± 0.1 6  56 ± 5.3 10  0.74 0.18 

A639N 3.6 ± 0.4 10  140 ± 26 11  0.51 0.39 

V640N 0.29 ± 0.03 11  12 ± 2.6 8  0.55 0.35 

L643N 34 ± 2.7 10  750 ± 130 13  0.29 0.73 
A644V 0.41 ± 0.05 14  10. ± 0.7 11  0.33 0.66 
A644L 0.29 ± 0.07 12  3.6 ± 0.4 12  0.17 1.0 
A644N 90 ± 2.0 9  340 ± 29 10  0.05 1.8 
a Ω = [(wild-type memantine IC50)*(mutant amantadine IC50)]/[wild-type amantadine IC50)/ 
(mutant memantine IC50)].   
b ΔΔG° = RTln(Ω) where R = 1.987 kcalmol-1K-1 and T = 298 K. 

 

The Asp mutation at GluN2B-N615, the residue that is considered to align 

with GluN1-N616, is the only mutation that affects amantadine binding more 

than memantine.  This observation suggests an asymmetry in the region of the 
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ammonium group binding site such that the GluN1 subunit plays a more 

important role in memantine block, in agreement with previous proposals (12, 31).   

In GluN1, the V644N and A645N mutations, which displayed a large 

reduction in the methyl group effect from the wild type (Figure 3.5), produced a 

substantial ∆∆G° of 1.1 kcal/mol and 1.7 kcal/mol, respectively, (Table 3.3).  A 

strong interaction between the side chain of the residue A645 and the methyl 

groups of memantine is indicated here, and the location of this residue relative to 

the residue GluN1-N616 on our homology model supports this finding (Figure 

3.2).  This is in an agreement with a previous study based on the SCAM showing 

that in the GluN1/GluN3 receptor, GluN1-A645 in the TM3 of the 

GluN1/GluN3 receptor is in a close proximity to the GluN1-N616 site (41).  In 

contrary, the mutation V656N only produced a negligible ∆∆G° of 0.38 kcal/mol, 

suggesting that the effect of this mutation was not specific to the methyl groups 

on memantine.   

 The A645L mutation in GluN1, which had a significant impact on 

memantine IC50 but not amantadine IC50 (Figure 3.6), resulted in a significant 

∆∆G° of 1.1 kcal/mol (Table 3.3).  Since Leu and Ala are both hydrophobic, this 

could be considered a steric effect.  When the methyl groups of memantine are 

present, a significant steric clash occurs when Ala is mutated to Leu.  With 

amantadine, however, essentially no effect is seen.  The lesser impact of the Val 

mutation, with ∆∆G° of 0.47 kcal/mol, is consistent with this analysis.  Leu can 

be considered to be isosteric to Asn, and so the additional perturbation for the 

Asn mutation (∆∆G° 1.7 kcal/mol) relative to Leu (∆∆G° 1.1 kcal/mol) can be 
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considered a polarity effect.  Both results are consistent with the notion that 

GluN1-A645 contributes to a hydrophobic binding pocket for the methyl groups 

on memantine. 

To probe for contributions to a methyl group binding site by GluN2B, we 

considered the aligning residues, L643 and A644, as well as the residues A639 

and V640 in order to address the possibility of the offset in the TM3 regions 

between the two subunits (Figure 3.2).  Both A639N and V640N mutations 

resulted in a small perturbation to memantine and amantadine affinities and a 

negligible ∆∆G° value, whereas the L643N and A644N mutations produced a 

considerable effect.  While GluN2B(L643N) showed a modest differentiation 

between memantine and amantadine and a ∆∆G° value of 0.73 kcal/mole, 

GluN2B(A644N) produced a large ∆∆G° value of 1.8 kcal/mol, comparable to 

what is seen with the GluN1(A645N) mutation.  These data suggest that the 

offset in the TM3 region between GluN1 and GluN2B is minimal, consistent with 

a study of felbamate, an anticonvulsant drug that is structurally dissimilar to the 

antagonists studied here (42).  

Mutating the residue GluN2B-A644 to Leu and Val produced the trend in 

∆∆G° values that is very much parallel to that seen for the mutations at GluN1-

A645.  The large, polar residue Asn has the greatest effect; the isosteric but 

hydrophobic residue Leu has a smaller but still significant effect; the smaller 

hydrophobic residue Val has a small/negligible effect.   

Overall, these results support a model in which the two residues — 

GluN1-A645 and GluN2-A644 — play similar roles in shaping the memantine 
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methyl binding site.  However, there is an intriguing distinction between the two 

sites: the A645L mutation on GluN1 increases memantine IC50 and leaves 

amantadine IC50 unchanged (Figure 3.6), while the opposite is seen for the A644L 

mutation on GluN2B which shows no change in memantine IC50 and a lower 

amantadine IC50 than the wild type (Figure 3.8). 

We have identified the hydrophobic binding pockets for the two methyl 

groups on memantine, which are located on the TM3 helices of the NMDA 

receptor and are formed by the residues A645 and A644 of GluN1 and GluN2B, 

respectively.  Because these alanine residues are conserved in all the GluN2 

subunits (GluN2A/B/C/D), it is possible that the methyl group binding pockets 

are the same for other GluN1/GluN2 receptor subtypes.  These alanine residues 

are located immediately upstream to the SYTANLAAF motif, which has been 

implicated to play a crucial role in gating of the NMDA receptor (43–45).   

Although we performed our experiments in a Mg2+-free environment, it is 

worth noting that a decrease in the potencies of both memantine and amantadine 

has been reported in the presence of physiological concentrations of Mg2+ (46, 

47).  This observation suggests a competitive behavior between memantine and 

Mg2+, consistent with the notion that they share a common blocking location at 

the tip of the pore loop.  The implication is that the primary binding site of 

memantine, including the methyl group binding pockets, possibly remains 

unchanged in the system with Mg2+. 

The two methyl groups on memantine are crucial for NMDA receptor 

blockade, increasing memantine affinity to the open NMDA receptor channel 
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and making it a much better neuroprotective drug than amantadine.  We found 

that the molecule TMAm, which bears an additional methyl group compared to 

memantine, is also an antagonist to the NMDA receptor with an affinity between 

those of memantine and amantadine (Table 3.2).  However, the TMAm block 

exhibited less sensitivity to the Asn mutations at GluN1-A645 or GluN2-A644 

and was totally insensitive to the mutations GluN1(N616Q), GluN2(N615D), and 

GluN2(N616D) in the pore loop (Table 3.2).  Altogether, our results suggest that 

the additional methyl group on TMAm prevents it from binding the receptor at 

the same location or orientation as memantine and amantadine.   

In summary, our results indicate that the primary binding interaction of 

the methyl groups of memantine is formed by GluN1-A645 and GluN2-A644.   

Mutation at these residues had a significantly larger effect on memantine block 

compared to amantadine block.  When coupled with the interaction between the 

ammonium group and GluN1-N616, a fairly precise model of memantine 

binding can be produced.  Furthermore, the study of TMAm reveals that the 

special property of memantine as an NMDA receptor blocker stems not only 

from the presence of the additional hydrophobicity gained from the two methyl 

groups on the amantadine core but also a proper shape-matching to the binding 

site.  Our findings provide further insight into the chemical-scale interaction 

between the NMDA receptor and memantine, hopefully contributing to efforts to 

understand the drug’s high clinical potential and accelerate the development of 

other therapeutic NMDA receptor antagonists.   
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3.4 Materials and Methods 

NMDAR Clones and Mutagenesis 

 The rat GluN1-1a and rat GluN2B cDNA clones were in pAMV vector.  

Mutant GluN1 and GluN2B subunits were prepared by site-directed 

mutagenesis using the standard Stratagene QuikChange protocol and verified 

through sequencing.  All cDNA was linearized with NotI, and mRNA was 

synthesized by in vitro runoff transcription using the T7 mMESSAGE 

mMACHINE kit (Ambion).   

 

Oocyte Expression 

 Stage V–VI Xenopus laevis oocytes (Nasco) were injected with 4–75 ng of 

mRNA in a total volume of 50 nL per oocyte.  For some mutant receptors, second 

injection was necessary to attain sufficient current size, which was given 24 

hours after the first injection.  Oocytes were incubated in ND96+ solution for 18 

hours to 4 days after initial injection to achieve the optimal current size for the 

experiments.   

 

Electrophysiological Recordings 

 Amantadine was purchased from Aldrich, memantine from Tocris 

Bioscience.  Amantadine was stored as 1M stock solution and memantine as 100 

mM stock solution in Millipore water at −80 °C.  Glycine and L-glutamic acid 



	   89	  

hydrochloride were purchased from Aldrich and were stored at −80 °C as 1M 

and 100 mM in Millipore water, respectively. 

Macroscopic current recordings were made in two-electrode voltage-

clamp mode using the OpusXpress 6000A (Molecular Devices).  Voltage-sensing 

electrodes had a resistance of 0.3–10 MΩ, and current-injecting electrodes, 0.3–3 

MΩ; all were filled with 3 M KCl.  Oocytes were evaluated in a Mg2+ and Ca2+-

free saline solution (96 mM NaCl, 5 mM HEPES, 2 mM KCl, and 1 mM BaCl2, pH 

7.5).  The receptors were activated in a Mg2+- and Ca2+-free solution containing 10 

μM glycine and 20 μM glutamate.  In the cases of GluN1(A645N) and 

GluN1(V656N) mutations, 10 μM glycine and 4 μM glutamate were used to 

activate the receptors to avoid overly saturated glutamate concentration.   

To measure memantine IC50, the mixture of glutamate and glycine was 

first applied through pump B.  Memantine was then co-applied with the agonists 

for 50 seconds via a pipette tip, and after that, the agonists were applied again for 

80 seconds through pump B.  Then cells were later washed for 3 minutes in the 

Mg2+- and Ca2+-free ND96 solution.  Similar protocol was used with amantadine 

but with different application durations: 35 seconds of the first agonist 

application, 30 seconds of amantadine applications, 45 seconds of the second 

agonist application, and 125 seconds of wash.    

Up to eight oocytes were simultaneously voltage-clamped at −80 mV, and 

dose-response relationships were obtained by delivery of various drug 

concentrations in 1 mL aliquots.   
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Data analyses 

All data were analyzed using the Clampfit 9.0 software (Axon).  To 

determine IC50, the fraction of block current (I/Imax ) was determined for each test 

dose of antagonist, where  I is the agonist-activated current measured in the 

presence of antagonist and Imax is the maximal current response to agonist 

activation.  Then the I/Imax values were averaged for a given antagonist 

concentration, and the averages were fitted to the Hill equation.  To determine 

EC50, dose-response data were normalized to the maximal current (Imax = 1) and 

averaged.  EC50 and Hill coefficient (nH) were determined by fitting averaged, 

normalized dose-response relations to the Hill equation.  All dose-response data 

were obtained from at least 5 cells and at least two batches of oocytes.  Dose 

responses of individual oocytes were also examined and used to determine outliers.   
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3.5 Supplementary Figures 

 

Figure 3.S1.  Memantine IC50, amantadine IC50, and the methyl effect for double 
mutant GluN1(A645L)/2B(A644V) NMDA receptor in comparison with the 
values from the wild-type and the single-mutant receptors 
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Chapter 4 

 

Functional Crosstalk Between α6β4 Nicotinic 

Acetylcholine Receptors and P2X Receptors 

 

4.1 Introduction 

Nicotinic acetylcholine receptors (nAChRs) and P2X receptors are ligand-

gated cation channels that mediate cholinergic and purinergic fast synaptic 

excitation in the nervous system.  nAChRs are the member of the Cys-loop 

receptor family which includes 5-HT3, GABAA/C, and glycine receptors.  Cys-loop 

receptors are composed of five subunits, and each subunit has four 

transmembrane domains and extracellular N and C-terminal tails (1).  There are 

eight neuronal α (α2–α7, α9, α10) and three neuronal β (β2–β4) nAChR subunits in 

mammals (2).  nAChRs are activated by the endogenous neurotransmitter 

acetylcholine (ACh) as well as nicotine, an alkaloid found in tobacco.  P2X 

receptors belong to a different family of ligand-gated cation channels and are 

activated by extracellular ATP.  The receptors are formed by 3 subunits, composed 

of one or a combination of the seven (P2X1–P2X7) subunits.  Each subunit has two 

transmembrane domains and intracellular N and C-terminal tails (3). 
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P2X receptors and nAChRs are structurally different, and as such, they 

have been assumed to function independently.  However, non-independent 

receptor function was demonstrated between ATP-gated channels and several 

members of the Cys-loop receptor family (4–17).  Co-activation of P2X receptors 

and either nicotinic, serotonin 5-HT3, or GABAA/C receptors, leads systematically 

to a cross-inhibitory interaction that translates into non-additivity of the recorded 

current (4–17).  Because fast neurotransmitters such as ATP and ACh are co-

released in the nervous system (18–20), the interactions between their respective 

receptor channels may play a critical role in shaping synaptic currents.   

Dorsal root ganglia (DRG) contain neurons of the peripheral nervous 

system whose axons convey somatosensory information to the central nervous 

system (CNS).  DRG neurons express a variety of nAChRs with a pharmacology 

consistent with α7, α3β4*, and α4β2* compositions (where the asterisks denote 

the possible presence of additional subunits) (21–25).  Recently, α6β4* was found 

to be among the subtypes expressed by the DRG (26).  Meanwhile, P2X2 and 

P2X3 subunits are heavily expressed in the DRG neurons, and three types of 

ATP-induced P2X currents were recorded that were consistent with the 

expression of the homomeric P2X3, homomeric P2X2, and heteromeric P2X2/3 

receptors (27).  The involvement of the ATP-gated receptors in the DRG neurons 

in nociception is well established.   

Very recently, expression genetics and behavioral studies on mutant mice 

have revealed a negative correlation between expression of α6-nAChR subunit in 

the DRG neurons and allodynia (sensation of pain in response to a stimulus that 
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does not normally provoke pain).1  The result suggests a functional interaction 

between α6-nAChRs and another pain relevant molecular target in the spinal cord 

or periphery.  We therefore considered the hypothesis that α6β4* nAChRs interact 

functionally with P2X3 or P2X2/3 receptors, known to be involved in pain.  

The present work is aimed to investigate the functional interactions 

between ATP-activated P2X receptors and α6β4* nAChRs that could potentially 

reveal a role of α6-nAChR in the anti-allodynic effect.  Studies with recombinant 

nAChRs have identified only two subunit combinations of nAChRs thus far to 

contain a6 and β4 subunits: α6β4 and α6β4β3 (28–30).  The stoichiometry of the 

α6β4 composition is currently unknown.  β3 was found to assemble with α6 into 

nicotinic receptor pentamers at several locations in the brain, and only a single β3 

subunit is incorporated into nAChR (31).  β3 does not participate in forming the 

α:non-α interface that comprises the neuronal ligand-binding site, and other β 

subunits, either β2 or β4, must be present to form functional nicotinic receptors 

(32).  Thus, the stoichiometry of the α6β4β3 composition is likely (α6)2(β4)2(β3)1.   

Herein, we studied both the α6β4 and α6β4β3 combinations of nAChRs 

with three combinations of P2X receptors: homomeric P2X2, homomeric P2X3, 

and heteromeric P2X2/3 receptors.  We report for the first time a functional 

crosstalk between α6β4* nAChR and P2X receptors in Xenopus oocytes.  Further 

studies on the molecular mechanisms reveals two distinct classes of the 

interaction.  The first class is inhibitory and only occurs during the receptor co-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Jeffrey S. Wieskopf, Ardem Patapoutian, and Jeffrey S. Mogil. Personal Communication. 
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activation by both ACh and ATP.  The second class of interaction is pre-

organized and constitutive, in which a biophysical property of one channel is 

modulated by the other.  Our finding supports the notion that the α6β4* nAChR 

may play a role in nociceptive signal transmission in DRG neurons through the 

cross interaction with P2X receptors. 

 

4.2 Results 

4.2.1 Expression of α6β4 and α6β4β3 nAChRs in Xenopus oocytes 

Most α6-containing nAChRs yield very small agonist-induced currents in 

heterologous expression experiments, vitiating accurate measurements (28–30, 

33, 34).  We found that to be true for both α6β4* and α6β2* subtypes with human, 

rat and mouse α6 subunits.  We overcame these problems by using a gain-of-

function α6 subunit, α6(L9’S), for α6β4 expression (35-38), or a gain-of-function 

β3 subunit, β3(V13’S), for α6β4β3 expression (31, 38).  The wild-type α6β4 

produced essentially no current when expressed in oocytes, even when co-

expressed with P2X subunits (data not shown).  Larger currents were observed 

from oocytes expressing α6β4β3(V13’S) than α6(L9’S)β4.  However, the 

α6β4β3(V13’S) oocytes were less healthy, frequently displaying less negative 

resting potentials and larger leak currents when clamped at −60 mV.  The leak 

current could be blocked by mecamylamine, a nicotinic antagonist, suggestive of 

constitutive activity from the α6β4β3(V13’S) receptor.  The observation is 
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consistent with the spontaneous opening previously reported for the 

α6β4β3(V13’S) receptor (38). 

 

4.2.2 Cross interaction between α6β4* and homomeric P2X2 receptors 

While obtaining sufficient α6β4* currents from Xenopus oocytes was 

challenging, the expression of P2X2 receptor was very robust, frequently 

producing current > 20 μA.  When we co-expressed P2X2 with α6(L9’S)β4 or 

α6β4β3(V13’S) in oocytes, we observed both ACh-evoked current (IACh) and ATP-

evoked current (IATP) from the same cell.  We found only minor (< 2-fold) changes 

in the EC50 values for both ACh and ATP when two types of receptors are co-

expressed (Table 4.1).  The presence of ATP had only a weak effect on the ACh 

dose-response relation, and vice versa.   

