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Abstract

This thesis discusses the radial version of the Hele-Shaw problem. Different from the channel version,

traveling-wave solutions do not exist in this version. Under algebraic potentials, in the case that the

droplets expand, in finite time, cusps will appear on the boundary and classical solutions may not

exist afterwards. Physicists have suggested that for (2p+ 1, 2)-cusps, that near cusp singularities of

Hele-Shaw flow, after scaling X,Y by some powers of time t respectively, the main part of Y (X, t) is

a one-parameter family and does not depend on time t. They have also suggested that the solutions

of the Hele-Shaw problem are connected with dispersionless KdV (dKdV) hierarchy. In this study,

we rigorously proved that this is the case for (3,2)-cusps when the droplets are simply connected

and the external potentials are algebraic. We gave exact solutions and showed that the main parts

of the exact solutions are some special solutions of the dispersionless string equation. More over,

borrowed from the physical paper [15] with a little more details, we showed the arguments of how

these special solutions are related to dKdV hierarchy.
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8.2 Löwner Equation in Algebraic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.3.1 Deltoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

8.3.2 Zhukowski’s Airfoils via Faber Transform . . . . . . . . . . . . . . . . . . . . 40
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Chapter 1

Introduction

1.1 Background

In 1898 an English engineer, Henry S. Hele-Shaw, studied liquid flow in a channel [4]. To make the

separation interface of laminar flow and turbulent visible, he suggested injecting air into the system.

The motion of the interface of the air and the liquid is called Hele-Shaw flow. Hele-Shaw problem

is to discover the equations that describe Hele-Shaw flow. In 1958, P. G. Saffman and Sir G. I.

Taylor discovered a one-parameter family of exact solutions of Hele-Shaw problem—the so-called

Saffman-Taylor fingers [11]. The Saffman-Taylor fingers are traveling-wave solutions, and the shape

of the fingers does not depend on time t.

Figure 1.1: Saffman-Taylor fingers.

In this study, we discussed the radial version of Hele-Shaw problem. The radial version is an

important version of Hele-Shaw problem and it has attracted a lot of attention in the past few

decades [1], [2], [3], [5], [6], [7], [8], [9], [10], [12], [13], [14], [15], [16]. The radial version is to consider a

flow between two parallel horizontal planes with a narrow gap in between. It is different from the

channel version, since traveling-wave solutions do not exist. Under algebraic potentials, in the case

that droplets expand, in finite time, cusps will appear on the boundary, and classical solutions may

not exist after that. In [15], R. Teodorescu, P. Wiegmann and A. Zabrodin have suggested that for

(2p + 1, 2)-cusps, near cusp singularities, after scaling X,Y by some powers of t respectively, the

main part of Y (X, t) is a one-parameter family, and has a fingerlike shape that does not depend

on time t. In this study, we proved its correctness rigorously for (3,2)-cusps when the droplets are
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simply connected and the external potential is algebraic.

Figure 1.2: Radial version of Hele-Shaw problem.

Physicists have suggested that Hele-Shaw problem is related to integrable systems [7], [8], [15].

Regular Hele-Shaw flow is related to dispersionless 2D Toda hierarchy [8]. In the case that droplets

contract, near double points, it is connected to dispersionless AKNS hierarchy [7]. In the case that

droplets expand, near cusplike singularities, it is linked to dispersionless Kortweg–de Vries( dKdV)

hierarchy [15]. In this study, we showed that the solutions of Hele-Shaw problem are related to a

group of special solutions of dispersionless string equation. These special solutions are conjectured

as the main parts of Hele-Shaw flow. We added a little more details in the arguments borrowed

from [15] and showed how these special solutions are connected with dispersionless Kortweg–de

Vries(dKdV) hierarchy. Since after scaling X,Y by some powers of t respectively, these special

solutions are one-parameter families, do not depend on time t, and KdV equation describes the mo-

tion of solitons, it is not wholly unexpected that these solutions has connection with dKdV hierarchy.

Figure 1.3 is an example of Hele-Shaw flow growing into a deltoid with three (3,2)-cusps.

1.2 Main Result

In this section, we will state the main theorem, while terminologies such as local droplets, algebraic

Hele-Shaw potential, etc. will be explained later.

Suppose we have a chain of local droplets St under an algebraic Hele-Shaw potential, and Dt =
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Figure 1.3: Hele-Shaw flow growing into a deltoid.

Ĉ\St are simply connected. Assume that there is a (3,2)-cusp on ∂Dt∗ (t∗ is normalized to 0). Take

the cusp as the origin and the tangent line as X-axis, then we get Cartesian coordinates X = X(t, φ)

and Y = Y (t, φ), where φ are Green’s coordinates and t is time.

Theorem 1.2.1. Suppose the cusp on ∂D(0) is a (3,2)-cusp, without lost of generality, we could

assume X(0, φ), Y (0, φ) satisfy

X(0, φ) = φ2 +O(φ3),

Y (0, φ) = cφ3 +O(φ4),
(1.2.1)

with c < 0 near the cusp, then ∃ε > 0, s.t. ∀t ∈ (−ε, 0), the local boundary of D(t) near the tip is

analytic and its Cartesian coordinates have the following form:

X(t, φ) =
√

4
−3c

√
−t+ φ2 + o(

√
−t+ φ2),

Y (t, φ) = −
√
−3c
√
−tφ+ cφ3 + o(|

√
−tφ|+ |φ|3),

(1.2.2)

in particular,

Y (X, t) = ±c

(
X −

√
4

−3c

√
−t

)1/2(
X +

√
1

−3c

√
−t

)
+ o

(X −√ 4

−3c

√
−t

)3/2

+ (−t)3/4

 .

(1.2.3)

If we divide X, Y by (−t)1/2, (−t)3/4 respectively, we get

Ỹ (X̃, t) = ±c

(
X̃ −

√
4

−3c

)1/2(
X̃ +

√
1

−3c

)
+ o

(X̃ −√ 4

−3c

)3/2

+ 1

 .

Remark 1.2.2. The main part of Ỹ (X̃, t) is a one-parameter family, does not depend on time t
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and its shape is a fingerlike curve. Figures 1.4–1.6 show the main part

Ỹ (X̃) = ±c

(
X̃ −

√
4

−3c

)1/2(
X̃ +

√
1

−3c

)
,

when c = −0.5,−1,−2.

Figure 1.4: Ỹ (X̃) = ±c
(
X̃ −

√
4
−3c

)1/2 (
X̃ +

√
1
−3c

)
for c = −0.5.

Figure 1.5: Ỹ (X̃) = ±c
(
X̃ −

√
4
−3c

)1/2 (
X̃ +

√
1
−3c

)
for c = −1.

Hele-Shaw problem is more complicated to solve when p > 1. In this study, we solve the easiest

case–(3,2)-cusps, but we believe the problems concerning higher-order cusps are still doable. Physi-

cists have given the conjecture concerning (2p+ 1, 2)-cusps, and we will state this conjecture later.



5

Figure 1.6: Ỹ (X̃) = ±c
(
X̃ −

√
4
−3c

)1/2 (
X̃ +

√
1
−3c

)
for c = −2.

This thesis is organized as follows: chapters 2–4 review of some known facts. In chapter 2

we reviewed the equilibrium measure and the obstacle problem and stated that local droplets are

the support of equlibrium measure in obstacle problems. In chapter 3, we reveiwed some facts

about Schwarz function, and talked about Sakai’s regularity theorem. Then discussed Laplacian

growth problem and (classical and weak) solutions of Hele-Shaw problems. In algebraic and simply

connected case, Hele-Shaw flow is a classical solution of Laplacian growth problem, and (local)

Schwarz function exists on its boundary. In chapter 4, we talked about Sakai’s no turbulence

theorem concerning cusps. With this theorem, we know that cusps are laminar-flow points in

Hele-Shaw flow. In chapter 5, we introduced Green’s coordinates φ and derived the dispersionless

string equation. In chapter 6, we proposed the main theorem concerning (3,2)-cusps and stated the

conjecture concerning higher-order (2p+1,2)-cusps. In chapter 7, we discovered special solutions to

dispersionless string equation. These special solutions are main parts of Hele-Shaw flow near cusp

singularities. Besides, we showed the relation of these special solutions and dKdV hierarchy. In

chapter 8, we described two methods to compute the boundary equations: exterior Faber transform

and Löwner equation, and showed the procedure of solving Hele-Shaw problem with three examples

using these two methods. In chapter 9, we gave the proof of the main theorem. In chapter 10, we

discussed some other possible cases of Hele-Shaw problem.
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Chapter 2

Obstacle Problem and Droplets

First of all, we need to formally define (local) droplets, and the motion of its boundary is Hele-Shaw

flow. We will define (local) droplets by way of equilibrium measure and obstacle problem. So in this

chapter we will review some known facts about equilibrium measure and obstacle problem, and then

give the definition of local droplets as the support of equilibrium measure in an obstacle problem.

2.1 Equilibrium Measure

Assume that σ is a finite positive measure on complex plane C with compact support Sσ. Let

Uσ(z) =

∫
log

1

|z − ζ|
dσ(ζ)

be the logarithmic potential and

I(σ) =

∫
Uσdσ

be the logarithmic energy.

Uσ is lower semicontinuous, superharmonic on C and harmonic on C \ Sσ. Now assume that

there is an external field Q : C→ (−∞,+∞] which is lower semicontinuous and

lim
|z|→∞

(Q(z)− log |z|) = +∞.

Let

UσQ =

∫
LQ(z, ζ)dσ(ζ)

be the Q-potential, where

LQ := log
1

|z − ζ|
+Q(z) +Q(ζ),
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and

IQ(σ) =

∫
UσQdσ

be the Q-energy.

Theorem 2.1.1. (Frostman) There exists a unique probability measure σ̂ ≡ σ̂Q such that

IQ(σ̂) = γ ≡ γ(Q).

The equilibrium measure has a compact support, in fact, ∃M > 0, Sσ̂ ⊂ {Q ≤M}. Also, U σ̂Q ≤ γ on

Sσ̂; U σ̂Q ≥ γ q.e.in C.

Therefore, given an external field Q as above, the unique equilibrium measure σ̂ exists, has com-

pact support Sσ̂, and on the support of σ̂, the Q-potential U σ̂Q is equal to the Q-energy except on a

set of capacity zero.

Now let Q: C→ (−∞,+∞] be a lower semicontinuous function and satisfy

lim
z→+∞

(−Q+ t log |z|) = −∞,∀t (2.1.1)

in the following context.

By Frostman’s theorem, the unique equilibrium measure exists for such Q. The Obstacle problem

is as follows:

Let

Super(t) = {v : ∆v ≤ 0, lim inf
z→∞

[v + t log |z|] > −∞}.

The obstacle problem is to find

V = Obs(−Q, t) = inf{v ∈ Super(t) : v ≥ −Q}.

If Q is an admissible potential satisfying ∀A > 0, Q(z) ≥ A log |z|, |z| → ∞, then Obs(−Q, t) =

Uσt + c(Q, t), where σt is the equilibrium measure, σt = tσ[Q/t], and c(Q, t) is a constant. Since

Obs(−Q, t) = −Q q.e. on St = supp σt, σt[Q] = −∆Vt = ∆Q, where Vt = Obs(−Q, t). In fact, if

Q ∈W 2,p for some p > 1 in a neighborhood of S = St(Q), then σt = ∆Q · χS .

Therefore, for Q an admissible potential as above, the solution of obstacle problem is the Q-

potential with equilibrium measure σt, plus constant c(Q, t). And on the support of σt, σt = ∆Q.
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Figure 2.1: The solution Obs(−Q, t) to the obstacle problem given an external field Q.

