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ABSTRACT 

This thesis proposes a model of social decision processes 

that is applicable to situations in which social change must be 

incremental. In the limit, only the direction and not the speed 

of a shift in the status quo can be decided at each point in time. 

Individual preferences over directions are induced myopically via 

the inner product of direction (unit) vectors with the gradie nts of 

utility functions. Then the direction of shift at each instant 

is taken to be an equilibrium of a game that has directional out-

comes. 

Both two-person non-cooperative games in -.;.,rhich two candi­

dates adopt directional strategies to maximize their shares o f cast 

votes, and n-person simple games of which ab s olute majority rule is 

a special case, are studied. Directional equilibria for the f ormer 

and directional cores for the latter a r e characterized. Results 

include the following: (1) directions "pointing" towards point 

equilibria are directional equilibria; (2) a mobile candida te will 

diverge from a rigid, extremist opponent; (3) a status quo x simultan­

eously approaches each winning coal ition ' s prefe rred- ta-x set if 

and only if it shifts in an undominated direction; ( 4) gi ven Euclidean 

prefere nces, a s t atus quo that shifts in undomi nated directions will 

converge to the point core or t o the set of points with empty 

directional cores ; (5) a n empty directional cor e at a point implies 

l ocal cycling occurs in a n e i ghborhood of the point; (6) stringent 
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pairwise symmetry conditions must be satisfied by utility gradi ents 

at a point that has a nonempty directional core in a majority rule 

game; and (7) undominated directions exist at boundary points of 

a global cycling set and "point back into" the cycling set. Results 

(6) and (7) indicate that for majority games in spaces of dimens ion 

greater than three, directional cores are usually empty and global 

cycling sets are usually the entire space. 

The disseration appendix is a self-contained paper in 

its own right. In a behaviorally-intuitive fashion, it establishes 

pairwise symmetry conditions for a point contained in the interior 

or boundary of a convex feasible set to be quasi-undominated in 

an anonymous simple game. 
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INTRODUCTION 

Social decisionmak~ng is studied by economists predominantly 

via the concept of equilibrium. Broadly defined, a social sys tem is 

in equilibrium provided no individual or admissible set of individuals 

has both the ability and incentive to alter the state of the system. 

This simple idea is central to the definitions of competitive equilib­

ria, Nash equilibria, and cores for processes that incorporate private 

goods economies , non-cooperative games, or cooperative games, respec­

tively. Given the basic economic postulate stating that individuals 

act in rational, maximizing fashions, final social decisions must be 

equilibria. Herein lies the attractiveness of equilibrium in compara­

tive statics models: the influence upon social decisions of variations 

in underlying parame ters can be predicted 'vithout us i ng detailed knowl­

edge of the institutional or dynamical characteristics of the social 

process. 

However, when social cha nge cannot occur quickly, final equi­

librium outcomes are of little interest. They will not be achieved 

for long periods of time, and in fact may not b e '"ell-defined because 

of temporally changing preferences and technologies. Hhen social 

change is slow, it seems more important to ask vJhat will be the direc­

tion of change rather than '"ha t will be the final outcome. 

In this dissertation a social process in which change is slow 

is not mode l ed as some type of game in which a final outcome is chosen. 

Instead , at each point in time the process is vie,ved as a n 
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instantaneous game whose possible outcomes are directions in which the 

status quo can shift. This allows the concept of equilibrium to be 

reapplied to shift directions; at each point in time a directional 

equilibrium is defined that can be predicted to be the direction in 

which the status quo shifts. The idea of directional equilibrium con­

tributes not only to our understanding of frozen snapshots of social 

decision processes, but also provides a behavioral basis for a study 

of their dynamics. Thus, in situations with fixed preferences and 

technologies, the convergence properties of a status quo that shifts 

in equilibrium directions can be studied. 

The dissertation is divided into three chapters and an 

appendix. Plurality games in which two candidates choose directional 

strategies to maximize plurality are the subject of chapter I. The 

Nash equilibria of these games in direc tional strategies are character­

ized and implications for electoral competition made. 

Chapter II deals with simple games, a special case of which 

is absolute majority rule . The directional cores of these games are 

characterized a nd the convergence properties of a status quo t hat 

shifts in undominated direc tions are dete rmined. Furthermore , the 

existence of a directional core is shown to imply that loca l cycling 

in the sense of Schofie ld [1977) cannot occur. If the game is majority 

rule, then at the status quo the painvise symmetries determined in the 

appendix for constrained stat ic equilibria must hold when the direc­

tional core exists . 

In chapt e r III directional cores at s pecial points in the 



alternative space are investigated for the case of majority rule. 

Specifically, directional cores are characterized and shown to exist 

at points contained in boundaries of the top cycle sets studied. by 

Cohen [1977] and McKelvey [1977]. This leads to conclusions about 

the size of these top cycle sets . 

Finally, the appendix, which stands as a self-contained 

paper, is concerned with conditions for static equilibria in anony­

mous simple games . Its results, which are used in chapters II and 

III, generalize the conditions of Plott [1967]. 
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Chapter 1 

A SIMPLE DIRECTION MODEL 

OF ELECTORAL COMPETITION 

Since the seminal contribution of Dm:vns [1957], spatial 

models have been used to analyze the electoral process . However, 

their utility has been severely limited by (at least) four stringent 

assumptions.
1 

First, typical spatial models, henceforth to be called 

Euclidean models, require that the messages candidates transmit to 

voters b e the points of an Euclidean issue space. A point message 

indicates a candidate's promised issue outcome. Perfect candidate 

mobility and a perfect flow of information from candidates to voters 

are two aspects of this assumption. Secondly, in the basic spatial 

models all promises are believed -- the issue outcome that a voter 

believes will occur if a candidate is elected is assumed to be 

identical to the candidate's point message. Thirdly, every indivi­

dual's prefere nces are required to be complete over the entire i ssue 

space a nd oft en to decline with distance from an ideal point. 

Finally, candidates are usually assumed to perceive the preferences 

of all voters over all points in the issue space. 

These requirements of Euclidean spat i al models have been 

questioned by political s cientists -- Page [1975 ] is particularly 

critical. In this paper, a weakening of each of the a bove assumptions 

will be shown to l ead naturally to a model employing a non-Eu clidean 

outcome space ,..rhich can be viewed as the set of points on the surf ace 
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of a hypersphere. Under the primary interpretations to be offered in 

section 1, th~s space is composed of the directions in which a status 

quo pain~ in an Euclidean iss ue space can shift. 

In section 2 the basic model is described as a two-person 

plurality game in w·hich the candidates adopt shift directions as 

strategies. Equilibrium directions in this game, however, are shown 

to be in the core of a corresponding n-person absolute majority rule 

game. Necessary and sufficient conditions are then easily established 

for the existence of an equilibrium direction. 

In section 3 optimal strategies for a candidate competing 

against a rigid opponent are investigated. The result is a prediction 

of candidate divergence, some~..rhat analogous to that made by Hinich and 

Ordeshook [1968] within the context of an Euclidean model. 

Finally, directional voting is embedded into the frame~vork 

of Euclidean models in sec tion 4, and the existence of point equili­

bria is shown to imply the existence of equilibrium directions. 

Equilibrium direction vectors will be shown to "point" towards equili­

brium points, provided the latter exist. 

1. MOTIVATIONS AND ASSUMPTIONS 

Four different conceptualizations of the set of messages 

that candidates send to voters , the set of possible outcomes that 

voters perceive, and the relationship bet~..reen these t~vo sets can 

serve as foundations to the b as ic direction model. First, both the 

messages candidates transmit and the outcomes voters associate with 
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them can be considered as single points in an Euclidean i~sue space . 

However, individuals may often map all candidate messages into point 

outcomes only a marginal distance from the status quo -- the point in 

the issue space that represents the current state of the world on the 

relevant issues. The possible causes of this virtual shrinkage of 

the issue space are twofold: (1) for physical or political reasons, 

candidate mobility in the message space may be restricted to a 

neighborhood of the status quo -- truthful and knowledgeable candi­

dates will only choose messages within this neighborhood; (2) based 

perhaps on past performances, voters may not believe any winning 

candidate can achieve a large shift of the status quo, regardless of 

campaign promises (messages). When a candidate's actions can only 

marginally shift the status quo, only the directions in which he pro­

poses to shift it are important. Strategies can be cons idered as direc­

tions which shall b e represented as vectors of unit or zero length. 

A second behavioral motivation of the direction model can 

be based on imperfect communication. Candidates may still attempt 

to send messages that voters will view as poi nt outcomes. But due 

to high information costs, voters may not become aware of the exact 

issue positions that candidates adopt . From Campbell et al. [1960] 

to Page [1975], empirically-oriented political scientists have b een 

critical of models that assume a perfect flow of information from 

candidates to vote rs. However, if candidates are able to at least 

convey their EEQ and con opinions and the relative stresses they 

place upon the issues , they may b e able to transmit the directions 

in which they would shift the status quo. 
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Thirdly, suppose one of the following is true: (1) as 

Page [1975] suggests, individual preference o.rderings are complete 

or well-defined only in a neighborhood of the familiar status quo; 

(2) individual indifference surfaces actually take the form of rays 

emanating from the status quo; or (3) candidates only receive reliable 

information about preferences near the status quo. Then candidates 

may have no incentive to adopt more than directions or, equivalently, 

marginally shifted points as their strategies, since they can know 

only how voters respond to such strategies. 

Two sources of empirical support for directional voting 

should be mentioned. The first consists of r e sults of spatial ex­

periments conduc ted by Fiorina and Plott. 
2 

In their experiments, each 

voter's payoff function declined with distance from a single point where 

it achieved its maximum. When a candidate asked: "Who wants . me to 

move into this rectangle?" usually all voters whose optimal points 

were in the specified rectangle indicated approval of the move. If the 

voters had utiiized subjective estimates of the distances the candi­

date would move into the specified rectangle, those voters very near 

the border containing the candida te's current position probably \vould 

not have been in favor of such a move. But as it turned out, most who 

had a utility gradient at the candidate's current point that forme d an 

acute angle with the proposed direction vector favored the move. This 

b ehavior suggests direction voting. 

The work of Rabinowitz [1977] provides a second source of 

support for directiona l v oting . Us ing s u rvey data obtained during the 
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1968 and 1972 presidential elections, Rabinm-1itz uses a nonmetric multi­

dimensional scaling procedure to locate voters' ideal points and 

candidates' campaign positions within two-dimensional issue spaces. 

He finds few candidates occupying centralist positions, but rather ob­

serves candidates adopting peripheral positions surrounding the center 

of the distribution of voters. He argues that this result can best 

be explained by what he calls a "dispositional model," in which "it 

is the direction of a candidate's policy that is critical to developing 

his support base, not his absolute position." 

The above rationalizations for direction strategies have 

been based upon the concept of an Euclidean issue space. However, 

if the outcome space into which voters transform candidate messages 

is cognitive or perceptual in nature, it may not possess the Euclidean 

structure. In particular, Weisberg [1974] hypothesizes that some 

political issue spaces can be modeled as closed circles. As an 

example, Weisberg refers to the Swedish Riksdag, ,.,here parties of the 

so-called left and right sometimes vote together against the moderates. 

So the fourth conceptualization that can serve as a basis for the 

direction model, although it would now be inappropriately named, is 

that the set of perceived outcomes is a non-Euclidean space isomorphic 

3 
to the surface of a hypers phere. 

Assumptions a bout individual preferences a re also r equired. 

In the basic model we assume each voter most pr2fers the status quo 

to shift in a particular direction. A voter will rank directions 

negatively with the size of the angle they form ~-1ith his most pre ­

f erred direc tion. Formally, suppose that v 1 and v 2 are tt-70 
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direc tion vectors , and s i s the direc tion vecto r repre senting some 

vot e r's most pre f e rre d direction . Then the v o t e r will prefe r th e 

directio n of v
1 

to tha t of v
2 

if a nd only if s'v
1 

> s'v
2

. Further-

more, as is usual, we a ssume a voter's pref erences for candidates 

are identical to his preferences for the d i rection s they a dopt. 

All of these preference assumpt i ons are analogous to those 

ma de in simple Euclidean spa tia l models -- simply substitute pre-

ferred points for prefe rred direc tions, and Euclide an dis tances for 

angles. But the y can b e b e tte r justifie d here. Suppos e two candi-

dates choose vectors z
1 

and z
2 

that are the same distance d from the 

sta tus quo in the directions of v
1 

= z
1

/d and v
2 

= z
2
/d. Then the 

directional prefe rences de scribed above approx ima te pre f e rences tha t 

can be represente d by a differe ntiable utility function-- s'(v
1

- v
2

) 

is a linear approx ima tion to [u(z
1

) - u( z
2
)]/d when s is the (normal­

ized) utility gra dient at the status quo. The approximation b ecomes 

e xact if c andidate s can adopt poi nts only margina lly distinct from 

4 the sta tus quo . 

2. THE BASIC MODEL 

In the basic d i rec tion model, two candida tes c ompete by 

choosing vecto rs v 1 and v 2 of unit or, to a llow null shi f ts , zero 

l e n gth in the set of d ire c tions B = B U {O} , where B = · {v E: En : 

II v II = 1}. Each voter i mos t pre f e rs a vectors . E: B. An 
1 

a rbit r ary proba b ility measure P d efined on (Bore l) s ubsets of B 



-11-

represents the distribution of voters' preferred direction vectors, 

imposing no limitation on the number of voters. The directional 

preferences of voter i are represented by the inner product s.v. 
J.. 

Thus the fraction of the electorate who votes for candidate j is 

P[s'(v. 
J 

(j = 1, 

Geometrically, for the case of v. ~ 0 
J 

2), j's votes are obtained from the fraction of the 

electorate whose preferred direction vectors lie on the same side 

as v. of a hyperplane. containing the ori gin and the mid-vector 
J 

v 1 + v 2 . The indifferent voters are those whose ideal direction 

vectors lie in this dividing hyperplane -- for lack of a more 

realistic assumption in this setting, they are assumed t o abstain. 

Notice that voters with s. 
J.. 

0 are assumed to always be indifferent. 

Each candidate j is assumed to maximize his plurality: 

< 0]. 

Because of the symmetry of the two person game played by the candi-

dates, an equilibrium can be defined as a direction that guarantees 

a nonnegative plurality to any candidate who adopts it. 

Definition 1: An equilibrium direction vector v* is a direction 

in B for which PL
1 

(v>'<, v) ~ 0 for all v E B. 

The first task i s to show the relationship between 

equilibrium directions in the two-person plurality game and undomi-

n ated directions in the n-person absolute majority game . An undomi-

nated direction in the latter is one that is not ranked below another 
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5 by a strict majority of the voters: 

Definition 2: A direction vector v* c B is undominated provided 

P[s' (v* - v) > O] > 1/2 for all v c B. 

It would be disturbing to find equilibrium directions 

that were not undominated, for then a direction may exist which is 

preferred by a majority to the direction adopted by the winning 

candidate. Theorem 1 belmv shows that this cannot occur . Further-

more, theorem 1 shows tha t undominated directions are equilibria if 

P[s = 0] = 0, that is , if nobody is indifferent over all directions. 

This result is not obvious because a positive fraction of the vote rs 

may still be indifferent between any two directions v
1 

and v
2

, 

allowing the possibility that P[s' (v
1 

- v
2

) ::': O] :': 1/2 even though 

(The lengthy proof of theorem 1 is in an Appendix.) 

Theorem 1: Equilibrium directions are undominated . Conversely, if 

P[s = O] = 0, then undominated direc tions are equilibrium directions. 

One use of theorem 1 is to provide necessary conditions for 

equilibrium directions, since a condition both necessary and sufficient 

for undominated directions is easily obtained. 

Theore m 2: v* is an undominated direction vector if and only if 

P[s'a ~ O] ~ 1/2 for all a c En satisfying * a 'v ~ o. 

* i< 
Proof: Suppose v is undominated a nd that a 'v > 0. 

We may assume //a/ /= 1, and hence, letting v = v* - (2a ' v*)a, 
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have that v E B. Then a•v* > 0 implies P[s'a ~ O] = P[(2a'v*)s'a > 0] 

* * * P[s' (v - v) ~ 0] ~ 1/2. If a 'v 0 and v I 0, there exists a 

sequence . {a
1
,a

2
, ... } that converges to a and whose members satisfy 

a'v* > 0. Hence P[s'a > O] ~ 1/2 for all a , and 
n n n 

P[s' a ~ 0] ~lim P[s'a ~ 0] ~ 1/2 is established by an argument 
n n->= 

like that used to prove theorem 1. * Finally, if v = 0, then 

i< 
P[s'a ~ 0] = P[s'(v -(-a))~ 0] > 1/2 for any a E Band hence 

for any a E En. 

Conversely, suppose P[ s'a ~ 0] ~ 1/2 whenever * a'v 2 o. 

* * * * Since (v - v)'v ~ 0 for any v E B, P[s'(v - v) > 0] > 1/2 and v is 

dominant . 

The condition of theorem 2 actually consists of two different 

parts, namely, that P[s'a ~ 0] ~ 1/2 whenever (1) * a'v = 0 and 

* whenever (2) a'v > 0. Satisfaction of the first part means simply 

that the individuals whose ideal direction vectors lie upon any hyper-

* plane containing v and the origin, or to one side of it, constitute 

a (weak) majority of all individuals. This property is entirely 

analogous to the property that Hoyer and Mayer [1974, 1975] define a 

total median to satisfy for an Euclidean spatial model: every hyper-

plane containing a total median must bisect the distribution of 

voters' preferred points. 

Davis, DeGroot, and Hinich [1972], and later Sloss [1973] 

and Hoyer and Mayer [1974, 1975], show that in the simple Euclidean 

model an undominated point exists if and only if it is a total 
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median. But for the direction model, part (2) as well as part (1) 

of the condition in theorem 2 is needed to obtain existence . 

Distributions of the electorate exist that satisfy the bisecting 

property of part (1), but do not allow the existence of undominated 

directions. A continuous example appears in figure 1, where the 

distribution of preferred directions i s represented by the area 

between the unit circle Band the curve f(s). Each of the lines M
1

, 

M
2

, and M
3 

has a greater f raction of the electorate's preferred 

directions on one side of it than on the other. (The signs "+" 

and "-" near each line M. indicate which side of it the greater 
~ 

fraction of voters' preferred directions lie.) No undominated 

direction can exist, since any direction '"ill lie on the 11
-

11 side 

of some line M. and so will receive fewer votes than a direction 
~ 

located symmetrically on the opposite side of M .. However, some 
~ 

directions will satisfy part (1) of the condition, such as the 

vector v
1 

that lies in the bisecting line L. Since v
1 

lies on the 

"-" side of M
1

, it will receive only 1/4 the votes in a contest 

against v 2 . 

In a Euclidean model, a candidate who diverges from a fixed 

opponent will only lose votes. So if the opponent has chosen a total 

median, the diverging candidate can only decrease his plurality from 

zero. In the direction model, however, a diverging candidate will 

gain the votes of voters '"hose preferred directions directly oppose 

those of the voters he loses. Even if the opponent has adopted a 

median-like direction, a diverging candidate may win a strict majority 

by diverging so as to gain more votes than he loses. The complete 
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FI GURE 1 

A Distribution in Hhich No Direction I s an Equilibrium 

Even Though a Bisecting Direction Vector Exists 
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condition of theorem 2 eliminates this possibi lity for an undominated 

* v by requiring a majority to have its preferred dire ctions on the 

* same side as v of any hyperplane containing the origin. 

It can now be shown that the zero direction is an equilibrium 

or is undominated if and only if the same is true of all directions. 

Interpreted loosely, this means that a proposal to not shift the status 

quo is ,.,inning if and only if any other proposed shift is also winning. 

One could say in this case that society is indifferent as to the direc-

tion the status quo marginally shifts, just as an individual ,.,ould be 

if the status quo were loca ted at an extremum of his utility function. 

Corollary 1: The zero direction is an equilibrium (undominated) if and 

only if all direc tions are equilibria (undominated). 

Proof: By theorem 2, 0 £ B is undominated iff P[s'a ~ 0] > 1/2 for 

all a£ En, which is true iff all v £Bare undominated. 0 is an 

equilibrium provided PL
1

(0,v) ~ 0 for all v £ B, which is true iff 

P[s'v < 0] = P[s'v > 0] for all v £ B~ But the latter is true iff 

PL
1 

(v
1

, v
2

) = 0 for all v
1

, v
2 

£ B, or rather, iff every v £ B is 

an equilibrium. 

3. EXPLOITING A FIXED OPPONENT 

In this section we show that if one candida t e rigidly adopts 

a direction vec tor on a particular side of B, to be c a lled B-, then 

the optimal vector for the opponent to choose lies in B+, the side of 

B opposite B . The two vectors will be locate d symmetrically about 

+ -the hyperplane that separates B from B . Thus , entirely half the 
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directions will be inferior in the sense that only if both candidates 

are rigid will they both choose inferior directions. Since B+ shall 

be defined as the half of B containing the largest fraction of non-

indifferent voters, this result may also be interpreted as follows: 

once an extremist candidate becomes too extreme, the more extreme he 

becomes the further his opponent should diverge from him. Although 

this divergence result is similar to that which Hinich and Ordeshook 

[1968] proved for Euclidean models, it differs fundamentally by not 

requiring abstention of nonindifferent voters. Furthermore, no 

symmetry requirements are imposed or equilibriums assumed to exist . 

Before formally presenting theorem 3, we need some definitions. 

Definition 3: Let P = sup {P[s'c > 0] - P[s'c < O]}. Assuming a 

vector c E B exists such that P P[s'c > o] P[s'c < 0], let B 

{v E B: v'c < O}, and B+ = {v E B: v'c ~ O}. 

The direction vector c exists if P represents either a continuum of 

voters or a finite number of voters. Hence it is not restrictive to 

assume for the remainder of this section that c exists. The interesting 

case is when P > 0, in which case the following also indicates that any 

equilibrium direction vector is in B+. 

Theorem 3: If v
2 

E B, then the function f(v) = PL
1

(v, v
2

) is maximized 

on B by a vector v = v
2 

- (2c' v
2
)c contained iri B+. 

