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ABSTRACT 

landau and Slepian [10] have recently obtained a lov1er bound for · 

the probability of error for any equienergy signal set in the infinite 

band Gaussian, additive noise channel. They further claim that the 

regular simplex signal set achieves equality in their lower bound and 

thereby proves the optimality of this set. 

In the following paper it is proven that the simplex signals 

achieve equality in the lower bound of Landau and Slepian only when 

the dimension n is less than or equal to three . There is also 

shown to be an equivalence bet·1-1een certain optimal signal sets for the 

phase coherent channel described by Landau and Slepian and certain 

optimal signal sets for the incoherent case which have been recently 

discovered by Schaffner and Krieger [ll] and [12]. 
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INTRODUCTION 

Ever since Shannon's introduction [l4] of the geometric represen

tation of communication systems, there has been much effort by both 

communication engineers and mathematicians to solve the related 

geometric problem of finding sets of signal vectors which are optimal 

in the sense of minimizing the probability of error in the communica

tion channel. Most of the work has been directed at the gaussian 

additive white noise channel with the signal vectors constrained to 

have equal energy. 

However, to this day almost nothing is known for certain about 

such globally optimum signal sets, while almost all the successful 

efforts from the geometric point of view have been concerned either 

with asymptotic results [l5], [1], [l8], [7] with showing that certain 

signal sets achieve local optimums [l], [8], [13], [16] or with simply 

evaluating the performance of particular signal sets [5]. 

Renewed interest in this field has recently been generated by 

Landau and Slepian [lO] who obtain a lower bound for the probability 

of error for any set of signals based upon a difficult generalization 

of a theorem by L. Fejes Toth [4]. Landau and Slepian further claim 

that the regular simplex signal set achieves equality in their lower 

bound and thereby proves "the long conjecture d fact that the regular 

simplex is the code of minimal error probability for transmission over 

the infinite band Gaussian channel." In this paper it is proven that 

the simplex signals achieve equality in the lower bound of landau and 

Slepian only when the dimension n is less than or equal to three. 

Toward this end a formulation of the signal selection problem for the 
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phase coherent additive noise channel is developed using the notion 

of spherical caps. 

A similar formulation of the signal selection problem for the 

phase incoherent additive noise channe l is developed using spherical 

caps. This latter formulation is used to show an e~uivalence between 

certain optimal signal sets for the coherent case described by Landau 

and Slepian and certain optimal signal sets of the incoherent case 

which have been recently discovered by Schaffner and Krieger [11], [12]. 

In fact, it is shown that the coherent case in three dimensions is 

e~uivalent, in a certain sense, to the incoherent case in four real 

(or two complex) dimensions. 
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CHAPI'ER I. THE PHASE COHERENT CASE 

l.l. The Probl em. 

The coherent, additive noise signal sel ection problem can be 

posed in the following way . Let [~i}~=l be a set of M vectors in 

n dimensional Euclidean space En . When the transmitter wishes to 

inform the receiver that the ith message has occurred he sends the 

vector s . to the receiver . The receiver observes a vector _r which 
-~ 

is the vector s. 
-~ 

corrupted by a noise vector n so that r s. + n. 
-~ -

The receiver then makes a decision as to which one of the M messages 

occurred, based upon the observation r. The criterion usually used to 

judge the quality of a transmission scheme is the probability that the 

receiver makes the correct decision, the probability of being correct 

Pc' or equivalently the probability that the receiver does not make 

the correct dec i sion, the probability of error p . 
e 

These quantities 

are of course related by p + p = 1. 
c e 

An optimal scheme i s one that 

maximizes p ' c 
or equivalently minimizes p ' e 

and an optimal set of 

signals is one that i s used in an optimal scheme . 

1.2. Decision Rule . 

For a fixed set of signals, the receiver must use a decision pro-

cedure which maximizes P if the scheme is to be optimal . 
c 

The 

receivers decision procedure is equivalent to partitioning the En 

space of !-vectors into M disjoint r egions ~
~ 

whose union is 

Then if a vector r falls in decision region ~i' the receiver de 

cides that the i th message has occurred. Thus if Pr(d~i) .represents 

the probability dens ity on r when s . 
-~ 

is the vector transmitted, 
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then 

where P(s.) is the probability with which the ith message occurs and 
-~ 

dV(E) is the n dimensional Euclidean volume el ement . But 

with -equality if tbe decision regions ~i are defined such that 

r €~- ~ Pr(rls.) P(s.) ~ Pr(rls . ) P(s.) - ~ ;;_; -~ -~ ;;_; -J -J j l, • • • M 

for i = l, ••• M. 

1.3 . Assumptions. 

In the following we shall consider only a special class of the 

above problem, Namely we shall assume equiprobabl e messages, equi-

energy signal vectors, and spheri cally symmetric, monotone decreasing 

noise . Equiprobable messages means that P(~i) 

\\s .\\ = E Equiener gy signal vectors means that 
-~ 

II· II is the Euclidean 2-norm. That is 11!11
2 

l 
= .M i = l, • • • M. 

i = l, ••• M where 
n 
2: t.

2 
where tJ. 

. l J J = 
the components of the n dimensional ve ctor t . Without l oss of 

generality in wha t follm-1s we may assume that E l so that lis .I/ 
-~ 

i = l, • • • M. 

are 

Spherically symmetric noise means tha t the probability density of 

l 



5 

the noise Pr(~) is a function only of the norm of n, so that 

Pr(~) = f(ll~ll 2 ) . Monotone decreasing spherically synnnetric noise 

means that f is a monotone decreas ing function of 11~11 2 . 

1.4 . Description of Decision Regions. 

With these assumptions we see that the formula for the density on 

r given that the ith message occurred is 

Further the condition that 

r €~- ~ Pr(E)s.) P(s . ) > Pr(E.Is .) P(s . ) i,j = 1, ••• M 
- l - l - l -J -J 

is then equivalent to 

But I Ir-s -11
2 
= ll r ll

2
-

- -l -
2 (E_, s. > 

-l 
+ 1 where < 0, • > is 

n 
product, such that (_!, ~> = 2: t.u. wher e t . 

j=l J J J 

components of the n dimensional vectors t and 

condition becomes equi val ent to 

r E ~. ~ ( r , s . ) ~ (r., s . ) i, j 
l ~-l -J 

If the halfspa ce s H . . 
lJ 

are defined by 

the Euclidian 2- inner 

and u. are the 
J 

w. Thus the 

1, • • • M. 