As an initial step, we probed the interaction between the two types of 

receptors by applying a series of saturating doses of agonists in the following 

sequence: 100 μM ACh, 1 mM ATP, and 100 μM ACh + 1 mM ATP 

simultaneously.  The resulting peak current observed during the co-application 

of ACh and ATP (IACh+ATP) was compared to the arithmetic sum of the individual 

ACh- and ATP-induced currents (IACh and IATP, respectively) at the same agonist 

concentrations on the same cell.  If the two families of receptors are functionally 

independent, i.e., if there is no interaction between them, IACh+ATP is expected to be 

identical to the predicted sum of IACh and IATP of the same cell.   
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Table 4.1.  ACh dose-response results, with or without ATP, from oocytes 
expressing α6β4* alone or α6β4* with P2X2.  ATP dose-response results, with or 
without ACh, from oocytes expressing P2X2 alone or α6β4* with P2X2 

Receptor(s) Dose-response  Additional Agonist EC50  Hill Constant n 

   μM   

α6(L9’S)β4  ACh  3.3 ± 0.11 1.4 ± 0.05 8 

α6β4β3(V13’S)  ACh  1.3 ± 0.06 0.84 ± 0.03 10 

P2X2 ATP  24 ± 1.2 1.5 ± 0.10 18 

α6(L9’S)β4 + P2X2 ACh  4.3 ± 0.10 1.3 ± 0.03 11 

 ACh 32μM ATP 4.5 ± 0.26 1.4 ± 0.09 14 

 ACh 100μM ATP 6.0 ± 0.82 1.5 ± 0.23 14 

 ATP  22 ± 1.1 1.6 ± 0.11 11 

 ATP 100μM ACh 33 ± 3.6 1.3 ± 0.15 11 

α6β4β3(V13’S) + P2X2 ACh  1.6 ± 0.09 0.84 ± 0.03 12 

 ACh 32μM ATP 2.4 ± 1.1 0.75 ± 0.18 19 

 ACh 100μM ATP 1.6 ± 0.45 0.67 ± 0.09 8 

 ATP  23 ± 1.7 1.6 ± 0.15 11 

 ATP 100μM ACh 24 ± 3.1 1.8 ± 0.35 12 
 

 

In oocytes co-expressing P2X2−α6(L9’S)β4 or P2X2−α6β4β3(V13’S), we 

found that when 100 μM ACh and 1mM ATP were applied simultaneously, the 

total current was approximately 20% less than the sum of the currents elicited by 

the individual agonist at the same concentrations (Figure 4.1), which is the 

conventional definition of “cross inhibition.”  The difference between the 

predicted current and the observed IACh+ATP is denoted Δ throughout this chapter.  

In the case of P2X2–α6(L9’S)β4 oocytes, the mean IACh+ATP was only slightly larger 

than the mean IATP (Figure 4.1).  Consequently, the mean Δ was nearly the size of 
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the average IACh.  When the analogous experiments were performed on cells 

expressing only α6β4* or only P2X2, we found that ATP did not activate or 

modulate the α6(L9’S)β4 or α6β4β3(V13’S) nAChRs, and ACh did not activate or 

modulate the P2X2 receptors (data not shown).  The current inhibition suggests 

that P2X2 and α6β4* receptors were functionally dependent when they were co-

expressed, supporting the interaction between the two families of ligand-gated 

ion channels. 

 

Figure 4.1.  Functional interaction between α6β4* nAChRs and P2X2 receptor.  
Both P2X2–α6(L9’S)β4 oocytes (top) and P2X2–α6β4β3(V13’S) oocytes (bottom) 
displayed cross inhibition.  Representative current traces from one cell in each 
case are shown.  The predicted waveform is the point-by-point arithmetic sum of 
the IACh and IATP waveforms.  Mean normalized currents ± s.e.m. are shown on the 
right.  Δ is the difference between the prediction and the observed IACh+ATP.  
Currents were normalized to the prediction from the individual cell, and then 
averaged.  ***, p < 0.0001. 
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From the current traces, we noticed that the oocytes expressing both P2X2 

and α6(L9’S)β4 consistently produced ATP-evoked current with a sign of 

receptor desensitization unlike the oocytes expressing P2X2 alone (Figure 4.2) or 

the α6β4β3(V13’S)–P2X2 oocytes.  This observation prompted us to speculate that 

the desensitized state of P2X2 could be involved in the functional interaction 

between α6(L9’S)β4 and P2X2 receptors.  Further experiments were performed in 

order to investigate this hypothesis, as discussed later in this chapter.  

 

 
Figure 4.2.  Apparent desensitization of ATP-evoked current from P2X2–
α6(L9’S)β4.  Representative current traces from oocyte expressing P2X2 only 
(left), and oocyte co-expressing α6(L9’S)β4 and P2X2 (right) 

 

4.2.3 Cross interaction between α6β4* and homomeric P2X3 receptors 

P2X3 receptor desensitizes very rapidly and recovers very slowly from the 

desensitized state, requiring > 30 minutes for a full recovery (39, 40).  Previous 

work reported that an arginine mutation at the Lys65 residue near the agonist-

binding site slightly reduced the rate of desensitization and greatly enhanced the 

rate of current recovery for the P2X3 receptor expressed in HEK293 cells (40).  
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We mutated this lysine residue to Arg, Gln, Leu, and Ala, and we examined the 

current traces produced by these mutant receptors expressed in Xenopus oocytes.  

We finally decided to employ the K65A mutation, which produced the most 

consistent current level (data not shown), as a background mutation for all 

studies involving the P2X3 receptors.  ATP EC50 of the P2X3(K65A) receptor was 

~ 14 μM, approximately 5-fold higher than the wild-type value, which was 

reasonable as this residue is located near the ATP-binding site (41). 

Even in the presence of the K65A mutation, the P2X3 receptors still open 

and close very rapidly.  When ACh and ATP were co-applied to cells expressing 

α6β4* nAChR and P2X3(K65A), we observed two separate events of inward peak 

current, presumably arising first from P2X3(K65A) and then α6β4* nAChR 

openings.  This means, most of the P2X3(K65A) receptors opened and 

desensitized before the opening of the nAChR reached its maximum.  The fast 

desensitization kinetics of the P2X3(K65A) channels did not allow us to perform 

application of ACh and ATP at the same time, and therefore, the cross interaction 

protocol described for the P2X2 above could not be used here.   

A different protocol was developed to evaluate the cross interaction 

between the P2X3(K65A) receptors and the α6β4* nAChR (Figure 4.3).  ATP-

evoked current when ATP was applied alone (IATP) was compared to the ATP-

evoked current when 100 μM ACh was applied before ATP (IATP*).  The 

difference between IATP and IATP* (Δ*) would directly indicate cross interaction 

between the two receptors. 



	   105	  

 

Figure 4.3.  The protocol used for probing cross inhibition between α6β4* nAChR 
and fast-desensitizing P2X receptor.  ATP was applied alone or after a pre-
application of ACh.  The resulting ATP-evoked currents from both cases were 
compared.  Δ* is a measurement of cross inhibition. 

 

At 100 μM ACh and 320 μM of ATP, cross inhibition was observed 

between α6(L9’S)β4 and P2X3(K65A) receptors, in which IATP was smaller than 

IATP* by 23% (Figure 4.4).  Control experiments on cells injected with only 

P2X3(K65A) mRNA confirmed that ACh did not activate or modulate 

P2X3(K65A) receptors (data not shown).  Cross interaction experiments between 

α6β4β3(V13’S) and P2X3(K65A) receptors were performed at 100 μM of both 

ACh and ATP.  The observed inhibition was smaller than the case of 

P2X3(K65A)−α6(L9’S)β4, with ~ 17% current reduction from IATP to IATP* (Figure 

4.4).  Both the p value and Δ* are smaller than what we typically considered 

meaningful for establishing a receptor-receptor cross interaction.  Thus, we 

cannot validate the functional interaction between α6β4β3(V13’S) and 

P2X3(K65A). 
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Figure 4.4. Cross inhibition between P2X3(K65A)–α6(L9’S)β4 and P2X3(K65A)–
α6β4β3(V13’S).  Δ* is the difference between IATP and IATP*.   Currents were 
normalized to IATP from the individual cell, and then averaged.  *, p < 0.01; **, p < 
0.005. 

 

In both P2X3(K65A)–α6(L9’S)β4 and P2X3(K65A)–α6β4β3(V13’S) cases, 

ACh-evoked current when ATP was pre-applied is essentially identical to the 

ACh-evoked current in the absence of ATP.  This means the cross inhibition does 

not occur when P2X3(K65A) receptor is already desensitized (data not shown).  

While co-expression of α6(L9’S)β4 and P2X3(K65A) did not change the 

ACh EC50, we found that the co-expression caused a rightward shift in the ATP 

dose-response curve for the P2X3(K65A) receptor.  The EC50 of the P2X3(K65A) 

receptor is approximately 3-fold higher, and the response has decreased 

apparent cooperativity, revealed by a reduced Hill coefficient (Figure 4.5).  As a 

result, responses to ATP in the concentration range 10–100 μM are reduced by 

approximately half, when normalized to maximal responses.  Furthermore, this 
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shift is independent of ACh (Figure 4.5).  Co-expression of α6β4β3(V13’S) and 

P2X3(K65A) did not meaningfully change the EC50 of  ACh (1.1 ± 0.10 μM, n  = 7) 

or ATP (7.6 ± 0.33 μM, n  = 11) compared to when each individual receptor was 

expressed alone (ACh EC50 1.3 ± 0.06 μM, n  = 10; ATP EC50 13.6 ± 1.3 μM, n  = 12). 

 

 
Figure 4.5.  ATP dose-response curves for P2X3(K65A) oocytes (EC50 13.6 ± 1.3 
μM, Hill constant 1.4 ± 0.16, n = 12), P2X3(K65A)–α6(L9’S)β4 oocytes in the 
absence of ACh (37.8 ± 6.1 μM, Hill constant  0.94 ± 0.11, n = 14) and in the 
presence of 100 μM ACh (32.8 ± 5.0 μM, Hill constant 1.0  ±  0.12, n = 11) 

 

Concerning with the accuracy of measuring the fast-desensitizing current, 

we sought a positive control.  Having established that the wild-type P2X2 and 

the α6(L9’S)β4 receptors interact functionally, we performed parallel experiments 

on a fast-desensitizing P2X2(T18A) mutant receptor to confirm the validity of our 

measurement.  This alanine mutation at Thr18, which is a phosphorylation site 

near the N-terminus of P2X2, was previously reported to drastically increase the 

rate of receptor desensitization, producing an apparently similar current trace to 
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the P2X3 current (42–44).  Another previous study showed that the fast-

desensitizing P2X2(T18A) receptor exhibited the cross-inhibition behavior with 

α3β4 nAChR similar to the wild-type P2X2 receptor (41), suggesting that the 

mutation did not interfere with the interaction between the P2X receptor and the 

nAChR.   

At saturating concentrations of ATP (1 mM) and ACh (100 μM), we 

observed cross inhibition between α6(L9’S)β4 and P2X2(T18A), using the same 

protocol as the P2X3(K65A) experiment.  The ATP-evoked current was 28% 

smaller in the presence of ACh (Figure 4.6A).  We also found that the 

P2X2(T18A) receptor produced an ATP dose-response relation that is similar to 

the wild-type P2X2 receptor, despite very different desensitizing kinetics (Figure 

4.6B).  In contrast to what was seen with the P2X3(K65A), co-expressing the 

α6(L9’S)β4 receptor with the P2X2(T18A) receptor did not affect the ATP EC50 

(Figure 4.6), which is consistent with the results from the wild-type P2X2 receptor 

shown in Table 4.1.  The data confirm the validity of our protocol for probing fast-

desensitizing current, and the rightward shift in the ATP dose-response curve is 

specific to the interaction between P2X3(K65A) and α6(L9’S)β4.   

Overall, the results support the functional interaction between α6(L9’S)β4 

and the P2X3(K65A) receptors.  At saturated concentration of ATP, reduction in 

ATP-evoked current was observed in the presence of ACh, indicating a cross 

inhibition.  We did not observe any cross inhibition when P2X3(K65A) was 

already desensitized.  Moreover, oocytes co-expressing α6(L9’S)β4 and P2X3(K65A) 
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exhibited lower ATP sensitivity in relation to the oocytes expressing P2X3(K65A) 

alone, independent of α6(L9’S)β4 activation by ACh.  In contrast, the interaction 

between α6β4β3(V13’S) and the P2X3(K65A), if it exists, is much weaker and is 

not firmly established by our data. 

 

 

Figure 4.6.  Functional interaction between P2X2(T18A) and α6(L9’S)β4.  (A) 
Cross inhibition was observed between P2X2(T18A) and α6(L9’S)β4.  Δ* is the 
difference between IATP and IATP*.   Currents were normalized to IATP from the 
individual cell, and then averaged.  **, p < 0.005.  (B) ATP dose-response curves 
for wild-type P2X2 oocytes (EC50 23.9 ± 1.5 μM, Hill constant 1.5 ± 0.10, n = 18), 
P2X2(T18A) oocytes (24.1 ± 4.8 μM, Hill constant 1.0  ±  0.15, n = 11), and 
P2X2(T18A)–α6(L9’S)β4 oocytes (22.9 ± 2.7 μM, Hill constant  1.1 ± 0.12, n = 11).  
Only the curve fit is shown for the wild-type P2X2 oocytes for clarity. 

 

 

4.2.4. Cross inhibition between α6β4* and heteromeric P2X2/3 receptors 

Co-injecting a mixture of P2X2 and P2X3 mRNA into oocytes is known to 

produce the heteromeric P2X2/3 receptor, along with the homomeric P2X2 and 

P2X3 receptors (45).  To exclusively differentiate the P2X2/3 current, we used the 
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agonist α,β-methylene-ATP (αβmeATP), an ATP analog known to selectively 

activate the P2X3 and P2X2/3 receptor populations.  We employed the wild-type 

P2X3 subunit, not the K65A mutant, to produce the heteromeric P2X2/3 receptor.  

The current signal from the homomeric P2X3 receptor was minimized by its 

intrinsically rapid desensitization.  In oocytes co-injected with P2X2 and P2X3 

mRNAs, αβmeATP-evoked current traces were distinct from what was seen for 

the P2X3 oocytes, displaying slower apparent desensitization kinetics.  The 

mRNA injection ratio could be adjusted to favor more heteromeric P2X2/3 

receptor expression relative to P2X3 (Figure 4.7C).  Nearly pure αβmeATP-

evoked current from the P2X2/3 receptors was obtained at the 1:10 P2X2:P2X3 

injection ratio by mass; the fast-desensitizing current characteristic of P2X3 was 

absent (Figure 4.7).  Therefore, this was the mRNA ratio used in all studies 

involving P2X2/3. 
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Figure 4.7.  Representative current traces as a result of P2X receptor activation by 
αβmeATP.  (A) αβmeATP application did not produce any current in oocytes 
expressing P2X2 alone.  (B) αβmeATP activated the P2X3 receptor, and the 
current traces show rapid opening and desensitization similar to what was seen 
when the receptor was activated by ATP.  (C) αβmeATP-evoked current traces 
from oocytes expressed with P2X2 and P2X3 at three different mRNA injection 
ratios are shown.  The heteromeric P2X2/3 receptor desensitizes less than the 
homomeric P2X3 receptor.  The P2X2:P2X3 mRNA ratios (by mass) are indicated 
below the traces. 

 

The heteromeric P2X2/3 receptors produced current traces with a 

reasonably normal rate of desensitization, permitting us to investigate the cross 

interaction by simultaneous application of ACh and αβmeATP.  Cross-inhibitory 

behavior was observed when P2X2/3 was co-expressed with α6(L9’S)β4 or 

α6β4β3(V13’S).  In both cases, the current observed when 100 μM αβmeATP and 
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100 μM ACh were co-applied (IACh+αβmeATP) was diminished by ≥ 20% compared to 

the predicted value based on the individual agonist applications (Figure 4.8).  

Control experiments showed that ACh did not activate or modulate the P2X2/3 

receptors in oocytes without α6β4* nAChR.  The results support the functional 

interaction between the α6β4* nAChRs and the heteromeric P2X2/3 receptor. 

 

 

Figure 4.8.   Functional interaction between α6β4* nAChRs and P2X2/3 receptor.  
Both P2X2/3–α6(L9’S)β4 oocytes (top) and P2X2/3–α6β4β3(V13’S) oocytes 
(bottom) show cross inhibition.  Representative current traces from one cell in 
each case are shown.  The predicted waveform is the point-by-point arithmetic 
sum of the IαβmeATP and IACh waveforms.  Mean normalized currents ± s.e.m. are 
shown on the right.  Δ is the difference between the prediction and the observed 
IACh+αβmeATP.  Currents were normalized to the prediction from the individual cell, 
and then averaged.  **, p <  0.005; ***, p < 0.0001. 
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4.2.5 Role of P2X C-terminal domains in the cross inhibition 

The C-terminal domains of P2X2 and P2X3 were previously shown to be 

crucial for the cross interaction of P2X2 with 5-HT3A receptor, α4β3 nAChR, or 

GABAC receptor (4, 6, 7).  To investigate the importance of this domain in the 

interaction with α6β4* nAChRs, we removed the C-terminal tails from both P2X2 

and P2X3(K65A) subunits (see materials and methods).  The truncated P2X2 and 

P2X3(K65A) subunits are denoted as P2X2TR and P2X3(K65A)TR, respectively.   

Similar to what was seen with the full-length P2X2 receptor, in both 

α6(L9’S)β4–P2X2TR oocytes and α6β4β3(V13’S)−P2X2TR oocytes, we observed 

the mean IACh+ATP values that were ~ 20% smaller than the predicted values 

(Figure 4.9).  These results suggest that the C-terminal tail of P2X2 is not required 

for the functional interaction between the P2X2 receptor and the α6β4* nAChRs. 
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Figure 4.9.  Functional interaction between α6β4* nAChRs and P2X2TR receptor.  
Cross inhibition was observed between the P2X2TR receptor and α6(L9’S)β4 
nAChR (A), as well as between the P2X2TR receptor and α6(L9’S)β4 nAChR 
α6β4β3(V13’S) (B).  Currents were normalized to the prediction from the 
individual cell, and then averaged.  Δ is the difference between the prediction 
and the observed IACh+ATP.   ***, p < 0.0001. 

 

 

The P2X3(K65A)TR receptors had comparable ATP EC50 to the full-length 

P2X3(K65A) receptors.  Parallel to what was seen with the full-length receptors, 

co-expression with α6(L9’S)β4 shifted the ATP dose-response curve to the right, 

increasing the ATP EC50 (Figure 4.10).  However, we did not observe any cross 

inhibition between P2X3TR and α6(L9’S)β4 at a saturating ATP concentration 

(320 μM) (Figure 4.10).   

