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ABSTRACT

Landau and Slepian [10] have recently obtained a lower bound for-
the probability of error for any equienergy signal set in the infinite
band Gaussian, additive noise channel. They further claim that the
regular simplex signal set achieves equality in their lower bound and
thefeby proves the optimality of this set,

In the following paper it is proven that the simplex signals
achieve equality in the lower bound of Landau and Slepian only when
the dimension n 1s less than or equal to three. There is also
shown to be an equivalence between certain optimal signal sets for the
phase coherent channel described by Landau and Slepian and certain
optimal signal sets for the incoherent case Which have been recently

discovered by Schaffner and Krieger [11] and [12].
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INTRODUCTION

Ever since Shannon's introduction [1L] of the geometric represen-
tation of communication systems, there has been much effort by both
communication engineers and mathematicians to solve the related
geometric problem of finding sets of signal vectors which are optimal
in the sense of minimizing the probabllity of error in the communica-
tion channel, Most of the work has been directed at the gaussian
additive white noise channel with the signal vectors constrained to
have equal energy.

However, to this day almost nothing is known for certain about
such globally optimum signal sets, while almost all the successful
efforts from the geometric point of view have been concerned either
with asymptotic results [15], [1], [18], [7] with showing that cértain
signal sets achieve local optimums [1], [8], [13], [16] or with simply
evaluating the performance of particular signal sets [5].

Renewed interest in this field has recently been generated by
ILandau and Slepian [10] who obtain a lower bound for the probability
of error for any set of signals based upon a difficult generalization
of a theorem by L. Fejes Toth [4]. ILandau and Slepian further claim
that the regular simplex signal set achieves equality in their lower
bound and thereby proves "the long conjectured fact that the regular
Simplex is the code of minimal error probability for transmission over
the infinite band Gaussian channel." In this paper it is proven that
the simplex signals achleve equality in the lowef bound of Iandau and
Slepian only when the dimension n is less than or equal to three.

Toward this end a formulation of the signal selection problem for the
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phase coherent additive noise channel is developed using the notion
of spherical caps.

A similar formulation of the signal selection problem for the
phase incoherent additive noise channel is developed using spherical
caps. This latter formulation is used to show an equivalence between
certain optimal signal sets for the coherent case described by Landau
and Slepian and certain optimal signal sets of the incoherent case
which have been recently discovered by Schaffner and Krieger [11], [12].
In fact, it is shown that the coherent case in three dimensions is
equivalent, in a certain sense, to the incoherent case in four real

(or two complex) dimensions.
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CHAPTER I. THE PHASE COHERENT CASE

1.1. The Problem.

The coherent, additive noise signal selection problem can be

posed in the following way. Iet {s,}u

= be a set of M vectors in
—i/i=1

n dimensional Euclidean space En. When the transmitter wishes to
inform the receiver that the ith message has occurred he sends the
vector 8y to the receiver. The receiver observes a vector r which

is the vector 55 corrupted by a noise vector n so that r = s.

L
i —

The receiver then makes a decision as to which one of the M ﬁessages
occurred, based upon the observation r., The criterion usually used to
judge the quality of a transmission scheme is the probabiiity that the
receiver makes the correct decision, the probability of being correct
Pc’ or equivalently the probability that the receiver does not make
the correct decision, the probability of error Pe' These quantities
are of course related by Pc - Pé = 1., An optimal scheme is one that

maximizes Pc’ or equivalently minimirzes Pe’ and an optimal set of

signals is one that is used in an optimal scheme.

1.2. Decision Rule,.

For a fixed set of signals, the receiver must use a decision pro-
cedure which maximizes Pc if the scheme is to be optimal. The
réceivers decision procedure is equivalent to partitioning the oo
space of r-vectors into M disjoint regions 5 whose union is E
Then if a vector r falls in decision region (Eei’ the receiver de-

cides that the ith message has occurred. Thus if PT(E/Ei) ‘represents

the probability density on r when S5 is the vector transmitted,



then

2, =) [ Erle/ey) mey) avie)
i (531
where P(Ei) is the probability with which the ith message occurs and

dv(r) is the n dimensional Euclidean volume element. But

P, =>: [ Pr(z/s;) P(s;) av(z) sfmg,x {Pr(z/s;) B(s;)}av(z)
3 1
i, .
al

with equality if the decision regions (EEi are defined such that

]

e@R; = Pr(z/s;) Ps;) = Pr(z/s;) P(s;) 3 =1, ==+ M

for 1 1, e+ M,

Il

>

1.3. Assumptions,.

In the following we shall consider only a special class of the
above problem. Namely we shall assume equiprobable messages, equil-

energy signal vectors, and spherically symmetric, monotone decreasing

1

==

noise. Equiprobable messages means that P(ii) iwdy wed M,

Equienergy signal vectors means that “EiH =K 1=1, *++ M where

-]

the components of the n dimensional vector t. Without loss of

n
is the Euclidean Z2-norm, That is HEHZ = E: ta.2 where tj are
=L

generality in what follows we may assume that E = 1 so that Hii” & 1
i:l’ e M,

Spherically symmetric noise means that the probability density of
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the noise Pr(n) is a function only of the norm of n, so that
2 ; ‘
Prln) = f(“ﬂ“ ). Monotone decreasing spherically symmetric noise

means that f 1is a monotone decreasing function of ”2”2-

1.4, Description of Decision Regions,

With these assumptions we see that the formula for the density on

r gilven that the ith message occurred is

2
Pr(x/s,;) = £(lz-s,|1%) .
Further the condition that
re@R; = Pr(zfs;) P(s;) > Pr(z/s;) B(sy) 4,3 =1, *** M
is then equivalent to
- E(Eei = ”E’EiH = HE?EJH i,3=1, *=== M
But “E-EiH2= HEHZ- 2¢x,s;7 + 1 where <(-,°) is the Euclidian 2-inner
n
product, such that <(t,w) = E: tjuj where tj and uy are the
=1

components of the n dimensional vectors t and w. Thus the

condition becomes eqguivalent to
r 6@-1:’ <£,§i> & <Lij> i, =1, = M

If the halfspaces Hij are defined by



Hij - {£| <£’.S_l> & <£’§-J>} 1,i=1, =+ M

then a sufficient condition that (Eei are chosen to maximize Pc

for a fixed signal set is that

% m
=) = N 1 = ses
R, >R, N H, =1, M .
=1
his
We note that this implies that(aea differs only in a trivial way
M
* *
from(EE; since U 6531 exhausts all of E except for portions
i=1
of regions of the kind B = ££'<£;§i> = <£>§d>} which have no n

dimensional volume, so that

de(E) =8 .
B

Thus these left over regions may be arbitrarily assigned to any
decision region without affecting Pc.
. * 3 -
We note that the regions GEEi are convex and radially invariant.