2.2 Local Droplets

In general, given a lower semicontinuous function Q, Q may not satisfy the growth condition near

∞, even it is as simple as a polynomial. But if we localize the field Q to a closed set Σ ⊂ C and

write QΣ = Q · 1Σ +∞ · 1C\Σ, then QΣ is admissible and we could consider the obstacle problem

with QΣ. Then the equilibrium measure exists and denote it as σ[Q,Σ], and denote its support as

S[Q,Σ], i.e., for any Q lower semicontinuous, we could localize Q to some Σ and find the equilibrium

measure.

Definition 2.2.1. (Q-droplet): Let O be an open set in C and Q ∈ C2(O). Let S be a compact set

in O, then S is a Q-droplet if ∃Σ ⊂ O, s.t. S is a (Q,Σ) droplet, i.e., σ = ∆Q · χs and S=supp σ,

where σ is the equilibrium measure.

Remark 2.2.2. S is a Q-droplet is equivalent to S is a (Q,S)-droplet, i.e., US + constant ≡ −Q

on S. Also, If S is a droplet and S ⊂ Σ, then S is a (Q,Σ)-droplet iff Vs ≥ −Q on Σ.

To study Hele-Shaw flow, we consider a family of local droplets, so we need a method to compare

two local droplets. Let t1 < t2 and let S2 be a Q-droplet, tS2 = t2. Then S1 := St1(Q,S2) is a

Q-droplet. Given two Q-droplets St1 and St2 , if St1 ⊂ St2 and St1 = St1(Q,St2), define this relation

as “≺”, i.e., St1 ≺ St2 . The symbol “≺” satisfies the transition law: S1 ≺ S2 ≺ S3 implies S1 ≺ S3.

Denote the set {V = −Q} as S∗ and call it the coincidence set. The set S∗ is a compact,

nonempty set. V is harmonic in C \ S∗ and supp σ ⊂ S∗, i.e., local droplets are subsets of S∗.

If t1 ≤ t2, then Vt1 ≥ Vt2 and in particular, S∗t1 ⊂ S∗t2 . Let S1 ⊂ S2, then S1 ≺ S2 iff V1 ≥ V2.

We say {St}, 0 < t < t∗, is a chain of Q-droplets if for any t1 < t2, St1 ≺ St2 , where t = tSt .
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Chapter 3

Schwarz Function

Schwarz function is very useful when study local droplets. If there exists a local Schwarz function at

a boundary point of a local droplet, Sakai’s regularity theorem applies and this boundary point will

be in one of the four categories: regular points, cusp points, double points, and degenerate points.

This makes it easier to study Hele-Shaw flows. In this chapter we will first review some known

facts about (local) Schwarz function, introduce Hele-Shaw flows and Sakai’s Regularity theorem,

then review Laplacian growth problem, define its classical solutions and weak solutions, and show

Hele-Shaw flow is a weak solution of Laplacian growth problem.

3.1 Schwarz Function and Hele-Shaw Flow

Definition 3.1.1. (local Schwarz function) Let Ω be an open set and a ∈ ∂Ω, then

F : Ω̄ ∩∆→ C;

∆ is a disk centered at a, is a local Schwarz function at a if

(1) F is continuous;

(2) F is holomorphic in Ω ∩∆;

(3) F = z̄ on ∂Ω ∩∆.

If S is a Q-droplet, then Us ≡ UσS ∈W 2,p and ∂Us(z) =
∫
S
dσs(ζ)
ζ−z ∈W

1,p ⊂ C, and ∂Us+∂Q = 0

on ∂S. On the contrary, if S is connected, S = clos int S, and if ∂US + ∂Q = 0 on ∂S, then S is a

Q-droplet.

In the following part of this chapter, we suppose the external potential is Q(z) = |z|2 − H(z),

where H(z) is harmonic in O, i.e., ∆H = 0 in O, and h = ∂H is analytic in O, where O is some open

set containing the droplet. We call this potential Hele-Shaw potential. From the chain of droplets

obtained under Hele-Shaw potential, we get Hele-Shaw flow.
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If S is a Q-droplet, then z̄ = h(z) − ∂Us(z) on ∂S. So Ω = C \ S has a local Schwarz function

at every boundary point. Also, C \ S∗ has a local Schwarz function at every boundary point, and

](S∗ \ S) <∞.

3.2 Regularity Theorem

Now suppose S is a Q-droplet, Ω = C \ S∗, and a is a point on ∂Ω, then ∃ a local Schwarz function

F : Ω̄ ∩∆→ C, where ∆ is a disk centered at a.

(1) If ∂Ω ∩∆ is a proper subset of an analytic arc, then a is called a degenerate point.

Figure 3.1: The point a is a degenerate point.

(2) If a ∈ S∗ \ S, then a is called an isolated point.

Figure 3.2: The point a is an isolated point.

(3) If a is not degenerate nor isolated, and ∆ ∩ Ω is a Jordan domain such that the conformal

map φ : D→ ∆ ∩ Ω, 1 7→ a, is analytic at 1 and satisfies φ′(1) = 0, then a is a cusp point.

(4) If ∂Ω∩∆ consists of two analytic arcs, which are tangent to each other at a, then a is called

a double point.

M. Sakai gives the following classification of points on a boundary having Schwarz function.

Theorem 3.2.1. (Sakai’s regularity theorem)[12] [13]: Let Ω be an open subset of the unit disk B1

such that 0 is a nonisolated boundary point of Ω and let Γ = (∂Ω) ∩ B1. If there exists a Schwarz

function of Ω ∪ Γ in B1, then, for some small δ > 0, one of the following must occur:

(1) The point 0 is a regular point.
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Figure 3.3: The point a is a cusp point.

Figure 3.4: The point a is a double point.

(2a) The point 0 is a degenerate point.

(2b) The point 0 is a double point.

(2c) The point 0 is a cusp.

Remark 3.2.2. For Hele-Shaw flows, if 0 ∈ S, then 0 is not a degenerate point, since the area of

an analytic arc is zero so 0 6∈ S, contradiction.

Therefore, for Hele-Shaw flows, if there exists a local Schwarz function near 0, then 0 is a regular

point, a double point, or a cusp point.

3.3 Laplacian Growth Problem

Definition 3.3.1. (a smooth family of curves): Suppose {Γt} is a family of simple curves. {Γt}

is smooth if for any z on some curve, ∃ a local diffeomorphism γ = γ(s, t) from a rectangle in

(s, t)-plane to a neighborhood of z and maps the horizontal segments {(s, t) : s1 ≤ s ≤ s2} into Γt,

∀t.

Definition 3.3.2. (normal velocity): Suppose {Γt} is a smooth family of curves. vn = vn(z), z ∈ Γt,

is the normal velocity at z if

vn = (γ̇, n),
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Figure 3.5: A smooth family of curves.

where n is a unit normal vector at z ∈ Γt and γ̇ = ∂
∂tγ.

Remark 3.3.3. γ′ = ∂
∂sγ. We know that n ⊥ γ′. (Here γ′ is taken as a vector because the complex

plane C is isomorphic to the vector space R2 with one to one correspondence x + iy to (x, y).)

Suppose γ = (γ1, γ2), γ′ = (γ′1, γ
′
2), then

n =
1

|γ′|
(−γ′2, γ′1),

and

vn = (γ̇, n) =
1

|γ′|
=(γ̇γ̄′).

Normal velocity is well-defined, i.e., given different local diffeomorphisms γ, γ̃ around z ∈ Γt,

vn = ṽn. Since γ, γ̃ are two local diffeomorphisms around z ∈ Γt, we can find a differentiable

function σ = σ(s, t), s.t.

γ̃(s̃, t) = γ(σ(s, t), t),

then

˙̃γ = γ′σ̇ + γ̇. (3.3.1)

Since γ′ ⊥ n, ( ˙̃γ, n) = (γ̇, n).

Definition 3.3.4. (Green function): Suppose Ω is an unbounded simply connected domain and

Γ = ∂Ω is a smooth curve. ∞ ∈ Ω. G(z,∞; Ω) is a Green function in Ω if G solves the Dirichlet

problem: 
∆G = 0 in Ω,

G = 0 on Γ,

G→ log |z| as |z| → +∞.

(3.3.2)

Definition 3.3.5. (Laplacian growth problem): Suppose {D(t)} is a family of unbounded simply

connected domains. {Γ(t) = ∂D(t)} is a smooth family of curves. If ∃G(z,∞;D(t)) for each D(t),

s.t.

vn =
∂G

∂n
= n · ∇G
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on each Γ(t), then {D(t)} is a solution to this Laplacian growth problem.

3.4 Classical Solutions of Hele-Shaw Problem

Theorem 3.4.1. Suppose {D(t)} is a smooth family of domains and D(t) is simply connected for

each t, then by Riemann mapping theorem, ∃f(ζ, t) : Ĉ \ D̄ → D(t), conformal and univalent, and

{D(t)} is a (classical) solution of Laplacian growth problem if f satisfies

<[ḟ(ζ, t)ζf ′(ζ, t)] = 1

on |ζ| = 1.

Proof. Suppose {D(t)}, a family of unbounded simply connected domains, is a solution to Laplacian

growth problem. Then ∃G(z, t), s.t. vn = ∂G
∂n = n · ∇G. Since G(z, t) is harmonic in D(t), ∃ a

holomorphic function W (z, t) in D(t), s.t. <W (z, t) = G(z, t). Also, since D(t) is simply connected,

∃ conformal and univalent functions ft(ζ) = f(ζ, t) : Ĉ \ D̄→ D(t). then G(f(ζ, t), t) is a solution of

Dirichlet problem in Ĉ \ D̄. So W (f(ζ, t), t) = log ζ. Since the normal vector at ζ ∈ ∂D is n = ζ f ′

|f ′|

and ∂W
∂z = ∇G, we know vn = n · ∇G = <(ζ ∂W∂z

f ′

|f ′| ). Also,∂W∂z f
′ = 1

ζ , so vn = 1
|f ′| . On the other

hand, vn = <(ḟ ζ f ′

|f ′| ), so we have <[ḟ(ζ, t)ζf ′(ζ, t)] = 1, which is known as Polubarinova-Galin

equation.

Corollary 3.4.2. we could derive Löwner-Kufarev equation by using Schwarz-Poisson formula from

Polubarinova-Galin equation as follows:

ḟ(ζ, t) = ζf ′(ζ, t)
1

2π

∫ 2π

0

1

|f ′(eiθ, t)|2
eiθ + ζ

eiθ − ζ
dθ,

where ζ ∈ Ĉ \ D.

Proof. Since <[ḟ(ζ, t)ζf ′(ζ, t)] = 1 on |ζ| = 1,

<[
ḟ(ζ, t)

ζf ′(ζ, t)
] =

1

|f ′(ζ, t)|2
,

then by Schwarz-Poisson formula, we get

ḟ(ζ, t) = ζf ′(ζ, t)
1

2π

∫ 2π

0

1

|f ′(eiθ, t)|2
eiθ + ζ

eiθ − ζ
dθ,

where ζ ∈ Ĉ \ D.
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3.5 Weak Solutions of Hele-Shaw Problem

Let Ct be a smooth family of curves such that their interiors Ks increases. then

d

dt

∫ ∫
Kt

fdA =

∫
Ct

fvndl.

Definition 3.5.1. (weak solutions) Suppose there are an increasing family of compact sets Kt =

supp χt, χt = χKt . If for all f ∈ C(R2), the function t 7→
∫ ∫

Kt
f∆QdA is absolutely continuous

and for a.e. t we have
d

dt

∫ ∫
Kt

f∆QdA =

∫
Ct

fdω(t)
∞ ;

in short, d
dtσt = ω

(t)
∞ , then we call {Kt} a weak solution of Laplacian growth problem.

