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ABSTRACT

Assuming primary electrons, the theoretical variation of
shower counting rate with altitude has been computed and a com-
parison made with the observations of Kraybill. Expressed as
the ratio to sea level, the observed counting rate has a maxi-
mum of 83 as compared to 24 for the theoretical curve. The ob-
served maximum is near 27,000 feet while the computed maximum
is at 22,000 feet. Approximations in the calculation and ob-
servational uncertainties may make this difference in the eleva-
tions of the maxima spurious. The approximations are such as to
give too low a theoreticzl counting rate, but an estimate of their
magnitude seems to leave the theoretical maximum counting rate
too small by a factor of 1.5 to 2. A computation based upon a
mechanism for the multiple production of secondaries by primary
protons, which has been proposed by Lewis, Oppenheimer and Wou-
thuysen, would probably lead to better agreement with the obser-
vations. '

The zenith angle distribution of showers detected by Kray-
bill's counters at 30,000 feet has been computed and compared
with one determined by lMr. E.W. Cowan from cloud chamber measur-
ments. The theoretical distribution is twice as broad as the ob-
served one. The angular distribution inferred from the altitude
dependence observed by Kraybill ‘is in much better agreement with
the theoretical than with the cloWld chamber distribution. The
discrepancy of the cloud chamber observations may arise from the
fact that it was only possible to assign a direction to the tracks

in 280 to 30 per cent of the photographs.
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I. INTRODUCTION AND CONCLUSIONS

Since its early investigation, cosmic radiation has
yielded a series of such important physical discoveries zs
the finding of new fundamental particles, the determination
of their characteristics, and, in some cases, it has led to
a valid theoretical description of their interactions with one
another. An important by-product of the discovery of the meso-
tron by Anderson and Neddermeyer (Ref. 1, 2) was the clarifica-
tion and experimental verification of the Bethe-Heitler (Ref.
65) theory of the interaction of electrons and radiation in the
domain of high energies. This quantum theory of radiation, a-
long with the theory of multiplicative showers developed inde-
pendently by Carlson and Oppenheimer, and Bhabha and Heitler
(Ref. 3, 4), has in turn become a valuable analyticd tool for
the disentanglement of many complex phenomena observed in cosmic
radiation. One of these problems is the question of the nature
of the'primary cosmic ray particles, and the genetic relation-
ships between these particles and the secondary radiations ob-
served in the atmosphere.

One facet of this fundamental problem is the interpretation
of the large air showers which were experimentally studied in
considerable detail by Auger and his collaborators (Ref.5). 1In
this thesis we will investigate the altitude dependence of these
showers from the point of view of the primary electron hypothe-
sis. In particular, we will extend the previous theoretical in-
vestigations, which ranged only from sea level to mountain top

heights (about 15,000 feet), up to a distance of only five radi-



ation units from the top of the atmosphere (about 39,000 feet).
This extension will include that interesting range of altitudes

where the observed counting rate curve exhibits a maximum.

l. Primary Particles

Broadly speaking, there are two different hypothesis as to
the nature of the primary cosmic ray particles: the primary e-
lectron and the primary proton hypothesis. The large air showers
are most easily described by means of primary electrons; but
this description, which has been rather successful up to moun-
tain top heights, on the basis of results given here, seems to
be somewhat less successful at higher elevations. It is more
difficult to explain the penetrating component and the presence
of fast nucleons and stars on the basis of primary electrons,
than by primaiy protons which give a natural explanation of these
features and which are also sugcested by the experiments of
Schein and of Vallerta and their collaborators (Ref. 6, 7).
There has been some difficulty (arising from the long lifetime
of the mesotrons) in obtaining soft radiation rapidly enough
from primary protons to explain the very high elevation found
for the maximum of the Pfotzer curve, but the recent theories
of Lewis, Oppenheimer, and Wouthuysen; Hamilton, Heitler and
Peng; Heitler and Power; offer a reasonable mechanism for this
process (Ref. 8, 9, 10). In particular (Oppenheimer (Ref. 83)
has proposed that the soft radiation may be explained by the
multiple production, by primary protons, of neutral mesotrons

which rapidly decay inte photons. Finkelstein has calculated
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the lifetime of such neutrsl mesotrons and finds that they are
indeed sufficiently short (Ref. 11). |

With reference to the large showers tnemselves, there is
a growing body of experimental evidence that they possess a
complicated structure and penetrating components which, perhaps,
are not describable by primary electrons and the cascade theory
even assuming rather strong production of fast nucleons and
mesotrons by the soft radiation. However, Cocconi and his col-
laborators do find evidence for the strong production, in lead,
of penetrating particles by the soft radiation (Ref. 12a, 12b).
Alichanian, Asatiani, and Muskhelishvilli find narrow showers
which seem to have a different structure from that of the large
air showers as well as showers of penetrating particles (Ref.1l3).
George, Jason, and Trent find penetrating showers and penetrating
bursts separately and 2lso associated with the large air showers
(Ref. 14, 15). Broadbent and Janossy have found considerable
difficulty in explaining the mechanism of production in absorbers
of penetrating particles by soft radiation, and have come to the
conclusion that the penetrating particles which they have ob-
served to be produced by soft radiation are not mesotrons (Ref.
18). This evidence is all recent, and has involved the utiliza-
tion of rather complicated counter arrangements.

On the other hand, primary electrons have sufficed to de-
scribe with remarkable success the less eleaborate studies of
the large air snowers in the lower portion of the atmosphere,
and from this point of view it certainly is possible to assume

that there are primary electrons as well as primary protons in
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the energy range, 1014 o lO16 e.v., responsible for these
showers. However there is a difficulty, first noted by Follin
and studied by Feenberg and Primakoff, that collisions of elec-
trons originating in intergalactic space with the photons of
starlight and sunlight would be sufficient to reduce their en-

ergy below that of the cosmic ray range (Ref. 17, 18).

2. Status of the Shower Theory

Afiter its initial developmént,the shower theory was put in-
to convenient analytical form by Snyder and Serber (Ref. 17,20).
The theoretical calculation of the number of electrons in a show-
er as a2 function of the energy of the initiating electron and
the distance from the point of initiation has been checked in
many important features by the experimental studies of Anderson
and Neddermeyer; Bowen, Millikan and Neher; and Arley (Ref. 21,
22, 23). Against this background, the theory has been subjected
to careful study by Rossi and Klapman and also to critical dis-
cussion by Tamm and Belenky (Ref. 24, 25); and the analytical
expressions given by Rossi and Greisen (Ref. 26), which will be
used here (Sec. 5), have been shown to be generally satisfactory.
It should be mentioned here, that this shower theory does not
take into account the possibility of additional effects such as
photo-nuclear production of fast nucleons or of mesotrons.

The spatial distribution (lateral distribution away from
the shower axis) of electrons is given at present by theory with
only rather indirect experimentzal tests. A value of approximately
60 meters (for air at sea level density) for the root mean square

radius of the lateral distribution at the shower maximum is now
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generally agreed upon by a number of investigators including
Bethe, Nordheim, Wolfenstein, Moliere and their collaborators
(Ref. 27 to 32). The most elaborate investigation of the de-
tailed shape of the distribution has been given by Moliere on
the basis of integro-differential equations derived by Landau
which include both the lateral scattering of the electrons and
the generation of new shower particles (Ref. 33, 34). Moliere's
distribution, derived for the shower maximum, after suitable
modification for positions off the maximum®*, has been used here
(Sec. B).

The shower theory just described yields results for only
the average number of particles and their average gpatial dis-
tribution. The problem of fluctuations in the number of elec-
trons has been studied theoretically by Furry; Nordsieck, Lamb,
and Uhlenbeck; Scott and Uhlenbeck; Bhabha, and Heitler; and an
exhaustive comparison of theory and experiment has been made by
Arley (Ref. 35 to 39). The fluctuation problem is so complicated
that so far it has not been treated in an entirely satisfactory
manner. The general conclusion has been that the correct distri-
bution lies somewhere between the one derived by Furry and the
Poisson distribution. Fluctuations in the spatial distribution
of electrons present an even more complicated problem since cor-
relations in the electron density due to their manner of forma-
tion and to scattering will be superposed on their fluctuations

in number. For the computations given here, no treatment of the

#The writer wishes to express his thanks to Professor R.F. Christy
for suggesting the modifimtion of the lateral distribution which
has been used here.
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effect of fluctuations has been included. This will make our
valuees generally too low, which is not serious in itself since
we have had to adopt a normalization procedure. However, our
density distributions, H(>-p), (See Sec. 8, Fig. 6), become
steeper at higher altitudes and this may be expected to make

the correction larger at high altitudes than at low. Christy
and Kusgke find a fluctuation correction of a factor of about
1.5 for mesotron induced ionization bursts (Ref. 40). The ad-
ditional fluctuations of the spatial distribution of electrons
would be expected to increase this in our case to a gross cor-
rection of 2 or more. The relative correction for high altitude
as compared to sea level is obviously smaller, and should amount

to something like a factor of 1.2 or less.

3. Success gt Low Altitudes

Euler and Wergeland (Ref. 41) first calculated the effects
of the large air showers by a method which has since had con-
siderable success in the lower portion of the atmosphere. They
assume an isotropic primary integral electron spectrum of the
form (energy)'y with ¥ about 1.6 to 1.8 (See Heisenberg, Ref.
42), and use the shower theory to predict the effects of cascade
electrons generated by the primary electirons on the counter sys-
tems employed by Auger and his collaborators (Ref. 5). Later
work by Euler himself, Hillberry, Pomeranchuk, Migdal, Moliere,
and particularly Cocconi and his collaborators has shown such
gsatisfactory agreement between theory and experiment that this

method must be considered very successful (Ref. 33, 43 to 48).
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Wolfenstein was not able to account for the ionization bursts
observed by Lewis (Ref. 49), but Lewis' results are very diffi-
cult to understand wheﬁ compared with Hilberry's (Ref. 44)
counter measurements which were carried out at the same place,
and it is likely that ionization bursts due to slow heavy par-
ticles from nuclear disruptions and elsewhere completely smoth-
ered the effects of the large showers in Lewis' measurements.
Recently Skobeltzyn, Zatsepin and Miller have made measurements
with counter systems of very wide separation (up to 1000 meters)
which seemed to be in very marked disagreement with the results
of the theory (Ref. 50). However, Cocconi has shown that this
disagreement arose from the neglect, in their calculations, of
the apparent reduction in the separation of their counters for
showers inclined at large angles'with the vertical; and that the
agreement is actually very good (Ref. 51). This is a severe and
successful test of the theoretical lateral distribution. Recent-
ly Cocconi (Ref. 52) has calculated the altitude dependance of
the large showers up to 15,000 feet and found reasonable agree-
ment between theory and the experiments of Auger, Daudin, and
Cosyns (Ref. 52, 53, 54).

The marked success of this method at lower altitudes makes
it of considerable interest to extend it to higher elevations
where further and perhaps more exacting tests of its validity
may be made. The recent experimental determination by Kraybill
and Ovrebo (Ref. 55,58) of the counting rate of the large show-
ers as a function of altitude up to 40,000 feet with the demon-
stration of a maximum at 30,000 feet makes this especially de-

sirable.
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4. The Comparison of Theory snd Experiment

(a) Variation of counting rate with altitude

In this thesis the shower counting rate as a2 function of
altitude has been calculated, by a method first used by Cocconi
(Ref. 48), for Kraybill's counter arrangement (Fig. 15, and Ref.
56), from sea level to 39,000 feet. The method of computation
differs from that of Cocconi in two respects: the lateral dis-
tribution function adopted here has been modified in shape for
positions off the shower maximum (Sec. 6) while Cocconi utilizes
everywhere a shape corresponding to the shower maximum; the
finite separation of the counters has also been tzken into ac-
count (Sec. ©) while Cocconi has treated the calculation as if
the counters were at the same place. This last correction is
gn essential feature of any computation extending above 15,000
feet (where, incidentally, Cocconi's calculations stop). 1In
Parts II and III the computation is described in some detail.
In order to reduce the labor of computation, the correction for
the finite separation of the counters has been done in an approx-
imate way (Sec. 9, 12). This approximation, and our omissien
of a treatment of fluctuations (Sec. 7) are both such as to
make the theoretical counting rate computed in this way too low,
each omission contributing a factor of roughly 1.2 so that the
net reduction amounts to a factor of 1.5 to 1.4 or less. It
may help to keep this in mind when studying the altitude depen-
dence of the showers.

In computations of this kind it islusually necessary to a-

dopt a normalizing procedure. This is not surprising, since the
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primary spectrum we have employed (Ref. 42) has been determined
partly by consideratiocns of Jjust this type (See, for example,
Hillberry, Ref. 44, and also Sec. 12). The normelization we
have adopted consists in multiplying our theoretical counting
rate, Ny, by a factor of 3 determined by fitting our theoretical
curve to Hillberry's data in the region from sea level to

15,000 feet (Fig. 10). From now on we will consider the correct
theoretical counting rate to be given by 3Ng, and will use this
notation for this quantity. 1In Fig. 11 the curves 3N , and also
8.353Ng are pleotted zlong with Kraybill's curve and experimental
points in the region from 15,000 to 39,000 feet. The 3Ny curve
is seen to lie considerably below the experimental curve. The
factor 8.33 was determined to bring the maximum of the theoreti-
cal curve roughly equal to the maximum of the experimental curve.
Of course this throws off the normalization at low altitudes.
The two curves, 3Nz and 8.33Ny, are compared with Kraybill's
experimental curve over the whole altitude range in Fig. 12, and
it is clear that there is a marked discrepancy in the height of
the maXximum. The details in the shapes of the curves are some-
what different, the theoretical curve having a maXimum at a lew-
er altitude (10.5 radiation units as compared to 8.5 radiation
units for the experimental curve) and falling off somewhat more
rapidly at high altitudes. Expressed as the ratio to sea level,
the maximum of the theoretical curve is only 24 compared to 64
for the experimental curve. So far as the position of the max-
imum is concerned, the uncertainties in the experimental points

and in the theory are such that a suitable adjustment could bring
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the two maxima to nearly the same place. However, there would
remain the difficulty that the theoretical curve decreases more
rapidly at high altitudes. The discrepancy in the height of
the maximum may be expressed by the ratio (64/24)=(8.33/3)=2.75.
There are various effects which tend to reduce, somewhat,
the magnitude of tnis discrepancy. There is a transition effect
for the showers as they pass through the 1.3 gm./cm.® of alumi-
num and wood of the aireraft skin (Ref. 55). Near the maximun
of the counting rate curve the showers are considerably inclined
so that we may double the amount of material to obtain about
0.1 of a radiation unit with critieal energy about half that of
air. The most this can contribute to an increase in shower den-
sity is about two per cent, and since the counting rate varies
about as (counter area)z, 2 maximum increase in counting rate
of four or five per cent is 211 that can be expected from this
source.
The effect of the approximation used to correct for the
finite counter separation may be estimated to be a reduction
by a factor of 1.35 to 1.20. The former factor comes from an
estimate of an "effective counter separation" based upon the
average separation of the counters which turns out to be a
separation of 6 feet rather than of S feet which was used in
the computation (end of Sec. 10); the latter factor was based
upon a detailed, but a posteriori, discussion of the errars in-
troduced by this approximation (Sec. 13). It is believed that
this latter estimate is more nearly correct.

The effect of fluctuations is very difficult to estimate.
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The normalization procedure washes out many gross effects,
leaving only the ratio of effects at higher altitude compared
to those at low altitude. It is believed this may amount to
a factor of 1.2 or less.

Taking 2ll these effects together we obtain a factor
(1.05) (1.20) (1.20) = 1.50, or at most a factor of
(1.05) (1.35) (1.20) = 1.85. These may be compared with a faec-
tor of 2.75 needed to bring agreement between theory and exper-
iment, and there still remains a discrepancy of a factor of 1.8
(more reliable) to 1.5 (less reliable). The discrepancy thus
seems to be real although not, perhaps, as marked as indicated
by Fig. 11. The rapid decrease of the theoretical curve above
the maximum also remains rather hard to explain away, although
the position of the maximum may well be given too low an alti-

tude by our approximétion.
(b) Variation of counting rate with zenith angle at 30,000 feet

The variation of counting rate per unit solid angle N(x,¥)
as a function of the zenith angle (&,9), (Fig. 15) has been com-
puted for Kraybill's counter arrangement at 30,000 feet and is
shown in Fig. 13 (in this plot 6 is represented via x where
X = cosf ). From this has been derived the counting rate per
unit plane angle by projecting the zenith angle, (&,9), inte
the angle ¥ lying in the plane of a cloud chamber (See Sec. 14
for details); and this last has been compared (Fig. 14) with
the cloud chamber studies of Mr. E. W. Cowan (Ref. 57) who has

determined this projected angle distribution at 31,000 feet
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utilizing photographs taken of a cloud chamber controlled by
Kraybill's counter arrangement. The details are given in Sec.
14.