Proof: Clearly II vii = 1 and v'c + 
-v2c > 0. Hence v E B . The proof 

is finished by observing that 
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P [s ' (V - v 
2

) > 0] - P [s ' (V - v 
2

) < 0 ] 

P [(-2c'v2)s'c > O] - P [(-2c'v2)s'c < O] 

== P [s 'c > o] - P [s 'c < o] 

P. 

Theorem 3 is illustrated in figure 2, which also indicates 

further results obtainable when P exhibits some monotonicity. The 

half circles B + and B are separated by line M. The optimal vector 

to choose against a vector in .B like v
2 

is a vector in B+ like v
1

. 

* Notice that if v is not perpendicular to M, then v
1 

i s not diverging 
.,, 

toward v but only away from M and v
2 

as v
2 

moves further from Minto 

* B • Hence v
2 

does have some ability to drmv v
1 

away from v , but not 

+ out of B . Furthermore, in this situati on, if one candidate adopts 

a vector s
1 

in B+ that is no t v*, then his opponent increasingly 

receives more votes by choosing vectors increasingly closer to s
1

, 

but always between s
1 

and v* . For example, s
2 

does better than s
3 

for candidate 1 '"hen candidate 2 adopts s
1

. Candidate 1 can insure 

that the fraction of the electorate voting for him is within any 

arbitrary amount of the fraction of the electorate whose preferred 

vec tors lie above the line L. 

4. DIRECTION VOTING IN AN EUCLIDEAN MODEL 

We n ow assume that individuals h ave well-defined preferences 

over an Euclidean issue space , but that the outcomes associated with 

the candidates are restricted to a small n eighborhood of the status quo 

(origin). In fact, we assume the simplest case considered in Euclid ean 

models: each voter i most prefers a point x. and prefers y to z if and 
]_ 
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FIGURE 2 

Exploiting a Fixed Opponent When Ideal 

Directions Are Distributed Mono t onically 
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only if II X • - y il < II X • - z II . 
l l 

In the notation of the basic model, 

each voter i now most prefers the direction s. for '"hich As. = x. has a 
l l l 

solution A> 0. When candidate j chooses a point strategy z., he is 
J 

adopting the direction v. for w·hich Av . = z. has a solution A > 0 . 
J J J 

Voting is again assumed to agree with issue preferences, and only 

indifferent individuals abstain. 

The first question concerns the properties that a distribution 

of voter's preferred points must satisfy for plurality equilibria to 
A 

exist . We first obse rve that if P is a probability measure representing 

preferred points in the issue space, it induces a probability measure P 

A 

on B to represent preferred directions: P[s sA] = P [x s C(A)] for any 

(Borel) subset A of B, where C(A) = ' {x s En: ax s A for some a > O} is 

the cone spanned by A, and P[s = 0 ] = P[x = 0] . Thus the condition of 

theorem 2 can be considered to apply to P as well as P . But we show 

further that if an equilibrium point exists for a distribution of voters 

when candidates may choose any points in the issue space, then a 

corresponding undominated direction exists when outcomes associated 

with candidates are essentially shift directions. We first need formal 

definitions. 

Definition 4: A point z s En is undominated provided 

P r II z - xll ~~~ y X II] :;;:: 1/2 for all y s En. A point z is a n 

equilibEium in the plurality game provided it satisfies 

p [ II z - X II < II y - X II ] 2: p [ II z - X II > II y - X II ] n 
for all y E E . 

A 

Definition 5: A point z s En is a total median of P provided 

P [a'(x- z) ~ 0] ~ 1/2 for all a E En. 
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As previously men t ioned; an undominated point is kno~vn to b e 

a total median . It is a l so true that , analogous l y to theorem 1, undom-

inated points are equi libria. 

Lemma 1: 
n In an Eucli dean model, z E E is undominated if and only if 

it is an e quilibrium. 

Proof: 
n 

Le t y E E a n d, for 0 < a < 1, define y (a) ay + (1 - a) z. 

For z undominated, P[ II z - x II < II y'(a) - x II ] > P[jl z - x II 

> II y(a) - x II ] · 
Hence, P [ II z - x II < II Y - x II ] lim P [ II z - x II 

a-+1-

< II y (a) - x II] 
A 

> l im P £11 z - x II > II y (a ) - ~. II ] 
a-+1-

':: p [ ll z - X II > II y - X II ] . 

Therefore z is an equilibrium. The converse is obvious. 

* Theorem 4: If z E En is an equilibrium point , then any direction v 

* satisfying \v = z for some A .~ 0 is undominated. I f z f 0 or 

A * P[x = O] = 0, then v is also an equilibrium direction . 

Proof: * Let v E B be any direction except v . * Then z '(v - v) > 0. 

He nce 

* P[s'(v - v ) ~ 0] "' * P[x'(v - v) ~ '0] 

A * * > P[x '(v - v) ~ z '(v - v )] ~ 1/2 

* since z is undominated and hence a total median . This proves that v is 
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~'< * undominated . If z f 0, then z ' (v v ) A (l - v' v ) > 0 and 

* A * P[s'(v - v) > 0] = P [x'(v - v) > O] 

A * 
~P[x'(v v) ~ z'(v* - v)] ~ 1/2 . 

* This implies that v i s an e quilibri um if z f 0. Finally , if 
A 

P [ x = 0] = 0, then the orem 1 implies that v
7
' i s an e quilibrium. 

Existence of an undomina ted direction requires P to satisfy 

more than the median-like part of the condition in theorem 2, but 

A 

theorem 4 establishes that no more than a total median condition on P 

is needed. In f act, the converse of theorem 4 is false -- existence of 

direction equilibria does not guarantee the exis tence of point e quilib-

ria for a corresponding Eucli dean model. As a particularly easy example, 

illustrated in figure 3, s uppose there are three voters \vhose ideal 

points P
1

, P
2 

and P
3 

are arranged in a triangle t o one side of the 

* s tatus quo S. Then no tota l median exists, but the direction vector v 

that points toward P
3 

satisfies the condit ion o f theor em 2 and so 

represents an equilibrium. 6 

A consequence of theorem 4 and corollary 1 is that the 

status quo is a n equilibrium point if a nd only if a ll directions are 

undominated . Again, the h eu ristic interpretation is that the status 

quo i s at a social maximum if and only if society is indifferent about 

the direction the status quo moves . 

Theor em 4 also determines a consistency relationship 

between the two t ypes of equilibria : if point equilibri a exist , 

equilibrium direction vector s will " point" tmvards them . Suppose we 
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FIGURE 3 

Situation with a Direction Equilibrium 

But No Point Equilibrium 

I 
I 

I 
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now consider the situation in which a candidate may choose either a 

point or a dire ction as a strate gy. Using another assumption about 

voter behavior, ~e can establish another consistency property for each 

type of strategy: if one candidate has chosen either a directicn vector 

or a point (not the status quo) as his strategy, then his opponent can 

do no better than to choose the same type of strategy. The additional 

assumption concerns the voter's decision rule when one candidate chooses 

a direction and the other a point. We shall suppose the voter believes 

the candidate who chooses a point can shift the statu.s quo the main-

tained distance, and that the other candidate would shift the status quo 

the same amount. Based upon an "equally likely" type of rationale, this 

assumption implies that voters will always vote as if the two candidates 

had chosen points on the same hypersphere about the status quo, i. e., 

.11 d. . 7 voters w1 1rect1on vote. 

The internal consistency property now follows easily. 

If candidate 2 has chosen a direction, then regardless of the type of 

strategy candidate 1 chooses, the electorate will behave as if both 

had chosen directions. But if candidate 2 has chosen a point z, then 

for any direction v that candidate 1 might choose, he can achieve 

the same outcome by choosing the point liz llv. 

However, the addition of either infinite or finite infor-

mation costs might cause direction strategies to dominate point 

strategies. If the cost of obtaining informat.ion about voters' 

preferences over more than a neighborhood of the status quo is "too" 

high, or if only information about preferences over directions can be 

obtained, then the candidat es will have no real bas is for choosing 
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point strategies. Possessing only uncertain knowledge about voter 

preferences away from the status quo, the r isk-aver s e candidate may 

prefer a direction strategy to an exact point. If e ach candidate is 

also uncertain as to the amount of information the other c andidate 

possesses about voter preferences a~vay from the status quo, it is 

even more likely that direction strategies will dominate. This 

follows because one candidate's choice of a direction s trategy 

essentially forces the opponent to also choose a direction strategy 

and hence to utilize only information about the distribution of pre­

ferred directions, presumably known to both candidates. Formaliza­

tion of these concepts is left for future work . 

5 . SUMMARY 

The direction model of the electoral process allows limits 

to candidate mobility or voter perception and cognition. It is 

applicable (1) if only issue outcomes near the status quo are 

associated with candidates; (2) if only directional information is 

transmitted to voters; (3) if voter preferences are only well-defined 

near the status quo or are only defined for directions in ~11hich it 

can shift; or (4) if t he outcome space is curved so that i t can be 

modeled as a hypersphere. 

Assuming that a voter ~•ill vote for the candidate who 

campaigns for a direction closest to his own pre ferred direction, 

plurality equilibria were shown to be undomina ted . The identity of 

the two types of solutions was established if nobody wa s totally 

indifferent. Then a necessary and sufficient condition for the 

existence of undorni nat e d directions was determine d. The first part 
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of the condition, stating that any hyperplane containing the undomi­

n a t e d direction vector and the orig in bisec t s the distribution of 

preferred directions, is analogous to the t o t a l me dian condition in 

the simple Euclidean models. The remainder of the condition in 

theorem 2, stating that a majority of the electorate 's preferred 

direction vectors lie on the same side as the undominated direction 

vector of any hyperplane containing the origin, is not implied b y the 

median-like property in this model because of the " curved" nature of 

the directional domain space. The second part of the condition is 

what allows a candidate to diverge from a fixed direction chosen by 

an extremist opponent, where at least half the feasible directions 

are defined to be extremist for every distribution of the electorates ' 

preferred directions. 

Although the addition of a second part to the characterizing 

condition for equilibrium seems to further decrease the likelihood of 

its occurrence, it was shown that in situations where the assumptions 

of the simple Euclidean model are met, point equilibria exist only if 

corresponding undominated directions also exist. But the converse of 

this theorem is false -- some distributions of voter preferences 

yield direction but not point equilibria. In situations where both 

types of equilibria exist, contradictory predictions will not occur 

since equilibrium direction vectors point in the direction of existing 

equilibrium points. 

Finally, it was argued that a candidate has no incentive to 

adopt a type of strategy different from the type he knmvs his 

opponent will choose. This result can b e interpreted as an inte rnal 
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stability property for each model. However, it was suggested that 

when a candidate's uncertainties about voters' preferences away from 

the status quo and about the extent of his opponent ' s information is 

considered, only the direction model may exhibit this internal 

stability. 
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APPENDIX 

* Proof of Theorem 1: Suppose v is an e quilibrium. Then for any 

* * * othe r v E B, P[ s '(v - v) > O] > P[s '(v - v) < 0] . He nce v is 

I * undominated since P[s (v 

t * 

I * v) > 0] ~ P[s (v v) < 0] = 

1- P[s (v - v) > 0]. 

* Conversely, s uppose v i s undomina t e d but not a n e quilibrium, 

and that P[s""O] = 0. F or any a E En d efin e the follow ing se ts: 

S 
1 

(a) = [s E B: 
I 

0} s a > 

( s E B: 
I 

0} S
2

(a) = s a < 

H(a) ( s E B: I 
0}. = s a = 

:I.-
By assumption, there exists v E B such that PL

1 
(v " , v ) < 0. H e nce, 

* l e tting t = v - v, there is an E > 0 such that 

Since P[ (a} J > 0 for onl y a countable number of a E B, ther e e x ists 

b E B such that b 'v* ~ 0 a nd P[H(b)] = 0. H e nce P[H(b) n H(t)] = 0. 

Let H. = S . (b) n H(t) for i = 1, 2. 
1 1 

Consicier the case P[H 1] < P [H 2 ]. For n > 1 , d e fine 

c = 
n 

-1 -1 
n b + ( 1 - n )t. We now show that lim S . (c ) = H. U S.(t), 

n-?co 1 n 1 1 

or, by d e finition, that 

co co 
n U S.(c ) = 

k=1 n=k 1 n 

CX) CX) 

U n S .( c } = 
k = l n=k 1 n 

H. U S .( t). 
1 1 

I 
First , observe that s c 

n 
-1 I - 1 I 

= n s b + ( 1 - n )s t monotonically 
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ex> ex> I 

Hence s E n U S
1

(c ) <=> s c 
k=l n=k n n 

I 
s c < 0 for only finitely many 

n-

> 0 

n <==> s E U n S 
1 

( c ) . 
k=l n=k n 

I 
Also, s EH

1 
U S

1
(t) ~> s t > 0 or 

(s't = Oands'b > 0) <=> s 
1 
c > 0 for all n sufficiently larg e 

n 
ex> ex> 

<:=> s E n U S 
1 

( c ) . The argument for i = 2 is similar. 
k=l n=k n 

So by the continuity of a finite measure, and since H . and 
1 

Si (t) are disjoint, there exists an integer n
0 

such that 

(ii) !P[S.(c)] - P[H.] - P[S.(t)] I < -
2
E 

1 1 1 

for all c in the arc A = [ c E B: c = ac + !3t, a > 0, !3 > 0}. For 
A ~ A 

distinct c ·, c E A, there is no real numbe r y such that c = yc. H e n ce 
~ A I f 

s E H(c) n H(c) <=> s b = 0 and s t = 0 <=> s E H(b) n H(t). Thus 
A A 

H(c) n H(c) = H(b) n H(t) for all distinct c, c EA. So again by a 

countability argument, the re exists c E A such that 

P[H(C)] = P[H(b) n H(t)] = 0. From (i) and (ii), and since we are 

considering the case P[H
1

] < P[H
2

], we now obtain 

* Now if v = 0, let v = - c , and otherwise let 

* * (2c'v ) c . Clearly, v E B . Furthermore, sinc e v=v 

* * * b'v > 0 and v'v < 1, when v f 0 we have 
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* * Thus P[s'(v - v) > O] = P[s'c ~ 0], whether or not v 

Hence , as P[H(c)] 0, (iii) implies that 

* 

[ 
I ~ ] P s (v · - V) ~ 0 = P(S /~)] + P[H(c)] 

< P[S
2

(C)] 

= 1- P[s'(v>t<- v) ~ 0] . 

0. 

Therefore v is not undominated, contrary to assumption. The proof 

is similar for the case P[H
1

] > P[H
2
]. 
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FOOTNOTES 

1. The assumptions of e l ectoral spatial models and many of their 

predicticns are reviewed in Davis, Hinich, and Ordeshook [1970], 

and Riker and Ordeshook [1973]. 

2. Personal communication -- but see Fiorina and Plott [1975] for 

details on similar experiments . 

3. In this interpretation the status quo must be on the surface of 

the hypersphere rather than at its center. The status quo shall 

be assumed under this interpretation to play no role in the 

model, just as it plays no role in the usual Euclidean spatial 

models. 

4. See section 2 and appendix A in chapter II for an extensive treat­

ment of directional preferences. 

5. Undominated directions to simple games with a finite number of 

players are the subject of chapter II. 

6. However, it is shown in section 7 of chapter II that existence 

of undominated directions is equivalent to satisfaction of pair­

wise symmetry conditions similar to those Plott [1967] establishes 

for his constrained voting equilibria. Their stringency implies 

that existence is only slightly more "common" for directional than 
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for point equilibria . See also chapter III. 

( . When an individual prefers z
1 

over z
2 

if and only if 

ll x . - z \1 < II x . - z
2 

II , direction vcting exactly agrees with 
1. 1 1. 

preferences if the outcomes candidates can choose a r e constrained 

to lie on the same hypersphere centered at the status quo 

(origin). This follows trivially for x . 
J.. 

0. Otherwise, i f 

I 

xizl > xiz2 <=> 

s 
1 

v > s 
1 

v
2

, where s . == x . I ll x. II and v . = z . I II z . \\ · 
i 1 i 1. 1. 1. J J .J 
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Chapter II 

UNDOMINATED DIRECTIONS IN SIMPLE DYNAMIC GAMES 

1. INTRODUCTION AND SUMMARY 

~quilibria to simple games, such as majority rule, in 

multidimensional spaces require such severe symmetry of preferences 

1 
. 1 

as to rare y ex1st. Consequently, social processes may usually be in 

disequilibrium. The way they shift the state of the world through 

time can only be understood when an explicit dynamic mechanism or 

institution allows sequences of social decisions to be examined. 

To date, sequential simple games have been investigated 

in the context of two "disequilibrium" hypotheses regarding the 

interconnection between outcomes. Cohen [1977], McKelvey [1976], 

[1977] and Schofield [1977a] essentially assume that an outcome in 

one period can be any alternative preferred to the previous outcome 

b . . 1· . 2 Th h h f . d y a w1nn1ng coa 1t1on. ey s ow t at sequences o outcomes requ1re 

to satisfy only this dominance property do not satisfy any regularity 

condition, since such a sequence connects almost any two alternatives 

in the social choice space. Kramer [1977], in the majority rule con-

text, strengthens the ir assumption by requiring that an outcome re-

ceive a maximal number of votes against the previous outcome. He finds 

tha t these "maximally dominating" sequences always enter the minimax 

set [Simpson, 1969] when each voter has Euclidean pre ferences, tha t 

is, utility that decreases with the Euclidean distance from an ideal 
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point. This convergence is a regularity property that may provide 

insight into political situations w-here mobile challengers oppose 

fixed incumbents. 

In this chapter a different hypothesis relating sequential 

social outcomes is advanced, motivated by the supposition that social 

change is not instantaneous. More specifically, in any time period 

only alternatives a small distance from the previous outcome are 

assumed to be feasible. Taken to its logical and mathematically 

tractable extreme, this assumption converts the problem into one 

involving a continuum of social decisions, each of which determines 

a direction in which to marginally shift the current status quo. 

Since social decisions in this setting are directions, 

the application of cooperative game theory requires that directional 

preferences be determined from the location of the status quo and 

the underlying preferences over social states. Directions are 

represented as vectors of zero or unit length, and in section 2 one 

direction is said to be preferred to another if it is nearer one's 

utility gradient evaluated at the status quo. The set of winning 

coalitions is then used to define a dominance relation on directions, 

and undominated directions are predicted outcomes to the game. In 

other words, the status quo is predicted to shift in a direc tion to 

which no winning coalition unanimously prefers another direction of 

shift. 

The distinction. between the undominated direction hypothesis 

and the hypothesis that each chosen point dominates the preceeding one 

should be emphasized. The continuous version of the latter requires 
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the shift direction to dominate only the zero direction that corres­

ponds to a null shift. The undominated hypothesis, on the other hand, 

requires the shift direction to be undominated in the set of all 

directions. Neither hypothesis implies the other, as can be seen in 

the examples of section 2. 

In appendix A, which supplements section 2, an alternative 

directional core is defined via an inducement ofdirectional preferences 

that is independent of utility gradients. This core is found to be 

contained in the one defined in section 2. The tw·o are. identical if 

each utility function satisfies a condition we label local symmetry. 

For comparative purposes, the local point core so often 

studied since Plott [1967] is examined in section 3. As it too is 

defined via utility gradients, a second definition involving small 

neighborhoods is explored in appendix B. The relationship between 

the two local point cores is found to be strictly analogous to that 

between the two directional cores uncovered in appendix A. Further­

more, the first point core and sometimes the second can be defined in 

terms of the analogous directiona l cores. Specifically, it is shown 

that a point is locally undominated if and only if the zero direc tion 

corresponding to a null shift is undominated. This result is 

strengthened in section 3 when its point core is shown to consist of 

points whose directional cores contain all directions. Finally, 

section 3 concludes with the demonstration that in the benchmark 

case of Euclidean preferences, directions that "point" to an 

existing point core are undominated. 

Before dynamics are discussed, an important tangent is 
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pursued in section 4. The directional core is found to be equiva­

lent to the cone whose nonexistence is shown by Schofield [1977a] 

to imply local cycling. Hence the nonexistence of an undominated 

direction implies that any two points sufficiently close to the 

status quo can be connected by a finite sequence of points, each of 

which dominates the preceeding one. 

In section 5 an investigation is begun of the paths gen­

erated when the status quo is infinitesimally shifted in undominated 

directions .. A status quo so shifted through a point x is shown, at 

the time it is at x, to be simultaneously approaching every point 

in every winning coalition's preferred-ta-x set. No path satisfying 

this "approach" property exists through points with empty directional 

cores. Thus a point with an empty directional core satisfies a solu­

tion-like property in not being able to shift so as to approach simul­

taneously every point preferred to itself by every winning coalition. 

In section 6 it is shown that if preferences are Euclidean, 

and if the speed of the status quo is bounded below \vhen it follm..rs 

undominated directions (which it does whenever they exist, by assump­

tion), then the status quo either enters the set of points with empty 

directional cores ·or converges to the point core . Thus, . for at least 

this simplest of situations, dynamics based on a local equilibrium 

concept imply convergence to a set with global solution-like properties. 

The last section of the paper contains a discussion of the 

principal shortcoming of the directional core as a solution-concept: 

its frequent nonexistence in majority rule situations. Results from 

the dissertation appendix are used to show that utility gradients at 
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the status quo must satisfy stringent pairwise symmetry conditions 

akin to Plott's [1967] for an undominated direction to exist. 

Schofield [1978] has used these conditions to obtain results implying 

that generically,undominated directions in majority games will not 

exist at almost all points in spaces of dimension greater than three. 

Even for majority rule, however, existence of directional cores is 

more common in some important cases, as is argued in section 7. 

Furthermore, existence is shown to be more common in games with less 

decisiveness and anonymity than majority rule. As a polar case, it is 

observed that undominated directions always exist in a simple game 

whose winning coalitions form a prefilter. 

2. THE DIRECTIONAL CORE 

The set of possible social states in this paper is simply 

m 
a Euclidean space E . The societal status quo can therefore be 

t d · b · Em represen e at any t1me y a po1nt x E • This section 

describes the static game that is played at each point in time and 

whose outcomes are shifts in the status quo . 