The overall results suggest two distinct modes of cross inhibition between 

P2X3(K65A) receptors and α6(L9’S)β4: (i) a decrease in the maximal IATP response, 

which requires the C-terminal domain of P2X3 and (ii) a decrease in ATP 

sensitivity, which is independent of the C-terminal domain.   
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Figure 4.10.  Functional interaction between P2X3(K65A)TR and α6(L9’S)β4.  (A) 
Cross inhibition was not observed between P2X3(K65A)TR and α6(L9’S)β4.  Δ* is 
the difference between IATP and IATP*.  Currents were normalized to IATP from the 
individual cell, and then averaged.  NS, not significant.  (B) ATP dose-response 
curves for wild-type P2X3(K65A)TR oocytes (EC50 9.73 ± 0.29 μM, Hill constant 
1.5 ± 0.06, n = 6), P2X3(K65A)TR–α6(L9’S)β4 oocytes in an absence of ACh (20.1 ± 
5.3 μM, Hill constant 0.97  ±  0.20, n = 7), and P2X3(K65A)TR–α6(L9’S)β4 oocytes 
in the presence of 100 μM ACh (39.0 ± 6.5 μM, Hill constant  1.0 ± 0.13, n = 8) 
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following the receptor activation.  The conformational change generated by 

agonist binding that leads to the ion channel opening is not affected by the 

presence of an open channel blocker.  Unlike other classes of antagonists, an 

open channel blocker theoretically should not interfere with the mechanism of 

cross inhibition.  When an α6β4* open channel blocker is applied together with 

ACh and ATP to an oocyte expressing α6β4* and P2X receptor, one should 

expect to see the current conducted through the P2X channel pore only.  This 

observed current may or may not be identical to the current evoked by ATP 

alone on the same cell because of the cross-inhibitory effect when ACh is present.  

We therefore utilized this strategy to identify the occluded channel pore — either 

the α6β4* or the P2X.   

We decided to experiment with mecamylamine (Mec), a known open 

channel blocker for several nAChR subtypes, based on the information from the 

heterologously expressed chimeric nAChRs containing the pore domain of the 

α6-subunit (30, 46).  We found that, in oocytes expressing α6(L9’S)β4 or 

α6β4β3(V13’S), Mec inhibited ACh-evoked current in a reversible manner, 

although pre-incubation with the antagonist was required as previously reported 

with other nAChR subtypes (30, 47).  Dose-response experiments were 

performed, and Mec IC50 was determined to be 9.1 ± 0.6 μM for α6(L9’S)β4 and 

0.93 ± 0.13 μM for α6β4β3(V13’S).  In both cell types, Mec blockade was voltage 

dependent, showing minimal block at positive potentials (data not shown), 

which suggests that Mec blocked the α6β4* receptors within the ion pore.  In 

oocytes expressing α6(L9’S)β4 alone or oocytes co-expressing α6(L9’S)β4 and 



	   117	  

P2X2, 500 μM Mec blocked > 95% of the ACh-evoked current and did not affect the 

ATP-evoked current.  In oocytes expressing α6β4β3(V13’S) alone or co-expressing 

α6β4β3(V13’S) and P2X2, similarly, > 95% ACh-evoked current was blocked by 50 

μM of Mec, while Mec did not affect the ATP-evoked current.  Thus, 

mecamylamine served as a suitable open channel blocker for the purpose of this 

experiment.  Furthermore, because Mec inhibited the ACh-evoked current nearly 

completely while leaving the ATP-evoked current unaffected, the data also 

indicate that the interaction between α6β4* and P2X2 receptors did not involve a 

cross activation of P2X2 receptor by ACh or a cross activation of α6β4* by ATP.  

Co-application of ACh, ATP, and Mec produced an inward current 

(IACh+ATP+Mec) that was smaller than the current induced by ACh and ATP (IACh+ATP) 

on the same cells in both α6(L9’S)β4–P2X2 and α6β4β3(V13’S)−P2X2 oocytes.  In 

the case of P2X2–α6(L9’S)β4 oocytes, IACh+ATP+Mec was significantly smaller than 

IATP, and the blocked current, IACh+ATP+Mec − IACh+ATP (Imec), was essentially equal to 

IACh (Figure 4.11A).  Because co-application ACh, ATP, and Mec only produced 

just the current flowing through P2X2 channels during the cross inhibition, the 

data suggest that a subpopulation of the P2X2 receptor was inhibited while the 

α6(L9’S)β4 receptor was fully open during the agonist co-application.  In the case 

of P2X2–α6β4β3(V13’S) oocytes, IACh+ATP+Mec was essentially the same as IATP 

(Figure 4.11B), suggesting that the P2X2 receptor was fully open, in contrast to 

what was seen with the P2X2–α6(L9’S)β4 oocytes.  Moreover, IACh was essentially 
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equal to the sum of Δ and IMec (Figure 4.11), implying that the α6β4β3(V13’S)  

receptor was inhibited during the cross interaction.   

 

 
Figure 4.11.  Inhibition of IACh+ATP by mecamylamine in P2X2–α6β4* oocytes.  
Mean currents elicited by ACh, ATP, ACh+ATP, and ACh+ATP+Mec, 
respectively, are shown for oocytes expressed with P2X2–α6(L9’S)β4 (A) or 
P2X2–α6β4β3(V13’S) (B).  Currents were normalized to the prediction from the 
individual cell, and then averaged.  Δ is the difference between the prediction 
and the observed IACh+ATP.  IMec is the difference between IACh+ATP+Mec and IACh+ATP.  
(A) IACh+ATP+Mec > IATP and IACh ≈ IMec.  (B) IACh+ATP+Mec ≈ IATP and IACh ≈ Δ	  +	  IMec.  ***, p < 
0.0001.  NS, not significant 

 

 

In the case of the P2X2/3 receptor, we found that Mec did not affect 

IαβmeATP in the oocytes expressing P2X2/3, regardless of the α6β4* presence.  In 

the oocytes expressing P2X2/3 and α6(L9’S)β4, the current elicited by 

ACh+αβmeATP+Mec (IACh+αβmeATP+Mec) was essentially identical to IαβmeATP (Figure 

4.12).  The result suggests that the ion pore of the P2X2/3 receptor was fully 
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open, and thus, the observed inhibition occurred at the α6(L9’S)β4 channel.  The 

oocytes expressing P2X2/3 and α6β4β3(V13’S) showed a slight difference in the 

amplitudes of IACh+αβmeATP+Mec and IαβmeATP, which was not statistically meaningful.  

Similar to the case of P2X2/3–α6(L9’S)β4, current occlusion did not occur at the 

P2X2/3 channel pore.  Comparison between IACh and IMec is not meaningful here 

due to the mixed IACh signals arising from the α6β4*–P2X2, α6β4*–P2X3, and 

α6β4*–P2X2/3 interactions. 

 

 

Figure 4.12.  Inhibition of IACh+αβmeATP by mecamylamine in P2X2/3–α6β4*	  oocytes.  
Currents elicited by ACh, αβmeATP, ACh+αβmeATP, and ACh+αβmeATP+Mec 
are shown for oocytes expressed with P2X2/3–α6(L9’S)β4 (A) and P2X2/3–
α6β4β3(V13’S) (B).  Currents were normalized to the prediction from the 
individual cell, and then averaged.  Δ is the difference between the prediction and 
the observed IACh+αβmeATP.  ***, p < 0.0001.  NS, not significant 
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Even though we demonstrated from the mecamylamine block that the 

α6(L9’S)β4 receptor was fully open during the cross interaction with P2X2 

receptor, we could not detect any effect of mecamylamine on the oocytes co-

expressing α6(L9’S)β4 and the fast-desensitizing P2X2(T18A) (data not shown).  

The opening of the P2X2(T18A) receptor was likely too brief for the cross 

interaction to be probed by this type of experiment.  We suspected that the 

insufficient opening lifetime would be the case for the P2X3 receptor as well, 

even in the presence of the K65A mutation.  Therefore, only the data from the 

P2X2–α6β4* and P2X2/3–α6β4* oocytes are reported.   

 

4.2.7 Role of P2X2 desensitized state in the cross interaction with α6(L9’S)β4 

nAChR 

The different ATP current traces between oocytes expressing P2X2 only 

and P2X2+α6(L9’S)β4 led us to speculate that P2X2 desensitization was involved 

in the cross inhibition (Figure 4.2).  We, therefore, performed more detailed 

studies on oocytes co-expressing P2X2 and α6(L9’S)β4 for a better understanding 

of the role of P2X2 desensitization.   

On oocytes expressing P2X2 alone and oocytes expressing P2X2–

α6(L9’S)β4, we compared the observed current amplitudes as we applied 

consecutive doses of 1 mM ATP with a 3-minute interval between doses.  The 

P2X2 oocytes showed minimal sign of desensitization upon repeating 

applications of 1 mM ATP.  However, we observed a meaningful reduction in 
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current size with the P2X2–α6(L9’S)β4 oocytes even though they had never been 

pre-exposed to an agonist, i.e., the oocytes were naïve (Figure 4.13).  Similar result 

was observed when the P2X2–α6(L9’S)β4 oocytes were pre-exposed to ACh.  The 

lost ATP current signal was recoverable over time (data not shown), suggestive 

of a slow recovery from the desensitized state.  However, after a pre-exposure to 

a mixture of ACh and ATP, repeating ATP doses did not display any reduction 

in current magnitude (Figure 4.13).  This could suggest that the P2X2 receptors 

had already been desensitized since the application of ACh+ATP.  We observed 

no sign of abnormal ACh desensitization upon repeating application of ACh in 

oocytes expressing α6(L9’S)β4 alone or co-expressing P2X2 and α6(L9’S)β4 (data 

not shown).  The overall results imply that the P2X2 receptor exhibited a very 

slow recovery from the desensitized state in the presence of α6(L9’S)β4, 

regardless of the α6(L9’S)β4 activation by ACh.  Thus, the interaction between 

P2X2 and α6(L9’S)β4 receptor exists prior to the ACh application.   
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Figure 4.13.  The effect of α6(L9’S)β4 on P2X2 desensitized state lifetime.  Oocytes 
were exposed to 3 consecutive doses of 1 mM ATP with a 3-minute interval of 
wash between doses.  Currents were normalized to the current amplitude of the 
first ATP application from the individual cell, and then averaged.  (A) Current 
from P2X2 oocytes  display a normal recovery from desensitization.  (B) Current 
from naïve P2X2–α6(L9’S)β4 oocytes were only partially recovered after the first 
ATP dose (left).  Incomplete recovery of currents was also observed from oocytes 
that were exposed to ACh prior to the consecutive doses of ATP (middle).  
However, when oocytes were pre-exposed to an ACh+ATP mixture, no 
reduction in current amplitudes was observed upon repeating ATP application 
(right).  **, p < 0.005; ***, p < 0.0001.  NS, not significant 

 

Next, we asked whether or not cross inhibition would occur between 

α6(L9’S)β4 and desensitized P2X2 receptors.  We tested the P2X2–α6(L9’S)β4 

oocytes with a series of agonists in the following order: ACh, four repeating 

doses of 1mM ATP, ACh+ATP.  As expected, ATP-evoked current was smaller 

upon repeating ATP doses (Figure 4.14, ATP-1 to ATP-4), indicative of a 

subpopulation of P2X2 being desensitized.  Ultimately, no cross inhibition was 

seen — IACh+ATP was within error of the predicted sum of the ACh current and the 

0

1

A
TP

-1

A
TP

-2

A
TP

-3 - -

A
TP

-1

A
TP

-2

A
TP

-3 -

A
C

h

A
TP

-1

A
TP

-2

A
TP

-3 -

A
ch

+A
TP

A
TP

-1

A
TP

-2

A
TP

-3

N
or

m
al

iz
ed

 C
ur

re
nt

0

1

A
TP

-1

A
TP

-2

A
TP

-3 - -

A
TP

-1

A
TP

-2

A
TP

-3 -

A
C

h

A
TP

-1

A
TP

-2

A
TP

-3 -

A
ch

+A
TP

A
TP

-1

A
TP

-2

A
TP

-3

N
or

m
al

iz
ed

 C
ur

re
nt

Naïve Pre-applied 
with ACh 

Pre-applied 
with (ACh+ATP) Naïve 

n = 12 n = 13 n = 8 n = 7 

NS NS *** ** 

A) P2X2 only B) P2X2 + !6(L9’S)"4 



	   123	  

last ATP current (Figure 4.14).  Therefore, the desensitized P2X2 did not 

functionally interact with the α6(L9’S)β4 nAChR, and the P2X2 desensitization 

alone could fully explain the cross-inhibitory behavior that we observed. 

 
Figure 4.14.  Cross inhibition was not observed between desensitized P2X2 and 
α6(L9’S)β4.  P2X2–α6(L9’S)β4 oocytes were exposed to 100 μM ACh, 4 × 1 mM 
ATP, and (100 μM ACh + 1mM ATP), respectively, with a 3-minute interval of 
wash between agonist applications.  Currents were normalized to the prediction 
from the individual cell (ACh + ATP-4), and then averaged.  Δ is the difference 
between the prediction and the observed IATP.  NS, not significant 

 

In order to confirm the role of P2X2 desensitization in the functional cross 

interaction with α6(L9’S)β4, we switched the order of agonist applications in six 

different combinations.  We observed cross inhibition in three out of six cases.  In 

all of the cases that exhibited cross inhibition, ATP was applied before the 

mixture of ACh and ATP (Figure 4.15).  The result is consistent with the notion 

that a subpopulation of P2X2 was desensitized after an exposure to ATP, causing 

the apparent cross inhibition.  
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Figure 4.15.  Varying sequences of agonist applications produced both non-
additive currents (left) and additive currents (right) from P2X2–α6(L9’S)β4 
oocytes.  Sequences of agonist applications are indicated at the bottom.  There is 
a 3-minute interval of wash between two agonist applications.  Currents were 
normalized to the prediction from the individual cell, and then averaged.   

 

If the prolonged desensitized state of P2X2 after an exposure to ATP were 

the sole mechanism underlying the cross inhibition, one would expect the sum of 

IACh and IATP to be smaller than the observed IACh+ATP in all the cases that ATP was 

applied after the mixture of ACh and ATP.  However, we observed current 

additivity in all these cases — the mean IACh+ATP was, in fact, comparable to the 

sum of IACh and IATP (Figure 4.15).  Considering that the α6(L9’S)β4-free P2X2 

receptor population contributed to all of the observed IATP after being exposed to 

ACh+ATP (Figure 4.13), the additivity means a fraction of current from the 

α6(L9’S)β4–P2X2 receptor complex was also missing during the ACh+ATP 
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application of ACh+ATP.  Consistent with this new insight, we found that 

repeating application of ACh+ATP mixture to naïve oocytes did not produce 

traces with a substantial decrease in current amplitudes, lacking a sign of 

receptor desensitization.  This could mean either (i) there is another different 

cross-inhibitory mechanism happening while ACh and ATP were co-applied or 

(ii) P2X2 desensitized instantaneously, as soon as the α6(L9’S)β4 was activated by 

ACh.  To distinguish which ion channels were occluded during the co-

application of ACh and ATP would be difficult due to the prolonged 

desensitized state of P2X2 receptor. 

In summary, the results in this section suggest that (i) cross inhibition 

between P2X2 and α6(L9’S)β4 receptors was observed as a result of the 

prolonged desensitization of P2X2 receptor, (ii) the desensitized P2X2 receptor 

can no longer interact with α6(L9’S)β4 receptor, and (iii) cross inhibition also 

occurred while ACh and ATP were co-applied by an unknown mechanism.  

These observations are unique to the P2X2–α6(L9’S)β4 interacting pair — there is 

no obvious sign of prolonged desensitized state from the oocytes co-expressing 

the P2X2–α6β4β3(V13’S), P2X2/3–α6(L9’S)β4, or P2X2/3–α6β4β3(V13’S) 

combinations.   
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4.3 Discussion 

Several neuronal cell types co-express nicotinic acetylcholine receptors 

and P2X receptors.  Previous experiments from several laboratories show that the 

functions of these two ligand-gated ion channel subtypes are modulated by each 

other when they are activated simultaneously by their own neurotransmitters (4–

10, 12–17, 48).  Because these functional interactions have been established in 

several types of neurons as well as heterologous expression systems, the 

interaction is not a neuron-specific response and it does not require neuron-

specific proteins or other molecules.  We extended these studies to interactions 

between α6β4* nAChRs and P2X2, P2X3, or P2X2/3 receptors in Xenopus oocytes.  

All of these receptors are known to co-express in DRG neurons, where the 

expression of the α6-nAChR subunit is proposed to have a pain-protection effect 

through the presumed functional connection with the P2X receptors.   

We studied functional interactions in six different combinations of P2X 

(P2X2, P2X3, and P2X2/3) and α6β4* (α6(L9’S)β4 and α6β4β3(V13’S)) receptors in 

Xenopus oocytes.  We began our study by applying a series of agonists at their 

saturating doses.  With five of the six combinations, we found functional 

interactions in the form of cross inhibition between these two classes of ligand-

gated receptors.  That is, when ACh and ATP were co-applied, the agonist-

induced currents were less than the sum of individual currents.  This pattern was 

observed with either type of α6β4* nAChR expressed with P2X2 (Figure 4.1) or 

with P2X2/3 receptors (Figure 4.8).  When α6β4* nAChRs were expressed alone, 

ATP did not gate or modulate these receptors, and conversely, ACh did not gate 
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or modulate P2X receptors when they were expressed alone.  Cross inhibition 

was also observed between α6(L9’S)β4 and P2X3(K65A) receptors (Figure 4.4).  In 

this case, the distinctive waveform of the P2X3(K65A) response allows the direct 

observation that a fraction of current was inhibited when ATP was applied in the 

presence of ACh in relation to when it was applied alone.   

While the expression of P2X receptors is robust in Xenopus oocytes, 

expression of α6-containing nAChRs in heterologous systems is known to be 

problematic (28, 30, 49).  Even though we successfully expressed both the α6β4 

and α6β4β3 subtypes by using a gain-of-function mutation in the pore region, the 

current produced by α6β4* nAChR was only a few μA, which was not nearly as 

large as the P2X current.  The presumably limited density of the α6β4* nAChRs 

on the membrane was a concern for the receptor-receptor interaction to occur.  

Plasma membrane channel density was previously shown to be a determinant of 

interactions between α3β4 nAChR and P2X2 receptors in Xenopus oocytes (41).  

With the difficulty in α6β4* expression, oocytes co-expressed with α6β4* and P2X 

produced IACh that was only 20-50% of IATP in all of our experiments.  We 

intentionally expressed an excess of the P2X receptors with respect to the α6β4* 

to gain sufficient receptor density for the receptor interaction.  However, the 

substantial difference in the magnitude of IACh and IATP complicated the analysis 

of our cross-inhibition data.   In most cases where cross inhibition was observed, 

the inhibited current was ~ 75–80% of the expected current; the difference 

between IACh+ATP and the predicted value (Δ) never exceed ~ 25% of the prediction.   
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It is worth mentioning that the extent of current reduction (Δ or Δ*) did 

not accurately represent the degree of the cross inhibition because these values 

were also dependent on the density of the two receptors being expressed.  

