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Abstract

This thesis consists of three papers that study the relationships between information, competition,

and cooperation in two novel environments. We first examine the competitive behavior of firms with

private information in two-sided matching markets. This part of the thesis employs purely game-

theoretic tools. Second, we study voluntary contributions towards a linear public good by players

who are connected through a network. In this environment, we use experimental and theoretical

techniques to examine the effects of different information treatments and network structures on

contributions.

In Chapter 2, I study the behavior of firms in a competitive market for workers. In particular,

I study a game in which firms with private information compete for workers by committing to a

single salary offer. Workers care only about salary and the matching process follows the deferred-

acceptance approach introduced by Gale & Shapley (1962). For a two-firm, two-worker model,

there exists a Bayesian-Nash equilibrium in which each firm type chooses a distributional strategy

with interval support in the salary space. This equilibrium exhibits a separation of types, in the

sense that types with a common most preferred worker choose nonoverlapping, adjacent supports.

The type that makes higher offers is determined by the relative marginal value for the preferred

worker. In larger markets, which replicate the two-firm, two-worker case, a comparable Bayesian-

Nash equilibrium exists and the separation result endures. In the limit, there is no aggregate

uncertainty about the realization of firm types, and competition is confined to the most popular

worker type. Numerical results suggest that the finite market equilibrium strategies converge with

replication to the corresponding equilibrium strategies in the limit case.

Chapter 3 studies individual contributions in a repeated public goods experiment. Subjects are
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connected through a circle network, and consumption of the public good depends on a player’s own

contribution and the contributions of his neighbors. We study whether contributions depend on the

nature of the information players are shown about others between rounds of the repeated game. We

extend the approach of Arifovic & Ledyard (2009), which merges a modified model of other-regarding

preferences (ORP) with a theory of learning. Our model predicts individual behavior that ranges

from free-riding, to conditional cooperation, to unconditional giving. Many subjects switch between

these different behavioral strategies across games with different information treatments. Individual

contributions are remarkably consistent with our model, which combines other-regarding preferences,

learning, and the information treatment. Both the data and model simulations suggest that learning

(to play the benchmark Nash equilibrium of the game) is differential and contagious across players.

Free-riders and unconditional givers learn faster than conditional cooperators, and provide an anchor

that accelerates learning by their neighbors. These results suggest that the network or neighborhood

structure may be important for contributions through its effects on learning.

In Chapter 4, we extend the analysis of learning and contributions in network public goods

experiments. Using a set of five different network structures, we examine three key aspects of

individual behavior. First, we report a negative finding regarding the predictions from our theory of

other-regarding preferences. The theory provides certain predictions about how a particular subject

should and should not behave across networks. We find several violations of these predictions,

particularly in small, complete network groups, but also in the larger, more interesting networks.

Second, we report on the average contributions by players in groups that consist of all conditional

cooperators. In the one-shot game, these groups have a continuum of equilibria, in which every

player contributes the same amount. While one might expect contributions to average half of the

endowment, we find in both the data and learning simulations that average contributions decline

over time to less than half of the endowment. We conjecture that learning dynamics may provide a

method of equilibrium selection, for players trying to coordinate on one equilibrium in the repeated

game.

Our main finding in this chapter is that learning is contagious in networks other than the circle,
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which we studied in Chapter 3. We find considerable evidence at the individual match level that

free-riders and altruists provide an anchor that stabilizes behavior and accelerates learning by their

conditional cooperator neighbors. Our analysis highlights the possibility that, even when the distri-

bution of free-riders, altruists, and conditional cooperators is the same across networks, the different

neighborhood structures may affect contributions differently through their effects on learning. Thus,

the main contribution of this chapter is the confirmation that learning is contagious across a range

of different network structures.
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Chapter 1

Introduction

The three papers in this thesis share a common focus on strategic settings where information plays

a prominent role. We study two novel settings in which information is particularly important;

(1) salary competition in two-sided matching markets when there is private information; and (2)

voluntary contributions in a network public goods game.

The first setting is studied under complete information by several prominent authors, including

Bulow and Levin (2006), Kojima (2007), and Niederle (2007). However, there is relatively little

work that examines the problem when there is private information. In Chapter 2, we study the

equilibrium salary offers made by firms with private information, who compete for workers in a

two-sided matching market.

In Chapters 3 and 4, we switch focus to voluntary contributions in network public goods games.

This setting is part of a newer, developing literature that studies behavior in games played on

networks.1 The first study of public goods on networks is Bramoullé and Kranton (2007), who

prove for any social network structure, the existence of a Nash equilibrium in which self-interested

agents either contribute everything or nothing. In this thesis, we consider different informational

assumptions regarding what the agents know, or can observe about the network. Moreover, we

assume that agents can have other-regarding preferences, rather than make the classical assumption

that agents are purely self-interested.

In the experimental literature on voluntary contributions to linear public goods, there is a well-

1A fairly comprehensive study is conducted by Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) for an
extensive range of games.
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documented inconsistency between the theory and experimental data. This has generated a great

deal of work on alternative theories, including other-regarding preferences, repeated game strate-

gies, and learning. Although these have met with some success, none of the alternative theories

has provided on its own, a successful explanation for all the stylized facts that are evident in the

experimental data. One of the more successful approaches is the recent theory provided by Arifovic

and Ledyard (2009), who merge a model of other-regarding preferences with an evolutionary-style

learning model called Individual Evolutionary Learning (IEL). Arifovic & Ledyard use their model

to produce simulated behavior that is remarkably close to the data observed across a wide range

of public goods experiments in the existing literature. We provide a full behavioral model that ex-

tends the approach developed by Arifovic and Ledyard (2009). We extend the model to the network

public goods environment, and incorporate the different informational assumptions into the learning

dynamics.

One of the key findings in the experimental public goods literature is that many players are

conditional cooperators, in the sense that they tend to contribute more when others contribute more

(and less when others contribute less). This notion of conditional cooperation raises two motivating

questions, which we consider in Chapter 3. First, how does conditional cooperation depend on the

nature of information players observe about others between rounds of a repeated game? We argue that

information can inform both how, and on what the players condition their contribution decisions.

Second, how does conditional cooperation depend on the structure of interaction between players? In

particular, since players are connected through a network, information about a player’s neighbors’

neighbors may be important for determining how much to contribute.

The main contribution in Chapters 3 and 4 is the finding that learning (to play the Nash equi-

librium of the network public goods game) is contagious across several different network structures.

This result suggests an important relationship between learning and neighborhood structure in games

played on networks.

In Chapter 3, we focus on a single network structure (the circle network), while varying the

information players are shown between rounds of a repeated network public goods game. We first



3

show that variation in the informational treatments within the experiments can induce a subject with

stable underlying preference parameters to switch the form of his equilibrium behavior between free-

riding (always contributing zero), unconditional giving (always contributing his endowment), and

conditional cooperation. The data exhibits a significant amount of switching within-subject, which

we show can be attributed to changes in the informational treatment, rather than a product of

instability in players’ underlying types. We then show that, while contributions typically do not

converge to the Nash equilibrium of the static version of the game, they are consistent with the

simulated behavior generated by our full behavioral model. In this chapter is where we first provide

evidence for the main result that learning is contagious throughout the network.

In Chapter 4, we extend the analysis to a wider set of network structures. In all of the network

environments, players participate in a 10-period repeated network public goods game. After each

round, subjects observe the average payoff in their neighborhood, which is defined by network. As

in Chapter 3, our specification of other-regarding preferences provides a set of cutoff conditions

on a player’s preference parameters, which allow us to classify players as free-riders, conditional

cooperators, or pure altruists in any given game. From a static point of view, the classifications

within-subject are inconsistent with the predictions of our theory of preferences, although these may

be exacerbated by sample size issues or the coarseness of our classification criteria. Nevertheless, this

negative result merely highlights further that contributions across different networks are sensitive

not only to the composition of free-riders, altruists, and conditional cooperators, but also to the

configuration of those players on the networks.

Chapter 4 also analyzes average contributions in groups comprising all conditional cooperators,

which according to the static other-regarding preferences model, possess a continuum of equilibria.

We find that both the data and learning simulations for these environments decline steadily over

time, to an average contribution below half of the endowment. We conjecture that this decline is

related to the learning dynamics, and that the learning process may provide an interesting method

for equilibrium selection in these groups with multiple Nash equilibria.

Finally, our main finding in Chapter 4 is that learning is also contagious across the additional
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network structures, particularly in the connected cliques and two-step circle networks. We study

the data at the individual match level and compare the results with some simple predictions of

contagious learning in each realized match. For the most part, the data is consistent with the learning

simulations, but even when it is not, the contributions exhibit a pattern consistent with contagious

learning. Thus, our primary contribution from Chapters 3 and 4 is to show that contributions

depend on the network structure through its effects on learning by conditional cooperators.
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Chapter 2

Salary Competition in Two-Sided
Matching Markets with Private
Information

2.1 Introduction

In many labor markets, firms compete with each other for workers along several dimensions. These

include salary, employee benefits, bonuses, health insurance coverage, and opportunities for career

advancement. Firms often set policies regarding benefits, bonuses, health plans, and vacation time,

rather than personalize the terms of employment for each individual worker. It is also common

for firms to decide on a salary for a particular position, rather than negotiate a salary with each

individual employee. These terms of employment can be inflexibile, either because they are firm-wide

policies, contractual obligations, or because the salary for the position has been widely advertised.

There are other settings in which agents on one side of a market make a costly investment in order

to compete for the services (or affections) of the agents on the other side of the market. However,

this paper focuses on the case of salary competition between firms. When choosing the terms of

employment to offer to workers, each firm considers the preferences (or types) of the other firms.

However, in most cases, the firms do not have full information about each other. This paper examines

the competitive behavior of firms when they do not know each others’ preferences.

There are several other papers that study salary competition in two-sided markets with complete
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information, in particular by Bulow and Levin (2006), Niederle (2007), and Kojima (2007).1 Bulow

and Levin (2006) consider the effect of a centralized matching mechanism on salary levels, and argue

that the National Resident Matching Program (NRMP) algorithm compresses and depresses the

salaries of workers, relative to the competitive equilibrium. These papers are also related to ear-

lier research that deals with matching firms to workers by incorporating salary offers. The earliest

treatment of matching with salaries appears to be Shapley and Shubik (1972), which modifies Gale

and Shapley (1962) to incorporate a transferrable utility good in which salaries can be paid. The

literature was further developed by Crawford and Knoer (1981) and subsequently, by Kelso and

Crawford (1982), who devised a salary adjustment process which converges to a core allocation.2

More recently, Hatfield and Milgrom (2005) develop a model of matching with contracts that incor-

porates the Kelso and Crawford (1982) model.3 They show that if the preferences of the firms satisfy

a gross substitutes condition and a law of aggregate demand condition, then truthful reporting is a

dominant strategy for workers in a worker-proposing matching mechanism.

While matching with salaries has attracted considerable interest, the existing literature does not

include a model in which the firms’ preference orderings over workers are private information. Hoppe,

Moldovanu, and Sela (2009) introduce a model of assortative matching in which there is incomplete

information on both sides of the market, however, the incomplete information in their setting relates

to attributes of potential partners, rather than preference orderings of potential competitors. Once

a worker has chosen a signal in their model, every firm has the same ranking over workers, based

on their signals. Likewise, once a firm has chosen a signal, every worker has the same ranking over

firms. In contrast, the objective of this paper is to understand the effects of private information

about the preference orderings of potential competitors on salary competition. The model extends

the approach taken by most of the literature by allowing firms to have different primitive preference

orderings over the set of workers. This assumption then allows for firms’ preferences to be private

1Another paper that investigates the importance of various assumptions in the Bulow and Levin (2006) model is
Gonzalez-Diaz and Siegel (Forthcoming), who focus on a set of job features, including salaries, reputation, responsibil-
ity, work hours, training, and quality of facilities, that may affect a hospital’s attractiveness to workers in a nonlinear
manner.

2A core allocation in this context is a one-to-one matching along with a salary schedule, in which no firm and
no worker can negotiate a salary at which they would prefer each other over their current partners at their current
salaries.

3Other related work includes Hoppe, Moldovanu, and Sela (2009), and Crawford (2008).
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information, which is the main point of departure from the existing literature on matching with

salaries.

Outline

Consider a game in which firms with private information compete for workers by making a single

salary offer. Suppose each firm wants to hire at most one worker, and each worker can work for only

one firm. Firms have types, defined by their preferences over the set of workers, and the option to

remain unmatched. A key assumption is that firms’ types are private information, although there is

a common prior distribution over the type space. On the other hand, the workers all rank the firms

in order of salary, from highest to lowest.4 A firm must commit to a single salary offer, which they

are required to pay to the worker with whom they are eventually matched. If they are unmatched,

they do not pay anything. Although the problem is presented as one of choosing salaries to offer

to potential workers, the firms’ decisions can also be interpreted as investments in other terms of

employment (such as benefits programs, health plans, or available facilities) that make the firm

attractive to potential employees. Under either interpretation, firms are denied the flexibility to

personalize the offers made to different workers for the same position.

Once salaries are chosen, the firms and workers are matched in the following manner. Each firm

makes an offer to at most one worker. Each worker tentatively accepts at most one offer and rejects all

the other offers it receives. Any firm who is rejected then makes the same offer to another worker who

has not already rejected the firm. When no new offers are made, all remaining tentative matches are

confirmed. This matching process is analogous to the firm-proposing deferred acceptance algorithm

introduced by Gale and Shapley (1962) to prove the existence of stable matchings. A nice property

of the firm-proposing deferred acceptance algorithm is that it gives firms a dominant strategy to

make offers in a straightforward manner. In the present environment, this means that firms have a

dominant strategy to make offers in order of preference, but only to workers who are acceptable to

the firm at its chosen salary. Furthermore, since all workers care only about salary, there is a unique

stable matching for any profile of firm preferences and salary offers. As a result, no worker has an

4This is a significant assumption, which eliminates the possibility of strategic behavior at the matching stage, as
it induces a unique stable matching.
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incentive to strategically reject an offer. Thus, the focus in this paper is on the salary decisions

made by the firms.

In this paper, we begin by analyzing a two-firm, two-worker model, in which the firms can be

one of four types. Type a prefers worker w1 to worker w2 whilst type b considers only worker w1 to

be acceptable. Similarly, type c prefers w2 to w1 while type d only considers w2 to be acceptable.

In the two-firm, two-worker model, there are no pure strategy equilibria. However, there exists a

Bayesian Nash equilibrium in mixed (distributional) strategies which are continuous with interval

support.

The first result of the paper is that the equilibrium exhibits a separation of types, in the sense

that between two types who have a common most preferred worker, one type always makes higher

offers than the other type. For example, given certain parameters, every salary offered with positive

probability by a type b firm (who only wants worker w1) is higher than any salary offered with positive

probability by a type a firm (who also wants w1 the most, but considers w2 to be acceptable). That

is, all type a firms “accept defeat” in case the other firm is a type b firm. Instead, type a firms

concentrate on competing against another type a firm. The relative marginal value attached to

the workers by different types determines which type makes the higher offers in equilibrium. When

the realized types do not share a common most preferred type, there is no competitive pressure on

the salary offers. Therefore, the relative probabilities of being either type a or type b, compared

with type c or type d, also affects the equilibrium salaries. Furthermore, more popular workers (as

determined ex-ante by the distribution over firm types), attract higher average equilibrium salaries.

Likewise, as one might expect, the higher the probability of facing a given firm type, the higher the

average salary offered by that type of firm in equilibrium.

The paper extends the analysis to larger markets by replicating the two-firm, two-worker model.

The second result proves the existence of a Bayesian Nash equilibrium in continuous distributional

strategies with interval support for each finite replicated market. The proof, which is by construc-

tion, also establishes the separation result for types with a common most preferred worker class.

In the limit, when there are a continuum of firms and a continuum of workers, there is no aggre-
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gate uncertainty about the realization of types. Thus, competition in equilibrium is confined to the

most popular worker class. Finally, numerical simulations suggest that the finite market equilib-

rium strategies converge to the corresponding continuum equilibrium strategies as the number of

replications approaches infinity.

A related environment with a fixed, or posted wage is studied by Burdett & Mortensen (1998).

They study a game where a continuum of firms choose permanent wage offers and a continuum of

workers search by sequentially sampling from the set of offers. Workers search both while unemployed

and while employed for a job with an acceptable, or higher wage, respectively. Firms post a wage

conditional on the search behavior of the workers and the wages offered by other firms.

The principal result in Burdett & Mortensen (1998) is that wage dispersion is a robust outcome

when workers must search for individual offers, provided that workers search while employed as

well as when unemployed. They characterize the unique equilibrium (steady state) distribution

of wage offers under different assumptions about firm and worker heterogeneity. The equilibrium

distribution is non degenerate, exhibiting wage dispersion, even when all firms and workers are

respectively identical, as long as the arrival rate of job offers is strictly positive, but finite, for all

workers (even those already employed).

There are several important differences between the setup and the matching process in Burdett

& Mortensen (1998) and our approach in this paper. First, in this paper, firms have single-unit

demand. That is, each firm wants to be matched with just one worker, rather than build up a team

of workers. Second, workers are not identical in our model. Offers are directed by firms to particular

workers, rather than posted for workers to search for and accept as they please. This reflects the

assumption that firm productivities depend also on which worker they employ and the additional

heterogeneity in firms’ ordinal preferences. In particular, some workers are not acceptable to a firm

at that firm’s posted salary.

An important implication of these differences is that, in our model, each worker faces a potentially

different distribution of offers. Firms have both different ordinal preferences (and productivities) and

may offer different salaries, whilst controlling which workers may receive their offer. Nevertheless,
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the models are related, since we can interpret the ‘continued search’ feature of Burdett & Mortensen

(1998) as an ongoing matching process which evolves towards a stable, steady state equilibrium

matching. In this respect, the assumption that employed workers continue to search for higher

paying jobs is equivalent to a provisionally matched worker receiving a higher salary offer in a

deferred acceptance mechanism.

In our paper, the equilibrium salary distributions offered by different firm types also exhibit wage

dispersion (both within and among the types). However, the wage dispersion is driven by private

information among the firms and the competition by heterogeneous firms for heterogeneous workers.

In contrast, the wage dispersion in Burdett & Mortensen (1998) is driven in part by the multi-

unit demands of the firms, and their heterogeneous productivities with respect to a set of perfectly

substitutable workers. In fact, in this paper, the highest productivity firm for a given worker is

not necessarily matched with that worker. Workers are instead sorted to firms based (generally)

on the firms’ relative marginal values for the different workers, which depend on the firms’ ordinal

preferences as well as the relative intensity of preferences (marginal productivities) for each of the

workers, compared with the other firms.

Another related paper is Bulow and Levin (2006). In their paper, Bulow and Levin provide a

concise argument that in a two-sided market with a centralized matching procedure, equilibrium

salaries are lower than the corresponding competitive equilibrium. The matching of firms to workers

is still highly efficient, which implies that the lower salaries are mostly offset by higher profits for

the firms. Moreover, they show that the equilibrium supports for the salary distributions offered are

more compressed for better workers, such that the most productive firms gain the most from the

centralized match.

Both the setup and the results of our paper can be distinguished from Bulow and Levin (2006).

The primary innovation in our model is to allow different firms to have different ordinal preferences

over the same set of workers. This extends the approach followed in almost all the previous literature,

including Bulow and Levin (2006). Also notice that this innovation is not the same as allowing for

heterogeneous productivity types if the heterogeneity does not lead to a different preference ordering.
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Rather, it allows for a broader range of types, and facilitates the introduction of a richer notion of

private information to two-sided matching markets.

In Bulow and Levin (2006), each firm brings a degree of productivity to their match. Likewise,

each worker possesses a fixed level of productivity. The value created in any match is determined by

multiplying together the two productivities. One implication of this setup is that each of the set of

firms, and the set of workers can be objectively ranked or organized from most productive to least

productive. Then the efficient matching outcome involves an assortative match between the most

productive firm and worker, followed by the second most productive firm and worker, and so on.