If {St} is an increasing family of Q-droplets, then it is a chain. Furthermore, for all t we have

d
dtχSt = ω

(t)
∞ in [L∞ ∩ C]∗. So the chain of Q-droplets is a weak solution of Laplacian growth

problem.
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Chapter 4

Cusps

From Sakai’s regularity theorem, boundary points of Hele-Shaw flows are regular points, double

points, or cusps. In this thesis, we focus on cusps. This chapter introduces maximal/nonmaximal

cusps, laminar-flow points and Sakai’s theorem on the revolution of cusps. This Sakai’s theorem

tells that cusps are laminar-flow points, and no tubulents appear near the cusps.

4.1 Maximal and Nonmaximal Cusps

First, a Q-droplet S is maximal if for any S̃, s.t. S ≺ S̃, S = S̃. So S is not maximal iff there is a

neighborhood U of P(S) such that VS +Q > 0 in U \ P(S). If S is maximal, there is a cusp on the

outer boundary.

Recall the definition of cusps: If a is not degenerate, and ∆ ∩ Ω is a Jordan domain such that

the conformal map f : Ĉ \ D → ∆ ∩ Ω, 1 7→ a, is analytic at 1 and satisfies f ′(1) = 0, then a is a

cusp on the boundary.

Definition 4.1.1. (nonmaximal cusp) A cusp a ∈ ∂P(S) is not maximal if there is a neighborhood

N = N(S) such that V > −Q in N \ P(S).

Remark 4.1.2. The droplet S is maximal iff all cusps on the outer boundary are maximal.

Suppose Φ : C+ → Ω := Ĉ \ P(S), i → ∞, 0 → a is the conformal map, and Φ(z) =

z2 + a3z
3 + ... + (aν + ibν)zν + ..., aj , bj ∈ R, ν ≥ 3 is the first index such that the corresponding

coefficient is not real. Let us consider the case when ν is odd, then the power series is univalent in

B(0, δ) ∩ C+ iff bν > 0. Let u = <Φ and v = =Φ, then on the boundary, u ∼ x2 and v ∼ bνx
ν , so

v = ±bνuν/2 + ..., (u ≥ 0). We call such cusps (ν, 2)-cusps.

It is known that (3, 2)-cusps are maximal, and (5, 2)-cusps are not maximal. In general, when

ν ≡ 1 mod 4, (ν, 2)-cusps are not maximal, and when ν ≡ 3 mod 4, (ν, 2)-cusps are maximal, i.e.,
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(2p+ 1, 2)-cusps are maximal if p is odd and nonmaximal if p is even.

4.2 Sakai’s No Turbulence Theorem

Definition 4.2.1. (stationary point) Suppose z0 ∈ ∂Ω0. If ∃t > 0, s.t. z0 ∈ ∂Ωt, then ∀0 < s < t,

z0 ∈ ∂Ωs. We call such z0 a stationary point.

Definition 4.2.2. (laminar-flow point) Suppose z0 is not a stationary point on ∂Ω0, if ∃ a small

disk B around z0, s.t. ∂Ωt ∩ B is regular real analytic simple arc for any small t > 0, we call such

z0 a laminar-flow point.

Theorem 4.2.3. (Sakai’s no turbulence theorem) [14] Suppose there exists a Schwarz function

around a ∈ ∂Ω0, if a is a regular point or a cusp, then a is a laminar-flow point for any injection

point p0 ∈ Ω0.
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Chapter 5

Green’s Coordinates and
Dispersionless String Equation

In the main theorem, we will discuss simply connected droplets, in which case conformal maps

from the complements of droplets to the complement of unit disk exist, so we can use Green’s

coordinates around the cusp and derive a PDE from D’Arcy’s law. The main arguments are borrowed

from physical papers[7], [8], [15], so we will follow physical literature and call it dispersionless string

equation. Solutions to dispersionless string equation may correspond to some droplets and so we

could solve the Hele-Shaw problem. In this chapter, we will first introduce Green’s coordinates and

then derive the dispersionless string equation from D’Arcy’s law.

5.1 Green’s Coordinates

Now, suppose we have a chain of simply connected Q-droplets {St} and D(t) = Ĉ\S(t), and {D(t)}

is a classical solution of Hele-Shaw problem for t∗ ≤ t < 0 and D(0) has a cusp. For each t, there is

a conformal map gt : D(t)→ Ĉ\ D̄ and suppose Gt is the Green function. Suppose the cusp of D(0)

is at z0 and g0(z0) = 1. Let zt ∈ Γt be the point s.t. gt(zt) = 1. We call zt the tip of the droplet.

Let Ut be a small disk centered at zt in D(t), s.t. Ut is simply connected in D(t). Let g,G, U, φ

denote gt, Gt, Ut, φt respectively.

Since −G is harmonic in U , we can choose a branch of G̃, s.t. φ = G̃ − iG is analytic and

single-valued in U . Then

φ̄ = G̃+ iG⇒ φ− φ̄ = −2iG⇒ ∂φ = ∂(φ− φ̄) = −2i∂G.

G = log |g|. Then since

φ = G̃− i log |g| = −i(log |g|+ iG̃)
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Figure 5.1: Relation of Green’s coordinates φ and conformal map g.

is analytic, we can choose G̃ =Arg g, so that φ = −i log g is single valued in U and g = eiφ.

Figure 5.2: Green’s coordinates φ and its inverse map ψ.

Since G > 0 in U , we have φ(U) ⊂ C− (C− is the lower half-plane of C) and φ(Γ ∩ Ū) ⊂ R.

Define

ψ = φ−1 : φ(U)→ U ;

then ψ is analytic in φ(U). Then ψ can be extended analytically into a stripe in C+. We can

now take a symmetric subset V with respect to the real line R, s.t.ψ is analytic in V . Let U1 =

φ−1(V ∩ C−) ⊂ U . Now we can define S(z) : U1 → C, s.t.

S(z) = ψ(φ(z)).

Lemma 5.1.1. S(z) is a Schwarz function in U .

Proof. S(z) is analytic in U and continuous onto Γ ∩ Ū .

If z ∈ Γ ∩ Ū , then S(z) = ψ(φ(z)) = z̄,

so S(z) is a Schwarz function.



19

5.2 Dispersionless String Equation

Lemma 5.2.1. Ṡt = 4∂G = 2i∂φ on Γt.

Proof. Consider the case that the boundary Γt is real analytic, then by Sakai’s regularity theorem,

S(z) can be extended to some stripe inside the droplet S(t). Then for 4t << 1 and ∀z ∈ Γt ∩ Ū1,

St+4t(z) is well-defined as the reflection of z about Γt. Since Γt has normal velocity vn, we can

approximate St+4t(z)− St(z) = 2~vn4t, where ~vn = vn ·n. Let 4t→ 0, we have Ṡt = 2~vn. then the

velocity 1
2 Ṡ = ∇G⇒ Ṡ = 2∇G = 4∂G.

Since φ(z, t) is univalent and conformal in Ut for each t, there exists an inverse map z = z(φ, t)

for each t. Now S(φ, t) = S(z(φ, t), t) on Γt, and we could get the following form, which is known as

dispersionless String equation.

Lemma 5.2.2. On boundary Γt,
∂S
∂φ

∂z

∂t
− ∂S
∂t

∂z

∂φ
= −2i.

Proof. Since z = z(φ, t) is the inverse map of φ = φ(z, t) and S(φ, t) = S(z(φ, t), t), for each t

∂z

∂φ
=

1
∂φ
∂z

.

Now consider z, S as functions of φ and t,

∂S
∂φ

=
∂S
∂z

∂z

∂φ
,

∂S
∂t

=
∂S
∂z

∂z

∂t
+
∂S
∂t
,

so
∂S
∂φ

∂z

∂t
− ∂S
∂t

∂z

∂φ
= −∂S

∂t

∂z

∂φ
= −2i.

Now let us choose a Cartesian coordinate systerm as follows: Let the cusp point be the origin and

the tangent line at the cusp be the x-axis, then on Γt, since S(z) = z̄, X = (z+S)/2, Y = (z−S)/(2i).

Corollary 5.2.3.

{X,Y } =
∂X

∂φ

∂Y

∂t
− ∂X

∂t

∂Y

∂φ
= −1.

Proof. Plug X = (z + S)/2, Y = (z − S)/(2i) into the equation in previous lemma.

This equation is also known as dispersionless string equation.
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Chapter 6

Main Theorem and Conjecture

In this chapter, we give the main theorem. In the main theorem, we discuss simply connected

droplets under Hele-Shaw potentials. Suppose there is a (3, 2)-cusp on the boundary, we can get

the Cartesian coordinates of the Hele-Shaw flows near the cusp using Green’s coordinates, and we

can see the main parts are one-parameter families and do not depend on time t. Then we state

conjectures for higher-order (2p+ 1, 2)-cusps and show an example of (5,2)-cusps.

6.1 Main Theorem

Suppose the external potential field is Q(z) = |z|2−H(z), where H(z) is harmonic and h(z) = ∂H(z)

is a meromorphic function (call it algebraic). From previous chapters, ∃ a chain of local droplets

St. Assume that St’s are simply connected and there is a (3,2) cusp on ∂St∗ , then from Sakai’s no

turbulence theorem, for all t < t∗, St has analytic boundary near the cusp. Also, ∃ Schwarz function

S(z, t) in a small neighborhood of the cusp. Write z in the form of Green’s coordinate φ, we have

S(φ, t) = S(Z(φ, t), t). Since S(z, t) = z̄ on ∂St, on the boundary of local droplets, we have the

Cartesian coordinates X(t, φ), Y (t, φ),

X(t, φ) =
Z(φ, t) + S(Z(φ, t)t)

2
,

Y (t, φ) =
Z(φ, t)− S(Z(φ, t), t)

2i
.

For simply connected D(t)’s, ∃ conformal maps ft : Ĉ \ D → D(t). From the picture below, we see

Z(t, φ) = ft(e
iφ). For φ ∈ R, Z(t, φ) ∈ ∂D(t), i.e. we could get X(t, φ), Y (t, φ) from ft.

Without lost of generality, let t̃ = t− t∗ and denote t̃ as t, then there is a cusp on the boundary

of D(0).
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Figure 6.1: Relation of Green’s coordinates φ and Cartesian coordinates X,Y .

Theorem 6.1.1. Suppose the cusp on ∂D(0) is a (3,2) cusp, assume X0(φ), Y0(φ) satisfy

X(0, φ) = φ2 +O(φ3),

Y (0, φ) = cφ3 +O(φ4),
(6.1.1)

with c < 0 near the cusp, then ∃ε > 0, s.t. ∀t ∈ (−ε, 0), the local boundary of D(t) near the tip is

analytic and its Cartesian coordinates in terms of Green’s coordinates have the following form:

X(t, φ) =
√

4
−3c

√
−t+ φ2 + o

(√
−t+ φ2

)
,

Y (t, φ) = −
√
−3c
√
−tφ+ cφ3 + o

(
|
√
−tφ|+ |φ|3

)
,

(6.1.2)

in particular,

Y (X, t) = ±c

(
X −

√
4

−3c

√
−t

)1/2(
X +

√
1

−3c

√
−t

)
+ o

(X −√ 4

−3c

√
−t

)3/2

+ (−t)3/4

 .

(6.1.3)

If we divide X, Y by (−t)1/2, (−t)3/4 respectively, we get

Ỹ (X̃, t) = ±c

(
X̃ −

√
4

−3c

)1/2(
X̃ +

√
1

−3c

)
+ o

(X̃ −√ 4

−3c

)3/2

+ 1

 .