Because the inhibited current, Δ or Δ*, was presumably constrained by the 

available number of the α6β4* population on the cell membrane, comparing Δ (or 

Δ*) to IACh provides an additional determination for the significance of the 

receptor interaction.  Figure 4.16 shows that, in all the cases that displayed 

significant current reduction, the magnitude of the reduced current (Δ or Δ*) is 

greater than 50% of IACh.  The inhibition was particularly substantial in the case of 

P2X2–α6(L9’S)β4 and P2X2/3–α6(L9’S)β4 pairs, in which the reduced current 

was 83% and 93% of IACh, respectively. 

 

 

Figure 4.16. Comparison of Δ or Δ* with respect to IACh across all combinations of 
receptors.   Δ or Δ* was normalized to IACh.  The effect > 0.5 is deemed 
physiologically significant.  N/A, data not available 
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The crosstalk between the P2X and the Cys-loop families of ligand-gated 

ion channels has been widely postulated to involve a physical occlusion of the 

ion channel pores during simultaneous agonist application (4–7, 9, 11, 13–17, 50–

52).  The proposed models commonly entail a general mechanism of state-

dependent “conformational spread” from one receptor to the other.  The concept 

of conformational spread, originally proposed for bacterial chemotaxis receptors, 

describes the propagation of allosteric states in large multi-protein complexes 

(53).  Through this conformational spread, the motion triggered by the gating of 

one channel type is communicated to the other channels and induces their 

closure (4, 5, 7, 8, 12).  A prerequisite for such a mechanism is the close proximity 

of receptors. 

Physical interactions have been established between P2X2 or P2X3 receptors 

and α6β4 receptor in Neuro2a cells and cultured mouse cortical neurons by Förster 

resonance energy transfer (FRET), and moreover, the incorporation of β3 did not 

alter the binding fraction or the FRET efficiency.2  Because FRET typically reveals 

interactions between fluorophores that are less than ~ 80 Å apart, these data imply 

that the P2X and the α6β4* receptors exist as a macromolecular complex.  

However, the number of P2X and α6β4* receptors in the protein complex is 

currently unknown.  Previous works also demonstrated physical interactions 

between α4β2 and P2X2 receptors by FRET (8).  Additionally, the 5-HT3 and the 

GABAC receptors have been shown to co-precipitate and co-localize with P2X2 

receptors by others (6, 7).  Evidences for physical interactions eliminate the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Mona Alqazzaz, Christopher R. Richard, and Henry A. Lester, unpublished data 
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possibility of a major role for second messengers generated by endogenous and 

electrophysiologically silent metabotropic P2Y in the cross inhibition.   

With the evidence for a physical interaction, we assume that at least three 

different populations of receptors existed on the plasma membrane of the 

oocytes in our experiments: free P2X receptor, free α6β4* receptor, and the 

α6β4*−P2X complex.  We also assume that the free α6β4* population was 

minimal since the P2X receptors were expressed in excess.  It is therefore 

intriguing that the oocytes expressing P2X2/3 and α6(L9’S)β4, which contained a 

mixture of P2X2−α6(L9’S)β4, P2X3−α6(L9’S)β4, and P2X2/3−α6(L9’S)β4 

populations, exhibited > 90% current inhibition with respect to the ACh-evoked 

current (Figure 4.16).  One possible explanation is that the heteromeric P2X2/3 

has a higher affinity for the α6(L9’S)β4 than the homomeric receptors.  

Alternatively, the presence of multiple P2X receptors in a receptor complex 

provides another possible explanation; the density of P2X2/3 on the membrane 

could be so high that every α6(L9’S)β4 receptor had at least one P2X2/3 receptor 

present in the same complex.  However, without a clear view of the cross-

inhibitory mechanism of all the receptor combinations on the cells, the 

underlying cause of the extraordinarily potent cross inhibition between P2X2/3 

and α6(L9’S)β4 is still a mystery.  

In order to investigate the pore occlusion during the receptor co-activation 

by ACh and ATP, we used mecamylamine (Mec) for discriminating between the 

current flowing through α6β4* channel (I_α6) from the current flowing through 
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the P2X channel (I_P2X).  We do not make the assumption that I_α6 is necessarily 

identical to IACh or I_P2X to IATP because the two families of proteins are evidently 

interacting.  In oocytes co-expressing P2X2–α6β4*, we found that Mec inhibited > 

95% of IACh without affecting IATP.  This indeed verifies that all ACh-elicited 

current passed through the α6β4* channel pores exclusively, and the ATP-

elicited current only passed through P2X channel pores.  The result also suggests 

that the previous proposal of channel overlap, in which ATP activates a 

subpopulation of the nicotinic receptor channels, is not the case here (10).  The 

voltage-dependent nature of the block confirms that Mec binds deep into the 

membrane and simply occludes channel pore.  Hence, the pore blocker is not 

likely to interfere with the agonist binding, the opening of the pore, or the 

protein-protein interaction.   

Our mecamylamine experiments show that, in three out of four cases, the 

P2X channel pores were not affected by the cross inhibition.  In the case of P2X2–

α6β4β3(V13’S), Δ and IMec also added up to IACh, providing an internal reference 

for the occlusion of the α6β4β3(V13’S) channel as both receptors were co-

activated.  The result from the case of P2X2–α6(L9’S)β4 differs from all other 

cases that include the β3(V13’S) subunit in the nAChR or the P2X3 subunit, 

suggesting that the mechanism of the cross inhibition is dependent on both 

nAChR and P2X receptor subunit compositions.  In a previous study, co-

activation of P2X2 and various subtypes of GABAA receptor leads to a functional 

cross inhibition that was dependent on the GABAA subunit composition (5).  By 

distinguishing the ion conduction through the α6β4* from the P2X channel pores, 
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the data enable us to identify which receptor was inhibited in all the four 

combinations that we could test.  The experiments, however, only captured a 

“snapshot” of the cross-inhibition event during the agonist co-application 

without providing any information regarding the states of the inhibiting or the 

inhibited receptors at the time of the snapshot.    

The results from our investigation of P2X2–α6(L9’S)β4 desensitization 

clearly supported a role for P2X2 desensitization state in the receptor crosstalk.  

A subpopulation of the P2X2 receptors desensitized more rapidly and recovered 

very slowly from the desensitized state — a behavior that was only observed 

when P2X2 was co-expressed with the α6(L9’S)β4 receptor.  The observation was 

independent of the α6(L9’S)β4 activation by ACh.  When we applied a series of 

agonists in the order of ACh → ATP → ACh+ATP, incomplete recovery of this 

subpopulation of the receptor after an application of ATP led the apparent 

current reduction in the subsequent ACh+ATP application, i.e., the cross-

inhibition phenomenon.  Once desensitized, the P2X2 receptor could no longer 

functionally interact with the α6(L9’S)β4  receptor (Figure 4.14).  We also found 

that the P2X2 receptors that were pre-exposed to ACh+ATP exhibited a normal 

recovery from desensitization during the subsequent applications of ATP, 

implying that all of the α6(L9’S)β4-bound P2X2 receptors had been desensitized 

during the ACh+ATP exposure (Figure 4.13).  Furthermore, when ACh+ATP was 

applied before ATP, we did not observe any cross inhibition — IACh+ATP was equal 

to the sum of the subsequent IACh and IATP in all three cases (Figure 4.15).    The 

current additivity shown in Figure 4.15 cannot be explained by the absence of 
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receptor crosstalk.  Instead, the apparent additivity of the system suggests that 

current inhibition had to occur concurrently as ACh+ATP was first applied.  

Taken together, these data revealed another hidden mode of cross inhibition that 

was previously obscured by the P2X2 desensitization.  This mode of interaction is 

only detectable during the first co-application of ACh and ATP, before the 

interacting P2X2 population is desensitized.  A series of drugs needed to be 

applied in order to evaluate the results in this type of experiment, and as such the 

prolonged desensitized state of the interacting P2X2 receptor population limits our 

ability to probe for the mechanism of the pore occlusion during co-activation of the 

P2X2–α6(L9’S)β4 complex.  Our mecamylamine experiments on the P2X2–

α6(L9’S)β4 oocytes were only able to probe the apparent cross inhibition when the 

interacting P2X2 receptor was already desensitized.  The unique characteristic of 

the P2X2 desensitization was presumably modified simply by being associated 

with the α6(L9’S)β4 receptor without receptor activation.   

Previous works have reported contradicting observations on the cross 

inhibition during desensitization.  Our studies show that, for both P2X2–

α6(L9’S)β4 and P2X3(K65A)–α6(L9’S)β4, the functional interaction was lost when 

the involved P2X receptor was desensitized, which is consistent with a previous 

study involving cross inhibition between ACh receptor and ATP receptor in rat 

sympathetic neurons (10).  In contrast, another work reported that the 

desensitized P2X2(T18A) receptor could still inhibit α3β4 nAChR (41).  This 

result is supported by a more recent study, finding that the α3β4 nAChR can 

interact with the P2X2, P2X3, and P2X4 receptors during their desensitized state, 
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although the extent of cross inhibition was not equivalent to that occurring when 

fully active, non-desensitized receptors were studied (12).  Nevertheless, the 

cross-inhibitory mechanism is likely specific to the P2X and nAChR subtypes 

involved in the interaction. 

The case of P2X2–α6(L9’S)β4 indicates that the activation of both 

interacting receptors is not necessarily required for the functional interaction to 

take place.  Agonist EC50 is another convenient probe for receptor function, and a 

shift in EC50 values is suggestive of a gating modulation induced by the crosstalk.   

In most cases where we could study dose-response relations, we found only 

minor (< 2-fold) changes in the EC50 values for each agonist when we co-

expressed these receptors (Table 4.1).  An exception is the case with P2X3(K65A)–

α6(L9’S)β4, in which the ATP EC50 of the P2X3(K65A) receptor was ~ 3-fold 

higher when the α6(L9’S)β4 receptor was present.  These shifts did not depend 

on the presence of ACh (Figure 4.5).  The response also showed a decreased 

apparent cooperativity, revealed by a reduced Hill coefficient (Figure 4.5).  The 

result implies that cross inhibition also occurred at submaximal concentrations of 

ATP.  The co-expression, however, did not change the EC50 for ACh.  The 

presence of α6(L9’S)β4 did not affect the ATP EC50 for the fast-desensitizing 

P2X2(T18A) receptor, while the cross inhibition was still observed between this 

pair of receptors at the maximal ATP dose.  The shift in dose-response relation in 

the presence of α6(L9’S)β4 is, therefore, a specific P2X3(K65A) character and is 

not a result of an error in measuring fast-desensitizing current.     
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The intracellular C-terminal domains of P2X2 and P2X3 have been shown 

to be necessary for the expression of their cross inhibition to some Cys-loop 

receptors, including α3β4 nAChR, GABAA, GABAC, and 5-HT3 receptors (4–7, 

13).  In the case of P2X2−α6β4*, removal of the P2X2 C-terminal domain did not 

affect the cross inhibition at the maximal doses of agonist, and the slow recovery 

from desensitization was still observed for the P2X2TR receptor co-expressed 

with α6(L9’S)β4 (data not shown).  In the case of P2X3(K65A)–α6(L9’S)β4, we 

found that the C-terminus of P2X3(K65A) is responsible for the current occlusion 

at the maximal ATP dose but is not required for the rightward shift in the ATP 

dose-response relation.   

The overall results indicate that the P2X−α6β4* interaction is inhibitory.  

Two distinct mechanisms are suggested to be involved in the functional coupling 

between these two families of ligand-gated ion channels, highlighted by the 

results from α6(L9’S)β4 interactions with P2X3(K65A), P2X2(T18A), and 

P2X3(K65A)TR.  The first class takes the form of current occlusion: when both 

receptors are co-activated by ACh and ATP, the agonist-induced currents are less 

than the sum of individual currents.  This type of mechanism is commonly 

observed between Cys-loop receptors and P2X receptors.   

The interaction likely depends on the physical contact between the two 

receptors, enabling the activation of one receptor by its agonist to induce a 

conformational change that results in the pore occlusion of the other ion channel 

across the protein complex through an allosteric effect.  This supports the 

previous proposal of the conformational spread mechanism.  The intracellular C-
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terminal domains of the P2X receptor possibly play a role in this type of 

interaction for some P2X–Cys-loop receptor pairs.  The second class of P2X–

α6β4* interaction is pre-organized.  This type of mechanism is constitutive and 

does not require receptor activation.  A change in P2X2 desensitization 

properties in the presence of α6(L9’S)β4 and a shift in P2X3(K65A) EC50 are the 

examples.  The physiology of the ion channels is altered, possibly through 

physical interaction that possibly does not involve the P2X C-terminus.  In other 

words, one receptor may act as a constitutive allosteric modulator of the other.  

This type of cross inhibition had only been reported for the P2X2–α3β4 nAChR 

pair, in the forms of constitutive current suppression and the shift in the dose-

response relations (13).  Also supporting this view, competition experiments have 

shown that expression of a minigene encoding the C-terminal domain of P2X2 

could disrupt functional interaction but not physical interaction between the 

P2X2 and 5-HT3 receptors, (6) although the constitutive functional interaction 

was not demonstrated in those experiments.   

We have provided evidence supporting functional interactions between 

α6β4* nAChR and P2X2, P2X3, and P2X2/3 receptors.  This could be a mechanism 

by which the α6-nAChR subunit is involved in the pain pathway.  The α6β4* 

receptor may directly participate in pain sensation through this functional 

interaction with the P2X receptor.  Alternatively, the α6β4* receptor may serve as 

a means for modulating the activity of P2X receptors through constitutive 

binding or regulating the interaction of P2X with other receptors.  For example, 

binding of P2X3 receptors to α6β4* in the DRG neurons may compete with the 
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molecular interaction between the GABAA receptor and the P2X3 receptor, which 

has been proposed to play a role in nociceptive signal transmission as well (4, 11).  

Nonetheless, crosstalk between two ligand-gated ion channels provides a fast and 

efficient way to adapt neurotransmitter signaling to changing functional needs 

through a mechanism that appears to be a complex process that is still poorly 

understood.   

 

4.4 Materials and Methods 

Molecular Biology  

Rat α6 and mouse β3 nAChRs were in the pGEMhe vector, and rat β4 

nAChR was in the pAMV vector.  All P2X cDNAs were in the pcDNA3 vector.  Site-

directed mutagenesis was performed using the Stratagene QuikChange protocol.    

Truncated P2X2 and P2X3(K65A) subunits were made by engineering a TAA stop 

codon at the 3’ end of the sequence encoding the residue 373 of P2X2 or residue 385 

of P2X3(K65A).  Circular cDNA was linearized with NheI (for the pGEMhe vector), 

NotI (for the pAMV vector), or XhoI (for the pcDNA3 vector).  After purification 

(Qiagen), linearized DNA was used as a template for runoff in vitro transcription 

using T7 mMessage mMachine kit (Ambion).  The resulting mRNA was purified 

(RNAeasy Mini Kit, Qiagen) and quantified by UV-visible spectroscopy.  
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Expression of α6* nAChR in Xenopus oocytes 

Stage V–VI Xenopus laevis oocytes were employed.  Each oocyte was 

injected with 50 nL of mRNA solution.  When α6β4* nAChR and P2X receptors are 

co-expressed, equal volume of corresponding mRNA solutions were mixed prior 

to the oocyte injection.  To express the α6β4 combination, we used the 

hypersensitive α6 subunit containing a serine mutation at the leucine9’ on M2 

(residue 279).  The mRNA ratio used was 2:5 α6(L9’S):β4 by mass, and we injected 

25–50 ng of total mRNA per cell.  We used the wild-type α6 and β4 in combination 

with the hypersensitive β3 containing a serine mutation at the valine13’ on M2 

(residue 283) to express the α6β4β3 combination.  The wild-type α6β4 produced no 

detectable current signal, with or without co-injection of the P2X subunits.  Cells 

were injected with a mixture of mRNA at the ratio of 2:2:5 α6:β4:β3(V13’S) at a 

total mRNA concentration of 5–20 ng per cell.  The optimal mRNA concentration 

of P2X2 was 0.05 ng per cell when expressed alone and 0.1–0.3 ng per cell when co-

expressed with α6β4* nAChR.  To study P2X3, we used the K65A mutation, which 

enhanced the rate of recovery from desensitization.  We injected 5ng of 

P2X3(K65A) mRNA per cell when expressed alone and 10–20 ng of mRNA when 

co-expressed with α6β4* nAChR.  P2X2/3 was expressed by co-injection of 1:10 

ratio of P2X2:P2X3 mRNA at 15–25 ng of total mRNA.  25–50 ng of mRNA per cell 

was required to express P2X2(T18A) and the truncated P2X subunits. 

After mRNA injection, cells were incubated for 24–72 hours at 18 °C in 

culture media (ND96+ with 5% horse serum).   
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Electrophysiology 

Acetylcholine chloride was purchased from Sigma-Aldrich/RBI and 

stored as 1M stock solutions in Millipore water.  ATP and α,β-methylene-ATP 

(αβmeATP) were purchased from Tocris Bioscience and were stored as 100 mM 

stock solutions in Millipore water.  Mecamylamine hydrochloride (Mec) was 

purchased from Sigma and stored as 100 mM stock solutions.  All stock solutions 

were stored at −80°C, and drug dilutions were prepared from the stock solution 

in calcium-free ND96 buffer within 24 hours prior to the electrophysiological 

recordings.  The pH of all buffers and drug solutions was adjusted to 7.4. 

Ion channel function in oocytes was assayed by current recording in two-

electrode voltage-clamp mode using the OpusXpress 6000A (Axon Instruments).  

Up to eight oocytes were simultaneously voltage-clamped at −60 mV.  All data 

were sampled at 125 Hz and filtered at 50 Hz.   

For P2X2, α6(L9’S)β4, or α6β4β3(V13’S) dose-response experiments, 1 mL 

of total agonist solution was applied to cells, and 7-8 concentrations of agonist 

were used.  Mixtures of ATP and ACh were prepared beforehand in cases of 

agonist co-application.  Cells were perfused in calcium-free ND96 solution before 

agonist application for 30 seconds, followed by a 15-second agonist application 

and a 2-minute wash in calcium-free ND96 buffer.  A similar protocol was used 

to investigate cross interaction between P2X2 and α6β4*, except that the wash 

was extended to 3 minutes.  100 μM of ACh and 1 mM of ATP were used in all 

cross interaction experiments.  The order of application was ACh, ATP, and ACh 
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+ ATP, unless otherwise specified.  50 μM and 500 μM of mecamylamine were 

used to block α6β4β3(V13’S) and α6(L9’S)β4 receptors, respectively.  In all 

experiments involving mecamylamine, oocytes were incubated with 0.25 mL of 

mecamylamine (or buffer) for ~ 20 seconds prior to an application of a pre-mixed 

solution of agonist(s) and mecamylamine (or just agonist(s)).  The order of 

application was ACh, ATP, ACh + ATP, and ACh + ATP + Mec.   

