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ABSTRACT

This thesis proposes a‘model of social decision processes
that is applicable to situations in which social change must be
incremental. In the limit, only the direction and not the speed
of a shift in the status quo can be decided at each point in time.
Individual preferences over directions are induced myopically wvia
the inner product of direction (unit) vectors with the gradients of
utility functions. Then the direction of shift at each instant
is taken to be an equilibrium of a game that has difectional out—
comes.

Both two-person non-cooperative games in which two candi-
dates adopt directional strategies to maximize their shares of cast
votes, and n—person simple games of which absolute majority rule is
a special case, are studied. Directional equilibria for the former
and directional cores for the latter are characterized. Results
include the following: (1) directions "pointing" towards point
equilibria are directional equilibria; (2) a mobile candidate will
diverge from a rigid, extremist opponent; (3) a status quo x simultan—
eously approaches each winning coalition's preferred-to-x set if
and only if it shifts in an undominated direction; (4) given Euclidean
preferences, a status quo that shifts in undominated directions will
converge to the point core or to the set of points with empty
directional cores; (5) an empty directional core at a point implies

local cycling occurs in a neighborhood of the point; (6) stringent
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pairwise symmetry conditions must be satisfied by utility gradients
at a point that has a nonempty directional core in a majority rule
game; and (7) undominated directions exist at boundary points of
a global cycling set and 'point back into" the cycling set. Results
(6) and (7) indicate that for majority games in spaces of dimension
greater than three, directional cores are usually empty and global
cycling sets are usually the entire space.

The disseration appendix is a self-contained paper in
its own right. In a behaviorally-intuitive fashion, it establishes
pairwise symmetry conditions for a point contained in the interior
or boundary of a convex feasible set to be quasi-undominated in

an anonymous simple game.
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INTRODUCTION

Social decisionmaking is studied by economists predominantly
via the concept of equilibrium. Broadly defined, a social system is
in equilibrium provided no individual or admissible set of individuals
has both the ability and incentive to alter the state of the system.
This simple idea is central to the definitions of competitive equilib-
ria, Nash equilibria, and cores for processes that incorporate private
goods economies, non-cooperative games, or cooperative games, respec—
tively. Given the basic economic postulate stating that individuals
act in rational, maximizing fashions, final social decisions must be
equilibria. Herein lies the attractiveness of equilibrium in compara-
tivé statics models: the influence upon social decisions of variations
in underlying parameters can be predicted without using detailed knowl-
edge of the institutional or dynamical characteristics of the social
process.

However, when social change cannot occur quickly, final equi-
librium outcomes are of little interest. They will not be achieved
for long periods of time, and in fact may not be well-defined because
of temporally changing preferences and technologies. When social
change is slow, it seems more important to ask what will be the direc-—
tion of change rather than what will be the final outcome.

In this dissertation a social process in which change is slow
is not modeled as some type of game in which a final outcome is chosen.

Instead, at each point in time the process is viewed as an
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instantaneous game whose possible outcomes are directions in which the

status quo can shift. This allows the concept of equilibrium to be
reapplied to shift directions; at each point in time a directional
equilibrium is defined that can be predicted to be the direction in
which the status quo shifts. The idea of directional equilibrium con-
tributes not only to our understanding of frozen snapshots of social
decision processes, but also provides a behavioral basis for a study
of their dynamics. Thus, in situations with fixed preferences and
technologies, the convergencevproperties of a status quo that shifts

in equilibrium directions can be studied.

The dissertation is divided into three chapters and an
appendix. Plurality games in‘which two candidates choose directional
strategies to maximize plurality are the subject of chapter I. The
Nash equilibria of these games in directional strategies are character-
ized and implications for electoral competition made.

Chapter II deals with simple games, a special case of which
is absolute majority rule. The directional cores of these games are
characterized and the convergence properties of a status quo that
shifts in undominated directions are deterﬁined. Furthermore, the
existence of a directional core is shown to imply that local cycling
in the sense of Schofield [1977] cannot occur. If the game is majority
rule, then at the status quo the pairwise symmetries determined in the
appendix for constrained static equilibria musflhold when the direc-—

tional core exists.

In chapter III directional cores at special points in the
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alternative space are investigated for the case of majority rule.
Specifically, directional cores are characterized and shown to exist
at points contained in boundaries of the top cycle sets studied by
Cohen [1977] and McKelvey [1977]. This leads to conclusions about
the size of these top cycle sets.

Finally, the appendix, which stands as a self-contained
paper, is concerned with conditions for static equilibria in anony-
mous simple games. Its results, which are used in chapters II and

11T, generalize the conditions of Plott [1967].
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Chapter 1

A SIMPLE DIRECTION MODEL

OF ELECTORAL COMPETITION

Since the seminal contribution of Downs [1957], spatial
models have been used to analyze the electoral process. However,
their utility has been severely limited by (at least) four stringent
assumptions.l First, typical spatial models, henceforth to be called
Euclidean models, require that the messages candidates transmit to
voters be the points of an Fuclidean issue space. A point message
indicates a candidate's promised issue outcéme. Perfect candidate
mobility and a perfect flow of information from candidates to voters
are two aspects of this assumption. Secondly, in the basic spatial
models all promises are believed —— the issue outcome that a voter
believes will occur if a candidate is elected is assumed to be
identical to the candidate's point message. Thirdly, every indivi-
dual's preferences are required to be complete over the entire issue
space and often to decline with distance from an ideal point.
Finally, candidates are usually assumed to perceive the preferences
of all voters over all points in the issue space.

These requirements of Euclidean spatial models have been
questioned by political scientists —- Page [1975] is particularly
critical. 1In this paper, a weakening of each of the above assumptions
will be shown to lead naturally to a model employing a non-Euclidean

outcome space which can be viewed as the set of points on the surface



of a hypersphere. Under the primary interpretations to be offered in
section 1, this space is composed of the directions in which a status
quo point in an Euclidean issue space can shift.

In section 2 the basic model is described as a two-person
plurality game in which the candidates adopt shift directions as
strategies. Equilibrium directions in this game, however, are shown
to be in the core of a corresponding n-person absolute majority rule
game. Necessary and sufficient conditions are then easily established
for the existence of an equilibrium direction.

In section 3 optimal strategies for a candidate competing
against a rigid opponent are investigated. The result is a prediction
of candidate divergence, somewhat analogous to that made by Hinich and
. Ordeshook [1968] within the context of an Euclidean model.

Finally, directional voting is embedded into the framework
of Euclidean models in section 4, and the existence of point equili-
bria is shown to imply the existence of equilibrium directions.
Equilibrium direction vectors will be shown to '"point" towards equili-

brium points, provided the latter exist.

1. MOTIVATIONS AND ASSUMPTIONS

Four different conceptualizations of the set of messages
that candidates send to voters, the set of poséible outcomes that
voters perceive, and the relationship between these two sets can
serve as foundations to the basic direction model. First, both the

messages candidates transmit and the outcomes voters associate with
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them can be considered as single points in an Euclidean issue space.
However, individuals may often map all candidate messages into point
outcomes only a marginal distance from the status quo —- the point in
the issue spaée that represents the current state of the world on the
relevant issues. The possible causes of this virtual shrinkage of
the issue space are twofold: (1) for physical or political reasons,
candidate mobility in the message space may be restricted to a
neighborhood of the status quo ——- truthful and knowledgeable céndi—
dates will only choose messages within this neighborhood; (2) based
perhaps on past performances, voters may not believe any winning
candidate can achieve a large shift of the status quo, regardless of
campaign promises (messages). When a candidate's actions can only
marginally shift the status quo, only the directions in which he pro-
poses to shift it are important. Strategies can be considered as direc-
tions which shall be represented as vectors of unit or zero length.

A second behavioral motivation of the direction model can
be based on imperfect communication. Candidates may still attempt
to send messages that voters will view as point outcomes. But due
to high information costs, voters may not become aware of the exact
issue positions that candidates adopt. From Campbell et al. [1960]
to Page [1975], empirically-oriented political scientists have been

critical of models that assume a perfect flow of information from

candidates to voters. However, if candidates are able to at least
convey their pro and con opinions and the relative stresses they
place upon the issues, they may be able to transmit the directions

in which they would shift the status quo.



Thirdly, suppose one of the following is true: (1) as
Page [1975] suggests, individual preference orderings are complete
or well-defined only in a neighborhood of the familiar status quo;
(2) individual indifference surfaces actually take the form of rays
emanating from the status quo; or (3) candidates only receive reliable
information about preferences near the status quo. Then candidates
may have no incentive to adopt more than directions or, equivalently,
marginally shifted points as their strategies, since they can know

only how voters respond to such strategies.

Two sources of eﬁpirical support for directional voting
should be mentioned. The first consists of results of spatial ex-—
periments conducted by Fiorina and Plott.2 In their experiments, each
voter's payoff function declined with distance from a single point where
it achieved its maximum. When a candidate asked: "Who wants me to
move into this rectangle?" usually all voters whose optimal points
were in the specified rectangle indicated approval of the move. If the
voters had utilized subjective estimates of the distances the candi-
date would move into the specified rectangle, those voters very near
the border containing the candidate's current position probably would
not have been in favor of such a move. But as it turned out, most who
had a utility gradient at the candidate's current point that formed an
acute angle with the proposed direction vector favored the move. This
behavior suggests direction voting.

The work of Rabinowitz [1977] provides a second source of

support for directional voting. Using survey data obtained during the
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1968 and 1972 presidential elections, Rabinowitz uses a nonmetric multi-
dimensional scaling procedure to locate voters' ideal points and
candidates' campaign positions within two-dimensional issue spaces.
He finds few candidates occupying centralist positions, but rather ob-
serves candidates adopting peripheral positions surrounding the center
of the distribution of voters. He argues that this result can best
be explained by what he calls a "dispositional model," in which "it
is the direction of a candidate's policy that is critical to developing
his support base, not his absolute position."

The above rationalizations for direction strategies have
been based upon the concept of an Euclidean issue space. However,
if the outcome space into which voters transform candidate messages
is cognitive or perceptual in nature, it may not possess the Euclidean
structure. In particular, Weisberg [1974] hypothesizes that some
political issue spaces can be modeled as closed circles. As an
example, Weisberg refers to the Swedish Riksdag, where parties of the
so-called left and right sometimes vote together against the moderates.
So the fourth conceptualization that can serve as a basis for the
direction model, although it would now be inappropriately named, is
that the set of perceived outcomes is a non-Euclidean space isomorphic

to the surface of a hypersphere.3

Assumptions about individual preferences are also required.
In the basic model we assume each voter most prefers the status quo
to shift in a particular direction. A voter will rank directions
negatively with the size of the angle theylform with his most pre-

ferred direction. Formally, suppose that vy and v, are two
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direction vectors, and s is the direction vector representing some
voter's most preferred direction. Then the voter will prefer the
direction of v, to that of v, if and only if é'vl > s'vz. Further-
more, as is usual, we assume a voter's preferences for candidates
are identical to his preferences for the directions they adopt.

All of these preference assumptions are analogous to those
made in simple Euclidean spatial models —-— simply substitute pre-—
ferred points for preferred directions, and Euclidean distances for
angles. But they can be better justified here. Suppose two candi-
dates choose vectors z, and z, that are the same distance d from the

1 2

status quo in the directions of v, = zl/d and v

1 = zz/d. Then the

2
directional preferences described above approximate preferences that

can be represented by a differentiable utility function -- S'(v1 w

2)
is a linear approximation to [u(zl) - u(zz)]/d when s is the (normal-
ized) utility gradient at the status quo. The approximation becomes

exact if candidates can adopt points only marginally distinct from

the status quo.

2. THE BASIC MODEL

In the basic direction model, two candidates compete by
choosing vectors vl and vz of unit or, to allow null shifts, zero
length in the set of directions B = BU {0}, where B = {v ¢ E" :
][v ” = 1}. Each voter i most prefers a vector s; € B. An

arbitrary probability measure P defined on (Borel) subsets of B
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represents the distribution of voters' preferred direction vectors,
imposing no limitation on the number of voters. The directional
preferences of voter i are represented by the inner product s;v.
ihus the fraction of the electorate who votes for candidate j is
P[s'(vj - vk) > 0]. Geometrically, for the case of vj #£ 0

(3 =1, 2), j's votes are obtained from the fracticn of the
electorate whose preferred direction vectors lie on the same side
as Vj of a hyperplane containing the origin and the mid-vector

vy + V. The indiffergnt voters are those whose ideal direction
vectors lie in this dividing hyperplane —- for lack of a more
realistic assumption in this setting, they are assumed to abstain.

Notice that voters with s, = 0 are assumed to always be indifferent.

Each candidate j is assumed to maximize his plurality:
S 1 - L L e
PLj(vl’VZ) Pls (Vj vk) > 0] Pls (vj vk) < 0].

Because of the symmetry of the two person game played by the candi-
dates, an equilibrium can be defined as a direction that guarantees

a nonnegative plurality to any candidate who adopts it.

Definition 1: An equilibrium direction vector v* is a direction

in B for which PLl(v*, v) 2 0 for all v g B.

The first task is to show the relationship between
equilibrium directions in the two-person plurality game and undomi-
nated directions in the n-person absolute majority game. An undomi-

nated direction in the latter is one that is not ranked below another
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by a strict majority of the voters:5

Definition 2: A direction vector v* € B is undominated provided

P[s'(v* = v) > 0] > 1/2 for all v € B.

It would be disturbing to find equilibrium directions
that were not undominated, for then a direction may exist which is
preferred by a majority to the direction adopted by the winning
candidate. Theorem 1 below shows that this cannot occur. Further-—
more, theorem 1 shows that undominated directions are equilibria if
P[s = 0] = 0, that is, if nobody is indifferent over all directions.
This result is not obvious because‘a positive fraction of the voters
may still be indifferent between any two directions vy and Vo
allowing the possibility that P[S'(vl - V2) > 0] > 1/2 even though

PLl(vl, vz). <0. (The lengthy proof of theorem 1 is in an Appendix.)

Theorem 1: Equilibrium directions are undominated. Conversely, if

Pl{s = 0] = 0, then undominated directions are equilibrium directions.

One use of theorem 1 is to provide necessary conditions for
equilibrium directions, since a condition both necessary and sufficient

for undominated directions is easily obtained.

Theorem 2: v¥ is an undominated direction vector if and only if

%
Pls'a 2 0] =2 1/2 for all a € E" satisfying a'v 2 0.

oL

* *
Proof: Suppose v is undominated and that a'v > 0.

We may assume || al|= 1, and hence, letting v = v¥ - (2a'v¥)a,
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have that v € B. Then a'v. > 0 implies P[s'a > 0] = P[(Za'vh)s'a > 0] =
¥ F3 *
P[s"(v -v) 20] 21/2, 1If a'v =0 and v # 0, there exists a

sequence {a } that converges to a and whose members satisfy

1285500 -
aly ¥ 0. Hemoe P[s'a_ 2 0] 2 1/2 for all a , and
n n n
Pl[s'a 2 0] 2 lim P[s'an 2 0] 2 1/2 is established by an argument
n—=«
%
like that used to prove theorem 1. Finally, if v = 0, then
*
P[s'a 2 0] = P[s'(v —(-a)) 2 0] > 1/2 for any a € B and hence
for any a € E".
%
Conversely, suppose P[s'a 2 0] 2 1/2 whenever a'v = 0.

L 7 x .
Since (vh -v)'v 20 for any v € B, P[s"(v =~ V) > 0] > 1/2 and v* is

dominant.

The condition of theorem 2 actually consists of two different
parts, namely, that P[s'a 2 0] 2 1/2 whenever (1) a'v* = 0 and
whenever (2) a'v* > 0. Satisfaction of the first part means simply
that the individuals whose ideal direction vectors lie upon any hyper-
plane containing v* and the origin, or to one side of it, constitute
a (weak) majority of all individuals. This property is entirely
analogous to the property that Hoyer and Mayer [1974, 1975] define a
total median to satisfy for an Euclidean spatial model: every hyper-
plane containing a total median must bisect the distribution of
voters' preferred points.

Davis, DeGroot, and Hinich [1972], and later Sloss [1973]
and Hoyer and Mayer [1974, 1975], show that in the simple Euclidean

model an undominated point exists if and only if it is a total
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median. But for the direction model, part (2) as well as part (1)
of the condition in theorem 2 is needed to obtain existence.
Distributions of the electorate exist that satisfy the bisecting
property of part (1), but do not allow the existence of undominated
directions. A continuous example appears in figure 1, where the
distribution of preferred directions is represented by the area
between the unit circle B and the curve f(s). Each of the lines Ml’

MZ’ and M3 has a greater fraction of the electorate's preferred

directions on one side of it than on the other. (The signs "+"

"

and "-" near each line Mi indicate which side of it the greater

fraction of voters' preferred directions lie.) No undominated

n_n side

direction can exist, since any direction will lie on the
of some line Mi and so will receive fewer votes than a direction
located symmetrically on the opposite side of Mi' However, some
directions will satisfy part (1) of the condition, such as the
vector vl that lies in the bisecting line L. Since vy lies on the
"-" gide of Ml, it will receive only 1/4 the votes in a contest
against Vo

In a Euclidean model, a candidate who diverges from a fixed
opponent will only lose votes. So if the opponent has chosen a total
median, the diverging candidate can only decrease his plurality from
zero. In the direction model, however, a diverging candidate will
gain the votes of voters whose preferred directions directly oppose
those of the voters he loses. Even if the opponent has adopted a

median-like direction, a diverging candidate may win a strict majority

by diverging so as to gain more votes than he loses. The complete
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FIGURE 1
A Distribution in Which No Direction Is an Equilibrium

Fven Though a Bisecting Direction Vector Exists
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condition of theorem 2 eliminates this possibility for an undominated
v‘ by requiring a majority to have its preferred directions on the
same side as v* of any hyperplane containing the origin.

It can now be shown that the zero direction is an equilibrium
or is undominated if and only if the same is true of all directions.
Interpreted loosely, this means that a proposal to not shift the status
quo is winning if and only if any other proposed shift is also winning.
One could say in this case that society is indifferent as to the direc—

tion the status quo marginally shifts, just as an individual would be

if the status quo were located at an extremum of his utility function.

Corollary 1l: The zero direction is an equilibrium (undominated) if and

only if all directions are equilibria (undominated).

Proof: By theorem 2, O € B is undominated iff P[s'a 2 0] 2 1/2 for
all a € En, which dis true iff all v € B are undominated. 0 is an
equilibrium provided PLl(O,v) 2 0 for all v € B, which is true iff
Pls'v < 0] = P[s'v > 0] for all v € B. But the latter is true iff

PLl (vl, v2) = 0 for all Vs ¥ € B, or rather, iff every v € B is

2

an equilibrium.

3. EXPLOITING A FIXED OPPONENT

In this section we show that if one candidate rigidly adopts
a direction vector on a particular side of B, to be called B_, then
the optimal vector for the opponent to choose lies in B+, the side of
B opposite B . The two vectors will be locafed symmetrically about

the hyperplane that separates B+ from B . Thus, entirely half the
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directions will be inferior in the sense that only if both candidates
are rigid will they both choose inferior directions. Since B+ shall
be defined as the half of B containing the largest fraction of non-
indifferent voters, this result may also be interpreted as follows:
once an extremist candidate becomes tcoo extreme, the more extreme he
becomes the further his opponent should diverge from him. Although
this divergence result is similar to that which Hinich and Ordeshook
[1968] proved for Euclidean models, it differs fundamentally by not
requiring abstention of nonindifferent voters. Furthermore, no
symmetry requirements are imposed or equilibriums assumed to exist.

Before formally presenting theorem 3, we need some definitioms.

Definition 3: Let P = sup {P[s'c > 0] - P[s'c < 0]}. Assuming a

vector © € B exists such that P = P[s'c > 0] - P[s'E < 0], let B =

{v € B: v'€ < 0}, and B+ = {v € B: v'€ 2 0}.

