
Bootstrapping Vehicles: a Formal Approach to Unsupervised
Sensorimotor Learning Based on Invariance

Thesis by

Andrea Censi

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended June 27th, 2012)

© 2013

Andrea Censi

All Rights Reserved

Dedication

I wish to dedicate this work to my parents, Rita and Pino, as a partial repayment of

their sizable investment in Lego pieces 30 years ago, which ultimately led to my interest

in robotics; and to my brother Marco, who bore the burden of being my first office mate.

I am deeply indebted to my parents as they taught me to ask questions, and to question

answers. They are a model of moral integrity and hushed selflessness that I hope I will

have the strength to emulate.

i

Acknowledgments

These years at Caltech have been an exciting roller-coaster, which began slowly, went

through frenetic ups and downs, and ended much too quickly. I wish I could buy a ticket

for another ride.

I will always be indebted to my advisor Richard Murray, who was the main reason

for this to be a relatively pleasant and fulfilling experience. He has been the last of a long

series of people whom I was lucky to meet from high school to graduate school, who

taught me the value of intellectual honesty, how to respect myself and others, and, of

equal importance, how to get things done, without compromise. They encouraged me to

explore the road less traveled, they guided me through the clouded waters of failure and

uncertainty, and helped me enjoy the eventual successes. Their advice has been heard and

preciously guarded, even when I did not follow it. I will always feel their eyes on me, and,

as I walk alone, their memory will keep my chin up and my path straight. My repayment

to them is the commitment to put the same effort and dedication towards guiding the

people who will come after me.

During my years at Caltech, I had the privilege of working with Michael Dickinson

and Andrew Straw, who made me realize that, after all, biologists might be smarter than

engineers, and with Stefano Soatto, whom I thank for his frank advice and honest cri-

tiques. I thank Joel Burdick and Yaser Abu-Mostafa for their advice and for serving on

my thesis committee. I thank my geographically uniformly distributed co-authors Shuo

Han, Sawyer Fuller, Davide Scaramuzza, Paloma De La Puente, Stefano Carpin, Antonio

Franchi, Luca Marchionni, Giuseppe Oriolo, and Luca Carlone, for dealing with my (now

long gone) perfectionism and the occasional idea which was, well, just a bit far-fetched. I

thank my summer students Magnus Håkansson and Adam Nilsson for contributing data

and code used in the experiments. I thank Benjamin Kuipers and Daniel Naftalovich for

ii

insightful feedback on this dissertation and on my previous works. I also wish to thank

the many people at Caltech who made day-to-day life in the bubble enjoyable, or, at least,

bearable, especially those who routinely indulged my inclination for late-night conversa-

tions.

I thank the fellow roboticists who made their data and software available to the com-

munity, in particular the people who contributed to Radish, OpenSLAM, Rawseeds, and

ROS. Finally, I wish to thank the people who created the free/open source software on

which my work so heavily relies (the GNU project, Linux, Debian, LATEX, LyX, Python,

Scipy, PyTables, and many others): they are the unsung heroes of science.

iii

Abstract

Could a "brain in a jar" be able to control an unknown robotic body to which it is

connected, and use it to achieve useful tasks, without any prior assumptions on the body’s

sensors and actuators? Other than of purely intellectual interest, this question is relevant to

the medium-term challenges of robotics: as the complexity of robotics applications grows,

automated learning techniques might reduce design effort and increase the robustness and

reliability of the solutions. In this work, the problem of "bootstrapping" is studied in the

context of the Vehicles universe, which is an idealization of simple mobile robots, after the

work of Braitenberg. The first thread of results consists in analyzing such simple senso-

rimotor cascades and proposing models of varying complexity that can be learned from

data. The second thread regards how to properly formalize the notions of "absence of as-

sumptions", as a particular form of invariance that the bootstrapping agent must satisfy,

and proposes some invariance-based design techniques.

iv

Contents

Dedication i

Acknowledgments ii

Abstract iv

Chapter 1. Introduction 1

1.1. The State of Robotics 2

1.2. What Makes Robotics Difficult 5

1.3. Learning and Adaptivity 7

1.4. Approach 11

1.5. Summary of Main Results 14

Part 1. A Formal Approach to Bootstrapping 21

Chapter 2. A Quick Group Theory Tutorial 22

2.1. Automorphisms 22

2.2. Groups 23

2.3. Some Commonly Used Groups 24

2.4. Subgroups 25

2.5. Homomorphisms 26

2.6. Group Actions 26

2.7. Orbits and Equivalence Classes 27

2.8. Invariance of Functions 28

2.9. Symmetries of Sets and Functions 29

v

2.10. Group Products 30

Chapter 3. Bootstrapping and Semantic Assumptions 33

3.1. Do Not Trust Strangers in the Streets 33

3.2. Format vs Semantics 35

3.3. Formalizing Semantic Assumptions 36

3.4. Symmetries of Semantic Assumptions 39

3.5. Ordering Assumptions 44

3.6. Starting from the Agent 45

3.7. The adversarial view 50

3.8. Tolerance to Nuisances Acting on the Commands 52

3.9. Symmetries of the task 55

3.10. What Comes Next 61

Chapter 4. Black Boxes and Representation Nuisances 62

4.1. Preliminaries 63

4.2. Describing Black Boxes 64

4.3. Series 68

4.4. Loops 69

4.5. Statistics of a Black Box 72

4.6. Special Classes of Systems 73

4.7. Composition Rules 74

4.8. Inverting Systems 75

4.9. Group Structure on Invertible Systems 79

4.10. Representation Nuisances 82

4.11. The Geometry of Bootstrapping 85

vi

Chapter 5. Bootstrapping Agents 87

5.1. Observations and Commands 88

5.2. Two-stage Interaction with the World 90

5.3. Defining Bootstrapping Agents 91

5.4. Defining the Agent’s Goals 94

5.5. Necessary Invariance Properties of the Agent 100

5.6. Invariance Properties of the Goal Set G 102

Chapter 6. A Catalog of Semantic Assumptions 108

6.1. Legend 108

6.2. Catalog 108

6.3. Remarks 121

Chapter 7. A Catalog of Representation Nuisances 123

7.1. Legend 123

7.2. Nuisances Acting on the Observations 124

7.3. Nuisances Acting on the Commands 130

Chapter 8. Tasks for Bootstrapping Agents 134

8.1. Challenges in Defining Bootstrapping Tasks 134

8.2. Tasks for Disembodied Agents 135

8.3. Tasks for Embodied Agents 137

Part 2. Learning Models of Robotic Sensorimotor Cascades 139

Chapter 9. Robot Sensors and Actuators 140

9.1. Robot Motion 141

9.2. Exteroceptive Robot Sensors 142

vii

9.3. Three Canonical Robot Sensors 145

9.4. Training and Environment Statistics 150

9.5. Related Work for Learning Dynamics 155

Chapter 10. Learning Sensor Geometry 158

10.1. Calibration by Correlation 159

10.2. Nonmetric Embedding 164

10.3. When is Similarity a Function of the Sensels Distance? 166

10.4. Observability of Sensor Geometry Reconstruction 169

10.5. Measuring Performance 179

10.6. Algorithm 182

10.7. Camera Calibration Results 186

Chapter 11. Learning Bilinear Dynamics 196

11.1. Why Bilinear Systems 197

11.2. BDS 198

11.3. Space and Time Discretization 199

11.4. Learning 203

11.5. Servoing 205

11.6. Invariance to Linear Transformations 208

11.7. BDS Approximation of Canonical Sensors 210

11.8. Simulations and experiments 212

Chapter 12. Learning Bilinear Flows 219

12.1. BGDS 220

12.2. Learning 223

12.3. Servoing 225

viii

12.4. Invariance to Reparametrization of the Sensel Space 226

12.5. Approximation to Canonical Robotic Sensors 233

12.6. Experiments 240

Chapter 13. Learning Diffeomorphisms 259

13.1. DDS 260

13.2. Representing and Learning DDS 261

13.3. Application to Camera Data 263

13.4. Inferring the “Linear structure” of the Commands Space 264

13.5. Application to Range Data 268

Part 3. Invariance-based Analysis and Design 278

Chapter 14. Canonization 279

Chapter 15. Group-spectral Dossiers 282

15.1. Group-spectral Dossiers 282

15.2. Examples 284

15.3. Dossier for the Inverse of a Mapping 287

Chapter 16. Pontifical Features and Canonization Operators 292

16.1. A Hierarchy of Features 292

16.2. Strong Pontifical Features 295

16.3. Strong Canonization Operators Cannot be Simply Composed 297

16.4. Weak Pontifical Features 298

16.5. Mild Pontifical Features 302

16.6. Bold Pontifical Features 308

16.7. Unstructured Pontifical Features 310

ix

Chapter 17. Algebra of Pontifical Features 311

17.1. Intersection of Pontifical Features 311

17.2. Series of Canonization Operators 313

17.3. Examples 314

Chapter 18. Some Pontifical Features for Bootstrapping 317

18.1. Legend 317

18.2. Whitening 318

18.3. Contrast Transformation 320

18.4. Unlabeled Sensels 323

18.5. Sensel Space Diffeomorphisms 326

Chapter 19. An Example of Compositional Analysis 329

19.1. Building Blocks 329

19.2. Analysis of Compositions 332

Conclusions 336

Chapter 20. Conclusions 337

20.1. Future Work 337

Back Matter 340

Appendix A. Sets, functions, sequences 341

A.1. Logic and sets 341

A.2. Topology 342

A.3. Relations and their properties 343

A.4. Special classes of relations 343

A.5. Functions 344

x

A.6. Inverting functions 346

A.7. Sorting vectors 347

A.8. Sequences 348

Appendix B. Probability and Statistics 350

B.1. Probability Measures 350

B.2. Basic Operators 351

B.3. Stochastic Processes 352

B.4. Statistics 352

Appendix C. Glossary of Basic Group Theory 355

C.1. Groups 355

C.2. Normal Subgroups 357

C.3. Homomorphisms 358

C.4. Quotients 359

C.5. Natural Projections 360

C.6. Group Actions 361

C.7. Invariance of Sets and Functions 364

C.8. Lie Groups 365

Appendix D. Group Bestiary 366

D.1. Matrix Groups 366

Appendix E. Geometry 373

E.1. Metric Spaces 373

E.2. Linear Algebra 374

E.3. Manifolds 376

E.4. Diffeomorphisms 377

xi

Appendix. Nomenclature 379

Appendix. Bibliography 390

xii

CHAPTER 1

Introduction

We are late! At least, according to Asimov. His novels popularized the idea of robots as

useful mechanical servants for mankind. As a scientist himself, writing in the fifties, he set

the scene quite far away in time. In 2015, a young Susan Calvin, is a promising graduate

student who is already interacting with robots with cognitive capabilities. Susan com-

pletes her degree and eventually becomes the head robopsychologist for the US Robots

& Mechanical Men Inc., which, at the time, was already producing humanoid robots for

general use [1].

It is now 2012. Information and communication technology flourished: it is many

decades that the word “computer” does not refer to a patient human being [2]. But “in-

telligent” robotics failed the expectations. (There exists a US Robotics company, but it

produces network appliances.) Robots are widespread in industry, but they are relatively

simple artifacts with no presumption of intelligence, used to substitute for human work-

ers in rote tasks [3]. Artificial intelligence produced a wealth of results in the last decades,

Isaac Asimov: (1919–1992) Russian–American biochemist and prolific author of science-

fiction stories. He invented the word “robotics”.

Susan Calvin: (1982–2064) Head robopsychologist for the US Robots & Mechanical Men

incorporated. One of the writer’s favorite fictional characters.

robopsychology: In Asimov’s novels, robopsychology is the fictional study of the person-

alities of intelligent machines.

artificial intelligence: The set of problems that humans can solve, but don’t know how.

1

1.1. THE STATE OF ROBOTICS 2

but failed in creating an embodied intelligence [4]. Today, robots are not smart enough to

need a robopsychologist, while roboticists do need therapists for handling the frustration

of working with robots.

We do have reasons to be optimistic: after decades of a steady, but slow progress,

we have witnessed very rapid advancements, and the first commercial deployments of

“intelligent” robotics, both in industry and in consumer products. This chapter looks at

the recent history of robotics, at the obstacles that have been overcome, and at those that

remain on our path.

1.1. The State of Robotics

Robotic manipulators have been used in the manufacturing and packaging industry

for several decades. In addition to improving the safety of workers, robotic solutions often

improve the precision, manufacturing time, and cost [3]. The largest robot manufacturers

for industrial applications are in Europe and Japan. Robotic technology has found appli-

cation also in nontraditional fields, such as robot-assisted surgery, surveillance, search and

rescue, prosthetics, and artificial affective companions.

The more visible advances of the the last decade were in the area of autonomous mo-

bile robotics. A scientific success for robotics were the Mars rovers (Spirit and Opportunity),

which explored the surface of Mars for more than 10 cumulative years. Autonomous op-

eration was necessary due to the 3–22 minutes long round-trip communication delay.

It was easier for robots to land on Mars than to arrive in consumers houses. Roomba [5],

produced by iRobot, is a blind robot that navigates using random movements (more than

5 million have been sold to date). Evolution Robotics’ Mint [6] performs localization and

mapping aided by external infrared markers. While these robots use relatively simple

technology compared to the state of the art, they are historically significant because they

have found a combination of price point/features/ease of use that made them the first

1.1. THE STATE OF ROBOTICS 3

practical robots to be used in households.

Robotics also evolved in industry beyond manufacturing and packaging. In Australia,

a whole waterfront operations system operates autonomously by loading and unloading

cargo with no human intervention [7], and autonomous mines are currently being devel-

oped [8].

Robotics revolutionized large stockroom operations. In the robotic warehouse devel-

oped by Kiva Systems [9], employees wait patiently at their stations, while a swarm of

robots brings them the shelves from which they pick up products. This allows to cut costs

and makes it possible to have a more diversified inventory. Amazon acquired the company

in March 2012 for $775M [10].

Military applications of robotics are pioneered by large American contractors. “Drones”,

such as the General Atomics MQ-9 Reaper, are technically robots, but their genesis is in

the guidance & control field of aeronautics, rather than in the robotics/automation com-

munity. Drones are currently used in autonomous mode for surveillance, and in semi-

autonomous mode for target elimination. Drones are being introduced in several Amer-

ican states for civilian use by police forces. As of today, there are (officially) no robots

implementing lethal behavior on the basis of autonomous decisions, but there have been

studies about what deliberation system would support such a function [11]. In any case,

manuals for surviving the coming robot uprising are readily available [12].

Autonomous cars are a promising application of robotics, which was given large pub-

licity by the 2004-2007 DARPA Grand Challenges. The technology has matured rapidly.

In 2010, a squadron of autonomous cars drove from Italy to China in a 15,926 km long

semi-autonomous: A human operator is constantly supervising the robot and manually

activates certain functions.

1.1. THE STATE OF ROBOTICS 4

trip [13]. Outside of the academic environment, Google’s autonomous cars have report-

edly logged many thousands of miles of autonomous driving. In 2011, Nevada introduced

laws to regulate testing of autonomous cars [14].

Much of this innovation was enabled by the improvements of exteroception capabili-

ties. Until about a decade ago, mobile robots could rely only on imprecise and unreliable

exteroceptive sensors [15]. The introduction of more reliable sensors, such as laser range

finders, allowed to develop robust solutions for autonomous mapping and navigation in

large environments; this went hand in hand with the development of probabilistic tech-

niques for handling perception data [16]. It is thought that affordable three-dimensional

range finders such as the Kinect will provide similar gains for the area of manipulation.

Perception is still thought to be an issue for certain applications. For example, very ag-

ile micro air vehicles have been demonstrated, but they are “blind” and must guided by

external localization signals such as the Vicon system.

Standardization of software infrastructure was considered a large impediment to the

progress of the field, and it is now being solved by pooling the efforts into few large open

source projects. Two such projects are Orocos, oriented towards low-level control, and

ROS , developed by Willow Garage, oriented towards higher-level applications. They pro-

vide a middleware for distributed applications, a basic library of data types primitive, and

common components for robotics.

Kinect: An RGBD sensor introduced by Microsoft in 2010.

ROS: (Robot Operating System) A middleware oriented to robotics applications together

with many modules implementing basic robotic tasks.

1.2. WHAT MAKES ROBOTICS DIFFICULT 5

1.2. What Makes Robotics Difficult

At the current state of the art, it is clear that we are able to create much better robotic

bodies than robotic minds. The performance of robots is not limited by the mechanical

body’s physical limitations, or their sensor capabilities, but rather by our incapability of

writing suitable control software. This can be seen in rescue robotics, where an operator

can use the robot sensors and actuators to achieve tasks that cannot be done automatically.

A robot that moves and manipulates cannot just execute a fixed set of movements, like

industrial manipulators. Rather, it must use its exteroceptive sensors to acquire observa-

tions from the environment (e.g., range finder data), and process the data to infer a model

of the environment (e.g., a map of the environment), and then use such model to plan its

actions in the future.

A favorite trope of pop-scientists is to blame the lack of progress on limited computa-

tional resources*, but computation does not seem to be the main issue. Technologies like

GPU s allow lots of computation power on relatively small systems. A recent trend in com-

puting is to offload computation to cloud components; an example of a deployed system

is Apple’s Siri, which uploads the user’s speech to central servers for processing. On the

other hand, it is true that computation is a limiting factor for applications such as micro air

vehicles.
*This is often followed by a summary of the numbers of synapses of the brain, an ex-

trapolated plot of Moore’s law, and a warning on the impending enslavement of humanity
by post singularity machines.

GPU: (Graphics Processing Units) Specialized processors originally developed for vector-

ized processing 3D rendering. Their design makes them useful for a wide range of tasks

that can be efficiently parallelized.

SIRI: (Speech Interpretation and Recognition Interface) A voice-activated personal assis-

tant software included in Apple cell phones. To decrease the load on the device CPU, the

speech is uploaded on a remote server for processing.

1.2. WHAT MAKES ROBOTICS DIFFICULT 6

In robotics, the easy problems are hard and the hard problems are easy [17]. One must deal

with the uncertainty of the observations, unstructured environments that cannot be fully

modeled, and tasks that would be difficult enough even in the absence of any uncertainty.

Roboticists must invest tremendous design effort to have robots do tasks that appear triv-

ial to the eye of the non-expert. Robotics application are typically fragile with respect to

deviations of the world from the designer assumption.†

There is no consensus either on the ultimate causes of these problems [18]. One pos-

sible explanation is that robots are fragile because the development of robotic applica-

tions follows a constructive, rather than deductive, methodology. One does not start from

a formalization of the problem to deduce a solution through a formal synthesis proce-

dure; rather, the solution is assembled from pieces, and it is validated empirically. A slight

change of the operating conditions can confuse the robot in ways that the designers did

not anticipate.

The problem of fragility goes hand in hand with the problem of complexity: more

complex solutions are inherently more fragile. What makes robotics a unique discipline

is that robots need to have incredibly rich models for the world. It is likely that robotic

applications will be among the most complex engineered systems: if it takes hundreds of

thousands of lines of code to write the simplest of word processors, how many are needed

to create a robotic butler?

Robotic software development is hard because robotics does not have the “composi-

tional” properties of other disciplines, which allows creating a more complex object from

†The Three Laws of Roboticists:
(1) Never give a robotic demo.
(2) Follow your adviser’s advice, except when it contrasts with the first Law.
(3) When the demo fails, blame it on the batteries.

1.3. LEARNING AND ADAPTIVITY 7

simple parts, using a divide-and-conquer approach. In mathematics, one can prove lem-

mas, and by those lemmas prove a larger theorem. Being used as part of a theorem does

not put any stress on the lemmas. In electronics, components do interact physically among

each other, but careful design allows ignoring analog interactions and only consider digital

behaviors. Unfortunately, robotics does not work that way. The building blocks of robotics

should be sense-plan-act loops implementing a certain task, but putting two in parallel

does not guarantee that the resulting behavior is coherent.

The recent coagulation of software infrastructure efforts removed some of the problems

and allowed to design shared components. However, the shared interface is relatively

low level (images, poses, etc.); there is no shared “semantic” structure. Consequently, for

each project most of the effort goes towards writing fragile ad hoc code, whose complexity

grows nonlinearly with the complexity of the applications.

1.3. Learning and Adaptivity

As robotics applications become more complicated and robot inhabit unpredictable

and unstructured environments, it is reasonable to predict that the scarce resource for ro-

botics in the future will be design effort. Dijkstra liked to say, “a programmer should be

well aware of the limited size of their skull” [19]. It will not be possible to predict every-

thing. Learning and adaptivity will play an ever growing role in robotics because they

allow reducing design effort.

1.3.1. Approaches to learning and adaptivity

Let us broadly consider “learning” any design methodology such that a relevant part

of the final design depends on the interaction of the system with the world, rather than on

Edsger W. Dijkstra: (1930–2002) Dutch computer scientist who advocated for a disciplined

approach to computer programming.

1.3. LEARNING AND ADAPTIVITY 8

the decisions of the designer.

Across different fields, there are many approaches to learning, often inspired by nature.

The first fundamental classification is between phylogenetic learning, which is evolution

across generations, and ontogenic learning, which refers to learning from the individual

experience.

Genetic algorithms mimic aspects of evolution and natural selection. A genetic algo-

rithm is “blind”: the only feedback from the world is the fitness of the individuals. For this

reason, genetic algorithms are studied independently of the domain, and are considered

by most akin to a generic optimization scheme. Such algorithms have been demonstrated

in robotics [20, 21].

It has long been shown that the changes over time of the culture of a social population

of agents can be regarded as the evolution of a population of memes [22]. Memetic evolution

has been demonstrated in robotics for distributed optimization problems (e.g., [23]).

System identification [24, 25] and adaptive control [26] are subfields of control theory that

are concerned with designing controllers that can adapt to a plant that is partially un-

known. System identification is limited to only the inference problem, while adaptive con-

trol focuses on the closed-loop performance of a controller based on the identified model.

These techniques have been industrially deployed since the 1980s with the introduction of

digital control, and are the roots for deployed parameter identification and self-calibration

techniques in robotics. Control theory gives strong results, but for limited classes of sys-

tems. Recent approaches to system identification from computer science (e.g., [27]) have

mainly an empirical validation but describe much more expressive classes of models.

Supervised learning is the problem of making educated guesses about data that has not

1.3. LEARNING AND ADAPTIVITY 9

been seen yet, based on the data that has been observed.‡ Typical questions of the disci-

pline are how much data is needed to obtain guarantees on the inference, to what degree

it is possible to generalize over data that has not been observed, and understanding how a

particular choice of prior influences the final results. Reinforcement learning is a particular

form to supervised learning in an “interactive” setting in which the agent interacts with

world [31]. Many works in robotics employ supervised learning (e.g., [32]).

Unsupervised learning is a much more loosely defined set of problems which are con-

cerned with understanding the relations in the data, rather than fitting a particular in-

put/output relation [33, 34]. Neural networks were intensively studied as black-box ap-

proximators until the 1990s, but more recently, so called “deep” networks have shown

surprising properties in finding interesting features from pixel-level data [35, 36].

Developmental robotics [37, 38] is concerned with mimicking the successive stages of

learning observed in humans and other primates as studied in developmental psychology,

such as in the work of Piaget. The goal is either to obtain better robots, or simply to use

robots as a test bench to validate the formalization of a biological theory (e.g., [39]).

1.3.2. Bootstrapping: starting from scratch

A rather extreme, yet concrete, version of the learning problem has been put forward

by Pierce and Kuipers [40] in the first of a long series of papers. In the “bootstrapping”

scenario, an agent starts its life with no prior information about its sensors and actuators.

It can read the sensors output as a sequence of values, but no semantics is associated to

them (figure 1.1). Likewise, the agent does not know how its commands affect the world.

The bootstrapping problem concerns creating models for its sensorimotor cascade from

scratch, and using it to achieve useful tasks.

‡Vapnik [28] is the manifesto for statistical learning theory. Hastie, Tibshirani, Fried-
man [29] is a modern reference. For a tutorial introduction, see Poggio and Smale [30].
.

1.3. LEARNING AND ADAPTIVITY 10

time →

(a) Uninterpreted commands.

(b) Uninterpreted observations (sensor #1).

(c) Uninterpreted observations (sensor #2).

Figure 1.1. A bootstrapping agent must learn to use uninterpreted streams of obser-
vations and commands. This figure shows how such streams appear for an actual
robotic platform (a planar, differential-drive robot). The commands are the linear and
angular velocities. The two observations streams corresponds to 64 randomly sam-
pled sensels of a camera and a range-finder, during one minute of operation. Can the
reader guess which sensor is which?

Bootstrapping would reproduce two features of natural intelligence that we are far

from emulating in artificial systems: adaptiveness and generality. The human neocortex

is highly uniform and its parts can be repurposed; for example, the visual cortex is repur-

posed to process tactile information in blind subjects [41, 42]. The bootstrapping problem

also gives a concrete context for arguing over fuzzier topics, such as the nature of con-

sciousness [43], in contrast to more vacuous approaches (e.g., [44]).

Bootstrapping can be seen as an extreme form of system identification/calibration.

Currently, there exist autocalibration techniques that can estimate parametric models of

the dynamics (for example, the odometric parameters) or the extrinsic sensor configura-

tion, (although the solutions, rather than general, tend to be tailored to specific sensors or

groups of sensors), but always the type of sensors/actuators being calibrated is known a

priori. Can a robot learn to use an unknown sensor and unknown actuators? Can the same

learning algorithm work for a range-finder and a camera? What can the agent learn on its

own? What needs to be encoded a priori?

1.4. APPROACH 11

These are, at the moment, open questions. They are important for practical robotics

applications: it would be extremely convenient if we could just attach any sensor to a

robot and the robot would learn how to use it, without any tedious programming. More

in general, robotic systems are the perfect benchmark for supposedly “universal learning

agents,” which so far have been studied for only perception/classification tasks [45], or as

bodyless agents [46].

1.4. Approach

Current applications of learning to robotics are more an art than a science: the approach

is usually algorithmic and relies on empiric evaluation. One of the strong points of con-

trol theory is that the theoretical results can be converted to “recipes” that can be applied

(sometimes automatically by a software package) to obtain a valid controller, without the

final user needing to understand much of the underlying theory. In the same spirit, the vi-

sion is that we should be able to understand, for each learning agent, exactly what subset

of what robots it can work with, and what tasks it can accomplish.

The main methodological difference is using a “problem-based” rather than an “algorithm-

based” approach. In machine learning research, one typically elaborates a new method-

/model, and then finds applications that validate the method/model. In control theory,

one first defines a class of systems, and then finds a method that can work with that class

of system. For bootstrapping, the philosophy is the same as control theory, but there are

a few special things to note. Let us be clear: bootstrapping for a general system is either

impossible or very impractical. The “set of all robots”, is much larger than what is man-

ageable using a control theory approach. Bootstrapping is all about being careful about

the assumptions of an agent about the system. Characterizing the agents “assumptions” is

the leitmotif of this work.

1.4. APPROACH 12

1.4.1. Embodied approach

This work formulates some general principles for learning agents, but insofar as the

discussion gets specific, the focus is for agents embodied in robotic bodies.

To this end, we shall use the Vehicles universe as an idealization of mobile robotics. This

is inspired by the work of Valentino Braitenberg. In a famous book [47] he describes these

simple machines, now called Braitenberg Vehicles, as idealization of biological creatures.

The basic message is that complex behaviors can arise from simple controllers.

Braitenberg vehicles are slightly updated. The Vehicles universe is composed by all

possible combinations of a set of “canonical” mobile robot sensors and dynamics (Fig-

ure 1.1). The canonical dynamics considered are the usual ones (differential drive, car-like,

etc.). The canonical sensors considered are range-finders, cameras, field-samplers, and

other formally equivalent sensors.

The combinations of these sensors and dynamics represent most phenomena of inter-

est for mobile robots, but it does not capture phenomena related to manipulation (proprio-

ception, touch, articulated bodies, etc.). This is part of future work. After all, animals first

evolved to move, and then eventually to manipulate the environment.

1.4.2. Tasks for bootstrapping agents

It is important to study agents in the context of a specific goal, because it provides a

falsifiable context. There are several approaches to encode the goal of an agent. In rein-

forcement learning, the agent receives a reward signal from the world that should be max-

imized. In developmental robotics, intrinsic motivation (e.g., [48–50]) describes heuristics

that can guide the exploration phase of an agent.

Here, the focus is on defining explicit tasks. “Information tasks” (such as predicting the

next observations) allow for checking that the agent has acquired a generative model for

1.4. APPROACH 13

camera

range-finder

field sampler

omnidirectionalcar-likediff. drive + turret

… …

… …

… …

… …

Figure 1.1. The Vehicles universe.

the data. “Spatial tasks” (such as servoing) allow for checking that the agent is powerful

enough to solve what an animal must do. The idea is that a hierarchy of such tasks is better

suited to understand the capabilities of an agent, than minimizing an opaque reward.

In any case, these three approaches (extrinsic rewards, intrinsic motivation, explicit

tasks) are not mutually exclusive. In an ideal architecture, intrinsic motivation is what

guides the agent’s exploration toward acquiring models/skills for solving explicit tasks,

which can be used toward a goal specified by extrinsic rewards.

The interaction between agent and world follows a two-stage approach (Figure 1.2),

in which the learning (exploration) and the action (exploitation) phases are separate. An

“agent” is defined by two objects: an exploration strategy (“expl”) that interacts with the

world with the goal of learning a “model” (“m”), and a strategy (“act”) that on the ba-

sis of the model instantiates the behavior that interacts with the world during the acting

stage. This two-stage approach does not allow to explore the trade-offs of exploration vs

exploitation, but simplifies some aspects of the analysis.

1.5. SUMMARY OF MAIN RESULTS 14

learned
model

explore act

world world

u uyy u0

task

Figure 1.2. In the learning stage, the agent interacts with the world with the goal of
estimating a “model.” In the acting phase, the agent instantiates a behavior which is a
function of the model.

1.5. Summary of Main Results

1.5.1. The statistics of the observations allow accurate reconstruction of the sensor geometry

Previous work has shown that the statistics of the sensel values allow to obtain infor-

mation about the sensor geometry, based on the assumption that the signals of two sensels

is more similar if the sensels are closer to each other. So far, it has been assumed that it is

possible to reconstruct accurately only the topological information (which sensel is close to

which) but not the metric information, such as the field of view of a camera. A careful anal-

ysis shows that the metric information is actually observable (Chapter 10). An engineering

application is the calibration of camera sensors with arbitrary optics.

1.5.2. Canonical robotic sensors have relatively similar dynamics at the sensel level

While it is common for robotic applications to work with heterogeneous sensors, the

actual “sensor fusion” happens after the data from each sensor has already been processed

by sensor-specific routines, the assumptions being that separate sensors need separate

treatment.

We will see that, at the sensel level, the dynamics of the canonical robot sensors con-

sidered (range-finder, camera, field sampler) are relatively similar. Table 1.1 shows the or-

dinary differential equations satisfied by the observations y as a function of the kinematic

velocities ω and v. The observations y are the pixel luminance in a camera, the readings of

1.5. SUMMARY OF MAIN RESULTS 15

a range-finder, the intensity sampled by the field-sampler. The field-sampler dynamics is

purely bilinear in the observations and the velocities; the range-finder dynamics is bilinear

up to a nonlinearity; the camera dynamics is bilinear up to a hidden state (the nearness µ).

Table 1.1. Sensel-level dynamics of canonical robot sensors

S meaning of y(s) dynamics

field sampler R3 intensity of a field ẏs = (s×∇ys)i ωi +∇iysvi

camera S2 luminance of a sensel ẏs = (s×∇ys)i ωi + µs∇iysvi

range-finder S2 distance readings ẏs = (s×∇ys)i ωi + (∇i log ys − s∗i)v
i

ys is the value returned by the sensel s (field intensity, luminance, range readings).
The time variable is implicit. These formulas are valid far from occlusions. Near
occlusions, the dynamics is discontinuous and cannot be represented by an ODE.

1.5.3. Simple models approximate the sensors dynamics

The fact that disparate sensors have similar dynamics allows for designing agents that

can work without any prior knowledge of the sensors. Several generative models that can

approximate the sensor models will be described (Table 1.2).

• The BDS model (Chapter 11) assumes that the observations are vectors of real

numbers, and there is a bilinear relation between ẏ, y, and the commands u.

• The BGDS model (Chapter 12) assumes that the observations are a function on a

manifold S . The dynamics is a bilinear flow on S that depends explicitly on the

gradient of y.

• The DDS model (Chapter 13) models the dynamics as diffeomorphisms of the ob-

servations space.

differentiable manifold: A rigorous generalization of the intuitive concept of “surface”. See

Definition E.16.

diffeomorphism: An invertible and differentiable transformation between two manifolds

whose inverse is differentiable. See Definition E.20.

1.5. SUMMARY OF MAIN RESULTS 16

These models do not exactly represent the real sensor dynamics, but they are sufficient to

perform simple tasks, such as servoing.

Table 1.2. Three models for low-level sensorimotor learning

model assumption
on format

dynamics

BDS bilinear dynamics y ∈ Rny ẏs = ∑i,v Ms
viy

vui

BGDS bilinear flows y : S → R ẏ(s) = ∑i (G
d
i (s)∇dy(s) + Bi(s))ui

DDS diffeomorphisms y : S → R yk+1(s) = yk(ϕj(s))

1.5.4. These models are reasonably robust to be applied to raw sensor data

These models can be used to fit real data coming from a robotic platform with zero

or minimal preprocessing. One reason is that the learning procedure, based on streaming

data, is a form of Hebbian learning that is robust to occasional noise and slight devia-

tions from the idealized model. At the same time, these models are powerful enough to

discriminate several kinds of low-level sensorimotor faults (Figure 1.1).

(a) Effect of populated
environments.

(b) Effect of occlusions.

Figure 1.1. The models we use are quite robust to deviations from nominal models.
The pictures show a graphical representation for a BDS model corresponding to the
rotation command (see Chapter 11). On the left, the tensor learned for a range finder
in a populated environment. On the right, the tensor learned for a robot that has some
fixed occlusions. The white strips correspond to the occlusions due to the fixtures.

1.5. SUMMARY OF MAIN RESULTS 17

1.5.5. Describing an agent’s assumptions

The main conceptual contribution of this work is to classify the assumptions of the

agents in three classes:

(1) The assumptions about the “format” of the data;

(2) The assumptions about the “physical system”;

(3) The assumptions about the “representation” of the data.

The assumptions about the “format” of the data are the simplest to describe. If the agent

must interact with the world, there needs to be a common interface between the two that

specifies how observations and commands are encoded. Call Y the set to which the obser-

vations belong. Some possible choices of Y are

Y = {�,�} The observations consists of one uninterpreted bit; here �,� represent the

two possible states of the bit.

Y = R The observations consist of one real number.

Y = Differentiable(R;S) The observations are a differentiable function from a manifold S

to R.

Fix a format for the observations (the observation space Y) and for the commands (the com-

mands space U), call D(Y;U) the set of all such systems.

The assumptions about the representation are different than the assumptions about the

format. Pick a system D ∈ D(Y;U). Consider an invertible function f : Y→ Y and let f ·D

denote the system obtained by filtering the observations of D with the function f . This

transformation does not lose any information, because one can always apply the inverse

transformation f−1 to obtain back D. The systems f ·D and D are effectively the same sys-

tem with a different representation. The same construction can be done for the commands.

As a further generalization, one can consider, instead of an instantaneous function, any

causally invertible system. The set of all causally invertible systems is called the set of

1.5. SUMMARY OF MAIN RESULTS 18

uninterpreted
observations

uninterpreted
commands

agent

“world”

unknown
sensor(s)

external
world

unknown
actuator(s)

X

group nuisance
on observations

3

Equations (1)-(2) appear convoluted because they work with
the much abstract definition of system we used. However,
the end result is that we have defined the meaning of a
transformation D �→ h · D · g; reading right to left, the input
signals are filtered by the group element g; then the system
produces an output, which is filtered according to the group
element h.

C. Defining agents
In the following, we let U be the command space, Y be

the observations space, and world ∈ D(Y, U) represent the
model of everything in between observations and commands.
To formalize the learning agent, we assume that it is composed
of a two-part strategy. The first part consists in learning a
representation of the world (more or less explicit); and in the
second phase, using this representation to do something (or to
estimate something). We model the agent as a tuple of two
functions modeling learning and action.

Definition 4. A bootstrapping agent for a world world ∈
D(Y, U) is a tuple �R, learn, act� such that R is the represen-
tation space, learn ∈ D(U × R, Y) is the learning/exploration
strategy; and act : R → D(U , Y) is the action/estimation
phase. We denote by learn(world) = r ∈ R the representation
learned after a suitable training phase. We define as A(U , Y)
the set of all agents interacting with the world through
commands in U and observations Y .

The learning strategy is defined as an element of D(U ×
R, Y), which means it is a dynamical system which has as
input the observations (Y), and as output the commands (U)
that drive the exploration, and the internal representation (R).
In this paper, we treat the representation mostly as an opaque
object.

The acting strategy act is a map from R to D(U , Y); this
means that the learned representation R is converted into a
dynamical system which will do the actual interacting with the
world. We remark that this dynamical system has, in general,
an internal state. For example, R might include a description
of the sensor calibration and the statistics of the environment;
from that, one generates the dyamical system act(R) which
might include logic for estimation of an internal state (e.g. the
agent’s state in localization, or a complete map in SLAM)1.
Note also that using the abstract Definition 1 does not exclude
any kind randomized behavior for the agent.

Finally, notice that in this discussion we are neglecting all
sorts of problems about how to properly define the training
phase; when to stop it; the tradeoff of exporation/explotation;
etc. All these concerns are important but somewhat orthogonal
to our main interest.

D. Bootstrapping as invariance to the group actions
We have defined the world, the agent, and how the world

transforms under group nuisances. At this point, we can
1Depending on the field, “learning” is sometimes equivalent to “estimation”

(as in learning a map of the environment). In this paper, we use “learning” for
the problem of deriving what we call “representation” of the world dynamics,
and use “estimation” for inferring the state of system, given a known dynamics
(these ideas blur into each other, but it makes sense to use “learning” for the
harder problem).

introduce the main theoretical point of this paper: it is possible
to transform vague constraints such as “the agent has no
assumptions on the model” into precise algebraic conditions
on the world-agent loop; specifically, an agent does not
need certain information if its behavior is invariant to group
nuisances acting on the world that destroy that particular
information. The following is the formal statement.

Definition 5. Let the world world belong to a family of models
W ⊂ D(T, U , Y). Let the groups GU , GY be left and right
actions on the world world. We say that an agent �R, learn, act�
is invariant to the action of (GU , GY) for the family W if

(act ◦ learn)(h · world · g) = g−1 · (act ◦ learn)(world) · h−1

for all h ∈ GY , g ∈ GU , and world ∈W.

It is easy to see that, if this condition holds, then the
nuisances have no effect on the agent’s actions (g−1 and g
cancel, and likewise for h). The simplest example is when the
groups represent linear scaling (gains of the actuators, or units
of measuremnts for the observations); if the gain is doubled,
we expect that the produced commands will be halved.

Note also that, while the input-output behavior is un-
changed; the internal representation is allowed to change; what
happens to the internal representation is an interesting question
that we will not investigate in this paper.

III. ANALYSIS FOR BDS SYSTEMS

The point of all of this is that now we have a language to
say exactly what we require of a bootstrapping agent. Here we
apply it to the results in previous work, as a simple example
in preparation to the new results described later.

In previous work, we considered this class of bilinear
models, justifying the choice by saying that it is the simplest
nonlinearity that can represent several sensors. There is some
similarity with other systems considering 3-way interactions
of systems that we intend to investigate in the future [?].

Definition 6. A bilinear dynamics sensor (BDS) if its sensor
y ∈ Rn, u ∈ Rk dynamics, and there exists a (n, n×k) tensor
M such that ẏs = Ms

viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:

:1y)u1 + (M:
:2y)u2 +

. . . . makes it clear that the system being bilinear means having
multiple autonomous linear dynamics among which to choose.
A purely affine part (ẏ = · · · + Bu) can be represented by
adding a dummy observation with constant value.

The following is an extension of the agent we studied in
previous work with the language just introduced. Suppose Ωu

is the set of allowable commands (modeling power constraints
etc.).

Proposition 7. Define the agent ABDS(k, n) ∈ A(Rk, Rn),
with representation

�
ys, Psv, Tsvi

�
. The learning phase is de-

fined by the following set of equations. The actions are chosen

group nuisance
on commands

X

3

Equations (1)-(2) appear convoluted because they work with
the much abstract definition of system we used. However,
the end result is that we have defined the meaning of a
transformation D �→ h · D · g; reading right to left, the input
signals are filtered by the group element g; then the system
produces an output, which is filtered according to the group
element h.

C. Defining agents
In the following, we let U be the command space, Y be

the observations space, and world ∈ D(Y, U) represent the
model of everything in between observations and commands.
To formalize the learning agent, we assume that it is composed
of a two-part strategy. The first part consists in learning a
representation of the world (more or less explicit); and in the
second phase, using this representation to do something (or to
estimate something). We model the agent as a tuple of two
functions modeling learning and action.

Definition 4. A bootstrapping agent for a world world ∈
D(Y, U) is a tuple �R, learn, act� such that R is the represen-
tation space, learn ∈ D(U × R, Y) is the learning/exploration
strategy; and act : R → D(U , Y) is the action/estimation
phase. We denote by learn(world) = r ∈ R the representation
learned after a suitable training phase. We define as A(U , Y)
the set of all agents interacting with the world through
commands in U and observations Y .

The learning strategy is defined as an element of D(U ×
R, Y), which means it is a dynamical system which has as
input the observations (Y), and as output the commands (U)
that drive the exploration, and the internal representation (R).
In this paper, we treat the representation mostly as an opaque
object.

The acting strategy act is a map from R to D(U , Y); this
means that the learned representation R is converted into a
dynamical system which will do the actual interacting with the
world. We remark that this dynamical system has, in general,
an internal state. For example, R might include a description
of the sensor calibration and the statistics of the environment;
from that, one generates the dyamical system act(R) which
might include logic for estimation of an internal state (e.g. the
agent’s state in localization, or a complete map in SLAM)1.
Note also that using the abstract Definition 1 does not exclude
any kind randomized behavior for the agent.

Finally, notice that in this discussion we are neglecting all
sorts of problems about how to properly define the training
phase; when to stop it; the tradeoff of exporation/explotation;
etc. All these concerns are important but somewhat orthogonal
to our main interest.

D. Bootstrapping as invariance to the group actions
We have defined the world, the agent, and how the world

transforms under group nuisances. At this point, we can
1Depending on the field, “learning” is sometimes equivalent to “estimation”

(as in learning a map of the environment). In this paper, we use “learning” for
the problem of deriving what we call “representation” of the world dynamics,
and use “estimation” for inferring the state of system, given a known dynamics
(these ideas blur into each other, but it makes sense to use “learning” for the
harder problem).

introduce the main theoretical point of this paper: it is possible
to transform vague constraints such as “the agent has no
assumptions on the model” into precise algebraic conditions
on the world-agent loop; specifically, an agent does not
need certain information if its behavior is invariant to group
nuisances acting on the world that destroy that particular
information. The following is the formal statement.

Definition 5. Let the world world belong to a family of models
W ⊂ D(T, U , Y). Let the groups GU , GY be left and right
actions on the world world. We say that an agent �R, learn, act�
is invariant to the action of (GU , GY) for the family W if

(act ◦ learn)(h · world · g) = g−1 · (act ◦ learn)(world) · h−1

for all h ∈ GY , g ∈ GU , and world ∈W.

It is easy to see that, if this condition holds, then the
nuisances have no effect on the agent’s actions (g−1 and g
cancel, and likewise for h). The simplest example is when the
groups represent linear scaling (gains of the actuators, or units
of measuremnts for the observations); if the gain is doubled,
we expect that the produced commands will be halved.

Note also that, while the input-output behavior is un-
changed; the internal representation is allowed to change; what
happens to the internal representation is an interesting question
that we will not investigate in this paper.

III. ANALYSIS FOR BDS SYSTEMS

The point of all of this is that now we have a language to
say exactly what we require of a bootstrapping agent. Here we
apply it to the results in previous work, as a simple example
in preparation to the new results described later.

In previous work, we considered this class of bilinear
models, justifying the choice by saying that it is the simplest
nonlinearity that can represent several sensors. There is some
similarity with other systems considering 3-way interactions
of systems that we intend to investigate in the future [?].

Definition 6. A bilinear dynamics sensor (BDS) if its sensor
y ∈ Rn, u ∈ Rk dynamics, and there exists a (n, n×k) tensor
M such that ẏs = Ms

viy
vui.

We call BDS(n, k) the set of all such systems. Note that
here, in the discrete case, s is an index that spans over 1, . . . , n
sensels; but most considerations are valid if s is a continuous
index over a manifold, with integration instead of summation.
Writing the system in the form ẏ = (M:

:1y)u1 + (M:
:2y)u2 +

. . . . makes it clear that the system being bilinear means having
multiple autonomous linear dynamics among which to choose.
A purely affine part (ẏ = · · · + Bu) can be represented by
adding a dummy observation with constant value.

The following is an extension of the agent we studied in
previous work with the language just introduced. Suppose Ωu

is the set of allowable commands (modeling power constraints
etc.).

Proposition 7. Define the agent ABDS(k, n) ∈ A(Rk, Rn),
with representation

�
ys, Psv, Tsvi

�
. The learning phase is de-

fined by the following set of equations. The actions are chosen

Figure 1.2. Representations nuisances are fixed, invertible transformations of the obser-
vations and commands, which affect the “representation” of the system while pre-
serving all intrinsic properties (observability, controllability). Because the nuisances
are invertible, an agent should be able to compensate for them, so that the dynamics
of the world remains the same. The set of nuisances to which an agent is invariant can
be understood in terms of the semantic assumptions on the data.

representation nuisances and it is denoted D?(Y;U).

These representation nuisances can be used to model the assumptions of the agent

about the representation of observations and commands. Imagine an adversarial setting

(Figure 1.2), in which the nuisances act on observations and commands in between the

agent and the world. An adversary can choose the nuisances once, before the interaction

between agent and world starts. Assuming that the performance of the agent does not

depend on the representation of the data, but rather on some hidden state of the system,

the nuisances do not change the achievable performance in a task, because it is always

possible for the agent to compensate for them.

Clearly no agent will be able to compensate for all nuisances. The set of nuisances for

which the agent can compensate encode the assumptions of the agent about the represen-

tation.

One can define an equivalence relation of the space D(Y;U), in which two systems are

equivalent if they can be transformed into each other by a representation nuisance The set

of all systems D(Y;U) can be factorized as D(Y;U) = D?(Y;U)×D◦(Y;U), where D◦(Y;U)

is the set of equivalence classes (systems up to representation). This factorization allows

to distinguish two types of assumptions of an agent:

1.5. SUMMARY OF MAIN RESULTS 19

(1) The assumptions about the properties of the system that are invariant to the rep-

resentation (here called “physical” properties). This is a subset of D◦(Y;U).

(2) The assumptions about the representation of the data. These are specified by the

subset of the representation nuisances D?(Y;U) that the agent can tolerate.

1.5.6. Symmetries of the task

The “task,” defined by a reward function, an error function, or other similar perfor-

mance measure, is usually considered part of the problem formalization, and beyond any

critique. From the bootstrapping perspective, one can show that the symmetries of the

task (defined formally as the symmetries of a certain stochastic process derived from the

agent-world interaction) are equivalent to semantic assumptions from which the agent will

suffer.

The same task can be encoded by slightly different error function (Table 1.3). Each

error function can be associated to a symmetry group with respect it is invariant; and each

symmetry group corresponds to a certain class of semantic assumptions.

Table 1.3. Examples of symmetries for error functions

error function symmetries

for Y for U´ ‖y‖2 dt O(ny) Aut(U)´ ‖y‖1 dt D±(ny)× Perm(ny) Aut(U)´ ‖y‖∞ dt D±(ny)× Perm(ny) Aut(U)

Each error function can be mapped to its symmetry group. In the bootstrapping sce-
nario, an error function that has a large symmetry group is better because it makes
less assumptions about the system.

1.5.7. Bootstrapping as a canonization problem

A large part of the complexity of bootstrapping (and other learning problems) is in

being invariant to the representation nuisances. The same physical system (an element

1.5. SUMMARY OF MAIN RESULTS 20

of D◦(Y;U)) can appear radically different depending on the way its observations and

commands are represented.

Many other estimation problems have the same structure, in which a relatively low-

dimensional object produces a high-dimensional data distribution mainly because of a

group that acts as a nuisance (Figure 1.3). An example is object classification, where the

variability of the observations is mostly due to the nuisances on the data rather than class

variability [51].

y0 y

nuisance

p(y0)
low-dimensional

distribution

p(y)
high-dimensional

distribution

~ ~

y0
p(y0)

Y

p(y)
canonization

Y

Gy0

Figure 1.3. Bootstrapping belongs to a large class of problems in which the variabil-
ity of the observed data is mainly due to an invertible nuisance acting on the data.
Canonization is one approach to create agents that are invariant to such nuisances.

A general approach to deal with such a nuisance is finding a canonization operator that

maps the observed data to a canonical representation.

A “pontifical feature” [52] is a function of the data that allows to define a canonical

representation for the action of a group. While it is always possible to define such a pon-

tifical feature for the action of a group, obtaining the corresponding canonization operator

implies solving a difficult optimization problem.

Relaxing some of the assumptions leads to studying “weaker” pontifical features that

can canonize only a subgroup of the group acting as a nuisance. The canonization opera-

tors of weak pontifical features can be composed together to obtain a canonization operator

for larger groups, but only if the subgroups “play well” together.

Part 1

A Formal Approach to Bootstrapping

CHAPTER 2

A Quick Group Theory Tutorial

This chapter is a quick tutorial to groups, groups actions, and related concepts,

for the reader who does not know the meaning of “homomorphism”. An alterna-

tive to this chapter, which leaves out many of the things that make group theory

interesting, is spending a couple of afternoons with the first chapters of a text

such as Rotman [53].

2.1. Automorphisms

An automorphism of a set X is an invertible function from the set to itself. For example,

if X = Rn, the map v 7→ 2v is an automorphism, because it maps Rn to itself, and it has an

inverse v 7→ 1
2 v. Another automorphism is the map v 7→ v + 1n, with inverse v 7→ v− 1n.

Aut(X) is the set of all automorphisms of X. This set is huge if X is a continuous

space, but if the set X is finite, then one can enumerate all automorphisms. Suppose

there are n elements in X and give an index i ∈ {1, 2, . . . , n} to each element. An au-

tomorphism of the set is described by a map between indices, thus by a vector π =

{π1, . . . , πn} ∈ {1, 2, . . . , n}n, where the element πi describes the index of the element

in which the i-th object is transformed. Because the map must be invertible, there cannot

be repetitions (πi 6= πj if i 6= j). In other words, this vector describes a permutation of the

indices {1, 2, . . . , n}. This means that there are exactly n! automorphisms in a discrete set,

corresponding to all possible permutations of the n elements.

22

2.2. GROUPS 23

2.2. Groups

A set is a group, if it is equipped with a binary operation called group operation (here

denoted by “◦”), a unary operation, inversion, and an identity element, denoted e. The

group operation must be closed on the set (for any two elements g, h, the element g ◦ h

must belong to the set as well) and associative, in the sense that g ◦ (h ◦ k) = (g ◦ h) ◦ k.

The inversion operation maps each element g to its inverse g−1, such that their product is

the group identity: g ◦ g−1 = g−1 ◦ g = e.

These conditions are verified for automorphisms, considering function composition as

the group operation. By definition, all elements f ∈ Aut(X) have an inverse f−1, con-

tained in Aut(X). The set is also closed with respect to the composition operation. If two

maps g, h ∈ Aut(X), then g ◦ h, the composition of the two functions, is again an element

of Aut(X), because it is closed on X and it is invertible, its inverse being h−1 ◦ g−1. This

makes (Aut(X), ◦) a group.

Most of the time, the group operation is not indicated explicitly, but, in principle, one

should specify it, because a set can be a group under different operations. Consider the

operation � : Aut(X)× Aut(X) → Aut(X), defined as g � h = h ◦ g. This is just function

composition, in the “wrong” order, and still satisfies associativity: g � (h � k) = (k ◦ h) ◦ g =

k ◦ (h ◦ g) = (g � h) � k. Hence (Aut(X), �) is a group, different from (Aut(X), ◦). While it is

important to specify the composition operator, it is not important to specify the inversion

operation because it is uniquely defined given the group operation.

Group theory uses minimal notation. Because the group operation is associative, paren-

theses are unnecessary, so there is no ambiguity in writing g ◦ h ◦ k. It is common to use the

multiplicative notation, whereas the group operation is represented by an implicit multi-

plication. For example, when one writes an expression like “ax + b”, it is implicit that

2.3. SOME COMMONLY USED GROUPS 24

there is a multiplication between “a” and “x”. Using this convention, one writes sim-

ply g h k instead of g ◦ h ◦ k. Contrary to multiplication, in general, group operations are

not commutative, which means that g h k is not necessarily equal to k h g.

2.3. Some Commonly Used Groups

(R◦,×) The nonzero reals with multiplication as the operation.

(R,+) The reals with addition as the operation.

(±1,×) The set {+1,−1} with multiplication.

(R+
◦ ,×) The positive reals with multiplication as the operation.

The matrix groups represent affine transformations of Euclidean space. The relation among

these can be seen in Figure E.2.

Aff(Rn) Affine transformations (Definition D.3)

E(n) Euclidean transformations (Definition D.3)

SE(n) Orientation-preserving euclidean transformations (Definition D.3)

GL(n) Linear transformations (Definition D.2)

O(n) Orthogonal transformations (rotations and reflections) (Definition D.2)

SO(n) Rotations (Definition D.2)

For M a generic differentiable manifold, the following sets of transformations are groups:

Homeo(M) Homeomorphisms (invertible and continuous) (Definition E.5)

Diff(M) Diffeomorphisms (invertible and differentiable) (Definition E.20)

Isom(M) Isomorphisms (Definition E.3)

The relations among these groups can be seen in Figure E.3.

2.4. SUBGROUPS 25

2.4. Subgroups

A subgroup (Definition C.5) is a subset of a group that is closed with respect to the

group operation and to inversion.

EXAMPLE 2.1. A subgroup of Aut(R2) is the set of uniform scaling maps

Sc(2) = {gα | α ∈ R, α 6= 0}, (2.1)

where each element gα of Sc(2) is a map that scales vectors uniformly by a constant:

gα : R2 → R2,

v 7→ α v.

Sc(2) is closed with respect to the group operation, because for any two elements gα, gβ,

the composition gα ◦ gβ = g(αβ) is still an element of Sc(2), and to inversion, because the

inverse of gα is gα−1 .

The notation “G ≤ H” means that G is a subgroup of H. The “≤” comparison is a

partial order on the set of subgroups of a given group. This means that G ≤ H and H ≤ K

implies G ≤ K (transitivity), but it is not true that necessarily A ≤ B or B ≤ A.

A normal subgroup (Definition C.11) is a special kind of subgroup. Most of the difficulty

with dealing with groups is that the group operation is not commutative. A subgroup N of

a group G is normal (written “N / G”) if it commutes with all elements of the groups, in the

partial order: An antisymmetric, transitive, and reflexive binary relation. In a partial

order it is not guaranteed that all elements are comparable. For example, the set of subsets

equipped with the subset inclusion relation ⊂ is a partial order. Another partial order is

the set of first-order logic statements using implication as the relation. See Definition A.8.

2.6. GROUP ACTIONS 26

sense that g N = N g for all elements of G. The set g N is the set obtained by multiplying g

with all elements of N: g N = { g n | n ∈ N }. Usually one must be careful when dealing

with groups: g N = N g does not imply that g n = n g for every n ∈ N.

2.5. Homomorphisms

A homomorphism (Definition C.17) is a map between two groups that preserves the

group operation. Let (G, ◦) and (H, �) be two groups. A map ϕ : G → H is a homomor-

phism if for any g, h ∈ G it holds that

ϕ(g ◦ h) = ϕ(g) � ϕ(h).

REMARK. A “homomorphism” should not be confused with a “homeomorphism”.

Two groups are said to be isomorphic (written G ∼= H) if there is an isomorphism be-

tween the two.

EXAMPLE. Because there is a homeomorphism between R and [0, 1], the homeomor-

phisms of the real line and the homeomorphisms of an interval are isomorphic:

Homeo(R) ∼= Homeo([0, 1]).

2.6. Group Actions

The action of a group (G, ◦) on a set X, indicated by a dot “·”, is a map · : G× X → X

that satisfies two properties (Definition C.35):

homomorphism: A homomorphism between is a map between two groups compatible

with the group operation. See Definition C.17.

homeomorphism: A homeomorphism (different from a homomorphism) is a continuous in-

vertible transformation. See Definition E.5.

2.7. ORBITS AND EQUIVALENCE CLASSES 27

Identity. The action of the identity e leaves all elements x ∈ X fixed:

e · x = x.

Associativity. The action of an element g, followed by the action of h, is equivalent to the

action of h ◦ g:

h · (g · x) = (h ◦ g) · x.

EXAMPLE 2.2. The group (Aut(X), ◦) acts on X by defining f · x as simply the evalua-

tion of the function f ∈ Aut(X) on the element x:

f · x , f (x).

Identity. The identity of Aut(X) is IdX and it satisfies

IdX · x = x.

Associativity. Given two functions f , g ∈ Aut(X), it holds that

f · (g · x) = (f ◦ g) · x.

2.7. Orbits and Equivalence Classes

The orbit of a point x ∈ X for the action of a group G is the subset G · x ⊆ X corre-

sponding to all the images of x produced by the action of all elements of G:

G · x = { g · x | g ∈ G}.

2.8. INVARIANCE OF FUNCTIONS 28

The action of a group on a set induces an equivalence relation on the set, which is a parti-

tion of X in disjoint orbits.

EXAMPLE 2.3. Consider the action of the rotation group G = SO(2) on R2. For the

point x = (1, 0) ∈ R2, the orbit G · x is the unit circle. For the point y = (2, 0), the

orbit G · y is the circle of radius 2. For the point z = (0, 1), the orbit is again the unit circle,

so in this case G · x = G · z, and the two points belong to the same orbit. For the origin, the

orbit G · 0 is just {0}.

2.8. Invariance of Functions

Let G be a group acting on the set X. A function f : X → Y is G-invariant (Defini-

tion C.39) to the action of G if

f (g · x) = f (x).

A G-invariant function is constant on the orbits of G (Figure 2.1); this means that the preim-

age of a value is a G-orbit, or the union of several orbits. Some invariant functions are

trivial: for example, 0 is an invariant function.

orbit: The image of the action of an entire group applied to one base point. See Defini-

tion C.36.

! = y2

G orbits
X

! = y1

! = y3

Figure 2.1. A G-invariant function y = φ(x) is constant on the orbits of G.

2.9. SYMMETRIES OF SETS AND FUNCTIONS 29

Sometimes a function “plays well” with the action of a group even though it is not

invariant.

An equivariant function (Definition C.41) is a function from X to itself for which

f (g · x) = g · f (x).

A contravariant function (Definition C.42) is one for which

f (g · x) = g−1 · f (x).

2.9. Symmetries of Sets and Functions

Informally, the “symmetries” of an object are the set of group actions that preserve

some specific property of the object. Finding the symmetries of an object is an important

operation that is given different names for different kinds of objects.

2.9.1. Symmetries of sets

Let G be a group acting on X, and let A be a subset of X. The stabilizer stabG(A) is

the largest subgroup of G that leaves the set A invariant, in the sense that, for each ele-

ment a ∈ A and each element g ∈ stabG(A), the transformed element g · a still belongs

to A (Definition C.39).

EXAMPLE 2.4. Take as the group the set of all euclidean motions SE(2) on the plane

(Definition D.3), and as the set the unit circle S1. Then the stabilizer is the group of rota-

tions:

stabSE(2)(S1) = SO(2).

Take as the set the horizontal axis A = {(a, 0) | a ∈ R} ⊂ R2. Then the stabilizer is the

group of translations in the horizontal direction, as well as reflections about the vertical

2.10. GROUP PRODUCTS 30

axis.

2.9.2. Symmetries of functions

A similar construction can be done for functions. Let G be a group acting on X, and

consider a function f on X. The set SymG(f) is the largest subgroup of G to which f is

invariant, in the sense that if g ∈ SymG(f), f (g · x) = f (x) for all x (Definition C.40).

EXAMPLE 2.5. Consider the function f : R2 → R+
• that computes the norm of a vector:

f (v) = ‖v‖2. Then the symmetries are the set of orthogonal transformations (Defini-

tion D.2):

SymE(2)(f) = O(2).

2.10. Group Products

The set Sc(2) of uniform scalings in (2.1) is a subgroup of Aut(R2). Another subgroup

is the set of rotation of the plane:

SO(2) = { rθ | θ ∈ [0, 2π) },

with each element being a rotation associated to a particular angle:

rθ : R2 → R2,

v 7→
(

cos θ
sin θ

− sin θ
cos θ

)
v.

Given two subgroups G, H ≤ Aut(X) the set “G ∨ H” is defined as the set of all possible

combinations of arbitrary lengths of elements in G and H (Definition C.9). The result is yet

another subgroup of Aut(X), often much larger than either two.

A direct product (Definition C.26) G × H is the product of two disjoint subgroups that

commute with each other. In this case, rotation and scalings do commute. Therefore, any

2.10. GROUP PRODUCTS 31

arbitrary sequence of rotations and scalings, however intertwined, can be always written

in a unique way as exactly one rotation followed by one scaling, or vice versa. In this case,

these groups play very well together.

Let T(2) be the group of translations of the plane:

T(2) = { tx | x ∈ R2 },

tx : R2 → R2,

v 7→ v + x.

A translation does not commute with scaling and rotations. Given a scaling gα ∈ Sc and a

translation tx ∈ T(2), the product gα ◦ tx is not equal to tx ◦ gα. In fact, it holds that

gα ◦ tx = tαx ◦ gα.

Similarly, given a rotation rθ ∈ SO(2) and a translation tx ∈ T(2), it holds that

rθ ◦ tx = trθ x ◦ rθ .

In these two cases, there is a “partial” commutation, because the elements rθ and gα could

move from the left to the right of tx, which was affected by them. The union of the two

groups is SE(2) = SO(2)∨ T(2). T(2) is a normal subgroup of SE(2), because, for each rθ ,

rθT(2) = T(2)rθ .

The product of two disjoint subgroups N, H ≤ G where one of them is normal (N / G)

is called a semidirect product (Definition C.27), and it is written as N o H.

2.10. GROUP PRODUCTS 32

(a) On the left, a 25× 25 bitmap picture of a rose. On
the right, a 25× 25 bitmap corresponding to the ASCII
encoding of the sentence “What’s in a name? That which
we call a rose, by any other representation would smell as
sweet”.

(b) “World Beat Music”: a piece composed by musician James Plakovic.

Figure 2.1. Meditation materials for thinking about the relation between representa-
tion and semantics.

CHAPTER 3

Bootstrapping and Semantic Assumptions

We want to create agents that can work with the largest class of systems possible.

In other words, they must have as few “assumptions” as possible. There are two

kinds of assumptions: those about the physical system (which sensors/actuators

the body has) and those about the representation of observations and commands.

This goes beyond specifying the format of the data, but, rather, it implies spec-

ifying what is the implied “semantic” of the data. This chapter makes the con-

nection between the invariance properties of the agent, which can be described

concretely with particular group actions, and their interpretation as proxies for

the “assumptions” of the agent about the “semantic” of the data.

3.1. Do Not Trust Strangers in the Streets

It is a serene night in the magnificent historical city that hosts the annual robotics con-

ference. After the conference banquet, you and I are walking back to our hotel. We are

talking about the many merits of choosing a conservative thesis topic in a well-defined,

established field. We then talk about bootstrapping, and how much it looks like an impos-

sible problem.

Suddenly, a voice comes from a shady alley: “Bootstrapping, uh? You fine scholars

might be interested in this: the ultimate bootstrapping agent,”. The man produces one

from his pocket. It is “an agent that has no assumptions,” the stranger says, and “can

work with any system,” he continues, ignoring our raised eyebrows. He asks a reasonable

price; at least, it is cheaper than what we paid last year for “the Newton variant that always

33

3.1. DO NOT TRUST STRANGERS IN THE STREETS 34

finds the local minimum.”

“How does it work?” “See this port, here on the side, where it says observations? You

connect this to the output of your black box. This other port, where it says commands,

should be connected to the input of your black box. There is a keyboard on the top, which

you used to define the task. Then turn it on, and it is ready to go!”

“What can this agent do?” “Any task you want! But you should be able to describe it

with uninterpreted signals. It’s all explained in the manual. For a quick start, it also comes

with a default set of intrinsic motivation policies. This model has even an additional port

for a reward signal, right here under this flap. You can get it working on any system in less

than five minutes.”

“Any system? Without any assumptions? That seems a bit far-fetched.” “Oh yes, no

assumptions at all. And let me be clear: this bootstrapping agent does not do some simple

policy search, but actually learns a model of the world on which it does explicit inference.

Do you want to see a demo?”

As it happens, I always keep a black box in my bag. This one is connected to a robot in

our lab, but I do not remember which one. “Wait!” you say “Back at the banquet, we just

saw that magician doing physically impossible things with that deck of cards. I am not

sure I can trust any demo tonight. Even so, you only have one black box—how can one

demo show anything?. . . ” I stop you before you start citing Popper and Dijkstra.

We are skeptical about the stranger’s claims. Clearly this agent has some assumptions

about its observations and commands. If we find a way to convert these vague “no as-

sumptions” claims into a falsifiable statement, then we have some ground to haggle down

the price.

Karl Popper: (1902–1994) Austrian philosopher of science who popularized falsification-

ism as opposed to inductionism.

3.2. FORMAT vs SEMANTICS 35

“Wait a minute, let us think.” The stranger does not seem to be in a hurry, so we have

time to think about this in a principled way.

3.2. Format vs Semantics

The black box that I carry everywhere is travel sized. TSA requirements limit its output

to only one real number.

“Does your agent work with real numbers?” “Not natively—it actually assumes that

the signals are infinite bit strings. But, for a small price, we can give you a universal

adapter that transforms every data to bit strings. It comes with a ROS interface.”

Even before the interaction begins, there needs be some interface between agent and

world, some agreement on the domains for observations and commands. By calling the

observations y ∈ Y, and the commands u ∈ U, the agent and the world should agree

on the observations space Y and the command space U. Possible choices for the observations

space Y could be the set of real numbers, vectors of natural numbers, grayscale images,

string dictionaries. This is called the “format” of the data.

An alternate view is assuming that the signals of all worlds belong to some large fixed

space, such as binary strings. Every data can have a suitable representation as a string

of bits, therefore we could take Y and U to be {�,�}n, for some large n. This is what

actually happens in a computer: while we can talk mathematically about agents reading

and writing continuous data (e.g., y ∈ R), in practice the algorithmic implementation is

run on a digital computer, where operands are bits. In this view, the format of the data

corresponds to the syntax that specifies which are the valid messages from world to agent

and vice versa.

A central point is trying to reason about the implied semantics, which is beyond the

choice of format. Assume the observations are strings in {�,�}n. We purposefully use

3.3. FORMALIZING SEMANTIC ASSUMPTIONS 36

the symbols {�,�} instead of {0, 1} to underline that these are just symbols, that can

have meaning only when a suitable semantic is attached to it. But what are the semantic

assumptions on those bits? For example: bits are grouped in octets, sometimes four to

eight of those octets represent a floating point number, � is “more” than �, etc.

3.3. Formalizing Semantic Assumptions

We stare at the travel-sizes black box. We are convinced that data format is not the

main obstacle toward understanding the agent’s “assumptions.”

We know that there are many reasonable assumptions about the physical properties of

the system: the system is causal; it obeys the laws of physics; the observations give some

information about some internal state of the system, which in turn is influenced by the

commands. But here we are interested in the “assumptions” about the “semantics” of the

values that we observe coming out of the black box. We realize that even we have some

predefined “assumptions” on the “semantics” of the data. We also realize that so far we

have used the words “assumptions” and “semantics” with quotes because we have not

defined them, and doing all these air quotes is starting to be tiring.

When we turn on the black box, we shall see numbers flashing before us. For example,

“1” and “2” are both elements of R and thus possible observations of the black box. Those

are just symbols, and symbols have no meaning before a proper semantics is attached to

them. If we saw the observations to be 1 instead of 2, we would conclude something

different about the state of the system. Hence, a first semantic assumption is that different

values have different meaning. Having established exactly in what way 1 6= 2, we can

rejoice in our best academic chuckle.

Consider other two symbols: “0” and “2π.” If the observations are supposed to repre-

sent angles, and if those angles are represented using radians, as opposed to degrees, then

the two symbols have the same meaning. Sometimes, 1 = 2.

3.3. FORMALIZING SEMANTIC ASSUMPTIONS 37

Consider other two symbols: “1” and “1.01”. Would you say that they are “close”? If

you would not commit to such a strong assertion—“How close is ‘close’,” you say—would

you at least say that “1” is “closer” to “1.01” than “1.01” is to “2”?

All these statements might be part of the assumptions of the agent when processing

the observations. These statements can be formalized as a set of relations, which can be

imagined as part of the axioms of an inference engine used by the agent.

Let d be a small positive value. (If you know nonstandard analysis, the statements

below have formal validity assuming d to be an infinitesimal.) Consider the statement:

For all y ∈ R, y is “close” to y + d (and vice versa). (3.1)

This statement, or rather, because of the qualifier “for all”, this set of statements, describes

some structure on the set Y = R, namely, the standard topology. The word “close” in (3.1)

is distracting, because we already have a semantic interpretation for it in our head. For

this reason, we rewrite the relation using the Chinese character “近”, in the same way as

we used the symbols � and � in place of 1 and 0:

For all y ∈ R, (y 近 y + d) ∧ (y 近 y− d) . (3.2)

The statement above contains the “+” operation, but that is just a shortcut for not enumer-

ating each value of y.