To ensure enough channel density, we only analyze data from cells that 

produced between 5–13 μA of ATP-evoked current (IATP) and > 1.5 μA of ACh-

evoked current (IACh).  Cells displaying larger currents were discarded to avoid 

the ambiguity associated with error of the measurement as well as other 

complications arising from extremely high density of receptors such as pore 

dilation, a phenomenon known to occur for P2X2 receptors at high receptor 

density (54–58). 

For ATP dose-response experiments on the fast-desensitizing P2X 

receptors, including P2X3, P2X3(K65A), P2X3TR, and P2X2(T18A) receptors, ATP 

application was 2-second duration at the total volume of 0.5 mL, and the wash 

was 3.5 minutes.  For ATP dose-response experiments in the presence of ACh, 

ACh was pre-applied for 15 seconds through pump B (0.6 mL), followed by a 2-

second application of a mixture of ATP and ACh (0.5 mL), another 30-second of 

ACh application through pump B (1.5 mL), and a 164-second wash in calcium-

free ND96.  Cross interaction between these fast-desensitizing P2X receptors and 

α6β4* nAChRs was probed in an experiment that involved an alternate 

application of saturating ATP doses without ACh and with ACh, using the same 
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protocol as the dose-response experiments, except that the wash time used was 

205-second duration.  The concentration of ACh was 100 μM in all cross 

interaction experiments, and the concentrations of ATP were 100 μM for cells 

expressing P2X3(K65A) and α6β4β3(V13’S), 320 μM for P2X3(K65A) and 

α6(L9’S)β4, 320 μM for P2X3TR and α6(L9’S)β4, and 1 mM for P2X2(T18A) and 

α6(L9’S)β4.  Peak currents from at least three traces were averaged from the same 

cell for data analysis.  Data from cells displaying < 1.5 μA of IACh, < 5 μA or > 11 

μA of IATP, or IACh > IATP were excluded from all cross-interaction analysis. 

To investigate cross interaction between P2X2/3 receptor and α6β4* 

nAChR, P2X2/3 receptor was activated by 100 μM αβmeATP, and α6β4* nAChR 

by 100 μM ACh.  All agonist applications were 10-second duration at a volume of 

0.5 mL, followed by an extra 5-second of incubation with the agonist(s) without 

fluid aspiration.  Then the cells were washed for ~ 5 minutes.  The order of 

application was αβmeATP, ACh, and αβmeATP+ACh, unless specified 

otherwise.  A similar protocol was used for experiments with mecamylamine, 

and in addition, cells were pre-incubated in 0.25 mL of either buffer or 

mecamylamine solution prior to the application of the test doses, in the same 

manner as described above for P2X2–α6β4*.  50 μM and 500 μM of mecamylamine 

were used to block α6β4β3(V13’S) and α6(L9’S)β4 receptors, respectively.  Only 

data from cells displaying IαβmeATP between 5-13 μA, IACh ≥ 1.5 μA, and IαβmeATP > 

IACh were included in the analysis.  
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Data Analysis 

All dose-response data were normalized to the maximal current (Imax = 1) 

of the same cell and then averaged.  EC50 and Hill coefficient (nH) were 

determined by fitting averaged, normalized dose-response relations to the Hill 

equation.  Dose responses of individual oocytes were also examined and used to 

determine outliers.   

For all cross interaction data involving P2X2 or P2X2/3, including data 

from the mecamylamine experiments, the predicted current from agonist co-

application was calculated from the arithmetic sum of IACh and IATP (or IαβmeATP) 

from the same cell.  The actual, observed current upon co-application of the 

agonists was subtracted from the prediction value of the same cell, and this 

difference was designated as the Δ.  All current data and Δ were normalized to 

the prediction value of the same cell, and then the normalized data were 

averaged across at least 7 cells from at least 2 batches of oocytes.   

For all cross interaction data involving the fast-desensitizing P2X 

receptors, including P2X3, P2X3(K65A), P2X3TR, and P2X2(T18A) receptors, 

averaged ATP-evoked peak current during ACh application (IATP*) was 

subtracted from averaged ATP-evoked current in the absence of ACh (IATP) from 

the same cell to obtain a Δ*.  All current data and Δ* were normalized to (IATP) 

and averaged across at least 8 cells from at least 2 batches of oocytes. 
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All data are presented as mean ± s. e. m. (n = number of cells), with statistical 

significance assessed by paired Student’s t test.  A p value of  < 0.01 was accepted 

as indicative of a statistically significant difference.   
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Appendix 1 

 

Studies of a Conserved Proline Residue Near the 

Agonist-Binding Sites of the Muscle-Type 

Nicotinic Acetylcholine Receptor 

 

A1.1 Introduction 

The adult-form of the muscle-type nicotinic acetylcholine receptor 

(nAChR) is composed of 5 subunits, α-‐ε-‐α-‐δ-‐β,	  arranged	  around	  a	  central	  ion	  pore.  

Binding of acetylcholine (ACh) at the ligand-binding sites on the interfaces 

between the α/γ and α/ε subunits triggers a series of conformational changes 

that ultimately lead to ion conduction (Figure 1.1).   

A genetic mutation Pro121Leu near the binding site on the ε subunit has 

been associated with a loss of function myasthenic syndrome (1), implicating an 

important role of this residue in the receptor function.  εPro121 is located at the 

C-terminus of loop E, only two residues in sequence after Leu119 that has been 

identified as part of the complementary component of the binding site (Figure 

A1.1) (2, 3).  This places the proline within a Van der Waals contact of αTrp149, 
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the key binding residue that forms a cation-π interaction with ACh, on the 

primary binding site across the interface (4) 

 

α-Subunit  γ-Subunit 

Figure A1.1.  Ligand-binding domains of nAChR α- and γ-subunits (Protein Data 
Bank code 2BG9).  On the α-subunit, loop A (α92-α98, Torpedo numbering) is 
highlighted in red, loop B (α149-α154) in orange, and loop C (α189-α196) in 
yellow.  On the γ-subunit, loop D (γ53-γ55), loop E (γ108-γ118), and loop F (γ173-
γ177) are highlighted in green, blue, and purple, respectively.  αTrp149 is shown 
in orange and γPro120 in grey.  

 

Pro121 is the second proline of the Pro-Pro pair that is highly conserved 

among nAChR subunits.  (There is no equivalent proline in any of the 

acetylcholine-binding protein (AChBP) isoforms.)  An analysis of protein 

structures shows that 87% of cis peptide bonds are preceding Pro residues, of 

which a Pro-Pro bond has the highest frequency (11.2%) to be in the cis form (5).  

As such, we speculated that cis-trans isomerization may occur at the amide bond 

between these Pro-Pro residues.  We performed conventional and unnatural 

mutagenesis studies at this residue, and the function of the mutant receptors was 

!
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probed using electrophysiology.  We find that subtle mutations at this site 

resulted in substantial functional perturbations, although it is unlikely that cis-

trans isomerization was involved at this proline.  

 

A1.2 Results and Discussion 

The Dougherty Lab conventionally employs the embryonic form of the 

muscle-type nAChR, with the γ-‐subunit	  instead	  of	  the ε-subunit of the adult form.  

Likewise, the present mutagenesis studies were performed on the embryonic α-γ-

α-δ-β nAChR.  We made mutations on both the γ- and δ-subunit at the same time 

to avoid any ambiguity that could possibly arise from asymmetric binding sites 

(6-9), unless otherwise specified.  εPro121 is equivalent to γPro120 and δPro123 

in the mouse muscle nAChR, and all these equivalent residues are referred to as 

Pro121 throughout this chapter for simplicity.     

 

Incorporation of unnatural amino acid analogs of proline at γ,δPro121 

To examine the role of cis-trans isomerization at Pro121 in receptor 

function, we first substituted this residue with a number of unnatural amino acid 

analogs of proline with varying preferences for the cis conformer via the in vivo 

nonsense-suppression methods (Figure A1.2).  Most of these unnatural amino 

acids were used in previous studies (10, 11).  If the cis conformer of Pro121 

contributed to the receptor function, a linear energy correlation between the cis-
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trans energy gap and the energy of channel activation would be expected, similar 

to the correlation seen in Ref. (11).   

 

 
Figure A1.2.  Structures of unnatural amino acids studied at the position 121 
with the reported percent cis (11, 12).  Proline is set to 5%, which is the value 
obtained from statistical surveys of protein structures.  NR, percent cis not 
reported 

 

As a positive control, the first nonsense-suppression experiment was the 

“wild-type recovery,” in which the suppressor tRNA was charged with proline.  

When function of this wild-type rescue receptor was evaluated in comparison to 

the true wild type, the full phenotype of the wild-type receptor was successfully 
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recovered, including the EC50 value, the Hill constant, and the current traces 

(data not shown). 

We used EC50 as a measurement of the receptor function.  We found that the 

EC50 values of these mutant receptors displayed no correlation with the cis-trans 

energy gaps of the proline analogs (Table A1.1).  Incorporation of Pip, which has 

12% preference for the cis conformer, produced a receptor with a 10-fold decrease in 

EC50 from the wild-type value, whereas, incorporation of Aze, which has 18% 

preference, resulted in a 14-fold increase in EC50.  These data suggest that cis-trans 

isomerization at Pro121 is not involved in the receptor function. 

Because both Pip and Aze, which were considered subtle mutations, had 

substantial effects on the EC50 values, it would be worthwhile to explore the 

significance of this proline residue further by incorporating additional unnatural 

proline analogs.  Substituting Pro121 with c-4F-Pro or t-4F-Pro produced a 

receptor with an EC50 value comparable to the wild type.  The results indicate 

that the ring conformation of this side chain is not important, as these two 

unnatural amino acids prefer different pyrrolidine-ring puckers (13).  In 

addition, both Pro121(3-Me-Pro) and Pro121(2-Me-Pro) mutations also produced 

a near wild-type EC50.  With the 2-Me-Pro being strongly trans-biased, the result 

of the 2-Me-Pro mutation confirms that the cis conformer of Pro121 does not play 

a role in the receptor activation.  Many attempts were made to incorporate Dmp 

at this site, but no signal above the background level was observed.  
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Table A1.1.  ACh EC50 and Hill constants of mutant receptors containing unnatural 
amino acid analogs of proline at the residue 121 in both γ- and δ-subunits 

γ,δ P121 EC50
 Hill Constant n EC50(mutant)/EC50(wild type) 

 (μM)     
Wild type 21.5 ± 0.72 1.53 ± 0.07 8 1.0 
Pip 1.89 ± 0.05 1.38 ± 0.04 12 0.1 
Aze     299 ± 13 1.60 ± 0.09 6 14 
c-4F-Pro 28.6 ± 0.63 1.51 ± 0.04 8 1.3 
t-4F-Pro 15.8 ± 0.40 1.67 ± 0.06 7 0.7 
3-Me-Pro 19.3 ± 0.54 1.49 ± 0.05 8 0.9 
2-Me-Pro 23.2 ± 0.90 1.56 ± 0.08 5 1.1 
 

A trend in receptor function is seen with the ring sizes at the side chain at 

the residue 121.  Mutating this residue to Aze, with a 4-membered ring, increased 

the EC50 from the wild type, while the mutation to Pip, with a 6-membered ring, 

decreased the EC50.  All other proline analogs contain a 5-membered ring, and 

the corresponding mutant receptors exhibited activities similar to the wild type.  

As such, we considered obtaining an additional data point from another different 

ring size.  Neither a 3-membered ring (aziridine) nor a 7-membered ring 

(azepine) had previously been utilized in unnatural amino acid mutagenesis in 

the Dougherty Lab or elsewhere.  With the 7-membered ring, we were concerned 

about ring flexibility that could obscure the analysis, and therefore, we decided 

to incorporate aziridine (Azy) at residue 121.  The preparation of tRNA-Azy is 

described in Appendix 2.  Many attempts were made to express a mutant 

nAChR containing Azy at this	   site.  However, no valid data could be obtained 

from the Azy-mutant receptor. 
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Unsuccessful experiments with Dmp and Azy at the Pro121 site were 

possibly a result of (i) intrinsic difficulties of Dmp or Azy expression in Xenopus 

oocytes and (ii) the highly permissive nature of the Pro121 site which allowed 

incorporation of other endogenous amino acids via the read-through and/or the 

reacylation mechanisms (14).  The structural constraints of Dmp and Azy possibly 

reduced the efficiencies of protein translation on the ribosome, protein folding, 

and/or subunit assembly.   

 

Conventional mutagenesis at γ,δPro121 

Conventional mutagenesis studies were performed at Pro121 to further 

investigate receptor function in response to different sizes of side chains at this 

position.  The selected side chains included Leu, which causes the congenital 

myasthenic syndrome, as well as Trp and Gly, which, respectively, bear the largest 

and the smallest side chains among the 20-natural amino acids.  In addition, we 

tested Ala and Ser, which are present at the equivalent position of the AChBPs. 

All of the conventional mutations at position 121 had impaired receptor 

activities as suggested by the increase in EC50 values (Table A1.2).  Surprisingly, 

the effect of the leucine mutation was the smallest of all, causing only a 5-fold 

increase in EC50 from the wild-type value.  The EC50 of the receptor with Pro121Ala 

was greater than that of Pro121Leu, following the size trend.  However, the EC50 of 

the serine mutant, which was expected to fall between those of Leu and Ala, was 

in fact larger than both values.  This can possibly be explained by the polarity 
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effect of the serine side chain.  Mutations of Pro121 to Trp or Gly severely 

disrupted receptor function, raising the EC50 greater than 20-fold.  Overall, these 

results suggest that position 121 requires a hydrophobic side chain with a proper 

size and shape for the receptor to function normally.   

 

Table A1.2.  EC50 values and Hill constants of conventional mutant nAChR at the 
residue 121 in both γ- and δ-subunits in response to ACh 

γ,δ P121 EC50
 Hill Constant n EC50(mutant)/EC50(wild type) 

 (μM)     
Leu 154.3 ± 7.8 1.38 ± 0.08 5 7.2 
Ala 244.5 ± 3.6 1.52 ± 0.03 11 11.4 
Gly 537.2 ± 12.2 1.48 ± 0.04 11 25.0 

Ser 349.5 ± 10.2 1.41 ± 0.05 6 16.2 
Trp 449.3 ± 18.2 1.43 ± 0.06 5 20.9 
 

 

Incorporation of unnatural analogs of leucine at γ,δPro121 

Another unique property of proline among all natural amino acids is that 

proline cannot act as a hydrogen-bond donor because the amino group of proline 

is alkylated within the ring.  To investigate the importance of this special feature 

at position 121, we incorporated two unnatural analogs of leucine, Lah and N-

Me-Leu (Figure A1.2).  The resulting mutant receptor functions would be 

evaluated in comparison to the Pro121Leu mutant, not the wild-type receptor.  

Both N-Me-Leu and Lah cannot donate a hydrogen bond; N-Me-Leu contains a 

methyl group on the backbone amide nitrogen, and Lah has a hydroxy group 
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replacing the amino group of leucine.  The EC50 values resulting from the 

Pro121Lah and Pro121(N-Me-Leu) mutations were comparable to the EC50 of the 

Leu mutant (Table A1.3).  Therefore, neither the hydrogen-bond donating ability 

nor the N-alkylation is important at this residue.   

 

Table A1.3.  ACh EC50 and Hill constants of mutant receptors containing 
unnatural analogs of leucine at the residue 121 in both γ- and δ-subunits 

γ,δ P121 EC50
 Hill Constant n EC50(mutant)/EC50(wild type) 

 (μM)     
N-Me-Leu 103 ± 2.1 1.37 ± 0.03 6 4.8 
Lah 132 ± 4.6 1.34 ± 0.05 7 6.1 

 

Current traces of nAChR containing mutations at γ,δPro121 

Even though the two-electrode voltage-clamp method records 

macroscopic current and does not allow a direct measurement of kinetic 

parameters, the waveform of the current traces still provides useful information 

on the gating kinetics.  Normally, the muscle-type nAChR ion channel opens fast, 

followed by some level of desensitization (Figure A1.3, left).  When Pro121 was 

mutated to a non-proline residue, the receptor lost the rapid opening.  The most 

striking case was that of the glycine mutation, which produced receptors that 

opened extremely slowly (Figure A1.3, right).  Some other mutations, including 

Aze, resulted in receptors that desensitized significantly less (Figure A1.3, middle) 

compared to the wild type.  A remarkable change in the gating mechanism is 
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implicated here.  However, detailed examination of ion channel kinetics requires 

single channel experiments and is beyond the scope of this study.  

 

  Wild type       γ, δ Pro121Aze                  γ, δ Pro121Gly  

 

Figure A1.3. Representative current traces recorded at a saturating dose of ACh 
for the wild-type and the mutant nAChRs expressing Aze or Gly at the position 
121 in the γ- and δ-subunits 

 

Mutational studies at Pro121 in a single subunit 

We performed mutational studies at position 121 on each subunit 

separately to gain a better insight into its role in receptor gating.  γPro121Pip and 

δPro121Pip mutations produced comparable EC50 values, as did the Aze 

mutations, suggesting that both complementary subunits responded to these 

mutations in parallel (Table A1.4).  For both Pip and Aze, the single mutations in 

γ	   and δ produced effects that were roughly half of what was seen with the 

double mutations (Table A1.1 and A1.5), suggesting that the effect of the single 

mutations at Pro121 on the complementary subunits are additive. 
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Since Pro121 is highly conserved among the nAChR subunits, we also 

tested whether or not the large effect on the EC50 was specific to the mutations on 

the complementary subunits.  When we mutated Pro121 on the α-subunits to 

leucine, the mutant receptor had a comparable EC50 to the wild type.  The result 

suggests that only the Pro121 in the complementary subunits, not the principal 

subunits, are functionally important in the gating mechanism.   