The direction vector ¢ exists if P represents either a continuum of

voters or a finite number of voters. Hence it is not restrictive to

assume for the remainder of this section that ¢ exists. The interesting
case is when P > 0, in which case the following also indicates that any

R 8 : " e T
equilibrium direction vector is in B .

Theorem 3: If v, € B , then the function f(v) = PLl(v, vz) is maximized

on B by a vector v = v, = (2¢c' vz)é‘contained in B+.

Proof: Clearly Il =1 and v'c = “VEE > 0. Hence ¥ € B'. The proof

is finished by observing that
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Il

PL, (W, v,) = PE'F-v,) >0l - Pk'(¥-v,) <0]

P [(—ZE'VZ)S'E >0] - P {(—ZE'vz)s’E < 0]

Pls'e > 0] - Ps'ec <0]

I

= P,

Theorem 3 is illustrated in figure 2, which also indicates
further results obtainable when P exhibits some monotonicity. The
half circles B+ and B are separated by line M. The optimal vector

5 ST : p S
to choose against a vector in B 1like v, is a vector in B 1like vy

W :
Notice that if v is not perpendicular to M, then v, is not diverging

1

%
toward v but only away from M and v, as v, moves further from Minto

B . Hence v, does have some ability to draw vy

+
out of B . Furthermore, in this situation, if one candidate adopts

*
away from v , but not

; + ; 2 g ; ;
a vector s, in B that is not v , then his opponent increasingly

receives more votes by choosing vectors increasingly closer to Sl’
but always between 84 and v*. For example, s, does better than Sy
for candidate 1 when candidate 2 adopts 8- Candidate 1 can insure
that the fraction of the electorate voting for him is within any

arbitrary amount of the fraction of the electorate whose preferred

vectors lie above the line L.

4. DIRECTION VOTING IN AN EUCLIDEAN MODEL

We now assume that individuals have well-defined preferences
over an Euclidean issue space, but that the outcomes associated with
the candidates are restricted to a small neighborhood of the status quo
(origin). 1In fact, we assume the simplest case considered in Euclidean

models: each voter i most prefers a point Xi and prefers y to z if and
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FIGURE 2
Exploiting a Fixed Opponent When Ideal

Directions Are Distributed Monotonically
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only if ilxi -yl < X, -z | . In the notation of the basic model,
each voter i now most prefers the direction s for which Ksi = %, has a
solution A > 0. When candidate j chooses a point strategy z,, he is
adopting the direction vj for which va = zj has a solution A > 0.
Voting is again assumed to agree with issue preferences, and only
indifferent individuals abstain.

The first question concerns the properties that a distribution
of voter's preferred points must satisfy for plurality equilibria to

exist. We first observe that if P is a probability measure representing

preferred points in the issue space, it induces a probability measure P
on B to represent preferred directiomns: P[s £ A] = ﬁ[x £ C)] for any
(Borel) subset A of B, where C(A) = fx € E™: ox € A for some a > 0} is
the cone spanned by A, and P[s = 0] = E{X = 0]. Thus the condition of
theorem 2 csn be considered to apply to § as well as P. But we show
further that if an equilibrium point exists for a distribution of voters
when candidates may choose any points in the issue space, then a
corresponding undominated direction exists when outcomes associated

with candidates are essentially shift directions. We first need formal

definitions.

: n . . :
Definition 4: A point z € E~ is undominated provided

ﬁ[llz - x ” 51]y - xll] 2 1/2 for all y & E". A point z is an
equilibrium in the plurality game provided it satisfies

§[|]z - xll{l]y - xll] 2 ﬁ[llz - x||>|ly - x “] for all y € E".

Definition 5: A point z € E" is a total median of P provided

P Pa'lt —~ 23 2 @] B 1)2 for ail a & B
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As previously mentioned, an undominated point is known to be
a total median. It is also true that, analogously to theorem 1, undom~-

inated points are equilibria.

Lemma 1: TIn an Euclidean model, z € E” is undominated if and only if

it is an equilibrium.

Proof: Let y € B and, for 0 < a < 1, define y(a) = oy + (1 - a)z .

For z undominated, B[ lz-x|] < |l vy - x | 1 - ﬁ[][z - x|

> || y(a) = % Il 1.

Hence, B [||z-x ||[< ||y =% |1 = 1im ? [||z - x ||
o+1-

f”ﬂM"XH]EHT§WZ"XH>HN®—RH]
o>1-

2P0z - x> ly - =1

Therefore z is an equilibrium. The converse is obvious.

n o, PR S 5 ; : *
Theorem 4: If z € E is an equilibrium point, then any direction v

P

satisfying 3w = z for some )\ 2= 0 is undominated. If z # 0 or

~ *
P[x = 0] = 0, then v is also an equilibrium direction.
% %
Proof: Let v € B be any direction except v . Then 2'(v - v) Z 0.
Hence

1\

~ %*
Plx'"(v - v) 20]

I

P[s'(v* - v) 2 0]

v

f[x'(v* -v) 2 z'(v* -v)] 2 1/2

3
gince z is undominated and hence a total median. This proves that v is
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3

%
undominated. If z # 0, then z' (v - v) =X (1L - v'v) >0 and

* ~ %
P[s"(v - w) >0] = P[x"(v - v) > 0]
2 P[x'(v - v) 22 - W) 2 172,

This implies that v 1is an equilibrium if z # 0. Finally, if

%

g[x = 0] = 0, then theorem 1 implies that v is an equilibrium.
Existence of an undominated direction requires P to satisfy
more than the median-like part of the condition in theorem 2, but
theorem 4 establishes that no more than a total median condition on §
is needed. 1In fact, the converse of theorem 4 is false —— existence of
direction equilibria does not guarantee the existence of point equilib-

ria for a corresponding Euclidean model. As a particularly easy example,

illustrated in figure 3, suppose there are three voters whose ideal

points Pl’ P2 and P3 are arranged in a triangle to one side of the
*
status quo S. Then no total median exists, but the direction vector v
that points toward P3 satisfies the condition of theorem 2 and so

Yepresents an equilibrium.6

A consequence of theorem 4 and corollary 1 is that the
status quo is an equilibrium point if and only if all directions are
undominated. Again, the heuristic interpretation is that the status
quo is at a social maximum if and only if society is indifferent about
the direction the status quo moves.

Theorem 4 also detérmines a consistency relationship
between the two types of equilibria: if point equilibria exist,

"

equilibrium direction vectors will "point" towards them. Suppose we
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FIGURE 3
Situation with a Direction Equilibrium

But No Point Equilibrium
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now consider the situation in which a candidate may choose either a

point or a direction as a strategy. Using another assumption about
voter behavior, we can establish another consistency property for each
type of strategy: if one candidate has chosen either a directicn vector
or a point (not the status quo) as his strategy, then his opponent can
do no better than to choose the same type of strategy. The additional
assumption concerns the voter's decision rule when one candidate chooses
a direction and the other a point. We shall suppose the voter believes
the candidate who chooses a point can shift the status quo the main-
tained distance, and that the other candidate would shift the status quo
_the same amount. Based upon an '"equally likely" type of rationale, this

assumption implies that voters will always vote as if the two candidates

had chosen points on the same hypersphere about the status quo, i. e.,

; - . 7
voters will direction vote.

The internal consistency property now follows easily.

If candidate 2 has chosen a direction, then regardless of the type of
strategy candidate 1 chooses, the electorate will behave as if both
had chosen directions. But if candidate 2 has chosen a point z, then
for any direction v that candidate 1 might choose, he can achieve

the same outcome by choosing the point ||z || v.

However, the addition of either infinite or finite infor-
mation costs might cause direction strategies to dominate point
strategies. If the cost of obtaining information about voters'
preferences over more than a neighborhood of the status quo is "too"
high, or if only information about preferences over directions can be

obtained, then the candidates will have no real basis for choosing
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point strategies. Possessing only uncertain knowledge about voter

preferences away from the status quo, the risk-averse candidate may

prefer a direction strategy to an exact point. If each candidate is
also uncertain as to the amount of information the other candidate
 possesses about voter preferences away from the status quo, it is
even more likely that direction strategies will dominate. This
follows because one candidate's choice of a direction strategy
essentially forces the opponent to also choose a direction strategy
and hence to utilize only information about the distribution of pre-
ferred directions, presumably known to both candidates. Formaliza-—

tion of these concepts is left for future work.

5. SUMMARY

The direction model of the electoral process allows limits
to candidate mobility or voter perception and cognition. It is
applicable (1) if only issue outcomes near the status quo are
associated with candidates; (2) if only directional information is
transmitted to voters; (3) if voter preferences are only well-defined
near the status quo or are only defined for directioms in which it
can shift; or (4) if the outcome space is curved so that it can be
modeled as a hypersphere.

Assuming that a voter will vote for the candidate who
campaigns for a direction closest to his own preferred direction,
plurality equilibria were shown to be undominated. The identity of
the two types of solutions was established if nobody was totally
indifferent. Then a necessary and sufficient condition for the

existence of undominated directions was determined. The first part



-2

of the condition, stating that any hyperplane containing the undomi-

nated direction vector and the origin bisects the distribution of

preferred directions, is analogous to the total median condition in
the simple Euclidean models. The remainder of the condition in
theorem 2, stating that a majority of the electorate's preferred
direction vectors lie on the same side as the undominated direction
vector of any hyperplane containing the origin, is not implied by the
median—-like property in this model because of the '"curved" nature of
the directional domain space. The second part of the condition is
what allows a candidate to diverge from a fixed direction chosen by
an extremist opponent, where at least half the feasible directions
are defined to be extremist for every distribution of the electorates'
preferred directiomns.

Although the addition of a second part to the characterizing
condition for equilibrium seems to further decrease the likelihood of
its occurrence, it was shown that in situations where the assumptions
of the simple Euclidean model are met, point equilibria exist only if
corresponding undominated directions also exist. But the converse of
this theorem is false —- some distributions of voter preferences
yield direction but not point equilibria. In situations where both
types of equilibria exist, contradictory predictions will not occur
since equilibrium direction vectors point in the direction of existing
equilibrium points.

Finally, it was argued that a candidate has no incentive to
adopt a type of strategy different from the type he knows his

opponent will choose. This result can be interpreted as an internal
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stability property for each model. However, it was suggested that
when a candidate's uncertainties about voters' preferences away from
the status quo and about the extent of his opponent's information is
considered, only the direction model may exhibit this internal

stability.
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APPENDIX

ke

Proof of Theorem 1: Suppose v is an equilibrium. Then for any

* % ' )
other v € B, P[s'(v - v) > 0] 2 P[s"(v - v) < 0]. Hence VN is

. *
undominated since P[s'(v* - v) 0] > P[s‘(v - v) < 0] =

v

1-Pls'(v - v >o0l.

Conversely, suppose v is undominated but not an equilibrium,

and that P[s=0] = 0. For anya ¢ E™ define the following sets:

s (a) = {s €B: s'a > 0}
S,(a) = {s € B: sa < 0}
H(a) = {s € B: s'a = 0].

By assumption, there exists v € B such that PLl(v*, v) < 0. Hence,

* 5
letting t = v - v, there is an € > 0 such that

Since P[{a}] > 0 for only a countable number of a € B, there exists
b € B such that b'v® 2 0 and P[H(b)] = 0. Hence P[H(b) N H(t)] = 0.

Let Hi = Si(b) N H(t) for i = 1, 2.

Consider the case P[Hl] < P[HZ]' For n > 1, define

w J = | : _
c =mn B+ (l=n s We now show that }11;2 Si(cn) = Hi U Si(t)'

or, by definition, that

n

LA si(ey) = HUS (0.

R Oscy= 0
k=1 n=k 1 1 k=

=1 % =1 .
First, observe that s'cn =n sb+(l-n )STt monotonically



=90

1 =] @ 1
approaches s tasn » o, Hences € 1 U S, (c)<=> sc_ >0
il : k=1 p=k + M n
for infinitely many n <=> s c. < 0 for only finitely many

n<:>s€8 ﬁS(c). Also, s € H US(t)<=>s't>Oor
k=1l nslke 1" 0 1

{
(s't = 0and s'b > 0) <> s'cn > 0 for all n sufficiently large

<> s € 0 U Sl(c ). The argument for i = 2 is similar.
k=1 n=k B

So by the continuity of a finite measure, and since Hi and

Si(t) are disjoint, there exists an integer n, such that

(1) |P[s,(e)] - PIE,] - P[s,(0)]] < §

for all cjn the arc A = {c € B: ¢ = ac  + Bt, o >0, B,,> 0}. For
distinct ¢,& € A, there is no real number Y such that g = y&. Hence
s eﬁH(?;) N H(E) <=> sb = 0and s't = 0 <=> s € H(b) N H(t). Thus
H(Z) N H(S) = H(b) N H(t) for all distinct 5, C €A. So again by a
countability argument, there exists ¢ € A such that

P[H(T)] = P[H(b) N H(t)] = 0. From (i) and (ii), and since we are

considering the case P[Hl] < P[HZ]’ we now obtain

(it)) P[S;(@)] < P[H ] + P[S (t)] +§

€
< P[HZ] + P[Sz(t)] - €+ 5

< P[SZ(E)].

*
Now if v = 0, let ¥V = -¢, and otherwise let

_ % L %
V=v - (2c'v )e. Clearly, v € B. Furthermore, since

% %
b'v 20 and v'v < 1, when v # 0 we have

i< - ' % - . *
S'v* = (ang bV 4 [a(1 - noh 4B - v > o)



-30-

L

Thus P[s'(v* - %) 2 0] = P[s'c 2 0], whether or mot v = 0.

Hence, as P[H(T)] 0, (iii) implies that

P[s1(v’:< -¥) = 0]

P[SI(E)] + P[H(c)]

< P[s, (@]

1

1-Pls'(vF-7%) = 0]

*
Therefore v 1is not undominated, contrary to assumption. The proof

is similar for the case P[Hl} > P[HZ]'
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FOOTNOTES

The assumptions of electoral spatial models and many of their
predicticns are reviewed in Davis, Hinich, and Ordeshook [1970],

and Riker and Ordeshook [1973].

Personal communication —— but see Fiorina and Plott [1975] for

details on similar experiments.

In this interpretation the status quo must be on the surface of
the hypersphere rather than at its center. The status quo shall
be assumed under this interpretation to play no role in the
model, just as it plays no role in the usual Euclidean spatial

models.

See section 2 and appendix A in chapter II for an extensive treat-—

ment of directional preferences.

Undominated directions to simple games with a finite number of

players are the subject of chapter II.

However, it is shown in section 7 of chapter II that existence

of undominated directions is equivalent to satisfaction of pair-
wise symmetry conditions similar to those Plott [1967] establishes
for his constrained voting equilibria. Their stringency implies

that existence is only slightly more "common'" for directional than
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for point equilibria. See also chapter III.

When an individual prefers z. over 2z, if and only if

I 2
||xi - ZIH <||xi = zzl‘, directicn vecting exactly agrees with
preferences if the outcomes candidates can choose are constrained

to lie on the same hypersphere centered at the status quo

{origin). This follows trivially for x; = 0. Otherwise, if
iz, =112 |5
T A

> s;v,, where s, = xi/‘lxiliand vy " zj/]lgjt!.

1

1
-z <I X, = 7 IL¢=> x.z. > x.z, <>
Xl l]‘ | i 2 i g2

sS.V
1 i
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Chapter II

UNDOMINATED DIRECTIONS IN SIMPLE DYNAMIC GAMES

1. INTRODUCTION AND SUMMARY
Equilibria to simple games, such as majority rule, in

multidimensional épaces require such severe symmetry of preferences
as to rarely exist.l Consequently, social processes may usually be in
disequilibrium. The way they shift the state of the world through
time can only be understood when an explicit dynamic mechanism or
institution allows sequences of social decisions to be examined.

To date, sequential simple games have been investigated
in the context of two '"disequilibrium" hypotheses regarding the
interconnection between outcomes. Cohen [1977], McKelvey [1976],
[1977] and Schofield [1977a] essentially assume that an outcome in
one period can be any alternative preferred to the previous outcome
by a winning coalition.2 They show that sequences of outcomes required
to satisfy only this dominance property do not satisfy any regularity
condition, since such a sequence connects almost any two alternatives
in the social choice space. Kramer [1977], in the majority rule con-
text, strengthens their assumption by requiring that an outcome re-—
ceive a maximal number of votes against the previous outcome. He finds
that these "maximally dominating'" sequences always enter the minimax
set [Simpson, 1969] when each voter has Euclidean preferences, that

is, utility that decreases with the Euclidean distance from an ideal



G
point. This convergence is a regularity property that may provide
insight into political situations where mobile challengers oppose
fixed incumbents.

In this chapter a different hypothesis relating sequential
social outcomes is advanced, motivated by the supposition that social
change is not instantaneous. More specifically, in any time period
only alternatives a small distance from the previous outcome are
assumed to be feasible. Taken to its logical and mathematically
tractable extreme, this assumption converts the problem into cne
involving a continuum of social decisions, each of which determines
a direction in which to marginally shift the current status quo.

Since social decisions in this setting are directions,
the application of cooperative game theory requires that directional
preferences be determined from the location of the status quo and
the underlying preferences over social states. Directions are
represented as vectors of zero or unit length, and in section 2 one
direction is said to be preferred to another if it is nearer one's
utility gradient evaluated at the status quo. The set of winning
coalitions is then used to define a dominance relation on directions,
and undominated directions are predicted outcomes to the game. In
other words, the status quo is predicted to shift in a direction to
which no winning coalition unanimously prefers another direction of

shift.

The distinction between the undominated direction hypothesis
and the hypothesis that each chosen point dominates the preceeding one

should be emphasized. The continuous version of the latter requires
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the shift direction to dominate only the zero direction that corres-—
ponds to a null shift. The undominated hypothesis, on the other hand,
requires the shift direction to be undominated in the set of all
directions. Neither hypothesis implies the other, as can be seen in
the examples of section 2.

In appendix A, which supplements section 2, an alternative
directional core is defined via an inducement of directional preferences
that is independent of utility gradients. This core is found to be
contained in the one defined in section 2. The two are. identical if
each utility function satisfies a condition we label local symmetry.

For comparative purposes, the local point core so often
studied since Plott [1967] is examined in section 3. As it too is
defined via utility gradients, a second definition involving small
neighborhoods is explored in appendix B. The relationship between
the two local point cores is found to be strictly analogous to that
between the two directional cores uncovered in appendix A. Further-—
more, the first point core and sometimes the second can be defined in
terms of the analogous directional cores. Specifically, it is shown
that a point is locally undominated if and only if the zero direction
corresponding to a null shift is undominated. This result is
strengthened in section 3 when its point core is shown to consist of
points whose directional cores contain all directions. Finally,
section 3 concludes with the demonstration that in the benchmark
case of Euclidean preferences, directions that "point" to an
existing point core are undominated.

Before dynamics are discussed, an important tangent is
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pursued in section 4. The directional core is found to be equiva-
lent to the cone whose nonexistence is shown by Schofield [1977a]
to imply local cycling. Hence the nonexistence of an undominated
direction implies that any two points sufficiently close to the
sfatus quo can be connected by a finite sequence of points, each of
which dominates the preceeding one.

In section 5 an investigation is begun of the paths gen-
erated when the status quo is infinitesimally shifted in undominated
directions. A status quo so shifted through a point x is shown, at
the time it is at x, to be simultaneously approaching every point
in every winning coalition's preferred-to-x set. No path satisfying
this "approach" property exists through points with empty directional
cores. Thus a point with an empty directional core satisfies a solu-
tion-like property in not being able to shift so as to approach simul-
taneously every point preferred to itself by every winning coalition.

In section 6 it is shown that if preferences are Euclidean,
and if the speed of the status quo is bounded below when it follows
undominated directions (which it does whenever they exist, by assump-
tion), then the status quo either enters the set of points with empty-
directional cores or converges to the point core. Tﬁus,-for ét léast
this simplest of situations, dynamics based on a local equilibrium

concept imply convergence to a set with global solution-like properties.