Remark 6.1.2. In general, for

X(0, φ) = c2φ
2 +O(φ3),

Y (0, φ) = c3φ
3 +O(φ4),

(6.1.4)
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we could make

X̃(0, φ) = φ2 +O(φ3),

Ỹ (0, φ) = c2c3φ
3 +O(φ4),

(6.1.5)

then X̃t, Ỹt still satisfies String equation, from the above theorem, we get

X̃(t, φ) =
√

4
−3c2c3

√
−t+ φ2 + o

(√
−t+ φ2

)
,

Ỹ (t, φ) = −
√
−3c2c3

√
−tφ+ c2c3φ

3 + o
(
|
√
−tφ|+ |φ|3

)
,

(6.1.6)

then

X(t, φ) = c2

√
4

−3c2c3

√
−t+ c2φ

2 + o
(√
−t+ φ2

)
,

Y (t, φ) = − 1
c2

√
−3c2c3

√
−tφ+ c3φ

3 + o
(
|
√
−tφ|+ |φ|3

)
.

(6.1.7)

Zhukowski’s airfoils and deltoid are among the easiest examples of (3,2)-cusps. Here let us look

at Zhukowski’s airfoil.

The conformal map from Ĉ \ D to the following Zhukowski’s airfoil is f(ζ) = 3
4

(
ζ +

1
4

ζ− 1
2

− 3
2

)
.

The picture is as follows:

Figure 6.2: Zhukowski’s airfoil.

Then

Z(0, φ) = f(eiφ) =
3

4

(
eiφ +

1
4

eiφ − 1
2

− 3

2

)
,

and

X(0, φ) = − 3
2φ

2 +O(φ3),

Y (0, φ) = 3
2φ

3 +O(φ4).
(6.1.8)
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From the main theorem, we could get

X(t, φ) = − 2
√

3
3

√
−t− 3

2φ
2 + o

(√
−t+ φ2

)
,

Y (t, φ) =
√

3
√
−tφ+ 3

2φ
3 + o

(
|
√
−tφ|+ |φ|3

) (6.1.9)

are Cartesian coordinates of ∂D(t) near the tip.

Below is the graph of the main part of Hele-Shaw flow near the cusp in Zhukowski’s airfoil near

the tip at time t = −0.0005,−0.0002, 0 and −0.8 < φ < 0.8.

Figure 6.3: Hele-Shaw flow near the (3,2)-cusp in Zhukowski’s airfoil.

Make linear transformation to above curves along X-axis s.t. they interect X-axis at the origin,

we could get the following picture:

Figure 6.4: Hele-Shaw flow near the (3,2)-cusp in Zhukowski’s airfoil after linear transformation
along X-axis.
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From above equation, we can see that for a (3,2)-cusp, no droplets will exist after time t = 0.

6.2 General Conjecture concerning (2p+1,2)-cusps

In [15], Physicists have suggested the following conjecture concerning (2p+ 1, 2)-cusps:

Conjecture 6.2.1. Suppose the cusp on ∂D(0) is a (2p+1,2) cusp, assume X0(φ), Y0(φ) satisfy

X(0, φ) = φ2 +O(φ3),

Y (0, φ) = cφ2p+1 +O(φ2p+2),
(6.2.1)

with c < 0 near the cusp, then ∃ε > 0, s.t. ∀t ∈ (−ε, 0), the local boundary of D(t) around the cusp

is analytic and its Cartesian coordinates in terms of Green’s coordinates have the following form:

X(t, φ) = a(t) + φ2 + o
(
p+1
√
−t+ φ2

)
,

Y (t, φ) = c
∑p
k=0

 − 1
2

k

 (−a(t))k(a(t) + φ2)p−kφ+ o
(∑p

k=0 |(
p+1
√
−t)k( p+1

√
−t+ φ2)p−kφ|

)
,

(6.2.2)

where

a(t) = 2

(
(p+ 1)!t

2(2p+ 1)!!c

) 1
p+1

,

i.e.,

Y (X, t) = ±c
p∑
k=0

 − 1
2

k

 (−a(t))kXp−k
√
X − a(t) + o

(
(X − a(t))(2p+1)/2 + (−t)

2p+1
2(p+1)

)
.

If we divide X,Y by (−t)
1
p+1 , (−t)

2p+1
2(p+1) respectively, we get

Ỹ (X̃, t) = ±c
p∑
k=0

 − 1
2

k

 (−2

(
− (p+ 1)!

2(2p+ 1)!!c

) 1
p+1

)kX̃p−k

√
X̃ − 2

(
− (p+ 1)!

2(2p+ 1)!!c

) 1
p+1

+o

(
(X̃ − 2

(
− (p+ 1)!

2(2p+ 1)!!c

) 1
p+1

)(2p+1)/2 + 1

)
.

Remark 6.2.2. After scaling X,Y , the main part of Ỹ (X̃, t) is a one-parameter family and does

not depend on time t.

It is known that when p is odd, (2p+ 1)-cusps are maximal and when p is even, (2p+ 1, 2)-cusps

are non maximal. We can see this from Y (X, t) clearly, as when t > 0, a(t) does not exists when

p is odd and a(t) exists when p is even. Let us take a look at one of the simplest examples of non

maximal cusps–(5,2)-cusps.
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Conjecture 6.2.3. Suppose the cusp on ∂D(0) is a (5,2) cusp,

X(0, φ) = φ2 +O(φ3),

Y (0, φ) = cφ5 +O(φ6),
(6.2.3)

with c < 0 near the cusp, then ∃ε > 0, s.t. ∀t ∈ (−ε, 0), the local boundary of D(t) around the cusp

is analytic and its Cartesian coordinates in terms of Green’s coordinates have the following form:

X(t, φ) = 3

√
8t
5c + φ2 + o

(
3
√
−t+ φ2

)
,

Y (t, φ) = 15c
8

3

√
64t2

25c2φ+ c 5
2

3

√
8t
5cφ

3 + cφ5 + o
(
| 3
√
t2φ|+ | 3

√
−tφ3|+ |φ|5

)
,

(6.2.4)

i.e.,

Y (X, t) = ±c

(
X2 +

1

2
3

√
8t

5c
X +

3

8

3

√
64t2

25c2

)√
X − 3

√
8t

5c
+ o

(X − 3

√
8t

5c

)5/2

+ (−t)5/6

 .

If we divide X,Y by (−t) 1
3 , (−t) 5

6 respectively, we get

Ỹ (X̃, t) = ±c

(
X̃2 +

1

2
3

√
− 8

5c
X̃ +

3

8
3

√
64

25c2

)√
X̃ − 3

√
− 8

5c
+ o

(X̃ − 3

√
− 8

5c

)5/2

+ 1

 .

Remark 6.2.4. From above equation of Y (X, t), different from a (3, 2)-cusp, for a (5, 2)-cusp,

droplets still exists after time t = 0. We could see it directly from the following pictures of

X(t, φ) = 3

√
8t
5c + φ2,

Y (t, φ) = 15c
8

3

√
64t2

25c2φ+ c 5
2

3

√
8t
5cφ

3 + cφ5,
(6.2.5)

when c = 2, t = −0.005, 0, 0.005 and −0.8 < φ < 0.8.

Figure 6.5: Hele-Shaw flow with a (5,2)-cusp will continue to grow after cusp appears.
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Chapter 7

Special Solutions and dKdV
Hierarchy

Dispersionless string equation is a PDE derived from D’Arcy’s law and the solutions of it may

correspond to some Hele-Shaw flow. In this chapter, we discover special solutions to the dispersionless

string equation. We will see these special solutions are main parts of Hele-Shaw flow equation in

the main conjecture. Besides, we will show that these special solutions are related to dispersionless

KdV( dKdV) hierarchy. The arguments mainly follow from those in [15], with a little more details.

7.1 Special Solutions of Dispersionless String Equation

First, we will derive an equivalent form of dispersionless String equation.

Lemma 7.1.1. Suppose

 X = X(t, φ)

Y = Y (t, φ)
, where φ is Green’s coordinate, and X,Y are Cartesian

coordinates. Then

{X,Y } =
∂X

∂φ

∂Y

∂t
− ∂X

∂t

∂Y

∂φ
= −1

is equivalent to
∂Y

∂t
= − ∂φ

∂X
.

Note: Since Z(t, φ) is univalent with respect to φ for each t, X(t, φ) is also univalent with respect

to φ for each t, there exists an inverse function of φ = φ(t,X) for each t. then let Ỹ (t,X) =

Y (t, φ(t,X)). We write Y instead of Ỹ . then we have two new functions φ(t,X) and Y (t,X).

Proof.
∂Ỹ

∂t
=
∂Y

∂t
+
∂Y

∂φ

∂φ

∂t
,
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and
∂φ

∂X
=

1
∂X
∂φ

,

then

− ∂φ
∂X

= {X,Y } ∂φ
∂X

=
∂Y

∂t
− ∂φ

∂X

∂X

∂t

∂Y

∂φ
.

If we plug X = X(t, φ) in φ = φ(t,X), then we get φ = φ(t,X(t, φ)), which is independent of t, so

0 =
∂φ

∂t
+
∂φ

∂X

∂X

∂t
,

so

− ∂φ
∂X

=
∂Ỹ

∂t
=
∂Y

∂t
.

Now solutions of dispersionless String equation are the same as solutions φ(t,X), Y (t,X), s.t.

∂Y

∂t
= − ∂φ

∂X
.

We are concerned about some special solutions to this PDE, which are related to dispersionless KdV

hierarchy. The form of the special solutions is as follows:

Theorem 7.1.2.

 φ =
√
X − a(t)

Y =
∑p
j=0 cjPj(X, a(t))

√
X − a(t)

is a special solution of

 ∂Y
∂t = − ∂φ

∂X

Y (0, X) =
√
X
∑p
j=0 cjX

j
,

where a(t) satisfies
p∑
j=0

cj2

 − 1
2

j + 1

 (j + 1)(−a)j ȧ(t) = −1.

Note: Pj(X, a) = Prin[Xj(1 − a
X )−1/2], where Prin(u(X)) is the principle part of u(X) as

X →∞.

Since

(1− a

X
)−1/2 =

∞∑
k=0

 − 1
2

k

 (
−a
X

)k,

we have

Pj(X, a) =

j∑
k=0

 − 1
2

k

 (−a)kXj−k,

e.g.,

P0(X, a) = 1,

P1(X, a) = X +
1

2
a,
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P2(X, a) = X2 +
1

2
aX +

3

8
a2.

Proof. First, to satisfy the initial conditon, a(t) must go to 0 as t→ 0.

Second, we need to find a(t), s.t. ∂Y
∂t = − ∂φ

∂X .

We have
∂Y
∂t =

∑p
j=0 cj

∂Pj
∂a

√
X − a(t)ȧ(t) +

∑p
j=0 cjPj(X, a(t)) −ȧ(t)

2
√
X−a(t)

=
∑p
j=0 cj [

∂Pj
∂a 2(X − a(t))− Pj(X, a(t))] ȧ(t)

2
√
X−a(t)

.
(7.1.1)

Let Yj = Pj(X, a(t))
√
X − a(t). Since

Pj =
Xj+1/2

√
X − a

+O(
1

X
)

as X →∞, so

Yj = Xj+1/2 +O(
1√
X

),

then
∂Y

∂t
=

p∑
j=0

cj
∂Yj
∂t

= O(
1√
X

),

since
∂Pj
∂a

2(X − a(t))− Pj(X, a(t))ȧ(t)

is a polynomial of X, it must be independent of X, otherwise, look into Taylor expansion of

p∑
j=0

cj [
∂Pj
∂a

2(X − a(t))− Pj(X, a(t))]
ȧ(t)

2
√
X − a(t)

,

there will be terms of
√
X, contradiction.