*
Convex means that if El and 22 are elements of (521 then

3 0 * - -
Ar, + (l—)\)gz_‘_2 is also in (R 4 Tor every O < ) < 1. This is because

*
each halfspace Hij is convex and thus G;Ei , an intersection of

halfspaces, must be convex. Radially invariant means that if r 1is

¢ *
an element of (Eei then or is an element of G;Ei for every o > 0.
Again this follows because each half space Hij is radially invariant
* - . .
and thus (aei , an intersection of halfspaces, must be radially

invariant.
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1.5. An Alternate Expression for P .

(&4

Using our knowledge of the decision regions and our assumptions
about the noise density we can derive an alternate expression for Pc
by considering the integration over En to be first an integration
over the surface of an n dimensional sphere in E® and then inte-
grating over all radii for the sphere. That is, if we let r = [z,
then dv(r) the n dimensioﬁal volume element becomes dS(r)-dr
whefe dS(E) represents a surface element of the n dimensional

sphere of radius r. It is geometrically evident that dS(r) = gt

£ T

dS(E) where dS(%) represents a differential surface element on the
n dimensional sphere of radius 1. Alternately, this result may be
derived in a completely analytic way by the use of n dimensional

spherical coordinates as in Appendix I.

In any event we can write

P, = JLfof(llr-S H)ds() =
f Z] (z-s,?) @) = ar

where Ri is the reglon formed by the intersections of (Eei and the

surface of an n dimensional sphere of radius r, radially projected
onto the unit sphere, Note that Ri does not depend upon r because
of the fact that C;?i is radially invariant,

It will be useful to consider the expression inside the brackets

so let us define
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o) =25 [ llres® G
i E

and thus

@

P, = IU(r) rn_l dr
0

It is clear that if a set of signals can be found that maximize

U(r) for every r, then this set of signals must be optimal.

1.6. Characterization of Optimal Signal Sets by Landau and Slepian.

In what follows it will be convenient to let x represent a
generic unit length vector in En, so that ”EEH =1, Then U(r) may

be written as

u(r) = Z [ £(llrx-s;|1%) as(x)
i

R.
i .

Further, let us define the spherical cap of angle © about a

unit vector s to be
c (8) = {x|(x,s) > cos 8}

Landau and Slepian [10] have recently shown that among those
signal sets satisfying the constraints mentioned above, U(r) will be
maximized for each r if there exists a signal set, an angle @, and

a largest set K of (i,j) vairs satisfying the following conditions.



l IIIM

I

. cs_(¢) DRy : 4

2. Cg @) n Hji are congruent for (i,j) ¢ K and
—i

R; = Cii(¢) - g Hji i=1, «++ M where
JE 5
K, = {3l (3,1) e K}

3. Cii(¢) n Hyy n Hy; =& for every J £4 and (j,i) ¢ K and

(£,1) € K, where & 1is the empty set.
The proof that Landau and Slepian use is based upon the following
two facts which they prove, First, that for a given cap angle

® < x/2, that h = J( f(nrﬁ-ing) dS(x) is minimized over all
c,(6) ND

convex, radially invariant regions D for which

W o= Jr dS(g)

cs(e) N D

is fixed, by picking D +to be a half space not containing s,

Secondly, that if D 1s taken to be a half space not containing
s, then h may be considered as a function of w and h(w) is
convex upward.

ILet ¢ represent the surface content of a particular cap C

about a vector s and SP represent the surface content of the unit

c = ,[- as (x)

HO

sphere so that
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e [

Then Iandau and Slepian show that a general upper bound for

U(r) for any set of M signals is given by

Mc-s
MU(r) < M f £(|lzx-s|l) as( x) - 21511(—2:&—P
c (9)

where 2k represents the total number of hyperplanes necessary to form
the boundaries for each of the decision regions Ri. This formula is
valid for aﬁy cap for which 6 < n/2 and Mc - sp 2 0. Furthermore
the right-hand side of the equation is monotone increaéing in k and
equality holds in the equation if and only if the three conditions men-
tioned above are met. We can relax f to being non-increasing

with the result that the three conditions are still sufficient but no
longer necessary for equality in the above equation,

Landau and Slepian further claim that when M =n + 1, the regu-
lar simplex signal set of n+ 1 vectors in n dimensions satisfies
the three conditions necessary for equality in their upper bound, when
the k Dboundaries are taken to be the hyperplanes equidistant from

each pair of signal vectors. We will now show that this claim is true

only for n < 3.

1,7. The Regular Simplex Signal Set.

n+l .
The regular simplex signal set Lii} of n+ 1 wvectors in n
i=1
dimensions is uniquely defined by the following equations [17].



ls;ll =1 i=1, ¢+, n+l
(gi,gj) = - % L#d Ld=1; o+ , ml

Furthermore, it is easy to show that

n+1

) 2 =0

i=1

but that any subset of n simplex vectors is linearly independent,
We would now like to characterize the spherical decision regions
R., which are the radial projections of the optimal decision regions
(52* onto the surface of the unit sphere. Because of the fact that
(Ee* is convex and radially invariant, Ri has the property that if
X. € Ri g =4y e k and .aj J =1, *** k are positive constants,

—J
then the vector

. X,
Jd —J

DICHEN

Iet us refer to this property as spherical convexity.