The last section of the paper contains a discussion of the
principal shortcoming of the directional core as a solution-concept:
its frequent nonexistence in majority rule situations. Results from

the dissertation appendix are used to show that utility gradients at
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the status quo must satisfy stringent pairwise symmetry conditions
akin to Plott's [1967] for an undominated direction to exist.
Schofield [1978] has used these conditions to obtain results implying
that geﬁerically,undominated directions in majority games will not
exist at almost all points in spaces of dimension greater than three.
Even for majority rule, however, existence of directional cores is
more common in some important cases, as is argued in section 7.
Furthermore, existence is shown to be more common in games with less
decisiveness and anonymity than majority rule. As a polar case, it is
observed that undominated directions always exist in a simple game

whose winning coalitions form a prefilter.

2. THE DIRECTIONAL CORE

The set of possible social states in this paper is simply’
a Euclidean space E". The societal status quo can therefore be
represented at any time by a point x € i This section
describes the static game that is played at each point in time and
whose outcomes are shifts in the status quo.

The magnitude of feasible shifts is assumed to be very
small (infinitesmal) and independént of their direction. Hence an
outcome may be represented by the direction in which x shifts, where
a direction is formally defined to be a wvector in E™ of unit or
zero length. All directions of shift are allowed, so the set of
feasible outcomes is B = B u {0}, where B is the ball consisting
of all unit vectors.

The plavers of the game are represented by an index set
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N = {1,2,...,n}. The preference ordering of each player i € N

over social states is represented by a continuously differentiable
utility function ui: E' - R. From uss we induce a preference

ordering Pi(x) on B by defining, for any ViV, e B,

(2.1) lei(x)v2<é%>v1 . Vui(x) > v, * Vui(x).

By this ordering on B, the preferred member of a pair of directions

is the one closest to the utility gradient. In Appendix A we show

that lei(x)v2 implies that player i prefers shifting x infinitesimally

in direction vy rather than Vg

Returning to the game, its outcome (direction x shifts) shall

be determined by the set W of winning coalitions that characterize a

simple game. Formally, W is a collection of subsets of N that is

(2.21) (non—-trivial) &g W, NeW
(2..249) (superadditive) = Me W, Mc M = M el
(2.24i1) (proper) M e W=>u" ¢ W.

Sometimes we shall assume the game is also strqﬁg:

(2.21iv) (strong) M e w<é>m° ¢ W.

Majority rule games, where any coalition containing more than n/2

members is declared winning, are the most common simple games satis-

fying (2.2i-iii). A majority rule game is strong provided n is odd.
Now the usual solution concept for a cooperative game,

the core, can be defined. First define a dominance relation

D(x)v. provided there exists a winniﬁg coalition M € W such

1 2
that lei(x)v2 for all 1 € M. Then the directional core K(x) is the

on B by v

-set of all undominated directions:

(2.3) kK(x) = veB |d veBos D)V
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If it is nonempty, the outcome shift is assumed to be in K(x), which
is particularly plausible because K(x) is shown in appendix A to

contain the core defined there independently of utility gradients.

The nature of the directional core is clarified by the

following fundamental characterization. 1Its statement requires,

for ény v € B and x € Em, a coalition to be defined by

(2.4) M(x,v) ={i e N | v * Vu, (x) > 0}.

M(x,v) is simply the coalition that prefers the status quo to shift
in direction v to remaining at x, that is, the set of people that

prefers (by Pi(x)) v to 0.

Proposition 2.1: For any x € Em,

{(2.5) K(x) ={veB|VveBsv-v<0, Mx,v) ¢ W}.

Proof: Suppose-; ¢ B and that for all v € B satisfying v - ;_§ 0,
M(x,v) ¢ W. If v ¢ K(x), then there exists v_ € B and an M € W such
that V)Pi(xf;_for all i € M. Hence for each i ¢ M, (v~ = )

. Vui(x) > 0.

v - v
Since v - v # 0, we can let v = |1v' _M;ll. Clearly v £ B, ,and by
the Cauchy-Schwarz inequality,
P LS LA N
IIvo - v

So by the hypothesis, M(x,V) # W. But for any i ¢ M, v * Vui(x) >0

since (v~ - ¥) ¢ Vu.(x) > 0. Hence Mc M(x,v), and by superadditivity,
i
we achieve the contradiction M(x,v) € W. Thus v € K(x).

Conversely, suppose.; € K(x). If v = 0, then for any v € B,
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vPi(x); for all i € M(x,v). Because v = 0 is undominated, M(x,v) & W
for all v € B. Also, M(x,0) = @ ¢ /. Hence we need to show
M(x,v) ¢ W only for v # 0, v# 0, and v ;‘i<0.

For any i € N, v * Vui(x) can be considered as a continuous
function of v on B. So if v - Vui(x) > 0, there is an open neighbor-
hood Ui(v) of v such that y - Vui(x) > 0 for all v € Ui(v). Hence

for any v € B and any

vy E & U,(V) = U(V)s
ieM(x,v) * \

M(x,v) © M(x,v). By superadditivity, M(x,y) ¢ W implies M(x,v) ¢ W.
If v '-;_5 0, furthermore, since U(v) is an open neighborhood of v,
there is a y € U(v) such that y - v < 0. Therefore, to show that

v * v <0 implies M(x,v) ¢ W, we need only show that v * v < 0 implies

M(x,v) & W.

So suppose v * v < 0. Let v' = v - 2(v * v)v. Then v~ € B.
If i € M(x,v), then v °* Vui(x) >0, and so (v~ - v) '* Vui(x) =
-2(v ";)(v . Vui(x)) > 0. Hence v’Pi(x}; for all i € M(x,v),

implying that M(x,v) ¢ W since v is undominated.

The content of proposition 2.1 is easily interpretable. Say
that a direction v "points away" from another direction v provided
v °-;_§ 0. Then (2.5) implies a direction v is undominated provided

no winning coalition prefers a direction pointing away from v

over the null direction. Stated differently, if the coalition
M(x,v) preferring x to shift in direction v is winning, then no

direction v pointing away from v is undominated.
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For future reference, let

(2.6) I =1{xeE™ | Kx #0},
and
(2.7) L= &KerE” | Kx) =g}= I",

In appendix A, T is shown to be closed, so that L is open. Let
J = interior I and L = closure L.

Examples of undominated directions are easily constructed
that utilize the benchmark Euclidean preferences so pervasive in the
spatial model literature. A person i € N is said to have Euclidean

preferences if there is a point P, € E" such that

2
(2.8)  uw =lp, - x|l

represents them. The point P; is i's ideal point, and his indifference
surfaces are spheres centered at pi. At any point x, the gradient

Vui(x) = 2(pi - x) is a vector "pointing" from x to P, -

When preferences are Euclidean and the game is majority
rule, expression (2.5) simply says that v € K(x) if any hyperplane
containing x has no more than half the ideal points on any open
side of it not containing v. Thus when n is odd, as in figures
2.la,b,d, an undominated direction at x is unique and must point
towards a Py satisfying the median-like property that any hyper-—
plane containing Py and x bisects the whole set of ideal points.

In figure 2.1b the cone Tl contains the directions that all

three people prefer to a null shift at x , but the undominated

1!

direction.;l¢ Tl' At X, in figure 2.1b and at x in figure 2.lc, mno

winning coalition prefers the undominated direction shown to the zero
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FIGURE 2.1

(a)nl=23n=5

K(x)
(¢) m= 2, n= 4
A
T=£"
X
t >
—e Dy
P3
(b)) m=2, n=3
Py
(d) m= 3, n=3
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direction, that is, no winning coalition is better off if those status
quos shift in the undominated directions indicated. TIn figure 2.1d,
m= 3 and x is floating above the two-dimensional triangle P{P,P 4"
Everybody would prefer x to shift in a direction such as t, but never-—

theless there is no undominated direction.

3. THE POINT CORE

In this section, to further clarify the nature of the
directional core K(x), it is contrasted to a local point core often
considered in the literature. To this end, define K < E" to be the
set of points x for which there is no direction v € B and coalition
M e W such that v - Vui(x) >0 for all i € M. In the previous nota-
tion, this point core is simply
(3.1) K={xeE" | v veB, Mx,v) ¢ W}.
Although, as is shown in appendix B, K is only a linear approxima-’
tion to the set of locally undominated points, it has been discussed
widely under various guiées: it is the "local core'" to the dynamic
game of Schofield [1977b], the set of "Plott equilibriums" in Sloss

"equilibriums"

[1973], and, in the context of majority rule, the set of
in Plott [196?];-0f ”totéi.ﬁediansf in Hoyer éﬁd Ma&er [1975], and
of "quasi-undominated" points in the dissertation appendix.

The definition of K can also be written
(3.2) K=1{xeE"] 0¢eK(xI,

which says that x is in the point core provided no direction in B

dominates the zero direction. This is in contrast to the condition
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implied by (2.5) for the directional core K(x) to be non—empty,
namely, that only some closed half of B not dominate the zero direc—
tion. 1In this sense the existence conditions for K(x) are weaker than
those for K. This is fﬁrther indicated by the following corollary
to proposition 1, which indicates x € K if and only if every direction

is undominated at x.

Corollary 3.1: Expression (3.2) can be strengthened to

(3.3) X ={xeE" | K(x) = B}.

Proof: By (3.2) we need only show that KC {x € " | K(x) = B}.
Suppose x € K and v € B. By (3.1), M(x,v) ¢ 0 for all v € B.

Hence by (2.5),-; £ K(x). This proves K(x) = B.

There is a closer relationship between the cores K and K(x)

in the case of Euclidean preferences. Proposition 3.1 states that in

this case any direction pointing from x to K is undominated —- a

result clearly having content only when K # §.

Proposition:3.1: Let x € E'. If preferences are Euclidean, then

(3.4) {veB|3IAr>03x+2Av e K} < K(x).

Proof: It must be shown that if z € K, then K(x) contains the v € B
for which z = x + Av for some A > 0. Suppose v € B satisfies

v --;‘f 0. Then v » (z - x) < 0. Since Vui(x)i= 2(pi - x),

v e (pi - x) > 0 for all 1 € M(x,v). So for all i e M(x,v),

v . (pi -z) =v * (pi - x) = v * (2 - x) > 0. This proves that

M(x,v) ¢ M(z,v). Since M(z,v) ¢ W because z € K, superadditivity
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implies M(x,v) # W. Thus by proposition 2.1, v & B(x).

The reverse of inclusion (3.4) is not always true, as
figure 3.1 indicates. 1In this figure, N = {1,2,3,4} and three-
and four-person coalitions are winning. At the point x, K(x)
contains all directions between the directions that point to P,
and P3> but only Py is contained in K. The reason that all directions
in K(x) in this example do mot point to K is that the number of players
in this majority rule game is even, which means that the game is not
strong. The next proposition states that in strong simpie games where
preferences are Euclidean and K # ¢, K(x) is exactly the set of direc-

tions that point to K.

Proposition 3.2: 1If preferences are Euclidean, the game is strong,

and K # @, then

(3.5) K(x) ={veB| x+ Av € K for some A > 0},

Proof: TIn vlew of proposition 3.1, 1t 1s only necessary te show that
K(x) is contained in the set on the right of (3.5). So let v € Bl

and suppose x + Av ¢ K for all A > 0. We must show v ¢ K(x). We

can assume v # 0, for v =0 and x ¢ K imply v ¢ K(x). In Appendix

B it is shown that K is closed, and a simple argument shows it is
convex and bounded when preferences are Euclidean. Since {x + Av |
A > 0} is disjoint from K, a separating hyperplane theorem shows the
existence of v € B such that v » v < 0 and v * (z — x) > 0 for any

z € K. LetM={ieN|v-(pi—x)go}, and let z € K. Then if

ieM ~-v- (pi —z)y=v -+ (z-%x)—-v " (pi - %) ¥ 0. 8o, as z e K,
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FIGURE 3.1




.
MC M(z,~v) ¢ W. Superadditivity now implies M ¢ W. Since the game
is strong and M(x,v) is the complement of M, M(x,v) € W. So by

propoéitidn 2.1, v ¢ K(x).

4. LOCAL CYCLES AND DIRECTIONAL CORES

A brief digression is now pursued in order to point out
a connection between K(x) and an important cone studied by Scho-
field [1977a]. A second characterization of K(x) is provided
that allows an immediate application of Schofield's Null Dual Theorem
ﬁo show that K(x) = 9 implies the doﬁinance relation over points is
cyclic in a meighborhood of x. Stated differently, a sufficient
condition for K(x) to be nonempty is that local cyeling not occur
in the vicinity of x. More notation is unfortunately necessary.

The (local) Pareto optimal set for a coalition MC N is

4.1y P = {xeE" I/Z{v € B> Mc M(x,v)} ,
that is, x is (locally) Pareto optimal for M if there is no direc-
tion in which everyone in M wants x to shift. Notice that K = NP(M).

Mel
The preference co-cone of a coalition MC N at a point x is simply

the convex cone generated by the utility gradients of those in M:

(4.2) D(x,M) = {y e E° | y = I A\ Vu (x), all A, > 0, some A, > O}.
ieM * * &

As Schofield [1977a] demonstrates, 0 € B(X,M) if and only if
'x € P(M). Define a related cone by

(4.3) . B ifxEP(M)-
D(x,M) = -
D(x,M) n B if x ¢ P(M).
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Thus 0 € 5-(){,1\1), D(x,M) = B, and x € P(M) are all equivalent
statements. The next proposition provides an important characteri-

zation of the directional core K(x) in terms of these cones.

Proposition 4.:1: At any x € B,

(4.4) K(x) = 0 D(x,M).
MelV

Proof: K(x) ¢ f D(x,M) is first shown. Suppose v € K(x). Then we
Melv

must show v € D(x,M) whenever M is winning, which is nontrivial

only when D(x,M) # B. In this case the closed convex cone ’]‘5(.}:,]}{)
 does not contain 0. Assume v § B(X,M). Then B(X,M) and may be
strictly separated with a hyperplane containing the origin, that

is, there exists v € B such that v - ;_<_ 0 and v = y > 0 for all

vy € ﬁ(x,M). As Vui(x) € E(X,M) for all i € M, the latter inequality
implies that MC M(x,v). Superadditivity then implies M(x,v) & W,
which by proposition 2.1 contradicts v € K(x), Therefore, we know

v e D(x,M) N B = D(x,M).

Now suppose v & 1 D(x,M). We must show v & K(x).
Melv

Suppose v £ B satisfies v » ;"f 0. TFor any i € M(x,v), v * Vui(x) = O
which implies that v * y > 0 for all v ¢ B(X,M(X,V)). Hence

0,;- ¢ B(X,M(X,V)). If M(x,v) £ W, then by hypothesis, v e D(x,M(x,v)) =
B N S(X,M(X,V)) » a contradiction. Hence M(x,v) ¢ . So by proposi-

tion 2.1, v & K(x).

Proposition 4.1 allows the immediate conclusion that the' empti-
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ness of K(x) implies local cyeling, once the latter is properly defined.

Say a point x, is continuously reachable from a point Xy provided there

1

is a continuous path c: [0,1] = Em, differentiable on the intervals

= \ = = h
Il (O,tl), 12 (tl,tz),...Ik (tk_l,l), such that
(4.51) c(0) = Xq>
(4 511 c(l) = x5 and
(4.5111) M = N Mle(t), c”(t)) € W ( = 1,2,...,Kk).
J tel
i

So at each point t € Ij’ the winning coalition Mj unanimously

prefers the point e(t) to shift along the curve c rather than

3
not shift at all.

For any points y,zs:Em, say that y dominates z if there
exists M £ (W such that ui(y) > ui(z) for all i € M. Since
c () - Vui(c(t)) > 0 at each t € Ij and i € Mj’ it is easy to
show that ui(c(tj+l)) > ui(c(tj)) for every i € M,. Hence, if x

k| 1

is continuously reachable from *q» there is a sequence of points Xy =
c(0), c(tl),...,c(tk_l), c(l) = Xy such that each point dominates
the preceeding one. This dominance relation is cyclic if Xy T %;-
Local cycling is said to occur at x provided there is a neighborhood
U of x such that any point in U is_ continuously reachable from x by
a path that stays in U.4

The Null Dual Theorem of Schofield [1977a] states that

local cycling occurs at x if () D(x,M) is empty. Proposition 4.1
MelW

therefore immediately implies

Corollary 4.l: Local cycling occurs at x if K(x) = .
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5. THE APPROACH PROPERTY

In this section an examination. of dynamics is initiated
by characterizing points with nonempty directional cores in terms
of certain paths containing them. Specifically, the directional
core at x is nonempty if and only if there is a path through x that
possesses a type of optimality that will soon be defined.

Because the global properties of paths are of interest,
utility functions are often subsequently assumed to be pseudo-—

concave, that is, to satisfy for each 1 € N

.1 =% - Vyx <0 = ully < u, ().

The next proposition will also require the preferred-to-x set of

a coalition MC N to be defined by
(5.2 P(xM = {y & B [ ui(y) > ui(x) for all i & M}.
The set P(x,M) is open and, if utility functions are pseudoconcave,
also convex.

If A is either a set or point in Em, and c: [0,»] > E" is
a continuous, differentiable (almost everywhere) path, let the
function gc(-;A) : [0,00] = R+ be the distance from c(t) to A :

(5.3) g_(t38) = ini]]y - c(t)|| -
VE

Denote by g;(t;Z) the derivative of g. at t. Say that the path c
has the approach property at the point c(t) proﬁided that for all
MelWand v € P(e(t) M),

(5.4) g (t3y) <o.

The approach property can be interpreted as a pointwise
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optimality condition on paths, since a path satisfying the approach
property at x = c(t) is moving at time t simultaneously towards the
preferred—-to-x set of every winning coalition. One consequence

of the following proposition is that a path satisfying the approach

property at a point x exists if and only if R(x) # 0.

Proposition 5.1: Fix x € E'. If there is a path ¢ having the approach

property at x = c(t), then

(5.5) e (B)
Il ™ ()]

€ K(x).

Conversely, if each ug is pseudoconcave and ¢ is a path satisfying
c(t) = x and (5.5), then c satisfies the approach préperty at x.
Proof: Suppose c has the approach property at x = e(t). Let
:;=—£££gl4. Suppose v € B satisfies v * v < 0. By the continuity
lte” -

of each uy and the finiteness of M(x,v), there exists A > 0 such
that ui(x + dv) > ui(x) for all i £ M(x,v). Hence, letting y =
x + Av, we have y € P(X,M(x,v)). Since

g.(t 3y) = - [le"(®)|] v >0,
(5.4) implies that M(x,v) ¢ W. Proposition 2.1 now implies
v e K(x), or rather, (5.5).

Conversely, suppose ¢ is a path satisfying c(t) = x and
(5.5), and assume utility functions are pseudoconcave. Let y & P(x,M)
for some M € W. Then by pseudoconcavity, (y — x) - Vui(x) > 0 for
each i1 € M. Thus, by (5.5) and proposition 2.1, M & W implies

(y - x) * ¢”(t) > 0. Hence c satisfies the approach property at x:
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-— -’ () * (y - %)
gc(t;y) _ ( )_ y £ it
g.(t5¥)
Proposition 5.1 confers the optimal-like approach property
to paths that always travel in undominated directions when such

exist, as will be explicitly stated in the next section. Furthermore,

proposition 5.1 confers a solution property of sorts to the set L,
since a point contained in L has an empty directional core and

P

therefore cannot simultaneously approach every point preferred to

itself By every winning coalition.5 Therefore points in either K
or L satisfy desirable properties; points x € K strongly because the
preferred-to-x set of every winning coalition is empty, and
points x e L weakly because they cannot simultaneously approach all
winning coalitions' preferred-to-x sets.

Again, stronger results are obtainable if preferences are
Euclidean. This section concludes with the following results that

will be important for the convergence theorem of the next section.

Lemma 5.1: Suppose preferences are Euclidean, and assume x # P(M)
for some M ¢ N. Let z € P(M) satisfy

Iz -xll = inf |lz - x|l.