The experimental distributions are listed in Table 23, and
we note that from all the photographs taken at a given altitude
only 20 or 30 per cent could be used since it was impossible to
assign an angle in the remainder in an unambiguous way. Conse-
quently the corresponding experimental angular distribution is
in some doubt since the data hidden in the unclassified photo-
graphs cculd smother the tabulated distribution and might very
well change its character altogether. A partial explanation of
the difficulty found in assigning a direction to the electrons
appearing in the photographs may lie in the relative orientation
of the counter system and the cloud chamber (Fig. 15). In Fig.
14 the counting rate per unit solid angle has been shown as the
dashed curves for @ = 0 and @ = 90° where for these two curves
the angle ¢ is to be understood as meaning the angle 6. The
much larger maximum for the ¢ = O curve (it goes off scale, but
has a maximum 3 times the @ = 90° curve) as compared to the
@= 90° curve is evident. The showers at ¢ = 0, however, lie
in a plane perpendicular to the plane of the cloud chamber, and
consequently just these more numerous showers with the large
inclination to the vertical will be rendered difficult to classi-
fy.

The theoretical projected distribution has been calculated
for all showers and for those showers (about 20% of the total,

which corresponds to the 20% which could be classified) for which
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the zenith angle lies in a region adjacent to the plane of the
cloud chamber and outside of the directions contained in a right
circular cone with vertex in the center of the cloud chamber and
axis perpendicular to the face of the cloud chamber with half
vertex angle equal to arc cos 0.25 (the edges of the cloud cham-
ber are given by arc cos 0.16). This latter partial projection
was selected to take into account the possibility that showers
lying near the perpendicular to the face of the cloud chamber
could not be classified. The "partial projection" distribution
is shown as a solid curve in Fig. 14 and is seen to be even high-
er than the "total projection" also shown as a solid curve.

(A1l curves were arbitrarily normalized to 10 at Y = O so that
their shapes could be compared). The experimental distribution
A (See Table 23) was considered as representative of the experi-
mental results and is shown as the stippled curve in Fig. 14,

it falls off twice as rapidly with increasing angle as either

of the two theoretical curves.

The result of the comparison is that the half angle for the
experimental distributions is in the range of 15 to 20 degrees
in every case while the half angle for the theoretical total
projection is about 30 degrees, and is even larger for the par-
tial projection. On the basis of angles for half maximum the
experimental distributions lie between 30 and 40 degrees, and
the theoretical between 80 or 70 degrees. We have a bedy of
experimental data which are consistent within themselves and al-
so consistently in disagreement with the theoretical distribution,

being too narrow. Two other factors that may bias this comparison
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are the selection of the photographs for measurement, which

was done by requiring that there be ten or more parallel tracks;
and the fact that the comparison is made for different altitudes.
The ten track requirement corresponds to a requirement of high
particle density and near the counting rate maximum, where these
data were taken, on the general grounds of a longer distance
for shower multiplication one would expect this to broaden, not
narrow, the observed distribution. The theoretical curves

would be made broader, and so increase the disagreement, if a
correction for this is introduced. The theoretical computation,
made at a slightly lower altitude than the observations, would
be expected to be narrower than the "correct" theoretical curves
and therefore a correction for this would also increase the dis-
agreement.

This discrepancy is all the more surprising since an approx
imate angular distribution may be inferred from Kraybill's ob-
served altitude curve by means of a Gross transformation, and
this derived eangular distribution agrees rather well with the
theoretical one and not at a2ll with the distribution obtained
from the cloud chamber studies. |
. The disagreement found here between the cloud chamber and
theoretical distribution should not be given too much weight be-
cause of the uncertain statistics of the former. Nevertheless
it is surprising and interesting, and neas been given some study
since instances of the investigation of cosmic radiation by the
simultaneous application of counter and cloud chamber techniques

are rather rare.
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(c) Conclusions

There seems to be a discrepancy between the theoretical
variation of counting rate with altitude, based on the assump-
tion of primary electrons, and the variation observed by Kray-
bill (Ref. 56). The experimental curve exhibits a stronger max-
imum by a factor of 2.75 when compared with the theoretical
curve. Various approximations present in the theoretical calcu-
lation are such as to reduce this discrepancy, but an estimate
of their magnitude seems to leave a discrepancy of a factor of
1.5 to 2.0 still remaining. The maxime of the two curves are
not at the same place (The depth at the maxima from the top of
the atmosphere, t, measured in radiation units, is 8.5 for the
experimental and 10.5 for the theoretical curve.), but this dif-
ference may well be accounted for by uncertainties in the obser-
vations and calculations. Tne more rapid decrease of the theo-
retical counting rate above the maximum as compared to the ex-
perimental is more difficult to explain away.

It is possible that a more accurate calculation of the alti-
tude effect taking into account the effect of fluctuations and
making no computational approximations would remove the discrep-
ancy found here, but the study presented here makes this unlikely.
It may also be possible to remove this discrepancy within the do-
main of the primary electron hypothesis by selecting a smaller
value, say 1.7 or 1.6 rather than the value 1.8 used here, for
the exponent in the primary electron spectrum. However, the
normalization procedure of fitting theory to experimental data

in the lower portion of the atmosphere will have to be followed,
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and this might make such a treatment unsuccessful.

Lewis, Oppenheimer, and Wouthuysen (Ref. 8) have proposed
a mechanism for the multiple production of secondaries by pri-
mary protons. Their mechanism should lead to a stronger maxi-
mum at higher elevations for the counting rate curve, and there-
fore should yield better agreement with the observations than
the curve derived here assuming primary electrons.

There has been found a rather marked disagreement between
the theoreticzal angular distribution of showers at the maximum
of the counting rate curve and one observed by means of a cloud
chamber (Ref. 57). The observed distribution being twice as
narrow as the theoretical one. Too much weight should not be
given this discrepancy since the statistical basis of the cloud
chamber distribution is rather insecure and because the angular
distribution inferred from Kraybill's observed altitude depend-
ence by means of a Gross transformation is in rather good agree-
ment with the theoretical distribution. Nevertheless this point
deserves further investigation, and something of interest may
turn up.

Finally, it may be said, that the results of the present in-
vestigation indicate that the primary electron hypothesis which
has been remarkably successful in describing the experimental
studies of the large showers in the lower portion of the atmos-
phere has encountered some difficulties upon being extended to
higher elevations, and that the satisfactory answers formerly
derived from it may be looked upon as the result of a highly

successful prescription rather than as proof of the real exist-
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ence of primary electrons.

II THE SHOWER THEORY

The shower theory describes the multiplication of a sin-
gle high energy electron* or photon by virtue of the processes
of pair production and bremsstrahlung (Ref. 58) into & shower
consisting of many electrons and photons (Ref. 59). The mul-
tiplication depends upon the material in which the shower oc-
curs, and is stopped by dissipation of the incident energy
through ionization of the surrounding atoms by the shower elec-
trons. As a shower develops, it keeps a generally well defined
direction or axis, but the electrons, due chiefly to multiple
coulomb scattering by the nuclei of the surrounding material,
also spread out laterally in =z direction perpendicular to the
shower axis. In many cases, depending on the surrounding ma-
terial, one may separate the development of the shower along the
axis from the lateral spreading of the electrons. This is pos-
sible when the angle of deflection of the electrons is small e-
nough so that their path of travel is nearly the same as the
projection of the path on the shower axis, and is a satisfactory
approximation for showers in air, water, and aluminum but not
for lead. This approximation is adopted here. A suitable de-
scription of both the number and lateral distribution of elec-
trons is needed for interpretation of many experiments with cos-

mic radiation. In most cases, the distribution of photons may

*The term electron will be used for both positive and negative
electrons.
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be neglected, since it is the ionization produced by electrons

which is detected by counters and ionization chambers.

5. The Number of Electrons

We will now consider the calculation of the number of elec-
trons as a function of the distance along the shower axis, and
of the energy of the initiating electron. The expressions giv-
ing the. total number of electrons as a function of depth have
been subject to experimental study and critical discussion
(Ref. 21, 23, 24, 25, 39), indicating that their uncertainty is
less than that introduced by the rather incomplete treatment of
fluctuations (Sec. 7). In fact, this constitutes one of the
successful tests of the correctness of the quantum theory of
radiation. The more detailed expressions giving the energy dis-
tribution of the electrons are somewhat less accurately known.
We will consider only electron (not photon) initiated showers.

The development of a shower depends upon the material in
wnich it occurs, but it may be described in a dimensionless
form independent of the material by expressing lengths along
the shower axis in terms of a "radiation length" (length meas-
ured in these units will be denoted by t), lengths perpendicular
to the shower axis in terms of a "lateral unit" (lateral dis-
tances measured in these units will be denoted by r), and ener-
gies by their ratio to a "eritical energy" denoted by 3 . The
radiation length is defined as the distance an electron must go
to reduce its energy to 1/e of its initial value due to bremss-
trahlung, and is about 7/9 of the distance a photon must go in

order to produce a pair. The critical energy is the amount of
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energy an electron loses by ionization in going one radiation
unit. Thus an electron with the critical energy is likely to
be stopped by ionization rather than multiply further, and so
may be considered as lost to the shower. For any one substance,
it turns out that the lateral unit is a constant multiple of
the radiation unit, although the ratio of the two units varies
from substance to substance.

Fundamenfally, the radiation unit depends upon the number
of nuclei or the amount of matter which the shower traverses,
and it is most appropriately expressed as a numoer of grams per
square centimeter. However, it is useful and sometimes neces-
sary to have a geometrical measure of the radiation unit. This
is listed in the table below (from Ref. 33), and the data for
air correspond to sea level density. If the air density de-
creases, then the size of the radiation unit and the lateral
unit undergoes a corresponding increase (See Table 1). The val-
ues for lead are only approximate because of the large scatter-

ing.

TABLE I. SHOWER THEORY UNITS

| Substance Radiation‘ Lateral 1 Critical |

4 Unit, Unit, i Engrgy,

| cm. ‘ cm. (10° e.v.)

| L pomey IS

| Air | 33,000 | 5950 i858 |

. Water | 43 ‘ 7.8 1.13
Aluminum 9.6 3.l 0.63
Iron 1.8 1.2 0.31

| Lead (0.51) @ (1.0) (0.10)
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Rossi and Greisen (Ref. 26, approximztion B) give a par-
ametric expression for the number of electrons in a shower

wihich is used here. It may be written as follows:

Yslt+ €S o o

TT - K(S) c D+n<slt 2 (5.1a)

_~$SE-]
't — wm(s)

(5.1b)

c = ]Y\ (E//") (See Table 2 for air). (5.1c)

The functions XK, 1, m, n are given in Table 4 and have been re-
computed from functions tabulated by Rossi and Greisen in order
to have the more convenient form of Eq. 5.1. The symbols are
defined as:
ﬂYT = the total number of electrons in the shower.
t = distance or depth along the shower axis from the
point of initiation measured in radiation units.
E = energy of the initiating electron measured in the
same units as .

the critical energy. (108 e.v. was used for air in

@
"

the computations given here. This is very near
0.98 x 108 as given by Rossi and Greisen, Ref. 2,
and believed more reliable than Moliere's value,
Ref. 33, given in Table i).
s = a parameter entering the shower theory.
The parameter s will be used (Sec. €) as a guide in con-

structing a lateral distribution function; consequently, its



-21-

behavior will be discussed. It increases with depth for fixed
initial energy, and decreases with increasing energy for fixed
depth. At s = 1 the shower has the maximum number of electrons.
The maximum number of electrons and the position of the maximum
is listed in Table 3.

The general nature of Eq. 5.1 is illustrated as follows:
The variztion of the number of electrons with depth for wvarious
fixed energies is listed in Teble 5 and plotted in Fig. 1. The
parameter s is also plotted in Fig. 1 as if it were a dependent
veriable, and may be seen to vary rather slowly. The variation
of the number of electrons with initiating energy for various
fixed depths is listed in Table 8 and plotted in Fig. 2. The
parameter s is again plotted as if it were a dependent variable.
The mueh less rapid increase of the number of electrons with
energy for t = 5 than for t = 10 is noteworthy. It is primarily
due to the smal ler value of s at the smaller value of t. Phys-
ically, it means that five radiation units are not enough for
much multiplication to tzke place, and large increases in the a-
mount of energy produce cnly a moderate increase in the number
of electrons. This tendency will appear later later as a strong

cut-off in the counting rate at t= 5.
6. The Laterzl Distributicn

The lateral spreading of the shower electrons away from the
shower axis has only recently (1940) been the subject of theo-
retical investigation (Ref. 237 to 32, 41, 43, 45). So far, the
results of these investigations have not been subject to direct
quantitative verification, as has been the case for the number

of electrons, although indirect comparisons seem to be in rea-
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sonable agreement with counter observations on the large air
showers carried out at elevations ranging from sea level to
mountain top heights (Ref. 33, 44, 51). Furthermore, the fluc-
tuations in the surface density of electrons in a shower around
the average distribution will be expected to be much greater
than the fluctuations in the number of electrons, since the
fluctuztion of their distribution in space will be superposed
on their fluctuation in number. In particular, Auger's studies
(Ref. 5) seemed to indicate that the density fluctuations do
not follow a Poisson distribution, although the interpretation
of his results is uncertain because of the effect of the walls
of his cloud chamber, and because he had two 1.0 millimeter
tungsten and one 5 millimeter lead plates in the chamber. When
the problem of the mean radial density distribution is solved,
there will still remain much to be done.

An incorrect estimate of the lateral spreading of the
shower electrons will affect conmputed effects considerably,
since, if one defines a mean shower radius in a suitable way,
then the counting rate will vary roughly as rm'l'6 (See the end
of this section). For these various reasons, a rather elaborate

discussion of the lateral distribution is given.
(a) General discussion

The laterzl or radial spreading of the electrons out from
the shower axis is due mainly to their multiple coulomb scatter-
ing by the nuclei in the surrounding material, the angular di-

vergence arising from the process of their creation being negli-
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gible when compared with the scattering deflection. The shape
of the radial distribution at the shower maximum is approximately
of the form (1/r) exp (-r), the earlier investigations being
mainly concerned with estimating the mean radius (i.e. the size
of the unit to be used when writing the expression above) of the
shower. This mean radius has undergone wide fluctuations as more
refined theoretical investigetions were undertaken, ranging from
about 20 meters in the pioneer investigations of Euler, Werge-
land, and Hilberry (Ref. 41, 43,44) to 120 meters in the studies
of Pomeranchuk and Migdal (Ref. 47, 48), and finally settling
down to about 60 meters in the more recent work of Bethe, Wolfen-
stein, Moliere, Nordheim, Richards, and Roberg {Bef. 27 to 33,
gee also 26). In these investigations (excluding Moliere), the
mean radius was calculated on the basis of the mean square an-
gular deflection at a given energy (Ref. B80) averaged in an ap-
propriate way over the energy spectrum of the electrons, and
over the scattering for about one radiation unit. This distri-
bution was then "grafted on" to the one dimensional shower theory.
The physical reasons for this procedure are quite reasonable.
The mean square angular deflection of an electron in a thickness

of matter dt is given by (Ref. 80):

.

0* = (e /E) dt (6x1)

where E is the energy of the electron, and the constant Eg is
about 2.1 x 107 e.v. 1In air, this energy is somewhat less than
the critical energy, (108e.v.) so that only electrons, with the

critical energy or less, will undergo appreciable deflection.
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However, electrons with the critical energy will be stopped
and lost from the shower in about one radiation length, so

that it seems rezsonable to set dt equal to unity in Eq. 6.1.
The general picture is this: only rather low energy electrons
will be appreciably scattered and contribute to the lateral
distribution of the shower, but these electrons will be lost

in one radiation length, so that most of the scattering tzkes
place in the last radiation unit. For this reason, the general
shape of the distribution will not change very much as the
shower develops. The exponential lateral decay follows from

the same considerations.
(b) The lateral distribution adopted

However, these arguments of a general nature do not give a
very precise notion of the shape of the distribution; in par-
ticular the contribution to the distribution of the scattering
in the earlier generations is not very carefully treated. Lan-
dau (Ref. 34) has set up equations which combine both the de-
velopment of the shower and the scattering in a suitable way.
Recently, Moliere (Ref. 33) has solved these equations by a
difficult numerical procedure, and obtained the distribution
function at the shower maximum which can be represented with
good accuracy by an expression of the form

(1/r) [4 exp (-«T)+B exp (- g1)|
(See Fig. 3). This is the most reliable distribution function
so far available. For our calculations, we will adopt this

expression at the shower maximum, but introduce a slight modi-
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fication* to take into account the change in shape of the dis-
tribution on either side of the maximum. The expression adopted

for the surface density,f , of the shower electrons is:
P =TI, ¢,9) £, &) (6.2a)
fm= 'r‘"‘ R R (1) (6.2b)

R(s)’”%ﬂ “) 3 @1 (See Table 8), (8.3¢c)

xr -@r
R(T) Ae +Be (See Table 8), (6.24)

Here: A = 2.94, B = 0.31,
! = 2.88, [@= 0.855 per lateral unit.
t = depth along shower axis in radiation units.
E = energy of the initiating primary electmon.
r = the radial distance from the axis of the shower,

measured in lateral units. (about 80 meters for
air at sea level).

fD = the surface density of electrons, mezsured as the
number of electrons per square lateral unit (the
number in a square 60 meters by 60 meters for air
at sea level).

the toctal number of electrons in the shower.