Therefore,

∂Pj
∂a

2(X − a(t))− Pj(X, a(t)) = (−2j − 1)

 − 1
2

j

 (−a)j = 2

 − 1
2

j + 1

 (j + 1)(−a)j ,

then

∂Y

∂t
=

p∑
j=0

cj2

 − 1
2

j + 1

 (j + 1)(−a)j
ȧ(t)

2
√
X − a(t)

= − ∂φ
∂X

= − 1

2
√
X − a(t)

,

so
p∑
j=0

cj2

 − 1
2

j + 1

 (j + 1)(−a)j ȧ(t) = −1.

Therefore,
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if a(t) satisfies
∑p
j=0 cj2

 − 1
2

j + 1

 (−a)j+1 = t and a(0) = 0, φ =
√
X − a(t)

Y =
∑p
j=0 cjPj(X, a(t))

√
X − a(t)

is a special solution of φ(t,X), Y (t,X), s.t. ∂Y
∂t = − ∂φ

∂X ,

with initial condition Y (0, X) =
√
X
∑p
j=0 cjX

j .

Example:

1) Suppose Y (0, X) = c1X
3/2, then

 φ =
√
X − a(t)

Y = c1P1(X, a(t))
√
X − a(t)

is a solution of ∂Y
∂t = − ∂φ

∂X ,

where P1(X, a(t)) = X + 1
2a(t), and a(t) satisfies c12

 − 1
2

2

 (2)(−a)ȧ(t) = −1, i.e., a(t) =
√

4t
3c1

.

So

Y (t,X) = c1

(
X +

√
t

3c1

)√
X −

√
4t

3c1
.

2)Suppose Y (0, X) = c2X
5/2, then

 φ =
√
X − a(t)

Y = c2P2(X, a(t))
√
X − a(t)

is a solution of ∂Y∂t = − ∂φ
∂X ,

where P2(X, a(t)) = X2 + 1
2a(t)X + 3

8a(t)2, and a(t) satisfies c22

 − 1
2

3

 (3)(−a)2ȧ(t) = −1, i.e.,

a(t) = 3

√
8t
5c2

. So

Y (t,X) = c2

(
X2 +

1

2
3

√
8t

5c2
X +

3

8
3

√
64t2

25c22

)√
X − 3

√
8t

5c2
.

From these two examples, we can see that these special solutions are main parts of the exact

solutions of Hele-Shaw problem.

7.2 Dispersionless KdV Hierarchy

Now we will discuss the relation between the special solutions and dispersionless KdV hierarchy.

Integrable hierarchy is a set of differential equations that commute. Suppose a function u =

u(t; t1, t2, ...) has a set of differential equations:

∂u

∂tj
= Fj(u, u̇, ü, ...),

where u̇ = ∂u
∂t .
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If

[
∂

∂tj
,
∂

∂tk
]u =

∂

∂tj

∂u

∂tk
− ∂

∂tk

∂u

∂tj
= 0,

then

{ ∂u
∂tj

= Fj(u, u̇, ü, ...)}

is called integrable hierarchy.

If

Fj(u, u̇, ü, ...) = − (2j + 1)!!

j!2j
uj u̇,

then it is dispersionless KdV hierarchy.

From previous section, the special solutions of dispersionless string equation with given initial

condition Y (0, X) =
√
X
∑p
n=0 cnX

n are

 φ(X, t) =
√
X − a(t)

Y (X, t) =
∑p
n=0 cnPn(X, a(t))

√
X − a(t)

,

where Pn(X, a(t)) = Prin[Xn(1− a
X )−1/2] and

∑p
n=0 cn2

 − 1
2

n+ 1

 (−a)n+1 = t.

First, define KdV times t2n+1’s:

t2n+1 =
2

2n+ 1
cn−1,

for n = 1, 2, 3, ... and t1 = −t.

Give different initial values of cn’s, we could get different a(t)’s, so a(t) can be seen as a function

of t, t2n+1’s. We will show that

{∂a(t; t1, t3, ...)

∂t2n+1
= − (2n+ 1)!!

n!2n
anȧ},

so it is dKdV hierarchy.

Let

ωn(X, t) = Pn(X, a(t))
√
X − a(t),

for n = 0, 1, 2, ...,
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then Y (X, t) can be rewritten as

Y (X, t) =

p+1∑
n=1

2n+ 1

2
t2n+1ωn−1.

Lemma 7.2.1.
∂Y

∂t2n+1
=
∂ωn
∂X

.

Proof.

ωn(X, t) = Pn(X, a(t))
√
X − a(t) = Prin[Xn(1− a

X
)−

1
2 ]
√
X − a(t)

= (Xn(1− a

X
)−

1
2 − [Xn(1− a

X
)−

1
2 ]−)

√
X − a(t) = Xn+ 1

2 − [Xn(1− a

X
)−

1
2 ]−
√
X − a(t),

where [·]− is the sum of negative powers,

and

[Xn(1− a

X
)−

1
2 ]−
√
X − a(t) = O(

1√
X

).

If we substitute X by φ2 + a(t), we get

ω̃n(φ, t) = ωn(φ2 + a, t) = (φ2 + a(t))n+ 1
2 − [Xn(1− a

X
)−

1
2 ]−
√
X − a(t)|X=φ2+a

and

[Xn(1− a

X
)−

1
2 ]−
√
X − a(t)|X=φ2+a = O(

1

φ
).

Because ω̃n(φ, t) is a polynomial of φ, so ω̃n(φ, t) is the polynomial part of (φ2 + a(t))n+ 1
2 in φ.

It is clear that ∂Y
∂t2n+1

= 2n+1
2 ωn−1 +

∑p+1
j=1

2j+1
2 t2j+1

∂ωj−1

∂t2n+1
, and

∂ωj−1

∂t2n+1
= O( 1√

X
).

Since ∂ωn
∂X = (n + 1

2 )Xn− 1
2 + O( 1

X3/2 ), if we substitute X by φ2 + a(t), we know ∂ωn
∂X =

poly(φ)+O( 1
φ ), while O( 1

X3/2 ) = O( 1
φ3 ), so ∂ωn

∂X =poly(X)
√
X − a(t)+O( 1√

X
).

Since ∂Y
∂t2n+1

and ∂ωn
∂X has the same principle part,

∂Y

∂t2n+1
=
∂ωn
∂X

.

Lemma 7.2.2.
∂Y

∂t2n+1
= {Y, ωn}.
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Proof. Since {X,Y } = −1,

−∂ωn
∂X

= {X,Y }∂ωn
∂X

= (
∂X

∂φ

∂Y

∂t
− ∂X

∂t

∂Y

∂φ
)
∂ωn
∂X

,

and from ω̃n(φ, t) = ωn(X(φ, t), a(t)),

∂ω̃n
∂φ

=
∂ωn
∂X

∂X

∂φ
.

Moreover, as ω̃n(φ, t) is the polynomial part of (φ2 + a(t))n+ 1
2 in φ,

∂ω̃n
∂t

=
∂ωn
∂X

∂X

∂t
.

So

−∂ωn
∂X

=
∂ω̃n
∂φ

∂Y

∂t
− ∂ω̃n

∂t

∂Y

∂φ
= {ω̃n, Y },

and
∂Y

∂t2n+1
=
∂ωn
∂X

= {Y, ω̃n}.

Denote ω̃n as ωn. Then
∂Y

∂t2n+1
= {Y, ωn}.

Lemma 7.2.3.
∂X

∂t2n+1
= {X,ωn}.

Proof. Since Y (t, φ) is a univalent function near the cusp, there exists an inverse function φ = φ(t, Y ).

And ∂φ
∂Y = 1

∂Y
∂φ

. Let X = X̃(t, Y ) = X(t, φ(t, Y )). Now

∂X

∂t2n+1
=
∂X

∂φ

∂φ

∂Y

∂Y

∂t2n+1
=
∂X

∂φ

∂φ

∂Y
{Y, ωn}.

Since X̃(t, Y ) = X(t, φ(t, Y )) and Y = Y (t, X̃(t, Y )), ∂X
∂Y = ∂X

∂φ
∂φ
∂Y and 1 = ∂Y

∂X
∂X
∂Y , also

∂Y

∂t
=

p+1∑
n=1

2n+ 1

2
t2n+1

∂ωn−1

∂t
=

p+1∑
n=1

2n+ 1

2
t2n+1

∂ωn−1

∂X

∂X

∂t
=
∂Y

∂X

∂X

∂t
,

∂X

∂t2n+1
=
∂X

∂φ

∂φ

∂Y
(
∂Y

∂φ

∂ωn
∂t
− ∂Y

∂t

∂ωn
∂φ

) =
∂X

∂φ

∂ωn
∂t
− ∂X

∂t

∂ωn
∂φ

= {X,ωn}.
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Theorem 7.2.4.
∂a

∂t2n+1
= − (2n+ 1)!!

n!2n
an
∂a

∂t
.

Proof. Since X(t, φ) = φ2 + a(t) and ωn(t, φ) = Pn(φ2 + a(t), a(t))φ =
∑n
k=0

 − 1
2

k

 (−a)k(φ2 +

a)n−kφ,

∂a

∂t2n+1
= {X,ωn}

= 2φ

n∑
k=0

 − 1
2

k

 (−k(−a)k−1ȧ(φ2 + a)n−kφ+ (−a)k(n− k)(φ2 + a)n−k−1ȧφ)

−ȧ
n∑
k=0

 − 1
2

k

 (−a)k((φ2 + a)n−k + (n− k)(φ2 + a)n−k−12φ2)

= 2φ

n∑
k=0

 − 1
2

k

 (−k)(−a)k−1ȧ(φ2 + a)n−kφ− ȧ
n∑
k=0

 − 1
2

k

 (−a)k(φ2 + a)n−k

= − (2n+ 1)!!

n!2n
an
∂a

∂t
.

Remark 7.2.5. Since t1 = −t,
∂a

∂t1
= −∂a

∂t
,

so
∂a

∂t2n+1
=

(2n+ 1)!!

n!2n
an

∂a

∂t1
.

And the first equation is Hopf-Burgers equation

∂a

∂t3
=

3a

2

∂a

∂t1
.
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Chapter 8

Algebraic Quadrature Domains

In this chapter, we will describe two methods to compute Hele-Shaw flows: one is exterior Faber

transform and the other is Löwner equation. We will show three examples using these two methods.

In chapter 9, we will prove the main theorem using Löwner equation.

8.1 Exterior Faber Transform

The main theorem is about simply connected droplets under algebraic Hele-Shaw potentials Q(z) =

|z|2 −H(z), where ∂H(z) is a meromorphic function, so there exist conformal maps from Ĉ \ D to

the complements of the droplets. It is known that the conformal and univalent map from Ĉ \ D to

Ω has the following form:

f(ζ) = rζ + c0 + c−1ζ
−1 + c−2ζ

−2 + ...,

where r > 0.

Let Φ = Φ[·, f ] : Pn → Pn be defind by p→ Φp = [p ◦ f−1]∞, i.e. p ◦ f−1 = Φp+ o(1).

Examples:

Φ[1] = 1,Φ[ζ] =
ω − c0
r

,Φ[ζ2] =
(ω − c0)2

r2
− 2c−1

r
,

and for λ ∈ Ĉ \ D,

Φ[
1

λ− ζ
] =

f ′(λ)

f(λ)− ω
.

Remark 8.1.1. If F ∈ A(D), then define F∗(z) = F ( 1
z̄ ) and F∗(z) ∈ A(Ĉ \ D).

If F ∈ A(Ĉ \ D), then define F∗(z) = F ( 1
z̄ ) and F∗(z) ∈ A(D).