The magnitude of feasible shifts is assumed to be very 

small (infinitesmal) and independent of their direction. Hence an 

outcome may be represented by the direction in which x shifts, where 

a direction is formally defined to be a vector in Em of unit or 

zero length. All directions of shift are allowed, so the set of 

feasible outcomes is B = B u {O}, ~vhere B is the ball consisting 

of all unit vectors. 

The players of the game are represented by an index s e t 
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N = {1,2, ... ,n}. The preference ordering of each player i EN 

over social states is r epresented by a continuously differentiable 

m utility function u.: E ~ R. From u., we induce a preference 
~ ~ 

ordering Pi(x) on B by defining, for any v 1 ,v2 E B, 

(2.1) 

By this ordering on B, the preferred member of a pair of directions 

is the one closest to the utility gradient. In Appendix A we show 

that v
1
Pi(x)v

2 
implies that player i prefers shifting x infinitesimally 

in direction v
1 

rather than v
2

. 

Returning to the game, its outcome (direction x shifts) shall 

be determined by the set W of winning coalitions that characterize a 

simple game. Formally, W is a collection of subsets of N that is 

(2.2i) (non-trivial) 0 t w, N E w 

(2. 2ii) (superadditive) M E w, M e M .. ==? }1 .. E W 

(2.2iii) (proper) M E W==}t{ t W. 

Sometimes we shall assume the game is also strori·g : 

(2.2iv) (strong) 

Majority rule games, where any coalition containing more than n/2 

members is declared winning, are the most common simple games satis-

fying (2.2i-iii). A majority rule game is strong provided n is odd. 

Now the usua l solution concept for a cooperative game, 

the core, can be defined. First define a dominance relation 

on B by v
1
D(x)v

2 
provided there exists a \vinning coalition M E W such 

that v
1
Pi(x)v

2 
for all i E M. Then the directional core K(x) is the 

· set of all undominated directions: 

(2. 3) K(x) = {~ E B IJ-i v E B 3 vD(x)~}. 



-42-

If it is nonempty, the outcome shift is assumed to be in K(x), \vhich 

is particularly plausible because K(x) is shown in appendix A to 

contain the core defined there independently of utility gradients. 

The nature of the directional core is clarified by the 

following fundamental characterization. Its statement requires, 

m 
for any v s B and x £ E , a coalition to be defined by 

(2.4) M(x,v) ={ i £ N I v • Vu.(x) > 0}. 
]. 

M(x,v) is simply the coalition that p refers the status quo to shift 

in direction v to remaining at x, that is, the set of people that 

prefers (by P.(x)) v to 0. 
l 

Proposition 2.1: 
n 

For any x £ E , 

(2. 5) K(x ) = { v £ B I Vv £ B 3 v • v _2 0 , M(x,v) i W}. 

Proof: Suppose v £ B and that for all v £ B satisfying v • v ~ 0, 

M(x,v) i W. If vi K(x), then there exists v~ £Band an M £ W such 

that v~P.(x)~ for all i £ M. Hence for each i £ M, (v~- v) 
]. 

• Vu. (x) > 0. 
l 

Since v~ - v I 0, we can let v 

the Cauchy-Schwarz inequality, 

~ 

v ·v - v•v 
v • v 

II v~ - v II 
So by the hypothesis, M(x,v) i W. 

~ 

v - v 

II v~ vii Clearly v £ B, ,and by 

< o. 

But for any i £ M, v • Vu . (x) > 0 
]. . 

since (v~- v) • Vu.( x) > 0. 
1 

Hence M c M(x , v), and by superadditivity, 

we achieve the contradiction M(x ,v) £ W. Thus v £ K(x) . 

Conversely , suppose v E K(x). If v = 0, the n for a n y v E B, 



-43-

vP.(x)v for all i E M(x,v). Because v = 0 is undominated, M(x,v) i W 
l 

for all v E B. Also, M(x,O) 0 i W. Hence we need to show 

M(x,v) i W only for v ~ 0, v ~ 0, and v • v < .0. 

For any i EN, v • Vu.(x) can be considered as a continuous 
l 

function of von B. So if v • Vu.(x) > 0, there is an open neighbor-
1 

hood U.(v) of v such that y • Vu.(x) > 0 for ally E U.(v). Hence 
1 1 1 

for any v E B and any 

y E II U. (v) 
i£11(x, v) 

1 
U(v), 

M(x,v) c M(x,y). By superadditivity, M(x,y) i W implies M(x,v) i W. 

If v • v < 0, furthermore, since U(v) is an open neighborhood of v, 

there is a y E U(v) such that y • v < 0. Therefore, to show that 

v • v ::= 0 implies M(x, v) i W, we need only shmv that v • v < 0 implies 

N(x,v) i W. 

So suppose v • v < 0. Let v~ v - 2(v • v)v. Then v~ E B. 

If i E M(x,v), then v • Vu.(x) > 0, and so (v~ --;) · • Vu.(x) = 
1 1 

-2(v • v)(v • Vu . (x)) > 0. Hence v~P.(x); for all i E M(x,v), 
1 1 

implying that M(x,v) i W since-; is undominated. 

The content of proposition 2.1 is easily interpretable. Say 

that a direction v "points away" from another direction v provided 

v • v < 0. Then (2.5) implies a direction vis undominated provided 

no winning coalition prefers a direction pointing away from v 

over the null direction. Stated differently, if the coalition 

M(x,v) preferring x to shift in direction v is winning, then no 

direction v pointing away from v is undominated. 
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For future reference, let 

(2.6) K(x) i= 0 }, 

a nd 

(2. 7) K(x) = 0} 

In appendix A , I is shown to be closed, so that r. is open . Let 

J interior I and L = closure L. 

Examples of undominate d directions are easily constructe d 

that utilize the b enchmark Euclidean preferences so pervasive in the 

spatial model literature. A p erson i E N is said .. to h ave Euclidean 

preferences if there is a point p. E Em such that 
1 

(2.8) 
2 

u.(x) =-liP.- xll 
1. 1. 

represents them. The point p. is i's ideal point, and his indifference 
1. 

surfaces are spheres cente r e d at pi. At any poi~t x, the gradient 

V'ui(x) = 2(pi - x) i s a vector "pointing" from x to pi . 

When preferences are Euclidean and the game is majority 

rule, expression (2.5) simply says that v E K(x) if any hyperplane 

containing x h as no more tha n h a lf the ideal points on any open 

side of it not containing v. Thus when n is odd, as in figures 

2 .la,b ,d, an undominated direction at x i s unique and must point 

tm..rards a pi satisfying the median-like p roperty that any hyper-

plane cont aining p. and x bisects the whole set of ideal points . 
1. 

In figuJ:'e 2 .. lb the cone T
1 

contains the directions that all 

three people pre f er to a null shift at x
1

, but t h e undomina t ed 

direction ~1¢ T
1

• At x
2 

in figure 2.lb a nd at x in figure 2 .lc , n o 

winning coalition prefers the undominated direction shown to the zero 
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direct ion, that is, no winning coalition is b e tter of f . if those sta tus 

quos s hift in the undominated direction s indicated. In figure 2.ld, 

m = 3 and x ·is float i ng above t he t \..ro-dimen sional tria ngle p 1p 2p 3 . 

Everybody would prefer x to s hi f t in a direction such as t, but n ever-

theless there is no undomina t e d direction. 

3. THE POINT CORE 

In this section, to further c l arify t h e na ture o f the 

directional core K(x), it is contras ted to a local point core oft e n 

consider ed in the literature . To this end, d efine K c Em to be the 

se t of points x f or which there is no d irection v E B and coalition 

MEW such that v • Vu.(x) > 0 fo r all i E M. In the previous nota-
1 

tion, this point core is simply 

(3 .1) K = {x E Em I \j v E B, H(x , v) t W}. 

Although, as is shown in appendix "B , K is only a l i n ear approxima- '· 

tion to the set of local l y undominated points , i t has been discussed 

widely under various guises: it is the " local core" to the dynamic 

game of Schofield [19 77b], t h e set of "Plott equilibriums " in Sloss 

[1973], and, in the context of ma j ority -rule; the se t 1of " equilibriums " 

in Plot t [1967], of "total me dian s " in Hoyer and Mayer [1975 ), a-cd 

of "quasi-;-undominated" points in the dissertation appendix. 

The definition of K c an also b e written 

( 3 . 2) K = {x E Em I 0 E K(x) }, 

which says tha t x is in the point core prov i ded ~ direction in B 

dominates the zero direction. This is in contr ast to the condition 



implied by (2 .5) for the directional core K(x) t o be non-empty, 

n ame ly, that only some c losed h a lf of B n ot domina t e the zero direc-

tion. In this sense the existen ce conditions for K(x) a r e weake r than 

those for K. This i s further indicate d by the following corollary 

to proposition 1, ~vhich indicates x £ K if and only if every direc tion 

i s undominated at x. 

Corollary 3.1: Expression (3.2) can b e strengthened t o 

(3 . 3) K = {x c Em I K( x ) B}. 

Proof: By (3 .2) '"e need onl y show that KC {x £Em I K( x ) B}. 

Suppose x £ K a nd v £ B. By (3 . 1), M(x,v) ¢ W fo r all v £ B. 

He n ce b y (2.5), v £ K( x ). This proves K(x) = B. 

There i s a closer relationship be t ,veen the cor es K and K(x) 

in the case of Euclidean preferen ces . Proposition 3.1 states that in 

this case any direction point ing. from x to K is undominated -~ a 

r esult c learly having content only when K f. Ql. 

Proposition :3.1: Let x £ Em. If preferences · a r e Euclide:an, the n · 

(3.4) 3 A > 0 3 x + ~,.-;; £ K} c K( x) . 

Proof : It must be shown that if z £ K, the n K(x) contains the v £ B 

for which z = x + A.-;; for some X ~ 0. Suppose v £ B satisfies 

v • v < 0. Then v • ( z - x ) ~ 0. Since Vu .(x) ~= 2 (p.- x), 
~ ~ 

v • (p. - x) > 0 f or all i £ M(x,v) . So for a ll i £ M(x,v), 
1 

z) v • (p. - x) - v • ( z - x) > 0. This proves that 
1 

M(x,v) c M(z , v ) . Since M(z,v) ¢ W b ecause z £ K, s uperaddit i vity 
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implies M(x,v) i W. Thus by proposition 2.1, v ~ K(x). 

The reverse of inclusion (3.4) is not a h vays true, as 

figure 3 . 1 indicates. In this figure, N {1,2,3 , 4} and three-

and four-person coalition s are winning. At the point x, K(x) 

contains all directions between the directions that point to p
2 

and p
3

, but only p
3 

is conta ined in K. The reason that all directions 

in K(x) in this example do not point to K i s tha t the number of players 

in this majority rule game is even, which means that the game is not 

strong. The n ext proposition states that in strong simple games where 

preferences are Euclidean and K # ~' K(x) is exactly the set of direc-

tions that point to K. 

Proposition 3 . 2 : If preferences are Euc l idean, the game is strong, 

and K # 0, then 

(3 . 5) K(x) = {v ~ B I x + Av ~ K for some A > 0}. 

Proof: :Cit v i e"tv 0f proposition 3.1, it is only\ necessary t0 show that 

K(x) i s contained in the set on the right of ( 3 . 5) . So let v ~ B, . 

and s uppose x +A~ i K for all A~ 0. We must show vi K(x). We 

can assume v # 0, for~ = 0 a nd xi K imply~ i K(x). In Appendix 

B it i s s h own t h at K is closed, and a s imple argument s hows i t i s 

convex and bounded 'tvhen preferences are Euc lidean. Since {x + A~ 

A > 0} is disjoint f rom K, a separating hyperplane theorem shows the 

exi stence of v E: B such that v . v < 0 and v . (z - x) > 0 for any 

z ~ K . Let M = {i E: N I v • (p. - x ) ~ 0}, and let z ~ K. 
J_ 

Then if 

i ~ M, - v • (p. - z) = v • (z - x) - v • (p . - x) > 0. So, as z ~ K, 
J_ J_ 
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FIGURE 3 . 1 
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M C M(z,-v) i W. Superadditivity now implies M i W. Since the game 

is strong and M(x,v) is the complement of M, M(x,v) E W. So by 

propo~ltion 2.1, v ¢ K(x). 

4. LOCAL CYCLES AND DIRECTIONAL CORES 

A brief digression is now pursued in order to point out 

a connection between K(x) and an important cone s tudied by Scho-

field [1977a]. A second characterization of K(x) is provided 

that allows an immediate a pplication o f Schofield's Null Dual Theorem 

to show that K(x) = 0 implies the dominance relation over points is 

cyclic in. a n e ighbor hood of x. Stated differently, a sufficient 

condition for K(x) to b e nonempty is that local cycling not occur 

in the vicinity of x. More notation is unfortunately n ecessary. 

The (loca l) Pa reto optimal set for a coalition M C N is 

(4.1) P(M) = {x E Em l j v E B 3 M c M(x,v)} , 

that is, x is (loca lly) Pareto optimal for M if there is no direc-

tion in which everyone in M wants X t o shift. Notice that K = nP(M) . 
MEW 

The preference co-cone of a coalition MC N at a point x is simply 

the convex cone generated by the utility gradients of those in M: 

(4.2) Bcx, M) = {y E Em I y E A.Vu.(x), all A. > 0, some A. > 0}. 
iEM l. l. l. - l. 

~ 

As Schofield [1977 a ] demonstra t es , 0 E D(x,M) if and only if 

x £ P(M). De fine a related cone by 

(4.3) B if X£ P(M) 
D(x,M) 

D(x,M) n B if xi P(M). 
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~-

Thus 0 E D(x,M), D(x,M) = B, a nd x E P(M) are a ll equival ent 

statements . The next proposition provides an important charac t eri-

zation of the directional core K(x) in terms of these cones. 

Propos ition 4.1: 
m 

At any x E E , 

( 4 .4) K(x) n D(x,M). 
MEW 

Proof: K(x) c n D(x, M) is first shown. Suppose v E K(x) . Then '"e 
MEW 

must show v E D(x,M) whenever M is winning, which is nontrivial 

only when D(x,M) # B. In this case the closed convex cone D(x,M) 

does not contain 0. Assume~ t D(x,M). Then D(x,M) and V may be 

strictly separated with a hyperplane con t aining the origin, that 

is, there exis ts v E B such that v • v < 0 and v • y > 0 for all 

y E D(x,M). As Vu .(x) E D(x,M) for all i EM, the latter inequality 
l 

implies that Me M(x,v) . Superadditivity then implies M(x,v) E W, 

which by proposition 2.1 contradicts -:;; ·E K(x) . Therefore, we know 

-; E D(x,M) n B = D(x,M). 

Now s uppose v E n D(x,M). We must show v E K(x) . 
MEW 

Suppose v E B satisfies v • v < 0 . For a ny i E M(x,v), v • Vu.(x) > 0, 
l 

which implies tha t v • y > 0 for a lly E D(x,M(x,v)) . Hence 

O,v t D(x,M(x , v)) . If M(x,v) E W, the n b y hypothesis, v E D(x,M(x,v)) 

B n D(x,M(x,v)), a contradiction. Hence M(x,v) i W. So b y proposi-

tion 2.1, v E K(x). 

Proposition 4.1 allows the immediate conclusion that the empti·-



-52-

n ess of K(x) implies local cycling, once the latter is properly defined. 

Say a point x
1 

is continuously reachable from a point x0 provided there 

i s a continuous path c: [0,1] ~ Em, differentiable on the intervals 

r
1 

= (O,t
1
), r

2 
= (t

1
,t

2
), .. . Ik = (tk_1 ,1), such tha t 

( 4. 5i) 

(4.5ii) 

(4.5iii) 

c(O) 

c(l) 

M 
j 

_ n M(c(t), c~(t)) £ W 
te:I. 

J 

(j 1 , 2, ... 'k) . 

So at each point t £ Ij , the winning coalition Mj unanimously 

prefers the p oint c(t) to shift along the curve c rather than 

3 
not shift at all. 

For any points y, z £Em, say that y dominates z if there 

exists MEW such that u.(y) > u.(z) for all i £ M. Since 
~ ~ 

c~(t) • Vu . ( c (t)) > 0 at each t E I. and i E M it is easy t o 
~ J j, 

show that ui ( c (tj+l)) > ui (c(tj)) for every i E Mj" Hence, if · x
1 

is continuously reachable from x
0

, the r e is a sequence of points x
0 

c(O), c(t
1
), •• • ,c(tk_

1
), c(l) = x

1 
such that each point dominates 

the preceeding one . This dominance rela tion is cyclic if x
0 

= x
1

. 

Local cycling is said to occur at ~provided there is a neighborhood 

U of x such that any point in U is, contJnuously r e achable from x by 

4 a path that stays in U. 

The Null Dual Theorem of Schofield [1977a ] states tha t 

l ocal cycling occurs at X if n D(x , M) is empty. Proposition 4 . 1 
MEW 

therefore immediat e ly implies 

Corollary 4 . 1: Local cycling occurs a t x if K(x) 0. 
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5. THE APPROACH PROPERTY 

In this section an examinatio.n .'. of dynamics is initiated 

by characterizing points with nonempty directional cores in terms 

of certain paths containing them. Specifically, the directional 

core at x is nonempty if and only if there is a path through x that 

possesses a type of optimality that will soon be defined. 

Because the global properties of paths are of interest, 

utility functions are often subsequently assumed to be pseudo-

concave, that is, to satisfy for each i EN 

(5.1) (y - x) • Vui (x) < 0 ===} ui (y) ~ ui (x). 

The next proposition will also require the preferred-ta-x set of 

a coalition M C N to be defined by 

(5.2) P(x,M) = {y E Em I u.(y) > u.(x) for all i EM}. 
1 1 

The set P(x,M) is open and, if utility functions are pseudoconcave, 

also convex. 

If A is either a set or point in Em, and c: [O,oo] + Em is 

a continuous, differentiable (almost everywhere) path, let the 

+ function g (•;A) : [O,oo] + R be the distance from c(t) to A : 
c 

(5. 3) gc (t;A) = inf IIY - c(t)jl. 
yEA 

Denote by g'(t;Z) the derivative of g at t. Say that the path c 
c c 

has the approach property at the point c(t) provided that for all 

MEW andy E P(c(t),M), 

(5. 4) g'(t; y) < 0. 
c 

The approach property can be interpreted as a pointwise 
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optimality condition on paths, since a path satisfying the approach 

property at x = c(t) is moving at time t simultaneously towards the 

preferred-ta-x set of every winning coalition. One consequence 

of the follm11ing proposition is that a path satisfying the approach 

property at a point x exists if and only if K(x) I 0. 

Proposition 5.1: 
· m 

Fix x e:: E . If there is a path c having the approach 

property at x c(t), then 

(5. 5) e:: K(x). 
II c" (t)ll 

Conversely, if each u . is pseudoconcave and c is a path satisfying 
1 

c(t) = x and (5 . 5), then c satisfies the approach property at x. 

Proof: Suppose c has the approach property at x = c(t). Let 

v 
c" (t) 

II c" (t)ll 
Suppose v e:: B satisfies v • v < 0. By the continuity 

of each u. and the finiteness of M(x,v), there exists A> 0 such 
1 

that u.(x + Av) > u.(x) for all i £ M(x,v). Hence, letting y = 
1 1 

x + Av, we have y e:: P(x,M(x,v)). Since 

(5.4~ implies that M(x,v) i hi. Proposition 2.1 now implies 

v £ K(x), or rather, (5.5). 

Conversely, suppose c is a path satisfying c(t) = x and 

(5.5), and assume utility functions are pseudoconcave. Let y e:: P(x,M) 

for some Me:: Cll. Then by pseudoconcavity, (y- x) • Vu . (x) > 0 for 
1 

each i e:: H . Thus, by (5.5) and proposition 2.1, He::{(/ implies 

(y- x) • c'(t) > 0. Hence c satisfie s the approach property at x: 
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g'(t;y) 
c 

-c'(t) · (y- x) < Q. 

g (t;y) 
c 

Proposition 5.1 confers the optimal-lik e approach property 

to paths that always travel in undominated directions when such 

exist, as will be explicitly stated in the next section . Furthermore, 

proposition 5.1 confers a solution property of sorts to the set L, 

since a point contained in L has an empty directional core and 
I ' 

therefore cannot simultaneously approach every point preferred to 

itself by every winning coalition.
5 

Therefore points in either K 

or L satisfy desirable properties; points x £ K strongly because the 

preferred~to-x set of every winning coalition is empty, and 

points x £ L weakly because they cannot simultaneously approach all 

winning coalitions ' preferred-ta-x sets . 

Again, stronger results are obtainable if preferences are 

Euclidean. This section concludes with the following results that 

will be important for the convergence theorem of the next section . 

Lemma 5.1: Suppose preferences are Euclidean, and assume x i P(M) 

for some M c N. Let z £ P(M) satisfy 

11 2 - x 11 

Then z £ P(x,M). 

inf Hz - x II. 
z.e:P(M) 

Proof: It is well-known that P(M) is the convex hull of {pi I i £ M}. 

Hence z exists, since P(M) is closed. As P(M) is also convex, there 

is a supporting hyperplane at z with normal (z- ~),that is, 
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(5. 6) (z - z) . (z - ~) > 0 

for all z E P(M). Since each p. E P(M), let z = p. in (5.6), 
~ ~ 

subtract x • (z - x) from both sides, and rearrange to yield 

Hence 

As preferences are Euclidean, this proves u .(z) > u.(x) for each 
~ ~ 

i EM, or rather, z E P(x,M). 

Using this lemma, the following corollary proves that 

any path through x approaches each P(M) if and only if its tangent 

vector at xis contained inK(~). While this property does not 

by itself have a n optimal interpretation like the approach property, 

it will provide the cornerstone · of the next section's convergence 

result. 

Corollary 5 . 1: Suppose preferences are Euclidean, and fix x £ Em. 

If c is a path differentiable at c(t) = x such that 

(5. 7) c"(t) ----~~--- E K(~), 
llc"(t)ll 

then for all MEW such that x ¢ P(M), 

(5.8) g"(t;P(M)) < 0. 
c 
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Proof: Suppose M £Wand x ¢ P(M). Define z(t) £ P(M) by 

llz(t) - c(t) II inf II z 
zt:P(M) 

c(t) II = g (t;P(M)). 
c 

Since c(t) i s continuous and P(M) convex, z (t) i s con t inuous . We 

first show <P (t) = z (t) • (~- x) is differentiable (.:rith ¢"( t ) = 0 , 

whe re we have let z = z (t) . 