H .. 
lJ 
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l, • • • M 

then a sufficient condition that G?ei are chosen to maximize 

for a fixed signal set is that 

m 
n 

j=l 
jfi 

H .. 
lJ 

i l, · • • M • 

p 
c 

implies thatG?e. differs only in a trivial way 
M l 

We note that this 

from~.* since 
l 

U G?e * exhausts all of En except for portions 
i=l i 

of regions of the kind B = [;d (_:s, ~i) = (_:s, ~j)} which have no n 

dimens ional volume, ·so t hat 

J dV(_::) 0 

B 

Thus these l eft over regions may be arbitrarily ass i gned to any 

decision region without affecting 

r.:v.* We note that the regions ~ 
l 

are convex and radially invariant. 

Convex means that if El and E
2 

/:3::> *. t..E1 + (1-t.. )E
2 

is also i n \!A. 
1 

are el ements of ~.* then 
l 

for every 0 ~ f.. ~ l. This is because 

each halfspace H .. 
lJ 

i s convex and thus G?ei *, an intersection of 

halfspaces, must b e convex . Radi ally invariant means tha t if r is 

* an e l ement of G?ei t hen ar is an e l ement of~. * for every a> 0. 
l 

Again this follows because each half space H . . 
lJ 

is radially invariant 

and thus G?e. *, an intersect ion of halfspaces, must be r adi ally 
l 

invariant. 
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p 
c 

Using our knowledge of the decision regions and our assumptions 

about the noise density we can derive an alternate expression for p 
c 

by considering the integration over En to be first an integration 

over the surface of an n dimensional sphere in En and then inte-

grating over all radii for the sphere. That is, if we let r = liE.\\, 
then dV(E,) the n dimensional volume element becomes dS(E,) •dr 

where dS(E,) represents a surface element of the n dimens ional 

( ) 
n-1 sphere of radius r. It is geometrically evident that dS E = r 

r 
dS c=) where 

r 
represents a differential surface element on the 

n dimensional sphere of radius 1. Alternately, this result may be 

derived in a completely analytic way by the use of n dimensional 

spherical coordinates as in Appendix I. 

In any event we can write 

1 L f I f(\\E,-~i\\ 2 ) 
r n-1 p = M ds c=) r dr c . r 

i G?e- . 

dS(~)} rn-1 = I\~~ 
1

£ f(iiE-E.ill
2
l dr 

where Ri is the region formed by the intersections of G?e. and the 
. J. 

SUrface of an n dimensional sphere of radius r, radially projected 

onto the unit sphere . Note that R. does not depend upon r because 
J. 

of the fact that G?e. i s radially invariant. 
J. 

It will be useful to consider the express i on inside the brackets 

so let us define 



and thus 

U(r) = ~ L 
i 

co 

Pc = J U(r) 
0 

8 

n- 1 r dr 

It is clear that if a set of signals can be found that maximize 

U(r ) for every r , then this set of signals must be optimal . 

1.6. Characteri zat i on of Optimal Signal Sets by Landau and Slepian. 

In what follows it iofill be convenient to let x represent a 

generic unit l ength vector in En, so that 11~1 1 = 1. Then U(r) may 

be written as 

1 
U(r) = M L:f 

i R. 
l. 

Further, l et us define the spherical cap of angle 9 about a 

unit vector s to be 

Landau and Slepian [10] have recentl y shown that among those 

signal sets satisfying t he constraints ment i oned above, U(r) will be 

maximized for each r if there exists a signal set, an angl e ¢, and 

a l argest set K of (i, j) pairs satisfying the follm·1ing conditions . 
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i = l, M 

2 . Cs. (¢) n H.. are congruent for 
-~ J~ 

( i, j) E K and 

R.; = C (¢) -.... s. 
-~ 

H .. 
J~ 

i l, • • • M where 

3. c (¢) n H . . n H-t. = ~ !i J J_ J_ 
for every j f .t and (j,i) E K and 

(-L,i) E K, where ~ is the empty set. 

The proof that Landau and Sl epian use is based upon the following 

two facts which they prove . 

e ~ rr/2, that h = ~ 
First, that for a given cap angle 

f(\lrx-s. l! 2
) dS(x) is minimized over all - -~ -

cs(e) n D 

convex, radially invariant regions D for which 

w = J dS (~) 

c (e) n n s 

i s fixed, by picking D to be a half space not containing s . 

Secondly, tha t if D is taken to be a half space not containing 

~ then h may be considered as a f unction of w and h(w) is 

convex upv1ard. 

Let c represent the surface content of a particular cap C 

about a vector s and sp represent the surface content of the unit 

sphere so that 

c = dS(~) 
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Then Landau and Slepian show that a general upper bound for 

U(r) for any set of M signals is given by 

J [ Mc-s ) 
MU(r) ~ M f(\\r~-E.\1 ) dS ( ~) - . 2kh 2k P 

c (9) s 

where 2k represents the total number of hyperplanes necessary to form 

the boundaries for each of the decision regions Ri. This formula i s 

valid for any cap for which e < rr/2 and Me - sp ~ 0. Furthermore 

the right-hand side of the equation is monotone increasing in k and 

equality holds in the equation if and only if the three conditions men-

tioned above are met. We can relax f to being non-increas ing 

with the r esult that the three conditions are still sufficient but no 

longer ne cessary for equality in the above equation. 

Landau and Slepian further claim that when M = n + 1, the regu-

lar simplex signal set of n + l vectors in n dimensions satisfies 

the three conditions necessary for equality in their upper bound, when 

the k boundaries are taken to be the hyperplanes equidistant from 

each pair of signal ve ctors . We will now show that this claim i s true 

on~ for n ~ 3. 

1.7. The Regular Simplex Signal Set. 
n+l 

The regular simplex s i gnal set [s.} of n + 1 vectors in n 
-~ i=l 

dimensions is uniquely defined by the following equations [11]. 
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\\s .JI = l 
-l. 

i 1, • • • , n+l 

(s., s .) 
-l. -J 

l 
n i f j i, j 

Furt hermore, i t is easy to show that 

n+l 

\ s. = 0 L -l. 

1, • • • , n+l 

but that any subset of n simpl ex vectors i s linearly i ndependent . 

We would nm-r like to characteri ze t he spheri cal dec i s i on regions 

* Ri' wh ich are the radial projections of the opti mal decision reg i ons 

onto t he surface of t he unit sphere . 

i s convex and radially invariant , 

* x. E R. 
-J l. 

j = l, ••• k 

then the vector 

X 

and j = l, 

* - ---- E Ri 

\\~ ex. x.\\ L..J J - J 

* R. 
l. 

