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Abstract 

Part I 

The forced Korteweg-de Vries model has been found satisfactory in predicting the periodic gener

ation of upstream-advancing solitary waves by a bottom topography moving in a layer of shallow 

water with a steady transcritical velocity. It is also known that with certain characteristic forcing 

distributions, there exist waves, according to the fKdV model, which can remain steady in ac

companying the characteristic forcing, provided such a wave exists initially, whereas for a different 

initial condition the phenomenon of periodic generation can still manifest itself. The stability of 

two such transcritically forced steady solitary waves is investigated, with their bifurcation diagrams 

determined with respect to the velocity and the amplitude of the forcing as parameters. The lin

ear stability analysis is first carried out; it involves solving a singular, non-self-adjoint eigenvalue 

problem, which is examined by applying techniques of matched asymptotic expansions with suitable 

multiscales for singular perturbations, about the isolated bifurcation points of the parameters. The 

eigenvalues and eigenfunctions for the full range of the parameters are then obtained by numerically 

summing a power series expansion for the solution. The numerical results, which accurately match 

with the local analysis, show that the eigenvalues have only four branches rr = ±rrr ± irr;. The real 

part <rr is nonvanishing for the velocity less than a certain supercritical value and for the amplitude 

greater than a certain marginal bound except at a single point in the parametric plane at which 

the external forcings vanish, reducing the forced waves to the classical free solitary wave. Within 

this parametric range, the real part of the four eigenvalues is algebraically two to five orders smaller 

than the imaginary part <T;, wherever <T; exists; such a small <Tr indicates physically a weak exponen

tial growth rate of perturbed solutions and mathematically the need of a very accurate numerical 

method for its determination. Beyond this parametric range, linear stability theory appears to fail 

because no eigenvalues can there be found to exist. In this latter case a non linear analysis based 

on the functional Hamiltonian formulation is found to prevail, and our analysis predicts stability. 

Finally, extensive numerical simulations using various finite difference schemes are pursued, with 

results providing full confirmation to the predictions made in various regimes by the analysis. 

We consider the Korteweg-de Vries equation in the semi-infinite real line with a boundary 
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condition at the origin. The numerical investigations of Chu et al.[2), are revisited and different new 

forms for the boundary forcing are assumed. In order to provide some qualitative description for the 

numerical simulations we develop a simple model based on the 1ST formalism. It is found that the 

model is also able to provide some quantitative predictions in agreement with the numerical results. 

Part II 

There has been considerable interest recently on chaotic advection, for the first time explored in 

the context of Rayleigh-Benard roll (2D) convection by the experimental work of J. Gollub and 

collaborators. When the Rayleigh number increases across a (supercritical) value, depending on the 

wavelength of the rolls, an oscillatory instability sets in. The flow near the onset of the instability 

can still be modelled by a stream function, which can be split into a time independent part plus a 

small time dependent perturbation. The motion of fluid particles can therefore be regarded as the 

flow for a near integrable, "one-and a half' degree of freedom Hamiltonian vector field, with the 

phase space corresponding to the physical domain. In absence of molecular diffusivity, the evolution 

of a certain region of phase space can thus be viewed as the motion of a dyed part of fluid, when the 

tracer is perfectly passive. The most important objects for a theory of transport are the invariant 

manifolds for the Poincare map of the flow homoclinic to fixed points, which physically correspond 

to the stagnation points. As fluid particles cannot cross invariant lines, these curves constitute a 

sort of "template" for their motion. For the time independent flow, the invariant manifolds connect 

the stagnation points and define the roll boundaries. Thus, no transport from roll to roll can occur 

in this case. Switching the perturbation on, these connections are broken and the manifolds are free 

to wander along the array of rolls. We use segments of stable and unstable manifold to define the 

time dependent analogue of the roll boundaries. Transport of fluid across a boundary can then be 

attributed to the way a region bounded by segments of stable and unstable manifold, or "lobe," 

is evolving under map iterations. This allows us to write explicit formulae for describing the fluid 

transport in terms of a few of these lobes, for a general cross section defining the Poincare map. 

Using the symmetries of special cross sections, we are able to further reduce the number of necessary 

lobes to just one. Furthermore, these symmetries allow us to derive analytically a lower and upper 

bound for the first time tracer invades a roll, and a lower bound on the stretching of the interface 
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between dyed and clear fluid . These results are independent of the fact that the perturbation is 

small. When this is the case however, the analytical tools of the Melnikov and subharmonic Melnikov 

functions are available, so that an approximation to the lobe areas and location and size of the island 

bands can be determined analytically. It turns out that in our case these approximations are quite 

good, even for relatively large perturbations. The results we have produced regarding the strong 

dependence of transport on the period of the oscillation suggest an effect for which no experimental 

verification is currently available. The presence of molecular diffusivity introduces a (long) time 

scale into the problem. We discuss the applicability of the theory in this situation, by introducing 

a simple rule for determining when the effects of diffusivity are negligible, and perform numerical 

simulations of the flow in this case to provide an example. 
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Chapter 1 

The stability of forced solitary waves 

1. 1 Introduction 

Considerable attention has been drawn by recent studies to the phenomenon of non

linear, dispersive waves generated in a soliton-bearing physical system by a moving 

forcing disturbance sustained at resonance. A remarkable feature of the phenomenon 

is that to a steadily moving disturbance imposed on such a physical system, the re

sponse may not be steady asymptotically with respect to the moving disturbance 

as would be expected for linear systems, but may result in periodic production of 

upstream-advancing solitary waves, in a process that may continue indefinitely. An 

example is given by the effects of a submerged topography or a surface pressure mov

ing with a constant transcritical velocity over the top free surface of a water layer 

of uniform depth. Analogous phenomena can be expected to occur in various other 

soliton-supporting systems. A review of history and literature can be found in Wu 

(1987) and Lee et al. (1988). 

A few theoretical models have been proposed for the description of this general 

class of motion. One of them is the generalized Boussinesq (gB) equation introduced 

by Wu (1979), which is applicable to wave generation and propagation by three-
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dimensional forcing distribution moving in arbitrary manner through a medium which 

may vary gradually and slowly in two horizontal dimensions. Another approach is 

based on the director-sheet model of Green and Naghdi, as adopted by Ertekin et 

al. (1984, 1986). The most appealing theoretical model is perhaps the forced Ko

rteweg de Vries (fKdV) equation which characterizes unidirectional, weakly nonlinear 

and weakly dispersive long waves being weakly forced at resonance. Because of its 

simplicity in structure, this model has been employed by Akylas (1984) and Cole 

(1985) for the pointed forcing and by Lee et al. (1988) and by Wu & Wu (1988) for 

distributed forcings. Comparisons between theory and experiment have been care

fully examined by Lee at al. (1988), with results showing a broad agreement between 

experiment and various physical models in spite of some refined differences between 

these models. In addition, the roles played by the nonlinear and the dispersive effects 

during the periodic generation of upstream waves can be more directly evaluated 

by integration with mass and energy considerations based on the fKdV model, as 

illustrated by Grimshaw & Smyth (1986), Wu (1987) and by Lee et al. (1988). How

ever, the basic mechanism underlying the manifestation of the periodically produced, 

upstream-moving waves remains so far unexplained. 

This work is a study intended to explore the basic mechanism in question. It 

is carried out by first considering the stability and rate of growth of the waves that 

are furnished energy to grow at the expense of the continuing rate of working by an 

accompanying forcing agency. The nonlinear stability study is facilitated by employ

ing two relatively simple solutions of the forced stationary solitary wave family found 

by Wu (1987) for the fKdV model, one of which was indeed proposed by Patoine & 

Warn (1982) to simulate a meteorological phenomenon. 
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In Section 1.3 a stability theory is formulated for the two forced steady solitary 

waves, one being transcritical, with a velocity range spanning across the critical speed, 

while the other pertaining only to a supercritical forcing, and both reducing to the 

classical free solitary wave of the KdV family as the forcing vanishes in the limit. 

Stability of the primary motion, designated in the wave frame by (s( x) as a function 

of the one-dimensional space of x E R , independent of the time t , is examined 

with an arbitrary perturbation, 77(x, t) , superimposed so that the resultant motion, 

((x, t) = (s(x) + 17(x, t) , satisfies the fKdV equation while the forcing is kept fixed to 

that corresponding to Cs . As shown in Section 1.4, the linear stability analysis for 

77 yields an eigenvalue problem with eigenvalue u , whose real part gives the rate 

of growth of the imposed perturbation 'T/ • The difficulty of this eigenvalue problem 

is partly due to the feature that the governing ordinary differential equation, being 

third in order, is not self-adjoint and must be considered together with its adjoint 

counterpart. 

In terms of certain appropriate similarity variables, the eigenvalue problem for 

forcings of type (i) forms a family of one parameter in µ , which is a speed detuning 

parameter, the forcing being supercritical or subcritical according as µ > 0 or < 0 . 

The single parameter for forcings of type (ii) is designated a , which characterizes 

the forcing amplitude such that the forcing reaches its maximum at a= 6 and below 

this maximum the regimes of a > 6 and a < 6 constitute the two branches of 

solutions. For µ = 4 and a = 12 , the forcings vanish and the two steady motions 

reduce to a free solitary wave. In addition to these single parameters for the two types 

of forcing, we can define another parameter, A, which is a measure of the amplitude 

of the perturbation 77 and hence characterizes the nonlinear effects. 
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For small perturbations, the analysis on linear theory for TJ(x, t) given in Sec

tion 1.3 shows that the fixed-point solutions of TJ ( corresponding to zero eigenvalue 

a- = 0 ) are found to exist at µ = 1, 4, and 9 with o = 12 for forcing (i) and at 

o = v(v + 1), v = 2, 3, ... , with µ = 4 for forcing (ii). Further, these stationary 

solutions are shown by perturbation techniques to be unstable, with an exponential 

rate of growth in a vicinity of these particular values of µ and o in the respective 

parametric plane provided that the characteristic forcing does not vanish (it vanishes 

at only one point µ = 4 and a= 12 ) and that µ < 9 for case (i) and a > 6 for 

case (ii). This analytical result is fully confirmed by the numerical results obtained in 

Section 1.4.4 for the global spectral behavior of the eigenvalue a , which indeed has a 

nonvanishing real part over the span of (i) µ < 9 ( excluding µ = 4 ) with o = 12 and 

(ii) a > 6 ( excluding a = 12 ) with µ = 4 , respectively. The only exception in 

this parametric domain is the single point at µ = 4 and o = 12 characterizing 

the free solitary wave, for which case the nonlinear stability has been concluded by 

Benjamin (1972). Outside this domain, there are two regions: (i) µ > 9, a= 12 and 

(ii) µ = 4, a < 6 , in which both our perturbation and numerical techniques fail to 

find any nonvanishing eigenvalues. In these cases, however, we are able to utilize the 

Hamiltonian property of the system and show in Section 1.5 that the two primary 

motions (s both satisfy a sufficiency criterion to imply stability on nonlinear theory. 

Further study along this direction leads to the determination of bifurcation points 

of the primary motions for forcings of type (i) to other stationary solutions; this is 

first shown in Section 1.6 for the neighborhoods of µ = 1, 4 and 9 , where approxima

tions based on regular perturbation expansions can be provided for new stationary 

solutions. In particular, the solution curve for one of these, (ss, in the parametric 
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µ - A plane, with A being a measure of the amplitude of the perturbation 'f/ , 

appears as a "valley bottom" line in the basin of attraction, to which all perturbed 

solutions will asymptotically evolve, no longer exchanging energy with the steady forc

ing. Detailed features of the transient solutions through bifurcation are illustrated 

in Section 1. 7 for various cases with the numerical results so obtained. These results 

show that the evolution of nonlinear waves generated periodically in unstable regimes 

is at the rate in agreement with the prediction previously given by Wu (1987). In the 

stable regime, numerical solutions for initially perturbed motions are found to settle 

to the new, unique, and nontrivial stationary solution of 'f/ at a rate as predicted 

here by expansion methods. This new development, however, will require further 

exploration of numerical techniques in order to be continued outside some isolated 

small regions of the bifurcation diagram. 

1.2 Forced solitary waves 

In the context of shallow water waves, the fKdV equation is particularly suitable for 

describing weakly nonlinear, weakly dispersive and weakly forced waves and can be 

written as 

(1.1) 

where ( is the free surface elevation of the water layer and the external forcing P( x) is 

given by the sum of the applied surface pressure distribution and bottom topography 

(see Wu, 1987; Lee, 1985). Here x E R, t E (0, +oo) and subscripts denote partial 

differentiation. Equation (1.1) is in nondimensional form in which the length, time 

and pressure have been scaled by h0 , ~' pgh0 respectively, with h0 , 9, p being the 

undisturbed water depth, gravity acceleration and uniform fluid density, respectively. 



-7-

The reference frame used for (1.1) is fixed with the s·teadily moving disturbance, in 

which the fluid is moving to the right with uniform constant velocity U at x = -oo, 

corresponding to the Froude number F = U / ,Jiho, and the forcing distribution is 

fixed. The range of the physical parameters in which the model is derived ( see Lee 

1985; Wu 1987) is fixed by the following estimates 

a - = O(I), 
ho 

IF - 11 = O(I), (1.2) 

where ..\ is a typical wavelength, and a is a typical wave amplitude. The second 

equation in (1.2) represents the condition that the dispersive and nonlinear effects 

are so properly balanced that the phenomena can be described by the present theory. 

The particular numerical values of these parameters, which can be changed through 

the well known scaling properties of the KdV equation, are chosen in this way to 

facilitate comparisons with the notation used in the previous works. 

The stationary solutions of (1.1) that vanish at infinity satisfy the ordinary dif

ferential equation 

(1.3) 

which is obtained from (1.1) by dropping the time derivative and integrating once 

in x. Among the possible solutions of (1.3) for various choices of the forcing P, 

soliton-like solutions (s of the form 

((x, t) = ( 8 (x) = a sech2(kx) 

are of particular interest here, and they occur when ever the forcing term is chosen to 

be a sech2 (kx) or a sech4 (kx) distribution, provided their amplitudes and Froude 

number are related as follows (Wu, 1987): 
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(i) 

(a(x) 
4 

3k2 sech2(kx) 

P(x) 4 2 ( 2 2) 
3k F- I - 3k sech2(kx ), (1.4) 

(ii) 

(a(x) - a sech2(kx) 

P(x) a ( k2 
- ~a) sech4(kx), 

2 2 
(1.5) - F- l = 3k. 

In these equations, the Froude number F in (1.4) and amplitude a in (1.5), re

spectively for case (i) and (ii), can be regarded as playing the role of a free parameter, 

in addition to the parameter k which fixes the length scale of the disturbance. We note 

that for case (i) the flow can be either supercritical (F > 1) or subcritical (F < 1); 

the forcing amplitude, b1 say, is always negative for F < l, but for supercritical forc

ings ( F > 1 ), b1 < 0 or > 0 according as ( F - 1) < or > 2k2 /3, whilst the resulting 

sech2(x)-wave remains positive in polarity for all these cases. For case (ii), the flow 

can only be supercritical; the forcing amplitude reaches its maximum of k4/3 at the 

wave amplitude of a = 2k2 /3, and for forcing amplitudes below this maximum, there 

exist two branches of wave amplitudes a for given forcing. Nevertheless, the solution 

(i), or (ii), is a unique function of Fin case (i), or of a in case (ii), and this will be 

so regarded here. Finally, we note that both solutions reduce, with vanishing forcing, 

to the free soliton solution 

(1.6) 

Consistently with the estimates (1.2), k should be a small quantity of order 

O("t½ ). Solutions (1.4) and (1.5) are among the family of forced steady solitary waves 
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found by Wu (1987), while solution (1.5) was originally reported by Patoine and Warn 

(1982). 

According to the well known uniqueness property for the initial value problem 

of the KdV equation on the real line, these steady solitary waves will be solutions of 

the fKdV equation (1.1), each of which may remain permanent in shape provided 

((x,0) = (.,(x). (1. 7) 

The question of whether or not these solutions will also have a physical significance 

when being sufficiently perturbed is closely related to their stability properties, and 

this is the foremost problem we are going to investigate presently. 

1.3 The stability of forced solitary waves 

Equation (1.1) can be cast in homogeneous form using either one of the stationary 

solutions (s corresponding to the P(x) of (1.4) or (1.5) above, by setting 

((x, t) = (.,(x) + 17(x, t), (1.8) 

so that 17 satisfies the nonlinear evolution equation, 

(1.9) 

Using the similarity transformation, 

'-k X = x, F' - I = :2 ( F - 1), (1.10) 

we can eliminate the parameter k altogether from equation (1.9), and we can rewrite 

the resulting equation, after omitting the primes for 17 and the independent variables, 

as 
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(1.11) 

where 

µ = 6(F' -1) and o = 12 for forcing (i) (1.12) 

and 

µ = 4 and o = 9a/ k2 for forcing (ii) . (1.13) 

Since k is of O(t½), the free parametersµ and o are of 0(1) and can take on values 

in a relatively broad range even for F and a being held under the constraints (1.2). 

The perturbed motion governed by (1.11) has two leading-order conservation 

laws. The first is the invariance of the excess mass m, 

dm 
-=0 
dt ' 1

+00 
m = _

00 

17(x, t)dx , 

which is the first integral of (1.11) with respect to x under the regularity conditions 

at infinity. Therefore, 

m = oonst. = m0 , m0 = J+:: "l(x, O)dx , (1.14) 

m0 being the initial excess mass. The second relation is for the energy, 

dE 1+00 d -d = a T7 2-d sech2 (x)dx, 
t -oo X 

(1.15) 

which is the first integral of the product of (1.11) with "7· Expressing "7 = "le + "lo, 

"le(x, t) and 170 (x, t) being even and odd functions of x, we have 

d 1+00 2 2 1+00 d 2 - • -d (1/e + 11 0 )dx = 2a 1/e1/o-d sech (x)dx = W , 
t -oo -oo X 

(1.16) 

which signifies that the total energy of the motion increases at the rate W equal to 

the rate of working by the external forcing on the system. A sufficient condition for 
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the total energy E to be invariant, or W = 0, is that 1J is purely even or purely odd. 

In other words, E may vary only when 1/ has both even and odd components. In such 

cases, the maximum rate of energy growth is readily found from (1.15) as 

~~ ~ /3E , or E(t) < E(O)e8t 
, 

4a 
/3 = 3v3 ' 

/3 being the maximum rate of growth for E(t), equal to the maximum of ad: sech2(x) 

over the real x. Thus, the total energy E(t) can never grow at a rate faster than /3. 

1.4 Linear stability analysis 

Linear stability analysis of the nonlinear system (1.11 )-(1.13) is of significance since 

a state of growth or decay of r,(x, t) with a nonzero rate evaluated on linear analysis 

cannot be altered even with additional nonlinear effects taken into account. The 

stability of the forced solitary waves ( 6 versus small perturbation can be determined 

by the linearized form of equation (1.11) 

1/t + ! [µ11 -TJxx - ar, sech2(x)] = 0. {1.17) 

where the initial data for 1J are supposed to be small in maximum norm. Introducing 

the usual separation of variables 

(1.18) 

where a and f are in general complex and the real part is understood for physical 

r,'s, we obtain the following equation for J(x) 

(1.19) 
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or, in operator form 

where 

and the boundary conditions for f will be taken to be regular at infinity, i.e., 

f(n)(x) --+ 0, exponentially fast, for at least n = 0, 1, 2 , 
lxl-+oo 

(1.20) 

(1.21) 

(1.22) 

where j(n)(x) denotes the nth derivative of f(x). We note that Cµ,a is a non-self

adjoint operator. Equation (1.21 ), together with the regularity conditions at infinity 

for f, constitutes an eigenvalue problem in u, and the stability is determined by the 

signature of the real part of the eigenvalues, Re u(µ, a) = 0 giving the boundary of 

neutral stability in the (µ,a) space. Furthermore, by defining A as a measure of the 

perturbation amplitude, such as the initial excess mass pertaining to TJ(x, 0), one can 

study the boundary of neutral stability in the (µ, A)-space for forcings of type (i), or 

Re u(a, A) = 0 in the (a, A)-space for forcing (ii). It is only in the state of neutral 

stability, with Re u = 0 obtained by linear analysis that no statement can be made 

to imply nonlinear stability of the perturbed waves. 

This eigenvalue problem has several features of basic interest. First, the symme

tries possessed by the differential operator in (1.21 ), namely, 

(1.23) 

where ( · )* denotes the complex conjugation, imply that if an eigenvalue u and its 

eigenfunction J(x) exist, then the same is true for the eigenvalues -u, ±a* and their 

corresponding eigenfunctions f(-x ), j*(±x ), respectively. Therefore we have insta

bility whenever an eigenvalue whose real part is different from zero can be detected. 
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Second, the regularity conditions specified in (1.22) imply, upon integration of (1.19), 

that 

1
+00 

_

00 

f(x)dx = 0, (1.24) 

except of course when u = O; that is, for nonzero eigenvalues, the mass of the forced 

solitary waves cannot be changed by perturbations of the form (1.18). This integral 

condition also shows that the proper eigenfunctions of (1.20) cannot constitute a basis 

in the linear space of C3 functions which satisfy the regularity conditions (1.22) at 

infinity. Finally, we further remark that nothing can be said about the nonlinear 

stability of these waves in case the real part of an eigenvalue should vanish, since we 

are only considering the linearized version of equation (1.11 ). 

We define the inner product (f,g) between two well behaved functions f(x) and 

g(x) by 

1
+00 

(f,g)= _
00 

f(x)g*(x)dx. (1.25) 

Two functions f and g are said to be orthogonal if (f, g) = 0. By integration by parts 

of the inner product ((.Cµ,a - u)f,g*), with g required to be bounded at infinity, we 

find this product equal to (f, (.Ct,a - u*)g*), and thus obtain the adjoint equation as 

(1.26) 

where 

t _ [ d2 ( 2 )] d .Cµ, 0 (x) = - dx2 + a sech (x) - µ dx . (1.27) 

We note that with D = d/ dx, D.Ct,
0 

= -.Cµ,0 D. Hence if f(x) is an eigenfunction of 

(1.20) with eigenvalue a, then g(x), called the adjoint eigenfunction off and defined 

as the antiderivative of f(-x), 

g(x) - j f(-x)dx , (1.28) 
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is a solution of the adjoint equation (1.26) with u its corresponding eigenvalue. Fur

ther, it can be shown that f and its adjoint function g are in general not orthogonal 

to each other, i.e., (f,g)-=/ 0. In fact, we have 

J
+oo d 

(f,g) = 2 _
00 

9e(x) dx9o(x)dx (1.29) 

where 9e(x) and g0 (x) are the even and odd components of g(x), and hence the state

ment. A sufficient condition for f ( x) and its adjoint function g( x) to be orthogonal 

is when f is either even or odd in x. 

1.4.1 A perturbation expansion for the eigenvalues 

The eigenfunctions corresponding to zero eigenvalues play a significant role in the 

present stability analysis; they can be determined explicitly since equation (1.20) can 

be integrated once when u = 0, and the problem reduces to that of a Schrodinger 

equation with sech2
( x )-potential: 

- (Ka+ µ)f = :; + [a sech2(x) - µ] f(x) = 0. (1.30) 

Such eigenvalue problems are, of course, quite familiar in quantum mechanics (see, 

e.g., Landau and Lifshitz 1958, §21). 