 

Table A1.4.  EC50 values and Hill coefficients of Pro121 mutations in a single 
nAChR subunit 

Subunits Residue 121 EC50
 Hill 

Constant n EC50(mutant)/EC50(wild type) 

  (μM)    
α Leu 30.7 ± 0.61 1.35 ± 0.03 7 1.4 
γ Pip    5.9 ± 0.14 1.44 ± 0.04 13 0.3 
γ Aze   117 ± 5 1.35 ± 0.06 6 5.4 
δ Pip  5.4 ± 0.14 1.47 ± 0.05 9 0.2 
δ Aze   175 ± 9 1.46 ± 0.09 5 8.1 

 

 

Summary 

A number of conventional and unnatural amino acids were incorporated 

at residue Pro121 in the complementary γ and δ subunits of the muscle-type 

nAChR.  A number of these mutations resulted in a dramatic shift in the ACh 

EC50.   These EC50 values do not demonstrate any correlation between the 

functions of the mutant receptors and the cis preferences of the amino acids, and 

therefore, cis-trans isomerization is not involved at this site.  A cyclic side chain is 
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required at this position for the fast channel opening, as suggested qualitatively 

by the current traces.  Structure and volume of side chains were found to be 

important to the proper function of the receptor, although their precise roles 

cannot be inferred from these types of experiments.  Furthermore, the analogous 

mutation on the principal α-subunits did not affect receptor function, implicating 

that the importance of this residue is limited to the complementary components 

of the binding sites.   

 

A1.3 Materials and Methods 

Molecular biology 

 Subunits of mouse muscle nAChR were expressed in pAMV vectors and 

site-directed mutagenesis was performed using a standard Stratagene 

QuikChange protocol.  Circular cDNA was linearized with NotI or KpnI.  After 

purification (Qiagen), linearized DNA was used as a template for runoff in vitro 

transcription using T7 mMessage mMachine kit (Ambion).  The resulting mRNA 

was purified (RNAeasy Mini Kit, Qiagen) and quantified by UV-visible 

spectroscopy.  Wild-type subunits were subjected to the same linearization and 

transcription steps to give mRNA for all subunits. 

THG73 (14) was used as amber suppressor tRNA for unnatural amino 

acid (uAA) incorporation.  Conjugated dCA-uAA was ligated to 74 nucleotide 

tRNA as previously reported (15).  Crude tRNA product was used without 

desalting, and the product was confirmed by MALDI-TOF MS on 3-



 
 

161 

hydroxypicolinic acid (3-HPA) matrix.  Deprotection of tRNA-uAA was carried 

out immediately prior to injection by 5-minute photolysis (NVOC protection).  

No deprotection was required for α-hydroxy uAA.   

nAChR expression 

For wild-type receptor and receptors containing conventional mutation, 

quantified mRNA of all subunits were mixed in a ratio of α:β:γ:δ  = 2:1:1:1 by mass, 

according to the subunit stoichiometry of the receptor.  The ratio of subunits in the 

mRNA was 5-fold biased toward the subunit containing the site for unnatural 

amino acid.  For example, if an unnatural amino acid was to be incorporated into 

the γ-subunit, the stoichiometry of mix mRNA will be α:β:γ:δ  = 2:1:5:1 by mass.  

Typically, total mRNA concentrations used were 0.01–0.05 μg/μL for wild-type 

receptor, 0.1–1.0 μg/μL for conventional mutations, and 0.5–2.5 μg/μL for 

suppression mutations.  Prior to injection, equal volumes of the mRNA mixture 

and unprotected tRNA-uAA were mixed thoroughly.  Each oocyte was injected 

with 50 nL of RNA solution, and cells were incubated for 18–72 hours at 18 °C in 

culture media (ND96+ with 5% horse serum.)   

Electrophysiological Recordings 

Acetylcholine chloride was purchased from Sigma/Aldrich/RBI (St. 

Louis, MO).  ACh was prepared as 1M stock solution in sterile, distilled, 

deionized water and stored at −20 °C.  All drug dilutions were prepared in the 

calcium-free ND96 buffer from stock solutions.   
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Ion channel function in oocytes was assayed by current recording in two-

electrode voltage-clamp mode using the OpusXpress 6000A (Axon Instruments).  

Cells were perfused in calcium-free ND96 solution at flow rates of 1 and 4 

mL/min during agonist application and 3 mL/min during wash.  Oocytes were 

typically clamped at −60 mV, but the holding potential was adjusted to −40 mV or 

−80 mV if the observed current was too large or too small, respectively.  Drug 

application was 15 seconds in duration.  For dose-response experiments, 1mL of 

each drug solution was applied to the cells, and between 12 and 16 concentrations 

of drug were used.  All dose-response data were obtained from at least 5 cells and 

at least two batches of oocytes.   

Data analysis 

Data obtained from dose-response experiments were normalized (Imax = 1) 

and averaged.  EC50 and Hill coefficient (nH) were determined by fitting averaged, 

normalized dose-response relations to the Hill equation: y = m/(1+(EC50/x)^nH).  

Dose response of individual oocytes was also examined and used to determine 

outliers.  For nAChR, individual dose-response data with nH > 2 or nH  < 1 was 

discarded.   
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Appendix 2 

 

Preparation and Incorporation of Aziridine, a Novel 

Unnatural Amino Acid, into Cys-Loop Receptors 

 

A2.1 Introduction 

Aziridine carboxylate (Azy) is a 3-membered ring analog of proline.  The 

results of our studies on nAChR Pro121 (Appendix 1) led to the aspiration to 

have a proline analog with a smaller ring size than what was already available.  

Aside from being the smallest cyclic amino acid possible, Azy also has several 

unique structural features with respect to other amino acids because of the steric 

constraint posted by the small ring size.  For example, the hybridization of the 

aziridine nitrogen is altered to an sp3-like structure to accommodate the ring 

strain (1).  The conjugation is maintained but is weaker than a normal amide 

bond.  As a result, the rotational barriers are so small that the energy gap 

between the ‘cis-like’ and the ‘trans-like’ structures cannot be accessed 

experimentally by means of dynamic NMR methods (2, 3). 

A procedure for preparation of tRNA-Azy was previously unavailable.  

As such, this chapter focuses on the synthesis of dCA-Azy.  The amino acid was 
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incorporated into the 5-HT3A receptor via the in vivo nonsense-suppression 

methodology to demonstrate the viability of this new unnatural amino acid.   

 

A2.2 Results and Discussion 

Synthesis of dCA-Azy 

Like the first step of any other unnatural amino acid incorporation, dCA-

Azy must be synthesized.  Starting from the commercially available aziridine-2-

carboxylic acid methyl ester, the amine was first protected as 4-pentenoyl (4-PO), 

using 4-pentenoic anhydride in the presence of DIPEA (Figure A2.1) (4, 5).  

Saponification of the methyl ester with potassium trimethylsilanolate was 

expected to produce carboxylate (III).  Although aziridine carboxylate was found 

to be stable without the methyl ester, the N-protected aziridine-2-carboxylate 

(III) decomposed instantaneously.  This suggested an incompatibility between 

the N-protected aziridine and the carboxylate group.  The 4-PO group was 

utilized as a protecting group for the amine instead of the standard 

nitroveratryloxycarbonyl (NVOC) group because we found that the 4-PO 

protected aziridine carboxylate was less unstable than the NVOC-protected 

molecule.  The crude product (III) was used immediately in the next reaction.   

The carboxylate was activated as a cyanomethyl ester, following the 

established procedure (5), for coupling to the dCA dinucleotide.  The described 

synthesis route yielded a sufficient amount of the cyanomethyl ester (IV) for this 

purpose.  The purified product was characterized by 1H NMR, 13C NMR, and 
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high-resolution mass spectrometry.  Following the standard protocols previously 

reported by others in the Dougherty group, dCA-Azy and tRNA-Azy were 

successfully prepared and characterized (5, 6).  

 

 
Figure A2.1.  A scheme for dCA-Azy synthesis 

 

 

Incorporation of Azy into a functional Cys-loop receptor 

The mechanism for the 4-PO deprotection by I2 requires delocalization of 

the amide nitrogen π-electron onto the C–N bond.  Therefore, removal of the 4-

PO protecting group from aziridine was expected to be difficult due to the sp3-

like structure that weakens the π conjugation.  Analysis of model deprotection 

reactions by 1H NMR or MALDI-TOF mass spectrometry confirmed the 

inefficiency of the reaction.  Because the I2 deprotection of the 4-PO-Azy was not 

as efficient as typical amides, special care was required.  The 4-PO protecting 
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group was removed from the tRNA-Azy immediately prior to oocyte injection by 

treatment with a freshly made saturated I2 solution in water (4, 5).  Pre-made I2 

solution was found to be ineffective.  The mixture was incubated at room 

temperature for 15 minutes or more, longer than the standard procedure for 4-

PO deprotection.   

 

Expression of Azy-containing Cys-loop receptor 

Initial attempts to incorporate Azy at the Pro121 sites on the γ,δ-subunits 

of nAChR resulted in inconsistent EC50 values and a low Hill constant, 

suggesting a mix receptor population.  The source of this problem was later 

recognized to be the read-through and/or the reacylation process.  In order to 

prove that Azy could be incorporated into a functional protein via the nonsense-

suppression methodology, we sought a non-promiscuous site where no unwanted 

endogenous amino acid could produce a functional receptor.  The proline 8* in the 

M2-M3 loop of the 5-HT3A serotonin receptor was an excellent candidate, because 

only proline analogs that could undergo cis-trans isomerization functioned at this 

site (7).  We decided to incorporate Azy at this position, and we found the 

resulting current level to be very low but still measurable, with Imax ≈ 100 nA.   

The oocytes expressing the mutant 5-HT3A receptor suppressed with Azy 

displayed an EC50 that was 2-fold lower than the wild-type oocytes (Table A2.1).  

Previous work by Lummis, et al. demonstrated a linear correlation in energy 

between the intrinsic cis-trans energy gap of the proline analog and the activation 

of the receptor (7).  Therefore, with the observed gain-of-function effect, the 
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observed current likely came from the Azy-containing mutant receptors, not a 

product of unwanted read-through or reacylation.   

 

Table A2.1.  EC50 and Hill coefficients of wild-type and Pro308Azy mutant 5-
HT3A receptors in response to 5-HT (serotonin) 

Residue 308 EC50 Hill Constant n EC50(mutant)/EC50(wild type) 

 μM    
Pro 1.38 ± 0.05 2.76 ± 0.24 10 1.0 
Azy 0.73 ± 0.02 3.06 ± 0.22 6 0.5 

 

While the wild-type 5-HT3A receptor typically opens and desensitizes 

slowly, the Azy-mutant receptor exhibited current traces that were both fast 

opening and fast desensitizing (Figure A2.2).  In the case of Azy, desensitization 

probably occurred before the maximal current was attained, and this likely 

instigated some error in the EC50 measurement.  The low rotational barrier of the 

Azy amide bond was perhaps the underlying cause of the altered kinetic behavior 

— the rapid conformational change at the Azy backbone amide facilitated the rapid 

movement of the M2 helix containing the gate that opened and closed the ion pore. 

   Wild type                                       Azy 

 
Figure A2.2.  Whole cell current traces at saturating concentration of serotonin 
from Xenopus oocytes expressed with wild-type 5-HT3A receptor (left) or mutant 
5-HT3A receptor contaning Azy at the residue 308 (right). 
 

400 nA 

20S 
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Concluding Remarks 

We have demonstrated that the novel unnatural amino acid, Azy, could be 

prepared and incorporated into a functional 5-HT3A receptor via the nonsense-

suppression method.  However, the current observed was small.  The unique 

structure of the residue posed several challenges in chemical synthesis, as 

previously mentioned, and also in protein expression.  Because of the shape of 

the ring, the carbonyl carbon became more susceptible to hydrolysis, which 

could deplete the tRNA-Azy population.  The unusual structure might not allow 

the amino acid to interact properly to the ribosome during the translation.  

Moreover, the Azy-containing peptide might be difficult to fold properly because 

the Azy amide bond did not have the preferred sp2 hybridization.  Nevertheless, 

this experiment has shown that the Azy-containing receptors could be produced 

and transported to the cell membrane successfully.  To our knowledge, Azy was 

the first unnatural amino acid with a twisted amide bond that had been 

incorporated into a functional protein in vivo. 

 

A2.3 Materials and Methods 

Chemical Synthesis 

N-4-pentenoyl-aziridine-2-carboxylic acid methyl ester (II).  N, N-

diisopropylethylamine (DIPEA, 0.61 mL, 3.32 mmole, 1.2 eq) and aziridine-2-

carboxylic acid methyl ester (1, 0.25 mL, 2.77 mmole, 1.0 eq) were dissolved in 27 

mL of anhydrous THF.  To the stirring reaction, solution of pentenoic anhydride 
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(0.61 mL, 3.32 mmole, 1.2 eq) in 1 mL anhydrous THF was added, and the vial 

was rinsed with additional anhydrous THF (2 × 1 mL) to ensure qualitative 

transfer of the reagent.  The reaction was monitored by TLC (7:3 hexanes/ethyl 

acetate, Rf = 0.28).  The reaction was stirred ambient temperature for 6 hours.  

The THF was removed under reduced pressure.  Crude product was purified by 

silica gel flash chromatography (8:2 hexanes/ethyl acetate, and 95:5 

toluene/acetone, Rf = 0.3 in separate columns).   

1H NMR (300 MHz, CDCl3) δ ppm: 2.40–2.61 (6H, m), 3.15 (1H, dd), 3.80 (3H, s), 

4.99–5.11 (2H, m), 5.77–5.90 (1H, m).  13C NMR (75 MHz, CDCl3) δ ppm: 28.55, 

30.57, 34.05, 35.86, 52.71, 115.58, 136.73, 168.80, 182.51.   

ESI MS: calcd for [M+Na]+ m/z = 206.1, found 205.9. 

N-4-pentenoyl-aziridine-2-carboxylate, potassium salt (III).  Potassium 

trimethylsilylnolate (0.2818 g, 2.20 mmole) was azeotroped 3 times in toluene.  To 

the dried solid, 20 mL of anhydrous diethyl ether was added.  The temperature 

was dropped to −78 °C.  Solution of (II) (0.4129 g, 2.25 mmole) in 5 mL of diethyl 

ether was added to the stirred reaction while cold.  The reaction was stirred at 

−78 °C for 4 hours and let stand at −80 °C overnight (~ 11 hours).  The 

temperature was raised to room temperature.  The mixture was sonicated and 

diluted with 50 mL of diethyl ether.  Crude product was collected in a crude frit 

and washed excessively with either.  Then the product was transferred into a 

flask using methanol, and the solvent was removed under reduced pressure.  

Toluene was added to the solution to ensure complete removal of solvents.  
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Crude product was immediately used in the next step without any purification 

or characterization. 

N-4-pentenoyl-aziridine-2-carboxylic acid cyanomethyl ester (IV).  Crude 

mixture containing (III) from the previous step was azeotroped with toluene 3 

times.  Chloroacetonitrile (2 mL, 31.6 mmole) was added to the dried solid. The 

reaction was sonicated, followed by addition of triethylamine (1 mL, 7.2 mmole).  

The reaction was monitored by TLC (1:1 hexanes/ethylacetate, Rf  = 0.53).  After 

the reaction had been stirred at room temperature for 2 hours, diethyl ether was 

added to dilute the reaction.  The mixture was washed with 2 × water and brine 

and dried over Na2SO4.  Solvents were removed under reduced pressure, and 

crude product was purified by silica gel flash chromatography (gradient of 9:1 

hexanes/ethylacetate and 1:1 hexanes/ethylacetate).   

1H NMR (300 MHz, CDCl3) δ ppm: 2.40–2.67 (6H, m), 3.23 (1H, dd), 4.83 (2H, d), 

5.00–5.12 (2H, m), 5.76–5.90 (1H, m).  

13C NMR (75 MHz, CDCl3) δ ppm: 28.63, 31.45, 33.34, 35.98, 49.43, 113.85, 116.04, 

136.61, 167.26, 182.34.   

ESI MS: calcd for m/z = 209.0926, found 209.0921. 

Coupling to dCA.  dCA was synthesized as previously reported (52).  dCA•TBA 

(13.1 mg, 0.020 mmole, 1 eq) was transferred into a tared 1-g vial.  The vial was 

purged with argon 3 times.  Under inert atmosphere, DMF was added, followed 

by addition of (IV) (11.4 mg, 0.055 mmole, 2.7 eq).  The reaction was kept under 
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inert atmosphere and stirred overnight at room temperature.  The reaction was 

monitored by analytical reversed phase HPLC.  The reaction was quenched with 

1:1 acetonitrile/water.  The product was purified by reversed-phase HPLC (95:5 

to 0:100 water/acetonitrile at 20 mL/min over 15 min).  Fourteen fractions were 

collected, and solvents were removed by lyophilization.  10 mM acetic acid (~ 2 

mL) was added to the dry solid, and the solvent was removed again by 

lyophilization.  This process was repeated three times to ensure that the products 

were free from ammonium ion.  The desired product was confirmed by ESI-TOF 

MS.  Rt = 3.88 min and 4.17 min. calcd for [M-H]− m/z = 786.16, found 786.3. 

Ligation of tRNA-Azy 

Conjugated dCA-Azy was ligated to 74 nucleotide tRNA (THG73) as 

previously reported (8).  Crude tRNA product was used without desalting, and 

the product was confirmed by MALDI-TOF MS on 3-hydroxypicolinic acid (3-

HPA) matrix.   

Expression of 5-HT3A receptor 

The 5-HT3A receptor construct was in the pGEMhe vector.  The mRNA 

encoding the wild-type 5-HT3A receptor was kindly provided by K.S. Bower, and 

the mRNA containing a TAG-mutation at Pro308 was made by D.L. Beene.  

Deprotection of tRNA-Azy was carried out immediately prior to injection by 15-

minute incubation with freshly made saturated I2/water (tRNA-Azy: I2/water = 

1:1 by volume.)  The ratio of subunits in the mRNA was 5-fold biased toward the 

subunit containing the site for unnatural amino acid.  Final concentration of 
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wild-type 5-HT3A receptor mRNA was 0.033 μg/μL.  Prior to injection, equal 

volumes of the mRNA mixture and unprotected tRNA-Azy were mixed 

thoroughly.  Each Xenopus oocyte was injected with 50 nL of RNA solution, and 

cells were incubated for 18–72 hours at 18 °C in culture media (ND96+ with 5% 

horse serum).   