In their model, productivities are complete information, and more importantly, every firm has the

same preference ordering over the set of workers.

In this environment, there is no scope for introducing private information, except about the firm’s

own ranking among the other firms. But regardless of where the firm ranks in terms of productivity,

all firms will share the same preference ordering over workers, such that the problem becomes a

matter of determining ‘where you stand’ in the objective ranking of the firms. In contrast, the

features of our model create uncertainty about the productivities of the agents on the other side

of the market. That is, firms do not all agree on the value of matching with a particular worker.

This gives rise to a situation in which, even though one firm may be less productive than another,

the latter firm values the former firm’s second choice worker more than his first choice worker. By

removing the restriction that all firms prefer the same workers, we create situations where the degree

of competition between firms is uncertain.

In complete information environments, firms can perfectly deduce the level of competitive pres-

sure they will face when attempting to hire a particular worker. For instance, in the Bulow and

Levin (2006) setup, firms observe the productivities of other firms and can predict which firms they

will need to compete with or outbid to be matched with a particular worker. In our setup, there is an

additional dimension which affects the level of competitive pressure. Depending on the realization

of firms’ types, a competitive equilibrium may distribute all the surplus from matches to the firms

(salaries close to zero), split the surplus between workers and firms, or even transfer all of the surplus
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to the workers. For instance, in a two-firm, two-worker market, when both firms want worker a and

only worker a, the strong competitive pressure will drive the salary up to the lower of the two firms’

marginal values for worker a. On the other hand, if one firm prefers worker a to worker b, while the

other prefers worker b to worker a, there is no competitive pressure, and the firms can post a salary

equal to (or close to) zero, retaining all surplus from the match.

Furthermore, in this setting, even with complete information, the centralized matching equilib-

rium salaries do not always depress salaries relative to the corresponding competitive equilibria.

When firms have different most preferred workers, the matching equilibrium salaries are equal to

the lowest competitive equilibrium salaries, but when firms have the same most preferred worker,

the matching equilibrium salaries equal the highest corresponding competitive equilibrium salaries.

Our results reflect that with private information, the firms face an uncertain level of competitive

pressure. Thus, the equilibrium salaries tend to redistribute the surplus more evenly between firms

and workers. Since individual firms do not know the precise realization of all firms’ types, they are

unable to extract all surplus when competitive pressure is low, nor are they forced to transfer all

surplus to workers when competitive pressure is high.

We also show that competition between firms is localized. Specifically, when two different firm

types have a common most preferred worker, each type focuses on competing against other firms of

their own type. For example, if one type prefers a to b to remaining unmatched, while the other type

also prefers a most but prefers to be unmatched over b, the type with a higher marginal value for a

will pay a ‘premium’ large enough to outbid a firm of the other type, then choose a salary distribution

that focuses on competing with another firm of their own type. This separation result is the primary

feature of the equilibrium characterization in this paper, for both the two-firm, two-worker markets,

and the larger, replicated markets. This localized nature of competition is different from the notion

of localized competition discussed by Bulow and Levin (2006). In their setup, localized competition

occurs in a framework where competitive pressure is readily observed, so that firms know which

worker they are likely to be matched with, and which other firms (those with similar productivity)

will be competing with them for that worker.
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The rest of the paper is organized as follows. Section 2.2 describes the model and the matching

process, then introduces the general two-firm, two-worker game with private information. A simple

example demonstrates the main features of the equilibrium and the intuition behind the behavior of

the firms. Section 2.3 characterizes the symmetric Bayesian Nash equilibria for which strategies are

continuous distributions with interval support. The characterization also establishes the separation

result for a general two-firm, two-worker model with private information. In Section 2.4, the model is

extended to larger markets. This section characterizes the equilibria of the limit case in which there

are a continuum of firms and workers, then proves existence for finite replicated markets. Finally,

Section 2.5 presents the numerical simulations, which show that the equilibrium strategies in finite

replicated markets converge to the corresponding continuum equilibrium strategies as the number

of replications approaches infinity.

2.2 A Two-Firm, Two-Worker Model

Suppose there are two firms f1, f2 ∈ F and two workers w1, w2 ∈W . Each firm has strict preferences

over the set {w1, w2, ∅}, where ∅ represents being unmatched. It is safe to ignore any preference rank-

ing in which remaining single is the most preferred option. Thus, there are four possible preference

rankings for each firm.

Pa : w1 w2 ∅ Pb : w1 ∅w2

Pc : w2 w1 ∅ Pd : w2 ∅w1.

Assume that each preference ranking is represented by a pair of values, one for each worker, while

the value of remaining unmatched is 0. This assumption is somewhat restrictive, since it means that

two firms with same preference ranking also have the same values for the workers. In Section 2.6, I

discuss ways to relax this assumption about the type space.

Refer to a firm with preferences Pk as a firm of type k. Then the set of firm types is described

as Pf = {a, b, c, d} where, for example, a = (a1, a2) and aj is the value of worker j to type a for
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each j = 1, 2. In order to represent the preference rankings, the values of the different types must

satisfy the following conditions.

a1 > a2 > 0

b1 > 0 > b2

c2 > c1 > 0

d2 > 0 > d1 .

Definition 2.2.1. A worker w is acceptable to firm f if f prefers w to remaining unmatched.

The second definition modifies the standard notion of an acceptable worker to account for the

preferences of the firms at a given salary level.

Definition 2.2.2. Given any salary, xf , chosen by firm f , a worker w is salary-acceptable to

firm f if f ’s value for worker w is greater than xf .

The values corresponding to each type are common knowledge, however, each firm knows only

its own type. The types are drawn independently according to a common prior distribution π over

Pf = {a, b, c, d}. Given the two disjoint sets of agents, define a matching as follows.

Definition 2.2.3. A matching is a function µ : F ∪W → F ∪W ∪ ∅ such that

(1) µ(f) ∈W ∪ ∅ for all f ∈ F ,

(2) µ(w) ∈ F ∪ ∅ for all w ∈W , and

(3) µ(µ(i)) = i for all i ∈ F ∪W with µ(i) 6= ∅.

Let M denote the set of all matchings.
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For any firm f with type k = (k1, k2), the utility derived from a matching µ ∈M is given by

ufk(µ) =



k1 if µ(f) = w1

k2 if µ(f) = w2

0 if µ(f) = ∅

.

Before the matching is determined, the firms each choose a salary. Then the matching outcome is

determined as follows.

Step 1. Each firm makes an offer to (at most) one worker;

Step 2. Each worker tentatively accepts at most one offer, and rejects all others;
...

Step k. Any firm whose most recent offer was rejected may make the same salary offer to a worker

who has not already rejected them;

Step k+1. Each worker tentatively accepts at most one offer out of the one (if any) it tentatively holds,

and the new offers received at Step k, and rejects all others.

The procedure terminates when no new offers are made, and then all tentative matches are confirmed.

In principle, both the firms and workers could adopt a large number of different strategies, some

of which may be incredibly complex. However, the following two remarks, which are standard results

from the matching theory literature, allow us to ignore any strategic behavior at the matching stage.

Remark 2.2.4. For any set of chosen salaries, each firm has a dominant strategy to make offers

in order of preference to salary-acceptable workers only.

Remark 2.2.5. For any profile of firm preferences and any set of chosen salaries, each worker has

a dominant strategy to reject all but the highest salary offered to them.

Since there are no incentives for strategic sequencing of offers by the firms, or for strategic

rejection by the workers, the rest of the paper focuses on the behavior of the firms when they

decide upon a salary. In fact, it is useful to describe the outcomes from the matching process by a
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direct revelation outcome function g. Let g : P × R2
+ →M be an outcome function that maps the

preferences (types) of the two firms and the salaries chosen by the firms into the set of matchings.

Firms have a dominant strategy to announce their true preferences over salary-acceptable workers

and the workers simply reject all but the highest offer made to them.

2.2.1 Pure Strategy Equilibria

Consider the game Γ =
(
F,W,P,R+, π,g, {ufk}f,k

)
, which consists of the sets of firms F , and

workers W , the firm type space P, the space of possible salaries R+, and the type distribution π.

The outcome function g represents the matching process described by Steps 1, 2, ...k+1, and {ufk}f,k

are the utility functions for each firm and each firm type over the set of matchings.

A pure strategy for a firm f is a function sf : Pf → R+ which selects a salary for each possible

firm type. Given a strategy s−f for the other firm, firm f ’s expected payoff from announcing a

salary xf when its type is k is given by

EUfk
(
xf , s−f ,

)
=

∑
p∈P−f

π(p) · ufk [g (k, p, xf , s−f (p))] .

The following arguments establish that there is no pure strategy Bayesian Nash equilibrium to the

game, Γ.

Consider any arbitrary pair of strategies (s1, s2) and suppose firm 1’s type is a. Notice that, if

firm 2’s type is either of c or d, then regardless of s1(a), firm 1 is matched with worker w1. However,

if firm 2’s type is a or b, then the outcome depends on the salaries announced by the firms. If firm

2 is playing s2, then firm 1’s best response is to announce s1(a) = max{s2(a), s2(b)} + ε as long

as s1(a) ≤ a1 − a2. If max{s2(a), s2(b)} ≥ a1 − a2, then firm 1’s best response is to announce

s1(a) = 0. However, given the choice of firm 1, s1(a) = max{s2(a), s2(b)}+ε, firm 2’s best response,

if it is type a, is to offer s2(a) = s1(a) + ε, up to s2(a) ≤ a1 − a2. The same type of incremental

best responses exist for type b firms, and by symmetry, also for types c and d. Thus, the problem

with pure strategies is that firms who have a common most preferred worker will continue to outbid
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each other until the marginal benefit of ‘winning’ the worker is equal to the marginal benefit of not

winning. However, once that point is reached, the best response is to announce a salary of 0, and

begin the bidding-up process all over again.

2.2.2 Distributional (Mixed) Strategy Equilibria

Formally, a mixed (or distributional) strategy for firm i is a function σi : P → ∆(R+) which

announces, for each preference type, a distribution over salaries in R+. For simplicity, refer to the

symmetric equilibrium (σ∗, σ∗) by the equilibrium strategy σ∗ = (G∗a, G
∗
b , G

∗
c , G

∗
d) where G∗k is the

cumulative distribution announced by a firm whose type is k. I assume that strategies are continuous

distributions with interval support.5 Before turning to the results, it is useful to work through a

simple example for the two-firm, two-worker model.

Example 2.2.6. Suppose a = (2, 1), b = (2,−1), c = (1, 2), and d = (−1, 2), while π(a) = 1
2 ,

π(b) = 1
8 , π(c) = 1

4 , and π(d) = 1
8 . Notice that the marginal benefit to getting worker w1 is higher

for type b than type a, and the marginal benefit to getting worker w2 is higher for type d than type c.

Given these parameters, a natural conjecture is that type b firms will make higher offers than type a

firms, and type d firms will make higher offers than type c firms. Furthermore, given the distribution

of types π, worker w1 is ex ante more popular (or believed to be more popular) than w2. As such,

one might expect to see higher salaries on average being offered to w1.

For this example, there exists an equilibrium, which is described as follows:

G∗a(x) = 2x on the support

[
0,

1

2

]
G∗b(x) =

7x− 3.5

2− x
on the support

[
1

2
,

11

16

]
G∗c(x) = 4x on the support

[
0,

1

4

]
G∗d(x) =

7x− 1.75

2− x
on the support

[
1

4
,

15

32

]
.

This equilibrium exhibits several interesting features. First, there is no overlap between the

5There may be other types of symmetric equilibria, with noninterval support, or discontinuous strategies. In
addition, there may be asymmetric equilibria.
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equilibrium supports of types with a common most preferred worker. Since the marginal value of

getting worker w1 is less for type a than for type b, firms of type b always announce higher salaries

than firms of type a. In other words, firms of type a are resigned to getting their second favorite

worker (w2) when the other firm is type b. Instead, a type a firm focuses just on competing against

another type a firm.

On the other hand, a type b firm offers enough to ensure that it outbids any type a firm, then

focuses on competing against the chance that the other firm is a type b. This type of‘separation

result between types a and b is also exhibited by types c and d, and as will be shown in Section 2.3,

is a characteristic of any equilibrium in continuous distributional strategies with interval support.

Second, equilibrium salaries are higher on average for firms of type a than type c and for type b

than type d, even though they have comparable values for their respective preferences. This reflects

the relative popularity of worker w1 over worker w2. This notion of popularity is manifested in the

differences in the probabilities of facing another firm with the same most preferred worker. For types

a and b, the probability of facing another type a or b is 5
8 , while for types c and d, the probability

of facing another type c or d is only 3
8 . As a result, the average salaries offered in equilibrium are

higher for type a than type c, and higher for type b than type d. Section 2.3 confirms that this

feature is a general result that applies to all equilibria of the game.

2.3 Equilibria in the Two-Firm, Two-Worker Model

Consider the general two-firm, two-worker model. It is relatively straightforward to show that the

strategies of types that share a common most preferred worker affect each other. On the other

hand, salaries do not affect the matching output when the realized types do not have a common

most preferred worker. Thus, pairs of types with common most preferred workers can be considered

in isolation from one another. Without loss of generality, consider types a and b. The following two

lemmas allow us to characterize the supports for the equilibrium strategies.

Lemma 2.3.1. Between types with a common most preferred worker, the lowest salary offered in
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equilibrium must be 0.

Proof 1. Let [xa, xa] and [xb, xb] be the equilibrium supports for types a and b, respectively. Suppose

by means of contradiction that neither xa nor xb is equal to 0. Consider 0 < xa ≤ xb. Type a’s

expected payoff from x = xa is

EUa(xa) = [π(a) + π(b)]a2 + [π(c) + π(d)]a1 − xa

and for any x ∈ [0, xa), type a’s expected payoff is

EUa(x) = [π(a) + π(b)]a2 + [π(c) + π(d)]a1 − x

< EUa(xa).

This means that [xa, xa] cannot be an equilibrium support unless xa = 0 or 0 ≤ xb < xa.

If 0 < xb ≤ xa, type b’s expected payoff from x = xb is

EUb(xb) = (b1 − xb)[π(c) + π(d)].

That is, at the lower bound of type b’s equilibrium support, a firm of type b does not get matched to

a worker unless the other firm is type c or type d. But in those cases, the salary does not affect the

outcome, so that choosing a salary of xb > 0 is strictly dominated by x = 0. Thus, [xb, xb] cannot

be an equilibrium support unless xb = 0 or 0 ≤ xa < xb. Therefore, in equilibrium, we must have

either xa = 0 or xb = 0.

Lemma 2.3.2. In equilibrium, there are no gaps between the equilibrium supports for types with a

common most preferred worker.
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Proof 2. Suppose xa < xb. Then ∀x ∈ (xa, xb), type b’s expected payoff is

EUb(x) = (b1 − x)(1− π(b))

> (b1 − xb)(1− π(b)) = EUb(xb),

contradicting the inclusion of xb in the equilibrium support for type b. The proof is similar for the

case when xb < xa. Since the supports are intervals by assumption, there are no other cases to be

considered.

These two lemmas imply that equilibria must be consistent with one of four cases. In each case,

type a mixes over [xa, xa], and type b mixes over [xb, xb], where

Case 1. 0 = xa < xb ≤ xa < xb

Case 2. 0 = xb < xa ≤ xb < xa

Case 3. [xa, xa] ⊂ [xb, xb], and xb = 0

Case 4. [xb, xb] ⊂ [xa, xa], and xa = 0.

Proposition 2.3.3 generalizes and formalizes the separation result illustrated in Example 2.2.6,

by showing that there cannot be equilibria of the form described by Case 3 or Case 4.

Proposition 2.3.3. Equilibrium supports do not overlap for types with a common most preferred

worker. In particular then, all equilibria must be of the form in Case 1 with xb = xa or Case 2 with

xa = xb.

Proof 3. See Appendix.

The proof for Proposition 2.3.3 is based on demonstrating that indifference cannot be satisfied

simultaneously for both types on an interval with nonempty interior. As a result, the equilibrium

supports in Case 1 and Case 2 must meet at their boundaries. For Case 3 and Case 4, the same

argument implies that a support which is a subset of the other must be a single point. Since best
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responses in pure strategies have already been ruled out, there must not exist an equilibrium in

which one support is nested in the other.

The second result characterizes all symmetric Bayesian Nash equilibria in which strategies are

continuous with interval support. Moreover, it provides the set of conditions that determine, for

each pair of types with a common most preferred worker, whether their equilibrium supports are

consistent with Case 1 or Case 2. The condition depends on the relative marginal benefits of getting

the types’ common most preferred worker, and on the probability that a firm is the type that also

finds the other worker acceptable.

Proposition 2.3.4. (i) If b1 > π(a)(a1 − a2), then in all equilibria,

G∗a(x) =
x

π(a)(a1 − a2)

on the support

[
0, π(a)(a1 − a2)

]
G∗b(x) =

1− π(b)

π(b)(b1 − x)
[x− π(a)(a1 − a2)]

on the support

[
π(a)(a1 − a2), π(b)b1 + (1− π(b))π(a)(a1 − a2)

]
,

regardless of G∗c , G
∗
d. The analogous result holds for types c and d if d2 > π(c)(c2 − c1).

(ii) If b1 < π(a)(a1 − a2), then in all equilibria,

G∗b(x) =
x(π(c) + π(d))

π(b)(b1 − x)

on the support

[
0,

π(b)b1
1− π(a)

]
G∗a(x) =

(1− π(a))x− π(b)b1
π(a)(1− π(a))(a1 − a2)

on the support

[
π(b)b1

1− π(a)
,
π(b)b1

1− π(a)
+ π(a)(a1 − a2)

]
.

The analogous result holds for types c and d if d2 < π(c)(c2 − c1).

Proof 4. See Appendix.

Part of the condition in Proposition 2.3.4 has a simple intuition. If type b gets a higher value
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from worker w1 than the marginal value for type a from getting w1 instead of w2, then type b will

be willing to pay more than type a for w1. The role of π(a) in the condition is less obvious. Keeping

the values fixed, if π(a) is relatively low, a type a firm does not need to mix over a large interval

to compete against its own type. As a result, if type a firms offer salaries above those offered by

type b, there may be an incentive for type b firms to offer salaries higher than the type a firms in

order to ‘steal’ worker w1 in the event that the other firm is type a. Any such deviation by type b

firms would give type a firms an incentive to lower the support of their distributional strategies to

the lower bound of 0.

Proposition 2.3.4 also leads to two corollaries. First, all things being equal, the more likely a firm

is to face another firm of the same type, the stronger the competitive pressure and the higher the

average equilibrium salary offered by that type. Similarly, the more likely a firm is to face another

firm with the same most preferred worker, the stronger the competition and the higher the average

equilibrium salary offered by the two relevant types.

Corollary 2.3.5. The higher the probability a firm type has to compete against its own type, the

higher (on average) the equilibrium salary offered by that firm type.

Corollary 2.3.6. For any firm, the higher the probability that the other firm has the same most

preferred worker, the higher the equilibrium salary (on average) offered by the firm.

2.4 Competition in Large Markets

This section examines equilibrium behavior in large markets. For tractability, I replicate the two-

firm, two-worker market to obtain a market with 2n firms and 2n workers, consisting of n identical

class w1 workers and n identical class w2 workers. I characterize the equilibria for the case in

which there are a continuum of firms and a continuum of workers, then prove existence, for finite

replicated markets, of a Bayesian Nash equilibrium in continuous distributional strategies with

interval supports. Moreover, both Proposition 2.3.3 and Proposition 2.3.4 generalize to replicated

markets.
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2.4.1 Market Replication

Using replicated markets avoids the problem of having an exponentially growing type space. Repli-

cation provides a convenient way to conduct a tractable analysis of competitive behavior in large

markets. Furthermore, it removes that chance of realizing an uninteresting market with sparse

competition, in which every firm desires a different type of worker.