For definiteness, let us consider the forcing (i) case first, i.e., set a = 12 (see 

(1.12)). Making in (1.30) the substitution x = tanh(z) andµ= m2, we have 

d 2 df [ m
2 l -(1 - z )- + 12 - -- / = 0 . 

dz dz 1 - z2 
( 1.31) 

The solution of this equation has the form of the associated Legendre function, f = 
Pf(z). Under boundary conditions that f vanishes at z = ±1, we have eigensolutions 
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only for the discrete spectrum of m = 1, 2, 3, or µ = m2 = 1, 4 and 9, so that the 

entire set of eigenfunctions is 

µ1 = 1, fo(x; µi) - B sech (x) (5tanh2 (x) -1), (1.32) 

µ2 = 4, fo(x; µ2) - B sech2(x)tanh(x), (1.33) 

µ3 = 9, fo(x; µ3) - B sech3(x), (1.34) 

where B is an arbitrary constant. Since the eigenvalue u is zero, none of these eigen

functions has to satisfy the integral condition (1.24). Assuming that the spectrum 

has continuous dependence on the parameters, we can search for a perturbation ex

pansion of the eigenvalues and eigenfunctions when µ is in a neighbourhood of the 

values given above. Defining 

µ = µm + SE, 0 < E ~ 1, s = ±1, m = 1, 2 and 3, (1.35) 

we can rewrite equation (1.20) as 

(1.36) 

where we have dropped the subscript a since it is fixed and equal to 12. Assume 

(1.37) 

(1.38) 

where f 0 (x) represents the set of f 0 (x, µm) in (1.32)-(1.34), and </>i( E), '/Pi( E) ~ 0 as 

E ~ 0, </>i+1 = o ( c/>i) etc., i = 1, 2, .... The terms of the product a f then show that 

whenever a(µ) -=/ 0 the integral condition (1.24) cannot be satisfied for Jo given in 

(1.32) and (1.34) above (except Jo in (1.33)), and therefore it can already be seen that 

the perturbation expansion is a singular one. In fact for the "even" function cases 



-16-

(1.32) and (1.34), the eigenfunction corresponding to zero eigenvalue spans an area 

of "mass" (which is the integral in (1.24)) different from zero whereas the perturbed 

one will be required to satisfy (1.24) as soon as the perturbation is switched on. For 

this reason and after some exploration we take for the "inner" problem 

(1.39) 

(1.40) 

1.4.2 The inner problem for the case of m = 2, µm = m 2 = 4 

Forµ= 4 + ES we have 

0(1) 

(1.41) 

(1.42) 

(1.43) 

(1.44) 

etc., with the boundary conditions 

fi(x) -+ 0, i = 0,1,2, .... 
x~-oo 

(1.45) 

The solvability condition for the above equations requires that the right-hand side 

be orthogonal to g0 = B sech2 (x), (which is proportional to the integral of f 0 (x,µ 2 ) 
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given by (1.33) and hence by the Ansatz (1.28), is a solution to the appropriate adjoint 

problem of (1.27)), namely, 

(1.46) 

where (f, g) denotes the inner product defined by (1.25), and JR stands for the right

hand side members in (1.42)-(1.44). At order 0(€½) the solvability condition (1.46) 

is evidently satisfied, due to the integrand being a total differential, and f1 can be 

determined by standard methods (such as by variation of parameters) 

O' 1 2 
f1(x) = 4 sech (x)[l - x tanh(x)], (1.4 7) 

where we have set the arbitrary constant in (1.33) B = -2. The homogenous solution 

of (1.42), i.e., Jo, need not be included in the expression for / 1 , since it can always be 

absorbed in u2 / 0 at the next order. At order 0(€) the solvability condition determines 

ll!oll2 s 
0'1 = S ( f ) = yB ~ • go, 1 V 15 

(1.48) 

Here II· II is the norm induced by the inner product, II· 11 2 = (·,·),and the factor vs 
in (1.48) arises from (g0 , / 1 ) being proportional to u1 . Thus we see that u1 is real for 

µ > 4, (s = +1), but is purely imaginary forµ < 4, i.e., s = -I. We further note 

that / 1 does not satisfy the integral constraint (1.24), and this is reflected at the next 

order by the fact that for f2 we can match the regularity condition at only one of the 

boundaries at ±oo, say at x = -oo. This can be seen by integrating (1.43) once and 

taking the limit x -+ +oo, 

0'1 ;_+oo uf fz(x) --+ -- fi(x)dx = --
x-++00 4 -oo 16 

(1.49) 

The solvability condition for the 0( €i) problem determines the value of u2 as 

(1.50) 
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To evaluate the numerator we do not need the explicit form of h if we make use of 

the adjoint relationships, and the result is 

The eigenvalue thus has in the vicinity of µ = 4 the inner solution 

1 8 4 i 
a= t2-- - t- + 0(t2) 

y'15s 15s 

(1.51) 

(1.52) 

which is purely real forµ> 4 (s > 0), of order O(d) in magnitude, and is complex 

for µ < 4 ( s < 0), with its real part being of 0( f) and its imaginary part of 0( t!). As 

shown below, this inner expansion of a can be matched well with the outer expansion 

so that the compound eigenfunction satisfies the regularity condition at infinity. The 

nonvanishing real part of a will imply instability of the perturbed motion for µ in a 

neighbourhood of 4, as will be discussed below. 

1.4.3 The outer problem for the case ofµ= 4 

Since the expansion cannot satisfy the boundary conditions (1.22) at all orders, we 

look for an "outer" problem by defining the multiscale outer variables as 

(1.53) 

so that 

(1.54) 

We take 

( + ~) ( + ~) 1 ( + ~) W X , X = fW2 X , X + £2 W3 X , X + ... , (1.55) 

and by substituting these expressions in (1.36), we obtain for the first two terms 
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(1.56) 

(1.57) 

where we have neglected the term sech2 
( c½ x+), since for x+ fixed it is exponentially 

small as t ---+ 0. Suppressing the secularity from this equation, the first term in the 

outer expansion can be taken to be 

(1.58) 

which satisfies the boundary condition w2 ---+ 0 for x+, x ---+ +oo for both cases of 

s = ±1 by virtue of the expression (1.48) for cr1 , (1.51) for cr2 and the relation 

x = t½ x+. The constant C is determined by matching with the inner solution. By 

observing (1.49), we obtain a uniformly valid expansion up to order 0( t) (and up to 

a multiplicative constant) in the form 

where H(x) is the Heaviside step function. The eigenvalue corresponding to this 

eigenfunction is given by (1.52). The rate of growth of the perturbation (1.18) in 

the form of 'rJ = f ( x, µ) exp( crt) with f given by ( 1.59) for µ ~ 4, is however quite 

different on the two sides ofµ = 4, being of 0( t-1 ) forµ < 4 and of 0( t-½) forµ > 4. 

For the other two cases (1.32) and (1.34), the violation of the integral and bound

ary condition now occurs in both cases at order 0( 1), 0( t), respectively, of the inner 

problem. The appropriate solution of the adjoint problem can be taken to be 

(1.60) 
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and so it is in fact a distribution, being bounded but different from zero as x --+ +oo. 

The analysis relative to these cases is completely analogous to the one forµ= 4, and 

we only quote the result of the uniform expansion for µ = µm + st, to order 0( t): 

f(x; µ) = fo(x; µm) + t { f1(x; µm) + x;:1 
H(x) [1 - exp ( ~=1 

tx)]} + 0(t2
), 

(1.61) 

where Xm = J::°00 fo(x; µm) dx. It should be noticed that this expression not only 

satisfies the boundary conditions (1.22) at order 0( t) but is also consistent with the 

integral constraint (1.24) at the same order. The explicit form of f1 is not important 

at this order, only the limits for x--+ ±oo are, and from (1.36) it can be shown that, 

form= 1,3 

We find for the first term in the eigenvalue expansion 

so that 

forµ= 1 - t 

forµ= 9 - t. 

(1.62) 

(1.63) 

(1.64) 

We notice that in ( 1.61) it is necessary to have u1 > 0 to meet the boundary condition 

at +oo and therefore by (1.63) we get eigenvalues of the form (1.64) forµ< µm, i.e., 

s = -1, only. Of course, this does not exclude the existence of other eigenvalues 

outside a neighbourhood of O' = 0 when µ > µm, but at this stage nothing can be 

said about the stability of the forced waves in this range. 
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We further notice that equation (1.30), for the forcing under consideration, i.e., 

type (i), forµ = 0 admits the solution 

fo(x; 0) = B tanh(x) [5 tanh2(x) - 3] , (1.65) 

which violates the regularity conditions (1.22), and therefore is not an eigenfunction as 

already noted, corresponding to zero eigenvalue. However, for µ in a neighbourhood 

of 0, it might be possible to use this solution as an "inner" one and correct the 

behaviour at infinity by means of an "outer" solution, which in this case should occur 

already at order 0(1 ). Such an analysis is not pursued here, but will be supplemented 

by numerical calculations given in Section 1.4.4. 

IT we now fix µ = 4 and let o: vary, for the case (ii) forcing, we have solutions 

o- = 0 for o: = v(v + 1), v = 2, 3, ... ,. The first two are 

o:o = 6, fo(x;o:o) B sech2 (x), 

0:1 = 12, fo(x;a1) - B sech2 (x)tanh(x), 

(1.66) 

(1 .67) 

The above procedure of determining the eigenvalues and eigenfunctions now with a 

perturbation of the parameter o: = a 11 + sf can be applied here without change, the 

presence of the first order term -sd: [ sech2(x)f0 (x; an)] rather than slxfo(x; µm) 

(see eq.(1.43)) merely changes the numerical expressions for o-1 and o-2 (and the role 

played by the signature s ). We have 

16 
o-(ao +SE)= Sf 5 + 0(E2

)' (1 .68) 

1 16i 16 ~ 
o-(a1 +sf)= f2 J'io5s + f -- + O(E2) , 

105s 105s 
(1.69) 

and the corresponding asymptotic expansion for the eigenfunctions shows that for 

v = 0 (or more general for v even) there is no solution for s = -1, i.e., a < a 0 • 
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Since by (1.68), u has its leading term real, the forced solitary wave (1.5) is unstable 

for a > a 0 , but the linear mode analysis fails to provide information for a < a 0 • 

However, a similar analysis for a neighbourhood of a1 must take into account the 

slow time scale provided by the second term in (1.69), i.e., d, and the linear theory 

shows that the stationary wave is unstable on this time scale, at least for a < a 1 . 

1.4.4 Global spectral behaviour 

The relative simplicity of the operator C0t,µ,, (1.21 ), makes it possible to consider values 

of the parameters a, µ away from the special values listed above, and to find exact 

solutions to the eigenvalue problem of (1.19) for the whole range of the parameters. 

Although a closed form solution seems out of reach, we shall see that the problem 

can be cast in a form which allows some numerical computation with a high degree 

of accuracy. Keeping the notation compact, we consider type (i) forcing first. By 

setting a = 12, and by transforming the independent variable through 

1 
z = 2 (1 - tanh(x)) , }(z) = f(x), (1.70) 

equation (1.19) becomes (dropping the 'hats' from now on) 

d3 f + 3(1 - 2z) d2 f + ! [10 - µ - 6(1 - 2z)2
] df + 12z(l - z)(l - 2z) +ff= 0 . 

dz3 z(l-z) dz2 4 z2(1-z) 2 dz z3(1-z)3 

(1. 71) 

This is a third order ordinary differential equation with three regular singularities at 

z = 0, l, +oo, and the boundary conditions (1.22) are now 

/(0) = /(1) = 0 . (1.72) 

The indicial equation at z = 0 is 

3 µ u 
K - -K + - = 0 

4 8 ' 
(1.73) 
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and in order to satisfy (1. 72) we must retain only the roots whose real part is greater 

then zero. If no roots are coincident or differ by an integer number, we only need to 

consider the case when one of them, say K1 , has real part greater then zero. In fact, 

due to the symmetry (1.23), the indicial equation at z = l is obtained from (1.70) by 

changing u into -u, so that Ki-+ -Ki, where Ki, i = l, 2, 3 are the solutions of (1.73). 

A function f which satisfies (1. 71) is therefore an eigenfunction for (1.19), if we can 

find coefficients of linear combination c2, c3 in such a way that it has the following 

behaviour in a neighbourhood of the singular points, 

z~0 
(1.74) 

z~l 

where g1 and h2 , h3 are analytic functions in a neighbourhood of, respectively, z = 0 

and z = l. Here {Ki}i=I,2,3 are three solutions of (1.73) with Re,c1 > 0, ReK3 < 

Re,c2 < 0 . The algebra is simplified if we remove the singular behaviour at z = 0, by 

setting 
z"l 

f(z) = (1- z)"1p(z), 

so that equation ( 1. 71) reduces to 

where 

d3p Az+Bd2p Cz2 +Dz+Edp Fz+G O -+--- +------+----p= ' 
dz3 z(l - z) dz2 z2 (1 - z) 2 dz z2 (1 - z)2 

A = 6 ' B = 3( K1 + 1) ' 

C= 

F= 

6, 

24, 

µ 
D=6(l-11:1), E=311:1(11:1+1)+1- 4 , 
G = 12(K1 + 1) . 

(1.75) 

(1.76) 

(1. 77) 
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The power series 

(1.78) 
n=O 

is a solution of (1. 76) if the coefficients { an} satisfy the second order difference equa-

tion 

(1.79) 

where 

Q(n) (n + 1) [(n - l)n + 3(K1 + l)n + 3K1(K1 + 1) + 1 - ~] , 

P(n) _ n [-2(n - l)(n - 2) - 3(3 + K1)(n - 1) + 6(1 - K1)] + 12(K1 + 1) , 

R(n) _ (n - l)(n - 2)(n - 3) + 6(n - l)(n - 2) - 6(n -1) - 24. (1.80) 

Let us first check if certain values of the parameters µ, a exist such that the series 

terminates. In order for this to be the case, we must have 

for some integer N > 0. Substituting this condition into (1.79), we obtain 

R(N)aN-1 = 0, 

and since R( n) is independent of K 1 , this has only one solution 

N=4. 

Therefore a4 = 0 and so 

0 
P(3) R(3) 
Q(3) a3 + Q(3/2 

[ 
P(2) R(2)] P(3) R(3) 

-a2 Q(2) - a1 Q(2) Q(3) + a2 Q(3) 

[ 
P(l) R(l)l [R(3) P(3) P(2)] R(2) P(3) 

ai Q(l) ao Q(l) Q(3) Q(3) Q(2) ai Q(2) Q(3) · 

(1.81) 

(1.82) 

(1.83) 

(1.84) 
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Since 
P(0) 

a1 = - Q(0) ao (1.85) 

and a0 =/ 0, the final equation for µ, u becomes 

[
P(0) P(l) R(l)l [R(3) P(3) P(2)] P(3) R(2) P(0) 
Q(0) Q(l) - Q(l) Q(3) - Q(3) Q(2) + Q(3) Q(2) Q(0) = O . 

(1.86) 

After some lengthy calculations, this reduces to 

(4K~ - µ)(µ - 4) = 0, (1.87) 

hence 

µ = 4 , any K 1 ; or K 1 = 1 , any µ . (1.88) 

In the first case, solving for an, n = l, 2, 3 in (1.79), we retrieve the solution found 

by Jeffrey and Kakutani (1972), i.e., a third order polynomial in z times the factor 

zK1(l - z)-K1, which becomes, in the original independent variable x, 

for i = 1, 2, 3. The other case in (1.88) has already been considered in Section 1.4.1 

for the perturbation expansions, since by (1. 73) it implies u = 0. With the exception 

of these two particular cases, the difference equation ( 1. 79) does not seem to have a 

closed form solution in general, but it does show that the series (1. 78) has radius of 

convergence equal to 1. Therefore the eigenvalue u can be calculated to any desired 

order of accuracy, limited only by the round off error, by summing the two series in 

(1. 7 4) numerically, one about z = 0 and the other about z = l, and matching the two 

expansions at some intermediate point. By requiring continuity of the functions and 

the derivatives up to second order, which can of course be determined analytically by 
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differentiating the power series, the eigenvalues CT are therefore the zeros of 

-p(z) [(1 - z)"1-"2 q2(1 - z)] [(1 - z)"1 -"3 q3 (1 - z)] 

det -p'(z) 

-p"(z) 

[(1 - z )"1 -"2 q2(l - z )]' 

[(1 - z)"1 -"2 q2(l - z)]" 

[(1 - z)"1
-"

3 q3 (1 - z)]' = 0 , (1.90) 

[(1 - z)"1 -"3 q3(1 - z)]" 

where (·)' denotes derivative with respect to z, and the determinant depends on CT 

through the indices Ki. Here q2 and q3 are the power series obtained by h2,h3 in 

(1. 7 4) via multiplication by the ( analytic at z = 1) factor z-"1 • Their coefficients 

can be easily determined by the difference equation ( 1. 79), using -K1 rather then K 1 

in the definitions (1. 77) and setting n -+ n + K1 - Ki, i = 2, 3. Choosing a point 

z sufficiently far removed from 0, 1, the power series have a fast convergence rate 

and the roots of equation (1.90) can be found by a Newton-Raphson scheme. This 

requires a good initial guess, and in order to gain some insight a simple Galerkin: code 

was developed, using sines and Legendre polynomials as basis. The results pertaining 

to the eigenvalues so determined are shown in Figure 1.1, while Figure 1.2 depicts a 

typical eigenfunction for 1 < µ < 4. In the common domain of existence, the two 

expressions in (1. 7 4) coincide up to six significant digits, when the eigenvalues are 

evaluated with a series truncated after 200 terms. Figure 1.1 shows that the branch 

originating at µ = 4 has a small real part, as expected by perturbation analysis, 

which stays small throughout the range -1 < µ < 4, including the subcritical range 

( -1, 0) but is always different from zero. Being at its maximum still two orders of 

magnitude smaller then the imaginary part, the real part can only be found by high 

precision numerical schemes, and in fact the Galerkin expansions we tried were unable 

to provide an estimate for it. For the branch betweenµ = 4 and µ = 9 however, the 

eigenvalue is found to be purely real as predicted by the perturbation analysis for µ 

near 4 and 9. 
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The calculations relative to the forcing (ii) are completely analogous and results 

for the eigenvalues are depicted in Figure 1.3. 

The following tables provide a comparison between some of the eigenvalues found 

by the present procedure and the corresponding ones evaluated by the perturbation 

techniques of the preceding paragraph: 

forcing (i) µ = 4 + st 

s 

-1 

-1 

+1 

t 

0.1 

0.01 

0.01 

u (by series) 

0.10953i + 4.164 · 10-3 

0.03444i + 4.41 . 10-4 

0.033967 

u (by perturbation theory) 

0.1088i + 4.44 · 10-3 

0.034426i + 4.44 · 10-4 

0.033982 

forcing (i) µ = 9 - t 

useries Upert. 

0.1 0.01426 0.01441 

forcing (ii) a = 12 + st 

s 

+1 

+1 

f 

0.1 

0.01 

useries upert. 

0.083184i + 2.4861 · 10-3 0.0823i + 2.54 · 10-3 

0.026052i + 2.534 · 10-4 0.026024i + 2.54 · 10-4 

Numerical experiments for the full evolution equation (I.I) have completely es

tablished the behaviour predicted by the previous spectral analysis. The inherent 

error of the numerical scheme should in fact play the role of a perturbation of the 

exact solutions (1.4) and (1.5). For (i) type forcings, the stationary solution (1.4) 

for 4 < µ < 9 is indeed unstable and decays to a lower amplitude stationary wave 

as shown in Figure 1. 10. The instability for µ < 4 is driven by the real part of the 

eigenvalues according to (1.18), and the previous results show that for subcritical and 
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critical cases, µ $ 0, it is too small to be detected numerically, since one should then 

use maximum times (in dimensionless form) of order 0(105
). However, the imaginary 

part should give rise to periodic oscillations in time, and this is indeed shown by the 

computed wave resistance coefficient with the oscillation period agreeing well with 

the one predicted by the imaginary part of the eigenvalue, as described in detail in 

Section 1. 7. The special caseµ = 4, o: = 12 where no eigenvalue different from zero 

could be detected corresponds to the free solitary wave, and the linearized analysis 

reduces to the one of Jeffrey and Kakutani (1971). Therefore, in the special case 

of µ = 4, o: = 12 for the free solitary waves, no definite conclusions can be drawn 

from linear theory and the stability problem has to be resolved by nonlinear analysis, 

as shown by Benjamin (1972) or by other means, including the inverse scattering 

formalism (Newell 1985, §3f). 

Combining the information provided by the perturbation approach, the power 

series solution and some implication of the nonlinear stability analysis of the next 

Section, we are actually able to predict some structure for the spectrum of the operator 

La,µ, as o: and µ may both vary in general. In fact, the results obtained around the 

special points { o:n}, {µn}, corresponding to zero eigenvalues, depend only on the 

symmetries of the appropriate eigenfunctions, which in turn are the solutions of the 

Schrodinger equation (1.30), satisfying the regularity conditions imposed at infinity. 

The structure of the solutions to this problem, as well as for any symmetric "potential" 

replacing the sech2 (x)-like with a minimum -o: at x = 0, and decaying fast enough 

at x = oo, is well known. Recalling that -µ is playing the role of an eigenvalue in 

(1.30), we know that the first eigenfunction, corresponding to the lowest "eigenvalue" 

-µ(o:), is always symmetric, the second always antisymmetric and so on in alternating 
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fashion. The total number of "eigenvalues" µ will depend on a and on the rate of 

decay of the potential at oo. For exponential decay, as in -a sech2(x), the number 

of eigenvalues is finite, and these will constitute the special points corresponding to 

the {µn} on which the analysis of Section 1.4.1 is based. Thus, in general, we can say 

that for fixed a, a µ corresponding to an even eigenfunction, µe say, is the starting 

point of a branch of real eigenvalues of Co,,µ for µ < µe. Similarly, from a µ = µ 0 

corresponding to an odd eigenfunction, a branch of complex eigenvalue emanates for 

µ < µ0 , and a branch of real eigenvalues issues forth for µ > µ 0 , the scaling of the 

real and imaginary parts with respect to the (small) distance Iµ - µ0 1 being similar to 

the case of µ 2 considered above. Of course this only holds in a neighbourhood of the 

special points, and the power series approach is needed to follow the branches as µ 

varies further on. In the next Section we will show that whenµ > Pe, Pe = max{µe}, 

or a < 0, the positivity of the operator Ko, + µ implies that no eigenvalue of Co,,µ, 

with real part different from zero can exist. This finding agrees with the perturbation 

analysis which shows that no eigenvalue is found to exist in a neighbourhood of this 

point when µ > Pe· Hence the curve µ = Pe(a) provides a limit in the µ, a plane 

for the existence of eigenvalues with real part different from zero. We illustrate the 

above results using a sech2
( x) potential. It is convenient to introduce the parameter 

v = v(a) by 

O'. = v( V + 1) , 

so that, using the same transformation as for (1.31 ), equation (1.30) has the form of 

a Legendre operator of order ,Jµ, and degree v (Landau and Lifshitz, ibid.). It can 

then be shown that the "eigenvalues" µ are given by 

v(a) - Jµ = n n=0,1,2· .. 
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their number being determined by the obvious requirement 1.1( a) > n. We note that 

for 1.1 = n, the solution of (1.30) is not an eigenfunction since it does not vanish at 

x = ±oo. The curve (a parabola in the(µ, 1.1) as well as the(µ, a plane)) 

v(a) = Fµ (1.91) 

for µ > 0, and the line 

a= v(a) = 0 

forµ < 0 thus divide the (µ, 1.1) (or (µ, a)) plane in two parts, the one contained in 

the upper half plane ( above the line ( 4. 75) for µ > 0) being the region that allows 

existence of eigenvalues with nonzero real part. The other special points at which 

the eigenvalue branches described above are generated lie on the parabolae given by 

(1.91) with n > 0, see Figure 1.4. 