Because P(M) is convex, there i s a supporting hy p e rpla ne 

at z (t) with normal z(t)- c (t): 

(5.9) (z - z(t)) • ( z(t) - c(t)) > 0 

for all z £ P(M) . He nce 

lim inf 
- z) • 

~ 0, 

t -+t+ t - t 

and 

lim sup l (z(t) - z) • <-; - X) J 
t +t+ t - t 

= lim_sup t z.(t) - z) . (z(t) - c(t))] 2 o. 
t - t 

t -+t+ 

He n ce the right hand derivative at t of </l(t), equal to 

(z (t) - ~)_· (-; - x)J, 
lim 

t - t 
t+t+ 

exists and is 0 . A similar argument establishes the same for the 

l ef t hand derivative, so that ¢" (t) exists a nd ¢ " (t) = 0 . 

Since cj>"(t) and c"(t) exist , 

· " (t· P(M)) = d[( z(t)-c(t)) • (~ - ~)] [ 
gc ' dt -

t=t 

- -1 
g ( t; P (M)) 

c 
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also exists. As ¢/(t)= 0, 

(5.10) g/ (t;P(M)) 
c 

But by lemma 5.1, z s P(~,M). Hence if (5.7) is true, proposition 5.1 

implies g/(t;z) < 0 since Euclidean utility functions are pseudo­
c 

conc ave. Thus (5.7) implies (5.8). 

6. THE DYNAMIC PROCESS 

Now conside~ paths that the status quo traces if at each 

time its direction of shift is contained in the directional core 

whenever it :is nonempty. The requirement that a dire ction of 

movement be undominated whenever possible is a behavioral restriction. 

These paths are generated when the outcome of the simple game is an 

infintesimal shift of the statu s quo, after which a new game is 

played a t the n ew statu s quo , and the entire p rocess rep eated inde-

finitely. One k e y ass umpt ion h ere is that players do not respond t o 

r ealizations that current a c t ions dete rmine the location of future 

status quos a nd h enc e which games will s ubsequently b e played. 

Wheth er this "sincer e " b e h avior i s a res ult of myopia, mora l injunc-

tions against l arge- scale gaming , e t c., it proba bly occurs in many 

situation s . 

This dynami c process is mod e l ed here as s i mpl y as possibl e . 

The ultimate goal is to obtain convergence of some s ort t o the se t 

K U L that was argued previ ou s l y to sat i sfy solution- like properties. 

However, for mathema tica l convenience , conver gence to t h e closed 

se t K U L i s investigated. The simplest assumption s u fficient for 
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convergence is merely that the speed of the status quo x is bounded 

below by s > 0 when x is not in K U L, that is, when x e: J\K. An 

upper bound S on the speed is also a convenient assumption . Finally, 

in order to minimally res trict the direction of motion, it is 

required to be undominate d only when x e: J~ rather than when 

x e: I. Summarizing, the status quo i s assumed to follow a 

path x: [O,oo] + Em, diffe rentiable almost everywhe r e , satisfying 

(6.1) x ... (t) e: F(x(t)), 

Em 
Where F ·. Em+ 2 · d d f" db 1s a correspon ence e 1ne y 

(6.2) e: Em IIYII < s} ifxe:KUL 

F(x) ~ r {y E: Em I s ~ IIYII~ S and ~~ ~II e: K(x)} if X E: J\K. 

The correspondence F maps points into truncated, convex closed cones , 

and is s ho\vn to b e uppersemicontinuo us in Appendix C. 

It n ow immediately follows that s uch a path a lmost always 

satisfi es the approach property whe never poss ible. 

Corollary 6 .1 ·: Provide d al l preferences are pseudocon cave, a p a th x 

satisfying (6.1) and (6. 2) has the appro ach prope rty a t all x(t) e: J. 

Proo f: If x(t) e: J\K, then from (6.2), 
x""'(t) · II x "'(t) II e: K(x) . Hence 

propos ition 5 .1 immediately i mplies that x satisf i es t h e a pproach 

prope rty at x(t). I f x (t) e: K, then t h e approach p roperty i s vacu-

ous ly sat isfi e d at x(t) since P(x(t),M) = 0 for each M e: W. 

Two t ypes o f conve r gence \\Ti ll b e discussed n ow. If c i s 

a path in Em and A c Em, c is said t o conver~ to A provide d 
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lim g (t;A) = 0. The path c is said to e nter A provi de d that given 
c 

t-700 

any T > 0, there i s a time t ~ T such that c(t) £ A. 

The next propositi on is tha t an x(t) satisfying (6.1) and 

(6. 2 ) will converge to K if K # 0 or will enter L if K = 0, provided 

that preferences are Euclidean. Hence in this case the path converges 

to the set K U L tha t was argued to h ave solution properties 

in the previous s ection . From corollary 5.1 we see that x(t) will 

move into one Pareto set P(M) after another , never l eaving a ny after 

entering, as long as x (t) £ J. So what occurs is that x(t) keeps 

moving simultaneously towards all winning coalitions ' Pareto sets 

that do not contain it until it has either moved into them all (x £ K) 

or can n o longer approach them all simultaneously ( x £ L). 

Proposition 6.1: Suppose a ll preferences are Euclid ean. I f K # 0, 

the n an x(t ) sat i sfying (6 .1) a nd (6. 2) converges t o K, and d oes so 

monotonical l y if the game is strong . If K = ·0, then x(t ) enter s L. 

Proof : Suppose first tha t K # 0. Then proposition 3 .1 implies J = Em, 

so tha t x(t ) £ J a l ways . Le t M £ W. Corollary 5 .1 n ow implies 

that g (t; P(M)) is strictly decreasing in t Hhen x(t) t P(H)I. As 
X 

g (t;P(M)) is bounded below by 0 , 
X 

(6. 3 ) 

exists. 

d * = lim g (t; P(M) ) 
t -700 X 

I t was sho\vn i n proving corollary 5 .1 that g (t;P(M)) was 
X 

dif f ere ntiable when x(t) was differentiabl e , which i s almost every-

where. He nce (6. 3) implies 
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Since x(t) is always approaching the compact set P(M), the range of 

the path x is contained in a compact set. As the range of x~ is also 

contained in a compact set.' there is a sequence t -r 00 as v -r oo 
v 

such that x =lim x(t ) and~ .... = lim x .... (t) exist. Let z(t) e: P(M) 
v-XlO v v-roo v 

satisfy 

II z ( t) - X ( t) II = g ( t ; p (M) ) , 
X 

and let z =lim z(t ). 
v 

(6.5) ~~ • (z - ~) 

Then 

-lim g (t ; z (t )) g .... (t ;z(t )) 
X V V X V V v-roo 

-lim g (t ;P(M)) g .... (t ;P(M)) 
v-roo X V X V 

(by 5.10)) 

-d*O = 0 (by (6.3) and 6.4)). 

Since F is uppersemicontinuous , x .... e: F(x). If d* I 0, then x ¢ P(M) 

·a'.nd sox¢ K. Hence by (6.1) and (6.2), 11~ .... 11 > s > 0 and 

(6.6) 
II x .. ll E K(~). 

Let c(t) be a path such that c(t)= ~and c .... (t) 
- .... 

= X • Then, as 

II"~ - ~II = g (t;P(M)), (6.6), corollary 5.1, and g (t);P(M)) > 0 
c c 

imply the contradic tion 

x .... . c~ - x) (by (5.10)) 

- g (t ;P(M)) g~(t;P(M)) 
c c 

> o. 

This proves that d•'< = 0. Hence x(t) converges to P(M) for each MEW, 

which means that x( t) converges to K A P(M) . 
Me:W 
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If K # 0 and the game is strong, proposition 3.2 implies that 

x .. (t) always "points" at K. This can be used to show g .. (t;K) < 0 

when x(t) t K, so that x(t) monotoni call y converges to K . 

Nmv suppose K = ~L If there was a T such that x(t) E J 

for all t ~ T, the above argument establ ishes the existence of a 

limit point x such that x E: P(M) for all M E W. But then x E K, 

which is impossible . Hence L exists and x(t) enters L when K = 0. 

The proof of proposition 6.1 could have used more of the 

special structure of Euclidean preferences, that is, it could have 

first been shown via proposition 4.1 that undominated directions 

"pO.int" towards all winning coalitions' Pareto sets, which indicates 

that x(t) must converge to them all if x(t) E J always . However, 

the above proof used the Euclidean assumption only via the mono­

tinicity property of corollary 5 . 1 . This should allow some elements 

of the proof to be useful in proving convergence to K U L under a 

l ess restrictive preference assumpt ion . 

7. THE EXISTENCE PROBLEM IN MAJORITY GAMES 

The value of the hypothesis that game outcomes will be 

undominated is in its use as a predictor. In situations where social 

change is slow, so that the status quo can never shift far, it 

can be predicted to shift in undominated directions - provided they 

exist . Unfortunately, cores "infrequently" exi st \vhen pmver is evenly 

sproad among individuals and the dominance relation is highly dec isive, 
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such as occurs in majority rule games defined by 

w = {M c N I % < IMI}. 
For a majority game in a space of dimension greater than two, 

the necessary conditions for a nonempty directional core are similar 

and only slightly less restrictive than the conditions necessary for 

a nonempty point core. Expression (2.5) applied to a majority game 

states that K(x) contains a direction ; only if each closed h alfspace 

determined by any hyperplane through 0 and ; contains at least half 

the utility gradients. Thus (2.5) is a condition of symmetry about 

a line determined by 0 and v. Expression (3.1), on the other hand, 

is a condition of symmetry about the point 0, since it says that the 

point core K contains x only if each closed halfspace determined by 

any hyperplane through 0 contains at least half the utility gradients. 

If the dimension of the space is greater than two, then intuitively 

symmetry about a line is only slightly less restrictive than symmetry 

about a point. Each type of symmetry can be s h own equivalent to 

stringent symmetry conditions involving pairs of utility gradients . 

Such pairwise symmetries a r e shown necessary. in the disserta­

t ion appendix for the existence of various point cores . The point 

cores investigated there are allowed to be contained in the boundary 

of a feasible set, \vhich means that only certain directions of shift 

are feasible. The restrictions on feasible directions allow the 

results of the appendix to be applied here to show that symmetries 

involving pairs of gradients are also required for directional cores to 

exist in majority games. In fact, we will broaden the discussion to 

generalized majority games, which are defined by a fraction 
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.5 < A < 1 and 

OJ = {M C N I An :: I M I } · 
Inspection of (2.5) and (3.1) leads to the key observation: 

v E K(x) whenever x is in the point core K in situations where feas -

ible directions in which x c an shift are defined by 

F = { v E B 1 v • ~ < o}. 

The conditions for x E K when the cone of feasible shift directions is 

F is one of the special cases conside red in the dissertation appendix 

and , if A= .5 and n is odd , in Plott [1967]. 

To apply results in the appendix, ·let T be a two dimensional 

s ubspace of Em containing v E K(x), and let NT= {i E. N I 9 ui(x) £ T}. 

Let Q CNT be a maximal subset of NT that can be partitioned into 

pairs {i,j} for which neither Vu.(x) nor Vu .(x) is a multiple of 
1 J 

v , but there is an a. > 0 and a > 0 such that 
1 j 

(7 .1) a. Vu. (x) + a.Vu . (x) E {O,~}. 
1 1 J J 

Finally, let RC Ni\Q be define d by R = {i E N I Vu.(x) = av for 
1 

some a > 0} . Then corollary . 4 in the appendix ·implies · that a 

necessary condition for v E K(x) is a bound on IQI: 

(7. 2 ) 

To interpret this, suppose the game i s majority rule with 

n odd . Then A = • 5 and w·e have 

(7.3) INT: IRI ~ lql > INTI- 2IRI. 

If IRI = 0, t h en I NT I~ IQI > INTI' which is impossibl.e . Hence 

( 7 . 3) implies IR I > 1. If IRI = 1, then ( 7 . 3) implies IQ) = INTI - 1. 
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In this case, by applying (7.3) to all two dimensional subspaces con­

taining v, we see that the n- 1 people in N\R can be partitioned into 

pairs whose gradients satisfy (7.1). This is exac tly the condition 

obtained by Plott [1967] for constrained majority rule. 

The painvisc symmetry condition (7 . 3) that applies to maj ority 

games is intuitively restrictive, which leads us to believe that 

K(x) 'I <I> is "uncommon" in a majority .game . Subsequent to the original 

f h . . . d " . 6 . db appearance o t lS pa1rw1se symmetry con 1t1on, lt was use y 

Schofield [1978] to show tha t K(x) 'I <I> is "uncommon" in a formal 

7 
sense. Specifically, he investigates majority games in which m > 2 

if n is odd and m > 3 if n > 2 is even. In these cases he shows 

that if the n-tuple of utility functions is contained in a particular 

n 2 8 
subset of TI C that is dense ·with respect to a n a tural topology, then 

i=l 
the set 

L = {x £ Em I K(x) = <j>} 

is dense in Em. Thus L is generically dense in a majority game if the 

dimension of the state space is greater t han two or three. 

If the set L i s dense in Em, then convergence to L UK 

of paths that follow existing undominated directions is trivially 

t rue . However, d espite Schofield's genericity result, there are 

still two reasons why directional cores in majority games are of 

interest. First, L is not generically dense in majority games if the 

outcome s pace is two dimensional. This is exa~tly the setting of 

experiments designed by Fiorina and Plott [1975] and McKelvey, 

Ordeshook, and Winer [1976] to test various solution concepts. There-

fore, in the analysis of these experiments the solution propertie s of 
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L must be cons idered . In fact, Schofield [1977b) has argued that out-

comes of these experiments do tend to cluster in L. 

Second, the genericity of L being dense i n majority games 

has meaning only in situations where preferences are determine d in 

a "random" o r "uncontrollable" fashion. Only then is it "unlikely" 

that the n - tuple of utility functions will not be in the d e nse sub­
n 

set of TI c2 
that implies the d en seness of L. However , in some cases 

i=l 
the majority game is embedded in a larger model lvhich allows 

preferences over the alternative space relevant to the majority game 

to be endogenously controlled. One step in this direction has b een 

taken by Slutsky [1977] who investigates an economy l·lhere voting 

determines an allocation of public goods and a competitive market 

determines the allocation of private goods. Prefere nces over 

public goods are influenced by tax rates, and Slutsky shows that 

often the point core exists if the tax rates are properly chosen. 

It seems c lear that a similar, dynamic model of an economy can be 

constructed in which the proper choice of tax rates can insure the 

existence of directional cores in public goods space. 

It must not be forgotten that generic nonexistence of 

directional cores was obtained for majority games. In simple games 

with less decisiveness (fewer winning coalitions) and especially with 

less anonymity, directional cores exist more often. An indication 

that less decisiveness leads to more existence· is that the only 

sufficient condition obtained in Schof ield [1977a) for L to be 

generically dense in generalized majority games is for m > max {2q - 1, 

q + 1}, where W consists of coalitions of size q < n or larger . 
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Although this does not seem the tightes t possible bound on m, 

directional cores will appar ently frequently exist in games requiring 

l arge major ities oper ating with many individuals in spaces of low 

dimension. 

Weakening anonymity results in existence t o an even greater 

extent. Define a coalition 

(7.4) R = rl M. 
M£W 

If R # ~ then the collec t ion of winning coalitions W that also 

satisfies (2. 2i) and ( 2.2ii) is a prefilter. Brown [1973 ] shows that 

any dominance r e l at ion ob taine d from a prefilter when individual 

prefere nces are acyclic is also acyclic. The coalition R i s called 

a collegium and occupies a uniquel y powerful position., s ince 

(l) the point core K contain s the nonempty Pareto set P(R), and 

(2) the directional cor e K(x) contains the nonempty cone D(x,R) , 

9 
as can b e seen from (4.4). Hence, when a collegium exi s ts, direc-

tional cores a lways exist and, under the condition s of proposition 

6.1, the sta tus quo will converge to the point core. 
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APPENDIX A 

This appendix to section 2 first investigates the 

relationship between K(x) and a directional core K( x ) defined by a 

more complete inducement of pre ferences upon B than is represented 

by P.(x). It concludes with a proof that I is closed. 
~ 

The best way to induce preferences from Em to B that is 

in keeping with the spirit of the model is to define a preference 

ordering P.(x) on B by 
~ 

< A. Player i will prefer shifting x in direction v
1 

to shiftir.g it in 

direction v
2

, when bo th shifts are v ery small and of equal magni-

tude, if v
1
Pi(x)v

2
•· As ui is continuously diffe rentiable, -v

1
Pi(x)v

2 

and -v2Pi(x)v1 imply ui(x + Av1 ) = ui(x + Av2) for all A> 0 less than 

some A> 0. Thus an indifference relation defined from P.(x) truly 
l 

indicates that a p l ayer is indifferent between small shifts. This 

is not true of an indifference relation defined from P.(x), since 
~ 

ther e are cases lvherev
1
Pi(x)v2 but not v

1
Pi(x)v2 . 

The ordering P.(x) is a linear approximation to P.(x) and 
1 1 

is seen in l emma Al below to be contained in P . (x) . The condition 
~ 

for Pi(x) = Pi(x) on B = B '{0} is that ui be locally symmetric 

(about its gradient) at x, whic h is defined to mean that for any 

v
1

, v
2 

£ B, there exists X> 0 such that 

(A . 2) 

for all 0 < A < A. The name of this property results from the fact 

that (A. 2) is satisfied provided that whenever v 1 , v 2 £ B are equi-
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distant from the gradient Vui(x), Av1 and Av2 must be on the same 

indifference curve for small A > 0 . Euclidean functions as 

defined in (2 .8 ) and linear functions are two examples of functions 

everywhere locally symmetric. 

" Lemma Al: P. (x) c P. (x) . P . (x) 
l. l. l. 

u . . is locally symmetric at x. 
l. 

" P.(x) on B if and only if 
l. 

Proof: If v
1
Pi(x)v2 , then (v1 - v2) • Vui(x) > 0. Let f(A) 

ui(x + Av
1
)- ui(x + Av2), and observe that 

lim 
A->-0+ 

f(A) 
-A- f"' (O) 

Hence for small A > 0, f(A) > 0, that is, v1Pi(x)v2 . 

Now suppose that P. (x) "' P. (x ) and that (v - v ) • 
l. l. 1 2 

Vui(x) ~ 0 for a particular v1 ,v2 E B. Then not v
1
Pi(x)v

2
, and 

hence not v 1Pi(x)v2 • Thus there is no A> 0 such that f(A) > 0 

f o r all 0 < A < A. Since f i s cont inuously differentiable, this 

implies the existence of A > 0 such that f(A) -~ 0 for all 

0 < A < A. This proves that ui is locally symmetric a t x. 

Conversely, suppose u. is locally symmetric at x, and that 
l 

v1Pi(x)v2 . Then f(A) > 0 for all smal l A> 0. If (v1-v2) • Vui(x) 

S· 0, then by (A.2), there exists A> 0 such that f(X):?; 0 fo r all 0 

< A < >:.. As .this is impossibl e, (v1 - v 2) · Vui (x) > 0, implying 

If v1 , v2 E B, s ay that v
1 

(P(x)) P(x)-dominates v
2 

provided 
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K(x) is the s et of P(x)-undominated directions, and similarly define 

the core K(x) to b e the set o f P(x)-undo mina ted directions. K(x) 

is a linear app roxima tion to K(x), and the following propos ition 

specifies their r e l ation ship. Without further assumptions it i mplies 

that the propositio ns of this paper characterizing directions in K(x) 
... 

are also true for directions in K(x). 

A r. 

PropositionAl: K(x) c K(x). Conve rse l y , K(x) = K(x) provided 

either (i) every u . is linear, or (ii) every u . i s l ocally 
1 1 

symmetric a t x and, for each M E W, x ¢ P(M) or 

x E interior{y ] z ~ u.(z) > u.(y) ViE M} = IP(M).lO 
1 1 ... 

Proof: Lemma Al implies K(x) c K(x ). 

... ... 
If each u . is linear, then 

. 1 

P.(x) = P . (x) => K(x ) = K(x). Now suppose each u. is locally 
1 1 ]. 

symmetric at x, and let v E K(x ). Case 1: v j 0. If v ¢ K(x), 
... 

then 3 M E W ~ 0 P. (x )v V i E M, as by l emma Al 1l v j 0 that 
1 

" P (x ) -domina tes v. \-le know x c P(M) , for otherwise 

3 v j 0 ~ v P. (x) 0 V i E M, which by lemma Al and trans itivity 
1 

i mplies the contradiction vP. (x)v 
1 

V i E M. 
... 

Also, 0 P. (x) v 
1 

" He n ce x ¢ IP(M). This final contradiction proves v E K(x) . 

Case 2: v = 0. Then by (3.1), x E P(M) V ME W, so that 

" 
x c IP(M) V M c W. But then no v £ B P(x)- do"inin a t es v = 0, 

so that v E K(x). 
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Proposition A2: I i s closed. 

Proof: Let {xt} be a sequence of points in I converging to x . Let 

vt £ K(xt). Since B is compact we can choose a subsequence {vk} of 

{vt} such that lim vk = ~ £ B. lole show that~ E: K(x) and hence x E: I. 

If v = 0, then as 0 £ B is an isolated point of B, there 

exist k
0 

such that vk = 0 for all k ~ k
0

. Suppose i E: M(x,v) for some 

v E B. Then v • Vu.(x) > 0. As Vu. is continuous, there exists 
~ ~ 

k(i) such that v • Vui(xk) > 0 for all k ~ k(i). Hence M(x,v) c M(xk,v) 

for all k > k = max {k
0
,k(i)}. Since vk = 0 E: K(1k) for k > k, 

iEM(x,v) 

proposition 2.1 implies M(~,v) ¢ W for k ~ k. Superadditivity now 

implies M(~,v) ¢ W, , and proposition 2.1 now implies v E: K(x) . 

So assume v # 0, and s uppos e v • ~ 2 0 for some v E: B. As 

in the proof of proposition 2.1, the finiteness of N can be used to show 

existence of a y £ B near v such that y • v < 0 and M(x,v) C M(x,y) . 