Because of the f act that 

ha s the property that if 

k are positive constants, 

Let us refer to thi s propert y as spheri cal convexity . 

Thus i t follOiols that t here are certain extreme vectors vrhose 

* spher i cal convex combinations generate Ri . * That is, Ri is the 

spher ical convex hull of these extreme vect ors , and furthermore no 

extreme vector is expressible as a spherical convex combination of other 

extreme vectors . 
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We may thus characterize the regions 

signal set by their extreme vectors. 

* R. 
~ 

Theorem: The extreme vectors for the region 

simplex signal set is the set of n vectors 

for the regular simplex 

* R. for the regular 
~ 

r }n+l 
t-S .. l 

-J J= 
jti 

Proof: We first note that if x i s of the form 

n+l 

x = L aj(-sj) 
j=l 
jti 

where a.> 0 j = l, ••• n+l 
J 

j t i 

then = (x.s.-sk) 
--~-

= a. (-sk, s. - sk) - -.k - -1. -

= ~(l + ~) 
> 0 for k t i 

Hence X € H . . 
l.J 

for every j t i 

* n+l 
::) x EGK. = n H .. 

~ . l l.J 
J= 
jti 

Thus we have t hat the spherical convex hull of the g i ven vectors 

* i s a subset of R. • 
1. 

To show the converse we note that since [~i}~=l are n 

linearl y independent vectors in n dimens i onal Euclidian space 

we can represent any x in the form 
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X= L 
j=l 

t3 . ( - s . ) 
J - J 

13 

for some constants t3. for j 
J 

l, ••• n. If t3l < 0 then 

we can replace (-!1 ) by 

to yield 

( -s ) 
-1 

n 

= 

X= L 
j=2 

n+l 

=I: 
j=2 

n+l 

- [ ( -s.) 
-J 

j=2 

(t3.-t3l)(-s.) + (-t3l) s l J -J -n+ 

t 

t3. ( -s . ) 
J -J 

t 

where for j = 2, ••• n and R l > 0. ~-'n+ 
Similarly if 

t 

t32 < O, -!2 can be replaced by 

n+l 

(-s ) = -[ ( -s.) - 2 -J 
j=l 
jf.2 

to yield an expression for x in terms of r }n+l 1..-s . . 1 in which 
-J J= 

jf-2 
all the t3's are increased. Proceeding in this manner, all 

negative t3's can be eliminated to yield an expression for x 

of the form 

X 

n+l 

\ o:. (-s.) L J - J 
j=l 
jf.i 
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for some i, where 0:. ;;:: 0 
J 
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j == l, n+l j f i. Thus the 

spherical convex hulls of the given sets of vectors exhaust the 

surface of the sphere which implies that the open convex hull of 

the vectors r }n+l l. s 
~.-s . . l 

-J J== 
j-fi 

* R .• 
l 

Finall y we note that the set 

( 
n+l 

- s.} . l 
-J J== 

is linearly independent, so that i n particular no 

j-fi 

vector is a spherical convex combination of any of the other 

vectors in the set. 

* Thus we have a characterizati on for the Ri in t e rms of the set 

of extreme vectors £-s .}~+ll • This characterization in fact suggests 
-J J= 

where the regular s implex signal set derives its name from . The convex 

hull of any n+l non-degenerate points in n space determine a convex 

n dimensional polytope called a simplex [ 3 ] • In particular, the 

set r }n+l 
~, -s . . l 

- J J= 
determines a regular polytope called a regular simpl ex 

centered at the origin . The regular simplex signal set is then the set 

of n+l vectors which pass through the center of the n+l faces of the 

polytope . A face is an n-1 dimensional polytope formed by the 

convex hull of a sUbset containing n of the points . 

1.8. Landau and Sl epians Conditi ons for an Optimal Code as Applied to 

the Regular Simpl ex Signal Set. 

We are now ready to investigate the applications of Landau and 

Slepian's conditions for an optimal code to t he r egular simpl ex signal 

set . We first note that the second of the three conditions mentioned 

above i s trivially satisfied by the total symmetry of the s implex set . 

We further note that if the angl e ¢ in the first condition is taken 
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l 
= n , then the first condition will 

be met also . This follows since each of the extreme vectors 

r }n+l 
t-S . . 1 - J J= 

jfi 

* of R . 
~ 

makes an angle 

(s . , ( -s . ) ) 
-~ - J 

* 

1 = cos e* 
n 

s. : 
-~ 

Thus the cap of angle 8 about ~i' which is spherically convex, 

* * contains the extreme vector of R. and hence must contain R .. 
~ ~ 

We next show that ¢ must be taken at least as large as 

satisfy condition 1. 

¢ = e* - ~ Theorem: If v 

n+1 
[ u c (¢)} n c (6) 

. 1 s. -sl J= - J -

Proof: We first note that 

since X E 

for *<11: o<6<e 2 

~ -

c (¢) n c_s (6) = ~ 
~1 -1 

then 

* e to 

and X E CS (6) => (~-~)>COS 6 => (~~l) < - COS 6 < 0 . 
-1 

We next show the impossibility of having 

X E c ( ¢) n c ( 6) for any j f 1. s . -s1 -J -

X E c (¢) => <~ s. > > cos ¢ s. -J -J 

X E c 
~1 

( 6) => <~ -~1> >cos 6 

Adding sin 6 times the first eq_uation to sin ¢ times the 

second yields 
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* sin e = siri(¢+6) sin 6 cos ¢ + sin ¢ cos 6 < 

but by the Schwartz ineq_uality we have 

(_!S sin 6 s. - sin ¢ ~1) ~ \\sin 6 s . + sin ¢(-~l)\\ -J -J . 

J sin
2

6 + sin
2¢ + 2 sin ¢ cos * = sin 6 e 

J sin
2

6 + sin2 (e* - 6 ) + * * 2 sin 6 sin(e -6) cos e 

= J sin
2

6 + [sin
2

e*cos
2

0+ cos
2
e*sin

2
&- 2sine*cose*sin6cos6} 

+ 2(sine*cose*sin6cos 6-cos2e*sin26} 

* sin e 

Hence any x E C (¢) n C (6) for j f l must satis fy 
- ~j -~l 

sin e* < (_!S sin 6 ~j + sin ¢( -~l) ) ~ sin e* 

which is of course impossible . Hence we have 

for j l, n+l 

n+l 
~ [ u c ( ¢)} n c -s ( 6) ~ 

j=l ~j -l 
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Thus if ¢ * is t aken less than e 1>/e find that 

j = l , ... n+l is i mposs ible since the union of 

c (¢) 
§_. 