B

m
1l

the shower theory parameter, which is defined im-

plicitly when E and t are given.

#The writer wishes to thank Professor R.F. Christy for suggest-
ing this modification.
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R(s) = a normalizing factor chosen so that the integral
of the density equals|] , (‘:P””h'zw)'

On setting s = 1 (the shower maximum), we obtain Moliere's dis-
tribution. For s different from unity, the shape of the shower
is slightly modified (while retaining the gross features of the
distribution represented by the exponential terms) to give a
more appropriate radial function. 1In a general way, it is clear
that a2 modification of this type is required, since for s <1
the average energy of the shower electrons is greater than at
the maximum and so they will scatter less. Eq. 6.2 indicates
a correspondingly greater density near t he shower axis. A con-
verse situation obtains beyond the maximum. One may see that
the analytic form of Eg. 6.3 is reasonable by constructing the
approximate density distribution in the vicinity of the shower

axis.
(c) Density in the vicinity of the axis

The mean square angular deviation given by Eq. 6.1 implies
(assuming the angles are smal 1l enough so that the angle is equal
to its sine) that the radial distribution of those electrons,
which have the same energy, may be represented by a Gaussian

function of the form:

p(E,T) = z'}(%f e |- 5(%‘()“] (6.3)

Here: E = the energy of the electrons in the shower, (not
the initiating electron).

T = radial distance from the shower axis in lateral
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units.
Eg = a scattering energy (about 6.8 x 107 e.v. for
air). (Thie is different from the Eg of Eq. 8.1
by the factor (330/60) introduced because the
radial distance is measured in lateral units, not
radiation units, and also by the factor (1.2/2.1)
which was determined by Roberg (Ref. 31) by a
self-consistent method of treating the scattering
of electrons.)
The probability, P, has been normalized so that
g;anrdrss\.
From the shower theory (Ref. 28, Approximation A) we have for
the differential energy spectrum of the shower:

s+

SHAs)t
TEEEHdE = —;%Ejds H.(S)e% = (6.4a)
§-t0

= 1H(E /E)
T ¢ (8.4b)
Here: JU(E,, E, t)dE = the number of electrons in the shower

with energy within dE at E.

E, = the energy of the initiating electron.
E = the energy of the shower electrons.
t = the depth below the start of the shower, in radi-

ation units.
Hi(s), )“(s) are functions tabulated in Ref. 28.
8 = a parameter of integration.
Eg. 6.4 does not take into account energy loss of the shower

due to ionization of the air. It gives a reliable estimate of



=B

the spectrum of the electrons only for energies five to ten
times the critical energy; below this energy it predicts much
too large a number of electrons. We may now estimate the ra-
dial distribution of the electrons by integrating over the

energy:

=

PEt) = J}T(on E,t)dE o (E,T) (6.5)

5B

The integration may be extended to infinity on the upper limit,
since the spectrum is zero for E above E;. We will also take
the lower limit to be zero, since the excessively large number
of electrons at low energy will be diluted by distribution over
a very large area by the scattering function F). Since we are
only interested in the density near the axis, where there are
mostly high energy electrons, this will not introduce a serious
error. With these limits, and exchange of the order of integra-

tion, an elementary integration yields:

§+ie0

At
pE., ™) = 77 SASH I (Eo )r(“ 3 (6.5)

§-c®

This integral may now be evaluated by the saddle point method

(See Ref. 28) to give:

1 HT0-3) o g OL:
PlEo,1)t) = (Qﬁ)”* Y w-2)rEX o (‘Y_E_E_s) (6.7a)

W0 (%) = $90-3) -t -

W
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Here T is the usual [-function, Y is its logrithmic derivative,
and %‘ Y = p’ . The functions H;, A, etc. are tabu-
lated (Ref. 26). As a matter of fact, Eq. 6.7 gives an estimate
of the density for small r which agrees very well with the nu-
merical values obtained by Wolfenstein, (Ref. 32) using a more
correct energy spectrum and numerical integration. It is ob-
vious that Eq. 8.7 cannot be correct for large r, since, in gen-
eral, jpinrdr will not converge. (This is not surprising
since ;he energy integral of the electron spectrum, if extended
to zero, will diverge; and we find this infinite number of elec-
trons again when we go to large distances where thay have been
placed by the scattering function.)

However, the fact that Eq. 6.7 gives numerical values in
good agreement with a more accurate procedure indicates that it
may be used as a guide to modify Moliere's distribution function,
when away from the maximum. We notice that the radial depend-
ence is of the form 1/r2-8 and for s = 1 it gives 1/r a2s in the
case of Moliere. Furthermore, this same radial dependence, at
short distances, has been derived by Pomeranchuk andVMigdal (Ref.
47, 48) by a different method, so that one may feel somewhat
more confidence in it. This, then, gives the analytic form in-
dicated in Eq. S.BM‘

For very short distances, the electron density increazses
without limit. This cannot be correct, because, even if all
the electrons in the shower had the energy of the initiating
electron, they would be scattered over a circle of finite though

perhaps small radius given by inserting the initial energy into



)=

Eg. 8.1, with dt = 1. Actually, this density increase must
stop at some larger radius, since even the most energetic show-
er electrons must have an energy less than that of the primary.
The extremely short radii, where this failure of the expression
occurs, contripute nothing to our computations except for the
vertical integral density spectrum above t = 10, when there is
no correction for the counter separation (Sec. 8, 9). When a
correction is made for counter sepesration, and this was done

in computing the counting rste to compare with the observations,
the effect of this divergence at small radii is completely re-

moved.
(d) Description of the radial function

The radisl function, Egq. 6.2, is listed in Tables 6 and 7,
and in Fig. 3 1n (rfl(r)) is compared with the corresponding
function of Moliere. 1In Table 31, values of the mean radius
are given as a function of s, expressed as meters for air at
sea level density, and as the ratio to the radius at s = 1. The
root mean square radius at s = 1 is 57 meters, agreeing with oth-
er investigators. It will be noted that the mean radius, which
is somewhzt more sensitive to changes in the shape of the lateral
function than the root mean square radius, varies considerably
with s so that an adjustment in the shape of the lateral func-
tion should certainly be made for showers off the maximum.

One may also obtain some idea of the significance of the
modification of Moliere's function in the following way. If

the integral primary electron spectrum is given in the form
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Y
D(@/E) , and we assume that the shower electrons are spread
uniformly over a circle of tne mean radius, r, then the fre-
quency of occurence of a density of P or greater will be given

by:

-~ - /e)
Hop) =7 Y D (B/E) G B

where E on the rignt side is that E which is just sufficient
to produce the density p. Now, the density jD is approximately

related to E by an expression:

0X.) G\(E/ﬁ)s

= (6.9)

— (aper

1T
P"’ b

where G; depends on t, but only weakly on E. Substituting Eq.

6.9 into Eq. 6.8 we obtain:

B T 2 [
H(p) :(A\oprox.)[DK( & ] P?g (T1J§‘| (6.10)

Thus the integrel frequency (and the counting rate which is rough-
ly. proportional to H(>p)) varies as r=3(Y/s-1) | mnis function

of r(s) is given in Table 21 in terms of its value at s = 1, as-
suming Y = l.8. This gives a rough notion of the effect that

the change in shape of the radial distribution has on the count-
ing rate. For very small values of s (below 0.8), the very large
increase indicated in Table 21 is misleading since it is due to
those extremely small radii for which the radial distribution is
not valid. As mentioned above, these small radii contribute noth-

ing to the computation of those counting rates which zre compared
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with experiment.

7. Fluctuations

The shower theory just outlined gives only the average num-~
ber of electrons and tneir average distribution in space. For
any individual snower, it must be expected that there will be
considerable fluctuations away from this average. These fluctu-
ations would be expected to alter the results of computations
based only on the averaze values. Arley (Ref. 39) has given a
rather exhaustive discussion of the fluctuations in the number
of particles (Ref. 26 also gives a 1list of references regarding
this problem; see also Ref. 38). So far, no attempt has been
made to investigate fluctuations in the spatial distribution of
electrons except for a discussion of local correlation of elec-

tron pairs (Ref. 47, 61).
(a) Experiments related to the fluctuation problem

It hes been mentioned that the spatial distribution observed
by Auger and co-workers (Ref. 5) utilizing a combined counter-
¢loud chamber technique does not seem to follow a2 Poisson dis-
tribution very closely, although the presence of metal plates
in his cloud chamber makes the interpretation of his results un-
certzin. In the comparison between theory and experiment given
by Moliere (Ref. 33),in which he computes the coincidence count-
ing rate-for two counters as a functicon of their sepzration and
compares it with Auger's experiments, the experimental counting

rate considerably exceeds the calculzted counting rate for sepa-
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Tations in the range from 10 cm. to 1.0 meter. Moliere sug-
gests that this discrepancy may be due to the fact that, in

his calculations, ne used throughout the lateral distribution
function corresponding to the shower maximum, and that, if he
had modified the shape of the function for showers not at their
maXximam,he would have obtained better agreement. The results
of the calculations in this thesis indicate that only showers
very near their maximum, or beyond (but not before), contribute
very much to the counting rate at these separations at sea lev-
el. On quite general grounds, (S8ec. 6) it is difficult to see
how the spatial distribution could be narrower beyond the max-
imum than at the maximu. Consequently, the explanation offered
by Moliere does not seem to be satisfactory.

Pomeranchuk and Berestetzky (Ref. 47, 61) have offéred an
explanation of this discrepancy by computing the local spatial
correlations of pairs of electrons due to the fact that the
shower electrons are produced in pairs in which both electrons
originate at (macroscopically) the samepoint. Their results
seem to explain this particular discrepancy satisfactorily.
However, the same rapid increase in counting rate for small
separztions has been observed by Geiger and Stubbe (Ref. 62)
utilizing five and six-fold coincidences. This observation
would seem to make the explanation based on pairs untenable, al-
though the general notion of local spatial correlation of the
shower electrons, because of their manner of formation, seems
reasonable. Thus, one would expect both this sort cof correla-

tion and chance correlations due to scattering to play a part
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in the density fluctuations.

It may be that the excessive counting rate azt narrow
counter tube separations may be due to a different mechanism
than fluctuations, such as local showers initiated by meson

decay or knock on electrons from mesons.
(b) Procedure adopted

Since there is no adequate theory of the spatial fluctua-
tions, no attempt has been made to include either spatial fluc-
tuactions or fluctuations in the number of particles in these
cocmputations. It may be remarked that the fluctuztions would
be expected to increase the frequency of the integral density
curve, and hence the counting rate as compared to a computation
with no fluctuations. This follows (assuming a moderately sym-
metrical distribution) from the rapid decrease of this curve
with increasing density (See Fig. 6). Fluctuations upward
from the very numerous low density portions of the curve should
overcompensate for the loss of portions of the high density e-
vents, due to the same type of fluctuations. In taking into
account fluctuations in the number of electrons produced by
mesotrons in lead, Christy and Kusaka (Ref. 40) found an in-
crease of a factor of about 1.5 as compared to a calculaticn
not including fluctuations. In our case, the fluctuations may
be expected to introduce possibly a factor of two or more since

fluctuations in the spatial distribution also enter.
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IIT COMPUTATIONS

This Part will outline the computational procedure followed
in order to calculate various effects to be compared with exper-
iment. Our general approach will be one first followed by Coc-
coni (Ref. 46), which has the advantage that a large portion of
the calculation may be completed before inserting the specific
details of any particular measuring apparatus.

The basic calculations will all be carried out using show-
er units and lateral units which change their geometrical values
as the air density varies with altitude (Table I and Table 1).
This is done to avoid a great deal of tedious conversion of units
in the great bulk of the computation. This should be borne in
mind when inspecting the results of calculations which do not
yet include this correction.

The differential primary electron spectrum adopted is es-
sentially the same as that of Euler, Heisenberg, and Cocconi
(Ref. 41, 42, 43, 48), but has been expressed in units especially

appropriate for the computations:

y |
PEYEJLQ = D(—g) Q{EE- 40 (II1.1)
E > 107~

Here: P(E)dEdA{l = the number of primary electrons per hour
which strike on one square lateral unit (at sea level
density 60 x 60 meters) within the solid angle dQ-
and the energy range dE at E.

(3 = the critical energy in air, 108 e.v.
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The corresponding integral spectrum is:

Y
PPE) == %-,E D (fE—)) E>I10ew (111.2)

7.52 x 1018/(nr.)(lateral unit)?(steradian).

i

1.8 for the computations in this thesis.

Here P(>E) is the number of electrons of energy greater
than E, which strike one square lateral unit per hour from any

direction in the upper hemisphere.

8. Vertical Density Spectrum

In this section, we will calculate the integral density
spectrum at any (various) point in the atmosphere due to primar-
ies thet enter the atmosphere within the small soclid angle dflL
near the vertical. This is the frequency per hour FV(>P)f)JQ_
with which a surface density of electrons, equal to £ or greater,
will pess any point in the atmosphere at depth t.

In Sec. 5, 6 there wes derived an expression for the density
of electrons due to 2 shower initiated by a primary of energy E,

at a depth t, and at a distance r from the axis of the shower:
p(E)t)T) =115, t,9) &(Y) (8.1)

Conceptually (and numericel 1y) we may invert this equation teo

obtain:

Y= T{L, P E) (8.2)

Note that for given E and t, if the density is /° at r, then it
is greater than Q for any radius smaller than r. Hence, if we

consider only showers due to primeries of energy E, then those
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primaries striking on or within a circle of radius r, given by
Eg. 8.2 about some fixed but arbitrary point at depth t, will
give rise to a density of P or greater. The total vertical fre-
quency will be obtained by integrating over the primary energy
to obtain:
20
KGp,t) = STT lxct,p, e)]” P(e)dE (8.3)
o
The lower limit may be taken to be zero, since r goes to zero

very rapidly for energies below 10*%.v. For ease of computa-

tion, it is best to make the transformation

£ = In(E/B) (8.4)

which gives, on inserting the primary Spéctrum:
-Ye
HV(>9)J¢): nbgo(ee [T(f)/o,g):ll (8.5)

Some generzl features of the integral vertical density
spectrum are revealed by an apprcximate treatment of Eq. 8.3.
If one neglects the dependence on s of fg(r) in Eq. 8.1 by sub-
stituting f(r), and makes use of the fact that TT(E) varies
roughly as E° (See Fig. 2), then the inversion implied by Eq.

8.2 may be written as:
=) _ G‘(.E.)s
T = { (%) = ﬂ'(—lsp—) (8.8)

where G} and s depend on t but vary slowly with E, and are as-
sumed constant in our approximation. Inserting Eq. 8.6 and

III.1 into 8.3 we obtain:
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The change of variable:

w= (G. /P)(E/ﬁ)s (8.7)

gives:

® ¥
~ 2162 L du
Hemn=mo et [SHUlE %

This shows that the integral vertical frequency will vary approx-
imately as a power law in‘P with the power approximately (-%/s).
In particular, the ratio /s should get smaller at greater depths
in the atmosphere, since s increases with t.

These general considerations are borne out by the corres-
ponding numerical vélues. In Table 8 and Fig. 4, the shower ra-
dius (Eq. 8.2) is shown as a function of t,P and € . The integrals
(Eq. 8.5) are listed in Table 11 and plotted in Fig. 6 and 7.

In particular, Fig. 7 shows that below about t = 10 the integral
vertical frequency for constant‘p varies roughly as exp(- Pt).

The simple change of variable indiczated in Eq. 8.4 has been
of very great help in reducing the amount of labor necessary to
carry out the numericzl integrations. It was done primarily to
eliminate the importance of the "tail" on the high energy side
of the integrand, since for large energies r rises slowly with
€ (Fig. 4), while the primary spectrum decreases as exp(-Y€),
(Table 10) so that the integrand falls off exponentizlly. Conse-

quently, in the &-sczle the "tail" will contribute no more to
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the integral than the lest velue neglected, while, in the E-
scale, one must integrate over about three orders of magnitude
before the "tail" is negligible. 1In addition, this change of
variable also made tne primary spectrum (Table 10) much easier
to handle, and indicated = useful integration technique. 1In

the g -scale, the integrand resembles a Gauss function (See Fig.
5), and, by measuring the breadth at 1/e of the meximum, the
integral could be taken to be (V7/2 )(breadth)(height of maxi-
mum). The integrand and its "egquivalent" Gauss function are
plotted in Fig. 5. In this particular case, the value of the
integral, obtained by the "numerical saddle point" procedure,
was 2.264 x 1013 while a careful application of Simpson's
method gave 2.270 x 10-13. Spot checks for other integrals con-
sistently gave as satisfactory results. This method was adopted
for this set of integrations.