As in the previous p a ragraph, the continuity of V~i implies the 

existence of k such that M(x,y) C: M(~,y) for all k > k . Furthermore, 

since vk -+ v, there exists k such that y • vk < 0 for all k > k .• 
;.., 

If M(~,v) E W, then M(~,y) E W for all k > max {k,k}, which implies 

vk t K(~) for k ~max {k,k} by proposition 2 . 1 . This_ contradict~on 

shows M(x, v) ¢ W for any v such that v • v < 0. Prop9_s it:i,on_ 2 . :1,. now 

implies v E K{x) . 
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APPENDIX B 

The purpose of this appendix is analagous to that of 

appendix A, n amely, to examine the relationship bet~veen the local 

point core K and a truly local point core K defined here. 

Just as K(x) was viewed as a linear approximation to K(x), K will 

be considered to linearl y approximate K. 

Say that x £ Em is locally undominated provided a neighbor­

hood U of x exists such that for any z £ U, {i £ N I u.(z) > u.(x)} ¢ W. 
l. l. 

The local point core K is the set of locally undominated points in 

Em. Say that a func tion u. is locally pseudoconcave ~~provided 
l. 

the re exists a radius A. > 0 such that for any v £ B, 
l. 

(B.l) v • Vu.(x) < 0 ~ u.(x + Av) < u.(x) 
l. --T l. - l. 

for all 0 <A <.A •• (Observe that local pseudoconcavity is equiva­
l. 

lent to pseudoconcavity (see (5.1)) if A.i = oo .) 

The following lemma, stronger than necessary for propo-

sit ion Bl, is of independent interest because it shows ~vhen K can 

be defined in terms of K(x) just as K is defined in (3 . 2) in terms 

of K(x). 

Lemma Bl: 

(B. 2) K c { x £ Em I 0 £ K ( x) } . 

If each u. i s locally pseudoconcave at each x contained in the right 
l. 

hand side of (B;2), then 

(B. 3) ~ = {x £ Em I 0 £ K(x)}. 
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Proof: Suppose x £ K. If 0 i K(x), then there exists M £Wand 

v £ B such that for each i £ M, vP.(x)O. Hence for each i £ M, there 
1 

is a Ai > 0 such that ui(x + Av) > ui(x) for all 0 <A < Ai. As M is 

finite,~= min{X.} > 0 and for all i £ M, u.(x + Av) > u.(x) if 
i£M l 1 1 

0 < A < A. But now any neighborhood of x contains a point x + AV 
A 

that dominates x via M, which contradicts x £ K. He nce 0 £ K(x). 

Conversely, suppose 0 £ K(x) and each u. is locally pseudo-
1 

concave at x with a radius of Ai > 0. As N is finite , A= min {>.. . } > 0. 
i£N 

1 

If xi K, there exists .v £Band A> 0 such that A <X and 

ui(x + AV) > ui(x) fori contained in some M £ W, Hence by (B.l), 

v • Vu.(x) > 0 for all i £ M, i .e ., vP.(x)O for all i £ M. By lemma 
1 1 

A 

Al, vP.(x)O for all i E M, which contradicts 0 £ K(x). ijence x E K. 
1 

A 

Proposition Bl : K c K . If each u. is locally pseudoconcave at 
1 

A ll 
each x £ K, then K = K. 

Proof: Suppose x E K. Then 0 E K(x) by lemma Bl, and by proposi-

tion Al, 0 £ K(x). Hence by (3.2), x £ K. Conversely, suppose x £ K 

and each ui is locally pseudoconcave at x. Let X= min {A . } > 0, 
iEN 1 

and let U {x + Av I v £ B, 0 _.2 A < A}. I f for some x + Av £ U, 

M = {i EN I u . (x + Av) > u.(x)} £ W, then local pseudoconcavity 
1 1 

and superadditivity imply M C M(x,v) £ W. This contradiction to 

x E K shows x is locally undominated in U, so tha t x £ K. 
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Thus propositions true for elements of K are true for elements 

of K, and local pseudoconcavity is sufficient for the converse. 

Proposition B2: K is closed. 

Proof: Let {xt} be a sequence in K converging to x. Le t vt 0 

E K(xt). Now a pply the first half of the proof of proposition A2 . 
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APPENDIX C 

In this appendix F (x), defined i n (6.2), is shown to b e 

uppe r s emicontinuous . To do this, s uppose {~} and {yJ a re t\vO 

sequences in Em such that~ ~ x, yk E F(xk)' and yk ~ y. Then 

y E F(x) mus t be shown. 

If x E K U L, the proof is trivial because each IJykJJ < S 

implies that JIYI 1 < S, which shows by (6.2) that y £ F(~). So 

suppose x £ J\K. 

Because J\K is an open. set, ~ £ J\K for large k . Hence 

is contained inK(~) for l ar ge k, by (6.2). Inspection 

of the first paragr aph of the proof to propos ition A2 now 

r eveals tha t it proves v £ K(~), where vk ~ v = ~. Since 

s _:: !IY 11 _:: S because s < 11 y k 11 _:: S for large k, this s hows t ha t 

y £ F(x). 
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FOOTNOTES 

1. Median-like symmetry condit ions are discussed, for example, in 

Davis, DeGroot and Hinich [1972], Sloss [197 3 ] , Hoyer and Mayer 

[1975], and Calvert [1977 ]. The more explicit pairwise symmetry 

conditions necessary in majority rule are discussed in Plott [1967 ], 

McKelvey and Wendell [1976], Slutsky [1978], and the appendix 

··-
to this dissertation. 

2. Schofield actually investigates continuous-time processes that 

have the property that for small £ , the outcome at time t + e: 

is preferred by a majority to t h e outcome at time t . 

3 . Notice that this does not say that c;(t) E K(c(t)). Hence it is 

not necessarily true that a status quo moving alon g c is shifting 

in undominated directions . This kind of path i .s discussed 

in sections 5 and 6. 

4. Notice that (4.5iii) implies llc;(t) II > 0. Hence the local 

cycl ing property i mplies the existence of a n ondegenerate 

path from x to x that stays n ear x, which accounts for the 

n ame " local cycling. " 

5. See Schofield [1977b] for a very different argument for con-

sidering L as a solution set. 
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6. In the initial version of this chapter, Matthews [1977] . 

7. Schofield [1978] actually shows that local acyclicity is 

"uncommon" in a formal sense, but his method is to show that 

K(x) is "commonly" empty in majority games . 

8. c2 is the space of real, continuously twice differentiable func-

m 
tions on E , and a set A is dense in a topological space X pro-

vided the closure of A is X. 

9. Schofield (1977 a,c] also observes that K(x) ~ ~ i f W is a 

prefilter. 

10. The local Pareto set P(M) i s defined in expression (4 . 1) as 

{x I ~ v € B 'v • Vu.(x) > 0 Vi € M}. 
l. 

interior of the g lobal Pareto set of M. 

IP(M) is the 

If each u. is 
l. 

pseudoconcave, as defined in (5.1), then IP(M) = interiorP(M) 

and condition (ii) requires that x i boundaryP(M) V M € W. 

Figure 2 . l(b) provides a counterexample '"hen this condition 

is not required, for there each ui is locally symmetric at x
2

, 

but K(x) = {v
2

}, although K(x) = (!L (0 Pi (x
2

)v
2 

for i = 2 , 3.) 

"' "' 11. When N is not finite, neither K c K or K c . K is true in gene ral, 

even assuming local pseudoconcavity. Pseudoconcavity, however, 

implies both K c K and K =={globally undominated points} . See 

Calv~rt (1977] and Sloss [197 3 ] for further discussion of K and K 

when N is arbitrarily large. 
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Chapter III 

CONSTRAINED PLOTT EQUILIBRIA, DIRECTIONAL EQUILIBRIA, 

AND GLOBAL CYCLING SETS 

Although the possibility of majority rule intransitivities 

has been recognized since at least the time of Condorcet, their 

ubiquity has only recently been revealed. Previously, democratic 

theorists had hoped tha t the smallest set of alternatives that 

collectively dominate all other alternatives -- the top cycle set 

would be small enough to uphold faith in the unbiased selectivity 

of majori.ty rule (see Schwartz [1970]). McKelvey [1976] demonstrated 

that this hope \~as unfounded, at least for the case of multidimen­

sional alternative spaces. He showed that in a special case any 

alternative can be reached from any other alternative by a finite 

sequence of majority rule decisions , which implies that the top cycle 

set is the entire alternative space. Another implication is that 

the final ·outcome of a majority rule procedure is determineq com­

pletely by the agenda, or rather, by the person or institution that 

constructs the agenda. 

Cohen [1977] shows that more generally the top cycle set 

is a member of the class of sets P(x), each of which is defined to be 

the set of all alternatives that can be reached_ from an alternative x 

via a sequence of majority decisions. Both Cohen [1977] and McKelvey 

[1977] deduce conditions necessary for a set P(x) not to include all 

alternatives . If P(x) i s a proper subset of the alternative space, 
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then it mus t have a boundary . McKelvey argues that the conditions 

necessarily satisfied at bounda r y points are severe enough to imply 

that the boundary rare ly exists. 

In this chapter we strengthen Cohen's [1977] and McKelvey 's 

[1977] results by showing that extremely strong conditions must be 

satisfied at boundary points of P(x) when preferences are r epre­

sentable by differentiable utility functions. The characteristic 

properties of boundary points are local, and to exploit this fact 

we apply the results of Schofield [1977a ,b] and of ch apter !I 

that concern continuous , local intransitivities and a continuous, 

dynamic maj ority rule process, respectively. 

Specifically, in section 2 we first define global cycling 

sets and Schofield's continuous local cycling. We then observe that 

the latter cannot occur at boundary points of the former. This 

allows the results of chapter II to b e app l ied in section 3 to 

conclude that undomin a t ed direc tions exist at the boundary points of 

any P(x). I t is also s hown in section 3 that, if some assumptions 

are satisfied, the undominated directions point back into the cycling 

set from its boundary points. This implies that in a dynamic setting 

such as that of chapter II, the top cycl e se t possesses dynamic as well 

a s static stability properties . 

However, the existence of undominated directions at bounda r y 

puints of a cycling set implies, as i s shown in chapter II, 

a severe pairwise symmetry condition on utility gradients . This 

c ondition i s derived by first observing that the exis tence of undomi­

nated directions at a boundary point implies tha t the point must b e 
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a constrained Plott equilibrium ( see Plott [1967]). The pairwise 

symme try condition, which implies the "weak symmetry" condition 

McKelvey [1977] shows to hold at boundary points, is discussed in 

section 4. It further strengthens the conclusion that "us ua lly" 

the set of global intransitivities is the entire alte~ative space. 

1. LOCAL AND GLOBAL CYCLING 

Let N = {1, 2, .• . , n} be the set of voters, with n odd. Each 

vote r i has prefere nces over the open alternative space X CRm that 

are representable b y a diffe rentiable utility function u. whose 
1. 

indifference surfaces have no interiors (i.e., are "thin"). Under 

maj ority rule the set W C: 2N of winning coalitions consists of all 

n+l 
subsets of N with at least ~ members, and the (absolute ) majority 

rule rel ation P is defined by xPy <~> {i £ N I u. (x) > u. (y)} £ ~v. 
1. 1. 

Define another relation Q by xQy <=> yPx. 

Suppose the status quo is a point x in X. Any point y 

that can be achieved by a finite sequence of majority rule decisions 

s t arting a t x is the outcome of some social process based on majority 

rule. Tha t is, there exists an agenda that guarantees y as the out-

come whenever y can be reached via P from x. This f ormally means 

tha t a finit e sequence x = x
0

, x
1

, .•.. , xk y exists such that 

x.Px . 
1 

for j = 1, 2, ... , k. Let P(x) be the set of a ll points that 
J J-

ean be r eached via P from x, a nd l e t Q(x) b e the set of points that 

can b e reached via Q from x . Th e sets P (x ) and Q (x) are easil y s h m-m 

to b e open by Cohen [1977] and McKelvey [1977], and the l at t e r further 

shows Q(x) to be the complement of the closure P(x) when indifference 
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surfaces are thin. 

If P(x) = X, then arbitrarily close to any point in X is 

another point that can be reached from x. For this not to happen, 

P(x) must be a proper subset of X and have a nonempty boundary 

()P (x) = P(x) ('\ Q(x) • 1 Both Cohen [1977] and McKelvey [1977 ] establish 

properties that any y € ()P(x) must satisfy. For convenien ce and in 

accordance with McKelvey [1977], define pl(y) = {z € X I zPy} and 

ql(y) = {z € X I zQy} . Then properties necessary for y € aP(x) are 

2 
that P(x) contain and essentially be the set of points that defeat x: 

(1) 
1 

P (y)CP(x) 

(2) 1 --p (y) = P(x) 

(3) 1 =--
Q (y) Q(x) 

Loosely speaking, (1) is true because any point that beats y 

will beat some point in P(x) by the continuity of utility functions and 

hence mus t itself be in P(x). Property (2) says that every open set in 

P(x) contains a point that beats y. If (2) is false, then the thin 

indifference curve assumption implies that y b eats some point in P(x) 

a contradiction toy¢ P(x). Property (3) is an immediate corollary 

of (2). 

~~en preferences are strictly convex, or rather, when 

3 . 
utility function s are st r ictly quasiconcave , Cohen [1977 ] shows 

that (2) and (3) can be strengthen ed to 

(4) 
1 P (y ) = P(x) 
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(5) Q(x) 

She also shows for this case that each P(x) is convex when X is 

convex, and that a particular P(~) exists, which we shall denote as 

V, that is a top cycle set in the following sense: any point in V 

is reachable from any other (not necessarily different) point in V, 

and any point in V beats any point not in V. Formally, V satisfies 

P(x) ~ V for all x £ V. This~ cycle set V thus can be considered 

a solution set. However, if V is the whole space, then majority rule 

alone t e lls us nothing about what the outcome of a democratic process 

might be, regardless of the location of the status quo x. 

Considering again an a rbitrary P(x), one obvious implica­

tion of Cohen's [1977) and McKelvey's [1977) propositions about any y 

contained in the boundary oP(x) is that the re are points in every 

n eighborhood of y that cannot be reached from y . More precisely, 

we have: 

Proposition 1: Let y £ oP(x) . Then, given any neighborhood N(y) of 

y, there exist points in N(y) which cannot be reached via P from y. 

Proposition l will a llow us to conclude that any neighbor­

hood of y £ oP(x) contains points that cannot b e ·continuously reached 

from y, where continuous reachability is a concept explored by 

Schofield [1977a,b) and now to be defined. Define first a direction 

to be any vector in Ern of zero or unit length, and deno te the set of 

direc tions by B. Let B = B \ {0}. For any v £ B and z £ X, define 

a coalition M(z,v) by 
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M(z,v) = {i € N I v • Vu . (z) > 0}. 
]_ 

M(z,v) can be int erprete d a s the se t of voters who prefer the point z 

to shift in d i rec tion v rather than not s hift a t a ll. (Mor e will b e 

s aid about dire ctiona l prefe r ences in the nex t s e c tion.) 

Say tha t a poi nt x 1 i s continuo us l y r e a chable f rom a point x 0 

prov ide d the re i s a c ont i nuous path c : [0,1) 7 Em, dif ferentiable on 

c(O) x
0

, 

c (l) x
1

, and 

M . =· 
J 

n M(c(t),c ' (t)) € W 
t €1. 

J 
(j 1, 2 , .•. k) . . 

So a t e ach point t £ I., the winning coa lition M. pre fers the p oint 
J J 

c (t) t o shift a l on g t h e c urve c r a the r than not s h i f t at a ll. 

Since c ' ( t ) • Vu .(c (t)) > 0 at e a ch t £I . and i € M. , it i s easy 
]_ J J 

to s h ow tha t u . ( c (t.+
1
)) > u . ( c (t.)) for ever y i € M .. The r efore , 

]_ J 1 J J 

if x
1 

is cont i n uous l y reach able f r om x
0

, the r e i s a sequ ence of 

points x
0 

= c (O), c (t
1
), ..• , c( tk_

1
), c(l) = x

1 
by which x c a n b e 

r eached from x
0

. Thus continu ous r eachabili t y implie s reach ability , 

although the converse i s f a l se .
4 

Proposition 1 now i mmediat ely 

i mplie s : 

Pr op os ition 2: Le t y £ dP (x). Th en i n any n eighborhood of y t h ere 

are p oints tha t cannot b e c on tinuou s l y reach ed f r om y . 
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2. DIRECTIONAL CORES 

We show in this section that the boundary properties of 

P(x) imply the existence at boundary points of directional cores, 

which are the subject of chapters I and II. The directional 

core K(y) is a subset of the set of directions B defined by 

v £ K(y) < > {i £ N I (v- v) . Vu.(y) > 0} ¢ w 
l 

for all v £ B. The directions in K(y) are said to be undominated at y. 

The interpretation of K(y) is simple. Suppose y is the 

status quo and all feasible alternatives are very close to y. Then 

the choice to be made is essentially a direction in which to shift y. 

If (v- v) • Vu.(y) > 0, then voter i prefers a shift in direction v 
l 

to a shift in direction v when both shifts are sufficiently small 

d f 1 . d 5 an o equa magn:Ltu e. Therefore the directional core contains 

any direction which cannot be beaten by absolute majority rule \vhen 

every voter votes in accordance with the above inducement of his 

directional preferences. 

An undominated direction can be usefully characterized in 

terms of directions v # 0 that are preferred by a majority to the 

zero direction. A characterization obtained in chapter II . is 

simply that v i s undomina ted provided all directions that 

beat the zero direction are on the same open s ide as v of a hyper-

plane normal to v. Formally, v E B is undominated at y if and only if 

(6) M(y,v) ¢ W 
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for a ll v £ B such that v • ~ ~ 0. 

A result of Schofield [1977a] is .shmm in chapter II ·. 

to imply the existence of a n eighborhood about y tvhose every point 

can be continuously reached from y whenever K(y) = 0. Since no such 

neighborhood can occur at a boundary point of P(x), as was discussed 

in section I, undominated directions exist at boundary points of P(x). 

Theorem 1: K(y) # 0 for ally E oP(x). 

The remaining task of this section is t o determine which 

directions are undominated at any y E oP (x) . We shall show that 

directions that are in some sense "perpendicular" to oP(x) and that 

"point towards" P(x) are undominated . More definitions are n eeded to 

make these terms precise. 

For any z £ P(x), a nonzero vector v £ B is tangent to P(x) 

at z if there is a sequence {zk} C:P (x) such that zk + z and 

lim 
~ 

= v. 

Denote the set of direc tions v E B that are tangent to P(x) at z by 

T(z), the tangent cone of P(x) at~· Then the (inner) normal cone 

£f P(x) at~ is defined as the nonnegative dual of T(z): 

* T(z) {v £ Blv • v ~ 0 for all v £ T(z)}. 

* For most sets P(x), the normal cone T(y) is easily 

visualized for y E oP(x) . Examples are depicted in figure 1 . 

If P(x) is convex in a neighborhood of y, as in figure la, then 
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* T(y) consists of the inward normals of hyperplanes that support 

P(x) at y. If the boundary of P(x) is smooth at y, as in figure lb, 

then the tangent cone T(y) can be regarded as a closed halfspace 

* tangent to the boundary at y, and T(y) is a single vector normal 

to that hyperplane and pointing straight into P(x). 

* We now show that the inner normal cone T(y) is almost 

the directional core K(y) . The significance of this will be discussed 

after the theorem is presented. The proofs of the following two 

lemmas are in the chapter appendix. 

Lemma 1: If y £ P(x), v £ B , and M(y, v) £ W, then vis contained 

in the interior of T(y) . 

* The essential equivalence of T(y) and K(y) requires one 

more assumption on utility functions, which is 

(A) 'Vu. (y) 
1 

0 => u. (y) = max u. (z) 
1 z£X 1 

for all y E X and i £ N. Assumption (A) allows a proof of a near cop-

verse to lemma 1 when y £ aP(x): 

Lemma 2: If y £ dP(x), v £interior T(y), and assumption (A) holds, 

then there exists a direction v ' in any neighborhood of v such 

that M(y,v') £ W. 

Theorem 2: Let y £ aP(x). Then 

* T(y) C K(y). 
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· Furthermore , if (A) is true, then 

* K(y) \ {O} C (interior T(y)) . 

* Proof: Let v € T(y) , which implies vI 0. Suppose that M(y,v) € W 

for some v € B. Then by lemma 1, v € interior T(y). An elementary 

"J'c 
argument establishes now, from the definition of T(y) , that 

v • v > 0. Therefore, by the characterization (6) of undominated 

* directions, vis undominated. Hence, T(y) C K(y) . 

Now assume (A) is true, and let v € K(y)\{0}. If v t 

* (interior T(y)) , then , as~ I 0, a direction v € interior T(y) exists 

such that v ' • v < 0. Let U be a n eighborhood of v such that v' • ~ 

< 0 for all v' £ U. Then by lemma 2 , there exists v' € U such that 

M(y,v') £ W, contrary to the characterization (6) of all v £ K(y). 

Therefore K(y) \{o} C (interior T(y))*. 

~vo important application s of theorem 2 are to the more 

specific situations examined in Cohen [1977] a nd McKelvey [1977], 

respect ively . Cohen assumes utility functions are s trictly quasi-

concave, but if this is strengthened to strict p seudoconcavi t y , a 

strong result is obtained:
6 

Corollary 1 : 

K(y) 

If y E 8P(x) and each u. i s strictl y pseudoconcave, then 
]_ 

.,,, 
T(y) . 

* Proof: By theorem 2, T(y) C K(y). Since the pseudoconcavity of · 

utility functions implies (A), theorem 2 a l so implies K(y) C (interior 

* T(y)) . As strict quasiconcavity of utility functions follmvs from 
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their strict pseudoconcavity, P(x) i s convex. But then T(y) is convex, 

* * which implies T(y) = (interior T(y)) ( see e.g., Bazaraa and She tty 

[1976]). P(x) open and convex also implies that T(y) has an interior, 

s o that 0 t K(y) by lemma 2. * Therefore K(y) = T(y) . 