ZEP (M)
Then z € P(x,M).
Proof: It is well-known that P(M) is the convex hull of {pi | i € M},
Hence z exists, since P(M) is closed. As P(M) is also convex, there

is a supporting hyperplane at z with normal (z —_E), that is,



—56~—

(5.6) (z-2) " (z~-x) >0
for all z € P(M). Since each Py € P(M), let z = P, in (5.6),
subtract x ° (; - ;) from both sides, and rearrange to yield

fp, =%} * =) Zila~ % * L2~ B
Hence

— 2 — —
low = =fl" = Gy -2 ¢ (g - B)
> (pi = i) (pi - x) - 2(13i -X)e (z-% + T W e,

_ SR, -
oy = =) - G =

As preferences are Euclidean, this proves ui(E) > ui(z) for each

i € M, or rather, z € P(x,M).

Using this lemma, the following corollary proves that
any path through-; approaches each P(M) if and only if its tangent
vector at x is contained in K(x). While this property does not
by itself have an optimal interpretation like the approach property,
it will provide the cornerstone: of the next section's convergence

result.

Corollary 5.1: Suppose preferences are Euclidean, and fix x € E".

If ¢ is a path differentiable at c(t) = x such that

5.7 e’ Ct) e K@),
le”(®]

then for all M & ( such that x ¢ P(M),

(5.8) gc‘(?;P(M)) < 0.
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Proof: Suppose M € W and x ¢ P(M). Define z(t) € P(M) by

lz(t) = c(®)]|| = dnf ||z - e(®)|] = g, (t;P(M).
zeP (M)

Since c¢{t) is continuous and P(M) convex, z(t) is continuous. We
first show ¢ (t) = z(t) * (z - x) is differentiable with ¢”(t) = O,
where we have let z = z(t).

Because P(M) is convex, there is a supporting hyperplane
at z(t) with normal z(t) - c(t):
(5.9) (2 — =(£)) * (z(£) ~clE)) % D

for all z € P(M). Hence

lim inf (=lt) = ;)_. G =®) >0,
trt+ | b & -
and i
- ® -2« G-
t>t+ - R E -
- lim sup |S24E) = ) * (2(E) = e(e))] 4
t>t+ e IR

Hence the right hand derivative at t of 4(t), equal to

(z(t) = 2) * (z - x)

i =

lim ]

t>e+

exists and is 0. A similar argument establishes the same for the
left hand derivative, so that ¢’(E) exists and ¢'(E) = 0.

Since ¢ (t) and ¢’ (t) exist,

dl(z(t)-c(t)) -G-;n|
dt =

g, (£:P00) ™
=t

g7 (£3P(0) =

= - ® G- g (6 D
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also exists. As ¢ (t)= 0,

Il

(5.10) g, (EPAD) = = [°(® = @ - D] g (GD

1l

gc(t;Z)-
But by lemma 5.1, z € P(x,M). Hence if (5.7) is true, proposition 5.1

implies g;(E}E) < 0 since Euclidean utility functions are pseudo-

concave. Thus (5.7) implies (5.8).

6. THE DYNAMIC PROCESS

Now consider paths that the status quo traces if at each
time its direction of shift is contained in the directional core
whenever it:is nonempty. The requirement that a direction of
movement be undominated whenever possible is a behavioral restriction.
These paths are generated when the outcome of.the simple game is an
infintesimal shift of the status'quo, after which a new game is
played at the new status quo, and the entire proceés repeated inde-
finitely. One key assumption here is that players do not respond to
realizations that current actions determine the location of future
status quos and hence which games will subsequently be played.
Whether this "sincere" behavior is a result of myopia, moral injunc-
tions against large-scale gaming, etc., it probably occurs in many
situations.

This dynamic process is modeled here as simply as possible.
The ultimate goal is to obtain convergence'of some sort to the set
K U L that was argued previously to satisfy solution-like properties.
However, for mathematical convenience, convergence to the closed

set K \J L is investigated. The simplest assumption sufficient for
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convergence is merely that the speed of the status quo x is bounded
below by s > 0 when x is not in K.U'f, that is, when x € J\g. An
upper bound S on the speed is also a convenient assumption. Finally,
in order to minimally restrict the direction of motion, it is
required to be undominated only when x € 3\5 rather than when
x € I. Summarizing, the status quo is assumed to follow a
path x: [0,=] +Em, differentiable almost everywhere, satisfyiﬁg
(6.1)  x(6) € F(x(t)), |

m

where F: E" - 2E is a correspondence defined by
m . —-
(6.2) {yeE | |y]l] <s} if xe RUT
F(x) =
fyeE" | s < < 8 and iy e K(x)} if x e 0\K.
yes™ | s <lyll < T \
The correspondence F maps points into truncated, convex closed cones,
and is shown to be uppersemicontinuous in Appendix C.
It now immediately follows that such a path almost always

satisfies the approach property whenever possible.

Corollary 6.1t Provided all preferences are pseudoconcave, a path x

satisfying (6.1) and (6.2) has the approach property at all x(t) £ J.

Proof: If %=(t) € J\K, then from (6.2), Hﬁﬁ%%%ﬂ £ K(k). Hence

proposition 5.1 immediately implies that x satisfies the approach
property at x(t). If x(t) £ K, then the approach property is vacu—

ously satisfied at x(t) since P(x(t),M) = @ for each M e W.

Two types of convergence will be discussed now. If c is

a path in E" and A © Em, ¢ is said to converge to A provided
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1im gc(t;A) = 0. The path c is said to enter A provided that given
t->o0
any T > 0, there is a time t > T such that c(t) € A.

The next proposition is that an x(t) satisfying (6.1) and
(6.2) will converge to K if K # § or will enter L if K = $, provided

that preferences are Euclidean. Hence in this case the path converges

to the set K U L that was argued to have solution properties

in the previous section. From corollary 5.1 we see that x(t) will
move into onePareto set P(M) after another, never leaving any after
entering, as long as x(t) € J. So what occurs is that x(t) keeps
moving simultaneously towards all winning coalitions' Pareto sets
that do not contain it until it has either moved intb them all (x £ K)

or can no longer approach them all simultaneously (x € f).

Proposition 6.1l: Suppose all preferences are Euclidean. If K # 0,

then an x(t) satisfying (6.1) and (6.2) converges to K, and does so

monotonically if the game is strong. If K ='@, then x(t) enters L.

m
’

Proof: Suppose first that K # @#. Then proposition 3.1 implies J = E
so that x(t) € J always. Let M € W. Corollary 5.1 now implies

that gx(t;P(M)) is strictly decreasing in t when x(t) ¢ P(M)'. As
gx(t;P(M)) is bounded below by 0,

(6.3) d* = 1dim gx(t;P(M))

oo
exists. It was shown in proving corollary 5.1 that g (t;P(M) was
X
differentiable when x(t) was differentiable, which is almost every-

where. Hence (6.3) implies
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(6.4) lim gZ(t;P()) = 0.

oo
Since x(t) is always approaching the compact set P(M), the range of
the path x is contained in a compact set. As the range of x” is also

contained in a compact set, there is a sequence t + @ as v > ®
i v

such that x = lim x(tv) and x” = lim x'(tv) exist. Let z(t) & P(M)

Vo Yo
satisfy
|2() - =(O)]] = g (t;P(D),
and let z = lim z(t ). Then
v Y

6.5 % - (z-% = Lt {6,550 00 mokesmte ) WF 2l

= —‘]i: gx(tv;P(M)) g;(tv;P(M))

= —d%0 = 0 (by (6.3) and 6.4)).

Since F is uppersemicontinuous, x € F(x). If d* # 0, then x ¢ P(})
and so x ¢ K. Hence by (6.1) and (6.2), ||Xx7]| >s >0 and

(6.6) e K(x).

ixl
hY

Let c(t) be a path such that c(t)= x and ¢”(t) = x”. Then, as
Iz - || = gc(“E;P(M)), (6.6), corollary 5.1, and gCG);P(M)) > 0

imply the contradiction

x * (z - %) = —gc(?;?) g, (t372) (by (5.10))

It

- g, (£5P(D) gl (£;P(D)
> 0.
This proves that d* = 0. Hence x(t) converges to P(M) for each M & W,

which means that x(t) converges to K = 0 P(M).
MelW



—62-
If K # @ and the game is strong, proposition 3.2 implies that
x”(t) always "points" at K. This can be used to show g”(t;K) <0

when x(t) ¢ K, so that x(t) monotonically converges to K.

Now suppose K = @). If there was a T such that x(t) € J
for all t > T, the above argument establishes the existence of a
1imit point x such that x € P(M) for all M € W. But then x € K,

which is impossible. Hence L exists and x(t) enters L when K = §.

The proof of proposition 6.1 could have used more of the
special structure of Euclidean preferences, that is, it could have
first been shown via proposition 4.1 that undominated directions
"point" towards all winning coalitions' Pareto sets, which indicates
that x(t) must converge to them all if x(t) & J always. However,
the above proof used the Euclidean assumption only via the mono-
tinicity property of corollary 5.1. This should allow some elements
of the proof to be useful in proving convergence to K UL under a

less restrictive preference assumption.

7. THE EXISTENCE PROBLEM IN MAJORITY GAMES

The value of the hypothesis that game outcomes will be
undominated is in its use as a predictor. In situations where social
change is slow, so that the status quo can never shift far, it
can be predicted to shift in undominated directioms — provided they
exist. Unfortunately, cores "infrequently" exist when power is evenly

spread among individuals and the dominance relation is highly decisive,
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such as occurs in majority rule games defined by

W= {MC N |3% < |m|}.

For a majority game in a space of dimension greater than two,
the necessary conditions for a nonempty directioﬁal core are similar
and only slightly less restrictive than the conditions necessary for
a nénempty point core. Expression (2.5) applied to a majority game
states that K(x) contains a direction v only if each closed halfspace
determined by any hyperplane through 0 and v contains at least half
the utility gradients. Thus (2.5) is a céndition of symmetry about
a line determined by 0 and v. Expression (3.1), on the other hand,
is a condition of symmetry about the point 0, since it says that the
point core K contains x only if each closed halfspace determined by
any hyperplane through 0 contains at least half the utility gradients.
If the dimension of the space is greater than two, then intuitively
symmetry about a line is only slightly less restrictive than symmetry
about a point. Each type of symmetry can be shown equivalent to
stringent symmetry conditions involving pairs of utility gradients.

Such pairwise symmetries are shown necessary in the &isserta*
tion appendix for the existence of various point cores. The point
cores investigated there are allowed to be contained in the boundary
of a feasible set, which means that only certain directions of shift
are feasible. The restrictions on feasible directions allow the
results of the appendix to be applied here to show that symmetries
involving pairs of gradients are also required for directional cores to
exist in majority games. 1In fact, we will broaden the discussioﬁ to

generalized majority games, which are defined by a fraction
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.5 < A <1 and

w={MCN | xn< |M|}.
Inspection of (2.5) and (3.1) leads to the key observation:
v £ K(x) whenever x is in the point core K in situations where feas-
ible directions in which x can shift are defined by
F={veB |vev < 0}.
The conditions for x € K when the coneof feasible shift directions is

F is one of the special cases considered in the dissertation appendix

and, if A = .5 and n is odd, in Plott [1967].

To apply results in the appendix, let T be a two dimensional
subspace of B containing v € K(x), and let NT = {i e'N l Vui(x) € Tl.

Let Q C?NT be a maximal subset of N

T that can be partitioned into

pairs {i,j} for which neither Vui(x) nor Vuj(x) is a multiple of
';, but there is an ai > 0 and aj > 0 such that
(7.1) o, Vu (x) + o, Vu, (x) € {o,v}.
Finally, let RC N%\Q be defined by R = {i € N | Vu, (x) = av for
some o > 0}. Then ¢orollary 4 in the appendix implies that a
necessary condition for v € K(x) is a bound on |Q]:
7.2y Ing| - [R] > || > || - 2[R] - A - Dn.
To interpret this, suppose the game is majority rule with
n odd. Then A = .5 and we have
(7.3) Ny} - IR > [Q] > |ng[- 2|R].
1f |R| = 0, then INT| > {q| > INTl, which is impossible. Hence

(7.3) dmplies |R| > 1. If |R] = 1, then (7.3) implies [Q| = [N [ - 1.
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in this case, by applying (7.3) to all two dimensional subspaces con-
taining';, we see that the n-1 people in N\R can be partitioned into
pairs whose gradients satisfy (7.1). This is exactly the condition
obtained by Plott [1967] for constrained majority rule.
The pairwise symmetry condition (7.3) that applies to majority
games is intuitively restrictive, which leads us to believe that
K(x) # ¢ is "uncommon" in a majority .game. Subsequent to the original
appearance of this pairwise symmetry condition,6 it was used by
Schofield [1978] to show that K(x) # ¢ is "uncommon" in a formal
sense.7 Specifically, he investigates majority games in which m > 2
if n is odd and m > 3 if n > 2 is even. In these cases he shows
that if the n-tuple of utility functions is contained in a particular
Lo 8
subset of m C” that is dense with respect to a natural topology, then
i=1
the set
L={xeE® | K(x) = ¢}
is dense in E". Thus L is generically dense in a majority game if the
dimension of the state space is greater than two or three.
If the set L is dense in Em, then convergence to L U K
of paths that follow existing undominated directions is trivially
true. However, despite Schofield’s genericity result, there are
still two reasons why directional cores in majority games are of
interest. First, L is not generically dense in majority games if the
outcome space is two dimensional. This is exactly the setting of
experiments designed by Fiorina and Plott [1975] and McKelvey,

Ordeshoock, and Winer [1976] to test various solution concepts. There—

fore, in the analysis of these experiments the solution properties of
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L must be considered. In fact, Schofield [1977b] has argued that out-—
comes of these experiments do tend to cluster in L.

Second, the genericity of L being dense in majority games
has meaning only in situations where preferences are determined in

a "random'" or "uncontrollable" fashion. Only then is it "unlikely"

that the n-tuple of utility functions will not be in the dense sub-
% 2

set of m C© that implies the denseness of L. However, in some cases
i=1

the majority game is embedded in a larger model which allows

preferences over the alternative space relevant to the majority game

to be endogenously controlled. One step in this direction has been

taken by Slutsky [1977] who investigates an economy where voting

determines an allocation of public goods and a competitive market

determines the allocation of private goods. Preferences over

public goods are influenced by tax rates, and Slutsky shows that

often the point core exists if the tax rates are properly chosen.

It seems clear that a similar, dynamic model of an economy can be

constructed in which the proper choice of tax rates can insure the

existence of directional cores in public goods space.

It must not be forgotten that generic nonexistence of
directional cores was obtained for majority games. In simple games
with less decisiveness (fewer winning coalitions) and especially with
less anonymity, directional cores exist more often. An indication
that less decisiveness leads to more existence is that the only
sufficient condition obtained in Schofield [1977a] for L to be

generically dense in generalized majority games is for m > max {2q - 1,

q + 1}, where W consists of coalitions of size q < n or larger.
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Although this does not seem the tightest possible bound on m,
directional cores will apparently frequently exist in games requiring
large majorities operating with many individuals in spaces of low
dimension.

Weakening anonymity results in existence to an even greater
extent. Define a coalition

(7.4) R =0 M.
Mely

If R # ¢ then the collection of winning coalitions W that also
satisfies (2.2i) and (2.2ii) is a prefilter. Brown [1973] shows that
any dominance relation obtained from a prefilter when individual
preferences are acyclic is also acyclic. The coalition R is called

a collegium and occupies a uniquely powerful position, since

(1) the point core K contains the nonempty Pareto set P(R), and

(2) the directional core K(x) contains the nonempty cone D(x,R),

as can be seen from (4.4).9 Hence, when a collegium exists, direc-
tional cores always exist and, under the conditions of proposition

6.1, the status quo will converge to the point core.



.
APPENDIX A

This appendix to section 2 first investigates the

relationship between K(x) and a directional core K(x) defined by a

more complete inducement of preferences upon B than is represented

by Pi(x). It concludes with a proof that I is closed.

The best way to induce preferences from E" to B that is
in keeping with the spirit of the model is to define a preference
ordering Pi(x) on B by

(A.1) vlgi(x)vz b IA >0 > ui(x + )\vl) > ui(x + ?\vz) YO0 <A

< X. Player i will prefer shifting x in direction v, to shiftirg it in

1
direction Vs when both shifts are very small and of equal magni-

~

tude, if- lei(x)vz.' As uy is continuously differentiable, ~lei(x)v2

and ~V2Pi(x)vl imply ui(x + Kvl) — ui(x + sz) for all A > 0 less than

~

some A > 0. Thus an indifference relation defined from Pi(x) truly
indicates that a player is indifferent between small shifts. This

is not true of an indifference relation defined from,Pi(x), since
~

Pi(x)v but not v Pi(x)v

there are cases where v 9 1

1
The ordering Pi(x) is a linear approximation to Pi(x) and

~

is seen in lemma Al below to be contained in Pi(x). The condition

¢

for Pi(x) = ﬁi(x) on B = BN\{0} is that Uy be locally symmetric

(about its gradient) at x, which is defined to mean that for any

Vis V, € B, there exists A > 0 such that

(A.2) (vl e G B Vui(x) < 0= ui(x + Kvi)_ﬁ ui(x + lvz)

9)
for all 0 <A < A. The name of this property results from the fact

that (A.2) is satisfied provided that whenever v v, € B are equi-

i
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distant from the gradient Vui(x), Avl and sz must be on the same

indifference curve for small A > 0. Euclidean functions as
defined in (2.8) and linear functions are two examples of functions

everywhere locally symmetric.

Lemma Al: P, (x) € P (x). P (x) = ﬁi(x) on B if and only if
uy is locally symmetric at x.

Proof: If lei(x)vz, then (vl - vz) . Vui(x) > 0. Let £()\) =

u.(x + Av,) - u,(x + Av,), and observe that
i 1 i 2

14m —f—}@ = £7(0) = (v, = v,) * Vu (0 > 0.

A0+ 2

Hence for small A > 0, £{)) > 0, that is, ViPi(X)VZ'

Now suppose that Pi(x) = Pi(x) and that (vl - vz) .

Vui(x) < 0 for a particular ViV, € B. Then not lei(x)vz, and

~

hence not lei(x)vz. Thus there is no A > 0 such that £(}) > 0

for all 0 < A < A. Since f is continuously differentiable, this

implies the existence of A > 0 such that £(A) < 0 for all

0 <X <A. This proves that u, is locally symmetric at x.
Conversely, suppose uy is locally symmetric at x, and that

lei(x)vz. Then £(A) > 0 for all small A > 0. If (vl“vz) . Vui(x)

< 0, then by (A.2), there exists A > 0 such that £(X) $ 0 for all O

< A < A. As this is impossible, (vl - v2) 2 Vui(x) > 0, implying

v Pi(h)vz.

1L

~

If VisVy € 5, say that V1 (P(x)) P(x)~dominates v, provided

2
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M £ ! exists such that v.P, (x)v, (v.P,(x)v,) for all i € M. Then
A 2 1.2 2

K(x) is the set of P(x)-undominated directiomns, and similarly define
the core K(x) to be the set of P(x)-undominated directions. K(x)

is a linear approximation to K(x), and the following proposition
specifies their relationship. Without further assumptions it implies

that the propositions of this paper characterizing directions in K(x)

~
are also true for directions in K(x).

P ~
Proposition Al: K(x) ¢ K(x). Conversely, K(x) = K{x) provided

either (i) every ug is linear, or (ii) every uy is locally
symmetric at x and, for each M e W, x ¢ P(M) or

x € interior{y | 2 z 3 ui(z) > ui(y) ¥4 ¥ E IP(M)-l0

Proof: Lemma Al implies ﬁ(x) & K(x); If each ug is linear, then
ﬁi(x) = Pi(x) = ﬁ(x) = K(x). Now suppose each u, is locally
symmetric at x, and let v € K(xX). Case 1l: vV # 0. If+v ¢ ﬁ(x),
then 3 Me W >0 ﬁi(x)ﬁ'v 1 E M, as by lemma Al 2 v # 0 that
ﬁ(x)—dominateg V. We know x € P(M), for otherwise

Adv #0 v-Pi(x) 0 V ie M, which by lemma Al and transitivity
impliés the contradiection vPi(xj; YV ieM Also, 0 ﬁi(x) v
implies 3 X >0 2V 0 < A <1}, ui(x) > ui(x + Av) ¥V ieM.
Hence x ¢ IP(M). This final contradiction proves v € E(x).