Electrophysiological recordings 

Ion channel function in Xenopus oocytes was assayed by current recording 

in two-electrode voltage-clamp mode using the OpusXpress 6000A (Axon 

Instruments).  Cells were perfused in calcium-free ND96 solution at flow rates of 

1 and 4 mL/min during agonist application and 3 mL/min during wash.  The 

holding potential was set to −60 mV.  5-Hydroxytryptamine (5-HT) was kindly 

provided by K.S. Bower as a 25 mM stock solution.  All drug dilutions were 

prepared in the calcium-free ND96 buffer from the stock solution.  For dose-

response experiments, 1mL of each drug solution was applied to the cells, and 

between 12 and 16 concentrations of drug were used.  Drug application was 30 

seconds in duration.  All dose-response data were obtained from at least 5 cells 

and at least two batches of oocytes.   
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Appendix 3 

 

Roles of the Conserved Phe233 in the Voltage 

Sensor of the Potassium Channels1 

 

A3.1 Introduction 

 Voltage-sensitive ion channels are membrane proteins whose ion pores 

are open in response to the voltage differences across the cell membrane.  These 

proteins play important roles in many cellular processes; voltage-dependent K+ 

(Kv) and Na+ (Nav) channels produce nerve impulses, and voltage-dependent 

Ca2+ (Cav) channels initiate muscle contraction.  Voltage sensor domains are 

common components of these ion channels.  For example, Kv channels consist of 

a central ion conduction pore surrounded by four voltage sensors (1–4).  The 

voltage difference across the membrane is sensed through positively charged 

residues, mostly arginine but occasionally lysine, located on the fourth 

membrane-spanning helix (S4) of the voltage sensor domain (Figure A3.1A) (5, 

6).  Movement of these charges in response to the change in the membrane 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The work described herein was done in collaboration with Xiao Tao, Alice Lee, and Professor 
Roderick MacKinnon at Rockefeller University, New York.  This chapter is adapted in part from 
Tao, X.; Lee, A.; Limapichat, W.; Dougherty, D. A.; Mackinnon, R. A gating charge transfer center 
in voltage sensors. Science 2010, 328, 67–73.  Copyright 2010 by the American Association for the 
Advancement of Science 
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potential leads to a global conformational change of the voltage sensor domain, 

and these conformational changes ultimately regulate the ion channel opening.    

 

Figure A3.1.  Topology of the positively charged residues R0–R4 and K5 on S4.  
(A) The voltage sensor and S4-S5 linker helix of the Kvchim in the open 
conformation.  The conserved Phe233 is shown in green.  (B) Sequence alignment 
of the S4 segment of Kvchim and Shaker Kv. The positively charged residues are 
colored blue.  

  

In the crystal structure of an open-pore Kv2.1 paddle–Kv1.2 chimera channel 

tetramer (Kvchim, Protein Data Bank code 2R9R), positively charged amino acids 

are labeled 0 to 5, according to their position on S4 from outside to inside (Figure 

A3.1B).  R0–R4 are in or near an extracellular surface-exposed environment.  The 

next positively charged amino acid, K5, is different because it is isolated from the 

A!

B!
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external aqueous surface by the side chain of Phe233 (Figure A3.1, green side chain).  

The Phe is highly conserved across the voltage sensors from many different voltage-

sensitive proteins, including Kv, Nav, Cav, voltage-dependent H+ (Hv) channels 

and voltage-dependent phosphatase (VSP) enzymes (7).  

 This work was aimed to understand the role of Phe233 in the 

conformational change of the voltage sensor.  This Phe had been suggested, 

based on structural data, to assist S4 movement (4).  Particularly, an aromatic 

side chain could catalyze the transmembrane passage of S4 charges via a cation–

π interaction, a noncovalent molecular interaction between the face of an 

electron-rich π system and an adjacent cation (8, 9).  As such, the enticing 

possibility that the cation–π interaction is involved in this system, i.e., between 

the side chain of Phe233 and the positively charged side chains on S4, was the 

main focus of this investigation.  Conventional and unnatural amino acid 

mutagenesis was performed at this site, and the voltage-dependent activation of 

the mutant Kv channels was probed in the two-electrode voltage-clamp 

recordings.  We find that a rigid cyclic side chain is important at Phe233, but 

aromaticity is not required. 

   

A3.2 Results and Discussion 

The following experiments were carried out on the Shaker K+ channel 

instead of the paddle chimera channel.  Shaker expresses to high levels in Xenopus 

oocytes, and it is the most extensively studied Kv channel with respect to gating 
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function (10–13).  Even though the crystal structure of the Shaker K+ channel has 

not been determined, the paddle chimera channel shares high sequence identity 

and therefore should serve as an accurate model for designing and analyzing 

experiments on the Shaker channel. 

First, Phe233 was mutated to 19 other amino acids.  The mutants fall into 

four groups according to the level of expressed current and the midpoint voltage 

(Vm) of the activation curve (Figure A3.2).  Only two substitutions, Tyr and Trp, 

produced currents near wild-type levels with negative Vm.  Only the three amino 

acids, Phe, Tyr, and Trp with a rigid cyclic side chain and aromaticity, support 

the highest current levels and negative Vm.  This observation could stem from the 

unique size and shape of these side chains or the presence of the aromaticity.  

However, the results from conventional mutagenesis could not distinguish 

between these two cases. 
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Figure A3.2.  Voltage-dependent channel activation of the conventional Phe233 
mutants.  Representative voltage activation curves of Shaker wild type and 
mutants containing Trp, Tyr, Thr, or Glu at the position 233 (top).  The fraction of 
the maximum activatable current (I/Imax, mean ± s.e.m.) is plotted as a function of 
the depolarization voltage (I–V plot) and fitted with the two-state Boltzmann 
function.  (Wild type, n = 11; F→W, n = 9; F→Y , n = 7; F→T, n = 4; and F→E, n = 
9)  The Vm of Shaker wild type channel and Shaker channels with Phe233 mutated 
to other 19 natural amino acids (bottom).  The mutants are grouped into four 
categories on the basis of expressed current level (indicated by the bar color: 
black, high current level; green, medium current level; magenta: low current 
level) and the value of Vm (indicated by the bar height). Oocytes expressing the 
Lys or Arg mutants did not produce any Agitoxin2-sensitive current. The 
expressed current level of the Asp mutant was too low to generate a usable I–V 
plot. Vm of the Gly mutant was not determined as its I–V plot cannot be fitted 
with the two-state Boltzmann function. 
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To test the possible existence of a cation–π interaction, we substituted 

Phe233 with a variety of unnatural amino acid analogues of Phe, including 3,5-F-

Phe (F2Phe), 4-methyl-Phe (MePhe), 4-cyano-Phe (CNPhe), 4-bromo-Phe (BrPhe) 

If the cation–π interaction exists, addition of an electron-withdrawing group on 

the aromatic ring is expected to produce a rightward shift in the voltage 

activation curves.  However, our data revealed that all the unnatural Phe analogs 

consistently produced negative Vm values.  Therefore, we did not observe any 

correlation between the mutant channel activities and the negative electrostatic 

potential on the surface of the aromatic ring (Figure A3.3 top).   
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                Trp                BrPhe     CNPhe        F2Phe          MePhe          Phe 

Figure A3.3.  The voltage-dependent channel activation curves for Phe (Shaker 
wild type) and Phe to 3,5-F-Phe (F2Phe), 4-bromo-Phe (BrPhe), 4-cyano-Phe 
(CNPhe), 4-methyl-Phe (MePhe), Trp mutants.  Fraction of the maximal current 
(I/Imax, mean ± s.e.m.) is plotted as a function of the depolarization voltage and 
fitted with the two-state Boltzmann function (see methods, Phe, n = 11; F2Phe, n = 
14; BrPhe, n = 10; CNPhe, n = 5; MePhe, n = 6 and Trp, n = 9)  The cation–π binding 
energy in kcal/mol: Trp −32.6, MePhe −28.5, BrPhe −27.6, Phe −27.1, F2Phe −17.1 
and CNPhe −15.7 (9).  More negative binding energy means stronger cation–π 
interaction.  Chemical structures of the side chains are shown below the I–V plot. 

 

Furthermore, we tested the importance of aromaticity by substituting 

Phe233 with cyclohexylalanine (Cha), which has a rigid cyclic side chain but is 

not aromatic.  The result yielded functional channels with a negative Vm, much 

like channels with Phe, Tyr, and Trp (Figure A3.4).  Altogether, these results 

suggest that a rigid cyclic side chain is important at this position but aromaticity is 

not, and there is no evidence for the existence of the proposed cation–π interaction. 

NH

Br CN

F F

CH3
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Figure A3.4.  Voltage-dependent activation of the wild-type (Phe) and the 
cyclohexylalanine (Cha) mutant Shaker channels.  (A) A representative current 
trace of the wild-type Shaker (left) and Cha mutant (right) recorded with a 
voltage-pulse protocol shown above.  (B) The voltage activation curves of Shaker 
wt and the Cha mutant. The curves are fitted with the two-state Boltzmann 
function.  (Wild type, n = 11; Cha, n = 15) 

 

Another group later proposed that the F233W mutation could evoke a 

cation–π interaction between the Trp side chain and the gating charges (14).  

Their data showed a correlation between the Vm and the electronegative surface 

potential of tryptophan and fluorinated analogs of tryptophan, suggestive of a 

contribution of the cation–π interaction in the gating mechanism.  They also 

!"

#"
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found that mutating K5 to Arg, which has a more diffuse positive charge than 

the Lys, weakened this cation–π interaction.  Their results are consistent with our 

findings that K5R displayed a substantial increase in the Vm in the presence of the 

F233W background mutation (Figure A3.5).  The Trp side chain likely preferred 

to form a cation–π interaction with the Lys than the Arg to stabilize the open 

state of the channel.  Additionally, we found that the Lys mutation at R1, with 

the F233W background mutation, drastically increased the Vm of activation 

(Figure A3.5).  The Lys was presumed to strengthen the cation–π interaction 

compared to the wild-type Arg.  Therefore, the shift of the I–V curve to the right 

suggests that the R1K mutation perhaps stabilized the close state of the channel 

through the cation–π interaction. 

The overall results are consistent with the presence of the cation–π 

interaction between the Trp side chain at residue 233 and the gating charges.  The 

fact that the parallel cation–π effect was not observed with the wild-type Phe was 

really intriguing.  Because the Phe233Cha mutant produced a lower Vm than the 

wild type (Figure A3.4), it is clear that the voltage sensor does not need an 

aromatic side chain at the position 233 to function.  The wild-type Phe side chain 

can perhaps interact with the gating charges through a different type of 

interaction other than the cation–π.   

In summary, we found that a rigid cyclic side chain at the position of 

Phe233 is crucial for the channel gating while aromaticity is not required.  The 

F233W displayed a substantial increase in voltage sensitivity.  This observation is 

consistent with the model proposed by another group, in which the tryptophan 
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side chain at this position enhances the favorable interaction to the gating 

charges through the cation–π interaction.   

 
Figure A3.5.  Lys at positions 1 and 5 stabilizes the voltage sensor in its closed 
and open conformation, respectively, in the presence of Trp.  The voltage 
activation curves of R1K5(W), K1K5(W), R1R5(W), and K1R5(W). Fraction of the 
maximal current (I/Imax, means ± s.e.m.) is plotted as a function of the 
depolarization voltage and fitted with the two-state Boltzmann function.  
(R1K5(W), n = 9; K1K5(W), n = 11; R1R5(W), n = 5; and K1R5(W), n = 7) 

 

 

A3.3 Materials and Methods 

Shaker K+ channel expression 

 The Shaker H4 (inactivation removed) construct in a BlueScript vector was 

used for Shaker K+ channel expression in Xenopus oocytes (7).  The N-type 

inactivation gate (corresponding to amino acids 6–46) was not included in the 

construct (8).  cRNA was prepared from HindIII linearized plasmid using T7 

RNA polymerase (Promega). 

I/I
 m

ax
!

I/I
 m

ax
!

A!

B!



	   186	  

 Xenopus oocytes were harvested from mature female Xenopus laevis and 

defolliculated by collagenase treatment for 1–2 hours.  Oocytes were then rinsed 

thoroughly and stored in ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 

1.0 mM MgCl2, 5 mM HEPES, 50 μg/ml gentamycin, pH 7.6 with NaOH).  

Defolliculated oocytes were selected 2–4 hours after collagenase treatment and 

injected with cRNA the next day.  The injected oocytes were incubated in ND96 

solution before recording.  All oocytes were stored in an incubator at 18 °C.  

Recordings of ionic current measurements were performed 1–2 days post-injection.   

Unnatural amino acid incorporation 

 Unnatural amino acids were incorporated into the Shaker K+ channel using 

the nonsense-suppression method (1).  THG73 was used as the amber suppressor 

tRNA (15).  The preparations of amino acids coupled to the dinucleotide (dCA) 

and the ligation of the conjugated dCA-amino acid have been described 

previously (16).  Crude tRNA-amino acid product was used without desalting, 

and the product was confirmed by MALDI-TOF MS on 3-hydroxypicolinic acid 

(3-HPA) matrix.  Deprotection of the NVOC group on tRNA-amino acid was 

carried out by 10-minute photolysis immediately prior to injection.  Equal 

volumes of the Shaker cRNA (in which the codon for Phe was replaced by the 

amber stop codon) and unprotected tRNA-amino acid were mixed prior to 

injection.  Approximately 15 ng of tRNA was used per oocytes.  As a negative 

control, 76-nucleotide tRNA (dCA ligated to 74-nucleotide tRNA) was co-

injected with cRNA in the same manner as fully charged tRNA. 
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Electrophysiological recordings 

 All recordings were performed at room temperature in two-electrode 

voltage-clamp configuration with an oocyte clamp amplifier (OC-725C, Warner 

Instrument Corp.), Digidata 1440A analog-to-digital converter interfaced with a 

computer, and pClamp10.1 software (Axon Instruments, Inc.) for controlling 

membrane voltage and data acquisition.  The recorded signal was filtered at 1 

kHz and sampled at 10 kHz. 

To investigate voltage-dependent channel activation, oocytes were held at 

−80 mV (Shaker wild type and most of the mutants) or −110 mV [F→W, i.e., 

R1K5(W) mutant] with pulse potential starting from holding potential ending 

between +30 mV and +180 mV in 10 mV, 5 mV or 2.5 mV increments.  The 

repolarization potentials were either more negative to the voltage at which 

channel starts to open (for most mutants) or slightly positive to that voltage (for 

mutants with very fast closure rate).  Recording solution contained 98 mM KCl, 

0.3 mM CaCl2, 1 mM MgCl2, and 5 mM HEPES pH 7.6. 

Data analysis 

All statistical fits and figure plotting were done using Clampfit 10.1 (Axon 

Instruments, Inc.).  No leak or capacitive current was subtracted from the current 

traces of voltage-dependent channel activation.  For voltage-dependent channel 

activation recordings, the amount of current at the repolarization step, typically 

measured 4–5 ms after the depolarization step when most of the capacitive 

current has relaxed, was normalized against the maximal current (I/Imax) and 
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plotted as a function of the depolarization voltage (I–V plot).  This voltage-

dependent activation plot was fitted with the two-state Boltzmann function 

(Equation 1).  

I/Imax = 1/[1+exp{(-ZF/RT)×(V-Vm)}]                         (Eq. 1) 

I/Imax is the fraction of the maximal current.  V is the depolarization voltage to 

open the channels.  Vm is the voltage at which the channels have reached 50% of 

their maximal current.  F is the Faraday’s constant.  R is the gas constant.  T is the 

absolute temperature, and Z is the apparent valence of voltage dependence.  

Note that I/Imax does not represent the true open probability (Po) of the channel, 

given that the maximum Po of Shaker wild-type channel in whole oocytes is less 

than 1.0 (17). 

 

A3.4 References 

(1) Jiang, Y.; Ruta, V.; Chen, J.; Lee, A.; Mackinnon, R. The principle of gating 
charge movement in a voltage-dependent K+ channel. Nature 2003, 423, 
42–48. 

(2) Long, S. B.; Campbell, E. B.; Mackinnon, R. Crystal structure of a 
mammalian voltage-dependent Shaker family K+ channel. Science 2005, 
309, 897–903. 

(3) Long, S. B.; Campbell, E. B.; Mackinnon, R. Voltage sensor of Kv1.2: 
structural basis of electromechanical coupling. Science 2005, 309, 903–908. 

(4) Long, S. B.; Tao, X.; Campbell, E. B.; Mackinnon, R. Atomic structure of a 
voltage-dependent K+ channel in a lipid membrane-like environment. 
Nature 2007, 450, 376. 

(5) Aggarwal, S. K.; MacKinnon, R. Contribution of the S4 segment to gating 
charge in the Shaker K+ channel. Neuron 1996, 16, 1169–1177. 

 



	   189	  

(6) Seoh, S. A.; Sigg, D.; Papazian, D. M.; Bezanilla, F. Voltage-sensing 
residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 1996, 
16, 1159–1167. 

(7) Ramsey, I. S.; Moran, M. M.; Chong, J. A.; Clapham, D. E. A voltage-gated 
proton-selective channel lacking the pore domain. Nature 2006, 440, 1213–
1216. 

(8) Mecozzi, S.; West, A. P., Jr; Dougherty, D. A. Cation–π interactions in 
simple aromatics: electrostatics provide a predictive tool. J. Am. Chem. 
Soc. 1996, 118, 2307–2308. 

(9) Mecozzi, S.; West, A. P.; Dougherty, D. A. Cation–π interactions in 
aromatics of biological and medicinal interest: electrostatic potential 
surfaces as a useful qualitative guide. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 
10566–10571. 

(10) Sasaki, M.; Takagi, M.; Okamura, Y. A voltage sensor-domain protein is a 
voltage-gated proton channel. Science 2006, 312, 589–592. 

(11) Schoppa, N. E.; Sigworth, F. J. Activation of Shaker potassium channels. 
III. An activation gating model for wild-type and V2 mutant channels. J. 
Gen. Physiol. 1998, 111, 313–342. 

(12) Islas, L. D.; Sigworth, F. J. Voltage sensitivity and gating charge in Shaker 
and Shab family potassium channels. J. Gen. Physiol. 1999, 114, 723–742. 

(13) Zagotta, W. N.; Hoshi, T.; Aldrich, R. W. Shaker potassium channel 
gating. III: Evaluation of kinetic models for activation. J. Gen. Physiol. 
1994, 103, 321–362. 

(14) Pless, S. A.; Galpin, J. D.; Niciforovic, A. P.; Ahern, C. A. Contributions of 
counter-charge in a potassium channel voltage-sensor domain. Nat. Chem. 
Biol. 2011, 7, 617–623. 

(15) Saks, M. E.; Sampson, J. R.; Nowak, M. W.; Kearney, P. C.; Du, F.; 
Abelson, J. N.; Lester, H. A.; Dougherty, D. A. An engineered 
Tetrahymena tRNAGln for in vivo incorporation of unnatural amino 
acids into proteins by nonsense suppression. J. Biol. Chem. 1996, 271, 
23169–23175. 