On T, F∗∗ = F .

Theorem 8.1.2. (Faber transform) [3] Let Q(z) = |z|2 −H(z) be a Hele-Shaw potential in O and
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let h = ∂H. Suppose K ⊂ O has no holes and f(ζ) = rζ + g(ζ), for ζ ∈ Ĉ \D, is the conformal map

onto Kc. Then K is a droplet iff

Φ[g∗; rζ + g] = h.

Remark 8.1.3. Functions f and h has the same form. Using exterior Faber transform, given

Q(z) = z2 −H(z), s.t. h(z) = ∂H(z) is a meromorphic function, then f(t, ζ) will be meromorphic,

we call this case algebraic case and the main theorem is about simply connected, algebraic case.

8.2 Löwner Equation in Algebraic Case

Suppose the external potential is Q(z) = |z|2 − H(z), where H(z) is harmonic and h(z) = ∂H(z)

is a meromorphic function. Also, suppose D(t)’s are simply connected unbounded domains. Then

by exterior Faber transform, there exists a conformal map ft(ζ) : Ĉ \ D → D(t), and ft(ζ) is a

meromorphic function. Assume that f ′t(∞) > 0, then f ′t(ζ) = c(t)
∏
j
ζ−aj(t)
ζ−bj(t) , where c(t) > 0. In

this section, we will derive Löwner equation in algebraic case and then derive a system of ordinary

differential equations involving all the coefficients c(t), aj(t)’s and bj(t)’s.

Theorem 8.2.1. Suppose ft : Ĉ \ D→ D(t) has a rational derivative, i.e.,

f ′t(ζ) = c(t)
∏
j

ζ − aj(t)
ζ − bj(t)

, (8.2.1)

where c(t) > 0.

Let h = |f ′t |−2 and H be its harmonic extension. Then

H + iH̃ =
1

|c|2
∑
k

Bk
ζ + ak
ζ − ak

+
1

|c|2
∏ bk

ak
, (8.2.2)

where

Bk =
(1− ak b̄k)(ak − bk)

(1− |ak|2)ak

∏
j 6=k

(1− b̄jak)(ak − bj)
(1− ājak)(ak − aj)

. (8.2.3)

Proof. On ∂D,

|c|2h =
∏
j

ζ − bj
ζ − aj

ζ̄ − b̄j
ζ̄ − āj

=
∏
j

ζ − bj
ζ − aj

1− b̄jζ
1− ājζ

=
∑
j

Cj
1

ζ − aj
+
∑
j

Dj
1

1− ājζ
+M. (8.2.4)

Compare residues on both sides at ak’s and ā−1
k ’s,

Ck =
(ak − bk)(1− b̄kak)

1− |ak|2
∏
j 6=k

(ak − bj)(1− b̄jak)

(ak − aj)(1− ājak)
, (8.2.5)
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Dk =
(ā−1
k − bk)(1− b̄kā−1

k )

ā−1
k − ak

∏
j 6=k

(ā−1
k − bj)(1− b̄j ā

−1
k )

(ā−1
k − aj)(1− āj ā

−1
k )

. (8.2.6)

Let

Bk =
(ak − bk)(1− b̄kak)

(1− |ak|2)ak

∏
j 6=k

(ak − bj)(1− b̄jak)

(ak − aj)(1− ājak)
, (8.2.7)

then Ck = Bkak and Dk = B̄k, and

|c|2h =
∑
Bk

ak
ζ−ak +

∑
B̄k

ζ̄
ζ̄−āk

+M

= 1
2

∑
Bk

ζ+ak
ζ−ak + 1

2

∑
B̄k

ζ̄+āk
ζ̄−āk

− i=
∑
Bk +M

= 1
2

∑
Bk

ζ+ak
ζ−ak + 1

2

∑
B̄k

1+ākζ
1−ākζ − i=

∑
Bk +M,

(8.2.8)

as ζ → 0 and ζ →∞, we can get M − i=
∑
Bk = <(

∏ bk
ak

).

Corollary 8.2.2. Löewner equation in algebraic case is in the form of

ḟt(ζ, t) = ζA(ζ, t)f ′t(ζ, t), (8.2.9)

where

A(ζ, t) =
1

|c|2
∑
k

Bk
ζ + ak
ζ − ak

+
1

|c|2
∏ bk

ak
. (8.2.10)

Proof. We can see that H + iH̃ = 1
2π

∫ 2π

0
1

|f ′(eiθ,t)|2
eiθ+ζ
eiθ−ζ dθ.

Now we will derive a system of ordinary differential equations involving coefficients aj(t), bj(t), c(t):

Theorem 8.2.3. Löwner equation is equivalent to the following (2n+ 1) equations:
−ȧj = γaj + 1

c2

∑
2Bkak + 1

c2

∑
k 6=j

2Bka
2
k

aj−ak + 1
c2 2Bja

2
j (
∑
k 6=j

1
aj−ak −

∑
1

aj−bk ),

ḃj = −γbj − 1
c2

∑
2Bkak − 1

c2

∑ 2Bka
2
k

bj−ak ,

ċ
c = γ.

(8.2.11)

Proof. Since
d

dt
(log f ′t) = (ζA)′ + ζA(log f ′t)

′, (8.2.12)

we have

ċ
c −

∑ ȧk
ζ−ak +

∑ ḃk
ζ−bk

= 1
c2 (
∑
k Bk +

∏ bk
ak
−
∑ 2a2kBk

(ζ−ak)2 ) + 1
c2 ζ(

∑
Bk

ζ+ak
ζ−ak +

∏ bk
ak

)(
∑

1
ζ−ak −

∑
1

ζ−bk )

= 1
c2 (
∑
k Bk +

∏ bk
ak
−
∑ 2a2kBk

(ζ−ak)2 ) + 1
c2 (ζ(

∑
Bk +

∏ bk
ak

) +
∑

2Bkak +
∑ 2Bka

2
k

ζ−ak )(
∑

1
ζ−ak −

∑
1

ζ−bk )

= (γ − 1
c2

∑ 2a2kBk
(ζ−ak)2 ) + (ζγ + 1

c2

∑
2Bkak + 1

c2

∑ 2Bka
2
k

ζ−ak )(
∑

1
ζ−ak −

∑
1

ζ−bk ),

(8.2.13)
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where γ = 1
c2 (
∑
k Bk +

∏ bk
ak

).

Compare residues, we get

−ȧj = γaj + 1
c2

∑
2Bkak + 1

c2

∑
k 6=j

2Bka
2
k

aj−ak + 1
c2 2Bja

2
j (
∑
k 6=j

1
aj−ak −

∑
1

aj−bk ),

ḃj = −γbj − 1
c2

∑
2Bkak − 1

c2

∑ 2Bka
2
k

bj−ak .
(8.2.14)

Let ζ →∞, we have
ċ

c
= γ. (8.2.15)

Now we solve these 2n+ 1 equations, we can get aj ’s, bj ’s and c.

8.3 Examples

Deltoid and Zhukowski’s airfoils are among the easiest examples of Hele-Shaw flows, so here we will

solve them and show how to use these two methods.

8.3.1 Deltoid

Let the potential be Q(z) = |z|2 − 2R[bz3], b ∈ C. Take b = 1
6 . Then

h(z) =
z2

2
, (8.3.1)

and

∂Q(z) = z̄ − z2

2
(8.3.2)

gives that the only local minimum of Q(z) is zero.

By exterior Faber transform, we have

f(ζ) = rζ + g(ζ) = rζ + c̄0 + c̄1ζ
−1 + c̄2ζ

−2, (8.3.3)

g∗(ζ) = c0 + c1ζ + c2ζ
2, (8.3.4)

z2

2
= c0 + c1

z − c̄0
r

+ c2(
(z − c̄0)2

r2
− 2c̄1

r
), (8.3.5)

then we have

c0 −
c1c̄0
r

+
c2c̄

2
0

r2
− 2c̄1c2

r
= 0, (8.3.6)

c1
r
− 2c2c̄0

r2
= 0, (8.3.7)
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c2
r2

=
1

2
, (8.3.8)

⇒ 
c2 = r2

2 ,

c1 = rc̄0,

c0 =
c̄20
2 + r2c0.

(8.3.9)

If c0 6≡ 0, then we can prove that f is not univalent.

So we need c0 ≡ 0. Then c1 ≡ 0 and c2 = r2

2 .

Z(t, φ) = f(eiφ) (8.3.10)

= reiφ +
r2

2
e−2iφ (8.3.11)

= r(

∞∑
n=0

(iφ)n

n!
) +

r2

2
(

∞∑
n=0

(−2iφ)n

n!
)) (8.3.12)

= (r +
r2

2
) + (rφ− r2φ)i+ (−rφ

2

2
− r2φ2) + (−rφ

3

6
+

2r2φ3

3
)i+ ... (8.3.13)

Truncate Z(t, φ) and keep terms until φ3, the Cartesian coordinates will be X(φ, t) = (r + r2

2 ) + (− r2 − r
2)φ2,

Y (φ, t) = (r − r2)φ+ (− r6 + 2r2

3 )φ3.
(8.3.14)

Since q = −2π, By area theorem, we have

− 2t = r2 − r4

2
, (8.3.15)

with 0 < r ≤ 1 and − 1
4 ≤ t < 0.

Then

r =

√
1−
√

1 + 4t. (8.3.16)

Let t̃ = −(t+ 1
4 ). Then the cusp apprears at t̃ = 0, and

r =

√
1−

√
−4t̃, (8.3.17)

so

r + r2

2 =

√
1−

√
−4t̃+

1−
√
−4t̃

2 = 3
2 −

√
−4t̃+ o(

√
−t̃),

− r2 − r
2 = −

√
1−
√
−4t̃

2 − (1−
√
−4t̃) = − 3

2 +O(
√
−t̃),

r − r2 =

√
1−

√
−4t̃− (1−

√
−4t̃) = 1

2

√
−4t̃+ o(

√
−t̃),

− r6 + 2r2

3 = −
√

1−
√
−4t̃

6 +
2(1−
√
−4t̃)

3 = 1
2 +O(

√
−t̃),

(8.3.18)
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then

X(t̃, φ) = 3
2 − 2

√
−t̃− 3

2φ
2 + o(

√
−t̃+ φ2),

Y (t̃, φ) =
√
−t̃φ+ 1

2φ
3 + o(|

√
−t̃φ|+ |φ|3).

(8.3.19)

Move the Hele-Shaw flow along X-axis by linear transformation s.t. the cusp point is at the origin,

we get

X(t̃, φ) = −2
√
−t̃− 3

2φ
2 + o(

√
−t̃+ φ2),

Y (t̃, φ) =
√
−t̃φ+ 1

2φ
3 + o(|

√
−t̃φ|+ |φ|3),

(8.3.20)

and

{X,Y } =
∂X

∂φ

∂Y

∂t̃
− ∂Y

∂φ

∂X

∂t̃
= −1. (8.3.21)

The Cartesian coordinates are as stated in the main theorem.

Figure 8.1: Hele-Shaw flow growing into a deltoid.
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8.3.2 Zhukowski’s Airfoils via Faber Transform

Hele-Shaw potential: Q(z) = |z|2−H(z) = |z|2−B log |z− 2|2, −1 < B < 0. Then h(z) = ∂H(z) =

B
z−2 .

From ∂Q(z) = z̄ − B
z−2 , we get z = 1±

√
1 +B and z = 1−

√
1 +B is the only local minimum.

By exterior Faber transform, we get

f(ζ) = rζ + g(ζ) and Φ[g∗; rζ + g] = h = B
z−2 .

Then g∗(ζ) = β
ζ−λ and βf ′(λ) = B, f(λ) = 2.