By using the power series approach, it can be seen that, in general, the complex 

eigenvalue branch originating from the "odd" parabolae continue into the quarter 

planeµ < 0, while the real branches sprouting from the"even" parabolae merge with 

the ones coming from the "odd" ones in the direction of increasing µ ( or decreasing 

a). The overall features of the dependence of the spectrum on the parameters are 

then similar to the cases o = 12, µ varying, orµ= 4, o varying, considered above, the 

only difference being the position ( and the number) of the points in the parametric 

(µ,a) space corresponding to eigenvalues equal to zero. 

1.5 Nonlinear Stability 

In the preceding Section, the linear instability for the forced solitary waves in the 

range 0 < µ < 9 , a > 6 was established for forcing (i) and (ii) respectively, but we 
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were unable to ascertain any eigenvalues whenµ > 9 or a< 6, and so the question of 

stability of the forced solitary waves in this range of parameters is still to be resolved. 

A principal difficulty which is characteristic of the present problem lies in the rather 

unique feature of the linearized stability equation that an eigenvalue u with a negative 

real part cannot be used to indicate a decay of small perturbations f(x) because -u 

is then the eigenvalue for the perturbation f(-x). However, a sufficient condition for 

linear stability, i.e., non-existence of eigenvalues with real part greater then zero, can 

actually be provided. 

We first notice that the fKdV equation (1.1) can be interpreted, as well known for 

its homogeneous counterpart, as a Hamiltonian system. Introducing the Hamiltonian 

functional 

(1.92) 

and the Poisson bracket 

(1.93) 

where g is any functional of ( and f, denotes the functional derivative, we find that 

(1.94) 

as can be readily verified by direct computation. The Hamiltonian (1.92) is one of the 

two "obvious " conserved quantities for the fKdV equation with the forcings under 

consideration, the other being the total excess mass ( the equation itself being a 

conservation law), 

r+oo 
M = }_

00 
( dx. (1.95) 

(These are obvious in the sense that they are the ones obtained by Noether's first 

theorem, due to invariance of the Lagrangian for equation (1.1) with respect to time 
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translations and addition of an arbitrary constant to the potential for the dependent 

variable, see appendix). The presence of a non-constant forcing term has the effect 

of destroying invariance with respect to spatial translations, and so the excess energy 

integral 

11+00 E = - (2 dx, 
2 -oo 

(1.96) 

is in general no longer a constant of motion. 

Equation (1.94) shows that the stationary solutions ( 8 (x) of (1.1) can now be 

seen as extrema of the Hamiltonian (1.92), i.e., solutions of 

(1.97) 

The second variation of the Hamiltonian at (s is determined as 

(1.98) 

where T/ is, same as in (1.8), TJ(x, t) = ((x, t) - ( 8 (x), and is assumed to be a square 

integrable function together with its first derivative, i.e., it is an element of the Sobolev 

space H1
. Taking the time t fixed for the moment, this equation can be rewritten, 

with respect to the inner product (1.25) in 12, the usual Hilbert space of square 

integrable functions, as 

(1.99) 

where K 0 is the Schrodinger operator introduced in (1.30), i.e., 

(1.100) 

From elementary quantum mechanics, it is well known that 

(1.101) 
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where .Ao = Ao( o:) < 0 is the eigenvalue of Ka corresponding to the ground state, 

if the sech2(x )-potential in it is able to support one. In our case .A0 (12) = -9 for 

forcing (i), while the minimum value of o: for having a bound state is o: = 6 for forcing 

(ii), corresponding to .Ao(6) = -4. Thus 

h2 H > [µ+Ao(o:)]ll11ll 2
, 

> (µ - 9)111111 2 for forcing (i) , 

> [4 + Ao(o:)] 111111 2 for forcing (ii) , 

(1.102) 

(1.103) 

and for µ > 9 or o: < 6, for forcing (i) or (ii) respectively, the second variation h21-{ is 

strictly positive, a result commonly referred to as formal stability, which is a sufficient 

condition for excluding linear instability (Holm et al., 1985). Formal stability is a 

step towards establishing nonlinear stability and, owing critically to the presence of 

the parameters µ and o:, it is indeed possible to show that these forced solitary waves 

are (nonlinearly) stable in the range of parameters under consideration. Nonlinear 

stability is here intended in the usual Lyapunov sense, i.e., it is possible to find a 

norm d(·, ·) in the appropriate functional space on which the evolution equation (1.1) 

is defined, so that for any f. > 0 one can determine a h > 0 such that if d( (, (s) < h 

at t = 0, then d((,(s) < f. at any time t > 0. Although a second nontrivial conserved 

quantity appears to be missing for the forced case, the original argument of Benjamin 

(ibid.) can be adapted to this case, and convexity estimates can be provided for the 

Hamiltonian functional itself. 

The fact that the excess energy of (1.1 ), £, is no longer conserved actually simpli

fies the analysis, since this is a consequence of the absence of translation invariance, 

which eliminates the need to consider quotient spaces with respect to the translations. 
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Specifically, the total variation A 1-(, of the functional 1-(, at (a is 

and the last term can be estimated by using the Sobolev inequality 

31+00 3 3 1+00 2 2 -oo T/ dx ~ 2 IT/loo -oo T/ dx , 

3 2 
< 2v12 IITJlh IITJII , 

(1.104) 

(1.105) 

(1.106) 

where I · loo is the supremum norm, 11 · Iii is the Sobolev norm IITJII~ = IITJll 2 + IITJxll 2 

and T/ is assumed to be in the corresponding space at times t > 0. Using (1.106) it 

then follows that 

(1.107) 

If we take the norm d to be II· 111, and impose 

(1.108) 

at time t = 0, it is easy to provide an upper bound on .61-l, again using Sobolev 

inequality (1.106), 

,61-(, < 3 
MIITJII~ + 

2
v12IITJll1IITJll 2

, 

< MIITJII~ + 2~11TJlli, 

< ,(h) say, (1.109) 

where M = ½ max (1, Iµ+ .\0 (a)I) . Because of the invariance of 1t with time, this 

bound holds for all time t > 0 for which TJ(x, t) exists in H1
• 
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Following Bona (1975), introducing for sake of tidiness the notation 

A(t) = 117711 , B(t) = ll77xll , (1.110) 

we can further provide a bound on B(t) for any time t > 0 from the previous inequal

ity, isolating the 77x term in it, 

(1.111) 

Once this inequality is solved for B, we can estimate B in terms of A, 

B :5 F(A), (1.112) 

where 

(1.113) 

Since (1.107) implies 

(1.114) 

using (1.112) we find 

(1.115) 

Now, since F(O) =~'if 

(1.116) 

there is certainly some positive interval l-y = [O, A-y] such that, if A belongs to 1-y, the 

right hand side of (1.115) is positive, and monotonically increasing with A, as can be 

realized by studying it as a function of A. Therefore, with 1 ( and hence 8) held fixed 

sufficiently small and taking the corresponding A, A-y say, we have a bound on A in 
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terms of,, A :$ A..,, and in turn, using (1.112), we also have a bound on B in terms 

of I only, B :$ B..,,, for any t ~ 0. Hence, by choosing 8 such that both (1.116) and 

(1.117) 

hold, the Lyapunov condition is established with d = II 11 1 • We again see that the 

condition expressed by (1.116) is crucial, and this of course is attained for µ > 9 

and o < 6 respectively for forcing (i) and (ii). Underlying these considerations is the 

assumption that for sufficiently smooth initial data ((x, 0) (and forcing Pin general) 

the solution ((x, t) exists, continuous in time, and belongs to at least H1 for all time 

t > 0 (see Bona and Smith, 1975). 

It is interesting to notice that an almost identical argument can be provided for 

the nonlinear stability of the stationary solutions to the regularized fKdV equation, 

which is the one to be used in most of the numerical simulations of Section 1. 7. In 

the coordinate frame and notation of (1.1), this equation can be written as 

(t + 6(F - l)(x - 9((x - (xxt - F(xxx = 6P(x) , 

The analogue of (1.4) and (1.5), i.e., the stationary solutions (sr(kx), in this case are 

(ir) 

4 
(sr(x) - 3k2 F sech2(kx) 

Pr(x) 4 2 ( 2 2 ) 

3k F-1- 3k F sech2(kx), (1.119) 

(iir) 

(sr(x) a sech2(kx) 

Pr(x) a (k
2
F-1a) sech2

( kx ), 2 2 
F-1 = 3k , (1.120) 
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and the Hamiltonian for the this regularized fKdV equation only requires a change 

in the coefficient of the derivative term in (1.92) (see appendix), 

Thus, introducing the notation 

x' = kx, 
9a 

ar = k2F ' 

(1.121) 

(1.122) 

in analogy with (1.12) and (1.13) we can write the total variation of the Hamiltonian 

based on (sr( x) as 

1 1 1+00 [ 2 2( ') 2 2] ' 3 1+00 3 ' kF~ rlr = 2 _00 T/x - <l'r sech x T/ + µr, dx - 2k2 F _00 T/ dx , (1.123) 

and from here on the previous arguments apply virtually unchanged, with the excep

tion of the coefficient in front of the cu hie term in ( 1.104). 

1.6 Existence of multiple stationary solutions 

The spectrum of the operator K 0 in (1.30) is once again useful since it determines 

bifurcation points of the solutions (1.4) and (1.5) to other stationary solutions. Specif

ically, consider the time independent counterpart of equation (1.11) in a neighbour

hood of the parameter values µ = µm (or a = an), which can be written, after 

integrating in x and using the regularity condition at infinity for T/, as 

9 
- T/xx - ar, sech2(x) + µr, - -r/ = 0 2 . (1.124) 

We note that (1.124) has a solution of the form 'r/a = b sech2(x) ifµ = 4 and b = 

2(6 - a)/9, so that for forcing (i), µ = 4 (a = 12), we have b = -4/3, making the 

resultant motion trivial (i.e., ( = (8 + 'r/a = 0) with P = 0, and for forcing (ii), b = 0, 
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P = 0, giving a free soliton for the resultant (. We proceed below to determine 

nontrivial solutions of (1.124) for other values ofµ and a. 

For definiteness, let us first restrict ourselves to forcing (i), with a= 12 so that 

dropping the subscript of the operator Ka does not cause ambiguity, and define µ as 

in (1.35), i.e., 

µ = µm + Sf, 0 < f <t:: 1, s = ±1, m = 1, 2, 3 . (1.125) 

We look for solutions of (1.124) by regular perturbation expansion, 

(1.126) 

where the { ?j,i} are taken as in (1.39) and (1.40), i.e., V'i( t:) = fi for µ = 1, 9 and 

V'i( t:) = f½, forµ = 4. Substituting these expressions in (1.124) we have form= 1, 3 

9 n-1 

(K + µm)1Jn = S1Jn-I + 2 L 1Jn-k1Jk, 
k=I 

(n > 1) , 

and form= 2 

(I{+ 4)771 = 0, 

9 n-1 

(K +4)1Jn = S1Jn-2 +- L1Jn-k1Jk, (n > 2), 
2 k=l 

(1.127) 

(1.128) 

(1.129) 

where K is the Schrodinger operator defined in (1.30). Thus, for the "even" case 

m = 2, µm = 4, we find for the first order (in the notation of (1.32-1.34)) 

(1.130) 

In analogy with (1.42), the inhomogeneous equation in (1.129) is solvable, due to 

the symmetries of the functions involved, and the particular solution for 772 can be 

determined as 

(1.131) 
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The constant c1 is determined by the solvability condition at the next order, n = 3, 

to be 

C1 = ± J=ffi' 
3 

(1.132) 

the square root arising from the proportionality TJ2 ex: cf. Therefore, in order to have 

ri2 real we must takes= -1, i.e., the bifurcating solutions only exists forµ < 4, and 

these small amplitude deviations from the exact solution ( 8 (1.4) forµ < 4 have the 

form, to the first order, 

4 2(1h)½ 
((x) = 3 sech2(x) ± 

3 
sech2(x)tanh(x) + O(t:) at µ = 4 - E. (1.133) 

By similar calculations, the solutions bifurcating at the other two eigenvalues 

( corresponding to µ = 1 and µ = 9) of the operator I< are 

where 

( ) _ ~ f JJ(x;µm) dx 
Ci µm - 9 J JJ(x;µm) dx' 

(1.134) 

(1.135) 

with the integrals ranging from -oo to +oo. Thus, the amplitude constant c1(µ 3 ) is 

(1.136) 

Furthermore, the forcing function P in (1.4) becomes of order E for µ = 4 + sE, as 

the time independent equivalent of equation (1.1) shows upon using the similarity 

transformation (1.10), 

(1.137) 
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and so we can look for a perturbation expansion of the solution about (s = 0, µ = 4, 

that is, there exists a branch of solutions ((x; t) bifurcating from the zero solution at 

µ=4 

(1.138) 

We find, for the first order 

4s 2 (1.x.x - 4(1 + 3 sech (x) = 0, (1.139) 

and so 

(1.140) 

By numerically integrating (1.137) regarding ( as even, i.e., (.x(0) = 0, it is possible 

to see that this new branch of solutions, from now on denoted by (ss, joins the one 

originated atµ= 9 with wave amplitude a= 1 (see (1.134)), as represented by figure 

1.8, where the amplitudes pertaining to 'f/88 = (ss - ( 8 are plotted versus the parameter 

µ. 

The stability character of the small amplitude solutions found by the above 

regular perturbation methods, as well as the full bifurcation curve away from the 

special parameter values {µm} is an issue that needs to be addressed. According to 

the nonlinear stability analysis of Section 1.5., the first question can be answered once 

the ground state eigenvalue of the operator I< with "potential" (s ( x) given by one of 

these stationary solutions has been evaluated. Once again, in a neighbourhood of µm, 

this is possible by using perturbation techniques. For instance, for the case m = 3 

we have 

(1.141) 
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and by an elementary perturbation calculation the corresponding ground state eigen

value is 

[ 
f f5(x;µm) dxl ( 2) ( 2) ( ) 

.\0 (12; t:) = .\0 (12) - st: 9c1 J JJ(x; µm) dx + 0 t: = -9 - 2st: + 0 t: . 1.142 

Thus, for s = -I, i.e.,µ= 9 - t:, we have 

µ + .\0 (12; t:) = t: > 0 , (1.143) 

and so the positive lower bound estimate for the corresponding D. 1-{ can be established. 

Under the forcing (i), the bifurcation of stationary solutions to (1.1) taking place at 

µ = 9 is therefore of the transcritical type. 

1. 7 Numerical simulations 

The salient features of the forced solitary wave solutions delineated by the preceding 

discussion can constitute an ideal trial ground for any numerical code devised for 

solving the fKdV (I.I). In fact, if an initial condition for ((x, t) corresponding to one 

of the two types of forcing (i) or (ii) is chosen, an accurate code must be able to show 

evidence of such stability features as determined analytically in the foregoing. Since 

the numerical results are by nature approximations, with errors usually estimable, 

we would expect that for the cases where the exact solution is found to be unstable, 

there should arise, in due time, in the corresponding numerical results an automatic 

onset of the instability, which can be attributed to the ever present numerical errors, 

with no need to superimpose a perturbation to the exact solution. By decreasing 

the truncation error of the numerical code, assuming for instance a finer grid, the 

manifestation of any instability should accordingly be delayed in time. Conversely, by 
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perturbing an initial condition which leads to a stable stationary wave, the numerical 

results should show evidence of the tendency of the system to recover the stationary 

state which is stable, provided the perturbation is not too large. 

We shall focus our numerical simulations for forcing (i) on the three intervals 

of the parameter µ pertaining to the velocity of forcing ( see ( 1.12)), as identified 

by the previous analysis, namely µ around zero ( critical), 4 < µ < 9 and µ ~ 9 

(supercritical). We further notice that atµ= 0 the amplitude by the forcing given by 

(1.4) is negative. For forcing (ii), since it provides an analytic expression for solitary 

waves of negative amplitude, we shall concentrate our numerical study on values of 

a< 0. One of the codes is based on the one developed by Wu & Wu (1982) and uses 

the modified Euler's predictor-corrector algorithm in advancing time, with the space 

derivatives approximated by central differences. The forward difference computation 

for ((x, t) is implicit, in order to achieve the desired numerical stability and accuracy 

with a relatively large time step (up to 0.2 in dimensionless form), and no iteration 

is required on the corrector stage. Furthermore, open boundary conditions have been 

devised at the ends of the computation domain, requiring the waves adjacent to each 

boundary to leave the computation domain at the rate of the linear wave velocity 

Co = -Jgh. In order to avoid propagation of short wavelength disturbances that 

can be generated by numerical errors, equation (1.118), the so called "regularized" 

fKdV, has been adopted rather then the fKdV equation itself, the two models being 

equivalent in the limit of applicability, i.e., for long waves (small k, see (1.6)), and 

small amplitude. The differences between the results obtained from the two models 

is expected to be O(k2) (Benjamin et al. 1972, Whitham 1974, Wu 1987) and, as 

already mentioned, the previous stability analysis applies to this equation as well, with 
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only minor modifications. We notice that according to the similarity transformation 

(1.10), the choice of taking k small has to be counterbalanced by the drawback that a 

smaller k implies a larger number of time steps. In all the cases in which this code was 

used, the parameter k is kept fixed at a compromised value equal to 0.3. Throughout 

the simulations the wave resistance coefficient CR(t), defined as 

1
+00 

CR(t) = - _00 P(x) (x(x, t) dx (1.144) 

has been evaluated; this quantity has been found very useful to better emphasize some 

major features such as small amplitude osciliations, the time period of variations, etc., 

which otherwise would become obscure to detect. Physically, its significance is that 

of a nondimensional measure of the power being supplied by the forcing, as shown by 

the energy balance equation, 

d 1+00 1+00 dt _00 (2(x, t) dx = - _00 P(x) (x(x, t) dx , (1.145) 

which is obtained by multiplying ( 1. 1) by ( and integrating in x. In order to fully 

appreciate the previous remarks, we also have developed a simple finite difference 

code to numerically solve the fKdV equation. It is based on the explicit leap-frog 

scheme introduced by Zabuski and Kruskal (1964), with three point average on the 

nonlinear term to comply with the energy balance equation (1.145). Being explicit, 

the code is much less efficient then its counterpart for the regularized fKdV model, 

and for numerical stability the typical time step flt has to be ;
0 

the spatial step flx, 

for k = 0.5, as compared to the typical case of flx = 0.1, flt = ½flx for the first 

code. Therefore, the usage of the latter code has been limited to the case when spot 

comparisons with the results of the regularized fKdV equation were desired. All the 

plots shown here are referred to the coordinate frame in which the forcing is viewed 
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as stationary, i.e., the water is entering the computational domain from the left side, 

with nondimensional velocity F. 

The results pertaining to the critical caseµ ~ 0 for forcing (i) can be summarized 

as follows: 

a) When the initial condition of the rest state ( = 0 is chosen, the phenomenon 

of periodic generation of the so called "runaway" solitons as reported by Wu & Wu 

(1982) is invariably observed. This can be seen in Figure 1.5 together with the 

wave resistance coefficient CR(t). The nondimensional period r; = T6 k3 of the wave 

resistance coefficient, which in this case coincides with the period of generation of 

runaway solitons, is r; '.:::='. 7.9, in agreement with the value determined by Wu (1987) 

numerically as well as by applying a mass-energy theorem. 

b) If the initial condition is chosen to be exactly (s( x), the resulting wave is close 

to the stationary solution within a 2% error when the (nondimensional) time reaches 

t = 800, as illustrated by Figure 1.6a. This is in agreement with the fact that at µ = 0 

the real part of the eigenvalue is 6.84 x 10-4 and so, with the time scaled according 

to (1.10), it would require a time of order 0(105
) at k = 0.3 to show an appreciable 

effect of 0(1 ). However, the wave resistance coefficient in Figure 1.6b, as calculated 

by the first code, exhibits a regular oscillation of period 

(1.146) 

though with a very small amplitude ( '.:::::'. 5 x 10-5
), and, interestingly, this is in good 

agreement with the period predicted by the imaginary part of the eigenvalue ( we.v. = 
Im f = 1.144 atµ= 0, see Figure l.lb) 

T' = ~ 
e.v. We.v. 

5.494 (1.14 7) 
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This result can be further improved by using a smaller k, or by using the original fKdV 

model, as Figure 1.6c indeed shows, along with the persistence of the short wavelength 

oscillation mentioned above. Here for numerical convenience, the equation solved is 

in the form 

(1.148) 

where 

x = kx , l = kt , ( = ( , P = P , 

and k = 0.5 for the result of Figure 1.6c. Therefore, the period given by the similarity 

relation (1.10) is 

, 3 Tnum. -
T = k -k- = 0.25 Tnum '.::::'. 5.54 . 

For µ in the range 4 < µ < 9, the initial state of rest is found to gradually 

evolve under the forcing (i) into a stationary wave as shown in Figure 1.7, where 

µ = 6.6 corresponding to F = 1.1 at k = 0.3. This wave is not the forced solitary 

wave (s of (1.4) which, as we have seen, is indeed unstable in this range. Instead, 

the terminal value of amplitude '.::::'. 0.66a is seen to be an element of the family of 

solutions which bifurcates from µ = 9, as it can be shown by following the bifurcation 

curve (Figure(l.8)) and comparing the amplitudes. The instability associated with 

the real eigenvalue u = 0.23 at µ = 6.6 manifests itself around the nondimensional 

time t = 600, a little insufficient to have the resulting wave fully developed, over a 

time interval of about 800 that we have kept as reasonable size for the computation. 

To pursue this point, rather than extending the time interval, we perturb the initial 

condition, by increasing the initial wave amplitude by 10%, and the result is shown in 

Figure 1.9. We also have doubled the size of the grid with similar results. There are 

two remarkable features in the result: a) the perturbed stationary wave first exhibits 
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instability through emitting a single upstream advancing solitary wave, and b) the 

remaining wave in the vicinity of the origin decays to the previously identified new 

stationary solution by emitting some "radiation," i.e., dispersive waves moving with 

non zero (subcritical) speed to the right. As a final proof of the point, we found 

that a decrease rather than an increase in the initial wave amplitude introduced as a 

weaker perturbation, makes the local solitary wave decay to the new stable state by 

emitting only slight radiation, as can be seen in Figure 1.10. In the soliton emission 

case, the wave resistance coefficient exhibits in Figure 1.9b a positive hump in the 

course of time when the solitary wave is being generated, signifying that the system is 

absorbing energy from the forcing. Conversely, the case of gradual decay to the stable 

state with no soliton emission correspond to a release of energy from the system, and 

Cn(t) remains negative. The fact that Cn seems to settle to a negative, albeit small, 

asymptotic negative value is seen to be of numerical origin, since it is halved as the 

spatial grid is halved, and is partly due to the fact that the finite difference scheme for 

the regularized fKdV model is not exactly complying with the discrete counterpart 

of the energy balance equation (1.145), or its equivalent for the regularized KdV (see 

appendix). 

For the supercritical case of µ > 9, our numerical results show evidence of their 

strong stability through the fact that even when perturbed from the initial rest state of 

(, with 17(x,0) = -(8 (x), the forced steady solitary wave shape is invariably regained 

after emitting some radiation downstream. Results pertaining to the case of µ = 18 

are graphically represented in Figure 1.11 and 1.12, where in order to get a larger 

computation time interval the grid size of ~x = 0.2, ~t = 0.1 was taken. 