McKelvey [1977], on the other hand, does n ot assume quasi­

concave utility functions. Instead, he lets I 1 .(y) = {z £X u.(z) = 
~ ~ 

u.(y)} be an indifference curve through y and the n assume s a condition 
~ 

on indifference surfaces called diversity of preferences: 

(DP) 1 1 
For all open S C X and y £ as," I i (y) (\ I j (y) has no 

interior in the relative topology in as. 

As McKelvey puts it, "this condition guarantees that indivi-

dual indifference contours never exact l y coincide ." He shows that (DP) 

implies the existence of j £ N for which u.(y) = u.(y ') for all 
J J 

y , y' £ aP (x) . This and the differentiability of u. immediate l y imply: 
J 

Corollary 2 : If condition s (A) a nd (DP ) are sat isfied andy £ aP(x), 

* then T(y) is a singleton and 

* K(y) T(y) . 

Proof: Because ()P(x) is contained in a "thin" indifference surface 

>'< 
of a d ifferentiab l e utilit y function, T(y ) is a· h a l fspace and T(y) 

is a single vector collinear with Vuj(y), as in figure lb. The 

* * convexity of T(y) implies T(y) (interior T (y)) , and the existence 
')'~ 

of the interior of T(y) implies 0 t K( y) by lemma 2 . Hence K(y)=T(y) . 
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The significance of K(y) being the inner norma l cone to 

P(x) is clear es t when (DP) is satisfied, utility f unctions a re pseudo-

concave, and P (x) = V, the top cycle set . For then the undominat·ed 

direction at a boundary point of V is perpendicula r to the boundary 

and points straight back into V. lf the status quo is continually 

shifting infinitesinra1 amount s in undominated directions when they 

exist, as seems likely under a sequential decision process when 

feasible sets a re small ( seechapt er 2) , then once the status 

quo e nters V it c annot escape . Thus the r esults of this section imply 

a type of dy n amic as well as s tatic s tabili ty to the top cycle set . 

3. CONSTRAINED PLOTT EQUILIBRIA AND PAIR SYMMETRY 

McKe lvey [1977], assuming (DP), shows t h a t for any P(x ) 

there is s ome j £ N s u ch tha t voters' u til ity gradients at any 

y £ oP (x) satis fy a symme try condition about Vu.(y ). Specifically, 
J 

h e shows tha t the set of utility gradient s at y i s weakly symmetric 

with respec t to j , .which means that for any i I j the r e exis t s a 

third individual k s uch that Vu .(y) , Vu. (y ) and Vuk (y ) are independent. 
1 J 

In this section we observe that, with r espect t o some j £ N, a somewha t 

stronger symmetry condition is satisfied at mos t boundary points if 

(DP) holds. Furthermor e , simila r symmetry i s sho'~ to b e .satisfied 

at boundary points even i f (DP ) does not hold. 

First , observe t hat the ch a racterization of K(y) in ( 6 ) 

implie s that if v £ K(y), t h en y is a constrained Plott equilibrium 
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relative to the set {v € B I v • v ~ O} · (see chapter II). 

By this we mean that if the only feasible directions in which y can 

shift "point" a• .... ay from v, then the zero direction is undominated 

y is a constrained equilibrium as tirst defined in Plott [1967 ]. 

This result is easily visualized for a point y € oP(x) when P(x) is 

convex. Then, if v is any direction such that v • v < 0, v being in 

the inner normal cone and the openness of P(x) imply that points in 

the direction v from y l ie outside P(x). Since n o majority will 

prefer points out side the set P(x) to y, no majority will vote to 

move in the direction v. 

Stringent symmetry conditions on the voters' gradients must 

hold at y if y is a constrained equilibrium. The conditions are 

collectively termed "pair symmetry". The simpl est case, investigated 

by Plott [1967], exists when no mor e than one voter's gradient points 

in the direction v € K(y) . In this case, pair symmetry requires that: 

(a) for some j € N, Vu.(y) = av for some a> 0. 
J 

(b) all other voters in N can be partitioned into distinct pairs 

so that for each pair (i,k) there are positive numbers a. 
1. 

and ak such that a. Vu. (y) + 
1. 1.' 

Condition (a) says tha t somebody's utility gradient must 

be a nonnegative multiple of v . Condition (b), necessary when no 

more than one gradient is a nonnegative multiple of v, r equires that 

either j and k's gradients point in opposite directions or v lies in 



-95-

the convex cone generated by them. Figure 2 demonstrates this condi­

tion in the case where INI = 5 and X= R2
. 

Pair symmetry, in its (a) and (b) version, differs from 

weak symmetry by requiring that N"" {j} b e partitioned into pairs 

{i,k} such that the vectors vu.(y), -Vu .(y), and ·Vuk(y) are 
1 J 

positively dependent. Thus the (a) and (b) version of pair 

symmetry implies weak symmetry. If (DP) holds, then on a subset 

of oP(x) that is dense in oP(x), no two utility gradients can be 

collinear. In this case, by theorem 1 and the above remarks, 

(a) and (b) must h old on a dense subset of oP(x). Furthermore, by 

* theorem 2 , for any y £ oP(x) there is a v £ T(y) C: K(y) that is 

collinear with Vu.(y), where j is the individual indifferent on 
J 

oP(x). Thus we have McKelvey's weak symmetry result strengthened 

on a dense subset of oP(x): 

Corollary 3 : If (DP) holds, then there exists j £ N such that . (a) 

and (b) are satisfied , with ( a) referring to j, at every y in a 

dense subset of oP(x)." 

One implication of conditions ( a ) and (b) concerns the 

proj ections Vu~(y) of the utility gradient s Vui onto the hyperplane 

normal to the undominated direction v. Conditions (a) and (b) 

imply the following: 

p 
(a ') for some j £ N, Vu. (y ) = 0 

J 

(b') all other voters inN can be partitioned into pairs 



Pairs: 
{2, td and 
{3,5} 
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FIGURE 2 

! 
()P(x) 
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(i,k) such that there exist positive real numbers 

Conditions (a') and (b') are identical to Plott's conditions for 

an unconstrained voting equilibrium (see Plott [1967]), implying 

that any y E dP(x) would be a voting equilibrium. if only the points 

in aP(x) were feasible . Figure 3 shows the projections from three 

of the voter gradients in figure 2. 

More general pair symmetry conditions nece s sary for v E n 
to be undominated at y , or rather, for y to be a constrained voting 

equilibrium, are derived in the dissertation appendix . One formulation 

7 
is r eproduced here . Let NT be the voters whose util i ty gradients are 

contained in a nm dimensional s ubspace T that also contains v. 

Define the following subsets of N: 

Then 

R {i E Nj IJu.(y) 
l. 

av for a > O} 

av for a < 0} 

Q maximal subset of N~(R+V R-) that can be partitioned 

into pairs (j,k) for which there exist positive numbers 

aJ.,~ satisfying a. Vu.(y) +Ct. IJ(y) E {~,0}. 
k J J J 

for v E K(y) it is n e cessary by corollary 4 of the appendix that 

(a") IR+I > IR-1 
INTI+l 

1/2 jQj + jR+j (b") > 2 

Observe tha t condition (b") says tha t the coalition formed by all the 
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people in R+ a nd h alf the people in Q is a majority in NT. If 

IR+I = 1 and IR-1 = 0, th · (b'') en summ~ng over a ll two dimensional 

s ubspaces containing v results in conditions (a) and (b). 

The pair symmetry conditions, as well as the results of 

previous s ections, a r e collect e d as Theorem 3. 

Theorem 3: Let x £ X, P(x) be the set of points in X which can be 

reached from x, and let y be contained in the b oun dary aP(x). Then 

(i) 

(ii) 

the directional core K(y) is nonempty ; 

* the inne r norma l cone T(y) C: K(y) , and , given 

assumption (A), l<(y)'\,{O} C (interior T(y)) *; 

( iii) letting v £ K(y), y is a constrained Plott equilibrium 

in a situation where its feasible set of shift directions 

is { v £ Blv • ~ 2 0}; 

(iv) the voters' utility gradi ents satisfy the pair 

symmetry conditions (a") and (b") with respect to 

any v £ K(y) . 

4 . DISCUSSION 

The use fulness of the top cycle set V as a solution concept 

requires that it b e " small". We have s hown that if it is small in 

the sense of its closure h aving a boundary, then at every point of 

the boundary an undominated direct ion exists that, in some sen se , 

" points back into V." The restrictiveness of t his condition is 
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perhaps best seen via one of its implications, namely, that the 

multitude of points on the boundary all satisfy the same pairwise 

symmetry condition as constrained voting equilibria. Since this 

condition closely r esembles the symmetry condition satisfie d at 

unconstrained equilibria, it can be heuristically said that the 

closure of the top cycle set is "us ually" the entire space for the 

same reason that voting equilibria "rarely" exist. 

The set L = {yjK(y) = 0} has also been proposed as a solu­

tion set (Schofield, 1977a,b; chapt e r II) . One reason i s that 

Schofield's results imply that if Lis connected, then any point in 

L can be continuously reached from any othe r point in L, so that L is 

a continuous cycling set analogous to the discrete cycling set v. 8 

Secondly, as is shown in chapter II , in some·.cases a s t atus quo 

tha t continuously s hifts in undominated direction s eventua lly enters L. 

Furthermore , in two dimensions L empirically seems to be a reasonable 

solution set b ecau se, as Schofield [1977b] notes, the outcomes of 

experimental games (Fiorina and Plott, 1975) are often in L, a r e l a­

tively small set in two dimen sions. 

The s ize of L in general is thus an important question. In 

the two dimens i onal case with Euclidean preferences, L i s bounded . 

Clearly then, since McKelvey [1976] shows for the same case that V i s 

the entire space , sufficient conditions for V to b e small must b e more 

stringent than conditions for L to b e small. Howe ver, the necessary 

condtiions (i), (iii), and (iv) of t heorem 3 all apply to points not 

in Las well as to p oints in the boundary of P(x), since they were 

derived b y showing aP (x) n L = 0. Hence some of the reasons for 
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believing V is usually lar.ge also serve as reasons to believe L is 

large. An unanswered question is whether condition (ii) of theorem 3 

is strong enough to characterize the difference between V and L, so 

that it can be viewed as the reason "why" V is large but L small in 

two dimensions. 

When the dimension of the space is greater than two, the 

conditions (i), (iii) and (iv) of theorem 3 appear more restrictive. 

This is because they are conditions for a constrained voting equilibrium, 

which resemble the conditions for an unconstrained equilibrium in a 

space of one dimension less (see figure 3). Hence undominated direc­

tions exist at more points in two dimensions for the same reason voting 

equilibria often exist in one dimension. We conjecture that L and V 

will usually be large, i.e., dense in the space, when the dimension 

of the space is greater than two. 

Schofield [1977a] has formalized this intuition in cases 

where the dimension of the space is larger than the number of voters. 

Given this dimensional assumption, he shows that L is generically 

connected and dense in the space, where generically ( = " u s ually") 

refers to a property tha t is satisfied whenever the n-tuple of 

utility functions belongs to some dense set in an appropriate 

function space . But the conditions characterizing points not in 

L, such as pair symmetry, appear so restrictive that we conjecture 

that L is generically dense whenever the alternative space has 

9 dimension greater tha n two. 
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APPENDIX 

The proofs of lemmas 1 and 2 of section 2 are outlined 

here. Throughout the appendix, if S is a subset of a topological 

space (either X or B), let S 0 be the interior of S. 

Lemma 1: If y £ P(x), v £ B, and M(y,v) £ W, then v £ T(y) 0
• 

Proof : I f vi T(y) 0
, then there exists v' £ B near enough to v so 

that M(y,v ' ) £ W, but such that v ' i T(y) . Since M(y,v' ) is a ftnite 

set," -M(y,v') £ W and the definition of a gradient can be used to shmv 

the existence of~> 0 such that (y + Av ' )Py for all 0 < A ~I. 

- 1 
Hence, y + Av' £ P(x) for all 0 <A~ A, since P (y) C: P(x). But 

v ' i T ( y) implies the existence of 0 < A1 <X such that y + A'v' ¢ P(x), 

a contradiction . Therefore v £ T(y) 0
• 

Lemma 2 : Suppose (A) is true, i.e., that for all i £ N, y £X, 

Vu . (y) = 0 <'=> u.(y) 
]. 1. 

max u.(z) for all i £ N, y £X. If y £ dP ( x) , 
z£X 1 

v £ T(y) 0, and U C B is any neighborhood of v, then there exists v' £ U 

such t hat M(y,v' ) £ W. 

Proof: For any v ' £ B, par tition N into four sets defined by 

N+(v') {i £ Nlv' • Vu . (y) 
1. 

> 0} M(y,v') 

-N (v') = {i £ Nlv ' Vu. (y) . 
1. 

< 0} 

No (v ' ) {i £ Nlv' . Vu. (y) = 0, Vu.(y) :/:. 0} 
1 ]. ]. 

No (v ' ) = { i £ N!Vu . (y) = 0} 
2 ]. 

If the lemma is false, then M(y ,v ' ) i W for all v ' £ u -1'\. T(y) o :F r/J. 
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Let a £ U n T(y) 0 satisfy 

IMCy, a )l max IM(y,v')l < n;l 
v'£UnT(y) 0 

Then there is a n e i ghborhood AC U()T(y )o of a such that for all v ' £ A, 

+ + - -N (a)= N (v') and N (a)CN (v '). Nm.;r , {v' £ Blv • Vu. (y) 
]_ 

0} i s of 

dimension m-1 and h en ce nowhere dense in B whenever Vu.(y ) / 0. Since 
]_ 

A is open and thus of dimension m, it cannot be covered by a finit e 

number of these nowhere dense sets of dimens ion m-1. Therefore there 

- . - 0 
exists b £A s uch tha t N (b) = N (a)+ N

1 
( a ). We now obtain 

0 0 0 
IN-(b) + N2 (b) I = IN-(a) + N

1 
(a')+ N2 (a) I 

= n - IM(y ,a) I ~ n;l 

Since b £ T(y), there exi sts a sequence {yk} C P(x) such that 

yk - y 
y ->- y a nd ---"-'----- ->- b . 

k II Yk- Yll 
Because N-(b) is finite and 

b • Vu.(y) 
]_ 

lim 
~ 

(see , e . g ., Hes t e n es [1975]~ 

ui(yk) - ui(y) 

IIYk- Yll 

the r e i s a K > 0 such that 

The continuity of each u . and the 
]_ 

openness of P(x) n ow imply . the exis t ence of a n eighborhood V C P(x) 

of yK s uch that u.( z ) < u.(y ) for a ll z £ V, i £ N-(b) . Furthermore, 
]_ ]_ 

assumption (A) and the assumption that indifferen ce s urfaces h ave no 

interiors imply the existence of z £ V such that u.(~) < u.(y) f or·all 
. ]_ ]_ 

i £ N~(b). The r efore , 
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n+l 
2 

This implies yPz, which, since z £ P(x) but y i P(x), is a contradiction 

of the definition of P(x). The lemma is proved. 
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FOOTNOTES 

1. oP(x) is equal to what McKelvey [1977] calls the frontier of 

2 . 

P(x.) 

1 ---
Actua lly, McKelvey [1977] only shows P (y)C P(x), and Cohen 

1 
[1977] assumes convex preferences to show P (y) = P(x). However, 

l emma 4 in Cohen [1977] uses only the continuity of each u. to 
1 

show that arty two boundary points of P(x) are not comparable by 

1 P, so that McKelvey ' s res ult can be strengthened toP (y) C P(x). 

Expression (2) is proved rigorous ly in McKelvey [1977]. 

3 . A rea l-valued function f is strictly quasiconcave if f(x) > f (y) 

implies f(z) > f(y) for all z = Ax+ (1 - A)y, 0 < A < 1, x I y . 

The preferences represented b y a strictly quasiconcave utility 

function are strictly con vex in the sense use d in Cohen [1977). 

4. McKelvey shows that when there is no core point, X = Rm, and 

each person's preferences dec r ease exactly with Euclidean dis-

t ance from a bliss point, then any point in the space can be 

r eached from any other point. This theorem is not true if reach-

ability is r eplaced with continuous reachability, as examples in 

Schofield [1977a] i n dicate. 

5. Notice that (v- ; ) • Vu.(y) > 0 means that direction vis c loser 
1 
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than v to the uti lity gradient Vu . (y). Hence, loose ly speaking, 
~ 

utility increa ses faster if y shifts in direction v rather than 

v. [See also appendix A of chapte r II.] 

6. A differentiable funct i on f is strictly pseudoconcave provided that 

whenever z =F y, (z - y) • Vf(y) < 0 =~> f(z) < f(y). Strict 

pseudoconcavity clearly implies strict quasiconcavity and assump-

tion (a) . 

7. A somewhat more general. formulation i s presented and applied to 

undominated directions in chapter II. 

8. However, it is not true that any point in L can be continuously 

r e ache d from a n y po i n t n ot i n L. ( For e xample , any core point 

i s not i n L a nd no point can be con tin uously r e a c hed from a core 

p oint.) He nce L i s n o t the e xa ct a n a log of t h e discrete~ cy cle 

s et V. 

9. Schofi e ld [19 78] forma lly proved this c onj ecture a f t er its initial 

appear a nce i n Coh en and Ma tthews [197 7 ], as i s di s cussed in 

section 7 of chapte r I I . 



- 107-

REFERENCES 

Bazaraa, M. S. and C. M. Shetty. Foundations of Opt imi z ation. 

Lecture No tes in Economics and Mathematical Systems 

No. 122. New York: Springer-Verlag , 1976. 

Cohen, Linda. "Cyclic Sets in Multidimensional Voting Models. " 

Social Science l.J'orking Paper No. 172. Pasa dena: 

California Institute of Technology, 1977. 

------' and Matthetvs, Steven. "Constrained Plott Equilibria , 

Direct i onal Equilibria, and Global Cycling Set s ." Social 

Science Working Paper No . 178. Pasadena: California Institute 

of Technology, Septembe r 1977. 

Fiorina , M. P . and Plott, C. R. "Conunittee Decisions Under 

Majority Rule: An Experimental Study. " Social Science 

Working Paper No. 101. Pa sadena: California Institute 

of Technology, December 1975 . 

Hestenes, Magnus R . Optimization Theory : The Finite Dimensional 

Case. New York: John Wi l ey and Sons, 1975 . 

McKelvey, Richard D. "Intransitives in Multidimensional Voting 

Models and Some Implications for Agenda Control." Journa l 



-108-

of Economic Theory 12 (1976):47 2- 482 . 

"General Conditions for Global Intransitivities 

in Formal Voting Models : Some Implications for Agenda 

Control." De livered at the 1977 Meetings of t h e Public 

Choice Society, New Orleans, Ma rch 10-13, 1977. 

Plott, C. R. "A Notion of Equilibrium and its Poss ibility Under 

Majority Rule." American Economic Review (1967) :· 788-806. 

Schofie ld, Norman. "Instability of Simple Dynamic Games." 

De p a rtment of Government, University of Texas at Austin, 

1977a. Forthcoming in Review of Economic Studies . 

"The Null Dual Set in Dynamic Games ." Department 

of Government, University of Texas at Aus tin, 1977b . 

Presented at t he Math e matical Socia l Science Board Conference 

on Game Theory a nd Political Science. 

"Ge n eric Ins t ability of Voting Games ." De p artmen t 

of Government, University of Texas at Aus t in, 19 78 

Schwartz , Thomas . "On the Possibility of Rational Policy Evaluation." 

Theory a nd Decision 1 (January 1970): 1- 25 . 



-109-

CONCLUSION 

The observant reader will have noticed a changing tenor as 

he progressed through thetext- In chapter I the idea of directional 

strategies was offered as a positive contribution to our understanding 

of political competition. Its assumptions captured commonly recog­

nized "folk" phenomena like the incrementality of social change at 

national levels and the directional nature of candidates' campaign 

platforms. There was optimism that a viable explanatory model had 

been achieved when frequently observed facts, such as a candidate's 

divergence from a rigid, extremist opponent, were predicted. The 

model satisfied necessary consistency properties in that a candidate 

whose opponent uses directional strategies was shown to have no 

incentive to adopt another type of strategy himself. Finally , the 

model was shown to be compatible with standard Euclidea n models by 

the d emons tration that directional equilibria "point" at equilibrium 

points. 

Some of the normative results of chapter II heightened 

the optimism. Specifically, the dynamics generated by the adoption 

of undominated direc tions implied that the status quo x s hifts , 

whenever possib l e , so as to (instantane ously) approach each winning 

coalition' s preferred- ta-x set. Furthermore, with Euclidean prefer­

ences we obtained the desirable stability property of convergence 

to either the point core or to the se t of points tha t cannot contain 

a path satisfying the approach property. 

However, it was also shown in chapter II that local cycling 
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occurs at a point if its directional core is empty. This connection 

provides a solid behavioral explanation of the local cycling phenom­

ena. But it also lea ds to pessimism r egarding the existence of 

undominated directions i n majority games, since local cycling is 

generic for such games in spaces of high dimension. The pessimism 

was increased when results obtained in the appendix were applied to 

show that a stringent, pairwise symmetry condition must be satisfied 

by utility gradients at points with nonempty directiona l cores. In 

fact, this symmetry condition has recently been us e d by Schofield to 

show that the emptiness of directional cores (and hence the exis­

tence of local cycling) is generic for majority rule games in spaces 

of dimension greater than three. 

The turnaround was completed in chapter III, the main result 

of which was based on t h e fact that directional cores are empty in 

majority games. It was shown there that undominated directions 

exist at boundary points of a top cycle set a nd that they " point 

back into" the top cycle set . Although this implies dynamic stability 

properties , the major conclusion was that b ecaus e undominated 

direc tions do not us ually exist, neither do boundaries of top cycle 

sets . Hence top cycle sets must usually b e the en t ire space of 

alternatives. 

Because of the intuitive attractiveness of directional 

strate gies a nd o utcomes, it is important to have establis h e d the 

properties of directional models. Some of these properties do not 

rely upon the existence of equilibrium. Furthermore, the strength 
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of equilibrium as a solution concept makes necessary the investiga­

tion of its consequences in any model. Even in majority rule situa­

tions, directional equilibria are theoretically valuable for under­

standing why local cycling is so pervasive and top cycling sets so 

large. So how can the theory of directional models be developed 

further? First, the frequent nonexistence of directional equilibria 

in majority games, or indeed, in all anonymous simple games with 

very decisive dominance relations, calls for an approach to the 

study of political processes that considers institutional factors and 

the formation of expectations and tastes in addition to considering 

equilibrium phenomena. Nonexistence of equilibria in pristine 

environments suggests that the additional factors are important for 

understanding underlying regularities of political processes. 