A binary relation (Definition A.5) over elements of R can be described either as a subset

of R × R (i.e., 近 ⊂ R × R), or, equivalently, by a binary function on R × R (i.e., 近 :

relation: A binary relation is formally defined as a subset of the cartesian product of two

sets. See Definition A.5.

topological space: A topological space is a set endowed with a topology. See Definition A.3.

3.3. FORMALIZING SEMANTIC ASSUMPTIONS 38

R×R→ {�,�}).

Some semantic assumptions correspond to relations with more than two terms, and

consequently to functions on Y× · · · × Y = Ym, where m is the order of the relation. These

relations can be represented graphically if some poetic license is allowed (Figure 3.1).

An agent that assumes that the observations are angle expressed in radians would use

a suitably modified relation:

For all y ∈ R, (y 近 y + d) ∧ (y 近 y− d) ∧ (y 近 y + 2π). (3.3)

Only the partition induced by these relations is significant. For maximum cognitive

y is “close” to y + d (and vice
versa)

(a)

y is “close” to y + d (and vice
versa), and y is “close” to

y + 2π

(b)

y is “less” than y + d

(c)
y is “less” than y− d

(d)

...

y is “close” to y + d, and there is a T such that y is “close” to
y + T

(e)

Figure 3.1. Some semantic assumptions can be described by a relation on Yk, where k
is the order of the relation.

3.4. SYMMETRIES OF SEMANTIC ASSUMPTIONS 39

dissonance, let us return to English words for describing relations. Consider the following

two statements:

For all y ∈ R, y is “less” than y + d. (3.4)

For all y ∈ R, y is “less” than y− d. (3.5)

The partition of R×R induced by these relations is the same (Figure 3.1c, Figure 3.1d), in

the sense that the mapping y 7→ −y transforms one into the other.

This is an example of a relation that involves more than two values:

For all y ∈ R, y is “as close” to y + d as it is to y− d. (3.6)

This statement concerns the two couples of numbers (y, y + d) and (y, y− d). This relation

is not pictured in the figure because we would need a 4D space to display.

Also operations on y that the agent performs on the data can be interpreted as relations.

For example, “1 + 1 = 2” means “the tuple (1, 1, 2) belongs to the ‘+’ relation.”* The order

of this relation is 3, so we abstain from drawing it, but you can picture it as the x + y = z

plane in the (x, y, z) space.

3.4. Symmetries of Semantic Assumptions

If we accept that semantic assumptions can be described by these relations, the next

natural question is how to compare assumptions across agents, so that we can find agents

with the “least” assumptions.

One way to proceed would be to study the semantic assumptions as known mathe-

matical objects or structures attached to the domain Y. It was already noted that the as-

sumption (3.1) implies that the agent takes the real line R to have the usual topology. The

*You might remember from your first undergraduate analysis class (if you took it in
a Bourbaki-infected country) that a function is a particular kind of relation. See Defini-
tion A.13.

3.4. SYMMETRIES OF SEMANTIC ASSUMPTIONS 40

assumption (3.3) implies that the topology is that of the unit circle S1. Assumptions (3.4)

and (3.5) imply that the real line is assumed to be the ordered set (R,<).

However, this approach would be unsatisfactory, for two reasons. First, we are not

content with stating facts such has “the agent considers R as a topological space” or “an

ordered set,” because it will not be possible to make the statements “considers,” “knows,”

“assumes” falsifiable. Second, sometimes there is no preexisting mathematical structure to

use. Consider the assumption

For all y, y is “close” to y + d, and there is a T such that y is “close” to y + T. (3.1)

This is the point of view of an agent which assumes to deal with angles, but does not know

the measurements units a priori.

An alternative approach is characterizing the symmetries of these semantic assump-

tions. Each relation can be assigned to the set of invertible transformations of Y that pre-

serve it. We limit this search to the invertible transformations (called “automorphisms”

of Y) because we do not want to lose information.

Consider, for example, the assumption (3.1). In this case, the set of invertible func-

tions f : Y→ Y such that

f (y) is “close” to f (y + d) (and vice versa⇔

y is “close” to y + d (and vice versa).

is the set of homeomorphismsHomeo(R), which are the invertible and continuous functions

from R to itself.†

ordered set: A set equipped with a total order relation. See Definition A.9.
†Continuous functions preserve the topology by definition, if one uses the topological

3.4. SYMMETRIES OF SEMANTIC ASSUMPTIONS 41

This exercise can be repeated for the other assumptions (Table 3.1).

The transformations that preserve (3.3) are necessarily homeomorphisms, with the ex-

tra condition that the periodicity is preserved:

{ f ∈ Homeo(R) | f (y + 2π) = f (y) + 2π }. (3.2)

The assumption (3.1) is less restrictive, because the period T is allowed to vary, and

therefore the set of symmetries is larger:

{ f ∈ Homeo(R) | ∃ T : f (y + T) = f (y) + T }. (3.3)

As the semantic assumptions become more complicated, the description of these sets

of functions becomes more convoluted. At this point, it is useful to switch to the language

of group theory.

Rusty in group theory? Go read the first sections of Chapter 2 and then come back.

Using the language of group theory has two immediate advantages. We can compress

down the description of large set of transformations, such as (3.2), by using constructions

such as the direct product of groups. We can easily compare which sets of transformations

are larger, using isomorphisms properties. This allows to compare the assumptions of

different agents.

If the semantic assumption is represented as a function R : Ym → {�,�}, then we

definition of continuous function (Definition A.4). The ε− δ definition of continuous func-
tion (Definition E.4) is applicable only to metric spaces. If the topology is generated by the
metric, the two definitions agree.

group: A set equipped with an operation that satisfies the properties of closure and asso-

ciativity, and in which every element has an inverse. See Definition C.4.

group isomorphism: An invertible map between two groups that is compatible with the

group operation. See Definition C.18.

3.4. SYMMETRIES OF SEMANTIC ASSUMPTIONS 42

would say that we are looking at the set of symmetries of R, meaning for what invertible

functions f it holds that

R(f (y1), . . . , f (ym)) = R(y1, . . . , ym).

Let Sym(R) be the set of all such functions:

Sym(R) = { f ∈ Aut(Y) | R(f (y1), . . . , f (ym)) = R(y1, . . . , ym)}.

This set is a group under the operation of function composition ◦. If f belong to Sym(R),

then also its inverse f−1 belongs to Sym(R). Moreover, if both functions f , g belong

to Sym(R), then their composition f ◦ g belongs to Sym(R) as well.

The set of homeomorphisms Homeo(R) mentioned earlier is a group. For the set (3.2),

it takes a few steps to see that this set is isomorphic to the homeomorphisms of the unit

circle Homeo(S1). For the set (3.3), there is an extra scale invariance, which makes the set

isomorphic to the direct product Homeo(S1) × (R+
◦ ,×). Regarding the assumptions (3.4)

and (3.5), the associated group is the set of monotonic homeomorphisms Homeo+(R). The

results are summarized in Table 3.1.

monotonic function: A function preserving the total order of the real line.

3.4. SYMMETRIES OF SEMANTIC ASSUMPTIONS 43

Table 3.1. Some semantic assumptions on the data and relative symmetry groups pre-
serving the assumptions.

semantic assumptionR Sym(R)
y is “close” to y + d (and vice versa) Homeo(R)

y is “close” to y + d (and vice versa), and y is
“close” to y + 2π

Homeo(S1)

y is “close” to y + d, and there is a T such that y
is “close” to y + T

Homeo(S1)× (R+
◦ ,×)

y is “less” than y + d Homeo+(R)

y is “less” than y− d Homeo+(R)

y is “as close” to y + d as it is to y− d Aff(R)

3.5. ORDERING ASSUMPTIONS 44

3.5. Ordering Assumptions

Once each semantic assumption has been assigned its symmetry group, the assump-

tions can be given a partial order by using the groups as proxies.

The partial order on groups is given by the subgroup relation “≤” (Definition C.5). This

partial order is shown in Figure 3.1a for the groups in the last example. Figure 3.1b shows

the semantic assumptions ordered according to the groups partial order.

For some of these assumptions, the partial order on the group is the same as the “impli-

cation” in first-order logic. However, the groups are actually simpler to consider, because,

while relations can have arbitrary order (e.g., (3.1) is a four-way relation, thus a subset

on Y4), the symmetry groups only apply to the observations space Y, even for higher-order

relations.

Homeo(S1)× (R+
◦ ,×)

Homeo(R)

Homeo+(R) Aff(R)

Homeo(S1)

≤≤≤

≤

(a) Partial orders on automorphisms given by the subgroup relation.

y is “close” to
y + d, and there is
a T such that y is
“close” to y + T

y is “close” to y+ d
(and vice versa)

y is “less” than
y + d

y is “as close” to
y + d as it is to

y − d

y is “close” to
y + d (and vice
versa), and y is
“close” to y + 2π

≤≤≤

≤

(b) Induced partial order on semantic assumptions.

Figure 3.1. Partial ordering of the assumptions.

3.6. STARTING FROM THE AGENT 45

This partial order on semantic assumptions induces a partial order on agents as well,

if we can find a way to associate to each agent its semantic assumptions.

3.6. Starting from the Agent

“We think we got it,” we tell the stranger, who has patiently been waiting for our

elucubrations. “Could you pop your agent open? We need to have a look at its semantic

assumptions.”

Inside the agent, we expected to see an ordered shelf of rulebooks, possibly written

in Chinese, describing the agent’s axioms and rules, and some generic inference engine.

Instead, the agent’s internals look like an endless series of leaky pipes, from which many

whirring electric components protrude. In a corner, a squirrel is busy exercising in a run-

ning wheel. “The squirrel just provides energy to the system. It is part of our company’s

commitment to more ecologically friendly bootstrapping agents. Sometimes it stops un-

predictably, and you need to be patient and give it a few minutes. If it stops for more than

five minutes, you might have to replace the squirrel.”

This is not a problem, I think, because at Caltech we do have a large supply of squir-

rels. “We can live with the biological component,”—catching squirrels will be a much

more productive endeavor than the average project for Caltech undergrads—“but where

can we find this agent’s semantic assumptions?” “I am sorry, but this agent has not been

programmed with explicit semantic assumptions, nor it does explicit manipulation of sym-

bols. It’s more like a neural network—but not exactly so. . . ”

Suppose that we have an agent, described algorithmically. Can we backtrack from the

agent’s algorithmic description to the agent’s semantic assumptions?

As an example, consider the task of learning the sensor geometry, which is a basic task

sensor geometry: The metric or topological arrangement of a sensor’s sensels in space.

3.6. STARTING FROM THE AGENT 46

for bootstrapping agents. It is assumed that the observations come from the sampling of

a spatial field on some manifold. For example, the pixels of a camera sample the plenoptic

function (the field) on the visual sphere (the manifold). One approach to sensor geometry

reconstruction consists in finding a measure of similarity between each pair of sensels, and

then use an embedding algorithm which uses the similarities as input. The basic idea is

that if sensels are close in space, then their measured values will be more similar.

There are many possible choices for the similarity measures, with various tradeoffs in

space/computation requirements and robustness to noise. Here is a representative sam-

ples of plausible similarities measures that an agent might use. They are written as func-

tions R(yi, yj), with the understanding that they are all statistics of the observed sensel

values over some time period.

• The simplest choice is using the sample correlation:

R1(yi, yj) = corr(yi, yj). (3.1)

• Some agent might think it is useful to use the absolute value of the correlation:

R2(yi, yj) = |corr(yi, yj)|, (3.2)

reasoning that, if one consistently observes yi = −yj, the sensels should be con-

sidered spatially close because they are observing the same signal, just with the

opposite sign.

• An agent, if it had taken more than just an introductory statistics class, could use

embedding problem: The problem of reconstructing the positions of a set of points in a

metric space given their distances.

3.6. STARTING FROM THE AGENT 47

the Spearman correlation as the similarity measure:

R3(yi, yj) = |spear(yi, yj)|. (3.3)

• An agent with more computation at his disposal might use the normalized variation

of information V1(yi; yj) (Definition B.13):

R4(yi, yj) = 1− V1(yi; yj). (3.4)

This is a proper metric for random variables, derived from the mutual informa-

tion, which satisfies 0 ≤ V1(yi; yj) ≤ 1.

One can associate a group of symmetries to each of these similarity measures. For example,

each of the similarity measures Rk would be unchanged if all the data were to be multiplied

by −1:

Rk(−yi,−yj) = Rk(yi, yj).

Formally, one says that all similarity measures are invariant to the action of the group (±1,×).

Here is the rest of the analysis for the other measures.

• The absolute value of correlation (3.2) is invariant to the action of the group

Aff(R)n = Aff(R)× · · · × Aff(R),

which corresponds to an affine map acting independently on each sensels.

invariant function: A function that is preserved by the action of a group (f (g · x) = f (x)).

See Definition C.39.

affine map: Geometrically, an affine map preserves straight lines, but not angles or

lengths. See Definition D.3.

3.6. STARTING FROM THE AGENT 48

• The simple correlation (3.1) is invariant only to orientation-preserving affine maps

acting separately on each variable:

Aff+(R)n = Aff+(R)× · · · × Aff+(R).

• The Spearman correlation is invariant to all monotonic homeomorphisms Homeo+(R)n

(Lemma B.11). Taking the absolute value of the Spearman correlation makes the

similarity measure invariant to all homeomorphisms.

• The similarity measure 1−V1(yi; yj) is invariant to all invertible piecewise-continuous

maps PieceHomeo(R)n (Remark B.12).

These results are summarized in Table 3.2.

Just like the previous example, we can use the subgroup partial order to order the

groups into a lattice (Figure 3.1a), and this induces a partial order on the similarity mea-

sures (Figure 3.1b). Moreover, we can go from the groups to the semantic assumptions, by

using the information in Table 3.1.

lattice: A partially ordered set with a "top" and a "bottom" elements which are compara-

ble to all elements of the set. See Definition A.11.

Table 3.2. Some similarity measures and relative symmetry groups.

similarity measure symmetry

|corr(yi, yj)| Aff(R)n

corr(yi, yj) Aff+(R)n

spear(yi, yj) Homeo+(R)n

|spear(yi, yj)| Homeo(R)n

1− V1(yi; yj) PieceHomeo(R)n

For each similarity measure among sensels (left column) we can associate its invari-
ance group (right column). In addition to the groups displayed, every measure is
invariant to the reflection (yi, yj) 7→ (−yi,−yj).

3.6. STARTING FROM THE AGENT 49

Thus, the symmetries of the algorithm used by the agent ultimately define which se-

mantic assumptions the agent is making about the data.

Homeo(R)n

Aff+(R)n

PieceHomeo(R)n

Aff(R)n Homeo+(R)n

≤

≤

≤

≤

≤

(a) Partial orders on groups given by the subgroup relation.

|spear(yi, yj)|

corr(yi, yj)

1− V1(yi; yj)

|corr(yi, yj)| spear(yi, yj)

≤

≤

≤

≤

≤

(b) Induced partial order on similarities measures.

3.7. THE ADVERSARIAL VIEW 50

3.7. The adversarial view

“Could you give us an algorithmic description of this agent? We need to compute some

symmetries to check its semantic assumptions.” “I am sorry, our lawyers tell me I cannot

show anybody the plans for this agent. Truth to be told, there was also an evolutionary

stage, in which some of the original components were randomly replaced. For some rea-

son, we found out that squirrels worked better than hamsters, even though they were only

supposed to produce power. We believe that the hamster smell somehow distracted the

cat ganglia simulated in those steam pipes. So, sorry, no blueprints are available. But you

can absolutely play with the agent as much as you want! Let me put in a fresh squirrel.”

Fortunately, we just need to look at the input-output behavior of an agent to character-

ize its invariance properties. It is not necessary to have an algorithmic description of the

agent’s internals or to access its internal states.

Imagine an adversarial setting (Figure 3.1), where we play the role of the adversaries,

disturbing the communication between agent and world, by choosing a “nuisance” acting

on the observations between agent and world. The term nuisance, as opposed to noise,

describes something acting on the data that, in principle, can be neutralized a posteriori.

Representation nuisances are defined as fixed, invertible transformations of the observa-

tions. “Fixed” means that we, as the adversaries to the agent, can only choose one transfor-

mation at the beginning of the interaction, and the transformation will not change during

the agent’s experience. Because the transformations are invertible, they do not change the

informative content of the data, but only the representation.

We can test the agent with different classes of representation nuisances, and check for

which ones the agent’s behavior is invariant. As per the previous discussion, one can

interpret the invariance properties as semantic assumptions of the agents.

3.7. THE ADVERSARIAL VIEW 51

agentworld
y y’ decisions

fixed, invertible
nuisance

Figure 3.1. To understand the agent’s assumptions about the representation of the
data, we ask what fixed, invertible transformations an agent can tolerate.

3.8. TOLERANCE TO NUISANCES ACTING ON THE COMMANDS 52

3.8. Tolerance to Nuisances Acting on the Commands

The same reasoning can be followed for the commands. We close the agent-world loop

(Figure 3.1), and ask what would be the effect of a representation nuisance acting on the

commands.

There is a twist: instead of being invariant to a nuisance acting on the commands, the

agent must be able to precompensate it. The reason is that the representation nuisance acts

on the commands after the agents has chosen them. Therefore, to allow the original signal

to reach the world, the agent must transform the commands by the inverse transformation

applied. The agent must be invariant to the observations nuisances, but contravariant

to the commands nuisances. This does not necessarily imply that the agent is separately

estimating this transformation—all of these properties regard the input-output behavior,

and imply nothing about the design or the agent states.

Just like the observations, the representations nuisances on the commands that the

agent can compensate say something about the assumed semantic. For example, suppose

that the commands space U is the interval [0, 1]. During the interaction with the world,

the agent might try to learn about the effect of each command. Perhaps the interval [0, 1]

will be discretized to a set of 10 commands, with cells of width 0.1. Is this discretization

fine enough? That depends on the properties of the world as well as the task the agent is

supposed to do. However, we can already say something about the agent assumptions by

looking at the invariance of the internal representation. In this case, the agent would be

invariant to any transformation that maps cells to cells. The cells can be permuted, plus

each of the cells interval can be reparametrized, independently by the others. Assuming

that we limit ourselves to continuous transformations, this discretized representation is

contravariant function: f (g · x) = g−1 · f (x). See Definition C.42.

3.8. TOLERANCE TO NUISANCES ACTING ON THE COMMANDS 53

invariant to the action of the group which is isomorphic to Homeo([0, 0.1])10 × Perm(10).

The results on the invariance for the internal representation put an upper bound on the

agent’s input-output invariance.

“Wait a minute, I can see a problem.” It is not possible to impose that the agent is

invariant to the representation commands for all times. At time t = 1, when the agent

chooses the first command, it has only seen one observation, from which it cannot estimate

the commands transformation.

We decide that it is indeed too much to ask for the agent to be invariant at each time

step from the beginning. We decide on a two-stage protocol. In the first stage, the agent

is free to interact in closed-loop with the world. The output of this stage is some statistics

computed by the agent, which could be interpreted as a learned model. Given the model,

the agent instantiates some behavior to perform the task.

The formal definition of a “bootstrapping agent” is a tuple containing one dynamical

system for the exploration stage, whose output is the model, and then a function that maps

this model to another dynamical system (a “behavior”) used for interacting with the world

agent
y

GL(2)A ~

precompensate

u = A-1 u0

u0
world

Figure 3.1. We expect that the closed-loop agent-world system to be invariant with
respect to the representation nuisances. This implies that the agent’s commands must
be invariant with respect to the representation nuisances acting on the observations.
The situation is not symmetric. Because the representation nuisance acting on the
commands acts after the agent has chosen the commands, the agent must be able
to pre-compensate those nuisances. In this figure, the linear operator A changes a
differential-drive commanded in angular/linear velocity into one commanded with
left/right wheel velocity.

3.8. TOLERANCE TO NUISANCES ACTING ON THE COMMANDS 54

during the acting stage.

3.9. SYMMETRIES OF THE TASK 55

3.9. Symmetries of the task

Defining the task of a bootstrapping agent can be difficult, because the task should be

well defined for the agent before it even looks at the system. Moreover, just the act of

specifying the task might be equivalent to making some assumptions about the system.

Let us consider tasks specified by an error function which is known to the agent, in

the style of control theory. This is different than a reward, not only because the error func-

tion must be minimized,‡ but because the agent knows explicitly how the error function

depends on the observations.

In general, there is a certain freedom of the designer in choosing an error function for

a given physical task, with the choice depending on a trade-off between tractability and

the results in the particular testing condition. Once the designer has made their choice,

the error function is considered part of the mathematical formalization of the problem. In

bootstrapping, the choice of the error function can be criticized, just like an agent can be

criticized for its invariance properties.

Assume that the observations y are a real vector (Y = Rny). Consider the error function

∫ ‖y‖2 dt. (3.1)

This error function is invariant to the orthogonal group O(ny) acting on y. This means that

the choice of coordinates for y matters, because if y goes through a linear coordinated y 7→

Ay, the resulting error function is not preserved, but it has the form

∫ ‖Ay‖2 dt.

This new function is not invariant to O(ny) anymore, but it is invariant to the conjugated

‡Control theorists are pessimists (bordering on the paranoid), so they want to minimize
errors; computer scientists are optimists, so they maximize rewards.

3.9. SYMMETRIES OF THE TASK 56

group conjA(O(ny)), which is isomorphic to O(ny) (Lemma D.5).

The choice of norm is also very important. An important branch of control theory is

concerned with minimizing error functions containing the infinity norm

∫ ‖y‖∞ dt,

which is, roughly speaking, equivalent to a “worst-case” analysis. On the other end of the

spectrum, minimizing a function of the 1-norm, such as

∫ ‖y‖1 dt,

would correspond to being very tolerant to large deviations from the desired sate. It is

possible to show (Lemma D.16) that these two norms have the same symmetries, namely

they are invariant to permutations of the entries of y, and any change of sign of a single

entry. The invariance group is D±(ny) × Perm(ny), where D±(n) is the set of diagonal

matrices with entries in {+1,−1} (Definition D.1).

Note that this group is strictly contained in O(ny): these norms are less invariant than

the 2-norm. Visualizing the level sets gives a clear intuition of this fact (Figure 3.1).

It is also common to put some penalty on the commands used, representing the energy

spent. Assuming that also the commands are real numbers (U = Rnu), we could use α‖u‖2,

(a) ‖y‖2 (b) ‖Ay‖2 (c) ‖y‖1 (d) ‖y‖∞

Figure 3.1. The level sets of the norms considered give a geometric intuition of the
relative symmetry groups. Which one has more symmetries?

3.9. SYMMETRIES OF THE TASK 57

where α weights the trade-off between the two terms:

∫ ‖y‖2 + α‖u‖2 dt. (3.2)

In this case, there are several symmetries to consider. Clearly there is the invariance O(ny)

for y, and O(nu) for u. These group actions act independently on observations of com-

mands.

It is possible to find error functions which have other symmetries. For example, the

error function

∫ log(‖y‖2) + α log(‖u‖2)dt (3.3)

is invariant to the joint transformation

uy 7→ βy, u 7→ 1
β

u,

for any scalar β > 0. (This is different from changing α in (3.3), which is a fixed constant).

This transformation group is isomorphic to the multiplication group (R+
◦ ,×). The total

symmetry group for (3.3) is isomorphic to O(ny)×O(nu)× (R+
◦ ,×).

Consider another unusual error function

∫ ‖ẏ‖2 dt.

This might make sense in some situations; for example, if y was the output of a camera

mounted on a robot, requiring ẏ implies requiring that the robot has stopped. With respect

to (3.1), this error function is not only invariant to O(ny), but also to a translation of y:

y 7→ y + v,

3.9. SYMMETRIES OF THE TASK 58

Table 3.3. Symmetry groups of several error functions for a stabilization task.

symmetries

error function for Y for U joint´ ‖y‖2 dt O(ny) Aut(U) none´ ‖Ay‖2 dt conjA(O(ny)) Aut(U) none´ ‖y‖1 dt D±(ny)× Perm(ny) Aut(U) none´ ‖y‖∞ dt D±(ny)× Perm(ny) Aut(U) none´ ‖ẏ‖2 dt O(ny)× T(ny) Aut(U) none´ ‖y‖2 + α‖u‖2 dt O(ny) O(nu) none´
log(‖y‖2) + α log(‖u‖2)dt O(ny) O(nu) (R+

◦ ,×)
Each error function (first column) has associated its groups of symmetries (second
column), and consequently a set of semantic assumptions. For all of these it is as-
sumed that Y = Rny and U = Rnu . See Lemma D.5, Lemma D.16, Lemma D.17 for
some supporting results.

for a fixed vector v ∈ Rn. This is the action of the translation group T(ny) (Definition D.3).

These results are summarized in Table 3.3.

Like we did with the similarity measures, the partial order of the symmetry groups

(Figure 3.2a) induces a partial order on the error functions (Figure 3.2b).

Also we can backtrack the symmetries to some semantic assumption. The invariance

groups corresponding to the various norms of ‖y‖p, p ∈ {1, 2, ∞} are O(ny) or its sub-

group D±(ny)× Perm(ny). Their actions all leave the point y = 0 fixed. This means that,

when formulating these error functions, we have already chosen y = 0 as a “special” point.

The error function
´ ‖ẏ‖2 dt, instead, does not make this assumption. In fact, its symmetry

group is O(ny)× T(ny), where the action of T(ny) corresponds to shifting the origin.

The differences can be summarized as follows:

• Using
´ ‖ẏ‖2 dt assumes that we “know” the metric used in the vector space, and

that it is radially symmetric.

• Using
´ ‖y‖2 dt assumes that we “know” the metric, and also the origin of the

vector space.

3.9. SYMMETRIES OF THE TASK 59

• Using
´ ‖y‖∞ dt or

´ ‖y‖1 dt assumes that we “know” the metric, the origin, and

that a particular choice of orthogonal axes.

In summary, in a bootstrapping scenario we must be careful also about defining the task.

For example, if we choose an error function, and then we derive an agent optimal with re-

spect to that particular error function, the agent will be invariant only to the symmetries of

that particular error function. In particular, it will suffer from all the semantic assumptions

that the particular error function implies.

3.9. SYMMETRIES OF THE TASK 60

O(ny)× (Rn,+)× Aut(U)

O(ny)× O(nu)

conjA(O(ny))× Aut(U) O(ny)× O(nu)× (R+
◦ ,×)O(ny)× Aut(U)

D±(ny)× Perm(ny)× Aut(U)

∼=

≤

≤

≤ ≤

(a) Partial orders on groups given by the subgroup relation.

∫
‖ẏ‖2 d t

∫
‖y‖2 + α‖u‖2 d t

∫
‖y‖∞ d t

∫
‖Ay‖2 d t

∫
log(‖y‖2) + α log(‖u‖2) d t

∫
‖y‖2 d t

∫
‖y‖1 d t

≤≤

∼=

≤

≤

∼=

≤

(b) Induced partial order on the error functions.

Figure 3.2. A partial order on error functions can be defined by using the partial order
of their symmetry groups.

3.10. WHAT COMES NEXT 61

3.10. What Comes Next

We are tired. The stranger left a long time ago, probably looking for easier. What can

we conclude at the end of this night?

One firm conclusion that we have is that using groups makes many of the concepts

more precise, and so it is worth learning some basic notions about them, perhaps after a

good night’s sleep. Tomorrow, we should also describe better these black boxes (Chapter 4)

and give a formal definition of bootstrapping agents (Chapter 5). The last discussion about

tasks is troubling as well. What tasks can we think for bootstrapping agents (Chapter 8)?

As we make our way to our hotel rooms, we talk about things more on the horizon. For

example, we only really care about embodied agents which have a robotic body. Can we

design agents that work for all robots (Part 2)? And how can we design more complicated

agents from simpler ones (Part 3)?

As you close your eyes, after a very long day, you definitely think that one PhD would

not be enough to solve this bootstrapping problem, but it is worth starting anyway. . .

CHAPTER 4

Black Boxes and Representation Nuisances

This chapter gives a definition of “black box” system that makes minimal as-

sumptions on the internal representation, and just assumes a causal relation

between input and output. The definition of black box is quite abstract, but it al-

lows to treat different objects under the same interface. For example, in addition

to the “world” being a black box systems, also the agent’s “behavior” is a black

box, as well as what will be called “representation nuisances.”

62

4.1. PRELIMINARIES 63

Table 4.1. Symbols used in this chapter

Preliminaries
A,B,C, . . . Generic sets for input and output

signals.
Sequences(A) Sequences of all lengths on A.

ProbMeasures(A) All probability measures on the set A.
StocProcesses(A) All stochastic processes on the set A.

Black box systems
D(B;A) Systems with input in A and output in

B.
Loop(D) System obtained by closing the loop

around the system D.

Special systems (see also Figure E.4)
IdSysA ⊂ D(A;A) The identity system on A.

⊂ D(A;A) Accumulator system.
∆ ⊂ D(A;A) Unit delay system.

Dinst(B;A) ⊂ D(B;A) Instantaneous systems.
Dfm(B;A) ⊂ D(B;A) Systems with finite memory.
Ddet(B;A) ⊂ D(B;A) Deterministic systems.

Representation nuisances
DR Right-inverse of the system D.
DL Left-inverse of the system D.

D?(A) ⊂ Ddet(A;A) Systems that are left- and
right-invertible.

D?
inst(A) ≤ D?(A) Systems that are instantaneously

invertible.
D?

fm(A) ≤ D?(A) Systems that are invertible and with
finite memory.

D?(Y;U) = D?(Y)×D?(U) “Representation nuisances” of
observations and commands.

D◦(Y;U) = D(Y;U)/D?(Y;U) Systems up to representation.

4.1. Preliminaries

Curly symbols (A,B,C, . . .) are used for sets. Bold symbols (a, b, . . .) denote sequences,

and indexing start at 0:

a = 〈a0, a1, a2, . . . 〉 ∈ AN.

The notation “a:k” denotes subsequences of a up to and including the k-th term: a:k =

〈a0, . . . , ak〉. Sequences(A) is the set of all sequences of all lengths of elements in A, includ-

ing the empty sequence:

Sequences(A) = ∅ ∪A∪A2 ∪A3 ∪

4.2. DESCRIBING BLACK BOXES 64

ProbMeasures(A) is the set of probability measures on A (Definition B.1). “x ∼ µ”

means that x is a random variable and µ is its probability distribution. Conditional(B;A)

is the set of conditional distributions from A to B (Definition B.3) A stochastic process is a

particular type of probability distribution on infinite sequences (Definition B.7). StocProcesses(A)

is the set of all stochastic processes with values in A.

4.2. Describing Black Boxes

DEFINITION 4.1 (Black box system). Given an input space A and an output space B, a

black-box system D is a function that assigns a probability distribution for the next output

as a function of the previous history of input and output:

D : Sequences(B×A)→ ProbMeasures(B), (4.1)

such that the distribution of the output bk, after the input a:k = 〈a0, . . . , ak〉 has been given,

and the past output b:k−1 = 〈b0, . . . , bk−1〉 has been decided, is given by D(b:k−1, a:k):

bk ∼ D(b:k−1, a:k). (4.2)

(See Figure 4.1b.)

D(B;A) denotes the set of all black box systems with output in B and input in A.

4.2. DESCRIBING BLACK BOXES 65

(a) Graphical notation for a black box systems D ∈ D(B;A) between
two signals a ∈ Sequences(A) and b ∈ Sequences(B).

(b) Realization of a black-box as a map D : Sequences(B × A) →
ProbMeasures(B) that maps histories to the probability distribution
of the next output. The symbol refers to a buffer accumulating pre-
vious values (Definition 4.22) and ∆ is a unit delay (Definition 4.21).

Figure 4.1. The “black boxes” described in this chapter are possibly stateful systems,
but the internal state is not modeled explicitly. Rather, the system is defined only by
the recursive distribution of the observations given the history of observations and
commands.

REMARK 4.2. (Black box systems include instantaneous relations.) The output bk depends

on the input up to instant k included. While an alternative definition would have been bk+1 ∼

D(b:k, a:k), it is useful to include in this class of systems also instantaneous transformations

of the input, in which bk is a function of ak.

REMARK 4.3. (Conventions are compatible with left composition.) In the definition “D(B;A)”,

the set B is the output space, and A is the input space. This will prove to be the most co-

herent with the definition of series as left composition, where ED ∈ D(C;A) indicates the

series of E ∈ D(C;B) following D ∈ D(B;A).

REMARK 4.4. (Priors are explicit.) This formalization includes priors on the state as an

integral part of the system; that is, two systems D and D′ which have the same dynam-

ics but different priors are considered different points of the space D(B;A). To see this,

note that the domain of the maps D is Sequences(B×A), which includes sequences of all

lengths. The output of the systems b0 and b′0 for k = 0 is a function of only the input a0:

b0b′0 ∼ D(a0), ∼ D′(a0).

4.2. DESCRIBING BLACK BOXES 66

The formalization forces the output b0 to be well defined even if one just started interacting

with the system. In other words, it coincides with some idea of “prior” for the system.

REMARK 4.5. (States are implicit.) The formalization does not mention an internal state

space explicitly. The state is implicit in the fact that the map depends on the complete his-

tory of commands and observations. This is, of course, the traditional way to define a state

from an input-output relation, as a set of equivalence classes between sequences [24]. This

view is very close to the epistemological perspective of an agent that starts with zero infor-

mation about the world: the knowledge of the state space is inaccessible, and uncertainty

has a dominant role.

REMARK 4.6. (Continuous-time modeling) This formalization can be extended to continuous-

time. This allows extending most of the definitions in this chapter to be valid for the con-

tinuous time setting.

First, replace the discrete Sequences(B×A) with the set of continuous sequences ContSequences(B×

A) (Definition A.30). The dependence of (4.2) on a:k is replaced by the dependence on a[0,t]

(t included), and b:k is replaced by b[0,t) (t excluded).

DEFINITION 4.7 (Black box system, continuous time definition.). Given an input space A

and an output space B, a black-box system D is a function that assigns a probability distri-

bution for the next output as a function of the previous history of input and output:

D : ContSequences(B×A)→ ProbMeasures(B) (4.3)

such that the distribution of the output bt, after the inputs a[0,t] have been given, and the

past output b[0,t) have been observed, is given by D(b[0,t), a[0,t]):

bt ∼ D(b[0,t), a[0,t]).

4.2. DESCRIBING BLACK BOXES 67

EXAMPLE 4.8 (Instantaneous transformations). Any map d : A→ B induces an instan-

taneous, deterministic black box Dd ∈ D(B;A) defined by bk ∼ δd(ak), where δd(ak) is an

impulse centered at d(ak).

EXAMPLE 4.9 (Deterministic systems with hidden state space, and fixed initial state).

A discrete-time dynamical system is usually defined as a tuple 〈A,B,X, f , h, 〉 with f :

X×A→ X and h : X×A→ B, such that

xk = f (xk−1, ak),

bk = h(xk, ak).

To be converted to the representation we use, it is necessary to specify also the initial state

(see Remark 4.4). Let x∗ ∈ X be the initial state. The complete dynamics is

x0 = x∗,

xk = f (xk−1, ak), for k ≥ 1,

bk = h(xk, ak),

which can be put in the form (4.1) with the following technical construction.

This kind of deterministic system induces a deterministic map F : Sequences(A) → B,

constructed as follows. First define the evolution of the state as a map G : Sequences(A)→

X as

G f ,x∗(a0) = x∗,

G f ,x∗(a:k) = f (G f ,x∗(a:k−1), ak)).

4.3. SERIES 68

Then the map F : Sequences(A)→ B is defined recursively as follows:

F〈A,B,X, f ,h,x∗〉(a:k) = h(G(a:k), ak).

The induced black box is given by an impulse distribution centered at F〈A,B,X, f ,h,x∗〉(a:k):

D〈A,B,X, f ,h,x∗〉(b:k−1, a:k) = δF〈A,B,X, f ,h,x∗〉(a:k).

EXAMPLE 4.10 (Stochastic systems with state space). In the case of a discrete-time sto-

chastic system with observations history y:k−1 and command history u:k, the measure D(〈y:k−1, u:k〉)

is simply the posterior distribution p(yt|y0:t−1, u0:t), which can be written as a function of

the observation model p(y|x), the transition model p(xt|xt−1, ut), and the prior p(x0).

4.3. Series

If two systems D and E have compatible input and output spaces, then they can be

composed in a series ED, If E follows D. If D ∈ D(B;A) and E ∈ D(C;B), then ED ∈

D(C;A). The notation “output; input” is that it is compatible with the definition of series:

E︸︷︷︸
D(C;B)

D︸︷︷︸
D(B;A)

∈ D(C;A).

The only problem with this choice is that usually diagrams are drawn with signals going

left to right (Figure 4.1).

REMARK 4.11. (D(A;A) is a monoid.) In the set D(A;A) of systems with same input

Figure 4.1. The series of two systems D and E, if E follows D, is written as ED. This
clashes with the convention of drawing diagrams with signals flowing left to right.

4.4. LOOPS 69

and output space A, the series is well defined on all elements of the set. Moreover, there is

a an identity IdSysA, corresponding to the identity system for which the output is equal to

the input. The identity satisfies D IdSysA = D IdSysA = D. These properties make D(A;A)

a monoid.

4.4. Loops

An important operation is closing the loop around systems. In discrete time, the defi-

nition is easy.*

DEFINITION 4.12 (Closing the loop). Consider a system D ∈ D(A;A). The closed-loop

system Loop(D) is obtained by adding a unit delay to the output and connect it to its own

input (Figure 4.1a). This definition is well posed because all signals are well defined at all

times.

There might be situations where the loop needs to be closed only around some of the

ports. To be rigorous, the Loop function should be parametrized by a list of which output

signals map to which input signals, but this is not done explicitly.

The type of Loop(D) depends on the type of D. There are three interesting cases:

(1) If the system D ∈ D(A;A) has input and output in the same space A, then the

result belongs to D(A; ∅), which means it is an autonomous system. One con-

sequence of Definition 4.1 is that an autonomous system is the same thing as a

monoid: A semigroup with an identity element. See Definition C.2.
*In continuous time, no delay is added, which might result in algebraic constraints.

unit delay: A dynamical system whose output is the same as the input, delayed by one

time step. See Definition 4.21.

autonomous dynamical system: A system with no input.

4.4. LOOPS 70

stochastic process:

D(A; ∅) ∼= StocProcesses(A).

Therefore, in this case the Loop function maps a black box system to a stochastic

process:

Loop : D(A;A)→ StocProcesses(A).

(2) If the system D ∈ D(A×B;A) has more output signals than input signals, then

the result is a stochastic process on the output signals (Figure 4.1b):

Loop : D(A×B;A)→ StocProcesses(A×B).

(3) If there is an additional input, the result of Loop is again a black box system, be-

cause its output still depends on the input (Figure 4.1c):

Loop : D(A;A× C)→ D(A;C).

4.4. LOOPS 71

Loop : D(A;A)→ StocProcesses(A)

(a) Closing the loop around a system in D(A;A) gives a stochastic
process on A.

Loop : D(A×B;A)→ StocProcesses(A×B)

(b) Closing the loop around a system in D(A × B;A) gives a sto-
chastic process on A×B.

Loop : D(A;A× C)→ D(A;C)
(c) Closing the loop around a system in D(A;A× C) gives a system
in D(A;C).

Figure 4.1. The Loop operation (Definition 4.12) closes the loop around a system. The
result is either another system or just a stochastic process, depending on the type of
input and output of the original system.

4.5. STATISTICS OF A BLACK BOX 72

4.5. Statistics of a Black Box

The following are some technical constructions needed later.

The AllOutputs function gives all possible output sequences of a system.

DEFINITION 4.13 (AllOutputs). Define the map

AllOutputs : D(B;A)→ powerset(Sequences(B)), (4.1)

such that AllOutputs(D) is the set of all possible output sequences generated by the sys-

tem D:

AllOutputs(D) = {b ∈ Sequences(B) | ∃a ∈ Sequences(A) : (Da)(b) 6= 0}.

REMARK 4.14. The shortcut notation “⇒ X” is used to denote a function whose codomain

is the powerset of X. Using this notation, the definition 4.1 is rewritten as

AllOutputs : D(B;A)⇒ Sequences(B).

To interpret the condition, note that Da ∈ StocProcesses(B), and that a stochastic pro-

cess is a probability measure on sequences (Definition B.7). Hence the condition (Da)(b) 6=

0 means that the probability of observing the sequence b is nonzero.

LEMMA 4.15 (Properties of AllOutputs).

(1) The identity system produces all sequences:

AllOutputs(IdSysA) = Sequences(A).

4.6. SPECIAL CLASSES OF SYSTEMS 73

(2) Prefiltering a system F with another system E does not enlarge the set of sequences that

can be produced:

AllOutputs(F E) ⊆ AllOutputs(F).

The AllOutcomes function gives all possible results, when the system is in closed loop

with another system.

DEFINITION 4.16 (AllOutcomes). For a system D ∈ D(B;A), define the set AllOutcomes(D) ⊂

StocProcesses(B×A) as the set of all possible observed statistics of the closed loop system,

as one tries pairing D with all possible systems F ∈ D(A;B):

AllOutcomes(D) =
⋃

F∈D(A;B)

Loop(F D).

4.6. Special Classes of Systems

DEFINITION 4.17 (Deterministic system). A system D is deterministic if, for every length k,

b = Da implies that b:k is a deterministic function of a:k.

Ddet(B;A) is the set of all deterministic systems.

A memoryless system has the same representation power as a conditional distribution

(Definition B.3).

DEFINITION 4.18 (Memoryless (or instantaneous) system). In a memoryless system the

probability distribution of the output bk depends only on ak.

Dinst(B;A) is the set of all memoryless systems.

DEFINITION 4.19 (Finite-memory system). In a system with finite memory ∆, the out-

put bk depends only on ak−∆:k and bk−∆:k−1.

Dfm(B;A) is the set of all finite-memory systems.

4.7. COMPOSITION RULES 74

4.6.1. Special systems

Finally, for future reference, these are some special systems that have already been used

in the definition.

DEFINITION 4.20 (Identity system IdSysA). The identity on the monoid D(A;A) is called IdSysA.

DEFINITION 4.21 (Delay system ∆). For any space A, the delay system ∆ ∈ D(A;A)

implements the relation bk = ak−1.

DEFINITION 4.22 (Accumulator system). For any space A, the accumulator system ∈

D(Sequences(A);A) implements the relation bk = 〈a0, . . . , ak〉.

4.7. Composition Rules

The series of two systems is another system: if D ∈ D(B;A) and E ∈ D(C;B), then

E D ∈ D(C;A). But we will be quite liberal in applying systems to other objects, such as

sequences and stochastic processes. Table 4.2 gives the type of the expression y x, as a

function of the type of x and y.

4.8. INVERTING SYSTEMS 75

Table 4.2. Composition rules for different kinds of objects

type of y x type of y type of x
B Functions(B;A)

A
ProbMeasures(B) Conditional(B;A)
ProbMeasures(B) Functions(B;A)

ProbMeasures(A)
ProbMeasures(B) Conditional(B;A)

Sequences(B) Functions(B;A)

Sequences(A)
StocProcesses(B) Conditional(B;A)

Sequences(B) Ddet(B;A)
StocProcesses(B) D(B;A)
StocProcesses(B) Functions(B;A)

StocProcesses(A)
StocProcesses(B) Conditional(B;A)
StocProcesses(B) Ddet(B;A)
StocProcesses(B) D(B;A)

Ddet(B;A) Functions(C;B)

Ddet(B;A)
D(C;A) Conditional(C;B)

Ddet(B;A) Ddet(C;B)
D(C;A) D(C;B)
D(C;A) Functions(C;B)

D(B;A)
D(C;A) Conditional(C;B)
D(C;A) Ddet(C;B)
D(C;A) D(C;B)

4.8. Inverting Systems

Systems that are “invertible” are of particular interest for our goals.

DEFINITION 4.23 (Right- and left-invertible systems). A system D ∈ D(B;A) is right-

invertible if there exists a system DR ∈ D(A;B) such that the series of the two systems is

equivalent to the identity system: DDR = IdSysA.

Equivalently, D ∈ D(B;A) is left-invertible if there exists a system DL ∈ D(A;B) such

that DLD = IdSysB.

Right-invertible does not imply left-invertible and vice versa.

The left and right inverses are constrained to be causal because all elements of D(B;A)

are causal systems. For example, the delay ∆ is not causally invertible.

Left-invertible implies deterministic only on finite-dimensional spaces.

4.8. INVERTING SYSTEMS 76

EXAMPLE 4.24 (Left-invertible does not imply deterministic for infinite-dimensional

spaces). Here is a construction of a left-invertible system D ∈ D(A;A) which is not de-

terministic. Let the set A be {�,�}N, which represents the set of infinite binary strings

(Definition A.1). The system D is instantaneous, and thus is a map from strings to proba-

bilities over strings:

D : {�,�}N → ProbMeasures({�,�}N).

This map shifts each bit of the infinite sequence one step to the right , and adds to the first

place one bit z, which is either � or �with uniform probability:

D(〈x1, x2, x3, . . . 〉) = 〈z, x1, x2, x3, . . . 〉 , z ∼ Uniform({�,�}).

This system is left-invertible, having the left inverse DL, which shifts the infinite sequence

one step to the left (thus dropping the first bit):

DL : {�,�}N → {�,�}N,

〈x1, x2, x3, . . . 〉 7→ 〈x2, x3, . . . 〉 .

The “trick” that makes this example possible is that in an infinite-dimensional space there

is an infinite amount of space to fit an infinite amount of extra payload. This example

corresponds exactly to Hilbert’s infinite hotel [54]: there is always space for an extra guest

(in this case, the guest is random bit z). See Example A.22 for the same principle written in

terms of injective/surjective maps.

Also right-invertible systems might be non deterministic on infinite-dimensional spaces.

EXAMPLE 4.25 (Right-invertible does not imply deterministic for infinite-dimensional

spaces). Here is a construction of a right-invertible system D ∈ D(A;A) which is not

4.8. INVERTING SYSTEMS 77

deterministic. The setup is the same as Example 4.24, using the space of infinite strings A =

{�,�}N.

The instantaneous system D operates conditionally on the value of the first bit read.

If the bit is �, then the output is the sequence shifted to the left. Otherwise, the output is

completely random.

D : {�,�}N → ProbMeasures({�,�}N),

D(〈x1, x2, x3, . . . 〉) =





〈x2, x3, . . . 〉 if x1 = �,

〈z1, z2, z3, . . . 〉 if x1 = �,

(4.1)

zi ∼ Uniform({�,�}). (4.2)

The right inverse DR is

DR : {�,�}N → {�,�}N,

〈x1, x2, x3, . . . 〉 7→ 〈�, x1, x2, x3, . . . 〉 .

The “trick” is that with infinite payload to exploit, it is possible to encode in the signal a

bit that switches the randomness on and off.

Having established that left-invertible and right-invertible alone do not imply deter-

ministic, the next natural question is whether a system which is being left- and right-

invertible is necessarily deterministic. The answer is yes (Lemma 4.28), but to arrive at

such result a number of intermediate results are needed.

In general, the series FE being deterministic does not imply that F is deterministic, as

shown in Example 4.25. However, F must be deterministic on at least part of the input

4.8. INVERTING SYSTEMS 78

sequences, namely those produced by E.

LEMMA 4.26. Let E ∈ D(B;A) and F ∈ D(C;B). If FE is deterministic, then F is determin-

istic on the sequences contained in AllOutputs(E).

PROOF. Choose any sequence a ∈ Sequences(A). Let c be the result of applying FE

to a. Because FE is deterministic, we know that c is a fixed sequence, and not a stochastic

process:

c = FEa ∈ Sequences(C).

On the other hand, in general, Ea ∈ StocProcesses(B). Let Support(Ea) ⊂ Sequences(B)

be the set of all sequences that can be produced by the stochastic process Ea. For each b ∈

Support(Ea), c = Fb is a sequence, and hence F is deterministic on b. This holds for

every a ∈ Sequences(A), therefore F is deterministic on the set

⋃

a∈Sequences(A)

Support(Ea),

which is another way to write AllOutputs(E). �

EXAMPLE 4.27. Notice how this condition is verified in (4.1). The series DDR is deter-

ministic, hence D is deterministic on the sequences produced by DR.

LEMMA 4.28. If D ∈ D(A;A) is left- and right-invertible, then it is deterministic.

PROOF. If DL is the left inverse of D, then DLD = IdSysA. From the second point

of Lemma 4.15 it follows that

AllOutputs(IdSysA) ⊆ AllOutputs(DL),

and that AllOutputs(IdSysA) = Sequences(A). Hence AllOutputs(DL) = Sequences(A). If

4.9. GROUP STRUCTURE ON INVERTIBLE SYSTEMS 79

a system has both a left and right inverse, then the two coincide, because D(A;A) is a

monoid (Lemma C.3). Hence DR = DL, and

AllOutputs(DL) = AllOutputs(DR) = Sequences(A). (4.3)

If DR is the right-inverse of D, then DDR = IdSysA. From Lemma 4.26, this implies that D

is deterministic on AllOutputs(DR), which is equal to Sequences(A) by (4.3). �

4.9. Group Structure on Invertible Systems

We have established that left- and right-invertible systems are deterministic. It is easy

to see that there is a group structure on this set.

DEFINITION 4.29 (Group of invertible systems). Systems in D(A;A) that are left- and

right-invertible are deterministic and form a group, denoted D?(A).

PROOF. It was already noted that D(A;A) is a monoid. Each element in D?(A) has

an inverse; because the left-inverse is right-invertible (and vice versa), the inverse belongs

in D?(A) as well. Therefore, D?(A) is a group. �

This group will be very useful in the rest of this dissertation. The following are special-

ized subsets of D?(A).

DEFINITION 4.30 (Instantaneous invertible systems). D?
inst(A) is the subset of D?(A) of

systems which are also instantaneous (Definition 4.18).

DEFINITION 4.31 (Finite-memory invertible systems). D?
fm(A) is the subset of D?(A)

which also have finite memory (Definition 4.19).

4.9. GROUP STRUCTURE ON INVERTIBLE SYSTEMS 80

These are both subgroups of D?(A), because the properties of being instantaneous or

with finite memory are preserved by composition and inversion.

The class D?(A) includes also causally invertible systems that are not instantaneous.

EXAMPLE 4.32 (Difference encoder/decoder pair). As a simple example, consider a

pair of linear systems E/D that work as an encoder/decoder pair.

The encoder E ∈ D?(R; R) has input a, output b, and hidden state r:

b = E(a),





r0 = 0,

rk+1 = ak,

bk = ak − rk

The decoder D ∈ D?(R; R) has input c, output d, and hidden state q:

d = D(c),





q0 = 0,

qk+1 = dk,

dk = qk + ck.

One way to prove that these are inverse of each other is to write the dynamics in the

canonical form for discrete-time systems:

xk+1 = Axk + Buk,

yk = Cxk + Duk.

4.9. GROUP STRUCTURE ON INVERTIBLE SYSTEMS 81

For the decoder, we obtain the matrices

D : A = 1 B = 1 C = 1 D = 1,

and for the decoder, we obtain

E : A = 0 B = 1 C = −1 D = 1.

Using the Matlab commands

1 E = ss(1,1,1,1,[]); zpk(E)

2 D = ss(0,1,−1,1,[]) zpk(D)

we can find the transfer functions are

D(z) =
z

z− 1
, E(z) =

z− 1
z

,

from which we can see that the two systems are inverse of each other.

EXAMPLE 4.33 (Lossless video encoding). Let A be the set of bit strings of arbitrary

length. We consider two systems on D(A;A) that perform compression/decompression

of a video sequence.

The first system, called encoder, takes as input an image stream imagek, at each time

computing packetk, which contains the incremental information:

packetk = encoder(packet:k−1, imagek).

The packet at time k depends on the previous frames previously transmitted and instanta-

neously on the image at time k. In video codecs such as MPEG, the incremental information

4.10. REPRESENTATION NUISANCES 82

encodes the deviation of the data imagek from a prior constructed from the previous im-

ages, taking into account some model of the video stream (e.g., motion is mostly coherent

across large parts of the scene).

The second system, called decoder, does the opposite operation. Given the sequence

of encoded packets, it recreates the image sequence. The image at time k depends on the

previous images decoded and the incremental information contained in the current packet:

imagek = decoder(image:k−1, packetk).

Note that these two systems are inverses of each other.

4.10. Representation Nuisances

The group of invertible systems has a natural group action (Definition C.35) over the

set of all systems. Let D(Y;U) be the set of all systems with observations in Y and com-

mands in U. The group of invertible systems D?(Y) acts on D(Y;U) via series composition.

According to the order of the series, this is can be either a left or right group action.

DEFINITION 4.34 (Left group action). For g ∈ D?(Y) and D ∈ D(Y;U), the left group

action “·” is

g · D = gD. (4.1)

The group action is the just the series composition of the two systems g and D (Figure 4.1a).

The interpretation is that the observations are transformed in an invertible way. Be-

cause D?(Y) is a group, one can find a system g−1 ∈ D?(Y) such that g−1 · (g · D) = D.

Recall that all of these systems are causal. Therefore, one can reconstruct any statistics that

could be computed from the observations of the system D from the system g ·D, provided

that we can estimate the element g that acted on the data. For this reason, we call D?(Y)

4.10. REPRESENTATION NUISANCES 83

“representation nuisances”, in the sense that they change the representation of the observa-

tions, but not the available information (Figure 4.1b).

Likewise, we can define representation nuisances for the commands as a right action.

Take the group D?(U) of invertible systems over the command space U.

DEFINITION 4.35 (Right group action). For h ∈ D?(U) and D ∈ D(Y;U), the left group

action “·” is

D · h = Dh. (4.2)

Note that there is a difference with respect to (4.1), as it is a composition in the opposite

order: first h, then D (Figure 4.1c).

Also in this case the interpretation is that the group action changes only the represen-

tation of the commands, because it is always possible to find another system h−1 ∈ D?(U)

such that (D · h) · h−1 = D (Figure 4.1d). This implies that any level of control we had for

the original system is still preserved for the perturbed system.

As a further step, we consider the direct product of D?(U) and D?(Y), which is a group

that comprises nuisances both on the observations and the commands.

DEFINITION 4.36 (Representation nuisances). The set D?(Y;U) = D?(Y) × D?(U) is a

group with the operation

〈g2, h2〉 〈g1, h1〉 = 〈g2g1, h1h2〉 (4.3)

and it is called the group of representation nuisances.

There are a couple of subtle points on how we have defined this group, due to the

fact that the order of the operations for elements acting on commands and observations

are exchanged. To show that the operation (4.3) makes a respectable group operation, one

4.10. REPRESENTATION NUISANCES 84

(a) A nuisance acting on the observations. . .

(b) . . . can be, in theory, compensated.

(c) A nuisance acting on the commands. . .

(d) . . . can be, in theory, pre-compensated.

Figure 4.1. The groups D?(U) and D?(Y) are called “representation nuisances” be-
cause they can be causally inverted. Therefore, they do not change the intrinsic prop-
erties of the system (such as observability and controllability), but just its representa-
tion.

needs to check that that it is associative:

〈g3, h3〉 (〈g2, h2〉 〈g1, h1〉) = 〈g3, h3〉 〈g2g1, h1h2〉

= 〈g3g2g1, h1h2h3〉

= 〈(g3g2)g1, h1(h2h3)〉

= 〈g3g2, h2h3〉 〈g1, h1〉

= (〈g3, h3〉 〈g2, h2〉) 〈g1, h1〉 .

4.11. THE GEOMETRY OF BOOTSTRAPPING 85

Next, we define the action of the group on D(Y;U); this is just the combination of the two

actions previously described separately for D?(Y) and D?(U).

DEFINITION 4.37 (Action of representation nuisances). The group of representation nui-

sances D?(Y;U) acts on D(Y;U) as follows: if x = 〈g, h〉 ∈ D?(Y;U) and D ∈ D(Y;U)

then x · D = gDh.

To show that this is a proper group action, one need to show that, for any two repre-

sentation nuisances x1, x2 ∈ D?(Y;U), the action of one followed by the other is equivalent

to the action of the product:

x2 · (x1 · D) = x2 · (g1Dh1)

= g2g1Dh1h2

= (g2g1)D(h1h2)

= (x2x1) · D.

4.11. The Geometry of Bootstrapping

A group action defines an equivalence relation on the set on which it acts: two elements

of the set are in the same equivalence class if there is a group element that transforms one

into the other.

In this case, two systems D, E in D(Y;U) are considered equivalent if there is a repre-

sentation nuisance g ∈ D?(Y;U) such that g · D = E. If this is the case, we can transform

one into the other just by changing their representation. This set of equivalence classes is

named D◦(Y;U).

4.11. THE GEOMETRY OF BOOTSTRAPPING 86

action of
representation

nuisances

my robot

an equivalent
representation

of my robot

systems up to representation

Figure 4.1. The geometry of bootstrapping: the set of all dynamical systems D(Y;U)
can be factorized as D◦(Y;U)×D?(Y;U), where the set of equivalence classes D◦(Y;U)
represents the physical properties of the system that are invariant to the representa-
tion.

DEFINITION 4.38 (Physical systems). We denote by D◦(Y;U) the equivalence classes:

D◦(Y;U) = D(Y;U) / D?(Y;U) .

The interpretation is that the elements of D◦(Y;U) (which are sets of systems, equiv-

alent up to representations) represent “physical” systems, as opposed to the elements

of D?(Y;U) which represent a particular choice of representation (Figure 4.1).

The next chapter formalizes the problem of bootstrapping, and argues that an ideal

bootstrapping agent should be agnostic to the choice of representation, and that the degree

of failure encodes the semantic assumptions about the data.

REMARK 4.39 (Other equivalence relations for dynamical systems). The “up to repre-

sentation” equivalence relation is different from the many equivalence relations found in

control theory. It subsumes bisimulation [55] equivalence.

The equivalence relation in the theory of realization (e.g., [56, 57]) is different as it con-

siders systems having the same input-output behavior. The equivalence relation studied

in the context of differential flatness [58–60] is different as well.

CHAPTER 5

Bootstrapping Agents

This chapter describes the scenario in which to place bootstrapping agents. It

defines the two-stage protocol in which the agent interacts with the world: first

an exploration/learning phase, then an acting/exploitation phase. The meaning

of what is a goal for a bootstrapping agent is also clarified. Once the structure is

in place, it is possible to derive necessary invariant properties for a bootstrapping

agent to be optimal.

Table 5.1. Symbols used in this chapter
Definition of the problem

w ∈ D(Y;U) The world with which the agent
interacts.

G ⊂ StocProcesses(Y×U) Bootstrapping “goal” (desirable
outcomes).

Definition of bootstrapping agent
A = 〈M, explA, actA〉 A tuple defining a bootstrapping

agent.
M (any set) The agent’s model space.
m ∈M Learned model.

expl ∈ D(U×M;Y) Exploration/learning strategy.
act : M→ D(U;Y) Agent’s action/behaviors.

Agents(Y;U) The sets of all agents with formats
Y/U.

Derived quantities
WtoBA(w) ∈ ProbMeasures(D(U;Y)) Behavior instantiated in the learning

phase.
WtoRA(w) ∈ StocProcesses(Y×U) Final statistics of the agent’s

interaction with the world.
successGA ⊂ D(Y;U) Worlds for which the agent is

successful.

Invariance analysis
GA ≤ D?(Y;U) Representations nuisances to which

the agent is invariant.
CA ⊂ D(Y;U) . . . on this particular set.

stab(G) Symmetries of the goal set G.

87

5.1. OBSERVATIONS AND COMMANDS 88

5.1. Observations and Commands

A bootstrapping agent interacts with the “world”. The world is everything that is un-

known to the agent. For an agent embodied in a robotic body, the world is the series of

the unknown sensors, the external environment, and the unknown actuators. The world

is called “sensorimotor cascade”, when the discussion is specific to the robotic setting.

The world and the agent communicate through the streams of observations and com-

mands. The observations are what flows from the sensors to the agent; the commands are

what flows from the agent to the actuators, and that the agent can choose freely.

At each time t, the observations yt take values in a set Y called observations space. The

commands ut belong to the command space U. The sets Y and U are the interface between the

agent and the world, and they specify the format of the data which the agent can handle.

Another signal that might come from the world to the agent is a reward signal. This can

be included as part of the observations yt.

These are a few examples of observations spaces:

Y = {�,�} The observations are an uninterpreted bit.

Y = R The observations are a real number.

Y = Rny The observations are a vector of ny real numbers.

Y = Y
ny The observations are a vector of ny sensels, each taking values in the same set Y,

uninterpreted
observations

uninterpreted
commands

agent

unknown
sensor(s)

external
world

unknown
actuator(s)

X

group nuisance
on observations

group nuisance
on commands

X

Figure 5.1. In the bootstrapping scenario, the embodied agent interacts with the
“world”, which is the series of the unknown actuators, the external environment, and
the unknown sensors. The figure also shows the representation nuisances, which act
as disturbances between the agent and the world.

5.1. OBSERVATIONS AND COMMANDS 89

not otherwise described.

Y = Continuous(R; [0, 1]2) The observations are a continuous real function on the square [0, 1]2.

Y = Continuous(R;S) The observations are a continuous field on some space S .

Y = Functions({0, . . . , 254}; {1, . . . , 640} × {1, . . . , 480}) The observations are a function de-

fined on a 640× 480 grid which takes one of 255 possible values.

REMARK 5.1. (Formats vs semantic assumptions) The last three examples show the dis-

tinction between the two concepts that were called “format” of the data, and the “semantic

assumptions” about that data. The format of the data is just the choice of the sets Y and U,

which are the interface between the agent and the world. The semantic assumptions are

what is implicitly implied about the data beyond the format. In the following, there are

never comparisons between different formats, such as comparing an agent that uses real-

valued observations (Y = R) and one that sees a discretized version of the same process

(e.g., Y = N). The discussion is centered on comparing the semantic assumptions about

the data: for example, there can be two agents which both see real-valued observations,

but one is “more powerful” (in a sense which will be made precise) because it makes “less

assumptions” about the meaning of those real values.

REMARK 5.2. (Common abstractions) While we do want to study the “radical” problem

of bootstrapping from uninterpreted bits, often the discussion is at a higher level, con-

sidering more structured spaces, like many of the examples above. From an engineering

perspective, it is clear that there is always a tradeoff between the efficiency/practicality

of an agent, and the assumptions that must be made about the world. From this perspec-

tive, the goal is not necessarily to create the most generic agent, but rather to understand

sensels: The discrete elements of the agent’s observations vector; from sensor elelemnts,

in analogy to pixels (picture elements).

5.2. TWO-STAGE INTERACTION WITH THE WORLD 90

what is this tradeoff, and more specifically, to understand how to formally characterize the

“assumptions” of a given agent.

REMARK 5.3. (Mathematical abstraction will be allowed) Like all theories, at different

points we will oscillated between realism and some level of mathematical abstraction,

which is necessary to obtain any result. Consider the second assumption above. It might

seem relatively innocuous to assume that the observations space Y corresponds to the real

numbers R. However, this sole assumption makes the model incompatible with physical

reality: a real number corresponds to an infinite string, and it is not physically possible for

an infinite amount of information to flow from the world to the agent in one instant.

5.2. Two-stage Interaction with the World

The interaction between agent and the world happens in two phases. During the learn-

ing/exploration phase, the agent is allowed to interact freely with the world. The result of

the learning phase is a model learned by the agent. From this model, the agent instantiate

some behavior that is performed during the action phase.

This formalization does not allow to investigate the tradeoff between exploration (using

time/resources to estimate a model of the environment) and exploitation (using the col-

lected information to perform the given task), which is an important issue in the study of

intelligent agents. However, a proper formalization of this concept would imply commit-

ting to a specific way to quantify this tradeoff. Sooner than later, one is trapped in dealing

with the consequences of one arbitrary formalization (e.g., hypothesizing some kind of

reward scheme, and assuming exponential discounting of future rewards).

5.3. DEFINING BOOTSTRAPPING AGENTS 91

How much time or data does the agent need to learn? This is perhaps the central ques-

tion of the more mathematical part of machine learning (à la Vapnik). From that perspec-

tive, if an agent has an infinite amount of data, then it can learn perfectly any distribution;

rather, the interesting question is understanding what are the bounds/guarantees that can

be derived on the learning result.

This effort goes in an orthogonal direction. Even if an agent is allowed to observe an

infinite amount of sensorimotor data, the fidelity of the model learned, and consequently

its performance on a task, is bounded by the complexity, flexibility, and the intrinsic bias

of the parametric structure used by the agent. This analysis quantifies exactly these char-

acteristics, and gives an interpretation in terms of semantic assumptions.

Nevertheless, while the considerations about the data needed are not the focus of the

theoretical contribution delineated in this part, selecting a model that requires relatively

few data is an important concern in the next part (Part 2).

5.3. Defining Bootstrapping Agents

All ingredients are ready to formalize exactly what is a bootstrapping agent. If U is the

command space, Y is the observations space, then the “world” w is an element of the set

of “black boxes” D(Y;U) (Definition 4.1).

A bootstrapping agent is defined as a tuple whose elements define the separate learning

and acting phase.

DEFINITION 5.4 (Bootstrapping agent). A bootstrapping agent for a world belonging to D(Y;U)

is a tuple A = 〈M, expl, act〉 such that:

M is a set (called model space);

expl ∈ D(U×M;Y) is the exploration strategy;

Vladimir N. Vapnik: Russian mathematician who formalized statistical learning theory.

5.3. DEFINING BOOTSTRAPPING AGENTS 92

act : M→ D(U;Y) is the action strategy.

Agents(Y;U) is the set of agents using the formats Y/U.

The exploration strategy actA, defined as an element of D(U ×M;Y), is a dynamical

system whose input are the observations (in Y), and that has two output signals: the com-

mands (in U) that drive the exploration, and the model (in M) which is being estimated. The

world “model” is used mostly as a mnemonics because this quantity is an opaque value

that ought to make sense only to the agent. Even though it is called here “model space”,

there are no constraints on the set M. The names “model”, like “learn” and “act”, serve

mostly as mnemonics.

During the exploration phase, the exploration strategy actA interacts in closed loop

with the world w. Using the Loop operator (Definition 4.12), the result is Loop(explAw),

and it is a stochastic process on M × Y × U. Ignoring the commands and observations,

consider it a stochastic process on the set M only:

Loop(explAw) ∈ StocProcesses(M).

It is assumed that, after a long enough interaction, the system has converged to the sta-

tionary distribution, which can be extracted using Final operator (Definition B.8):

Final(Loop(explAw)) ∈ ProbMeasures(M). (5.1)

As a particular case, the model will have converged to one particular value in M.

The action strategy actA is a map from M to D(Y;U); this means that the learned model m ∈

M is converted to a system actA(m) ∈ D(U;Y) which does the actual interaction with the

world. This system is called sometimes a “behavior” “instantiated” by the agent, to dis-

tinguish it from the whole agent.

5.3. DEFINING BOOTSTRAPPING AGENTS 93

All the systems mentioned can possibly have an internal state and randomized behav-

ior (we now reap the fruits of the rather abstract definition of D(Y;U)).

EXAMPLE 5.5. An agent embodied in a robot might include in m a description of the

sensor geometry and the statistics of the environment; from that description m, the agent

then instantiates the behavior actA(m) ∈ D(Y;U), which might include the logic for esti-

mation of an internal state.

In general, the model m is distributed according to the distribution (5.1), therefore, for

a fixed world w, one observes a distribution over possible behaviors. This function is given

the name “world-to-behavior”.

DEFINITION 5.6 (World-to-behavior WtoBA). Define the “world-to-behavior” function as

WtoBA : D(Y;U) → ProbMeasures(D(U;Y))

w 7→ actA(Final(Loop(explAw))).

Note that explAw is the series of the exploration strategy and the world, Loop(explAw) are

their closed loop statistics, Final(Loop(explAw)) ∈ ProbMeasures(M) is the distribution of

the model learned, and the whole result is the distribution of the agent behavior.

When the agent instantiates the behavior actA(m), the loop is closed again with the

world, and the result Loop(actA(m)w) is a stochastic process on Y×U:

Loop(actA(m)w) ∈ StocProcesses(Y×U).

The “final result” of the interaction is then the average of this function by the distribution

of m. This function is given the name “world-to-result” WtoRA.

5.4. DEFINING THE AGENT’S GOALS 94

DEFINITION 5.7 (World-to-result WtoRA). For an agent A, the “world-to-result” func-

tion WtoRA is defined as

WtoRA : D(Y;U) → StocProcesses(Y×U)

w 7→ Loop(actA(WtoBA(w))w).

Now that the interaction between world and agent is clearly defined, it is possible to

reason about the agent’s goals.

5.4. Defining the Agent’s Goals

There are at least three qualitatively different ways to give a goal to the agent: external

rewards, intrinsic motivation, and explicit tasks. They are not mutually exclusive. As dis-

cussed in the introduction , in an ideal agent, intrinsic motivation (e.g., “curiosity”) guides

the exploration, explicit tasks represent primitive skills, and pursuing an external reward

might eventually guide the behavior. Their differences are briefly summarized here, espe-

cially for what regards their implications on the formalization of the problem. Considering

all three approaches in the same framework leads to a rather abstract definition of goal.

5.4.1. External rewards

In reinforcement learning, one assumes that there is a reward signal from the world

to the agent. In this construction, it can be added either as a separate signal from the

observations y or simply assuming that it is part of the observations. The goal of the agent

is to “maximize” this reward. It is necessary to be more precise and choose how the agent

should feel like about 1) uncertainty; and 2) time. As for uncertainty, there is a large body of

work (from Pascal on) that indicates that a rational agent should maximize the expectation

of its rewards. As for time, one must decide how to discount future rewards with respect

5.4. DEFINING THE AGENT’S GOALS 95

to immediate results. It can be shown that geometric discounting (weighting the future

rewards by γt, for some γ ∈ (0, 1)) is an appropriate choice for rational agents.