J * the R. 
J 

* :JR. for 
J 

covers the 

entire surface of the sphere except for a region of zero content. 

We now inves tigate the possibility of simultaneously satisfying 

the third condition for an optimal signal set . Let us consider t he 

particular vector s g iven by 

h ~l + ~2 + ~3 
for n :2: 3 s = . 

I I ~1 + ~2 + ~3 1 I 

" 
The angl e e that 

h 

s makes with ~l is given by 

<~~l) = cos he -J! n-2 
- 3 n • 

It wil l be helpful to first prove the following result . 

Theorem: If ¢ = 8 + 6 for 6 > O, 

Proof: We wi ll show that the compl ement of c ( ¢) 
~l 

intersected with 

c8 (6) i s voi d. Agai n we consider an x i n the intersection 

x E complement c ( ¢) ~ <~ ~l) s: cos ¢ 
~l 

~ <~~) > cos 6 

Thus adding - sin 6 times the first equat ion to sin ¢ times 

the second yields 

sin e sin(¢- 6) sin ¢ cos 6 - sin 6 cos ¢ 

<(~sin¢ s - sin 6~1) 
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Again using the Schwartz inequality we find 

(~sin ¢!- sin 0 ~l> ~ 1\sin ¢.§. - sin 0 ~l \\ 

= J sin
2

o + . 2¢ SJ.!l - 2 sin ¢ sin 0 cos 8 

Jsin
2

o 
2 "' -- ' 

= + sin (&t-o) - 2 sin( &t-o ) sin 0 cos 8 

= sin2 o + (sin2~cos2 0+cos 2esin2 0+ 2sinecos~sinocoso} 
- 2 (sin~cos~sinocosO+cos2esin2 o} 

= sin e 

Thus we again have an impossible condition that 

"' 
sin 8 < (~ s in ¢ s - sin o ~l) s; sin 8 

and hence cs"(¢) c C (o) 
~l 

It is further evident by the symmetry of the vectors ~l' ~2, 

~3 and s that under the conditions of the above theorem 

Cs"( o) c C (¢) and C"( o) c C (¢). If we are g i ven an angle o such 
~2 ~ ~3 

that 0 < 0 < n:, let us deter mine what part of the cap lies in 

the intersection of the two half spaces H2l and H3l" 

Theorem: 

J dS(~) 
l f dS(~) =3 

ci ( o )nH2l nH3l c 8 ( o) 
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Proof: We shall use the invariance of the surface integrals under 

rotation to obtain a convenient parameterization. is 

defined by the vector s and 

the vectors ~2l = 
!2- !l 

H2l and H
3

l are defined by 

!3 - !l 
and ~3l = respectively. 

11!3-!lll 

We note that 
.... 
s is perpendicular to both ~2l 

out loss of generality, then, we may let 

s = (l,o, ···, o,o,o) 

~2l = (o, o, , o,cos8,sin8) 

~3l = (o,o, ••• , o,cos8,-sin8) 

and 

where 8 is determined by the inner product of ~2l 

as 

1L or 28 = j radians. Lett~ng x be defined as 

... 
, X 2,x l' X ) n- n- n 

and using the n dimensional spherical coordinates of 

Appendix I, we find 

xl cos el 

X n-l = sin 8l sin 82 ... sin 8 n-2 
cos 8 n-l 

X = sin 8l sin 82 ... sin 8 sin 8 
n n-2 n-l 

With-

and 
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where 0 < e. < ~ for 
~ 

i = l, 2, • • • n-2 

and 

and 

-~ < e < ~ n-l 

n-2 n-3 
dS(~) = sin e1 sin 82 

... ••• d8 
n-l 

The cap c8(o) is thus defined parametrically as 

and the regions H21 and H31 intersected with the unit 

sphere by 

H2l = [~ \ cos e cos e n-l + sin e sin en-l > 0} 

H3l = [x \cos e cos e n-l - sin e sin en-l > 0} 

or H2l [~jcos(en_1-e) > 0} 

Hence the region of intersection is given by 

but since e = ~ this becomes 

H ~TT r 1 _ ~ < 9 < ~} 
21' u

13 l = t~ 3 n- 1 3 

Hence we calculate 
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J dS(~) 
c!(o)rur2lrur3l 

rc/3 rc rc 

=I f ··· J f
o n-2 n-3 · 

sine sine ···sine de de ···de de 
l 2 n-2 l 2 n-2 n-l 

-rc/3 0 0 0 

JrcJrc Jrc Jo . n-2 . n-2 . 
••• Sln e Sln e •••s1ne de d9 •••de 

l 2 n-2 l 2 n-2 
- 1( 0 0 0 de 

J dS(~) 
c8(o) 

Finally we note the relationship between 

following way: 

* l 
cos e = n 

cos e _ j}:_ n-2 
- 3 n 

* 

* e and e in the 

Hence e is monotone increasing in n while e is monotone de -

creasing in n. Furthermore when n = 3 we find 

* e e -l(l) cos 3 for n 3 . 

Thus we have the following facts: The angl e ¢ must b e taken at 

* 

n-l 

l east as large as e to satisfy condition l. If n is greater than 

* 3, then e is strictly less than e so that if ¢ is chosen to 

satisfy condition 1, then there exists a o such that 
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CsA(o ) c C (¢) . Under the above conditions we have therefore 
E.l 

so that 

J dS(~) 
l J dS(~) > 0 ~ -
3 

CE.l(¢)nH2lllH3l c ( 5) 
E.l 

Thus if n is greater than 3 and ¢ is chosen to satisfy 

condition 1, then condition 3 cannot be satisfied . 

Hence we have proved the result . 

Theorem: The sufficient conditions of Landau and Slepian for the 

existence of an optimal code are not met by the regular simplex set 

of n + l vectors in n dimensions if n i s greater than 3. 

1 . 9. Some Conjectures . 

There are thus three successively stronger conjectures concerning 

n + l signals in n dimensions which remain unresolved . 

Conjecture l : The simplex signals are optimal for the gaussian white 

noise additive channel, when the signals are constrained to be equi-

probable and equienergy. 

Conjecture 2: The simplex signals are optimal for the additive noise 

channel with any spherically symmetric, monotone decreasing noise 

density, when the signals are constrained to be equiprobabl e and 

equienergy . 