As mentioned above, we also have examined the case of forcing (ii), for a negative 
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(.,(x), with a= -10. According to the previous stability analysis, when interpreted 

as a potential for the operator K 0 , such a (., cannot support any bound state, the 

spectrum being only continuous and positive. Therefore, as a forced solitary wave this 

(., should be stable and this can indeed be confirmed by the simulations. Figure 1.13 

presents the result for a positive perturbation of 10% of the steady wave amplitude, 

and shows that the solitary wave solution is regained in finite time with emission of 

some radiation. The numerical results seem to indicate that the "basin of attraction" 

of this solution with respect to perturbations having changes only in the amplitude 

extends to a point between 0.3 and 0.5 of the unperturbed amplitude, as illustrated 

by Figure 1.14 and 1.15. Beyond this level of variation of the amplitude, the solution 

evolves like the one which is strongly perturbed from the rest state, so that the regime 

of periodic generation of solitons again seems to occur (Figure 1.16). The evolution of 

the wave resistance coefficient as shown by Figure 1.14 and 1.15 clearly indicates this 

trend. Naturally, the system cannot possess a true attractor since it is Hamiltonian, 

but the dispersive wave trains, carrying energy away from a neighbourhood of the 

forced solitary wave and distributing over ever increasing spatial intervals towards 

+oo, play here the role of dissipation. 

1.8 Conclusions 

We now summarize our results on the stability of stationary solutions of the fKdV 

equation. We have considered two basic types of forcing in the class given by Wu 

(1987), which have the common feature of supporting symmetric forced solitary waves 

similar in analytic expression to a free solitary wave. The linearized stability analysis 

about these waves allow us to identify three basic transcritical regimes. The first 
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occurs at "high" speed (µ > 9), and "low" amplitude (a< 6) for forcing (i) and (ii), 

respectively, the meaning of high and low being viewed in the sense of ( 1.2) and ( 1.10). 

For this regime, the solitary wave is shown to be stable in Lyapunov sense for the full 

nonlinear problem. For lower speeds, 4 < µ < 9 for forcing (i) or higher amplitudes, 

6 < a: < 12 for forcing (ii), there exists a second regime, in which the eigenvalues, 

determined by numerical methods of high accuracy, are purely real and therefore the 

corresponding stationary state becomes unstable. Accordingly, the evolution of the 

system from these states does not involve any time periodic phenomenon, as indeed 

the numerical simulations show. For still lower speeds and higher amplitudes, µ < 4 

and a: > 12 for forcing (i) and (ii) respectively, a third regime is identified, as the 

eigenvalues pass through zero and become complex, however with the real part being 

many orders smaller than the imaginary part. In this regime the initial growth of the 

instability is oscillatory, and the numerical simulations carried out with the full fKdV 

equation show evidence that this period is moderately amplitude dependent. These 

salient features actually conform with the contention made by Chen & Chang (1987). 

The simulations also provide some indication as to where the system may evolve in 

departing from the unstable stationary states. In the second regime, there exists for 

both forcings a second stable stationary wave of lower amplitude (but still positive), 

to which the system relaxes, and this is accomplished in a manner which strongly 

depends on the initial conditions. For forcing (i) in particular, this second solution, 

(ss(x), becomes of higher amplitude than ( 8 (x) in (1.4) for µ > 9, and the system 

undergoes a transcritical bifurcation in a neighbourhood of this parameter value. 

For the third regime, the second (stable) stationary solution exists with a negative 

amplitude. The weak instability of the positive amplitude solutions seems to evolve 



-49-

into the same regime as obtained by taking the rest initial condition. This feature in 

particular seems amenable for further analytical investigations. 

From the present study we may take note of the richness of new physical and 

mathematical contents of the general subject of nonlinear, dispersive systems sus

taining forcings at resonance. The time-periodic births of upstream radiating solitary 

waves in response to a steady transcritical forcing can now be attributed to the in

stability of the primary wave over a fairly broad range of transcritical velocity and 

finite amplitude of forcing disturbances. For the velocity parameter above a certain 

threshold (µ > 9 for forcing (i)) and for the amplitude parameter below a certain 

margin (a < 6 for forcing (ii)), the phenomenon of periodic generation of solitary 

waves ceases to manifest because the forcing is moving too fast to be out raced by 

any free wave in case (i) or because the resulting wave is too weak to bring the non

linearity to effect. No special attention is given here separately to the subcritical 

forcings since the upstream radiation becomes relatively weak in this regime, though 

the phenomenon can persist to velocities as low as the Froude number F = 0.2 (Lee 

1985; Lee et al. 1989). 

In the mathematical context, the theory of eigenvalue problems seems to be 

still under-developed for ordinary differential equations of the third order as in the 

present case. The different physical features exhibited of the phenomenon in different 

regimes of the parametric space are found to correlate closely with the eigenvalues 

being either non- existing, or purely real, or being complex conjugate. For the last 

case, we found that numerical methods of high accuracy are indispensable. In fact, 

the previous attempts by Wu (1988), using the Galerkian modal expansion method 

up to four terms retaining the nonlinearity, and by Camassa (1986) for the linearized 
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problem with up to 400 terms and usmg various basis functions, failed to reach 

a definitive determination of the real component of the eigenvalue because of its 

minuteness compared with the imaginary component. Such a broad disparity between 

the real and imaginary parts of the eigenvalue seems to be a hallmark characteristic 

of this class of problems which requires further investigation. From the theoretical 

standpoint, the variational approach expounded by Whitham (1967, 1974) and by 

Lighthill (1967) may be valuable in problems involving nonlinear dispersive waves 

governed by equations too complicated for analytical or numerical treatment, such as 

those considered here. 

Finally, we note that type of bifurcation of solution from the primary wave seems 

to be new in nature. The significance and possible impact of the issues pointed out 

here deserves a continued attention and investigation which is underway. 

Appendix A 

We briefly report here some of the results mentioned in the text regarding the appli

cation of Noether's first theorem (Bogoliubov and Shirkov, 1980, §2) to the evolution 

equations of interest. 

Introducing the potential 

((x, t) = ¢x(x, t) , (A.I) 

a Lagrangian for the fKdV equation (1.1) can be written as (see Whitham, 1974, 

§16.14) 

11+00 [ 2 3 2 ] £( <P) = 2 _00 <Pt<Px + µ</Jx - 3<Px + <Pxx - 6P( X )<Px dx , (A.2) 
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as one can check by the Euler-Lagrange equations, 

(A.3) 

which reproduce equation (1.1), once the similarity transformation (1.10) is applied. 

We note that (A.2) has a structure similar to a Lagrangian describing the scattering 

of a field by an external one, whose evolution is not affected by the interaction (see 

Bogoliubov and Shirkov, ibid. §24). By Noether's first theorem, if 

¢/(x', t') = </>(x, t) + 6</>(x, t) (A.4) 

is a one parameter transformation, e say, of the field </> and the coordinates x, t, for 

which 

C'( </>') = C( </>) + :/F( </>; e) , (A.5) 

then the quantity 

(1+00 6.C, 8</>' ) 8:F 
Q = -oo dx 6</>t ae le=o - ae le=o (A.6) 

is a constant of motion. Now, from the structure of the Lagrangian (A.2), it is obvious 

that we have invariance under the transformation 

<l>'(x', t') = </>(x, t) + e, :F = 0 , (A.7) 

and so, according to (A.6), 

11+00 11+00 M = - <Px dx = - ( dx 
2 -oo 2 -oo 

(A.8) 

is conserved. The spatial translation 

<l>'(x', t') = </>(x + e, t) (A.9) 
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does not yield the form (A.5) for the transformed Lagrangian, unless P(x) = const., 

in which case is easy to verify that :F = 0 and the associated conserved quantity is 

11+00 11+00 £ = - </>; dx = -
2 

( 2 dx . 
2 -oo -oo 

(A.10) 

If the forcing P is independent of time, then translation with respect to time 

¢/(x', t') = <t>(x, t + e) (A.11) 

when e is infinitesimal, leads to a transformed Lagrangian 

(A.12) 

and so (A.5) holds with :F = C, and the associated conserved quantity is 

1-{ = (f_:00 

dx :~ 8::) - C = ~ 1_:00 

[µ</>; - 3</>; + </>;x - 6P(x)</>x] dx, 

½ 1:00 

(µ( 2 
- 3(3 + (; - 6P(x)(] dx , (A.13) 

which is the Hamiltonian considered in the text. There are no other obvious in

variances possessed by the Lagrangian, at least for a general forcing P( x). For the 

regularized fKdV equation (1.118), the Lagrangian (A.2) has to be modified into 

1 1+00 

[ ( 2 3 2 ] Cr= 2 Loo </>t (</>x - <f>xxx) + 6 F - l)</>x - 3¢,x + F</>xx - 6P(x)</>x dx, (A.14) 

and the invariants corresponding to the one parameters transformations considered 

above are 

and 

_ 1 1+00 
[ 2 2] 

&r = 2 Loo ( + (x dx , 

Hr=! /+oo [6(F - 1)(2 
- 9(3 + F(; - 6P(x)(] dx , 

2 Loo 
respectively for (A.9), when Pis a constant, and (A.11 ). 

(A.15) 

(A.16) 
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Figure 1.1. a) The real part of u/6 vs. µ for forcing (i), as determined by the power series 

method of Section 1.4.4. b) A blow-up of the region close to the axis Re u = 0 for -1 < µ < 5. c) 

The imaginary part of u /6 vs. µ. 
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Figure 1.2. Eigenfunction corresponding to the eigenvalue f = 0.2605 at µ = 5 (forcing (i)), 

with respect to the independent variable z (equation (1.70)). The solid line is for 0 $ z $ 0.9, the 

dashed for 0.1 $ z $ 1.0. 
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a) The phenomenon of generation of upstream running waves for forcing (i), with 

the initial condition ((z,O) = 0 (17(z,O) = -(,(z)). The parameters for this simulation areµ= 0 

(F = 1), k = 0.3, computed with ~z = 0.1, ~t = 0.05, using the implicit code. b) The corresponding 

wave resistance coefficient vs. time. Its nondimensional period of oscillation T' is:::::: 7.9 and coincides 

with the period of birth of an upstream running wave. 
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Figure 1.6. a) Evolution of the stationary solution (.(z) for forcing {i) with the initial condition 

((z, 0) = (.(z). The parameters for this simulation are µ = 0 (F = 1), k = 0.3, computed with 

Ax= 0.1, At= 0.05, using the implicit code. b) The corresponding wave resistance coefficient vs. 

time. The nondimensional period of oscillation T' ~ 5.75 . c) Same as b) but using the explicit 

code, with k = 0.5 and Ax = 0.1, At = 0.002. In this case T' ~ 5.54. 
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-63-

2r-----.--------,------.-----.-----.-----,------, 
-77(0) 

1.5 

1 

0.5 

0 

-0.5 

-1 k------'r-------ir----,,------;-----;-----"ir"----,o 
µ 
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as obtained by numerically solving (1.3), using a 4th order Runge-Kutta integrator and bisection 

method for matching the zero boundary condition at large z . Plotted here is the stationary point 

of -77,.(z) = (,(z) - (,,(z) vs. µ, the dashed line referring to instability, the solid to stability. 
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((z,0) =(.(a:)+ fij(,(z) (71(z,0) = fij(,(z)). The system sheds off the extra excess mass with 

respect to the new stable state by sending a solitary wave upstream and a dispersive wave train 
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time. 
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Figure 1.10. a) Growth of the instability for forcing (i), for the perturbed initial condition 

((.r, 0) = (.(z) - fo(.(z) (7J(z, 0) = -io(.(z)). The system gets rid of the extra mass with respect 

to the new stable state by sending only a weak dispersive wave train downstream. The parameters 

for this simulation areµ = 6.6 (F = 1.1), k = 0.3, computed with Az = 0.1, At = 0.05, using the 

implicit code. b) The corresponding wave resistance coefficient vs. time. The system is releasing a 

small amount of energy to the forcing in connection with emission of downstream running waves. 
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Figure 1.12. a) Stability of the stationary solution (,(x) for forcing (i), with the initial condition 

((x,0) = (,(z) + f(,(x) (11(x,0) = f(,(x)). The system goes to the stationary solution (,(x), 

emitting a train of dispersive waves downstream. The parameters for this simulation are µ = 18 

(F = 1.271), k = 0.3, computed with ~x = 0.2, ~t = 0.1, using the implicit code. b) The 

corresponding wave resistance coefficient vs. time. The system initially releases energy through 

emission of a dispersive wave train downstream. 
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Figure 1.13. a) Stability of the smaller of the stationary solutions ( 8 (z) for forcing (ii), with the 

initial condition ((z,0) = (.(z) + ro(.(z) (17(z,0) = ro(.(z)). The system goes to the stationary 

solution (.(z), emitting a train of dispersive waves downstream. The parameters for this simulation 

are o = -10 (F = 1.064), k = 0.3, computed with -6.z = 0.1, -6.t = 0.05, using the implicit code. b) 

The corresponding wave resistance coefficient vs. time. The system initially releases energy through 

emission of a dispersive wave train downstream. 
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Figure 1,1'- a) Evolution of the system for forcing (ii), with the initial condition perturbed around 

the smaller of the stationary solutions (.(z) with ((z, 0) = (.(z) - ½(.(z) (q(z, 0) = -½(.(z)). The 

system still goes to the stationary solution (.(z), emitting a train of dispersive waves downstream. 

The parameters for this simulation are o = -10 (F = 1.064), k = 0.3, computed with Az = 0.1, 

At = 0.05, using the implicit code. b) The corresponding wave resistance coefficient vs. time. The 

system initially absorbs energy together with emission of a dispersive wave train downstream. 
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Figure 1.15. a) Evolution of the system for forcing (ii), with the initial condition perturbed around 

the smaller of the stationary solutions (.(z) with ((z,0) = (,(z) - i70 (.(z) (77(z,0) = - 1~(.(z)). 

Ao upstream running wave is being created in the region following the forcing. The parameters for 

this simulation are a= -10 (F = 1.064), k = 0.3, computed with az = 0.1, at = 0.05, using the 

implicit code. b) The corresponding wave resistance coefficient vs. time. The energy absorption of 

the system grows monotonically after reaching a positive minimum. 
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a) The evolution of the system for forcing (ii), with the initial condition at rest 

((z, 0) = 0 (r,(z, 0) = -(.(z)). The phenomenon of upstream running wave is regained. The 

parameters for this simulation are a = -10 (F = 1.064), k = 0.3, computed with dz = 0.1, 

dt = 0.05, using the implicit code. b) The corresponding wave resistance coefficient vs. time. The 

energy absorption of the system from the forcing is periodic, after an initial transient similar to the 

evolution depicted in Figure 15. 
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Chapter 2 

The KdV Model With Boundary Forcing 

2.1 Introduction 

The equation of Korteweg and de Vries (KdV; 1895)[8] belongs to a class of nonlinear 

evolution equations which provide good models for predicting a variety of physical 

phenomena, and have the further advantage of being solvable by analytical means. 

However, the rather ingenious techniques developed so far for these models are pri

marily meant for the unbounded space, and cannot be applied in the presence of 

boundaries occurring at finite distances, with arbitrary boundary conditions or when 

external forcings exist, a situation which certainly is of great practical importance. 

For instance, it is known that this equation offers a satisfactory description of the evo

lution of long surface waves initially prescribed for shallow water in a channel, when 

the end boundaries are sufficiently far removed to avoid reflections. The integrability 

of the KdV equation would afford determination of the asymptotic behaviour of the 

solution evolved from some smooth initial shape of the free surface. In a more general 

situation of wave generation however, the free surface may be initially undisturbed 

and waves are created by the introduction of fluid mass or by the action of some 

mechanical device like a wave maker at one end, or by a moving bottom topography. 
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This generalization would lead to consideration of boundary conditions and forcing 

functions in supplement to the appropriately chosen evolution equation. In order 

to provide some insight for developing analytical methods for the general case, we 

investigate the KdV equation in presence of a boundary forcing, both numerically 

and expositively by introducing an approximate method based on the classical in

verse scattering transformation. Section 2 describes numerical results with respect to 

two types of forcing functions, i.e., a trapezoidal and a Gaussian shape with various 

parameters for the time variation of the dependent variable at the boundary, which 

is taken to be the origin. In the same spirit as in Kaup et al. [5], we present an 

approximate model for this problem based on the inverse scattering formalism. This 

approach is carried out in section 2.3, where the model is described in detail and 

some comparison with the numerical experiments is presented. Rather surprisingly, 

it is found that this new model is able to provide good qualitative agreement and to 

exhibit some quantitative predictions. 

2.2 Numerical Results 

The KdV equation, 

(2.1) 

is studied in the semi-infinite domain x ~ 0, for t ~ 0. For given initial condition 

u (x, 0) and boundary conditions u (0, t) = J(t) and u(x, t), ux(x, t)-+ 0 as x-+ +oo, 

the solution is uniquely specified. This problem was examined by Chu et al. [2] and the 

equation is expressed in this particular form for ease of comparison with their results. 

For application to water waves this equation can be regarded in non-dimensional form 

with length and time scaled to water depth h and ~' g being the gravitational 
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constant, respectively. The numerical scheme adopted here is the same as in Zabuski 

and Kruskal [1], i.e. central difference in time and three-point average for suppressing 

nonlinear instability. We assume 

u(x,0) = O, x 2'.: 0, (2.2) 

and we first reproduce Chu 's results, by taking for the only remaining boundary 

condition, 

Uo 
-t T t E [O, r) 

u(0,t) = Uo t E [r, t0 - r) (2.3) 

Uo 

7 (to - t) t E [ to - r, to) 

0 otherwise. 

A typical solution is shown in figure 2.la, where snapshots of the field u (x, t) were 

taken at two different times, namely at t = 0.38 and 0.75, for U0 = 2, r = 0.1, 

t0 = 0.6. In this case, positive waves are periodically generated at the boundary at 

x = 0, then propagating away from it and growing to an amplitude which is about 

twice the forcing U0 , the process continuing indefinetly in time, as long as the forcing 

is kept being applied. When the forcing is turned off at t0 ( = 0.6), the growth of 

the wave adjacent to the boundary stops, as can be clearly seen from the result for 

t = 0. 75 as shown in figure 2.la. With no further forcing after generation, these 

positive peaks would be expected to evolve like solitons for a free (unforced) KdV 

equation, and the wave amplitude would return to effectively zero at x = 0 and 

remain zero there as these waves propagate to the right, after having left the region 

of influence of the boundary condition. This feature of final recovery at the boundary 
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is illustrated by figure 2.2, where t0 = 0.25 was chosen together with U0 = 2 and 

T = 0.1 to produce only one soliton. Subsequently, as soon as the time reaches t = 1, 

this newly generated soliton has already evolved so perfectly that it becomes nearly 

identical with a free soliton of the same amplitude as shown in figure 2.2. 

Taking the instant of first occurrence of each relative maximum that arises at the 

origin as the generation time, and following the propagation of these maxima with 

time, the curves of figure 2.1 b,2.3b are obtained, from which the periodicity of soliton 

birth can be clearly seen. 

The initial slope of the boundary forcing from O to U0 ( see (2.3) for t E (0, T)) 

can be made steeper without introducing appreciable numerical errors, up to a value 

of T of about 0.01, for U0 = 2. The results for this case, T = 0.01, U0 = 2, t0 = oo, 

are shown in figure 2.3. As expected, the generation of the first soliton occurs sooner 

and the period of generation diminishes slightly, as compared with the case of T = 0.1 

presented in figure 2.1. As shown in figure 2.3c, the soliton speed closely approaches 

the value iUo, which is the speed of a free solitary wave of the same amplitude. 

In order to have a smoother start from zero, we also examine the case with a 

gaussian boundary function, 

u(0,t) = U0 exp [-r(t-t0 )2] (2.4) 

where T and t0 are now chosen in order to have u (0, 0) of the same order of the time 

step used in the numerical calculations (typically 0(10-4
) ). With t0 = 0.4, T = 60 

so fixed, we vary the amplitude U0 , over the range from 1.5 to 4. The results for 

these cases are shown with U0 = 2.5 in figure 2.4 and with U0 = 4 in figure 2.5. The 

amplitudes eventually reached by these solitons long after their birth are different, but 

the soliton generation still occurs almost periodically in time. After the forcing is shut 
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off, or practically so for case (2.4), the peak amplitude reaches a steady value, as it 

should for the KdV solitons; a collection of data for the asymptotic soliton amplitudes 

is shown in figure 2.6 and figure 2.7 for forcing (2.3) and (2.4), respectively. 

The numerical experiments can also be utilized to provide information about 

Ux (0, t) and Uxx (0, t), two quantities of crucial importance for the Inverse Scattering 

Transform (1ST) of the KdV equation [4]. Figures 2.8 and 2.9 show that they oscillate 

about zero, periodically in the case of steady forcing after the transients, with an 

average very nearly zero. 

2.3 Approximate solutions using 1ST 

For the purely initial value problem in (-oo, +oo ), the KdV equation is known to be 

solvable in terms of the 1ST formalism [3],[4]. Specifically, the equation 

Qt+ 6qqx + Qxxx = 0, (2.5) 

can be transformed into (2.1) by using 

U -+ /3q, X -+ 1x; 
l , = t 3 , /3 = 6,, (2.6) 

and (2.5) is the solvability condition for the following two systems of equations 

(2.7) 

and 

(2.8) 
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where 

A -4i(3 + 2i(q - qx = i(C - qx 

C - -4(2 + 2q. (2.9) 

Equation (2. 7) can be considered as an eigenvalue problem in ( for the eigenfunction 

(:), and (2.8) gives the time evolution for the eigenfunctions and scattering data 

that can be determined with given initial value of q(x, 0). As can be realized by 

solving for v2 in (2. 7), the operator for the KdV equation is actually self-adjoint, 

being equivalent to the Schroedinger operator with potential q (x, t). 

When the domain is the whole real line of x, one can exactly solve for the 

scattering data and determine how they evolve in time by examining the asymptotic 

behaviour of the eigenfunctions, which depends critically on the regularity conditions 

at infinity on q and its derivatives, qx, qxx- However, for the present quarter-plane 

problem, 0 ~ x < oo, t ~ 0, only one set of such rest conditions can be assumed 

for the boundary at x = +oo, the behaviour of qx, qxx at x = 0 being a part of 

the solution to the problem. To see how the evolution of the scattering data would 

depend on these two quantities, let us define the Jost function [4] tp for the problem 

(2. 7) as the solution with the following asymptotic behaviour 

(2.10) 

Assuming q = 0 for x < 0, the scattering coefficients a((,t) and b((,t)[3] are then 

given by 

(
-2i(b) 

1P (0, t; () = _ , 
a-b 

(2.11) 
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and their time evolution is therefore known once the one for 'I/; is. Since the behaviour 

of 'I/; in time is determined by the equation 

1Pt = [N - ( lim A) I ] 'I/;, 
x-++oo 

(2.12) 

where 

N= (; ~J (2.13) 

and I is the identity matrix, one can see that the quantities q (0, t), qx (0, t), qxx (0, t) 

in A, B, C are needed to find 'I/; (x = 0) at any time t ~ 0. As already pointed 

out, only q is given by the boundary condition at x = 0, so that the solution to the 

problem is not possible until one devises a way of extracting from it this necessary 

information regarding the values of qx(0, t) and qxx(0, t). The question of whether or 

not this can be done does not seem to have an answer yet [5], but one can hope to 

find a reasonably good approximation by assuming some form for these derivatives. 

We will take 

qxx (0, t) - 0, (2.14) 

as the first approximation which is motivated in part by the numerical simulations 

showing that these quantities have almost zero average. Even with such a crude 

approximation, we have not succeded in obtaining the solution, in closed form, of 

equation (2.12) for the forcing (2.4), so we further assume that q (0, t) be given by 

q(O,t) = {: 
t E [O, 1) 

(2.15) 
otherwise 

for some real constant Q > 0. 
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For seeking the zeros of a((,t) in the upper half ( plane, i.e., discrete spectrum 

eigenvalues of (2.7), since these will correspond to solitons [3],[4], and due to the 

self-adjointness of (2. 7), one can set 

( = ik, k > 0. (2.16) 

Equations (2.11-2.15) then lead to 

a (ik, t) = tp2 (0, t; ik) + 
2
1
k tp1 (0, t; ik) 

-4k3t [ 4k4 - Q2 l 
e cos nt + kn sin nt , (2.17) 

where 

0 2 = 4 ( 2k2 + Q) 
2 

( Q - k2
) • (2.18) 

In order to have zeros for a (ik, t) it is necessary to require that k2 < Q. Since 

a(ik, t) = a(ik, 1) fort> l, the final number of solitons can be found by solving the 

equation a (ik, 1) = 0, which can be determined graphically, e.g., by rewriting it in 

the form 

y 
Q-2k2 

2kJQ-k2. 