Case 2: v = 0. Then by (3.1), x € P(M) Y M € W, so that

x € IP(M) YV M € W. But then no v € B E(X)— qdminates T = 0,

so that Vv € I?(x) 5
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Proposition A2: T is closed.

Proof: Let {xt} be a sequence of points in I converging to x. Let

Vt € K(xt). Since B is compact we can choose a subsequence {vk} of

{vt} such that lim Ve = v £ B. We show that v € K(x) and hence x € I.

1f v = 0, then as 0 € B is an isolated point of TS,V there

exist k. such that v, = 0 for all k > k Suppose i € M(_);,v) for some

0 k 0-

v € B. Then v - Vui(E) 5 0 A8 Vui is continuous, there exists

k(i) such that v * Vu (x,) > 0 for all k > k(i). Hence M(x,v) c M(x, ,v)

for all k > k = ‘max {k.,k(i)}. Since v, = 0 € K(x ) for k > k,
= L 0 k " =
ieM(x,v)

proposition 2.1 implies M(xk,v) ¢ W for k > k. Superadditivity now
implies M(x,v) ¢ W/, , and proposition 2.1 now implies v € K(x).

So assume v # 0, and suppose v * ;ﬁ 0 for some v € B. As

in the proof of proposition 2.1, the finiteness of N can be used to show
existence of a y € B near v such that y * v < 0 and M(g,v)_ c M(;,y).
As in the previous paragraph, the continuity of ‘\7u_:,L implies the

existence of k such that M(z,y) C M(xk,y) for all k ZE. Furthermore,

since Vi = ¥, there exists k such that y = Vi

1f M(x,v) € W, then M(xk,y) e W for all k > max {k,k}, which implies

< 0 for all k > k.

Vi £ K(xk) for k > max {E,k} by proposition 2.1. This contradiction
shows M(;c—,v) ¢ W for any v such that v - v < 0. Proposition 2.1 now

implies v e K(x).
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APPENDIX B

The purpose of this appendix is analagous to that of

appendix A, namely, to examine the relationship between the local
point core K and a truly local point core K defined here.
Just as K(x) was viewed as a linear approximation to K(x), K will

be considered to linearly approximate K.

Say that x € E" is locally undominated provided a neighbor-

hood U of x exists such that for any z e U, {i e N | ui(z) > ui(x)} ¢ W.

The local point core K is the set of locally undominated points in

B Say that a function u, is locally pseudoconcave at x provided
there exists a radius Ai > 0 such that for any v £ B,

(B.1) v e Vui(x) w0 = ui(x + Av) ﬁ_ui(X)

for all 0 < X < Ai. (Observe that local pseudoconcavity is equiva-—

lent to pseudoconcavity (see (5.1)) if ki = ©,)

The following lemma, stronger than mnecessary for propo-
sition Bl, is of independent interest because it shows when K can

be defined in terms of K(x) just as K is defined in (3.2) in terms

of K(x).

Lemma Bl:
(B.2) K c {xeE" | 0eR(x]I.
If each u, is locally pseudoconcave at each x contained in the right

hand side of (B:2), then

(B.3) ; = {x e E® ] 0 e E(x)}.
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Proof: Suppose x € K. If 0 ¢ K(x), then there exists M £ W and

v € B such that for each 1 € M, vPi(x)O. Hence for each i € M, there

is a ki > 0 such that ui(x + Av) > ui(x) for all 0 < A <A1i. As M is

finite, A = min{ii} >0 and for all i € M, uw,(x + Av) > u (x) if
ieM

0 <A <A. But now any neighborhood of x contains a point x + Av

that dominates x via M, which contradicts x € K. Hence 0 £ K(x).

~

Conversely, suppose 0 € K(x) and each u, is locally pseudo- -

concave at x with a radius of ki > 0. As N is finite, A = min {li} > 0.
ieN

If x ¢ K, there exists v € B and A > 0 such that A < A and
ui(x + Av) > ui(x) for i contained in some M £ [V, Hence by (B.1l),
v . Vui(x) > 0 for all £ & M, i.e., vPi(x)O for all i € M. By lemma

~

Al vPi(x)O for all i € M, which contradicts 0 & K(x). Hence x &£ XK.

Proposition Bl: K < K. If each u, is locally pseudoconcave at
11

each x ¢ K, then K = K.
Procof: Suppose x € K. Then 0 € K(x) by lemma Bl, and by proposi-
tion Al, 0 £ K(x). Hence by (3.2), x € K. Conversely, suppose x € K

and each u, is locally pseudoconcave at x. Let X = min {Ai} > 0,
ieN

and let U= {x+ Av |[v € B, 0 <X < A}. If for some x + Av € U,
M={ieN| ui(x + Av) > ui(x)} € W, then local pseudoconcavity
and superadditivity imply M C M(x,v) € W. This contradiction to

~

x € K shows x is locally undominated in U, so that x € K.



o
Thus propositions true for elements of K are true for elements

~
of K, and local pseudoconcavity is sufficient for the converse.

Proposition B2: XK is closed.

Proof: Let {xt} be a sequence in K converging to x. Let vt =0

] K(xt). Now apply the first half of the proof of proposition AZ,
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APPENDIX C

‘In this appendix F(x), defined in (6.2), is shown to be
uppersemicontinuous. To do this, suppose {xk} and {yg are two
> X,

sequences in E" such that x Yy € F(xk) , and iy y. Then

k
; € F(?) must be shown.

If x € KU L, the proof is trivial because each Hyk[[ < S
implies that [|y]| < S, which shows by (6.2) that y € F(x). So
suppose x € J\K

Because J\K is an open set, ¥ € J\K for large k. Hence

¥

W ® 5 Kk is contained in K(xk) for large k, by (6.2). Inspection
IEA|

of the first paragraph of the proof to proposition A2 now

reveals that it proves v € K(x), where Vi > v = ‘n-:‘%n—- . Since

s < ”;Hf_ S because s < “kaE S for large k, this shows that

v € F(;).
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FOOTNOTES

Median-1like symmetry conditions are discussed, for example, in
Davis, DeGroot and Hinich [1972], Sloss [1973], Hoyer and Mayer
[1975], and Calvert [1977]. The more explicit pairwise symmetry
conditions necessary in majority rule are discussed in Plott [1967],

McKelvey and Wendell [1976], Slutsky [1978], and the appendix

to this dissertation.

Schofield actually investigates continuous-time processes that

have the property that for small £, the outcome at time t + €

is preferred by a majority to the outcome at time t.

Notice that this does not say that ¢ (t) € K(e(t)). Hence it is
not necessarily true that a status quo moving along ¢ is shifting
in undominated directions. This kind of path is discussed

in sections 5 and 6.

Notice that (4.51i1) implies [|e”(t)|| > O. Hence the local

cycling property implies the existence of a nondegenerate

path from x to x that stays near x, which accounts for the

name "local cycling."

See Schofield [1977b] for a very different argument for con-

sidering L as a solution set.
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In the initial version of this chapter, Matthews [1977].

Schofield [1978] actually shows that local acyclicity is

"uncommon' in a formal sense, but his method is to show that

K(x) is "commonly" empty in majority games.

C2 is the space of real, continuously twice differentiable func—
tions on Em, and a set A is dense in a topological space X pro-

vided the closure of A is X.

Schofield [1977 a,c] also observes that K(x) # ¢ if W is a

prefilter.

The local Pareto set P(M) is defined in expression (4.1) as
{x[}ﬂvsBav-Vui(x)>0VisM}. IP(M) is the
interior of the global Pareto set of M. If each u; is
pseudoconcave, as defined in (5.1), then IP(M) = interiorP(M)
and condition (ii) requires that x ¢ boundaryP(M) V M e W.
Figure 2.1(b) provides a céunterexample when this condition
is not required, for there each u, is locally symmetric at X5
but K(x) = {Vé}, although ﬁ(X) =@. (0 ﬁi(XZ)Vé for i = 2,3.)

When N is not finite, neither ﬁ cKor Kc K is true in general,
even assuming local pseudoconcavity. Pseudoconcavity, however,
implies both K Q:E and E ={globally undominated points}. See

Calvert [1977] and Sloss [1973] for further discussion of K and E

when N is arbitrarily large.
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Chapter III

CONSTRAINED PLOTT EQUILIBRIA, DIRECTIONAL EQUILIBRIA,

AND GLOBAL CYCLING SETS

Althoﬁgh the possibility of majority rule intransitivities
has been recognized since at least the time of Condorcet, their
ubiquity has only recently been revealed. Previously, democratic
theorists had hoped that the smallest set of alternatives that
collectively dominate all other alternatives —-— the top cycle set ——
would be small enough to uphold faith in the unbiased selectivity
of majority rule (see Schwartz [1970]). McKelvey [1976] demonstrated
that this hope was unfounded, at least for the case of multidimen—
sional alternative spaces. He showed that in a special case any
alternative can be reached from any other alternative by a finite
sequence of majority rule decisions, which implies that the top cycle
set is_the entire alternative space. Another implication is that
the final ‘outcome of a majority rﬁle procedure is determined com-
pletely by the agenda, or rather, by the person or institution that
constructs the agenda.

Cohen [1977] shows that more generally the top cycle set
is a member of the class of sets P(x), each of which is defined to be
the set of all alternatives that can be reached from an alternative x
via a sequence of majority decisions. Both Cohen [1977] and McKelvey
[1977] deduée conditions necessary for a set P(x) not to include all

alternatives. If P(x) is a proper subset of the alternative space,
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then it must have a boundary. .McKelvey argues that the conditions
necessarily satisfied at boundary points are severe enough to imply
that the boundary rarely exists. |

In this chapter we strengthen Cohen's [1977] and McKelvey's
[1977] results by showing that extremely strong conditions must be
satisfied at boundary points of P(x) when preferences are repre—
sentable by differentiable utility functions. The characteristi;
properties of boundary points are local, and to expleoit this fact
we apply the results of Schofield [1977a,b] and of chapter II
that concern continuous, local intransitivities and a continuous,
dynamic majority rule process, respectively.

Specifically, in section 2 we first define global cycling
sets and Sphofiéld's continuous local cycling. We then observe that
the latter cannot occur at boundary points of the former. This
allows the results of chapter II to be applied in section 3 to
conclude that undominated directions exist at the boundary points of
any P(x). It is also shown in section 3 that, if some assumptions
are satisfied, the undominated directions point back into the cycling
set from its boundary points. This implies that in a dynamic setting
such as that of chapter II, the top cycle set possesses dynamic as well
as static stability properties. |

However, the existence of undominated directions at boundary

points of a cycling set implies, as is shown in chapter II,

a severe pairwise symmetry condition on utility gradients. This
condition is derived by first observing that the existence of undomi-

nated directions at a boundary point implies that the point must be
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a constrained Plott equilibrium (see Plott [1967]). The pairwise
symmetry condition, which implies the "weak symmetry' condition
McKelvey [1977] shows to hold at boundary points, is discussed in
section 4. It further strengthens the conclusion that "usually"

the set of global intransitivities is the entire alternative space.

1. LOCAL AND GLOBAL CYCLING

Let N = {1, 2, ..., n} be the set of voters, with n odd. Each
voter i has preferences over the open alternative space X C:R? that
are representable by a differentiable utility function u, whose
indifference surfaces have no interiors (i.e., are "thin'). Under
majority rule the set W C ZN of winning coalitions consists of all
subsets of N with at least E%l members, and the (absolute) majority
rule relation P is defined by xPy <= {i € N | ui(x) > ui(y)} £ W.
Define another relation Q by xQy <=> yPx.

Suppose the status quo is a point x in X. Any point y
that can be achieved by a finite sequence of majority rule decisions
starting at x is the outcome of some social process based on majority
rule. That is, there exists an agenda that guarantees y as the out-
come whenever y can be reached via P from x. This formally means

that a finite sequence x = X5 Xl,.... = y exists such that

s xk
Xijj-l for j =1, 2, ..., k. Let P(x) be the set of all points that
can be reached wvia P from x, and let Q(x) be the set of points that

can be reached via Q from x. The sets P(x) and Q(x) are easily shown

to be open by Cohen [1977] and McKelvey [1977], and the latter further

shows Q(x) to be the complement of the closure P(x) when indifference
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surfaces are thin.

1f P(x) = X, then arbitrarily close to any point in X is
another point that can be reached from x. For this not to happen,

P(x) must be a proper subset of X and have a nonempty boundary

9P(x) = P(x) MQ(x).. Both Cohen [1977] and McKelvey [1977] establish
properties that any y € 9P(x) must satisfy. For convenience and in
accordance with McKelvey [1977], define Pl(y) = {2z € X l zPy} and

Ql(y) = {z € X | zQy}. Then properties necessary for y € 9P(x) are

2
that P(x) contain and essentially be the set of points that defeat x:

@ PremCPE)

@ Py

I

P(x)

G oty T

Loosely speaking, (1) is true because any point that beats y

will beat some point in P(x) by the continuity of utiiity functions and
hence must itself be in P(x). Property (2) says that every open set in
P(x) contains a point that beats y. If (2) is false, then the thin
indifference curve assumption implies that y beats some point in P(x)

—— a contradiction to y ¢ P(x). Property (3) is an immediate corollary
of (2).

When preferences are strictly convex, or rather, when
— : : 3 .
utility functions are strictly quasiconcave™, Cohen [1977)] shows

that (2) and (3) can be strengthened to

) Pl = P
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) Q') = Q)

She also shows for this case that each P(x) is convex when X is
convex, and that a particular P(x) exists, which we shall denote as
V, that is a top cycle set in the following sense: any point in V
is reachable from any other (not necessarily different) point in V,
and any point in V beats any point not in V. Formally, V satisfies

P(x) =V for all x € V. This top cycle set V thus can be considered

a solution set. However, if V is the whole space, then majority rule
alone tells us nothing about what the outcome of a democratic process
might be, regardless of the location of the status quo x.

Considering again an arbitrary P(x), one obvious implica-
tion of Cohen's [1977] and McKelvey's [1977] propositions about any y

contained in the boundary 9P(x) is that there are points in every
neighborhood of y that cannot be reached from y. More precisely,

we have:

Proposition 1: Let y € 9P(x). Then, given any neighborhood N(y) of

¥, there exist points in N(y) which cannot be reached via P from y.

Proposition 1 will allow us to conclude that any neighbor-
hood of y € 35?57 contains points that cannot be continuously reached
from y, where continuous reachability is a concept explored by
Schofield [1977a,b] and now to be defined. Define first a direction
to be any vector in E" of zero or unit length, and denote the set of
directions by B. Let B = B \ {0}. For any v € B and z € X, define

a coalition M(z,v) by
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M(z,v) ={ieN| v - Vui(z) > 0}.
M(z,v) can be interpreted as the set of voters who prefer the point =z
to shift in direction v rather than not shift at all. (More will be
said about directional preferences in the next section.)

Say that a point x, is continuously reachable from a point Xg

1

provided there is a continuous path c: [0,1] -+ Em, differentiable on

the intervals I, = (O,tl), I, =r(t1,t2), SR 1), such that

1 Al L T

c(0) X

0!
c(l) = Xqs and

oMy E tQIj Mc(t),c'(£)) e W (4 = 1,2, 0.8 0

So at each point t € Ij, the winning coalition Mj prefers the point

c(t) to shift along the curve ¢ rather than not shift at all.

Since c'(t) - Vui(c(t)) > 0 at each t € Ij and i € Mj’ it is easy
to show that ui(c(tj+l)) > ui(c(tj)) for every i € Mj. Therefore,

if %, is continuously reachable from x there is a sequence of

1 0’

points x. = c(0), c(tl), ee.s ot c(l) = X by which x can be

0 krl)’

reached from Xq. Thus continuous reachability implies reachability,
4 E
although the converse is false. Proposition 1 now immediately

implies:

Proposition 2: Let y € 9P(x). Then in any neighborhood of y there

are points that cannot be continuously reached from y.
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2. DIRECTIONAL CORES

We show in this section that the boundary properties of

P(x) imply the existence at boundary points of directional cores,
which are the subject of chapters T and II. The directional

core K(y) is a subset of the set of directions B defined by

TeRG) <> {ieN]| (v~-7) - Vui(y) >0} ¢ W

for all v € B. The directions in K(y) are said to be undominated at y.

The interpretation of K(y) is simple. Suppose y is the
status quo and all feasible alternatives are very close to y. Then

the choice to be made is essentially a direction in which to shift y.

Tf % = ?) . Vui(y) > 0, then voter i prefers a shift in direction v
to a shift in direction ¥ when both shifts are sufficiently small
and of equal magnitude.5 Therefore the directional core contains
any direction which cannot be beaten by absolute majority rule when
every voter votes in accordance with the above inducement of his
directional preferences.

An undominated direction can be usefully characterized in
terms of directions v # 0 that are preferred by a majority to the
zero direction. A characterization obtained in chapter II is
simply that v is undominated provided all directions that

beat the zero direction are on the same open side as v of a hyper—

plane normal to v. Formally, v & B is undominated at v if and only if

(6) M(y,v) ¢ W
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for all v € B such that v » ¥ £ 0.
A result of Schofield [1977a] is shown in chapter II ..
to imply the existence of a neighborhood about y whose every point
can be continuously reached from y whenever K(y) = @. Since no such

neighborhood can occur at a boundary point of P(x), as was discussed

in section I, undominated directions exist at boundary points of P(x).

Theorem 1: K(y) # @ for all y € 9P(x).

The remaining task of this section is to determine which
directions are undominated at any y € 3P(x). We shall show that
directions that are in some sense "perpendicular" to 9P(x) and that
"point towards" P(x) are undominated. More definitions are needed to

make these terms precise.

For any z € P(x), a nonzero vector v € B is tangent to P(x)

at z if there is a sequence {zk} CP(x) such that z, * z and

Zk - Z
Tdan === & ¥
koo "zk," 2“

Denote the set of directions v € B that are tangent to P(x) at z by

T(z), the tangent cone of P(x)

t z. Then the (inner) normal cone

f P(x) at z is defined as the nonnegative dual of T(z):

* —-— p——
T(z) = {v e B|lv * v 2 0 for all v € T(z)}.

%
For most sets P(x), the normal cone T(y) is easily
visualized for y € 9P(x). Examples are depicted in figure 1.

If P(x) is convex in a neighborhood of y, as in figure la, then
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FIGURE 1

(a)

3 P(x)

P(x)

*

<Q

T(y)

(b)

3P (x)

v
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T(y)* consists of the inward normals of hyperplanes that support
P(x) at y. If the boundary of P(x) is smooth at y, as in figure 1b,
then the tangent cone T(y) can be regarded as a closed halfspace
tangent to the boundary at y, and T(y)* is a single vector normal
to that hyperplane and pointing straight into P(x).

We now show that the inner normal cone T(y)* is almost
the directional core K(y). The significance of this will be discussed
after the theorem is presented. The proofs of the following two

lemmas are in the chapter appendix.

Lemma 1: If v € P(x), v € B, and M(y, v) € W, then v is contained

in the interior of T(y).

*
The essential equivalence of T(y) and K(y) requires one
more assumption on utility functions, which is
A = = =
(A) Vui(y) 0 > ui(y) max ui(z)
zeX
for all y € X and i € N. Assumption (A) allows a proof of a near con-

verse to lemma 1 when yv £ 3P(x):

Lemma 2: If y € 9P(x), v € interior T(y), and assumption (A) holds,
then there exists a direction v' in any neighborhood of v such

that M(y,v') € W.

Theorem 2 : Let y € 9P(x). Then

T(y)* < K(y).
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Furthermore, if (A) is true, then

K(y) \ {0} C (interior T(y)) .