In Table 12, are listed a number of constants entering into
some convenient interpolation formulae for the density spectrum,
for t greater than fifteen radiation units. These constants
have been obtained by graphically smoothing the results of the

calculation.

8. Correction due to lLateral Counter Separation

The calculations, indicated in Sec. 8, give the density spec-
trum at a single point, but counter systems are usually separated
by lateral (horizontal) distances of a few meters in order to
register only showers which are energetic enough to produce a

rather high electron density over large areas. In this section,
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we will calculate the frequency, HW(}P,t,&.)JSl. » with
which a surface density of P or greater occurs at a given point
in the atmosphere, when, at the same time, a density of p or
greater occurs at a second point, separated from the first by

a distance 2a. This will be done only for showers which are
initiated by electrons entering the atmosphere within the small
solid angle dX) near the vertical. As will be evident later,
this is not precisely the function that should be used in the
calculation of the counting rate; but it is believed to furnish
a reasonably good approximation to the correct function, and a-
voids the necessity for introduction of the details of the count-
er arrangement into the computation at an early stage.

Consider again a circle of radius r given by Eq. 8.2 around
each of two arbitrary (fixed) points separated by a distance 2a.
When r is taken greater than a, those showers, which strike with-
in the common area of the two circles, give rise to a density of
P or greater at each point (See the sketch in Table €). When
T is less than a, no shower of sufficient density at one point
will have sufficient density at the other, and so the lower limit
of integration over energy will correspond to the case where
r = a. When r is greater than a, it is convenient to eXpress
the common area of the two circles as a fraction, (:(a/r), of
the area of one of them. The integral vertical frequency for

two points then becomes (See Egq. 8.5):

Wep t,2) =~ fﬁ'”[ﬂf’»he)}"C(a/ﬂo‘E (9.1)
E(r=4)
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The function C(a/r) is given explicitly in Table S, along
with some numerical values.

The integral (Eq. 9.1) has been carried out by numerical
methods similar to those used for Eq. 8.5. In some cases, a
simple polynomial approximation (given in Table 9) to the func-
tion C has been helpful in reducing the amount of labor. The
results of the integration are listed in Table 11. For depths
below t = 15 to 20 the dependence of HY on a is small.

So far, all the computations nave been carried out in terus
of the lateral unit. The geometric size of this unit increases
at higher altitudes (or smaller t, See Table 1) by the ratio,o,
of the sea level air density to the density of air at that alti-
tude. Thus, in terms of this unit, the surface area of a count-
er decreases by a factor 1/6-3, and counter separation decreases
by a factor 1/¢6-. In addition, those showers, which are r lat-
eral units away from a counter system in the calculation above,
will correspond to primeries striking with a circle of radius
o-x (the sea level size of the lateral unit), and the sea level
size of the latersl unit has been used in setting up the expres-
sion used for the primary spectrum (Eq. III.1). Consequently,
tne integral vertical frequency spectrum, which corresponds to
a density relative to a counter of fixed gemoetric size,,g 3
and a fixed geometric counter separation ag, is given in terus

of the function just calculated by:

N/ _a
Hv(>ﬂ)£)a°)=6_1\_\(>5-Po){;)ao/o*) (9.2)
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This correction has been carried out for log ag = 1l.544,

(which corresponds to a 9 foot counter separation) and the cor-
responding function is listed in Table 14, and plotted in Fig.
8. The resulting curves are much less altitude sensitive than
the uncorrected curves. Actually the &= correction should be
made utilizing ae¢ roughly one radiation unit above the point

of observation; this has been done in the final calculation of
the counting rates, but, for the purpose of illustration, the
value of o at the corresponding t has been used.

In Fig. 7 and Teble 11, there is shown &z rather abrupt in-
crease in the vertical integral spectrum for the higher densi-
ties on going from t = 10 to t = 5 for the cese a = 0 log a=-).
This efrect is due to those small radii for which the radial
function adopted here is not correct. These small radii play
an important part here, because small values of s become increas-
ingly important at the small vealues of t near the top of the at-
mosphere.

Table 11 also shows the very large modification introduced
into the vertical integral frequency spectrum by finite separa-
tion of the points of observation. This correction is very
large at t = 5, and becomes essentially negligible below t = 20.

The height and position of the counting rate maximum de-
pends essentially on the finite separation of the counters; and,
for this reason, it is unfortunate tnat the present approximate
treatment of this effect had to be followed.

However, this could not be avoided, since the computation

had to be started before Kraybill had selected the counter geom-
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etry witn wnich the major portion of his observations were made.
Tne caslculation given here would furnish a rigorous treat-
ment for the case of coincident bursts between two unshielded
ionization chambers separated by the distance Z2a. Observations
of this sort have been made by Lewis (Ref. 48) and analyzed by
Wolfenstein (Ref. 45). Unfortunately, it is probable that ioni-
zation from stars and slow heavy particles completely masked the

effects of showers in Lewis' experiments.

10. Integration over Zenith Angles

The next step is to integrate over the Zenith angles, from
which the isotropically distripbuted primery electrons may come.
However, the counter arrangement, which Kraybill used, (Ref. 55,
58) is not equally sensitive to showers coming from all direc-
tions, and this must be teken into account in the zenith angle
integration. For calculations of this sort, the directional
sensitivity of a counter arrangement has usually been neglected
in the zenith angle integration. For counter arrangements of
limited extent (say less than ten meters norizontal extension)
below 15,000 feet elevation, this neglect is essentially Jjusti-
fied. Even at these altitudes, Cocconi (Ref. 51) has shown how
very large errors may be introduced into the calculation by
neglecting this effect for counter extensions greater than 300
meters. In the calculations given here, it is essential to con-
sider the directional sensitivity of the counters, since, near
the maximum in the counting rate versus altitude curve, the

ma jority of showers tripping the counter system will come from



—44-

angles inclined to the vertical by 45 degrees or more.

The geometrical arrangement of Kraybill's counters is indi-
cated in Fig. 15, as well as a sketch indicating the angular co-
ordinates used in the following computations. (The co-latitude
angle @ measured from the zenith and the azimuth @ measured from
2 line joining the centers of the counters). The directional
sensitivity is clear, since, as @ increases for @ = o incoming
showers will see a constant counter area (cylindrical counters),
and a counter separation decreasing as cos @. As © increases
for@ = 90; the incoming showers will see a counter area decreas-
ing as cos 8, and a constant separation between counters. A
simple geometric construction shows that, for intermediate val-
ues of @, the effective counter area and effective counter sepa-

ration very as:

S(effective) S 9’“"") = S-)I' —U-R" ) aiv'y (10.1a)

a fxe) = aw/r—(\-x’)m‘q (10.1b)

a(effective)
X = cst. P (10.1¢)
and the effective depth below the top of the atmospnere is:

t(effective) = t/x. (10.14)
Since counter surface and shower density are inversely re-
lated, we may calculate an effective density spectrum at a given
peint in the atmosphere, due to showers coming from all direc-

tions as follows:

0 an
H(Ge, t)a) :fdx(acp Hv(vp/g(m)at)afm@(m-z)
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Here, the directional sensitivity has been included in the in-
tegrzl, in such a way, that in calculating counting retes, one
may insert the norizontal counter separation and normal counter
area into the formulae,wnhich will involve the function on the
left of Eq. 10.2. From Eq. 10.lc we see that dx dg = -diL.

The integral (Eg. 10.2) has been calculated by first inte-
grating over x utilizing Simpson's rule (x interval 0.1l) for
@ = 0, 400, 909, and then integrating over ® by means of graph-
ical interpolation and Simpson's rule (interval 10°). This was
done for log a2 =-1.644 at sea level with appropriate corrections
at other altitudes (See Table 13 where the corrected separation,
2/ , is given as a function of altitude). This corresponds
to a fixed geometrical counter separation of 9 feet (a = 4.5
feet in ordinary units; See Fig. 15). The correction to.p due
to variation in atmospneric density was not carried out at this
stage, since it could be postponed. The numerical integration
was carried out for log‘p = 4, 5, 6, 7 for t in intervals of
2.5 from t = 5 to t = 15. Below t = 15, a suitable zpproxima-
tion procedure was adopted, based upon the interpolation func-
tions (Table 12), and involving the logrithmic integral (Table
23), but not taking into account any counter separation. Values
were calculated from t = 15 (to check) by steps of 2.5 to t = 24,
and 25. The results are listed in Table 15.

The generzl shape of the integrand in Eq. 10.2, as a func-
tion of (x,p ) is illustrated by Fig. 13, which is really the

directional counting rate, but is illustrative of the integrand

for t = 7.5 and log P about 6.5. The complete integral (Eq. 10.2)
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for t = 10 is plotted in Fig. Y, as a function of P along
with the vertical integral spectrum for a = 0, and log a =-1.5
for comparison. It is seen that the integration over zentih
angles has not greatly affected the slope of the curve relative
to the 2 = 0 curve, but the log a = -1.5 curve is much steeper.
Above t = 10 the integration over zenith angles reduced the
slope of the final spectrum. The resulting curves were very
nearly a straight line for all depths considered, and the slopes
§ (represented by H = Const.P'S)decrease regularly, with in-
creasing depth (Table 13), as would be expected from Eg. 8.8.

It may be mentioned here, that, since the method of compu-
tation being followed is approximate, a more appropriate value
for a mignt be half the average or root mean square counter sepa-
ration (2bout 6 feet so a would be 3 feet rather than 4.5 feet),
ratner than half the extreme counter separation. The dependence
of the vertical frequency curves on a, for the most effective
direction (8= 80°, t(eff) = 12.5) at the maximum in the counting
rate versus altitude curve, is roughly as a=5/4, The indicated
change in the value of a would then increase the counting rate,
roughly, by a factor of (4.5/5)5/4 = 1.35. This result has been

utilized in the introduction.

1l. The Counting Rate

In Sec. 10, the computation of H(>f3’ %, a); Eg. 10.2; the
integral density spectrum for two points separated by a distance
2a at tnhe depth t, has been indicated. This function gives the

frequency of occurence of a surface density of electrons greater
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than or ecqual to P at each of two points separated by a distance
2a. Now, if this density is uniform over an area of this ex-
tent, then — %g AP will be the frequency of occurence

of a density between p and p + dp at these two points. However,
near the top of the atmosphere, this condition of uniform den-
sity is only approximately fulfilled, and, even if it is true
for two points, the counter arrangement employed by Kraybill

has three counters uniformly spaced 4.5 feet zpert (Fig. 15).
The expression —-%% QF actually corresponds to a dgnsity
between p and P+ dp at one counter, and some other density be-
tween )o/ and p'+dp at the other two counters, where P’ is not
determined by our function, except that we know fDﬂ%fz . 4n a
posteriori study of the results of the computation (See Sec. 12)
indicate that, for about 75 to 80% of the showers detected near
30,000 feet, the density is nearly uniform. For the remaining
20 to 25% of the showers, the procedure followed in this section
will replace the accurate counting rate by an approximate one
which replaces one kind of integral over thne density by another
which, nevertheless, includes all the showers. This approxima-
tion is seen to be one of replacing one average by another, and,
since it inveclves an integrztion, may be expected to modify the
results for these showers by at most 50%. The over all counting
rate would then be uncertain by about 10%. Since, for the show-
ers of non-uniform density, this method gives somewhat too low
an estimate of the density, the counting rate we will compute
will be too low rather than too high.

If the sensitive area of a counter is S and the surface
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density of electrons is p » then the probability that the
counter will fire is Y:l - exp(—SfJi] (Ref. 46). For trree
counters, all subject to the same density, the probability of
coincident discharge of all tahree counters is b,- exp(—SfJﬂ;i
Within the approximetion followed here, the frecuency of occur-
ence of a density between p and P+dp is — -a—p— dp .
After the integration over zenith angles, H(>-p may be closely
represented by an expressicn of the form E’p'g , where P and §
are constant for any given value of t (Table 15). Consequently,

the counting rate, N, is given by:

(af[ PRSI ‘(ow (11.1)

This expression may be evaluzted analytically. First, it is

convenient to make a change of variable given by:

S{O = W (11.2)
and the expression for N becomes:
N = Ps?®IG) (11.32)
@ i 3
JiE) =§ g(l— e %ﬁ;l (11.5b)

(2) Evaluation of I(§).

Clearly, (11.3b) is uniformly and absolutely convergent
for oOxe <« RIS« 3-¢€ where € is any positive number,
gso that I( §) is an analytic function. With § in this closed

domain, we may integrate by parts:
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T8 =— u\(—s (- +3 f %L% (e e™

o

and the integrated part vanisnee. The integrsl becoues:

T{s)= 3 Swf{&% {6—0(’28'2“4\-@'3“] (11.4)

o

T

low, tne individusl integrals in (11l.4) each converge, if

=t

R1§ <\ , and in this case the result is:

2
L) = 3!‘0—5)[1* anF 5':“:] (11.5)

The expression on the right side of (1l1.5), is zn analytic ex-

ression defined fcr o< RJ' S« 3 , since the exvression in the

m

e}

mn
WQ

uzre bracket vanishes at the poles §= 1, 2 of trhe [-function
(the limiting values of I( §) being I(1) = 0.86828 and

I(2) = 1.15702). Hence (11.5) is equal to I(§) for o< RAS <1,
but (11.5) and (11.3b) are both analytic expression equal over
this range, and so are equal everywhere that they are both de-
fined. As a matter of fact, (11.5) furnishes tne analytic con-
tinuation of the function defined by (11.3b) into tae whole com-
plex plane, with exception of tne poles of tae l—function at

B, &, Byccans The function I( § ) has been calculated from

(11.5), and is given in Table 22.
(b) Tne counting rate

The counting rate is now easily computed from Eg. 11.3a

utilizing Tebles 13, 15 and 22, reczlling that the sensitive



-50-

area of the counters decreases as 1/5~8, and the constant P
increases by o ? (See Eq. 9.2 and Table 13) due to variation
in atmospheric density. This introduces = factor (0'“)—(6—0
into results obtained utilizing sea level values for the geo-
metrical extension of the laterzsl unit. The uncorrected re-
sults are listed in Table 18, the density correcticn in Table
13, and the corrected counting rate is listed as Ny again in
Table 16. From Table 13, we see that the lower density of the
atmosphere at t = 5 (38,000 ft.) reduces the counting rate by
something more than a factor of ten.

A slight additional correction of this last counting rate,
Ny, was made to obtain the counting rate, Na, which is also
listed in Table 16, and which has been taken as "standard" in
this thesis. For Np the value of o used corresponds to the
density of air at the point of observation, rather than the
density abcut one radiation unit above the counter system. It
wae possible to estimate the direction of the showers which con-
tributed most tc the counting rate, and the ¢ corresponding to
a point one radiation unit from the counter system in this di-
rection was then used in the computation of Nj. For points near
the top of the atmospnere, wnere this correction was most marked,
the change in ¢ (and therefore in N) is less than would be in-
troduced by simply utilizing the value of o one radiation unit
vertically above the counters, since the predominant showers
make an angle of 45 degrees, or more, with the vertical. This

is outlined in the lower part of Table 13, and the X-maX. listed

there is the cosine of the zenith angle of the important showers.
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The value at t = 17.5 weas zlso corrected, because the ap-
proximetions followed in celculating the integral density spec-
trum (Sec. 10) below t = 15 neglected any correction due to the
counter separation; these corrections are still appreciable un-
til t = 20. This was taken into account by noting the correc-
tion for t = 15, where the counting rate was calculated both
with and without this correction (See Table 15 and 16), and a

correction of nearly this amount was applied to the point at 17.E.

12. Comparison With Experiment

The counting rates just computed have been compared with
Hilberry's data (Ref. 44, See also Fig. 15) in the lower part of
the atmosphere (from t = 24 at sea level to t = 14.8, 14,200 ft.)
to determine an appropriate normalization. Hilberry used four
counters grouped 1 - 2 - 1, equally spaced 4.1 feet apart, with
the center two forming 2 wide angle (B0 degree included angle)
telescope (Fig. 15). This separation is nearly the same as that
used by Kraybill (4.5 feet), and the telescopic acticn of the
center (double) counter is unimportant for these altitudes, since
most of the showers come wertically. The only correction that
needs to be made to the counting rateNy, which is computed for
the arrangement used by Kraybill, is to multiply the values by
(2.336)8 since 2.336 = 196/83.9 = the ratio of the counter areas
WHilberry/Kraybill" (See Eq. 11.3a). This is indicated in Table
17. If the theoretical values computed in this way are rmulti-
plied by 3, they give reasonable agreement with the data given

by Hilberry, as may be seen in Table 17. The theoretical curve
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(Theory x3) is plotted in Fig. 1lU, along with the experimental
points given by Hilberry. A somewhat closer fit mignt be ob-
tained by multiplying by a facter sligntly less than 3, but this
is an unimportant modification.