The baseline market is the two-firm, two-worker market, with F 1 = {f1, f2} and W = {w1, w2}.

In an n-replicated market, there are 2n firms, Fn = {f1, ..., f2n}, along with n copies of w1, W1 =

{w1
1, w

2
1, ..., w

n
1 }, and n copies of w2, W2 = {w1

2, ..., w
n
2 }. Since wj1 and wk1 are identical copies of one

another, we assume that all firms are indifferent between any two workers in W1. Likewise, all firms

are indifferent between any two workers in W2. As a result, firms’ preferences (and from these, their

types) are defined as strict orderings over the set {W1,W2, ∅}.

As in Section 2.2, firm types that prefer being unmatched over every worker are ignored.6 This

leaves four possible firm types that are essentially the same as the types in the two-firm, two-worker

model, except that the preferences are over classes of workers W1 and W2.

Pa : W1W2 ∅ Pb : W1 ∅W2

Pc : W2W1 ∅ Pd : W2 ∅W1.

Assume that each preference ranking is represented by a pair of values - one for each worker class, W1

and W2 - while the value of remaining unmatched is normalized to 0. So, for each type k ∈ {a, b, c, d},

k = (k1, k2), where ki is the value of each worker w in the class Wi. For the values to represent the

6We may just as well assume that they don’t enter the market in the first place.
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corresponding preference rankings, they must satisfy

a1 > a2 > 0

b1 > 0 > b2

c2 > c1 > 0

d2 > 0 > d1 .

Each firm knows only its own type, and the types are drawn independently according to the common

prior distribution π over {a, b, c, d}. That is, π(k) is the probability that a given firm is a type k

firm, or equivalently, has preferences Pk.

2.4.2 Equilibria in the Continuum Case

Before analyzing the equilibria for a finite replicated market, consider the equilibrium behavior in

the limit, when there is a continuum of firms, and continuum of workers. Moreover, suppose that the

measure of workers in each class W1 and W2 is half the total measure of W . In this environment, since

there are infinitely many firms, the aggregate uncertainty about the realized firm types disappears

from the market. That is, π(k) is the actual proportion, or the measure of type k firms in the market.

This is a convenient feature because it makes the equilibrium strategies relatively straightforward

functions of the distribution π.

As for the two-firm, two-worker case, the equilibrium strategy for a given type k does not de-

pend on the strategies of the two types k′, k′′ that have a different most preferred worker class than

type k. Thus, as in Section 2.2, when deriving equilibrium strategies, types a and b can be treated

independently from types c and d. Thus, without loss of generality, consider types a and b. The

analysis is symmetric for types c and d. Proposition 2.4.1 characterizes the equilibria for the limit

case. It is broken into two cases based on the relative marginal values of worker class W1 compared

with worker class W2, for types a and b.
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Proposition 2.4.1. The following two cases characterize the equilibria when there are a continuum

of firms and a continuum of workers, with two equally large worker classes.

(1) b1 ≥ a1 − a2

(i) If π(a) + π(b) ≤ 1
2 , then x∗a = 0 and x∗b = 0.

(ii) If π(a) > 1
2 , then x∗b = a1 − a2 and

x∗a =


0 with probability pa(0) = 2(π(a)+π(b))−1

2π(a)

a1 − a2 with probability 1− pa(0)

.

(iii) If π(b) > 1
2 , then x∗a = 0 and x∗b = b1.

(iv) If π(a) ≤ 1
2 , π(b) ≤ 1

2 , but π(a) + π(b) > 1
2 , then x∗b = a1 − a2 and

x∗a =


0 with probability pa(0) = 2(π(a)+π(b))−1

2π(a)

a1 − a2 with probability 1− pa(0)

.

(2) b1 < a1 − a2

(i) If π(a) + π(b) ≤ 1
2 , then x∗a = 0 and x∗b = 0.

(ii) If π(a) > 1
2 , then x∗b ∈ [0, b1] and

x∗a =


0 with probability qa(0) = 2π(a)−1

2π(a)

a1 − a2 with probability 1− qa(0)

.

(iii) If π(b) > 1
2 , then x∗a = b1 and x∗b = b1.

(iv) If π(a) ≤ 1
2 , π(b) ≤ 1

2 , but π(a) + π(b) > 1
2 , then x∗a = b1 and x∗b = b1.

The proof, which is quite straightforward, is omitted. Instead, Figures 2.1a and 2.1b provide

graphical illustrations of the two cases in Proposition 2.4.1. Each figure plots π(a) against π(b) and
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divides the space of probability pairs (π(b), π(a)) into segments for each subcase of the equilibrium

characterization. In both Figure 2.1a and Figure 2.1b, the bottom-left triangle corresponds to the

case in which there is an excess supply of class W1 workers, and therefore no competition between

types a and b. Thus, x∗a = x∗b = 0 for both cases when π(a) + π(b) ≤ 1
2 .

Figure 2.1a merges the subcase in which π(a) > 1
2 with the subcase in which π(a) ≤ 1

2 and

π(b) ≤ 1
2 , but π(a) + π(b) > 1

2 , since in each, type a firms mix between 0 and a1 − a2 with

probability pa(0) = 2[π(a)+π(b)]−1
2π(a) , while type b firms choose a1 − a2. Finally, in the case when

π(b) > 1
2 , type b firms compete with each other and push the salary up to their marginal value from

a class W1 worker, while type a firms know that they will not be matched with a class W1 worker

and so choose a salary of 0.

(a) Case (1): b1 ≥ a1 − a2 (b) Case (2): b1 < a1 − a2

Figure 2.1: Continuum equilibria for firm types a and b in Cases (1) and (2) from Proposition 2.4.1

In Figure 2.1b, we can likewise merge the subcase in which π(b) > 1
2 with the subcase in which

π(a) ≤ 1
2 and π(b) ≤ 1

2 , but π(a) + π(b) > 1
2 , since in each subcase, both type a firms and type b

firms choose a salary of b1. When π(a) > 1
2 , type a firms mix between 0 and a1−a2 with probability

qa(0) = 2π(a)−1
2π(a) , while type b firms choose a salary in the interval [0, b1]. This is because type a firms

drive the salary for a class W1 worker up to a1 − a2 > b1, so that type b firms are never matched

with anyone. Since some of the type a firms will miss out on a class W1 worker, they mix between

the salary a1 − a2 and 0.
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2.4.3 Finite Replicated Markets

As in both the two-firm, two-worker and the continuum cases, the equilibrium depends on the

parameters of the model. We can break up the proof of existence into several cases. The proof is by

construction. We consider firm types a and b, although things are symmetric for types c and d.

Proposition 2.4.2. Given any finite replicated market with 2n firms, n workers in class W1 and

n workers in class W2, there exists an equilibrium (G∗a(·), G∗b(·), G∗c(·), G∗d(·)) such that G∗k(·) is a

continuous distribution with interval support in the salary space, for all k = a, b, c, d. The equilibrium

supports for types a and b satisfy

0 = xa < xa = xb < xb

or 0 = xb < xb = xa < xa.

The analogous result holds for the equilibrium supports of types c and d.

Proof 5. See Appendix.

2.5 Convergence of Finite Market Equilibria

This section shows numerically that the replicated market equilibrium strategies converge to the

corresponding continuum equilibrium as the number of replications goes to infinity. The convergence

is illustrated by simulating replicated markets for the market presented in Example 2.2.6. Recall

that a = (2, 1), b = (2,−1), c = (1, 2), and d = (−1, 2), while π(a) = 1
2 , π(b) = 1

8 , π(c) = 1
4 , and
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π(d) = 1
8 . The corresponding continuum equilibrium is as follows,

x∗a =


0 with probability 1

4

1 with probability 3
4

(2.1)

x∗b = 1 (2.2)

x∗c = 0 (2.3)

x∗d = 0. (2.4)

The equilibrium distribution for a type a firm in an n-replicated market satisfies

xa = 0

xa = (a1 − a2)

[ n−1∑
j=0

2n−1−j∑
k=n+1−j

(2n− 1)!π(b)jπ(a)k[1− π(b)− π(a)]2n−1−j−k

j!k!(2n− 1− j − k)!

]

and for all x ∈ [xa, xa],

x = (a1 − a2)

n−1∑
j=0

2n−1−j∑
k=n+1−j

[
(2n− 1)!π(b)jπ(a)k[1− π(a)− π(b)]2n−1−j−k

j!k!(2n− 1− j − k)!

×
n−j−1∑
t=0

(
k

t

)
G∗a(x)k−t[1−G∗a(x)]t

]
.

The last equation can be solved, given any value of G∗a(x), for the corresponding value of x. The

pairs (x,G∗a(x)) that satisfy the indifference equations for a given value of n can be used to trace out

the equilibrium distribution for a type a firm in a market that has been replicated n times. Figure

2.2a plots these pairs (x,G∗a(x)) with x on the horizontal axis and G∗a(x) on the vertical axis for

several different values of n.

For smaller sized markets, n ∈ {2, 3, 6, 10, 20}, increasing the market size shifts more density

to higher salaries and expands the equilibrium support. However, after n grows large enough,

the equilibrium support approaches its upper bound of 1 (equal to a1 − a2). Then for any larger
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replicated markets, type a firms shift greater weight towards salaries very close to the upper bound.

However, in order to maintain indifference over the support, they also assign greater probability to

very low salaries (close to 0), which leads to a CDF that approaches the continuum equilibrium as

n approaches infinity.

The same procedure can be run for Type b firms, and also for Types c and d. For type b firms,

the corresponding equilibrium support has a lower bound equal to the upper bound of the support

for type a firms, by the separation result. The size of the support for a type b firm’s equilibrium

strategy is decreasing with the size of the market, and since the lower bound for sufficiently large

n is equal to 1, the equilibrium strategies converge towards the continuum equilibrium strategy,

which places the entire mass on a salary equal to 1. Figure 2.3 shows the simulated calculations

for equilibrium strategies of a type b firm in different sized markets. Of particular interest is the

observation that by n = 6, there is already almost no competitive pressure for a type b firm to

compete against another type b firm. Even with so few replications, a type b firm realizes that the

chances of there being more than 5 other type b firms (among the other 11 firms) is very low. As

a result, type b firms choose a salary just high enough to ensure that they will be ranked higher by

the workers than any type a firms.

For types c and d, as the market is replicated, firms perceive that the chances of excess demand

for W2 class workers are very low. It is very easy to show that the equilibrium distributions shift

towards the corresponding continuum equilibrium strategies, which place the entire mass on a salary

of 0. In this respect, as the market is replicated, competitive pressures are enhanced only for the

most popular worker class. However, even then, there is no pressure to compete applied to firms of

the type that has a higher relative marginal value for the popular workers.

2.6 Conclusion

This paper presents three main results. First, the equilibrium characterization for the two-firm,

two-worker model shows that strategy supports for types with a common most preferred worker are

adjacent, such that the type with a higher relative marginal value for the preferred worker pays a
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premium to ensure it is preferred over any firm of the other type. Second, in the limit, when there

are a continuum of firms and a continuum of workers, there is no aggregate uncertainty about the

realization of firm types. As a result, competition is confined to the class of workers that are more

popular, while the salaries of other workers fall to zero. Third, when the two-firm, two-worker model

is replicated to form larger markets, there exist distributional Bayesian Nash equilibrium strategies

that exhibit the same separation result in the equilibrium supports for types with a common most

preferred worker class. Numerical results suggest that, as the number of replications increases,

the equilibrium strategies in the finite replicated market approach the corresponding continuum

equilibrium strategies. As a result, when markets become larger, aggregate uncertainty about the

actual types of other firms dissipates and reduces the level of competitive pressure on salaries.

A natural extension of this paper is to consider a general n-firm, n-worker model. In this paper,

large markets are generated by replicating the two-firm, two-worker model, which controls the size of

the type space and keeps the analysis tractable. A limitation of this approach is that all workers in

the same class are treated as identical from the perspective of the firms. Future work might focus on

relaxing this assumption, while maintaining tractability. An alternative approach may be to relax

the restriction that firms with the same preference ordering must have the same valuation or utility

representation for that ordering. For instance, suppose each firm’s type is a pair of values θ = (x, y),

each drawn independently from some interval [θ, θ] according to a given distribution.

Both the two-firm, two-worker model, or a small n × n model with just two worker classes, are

simple and interesting candidates for experimental work. Although in theory firms have a dominant

strategy to make offers in order of preference, experimental work will reveal the actual sequence of

offers chosen by the subject firms. Experimental data might provide some indication of the strategies

firms actually play when their types are private information.

Finally, it may prove useful to examine how the theoretical results in this paper fit with empirical

observations in different labor markets. In many labor markets, salaries do not accurately reflect

differences in productivity. Instead, salaries tend to exhibit less variation than worker productivities.

Although the model in this paper does not include explicit levels of productivity, a modified version
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may provide some explanation for this empirical trend in workers’ salaries.
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(a) Type a firms’ equilibrium strategies for n ∈ {2, 3, 6, 10, 20, 100, 200}
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(b) Magnified view of the salary space for x ∈ [0, 0.2]

Figure 2.2: Replicated market equilibria for type a. In panel (a), each curve shows the equilibrium
CDF (cumulative distribution function) for a type a firm, for a given market size. Panel (b) shows a
magnified view of the CDFs at low salaries to illustrate how the density decreases with n in relatively
small markets, then increases with n for sufficiently large markets.
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Figure 2.3: Replicated market equilibria for type b
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Chapter 3

Information and Cooperation in a
Network Public Goods Experiment

3.1 Introduction

There are many different settings in which public goods are provided using the voluntary con-

tributions mechanism. Examples include fundraising by local district school boards, charitable

contributions, or political campaign funds. There is a vast body of theoretical and experimental

literature focused on explaining why individuals contribute in these environments, despite incentives

to free-ride. Much of this literature studies the finitely repeated setting in which players are given

endowments of a private good, which they may contribute towards the production of a linear public

good. In some environments, individuals are active members in several different communities, and

their decisions or actions affect outcomes for multiple neighborhoods. These types of environments

have motivated recent research into public goods on networks, beginning with theoretical work by

Bramoullé and Kranton (2007).

Experimental evidence suggests a robust pattern of contributions in standard repeated public

goods games. Average contributions in the first period are typically around half of the endowment,

then decline steadily over time, although they do not generally converge to zero. This pattern is well

documented in the literature, beginning with Isaac, Walker, and Thomas (1984) and Isaac, McCue,

and Plott (1985). A second key finding in the experimental literature is that many participants

are conditional cooperators whose contributions to the public good are positively correlated with
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the contributions (or their beliefs about the contributions) made by others. Chaudhuri (2011)

provides an excellent recent summary of the literature that aims to identify and explain conditional

cooperation.1

The study of conditional cooperation raises two important questions, which provide the motiva-

tion for this paper. First, how does conditional cooperation depend on the nature of the information

players observe about others between rounds of the repeated game? It seems natural to expect that

this feature of the environment will affect both how, and on what the players condition their contri-

bution decisions. Moreover, this type of information can vary significantly in public good settings.

For instance, school district boards tend to publish aggregated statistics about contributions, broken

down by class, neighborhood, or level of contribution. In other cases, participants may be able to

observe the individual contributions made by others.

Second, how does conditional cooperation depend on the structure of interaction between players?

In particular, if players are connected in a network, how do their positions affect contributions?

Bramoullé and Kranton (2007) cite several classic examples of goods that are nonexcludable along

social or geographical links, including innovation, or pollution abatement. In these types of environ-

ments, information about participants with whom the subject is not connected may nevertheless be

relevant to the way he chooses to behave. For instance, a conditional cooperator may find it relevant

how much his neighbors’ neighbors contributed toward the public good.

We investigate these two questions using a series of experiments, in which the subjects play a

finitely repeated linear public goods game on a circle network. Each player’s consumption of the

public good depends only on his own contribution, and on those of his neighbors in the network.

The information players are shown between rounds is controlled in two ways. The first exploits the

network structure of the environment, by varying whether subjects observe information about the

whole population or only about their neighborhood. We call this aspect of the design the treatment

group. The second variation changes the type of information statistic shown to subjects about

the relevant treatment group. Specifically, we vary the statistic between average contribution, and

1Some of the main contributions to the literature include Fischbacher, Gachter, and Fehr (2001); Fischbacher and
Gachter (2010); Croson, Fatas, and Neugebauer (2005); Croson (2007); Frey and Meier (2004); Keser and van Winden
(2000).
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average payoff, for the given treatment group.2

We propose a behavioral model that extends the approach used by Arifovic and Ledyard (2009)

to study contributions in a standard, complete network, repeated public goods game. They combine

their Individual Evolutionary Learning (IEL) model with a relatively simple model of outcome-based

other-regarding preferences (ORP). The model assumes that players have preferences which reflect

altruism and envy, in the form of a concern for fairness with respect to one’s self. We allow for

heterogeneity across players through their types, which consist of a pair of parameters representing

the player’s degrees of altruism and envy. Each player assesses his utility on the basis of a particular

reference statistic, with respect to a specific reference group of other players. For example, players

may derive utility from an increase in the average payoff earned by their reference group. On the

other hand, they may derive disutility if their own payoff is less than the average payoff in their

reference group, due to envy. This model is most similar to the class of outcome-based ORP models,

which includes the models developed by Fehr and Schmidt (1999), Bolton and Ockenfels (2000), and

Charness and Rabin (2002).

Our approach to preferences is fairly standard among models of other-regarding behavior. How-

ever, there are several novel features that we incorporate in order to extend upon the standard

approach. First, we allow explicitly for variation in a player’s reference group. This is an integral

component of other-regarding preferences that is typically underemphasized by assuming that the

reference group is ‘everyone else’.

Second, we consider two different possible criteria or statistics that players may use to make the

social comparisons that inform their other-regarding preferences. Specifically, when reference groups

are only a subset of the entire population, whether the players care about others’ contributions or

others’ payoffs may lead to different behavior. For a fixed reference group, a player concerned with

payoffs cares about the contributions made by the members of his reference group (his neighbors), but

also the contributions made by his neighbors’ neighbors, some of who may be outside his reference

group. To this point, our approach is grounded in standard other-regarding preferences, albeit with

2In the circle network, these statistics are not informationally equivalent for the neighborhood treatment groups,
since the average payoff conveys some additional information about the contributions made by a player’s neighbors’
neighbors.
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a sharper focus on reference groups and statistics.

The less standard part of our approach is the claim that in the laboratory setting, we can control

these two important features of the players’ other-regarding preferences. Subjects may enter the

lab with an underlying preference for altruism and fairness, but are less likely to show up with a

predetermined reference group or reference statistic on which to condition their decisions. Since

these reference-based features depend critically on the information made available to the subjects,

we argue that we can manipulate players’ reference groups and statistics, and perhaps then their

decisions, by changing the information provided to them in the experiment.

An alternative, related approach to outcome-based other-regarding preferences argues that in-

dividuals reciprocate the behavior of others, cooperating with those who cooperate and not with

those who don’t. An important component of the theory of reciprocity is the idea that intentions,

not just outcomes, matter for fairness, so that both kindness and unkindness are reciprocated. This

approach is followed and developed by Rabin (1993); Levine (1998); Dufwenberg and Kirchsteiger

(2004); Falk and Fischbacher (2006) and Ambrus and Pathak (2011). In recent years, this research

has shown that incorporating intentions can help to explain features of conditionally cooperative

behavior that are unaccounted for by outcome-based models. However, the experimental literature

also suggests that intentions alone are insufficient to explain the scope of conditional cooperation.

In this paper, we focus on a simpler, outcome-based model, which captures the essential features of

conditional cooperation. Reciprocity models like those developed in Dufwenberg and Kirchsteiger

(2004) and Falk and Fischbacher (2006) are equilibrium-based models that involve either a great

deal of common knowledge about other players’ preferences, or a well-defined set of ex-ante beliefs

about every possible path of play in the finitely repeated game. Our simpler approach requires no

such assumptions.