The first curve of (2.19) has asymptotes at values of k2 such that 

(2.19) 

(2.20) 

where, as shown by figure 2.10a, the finite number N of solutions to this equation 

depends on Q, and some of the k; ~ Q- as Q increases. The asymptotes of the first 
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curve will 'force' intersections with the second curve in (2.19) among them, as seen 

in figure 2.10b. Each eigenvalue kn corresponds to a solitary wave of amplitude 2k~ 

[3],[6], 

(2.21) 

so that a train of solitons is generated, their amplitudes progressively increasing to 

the upper limit of 2Q. This is in good agreement with the numerical calculations for 

the boundary forcing (2.3) when to --+ oo. 

In order to compare the results of the present approximate theory with the 

numerical ones, an appropriate scale for the model has to be found. By requiring 

that the integral 

fo00 

q(O, t) dt , (2.22) 

be the same for the approximate model and the numerical experiments, one has 

Q 
1 

(/3Uo) [to-r] 

- 2.122 · Uo [to - r] (2.23) 

for the boundary condition (2.3), and 

Q = 2.122 · U0 {; (2.24) 

for (2.4). In order to take into account the different shapes of the forcing functions 

(2.3) and (2.4) with respect to (2.15), the time can be rescaled according to some 

typical time length, say the widths of the forcing functions at half height. This implies 

a rescaling of the velocities, which are proportional to k2 for the model. Thus, one 

should have 

k2 
to - T 

(2.25) 
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for case (2.3) and 

k2---. k2 
2Jlog2/r 

(2.26) 

for case (2.4). A direct comparison between the approximate IST results and the 

numerical ones is provided by figure 2.11 and figure 2.12 for case (2.3) and (2.4) 

respectively, for the first three solitons. As it can be seen, the IST model approximates 

the numerical results within 10 - 20%, which is surprisingly good, as the drastic 

assumptions made might be expected to limit the model to being able to produce 

only qualitative agreement, at most. However, it should be noticed that the model 

seems unable to provide a good description for small amplitude solitons. From (2.19) 

and figure 2.10b one can see that as Q increases, there are intersections between the 

two curves for which the corresponding k2 moves to zero, but there is no evidence from 

the numerical experiment of the corresponding solitons. Solitary waves of amplitude 

Q, i.e. k 2 = ~' appear whenever 

l 

Q = Qn = [ ( n + 1) i] 3

, n = 0, l, .... (2.27) 

and these are taken as the threshold of soliton creation for the model in figure 2.11 and 2.12. 

Further investigations are being conducted to determine whether the model can be 

improved on this. 
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a) Solution for u(z,t) at time t = 0.38 (dashed line) and t = 0.75 (solid), taking 

Uo = 2, r = 0.1, to = 0.6 in (3). Three solitons are generated, two reaching amplitude =: 2Uo before 

turning the forcing off. b) Evolution of the relative maxima of u with time. First soliton birth 

occurs at t:::::: 0.132, period of generation (average) T:::::: 0.156. An interaction between the first and 

second soliton can be noticed around time 0.55. c) Trajectory of the maxima of u vs. time. 
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----NUM. SOLUTION 

- - - - - - - - FREE SOLi TON 

r"!ME- I .DO 
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0.7 0.8 0.9 1.0 l.1 1.2 

Figure 2.2. Comparison between the numerical solution at t = l, Uo = 2, T = 0.l, to= 0.25 and 

the solitary wave solution 12o2e-2sech2 [o (z - zo)], o 2e-2 = -hx (amplitude), z 0 ~ 0.63. The soliton 

amplitude is 2.18. 
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a) Solution for u(z,t) at time t = 0.38 (dashed line) and t = 0.75 (solid), with 

Uo = 2, r = 0.01, to= oo. b) Evolution of the first three relative maxima of u with time. The first 

soliton birth occurs at t ~ 0.075, the period of generation (average) being T ~ 0.15. c) Position of 

the maxima of u vs. time. The slope of these curves after the initial transient is 1.33 ± 0.05, with 

reference to the speed ofa free solitary wave solution to (2.1), i.e. fx (amplitude). 
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Figure 2.4. a) Solution for u (z, t) at time t = 0.4 (dashed line) and t = 0.8 (solid) for the forcing 

(2.4), with U0 = 2.5, T = 60, t0 = 0.4. b) Evolution of the first two relative maxima of u with time. 

c) Trajectory of the maxima of u vs. time. 
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Figure 2.5. a) Solution for u (z, t) at time t = 0.4 (dashed line) and t = 0.8 (solid) for the forcing 

(2.4), with Uo = 4, r = 60, to = 0.4. b) Evolution of the first three relative maxima of u with time. 

The interaction between the first two solitons at time:::::: 0.5 can be clearly seen. c) Trajectory of the 

maxima of u vs. time. 
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Figure 2.6. Final amplitudes for the first three solitons generated by the box-shaped forcing 

(2.3), with Uo = 2, T = 0.1 and to varying from 0.25 to 0.7 . 
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Figure 2.10. a) Argument of the first function in (2.19) vs. k2 . The horizontal lines correspond 

to the first two asymptotes (dashed) and zeros (solid) of the cotangent. The zeros of a(ik, 1) lie 

between the intersections of these lines with the curve. b) Graphic solution of system (2.19), for 

Q = 2. The zero at k2 ~ 0.5 moves to the origin as Q increases, and the relative minimum at~ 1.2 

plunges to -oo to create a new asymptote at Q/2. 
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Figure 2.11. Direct comparison between the final amplitudes for the first three solitons obtained 

numerically and the ones predicted by the approximate 1ST model, for the box-shaped forcing 

function (2.3). 
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Figure 2.12. Direct comparison between the final amplitudes for the first three solitons obtained 

numerically and the ones predicted by the approximate 1ST model, for the gaussian forcing function 

(2.4) (Qo = Uo). 
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Part II 

CHAOTIC ADVECTION IN A 
, 

RAYLEIGH-BENARD FLOW 
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Chapter 3 

The Spreading of Passive Tracer in Chaotic 

Rayleigh-Benard Flows 

3.1 Introduction 

In many fluid flows, knowledge of the velocity field can not be regarded as the solution. 

In physical applications, one is often interested in how quantities like mass or heat 

are transported in the flow. With good approximation, these quantities can often 

be described as moving with the fluid, i.e., their transport is essentially governed 

by convective processes. Therefore, an understanding of the motion of fluid particles 

becomes of fundamental importance. Unfortunately, this would imply going one extra 

step in integrating the N avier-Stokes equations, the well known difficulties usually 

involved with the first step of finding the velocity field notwithstanding. In fact, it is 

well known that even when the velocity field is explicitly determined and has a very 

simple form, the individual fluid elements can have an extremely rich and complicated 

dynamics[l]. 

It is in this context that the recent progress in dynamical system theory provides 

for the first time some analytical tool that can offer a description of this motion. By 

assuming the Lagrangian point of view, these techniques fit naturally with the exper-
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imental ones, where usually the method of choice for studying the particle motion is 

to follow the evolution of a passive tracer. 

The present study is meant to be an example in this direction. However, we try 

not to limit ourselves to the level of qualitative description, such as merely proving 

that the motion of a class of fluid particles can be chaotic. We strive throughout 

this study to compute quantities of direct physical interest. Our motivation comes 

from the recent series of experimental investigations carried out on transport in the 

context of the Rayleigh-Benard convection[4),[5),[7),[8). By exhibiting a wide variety 

of behaviours, ranging from stationary to travelling waves to fully turbulent flow, this 

system seems to offer an ideal trial ground of increasing (and controllable) complex

ity for experimental observation and theoretical testing. The wealth of information 

in the literature about this problem indeed seems to show this. However, for the 

particular problem of mass transport in this system very little has been done from 

the theoretical point of view, and what has been done is mainly limited to station

ary flows. In this case the fluid particle trajectories coincide with the streamlines 

and an Eulerian approach is possible. In particular, this approach shows that if the 

flow is cellular, advection can only be responsible for the intra-cellular transport of 

a tracer, while molecular diffusivity is the only agent governing transport across the 

cellular boundaries [13),[14]. This fact is reflected in the large time asymptotics of 

the tracer concentration, which is basically given by a diffusion equation with an 

enhanced diffusion coefficient. 

The experimental work of Solomon and Gollub[4] focuses on the the transition 

from stationary to time dependent flow, while still remaining in cellular regime[2) 

where the streamlines are closed and hence no net mass transport is possible. The 
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enhancement on the spreading of tracer they observe in the experiment is therefore 

entirely due to the radically different behaviour exhibited by the particle paths in the 

time dependent case. No approach based solely on the knowledge of the velocity field 

would be able to extract information about transport in this case. 

To model the flow after the onset of the time dependent instability, we use the 

stream function introduced by Solomon and Gollub[4] and based on the analysis of 

Busse[2],[3]. The velocity field generated by this stream function basically describes 

two-dimensional convection rolls. The time dependence would correspond to the col

lective oscillation of the roll boundaries in the direction perpendicular to the roll axes, 

a phenomenon known as the "even" oscillatory instability. Whenever the velocity field 

is obtained from a stream function, the problem can be cast into the framework of the 

Hamiltonian formalism, with the Hamiltonian corresponding to the stream function. 

The physical space can then be interpreted as the phase space, and the transition 

from time independent to time dependent flow would correspond to the loss of in

tegrability due to a non-autonomous component in the Hamiltonian. Achieving this 

point of view is more than just an intellectual exercise. Thanks to it, we are able 

to identify the relevant invariant structures present in the flow, and show how they 

effectively govern the motion of fluid particles. Exploiting this information, we derive 

several results not previously available. 

By providing a precise definition of the time dependent equivalent of the rolls, 

we can identify the mechanism of inter-roll convective transport and derive formulae 

for explicitly computing the transport rates, in the spirit of Rom-Kedar et al.[11],[12] 

. Making use of the symmetries of the problem, we are able to predict that the lateral 

spreading of tracer along the rolls would follow a linear law in time, for as long as 
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the molecular diffusion effects can be neglected. As a by-product of this derivation, 

a lower bound on the rate of stretching of the interface between clear and dyed fluid 

can be obtained. In the limit of small lateral oscillation of the roll boundaries, we 

use the Melnikov technique to analytically estimate the amount of fluid exchanged 

between rolls during each period. This analysis confirms the findings of Solomon and 

Gollub of linear dependence on the strength of the perturbation and points out the 

strong (nonlinear) dependence on the ratio of the frequency of oscillation and the 

maximum speed of the fluid along the roll boundary. The latter observation needs to 

be investigated experimentally, since the existing data[4] do not seem to address this 

point. 

We carry out detailed computations, based on the formalism we derive, for three 

examples, which are good representatives of the main effects induced by varying the 

parameters of the flow. By considering a particular way of obtaining a bounded phase 

space, and hence a bounded region of fluid flow, we also use these results to investigate 

the mixing properties for the portion of a roll that participates in the transport 

process. Here mixing is understood in the mathematical sense, where an explicit 

definition is possible[!]. In the more general context of transport in Hamiltonian 

systems, we show that the proposal[lO] of modelling the mechanism of transport of 

phase points by a Markov chain is inappropriate, at least for these types of Rayleigh

Benard flows. 

Finally, we discuss the validity of a purely convective approach in the presence of 

molecular diffusivity, and introduce a simple criterion for the time scale in which the 

effects of diffusivity can be neglected. As an example, we carry out some numerical 

simulation of the time dependent flow with a term representing the Brownian motion 
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a tracer particle would undergo in the presence of molecular diffusivity. 

The model for the stream function can satisfy both slip and non-slip conditions 

at the horizontal plates. Which type is actually enforced has no effect on the technical 

implementation of the numerical computations, and the results from global analysis 

are largely independent of the boundary conditions. However, the Melnikov analysis 

and the proof of existence of chaotic motion does require that some technical point 

be resolved in the presence of non-slip boundary conditions. We address this case 

with some detail in the appendices. 

This work is organized as follows. In Section 3.2 we introduce the relevant def

initions and concentrate on the analytical results. These include the formulae for 

computing the transport rates, the time scale of spreading of a tracer and interface 

stretching, the Melnikov estimates, the comparison between the time scales of molec

ular diffusivity and convective transport. In Section 3.3 we work out the specific 

examples, provide the comparisons with the results of the Markov model, introduce 

the compact phase space and check for its mixing properties. We conclude the section 

by reporting on the computation simulating molecular diffusivity. The two appen

dices discuss the use of symmetries in the computation of the tracer content in a given 

roll, and derive the Melnikov function for the case of non-slip boundary conditions. 
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3.2 The mathematical model and transport theory 

As a model for the flow after the onset of the time dependent instability, we consider 

the following stream function[3],[4], 

'I/J(x, z, t) H0 (x, z) + EH1(x, z, t) (3.1) 

- 1 sin{ kx) sin{ 1rz) + AEJ( t) cos( kx) sin( 1rz) 

which yields the velocity field 

o'lj; A1r . 
- Bz = -,; cos(1rz) [sm(kx) + Ekf(t) cos(kx)] X 

z !~ = Asin(1rz) [cos(kx) - Ekf(t)sin(kx)] (3.2) 

with x E R, z E [0, 1] and f(t) a function of time we will specify later. From the 

Lagrangian point of view, (3.2) describes the motion of "fluid particles" and hence, in 

particular, particles of a passive tracer in the fluid, corresponding to an assigned initial 

configuration. Here length measures have been nondimensionalized with respect to 

the distance between the top (z = 1) and bottom (z = 0) surfaces, k is the wave 

number k = 2
;, ,\ being the period of the roll pattern, and A represents an estimate 

of the maximum vertical velocity. The amplitude of the perturbation f is proportional 

to (R- Rt)-½ with Rt being the Rayleigh's number corresponding to the onset of the 

time dependent instability[6]. 

The unperturbed ( f = 0) flow given by (3.2) corresponds to single mode, two 

dimensional convection with slip boundary conditions, and the perturbation intro

duced by the term in f describes the (small) oscillation of the roll boundaries along 

the x (lateral) direction. Thus, the model refers to a simplified version of the "even" 

oscillatory instability[3],[2] by considering the motion of the roll boundaries as inde

pendent of the coordinate along the roll axes. This is a good approximation near the 
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onset of the time dependent instability[2], and is verified in practice by the experiment 

performed by Solomon and Gollub[4]. On the other hand, the assumption of stress 

free boundary conditions is almost never verified in practice, but it is certainly of 

theoretical interest since it allows closed form calculations (see § 3.2.5). Furthermore, 

the basic mechanism of fluid transport from roll to roll, in the time dependent case, 

relies on the existence of the structures we are going to describe in detail in the next 

sections. These structures are based on the invariance of certain curves (surfaces for 

the full 3D space) under the action of the flow, and these exist regardless of the type 

of boundary conditions, which have only mild quantitative effects. As fluid particles 

cannot cross these invariant curves, they act as a geometrical "template" through 

which their motion is forced. An understanding, from the global point of view, of the 

geometry of these curves is hence going to be the most important piece of information 

on which to build a theory of transport. 

The bulk of this Section is organized as follow. We first identify the invariant 

structures (§3.2.1) we use in deriving formulae for computing the tracer content of 

each roll (§3.2.2). We derive the results about the time scale of tracer spreading 

and the lower bound on the interface stretching in §3.2.3. We briefly mention in 

which sense the orbits of fluid particles can be chaotic in §3.2.4. In §3.2.5 we use 

the Melnikov theory to evaluate the volume of fluid transported at each iteration 

across a roll boundary. We then look at the existence of invariant structures that 

could actually prevent mixing inside one roll in §3.2.6. In these regards, perhaps 

a more serious deficiency of the model is the fact that it does not describe a weak 

recirculating flow induced by the vertical boundaries, the existence of which can be 

shown experimentally in the time independent case[5]. However, as discussed in more 
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detail at the end of § 3.2.6, this 3D effect should only bear consequences for the 

transport inside a roll and does not affect the inter-roll transport mechanism. We 

conclude (§3.2. 7) the Section with a discussion on how the molecular diffusivity could 

affect the results obtained, in anticipation of the numerical simulations reported in 

Section 3.3. 

3.2.1 The basic structures governing roll to roll transport 

First, we note that (3.2) and (3.2), as suggested by the notation used, can be inter

preted as a Hamiltonian system, with an integrable component H0 and a noninte

grable perturbation tH1 , formally equivalent to a two degree of freedom Hamiltonian 

system. The unperturbed ( time independent) flow is characterized by the hyperbolic 

fixed points {pl,0 }, {p7,0 } respectively along the top and bottom surfaces 

with 
J7r 

Xj,O = k' z; = 0 and zf = 1 , j = 0, ±1, ... , (3.3) 

physically corresponding to the stagnation points in the flow, joined by the hete

roclinic connections ( stagnation streamlines) corresponding to the roll boundaries. 

Switching the perturbation on, this ordered structure is seemingly lost as the path 

lines of the fluid particles can now intersect themselves and no longer coincide with 

the (instantaneous) streamlines. 

For periodic time-dependency, say f(t) = cos(wt), a well known and effective 

way of unveiling the structure still possessed by the flow is to study the Poincare map 

of (3.2) F: Rx [0, 1] -+Rx [0, 1] 

(
x(to)) = (x(to + T)) 

E'to - , 
z(t0 ) z(t0 + T) 

to E (0, T], T= 21r_ 
w 

(3.4) 

This map corresponds to taking stroboscopic snapshot of the fluid, and in mathemat

ical terms is an area and orientation preserving two dimensional diffeomorphism. For 
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the Poincare map, the hyperbolic fixed points present in the time independent flow 

persist with the same stability type, i.e., they become periodic points for the time 

dependent flow. We will denote the map fixed points by pt(t0 ). The notation used 

stresses the fact that their x coordinate depends on f and on the section t0 , however, 

for sake of tidiness, we will drop the subscript f and t0 dependence from now on, 

simply referring to pt(to) as PT and restoring the full notation whenever ambiguities 

can anse. 

The heteroclinic orbits at the top and bottom surfaces also persist for the map, 

since the lines z = 0, z = l are left invariant by the perturbation H1 . However, the 

stable and unstable manifolds, which in the unperturbed case coincide to form the 

vertical heteroclinic connections between Pj,o(to) and p7,0 (to), break apart under the 

action of the perturbation and intersect transversely. We will denote the perturbed 

manifolds by Wt(Pt(t0 )) and Wt(PT,t(to)) for the stable and unstable one respectively 

(see figure 3.1 and §3.2.5). Due to the invariance of the manifolds under the map, a 

heteroclinic point, i.e., a point that belongs to both W/(p;) and wtu(pj), must remain 

on both manifolds under the action of f't0 and Ft;1 (the inverse of Ft0 ), resulting in 

the wild oscillations, or "tangle", of one manifold about the other when approaching 

a fixed point (see figure 3.2). Intersections are not limited to manifolds of the same 

j-couple, however only "hybrid," i.e., stable with unstable, manifold crossings are 

allowed. 

In the following, we will only be concerned with a particular class of heteroclinic 

points, which we are now going to introduce. For definiteness, let us focus on the 

case where the unperturbed flow has a stagnation streamline oriented from p7,0 to Pj,o, 

which occurs for instance at x = 0. A primary intersection point (pip) of W/(pj) and 



-105-

wfu(P.;-) is then defined as a heteroclinic point q such that the segments Si[q,pj] and 

Ui[9,P.;-] of stable and unstable manifold connecting q with pj and P7, respectively, 

do not intersect at any other heteroclinic point other than q itself (see figure 3.3). 

Using pieces of manifold and the pip's as building blocks, we can now define the 

time dependent analogue of the roll boundaries. Although a similar construction can 

be carried out for any Poincare section, i.e., any choice of t0 in (3.4), the symmetries 

possessed by the Poincare map for a particular t0 may suggest a natural definition. 

For instance, when t0 = 0 and f(t) = cos(wt) it is easy to show that the flow given 

by (3.2) is invariant under 

t --+ -t, X --+ x, z --+ l - z ' (3.5) 

and therefore W/ (pt) is mapped into Wt (p0) by z --+ l - z. An immediate conse

quence of this symmetry for this Poincare section is that the manifold will always 

have a pip, say Cj, along the line z = ½- The periodicity of the vector field also 

implies, for any cross section t0 , the invariances 

7r 
t--+ -t, X--+ X + k' z--+ z ' (3.6) 

and 

t --+ t, 
21rj 

X--+ X + k' z--+ z ' j = ±0,±1, ... , (3.7) 

Using (3.6) for the Poincare section t0 = 0, one can see that for the couple p1 to Pt 
the vertical heteroclinic connection breaks up into the same structure as the one at 

x = 0, the only difference being that the manifold stability is now reversed. 

We therefore define R1 as the region bounded by the heteroclinic orbits connect

ing p1 top0 andpci" top1, the segments So[Co,Pci], S1[ci,p1] and Uo[p0 ,eo], U1[p{,c1] 

of, respectively, stable, W/(pci"), W/(pi"), and unstable, Wt(Pci), ~u(pi") manifolds 
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(see figure 3.4). Using the periodicity in x (3.7) one can similarly define the regions 

R; for all j, thus tessellating the whole strip Rx [0, 1]. We note that fort= 0 these 

regions go over to the ones representing time independent rolls. 

In order to see how the map can describe the transport of fluid from one ( time 

dependent) roll to another we need to introduce one more object, the turnstile lobe. If 

the segments S[q0 , q1] and U[q0 , q1] of stable and unstable manifold between two pip's 

q0 , q1 do not contain another pip, we refer to the region enclosed by these segments as 

a lobe. Under the action of the map Ft0 , pip's are mapped into pip's[9]. Without loss 

of generality, we assume that between a pip q0 and its image under the map, Ft0 (q0 ), 

only one pip can exist, one being the minimum required for preserving orientation. 

We will then have two lobes for each couple q0 , Ft0 (q0 ). In addition, we choose t0 = 0, 

so that we can drop the subscript t0 from now on, and F( q0 ) = c; as in figure 3.5, 

where j = 0. We label the lobe lying in region R1 as L1,0 and the lobe lying in region 

Ro as Lo,1, the meaning of this notation being clear when one considers that L1,0 is 

mapped from R1 to Ro under F and vice versa for L0 ,1 , see figure 3.5. Thus, the fluid 

transported across the boundary between Ro and R 1 in one period is precisely the one 

contained into L1,0 or L0 ,1 . This pair of lobes has come to be known as "turnstile" in 

the literature[l0]. We note that, because of the symmetries (3.5) and (3.6) and area 

preservation, all of the turnstile lobes will have equal areas. This is a consequence of 

the fact that the flow given by (3.2) does not have a preferred convective direction, or 

the average mass transport is zero. Under the action of the map F, the turnstile lobes 

are then stretched and folded following the tangle of the unstable manifold w(u(pj) 

with the stable one, W/(pj) (see figure 3.2). Because of orientation preservation, 

the fluid that crosses the boundary between two regions at some iteration n must 
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be contained in the (n - 1)-th pre-image of the turnstile lobes. This is the crucial 

observation for constructing a theory of transport[12] based on the dynamics of the 

lobes. 