Since f(ζ) = rζ + β̄ζ
1−λ̄ζ , f ′(ζ) = r + β̄

(1−λ̄ζ)2 ,

βr + |β|2
(1−|λ|2)2 = B, rλ+ β̄λ

1−|λ|2 = 2.

Suppose r ∈ R, then β ∈ R and λ ∈ R.

By area theorem (suppose q = −2π),

−2πt = πr2 − β2π
λ2

∑
n
λ2n = πr2 − πβ2

(λ2−1)2 .

⇒
−2t = −β2

(λ2−1)2 + r2,

βr + β2

(λ2−1)2 = B,

rλ+ βλ
1−λ2 = 2,

(8.3.22)

⇒
r = 1

λ −
λt
2 ,

β = (1−λ2)(2+tλ2)
2λ ,

(8.3.23)

rβ = B − β2

(1−λ2)2 < 0, so f is univalent iff |λ| ≥ 1 +
√
−β
r .

Also

β± = − (λ2−1)2

λ3 ± λ2−1
λ

√
(λ2−1)2

λ4 +B,

r± = 1
λ (1 + 1

λ2 ±
√

(λ2−1)2

λ4 +B),

t± = − 2
λ2 ( 1

λ2 ±
√

(λ2−1)2

λ4 +B).

(8.3.24)

To make f univalent, we need |λ| ≥ 1 +
√
−β
r , i.e. λ2 − |λ| ≥ λ2−1

λr .

Let λ > 1, then r > 0, (B+ 1)λ3−3λ+ 2 ≥ 0 and λ ≥ λ∗ = maximal root of (B+ 1)λ3−3λ+ 2 = 0.

As λ→ λ∗, f
′(ζ)→ 0 at ζ = 1, so we get a cusp.

Z(t, φ) = f(eiφ) = reiφ + βeiφ

1−λeiφ

= (r − β
λ−1 ) + (r + β

(λ−1)2 )iφ+ (− r2 + β(λ+1)
2(λ−1)3 )φ2 + (− r6 −

β(λ2+4λ+1)
6(λ−1)4 )iφ3 + · · ·

(8.3.25)

Take a specific B = −0.5, then λ∗ = 2, r∗ = 0.75, β∗ = −0.75, t∗ = −0.25 then

Z(t∗, φ) = 0.75(eiφ − eiφ

1− 2eiφ
),
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β+ = − (λ2−1)2

λ3 + λ2−1
λ

√
0.5λ4−2λ2+1

λ4 ,

r+ = 1
λ (1 + 1

λ2 +
√

0.5λ4−2λ2+1
λ4 ),

t+ = − 2
λ2 ( 1

λ2 +
√

0.5λ4−2λ2+1
λ4 ).

(8.3.26)

Let l = 1
λ2 , then l increases to 1

4 as λ→ λ∗.

then t = t+ = −2l(l +
√

1
2 − 2l + l2),

√
1

2
− 2l + l2 = (

1

16
+

3

2
(
1

4
− l) + (

1

4
− l)2)1/2 = 1− 3l + o(1− 4l),

⇒ t = −2l(1− 2l) + o(1− 4l) and l = 1−
√

1+4t
4 + o(

√
1 + 4t).

Let t̃ = − 1+4t
4 ≤ 0, then l =

1−
√
−4t̃

4 + o(
√
−t̃).

r = r+ = 3
4 −
√
−t̃
4 + o(

√
−t̃),

r − β
λ−1 = 3

2 − 2
√
−t̃+ o(

√
−t̃),

r + β
(λ−1)2 = 3

√
−t̃+ o(

√
−t̃),

− r2 + β(λ+1)
2(λ−1)3 = − 3

2 +O(
√
−t̃),

− r6 −
β(λ2+4λ+1)

6(λ−1)4 = 3
2 +O(

√
−t̃),

(8.3.27)

⇒
X(t̃, φ) = 3

2 − 2
√
−t̃− 3

2φ
2 + o(

√
−t̃+ φ2),

Y (t̃, φ) = 3
√
−t̃φ+ 3

2φ
3 + o(|

√
−t̃φ|+ |φ|3),

(8.3.28)

let t = 3t̃, then

X(t, φ) = 3
2 −

2
√

3
3

√
−t− 3

2φ
2 + o(

√
−t+ φ2),

Y (t, φ) =
√

3
√
−tφ+ 3

2φ
3 + o(|

√
−tφ|+ |φ|3).

(8.3.29)

If we move the Hele-Shaw flow by linear transformation s.t. the cusp is at the origin, we will get the

same result as using the Löwner equation(details are in the next subsection), and as stated in the

main theorem.

8.3.3 Zhukowski’s Airfoils via Löwner Equation

We used exterior Faber transform to get the equation of boundaries of Zhukowski’s airfoils. Now we

have another method: Löwner equation.

Let ft(ζ): Ĉ \ D→ D(t).

Suppose f0(ζ) = 3
4 (ζ +

1
4

ζ− 1
2

− 3
2 ). Then by exterior Faber transform, ft(ζ) is

ft(ζ) = a(t)ζ + b(t) +
c(t)

ζ − λ(t)
,
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Figure 8.2: Conformal map ft(ζ) from Ĉ \ D to a Zhukowski’s airfoil with a (3,2)-cusp.

and

f ′t(ζ) = a(t)− c(t)

(ζ − λ(t))2
,

also f0(1) = 0, f ′0(1) = 0.

⇒ λ(0) = 1−
√

c(0)
a(0) since |λ(0)| < 1.

Let a1(t) = λ(t)−
√

c(t)
a(t) , a2(t) = λ(t) +

√
c(t)
a(t) ,

b1(t) = b2(t) = λ(t), a(0) = 3
4 , b(0) = − 9

8 , c(0) = 3
16 , λ(0) = 1

2 , a1(0) = 0 and a2(0) = 1. By similar

process as in the proof of the main theorem, we get

a(t) = 3
4 −

√
3

12

√
−t+ o(

√
−t),

b(t) = − 9
8 −

√
3

6

√
−t+ o(

√
−t),

c(t) = 3
16 −

7
√

3
48

√
−t+ o(

√
−t),

λ(t) = 1
2 −

√
3

6

√
−t+ o(

√
−t),

(8.3.30)

then

Z(t, φ) = ft(e
iφ) = a(t)eiφ + b(t) +

c(t)

eiφ − λ(t)
= a

∞∑
n=0

(iφ)n

n!
+ b− c

λ
+
c

λ

∞∑
k=0

∞∑
n=0

λk(−ikφ)n

n!

= (a+ b− c

λ
+
c

λ

∞∑
k=0

λk) + (a− c

λ

∞∑
k=1

kλk)iφ+ (−a
2
− c

λ

∞∑
k=1

k2λk

2
)φ2 + (−a

6
+
c

λ

∞∑
k=1

k3λk

6
)iφ3 + ...

= (a+ b− c

λ− 1
) + (a− c

(λ− 1)2
)iφ+ (−a

2
+

c(λ+ 1)

2(λ− 1)3
)φ2 + (−a

6
+
c(λ2 + 4λ+ 1)

6(λ− 1)4
)iφ3 + ....

Since

a+ b− c

λ− 1
= −2

√
3

3

√
−t+ o(

√
−t),

a− c

(λ− 1)2
=
√

3
√
−t+ o(

√
−t),
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−a
2

+
c(λ+ 1)

2(λ− 1)3
= −3

2
+O(

√
−t),

−a
6

+
c(λ2 + 4λ+ 1)

6(λ− 1)4
=

3

2
+O(

√
−t).

Truncate Z(t, φ) till φ3, we have the Cartesian coordinates as follows:

X(t, φ) = − 2
√

3
3

√
−t− 3

2φ
2 + o(

√
−t+ φ2),

Y (t, φ) =
√

3
√
−tφ+ 3

2φ
3 + o(|

√
−tφ|+ |φ|3).

(8.3.31)

X(t, φ), Y (t, φ) satisfy dispersionless string equation,

∂X

∂φ

∂Y

∂t
− ∂Y

∂φ

∂X

∂t
= −1.



44

Chapter 9

Proof of the Main Theorem

In this chapter, we give the proof of the main theorem: Suppose the external potential is Q(z) =

|z|2 −H(z), where H(z) is harmonic and h(z) = ∂H(z) is a meromorphic function. Also, suppose

D(t)’s are simply connected unbounded domains. Then by exterior Faber transform, there exists a

conformal map ft(ζ) : Ĉ \D→ D(t), and ft(ζ) is a meromorphic function. Assume that f ′t(∞) > 0,

then f ′t(ζ) = c(t)
∏
j
ζ−aj(t)
ζ−bj(t) , where c(t) > 0. In chapter 8, we derived Löwner equation in algebraic

case and a system of ordinary differential equations involving all coefficients c(t), aj(t)’s and bj(t)’s.

Now, we will prove the main theorem by solving all the coefficients.

In simply connected and algebraic case,

f ′t(ζ) = c(t)
∏
j

ζ − aj(t)
ζ − bj(t)

,

c(t) > 0, is a conformal map from Ĉ \ D to D(t). So aj(t), bj(t) ∈ D. Then Z(t, φ) = ft(e
iφ) =

C0(t) + C1(t)iφ+ C2(t)φ2 + C3(t)iφ3 + ....

Suppose at t = 0, there is a (3,2)-cusp at φ = 0. then Z(0, φ) = C2(0)φ2 + C3(0)iφ3 + O(φ4), and

one of the aj ’s must be 1 at time t = 0. Without lost of generality, we can suppose a1(0) = 1.

Let c(0) = c > 0, aj(0) = αj(j 6= 1) and bj(0) = βj , where |αj | < 1(j 6= 1), |βj | < 1, and αj , βj are

different.

So

C0(t) = Z(t, 0) = ft(1),

C1(t) = 1
i
d
dφZ(t, 0) = f ′t(1),

C2(t) = 1
2
d2

dφ2Z(t, 0) = − 1
2f
′
t(1)− 1

2f
′′
t (1),

C3(t) = 1
6i

d3

dφ3Z(t, 0) = − 1
6f
′
t(1)− 1

2f
′′
t (1)− 1

6f
′′′
t (1).

(9.0.1)

Truncate Z(t, φ) and only keep terms until φ3, to compute the first four terms of Z(t, φ), we only

need to compute ft(1), f ′t(1), f ′′t (1) and f ′′′t (1).
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Lemma 9.0.1.

B1 =
|1− β1|2

1− |a1(t)|2

∏
k 6=1

|1− βk|2

|1− αk|2
+ o(1)

 =
r + o(1)

1− |a1(t)|2
,

Bj = O(1),∀j 6= 1,

where r =
∏
k |1−βk|

2∏
k 6=1 |1−αk|2

> 0.

Proof. Since a1(t) = 1 + o(1), aj(t) = αj + o(1),for j 6= 1, and bj(t) = βj + o(1),

B1 =
|1− β1|2 + o(1)

1− |a1(t)|2
∏
k 6=1

|1− βk|2 + o(1)

|1− αk|2 + o(1)
=
|1− β1|2

1− |a1(t)|2

∏
k 6=1

|1− βk|2

|1− αk|2
+ o(1)

 ,

Bj =
(1− αj β̄j)(αj − βj) + o(1)

(1− |αj |2)αj + o(1)

∏
k 6=j

(1− β̄kαj)(αj − βk) + o(1)

(1− ᾱkαj)(αj − αk) + o(1)
= O(1),∀j 6= 1.

Lemma 9.0.2.