The primary innovation of the model is the assumed link between information treatment and

behavior. Specifically, we assume that a player’s reference group is precisely the treatment group

about whom he is shown information, and that his reference statistic is precisely the information

statistic that he is shown about the relevant treatment group between rounds. Thus, when the
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information treatment shows players the average payoff in their neighborhood, each player assesses

outcomes with respect to the average payoff in his neighborhood. If they are instead shown the

average contribution in the whole population, they assess utility with respect to the average con-

tribution in the population. In this way, changing the information treatment changes the utility

function employed by the players, by making certain outcomes and comparisons more salient.

The other important feature of the model is the learning hypothesis. We argue that players are

boundedly rational agents who learn to play the game over time. Following Arifovic and Ledyard

(2009), we use the model of Individual Evolutionary Learning (IEL) to represent the learning pro-

cess. While there are several other widely studied learning models, such as Reinforcement Learning

or Experience-Weighted Attraction, IEL is particularly well-suited to repeated games with large,

continuous action spaces, like the ones considered in this paper.3 The IEL model is reactive and

individual-based, which allows us to avoid making restrictive assumptions about common knowledge

or beliefs, and it has already been used successfully by Arifovic and Ledyard (2009) to explain a

number of stylized facts from existing experimental data in linear public goods games. We use both

the modified model of other-regarding preferences, which depend on the information treatment, and

the IEL model, altered to incorporate the network structure of the game, to simulate the learning

behavior of the subjects in the series of network public goods experiments.

While we focus on the learning hypothesis, there is another widely adopted approach to explaining

the dynamics of average contributions in repeated games. The strategic approach contends that

the decay in average contributions can be explained as strategic equilibrium behavior in which

selfish players cooperate early in the game, in order to stimulate contributions from conditionally

cooperative players. Although this approach is theoretically quite appealing, it requires a great

deal of common knowledge about all players’ preferences, beliefs, and information. While these

assumptions may be appropriate in simple games like a repeated prisoner’s dilemma, they are difficult

to justify in a repeated public goods game with many periods and a continuous action space, let

alone in such a game where outcomes and contributions are not always perfectly observed. Thus,

3For details of other learning models, see Roth and Erev (1995) for Reinforcement Learning, and Camerer and Ho
(1999) for Experience-Weighted Attraction.
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we adopt the learning hypothesis, in conjunction with a theory of other-regarding preferences, to

model individual behavior in the finitely repeated linear public goods experiments.

The main contributions of the paper are as follows. First, we confirm a considerable amount of

heterogeneity in contribution decisions across individuals. Some subjects contribute everything, some

contribute nothing, while others contribute increasing or decreasing amounts between zero and full

contribution. A significant proportion of subjects always contribute their entire endowment, which

suggests that unconditional giving is a behavioral strategy that should be acknowledged. Many

existing studies ignore or else fail to explain this presence of unconditional giving. For instance, Fis-

chbacher and Gachter (2010) and Ambrus and Pathak (2011) focus only on free-rider and conditional

cooperator types. We use the decisions in the experiments and a simple set of criteria to classify each

subject in a given experimental match as either a free-rider, who always contributes zero; altruist,

who contributes everything, unconditionally; or conditional cooperator, whose contribution depends

on the contributions of others.

Second, we find that more than half of the subjects switch between these behavioral classifica-

tions across games with different information treatments. This switching behavior is consistent with

our modification to the other-regarding preferences model, which links social comparisons to the

outcomes and reference groups that are made salient by the information treatment. Overall, ap-

proximately 70% of the subjects who participated in the experiments behave in a manner consistent

with the modified other-regarding preferences model.

Third, we show that learning is an important channel through which information and interaction

structure affect contributions. After classifying the subjects as free-riders, altruists, or conditional

cooperators, we compute the complete information Nash equilibrium of the one-shot game. This

equilibrium provides a benchmark which we might expect players to converge to with repetition in

the experiment, as they learn how to play the game. In fact, we find that in most cases, subjects’

contributions do not converge to the corresponding Nash equilibrium. However, they are remark-

ably consistent with simulated behavior generated by the combined ORP-IEL model. By their

classification, the free-riders and altruists converge almost immediately (or very quickly) to their
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Nash equilibrium (and dominant strategy) contributions of zero and the endowment, respectively.

The stability of their contribution decisions provides an anchor that accelerates learning by their

neighbors in the network. As a result, conditional cooperators who are connected to free-riders or

altruists learn faster than those who are not, and the degree of learning spreads contagiously around

the circle network. This differential learning between free-riders/altruists and conditional coopera-

tors, and the learning contagion effects are both observed in the experimental data and reproduced

in the simulation data.

In the next section, we introduce the game and outline the behavioral model. Section 3.3 describes

the experimental procedures and design. In Section 3.4, we derive the benchmark Nash equilibrium

of the one-shot game and show that players may switch between behavioral strategies across games

with different information treatments. In Section 3.5, we present the main findings from the data,

and in Section 3.6, we present the learning results. Section 3.7 concludes and discusses avenues for

further research.

3.2 The Network Public Goods Game

Let I = {1, ..., n} be the set of players, each with an endowment ωi = 1. The players must each

choose how much of their endowment to consume privately, and how much to contribute towards

the public good. Player i’s contribution to the public good is yi ∈ [0, 1] and y = (yi)i∈I is the profile

of contributions made by all players.

The players are connected through a network, which is defined by an n × n matrix G, where

G(i, j) = 1 if and only if player i is directly connected to player j. We assume G(i, i) = 0 for all

i ∈ I. We use Ni(G) to denote the set of direct neighbors for player i in the network G. Formally,

Ni(G) = {j ∈ I |G(i, j) = 1}. (3.1)

Let ki(G) = |Ni(G)| be player i’s degree.

The level of public good enjoyed by player i depends on his own contribution, the contributions
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made by his neighbors, and the marginal return to contributions, A, and is given by

Y i(G,y) = A ·
[
yi +

∑
j∈Ni(G)

yj

]
. (3.2)

Player i’s payoff is

πi(G,y) = 1− yi + Y i(G,y). (3.3)

We consider A ∈ (0.5, 1) since it gives rise to a classical social dilemma. Within this range, an

individual looking to maximize payoffs has a dominant strategy to free-ride, while the total welfare

of all players is maximized by everyone contributing their entire endowment.

3.3 Experimental Design

The experiments were run in the Social Science Experimental Laboratory (SSEL) at the California

Institute of Technology in August and September 2011. There were a total of 72 participants over

6 sessions. Each session lasted for approximately 1 hour and subjects earned an average payout of

US$25. Earnings in the experiment were denominated in tokens and converted into US dollars at the

end of the experiment (500 tokens = US$1). At the start of the experiment, the instructions were

distributed and then read aloud, with summary slides projected at the front of the room. At the end

of the instructions, the subjects participated in an unpaid 3-period practice match and answered

four questions about the experiment and the way earnings were calculated.

There were 12 subjects in each session. A session was composed of 4 matches. At the start of

each match, the 12 subjects were randomly divided into two groups of six players. In each group,

the players were assigned to a position on the circle network shown in Figure 3.1 and then played

15 rounds of the voluntary contributions game described in Section 3.2.

In every round of a match, each subject received 100 tokens. During the round, we asked them

how many tokens they wished to contribute towards some project and informed them that whatever
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Figure 3.1: The circle network with 6 agents. As an example, the neighborhood for player 1 includes
himself and his two neighbors, player 2 and player 6.

tokens they did not contribute, they could keep for themselves. We used a partners treatment, so

that subjects stayed in the same group and at the same position in the network through every round

of a given match. In four of the sessions, the 12 subjects were randomly rematched and repositioned

before each match. In the other two sessions, subjects were randomly rematched and repositioned

before match 1 and match 3 only. Their groups and positions were unchanged from match 1 to

match 2 and from match 3 to match 4.

We calculated player payoffs as follows. First, we added the player’s contribution to the sum of

the contributions made by her direct neighbors. Then we multiplied the total by a return factor A

(equal to 0.6 in all six experiments), and added this amount to the tokens that were kept by the

player. That is, for player i, the payoff πi in a particular round was given by

πi = 100− i’s contribution +A · ( i’s contribution +
∑

i’s neighbors’ contributions ).

In every round of a match, the player’s location, her direct neighbors, and the return factor A were

kept fixed. Moreover, the payoffs in one round did not depend on decisions made in previous rounds.
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3.3.1 Information Treatments

After each round, the subjects were given the following summary information. In all matches, we

showed them the amount they contributed to the project, the total contributions made in their

neighborhood, and their payoff from the round. In addition, we reported one of the following

information treatments.

(i) The average payoff received by you and your direct neighbors.

(ii) The average payoff received by all six players in your group.

(iii) The average contribution made by you and your direct neighbors.

(iv) The average contribution made by all six players in your group.

In a given match, all players faced the same information treatment, and we used the same information

treatment in every round of a match. After the last player made his or her contribution decision,

we displayed the round summary screen with all the information for approximately 8 to 10 seconds,

after which the next round began. All reported information from previous rounds was displayed in

a history panel at the bottom of the screen.4 We ran the two groups simultaneously for each match

so that subjects did not know which 5 out of the other 11 subjects they were matched with, let alone

which two were their direct neighbors.

3.4 The Behavioral Model

In this section, we introduce the behavioral model, which combines a modified model of other-

regarding preferences with the IEL model of Arifovic and Ledyard (2009).

3.4.1 Other-Regarding Preferences

The preferences in the model are an extension of the specification used by Arifovic and Ledyard

(2009). Their model is consistent with the outcome-based or distributional models of Fehr & Schmidt

4Screenshots are provided in the Appendix along with the experiment instructions.
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(1999) and Bolton & Ockenfels (2000). Each player evaluates outcomes with respect to a reference

group of others, according to two underlying motivations. First, the player is altruistic, in that he

cares about the well-being of the players in his reference group. Second, the player is concerned

about fairness, in the sense that he dislikes outcomes in which he does not do as well as the others in

his reference group. In Arifovic and Ledyard (2009), the reference group is just the set of all players

in the game. Our innovation introduces two channels that link preferences to the information a

player observes about others’ decisions. The first channel is the player’s reference group, which is

induced by the treatment group, and the second is the information statistic, which he uses to evaluate

outcomes.

Let Ri be player i’s reference group, and assume that i ∈ Ri and |Ri| ≥ 2 for all i ∈ I. We

consider two possible reference groups in this paper,

(1) the player’s neighborhood, Ri = Ni(G) ∪ {i}, and

(2) the whole set of players, Ri = I.

Let Si be the reference statistic used by player i to evaluate outcomes. In this paper, we consider

the case in which players evaluate outcomes using either

(1) average contribution in their reference group, Si =
∑
j∈Ri

yj
|Ri| , or

(2) average payoff in their reference group, Si =
∑
j∈Ri

πj

|Ri| .

Each player has an underlying type, which consists of an altruism parameter, βi ≥ 0 and an envy

parameter, γi ≥ 0. We assume this underlying type is stable and independent of both the reference

group and reference point. Thus, we can write player i’s utility function as

Ui(G,y) = πi(G,y) + βi · Si − γi ·max

{
0 , ∆Si

}
, (3.4)

where ∆Si takes one of two forms. If player i’s reference point is the average contribution in her
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reference group, then

∆Si = yi −
∑
j∈Ri

yj
|Ri|

. (3.5)

On the other hand, if player i’s reference point is the average payoff in her reference group, then

∆Si =
∑
j∈Ri

πj
|Ri|
− πi. (3.6)

3.4.2 Equilibrium Behavior

Given a set of types, reference groups, and reference statistics, it is relatively straightforward to

solve the (complete information) Nash equilibrium of the game. First, consider the case in which

the reference statistic is average contribution for all players.

Proposition 3.4.1. Suppose {(βi, γi)}i∈I are the players’ preference parameters, {Ri}i∈I are their

reference groups, and Si =
∑
j∈Ri

yj
|Ri| are their reference statistics. Then there exists a Nash equilib-

rium y∗, in which each player i chooses a contribution equal to

(a) y∗i = 0 if βi ≤ (1−A)|Ri| (3.7)

(b) y∗i =
∑
j∈Ri

y∗j
|Ri|

if (1−A)|Ri| < βi < (1−A+ γi)|Ri| − γi (3.8)

(c) y∗i = 1 if βi ≥ (1−A+ γi)|Ri| − γi. (3.9)

If there exists some player j who satisfies either of the conditions in (a) or (b), then the equilibrium

is unique. Otherwise, there are a continuum of equilibria in which y∗i = y∗j for all players i, j ∈ I.

Proof 6. See Appendix.

Proposition 3.4.1 says that in equilibrium, a player either contributes everything, contributes

nothing, or contributes the average contribution made by the players in her reference group. The

conditions on βi and γi have a natural interpretation. The inequality in (3.7) says that if player
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i’s altruistic parameter, βi is sufficiently low, then his best response to any profile of others’ contri-

butions is to contribute zero. In this case, we refer to him as a free-rider. On the other hand, the

inequality in (3.9) implies that if player i’s altruistic parameter is high enough relative to his fairness

parameter γi, then his best response is always to contribute everything, making him an altruist. For

a player who falls into case (b), for any given profile of others’ contributions, his best response is to

contribute the average amount contributed by the players in his reference group. We refer to such

a player as a conditional cooperator.

Deriving the Nash equilibrium of the game for a given realization of types, and reference groups,

when the reference statistic is average contribution, involves a few simple steps. First, we classify the

altruists and free-riders, whose equilibrium behavior is unconditional. Then we find the equilibrium

contributions of the conditional cooperators by solving a system of linear equalities. As long as

there is at least one free-rider or altruist, there is a unique solution to this system. However, if

all players are conditional cooperators, then the system has a continuum of solutions in which all

players contribute the same amount.

Next, suppose that the reference statistic is average payoff for all players.

Proposition 3.4.2. Suppose {(βi, γi)}i∈I are the players’ preference parameters, {Ri}i∈I are their

reference groups, and Si =
∑
j∈Ri

πj

|Ri| are their reference statistics.. Then there exists an equilibrium

in which player i chooses a contribution equal to

(a) y∗i = 0 if βi ≤ (1−A)|Ri|

A

(
|Ni(G) ∩Ri|+ 1

)
− 1

(3.10)

(b) y∗i = 1 if βi ≥ γi +
(1−A)(1 + γi)|Ri|

A

(
|Ni(G) ∩Ri|+ 1

)
− 1

. (3.11)

If player i does not satisfy either of the conditions in (a) or (b), her best response to a profile of

others’ contributions is to choose the feasible contribution that minimizes the absolute difference

between her own payoff and the average payoff in her reference group.



47

Proof 7. See Appendix.

Proposition 3.4.2 provides similar predictions as Proposition 3.4.1. A player who is sufficiently

self-interested will free-ride, while a player who is sufficiently altruistic, relative to his envy, will

give everything. The equilibrium behavior of a conditional cooperator is slightly different, due to

feasibility constraints. While a conditional cooperator would like to equalize his payoff with the

average payoff in his reference group, this will not always be possible, since he cannot contribute

less than zero or more than his endowment. As a result, the solution to the set of simultaneous

inequalities may be on the boundary.

These propositions imply that, even in equilibrium, a player with fixed type parameters βi and

γi, may behave differently when their reference group and reference statistic change. This is because

the critical cutoffs in the type space that define free-riders, altruists, and conditional cooperators

depend on the reference group and reference statistic. Given our assumption that players use the

treatment group as their reference group and the treatment statistic as the reference statistic, our

model predicts variation in behavior as we change the information treatment. The sequence in

Figure 3.2 illustrates how a player with fixed type parameters faces different incentives under the

four alternative treatments used in the experiments.

3.4.3 Learning

While the other-regarding preferences (ORP) are crucial for explaining behavior, they are still not

sufficient to explain the full pattern of contributions in the repeated game. Our full behavioral

model combines the modified ORP model with the IEL theory of learning developed by Arifovic &

Ledyard (2009).

The main features of the IEL model are described by the following. Each player i keeps a finite

set of remembered actions in period t, denoted by Ait ⊂ [0, 100]. Suppose that |Ait| = J for all i

and all t. Furthermore, each player uses a forgone utility function, ui(aij,t|ri(yt)), which specifies

the utility that player i thinks he could have earned by playing alternative aij,t in period t, given the

information ri(yt) that he received at the end of period t. The three stages of the model are
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Figure 3.2: Switching behavior predicted by the modified other-regarding preferences model. The
player “Luke” has fixed type parameters (βi, γi), while the cutoff regions change with the information
treatment.

1. Experimentation. For each player, on each slot j = 1, ..., J of their remembered set, exper-

imentation occurs with probability ρ. If experimentation occurs, then the old alternative in

slot j, aij,t is replaced by a new action, which is randomly selected from [0, 100] according to

a normal distribution with mean aij,t and standard deviation σ.

2. Replication. For each player, and each slot j = 1, ..., J , the alternative filling slot j in period

t + 1 is chosen as follows. Pick two member of Ait randomly with replacement, with uniform

probability. Call these alternatives aik,t and ail,t. Then set

aij,t+1 =


aik,t if ui(aik,t|ri(xt)) ≥ ui(ail,t|ri(xt))

ail,t if ui(aik,t|ri(xt)) < ui(ail,t|ri(xt)).

(3.12)

This procedure favors alternatives with a lot of replicates in the remembered set at period t,
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and alternatives that would have paid well in period t, had they been used.

3. Selection. In period t+ 1, alternative aik,t+1 ∈ Ait+1 is selected with probability proportional

to the forgone utility from that alternative, given by

µik,t+1 =
ui(aik,t+1|ri(xt))− εit+1

J∑
j=1

[
ui(aij,t+1|ri(xt))− εit+1

] (3.13)

for all i ∈ {1, ..., N} and all k ∈ {1, ..., J}, where

εit+1 = min
a∈Ai

t+1

{
0, ui(a|ri(xt))

}
.

We assume that the process is initialized by randomly populating Ai1 with J uniform draws from

[0, 100], and setting µik,1 = 1
J for all slots k. Given the design of our experiments, we assume that

the forgone utility function depends on the information treatment and the network structure. We

consider each treatment separately.

Treatment 1 — Average Payoff in Neighborhood

In this case, the players observe their own contribution, yit, their own payoff, πi and the average

payoff in their neighborhood, which is given by

π̄i =
πi

|Ni(G) ∪ {i}|
+

∑
j∈Ni(G)

πj
|Ni(G) ∪ {i}|

.

Furthermore, |Ni(G)∪ {i}| and G are known by each subject. Thus, if player i chooses yit in period

t, her own perceived payoff from choosing ai instead of yit, given what her neighbors did would have

been

π̂i = πi − (ai − yit)(1−A),
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while the average payoff of her reference group (the players in her neighborhood, including herself)

would have been

ˆ̄πi = π̄i + (ai − yit)
[
|Ni(G)|

|Ni(G) ∪ {i}|
A− (1−A)

|Ni(G) ∪ {i}|

]
.

From these two counterfactuals, we can write the forgone utility function for player i as

ui(ai|yit, πi, π̄i) = πi − (1−A)(ai − yit)

+ βi(π̄i + (ai − yit)
(

|Ni(G)|
|Ni(G) ∪ {i}|

A− (1−A)

|Ni(G) ∪ {i}

)
− γi ·max

{
0, π̄i − πi + (ai − yit)

|Ni(G)|
|Ni(G) ∪ {i}|

}
.

Notice that the counterfactuals are all assessed under the assumption that other players’ decisions

are kept fixed.

Treatment 2 — Average Payoff in Group

In Treatment 2, subjects observe the average payoff of all the players in their group. Thus, they see

their own contribution yit, their own payoff πi, and the group average payoff given by

π̄ =
πi
n

+
∑
j∈I

πj
n
.