REMARK 5.8. (Do we need rational agents?) As a side note, it is not at all clear that the

goal of AI is to design rational agents. The only example of intelligence we have—humans

and other primates—do not appear to be anywhere close to perfect rational agents. In fact,

much research in econometrics is dedicated to show how as shown how much humans

deviate from the rational agent assumption. In general, humans are risk averse (a bird in

the hand is worth two in the bush).

It is possible to create simple models of why this could be a reasonable heuristics for an

agent, but in the end the true answer is that this is the result of human evolution, which is a

complex social process. (For example, there is an asymmetry between genders, as women

are generally more risk averse [61]).

5.4.2. Intrinsic motivation

A relatively recent line of research (e.g., [48–50]) is concerned with defining intrinsic

motivation for intelligent agents. The basic idea is that part of the agent’s interaction with

the world can be guided by some intrinsic criteria which are finalized to acquire skills, not

immediately useful for the execution of a task. This formalizes things such as curiosity or

play, which are essential in cognitive development.

5.4.3. Explicit tasks

One alternative is defining explicit tasks in the spirit of control theory. For example,

consider the problem we call servoing, which informally is stated as “Given the goal obser-

vation y̌, choose the commands u such that the observations y eventually match y̌”.

While it is possible to frame this as a supervised learning problem, for example by man-

ufacturing the reward function R = ‖y− y̌‖, the conceptual difference is that the objective

5.4. DEFINING THE AGENT’S GOALS 96

function is not opaque, but rather it is known explicitly as a function of the observations.

These are the kind of tasks that will be studied most extensively here, for two reasons.

One reason is that one might define a hierarchy of tasks that describe the essential skills

of bootstrapping agents (Chapter 8). The other reason is that there are many aspects to a

“learning” problem. Roughly speaking, these are:

(1) The model identification problem: what can the agent do?

(2) The reward identification problem: what should the agent aim to obtain?

(3) The control problem: how should the agent do it?

Using explicit tasks, we get rid of the second problem. Once there is a model and a goal to

maximize, the control problem is conceptually easy (but possibly computationally very hard).

The model identification problem is instead the one which is conceptually hard.

5.4.4. A uniform interface for defining goals

All three of these approaches can be considered under the same interface. Somehow

they describe whether an agent is “correct” and “optimal”, with some falsifiable assertion

which can be judged by looking at the interaction of the agent with the world. Hence a goal

will is defined as a subset of StocProcesses(Y×U) that indicates which are the “desirable”

outcomes.

Intuitively, one might think that the goal depends on the particular world. This is

reflected in the following temporary definition of goal.

DEFINITION 5.9 (Temporary definition of bootstrapping goal). A bootstrapping goal is a

function

G : D(Y;U)⇒ StocProcesses(Y×U)

that associates to each world w the set G(w) ⊂ StocProcesses(Y × U), representing the

desirable outcomes for the agent when interacting with the world w.

5.4. DEFINING THE AGENT’S GOALS 97

This definition is admittedly quite abstract, but it does cover all situations of interest,

and it can be reconciled with more traditional definitions.

EXAMPLE 5.10. One way to construct G(w) for a criterion that defines an optimal be-

havior F?(w) ∈ D(U;Y) is to set G(w) as simply the resulting interaction statistics for the

optimal agent: G(w) = Loop(F?(w)w).

The choice of the function G is not entirely arbitrary, and must respect two basic coher-

ence properties:

(1) It does not make sense to define as desirable the outcomes that are impossible to

obtain. For a fixed world w, the set AllOutcomes(w) (Definition 4.16) describes all

possible statistics that can be generated. Thus it is required that

G(w) ⊆ AllOutcomes(w). (5.1)

(2) The goal must be observable for the agent. Consider two different worlds w1, w2.

Suppose that a certain outcome x ∈ StocProcesses(Y× U) is considered feasible

for the first world (x ∈ AllOutcomes(w1)). Then, if the same outcome is desirable

for the other world (x ∈ G(w2)), then necessarily it must be desirable also for the

first (x ∈ G(w1)), simply because the agent cannot distinguish two worlds that

appear the same externally. This can be written as

G(w2) ∩ AllOutcomes(w1) ⊆ G(w1). (5.2)

The consequence of (5.1) and (5.2) is that it is not necessary to specify the function G for

each world.

5.4. DEFINING THE AGENT’S GOALS 98

LEMMA 5.11. Defining the set G as the union of all desirable states:

G =
⋃

w∈D(Y;U)

G(w), (5.3)

the desirable states for a particular world can be found as the intersection of G with the possible

outcomes:

G(w) = G ∩ AllOutcomes(w).

PROOF. From (5.2), for any world w3,

G(w3) ∩ AllOutcomes(w1) ⊆ G(w1).

Together with (5.2), this implies

(G(w2) ∪ G(w3)) ∩ AllOutcomes(w1) ⊆ G(w1).

By induction from two worlds w2, w3 to the whole set D(Y;U), one arrives at the set G:

G ∩ AllOutcomes(w1) ⊆ G(w1).

One can show that this is not an inclusion but rather an equality between sets, by working

on the left side. In the union (5.3), there is also w1, so G = G ∪ G(w1):

[
G(w1) ∪ G

]
∩ AllOutcomes(w1) ⊆ G(w1).

Because ∩ is distributive over ∪,

[G(w1) ∩ AllOutcomes(w1)] ∪
[
G ∩ AllOutcomes(w1)

]
⊆ G(w1).

5.4. DEFINING THE AGENT’S GOALS 99

From condition (5.1), it follows that G(w1) ⊆ AllOutcomes(w1). Hence G(w1)∩AllOutcomes(w1) =

G(w1). Substituting this one obtains

G(w1) ∪
[
G ∩ AllOutcomes(w1)

]
⊆ G(w1),

which makes the inclusion an equality:

G(w) = G ∩ AllOutcomes(w).

�

The implication is that to specify the goal set, one just needs to specify the union of the

goal set on all possible worlds. Therefore the temporary Definition 5.9 is amended with a

simpler alternative.

DEFINITION 5.12 (Bootstrapping goal). A bootstrapping goal G is a subset of StocProcesses(Y×

U) that represents the desirable outcomes for the agent when interacting with the world.

As was derived in Subsection 5.3, the interaction of an agent with the world is sum-

marized by the function WtoRA, which maps a world w ∈ D(Y;U) to the resulting statis-

tics WtoRA(w) ∈ StocProcesses(Y× U). At this point it is possible to forget the two-stage

protocol and just use WtoRA as a proxy for studying the agent.

If the goal G can be considered a subset of StocProcesses(Y×U) representing the desir-

able outcomes, then, for a fixed goal G, the preimage WtoR−1
A (G) is the set of worlds for

which the agent is successful.

DEFINITION 5.13 (Success set). The success set successGA ⊂ D(Y;U) is the set of worlds

for which the agent succeeds in a particular goal G:

successGA = WtoR−1
A (G).

5.5. NECESSARY INVARIANCE PROPERTIES OF THE AGENT 100

5.5. Necessary Invariance Properties of the Agent

Recall that a representation nuisance (Definition 4.36) is a group that acts on the world w

by changing the representation of observations and commands. This is a “nuisance”, in the

sense that it can always be inverted to obtain the original world. This section derives nec-

essary properties for the agent to be robust to these nuisances.

This is not a simple statement on the functions actA or explA, but rather one must con-

sider the function WtoBA (Definition 5.6), which maps the world w to the agent’s behavior

instantiated in the acting phase. The necessary invariance properties for the agent are de-

rived as properties of this function WtoBA(w).

The discussion is symmetric for observations and commands.

As for the observations, suppose that the world w is perturbed by a representation

nuisance corresponding to a group G ≤ D?(Y), so that the agent interacts with gw. The

agent is robust to this nuisance if it is able to compensate it. Let WtoBA(w) be the agent

behavior for the original world w. If a nuisance g ∈ G ≤ D?(Y) acts on the world, the

world is transformed as

w 7→ gw, (5.1)

to obtain exactly the same result, it is necessary that the function WtoBA(w) satisfies

WtoBA(gw) = WtoBA(w)g−1. (5.2)

To see why this should hold, consider the world-agent series in the acting phase, which is

written as

series without nuisance: WtoBA(w)w.

If the world changes according to (5.1) and the agent changes according to (5.2), then the

5.5. NECESSARY INVARIANCE PROPERTIES OF THE AGENT 101

series is

series with nuisance: (WtoBA(w) g−1)(g w).

Because the two elements cancel each other, the result is that the series is invariant to the

nuisance. Intuitively, this has the interpretation that, the commands sent to the agent to

the world are independent of the observations representation.

The discussion for the commands is symmetric. A nuisance h ∈ H ≤ D?(U) acts on

the commands and transforms the world as

w 7→ w h.

In this case, the agent must satisfy

WtoBA(w h) = h−1 WtoBA(w). (5.3)

If this holds, the agent-world series is invariant to the nuisance:

w h WtoBA(w h) = w h h−1 WtoBA(w) = w WtoBA(w).

Intuitively, this has the interpretation that the world gives the same observations (that is,

the state is unchanged), notwithstanding a change of representations for the commands.

These properties can be written more compactly by considering that we already de-

fined the set of representation nuisances (Definition 4.36) D?(Y;U), which captures both

observations and commands nuisances. Considering a generic element x = 〈g, h〉 ∈

D?(Y;U) and its dual x∗ = 〈h, g〉 ∈ D?(U;Y), the invariance condition is succinctly written

WtoBA(x ·w) = x−1
∗ ·WtoBA(w). (5.4)

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 102

The set of representation nuisances D?(Y;U) is quite large, so it is unrealistic to expect

that the agent is invariant to all nuisances. A practical agent will be invariant only to a

subgroup GA ≤ D?(Y;U) of all nuisances. In practice, it is common that the invariance

of the agent also depends on the set CA ⊂ D(Y;U) to which the world w belongs. The

following defines the invariance properties of the agent with respect to a tuple 〈CA, GA〉.

DEFINITION 5.14 (Invariance properties of a bootstrapping agent). Given a subset of the

worlds CA ⊂ D(Y;U) and a subgroup of the representation nuisances GA = GY
A ×GU

A ≤

D?(Y;U), an agent A is invariant on 〈CA, GA〉 if it holds that

∀w ∈ CA, ∀x ∈ GA, WtoBA(x ·w) = x−1
∗ ·WtoBA(w). (5.5)

The condition can be written separately for observations and commands as follows:

∀w ∈ CA, ∀g ∈ GY
A, WtoBA(gw) = WtoBA(w)g−1,

∀w ∈ CA, ∀h ∈ GU
A, WtoBA(wh) = h−1WtoBA(w).

Chapter 6 gives a catalog of semantic assumptions, and Chapter 7 describes the corre-

sponding representation nuisances.

5.6. Invariance Properties of the Goal Set G

In the usual perspective of control theory and machine learning alike, an objective (or

an error function, reward, etc.) is supposed to be given as part of the problem statement,

and outside of judgment. This chapter shows that, in the bootstrapping perspective, it

is possible to judge whether an error function is better than another, because, depending

on their symmetries, they imply different semantic assumptions which carry over to the

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 103

agent. Therefore, part of the problem of bootstrapping is also designing good error func-

tions.

5.6.1. One example

The next example shows the consequences of choosing a particular error function over

another. For simplicity, the formalization is given here in continuous time, but all conclu-

sion apply also in discrete time.

The class of systems C is a subset of D(Y;U), with U = {u ∈ R2 | ‖u‖ ≤ 1} and Y = R2.

Let the two-dimensional vector q ∈ R2 represent the position in a plane of a solid body.

The initial distribution for q is unknown (it is an unknown parameter). The commands u

affect the pose like kinematic velocities, but in an unknown direction, represented by an

orthogonal matrix B ∈ O(2), which is another unknown parameter of the system. The

observations y ∈ R2 are simply the pose. The class C is thus defined

C =





q̇ = Bu, B ∈ O(2)

q0 ∈ ProbMeasures(R2)

y = q.

(5.1)

The goal for the agent is to stabilize the pose to y = 0. The details of how this is encoded

matter greatly. Several error functions were discussed before (Section 3.9), among which

E1 =

ˆ
‖y‖1 dt, E2 =

ˆ
‖y‖2 dt, (5.2)

which are going to be studied again here. Both express the same idea that the agent must

stabilize the observations to y = 0.

After the dynamics and an error function (either E1 or E2) are defined, the problem

is well posed from a control theory perspective. From this information, it is possible to

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 104

design an optimal agent which identifies the unknown parameter for the model, and then

uses it to solve the task by minimizing the given error function.

5.6.2. Computing the system’s symmetries

The first step of the analysis consists in finding the symmetries of the set C ⊂ D(Y;U).

The stabilizer of C (Definition C.39) stabD?(Y;U)(C) is the largest subgroup G ≤ D?(Y;U)

such that G · C = C. For this class of systems, the stabilizer is

stabD?(Y;U)(C) = E(2)×O(2).

The orthogonal group O(2) (Definition D.2) acts on the commands as u 7→ Xu. The Eu-

clidean group E(2) (Definition D.3) acts on the observations, and the action is y 7→ Ay + v,

with A ∈ O(2) and v ∈ R2. These transformations preserve the class of system C, because,

calling u′ = Xu and y′ = Ay + v, the new dynamics for (u′, y′) is

g · C =





q̇ = (ABX)u,

q0 ∈ A ProbMeasures(R2) + v,

y = q.

(5.3)

Because ABX ∈ O(2) and A ProbMeasures(R2) + v = ProbMeasures(R2), the new system

is still an element of the class C.

stabilizer: The stabilizer of a set is the subgroup of a given group whose action leaves the

set invariant. See Definition C.39.

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 105

5.6.3. Computing the symmetries of the error function

The second step is considering the symmetries of the error functions in (5.2). From the

previous discussion (Table 3.3), the symmetries of the functions are

Sym(E1) = D±(n)× Perm(n).

Sym(E2) = O(n).

For n = 2, these groups can be written more explicitly as

Sym(E1) =
{

I,
(
+1 0
0 −1

)
,
(−1 0

0 −1

)
,
(−1 0

0 +1

)}
×
{

I,
(

0 1
1 0

)}
,

Sym(E2) =
{
±
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ [0, 2π)

}
.

The first error function is “much less” invariant than the second because Sym(E1) is a finite

set strictly contained in the infinite set Sym(E2).

Usually objectives break the symmetries of the system. Consider the error function E2,

whose symmetries are the orthogonal group O(n). The system class C is invariant to E(2),

which is the semidirect product of O(n) and R2, acting as translations. When this error

function is considered together with this class of system, the translation symmetry is lost—

and for good reason, because the error function dictates that y = 0 is “special”, and while 0

is a fixed point for the action of O(n), it is not preserved by translations. If one wants the

agent to stabilize to a specific observation, it is unavoidable that the translation symmetry

is lost.

But consider the symmetries of the first function: Sym(E1) contains exactly those sym-

metries that maintain invariant the set of base vectors. This set is much smaller than the

potential set of symmetries of the system. This can be interpreted as a semantic assump-

tion: choosing this particular error function means imposing that a particular choice of

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 106

base vectors is significant (in addition that the particular point y = 0 is significant). Conse-

quently, an optimal agent for this error function will carry over this semantic assumption,

and would not be as invariant as it could possibly be.

This is one aspect that makes bootstrapping a challenging problem: other than the

problem of designing agents, there is also the problem of designing proper error functions.

5.6.4. Symmetries of the goal set G

To make this completely formal, and applicable even for goals that cannot be expressed

by an error function, it is necessary to state this intuition with reference to the goal G,

which was defined in Section 5.4.4 as a subset of StocProcesses(Y× U). This subset has

the interpretation of being the outcomes of the agent-world interaction that are deemed

“desirable”. If the goal can be cast as an optimization problem, then the set G can be

constructed by taking the optimal agent and recording its interaction with the world.

For this example, it is easy to describe the trajectories of an optimal agent (Figure 5.1).

Not surprisingly, the symmetries of these trajectories are the same as the symmetries of

the error function. The set of optimal trajectories, for all starting points, together with the

relative commands, form the set G ⊂ StocProcesses(Y× U). (In this case, those are just

simple sequences, because the model has no stochasticity.) The symmetries of G, or, more

formally, the stabilizer

stab(G) ≤ D?(Y;U),

gives an upper bound for the invariance of the agent and expresses the semantic assump-

tions of the goal.

5.6. INVARIANCE PROPERTIES OF THE GOAL SET G 107

(a)
´ ‖y‖1 dt (b)´ ‖y‖2 dt,

Figure 5.1. Trajectories of an optimal agent for the system (5.1).

CHAPTER 6

A Catalog of Semantic Assumptions

This chapter describes a few semantic assumptions about black boxes. The chal-

lenge here is to describe the key assumptions, without fully instantiating the

system. Each assumption is associated to the group of transformations that pre-

serves it.

6.1. Legend

preconditions on format: These are preconditions about the format of the data (i.e., sets Y

and U) that need to be verified for this semantic assumption to make sense. For example,

some of these semantic assumptions make sense only if U is a metric space.

preserved by: This is the largest representation nuisance that preserves this assumption.

Some of these are explicit links to the representation nuisance’s section in the nuisances

catalog (Chapter 7).

implies: This field notes whether the assumption is stronger than another.

disrupted by: This is an explicit mention of a nuisance that would not preserve the semantic

assumption.

6.2. Catalog

Assumption 1: Temporal changes are salient

representation nuisance: A causally invertible transformation of observations and com-

mands. See Definition 4.36.

108

6.2. CATALOG 109

preconditions on format: Y = Y
ny

preconditions on format: Y is a metric space

Roughly speaking, a “salient” stimulus is one to which it is worth dedicating the

agent’s attention and computational resources. Usually, in biology the definition does not

get more precise than this.

We can give a simple temporary definition for our goals which uses the value of infor-

mation. Suppose that some sensel z can acquire two states, � and �. We ask what is the

value for the agent to not observe that variable, and just assume one of the two values. If

one value is more salient than the other, then ignoring a salient value is more regrettable

than ignoring a nonsalient value. In this example (Table 6.1), z = � is the salient value.

Table 6.1. Costs incurred by an agent of not observing one sensel

cost incurred z = � z = �
agent assumes z = � 1 10
agent assumes z = � 1 1

Suppose that we have a notion of “saliency”, then this semantic assumption states that

the saliency of a sensel depends on its temporal derivative, and the larger the derivative,

the more salient the sensel is. We need a metric on Y to measure the change, so this seman-

tic assumption applies only when Y is a metric space. In discrete time, we might measure

this change as dY(yi(k), yi(k+ 1)), where dY is a metric on Y. The largest representation nui-

sance that preserves this property is the combination of any permutation with isometries

of Y.

preserved by: Perm(ny)× Isom(Y)ny

disrupted by: Any nuisance that mixes the sensel values.

metric space: A metric space is a set endowed with a metric. See Definition E.1.

6.2. CATALOG 110

Assumption 2: Larger (or smaller) values are more salient

preconditions on format: Y = Y
ny

preconditions on format: Y is totally ordered

Neurons communicate mainly through spikes [62]. While we still do not understand

the neural code, we know that this code is sparse, in the sense that neurons are mostly silent.

This makes sense evolutionarily because spiking consumes energy. It is also thought that

a spike is more salient than silence (see Assumption 1 for a definition of salient).

Suppose that each sensels value belongs to a set Y which is totally ordered; this simply

means that we can say if a value is larger or smaller than another. In this case, an agent’s

semantic assumption might be that larger values are more salient (or vice versa). The

largest nuisance preserving this property are the orientation-preserving homeomorphisms

of Y, plus any permutation.

preserved by: Nuisance 9 (Perm(ny)×Homeo+(Y)ny)

Assumption 3: Observations have “continuous” dynamics

preconditions on format: Y is a metric space

A common assumption for agents is that the observations are expected to change

“slowly”. One way to encode this assumption, in a way which is robust to noise, is to

assume that Y is a metric space, and look at the statistics of the distance between two suc-

cessive measurements

d(y(t), y(t + 1)).

total order: An antisymmetric, transitive, and total binary relation. See Definition A.9.

6.2. CATALOG 111

A reasonable definition of “continuous” dynamics in discrete time is that the pdf

f (x) = P(d(y(t), y(t + 1)) = x)

is maximum for x = 0 and it is monotonically decreasing.

A generic homeomorphism of Y would not preserve this property, because it can warp

distances in an unpredictable way. Clearly this property is preserved by the isometries Isom(Y).

preserved by: Nuisance 4 (Isom(Y))

disrupted by: Nuisance 3 (Homeo(Y))

Assumption 4: Sensels have similar statistics

preconditions on format: Y = Y
ny

One semantic assumption that might simplify the development of an agent is that all

sensels have similar statistics. For example, the agent might assume that the pdf of each

sensel is the same. Then the agent can estimate this pdf faster by considering the samples

from all sensels at the same time, rather than estimating one pdf for each sensel. Unfortu-

nately, this assumption is only preserved by sensels permutations.

preserved by: Nuisance 1 (Perm(ny))

Assumption 5: Sensels noise is independent

preconditions on format: Y = Y
ny

Similarly, another assumption might be that the noise process acts independently on all

sensels. This is a softer assumption, because it is preserved by any representation nuisance

pdf : Probability distribution function. See Definition B.6.

6.2. CATALOG 112

that transforms each sensel independently as well as permute them.

preserved by: Perm(ny)× Aut(Y)n

Assumption 6: The observations correspond to a spatial field

preconditions on format: Y is a field on S

preconditions on format: S is a metric space

Assume that the observations are a spatial field y : S → R, where S is a manifold. For

example, we might consider the observations from a camera as a spatial field on [0, 1]2 (the

image space).

One tacit assumption might be that the space S corresponds to observations of a phys-

ical space. As a counterexample, consider using an image to encode some other unrelated

information, for example by using luminance to encode bits (Figure 2.1a).

One way to formalize this assumption is to endow S with a metric, and expect that,

for any two positions s1, s2 ∈ S , the values y(s1) and y(s2) are, on average, more similar to

each other if their distance d(s1, s2) is small. Let R be a similarity measure. Then we could

impose that the similarity is a function of the distance:

R(y(s1), y(s2)) = f (d(s1, s2)). (6.1)

Such assumption would be invariant only to the isometries of S . Moreover, imposing that

the function f in (6.1) is the same at all sensels is quite restrictive.

A more robust formalization, slightly less elegant, is to say that the function rs1(s) =

R(y(s1), y(s)) (i.e., the similarity of the value at s1 with respect to its neighbors) is locally

similarity measure: A function of two random variables that is 1 if they are identical.

6.2. CATALOG 113

geodesically concave. This property captures the same idea of local similarity, and it is

invariant to all diffeomorphisms of S .

This is more than the format of the data.

preserved by: Nuisance 6 (Diff(S))

Assumption 7: The spatial field is homogenous

preconditions on format: Y is a field on S

Suppose that, as per the previous semantic assumption, the observations are a spatial

field. For example, if the sensor is a camera, pixels close to each other are on average

more similar than pixels far from each other. In practice, computer vision algorithms make

much more assumption about the data than just locality. One typical assumption is that

the signal statistics are “homogenous” across the image. For example, many algorithms

use some sort of features (e.g., SIFT [63]) which are obtained by applying a filter bank at

different scales at each point in the image (e.g., Gaussian filter with standard deviation

equal to 8, 16, 32, 64 pixels). The scales are fixed across the image: this assumes that the

image statistics are homogeneous across the image.

This can be formalized by requiring that statistics such as the covariance of the spa-

tial gradient cov(∇sy(s)) are constant across the image. In this case, the assumption is

invariant only to the isometries of S .

implies: Assumption 6 (The observations correspond to a spatial field)

preserved by: Nuisance 5 (Isom(S))

geodesic convexity: Generalization of convexity for functions whose domain is a manifold.

See Definition E.19.

6.2. CATALOG 114

Assumption 8: Observations are continuous in the states

preconditions on format: Y is a topological space

Suppose that there is some behaviorally relevant hidden state in the world, and that the

observations are a continuous function of that hidden state. This is an assumption often

done by algorithms that fit a policy from the instantaneous observations to the commands,

and in doing so they assume (due to the internal representation used for such a policy) that

the policy is a smooth function of the observations.

This property is preserved by any continuous transformations of the observations.

preserved by: Nuisance 3 (Homeo(Y))

Assumption 9: White noise

preconditions on format: None

A stochastic process is said to be white if the values at different instants are indepen-

dent.* A system has “white noise” if the observations are corrupted by a white process.

Usually “corrupted” means that the noise acts additively on the observations. That def-

inition would imply that we also assume that Y is a vector space. A more general for-

malization of white noise is assuming that the world can be factorized in a deterministic

system (Definition 4.17) followed by a a memoryless (Definition 4.18) stochastic system

(Figure 6.1a). The dual concept for the commands would be if the world could be factor-

ized in the opposite way (Figure 6.1b).

policy: A map from states (or observations) to actions (commands).
*If the process is Gaussian, then we can say equivalently that they are uncorrelated; but

note that independent is equivalent to uncorrelated only for Gaussian variables.

6.2. CATALOG 115

deterministic memoryless
u y

(a) White noise on the observa-
tions

u y
memoryless deterministic

(b) White noise on the com-
mands

Figure 6.1. Our definition of white noise on the observations is that we can factorize
the system as a deterministic system followed by a stochastic memoryless system, or
vice versa for the commands.

This assumption is preserved by all instantaneous representation nuisances.

preserved by: Nuisance 13 (Aut(Y))

disrupted by: Any non memoryless nuisance.

Assumption 10: The system is reversible

preconditions on format: None

A system is reversible if we can find a map ρ : U→ U, such that, for each command u ∈

U, giving the command u followed by ρ(u) (or vice versa), takes the system back to its

original state. In general, if a system is reversible, planning under uncertainty is “easy”,

because if some prediction is not verified, the agent can step back and return to a previous

state.

This assumption is preserved by all instantaneous transformations of the commands.

preserved by: Nuisance 16 (Aut(U))

Assumption 11: Similar commands have similar effects

preconditions on format: U is a topological space

6.2. CATALOG 116

A common assumption is that the effect of two similar commands is close. For exam-

ple, giving the command u = 1 or u = 1.01 takes the system to two similar states. This

property is preserved by all homeomorphisms of U.

The trouble for this is how to define the “effect” of a certain choice of commands from

a bootstrapping perspective, that is, without referring to an unobservable “state”. We give

two alternatives.

(1) One possibility is define this using an input-to-output property. For example, we

might require that the probability distribution of the future observations depends

continuously on the commands. This does not require that Y has a well-defined

topology, because it uses the topology of ProbMeasures(Y).

(2) Another possibility is using the concept of a task. A task induces the notion of an

optimal command u?. Different commands at time t will generally change the op-

timal command at time t + 1. For a fixed time t, the optimal command at the next

step u?
t+1 is a function of the chosen command ut and the unknown observations

that the agent receives next: u?
t+1 = f (ut, yt). This construction is for a fixed t,

so the function f contains all the past experience up to time t. Considering the

variable yt as unknown, we can consider the partial function F : U → (Y → U),

such that the optimal command can be written as u?
t+1 = F(ut)(yt). Then similar

commands have similar effect if the map F is continuous. This implies using the

topology of Y, which needs to be assumed to be a topological space.

preserved by: Nuisance 14 (Homeo(U))

Assumption 12: One command does nothing

preconditions on format: None

6.2. CATALOG 117

One useful assumption for an agent is that there is one value unop ∈ U that corresponds

to the actuators “resting”, and the controllable part of the state space not changing. This

property is preserved by any instantaneous transformation of the commands.

preserved by: Nuisance 16 (Aut(U))

Assumption 13: A known command does nothing

preconditions on format: None

One additional assumption is that the agent knows that special value unop that corre-

sponds to “resting”. This property is preserved by any instantaneous transformation of

the commands that keeps that special value fixed.

preserved by: Subgroup of Aut(U) fixing unop

implies: Assumption 12 (One command does nothing)

Assumption 14: Minus does the opposite

preconditions on format: U = Rnu

The command −u has the opposite effect of +u. This implies that u = 0 has the zero

effect.

preserved by: Nuisance 17 (Aut(R+
◦)

nu)

implies: Assumption 12 (One command does nothing)

implies: Assumption 13 (A known command does nothing)

implies: Assumption 10 (The system is reversible)

Assumption 15: More does more

6.2. CATALOG 118

preconditions on format: U = U
nu

preconditions on format: U is totally ordered

Suppose that each command takes value in a set U, and that this set is totally ordered,

so that we can distinguish a “small” command from a “large” command. One semantic

assumption might be that “larger” commands have a larger “effect”. See Subsection 6.2

for an intrinsic definitions of “effect”.

This property is preserved by all orientation-preserving transformations of U.

preserved by: Nuisance 20 (Perm(nu)×Homeo+(U)nu)

Assumption 16: Half does half

preconditions on format: U = Rnu

This is another step toward assuming a full linear structure. Suppose there is a metric

to measure the effect of a command. For example, we could take ‖ẏ‖ as a metric. Then this

semantic assumption states that, for α > 0, the effect of αu is α times the effect of u.

implies: Assumption 13 (A known command does nothing)

preserved by: The largest nuisance preserving this property are “star shaped” transforma-

tions of the kind u′ = f (u/‖u‖) u, for any function f : Snu−1 → R+
◦ .

Assumption 17: The world has finite memory

preconditions on format: None

Recall that a system has finite memory if its observations can be predicted by looking

at only a finite window of the previous observations and the commands accepted by the

system (Definition 4.19). This is a particularly convenient assumption for the agent to do,

6.2. CATALOG 119

as it puts an upper bound on the computational resources that the agent must invest in

creating a model for the system.

This property is preserved if the nuisances acting on the observations and commands

have finite memory as well.

A different assumption would be to assume that the world has bounded memory. The

largest representation nuisances preserving that property are the instantaneous transfor-

mations.

preserved by: Nuisance 10 (D?
fm(Y))

preserved by: Nuisance 19 (D?
fm(U))

Assumption 18: Commands are kinematic velocities

preconditions on format: U = Rnu

One quite specific semantic assumption is that the commands represent kinematic ve-

locities of the system. The following is one possible way to formalize this concept while

keeping the assumptions on the rest of the system quite vague.

Assume that one state of the system evolves on a Lie group G, and that the com-

mands u determine the velocity of g on G:

ġt = gt A ut,

where A is a linear operator, representing unknown scaling or change of coordinates. We

Lie group: A topological group which is also a differentiable manifold with the same

topology. See Definition C.44.

6.2. CATALOG 120

also allow the system to have another state ξ with its own dynamics, and that the observa-

tions y depend on both g and ξ:

ξ̇ = f (ξ),

y = h(g, ξ).

This system captures the model a mobile robot moving around, with h representing the

model of a camera, and ξ the motion of people in the environment. Part 2 is concerned on

how to model robots much more in detail.

This property is preserved by any linear transformation of the commands.

preserved by: Nuisance 18 (GL(nu))

implies: Assumption 10 (The system is reversible)

implies: Assumption 13 (A known command does nothing)

implies: Assumption 16 (Half does half)

implies: Assumption 15 (More does more)

implies: Assumption 11 (Similar commands have similar effects)

Assumption 19: Commands determine kinematic velocities

preconditions on format: None

In contrast to the previous assumption, here we just assume that the commands deter-

mine the kinematic velocities, in the sense that there is a map f : U → Rk such that f (u)

can be interpreted as kinematic velocities (Figure 6.2).

6.3. REMARKS 121

instantaneous kinematic
u y

Figure 6.2. Positing that the commands determine the kinematic velocities is a much
softer assumption that assuming that the commands are kinematic velocities them-
selves.

This is a much softer assumption, as it does not imply assumptions about the particular

representation of the commands, such as Assumption 16 (Half does half), Assumption 15

(More does more) and Assumption 11 (Similar commands have similar effects). Consequently,

this assumption is preserved by all instantaneous transformations of the commands.

implies: Assumption 10 (The system is reversible)

implies: Assumption 13 (A known command does nothing)

preserved by: Nuisance 16 (Aut(U))

6.3. Remarks

Most of these semantic assumptions are constraints to the class of systems to which

the world can belong. That is, they describe a subset of D(Y;U). Classical properties of

dynamical systems (such as linearity) also correspond to subsets of D(Y;U). However,

some semantic assumptions are joint constraints among dynamics and task. For example,

the concept of saliency (Assumption 1) requires that a goal is specified.

For the semantic assumptions that can describe a subset A of D(Y;U), the largest group

that preserves them is what was called the stabilizer (Definition C.39) of the subset A:

G = stabD?(Y;U)(A) , where D?(Y;U) is the set of all representation nuisances. Clearly G

does not identify A completely. In fact, G is also the stabilizer of the complement A.

6.3. REMARKS 122

G action

(a) A (b) A (c) A∗ (d) A∪A∗

Figure 6.1. One representation nuisance does not pinpoint the semantic assumption
exactly, as there are other assumptions that are preserved by the same group action.

As an example, consider the two assumptions:

A : “larger values are more salient”,

A : “larger values are not more salient”.

These are both conserved by monotonic transformations of the sensel values.

Moreover, there is often a “dual” of the semantic assumption which is preserved by

the same group as well. In this case, it is

A∗ : “smaller values are more salient”.

Note that A∗ 6= A.

If we consider semantic assumptions as subsets of D(Y;U), then we can create new as-

sumptions by using the operations of set union and intersection (Figure 6.1). For example,

we can define

A∪A∗ : “either larger or smaller values are more salient”,

which is still a useful assumption, but leaves to the agent of figuring out one bit of infor-

mation.

CHAPTER 7

A Catalog of Representation Nuisances

This chapter provides a catalog of representation nuisances. For each representa-

tion nuisance, the catalog reports whether there is an interpretation in terms of

a semantic assumption (described in the previous chapter).

This has two uses: for analysis, one should first compute what are the

agent’s symmetries, and then look up in this list what it means regarding the

semantic assumptions; for synthesis, one should look up here what are the sym-

metries that the agent needs to show to prove that it is independent of certain

semantic assumptions.

7.1. Legend

preconditions on format: These are the assumptions about the format of the data (i.e., sets Y

and U) that need to be verified for this nuisance to make sense. For example, one can

apply a permutation to the observations only if the observations are composed by discrete

sensels, and not if they are a continuous field. Vice versa, one can apply a diffeomorphism

only if the observations are a continuous field on some Riemannian manifold.

group: This is the group considered (or one isomorphic to it).

action: This is a description of the group action on commands/observations.

preserves: Some property or statistics that is invariant with respect to this nuisance.

equivariant: Some property or statistics that is equivariant with respect to this nuisance.

perturbs: Some property or statistics that is perturbed by this nuisance.

is largest preserving: Some semantic assumption, or system property for which this group is

123

7.2. NUISANCES ACTING ON THE OBSERVATIONS 124

the largest group that preserves it.

7.2. Nuisances Acting on the Observations

Nuisance 1: Perm(ny) – Permutations of the sensels

preconditions on format: Y = Y
ny

group: Perm(ny)

action: yi 7→ yπ(i), π ∈ Perm(ny)

This is the basic example of a representation nuisance: would your agent work if the

sensels were scrambled?

If an agent has some assumptions on the identity of any signal (e.g., the first sensel

encode the reward) then it will only be invariant with respect to a subgroup of this group.

Note that the observations space Y is supposed to be a set of discrete sensels, each

taking value in the same set Y. This nuisance would not apply to the case where the obser-

vations are an infinite dimensional field.

equivariant: Pairwise statistics such as the correlation or covariance matrix are equivariant

with respect to permutations.

is largest preserving: Assumption 4 (Sensels have similar statistics)

Nuisance 2: GL(ny) – Linear transformations of the observations

preconditions on format: Y = Rny

A generic linear transformation of the observations can represent a variety of filtering

operations.

preserves: Linearity and bilinearity of the dynamics.

equivariant: Covariance matrix (transforms as P 7→ APAT)

7.2. NUISANCES ACTING ON THE OBSERVATIONS 125

perturbs: Correlation matrix

Nuisance 3: Homeo(Y) – Continuous transformations of the observations

preconditions on format: U is a topological space

group: Homeo(Y)

action: y 7→ ϕ(y)

is largest preserving: Assumption 8 (Observations are continuous in the states)

Nuisance 4: Isom(Y) – Isometries of the observations

preconditions on format: Y is a metric space

group: Isom(Y)

action: y 7→ ϕ(y)

Invariance to isometries is a natural requirement in many problems. It can be often

interpreted as an invariance to the data reference frame.

Note: do not confuse with Nuisance 5 (Isom(S)) .

preserves: Assumption 3 (Observations have “continuous” dynamics)

Nuisance 5: Isom(S) – Isometries of the observations field

preconditions on format: Y is a field on S

group: Isom(S)

action: y(s) 7→ y(ϕ(s))

We assume that the observations y are a function over some manifold S , and we con-

sider the isometries of S . An example of this nuisance would be to mount a robot’s camera

7.2. NUISANCES ACTING ON THE OBSERVATIONS 126

(a) Isometries (b) Diffeo-
morphisms

(c) Homeomor-
phisms

Figure 7.1. Difference between isometries, homeomorphisms, and diffeomorphisms,
in the case S = R2.

upside down. Isometries are a relatively small set of transformations, and typically finite-

dimensional (Figure 7.1). For example, the isometries of the hyper sphere Sn−1 are the or-

thogonal transformations O(n) (D.2); the isometries of Rn form the Euclidean group E(n)

(Definition D.3).

Note: do not confuse with Nuisance 4 (Isom(Y)) .

equivariant: Isometries commute with many operations that are expressed through the met-

ric of S , such as spherical smoothing of an image (Definition 19.1).

is largest preserving: Assumption 7 (The spatial field is homogenous)

Nuisance 6: Diff(S) – Diffeomorphisms of the observations

preconditions on format: Y is a field on S

group: Diff(S)

action: y(s) 7→ y(ϕ(s))

We assume that the observations y are a function over some manifold S , and we con-

sider all diffeomorphisms of S . This is a much larger set of transformations than only the

isometries of S ; diffeomorphisms are an infinite-dimensional topological group (not a Lie

topological group: A group whose operations are continuous in a given topology. See

7.2. NUISANCES ACTING ON THE OBSERVATIONS 127

Figure 7.2. Contrast transformations. The human visual system is extremely robust to
contrast transformations, represented by the action of the group Homeo+(Y).

group).

preserves: Because they are homeomorphisms, diffeomorphisms preserve the topology

of S . In addition to that, they preserve the differentiability of the signal; this allows con-

sidering statistics of the spatial gradient ∇sy(s) (Figure 7.1).

perturbs: Any statistics that depends on the metric of S is perturbed by diffeomorphisms.

is largest preserving: Assumption 6 (The observations correspond to a spatial field)

Nuisance 7: Homeo+(Y) – Acting jointly on all observations

preconditions on format: Y = Y
ny

preconditions on format: Y is totally ordered

preconditions on format: (equivalently: Y is a field on S)

group: Homeo+(Y)

action: yi 7→ f (yi) , for f ∈ Homeo+(Y)

action: (equivalently: y(s) 7→ f (y(s)) , for f ∈ Homeo+(R))

This nuisance is often called a contrast transformation (Figure 7.2).

Nuisance 8: Aff(R)ny – Affine transformation of the single sensel

Definition C.43.

7.2. NUISANCES ACTING ON THE OBSERVATIONS 128

preconditions on format: Y = Rny

group: Aff(R)ny

action: yi 7→ aiy + bi , for ai 6= 0, bi ∈ R

preserves: This is the largest nuisance that preserves the correlation between sensel values.

Nuisance 9: Perm(ny)×Homeo+(Y)ny – Positive saliency

preconditions on format: Y = Y
ny

preconditions on format: Y is totally ordered

group: Perm(ny)×Homeo+(Y)ny

action: yi 7→ fi(yπ(i))

is largest preserving: Assumption 2 (Larger (or smaller) values are more salient)

Nuisance 10: D?
fm(Y) – Dynamical nuisances with finite memory acting on observations

preconditions on format: None

group: D?
fm(Y)

action: y 7→ Dy (system-signal product), for D ∈ D?
fm(Y)

is largest preserving: Assumption 17 (The world has finite memory)

perturbs: Any statistics of y defined as an expectation over time (e.g., correlation) is dis-

rupted by this and other dynamical nuisances.

Nuisance 11: DSMPLTI(1) – Stable, minimum phase systems

preconditions on format: Y = Rny

action: yi 7→ Dyi, for D ∈ DSMPLTI(1) a stable, minimum phase system

7.2. NUISANCES ACTING ON THE OBSERVATIONS 129

intuition: This is a dynamical nuisance, which acts on the observations by filtering them

using a discrete-time stable, minimum-phase finite-dimensional linear time-invariant dy-

namical system. While this is a mouthful, this is the minimum set of attributes to describe

a linear system such that it is always possible to find a causal inverse. See Example 4.32.

perturbs: Even if the same dynamical system filters all the sensels, most statistics such as

the correlation are perturbed by this nuisance.

preserves: It is possible to work in the Laplace domain to find robust statistics. Let L in-

dicate the Laplace transform of a signal. Then the transform of the filtered signal is the

product of the transfer function of the filter and the transform of the signal:

L(Dyi) = TF(D)L(yi).

This implies that one might take statistics such as the ratios L(yi)/L(yj) to be invariant

with respect to the action of this nuisance.

Nuisance 12: Aut(Y)nu – Known labeling of observations

preconditions on format: Y = Y
ny

group: Aut(Y)ny

action: yi 7→ fi(yi), for fi ∈ Aut(Y)

The action of this nuisance changes the representation of each sensel in an independent

way. The order of the sensels is not changed, and no sensel values are mixed together.

perturbs: Every simple statistics like the correlation is perturbed by this nuisances.

transfer function: An equivalent representation of linear systems from an input-output

perspective.

7.3. NUISANCES ACTING ON THE COMMANDS 130

preserves: Mutual information and related nonparametric statistics are preserved.

Nuisance 13: Aut(Y) – Instantaneous transformations of the observations

preconditions on format: None.

group: Aut(Y)

action: y 7→ g(y), for g ∈ Aut(Y)

preserves: Any mutual information-like statistics between observations and commands.

is largest preserving: Assumption 9 (White noise)

7.3. Nuisances Acting on the Commands

Nuisance 14: Homeo(U) – Continuous transformations of the commands

preconditions on format: U is a topological space

group: Homeo(U)

action: u 7→ f (u), for f ∈ Homeo(U)

This is the largest nuisance that still preserves the intuitive notion that similar com-

mand have similar effect.

perturbs: Properties such as linearity are perturbed by this nuisance.

is largest preserving: Assumption 11 (Similar commands have similar effects)

Nuisance 15: Aut(U)nu – Any transformation of the single command

preconditions on format: U = U
nu

group: Aut(U)nu

action: ui 7→ fi(ui), for fi ∈ Aut(U)

7.3. NUISANCES ACTING ON THE COMMANDS 131

intuition: This nuisance changes the representation of each command but does not mix

them together. To be invariant with respect to this nuisance, it is likely that the agent must

use a nonparametric representation of the commands.

Nuisance 16: Aut(U) – Instantaneous transformations of the commands

preconditions on format: None

group: Aut(U)

action: u 7→ f (u), for f ∈ Aut(U)

This is the largest set of “static” representation nuisances.

is largest preserving: Assumption 10 (The system is reversible)

is largest preserving: Assumption 12 (One command does nothing)

is largest preserving: Assumption 19 (Commands determine kinematic velocities)

Nuisance 17: Aut(R+
◦)

nu – Nonlinear transformations preserving symmetry

preconditions on format: U = Rnu

group: Aut(R+
◦)

nu

action: ui 7→ sgn(ui) fi(|ui|), for fi ∈ Aut(R+
◦)

This is an example that shows that often a simple semantic assumption corresponds

to a quite complicated representation nuisance. This is the largest nuisance that preserves

the semantic assumption that −u has the “opposite” effect than +u (Subsection 6.2). In

this case the notation is quite opaque. The group is Aut(R+
◦)

nu because it consists of nu in-

dependent transformations acting on each command separately. Each command is trans-

formed in a symmetric way. The constraint that the map ϕ acting on a single command

7.3. NUISANCES ACTING ON THE COMMANDS 132

must preserve is that it must be an odd function: ϕ(u) = −ϕ(−u). This implies that ϕ(u)

can be written as

ϕ(u) = sgn(ui) f (|ui|)

for some arbitrary map f : R+
◦ → R+

◦ . There are no constraints on f , therefore it can be

any automorphism of the positive reals R+
◦ .

is largest preserving: Assumption 14 (Minus does the opposite)

Nuisance 18: GL(nu) – Linear transformations of the commands

preconditions on format: U = Rnu

group: GL(nu)

action: u 7→ Au

A linear transformation of the commands preserves many semantic assumptions that

often have a physical interpretation. For example, if the commands are velocities, a linear

transformation is just a change of reference frame.

is largest preserving: Assumption 18 (Commands are kinematic velocities)

Nuisance 19: D?
fm(U) – Dynamical nuisances with finite memory acting on the commands

preconditions on format: None

group: D?
fm(U)

action: u 7→ Du (system-signal product), for D ∈ D?
fm(U)

perturbs: “Reversibility”, as defined in Subsection 6.2, while preserved by all instantaneous

nuisances, is perturbed by this one.

7.3. NUISANCES ACTING ON THE COMMANDS 133

Nuisance 20: Perm(nu)×Homeo+(U)nu – Monotonic transformations of single command

preconditions on format: U = U
nu

preconditions on format: U is a topological space

group: Perm(nu)×Homeo+(U)nu

action: ui 7→ fi(uπ(i)), for π ∈ Perm(nu) and fi ∈ Homeo+(U).

is largest preserving: Assumption 15 (More does more)

CHAPTER 8

Tasks for Bootstrapping Agents

This chapter describes a few examples of tasks for bootstrapping agents. Defin-

ing bootstrapping tasks is not easy, as they must refer to uninterpreted obser-

vations and commands, and be (ideally) completely invariant to representation

nuisances. This chapter discusses a series of tasks which are relevant to any

bootstrapping agent, and how they form a hierarchy that probes the increasing

required skills from the agent.

8.1. Challenges in Defining Bootstrapping Tasks

The first challenge in defining bootstrapping tasks is that they must be formulated

with respect to uninterpreted streams of observations and commands. It is not possible to

describe a task such as “fetch me a beer from the fridge”, unless one also defines what is a

“beer”, a “fridge”, and “fetch” in terms of the uninterpreted vectors y and u.

A related challenge is that the task should also be achievable for multiple worlds. For

example, a task such as “stabilize the observations to y = 0” cannot be achievable if 0 is

not part of the agent’s world, or if there is some observations noise.

Another challenge, already discussed before (Section 5.6), is that the description of a

task by error functions or performance measures often implies imposing some extra se-

mantic assumptions about the system.

These problems are not solved at this time and affect most, if not all, the tasks described

in this chapter.

134

8.2. TASKS FOR DISEMBODIED AGENTS 135

8.2. Tasks for Disembodied Agents

8.2.1. Prediction

If an agent can predict the future observations (in as much as it is possible due to

uncertainty), then it has learned a good model for the world. The prediction problem

can be formulated in many variations, differing according to the prediction horizon, the

quality of the prediction, and the way that performance is measured. These three aspects

are independent of each other. Even for the simple problem of prediction one can find

more than a dozen variants, each requiring different skills from the agent.

Regarding the prediction horizon, it is useful to distinguish at least between three qual-

itatively different cases: “instantaneous, “short” horizon, and “long” horizon:

“instantaneous” prediction, in the sense of predicting the derivative of the observations or

similar instantaneous quantity, is the easiest and can usually be done using a

reduced model of the dynamics, such as a linearized model;

“short” horizon prediction will refer to predicting the future observations based on the cur-

rent observations only, without accessing previous memory. Formally, this is

the case where yt is a sufficient statistics for predicting yt+∆;

“long” horizon prediction requires accessing memories of previous observations.

It is also useful to define relaxed prediction problems, in the cases where an approximate

prediction is sufficient. The following are three levels on a smooth qualitative–quantitative

spectrum:

Qualitative The agent must predict which sensels will change in yt+∆ compared with yt.

Sign-prediction The agent must predict which sensels will change, and whether their values

increase or decrease.

This assumes that it is possible to find an order for the sensel values (compare

8.2. TASKS FOR DISEMBODIED AGENTS 136

Assumption 2 (Larger (or smaller) values are more salient)).

Quantitative The agent must predict the future observations yt+∆ exactly.

Finally, one must decide how to measure performance. Here the previous discussion on

error functions is relevant (compare Section 5.6).

8.2.2. Skills built on top of prediction

If the agent is able to predict the next observations, then it is possible to implement

more complicated task on top of this ability (Figure 8.1).

Define an anomaly a mismatch between predictions and observations. Anomaly de-

tection is an important skill for bootstrapping agents, as it makes the agent aware that its

model of the world is incomplete.

If the agent is embodied in a robotic body, most of the changes in the observations are

due to self-motion, in a way which can be learned. Occasionally some of the changes are

due to other agents moving in space, or other unmodeled effects in the dynamics.

By looking for coherent temporal traces of the anomaly signal, it is possible to detect

another agent moving in the same environment.

If the same sensel appears to be consistently anomalous with respect to a learned

model, it is likely that it is faulty. Fault detection can be realized by averaging the anomaly

signal [64].

8.3. TASKS FOR EMBODIED AGENTS 137

chasing
Maximize the

anomaly signal

servoing
Move towards

desired observations

localization
Recognize the current
place from memory

navigation
Move across

the environment

prediction
Predict the next

observations.

mapping
Establish relationships
among different places.

agents detection
Find coherent

anomaly tracks.

exploration
Experience all

possible stimuli

memory
Cluster/compress
the observations

escaping
Minimize the

anomaly signal

anomaly detection
Compare the predictions

with the observations.

Figure 8.1. A hierarchy of tasks for bootstrapping agents.

8.3. Tasks for Embodied Agents

Several specific tasks can be defined for agents embodied in a robotic body. To define

these tasks, it is assumed that the observations represent the output of a sensor attached to

the robot.

The concept of “place” can be defined directly in the observations space, as a neigh-

borhood of a given observation vector:

Neighbors(y◦) = {y ∈ Y | dY(y, y◦) < α}.

This is a generalization of the idea of working in “image space” in applications such as

visual servoing. However, care must be given as to the way one defines the metric space,

because committing to a certain distance dY might carry over certain semantic assump-

tions. An alternative definition of “place” is given by Kuipers and colleagues as part of

the spatial semantic hierarchy [65, 66]: if one has already a policy, then a “place” can be

defined as a subset of the states in which the policy has a predictable result.

8.3. TASKS FOR EMBODIED AGENTS 138

8.3.1. Servoing

Going to a designated place, described by some observation vector y̌, is a task that

will be used often in Part 2. The difficulty of the task essentially depends on the distance

between the current state and the goal state. Just like prediction, it will be useful to distin-

guish between “short” and “long” horizon instances of the problem.

8.3.2. Chasing and escaping

Several tasks can be defined on top of servoing. If the agent can detect moving objects,

then one can define chasing or escaping as servoing of the detection signal: for escaping the

target, the detection signal should be minimized (i.e., agent gets farther), while for chasing

a target, the anomaly signal should be maximized (i.e., agent gets closer).

8.3.3. Localization and mapping

Other spatial abilities can be defined on top of the concept of place and basic tasks such

as servoing. Localization (which place is this?) and metrical/topological mapping (which

sequence of actions brings from one place to another?) based on minimal semantics have

been demonstrated by Milford [67] in a bio-plausible setting.

All these tasks form a hierarchy that goes from basic skills to complex behaviors (Fig-

ure 8.1).

Part 2

Learning Models of Robotic Sensorimotor

Cascades

CHAPTER 9

Robot Sensors and Actuators

This chapter introduces the basic notations for describing robot motions and ro-

bot sensors. Three “canonical” robot sensors are described and their dynamics

are derived.

Table 9.1. Symbols used in this chapter

Motion
Q ≤ SE(3) Configuration space.
q ∈ Q Configuration.
R ∈ SO(3) Attitude (orientation).
t ∈ R3 Position.
v ∈ R3 Linear velocity in body frame.
ω ∈ R3 Angular velocity in body frame.
ω̂ ∈ so(3) Angular velocity as a matrix.

Sensors
S (a manifold) Sensel space.
O (a field) Sensor output space (often R).

Images(S) All functions from S to O.
m Inner product tensor on S .
F : R3 → R The field sampled by a field-sampler.
σs > 0 Distance to obstacles in direction s.
µs > 0 “Nearness” (inverse of distance).

Environment statistics
Maps = Shapes× SE(3) Parametrization of the environment.

p ∈ SE(3) Environment pose.
s ∈ Shapes Environment shape.

pT ∈ ProbMeasures(Maps) Training distribution.
Sym(pT) ≤ SE(3) Symmetries of the training

distribution.

140

9.1. ROBOT MOTION 141

9.1. Robot Motion

This section introduces the minimal notation necessary for describing robot kinemat-

ics. General references for robot dynamics are Murray et al. [68], Siciliano et al. [69], and

Springer’s Handbook of Robotics [3]. The best reference for probabilistic sensor modeling is

Thrun et al. [16].

We assume that the underlying dynamics is a rigid body controlled in velocity. Let Q

be the configuration space in which the robot moves. Assume that Q is a subgroup of SE(3),

such as SE(3) itself, SE(2) (planar motion), SO(3) (pure rotations), R3 (pure translations),

or R, for a robot constrained to live on a straight line.

The configuration q ∈ Q can be written as a function of the position t ∈ R3 and the

attitude R ∈ SO(3). The linear velocity v ∈ R3 is a three-dimensional vector, and it is

expressed in the body frame. The angular velocity ω ∈ R3 is also a three-dimensional vec-

tor giving the instantaneous angular velocities around the three principal axes in the body

frame. Using the “hat map” (Definition E.12), the vector is mapped to an antisymmetric

matrix ω̂ ∈ so(3).

LEMMA 9.1 (Kinematics of rigid body). Let the configuration space SE(3) be parametrized

with the position t ∈ R3 and the attitude R ∈ SO(3). Then the dynamics are





ṫ = R v,

Ṙ = R ω̂.

REMARK 9.2. Note that both v ∈ R3 and ω ∈ R3 are expressed in the body frame. For

9.2. EXTEROCEPTIVE ROBOT SENSORS 142

example, the constant velocities





v = (1, 0, 0)T,

ω = (0, 1, 1)T.

describe an upward counter clockwise spiral motion.

9.2. Exteroceptive Robot Sensors

We consider sensors composed of a set of sensory elements (sensels) that are physically

related to one another. We write the observations as

y = {ys}s∈S ,

where s is the sensel position ranging over the sensel space S . Sometimes, when there are

already too many indices around, the notation

y = {y(s)}s∈S

is used instead.

EXAMPLE. In the case of a camera, the sensels span the visual sphere S2; s corresponds

to a pixel’s direction, and ys to the intensity measured by that pixel.

The sensel space S interacts with the configuration space Q.

DEFINITION 9.3 (Sensel space). The sensel space S is a manifold on which there is defined

an action of the configuration space. For every q ∈ Q and s ∈ S , we can define the

element q · s ∈ S , and q1 · (q2 · s) = (q1q2) · s.

9.2. EXTEROCEPTIVE ROBOT SENSORS 143

EXAMPLE. For example, for a pan-tilt-roll “robotic” camera, S = S2, Q = SO(3), and

the action q · s corresponds to applying the rotation q to s ∈ S2.

The sensel values returned by the sensors lie in a certain output space O. For simplicity,

we will just assume O to be R; everything can be extended to more complicated output

spaces.

EXAMPLE. For a color camera, O would be the RGB space; for a range-finder, O would

be R+ (distances).

At each time, the sensor returns the observations as a function from S to R. Indepen-

dently of the sensor, this function is called “image”, and the set of all functions from S to R

is written as Images(S). Sometimes, it will be needed to assume that these are continuous

or differentiable.

We assume that there is an inner product defined on Images(S) that allows to measure

the dissimilarity of two observations by the norm induced by the inner product. We use

the tensor notation to represent the inner product. Let ys represent the value of y at the

sensel s ∈ S . We put the index up in “ys” with analogy to covariant tensors. Given two ob-

servations y1 and y2, their inner product 〈〈y1, y2〉〉 can be represented by contracting ys
1, yv

2

with a (0, 2) tensor msv: 〈〈y1, y2〉〉 = msvys
1yv

2. Here, using the Einstein convention, sum-

mation (integration) is assumed over indices that appear twice (up and down). The inner

product allows to define a norm ‖y‖2 = 〈〈y, y〉〉 as well as a conjugation operation y 7→ y∗

by y∗s = msvyv.

9.2.1. Maps and relative sensors

Call “map” everything needed to compute the sensor output, apart from the robot

pose.

9.2. EXTEROCEPTIVE ROBOT SENSORS 144

EXAMPLE. For a range-finder, the map includes the 3D environment structure; for a

camera, it includes the texture, reflectance, and illumination information as well.

We use a construction typical of stochastic geometry [70, 71]: we assume that the set

of maps Maps can be factorized into a “shape” and “pose” component, in the sense that,

for each map, there are many others that share the same shape (including color, texture,

etc.), but they are rototranslated. Therefore, let the map space be factorized as Maps =

Shapes× SE(3), where Shapes is called shape space. An element of Maps is a tuple 〈s, p〉,

with s ∈ Shapes and p ∈ SE(3).

A “relative” sensor is one that can be “carried” by the robot.

DEFINITION 9.4 (Relative sensor). Given a sensel space S , the configuration space Q, and

a shape-pose space Maps = Shapes× SE(3), the map y : Maps× Q× S → O corresponds

to a relative sensor if the following two properties hold for all x ∈ Q:

y(〈s, p〉 , q, s) = y(〈s, xp〉 , xq, s), [P1] (9.1)

y(〈s, p〉 , q, s) = y(〈s, p〉 , qx−1, x · s). [P2] (9.2)

Property P1 corresponds to the fact that there is an intrinsic ambiguity in choosing the

frame of reference. The world and the robot have both a pose with respect to some fixed

coordinate frame, but the output of the sensor depends only of the relative pose q−1 · p (let

x = q−1 in (9.1) to see this).

Property P2 describes the fact that the robot is “carrying” the sensor: ultimately the

output at sensel s depends only on q · s, therefore it is invariant if we apply x to s and

multiply q by x on the right.

9.3. THREE CANONICAL ROBOT SENSORS 145

9.3. Three Canonical Robot Sensors

This section derives the models for three “canonical” robot sensors: field-samplers,

range finders, and cameras (Table 9.2). The goal is understanding in what way these are

similar or dissimilar.

9.3.1. Simplifications in the analysis

There are several simplifications done here and in the next chapter, which only com-

plicate the exposition but would not invalidate the main conclusions.

noiseless The models do not include noise explicitly. All learning procedures are robust

to additive white noise on the observations.

continuous time Real sensors give observations in discrete time; for simplicity, here they are

described by continuous-time ODE s.

continuous space Real sensor have a discrete number of sensels. The models presented here

return observations on some continuous manifold S .

no field-of-view limitations Most sensors has a limited field of view. The dynamics of the

sensels at the border are clearly different than the dynamics inside. For the

next three chapter, this is ignored, while it is dealt with explicitly in Section

13.1.1.

static environment In principle, any model of a sensor should include all possible phenom-

ena that might affect the observations, such as moving objects in the environ-

ment. The models described here only cover fixed environments.

9.3.2. Field-samplers

ODE: Ordinary Differential Equation

9.3. THREE CANONICAL ROBOT SENSORS 146

Table 9.2. Dynamics of canonical robot sensors

S meaning of y(s) dynamics

field sampler R3 intensity of a field ẏs = (s×∇ys)i ωi +∇iysvi

camera S2 luminance of a sensel ẏs = (s×∇ys)i ωi + µs∇iysvi

range-finder S2 distance readings ẏs = (s×∇ys)i ωi + (∇i log ys − s∗i)v
i

These equations are valid for sensels far from occlusions and the border of the field
of view. Note that the dynamics of the three sensors is formally the same for rota-
tions.

DEFINITION 9.5 (Ideal field-sampler). Let the sensels space be S = R3. The sensor y is a

field-sampler if there exists a field F : R3 → R such that

ys = F (t + R s),

where t ∈ R3 and R ∈ SO(3) are the sensor position and attitude.

The field-sampler is general enough to represent olfactory and temperature sensors

(see, e.g., [72, 73]).

PROPOSITION 9.6 (Dynamics of field-samplers). The dynamics of a field-sampler are bilin-

ear in y and the sensor velocities v, ω:

ẏs = (∇iys)vi + (s×∇ys)iω
i. (9.1)

PROOF. The derivative of the observations are given by

ẏs = ∇F|z=t+Rs · (Rv + Rω̂s), (9.2)

where we used the fact that ṫ = Rv and Ṙ = Rω̂ (Lemma 9.1). We want to write ∇F as

a function of y. Note that, inverting the sensor model, we obtain F (z) = y(RT(z − t)).

Taking the derivative of that relation, we obtain∇F · x = ∇y|s=RT(z−t) ·RTx. Substituting

9.3. THREE CANONICAL ROBOT SENSORS 147

in (9.2), we obtain

ẏs = ∇y|s=RT(z−t)R
T(Rv + Rω̂s)

(Because RT = R−1)

= ∇iys(v + ω̂s)i (9.3)

(Using Lemma E.14)

= (∇iys)vi + (s×∇ys)iω
i. (9.4)

�

9.3.3. Range finders

Each reading of an ideal range finder measures the distance from a an origin point (in

R3) to the closest obstacle in a certain direction (in S2). Real range finders have very rich

noise models [16].

PROPOSITION 9.7. Let ys be the range reading (distance to the obstacle in direction s). Then

the dynamics of ys are

ẏs = (∇i log ys − s∗i)v
i + (s×∇ys)i ωi. (9.5)

PROOF. (This proof is due to Shuo Han) The model for the rotation part is analogous

to the field-sampler and camera. Hence we are only concerned in proving the result for

translation. For clarity, we use the more widespread notation, and let the range readings

be σ (rather than y). Write σ = σ(s, t) as a function of the direction s and the robot posi-

tion t ∈ R3. Then we have to prove that

∂

∂t
σ(s, t) = ∇ log σ(s, 0)− sT.

9.3. THREE CANONICAL ROBOT SENSORS 148

Without loss of generality, we can assume we are computing the derivative at t = 0. In a

neighborhood of 0, it holds that

‖t + σ(s)s‖ = σ

(
t + σ(s)s
‖t + σ(s)s‖ , 0

)
, (9.6)

as can be seen by geometric inspection of Fig. 9.1. The proof is based on the implicit

function theorem applied to the relation (9.6). Define the function n(v) : R3 → R3 as the

vector v normalized by its module: n(v) , v/‖v‖. Then the following holds:

F(σ, s, t) = ‖t + σ(s)s‖ − σ(n(t + σ(s)s), 0) = 0.

We can compute the derivative ∂
∂t σ(s, t) using the implicit function theorem applied to F:

∂σ

∂t
=

(
∂F
∂σ

)−1 ∂F
∂t

.

To this end, we first recall that ∂
∂v‖v‖ = vT

‖v‖ , and we compute the derivative of n(v) as

∂

∂v
n(v) =

∂

∂v
v
‖v‖ =

I
‖v‖ + v

∂

∂v
1
‖v‖ =

I
‖v‖ + v

∂

∂v
1
‖v‖ =

I
‖v‖ −

v
‖v‖2

∂

∂v
‖v‖

=
I
‖v‖ −

v
‖v‖2

vT

‖v‖ =
1
‖v‖

(
I − vvT

‖v‖2

)
=

1
‖v‖

(
I − n(v)n(v)T

)
.

environment

s

t

σ(s, t)

0

Figure 9.1. Geometry of range-finder sensing, used in the proof for Proposition 9.7.

9.3. THREE CANONICAL ROBOT SENSORS 149

We use the shortcut x = t + σ(s)s, and σ0(s) = σ(s, 0).

∂F
∂t

=
xT

‖x‖ −∇uσ0(u)(1− uuT)|u=n(x)
1
‖x‖

(
I − n(x)n(x)T

)
.

For the other, we simply obtain ∂F
∂σ = ∂F

∂p s. We compute ∂σ
∂t :

∂σ

∂t
= −∂F/∂p

∂F/∂σ
= −

xT

‖x‖ −∇uσ0(u)(1− uuT)|u=n(x)
1
‖x‖
(

I − n(x)n(x)T)
(

xT

‖x‖ −∇uσ0(u)(1− uuT)|u=n(x)
1
‖x‖ (I − n(x)n(x)T)

)
s

(Simplifying the ‖x‖.)

= −
xT −∇uσ0(u)(1− uuT)|u=n(x)

(
I − n(x)n(x)T)

xTs−∇uσ0(u)(1− uuT)|u=n(x) (I − n(x)n(x)T) s
.

This expression is valid in a neighborhood of t = 0. We now compute the limit as t → 0.

We have

x → σ(s)s, ‖x‖ → σ(s), n(x)→ s.

Substituting all of these, we obtain

∂σ

∂t
= − σ(s)sT −∇sσ0(s)(1− ssT)

(
I − ssT)

σ(s)sTs−∇sσ0(s)(1− ssT) (I − ssT) s
.

Using the fact that (I − ssT)s = 0, and∇sσ0(s)(1− ssT) = ∇sσ0(s) (the gradient is tangent

to s), we simplify it to

∂σ

∂t
= −σ(s)sT −∇sσ0(s)

σ(s)
=
∇sσ0(s)

σ(s)
− sT = ∇s log σ(s)− sT.

�

The “−s∗i ” term means that if the velocity v is in the direction on s, then the range

decreases (the remaining nonlinear term ∇i log σs is less intuitive).

9.4. TRAINING AND ENVIRONMENT STATISTICS 150

9.3.4. Vision sensors

In general, the sensel space of a camera is S = R3× S2: each pixel captures the light ar-

riving to a particular focus point (in R3) from a particular direction on the unit sphere (S2).

For simplicity, we consider a central camera with only one focus point, so that the sensel

space is just S = {0} × S2.

The physics of light scattering can be quite complicated. The following definition is

applicable only if the surfaces have a Lambertian light model, far from occlusions, and

considering a static world. See Soatto [74] for a formal definition that takes into account

occlusions and shading.

PROPOSITION 9.8. Let ys, s ∈ S2, be the luminance signal captured by the camera. Let µs be

the nearness, the inverse of the distance in direction s. Then the dynamics of y are

ẏs = µs∇iysvi + (s×∇ys)iω
i. (9.7)

Note that the nearness µ is a hidden state for the dynamics. This hidden state has a

dynamics of its own, which is given by the range-finder dynamics (9.5).

9.4. Training and Environment Statistics

In identification it is often necessary to impose certain observability conditions on the

data that make the system identifiable. In this context, these conditions correspond to

various constraints on the geometry and the statistics of the environment, as well as the

exploration behavior of the agent, which is summarized by the training distribution pT.

DEFINITION 9.9 (Training distribution). The training distribution

pT ∈ ProbMeasures(Maps× Q)

9.4. TRAINING AND ENVIRONMENT STATISTICS 151

is the distribution over maps and poses experienced by the agent during the learning

phase.

The symmetries of this training distribution summarize whether the agent has had a

“uniform” exploration of the environment.

DEFINITION 9.10. Define the symmetry group of pT as the subgroup Sym(pT) of the con-

figuration space Q such that, for all g ∈ Sym(pT),

pT(〈s, p〉 , q) = pT(〈s, g · p〉 , q).

EXAMPLE 9.11. Consider a planar robot (Q = SE(2)). If we believe that the robot

experience did not privilege one particular orientation over the others, then we would

set Sym(pT) to be the group of planar rotations SO(2).

Whether the training distribution was “symmetric enough” depends on what sensor

the robot is using. For example, Sym(pT) = SO(2) would be enough for making the sta-

tistics of a 2D range-finder uniform across the field of view, but not if the sensor was a 3D

range-finder. This is formalized by the concept of a “mixing” distribution.

DEFINITION 9.12 (Mixing distribution). Consider two couples of sensels (s1, v1), (s2, v2),

where s1, v1, s2, v2 ∈ S . Let d be the metric on the manifold S . We call the training dis-

tribution mixing for S if d(s1, v1) = d(s2, v2) implies that there exists a g ∈ Sym(pT) such

that (s2, v2) = (g · s1, g · v1).

subgroup: A subset of a group that forms a group under the same operation. See Defini-

tion C.5.

9.4. TRAINING AND ENVIRONMENT STATISTICS 152

If the distribution is mixing, the statistics of the observations are easy to compute.

These are mainly technical lemmas that are needed in the successive chapters.

PROPOSITION 9.13. For a mixing training distribution, the expectation of any function of

two sensels s, v ∈ S is only a function of their distance; for all functions φ : O× O → R, we can

write E{φ(ys, yv)} as ϕ(d(s, v)) for some function ϕ : R+
• → R.

PROOF. The proof consists in showing that E{φ(ys, yv)} has the same value for any

two couples of sensels (s1, v1), (s2, v2) that have the same distance. Write the expectation

9.4. TRAINING AND ENVIRONMENT STATISTICS 153

for (s2, v2) by showing the dependence of y on the pose q and the world 〈s, p〉:

E{φ(ys2 , yu2)} = E{φ(y(〈s, p〉, q, s2), y(〈s, p〉, q, v2))}

(By assumption, s2 = xs1 and u2 = xv1 for some x ∈ Sym(pT).)

= E{φ(y(〈s, p〉, q, xs1), y(〈s, p〉, q, xv1))}

(Because this is a relative sensor, property P2 holds.)

= E{φ(y(〈s, p〉, qx, s1), y(〈s, p〉, qx, v1))}

(Now using property P1 applied to (qx)−1.)

= E{φ(y(〈s, (qx)−1 p〉, (qx)−1 qx, s1),

y(〈s, (qx)−1 p〉, (qx)−1 qx, v1))}

(Simplifying, and using the fact that (qx)−1 = x−1q−1.)