Conjecture 3 : The function U(r) defined above is maximized by the 
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simplex signals for the function f monotone decreasing, when the 

signals are constrained to be eQuiprobable and eQuienergy. 

Let us define any noise density of the form 

-- J ko Pr(!!) I liE II <r 
0 

11~\1 2: r
0 

as a spherical ball density. Then since any spherical ball density 

can be uniformly approximated by a sequence of monotone decreasing 

densities and since any monotone decreasing density can be uniformly 

approximated by a sum of spherical ball densities, we have that 

conjecture 2 will be true if and only if the following conjecture is 

true. 

Conjecture 2': The simplex signals are optimal for the additive noise 

channel with any spherical ball noise density, when the signals are 

constrained to be eQuiprobable and eQuienergy. 

Furthermore, if the noise has a spherical ball dens ity, then the 

function f in conjecture 3 will be of the form 

~~i) >cos 

(x. s.) ~ cos 
--~ 

e(r, r ) 
0 

e(r, r ) 
0 

for some angle 9(r,r
0

) which can be determined graphically from the 

following diagram: 
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/ 

I 
\ 
\ 

\ 
\ . . ', ·, /// 

.... ...._ / 

·-·----· -·-

r 

-~ ---

I 

/ 

,· 
/ 

' \ 
\ 

J ro > l 

I I . 

I 
I 

Figure l, Graphical Determination of e(r,r ) for r < l and r > l, 
0 0 0 

That is, f is of the form 

x E c (e(r,r )) s. 0 
-~ 

otherwise 

where e (r,r ) can clearly take on any value b etween 0 and Jr. 
0 

Hence it follows that conjecture 3 will be true if and only if the 

following eq_U:ival ent conjecture is true. 

Conjecture 3 ': The s i mplex signals max imize 
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vc(e) J dS (~) . for every e between 0 and :rr 

c(e) 

n+l 
where c(e) u c (e) over all signal sets such that \\s .\\ l 

j::::l s. J -J 

for j = 17 ••• n+l. 

Conjecture 3 ' has the interesti ng property that the dependence 

upon decision regions has been supressed7 although it is not clear 

that this makes the problem any simpl er to solve . 

The current state of knowledge of conjecture 3 ' can be summarized 

in the following diagram. J 
' V ( 6) = ( n+ l) dS (X) 

. t /~ Cs(e) ----y---
1 

* e 

cos e ==J"};. n-l 
o 2 n 

Figure 2 . Graph of vC(e) for the Coherent Channel. 

Regions I and III are where conjecture 3 ' is known to be true and 

region II is where the conjecture is as yet undec ided . For e between 

0 and 8 7 v (e) satisfies the bound 
0 c 
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v(e) = (n+l) J dS(~) 
c~1 (e) 

that is, the caps do not intersect. Between e and 
0 

e, Landau 

and Slepian's bound can be us ed to shaw the optimality of the simplex 

signals, since the parts of a cap cut off by the hyperplane boundary 

regions are non-intersecting, * For e greater tban e , we again 

have that the simplex signals are optimal since v (e) 
c 

satisfies the 

bound 

For e between eo and e, the caps intersect each other at 

most two at a time, while as e is increased from e to * 
e ' the 

caps will intersect first three at a time, then four at a time, etc ., 

* until finally just "before e they intersect n at a time. 

* For n = 3, e = e as we have already noted, so that region II 

is void and the conjecture is true . However, as n increases 8 

monotonely decreases until 

monotonely increases until 

cos e = 

* cos e 

l 
3 

= 0 

or 

or 

"" ,..., 0 
e = 55 , 

* 0 e = 90 . 

while * e 
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CHAPI'ER II. THE PHASE INCOHERENT CASE 

2.1. The Incoherent Additive Noise Channel. 

The incoherent additive noise channel can be modeled analogously 

to the coherent additive noise channel except that now the signal, 

noise and received vector are vectors in the n dimensional 

complex space. Furthermore the channel in addition to adding the 

noise n to the transmitted signal s performs the following 

operation 

i8 
r=se +n 

where 8 is a random variable uniformly distributed between -rr and 

rr [17 J, [9]. 

We shall again consider a set of M e~uiprobable signals 

M 
(~i}i=l and without loss of generality in what follows, we shall 

again restrict the 

for i = 1, • • • M 

signals to have unit energy. 
2 n 2 

where lis .11 = ~ Is . . 1 and 
-1 . 1 1J 

1= 
complex components of s .• 

-1 

That is, !Is.\\ = l 
-1 

s.. are the 
1J 

We wish to consider only certain noise densities. As before, we 

shall re~uire that the noise density Pr(~) be spherically symmetric. 

Thus 

for some function g . Hence we can write the conditional density on r 

when s is given as 
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:n: 

Pr(EJ!) = ~:n: J Pr(EJ~ e) de 

-:n: 

1( 

l J ·e 2 
= 2rc g < II.E.-!e J. II ) de 

-:n: 

1( J g(ll:ll
2 

+ 1 - 2(.£,!) cos e) de 

-1( 

where n * 
(.£,!) = l:: r . s . and r . 

J=l J J * J 
and s. 

J 
are the components of r 

and s respectively) and s. denotes the complex conjugate of 
J 

s . . 
J 

Pr(.E_ \!) is therefore a function of only r = 11.£11 and I(~ .£,!) L 

say h(r) I(~.£,!)\). The other restriction we wish to place upon the 

noise is that for each r) h(r)y) will be monotone increasing in y 

for 0 ~ y ~ l. This will be true if g is required to be convex up-

ward since 

and thus 

l 
= 2:n: 

1( f g (r
2 

+ l - 2ry cos e) de 

-:n: 

:n:/2 

J' [g(r2 + l - 2ry cos e) + g(r2 ~ l + 2rycose)]de 

-:n: 

-2rcose[g'(r2+l-2rycose)- g'(r2+l+ 2rycose)] de 

and the right-hand side is positive for 0 ~ y ~ l because cos e > 0 
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in the interval -rc/2 to rc/2 and g 1 (x1 ) < g 1 (x2) for x1 < x2 by 

the convex upward assumption or g . In particular the complex gaussian 

white noise process satisfies these properties [ 6 ] . 