In such a case, the counterfactual own payoff and group average payoff allow us to write the forgone

utility function for player i from choosing a contribution ai instead of yit as

ui(ai|yit, πi, π̄) = πi − (1−A)(ai − yit) + βi
(
π̄ + (ai − yit)

( |Ni(G)|A− (1−A)

n

))
−γi ·max

{
0, π̄ +

(ai − yit)
(
|Ni(G)|A− (N + 1)(1−A)

)
n

}
.



51

Treatment 3 — Average Contribution in Neighborhood

For Treatment 3, subjects observe their own contribution, yit, their own payoff, πi and the average

contribution made in their neighborhood,

ȳi =
∑

j∈Ni(G)∪{i}

yjt
|Ni(G) ∪ {i}|

.

Determining the counterfactual own payoff, and the counterfactual average neighborhood contribu-

tion, we can write the forgone utility function for this case as

ui(ai|yit, πi, ȳi) = πi − (1−A)(ai − yit) + βi
(
ȳi +

(ai − yit)
|Ni(G) ∪ {i}|

)
−γi ·max

{
0, ai − ȳi −

(ai − yit)
|Ni(G) ∪ {i}|

}
.

Treatment 4 — Average Contribution in Group

Finally, for Treatment 4, subjects observe own contribution, yit, own payoff, πi and the group average

contribution,

ȳ =
∑
j∈I

yjt
n
.

In this case, the relevant counterfactuals, assuming others’ decisions do not change, generate the

forgone utility function given by

ui(ai|yit, πi, ȳ) = πi − (1−A)(ai − yit) + βi
(
ȳ +

(ai − yit)
n

)
−γi ·max

{
0, ai − ȳ − (ai − yit)

n

}
.

In Section 3.6, we return to the learning model, and describe the simulation procedures and the

learning results. In the next section, we turn instead to the experimental findings.
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3.5 Experimental Findings

We begin by describing the aggregate data, which paints a picture consistent with previous exper-

imental findings. As Figure 3.3 shows, the average contribution exhibits a steady decay from just

over half the endowment in the first round, to about 20% of the endowment in the last round. This

pattern of decay is also consistent in each of the four information treatments.
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Figure 3.3: Average contribution over all matches by round. Treatment 1 = ave. payoff in neigh-
borhood, Treatment 2 = ave. payoff in group, Treatment 3 = ave. contribution in neighborhood,
Treatment 4 = ave. contribution in group

Between treatments, average contributions are slightly higher in Treatments 3 and 4, when

players observe the average contributions of others, than in Treatments 1 and 2, when they observe

the average payoffs of others. This may be a result of more free-riders in the average payoff treatments

than the average contribution treatments, which is consistent with the higher cutoffs for free-riding

predicted by the model. On the other hand, there is little evidence that average contributions differ

depending on whether the subjects are shown information about the whole group or just about their

neighbors. Nevertheless, there is much more variation when we turn to look at the individual match

level data.
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3.5.1 Subject Behavior

In order to analyze the data at the individual match level, I first classify the subjects by their

behavior as a free-rider, altruist, or conditional cooperator. I use a simple set of criteria to classify

the subjects, based on their choices in the penultimate three rounds of the matches. The criteria

are as follows.

Consider the subject’s contribution decisions in Rounds 12, 13, and 14.

(1) If the subject’s contribution is less than 10 in at least 2 of the 3 rounds, she is classified as a

free-rider.

(2) If the subject’s contribution is greater than 90 in at least 2 of the 3 rounds, she is classified as

an altruist.

(3) If the subject’s contribution does not satisfy either of the conditions in (1) or (2), she is

classified as a conditional cooperator.

In the data, subjects’ decisions exhibit all three types of behavior predicted by the modified

other-regarding preferences model. Table 1 summarizes the frequency of each behavior and highlights

the considerable heterogeneity among the subject pool. Furthermore, there are a large variety of

configurations of these classes in the 48 Matches. Table 2 shows the frequency of 6 broad categories

of configurations. Within each of the reported categories there is even more variation regarding, for

instance, the number of free-riders and conditional cooperators, whether free-riders are adjacent or

separated, or whether or not a free-rider and altruist are adjacent.

Table 3.1: Player Behavior Classification

Behavior type Frequency
Free-Rider (F) 74

Altruist (A) 53

Conditional Cooperator (C) 161

Total 288
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Table 3.2: Configuration of Players: F = Free-rider, A = Altruist, C = Conditional Cooperator

Configuration description Frequency
F & C only 18
A & C only 10

F only 1
A only 2
C only 5

F, A, & C 12
Total 48

In order to check how well my classification fits with the data, I examine the average contribution

made by each class of player in each round. Figure 3.4 shows the average contribution by round

for each class. The figure illustrates two key points. First, the free-riders take time to converge to

free-riding. In contrast, the altruists tend to converge very quickly to full contributions. Second, the

classification procedure provides a fairly robust fit to the decisions of the free-riders and altruists,

even in the earlier rounds which are not used for classification. Out of the 74 free-riders, 15 contribute

0 in every round, and 29 of them have an average contribution (over all rounds) less than 5. Similarly,

out of the 53 altruists, 18 contribute 100 in every round, and 41 of them have an average contribution

(over all rounds) greater than 90. Thus, there are some classified free-riders who contribute nothing

from the beginning, and almost all classified altruists contribute very close to their entire endowment

through every round of the game.

In Figure 3.5, I also show the average contribution for the conditional cooperators, when they

are broken down by the classification of their direct neighbors. For instance, notice that the average

contribution for conditional cooperators with two altruist neighbors is close to full contribution, while

the average contribution for conditional cooperators with two free-rider neighbors is decreasing to

zero (there are only 2 players in this situation). For the other subclasses of conditional cooperators,

the average contributions are all in line with what we should expect. Those with an altruist neighbor

contribute higher (on average) than those with a free-rider neighbor. For the most part, the average

contribution in the subclasses also appears to decline over time.
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3.5.1.1 Switching Behavior in the Experiments

In the data there are many subjects who have different classifications in different matches. Using

the criteria described above, there are 37 subjects (51%) who are classified differently in different

matches. Of these 37 subjects, 15 exhibit switching that is perfectly consistent with the restrictions

of the theory. There may be several reasons why the other subjects who switch do not appear to do

so in a manner consistent with the theory. For one thing, subjects may be making mistakes or still

learning about their incentives in the game, particularly in the first or second matches that they play.

However, this is a difficult phenomenon to identify or allow for in the analysis. Alternatively, there

may be some incorrect classification by the simple criteria that I use in this paper.5 All in all, the

analysis in this section suggests that, out of the 72 subjects who participated in these experiments,

50 of them (70%) exhibit revealed behavior that can be explained by the modified other-regarding

preferences model.

Table 3.3: Switching Behavior by Subject

Subject’s Classifications Number of Subjects
Free-Rider (F) in all 4 matches 8

Conditional Cooperator (CC) in all 4 matches 24
Altruist (A) in all 4 matches 3
Either F or C in each match 15
Either C or A in each match 14
Either F or A in each match 2

Each of F, C & A in some match 6
Total 72

3.5.2 Comparison to the Benchmark Nash Equilibrium

In Section 3.4, we derived the conditions for solving for the complete information Nash equilibrium

of the stage game, assuming players have other-regarding preferences. Except for the case when all

six players are conditional cooperators (CCs), there is a unique Nash equilibrium for a given config-

uration of free-riders, altruists, and CCs. Even though subjects do not have complete information

5One way to address this is to try to elicit players’ revealed types from a separate social dilemma type game that
might allow us to parametrize the subjects’ types before they play the repeated public goods games. An approach
similar to the one used by Fischbacher et al. (2001) in which players play submit their contribution decisions via the
strategy method is one alternative.
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in the experiments, a natural hypothesis is that players’ contributions will converge fairly close to

the Nash equilibrium after 10 or 12 rounds of playing with the same group. In fact, we show that

players’ contributions do not always converge to the corresponding Nash equilibrium.

Since each match is unique, with possibly a different configuration of types, we focus on the

absolute differences between the Nash equilibrium contributions, and the 3-period average contri-

bution from rounds 12–14. Panel (a) of Figure 3.6 is a scatterplot of the differences for each player

in all matches. It shows that there are many points scattered far away from zero. The variance is

significantly larger than we need to conclude that contributions converge to the Nash equilibrium.

The mean difference is 14.69, while the standard deviation is 18.48, almost one fifth of the endow-

ment. This picture is also slightly misleading, since any free-rider or altruist types are so classified

based on their contributions in the penultimate three rounds of the game. Thus, including them

in the calculation biases the average difference between Nash equilibrium and the 3-period average

contribution towards zero.

In panel (b) of Figure 3.6, we remove the altruist and free-rider types. In this case, the picture is

even more bleak. The mean absolute difference increases to 26.19, while the standard deviation stays

fairly constant at 18.64. This is hardly overwhelming evidence in support of the hypothesis that

subjects converge to the corresponding Nash equilibrium given the underlying types. Such disparity

between the data and the Nash equilibrium contributions suggests that if conditionally cooperative

subjects are learning how to play the game over time, that learning is incomplete.

From the individual match level data, we find evidence for the following two results.

Result 3.5.1. Conditional cooperators’ contributions come closer to the corresponding Nash equi-

librium contribution when there are more free-riders or altruists in the group.

This first result suggests that the composition of players in the match affects the level of contri-

butions made by conditional cooperators. Below, we argue that this result is driven by differential

learning. Free riders and altruist learn to play their dominant strategies (zero and full contributions,

respectively) relatively fast in the repeated game. The stability of their contributions provides an

anchor which enhances learning by their conditional cooperator neighbors. The more anchors in the
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(a) All player types. 258 observations, mean absolute difference = 14.69,
std. error = 18.48
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(b) Conditional cooperators only. 132 observations, mean absolute differ-
ence = 26.19, std. error = 18.64

Figure 3.6: Absolute difference between 3-period ave. contribution (Rounds 12–14) and the corre-
sponding Nash equilibrium. These figures suggest that contributions do not converge to the Nash
equilibrium, even on average.
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group, the faster the conditional cooperators learn, and the closer they come to playing the Nash

equilibrium by the end of the game.

The second result emphasizes the importance of the players’ relative positions in the network,

given the group’s composition. In particular, players that are positioned next to a free-rider or next

to an altruist tend to come closer to contributing the corresponding Nash equilibrium level.

Result 3.5.2. Individual contributions in a given match tend to be closer to (further from) the

benchmark Nash equilibrium for conditional cooperators who are positioned closer to (further from)

the free-rider or altruists in the group.

The intuition for this result is that, since free-riders and altruists provide an anchor for learning

by their conditional cooperator neighbors, learning spreads contagiously through the network. For

instance, if the group consists of a single free-rider and five conditional cooperators, the conditional

cooperators who are next to the free-rider will learn faster and converge closer to the corresponding

Nash equilibrium of zero contributions. The learning spreads more slowly to their other neighbors,

and slowest to the conditional cooperator who is farthest removed from the free-rider in the network.

There is evidence supporting both of these results across each of the four information treatments.

A full analysis is provided in Appendix B. There, we summarize the evidence from the individual

matches broken down by the information treatment. However, we report several representative cases

in this section, in order to highlight the results. First consider Result 3.5.1. In Figure 3.7, we present

the actual 3-period average contributions in three matches played under Treatment 2, across various

sessions. For each match, the player number is shown on the horizontal axis, with each player next

to his neighbors. Note that the two end players are connected to each other. Where possible, we

have arranged the order to show any free-riders or altruists in the middle.

In each of the three matches in Figure 3.7, the composition of types includes only free-riders and

conditional cooperators, which implies that the benchmark Nash equilibrium for each player is to

contribute zero. Moving from left to right, match 3a includes one free-rider, match 5b includes two

free-riders, and match 2a includes three free-riders. As demonstrated by the figures, the average

contributions made by the conditional cooperator types are declining as we move from the left panel
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(fewer free-riders) to the right panel (more free-riders). The result is also captured under Treatment

4, by matches 5b, 1a, and 4b, which consist of conditional cooperators grouped with two, three, and

four altruists, respectively. In these cases, the corresponding Nash equilibrium contributions are 100

for all subjects. Moving from left to right, Figure 3.8 indicates that the average contribution of the

conditional cooperators is increasing in the number of altruists.

Next, consider Result 3.5.2. First of all, this result is also demonstrated remarkably well by the

matches shown in Figure 3.7. In each of the three matches, contributions are increasing as we move

in either direction, away from the free-riders. The result is also highlighted in Figure 3.9, which

reproduces match 1b under Treatment 1, match 4a under Treatment 2, and matches 1a, 2b, and 3a,

under Treatment 3.
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Figure 3.7: Treatment 2 matches with free-riders and CCs only. Free-riders’ contributions are shown in gray, while the contributions of conditional
cooperators are shown in black.
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Figure 3.8: Treatment 4 matches with altruists and CCs only. Altruists’ contributions are shown in gray, while the contributions of conditional
cooperators are shown in black.
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Figure 3.9: Effect of players’ positions on contributions. Gray bars indicate either a free-rider or altruist. Conditional cooperators are shown in
black.
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3.6 Learning Results

In order to explain Result 3.5.1 and Result 3.5.2, we conduct learning simulations using a com-

bined model of Individual Evolutionary Learning (IEL) and the modified other-regarding preferences

model. In this section, we describe the simulations and present the learning results. These results

show that the nonconvergence to the benchmark Nash equilibrium levels and the two features of the

data described in Result 3.5.1 and Result 3.5.2 are all consistent with the combined ORP-learning

model.

3.6.1 Simulations

For the simulations, we used the following parameter values to calibrate IEL. The size of the remem-

bered set for each player is set to J = 100 and the probability of experimentation ρ = 0.033. The

new alternative is selected according to a normal distribution, conditional on the set of possible con-

tributions [0, 100] with mean equal to the old alternative and a standard deviation equal to σ = 10.

These are the same values of J , ρ, and σ used by Arifovic & Ledyard (2009), who show that their

results are not sensitive to the precise values of these parameters. Likewise, in our simulations, the

particular values of these parameters do not induce any significant changes in the results.

We ran 250 iterations for each simulation, and a simulation for each individual match in the

dataset, tailored to the classified configuration of players, and the information treatment used for

the match. For each information treatment, the cutoffs that characterize the free-riders and altruists

are slightly different. Thus, in order to ensure that the configuration of players is consistent in the

simulation with the corresponding individual match, we assign the free-riders and altruists preference

parameters that satisfy the appropriate cutoff for the corresponding information treatment. For the

conditional cooperators, each iteration of the simulation draws a new pair of preference parameters

from a range that only permits incentives for conditional cooperation. This ensures that, in each

iteration of each simulation, the actual configuration of players, as classified according to the criteria

discussed above, remains the same.
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3.6.2 Simulation Results

The scatterplots in Figure 3.10 show the absolute differences between the 3-period average contribu-

tion (from Rounds 12–14) in the simulations and the data. Panel (a) shows all players while panel

(b) shows only the conditional cooperators in order to remove the downward bias from classification

of the free-riders and altruists. The absolute differences are, on average, significantly improved over

the differences between the data and the Nash equilibrium. Still, the variance is not particularly

small for either of these cases. Overall, the simulations reduce the mean absolute difference by 26%

from 14.69 to 10.85, using all players, and by 33% from 26.19 to 17.48, using just the conditional

cooperators.
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Figure 3.10: Differences between 3-period ave. contribution: Simulations vs data
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The consistency between the simulations and data is much more evident at the individual match

level. In particular, the learning simulations reproduce the findings summarized by Result 3.5.1 and

Result 3.5.2. Here, we provide a summary which compares the simulation results with the evidence

of the two main results discussed in Section 3.5. In each figure below, the 6 players in a match are

shown together, next to their neighbors on the horizontal axis, with the exception of the players on

the ends who are also connected to each other. On the vertical axis, we plot the simulation average

in blue (behind) and the data average in red (in front). The main features of the data are reproduced

in the learning simulations for a remarkably high percentage of the matches.

First consider Result 3.5.1. In Figure 3.11, we show that the simulations (blue) replicate the

data (red) quite closely. From left to right, match 3a includes one free-rider, match 5b includes two

free-riders, and match 2a includes three free-riders. As in the data, the simulations also suggest that

the average contributions made by the conditional cooperators are declining as we move from the

left panel across to the right panel.

The same is true for matches 5b, 1a, and 4b under Treatment 4, shown in Figure 3.12. In these

matches, which consist of two, three, and four altruists, respectively, both the simulations and the

data show that the average contribution of the conditional cooperators is increasing in the number

of altruists.

Next, consider Result 3.5.2. As discussed in Section 3.5, this result is also supported by the

matches in Figure 3.11. In each of the three matches, both the simulated and actual contributions

get noticeably higher for players as we move away from the free-riders. The simulations are also

consistent with Result 3.5.2 in the matches displayed in Figure 3.13.
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Figure 3.11: Treatment 2 matches with free-riders and CCs only. Simulation averages are shown in blue (behind), while the data averages are shown
in red (front).
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Figure 3.12: Treatment 4 matches with altruists and CCs only. Simulation averages are shown in blue (behind), while the data averages are shown
in red (front).
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Figure 3.13: Learning contagion. Simulation averages are shown in blue (behind), while the data averages are shown in red (front).
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3.7 Conclusion

In this paper, we find evidence that both the information shown to players between rounds and the

neighborhood structure of interaction affect voluntary contributions to a public good on a network.

Using a series of experiments, we show that contributions are consistent with a model in which

players, who have other-regarding preferences that depend on the information treatment, learn how

to play the game over time. The dependence of preferences on who and what the players observe

after each round helps to explain heterogeneity in behavior, and also captures situations in which

players switch between very different behavioral strategies across different games. In addition, from

an experimental design perspective, these results imply that experimenters can partially control

subjects’ preferences, even in settings where subjects bring their own, unobservable other-regarding

preferences into the lab.

After developing a modified other-regarding preferences model, we use a set of simple criteria

to identify and classify each player in a match as a free-rider, an altruist, or a conditional cooper-

ator, based on their choices in the experiments. For the various configurations that emerge in the

experiments, players’ contributions tend not to converge to the benchmark Nash equilibrium of the

stage game by the end of the repeated game. However, the data is consistent with the hypothesis

that players learn how to play the game over time. For the circle network structure, we find that

players learn differentially, depending on the classification of the other players in their group, and

on their relative positions within the network. The main features of the data are closely replicated

using learning simulations for each realized configuration of free-riders, altruists, and conditional

cooperators. Following the approach in Arifovic & Ledyard (2009), we generate the simulations by

merging the Individual Evolutionary Learning model with my modified model of other-regarding

preferences.

The results reported in this paper provide some important insights into the way contributions

depend on what information individuals observe about others and how the interaction between

players is structured. The simple, reactive dynamics of the IEL model, coupled with a model of other-

regarding preferences that is keyed to the information players observe between rounds, highlights
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that learning is an important channel through which information and interaction structure affect

contributions. Both of these features of an environment warrant further study, since they may have

important implications for organizational or institutional design in settings where individual and

group incentives conflict.

There are a number of extensions that follow naturally from the analysis in this paper. First

and foremost, the analysis can be replicated for a range of different network architectures and

neighborhood structures, in order to test whether the overall network structure affects behavior.

While the circle network provides a clearly defined and symmetric neighborhood structure, other

network architectures may provoke a variety of different and interesting results. Alternatively, we

may find that the effect of players’ relative positions on learning is consistent across a range of

different networks and neighborhood structures. Further work might also investigate whether the

results are sensitive to the marginal return on contributions, and the number of players, both of

which are variables that are widely acknowledged to affect contributions.

Another potential extension is to investigate conditional cooperation from the perspective of

the reciprocity literature, in which cooperation responds not only to the decisions of others, but

also to players’ beliefs about others’ contributions. In this respect, future research might pursue a

model that incorporates some of the insights and techniques used by Fischbacher & Gachter (2011),

who actually elicit subjects’ beliefs about how others will play in each round of their experiments.