Thus it follows that thgre are certain extreme vectors whose
spherical convex combinations generate Ri . That is, Ri is the
spherical convex hull of these extreme vectors, and furthermore no

extreme vector is expressible as a spherical convex combilnation of other

extreme vectors.
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*
We may thus characterize the regions Ri for the regular simplex
signal set by their extreme vectors.

*
Theorem: The extreme vectors for the region Ri for the regular

n+1
j=1 °

J#i

simplex signal set is the set of n vectors {-Ed}

Proof: We first note that if x is of the form

n+1

z= Z o;(-5;)

J=1
i#
where ay > 0 j=1, »=+ml j#i

then  (x,8;7) - G680 = (6,54-5)

= 0By 85780

=%F+%
> 0 for k#£1i

Hence x ¢ H;, for every j £ i

J
n+l
DX g ; = N H1J
j=1
5
*
= e Ri

Thus we have that the spherical convex hull of the given vectors
*
is a subset of Ri .
To show the converse we note that since {ii}z—l are n

linearly independent vectors in n dimensional Eucllidian space

we can represent any x in the form



A3

(-5,
(-55)
3=1
for some constants B, for J =1, *** n,
J
we can replace ('El) by
n+1

(s1) == ) (-g;)
i=2

to yield
n
x =) (ByP(s)) + (8) 5,
j=2
n+l

]

Z B;(-;S_j)
j=2

It Bl < 0 then

1 1
i . e N .
where Bj Bj forr 3 2 n and Bn+l > 0., Similarly if
t
52 <, -8, can be replaced by
n+l
(-55) == ) (=5,
j=1
fe
to yield an expression for x in terms of {—gj}?ti in which
ife
all the PB's are increased, Proceeding in this manner, all
negative PB's can be eliminated to yleld an expression for x
of the form
n+l
X = ad.(-5.
x= ), aylsy)
J.z
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for some i, where oy = 0 j=1, ** m+l j #£ i, Thus the
spherical convex hulls of the given sets of vectors exhaust the

surface of the sphere which implies that the open convex hull of

n+l * @
the vectors {"Ej}j—l is R; . Finally we note that the set
J#
{-Ej}§fi' is linearly independent, so that in particular no
Ev
vector 1s a spherical convex combination of any of the other
vectors in the set.

3
Thus we have a characterization for the Ri in terms of the set

n+1
=1

where the regulaf simplex signal set derives i1ts name from, The convex

of extreme vectors {1§j} This characterization in fact suggests
hull of any n+l non-degenerate points in n space determine a convex
n dimensional polytope called a simplex [ 3], In particular, the

set {—Ej}?:i determines a regular polytope called a regular simplex -
centered at the origin, The regular simplex signal set is then the set
of n+l vectors which pass through the center of the n+l faces of the

polytope. A face is an n-1 dimensional polytope formed by the

convex hull of a subset containing n of the points,

1.8. Iandau and Slepiank% Conditions for an Optimal Code as Applied to

the Regular Simplex Signal Set.

We are now ready to investigate the applications of Landau and
Slepian's conditions for an optimal code to the regular simplex signal
set. We first note that the second of the three conditions mentioned
above is trivially satisfied by the total symmetry of the simplex set.

We further note that if the angle ¢ in the first condition is taken



* *
equal to © defined by cos @ ==, then the first condition will

be met also., This follows since each of the extreme vectors

{-s

n+1l
i—j}

j=1
i

* *
of Ri makes an angle ©6 with 858

*
= cos ©

=l o

<-§-i’ ('E’_j)) =

” :
Thus the cap of angle &  about 545 which is spherically convex,
* *
contalins the extreme vector of Ri and hence must contain Ri 5
*
We next show that ¢ must be taken at least as large as 6 to

satisfy condition 1.

Theorem: If @ = e* - & for 0<8 < e* < % then
n+l
(U e, (B nc (s) - 2.
j=1 =j —1
Proof: We first note that C_ (@) Nc _ (8) = @
SEPoT s -
—L —L
since x e Cg @) = (,8;7 > cos § >0
and x e Cg (8) = <§3_§l> > cos § = <§;El> <~ cos § <O,

-1
We next show the Impossibility of having

xeC, (P Nnc_  (8) forany j#1.
= i

X e qu(¢) = {&,5;) > cos §

x e C, (&) = <§b'§l> > cos &

=1
Adding sin § times the first equation to sin ¢ times the

second yields
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sin o = sin(@+8) = sin § cos @ + sin @ cos § <

(x,sin 6 5y + sin ¢(-§l))
but by the Schwartz inequality we have

(x,sin & 55 - sin ¢51.> < ||sin s 55+ sin ¢(—§l)H

1

Vsin®s + sin2¢+ 2 sin § sin @ cos i

\/sin26 + sing(e*-a) + 2 sin § sin(e*—é) cos ©

* * * *
\/sin26 i {'_sinze cos? s+ cos20 sin26—231n9 cos® sindcosd}

Il

* * *
+ 2{sing cos® sinscos5-cos>o sinzé}

| * *
\[singa + sin2@ coszé - cosze sin25

* *
\/sin28 sinzé + sinze cos26

Il

. *
= sin ©

Hence any X e C_ (g) N C_g (8) for j # 1 must satisfy
55 By

sin 8 < (x,sin § 54 + sin ¢(-—51)) < sin ©
which is of course impossible, Hence we have

C (¢)nc (6) =@ for j :l’ ess 1]
= gt

n+l

= {351 c_s_j(¢)} n 0-31(6) =8



x
* i X
Thus if @ 1is taken less than © we find that C§_ (%) o Rj for
I %
=1, *** ntl 1is impossible since the union of the Rj covers the
entire surface of the sphere except for a region of zero content.
We now investigate the possibility of simultaneously satisfying
the third condition for an optimal signal set. Iet us consider the

~

particular vector s given by

8. + 8 + 8
= W Tor #H2 3

lsg + 55 + 55l |

w>

The angle €& that § makes with s

s 5y 1s given by

It will be helpful to first prove the following result.