= E{φ(y(〈s, x−1q−1 p〉, e, s1), y(〈s, x−1q−1 p〉, e, v1))}

(If x is in the group of symmetries Sym(pT), x−1 is as well.)

(Using the mixing property (Definition 9.12), we can remove x−1.)

= E{φ(y(〈s, q−1 p〉〉, e, s1), y(〈s, q−1 p〉, e, v1))}

(Reusing property P1 in the other direction.)

= E{φ(y(〈s, p〉, q, s1), y(〈s, p〉, q, v1))}

= E{φ(ys1 , yv1)}.

Because E{φ(ys, yv)} has the same value for all couples of sensel with a fixed distance, it

must be a function of only the distance. �

Several corollaries follow.

9.4. TRAINING AND ENVIRONMENT STATISTICS 154

COROLLARY 9.14. For a relative sensor in the mixing case, the covariance of two sensels

is a function of only their distance:

cov(ys, yv) = f (d(v, s)).

PROOF. This follows directly from Proposition 9.13, applied to the function

φ(ys, yv) = (ys −E{ys}) (yv −E{yv}) .

�

COROLLARY 9.15. In a mixing environment, the expected value of the sensels does not

depend on s:

E{ys} = y.

PROOF. Apply Proposition 9.13 with s = u and the function φ(ys, ys) = ys. The expec-

tation depends on s only through d(s, s) = 0, and therefore it is independent of s. �

COROLLARY 9.16. The gradient of y with respect to the sensor space has expected value

0:

E{∇ys} = 0.

PROOF. This is simple consequence of the linearity of the expectation:

E{∇y(s)} = ∇E{y(s)} = ∇y = 0.

�

COROLLARY 9.17. More generally, the expectation of the gradient of any function f :

9.5. RELATED WORK FOR LEARNING DYNAMICS 155

Figure 9.1. Example of nonmonotone environment.

O→ O of the observations is 0:

E{∇ f (ys)} = 0.

We define a property of the environment useful in the future.

DEFINITION 9.18 (Monotone environment). The environment is monotone if the covari-

ance of the values of two sensels is a monotone function of the distance between the

sensels.

Not all environments are monotone. It is true in general that the covariance reaches the

maximum when the distance is 0, however, then it is not always monotonically decreasing.

Usually that means that there is some structure in the environment. Figure 9.1 shows a

counter-example: suppose that a robot with a camera is an environment that (on average)

appears periodic on the retina with period ∆θ; then the correlation between pixels will be

an oscillatory function of the distance with period approximately ∆θ.

9.5. Related Work for Learning Dynamics

The main approaches to learning models for dynamical systems are briefly summa-

rized below. The main contribution with respect to previous work is to study models that

are specifically tailored to robotic sensorimotor cascades. The methodological difference is

the effort towards an analytical rather than empirical discussion. We have derived explicit

models for these sensorimotor cascades, therefore we can try to characterize exactly what

is the approximation obtained by the classes of models that will be introduced. Moreover,

9.5. RELATED WORK FOR LEARNING DYNAMICS 156

we look explicitly at the performance for a closed loop behavior (servoing) which will be

characterized analytically. The investigation of the agent’s invariance to representation

nuisance is orthogonal to the class of models chosen, so it could be equally well applied to

all these other works.

9.5.1. The systems/control identification approach

System identification [24, 25] has a long history [75], and there is a complete theory for

linear systems as well as for some limited classes of nonlinear systems; see Verdult [76] for

a tutorial introduction. Identification for “generic” nonlinear systems can be approached

as a generic regression problem using Volterra series [77], which is, very roughly speaking,

the equivalent of a “Taylor expansion” for dynamical systems. Recently system identifi-

cation has been approached with much more complicated models such as Gaussian pro-

cesses [78] (e.g., [27]).

9.5.2. Learning from sensorimotor data

Many works in machine learning used models that work with raw sensory data, and,

to a lesser extent, with sensorimotor data. Deep belief networks have been used to repre-

sent motions and transformations at the pixel level [79–82]. The work by Roberts et al. [83]

about learning optic flow-fields is particularly related to the BGDS models presented in Chap-

ter 9.

9.5.3. Learning generic MDP/POMDP

Markov Decision Processes (MDP) and Partially Observable Markov Decisions Pro-

cesses (POMDP) are dynamical systems with a discrete state space that evolves with arbi-

trary transitions. These dynamics can be learned with spectral methods [84, 85].

9.5. RELATED WORK FOR LEARNING DYNAMICS 157

Predictive State Representations (PSR) [86–89] are an alternative representation for dy-

namical systems, in which, rather than modeling the state explicitly, the dynamics is rep-

resented by a series of tests (i.e., observable functions of the state). There is some analogy

with the definition of black box given in Chapter 4.

CHAPTER 10

Learning Sensor Geometry

This chapter considers the problem of recovering the sensor geometry from the

statistics of a set of scrambled sensels. The problem is studied in the context of

camera calibration, and the results are competitive with the state of the art.

The materials in this chapter come from a paper jointly written with Davide

Scaramuzza.

Table 10.1. Symbols used in this chapter

Problem statement
Yij ∈ [−1,+1] Similarity matrix.

f : R+• → [−1,+1] Distance-to-similarity function.
infr(f) > 0 Informative radius of f .

ϕ Generic similarity statistics.
M Target manifold.
S ⊂Mn Solution of the embedding problem.

Performance measures
ρsp Spearman performance measure.
ρ∗sp Normalized Spearman performance.
rad Radius of a point distribution.

Algorithms
SK Shepard-Kruscall algorithm.

SKv+w Proposed algorithm.
SKv Proposed algorithm (without

warping).
Cij Cosine matrix.

S ∈ R3×n Point coordinates stacked in a matrix.
sorted(x) Sorted vector.
order(x) Rank of a vector (Definition A.28).

158

10.1. CALIBRATION BY CORRELATION 159

10.1. Calibration by Correlation

In many applications, from classic photogrammetry tasks to autonomous robotics,

camera calibration is a necessary preliminary step before using the camera data [90]. Cal-

ibration is necessary even for off-the-shelf cameras, as the properties of an optical system

typically differ substantially from the stated manufacturer’s specifications. Extrinsic cam-

era calibration is concerned with recovering the pose (position and orientation) of the cam-

era with respect to another camera, or another reference frame of interest. Intrinsic camera

calibration is concerned with estimating the origin and direction of the line of sight of each

pixel; this information allows us to put into correspondence the image of an object with the

position of the object in the world. Some scientific applications require estimating other

characteristics of the optical system, such as the point-spread function. In this chapter, we

focus on intrinsic camera calibration for central cameras.

In a central camera, the lines of sight of every pixel intersect in a single point. There-

fore, the intrinsic calibration information consists of the direction of each pixel on the visual

sphere (S2). If a camera is noncentral, then one needs to know, for each pixel, also its spatial

position (in R3) in addition to its direction (in S2). A noncentral camera can be approxi-

mated as a central camera only if the displacement of each pixel’s origin is negligible with

respect to the distance to the objects in the scene. This assumption is generally satisfied

in applications such as robotics, but might not be satisfied for more uncommon applica-

tions and optical systems. A general description of how the properties of lenses, mirrors,

and sensors contribute to the geometry of the optical system is outside of the scope of this

chapter; a recent tutorial is given by Sturm et al. [91].

10.1. CALIBRATION BY CORRELATION 160

10.1.1. Established techniques for intrinsic calibration

The most widely used techniques for intrinsic camera calibration (from now on, simply

“calibration”) require the use of a known calibration pattern, and that the cameras optics

can be well represented by a restricted family of models. Several calibration software tools

are available online as open source. The Matlab Calibration Toolbox [92] works for pin-

hole cameras and implements a mix of techniques appeared in the literature [93, 94]. The

model used for pin-hole cameras is parametrized by the center of projection, the focal

length, and radial and tangential distortion, which accounts for the possibility of the image

sensor being not perpendicular to the optical axis. Other calibration toolboxes [95–102] can

be used for calibrating omnidirectional catadioptric cameras, obtained by placing a mirror

on top of a conventional camera, such that the optical axis coincides with the mirror’s

axis, or with fish-eye cameras (dioptric). The parameters of the model are the center of

projection in image coordinates and the profile of the radial distortion. These methods

are relatively simple to use. In most of them, the user prints out a calibration pattern

consisting of a black and white checkerboard, and collects several pictures of the pattern

from different points of view. A semi-interactive procedure is used to identify the corners

of the calibration pattern. Given this information, the software automatically solves for

the calibration parameters. The algorithms rely on the fact that the pattern is known to

lie on a plane, which allows recovering the parameters of the homography describing the

world-to-image transformation, and that the nonlinear parts of the model (e.g., distortion)

are simple enough that they can be recovered using generic nonlinear optimization.

Recently, there have been several works to improve on these techniques, to make them

more flexible by enlarging the family of optics considered, or making the calibration pro-

cedure more convenient. Grossberg and Nayar [103] describe a method for calibrating an

10.1. CALIBRATION BY CORRELATION 161

arbitrary imaging system, in which the pixels are allowed to have an arbitrary configura-

tion on the visual sphere, that is based on an active display. Espuny and Gil [104] describe

a technique that does not require a known image pattern, but is based on known sensor

motion.

10.1.2. Calibration by correlation

We describe an approach to intrinsic camera calibration based exclusively on low-level

statistics of the raw pixel streams, such as the inter-pixel correlation. To the best of our

knowledge, Grossmann et al. [105] were the first to propose this idea for the problem of

camera calibration, albeit they were inspired by work done in developmental robotics and

related fields [106–108].

The basic premise is that the statistics of the raw pixel stream contain information about

the sensor geometry. Let yi(t) be the luminance perceived at the i-th pixel at time t. If we

compare the sequences {yi(t)}t and {yj(t)}t for the i-th and j-th pixel, we expect to find

that they are more similar the closer the two pixels are on the visual sphere. The geome-

try of the sensor can be recovered if one can find a statistics of the two sequences that is

precisely a function of the pixels distances. More formally, let si ∈ S2 be the direction of

the i-th pixel on the visual sphere, and let d(si, sj) be the geodesic distance on the sphere

between the directions si and sj. Let ϕ : RT ×RT → R indicate a real-valued statistics

of two sequences of length T. For example, the statistics ϕ can be the sample correlation,

the mutual information, or any other information-theoretical divergence between two se-

quences, such as the “information distance” [105]. Define the similarity Yij between two

pixels using ϕ:

Yij = ϕ({yi(t)}t, {yj(t)}t).

10.1. CALIBRATION BY CORRELATION 162

The assumption that must be verified for the method to work, which we will call the mono-

tonicity condition, is that the similarity is a function f of the pixel distance:

Yij = f (d(si, sj)), (10.1)

and that this f is monotonic, therefore, invertible.

Grossmann et al. assume to know the function f , obtained with a separate calibration

phase, by using a sensor with known intrinsic calibration experiencing the same scene

as the camera being calibrated. Therefore, using the knowledge of f , one can recover

the distances from the similarities: d(si, sj) = f−1(Yij). They describe two algorithms for

recovering the pixel positions given the inter-pixel distances. The first algorithm is based

on multidimensional scaling (which we will recall in the following sections) and solves for

all pixel directions at the same time. The authors observe that this method is not robust

enough for their data, and propose a robust nonlinear embedding method, inspired by

Sammon [109] and Lee et al. [110]. This second algorithm is iterative and places one pixel

per iteration on the sphere, trying to respect all constraints with previously placed points.

Compared with traditional calibration methods, the “calibration by correlation” ap-

proach is attractive because it does not require a parametric model of the camera geom-

etry, control of the sensor motion, or particular properties of the scene. However, the

results reported by Grossmann et al. do not compare favorably with traditional methods.

The authors focus their quantitative analysis mainly on the accuracy of the estimation and

inversion of the function f . They find that, for the information distance, f is reliably in-

vertible only for d(si, sj) ≤ 30°.* For large field of view, the estimated distributions appear

*Compare Fig. 6 in [105], which shows the graph of f as a function of distance; and
Fig 8ab, which shows the error for estimating f−1.

10.1. CALIBRATION BY CORRELATION 163

significantly “shrunk” on the visual sphere.† Moreover, they find that, in practice, the

function f is sensitive to the scene content; in their data, they find that applying the func-

tion f−1 estimated with a calibration rig to the data taken from a different camera leads to

over-estimation of the angular distances.‡

We start from the same premise of Grossmann et al., namely that it is possible to find

a statistics of the pixel stream that depends on the pixel distance. However, rather than

assuming the function f known, we formulate a joint optimization problem, in which we

solve for both the directions {si} and the function f . In this way, there is no need for a

preliminary calibration phase with a sensor of known geometry. However, the problem

becomes more challenging, requiring different analytic and computational tools.

Section 10.2 gives a formal description of the joint optimization problem. Section 10.3

discusses the conditions under which one can expect a monotonic relation between pixel

distance and pixel statistics. We show that, if the camera undergoes uniform random mo-

tion, then necessarily all pairwise statistics between pixel values must depend on the pixel

distance only. This suggests that a good way to collect data for camera calibration is to

wave it around as randomly as possible, a theory we verify in practice.

Section 10.4 gives an observability analysis of the problem. The observability depends

both on the manifold’s local geometric properties (curvature) as well as on global topologi-

cal properties (connectedness). In Rm, the scale is not observable, but, surprisingly, it is

observable in S2 and other spaces of nonzero curvature, which makes the problem more

constrained than in Euclidean space.

Section 10.5 discusses the performance measures that are adequate for the problem.

†See Section 4.4.1 and Fig. 13 in [105]. Note the shrinkage of the distribution (no quan-
titative measure is given in the paper).

‡See Section 4.4.2 in [105].

10.2. NONMETRIC EMBEDDING 164

The Procrustes error (i.e., alignment up to rotations) is an intuitive choice, but it is not ad-

missible because it is not invariant to all symmetries of the problem. We use the Spearman

score as an admissible and observable performance measure.

Section 10.6 describes our algorithm, which is an extension of the classical Shepard-

Kruskal (SK) algorithm [111–114]. The major extension is an extra step necessary to recover

the correct scale when it is observable; this step is critical for accurate calibration.

Section 10.7 discusses the experimental results for the case of camera calibration. The

algorithm is evaluated for three different cameras: a pin-hole (45° FOV), a fish-eye (150°

FOV), and an omnidirectional catadioptric camera (360°× 100° FOV). The results obtained

are comparable with those obtained using conventional methods.

10.2. Nonmetric Embedding

Let M be a Riemannian manifold, and let d be its geodesic distance. We formalize the

problem of metric embedding from nonmetric measurements as follows.

PROBLEM 10.1. Given a symmetric matrix Y ∈ Rn×n, estimate the set of points S =

{si}n
i=1 in a given manifold M, such that Yij = f (d(si, sj)) for some (unknown) monotonic

function f : [0, ∞)→ R.

Without loss of generality, we assume the similarities to be normalized so that −1 ≤

Yij ≤ 1 and Yii = 1. This implies f (0) = 1, and that f is nonincreasing. For camera

calibration, the manifold M will generally be the unit sphere S2; however, we formulate

a slightly more generic problem. We will be especially interested in showing how the

observability of the problem changes if M is chosen to be S1 (the unit circle) or Rm instead

of S2.

If the function f was known, it would be equivalent to know directly the matrix of

distances. The problem of finding the positions of a set of points given their distance

10.2. NONMETRIC EMBEDDING 165

matrix is often called “metric embedding”. In the Euclidean case (M = Rm), the problem

is classically called Multidimensional Scaling (MDS), and was first studied in psychometry

in the 1950s. Cox and Cox [115] describe the statistical origins of the problem and give an

elementary treatment, while France and Carroll [114] give an overview of the algorithmic

solutions.

The scenario described in Problem 10.1 is sometimes called nonmetric multidimen-

sional scaling. The word “nonmetric” is used because the metric information, contained

in the distances d(si, sj), is lost by the application of the unknown function f . In certain

applications, it is not important for the reconstructed points to be recovered accurately. For

example, in psychometry, one might use these techniques essentially for visualization of

high-dimensionality datasets; in that case, one only wants a topologically correct solution.

If that is the case, one can just choose an arbitrary f̃ different from the true f ; as long as

f (0) = f̃ (0), the results will be topologically correct. However, in the camera calibration

setting, we are explicitly interested in obtaining a metrically accurate solution.

Problem 10.1 is a chicken-and-egg problem in the two unknowns f and {si}n
i=1: know-

ing the function f , one can estimate the distances as f−1(Yij), and use standard MDS to

solve for {si}n
i=1; conversely, knowing the distances, it is trivial to estimate f . But is it

possible to estimate both at the same time? To the best of our knowledge, there has not

been any claim about whether accurate metric embedding from nonmetric measurements is

possible. In this paper, we will show that the answer depends on the properties of the

manifold M. Specifically, while for Rm the scale is not observable, we show that accurate

metric embedding is possible for S2. Consequently, it is possible to calibrate a camera from

any statistics that respects the monotonicity condition (10.1), even if the function f is a

priori unknown.

We briefly mention several other problems that can be formalized in the same way, and

10.3. WHEN IS SIMILARITY A FUNCTION OF THE SENSELS DISTANCE? 166

that will motivate us to solve the problem in a slightly more generic way than what strictly

needed for camera calibration. In developmental robotics and similar fields [106–108], a

common scenario is that an agent starts from zero knowledge of its sensors, and its first

concern is to recover the geometry of the sensor (possibly a camera, but also a range-finder

or other robotic sensor) by considering simple statistics of the sensor streams. In sensor net-

works (see, e.g., [116]AC: add other in grossman), one basic problem is localizing the nodes

in space based on relative measurements of wi-fi strength. Assuming the signal is a func-

tion of the distance, we arrive to the same formalization, using Rn as the target manifold.

More generally, this formalization covers many embedding problems in machine learning,

where the data is assumed to be in a metric space, but the available similarities, perhaps

obtained by comparing vectors of features of the data, cannot be interpreted directly as

distances in the original metric space.

10.3. When is Similarity a Function of the Sensels Distance?

The basic assumption of our method is that it is possible to find a statistics of the pixel

luminance that satisfies the monotonicity condition (10.1). We state a result that guarantees

that any pairwise statistics is asymptotically a function of the distance between the pixels, if

the camera undergoes uniformly random motion, in the sense that the camera’s orientation

(a rotation matrix R) is uniformly distributed in SO(3) (the set of rotation matrices). This

result is a particularization of Proposition 9.13.

PROPOSITION 10.2. If the probability distribution of the camera orientation R is uniform

in SO(3), the expectation of a function of the luminance of two pixels depends only on the pixel

distance: for all functions g : R×R→ R, there exists a function f : R+ → R, such that

E{ g(y(si), y(sj)) } = f (d(si, sj)).

10.3. WHEN IS SIMILARITY A FUNCTION OF THE SENSELS DISTANCE? 167

PROOF. The luminance at pixel s ∈ S2 at time t can be written as

y(s, t) = h(t(t), R(t) s),

where t ∈ Rm is the sensor position, R ∈ SO(3) is the sensor orientation, and h : R3×S2 →

R is a function that describes the environment. In the following, we drop the dependence

on time.

Consider two pairs of pixels (si, sj) and (sk, sl) having the same distance:

d(si, sj) = d(sk, sl).

We will show that this constraint is enough for the pairwise statistics to be equal:

E{g(y(si), y(sj))} = E{g(y(sk), y(sl))}. (10.1)

Because there is no other relation between the two pairs of pixels other than their distance,

the statistics g depends only on the distance.

If the probability distribution of R is uniform on SO(3), that is, it is the Haar mea-

sure SO(3), then it is also invariant to a rotation (i.e., left/right actions): for all functions z

and rotations X, E{z(R)} = E{z(RX)}.

In our case, we have that for any X,

E{g(y(si), y(sj))} = E{g(h(t, R si), h(t, R sj))}

= E{g(h(t, R Xsi), h(t, R Xsj))}. (10.2)

Because d(si, sj) = d(sk, sl), there exists an X such that

sk = Xsi, sl = Xsj.

10.3. WHEN IS SIMILARITY A FUNCTION OF THE SENSELS DISTANCE? 168

By substituting this X in (10.2) we obtain (10.1). �

In particular, this is valid for the correlation between pixel values, as the correlation can

be written as corr(yi, yj) = E{g(y(si), y(sj))} with g(y(si), y(si)) = (y(si)− y)(y(si)− y).

Most other similarity statistics can be written in the same fashion.

When is similarity monotonic?

Proposition 10.2 ensures that (10.1) holds for some function f , but it does not ensure

that such function f is monotone. To find conditions that guarantee that f is monotone

it is necessary to introduce some model of the environment. Essentially, f might not be

monotone if there is some long-range “structure” in the environment. We describe an

artificial counterexample in which f is not monotone.

EXAMPLE 10.3. Imagine a room, shaped like a parallelepiped with the base of size L×

L and height H � L (Fig. 10.1). Suppose an omnidirectional camera is suspended in

the middle of the room, equidistant from the walls, ceiling, and floor. From that posi-

tion, the images of ceiling and floor gets projected on the visual sphere in an area con-

tained in a spherical cap of radius δ = 2 arccos(H/
√

H2 + L2). For example, for L = 5 m

and H = 10 m, we obtain δ ' 28°. This implies that, if two pixels observe the ceiling at

the same time, they cannot be more than 28° apart. Assume that the floor and the ceiling

are painted of a uniform white, and the walls have very intricate black-white patterns,

well approximated by white noise. We let the camera undergo random rotational motion,

and we compute the correlation of the pixel luminance. Consider now two pixels at dis-

tance d(si, sj) = 60°. Note that any two pixels at this distance will never look both at the

ceiling at the same time, because the apparent size of the ceiling is δ = 28°. Hence, there

are three possibilities: (1) they are both looking at the walls; (2) one is looking at the walls,

another at the ceiling; (3) one is looking at the walls, another at the floor. In all cases, one is

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 169

looking at the white noise on the walls. Therefore, the correlation of two pixels streams at

distance 60° is 0: f (60°) = 0. Consider now two pixels at distance 180° (one exactly oppo-

site to the other on the visual sphere). For these pixels, there are two possibilities: (1) they

are both looking at the walls; (2) one looks at the ceiling, the other at the floor. Because

floor and ceiling are the same color, the luminance of these two pixels has a slight positive

correlation: f (180°) > 0. Therefore, the function f is not monotonic, because f (0°) = 1,

f (60°) = 0, and f (180°) > 0.

H

L
white floor

walls with
white noise texture

suspended camera

white ceiling

Figure 10.1. Environment used in Example 10.3.

10.4. Observability of Sensor Geometry Reconstruction

A symmetry of an estimation problem is any joint transformation of the unknowns (in

this case, the directions S = {si} and the function f) that does not change the observa-

tions (in this case, the similarities Yij). Studying the observability of the problem means

describing what symmetries are present. In this section, we first give a tour of the symme-

tries of this problem, before presenting the main result in Proposition 10.8.

10.4.1. Isometries

It is easy to see that the similarities Yij are preserved by the isometries of the domain M.

10.4.2. Sliding

Define the “informative radius” of f as follows.

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 170

sb
sa

sc

(b) Sliding (d) Wiggling: an extreme case, with only three points.(a) Isometries (c) Warping

original
solution

perturbed
solution

Yij a b c

a 1 0.5 0.2

b 0.5 1 0

c 0.2 0 1 sa

sb

sc

140°

similarity constraints two different, valid solutions

150°

80°

130°

40°

180°

sb
sa

sc

(b) Sliding (d) Wiggling: an extreme case, with only three points.(a) Isometries (c) Warping

original
solution

perturbed
solution

Yij a b c

a 1 0.5 0.2

b 0.5 1 0

c 0.2 0 1 sa

sb

sc

140°

similarity constraints two different, valid solutions

150°

80°

130°

40°

180°

Figure 10.1. Symmetries of the estimation problem, illustrated in the case M = S1. (a)
Isometries (for S1, rotations and reflections) are unobservable because they preserve
distances between points. (b) If f is non invertible on the whole domain, disconnected
components of S can move isometrically independently from each other; we call this
“sliding”. (c) In manifolds with zero curvature (e.g., Rn and S1, but not S2) the scale is
not observable; formally, a linear warping (Definition 10.5) does not violate the prob-
lem constraints. (d) If the set of points is finite, the constraints are not violated by small
perturbations of the points, called “wigglings”.

DEFINITION 10.4. For a function f : R+
◦ → R, let infr(f) be the maximum r such that f is

invertible in [0, r].

If the set S has two components distant more than infr(f) from each other, one compo-

nent can be isometrically moved independently of the other, without changing the obser-

vations (Fig. 10.1b); we call this “sliding”.

10.4.3. Linear warping

We define a linear warping as a map that scales the interpoint distances uniformly by a

constant.

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 171

DEFINITION 10.5. A linear warping of M is a map ϕα : M→M such that, for some α > 0,

for all s1, s2 ∈M,

d(ϕα(s1), ϕα(s2)) = α d(s1, s2),

If a linear warping exists, then it is a symmetry of the problem. In fact, suppose

that (f , {si}) is a solution of the problem. Construct another solution (f ′, {s′i}), with f ′ =

1
α f and s′i = ϕα(si). We would not be able to distinguish between these two solutions, as

they would give the same observations.

More generally, we could define “generic warpings” as follow.

DEFINITION 10.6. A generic warping is a map ϕm : M → M such that d(ϕ(s1), ϕ(s2)) =

m(d(s1, s2)), for some monotonic function m : R+
◦ → R+

◦ .

10.4.4. Wiggling

A peculiar aspect of Problem 10.1 is that the unknowns S = {si}n
i=1 live in a contin-

uous space M, but the observations Yij = f (d(si, sj)) are actually equivalent to a set of

discrete inequalities, a fact which is very well explained by Agarwal et al. [117]. In fact, be-

cause the function f is completely unknown (the only constraint being its monotonicity),

all that we can infer about the inter-point distances from the matrix Y is their ordering: for

all (i, j), (k, l), if Yij R Ykl , then we can infer d(si, sj) Q d(sk, sl), but nothing more. There-

fore, the sufficient statistics in the matrix Yij is the ordering of the entries, not their specific

values. This raises the question of whether precise metric reconstruction is possible, if the

available observations are a set of discrete inequalities. In fact, given a point distribu-

tion {si} of n points, the position of the generic point sj is constrained by n2 inequalities

(many of which redundant). Inequalities cannot constrain a specific position for sj in the

manifold M; rather, they specify a small finite area in which all constraints are satisfied.

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 172

Therefore, for each solution, an individual point has a small neighborhood in which it is

free to “wiggle” without violating any constraint. In general, we call these perturbations

“wiggling”:

DEFINITION 10.7. A wiggling of a set {si} ⊂ M is a map ϕ : M → M that preserves the

ordering of the distances: for all i, j, k, l:

d(si, sj) < d(sk, sl)⇔ d(ϕ(si), ϕ(sj)) < d(ϕ(sk), ϕ(sl)).

The size of the allowed wiggling decreases with the density of points; for n points

uniformly distributed in M, one can show that the average wiggling space is in the order

of o(1/n) per single point (i.e., keeping the others fixed). In the limit as the points become

dense, it is possible to show that wiggling degenerates to rigid linear warpings. For very

sparse distributions, the effect of wiggling can be quite dramatic (Fig. 10.1d).

10.4.5. Main result

The following proposition establishes which of the previously described symmetries

are present in the problem, as a function of the geometric properties of the space M, the

point distribution, and the function f .

PROPOSITION 10.8. Assume the set S = {si} is an open subset of M whose closure has only

one connected component. Let the available measurements be Yij = f (d(si, sj)), where f : R+
◦ →

R is a monotone function with infr(f) > 0. Then:

• If M has nonzero curvature (e.g., S2), then it is possible to recover f exactly, and S up to

isometries.

• If M has zero curvature:

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 173

Table 10.2. Observability classes

class space curvature extra assumptions symmetries

A S≥2 > 0 - wigglings, isometries

B S1 0 rad(S) + infr(f) ≥ 2π wigglings, isometries

C S1 0 rad(S) + infr(f) < 2π
wigglings,

isometries, linear
warpings

D Rn 0 -
wigglings,

isometries, linear
warpings

A HnHn < 0 - wigglings, isometries

– If M is simply connected (e.g., Rm), then it is possible to recover f only up to scale,

and S up to isometries plus a “linear warping” (Definition 10.5).

– If M is not simply connected (e.g., S1), the scale can be recovered if infr(f) is large

enough.

For S1, this happens if

rad(S) + infr(f) ≥ π, (10.1)

where rad(S) is the radius of S (Definition E.2).

The observability breaks down as follows:

• “Sliding” occurs if S has multiple components with Hausdorff distance greater than infr(f).

• If S has a finite number of points, there is a “wiggling” uncertainty, in the order of o(1/n)

for uniform distributions.

The results are summarized in Table 10.2 and the various observability classes are la-

beled A–D for later reference. We note that the observability results depend both on the

local geometrical properties of the space (curvature) as well as the global topological properties

(connectedness).

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 174

10.4.6. Proof overview

The starting point is considering that the largest unobservable transformations are the

set of wigglings (Definition 10.7), because they are exactly those that keep constant the

order of the inter-points distances, which is the sufficient statistics for the estimation prob-

lem. All other symmetries—isometries (Definition E.3), linear warping (Definition 10.5),

generic warping (Definition 10.6) are a specialized version of wigglings. Moreover, an

isometry is a linear warping with α = 1, and a linear warping is a specialization of a

generic warping. In summary, just by the definition of the various transformations, we

have the following chain of inclusions:

isometries ⊂
linear

warpings
⊂

generic

warpings
⊂ wigglings.

Isometries and warpings are very structured transformations, but wigglings are in general

discontinuous. The next step in the analysis is understanding in what cases the set of wig-

glings is more structured. Proposition 10.9 shows that, as the number of points becomes

large (in the limit, infinite), wigglings are constrained to be generic warpings. Thus, if S

has an infinite number of points, we have the following:

isometries ⊂
linear

warpings
⊂

generic

warpings

n→∞
= wigglings.

With this assumption, we now can study a much more well-behaved set of transforma-

tions. Proposition 10.10 gives the unexpected result that, in general, there exist no generic

nonlinear warpings (Definition 10.6), a result that does not depend on the manifold yet

(i.e., we did not consider topology or curvature). Intuitively, there is no way to deform the

distances in a nonlinear way that maintains the consistency of all constraints. The proof

is based on an elementary argument based on the fact that any generic warping must pre-

serve geodesics (Lemma 10.11). Thus, only by assuming that the number of points is large,

and with no assumptions on the manifold, we can conclude that

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 175

isometries ⊂
linear

warpings
=

generic

warpings
= wigglings.

This means that the largest group of symmetries of the problem is composed by linear

warping. At this point, we have to consider the property of the manifold. Proposition 10.12

shows that, if the manifold has nonpositive curvature, then all linear warpings are neces-

sarily isometries (the scaling factor is 1):

isometries

M

curved
=

linear

warpings
=

generic

warpings
= wigglings.

This means that for the sphere S2 and the hyperbolic plane, isometries are the largest group

of symmetries. This is surprising, because it means that we can recover the scale, even though

the measurements available are completely non-metric. Instead, for Euclidean spaces, it

is easy to see that a linear warping is always unobservable. Finally, Proposition 10.13

discusses the special case of the circle. Because the topology is not simply connected,

it is possible to establish additional constraints: intuitively, an arbitrary warping is not

allowed, because if the distribution S is inflated too much, the tails will “crash” into each

other and violate the problem constraints.

10.4.7. Proof details

PROPOSITION 10.9. If S is a connected open set, all wigglings are generic warpings.

PROOF. The intuition is that a non-trivial wiggling is possible only if there are “gaps”

between the points; as the points get denser, the gaps close and the wiggling degenerates

to a warping.

Note that the definition of wiggling does not imply any particular property of the map

ϕ such as continuity. It is a map defined only the subset S of M. There is no information of

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 176

how ϕ behaves outside of S. However, if S is an open subset of M, then necessarily ϕ must

have certain regularities.

First of all, it should necessarily be a continuous map. This can be seen directly from

the relation d(si, sj) < d(sk, sl) ⇔ d(ϕ(si), ϕ(sj)) < d(ϕ(sk), ϕ(sl)) if we let si = sk and

consider two sequences s(m)
j

m→∞→ si and s(m)
l

m→∞→ sk.

Consider two pairs of points si, sj at distance δ = d(si, sj). Consider two other pairs

of points sk, sl with the same relative distance δ = d(sk, sl) — because the set is open,

and the distance is continuous, sk can be found in a neighborhood of si and sj in a neigh-

borhood of sl . Because d(si, sj) = d(sk, sl), the wiggling direction constraint implies that

d(ϕ(si), ϕ(sj)) = d(ϕ(sk), ϕ(sl)). Because sk, sl have no other relation to si, sj other than

their distance, it follows that the distance of two points transformed by ϕ only depends on

their initial distance: d(ϕ(si), ϕ(sj)) = m(d(si, sj)), for some possibly nonlinear function m.

Because ϕ is continuous, this holds for all points in S, therefore ϕ is a generic warping. �

PROPOSITION 10.10. All generic warpings are linear warpings.

PROOF. The proof relies on Lemma 10.11 below, which says that generic warpings

preserve the geodesics. This means that, if the midpoint between A and B is C, then ϕ(C) is

the midpoint between ϕ(A) and ϕ(C). Let d(A, C) = d(C, B) = `. Then d(ϕ(A), ϕ(C)) =

d(ϕ(C), ϕ(B)) = m(`). We can find two different expressions for d(ϕ(A), ϕ(B)):

d(ϕ(A), ϕ(B)) = m(d(A, B)) = m(2`), and

d(ϕ(A), ϕ(B)) = d(ϕ(A), ϕ(C)) + d(ϕ(C), ϕ(B)) = 2m(`).

It follows that m(`) = 1
2 m(2`). Generalize this reasoning to an equal division of the

geodesics in k parts, to derive m(x) = 1
k m(kx), for all x > 0 and integers k ≥ 1. Take

the derivative of both sides with respect to x to obtain m′(x) = m′(kx). For any y > 0, let

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 177

x = y/k > 0, and let k → ∞, to obtain m′(y) = m′(0), which implies that m is a linear

function. �

LEMMA 10.11. A generic warping preserves geodesics. More formally, for A, B ∈ M and

t ∈ [0, 1], let g(A, B, t) be the geodesic between A and B. If ϕ : M → M is a warping, then

g(ϕ(A), ϕ(B), t) = ϕ(g(A, B, t)).

PROOF. As a base case, we prove the statement for the midpoint. Suppose that there

exists a geodesic between A and B. Let C be the midpoint between A and B, with d(A, C) =

d(C, B) = L. Let a = ϕ(A) and b = ϕ(B) be the transformed points. Let c = g(a, b, 1
2) be the

midpoint between a and b, with d(a, c) = d(c, b) = `. Using some elementary properties

of geodesics, we shall derive that ϕ(C) = c.

Because c is the midpoint, the shortest path between a and b goes through c:

d(a, c) + d(c, b) ≤ d(a, x) + d(x, b), for all x.

Write this for x = ϕ(C):

d(a, c) + d(c, b) ≤ d(a, ϕ(C)) + d(ϕ(C), b)

On the right-hand side, substitute d(a, ϕ(C)) = d(ϕ(A), ϕ(C)) = m(d(A, C)), using the

definition of warping. Likewise d(ϕ(C), b) = d(ϕ(C), ϕ(B)) = m(d(C, B)), giving

d(a, c) + d(c, b) ≤ m(d(A, C)) + m(d(C, B)).

The point c is the midpoint, so let ` = d(a, c) = d(c, b), and L = d(A, C) = d(C, B). We

obtain that ` ≤ m(L).

We can do the same computation with A and B. Because C is the midpoint between A

10.4. OBSERVABILITY OF SENSOR GEOMETRY RECONSTRUCTION 178

and B, we have that d(A, C) + d(C, B) ≤ d(A, x) + d(x, B), for all x. Write it for x = ϕ−1(c)

and substitute A = ϕ−1(a) and B = ϕ−1(b) to obtain 2L ≤ d(A, ϕ−1(c)) + d(ϕ−1(c), B) =

d(ϕ−1(a), ϕ−1(c)) + d(ϕ−1(c), ϕ−1(b)) = m−1(d(a, c)) + m−1(d(c, b)) = 2m−1(`), which

gives us ` ≥ m(L). Together with ` ≤ m(L), we conclude that ` = m(L). This means that

d(a, ϕ(C)) = d(ϕ(C), b) = `, and hence ϕ(C) is the midpoint between a and b. Because the

midpoint is unique, it follows that c = ϕ(C).

We have proved that g(ϕ(A), ϕ(B), 1
2) = ϕ(g(A, B, 1

2)). By dividing the original geodesics,

and applying the reasoning above recursively, one can show that g(ϕ(A), ϕ(B), a
2b) =

ϕ(g(A, B, a
2b)) for all integers b ≥ 0 and a ≤ 2b. The set of dyadic rationals a/2b is dense

in [0, 1], and the functions t 7→ g(ϕ(A), ϕ(B), t) and t 7→ ϕ(g(A, B, t)) are continuous, be-

cause they are compositions of continuous functions. If two continuous functions on the

same domain X agree on a dense subset of X, the agree on the whole domain. Therefore,

it holds that g(ϕ(A), ϕ(B), t) = ϕ(g(A, B, t)) for all t ∈ [0, 1]. �

PROPOSITION 10.12. For Sm, m ≥ 2 and the hyperbolic plane, all linear warpings are isome-

tries.

PROOF. This is true for all manifolds with nonzero curvature, but the m-sphere and

the hyperbolic plane admit an elementary proof based on spherical/hyperbolic geome-

try. Firstly, note that a linear warping is a conformal map (Definition E.21) as the Jaco-

bian is uniformly α times an orthogonal matrix. Conformal maps preserve angles between

geodesics.

Now it is time to recall high school facts about spherical geometry: the sides of a spher-

ical triangle are uniquely determined by its angles. The same is true for the hyperbolic

plane [118].

Consider now three points in S and the induced spherical/hyperbolic triangle. Under a

10.5. MEASURING PERFORMANCE 179

linear warping, its internal angles are preserved because a linear warping is conformal. Be-

cause the angles are preserved, the sides of the triangle are preserved as well, and therefore

the distance between points is unchanged. Hence any linear warping is an isometry. �

PROPOSITION 10.13. If M = S1 and rad(S) + infr(f) < 2π, a linear warping with α ≤

(2π − rad(S))/infr(f) is unobservable.

PROOF. (sketch) This can be verified directly; the upper bound on α ensures that the

tails of S do not overlap in the informative range of f . This result does not hold for S2,

where the geometry of the problem constrains linear warpings to be isometries (α = 1). �

10.5. Measuring Performance

The performance of an algorithm must be measured in a way compatible with the

observability of the problem. We expect an error score to be invariant, meaning that it

is conserved by the symmetries of the problem. If a score is not invariant, it is measuring

something that is not possible to estimate. We expect an error score to be complete, meaning

that it is minimized only by the solutions of the problem. If an error score is not complete,

it cannot be used to distinguish solutions from non solutions. Finally, we wish the error

score to be observable, in that it can be computed from the data, without the ground truth.

10.5.1. Distances-based performance measures

In our case, several classical error measures, widely used in other contexts, do not

satisfy all these properties. The Procrustes error is defined as the mean distance between

the solution {si}n
i=1 and the ground truth {si}n

i=1, after choosing the best isometry that

makes the two sets overlap [119].

10.5. MEASURING PERFORMANCE 180

DEFINITION 10.14. The Procrustes error epr is defined as

epr({si}, {si}) , min
ϕ∈Isom(M)

1
n

n

∑
i=1

d(si, ϕ(si)). (10.1)

This error score is unsuitable in our case, because, while it is invariant to isometries, it is

not invariant to the other symmetries, namely linear warpings and wigglings. This means

that, if we are considering an instance of the problem where the scale is not observable,

using the Procrustes error can produce misleading results (we will show this explicitly in

Section ??). Moreover, there is the problem that not all points contribute equally to this

performance measure. When aligning the two points sets, the points near the center of the

distribution will be always more aligned, and the errors will accumulate for the points at

the borders of the distribution. To eliminate this problem, we can consider the error on the

interpoint distances rather than the absolute position of the points.

DEFINITION 10.15. The mean relative error er is the mean error between the inter-point

distances:

er({si}, {si}) ,
1
n2

n

∑
i,j=1
|d(si, sj)− d(si, sj)|. (10.2)

This error function is still invariant to isometries, does not need an optimization prob-

lem to be solved, and all pairs of points contribute equally. Moreover, it can be easily

modified to be invariant to linear warpings: because linear warpings scale the distances

uniformly, we achieve invariance by optimizing over an unknown scale.

DEFINITION 10.16. The mean scaled relative error esr is the relative error after the optimal

warping:

esr({si}, {si}) , min
α>0

1
n2

n

∑
i,j=1
|d(si, sj)− α d(si, sj)|. (10.3)

This is invariant to warpings. However, it is still not invariant to wigglings. To achieve

invariance to wiggling we have to change approach.

10.5. MEASURING PERFORMANCE 181

10.5.2. Spearman-correlation-based performance measures

We introduce the Spearman score: an invariant, complete, and observable score for all

observability classes. It is based on the idea of Spearman correlation, which measures a pos-

sibly nonlinear dependence between two variables, in contrast with the usual correlation,

which can only assess linear dependence. The Spearman correlation is a common tool in

applied statistics, but it is not widely used in engineering. The idea is that, to assess non-

linear relations, we should consider not the value of each datum, but rather their order (or

rank) in the sequence.

DEFINITION 10.17. Let order : Rn → Perm(n) be the function that computes the order (or

rank) of the elements of a vector. For example,

order([2012, 1, 15]) = [2, 0, 1].

DEFINITION 10.18. The Spearman correlation between two sequences x, y is the Pearson

correlation of their order vectors:

spear(x, y) , corr(order(x), order(y)).

LEMMA 10.19. The Spearman correlation detects any nonlinear monotonic relation: spear(x, y) =

±1 if and only if y = g(x) for some monotonic function g.

We use this fact to check whether there exists a monotonic function f such that Yij =

f (d(si, sj)). Given a solution {si}n
i=1, we compute the corresponding distance matrix, and

then compute the Spearman correlation of the distance matrix to the similarity matrix. To

that end, we need to first unroll the matrices into a vector using the operator vec : Rn×n →

Rn2
.

10.6. ALGORITHM 182

Table 10.3. Properties of performance measures

invariant? complete? observable?
obs. class→ A B C D A B C D

Procrustes error (10.1) 7† 7† 7§ 7§ X X 7 7 7

Relative error (10.2) 7† 7† 7§ 7§ X X 7 7 7

Scaled relative error (10.3) 7† 7† 7§ 7§ X X X X 7

Spearman score (10.4) X X X X X X X X X

†: Not invariant to wigglings.
§: Not invariant to linear warping and wigglings.

DEFINITION 10.20. The Spearman score of a solution {si}n
i=1 is the Spearman correlation

between the (flattened) similarity matrix and the (flattened) distance matrix D = [Dij] =

[d(si, sj)]:

ρsp({si}) , |spear(vec(Y), vec(D))|. (10.4)

The Spearman score is invariant to all symmetries of the problem, including wigglings,

which by definition preserve the ordering of the distances. It is also complete because if

ρsp({si}, Yij) = 1, then there exists an f such that Yij = f (d(si, sj)).

If the data is corrupted by noise, ρsp = 1 might not be attainable. In that case, it makes

sense to normalize the score by the score of the ground truth.

DEFINITION 10.21. The Normalized Spearman score is

ρ∗sp({si}, {si}) ,
ρsp({si})
ρsp({si})

. (10.5)

Table 10.3 summarizes the properties of the performance measures discussed.

10.6. Algorithm

We describe an extension of the classic Shepard-Kruskal algorithm (SK) [111–114] that

we call SKv+w (SK variant + warping). The basic idea of SK is to use standard MDS§

§Given an n× n distance matrix D, the best embedding in Rm can be found by solving
for the top m eigenvectors of an n × n semidefinite positive matrix corresponding to a
“normalized” version of D [114, 119].

10.6. ALGORITHM 183

Algorithm 1 The SKv+w embedding algorithm for a generic manifold M.
Input: similarities Y ∈ Rn×n; manifold-specific functions: MDSM, distancesM, initM. Output:

S ∈Mn.

1 for D0 in initM(order(Y)): # Some manifolds need multiple starting points.
2 S0 = MDSM(D0) # Compute first guess by MDS.
3 for k = 1, 2, . . . until sk converged:
4 Dk = distancesM(Sk−1) # Compute current distances.
5 Dk

? = vec−1(sorted(vec(D))[order(vec(Y))]) # Nonparametric fitting and inversion of f .
6 Sk = MDSM(Dk

?) # Embed according to the modified distances.
7 sk = spearman_score(Sk, Y) # Use the Spearman score for checking convergence
8 S? = Sk? , where k? = arg maxk sk # Find best iteration according to the score.
9 if M is Sm, m ≥ 2: # Find optimal warping factor to embed in the sphere.

10 D? = distancesM(S?)
11 α? = arg minα σα

m+1/σα
m+2, where {σα

i } = singular_values(cos(αD?))

12 return MDSM(α?D?) # Embed the warped distances.
13 return S?

M-specific initializations: initRm(oY) , oY; initSm(oY) , {πoY/n2, 2πoY/n2}.

on Yij to obtain a first guess for {si}. Given this guess, one can obtain a rough estimate f̃

of f ; given f̃ , one can apply f̃−1 to Yij to obtain an estimate of the distances Dij; then

one solves again for {si} using MDS. The SK algorithm does not give accurate metric

reconstruction. Our goal was to obtain a general algorithm that could work in all corner

cases of the observability analysis. The algorithm described here will be shown to be robust

across a diverse set of benchmarks on different manifolds, with a vast variation of shapes

of f and noise levels. To this end, we extended the SK algorithm in several ways. In

the following, some parts are specific to the manifold: we indicate by MDSM a generic

implementation of MDS on the manifold M, so that MDSRn is the classical Euclidean MDS,

and MDSSn is the spherical MDS employed by Grossmann et al. [105].

10.6.1. EM-like iterations (lines 3–7 of Algorithm 1)

A straightforward extension is to iterate the alternate estimation of {si} and f in an

EM-like fashion. This modification has also been introduced in other SK variants [114].

This iteration improves the solution, but still does not give metrically accurate solutions.

10.6. ALGORITHM 184

10.6.2. Choice of first guess for the distance matrix (line 1)

Assuming that the similarities have already been normalized (−1 ≤ Yij ≤ 1), the

standard way to obtain an initial guess D0
ij for the distance matrix is to linearly scale the

similarities, setting D0
ij ∝ 1− Yij. This implies that, given the perturbed similarities Y?

ij =

g(Yij) for some monotone function g, the algorithm starts from a different guess and has

a different trajectory. However, because the sufficient statistics order(Y?
ij) = order(Yij) is

conserved, we expect the same solution. The fix is to set D0
ij ∝ order(Yij) (making sure the

diagonal is zero), so that the algorithm is automatically invariant to the shape of f .

10.6.3. Multiple initializations (line 1)

We observed empirically that multiple initializations are necessary for the case of Sm.

In particular, if one scales D0
ij such that 0 ≤ D0

ij ≤ π, all solutions generated have di-

ameter ≤ π; if one scales D0
ij such that 0 ≤ D0

ij ≤ 2π, all solutions have diameter ≥ π.

Extensive tests show that one of the two starting points always allows convergence to the

true solution (the other being stuck in a local minimum). In Algorithm 1 this is represented

by a manifold-specific function initM returning the list of initial guesses for D.

10.6.4. Non-parametric inversion of f (line 5)

We have to find some representation for f , of which we do not know the shape, and

use this representation to compute f−1. In this kind of scenarios, a common solution is to

use a flexible parametric representation for f , such as splines or polynomials. However,

parametric fitting is typically not robust to very noisy data. A good solution is to use

completely non-parametric fitting of f . Suppose we have two sequences {xi}, {yi} which

implicitly model a noisy relation yi = f (xi) + noise for some monotone f . Our goal is

to estimate the sequence { f−1(yi)}. Let sorted({xi}) be the sorted sequence {xi}. Then

non-parametric inversion can be obtained by using the order of {yi} to index into the

10.6. ALGORITHM 185

sorted {xi} array¶:

{ f−1(yi)} ' sorted({xi})[order({yi})].

This is seen in line 5 applied to the (unrolled) distance and similarity matrices.

10.6.5. Spearman Score as convergence criterion (line 3)

The iterations are stopped when the Spearman score converges. In practice, we ob-

served that after 4–7 iterations the score has negligible improvement for all benchmarks.

This score is also used to choose the best solution among multiple initializations (line 8).

10.6.6. Warping recovery phase (lines 9–12)

The most important change we introduce is a “warping recovery” phase that changes

the qualitative behavior of the algorithm in the case of Sm, m ≥ 2. As explained in the

observability analysis, in curved spaces the scale of the points distribution is observable.

However, the SK algorithm (i.e., lines 3–7 of Algorithm 1) cannot compensate what we call

a linear warping (Definition 10.5); in fact, it is easy to see that if D0 is a fixed point of the

loop, also αD0, for α > 0, is a fixed point. In other words, the “null space” of the Shepard-

Kruskal algorithm appears to be the group of linear warpings. Therefore, we implemented

a simple algorithm to find the scale that best embeds the data onto the sphere, based on the

fact that if D is a distance matrix for a set of points on Sm, then the cosine matrix cos(D)

must have rank m + 1. Therefore, to find the optimal scale, we look for the optimal α > 0

such that cos(αD) is closest to a matrix of rank 3. This is implemented in lines 9–12, where

the ratio of the (m + 1)-th and the (m + 2)-th singular value is chosen as a robust measure

of the rank.
¶The square brackets here indicate indexing into the array, as in most programming

languages (e.g., Python).

10.7. CAMERA CALIBRATION RESULTS 186

While it would be interesting to observe the improvements obtained by each variation

to the original algorithm, for reasons of space we focus only on the impact of the warping

recovery phase. We call SKv the SKv+w algorithm without the warping recovery phase

(i.e., without the lines 9–12).

10.6.7. Algorithm complexity

The dominant cost of SKv+w lies in the truncated SVD decomposition needed for

MDSM in the inner loop; the exact decomposition takes O(n3), which is, in practice, in

the order of 5 ms for n = 100 and 500 ms for n = 1000 on current hardware||. There exist

faster approximations to speed up the MDS step; see, e.g., the various Nystrom approxi-

mations [120].

10.7. Camera Calibration Results

10.7.1. Hardware

We use three different cameras, covering all practical cases for imaging systems: a per-

spective camera (“FLIP” in the following), a fish-eye camera (“GOPRO”), and an omnidi-

rectional catadioptric camera (“OMNI”). FLIP: The Flip Mino HD [121] is a $100 consumer-

level video recorder (Fig 10.1a). It has a 45° FOV; it has a 3X optical zoom, not used for

these logs. GOPRO: The GOPRO camera [122] is a $300 rugged professional-level fish-eye

camera for outdoor use (Fig 10.2a). The field of view varies slightly between 127° and 170°

according to the resolution chosen; for our tests, we chose a resolution corresponding to

a 150° field of view. OMNI: We used a custom-made omnidirectional catadioptric cam-

era (Fig. 10.3a). This is a small, compact system very popular for micro aerial platforms,

such as quadrotors [123, 124]. The camera is created by connecting a perspective camera to

||Tests executed using Numpy 1.5, BLAS compiled with Intel MKL, on a 2.67Ghz Intel
Xeon core.

10.7. CAMERA CALIBRATION RESULTS 187

a hyperbolic mirror. The resulting field of view is 360° (horizontally) by 100° (vertically).

The images have much lower quality than the FLIP and GOPRO (Fig. 10.2b). Table 10.4

summarizes the statistics of the three datasets.

Table 10.4. Dataset statistics

camera fov fps resolution subsampling n length

flip 45° 30 1280×720 24× 24 grid 1620 57416

gopro 150° 30 1280×720 24× 24 grid 1620 29646

omni 360° 20 640×480 8× 8 grid 1470 13131

10.7.2. Manual calibration

We calibrated the cameras using conventional techniques, to have a reference to which

to compare our method. We calibrated the FLIP using the Matlab Calibration Toolbox [92],

which uses a pin-hole model plus second-order distortion models. We calibrated the GO-

PRO and the OMNI using the OCamCalib calibration toolbox [102], using a fourth-order

polynomial for describing the radial distortion profile [95, 96, 125]. Both methods involve

printing out a calibration pattern (a checkerboard), taking several pictures of the board,

then identifying the corners of the board using a semi-interactive procedure. Some exam-

ples of the calibration images used are shown in Fig. 10.1c and 10.2c.

10.7.3. Data collection

The environment in which the log is taken influences the spatial statistics of the images.

The data logs were taken in a diverse set of environments. For the FLIP, the data was taken

outdoors in the Caltech campus, which has a large abundance of natural elements. For

the GOPRO, the data was taken in the streets of Philadelphia, a typical urban environment.

For the OMNI, the data was taken indoors in a private apartment and an office location.

Examples of the images collected are shown in Fig. 10.1b, 10.2b, 10.3b. In all cases, the

cameras were held in one hand and waved around “randomly”, trying to exercise at least

10.7. CAMERA CALIBRATION RESULTS 188

three degrees of freedom (shoulder, elbow, wrist), so that the attitude of the camera was

approximately uniformly distributed in SO(3). We did not establish a more rigorous pro-

tocol, as these informal instructions produced good data. Data taken by exercising only

one degree of freedom of the arm (e.g., forearm, with the wrist being fixed) did not satisfy

the monotonicity assumption. Another example of data that we tried that did not satisfy

the assumption was data from an omnidirectional camera mounted on a car**.

10.7.4. Data processing

For all cameras, the original RGB stream of each pixel was converted to a one-dimensional

signal by computing the luminance. We also subsampled the original images with a reg-

ular grid so that we could work with a reduced number of points. For the OMNI data,

we used masking to only consider the annulus around the center (Fig. 10.3c), therefore ex-

cluding the reflection of the camera in the mirror and the interior of the box which lodged

the camera. We used the correlation between the pixel luminance values as the similarity

statistics: Yij = corr(yi(t), yj(t)), where yi(t) indicates the luminance of the i-th pixel at

time t. This simple statistics was the most useful across cameras (Section 10.7.6 discusses

other possible choices of the similarity statistics). We found that the monotonicity condi-

tion is well verified for all three cameras. To plot these statistics, we assume the calibration

results obtained with conventional techniques as the ground truth. The joint distribution

of the similarity Yij and the distance d(si, sj) is shown in Fig. 10.4b, 10.5b, 10.6b. For these

logs, the spatial statistics were quite uniform: at a distance of 45°, the inter-pixel corre-

lation was in the range 0.2–0.3 for all three cameras. For the GOPRO and OMNI data, the

correlation is 0 at around 90°. The correlation is negative for larger distances. The different

average luminance between sky and ground (or floor and ceiling) is a possible explanation

**Because the car motion is mostly planar, a portion of the pixels always observes the
sky (a featureless scene), while others observe the road (a scene richer in features).

10.7. CAMERA CALIBRATION RESULTS 189

for this negative correlation. The OMNI data is very noisy for distances in the range 90°–

180°, as the sample correlation converges more slowly for larger distances. To check that

the monotonicity condition is satisfied, regardless of the shape of f , it is useful to look at the

Spearman diagrams in Fig. 10.4c, 10.5c, 10.6c, for the FLIP, GOPRO, and OMNI, respectively.

These diagrams show, instead of similarity (Yij) versus distance (d(si, sj)), the order of the

similarities (order(Yij)) versus the order of the distances (order(d(si, sj)). The correlation

of those gives the Spearman score (Definition 10.20). If there was a perfectly monotonic

relation between similarity and distance, the Spearman diagram would be a straight line,

regardless of the shape of f , and the Spearman score would be 1 (Lemma 10.19).

10.7.5. Calibration results

The results of manual calibration and calibration using our method are graphically

shown in Fig. 10.4d, 10.5d, 10.6d. The plots show the data using spherical coordinates (az-

imuth/elevation). There is a number of intuitive remarks that can be made on the results

by direct observations of the resulting point distributions (or, better, its 3D equivalent).

For the FLIP data (Fig. 10.4d) the reconstructed directions lie approximately on a grid, as

expected. For this data, and the GOPRO as well, the estimated points are more regular at

the center of the field of view than on the borders. This is probably due to the fact that the

pixels at the border have less constraints. The estimated FOV is very similar to the result

given by the manual calibration (43° instead of 45°). For the GOPRO data (Fig. 10.5d) the

shape of the sensor is well reconstructed, except for the two upper corners of the camera.

The estimated FOV matches the manual calibration (153° instead of 150°). For the OMNI

data (Fig. 10.6d) the shape of the sensor is overall well reconstructed, but it is more noisy

than the FLIP or GOPRO. This is to be expected as the monotonicity relation is not as well

respected (Fig. 10.6e).

10.7. CAMERA CALIBRATION RESULTS 190

Table 10.5. Calibration results (normalized Spearman score)

dataset norm. Spearman score ρ∗sp

S fov f g. truth SKv SKv+w MDS

flip 45° corr(y) 1 0.9998 1.0006 0.9709

gopro 150° corr(y) 1 1.0027 1.0029 0.9702

omni 360° corr(y) 1 1.0288 1.0288 0.9831

It can be concluded that our method gives results reasonably close to manual calibra-

tion, even for cases like the OMNI where the monotonicity condition holds only approx-

imately. As predicted by the observability analysis, the scale can be reconstructed even

without knowing anything about the function f .

We now look at quantitative performance measures. As explained before, the only ad-

missible performance measure is the Spearman score, shown in Table 10.5. When judged

by this performance measure, the SKv+w algorithm is slightly better than the manual cal-

ibration (the normalized Spearman score is larger than 1). In other words, the estimated

distribution is actually a better fit of the similarity data than the manual calibration re-

sults. This implies that the imprecision in the estimate is a limitation of the input data

rather than of the optimization algorithm; to obtain better results, we should improve on

the data rather than improving the algorithm.

The Procrustes error (Equation 10.1) is the most intuitive performance measure (but

not invariant to wiggling). The results are shown in Table 10.6. The error with respect to

manual calibration is an average of 0.7° for the FLIP data, 3.5° for the GOPRO data, and 9.5°

for the OMNI data. The table shows both the results with and without the warping phase

(SKv+w and SKv, respectively). This makes it clear that the warping phase is necessary

to obtain a good estimate of the directions, especially for the FLIP data. The difference

is lower for the GOPRO data and negligible for the OMNI data. Intuitively, the warping

phase takes advantages of what can be called “second-order” constraints, in the sense that

10.7. CAMERA CALIBRATION RESULTS 191

Table 10.6. Calibration results (Procrustes error)

dataset Procrustes error

S fov f SKv SKv+w MDS

flip 45° corr(y) 24.05° 0.74° 15.16°

gopro 150° corr(y) 4.72° 3.53° 6.20°

omni 360° corr(y) 9.48° 9.48° 32.43°

they allow us to establish the scale at small FOV, but they disappear as the FOV tends to

zero, because a small enough section of S2 looks flat (like R2). Finally, it is clear that the

accuracy of MDS is much lower than SKv or SKv+w. In general, MDS obtains topologically

correct solutions, but the scale is never correctly recovered, or the data appears otherwise

deformed.

These results seem to outperform the results shown in Grossmann et al.: compare, for

example, Figure 13 in [105]. Note that their method assume that the function f is known,

obtained through a separate calibration phase. In principle, with much more information,

their results should be better. Without having access to their data, we can only speculate

on the reason. Perhaps the simplest explanation is that they do not “wave around” the

camera for collecting the data; and therefore the monotonicity condition might not be as

well satisfied. Moreover, they use a similarity statistics which has very low informative

radius (30°), which might cause problems, even though the robust nonlinear embedding

algorithm they use should be robust to this fact.

10.7.6. Results for different similarity statistics

Proposition 10.2 ensures that any statistics is a function of the pixel distance, but this

result is limited in three ways: (1) it is only an asymptotic result, valid as time tends to

infinity; (2) it assumes a perfectly uniform attitude distribution; and (3) it does not ensure

that the function f is invertible (monotonic). Therefore, it is still an engineering matter to

10.7. CAMERA CALIBRATION RESULTS 192

find a statistics which is (1) robust to finite data size; (2) robust to a non-perfectly uniform

trajectory; and (3) has a large invertible radius. An exhaustive treatment of this problem

is delegated to future work. Here, we briefly show the results for three other statistics in

addition to the luminance correlation. All statistics are defined as the correlation of an

instantaneous function of the luminance and can be efficiently computed using streaming

methods. The first variant consists in applying an instantaneous contrast transformation

c : y 7→ y2 to the luminance before computing the correlation:

Yij = corr(c(yi(t)), c(yj(t))). (10.1)

The second statistic is the correlation of the temporal derivative ẏ = d
dt y of the luminance:

Yij = corr(ẏi(t), ẏj(t)). (10.2)

This was inspired by recent developments in neuromorphic hardware [126]. Finally, we

consider the correlation of the sign of the luminance change, as it is invariant to contrast

transformations:

Yij = corr(sgn(ẏi(t)), sgn(ẏj(t))). (10.3)

Table 10.7 shows the Spearman score obtained by using these on the OMNI data (the

most challenging dataset). We find, in this case, that the contrast-scaled luminance (10.1)

is slightly better than the simple correlation; the solution found is qualitatively similar.

The two other similarity statistics (10.2) and (10.3) have much lower scores; for them, the

monotonicity assumption is not well verified: their distributions are not informative for

large distances. It is clear that there is a huge design space for similarity statistics. In the

end, we did not find any statistic which was better than the simple correlation uniformly

for all our three data sets. Therefore, we consider this an open research question.

10.7. CAMERA CALIBRATION RESULTS 193

Table 10.7. Results with different similarity statistics

dataset Spearman score

S f g. truth SKv+w

omni corr(y) 0.9173 0.9438

omni corr(c(y)) 0.9212 0.9465

omni corr(ẏ)) 0.8550 0.9211

omni corr(sgn(ẏ)) 0.8739 0.9077

(a) The Flip Mino (b) Some frames from the calibra-
tion sequence.

(c) Calibration
patterns

Figure 10.1. The FLIP camera is a consumer-level portable video recorder. The data
for calibration is taken while walking in the Caltech campus, with the camera in hand,
and “randomly” waving the arm, elbow, and wrist.

(a) The GOPRO
camera

(b) Some frames from the calibra-
tion sequence

(c) Calibration
pattern

Figure 10.2. The GOPRO camera is a rugged consumer camera for outdoors use. It
uses a fish-eye lens with 170° field of view.

(a) Catadioptric
camera

(b) Some frames from the cal-
ibration sequence

(c) Mask used

Figure 10.3. Note the small dimensions of this omnidirectional catadioptric camera,
very well suited for aerial robotics applications. The data quality is much lower than
for the FLIP and GOPRO data.

10.7. CAMERA CALIBRATION RESULTS 194

-30 ◦ 0 ◦ 30 ◦

azimuth

-15 ◦

0 ◦

15 ◦

e
le

va
ti

o
n

(a) Calibration results (man-
ual calibration)

0 ◦ 10 ◦ 20 ◦ 30 ◦ 40 ◦ 50 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(b) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9990

(c) Spearman
diagram

-30 ◦ 0 ◦ 30 ◦

azimuth

-15 ◦

0 ◦

15 ◦

e
le

va
ti

o
n

(d) Calibration results
(SKv+w)

0 ◦ 10 ◦ 20 ◦ 30 ◦ 40 ◦ 50 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(e) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9996

(f) Spearman
diagram

Figure 10.4. Calibration results for the FLIP data using corr(y) as the similarity statis-
tics.
Legend for Figure 10.4,10.5,10.6: The first row (fig. a,b,c) shows the results of calibration using

conventional methods, while the second row (d,e,f) shows the results of our algorithm. The first
column (a, d) shows the points distribution on the sphere, displayed using azimuth/elevation

coordinates. The second column (b, e) shows the joint distribution of pixel distance (d(si, sj)) and
pixels similarities (Yij), which, in this case, is the correlation. This is the function f that we should
fit. Finally, the third column (c, f) shows order(d(si, sj)) vs. orderd(si, sj) and their correlation, from

which we derive the Spearman score.

10.7. CAMERA CALIBRATION RESULTS 195

-90 ◦ -45 ◦ 0 ◦ 45 ◦ +90 ◦

azimuth

-45 ◦

0 ◦

45 ◦

e
le

va
ti

o
n

(a) Calibration results (man-
ual calibration)

0 ◦ 45 ◦ 90 ◦ 135 ◦ 180 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(b) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9949

(c) Spearman
diagram

-90 ◦ -45 ◦ 0 ◦ 45 ◦ +90 ◦

azimuth

-45 ◦

0 ◦

45 ◦

e
le

va
ti

o
n

(d) Calibration results
(SKv+w)

0 ◦ 45 ◦ 90 ◦ 135 ◦ 180 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(e) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9977

(f) Spearman
diagram

Figure 10.5. Calibration results for the GOPRO data using corr(y) as the similarity
statistics.

-180 ◦ -90 ◦ 0 ◦ +90 ◦ +180 ◦

azimuth

-90 ◦

-45 ◦

0 ◦

+45 ◦

+90 ◦

e
le

va
ti

o
n

(a) Calibration results (man-
ual calibration)

0 ◦ 45 ◦ 90 ◦ 135 ◦ 180 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(b) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9173

(c) Spearman
diagram

-180 ◦ -90 ◦ 0 ◦ +90 ◦ +180 ◦

azimuth

-90 ◦

-45 ◦

0 ◦

+45 ◦

+90 ◦

e
le

va
ti

o
n

(d) Calibration results (SKv+w)

0 ◦ 45 ◦ 90 ◦ 135 ◦ 180 ◦

distance

0.2

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
a
ri

ty

(e) Distance vs.
similarity (f)

0 n−1
order(distance)

0

n−1

o
rd

e
r(

si
m

il
a
ri

ty
)

corr. = -0.9438

(f) Spearman
diagram

Figure 10.6. Calibration results for the OMNI data using corr(y) as the similarity sta-
tistics.

CHAPTER 11

Learning Bilinear Dynamics

This chapter describes the BDS class of models, in which the dynamics of the

observations is a bilinear function of the observations themselves, and shows

how it approximates the canonical robot sensors.

Table 11.1. Symbols used in this chapter

BDS models
Ms

vi nu × ny × ny tensor Tensor parametrizing the model.
Psv ny × ny tensor Second moment matrix of y.
Q nu × nu tensor Second moment matrix of u.

Tsvi nu × ny × ny tensor Statistics computed during learning.
BDS(n; k) ⊂ D(Rn; Rk) The class of BDS systems.

196

11.1. WHY BILINEAR SYSTEMS 197

11.1. Why Bilinear Systems

In the most general case, a continuous-time dynamical system can be written as ẋ =

f (x, u); y = h(x), where x represents the hidden state. However, one seldom sees an

explicit model of this kind for sensors such as cameras or range finders, because the func-

tion h should encode all information regarding the environment, and a closed form is im-

possible to write except in the simplest of environments. One alternative representation

is focusing on the observations dynamics ẏ = g(y, u, x). In most cases, the function g de-

pends on the underlying unobservable state x. An agent that does not have access to the

state x (and its dynamics) cannot learn such a model. This motivates us to look at ap-

proximating the observations dynamics by disregarding the dependence on the state, thus

looking for models of the form ẏ = g(y, u). Because the agent has access to y, ẏ, and u,

learning the map g from the data is a well-defined problem.

Rather than trying to learn a generic nonlinear g, which appears to be a daunting task,

especially for cases where y consists of thousands of elements (pixels of a camera), our

approach has been to keep simplifying the model until one obtains something tractable. A

second-order linearization of g leads to the expression

ẏ = a + Ay + Bu + C(y, y) + D(y, u) + E(u, u). (11.1)

Here A and B are linear operators, but C, D, E are tensors (later we make the tensor nota-

tion more precise). If y and u have dimensions ny and nu, then C, D, E have dimensions,

respectively, ny × ny × ny, ny × ny × nu, and ny × nu × nu.

We can ignore some terms in (11.1) by using some semantic assumptions regarding our

specific context.

• Assumption 13 (A known command does nothing)

11.2. BDS 198

If u represents a “movement” or “velocity” command, in the sense that if u is 0,

then the pose does not change, and y does not change as well (u = 0 ⇒ ẏ = 0),

we can omit the terms a, Ay and C(y, y), and we are left with ẏ = Bu + D(y, u) +

E(u, u).

• Assumption 14 (Minus does the opposite)

If we assume that u is a symmetric velocity commands, in the sense that ap-

plying +u gives the opposite effect of applying −u, then we can get rid of the

E(u, u) term as well.

We are left with the model ẏ = Bu + D(y, u), where D is a bilinear operator. We can

incorporate Bu into the second term by assuming there is a trivial observation whose value

is always 1. In conclusion, our ansatz for a generic robotic sensor is a bilinear model of the

kind ẏ = D(y, u).

11.2. BDS

DEFINITION 11.1 (BDS). A system is a bilinear dynamics sensor (BDS), if observations and

commands are vectors of real numbers, and the derivative of y depends linearly on u

and y. In formulas, there exists a (1,2) tensor M such that

ẏs = ∑
i,v

Ms
viy

vui. (11.1)

BDS(n; k) ⊂ D(Rn; Rk) is the set of all such systems.

In this chapter, we use the Einstein convention according to which repeated up and down

indices are automatically summed over, so that the explicit “∑” symbol can be omitted. We

can rewrite (11.1) more compactly as

ẏs = Ms
viy

vui.

11.3. SPACE AND TIME DISCRETIZATION 199

11.2.1. Symmetries of the BDS class

PROPOSITION 11.2. The BDS(n; k) family is closed with respect to the action of GL(n) on the

observations and GL(k) on the commands:

GL(n) · BDS(n; k) · GL(k) = BDS(n; k).