Proof: Let v e T(y)*, which implies v # 0. Suppose that M(y,v) € W
for some v € B. Then by lemma 1, v € interior T(y). An elementary
argument establishes now, from the definition of T(y)*, that

v * v > 0. Therefore, by the characterization (6) of undominated

directions, v is undominated. Hence, T(y)* C K(y).

Now assume (A) is true, and let v € K(y)\iO}. T v #
(interior T(y))*, then, as v # 0, a direction v £ interior T(y) exists
such that v' = v < 0. Let U be a néighborhﬁéd of v such that v' *» v
< 0 for all v' € U. Then By lemma 2, there exists v' € U such that

M(y,v') € W, contrary to the characterization (6) of a1l » & ).

Therefore K(y)\.{O} C (interior T(y))*.

Two dimportant applications of theorem 2 are to the more
specific situations examined in Cohen [1977] and McKelvey [1977],
respectively. Cohen assumes utility functions are strictly quasi-
concave, but if this is strengthened to strict pseudoconcavity, a

strong result is obtained:6
Corollary 1: If y € 9P(x) and each ui‘is strictly pseudoconcave, then
%
Ely) = TL¥) »

n ;
Proof: By theorem 2, T(y) C K(y). Since the pseudoconcavity of
utility functions implies (A), theorem 2 also implies K(y) C (interior

* 3
T(y)) . As strict quasiconcavity of utility functions follows from
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their strict pseudoconcavity, P(x) is convex. But then T(y) is convex,
- - - * . 3 *

which implies T(y) = (interior T(y)) (see e.g., Bazaraa and Shetty

[1976]1). P(x) open and convex also implies that T(y) has an interior,

so that 0 ¢ K(y) by lemma 2. Therefore K(y) = T(y)*.

McKelvey [1977]1, on the other hand, does not assume quasi-
concave utility functions. Instead, he lets Ili(y) = {zeX | ui(z) =
ui(y)} be an indifference curve through y and then assumes a condition

on indifference surfaces called diversity of preferences:

(pP) For all open SC X and y € 3S, Ili(y)f\ Ilj (y) has no

interior in the relative topology in 9S.

As McKelvey puts it, "this condition guarantees that indivi-
dual indifference contours never exactly coincide." He shows that (DP)
implies the existence of j € N for which uj(y) = uj(y') for all

v, ¥' € 8P(x). This and the differentiability of uj immediately imply:

Corollary 2: If conditions (A) and (DP) are satisfied and y € 9P(x),

*
then T(y) 4is a singleton and

*®
K(y) = T(y).

Proof: Because 3P(x) is contained in a "thin" indifference surface
*
of a differentiable utility function, T(y) is a halfspace and T(y)

is a single vector collinear with Vu,(y), as in figure 1b. The

3

* %
convexity of T(y) implies T(y) = (interior T(y)) , and the existence

%
of the interior of T(y) implies 0 ¢ K(y) by lemma 2. Hence K(y)=T(y) .
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The significance of K(y) being the inner normal cone to
P(x) is clearest when (DP) is satisfied, utility functions are pseudo-
concave, and P(x) = V, the top cycle set. For then the undominated
directiog at a boundary point of V is perpendicular to the boundary
and points straight back into V. Tf the status quo is continually
shifting infinitesimal amounts in gndominated directions when they
exist, as seems likely under a sequential decision process when
feasible sets are small (see chapter 2), then once the status
quo enters V it cannot escape. Thus the results of this section imply

a type of dynamic as well as static stability to the top cycle set.

3. CONSTRAINED PLOTT EQUILIBRIA AND PATIR SYMMETRY

McKelvey [1977], assuming (DP), shows that for any P(x)
there is some j € N such that voters' utility gradients at any
y £ 9P(x) satisfy a symmetry condition about Vuj(y). Specifically,

he shows that the set of utility gradients at y is weakly symmetric

with respect to j, which means that for any i # j there exists a

third individual k such that Vﬁi(y), Vuj(y) and Vuk(y) are independent.
In this section we observe that, with respect to some j € N, a somewhat
stronger symmetry condition is satisfied at most boundary points if
(DP) holds. Furthermore, similar symmetry is shown to be satisfied
at boundary points even if (DP) does not hold.

First, observe that the characterization of K(y) in (6)

implies that if ¥ € K(y), then vy is a constrained Plott equilibrium
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relative to the set {v e B | v + ¥ £ 0} (see chapter II).
By this we mean that if the only feasible directions in which y can

shift "point" away from ¥, then the zero direction is undominated —-

v is a constrained equilibrium as first defined in Plott [1967].

This result is easily visualized for a point y € 8§f§7 when P(x) is
convex. Then, if v is any direction such that v = v £ 0, ¥V being in
the inner normal cone and the openness of P(x) imply that points in
the direction v from y lie outside P(x). Since no majority will
prefer points outside the set P(x) to y, no majority will vote to
move in the direction v.

Stringent symmetry conditions on the voters' gradients must
hold at y if y is a constrained equilibrium. The conditions are
collectively termed "pair symmetry'. The simplest case, investigated
by Plott [1967], exists when no more than one voter's gradient points

in the direction v € K(y). In this case, pair symmetry requires that:

(a) for some i€ X, Vuj(y) = qv for some a > 0.
(b) all other voters in N can be partitioned into distinct pairs
so that for each pair (i,k) there are positive numbers a .
i

and Oy such that aiVui(y) + akVuk(y) g {0,v}.

Condition (a) says that somebody's utility gradient must
be a nonnegative multiple of ¥. Condition (b), necessary when no
more than one gradient is a nonnegative multiple of Vv, requires that

either j and k's gradients point in opposite directions or Vv lies in
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the convex cone generated by them. Figure 2 demonstrates this condi-
tion in the case where |N| = 5 and X = Rz.
Pair symmetry, in its (a) and (b) version, differs from
weak symmetry by requiring that N\\\{j} be partitioned into pairs
{i,k} such that the vectors Vui(y), ~Vuj(y), and Vuk(y) are
positively dependent. Thus the (a) and (b) version of pair
symmetry implies weak symmetry. If (DP) holds, then on a subset

of 9P(x) that is dense in 9P(x), no two utility gradients can be

collinear. In this case, by theorem 1 and the above remarks,

(a) and (b) must hold on a dense subset of 9P(x). Furthermore, by
theorem 2, for any y € aﬁfgf'there is a v e T(y)*(: K(y) that is
collinear with Vuj(y), where j is the individual indifferent on
85?%?. Thus we have McKelvey's weak symmetry result strengthened

on a dense subset of 3P(x):

Corollary 3: If (DP) holds, then there exists j € N such that (a)
and (b) are satisfied, with (a) referring to j, at every y in a

dense subset of 9P(x).

One implication of conditions (a) and (b) concerns the
projections Vui(y) of the utility gradients Vui onto the hyperplane
normal to the undominated direction V. Conditions (a) and (b)

imply the following:

(a') for some j € N, VujP(Y) == )

(b') all other voters in N can be partitioned into pairs
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FIGURE 2

Pairs:
{2,4} and
{3,5}

/

9P (x)
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(i,k) such that there exist positive real numbers

a,, o  satisfying o, Aui(y) 8 Aui {33 =0

i k k

Conditions (a') and (b') are identical to Plott's conditions for
an unconstrained voting equilibrium (see Plott [1967]), implying
that any y € 3P (x) would be a voting equilibrium if only the points
in éﬁzgj.were feasible. TFigure 3 shows the projections from three

of the voter gradients in figure 2.
More general pair symmetry conditions necessary for ve$p
to be undominated at y, or rather, for y to be a constrained voting

equilibrium, are derived in the dissertation appendix. One Formulation

3 ¥
is reproduced here.  Let NT be the voters whose utility gradients are

contained in a two dimensional subspace T that also contains v.

Define the following subsets of N:

RT ="{i e N| Vu, () ov for o > 0}

I

R = {i € N| Vu, (y) = av for a < 0}
Q = maximal subset of N;\(R+\) R ) that can be partitioned
into pairs (j,k) for which there exist positive numbers

i { +a, V e {v,0}.
aj’ak satisfying aj Vuj(y) GJ (y) v

Then for v € K(y) it is necessary by corollary 4 of the appendix that

@) |8 > R
+ |NT|+l
) 12 fg] # R @ =—u—

Observe that condition (b") says that the coalition formed by all the
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FIGURE 3

v = OLVul(y) = T*(y)




—99-—
people iq R+ and half the people in Q is a majority in NT' If
|R+| = 1 and |R“| = 0, then summing (b') over all two dimensional
subspaces containing-; results in conditions (a) and (b).

The pair symmetry conditions, as well as the results of

previous sections, are collected as Theorem 3.

Theorem 3: Let x € X%, P(x) be the set of points in X which can be

reached from x, and let y be contained in the boundary 9P(x). Then

(i) the directional core K(y) is nonempty;
*
(ii) the inner normal cone T(y) ¢ K(y), and, given

assumption (A), K{y)\{0} C (interior T(y))*;

(iii) letting v € K(y), v is a constrained Plott equilibrium
in a situation where its feasible set of shift directions
is {v € Blv *+ v < 0};

(iv) the voters' utility gradients satisfy the pair
symmetry conéitions (a") and'(b") with respect to

any v € K(y).
4. DISCUSSION

The usefulness of the top cycle set V as a solution concept
requires that it be "small". We have shown that if it is small in
the sense of its closure having a boundary, then at every point of
the boundary an undominated direction exists that, in some sense,

"points back into V." The restrictiveness of this condition is
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perhaps best seen via one of its implications, namely, that the
multitude of points on the boundary all satisfy the same pairwise
symmetry condition as constrained voting equilibria. Since this
condition closely resembles the symmetry condition satisfied at
unconstrained equilibria, it can be heuristically said that the
closure of the top cycle set is "usually" the entire space for the
same reason that voting equilibria "rarely" exist.

The set L = {y|K(y) = #} has also been proposed as a solu-
tion set (Schofield, 1977a,b; chapter II). One reason is that
Schofield's results imply that if L is connected, then any point in
L can be continuously reached from any other point in L, so that L is
a continuous cycling set analogous to the discrete cycling set V.
Secondly, as is shown in chapter II, in some cases a status quo
that continuously shifts in undominated directions eventually enters L.
Furthermore, in two dimensions L empirically seems to be a reasonable
solution set because, as Schofield [1977b] notes, the outcomes of
experimental games (Fiorina and Plott, 1975) are often in L, a rela-
tively small set in two dimensions.

The size of L in general is thus an important question. In
the two dimensional case with Euclidean preferences, L is bounded.
Clearly then, since McKelvey [1976] shows for the same case that V is
the entire space, sufficient conditions for V to be small must be more
stringent than conditions for L to be small. However, the necessary
condtiions (i), (iii), and (iv) of theorem 3 all apply to points not
in L as well as to points in the boundary of P(x), since they were-

derived by showing 9P(x) NL = ). Hence some of the reasons for
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believing V is usually large also serve as reasons to believe L is
large. An unanswered question is whether condition (ii) of theoreﬁ 3
is strong enough to characterize the difference between V and L, so
that it can be viewed as the reason "why" V is large but L small in

two dimensions.

When the dimension of the space is greater than two, the

conditions (i), (iii) and (iv) of theorem 3 appear more restrictive.

This is because they are conditions for a constrained voting equilibrium,
which resemble the conditions for an unconstrained equilibrium in a
space of one dimension less (see figure 3). Hence undominated direc—
tions exist at more points in two dimensions for the same reason voting
equilibria often exist in one dimension. We conjecture that L and V
will usually be large, i.e., dense in the space, when the dimension

of the space is greater than two.

Schofield [1977a] has formalized this intuition in cases
where the dimension of the space is larger than the number of voters.
Given this dimensional assumption, he shows that L is generically
connected and dense in the space, where generically (= "usually')
refers to a property that is satisfied whenever the n-tuple of
‘utility functions belongs to some dense set in an appropriate
function space. But the conditions characterizing points not in
L, such as pair symmetry, appear so restrictive that we conjecture
that L is generically dense whenever the alternative space has

dimension greater than two.
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APPENDIX

The proofs of lemmas 1 and 2 of section 2 are outiined
here. Throughout the appendix, if S is a subset of a topological
space (either X or B), let S° be the interior of S.

Lemma 1: If y € P(x), v € B, and M(y,v) € W,-then v E.T(y)°.

Proof: If v ¢ T(y)°, then there exists v' € B near enough to v so

that M(y,v') € W, but such that v' ¢ T(y). Since M(y,v') is a finite
set, M(y,v') € W and the definition of a gradient can be used to show
the existence of A > 0 such that (y + AW")Py for all 0 < x £ A.

Hence, y + Av' € P(x) for all 0 < A £ A, since Pl(y)C: P(x). But

v' ¢ T(y) implies the existence of 0 < A' < X such that y + A'v' # P(x),
a contradiction. Therefore v £ T(y)°®.

Lemﬁa 2: Suppose (A) ié true, i.e., that for all i € N, y € X,

Vui(Y) = 0 <> ui(y) = max ui(z) for all i e N, y € X. If y € 9P(x),
zeX

v € T(y)®, and UC B is any neighborhood of v, then there exists v' € U

such that M(y,v') £ W.

Proof: For any v' € B, partition N into four sets defined by

R = {3 & Hly Vu, (y) > 0} = M(y,v")

N (v') = {1 e Njv' + Vu (y) < 0}

N‘l’ (v') = {1 € N|v' * Vu (y) = 0, Vu (y) # 0}
No (v') = {ie N|Vu, () = 0}

If the lemma is false, then M(y,v') ¢ W for all v' e UANT(y)°® # §.
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Let a € UN T(y)° satisfy

IM(y,a)| = max IM(y,v")] < Bl

v'eUNT(y)° 2
Then there is a neighborhood ACUNT(y)° of a such that for all v' e A,
N+(a) = N+(v') and N (a)CN (v'). Now, {v' € B]v . Vui(y) = 0F 18 of
dimension m—1 and hence nowhere dense in B whenever Vui(y) # 0. Since
A is open and thus of dimension m, it cannot be covered by a finite
number of these nowhere dense sets of dimension m-1l. Therefore there

. o 0
exists b € A such that N (b) = N (a) + Ny (a). We now obtain
IN"(b) + Ng ()| = |N (a) + Ng (a") + Ng (a)|

n+1

= n - |M(y,a)| 2 > -

Since b £ T(y), there exists a sequence {yk}(:iP(x) such that
Y = ¥

+ y and —————— > b,

y
K
v, = ¥l

Because N (b) is finite and

- u; (yp) - u ()
b Vui(y) = 1im |
oo Yk 7Y
(see, e.g., Hestenes [1975]), there is a K > 0 such that
ui(yK? < ui(y) for i € N (b). The continuity of each uy and the
openness of P(x) now imply the existence of a neighborhood V C P(x)
of Yg such that ui(z) < ui(y) for all z € V, i € N (b). Furthermore,
assumption (A) and the assumption that indifference surfaces have no

interiors imply the existence of z € V such that ui(E} < ui(y) for-all

ie Ng(b). Therefore,
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i e N w,(@ <u @} > (¥ )+ Ng(b)l‘i Egl .

This implies yPz, which, since z € P(x) but y ¢ P(x), is a contradiction

of the definition of P(x). The lemma is proved.
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FOOTNOTES

9P(x) is equal to what McKelvey [1977] calls the frontier of

Blx.)

Actually, McKelvey [1977] only shows Pl(y)C: P(x), and Cohen
[1977] assumes convex preferences to show ?l(y) = P(x). However,
lemma 4 in Cohen [1977] uses only the cﬁntinuity of each uy to
show that any two boundary points of P(x) are not comparable by
P, so that McKelvey's result can be strengthened to Pl(y) C P(x).

Expression (2) is proved rigorously in McKelvey [1977].

A real-valued function f is strictly quasiconcave if £(x) > £(y)
implies f(z) > f(y) for all z = Ax+ (1L - My, 0 < A <1, x # y.
The preferences represented by a strictly quasiconcave utility
function are strictly convex in the sense used in Cohen [1977].
McKelvey shows that when there is no core point, X = Rm, and

each person’s preferences decrease exactly with Euclidean dis-
tance from a bliss point, then any point in the space can be
reached from any other point. This theorem is not true if reach-
ability is replaced with continuous reachability, as examples in

Schofield [1977a] indicate.

Notice that (v - ;) . Vui(y) > 0 means that direction v is closer
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than v to the utility gradient Vui(y). Hence, loosely speaking,

utility increases faster if y shifts in direction v rather than

v. [See also appendix A of chapter II.]

A differentiable function f is strictly pseudoconcave provided that
whenever z # vy, (z - y) = Vi(y) < 0=> f(z) < £(y). Striet
pseudoconcavity clearly implies strict quasiconcavity and assump-—

tion (a).

A somewhat more general formulation is presented and applied to

undominated directions in chapter II.

However, it is not true that any point in L can be continuously
reached from any point not in L. (For example, any core point

is not in L and no point can be continuously reached from a core
point.) Hence L is not the exact analog of the discrete top cycle

set V.

Schofield [1978] formally proved this conjecture after its initial
appearance in Cohen and Matthews [1977], as is discussed in

section 7 of chapter II.
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CONCLUSION

The observant reader will have noticed a changing tenor as
he progressed through the text. In chapter I the idea of directional
strategies was offered as a positive contribution to our understanding
of political competition. 1Its assumptions captured commonly recog-
nized "folk" phenomena like the incrementality of social change at
national levels and the directional nature of candidates' campaign
platforms. There was optimism that a viable explanatory model had
been achieved when frequently observed facts, such as a candidate's
divergence from a rigid, extremist opponent, were predicted. The
model satisfied necessary consistency properties in that a candidate
whose opponent uses directional strategies was shown to have no
incentive to adopt another type of strategy himself. Finally, the
model was shown to be compatible with standard Euclidean models by
the demonstration that directional equilibria "point" at equilibrium
points.

Some of the normative results of chapter II heightened
the optimism. Specifically, the dynamics generated by the adoption
of undominated directions implied that the status quo x shifts,
whenever possible, so as to (instantaneously) approach each winning
coalition's preferred-to-x set. TFurthermore, with Euclidean prefer—
ences we obtained the desirable stability property of convergence
to either the point core or to the set of points that cannot contain
a path satisfying the approach property.

However, it was also shown in chapter II that local cycling
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occurs at a point if its directional core is empty. This connection
provides a solid behavioral explanation of the local cycling phenom—
ena. But it also leads to pessimism regarding the existence of
undominated directions in majority games, since local cycling is
generic for such games in spaces of high dimension. The pessimism
was increased when results obtained in the appeﬁdix were applied to
show that a stringent, pairwise symmetry condition must be satisfied
by utility gradients at points with nonempty directional cores. In
fact, this symmetry condition has recently been used by Schofield to
show that the emptiness of directional cores (and hence the exis-—
tence of local cycling) is generic for majority rule games in spaces
of dimension greater than three.

The turnaround was completed in chapter ITII, the main result
of which was based on the fact that directional cores are empty in
majority games. It was shown there that undominated directiomns
exist at boundary points of a top cycle set and that they "point
back into" the top cycle set. Although this implies dynamic stability
properties, the major conclusion was that because undominated
directions do not usually exist, neither do boundaries of top cycle
sets. Hence top cycle sets must usually be the entire space of
alternatives.