Theorem: If @$ =86+ 8§ for & >0, then cy(8) = c (8).
"““’”‘_' =1

Proof: We will show that the complement of Cs (@) intersected with

—_—

Cg(&) is void. Again we consider an x 1in the intersection

—

1™

e complement C,_ (@) = (;_E’E_l) < cos @
By

.

€ Cg(&) = {x,8) > cos §

Thus adding -~ sin 8 times the first equation to sin @ times

the second yields

sin 6 = sin(@-6) = sin @ cos § ~ sin § cos @

<(§J sin @ 8 - sin 651)
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Again using the Schwartz inequality we find

(g,8in B8 - sin 8 5,) <|[sin #§ - sin 6 5|

\/s:‘mza + sin2¢ - 2 sin ¢ sin § cos ©

~ ~ I\\
\/sinzﬁ + sin2(8+6) - 2 sin(6+8) sin & cos B

1

~ ~ ~

8sins+2sindeos @singcoss}

\/sin25 5 {s:i.nzecoszéﬂ:os2

- 2{sin6cos@sinscos Mcoszesinzé}

~

\/sin26 + sinze c0326 - cosze sinza

\/;inge sinzé + sinZG cosza

= sin ©
Thus we again have an impossible condition that

~

sin 6 < (x, sin ¢ § - sin 6_3_1)551118

and hence Ca(%) < c_ (5)
i By

It is further evident by the symmetry of the vectors 81 5o

§_3 and _§_ that under the conditions of the above theorem

Cg(ﬁ) < Cg (@) and Cé(é) < Cg (§). If we are given an angle & such
2 Eo 2 23
that 0 < § <=, let us determine what part of the cap Cg(é) lies in

the intersection of the two half spaces H and H

21 31°
Theorem:
[ dS(_:_c_):% f as (x)
gﬁ(s)ﬂﬂzlnHBl gé(e)
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Proof: We shall use the invariance of the surface integrals under

rotation to obtain a convenient parameterization. cg(a) is

defined by the vector § and H,, and H are defined by

1 31
g2 = 8By BB
the vectors 221 = e and 931 = —=———— respectively.
HEZ"_S_J_H \LS_S "_S_l“
We note that g is perpendicular to both 321 and 231. With-

"out loss of generality, then, we may let

(1.70, BSSz 2 O}O)O)

R L
1l

h, = (0,0, **+ , 0,cos8,sing)
by = (0,0, **+ , 0,cos®,-s5ind)

where © 1s determined by the inner product of 221 and 231

as

2 . 2 1
cos 20 = cos O - sin 9 = QEZl’E3l> =3

or 20 = radians. Ietting x be defined as

wla

= (Xl’xz’ Tt Xn-Z’Xn-l?xn)

and using the n dimensional spherical coordinates of

Appendix I, we find

Xl = CO8 el
Xnml = sin 61 sin 92 see gin en_z cos en-l
Xn = gin el sin 52 ees gin en_2 sin en-l



where O < Si <q for 121 2, 9% n-2

and -t < @ <1

n-1

n-2 n-3

and dS(x) = sin 6, sin 8, ++* sin 6, d6,d6, +-+ a6,

The cap C§(6) is thus defined parametrically as

cg(8) = {x[o; <8}

and the regions Hzl and H31 intersected with the unit
sphere by

Hyy = &glcos © cos 6, + sin § sin 6, > 0}

Hy = {x|cos 8 cos § , -sin®sine . >0}

or H21 {Elcos(en_l-G) > 0}

H3l

il

{E[cos(en-l+8) > 0}

Hence the region of intersection is given by

HalﬂH21 = {Elcos(en_l—e) >0 and cos(en_l+e) > 0}
5 1S
o gy = El-z-9 26,5 <5 -8

but since 6 = % this becomes

T 7C
HpyMHy = fxl -3 <8,y <3}

Hence we calculate



2L

qé(e)nHZlanl
/3 = T8 2 ne3 -
= .jr _jﬁ---_jﬁ jF31n6151n92-'~81nen_2deld82---den_zden_l
-1/3 0 0 0
T 8
_..J_'. se e . -2 'n-z ss 8o .o
== .[i jr sin 6151n 82 51n8n_2deld92 den-z
-t O 00
den-l
Cé(é)

* ~
Finally we note the relationship between 6 and © in the

following way:

* 1
cos B = E

" 1 n-2
cos B = g - n

~

*
Hence © is monotone increasing in n while 6 1is monotone de-

creasing in n, Furthermore when n = 3 we find

Thus we have the following facts: The angle ¢ must be taken at
" ,
least as large as © to satisfy condition 1. If n is greater than

*
3, then 0 is strictly less than © so that if @ is chosen to

satisfy condition 1, then there exists a & such that
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Cg(é) < C, (@). Under the above conditions we have therefore
- =1

C§1(¢) N Hy N Hyy D C(8) N Hyy NEy

so that

f as(x) = 3 f as(x) >0 .

cil(¢)nH21ﬂH3l c_ (s8)

Thus if n 1is greater than 3 and ¢ is chosen to satisfy
condition 1, then condition 3 cannot be satisfied.

Hence we have proved the result,
Theorem: The sufficient conditions of Landau and Slepian for the
existence of an optimal code are not met by the regular simplex set

of n+ 1 vectors in n dimensions if n 1is greater than 3.

1.9. Some Conjectures.

There are thus three successively stronger conjectures concerning
n+ 1 signals in n dimensions which remain unresolved.

Conjecture 1l: The simplex signals are optimal for the gaussian white

noise additive channel, when the signals are constrained to be equi~
probable and equienergy.

Conjecture 2: The simplex signals are optimal for the additive noise

channel with any spherically symmetric, monotone decreasing noise
density, when the signals are constrained to be equiprobable and
equienergy.

Conjecture 3: The function U(r) defined above is maximized by the
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simplex signals for the function f monotone decreasing, when the
signals are constrained to be gquiprobable and equienergy.

Iet us define any noise density of the form
k |nll <r
Pr(n) = - ©

- 0 lall = =

as a spherical ball density. Then since any spherical ball density
can be uniformly approximated by a sequence of monotone decreasing
densities and since any monotone decreasing density can be uniformly
approximated by a sum of spherical ball densities, we have that
conjecture 2 will be true 1f and only if the following conjecture is
true.