(16) Nowak, M. W.; Gallivan, J. P.; Silverman, S. K.; Labarca, C. G.; 
Dougherty, D. A.; Lester, H. A. In vivo incorporation of unnatural amino 
acids into ion channels in Xenopus oocyte expression system. Methods 
Enzymol. 1998, 293, 504–529. 

(17) Schmidt, D.; Mackinnon, R. Voltage-dependent K+ channel gating and 
voltage sensor toxin sensitivity depend on the mechanical state of the 
lipid membrane. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19276–19281. 

 



	   190	  

Appendix 4 

 

Site-Specific Unnatural Amino Acid Incorporation of 

Small-Molecule Donor and Acceptor Fluorophores for 

Single-Receptor FRET Measurement 

 

A4.1 Introduction 

Efforts to probe the structure and function of proteins by site-specific 

incorporation of fluorescent amino acids via unnatural amino acid mutagenesis 

have been made for over a decade (1).  Previously, the Dougherty lab and the 

Lester lab have also incorporated the unnatural amino acid lysine-BODIPY-FL 

into the muscle-type nAChR in Xenopus oocytes via the nonsense-suppression 

methodology (2).  These ion channels were visualized at the single-receptor level 

using total internal reflection fluorescence microscopy (TIRFM).  In this project, 

we aimed to extend this approach by incorporating two unnatural amino acids 

into one assembled receptor.  We hoped to observe Förster resonance energy 

transfer (FRET) within the same receptor and ultimately apply this method for 

studying ion channel function.   
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A4.2 Key Progress 

We selected BODIPY-FL and BODIPY-558/560 as the FRET donor and 

FRET acceptor, respectively.  BODIPY dyes have an advantage over other 

fluorophores because of their small size and hydrophobicity, which are favored 

for unnatural amino acid incorporation via the nonsense-suppression method.  

Energy transfer between these two BODIPY fluorophores has previously been 

demonstrated for protein in solution (3).  Their fluorescent properties, as 

reported on the Life Technologies™ website, are shown in Table A4.1. 

 

Table A4.1.  Fluorescent Properties of BODIPY1 

FRET Pair Donor: BODIPY-FL Acceptor: BODIPY558/560 

λmax 502–505 nm 558 nm 

Emission wavelength 510–511 nm 568 nm 

ε 82000–91000 cm−1M−1 97000 cm−1M−1 

 R0 = 59.6 Å 
 

Revised scheme for dCA-LysBODIPY synthesis 

Unlike the previously described procedure, in which BODIPY N-

succinimidyl ester was coupled to the (NVOC)lysine-cyanomethyl ester prior to 

the final dCA coupling reaction, we first linked the Nε-protected (NVOC)lysine-

cyanomethyl ester to the dCA before the dCA-(NVOC)lysine was coupled to the 

BODIPY (Scheme A4.1).  The ligation of BODIPY was normally complete within 

4 hours, and the final product could be obtained in a higher yield compared to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Molecular Probes® Handbook	  
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the reported protocol.  We made dCA-LysBODIPY-564/580 in addition to the 

FRET pair — dCA-LysBODIPY-FL and dCA-LysBODIPY-558/568. 

 

Scheme A4.1.  Synthesis of dCA-LysBODIPY 
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Characterization of dCA-LysBODIPY and tRNA-LysBODIPY 

When the fluorescence emission of dCA-coupled Lys(NVOC)BODIPY-

564/570 was measured on a fluorometer, we found that the fluorescent signal 

was completely lost after a 10-minute exposure to the UV on the arc lamp (data 

not shown).  Instability of the styrene on the BODIPY-564/570 was not likely the 

reason because similar loss of fluorescent signal was later seen for the tRNA-

(NVOC)LysBODIPY-558/568 as well.  We speculated that the fluorophore was 

photo-bleached under the UV light, or that the deprotection of the NVOC group 

generated a side product that acted as a quencher to the BODIPY fluorophore.  

Quenching of a fluorophore in solution is concentration dependent.  To see the 

effect of concentration, after tRNA-Lys(NVOC)BODIPY-558/568 was irradiated 

with UV light, we made serial dilutions of this tRNA solution as well as the 

unirradiated sample of tRNA-Lys(NVOC)BODIPY-558/568 as controls.  The 

fluorescence emission was measured on a fluorometer pre- and post-UV 

exposure.  We found that dilution of the tRNA solution did not affect the loss of 

fluorescent signal (Figure A4.1), which eliminates the possibility that BODIPY 

was quenched by a byproduct of the NVOC deprotection reaction.  Photo-

bleaching of the BODIPY fluorophores, therefore, was the underlying reason for 

the loss of fluorescent signal. 
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Figure A4.1.  Fluorescent emission spectra showing the effect of UV irradiation 
on (NVOC)LysBODIPY-558/568 ligated to TQAS.  A decrease in fluorescence 
intensity was observed after an exposure to UV light.  Serial dilutions of the 
tRNA solutions show a comparable drop in the fluorescence intensity. 

 

In a model reaction, dCA-(NVOC)Lys was deprotected on a UV lamp, and 

the lifetime of the unprotected dCA-Lys was found to be only ~ 2 hours in 

solution, as indicated by the results from MALDI MS.  Because the NVOC 

protecting group is needed to keep the unnatural amino acid stable in solution, 

the photo-bleaching would cause a significant loss in fluorescent signal.  We then 

considered different options other than the NVOC protecting group.   

 

α-Hydroxy lysine, p-amino phenylalanine, and p-amino phenyl hydroxy acid as 

linkers for BODIPY unnatural amino acid incorporation 

4-Pentenoyl (4-PO) is another common protecting group utilized in the 

nonsense suppression methodology.  However, iodine, which is a known 

quencher for several fluorescent dyes, is needed for removing the 4-PO 
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protecting group from the unnatural amino acid (prior to oocyte injection), and 

thus, we were hesitant to co-inject an iodine solution with BODIPY into the 

oocytes, as imaging BODIPY fluorescence was our goal.   

We then considered using a lysine α-hydroxy (LysOH) as a linker instead 

of lysine, such that a protecting group would not be needed at all.  Nε-Boc-L-

LysOH was synthesized following a published procedure for α-hydroxy acid 

synthesis (4).  A TDBMS group was installed on the hydroxy for ease of HPLC 

purification in a later step (Scheme A4.2).   

Surprisingly, we found that tRNA-BODIPY558/568 was not bleached after 

5 minutes under UV when we used LysOH as the linker, unlike what was seen 

with the Lys-NVOC linker (Figure A4.2).  The result suggests that the NVOC 

protecting group was involved in the photo-bleaching of BODIPY558/568 

through an unknown mechanism.   

Unfortunately, when we tried to incorporate this residue into the muscle-

type nAChR, no current was observed above the background.  We hypothesized 

that harsh treatment with TFA to remove the Boc and TDBMS groups may have 

caused an isomerization at the Cα stereocenter, from L to D amino acid.  

Treatment with TFA, which is commonly used in peptide synthesis and is 

compatible with amino acids, has never been used in the synthesis involving an 

α-hydroxy acid to our knowledge.  Since MALDI MS was the only 

characterization available for dCA-coupled molecules, the characterization did 

not provide useful information on the stereochemistry of the compound.  
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Products from model reactions were characterized on a polarimeter, but no 

reliable result was obtained.  Attempts were made to synthesize dCA-LysOH-

BODIPY using different protecting groups, but the desired products have never 

been achieved. 

 

Scheme A4.2.  Synthesis of dCA-LysOH-BODIPY 
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Figure A4.2.  Fluorescent emission spectra showing the effect of UV irradiation 
on BODIPY558/568.  (A) Fluorescent intensity of LysBODIPY558/568 ligated to 
TQOpS’ was dropped after a 5-minute exposure to UV light.  (B) UV irradiation 
did not affect fluorescent emission of LysOH-BODIPY558/568 ligated toTQOpS’. 

 

p-Aminophenylalanine and p-aminophenyllactic acid as linkers for BODIPY 

unnatural amino acid incorporation 

Previous work has utilized p-aminophenylalanine and p-

aminophenyllactic acid to incorporate BODIPY fluorophores into proteins or 

peptides (3, 5).  The α-amino groups of these molecules were unprotected in the 

reported studies.  The aniline group on the phenyl ring has a lower pKa than the 

α-amino group, and the pH of the reaction could be tuned such that the amide 

coupling to the BODIPY succinimidyl ester could theoretically occur almost 

exclusively at the aniline on the side chain.   Thus, we hoped to apply their 

approach to our system.  However, the amide coupling between BODIPY 

succinimidyl ester and the aniline moiety on the phenyl side chain did not 

proceed to yield any product (Scheme A4.3), presumably due to a weaker 
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nucleophilicity of the aniline compared to the amine on the lysine side chain.  

Several conditions were tested, including different bases, pH, and temperatures. 

 

Scheme A4.3.  No reactivity between the side-chain aniline of p-aminophenylalanine 
or p-aminophenyllactic acid with the BODIPY558/568 succinimidyl ester 
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MS.  (1 μg/μL of tRNA-coupled unnatural amino acid was estimated to be ~ 0.04 

mM.)  Although mass spectroscopy is not quantitative, we did observe a smaller 

peak for the NVOC-containing compound and larger peak for the unprotected 

compound upon increasing UV irradiation time.  Resulting spectra from 4-

minute and 5-minute deprotection reactions showed similar ratio between the 

starting material and the product peaks, and so we conclude that 4-minute 

irradiation is sufficient for the NVOC deprotection.   

 

Incorporation of donor and acceptor BODIPY fluorophores into nAChR 

One of the major challenges in this project was the incorporation of two 

unnatural amino acids with bulky side chains into the same protein using two 

different suppressor tRNAs recognizing two different stop codons.  Herein, we 

aimed to simultaneously express the LysBODIPY FRET donor and acceptor in 

the muscle-type nAChR.  Because permissive sites were needed to incorporate 

unnatural amino acids with bulky side chains, we tested the α70 residue where 

biocytin had previously been incorporated (6), as well as the equivalent positions 

on the β, γ, and δ subunits.  (We referred to these sites using α-numbering, e.g. 

β70, γ70, and δ70).  Single LysBODIPY incorporation at any of these positions 

produced large current, although the reacylation background was also high, 

especially with THG73 as the suppressor tRNA.  Using the TQAS and TQOpS’ 

suppressor tRNA, the current obtained from LysBODIPY suppression was 

clearly higher than the background signal.  We also incorporated these BODIPY-
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containing unnatural amino acids at position 71 in all individual subunits, but 

smaller current was observed compared to the mutation at the position 70.   

Sufficient protein expression (producing currents of 500 nA – 1 μA in two-

electrode voltage-clamp mode) was achieved when the donor was incorporated 

at the β70 position by amber suppression with TQAS and the acceptor at the γ70 

position by opal suppression with TQOpS’.  (500 nA of muscle-nAChR current is 

ideal for TIRF imaging on oocytes.)  Slightly smaller current was observed when 

we moved the acceptor to the δ70 position.  The distances between the adjacent 

subunits, i.e., β–δ, is ~ 30 Å, and between non-adjacent subunits, i.e., β–γ, is ~ 55 

Å, based on the electron microscopy structure of Torpedo nAChR  (Protein Data 

Bank code 2BG9). 

 

Preliminary TIRF Image 

Figure A4.3 shows a single-receptor TIRF image of nAChR labeled with 

LysBODIPY-564/570.  Another member of the lab successfully imaged nAChR 

labeled with either LysBODIPY-FL or LysBODIPY-558/568.  However, 

simultaneous TIRF imaging of two BODIPY fluorophores on oocytes has not 

been possible at the single-receptor level.  Both TIRF imaging and the FRET 

measurement of these BODIPY unnatural amino acids are still ongoing in the lab.  
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Figure A4.3.  A single-receptor TIRF image of an oocyte expressing muscle-type 
nAChR labeled with LysBODIPY-564/570 at position α70 through unnatural 
amino acid incorporation 

 

 

A4.4 Materials and Methods 

A general procedure for deprotection of Boc group from Boc-protected dCA-

(NVOC)lysine and dCA-LysOH 

An ampoule of neat TFA (Aldrich) was added to the powder of dCA-Nε-

Boc-(NVOC)Lysine or dCA-Nε-Boc-(TDBMS)LysOH in a small flask, and the 

solution was mixed until all solid was dissolved.  After 5–10 minutes, TFA was 

removed in vacuo till dryness.  The crude product was redissolved in ethanol, 

and the solvent was removed on a rotary evaporator to get rid of trace TFA.  

Then diethyl ether was added to the dry solid, which was insoluble in either.  

The mixture was sonicated briefly, and the white precipitate was collected on a 
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syringe filter unit (Acrodisc® CR 25 mm, 0.45 μm).  Approximately 3 mL of ether 

was passed through the wheel filter at least twice, and the filter was dried by 

pushing air through 5 times.  The product was eluted with 1:1 acetic 

acid:acetonitrile (~ 9 mL).  Further purification was not required.  This 

compound generally had poor retention on HPLC.  Solvents were removed on a 

lyophilizer resulting in dry powdery solid of dCA-(NVOC)Lys and dCA-LysOH. 

General procedure for coupling of BODIPY to dCA-(NVOC)Lys and dCA-LysOH 

BODIPY-FL C3 succinimidyl ester, BODIPY 558/568 C3 succinimidyl ester, 

and BODIPY 564/570 C3 succinimidyl ester were purchased from Life 

Technologies Corporation (Molecular Probes®).   

~ 1.5 mg of BODIPY succinimidyl ester was added to a vial containing the 

powder of dCA-(NVOC)Lys or dCA-LysOH and a stir bar.  The vial was purged 

with argon 3–5 times.  In a separate vial, also dried under argon, 10 μL of N,N-

diisopropylethylamine (DIPEA, Aldrich) was injected into ~ 4 mL of DMSO 

anhydrous (Aldrich), and 300 μL of this solution was transferred to the vial 

containing the dCA-lysine and the BODIPY.  The reaction was stirred at room 

temperature under argon and protected from light.  A color change was 

normally observed after 5–10 minutes (e.g., neon pink to deep purple for 

BODIPY 558/568 and bright orange to bright green for BODIPY-FL).  The 

reaction was monitored by analytical HPLC, and was typically complete within ~ 

4 hours.  ~ 3 mL of 1:1 water:acetonitrile was added to dilute the reaction before 

the reaction was purified on a reversed-phase HPLC for 20 minutes at a flow rate 
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of 20 mL/min.  Combined fractions were characterized by MALDI MS.  The 

fractions that contained product were dried on a lyophilizer.   

An opened bottle of BODIPY succinimidyl ester was stored under argon 

at −20 °C in the presence of Drierite® and protected from light.  

Coupling dCA-LysBODIPY to tRNA 

We used the standard protocol for ligating the dCA-BODIPY onto the 

tRNA as described in Chapter 2, except that ~ 45–60 minute reaction time was 

needed.  The product was purified following the standard procedure and 

characterized by MALDI MS.  A spin column was required to get rid of all the 

dCA-BODIPY.  The reaction was quite inefficient; 74-mer tRNA was normally 

present.  tRNA-BODIPY was quantified by UV-visible spectroscopy based on the 

absorption peak of the BODIPY fluorophore. 
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Appendix 5 

 

Interaction Between Nicotinic Acetylcholine 

Receptors and the Modulator Protein Lynx11 

 

A5.1 Introduction 

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels 

expressed throughout the brain and at neuromuscular junctions.  These receptors 

are homo- or hetero-pentameric with homologous subunits arranged around a 

central ion pore (1).  Members of the lynx family of proteins have been shown to 

physically associate with nAChRs and are expressed in brain areas heavily 

involved in nicotinic function (2).  Lynx modulators are thought to support 

proper nAChR function in vivo (3).  

Lynx1, the first protein discovered of the family, is a small protein 

containing 72 amino acids with a C-terminal glycophosphoinositide-linked (GPI-

linked) sequence (4).  Lynx’s cysteine-rich motif is characteristic of the class of 

elapid snake venom neurotoxins such as α-bungarotoxin (αBtx) and cobratoxin, 

which are known competitive antagonists of specific nAChR subtypes (5).  The 

GPI-linked motif would topologically allow the lynx proteins to bind in a similar 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 This work was done in collaboration with Dr. Julie M. Miwa and Professor Henry A. Lester. 
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fashion to αBtx at the intersubunit interface on nAChRs (6).  However, the 

antagonistic effect, as seen with the toxins, has not been demonstrated with lynx 

binding.  This raises the possibility that lynx binds to the non-agonist interfaces 

of the receptor that are allosterically important to gating (7).   

We aim to determine whether or not lynx1 binds to nAChR at the agonist-

binding interfaces (as αBtx does) and to identify the number of lynx1 binding 

sites per receptor.  Once the broad regions of the binding site are located, we 

hope to focus further on specific binding residues using site-directed 

mutagenesis. 

 

A5.2 Progress 

Western blot analysis of separate membranes from Xenopus oocytes 

injected with lynx1 with an N-terminal HA tag showed that lynx1 was expressed 

on the membrane on the oocytes.  There is no direct readout on the expression 

level or the function of lynx1, which makes this project very challenging.  Many 

different constructs of both lynx1 and α4β2 nAChR were tested.  Both pDH and 

pGEMhe were used as expression vectors for lynx1.  The expression efficiency of 

the pGEMhe was presumed to be significantly higher than the pDH.  We 

experimented with rat wild-type α4β2, rat α4(L9’A)β2, and chick wild-type α4β2 

at numerous α4:β2 mRNA ratios in conditions with and without calcium ions, 

with and without atropine.  Results from electrophysiological experiments 

indicated that lynx1 did not significantly affect the function of the α1β1γδ 
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(muscle-type) or the α7 (neuronal) nAChRs, while it affected the stoichiometry of 

the α4β2 neuronal subtypes, as indicated by ACh dose-response curves.  

However, oocytes expressing α4β2 and lynx1 showed α4β2 stoichiometry 

preferences similar to those of oocytes expressing α4β2 and a control peptide — 72 

random amino acids with a C-terminal GPI-signal sequence.   

 

A5.3 Future Direction 

Due to the small size of the lynx protein, it is possible that too much lynx1 

mRNA was injected into oocytes, overwhelming the translation machinery in a 

non-specific manner.   This could explain the similar effect observed between 

lynx1 and the control protein on the α4β2 stoichiometry preferences.  One could 

possibly experiment with 10-100 fold less mRNA.  It would definitely be wise to 

probe for the lynx-binding site on nAChRs (or other Cys-loop receptors) with a 

fixed stoichiometry. 

 

A5.4 Methods 

The molecular biology and electrophysiology protocols used in these 

studies can be found in Chapter 2. 
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