This normalizing procedure is to be expected (determinaticn
of the factor of 3), since considerations of this same type were
followed by Euler, Heisenberg and others (Ref. 41, 43, 43, 44,
33) in setting up the expression used here for the primary spec-
trum (Eq. III.1). Cocconi (Ref. 52) has considered a primary
spectrum of this form with ) = 1.8, 1.7 and 1.8, and for » = 1.8
(the value selected nere) he also finds theoretical values too
small by a factor of 3.9 at sea level and 2.0 at 7,500 feet ele-
vation. OQur discrepancy in this respect is thus consistent with
other computations, and of a reasonable order of magnitude. With
this normalizztion now establisped, we may compare the tneory
with the results of Kraybill's observations.

In Table 17, the values 3N and 8.33Ng; are compared with
values read from the curve given by Kraybill (Ref. 56). Below
fifteen radiation units, SNy agrees moderately well with these
values. This is to be expected, since Kraybill determined these
values by maltiplying Hilberry's data by a constant factor.

Thaet this agreement is not quite as good as our fit to these
data (Fig. 10) follows from the fact that the correct modifica-
tion is not to multiply by 2 constant but by various factors,
(2.536)8, which vary with altitude (See Table 17 column 3).
Apove fifteen radiation units, the values of 3Nz are considerab-

1y below those given by Kraybill. On the other hand, multipli-
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cation of Ny by 8.33 gives a2 somewhat closer fit to Kraybill's
curve at higher altitudes, but a large discrepancy at low alti-
tudes (Table 17). In Fig. 11 are shown the curve and experi-
mental points given by Kraybill, along with the theoretical curves
3Ng and 8.83N,. The dasnhed curve given by 7.4Np is also shown,
and it has essentially the same shape and values as 8.33Na, so
the refinement by which N was derived from Ny may be considered
as relatively unimportant (Sec. 11). The theoretical curves
reach a maXimum at 10.5 radistion units, as compared to a maxi-
mum at 8.5 radiation units for the experimental curve, and have
a somewhat different shape (Fig. 11). The ratio of the maximum
to sea level for the theoretical curves is 34, as compared to 83
for the experimental curve. The theoretical curves, dashed, 38Ng
and 8.33Ng are egein compared with the experimental curve over
the whole range of altitude on a logrithmic scale in Fig. 12.
The necessity for a differet normalization at low and at nigh
altitudes is clearly evident. A discussion of these discrepan-
cies between theory and experiment nas been given in the intrb-
duction; we mention here that a lower value of 7 , say ) = 1.8
or 1.7 might possibly improve the agreement within the domain of
the primary electron hypothesis although the necessity of a nor-
malizetion makes this uncertain, and a2lso, the primary proton
hypothesis with the multiple production of secondaries, as pro-
posed by Lewis, Oppenheimer, and Wouthuysen (Ref. 8), should im-

prove the agreement.
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13. Estimate of Approximations

The discussion of zpproximations will be bssed on an a
posteriori examination of some of the features of the approxi-
mate calculation that has been carried out. This will give
some estimate of the errors intrcduced by this method, but a
true check of the accuracy of the method could only be made by
comparison with a rigorous computation. This has not been done.

The various approximations include: (a) the omission of a
treatment of fluctuations (Sec. 7), (b) the assumption of a uni-
form surface density of electrons (Sec. 13), (c) the approximate
treatment of the effect of atmospheric structure (Sec. 12), and
(d) the uncertainties due to the various numerical and graphic-
al methods which were used. The errors due to this last source,
estimated from the scale of plotting, more exact methods of
computation applied to various check points, and from results
for the same points calculated independently by two separate peo-
ple, may be placed in the range of zero to ten per cent error.

In the writer's opinion, errors exceeding five per cent are rather
rare. The "smoothing" effect of many integrations should help to
reduce errors of this nature; the errors may be of either sign.

A comparison of Na, Np (Table 16) indicates that a more care-
ful trezatment of the effect due to variation in atmospheric den-
sity would probably not alter the calculation by more than 10 per

cent. We discuss only (2) and (b) at length.
(a) Fluctuations

The general effect of fluctuations should be to increase
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the counting rate as compsred to the computed values for reasons
given in Sec. 7. DBecause the steepness of the integrasl density
spectrum increzses with altitude (See the values of § in Table
15), this effect should increzse with altitude. Christy and
Kusaka (Ref. 40) have found a factor about 1.5 due to fluctua-
tions in the number of electrons, and, because of additional fluec-
tuations in spatial density, this factor may be of the order of
two or more for the calculations given here. The gross effect

of the fluctuations, to rzise the general counting rate, is not

& problem here since a normalization has to be made, but a vari-
ation in this effect with altitude will affect the disagreement
between theory and experiment exhibited by Fig. 12, and the tend-
ency should be to reduce the amount of disagreement, since larger
fluctuetions are to be expected at higher altitudes. Another
reason for larger fluctuations at higher altitudes is the follow-
ing.

Near the start of a shower, the parametric expressions for
the number of particles may be in error (Eq. 5.1). For very large
energies they predict more particles than given by exp t. This
is surprising, since a certain number of steps are necessary to
subdivide Ehe energy, no matter how large. The explanation has
been that the infra-red catestrophe in the bremsstrahlung cros-
section (See also the paper by Bethe and Oppenheimer, Ref. 64)
makes possible a multiple production of photons in a single col-
lision, so that a very energetic primery can generate a large

number of particles within a short distance.* For this process,

#The writer wishes to thank Professor Christy for discussion
of this point.
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fluctuations might be very large, and may have marked effects

for showers coming near the vertical at tne maximum of the count-
ing rate curve. This would pe an additional effect tending to
reduce the disagreement.

The gross effect of fluctuations, a general shift of the
counting rate upwards, need not concern us here, since a nor-
malization procedure has been adopted. This normalization, of
course, washes out this general shift, and leaves only the pos-
sibility of a different effect at high altitudes than at low.

It is likely that the spatial distribution of electrons is near-
er the mean distribution at nhigh altitudes than at low, but that
fluctuations in the number of electrons are greater. The energy
range, and therefore the number of electrons, important in the
considerations of Caristy and Kusaka, is smaller than that of

our problem by a factor of 10% to 10°. Since fluctuations in

the number of electrons follows a law lying between the Poisson
and Furry distributions, this is a factor tending to reduce the
effect of these fluctuations in our problem, zs compared to theirs.
Furthermore, we only need a comparison of this effect between a
9'2 and axp-1-5 distribution. For these reasons, it is probable
that the relative effect of fluctuations is smaller than a factor
of 1.2, even including the fluctuztions in the spatial distribu-

tion.
(b) The assumption of uniform electron density

Clearly this assumption is poor for showers with an exten-

sion (extent of the region where the electron density is about
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one particle per counter) less than the counter separation.
This problem has been studied by examining some of the details
of the computation. The electron density (fpgx.), correspond-
ing to the meximum of the integrand for the integral over den-
sity (Eq. 11.1) when plotted on a logrithmic density scale, has
been determined and is given in Table 18. The direction with
the vertical (f,,x,) of the most important showers contributing
to the density spectrum was then determined and is also listed.
The effective counter separation (a eff) and effective depth
(t eff.) for this direction could then be computed. The shower
radius corresponding to the meximum of the integral over energy,
including the correction for counter separation, for the vertical
integral density spectrum (Eq. 9.1) was then determined for the
effective counter separation and effective depth mentioned above.
At the effective depth and at the density maximum for Eq. 11.1,
it wes zlso possible to obtain the ratio of the intensity with
no correction for counter separation to the intensity with the
correction for counter separation corresponding to the effective
counter separation (= eif). The results of all these determina-
tions are listed in Table 18.

For t = 5, 7.5, 10, 13.5, the most important showers come
from such an angle as to have an effective depth of 12‘to 14
radiation units. For these effective depths, the intensity ratio
just mentioned (no separation correction/ corrected value) varies
from 1.70 at t = 7.5 to 1.48 at t = 5 and t = 13.5. This may be
taken as an estimate of the maximum possible error, and since

our method of correction for counter sepasration gives essentially
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the minimum value, the true value may be expected to be limited
by our value below and 1.7 times ocur value above. Near the max-
imum of the theoretical counting rate curve this ratio is less:
1l.8. However, on generzl arguments (Sec. 123), it seems likely
that the true value is nearer to our value than to the upper
limit. A rough estimate of tnis may be obtained by considering
tne proportion of the showers at the maxXximum of the integrand

of the corrected integral over energy (Eq. 9.5), which strike
inside a circle of radius a. This is given by the ratio aleff.
to r2(max. of integrand). The likely error computed on this
basis has a maximum velue of 20 per cent for t = 7.5, and a val-
ue of 15 per cent at the maximum of the counting rate curve. 1In
the writer's opinion, the maximum error introduced into the cal-
culation by the assumption of uniform electron density is not
over 20 per cent (reduction), and is probably less than this.
The error is most marked at nigh altitudes and therefore is in
such a direction as to lead to better agreement between the (cor-

rected) theoretical curve and experiment.

l4. Zenith Angle Distribution of Showers

Mr. E.W. Cowan (Ref. 57) and Mr. H.L. Kraybill (Ref. 58)
collaborated in their studies of cosmic radiation by utilizing
the counter arrangement to operate the cloud chamber, which was
built by Cowan. The relative orientation of this apparatus is
indicated in Fig. 15. From the cloud chamber pictures obtained
in this way, Mr. Cowan could determine, among other things, some-

thing about the zenith angle distribution of the showers, which
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trip the counter arrangement, and ne nas very kindly made tnis
information aveilable, so tnat it can be compared with theory.
These observations were msde at 31,000 feet and 37,000 feet.

The information determined from them is the distribution of the
nunper of showers within various angular ranges, where the angle

measured is the projection of the zenith angle onto the plane

of the cloud chamber. The theoretical distribution has been
calculated for t = 7.5 radiation units (30,000 ft.), since the
base calculations were zlready "set up" for this altitude, and
tne slight difference in elevation would make no substantial
difference in the conclusions to be drawn from the subsequent
comparison of theory and experiment. Furthermore, if anything,
this treatment should reduce the amount of disagreement, waich

nas been found between tnhe two.
(2) Theoretical distribution at t = 7.5

First the counting rate per unit solid angle, N, of Kray-
bill's counters as a function of the zenith angle, (& ,® ), was
computed by inserting tne integrand of Eq. 10.2 (See Table 19)
into the integral over density of Eq. 11.l. However, an examina-
tion of the integral density spectrum for a given zenith angle
indicated that it could not be well represented by a power law,

so an integration by parts was first performed to obtain:

N(6®) :Sdp(n—e"“’f@;} = 38 SH (:—e"”)ze'sgp (14.1a)

° a

v
H= H (>P/g<’;<0)>7"/") af ) (Teble 14), (14.1b)
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To eliminate the "tails" of the numerical integration the fol-

lowing change of variable was made

mi{Sp) = U, (14.2)
which gives:
o u
N(Qﬂ(’) = 3 SH(>§'-)F2 (Ll) du) (14.32)

_ed\2 _e“
E(U‘) = (/_e . e o e [(Taste 22).  (14.3D)

In the u-scale the integrand of Eq. 14.3 has a very sharp
maximui, and wae ezsily integrated by numerical methods. The’
integrals, N, were carried out for x = cosf in steps of 0.2
for @ = O, 40, 90 degrees, and other values filled in by graph-
ical interpolation to obtain the counting rate per unit solid
angle N(O, 9 ) as a function of the zenith angle, (@, ). The
results are plotted on a logrithmic scale in Fig. 13 (here 6 is
represented via X where X = cos @ ).

This is only part of the calculation; we must now project
this angular distribution ontc the plane of the cloud chamber.
The relation connecting the angle | between the vertical and
the projected zenith angle, and the zenith angle itself, is
sketched a2t the bottom of Fig. 15, and the application of some
simple spnerical trigonometry gives:

Sgam Y = ainPp tau (14.4)

The counting rate per unit angle Q) is now given by:

o]
N(w)dy = dy gcbc N[x,ee(xwﬂ(:—fpf)x# (14.5a)

= coned |
Co @
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_ X Aoal @
A @ = e (14.5b)

The Jacobian in Eq. 14.5 introduces a singularity into the

integrend wnich, although integreble, mzkes numerical integration
very difficult. Tne change cf variable:
2
w % ‘\'%/Co-d.il}]:l (14.8)

gives:

!
N(y) = folur(\l(%zwwf-w‘i,ee[wnﬂ) (14.72)

\
N
AP = {l v w /(1 w?) (e lpﬂ (14.7D)

It turns out that arc cos w is tne half angle of a right
circular cone, with vertex in the center of the cloud chamber,
and axis perpendicular to the face of the cloud chamber. The
edges of the clcud chamber correspond to w = 0.163. As explained
later, Cowan was able to measure projected angies, qj, for only
eabout one-fiftnh of the showers. Taking the upper limit of inte-
gration in Eq. 14.7 equal to 0.25 gives & ratic of this integral
to the total iﬁtegral of about one-fifth. The angular distribu-
tion, N( g ), was therefore calculated both for the upper limit
equal to 1.C and to 0.85 by numerical means utilizing Fig. 13.

The results are listed in Table 80 and plotted in Fig. 14.
(b) Experimental distributions

The observed distributions furnished by Mr. E.W. Cowan are

given in Table 23. We found, that, in many cases, it was impos-
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sible to determine the direction of the shower from his photo-

graphs. The cloud chamber contained two 1.5 cm. lead plates

which led him to the following methods of selecting photographs:
At 31,000 feet, with a grand total of 228 photographs:

A. Those photographs were recorded which showed ten or

more parallel trecks anywhere in the chamber, 48 out of

228 pictures.

B. Those photographs were recorded which 'showed ten or

more pzrel lel tracks above the lead plates, 38 out of

228 pictures.

C. Those pictures were recorded which showed one hundred

or more parallel tracks anywhere in the chamber, 231 out of

228 pictures.

At 37,000 feet, with a grand total of 44 photographs.

D. Those pictures were recorded which showed three or

more parallel tracks anywhere in the chamber, 15 out of

44 pictures.

The average of the projected angles, Y , made by these
tracks was then observed and computed, and the number of events
falling in each angular range tabulated (Table 23).

The gross features of all the four distributions are not
very different. They a1l show a maxXimum at or near the vertical
with a decrezse to half maximum or less at 40 degrees. The dis-
tribution, B, shows a somewhat less pronounced maxXimum than A,
and this difference may be attributable to the enhancement of
partially developed, nearly vertical, showers by the lead. The

100-track distribution, C, seems to be flatter than A or B, but
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it 2lso drops to half maximum at 40 degrees. The tendency for
greater flatness of C is reasonable, since the higher density
showers should come from angles further from tne vertical where
there is the possibility of more multiplication in the greater
distence.

The distrioution, D, taken at 37,000 feet, is somewhat
more uncertain statistically than either A or B. Rather sur-
prisingly, it faells to half value at 30 degrees, while A falls
only to 0.8 maximum, and B to only 0.7 maximum at tnis angle.
On general groundas, one would expect the distribution at the
higher altitude to be as broad or broader than the lower alti-
tude distributions. This may be partially explained by the se-
lection of only three tracks, so that partially developed, near

vertical, showers are given greater weight.
(c) Comparison with theory

All the cbserved distributions disagree with the theoreti-
cal distributions by being tco narrow. The theoretical distri-
butions and distribution A are shown in Fig. 14, where all the
curves are arbitrarily normalized to 10 at W = O. The dotted
lines represent the counting rate per unit solid angle foT
@ = 90 degrees (low curve) and @ = O degrees (the high curve
thst runs off scale) plotted 2s if £ were the prcjected angle
Y . It is unfortunate that the cloud chamber and counter Bys-
tem were not rotated 90 degrees in azimuth relative to each oth-
er, so that the @ = O plane (the high curve) was also the plane

of the cloud chamber. This would have increased toe ngensitivity'
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of the cloud chember by a factor of three. The two solid lines
are the theoretical projected distributions, upper limit for

w = 1 (the low curve) and upper limit for w = 0.35 (the high
curve). The stippled curve is distribution A.