Conjecture 2': The simplex signals are optimal for the additive noise

channel with any spherical ball noise density, when the signals are
constrained to be equiprobable and equilenergy.

Furthermore, if the noise has a spherical ball density, then the
function f 1in conjecture 3 will be of the form
2 §§J§i> > cos e(r,ro)
£(llrx-s,1) =
0 <§5Ei> < cos e(r,ro)
for some angle e(r,ro) which can be determined graphically from the

following diagram:
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Figure 1, Graphical Determinatioﬁ of e(r,ro) for ro < 1 and T, >

That is, f is of the form

C|x meo, (o)
f(HTE'EiH ) = 0 otherwise

where e(r,ro) can clearly take on any value between O and =x.
Hence it follows that conjecture 3 will be true if and only if the
following equivalent conjecture 1s true.

Conjecture 3': The simplex signals maximize




VC(G) = f dS(x) for every © between O and =«
c(e)
n+l

where C(8) = U CS'(G) over all signal sets such that Hst =1
=1 =J
for J = 4, "% el
Conjecture 3* has the interesting property that the dependence
upon decision regions has been supressed, although 1t 1s not clear
that this makes the problem any simpler to solve.

The current state of knowledge of conjecture 3' can be summarized

in the following diagram,

/vc(6)=(n+l) C;{;)dS(E)

- -

ﬁ/,/’/’/f Tvgie) = [as(x)
/

v4(8)

@
ol
D =+

*

nla 4

=5

il | IT i IIT

o] =

. *
cos 6 cos B = £ et cos O =
o) 2 n ,

BlH

Figure 2. Graph of vc(e) for the Coherent Channel,

Regions I and IIT are where conjecture 3' is known to be true and
region II is where the conjecture is as yet undecided. For 0 Dbetween

0 and 6, vc(e) satisfies the bound
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v(8) = (n+l) s (x)
C
5. (0)

~

that is, the caps do not intersect. Between E and ©, Landau
and Slepian's bound can be used to show the optimality of the simplex
signals, since the parts of a cap cut off by the hyperplane boundary
regions are non-intersecting. For 6 greater than 8*, we again
have that the simplex signals are optimal since vc(e) satisfies the

bound

v = [ 5@

For © between 6  and 6, the caps intersect each other at

: *
most two at a time, while as © 1is increased from © to 6, the
caps will intersect first three at a time, then four at a time, etec.,

*
until finally just before 6 they intersect n at a time,

~

S
For n=3; 6 =28 as we have already noted, so that region IT

~

is void and the conjecture is true. However, as n increases 8
- L
monotonely decreases until cos 6 = = or 8

3

5
* *
monotonely increases until cos 86 =0 or & = 90 .
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CHAPTER II. THE PHASE INCOHERENT CASHE

2.1, The Incoherent Additive Noise Channel.

The incoherent additive noise channel can be modeled analogously
to the coherent additive noise channel except that now the signal,
noise and received vector are vectors in Cn, the n dimensional
complex space. Furthermore the channel in addition to adding the
noise n to the transmitted signal s performs the following

operation

where 6 1is a random variable uniformly distributed between -n and
x [171) [9].

We shall again consider a set of M equiprobable signals
[Ei}ﬁ_l and without loss of generality in what follows, we shall

again restrict the signals to have unit energy. That is, H§¢H =1

9 n
for i =1, «** M where ”Ei” = E: =

and si. are the
it J

complex components of 5;e

We wish to consider only certaln nolse densities, As before, we
shall require that the noise density Pr(n) be spherically symmetric.
Thus

Pr(n) = &(|la/|®)

for some function g. Hence we can write the conditional density on r

when s 1is given as
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i
|

Pr(z/s) :anf Pr(z/s,8) a9
=7

T
L
= 5= Ig(\\r—se H ) de
-1
b
1 2
- 2w Ig(‘lf“ + 1 - 2(r,s) cos B) ds
-1
< *
where <£;§_> = Z rjsj and rj and S:| are the components of r
=l

and s respectively, and Sj* denotes the complex conjugate of s
Pr(r|s) is therefore a function of only r = [z and I(%— r,s)|,
say h(r, l (—i‘; _1_‘)§_)|) The other restriction we wish to place upon the
noise is that for each r, h(r,y) will be monotone increasing in vy
for 0 < v <1, This will be true if g 1s required to be convex up-

ward since

7T
bl v) = %— f e Zry cos 8) ds
s /2
= 3= f [g(rz + 1 - 2ry cos 8) + g(r2 + 1 + 2rvycose)]ds
-1t
and thus

1(/2 :
i Hir,v) = %—ﬂ f -2rcose[g‘(r2+l—2r\{cose) - g'(r2+l+2rycose)] ds
-1t/2 ]

and the right-hand side is positive for O =< vy < 1 because ‘cos 08>0
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in the interval jﬁ/z to x/2 and g'(xl) < g’(xg) for x; <x, by
the convex upward assumption or g. In particular the complex gaussian
white noise process satisfies these properties [6-].
When h has the monotone property, it follows in a manner
analogous to the coherent case that the optimal decision region(EE;

for deciding that 5; was sent will be defined by
re@R; = s> I(g,_s_jﬂ i,3=1, ese M
Or if the halfspaces Hij are defined by
By = zlms)] > Kos )l 4,321, oo

then the optimal decision regions may be defined to within trivial

differences by requiring

" M .
@iaﬁi = U H, i=1, o+ M
J=1
J#
- * > y - -
The regions (EEi are radially invariant but not convex.