Given the uncertainty subjects have about the others participating in the experiment, as well as the

considerable heterogeneity among individuals’ cooperative preferences, a formal analysis of beliefs

may complement the simpler dynamics underlying the IEL model which are used in this paper.
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Chapter 4

Learning in Network Public Goods
Experiments

4.1 Introduction

In this chapter, we investigate further the relevance of network structure for contributions in linear

public goods experiments. We use the same approach as in Chapter 3 to develop a behavioral

model that combines other-regarding preferences with the theory of learning. The approach builds

on recent work by Arifovic & Ledyard (2012).1 The previous chapter focuses on the circle network

and the variation in experimental information treatments. In contrast, we focus in this chapter on

a single information treatment, played on a set of different network structures. In all of the network

environments, players participate in a 10-period repeated network public goods game. After each

round, subjects observe the average payoff in their neighborhood, which is defined by network. As in

the previous chapter, our behavioral model provides a set of cutoff conditions on a player’s preference

parameters, which allow us to classify players as free-riders, conditional cooperators, or pure altruists

in any given environment.

We study five different network structures in this chapter; two cases in which the players are

divided into a collection of complete network components (or cliques), which we call 3-player groups

and 5-player groups; and three connected, but incomplete networks, called connected cliques, two-

step circle, and core-periphery (which is coupled with a separate 5-player clique to keep the total

1We refer the reader to the discussion of relevant literature in Chapter 3.
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number of players used constant across networks). The networks are shown in Figure 4.1.
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Figure 4.1: Network Structures

The networks possess several different features. When players are divided into 3-player groups

or into 5-player groups, the influences from free-riders and pure altruists are isolated and contained

within the player’s group. All players in a given clique share a common neighborhood. In contrast,

the connected cliques network captures an environment in which all players’ decisions have the

indirect capacity to affect all other players’ decisions, through their neighbors, neighbors’ neighbors,

and so on. Within each (partial) clique, three players share a common neighborhood, while the

other two have distinct neighborhoods that overlap with the other (partial) cliques. In the two-step

circle network, each player has a distinct neighborhood. Players’ neighborhoods overlap, but with

more channels for behavior in one part of the network to indirectly affect behavior in a more distant

neighborhood. Finally, in the core-periphery network, players in the periphery have four neighbors,

while players in the core have six neighbors, including every other member of the core. This is the

only network we consider where some players have more neighbors than others.

This analysis in this chapter is broken into three parts. First, we study the complete network
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setting with players divided into groups of a certain size. We examine the hypothesis that average

group contributions are the same in the 3-player and 5-player environments, keeping the total return

to contributions fixed. We find that group contributions are higher in the 5-player groups. However,

the average public good consumption for each player is slightly higher in 3-player groups, due to

the higher marginal return to contributions. Nevertheless, we emphasize caution in interpreting the

findings.

Part of the reason for this caution is that, according to our behavioral theory, changing the

size of the groups also changes the incentives for players to free-ride or to give unconditionally.

Each environment induces a (potentially) different pair of cutoff conditions in the type space that

determine whether an individual has a dominant strategy to free-ride or to contribute his entire

endowment. We classify players in each group by applying a set of simple criteria to their decisions in

the experiment. While our theory suggests certain restrictions on the classifications across networks,

a within-subject analysis of player classification is not consistent with these restrictions. For instance,

we can show that a player who is a free-rider in a 3-player group, should also be a free-rider in a

5-player group. Unfortunately, in the data, we consistently observe classifications that violate the

predictions of the theory. Although this may be exacerbated somewhat by the small sample size and

the coarseness of the classification criteria, it casts a shadow on the predictions of the other-regarding

preferences component of our model, at least with respect to the static version of the game.

We also compare average contributions across 5-player groups, connected cliques, and two-step

circle networks. In each of these three network environments, every player has exactly four direct

neighbors, and the marginal per capita return to contributions is 0.4. As a result, the cutoffs for

determining free-riders and altruists are exactly the same in all three networks. In theory then,

any differences in average contributions between the networks may be driven by differences in the

network structure. We find that average contributions are highest in the 5-player groups, followed

by the connected cliques, and lowest in the two-step circle networks. However, again we exercise

caution in interpreting the data. A within-subject comparison of classifications across networks is

more consistent with the predictions of the theory, although there are still several violations, where
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a subject is classified differently in the different network environments. While this does not bode

particularly well for our theory of other-regarding preferences with respect to the static version of

the game, the combined theory of other-regarding preferences and learning, which we turn to next,

is more successful.

The second part of our analysis concerns average contributions in groups that consist entirely

of conditional cooperators. In these groups, our theory of other-regarding preferences (absent the

learning component) allows for a continuum of Nash equilibria, in which all players contribute the

same amount. Without an a priori rationale for selecting any one of these Nash equilibria, a natural

hypothesis may be that in the repeated setting, players converge to an average contribution equal to

half of the endowment. We examine this hypothesis using data from the groups in the experiments

with only conditional cooperators and then compare the results with average contributions using

simulations from our full behavioral model. In both the data and the learning-based simulations,

we find that contributions in these groups decline over time, and converge to levels below half of the

endowment. We offer a conjecture for future research, that average contributions are driven down

by the learning dynamics. If this is true, then we may be able to make an argument for using the

learning dynamics as a method of equilibrium selection.

The third, and most important part of the chapter studies the relationship between learning

and the structure of the network. Specifically, we study the hypothesis that learning is contagious

throughout the network. This hypothesis follows on from the results obtained for the circle network

in Chapter 3, which suggest that free-riders and altruists provide an anchor for learning which spreads

first to their neighbors, then on to their neighbors’ neighbors, and so on throughout the network.

We extend the analysis to the three connected networks; connected cliques, two-step circles, and

core-periphery networks. We confirm the result obtained for the circle network, that learning is

contagious, especially in the connected cliques and two-step circle networks.
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4.2 Experimental Design

We ran six experimental sessions in May and June 2012. All sessions were conducted at the Social

Sciences Experimental Laboratory (SSEL) at Caltech using subjects recruited from a pool of under-

graduate and graduate students across a range of disciplines. In five of the sessions, we recruited 15

subjects, and in the other session (S3) we recruited 10 subjects.

During the experimental sessions, subjects participated in a set of matches, each of which con-

stituted a repeated network public goods game. We used different networks for different matches,

but the network structure remained fixed throughout a given match. At the start of each match,

the subjects were randomly assigned to a position on the network, so that their positions and their

neighbors were fixed for all rounds of the match. Then the subjects played 10 rounds of the same

network public goods game. Earnings were denominated in tokens throughout the experimental ses-

sion, then exchanged to US dollars at the end of the session. Average payouts were approximately

US$25, and each session lasted about one hour.

The Game. At the start of each round, we gave subjects 10 tokens and asked them to

choose how much of this endowment to contribute towards a project and how much to keep for

themselves. Subjects were allowed to contribute any number up to two decimal places, between

0 and 10 (inclusive). A subject’s payoff for the round was calculated by adding the tokens they

kept for themselves to their earnings from the project. Each subject’s earnings from the project

were determined by adding together the total number of tokens contributed by the subject and his

neighbors in the network, then multiplying this total by a return factor A. Thus, player i’s payoff

for the round was given by

Payoffi = 10− i’s contribution +A×
(∑

i’s contribution + i’s neighbors’ contributions

)

After each round, we displayed a summary screen reporting the subject’s own contribution, the total

contributions made by the subject and his neighbors in the network, the subject’s own payoff, and

the average round payoff earned by the subject and his neighbors in the network. Thus, information
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was restricted to the neighborhood level in all matches.

The Networks. In the experiments, we used the five different network structures shown in

Figure 4.1. The first two networks are complete networks, which correspond to the standard linear

public goods game. The third network, referred to as connected cliques, captures an environment in

which different clustered groups are connected to each other. The fourth network is a two-step circle,

in which each player is connected with two neighbors on each side of him, and the fifth network is

a core-periphery network, which separates the players into a central, clustered group and an outer

group of players with fewer connections. The organization of sessions is summarized in Table 4.1.

Table 4.1: Organization and Order of Matches in the Experimental Sessions

In Session 3, the 10 subjects were divided into two 5-player groups, then two 5-player circles,
a paired cliques network, and a 10-player two-step circle.

Session

Network S1 S2 S3 S4 S5 S6
3-player groups, A = 2

3 1 1 – – – –
5-player groups, A = 0.4 2 2 1* & 2* 1 1 1

Connected Cliques, A = 0.4 3 3 3* 3 3 & 6 3 & 6
Two-Step Circle, A = 0.4 4 4 4* 2 2 & 5 4 & 7

Core-Periphery + Clique, A = 0.4 – – – – 4 & 7 2 & 5
Total Matches 4 4 4* 3 7 7

4.3 The Model

We use a model which is based on the approach taken by Arifovic & Ledyard (2012) for linear

voluntary contributions games without networks. They merge a standard, outcome-based other-

regarding preferences model with a theory of learning. We extend the model to allow for the

network structure of the environment.

The agents have other-regarding preferences over outcomes. We provide a utility representation

for these preferences that consists of three components. First, the agents derive utility from their

own payoff. Second, they exhibit a social preference that depends on the average payoff earned

by their neighbors in the network. Third, they have a preference for fairness to self, in the sense

that they do not like to be earning less than the average payoff in their neighborhood. This third
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component may be described as envy, or as one-sided fairness.

Although we assume a common utility functional form, we allow for heterogeneity among the

agents through two parameters that represent an agent’s intensity of social preference, and his in-

tensity of preference for fairness. The equilibrium behavior induced by this utility function varies

between complete free-riding, unconditional full contribution, and conditional cooperation. An im-

portant point of distinction from the earlier literature is that these strategies do not emerge solely

from the characteristics of the agents, but rather from the confluence of their types with the param-

eters of the environment.

The theory of other-regarding preferences generates static equilibrium predictions, but provides

little insight into the dynamics of behavior in repeated public goods experiments. Thus, we combine

the model with a theory of learning, which argues that agents are boundedly rational, and that they

learn how best to play over the course of the repeated game. Another popular approach argues

that the dynamics are driven by strategic behavior, rather than learning. However, this alternative

approach rests on strong assumptions of common knowledge about both beliefs and rationality, which

are difficult to justify in 10-period repeated games with many players. Thus, although there is some

evidence consistent with strategic play in the last few rounds of repeated public goods experiments,

we focus on the learning approach.

4.3.1 Game Notation

Let I = {1, ..., n} be the set of players in the population, each with an endowment ωi = 1. Each

player must choose how much of his endowment to consume privately, and how much to allocate

towards the public good. We denote player i’s contribution to the public good by yi ∈ [0, 1] and the

profile of all players’ contributions by y = (yi)i∈I .

The players are connected through a network, denoted by an n×n matrix, G. An entry Gij = 1

indicates that player i is connected to player j. We restrict attention to undirected networks, so that

Gij = Gji for all pairs i, j, and adopt the convention Gii = 0. Let Ni(G) be the set of neighbors for
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player i in the network G. Formally,

Ni(G) = {j ∈ I|Gij = 1}. (4.1)

Let ki(G) = |Ni(G)| be player i’s degree (or number of neighbors). The level of public good enjoyed

by player i depends on his own contribution, the contributions made by his neighbors, and his

marginal per capita return to contributions, M
ki+1 . That is,

Y i(G,y) =
M

ki + 1
·
[
yi +

∑
j∈Ni(G)

yj

]
. (4.2)

Player i’s payoff is given by

πi(G,y) = 1− yi + Y i(G,y). (4.3)

For each network, we assume that M is such that 1 < M < ki + 1 for each i ∈ I. This ensures that

the self-interested players face the familiar social dilemma, in which social and individual incentives

conflict.

4.3.2 Preferences

Players have other-regarding preferences over outcomes, which we capture using the utility function

Ui(G,y) = πi(G,y) + βi ·
∑

j∈Ni(G)∪{i}

πj(G,y)

ki + 1
− γi ·max

{
0 ,

∑
j∈Ni(G)∪{i}

πj(G,y)

ki + 1
− πi(G,y)

}
.(4.4)

The two parameters βi and γi represent, respectively, player i’s relative concern for his neighborhood

and his relative concern with the fairness of his own payoff compared to social payoffs. We assume

that βi ≥ 0 and γi ≥ 0. There is a very natural interpretation of the three components to this

utility function. The first term represents personal, or self-interested preference through the player’s

own payoff. The second term corresponds to an altruistic or social preference that extends over the
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player’s neighborhood in the network, and the third term reflects the degree of envy experienced by

the player, when his own payoff is less than the average payoff in his neighborhood.

4.3.3 Learning

The agents in our model are boundedly rational individuals, who learn by reacting in a ‘best response’

manner to outcomes in past periods of play. We adopt the Individual Evolutionary Learning (IEL)

model developed by Arifovic & Ledyard (2012). IEL is particularly well-suited to repeated game

environments with multiple rounds, multiple players, and continuous action spaces. Furthermore,

it is a relatively simple model, robust to the specified value of model parameters, and specifies

individual-based, reactive dynamics, in contrast with theories of social learning.

Individual Evolutionary Learning

The IEL model consists of several components. In any round, each agent retains a finite set of re-

membered actions. Each agent selects an action from his remembered set according to a probability

measure that evolves with the set. After each round, the set of remembered actions is updated

through experimentation and replication. The process is initialized by randomly populating the

set of remembered actions and assuming that each element is chosen with equal probability. The

experimentation procedure allows agents to make mistakes and to consider actions that might not

otherwise be discovered. The replication and selection processes are designed to favor actions that

would have generated higher payoffs, according to an agent-specific forgone utility function. The for-

gone utility calculations provide the channel through which we merge the other-regarding preferences

with the learning dynamics.

Experimentation involves replacing (with some small probability) some of the elements of the

remembered set with an action chosen at random from the entire action space. Replication makes,

for each slot in the remembered set, a comparison between two remembered alternatives and replaces

the action in the slot with the alternative that has a higher forgone utility for the previous round.

Selection chooses an action from the remembered set proportionately to the forgone utility it would
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have earned in the previous round.

Learning Simulations. For all simulations in this chapter, we used a remembered set of size

J = 50, and a probability of experimentation ρ = 0.033. New alternatives were selected according to

a normal distribution, conditional on the set of possible contributions [0, 10], with mean equal to the

old alternative and a standard deviation equal to σ = 5. We ran 500 iterations for each simulation,

and a simulation for each individual match in the dataset, based on the classified configuration of

players. Only the contributions of the conditional cooperators were simulated, while we set classified

free-rider and altruist contributions to be 0 tokens and 10 tokens, respectively, in each round. For the

conditional cooperators, each iteration of a simulation drew a new pair of preference parameters from

a range consistent with conditional cooperation. We incorporated the different network structures

into separate simulation code, although the underlying parameter values were the same across all

networks.

4.3.4 Equilibrium Behavior

It will be useful to derive the static equilibrium predictions for the one-shot game as a benchmark for

individual behavior. Fix the network structure G, and the set of types (βi, γi)i∈I . The equilibrium

strategies are derived from the players’ marginal utility functions ∂Ui

∂yi
.

Lemma 4.3.1. Player i’s marginal utility is always negative if

βi <
(ki + 1)(1−Ai)∑

j∈Ni(G)

Aj − (1−Ai)
. (4.5)

Lemma 4.3.2. Player i’s marginal utility is always positive if

βi >
(ki + 1)(1−Ai)∑

j∈Ni(G)

Aj − (1−Ai)
+ γi

( ∑
j∈Ni(G)

Aj + ki(1−Ai)∑
j∈Ni(G)

Aj − (1−Ai)

)
. (4.6)

These two lemmas have a simple interpretation. If a player’s type (βi, γi) satisfies the inequality

4.5 in Lemma 4.3.1, his dominant strategy is to contribute zero. In other words, a player with
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sufficiently low social preference will always free-ride. On other hand, if (βi, γi) satisfy the inequality

4.6 in Lemma 4.3.2, player i’s dominant strategy is to contribute his entire endowment. That is,

a player with sufficiently high social preference relative to his preference for fairness, will always

contribute everything towards the public good.

If player i’s type parameters do not satisfy either of conditions 4.5 or 4.6, then utility is maximized

by choosing a contribution level that minimizes the inequality between i’s payoff and his neighbor-

hood average payoff. For any game, the equilibrium strategies for free-riders and pure altruists are

determined by condition 4.5 and condition 4.6, respectively. Then the equilibrium strategies for

conditional cooperators are derived by solving a system of linear inequalities, subject to the bound-

ary constraints on individual contributions. Whenever there exists at least one free-rider or altruist

in the group, the Nash equilibrium is unique. However, in the special case when every player in

the network is a conditional cooperator, there are a continuum of equilibria, in which each player

contributes the same amount x ∈ [0, ωi].

4.4 Hypotheses

We investigate three natural hypotheses in this paper. First, we study group contributions in 3-player

groups and 5-player groups, when the return to total contributions is kept fixed. We are interested

in whether the lower marginal per capita return to contributions balances out the higher number

of players in the larger group thereby inducing the same average group contributions. Second, we

look at behavior in groups that are composed only of conditional cooperators. In theory, there are a

continuum of equilibria in these environments, where each player contributes the same amount. In

expectation, it seems natural to argue that average contributions in these groups converge to half

of the endowment. Finally, we investigate whether learning is contagious throughout the networks.

Our hypothesis of learning contagion builds on the results obtained for the circle network in Chapter

3. We outline these hypotheses below.

Hypothesis 1. Average group contributions are the same in 3-player groups as in 5-player groups.
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The intuition for this hypothesis is as follows. In both environments, the total return to group

contributions is equal to 2. The marginal return to contributions is 2
3 in the 3-player group, and 0.4

in the 5-player group. Thus, we might expect higher average individual contributions in the 3-player

group, but there are fewer players contributing to the group total. A natural expectation may be

that total group contributions are, on average, the same in both environments.

However, there are also reasons to doubt this hypothesis. First, according to our model of other-

regarding preferences, the cutoffs in the type space that determine who is a free-rider, who is a

conditional cooperator, and who is a pure altruist, are different for the two different group sizes. It

is relatively straightforward to show that any player with an incentive to free-ride in the 3-player

environment also has an incentive to free-ride in the 5-player environment. From Lemma 4.3.1, if

βi <
3(1− 2

3 )

3( 2
3 )−1

= 1 in the 3-player group, player i is a free-rider. In the 5-player group, the cutoff

condition is βi < 5(1−0.4)
5(0.4)−1 = 3, which is higher than in the 3-player group. On the other hand, anyone

with a dominant strategy to contribute everything in the 5-player group also has a dominant strategy

to contribute everything in the 3-player group. As a result, it is possible that the same distribution

of types (underlying preference parameters) can lead to a higher percentage of free-riders and lower

percentage of pure altruists in the 5-player groups.

Second, even if the distribution of free-riders, pure altruists, and conditional cooperators is the

same in the two networks, the configuration of types on the network may have a significant impact

on contributions. For example, suppose that there are 5 subjects who are free-riders in both the

3-player and 5-player environments. Suppose further that there is exactly one of the five free-riders

in each of the five 3-player groups. Then the Nash equilibrium for each group is zero contributions

by all players. Then suppose that all five free-riders are collected in one of the three 5-player groups,

while the other two consist of all conditional cooperators. In this case, the Nash equilibrium for

the group of free-riders is zero contributions by everyone, but in the other two groups, there are a

continuum of equilibria in which every player contributes the same amount. As a result, since all the

free-riders are confined within one of the 5-player groups, the average contribution may be higher

in the 5-player environment than in the 3-player environment. There exists an analogous example
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for which the reverse is true.

Finally, we argue that if players are learning how to play the game over time, the learning dy-

namics may depend on the number of players in the group, or more generally on the structure of

the network. For instance, in 3-player groups, there may be less feedback from conditional coopera-

tors who are attempting to coordinate with each other on the utility-maximizing Nash equilibrium

contribution.

Hypothesis 2. In groups that consist only of conditional cooperators, average contributions converge

to half of the endowment.