3.2.2 The spreading of tracer initially contained in one roll 

We illustrate how the definitions given in the previous Section can be used by consid

ering the following problem. Suppose we have some passive tracer in the fluid that 

initially is all contained in one roll, say the one corresponding to region R1 , with 

uniform concentration C. Of course, due to the symmetries (3.5-3.7), as long as the 

tracer is initially uniformly concentrated in one roll, we can always label the regions 

in order to reduce to this configuration. We would then like to know what is the 

average tracer concentration in any region Rj at any later time t = n corresponding 

to then-th cycle. Neglecting any molecular diffusivity for the moment, this is equiv

alent to asking how much fluid which is initially in R1 is contained in Rj at time n. 

We denote this quantity by Tj(n) and refer to the fluid in R1 at t = 0 (or n = 0) as 

the Ri-species. For definiteness, let us assume that the lobes forming a turnstile are 

entirely contained in neighbouring regions, which for small enough f. and large enough 

w can always be shown to be the case (see §3.2.5). Typically, we find that this is true 

for was small as 0.2 (at A= 0.1), and expect it to be true for f. up to 0(1). Thus, the 

only way fluid can enter region Rj is to be contained in Rj-l or Ri+I at the previous 

cycle. It should be noticed that in general the mass transport will depend more on 

frequency than amplitude, as low frequency means that the fluid particles have have 

longer times to wander over the phase space. Having stated the problem, we proceed 

to construct the formulae necessary for its solution. We will show that knowledge of 
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the evolution of one turnstile lobe only is all that is required. 

From the preceding remarks, it should be clear that the R1 -species entering Ri, 

j =f. 1, at iteration n can only be contained in the intersections of Lj-I,j, Li+I,i with 

the lobes that have left R 1 , i.e., pk L1,0 and pk L1,2 , k = 1, 2 ... , n - 1. However, 

not all of the iterates pk L 1,0 and pk L1,2 will consist purely of R1-species. As time 

increases, iterates of the lobes L0,1 and L2,1 will transport fluid coming from Ro and 

R2 into region R1 , from which it can eventually escape, the only way it is allowed 

to do so being through the lobes L1,0 , L1,2 • Hence, this fluid has to be subtracted 

from pk L1,0 and pk L1,2 in order to get the net content of R1-species in these lobes. 

Denoting by µ(L}_ 1)n)) the amount of R1-species in lobe Lj-IJ entering Rj at cycle 

n, the above considerations can be summarized into the following formula[l2) 

n-1 

µ(L}-1)n)) = bj,2µ (L1,2) + L L [µ ( Lj-1,j n pk L1,s) - µ ( Lj-1,j n pk Ls,1)] 
k=l s=0,2 

(3.8) 

Here µ(M) denotes the area measure of a subset MC R 2
, and bj,k is the Kronecker 

delta. A similar relation for µ(L]+IJ(n)) can be obtained by replacing the first term 

in (3.8) with bj,0 µ (L1,0 ) and Lj-l,j with Li+l,i· 

The same arguments apply of course to R1-species leaving Ri at iteration n, so 

that the variation Tj(n) - Ti(n - 1) of R1-species in region Rj at cycle n can be 

written as 

Tj(n) - Ti(n -1) = 

L [µ (LJ-1+r,j(n)) - µ (L},j-I+r(n))] 
r=0,2 

n-1 

L { L [µ (Lj-I+r,j npk L1,s) - µ (Lj-I+r,j npk Ls,1)] 
k=l r,a=0,2 
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- L [µ(Lj,j-1+rnFkL1,.,)-µ(Li,j-1+rnFkL.,,1)]} (3.9) 
r,a=0,2 

with j #- 1. This equation can be "integrated" once to solve for Ti(n), 

n 

Tj(n) = n [8i,2µ (L1,2) + Oj,oµ (L1,o)] + L(n - k)aj,k, (3.10) 
k=l 

where ai,k stands for the terms in curly brackets in (3.9), and use has been made of 

the initial condition Tj{O) = 0. The content of R 1-species in R1 is best obtained by 

using the mass conservation property, 

T1(n) = µ(Ri) - L Ti(n) 
#1 

(3.11) 

From these formulae, it can be seen that in order to evaluate the amount of 

R1 -species in any region Ri at time t = n, only the dynamics of the four lobes of the 

turnstiles for region R1 is needed. In view of the symmetry property (3.6), this number 

can immediately be reduced to two lobes of just one turnstile. By careful examination 

of the symmetries possessed by the Poincare map for the cross section t0 = 0 and the 

ones corresponding to the sections t0 = "t and to = f (see figure 3.6) one can show 

that the computation of (3.10) can be carried out by following the dynamics of just 

one lobe. The details of how this is done are reported in the Appendix. 

Before concluding this Section, a few remarks are in order. Firstly, the formulae 

derived above refer to the purely convective case. The presence of molecular diffu

sivity adds an extra mechanism for the transport of tracer particles across the lobe 

boundaries and hence the equivalence between average concentration of tracer and 

average content of R1 -species would not hold in this case ( see Section 3.2. 7 for a 

discussion of the validity of the present theory). Secondly, the method exposed here 

relies on the natural structures arising in the Lagrangian description of the time de

pendent case, and this is the only way one can effectively describe the transport in 
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absence of molecular diffusivity. In particular, the methods used by Shraiman[13] and 

the analysis of Young et al.[14] for the time independent case would be inadequate 

to deal with the present case, at least sufficiently far away from the limit of zero 

lobe area, as their Eulerian description relies on the fact that all the fluid particle 

trajectories are closed and transport can only occur by molecular diffusion. 

Until now we have focussed on heteroclinic points for manifolds of the same f 

couple of fixed points. In the next Section we examine some of the consequences of 

intersections between manifolds from different tangles. 

3.2.3 The first visit time and the stretching of the interface 

Once inside a region, the fluid corresponding to a turnstile lobe is of course still 

subject to the action of the map, and in the following we would like to see if some 

more information can be extracted from the dynamics of F. One question we may 

ask is how long it takes (a portion of) the fluid just transported into a region to 

completely traverse it, that is, the speed at which the tracer invades unpolluted rolls. 

From the lobe dynamics described above, it can be seen that the crucial quantity 

we have to determine in order to answer this question ( and incidentally, also the 

question raised in §3.2.4) is the number of iterations necessary for the image of a 

turnstile lobe to first intersect an adjacent turnstile, e.g., the smallest integer, m say, 

such that pm L1 ,0 n Lo,-i =f:. 0. For definiteness, let us suppose that, for some choice of 

the parameters E, w, A, the turnstile intersection has the form depicted in figure 3. 7, 

i.e., the segment of unstable manifold of lobe pm L1,0 intersects the stable segment of 

Lo,-i in two points, see also figure 3.10 for a blow-up. The next iteration will take 

the "tip" of Fm L1,0 (the shaded area in figure 3.10) into F Lo,-I and hence the first 
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time fluid from R1 will enter R_1 is m + 1. In view of the symmetry (3.6), F Lo,-1 is 

geometrically equal to (and will follow the same evolution as) F L1,0 , i.e., pm Lo,-t will 

intersect L_11_ 2 in exactly the same way as FmL1,0 nLo,-t• As a subset of FLo,-t, 

Fm+I L1,0 n Lo,-i will undergo stretching and will eventually intersect L-i,-2 , but in 

general it will do so in more than m - 1 iterations. Let us denote by m' the number of 

iterations required for Fm L1,0 to first intersect L_11_ 2 in such a way that the unstable 

segment of L1,0 completely "pushes through" it, i.e., intersects its boundary in four 

points, and hence two of these points are preceding and two are following the ones 

of pm Lo,-t, according to the arc length measure of Wt(p:2), see figures 3.7 and 3.8. 

From now on, we will refer to the integers m and m' as the signatures of the map F 

corresponding to a particular choice of parameters t, w and A. 

Since manifolds of the same stability type cannot have common points, a glance at 

figure 3. 7 shows that Fm+m' L1,0 n L_1,-2 is "trapped" between Wt(p: 1 ) and Wt(p~ 2 ) 

and hence the first visit time t f.v. for roll R_3 will be bounded by 

(3m + l)T ~ tJ.v. ~ (2m' + m + l)T . (3.12) 

The symmetry property (3.6) assures that, at the next turnstile intersections, the role 

of trapping manifolds will played by the ones of the adjacent couples of hyperbolic 

fixed points, and therefore, for any roll R_i (j > 0), 

(jm + l)T ~ tf.v. ~ [(j- l)m' + m + l)]T, (3.13) 

a similar relation holding for rolls to the right of R1 . Of course, the amount of fluid 

actually making the first visit can be expected to rapidly go to zero in general, as the 

lobe L1,0 gets stretched and thinner so that the area "clipped" by the intersections 

with the turnstile lobes goes to zero. An example illustrating the previous consid-
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erations is offered by the case f = 0.1, w = 0.6, A ·= 0.1. For this choice of the 

parameters we have m = 3, the unstable segment of pm L1,0 has a four-point inter

section with the boundary of Lo,-1, and m' = m = 3, with an eight-point intersection 

at the boundaries for pm+m! L 1,0 n Lo,-1 • Therefore the lower and upper bound for 

the first visit time in (3.13) coincide and the tracer pollutes a new cell every three 

periods. 

We remark here that these results only depend on the signatures m and m' and 

are valid for non-slip boundary conditions as well. Of course, the type of boundary 

conditions can have some influence on the actuai vaiue of these signatures for a given 

set of parameters f, w and A, however once m and m' are fixed the pace of roll invasion 

by the tracer is set and does not "feel" the boundary any more. Furthermore, when the 

lobe area is large enough, i.e., the volume of fluid transported across the roll boundary 

is large, m and m' are small and it is easy to see that the boundary conditions are 

not going to have an influence in this case, since the turnstile intersection can happen 

before the images of the turnstile lobe have entered the boundary layer. In fact, 

since one typical length scale for the turnstile lobe is fixed by the upper bound of 

half the distance between the top and bottom boundaries, a large area of the lobe 

would necessarily mean that the distance between the lobe segments of stable and 

unstable manifolds is large. Hence, since the map is area preserving, it will take fewer 

iterations for the lobe to stretch across the roll width, i.e., m and m' will be small. 

The upper and lower bounds (3.13) also show that the "natural" time scale for 

the lateral spreading of the tracer is linear in t, at least initially, i.e., within the time 

scale of applicability of our theory (see § 3.2.7). This is quite different from the time 

independent case, where the number of invaded cells grows initially like t¼, t½ for slip 
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and non-slip boundary conditions respectively[14], and once again this estimate relies 

entirely on the existence of molecular diffusivity. In particular, this implies that the 

spreading of tracer for the time independent case cannot be modelled by a Gaussian 

distribution, for as long as the molecular diffusivity effects can be neglected. 

We will now use the signatures m, m' for estimating a lower bound on the 

stretching of a turnstile lobe, which in turn will provide one for the unstable manifold. 

The region pm+m'+i L1,o n L_1,_2 is stretched and folded by the next application of 

the map (see figure 3.9 for the example m = 1, m' = 2) and hence, at the next 

turnstiie encounter, pm+2m'+1 L1,0 n L_2,_3 will consist of at least four disjoint strips. 

Each of these strips will be trapped in exactly the same way as pm+m! L1,0 n L_ 1,_2 

and, due to symmetry, will undergo a similar evolution. It is then possible to provide 

a lower bound for the stretching of lobes, or more physically of the interface between 

dyed and clear fluid. This bound is not sharp as it only takes into account the fate of 

particular segments of the unstable manifold, but it is rigorous and does provide an 

exponential estimate for the rate of stretching of the lobes. In a region Lu,s bounded 

by a segment U of and a segment S between two intersection points of an unstable 

and stable manifolds respectively, we will define the distance of a point p E Lu,s from 

Sas 

lp(Lu,s) = inf infl(cp,q), 
qES Cp,q 

(3.14) 

where cp,q is any continuous curve C Lu,s connecting p and q, and l(cp,q) is its length, 

see figure 3.11. Thus, l(Lu,s) is the distance of the point p from S within the region 

Lu,s. Furthermore, we will define the length of region Lu,s by 

l(Lu,s) = sup lp(Lu,s), 
pEU 

(3.15) 

and denote by PLu,s the point on U at which the sup is achieved. As time n increases, 
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if pn Lu,s gets stretched and thinner, this distance will approach the measure of half 

the length of the unstable segment. 

Having introduced the necessary definitions, we now provide the estimate of the 

turnstile lobe length. Let us consider the region, LI say, bounded by the unstable 

segment of pm L1,0 and the stable segment of Lo,-1 between the first two points of 

intersection of boundaries of these lobes ( according to the arc length of Wt (p0)), i.e., 

the "tip" of pm L1,0 n Lo,-1 in the case of figure 3. 7 and figure 3.10. Let us denote by 

11, h ... lm, the distances in P Lo,-1, ... pm' Lo,-1 of PFL,, pp2£1 etc., see figure 3.12. 

Thus, Im is a shorthand notation for l;;FmL, (Fm Lo,-iJ, m = 1, ... , m'. Now, consider 

the fate of pm+i L1,0 under one iteration of the map. The portion pm+i L1,0 nLo,-1 

will have to "curl" around the region P Li while still remaining in P Lo,-1 . A lower 

bound for the length of pm+2 L1,0 can safely assumed to be twice the distance (in 

PLo,-1 ) of PFLi from the stable segment of PLo,-1, i.e., 211 • We then have, carrying 

on with similar arguments, 

m' 
l(Pm'+m+l L ) > 2 "'°' l· 1,0 _ L..., , (3.16) 

i=l 

and since pm'+m+l L1,0 n L_1,_ 2 will consist of at least two strips playing the role of 

pm'+m+1L1,0 nLo,-1, (see figure 3.9), 

m' 
l(P2m'+m+l L1,o) ~ ( 4 + 2) L li. (3.17) 

i=l 

Hence, in general, 
m' 

l(Pnm'+m+l L1,o) ~ (2n+l + 1) L li (3.18) 
i= 1 

which shows explicitly the exponential character of the turnstile lobe and therefore 

of the interface stretching with time. 
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One can of course refine this estimate by further distinguishing between the types 

of turnstile intersections (whether 2 or 4 point), by taking into account the fate of 

manifold segments not trapped by the intersection, etc.. The information on the 

interface stretching can be of great practical value when, rather than a tracer, one 

considers the transport of species that can chemically react with each other, when 

usually the objective is to maximize the length of the interface between the species, 

which is the "core" of the layer where the reaction takes place[l]. 

3.2.4 Chaotic fluid particle motion 

In this section we briefly examine an issue, the existence of chaotic particle motion, 

that has drawn considerable attention in the literature on dynamical systems[16], 

but whose usefulness for fluid dynamics is not completely clear, since no quantitative 

information can easily be extracted from it. In particular, for the theory of transport 

outlined above this issue is largely irrelevant. 

The splitting of (some) heteroclinic orbits in a heteroclinic cycle, generally im

plies that a horseshoe construction can be carried out, and hence a zero-measure set of 

initial conditions can be found for which the motion is chaotic (see, e.g., Wiggins[15]). 

Being of measure zero, this set is of no physical interest in itself. However, it can 

induce some transient chaotic-like behaviour for orbits whose initial condition falls 

into a neighbourhood of this set, and hence it can be of interest in case individual 

trajectories of fluid particles, or very small dyed regions, were to be followed. Fur

thermore, one can heuristically expect that the presence of horseshoes in the fl.ow 

would enhance mixing, although is not clear how to quantify this. 

Various constructions of a horseshoe are possible in our case, but two in particular 
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are interesting, since they are responsible for two different types of chaotic motion, 

i.e., an inter-roll "transport" horseshoe, which leads to orbits that can move all over 

the array of rolls, and an "internal" one, with chaotic orbits confined inside one roll. 

Accordingly, the transport horseshoe can be expected to enhance inter-roll mixing 

whereas the internal one would have an influence on the mixing inside the roll only. We 

show the two constructions in figures 3.13,3.14 and figures 3.15,3.16 respectively. Both 

can be obtained by considering the action of the unstable manifolds on a rectangular 

region that contains an unstable segment, keeping in mind that the manifolds are 

invariant so that the boundary of the rectangle is forced to follow the evolution of the 

unstable segment. 

Finally, the number of iterations necessary to have a complete horseshoe can be 

expressed in terms of the signatures iii and iii' introduced above, since the dynamics 

of the unstable manifold intersecting the turnstile lobe is (partially) determined by 

these numbers. For instance, for the transport horseshoe of figure 3.13, the image 

Fn L 1,0 would cut through the lower box B- as a horizontal strip for iii+ 1 :'.s: n :'.s: iii', 

where iii = 2, n = 4 for the particular case depicted in the figure. As indicated 

in the figure, the lobe L 1,0 would then "drag" the upper box B+ along to intersect 

B- in a horizontal strip. We notice at this point that this construction does not 

by itself constitute a proof of existence of an invariant set on which the dynamics is 

chaotic. The proper estimates for the rates of stretching of fluid elements have to be 

established, and for the case of non-slip boundary conditions the proof becomes quite 

technical. We will report about this on a separate paper. 
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3.2.5 The Melnikov method and analytical estimates of the lobe areas 

So far, no explicit use has been made of the fact that t: is small, and the previous 

results hold with only mild requirements on the size of t:, in order to have each of the 

turnstile lobes entirely contained in one single region. If we assume t: ~ 0 however, 

then it is possible to compute the first order term of the Taylor series expansion 

in t: of the distance between W(8 (p7) and w(u(pj), along the direction normal to 

the unperturbed (heteroclinic) orbit, without solving (3.2). Denoting this distance 

(with sign) by d( T, t:), where T E R parametrizes the vertical heteroclinic orbit, i.e., 

(x(-T),z(-T)) E Wt(p7)LJW;(pj), it can be shown that (see Appendix) 

M(T) 2 

d(T,t:) = IIDHo(x(-T),z((-T))llt:+O(t: ). (3.19) 

Here Dis the (x,z) gradient, II· II is the usual norm in R2, and M(T) is the Melnikov 

function(16], 

M( T) = 1-: {H0 (x(t), z(t)), H1(x(t), z(t), t + T)} dt , (3.20) 

with { ·, •} denoting the Poisson bracket 

{H H} = aHoaH1 _ aHoaH1 
0

' 
1 

- ax az az ax . (3.21) 

A glance at ( 3 .19) suggests that at the zeros {Ti} of M ( T), the manifolds get very 

close, 0( t:2). In fact, an application of the Implicit Function Theorem shows that if 

M changes sign there, i.e., M( Ti) = 0 and 8l; ( Ti) =I= 0, then W/(p_T) and Wt(P;) 

intersect transversely in a t:-neighborhood of (x(-T),z(-T)). Thus, the approximate 

location of pip's can be computed along the unperturbed heteroclinic orbit. Once an 

estimate for the distance between the manifolds and the location of pip's is obtained, 
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it is easy to derive an expression for the lobe areas[16),[15] valid to order t: 

(3.22) 

where r1 and r2 two consecutive zeros of the Melnikov function and L stands for any 

of the turnstile lobes. 

We now proceed in calculating the Melnikov function for our problem. When the 

Poincare section is chosen as in § 3.2.1, the symmetry properties (3.5),(3.6) assure 

that the Melnikov function is independent of the particular heteroclinic connection 

WC:(pj) U WJ'(pf ), so that we may take j = 0 in the following. Substituting H0 and 

H1 in (3.20) with their expressions (3.2), and noting that the heteroclinic orbit from 

Po to Pri is simply 

x(t-r)=0, z(t - r) = ..!_ arcsin [ sech (7rA(t - r))] , 
11' 

(3.23) 

the integral for the Melnikov function (3.20) can be evaluated in closed form by the 

method of residues 

M(r) Awsin(wr) 1_:00 

sech(11'At)cos(wt)dt 

w sin( wr) sech( 
2
:) . (3.24) 

This shows explictly that M has two simple zeros per period, i.e., only one extra pip 

between a pip and its image, and that the manifolds intersect at a point t:-close to 

x = 0, z = ½· The lobe area is readily evaluated to be 

(3.25) 

We notice that it increases monotonically as w l 0, A j, and it does not depend 

on the wavelength ,\ of the convection rolls. This immediately implies that the flux 
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t = 0.1 t = 0.01 

w Melnikov numerical Melnikov numerical 

0.6 0.019865 0.019858 0.001986 0.001986 

0.4 0.053160 0.052916 0.005316 0.005315 

0.24 0.11045 0.11035 0.011045 0.011043 

Table 3.1: Comparison between the lobe area µ(L 1,0 ) estimated by Melnikov function 

and numerically, with A= 0.l 

of tracer across a roll boundary is independent of A, in agreement with the findings 

of Solomon and Gollub. Furthermore, the linear dependence in f signifies that the 

flux scales linearly with the strength of the oscillation, another fact well observed 

experimentally. 

We also provide a comparison, in Table 3.1, between the area measures predicted 

by the estimate (3.25) and the ones obtained numerically, for various values of w. We 

note that the agreement is quite good, and hence one can predict analytically the 

amount of fluid that can be exchanged between the rolls in one period of oscillation, 

according to the model, for a wide range of parameter values. 

The information in (3.25) would be enough for determining the value of the 

enhanced diffusion coefficient D* introduced by Solomon and Gollub[4), according to 

the Fickian law 

(3.26) 

where <I>(x, t) is the flux of tracer past a roll boundary at x at time t and 00J;,t> is 

the difference, between two adjacent rolls, of the roll-averaged concentration C(x, t). 

The quantity C(x, t) is a coarse-grained concentration profile along the array of rolls, 
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and is obtained from the local concentration, say O(x, z, t), by integrating over a 

roll region[4],[13]. In reference[4], D* is evaluated from the variation in the average 

concentration between a roll initially containing all the dye and the adjacent one, 

during one period of oscillation, i.e., the volume of fluid corresponding to L1,0 in 

our notation. Unfortunately, we cannot provide a direct comparison with the data 

provided in reference[4], as the authors do not report the values of the parameters w 

and A at which they were collected. As we have seen, these parameters can be even 

more important than the strength of the perturbation. 

The foregoing discussion has focussed exclusively on the case of slip boundary 

conditions. It is also of interest at this point to observe the effects of non-slip boundary 

conditions on the lobe areas. In this case we have to replace sin(1rz) in (3.2) with the 

function[! 7] 

(3.27) 

where q0 , q1 , etc., are positive constants whose value can be determined numerically, 

and z = z - ½. With this function, it seems that the trajectory along the unperturbed 

separatrix can no longer be found in closed form, and we have to evaluate the Melnikov 

integral numerically. However, after some manipulations, (3.20) can be written as 

M(r) = 2Awsin(wr) h1 

dzcos(wt(z)) 
2 

where t( z) is the function 

r dz' 
t(z) = }½ V(z')' 

(3.28) 

(3.29) 

Since the function V(z) vanishes at z = 0, l together with its derivative, the motion 

towards the stagnation point along the stable manifold is no longer exponential, 

just algebraic, like r 1
. From this and (3.23),(3.28), by looking at the zeros of the 
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integrand, it can be argued that in the limit of small w the lobe area for non-slip 

boundary conditions is always smaller than the corresponding case with stress free 

boundary. The opposite situation would occur for large w, as shown by figure 3.20. 

We also provide a comparison of the lobe areas as obtained by the Melnikov function 

for the two types of boundary conditions, for a few values of interest of w, in Table 

3.2. 

t = 0.1 

w slip no-slip 

0.6 0.019865 0.023956 

0.4 0.053160 0.051797 

0.24 0.11045 0.09253 

Table 3.2: Comparison between the lobe area µ(L 1,0 ) estimated by Melnikov function 

for the case of slip and no-slip boundary conditions, with A= 0.l 

We note that the algebraic, rather than exponential, convergence to the fixed 

point introduced by the non-slip boundary conditions can cause some additional term 

to arise in the expression (3.19) for the distance between the manifolds by means of 

the Melnikov function[20]. As this is the situation likely to occur generically in a fluid 

mechanical context, we discuss this point in greater detail in the Appendix, where we 

show that (3.19) is the correct expression in the case of non-slip boundary conditions 

as well. 