PROOF. Let y′ = Ay and u = Bu′, for some matrices A ∈ GL(n), B ∈ GL(k). Then the

relation between ẏ′, y′ and u′ is bilinear. �

11.3. Space and Time Discretization

While we have defined the model for continuous time and space. So, a natural question

is whether the properties of the system (bilinearity) are preserved for discretized systems,

both in time and space.

11.3.1. Space discretization preserves bilinearity

As for space discretization, we assume that the continuous function y(s, t), s ∈ S , is

band limited, and it is sampled at a dense enough set of points to achieve reconstruction.

If the sampling is uniform, we know they need to be at the Nyquist frequency. However,

this is not a necessary condition. Margolis [127, Chapter 3] gives an elementary exposition

on the topic of nonuniform sampling and reconstruction. See the classic paper by Yen [128]

for examples of perturbations of uniform sequences that still allow reconstruction. Call a

sufficient sampling sequence a set of n points on S1, possibly irregular, such that it is possible

to reconstruct the signal exactly.

PROPOSITION 11.3 (Spatial discretization preserves bilinearity). Assuming the signal

y(s, t) is spatially band limited and it is sampled at a (possible irregular) set of points sufficient for

reconstruction, spatial discretization preserves bilinearity, in the sense that if ẏ(s, t) = ∇sy(s, t)u(t)

11.3. SPACE AND TIME DISCRETIZATION 200

and A = {s1
A, . . . , sn

A} ∈
(
S1)n is a sufficient sampling sequence of n elements, then the dynamics

of y(A, t) = {y(s1
A, t), . . . , y(sn

A, t)} ∈ Rn is ẏ(A, t) = Vy(A, t)u(t) where V is constant n× n

matrix.

PROOF. By using the definition of gradient, we can write ẏ as a limit:

ẏ(s, t) = ∇sy(s, t)u(t)

(Definition of gradient)

= lim
δ→0

y(s + δ, t)− y(s, t)
δ

u(t).

Writing this for each point in A:

ẏ(A, t) = lim
δ→0

y(A + δ, t)− y(A, t)
δ

u(t). (11.1)

From Lemma 11.5 we know A + δ is a sufficient sampling sequence, and from Lemma 11.4

we can write y(A + δ, t) as a function of y(A, t) :

y(A + δ, t) = VA+δ
A y(A, t).

Substituting this back in (11.1):

ẏ(A, t) = lim
δ→0

VA+δ
A y(A, t)− y(A, t)

δ
u(t)

=

(
lim
δ→0

VA+δ
A − I

δ

)
y(A, t)u(t)

.
= Vy(A, t)u(t).

This implies that the spatially discretized dynamics is still bilinear. �

LEMMA 11.4. Suppose that A, B ⊂ (S1)n are two sufficient sampling sequences for a signal

11.3. SPACE AND TIME DISCRETIZATION 201

y : S1 → R. Then y(B) = VB
Ay(A) for some matrix VB

A ∈ Rn×n.

PROOF. An elementary proof is the following. Let U = {s1
U , . . . , sn

U} ⊂ (S1)n be a uni-

form sampling of S1. We know from classical results that, in this case, we can reconstruct

the value y(s) for any s ∈ S1 by linear interpolation using a basis of equal time-shifted

functions:

y(s) =
n

∑
i=1

ϕ(s− si)y(si). (11.2)

(The basis functions are sinc but it is not relevant here.) In particular, given any sam-

pling sequence A = {s1
A, . . . , sn

A} ⊂ (S1)n, we can reconstruct its values y(A) from the

values y(U) sampled at the uniform sequence by a linear matrix:

y(A) = VA
Uy(U),

where y(A) = {y(s1
A), . . . , y(sn

A)} ∈ Rn is the irregularly sampled signal, y(U) = {y(s1
U), . . . , y(sn

U)} ∈

Rn is the signal sampled uniformly, and VS
U is an n× n matrix whose entries are defined

by the coefficients of (11.2):

(VA
U)

a
u =

n

∑
i=1

ϕ(sa
A − si

U)y(s
u
U).

If A is a sufficient sampling sequence, then it possible to express y(U) as a function of

y(A). The inverse of a linear map is linear. Thus it is possible to write:

y(U) = VU
Ay(A), (11.3)

and necessarily VU
A =

(
VA

U
)−1. The same thing can be said for another sufficient sampling

sequence B, thereby y(B) = VB
Uy(U) = VB

UVU
Ay(A)

.
= VB

Ay(A). �

LEMMA 11.5. If A is a sufficient sampling sequence, then A + δ = {s1
A + δ, . . . , sn

A + δ} is a

11.3. SPACE AND TIME DISCRETIZATION 202

sufficient sampling sequence.

REMARK 11.6. This discussion only involves existence formulas. Do not confuse this

with a way to reconstruct the signal at the unknown samples. For inference, nowadays

we would use Gaussian Processes regression [78], however it assumes certain shapes of

the covariance (even if jointly determined) which are stronger assumptions about the sig-

nal than just being of finite bandwidth (which can be a constraint given by the physical

structure).

11.3.2. Time discretization preserves bilinearity only to first order

Suppose the dynamics of y is bilinear (ẏ = Muy) and that the dynamics is discretize at

intervals of length T. The value of y at the (k + 1)-th instant is given by

yk+1 = yk +

ˆ kT+T

kT
Mutyt dt.

Assuming that the commands take the constant value uk in the interval [kT, kT + T], the

solution can be written using the matrix exponential (Lemma E.9) as

yk+1 = mexp(T(Muk))yk.

The right-hand side is still linear in y, but it is not linear in the commands. Using the

expansion of the matrix exponential (E.1), the first few terms are

mexp(T(Muk) = I + TMuk + o(T2).

The difference ∆yk =
1
T (yk+1 − yk) is then linear with respect to u only at the first order:

∆yk = Mukyk + o(T2).

11.4. LEARNING 203

See Elliot [129] for more insights on the dynamics of bilinear systems and the geometric

properties of their flow maps.

11.4. Learning

In the learning phase, the agent randomly samples control commands u from any zero-

mean distribution with positive definite covariance. Meanwhile, it estimates three quanti-

ties:

(1) The average observation at each sensel y:

ys = E{ys}, (11.1)

(2) The (2, 0) covariance tensor P:

Psv = cov(ys, yv), (11.2)

(3) The (3, 0) tensor T defined by

Tsvi = E{(ys − ys) ẏvui}. (11.3)

These expectations can be computed online, using recursive definitions such as

ys(k + 1) =
k

k + 1
ys(k) +

1
k + 1

ys(k).

We note that these computations can be implemented on a neural architecture; (11.3) is

similar to three-way Hebbian learning between y, ẏ, and u. In fact, the expectation of

the product of the three terms (ys − ys), ẏv, ui can be thought as an approximation of the

frequency that the three signals are active together.

11.4. LEARNING 204

The following proposition establishes that the tensor T, tends to approximate the ten-

sor M in (11.1).

LEMMA 11.7. Let P, Q be the covariance of y and u. Then the tensor T tends asymptotically

to

Tsvi = Ms
qjP

qvQij. (11.4)

PROOF. We can prove that this tends to:

Tsvi = E{ẏs (yv − yv) ui}

(Substituting the model 11.1 for ẏ,and changing indices.)

= E{(Ms
qjy

quj)(yv − yv)ui} (11.5)

(Independence of u, y, and the fact that M is a constant.)

= Ms
qjE {yq (yv − yv)}E{uiuj} (11.6)

(E {yq (yv − yv)} = cov(yq, yv))

= Ms
qjP

qvQij.

�

In (11.4), we can observe a general pattern. Every quantity that the agent learns ulti-

mately depends on three factors:

(1) The agent’s sensorimotor cascade. In this case, M.

(2) The environment statistics. In this case, the covariance P represents the effect of the

specific environment in which learning takes place. For example, in the case of

a camera, the covariance P depends on the statistics of the environment texture,

and it would change in different environments.

11.5. SERVOING 205

(3) The experience the agent had in such environment. In this case, the tensor Q captures

the kind of “training” the agent had in the environment.

11.5. Servoing

Models are only as good as the decisions they allow to make. We use servoing as an

example task for a bootstrapping agent. Let y̌ be some given “goal” observations. Then,

based on the learned model, one can derive a control strategy that minimizes ‖y− y̌‖.

PROPOSITION 11.8. Assume that the agent is equipped with a BDS (Definition 11.1), that it

has learned P and T using (11.2)–(11.3), and Q is positive definite. Then the control law

ui = −∑
v

∑
q
(yv − y̌v)∗TsviP−1

vq yq (11.1)

corresponds to a descent direction of the error metric ‖y− y̌‖. If the operators {Ms
viy

v}k
i=1 com-

mute, y̌ is asymptotically stable.

PROOF. The first part of the proof shows that the control is a descent direction for

V = ‖y − y̌‖2. Defining the error signal es = ys − y̌s, we can write V = 1
2 esmrser. The

11.5. SERVOING 206

derivative of V can be computed as follows (sum symbols are omitted for clarity).

V̇ = ėsmrser = ẏsmrser

= [Ms
viu

iyv]mrser

(Expanding u.)

= −Ms
vi[e

zmzwTwxiP−1
xp yp]yvmrser

(Expanding T.)

= −Ms
vie

zmzw[M
w
qjP

qxQij]P−1
xp ypyvmrser

(Reordering everything.)

= −yvMs
vie

zmzwMw
qjP

qxP−1
xp ypQijmrser

(Tensors P andP−1 cancel.)

= −(yvMs
vimrser)Qij(ypMw

pjmzwez)

(Let gi = yvMs
vimrser.)

= −giQ
ijgj ≤ 0.

This proves that V never increases. If we prove that g is never 0 in a neighborhood of y̌,

then V̇ < 0, and V is then a Lyapunov function, making y̌ asymptotically stable. To prove

this second part we have to use some tools from nonlinear system theory [130, Chapter 11,

page 540]. In general, because the Lie algebra is nilpotent of order 0, any solution of (11.1)

can be written in the form

y = exp(M··1b1) exp(M··2b2) · · · exp(M··kbk)y̌, (11.2)

where the bj are known as the Philip Hall coordinates, and exp represents the exponential of

11.5. SERVOING 207

a linear operator. We are interested only on the behavior near y̌, therefore we can linearize

each of the term as

exp(M··jbj) = I + M··jbj + o(‖b‖2).

The linearized version of (11.2) is then

ys = y̌s + Ms
vjb

jy̌v + o(‖b‖2).

From this we get es = Ms
vjy̌

vbj + o(‖b‖2), which we substitute in the definition of gi to

obtain

gi = y̌vMs
vimrser + o(‖b‖2)

= y̌vMs
vimrs(M

r
qjy̌

qbj) + o(‖b‖2).

Recall that we are in a neighborhood of y̌ (but not precisely at y̌). This implies that b

is not zero; otherwise, from (11.2) we get y = y̌. Assuming that the Mr
qjy̌

q commute,

we also have that Mr
qjy̌

qbj 6= 0r. In fact, if they commute, we can write (11.2) as y =

exp(Mr
qjy̌

qbj)y̌ and the argument of the exponential must be different from 0. These two

together imply that gi = y̌vMs
vimrs(Mr

qjy̌
qbj) 6= 0 near the origin. Here the abundance of

indices is masquerading the simplicity of the assertion. Without indices: suppose there is

a vector v 6= 0, and a linear operator A such that Av 6= 0; then A∗Av 6= 0. In this case,

v = b and Av
i = y̌vMs

vi. �

REMARK 11.9. It is a classic result [131] that, if a system such as (11.1) is nonholonomic,

there exists no smooth controller that stabilizes y̌ asymptotically. In particular (11.1) is

smooth in y, therefore it cannot work in the nonholonomic case. Instead, the requirement

that the operators {Ms
viy

v}k
i=1 commute is a technical necessity for having a compact proof

11.6. INVARIANCE TO LINEAR TRANSFORMATIONS 208

and can probably be relaxed.

11.6. Invariance to Linear Transformations

Proposition 11.2 has shown that the BDS class is closed with respect to the action of

linear transformations, both on the commands and the observations. This does not au-

tomatically imply that the agent behavior has those symmetries as well. Section 5.6 has

shown that the symmetries of the agent behavior depend on the symmetries of the task. In

the previous section, the servoing task was described as minimizing the norm of the error

metric

‖y− y̌‖. (11.1)

This error metric is symmetric only with respect to orthogonal transformations of the ob-

servations:

y 7→ Ay, A ∈ O(ny), (11.2)

y̌ 7→ Ay̌.

Therefore, while the BDS class of models is invariant to GL(ny), an agent that would imple-

ment this strategy would only be invariant to O(ny), which is a much smaller group. As

for the commands, the agent is invariant to GL(nu), because the error function (11.1) does

not depend on u.

There are two approaches to make the agent more invariant: making the task invariant,

or making the observations canonical.

11.6. INVARIANCE TO LINEAR TRANSFORMATIONS 209

11.6.1. Invariant task design

The first approach consists in designing a different error function that takes into ac-

count the desired symmetries. One possibility is to choose

‖P− 1
2 (y− y̌)‖. (11.3)

Because the covariance matrix transforms as P 7→ APAT, the new error metric is invariant

to all linear transformations of the observations.

The control strategy (11.1) is easily amended, by noticing that, for any positive definite

tensor X, the control

uj = −∑
r,s,v

QijerXrsM
s
viy

v (11.4)

is a descent direction for the error metric 1
2 erXsres.

11.6.2. Invariance by canonization

The second approach consists in applying a canonization operator. The invariant met-

ric (11.3) coincides with the old metric (11.1) if the covariance matrix is equal to the identity.

If the agents observations are filtered by a whitening operator that makes the observations

canonical by enforcing P = I, then the agent has gained a larger invariance group. This

general canonization approach is the object of Part 3.

Using either of these strategies leads to this formal result about the agent.

PROPOSITION 11.10. The servoing behavior of a BDS agent is invariant to the representation

nuisance GL(n)× GL(k) acting on BDS(n, k).

11.7. BDS APPROXIMATION OF CANONICAL SENSORS 210

Table 11.2. BDS approximations

dynamics learned tensors

field sampler ẏs = (s×∇ys)i ωi +∇iysvi

Tsvi = ∇R3

j PsvQij, i ∈ [1, 3]

Tsvi = (s×∇R3
Psv)jQ

ij, i ∈ [4, 6]

camera ẏs = (s×∇ys)i ωi + µs∇iysvi

Tsvi = µs∇S2

j PsvQij, i ∈ [1, 3]

Tsvi = (s×∇S2
Psv)jQ

ij, i ∈ [4, 6]

range-finder ẏs = (s×∇ys)i ωi + (∇i log ys − s∗i)v
i

Tsvi = ∇S2

j β(Psv)Qij, i ∈ [1, 3]

Tsvi = (s×∇S2
Psv)jQ

ij, i ∈ [4, 6]

For the camera and range-finder, which are not exactly BDS, these tensors could be
considered a “projection” of the nonlinear dynamics to the BDS space. The tensor P
is the covariance of y; the tensor Q is the covariance of u; µs is the average nearness
(inverse of distance) in direction s.

11.7. BDS Approximation of Canonical Sensors

11.7.1. Field-samplers

The field-sampler dynamics (Lemma 9.6) are exactly bilinear, so it can be represented as

a BDS. We can compute the exact form for the learned tensor T. Assuming the general case

of a fully actuated rigid body in SE(3), the tensor T has 6 components for the last index.

The first three (1 ≤ i ≤ 3) correspond to linear velocity, and the last three (4 ≤ i ≤ 6) to the

angular velocity. We assume that in the training distribution linear and angular velocity

are uncorrelated, so that we can show the results separately.

PROPOSITION 11.11. The learned tensor for a field-sampler is

Tsvi = ∇R3

j PsvQij, i ∈ [1, 3], (11.1)

Tsvi = (s×∇R3
Psv)jQ

ij, i ∈ [4, 6]. (11.2)

11.7. BDS APPROXIMATION OF CANONICAL SENSORS 211

PROOF. We show the computation for the linear velocity components:

Tsvi , E{(ys − ys) ẏvvi}

= E{(ys − ys) (∇jyv)vjvi}

= ∇jE{(ys − ys) yv}E{vjvi} = ∇jP
svQij.

The formula for the others is obtained similarly. �

11.7.2. Vision sensors

The dynamics of a camera (Proposition 9.8) are not exactly bilinear, because there is a

hidden state, the nearness µ.

PROPOSITION 11.12. The learned tensors for a camera are

Tsvi = µs∇S2

j PsvQij, i ∈ [1, 3], (11.3)

Tsvi = (s×∇S2
Psv)jQ

ij, i ∈ [4, 6].

PROOF. The proof is similar as Proposition 11.11: write the definition of Tsvi, substi-

tute (9.7) and carry on the computation. �

11.7.3. Range finders

PROPOSITION 11.13. If the training distribution is mixing (Definition 9.12) and the environ-

ment is monotone (Definition 9.18) the learned tensors for a range-finder are

Tsvi = ∇S2

j β(Psv)Qij, i ∈ [1, 3] (11.4)

Tsvi = (s×∇S2
Psv)jQ

ij, i ∈ [4, 6]

11.8. SIMULATIONS AND EXPERIMENTS 212

where β(Psv) is an element-wise scalar function of Psv.

PROOF. The proof for the rotational part is the same as the camera. As for transla-

tion, notice that a compact way to write the dynamics is σ̇s = (∇j log σs − s∗j)v
j. Straight

computation gives the following.

Tsxi = E{(σs − σs) σ̇xvi}

(Using the observation dynamics.)

= E{(σs − σs) (∇j log σx − x∗j)v
jvi}

(Separating the two terms)

= Qij
[
E{(σs − σs)∇j log σx} −E{x∗j (σs − σs)}

]

(The second term disappears given that x∗j is a constant.)

= Qij [E{(σs − σs)∇j log σx}
]

(We can pull out ∇ due to linearity.)

= Qij∇jE{(σs − σs) log σx}.

At this point, note that if we had σx instead of log σx inside the expectation, the result

would be Psx, the covariance of σ. Define Rsx = E{(σs − σs) log σx}. Then we can invoke

Proposition 9.13 to say that Rsx is a function of d(s, x). Because the environment is mono-

tone, we know there is a 1-to-1 correspondence between Psx and d(s, x), therefore we can

write Rsx as a function of Psx. �

11.8. Simulations and experiments

We simulate a planar omnidirectional robot controlled in velocity. The commands are

u = (u1, u2, u3) = (vx, vy, ω). We simulate a 180 range finder, an omnidirectional camera,

11.8. SIMULATIONS AND EXPERIMENTS 213

and a field sampler, with the sensels placed on a ring.

The learning procedure consists in placing the robot in a randomly generated map

at random places (simulated as a uniform variable on the subset of SE(2) that does not

intersect any obstacle), and simulate the sensor output (y, ẏ) when the robot chooses a

random command u (simulated as a Gaussian random variable with spherical covariance).

We found out that, if one uses environment shapes which are too simple, the learned

model will pick up the characteristic of the environment. For example, if a robot with a 360

range-finder is always placed in a room of the same size, say 10 m, it will learn that, if the

readings in front measure 1 m, it is likely that the readings in the back measure 9 m — this

knowledge is represented implicitly in the estimated covariance matrix, which will report

strong negative correlation between readings in front and in the back. We do not want

to see these effects, which are not representative of the real world, and to prevent them

we simulate random environments composed of randomly sampled polygonal walls. See

Fig. 11.1 for examples of the random environments used.

As long as there is some variability, the results are largely independent of the details

of how the randomness is introduced. These observations motivated the definition of the

environment’s symmetry group (Definition 9.10) and how it affects the observation covari-

ance.

For simulating a camera sensor, one should choose a random texture for the surfaces:

for example, sample a luminance value independently for each 20 cm section of the surface,

and smooth the result. Choosing structured inputs such as sinusoids introduces unwanted

correlation. This motivated the definition of monotone environment (Definition 9.18).

For the field sampler, we simulated a random distribution of point sources with qua-

dratic decay.

Figures 11.2 onward show the learned tensors. In all figures, blue means negative

11.8. SIMULATIONS AND EXPERIMENTS 214

and red positive; each figure is normalized independently from the others. Subfigures b–c

show the covariance (P) and information (P−1) tensors of the simulated sensors. These

tensors are given as a function of the sensels position s, v. In these three simulated agents,

where the sensels are placed on a semicircle, we let s, v be the angle with respect to the

robot front. The covariance encodes information on the sensel topology. For the camera

and range-finder, the covariance is sparse and local: only sensels that are very close to each

other are correlated, and the correlation is a function of the sensels distance. The covari-

ance/information matrix act very similarly to convolution/deconvolution operators.

Subfigures d–f show the learned tensor T. If there are n sensels and 3 commands, then

T is a n× n× 3 tensor. We show the 3 bidimensional slices Tsv(1), Tsv(2), Tsv(3). For example,

the slice Tsv(1) describes how the linear velocity vx is related to y(s) and ẏ(v). Subfigures

g-i show the normalized tensor TP−1 used in the control law (11.1). While T depends on

the environment (because of the internal dependence on the covariance P, which depends

on the environment statistics), TP−1 cancels out the environmental contribution. Perhaps

the results for range-finder and camera are easier to interpret. If one imagines the slices

Tsvi as linear operators that, applied to y, give ẏ, it is evident that the agent learns local

spatial gradients; we shall see this theoretically.

The pictures also show the (inferior) results with the control law

ui = −∑
v

∑
q
(yv − y̌v)∗Tsviy∗s , (11.1)

which is simpler than (11.1) because it omits the computation of the inverse of the covari-

ance.

Figures 11.5 onward show the convergence properties of the control law (11.1). We are

interested in evaluating the radius of convergence. We sample numerous environments

and goal configurations; then we compute the control law in a volume around the goal

11.8. SIMULATIONS AND EXPERIMENTS 215

Figure 11.1. Examples of random worlds simulated for learning. The red rays rep-
resent the range-finder readings. The black and white arc around the robot represent
the simulated output of camera. Note the random geometry and the random texture.
Figure best viewed on screen zooming in on the details.

configuration. We show the results as “success maps”: we slice the q = (x, y, θ) volume at

the three planes (x, y), (x, θ), (θ, y), and we count the percentage of times the control law

pointed the robot in the right direction, meaning that it would have decreased the distance

to the goal. In formulas: let the goal be q = (x, y, θ) = (0, 0, 0). Then a “successful”

command is one for which d‖q‖/dt ∝ xu1 + yu2 + θu3 < 0. Light green means > 99%; see

the caption for the other values.

11.8. SIMULATIONS AND EXPERIMENTS 216

(a)
Ro-
bot

(b)
Psv

(c)
P−1

sv

(d)
Tsv(1) –
vx

(e)
Tsv(2) –
vy

(f)
Tsv(3) –
ω

(g)
(TP-1)

s(1)
v

– vx

(h)
(TP-1)

s(2)
v

– vy

(i)
(TP-1)

s(3)
v

– ω

Figure 11.2. Tensors learned for robot with a field sampler, with sensels placed on
a 360deg ring. Each axis corresponds to an angle on the ring. Red means positive;
blue negative; white zero. Subfigures e–f show correlation and information matrix,
as a function of the sensel positions s, v ∈ S , which can be thought of the angle on
the sensor ring. The correlation is almost identically 1; this depends on the statistics
of the field we simulated. Figure b–d show the three slices of the learned tensor T,
for the three commands (vx, vy, ω). The tensor element Tisv represents the interaction
between the i-th command, the observation ys and the derivative ẏv. Figures g–i show
the 3 slices of the normalized tensor TP−1. (Images best seen in color.)

(a)
Ro-
bot

(b)
Psv

(c)
P−1

sv

(d)
Tsv(1) –
vx

(e)
Tsv(2) –
vy

(f)
Tsv(3) –
ω

(g)
(TP-1)

s(1)
v

– vx

(h)
(TP-1)

s(2)
v

– vy

(i)
(TP-1)

s(3)
v

– ω

Figure 11.3. Tensors learned for robot with omnidirectional camera. See Fig. 11.2 for a
general description of the figures. All pictures are a functions of two sensels s, v ∈ S ,
which corresponds to the pixel orientation. In e–f , we can see that the covariance
matrix of a camera is sparse and local: only nearby sensels interact. Figures b–d show
the learned tensor T; if one interprets each slice as a linear operator that, applied to y,
gives ẏ, it is clear that all three represents functions of the gradient of y. Depending on
the particular environment, the gradient is more or less smoothed by the covariance.
Figures g–i represent the slices of the normalized tensor TP−1: here the effect of the
environment statistics are factored away and an even more local operator is obtained.

11.8. SIMULATIONS AND EXPERIMENTS 217

(a)
Ro-
bot

(b)
Psv

(c)
P−1

sv

(d)
Tsv(1) –
vx

(e)
Tsv(2) –
vy

(f)
Tsv(3) –
ω

(g)
(TP-1)

s(1)
v

– vx

(h)
(TP-1)

s(2)
v

– vy

(i)
(TP-1)

s(3)
v

– ω

Figure 11.4. Tensors learned for robot with range-finder (180deg FOV). See Fig. 11.2
for a general description of the figures. It is interesting to compare these results with
the camera results in Fig. 11.3. The covariance is less local: this means that, in the en-
vironment we simulated, the range readings are more correlated than the covariance;
that is, they change less abruptly. As a consequence, the tensor T is less local than
the corresponding tensor for the camera. Figures g–i show that the normalized ten-
sor TP−1, where the effect of the environment statistics is removed, has a more local
character.

convergence
for (11.1)

→
(a) x, y
plane

(b) y, θ
plane

(c) θ, x
plane

convergence
for (11.1)

→
(d) x, y
plane

(e) y, θ
plane

(f) θ, x
plane

Figure 11.5. Statistics of the convergence of the two control laws for robot with a field
sampler, with sensels placed on a 360deg ring. Figures (a)-(c) show the results for
the simplified control law (11.1), the figures (d)-(f) show the results for the control
law (11.1). We put the goal at the origin, and considered starting positions sampled in
a 1m×1m×45deg parallelepiped around the goal. We show the convergence results
along three slices in the planes x, y, y, θ, θ, x. The figures show the percentage of times
(over 200 trials with random environments) that the control law indicated a direction
decreasing the error metric. The color scale is: 0% <25% >25% >50%
>75% >95% 100%. These figures are best seen on a computer screen.

convergence
for (11.1)

→
(a) x, y
plane

(b) y, θ
plane

(c) θ, x
plane

convergence
for (11.1)

→
(d) x, y
plane

(e) y, θ
plane

(f) θ, x
plane

Figure 11.6. Convergence results for robot with omnidirectional camera. See the cap-
tion of Fig. 11.5 for an explanation of the color scales.

11.8. SIMULATIONS AND EXPERIMENTS 218

convergence
for (11.1)

→
(a) x, y
plane

(b) y, θ
plane

(c) θ, x
plane

convergence
for (11.1)

→
(d) x, y
plane

(e) y, θ
plane

(f) θ, x
plane

Figure 11.7. Convergence results for robot with range-finder (180deg FOV). See the
caption of Fig. 11.5 for an explanation of the color scales. For the range-finder, both
control laws have large convergence radius.

CHAPTER 12

Learning Bilinear Flows

The class of bilinear gradient dynamics sensor (BGDS) models systems with

spatially coherent observations defined as a function on a manifold, and for which

the dynamics ẏ is assumed to depend on y itself only through the spatial gradi-

ent ∇y.

Table 12.1. Symbols used in this chapter

BGDS systems
Images(S) Differentiable functions from S to R.
∇dy(s) (0, dim(S)) tensor field

on S
Gradient of y.

Gd
i (s) (dim(S), nu) tensor field

on S
Model parameter.

Bi(s) (0, nu) tensor field on S Model parameter.
BGDS(S ; k) ⊂ D(Images(S); Rk) Class of BGDS systems.

popψ Population code.
µs Average nearness.

Learning (in physical space)
Ci(s) (nu, 0) tensor field on S Learned statistic.
Hi

d(s) (nu, dim(S)) tensor field
on S

Learned statistic.

Re f (s) (dim(S), dim(S)) tensor
field on S

Covariance of ∇y.

Qij nu × nu Covariance of u.

Learning with alternative parametrization (logical space)
Z manifold Logical space.
z ∈ Images(Z) Transformed observations.
x ∈ Z Logical coordinate.
ϕ ∈ Diff(Z;S) Coordinate change.
J = ∂ϕ/∂x Jacobian of ϕ.

Fi(x) (equivalent of Ci(s)) Tensors learned in alternative
parametrization.

Mi
δ(x) (equivalent of Hi

d(s))
Smn(x) (equivalent of Re f (s))

219

12.1. BGDS 220

12.1. BGDS

DEFINITION 12.1. A system is a bilinear gradient dynamics sensor (BGDS), if the observations

are a function on a manifold S (Y = Images(S)), the commands are real numbers (U =

Rnu) and the dynamics of the observations is bilinear with respect to the gradient of the

observations and affine in the commands. Formally, there exist two tensor fields G and B

on S such that

ẏ(s, t) = ∑
i
(Gd

i (s)∇dy(s, t) + Bi(s))ui(t). (12.1)

BGDS(S ; k) ⊂ D(Images(S); Rk) is the family of all such systems with k commands and

sensel space S .

In (12.1), the symbol s represents a spatial index (the position of the sensel on the

space S) and ∇dy(s) denotes the d-th component of the gradient with respect to s.

The tensor field G represents the bilinear part of the dynamics, while B represents the

purely affine part that does not depend on y. Let dim(S) be the dimension of the space S ,

and k the dimension of u. Then the tensor field G can be represented by an dim(S)× nu

matrix at each point of S . If we discretize S to ny sensels, then G has a total of ny ×

dim(S)× nu elements. Instead, B is represented by only ny × nu elements.

12.1.1. Symmetries of the BGDS class

We now give the equivalent invariance properties of Proposition 11.2. For BDS mod-

els, we considered the effect of the linear group GL(n) on the observation; for BGDS, we

consider the effect of diffeomorphisms of the manifold S .

PROPOSITION 12.2. The BGDS(S ; k) family is closed with respect to diffeomorphisms ϕ ∈

Diff(S) that act on the observations as z(x, t) = y(ϕ(x), t), and the action of GL on the commands:

Diff(S) · BGDS(S ; k) · GL(k) = BGDS(S ; k).

12.1. BGDS 221

PROOF. For clarity, we prove the slightly more general result where the diffeomor-

phism is between two different spaces S and Z:

Diff(Z;S) · BGDS(S ; k) · GL(k) ⊂ BGDS(Z; k).

Let s ∈ S , z ∈ Z, s = ϕ(x), and z(x, t) = y(ϕ(x), t). The gradients of the fields are related

by

∇dy(ϕ(x), t) = Jd
e (x)∇ez(x, t), (12.2)

where J is the jacobian of the diffeomorphism ϕ−1. For the derivatives, we obtain

ż(x, t) = ẏ(ϕ(x), t)

(Substitution of dynamics)

= (Gd
i (ϕ(x))∇dy(ϕ(x), t) + Bi(ϕ(x)))ui(t)

(Substitution of gradient definition)

= (Gd
i (ϕ(x))Jd

e (x)∇ez(x, t) + Bi(ϕ(x)))ui(t)

, (G̃d
i (x)∇ez(x, t) + B̃i(x))ui(t).

Therefore, after the diffeomorphism ϕ, the system dynamics is still bilinear, and their char-

acteristic tensors are transformed by

G̃d
i (x) = Jd

e (x)Gd
i (ϕ(x)),

B̃i(x) = Bi(ϕ(x)).

�

We can also look at the effect of diffeomorphisms of the values rather than the domain.

12.1. BGDS 222

Suppose that the signal undergoes a local nonlinear transformation f ∈ Diff(R):

z(s) = f (y(s)).

What we find is that the BGDS class is closed with respect to all diffeomorphisms only if

the tensor B is zero. If it is not zero, the function f must be an affine transformation.

PROPOSITION 12.3. Assume y has BGDS dynamics. The dynamics of z(s) = f (y(s)) is BGDS

only if either B = 0 or f ∈ Aff(R).

PROOF. Write z(s) = f (x), with x = y(s). The gradient of z is a function of the partial

derivative of f :

∇dz(s) =
∂ f
∂x
|x=y(s)∇dy(s).

From (12.1) it follows:

ż(s) =
∂ f
∂x
|x=y(s)ẏ(s)

=
∂ f
∂x
|x=y(s)((G

d
i (s)∇dy(s, t) + Bi(s))ui(t).)ui

= (Gd
i (s)

∂ f
∂x
∇dy(s, t) +

∂ f
∂x
|x=y(s)Bi(s))ui

= (Gd
i (s)∇dz(s) +

∂ f
∂x
|x=y(s)Bi(s))ui.

Therefore, the tensor G is invariant, while B is multiplied by the partial derivative:

G̃d
i = Gd

i ,

B̃i =
∂ f
∂x
|x=y(s)Bi.

For the dynamics to be BGDS, the tensor B should not depend on y, and the partial deriva-

tive of f does not depend on y only if f is an affine transformation. �

12.2. LEARNING 223

12.2. Learning

Learning a BGDS model from sensorimotor data can be done by a streaming algorithm

that computes simple statistics of the data.

PROPOSITION 12.4 (Learning of BGDS models). Consider a sensor with bilinear gradient

dynamics. Assume that we can compute the gradient ∇y. Let u have second moment matrix Q.

Learn the three tensor fields Ci, H, and R according to

Ci(s) ← E{ẏ(s)ui},

Hi
d(s) ← E{ẏ(s)∇dy(s)ui},

Re f (s) ← E{∇ey(s)∇ f y(s)}.

If the training distribution is mixing (9.12), these statistics converge to

Ci(s) = ∑
j

Bj(s)Qij,

Hi
d(s) = ∑

D,j
GD

j (s)RDd(s)Qij.

12.2. LEARNING 224

PROOF. The statistics H converges to

Hi
d(s) = E{ẏ(s)∇dy(s)ui}

(Definition of gradient dynamics)

= E{[(GD
j (s)∇Dy(s) + Bj(s))uj]∇dy(s) ui}

(Independence of y and u)

= GD
j (s)

[
E{∇Dy(s)∇dy(s)}+ Bj(s)E {∇dy(s)}

]
E{ujui}

(The expectation of the gradient is 0 if mixing: E{∇Dy(s)} = 0.)

= GD
j (s)E{∇Dy(s)∇dy(s)}E{ujui}

= GD
j (s)RDd(s)Qij.

Note that the value of H is a combination of three factors: the dynamics (G), the world

properties (R), and the commands used (Q). The statistics C converges to:

Ci(s) = E{ẏ(s)ui}

(Definition of gradient dynamics.)

= E
{[(

GD
j (s)∇Dy(s) + Bj(s)

)
uj
]

ui
}

= (GD
j (s)E{∇Dy(s)}+ Bj(s))E{ujui}

= Bj(s)Qij.

�

12.3. SERVOING 225

12.2.1. Prediction/anomaly detection

PROPOSITION 12.5. (Prediction/anomaly detection) We can define a signal ˆ̇y(s) which pre-

dicts ẏ(s) as:

ˆ̇y(s) =
[
(Hi

d(s)R
dD(s)∇Dy(s) + Ci(s))

]
Qijuj, (12.1)

and an anomaly detection signal can be defined as

d(s) = max{− ˆ̇y(s)ẏ(s), 0}. (12.2)

(12.1) is simply the prediction given the learned model: equation (12.1) written using

the learned tensors. The detector (12.2) returns a positive response when the predicted

and observed derivative disagree on their sign; if the actual sensors is precisely a BGDS,

this signal detects extraneous objects on the field of view.

12.3. Servoing

In analogy with Proposition 12.6, the following is a servoing strategy for a BGDS model.

PROPOSITION 12.6 (Servoing with BGDS). The control command

ui = −
ˆ
S

[
Hi

d(s)(R(s)
−1)dD∇Dy(s) + Ci(s)

]
(y(s)− y̌(s)) ds (12.1)

is a descent direction for ‖y− y̌‖.

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 226

PROOF. The control command is

ui = −
ˆ [

Hi
d(x)(R(s)−1)de∇ey(s) + Ci(s)

]
(y(s)− y̌(s)) ds

= −Qij
ˆ
[GD

j (s)RDd(R(s)−1)de + Ci(s)]∇ey(s)(y(s)− y̌(s)) ds

(The tensors R and R−1 cancel.)

= −Qij
ˆ [

Gd
j (s)∇dy(s) + Ci(s)

]
(y(s)− y̌(s)) ds (12.2)

Consider the error function V = 1
2

´
(y(s)− y̌(s))2ds. Its derivative is

V̇ =

ˆ
(y(s)− y̌(s))ẏ(s)ds

=

ˆ
(y(s)− y̌(s))

[(
GD

j (s)∇Dy(s) + Bj

)
uj
]

ds

(Letting vj = ∫ (y(s)− y̌(s))(GD
j (s)∇Dy(s) + Bj)ds).

= −vjQ
ijvi ≤ 0.

�

12.4. Invariance to Reparametrization of the Sensel Space

In the previous section, we used the assumption that we can compute the gradient∇y(s).

That is equivalent to knowing the metric structure of the sensel space S complete sensor

calibration, that is, knowing the positions of all sensels in the sensel space. For example,

in the case of a camera, one should know the direction of each pixel on the visual sphere.

By contrast, the BDS models did not have any assumption about the position of sensels in

sensel space. We can make these two notions precise:

(1) A sensor is fully calibrated if we know the position of each sensel in the sensel

space S (Figure 12.1a). This is the assumption needed for BGDS models (so far).

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 227

(2) A sensor is uncalibrated if we do not know anything about the position of sensels

in S (Figure 12.1c). This is the assumption of BDS models.

These two levels of prior information seem extreme. One intermediate level of knowl-

edge is knowing the sensels topology, but not necessarily the precise metric arrangement

on S . Think of the output of an uncalibrated omnidirectional camera: while we know that

if two pixels that are close in image space, then they are close in the sensel space S = S2,

we do not know their absolute position.

We can formalize this idea as follows. We introduce the concept of the sensor “logical

space”, as opposed to the “physical space”. Before, we assumed that the observations were

defined as a function y : S → R. Now we assume that the sensor observation are returned

as function z : Z→ R, defined on the “logical” space Z instead of the “physical” space S .

DEFINITION 12.7. A sensor is logically calibrated if its output is naturally defined on a

certain physical sensel space S as y : S → R, but the agent has access to another logical

sensel space Z and the observations as a function z : Z→ R, and it holds that

z(x) = y(ϕ(x)), (12.1)

for some unknown differentiable and bijective map ϕ between Z and S .

no information

y
Y

si

s1

Y

Z

s

x

ϕ

known sensel
positions

?Y

senselssensels sensels

diffeomorphism
unknown

(a) Fully cali-
brated sensor

no information

y
Y

si

s1

Y

Z

s

x

ϕ

known sensel
positions

?Y

senselssensels sensels

diffeomorphism
unknown

(b) Logically cali-
brated sensor

no information

y
Y

si

s1

Y

Z

s

x

ϕ

known sensel
positions

?Y

senselssensels sensels

diffeomorphism
unknown

(c) Uncalibrated
sensor

Figure 12.1. Three levels of prior information about the sensors: uncalibrated, logi-
cally calibrated, fully calibrated. The bootstrapping strategy in the first section works
with uncalibrated sensor. In this section we show that to take advantage of the special
structure possessed by a BGDS we only need to have a logically calibrated sensor.

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 228

In the case of a camera sensor, the physical space is the unit sphere S2, and the logical

space is the pixel space [1, W]× [1, H], where W × H is the camera resolution. The logical

variable is x = (x1, x2) corresponding to the pixel coordinates. The map ϕ associates to

a pixel its corresponding direction on the visual sphere. Knowledge of ϕ corresponds to

knowing the camera intrinsic calibration. The function ϕ itself can be written explicitly

only in particularly simple cases.

EXAMPLE 12.8. For a pinhole camera, given the focal length F and the sensor centers

c1, c2, the map is

ϕ : [1, W]× [1, H] → S2

ϕ(x1, x2) =
(1, 1

F (x1 − c1), 1
F (x2 − c2))

‖(1, 1
F (x1 − c1), 1

F (x2 − c2))‖
.

If the agent learns a BGDS model in the logical space, then the corresponding servoing

control minimizes the same error function, up to a scale factor of the metric being mini-

mized that depends on the Jacobian determinant of ϕ.

PROPOSITION 12.9. Consider a logically calibrated BGDS. Learn three tensor fields F, M, S

according to

Fi(x) ← E{ż(x)ui},

Mi
δ(x) ← E{ż(x)∇δz(x)ui},

Smn(x) ← E{∇mz(x)∇nz(x)}.

Then the control strategy

ui = −
ˆ [

Mi
δ(x)(S−1)δD∇Dz(x) + Fi(x)

]
(z(x)− z?(x)) dx (12.2)

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 229

is minimizing the error function

1
2

ˆ
|det J|−1(y(s)− y̌(s))2 ds, (12.3)

where J = ∂ϕ/∂x.

PROOF. The proof consists in expressing everything in the physical space. First we

compute the results of bootstrapping. The learned tensor F is

Fi(x) = E{ż(x)ui}

= E{ẏ(ϕ(x))ui}

= E{
[

GD
j (s)∇Dy(s) + Bj(ϕ(x))

]
ujui}

= Bj(ϕ(x))Qij.

The learned tensor M is

Mi
δ(x) = E{ż(x)∇δz(x)ui}

= E{
[

GD
j (ϕ(x))∇Dy(ϕ(x))uj + Bj(ϕ(x))uj

] [
∇dy(ϕ(x))Jd

δ

]
ui}

= GD
j (s)J

d
δE{∇Dys∇dys}E{ujui}

= GD
j (s)J

d
δRDdQij. (12.4)

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 230

For the covariance, we obtain

Smn(x) = E{∇mz(x)∇nz(x)}

= E{
(

Jd
m∇dy(s)

)
(Je

n∇ey(s))}

= Jd
mE{∇dy(s)∇ey(s)}Je

n

= Jd
mRedJe

n.

We can compute the inverse of the Smn tensor by following the linear algebra rules:

(S−1)mn = (J−1)m
d (R

−1)ed(J−1)n
e . (12.5)

Now we can compute an equivalent expression for the control command (12.2):

ui = −
ˆ [

Mi
δ(x)(S−1)δD∇Dz(x) + Fi(x)

]
(z(x)− z?(x))dx.

For the first term, one finds that

Mi
δ(x)(S−1)δD∇Dz(x) =

[
G

g
j (f (x))Jh

δRghQij
]
×

[
(J−1)δ

d(R
−1)ed(J−1)D

e

] [
∇ f y(ϕ(x))J f

D

]
.

The next step involves a couple of simplifications of J and J−1. We notice that Jh
δ

(
J−1)δ

d =

Idh
d, and likewise J

f
D
(
J−1)D

e = Id f
e , where Id is the identity. Therefore we obtain

Mi
δ(x)(S−1)δD∇Dz(x) = Qij

ˆ
G

g
j (ϕ(x))RghIdh

d(R
−1)edId f

e∇ f y(ϕ(x))

= G
f
j (ϕ(x))∇ f y(ϕ(x)).

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 231

The final form for the control law is

ui = −Qij
ˆ [

G
f
j (ϕ(x))∇ f y(ϕ(x)) + Bj(ϕ(x))

]
(z(x)− z?(x))dx.

At this point, notice that the control law is very similar to (12.2), but the integration is over

the space x instead of s. We can do a change of variable; recalling that s = ϕ(x), the volume

form changes as ds = |det J|dx. The final expression for the commands is

ui = −Qij
ˆ

1
|det J|

[
G

f
j (s)∇ f y(s) + Bj(s)

]
(y(s)− y̌(s))ds.

This corresponds to minimizing the error function (12.3). �

This result implies that we do not have to know the full calibration of the sensor to take

advantage of the fact that the sensor is a BGDS; the knowledge of the sensels positions up

to an unknown diffeomorphism is sufficient.

12.4.1. Invariance of the agent behavior

However, the behavior is not completely invariant to diffeomorphisms, because the

error function being minimized is slightly different. In complete analogy with Section 11.6,

there are two possibilities: either amend the error function to be invariant, or introduce a

canonization operator.

In Section 11.6 we used the covariance of the observations as the covariant statistics.

Here, the analogous quantity is the determinant of the covariance of the gradient of the

observations. Define the two scalar quantities in physical and logical space:

dp(s) = det E{∇dys∇eys}, (12.6)

dl(x) = det E{∇ f zx∇gzx}.

12.4. INVARIANCE TO REPARAMETRIZATION OF THE SENSEL SPACE 232

These are observable quantities that allow to define an invariant error function.

LEMMA 12.10. The error function is invariant to diffeomorphisms:

1
2

ˆ
1√

dp(s)
(y(s)− y̌(s))2 ds =

1
2

ˆ
1√

dl(x)
(z(x)− ž(x))2 dx. (12.7)

PROOF. From (12.6), it follows that

dp(s) = |det J|2dl(x).

Using a change of variable: and keeping in mind that ds = |det J|dx, one obtains

1
2

ˆ
1√

dp(s)
(y(s)− y̌(s))2 ds

=
1
2

ˆ
1√

dp(s)
(y(s)− y̌(s))2|det J|dx

=
1
2

ˆ
1√

dp(s)
(z(x)− ž(x))2|det J|dx

=
1
2

ˆ
1

|det J|2
1√

dl(x)
(z(x)− ž(x))2|det J|dx

=
1
2

ˆ
1√

dl(x)
(z(x)− ž(x))2 dx.

�

The other approach consists in introducing a canonization operator. This is seen in

detail in Subsection 18.5.

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 233

Table 12.2. BGDS approximation of canonical robotic sensors.

dynamics learned tensors

field sampler ẏs = (s×∇ys)i ωi +∇iysvi

Hvi(s) = Rjd(s)Qij, i ∈ [1, 3].

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = 0.
camera ẏs = (s×∇ys)i ωi + µs∇iysvi

Hvi(s) = µsRjd(s), i ∈ [1, 3],

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = 0.
range-finder ẏs = (s×∇ys)i ωi + (∇i log ys − s∗i)v

i

Hvi(s) = µsRjd(s)Qij, i ∈ [1, 3].

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = −s∗j Qij, i ∈ [1, 3].

Ci(s) = 0, i ∈ [4, 6].

12.5. Approximation to Canonical Robotic Sensors

In the previous section, we considered a generic BGDS sensor. Here, we consider the

dynamics of our three model sensors, and discuss the quality of their BGDS approximation.

The main results are given in Table 12.2.

12.5.1. Field-samplers

PROPOSITION 12.11 (BGDS approximation to field-sampler). The learned tensors for a

field sampler are

Hvi(s) = Rjd(s)Qij, i ∈ [1, 3],

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = 0.

PROOF. From (9.1), the dynamics of a field sampler are ẏ(s) = (∇jy(s))vj + (s ×

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 234

∇y(s))jω
j. The computation for C goes as follows:

Ci(s) = E{ẏ(s)ui}

= E{[(∇jy(s))vj + (s×∇y(s))jω
j]ui}

(∇y is independent from the commands, and its expectation is 0.)

= 0.

We split the computation for H for the first and last three components. For the first three

components (i = [1, 3]), corresponding to the linear velocity:

Hi
d(s) = E{ẏ(s)∇dy(s)vi}

= E{[(s×∇ys)i ωi +∇iysvi]∇dy(s)vi}

(Uncorrelated v and ω.)

= E{[(∇jy(s))vj]∇dy(s)vi}

= E{∇jy(s)∇dy(s)}E{vivj}

= Rjd(s)Qij

For the last three components (i ∈ [4, 6]), corresponding to the angular velocity:

Hi
d(s) = E{ẏ(s)∇dy(s)ωi}

= E{(s×∇y(s))jω
j∇dy(s)ωi}

= ŝ f
j R f d(s)Qij.

�

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 235

12.5.2. Vision sensors

PROPOSITION 12.12 (BGDS approximation to vision sensors). The learned tensors for a

vision sensor are

Hvi(s) = µsRjd(s), i ∈ [1, 3],

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = 0.

PROOF. For rotation, the model is the same as the model for field-samplers. As for the

linear velocity, the computation is mostly the same, with the addition of the nearness µs:

Hi
d(s) = E{ẏs∇dysvi}

= E{[(s×∇ys)i ωi + µs∇iysvi]∇dysvi}

= E{[µs(∇jys)vj]∇dysvi}

= µsRjd(s)Qij.

�

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 236

12.5.3. Range finders

PROPOSITION 12.13 (BGDS approximation to range finders). The learned tensors for a

range finder are

Hvi(s) = µsRjd(s)Qij, i ∈ [1, 3],

Hvi(s) = ŝ f
j R f d(s)Qij, i ∈ [4, 6],

Ci(s) = −s∗j Qij, i ∈ [1, 3].

Ci(s) = 0, i ∈ [4, 6].

PROOF. For rotation, the model is the same as the model for field-samplers. For the

other components:

Hi
d(s) = E{ẏs∇dysvi}

= E{[(∇j log ys − s∗j)v
j]∇dysvi}

(E{∇y} = 0)

= E{[(∇j log ys)vj]∇dy(s)vi}

(derivative of logarithm)

= E

{
1
ys ∇jys∇dys vivj

}

(independence of quantity and its gradient)

= E

{
1
ys

}
Rjd(s)Qij

(The inverse of the readings is the nearness.)

= µsRjd(s)Qij.

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 237

For the tensor C:

Ci(s) = E{ẏ(s)vi}

= E{[(∇j log ys − s∗j)v
j]vi}

= −s∗j E{vjvi}

= −s∗j Qij.

�

12.5.4. Range finders (population code representation)

Range-finders are not exactly BDS/BGDS because of the nonlinearity in the dynam-

ics (Table 9.2). Here we show that a range finder model can be represented with small

distortion as a BGDS, if the data is first preprocessed by a transformation similar to a pop-

ulation code.

DEFINITION 12.14 (Population code). Consider a signal y defined on a domain S (y :

S → O), and a symmetric kernel ψ : O× O → R. Then we call “population code” the

signal z : S × O → R defined by z(s, x) = ψ(x, y(s)). The population code function popψ

se(m)→ RF(Sm)
y(s)−→

Diff(R+
◦)y

⊗ −→ popk(S
m, R+

◦)
z(s, ρ)−→

(a) Series of range-finder, unknown distortion, and population code .

se(m)→ BGDS(Sm−1 ×R+
◦) −→

o(‖k‖) distortiony
⊕ z(s, ρ)−→

(b) Equivalent model: BGDS with unstructured (i.e., non-group) nuisance.

Figure 12.1. A range-finder + population code can be approximated by a BGDS with
low-distortion (Proposition 12.15).

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 238

has the signature

popψ(S ;O) : Images(O)→ Images(S ×O).

Note that it augments the dimension of the observations from a field defined on S to a

field defined on S ×O.

After this transformation, the dynamics appear simplified. Let RF(Sm, k) be the family

of all range-finders models for robots in SE(m) with k linear/angular velocity commands

in se(m). The output of a rangefinder is a function defined on the sphere Sm to R+
◦ , there-

fore the family RF(Sm; k) is a subset of D(Images(Sm); k).

PROPOSITION 12.15. The dynamics of a range-finder whose output is filtered by a population

code can be represented with small distortion by a BGDS, except near occlusions, with a small

distortion bounded by ‖ψ‖:

popψ(S
m; R+

◦) · RF(Sm, k) ⊂ BGDS(Sm ×R+
◦ , k) ⊕ o(‖ψ‖).

For simplicity, we can picture the situation in the plane (m = 2), but everything is valid

in 3D as well. Let O ⊂ R2 be the subset of obstacles in the plane that are opaque to the

range-finder. Define an indicator function δO : R2 → {0, 1} such that δO(x) is 1 if the world

is opaque at x ∈ R2. We define a field sampler sampling the field δO as follows:

f : R2 → R (12.1)

q 7→ δO(Rq + t),

where q ∈ R2 is the sensel position in robot frame, and (R, t) ∈ SE(2) is the robot pose.

As previously discussed, every field sampler is a BGDS.

PROOF. Let y : S1 → R+
◦ be the output of a range-finder. Define its population code

12.5. APPROXIMATION TO CANONICAL ROBOTIC SENSORS 239

representation with a delta kernel (k(x, y) = δx(y)) as z(s, ρ) = ψ(ρ, y(s)) = δy(s)(ρ). Note

that in the population code for a range finder s ∈ S1 ranges over direction and x ∈ R+
◦

ranges over distances; therefore, z(s, ρ) is 1 if the obstacle in direction s is at distance x, so

it represents a local polar map of the environment. Define the polar to Cartesian change of

coordinates

ϕ : (s, ρ) 7→ (ρ cos(s), ρ sin(s)),

which is a diffeomorphism except at the origin. The function z can be expressed as a

function of the field sampler 12.1 as z(s, ρ) = f (ϕ(s, ρ)). This means that its output is a

diffeomorphism of the output of a BGDS model.

Note, however, that so far we used a delta kernel ψ = δ and an indicator function δO

for the obstacle set; this makes the output of the sensor sparse and discontinuous, which

makes it impossible to represent the dynamics with partial differential equations. The

solution is to use a kernel ψ with some smoothing (a trick used for different reasons in

SLAM, leading to “relaxed” likelihood models), to which it (approximately) corresponds

a smoothing of the field δO. The math only works exactly in the limit as ψ → δ, therefore

there is a bounded small distortion. �

As a consequence, we know that the BGDS agent can learn, with small approximation,

the dynamics of a range finder. We can take this further: suppose that we have a sensor

whose output is an unknown function of the range; that is, instead of the ranges yi, we

have measurements y′i = f (yi) for an unknown f ∈ Diff(R+
◦). We can show that this trans-

formation would be tolerated by the agent, because the resulting system is still a BGDS. In

summary, it is possible to get the data from a range finder, distort it by a nonlinear function,

shuffle the measurements, and then apply one of the calibration techniques that recover

the topology, and the BGDS agent behavior will be invariant to all those group nuisances.

12.6. EXPERIMENTS 240

PROPOSITION 12.16. Suppose that a nonlinear scaling f ∈ Diff+(R+
◦) acts on the output of

a range-finder reading by reading, mapping y(s) 7→ f (y(s)). Then the chain of sensor, scaling,

and population code is still a BGDS.

PROOF. We just need to note that, in general, nonlinear scaling commutes with the

population code. Given: a dynamical system D ∈ D(Images(S),U); a nonlinear scaling

f ∈ Diff+(O); a population code block popψ(S ,O); we have that popψ · f · D = f · popψ ·

D. By the previous results popψ · D is a BGDS. By Proposition 12.2, BGDS are closed to

diffeomorphisms. �

12.6. Experiments

This section shows that BGDS bootstrapping agents can deal with the sensor suite of

real-world robotic platforms with heterogeneous sensors. After minimal preprocessing,

heterogeneous data from range-finders and cameras can be handled by exactly the same

algorithm, with no other prior information. In the previous chapter, we evaluated BDS

models on servoing. Here, we consider instead a passive task that can be tested on logged

data. The task is anomaly detection: the agent must discover which changes in its stimuli

can be explained by its own motion, and which are due to independent causes (e.g. objects

moving in the field of view).

Datasets. We use data available from the Rawseeds project [132]. The robot is a dif-

ferential drive platform with a full sensor suite onboard: 2 Sick range-finders (180 deg

field of view, 181 readings, 70 Hz, max range of 80 m), 2 Hokuyo range-finders (270 field

of view, 626 readings each, 10 Hz, max range of 6 m), one omnidirectional camera (RGB

640x640, 15fps), one frontal camera with fisheye lens (RGB 640× 480, 30 fps), and a Point

Gray Triclops (grayscale, 3× 320× 240, 15 fps), GPS and IMU. The available logs corre-

spond to a few hours of operation both indoors and outdoors, for a total of about 500 GB

12.6. EXPERIMENTS 241

of uncompressed data.

The commands u ∈ R2 are the linear and angular velocities obtained from differenti-

ating the odometry data. We set u0 = v (linear) and u1 = ω (angular)—this is mainly for

having clearer pictures, because we proved that the final result is invariant to any linear

transformation.

Tests with range-finder data. For range-finder data, we demonstrate the bootstrapping

pipeline as explained in Section 12.5.4, formalized in Fig. 12.1, and cartoonishly repre-

sented in Fig. 12.12a.

We take the data from the two Sick range finders, mounted with a heading of approxi-

mately 0 and 180 with respect to the robot. The raw readings are deformed by a nonlinear

function x 7→ 1/x (nearness instead of range) and shuffled according to a random permu-

tation. Thus the initial input to the pipeline is a set of 362 shuffled, warped sensels values

{yi}n
i=1. An embedding algorithm [105] recovers the position of the sensels on the unit

circle using a metric obtained by computing the information distances of the sensels. The

reconstruction is accurate up to a diffeomorphism nuisance: that is, if θi ∈ S1 is the real

angle, we can estimate θ̃i = ϕ(θi) for ϕ ∈ Diff(S1). In practice, this means that we can

reconstruct only the order of the sensels on the circle. We normalize each sensel value in

the range [0, 100] by computing the percentile of yi(t) to the whole history yi[−∞, t]; this

normalizes the nonlinear scaling. Then we apply a population code filter with a small ker-

nel (ψ = 0.5 against the [0, 100] range). In the end, from shuffled distorted values {yi}n
i=1,

we have obtained a 2D field y(θ̃, ρ̃), where θ̃ ∈ [0, 2π] is a (warped) angle and ρ̃ ∈ [0, 100]

is a nonlinear function of the range. This “image” is diffeomorphic to a polar map of the

environment; but notice that this is obtained not from prior geometric knowledge but only

as the consequence of a data-agnostic pipeline.

In this case, the sensel space S (S = [0, 2π]× [0, 100]) has dimension d = 2 and there

12.6. EXPERIMENTS 242

are k = 2 commands (linear and angular velocity). Therefore the tensor H has 4 compo-

nents, each of which is a field across the sensel space. The tensor C has 2 components (for

linear and angular velocity), but we do not show it for the camera data, because it is in the-

ory 0, and in practice insignificant noise. The 4 components of the tensor field H are shown

in Fig. 12.13 as 4 false color images (white: zero, red: positive, blue: negative). Refer to

the caption for some interpretation, not always intuitive. An example result of anomaly

detection is shown in Fig. 12.15e. This is done by using the learned tensors to compute the

prediction signal (12.1), and then computing the detection signal (12.2). The figure shows

the total anomaly reported per sensel over time. Anomalies are reported constantly for

the sensor horizons (front and back) where objects pop into view; the occasional traces

correspond to people walking around the robot.

Tests with camera data. We stitched together the images from the omnidirectional cam-

era, the frontal camera, and one of the stereo triplets to obtain a unique 640x480 frame

from which we compute a grayscale signal (Fig 12.12b). In this case, we start from the

knowledge of the correct sensel topology given from the raw images. However, there is

still a diffeomorphism nuisance, because we assume no prior information on the intrinsic

calibration of the cameras (the unknown diffeomorphism is the one—actually, there are

three—that maps each pixel in the composite frame to the corresponding direction on the

visual sphere).

The source image has three components (R, G, B). One must choose how to convert

the raw RGB signal into a scalar quantity. In this paper, we are more interested in the

general issues which are common across sensory modalities rather than specific issues of a

particular sensor. We considered two filters: (1) a standard RGB to grayscale (luminance)

conversion, and (2) grayscale, followed by the computation of the image contrast: y(s) 7→

‖∇y(s)‖. We found that the results seem to be robust to the preprocessing step and should

12.6. EXPERIMENTS 243

be largely invariant for any other local filter applied to the images.

Before looking at the learning results, it is instructive to look at the first-order data

statistics, such as the mean and variances of the signals (Fig. ??). Already these simple sta-

tistics show that parts of the image are non informative: the borders of the omnidirectional

camera and the camera reflection in the conic mirror have almost zero variance. One could

use this information to ignore those parts; however we shall see that the tensor learning

will ignore non informative parts automatically.

Fig. 12.14 shows the learning results, using the grayscale signal. Also in this case the

sensel space S = [1, 640]× [1, 480] has dimension d = 2 and there are k = 2 commands.

Therefore, the tensor H has 4 components, each of which is a field across the sensel space,

that can be displayed as 4 false colors images. Interpreting those images is not immediate.

Remember that, ultimately, the tensor Hi
d shows how the derivative ẏ is affected by the

intensity of the d-th component of ∇dy (∇0 being the horizontal gradient and ∇1 being

the vertical gradient). Note that all fixed parts of the robot reflected in the mirror appear

as white (zero values). In the field H0
1 (corresponding to linear velocity v and vertical

gradient), it is easy to understand why the ceiling appears red (negative) and the floor

blue (positive): if the robot moves with v > 0, and there is a positive gradient ∇1y > 0,

then one expects ẏ > 0 in the ceiling and ẏ < 0 for the floor. The part of the omnidirectional

camera is all red (instead of blue) because the image is mirrored. The tensor H contains

both intrinsic information about the sensor (direction of pixels) and extrinsic information

(interaction sensor-command), as well as statistics of the environment (things on average

further away correspond to lower response to translational motion).

One could make similar interpretations using the concept of optic flow (apparent retinal

motion), however, notice we never compute optic flow and we do not assume the agent

has the semantics of “motion” at all; we only use the quantities ẏ and ∇y that can be

12.6. EXPERIMENTS 244

computed directly from the data without problems of regularization. Roberts et al. [83]

present an analogous approach to learning “optic flow subspaces” using feature tracking

and optimization.

Fig. ?? shows the analogous results using the contrast signal instead of grayscale. The

learned tensors are very similar; the results should be invariant to all local image opera-

tions.

Fig. 12.15a–12.15d show an example of anomaly detection. As expected, objects (such

as people) that move not coherently with the motion are readily detected. But the model

also breaks down at occlusions and for very fast rotational motions; that is, where the

signal evolution cannot be represented accurately using a smooth model such as (12.1).

12.6. EXPERIMENTS 245

(a) E{z} (b) var{z}

(c) var{ż} (d) var{∇1z}

Figure 12.1. Statistics for the camera data (grayscale signal). In these figures we adopt
the convention that white=zero and darker=positive. Subfigure (a) shows the obser-
vations mean. It is possible to see that the camera reflection remains fixed in the field
of view, while the rest appears as a blur. Subfigure (b) shows the data variance. The
part comprising the camera reflection appears as white, meaning that the variance is
very small. Subfigure (c) shows the variance of ż(x). This shows what parts of the im-
age have the faster dynamics: apparently, more things happen in the distance rather
than in the vicinity of the robot. Subfigure (d) shows the variance of ∇1z(x). It shows
that some gradients are usually very strong, for example at the border between the
subimages. Assuming that the world has uniform texture energy spectrum over the
field of view, the energy of ∇z(x) is increasing with the distance, because when z(x)
is shrunk, the power spectrum of ∇z(x) increases.

12.6. EXPERIMENTS 246

(a) M1
1(x) (horiz. gradient

and linear vel.)
(b) M2

1(x) (vert. gradient
and linear vel.)

(c) M1
2(x) (horiz. gradient

and angular vel.)
(d) M2

2(x) (vert. gradient
and angular vel.)

Figure 12.2. Learned tensors using grayscale signal. Blue means negative, red means
positive, and white corresponds to zero. Collectively, these figures encode the sensors
intrinsic and extrinsic calibration, along with some ancillary statistics about the envi-
ronment, although the interpretation is not immediate. Note first that the parts that
are not influenced by the robot motion (reflected camera, borders) appear as white,
meaning that the tensor there is zero and negligible. The intensity depends on the av-
erage distance to the obstacle and to the pixel density on the visual sphere. The color
depends on the pixel orientation on the visual sphere: see the text for more discussion.

12.6. EXPERIMENTS 247

(a) Normalized M1
1(x)

(horiz. gradient and linear
vel.)

(b) Normalized M2
1(x) (vert.

gradient and linear vel.)

(c) Normalized M1
2(x)

(horiz. gradient and angular
vel.)

(d) Normalized M2
2(x) (vert.

gradient and angular vel.)

Figure 12.3. Learned tensors using grayscale signal, normalized. Blue means nega-
tive, red means positive, and white corresponds to zero. These figures are the equiva-
lent of Fig. 12.2, but using the normalized signal (the gradients intensity are shown in
Fig. 12.1). Although very similar, closer inspection shows some parts in which the nor-
malization effect is evident. For example in (c) the immediate area around the robot
base is given proper weight, which does not show in Fig. 12.2 (c).

12.6. EXPERIMENTS 248

(a) E{z} (b) var{z}

(c) var{ż} (d) var{∇1z}

Figure 12.4. Statistics for the camera data (contrast signal). This figure shows the
equivalent data of Fig. 12.1 for the contrast signal rather than for the grayscale signal.
Note in (a) the very well defined contrast between the different cameras images, on
the camera reflection, and mirror border. The subfigures (c) and (d), compared with
the grayscale data in Fig. 12.1, show that the contrast signal is much more statistical
uniform than the grayscale signal.

12.6. EXPERIMENTS 249

(a) M1
1(x) (horiz. gradient

and linear vel.)
(b) M2

1(x) (vert. gradient
and linear vel.)

(c) M1
2(x) (horiz. gradient

and angular vel.)
(d) M2

2(x) (vert. gradient
and angular vel.)

Figure 12.5. Learned tensors using contrast signal. Blue means negative, red means
positive, and white corresponds to zero. This figure hows the equivalent data of
Fig. 12.2 for the contrast signal rather than for the grayscale signal.

12.6. EXPERIMENTS 250

(a) Normalized M1
1(x)

(horiz. gradient and linear
vel.)

(b) Normalized M2
1(x) (vert.

gradient and linear vel.)

(c) Normalized M1
2(x)

(horiz. gradient and angular
vel.)

(d) Normalized M2
2(x) (vert.

gradient and angular vel.)

Figure 12.6. Learned tensors using contrast signal, normalized. Blue means negative,
red means positive, and white corresponds to zero.

12.6. EXPERIMENTS 251

(a) Observation (b) Observation derivative

(c) Derivate prediction (d) Sign disagreement

Figure 12.7. Example of stationary image. The people in the image are mostly sta-
tionary in this image. Note that in (b) and (c) derivative observation and prediction
roughly agree, albeit second order effects such as motion blur are not completely re-
covered.

12.6. EXPERIMENTS 252

(a) Observation (b) Observation derivative

(c) Derivate prediction (d) Sign disagreement

Figure 12.8. Example of extraneous object detection. The people’s independent mo-
tion gives an image derivative which has the opposite sign than the prediction of the
BGDS model. The detection signal is active at the object’s border.

12.6. EXPERIMENTS 253

(a) Observation (b) Observation derivative

(c) Derivate prediction (d) Sign disagreement

Figure 12.9. Example of failure for very fine details. We noticed that the detection
would give false positives for very fine textures. This figure shows a blowup of a
16px×16px detail of a door frame. The observed derivative and the prediction are
apparently a very close match, but a closer examination reveals that the prediction
is shifted 1px to the left. Subfigure (d) shows the detection signal: because of that
shift, two bands are detected as inconsistent. We do not have a full explanation of this
phenomenon, but probably it is linked to the fact that we approximate the derivative
at instant k using the the difference yk − yk−1.

12.6. EXPERIMENTS 254

90 0 90 180 270
ray direction (deg)

0

5

10

15

20

25

30

35

d
is

ta
n

ce
 (

m
)

(a) Ey

90 0 90 180 270
ray direction (deg)

0

5

10

15

20

25

30

st
d

-d
e
v

(m
)

(b) vary

90 0 90 180 270
ray direction (deg)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

.
st

d
-d

e
v

(u
n

it
le

ss
)

GI_DI

GS_DS

(c) vary

90 0 90 180 270
ray direction (deg)

0.0

0.2

0.4

0.6

0.8

1.0

n
o
rm

.
st

d
-d

e
v

(u
n

it
le

ss
)

GI_DI

GS_DS

(d) varẏ

Figure 12.10. Statistics for the range-finder data. Subfigure (a) and (b) show the ob-
servations mean and standard deviation. One can see that the hypothesis of the train-
ing distribution being mixed (Definition 9.12) is clearly not respected: the robot was
driven along particular trajectories in very structured environments. In particular,
note the peaks of distance at 0 and 180deg: the average shape is clearly that o a nar-
row corridor. Subfigures (c) and (d) show the variance of ż and ∇z. Without filtering
(configuration GI_DI), most of the signal energy is concentrated in front; while we see
that filtering gradient and derivative with a sign() nonlinearity (configuration GS_DS)
makes the energy constant across the field of view: that is, it mitigates the effect of
large gradients and sudden changes in the signal.

12.6. EXPERIMENTS 255

90 0 90 180 270
ray direction (deg)

1.0

0.5

0.0

0.5

1.0

n
o
rm

a
li

ze
d

 t
e
n

so
r

(u
n

it
le

ss
)

(a) Mv

90 0 90 180 270
ray direction (deg)

0.5

0.0

0.5

1.0

1.5

2.0

n
o
rm

a
li

ze
d

 t
e
n

so
r

(u
n

it
le

ss
)

GI_DI

GS_DS

expected

(b) Mω

90 0 90 180 270
ray direction (deg)

1.0

0.5

0.0

0.5

1.0

n
o
rm

a
li

ze
d

 t
e
n

so
r

(u
n

it
le

ss
)

(c) Fv

90 0 90 180 270
ray direction (deg)

0.10

0.05

0.00

0.05

0.10

n
o
rm

a
li

ze
d

 t
e
n

so
r

(u
n

it
le

ss
)

(d) Fω

Figure 12.11. Tensors learned from range-finder data. We know the sensor config-
uration (two Sick range finders mounted in opposite directions aligned to the robot
x-axis, therefore we can compute the expected result analytically (Table 11.2). We com-
pare the results of using the raw derivative and gradient (GI_DI) and of filtering them
with a sign() operation (GS_DS); the point being that such filtering help in obtain-
ing smoother results, because the raw range data is very discontinuous. Subfigures
(a),(b) show the two components Mv and Mω which refer to the bilinear part of the
dynamics. In (a), the analytical result is φ 7→ sin(φ). The learned tensors agree with
the theory up to a nonlinear deformation, especially with the derivative and gradient
filters. In (b), the theory predicts the response should be constant, and that is well ver-
ified. Subfigures (c),(d) show the tensors Fv and Fω that correspond to the affine part
of the dynamics (that is, how u affects ż regardless of z). The theory prediction for Fv
is φ 7→ cos(φ). The data agrees well for the frontal range finder, corresponding to the
first half in the plot (-90deg to 90deg), while it does not for the rear range-finder. It is
not clear why, but we can advance the hypothesis that this was somehow caused by
the people following the robot, while the road ahead was typically clear. Note that the
filtered version (GS_DS) successfully recovers the dynamics there. Finally, subfigure
(d) depicts the tensor Fω, which should be 0 according to the theory; in fact, the plot
just shows magnified noise.)