In any group consisting of all conditional cooperators, the other-regarding preferences model

does not provide very helpful predictions. In these cases, there are a continuum of Nash equilibria,

in which all players contribute the same amount, xi = x ∈ [0, ω], ∀i ∈ I. This complicates the

coordination problem for the conditional cooperators, since they may each attempt to coordinate

on a different equilibrium contribution. This also makes it difficult for us as analysts to determine

average contributions in all-conditional cooperator groups.

A natural first-guess is that, across groups with only Cs, the average contribution is half the

endowment. This simply reflects an expectation over the action space, combined with the follow-

ing prediction. Higher-contributing players respond to the lower contributions by reducing their

contributions over the course of the repeated game, while the lower-contributing players respond

by increasing their contribution. We analyze contributions in the experiment for groups with all

conditional cooperators, both overall and by network, then compare these against the hypothesis

that they converge, on average, to half of the endowment.

Hypothesis 3. Learning is contagious throughout the network.

This hypothesis builds on the results obtained for the circle network in Chapter 3 of this disser-

tation. There, we found that players exhibit differential and contagious learning across the network,

depending on their position relative to any free-riders or altruists in the group. The intuition for

contagious learning rests on the idea that free-riders and altruists provide an anchor for learning,



83

since their decisions are stable from one round to the next. Conditional cooperators who are di-

rectly connected to a free-rider or altruist are able to refine their strategies using this stability, while

those who are only connected to other conditional cooperators are faced with a difficult coordination

problem. However, once some conditional cooperators begin to learn how best to play the game, the

stability provided by the free-riders or altruists in the group spreads to other conditional cooperators,

along the links in the network. This is an important result, since it suggests that network structure

may have a significant effect on actual contributions, through its effect on learning by conditional

cooperators. In this paper, we further investigate the hypothesis that learning is contagious, for a

different set of networks.

4.5 Experimental Results

4.5.1 Player Classification

In this section, we summarize the experimental results. First, we classify the players in the experi-

ments. We classify the players in each match, using a simple set of criteria. Each player is classified

as a free-rider (F), pure altruist (A), or conditional cooperator (C), based on their decisions in the

match. We apply the criteria listed below to decisions made in rounds 3 through 10. A player

receives classification

• F if he contributes 0 in at least seven rounds;

• A if he contributes 10 in at least seven rounds;

• C otherwise.

In Table 4.2, we summarize the classifications for players in each of the network environments.

Figure 4.2 shows the proportion of the three classifications by network.
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Table 4.2: Classifications by Network

Classification
Network F C A Total

3-player groups 5 19 6 30
5-player groups 13 81 11 105

Connected Cliques 16 79 10 105
Two-step Circle 22 78 5 105
Core-Periphery 1 29 10 40
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Figure 4.2: Proportion of players in each classification for the different network environments

4.5.2 Group Contributions in Complete Networks

Next, we consider Hypothesis 1. In Figure 4.3, we plot the average group contributions for 3-player

and 5-player groups. The average for the 5-player groups is higher in all rounds. However, the

average level of public good consumption is very similar in the two environments, since the rate of

return is lower in the 5-player groups. This similarity is illustrated in Figure 4.4.

These findings should be interpreted with care, since there may be a different distribution of

free-riders, pure altruists, and conditional cooperators in the two environments. In the 3-player

groups, a player with altruistic parameter βi < 1 has a dominant strategy incentive to free-ride,

while in the 5-player groups, any player with βi < 3 has the same incentive to free-ride. Thus, if

underlying types (utility parameters) are stable across environments, a player who free-rides in a

3-player group also free-rides in a 5-player group. Similarly, any pure altruist in a 5-player group

will also be a pure altruist in a 3-player group. These differences in the free-rider and pure altruist
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Figure 4.3: Average group contributions in 3-player and 5-player groups
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Figure 4.4: Average public good consumption in 3-player and 5-player groups

cutoffs could, in theory, induce lower average individual contributions in 5-player groups than in

3-player groups.

Although the sample sizes are different, we find a higher proportion of free-riders in the 3-player

groups than in the 5-player groups. This is not consistent with our theory, although it is possible

that the reversal is driven by differences in the sample sizes. Nevertheless, by analyzing the within-

subject classifications for 3-player and 5-player groups, we can determine whether players are stable

across environments. Unfortunately, the within-subject analysis is also fairly inconsistent with the

predictions of the model with respect to cutoffs in the type space.
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players choose the same
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(d) A A A (2
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librium, all players
contribute 10.

Figure 4.5: 3-player group configurations and their Nash equilibria

Of the five subjects who are classified free-riders in their 3-player group, only one is also classified

as a free-rider in his 5-player group. The other four are each classified as conditional cooperators,

which is inconsistent with the order of the cutoffs, derived from our theory of other-regarding pref-

erences. The contributions of those conditional cooperators are, in a few cases, only marginally

excluded from a free-rider classification, but in general, this suggests that either the theory does not

predict well, or that subjects are not particularly stable across environments. Similarly, the only

subject who is classified as a pure altruist in the 5-player group, and who also played in a 3-player

group, is classified as a conditional cooperator in the latter, contrary to theoretical predictions.

In addition to these concerns, group contributions can also depend on the configuration of types

in the group. For instance, even if within-subject classifications were perfectly robust and consistent

with the theory, the way the players are configured among the groups may change the comparative

average contributions. On examining the configurations in the two environments, we find that the

set of configurations is quite similar for 3-player groups as for 5-player groups. The configurations,

and the corresponding Nash equilibria, are illustrated in Figure 4.5 (for 3-player groups), and Figure

4.6 (for 5-player groups).

In the 3-player groups, there are two AAA configurations, one FFF configuration, and one FCF

configuration. On average, contributions from these four matches should be half of the endowment.

The other six groups consist entirely of conditional cooperators. In these configurations, there are

a continuum of equilibria, in which every player contributes the same amount. Among the 5-player

groups, there are similarly balanced configurations, with six groups composed of only F s and Cs,
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Figure 4.6: 5-player group configurations and their Nash equilibria

five groups composed of only As and Cs, two groups with one F , one A, and three Cs, and eight

groups that consist of all Cs. The groups with free-riders (and Cs) and the groups with altruists

(and Cs) should average each other out to half the endowment.
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4.5.3 Groups Composed Solely of Conditional Cooperators

As discussed in Section 4.3.4 and Section 4.4, there are a continuum of equilibria in matches composed

of all conditional cooperators. A natural expectation is that the average contributions in these

matches converge to half of the endowment. However, in our learning simulations, we find that

contributions in these matches tend to converge to values significantly below half of the endowment.

We conjecture that learning dynamics drive the average contributions down, and that different

networks generate different learning dynamics. It may be possible to use these learning dynamics as

a method of equilibrium selection, particularly as it explains the well-documented decay in average

contributions over time, even for groups that consist solely of conditional cooperators. We leave a

deeper analysis of this conjecture for future research.

In our data, there are six groups of all conditional cooperators in 3-player groups, eight groups

of all conditional cooperators in 5-player groups, and one group of all conditional cooperators on a

two-step circle. We show the average contributions in learning simulations for the 3-player groups

and 5-player groups in Figure 4.7. We also plot the average contributions in the data for those groups

with all conditional cooperators. For 5-player groups, we find that the data follows the simulations

quite closely, as average contributions decline over time to a level below half of the endowment. The

simulation averages converge to approximately 2.5 tokens, and while the data average starts at more

than half of the endowment, it falls into line with the simulation average by round 5. On the other

hand, the data average for 3-player groups begins and remains higher than half the endowment for

most rounds, while the simulations decline steadily below 5 tokens and converge to approximately

3.3 tokens by the end of the 10 rounds. Nevertheless, the data average also appears to decline

over time. The observation that average contributions are much lower for groups composed of all

Cs in 5-player groups than in the 3-player groups may partly explain why we find average group

contributions to be slightly lower in 5-player groups than in 3-player groups.

Although there is not enough data to do the same analysis for the other networks, Figure 4.8

shows the predictions of the learning simulations for the connected cliques, two-step circle, and

core-periphery networks when all players are conditional cooperators. All three networks exhibit
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Figure 4.7: Average contributions in groups with all conditional cooperators

virtually identical patterns of average contributions, beginning at 5 tokens and declining to 4 tokens

by the end of the simulated game.

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  

Av
er
ag
e	
  
Co

nt
rib

u/
on

	
  

Round	
  

Core-­‐Periphery	
   Two-­‐Step	
  Circle	
   Connected	
  Cliques	
  

Figure 4.8: Average simulated contributions in groups with all conditional cooperators

4.5.4 Average Contributions in Networks with 5-Player Neighborhoods

In this section, we compare contributions across the three network environments in which every

player is part of a 5-player neighborhood, and the marginal per capita return to contributions is 0.4.

These networks are the 5-player groups (or cliques), the connected cliques network, and the two-step

circle network. The cutoffs in the type space for determining free-riders and altruists are exactly the
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same in all three networks, so in theory, the distribution of players should be the same. We do allow

for some expected differences, since there are some players who play on all three networks twice,

while others only play on the connected cliques and two-step circle networks twice.

Figure 4.9 illustrates the average contributions in each of the three networks. The data indicate

average contributions are highest in the 5-player groups, followed by the connected cliques, and

lowest in the two-step circle networks.
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Figure 4.9: Average contributions in 5-player groups, connected cliques, and two-step circle networks

As in the previous subsection, we exercise caution in interpreting this data. First, although the

proportion of conditional cooperators is very stable across the three networks, there are progressively

fewer altruists and more free-riders as we move from 5-player groups, to connected cliques, to two-

step circles. It is difficult to rule out the possibility that these differences in the distribution of types

are responsible for the differences in average contributions. As with the comparison of the complete

networks in the previous subsection, the configuration of those types on the network may also have

important effects on contributions.

A within-subject comparison suggests somewhat more consistency in classifications than we found

between 3-player and 5-player groups. Our model predicts that a subject should be classified the

same way in all three networks. There are 26 (out of 75) subjects who are classified differently across

the three networks. Five of the subjects who participated twice in the connected cliques and two-step

circle networks, were classified differently in just one of their 5 matches. Furthermore, in the first
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session, 7 out of the 9 inconsistent subjects were classified C in both the 5-player groups and the

connected cliques, then classified F in the two-step circle environment. This dramatic shift towards

free-riding in the two-step circle, which was the final match played by the subjects in that session,

raises the possibility that behavior in later matches is influenced by earlier matches. In our design,

we varied the order of matches across most sessions, although the setup makes it difficult to prevent

all order effects from influencing the data. Although this is an improvement on the consistency of

classifications between the 3-player and 5-player groups, it does not provide much support for the

predictions of our theory.

4.5.5 Learning in Networks with 5-Player Neighborhoods

In Figure 4.10, we compare the absolute difference between individuals’ contributions (averaged over

rounds 8–10) and their corresponding Nash equilibrium contribution. For matches composed of all

conditional cooperators, we used the absolute difference between the 3-period data average and the

average contribution in round 10 of the learning simulations for that network. The average difference

is highest for the connected cliques, and almost equal for 5-player groups and two-step circles. This

suggests that perhaps conditional cooperators are slower to learn in connected cliques, than in 5-

player groups or two-step circles. However, it seems necessary to acknowledge that learning depends

crucially on the realized distribution of types and their configuration on the network, rather than

the underlying structure of the network itself. Thus, we focus the rest of the analysis on learning at

the individual match level.
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(b) Connected cliques
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Figure 4.10: Absolute differences between 3-period average contribution (rd 8–10) and Nash equilibrium. The mean is shown by the horizontal line
at 2.1165 (5-player), 3.286 (connected cliques), and 2.169 (two-step circle).
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4.5.6 Learning Contagion in the Incomplete Networks

In this section, we examine the evidence of contagious learning in the connected cliques, two-step

circle, and core-periphery networks. We focus on the data at the individual match level, and compare

actual contributions with the learning simulations for each realized configuration.

Evidence from Connected Cliques

Session 1, Match 3. In this match, there are four free-riders, located at nodes 2, 6, 7, and

8, as shown in Figure 4.11. In the figure, we use large, red circles to denote the free-riders, then

use color and size changes to indicate the relative speeds at which we hypothesize the players are

learning. The slower the player learns, the smaller the circle. The color of the node changes from red

(free-riders) and orange (fast) to a pale cream, then to progressively darker shades of blue (slowest).

In this configuration, the hypothesis that learning is contagious suggests that players 9 and 10

should converge relatively quickly towards the Nash equilibrium contribution of zero. Players 1, 3,

4, and 5 (player 2’s neighbors) should be close behind, followed by players 14 and 15, while players

11, 12, and 13 are most likely the slowest to converge towards zero.

5
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9 7

8

610

15 14

1311

12

Figure 4.11: Configuration in Session 1, Match 3

Our intuition is validated by both the learning simulations and the experimental data for this
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configuration. The free-riders provide an anchor, which facilitates learning by their immediate

neighbors. The stabilizing effects of the anchors then spread throughout the rest of the network. We

show the individual contributions and the simulated contributions for each conditional cooperator

in Figure 4.12.
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Figure 4.12: Experimental data and learning simulations in Session 1, Match 3

Session 2, Match 3. In this match, there is one altruist (player 5) and one free-rider (player
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Figure 4.13: Configuration in Session 2, Match 3

15). We solve for the Nash equilibrium from the appropriate set of inequalities, subject to the

boundary constraints on contributions, and obtain

y∗1 = 10, y∗2 = 10, y∗3 = 10, y∗4 = 9.654, y∗5 = 10

y∗6 = 5.255, y∗7 = 5.255, y∗8 = 5.255, y∗9 = 3.483, y∗10 = 6.782

y∗11 = 0, y∗12 = 0, y∗13 = 0, y∗14 = 2.5, y∗15 = 0.

There are several symmetric players in this network. Player 1, 2, and 3 are in identical positions

as one another. Likewise, players 6, 7, and 8 face the same incentives as each other, and players

11, 12, and 13 are symmetric with one another. In the network, we expect players 1, 2, and 3 to

learn quite quickly, since their contributions are well-anchored against the unconditional giving of

player 5. Similarly, players 11, 12, and 13 learn from their free-rider neighbor, player 15, but are also

reinforced by player 14, who is one of player 5’s neighbors. Spreading out from those two partial

cliques, we expect player 4 to be slower to learn their Nash equilibrium contribution, while player

10 and players 6, 7, and 8 are the slowest to learn, as they are isolated from the stabilizing effects

of a free-rider or altruist. In Figure 4.14, we show the actual and simulated contributions for each



96

player over all 10 rounds.

As in Session 1, Match 3, there is some evidence of contagious learning. Players 11, 12, and 13

converge quickly towards their Nash equilibrium contribution (zero) in both simulations and data,

while players 6, 7, and 8 are relatively far from their equilibrium contribution in the data. However,

player 4 and player 14 behave differently from the simulations. Since players 1, 2, and 3 do not

converge to their equilibrium contributions particularly quickly, player 4 is equally slow, particu-

larly since his other neighbor, player 10 is also isolated and contributes less than his equilibrium

contribution. On the other hand, player 14, whose equilibrium contribution is 2.5 tokens, converges

relatively quickly to a low contribution, even converging to zero in the last two rounds. This reflects

the relative speed with which players 11, 12, and 13 learn, which strongly affirms the hypothesis

of contagious learning. The evidence from other matches generally provides good support for the

hypothesis of contagious learning. We relegate the analysis of these other matches to Appendix ...

Evidence from Two-Step Circles

Session 1, Match 4. In this match, there are 11 free-riders, and only 4 conditional cooperators (at

nodes 2, 3, 9, and 12). The Nash equilibrium contribution for every player is 0. We expect all four

players to converge quite quickly to zero contributions. If anything, players 9 and 12 may converge

slightly faster, since they each have four free-rider neighbors, while players 2 and 3 are connected to

each other, and three free-riders each. We display the configuration and conjecture some differential

learning for the network in Figure 4.15.

Indeed, as is shown in Figure 4.16, all four conditional cooperators converge to the Nash equilib-

rium contribution (zero) by the last few rounds. Player 12 is marginally quicker to reach and stay at

zero contributions, although there is not much difference in the speed of learning, since all of them

are well connected to the free-riders in the network.

Session 2, Match 4. In this match, there are only 2 free-riders, located at nodes 5 and 6. All

other players are conditional cooperators. The Nash equilibrium contribution for every player is 0.

Since the free-riders are located right next to each other in the circle, there is a very natural pathway
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Figure 4.14: Experimental data and learning simulations in Session 2, Match 3
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Figure 4.15: Configuration in Session 1, Match 4
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Figure 4.16: Experimental data and learning simulations in Session 1, Match 4

for learning to spread throughout the network. We expect player 4 to learn more quickly, due to the

stabilizing decision-making by players 5 and 6. Likewise for player 7, who is located on the other

side of players 5 and 6. We expect to see learning spread from neighbor to neighbor, moving away

from the two free-riders in each direction, until we reach player 13, who is farthest removed from

players 5 and 6. Figure 4.17 illustrates the configuration and the hypothesized spread of learning

around the network.

In Figure 4.18, we show that this pattern of learning contagion is reflected in both the simulations

and the data. Players 4 and 7 converge to zero contributions within two or three rounds. Player 8
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Figure 4.17: Configuration in Session 2, Match 4

is also quick to begin playing the Nash equilibrium contribution, although player 3 seems to learn

more slowly. In turn, player 8’s neighbors, player 9 and player 10, learn considerably faster than

players 1 and 2, who are neighbors to player 3. Finally, for player 11, 12, 14, and 15, contributions

only start to approach zero in the later rounds of the match. This exhibition of contagious learning

is particularly stark in the data, and especially well-portrayed by the differences in learning as we

move around the circle in opposite directions.

Session 6, Match 4. In this match, there are four altruists (at nodes 2, 4, 6, and 7), and one

free-rider (at node 10). The Nash equilibrium contributions for the conditional cooperators are

y∗1 = 7.76, y∗3 = 10, y∗5 = 10, y∗8 = 6.12, y∗9 = 3.21

y∗11 = 0, y∗12 = 0, y∗13 = 0, y∗14 = 2.24, y∗15 = 5.

In this match, our predictions about learning contagion are somewhat mixed compared with the

previous matches. On the one hand, players 3 and 5 remain several tokens below their Nash equilib-

rium contributions, despite being surrounded by several pure altruists. Player 8 seems to be on the

right track, until player 9, who doesn’t learn as quickly as we might expect, drops his contribution
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Figure 4.18: Experimental data and learning simulations in Session 2, Match 4
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Figure 4.19: Configuration in Session 6, Match 4

from 10 to 0, after which player 8 also diverges away from his equilibrium contribution. On the other

hand, some of the players who we expect to take longer at learning their equilibrium contributions

actually learn quickly. Player 11 (perhaps also aided by player 9’s zero contributions) converges

to 0 (his equilibrium level) by round 6, and consequently, so does player 12, whose learning relies

partially on how quickly player 11 learns. The contagion effect seems to be strong in this part of

the network, so much so that even players 13 and 14, who we predict to be the slowest to converge

to their equilibrium contributions, are close by the end of the ten rounds. Thus, although the pre-

dictions are not met with respect to some of the more likely players, there is considerable support

for contagious learning on the other side of the network.

Evidence from the Core-Periphery Networks

Session 5, Match 4. Consider the configuration shown in Figure 4.21, which represents Session 5,

Match 4. There is a single free-rider, player 3, who is in the periphery of the network. In this setting,

there are two Nash equilibria. In one, every player contributes zero. In the other, every player in

the periphery contributes 0, while every player in the core contributes the full endowment of 10

tokens. We ran learning simulations for this configuration over 100 periods and found that players’
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contributions converge to the latter equilibrium, with core players contributing 10 tokens. Likewise

in the 10-period simulations, average contributions for the core players trend upwards, reaching

approximately 7 tokens for players 6, 7, and 8, and 6 tokens for player 9 and 10. This highlights

an interesting twist on the type of learning contagion observed for circles, connected cliques, and

two-step circle networks. In this network, player 3 acts as an anchor which prevents players 9 and

10 from learning, rather than enhance their learning.