When h has the monotone property, it follows in a manner 

analogous to the coherent case that the optimal decision region~ 

for deciding that s. was sent will be defined by 
-~ 

i,j=l, ••• M 

Or if the halfspaces H .. 
~J 

are de fined by 

i, j=l, • • • M 

then the optimal decision regions may be defined to within trivial 

differences by requiring 

~- :::>(~.* 
~ ~ 

M. 
U H .. 

j=l ~J 
jfi 

i = l, • • • M 

'-i>_ * The regions \.!:A. 
~ 

are radially invariant but not convex. 

If we define the sets 

i9 
s .e - rc < e ~ rc} 
-~ 

i l, • • • M 

then the optimal decision rule has the following_ intuitive expl anat ion. 

Decide s. was transmitted if the distance from r 
-~ 

than the distance from r to s . for all j f i. 
J 

to s. 
~ 

is l ess 
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2.2. An Alternate Expression for P for the Incoherent Case . 

Because of the radial invariance of the regions ~.* we can 
~ 

change the volume integral expression for the probability of being 

correct P into first an integration over the surface of the unit c 

sphere and then a radial integration. If we let x again represent a 

generic unit length vector, then we have 

~f 2n-l r dr 

0 

where dV(~) and dS (~) are analytically defined in Appendix IB and 

Ri is the radial projection of~i onto the unit sphere in en. 

Thus defining 

U(r) l 
-M 

M 

L J h(r, I (~~i) I) dS (~) 
i=l 

R. 
~ 

P for the incoherent case may be written as c 

GO 

Pc = J U(r) 
0 

2n-l 
r dr • 

2. 3 . Conje ctures for the Incoherent Case. 

Our interest is in the long standing [13] conjecture that when 

M n, the orthogonal signa ls defined by 

~1 (l,o,··· o,o) 
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!2 = ( o, l, • • • o, 0) 

s = (o,o, ··· o,l) -n 

are optimal in the following sense: 

Conjecture 4. The orthogonal signals are optimal for the gaussian 

white noise additive incoherent channel, when the signals are con-

strained to be equiprobable and equienergy. 

From the above we see that conjecture 4 will be true if the 

following is true. 

Conjecture 5. The orthogonal signals are optimal for the incoherent 

additive noise channel with any spherically symmetric, convex upward 

noise density when the signals a r e constrained to be equiprobable and 

equienergy. 

Furthermore, conjecture 5 will be true if the following is true. 

Conjecture 6. The function U(r) above is max imized by the orthogon-

al signal s for the function h(r,y) monotone increasing in y for 

0 ~ y ~ l for each r, when the signals are constrained to be 

equiprobable and equienergy. 

If we define a cap of angle 8 about a vector s for the 

incoherent case by 

then by the monotone property of h we immediately get that conjecture 
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6 is equivalent to the following. 

Conjecture 6 ' . The orthogonal signals maximize VI (e) 

n 

J dS(~) 
c(e) 

for every e between 0 and rr./2 where c(e) = u c (e) 
. l s. 

over all 
J= -J 

signal sets such that for j = l, • • • M. 

We can similarly define the state of knowledge of this conjecture 

by a diagram. ( ) J ( ) VI e = n dS X 

/(:-- cs(e) -
---+ ---- - -

vi(e) vi(e) = J dS(~) i 

e 
1( * 

1( 

4 e 2 

I 1- II 1- III -1 1.-.:::::: 

I * l cos e -
.Jn 

Figure 3 . Graph of vi(e) ·for Incoherent Case. 

Regions I and III are where conjecture 6 ' i s known to be true and 

Region II is where the conjecture is as yet undecided . For e between 

0 and rr./4 VI( e) satisfies the bound 

VI( e ) = n J dS(~) . 
c (e) s. 
-1. 

That i s, the caps do not intersect as can be easily veri f i ed . Between 

* e * defined by cos e l 
= -

Jn 
and rr./2, satisfies the qound 
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That i s , the union of the caps covers the entire surface of the sphere 

as can again be easily verifi ed . 

Hovrever, as e increases from ~/4 to * e ' the caps intersect 

each other first two at a t i me, then three at a time, etc . , until just 

before e* t hey intersect each other n-1 at a time and no general 

results are knov1n in these regions . This behavior, in fact, is com-

pl etel y anal ogous to the behavior of v (e) 
c in the coherent case . 

Furthermore, even if the anal ogue of the two facts which Landau 

and Slepian [ 10] use in their paper could be proven for the incoherent 

case, it would only show the optimality of v
1
(e) for e :::; e defined 

by cos e 1 

=!3 where intersections occur at most two at a time . This 

would, of course, not be sufficient to resolve conjecture 6'. We note, 

* however, that if n 3, then e = e so that it would establish 

the conjecture for n :::; 3 . 

* We further note that if n = 2, then e = n/4 and thus the 

conjecture is trivially true, which establishes the optimality of 2 

orthogonal signal s for the incoherent case . Surprisingly enough a 

proof of this result seems to have been first published by Schaffner 

and Krieger [11] as late as 1968, although -vrork by Helstrom [ 8] in 

1955 strongly i mplied the result for the gaussian case. 
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CHAPTER III. THE RElATION BE'IWEEN THE COHERENT AND INCOHERENT CASES 

3.1. The Relationship Between the Incoherent Case with n 2 and 

the Coherent Case with n = 3. 

The recent work by Schaffner and Krieger [ 11] proves the optimal-

ity of certain signal sets with M = 2, 3, 4, 6 and 12 for the inca-

herent case with n = 2 by showing they maxlinize U(r). These are, 

in fact, the same values of M for which Landau and Slepian were able 

to find optimal signal sets for the coherent case with n = 3. 

We will show that this is more than mere coincidence by demon-

strating a direct relationship between the incoherent case with 

n = 2 and the coherent case with n = 3 in terms of conjecture 6 

and conjecture 3. 

Theorem: If X = (cos 8 ia 
e ' is a generic unit vector in 

c 2 and x' (cos 8', sin 8' cos a', sin 8' sin a') is a generic 

unit vector in E3, then the transformation 

2 e __, e' 

a-13 __, a ' 

13 __, 13' 

2 ¢ _, ¢' 

maps cs(¢) into cs,(¢') and 

dS (~) into ~ dS (~') dl3' 

(cos e ia e e il3) (cos 
ial il3l 

Proof : If X e 
' 

sin and s ele ' 
sin ele ) - -
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then I(~~) I > cos ¢ becomes 

or (x' s ') > cos ¢' where _,_ 

x' =(cos e', sin e' cos a', sine' sin ct') 

and from Appendix I 

dS(~) = sin e cos e de dct d~ 

l 
= 4 sin 9' d9' dct' d~' 

l 
= 4 dS (~I ) d~ I 

Thus by observing the form of conjecture 6 and conjecture 3 we 

have the following theorem. 