12.6. EXPERIMENTS 256

sensel position
0

100

near

far

original
data

uninterpreted
values

sensel
similarity
measure

inf.
distance

BGDS-ready data

-90 270

visual
sphere

reconstructed
positions

shuffling

nonlinear
scaling

embed

7

of the ranges yi. We can show that this transformation would
be tolerated by an agent, because the resulting system is still
a BGDS.

Proposition 16. Suppose that a nonlinear scaling f ∈
Diff+(R+

0) acts on the output of a range-finder reading by
reading, mapping y(s) �→ f(y(s)). Then the chain of sensor,
scaling, and population code is still a BGDS.

Putting together the results in this section with the ones
developed previously, we can say that it is possible to get
the data from a range finder, distort it by a nonlinear function,
shuffle the measurements, and then apply one of the calibration
techniques that recover the topology, followed by the BGDS
agent, and the agent behavior will be invariant to all the various
group nuisances.

VI. EXPERIMENTS

The goal of this section is to show how BGDS bootstrapping
agents can deal with the sensor suite of real-world robotic
platforms with heterogenous sensors. We show how, after
minimal preprocessing, heterogenous data from range-finders
and cameras can be handled by exactly the same algorithm,
with no other prior information. In [?], we evaluated BDS
models on servoing. Here, we consider instead a passive
task that can be tested on logged data. The task is anomaly
detection: the agent must discover which changes in its stimuli
can be explained by its own motion, and which are due to
independent causes (e.g. objects detection); in bootstrapping,
this corresponds to the first step in learning about other agents
in the world.

A. Dataset

We use data available from the Rawseeds project [?]. The
robot is a differential drive platform with a full sensor suite
onboard: 2 Sick range-finders (180 deg field of view, 181 read-
ings, 70 Hz, max range of 80 m), 2 Hokuyo range-finders
(270 deg field of view, 626 readings each, 10Hz, max range of
6 m), one omnidirectional camera (RGB 640x640, 15fps), one
frontal camera with fisheye lens (RGB 640x480, 30fps), and
a Point Gray Triclops (grayscale, 3 x ????, 15fps), GPS and
IMU. There are 11 logs available, corresponding to a few hours
of operation, for a total of about 500GB of uncompressed data.
The logs are taken both indoors and outdoors, in the campus
of the Polytechnic University of Milan. Thus it represents an
exhaustive dataset.

The commands u are the linear and angular velocities
obtained from differentiating the odometry data. We set u0 = v
(linear) and u1 = ω (angular) — this is mainly for having
clearer pictures, because we proved that everything is invariant
to linear transformations (group action of GL(k) on the k
commands).

B. Tests with range-finder data

For range-finder data, we demonstrate the bootstrapping
pipeline as explained in Section V and represented in
Fig. ????. We take the data from the two Sick range finders,

mounted with a heading of approximately 0deg and 180deg
with respect to the robot. The raw readings are deformed by
a nonlinear function x �→ 1/x (nearness instead of range) and
shuffled according to a random permutation. Thus the initial
input to the pipeline is a set of 362 shuffled, warped sensels
values {yi}n

i=1 (Fig. ????).
An embedding algorithm [?] recovers the position of the

sensels on the unit circle using a metric obtained by computing
the information distances from the raw values. The reconstruc-
tion is accurate up to a diffeomorphism: that is, if θi ∈ S1 is
the real angle, we can estimate θ̃i = ϕ(θi) for ϕ ∈ Diff(S1)
(compare Fig. ????). In practice, this means that we can
reconstruct only the order of the sensels on the circle. We
normalize each sensel value in the range [0, 100] by computing
the percentile of yi(t) to the whole history yi[−∞, t]; this
normalizes the nonlinear scaling. Then we apply a population
code filter with a small kernel (ψ = 0.5 against the [0, 100]
range).

In the end, from shuffled distorted values {yi}n
i=1, we have

obtained a 2-dimensional quantity y(θ̃, ρ̃), where θ̃ ∈ [0, 2π]
is a (warped) angle and ρ̃ ∈ [0, 100] is akin to a normalized
range (Fig. ????). This “image” is diffeomorphic to a polar
map of the environment; but notice that this is obtained not
from prior geometric knowledge but only as the consequence
of a data-agnostic pipeline (embedding, normalization using
percentiels, population code).

In this case, the sensel space S (S = [0, 2π]× [0, 100]) has
dimension d = 2 and there are k = 2 commands (linear and
angular velocity). Therefore the tensor H has 4 components,
each of which is a field across the sensel space. The tensor C
has 2 components (for linear and angular velocity), but we do
not show it for the camera data, because it is in theory 0, and
in practice insignificant noise. The 4 components of the tensor
field H are shown in Fig. ???? as 4 false color images (white:
zero, red: positive, blue: negative). The interpretation is not
intuitive but

An example result of anomaly detection is shown in
Fig. ????. This is done by using the learned representation
to compute the prediction signal (7), and then computing the
detection signal (8), and reporting a total anomaly over time.
Anomalies are reported constantly for the horizons ; the traces
correspond to people walking around the robot.

C. Tests with camera data

We stitched together the images from the omnidirectional
camera, the frontal camera, and one of the stereo triplets to ob-
tain a unique 800x640 frame of which we compute a grayscale
signal (Fig 4). It is not apparent from the static image, but the
picture of the omnidirectional camera is mirrored (“front” =
“down”). We do not use any prior information on the optics:
even though the frame is composed by three subimages, we
forget about that information: the composite frame is all that
that the method is given.

In this case, we start from the knowledge of the correct
sensel topology given from the raw images. However, there is
still a “diffeomorphism uncertainty” (Fig. ????), because we
assume no prior information on the intrinsic calibration of the

percentile
normalization

population
code

pe
rc

en
til

e

Monday, March 28, 2011

(a) Bootstrapping pipeline for range-finder data

(b) Composite camera frame

Figure 12.12. Data sources used in the experiments. (a) For range-finder data, we ap-
ply the complete bootstrapping pipeline as described in Section 12.5.4: we start from
shuffled and distorted measurements; we compute sensels similarities with the infor-
mation distance between the sensels values, from which an embedding on the visual
sphere (circle) can be obtained [105]; finally, population coding (Definition 12.14) is
used to obtain a two-dimensional "image" which is diffeomorphic to a polar map of
the immediate surroundings. (b) For camera data, we use a composite frame obtained
by stitching together the frames from an omnidirectional camera, a wide-angle frontal
camera, and a gray-scale camera part of a stereo triplet. No previous knowledge of the
optics is used.

12.6. EXPERIMENTS 257

sensel position

norm.
values

far

0

100

near

fro
nt

ba
ck

Monday, March 28, 2011

(a) H0
0 (hor.

gradient and
v)

(b) H0
1 (ver.

gradient and
v)

(c) H1
0 (hor.

gradient and
ω)

(d) H1
1 (ver.

gradient and
ω)

Figure 12.13. Tensors learned from range-finder data, with population code processing. To
understand these figures, it helps to think that the population code representation of
range-finder data is diffeomorphic to a polar map of the environment. On the x-axis
we have the angle (up to a diffeomorphism); on the y-axis we have the normalized
values of the readings in percentiles (i.e., distance up to a diffeomorphism). In (c)-(d)
the tensors that represent the interaction between angular velocity and horizontal and
vertical gradient are respectively a constant and zero because the effect of rotation is
just to translate horizontally these diagrams. (a)-(b) are not of easy interpretation, but
the (anti) symmetry between the frontal and back range-finders is evident.

(a) H0
0 (hor. gradi-

ent and v)
(b) H0

1 (ver. gradi-
ent and v)

(c) H1
0 (hor. gradi-

ent and ω)
(d) H1

1 (ver. gradi-
ent and ω)

Figure 12.14. Tensors learned from camera data (white: zero, red: positive, blue: nega-
tive). The tensor H encodes the sensors intrinsic and extrinsic calibration, along with
some ancillary statistics about the environment. The interpretation is not immediate.
Note first that the parts that are not influenced by the robot motion (reflected camera,
borders) appear as white, meaning that the tensor there is zero and negligible. The
intensity depends on the average distance to the obstacle and to the pixel density on
the visual sphere. The color depends on the pixel orientation on the visual sphere: see
the text for more discussion.

12.6. EXPERIMENTS 258

(a) Gray-
scale
data

(b) ẏ
predic-
tion

(c) ob-
served
ẏ

(d)
anomaly

time (s)

he
ad

in
g

an
gl

e
(d

eg
)

horizon (front)

horizon (back)

people tracks

occlusions

Monday, March 28, 2011

(e) Anomaly signal for range-finder
data

Figure 12.15. Anomaly detection using learned models. We test the models on the task
of anomaly detection, a passive task that can be done on logged data. The learned
tensors are used to predict ẏ using (12.1), and compute the anomaly detection sig-
nal (12.2). (a)–(d) show the results on camera data on a single frame. (e) shows the
results for range finder data; the anomaly detection signal is shown over time (x axis)
for each sensel (y axis). The constant traces represent the sensors horizon, where the
model cannot predict the observations. The other traces represent people walking past
the robot or in opposite direction. Occlusions (e.g., walking past open doors) also are
detected as anomalies as the continuous model (12.1) cannot represent the discontinu-
ous dynamics.

CHAPTER 13

Learning Diffeomorphisms

This chapter describes a more sophisticated model for robotic sensorimotor cas-

cades. It is assumed that each command induces a diffeomorphism of the sensel

space. In contrast with the previous models BDS and BGDS, this model is not

instantaneous and allows reasoning on potentially large robot displacements.

Table 13.1. Symbols used in this chapter

Preliminaries
S a manifold Sensel space.
|S| > 0 Area of S .
dS : S × S → R+• Metric on S .

IdS : S → S Identity of S .
|U| Number of commands.

Models
DDS(S ;U) ⊂ D(Images(S);U) Set of all DDS.

V ⊂ S Visible subset of S .
DDSL(S ,V;U) ⊂ D(Images(S);U) Set of DDS with censored observations.

x ∈ Images(S) Hidden state for a DDSL.

Learning and inference
Γ Learned uncertainty in a DDS.

dmax > 0 Bounds on the diffeomorphism.
ρ > 0 Resolution of discretization.

dDiff : Diff(S)×Diff(S)→ R+• Distance between diffeomorphisms.
Dcmd : U×U→ R+• Distance between two commands.
Acmd : U×U→ R+• “Anti-distance” between two

commands.

259

13.1. DDS 260

13.1. DDS

DEFINITION 13.1 (DDS). A diffeomorphism dynamical system (DDS) is a discrete-time

dynamical system on Images(S) with a finite commands alphabet

U = {u1, . . . , u|U|}.

Each command uj is associated to a diffeomorphism ϕj ∈ Diff(S). If uj is active at time k,

then the dynamics is

yk+1(s) = yk(ϕj(s)).

DDS(S ;U) is the set of all such systems on the manifold S .

13.1.1. Limited field of view

Because a DDS can represent potentially large motions, it is important to include in the

formalization also the idea of a limited field of view.

DEFINITION 13.2 (DDS with limited field of view). A DDS with limited field of view is a

discrete-time dynamical system with hidden state xk ∈ Images(S), and a finite commands

alphabet U = {u1, . . . , u|U|}. Each command uj is associated to a diffeomorphism ϕj ∈

Diff(S). The transition function from the state xk at time k to the state xk+1 is given by

xk+1(s) = xk(ϕ(s)), (13.1)

where ϕ is the diffeomorphism associated to the command given at time k. The observa-

tions y = {ys}s∈S are a censored version of x, in the sense that we only can see the state in

13.2. REPRESENTING AND LEARNING DDS 261

a subset V ⊂ S :

yk(s) =





xk(s) if s ∈ V,

0 if s /∈ V.

(13.2)

DDSL(S ,V;U) is the set of all such systems on the manifold S .

13.1.2. Symmetries for DDS

PROPOSITION 13.3. The family DDS(S ;U) is closed with respect to

Diff(S) Any diffeomorphism of the domain:

y(s) 7→ y(ϕ(s)), ϕ ∈ Diff(S).

Aut(R) Any automorphisms of the values:

y(s) 7→ f (y(s)), f ∈ Aut(R).

Aut(U) Any relabeling of the commands.

13.2. Representing and Learning DDS

This section presents one approach to learning a DDS. Suppose that we are given train-

ing examples, consisting of tuples
〈
yk, ujk , yk+1

〉
, meaning that at time k we observed yk,

then, after applying the command ujk , we observed yk+1. Our objective is estimating the

diffeomorphisms ϕj.

We assume that the S domain has been discretized into a finite number ny of cells

{si}1≤i≤ny ⊂ S , such that the i-th cell has center si ∈ S . We represent a diffeomorphism ϕ

by its discretized version ϕ̃ : [1, ny] → [1, ny] that associates to each cell si another cell si′ ,

such that i′ = ϕ̃(i).

13.2. REPRESENTING AND LEARNING DDS 262

Learning can be done independently cell by cell. In fact, when the j-th command is ap-

plied, we expect that yk+1(s) = yk(ϕj(s)), as given by (13.1)–(13.2). This can be discretized

in the following way, for the i-th cell: ysi

k+1 = ysϕ̃j(i)

k . Therefore, the value ϕ̃j(i) can be found

by minimizing the expected error:

ˆ̃ϕj(i) = arg min
i′

Eu=uj{‖yk+1(si)− yk(si′)‖}. (13.1)

This provides a point-by-point approximation of the diffeomorphism (continuity is pre-

served only asymptotically). Assuming we have a bound dmax on the maximum displace-

ment over all diffeomorphisms:

max
j,s

dS (s, ϕj(s)) ≤ dmax,

then the search for i′ will not be needed to be extended to all cells in the domain, but only

on the neighbors of i such that dS (si, si′) ≤ dmax. This is illustrated in Fig. 13.1c–13.1d

for 2D domains. In practice, for each command and for each cell, we consider a square

neighborhood of cells in which to search for the matching cell. This simple algorithm

has complexity O(ρ2dim(S)|S|dmax), where |S| is the area of the sensor, ρ the resolution,

because for each of the ny = ρdim(S)|S| cells, we have to consider a number of neighbors

proportional to ρdim(S)dmax. Still, it is embarrassingly parallel, as the expectations in (13.1)

can be computed separately, therefore it has decent performance if one uses vectorized

operations.

13.2.1. Estimating and propagating uncertainty

In principle, one could treat each value ϕ̃j(i) as a random variable, and estimate its full

distribution. In practice, this complexity is not needed in our application, and we limit

ourselves to keeping track of a single scalar measure of uncertainty Γi
j, which we interpret

13.3. APPLICATION TO CAMERA DATA 263

as being proportional to Tr(cov(ϕj(si))). This uncertainty is computed from the value of

the cost function (13.1):

Γi
j ' Eu=uj{‖yk+1(si)− yk(sϕ̃j(i))‖}.

This uncertainty implicitly represents the limited field of view, because Γi
j is very large

for cells si such that ϕj(si) /∈ V; that is, for cells whose values cannot be predicted because

they depend on observations outside the field of view V.

The DDS representation allows to compress a series of commands into one supercom-

mand whose diffeomorphism is the composition of the individual diffeomorphisms. The

composition of commands can keep track of the uncertainty as well. Suppose that we have

two commands ua and ub and that we learned the two corresponding uncertain diffeomor-

phisms 〈ϕ̃a, Γa〉 and 〈ϕ̃b, Γb〉. Then the composite command uc = ub ◦ ua is represented by

the pair 〈ϕ̃c, Γc〉, where ϕ̃c is just the composition of ϕ̃a and ϕ̃b:

ϕ̃c(i) = ϕ̃b(ϕ̃a(i)),

but Γc takes into account both a transport and a diffusion component:

Γc(si) = Γϕ̃b
a + Γi

b.

13.3. Application to Camera Data

This section describes the application of the theory to camera data for a mobile robot.

It is shown that the learned diffeomorphisms capture the motions, as well as the uncer-

tainties due to the limited field of view of the camera. Based on the model, one can obtain

long-term predictions of the observations given a sequence of commands, and these pre-

dictions correctly take into account the uncertainty due to the limited field of view.

13.4. INFERRING THE “LINEAR STRUCTURE” OF THE COMMANDS SPACE 264

Platform. We use an Evolution Robotics ER1 robot (Fig. 13.1a), with an on-board web-

cam producing 320× 240 frames at ~7.5 Hz. The robot is driven through a variety of indoor

and outdoor environments (Fig. 13.1b) for a total of around 50 minutes. The robot linear

and angular velocities were chosen among the combinations of ω ∈ {−0.2, 0,+0.2} rad/s

and v ∈ {−0.3, 0,+0.3}m/s.

Results. Fig. 13.2 shows the resulting of the diffeomorphisms learning applied to this

data. Not all combinations of commands are displayed; in particular, those corresponding

to the robot backing up were not chosen frequently enough to obtain reliable estimates of

the corresponding diffeomorphisms. Because we also learn the uncertainty of the diffeo-

morphisms, we can correctly predict effects due to the limited field of view for the camera.

For example, for the first command, corresponding to a pure rotation to the right, we can

predict that for 8 time steps we can predict the left half of the image, but we will not know

anything about the right half (Fig. 13.2, bottom sequence).

13.4. Inferring the “Linear structure” of the Commands Space

Assuming a class of models, such as BDS/BGDS, where the commands have a linear

effect on the dynamics (for example, if they correspond to kinematic velocities) automat-

ically gives rich structural properties to the commands space. For example, the effect of

applying u′ = 2u is twice larger than the effect of u; the effect of u = 0 corresponds to a

null action, and the effect of u′ = −u is the opposite of u. If the commands are kinematic,

this structure can be lost if they are represented in a nonlinear way, for example if one has

available the commands u′ = f (u) instead of u.

The DDS family does not assume that the command space U has any particular struc-

ture. By comparison, the BDS and BGDS models assume that U is a vector space and that the

dynamics of y is linear in the commands. This implies a series of semantic assumptions,

which are collectively referred to as “linear structure”:

13.4. INFERRING THE “LINEAR STRUCTURE” OF THE COMMANDS SPACE 265

• Assumption 10 (The system is reversible)

• Assumption 11 (Similar commands have similar effects)

• Assumption 12 (One command does nothing)

• Assumption 13 (A known command does nothing)

• Assumption 14 (Minus does the opposite)

• Assumption 16 (Half does half)

These assumptions are not enforced a priori by a DDS. However, if these assumptions hold,

then it is useful for the agent to be able to recognize this structure.

13.4.1. Identifying redundant and null commands

We call a pair of commands
〈
uj, uk

〉
redundant if they have the same effect on the ob-

servations. If two commands give the same effect, then one of them can be removed from

the commands alphabet. Redundant commands can be recognized simply by looking at

the distance between the corresponding diffeomorphisms.

DEFINITION 13.4 (Naive distance between diffeomorphisms). We will use the following

distance between diffeomorphisms:

dDiff(ϕ1, ϕ2) =

ˆ
dS (ϕ1(s), ϕ2(s)) dS . (13.1)

DEFINITION 13.5 (Distance between commands). The distance Dcmd(uj, uk) between two

commands is defined as the difference between the corresponding diffeomorphisms, nor-

malized by the average distance between all diffeomorphisms:

Dcmd(uj, uk) =
dDiff(ϕj, ϕk)

1
|U|2 ∑l ∑m dDiff(ϕl , ϕm)

.

13.4. INFERRING THE “LINEAR STRUCTURE” OF THE COMMANDS SPACE 266

The normalization makes this a unitless quantity that does not depend on the size of S .

As a special case, commands that have no effect can be easily identified by considering the

distance of their diffeomorphism from the identity diffeomorphism IdS .

13.4.2. Identifying reversible commands

A pair of commands
〈
uj, uk

〉
are reversible if applying uj followed by uk brings the

system in the initial state, and vice versa; see Assumption 10 (The system is reversible). Two

commands would be perfectly reversible if ϕj = ϕ−1
k or, equivalently, ϕ−1

j = ϕk, or ϕk ◦

ϕj = ϕj ◦ ϕk = IdS .

All of these conditions are equivalent in the continuum case and without noise, but

might give slightly different results in practice due to numerical approximations and es-

timation noise. Somehow arbitrarily, we choose to define the anti-distance of a commands

pair
〈
uj, uk

〉
as

Acmd(uj, uk) =

1
2 (d

Diff(ϕj, ϕ−1
k) + dDiff(ϕ−1

j , ϕk))

1
|U|2 ∑l ∑m dDiff(ϕl , ϕm)

.

If the anti-distance is zero, then the command pair is a perfectly reversible pair. The reason

for averaging dDiff(ϕj, ϕ−1
k) and dDiff(ϕ−1

j , ϕk) is that it enforces the symmetry condition

Acmd(uj, uk) = Acmd(uk, uj).

13.4.3. Invariance analysis

Unfortunately, the distance (13.1) that we used so far is not left-invariant, in the sense

that dDiff(α ◦ ϕ1, α ◦ ϕ2) 6= dDiff(ϕ1, ϕ2) for any α that is not an isometry. This means that

the thresholds to commands distances and anti-distances to decide if commands pairs are

redundant or reversible pairs would have to be retuned if the parametrization of S change.

A left-invariant distance is of the form

dDiff(ϕ1, ϕ2) = f (ϕ−1
1 ◦ ϕ2), (13.2)

13.4. INFERRING THE “LINEAR STRUCTURE” OF THE COMMANDS SPACE 267

as it implies that

dDiff(α ◦ ϕ1, α ◦ ϕ2) = dDiff((α ◦ ϕ1)
−1 ◦ (α ◦ ϕ2))

= dDiff(ϕ−1
1 ◦ α−1 ◦ α ◦ ϕ2)

= dDiff(α ◦ ϕ1, α ◦ ϕ2).

This distance has not been used because (13.2) implies explicitly constructing the inverse of

diffeomorphism, which is not robust to noise if using the simple discretization introduced

in this chapter.

This is a perfect example in which the format of the data allows the agent to be in-

variant to a large class of nuisances (Diff(S)) but the limitation of the algorithm make it

invariant to a smaller class (Isom(S) ≤ Diff(S)).

This naive discretization of diffeomorphisms is intuitive but does not conserve certain

important properties. Discrete geometry is a discipline concerned with the discretization of

objects in differential geometry to a discrete domain, and finds applications in area such

as fluid mechanics and computer graphics. Gawlik et. al. [133] describe the discrete diffeo-

morphism group: if a certain manifold is approximated with a simplicial complex of n cells,

discrete diffeomorphisms are represented as a certain subfamily of n × n stochastic ma-

trices, in a way such that properties of continuous diffeomorphisms are preserved in the

discretized version. In practice, using stochastic matrices allows each cell to correspond

to multiple cells, even without considering uncertainty. Using such representation would

probably improve the accuracy of the representation, but the possible accuracy gains are

to be weighted with the increased computational complexity (from O(n) of the current

method to O(n2) of the discrete diffeomorphism group, even without considering uncer-

tainty).

13.5. APPLICATION TO RANGE DATA 268

13.5. Application to Range Data

In this section, we apply the theory to sensorimotor cascades with range finder data.

We preprocess the 1D range data to obtain a 2D population code representation, which

allows to treat range data using exactly the same code as 2D images. We try the method on

three dynamics: a differential-drive robot (where the commands are left/right track veloc-

ity), and, in simulation, with a unicycle dynamics (commanded in linear/angular velocity)

and a car-like dynamics (commanded with steering angle and driving velocity). We show

that the concept of commands distance/anti-distance allows to discover redundant com-

mands and reversible commands pairs independently of the commands representation.

13.5.1. Processing pipeline

The pipeline that we use for processing the range finder data is shown in Fig. 13.3.

Starting from a planar scan (Fig. 13.3a), we consider the polar representation (Fig. 13.3b).

Then, we transform the 1D signal into a 2D signal by using a population code represen-

tation (Fig. 13.3c); each reading yi is assigned a row of cells, and each cell is assigned a

center ci,k. The activation level of each cell is a function of the distance between yi and ci,k.

Denoting the 2D signal Yi,k, we set Yi,k = f (|yi − ci,k|) where f is a small Gaussian kernel

(σ = 1% of the range of yi). Once we have the 2D signal, we forget its origin as a range

finder scan, and we treat it like any other image.

Fig. 13.3 shows also an example of prediction. Starting from the 2D signal Y0 in Fig. 13.3c,

and a learned diffeomorphism ϕ (represented here by Lena), we obtain the predicted sig-

nal Y4 in Fig. 13.3d by applying 4 times the diffeomorphism ϕ (or, by first computing

ϕ′ = ϕ ◦ ϕ ◦ ϕ ◦ ϕ, and then applying ϕ′ to Y0, which is the same, up to numerical er-

rors). For visualizing the result, we can convert back to range readings (Fig. 13.3e) and

range scan (Fig. 13.3f).

13.5. APPLICATION TO RANGE DATA 269

13.5.2. Dynamics considered

We consider three common mobile robot dynamics for wheeled mobile robots: unicy-

cle (Fig. 13.4a), car-like (Fig. 13.5b), and differential-drive (Fig. 13.6c). All three dynamics

have two commands: by appropriate normalization we can assume that u ∈ [−1,+1] ×

[−1,+1] for all of them.

The unicycle and differential-drive have the same dynamics, but with different repre-

sentations of the commands: the linear and angular velocity of the unicycle are linearly

related to left/right wheel velocity for a differential drive. For the car-like dynamics, we

assume that one command is the driving velocity, and the other is the instantaneous steer-

ing angle. The car-like dynamics is more restricted than the other two, as the vehicle cannot

turn in place.

13.5.3. Learning data

As an example of a differential-drive robot, we use an iRobot Landroid, with a Hokuyo [134]

range finder on board. The Hokuyo has a maximum range of 8m and an update frequency

of 10 Hz. The field of view of a Hokuyo is 270°, but the sensor is partially obstructed by

the WiFi antennas. The learning data is taken in a cluttered lab environment, for a total

of about 45 minutes. We use simulated data for the unicycle and the car-like, simulating

a 360° range finder with the same range as the Hokuyo. The simulated world is generated

randomly from a collection of randomly placed polygons; the simulation is tuned to have

approximately the same spatial statistics of the lab environment.

The commands alphabet is composed of the 9 canonical commands of the form (a, b),

for a, b ∈ {−1, 0, 1}. The effect on the robot pose of choosing each canonical command is

sketched in the grids in Fig. 13.4b, 13.5b, 13.6b.

13.5. APPLICATION TO RANGE DATA 270

13.5.4. Learned diffeomorphisms

The learned diffeomorphisms are shown in the grids in Fig. 13.4c, 13.5c, 13.6c. Here,

the diffeomorphisms are visualized by their effect on the Lena template.

It turns out that learning diffeomorphisms of the population-code representation of

range data is more challenging than learning diffeomorphisms of RGB images, because

the data is much sparser (see, e.g., Fig. 13.3cd). It was surprising to see that, of all the

diffeomorphisms learned, the most noisy result is for the commands that do not move the

robot (Fig. 13.5c, middle row), the reason being that the motion we are trying to recover

is small (actually, zero) with respect to the sensor noise. This uncertainty is appropriately

captured by the estimate of Γ (not shown).

13.5.5. Learned command structure

Tables 13.2, 13.3, 13.4 show the computed distanceDcmd(uj, uk) and anti-distanceAcmd(uj, uk)

for all commands pairs for the three dynamics considered.

For example, for the unicycle the reversible pairs are 〈(−1,−1), (1, 1)〉, 〈(1, 0), (−1, 0)〉,

〈(0,+1), (0,−1)〉, 〈(−1, 1), (1,−1)〉, and these are given the smaller values of anti-distance

in Table 13.2b. The unicycle commands have a native linear structure, so reversible pairs

are of the form 〈(a, b), (−a,−b)〉.

The car-like dynamics has the three null and redundant commands: (0, 0), (0, 1), and

(0,−1); these correspond to the driving velocity set to zero, and their corresponding diffeo-

morphism is the identity. The detected reversible pairs are 〈(1, 0), (−1, 0)〉 , 〈(1, 1), (−1, 1)〉 , 〈(1,−1), (−1,−1)〉;

these are of the form 〈(a, b), (−a, b)〉, which shows that the car-like dynamics is not linear

in the original representation. Yet, we are able infer the linear structure from the analysis

of the learned diffeomorphisms.

For the differential-drive dynamics, learned with real data, the pairs with the two

13.5. APPLICATION TO RANGE DATA 271

Table 13.2. Distance and anti-distance matrices for unicycle dynamics.

u0: angular velocity
u1: linear velocity

u0

u1

(a) Distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 0.68 0.70 1.19 1.21 1.23 0.86 0.92 0.91
(0,1) - 0.93 1.04 0.92 1.25 0.97 0.86 1.17
(0,-1) - 1.04 1.23 0.91 0.98 1.18 0.87
(1,0) - 0.50 0.53 1.74 1.73 1.75
(1,1) - 0.92 1.73 1.82 1.66
(1,-1) - 1.73 1.82 1.66
(-1,0) - 0.46 0.44
(-1,1) - 0.84
(-1,-1) -

(b) Anti-distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 0.85 0.83 0.97 1.03 1.02 1.34 1.38 1.38
(0,1) - 0.36 1.07 1.26 0.95 1.17 1.35 1.08
(0,-1) - 1.07 0.95 1.26 1.15 1.06 1.33
(1,0) - 1.81 1.81 0.21 0.58 0.57
(1,1) - 1.71 0.58 0.97 0.28
(1,-1) - 0.57 0.30 0.95
(-1,0) - 1.90 1.91
(-1,1) - 1.84
(-1,-1) -

lowest anti-distance are 〈(1, 0), (−1, 0)〉 and 〈(1, 1), (−1,−1)〉. Then, there are a few false

matches which have lower anti-distance than the other two pairs of reversible commands

(〈(0, 1), (0,−1)〉 and 〈(−1, 1), (1,−1)〉. This is probably due to the fact that computing the

inverse of a diffeomorphism is very sensitive to noise, and currently we do not take into

account the estimated diffeomorphism uncertainty, which is very large in this case, due to

the limited field of view, and the antennas occlusions.

13.5. APPLICATION TO RANGE DATA 272

Table 13.3. Distance and anti-distance matrices for car-like dynamics.

u0: driving velocity
u1: steering angle

u0

u1

(a) Distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 0.65 0.66 0.85 1.51 0.94 0.85 0.96 1.49
(0,1) - 0.56 0.75 1.40 0.97 0.76 0.97 1.39
(0,-1) - 0.78 1.43 0.96 0.79 0.97 1.41
(1,0) - 1.02 0.96 0.91 1.22 1.30
(1,1) - 1.85 1.29 2.01 0.89
(1,-1) - 1.23 0.80 2.00
(-1,0) - 0.98 0.99
(-1,1) - 1.85
(-1,-1) -

(b) Anti-distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 1.20 1.22 1.05 1.04 1.66 1.01 1.67 1.03
(0,1) - 1.10 0.95 1.07 1.56 0.91 1.57 1.07
(0,-1) - 0.98 1.07 1.58 0.93 1.59 1.03
(1,0) - 1.29 1.40 0.41 1.19 1.03
(1,1) - 0.90 1.04 0.25 1.91
(1,-1) - 1.14 2.02 0.23
(-1,0) - 1.38 1.30
(-1,1) - 0.91
(-1,-1) -

13.5. APPLICATION TO RANGE DATA 273

Table 13.4. Distance and anti-distance matrix for Landroid (differential drive).

u0: left wheel velocity
u1: right wheel velocity

u0 u1

(a) Distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 1.34 1.25 1.41 0.89 1.49 0.52 0.89 0.86
(0,1) - 1.12 0.55 0.88 0.81 1.34 1.74 0.87
(0,-1) - 1.29 0.90 1.37 1.24 1.62 0.96
(1,0) - 0.95 0.67 1.45 1.79 0.96
(1,1) - 1.06 0.92 1.30 0.54
(1,-1) - 1.51 1.86 1.03
(-1,0) - 0.92 0.87
(-1,1) - 1.24
(-1,-1) -

(b) Anti-distance between commands

(0,0) (0,1) (0,-1) (1,0) (1,1) (1,-1) (-1,0) (-1,1) (-1,-1)
(0,0) - 1.08 1.46 1.07 1.32 1.33 1.71 1.98 1.26
(0,1) - 1.76 2.08 1.49 2.21 1.14 1.39 1.46
(0,-1) - 1.80 1.36 1.92 1.51 1.73 1.33
(1,0) - 1.56 2.29 1.06 1.33 1.51
(1,1) - 1.70 1.35 1.63 0.95
(1,-1) - 1.36 1.26 1.65
(-1,0) - 2.01 1.33
(-1,1) - 1.60
(-1,-1) -

13.5. APPLICATION TO RANGE DATA 274

(a) Robot plat-
form

(b) Environments
samples

search area

(c) Geometry of the
problem

search
areas

(d) Algorithmic
approximation

Figure 13.1. (a) For the first set of experiments we use an Evolution Robotics ER1 with
an on-board camera. (b) The robot is driven through a variety of indoor and outdoor
environments. (c) To learn the diffeomorphisms, we assume to have a bound on the
maximum displacement d(s, ϕ(s)) on the manifold S . (d) In the implementation, we
are limited to square domains. The search area around each point is constrained to be
a square, with given width and height, which are tunable parameters that affect the
efficiency of the algorithm.

13.5. APPLICATION TO RANGE DATA 275

phase modulus

Legend:

initial observations

1-step prediction 2-step prediction 4-step prediction 8-step prediction
Commands Learned diffeomorphism

(+1,0)

turn left

(0,+1)

(0,0)

 (+1,+1)

(-1,0)

turn right

forward

rest

forward,
right

0 sensels 10

Prediction examples

learned
uncertainty

predicted
values

(),
learned diffeomorphism

Figure 13.2. This figure shows a few of the learned diffeomorphisms learned from
the camera data. Each row corresponds to a particular command given to the robot.
The first column shows the effect of the command on the robot pose. The second
and third row show the corresponding diffeomorphism, displayed using phase and
modulus. The last four columns show how the learned diffeomorphisms can be used
for prediction. The columns show the predicted image following the application of
the command for 1, 2, 4, and 8 time steps. The uncertain parts of the predictions
are shown in gray. The visualization of this uncertainty is done by propagating both
the diffeomorphism uncertainty and the image values, as shown in the last two rows,
and then blending the values with a solid gray rectangle according to the predicted
uncertainty.

13.5. APPLICATION TO RANGE DATA 276

(a) Scan (b) Readings (c) Input data ys (d) Predicted data (e) Predicted sensels (f) Predicted scan

()4
preprocessing visualizationinternal representation

learned diffeomorphism

pop. code

Figure 13.3. This figure shows the pipeline that we use for range-finder data. Starting
from the scan (subfigure a) we consider the raw range-readings (i.e., the polar repre-
sentation of the scan). Then we use a population code to obtain a 2D image from the
1D data. Once we have the 2D data, we forget about its origin as a range-finder scan,
and we use exactly the same code we used for images. Here we show an example of
prediction: one learned diffeomorphism, here represented by Lena, is applied 4 times
to the image in c to obtain the predicted image in d. For visualization purposes, from
the 2D image we can go back to the range readings (subfigure e) and obtain the pre-
dicted scan (subfigure f), which shows that the learned diffeomorphism corresponded
to a pure rotation.

u0: angular velocity
u1: linear velocity

u1 +10-1
u0

+1

0

-1

(a) Unicycle dynamics (b) Canonical motions (c) Corresponding learned diffeomorphisms (d) Detail for (0,1) (forward)

u1 +10-1
u0

+1

0

-1

u0

u1 far near

0°

-180°

+180°

Figure 13.4. In this series of figures, subfigure a illustrates the robot dynamics; in this
case, a unicycle dynamics. Subfigure b shows the effect on the robot pose of the 9
canonical commands. The gray arrows denote the initial pose, and the red/green ar-
rows (for the x and y direction, respectively) show the robot final pose after applying
the motion. Subfigure c shows the effect of the commands on the population code
representation for a range-finder scan mounted on the robot (see Fig. 13.3 for an ex-
planation of the preprocessing to obtain a 2D image from a 1D scan).

13.5. APPLICATION TO RANGE DATA 277

(a) Car-like dynamics (b) Canonical motions (c) Corresponding learned diffeomorphisms (d) Detail for (-1,1) (back/left)

u1 +10-1
u0

+1

0

-1

u1 +10-1
u0

+1

0

-1u0: driving velocity
u1: steering angle

u0

u1
wrap-around
(360° sensor)

0°

-180°

+180°

Figure 13.5. A car-like dynamics, commanded in driving velocity and instantaneous
steering angle, is more restricted than a unicycle as the robot cannot turn in place.
Note that the three commands (0,−1), (0, 0), (0,+1) are equivalent and correspond to
the robot staying in place.

u1 +10-1
u0

+1

0

-1

u1 +10-1
u0

+1

0

-1u0: left wheel velocity
u1: right wheel velocity

u0 u1

(a) Differential drive (b) Canonical motions (c) Corresponding learned diffeomorphisms (d) Detail for (-1,1) (right turn)

sensor obstructions

0°

-135°

+135°

Figure 13.6. A differential-drive dynamics is the same as a unicycle dynamics follow-
ing a change of representation for the commands; compare subfigure b with Fig. 13.4b.
The data we use for the differential drive comes from a real robot, mounting a Hokuyo
range-finder with a 270° field of view. There are two antennas in front obstructing the
range-finder, therefore the learned diffeomorphisms have two missing stripes.

Part 3

Invariance-based Analysis and Design

CHAPTER 14

Canonization

As we have seen, most of the complexity of the bootstrapping problem comes from

the requirement that the behavior of an optimal agent should be invariant to a change in

the representation. This was formalized in the previous sections with representation nui-

sances, transformations that change the data representation in a causally reversible way.

One way for an agent to deal with nuisances is to be able to find an invariant representation

of the world from the observed data. The scenario is shown geometrically in Figure 14.1:

the group nuisance turns one point into any point of the orbit. Finding an invariant repre-

sentation means being able to choose a “canonical” representative for each orbit.

The problem of finding invariant representations to group nuisances appears in many

other contexts. For example, in reference to artificial and natural vision problems, Pog-

gio et al. [51] argue that the stimulus variability is mostly due to the nuisances, rather than

the object variability, and therefore normalizing the nuisances is the dominant problem of

y0 y

nuisance

p(y0)
low-dimensional

distribution

p(y)
high-dimensional

distribution

~ ~

y0
p(y0)

Y

p(y)
canonization

Y

Gy0

Figure 14.1. A group nuisance transforms nondeterministically the original data x0
to an element of the orbit G · x0. The problem of finding an invariant representation
consists in finding a procedure that is able to associate a “canonical” representative of
the orbit starting from any element of the orbit.

279

14. CANONIZATION 280

computer vision.

While invariance as a theme is found in several other fields, the bootstrapping prob-

lem is more complicated in several respects that motivate our treatment. Firstly, the agent

behavior must be simultaneously invariant with respect to the representation nuisances

acting on the observations and contra-variant with respect to the nuisances acting on the

commands. Instead, usually in passive problems such as object detection there is only one

kind of invariance. Secondly, in the literature the groups are usually clearly defined and

relatively small. For example, in classical mathematical statistics, most work went into de-

riving estimators equivariant to location-scale groups (e.g., [135]). In pattern recognition,

one is concerned with invariance to Euclidean motions. In bootstrapping we are interested

in much larger groups. Instead of an ad hoc approach for particular groups, we are led to

considering systematic approaches to analysis and synthesis that allow modular solutions.

Outline: This part of the thesis introduces some analysis and synthesis tools that are of

general interest beyond their application to bootstrapping.

Chapter 15 describes “group-spectral dossiers”, which summarize the invariance prop-

erties of a mapping with respect to group actions, such as invariance and equivariance

properties. These dossiers make it easy to analyze the properties of mapping composi-

tions and inversions.

Chapter 16 describes “pontifical features”, one possible way to obtain a canonical rep-

resentation. Roughly speaking, strong pontifical features are functions transversal to the

orbits of a group, which allow to choose one representative from each orbit. These were

introduced by Soatto [52]. Finding one pontifical feature for a large group is challenging

or computationally prohibitive. The idea is to study several classes of “weaker” pontifical

features, each able to canonize a smaller subgroup. A taxonomy of features arises naturally

according to the way that the features interact with each other.

14. CANONIZATION 281

Chapter 17 describes the algebra of pontifical features and their induced canonization

operators.

CHAPTER 15

Group-spectral Dossiers

A “group-spectral dossier” summarizes how a map f : X ⇒ Y interacts with

groups acting on X and Y. The information in the dossier helps in reasoning

about mapping composition and inversion.

action action

f

m

Figure 15.1. A group-spectral dossier summarizes how a function f between two sets
X and Y interacts with groups acting on those sets (G acting on X, and H acting on Y).
In some cases, it is possible to prove that f respects the structure of the group actions,
in the sense that there exists a homomorphism m : G → H such that f (g · x) = m(g) ·
f (x), ∀g ∈ G, x ∈ X.

15.1. Group-spectral Dossiers

DEFINITION 15.1 (Group-spectral dossier). The group-spectral dossier of a function f : X⇒

Y is a “dossier” containing the following information:

(1) A description of Domain(f) and Codomain(f).

(2) A set of tuples HomMaps(f), which describe the way that f interacts with groups

acting on X and Y (Definition 15.2).

For the case where domain and codomain coincide, we annotate in the dossier two other

pieces of information:

282

15.1. GROUP-SPECTRAL DOSSIERS 283

(1) EqSet(f) is the set of fixed points of f :

EqSet(f) = {x | f (x) = x}.

(2) GrAct(f) is a set of groups acting on X. This describes whether the function can be

written as a group action, in the sense that G ∈ GrAct(f) if there exists a group G

acting on X, and a map α : X→ G such that f (x) = α(x) · x.

It is useful to summarize the dossier in a table, as shown in Figure 15.1.

DEFINITION 15.2 (HomMaps(f)). Given a function f : X⇒ Y, the set HomMaps(f) is a

set of three-terms tuples which describe the invariance properties of f . Each tuple is of the

form 〈G, m, H〉, where the group G acts on X, the group H acts on Y, and m is a function

from G to H.

〈G, m, H〉 ∈ HomMaps(f) The tuple 〈G, m, H〉, where G is a group acting on X, H is a

group acting on Y, and m : G → H, belongs to HomMaps(f) if

f (g · x) = m(g) · f (x), ∀g ∈ G, x ∈ X. (15.1)

and m is a homomorphism between G and H. There are many interesting spe-

cial cases, as described below.

〈G,∼, H〉 ∈ HomMaps(f) The tuple 〈G,∼, H〉 belongs to HomMaps(f) if G is a group

acting on X, H is a group acting on Y, and it holds that (15.1) for some γ : G →

H that is not a group homomorphism.

〈G,∼,∼〉 ∈ HomMaps(f) The tuple 〈G,∼,∼〉 belongs to HomMaps(f) if the resulting

transformation is not a group.

15.2. EXAMPLES 284

Domain(f)
f→ Codomain(f)

EqSet(f) ≡ EqSet(f) HomMaps(f)

G m→ H 〈G, m, H〉 The action of G on x results in the
action of H on f (x).

G 0→ Id 〈G, 0, Id〉 (a special case: invariance)

G Id→ G 〈G, Id, G〉 (a special case: equivariance)

G ·−1

→ G
〈

G, ·−1, G
〉

(a special case: contravariance)

Id
∗→ H 〈Id, ∗, H〉 (a special case: a nuisance is

introduced)

G ∼→ H 〈G,∼, H〉 The result is a group, but not
through a homomorphism.

G ∼→ ∼ 〈G,∼,∼〉 The result is not a group.

‖ G G ∈ GrAct(f) The function can be written as the
action of G.

Figure 15.1. Tabular representation of the group-spectral dossier of a function f . Note
that the notation is deficient: G and H are supposed to be acting on Domain(f)
and Codomain(f), respectively, but the table does not show what is the group action.

As for the cases 〈G, m, H〉 ∈ HomMaps(f), there are a few special cases worth men-

tioning:

〈G, 0, Id〉 ∈ HomMaps(f) denotes invariance of f to the action of G.

〈G, Id, G〉 ∈ HomMaps(f) expresses the equivariance of f to the action of G.

〈Id, ∗, H〉 ∈ HomMaps(f) denotes that f introduces a group nuisance H.

15.2. Examples

EXAMPLE 15.3 (Invariant functions). Figure 15.1 shows the group-spectral dossier of

a generic function f : X → Y which is invariant to the action of a group G. Note the

definition of the right inverse f−1, which maps Y to the equivalence classes of f in X.

15.2. EXAMPLES 285

X
f→ Y

G 0→ Id

(a)

Y
f−1

⇒ X

Id
?→ G

(b)

Figure 15.1. Group-spectral dossier of an invariant function.

EXAMPLE 15.4 (Determinant). This example shows that there could be different group-

spectral dossiers for the same function, with some being more useful than others. Consider

the matrix determinant, which associates a real number to each square matrix:

det : Rn×n → R.

One property of the determinant is that the determinant of the product is the product of

the determinants:

det(AB) = det(A)det(B). (15.1)

Consider now the orthogonal group O(n) (Definition D.2), the set of square matrices whose

rows and columns are orthonormal:

O(n) = {X ∈ Rn×n | XXT = XTX = I}.

It is easy to see that the determinant of an orthogonal matrix is either +1 or −1.

Using the property (15.1), we obtain that

det(XA) = det(X)det(A), ∀X ∈ O(n), A ∈ Rn×n.

This relation should be interpreted as (15.1):

f (g · x) = m(g) · f (x), ∀g ∈ G, x ∈ X, (15.2)

15.2. EXAMPLES 286

where X = Rn×n, G = O(n), H = (±1,×), f = det, m = det. Moreover, m is a group

homomorphism (Lemma D.15). The action on the left side is the action of O(n) on Rn×n;

the action on the right side is the action of (R◦,×) on R. From all of this we can conclude

that 〈O(n), det, (±1,×)〉 ∈ HomMaps(det). This is expressed by line (1) in Figure 15.2b.

(Note that it is incidental that, in this particular simple case, f = m.)

We can take the example one step further. The orthogonal matrices with determi-

nant +1 form the special orthogonal group SO(n):

SO(n) = {X ∈ O(n) | det(X) = +1}.

The determinant is invariant to the action of SO(n). This is shown explicitly in Figure 15.2b.

What happens for the rest of O(n)? Call SO−(n) the rest of the elements in O(n):

SO−(n) = {X ∈ O(n) | det(X) = −1}.

The set SO−(n) is not a group under the operation of matrix multiplication. But the two

sets {SO−(n), SO(n)} form a group under the operation of subgroup product (Defini-

tion C.7), according to the multiplication table shown in Table 15.1a. Not incidentally,

this is the same multiplication table of (±1,×), shown in Table 15.1b. The two groups are

isomorphic. Moreover, their actions (on Rn×n and R, respectively) are isomorphic as well,

according to (15.2). This justifies line (2) in Figure 15.2b.

Rn×n det→ R

O(n) det→ (±1,×)

(a)

Rn×n det→ R

SO(n) 0→ Id (1)

{SO−(n), SO(n)} Id→ (±1,×) (2)

(b)

Figure 15.2. Two group-spectral dossier for the function det, looking at different prop-
erties of the function.

15.3. DOSSIER FOR THE INVERSE OF A MAPPING 287

Table 15.1. Multiplication table for {SO−(n), SO(n)} and the operation of subgroup
product, and its isomorphic equivalent (±1,×).

(a)

(subgroup product) SO(n) SO−(n)
SO(n) SO(n) SO−(n)

SO−(n) SO−(n) SO(n)

(b)

× +1 −1
+1 +1 −1
−1 −1 +1

EXAMPLE 15.5 (Group nuisance). Define sampleG : X ⇒ X as the one-to-many func-

tion that maps a point x to the orbit G · x. This function can represent a random nuisance

acting on the data. Here, we are using a one-to-many function to model nondeterministic

uncertainty. Figure 15.3a shows the dossier for sampleG. Line (1) expresses the fact that

the output of the function is an orbit of G. Line (2) expresses the fact that this function is

also invariant to G:

sampleG(g · x) = G · g · x = (Gg) · x = G · x = sampleG(x).

We note in passing that the right inverse has the same group-spectral dossier (Fig-

ure 15.3b).

X
sampleG
⇒ X

Id
?→ G (1)

G 0→ Id (2)

(a)

X
(sampleG)

−1

⇒ X

Id
∗→ G

G 0→ Id

(b)

Figure 15.3. The group-spectral dossier of a random nuisance. Note that the function
and its inverse have the same signature.

15.3. Dossier for the Inverse of a Mapping

Suppose that we have a group-spectral dossier of the mapping f ; what can we say

about the group-spectral dossier of the right inverse f−1? What we find is that we just

need to “reverse” the table.

15.3. DOSSIER FOR THE INVERSE OF A MAPPING 288

Domain(f)
f→ Codomain(f) Codomain(f)

f −1

⇒ Domain(f)

G m→ H H m−1

→ G/ ker m

G 0→ Id
−1⇒ Id

∗→ G

Id
∗→ H H 0→ Id

G Id→ G G Id→ G

G ∼→ H H ∼→ G

G ∼→ v n/a

Figure 15.1. Relation between the group-spectral dossier of a function f and of its
right inverse f−1.

PROPOSITION 15.6 (Group-spectral dossier for right-inverse). Let f : X ⇒ Y. Then the

group-spectral dossier of f−1 can be described from the group-spectral dossier of f , according to the

following rules:

(1) Domain(f−1) = Codomain(f).

(2) Codomain(f−1) = Domain(f)/ f .

(3) As for HomMaps(f):

(a) If 〈G, m, H〉 ∈ HomMaps(f), then
〈

H, m−1, G/ ker m
〉
∈ HomMaps(f−1).

(b) If 〈G,∼, H〉 ∈ HomMaps(f), then 〈H,∼, G〉 ∈ HomMaps(f−1).

(c) In general, 〈G,v,v〉 ∈ HomMaps(f) does not allow to conclude anything about

HomMaps(f).

PROOF. Points 1 and 2 follow directly from the definition of right-inverse. Point 3a

follows from Lemma 15.7 �

LEMMA 15.7. Suppose f : X ⇒ Y, the group G acts on X, the group H acts on Y, and there

exists a homomorphism m : G → H such that

f (g · x) = m(g) · f (x), ∀g ∈ G, x ∈ X. (15.1)

15.3. DOSSIER FOR THE INVERSE OF A MAPPING 289

Then the group G/ ker m acts on the equivalence classes X/ f by an operation “◦ : (G/ ker m)×

(X/ f)→ (X/ f).

Moreover, call m−1 : H → G/ ker m the right-inverse of m. Then it holds that

f−1(h · y) = m−1(h) ◦ f−1(y), ∀h ∈ H, y ∈ Codomain(f). (15.2)

PROOF. Because m is a homomorphism, the group N = ker m is well defined, and it

is a normal subgroup (Lemma C.21). This makes the quotient group Q = G/ ker m well

defined. Formally, the group Q is the set of cosets of N = ker m:

Q = {Ng | g ∈ G}.

The group operation is (Ng)(Nh) = NNgh = (Ngh). (By Lemma C.12, left and right

cosets coincide.)

The set X/ f is the set of equivalence classes induced by f . A value y ∈ Codomain(f)

can be used to index the equivalence classes. We define cy = {x ∈ X | f (x) = y} ∈ X/ f .

We want to show that Q acts on X/ f . We already know that G acts on X, and have

well defined g · x. We need to find an operation ◦ : Q× X/ f → X/ f which satisfies the

properties in Definition C.35 (closedness, identity, transitivity). Consider the operation ◦

normal subgroup: A normal subgroup is a subgroup that commutes with all elements of

the group. See Definition C.11.

coset: A subset of a group that can be written as the product of a subgroup and an element

of the group. See Definition C.6.

15.3. DOSSIER FOR THE INVERSE OF A MAPPING 290

defined as

◦ : (G/ ker m)× (X/ f) → X/ f ,

(Ng, cy) 7→ g · cy.

Identity The identity property is satisfied because the equivalence classes are invariant

with respect to the action of N: N ⊗ cy = cy. From (15.1), it follows that f is

invariant to N = ker m:

f (n · x) = f (x), ∀n ∈ N, x ∈ X. (15.3)

Let x ∈ cy. Then f (N ⊗ x) = f (x) = y from (15.3), which implies that N ⊗ x ∈

cy.

Closedness The operation must be closed (i.e., the codomain must be X/ f), which means

that

(Ng) ◦ cy = g · cy ∈ X/ f .

All elements of g · cy map to the same value:

f (g · cy) = f (g · {x ∈ X | f (x) = y})

= f ({g · x ∈ X | f (x) = y})

= { f (g · x) | x ∈ X∧ f (x) = y}

= {m(g) · f (x) | x ∈ X∧ f (x) = y}

= m(g) · y.

Therefore, (Ng) ◦ cy = cm(g)·y ∈ X/ f .

15.3. DOSSIER FOR THE INVERSE OF A MAPPING 291

Transitivity Then, we show transitivity:

(Ng) ◦
(
(Nh) ◦ cy

)
= (Ng) ◦ cm(h)·y

= cm(g)·m(h)·y

= c(m(g)m(h))·y

= cm(gh)·y

= (Ngh) ◦ cy.

This establishes the first part.

Let m−1 be the right inverse of m: m−1(h) = {g ∈ G | m(g) = h}. By the definition of

kernel, it follows that

m−1(h) = Nm−1(h). (15.4)

At this point one can verify that

f−1(h · y) = ch·y

= (Nm−1(h)) ◦ cy

(From the equation above)

= (m−1(h)) ◦ cy

= m−1(h) ◦ f−1(y),

which proves (15.2). �

CHAPTER 16

Pontifical Features and Canonization Operators

In this section we study pontifical features, which are useful to define invariant

representations. With respect to previous work, we make a more careful classifi-

cation of such features and the canonization operators they induce. We discuss

several classes of features, each characterized by their strength: unstructured⇐

weak ⇐ mild ⇐ bold ⇐ strong. Each feature class induces a different canon-

ization operators, which are described by their group-spectral dossiers.

16.1. A Hierarchy of Features

In general, a feature for the space X is simply a function ϕ on X that has some special

properties. One way that features are used are to identify a subset of the space which is

“canonical” in some way.

DEFINITION 16.1 (Canonical point). A point x ∈ X is canonical for a feature ϕ if it satis-

fies ϕ(x) = 0.

Features are mainly used to describe interesting subsets of the space. Sometimes we

use the name of the feature as a proxy for the subset {x ∈ X | ϕ(x) = 0}. For example,

given a feature ϕ on X, and a subset S ⊂ X, ϕ ∩ S is the set {x ∈ S | ϕ(x) = 0}.

Strong pontifical features determine a strong canonization operatorthat is able to canonize

the action of a group. However, these are particular rare to find, especially for large groups,

or the computation involved might be prohibitive. This motivates the study of weaker

features.

292

16.1. A HIERARCHY OF FEATURES 293

The structured pontifical features (bold, mild, and weak) determine the group nuisance

which acted on the data only up to a heresy subgroup H ≤ G. There is a further classifica-

tion according to the relations between H and G.

• For weak pontifical features, we only know H ≤ G. The weak canonization oper-

ator maps a point to the orbit of the entire H coset.

• For mild pontifical features, H is a normal subgroup of G. This allows to define the

quotient group G/H which is used to define a 1-to-1 mild canonization operator.

• For bold pontifical features, we know that G ∼= H × G0. These induce a bold

canonization operator that commutes with the action of H.

Unstructured pontifical features normalize only a subgroup of G, but do not have the struc-

ture of a weak pontifical feature.

The features classes are summarized in Table 16.2.

Table 16.1. Symbols introduced in Chapter 16

ϕ : X→ R Symbol used for features.
ĝϕ

x ∈ G The solution of the feature equation ϕ(g · x) = 0.
Ĝϕ

x ⊂ G The set of solutions, if the solution is not unique.
SCanϕ

G strong canonization operator
BCanϕ

G/H bold canonization operator
MCanϕ

G/H mild canonization operator
WCanϕ

G,H weak canonization operator
UCanϕ unstructured canonization operator

16.1. A HIERARCHY OF FEATURES 294

feature class symmetries of ϕ
strong pontifical feature Id

bold pontifical feature H / G, G/H / G
mild pontifical feature H / G

weak pontifical feature H ≤ G
unstructured pontifical feature unstructured

Table 16.2. Classes of pontifical features and relative canonization operators.

Can!(x)

! = 0

G orbits

X

x

Figure 16.1. Geometry of a strong pontifical feature. The feature is transversal to the
orbits of the group action.

16.2. STRONG PONTIFICAL FEATURES 295

16.2. Strong Pontifical Features

Strong pontifical features are one class of features that can be used to find a canonical

representation of the data in spite of a group acting on the data as a nuisance.

DEFINITION 16.2 (Strong pontifical feature [52]). Let G be a group acting on a set X.

A strong pontifical feature for G is a function ϕ : X → R such that, for all x ∈ X, the

equation ϕ(g · x) = 0 has exactly one solution for g ∈ G, which we denote as ĝϕ
x .

16.2.1. Strong Canonization Operators

A strong pontifical feature gives a way to remove the effect of a group nuisance by

inducing a well-defined canonization operator.

DEFINITION 16.3 (Strong canonization operator). Given a strong pontifical feature ϕ :

X→ R for the group G acting on X, the strong canonization operator for ϕ is the map

SCanϕ
G : X → X

x 7→ ĝϕ
x · x.

LEMMA 16.4. ĝϕ
h·x = ĝϕ

x h−1.

PROOF. Consider the equation ϕ(g · (h · x)) = 0. Because ϕ is a strong pontifical fea-

ture, this has one solution for g, given by g = ĝϕ
h·x. The equation can be written also

as ϕ((gh) · x) = ϕ(k · x) = 0, which has only one solution for k, given by k = ĝϕ
x . We

obtain gh = ĝϕ
x , hence g = ĝϕ

x h−1. From g = ĝϕ
h·x we obtain the result. �

PROPOSITION 16.5 (Properties of the strong canonization operator).

(1) It is invariant to G.

16.2. STRONG PONTIFICAL FEATURES 296

(2) The output is canonical: ϕ ◦ SCanϕ
G = 0.

(3) It is the identity on ϕ ∩ X.

Figure 16.1 shows the tabular representation of the group-spectral properties of a strong

canonization operator.

16.2.2. Examples of Strong Pontifical Features

In this first example, we suppose that the objects in X are sequences of real numbers

and the group is R with addition (Definition D.1). This can be thought as an unknown bias

which is added to the sequence. The first feature considered is the expected value of the

sequence: ϕ(x) = E{x}.

PROPOSITION 16.6. For any c ∈ R, E{x} = c is a strong pontifical feature for G = (R,+).

PROOF. The equation ϕ(g · x) = c is E{x + g} = c, which has only one solution

for g = c−E{x}. Therefore, the feature is a strong pontifical feature. The relative strong

canonization operator consists in removing the mean of the sequence. �

The next two examples consider the group (R+
◦ ,×) of strictly positive numbers (Defi-

nition D.1) acting on sequences of real numbers. The examples show two different strong

pontifical features for the same group on the same space.

X
SCanϕ

G→ ϕ ∩X

ϕ ∩X ≡ ϕ ∩X

G 0→ Id
‖ G

(a) Strong canoniza-
tion operator.

ϕ ∩X
(SCanϕ

G)−1

⇒ X

ϕ ∩X ≡ ϕ ∩X

Id
?→ G

(b) Right inverse of
strong canonization
operator

Figure 16.1. The group-spectral dossier of a strong canonization operator.

16.3. STRONG CANONIZATION OPERATORS CANNOT BE SIMPLY COMPOSED 297

PROPOSITION 16.7. For any c ∈ R+
◦ , E{x2} = c is a strong pontifical feature for G =

(R+
◦ ,×).

PROPOSITION 16.8. For any c ∈ R+
◦ , std{x} = c is a strong pontifical feature for G =

(R+
◦ ,×).

16.3. Strong Canonization Operators Cannot be Simply Composed

The problem with strong pontifical features is that it is difficult to find one feature to

canonize the action of a large group G. A simple idea would be to find features for smaller

factors of the group G, derive the canonization operator for each subgroup, and then apply

the canonization operators in series. This, however, does not always work.

PROPOSITION 16.9. Suppose ϕ1 is a strong pontifical feature for G1 and that ϕ2 is a strong

pontifical feature for G2. Then, the series of the strong canonization operators for ϕ1 and ϕ2 does

not necessarily make the output canonical with respect to ϕ1 ∧ ϕ2.

Some counterexamples are shown in Table 16.3, which enumerates different cases for

the series of the features defined previously in Proposition 16.6, Proposition 16.8, and

Proposition 16.7. For example, the table shows that, if one first normalizes the mean ac-

cording to E{x} = 1, and then scales x to obtain std{x} = 1, the final results does not

satisfy E{x} = 1 in general.

This problem motivates further development of the theory. In the next sections, several

classes of “weaker” features are considered.

16.4. WEAK PONTIFICAL FEATURES 298

first step second step
ϕ1 G1 ϕ2 G2 ϕ1 ∧ ϕ2 respected?

E{x} = 0 (R,+) std{x} = 1 (R+
◦ ,×) X

E{x} = 0 (R,+) E{x2} = 1 (R+
◦ ,×) X

E{x} = 1 (R,+) std{x} = 1 (R+
◦ ,×) 7

E{x} = 1 (R,+) E{x2} = 1 (R+
◦ ,×) 7

std{x} = 1 (R+
◦ ,×) E{x} = 0 (R,+) X

E{x2} = 1 (R+
◦ ,×) E{x} = 0 (R,+) X

std{x} = 1 (R+
◦ ,×) E{x} = 1 (R,+) X

E{x2} = 1 (R+
◦ ,×) E{x} = 1 (R,+) X

Table 16.3. The series of two strong canonization operators does not necessarily pro-
duce an output canonical with respect to both ϕ1 and ϕ2.

16.4. Weak Pontifical Features

A weak pontifical feature is a function that does not “detect” the action of the entire

group G, but it is invariant to a subgroup H ≤ G, which we call “heresy subgroup”.

DEFINITION 16.10 (Weak pontifical feature). Let G be a group acting on X. A weak pontif-

ical feature is a map ϕ : X → R such that, for all x ∈ X, the set Ĝϕ
x = {g | ϕ(g · x) = 0} is

a left coset of G for a subgroup H ≤ G, called “heresy subgroup”, which does not depend

on x; that is, Ĝϕ
x = Hĝϕ

x .

A weak pontifical feature is not strong enough to determine exactly which group ele-

ment acted as a nuisance on the data. But it can be used to define a “weak canonization

G orbit

! = 0

X

H orbit

x

WCan!(x)

Figure 16.1. The geometry of a weak pontifical feature. A weak pontifical feature
determines the nuisance only up to a subgroup H. Because we do not have further
information to choose a particular element of H, we define the weak canonization
operator as a one-to-many map that maps a point to an H-orbit.

16.4. WEAK PONTIFICAL FEATURES 299

operator”, a one-to-many function which maps a point x ∈ X to a whole orbit of H.

DEFINITION 16.11 (Weak canonization operator). Given a weak pontifical feature ϕ :

X → R for the group G acting on X with heresy group H, the weak canonization operator

for ϕ is the map WCanϕ
G,H, defined as

WCanϕ
G,H : X ⇒ X

x 7→ Ĝϕ
x · x.

PROPOSITION 16.12 (Properties of the weak canonization operator).

(1) It is invariant to G.

(2) The output is canonical: ϕ ◦WCanϕ
G,H = 0.

16.4.1. Examples of Weak Pontifical Features

In this next example, we still work with sequences of real numbers. The group acting

on the sequences is (R◦,×) (nonzero real numbers; see Definition D.1). The group acts by

scaling a sequence x: g · x = gx.

LEMMA 16.13. For any c > 0, std{x} = E{(x−E{x})2}1/2 = c is a weak pontifical feature

for G = (R◦,×) with heresy subgroup H = (±1,×).

X
WCanϕ

G
⇒ ϕ ∩X

ϕ ∩X ≡ ϕ ∩X

G 0→ Id

Id
?→ H

(a) Weak canoniza-
tion operator.

ϕ ∩X
(WCanϕ

G)−1

⇒ X

ϕ ∩X ≡ ϕ ∩X

Id
?→ G

H 0→ Id

(b) . . . and its right inverse.

Figure 16.2. The group-spectral dossier for the weak canonization operator and its
right inverse.

16.4. WEAK PONTIFICAL FEATURES 300

PROOF. The equation ϕ(g · x) = 0 is written as

E{(gx−E{gx})2} =

g2E{(x−E{x})2} = 1.

Therefore, there are two solutions for g: the scale is not completely constrained by the

variance. Therefore, the feature is not a strong pontifical feature. The heresy subgroup H

is easily seen to be H = (±1,×). See also Proposition 16.21 for additional properties of

this feature. �

LEMMA 16.14 (Power). For any c > 0, E{x2} = c is a weak pontifical feature for G =

(R◦,×) with heresy subgroup H = (±1,×).

PROOF. The equation ϕ(g · x) = 0 is written as g2E{x2} = c. Therefore, there are,

again, two solutions for g. The heresy subgroup H is again H = {±1,×}. �

LEMMA 16.15. E{x} = 1 is a weak pontifical feature for G = Aff(1, R), with heresy sub-

group H =
{(s −s+1

0 1

)
| s ∈ R◦

}
≤ G.

PROOF. The equation ϕ(g · x) = 0 is written as E{ax + b} = 1, from which it follows

that

aE{x}+ b = 1.

One particular solution is g = (1,−E{x}+ 1), corresponding to translation. The complete

set of solutions can be written as Hg, where H is of the form

H = {(1,+1)(s, 0)(1,−1) | s ∈ R◦}.

This corresponds to translating to the origin, scaling, and then translating back. More

formally, we can show that the set H is a subgroup of Aff(R). We already know H ⊂

16.4. WEAK PONTIFICAL FEATURES 301

Aff(R), so we just need to show that it is closed with respect to composition. Elements

of H can be written as
(s −s+1

0 1

)
, for some s ∈ R◦:

H =
{(

1 +1
0 1

) (
s 0
0 1

) (
1 −1
0 1

)
| s ∈ R◦

}

=
{(s −s+1

0 1

)
| s ∈ R◦

}
.

This set can be verified to be a subgroup of Aff(R) (Lemma D.14). �

LEMMA 16.16. E{x} = 0 is a weak pontifical feature for G = Aff(1, R), with heresy sub-

group H = (R◦,×) ≤ G.

PROOF. The equation ϕ(g · x) = 0 is written as E{ax + b} = 0, from which it follows

that

aE{x}+ b = 0.

Therefore, the set of solutions are of the form

Ĝ = {(a,−aµ) | a ∈ R◦}.

Note that Ĝ itself is not a subgroup of Aff(1, R). Consider two of these elements: (a1,−a1µ)

and (a2,−a2µ). The composition gives (a1a2, a2(−a1µ − a2µ)), which is not of the form

(a,−aµ), unless for µ = 0. Therefore, Ĝ is not a subgroup of Aff(1, R).

However, it is a left coset, because it can be written as Ĝ = H · g, with g ∈ (0,−µ)

and H = {(a, 0), a ∈ R◦} ∼= (R◦,×). Because (R◦,×) ≤ Aff(1, R) but not (R◦,×) /

Aff(1, R) (Lemma D.11), the feature is only a weak pontifical feature. �

LEMMA 16.17 (Continued from Lemma 16.28). E{x2} = 1 is not a weak pontifical feature

for G = Aff(1, R).

16.5. MILD PONTIFICAL FEATURES 302

PROOF. The equation ϕ(g · x) = 0 is written as

E{(ax + b)2} = 1

E{a2x2 + b2 + 2axb} = 1

a2E{x2}+ b2 + 2abE{x} = 1.

One particular solution is a pure scaling g = (a, 0), with a = 1/E{x2}. Now, assum-

ing E{x2} = 1, examine the set of elements which maintain the feature constant:

a2E{x2}+ b2 + 2abE{x} = 1

(Assuming the feature is satisfied.)

a2 + b2 + 2abE{x} = 1

If we fix a, to find b we need to solve a second-order polynomial b2(1) + b(2aµ) + (a2 −

1) = 0, whose solutions are

b = −aµ±
√

a2µ2 − 2(a2 − 1).

For a = 1 (do not scale the signal) one obtains the two solutions b = 0 (the identity) as

well as b = −2µ (which corresponds to “mirroring” the signal). In the case µ = 0, the two

solutions coincide. For a = 2, we obtain the two solutions b = −2µ±
√

4µ2 − 6. But for

µ = 0, there is no real solution for b. Therefore, this set of solution cannot be written as a

coset of a subgroup H independent of x. �

16.5. Mild Pontifical Features

16.5. MILD PONTIFICAL FEATURES 303

DEFINITION 16.18 (Mild pontifical feature). A mild pontifical feature is a weak pontifical

feature whose heresy subgroup H is a normal subgroup of G.

There is some more structure that we can use for defining a canonization operator. We

recall some basic facts of group theory. See Appendix C for more formal definitions.