If we define the sets
S.={l_35=se -t < 6 < 1} i=1, +++ M
then the optimal decision rule has the following. intuitive explanation,

Decide s; was transmitted if the distance from r to Si is less

than the distance from r to Sj for all j # i.
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2.2, An Alternate Expression for P for the Incoherent Case,

Because of the radial invariance of the regions (Eei* we can
change the volume integral expression for the probability of being
correct Pc into first an integration over the surface of the unit
sphere and then a radial integration. If we let x again.represent a

generic unit length vector, then we have

P, = % Z j- h(r, <-}£J—S-—i>) av(x)

@ M
1Y [rmleeh sw e
0 i-1 R,

i
where dV(x) and dS(x) are analytically defined in Appendix IB and
Ri is the radial projection of(EE& onto the unit sphere in o

Thus defining

UOEEEY

f n(r, [$x,5,01) a8 (x)
i=1

R.
i

Pc for the incoherent case may be written as

M

(==]

P =fU(r) el

0

2.3. Conjectures for the Incoherent Case.

Our interest is in the long standing [13] conjecture that when

M = n, the orthogonal signals defined by

5, = (3,0,*+* 0,0)
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(0,1, +++ 0,0)

- (0,0, vee O,l)

(7]
I

are optimal in the following sense:

Conjecture L4, The orthogonal signals are optimal for the gaussian

white noise additive incoherent channel, when the signals are con-
strained to be equiprobable and equienergy.

From the above we see that conjecture 4 will be true if the
following is true,

Conjecture 5. The orthogonal signals are optimal for the incoherent

additive noise channel with any spherically symmetric, convex upward
noise density when the signals are constrained to be equiprobable and
equienergy.

Furthermore, conjecture 5 will be true if the following is true.

Conjecture 6., The function U(r) ebove is maximized by the orthogon-

al signals for the function h(r,y) monotone increasing in vy for
0 <y <1l for each r, when the signals are constrained to be
equiprobable and equienergy.

If we define a cap of angle © about a vector s for the

incoherent case by
QE(G) = {x]4x,s)| > cos 8}

then by the monotone property of h we immediately get that conjecture
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equivalent to the following.

Conjecture 6'. The orthogonal signals maximize VI(B) = J[- as (x)

c(e)

n
for every © between O and x/2 where C(8) = U Cg (8) over all

J=L =J

signal sets such that Hsj” =1 for j =21, *** M.

by a

|

vy(6)

We can similarly define the state of knowledge of this conjecture

diagram.

| &=

| T ———
Zsbaam s i e

vI(e) =n c;(;) as(x)

i I —+ 8
ﬁ s
I i Jal I IIT “~=4
cos e* = .
n

Figure 3. Graph of vI(G) " for Inccherent Case,

Regions I and III are where conjecture 6' is known to be true and

Region II is where the conjecture is as yet undecided. For 6 between

0 and x/U VI(G) satisfies the bound

That

*
& d

v, (8) =n f ds (x)
Cs_(e)
=i
is, the ‘caps do not intersect as can be easily verified. Between
4

*x
efined by cos 8 =-= and x/2, VI(e) satisfies the hound
# .
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V(o) - [ast0) .

That is, the union of the caps covers the entire surface of the sphere
as can again be easily verified,

However, as © increases from /4 to e*, the caps intersect
each other first two at a time, then three at a time, etc., until just
before G* they intersect each other n-1 at a time and no general
results are known in these regions, This behavior, in fact, is com-
pletely analogous to the behavior of vc(e) in the coherent case.

Furthermore, even if the analogue of the two facts which Landau
and Slepian [10] wuse in their paper could be proven for the incoherent
case, it would only show the optimality of VI(G) for © < 6 defined
by cos 6 = " where intersections occur at most two at a time, This
would, of couise, not be sufficient to resolve conjecture 6'. We note,
however, thet 37 h=3, $hen G= 8 8o Ghat b weulsd ssbablisn
the conjecture for n < 3.

We further note that if n = 2, then © = n/b and thus the
conjecture is trivially true, which establishes the optimality of 2
orthogonal signals for the incoherent case. Surprisingly enough a
proof of this result seems to have been first published by Schaffner
and Krieger [11] as late as 1968, although work by Helstrom [ 8] in

1955 strongly implied the result for the gaussian case,.
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CHAPTER III. THE REIATION BETWEEN THE COHERENT AND INCOHERENT CASES

3.1l. The Relationship Between the Incoherent Case with n = 2 and

the Coherent Case with n = 3,

The recent work by Schaffner and Krieger [11] proves the optimal-
ity of certain signal sets with M =2, 3, 4, 6 and 12 for the inco-
herent case with n = 2 by showing they maximize U(r). These are,
in fact, the same values of M for which Landau and Slepian were able
to find optimal signal sets for the coherent case with n = 3.

We will show that this 1s more than mere coincidence by demon-
strating a direct relationship between the incoherent case with
= 2 and W sohemend sage Wilh K = 3 in terms of conjecture 6

and conjecture 3.

i, 1 ; . <
Theorem: If x = (cos 8 e, sin 6 e B) is a generic unit vector in
2 = . . s «
C” and x' = (cos 8', sin ©' cos @', sin 6' sin @') is a generic

3

unit vector in E-, then the transformation

8§89
-8 — o

B =g
24~ ¢

maps CS(¢) into CS,(¢') and

as(x) into f aS(x') ag'

Proofy If x= = {ces @ eloa sin © elB) and s = (cos 6,e l, sin 6.e

i ip,

)



35

then |{x,s)| > cos § becomes

% {1 + cos28cos28, + sinﬁesinzel[cos(a—ﬁ)cos(al—Bl) +

1

sin(a—B)sin(al-ﬁl)]} # cosgw

or (x',8') > cos #' where

x' = (cos 8', sin 0' cos o', sin ' sin a')

[}
Il

5 (cos 8", sin 8,' cos o', sin §;' sin o, ')

and from Appendix I

dS(x) = sin 6 cos 6 d6 dx 4B

]

i sin o' de' an’ ap'
= i- as(x') ap*
Thus by observing the form of conjecture 6 and conjecture 3 we

have the following theorem.

Theorem: {Ei'}g_l is an optimal signal set in the sense of maximizing

U(r) for the coherent case in E3 if and only if the signal set
Lii}g—l is an optimal signal set in the sense of maximizing U(r) for

the incoherent case in 02 where s; and iit are related by

ic, iB.
s, = (cos 6,e T, sin 6.e )
—1 alf ? i
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o _ . _ . . g
s;' = (coszei, sin2@, c:os(a:.L Bi),smzeism(ai Bi))

and the signals are constrained to be equiprobable and equienergy.
Proof: Obvious.