Theorem: [~i'}~=l is an optimal signal set in the sense of maximizing 

U(r) for the coherent case in E3 if and only if the signal s et 

[~i}~=l is an optimal signal set i n the sense of maxi mi zing U(r) for 

the incoherent case in c2 wher e 

s. 
-1. 

s. 
-1. 

and s.' 
-1. 

are r elated by 



s. 1 
( cos28~ , sin28 . cos (a. - f3. ), sin28. sin(a . -f3 . )) 

-~ ~ ~ ~ ~ ~ ~ ~ 

and the signals are constrained to be equiprobable and equienergy . 

Proof : Obvious . 

Thus for each va lue of M the above trans formation must map the 

optimal signal sets found by Landau and Slepian into the optimal signal 

sets found by Schaffner and Krieger. This can, in fact, be directly 

verified. In particular, consider the case of M = 2 . Then the 

optimal signals for the coherent case are g iven by 

wher e 

S I 

-1 

S I 

- 2 

al 
I 

~l 

~2 

= 

= 

= ( l ,o,o) = (cos o, sin 0 cos a 1
1

, sin 0 sin a 1
1

) 

(-l,o,o) (cos rr, sin rr cos a
2

1
, sin rr sin a

2
1

) 

and a2 
I are arb i trary and are transformed into 

(e 
ia1 

0) (cos 0 ial 
sin 

0 if3l 

' = e - e ) 2 2 

i f3 ia2 if32 
(o, e 2 ) (cos 1! • 1! ) e 

' 
s~n 2 e 

2 

which are the orthogonal signals with a 1 and (32 arbitrary . 

It is another unresolved conjecture as to whether this close of a 

r elationship exists between the coherent and i ncoherent cases in higher 

dimensions . 
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3 .2. A Si mpl e Proof of the Theorem i n Landau and Sl epian ' s Appendix 

C for the case of n = 3. 

The transformation in the previous section section can be used 

not only to map Schaffner and Krieger's optimal signal sets in c2 

into Landau and Slepian's optimal s i gnal sets in E3, it can also be 

used t o map Schaffner and Krieger's proof of optimality in c2 into 

a proof of the optimality of the t r ansformed signals in E3. In 

particular, this will yield an alternate proof of the very difficult 

general theorem in Landau and Sl epian' s Appendix C for the special 

case of n ·= 3 . This will hopefully enabl e us to gain insight into the 

methods of both pa irs of authors . The theorem of i nterest is the one 

which describes the particular convex, radially invariant region D 

which minimizes 

when 

h = 

w J dS(~) 
nne (e) s. 

-~ 

i s held fixed . In Section 1. 6 it was mentioned that the optimal D 

i s a ha l f space . Hence l et us first i nvestigate vihat happens to h 

and w when D is i n fact a hal fspace . The only fact that we will 

need about f is that f( llr~-!1 1 2 ) is increasing in (~!) for each 

fixed r. Hence l et us put f(!ir~-!11 2 ) = h(r, (~!)) where h is 

increasing in (~!> · 

: .. ,~ · 
~··"· . . 



If we parameterize x by 

X = (cos e, sin e COS ¢, Sin e Sin ¢) 

and a halfspace Hi by 

where 

h. =(-sin e., cos e. cos¢., cos e. sin¢.) 
-~ ~ ~ ~ ~ ~ 

then the region H. n c (e) 
~ s for o :;;; e < rc/2 is given parametrically 

by 

H.nc (e)= [e,¢1- sine.cose + cose.sin9cos(¢-¢.) > 0 and 0 :;;; e < 9} 
~ s ~ ~ ~ 

the range for ¢ as a function of e is thus 

- cos-l(TAN9.CTNe) :;;; ¢ - ¢l < cos -l(TANe .cTNe) 
~ ~ 

or 

Without· loss of generality we can pick sl .= (l,O,O) so that 

when D = Hl we can r epresent h and w by 
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e B1u(e) 

w = ~ J' d¢ dy(e) where y(e ) = - cos e 

0 BlL(e) 

In general, when D is formed by t he intersection of several half 

spaces, say Hi for i = 1, ••• p t hen h and w are given by 

and 

e Bu(e) 

h = J J h(r, cos e) d¢ dy(e) 

0 BL(e ) 

e Bu( e ) 

w = J J d¢ dy(e) 

0 BL (e) 

where there exists a partition [e(l),e(2 ), ••• e(P)] of the interval 

(o, e ) such that 

and for i 

for some ik and jk. 

Next we note that 
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d ( ) d -l( ) - de. B1L e = de. cos TANeicTNe < o 
]. ]. 

for - 8 < e. < 8. Hence it follm;s that if a single halfs:pace, say 
]. 

H
0

, is to also cut a region of content w off from the cap, then i-le 

must have e >e. for i = l, ••• p. This is because the content of 
0 ]. 

an intersection of h a l fs:paces can be no bigger than the content of the 

smallest intersection from any one of the halfs:paces and vle have just 

shmm that the intersection with H. is decreasing as e. increases. 
]. ]. 

with 

Hence let us compare 

8 

h = J h(r,cos e) (Bu(e) - BL(e)} dy(e) 

0 

when e is chosen such that 
0 

8 

w = J (Bu( e) - BL (e)} 

0 

We readily see that 

for e ~ e < e 
0 

8 

dy@) = J (B0u(e) - B0L(e)} dy(e) 

0 

dBiL(e) 

dy(e) 
= 

d -l( ) dy(e) cos TAN ei CTN e 
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and the right-hand side 

d -l( ) dy(e) cos TAN eiCTN 8 
cs2 e TAN e. 

J. 

is increas ing as ei increases . But remembering that 9
0 

> ei for 

i = l, ••• p, we see that 

for 9 > 9 . Hence it follows t hat there exists a 9 such that 
0 

0 < e < e and that 

Thus from a lemma '"hich appears in Appendix A of Landau and Slepian 's 

paper we see that 

e J h(r,cose) [Bu(e)-BL(e)} - [B0u(e)-B0L(e)} dy(e) 

0 
e 

> h(r,cos~) J (Bu(e)-BL(e)} - [B0u(e)-B0L(e)} dy(e) 

0 

>0 

Hence we have proved that h is always smaller when D is formed by 
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the intersection of a finite number of halfspaces and the regions have 

the same content. The result for any convex, radially invariant D 

follows since any such D can be uniformly approximated by a seQuence 

of sets, each of which is the intersection of a finite number of 

halfspaces. 