Secondly, there is promise that future work can extend the concept 

of directional outcomes to more general coop erative games that allow 

equilibria by r estricting the power of coalitions and/or the pref­

erences of individuals. Thus, directional cores may provide a 

behaviorally-based adjustment mechanism for a private goods economy, 

for example. 
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APPENDIX 

PAIRWISE SYMMETRY CONDITIONS FOR VOTING EQUILIBRIA 

It is common knowledge that characterizations of majority 

rule equilibria in multidimensional spaces take the form of pair­

wise symmetry conditions on utility gradients.
1 

Plott [1967], the 

initial investigator of these conditions, shows that if exactly 

one utility gradient at an interior point is zero and the number 

of people is odd, then the point is an equilibrium if and only if 

the set of nonzero gradients can be partitioned into pairs of 

exactly opposing vectors. This degree of symmetry seems unlikely 

to occur . Hence it must be concluded that this type of equilibrium 

does not usually exist . 

However, the condition that all nonzero gradients must 

be paired is necessary only for equilibria at which only one 

gradient is zero. One object of this paper is to derive necessary 

conditions that do not ~ priori restrict the number of zero 

gradients . These more general conditions are determined also for 

the more general case of A-majority rule, in which a coalition is 

2 
winning only if it constitutes more than a fraction A of the voters. 

The amount of pairwise symmetry require d for equilibrium is still 

res trictive, howev er,unless many gradients are zero or A is n ear one. 

Conditions necessary for equilibrium may be less 

restrictive for equilibria contained in the boundary of a feasible 

set. Since often the feasible set is a proper subset of the space, 
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such equilibria are cert ainly worthy of investigation. Plott [1967) 

makes an initial step in this direction by investigating situations 

in which the feasible set is a half-space and the equilibrium is 

contained in the defining hyperplane . His conditions are genera­

lized h e r e by allm..ring the equilibrium to be containe d in the 

bounda ry of any convex f easible set, as well as by allowing more 

than one gradient to "point out" of the feasible set and by consi­

dering A-ma jority rule. We find that the type of p a irwise 

symmetry required at b oundary equilibria is of a l esser degree 

than that required at interior equilibria . But the symmetry still 

appears r estrictive unless (1) the boundary is highly ·pointed at 

the equili brium, (2) many g r adients are zero or "point out" of the 

feasible set, or (3) A is n e ar one. 

A f undame ntal ch aracteris tic of ma jority rul e is that i f 

two p eople with diametrically opposed preferen ces are removed from 

the set of voters , then an y e quilibrium r emains an e quilibri um. 

The votes of the two individuals me r e ly "cancel each other out." 

This bas ic f act is what causes pairwise symmetry cond itions to b e 

necessary for equilibrium, as the s ubseque nt proofs are designed 

to s how. All the symmetry condit ion s are derived as corollaries 

to theor ems s t at ing tha t various sets of individuals that "disagree" 

in some sen se can b e deleted with out upset t i n g equilibrium. 

This intuitive a pproach results in r elativel y con c i se proofs. 

Sufficient conditions involving pain..rise symmetri es on 

gradients are important b ecause p roperties of p a irs are relatively 

easy to verify . The ones d e rived in sect i on 3 general i?e those of 
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Plott [1967 ], McKel vey and Wend e l l [1976] , and Slutsky [1978 ] by 

allowing the point to b e on the boundary of a convex feasible set, 

by allowing more than one g r adient a t the point to be zero or to 

"point out" of the fe asible set, and by a llowing f or A.-majority 

rule. 

1. PRELIMINARIES 

The set of feasible alternatives is a convex subset V of 

a Euclidean space w. De n o te by x a particular point of V, not 

necessarily in the interior. Le t the set of voters be denoted by 

N = {1, 2 , .•• , n}. Each voter h as a differentiable utility function 

define d on W. The gradient of the utility function of voter i 

3 
evalua ted a t x is denoted by u. £ W. We are to investigate 

~ 

pairwise symmetries in the set {u
1 

••• , un} of gr adients associa ted 

with x being a voting equilibrium. 

The cone of feasible directions in which x can shi ft is 

F = { v £ W I 3 a > 0 3 x + av £ V} . 

Observe that F is a convex cone that includes the origin. If 

x £ interior(V), then F = W, whereas x E boundary(V) implies 

tha t F is contained in a halfspace . 

Much of the subsequent discussion concerns the dual of F , 

F* {y E w I v • y ~ 0 v v £ F} = D. 

Notice that D is a closed convex cone containing the origin, and 

that D = {O} i f and only if F = W. If u i £ D then v • ui ~ 0 

for all v £ F, so that voter i is "happy " with x in the sense of 

n o t mar ginally benefiting by any feasible shift of x. 
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Define also a cone 

E {y £ w I y ¢ D, -y £ D} . 

E is a convex cone without the origin that may be empty . 

I n partic ular, E = 0 whenever D = {0} or D is a subspace of 

positive dimension . If u. £ E , t hen i is "unhappy" with x in t he 
1 

sense that v • u. > 0 for any v £ F, and there exist s v £ F such 
1 

that v • u. > 0. 
1 

Examples of possible cones F, D, and E are illustrated 

in figure 1. I n the figure and hereafter a cone generated by 

vect ors y
1

, • •• , yl is de fined by 

a. > 0 , Ea . > 0}. 
1 1 

Also, if M = {i
1

, . •. , il} c N, the notation C(M) C(u. , •.. , u.) 
11 1l 

will b e u sed for convenience. 

Define f or a ny cone C the following derive d cones : 

y • c > o v c £ c} 

y • c < 0 V c £ C} 

co = {y £ w I y . c = 0 v c £ C} 

l e t + and 
0 

denote Without fear of a mbiguity , for any v £ w v 
' 

v 
' 

v 

+ - 0 + and v 
-

half spaces and 
0 

is C(v) , C(v) and C(v) • Then v are v , 

a subspace. 
+ Obser ve that u £ v implies that v • u. > 0, so that 

i 1 

vote r i b e n efit s if x shifts in direc tion v. For any s ubsets 

M c N and C c W, l et 
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FIGURE 1 

D = C(O ) ,p 

---
E = C(-p) 

D - C(O - ,p ,-p) 

X 

---4~---V F~--~--~p--~--

E = 0 
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and let S(C) + Hence SM(v ) is the number of voters in M 

who benefit b y a shift in direction v. For convenience we also 

ad opt the convention t hat if an u pper case letter d e notes a subse t 

of voters, the n the corresponding lower case lette r d enotes their 

numbe r, e . g., n = !Nj a nd M c N implies m = IMI . 

With these d efinitions i n hand, an equilibrium concept 

can be define d. Let A be a fixed fraction 0 ~ A < 1. Then we 

want x to b e an equilibrium provided no coalition of size greater 

than An can marginally benef i t b y a f easible shif t of x . So def ine 

x to be quasi-undominated (q.u.d.) prov ide d 

and define x to be strictly quasi-undominate d ( s .q.u.d.) provided 

v E F => S(v+) < An. 

Notice that x is q.u.d. if x is s.q.u.d. Convers ely, x is s .q.u.d. 

if x is q .u.d. and An is nonintegral, which is the case when n is 

odd and A= 1/2, the majority rule case studied b y Plott [1967] . 

Two alternative con cepts of equilibrum for x are local 

undominan c e, which requires the existence of a n e i ghb orhood U of x 

suc h tha t no point in U n V is unanimous ;l.y preferred to X by a 

coalition o f size greater tha n An, and global undomin ance , which 

r equires x to be locally undominated in ever y n eighborhood U c W. 

When there i s a finite numb e r of vo t ers , each with a differentiable 

ut i lity function, global undomin ance implies l ocal undominance . 
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implies quasi-undominance . The reverse implications require 

utility functions to first be locally pseudoconcave (see 

appendix B of chapter II) and then pseudoconcave (Kats and 

Nitzan [1976]). The reader is referred to the cited r eferences 

for these results , and to Sloss [1973], McKelvey and Wendell 

[1976], and Slutsky [1978] for further discussions of the rela-

tionship between quasi-undominance and other equilibrium concepts . 

Hence at t ention here can be focused sol e ly upon quasi-undominance . 

It will b e convenient for the determination of quasi-

undominance to test only directions contained in the relat ive 

interior of F. Lemma 2 below justifies this procedure. It also 

allows u s to assume h e nce forth that F is a closed convex cone, so 

that D* = F** = F.
4 

Lemma 1: Let M c N and v £ \<T. Then there exists a n eighborhood 

+ > -+ U of v such tha t SM(v ) SM(v ) for all v E U. 

Proof: Follows from the continuity o f an inner product and the 

finiteness of M. 

Lemma 2: Let M c N and f3 > 0 . 

in the relative interior of F, 

If SM(v+) ~ f3 for all v contained 

+ then SM(v) ~ S for all v £ closure(F). 

Proof : Since F is convex , e v e ry n eighborhood of any v E c losure (F) 

conta ins po i nts in t h e r e l ative interior of F . Hence t h e result 

follows from l e mma 1. 

Henceforth, ~vithout loss of generality, 'tlC assu::1e F is ~lased. 
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The basic feature of majority rule we wis h to exploi t is 

that if the number of people who prefer alternative a
1 

to a
2 

is not 

a majority , and Q c N is a set that can be partitioned into pairs 

with strictly opposite preferences on { a
1
,a

2
} , then when Q is 

dele t ed, the number of voters preferring a
1 

to a
2 

is still not a 

majority. More generally, if the number of people preferring a
1 

is less than An, then when Q is deleted, the number of people who 

prefer a
1 

is less than An -l/2q. Now, our general method will be 

to show that the deletion of coalitions analogous to Q will 

leave x quasi-undominated, in some sense, in the remaining set of 

voters. But if K = N - Q, the above reasoning indicates that only 

+ + 
SK(v ) ~ .An -l/2(n-k) can be guaranteed by S(v ) ~ An. Hence we 

shall say that x is q.u.d. in K c N provided 

v e: F ~> 
+ SK(v ) < An -l/2(n-k) 

where Ak is defined by 

Ak =A+ (A -l/2)(n/k- 1). 

Similarly, x is s.q.u.d. in K provided 

v e: F > 

We now prove a simple proposition to illustrate the 

meaning of quasi-undominance in subsets of N. Say that a pair 

{i,j} e: N strongly disagree provided u. ¢ D, u. i D, and 
~ ,] 

v • u. > 0 <=> v • u. < 0 
~ J 

for all v £ H. Obse rve that i and j strongly disagree .if and only 
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if there is a ray r c W not intersecting D such that u. £ r and 
1 

u. £ -r. Thus, if D contains no line, i and j strongly disagree 
J 

exactly v1hen u. and u. are a pair of gradients exactly opposing 
1 J 

each other in the sense of Plott [1967]. We show that removing 

or adding pairs of strongly disagreeing voters preserves quasi-

undominance. The following lemma is useful. 

Lemma 3: Let T c W be a subspace, and let v E T, v ~ 0. Suppose 

0 Q c N and u. ¢ T for each i £ Q. If U is a neighborhood of v, 
1 

then there exists v £ U n T such that v • ui ~ 0 for all i £ Q. 

0 
Proof: U = U n T is an open set ofT. If u

1 
¢ T , then 

T ¢ u~, so that dim(T n u~) < dim(T). Hence for each i £ Q, 

T n u? is a nowhere dense subset of T. Since a countable union 
1 

of nowhere dense sets cannot contain an open set (Baire's theorem), 

I 

unT==u ¢ u 
i£Q 

0 
(T n u.). 

l.. 

Therefore there exists v £ U n T such that v • u. ~ 0 for each i £ Q. 
1 

Proposition 1: Let Q be a subset of N that can be partitioned into 

strongly disagreeing pairs, and let K = N - Q. Then x is (s.)q.u.d. 

inK iff x is (s.)q.u.d. 

Proof: Suppose x is (s.)q.u.d. Let v be contained in the 

relative interior of F. Let T be the smallest·. subspace containing 
1 

F. Hence there is a neighborhood U of v such that U n T c F. 

' By lenuna 1 there exists a neighborhood U c U such that 

S (v+) > S (v+) for any v £ U. Since u
1 

¢ D for each ± £ Q, 
K K 
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0 u. ¢ T for each i € Q. Hence lemma 3 implies the existence of 
l 

v € u n T c F such that v • u. I 0 for each i E Q. But Q can b e 
l 

partitioned into pairs of strongly disagreeing individuals, so that 

q/2. Therefore 

:+ + 
SK(V) < SK(v ) + S(v ) - q/2 

with the second inequality strict if x is s . q.u.d. By lemma 2, this 

proves X is (s.)q.u.d. in K. Now assume x is (s.)q.u.d. in K. Let 

v € F. Then 
+ < q/2 S(v+) < + 

q/2 < A.kk + q/2 SQ(v ) ~> SK(v ) + = A.n 

(second inequality strict if X is s.q . u.d . in K). So x is (s . )q.u.d . 

Proposition 1 actually does not lead to strong pairwise 

symmetry conditions, even fo r the case of an interior x. In the next 

section, s ymmetry conditions for an interior x are obtained easily by 

a different route . But a result analogous to proposition 2 r egarding 

the deletion of pairs that disagree in a weaker sense is very u seful 

for the case of a boundary x. Hence define a pair {i,j} C N to 

weakl y disagree provided u. i D, u . i D, and fo r any v € F, 
l J 

v • u. > 0 - > v • u. < 0 
l J 

and v • u. > 0 = > v • u . < 0 • 
J l 

Let V be the symmetric binary relat i on on N denoting we ak d is-

agreement, so that iVj me ans i and j weakly disagree . If x is an 

interior point of V, then D = {O} and we ak disagreement implies 

st r ong disagreement . Otherwise it i s possible that iVj even 

though v • u . < 0 and v • u < 0 for s ome v E F. The n e x t p rop-
1 j 

osition ch a ract erizes weakly d isagreeing pairs . 
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Proposition 2: If u. ¢ D and u . ¢ D, then iVj iff 
]. J 

C(u.,u.) n D T 0. 
]. J 

Proof: D and C(u . ,u . ) U {O} are closed convex cones. Hence i f 
]. J 

C(u.,u.) n D = 0, by a separation theorem there exists v T 0 
]. J 

such that v • y > 0 for ally € C(u.,u . ) and v € D* =F. Hence, 
]. J 

since v • u . > 0 and v • u > 0, LVj is false. Converse ly, 
]. j 

suppos e there exists y a.u. + a .u. € C(u.,u . ) n D. Then 
].]. JJ ]. J 

a . > 0 and a. > 0. Hence , because v • y ~ 0 for all v € F, iVj . 
]. J 

Finally, bas ic necessary conditions are derived via the 

deletion of individuals who are malcontent in a different way. 

For any s ubspace T c W, say that voter i c N is content with T 

provided u. € T
0

• Le t C(T) c N b e the s ubset of N content with T. 
]. 

To inte rpret C(T), suppose a s ubse t of public goods is associat ed 

with T . Then a ny i € C(T) is content with the allocation of those 

p ar ticular goods a t x in the sen se of being indifferent to any 

proposal to change the ir amounts. Letting M(T) = N- C(T), each 

i € M(T) i s discontented with T at x in the sense of pre ferring a 

change in allocation of the goods associated with T . 

Define a free subspace to be a subspace T c W for which 

T c F. It is easy to s hmv 

Lemma 4: A s ubspace T is free iff D c T
0

. 

A maj or result of the n ext section is that quas i-undominance is 

preserved when M(T) is removed and T is free. Intuitive ly, if 
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the amounts of the goods assoc iated with T can be increased or 

decreased free l y at x, then the votes of those discontented with 

the amounts of these goods must "cancel out " for x to be in equili-

brium. 

2. NECESSARY CONDITIONS 

Theorem 1: x is (s.)q.u.d. iff x is (s.)q.u.d. in C(T) for every 

free subspace T. 

Remark 1: This theorem actually only provides a necessary condition 

for x to be (s.)q.u.d., since T = {O} is ah..rays a free subspace and 

C({O}) N. Subsequently an example will be presented indicating 

that a true sufficie nt condition cannot be obtained by requiring T 

to be nondegenerate . 

Remark 2: The freeness ofT is necessary for the orem 1 . Consider 

2 
a case with lv = R , n = 3, A = 1/2, and with D = C(O,p) with 

p = (0,1). Let u
1 

= u 2 = p, and u
3 

= (1,0). If T is taken as the 

line C(p, -p), which is not free, then C(T) = {3}. But xis clearly 

not s.q.u.d. in {3}, even though x is s.q.u.d. in {1,2,3}. 

Lemma 5: Suppose x is q.u.d. 
0 

If v E F, a £ v , and v + a £ F, then 

+) ( 0 n a+) _< ' S(v + S v An, 

with the inequality strict if x is s.q.u .d. 

Proof: By th~ continuity of the inne r product, the r e exists a 

neighborhood U of v suc h tha t y • - + u_ > 0 for all y £ U, u_ £ v . 
1 1 
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As F is convex, ther e exists 0 < 0 ~ 1 such that b = v + oa £ F rt U. 

Since b 0 f or 
0 

u. > any ui £ v 
~ 

+ 
and since is q. u . d. , we have (I a ' 

X 

S(v+) 0 + < s (b +) < + S(v rt a ) - An, 

with the last inequality strict i f x i s s.q.u.d. 

Proof of .Theorem 1: (Figure 2 may be helpful.) Suppose xis q . u . d . 

and T =f {O} is a free subspace. Le t M = C(T) . Since 

0 
i £ N - M < > u. ¢ T , lemma 3 implies the existence of v £ T such 

1 

that v • u. =f 0 < > i £ N - M. 
1 

+ -Hence n = S(v ) + S(v ) + m. We can 
. + 

assume S(v-) ~ S(v ), switching v with -v if necessary, so that 

Let v £ F. 0 v can be expressed as v = a+ b, where a £ T , b € T . 

For any p € D, p • a = p • (V b) = p • v ~ 0, since the f r eeness 

0 of T implies p € T . Hence a £ D* F . T being free a l so implies 

v £ F, so that v + a € F by the convexity of F. Applying l emma 5, 

we now h ave 
S(v+) + SM(a+) ~ An 

S(vo n a+) ( +) because our choice of v implies = SM a . 

inequality is s trict if x is s . q . u . d . ) Finally , since 

M To 
i £ = > ui £ - > v • u. = a 

1 
.. u . ~ 

1 

Putting t h e pie ces together leads to 

we obtain 

+ < + . SM(v ) - An - S(v ) ~ An - l/2(n - m) A m, 
m 

(This 
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FIGURE 2 
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a 

u. (i e: M) 
~ 

T 



-126-

' with the first inequality strict if x is s . q.u.d. The theorem is 

proved. 

Corollary 1: Let T be a free subspace and M C (T) . If X is 

q.u.d. and v € F , then 

with the inequality strict if x is s .q.u.d. 

Proof: Theorem 1 implies SM(v+) < 

inequality follows from substituting 

An- l/2(n- m), so the 

+ SM(v ) + SM(v-) + SM(v-) 

for m. 

Corollary 2 (Generalized Plott Theorem ll: 

Suppose x is an interior point of V and r is a ray without the origin. 

If x is q . u . d. then 

(i) ls(r) - S(-r) I S S(O) + (2A- l)n 

(ii) S(O) ~ (1 - 2A)n, 

with both inequalities strict if x is s.q .u .d. I f Q is a maximal 

subset of N that can be parti tioned into disagreeing pairs, then 

n = q + S(O) whenever either one of the following holds: 

(iii) X is q.u.d. and S(O) < 1 (2A - l)n 

(iv) X is s.q.u . d. and S(O) < 1 - (2A l)n. -

Proof: T 
0 is a free = ·r subspace, since F = w. Letting M = C(T), 

+ i £ M <=> u . € -r U {O} U r. 
~ 

Hence for any v € r, SM(v) = S(r), 

S(O). Applying corolla ry 1 first to v 

and then to -v now results in (i). Expression (i) implies (ii) 
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when r is chosen so that no gradients are contained in r or -r. 

If either (iii) or (iv) hold, then (i) imp lie~ ls(r) - S(-r) I = 0 

for all rays r. This implies n = q + S(O), since 

n- q - S(O) E ls<r.) - S ( -r.) I , where I indexes the lines 
iEI 

1 1 

l. -r . u {O} u r. that contain nonzero gradients. 
1 1 1 

Remark 3: Corollary 2 states the complete painvise symmetry 

required of the set of utility gradients at interior equilibria. 

The simple. example of figure 3, which has W R
2 

n = 5 and , 

A = 1/2, indicates that (i) and (ii) are only necessary conditions, 

since S(v+) = 3. The example also serves to show that x being 

s.q.u.d. in C(T) for every free, nondegenerate T does not imply 

that xis q.u.d., as xis s.q.u.d . in all the subsets content with 

nondegenerate subspaces: {1,2}, {1,2,3}, {1,2,4}, {1,2,5}. 

Remark .4: A converse of corollary 2 is true. Specifically, if Q c N 

can be partitioned into 'veakly disagreeing pairs and n = q + S(O), 

then x is q .u. d. if S(O) ~ (1 - 2A)n and x is s . q.u.d . if 

S(O) > (1 - 2A)n . This follows easily from the observation that 

+ + S(v ) = SQ(v ) ~ q/2 for any feasibl e direction v E F. This 

converse is true of any D and is genera lized in section 3. 

Theorem 1 is only the first step in proving symmetry 

conditions hold at boundary equilibria. However, it does imply 

necessary l ower bounds on S(D) - S(E) in important cases . This is 
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FIGURE 3 

u =u =0 1 2 
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not unexpected, since the vote of an individual in D " cancels" the 

vote of an individual in E for any feasible direction, just as the 

votes of individuals whose gradients are contained in opposing rays 

cancel. Hence one expects an analog of (i) in corollary 2 to bound 

S(D) - S(E). But an example will be presented subsequently showing 

this is not always true. First, the following corollary provides 

a sufficient condition for S (D) - S (E) to be bounded below·. 