Thus for each value of M the above transformation must map the
optimal signal sets found by Landau and Slepian into the optimal signal
sets found by Schaffner and Krieger. This can, in fact, be directly
verified. In particular, consider the case of M = 2. Then the

optimal signals for the coherent case are given by

El' = (1,0,0) = (cos 0, sin O cos al', sin © sin al')

_2' = (-1,0,0) = (cos =, sin = cos az', sin =« sin az')

where al' and 32' are afbitrary and are trgnsformed into
ﬂ;l 0 ﬂjl @ igl
By = (e 5 0) = [cos ze ,slmze )
5, = (0, eiﬁz) = (cos % GLJZ, sin g eiBz)

which are the orthogonal signals with oy and 52 arbitrary.
It is another unresolvedAconjecture as to whether this close of a

relationship exists between t he coherent and incoherent cases in higher

dimensions,
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3.2, A Simple Proof of the Theorem in ILandau and Slepian's Appendix

C for the case of n = 3.

The transformation in the previous section section can be used
not only to map Schaffner and Krieger's optimal signal sets in C°
into Landau and Slepian's optimal signal sets in E3, it can also be
used to map Schaffner and Krieger's proof of optimality in Cz into
a proof of the optimality of the transformed signals in E3. In
particular, this will yield an alternate proof of the very difficult
general theorem in Landau and Slepian's Appendix C for the special
case of n'= 3. This will hopefully enable us to gain insight into the
methods of both pairs of authors., The theorem of interest is the one

which describes the particular convex, radially invariant region D

which minimizes

f £(|lrx-s)|%) a8 (x)

h =
Dngi(e)
when
W o= ds (x)
Dncii(e)

is held fixed. In Section 1.6 it was mentioned that the optimal D
is a half space. Hence let us first investigate what happens to h
and w when D is in fact a halfspace. The only fact that we will
need about f is that f(”rg—g“z) is increasing in (x,s) for each
fixed r. Hence let us put f(HrﬁfEHZ) = h(r,{x,s)) where h is

increasing in <§>§).
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If we parameterize Xx Dby

x = (cos 8, sin 6 cos @, sin & sin §)

and a halfspace Hi by

=s
e
l

{z](z,n,? > 0}
where

(- sin 8;, cos 8, cos f;, cos 6, sin @.)

then the region H; N CS(®) for 0 <@ < /2 1is given parametrically

-—

by
HiﬂCE(®) = {8, d|- sind, cos@ + cos?isinecos(¢-¢i) >0 and O < 6 < 6}
the range for @ as a function of e‘ is thus

- cos'l(TANeiCTNe) <@ - ¢l < cos'l(TANeiCTNe)

or BiL(S) < ¢ <B,, (8) .

iU(

Without loss of generality we can pick 8, = (1,0,0) so that

when D = H, we can represent h and w by

1
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® BlU(G)
h = h(r,cos 6) d@ dy(e)
0 BlL(e)
and
® Byy(0)
J( Jr dg dv(6) where v(0) = - cos @
0 BlL(e)

In general, when D 1is formed by the intersection of several half
spaces, say Hi for i =1, »»» p thenh and w are given by
® BU(S)
h = h(r,cos 6) df dy(8)
0 B(e)
and

B,(0)
ag dv(e)

6)

o L-__\(D

BL(

where there exists a partition [e(l),e(z), soe G(P)] of the interval

(0,8) such that

BL(e) = BikL(e)

and BU(G) = BjkL(é) for B(l"l) <8 = 9(1) i=1, %s% p

for some 1 and Jpee

Next we note that



d d -1

— = - = — . <

76, B,;(8) = 36, BlL(e) I5~ ©°8 (TANG,CTNG) < O

for - 0 < Gi < @, Hence it follows that if a single halfspace, say
H, 1is to also cut a region of content w off from the cap, then we
must have 8, >g, for i =1, *+* p. This is because the content of

i,
an intersection of halfspaces can be no bigger than the content of the
smallest intersection from any one of the halfspaces and we have just
shown that the intersection with Hi is decreasing as ei increases.

Hence let us compare
©)

h =fh(r,cos 8) {BU(e) - BL(e)} dy(e)
0 ,

with
@ BOU(B)
h(r,cos 6) 4@ day(6)

0 BOL(G)

when 90 is chosen such that

c) C)
W =f{BU(e) - By (e)} @ =f{BOU(e) - By(8)} av(e)
0 o)

We readily see that

aB. (6) dB, . (8) & )
—d_\—/l%_e)—:_TiWL_eﬂ)——z o i (TAN 6, CTN ©)

for B <08 <606
o



41

and the right-hand side

) N csc 6 TAN 6,

1 - TAN®6,CTN6
is increasing as ei increases, But remembering that eo > ei for

i=1, *+* p, we see that

rey Byl0)BL(0)) <m%{BOU<e)-BOL(e)}

~

for 6 > 90. Hence it follows that there exists a 6 such that

0 <8 <0® and that
BU(e) - BL(e) > BOU(B) - BOL(e) for 0 <86 <68
BU(e) - BL(e) < BOU(e) - BOL(e) for 6§ <6 <0,

Thus from a lemma which appears in Appendix A of Landau and Slepian's

paper we see that

)
fh(r,cose) {B;(8)-B(0)} - [B;(8)-B, ()} dy(6)
° €
>h(r,cose)f (By(0)-B ()} - (B (8)-B, (@)} dy(e)
0

>0

Hence we have proved that h is always smaller when D is formed by
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the intersection of a finite number of halfspaces and the regions have
the same content, The result for any convex, radially invariant D
follows since any such D can be uniformly approximated by a sequence
of sets, each of which is the intersection of a finite number of
halfspaces.