3.2.6 The structures and transport within a roll 

The theory outlined in the preceding sections leads to a scenario which is completely 

different from the time independent case. In fact, the fluid particles for stationary con-
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vection rolls follow the streamlines, and these are closed in this case, so that transport 

would only be possible, and still essentially governed, by molecular diffusivity[13]. It 

is then natural to ask whether this behaviour of fluid particles in the time indepen

dent case is completely wiped out as a result of the time dependent perturbation, 

or remnants of the stationary flow are left in some part of the roll region. In the 

following, we show that, for f. not too large, the second alternative is correct. 

In the absence of molecular diffusivity, the only fluid particles that participate 

in the transport from roll to roll are the ones contained in the lobes and their images. 

We thus can define a (noncompact) transport region by just taking the union of the 

lobes their images, 
00 

RT= u LJFk [Lj,j-1 LJLj-1,j] · 
k=O j 

(3.30) 

Clearly, in two dimensions this region cannot include the interior of any invariant 

closed curve contained in a Rj, and for f. not too large it is well known that such 

curves will be provided by KAM tori and island bands. Being impenetrable by the 

unstable manifold, and hence by the lobe images, these structures would effectively 

constitute a barrier to transport via lobes and prevent mixing inside a roll. 

In analogy with the time independent case, transport across the largest KAM 

torus would be possible by molecular diffusivity only, and the region encircled, from 

now on referred to as "core," will in general constitute the largest part of a roll not 

subject to lobe transport. From the above remarks, it is clear that as f. -+ 0 the 

core tends to occupy the whole region Rj. The m elliptic fixed points associated 

with a ';; resonance will in general be surrounded by their own KAM tori, thereby 

contributing m extra forbidden regions, or island chain, whenever these lie outside the 

core. We notice that in general the measure of the portion of phase space occupied 
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by an m-island chain decreases exponentially with ·m, as we show below for our 

particular case. Furthermore, the stable and unstable manifolds associated with the 

m hyperbolic fixed points between the islands would regulate the transport of fluid 

from one side of the island chain to the other by a mechanism completely analogous 

to the one described above for the main (inter-roll) manifolds(ll]. However, we note 

that this mechanism is in general much less effective than the one from roll to roll, 

as the areas of turnstiles associated with island chains are in general many orders 

of magnitude smaller than the main ones(21]. We also note that a similar role in 

reguiating the transport of fluid in the inner region would be played by the cantori, 

i.e., quasi periodic orbits that do not fill a torus, but rather a torus with gaps on a 

Cantor set(lO]. 

Once again, in the limit of small i, it is possible to provide some analytical 

estimates for the size and location of islands and KAM tori for the Poincare map 

induced by (3.2), by means of averaging techniques[16]. Denoting by T(K) the period 

of revolution of a fluid particle along a ( closed) streamline for the unperturbed :flow, 

where K E (0, 1) parametrizes the family of streamlines, it can be shown that 

(3.31) 

Here K(K) is the complete elliptic integral of first kind, K being the elliptic modulus, 

K = 0 corresponds to the roll centre, while K --+ 1- for orbits close to the heteroclinic 

cycle, thus explicitly showing how their period tends to infinity approaching the cycle. 

We note that the period is monotonic in K, and hence for a given frequency of the 

time periodic perturbation the resonant orbit would be unique. Suppose °K identifies 

the orbit whose period satisfies the resonant condition Tf l = 1;:, i.e., "k is the solution 
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of 

(3.32) 

Then, in analogy with§ 3.2.5, the simple zeros of the subharmonic Melnikov function 

(3.33) 

would correspond to periodic points for the Poincare map located within a 

0( E)-neighbourhood of (x(-r), z(-r)) on the unperturbed K-orbit. It can be shown 

in general that these points occur in even number with alternating, hyperbolic and 

elliptic, stability type[16]. 

Although the method of averaging cannot resolve the fine details of the tangle 

of manifolds associated with the hyperbolic points, as these would appear to be 

connected by heteroclinic orbits in the averaged flow, it nonetheless provides an upper 

bound estimate of the area of the "core region" around the elliptic points, just as µ(Ri) 

does for the main core. Denoting the measure of the area enclosed by the "averaged" 

heteroclinic cycle with µ(Im), one can show[16] that the coefficient of the leading 

order term in an expansion in E depends on MZ::, 

The function M~ can be explicitly computed for the vector field (3.2), 

2w sech ( K(~)w) sin( WT) ; for n -=/ l 

(3.34) 

M~(r) = (3.35) 

O· 
' 

for n = l, m even, 

showing that only them : 1 resonances with m odd have a nonzero 0( d) leading order 

term, and would hence be the most important island contribution to the forbidden 
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region inside a roll. Furthermore, the estimate (3.34) is in this case 

(3.36) 

with ,,.,, = Jl - K 2, thus showing that as m increases, i.e., K -+ l and the resonant 

orbits approach the heteroclinic cycle, the size of the islands decreases exponentially 

as the coefficient of the 0( t:½) term goes to zero. We note that in this limit the 

subharmonic Melnikov function reduces to (3.24) (apart from a factor 2 which takes 

into account the contribution from both the heteroclinic connections pertaining to 

each region R;). Table 3.3 provides a comparison between the estimate (3.36) and a 

numerical evaluation of the area of an island, based on the largest identifiable KAM 

torus, for the 3:1 resonance band, for various values of t:, w = 0.6 fixed. The poor 

agreement when t: = 0.1 can easily be explained by the observation that, for an t: this 

large, the splitting of the heteroclinic connection in the averaged system is relatively 

large and a considerable portion of the island would actually appear as chaotic. 

w = 0.6 

f averagmg numerical 

10-1 0.1397 0.033956 

10-2 0.04386 0.04386 

10-3 0.01397 0.01400 

Table 3.3: Comparison between the island area µ(13 ) estimated by averaging and 

numerically for decreasing t:, w = 0.6, with A= 0.1. 

We show the geometry of the islands and KAM tori by numerically computing 

the images under F of 10 initial conditions on a segment at roll mid-height z = ½, 

using a 4-th order Runge-Kutta scheme. Figure 3.17 shows the result for w = 0.6, 
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f = 0.1 for 1000 iterations. For this w, the period is about half the minimum period 

T(O) in (3.31 ). The 3 : 1 resonance band can be clearly seen and seems to be the 

only relevant structure besides the core region, the next (5: 1) band being too close 

to the manifold tangles and hence unobservable, as the elliptic periodic points are 

stripped of almost all their closed orbits and the manifolds of the hyperbolic points 

intersect the ones from the inter-roll homoclinic tangle and are forced to follow their 

dynamics. To further pursue this point, we reduce f to 0.01 and the result is shown 

in figure 3.18. The 3 : 1 resonance is now surrounded by KAM tori and the 5 : 1 

is dearly visible outside a core that has enlarged as much as to almost occupy the 

whole roll. By reducing w one can bring the 1 : 1 resonance into play, as in figure 3.19, 

where w = 0.24 and f = 0.1. It can be seen that the transport region now deeply 

penetrates into the centre of the roll, so that this situation should favour a quicker 

homogenization of the tracer concentration. 

As a final remark, we notice that the relevance of the inner structures described 

above (or their equivalent for more refined 2-D models) would depend on the degree 

to which the two dimensional idealization of the flow is realized in practice. Even 

for the time independent case, for instance, the experiment shows[4] that the tracer 

appears to invade unpolluted rolls by diffusing inward from the boundary and outward 

from the centre, because of a weak boundary induced 3-D flow that convects tracer 

directly onto the region corresponding to the roll axis. However, this 3-D component 

is orthogonal to the motion of the roll boundaries and therefore is not expected 

to significantly affect the inter-roll transport mechanism. A qualitative comparison 

between the visual observations of the interface between rolls in the time dependent 

experiment[4] performed by Solomon and Gollub[5], and the lobe structures for the 
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model suggests that this is indeed the case. 

3.2. 7 The relative time scales of chaotic advection and molecular diffusion 

The transport theory outlined in the preceding sections refers to the purely convective 

case, but of course in any realistic situation the tracer will always have some, albeit 

small, molecular diffusivity. The applicability of the theory as it stands would then 

be limited to the time scales where the effects of diffusion are negligible. We remark 

here that in presence of molecular diffusivity, the spreading of a passive tracer would 

be governed by an advection-diffusion equation, 

80(x, z, t) {·!·( ) O( )} = ([J20(x, z, t) fPO(x, z, t)) 
{)t + '+"x,z,t, x,z,t 11 ox2 + {)z 2 , (3.37) 

where 11 is the diffusion coefficient and O(x, z, t) is the tracer concentration[18]. Setting 

11 = 0, the resulting equation can then be "solved" by the method of characteristics, 

which is of course the approach we have been following so far, since the equations 

for the characteristics would be (3.2). However, mathematically the limit 11 -+ 0 is 

singular, since in this way the terms containing the higher order derivatives in (3.37) 

cancel and the structure of the partial differential equation would be completely 

altered. Thus, we cannot expect to uniformly approximate the solution of (3.37) with 

the one for 11 = 0 for all times, no matter how small 11 is, a situation akin to the well 

known (and much more complicated) case of the Euler and Navier-Stokes equations. 

One way of providing a criterion of applicability for the purely'4fconvective limit 

naturally suggests itself. In fact, the time scale for tracer to diffuse across a distance 

of the order of the turnstile width should be long compared to the time it would take 

a lobe to be mapped across the boundary of a region, i.e., one period. Thus, denoting 
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this time scale by Td we have 

(3.38) 

where d(f.) is the maximum on TE [0,T] of the distance function defined in (3.19), 

and we require 

Td >> T. (3.39) 

For the cases considered in Section 3.3, taking v - 5.0 x 10-6cm2 /sec which 

corresponds to the diffusivity for the methylene blue tracer used in the experiment 

by Solomon and Gollub, one would have the following estimates for Td: 

w = 0.6, f. = 0.1 

d = 0.123 => Td '.:::'. 2000 '.::::'. 200T , (3.40) 

w = 0.6, f_ = 0.01 

(3.41) 

w = 0.24, f. = 0.1 

d = 0.56 => Td '.:::'. 300T. (3.42) 

The transport theory of§ 3.2.2 can therefore be expected to perform well only in the 

first and third case, at least within the typical total number of iterations (total time) 

to which the computations of Section 3.3 are carried out, which is about 20 periods. 

We will come back to this point in § 3.3.3, where results from numerically simulating 

the tracer transport in presence of diffusivity are reported. 
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The relative importance of lobe vs. diffusive transport can immediately be con

veyed by introducing a nondimensional number by taking the ratio of the two time 

scales T and Td, 

(d(t))2 _ (t1 sech(~)cosh(~))2 1 

Tv T v 
(3.43) 

so that the applicability criterion of the purely convective theory can simply be sum

marized by the requirement that this number be large. 
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3.3 Numerical simulations for three "canonical" cases 

In this Section we report the results of computations based on the lobe dynamics 

described in the previous section, for three sets of parameter values, (i) f = 0.1, 

w = 0.6, (ii) t: = 0.1, w = 0.24, and (iii) t: = 0.01, w = 0.6, with A = O.l, >. = 1r in 

all cases. These choices are within the experimental values reported in Solomon and 

Gollub and are motivated by the fact that they effectively illustrate the consequences 

of varying the two crucial parameters in the model, t and w ( A can always be scaled 

away and included in w through t ~ At and w ~ 1 ). Specifically, keeping f fixed and 

decreasing w, i.e., going from case (i) to (ii)), not only can lead to a dramatic change 

in the roll inner structure, as the central elliptic point undergoes a bifurcation, but 

also has the effect of increasing (nonlinearly) the lobe area (see (3.25) and Table 3.1) 

and of changing the signatures m, m' for the turnstile intersections (from m = m' = 3 

tom= m' = 1). Keeping w fixed and decreasing t, on the other hand, i.e., going from 

case (i) to (iii), has comparatively milder consequences, as the lobe area decreases 

linearly in t: and the locations of pips on the tangle of W/(pj) and Wt(pJ) remain 

(almost) the same (see (3.24)). Accordingly, the core region becomes larger with 

higher order resonance bands becoming visible, and the signatures m, m' change 

slightly, from m = m' = 3 to m = m' = 4 in this case. 

As shown in § 3.2.2, the transport rates can be obtained once the intersection 

measures of images of just one turnstile lobe of R1 with the ones of each region Rj are 

known. In all of the cases considered above, we choose to operate on L1,0 , covering 

it with a grid of points and iterating it numerically, the areas of intersection being 

then given by the number of points falling in each of the turnstile lobes. The use 

of the lobe dynamics enables us to drastically reduce the amount of computation 
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time with respect to simply covering the whole region of interest, in our case R1 , 

with a mesh of the same size. For instance, with the typical grid size adopted in 

case (i), 1. x 10-3 equivalent to 19850 grid points in L1,0 , integration of (3.2), using 

a vectorized 4th order Runge-Kutta code on a CRAY X-MP 48 machine, results 

in about 55 min. of CPU time for 22 periods ( with 10-2 for the integration time 

step). Even when invariant regions are identified and therefore taken away from the 

domain of computation, this CPU time has to be multiplied by a factor of about 

50 for the direct approach with the same grid size ( the number of initial conditions 

would be about 9.2 x 105), which brings it to the limits of feasibility of the current 

computational power. The lobe dynamics approach is even more advantageous when 

the lobe areas and hence the transport rates are small, as in case (iii). To achieve an 

accuracy comparable with the one of case (i), we had to use a grid step of 2.5 x 10-4 

resulting in 31760 points. Although the core region is greatly increased, in these units 

the area outside the largest identifiable KAM torus would still amount to more than 

4. x 106 points or a factor of 150 for the CPU time. 

In order to check for the accuracy of the computation, we have tested the numer

ical results pertaining to case (i) and (ii) versus the symmetry properties (3.5),(3.6) 

and described in more detail in the Appendix. We typically find errors in the most 

significant digit for some of the lobe intersections after 20 iterations. Reducing the 

integrator step size or even changing the integration scheme altoget~er, by using an 

adaptive step size predictor-corrector method, has almost no influence, the error be

ing confined to at most a difference of one point in the counting for some of the 

intersections, which would amount to less than a 0.5% in the intersection area, after 

18 and up to 22 iterations. We present results from these computations in § 3.3.1, 
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where they will be compared to the predictions offered by a simple model recently 

proposed by several authors[lO]. In § 3.3.2 we show how to derive a formula for the 

measure of the transport region, and discuss the mixing of the tracer in a particular 

situation. We conclude the Section with the results of introducing a term representing 

molecular diffusivity in the equations of motion (3.2). 

3.3.1 Roll concentration of tracer and comparison with a Markov chain 

model 

As we have seen in Section 3.2, the lobe area measures the amount of fluid exchanged 

in one period of oscillation between two neighbouring rolls. This behaviour is analo

gous to the transport of particles through cantori as described by MacKay et al. (10], 

and indeed the term turnstile was first introduced by them. These authors also 

propose to model the transport of species among regions connected by turnstiles as 

a Markov chain, in which the states represent the average concentration of species 

in each region, and the transition probabilities are proportional to the area of the 

turnstile lobes. 

Specifically, in our context, let us denote by R/ the portion of roll Rj which 

participates in the transport, i.e., according to §3.2.6, the region outside the largest 

KAM torus and island bands, and let rr be its measure. The subscript j is redundant 

for the measure, since by the symmetries (3.5) and (3.6) the transport region will have 

the same size for each Rj roll. If one assumes that the fluid transported across a roll 

boundary quickly homogenizes over the transport region of the invaded roll, in fact 

instantaneously if one looks at the discrete time n denoting the number of oscillation 

cycles ( or the iterate of the Poincare map), the change of R1 -species in the j - th roll 
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at time n can be written as 

µ(L;+1,;)C;+1(n - 1) + µ(L;- 1,;)C;_1(n - 1) 

- [µ(L;,;+1) + µ(L;,;-d] C;(n - 1) (3.44) 

where C;(n) is the concentration (uniform by assumption) of R1-species in the j -th 

roll at time n, i.e., C;(n) = T~~n)_ Thus, the change in T; can be distinguished into the 

increment due to the amount of tracer coming from the neighbouring rolls j -1, j + 1, 

i.e., (R;±i concentration) x (volume of fluid transported in R;), and the decrement 

due the tracer transported from R; to Ri±t · Since the lobe areas are the same for 

any turnstile, we can simplify (3.44) as 

(3.45) 

where a = µ(~~,o) can be regarded as the probability for a fluid particle of being 

transported across a roll boundary. Although very simple, the model relies heavily 

on the knowledge of the transition probability. As we have seen, the area of the lobe 

can actually be determined analytically with great accuracy, but there is apparently 

no way of improving the analytical estimate for rr beyond the one of a mere upper 

bound. 

A more fundamental problem for the applicability of the Markov model is the 

fact that the fluid just transported across a roll boundary does not homogenize rapidly 

once inside a roll region, and indeed the results of section 3.2.3 illustrate how one can 

derive some "long time" consequences from the knowledge of a few initial features 

of the manifold tangles ( and lobe dynamics). This problem is not directly related to 

the size of the turnstile lobes, as we will see for case (iii), i.e., w = 0.6, t = 0.01, 

which reduces the lobe measure by one order of magnitude with respect to case (i), 
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t: = 0.1 t: = 0.01 

w rr a rr a 

0.6 0.619 0.03209 0.115 0.0173 

0.24 1.135 0.09723 

Table 3.4,: The numerical estimates for rr, a, with A= 0.1 

i.e., W = 0.6, E = 0.1. 

In order to compare the results of the lobe dynamics with the Markov chain 

model (3.45), we have computed the size of the transport region directly, by covering 

a region Ri with a grid of step size 5 x 10-3 and removing the areas inside the clearly 

identifiable KAM tori to reduce the total number of points of the grid. Counting the 

points left inside the region after 100 iterations of the Poincare map leads to Table 3.4 

for the estimate of rr in the three cases under consideration, and correspondingly we 

also exhibit the transition probabilities a. Keeping track of the number of iterations 

required by each grid point to escape the roll region and defining a color code for 

representing this number, we obtain figure 3.21.a and 3.21.b, in which the transport 

and core regions can clearly be seen, together with ( a part of) the lobe images. The 

1:1 island structure visible in figure 3.21.b greatly enhances rr with respect to the 

case w = 0.6, almost by a factor 2 as quantified by the numerical value reported in 

the table. 

According to the considerations in § 3.2.2, the initial condition for Tj{ n ), the 

content of Ri-species in the j -th roll, is rrh1,j . One can then solve (3.45) for Ti(n) 

at any later time n and compare with the results from lobe dynamics. This is done 

in figure 3.22, 3.23 and 3.24, for case (i), (ii) and (iii) respectively. For each of these 

figures, the solid lines represent the exact computation by lobe dynamics, while the 
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dashed lines refer to the predictions offered by the model. Each line originating from 

the t - axis is a plot of the content T;(n) of Ri-species in the j - th roll versus time, 

for j = 0, -1, ... , -5, i.e., for the five rolls R; next to the "source" roll R1 . As can be 

seen, the general trend of the model is to over-estimate the content of the region next 

to the source roll while under-estimating it for the distant regions, i.e., the lateral 

spreading of the tracer is not as fast as in the exact calculation (where it is linear in 

time, see § 3.2.3). Furthermore, the oscillations of T;( n) in time, exhibited by the (iii) 

case for j = 3, 4 and 5, cannot of course be represented by the model, and actually 

the Markov chain description performs worse in this case of smaii iobe area, or smaii 

transition rates. This is in contrast to the hope that small lobe areas would be the 

optimal situation for the applicability of the Markov chain approach[! O]. 

The model can be slightly improved by taking into account the correlations 

introduced by the lobe dynamics, which are related to the signatures m and m' 

discussed in § 3.2.3. For instance, each time step of the Markov chain approach 

can be made to correspond to the m - th iterate of the map, rather than just one · 

iterate, and transition probabilities connecting non-neighbouring regions R;_ 2 , R;+2 

can be defined, based on the the measure of the intersection of pm L1,0 with the 

adjacent turnstile lobe Lo,-I· However, stopping at the first signature is not sufficient 

to obtain a significant improvement, implying that the hypothesis of loss of memory 

of the fluid transported via lobes, implicit in the Markov chain approach, can be too 

slow for the assumptions of the model to apply, at least for the cases considered. 

As a final remark, we notice that the computation time for obtaining an estimate 

of the transport region area can be larger than the CPU time required by the lobe 

dynamics approach. Although the grid need not be as refined as the one covering 
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the lobes, for the cases we have considered we typically have to use about twice the 

number of lobe grid points. Furthermore, in order to identify with some certainty the 

points belonging to the transport region, one has to use a large number of iterations 

(100 in our case). For case (i), for instance, this results in a factor of about 5 for 

the overall CPU time. Since the determination of rr has an interest besides the 

Markov model, e.g., when one wants to achieve higher "mixing," a more efficient 

way of evaluating rr is desirable. An alternative approach, using the results by lobe 

dynamics, is discussed in the next section. 

3.3.2 The case of compact phase space 

Due to the periodicity in x, the vector field (3.2) on the strip R x [O, 1) can be 

considered as the lift of one with an identical mathematical expression but defined on 

a cylinder, by interpreting the x variable as an angle, see figure 3.25. Viewed in this 

way, the phase space would no longer correspond to the physical space, but we will 

see that this approach simplifies the arguments leading to a formula for the measure 

of the transport region. Furthermore, in reality the physical space will necessarily 

be compact, and the cylindrical phase space can be interpreted as a (possibly very 

rough) approximation to a finite size Rayleigh-Benard cell, with only two convection 

rolls. In order to avoid ambiguities, we will relabel the lobes L0,1 and L1,0 belonging to 

the turnstile along the separatrix along x = 0 as £ 0 ,1 and £ 1,0 respectively. Similarly, 

for the separatrix along x = f, we will denote the turnstile lobes by D1 ,0 and D0 ,1 . 

The definitions of the regions, in this case only two, flo and R1 , and their boundaries 

according to § 3.2.2 are of course the same (see figure 3.25). 