Because H is a normal subgroup (written as H / G, Definition C.11), then the quotient

group G/H is well-defined (Definition C.30). Moreover, G is homomorphic to the semidi-

rect product of H and a subgroup Q ≤ G which is homomorphic to the quotient G/H

(Lemma C.28):

G ∼= H o Q for some Q ≤ G, with Q ∼= G/H.

A graphical representation of the groups G, H, Q and their actions is shown in Figure 16.1.

Any element g ∈ G can be written uniquely as a product g = hq, for h ∈ H and q ∈ Q

(Lemma C.29). This means that we can define a projection map γ : G → Q as γ : hq 7→ q

(Definition C.33). The mild canonization operator is based on this projection map.

DEFINITION 16.19 (Mild canonization operator). Consider a mild pontifical feature ϕ :

X→ R for the group G acting on X with heresy subgroup H / G and the relative projection

G orbit

! = 0

Q orbits

X

H orbit

x

MCan!(x)

Figure 16.1. Geometry of a mild pontifical feature and relative canonization operator.
In this case, we know that the heresy subgroup H is a normal subgroup of G. There-
fore, we can define the quotient group Q such that G ∼= H o Q. This factorization
allows to define the mild canonization operator as an action of Q which brings each
point x to the feature surface ϕ(x) = 0.

16.5. MILD PONTIFICAL FEATURES 304

map γ : G → Q (Definition C.33). The mild canonization operator for ϕ is the map

MCanϕ
G/H : X → X

x 7→ γ(Ĝϕ
x) · x.

PROPOSITION 16.20. Properties of MCanϕ
G/H:

(1) It is the action of some group element qx ∈ Q.

(2) The output is canonical: ϕ ◦MCanϕ
G/H = 0.

(3) It is the identity on ϕ ∩X.

(4) It is invariant to the action of Q.

(5) There exists an endomorphism mϕ
x : H → H such that

MCanϕ
G/H(h · x) = mϕ

x (h) ·MCanϕ
G/H(x).

That is, while the operator does not commute with the action of H, it transforms

its action in a somewhat regular way.

PROOF. We first prove some preliminary results about Ĝϕ
x :

• (a) Ĝϕ
x can be written uniquely as Ĝϕ

x = Hq̂ϕ
x for some q̂ϕ

x ∈ Q.

• (b) q̂ϕ
x is contra-variant to Q: q̂ϕ

q·x = q̂ϕ
x q−1.

X
MCanϕ

G/H→ ϕ ∩X

ϕ ∩X ≡ ϕ ∩X

G/H 0→ Id

H mx→ H
‖ G/H

(a) Mild canonization
operator.

ϕ ∩X

(MCanϕ
G/H)

−1

⇒ X

ϕ ∩X ≡ ϕ ∩X

Id
∗→ G/H

H
m−1

x→ H

(b) . . . and its right inverse.

Figure 16.2. The group-spectral dossier of the mild canonization operator.

16.5. MILD PONTIFICAL FEATURES 305

• (c) q̂ϕ
x is invariant to H: q̂ϕ

h·x = q̂ϕ
x .

Now we prove points 1 and 5 of the Proposition.

(1) This follows from the fact that γ(Ĝϕ
x) ∈ Q.

(2) Let us compute

ϕ(BCanϕ
G/H(x)) = ϕ(γ(Ĝϕ

x) · x)

(Property (a) above.)

= ϕ(γ(Hq̂ϕ
x) · x)

(Property (1) of Lemma C.34.)

= ϕ(γ(q̂ϕ
x) · x)

(Property (2) of Lemma C.34.)

= ϕ(q̂ϕ
x · x)

(q̂ϕ
x ∈ Ĝϕ

x)

= 0.

(3) If x ∈ ϕ ∩ X, then it is already canonical: ϕ(x) = 0. Therefore e ∈ Ĝϕ
x . By

property (a) above we know that every element g ∈ Ĝϕ
x can be written as g = hq̂ϕ

x ,

for some h ∈ H and q̂ϕ
x ∈ Q. For g = e, we obtain e = hq̂ϕ

x , which implies q̂ϕ
x =

h−1 ∈ Q, and because Q is a group, h ∈ Q. Therefore h ∈ H ∩ Q. But we know

that Q ∩ H = e, we obtain h = e, and q̂ϕ
x = h−1 = e. So γ(Hq̂ϕ

x) = γ(q̂ϕ
x) = γ(e) =

e.

16.5. MILD PONTIFICAL FEATURES 306

(4) This follows easily from property (b) above. Let us compute:

BCanϕ
G/H(q · x) = γ(Ĝϕ

q·x) · (q · x)

(Property (a) above.)

= γ(Hq̂ϕ
q·x) · (q · x)

(Property (b) above.)

= γ(Hq̂ϕ
x q−1) · (q · x)

(Property (3) of Lemma C.34.)

= γ(Hq̂ϕ
x)q−1 · (q · x)

= γ(Hq̂ϕ
x) · x

= BCanϕ
G/H(x).

(5) Let us compute:

MCanϕ
G/H(h · x) = γ(Ĝϕ

h·x) · (h · x)

(Property (a) above.)

= γ(Hq̂ϕ
h·x) · (h · x)

(Property (c) above.)

= γ(Hq̂ϕ
x) · (h · x)

= q̂ϕ
x · (h · x)

= (q̂ϕ
x h) · x.

16.5. MILD PONTIFICAL FEATURES 307

At this point, if Q / G (that is, G ∼= Q × H) then the two elements would com-

mute: q̂ϕ
x h = hq̂ϕ

x . In general, however, this is not true; what we can say is that,

because H / G, then q̂ϕ
x h = h′q̂ϕ

x for some h ∈ H. In general this h′ depends on q̂ϕ
x ,

and therefore on x: h′ = mϕ
x (h) = q̂ϕ

x h
(
q̂ϕ

x
)−1

. That is, it is a conjugation, and

therefore an homomorphism of G into G. Because H / G, H is invariant to conju-

gation (Lemma C.15), and so mϕ
x : H → H is an Endomorphism. What we obtain

is

MCanϕ
G/H(h · x) = (mϕ

x (h)q̂
ϕ
x) · x = mϕ

x (h) ·MCanϕ
G/H(x).

�

16.5.1. Examples of Mild Pontifical Features

PROPOSITION 16.21 (Continued from Proposition 16.13). For any c > 0, std{x} =

E{(x−E{x})2}1/2 = c is a mild pontifical feature for G = (R◦,×) with heresy subgroup H =

(±1,×) / G.

PROOF. From Proposition 16.13 we know that this is a weak pontifical feature. Because

H = (±1,×) / (R◦,×), the feature is also a mild pontifical feature. (See also Proposi-

tion 16.25 for additional properties of this feature.) �

PROPOSITION 16.22. For any c > 0, std{x} = c is a mild pontifical feature for G = Aff(R).

The heresy subgroup is H = (R,+)o (±1,×) / G, and G/H ∼= (R+
◦ ,×) ≤ G.

endomorphism: An homomorphism from a group to itself. See Definition C.19.

16.6. BOLD PONTIFICAL FEATURES 308

PROOF. The equation ϕ(g · x) = 0 becomes

E{(ax + b−E{ax + b})2} =

E{(ax + b− aE{x} − b)2} =

a2E{(x−E{x})2} = 1,

which implies that a = ±1/σ2. Any translation will also conserve the feature. Therefore,

the heresy subgroup is H = (R,+) ∨ (±1,×), which is a normal subgroup of Aff(1, R)

(Lemma D.10). Therefore, this is a mild pontifical feature. However, Aff(1, R)/(R,+) ∼=

(R◦,×) is not a normal subgroup, so the feature is not a bold pontifical feature. �

16.6. Bold Pontifical Features

We define bold pontifical feature as a particular case of mild features.

DEFINITION 16.23 (Bold pontifical feature). A bold pontifical feature is a mild pontifical

feature for which both the heresy subgroup H and G/H are normal subgroups of G.

In other words, the group G is isomorphic to the direct product Q×H (Proposition ??).

In this case, we can show that the mild canonization operator is equivariant to the action

of H.

DEFINITION 16.24 (Bold canonization operator). The bold canonization operator BCanϕ
G/H

is the mild canonization operator for a bold pontifical feature. It enjoys all properties given

by Proposition 16.20, plus equivariance:

BCanϕ
G/H(h · x) = h · BCanϕ

G/H(x).

16.6. BOLD PONTIFICAL FEATURES 309

16.6.1. Examples of Bold Pontifical Features

PROPOSITION 16.25 (Continued from Proposition 16.21). std{x} = E{(x−E{x})2} is

a bold pontifical feature for G = (R◦,×) with heresy subgroup H = (±1,×) / G.

PROOF. The quotient group G/H = (R+
◦ ,×) is a normal subgroup of G = (R◦,×)

(Lemma D.8). Consequently, this is a bold pontifical feature. �

X
BCanϕ

G/H→ ϕ ∩X

ϕ ∩X ≡ ϕ ∩X

G/H 0→ Id

H Id→ H
‖ G/H

ϕ ∩X

(BCanϕ
G/H)

−1

⇒ X

ϕ ∩X ≡ ϕ ∩X

Id
∗→ G/H

H Id→ H

Figure 16.1. The group-spectral dossier of the bold canonization operator.

16.7. UNSTRUCTURED PONTIFICAL FEATURES 310

16.7. Unstructured Pontifical Features

Finally, we relax the definition of weak pontifical feature to define “unstructured” fea-

tures.

DEFINITION 16.26 (Unstructured pontifical feature). An unstructured pontifical feature for

a group G acting on a set X is a strong pontifical feature for a subgroup of G.

It is easy to verify that

unstructured⇐ weak⇐ mild⇐ bold⇐ strong pontifical feature.

DEFINITION 16.27 (Unstructured canonization operator). An unstructured canonization op-

erator for a group G is the strong canonization operator associated to a strong pontifical

feature of a subgroup of G.

16.7.1. Examples of unstructured pontifical features

LEMMA 16.28. For any c > 0, E{x2} = c is an unstructured pontifical feature for G =

Aff(1, R).

PROOF. By Proposition 16.7, the feature is a strong pontifical feature for (R+
◦ ,×) ≤

Aff(1, R). See Lemma 16.17 for further properties of this feature. �

CHAPTER 17

Algebra of Pontifical Features

This chapter studies two composition properties: the intersection of pontifical

features and the series of canonization operators. These are the two tools that we

can use to obtain invariance with respect to a larger group, starting from smaller

groups. The intersection of pontifical features creates more powerful features in

an easy way, but implies solving a more complicated problem. Just putting a

set of canonization operators in series is computationally easy, but it produces a

canonical output only if certain conditions are satisfied. Here, the classification

of features in unstructured, weak, mild, etc., becomes relevant.

17.1. Intersection of Pontifical Features

DEFINITION 17.1 (Intersection of features). Given two features ϕ1 and ϕ2, denote by ϕ1 ∧

ϕ2 their intersection:

(ϕ1 ∧ ϕ2)(x) = ϕ2
1(x) + ϕ2

2(x).

This section gives several results regarding the intersection of features. The first result is

a negative result concerning unstructured features.

PROPOSITION 17.2 (Unstructured features do not mix well). Suppose that ϕ1 = 0 is an

unstructured pontifical feature for a group G1 acting on a set X and that ϕ2 = 0 is an unstructured

pontifical feature for a group G2 6= G1 acting on X. Then ϕ1∧ ϕ2 is not necessarily an unstructured

pontifical feature for the group G1 ∨ G2.

311

17.1. INTERSECTION OF PONTIFICAL FEATURES 312

PROOF. This can be seen in the simplest case of linear actions. For example, let X = R2,

let G1 = {[0, b] | a ∈ R} with addition and G2 = {[0, b] | b ∈ R}. Then ϕ1(x) =

x2 − sin x1 = 0 is an unstructured pontifical feature for G1. This is just because the orbits

of G1 are vertical lines that intersect the curve x2− sin x1 = 0 only once. Take now ϕ2(x) =

x1 − 2 sin x2 = 0. This is a pontifical feature for G2. However, the intersection of these two

curves are not an unstructured pontifical feature for G1 ∨G2 = R2, because the intersection

of ϕ1 = 0 and ϕ2 = 0 is not a single point.

�

The rest of the results are positive results regarding the various classes of structured

features.

PROPOSITION 17.3 (Intersection of two weak features is a weak feature). Let G act on X.

Let ϕ1 and ϕ2 be two weak pontifical features for G with heresy subgroup H1 and H2. Suppose that

the set {x ∈ X | ϕ1(x) = 0∧ ϕ2(x) = 0} is non empty. Then ϕ1 ∧ ϕ2 is a weak pontifical feature

for G with heresy subgroup H1 ∩ H2.

PROOF. Given a point x ∈ X, define Sx ⊂ G as the set of canonization elements:

Sx = {g ∈ G | (ϕ1(g · x) = 0) ∧ (ϕ2(g · x) = 0)} .

We need to prove that Sx can be written as a coset:

Sx = (H1 ∩ H2)gx

for some element gx ∈ G. The proof consists of two steps. First we prove that Sx =

(H1 ∩ H2)Sx, then we prove that if Sx = HSx, necessarily H = H1 ∩ H2.

For the first step, let g be an element of Sx (assumed nonempty). This implies ϕ1(g ·

17.2. SERIES OF CANONIZATION OPERATORS 313

x) = 0, ϕ2(g · x) = 0. If you take hg, where h ∈ H1 ∩ H2, then ϕ1(hg · x) = 0 because h ∈

H1, and equivalently for the other feature.

For the second step, suppose Sx = HSx for some subgroup H ≤ G. This implies that,

for each h ∈ H, ϕ1(hg · x) = 0 and ϕ2(hg · x) = 0. Therefore h ∈ H1 and h ∈ H2. �

PROPOSITION 17.4 (Intersection of two mild pontifical features). If ϕ1 and ϕ2 are mild

pontifical features, then ϕ1 ∧ ϕ2 is a mild pontifical feature as well.

PROOF. Because a mild pontifical feature is also a weak pontifical feature, from Propo-

sition 17.3 it follows that ϕ1 ∧ ϕ2 is a weak pontifical feature with heresy group H1 ∩ H2,

and from Lemma C.13 is a normal subgroup. �

17.2. Series of Canonization Operators

This section considers the use of canonization operators in series. This is the case that

is most important for applications: the intersection of features, studied in the previous

section, implies that we can solve a more complicated problem, because normalizing with

respect to ϕ1 ∧ ϕ2 implies that we solve simultaneously for ϕ1(g · x) = 0 and ϕ2(g · x) = 0,

which might be complicated.

Instead, we want to find sufficient conditions under which we can just use in series the

canonization operators for ϕ1 and ϕ2 and still obtain an output which is canonical with

respect to both.

PROPOSITION 17.5 (Series of weak and mild canonization operators). Suppose ϕ1 is a

weak pontifical feature for G = G1 ∨ G2 with heresy subgroup H1 and that ϕ2 is a mild canonical

feature for G with heresy group H2. Then a sufficient condition for the output of the series of the

two canonization operator to be canonical with respect to both ϕ1 and ϕ2 is that G/H2 ≤ H1.

17.3. EXAMPLES 314

PROOF. A mild canonization operator is the action of G/H2. If G/H2 ≤ H1, then the

value of ϕ1 is conserved. �

Figure 17.1 shows the situation using group-spectral dossiers.

X

WCanϕ1
G1∨G2
⇒ ϕ1 ∩X

ϕ1 ∩X ≡ ϕ1 ∩X

G1 ∨ G2
0→ Id

Id
?→ H1

‖ (G1 ∨ G2)

(a) First canonization oper-
ator

X
MCanϕ2

(G1∨G2)/H2→ ϕ2 ∩X

ϕ2 ∩X ≡ ϕ2 ∩X

(G1 ∨ G2)/H2
0→ Id

H2
mx→ H2

‖ (G1 ∨ G2)/H2

(b) Second canonization operator

X

WCanϕ1
G1∨G2

◦MCanϕ2

(G1∨G2)/H2

⇒ (ϕ2 ∩ ϕ1) ∩X

(ϕ2 ∩ ϕ1) ∩X ≡ (ϕ2 ∩ ϕ1) ∩X

G1 ∨ G2
0→ Id

Id
?→ H1 ∩ H2

‖ G1 ∨ G2

(c) Dossier for the composition

Figure 17.1. Illustration for Proposition 17.5.

17.3. Examples

Table 17.1 summarizes the properties of the various features considered so far through

the chapter:

E{x} = 0, E{x} = 1, E{x2} = 1, std{x} = 1.

The table shows what class of pontifical features they belong to, with respect to the group

G = Aff(R) and its subgroups (R◦,×) and (R,+).

Table 17.2 shows the results of composing in series the canonization operators of two

of the features. These are the same results already shown in Table 16.3, but this time the

17.3. EXAMPLES 315

G

ϕ (R,+) (R◦,×) Aff(R)

E{x} = 0 strong 7 weak

H = (R◦,×) ≤ G

E{x} = 1 strong strong weak

H =
{(s −s+1

0 1

)
| s ∈ R◦

}
≤ G

std{x} = 1 7 bold

H = (±1,×) / G
G/H ∼= (R+

◦ ,×) / G

mild

H = (R,+)o (±1,×) / G
G/H ∼= (R+

◦ ,×) ≤ G

E{x2} = 1 7 bold

H = (±1,×) / G
G/H ∼= (R+

◦ ,×) / G

unstructured

Table 17.1. Strength of three features for various groups.

table shows also the classification of the features and their heresy subgroups. We are now

able to predict most of these results.

For example, case (a) can be predicted to work by using Proposition 17.5, as the two

features satisfy the preconditions of the proposition: they are weak and mild, respectively,

and G/H2 ≤ H1. Instead, in case (c), in which there is still a weak and a mild feature, the

condition G/H2 ≤ H1 fails because (R+
◦ ,×) is not a subgroup of

{(s −s+1
0 1

)}
.

17.3. EXAMPLES 316

first step second step

ϕ1 type H1 ϕ2 H2 ϕ1 ∧ ϕ2?

a) E{x} = 0 weak (R◦,×) std{x} = 1 mild (R,+)o (±1,×)
G/H2 = (R+

◦ ,×)
X

b) E{x} = 0 weak (R◦,×) E{x2} = 1 unstr. n/a X

c) E{x} = 1 weak
{(s −s+1

0 1

)}
std{x} = 1 mild (R,+)o (±1,×)

G/H2 = (R+
◦ ,×)

7

d) E{x} = 1 weak
{(s −s+1

0 1

)}
E{x2} = 1 unstr. n/a 7

e) std{x} = 1 mild (R,+)o (±1,×)
G/H1 = (R+

◦ ,×)
E{x} = 0 weak (R◦,×) X

f) E{x2} = 1 unstr. n/a E{x} = 0 weak (R◦,×) X

g) std{x} = 1 mild (R,+)o (±1,×)
G/H1 = (R+

◦ ,×)
E{x} = 1 weak

{(s −s+1
0 1

)}
X

h) E{x2} = 1 unstr. n/a E{x} = 1 weak
{(s −s+1

0 1

)}
X

Table 17.2. Results for the series of two canonization operators

CHAPTER 18

Some Pontifical Features for Bootstrapping

This chapter gives some example of canonization procedures based on pontifical

features in the context of bootstrapping.

18.1. Legend

preconditions on format: These are assumptions on the format of the data.

assumptions on the system: These are assumptions on the physical system.

group: The group that acts as a nuisance.

action: The action of the group.

feature: The pontifical feature being examined.

feature type: The type of the feature (strong, weak, etc.).

heresy subgroup: The heresy subgroup, in the case of weak features.

canonization operator: The canonization operator associated to the feature.

317

18.2. WHITENING 318

18.2. Whitening

preconditions on format: Y = Rny

group: GL(ny)

set acted on: D(Y;U)

action: yt 7→ Ayt

feature: cov{y} = Iny

feature type: weak

heresy subgroup: O(ny)

canonization operator: yt 7→ cov{y}−1/2yt

Whitening is the simplest example of canonization operator that can be explained as a

pontifical feature. Suppose that there is a linear nuisance acting on the data, represented

by a nonsingular matrix A:

yt 7→ Ayt, A ∈ GL(ny).

One way to obtain an invariant representation is to use the covariance matrix as a covariant

statistics. Under this nuisance, the covariance matrix P = cov{y} transforms as

P 7→ APAT.

1.0

0.5

0.0

0.5

1.0

(a) yt

1.0

0.5

0.0

0.5

1.0

(b) −1.5 yt

Figure 18.1. Effect of a linear transformation on a signal.

18.2. WHITENING 319

The feature

P = Iny

is a weak pontifical feature for this nuisance (Lemma E.10).

The heresy subgroup is the group of orthogonal transformations O(nu), because they

leave the feature invariant:

XIny XT = Iny for all X ∈ O(nu).

The canonization operator is

y 7→ P−1/2y.

The group spectral dossier (Table 18.1) of this canonization operator shows that the nui-

sance group GL(ny) is reduced to O(ny).

Table 18.1. Group-spectral dossier for whitening (Subsection 18.2).

D(Rny ;U)
whitening
⇒ D(Rny ;U)

GL(ny)
0→ Id

Id
?→ O(ny)

18.3. CONTRAST TRANSFORMATION 320

18.3. Contrast Transformation

preconditions on format: Y = [0, 1]ny

group: Homeo+([0, 1])ny

set acted on: D(Y;U)

action: yi
t 7→ fi(yi

t), fi ∈ Homeo+([0, 1])

feature: P(yi
t < x) = x (the sensels have uniform pdf)

feature type: strong

heresy subgroup: None.

This is the simplest example of a nonlinear nuisance acting on the data. For simplicity,

we assume that the domain of each sensel is [0, 1] (this is not a restrictive condition, because

we can find a bijection between R and [0, 1]).

The nuisance fi ∈ Homeo+([0, 1]) is a monotonic transformation of the the sensel val-

ues. A pontifical feature can be found using as a statistic the cumulative distribution func-

tion ci of each sensel:

ci : [0, 1] → [0, 1],

x 7→ P(yi
t < x).

Note that the domain of ci is [0, 1] because it is the assumed to be the domain of the sensel

values, and that the codomain is [0, 1] because it is a probability. It is also easy to see that

1.0

0.5

0.0

0.5

1.0

(a) Original function yt

1.0

0.5

0.0

0.5

1.0

(b) f (yt), with f ∈ Homeo+(R)

Figure 18.1. Effect of a homeomorphism nuisance.

18.3. CONTRAST TRANSFORMATION 321

ci(0) = 0, ci(1) = 1 and that it is monotonically increasing. In other words the cdf is a

homeomorphism: ci ∈ Homeo+([0, 1]).

Consider the action of a nuisance fi ∈ Homeo+([0, 1]) and call ỹi
t = fi(yi

t) the perturbed

values. The perturbed cdf c̃ is

c̃i(x) = P(ỹi
t < x)

= P(fi(yi) < x)

= P(yi < f−1
i (x))

= ci(f−1
i (x)).

This means that the cdf is contravariant with respect to the action of the nuisance. Sum-

marizing in a diagram:

yi fi ◦ yi

cdf ↓ fi7−→ cdf ↓

ci ci ◦ f−1
i

This information can be used to find a canonization operator. Define zi, the canonical

version of yi, as zi , ci(yi). It follows that P(zi < x) = ci ◦ c−1
i (x) = x, which means that zi

is uniformly distributed in the interval [0, 1]. This implies that P(yi
t < x) = x is a strong

pontifical feature for the action of Homeo+([0, 1]).

cdf : Cumulative distribution function. See Definition B.5.

18.3. CONTRAST TRANSFORMATION 322

Table 18.2. Group-spectral dossier for canonization to Homeo+([0, 1])

D([0, 1];U)
c
⇒ D([0, 1];U)

Homeo+([0, 1]) 0→ Id

18.4. UNLABELED SENSELS 323

18.4. Unlabeled Sensels

preconditions on format: Y = Y
ny

assumptions on the system: Field-sampler with equispaced observations.

group: Perm(ny)

set acted on: D(Y;U)

action: yi
t 7→ yπ(i)

t , for π ∈ Perm(ny)

feature: given by (18.1)

feature type: weak

heresy subgroup: (±1,×)

canonization operator: (described below)

This is the simplest example of sensor geometry reconstruction. Assume that the agent

has a simple field-sampler whose sensels are equispaced (Figure 18.1):

yi
t = h(si + q), si = i∆.

Suppose that the nuisance is a permutation π that scrambles the sensels:

ỹi
t = yπ(i)

t .

Can the original order be reconstructed?

This is a simplified version of the sensor geometry reconstruction problem, because

signal

Figure 18.1. The nuisance scrambles the sensels of a one-dimensional field-sampler.

18.4. UNLABELED SENSELS 324

it assumes that the sensels positions are fixed at regular intervals, and only the order is

unknown. Consequently, it is possible to use a relatively simple feature.

Consider three arbitrary sensels labeled i, j, k ∈ {1, n}, and the corresponding sensel

positions si, sj, sk ∈ R. If the sensels were picked in the right spatial order (si < sj < sk),

then one expects that the values of yi are more “similar” to the values of yj than to the

values of yk. Let R be a similarity measure that satisfies such property:

i < j < k ⇔
R(yj, yi) > R(yi, yk)

R(yj, yk) > R(yi, yk)

. (18.1)

In this one-dimensional problem, the order can be recovered by a simple algorithm.

Consider the sensel that was the j-th sensel in the original sequence, and count the num-

ber N of pairs (i, k) for which the previous constraint holds, which is the number of sensel

triplets for which j is the middle sensel. This is equal to N(j) = (j− 1)× (n− j), because

there are exactly (j− 1) sensels on the left, and (n− j) on the right. If N(j) = 0, the sensel

is either the first (j = 1) or the last (j = n). One can choose (arbitrarily) one of the two pos-

sibilities, and continue counting. After the first arbitrary choice, the constraints uniquely

determine the rest of the sensel indices.

The first ambiguous choice determines whether the sensels are ordered left-to-right or

right-to-left. One solution can be transformed in the other using the permutation

π̂ = (n n− 1 . . . 2 1).

Applying this permutation twice corresponds to the identity: π̂ · π̂ = e, so the set {e, π̂}

is a subgroup of Perm(n). This subgroup is the heresy subgroup of the feature (18.1). The

subgroup is isomorphic to (±1,×), which is used as a placeholder in Table 18.3.

18.4. UNLABELED SENSELS 325

Table 18.3. Group-spectral dossier for reconstruction from unlabeled sensels

D(Rny ;U) ⇒ D(Rny ;U) ∩ ϕ

Perm(ny)
0→ Id

Id
?→ (±1,×)

In this example, the group action of (±1,×) corresponds to reversing the order of
the sensels.

18.5. SENSEL SPACE DIFFEOMORPHISMS 326

18.5. Sensel Space Diffeomorphisms

preconditions on format: Y = Differentiable(R; S1)

preconditions on format: Assumption 6 (The observations correspond to a spatial field)

group: Diff(S1)

set acted on: D(Y;U)

action: yt(s) 7→ yt(ϕ(s)), for ϕ ∈ Diff(S1)

feature: var{∇y(θ)} = const

feature type: weak

heresy subgroup: Isom(S1) ∼= O(2)

canonization operator: (see (18.2) below)

Suppose that an agent has a one-dimensional vision sensor (Figure 18.1). The previous

example assumes that the sensor had a discrete set of sensels. In this example, the obser-

vations are a differentiable function from S1 to R. The nuisance Diff(S1) deforms the field

of view for the agent, similarly to the effect of an unknown optics for the sensor.

One way to find a canonical representation is to impose that the observations have

uniform statistics across the visual field, by constraining the variance of the image gradient

to be constant:

var{∇y(θ)} = α, for some α > 0. (18.1)

In this one-dimensional case, the canonization operator can be found in a closed form.

scene

Figure 18.1. A diffeomorphism nuisance acting on the domain of the signal.

18.5. SENSEL SPACE DIFFEOMORPHISMS 327

The nuisance is a diffeomorphism that acts on the domain of the function. The domain is

the unit circle, so write the observations as a function of an angle θ:

y′(θ) = y(ϕ(θ)).

The gradient is ∇y′(θ) = ∂ϕ
∂θ y(ϕ(θ)). The constraint (18.1) is written as

(
∂ϕ

∂θ

)2

var{∇θy(θ)} = α.

The Jacobian ∂ϕ/∂θ is nonzero for all θ because ϕ is a diffeomorphism, and it has the

same sign everywhere because the domain is connected. We can choose either a positive

or negative sign for ∂ϕ/∂θ:

∂ϕ

∂θ
= ± α√

var{∇θy(θ)}

The diffeomorphism ϕ must also satisfy

ˆ 2π

0

∂ϕ

∂θ
= 2π,

because the circle must be mapped onto itself. This constraints allows to find the con-

stant α. The final solution for ϕ, representing the canonization operator, is

ϕ?(θ) = c +±α

ˆ θ

0

1√
var{∇y(β)}

dβ, α =
1

2π

ˆ 2π

0

1√
var{∇y(θ)}

dθ. (18.2)

There are two ambiguities: the sign (±) and the integration constant c. These corresponds

to reflections and rotations of the circle.

18.5. SENSEL SPACE DIFFEOMORPHISMS 328

Table 18.4. Group-spectral dossier for the canonization operator

D(Differentiable(R; S1);U)
ϕ?

⇒ D(Differentiable(R; S1);U)

Diff(S1)
0→ Id

Id
?→ Isom(S1) ' SO(2)

CHAPTER 19

An Example of Compositional Analysis

This chapter presents a longer example of the use of pontifical features and group-

spectral dossiers that demonstrates how they simplify reasoning about composi-

tional properties of bootstrapping agents.

19.1. Building Blocks

This example uses several building blocks, most of which have already been encoun-

tered.

19.1.1. BGDS agent

Table 19.1 shows the group-spectral dossier for the BGDS agent described in 12. More

precisely, this is the map WtoBA from world to behavior (Definition 5.6), but for clarity it

is just denoted “BGDSagent”. The dossier says that the agent is invariant to any diffeomor-

phisms of the image, and it is contravariant to linear nuisances of the commands.

Table 19.1. Group-spectral dossier for BGDSagent

D(Images(S); Rnu)
BGDSagent→ behavior

Diff(S) 0−→ Id

Aff(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

329

19.1. BUILDING BLOCKS 330

19.1.2. CalibA and CalibB

The BGDS agent assumes that the observations are a spatially coherent field on a mani-

fold. If the observations are just a set of scrambled pixels, one possibility is to add a sensor

geometry reconstruction stage, as studied in 10.

Table 19.2 shows the group-spectral dossier for the algorithm CalibA (Algorithm 1).

The calibration algorithm is seen as a map that takes a world with scrambled sensels (an

element of D(Rny ;U)) to a world world whose observations are spatially coherent (an ele-

ment of D(S2 → R;U)). The algorithm is invariant to any scrambling (Perm(ny)) and any

contrast transformation (Homeo+(R)). The absolute orientation of the sensor is unobserv-

able, which is modeled by the introduction of the nuisance Isom(S2).

Table 19.2. Group-spectral dossier for CalibA

D(Rny ;U)
CalibA
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

Id ?−→ Isom(S2)

The calibration algorithm described in Chapter 10 produces a coherent image on S2.
The absolute orientation is unobservable, thus the group Isom(S2) appears as a nui-
sance. The algorithm is invariant to both permutations of the sensels as well as non-
linear transformations of the values such as contrast transformations (Homeo+(R)).

CalibB is the calibration operator using the simpler algorithm based on MDS . It is not

able to compensate contrast transformations. The solution is still topologically correct, but

the solution is deformed. This is modeled by an unknown diffeomorphism acting on the

solution.

MDS: Multidimensional scaling is a classic embedding algorithm that recovers the posi-

tions of a set of points given the interpoint distance matrix [115] .

19.1. BUILDING BLOCKS 331

Table 19.3. Group-spectral dossier for CalibB

D(Rny ;U)
CalibB
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
∼−→ Diff(S2)

Id ?−→ Isom(S2)

The calibration algorithm based on MDS is not invariant to nonlinear transforma-
tions of the values. A contrast transformation (Homeo+(R)) will change the simi-
larity values and this will perturb the solution. The result will still be topologically
correct. This is indicated by the nuisance Diff(S2) introduced.

19.1.3. Smoothing

Smoothing is a common operation on images.

DEFINITION 19.1. Spherical smoothing with a kernel k : R+
• → R+

• on a manifold S is

defined as

Smoothk(y)(s) =
ˆ

v
y(s)k(d(s, v))dS .

The definition of smoothing uses the metric of the manifold. Smoothing commutes

with isometries because they keep the metric invariant. Smoothing does not commute with

general diffeomorphisms. This is explicitly noted in Table 19.4 using the “unstructured”

notation “∼”.

19.2. ANALYSIS OF COMPOSITIONS 332

Table 19.4. Group-spectral dossier for Smoothk

D(Images(S);U) Smoothk→ D(Images(S);U)
Isom(S) Id−→ Isom(S)
Diff(S) ∼−→ ∼
Aff(R)

Id−→ Aff(R)

The smoothing operation commutes with isometries of the domain (Isom(S)), but
not more general transformations, such as diffeomorphisms. Smoothing also com-
mutes with an affine transformation of the values.

smooth

rotate smooth

rotate

19.2. Analysis of Compositions

19.2.1. Series of Smoothk and BGDSagent

Let us define a new agent by adding smoothing before the input image to the BGDS

agent:

BGDSagentS = BGDSagent ◦ Smoothk.

Intuitively, preprocessing the data with a smoothing operation makes the agent more

robust to noise, and therefore the resulting agent is “better” than the one without smooth-

ing. However, from the bootstrapping perspective, the agent is less powerful because it is

less invariant. As can be easily seen using the group-spectral dossiers (19.1), the composi-

tion is only invariant to isometries of the domain, because smoothing has an unstructured

response to diffeomorphisms.

19.2. ANALYSIS OF COMPOSITIONS 333

Figure 19.1. Invariance analysis for the composition of smoothing and the BGDS agent.
The resulting agent is less powerful because it is not invariant to diffeomorphisms.

D(Images(S);U) Smoothk→ D(Images(S);U)
Isom(S) Id−→ Isom(S)
Diff(S) ∼−→ ∼
Aff(R)

Id−→ Aff(R)

+

D(Images(S); Rnu)
BGDSagent→ behavior

Diff(S) 0−→ Id

Aff(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

≡

D(Images(S); Rnu)
BGDSagentS→ behavior

Isom(S) 0−→ Id

Diff(S) ∼−→ ∼
Aff(R)

0−→ Id

GL(nu)
−1−→ GL(nu)

19.2.2. Calibration and BGDSagent

So far two agents have been defined: “BGDSagent” and “BGDSagentS”, which adds

a smoothing operation. Two calibration algorithms (“CalibA” and “CalibB”) allow these

agents to work with scrambled sensels. Which combinations of agents and calibration

algorithm work best?

This question can be answered easily by computing the group-spectral dossier of the

compositions. Note that at this point we have abstracted away everything about these

components, except their assumptions on the format of the data and their invariance prop-

erties.

Figures 19.2a–19.3b show the results of the analysis. The least powerful agent is the

combination of CalibB, which produces a diffeomorphism nuisance, and BGDSagentS, whose

smoothing stage does not make the agent invariant to diffeomorphisms. All the other com-

binations have the same invariance properties. CalibB plus BGDSagent works well because

BGDSagent can compensate the diffeomorphism. CalibA plus BGDSagentS works well be-

cause no diffeomorphism nuisance is introduced.

19.2. ANALYSIS OF COMPOSITIONS 334

D(Rny ;U)
CalibA
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

Id ?−→ Isom(S2)

+

D(Images(S); Rnu)
BGDSagent→ behavior

Diff(S) 0−→ Id

Aff(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

≡

D(Rny ; Rnu)
BGDSagent ◦CalibA→ behavior

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

(a) CalibA and BGDSagent

D(Rny ;U)
CalibA
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

Id ?−→ Isom(S2)

+

D(Images(S); Rnu)
BGDSagentS→ behavior

Isom(S) 0−→ Id

Diff(S) ∼−→ ∼
Aff(R)

0−→ Id

GL(nu)
−1−→ GL(nu)

≡

D(Rny ; Rnu)
BGDSagent ◦CalibA→ behavior

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

(b) CalibA and BGDSagentS

Figure 19.2. Combinations of the two calibration algorithms and the two agents (with
and without smoothing)

19.2. ANALYSIS OF COMPOSITIONS 335

D(Rny ;U)
CalibB
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
∼−→ Diff(S2)

Id ?−→ Isom(S2)

+

D(Images(S); Rnu)
BGDSagent→ behavior

Diff(S) 0−→ Id

Aff(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

≡

D(Rny ; Rnu)
BGDSagent ◦CalibB→ behavior

Perm(ny)
0−→ Id

Homeo+(R)
0−→ Id

GL(nu)
−1−→ GL(nu)

(a) CalibB and BGDSagent

D(Rny ;U)
CalibB
⇒ D(Images(S2);U)

Perm(ny)
0−→ Id

Homeo+(R)
∼−→ Diff(S2)

Id ?−→ Isom(S2)

+

D(Images(S); Rnu)
BGDSagentS→ behavior

Isom(S) 0−→ Id

Diff(S) ∼−→ ∼
Aff(R)

0−→ Id

GL(nu)
−1−→ GL(nu)

≡

D(Rny ; Rnu)
BGDSagentS ◦CalibB→ behavior

Perm(ny)
0−→ Id

Homeo+(R)
∼−→ ∼

GL(nu)
−1−→ GL(nu)

(b) CalibB and BGDSagentS

Figure 19.3. Combinations of the two calibration algorithms and the two agents (with
and without smoothing)

Conclusions

CHAPTER 20

Conclusions

This dissertation has two main messages. The optimistic message is that it is possible

to create agents that can work with a large variety of robotic sensors, with little to zero

prior information on the sensor. The pessimistic message is that agents should be evaluated

on their invariance properties with respect to the representation nuisances, and models

usually come with very little built-in invariance (e.g., the BDS is closed only with respect to

linear transformations). Another optimistic message—so that the final balance is positive—

is that thinking about bootstrapping as a canonization problem might allow designing

agents as an interconnection of modular components that can be composed together to

obtain invariance to large representation nuisances.

20.1. Future Work

20.1.1. Completing the enumeration of the robot set

This dissertation only considered exteroceptive sensors with simple kinematics models

(i.e., the Vehicles universe). Eventually one wishes to create agents that can work with any

robot. There are three main features that were outside of the formalization:

hidden states The state space for articulated robots includes the variable describing the po-

sition of each joint (rotation or translation). The state of each joint influences

the commands-observations dynamics. If the robot has proprioception abili-

ties, meaning that it can observe the position of its joints, then it is possible to

extend the techniques presented (BDS/BGDS/DDS models) by learning one of

such models for each joint state. The more challenging scenario is if the state

337

20.1. FUTURE WORK 338

are not observable.

actuator dynamics Kinematic models have limited applicability, but second-order models,

in which the commands are forces/torques instead of velocities, capture most

situations of interest.

other sensors There are several other sensors that should be considered to complete the enu-

meration of the set of all robots. Sensors that observe orientation, velocities, or

accelerations should be easily incorporated. Unconventional sensors such as

artificial touch might prove an interesting application for bootstrapping tech-

niques.

Rather than defining larger and larger model classes, it would be most interesting to keep

a modular approach to the problem, in which the set of robots is described as the Cartesian

product of a certain sensor dynamics, a certain actuator dynamics, certain latent hidden

states, as well as a certain class of representation nuisance:

robots = D?(U;Y)︸ ︷︷ ︸
representation

×

BDS(n; k)

BGDS(S ; k)

DDS(S ;U)
︸ ︷︷ ︸

sensor dynamics

× CLTI(nu)︸ ︷︷ ︸
actuator dynamics

× joint dynamics,

and create techniques that use this structure. For example, in the case of hidden states, it

would be desirable to derive a solution that joins the still-present BDS/BGDS/DDS struc-

tures with techniques that also learn a latent state space (e.g., [89]).

20.1.2. Useful subgroup of representation nuisances

The group of representation nuisances and its action on dynamical systems should be

object of further study. It would be desirable to have a more systematic way to derive

features and canonization operators.

20.1. FUTURE WORK 339

The class D?(Y;U) is quite large, as it contains extremely nonlinear transformations

such as symmetric encryption. The “ideal” encryption algorithm destroys all possible sta-

tistics of the data, producing bit-streams that have (approximately) uniform statistics. The

interesting question is understanding what is a subgroup of D?(Y;U) that covers all situa-

tions of interests for robotics, yet it allows for a tractable inference.

20.1.3. Data, regularization, and noise

The analysis of the learning algorithms in 2 used simple asymptotic properties, in

which we assumed that the statistics computed converged to the expected value. This does

not answer the question of how much data is needed to learn a certain class of model. For

example, the BDS class assumes a generic bilinear model, while the BGDS class assumes

that the dynamics is bilinear in the gradient of the observations. How much less data is

needed with this assumption?

Another issue that has been avoided is model regularization or other priors. Imposing

soft or hard constraints on the parameters (e.g., smoothness of the tensor fields) is not

computationally difficult, but it should be done in a way that maintains the symmetries of

the agent.

As a simple example, consider the estimation of the tensor M in a BDS model (Defini-

tion 11.1). At first sight, it would be quite intuitive to introduce a penalty function to have

a more stable estimation, perhaps by penalizing the norm ‖M‖2. However, the BDS fam-

ily is closed with respect to linear transformations of the commands, of the kind u 7→ Au,

for A ∈ GL(nu). The corresponding action on the tensor is M 7→ A−1M, but the norm

‖M‖2 is only invariant to orthogonal transformations. This shows that, ultimately, model

regularization leads to reduced agent symmetries.

Back Matter

APPENDIX A

Sets, functions, sequences

This appendix contains basic notions about sets, functions, sequences, and other re-

lated concepts. The notation and definitions are mostly standard, except for the notation

⇒ for one-to-many functions (Definition A.18).

A.1. Logic and sets

The notation used for logic and sets is standard:

∧ Logical “and”.

∨ Logical “or”.

¬ Logical “not”.

∪ Set union.

∩ Set intersection.

⊆ Subset inclusion.

⊂ Strict subset inclusion (sometimes written as “(”).

X× Y Cartesian product of two sets.

∅ Empty set.

N Natural numbers.

Q Rational numbers.

R Real numbers.

The notation used for subsets of R uses the mnemonics that the empty circle “◦” means

that zero is not included, and the filled circle “•” means that zero is included.

R◦ = {a ∈ R | a 6= 0} (nonzero reals).

341

A.2. TOPOLOGY 342

R+
◦ = {a ∈ R | a > 0} (positive reals).

R+
• = {a ∈ R | a ≥ 0} (nonnegative reals).

∗R Hyper-real numbers.

DEFINITION A.1 (Infinite binary strings). {�,�}N is the set of infinite binary strings, i.e.,

a mapping from the natural numbers N to a set with two elements {�,�}.

DEFINITION A.2 (Power set). powerset(X) is the set of all subsets of X, including the

empty set and X itself. If X = {a, b, c}, then

powerset(X) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}.

A.2. Topology

DEFINITION A.3 (Topological space). A topological space is a tuple (X, S) composed of a

set X and a collection S ⊂ powerset(X) of its subsets called open sets, satisfying the proper-

ties:

(1) The empty set and X itself are open sets: {∅,X} ⊂ S.

(2) The union of open sets is open.

(3) The intersection of a finite number of open sets is open.

S is called the “topology” assigned to X.

DEFINITION A.4 (Topological definition of continuous functions). A function between

two topological spaces X and Y is continuous if the inverse image of every open set in Y is

an open set of X. Equivalently, the inverse image of every closed set is closed.

See also the metric definition of continuity (Definition E.4).

A.4. SPECIAL CLASSES OF RELATIONS 343

A.3. Relations and their properties

DEFINITION A.5 (Relation). A relation ∼ between n ≥ 2 sets {A,B, . . . } is a subset of

the cartesian product A× B× · · · . In the case of a binary relation ∼, we write a ∼ b if

〈a, b〉 ∈ ∼.

DEFINITION A.6 (Types of relations). A binary relation ∼ is called

antisymmetric if (x ∼ y)⇒ ¬(y ∼ x);

symmetric if (x ∼ y)⇒ (y ∼ x);

transitive if (x ∼ y) ∧ (y ∼ z)⇒ (x ∼ z);

reflexive if (x ∼ x) always holds;

irreflexive if (x ∼ x) never holds;

total if (x ∼ y) ∨ (y ∼ x) holds;

left-total if for all x, there exists y such that (x ∼ y);

functional (right-unique) if (x ∼ y1) ∧ (x ∼ y2)⇒ y1 = y2;

injective (left-unique) if (x1 ∼ y) ∧ (x2 ∼ y)⇒ (x1 = x2).

A.4. Special classes of relations

DEFINITION A.7 (Equivalence relation). A reflexive, symmetric, and transitive binary

relation.

reflexive relation: (x ∼ x) always holds. See Definition A.6.

symmetric relation: x ∼ y⇒ y ∼ x See Definition A.6.

transitive relation: (x ∼ y) ∧ (y ∼ z)⇒ (x ∼ z) See Definition A.6.

A.5. FUNCTIONS 344

DEFINITION A.8 (Partial order). A partial order is an antisymmetric, transitive, and reflex-

ive binary relation. A partially ordered set (or poset) is a set equipped with a partial order

relation.

DEFINITION A.9 (Total order). A total order is an antisymmetric, transitive, and total bi-

nary relation. An ordered set is a set equipped with a total order relation.

REMARK A.10 (A total order induces a topology). A total order on a set induces a

topology using the sets {x | a < x < b} as the basis of the topology.

DEFINITION A.11 (Lattice). A lattice is a partially ordered set (X,≤) that contains two

elements >,⊥ ∈ X such that each element x ∈ X is comparable with both of them, and it

holds that ⊥ ≤ x ≤ >.

EXAMPLE A.12 (Set of subgroups is a lattice). Let ≤ denote the subgroup relation.

Consider the set of subgroup of a group G: X = {H | H ≤ G}. Then (X,≤) is a lattice,

with > = G and ⊥ = {e}.

A.5. Functions

We do give an explicit definition of “function”; not because of being pedantic, but

because we use it when describing the agent semantics (Chapter 3).

antisymmetric relation: (x ∼ y)⇒ ¬(y ∼ x) See Definition A.6.

total relation: At least one of (x ∼ y) and (y ∼ x) holds. See Definition A.6.

A.5. FUNCTIONS 345

DEFINITION A.13 (Function). A function f from the set A to the set B, is a binary relation

on A×B that is functional and left-total.

The domain of f is Domain(f) = A and the codomain is Codomain(f) = B.

The image of f is the subset of the codomain that correspond to some element of the

domain:

Image(f) = { f (a) | a ∈ A }.

Functions(B;A) is the set of all functions from A to B (note the order “B;A”). The notation

“ f : A→ B” is equivalent to f ∈ Functions(B;A).

REMARK A.14. Note that a function is usually not properly defined or somewhat am-

biguous. For example, according to Definition A.13, the two functions

f1 : R → R,

x 7→ x2

and

f2 : R → R+
• ,

x 7→ x2

are different objects, because f1 is a relation on R×R and f2 is a relation on R×R+
• , but

in many contexts these would be considered the same function.

functional relation: (x ∼ y1) ∧ (x ∼ y2)⇒ y1 = y2 See Definition A.6.

left-total relation: For each x, there is at least a y such that (x ∼ y). See Definition A.6.

A.6. INVERTING FUNCTIONS 346

DEFINITION A.15 (Identity function). IdX : X → X is the identity function on the set X.

Sometimes just written as Id when the set X is understood.

DEFINITION A.16 (Set automorphisms). A set endomorphism is a function from a set to

itself. A set automorphism is an invertible endomorphism.

Aut(X) is the set of all automorphisms of the set X.

DEFINITION A.17 (Types of functions). Functions inherit the definitions of relation prop-

erties given in Definition A.6:

injective function f (x) = f (y) ⇒ x = y

surjective function Image(f) = Codomain(f)

bijective (1-to-1) function injective and surjective

DEFINITION A.18 (Notation for 1-to-many functions). The notation f : X⇒ Y is a short-

hand for f : X→ powerset(Y).

The “joker” function ? maps any element of a set X to the whole set Y.

DEFINITION A.19 (Joker function). Given two spaces X,Y, define ? : X⇒ Y as ?(x) = Y.

A.6. Inverting functions

LEMMA A.20. If g ◦ f is bijective, then f is injective and g is surjective.

LEMMA A.21 (Left inverse implies right inverse for endomorphisms). If f , g : X → X

and g ◦ f = IdX, and X has finite cardinality, then f ◦ g = IdX. But if X is not finite, this is false

in general.

A.7. SORTING VECTORS 347

EXAMPLE A.22. We give a simple counterexample for this Lemma. Suppose X =

{0, 1}N, and let

f (〈x1, x2, x3, . . . 〉) = 〈0, x1, x2, x3, . . . 〉 ,

g (〈x1, x2, x3, . . . 〉) = 〈x2, x3, . . . 〉 .

The function g shifts the sequence one step to the right, and f shifts it to the left (losing

information). We can verify that g ◦ f = IdX. From Lemma A.20, it follows that f is injective

and g is surjective, which can be verified easily. However, g is not injective. Therefore f ◦ g

cannot be a bijection.

A left inverse exists only for a bijective function.

DEFINITION A.23 (Left inverse). A left inverse for a bijective function f : X → Y is a

function f−1 : Y→ X such that f−1(f (x)) = x for all x ∈ X.

A right inverse always exists, if it is defined as follows.

DEFINITION A.24 (Right inverse). A (1-to-many) right inverse of f : X → Y on Z ⊂ Y is a

function f−1 : Z⇒ X such that f (f−1(z)) = z for all z ∈ Z.

A.7. Sorting vectors

DEFINITION A.25. differ(X, n) is the subset of Xn for which there are no repetitions (xi 6=

xj for i 6= j).

DEFINITION A.26 (Weakly sorted vector). Given an ordered set (X,<), weaksortedSeq(Xn)

is the subset of Xn for which xi ≤ xi+1 for all i ∈ {1, . . . , n}.

A.8. SEQUENCES 348

DEFINITION A.27 (Sorted vector). Given an ordered set (X,<), sortedSeq(Xn) is the sub-

set of weaksortedSeq(Xn) for which xi < xi+1 for all i ∈ {1, . . . , n}.

DEFINITION A.28 (Order (or rank) of a vector). The function order(x) gives the order of

each element of a vector:

order : Rn → Perm(n),

order(x)i =
n

∑
j=1

(xi ≤ xj).

If counting elements from zero, replace “≤” with “<”.

DEFINITION A.29 (Sorting a vector). sorted(x) applies a permutation to x such that its

entries are ordered in ascendent order. Sorting a vector without repetitions produces a

strongly sorted sequence:

sorted : differ(R, n) → sortedSeq(n).

Sorting a vector with repetitions produces a weakly sorted sequence:

sorted : Rn → weaksortedSeq(n).

A.8. Sequences

A sequence is a map from N to elements of some set A. Bold symbols (a, b, . . .) denote

sequences. Elements of the sequence are written with normal case (a = 〈a0, a1, a2, . . . 〉),

and numbering starts at 0. The notation “a:k” denotes subsequences of a up to and includ-

ing the k-th term:

a:k = 〈a0, . . . , ak〉 ∈ Xk+1.

A.8. SEQUENCES 349

To make the notation compact, denote by a:−1
.
= ∅ the empty sequence.

DEFINITION A.30 (Sequences). Sequences(X) denotes the set of all sequences of all lengths

of elements in X, including the empty sequence (which we write as ∅):

Sequences(X) = ∅ ∪X∪X2 ∪X3 ∪

For example, the set Sequences(R) contains the elements ∅, {1}, {2}, {40, 41, 42}.

APPENDIX B

Probability and Statistics

General references

Loève [136, Chapter 3] contains the standard constructions for measure-theoretic prob-

ability. Lehmann and Casella [137] and Casella and Berger [138] are accessible introduc-

tions to mathematical statistics and point estimation. Maybeck [139] is a classic engineer-

ing text for stochastic estimation. Kailath, Sayed, and Hassibi [140] is a modern reference

for linear estimation.

B.1. Probability Measures

We skip over the details of how to construct probability spaces, and we just focus on the

operative properties of the objects that inhabit those spaces. See, e.g., Loève [136, Chapter

3] for a more rigorous construction.

DEFINITION B.1 (Probability measure). A probability measure µ on a set X is a map µ :

powerset(X) → [0, 1] that associates a value in the [0, 1] interval to each subset of X. Two

conditions must be satisfied:

(1) The measure of the entire set is 1: µ(X) = 1.

(2) The measure of a countably finite intersection of disjoint subsets {Ai}i∈N is the

sum of the measures:

µ(
⋃

i

Ai) = ∑
i

µ (Ai) .

ProbMeasures(X) is the set of all probability measures on X.

350

B.2. BASIC OPERATORS 351

DEFINITION B.2 (Support of a probability measure). The support of a measure is the subset

that has nonzero measure:

Support : ProbMeasures(X)→ powerset(X).

DEFINITION B.3 (Conditional distribution). A conditional distribution γ between two spaces A

and B is a map that associates a probability measure on B to each element of A:

γ : A→ ProbMeasures(B).

Conditional(B;A) is the set of all conditional distributions from A to B.

For γ ∈ Conditional(B;A), the following composition rules hold:

• If a ∈ A, then γa ∈ ProbMeasures(B).

• If µ ∈ ProbMeasures(A), then γµ ∈ ProbMeasures(B).

• If a ∈ Sequences(A), then γa ∈ StocProcesses(B).

• If ϕ ∈ Conditional(C;B), then ϕγ ∈ Conditional(C;A).

DEFINITION B.4 (Impulse). δx ∈ ProbMeasures(X) is the impulse centered at x ∈ X.

B.2. Basic Operators

DEFINITION B.5 (Cumulative density function (cdf)). Let µ ∈ ProbMeasures(R). Then

the cumulative density function of µ is a function F : R → [0, 1] defined as F(x) =

µ((−∞, x)).

B.4. STATISTICS 352

DEFINITION B.6 (Probability density function (pdf)). Let µ ∈ ProbMeasures(R). The prob-

ability density function of µ is the object f whose integral is F, the cdf of µ:

F(b)− F(a) =
ˆ b

a
f dµ.

According to this definition, if f is a function f : R → R+
◦ , then the cdf only exists if F is

continuous. For a discontinuous function, the pdf always exists in the sense of a distribu-

tion.

B.3. Stochastic Processes

DEFINITION B.7 (Stochastic process). The set of stochastic processes on the space A is

denoted StocProcesses(A). A stochastic process on the space A is a probability measure on

the sequences of A that satisfies the consistency conditions of the Kolmogorov extension

theorem:

StocProcesses(A) ⊂ ProbMeasures(AN).

DEFINITION B.8 (The Final operator). For the stochastic processes that converges in dis-

tribution (“weak convergence”), we use the operator Final to extract the limit distribution:

Final : StocProcesses(A)→ ProbMeasures(A).

B.4. Statistics

DEFINITION B.9 (Basic operators). Standard notation is used for these basic functions:

E{x} Expectation with respect to some (implicit) measure. Often used to indicate the

empirical mean of some stochastic process.

B.4. STATISTICS 353

corr{x} Correlation matrix.

corr(x, y) Correlation between two random variables.

cov{x} Covariance matrix.

H(x) Entropy of a random variable.

I(x; y) Mutual information of two random variables.

DEFINITION B.10 (Spearman correlation). The Spearman correlation is the correlation of

the rank statistics:

spear(x, y) = corr(order(x), order(y)).

LEMMA B.11 (Properties of Spearman correlation). The Spearman correlation is invariant

to monotonic transformations of the arguments. For all f ∈ Homeo+(R), spear(f (x), y) =

spear(x, y).

REMARK B.12 (Invariance to parametrization of entropy and derived quantities). In

the discrete case, the entropy of a random variable is invariant with respect to any auto-

morphism of the values. For all f ∈ Aut(X), H(x) = H(f (x)). In the continuous case,

there are analogous invariance properties, but there is a subtle issue. Consider a one-

dimensional random variable. Entropy is defined as an integral of the probability mea-

sure µ ∈ ProbMeasures(R). According to the definition of integral that is being used, the

push-forward of the probability measure f∗µ might or might not be defined for all invert-

ible maps f ∈ Aut(R). For example, consider the invertible map

f : R → R

x 7→





+x if x ∈ Q,

−x if x /∈ Q.

B.4. STATISTICS 354

For the case of Lebesgue–Stieltjes integration, we will say that the entropy is invariant to

piecewise continuous bijections PieceHomeo(R) (Definition E.7).

The mutual information is not a metric because it does not satisfy the triangle inequal-

ity. The following related quantity is a proper metric on probability measures [141].

DEFINITION B.13 (Variation of information). The variation of information for two random

variables X and Y is the function V(X; Y) defined by

V(X; Y) = H(〈X, Y〉)− I(X; Y).

It is also useful to define the normalized variation of information V1(X; Y), which is bounded

by 1:

V1(X; Y) =
V(X; Y)
H(〈X, Y〉) ≤ 1.

APPENDIX C

Glossary of Basic Group Theory

General references

This appendix summarizes basic definitions and results from group theory that are

referenced in the text. This makes this dissertation self-contained; however, the reader is

strongly encouraged to read one of the superb introductions to the field.

A graduate-level introductory text to group theory is Rotman [53]; some of the defi-

nitions below report the page number where they can be found in that text. Also Robin-

son [142] is very accessible.

For probability applied to groups and other algebraic structures, see Grenander [143]

and Diaconis [144]. See Chirikjian [145, 146] for an hands-on approach on how to compute

on Lie groups.

C.1. Groups

DEFINITION C.1 (Semigroup). A semigroup is a set X with an associative operation ∗.

DEFINITION C.2 (Monoid). A monoid is a semigroup with an identity element e ∈ X such

that, for all x ∈ X, x ∗ e = e ∗ x = x.

LEMMA C.3. If an element of a monoid has a left and a right inverse, then they coincide.

DEFINITION C.4 (Group). A group (G, ◦) is a set G equipped with an operation ◦ : G×

G → G that satisfies four properties*:

*Note that these four conditions are slightly redundant.

355

C.1. GROUPS 356

closure For any g, h ∈ G, g ◦ h belongs to G.

associativity For any g, h, k ∈ G, (g ◦ h) ◦ k = g ◦ (h ◦ k).

identity There exists a unique element e ∈ G such that, for all g ∈ G, e ◦ g = g ◦ e = g.

invertibility For all g ∈ G, there exists a unique element g−1 in G such that g ◦ g−1 =

g−1 ◦ g = e.

Equivalently, a group is a monoid where each element has an inverse. Using the multi-

plicative notation, the group operation is omitted, writing “g h” in place of “g ◦ h”.

DEFINITION C.5 (Subgroup). A subset H of a group G is a subgroup of G (written “H ≤

G”) if it is closed with respect to the group operation and inversion:

h1, h2 ∈ H ⇒ h1 ◦ h2 ∈ H,

h ∈ H ⇒ h−1 ∈ H.

AllSubgroups(G) is the lattice of all subgroups of G.

DEFINITION C.6 (Coset). Given an element g of a group G and a subgroup H ≤ G, the

set

g H = { g h | h ∈ H}

is called a left coset of H in G. Symmetrically, the set

H g = { h g | h ∈ H}

is called a right coset. In general, g H 6= H g.

DEFINITION C.7 (Product of subgroups). Given H, K ≤ G, the product H K is defined

as { h k | h ∈ H, k ∈ K }. In general, the set H K is not a subgroup of G.

C.2. NORMAL SUBGROUPS 357

DEFINITION C.8 (Generated subgroup 〈·〉). Given a group G and a subset X ⊂ G, de-

fine 〈X〉 as the smallest subgroup of G containing X [53, p. 22].

DEFINITION C.9 (Group join “∨”). For two subgroups H, K ≤ G, define the “∨” operator

as H ∨ K = 〈H ∪ K〉 .

DEFINITION C.10 (Complement of a subgroup [53, p. 167]). The complement of a sub-

group K ≤ G is a subgroup Q ≤ G such that K ∩ Q = e and KQ = G. In general, a

subgroup need not have a complement, and if one exists, it is not necessarily unique.†

C.2. Normal Subgroups

DEFINITION C.11 (Normal subgroup). A subgroup K ≤ G is a normal subgroup of G (writ-

ten “K / G”) if g−1 K g = K for every g ∈ G.

LEMMA C.12 (Left and right cosets of a normal subgroup). An alternative definition is

that if K / G, then K g = g K, therefore there is no distinction between left and right cosets for a

normal subgroup.

LEMMA C.13 (Normality is preserved by intersection). K1, K2 / G implies K1 ∩ K2 / G.

LEMMA C.14 (Normality is not a transitive relation). H /K and K /G do not imply H /G.

LEMMA C.15 (Normality is preserved by conjugation). K / G ⇔ g K g−1 / G.

LEMMA C.16 (Normality is preserved by subgroup product). The product of two normal

subgroups is a normal subgroup: if K1 K2 / G then K1 K2 = K2 K1 / G.
†Groups for which subgroups always have a complement are called complemented or

completely factorizable.

C.3. HOMOMORPHISMS 358

C.3. Homomorphisms

DEFINITION C.17 (Group homomorphism). A homomorphism is a map ϕ : G → H be-

tween two groups (G, ◦) and (H, �) that satisfies, for all g, h ∈ G,

ϕ(g ◦ h) = ϕ(g) � ϕ(h).

REMARK. A “homomorphism” is different from a “homeomorphism”.

DEFINITION C.18 (Group isomorphism). A group isomorphism is a homomorphism which

is also a bijection. Two groups G and H are isomorphic (written G ∼= H) if there exists a

group isomorphism between the two groups.

DEFINITION C.19 (Group endomorphism). An endomorphism is a homomorphism from G

to itself.

DEFINITION C.20 (Kernel of a group homomorphism). The kernel of a group homomor-

phism ϕ : G → H, written as ker ϕ, is the subset of G that maps to the identity of H:

ker ϕ = {g ∈ G | ϕ(g) = e}.

LEMMA C.21. The kernel of a homomorphism is a normal subgroup.

DEFINITION C.22 (Zero homomorphism). Given two groups G, H, the “zero homomor-

phism” 0 : G → H maps an entire group to the identity: 0(g) = e.

C.4. QUOTIENTS 359

DEFINITION C.23 (Conjiugation). Let G be a group and fix an element x ∈ G. Then the

conjiugation operation is defined as:

conjx : G 7→ G

g 7→ x g x−1.

Conjugation is a homomorphism:

conjx(g) conjx(h) = (x g x−1)(x h x−1) = conjx(g h).

LEMMA C.24 (Conjugation preserves subgroups). If H ≤ G, then conjx(H) = { x h x−1 |

h ∈ H } is a subgroup of G.

DEFINITION C.25 (Class function). A class function f : G → Y is a function on a group G

that is constant on the conjugacy classes:

f (x h x−1) = f (h).

C.4. Quotients

DEFINITION C.26 (Direct product). Given two groups H, K, the direct product H × K is a

group formed by the ordered pairs (h, k), with h ∈ H, k ∈ K, and with operation given by

(h1, k1)(h2, k2) = (h1h2, k1k2).

Note that, in general, only one of them being normal (H ≤ G, K / G) is not sufficient

for G being homomorphic to the direct product. But in that case, G is homomorphic to the

semidirect product (see later).

C.5. NATURAL PROJECTIONS 360

DEFINITION C.27 (Semidirect product). G is the semidirect product of N / G and H ≤ G,

written as G = N o H, if HN = G (or NH = G) and H ∩ N = e.

LEMMA C.28. If H / G, then G ∼= H o Q for a subgroup Q ∼= G/H.

LEMMA C.29. If G ∼= N o H, then every element of G can be written uniquely as the product

of one element of N and one of H (or, uniquely as the product of one element from H and one

from N).

DEFINITION C.30 (Quotient group). If N / G, then the set of cosets of N in G form a group

called quotient group, which is indicated as G / N.

DEFINITION C.31 (Simple group). A group is simple if its only normal subgroups are the

trivial group {e} and the group itself.

If a group G is not simple, then it has a nontrivial normal subgroup N / G, and it can

be factored as a semidirect product G ∼= N o Q. In some sense, the adjective “simple” is a

misnomer, because if a group is “simple”, then it has some irreducible complexity.

C.5. Natural Projections

If N is a normal subgroup, we can define the “natural projection map” π which maps

an element of G to the corresponding coset of N in G.

DEFINITION C.32 (Natural projection map). Let N / G. Then the natural projection map

defined as

π : G → G/N,

g 7→ Ng,

C.6. GROUP ACTIONS 361

is a surjective homomorphism with kernel N.

It is also useful to define a different kind of projection from G to G.

DEFINITION C.33. Given a subgroup Q ≤ G isomorphic to the quotient (Q ∼= G/N) we

can define the projection map

γ : G → Q,

g = nq 7→ q.

The definition takes into account that because N / G, each element of G can be written in a

unique way as nq with n ∈ N and q ∈ Q (Lemma C.29).

LEMMA C.34. Properties of the projection map γ:

(1) γ is constant on N-cosets: if n ∈ N, then γ(ng) = γ(g).

(2) γ is the identity on Q: if q ∈ Q, then γ(q) = q.

(3) For any q ∈ Q, γ(gq) = γ(g)q.

C.6. Group Actions

DEFINITION C.35 (Right action of a group). A group G acts on a set X if there is a binary

operation · : G×X→ X that satisfies:

(1) For all x ∈ X, e · x = x (identity).

(2) For all x ∈ X and g, h ∈ G, g · (h · x) = (gh) · x (associativity).

DEFINITION C.36 (Orbit). The orbit of x under G is the set

G · x , {g · x | g ∈ G},

C.6. GROUP ACTIONS 362

DEFINITION C.37 (Types of group actions). Let G be a group acting on a non-empty set X.

Then the action can have several attributes:

Transitive The action is transitive if, for any x, y ∈ X, there exists a g ∈ G (not necessarily

unique) such that g · x = y. This implies that G · x = X for some x ∈ X; and

also that G · x = X for any x.

Faithful (or effective) The action is faithful if, for any two distinct g, h ∈ G, there exists an x ∈

X such that g · x 6= h · x. Equivalently, for any g 6= e ∈ G there exists an x ∈ X

such that g · x 6= x.

Free (or semiregular) The action is free if g · x = h · x for all x ∈ X implies that g = h.

Equivalently: if there exists an x ∈ X such that g · x = x, then necessarily g = e.

(There are no fixed points for any g, except the identity).

Regular (or simply transitive) The action is regular if it is both free and transitive. This im-

plies that, for any two x, y ∈ X, there exists exactly one group element g ∈ G

such that g · x = y.

These properties are summarized in Table C.1.

LEMMA C.38 (Faithful action of the factor subgroup). Suppose that G acts on X. Define

the set N = {g ∈ G | g · x = x for all x ∈ X}. Then N is a normal subgroup of G, and the action

of the factor group G/N, defined as

(Ng) · x = g · x,

is a faithful action on X.

C.6. GROUP ACTIONS 363

Table C.1. Types of group actions

type of group action property

transitive G · x = X for any x ∈ X.

faithful If g 6= e, then g · x 6= x for some x ∈ X.

free g · x = x implies g = e.

regular For any x, y ∈ X, there exists exactly one g such that g · x = y.

C.7. INVARIANCE OF SETS AND FUNCTIONS 364

C.7. Invariance of Sets and Functions

DEFINITION C.39 (Stabilizer). Suppose the group G acts on X. Then the stabilizer of a

point x ∈ X is the subset of G that leave x fixed:

stabG(x) = {g ∈ G | g · x = x}.

Likewise, the stabilizer of a subset A ⊂ X is the set of elements that leave the subset

invariant:

stabG(A) = {g ∈ G | g ·A = A}.

The stabilizer is a subgroup of G, but not necessarily a normal subgroup.

Given a set X and a group G acting on X, a function f : X → Y is G-invariant if f (x) =

f (g · x) for all x ∈ X and g ∈ G.

DEFINITION C.40 (Symmetries of a function). Given a group G acting on X, and a func-

tion f with domain X , SymG(f) is the largest subgroup of G to which the function is

invariant:

SymG : Functions(Y;X) → AllSubgroups(G)

f 7→ { g ∈ G | ∀x : f (g · x) = f (x) }.

DEFINITION C.41 (Equivariant function). Given a set X and a group G acting on X, a

function f : X→ X is G-equivariant if it commutes with the action of G:

f (g · x) = g · f (x),

for all x ∈ X and g ∈ G.

C.8. LIE GROUPS 365

DEFINITION C.42 (Contravariant function). Given a set X and a group G acting on X, a

function f : X→ X is G-contravariant if

f (g · x) = g−1 · f (x),

for all x ∈ X and g ∈ G.

C.8. Lie Groups

DEFINITION C.43 (Topological group). A topological group is group endowed with a topol-

ogy such that the group operation and inversions are continuous maps.

DEFINITION C.44 (Lie group). A Lie group is a group which is also a smooth manifold,

and in which the group operation and inversion are smooth.

APPENDIX D

Group Bestiary

DEFINITION D.1 (Simple examples of groups). Standard notation is used to denote the

following groups.

Id The identity group.

(R,+) Additive group.

(R◦,×) Nonzero reals with multiplication.

(±1,×) {−1,+1}.

(R+
◦ ,×) Positive reals.

Perm(n) Permutations of n elements.

D.1. Matrix Groups

See Figure E.2 for a summary of the relations among these matrix groups.

DEFINITION D.2 (Linear transformations and subgroups). Standard notation is used to

indicate:

GL(n) The group GL(n) is the set of n× n matrices that have nonzero determinants:

GL(n) = {A ∈ Rn×n | det(A) 6= 0}.

GL+(n) The subgroup GL+(n) is the component with positive determinant:

GL+(n) = {A ∈ GL(n) | det(A) > 0}.