The learning predictions in this case are not as clear as in other networks. First, we predict that

the learning will spread around the periphery from player 3 to his immediate peripheral neighbors,

players 2 and 4, then on to players 1 and 5. At the same time, all the players in the core, since

they are conditional cooperators, will attempt to equalize their own payoff with the average payoff

of their neighborhood. Since they have more neighbors than the peripheral players, their payoffs

are higher than the peripheral players’ payoffs, even if those players are free-riding. As a result,

we expect the learning dynamics to drive the contributions up for the core players, until they reach

the full endowment. In this configuration, the core players who are not connected to the free-rider

(player 3) should begin to learn this optimal strategy relatively fast, while those who are connected

to player 3 may be slowed by the lower contributions. As players 2 and 5, followed by player 1

learn to play their zero contributions Nash equilibrium strategy, there may be some initial resistance

from the players in the core, although all of the players would eventually converge to their Nash

equilibrium contributions if they played long enough.

We plot the actual contributions against the simulated contributions in Figure 4.22.

4.6 Conclusion

Our main finding in this chapter is that behavior in a range of different network structures is

consistent with the hypothesis of contagious learning. We provide extensive evidence at the individ-

ual match level that learning spreads from the anchoring contributions of free-riders and altruists,

through the network via their neighbors and their neighbors’ neighbors. This evidence reinforces

the result obtained in Chapter 3 for the circle network. We hope that this finding will motivate
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further research into the relationship between learning and network structure, both in public goods

experiments and in other experimental games.

We also have examined contributions in groups consisting only of conditional cooperators, finding

that average contributions typically decline over time, to a level below half of the endowment. We

conjecture that this may be related to the learning dynamics, and that if so, learning dynamics may

provide a means of selecting an equilibrium from among the multiple that exist for groups with only

conditional cooperators. This conjecture is another avenue for future research into the behavior of

individuals in repeated network public goods games.

Finally, we do also observe subject behavior which is inconsistent with the predictions of the

other-regarding preferences component of our behavioral model. This makes it difficult to compare

average contributions, or average public good consumption across networks, since differences in the

contributions may reflect a different composition of free-riders, altruists, and conditional cooperators,

or even a different set of configurations. Still, with more data, and perhaps with a little more control

over the precise conditions, compositions, and configurations across networks, we may be able to

make more meaningful comparisons and discover more about the relationship between network

structure and contributions.
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Figure 4.20: Experimental data and learning simulations in Session 6, Match 4
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Figure 4.21: Configuration in Session 5, Match 4
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Figure 4.22: Experimental data and learning simulations in Session 5, Match 4
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Appendix A

Proofs of Chapter 2

A.1 Proof of Proposition 3.4.1

The equilibrium strategies are derived from the players’ marginal utility functions. Let y be the

profile of contributions and suppose that yi is less than the average contribution made by player i’s

reference group,

yi <
∑
j∈Ri

yj
|Ri|

. (A.1)

Then player i’s marginal utility from increasing yi is

βi

|Ri|
− (1−A). (A.2)

On the other hand, if yi is greater than the average contribution made by player i’s reference group,

yi >
∑
j∈Ri

yj
|Ri|

, (A.3)

then player i’s marginal utility from increasing yi is

βi + γi − (1−A+ γi)|Ri|
|Ri|

. (A.4)
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Since γi > 0 and |Ri| ≥ 2, the expression in (A.2) is strictly greater than the expression in (A.4).

Thus, for any profile of contributions y, player i’s marginal utility of her own contribution is non-

negative whenever the expression in (A.4) is nonnegative, i.e., when

βi ≥ (1−A+ γi)|Ri| − γi, (A.5)

and nonpositive whenever the expression in (A.2) is nonpositive, i.e., when

βi ≤ (1−A)|Ri|. (A.6)

A player who does not satisfy either of the inequalities in (A.5) or (A.6) is a conditional co-

operator, for whom marginal utility is positive when her contribution is lower than the average

contribution in her reference group, and negative when her contribution is more than the average in

her reference group. Thus, for each profile of others’ contributions, her best response is to contribute

the average amount contribute by the other players in her reference group.

The Nash equilibrium of a given realization of this game is solved in the following manner.

First, classify the altruists and free-riders, whose equilibrium behavior is unconditional. Then find

the equilibrium contributions of the conditional cooperators as the solution to a system of linearly

independent equalities.

A.2 Proof of Proposition 3.4.2

Let y be the profile of contributions and suppose that πi is greater than the average payoff in player

i’s reference group,

πi ≥
∑
j∈Ri

πj
|Ri|

. (A.7)
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Then player i’s marginal utility from increasing yi is

|Ni(G) ∩Ri|
|Ri|

Aβi − (1−A)

(
1 +

βi

|Ri|

)
. (A.8)

On the other hand, if πi is less than the average payoff in player i’s reference group,

πi ≤
∑
j∈Ri

πj
|Ri|

, (A.9)

then player i’s marginal utility from increasing yi is

|Ni(G) ∩Ri|
|Ri|

A(βi − γi)− (1−A)(1 + γi +
βi − γi

|Ri|
). (A.10)

As with the previous case, since γi > 0 and |Ri| ≥ 2, the expression in (A.8) is strictly greater than

the expression in (A.10). Thus, for any profile of contributions y, player i’s marginal utility of her

own contribution is nonnegative whenever the expression in (A.10) is nonnegative, i.e., when

βi ≥ γi +
(1 + γi)(1−A)|Ri|

A

(
|Ni(G) ∩Ri|+ 1

)
− 1

, (A.11)

and nonpositive whenever the expression in (A.8) is nonpositive, i.e., when

βi ≤ (1−A)|Ri|

A

(
|Ni(G) ∪Ri|+ 1

)
− 1

. (A.12)

These two inequalities can be interpreted in the same way as for the variation of the game in which

players use average contribution as their reference statistic. First, if player i is sufficiently altruistic,

then her best response to any profile of others’ contributions is to contribute everything. On the

other hand, if player i is self-interested enough, then her best response is always to contribute

nothing. The first player is an altruist, and the second is a free-rider.

A player who does not satisfy either of the inequalities in (A.11) or (A.12) is a conditional



110

cooperator, for whom marginal utility is positive when her payoff is greater than the average payoff

in her reference group, and negative when her payoff is less than the average in her reference group.

Thus, for each profile of others’ contributions, her best response is to contribute an amount that

equalizes her payoff with the average payoff earned by the players in her reference group. That is, if

(1−A)|Ri|

A

(
|Ni(G) ∩Ri|+ 1

)
− 1

< βi <
(1 + γi)(1−A)|Ri|

(1− γi)
[
A

(
|Ni(G) ∩Ri|+ 1

)
− 1

] , (A.13)

then player i’s best response to y−i is to choose y∗i such that

πi(G, (y
∗
i ,y−i)) =

∑
j∈Ri

πj(G, (y
∗
i ,y−i))

|Ri|
. (A.14)

The Nash equilibrium of a given realization of this game can be solved for using similar steps as

for the first variation of the game, with one important difference. First, classify the altruists and

free-riders, whose equilibrium behavior is unconditional. Then find the equilibrium contributions of

the conditional cooperators as the solution to a system of linear inequalities of the form in equation

(A.14), subject to the feasibility constraints on the players’ actions. These additional constraints on

the system of equations are the key difference between the first and second variations of the game.

For some players, it may be the case that, in equilibrium, they would like to contribute a negative

amount, or contribute more than their endowment, in order to equalize their payoff with the average

payoff of their reference group. Thus, solving for the equilibrium behavior is slightly more difficult

in this variation of the game than in the game where players care about average contribution.
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Appendix B

Supplementary Analysis for
Chapter 3

This Appendix provides more detailed analysis of the evidence for Result 3.5.1 and Result 3.5.2.

It complements the snapshot provided in Section 3.5. The analysis is broken down by information

treatment for ease of comparison.

Treatment 1

In Figure B.1, I reproduce the 3-period average contributions of each player for a subset of the

individual matches played under Treatment 1. Players who are conditional cooperator types are

shown in black, while the free-rider and altruist types are shown in light gray. In Match 1a, there

are two adjacent free-riders; in 2b and 3a, there are 4 adjacent free-riders; and in Match 4b, there

is just one free-rider. In all of these matches, the benchmark Nash equilibrium is for every player

to contribute 0. The subfigures highlight the fact that for Matches 2b and 3a, the contributions of

the conditional cooperators are lower on average than the contributions made by the conditional

cooperators in Matches 1a and 4b.

Match 4b provides support for Result 3.5.2, since the players’ contributions are clearly increasing

as we move further away Player 1 (the lone free-rider), peak at Player 4, who is the farthest away

from the free-rider, then decrease as we move closer to the free-rider around the circle network.

Still looking at Treatment 1, both Result 3.5.1 and Result 3.5.2 are also supported by Match 1b

(which has 1 altruist) and Match 4a (which has 4 altruists), which are compared in Figure B.2. In
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Figure B.1: Treatment 1 matches with free-riders and conditional cooperators only

both matches, the benchmark Nash equilibrium is for all conditional cooperators to contribute their

endowment of 100. As we can see, the contributions of the conditional cooperators are significantly

higher in Match 4a than in Match 1b. Moreover, in Match 1b, simulation and actual contributions

are declining as we move further away from Player 3, who is the lone altruist, which supports Result

3.5.2.
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Figure B.2: Treatment 1 matches with altruists and conditional cooperators only

Treatment 2

In Treatment 2, there are two matches with 1 free-rider (3a and 4b), two matches with 2 adjacent

free-riders (3b and 5b), 2 matches with 3 adjacent free-riders (1b and 2a), and 1 match with 5
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free-riders (2b). these matches support Result 3.5.1, and all except for Match 4b illustrate the

dependence on relative positions summarized in Result 3.5.2. Comparing the left column with the

middle column and the right column in Figure B.3, gives a good indication of how, even though

all of these matches have the same benchmark Nash equilibrium (zero contributions by everyone),

the contributions of the conditional cooperators are positive and decreasing in the number of free-

riders in the match. Moreover, aside from Match 4b, contributions are higher for players who are

positioned further from the free-riders than for those who are closer, which supports Result 3.5.2.
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Figure B.3: Treatment 2 matches with free-riders and CCs only. The number of free-riders in the matches is increasing from left to right.
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Figure B.4: Treatment 3 matches with free-riders and CCs only

Treatment 3

Treatment 3 provides the most remarkable evidence to support Result 3.5.2. Consider the matches

displayed in Figure B.4. In Match 1a, contributions are monotonically increasing for both simulations

and data, as we move further away from Player 4 who is the sole free-rider. The same is true in

Match 2b as we move away from Players 2 and 3 (the free-riders), Match 3a as we move further

away from Player 1, and Match 3b as we move away from Player 5.

Treatment 4

Figure B.5 reproduces Matches 5b (2 altruists), 1a (3 altruists), and 4b (4 altruists) under Treatment

4. In support of Result 3.5.1, the contributions of the conditional cooperator types are highest in

Match 4b, and lowest in Match 5b. On the other hand, Figure B.6 displays four matches under

Treatment 4 that exhibit support for Result 3.5.2.
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Figure B.5: Treatment 4 matches — Contributions and the # of altruists
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Figure B.6: Treatment 4 matches — Effects of players’ relative positions
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Appendix C

Experiment Instructions for
Chapter 3

Instructions

Thank you for agreeing to participate in this experiment. During the experiment, please give us

your full attention and follow the instructions carefully. Please turn off your cell phones, and refrain

from chatting with other subjects, opening other applications on your computer, or engaging in

other activities. At the end of the experiment, you will be paid discreetly in cash, based on the

payoffs you earn. What you earn depends partly on your own decisions, partly on the decisions of

others, and partly on chance. Do not talk or try to communicate with other participants during the

experiment.

Following these instructions, there will be a practice session and a short comprehension quiz.

You must answer all questions on the quiz correctly before you can continue to the paid sessions.

In the experiment, your earnings will be denominated in tokens. At the end, these earnings will be

converted to US dollars at the rate of 500 tokens to 1 US Dollar.

This experiment consists of four matches. In each match, there will be 15 rounds. For each

match, you will be divided into TWO groups of SIX members each. You will be randomly assigned

to exactly one of these two groups and you will not know who out of the other participants is in your

group. Do not let any other subject know which group you are in. You will remain in this group

for the entire first match. For each other match, you will be randomly rematched into two (possibly
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different) groups of SIX members each. Thus, your group will be fixed during a given match, but

may be different across matches. Other than the set of players in each group, the parameters and

the features of the match will be the same for both groups.

Each match will proceed as follows. At the start of the match, you will be randomly assigned to

a position (node) in the network depicted in Figure C.1. The other 5 members of your group will

be assigned to the other positions, so that only one member is at any position, and all positions are

filled.

 

  

 

 

 

Figure C.1: Circle network with 6 agents

The match will consist of 15 rounds. During the match, your position will be identified by a

node labeled “You” and a player number. Your player number and your location will remain fixed

throughout each round of the match. Likewise, your group members, and their locations will be

fixed throughout each round of the match. If your node is connected to another node, then that

node will be displayed in red to indicate the connection. The players located at the red nodes are

your direct neighbors in the network.

In each round, you will face exactly the same decision problem. At the start of every round,

you will be given an endowment of 100 tokens. You must decide how much of this endowment to

contribute to a given project, and how much to keep for yourself. You cannot contribute a negative

amount nor can you contribute more than 100 tokens towards the project. You may choose any

number up to two decimal places within that range. In a given round, your earnings from the project



120

Figure C.2: The decision screen for a match

depend on your allocation to the project in that round and the allocations made by your direct

neighbors in that round. Specifically, your earnings from the project are calculated by adding your

contribution and the contributions of your direct neighbors, then multiplying the total by the

return factor, which is 0.6. Your earnings from the project will then be added to whatever number

of tokens you keep (which will be 100 minus your contribution) to give your overall payoff from the

round.

For example, suppose you allocate 40 tokens to the project and keep 60 tokens for yourself,

and the sum of the allocations made by your direct neighbors to the project is 80. Then your

earnings from the project will be

0.6 · (40 + 80) = 72,

while your earnings from the tokens you keep will be 60. Thus, your total earnings would be

Earnings = 72 + 60 = 132.

To summarize, your payoffs in a given round will be equal to

payoff = 100− your contribution + 0.6× ( total contributions by you and your neighbors ).

Each round is a separate decision problem, so your earnings in any round will depend only on



121

Figure C.3: The round summary screen for a match

the decisions made by you and your direct neighbors in that round. After each round, you will

see certain information about what happened. This information will be different for each match,

as will be described below and before the match. You will be given 30 seconds after each round to

observe the information, then we will move to the next round. At the end of the match, all of your

round payoffs will be added together to give your match payoffs. At the end of the last match, your

match payoffs will be summed and converted into US dollars according to the exchange rate above.

After each round, you will see the following information in all matches.

• The amount that you contributed to the project

• The total contributions to the project from you AND your direct neighbors

• Your payoff from the round

In addition, match specific information will be provided as specified before each match.

Match 1

The average payoff received by you and your direct neighbors

Match 2

The average payoff received by all SIX players in your group

Match 3

The average contribution made by you and your direct neighbors
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Match 4

The average contribution made by all SIX players in your group

Now we will run through a practice match with 4 rounds, so that you can familiarize yourself

with the software. If you have any questions, please raise your hand. You will not be paid for this

practice session. After the practice match, there will be a short quiz for you to answer, before you

can proceed to the paid matches. As a reminder, please do not communicate with the other subjects

in any way. Good luck.
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Appendix D

Experiment Instructions for
Chapter 4

Instructions

Thank you for agreeing to participate in this experiment. During the experiment, please give us

your full attention and follow the instructions carefully. Please turn off your cell phones, and refrain

from chatting with other subjects, opening other applications on your computer, or engaging in

other activities. At the end of the experiment, you will be paid discreetly in cash, based on the

payoffs you earn. How much you earn depends partly on your own decisions, partly on the decisions

of others, and partly on chance. Please do not try to communicate with other participants during

the experiment.

Following these instructions, there will be an unpaid practice session and a short comprehension

quiz. You must answer all questions on the quiz correctly before you can continue to the paid sessions.

In the experiment, your earnings will be denominated in tokens. At the end, these earnings will

be converted to US dollars at the rate of 50 tokens to 1 US Dollar. The experiment consists of

seven parts, called matches. Each match will be described separately before it is played.
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Match 1 (unpaid practice) and Match 2

In this match, you will be divided into THREE (3) groups of FIVE (5) members each. You will be

randomly assigned to one of these groups and you will not know who out of the other participants

is in your group. Your group will remain the same throughout the match. The practice (unpaid)

match will consist of 3 rounds, followed by a short comprehension quiz. The paid Match 2 will

consist of 10 rounds. In each round, you will face exactly the same decision problem.

The Decision Problem

At the start of every round, you will be given an endowment of 10 tokens. You must decide how

much of this endowment to contribute to a given project, and how much to keep for yourself. You

may contribute any number, up to two decimal places, between 0 and 10, inclusive. In a given round,

your earnings will be the sum of your earnings from the project and the number of tokens you keep

for yourself. Your earnings from the project are calculated by taking the total number of tokens

contributed to the project by the members of your group, and multiplying it by a return factor of

0.4. These earnings from the project will be added to the tokens you keep for yourself to give your

overall payoff from the round.

For example, suppose you allocate 6 tokens to the project, keeping 4 tokens for yourself, and

suppose the sum of the allocations made by the other members of your group is 14 tokens. Your

earnings from the project will be

0.4 · (6 + 14) = 8.

Your overall earnings will be the 4 tokens you keep for yourself plus the 8 tokens you earn from the

project, for a total of 12 tokens. Each round is a separate decision problem, so your earnings in any

round depend only on the decisions made by you and your group members in that round.

After each round, you will be shown

• how many tokens you allocated to the project,
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• the total number of tokens allocated to the project in your group (including yours),

• your payoff from the round,

• the average payoff earned by the members of your group (including you).

Matches 3–8

In these matches, you will be randomly assigned to a position in a particular network graph. These

are shown below. The decision problem will be the same for each match, although the network and

your neighbors (the players to whom you are connected) will change across matches. Your neighbors

in the network will be the participants assigned to positions (or nodes) that are linked by an edge

to your position (node). All positions are fixed throughout a given match. Each match will consist

of 10 rounds. In each round, you will face exactly the same decision problem.

The Decision Problem

At the start of every round, you will be given an endowment of 10 tokens. You must decide how

much of this endowment to contribute to a given project, and how much to keep for yourself. You

may contribute any number, up to two decimal places, between 0 and 10, inclusive. In a given round,

your earnings from the project are calculated by taking the total number of tokens contributed to

the project by you and your neighbors in the network, and multiplying it by a return factor of 0.4.

Your earnings from the project will be added to the tokens you keep for yourself to give your overall

payoff from the round.

For example, suppose you allocate 7 tokens to the project, keeping 3 tokens for yourself, and

suppose the sum of the allocations made by your neighbors in the network is 28 tokens. Your

earnings from the project will be

0.4 · (7 + 28) = 14.
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Your overall earnings will be the 3 tokens you keep for yourself plus the 14 tokens you earn from

the project, for a total of 17 tokens. Each round is a separate decision problem, so your earnings in

any round depend only on the decisions made by you and your neighbors in that round.

After each round, you will be shown

• how many tokens you allocated to the project,

• the total number of tokens allocated to the project by you and your neighbors,

• your payoff from the round,

• the average payoff earned by you and your neighbors.

The networks are summarized below.
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Figure D.1: Match 3 network graph
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Figure D.3: Match 5 network graph
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Figure D.4: Match 6 network graph
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Figure D.5: Match 7 network graph
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