Once again, let us suppose that the dyed fluid is initially contained in R1 only. 
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If, according to the notation introduced in § 3.2.2, we denote by Ef,0 ( n) the amount 

of R1-species contained in lobe E 1,0 and entering R1 during cycle n, we then have 

In analogy to (3.8) and (3.9), one can show that 

n-1 

Ef,0(n) = µ(E1,o) - I)µ(FkE1,o nEo,1) + µ(Fk E1,o nno,1) 
k=I 

-µ(Fk E1,o n E1,o) - µ(Fk E1,o n D1,o)], (3.4 7) 

and similarly for the other terms in (3.46). Furthermore, using the symmetries (3.5), 

(3.6), and the area preserving property of the map, {3.46) can be rewritten simply as 

n-1 

+4 I)µ(Fk E1,o nEo,1) + µ(Fk E1,o nno,1) 
k=l 

-µ(Fk E1,o n E1,o) - µ(Fk E1,o n D1,o)]. (3.48) 

Hence, 

n-l l 

L { - µ(E1,o) + 2 L [µ(Fk E1,onEo,1) + µ(FkE1,onDo,i) 
l=O k=l 

-µ(FkE1,onE1,o)-µ(FkE1,onD1,o)]}. (3.49) 

If we assume that limn-+= T1 ( n) exists, then the series on the right-hand side of (3.48) 

converges, since the flux goes to zero, i.e., the series has value 

(X) 

µ(E1,o) = 2 L [µ(FkE1,o nEo,i) + µ(Fk E1,o nno,1) 
k=l 

-µ(FkE1,onE1,o) - µ(FkE1,onD1,o)]. (3.50) 

The converse is also true, i.e., if the series converges the flux goes to zero, since 

if it were not so, (3.49) would lead to a divergent T1 ( n ), which violates mass conser

vation. We have checked relation (3.50) numerically, from the knowledge of the lobe 
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intersections up to 20 iterations for the cases (i)-(iii) considered above, and the result 

is shown in figure 3.26-3.28 respectively. The fastest convergence is achieved from 

case (ii), as can be expected due to the large size of the turnstile lobe, which has the 

effect of producing non-empty intersections at low k values for the negative terms in 

{3.49). The vanishing flux would mean that the system is reaching an "equilibrium," 

since no matter how large n is, the rolls always exchange the same volume of fluid 

per period, i.e., 2µ(E1 ,0 ), and hence this fluid must have the same amount of tracer 

regardless of the direction of motion, whether from or to R1 • Since, by definition, 

oniy the fluid contained in the transport region can ieave the R 1 roii, this would imply 

that the the tracer is reaching some sort of homogenization on the transport portion 

of Ro U R1, Thus, in the limit n-+ oo, 

{3.51) 

and by mass conservation (3.11), T1 (oo) = µ(R1 ) - T0 (oo), so that 

(3.52) 

Substituting this relation in (3.49), and recalling that T1 (0) = Ri, an expression for 

the size of the transport region can be obtained, 

oo I 

4 L {µ(E1,o) - 2 L [µ(Fk E1,o n Eo,1) + µ(Fk E1,o n Do,1) 
l=O k=l 

-µ(Fk E1,o n E1,o) - µ(Fk E1,o n D1,o)]}. (3.53) 

Unfortunately, the remainder of the inner summation is now magnified by the action 

of the second sums (as can be seen by switching the two summations), and although 

the convergence of (3.50) is good in the three cases considered, the same cannot be 

said for (3.53), as Table 3.5 shows. However, the numerical techniques we have used 
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are very elementary, and there is considerable room left for improvements, the usage 

of an adaptive grid method being among the most promising. On the other hand, it 

is not clear how the direct approach for the evaluation of the transport region can be 

improved. 

The subset of R1 that so far has been referred to as the "transport region" 

is also known as the "chaotic layer" in the literature. Since we have talked about 

homogenization, it is tempting to speculate that the flow is (mathematically) mixing 

on this domain. We recall[23] that the map F can be called mixing on the invariant 

domain RT = Rf U .RZ', with respect to the normalized invariant measure µ(kt) = -:;;;. , 

if for any two subset M and N C RT 

lim µ(M nFnN) = µ(M)µ(N). 
n-+oo 2rT 4r} 

(3.54) 

We cannot establish (3.54) for general M and N, but we can check if this property 

is satisfied for the special case of M and N coinciding with a turnstile lobe. In 

particular, the convergence of the series (3.50) would imply that the following limits 

exist, 

t:: = 0.1 t:: = 0.01 

w numerical series numerical series 

0.6 0.619 0.45 0.115 0.0573 

0.24 1.135 1.2103 

Table 3.5: Comparison between the numerical estimate of rT, and the one provided 

by the series, with A= 0.1 
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(3.55) 

although we cannot compute the limits in closed form nor rule out the possibility that 

they be zero. We plot the normalized measure of the intersection of E1,0 with all the 

lobes vs. the number of iterations k in figure 3.29-3.31 for cases (i)-(iii) respectively, 

keeping the sign in front of the "1,0" lobes, as in the argument of (3.50), for better 

readability. Although the final k is too low for the oscillatory behaviour to die out, 

and the tails around ±1 cannot be clearly identified, there seems to be a tendency 

to a limit in case (i) and (ii). Case (iii) seems to be far from a convergence, which 

should constitute an indication of still poor mixing after 21 iterations. This is in 

agreement with the prediction for the measure of the transport region offered by the 

series method (3.53), which is worse for case (iii). 

3.3.3 The effects of molecular diffusivity 

From the theory of transport of a passive tracer presented in the previous sections, one 

element is still missing from the physics of the problem, namely molecular diffusivity, 

which, as discussed in § 3.2. 7, can be neglected only on a short time scale. The 

meaning of "short" here is made precise in § 3.2. 7 by introducing a diffusion time 

scale, based on the Melnikov estimate for the distance between manifolds. In this 

section, we want to explicitly demonstrate the effects of molecular diffusivity, still 

keeping the Lagrangian point of view, by numerically integrating the vector field 

(3.2), with an extra term representing the Brownian motion that a tracer particle 

would exhibit in presence of molecular diffusivity. This motion can be described by 

a generalized Langevin equation[22], 

X = 
8'lp -- + 17(t) 
8z 
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z - :: + ((t) (3.56) 

where t/; is the stream function (3.2) and 17(t) and ((t) are random variables with a 

Gaussian probability distribution, such that their correlations are 

(11(t)17(t')) = (((t)((t')) = 2vh(t - t'), (11(t)((t')) = 0, (3.57) 

and v is the diffusivity value, chosen to be v = 5. x 10-s, which is close to the 

experimental value determined by Solomon and Gollub for the methylene blue tracer. 

Choosing an initial configuration corresponding to the set-up described in§ 3.2.2, 

i.e., covering the whole region R1 with a grid of step size 10-5, we integrate (3.56) 

for 21 periods of oscillations, using the parameters of case (i) and (iii), i.e., keeping 

w = 0.6 fixed and decreasing E by one order of magnitude, from E = 0.1 to E = 0.01. 

This reduces the nondimensional number (3.43) and, accordingly, the diffusion time 

scale Td by two orders of magnitude, and should therefore exhibit the transition, 

within 21T, from a transport dominated by chaotic advection to one dominated by 

molecular diffusivity. 

The results are shown in figures 3.32 and 3.33, where we plot the tracer content of 

each roll Rj, j = 0, ... -4 vs. time, for case (i) and (iii) respectively, the dashed lines 

referring to the case with molecular diffusivity, and the solid to the purely convective 

case, as in figure 3.22 and 3.24. The comparison shows that the lateral spreading of 

the tracer, for j < 0, is severely reduced in case (iii), while for (i) there is very little 

difference. The tracer content of each region Rj shows the general trend of being 

higher than the corresponding case with no molecular diffusivity for the rolls closer 

to the "source" roll R1 , and lower for rolls far away. This is especially evident for 

/lo, i.e., the region next to R1 , as can can be expected, since tracer can now cross the 
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boundary between R1 and /lo, where the concentration gradient is initially large, by 

a (slow) diffusion process, even without being transported by a lobe. For the rolls not 

adjacent to R1 , the invading tracer will be almost exclusively the one propagating via 

lobes, since the spreading by diffusion is evolving on a slower time scale. However, as 

the volume of fluid corresponding to a lobe is stretched through regions of clear fluid, 

and the interface elongates, its net tracer content is going to be decreased by molecular 

diffusion. Tracer particles are in fact now able to cross the manifolds, smoothing the 

gradient in concentration which would be present at the lobe boundary. Hence, in 

the cases where the turnstiie iobe is smaii as in (iii), the fluid corresponding to a lobe 

is going to be virtually depleted of tracer in a few iterations, and will enter the far 

lobes practically as clear fluid, thus effectively inhibiting the lateral spreading of dye. 
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Appendix B 

In this appendix we show in some detail how the use of the symmetries pertaining to 

each Poincare section can significantly reduce the amount of computation required 

for evaluating (3.9). According to this formula (and (3.10)), we can evaluate the 

content of R 1-species in any region Ri once we a) know the (forward) images under 

F of the four turnstile lobes of region R1 , and b) determine the measure of their 

intersections with each of the turnstile lobes of a region Ri. These two steps have to 
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be carried out numerically, and of them a) is certainly the most expensive in terms 

of CPU time (see §3). Therefore, it is very important to try to reduce the number 

of lobes whose images are needed in (3.9) by identifying the largest possible number 

of identities for the lobe intersections. In the following, for definiteness and with no 

loss of generality, we will assume j to be an even negative integer or zero . We will 

show that the images of only one lobe, L1,0 for instance, need to be evaluated. 

First of all we introduce some notation. In the following Sf;, S:T) will denote the 

reflection operators with respect to the x = 0 and z = ½-axis respectively, sr:r: the 

translation operator by a distance l along the x-axis. Thus, for a point (x, z) E R 2
, 

S~ (x, z) = (-x, z), S1}- (x, z) = (x, 1 - z), Sf:r: (x, z) = (x + l, z). (B.1) 

It is obvious from the definitions (B.1) that these maps are one-to-one and area 

preserving. Furthermore, they commute with each other, and (Sf;)2 = (S:T)) 2 = /, 

with / the identity mapping. We also recall that if an ordinary differential equation 

is left invariant by a symmetry operation, integral curves are transformed into each 

other under the symmetry[25]. Thus, for any point (x0 , z0 ) in Rx [O, 1], if Sis the 

symmetry map, and g;~ is the t-advancing map[26], 

(B.2) 

then 

(B.3) 

This in particular holds for t discretized on the set t = Tn, n E 'll, that is, for 

the Poincare map (3.4). In the following we will always take t 1 = 0 and omit the 

subscript t1 . 



-144-

We begin by noticing that the symmetries (3.6) and (3. 7) enable us to reduce to 

the images of only one couple of turnstile lobes, say the one near x = 0. In fact, by 

reflection about the line z = ½ and translation of 1 along x we have, using (B.3), 

lLo,1 

and so 

(B.4) 

Similarly, 

(B.5) 

and 

Lj-2,j-1 n pk Lo,1 

S~i_S~ (Lj,j-1 nPkL1,2) Lj-l,j-2nPkLo,1 
2 

s~i.s~ (Lj,j-1 n pk L2,1) - Lj-1,j-2 n pk L1,0• 
2 

(B.6) 

Thus, only L0,1 and L1,0 need to be iterated and their intersections with the turnstile 

lobes near x = J1, (j - 1)½, (j - 2)½ determined for evaluating all the terms in (3.9). 

We will now take Poincare sections at t0 = i and t0 = f. As remarked in 

Section 3.2, in general each Poincare section may have its own symmetries, and, 

in addition, symmetries might exist between the phase portraits of different cross 
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sections. We notice that a Poincare map with t0 =/ 0 can be obtained from the 

velocity field (3.2) by introducing t0 as a phase in the argument of J(t), i.e., in our 

case cos(wt + wt0 ). 

Let us denote by M, M the images of a region M of phase space under the 

action of gt and gt respectively. It can be seen that, for the t0 = t section, be

sides the overall translational symmetries along the x-axis, (3.6) and (3. 7), one also 

has invariance of equation (3.2) (with f(t) = - sin(wt)), with respect to S!}S;1' and 

t --+ -t. Thus, the unstable manifold Wfu(p0) can be obtained from w:(Pt) by the 

symmetry z --+ i - z and x --+ -x. As usual, using (3.6), the tangle corresponding 

to the unperturbed position x = ½ can be obtained from the one for Pt by reflection 

S;1' and translation SI'". 
2 

The Poincare section at t0 =~can be obtained from the velocity field (3.2), with 

cos(wt + wt0 ) = - cos wt in place of cos wt. Thus, we will have the same symmetries 

as for the section t0 = 0, and in addition for any orbit {Fn(x, z)}, n E 7.l, for the 

Poincare section at t0 = 0, S!}{Fn(x,z)} will be an orbit of Fx., where (x,z) is any 
2 

point E Rx (0, l]. In particular, this implies that the manifolds can be mapped into 
Z 8 

each other by S!}, e.g., Wf(Pt) = S!}W/(pt). Figure 3.6 shows the structure of the 

manifold tangles for the Poincare sections at t0 = 0, t, f and identifies the turnstile 

lobes. 

Focusing on the section t0 = t first, we first notice that, following how pip's are 

mapped under Fx. and S!} S;1', 
• 

(B.7) 

Using the symmetries mentioned above, and (B.3), one can see that 

-tL~ - 3T.:r3R3R t(SRSRL~ ) g j,j+l - j1 x z g x z 0,l 
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and so 

(B.8) 

Area preservation then implies 

(B.9) 

Similarly, for the section at t0 = f, we can write 

(B.10) 

from which, due to area preservation of the Poincare map, 

(B.11) 

Thanks to these relations, two of the four terms in (3.9) involving images of 

L0 ,1 can be eliminated in favor of terms containing only L1,0 . The remaining two 

terms involving Lo,1 are Lj-1,j n pk Lo,1 and Lj,j+I n pk Lo,I • V sing the translational 

symmetry x-+ x + >.q, q E 'l.l and (3.6), we have, for q = -j, 

S r,. sR pk+IL p-kL 
-j>. z 0,1 = -j+l,-j, (B.12) 

where we have used 

P Lo,1 = S;'-L1,o (B.13) 

which once again can be obtained by looking at how the pip's defining the turnstile 

lobes are mapped by P and SI}-. We can then write 

(B.14) 



-147-

Similarly, for q = - j + 1, 

(B.15) 

The usual area preservation argument then implies 

µ(Lj-1,j npk Lo,1) - µ(L-;+2,-j+l n pk L1,o) 

µ(L;J+i npk Lo,1) µ(L-;+1,-j npk L1,o). (B.16) 

Using the relations (B.5-B.16) one can determine each term in (3.9) using (for

ward) images of L1 ,0 only. The summation in (3.9) can be rewritten as 

T;(n) - T;(n - 1) = 

Appendix C 

(h;,2 + h;,o) µ(L1,o) + 
n-1 

I: { 2µ ( L;-1,j n pk L1,o) - 2µ ( L-j+2,-j n pk L1,o) 
k=l 

-2µ ( Lj,j-1 n pk L1,o) + 2µ ( L;-1,j n pk-l L1,o) 

+µ ( L;+i,j n pk L1,o) - µ ( L;,;+1 n pk-l L1,o) 

-µ (Lj,j+I npk L1,o) + µ (L-j+l,-j npk L1,o) 

+µ ( L-;+2,-j+I n pk L1,o) - µ ( L;-2,j-l n pk L1,o) 

-µ (L;-2,j-l npk-l L1,o) + µ (L;-t,j-2 npk L1,o)} (B.17) 

In this appendix we show how the Melnikov approximation (3.19), (3.20), for the 

distance between the stable and unstable manifold is also valid in presence of no

slip boundary conditions. Under this assumption any rigid boundary in the flow will 

correspond to a curve of fixed points. This situation can certainly be expected to 
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occur generically in problems with a fluid mechanical interpretation, but is almost 

neglected in the literature on dynamical systems, and there is a lack of standard 

terminology for this case. 

We will refer to the set of points which reach the boundaries z = 0, z = l 

asymptotically with forward or backward iterations of the Poincare map as centre 

stable manifold and centre unstable manifold respectively[19]. By definition these 

curves are invariant under the action of the Poincare map. The Jacobian of the 

vector field (3.2) at the fixed points pf,0 vanishes identically, and information on local 

behaviour of invariant manifolds can no longer be obtained by linearizing the vector 

field around the fixed points. In fact, the convergence to the fixed points on the 

boundaries is only algebraic in the case of non-slip boundary conditions, as opposed 

to exponential for the slip (hyperbolic) case. However, in the unperturbed case the 

manifolds are explicitly known, merging into the separatrix between two rolls, and 

we will then assume that for small t the perturbed manifolds exist[24], going on to 

examine the question of their mutual distance. 

Referring to orbits lying on Wt(p;) and Wi8 (pj) as 

qu,s = 
( - ( 

X~• 8 (t, T)) 
z:•8 (t,r) 

(C.l) 

a distance (with sign) between the manifolds at time t = 0 can be introduced as 

(C.2) 

where q0 (t - r) = (0, z(t - r)) is the unperturbed orbit on the heteroclinic given by 

(3.29), the dot is the usual scalar product in R2
, and otherwise the notation of (3.19) 

is used. Therefore, this distance is the projection of the separation q: - q: along 

the unit vector normal to the unperturbed heteroclinic orbit (whose tangent is in the 
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direction of (-ozHo, 8xHo), i.e., the vector field). 

ff we further assume that the manifolds be differentiable with respect to the 

parameter t:, we can look for an approximation to d( r, t:) by Taylor expanding (C.3), 

The Melnikov trick would then consist in deriving a linear differential equation for 

the function at the numerator in (C.3), i.e., 

(C.4) 

by restoring the time dependency in n0 , qu,a. Since aq;••(t,r) j satisfies the first 
'1' i 8i t=O 

variational equation 

where J is the matrix ( O 
1 

) , and taking into account that q0 solves the unper
-1 0 

turbed equation 3.2, we have 

[traceJ D2 Ho(qo(t - r))] ~ u,a + DHo(qo(t - r)) · J DH1 (qo(t - r), t) 

(C.6) 

where we have used the Poisson bracket defined in § 3.2.5 and the fact that the trace 

is identically zero. Hence, 

(C.7) 

and the integrand can be recognized as the one appearing in the Melnikov function 

(3.20). By taking the limits t1 --+ oo and t 1 --+ -oo for the stable and unstable parts 
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respectively, one can obtain the first term in (C.3) as 

~u(o, r) - ~ 6 (0, r) = 1-:00 

{H0 (qo(t)), H1(qo(t), t + r)}dt 

+ lim ~u(ti,r)- lim ~s(t1,r) (C.8) 
t1 -+-oo ti-+oo 

provided the limits and the integral exist. 

In our case, the question about the integral has already been resolved, since it 

can be expressed in the form (3.28). The integral term is of course the Melnikov 

function, and in order to show that the distance is given by (3.19) at first order in 1:, 

the extra terms given by the limits have to vanish. In the hyperbolic case, this can 

always shown to be true[15], but, as already remarked, in the case under consideration 

the convergence of q0 (t) to the fixed points is only algebraic. For instance, in the limit 

of large ltl, the expression (3.27) for V(z) and the differential equation satisfied by z 

i = AV(z) (C.9) 

shows that 

(C.10) 

with /3 constant and Q bounded as t -+ -oo. 

From 

DHo(qo(t)) = ( O ) 
V(z(t - r)) ' 

(C.11) 

and from (C.4), it can be seen that all one has to check in order for the second and 

third term in (C.8) to vanish is (by the symmetry (3.5), we need to analyze one term 

only, the unstable one say) 

8qu (t r) 
lim V(z(t - r)) 2

'i ' I = 0, 
t-+-oo 81: i=O 

(C.12) 
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8 u(t )I (Y1(t,r)) with q~ ! the second ('z') component of q:. Denoting 9•8 ,-r by , it 
' ! !=O Y2(t, r) 

is easy to see that the first variational equation, evaluated on the heteroclinic orbit, 

reduces to 

Y1 -AV'(z(t - r))y1 + Af(t)V'(z(t - r)) , 

Y2 - AV'(z(t - r))Y2 , (C.13) 

where the prime denotes differentiation of the function V with respect to z. Recalling 

that i = AV(z), a solution for y2 is simply 

y2(t, r) = const. x i(t - r) = const. x V(z(t - r)). (C.14) 

Similarly, the solution for y1 is 

Hence, the limit (C.12) reduces to 

lim V(z(t- r))y2(t,r) = lim V(z(t- r))V'(z(t- r)) = 0, 
t-+= t-+ CX) 

(C.16) 

since limt ..... = z(t) = 0, and V(0) = V'(0) = 0. 
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Figure 3.1. The splitting of the vertical heteroclinic connections for the Poincare map. 
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Figure 3.3. Example of heteroclinic points; q and q' are pips, q" is not. 
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Figure 3.4. The definition of the time dependent analogue of the roll regions R;. 
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The tip of prh+r'fl' L1,o = F 3 L1,o completely "pushes" through L-i,-2- The points 

qi, q2 are preceding Pl, q3 and q4 are following P2 according to the arc length measure of W;'(p!2). 
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Figure 3.9. The action of the m'-th iterate of Fon the "trapped" part of Frfl+rfl'+l L1,0 for the 

case m = 1, m' = 2. 
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Figure 3.10. Intersection of F"'L1,o = FL1,o with FLo,-1. At the next iteration, m+ 1 = 2, the 

"tip" (shaded region) of F L1,o enters region R1. 
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PLu,s 

Figure 3.11. The definition of distance for a region bounded by a segment S of stable and U of 

unstable manifold between two intersection points s, r. 
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Figure 3.12. The points PFL,, fiF2L, of maximum distance of FL1, F 2 L1 from the stable 
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p_+ 

Ro 

Figure 3.13. The evolution of the rectangular region B+. The unstable manifold "drives" 

the stretching and folding of B+ until it intersects the lower box B-. B- would follow a similar 

evolution, thus mapping a part of B+ back onto itself. 
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Figure 3.14. Schematic diagram showing the geometry of the mapping of the two rectangular 

regions B+ and B- onto each other. 
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Figure 3.15. The evolution of the rectangular region B for the internal horseshoe. The unstable 

manifold "drives" the stretching and folding of B until it intersects itself. 
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Figure 3.16. Schematic diagram showing the geometry of the mapping of the rectangular region 

B onto itself. 
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Figure 3.17. The 3:1 resonance band for w = 0.6, f = 0.1 and A= 0.l. 
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Figure 3.18. The 5:1 and 3:1 resonance bands for w = 0.6, t: = 0.01 and A= 0.1. 
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Figure 3.20. The lobe area µ(L1,o) for w E (0, 1] using the slip (solid) and non-slip (dashed) 

boundary conditions, with € = 0.1 and A = 0.1. 
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Figure 3.21. The distribution of escaping times for the fluid particles 

in a roll from n = l (red) ton= 100 (blue). For the black areas n = oo. 

a) E = 0.1, w = 0.6 and A= 0.1. b) E = 0.1 w = 0.24 and A= 0.1. 
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Figure 3.22. Comparison between the exact result (solid) and the Markov model prediction 

(dashed) for the j-th roll content of R1-species vs. time, j = 0, ... ,-4, with f = 0.1 w = 0.6 and 

A= 0.1. 
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Figure 3.23. Comparison between the exact result (solid) and the Markov model prediction 

(dashed) for the j-th roll content of R1-species vs. time, j = 0, ... , -4, with f = 0.1 w = 0.24 and 

A= 0.1. 
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Figure 3.25. The manifolds and regions for the vector field (3.2) on a cylinder 
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Figure 3.26. The behaviour of the partial sums of the series (3.53), f = 0.1, w = 0.6 and A= 0.1. 
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Figure 3.27. 

A= O.l. 

The behaviour of the partial sums of the series (3.53), £ = 0.1, w = 0.24 and 
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The behaviour of the partial sums of the series (3.53), t = 0.01, w = 0.6 and 
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Figure 3.29. The areas of intersections of E1,o with each of the turnstile lobes, normalized with 

respect to 2rr/(µ(E1 ,0 )) 2 , € = 0.1, w = 0.6 and A= 0.1. 
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Figure 3.30. The areas of intersections of E1,o with each of the turnstile lobes, normalized with 

respect to 2rT/(µ(E1,0)) 2 , € = 0.1, w = 0.24 and A= 0.l. 
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Figure 3.31. The areas of intersections of E 1,0 with each of the turnstile lobes, normalized with 

respect to 2rT/(µ(E1,0))2, f = 0.01, w = 0.6 and A= 0.1. 
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Figure 3.32. Comparison between the exact results (solid) and the ones simulating numerical 

diffusivity (dashed) for the j-th roll content of R1-species vs. time, j = 0, ... , -4, with f = 0.1 

w = 0.6 and A = 0.l. 
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Comparison between the exact results (solid) and the ones simulating numerical 

diffusivity ( dashed) for the j-th roll content of R1 -species vs. time, j = 0, ... , -4, with e: = 0.0 l 

w = 0.6 and A = O.l. 