366

D.1. MATRIX GROUPS 367

SL(n) Special linear group:

SL(n) = {A ∈ Rn×n | det(A) = 1}.

O(n) Orthogonal group:

O(n) = {A ∈ Rn×n | AAT = ATA = In}.

SO(n) Special orthogonal group (rotations):

SO(n) = {A ∈ O(n) | det A = 1}.

Nonstandard notation is used for the subgroups:

D(n) This is the group of diagonal matrices with nonzero elements:

D(n) =

{(
α1 0 0

0
. . . 0

0 0 αn

)
| αi ∈ R◦

}
.

D±(n) This is the group of diagonal matrices with elements equal to ±1:

D±(n) =

{(
α1 0 0

0
. . . 0

0 0 αn

)
| αi ∈ {−1,+1}

}
.

Sc(n) This group contains the multiples of the identity:

Sc(n) = {α In | α ∈ R◦} .

DEFINITION D.3 (Affine transformations). Aff(Rn) The affine group is the set of affine

D.1. MATRIX GROUPS 368

transformations (translations and invertible scaling) of Rn, which can be repre-

sented using (n + 1)× (n + 1) matrices:








A b

0 1


 , A ∈ GL(n), b ∈ Rn





.

Write an element of the group as a tuple (A, b), with A ∈ GL(n) and b ∈ Rn.

The group operation is written as (A1, b1) · (A2, b2) = (A1A2, A2b1 + b2).

T(n) Translations of Rn:

T(n) =








0 b

0 1


 , b ∈ Rn




∼= (R,+)(Rn).

Aff(Rn) is the semidirect product of T(n) and GL(n):

Aff(Rn) ∼= T(n)o GL(n).

E(n) The Euclidean group:

E(n) =








A b

0 1


 , A ∈ O(n), b ∈ Rn





.

SE(n) The Special Euclidean group:

SE(n) =








A b

0 1


 , A ∈ SO(n), b ∈ Rn





.

D.1.1. Supporting lemmas

D.1. MATRIX GROUPS 369

DEFINITION D.4 (Commuting group of a matrix). Fixed a matrix A ∈ Rn (not necessarily

invertible), the set of matrices commuting with A form a group

ComA = {X ∈ GL(n) | XA = AX} ≤ GL(n).

PROOF. In fact, the group if closed with respect to composition: if XA = AX and

YA = AY, then

(XY)A = X(YA) = X(AY)

= (XA)Y = (AX)Y = A(XY).

Moreover, if XA = AX, then by multiplying by X−1 on the left and right, we obtain X−1A =

AX−1. �

LEMMA D.5. The function f (y) = ‖Ay‖2, for det A 6= 0, is invariant to the action of the

subgroup

αA(O(n)) = {A−1XA | X ∈ O(n)} ≤ GL(n).

PROOF. The set αA(O(n)) is a subgroup of GL(n) because it is the conjugated sub-

group of O(n) (Lemma C.24). For X ∈ O(n), consider the map ϕX : y 7→ A−1XAy.

Then f (ϕX(y)) = ‖AϕX(y)‖2 = ‖AA−1XAy‖2 = ‖XAy‖2 = ‖Ay‖2 = f (y) . �

LEMMA D.6 (Sylvester). The number of positive and negative eigenvalues are a complete set

of invariants of the action of GL(n) on Rn×n defined as X 7→ AXAT [147, example 2.26].

LEMMA D.7. A symmetric function of n values is any function which is invariant to the

permutation of the values. The action of O(n) on Rn×n preserves all symmetric function of the

eigenvalues. [147, example 2.31].

D.1. MATRIX GROUPS 370

LEMMA D.8. The group (R◦,×) can be factorized to the direct product (±1,×)× (R+
◦ ,×).

Equivalently, both (±1,×) and (R+
◦ ,×) are normal subgroups of (R◦,×).

PROOF. It is easy to see (±1,×) ∨ (R+
◦ ,×), as each nonzero number can be factorized

uniquely in sign times magnitude. Because (R◦,×) is Abelian, all subgroups are normal

subgroups. �

All of the following proofs are elementary and based on the definition of normal sub-

group: a subgroup K ≤ G is a normal subgroup of G if, for any g ∈ G, gKg−1 = K.

LEMMA D.9. The group (±1,×) is not a normal subgroup of Aff(R).

PROOF. In this case, K = {
(±1 0

0 1

)
}, g =

(
a b
0 1

)
:

gKg−1 =
{(

a b
0 1

) (±1 0
0 1

) (
a b
0 1

)−1
}

=
{(± ∓b+b

0 1

)}
6= K.

�

LEMMA D.10. The group (R,+)o (±1,×) is a normal subgroup of Aff(R).

PROOF. By Lemma D.13, (R,+) ∨ (±1,×) ∼= (R,+)o (±1,×). In this case, the sub-

group K is K = {
(±1 t

0 1

)
| t ∈ R}. Let g =

(
a b
0 1

)
, a ∈ R◦, b ∈ R be any fixed element of G.

D.1. MATRIX GROUPS 371

Then

gKg−1 =
{(

a b
0 1

) (±1 t
0 1

) (
a b
0 1

)−1 | t ∈ R
}

=
{(±1 ∓b+at+b

0 1

)
| t ∈ R

}

=
{(

1 at
0 1

)
| t ∈ R

}
∪
{(−1 at−2b

0 1

)
| t ∈ R

}

=
{(

1 t
0 1

)
| t ∈ R

}
∪
{(−1 t

0 1

)
| t ∈ R

}

= K.

So (R,+)o (±1,×) is a normal subgroup. Its quotient is (R+
◦ ,×), which is not normal in

Aff(R) (Lemma D.12). �

LEMMA D.11. (R◦,×) is not a normal subgroup of Aff(R).

PROOF. This would mean that for K = {
(

s 0
0 1

)
| s ∈ R◦},

gKg−1 =
{(

a b
0 1

) (
s 0
0 1

) (
a b
0 1

)−1 | s ∈ R◦
}

=
{(

s b(1−s)
0 1

)
| s ∈ R◦

}
6= K.

�

LEMMA D.12. (R+
◦ ,×) is not a normal subgroup of Aff(R).

PROOF. This would mean that for K = {
(

s 0
0 1

)
| s > 0},

gKg−1 =
{(

a b
0 1

) (
s 0
0 1

) (
a b
0 1

)−1 | s > 0
}

=
{(

s b(1−s)
0 1

)
| s > 0

}
6= K.

This also follows directly from Lemma D.11 �

D.1. MATRIX GROUPS 372

LEMMA D.13. (R,+) is a normal subgroup of (R,+) ∨ (±1,×).

PROOF. In this case, K = {
(

1 t
0 1

)
| t ∈ R}, and g =

(±1 b
0 1

)
:

gKg−1 =
{(±1 b

0 1

) (
1 t
0 1

) (±1 b
0 1

)−1 | t ∈ R
}

=
{(

1 ±t
0 1

)
| t ∈ R

}
= K.

�

LEMMA D.14.
{(s −s+1

0 1

)
| s ∈ R◦

}
is a subgroup of Aff(R), but not a normal subgroup.

PROOF. Verify that H is closed with respect to composition:

(s −s+1
0 1

) (x −x+1
0 1

)
=
(

sx s(1−x))−s+1
0 1

)
=
(sx −sx+1

0 1

)
∈ H

and closed with respect to inversion:

(s −s+1
0 1

)−1
=
(

1/s −1/s+1
0 1

)
∈ H.

However, it is not a normal subgroup of Aff(R):

gHg−1 =
{(

a b
0 1

) (s −s+1
0 1

) (
a b
0 1

)−1 | s ∈ R◦
}

=
{(

s (−s+1)(a+b)
0 1

)
| s ∈ R◦

}
6= H.

�

LEMMA D.15. det : GL(n)→ (R◦,×) is a group homomorphism.

LEMMA D.16. The symmetry group of ‖ · ‖1 is D±(n)× Perm(n).

LEMMA D.17. The symmetry group of ‖ · ‖∞ is D±(n)× Perm(n).

APPENDIX E

Geometry

General references

“Geometry and the imagination” [148], written by Hilbert himself, will convince you

of the beauty of differential geometry as well as groups

A simple introduction to differential geometry is given by Do Carmo [149]. Spivak [150]

is a commonly used text. Abraham, Marsden, and Ratiu give the definitive formal treat-

ment [151]. For geometry and mechanics, see Marsden and Ratiu [152].

For information geometry (manifolds of probability distributions), see Amari [153],

Amari and Nagaoka [154], and Murray and Rice [155].

E.1. Metric Spaces

DEFINITION E.1 (Metric space). A metric space (M, d) is a set M equipped with a func-

tion d : M×M→ R+
• (called metric or distance), that satisfies the properties:

(1) d(a, b) = 0 ⇔ a = b,

(2) d(a, b) = d(b, a) (symmetry),

(3) d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality).

DEFINITION E.2. The radius of a set S={si} in a metric space is defined as

rad(S),min
i

max
j

d(si,sj). (E.1)

The diameter is twice the radius.

373

E.2. LINEAR ALGEBRA 374

DEFINITION E.3 (Isometries). An isometry of a metric space (M, d) is a mapping f : M→

M that preserves the metric: d(x, y) = d(f (x), f (y)).

Isom(M) is the group of all isometries.

DEFINITION E.4 (ε–δ definition of continuous functions). A function f : X → Y between

two metric spaces X and Y is continuous at a point x if, for all ε > 0, there exists a δ(ε) > 0

such that dX(x, x) < δ(ε) implies dY(f (x), f (x)) < ε.

Continuous(Y;X) is the set of all continuous functions from X to Y. Continuous(X) is the

set of all continuous functions from X to itself.

See also the topological definition of continuity (Definition A.4).

DEFINITION E.5 (Homeomorphism). A homeomorphism of a set M is a continuous bijection

f : M→M such that its inverse f−1 is continuous.

Homeo(M) is the set of all homeomorphisms of M.

REMARK E.6. A homeomorphism is different from a homomorphism.

DEFINITION E.7. PieceHomeo(R) is the set of piecewise continuous bijections of R.

E.2. Linear Algebra

Bhatia [156] is a good reference for linear algebra.

DEFINITION E.8 (Angle function). We define the map ∠ as follows:

∠ : Rn → Sn−1,

x 7→ x
‖x‖2

.

E.2. LINEAR ALGEBRA 375

For n = 2, we recover the map ∠ : R2 → S1 from the plane to the unit circle S1.

The exponential of a square matrix is defined as

mexp : Rn×n → GL+(n),

A 7→
∞

∑
k=0

1
k!

Ak.

The first few terms of the expansion are

mexp(A) = I + A +
1
2

A2 +
1
6

A3 + · · · . (E.1)

The exponential of a matrix satisfies the properties:

(1) det(mexp(A)) = eTrA.

(2) mexp(A + B) = mexp(A)mexp(B) if and only if A and B commute.

DEFINITION E.9 (Solving linear ODEs with the matrix exponential). The solution to ẋ(t) =

Ax(t) is x(t) = mexp(At) x(0).

LEMMA E.10 (Whitening). cov{y} = Iny is a weak pontifical feature for the action of GL(ny)

on D(Rny ;U) given by y 7→ Ay, the corresponding heresy subgroup is the orthogonal group O(ny),

the canonization operator is y 7→ (cov{y}−1/2O(ny))y, where A−1/2 is any solution of XXT =

A.

PROOF. Clearly this is just an application of whitening [157]. Let P be the covariance

of y. Then it transforms as P 7→ APAT. We can verify that

cov{cov{y}−1/2y} = cov{y}−1/2cov{y}cov{y}−1/2 = Iny .

�

E.3. MANIFOLDS 376

REMARK E.11. Recall that the square root of a positive definite matrix is not unique;

for example the square root is 2 is ±
√

2. For a matrix, one can show that if QQT = P, then

for any X ∈ O(n), (QX)(QX)T = (QXXTQT) = (QQT) = P. This ambiguity is perfectly

captured by the heresy subgroup.

E.2.1. Vector operations

DEFINITION E.12. The “hat map” maps a vector in R3 to a skew-symmetric matrix:

â =




0 −a3 a2

a3 0 −a1

−a2 a1 0




.

DEFINITION E.13 (Cross product). Given two vectors a, b ∈ R3, the cross product a × b

is defined as

a × b , â b.

E.2.2. Linear algebra tricks

LEMMA E.14. aT b̂ c = aT(b × c) = (b × a)T c.

LEMMA E.15. For a rotation matrix R ∈ SO(n) , RT = R−1.

E.3. Manifolds

DEFINITION E.16 (Manifold nomenclature). See [151] for a formal definition of differen-

tiable manifold. We use the following symbols:

dM This is the volume form associated to the manifold M.

∇d f This is the gradient tensor for the differentiable function f : M→ R.

∇dy is a (0, dim(M)) tensor at each point of M.

E.4. DIFFEOMORPHISMS 377

DEFINITION E.17 (Simple manifolds). S1 Unit circle.

S2 Unit sphere.

Hn Hyperbolic space.

DEFINITION E.18 (Geodesic curve). A geodesic curve g(A, B, t) from point A to point B,

for t ∈ [0, 1], is the curve on the manifold such that

d(g(A, B, t), A) = t d(A, B),

d(g(A, B, t), B) = (1− t)d(A, B).

In particular, g(A, B, 0) = A and g(A, B, 1) = B.

DEFINITION E.19 (Geodesic convexity). A function f : M→ R is geodesically convex if, for

any geodesic curve g(A, B, t), the composition f ◦ g : R→ R is a convex function.

E.4. Diffeomorphisms

DEFINITION E.20 (Diffeomorphism). A diffeomorphism of M is a continuously differen-

tiable homeomorphism f : M→M such that its inverse f−1 is continuously differentiable.

(Most often the degree of differentiability required is left implicit.)

Diff(M) is the set of all diffeomorphisms of M. This is a topological group but not a Lie

group.*

*Thanks to Ari Stern for clarifying this point.

E.4. DIFFEOMORPHISMS 378

DEFINITION E.21 (Conformal map). A diffeomorphism f : M → M on a Riemannian

manifold M is conformal if the pulled back metric is conformally equivalent to the origi-

nal metric. Roughly speaking, a conformal map preserves angles between geodesics on

a manifold. A map is conformal if and only if its Jacobian is proportional to a rotation

matrix.

Conformal(M) is the set of all conformal maps on M.

DEFINITION E.22 (Orientation-preserving diffeomorphism). An orientation-preserving

diffeomorphism is one for which det J > 0.

Diff+(M) is the group of all orientation-preserving diffeomorphisms.

DEFINITION E.23 (Point-fixing diffeomorphism). Diff [m](M) is the set of diffeomorphisms

that fix m ∈M.

DEFINITION E.24 (Volume-preserving diffeomorphisms). Diffvol(M) is the set of volume-

preserving diffeomorphisms [158].

Nomenclature

A,B,C, . . . ,M,X,Y,Z Symbols denoting sets.

a, b, c, . . . Symbols used for denoting sequences.

ak, bk, ck, . . . Symbols denoting the elements of sequences.

A, B, C, . . . Symbols denoting matrices.

A, B, C, . . . Symbols denoting matrix elements.

A,B,C, . . . Symbols denoting tensors.

Aijk, Bijk, Cijk, . . . Symbols denoting tensors elements.

G, H, K, N, . . . Symbols denoting groups.

D, E, F, . . . Names for dynamical systems.

·−1 Inverse function. →Definition A.24

? Joker function. →Definition A.19

(±1,×) +1/-1 multiplication group. →Definition D.1

∼ Unstructured symbol. →Definition 15.1

∠ Angle function. →Definition E.8

Accumulator system. →Definition 4.22

�,� Uninterpreted bits values.

近 The Chinese character corresponding to “close” or “near”. →Section 3.3

a × b Cross product. →Definition E.13

∼ Distributed as.

i, j, k, s, v, . . . Symbols usually used as indices.

∅ Empty sequence. →Definition A.30

379

Nomenclature 380

f ◦ g Function composition.

∼ Generic relation.

G ∼= H Isomorphism relation. →Definition C.18

G ∨ H Group join. →Definition C.9

G / H Group quotient. →Definition C.30

G o H Semidirect product of G and H. →Definition C.27

−1−→ Contravariance. →Chapter 15

Id−→ Equivariance. →Chapter 15

?−→ Nuisance introduced. →Chapter 15

0−→ Invariance. →Chapter 15

∼−→ Unstructured result. →Chapter 15

f ‖ G The function f can be expressed as a group action of G. →Definition 15.1

{�,�}N Set of infinite binary strings. →Definition A.1

[a, b] Closed interval {x | a ≤ x ≤ b}.

(a, b) Open interval {x | a < x < b}.

G ≤ H Subgroup relation. →Definition C.5

∧ Logic and. →Section A.1

¬ Logic not. →Section A.1

∨ Logic or. →Section A.1

G / H Normal subgroup relation. →Definition C.11

⇒ Symbol for set functions (one-to-many). →Definition A.18

A An agent. →Definition 5.4

Acmd Anti-distance between two commands. →Chapter 13

act Agent’s action phase. →Definition 5.4

Aff(Rn) Affine transformations on Rn. →Definition D.3

Nomenclature 381

Agents(Y;U) All agents with given formats.

AllOutcomes(D) All sequences that can be produced by the Loop(FD) for any system

F.

AllOutputs(D) All sequences that can be produced by the system D. →Definition 4.13

AllSubgroups(G) All subgroups of a group G. →Definition C.5

Aut(X) Automorphisms of the set X. →Definition A.16

β Nonlinear function in range-finder tensors.

B Affine part of dynamics.

BDS(n; k) →Definition 11.1

BGDS Bilinear gradient dynamics system. →Definition 12.1

BGDSagent →Chapter 19

BGDSagentS →Chapter 19

BGDS(S ; k) →Definition 12.1

CA →Definition 5.14

c CDF of one sensel.

C Learned affine part of dynamics.

CalibA →Chapter 19

CalibB →Chapter 19

CLTI(n; k) Continuous-time linear time-invariant systems.

Codomain(f) Co-domain of a function f . →Definition A.13

ComA Subgroup of GL(n) commuting with A. →Definition D.4

Conditional(B;A) All conditional distributions from the A to set B.

Conformal(M) Conformal transformations of the manifold M. →Definition E.21

conjx Conjugation by the element x. →Definition C.23

Continuous(B;A) Continuous functions from A to B.

Nomenclature 382

ContSequences(X) Sequences on the space X. →Definition A.30

corr{x} Correlation matrix of x. →Definition B.9

cov{x} Covariance matrix of x. →Definition B.9

D?(U) Representation nuisances on observations. →Definition 4.29

D?(Y) Representation nuisances on commands. →Definition 4.29

D?(Y;U) Representation nuisances. →Definition 4.36

D?
fm(A) Systems with finite memory and invertible. →Definition 4.31

D?
inst(A) Invertible and instantaneous systems. →Definition 4.30

Ddet(B;A) Deterministic systems. →Definition 4.17

Dfm(B;A) Systems with finite memory. →Definition 4.19

Dinst(B;A) Set of instantaneous systems.

D◦(Y;U) Systems up to representation. →Definition 4.38

D(B;A) Set of all black box systems with input in A and output in B.

dDiff Distance between two diffeomorphism. →Chapter 13

D Dij Distance matrix. →Chapter 10

d Infinitesimal.

D±(n) Diagonal matrices with ±1 on the diagonal. →Definition D.2

Dcmd Distance between two commands. →Chapter 13

dmax Bound on the maximum diffeomorphism in a DDS. →Chapter 13

dS Metric on S . →Chapter 13

DDSL(S ,V;U) →Definition 13.2

DDS(S ;U) →Definition 13.1

∆ The one-step delay system. →Definition 4.21

D(n) Diagonal matrices with non-zero elements. →Definition D.2

Diff+(M) Diffeomeorphisms from M to itself that preserve the orientation. →Definition E.22

Nomenclature 383

Diff [x](M) Diffeomeorphisms from M to itself that fix a point x. →Definition E.23

Diff(M) Diffeomeorphisms from M to itself. →Definition E.20

Differentiable(B;A) Differentiable functions from A to B.

differ(R, n) Subset of Rn for which they are all different. →Definition A.25

Diffvol(M) Diffeomorphism that preserve the volume element.

Domain(f) Domain of a function f . →Definition A.13

dY Metric on dY.

DSMPLTI(n; k) Discrete-time stable minimum-phase linear time-invariant systems.

dY Metric on dY.

E(n) Euclidean group on Rn. →Definition D.3

E{x} Expected value of x. →Definition B.9

e Identity of a group. →Definition C.4

epr Procrustes score. →Chapter 10

er →Chapter 10

esr →Chapter 10

EqSet(f) Fixed points of a function f . →Definition 15.1

expl Agent’s exploration phase. →Definition 5.4

f Distance to similarity function. →Chapter 10

F Field sampled by the field sensor.

Final Stationary distribution of a stochastic process. →Definition B.8

FOV field of view. →Chapter 10

Functions(B;A) All maps from a space A to B.

GA →Definition 5.14

GU
A →Definition 5.14

GY
A →Definition 5.14

Nomenclature 384

G The agent’s goal (a subset of StocProcesses(Y×U)). →Definition 5.12

Γ Uncertainty of estimated diffeomorphism. →Chapter 13

G y gradient dynamics.

GL+(n) Linear transformations preserving orientation. →Definition D.2

GL(n) General linear group. →Definition D.2

GrAct If the function is the action of a group. →Definition 15.1

H(x) Entropy of two variables. →Definition B.4

Hn →Definition E.17

H y gradient learned tensor.

Homeo+(R) Orientation-preserving homeomorphisms (of the real line). →Definition E.22

Homeo(M) All homeomorphisms of M. →Definition E.5

HomMaps(f) Homomorphism induced by a function f . →Definition 15.2

In Identity matrix of size n× n.

I(x; y) Mutual information between two variables. →Definition B.4

IdX The identity function on the set X. →Definition A.15

Id The trivial group with identity only. →Definition D.1

IdS Identity diffeomorphisms. →Chapter 13

Image(f) Image of a function f . →Definition A.13

Images(S) Images on physical space S .

infr(f) Informative radius of f . →Definition 10.4

Isom(M) Isometries of the metric space M. →Definition E.3

J An element of the Jacobian of ϕ. →Section 12.4

J Jacobian of ϕ. →Section 12.4

k →Chapter 19

L Laplace transform.

Nomenclature 385

Loop Closes the loop around a system. →Definition 4.12

M Agent’s model space. →Definition 5.4

m Agent representation. →Definition 5.4

µ Average nearness. →Chapter 11

µ Nearness.

m Inner product bilinear form. →Chapter 9

m Order of a generic semantic relations.

M Target manifold. →Chapter 10

M Ms
vi Bilinear tensor in BDS dynamics. →Chapter 11

Maps Maps set Maps = Shapes× SE(3).

mexp Matrix exponential. →Definition E.8

nu Number of actuators.

ny Number of sensels.

N Natural numbers. →Section A.1

O Big-O notation.

O Observation output space. →Chapter 9

O(n) Orthogonal group of order n. →Definition D.2

order(x) Order (or rank) of the elements of a vector x. →Definition A.28

p Map pose.

powerset(X) Power set of a set X. →Definition A.2

P Psv Covariance tensor of y (BDS models). →Chapter 11

pT Training distribution. →Definition 9.9

Perm(n) Permutations of a set of n elements. →Definition D.1

ϕ Mapping between S and Z. →Section 12.4

PieceHomeo(R) Piece-wise continuous invertible functions on R.

Nomenclature 386

ProbMeasures(X) All probability measures on the set X. →Definition B.1

StocProcesses(X) Stochastic processes on the space X. →Definition B.7

Q Pose space, subgroup of SE(3). →Chapter 9

q Robot pose q = (t, R) ∈ Q ⊂ SE(3). →Chapter 9

Q Rational numbers. →Section A.1

Q Qij Covariance tensor of u (BDS models). →Chapter 11

R◦ Nonzero reals. →Section A.1

R+
◦ Strictly positive reals. →Section A.1

(R,+) Addition group. →Definition D.1

ρ Resolution of the sensor in a DDS. →Chapter 13

R A generic semantic relation.

R A generic similarity measure.

∗R Hyper-real numbers. →Section A.1

(R◦,×) Multiplication group. →Definition D.1

(R+
◦ ,×) Positive multiplication group. →Definition D.1

R Real numbers. →Section A.1

R Reward function.

R Rotation matrix representing orientation in the world frame. →Chapter 9

R y gradient covariance.

rad Radius of a distribution. →Chapter 10

ρ The map from a command to its reverse. →Subsection 6.2

ρ∗sp Normalized Spearman performance measure. →Chapter 10

ρsp Spearman performance measure. →Chapter 10

R+
• Non negative reals. →Section A.1

S1 Unit circle. →Definition E.17

Nomenclature 387

S2 Unit sphere. →Definition E.17

|S| Area of the manifold S . →Chapter 13

S Directions stacked in a matrix. →Chapter 10

S Set of directions. →Chapter 10

σ Distance to obstacle.

s ∈ S Spatial index for the sensels. →Chapter 9

s Map shape.

S Observation physical space.

Sc(n) Multiples of the identity. →Definition D.2

SE(n) Special Euclidean group on Rn. →Definition D.3

Sequences(X) Sequences on the space X. →Definition A.30

sgn Sign function.

Shapes Shape space.

SK Shepard-Kruscall algorithm. →Chapter 10

SKv An extension to the SK algorithm (without warping). →Chapter 10

SKv + w An extension to the SK algorithm. →Algorithm 1

SL(n) Special linear group. →Definition D.2

Smoothk →Chapter 19

so(n) Lie algebra for SO.

SO−(n) Elements of the orthogonal group SO(n) with negative determinant

(not a group). →Example 15.4

SO(n) Special Orthogonal group on Rn. →Definition D.2

sorted(x) Sorted version of a vector x. →Definition A.29

sortedSeq(X, n) Subset of Xn such that xi < xi+1. →Definition A.27

spear(x; y) Spearman correlation between two variables. →Definition B.10

Nomenclature 388

stabG(S) Stabilizer of a set S with respect to the group G. →Definition C.39

std(x) Standard deviation of x. →Definition B.4

successGA Success set for the agent A and goal G. →Definition 5.13

Support Support of a probability measure. →Definition B.2

Sym(R) Symmetries of the semantic relation.

Sym(pT) Symmetry group of pT. →Definition 9.10

SymG(S) Symmetries of a set S with respect to the group G. →Definition C.40

T Discretization interval. →Chapter 11

t Position in the world frame. →Chapter 9

T(n) Translation group. →Definition D.3

T Tisv Learned statistics for a BDS agent. →Chapter 11

TF(D) Transfer function for the linear system D.

Tr Trace of a matrix.

U Domain of a single actuator U = U
nu .

ui One entries of the commands.

unop Command corresponding to “resting”. →Assumption 12

u? The optimal command.

U Commands space.

u Commands vector.

|U| Number of commands words. →Chapter 13

UCanϕ Unstructured canonization operator. →Definition 16.27

Uniform Uniform distribution.

V Field of view for DDS. →Definition 13.2

v Linear velocity. →Chapter 9

V(x; y) Variation of information. →Definition B.13

Nomenclature 389

V1(x; y) Variation of information (normalized). →Definition B.13

var(x) Variance of x. →Definition B.4

vec Matrix-to-vector rearrangement.

ω̂ Angular velocity (as skew-symmetric matrix). →Chapter 9

ω Angular velocity (as vector). →Chapter 9

w The world, an element of D(Y;U).

weaksortedSeq(X, n) Subset of Xn such that xi ≤ xi+1. →Definition A.26

WtoBA →Definition 5.6

WtoRA Map from the world to the result for the agent A. →Definition 5.7

x →Chapter 19

x →Chapter 19

y̌ Goal observations (element).

y̌ Goal observations.

Y Domain of a single sensel Y = Y
ny .

y Observations element.

Y Observation space.

y Observations vector.

Y Yij Similarity matrix. →Chapter 10

ž Goal observations (element).

z Observation logical space element. →Section 12.4

Z Observation logical space. →Section 12.4

z Observations in logical space. →Section 12.4

Bibliography

[1] I. Asimov. I, Robot. Voyager, 1968. ISBN: 0586025324. URL: http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20\&path=ASIN/0586025324.

[2] D. A. Grier. When computers were humans. Princeton University Press., 2007. ISBN: 9780691133829.

[3] B. Siciliano and O. Khatib, eds. Handbook of Robotics. Springer, 2008.

[4] N. J. Nilsson. The Quest for AI. Cambridge University Press, 2010.

[5] iRobot Roomba. URL: http://www.irobot.com/.

[6] Evolution Robotics Mint. URL: http://mintcleaner.com/.

[7] H. Durrant-Whyte, D. Pagac, B. Rogers, M. Stevens, and G. Nelmes. “An autonomous straddle carrier

for movement of shipping containers: From Research to Operational Autonomous Systems”. In: IEEE

Robotics and Automation Magazine 14.3 (2007). ISSN: 1070-9932. DOI: 10.1109/MRA.2007.901316.

[8] S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte. “A Mine on Its Own”. In: IEEE Robotics

and Automation Magazine 17.2 (2010). ISSN: 1070-9932. DOI: 10.1109/MRA.2010.936960.

[9] Kiva’s Automated Material Handling Order Fulfillment System. URL: http://www.kivasystems.com/.

[10] D. Fitzgerald. “Amazon to Buy Robot Company Kiva for $775 Million”. In: The Wall Street Journal

March 19 (2012).

[11] R. C. Arkin. Governing Lethal Behavior: Embedding Ethics in a Hybrid Deliberative/Reactive Robot Architec-

ture. Tech. rep. U.S. Army Research Office, 2007.

[12] D. H. Wilson. How To Survive a Robot Uprising: Tips on Defending Yourself Against the Coming Rebellion.

Bloomsbury USA, 2005. ISBN: 1582345929.

[13] The VisLab Intercontinental Autonomous challenge. URL: http://viac.vislab.it/.

[14] R. Calo. Nevada governor signs driverless car bill into law. The Center for Internet and Society at Stanford

Law School. 2011. URL: http://cyberlaw.stanford.edu/node/6688.

[15] L. Feng, J. Borenstein, and H. Everett. “Where am I?” Sensors and Methods for Autonomous Mobile Robot

Positioning. Tech. rep. UM-MEAM-94-21. University of Michigan, 1994.

[16] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005. ISBN: 0262201623.

390

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0586025324
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0586025324
http://www.irobot.com/
http://mintcleaner.com/
http://dx.doi.org/10.1109/MRA.2007.901316
http://dx.doi.org/10.1109/MRA.2010.936960
http://www.kivasystems.com/
http://viac.vislab.it/
http://cyberlaw.stanford.edu/node/6688

BIBLIOGRAPHY 391

[17] S. Pinker. The Language Instinct. New York: Harper Perennial Modern Classics, 1994.

[18] V. Kumar and M. Mason. Berlin Summit on Robotics – Conference Report 2011. Chapter 3, "Are we even

in the game?". 2011. URL: http://berlinsummit.org/images/Files/berlin_summit_2011.pdf.

[19] E. W. Dijkstra. “The humble programmer”. In: Communications of the ACM 15.10 (1972). ISSN: 0001-0782.

DOI: 10.1145/355604.361591.

[20] J. Bongard, V. Zykov, and H. Lipson. “Resilient Machines Through Continuous Self-Modeling”. In:

Science 314.5802 (2006). DOI: 10.1126/science.1133687.

[21] D. Floreano and C. Mattiussi. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The

MIT Press, 2008. ISBN: 0262062712, 9780262062718.

[22] R. Dawkins. The Selfish Gene. Popular Science. Oxford University Press, 1989. ISBN: 9780192860927.

URL: http://books.google.com/books?id=WkHO9HI7koEC.

[23] A. Winfield and M. Erbas. “On embodied memetic evolution and the emergence of behavioural tra-

ditions in Robots”. In: Memetic Computing 3 (4 2011). 10.1007/s12293-011-0063-x. ISSN: 1865-9284. URL:

http://dx.doi.org/10.1007/s12293-011-0063-x.

[24] L. Ljung. System Identification: Theory for the User. 2nd ed. Prentice Hall, 1999. ISBN: 0136566952.

[25] T. Katayama. Subspace methods for system identification. Springer, 1999.

[26] P. Ioannou. Adaptive Control Tutorial (Advances in Design and Control). SIAM, 2006. ISBN: 0898716152.

[27] J. Ko and D. Fox. “Learning GP-BayesFilters via Gaussian process latent variable models”. English. In:

Autonomous Robots 30.1 (2010). DOI: 10.1007/s10514-010-9213-0.

[28] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer-Ver, 1995.

[29] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer, 2001.

[30] T. Poggio and S. Smale. “The Mathematics of Learning: Dealing with Data”. In: Notices of the American

Mathematical Society 50.5 (2005).

[31] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998. ISBN: 0262193981.

[32] J. Kolter and P. Abbeel. “Hierarchical apprenticeship learning with application to quadruped locomo-

tion”. In: Advances in Neural Information Processing Systems (NIPS). 2008.

[33] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the theory of neural computation. Westview, 1991.

[34] C. M. Bishop. Neural Network for Pattern Recognition. Oxford University Press, 1995.

[35] G. E. Hinton, S. Osindero, and Y.-W. Teh. “A Fast Learning Algorithm for Deep Belief Nets”. In: Neural

Computation 18.7 (2006). DOI: 10.1162/neco.2006.18.7.1527.

http://berlinsummit.org/images/Files/berlin_summit_2011.pdf
http://dx.doi.org/10.1145/355604.361591
http://dx.doi.org/10.1126/science.1133687
http://books.google.com/books?id=WkHO9HI7koEC
http://dx.doi.org/10.1007/s12293-011-0063-x
http://dx.doi.org/10.1007/s10514-010-9213-0
http://dx.doi.org/10.1162/neco.2006.18.7.1527

BIBLIOGRAPHY 392

[36] Y. Bengio. “Learning Deep Architectures for AI”. In: Foundations and Trends in Machine Learning (2009).

DOI: 10.1561/2200000006.

[37] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, and C. Yoshida.

“Cognitive Developmental Robotics: A Survey”. In: IEEE Transactions on Autonomous Mental Develop-

ment 1.1 (2009). ISSN: 1943-0604. DOI: 10.1109/TAMD.2009.2021702.

[38] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. “Developmental robotics: a survey”. In: Connection

Science 15 (2003). DOI: 10.1080/09540090310001655110.

[39] G. Metta, G. Sandini, L. Natale, L. Craighero, and L. Fadiga. “Understanding mirror neurons: a bio-

robotic approach”. In: Interaction Studies 7.2 (2006).

[40] D. Pierce and B. Kuipers. “Map learning with uninterpreted sensors and effectors”. In: Artificial Intelli-

gence 92.1-2 (1997). DOI: 10.1016/S0004-3702(96)00051-3.

[41] Cohen et al. “Functional relevance of cross-modal plasticity in blind humans”. In: Nature 389.6647

(1997). DOI: 10.1038/38278.

[42] O. Collignon, P. Voss, M. Lassonde, and F. Lepore. “Cross-modal plasticity for the spatial processing

of sounds in visually deprived subjects.” English. In: Experimental brain research 192.3 (2009). DOI: 10.

1007/s00221-008-1553-z.

[43] B. Kuipers. “Drinking from the firehose of experience”. In: Artificial Intelligence in Medicine 44.2 (2008).

[44] G. Tononi. “An information integration theory of consciousness”. In: BMC Neuroscience 5.1 (2004). ISSN:

1471-2202. DOI: 10.1186/1471-2202-5-42.

[45] D. George and J. Hawkins. “Towards a Mathematical Theory of Cortical Micro-circuits”. In: PLoS Com-

putational Biology 5.10 (2009). DOI: 10.1371/journal.pcbi.1000532.

[46] M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Berlin:

Springer, 2004. URL: http://www.hutter1.net/ai/uaibook.htm.

[47] V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. The MIT Press, 1984. ISBN: 0262521121.

[48] A Baranes and P. Y. Oudeyer. “R-IAC: Robust Intrinsically Motivated Exploration and Active Learn-

ing”. In: IEEE Transactions on Autonomous Mental Development 1.3 (2009). DOI: 10.1109/TAMD.2009.

2037513.

[49] S. Singh, R. L. Lewis, A. G. Barto, and J. Sorg. “Intrinsically Motivated Reinforcement Learning: An

Evolutionary Perspective”. In: IEEE Transactions on Autonomous Mental Development 2.2 (2010). DOI:

10.1109/TAMD.2010.2051031.

http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1109/TAMD.2009.2021702
http://dx.doi.org/10.1080/09540090310001655110
http://dx.doi.org/10.1016/S0004-3702(96)00051-3
http://dx.doi.org/10.1038/38278
http://dx.doi.org/10.1007/s00221-008-1553-z
http://dx.doi.org/10.1007/s00221-008-1553-z
http://dx.doi.org/10.1186/1471-2202-5-42
http://dx.doi.org/10.1371/journal.pcbi.1000532
http://www.hutter1.net/ai/uaibook.htm
http://dx.doi.org/10.1109/TAMD.2009.2037513
http://dx.doi.org/10.1109/TAMD.2009.2037513
http://dx.doi.org/10.1109/TAMD.2010.2051031

BIBLIOGRAPHY 393

[50] C. M. Vigorito and A. G. Barto. “Intrinsically motivated hierarchical skill learning in structured envi-

ronments”. In: IEEE Transactions on Autonomous Mental Development (2010).

[51] T. Poggio. “The computational magic of the ventral stream”. In: Nature Precedings (2011). URL: http:

//hdl.handle.net/10101/npre.2011.6117.2.

[52] S. Soatto. “On the Distance Between Non-stationary Time Series”. In: Modeling, Estimation and Control.

Ed. by A. Chiuso, S. Pinzoni, and A. Ferrante. Vol. 364. Lecture Notes in Control and Information

Sciences. Springer Berlin / Heidelberg, 2007. DOI: 10.1007/978-3-540-73570-0_22.

[53] J. Rotman. An introduction to the theory of groups. Springer-Verlag, 1995. ISBN: 0387942858.

[54] G. W. Erickson and J. A. Fossa. Dictionary of paradox. University Press of America, 2008.

[55] E. Haghverdi, P. Tabuada, and G. Pappas. “Bisimulation Relations for Dynamical and Control Sys-

tems”. In: Electronic Notes in Theoretical Computer Science 69 (2003).

[56] M. Denham. “Canonical forms for the identification of multivariable linear systems”. In: IEEE Transac-

tions on Automatic Control 19.6 (1974).

[57] R. Kalman. “Mathematical System Theory”. In: 1974. Chap. On invariants, canonical forms, moduli for

linear constant final dimensional dynamical systems.

[58] R. Gardner. The Method of Equivalence and its Applications. SIAM, 1989.

[59] M. van Nieuwstadt, M. Rathinam, and R. M. Murray. “Differential Flatness And Absolute Equivalence

Of Nonlinear Control Systems”. In: SIAM Journal on Control and Optimization 36 (1994).

[60] P. Martin, R. M. Murray, and P. Rouchon. Flat Systems, Equivalence and Trajectory Generation. 2003.

[61] J. P. Byrnes, D. C. Miller, and W. D. Schafer. “Gender differences in risk taking: A meta-analysis.” In:

125.3 (1999). URL: http://psycnet.apa.org/journals/bul/125/3/367.

[62] C. Koch. Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience).

1st ed. Oxford University Press, 1998. ISBN: 0195104919.

[63] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Int. J. Comput. Vision 60.2

(2004). ISSN: 0920-5691. DOI: 10.1023/B:VISI.0000029664.99615.94.

[64] A. Censi, M. Hakansson, and R. M. Murray. “Fault detection and isolation from uninterpreted data

in robotic sensorimotor cascades”. In: Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). Saint Paul, MN, 2012. URL: http://purl.org/censi/2011/fault.

[65] B. Kuipers. “The Spatial Semantic Hierarchy”. In: Artificial Intelligence 119.1–2 (2000).

http://hdl.handle.net/10101/npre.2011.6117.2
http://hdl.handle.net/10101/npre.2011.6117.2
http://dx.doi.org/10.1007/978-3-540-73570-0_22
http://psycnet.apa.org/journals/bul/125/3/367
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://purl.org/censi/2011/fault

BIBLIOGRAPHY 394

[66] B. Kuipers. “An intellectual history of the Spatial Semantic Hierarchy”. In: Robotics and cognitive ap-

proaches to spatial mapping 38 (2008).

[67] M. J. Milford. Robot navigation from nature: Simultaneous localisation, mapping, and path planning based on

hippocampal models. Springer, 2008.

[68] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to Robotic Manipulation. 1994.

[69] B. Siciliano, L. Villani, L. Sciavicco, and G. Oriolo. Robotics: Modelling, Planning and Control. Springer,

2008.

[70] H. Le and D. G. Kendall. “The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment

for Statistics”. In: Annals of Statistics 21.3 (1993).

[71] P. W. Michor and D. Mumford. “Riemannian geometries on spaces of plane curves”. In: Journal of the

European Mathematics Society 8 (2006).

[72] T. Lochmatter and A. Martinoli. “Theoretical analysis of three bio-inspired plume tracking algorithms”.

In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan, 2009.

ISBN: 978-1-4244-2788-8.

[73] J.-S. Gutmann, G. Brisson, E. Eade, P. Fong, and M. Munich. “Vector field SLAM”. In: Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA). 2010. DOI: 10.1109/ROBOT.2010.

5509509.

[74] S. Soatto. “Steps Towards a Theory of Visual Information: Active Perception, Signal-to-Symbol Con-

version and the Interplay Between Sensing and Control”. In: CoRR abs/1110.2053 (2011). URL: http:

//arxiv.org/abs/1110.2053.

[75] M. Gevers. “A personal view of the development of system identification: A 30-year journey through

an exciting field”. In: IEEE Control Systems Magazine 26.6 (2006). DOI: 10.1109/MCS.2006.252834.

[76] V. Verdult. “Nonlinear System Identification: A State-space Approach”. PhD thesis. The Netherlands:

University of Twente, 2002.

[77] M. O. Franz and B. Schölkopf. “A unifying view of Wiener and Volterra theory and polynomial kernel

regression”. In: Neural Computation 18.12 (12 2006). ISSN: 0899-7667. DOI: 10.1162/neco.2006.18.12.

3097.

[78] C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[79] R Memisevic and G Hinton. “Unsupervised learning of image transformations”. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR). 2007.

http://dx.doi.org/10.1109/ROBOT.2010.5509509
http://dx.doi.org/10.1109/ROBOT.2010.5509509
http://arxiv.org/abs/1110.2053
http://arxiv.org/abs/1110.2053
http://dx.doi.org/10.1109/MCS.2006.252834
http://dx.doi.org/10.1162/neco.2006.18.12.3097
http://dx.doi.org/10.1162/neco.2006.18.12.3097

BIBLIOGRAPHY 395

[80] R Memisevic and G. Hinton. “Learning to represent spatial transformations with factored higher-order

Boltzmann machines”. In: Neural Computation 22.6 (2010). DOI: 10.1162/neco.2010.01-09-953.

[81] M. Ranzato and G. Hinton. “Modeling pixel means and covariances using factorized third-order boltz-

mann machines”. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).

2010. DOI: 10.1109/CVPR.2010.5539962.

[82] H Larochelle and G Hinton. “Learning to combine foveal glimpses with a third-order Boltzmann ma-

chine”. In: Advances in Neural Information Processing Systems (NIPS). Vol. 1. 2010.

[83] R. Roberts, C. Potthast, and F. Dellaert. “Learning general optical flow subspaces for egomotion esti-

mation and detection of motion anomalies”. In: IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR). 2009. DOI: 10.1109/CVPRW.2009.5206538.

[84] S. Siddiqi, B. Boots, and G. J. Gordon. “Reduced-Rank Hidden Markov Models”. In: Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-2010). 2010.

[85] D. Hsu, S. M. Kakade, and T. Zhang. “A spectral algorithm for learning Hidden Markov Models”. In:

Journal of Computer and System Sciences 78.5 (2012). ISSN: 0022-0000. DOI: 10.1016/j.jcss.2011.12.

025.

[86] M. L. Littman, R. S. Sutton, and S. Singh. “Predictive Representations of State”. In: Advances in Neural

Information Processing Systems (NIPS). MIT Press, 2001.

[87] S Singh and M. James. “Predictive state representations: A new theory for modeling dynamical sys-

tems”. In: International Conference on Uncertainty in Artificial Intelligence. 2004. URL: http://portal.

acm.org/citation.cfm?id=1036905.

[88] B. Boots, S. Siddiqi, and G. Gordon. “Closing the Learning Planning Loop with Predictive State Repre-

sentations”. In: International Journal of Robotics Research 30 (2011). DOI: 10.1177/0278364911404092.

[89] B. Boots, S. Siddiqi, and G. Gordon. “An Online Spectral Learning Algorithm for Partially Observable

Nonlinear Dynamical Systems”. In: Proceedings of the 25th National Conference on Artificial Intelligence

(AAAI-2011). 2011.

[90] T. A. Clarke and J. G. Fryer. “The Development of Camera Calibration Methods and Models”. In: The

Photogrammetric Record 16.91 (1998). DOI: 10.1111/0031-868X.00113.

[91] P. Sturm, S. Ramalingam, J.-P. Tardif, S. Gasparini, and J. Barreto. “Camera Models and Fundamental

Concepts Used in Geometric Computer Vision”. In: Foundations and Trends in Computer Graphics and

Vision 6.1–2 (2011). DOI: 10.1561/0600000023.

http://dx.doi.org/10.1162/neco.2010.01-09-953
http://dx.doi.org/10.1109/CVPR.2010.5539962
http://dx.doi.org/10.1109/CVPRW.2009.5206538
http://dx.doi.org/10.1016/j.jcss.2011.12.025
http://dx.doi.org/10.1016/j.jcss.2011.12.025
http://portal.acm.org/citation.cfm?id=1036905
http://portal.acm.org/citation.cfm?id=1036905
http://dx.doi.org/10.1177/0278364911404092
http://dx.doi.org/10.1111/0031-868X.00113
http://dx.doi.org/10.1561/0600000023

BIBLIOGRAPHY 396

[92] J.-Y. Bouguet. The Matlab Calibration Toolbox. URL: http://www.vision.caltech.edu/bouguetj/

calib_doc/.

[93] Z. Zhang. “A flexible new technique for camera calibration”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 22.11 (2002). DOI: 10.1109/34.888718.

[94] D. Gennery. “Generalized camera calibration including fish-eye lenses”. In: International Journal of Com-

puter Vision 68.3 (2006). DOI: 10.1007/s11263-006-5168-1.

[95] D. Scaramuzza, A. Martinelli, and R. Siegwart. “A Flexible Technique for Accurate Omnidirectional

Camera Calibration and Structure from Motion”. In: Proceedings of IEEE International Conference of Vision

Systems (ICVS). 2006. DOI: 10.1109/ICVS.2006.3.

[96] D. Scaramuzza, A. Martinelli, and R. Siegwart. “A Toolbox for Easy Calibrating Omnidirectional Cam-

eras”. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

2006. DOI: 10.1109/IROS.2006.282372.

[97] D. Scaramuzza and R. Siegwart. “Vision Systems: Applications”. In: ed. by G. Obinata and A. Dutta.

inTech, 2007. Chap. A Practical Toolbox for Calibrating Omnidirectional Cameras. ISBN: 978-3-902613-

01-1. URL: http://www.intechopen.com/articles/show/title/a_practical_toolbox_for_

calibrating_omnidirectional_cameras.

[98] C. Mei and P. Rives. “Single View Point Omnidirectional Camera Calibration from Planar Grids”. In:

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Rome, Italy, 2007.

DOI: 10.1109/ROBOT.2007.364084.

[99] C. Mei. Omnidirectional camera calibration toolbox for MATLAB. URL: http://homepages.laas.fr/

~cmei/index.php/Toolbox.

[100] J. Kannala and S. S. Brandt. “A generic camera model and calibration method for conventional, wide-

angle and fish-eye lenses”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.8 (2006).

DOI: 10.1109/TPAMI.2006.153.

[101] J. Kannala. Camera calibration Toolbox for Generic Lenses for MATLAB. URL: http://www.ee.oulu.fi/

~jkannala/calibration/.

[102] D. Scaramuzza. OCamCalib: Omnidirectional Camera Calibration Toolbox for Matlab. URL: https://sites.

google.com/site/scarabotix/ocamcalib-toolbox.

[103] M. Grossberg and S. Nayar. “The Raxel Imaging Model and Ray-Based Calibration”. In: International

Journal of Computer Vision 61.2 (2005). DOI: 10.1023/B:VISI.0000043754.56350.10.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1007/s11263-006-5168-1
http://dx.doi.org/10.1109/ICVS.2006.3
http://dx.doi.org/10.1109/IROS.2006.282372
http://www.intechopen.com/articles/show/title/a_practical_toolbox_for_calibrating_omnidirectional_cameras
http://www.intechopen.com/articles/show/title/a_practical_toolbox_for_calibrating_omnidirectional_cameras
http://dx.doi.org/10.1109/ROBOT.2007.364084
http://homepages.laas.fr/~cmei/index.php/Toolbox
http://homepages.laas.fr/~cmei/index.php/Toolbox
http://dx.doi.org/10.1109/TPAMI.2006.153
http://www.ee.oulu.fi/~jkannala/calibration/
http://www.ee.oulu.fi/~jkannala/calibration/
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
http://dx.doi.org/10.1023/B:VISI.0000043754.56350.10

BIBLIOGRAPHY 397

[104] F. Espuny and J. B. Gil. “Generic self-calibration of central cameras from two “real” rotational flows”.

In: The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras. 2008. URL:

http://hal.inria.fr/inria-00325325.

[105] E. Grossmann, J. A. Gaspar, and F. Orabona. “Discrete camera calibration from pixel streams”. In:

Computer Vision and Image Understanding 114.2 (2010). ISSN: 1077-3142. DOI: 10.1016/j.cviu.2009.

03.009.

[106] M. Boerlin, T. Delbruck, and K. Eng. “Getting to know your neighbors: unsupervised learning of to-

pography from real-world, event-based input”. In: Neural computation 21.1 (2009). DOI: 10.1162/neco.

2009.06-07-554.

[107] J. Stober, L. Fishgold, and B. Kuipers. “Sensor Map Discovery for Developing Robots”. In: AAAI Fall

Symposium on Manifold Learning and Its Applications. 2009. URL: http://www.cs.utexas.edu/~stober/

pdf/stoberFSS09.pdf.

[108] J. Modayil. “Discovering sensor space: Constructing spatial embeddings that explain sensor corre-

lations”. In: Proceedings of the International Conference on Development and Learning (ICDL). 2010. DOI:

10.1109/DEVLRN.2010.557885.

[109] J. W. Sammon. “A Nonlinear Mapping for Data Structure Analysis”. In: IEEE Transactions on Computers

18 (5 1969). DOI: 10.1109/T-C.1969.222678.

[110] R. C. T. Lee, J. R. Slagle, and H. Blum. “A Triangulation Method for the Sequential Mapping of Points

from N-Space to Two-Space”. In: IEEE Transactions on Computers 26 (3 1977). ISSN: 0018-9340. DOI:

10.1109/TC.1977.1674822.

[111] R. Shepard. “The Analysis of Proximities: Multidimensional Scaling with an Unknown Distance Func-

tion (Part I)”. In: Psychometrika 27.3 (1962). DOI: 10.1007/BF02289630.

[112] R. Shepard. “The analysis of proximities: Multidimensional scaling with an unknown distance function

(Part II)”. In: Psychometrika 27.3 (1962). ISSN: 0033-3123. DOI: 10.1007/BF02289621.

[113] J. B. Kruskal. “Multidimensional scaling by optimizing goodness of fit to a nonparametric hypothesis”.

In: Psychometrika 29.1 (1964). DOI: 10.1007/BF02289565.

[114] S. L. France and J. J. Carroll. “Two-Way Multidimensional Scaling: A Review”. In: IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews 99 (2010). DOI: 10.1109/TSMCC.2010.

2078502.

http://hal.inria.fr/inria-00325325
http://dx.doi.org/10.1016/j.cviu.2009.03.009
http://dx.doi.org/10.1016/j.cviu.2009.03.009
http://dx.doi.org/10.1162/neco.2009.06-07-554
http://dx.doi.org/10.1162/neco.2009.06-07-554
http://www.cs.utexas.edu/~stober/pdf/stoberFSS09.pdf
http://www.cs.utexas.edu/~stober/pdf/stoberFSS09.pdf
http://dx.doi.org/10.1109/DEVLRN.2010.557885
http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1109/TC.1977.1674822
http://dx.doi.org/10.1007/BF02289630
http://dx.doi.org/10.1007/BF02289621
http://dx.doi.org/10.1007/BF02289565
http://dx.doi.org/10.1109/TSMCC.2010.2078502
http://dx.doi.org/10.1109/TSMCC.2010.2078502

BIBLIOGRAPHY 398

[115] T. Cox and M. Cox. Multidimensional Scaling. Boca Raton, FL: Chapman & Hall / CRC, 2001. ISBN:

1-58488-094-5.

[116] Y. Shang, W. Rumi, Y. Zhang, and M. Fromherz. “Localization from connectivity in sensor networks”.

In: IEEE Transactions on Parallel and Distributed Systems 15.11 (2004). DOI: 10.1109/TPDS.2004.67.

[117] S. Agarwal, J. Wills, L. Cayton, G. Lanckriet, D. Kriegman, and S. Belongie. “Generalized Non-metric

Multidimensional Scaling”. In: Eleventh International Conference on Artificial Intelligence and Statistics.

2007. URL: http://www.cs.washington.edu/homes/sagarwal/nmds.pdf.

[118] J. Ratcliffe. Foundations of hyperbolic manifolds. Vol. 149. Graduate Texts in Mathematics. Springer, 2006.

DOI: 10.1007/978-0-387-47322-2.

[119] J. C. Gower and G. B. Dijksterhuis. Procrustes problems. Vol. 30. Oxford Statistical Science Series. Oxford,

UK: Oxford University Press, 2004. ISBN: 978-0-19-851058-1.

[120] J. C. Platt. “FastMap, MetricMap, and Landmark MDS are all Nystrom algorithms”. In: In Proceed-

ings of 10th International Workshop on Artificial Intelligence and Statistics. 2005. URL: http://research.

microsoft.com/en-us/um/people/jplatt/nystrom2.pdf.

[121] Pure Digital Technologies. The Flip MINO HD website. URL: http://www.theflip.com/.

[122] Woodman Labs. The GOPRO Camera website. URL: http://www.gopro.com/.

[123] C. Gimkiewicz, C. Urban, E. Innerhofer, P. Ferrat, S. Neukom, G. Vanstraelen, and P. Seitz. “Ultra-

miniature catadioptrical system for an omnidirectional camera”. In: ed. by H. Thienpont, P. V. Daele,

J. Mohr, and M. R. Taghizadeh. Vol. 6992. 1. Strasbourg, France: SPIE, 2008. DOI: 10.1117/12.779988.

[124] S. Weiss, D. Scaramuzza, and R. Siegwart. “Monocular-SLAMÐbased navigation for autonomous mi-

cro helicopters in GPS-denied environments”. In: Journal of Field Robotics 28.6 (2011). ISSN: 1556-4967.

DOI: 10.1002/rob.20412.

[125] M. Rufli, D. Scaramuzza, and R. Siegwart. “Automatic Detection of Checkerboards on Blurred and Dis-

torted Images,” in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). Nice, France, 2008. DOI: 10.1109/IROS.2008.4650703.

[126] P. Lichtsteiner, C. Posch, and T. Delbruck. “A 128× 128 120 dB 15 µs Latency Asynchronous Temporal

Contrast Vision Sensor”. In: IEEE Journal of Solid-State Circuits 43.2 (2008). ISSN: 0018-9200. DOI: 10.

1109/JSSC.2007.914337.

[127] E. Margolis. “Reconstruction of periodic bandlimited signals from nonuniform samples”. MA thesis.

Technion, 2004. URL: http://webee.technion.ac.il/people/YoninaEldar/Download/main.pdf.

http://dx.doi.org/10.1109/TPDS.2004.67
http://www.cs.washington.edu/homes/sagarwal/nmds.pdf
http://dx.doi.org/10.1007/978-0-387-47322-2
http://research.microsoft.com/en-us/um/people/jplatt/nystrom2.pdf
http://research.microsoft.com/en-us/um/people/jplatt/nystrom2.pdf
http://www.theflip.com/
http://www.gopro.com/
http://dx.doi.org/10.1117/12.779988
http://dx.doi.org/10.1002/rob.20412
http://dx.doi.org/10.1109/IROS.2008.4650703
http://dx.doi.org/10.1109/JSSC.2007.914337
http://dx.doi.org/10.1109/JSSC.2007.914337
http://webee.technion.ac.il/people/YoninaEldar/Download/main.pdf

BIBLIOGRAPHY 399

[128] J. Yen. “On Nonuniform Sampling of Bandwidth-Limited Signals”. In: IRE Transactions on Circuit Theory

3.4 (1956). ISSN: 0096-2007. DOI: 10.1109/TCT.1956.1086325.

[129] D. L. Elliott. Bilinear control systems: matrices in action. Springer, 2009. DOI: 10.1023/b101451.

[130] S. Sastry. Nonlinear Systems: Analysis, Stability, and Control. Berlin: Springer-Verlag, 1999.

[131] R. W. Brockett. “Asymptotic Stability and Feedback Stabilization”. In: Differential Geometric Control

Theory. Ed. by R. W. Brockett, R. S. Millman, and H. J. Sussmann. Boston: Birkhauser, 1983.

[132] Ceriani et al. “Rawseeds ground truth collection systems for indoor self-localization and mapping”. In:

Autonomous Robots 27.4 (2009). ISSN: 0929-5593. DOI: 10.1007/s10514-009-9156-5.

[133] E. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden, and M. Desbrun. “Geometric, Variational Discretization

of Continuum Theories”. In: Physica D: Nonlinear Phenomena 240.21 (2011). DOI: 10.1016/j.physd.

2011.07.011.

[134] L. Kneip, F. T. G. Caprari, and R. Siegwart. “Characterization of the compact Hokuyo URG-04LX 2D

laser range scanner”. In: Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). Kobe, Japan, 2009. DOI: 10.1109/ROBOT.2009.5152579.

[135] M. L. Eaton. Group Invariance Applications in Statistics. English. Vol. 1. 1989. URL: http://www.jstor.

org/stable/4153172.

[136] M. Loéve. Probability Theory I. Springer-Verlag, 1977.

[137] E. Lehmann and G. Casella. Theory of Point Estimation. Springer Texts in Statistics. Springer, 1998. ISBN:

9780387985022. URL: http://books.google.com/books?id=9St7DCbu9AUC.

[138] G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 1990.

[139] P. S. Maybeck. Stochastic models, estimation and control. Vol. 1. Academic Press, 1979.

[140] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall, 2000. ISBN: 0130224642.

[141] M. Meila. “Comparing clusterings: an information based distance”. In: Journal of Multivariate Analysis

98.5 (2007). ISSN: 0047-259X. DOI: 10.1016/j.jmva.2006.11.013.

[142] D. J. S. Robinson. A Course in the Theory of Groups. Springer, 1982. ISBN: 9780387906003.

[143] U. Grenander. Probabilities on Algebraic Structures. Dover Publications, 1965.

[144] P. Diaconis. Group representations in probability and statistics. Ed. by S. S. Gupta. 11. Institute of Mathe-

matical Statistics, 1988.

[145] G. Chirikjian. Stochastic Models, Information Theory, and Lie Groups, Volume 1: Classical Results and Geo-

metric Methods. Applied and Numerical Harmonic Analysis. Birkhäuser, 2009. ISBN: 9780817648022.

http://dx.doi.org/10.1109/TCT.1956.1086325
http://dx.doi.org/10.1023/b101451
http://dx.doi.org/10.1007/s10514-009-9156-5
http://dx.doi.org/10.1016/j.physd.2011.07.011
http://dx.doi.org/10.1016/j.physd.2011.07.011
http://dx.doi.org/10.1109/ROBOT.2009.5152579
http://www.jstor.org/stable/4153172
http://www.jstor.org/stable/4153172
http://books.google.com/books?id=9St7DCbu9AUC
http://dx.doi.org/10.1016/j.jmva.2006.11.013

BIBLIOGRAPHY 400

[146] G. Chirikjian. Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Mod-

ern Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, 2011. ISBN: 9780817649432.

[147] P. J. Olver. Classical Invariant Theory. Cambridge University Press, 2002.

[148] D. Hilbert and S. Cohn-Vossen. Geometry and the imagination. Chelsea Scientific Books: Geometry. Chelsea,

1990. ISBN: 9780828410878.

[149] M. do Carmo. Riemannian Geometry. Birkhauser, 1994. ISBN: 3-540-20493-8.

[150] M. Spivak. A comprehensive introduction to differential geometry. Vol. I. Second. Wilmington, Del.: Publish

or Perish Inc., 1979. ISBN: 0-914098-83-7.

[151] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, tensor analysis, and applications. Second. Vol. 75.

Applied Mathematical Sciences. New York: Springer-Verlag, 1988. URL: http : / / www . ams . org /

mathscinet-getitem?mr=960687.

[152] J. E. Marsden and T. S. Ratiu. Introduction to Mechanics and Symmetry: a basic exposition of classical me-

chanical systems. Second Edition. Springer, 2008.

[153] S. Amari. Differential-Geometrical Methods in Statistics. Springer Verlag, 1985.

[154] S. Amari and H. Nagaoka. Methods of information geometry. Vol. 191. Oxford University Press, 2000.

[155] M. K. Murray and J. W. Rice. Differential Geometry and Statistics. Chapman & Hall/CRC, 1993.

[156] R. Bhatia. Matrix Analysis. Springer, 1997.

[157] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons, 2001.

[158] D. G. Ebin and J. Marsden. “Groups of Diffeomorphisms and the Motion of an Incompressible Fluid”.

English. In: The Annals of Mathematics. Second Series 92.1 (1970). ISSN: 0003486X. URL: http://www.

jstor.org/stable/1970699.

http://www.ams.org/mathscinet-getitem?mr=960687
http://www.ams.org/mathscinet-getitem?mr=960687
http://www.jstor.org/stable/1970699
http://www.jstor.org/stable/1970699

BIBLIOGRAPHY 401

(±1,×) (R+
◦ ,×)

(R◦,×)

Aff(R)

(R,+)

(R,+)o (±1,×)

≤

≤ // /

/
/

Figure E.1. Relations between simple groups acting on R.

O(n)

E(n)

GL(n)

D(n) SL(n)

Perm(n) SO(n)

T(n)

Aff(Rn)

Aff+(Rn)

Sc(n)

SE(n)

GL+(n)

D±(n)

≤

≤

≤

≤

≤

≤

≤

≤≤

≤

/≤

≤

/

/

≤

≤

/

Figure E.2. Relations between simple Lie groups used as examples.

BIBLIOGRAPHY 402

Functions(M;M)

Continuous(M;M)

Diffvol(M) Diffx(M)

Differentiable(M;M)

Aut(M)

Diff(M)

Diff+(M)Conformal(M)

Homeo(M)

Isom(M)

Functions(Y;M)

≤

≤

⊂

≤

⊂

⊂

≤

≤

⊂

≤

⊂
⊂

≤ ≤

Figure E.3. Relations between classes of mappings

BIBLIOGRAPHY 403

Figure E.4. Relations between some of the classes of invertible systems, defined in
Chapter 4.

D?
fm(A)

Invertible finite-memory

systems

D?(A)
Invertible systems

D(B;A)
All systems with input

in A and output in B

D?
inst(A) ∼= Aut(A)
Instantaneous and

invertible

Dfm(A;A)
finite-memory systems

D◦(B;A)
Systems up to

representation

D(A;A)
Systems with same

input and output

Ddet(A;A)
Deterministic systems

Dinst(A;A) ∼=
Conditional(A;A)
Instantaneous systems

≤

partitions

⊂

≤

≤

⊂

⊂

⊂

≤ ⊂

	Dedication
	Acknowledgments
	Abstract
	Chapter 1. Introduction
	1.1. The State of Robotics
	1.2. What Makes Robotics Difficult
	1.3. Learning and Adaptivity
	1.4. Approach
	1.5. Summary of Main Results

	Part 1. A Formal Approach to Bootstrapping
	Chapter 2. A Quick Group Theory Tutorial
	2.1. Automorphisms
	2.2. Groups
	2.3. Some Commonly Used Groups
	2.4. Subgroups
	2.5. Homomorphisms
	2.6. Group Actions
	2.7. Orbits and Equivalence Classes
	2.8. Invariance of Functions
	2.9. Symmetries of Sets and Functions
	2.10. Group Products

	Chapter 3. Bootstrapping and Semantic Assumptions
	3.1. Do Not Trust Strangers in the Streets
	3.2. Format vs Semantics
	3.3. Formalizing Semantic Assumptions
	3.4. Symmetries of Semantic Assumptions
	3.5. Ordering Assumptions
	3.6. Starting from the Agent
	3.7. The adversarial view
	3.8. Tolerance to Nuisances Acting on the Commands
	3.9. Symmetries of the task
	3.10. What Comes Next

	Chapter 4. Black Boxes and Representation Nuisances
	4.1. Preliminaries
	4.2. Describing Black Boxes
	4.3. Series
	4.4. Loops
	4.5. Statistics of a Black Box
	4.6. Special Classes of Systems
	4.7. Composition Rules
	4.8. Inverting Systems
	4.9. Group Structure on Invertible Systems
	4.10. Representation Nuisances
	4.11. The Geometry of Bootstrapping

	Chapter 5. Bootstrapping Agents
	5.1. Observations and Commands
	5.2. Two-stage Interaction with the World
	5.3. Defining Bootstrapping Agents
	5.4. Defining the Agent's Goals
	5.5. Necessary Invariance Properties of the Agent
	5.6. Invariance Properties of the Goal Set G

	Chapter 6. A Catalog of Semantic Assumptions
	6.1. Legend
	6.2. Catalog
	6.3. Remarks

	Chapter 7. A Catalog of Representation Nuisances
	7.1. Legend
	7.2. Nuisances Acting on the Observations
	7.3. Nuisances Acting on the Commands

	Chapter 8. Tasks for Bootstrapping Agents
	8.1. Challenges in Defining Bootstrapping Tasks
	8.2. Tasks for Disembodied Agents
	8.3. Tasks for Embodied Agents

	Part 2. Learning Models of Robotic Sensorimotor Cascades
	Chapter 9. Robot Sensors and Actuators
	9.1. Robot Motion
	9.2. Exteroceptive Robot Sensors
	9.3. Three Canonical Robot Sensors
	9.4. Training and Environment Statistics
	9.5. Related Work for Learning Dynamics

	Chapter 10. Learning Sensor Geometry
	10.1. Calibration by Correlation
	10.2. Nonmetric Embedding
	10.3. When is Similarity a Function of the Sensels Distance?
	10.4. Observability of Sensor Geometry Reconstruction
	10.5. Measuring Performance
	10.6. Algorithm
	10.7. Camera Calibration Results

	Chapter 11. Learning Bilinear Dynamics
	11.1. Why Bilinear Systems
	11.2. BDS
	11.3. Space and Time Discretization
	11.4. Learning
	11.5. Servoing
	11.6. Invariance to Linear Transformations
	11.7. bds Approximation of Canonical Sensors
	11.8. Simulations and experiments

	Chapter 12. Learning Bilinear Flows
	12.1. BGDS
	12.2. Learning
	12.3. Servoing
	12.4. Invariance to Reparametrization of the Sensel Space
	12.5. Approximation to Canonical Robotic Sensors
	12.6. Experiments

	Chapter 13. Learning Diffeomorphisms
	13.1. DDS
	13.2. Representing and Learning dds
	13.3. Application to Camera Data
	13.4. Inferring the ``Linear structure'' of the Commands Space
	13.5. Application to Range Data

	Part 3. Invariance-based Analysis and Design
	Chapter 14. Canonization
	Chapter 15. Group-spectral Dossiers
	15.1. Group-spectral Dossiers
	15.2. Examples
	15.3. Dossier for the Inverse of a Mapping

	Chapter 16. Pontifical Features and Canonization Operators
	16.1. A Hierarchy of Features
	16.2. Strong Pontifical Features
	16.3. Strong Canonization Operators Cannot be Simply Composed
	16.4. Weak Pontifical Features
	16.5. Mild Pontifical Features
	16.6. Bold Pontifical Features
	16.7. Unstructured Pontifical Features

	Chapter 17. Algebra of Pontifical Features
	17.1. Intersection of Pontifical Features
	17.2. Series of Canonization Operators
	17.3. Examples

	Chapter 18. Some Pontifical Features for Bootstrapping
	18.1. Legend
	18.2. Whitening
	18.3. Contrast Transformation
	18.4. Unlabeled Sensels
	18.5. Sensel Space Diffeomorphisms

	Chapter 19. An Example of Compositional Analysis
	19.1. Building Blocks
	19.2. Analysis of Compositions

	Conclusions
	Chapter 20. Conclusions
	20.1. Future Work

	Back Matter
	Appendix A. Sets, functions, sequences
	A.1. Logic and sets
	A.2. Topology
	A.3. Relations and their properties
	A.4. Special classes of relations
	A.5. Functions
	A.6. Inverting functions
	A.7. Sorting vectors
	A.8. Sequences

	Appendix B. Probability and Statistics
	B.1. Probability Measures
	B.2. Basic Operators
	B.3. Stochastic Processes
	B.4. Statistics

	Appendix C. Glossary of Basic Group Theory
	C.1. Groups
	C.2. Normal Subgroups
	C.3. Homomorphisms
	C.4. Quotients
	C.5. Natural Projections
	C.6. Group Actions
	C.7. Invariance of Sets and Functions
	C.8. Lie Groups

	Appendix D. Group Bestiary
	D.1. Matrix Groups

	Appendix E. Geometry
	E.1. Metric Spaces
	E.2. Linear Algebra
	E.3. Manifolds
	E.4. Diffeomorphisms

	Nomenclature
	Bibliography