−ȧ1 =
r

c2
(3 + 2(

∑
k 6=1

1

1− αk
−
∑
k

1

1− βk
) + o(1))

1

1− |a1(t)|2
+O(1) =

s+ o(1)

1− |a1(t)|2
+O(1),

For j 6= 1,

−ȧj =
µj + o(1)

1− |a1(t)|2
+O(1),

For all j,

ḃj =
νj + o(1)

1− |a1(t)|2
+O(1),

and

ċ(t) =
r + o(1)

c

1

1− |a1(t)|2
+O(1),

where

s =
r

c2
(3 + 2(

∑
k 6=1

1

1− αk
−
∑
k

1

1− βk
)),

µj =
r

c2
(αj +

2

αj − 1
+ 2),∀j 6= 1,

νj = − r

c2
(βj +

2

βj − 1
+ 2),∀j.

Proof.

γ =
1

c2 + o(1)
(B1 +O(1) +

∏ βk + o(1)

αk + o(1)
) =

1

c2 + o(1)
B1 +O(1).

−ȧ1 = γ (1 + o(1))+
1

c2 + o(1)

2B1(1 + o(1)) +O(1) + 2B1(1 + o(1))(
∑
k 6=1

1

1− αk
−
∑ 1

1− βk
+ o(1))
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=
1

c2 + o(1)

3 + o(1) + 2(
∑
k 6=1

1

1− αk
−
∑ 1

1− βk
+ o(1))

B1 +O(1) =
s+ o(1)

1− |a1(t)|2
+O(1).

For j 6= 1,

−ȧj = γ(αj + o(1)) +
1

c2 + o(1)

(
2B1(

1

αj − 1
+ o(1)) + 2B1(1 + o(1))

)
+O(1)

=
1

c2 + o(1)

(
αj +

2

αj − 1
+ 2 + o(1)

)
B1 +O(1) =

µj + o(1)

1− |a1(t)|2
+O(1).

For all j,

ḃj = −γ(βj + o(1))− 1

c2 + o(1)

(
2B1(

1

βj − 1
+ o(1)) + 2B1(1 + o(1))

)
+O(1)

= − 1

c2 + o(1)

(
βj +

2

βj − 1
+ 2 + o(1)

)
B1 +O(1) =

νj + o(1)

1− |a1(t)|2
+O(1).

And

ċ(t) =
1

c+ o(1)
(B1 +O(1)) =

r + o(1)

c

1

1− |a1(t)|2
+O(1).

Lemma 9.0.3. Suppose s = s1 + is2, s1, s2 ∈ R and c0 = s2
s1

, then

a1(t) = 1−
√
s1t− ic0

√
s1t+ o(

√
−t),

aj(t) = αj +O(
√
−t),∀j 6= 1,

bj(t) = βj +O(
√
−t),∀j,

c(t) = c+O(
√
−t).

(9.0.2)

Proof. Let a1(t) = q1(t) + iq2(t), q1(t), q2(t) ∈ R, q1(0) = 1, q2(0) = 0.

Then

−q̇1 − iq̇2 =
s1 + is2 + o(1)

1− q2
1 − q2

2

+O(1),

since q̇1
q̇2

= s1
s2

+ o(1), q2 ≈ c0(q1 − 1), where c0 = s2
s1

.

Solve −q̇1 = s1
1−q21−c20(q1−1)2

, we get 1
3 (q1 − 1)2(q1 + 2 + c20(q1 − 1)) = s1t.

Since q1(t) = 1 + o(1),(q1 − 1)2 ≈ s1t, so q1(t) ≈ 1−
√
s1t and q2(t) ≈ −c0

√
s1t.

Check q1(t) = 1−
√
s1t+ o(

√
−t) and q2(t) = −c0

√
s1t+ o(

√
−t), we know they are solutions of the

previous PDE.

Then a1(t) = 1−
√
s1t− ic0

√
s1t+ o(

√
−t).

Then −ȧj(t) =
µj+o(1)

1−|a1(t)|2 +O(1) =
µj+o(1)

2
√
s1t−s1t−c20s1t

+O(1),

so aj(t) = αj +O(
√
−t) for j 6= 1.
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Similarly, bj(t) = βj +O(
√
−t) for all j.

c(t) = c+O(
√
−t).

Theorem 9.0.4.

C0(t) = −
√

4rt
c2s1

+ o(
√
−t),

C1(t) = −s
√

c2t
s1r

+ o(
√
−t),

C2(t) = − c
2
√
r

+O(
√
−t),

C3(t) = − c
2
√
r
sc2

3r +O(
√
−t).

(9.0.3)

Proof. Now

C1(t) = c(t)
∏
j

1− aj(t)
1− bj(t)

= c

∏
j 6=1(1− αj)∏
j(1− βj)

s

s1

√
s1t+ o(

√
−t).

By Löwner equation,

ḟt = ζA(ζ, t)f ′t ,

then

ḟt(1) =
1

c2 + o(1)
(B1

1 + a1(t)

1− a1(t)
+O(1))c(t)

∏
j

1− aj(t)
1− bj(t)

=

(
2r

c

∏
j 6=1(1− αj)∏
j(1− βj)

+ o(1)

)
1

1− |a1(t)|2
+O(1) = (

2r

cs

∏
j 6=1(1− αj)∏
j(1− βj)

+ o(1))(−ȧ1) +O(1),

so

C0(t) = ft(1) =
2r

c

∏
j 6=1(1− αj)∏
j(1− βj)

−(a1(t)− 1)

s
+ o(
√
−t) =

2r

c

∏
j 6=1(1− αj)∏
j(1− βj)

√
s1t

s1
+ o(
√
−t).

Since

f ′′t (ζ) = c(t)(
∏
j

ζ − aj(t)
ζ − bj(t)

)′

= c(t)
(
∑
j

∏
k 6=j(ζ − ak(t)))

∏
j(ζ − bj(t))−

∏
j(ζ − aj(t))(

∑
j

∏
k 6=j(ζ − bk(t)))∏

j(ζ − bj(t))2
,

we have

C2(t) = −1

2
f ′t(1)− 1

2
f ′′t (1) = − c

2

Πk 6=1(1− αk)

Πj(1− βj)
+O(

√
−t).

Since

f ′′′t (ζ) = c(t)(
(
∑
j Πk 6=j(ζ − ak(t)))Πj(ζ − bj(t))−Πj(ζ − aj(t))(

∑
j Πk 6=j(ζ − bk(t)))

Πj(ζ − bj(t))2
)′

= c(t)[
(
∑
j

∑
k 6=j Πl 6=k,j(ζ − al(t)))Πj(ζ − bj(t)) + (

∑
j Πk 6=j(ζ − ak(t)))(

∑
j Πk 6=j(ζ − bk(t))

Πj(ζ − bj(t))2

−
(
∑
j Πk 6=j(ζ − ak(t)))(

∑
j Πk 6=j(ζ − bk(t))) + Πj(ζ − aj(t))(

∑
j

∑
k 6=j Πl 6=k,j(ζ − bl(t)))

Πj(ζ − bj(t))2
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−
(
∑
j Πk 6=j(ζ − ak(t))Πj(ζ − bj(t))−Πj(ζ − aj(t))

∑
j Πk 6=j(ζ − bk(t)))(

∑
j 2(ζ − bj(t))Πk 6=j(ζ − bk(t))2)

Πj(ζ − bj(t))4
],

we have

f ′′′t (1) = c[
(
∑
j

∑
k 6=j Πl 6=k,j(1− αl))Πj(1− βj)

Πj(1− βj)2
−

(Πk 6=1(1− αk)Πj(1− βj))(
∑
j 2(1− βj)Πk 6=j(1− βk)2)

Πj(1− βj)4
]

+O(
√
−t)

= c[
(2
∑
k 6=1 Πl 6=k,1(1− αl))Πj(1− βj)

Πj(1− βj)2
−

(Πk 6=1(1− αk)Πj(1− βj))(
∑
j 2(1− βj)Πk 6=j(1− βk)2)

Πj(1− βj)4
]

+O(
√
−t)

=
cΠk 6=1(1− αk)

Πk(1− βk)
(2
∑
k 6=1

1

1− αk
− 2

∑
k

1

1− βk
) +O(

√
−t),

then

C3(t) = −1

6
f ′t(1)−1

2
f ′′t (1)−1

6
f ′′′t (1) = − c

2

Πk 6=1(1− αk)

Πj(1− βj)

1 +
2

3
(
∑
k 6=1

1

1− αk
−
∑
k

1

1− βk
)

+O(
√
−t).

Since we have a (3, 2)-cusp at t = 0, C2(0) ∈ R. i.e.
Πk 6=1(1−αk)

Πj(1−βj) ∈ R and
Πk 6=1(1−αk)

Πj(1−βj) = 1√
r
, s1 < 0.

Therefore,

C0(t) = −
√

4rt

c2s1
+ o(
√
−t),

C1(t) = −s

√
c2t

s1r
+ o(
√
−t),

C2(t) = − c

2
√
r

+O(
√
−t),

C3(t) = − c

2
√
r

sc2

3r
+O(

√
−t).

Now we have the main theorem.

Theorem 9.0.5. Let X(t, φ), Y (t, φ) be the Cartesian coordinates, then

X(t, φ) = −
√

4r

s1c2
t− c

2
√
r
φ2 + o(

√
−t+ φ2),
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Y (t, φ) =

√
c2s1t

r
φ− c

2
√
r

s1c
2

3r
φ3 + o(|

√
−tφ|+ |φ|3).

Proof. Since s2

√
c2t
s1r
φ = o(

√
−t+ φ2), we get the result from the previous theorem.

Remark 9.0.6. If we use the notation in the main theorem, c2 = − c
2
√
r
< 0, c3 = − c

2
√
r
s1c

2

3r > 0,

we have

X(t, φ) = −
√

4c2
3c3

t+ c2φ
2 + o(

√
−t+ φ2),

Y (t, φ) =

√
3c3
c2
tφ+ c3φ

3 + o(|
√
−tφ|+ |φ|3),

as stated in the main theorem and Remark 6.1.2.



50

Chapter 10

Next Steps

In the main theorem, we proved that if the external potential is algebraic and droplets are simply

connected, near a (3,2)-cusp, Hele-Shaw flow is a one-parameter family after scaling the Cartesian

coordinates. How about other cases? For example, if droplets are non-simply-connected droplets, or

the cusp is a higher-order cusp, or the external potential is not algebraic, will Hele-Shaw flow still

be a one-parameter family after scaling the Cartesian coordinates? And how about other types of

singularities such as double points, etc.? We do not have proof for these cases, but would like to

take a guess:

1) For non-simply-connected droplets, no conformal maps from the complement of the droplets

to the complement of the unit disk exist, so we cannot use either exterior Faber transform or Löwner

equation to compute the boundary equation. But we can try to use canonical maps from the com-

plement of the droplets to torus, in this case Hele-Shaw problem is more complicated.

Figure 10.1: Non-simply-connected droplets.

2) For higher-order (2p + 1, 2)-cusps, we have mentioned the conjecture in chapter 6 given by

physicists in [15]. Though the computation is more complicated than (3,2)-cusps, we believe that it

is doable and the conjecture is correct.

3) For another type of cusps (type II cusps), these cusps in Hele-Shaw flow are still laminar-flow

points [14], so we may try to expand the conjecture. This is an interesting problem and its connec-
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tion with integrable systems has not been discovered yet.

Figure 10.2: A type II cusp.

4) For other types of singularities, such as double points, results have been given by Seung-Yeop

Lee, etc. in [7]. In the process of droplets contracting, they discovered that the double point singu-

larities are self similar after scaling, and it is related to disperionless AKNS hierarchy.

Figure 10.3: A type I double point.

Figure 10.4: A type II double point.

5) For nonalgebraic potentials, our methods are completely inapplicable. It is not obvious to see

if the conjecture is still reasonable or not.
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