Corollary 3: Suppose T is a free subspace such. that 

C(T) {i EN I u. ED U E}. If xis q.u.d., then 
1 

S(D) - S(E) ~ (1 2A)n, 

with the inequality strict if x is s.q.u.d. 

Proof: Let M = C(T). Let v E r elative interior(F), which 

exists because F is convex . For each i E M satisfying u. E E, 
1 

there exists some v £ F such that v o ui > 0. Hence lemma 3 

can be applied to show the existence near v of v e F such that 

v o u. > 0 for all u. £ E. 
1 1 

+ Therefore S(E) = SM(v ) and 

S(D) = SM(v-) + SM(v
0
), implying S(D) - S(E) ~ (1 - 2A)n by 

corollary 1. 

Remark 5: If DUE i s a subspace, then the hypothesis of 

0 
corollary 3 is satisfied forT = (D U E) . One case is D {0}, 

E = ~, for which the result is merely (ii) of corollary 2. 

Another case is D = C(O,p), E = C(-p), which occurs when Vis 

uniquely supported by a hyperplane at x . If D U E is not a 

subspace , the hypothesis may not be satisfi ed , and the bound 
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on S(D) - S(E) can be violated if dim (W) > 2. An example with 

dim(W) = 3, n = 9, and \ = 1/2 is shown in figure 4 . There , 

none of {u
1

, •• • ,u
6

} are i n E u D, {u
7
,u

8
} C E, and u

9 
E: n. 

xis s .q. u .d., since directions v in the corners ofF get 

+ S(v ) = 4 < 9/2 votes a nd direc tions in the middle of F get 

only 2 votes . But S(D) - S(E) = -1 l 0. 

Pairwise s ymmetries a t boundary equilibria will be implied 

by the following theore m. 

Theorem 2 : Let T be a two dimensional subspace and 

M = {i E: N I u. E: T}. Let Q be a maximal subset of M that can be 
1 

partitioned into weakly disagreeing pairs, and let K = M - Q. Then 

x is ( s .) q.u .d. inK if x is (s.)q.u.d. in T. 

Remark 6 : · This theorem differs from the an a l ogous proposition 1 

concerning strongly disagreein g pair s by r eferring to only a two-

dimensional s ubspace and by requiring Q to b e maximal . Neither 

additiona l hypothesis can b e eliminated . Fi gure S ( a) de picts a 

situa tion with n = 5, A = 1/2 , W = R
2

, D = C(O, p), a nd x s . q .u .d . 

By proposition 2 , 2V5, 3V5 , and 2V4. I f Q {3 , 5} U { 2 , 4} is 

deleted, x is s.q .u.d. in {1}, but Q {2,5} cannot be deleted 

because x is not s .q . u .d . in {1, 3 , 4} . This s hows Q mus t be taken 

maximal. In figure S (b) , n = 7, A = 1/2 , W = R
3

, and D = C(O,p) . 

All gr adients except u
4 

and u
5 

are in the plane of the figure , with 

u 
5 

r eceding b e hind and u
4 

coming up off t h e page. The gradients 

. 0 
u

3
, u

4 
and u

5 
are a l l·sl1ghtly lower than the p l ane p seen in 



(The planes 

{vlv·u
5

=v•u
6

=o} 

and 
{vlv·u3=v•u

4
=0} 

are omitted for cl arity.) 
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FIGURE 4 

{v lv•u =v•u =0} 1 2 

F 

{v£Fiv•u .>O for i=l,2, 7, 8} 
l. 

{v£Fiv•u .>O for i =3,4,7, 8} 
1 

{vEF iv•u.>O for 1=5,6,7,8} 
1 
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FIGURE 5 

D = C(O,p) 

(a) 

D C(O,p) 

(b) 

-p F 
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cross-section as H. + -1- + . Hence C = u
3 

n u
4 

n u
5 

ls a narrow cone containing 

-p. The only disagreeing pair is {6,7}. If. {6,7} is deleted , then 

+ 
s{ }(-p ) 1, . .. , 5 3 a nd xis not q.u.d . in {1, .. . ,5} . But, as 

+ + u
6 

n C = u
7 

n C = ~. xis s .q.u.d. in {1, ... 7}. Hence , figure S(b) 

shows T must be assumed two dimensional in theorem 2 . 

Lemma 6: LetT, M, Q a nd K be defined as in theorem 2 . Suppose 

" T n D j {O} and T n D contains no line. Then there exists Q C Q 

such that q = q/2 and C(K u Q) n D = ~. where K = {i £ K I u. ¢. D}. 
l 

Proof: Let r £ T n D be a nondegenerate ray containing the origin. 

For any nonzero v £ T l e t a (v) be the angle measured counterclockwise 

from r to v, with the convention 0 ~ Ci.(v) < 2TI. Numb e r the members 

of Q as 1 , 2, ... ,q so that i < j implies a(u.) ~ a(u.), as in figure 6 . 
l J 

Because Q can be pa rtitioned into weakly disag r eeing pairs , a tedious 

but straightfonvar d argument that we omit establishes tha t iV(i + q/2) 

for each 1 ~ i < q/2. Let a( ·) be defined by a(i) = i + q/2, so that 

iVa(i) for i < i ~ q/2. 

Let A C Q U K. Because T n D contain s no line and ui ¢. D 

for any i £ Q u K, it can b e shown tha t dim(T) = 2 implies 

C(A) n D = ~ <~> C(A) n r = 0. Thus we need only establis h the 

A A ~ 

existence of Q ( Q such tha t q = q/2 and C(K U Q) n r = ~ • . 

" Now consider C(K). " Let a £ K satisfy a(u ) ~ a(u.) for 
a l 

all i £ K a nd l e t b £ K satisfy a(~) > a(ui) for all i £ K. Then 

C(K) n r j 0 <-> a (ub) - a(ua) 2: n <=> C(ua,ub) n r f. 0. But then 

C(K) nr j ~implies aVb, contrary to t h e maximality of·Q. Hence 
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FIGURE 6 

D 

r 

C(K) 

u =u 
q cr(q/2) 
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Suppose C(K u {l}) n r = ~- Then, since et(ub) - et(u
1

) < n, 

et(uq/2) - et(u
1

) < n, and et (ub) - et(ua) < n, we have 

Therefore C(K u {1, ... ,q/2}) n r = 0, and the lemma is proved. 

Similarly, the lemma is proved if C(K u {q}) n r = 0. Now for 

1 < i ~ q/2, suppose 

c (K u { i , cr c i -1) } ) n r = 0 . 

Then u. £ C({i,cr(i- 1)}) for each i < j < cr(i-1). Hence, letting 
J 

Q. = . {i, i+l, .•. , cr(i-1)}, 
1 

we have 

C(K u Q.) 0 r = C(K u {i, cr(i-1) }) n r = 0, 
1 

and the lemma is proved. 

As the final s t ep, assume the lemma false. Then by the 

previous paragraph , C(K u {1}) n r, 0, implying lVb. Since 

C(K u {q}) n r I 0, aVq . For 1 < i::; q/2, C(K u Q.) n r I 0 
1 

implies iVb or aV(cr(i-1)) or iV(cr(i-1)). Let i 0 b e the maximal 

1 ::; i ~ q/2 such that iVb . Let j 0 b e the minimal i 0 < j ~ q/2 +1 

such that aV(a(j - 1)). Then substitution of 

{i
0

, b} u {i
0
+1, cr(i

0
) }· u ... u {j 0-1, a(j 0- 2)} u {a, cr(j 0-l)} 

for {i0 , cr(i
0

)} u {i
0
+1, cr Ci

0
+1)} u .. . u {j

0
-l, cr(j

0
-l)} 

in the partition Q = {1, cr(1)} u .. . u {q/2, cr(q/2)} yields a 

partition of Q u {a ,b} into weakly disagreeing pairs. ~his 
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contradiction of Q maximal finishes the proof . 

Proof of Theorem 2: Case 1: T n D = {0} . In this case each weakly 

disagreeing pair in Q is strongly d i sagreeing and the theorem follows 

by proposition 1 . Case 2 : T n D = T. Then Q = 0 and the theorem is 

trivial . Case 3 : T n D # T contains a line ! . Because dim(T) 

there exists nonzero v £ T such that l 0 
v Since D is convex, 

0 0 + T n D = v or T n D = v u v (switching v and - v if necessary) . 

0 + If T n D = v u v and u.,u. i D for some i,j £ M, then 
1. J 

C ( u. , u.) n D = 0. Hence Q 
1. J 

0 + T n D=v uv . IfT n D 

0 and the theorem is trivial if 

0 v , then for any i,j £ M, 

iVj <=> C(u. , u . ) n v 0 I 0. Hence all of {u. I i £ K} and half of 
1. J 1. 

{u. 
1. 

+ -i £ Q} are contained in one halfspace (v or v ) . Therefore 

there exists Q C Q such that q = q/2 and C(K u Q) n D = 0. 
A 

By lemma 6, such a Q also exists for the remaining Case 4: 

T n D # 0 and T n D contains no line. The refore we must pr ove the 

theorem for cases 3 and 4 assuming such a Q exists. But then 

C(K U Q) is a closed, convex and pointed cone not intersect ing the 

convex closed cone D, so a separation theorem implies the existence 

2, 

of v £ D* A A - + 
F such t hat C(K U Q) C v . Hence, since x is q .u . d . in M, 

A m 
m 

An- l/2(n-q-k) . 

This implies, as q = q/2, that k < An - l/2 (n-k) = Akk, with the 

inequality strict if x is s . q.u.d. in M. Since SK (v+) ~ k for all 

v £ F, x is (s . )q.u . d. inK. 
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Corollary 4 (Generalized Plott Theorem 2): SupposeD= C(O,p
1

,p
2
), 

with p
1 

and p2 nonzero _hut not necessarily distinct. LetT be a 

two dimensional subspace containing D, M = {i EN I ui E T}, Q a 

maximal subset of M that can be partitioned into weakly disagreeing 

A 

pairs, and K {i EM- Q I u1 ¢ D} . Then if xis q . u.d ., 

A 

(i) k < S(D) + (2A - l)n 

(ii) m - S(D) - S(E) ~ q ~ m - 2S(D) - (21.. - l)n, 

with the inequality in (i) and the second inequality in (ii) strict 

if x is s.q.u.d . Furthermore, if Q is the maximal subset of N that 

can be partitioned into weakly disagreeing pairs, then 

n = q + S(D) + S(E) if 

(iii) x is q.u.d. and S(D)- S(E) < 1 - (21..-l)n 

or 

(iv) x is s . q . u . d . and S(D) - S(E) ~ 1 - ( 21..- l)n. 

Proof: Since T contains D, M = C(T
0

) and T
0 

is a free s ubspace . 

By theor em 1, X is (s.)q.u.d. in M. Hence by theorem 2' X is 

(s.)q . u . d . in M - Q. Also, for D = C(O,pl,p2), cases 3 or 4 of 
A 

the Pf.'oof of theorem 2 apply, so that k ~ An - l/2(n - k), where 

A 

k = k + S(D) . Hence (i.) follows . The second inequality in (ii) 

A 

follows f r om (i) by substituting m- q - S(D) fork in (i) . 

The first inequal ity in (ii) holds because E u D C T and no 

i E M with u . E E \ J D can we akly disagree with anybody. By (ii), 
~ -

q = m - S(D) - S(E) if e ither (iii) or (iv) hold, s o that summing 

ove r all two dime nsional s ub s pac es containing gradie nt s no t in 

E U D y i e lds n = q + S(D) + S (E) . 
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Remark 7: Observe the analogy between corollaries 2 and 4. 

Expression (i) in corollary 2 puts a bound on the minimal set of 

people whose gradients a re in a one dimensional subspace 

containing D = {0} that does not contain a disagreeing pair. 

Express ion (i) in corollary 4 puts a bound on the minimal set of 

people, whose gradients are in a two dimensional subspace containing 

aD I {O}, that does not contain a weakly disagreeing pair. 

Expressions (iii) and (iv) in the two corollaries are obviously 

similar. 

Remark 8 :· Corollary 4 (ii) indicates the pairwise symmetry that must 

hold at boundary equilibria if D is two dimensional, since iVj iff 

u. and u. occupy s~mnetrical positions about D. Observe that D is 
1 J 

two dimensional if V i s uniquely s upported at x by a hyperplane , 

or if F can be defined as the intersection of only two h alfspaces 

with boundaries containing x. Cle arly, less symmetry is required 

if V is more "pointed" than this at x; it seems that corollaries 2 

and 4 indicate the only situations in which r e quire d symmetries 

invol ve pairs of gradients. 

Remark 9: Notice that because D i s two dimensional, (ii) of 

corollary 4 implies the validity of S(D) - S(E) ~ (l-2A)n without 

requiring the condition that D U E b e contained in a subspace 

containing only gradients in DUE, which was n eeded in corollary 3 . 
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Remark 10: A converse of corollary 4 is also true: If Q C N can be 

partitioned into weakly disagreeing pairs and n q + S(D) + S(E) , 

then x is q.u.d. if S(D) - S(E) 2: (1 - 2/..)n and x is s.q.u.d . if 

S(D) S(E) > (1 - 2 A)n . This follows easily from the observation 

tha t S(v+) S&q(v+) + S(E) ~ q/2 + S(E) for any feasible v E F. 

This converse is true for any D a.nd is generalized in section 3. 

3 . SUFFICIENT CONDITIONS 

Most conditions sufficient for quasi-undomination are not 

as general as the necessary ones and, unfortunately, require more 

notation for their derivation. However, there is one general result 

providing a necessary as well as a sufficient condition, although it 

is not often useful if F is "large". 

Theorem 3: Let {T } be a collec tion of subspaces such that 
a 

FCU T • Then xis (s.)q.u.d. if and only if for every subspace Ta 

that intersects F, x is (s.)q.u.d. when every person's gradient is 

projected onto Ta. 

Proof: 
i i i 0 

Given a subspace T, write ui = a
0 

+ a
1

, where a
0 

E T , 

The set {a~} is the set of gradients projected onto T, and 

the res ult follows from the fact tha t v • ui > 0 if and only if 

v • a~ > 0 when v E F n T. 

The usefulness of the criterion provided by theorem 3 is 

severely limited by the tradeoff between checking many s ubspaces of 

low dimension and checking fewer subspaces of higher dimens ion. To 
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obtain more tractable conditions, we introduce new notation. Let 

M = {i E: N u . E: E uD}. For any M C M C Nand for any v E: F, define 
]._ 

~(v) 

and 

+ - 0 
SM-M (v ) - SM-M (v U v ) 

max ~(v). 
vE:F 

Now we have what will prove to be a very useful result. 

Theorem 4: Let M
1

, .•. ,~ be a collection 0f subsets of N satisfying 

M fori 1 j. 

h 
l: nM. ~ S(D) - S(E) + (2:\-l)n, 

i=l ]._ 

Then x is q.u . d. if 

and x is s.q .u.d . if the inequality is Strict. 

Proof : Let v E: F . Then 

h 
(v+) = S(E) + l: 8M -M 

i=l ]._ 

h h 
vo) ::::: S(E) + l: l: (v 

-
~ . + 8

M.-M u 
i=l ]._ i=l ]._ 

h - 0 < S(D) + l: sM .-M (v u v ) + (2 :\-l)n 
i=l ]._ 

+ +· 0 Now S (V) ~ A.n follows by substituting n- S(v) for S(v-u v ). 

The proof that x is s . q.u.d. if strict inequality holds is identical. 
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Corollary 5 : Suppose x £ interior(V). Let Q b e a maximal subset of N 

that can b e partitioned into disagreeing pairs. Then x is q.u.d. if 

n - q ~ 2S(O) + (2 A-l)n, and x i s s .q.u.d. if n - q < 2S(O) + (2 A-l)n. 

Remark 11: Observe that 

n - q - S(O) = E 
i£I 

S ( r . ) - S ( - r . ) I , 
1 1 

wh e re I indexes the lines li = -ri u {0} u ri tha t contain nonz e ro 

gradients . Hence the suffic ient condition for x to be q.u.d. is that 

E I S(r.) - S(-r.) I ~ S(O) + (2A-l)n. 
i£I 1 1 

Notice the relationship to (i) in corollary 2 . 

Proof of Corollary 5 : In theorem 4, t ake M. = {i£N iui£i.) for each 
1 1 ' 

i £ I. Since D = {0}, these M. satisfy the hypothesis of theorem 4. 
1 

· Also, ~- = I S(r.) - S(-r.) I. 
Mi 1 1 

Hence, by remark 11, 

n - q ~ 2S(O) + (2A-l)n implies E ~ ~ S(O) + ( 2A-l)n 
i£1 i . 

S(D) - S(E) + (2A-l)n. Therefore the result follows from theore m 4. 

Remark 12: The condition of corollary 5 is not necessary for x to be 

q.u.d., as f igure 7 i llustra t es . There, n = 9, A= 1/2, D = {0}, 

+ x i s s.q.u.d. since max S(v ) = 4, but 

E~ . 
1 

3 
E 

i=l 
ls(r.) - S(-r.)l 

1 1 

3 f. 2 S(O). 
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FIGURE 7 
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Remark 13: The simple sufficient condition mentioned in remark 4 

is a special case of corollary 5. 

Corollary 6: Suppose x E boundary(V) with D = C(O,p) (p # 0). 

Let Q be a maximal subset of N that can be partitioned into weakly 

disagreeing pairs. Then x is q.u.d . if n - q ~ 2S(D) + (2:\-l)n, 

and x is s.q.u.d. if n - q < 2S(D) + (2A-l)n. 

Remark 14: Notice the relationship of this inequality to the second 

inequality in (ii) of corollary 4. 

Proof of corollary 6: Let T1 , ... ,Th be a set of two dimensional 

subspaces that collectively contain all nonz e ro gradients and that 

satisfy D C T .. Le t M. = {i EN I u. E T.}, and notice M
1

, ... K 
J. J. J. J. -n 

satisfy the hypothes i s of the orem 4. Le t Q. be a maximal subset of 
J. 

M. that can be partitioned into weakly disagreeing pairs. Then 
J. 

h 
q = L: 

i =l 
q .• 

J. 
Let K. = {j E M. - Q. I u. ¢ D}. 

J. J. J. J 
Then as in cases 3 and 4 

of t he proof of theorem 2, there exists v . E F satisfying 
J. 

k. + q./2 
1 1 

and 

q./2. 
J. 

+ This vi yields the greatest nM (v ), so 
i 

that ~. 
]_ 

k. 
J. 

S (E) .• 
J. 
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h 
r (k.- S(E)) + S(D) + S(E), we have 

i=l 1 

n - q - S(D) - S(E) 

$ S(D) - S(E) + (2A- l)n. 

Hence theorem 4 implies cor ollary 6 . 

We conclude with a useful theorem that can be easily applied 

if D {0} or D = C(O,p) . 

Theorem 5 (Partial converse to theorem 1): 

Let ·T
1

, •· •• , Th be any collection of ;free subspaces- such tha,t 

Then x is 

q.u.d . if 

(i) S(D) - S (E) < l - (2A-l)n and x is q .u . d . in each C(T.), 
1 

and x is s . q.u.d . if 

(ii) S(D) - S(E) $ l-(2A- l)n and x is s.q.u.d, in each C (T.). 
1 

Lemma 7: For any M C N that contains M, x is q.u.d. in Miff 

nH $ S (D) - S (E) + (2A- l)n, 

and x is s . q . u.d. in M iff the inequality is strict. 

Proof : By l emma 2, there exists v £ relative interior (F) such that 

+ + SM(V ) ~ SM(v ) for all v £ F. By suitable applications of lemmas 1 

and 3, v £ relative interior (F) can be shown to imply that 

v • ui > 0 for each ui £ E. Hence, since M ~ M and v • ui < 0 for 
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all ui £ D, 

" (_+) = S -~v+) + S (E) ~M v M-M'v ' ~ . 

Similarly , the re exis ts ~ e: relative interior (F) such that 

1\+ > + SM-M(v ) SM-M(v ) for any v e: F and 

A+ A+ 
SM(v ) = SM-M(v ) + S(E) . 

Hence SM- M(v+) = SM(V+) - S(E) ~ SM(~+) - S(E) 

SM-M(v+) is maximized on F at v . 

Therefore, if x i s q .u.d . in M then 

+ 
= S(D) + S (E) - m + 2 max SM--M(v ), 

ve:F 

< S(D ) - S(E) - m + 2A m 
m 

= S(D) - S(E ) + (~A-l)n, 

with the inequality s trict if x is s.q.u.d. in M. The other direction 

of proof is straightforward and very s imilar t o the proof used in 

theor em 4 . 

Proof of Theorem 5: Let Mi = C(Ti) and observe that M1 , ... ,~ satisfy 

the hypothesis of theorem 4 . Suppose (i) holds . Then by lemma 7 , 

nM. ~ S(D) - S(E) + (2A-l)n < 1. 
1. 
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Hence as each a_ is nonpositive, 
' M. 

1 

h 
E ~ < n < S(D) - S(E) + (2A-l)n. 

i=l i - ~ 

Therefore xis q.u.d. by theorem 4. If (ii) holds, then by lemma 7, 

S(D) - S(E) + (2A-l)n $ 1. 

h 
Therefore i:l~i < ~~ < S(D) - S(E) + (2A-l)n and x is s.q.u.d. by 

theorem 4. 



-147-

FOOTNOTES 

1. Although to my knowledge symmetry conditions for pairs_ of 

utility gradients have only been studied previously in three 

papers: Plott [1967], McKelvey and Wendell [1976], and 

Slutsky [1978]. 

2. For interior equilibria, Slutsky [1978] has independently 

derived pairwise symmetry conditions for A-majority rule . 

equilibria. His conditions are similar to some of those 

derived here. 

3 . A simple generalization would be to allow\\" to be a 

differentiable manifold, F a convex cone in the tangent space 

T\v of W at x, and u. an element of the dual of TW • 
X J.. X 

4. For this and other results mentioned below concerning convex 

cones, refer to any standard source such as Fenchel [1953] 

or Rockafellar [1970]. 
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