Because of the intuitive attractiveness of directional
strategies and outcomes, it is jmportant to have established the
properties of directional models. Some of these properties do not

rely upon the existence of equilibrium. Furthermore, the strength
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of equilibrium as a solution concept makes necessary the investiga-
tion of its consequences in any model. Even in majority rule situa-—
tions, directional equilibria are theoretically wvaluable for under-
standing why local cycling is so pervasive and top cycling sets so
large. So how can the theory of directional models be developed
further? First; the frequent nonexistence of directional equilibria
in majority games, or indeed, in all anonymous simple games with
very decisive dominance relations, calls for an approach to the
study of political processes that considers institutional factors and
the formation of expectations and tastes in addition to considering
equilibrium phenomena. Nonexistence of quilibria in pristine
environments suggests that the additional factors are important for
understanding underlying regularities of political processes.
Secondly, there is promise that future work can extend the concept
of directional outcomes to more general cooperative games that allow
equilibria by restricting the power of coalitions and/or the pref-
erences of individuals. Thus, directional cores may provide a
behaviorally-based adjustment mechanism for a private goods economy,

for example.
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APPENDIX

PATRWISE SYMMETRY CONDITIONS FOR VOTING EQUILIBRIA

It is common knowledge that characterizations of majority
rule equilibria in multidimensional spaces take the form of pair-
wise symmetry conditions on utility gradients.l Plott [1967], the
initial investigator of these conditions, shows that if exactly
one utility gradient at an interior point is zero and the number
of people is odd, then the peint is an equilibrium if and only if
the set of nonzero gradients can be partitioned into pairs of
exactly opposing vectors. This degree of symmetry seems unlikely
to occur. Hence it must be concluded that this type of equilibrium
does not usually exist.

However, the condition that all nonzero gradients must
be paired is necessary only for equilibria at which only one
gradient is zero. One object of this paper is to derive necessary
conditions that do not a priori restrict the number of zero
gradients. These more general conditions are determined also for
the more general case of A-majority rule, in which a cecalition is
winning only if it comstitutes more than a fraction A of the voters.
The amount of pairwise symmetry required for equilibrium is still
restrictive, however, unless many gradients are‘zero or A is near ome.

Conditions necessary for equilibrium may be less
restrictive for equilibria contained in the boundary of a feasible

set. Since often the feasible set is a proper subset of the space,
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such equilibria are certainly worthy of investigation. Plott [1967]
makes an initial step in this direction by investigating situations
in which the feasible set is a half-space and the equilibrium is
contained in the defining hyperplane. His conditions are genera-
lized here by allowing the equilibrium to be contained in the
boundary of any convex feasible set, as well as by allowing more
than one gradient to "point out" of the feasible set and by consi-
dering A-majority rule. We find that the type of pairwise
symmetry required at boundary equilibria is of a lesser degree
than that required at interior equilibria. But the symmetry still
appears restrictive unless (1) the boundary is highly ‘pointed at
the equilibrium, (2) many gradients are zero or '"point out" of the
feasible set, or (3) A is near ome.

A fundamental characteristic of majority rule is that if
two people with diametrically opposed preferences are removed from
the set of voters, then any equilibrium remains an equilibrium.

The votes of the two individuals merely "cancel each other out."
This basic fact is what causes palrwise symmetry conditioms to be
necessary for equilibrium, as the subsequent proofs are designed
to show. All the symmetry conditions are derived as corollaries

to theorems stating that various sets of individuals that "disagree"
in some sense can be deleted without upsetting equilibrium.

This intuitive approach results in relatively goncise proofs.

Sufficient conditions involving pairwise symmetries on
gradients are important because properties of pairs are relatively

easy to verify. The ones derived in section 3 generalize those of
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Plott [1967], McKelvey and Wendell [1976], and Slutsky [1978] by
allowing the point to be on the boundary of a convex feasible set,
by allowing more than one gradient at the point to be zero or to
"point out" of the feasible set, and by allowing for A-majority

rule.

1. PRELIMINARIES
The set of feasible alternatives is a convex subset V of
a Euclidean space W. Denote by x a particular point of V, not
necessarily in the interior. Let the set of voters be denoted by
N = {1, 2,..., n}. Each voter has a differentiable utility function
defined on W. The gradient of the utility function of voter i
evaluated at x is denoted by u, € W.3 We are to investigate
pairwise symmetries in the set {ul..., un} of gradients associated
with x being a voting equilibrium.
The cone of feasible directions in which x can shift is
F={vew| 3a>03x+oaveVl)
Observe that F is a convex cone that includes the origin. If
x € interior(V), then F = W, whereas x € boundary(V) implies
that F is contained in a halfspace.
Much of the subsequent discussion concerns the dual of F,
F* = {yeW|vey20 VvePF} =D
Notice that D is a closed convex cone containing the origin, and
that D = {0} if and only if F = W. If u, € D then v * u, =0
for all v € ¥, so that voter i is "happy" with x in the sense of

not marginally benefiting by any feasible shift of x.
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Define also a cone
E={yeW| y#¢D, -y € D}.
E is a convex cone without the origin that may be empty.
In particular, E = @ whenever D = {0} or D is a subspace of
positive dimension. If u, € E, then i is "unhappy" with x in the
sense that v * u, 2 0 for any v € F, and there exists V € F such
that v * ug; > 0.
Examples of possible cones ¥, D, and E are illustrated
in figure 1. In the figure and hereafter a cone generated by

vectors yys«-.> ¥p is defined by
C(yysenes ¥p) = fyeW|y= Wy, F o+ Ay,

o, = 0, Za, > 0},
i i

Also, 1f M= {4, seesy 1) © H; the potatdlon GO = Cluy seevy U,
i £ 1, ip
will be used for convenience.

Define for any cone C the following derived cones:

ct={yew|y-c>0 ¥ cec}

¢ =f{yew|ye-c<0 ¥ cec}
0 -

c ={yeW|y+ec=0 Y cecC}

+ - 0
Without fear of ambiguity, for any v € W let v , v , and v denote
-+ - 0 o+ - 0 .
C(v) , C(v) , and C(v) . Then v and v are halfspaces and v is
a subspace. Observe that u; € v+ implies that v ug > 0, so that
voter i benefits if x shifts in direction v. For any subsets

M c N and C € W, let
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FIGURE 1
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5,4(C) = [{i e M | uy B e,

and let 5(C) = SN(C). Hence SM(V+) is the number of voters in M
who benefit by a shift in direction v. For convenience we also
adopt the convention that if an upper case letter denotes a subset
of voters, then the corresponding lower case letter denotes their
number, e.g., n = IN[ and M € N implies m = IMI.

With these definitions in hand, an equilibrium concept
can be defined. Let XA be a fixed fraction 0 £ X < 1. Then we
want x to be an equilibrium provided no coalition of size greater
than An can marginally benefit by a feasible shift of x. So define

X to be quasi-undominated (g.u.d.) provided

veF = S(v+) < An,

and define X to be strictly quasi-undominated (s.q.u.d.) provided

+
veF = 8(v) < An.

Notice that x is gq.u.d. if x is s.q.u.d. Conversely, x is s.q.u.d.
if x is q.u.d. and An is nonintegral, which is the case when n is

odd and A 1/2, the majority rule case studied by Plott [1967].

i

Two alternative concepts of equilibrum for x are local
undominance, which requires the existence of a neighborhood U of x
such that no point in U 1 V is unanimously preferred to x by a

coalition of size greater than An, and global undominance, which

requires x to be locally undominated in every ﬁeighborhood U c W.

When there is a finite number of voters, each with a differentiable

utility function, global undominance implies local undominance.
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implies quasi-undominance. The reverse implications require
utility functions to first be locally pseudoconcave (see
appendix B of chapter II) and then pseudoconcave (Kats and
Nitzan [1976]). The reader is referred to the cited references
for these results, and to Sloss [1973], McKelvey and Wendell
[1976], and Slutsky [1978] for further discussions of the rela-
tionship between quasi-undominance and other equilibrium concepts.
Hence attention here can be focused solely upon quasi—undominance.

It will be convenient for the determination of quasi-
undominancé to test only directions contained in the relative
interior of F. Lemma 2 below justifies this procedure. It also

allows us to assume henceforth that F is a closed convex cone, so

that D¥ = F&% = F,

Lemma 1: Let M € N and Vv € W. Then there exists a neighborhood
= i 5 +

U of v such that SM(V ) 2 SM(V') for all v £ U.

Proof: Follows from the continuity of an inner product and the

finiteness of M.

Lemma 2: Let M < N and B > 0. If SM(V+) < B for all v contained
in the relative interior of F, then SM(V+) £ B for all v € closure(F).
Proof: Since F is convex, every neighborhood of any v € closure(F)
contains points in the relative interior of F. Hence the result

follows from lemma 1.

Henceforth, without loss of generality, we assune T is closed.
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The basic feature of majority rule we wish to exploit is
that if the number of people who prefer alternative a, to a, is not
a majority, and Q € N is a set that can be partitioned into pairs
with strictly opposite preferences on {al,az}, then when Q is
deleted, the number of voters preferring a; to a, is still not a
majority. More generally, if the number of people preferring a;
is less than An, then when Q is deleted, the number of people who
prefer a; is less than An -1/2q. Now, our general method will be
to show that the deletion of coalitions analogous to Q will
leave x quasi-undominated, in some sense, in the remaining set of
voters. But if K = N - Q, the above reasoning indicétes that only

SK(€+) £ An -1/2(n-k) can be guaranteed by S(v+) < An. Hence we
shall say that x is q.u.d. in K C N provided

veF = 5 2 -1/2(n-k) = Ak,
where Ak is defined by

A = A+ (O -1/2) (n/k - 1),

Similarly, x is s.q.u.d. in K provided

. +
veTF = SK(V ) < lkk.

We now prove a simple proposition to illustrate the
meaning of quasi-undominance in subsets of N. Say that a pair

{i,j} € N strongly disagree provided uy ¢ D, uy ¢ D, and

v *u, >0<v>*u, <0
1 J

for all v £ W. Observe that i and j strongly disagree .if and only
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if there is a ray ¥ € W not intersecting D such that ug € r and
uj € -r. Thus, if D contains no line, 1 and j strongly disagree
exactly when u, and uj are a pair of gradients exactly opposing
each other in the sense of Plott [1967]. We show that removing
or adding pairs of strongly disagreeing voters preserves quasi-

undominance. The following lemma is useful.

Lemma 3: Let T € W be a subspace, and let V& T, v # 0. Suppose
Q € N and u, ¢ 10 for sach 4 & Q. If U is a neighborhood of ¥,
then there exists v € U h T such that v -+ uy # 0 for ail ieqQ.
Proof: U =UNTis an open set of T. If u, ¢ TO, then
T ¢ ug, so that dim(T N “2) < dim(T). Hence for each i £ Q,

0

TN uy is a nowhere dense subset of T. Since a countable union

of nowhere dense sets cannot contain an open set (Baire's theorem),

)
UNT=U ¢ U (Tnud).
ieqQ 2

Therefore there exists v € U 1 T such that v T uy # 0 for each i e Q.

Proposition 1: Let Q be a subset of N that can be partitioned into

strongly disagreeing pairs, and let K = N - Q. Then x is (s.)q.u.d.
in K iff x is (s.)q.u.d.

Proof: Suppose x is (s.)q.u.d. Let v be contained in the
relative interior of F. Let T be the smallest subspace containing
F. Hence there is a neighborhood U' of Vv such that U‘ NTceEF.

L}
By lemma 1 there exists a neighborhood U € U such that

SK(V+) 4 SK(§+) for any v € U. Since uy ¢ D for each & € Q,
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ug ¢ T0 for each i £ Q. Hence lemma 3 implies the existence of
velUNTECTF such that v * ug # 0 for each i € Q. But Q can be
partitioned into pairs of strongly disagreeing individuals, so that
SQ(V+) = q/2. Therefore
o+

5, ) S 5. = sG) - q/2

IA

An - q/2 = lkk,

with the second inequality strict if x is s.q.u.d. By lemma 2, this
proves x is (s.)q.u.d. in K. Now assume x is (s.)q.u.d. in K. TLet
v € F. Then SQ(V+) § q)2 = 8w’y % chv+) +q/2 2 k+q/2= M

(second inequality strict if x is s.q.u.d. in K). So x is (s.)q.u.d.

Proposition 1 actually does not lead to strong pairwise
symmetry conditions, even for the case of an interior x. In the next
section, symmetry conditions for an interior x are obtained easily by
a different route. But a result analogous to proposition 2 regarding
the deletion of pairs that disagree in a weaker sense is very useful
for the case of a boundary x. Hence define a pair {i,j} C N to
weakly disagree provided uy # D, uj ¢ D, and for any v € F,

veou, >0=v-eu, <0
1 ]

and VoS g, >0 =g g, K0
J i

Let D be the symmetric binary relation on N denoting weak dis-

agreement, so that iDj means i and j weakly disagree. If x is an

interior point of V, then D = {0} and weak disagreement implies

strong disagreement. Otherwise it is possible that iDj even

though v .= u, < 0 and v - uj < 0 for some v € F. The next prop-
& -

osition characterizes weakly disagreeing pairs.
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Proposition 2: If uy ¢ D and u, ¢ D, then iDj iff

C(ui,uj) NnD# @.

Proof: D and C(ui,uj) U {0} are closed convex cones. Hence if
C(ui,uj) N D= @, by a separation theorem there exists v # 0
such that v * y > 0 for all v € C(ui’uj) and v £ D¥ = F. Hence,
since v * u, >0 and v - uj > 0, iDy is false. Conversely,
suppose there exists y = o u. + ajuj £ C(ui,uj) 1 D. Then

o, > 0 and aj > 0. Hence, because v * y £ 0 for all v e F, ilj.

Finally, basic necessary conditions are derived via the
deletion of individuals who are malcontent in a different way.

For any subspace T € W, say that voter i C N is content with T

provided u, € TO. Let C(T) € N be the subset of N content with T.
To interpret C(T), suppose a subset of public goods is associated
with T. Then any i € C(T) is content with the allocation of those
particular goods at x in the sense of being indifferent to any
proposal to change their amounts. Letting M(T) = N - C(T), each

i € M(T) is discontented with T at x in the sense of preferring a

change in allocation of the goods associated with T.

Define a free subspace to be a subspace T € W for which

T € F. It is easy to show

Lemma 4: A subspace T is free iff D C TO.

A major result of the next section is that quasi-undominance is

Preserved when M(T) is removed and T is free. Intuitively, if
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the amounts of the goods associated with T can be increased or
decreased freely at x, then the votes of those discontented with
the amounts of these goods must "cancel out" for x to be in equili-

brium.

2. NECESSARY CONDITIONS

Theorem 1: x is (s.)q.u.d. iff x is (s.)q.u.d. in C(T) for every

free subspace T.

Remark 1: This theorem actually only provideé a necessary condition
for x to be (s.)q.u.d., since T = {0} is always a free subspace and
C({0}) = N. Subsequently an example will be presented indicating

_that a true sufficient condition cannot be obtained by requiring T

to be nondegenerate.

Remark 2: The freeness of T is necessary for theorem 1. Consider

a case with W = R?, n=3, A =1/2, and with D = C(0,p) with

p = (0,1). Let U =u, =p, and ug = (1,0). If T is taken as the
line C(p, -p), which is not free, then C(T) = {3}. But x is clearly

not s.q.u.d. in {3}, even though x is s.q.u.d. in {1,2,3}.

0
Lemma 5: Suppose x is q.u.d. If ve F, a € v , and v + a € F, then
0 +
S(v+) +8(v Na) < An,

with the inequality strict if x is s.q.u.d.

Proof: By the continuity of the inner product, there exists a

" +
neighborhood U of v such that y * u, > 0 for all vy e U, u, E W
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As F is convex, there exists 0 < § £ 1 such that b = v + 8§a € F N U.

Since b - ug > 0 for any u, € vorﬁ a+, and since z is g.u.d., we have
0 +
S(v') +8(v Na) 2SeT) <,

with the last inequality strict if x is s.q.u.d.

Proof of .Theorem 1: (Figure 2 may be helpful.) Suppose x is q.u.d.

and T # {0} is a free subspace. Let M = C(T). Since

ie N-M<= uy ¢ TO, lemma 3 implies the existence of v € T such
that v - uy # 0 <= 1ie€N~-M. Hence n = S(v+) + S(v ) + m. We can
assume S(v ) = S(v+), switching v with -v if necessary, so that

g™y 2 1/208 ~ @),

Let v € F. Vv can be expressed as v = a + b, where a ¢ TO, b & T,

1l

For any p e D, p *a=p * (v - b) p * Vv =0, since the freeness
of T implies p € TO. Hence a € D¥ = F. T being free also implies
v € F, so that v + a € F by the convexity of F. Applying lemma 5,

we now have

s(vh) + SM(a+) < An

. : ; 0 G 2 +,
because our choice of v implies S(v N a ) = SM(a ). (This
inequality is strict if x is s.q.u.d.) Finally, since

ieM=>u, € TO => ¥ * u, = a * u,, we obtain
i i i

-}
SM(vﬁj = SM(a ).

Putting the pieces together leads to

oY & G = 8007 € Bn - 126 - 6 = A_m,
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FIGURE 2
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with the first inequality strict if x is s.q.u.d. The theoremlis

proved.

Corollary 1: Let T be a free subspace and M = C(T). 1If x is

q.u.d. and v £ ', then

SM(V+) - 5,(v7) < SM(VO) + €OR ~ i,

with the inequality strict if x is s.q.u.d.
Proof: Theorem 1 implies SM(V+) S A - 1/2(n - m), so the
inequality follows from substituting SM(V+) + SM(V—) + SM(V_)

for m.

Corollary 2 (Generalized Plott Theorem 1):

Suppose x is an interior point of V and r is a ray without the origin.
If x is q.u.d. then
(1) |é(r) - S(-r) | £8(0) + (2A - 1)n

(ii) S(0) 2 (1 - 2M\)n,
with both inequalities strict if x is s.q.u.d. If Q is a maximal
subset of N that can be partitioned into disagreeing pairs, then
n = q + S(0) whenever either one of the following holds:

(iii) =x is q.u.d. and S(0) < 1 - (2A - 1)n

(iv) x is s.q.u.d. and S(0) = 1 - (2Xx - 1n.
Proof: T = r0 is a free subspace, since F = W. Letting M = C(T),
16 Wy &% U {0} U r. Hence for any v € r, SM(V+) = S(E)s
SM(V_) = S(-r), and SM(VO) = S(0). Applying corollary 1 first to v

and then to -v now results in (i)}. Expression (i) implies (ii)
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when r is chosen so that no gradients are contained in r or -r.
If either (iii) or (iv) hold, then (i) implies |S(x) - S(-r)| =0
for all rays r. This implies m = ¢ + 5(0), since

n-q- 8(0) = I ]S(ri) - S(—ri)l, where 1 indexes the lines
iel

L. =~-r, w {0}y Ty that contain nonzero gradients.
i i

Remark 3: Corollary 2 states the complete pairwise symmetry

required of the set of utility gradients at interior equilibria.
The simple example of figure 3, which has W = R?, n =5 and

A =1/2, indicates that (i) and (ii) are only necessary conditions,
since S(Q+) = 3. The example also serves to show that x being
s.q.u.d. in C(T) for every free, nondegenerate T does not imply

that x is q.u.d., as x is s.q.u.d. in all the subsets content with

nondegenerate subspaces: {1,2}, {1,2,3}, {1,2,4}, {1,2,5}.

Remark 4: A converse of corollary 2 is true. Specifically, if Q € N
can be partitioned into weakly disagreeing pairs and n = q + S(0),
then x is q.u.d. if S(0) 2 (1 - 2M)n and x is s.q.u.d. if

S(0) > (1 - 2M)n. This follows easily from the observation that
S(v+) = SQ(V+) 2 q/2 for any feasible direction v € F. This

converse is true of any D and is generalized in section 3.

Theorem 1 is only the first step in proving symmetry
conditions hold at boundary equilibria. However, it does imply

necessary lower bounds on S(D) - S(E) in important cases. This is
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FIGURE 3
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not unexpected, since the vote of an individual in D "cancels" the
vote of an individual in E for any feasible direction, just as the
votes of individuals whose gradients are contained in opposing rays
cancel. Hence one expects an analog of (i) in corollary 2 to bound
S(D) - S(E). But an example will be presented subsequently showing

this is not always true. First, the following corollary provides

a sufficient condition for S(D) - S(E) to be bounded below.

Corollary 3: Suppose T is a free subspace such that
) = {1 e N | u, €D UE}. If x is q.u.d., then

S(D) - S(E) 2 (1 - 2X\)n,
with the inequality strict if x is s.q.u.d.
Proof: Let M = C(T). Let ¥ € relative interior(F), which
exists because F is convex. For each i € M satisfying u, £ E,
there exists some v € F such that v * uy > 0. Hence lemma 3
can be applied to show the existence near V of v € F such that
votou > 0 for all u; € E. Therefore S(E) = SM(v+) and
s(D) = SM(V_) + SM(VO), implying S(D) - S(E) 2 (1 - 2A)n by

corollary 1.