The half angle of the observed curve, A, is about 17 de-
grees, and this is not much different for the other distribu-~
tions. The half angle of the theoretical curve (w = 1) is about
30 degrees, and is even larger for the w = 0.25 curve. The angle
for nalf maximum is 40 degrees or less for the observed curves,
and 60 degrees or more for the theoretical curves. The w = 0.35
curve was computed to see if the geometry of the cloud chamber
was tending to select showers nearer the vertical (see remarks
under Eqg. 14.7), but this curve is even broader than the complete
projecticn curve w = 1. The value 0.25 was selected to give the
intensity ratio of cone-fifth which is roughly 48/228. The meth-
od of selecting photographe for measurement (ten or more parallel
tracks) would be expected to bias the observaticns in the direc-
tion of greater density. Theoretically, determined by examining
the integrand of Eq. 14.3, this should bias the distribution to-
wards larger angles, as would be expected on the quite general
grounds of greater distance for the shower to multiply. The nar-
row observed distribution is also surprising, since it was ob-
tained nesr the maximum in the counting rate curve, where one
would expect showers to come from large angles. This has also
been checked by determining the angular distribution implied by
Kraybill's observed altitude dependence by means of a Gross |

transformation. The agreement between this curve and the theo-
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retical curve is rather good, while it is very poor for this
curve and the cloud chamber distributions.

The statistical features of the cloud chamber observations
are, of course, rather poor, especially, since tnere is a non-
analyzable mass of material four times as large as tne photo-
graphs analyzed,which could smother the tabulated distributions.
It is hard to explain the difficulty in assigning angles to these
pictures, since the distribution in angle of the electrons in a
loczl portion of a high density shower is only a few degrees.

The general conclusion is that there is a set of cloud cham-
ber data, of rathner uncertain statistics, which are consistent
among themselves, but in definite disagreement witn theory and
with the angular distribution derived from the observed altitude
curve. This latter is in rather good agreement with theory. The
disagreement with the cloud chamber distributions is difficult

to understand.
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TABLE 1

£ ATMOSPZERE IN RADTATION UNITS«

T RedJom.7om 2 om g falt  km, falteft, | #* 2 }size rad,|size lat,

Units o a units, me|unit, m.
0l 4,3 |0,316{37,26 |122,250|184,40|34,003,6

0.5 21.5 |1.581|28.74 | 87,734| 36.85| 1,357.7

1 43 |3.183|22.22 | 72,904 18.,43| 339,6| 6129 1114

2 B | 64328|17,70 | 58,107| 9.215| 84.91] 3065 557

3 129 [9.489|15,06 | 49,412| 6.,142| 37,73] 2043 371

4 172 |12.65|13.20 | 43,309| 4.608) 21.24} 1533 279

5 215  |15.81|11.75 | 38,552{ 3.694) 13.65| 1229 223

8 258  |18.98{10455 | 34,615| 3.129 9.79] 1041 189

7 301 |22.14} 9.52 | 31,235| 2.756 7.60! 917 157

8 344 |25,30| 8,60 | 28,217| 2.470 6.14] 824 150

9 237  |28,47) 7,76 | 25,461} 2.260 5.11) 752 137
10 430 |31.63| 6.990 | 22,934 2.082 4,34} 693 126
11 473  }34,79) 6.292 | 20,664| 1,932| 3.733] 643 117
12 516 | 37.96) 5.640 | 18,505 1.801| 3,245| 5899 109
13 559 [41.12] 5,015 | 16,454 1.638} 2,349] 561 102
14 602 |44,28! 4,452 | 14,607| 1.588| 2,520 528 96,40
15 645 | 47.44] 3,901 | 12,793) 1.499) 2.247| 499 9045
16 888 | 50451} 3,396 | 11,142) 1,420} 2,017 472 8549
17 731 | 53,77 2.899 | 9,512| 1.349| 1.821} 449 8146
18 774 156.93| 2,435 | 7,939] 1.286] 1.654] 428 |  77.8
19 817 | 60,10 1.991 | 6,532 1,205 1.452] 401 7249
20 860  |63.25) 1,670 | 5,151} 1,178] 1,388 392 7152
21 903  |66,42) 1,165 | 3,822 1.132| 1.280] 376 68 44
22 9468 | 69458] 0,776 | 2,545| 1,037 1,182 382 6547
23 989 | 72,75] 0,400 | 1,314} 1,045] 1,091} 347 6342
24 1032 | 75,91 0,0394 129 1,004/ 1,008 335 6047
24,03 76,00) 040000 0} 1,000] 1.000] 33246 6045
. : ) . 3 ] 3

*

ok

—

Atmosphere pressure and densitv data from Humphreys, "Physics of the

Air", McGraw Hill, New York, 1940,

Page 80 (Summer)

O~ = Ratic of density at sea level to density at altitude
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TABLE 2

E AND € *

€ |} 1oz E log & E
0 8.000 0 -18,421
0.5 84217 1 -15,118
1 Be434 2 ~13.816
1.5 8,651 3 -11,513
2 8.869 4 =9,4210
245 9,086 5 -8,908
3 9303 6 -4 805
245 9,520 T -24303
4 5.737 8 0
5 10,171 3 2,303
5 10,606 10 4,805
7 10,040 13 6908
8 11,474 12 94210
3 11,909 13 11,513
10 12,343 14 13,816
12 13.212 15 16,118
14 14,080 16 18,421
16 14,949 17 20723
18 15.817 18 23.026
20 16.686 19 254328
22 17,554 20 27 4831
24 18,423 21 294934
26 15,292
28 20,160
30 21,029
L -

*E = Energy of primary, electron volts

£= 1n(E/B)

ﬁ = 108e Ve
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TABLE 3

POSITION A¥D NUMBER OF BLECTRONS AT MAXIMUM

OF AN ELECTRON SHOWER

b loz E {log (E/g)} & . t max, T maxe* log‘n'maxh
12 4 9420 8425 |1.068 3} 3,028
13 5 11,50 10458 [9.50 3f 3,978
14 6 13,80 12,39 8,54 4f 4,936
15 ¥ 16,10 15,21 }8.00 S| 54903
16 8 18,40 17,53 | 7647 8f 654873
17 9 20470 19484 7,03 71 Te847
18 10 23400 22,14 | 6466 8} 84823
19 11 25430 244,45 |64635 9] 9,803

1 3 - 3 - e

* The separate number is the power of ten by which the left nmumber should

be multiplieds See logaritim,

E Primary energy, €.vVe

= 108 e,v, = critical energy in air

1n(z/pg )

s
TV = Number of electrons at shower maximum
t

Position of shower maximm
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TABLE 4

SHOWER THECRY PARAMETERS *

T RGT T | G {uE) [ pE f AT {IG) § oute) gty
0401061995+ - - 1,6}0e3273}=04395[0467424]11,446
0102528 }43,789)25005 —r= 171063117 =0e435]062747 14407
0621062924} 2,270}18976 }3,00 1e8]062372]=064701058284[1,370
0631063243 1,56911,6245 |2.34 1¢9{0e2804] =04500}0453979]1,336
0e4) 0434861 1,127]1.4616 |2,00 2e¢0j0628T0] =045261049960!1,280
0651036931 0481311,3455 }1,90 201} 092528 =0,550]0446242[1,222
02610639221 0,576[12558 1,78 2e210e2406] =0457010,42746{1,156
DeT]Ce3938) 038311,1795 1,72 2631022961 =0,589]0439537[1.111
068} 03977 06235i1,1112 [1,.63 2o} 042201] =0¢605]036552{1,048
06910439841 04108;1,0494 1,50 2051062116 =0461950433850}{0,994
10| 0639539 0,000} 09908 [1,5634 26] 042161] =0,832]031330} 0,933
11| 0e3890)=0,092) 0935111 ,543 2eT1041963|=0,643]0429072]{0,875
12| 063789|=0,17110,87996}1,526 281 061896] =0¢654] 0428992[0,839
1e3] 043675]=06239] 0,82706]1,509 29101832 =0,663] 0425027} 0782
1.4] 063526 =04298| 0o77434|1,497 23e01 0e1789) =0,571}0,23310]0,720
1e5] 063430 =0,350] 0,72375[3e474 4,0]0,1439] =0,720) 012280] 0,496

* Computed from tables in Rossi end Greism (Rev. Mode Physe 13, 240 (1941)),
in general one more significant figure has been retained than is justified

to avoid rounding up errors.

XBY TO SYMBOLS :

The parameters are to be used in the formulae:

1T - __Kle) _ i(s)t e sg
/1 4n(s)t

£ = Es =1
= T n(s)

£a In(8/s )

Total number of electrons. s = Tndependent parameter,

e

Depth in shower units.

=
il

Primary energy (usually e,v,)

Critical enerzy (108 a,v, for air)

»
Iy
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NUMBER OF BLECTRONS AS A FUNCTION OF DEPTH*

3

Courtasy o Professor R. Fo Christy,

3RS E = 6 E =7 £ = 8 | Em 9
t b InTT k5 In T t In 1T + b In 1T
0.4 L - e ot 15504 3.19 1.?7? 3.83
0e6 24,068 307 2547 337 36025 4,68 34500 5.48
0.8 3442 3.74 4,14 4,63 4,86 5453 5458 Ge43
1.0 54,056 2,99 6506 4,91 7«07 5684 807 6478
1.2 7405 3481 8441 4,70 .77 5459 11,13 6450
led 9.56 3017 11,36 3495 13417 4,75 14,98 5e54
1,6 12.75 1.98 15,13 2456 17650 314 | 12,87 3.75
1.8 15681 Oel11 19,90 0438 23400 0,66 26409 0495
s £ = 10 £ =11 £= 12 Em 13
t in v t In v % In 7 t in T
002 —  — — i 0.737 2031 0.843 2.70
04 2050 4,49 24326 5,14 2.600 5680 2872 6447
Oe6 34980 Be31 4,455 7el3 4,93 7496 S5e4l 8480
08 6430 7e35 7602 Be27 TeT4 9619 Bed6 10,12
1,0 9,08 7472 10,08 8467 Tlsld Se63 12.12 10,58
le2 12450 7 o4l 13.86 8432 15423 9425 164,59 10,18
l.4 16,79 5435 18460 Telb 2040 7698 22420 Ba79
1le6 2227 4436 24461 4,98 27400 5459 - -
8 £ = 14 E= 15 E = 16 e =17
t In t In 51 tW L InTe t In T
Oe2 0,948 3410 1,054 3450 1.159 3.90 1.265 4,32
Oe4 3147 Teld 3.420 781 3.691 8649 3,966 9,16
0.6 5488 9463 636 10,47 Be84 11431 7«32 12.15
De8 918 11.06 9090 11,99 10462 12,92 11.34 13,485
1.0 13,13 11,55 14,14 12451 15,15 13,48 16416 14,445
1,2 17496 13 411 19,32 12,04 20468 1297 22406 13,91
1e4 24,01 9462 25.382 10,44 27464 31.27 _29.45 12411
s £ = 18 £ =19 £ =20
£ Inw t In 77 t In 1
0e2 1370 4,73 1.475 Se.14 1,580 5455
0,4 44235 9,84 4,515 10,52 4,78 11,20
0.6 7«80 13.00 8628 | 13484 8675 14,70
0.8 12,06 14,79 12.78 15,74 132,50 16,68
1,0 17.17 15.42 18,18 16432 12,19 17,36
T2 23 .41 14,84 24,76 15,77 26,13 16473
1.4 L51¢26 1294 - - - -
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TABLE 6

FACTORS ENTERING LATERAL DISTRIBUTION FUNCTION

r } 1nRy(r) r } 1nRy (r)*} r } 1nRy(r) r InRy(r)}
0 1,179 - . 1.0 2,786 4,5 64982
0,01 1.154 0ol 0,908 1.2 Z.412 5.0 Be555
002 1.128 062 04655 1.4 Z.075 6 7700
0403 1,095 063 04391 1.6 o 7 T.845
0,04 1,072 0ed 06138 1.8 TW511 8 990
0405 1.044 045 1.894 2.0 Te359 9 0,135
0,08 1,015 046 T.655 245 4,747 10 10,280
0407 06990 067 T.424 3,0 Z,286 -
0608 069863 0.8 T.201 345 TeB45
0,09 04540 049 2990 4,0 Tedl0
0.10 04908 1.0 Z.786 | 4.5 64982
' KEY 2
8 1n [3.25 R(sﬂ |
Ry(r) = he™ XT & Be~fT

0e2 4,824

Ced Be724 A = 2,924

0B T o303

0e8 2,709 B = 032

1,0 T.018

1e2 T.232 X = 2,88

1.4 T.407

Y8 T.513 = 04855

1.8 T.554

e 2.594 ; 5 -1

R(s) = [a'n‘f—(s)(_;;{s. )

|
u

radius from center of shower
in lateral units (60 meters

at sea level)

s shower theory parameter
[(s) = camma Pmction

* The underlined characteristics are

negative,
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TABLE 7

VALUES OF 1n fg(r)*

' ) Dl Oe4 0e6 p 0.8 La) | 1e2 le4 3 1.6 L8
b . 1 p r 3

0.01] 5.089] 5,087 4,726] 4.,211| 3,556] 2.392! 2.145] 1.330| 0450
0,02] 3.816] 3.032] 34730| 3.353| 24837} 24312] 1.707! 1.027! 0,285
003| 2,871| 3,249] 3,128 2.833] 2.398] 1.953| 1.426] 0.831] 0.171
0.04] 2.512] 2.767] 2,703} 2.486| 2.088} 1.701! 1,231} 0,694! 0,091
0.05) 2,082| 2.382) 2.363}] 2.170| 1.837} 1,494| 1,069 0,576] 0,018
0406} 1.725] 2.062] 2.079] 1.922] 1.626] 14320 0,931} 0.474} 1,953
0407} 1le424] 1.791} 1,839 1.713] 1.447} 1.172| 0,714] 0.388! 1,379
0608] 1.155| 1.522! 1.624| 1,525 1.286] 1,037 0,706] 0,307! T.843
0920f 1.338] 1.436! 1.360] 1.145] 0.920| 0.613] 0.,237' 1.797
0e701} 1,139} 1.259| 1.204| 1,010} 0.806] 0.520] 0,165 T.746
1,198} 1,775] 04033} 0,117} 0,081} 1,997! 1.849; 1,633! T.352

T.202} 24851} 1.200] 1.366€} 14391| T.407! T.341! T,206( T.007
Tel34] 2.150] 2,547| 2.770] T.852] Z926] 2.917] Z.839{ 2,697
4,788] T4548| T,989) Te257| Z4384] T.502] T.538} T.505! Z.408
4,233| 3,028 T,505] 3.807| T,970! 2,123| 2.193! 2,196} 2,134
BTe711| 2,539} T.049]| T,383| T,577| 3.763| B.866] 3,898 3870
5249} Z,103} Z,838] T,000] T.221| T.433} BT.563! T.624) T.621
Be828| T,703! Z,252] 2,647 Z,892) ¥.128! T.2R1! ¥,3582| T.386
Fe432] F,331) F.911] 2,317} Z,583] 7Z,840! 7,014} T,120! F,.151
Te730| Tof85! Fa282) T,724| 7,027 Z.320f Z.531! Z.673} Z,757
7.115| B,082) 8,729 5,202} F.53¢] F.86801 A,101) 2,274) T,383
Be5T7T| T570! Be244| B,724} F,104| FT,455¢ 5,723} F5,923| 7,058
B,099| 7.116} 7,813} B.336] 5,720 54095| 5,386} 5,610) 5,878
De757] BeT95] To514| T4059! BolB3| Te858! F4171! T,418} 5,595
10,744 9.825] Te589| 7,178} 7.628 '5.058] Bed25! B,715) 6,939
IT.955) T.073] Te873) T,499| B,084! T,461! 7,885 B,181! Be441
T1.236|10,386! 96216! T¢873| Bo389! Be897! T4221! T4678! 7,970
12,561 |TTe737} 10,594 T,277] Ta821| Be355! T806! T41E8} 7,508
1 T3.9211TT,121|T0,001}10,708} T,275 9‘.835! B.208! T, 715! 7,056
l‘R%‘.soax Y2525} TT.4271T0,155{1T,743} T,322| T,817! B.245| 8608
T4,121{73378}124317|11,081|T1.705{10,321 10,853} T,317} 9,717
T6e988!T2,2771 154246124041 |T2,696; 114342 {T1,905]|104401 {10,841
1768931152080 72,204 !T5,025113,708|T2,380{12,9701 71,492 |T1,949
18.826|T8,164! 15,1683 |T4,029|TZ, 725} 7. 431 |12 ,045! T7,590{1T,071
T9,781{17.141{T%,181 {15,048 |15, 774|14,492|73,126| 17,693 12,195

3 3 4 ; ’ ;

e ® a2 & ¢ @ & 9

® % # o =2 5 @ ©°

®* 2 o @
Omomomomm;bmo:omﬂo:tn»bmmn—'%

QUWAO-NOPEPWANDNERIPRHEA 0000000020

=

-

* TUnderlined characteristics are ner-ative.