As we can see, the method of proof for n = 3 depends only upon
the ability to compare the derivatives of the boundaries BiU(e) and
B;;(8) for i=1, *+* p. It is not known, however, if this method
can be extended to higher dimensions in the incoherent case, or for
that matter, for the coherent case in any method different from Landau

and Sleplan's,



L3

3.3. Another Expression for P in Terms of V().

We have already noted that conjecture 3 being true implies
conjecture 2 is true and that conjecture 6 being true implies
conjecture 5 1s true. We are interested now in the converse
statements.

If we define

@

F(y) =_/-f(:c2 + 1 - 2ry) = g
0]
where f 1is the monotone function of conjecture 3, then we may express

the probability of being correct Pc for the coherent case as

M
Pc=%1 Z IF((§,51>) as (x)
i-1

R.
a1

Note that F is monotone in vy since f‘(r2 + 1 - 2ry) is monotone

in vy for each r. ILet us define Pc/i by

Pc/i =$ f F((X_,_§i>) ds (x)
J e By

and without loss of generality let 8 = (l, O, *** 0). Then using the

spherical coordinates of Appendix I

T
Pc/l =$ ‘[F(COS 8) dvl(e)
0]

where vi(e) is given by



o

wo - | s

Rincs.(e)
—i

Substituting into the original expression for II?c then gives

7

P =3 fF(cos 8) av_(e)

where v, (8) = Z ‘[ as (x)

i=l R;NC, (6)
g;

- f as (x)

M
U {R ne, (e)}
i=1
M
U ¢, (8)
i=1l —:L

That is, v_(8) is the same function as in conjecture 3' and which is

plotted in Figure 3.

Similarly for the incoherent case let us define H(y) by

o

H(y) =fh(r,v) rZ01 gy
0

where h(r,vy) is the monotone function in conjecture 6. Then we have

/a2 :
P = f H(cos 8) dvI(S)

c
0
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where H is monotone increasing and vI(e) is given by

we = [ s .

M
U ¢, (8)
i=1 =i

Thus vI(G) is the same function as in conjecture 6 and which is

plotted in Figure 3. Note that neither F nor H depends on the

signal set.

Integrating by parts, we get for the coherent case

T
1
P, =% _],F(cos 8) dvc(e)
0
T
= % F(cos 8) vc(e) +~jﬁF’(cos 8) sin © vc(e) as
0O ¢
T
- F(l) s_ + = F'(cos 8) sin 8 v _(8) de
M P M c
0
where Sp is the surface content of the unit sphere in En. Simil-
arly for the incoherent case we get
/2
. & . .
P, =% H(1) Spr +‘J( H'(cos Q) sin © VI(G) ae
0
where Spr 1s the surface content of the unit sphere in o,
Expressions for sP and Spr as a function of n are given in

Appendix IT,

Hence 1f we consider two signal sets, the first denoted by (1)

and the second by (2) we have for the coherent case
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o (1) _p (@) _
c (&4

_/FF'(cos 8) sin e{vc(l)(e) - VC(Z)(B)} ae
0]

=l

and for the incoherent case

/2 5
Pc(l) - Pc(z) = %‘jz H'(cos §) sin e{vI(l)(e) - VI(Z)(Q)} as

0]
whefe F' and H' are both positive, Hence we see that for a
particular F or H it is not necessary that v(l)(e) > v(z)(e) for
all & 1in order that Pc(l) > PC(Z). However, the inability to
describe the class of possible F's and H's makes it difficult to

say much more,
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APPENDIX I.

GENERALIZED n DIMENSIONAL SPHERICAL COORDINATES

Although there are many ways of generalizing spherical coordinates
to higher dimensions, the two that follow are sufficient for our

purposes.

A. Spherical Coordinates in E-.

Consider r = (rl,rz, s rn) with ||r|| = r. Then the
transfunction
rl = I CcOoS el
r2 = r sin el cos 62
rj = ¥ gin el sin 92 --f sin ej_l cos ej
rn—l = r sin Bl sin 62 s+ gin en_2 cos en—l
rn=1~mnelsu1% "-sulakzsn1%bl
B <0. <nx 1=4,2;, ves n.p
-t < Bn—l < 1t

changes dv(r) into
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} e dr

i

{sin® 20 sin™ 3¢, ++- sin_ .46.d0, +++ d@

av(r) 1 2 n-22"19% n-2

n-1 i

I
&
L]

where dS can be defined as the expression in brackets. This formula
can be verified by inductions by first noticing that for n =2 it

yields the circular coordinates

rl = P COS el
r,=r sin el - < 61 <
av = del rdr

If it is true for n =k, then apply it to the last k coordinates
kt1

for n = k+l with r2 = E: riz. Then applying formula for n = 2 to
1=2
rq and r yields the desired result,

B. Spherical Coordinates in C".

) JPq P, I, )
Consider r = (rje 7, re %, e+t re 7) with r, >0 and
T o= Hr” Then the transfunctions
ry =T cos Gl
r =

r sin el cos 92
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r, =1 sin Bl sin 92 ee*s gin ej_l cos ej

rn—l = r sin el sin 82 ese gin en_2 cos en"l
r, = r sin el sin 82 R AL R - i ) en_2 sin en_l
& <8; <mn/2 i=1,2, *** n-1

yields
av(xr) = dep dep, *+" dp ridry rodr, ecc r dr
2n-3 2n-5
= {d@ldwz sise d@n sin el sin 62 sws gy enul cos 91 cos 92 2o
Zn-1
lcos 6,_; 48,486, den_l}r dr
-3
= r2n - dr

where dS can be defined as the expression inslde the brackets. This

formula may also be verified by induction,
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APPENDIX II.

SURFACE CONTENT OF n DIMENSIONAL SPHERES

A formula for the surface content for an n dimensional sphere
can be readily found by a trick due to Courant [2 ] which also appears

in Coxeter [3 ].

A, Surface Content in En.

2
et = (rl,ra, wn s rn). Let us integrate the function e-“£l|
over all En. Thus
@ 2
2 n -,
s -j-e—“r” P+ g = T Ie *oar,
sy i=1 i,
1= -0
or the surface content Sp is given by
1a
KZ
8. = %
B r (% n)
B. Surface Content in ",
Using the same trick yields that the surface content Spt is
glven by
&2
8 = 2

or the same value as SP in Ezn.
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