Remark 5: If D' E is a subspace, then the hypothesis of
corollary 3 is satisfied for T = (D LJE)O. One case is D = {0},
E = (), for which the result is merely (ii) of éorollary 25
Another case is D = C(0,p), E = C(-p), which occurs when V is
uniquely supported by a hyperplane at x. If D UE is not a

subspace, the hypothesis may not be satisfied, and the bound
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on S(D) - S(E) can be violated if dim (W) > 2. An example with
dim(W) = 3, n = 9, and‘l = 1/2 is shown in figure 4. There,
none of {ul,...,us} are in E U D, {u7,u8} C E, and ug € D.
X is s.q.u.d., since directions v in the corners of F get
S(v+) = 4 < 9/2 votes and directions in the middle of F get
only 2 votes. But S(D) - S(E) = -1 % 0.
Pairwise symmetries at boundary equilibria will be implied

by the following theorem.

Theorem 2: Let T be a two dimensional subspace and
M={ienN| u; € T}. Let Q be a maximal subset of M that can be
partitioned into weakly disagreeing pairs, and let K = M - Q. Then

x is (s.)q.u.d. In K if x i8 (8.)q.u.d. In T.

Remark 6: ~This theorem differs from the analogous proposition 1
concerning strongly disagreeing pairs by referring to only a two-
dimensional subspace and by requiring Q to be maximal. Neither
additional hypothesis can be eliminated. Figure 5(a) depicts a
situation with n =5, A = 1/2, W = Rz, D = C(0, p), and x s.q.u.d.
By proposition 2, 205, 305, and 204. 1If Q = {3,5} v {2,4} is
deleted, x is s.q.u.d. in {1}, but Q = {2,5} cannot be deleted
because x is not s.q.u.d. in {1,3,4}. This shows Q must bé taken
-maximal. In figure 5(b), n =7, A = 1/2, W = Ra, and D = C(0,p).
All gfadients except u, and ug are in the plane of the figure, with
ug receding behind and U, coming up off the page. The gradients

0
Ug, U, and ug are all slightly lower than the plane p  seen in
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FIGURE 4

{Vlv'u1=v'u2=0}

(The planes

{vlv'u5=v'u =0}

6
and

{vlv'u3=v'u =0}

4

are omitted for clarity.)

{vEF|v'ui>0 for i=1,2,7,8}

{v€F|v°ui>0 for i=7,8}

Val

1&\ {veFlv'ui>0 for 1=3.,4,7 .8}
{vEFlv‘ui>0 for i=5,6,7,8}

Vil
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FIGURE 5
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+ o+ o+
cross—-section as H. Hence C = ug F\u4 F\uS is a narrow cone containing
-p. The only disagreeing pair is {6,7}. If {6,7} is deleted, then
+
s (-p) =3 and x is not q.u.d. in {1,...,5}. But, as
s S

+ +
ug Mg = u7fﬁ C=4¢, x is s.q.u.d. in {1,...7}. Hence, figure 5(b)

shows T must be assumed two dimensional in theorem 2.

Lemma 6: TLet T, M, Q and K be defined as in theoFem 2. Suppose
TN D # {0} and T N D contains no line. Then there exists a CQ
such that § = q/2 and C(ﬁ LJa) M D = @, where K=1{iek ] uy ¢ D}.
Proof: Let T € T M D be a nondegenerate ray containing the origin.
For any nonzero v € T let a(v) be the angle measured counterclockwise
from ¥ to v, with the convention 0 £ O(vy) < 27. Number the members
of Q as 1,2,...,q so that i < j implies m(ui) < a(uj), as in figure 6.
Because Q can be partitioned into weakly disagreeing pairs, a tedious
but straightforward argument that we omit establishes that iD(i + q/2)
for each 1 £ i £ qf2. Let o(*) be defined by o(i) = i + q/2, so that
iDo(i) for i £ i < qf2.

Let AC Q L}ﬁ. Because T M D contains no line and uy £ D
for any i € Q L)ﬁ, it can be shown that dim(T) = 2 implies
C(A) "D =@ <= C(A)N T = @. Thus we need only establish the

g.

existence of a C Q such that § = q/2 and c(k U AT
Now consider C(ﬁ). Let a € K satisfy a(ua) < a(ui) for

all i € ﬁ and let b € ﬁ satisfy a(ub) z a(ui) for all i € K. Then

CRYN T # 9 < a(ub) - a(ua) Z T o= C(ua,ub)r"l?'# #. But then

C(ﬁ) NT # @ implies aDb, contrary to the maximality of-Q. Hence
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FIGURE 6

T Y5 (2)

T Yg(1)

C(R) N
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C(ﬁ) N¥ =@ and C(ﬁ) = C(ua,u ).

b
Suppose C(ﬁ\){l})rﬁ T = ). Then, since a(ub) - u(ul) <. 1My

a(uqlz) - a(ul) < 7, and a(ub) = a(ua) < T, we have

max{a(ub), a(uqlz)} - min{m(ua), u(ul)} < e

Therefore C(K wil,...,q/2) " T =@, and the lemma is proved.
Similarly, the lemma is proved if C(ﬁiy;{q})fﬁ'f = (. Now for

1 < i< q/2, suppose
c®u {1, o(-INN T =9.

Then ug € C({i,0(i-1)}) for each i £ j £ o(i-1). Hence, letting
Gy = {11, 4988, 0., O0L=)),

we have
CRURI M F=cR U, c@-DHNF =g,
and the lemma is proved.

As the final step, assume the lemma false. Then by the
previous paragraph, c(R u {1~ T # ¢, implying 10b. Since
CRU{GHNT#P, aDq. For 1 < i< q/2, C(RU QN TEP
implies iDb or aD(o(i-1)) or iD(o(i-1)). Let i_. be the maximal

0
1 £4i 2 q/2 such that iDb. Let jO be the minimal io < j<fqf2+1

such that al(o{j-1)). Then substitution of
{io,b} U {io+1, U(io)}-u s w £ {jo-l, U(jO—Z)} L1 {as G(jo-l-)}
for {10, U(io)} U {i0+1, o‘(i0+1)} U eee U {jo-l, G(jo—l)}

in the partition Q = {1, o(D}uyu ... u {q/2, 6(q/2)} yields a

partition of Q@ v {a,b} into weakly disagreeing pairs. This
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contradiction of Q maximal finishes the proof.

Proof of Theorem 2: Case 1: T M D = {0}. 1In this case each weakly

disagreeing pair in Q is strongly disagreeing and the theorem follows
by proposition 1. Case 2: T M D =T. Then Q = @ and the theorem is
trivial. Case 3: TND# T contains a line £. Because dim(T) = 2,
there exists nénzero v € T such that £ = vo. Since D is convex,

0

0 +
TNMD=v orTMD=v U v (switching v and —v if necessary).

If TND = VOEJ v+ and ui,uj ¢ D for some i,j € M, then

C(ﬁi,uj)rﬂ D = (. Hence Q ¢ and the theorem is trivial if

+
TMD= VOLJ ¥': IIETMND vo, then for any i,j & M,

]

iDj <= C(ui,uj)rW vo # §. Hence all of {ui | i € K} and half of
{ui | i € Q} are contained in one halfspace (v+ or v ). Therefore
there exists a C Q such that § = q/2 and C(ﬁ Lia) N D= @.

By lemma 6, such a a also exists for the remaining Case 4:

TN D+# @ and T M D contains no line. Therefore we must prove the
theorem for cases 3 and 4 assuming such a a exists. But then

C(K Lla) is a closed, convex and pointed cone not intersecting the
convex closed comne D, so a separation theorem implies the existence

~ ~ 4
of ¥ £ D¥ = F such that C(KU Q) C v . Hence, since x is q.u.d. in M,
k+§ =< Am = An - 1/2(n-q-k).
This implies, as § = q/2, that k £ An - 1/2(n-k) = Ak, with the

+ A
inequality strict if x is s.q.u.d. in M. Since SK(v ) £ k for all

veTF, xis (s.)gq.u.d. in K.
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Corollary 4 (Generalized Plott Theorem 2): Suppose D = C(O,pl,pz),

with Py and p, nonzero but not necessarily distinct. Let T be a

two dimensional subspace containing D, M = {i ¢ N | u, €T}, Q a

i
maximal subset of M that can be partitioned into weakly disagreeing

pairs, and K = {i € M - Q | uy ¢ D}. Then if x is q.u.d.,

(1) k $SsM) + 2\ - n

(i1) m - S(D) - S(E) 2 q 2 m - 25(D) - (2A - 1)n,
with the inequality in (i) and the second inequality in (ii) strict
if x is s.q.u.d. Furthermore, if Q is the maximal subset of N that
can be partitioned into weakly disagreeing pairs, then
n =749+ S(D) + S(E) if

(1ii) =x is q.u.d. and S(D)~ S(E) < 1 - (2A-1)n
or

(iv) ¥ is s.q.u.d. and S(D) - S(E) £ 1 - (2A-1)n.
Proof: Since T contains D, M = C(TO) and T0 is a free subspace.
By theorem 1, x is (s.)q.u.d. in M. Hence by theorem 2, x is
(s.)q.u.d. in M - Q. Also, for D = C(O,pl,pz), cases 3 or 4 of
the proof of theorem 2 apply, so that Kk < An - 1/2(n - k), where
k =k + S(D). Hence (i) follows. The second inequality in (ii)
follows from (i) by substituting m ~ g — S{(D) for ﬁ in (i).
The first inequality in (ii) holds because E U D C T and no
i € M with u; € E D can weakly disagree with anybody. By (ii),
q=m - S(D) - S(E) if either (iii) or (iv) hold, so that summing
over all two dimensional subspaces containing gradients not in

EwD yields n = q + S(D) + S(E).
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Remark 7: Observe the analogy between corollaries 2 and 4.
Expression (i) in corollary 2 puts a bound on the minimal set of
people whose gradients are in a one dimensional subspace
containing D = {0} that does not contain a disagreeing pair.

Expression (i) in corollary 4 puts a bound on the minimal set of

People, whose gradients are in a two dimensional subspace containing

a D # {0}, that does not contain a weakly disagreeing pair.

Expressions (iii) and (iv) in the two corollaries are obviously

similar.

Remark 8: Corollary 4(ii) indicates the pairwise symmetry that must
hold at boundary equilibria if D is two dimensional, since iDj iff
u; and uj occupy symmetrical positions about D. Observe that D is
two dimensional if V is uniquely supported at x by a hyperplane,
or if F can be defined as the intersection of only two halfspaces
with boundaries containing x. Clearly, less symmetry is required
if V is more "pointed" than this at x; it seems that corollaries 2
and 4 indicate the only situations in which required symmetries

involve pairs of gradients.

Remark 9: Notice that because D is two dimensional, (ii) of
corollary 4 implies the validity of S(D) - S(E) 2 (1-2A)n without
requiring the condition that D U E be contained in a subspace

containing only gradients in D E, which was needed in corollary 3.
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Remark 10: A converse of corollary 4 is also true: If a_C N can be
partitioned into weakly disagreeing pairs and n = @ + S(D) + S(E),
then x is q.u.d. if S(D) - S(E) 2 (1 - 2M)n and x is s.q.u.d. if
S5(D) - S(E) > (1 - 2X)n. This follows easily from the observation
that S(v+) <—:-SQ*(V.P) + S(E) £ §/2 + S(E) for any feasible v € F.

This converse is true for any D and is generalized in section 3.

& SUFFICIENT CONDITIONS

Most conditions sufficient for quasi—-undomination are not
as general as the necessary ones and, unfortunately, require more
notation for their derivation. However, there is one general result
providing a necessary as well as a sufficient condition, although it

is not often useful if F is "large".

Theorem 3: Let {Ta} be a collection of subspaces such that

FCU T . Then x is (s.)q.u.d. if and only if for every subspace T
a o
that intersects F, x is (s.)q.u.d. when every person's gradient is

o

projected onto Ta.

. . 0
Proof: Given a subspace T, write ui = as + ai, where aé E T°;
a; e T. The set {ai} is the set of gradients projected onto T, and

the result follows from the fact that v - us > 0 if and only if

v o* al > 0 when veFNT.

1
The usefulness of the criterion provided by theorem 3 is
severely limited by the tradeoff between checking many subspaces of

low dimension and checking fewer subspaces of higher dimension. To
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obtain more tractable conditions, we introduce new notation. Let

M={ienN | u; € ED}. For any M CMC N and for any v € F, define

(W) =Sy = () -8, = U v

and

= max (v).
nM veF nM

Now we have what will prove to be a very useful result.

Theorem 4: Let Ml""’Mh be a collection ©f subsets of N satisfying

N=MuU...UM, and Mirﬂ Mj =M for i # j. Then x is q.u.d. if

1 h

h

I n 28(D) - S(E) + (2A-Dn,
. M,

i=1 i

and x is s.q.u.d. if the inequality dis strict.
Proof: Let v € F. Then

S(v) $SE) + 85, — (v

N-M
k +
=S(E) +I 8§, 3 &)
i=1 i
h h o &
SS(E)+X n, + I 8, & Uv)
i=1 i i=1 i
b - 0
£s8(D + 2 Si (v Uv )+ (22-1)n
i=1 i
- 0
£8(v v v) + (Z2A-1)n.

Now S(V+) 2 Xn follows by substituting n - S(v+} for S(v U vo).

The proof that x is s.q.u.d. if strict inequality holds is identical.
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Corollary 5: Suppose x € interior(V). Let Q be a maximal subset of N
that can be partitioned into disagreeing pairs. Then x is q.u.d. if

n - q £ 25(0) + (2A-1)n, and x is s.q.u.d. if n - q < 25(0) + (2A-1)n.

Remark 11: Observe that

n-q- S(0) = iEI | 8¢e) ~ 862,

where I indexes the lines Ei = ~-r, U {0}y ri that contain nonzero

i

gradients. Hence the sufficient condition for x to be q.u.d. is that

z | s(r,) - s(-r,) | £ 8(0) + (2A~1)n.
" 1 1
ieT

Notice the relationship to (i) in corollary 2.

Proof of Corollary 5: In theorem 4, take Mi = {i€N|uiE£i) for each

i e I. Since D = {0}, these Mi satisfy the hypothesis of theorem 4.

"Also, o, = l S(ri) - S(-ri) [. Hence, by remark 11,
i

n-q < 25(0) + (2A-1)n implies I o, £ 8(0) + (22-1)n =
iel i '
S(D) - S(E) + (2A-1)n. Therefore the result follows from theorem 4.

Remark 12: The condition of corollary 5 is not necessary for x to be
q.u.d., as figure 7 illustrates. There, n =9, A = 1/2, D = {0},

+
x is s.q.u.d. since max S(v ) = 4, but

L |S(ri) - s(~ri)l

oy

i
o~ w

i i

342 =258(0).
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FIGURE 7
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Remark 13: The simple sufficient condition mentioned in remark 4

is a special case of corollary 5.

Corollary 6: Suppose x € boundary(V) with D = c(0,p) (p # 0).
Let Q be a maximal subset of N that can be partitioned into weakly
disagreeing pairs. Then x is gq.u.d. if n - q £ 25(D) + (2A-L)n,

and x is s.q.u.d. if n - ¢ < 25(D) + (2A-1)n.

Remark 14: Notice the relationship of this inequality to the second
inequality in (ii) of corollary 4.
Proof of corollary 6: Let T

...,Th be a set of two dimensional

1)
subspaces that collectively contain all nonzero gradients and that
satisfy D C Ti. Let Mi ={ieN l u; € Ti}, and notice Ml,...Mh
satisfy the hypothesis of theorem 4. Let Qi be a maximal subset of
Mi that can be partitioned into weakly disagreeing pairs. Then
h A

= . = 1] o ; Dr. Th i 3 d 4

q=1L q,. LetK, {ie M, -0 ! ug ¢ D} en as in cases 3 an

i=1
of the proof of theorem 2, there exists v, £ F satisfying

+ ~ 4
Sy (vgd =g + g2 = By vy + 5(8)
1 1

and

- Y 0
( =
SMi—‘PI‘Vi U vy) qi/2 ; )

= i ; + ) ="_‘
Thisg vy yields the greatest nMi(v )}, so that nMi ki S(E)i.
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h
Noticing that n — q = I (Ei - S(E)) + S(D) + S(E), we have
i=1
h
ZnM = p o — S{0) -~ S{E)
i=1 i
£ 5(D) - S(E) + (2ZA-L)n.

Hence theorem 4 implies corollary 6.

We conclude with a useful theorem that can be easily applied

1 p =« 0} or D = €(0,p)-

Theorem 5 (Partial converse to theorem 1):

1"-"’Th be any collection of free subspaces such that

CTP W .e U C(T) = N and C(Ti)F\C(Tj) =M for i # j. Then x is

Let T

q.u.d. if
(1) s(P) - S(E) <1-(2A-1)n and x is q.u.d. in each C(Ti),
and x is s.q.u.d. if

(ii) s(D) - S(E) £1-(2X-1)n and x is s.q.u.d. in each C(r).

Lemma 7: For any M C N that contains ﬁ, X is q.u.d. in M iff

oy 2 S(D) - S(E) + (2A-1)n,

and x is s.q.u.d. in M iff the inequality is strict.

Proof: By lemma 2, there exists v € relative interior (F) such that
SM@+) 2 SM(V+) for all v € F. By suitable applications of lemmas 1
and 3, v € relative interior (F) can be shown to imply that

Vg > 0 for each u, € E. Hence, since MeMand v » u, < 0 for
i
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all uy € D,

Sy (V) = S, 5T + S(E).

Similarly, there exists 9 € relative interior (F) such that

SM_ﬁ(G+) 28 Sy ﬁ(v ) for any v € F and

S (V ) = S —(V ) *+ S(E),
Hence 8, (7)) = 5,7 - 5(B) 2 5,8 - s(B) = 5, (@) implies
(v ) is maximized on F at V.

M M

Therefore, if x is q.u.d. in M then

-~ B
n = max ¢ S (v ) - —(v U v)
Mi veF { BN - }
+
=max 4S., =(v ) - [m - 8§ (v ) - 8(D) - s(E)]
ool - }
= S(D) + S(E) - m + 2 max § (v Y,
veF M~M
e
= B(D) = S(E) - m * 28, ()
28 - S(E) = m -+ ZAmm

= S(D) - S(E) + (2A-1)n,
with the inequality strict if x is s.q.u.d. in M. The other direction
of proof is straightforward and very similar to the proof used in

theorem 4.

Proof of Theorem 5: Let M, = C(Ti) and observe that Ml,...,Mh satisfy

the hypothesis of theorem 4. Suppose (i) holds. Then by lemma 7,
n, < 8() - S(E) + (2A-1)n < 1.

My
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h
Hence, as each o is nonpositive, .Z ny, 2 th £ 8S(M) - S(E) + (2Xx-1)n.
i i=1 i
Therefore x is q.u.d. by theorem 4. If (ii) holds, then by lemma 7,

n., <SS - S(E) + (22-1)n = 1.
Mi

; h
Therefore T o, < th < 8(D) - S(E) + (2A-1)n and x is s.q.u.d. by
i=1 i 5

theorem 4.
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FOOTNOTES

Although to my knowledge symmetry conditions for pairs of
utility gradients have only been studied previously in three
papers: Plott [1967], McKelvey and Wendell [1976], and

Slutsky [1978].

For interior equilibria, Slutsky [1978] has independently
derived pairwise symmetry conditions for A-majority rule
equilibria. His conditions are similar to some of those

derived here.

A simple generalization would be to allow W to be a
differentiable manifold, F a convex cone in the tangent space

TWx of W at x, and u; an element of the dual of wa'

For this and other results mentioned below concerning convex
cones, refer to any standard source such as Fenchel [1953]

or Rockafellar [1970].
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