. R - o
£r,s) = .;“;r(f)s [2e=%XT & 5= fT)

In(f(r,s)) = loge [f(r,s)] in body of table.
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TABLE 8

NUMBERS OF ELECTRONS AS A FUNCTION OF ENERGY AND

SHOWER RADIUS AS A FUNCTICN OF ENERGY AND DENSITY

(See Table 4 for definition

of symbols)

| ' - log t* in table for logp¥**=
t | & s lnTT = ) [ 6 ] 7 8

5 4 1.289 1.88 5.127 | 7.724 8.322 [10.920 | 11.517
) 1.123 3.06 4.534 5.393 6.253 7.113 2.972
5] 1.000 @ 3.99 3.306 4.305 5.306 6.306 7.305
7 0.898 4.82 3.825 4.917 4.010 5.102 6.195
8 0.819 5.58 2.190 3.351 4.504 5.656 6.809
9 0.752 6.24 2.455 3.70 4,887 4,086 5.284
10 0.8699 6.87 2.672 3.954 3.186 4.417  5.649
11 0.651 7.45 2.854 2.150 3.441 4.700 @ 5.958
12 0.609 8.00 1.000 | 2.362 3.663 4.944 4.225
15 0.571 g.54 1.146 2.532 35.84 3.14 4.482
14 0.541 2.04 1.255 2.872 2.01 3.34 4.659
15 | 0.519 J.49 1.355 | 2.792 | 2.186 3.500 4.824
16 0.496 9.92 1.431 2.895 2.272 3.638 4.99
17 0.474 10.32 1.498 1.01 2.389 3.772 3.116
18 0.456 10.69 1.568 1.087 2.498 3.888  3.25
19 0.438 11.07 1.5618 1.18 2.62 2.000 3. 360
20 0.421 11.44 1.872 1.255 2.699 2.11 3.49
21 0.402 11.86 1.328 2.804 2.210 3.60
2z 0.390 12.26 1.406 2.892 2.332 3.715
23 0.377 12.66 1.462 23.97 2.412 3.82
84 0.365 135.04 1.525 | 1.085 2.505 3.92
285 0.353 13.42 1.586 ' 1.146 2.602 2.013
26 0.348 13.78 1.21 2.686 2.104
27 0.332 14.13 1.284 2.78 2.20
28 0.323 14.47 1.352 2.845 2.283
29 0.314 14.80 1.398 2.909 2.358
30 0.306 15.12 1.455 2.98 2.440
31 0.298 15.43 1.04 2.50
32 0.291 15.72 1.11 2.580
33  0.285 16.01 1.170 2.653
34 0.278 16.28 1.238 2.714
35 0.2753 16.55 1.28 2.76
36 0.267 16.80 2.82
37 0.281 17.05 2.88
38 0.256 17.28 2.94
39 0.261 17.50 1.00
40 0.247 17.71 1.05

*Characteristics negative, mantissas positive.
*#Characteristics positive,f)is surface density of shower.
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TABLE 8 (CONT'D.)

NUKBERS OF ELECTRONS AS A FUNCTION OF ENERGY AND

SHOWER RADIUS AS A FUNCTION OF ENERGY AND DENSITY

(See Table 4 for definition of symbols)

[ log r* in table for log#H* —
t | & 8 inl{, 4 |, 5 6 PP .8

10 |6 1.424 3.01 6.89
‘7 - 1.315 4.34 | 4.495 5.04 7.57
8 | 1.318 5.56 3.544 4.24 5.00
9 1.130 6.66 2.278 | 3.18 5.98 6.87
10 1.060 7.70 2.778 ‘3.78 4,753 5.66
11  1.000 8.6%7 1.161 | 2.29 3. 3540 4.33 6.63
12 0.945 9.59 1.432  32.69 3.885 4.89 5.34
13 0.891 10.44 1.608 | 1.02 2.212 3.37 5.94
14 0.845 11.25 | 1.760  1.26 2.538 3.73 4.43
15 ©0.808 128.02 1.881  1.45 2.183 2.04 4.85
16 0.778 12.73 | 1.973 | 1.60 1.043 2.30 3.21
17 0.750 13.44 @ 0.080 1.72 1.223 2.54 3.51
18 0.722 14.10 0.140 1.82 1.584 2.77 3.795
18 0.896 14.75 1.91 1.528 3.97 2.025
20 0.669 15.39 1.99 1.6842 1.13 2.260
21 0.631 16.03 1.740 1.37 2.484
28 0.615 16.633 1.40 2.678
283 0.597 17.232 2.854
24 0.582 17.810 1.020
85 0.5687 18.375 ;
30 0.505 20.940

15 1.733  0.97

6
7 1.592 2.62

8 1.485 4.15 5.33

9 1.395 5.53 4.875 5.377

10 1.316 6.87 2.104 4.832 5.170 7.704

11 1.250 8.11 2.842 S5.612 4.29 6.942

12 1.193 9.28 1.312 2.352 3.186 5.9082 6.68
13 1.140 10.40 1.6818 2.906 3.87 4.695 5.50
14 1.082 11.47 1.839 1.280 2.4723 3.356 4.28
15 1.045 13.50 1.982 | 1.570 2.875 3.9289 4.95
16 1.000 13.48 0.117 1.787 1.2300 2.380 3.52
17 0.964 14.40 0.233 1l.714 1.470 2.763 3.97

18 0.927 |15.31 0.040 1.668 1.097 2.278
19 0.895 16.17 0.149 1.811 1.336 2.620
20 0.865 16.98 0.526 1.936 1.528 2.3903

*Characteristics negative, mantissas positive.
#*#*Characteristics positive,fa is surface density of shower.
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TABLE 8 (CON'D.)

NUMBERS OF ELECTRONS AS A FUNCTION OF ENERGY AND

SHOWER RADIUS AS A FUNCTION OF ENERGY AND DENSITY

(See Table 4 for definition of symbols)

| ; log r* in table for logp¥* 1
t |E| s | mf| ¢« | 5 | & | 7 J , 8
15 |21 |0.835 |17.74 0.398 | | 1.883 } 1.114 |
22 |0.807 |18.54 | i | 1.816 | 1.320
123 | 0.780 |19.33 | 0.792 0.628 | 0.238 ' 1.500
24 |0.751 | 20,11 | | 1.683
25 | 0.724 | 20.88 | |
26 | 0.696 21.83 | 0.410 1.908
20 |10 1.512  5.13 7.850
11 1.437 | 6.83 | 5.784  6.25
12 1.371 | 8.03 | 2.887 | 3.170 | 5.57 7.99
13 1.317 | 9.32 | 1.301 | 2.130 | 4.69 5.26
14 1.288 10.58 | 1.853 2.895  3.82 4.30 6.92
15 | 1.222 |11.80 | 1.902 | 1.375 | 2.39 3.175 5.88
16 1.178 12.95 | 0.077  1.658 | 2.98 3.903 | 4.72
17 1.138 14.04 @ 0.210 1.881 |1.40 2.484 @ 3.44
18 1.099 15.14 | 0.371 0.047 |1.68 2.996 2.03
19 1.063 16.23 | 0.498 0.196 | 1.87 1.338 | 2.52
20 /1.032 |17.28 | 0.6802 | 0.330 | 0.03 1.802 2.97
21 1.000 18.35 | 0.693 0.154 | 1.813 1.301
22 0.971 19.37 | 0.765 0.29 1.971  1.54
123 10.944 20.38 | 0.107  1.73
24 0.920 21.33 0.225 1.89
25 0.895 22.35 0.739 | 0.340 0.041

25 12 | 1.537 B.23 4.72 6.56

13 1.474 7.85 2.389 4.445 6.63

14 1.419 S.20 1.260 3.835 4.1z 6.39

15 | 1.369 | 10.57 1.668 2.806 3.34 5.755
1.323 | 11.85 1.929 1.386 2.355 4,840 5.37
17 |1.282 |13.12 0.124 11.719 2.998 3.767 4.38
18 | 1.242 | 14.37 0.297 |1.957 |1.452 2.518 3.27
19 1.203 15.59 @ 0.453 0.134 1.747 1.107 2.05
20 1.168 [16.83 | 0.586 0.299 1.962 1.501 2.64
21 1.133 |17.93 @ 0.€86 0.441 0.129 1.748 1.097
22 1.103 |19.00 0.7653 0.559 0.265 1.934 1.43
23 1.074 | 20.00 ‘ 0.393 0.079 1.703

=
(@]

*Characteristics negative, mantissas positive.
#*#Characteristics positive, P is surface density of shower.
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TABLE 8 (CONT'D.)

SHCWER RADIUS AS A FUNCTICN OF ENERGY AND DENSITY

(See Teble 4 for definition of symbols)

log r¥* in table for logp** = = |
t? - inlll 4 5 8 2 g8 |
I | | | | I
35 |24 |1.047 [21.09 | | 0.525 | 0.225 | 1.90
|25 |1.024 |22.18 | 0.944 | 0.808 | 0.366 | 0.07
126 |1.000 | 23.22 | . 0.194
127 |0.978 | 24.20 | | 0.33
. o
30 {12 |1.870 4.32 | 8.95 |
13 |1.613 5.95 | 5.80  7.33
14 |1.555 @ 7.50 | 3.820 5.80 | 6.03
15 |1.502 | 9.01 | 1.09 |3.36  5.76
'16 '1.452 10.48 | 1.6834 | 2.628 3.13 | 5.09
17 1.407 11.94 @ 1.957 |1.342 2.279 | 4.505
18 1.362 13.30 | 0.164 |(1.771 1.079 | 3.655 4.09
19 1.322 |14.61 | 0.346 | 0.000 1.525 | 2.550 @ 3.13
20 1.288 [15.91 | 0.525  0.201 1.81 | 1.190 @ 2.00
21 1.353 |17.15  0.642 | 0.38 | 0.034 1.583 | 2.756
122 '1.223 |18.28 | 0.740 | 0.498 | 0.190 | 1.836 | 1.338
123 /1.195 |19.48 |0.628  0.352 @ 0.025 | 1.570
‘24 1.170 |20.65 0.491 0.193 1.810
25 1.142 [21.82 | 0.942 | | 0.326 | 0.011
26 |1.117 |22.97 1 0.874 | 0.484 0O .180
27 11.092 |24.10 | 0.608 | 0.332
|28 |1.070 |25.18 0.865 | 0.460
129 (1.048 26.25 0.586
130 [1.022 |27.24
35 13 (1.757 3.77 11.47 |
14 |1.886 5.38 | 6.05
15 |1.622 | 7.04 | 4.96 |6.32 |9.68
16 |1.563 | 8.64 | 2.771  4.655 |6.35 11.79 | 8.08
17 |1.515 10.22  1.568  2.322 4.30  8.18 6.25
18 (1.471 11.67 1.914 [1.272 3.78  6.02  5.90
19 1.432 13.13 | 0.158 |1.734 | 2.886 | 5.52  3.275
20 1.396 14.58 @ 0.370 0.015  1.516 @ 4.73  2.408
21 '1.362 |15.82 | 0.525 0.220 |1.813 | 3.82 |1.148
22 1.330 17.12 | 0.648  0.389 | 0.038 | 2.648 1.576
25 1.298 18.39  0.764 | 0.540 0.226 @ 1.857 |1.260
24 1,268 |19.62 | 0.842 0.668 0.394 | 0.045 (1.€34
25 1.240 20.85 0.765 0.520 | 0.236 1.875

*Cnharacteristics negative, mantissas positive.
*#Characteristics positive,F> is surface density of shower.
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TABLE 8 (CONT'D.)
NUMBERS OF ELECTRONS AS A FUNCTION OF ENERGY AND

SHOWER RADIUS AS A FUNCTION OF ENERGY AND DENSITY

(See Table 4 for definition of symbols)

log r* in table for 1ogp**:=

ct

(&€ | =8 1n 4 5 8 . 8
T il -
35 |26 | 1.214 | 23.05 0.839 | 0.640 0.074
| |1 166 | 24.35 | 0.380
| 59 |11ee |55 | 0.525
130 | 1.125 | 26.62 0.952

| 0.834

"
0.398
27 | 1.187 | 23.21 (1.017)% 0.203 | 0.752 \ 0.534 | 0.250
| |
|
(2)This number is entirely positive.

*Characteristics negative, mantissas positive.
**Characteristics positive, P is surface density of shower.
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TABLE 9

THE WEIGHT FUNCTION FCR LATERAL SEPARATION, C(y)

s

/1

o -

c(a/r)

= Ratio of shaded

area to area of circle.

a = Half the separzation
between counters.
r = Shower radius.

vy = a/r

C(y) =1 - %-(wal—yz +-y2 Sin'ly)
O(y) = 1.0000 - 0.6366y + 0.08207y° - 0.3750y"
vy | log*y | log*C(y)| C(y)| Approx. |
| 0.00 | - 0.0000 | 1.0000 1.C000 |
0.05 2.6990 1.9859  0.9681
0.10 I.0000 I.9718 |0.9360 0.9362
' 0.15  1.1761 1I1.9559 0.9034
0.20 + 1.3010 | 1.9396 | 0.8701  0.8706
0.25 I.3979 I1.9221 0.£358
0.30 I1.4771 1.9033 0.8004 0.8009
0.35 1.5441 1.8828 0.7634
0.40 I.6021 1.8602 0.7247 0.7250
0.45 1.6532 1I1.8351 0.6840
0.50 1.6990 1.8069 0.6410 0.6406
0.55 1.7404 1.7748 0.5954
0.60 1.7782 1.7379 0.5469 0.5409
0.65 1.£139 1.6948 0.4952
0.70 1.8451 1I1.6434 0.4399 0.4373
' 0.75 1.8751 1.5804 | 0.3805
0.80 I1.9031 1.5005 0.3168 0.3139
0.85 1.9294 1.3804 0.2410
0.90 I.¢542 I.2380 0.1730 0.1730
0.95 1.9777 2.9594 0.0911
/| 1.00  0.0000 - 0.0000 0.0135

#Underlined characteristics are

negative
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TABLE 10

THE PRIMARY SPECTRUL¥*

tive.

£ log*#e 7 £ log#¥e € logiw#e*®
| 1.2183 18 13.4923 31 25.7661
2 2.4365 17 T14.7103 32 26.7843
S 3.86548 18 15,9287 33 26.2026
4 4.8730 19 15.14869 34 27.4208
5 4.0913 20 16.3652 35 28.6391
6 5.5098 21 17.5835 36 29.8574
7 6.5278 22 18.8017 37 28.0756
8 7.7481 33 18.0200 38 30.2859
9 8.9642 24 19.2382 39 31.5131

10 8.1825 25 20.4565 40 32. 7304

11 £.4008 26 21.6748 41 33.9487

12 10.6191 27 22.8930 42 33.1669

13 11.8373 238 22.1113 43 34.3852

14 11.0556 29 23.3295 44 55.8054

15 13.2739 30 24.5478 45 56.8217
4.5 4.4823 15.5 13.8830 26.5 21.2839
55 5.7004 16.5 13.1013 27.5 22.5033
8+5 8.9187 17.5 14.3198 28.5 23.7204

| 75 8.1370 18.5. 15.5378

{ Beb 7.3552 19.5 16.7561
9.5 8.5735 20.5 17.9743

10:5 9. 7917 21.5 17.1926

115 2.C100 223.5 18.4108

12.5 10.2283 23.5 12.6291

13.5 11.4465 24.5 20.8473

14.5 12.6648 35.5 20.0656

3 )/ —~ 1 . 8

##The underlined characteristics are negative, mantissas posi-



TABLE 11
INTEGRAL VERTICAL FREGUENCY (log (EV(>e)/7D)

IN BODY OF TABLE#)

t =5
log a = - -2.5 -2.0 -1l.5
logp = 4| 10.710 10.534 10.204 11.427
5| 11.018 12.454 13.779 14.274
6| 13.345 15.588 16.575 18.502
7| I5.740 1B8.845 20.417 23.457
g | 16.140 22.560 25.720 29.748
t = 10
logp = 4 10.294 10.370 10.300 10.092
5| 12.653 12.820 12.550 12.283
6 1f.c22 14.746 14.517 14.099
7| 15.184 16.750 16.332 17.659
8 | 17.433 18.443 15.839 20.918
t = 15
log p = 4| 11.716 11.716 11.688 11.630
5| I2.184 12.169 1I12.122 13.970
6| 14.5¢8 14.578 14.487 14.361
7 | 16.890 16.806 16.700 16.482
8| 17.263 17.094 18.812 18.415
All For a =
t= | 5 10 15 20 25 30 35
logp= 4 |10.710 10.394 11.716 12.879 13.985 13.196 14.248
5 |I1.018 I12.653 1I12.184 13.564 14.711 15.912 15.048
6 |153.2345 14.922 14.598 14.020 15.393 16.858 17.777
7 |15.740 15.184 16.890 16.435 17.854 17.246 18.409
8 |16.140 17.433 17.263 18.894 18.328 19.765 19.016

*The underlined characteristics are negative, mantissas positive.
*a 1s nhalf the counter separation in lateral units.
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TABLE 12

Qo
SM%gﬁED CONSTANTS FOR INTERPOLATION FUNCTIONS
FOR _INTEGRAL VERTICAL FREQUENCY

A. Velues of p in H'/~D = L(P,t,) exp (-p (t-to))

p_in body of table (a = o).

logP - 4 5 6 7 8

to = 15 ' 0.3339 0.2825 0.2360 0.1946 0.1504
20 | 0.3960 0.3495 0.3085 0.23710 0.2303
25| 0.4260 0.3841 0.3488 0.3152 0.2779
50 0.4363 0.4013 0.3728 0.3456 0.3120

Note: D = 7.52 x 10%° x g9

B. Values of M, 6 ,q in H'/A D = U( Q,t,) exp (-Q(t‘to))/ps

log M¥* in body of table (a=o). q in body of table (azo).

log B = 5 6 7 Lag A = 5 8 7

to - 15 2.994 4.324 4.524 to = 15| 0.5250 0.4812 0.4397
20| 6.804 5.164 5.488 20 | 0.5687 0.5373 0.4304
25 | 7.436 7.891 B.361 25 | 0.5895 0.5480 0.5135
30| B.252 8.800 7.277 30 ' 0.5964 0.5572 0.52304

¥*Underlined characteristics negative.