As we can see, the method of proof for n = 3 depends only upon 

the ability to compare the derivatives of the boundaries BiU(e) and 

BiL(e) for i = 1, ••• p. It is not known, however, if this method 

can be extended to higher dimensions in the incoherent case, or for 

that matter, for the coherent case in any method different from Landau 

and Slepian's. 



3.3. Another Expression for Pc in Terms of V(9). 

We have already noted that conjecture 3 being true implies 

conjecture 2 is true and that conjecture 6 being true implies 

conjecture 5 is true. We are interested now in the converse 

statements. 

If we define 

a> 

F(y) = J f(r
2 

+ l - 2ry) 

0 

n-l r dr 

where f is the monotone function of conjecture 3, then we may express 

the probability of being correct 

i=l Ri 

p 
c for the coherent case as 

Note that F is monotone in y since f(r2 + l - 2ry) is. monotone 

in y for each r. Let us define p ;· by c ~ 

f F((~!i)) dS(~) 
Ri 

and without loss of generality let !l 

spherical coordinates of Appendix I 

(l,O, ••• 0). Then using the 

1( 

Pc/l = ~ f F(cos e) dv1 ( e) 
0 

where v.(e) is given by 
~ 



v i (e) = J 
R.nc (e) 

J. s . 
-J. 

44 

dS (~) 

Substituting into the original expression for 

where vc(e) 

= 

= 

1! 

p l J F(cos e) dv (e) c =M c 
0 

M 

L f dS (~) 

i=l R. nc (e) 
J. s. 

-J. 

J M 
u 

i=l 
(R.nc (e)} 

J. s. 
-J. 

M f 
u c (e) 

i=l ~i 

dS(~) 

dS(~) 

P then gives 
c 

That is, v (e) is the same function as in conjecture 3 ' and which is c 

plotted in Figure 3. 

Similarly for the incoherent case l et us define H(y) by 

co 

H(y) = J h(r,y) 

0 

2n- l r dr 

where h(r,y) is the monotone function in conjecture 6. Then we have 

PC -- 12 H(cos e) dv1 (e) 

0 

'· 



where H is monotone increasing and v1 (e) is given by 

J 
M 
u c (e) 

i=l ~i 

dS(~) 

Thus v1 (e) is the same function as in conjecture 6 and which is 

plotted in Figure 3. Note that neither F nor H depends on the 

signal set. 

Integrating by parts, we get for the coherent case 

n: 

P c = ~ J F (cos e) dv c (e) 

0 

l 
= M F(cos e) vc(e) 

n: n: 

+ J F' (cos e) 

0 0 

sin e v (e) de c 

n: 

= ~ F(l) sp + ~IF' (cos e) sin e vc(e) de 

0 

where sp is the surface content of the unit sphere in En. Simil

arly for the incoherent case we get 

n:L2 

Pc = ~ H(l) sPI + ~ H'(cos e) sine v1 (e) de 

0 

where sPI is the surface content of the unit sphere in en. 

Expressions for s and p sPI as a function of n are given 

Appendix II. 

in 

Hence if we cons ider two signal set s, the first denoted by 

and the second by ( 2 ) vre have for the coher ent case 

(l) 



p (l) 
c 

p (2) 
c 

.rr 

= ~ J F' (cos 8) 

0 

. 46 

sin e[v (l)(e) - v (2 )(e)} de c c 

and for the incoherent case 

p (l) 
c 

p (2) 
c 1

2 

= ~ H'(cos 8) sin e[v (l)(e) - v (2)(8)} de 
I I 

0 

where F' and H' are both positive. Hence we see that for a 

particular F or H it is not necessary that v(l)(e) > v(2 )(e) 

all e in order that p (l) > p (2) 
c c • However, the inability to 

describe the class of possible F's and H's makes it difficult 

say much more. 

for 

to 
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APPENDIX I. 

GENERALIZED n DIMENSIONAL SPHERICAL COORDINATES 

Although there are many ways of generalizing spherical coordinates 

to higher dimensions, the two that follow are sufficient for our 

purposes. 

A. Spherica l Coordinates in En. 

Consider !. = (r1,r2, ••• , rn) with llrll = r. Then the 

trans function 

Sin 8 . l COS 8 . 
J- J 

... sin en-2 cos en-l 

e ••• 
2 

sin e sin e 
n-2 n-l 

i = l, 2, • • • n-2 

-1( ~ e < " n-l 

changes dV(E,) into 



dS n-l d = r r 

48 

where dS can be defined as the expression in brackets . This formula 

can be verified by inductions by first noticing that for n = 2 it 

yields the circular coordinates 

.dV d8l rdr 

If it is true for 

for n = k+l with 

n = k, then apply it to the last k coordinates 
2 k+l 2 

r = ,L: r i . Then applying formula for n = 2 
1.=2 

and r yields the desired result. 

B. Spherical Coordinates in Cn . 

Consider ... 
r ll rll. Then the transfunctions 

with r . 
l. 

>0 and 

to 



yields 

r = r sin 91 sin 92 j 

r 
n-l 

r sin 91 sin 92 

r n = r sin 91 sin 92 

9 :S: 9i < -rr./2 

2n-3 2n-5 
[d~ld~2 ••• d~n sin 91 sin 92 

2n-l 
== dS r dr 

... 

... sin 9 cos 9 n-2 n-l 

... sin 9 sin 9 n-2 n-l 

i l, 2, ... n-l 

. . . sin 9n-l cos 91 cos 92 • • • 

where dS can be defined as the expression inside the brackets. This 

formula may also be verified by induction . 
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APPENDIX II. 

SURFACE CONTENT OF n DIMENSIONAL SPHERES 

A formula for the surface content for an n dimensional sphere 

can be readily found by a trick due to Courant [ 2 ] which also appears 

in Coxeter [ 3 ] . 

A. Surface Content in En. 

Let r Let us integrate the function 

over all En . Thus 

sp • J e -llrll2 rn-1 dr 

or the surface content sp is given by 

= 2 

l 
2n 

rr 

B. Surface Content in Cn. 

n -r. 

[ 

co 2 ] E1 l e ' dri 

Using the same trick yields that the surface content 

given by 

n 
8
PI 

2 rr = 
r(n) 

or the same value as sp in E2n. 

-llrll
2 

e -

is 
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