S in body of table (a=o). 1.8/§ in body of table (a=o).
log R = 5 6 7 log £ = 5 6 ¥
to = 15 [ 1.5628 1.821 1.662 to = 156 [1.158 1.110 1.083
20 | 1.448 1.524 1.579 20 | 1.243 1.181 1.140
25| 1.345 1.433 1.501 25|1.338 1.256 1.199

301 1.268 1.357 1.433 301 1.420 1.326 1.256
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TABLE 13

Radiation Unit Adopted at Point of Observation

t o p— L S *|log S log a s ' (§-1)logs2
T r 1
5 3.694 13.647 1l.68 7 | -6.775 -2.211 23.037 1.178
7.5 | 2.618 6.854 3.34 7| -6.476 -2.061  1.969  0.810
10 2.082 4.336 | 5.28 7 | -6.2377 -1.962 1.855 ' 0.545
12.5 | 1.745 3.045 7.52 7 -6.124 -1.886 1.737 0.356
15 1.499 2.247 1.02 B | -5.992 -1.830 1.6836 0.2324
17:5 | 1.8518 1.720 /1.32 6 | -5.880 -1l.763 1.582 0.137
20 1.178 1.388 | 1.65 6 | -5.782 -1.714 1.536  0.078
22.5 1.066 1.132 2.02 B | -5.694 -1.672 1.455 0.020
24 1.000 1.000 12.29 6 -5.640 -1l.644 1.426 0.000
Adjustment for Evesluating Radiation Unit
Above Point of Observation
£ x max t-x  0%t(t-x) (§-1)iogs? Reduction
5 0.40 4.6 17.441 1.2875 0. 7718
a8 | 085 8.85 7.928 0.8713 0.8684
10 0.80 9.2 4,954 0.5942 0.8913
12.8 1.0 11:b 3.489 0.4000 0.903%7
“1§7 1.0 14.0 2.520 0.2553 0.9305
* The separate numbers are the power of 10 by which the

left hand number should be multiplied.



87

TABLE 14
INTEGRAL VERTICAL FREQUENCY CORRECTED FOR

COUNTER SEPARATION AND ATMHOSPHERIC STRUCTURE

loglp = 4 5 S} 7
t=5 | 12.851 15.673 18.005 23.295
7.5 | 11.830 13.726 15.519 19.6856
10 11.768 13.891 15.725 17.356
12.5 | 11.678 13.970 14.038 17.991
15 | 11.470 13.848 14.120 15.356
17.5 | 11.206 13.716 14.116 16.386
20 | 12.883 13.513 15.943 18.353
22.5 | 12.493 13.208 15.743 16.213
25 | 12.128 14.854 15.436 17.997

Note: The numbers in the body of the table
are:

el

\Og L?LD st WOpet, t, &

J

for 1oga=—/.e4+,



TABLE 15

INTEGRAL FREQUENCY INCLUDING ALL ZENITH ANGLES

log (H(>P)/xD) in table for log a = -1.844 Constants**
logP = 4 S 6 7 8 g_ log P
£ = 5 10.830 12.935 14.863 16.858 2.037 12.456
7.5  10.605 12.896 14.942 16.958 1.969 12.129
10 10.355 12.720 14.895 15.010 1.8556 11.398
12.5 I11.973 13.405 14.730 18.931 1.737 10.523
15  11.567 12.082 14.505 18.811 1.636 9.694
17.5% 11.156 13.799 14.263 16.636 17.144 1.582 9.129
20 12.541 13.392 15.880 16.319 18.349 1.5368 8.470
22.5 12.160 14.9068 15.469 17.996 18.509 1.455 7.582
24 | 13.868 14.635 15.217 17.782 15.295 1.438 7.147
a5 13.680 14.445 15.048 17.630 18.151 1.408 6.869
27.5 13.202 15.984 16.632 17.212 19.778 1.356 6.312
30  14.728 15.537 16.213 18.808 19.410 1.365 5.778
15 11.636 12.184 14.617 16.949 17.383 1.618 9.699

* These values include no correction for the finite separation
of the counters, and this correction is still appreciable until

t = 30 or more.

*% These are all constants for the expression:

Hep) = P/p°

Where P does not include a correction for the variable density
of the atmosphere, the complete correction is made by multiplying

by (o2)%* , see table 15.

Note: The underlined characteristics are negative.
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TABLE 16
COUNTING RATE AS A FUNCTION OF ALTITUDE
t 1($8) log[;PS§yNa** Nb##*#  log Na ‘log Nb i
5 | 1.643 1.183 | 0.7874 1.0131 Ii.89620 o 00561T
7.5 |1.531 1.306 | 2.1592 2.4864 0.33429 'o 39550 |
10  |1.360 1.069 |3.0117 3.3790 0.47881 | 0.52879
'12.5 |1.210 0.808 |2.5714 2.8454 0.45399 | 0.45408
15  [1.116 0.514 1.8153 1.9509 0.29024 | 0.29026
17.5% [1.075 0.239 1.2400 1.2420 0.09412 | 0.09412
20  1.045 1.826 |0.5620 0.5620 |1.74974 |1.74974
| 23.5 |1.000 I.378 |0.2191 0.2191 1.34064 |1.34064
| 24 0.987 | 1.098 0.12523 0.13533 1.08760 | 1.09780
'35 0.v80 | 2.919 0.08316 0.08316 2.9199 | 2.9199
27.5 |0.970 | 2.482 0.03030 0.03030 Z2.4814 | 2.4814
| 30 i0.960' 2.059 0.01150 0.01150 2.0805 | Z.0605
15% , .1.100 | 0.615 |2.3262  3.4999  0.36661  0.3980
17.5(1) 0.0050

1.000

1.002

0.0000

# These values include no correction for the finite
separation of the counters,
still appreciable until t = 20 or more.

and this correction is

#% This is the counting rate per hour with the size
of the radiation unit adjusted to a suitable point a-
bove the counter (See Table 15).

##% This is the counting rate per hour with the size
of the radiation unit evaluated at the point of ob-
servation.

(i) Estimated corrected value.

Note: The underlined characteristics are negative.
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TABLE 17
COMPARISON CF THEORY AND EXPERIMENT

r Na/hr. ‘(2.536)8 'Theoret. Hllberry, 3 Na |Kraybill®* 8.33Na
rad.units counts | for Expt. | Expt.
per hr. Hilberry Counts | Counts

Theoret. X3 per hr. | Per nr.
5 0.787 | 2.362 | 16.50 6.56
7.5 2.159 6.478 | 24.65 17.99

10 3.012 9.035 | 24.20 25.09
12.5 2.571 \7 714 17.10 21.42

15 1.815 | 4.007 21.82 28.8 | 5.446 | 7.60 15.12
17.5 | 1.000 | 3.837 | 11.48 9.95 | 3.000 53.50) 8.33
l 20 | 0.562 | 3.681 | 6.21 4.85 |1.686 | (1.80) 4.68
| 22.5 | 0.219  3.437 | 2.26 | 3.35 ' 0.857 go.so; 1.82
24 0.125 | 3.353 | 1.26 | 1.40 | 0.376 | (0.40) | 1.04

The ratio of Hilberry's counter area to that of Kraybill's

is 196/83.9 = 2.338.
8.33/3 = 2.78.
7.40/3 = 2.45.

* The ( ) numbers are obtained using Hilberry's data to
extropolate.
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TABLE 18
ESTIMATE OF UNCERTAINTIES IN CALCULATION

1 ‘
| ‘10gP (max) 'G(max) t(eff) |log 2 eff. Max.error| % # l.f,(max logE
" deg- | Possible |Likely at
f { | (factor) | max
5 6.638 65 11.9 -5.588 1.48 15 14 ll4.080
7.5 8.574 52 12.2 -2.873 1.70 20 16 114.948
10 6.180 38 |12.8 -3.06% 1+08 15 15 |14.514
185 6.129 27 14.0 -1.236 1.48 10 15 {14.514
| 15 6.038 0 15.0 -1.820 1.26 7 15.5114.731
| 1245 5.948 0 175 -1.763 1.20 2 16.0114.948
20 5.867 0 20.0 -1.714 1.00 0 16.5!15.165
22«5 5.809 0 22.5 -1.672 1.00 0 17.0 15.382
24 | B5.767 0 24.0 | =1.644 1.00 0 17.5 |15.5123

* This is the proportion per cent of the total integral density
spectrum which comes from integration over radii which are equal
to the separestion radius of the counters or less, and in this
range the approximation used may not be very good.
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TABLE 19

INTEGRAL FREQUENCY SPECTRUM AS A FUNCTION OF

'....I
(o}
(i3]

]
i

olslalololcleleolol My el
HFMWh OO0 WO

Note:

DIRECTION (log (H/#xD) IN BCDY CF TABLE).

all at t = 7.5
= 90° e = 0°
& 5 6 7 B 5 6 7
|
| 10.27 13.41 14.08 17.35 !10.27 12.41 14.08 17.35
' I0.19 I2.39 IZ.20 I7.71 | 10.51 I2.53 14.28 I6.96
| 1IC.06 12.32 14.28 16.00 | 10.27 12.592 14.52 16.30
1 11.93 12.24 14.26 16.14 ' 10.16 12.53 14.64 16.80
|£.68 Lv3_098 _1_4_014 1_6_019 ‘ ;logg _1_2_-4’0 1;4_-65 ;_6_.77
‘;_2_.55 13.08 15.49 17.87 | 11.10 13.72 14.14 16.55
13.36 14.05 16.59 17.10 | 13.98 14.71 15.30 17.85
! | 15.80 16.685 17.37 18.02
l |
© = 40°
log p = 4 5 <] 7
X = 100 _1_.9_'87 1_2_041 &108 _];[_-55
0.9 | 10.223 13.51 14.28 17.89
0.8 | 10.20 12.45 14.43 16.18
0.7 | 10.10 12.43 14.50 16.39
0.8 | 11.87 18.27 14.47 16.52
0.5| 11.57 12.00 14.37 16.58
0.4| 12.92 13.54 15.98 16.37
0.3 | 13.86 14.57 15.15 17.93
0.2| 15.70 16.50 17.235 19.85
[ 9

Underlined characteristics are negative.

X = coa O
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TABLE 20
THE ANGULAR DISTRIBUTION OF THE SHOWERS

Theoretical* (Arbitrary but consistent scale).

| Projected  Intensity Intensity Intensity ' Intensity
' Angle per unit per unit per unit | per unit
solid angle solid angle projected | projected
at @ = 809 at=0 angle angle
Y Here Yy =8 Here ¢ =6 (complete (project up
t projection) teo w = 0.25)

0] ‘ 6.49 6.49 13.36 1.76

5 8.53 ; 6.69 | 13.08 1.78
10 8.78 : 7.42 12.80 1.82
20 7.45 1 10.20 12.70 2.05
30 8.26 | 15.00 12.76 2.45
40 9.15 20.90 L0 7L 2.64
50 + 55 24.95 9.36 3.45
80 5.07 19.30 |

Observed#*#¥*

f Range of | Number
| projected angle | Observed
( Y deg- | ’
‘ 0 to 5 i

5 toe 15 1.5

15 to 25 12

25 to 35 9
| ob to 45 3
| 45 to 55 2

—

* Theory at 7.5 radiation units.

*% A total of 48 out of 228 shower pictures obtzined at 31,000
(7 rad. units) by the counter controlled cloud chamber selected
on the basis of 10 tracks or more having the same direction.
Privately communicated to the author by Mr. E.W. Cowan on

10 March 1948.

Note: 228/48 = 4.75
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TABLE 21

THE KEAN SHOWER RADIUS AS A FUNCTION OF s

AND ITS EFFECT ON THE DENSITY SPECTRUM

|

8 | T mean, {r mean, ! T mean: Fs(s)* l
| lateral meters: ' r at s =1
| units | sea level set = 1 | |
0.0 O 0 0 [ o 2 !
0.2 | 0.0889  5.33 0.158 | 6.41 x 10%% |
0.4 | 0.1945 | 11.67 ! 0. 346 | 1.69 x 10°
0.8 | 0.2981 | 17.89 ‘ 0.530 | 12.87
0.8 0.4218 25.31 0.750 2.05 f
1.0 0.5625 | 33.75 1.000 1.00 i
1.2 0.7250 43.50 1.289 0.776 %
1.4 0.8718 52.31 1. 550 0.784 [
1.8 1.1144 | 66.86 1.981 0.843 l
1.8 1.3421 80.53 2.586 1.00 ‘
_2(F-)
* Fz(s) = 1 2 , 7= 1.8

and T is taken from col. 4.
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TABLE 22

MISCELLANEQUS MATHEMATICAL FUNCTIONS

<

Where: 1(5)121 g( e'q)

F(x) = (/"xexi
Fw = [('—f' Ve e“‘]

log ‘p(effective) = 0.4343u - log S

and

30“(

usu

%)

é I(§) ' X ‘log Fp (x) | L IO 4343 ul log Fg(u)
1.0 0.8628 | 3 | 1l.442 | -6 | -2.8058| 8.1819
1.1 0.9105 | 3 | 1.330 . -5 -2.1715| 7.4830
1.2 0.2046 4 | I.242 -4 -1.7372| B.7806
1.3 | 0.9320 | & | 1.171 -3 -1.3208| 7Z.0469
1.4 0.9728 6 1.108 -2 -0.8686 3.2774
1.5 | 1.0252 7 | 1.055 -1.5 -0.6514| 3.8537
1.6 | 1.0891 8 1.007 -1 -0.4343 32.3825
1.7 | 1.1718 9 | 2.964 -0.5 -Q.2171 2.8352
1.8 | 1.3739 10  2.926 | 0 0.0000 71.1873
1.9 | 1.4272 11 | 2.892 | 0.5, 0.2171| T.315
2.0 | 1.5702 12  2.858 1 0.4343 T1.1943
2.1 | 1.9446 13 2.826 1.5 0.8514 2.8951
2.2 | 2.073 14  2.798 2 0.8686  3.6580
2.3 | 2.460 3 1.3029 8.5797
2.4 | 3.012 4 1.7372 22.0357
2.5 | 3.821 5 2.1715 63.7179
2.6 | 5.108 6 2.6058 173.3988
2.7 7.350

2.8 /11.42

2.9 [26.70 _

Note: ©Underlined chearacteristics are negative.
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TABLE 23
OBSERVED ANGULAR DISTRIBUTION

Range of l Number of lMeasurable Photographs at |
projected angle 31000 feet 37000 feet
(degrees) l A r B | C D
T
O to 5 7 ‘ 5 4 2
5 to 15 15 | 11 4 4
15 to 235 12 | 10 S 3
25 to 35 9 | 8 4 2
35 to 45 3 | 2 2 2
I 45 to 55 L 2 2 2 1
| 55 te 65 t 1
| Total photos. !
‘ used \ 48 38 21 15
' Total photos. ‘
teken }

|

228 | 228 228 44

SELECTION PROCEDURE

A* Ten or more parzllel tracks anywhere in chamber.
B Ten or more parallel tracks azbove the lezad.
C One hundred or more parallel tracks anywhere in chamber.

D Three or more parallel tracks anywhere in chember.

*The distribution A is also given in Teble 20.
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